

HP 48 Handbook
James Donnelly

%wm&-.mm

The HP 48 Handbook

James Donnelly

Copyright © James Donnelly 1990

All rights reserved. No part of this book may be reproduced,
transmitted, or stored in a retrieval system in any form or by
any process, electronic, mechanical, photocopying or means
yet to be invented, without specific prior written permission of
the author.

First Edition

ISBN 1-879828-00-6

First Printing, May 1990
Second Printing, September 1990
Third Printing, January 1991

Armstrong Publishing Company
3135 NW Ashwood Drive
Corvallis, OR 97330 USA

Acknowledgements

Special thanks go to Eric L. Vogel for his many thoughtful
comments and hours of hard work. Jake Schwartz
contributed the PARENT and STKV programs. Alonzo Gariepy
contributed the QSORT program, ideas, and encouragement.
Ron Brooks, Sharon Butterfield, Tom Diamond, Grant Garner,
Wiodek A.C. Mier—Jedrzejowicz, Scott Rohrer, Bill Wickes,

Bob Worsley, and Dennis York contributed advice, ideas,
support, and encouragement.

The cover photograph, taken by Peter Krupp, was provided by
the Hewlett— Packard Company.

To Russell and Marian Donnelly

Contents

Introduction

Objects, Names, and Constants

Object Evaluation

Operator Precedence

Object Types

Real and Complex Numbers

Binary Integers

Unit Objects

Backup Objects

Library Objects

Variable Names

Symbolic Constants

Memory Organization

System Memory

Configuring RAM Cards

User Memory

Temporary Memory

Graphics

Graphics Coordinates

Stack View Program

GROB Structure

PPAR

Statistics Data

YPAR

Data Transfer

Pathways

Kermit Protocol

HP 48 —— HP 48

HP 48— Computer

Backing Up the HP 48

Restoring the HP 48

ASCII File Transfer

Character Translations

IOPAR

Cables

Menus

Custom Menus

Menu Traversal Program

User Keys

Setting User Mode

Key Locations

Standard Keys

Key Assignment Program

Programming

Program Structure

User-Defined Functions

Looping Structures

Conditional Structures

Error Trapping

Data Entry

Recursion

Meta - Objects

29
29
30
32
33
34
35
36
37
38
39
40
40
42
43
43
43
43
44
45
45
46
47
50
52
53
55
57

HP Solve Equation Library

Using Catalogs

Equation Library

Periodic Table

Constants Library

Finance

Multiple Equation Solver

Utilities

Command Reference

Reserved Variables

Flags

Messages

Library Identifiers

System Operations

System Halt Log

Interactive Self Test

Memory Scanner

Printer Control

PRTPAR

Built—In Units

Messages

Menu Numbers

Character Codes

Object Types

Flags

Subject Index

Command Reference

Alpha Keyboard

65

75

79

87

89

94

94

95

95

96

97

98

99

101

102

103

110

117

118

120

121

125

139

195

Introduction

The HP 48 Handbook is designed with the programmer in mind -
a concise combination of system descriptions and detailed
reference information. The HP 48 Handbook is not intended to be
a replacement for the Owner's Manuals - which cover the
interactive applications and calculus subjects not treated herein.

Organization. The first chapters cover the organization of the
system, object manipulation, and how programs work. The next
chapter discusses the HP Solve Equation Library application
card, with both operation and reference information. The

remaining chapters provide reference tables for flags, messages,
units, and so on.

The Subject Index lists the commands by subject areas to
provide another way to rapidly find the right command for a

particular application. The Command Reference contains the

complete set of stack diagrams for every command in the HP 48.

Fundamental Concepts. The HP 48 world revolves around the
stack, which is implemented as a dynamically allocated last—in-
first—out (LIFO) structure which can hold any number objects of
different sizes and types (see Objects, Names, and Constants).
All commands take their (zero or more) arguments from the stack
and return any results to the stack. For instance, consider the
following display:

{ HOME }
4:

3 (3,4)
2t 'or+R!
1: 2. 47
PrETS]PROEHVP[HATRVECTR]ERZE

Level 1 contains the number 2.47, level 2 the algebraic expression
’57+X’, and level 3 the complex number(3,4).

Introduction 1

Now execute the multiply function. While multiply is executing,
the arguments are removed from levels 1 and 2, leaving (3,4) in
level 2. When the multiplication is complete the result is returned
to the top of the stack:

x =
] X m]

N
W
H
|
™

 (3,4)
1 '(D7+K)*2,. 47"
PAETS[PROEVP[MATK[VECTR]BAZE|

Many commands are type-sensitive, that is, they perform
different operations for different types of input parameters. For
the complete descriptions for each command, see Command
Reference.

Example Programs. There are several example programs and
program fragments in this book. Each complete program is
named and printed with a size and checksum.

All characters in the programs are case -sensitive. The names of
commands are always uppercase. By convention, the names of

global variables are uppercase, and of local variables are
lowercase.

While the command line entry of a program may be free form,

with the keystroke being valid between words, graphics
objects must be entered exactly as shown, with no extra breaks in
the command line when entering the data.

If you enter a program into the HP 48, use the BYTES function to
make sure the program in the calculator matches the version in
the book. For instance, the program # DROF SHAF = is 15
bytes long and has the checksum #5197h. The sizes for named
programs include the size of the program name.

2 Introduction

Objects, Names, and Constants

Object is a general term for anything that can be put on the stack
or stored in a variable. Any object may be described in terms of
its type and value. For instance the number 247 has type "real
number” with value 247.

Objects may be classified into several broad categories:

o A data object contains information, such as a number or a

sequence of characters. Real numbers, complex numbers,
binary integers, arrays, and strings are examples of data
objects.

« A procedure object is a collection of objects that perform a
task in order. Programs and algebraic expressions are
procedure objects, and may be evaluated, placed on the
stack or stored in variables just like any other object.

o A name object permits an object to be referenced by name.

0O Global names refer to corresponding variables that
are available at any time. By convention, global
variable names are written in uppercase (A).

O Local names refer to corresponding local variables
that exist only with the scope of the executing

program that defines them. By convention, local
variable names are written in lowercase (z).

« A composite object is an object which is made up of one or
more objects. Unit objects, lists, tagged objects, and
programs are examples of composite objects.

In general, objects may be stored in variables or manipulated on
the stack regardless of their type. Some HP 48 functions and

commands perform different operations based on the type of

object supplied as a parameter. For instance, the + function

executes differently for strings (concatenates) than for real
numbers (adds).

Objects, Names, and Constants 3

Object Evaluation
Evaluation of an object may be either implicit or explicit. Objects
being entered on the command line, such as a real number or the
name of a command such as +, are implicitly evaluated unless
surrounding delimiters delay evaluation. An object on the stack
may be explicitly evaluated by executing EVAL .

Evaluation results vary with the type of object:

« When a global variable name is evaluated, the contents of
the variable are evaluated. To place a global variable name
on the stack, enclose it in tick marks (' %').

« When a local variable name is evaluated, the contents of the
local variable are recalled to the stack, but not evaluated. If
a local variable contains a real number, the behavior is
essentially the same as for a global variable, butif the local
variable contains a program, the program will only be
recalled to the stack. You can use a subsequent EVAL to
evaluate the program.

« When a program is evaluated, global names are evaluated
unless surrounded by ticks ('), the contents of local names
are recalled to the stack, commands are executed, and all
other objects are put on the stack.

« When an algebraic object is evaluated, the value it
represents is computed and returned to the stack.

Algebraic objects being evaluated obey rules of precedence
— see the table on the next page.

« When a list is evaluated, global names are evaluated,
programs are evaluated, commands are executed, and all
other objects are put on the stack.

« All other objects are put on the stack.

4 Objects, Names, and Constants

Operator Precedence
Operator precedence controls the order in which calculations
take place within an algebraic expression. Functions with the
highest precedence (1) are evaluated before those with the lowest

The evaluation order is left—to-right for
operators having the same precedence. For instance, in the
expression 'z+5%7', the multiply operation takes precedence
over the add, resulting in the answer 38, whereas the answer

precedence (11).

would be 56 if evaluated from left to right.

Level Operation

N
O
O
,

W
O
N
=

10

11

Expressions within parentheses
Functions

I (factorial)
Power (") and square root (/"
Negate (), multiply (*), divide (/)
Add (+) and subtract (-)
Relational operators

(:=! 7:’ <, >’S:2)

AND and NOT
OR and XOR
Left argument for | (where)

Objects, Names, and Constants

Object Types
Different object types may be distinguished in the stack display
through their delimiters — characters that are unique to that type
of object. For instance, strings are surrounded by quote marks
("), and programs are contained in French quotes (=x).

HP 48 objects are identified as follows:

Type Object Example

0 Real number 1.2245
1 Complex number (2. 3.4.52
2 String "AEC"
3 Real array [1231
4 Complex array [(1,22 ¢Z,42 1
5 List £ "AEC" Var
6 Global name #
7 Local name e
8 Program £ A2 + &

9 Algebraic Pasyeg!
10 Binary integer # 247d
11 Graphics object Graphic 121 = &4
12 Tagged object Dist: 24.45
13 Unit object F2_fto="2
14 XLIB name “LIEB Feg 1

15 Directory DIR ... EHD
16 Library L1t-r'ar'u TELL .

17 Backup object ackup HHHE[-IF
18 Built—in function =IH

19 Built—in command SHAF
26 Library Data Library Data

Related Commands: TYPE returns the type of object in level 1.
VTYPE takes a variable name and returns the type of object in the
variable, or —1 if the variable doesn’t exist. TVARS takes a type
number and returns a list of variables of that type in the current
directory.

6 Objects, Names, and Constants

Real and Complex Numbers

Real Numbers. Real nhumbers have a 12 -digit mantissa between
1 and 9.99999999999 and a 3 —digit exponent between -499 and
+499. During math operations, real numbers are expanded to
have a 15-digit mantissa and a 5-digit exponent during the
calculation, then rounded back to the 12-digit value when
returned as results.

Complex Numbers. Complex numbers are represented by pairs
of real numbers in parentheses: (2,3) (1.2,5). The Rectangular
(X,Y) and Polar (r,d) display modes (flags —15 and -16) control
the appearance of a complex number on the stack, but do not
affect the internal form. For instance, (2,3) is displayed in polar
form as (3.60555127546, X.56.309932474).

Vectors and Matrices. Vectors and matrices may be composed
of either real or complex numbers. Some examples:

L1 21 Real vector

(121 Real matrix

[24 1]

[0 1,12 (1,20 Complex matrix
[€251 2422 11

Related Commands: The commands R—C and C—R convert
between real and complex numbers or real and complex arrays.
C—R, V—, and OBJ— decompose a complex number to its real
and imaginary parts. C—R separates a complex array into an

array of real components and an array of imaginary components.
OBJ— separates a complex array into a series of complex
numbers followed by a list containing the dimensions of the
original array. If Complex Mode (flag —19) is set, —»V2 creates a
complex number.

Objects, Names, and Constants 7

RE returns the real component of a number or array; IM returns
the imaginary component. ARG returns the polar angle ¢ of a
coordinate pair (x,y). SIGN returns a unit vector in direction of the
input argument (x,y).

Binary Integers
Binary integers are entered and displayed with a leading #
delimiter and a trailing b, 4, h, or o toindicate the base.

Examples: #1811a81b #247d #7DACH

The commands STWS and RCWS may be used to store or recall
the wordsize, which may be up to 64 bits. The wordsize controls
the interpretation of arguments and the results of arithmetic
operations. For instance, if a binary integer is added to a real
number, the real number is truncated to the current wordsize, and
the result is a binary integer truncated to the current wordsize.

TRUTH TABLE

args arg, arg,

arg, arg, AND OR XOR r:?T

argo argp argo o

1 1 1 1 0 0

1 0 0 1 1 0
0 1 0 1 1 1
0 0 0 0 0 1

Related Commands: The following commands are useful for
working with binary integers: AND, B—R, NOT, OR, RCWS, RL,
RLB, RR, RRB, R—B, SL, SLB, SR, SRB, STWS, and XOR.

8 Objects, Names, and Constants

Unit Objects
Unit objects are entered and displayed in the form: number_units
where number is a real number and units is an algebraic
expression containing unit names, prefixes, exponents and the
operators #, -, and . (A unit object may only contain one -~

operator.) During conversions, unit powers are rounded to

integers MOD 256.

Examples:
E:E—-I:' t. ..,-:___.',-..2

Len=itugl 25—9"".':1'"I"
"E:

Units in Menus. Unit objects in built—in menus or custom

menus provide three types of functionality:

 Primary keys append the unit on the key to the numerator of
the level 1 object.

« Left—shifted keys convert to the level 1 object to the unit on
the key.

« Right-shifted keys append the unit on the key to the
denominator of the level 1 object.

User-Defined Units. A user—defined unit may be created from
any combination of the built—in units or other user—defined units.
To create a user—defined unit, store the definition in a variable

whose name is the name of the new unit.

For example, create the user—defined unit week by storing 7_d in
the variable week. Executing UBASE on 2week yields
1209600s. The object 1_week stored in a custom menu will now
behave like any other unit-related menu key.

Objects, Names, and Constants 9

Photometric Units. The numerical values of lumen (Im), lux (Ix),
phot (ph), and footcandle (fc) include a factor of 1/4x (steradian).
To convert between these units and candela (cd), footlambert
(flam), lambert (lam), orstilb (sb), do one of the following:

« Divide the expression including steradians by sr, the
dimensionless unit for steradians, or

« Multiply the expression not including steradians by sr

Related Commands: The following commands are useful for
working with unit objects: CONVERT, OBJ—, UBASE, UFACT,
—UNIT, and UVAL.

Backup Objects
Backup objects are used to store backed-up data in
independent memory (ports 1 or 2) or in port 0. A backup object
may contain any object, including directory structures.

Backup Identifiers. The contents of a backup object are
referenced by a backup identifier (eq: :1:FEED), which is a
port-tagged name.

The wildcard 2 may be used for the port number for the
commands RCL, EVAL, and PURGE. When the wildcard is

evaluated, memory is searched in the order of ports 2, 1, 0, and

then main memory for the first occurrence of the specified name.

If a backup object contains a directory structure, an object within
that directory structure may be recalled or evaluated by
specifying the path and name of the object in a port—tagged list.
Forinstance, :1:{ EEDIR FREL X refersto the object FRED in
a directory stored in backup object EEDIR in port 1.

10 Objects, Names, and Constants

Creating Backup Objects. A backup object is created by
executing the STO command with the object in level 2, and the
port—tagged name in level 1. For instance, the sequence
'FRED' RCL :1:BFRED ST0O recalls the contents of variable
FRED to the stack and creates a backup object called BFRED in
port 1.

Recalling Backup Objects. The contents of a backup object
may be recalled in two ways:

e Press () [LIBRARY], g, then
(] and the menu keyfor the backup ob]ect

« Place the backup identifier on the stack and execute RCL.

Evaluating Backup Objects. The contents of a backup object

may be evaluated in two ways:

e Press [¢q) [LIBRARY], FiFTH, FORTIL, or FORTZfor the

port number, then the menu key for the backup object.

« Place the backup identifier on the stack and execute EVAL.
EVAL also accepts a list of backup identifiers.

Purging Backup Objects. To purge a backup object, place the
backup identifier on the stack and execute PURGE. A backup
identifier may be included in a list supplied to PURGE.

Related Commands: PVARS takes a port number as its
argument and returns two results:

« Level 2 contains a list of backup objects and library IDs.

o Level 1 contains the type of memory in the port -
"SYSRAM", "ROM", or a number showing the amount of
available independent RAM.

Objects, Names, and Constants 1

Library Objects
Library objects are collections of one or more objects that
generally extend the built—-in command set. Libraries are
referenced by a library# or a library identifier (: port#: library#),
depending on the command. The title of the library may be
displayed by pressing (€] in the LIBRARY menu.

Installing a Library. Library objects only extend the command
set when they are stored in a port (0, 1, or 2) and attached to a
directory in user memory. To use a library, perform the following:

« Store the library object in a port, such as port 0. For instance,
if the library object is in level one of the stack, execute 0 STO.

e Turn the calculator off, then on again. The calculator will

perform a system halt, which updates the system
configuration to recognize the new library.

o Attach the library to the desired directory.

O To attach a library to the current directory, enter the

library# and execute ATTACH.

O To detach a library from the current directory, enter the

library# and execute DETACH.

Note: some libraries will automatically attach to the HOME
directory. Any number of libraries may be attached to HOME, but
only one library may be attached to each subdirectory.

Removing a Library. To purge a library, perform the following
steps:

« Ensure that the library object does not appear on the stack
as Librarg nnm: ... Either store the library in a

variable or execute NEWOB to create a unique copy.

« If the library is attached to the HOME directory, enter the
library#, such as :z: 272 and execute DETACH.

o Enterthelibrary ID, such as :z:Zz72 and execute PURGE.

12 Objects, Names, and Constants

Variable Names
Variable names may contain letters, digits, and most characters.

Names may not start with a digit, match a command name, or
contain object delimiters or the characters + - = ~ ~ [= ¢
> £ = # a [|space, comma, or @.

Reserved Variables. The HP 48 stores information for various
commands in reserved variables. Reserved variables may reside
in any directory, and may be used in more than one directory at a

time.

Name Description

ALRMDAT Current alarm editing data
CST Custom menu contents
EQ Current equation for SOLVE and PLOT
IERR Uncenrtainty of integration
IOPAR |/O parameters
PICT References the graphics display
PPAR PLOT parameters
PRTPAR PRINT parameters

der... User—defined derivatives begin with der
ni, n2, .. Integers created by ISOL

s1,82, ... Signs created by ISOL and QUAD
YDAT Current statistical matrix
YPAR Statistics parameters

Notes:

e The [#] SETUF menu only modifies the copy of
IOPAR in the HOME directory.

e The print commands only modify the copy of PRTPAR in the
HOMEdirectory.

e PICT is not directory—dependent. It only refers to graphics
display memory.

Objects, Names, and Constants 13

Symbolic Constants
The HP 48 has five constants which may be used in symbolic
form or as approximate numerical values.

Name Machine Value

T 2. 1415926532359

=) 2.71828182248

i CH. 12

MAXR 9.99999999999E499
MIHR 1.E-499

System flags -2 and -3 control evaluation of symbolic

constants:

Flag Description Clear Set Default

Symbolic Math Flags

-2 Symbolic Constants Symbolic form Numeric form Clear

-3 Numeric Results Symbolic results Numeric results Clear

14 Objects, Names, and Constants

Memory Organization

Memory in the HP 48 is accessed in four-bit quantities (nibbles,
or 1/2 bytes) within a 20 - bit address space, yielding a 512K byte
address space. The BYTES command, which returns the size

and a checksum for an object, will sometimes show a size such
as 106.5, reflecting that the object occupies 213 nibbles of
memory.

System Memory
Memory in the HP 48 is organized as follows:

System ROM The operating system resides in 256K bytes
of read only memory (ROM). This command
set may be extended through the use of
library objects which reside in ROM or RAM
(see Library Objects).

System RAM There are 32K bytes of random access
memory (RAM). Slightly less than 32K is
available as user memory, as the rest is

devoted to display memory and reserved
system scratch and pointer memory.

Plug-in ROM Plug-in ROM application cards, such as the
HP 82211A HP Solve Equation Library, may
extend the built—in command set.

Plug-in RAM HP 48SX RAM may be extended by adding
plug-in RAM cards that contain either 32K
(HP 82214A) or 128K (HP 82215A). Plug-in
RAM may be configured two ways (see
below).

Memory Organization 15

Configuring RAM Cards
Initial Configurations. Before a plug-in RAM card is used,
some consideration should be given to its intended use. RAM
cards may be configured two ways:

e Independent RAM may be thought of as an "electronic
disk”, which may be removed from the calculator. Individual

objects or entire directories may be placed in independent
RAM (see Backup Objects for more details). This
configuration is most suitable for backing up data, "hiding"
data from the HOME directory, or exchanging data with
another calculator.

o Merged RAM extends the built—in RAM, creating more
room for variables and directories, temporary objects, or
graphics display area. To use a card in this manner, enter
its port number and execute MERGE. Merged RAM may
not be removed from the calculator unless the FREE
command is used to free it. To free a card, make sure there
is enough available memory to hold all your variables
(including the contents of port 0), enter a blank list in level 2,
the port numberin level 1, and execute FREE.

Changing Configurations. A merged RAM card may also be
"converted” to an independent RAM card containing objects that
were in port 0. To do this, enter a list containing the objects to
transfer to independent RAM in level 2, the port humber of the

card in level 1, and execute FREE.

The reverse operation is also possible. An independent RAM card
may be converted into merged RAM with the MERGE command.
Any objects that were in the card will appear in port 0.

Understanding Port 0. Port 0 is a portion of built—in memory
(which may include merged RAM cards) which behaves in the
same manner as an independent RAM card (except that it is not
removable). Port 0 may contain either library or backup objects.
The amount of memory devoted to port 0 changes as objects are
stored in it or purged from it.

16 Memory Organization

User Memory
User memory may be organized into a tree structure of directory
objects, which are implemented as variables stored in the HOME
directory.

HOME

|
o
X Y PROGS IOPAR EQNS DATA

PROG1 PROG2 PAGES PROG1 QUAD

-
P1 P2

The status line displays the current directory path, and the VAR
menu displays the current directory:

{ HOME PROGS PAGES }
4:
3:

¢
|ITIIIII----|

In the example above, the current directory is PAGES, which
contains variables P1 and P2.

Creating a Directory. A directory may be created with the
command CRDIR. To store variables in the new directory move
to the new directory by evaluating its name or pressing the
corresponding key in the VAR menu.

Memory Organization 17

Accessing Variables. When a variable name is evaluated, the
current directory is searched first. If the variable is not found,its

parent directories are searched in ascending order until the
variable is found. In the example above, there are two variables
named PROG1. Different directories may have variables of the
same name.

Changing Directories. To change to a lower directory, simply
evaluate its name. To return to the previous level, execute UPDIR
(see Menu Traversal Program). Evaluating a list that starts with
HOME followed by directory names can quickly change the
current directory to any other place in user memory. For
instance, if the current directory is PAGES, evaluating { HOME
EQNS } will change the current directory to EQNS. A port-
tagged path may be used for RCL and EVAL, but you must move
to the target directory for STO.

Changing a Directory Name. To change the name of a directory
or move the directory to another location, perform the following
steps:

« Recall the directory to the stack

o Purge the old directory

e Move to the new location

« Enter the new name and execute STO.

Purging a Directory. The PURGE and PGDIR commands may
be used to purge a directory. The PURGE command only
removes empty directories; PGDIR removes a directory and its
contents.

Saving User Memory. The commands ARCHIVE and RESTORE
may be used to save and recover all of user memory (see Data
Transfer).

18 Memory Organization

Temporary Memory
The data stack in the HP 48 is actually a stack of pointers which
refer to objects elsewhere in memory. Temporary memory is the

calculator’s "scratchpad". All objects that are not stored in a port
or in a user variable reside in temporary memory. Many
commands require temporary memory to construct intermediate
objects or new objects returned as results to the stack.

Use of Temporary Memory. To understand temporary memory
a little more, consider what happens when two math operations
are perfomed. Enter the numbers 1.5 and 2.6 on the stack.
These numbers now reside in temporary memory, referred to by
pointers on the data stack. When the numbers are added, the
result, 4.1, is a number in temporary memory referenced by a
pointer in level 1 of the data stack. The objects 1.5 and 2.6
remain in temporary memory, referenced by pointers that save
the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the
data stack refers to the object 6.9 in temporary memory. The last
arguments pointers now refer to the objects 2.8 and 4.1, and the
objects 1.5 and 2.6 are no longer referenced.

Garbage Collection. From time to time the HP 48 will "hesitate”
during an operation. This hesitation is usually caused by the

removal of objects in temporary memory which are no longer
being used. Objects which are no longer referenced continue to
accumulate in temporary memory until memory has been filled.

When memory is full, the calculator scans the objects in
temporary memory, deleting those without references to them.
This process, known as "garbage collection”, is similar in concept

to garbage collection in LISP.

A large number of pointers on the stack that point to temporary
memory can slow down the garbage collection process to an
uncomfortable degree. This occurs when there are a large
number of objects on the stack, or an object has been extracted
from a large list. List operations can be optimized by storing the

Memory Organization 19

lists in global variables, effectively moving the operations from
temporary memory to user memory.

The MEM command returns the amount of available memory,
forcing an initial garbage collection to return an accurate result. It
may be helpful to insert the sequence MEM DROP to force
garbage collection prior to speed - sensitive program sequences.

The NEWOB Command. The command NEWOB may be used
to create a new copy of an object in temporary memory, whose
only reference is on the data stack. In general, the system will
perform an automatic NEWOB where it make sense. For instance,
if you recall the contents of a variable to the stack and press
[EDIT], the object will be copied to temporary memory before
editing begins.

There are two uses for NEWOB:

« NEWOB “frees" an object that was extracted from a list.
Consider the following program:

H HE: 1" 1 I:[l n " EF i :: E_: I_-:IET -

Level 1 of the data stack contains a pointer into the list,

which still resides in temporary memory. Executing
NEWOB now would create the unique object "AB" in
temporary memory, and release the list for garbage

collection. Note: set the Last Arguments flag (-55) to
prevent the list from being references as a last argument.

 Recalling an object to the stack simply returns a pointer to
the data stack. To purge a backup object from a port while
retaining a copy in temporary memory, recall the object and
execute NEWOB. Then the original object may be purged
because there are no references to it.

20 Memory Organization

Graphics

The HP 48 display is a 131x64 pixel LCD which may present the
stack or PICT, a portion of memory set aside for graphic displays.

Graphics Coordinates
Two systems of coordinates may be used to manipulate PICT and
graphic objects:

o User units, represented as complex numbers, are typically

used to define the boundaries of plots. The first two entries
in PPAR store the coordinates of the lower-left corner and
upper-right corner of PICT. The default plot boundaries
are (-6.5,-3.1) and (6.53.2). User—unit scaling
information is stored in the reserved variable PPAR.

Default User Coordinates

(-6.5,3.2) (6.5,3.2)

 (-6.5,-3.1) 3 (6.5,-3.1)

« Pixel coordinates are represented by a list containing two
binary integers, { #col #row } . Graphics objects on the
stack may only be described with pixel coordinates. The

upper - left pixel is represented by { #0 #0 }.

(#0401} o Pixel Coordinates (#130 #0)

GOR coordinate E:j

{#0 #63 } O { #130 #63 }
Graphics 21

Graphics objects added using GOR, GXOR, or REPL are located
by their upper-left corner using either user or pixel coordinates.
Note: the sequence PICT { #0 #0} grob REPL is faster for
animation than grob PICT STO.

Related Commands: The commands C—PX and PX—C convert
between user—unit and pixel coordinates based on the
dimensions in PPAR. The PDIM command changes the size of
PICT.

C—PX Command
User —unit to pixel coordinate conversion

(xy) — { #col #row }

PDIM Command
Changes the size of PICT.

(Xmin'Ymin) (XmaxsYmax) —* Changes PICTrelative to the

current user coordinates

#horizontal #vertical — Does not affect current

user coordinates

PMAX Command
Sets the upper -right plot coordinates

(xy) —

PMIN Command
Sets the lower —left plot coordinates

(xy) —

PX—C Command
Pixel to user —unit coordinate conversion

{ #col #row} — (xy)

SCALE Command
Specifies x and y scale in units per 10 pixels

Xy —

Other commands that affect scaling are AUTO, AXES, DEPND,

INDEP, *H, and *W.

2 Graphics

Stack View Program
The following stack—view program STKYV displays up to ten levels of
the stack simultaneously. The display mode, plot parameters, stack
values and graphics picture are preserved. The system remains

halted until ATTN is pressed, after which the program resumes to
restore the original PPAR and PICT.

STKV 371.5Bytes Checksum #A1B7h

IF DEFTH THEH Make sure stack is not empty

FIlT ECL PFPAE + pict ppar Preserve original PICTand PPAR

PICT FURGE Purge original PICT

1 22 XEHG 1 &4 YEHG Set newXand Y rangesforstack

1 DEFTH 1 - 18 MIW DUP Determine current stack height

IF 2 > Ifgreater than 8, text row height

THEH & 1 is 6 and text size is 1

ELSE & 2 Otherwise, text row height is 8

EHD + rowht t=size and text size is 2

« FORE 1 PICT 1 1 rowht Loop forthe no. ofstack levels:

* E=C RECLF STD 1 Use STD display mode to

" " + SHAP STOF build stack level identifier

1 2 + FICE *5TE + Add stack value to identifier,

t=zize *GROE GORE and add to picture

HE®T End loop

> PYIEW Display PICT, wait for [ATTN]

'"FFPAE' FUEGE ppar Purge newPPAR

IF 'PPAE' SAME HOT Did PPAR exist before?

THEH ppar 'FFAE' STO Yes, store old value

EHD

pict FICT STGO Restore original PICT

EHD
2, 10: 247

9: '6.5_M/S'
B: STRING
2: (1.1.2.2)
6: :TAG: 21.54
5: GRUE 131 64 000000000000000000
§: 'Y=@XXAB+IXR-Y
3: # 2E7IIH
201283451
1: { 1 "AB" }

Graphics 23

GROB Structure
A graphics objectis structured as follows:

header

length

height

width

data

<header> <length> <height> <width> <data... >

This is a five—nibble* field that distinguishes a
graphics object from any other object type, and has
a fixed value of #02B1Eh.

This field is a five—nibble quantity that contains the
distance in nibbles from start of length field to the
nibble past the end of the object. This length is #Fh
+ the number of data nibbles.

This field is a five—nibble quantity that specifies the

height of the graphics image in pixels.

This field is a five—nibble quantity that specifies the
width of the graphics image in pixels.

The data nibbles begin at the upper—left corner of
the graphics object and proceed left—to-right,
top—-to-Dbottom. Each row must contain an integral
number of bytes, so the data may be padded with
garbage bits. The bits in each nibble are written in
reverse order, so the leftmost displayed pixel in a
nibble is represented by the least-significant bit of
the nibble.

If you are preparing a graphics object on a personal computer,

remember that the HP 48 CPU reads data from memory into registers
in reverse order, so the first four fields are written backwards. For
example, the headeris written E1B20.

* A nibble is 1/2 byte.

24 Graphics

Graphics objects may be entered into the command line on the
HP 48. To enter a blank graphics object, type GROB width height,
where width and height specify the size in pixels.

Examples: To enter a graphics object which represents "G" in the
small font, type GROB 4 5 E010D090EOQ .

On a personal computer, the graphics object looks like this:

E1B20 B1000 50000 40000 E010DO90EOQ
header length width height data

In the second example consider a blank graphics object that is the
size of the display with the "G" from above in the upper-left corner.
The graphics object lookslike this on a personal computer:

E1B20 header
F8800 length
04000 height

38000 width
E000000000000000000000000000000000 row 1

1000000000000000000000000000000000 row 2

D000000000000000000000000000000000 row 3

9000000000000000000000000000000000 row 4

E000000000000000000000000000000000 row 5

0000000000000000000000000000000000 row 6

... 2176 total data nibbles

0000000000000000000000000000000000 row 64

Graphics 25

The fields for the example on the previous page are derived as
follows:

« The display width is 131 columns = 83h pixels, or 17 bytes or

34 nibbles.

« The display height is 64 rows = 40h pixels.

« The data length is bytes—per—row x rows = 2176 nibbles. The
length field is calculated as 2176 + 15 = 2191d = 88Fh.

PPAR
The reserved variable PPAR (which may exist in every directory)
contains scaling information and plot specifications.

PPAR —
{ mine Ymi) (Xmax: Ymax) indep resolution (Xaxis: Yaxis) Ptype depend }

Parameter Description Default

(Xmi» Ymin) Lower —left pixel coordinates (-6.5, -3.1)

(Xmax Ymax) Upper—right pixel coordinates 6.5,3.2)

indep Independent var for horizontal axis X

resolution Real positive integer for user —unit point spacing, or 0

binary integerfor pixel spacing (0=every column).

Specifies the bar width for BAR plots or the bin

width for HISTOGRAM pilots.

Xaxis) Yaxis) Axes intersection coordinates (0,0)

ptype Plot type: FUNCTION, CONIC, POLAR, BAR, FUNCTION

PARAMETRIC, HISTOGRAM, SCATTER, TRUTH

depend Dependent variable Y

26 Graphics

Statistics Data

Data used by the STAT application resides in or is named by the
reserved variable XDAT. Statistics data may be entered from the
stack one point at a time using the ommand, or an entire
matrix can be stored in IDAT using the (€]
command. The command EDITEX may be used to edit XDAT using
the MatrixWriter.

Append one data point with one coordinate value

Reverses the effect of the last ¥+

[Xy %5 ... X] Append one data point with m coordinate values

([%21 -Xom]
Append n data points with m coordinate values

[Xn1 xnm]]

LDAT Statistics Matrix

. Coordinate Number
Data Point

1 2 3 4 m

1 X1 Xy2 Xia X4 Xim

Xa1 X2z X X4 Xom

3 Xa1 Xa Xaa Xa4 Xam

n Xm Xn2 Xna Xna Xom

Statistics Data 27

>PAR
The reserved variable YPAR contains plot and scaling information.
Each directory may contain a unique LPAR. The entries for the
independent and dependent columns may be set using the COLXZ
command.

YPAR —
{ indep dep intercept slope model }

Parameter Description Default

indep Independent column number 1

dep Dependent column number 2

intercept Intercept of current regression model 0

slope Slope of current regression model 0

model Current model: LINFIT, EXPFIT, PWRFIT, LINFIT

or LOGFIT

Statistics Data

Data Transfer

Any named object, such as a variable, backup object, or
complete directory, may be transferred to another HP 48 or a
computer. A complete backup of user memory may also be
transferred to another HP 48 or a computer.

Pathways
There are three methods of transferring data between the HP 48
and another HP 48 or computer:

o Objects may be transferred between HP 48s using the
infrared (IR) link. The IR link is fixed at 2400 baud, no parity,
and may be used to transfer data in either ASCII or binary
mode.

« Objects may be transferred between a computer and an
HP 48 using the serial (wire) link. The wire link may be
configured to support a variety of baud rates and parity
options. The Kermit protocol provides the most reliable
transfer mechanism.

e Plug-in RAM cards may be configured as independent

memory and exchanged between HP 48s. The commands
FREE and MERGE are used to configure RAM cards. Only
library and backup objects can reside in independent
memory.

Data Transfer 29

Kermit Protocol
The Kermit file transfer protocol ensures correct data
transmission between two HP 48 calculators or an HP 48 and a
computer. Kermit was developed at the Columbia University
Center for Computing Activities. Detailed information about
Kermit is available in a book by Frank da Cruz, KERMIT, A File
Transfer Protocol, 1987, Bedford, MA (Digital Press). For 9600
baud transfers, it's best to disable the updating clock display.

Kermit Configurations. Kermit protocol provides two basic
configurations for data transfer:

Local/Local Commands must be entered on both machines
to effect a transfer: a SEND command must be
issued on the sender, and a RECEIVE (RECV or
RECN on the HP 48) command must be issued
on the receiver. New commands must be
issued for each object transferred. (Some
implementations of Kermit permit “"wildcard"
characters to send a series of files with one
command.)

Local/Server One machine is placed in server mode, which
acts upon commands received from the sender.

The server:

« Transmits an object when it receives a GET
command with a file name.

« Receives an object when it receives a SEND
command.

o Exits Kermit when it receives a FINISH

command.

The server may respond to multiple transfer

requests without keyboard intervention.

30 Data Transfer

Remote Kermit Operation. The HP 48 can respond to several
Kermit commands when in server mode. These commands

initiate actions, list variables, or transfer data.

GET: The Kermit command GET name instructs the HP 48 server
to transmit the contents of the named variable to the computer.

SEND: The Kermit command SEND name instructs the HP 48

server to receive the contents of the named computer file and
store them in a variable of the same name.

REMOTE DIR: The Kermit command REMOTE DIR (packet GD)
causes the HP 48 server to reply with a separate line for each
variable in the current directory. Each line contains the variable
name, length in bytes, type, and a decimal checksum. Examples:

Name Length Type Checksum

16 Eeal Humber o3y

ER 48 Alasbraic 1422

CLE 6276 Directory 28291

I0OFAR 29.5 List TE7I
REMOTE HOST: The Kermit command REMOTE HOST (C
"host-command" packet) may be used to execute HP 48
commands from the computer. After the command has been

executed, the HP 48 replies by returning the stack contents. The
stack is formatted in a manner similar to the PRSTC (print stack
compact) command. For instance, to add two numbers on the
HP 48, type "REMOTE HOST 2 3 +". Assuming that the stack
was empty before, the HP 48 replies with the string
"1 5" . If the stack is empty, the HP 48 replies Emptu
Stack.

FINISH: The Kermit command FINISH transmits the GF packet to
the HP 48 to turn off server mode on the HP 48. The GL packet,
associated with logout commands, has the same effect.

Data Transfer 31

HP 48— HP 48
To transfer an object between two HP 48s, perform the following:

o Use the [\ SETUF menu to set IR transmission mode
and type 3 checksums.

o Set the sender to the directory containing the variables to
send.

 Set the receiver to the directory that will receive the variables.

Local/Local Configuration

1. On the receiver, execute RECVto store the incoming variable
under the sender’s name, or enter a name and execute RECN
to rename the incoming variable.

2. On the sender, enter the variable name and execute SEND.

3. Repeat 1 and 2 for each additional variable.

Local/Server Configuration

1. Onthe server HP 48, execute SERVER ([¢*] (1/0]).

2. Onthe local HP 48:

e To send variables to the server, enter the variable name

and execute SEND.

e To receive variables from the server, enter the variable

name and execute KGET.

3. After all variables have been transferred, execute FINISH on

the local HP 48 or press on the server.

32 Data Transfer

HP 48 —— Computer
To transfer objects between the HP 48 and a computer, perform
the following:

e Use the [#] g “ menu to set wire transmission
mode, the baud rate, parity, and checksum settings.

o Set the HP 48 to the directory which will send or receive
objects.

Local/Local Configuration

1. Issue the receive command:

HP 48: Execute RECV or enter the variable name
and execute RECN.

or Computer: Issue the RECEIVE command.

2. lIssue the send command:

HP 48: Enter the variable name and execute
SEND.

or Computer: Issue the SEND file—specifier
command.

3. Repeat 1 and 2 for each additional file, then execute
CLOSEIO on the HP 48 to save battery power.

Local/Server Configuration

1. Set the server operation:

HP 48: Execute SERVER ([] (1/0)).

or Computer: Execute the Kermit Server command.

2. On the local device:

e To send a variable, enter the variable’s name and execute

the SEND command.

e To receive the contents of a variable on the server, enter
the variable name and execute GET or KGET.

3. After all variables have been transferred, execute FINISH on
the local device and CLOSEIO on the HP 48 to save battery
power.

Data Transfer 33

Backing Up the HP 48
The ARCHIVE and RESTORE commands may be used to save

and recover the entire contents of user memory on a computer.

Note: The system and user flag settings may be preserved by

executing RCLF and storing the flags in a variable. After doing a

restore, recall the contents of the variable and execute STOF.

To back up all of user memory to a computer, perform the

following steps:

« Connect the HP 48 and the computer.

e Use the [«] SETUF menu to set wire transmission

mode, the baud rate, parity, and checksum settings.

» Optional: Execute RCLF and store the flags in a variable.

o Enter the object : I0i: name, where name is the computerfile

name that will contain the HP 48 image. For 9600 baud

transfers, it's best to disable the updating clock display.

« Issue the Kermit RECEIVE command on the computer.

o Execute ARCHIVE on the HP 48.

34 Data Transfer

Restoring the HP 48
Caution: The RESTORE command erases the entire contents of

user memory!

To restore the user memory image from a computer, perform the
following steps:

« Be sure there is enough user memory available to hold the
incoming file. Since the RESTORE will replace all of user
memory, you might as well execute CLVAR.

o Connect the HP 48 and the computer.

« Transfer the file containing the memory image to the HP 48
the same way as for any file.

« Put the file name on the stack and execute RCL. This puts
Backup HOMEDIR inlevel 1.

o Execute RESTORE.

» Optional: Recall your variable containing the user and system
flags and execute STOF.

Data Transfer 35

ASCII File Transfer
An ASCII file generated on a computer provides an alternative
method for entering data or a large program in the HP 48. To
ensure that the data is interpreted correctly by the receiving
HP 48, the following header string should be included which
indicates the expected modes:

%%HF: TdtranslationyAiangle —mode»F fraction—mark:;

The codes are defined as follows:

Code Purpose Settings Default

T See Character Translations 0,1,20r3 1

A Sets the angle mode D,RorG D

F Sets the fraction mark , Or .

The HP 48 will ignore text after the @ character at the end of a
line in the computerfile.

Example: The following text on a computer may be transferred to
the HP 48 in ASCIl mode to create a program that returns the
area and volume of a sphere given its radius. Notice the use of
character translations to represent various HP 48 characters:

AuHFD TOZDACDIFC. 23

w4 N=ror A B Comment information

4 ~pl ~=:HUM = v 2 ~ ¥ "Area" ~->TAG

4 2 & wpl s=rHUM ¥ - 207 % "Molume" ~->THG

W

On the HP 48, the program lookslike this:

& 3

“ 4 o HHUM ® - 2 ~ % "Area" *THG

4 2 S +HUM * - 2 & % "Volume" +THG

36 Data Transfer

Character Translations
When data is transferred between the HP 48 and a computer

using translate codes 2 (000—159) or 3 (000—255), conversions
are used to represent some characters.

For data being transferred to a computer with translate codes 2 or
3, each ™~is replaced with ~~. For data being transferred to the
HP 48, characters may be converted using a text conversion or
~Xxx, where xxx is the three —digit (decimal) character code.

The following table shows the text conversions for characters
above code 127.

NUM HP 48 ASCII NUM HP 48 ASCII

128 £ \ <) 148 0 \Gn

129 P, \X- 149 B \Gh

130 7 \.V 150 i \Gl

131 T \v/ 151 F \Gr

132 J \.S 152 o \Gs

133 = \GS 153 T \Gt

134 b \ | > 154 0 \GW

135 ™ \pi 155 & \GD

136 a \.d 156 m \PI

137 < \<= 157 i \GW

138 a \>= 158 . \B
139 * \ = / 159 W \00

140 o \Ga 171 S \< <
141 * -> 176 a \"o

142 + \< - 181 u \Gm

143 + \ v 187 # \>>
144 + \[7 215 ® \.X

145 : \Gg 216 o \O/

146 z \Gd 223 E \Gb

147 £ \Ge 247 + \i-
Data Transfer 37

IOPAR
The reserved variable /OPAR may only reside in the HOME
directory. Other variables of the same name in subdirectories will
be ignored by the |/O commands.

IOPAR —

{ baud parity receive-pacing transmit-pacing checksum translate-code }

Parameter Description Default

baud 1200, 2400*, 4800, or 9600 9600

parity 0=none*, 1=0dd, 2=even, 3=mark, 4=space None

Negative parity value = transmit only

receive-pacingt Value #0 sends XOFF if HP 48 buffer full 0

transmit-pacingt Value # 0 stops transmission if XOFF received 0

checksum 1=1 digit arithmetic, 2=2 digit arithmetic, 3=CRC 3

translate-code O=none, 1=LF to CR-LF, 2=128-159, 3=128-255 1

* |R is 2400 baud, no parity only t Not used by Kermit

Data Transfer

Cables
The Serial Interface Kits include a serial cable for an IBM-
compatible personal computer (HP 82208A) or an Apple
Macintosh computer (HP 82209A), and a copy of Kermit that can
run on the host computer.

5 - RX (input)
o/o o - 4 - SGND

Macintosh end o 0% o 3 - TX (output)

7 - SGND
3 -- RX (input)
2 - TX (output)

PC end with adapter l ‘[1 - SHIELD

13 1
\OOOOOOOOOOOOO
QOO0 ODODOOOOOO
25 14

5 -- SGND
3 -- TX (output)

PC end | 2Rl
5 1

OO0OO0O0O
O 00O
9 6

/
N

HP48 cable end LL 1 - SHIELD
2 - TX (output)
3 -- RX (input)
4 -- SGND

Data Transfer 39

Menus

Custom Menus
A custom menu may be created using a list of objects supplied to
the MENU or TMENU commands.

+ Key, Key, Keys ..

The objects that define each key in the menu may range in
complexity from a real number to a list definition with a graphics
object for the menu key label and separate actions for the primary
and left— or right —shifted planes.

The Variable CST. The MENU command stores the definition in
the reserved variable CST and immediately displays the menu.
Each directory may have a different variable CST. A name may
be stored in CST which references a variable containing the menu
definition. The TMENU command does not affect CST.

Menu Contents. Menus may contain any object, but the
functionality of the key is determined by the type of the object:

« Names work the same way as the VAR menu.

» Keys with string definitions echo the string.

« Directory names change to the directory.

« Unit objects act as unit catalog entries:

O Primary keys append the unit on the key to the
numerator of the level 1 object.

O Left—shifted keys convert the level 1 object to the unit
on the key.

O Right-shifted keys append the unit on the key to the
denominator of the level 1 object.

« Backup objects act like the port 0, 1, and 2 menus.

« Labeled objects can be used to identify menu key actions
and can provide optional shifted functionality.

40 Menus

Labels. A menu key can have a label that is different than its key
action. The most versatile key definition provides separate
objects for the label, primary, left—shifted, and right-shifted
actions. Either a string or a graphics object 8 rows high by 21
columns wide may be supplied as the label.

Example: The following list contains a menu definition for six
keys: a variable, string, unit object, labeled program, a definition
that uses a graphics object for the menu label, and labeled key
definition with shifted functionality:

MENUEX 226.5 Bytes Checksum #C051h

L

“

"HELLO"

1_m™3

SOUPRGY € 2 % 2 4+ 3 2

+ GROB 21 8 0000000404000A0A0005151080A020FFFFF100F100004000

"Kilrog was here!"

X

£ "CPL" £

CPL # primary action
'CPL' STO = left—shifted action
'CFL' RCL = right-shifted action

¥

{ HOME }

4:
3:

e

 1&[WELLO[+1°3PrGBEVERcPL|

Menus 41

Menu Traversal Program
The commands RCLMENU and UPDIR may be used to traverse
the built—in menu trees as well as the directory tree in the VAR
menu. This program allows automatic movement from any menu
to its parent (if one exists) or to the last menu viewed if no parent
exists (see Menu Numbers). If the parent menu key leading to the
currently displayed menu is on a page beyond page 1 (such as in
the UNITS submenus which have parents in pages 1 through 3 of
the main UNITS menu), this routine will return to the correct
originating page of the parent. Menu numbers greater than 59
have the LIBRARY menu as their parent.

The program is based on a 61 —elementlist called PARENT. Each
element n of the list has the value of the menu number and page
of the parent corresponding to menu n for menus 1 through 59.

The first element accounts for a zero result from RCLMENU. The
last element accounts for LIBRARY submenus.

If UP is assigned to (4] , it replaces the normal action of that
key when the HP 48 is in USER mode. To make this assignment,
execute 'UP’ 31.2 ASN .

PARENT (61-element list) 456 Bytes Checksum #8DB8h

BB @aE 2332323326818 18 18 18 18 18 4

B 12 8886808 24 24 24 658 83 298 21 31 4

B 35 35 37 235 8 40.684 8 42 42 42 42 42 42

42,82 42,082 42,082 42,82 42,682 42,02 42,85

42.83 42,82 42,082 42 24

UP 89 Bytes Checksum #235Bh

RCLMEMU IP 1 + &1 MIH DUP
IF 2 SAME
THEM DROF UFDLIR
ELSE PAREHT SWAP GET MEMU
EHD

42 Menus

User Keys

Variables, programs, commands, or strings may be assigned to
any key on the HP 48. When 1-User or User mode is active,
these objects are evaluated in place of the standard key
definitions.

The ASN and STOKEYS commands may be used to assign an
object to a key. The command RCLKEYS recalls the current key
assignments, and DELKEYS deletes one or more assignments.
These commands are shown on the next page.

Setting User Mode
1-User mode may be set by pressing (9] [USR]. 1-User mode
remains in effect for only one operation. User mode may be
locked by pressing (4] twice or by setting flag —62. When
flag —61 is set (€] toggles user mode, and 1-User mode is

not available.

Key Locations
The notation rc.p specifies the location of a key where r is the
row, c is the column, and p is the plane.

p Primary Planes

Oor1 Unshifted
2 Left - shifted

3 Right - shifted

Alpha Planes

Alpha
Alpha left - shifted
Alpha right - shifted

 O
O
S
|

Examples: the ENTER key is 51.0 (or 51), the PURGE key is 54.2,
and the alpha right - shifted CST keyis 23.6.

Standard Keys
When User mode is set, the standard key definitions apply to all
keys which have not been reassigned. The standard key

User Keys 43

definitions may be disabled by using supplying the S parameter
to the DELKEYS command. The symbol S refers to standard key
definitions. An individual standard key definition may be
reactivated by supplying SKEY as the assigned object for ASN.
All standard keys may be reactivated by supplying SKEY to
STOKEYS.

Related Commands:

ASN Command
Make a single user —key assignment

object rcp —

'SKEY’ rc.p — Reactivates standard key

DELKEYS Command
Clears user —key assignments

rcp — Clears a single key

{rc.pyrc.p,...} — Clears a list of keys

S — Clears standard key definitions

{Src.pyrc.py...} — Clears list of keys & std key defs

0 — Clears all user keys

RCLKEYS Command
Lists user —key assignments. S indicates standard keys are active.

— { obj, rc.p; ... obj, rc.p, }

— { S obj, rc.p; ... obj, rc.p, }

STOKEYS Command
Makes multiple user —key assignments. Including S activates standard

key definitions.

S —

{ obj, rc.p; ... obj, rc.p,} —

{ S obj, rc.p, ... obj, rc.p, } —
Key Assignment Program
A simple program, = @ WAIT ASH =, may be used to assign an
object to a key. Store the program in a user variable (or assign it to a
key!). Place the object to assign in level one, execute the program,
and press the key to be assigned.

44 User Keys

Programming

Program Structure
In the simplest form, a program is a collection of commands or
functions enclosed by program delimiters (« =). A simple
example returns the area of a circle given its radius in level 1:

¥ o2 % o MU o+ =

Programs which are more involved may use local variables to
avoid potential conflicts with global variables. The formal syntax
for programs using local variables is:

+ local-names defining—-procedure :

Local variables exist in a local environment during execution of
the defining procedure and take precedence over global
variables of the same name when evaluated. Values for the local
variables may be established at the start of the program, prior to
the =+. The defining procedure may be either an algebraic
expression or a program.

Example: Suppose the stack contains 3 in level 3, 2 in level 2,
and 1 in level 1. The following programs produce the same result
(17) by first assigning the values to local variables x, y, and z:

=+ g T oyta4

=Y y =

4 g ¥ T o+ 2 ¥ x4+

When a local variable is evaluated, it only recalls the contents of
the variable. This is similar to evaluating global names that
contain data objects. However, if the local variable contains a
program, it can only be executed by an explicit EVAL.

Programming 45

User-Defined Functions
User-defined functions may be used to extend the function set
of the HP 48. A user—defined function takes its arguments from
the stack and must return exactly one result to the stack. The
arguments may be either algebraic or numeric.

The syntax of a user—defined function must be exactly:

« + local-names defining-procedure

User—-defined functions created with the DEFINE command use
an algebraic expression as the defining procedure. If the
defining procedure is a program, the program must remove all
arguments from the stack and return one real nhumber.

The DEFINE command simplifies the creation of a user-defined
function by converting an expression in the form
'name.arguments »=expression' into a named program that

consists of a local variable structure and an algebraic expression.

Example: Create a function POLY(x)=2x?+ 4x + 7. Enter the
expression 'FOLY(xa»=Z%x"2+4%x+7' and execute DEFINE.

The variable POLY in the VAR menu now contains the program:

R o 'DERwTIESEu+T!

If the number 8 is in level 1, executing POLY vyields 167.
Assuming that the variable S is undefined, POLY('S +5’) yields the
expression 'Z#(S+53Z+4%(S+5I+7".

Example: Create a function PTHG(X,y)=Vx?+y2 Enter the
expression 'PTHG xyu»=J(x"Z+y"~2»' and execute DEFINE.
The variable PTHG in the VAR menu now contains the program:

€ % ow oy 'O24gm2y!

46 Programming

Looping Structures
Program loops are useful for repetitive execution of a procedure.
There are two general classes of loops:

» Definite loops execute a loop —clause at least once, and
execute a predefined number of iterations.

o Indefinite loops execute a loop —clause repeatedly until a
test-clause returns a true (non-zero) result. One form of
an indefinite loop may not execute at all if an initial test fails.

Definite Loops. There are two types of definite loops, both of
which can have an increment of either 1 or n:

start finish FOFindex loop —clause HEXT

start finish FOR index loop-clause increment STEF

start finish =TAET loop —clause HEXT

start finish =TART loop —-clause increment STEF

In each case the start and finish values are taken from the stack
and are no longer available to the program. The index is a local
variable that may be referenced in the loop clause just like any
other local variable. The increment is also taken from the stack.
This syntax shows it being put there by the program, but it can be

calculated also.

Increment=1 Increment=n

Index FOR ... HEXT FOR ... NSTEF

No Index START...HE=®T START... N STEP

Programming 47

The differences are:

o FOR loops keep their index in a local variable which is
available to the loop-clause. An early exit may be taken
from a FOR loop by one of the following two methods:

O Store MAXR in the index for loops with a positive step.

O Store —MAXR in the index for loops with a negative
step.

o START loops save memory and execute faster than FOR
loops for applications where access to the index is not
needed and the increment will always be 1.

o Loops ending with STEP may have a varying increment.
When STEP is executed, the increment is added to the
index. The loop will repeat under the following conditions:

O The increment is positive and the index is less than
the finish value.

O The increment is negative and the index is greater
than the finish value.

o Loops ending with NEXT execute faster than those ending

with STEP, because the increment value is always 1.

Examples:

1 18 START loop-clause HEXT =
Executes loop —clause 10 times.

« 1 28 FOR x loop-clause HEXT

Executes loop —clause 20 times; x is the index.

« 1 18 START loop-clause z STEF =»
Executes loop —clause 5 times.

« 1 28 FOR = loop-clause 2 STEF =
Executes loop —clause 10 times; x is the index.

48 Programming

Indefinite Loops. There are two forms of indefinite loops:

e D1 loop-clause UHTIL test-clause EHL:

DO loops execute at least once. The placement of UNTIL is
unimportant since the test occurs at the end, but by
convention is placed between the loop and test clauses to
improve legibility.

e WHILE test—clause FEFERT loop-clause EHL:

WHILE loops never execute if the test—clause returns an

initial false (zero) result. The placement of REPEAT is
important, as it isolates the test clause, which usually
executes one time more than the loop clause.

Loop Counters. The commands INCR and DECR may be used
at any time to increment or decrement a real number stored in a
variable.

The command INCR takes a local or global variable name,

increments its contents, and returns the new value to the stack.

For instance, if x contains 23, ':' IHCFE stores 24 in x and

returns 24 to the stack. DECR behaves the same way as INCR,

but decrements the variable’s contents.

Examples: The first program (46 bytes, checksum #FD95h)
always prints at least one carriage-right, up to the number of

carriage —rights specified in level 1. The second program (48.5
bytes, checksum #FEDCh) prints the number of carriage -rights
specified in level 1.

=o* u

« DO owx DECE CE UWTIL = HOT EMD =

£ o+ ou

WHILE = EEFEART = DECE CE EHD =

Programming 49

Conditional Structures

IF Structures. The IF structures perform a test and execute a
true —clause if the test is true or a false—clause if the structure
includes ELSE.

IF

IF test-clause
test—clause THEH

THEH true - clause

true —clause ELSE
EHD false —clause

EHD

Example: This program (82.5 bytes, checksum #ACFOh) stores a
value from the stack into variable a and returns .35*a or .45*a if a

> 10.

% 3

IF 'ay
THEH .
ELSE .
EHD
3 ¥

-r
-

o
l

0
y

J
a
o

i

IFT and IFTE. IFT and IFTE may be used as as commands,
taking their arguments from the stack. IFTE may also be used in
an algebraic expression.

IFTE i test—clause, true—clause, false-clause

Level IFT IFTE

3: test-result

2: test-result true —clause

1: true —clause false —clause

Programming

CASE Structures. The CASE...END structure combines a series
of IF..THEN structures that ends when the first true condition has

been met. A "default" clause may be placed before the END
command which is executed if none of the conditions have been

met.

CHSE

test—clause THEHM true—clause EHL:

test—clause THEH true-clause EHD

test—clause THEHM true—clause EHML

default-clause

EHD
Example: This program (127 bytes, checksum #A7F1h) accepts
an object and issues an error for non-real types, executes the
procedure Xneg for numbers less than zero, Xzero for numbers
equal to zero, or Xpos in the default case.

The type for a real number is zero, so a non-real object
generates a true condition. In this case the command DOERR will
issue message #202h, "Bad Argument Type".

% CASE

#» TYFE THEH # =Zvzh DOEER EHD

'w<B8' THEHN »neg EHMD

'w==8"' THEH wzero EHD

APOS

EHD

Programming 51

Error Trapping
The IFERR structure is useful for trapping anticipated errors. The
trap —clause is executed first, and if no error is encountered an
optional ELSE normal-clause is executed. If an error occurs
within the trap clause, the remainder of the trap clause is
bypassed and the error—clause is executed. Note that the Last
Arguments flag (flag —55) controls whether the arguments that
generated the error will be returned to the stack.

IFEEER

IFERE trap —clause
trap —clause THEH

THEH error-clause
error—clause ELSE

EHD normal- clause
EHD

Example: This program (65 bytes, checksum #15A4h) takes the
a port number p from the stack and returns the port variables. If
port p is empty, the program returns "".

o P

% IFEEE PYAES

THEH IF -55 FC? THEW DREOF EHD "

EMD

o

Error Interpretation. The commands ERRM and ERRN return the
most recent error message and error number. ERRO clears the
error number. These commands may be useful in an error clause
for taking specific action for different kinds of errors.

User-Defined Errors. The command DOERR accepts either a
system error number or a string. If the error number is zero, the

action is equivalent to pressing [ATTN], and ERRM and ERRN are
setto "" and 0. If a string is supplied, the string will be returned
by ERRM and the error number will be set to #7a@anh.

52 Programming

Data Entry
A program may halt to obtain user input using a variety of
techniques. These techniques have varying levels of restrictions
on keyboard and stack operations:

o Execute HALT. The program resumes when the command
CONT is executed or the user presses [CONT]. The stack is
available in this state.

o Execute PROMPT. The program displays a message and halts
until CONT is executed or the user presses [CONT]. This is
equivalent to the sequence: =«... "string" 1 DISF =
FREEZE HALT ... #. The stack is available in this state.

o Execute INPUT, which displays a message and a default
answer. The program resumes when is pressed. The
parameters supplied to INPUT provide considerable control
over the appearance of the display and cursor placement. The
stack is not available in this state, but menus may be changed.

o Executing WAIT with a 0 or —1 parameter, which returns the

next keystroke in rc.p format.

o Executing KEY, which returns a key location in rc format,

otherwise 0 if no key has been pressed.

Note: Programs that have been HALTed may be completely
terminated by executing KILL.

A variety of interface options are available by displaying a custom
menu before executing the PROMPT, INPUT, or WAIT commands.

A custom menu provides different utility when used in conjunction

with the INPUT, PROMPT, or WAIT commands:

o INPUT: provides typing aids.

« PROMPT: can provide execution objects which optionally
include CONT to resume program execution.

« WAIT: can provide menu key labels for single keystroke
responses, suchas menu keys%YESorHO.

Programming 53

Example: INPUT with Custom Menu. The following program
fragment (102 bytes, checksum #9067h) accepts a string while
providing a menu of common answers. The MENU command at
the end of the program restores the previous menu.

&

{ "F:E[:l" i EIF-II._I. 1 1" '.‘.'ELII 'IE'IF:lI." 1 IIE:LL'II i l-"’HT" }

THEHW "Ernter a color code:™ "" IHPUT 8 MEHU

Example: PROMPT with Custom Menu. The following program
(241.5 bytes, checksum #A744h) displays a simple menu which
stores zeros or accumulates numbers into variables A and B.
When is pressed the CONT command continues the
program, which then displays the sums of A and B.

£ £ "CLER" = 8 'A' STO * 3

£ "CLEE" £ @ 'B' STO = 3

L "A" € 'R STO+ » 3

* "B o« 'B' OSTO+ ® 2

£ "DOME" COMWT 2

* THEHU
"Keu walues into A & B" FREOMPT

A "RA" *TAG B "B" *TAG @ MEHU

k
e

Example: WAIT with Custom Menu. The following program
fragment (149.5 bytes, checksum #4580h) displays a menu, waits
fora | menu key response, beeps on invalid

ycode of the YES or NO key.

- u-.l.-EE;ll nn o ouwoun "Hl:l" :: TMEHU D

0O DROF -1 WARIT UHMTIL
LUF € 11.1 1&.1 X SHAF FPOS
CUP IF HOT THEH 228 .1 EBEEF EHD

EHD 8 MEHMU

54 Programming

Recursion
Three conditions must be met to permit recursive programming:

e The system must have an unlimited return stack.

« The system must have an unlimited data stack.

e Programs must be able to call themselves.

The HP 48’s data stack and return stack are limited only by
available memory, so recursive programming is a technique that
is available for some forms of problem solving. The programs
FIB1 and FIB2 in the HP 48 Owner’s Manual illustrate that
recursion may not always be the fastest technique.

A recursive program uses a technique for repetitive calculation
that works by breaking a problem into smaller pieces and calling
itself for each piece. A reference manual for the UNIX operating
system once defined recursion as follows:

Recursion: See Recursion

The definition above is not far off the mark, but it leaves out the

test condition for completion.

Factorial Example. The most common illustration of recursive

programming is the factorial calculation: n!=nx(n-1)x(n-
2)...2x1, where 1!=1. The test for completion is to see if the input
parameter n<1. The program FACTRL uses recursion:

FACTRL 85.5 Bytes Checksum #BAB7h

£ % n

IF m 1 £ THEH 1

ELSZE n 1 - FACTREL n *

EHL

Programming 55

Quicksort Example. A quicksort works by breaking a list into
two smaller lists, then quicksorting each list. The QSORT
program below keeps all the items being sorted on the stack,
avoiding the overhead associated with building and decomposing
list objects. QSORT takes (and returns) the number of stack
items to sort from level 1.

The program « 0OBJ+ GSORT +LIST =#provides a "front end"
to QSORTfor list arguments. Large lists should be first stored in
a global variable to eliminate excessive overhead in temporary
memory processing (see Temporary Memory). All the items to be
sorted must have the same type, and must be valid arguments to
the > command, such as strings or numbers.

QSORT 216 Bytes Checksum #EEF4h

Input: n-items n —

Output: n-ijtems n —

£ % n
N2 RILL N3+ 2n

STRHET EOT 2 DUFPH SWAFP ROLLD > - HERT

+ 1

n EOLLD 1

IF DUP 1

THEH 2S0RET

EHD

IF DUF

THEH 1 SHAF START n ROLLD HEST i

EHD

n SWAF 1 + -

IF DUP 1 >

THEH RS0RT

EHD DREOF n

56 Programming

Meta- Objects
The term meta-object refers to a group of objects and their

count that resides on the stack. Since stack operations are by
nature very efficient, there are times when decomposing a list
onto the stack and performing all operations on the stack will be
more efficient than rebuilding the list between operations.

The following display shows a meta-object consisting of three
names and their count:

= a X m e

oaTURRT™
KATHRYN"

"FREDERTC
[0EJ+ |Bt|FARR[SLIST]3STE [3TRG]|
 =

P
I
|

™

The term meta—stack refers to a group of objects on the stack,
some of which may be meta-objects. The term position is used
instead of /level when discussing meta —stacks, because a meta -
object actually occupies multiple stack levels.

The following meta-stack consists of the string "FRED" in
position 1, and meta - objects in positions 2 and 3:

IIHII IIE:E: " III::II 1 [:I[:I" 4 21 IE; 'I"1 E: IIF'F::E[]H

Position 3 Position 2 Position 1

Notation
To simplify discussions about meta-objects, the following
notation is presented. The count is always assumed to be below
the elements on the stack.

Stack Notation. The following symbols are used to indicate
objects and meta-objects on the stack, where the right—most
elementis at the bottom of the stack:

Programming 57

<..>

< Obh Obi2 Obj3 >

<..> Obj

< Obj ... >

< ..0bj >

< meta, > < meta, >

An empty meta-object on the stack
(which is just a 0, because the meta—
object must have a count).

An arbitrary meta - object on the stack.

A meta-object composed of three
objects.

An object in level 1 and a meta-object
beginning at level 2.

A meta - object on the stack, with Obj at
the head. The head is the element
farthest from the count. This is
equivalent to the decomposition of the
list { Obj ... }.

A meta - object on the stack, with Obj at
the tail. The tail is the element closest to
the count. This is equivalent to the
decomposition of the list { ... Obj }.

Two meta - objects on the meta - stack.

Utility Names. Several short utility programs are presented
below which manipulate meta-objects. The names start with M,
for Meta - object, and use the following naming convention:

Refers to a list.

]
M
N
A
H
A
T
P

Z
O

>» Refers to the addition of an object to a meta - object.

Refers to the deletion of an object from a meta - object.

Refers to a meta - object.

Refers to the head of a meta - object.

Refers to the tail of a meta—object.

Refers to an empty meta-object.

Refers to the meta - object in position 2.

The phrase "to" (converting to another form).

Programming

Utilities
To establish an empty meta-object on the stack, just place a
zero in level 1. To convert a list or vector into a meta—-object,
execute OBJ—. To convert a meta-object back to a list, execute
—LIST. To convert a meta-object back to a vector, execute
—ARRY.

There are many possible routines for meta—object manipulation.
The following utility programs are provided to suggest the
possibilities. Note that there is no error checking!

MAT adds an object to the tail of a meta-object:

<..> Obj — < ..Obj>

MAT 25 Bytes Checksum #3538h

WAF 1+ @

MAT2 adds an object to the tail of the second meta - object:

< meta, > < meta; > Obj — < meta, Obj > < meta, >

MAT2 53.5 Bytes Checksum #546Eh

’ OYER 2 + ROLLD DUF 2 + ROLL
1 + OVER 2 + ROLLD

MAH adds an object to the head of a meta - object:

<..> Obj —- <Obj..>

MAH 32.5 Bytes Checksum #4F86h

£ OVER 2 + ROLLD 1 + @

Programming 59

MAH2 adds an object to the head of the second meta - object:

< meta, > < meta; > Obj — < Objmeta, > < meta; >

MAH2 66 Bytes Checksum #1CACh

.

OVER DUF 4 + FICKE + + ROLLD [DUF

2 + ROLL 1 + OYER 2 ROLLD+
1
w

MZ2 places an empty meta— object in meta —-stack position 2:

< meta; > —- < > < meta; >

MZ2 27.5 Bytes Checksum #509Bh

B OVER 2 + ROLLD =

MDT extracts an element from the tail of a meta - object:

<..0bj> — < ..> Obj

MDT 25 Bytes Checksum #5F4Dh

1 - SHAF *

MDT2 extracts an element from the tail of the second meta - object:

< Obj; Obj, Objz > < ... > — < Obj; Obj, > < ... > Objs

MDT2 56 Bytes Checksum #A95Ch

» + REOLL OYER

+ FOLL 1 - 2 PICK 2 + ROLLD

Programming

MDH extracts an element from the head of a meta - object:

< Obj...> — <..> Obj

MDH 32.5 Bytes Checksum #813Dh

1 - DUF 2 + ROLL =

MDH2 extracts an element from the head of the position 2
meta - object:

< Obj; Obj, Obj; > < .. > — < Obj, Objz > < ... > Obj,

MDH2 68.5 Bytes Checksum #BE54h

LUF 2 + FPICK OVER + 2 + ROLL OVEE

2 + REOLL 1 - 2 FPICK = + REOLLD

ML—M convertslists in levels 1 and 2 into meta - objects:

{list, } {list;} — < meta, > < meta; >

ML—M 36 Bytes Checksum #BF3H

< SHAF OBJs> DUF 2 + ROLL OBJs =

MM-—L converts two meta - objects into lists:

< meta, > < meta; > — {list, } {list; }

MM—L 36 Bytes Checksum #499Ah

« +LIST OVER 2 + EOLLD =+LIST SMHAF =

Programming 61

MAM2 concatenates two meta —objects:

< meta; > < meta, > — < meta;,, >

MAM2 31 Bytes Checksum #FAD4h

DUF 2 + FOLL + =

MSWAP exchanges two meta - objects:

< meta; > < meta, > — < meta, > < meta; >

MSWAP 73.5 Bytes Checksum #C18Fh

DUF 2 + PICK OVER + 2 + 2+ n

1 OVER 1 + START n ROLLD HEXRT =

Using Meta - Objects

Reversing a List. The following program expects a list as input
and returns the reversed list as output:

LREV 57.5Bytes Checksum #D8C1h

= = SWAF OBJ+

R 1 SHAF

START MOT MATZ

HE=T

DROP +LIST

62 Programming

Filtering a List. The following program expects a list as input
and returns a list of all string objects in the list in their original
order:

SFILT 81 Bytes Checksum #26DBh

8 SHAF OBJ=

DUF 1 SHAFP

STHET

MbT IF DUF TYFE 2 ZHME

THEH HMAHZ

ELSE DREOF

EHD

ME=T

DROFP +LIST

Searching a Vector. The following program scans an input

vector and returns two lists: one with numbers < .5 in level 2, and

one with the remaining numbers in level 1:

VSCAN 105.5 Bytes Checksum #3418h

g SWAF OBJds+ OBJd+ DREOF

LUF 1 SHAF

START MDT

IF DUF .5 >

THEH FMAHZ

ELZE MAH

EHD

HE=T

+LIST OVER 2 + ROLLD »LIST

Programming 63

HP Solve Equation Library

The HP 82211A HP Solve Equation Library application card
contains six main applications:

« The Equation Library application contains over 300 equations

documented with variable descriptions, units, and pictures.

» The Periodic Table application contains data for 23 properties
of 106 elements.

o The Constants Library contains names and values for a

collection of physical constants.

e The Finance application provides the Time-Value-of-
Money menu from HP financial calculators for compound
interest and amortization calculations.

o The Multiple Equation Solver may be used for solving
problems that contain more than one equation.

» The Utilities application contains the Minehunt game, several
new units, and several new functions used by equations in

the Equation Library.

The following pages summarize the applications and provide
reference information.

64 HP Solve Equation Library

Using Catalogs
The applications in the HP Solve Equation Library use a common
environment, called a catalog, for viewing and selecting items.

For example, consider the name catalog in the Periodic Table
application:

Erbium C(Er) 1

1

uorine
Francium (Fr)
Gadolinium (Gd>
Gallium (Ga) 1
[THELE[NAME|SYME[ATHTDENE|GUIT|

The name catalog allows you to choose an element by name.

The highlight shows the current item. The arrows on the right side
of the display indicate that additional items are available above
and/or below the portion of the catalog in the display.

All catalogs provide the following options:

(4] (V) The arrow keys may be used to move the highlight.
Press [fq] and an arrow key to move the highlight
one screen at a time. Press (] and an arrow key
to move to the ends of the catalog.

[a] Press [a] and a letter to move to the next item
starting with thatletter.

Menu keys provide various application-specific
options.

ENTER Selects the highlighted item. If the item ends with
..., displays the complete item. Press or
ENTER] to return to the catalog.

ATTIN Exits the application.

HP Solve Equation Library 65

Equation Library
The Equation Library application contains 102 equation titles

divided into 15 subject areas. The Equation Library may be used
interactively or an equation set may be accessed for use by the
solver with the SOLVEQN command.

Interactive Equation Library
The following example illustrates the use of the interactive library.
Suppose a projectile is launched at an angle of 35° with an initial
velocity of 150 m/s. Whatis the range of the projectile?

Execute EQNLIB to display the subject catalog:

ec

Fluids
Forces and Energy
Gases
Heat Transfer 1
[51s|ENGLIUNITS]|]auir|

When the subiject catalog is displayed, you can do the following:

 Select Sl or English units by pressingI or EHG.

» Choose to use or not units by pressing LHIT.

e Press to display the title catalog for the highlighted
subject.

If neccessary, press=I and UHIT to place boxes in their
menu keys.

66 HP Solve Equation Library

Press [a] [M] (¥] to highlight the MOTION subject, then to
display the title catalog:

%EJECE 1N fir‘ee !a”
Projectile Motion
Angular Mot ion
Circular Motion

 Term1nal Velocity 1
EDIWGS

The following options are available when you are viewing an
equation set:

Places the current equation set in the solver.

View the current equation(s) in EquationWriter
format.

Display the variables for the equation set.

Display the picture associated with the equation set.

Place the equation set on the stack.

ENTER View the current equation(s) in algebraic format.

Return to the subject catalog.

Press (V] (V] [to display the picture for the Projectile
Motion equatlon set.

¥ ¥y Vo

VK

——
ENTNT3GTT

While you are viewing the picture, *F1CT may be used to place

a copy of the picture in PICT.

HP Solve Equation Library 67

_to display the variable catalog:

X ima% X‘POSIEIOI‘I
yd: init y-position
3: final y-position
g: initial an?le_

vA: initial velocity
INEEB

Press

f

Press to display the units for each variable:

i
X: m

yd: m

86:"1% Hl
va: mrss 1
DTNLTEXTTAT

When this page of the variable catalog menu is displayed, the
following options are available:

Selects Sl units.

Selects English units.

Selects units or no—units option.

Forces the equation set’s variables to have the
current units.

Purges the equation set’s variables.

Returns to thetitle catalog.

NXT Returns to the first page of the variable menu.

 Press

the set (
to display the first of the five equations in

isplays the next equation in the set):

10FS

w=x@+ud-C05(88) 4

 [SOLY[NREG]VARS|PIC[#3TR]ERIT|
68 HP Solve Equation Library

 Press

solver:

to place the equation set in the multiple equation

Projectile Motion

4:
3:
2
1:
ez Iy JCsa L7

Enter the launch angle by pressing35 |Hi

8@ 35_°

4:
3J:
%:

Lo JC R JCyo Ilv|NCTHNL]
Notice that the units for the angle are automatically appended to
the number you entered. Press to view the next page of

va: 158_m-s

 2
1:

vzIy10T1CEe

Solve for the range by pressing (®1] |:

{ HOME }
4:
3:
Vi

1: R: 2155.99455142_m
vOy10T106<)

See Multiple Equation Solver for a more detailed discussion of the
Multiple Equation Solver.

HP Solve Equation Library 69

Programmatic Equation Library
The command SOLVEQN may be used to place a set of
equations from the Equation Library into the built—in solver for
single equations or the Multiple Equation Solver for multiple
equation sets. The level 3 and 2 parameters specify the subject
and title number. If the level 1 parameter is nonzero, the picture
associated with the equation set will be placed in PICT.

SOLVEQN Command
Places Equation Library equation(s) in solver.

subject title PICT-option —

The following table shows the subject and title numbers that may be

used with the SOLVEQN command. If the TYPE is listed as S,thetitle
contains a single equation; M indicates a set of multiple equations. A
Y listed under PICTURE indicates that a picture is associated with the
title.

1 COLUMNS AND BEAMS

TITLE# TITLE TYPE PICTURE

1 Elastic Buckling M Y
2 Eccentric Columns M Y

3 Simple Deflection S Y
4 Simple Slope S Y
5 Simple Moment S Y
6 Simple Shear S Y
7 Cantilever Deflection S Y

8 Cantilever Slope S Y
9 Cantilever Moment S Y

10 Cantilever Shear S Y

70 HP Solve Equation Library

2 ELECTRICITY

TITLE# TITLE TYPE PICTURE

1 Coulomb’s Law S
2 Ohm’s Law and Power M
3 Voltage Divider S Y
4 Current Divider S Y
5 Wire Resistance S
6 Series and Parallel R M Y
7 Series and Parallel C M Y
8 Series and Parallel L M Y
9 Capacitive Energy S
10 Inductive Energy S
11 RLC Current Delay M Y
12 DC Capacitor Current M
13 Capacitor Charge S
14 DC Inductor Voltage M
15 RC Transient S Y
16 RL Transient S Y

17 Resonant Frequency M
18 Plate Capacitor S Y
19 Cylindrical Capacitor S Y
20 Solenoid Inductance S Y
21 Toroid Inductance S Y
22 Sinusoidal Voltage M
23 Sinusoidal Current M

3 FLUIDS

1 Pressure at Depth S Y
2 Bernoulli Equation M Y
3 Flow with Losses M Y

4 Flow in Full Pipes M Y
HP Solve Equation Library 7

4 FORCES AND ENERGY

TITLE# TITLE TYPE PICTURE

1 Linear Mechanics
Angular Mechanics
Centripetal Force
Hooke’s Law
1D Elastic Collisions
Drag Force
Law of Gravitation
Mass - Energy Relation n

o
o
n
I
Z
I
Z
I
Z
I
Z

.
<

GASES

Ideal Gas Law
Ideal Gas State Chg
Isothermal Expansion

Polytropic Processes
Isentropic Flow
Real Gas Law
Real Gas State Change
Kinetic Theory S

I
S

n
g

HEAT TRANSFER

Heat Capacity
Thermal Expansion

Conduction
Convection
Conduction +Convection
Black Body Radiation =

T
I
Z

<
<

<
=
<
=
<

MAGNETISM
 Straight Wire

Force Between Wires

B Field in Solenoid

B Field in ToroidD
U
W
O
N
=
I
N
I
O
O
D
L
P
L
W
O
U
N
=
-
N
P
O
N
O
O
O
T
D
B
D
W
O
N
=
I
O
N
I
O
N
O
O
O

A
~
W
D
N

n
o
u
m
w
m

<
<
<
=

HP Solve Equation Library

8 MOTION

TITLE# TITLE TYPE PICTURE

1 Linear Motion M
2 Object in Free Fall M
3 Projectile Motion M Y
4 Angular Motion M
5 Circular Motion M
6 Terminal Velocity S
7 Escape Velocity S

9 OPTICS

1 Law of Refraction S Y
2 Critical Angle S Y
3 Brewster’'s Law M Y
4 Spherical Reflection M Y
5 Spherical Refraction S Y
6 Thin Lens M Y

10 OSCILLATIONS

1 Mass- Spring System M Y
2 Simple Pendulum M Y
3 Conical Pendulum M Y
4 Torsional Pendulum M Y
5 Simple Harmonic M

11 PLANE GEOMETRY

1 Circle M Y
2 Ellipse M Y

3 Rectangle M Y
4 Regular Polygon M Y
5 Circular Ring M Y
6 Triangle M Y

HP Solve Equation Library

12 SOLID GEOMETRY

TITLE# TITLE TYPE PICTURE

1 Cone M Y

2 Cylinder M Y
3 Parallelepiped M Y
4 Sphere M Y

13 SOLID STATE DEVICES

1 PN Step Junctions M Y
2 NMOS Transistors M Y

3 Bipolar Transistors M Y
4 JFETs M Y

14 STRESS ANALYSIS

1 Normal Stress M Y

2 Shear Stress M Y

3 Stress on an Element M Y

4 Mohr’s Circle M Y

15 WAVES

1 Transverse Waves M

2 Longitudinal Waves M
3 Sound Waves M

74 HP Solve Equation Library

Periodic Table
The Periodic Table application contains data for 23 properties of 106
elements. This data may be used in programs to calculate molecular
weights of chemical formulas or to display various properties of the
elements.

Interactive Periodic Table
Execute PERTBL to start the interactive periodic table:

1 H
AT WT:
1.0073

DENZITY:

T0.08as

When the tableis displayed, you can do the following:

« Press the arrow keys to move around the table.

o Use the HAMEor 54%ME catalogs to locate an element.

Use the arrow keys to move the highlight to the desired
element, then press THELE to return to the table or
to view the property catalog.

o Press to display the property catalog.

e Press HATHTor [EHS to put the atomic weight or density
on the stack.

o Press [a] to calculate molecular weights.

e PressLIITtoend the application.

HP Solve Equation Library 75

Example: To examine the properties of aluminum, press
ENTER]|:

ass No:
At Wt: 26.98154_9/§gm
Density: 2.70_g9-/cm
Ox States: 3
Elec Cfg: [Nel3s2-3pil
[PLOT| [UNITs[MOVE]#STR]ERIT|

Move the highlight to explore the properties of aluminum. Press
to return a property to the stack.

It might be interesting to note the density of aluminum compared to
other elements. One way to do this is to plot densities versus atomic
number. Move the highlight to Density and press

a3 DENSITY _

18.4 N
13.8 - co e

1.2 i .'- ..~"P.-. v

B,SR

ALUMINUM(AL): 2.70_G/CM*3

Move the cursor at the bottom of the graph by pressing the arrow

keys. Press to return to the property catalog, or (ENTER] to
select a new element.

You can return to the periodic table display by pressing ,and
you'll be positioned at aluminum:

13A1
AT WT:
26.9815Y4

DENSITY:

T27

76 HP Solve Equation Library

Calculating Molecular Weights
In the interactive periodic table, press [a], enter the formula, and

press [ENTER]. When a formula is being entered, press (4] to
enter , or press (] (#] to enter ». When the result has been
displayed, press to return the answerto the stack or to
return to the table.

The MOLWT command may be used in algebraic expressions or
programs to calculate the molecular weight of a formula:

MOLWT Function
Calculates molecular weights

‘element-name’ — atomic —weight

formula’ — molwt

“formula" — molwt

'MOLWT(formula)’

The string parameteris valid for any formula. If a name parameter
represents a valid formula, the molecular weight of that formula will be
returned. If a name parameter is not a valid formula, the variable
represented by that name will be searched for a formula.

The following table contains examples of valid molecular formulas.
The results assume the formula for benzene ("C6H6") is stored in the
variable Benzene.

Formula Input Result

He He 4.0026_g/gmol
H, SO, H2S04 98.0734_g/gmol
Mg(OH), Mg(OH)2 58.3196_g/gmol
(CHy).S (CH3)2S 62.1294g/gmol
Benzene Benzene 78.1134_g/gmol

HP Solve Equation Library 77

Extracting Element Data
The PTPROP command may be used in algebraic expressions or
programs to return data from the periodic table database. Properties
returned as unit objects return real objectsif flag 61 is set (no units).
Unknown values return the string " -".

PTPROP Function
Returns data from Periodic Table database

atomic —number property—number — data

‘element-symbol’ property-number — data

'PTPROP(element —symbol,property —number)’

Property Type Number

Atomic Number Real 1
Mass Number Real 2
Atomic Weight Unit 3
Density Unit 4
Oxidation States String 5
Electronic Configuration String 6
State String 7
Melting Point Unit 8
Boiling Point Unit 9
Heat of Vaporization Unit 10
Heat of Fusion Unit 11
Specific Heat Unit 12
Group (U.S. Customary) String 13
Family String 14
Crystal Structure String 15
Atomic Volume Unit 16
Atomic Radius Unit 17
Covalent Radius Unit 18
Thermal Conductivity Unit 19
Electrical Conductivity Unit 20
First lonization Potential Unit 21
Electronegativity (Pauling’s) Unit 22
Oxide Behavior String 23
Element Name String 24
Element Symbol Name 25

78 HP Solve Equation Library

Constants Library
The Constants Library contains a collection of names and values of
physical constants which may be selected from an interactive catalog
or returned using the function CONST.

Constants Catalog
The constants catalog shows the descriptions and values of the
constants. Suppose you want to place the Sl value of Boltzmann’s
constant on the stack. Execute CONLIB to display the catalog:

molar volume

universal gas
std temperature
std pressure

s[ENGLUNITs[YRLUE[$3TK|GUIT|

The softkeys EHGL,and WUHITcontrol the type and
usage of units. The value returned will respect the SI/English
selection regardless of whether units are used.

Press (¥] to highlight Boltzmann’s constant, then “HAL LIEto display
the values instead of the names:

CONSTANTS LIBRARY

m: molar volume
R: universal gas
StdT: std temperature
StdP: std pressure 1
DTN(CDGESEEE

Press5Tkto place the value on the stack, then 2ILITto exit

the application.

1: k: 1.388638E-23_J-K
lconuifeons][T[||

HP Solve Equation Library 79

CONST Command
The CONST command may be used in algebraic expressions or
programs to return a constant from the Constants Library.

CONST Function
Returns the value of the specified constant

name — value

The units of the value returned are affected by flags 60 (S if clear,
English if set) and 61 (units if clear, no units if set). Note that the value
returned respects flag 60 regardless of the state of flag 61.

Example: An equation for free —fall velocity:

"WEVE-CONSTg0T!

COMST (a2 returns the acceleration due to gravity using units as
specified by flags 60 and 61.

In a program that performs the same operation, CONST takes the
constant’s name from the stack:

%A 'q' COMST T % - % STO 2

Note: Program variables may have the same names as constants if
you include ' marks around the constant names so that CONST
finds the constant name instead of a variable value.

The table on the following two pageslists the available constants in

the Constants Library. Note that one name uses an accented
character: ¢. To type this character,press (o] O [a] [](9].

80 HP Solve Equation Library

Name Description

NA Avogadro’s number

k Boltzmann constant

Vim Molar volume

R Universal gas constant

StdT Standard temperature

StdP Standard pressure

o Stefan - Boltzmann constant

c Speed of light in vacuum

€0 Permittivity of vacuum

u0 Permeability of vacuum

g Acceleration due to gravity

G Gravitational constant

h Planck’s constant

hbar Dirac’s constant

q Electronic charge

me Electron rest mass

gme q/me ratio (electron charge—to-mass)

mp Proton rest mass

mpme mp/meratio (proton, electron mass)

a Fine structure constant

¢ Magnetic flux quantum

F Faraday constant

Roo Rydberg constant

a0 Bohr radius

uB Bohr magneton

uN Nuclear magneton
HP Solve Equation Library 81

Name Description

0 Photon wavelength

fo Photon frequency

AC Compton wavelength

rad 1 radian

twor 2xradians

angl 180° angle (in current trig mode if no units)

c3 Wien’s displacement law constant

kq k/q (Boltzmann, electronic charge)

e0q €0/q (permittivity, electronic charge)

qe0 q- €0 (electronic charge, permittivity) €si Dielectric constant of silicon

€0X Dielectric constant of silicon dioxide

10 Reference intensity

HP Solve Equation Library

Finance
The Finance application may be used for compound interest

calculations where identical payments occur over regular periods
which coincide with the compounding periods. In Time—Value—of-
Money (TVM) calculations money received is displayed as a positive
number; money paid out is displayed as a negative number.

Cash Flow Diagrams
TVM cash flow diagrams show money received as an arrow pointing
up, and money paid out as an arrow pointing down. The following
diagrams illustrate cash flows from the borrower’s and lender’s point
of view:

FV=0
1¢2J/3\LJ/‘L48J/

PMT PMT PMT PMT PMT PMT

Loan From Borrower’s Point of View

PMT PMT PMT PMT PMT PMT

Pt das
1 2 3 .. . 48

Vv

Loan From Lender’s Point of View

HP Solve Equation Library 83

TVM Calculations
The TVM menu entries store or calculate the following:

............™1 Number of periods N

. Annual interest I%YR as a percentage

. Present value
i Payment amount
. Future value

. Calculates amortization

| 1
. Stores the number of payments per year
Sets Begin mode: payments at each period’s start
Sets End mode: payments at each period’s end

To begin a new TVM problem, set the number of payments per year

and Begin or End mode as needed. To change the number of
payments per year, key in the new value and press iF .Y F. Select
the payment mode by pressing

To solve TVM problems, enter the values you know and solve for the
unknown by pressing [#] followed by the appropriate key.

Example: The new 1990 Grande Chrome Deluxe sells for $26,780.
The buyer has $8500 for a down payment. Calculate the payments
on a four-year loan with 13% annual interest, starting at the
[«1] “menu in FIX 2 display mode:

Display:
12 pauments-gesar

EHD mode

— o
l

A
b

s
0
0

=
o
y

lllll

 84 HP Solve Equation Library

Amortization
An amortization schedule may be calculated after a loan is specified
in the TVM menu by entering the number of periods to amortize and
pressing

AMORT Command

Calculates amortization from TVM variables

payments — principal interest balance

To continue an amortization, store the balance back into PV and

execute AMORTfor the next number of periods desired.

Amortization Example: A four-year home equity loan of $15,000
has an 11% annual interest rate. Starting in the TVM menu in FIX 2
display mode, calculate the payment, then the interest and principal
payment contributions for the first two years:

Keys: Display:
12 paument suear

EHD mode

H: 42,684

12AMET 3 Principal=-2152.24

2 Interest =—14'§*E:.'5'E'

1: Balance=11341.

CFY12AMET 2t Principal=-3522.71

2t Interest=-1122.45

1: E-.=:1.=:r|-—r=='E'E=1=E:. B

HP Solve Equation Library 85

TVMROOT Command
The TVMROOT command may be used in a program to perform TVM
calculations.

TVMROOT Function
Solve for TVM variable using the other TVM variables

‘TVM-variable’ — value

The procedure for programmatic calculations is similar to the
keyboard procedure:

« Set the payment mode to begin or end mode using TVMBEG
or TVMEND.

« Store the known values in the TVM variables.

» Execute TVMROOTfor the unknown variable.

Example: This program returns the amount of money that can be

borrowed and the total interest that would be paid given the annual
interest rate in level 3, the number of years in level 2, and desired

payment in level 1. Remember to supply a negative number for the
payment.

AMT 163.5 Bytes Checksum #4B4h

TYMEHD Sets the payment mode
"FMT' STO Stores the payment
12 ® 'H' STO Stores the number of payments

'I' STO Stores the annual interest rate
12 'PYR' STO Stores the payments per year
a 'FYV' STO The loan will be paid off
"PY' TYMREOOT Solves for the loan amount

DUR 'PY' STO Stores the present value
H AMORT Amortizes the loan
ROT DROFZ Drops the balance and principal

86 HP Solve Equation Library

Multiple Equation Solver
The Multiple Equation Solver application may be used for solving
problems that contain more than one equation.

To use the Multiple Equation Solver, perform the following steps:

« Define the list of equations and store them in EQ.

o Execute the MINIT command to establish Mpar.

« Execute the MSOLVR command to display the Multiple
Equation Solver menu.

¢ Enter the values for the known variables.

« Solve for any variable or all unknown variables based on the
known values:

« Solve for a single variable by pressing [¢q] followed by
the appropriate key, or

« Solve for all the variables by pressing (1]ALL.

» Review the values for all variables in the menu by pressing

[+ [REVIEW].
« Review the progress catalog by pressing []ALL.

The Multiple Equation Solver menu labels indicate the status of each
variable:

Interpretation

X unknown

X unknown, found in the last solution

X known, unused in last solution

X known, used in last solution

HP Solve Equation Library 87

Example: Store the equations for the length and volume of a cone
(£ 'L=l<R™z2+H™22' '¥=mxR~Z2xH-3') in the variable EQ,
execute MINIT, then MSOLVR. Find the surface area and volume of a
right circular cone having a radius of 8 and a height of 24.

Keys: Display:87F i

24 H: 24

[(«]:
(«] L: 25.2922212213

Vio1leBs, 495422863
F: B

H: 24

Programming. The Multiple Equation Solver may be used in
programs. The commands MCALC and MUSER may be used to set
the unknown and known states of a variable. The command MROOT
solves for either a single variable or all unknown variables.

MCALC Command
Sets Multiple Equation Solver variable to not user —defined

‘'name’ —
{ name, ... name,} —

"ALL" —

MROOT Command
Solves for single or all variables using the Multiple Equation Solver

‘'name’ — value

"ALL" —

MUSER Command
Sets Multiple Equation Solver variable to user —defined state

‘name’ —

{ name, ... name,} —

"ALL" —

88 HP Solve Equation Library

Utilities
The Utilities application consists of a game, eight commands, and
four new units. The commands and units are described in the next

section, Command Reference.

Minehunt
The Minehunt game challenges you to navigate a battlefield littered
with buried mines. Your mine detector was a low-bid item, and
consequently is only able to tell you how many mines are adjacent to
your square. You may be beside up to seven mines!

—
Z
C
I
m
M
z
Z
H
I

(¥=

M
I
N
E
H
U
N
T

The number keys (2], (8], (4], (6], and arrow keys V], (4], (<], [>]
move you from square to square. The number keys (1], (3], (7], and
(e] permit diagonal movements.

The game ends when you reach the lower-right corner or step on a
mine. To interrupt a game when you need to use the HP 48 for other
tasks, press [STO). The state of the game will be stored in MHpar
until MINEHUNTis executed again.

The score in the upper-right corner tracks the number of squares

you have occupied. You may play to either maximize or minimize the
number of squares occupied.

The default number of mines is 20. To change this value, store the
desired number of mines in the variable Nmines. A negative value
will show the buried mines.

HP Solve Equation Library 89

Command Reference
This command reference lists the stack diagrams for all commands
and functions in the HP 82211A HP Solve Equation Library
Application Card. Each entry lists the name, description, and stack
diagrams if applicable.

NAME Type

Description

Input Output

Level, Level, Level; — Level; Level, Level,

AMORT Command

Calculates amortization from TVM variables

payments — principal interest balance

CONLIB Command
Starts the Constants Library

CONST Function

Returns the value of the specified constant

‘constname’ — constant

DARCY Function
Calculates Darcy friction factor

e/D Re — d
'symb’ x — 'DARCY(symb,x)’

X 'symb’ — 'DARCY(x,symb)’
'symb,’ ’'symb,’ — 'DARCY(symb,,symb,)’

dB Unit
Dimensionless unit for decibel

ELVERSION Command
Displays the HP 82211A version message

EQNLIB Command Starts the Equation Library

90 HP Solve Equation Library

FO\ Unit

Calculates fraction of black —body emissive power at temperature T

between wavelengths 0 and A

AT — fraction

FANNING Function
Calculates Fanning friction factor

e/D Re — f

'symb’ x — 'FANNING(symb,x)’

x ’'symb’ — 'FANNING(x,symb)’

'symb,’ ’'symb,” — 'FANNING(symb,,symb,)’

gmol Unit
Unit for gram-mole

Ibmol Unit
Unit for pound -mole

MINEHUNT Command
Starts the Minehunt game

MINIT Command
Establishes Mpar from EQ

MITM Command
Changes title and variable menu in Mpar

“title" { name, ... name,, } —

MCALC Command
Sets Multiple Equation Solver variable to not user —defined state

'name’ —

{ name, ... name,} —
|IALLI| _"

MOLWT Function
Calculates molecular weights

‘'element-name’ — atomic —weight

formula’ — molwt

"formula” — molwt

'MOLWT(formula)’

HP Solve Equation Library 91

MROOT Command
Solves for single or all variables using the Multiple Equation Solver

‘'name’ — value

IIALLII _’

MUSER Command
Sets Multiple Equation Solver variable to user -defined state

'name’ —

{ name, ... name,} —
NALLM ‘__’

MSOLVR Command
Displays the Multiple Equation Solver menu

PERTBL Command
Starts the Periodic Table

PTPROP Function
Returns data from Periodic Table database

atomic —number property—-number — data
'element-symbol’ property-number — data
'PTPROP(element —symbol,property —number)’

rpm Unit
Unit for revolutions per minute

SIDENS Function
Intrinsic density of silicon as a function of temperature

T — density

'symb’ — "SIDENS(symb)’

SOLVEQN Command
Places Equation Library equation(s) in solver

subject—number title—number PICT-option —
 TDELTA Function
Calculates temperature increment

T, T, — increment

'symb’ x — 'TDELTA(symb,x)’

x ’'symb’ — 'TDELTA(x,symb)’

'symb,’ ’'symb,’ — 'TDELTA(symb,,symb,)’

Note:

Values returned by TDELTA have level 2 units.

92 HP Solve Equation Library

TINC Function
Adds temperature increment

T, increment — T,
'symb’ x — 'TINC(symb,x)’

x ‘'symb’ — 'TINC(x,symb)’

'symb,’ ’'symb,’ — 'TINC(symb,,symb,)’

Note:

Values returned by TINC have level 2 units.

TVM Command
Displays the TVM menu

TVMBEG Command
Sets TVM Begin mode

TVMEND Command
Sets TVM End mode

TVMROOT Function

Solve for TVM variable using the other TVM variables

'TVM-variable’ — value

ZFACTOR Function
Calculates gas compressibility factor Z

T Pr — Z

'symb’ x — 'ZFACTOR(symb,x)’

x ’'symb’ — 'ZFACTOR(x,symb)’

'symb;’ ’symb,’ — 'ZFACTOR(symb,,symb,)’

HP Solve Equation Library

Reserved Variables
The applications use reserved variables to store equations and/or
state information. These variables may reside in any directory.

Name Description

MHpar Saves state of Minehunt game
Mpar Saves multiple equation solver set
Nmines Specifies number of Minehunt mines
PTpar Saveslast position in Periodic Table

Flags
The applications use three user flags to control the values and units
used in calculations:

Flag Description Clear Set Default

60 Units Type Sl units English units Sl units

61 Units Usage Units used Units not used Units used

62 Payment Mode End mode Begin mode End mode

94 HP Solve Equation Library

Messages

Hex Dec Multiple Equation Solver Messages

10DO01 68865 Invalid Mpar
10D02 68866 Single Equation
10D03 68867 EQ Invalid for MINIT
10D04 68868 Too Many Unknowns
10D05 68869 All Variables Known
10D06 68870 llegal During MROOT

Finance Messages

10E01 69121 No Solution
10E02 69122 Many or No Solutions
10E03 69123 I1%YR/PYR < -100
10E04 69124 Invalid N
10EQ05 69125 Invalid PYR
10E06 69126 Invalid #Periods
10E07 69127 Undefined TVM Variable

Constants Library Messages

10FO1 | 69377 Undefined Constant
Periodic Table Messages

11001 69633 Bad Molecular Formula
11002 69634 Undefined Element
11003 69635 Undefined Property

Library Identifiers

Library Port 1 Port 2

Equation Library :1:273 :2:273
Periodic Table :1:272 :2:272
Constants Library :1:271 :2:271
Finance Library :11:270 :2:270
Multiple Equation Solver :1:269 :2:269
Utilities :1:268 :2:268
Equation Reference :1:267 :2:267
Catalog Utility :1:266 :2:266

HP Solve Equation Library

System Operations

To invoke a system operation, press and hold [ON], then press
and release the second key, then release .

(Al and [F) Erases all memory (including port 0 and merged
memory) and sets the HP 48 to its default states
(merged memory remains merged).

Cancels the current selection if selected before
all keys are released.

Brings the calculator back into a known state
without resetting user memory. The stack is
cleared, the VAR directory is set to HOME, the
MTH menu is displayed, User mode is cleared,
PICT is cleared, and the system configuration is
updated to recognize all libraries.

D] Starts the interactive self test (see below).

(E] Runs a continuous self test.

Coma mode: a deep-sleep shutdown which
turns off the the system timers (including the
clock) and clears the system halt log.

Performs a graphics screen dump in
HP 82240A/B graphics format (regardless of
I/0 port selection).

or 5] Adjusts the display contrast.

TIME Cancels the next repeating alarm.

96 System Operations

System Halt Log
The command WSLOG returns four strings to the stack showing
the cause, date, and time of the four most recent system halt
events.

The system halt log is not cleared when memory is erased, and
may only be cleared by placing the calculator in coma mode.

1

A 2E 16Example: z-82-06./3¢ we
ll
e’

o we
ll
e’

v
l

This string shows a type three system halt that occurred on the
morning of March 6, 1990.

Code Condition

Coma exit
Low battery system save
1/0O timeout
Execute through address 0
Corrupt time
Port change data
Hardware difficulty
Hardware difficulty
Corrupt alarm list
Corrupt memory
Module pulled
Hardware reset
Software difficulty
Corrupt configuration
System RAM card pulled

M
T
M
O
Q
O
W
X
P
>
»
O
O
N
O
N
D
W
N
—
=
O
0

Note that some events will cause two events to be recorded, and
some system halt events will cause a coldstart.

System Operations 97

Interactive Self Test
The (D] sequence enters the HP 48 interactive self test. Once
the test has been started, there are a variety of options:

I
E
@
H
fi
@
@
a
a
a
@
@
@
@
@
n
@
s
a
@
@
@
@
@
n
a
a

3
Displays the CPU speed
Press for display test patterns
Internal ROM check
Internal RAM check
Keyboard test
Partial keyboard test
ESD test monitor. Bars indicate battery status.
UART loop back test
Wired UART echo
Shows what'’s plugged in
Test port RAM devices

Blank display
Send system time from IR port
Receive system time from IR port
Wireless loop back

Wireless UART echo
Show test start time
Show test fail time
Looping test
Looping test

Looping test
Looping test

Initialize test times

Looping test
Looping test

Test summary

Enters Memory Scanner

Press to return to the stack display.

System Operations

Memory Scanner
The Memory Scanner provides an eight byte window into
memory. To start the Memory Scanner, start the interactive self
test ([ON] [D]), then press [«]. When finished, press to
return to the stack display.

783D9: 1BBDA17BESA111B6

The current address is shown on the left, followed by eight bytes
of memory. This address, if executed, shows the revision and
copyright message (press to execute at the displayed
address):

Version HP48-A
Copyright HP 1939

Warning: Pressing at any other address than the first
address displayed by the Memory Scanner can very likely corrupt
memory and produce the following display:

Memory Clear

 2
1:
PAET:]PROE |HVP[HMATK[YECTR]ERZE

System Operations 99

Once the Memory Scanner has been started, there are a variety of
options:

100

M
X
B
E
E
C
E

§
E
O

|

@
@

D
E
H
@
H
B
E

>
|

-

z
3

w
n
0 O

Hex digit poke
Hex digit poke
Change address by #0001h
Change address by #0100h
Change address by #1000h
Hardware control address
Display RAM address
System Halt Log address
Port 1 address
Port 2 address
Execute starting at this address
Print current data
Serial memory dump 32K 9600 baud

System Operations

Printer Control

The following system flags (default clear) control output to the
printer as follows:

Flag Clear Set

-34 IR printer Serial printer
-37 Single spaced Double spaced
-38 Linefeeds No linefeeds

The following control codes guide the operation of the HP 82240B
printer:

Printer Command Control Codes*

Carriage right 4
Carriage return/LF 10
Column graphics 27 nC;..C,¢t
Roman 8 character set § 27 248

ISO 8859-1 character set 27 249
Underline off § 27 250
Underline on 27 251
Single wide print § 27 252
Double wide print 27 253
Self -test 27 254
Reset 27 255

*Decimal value 1 1< n<166 1 Default mode
Codes 248 and 249 were not included in the original HP 82240A
printer. Characters 148 and 160 were blank on early versions of
the HP 82240A printer. The HP 48 character set can be
remapped to match the HP 82240A printer with the OLDPRT
command.

Printer Control 101

This example (142.5 bytes, checksum #1380h) prints a simple
graphics pattern on the HP 82240.

Dot Value Example

1 ® ® ® ® ® °® ® ® ®

2 ® ® ® ® ®

4 ® ® ® ® ® ®

8 ® ® ® ® ®

16 ® ° ® ® ®

32| e ° ° ° ° °

64) ® °) °

128 ° ° ° ° ° ° ° ° °

255 197 171 149 169 213 163 255

27 & 8 byte graphics command
255 197 171 1449 Graphics data

169 213 183 255

"1 18 STARRT Loop start
SWAF CHE SMAF + Accumulate data

HEXT FE1 = Loop end, print graphics

PRTPAR
The reserved variable PRTPAR may only reside in the HOME
directory. Other variables of the same name in subdirectories will
be ignored by the PRINT commands.

PRTPAR —

{ delay ‘"remap" linelen "lineterm"}

Parameter Description Default

delay Time required to print line: 0 <t < 6.9 seconds 1.8

“remap" Character set remapping string

linelen Serial print line length 80

"lineterm" Serial print line terminating characters "CRLF"

102 Printer Control

Built—In Units

UNIT PREFIXES

HP 48 Symbol Prefix Number Name

E exa +18 quintillion
P peta +15 quadrillion
T tera +12 trillion
G giga +9 billion
M mega +6 million

k,K kilo +3 thousand
h,H hecto +2 hundred
D deka +1 ten
d deci -1 tenth
C centi -2 hundredth
m milli -3 thousandth
U micro -6 millionth
n nano -9 billionth
p pico -12 trillionth
f femto -15 quadrillionth
a atto -18 quintillionth

Improper prefix—unit combinations that match built-in units are:
ayg, -d, ct, cu, ft, flam, kph, mph, min, nmi, Fa, ph,

and gt.

DIMENSIONLESS UNITS OF ANGLE

Unit Name Value

Arcmin arcrin 1/21600 unit circle
Arcsec arcs 1/1296000 unit circle
Degree = 1/360 unit circle
Grad arad 1/400 unit circle
Radian + 1/2x unit circle
Steradian sr 1/4x unit sphere

Built-In Units 103

Unit Name Type Value

a Are area 100 m?

A Ampere electric current 1A

A Angstrom length 1x10""m

acre Acre area 4046.87260987 m?

arcmin Minute of arc plane angle 4.62962962963x105

arcs Second of arc plane angle .71604938272x10~7

atm Atmosphere pressure 101325 _kg_z_
m-s

au Astronomical unit length 1.495979x10"' m

b Barn area X102 m?

bar Bar pressure 100000 kg
m-s?

bbl Barrel volume .158987294928 m?3

Bq Becquerel activity %

Btu Int’l Table Btu energy 1055.05585262 ngfi
s

bu Bushel volume .03523907 m®

c Speed of light speed 299792458 l:—

C Coulomb electric charge 1As

°C Degree Celsius temperature

cal Calorie energy 4.1868 Xg™M";.nz
s

cd Candela luminous intensity 1cd

chain Chain length 20.1168402337 m
10

Ci Curie activity 3.7);10

cm Centimeter length 01m

cm”2 Square centimeter area .0001 m?

cm”3 Cubic centimeter volume .000001 m3

cm/s Centimeter per second speed .01 %

ct Carat mass .0002 kg

104 Built-In Units

Unit Name Type Value

cu U.S. cup volume .0002365882365 m>

d Day time 86400 s

dyn Dyne force oooo1 KM
s

erg Erg energy 0000001 59%“2—
s

oV Electron volt energy 1.60219x10“9—k9'2fi
s

F Farad it 1 AZstara capacitance
pa kg-m?

°F Degree Fahrenheit temperature

fath Fathom length 1.82880365761 m

fom Board foot volume .002359737216 m®

fc Footcandle illuminance .856564774909 ;—2—

Fdy Faraday electric charge 96487 A's

fermi Fermi length 1x10"®m

flam Footlambert luminance 3.42625909964 ',%‘2(1

ft Int’l foot length 3048 m

ft°2 Square foot area .09290304 m?

ft*3 Cubic foot volume .028316846592 m3

ftusS U.S. survey foot length .304800609601 m

ft/s Feet/second speed .3048 %

ft*ibf Foot-pound-force energy 1.35581794833 Eg—imj
s

g Gram mass .001 kg

ga Standard freefall acceleration 9.80665 _r_n2_
s

gal U.S. gallon volume .003785411784 m3

galC Canadian gallon volume .00454609 m3

galUK U.K. gallon volume .004546092 m?3

Built-In Units 105

Unit Name Type Value

gf Gram-force force .00980665 hizfl

grad Grade plane angle .0025

grain Grain mass .00006479891 kg

Gy Gray absorbed dose 1 s_m:

h Hour time 3600 s

H Henry inductance 1 %2—5

ha Hectare area 10000 m?

hp Horsepower power 745.699871582 %"—f—

Hz Hertz frequency %

in Inch length 0254 m

in"2 Square inch area .00064516 m?

in"3 Cubic inch volume .000016387064 m3

inHg Inch of mercury pressure 3386.38815789 ;ki;

inH20 Inch of water pressure 248.84 ;kgg

J Joule energy 1 Lgszfi

K Kelvin temperature 1K

kcal Kilocalorie energy 4186 kg-s—mz2

kg Kilogram mass 1 kg

kip Kilopound -force force 4448.22161526 Eian'

km Kilometer length 1 km

km~2 Square kilometer area 1 km?

knot Nautical mile per hour speed 514444444444 %

kph Kilometer per hour speed 27TTTTTTT778 %

106 Built-In Units

Built-In Units

Unit Name Type Value

I Liter volume 001 m3

lam Lambert luminance 3183.09886184 —r°r-12d—

b Avoirdupois pound mass .45359237 kg

Ibf Pound—force force 4.44822161526 ¥&™
s

Ibt Troy pound mass 3732417 kg

Im Lumen luminous flux 7.95774715459x102 cd

Ix Lux ilurninance 7.95774715459)(10—2%

lyr Light year length 9.46052840488x10'° m

m Meter length im

m”~2 Square meter area 1mP

m~3 Cubic meter volume 1md

U Micron length .000001 m

MeV Mega electron volt energy 1.60219x10“3—k9'2fi
s

A2.g3
mho Mho electric conductance

kg-m?

mi Int’l mile length 1609.344 m

mi~2 Int’l square mile area 2589988.11034 m?

mil Mil length .0000254 m

min Minute time 60s

miUsS U.S. statute mile length 1609.34721869 m

miUS"2 U.S.statute sq. mile area 258998.47032 m?

mm Millimeter length .001m

oage

kmmHg Millimeter of mercury pressure 133.322368421 ——9——2
m-s

ml Milliliter volume .000001 m3

mol Mole amount of substance 1 mol

Mpc Megaparsec length 3.08567818585x10%2 m

107

Unit Name Type Value

mph Mile per hour speed 44704 —';3-

m/s Meter per second speed 1 L:—

N Newton force 1 595-"1
s

nmi Nautical mile length 1852 m

oz Ounce mass 028349523125 kg

ozfl U.S.fluid ounce volume 2.95735295625x105 m3

ozt Troy ounce mass .031103475 kg

ozUK U.K. fluid ounce volume 2.8413075x105 m3

P Poise dynamic viscosity A Ekgs_

Pa Pascal pressure 1 —'—(95
m-s

pc Parsec length 3.08567818585x10'® m

pdi Poundal force 138254954376 K&
s

ph Phot iluminance 795.774715459 c;c;_

pk Peck volume .0088097675 m3

psi Pound per sq. in. pressure 6894.75729317 _kg?
m-s

pt Pint volume .000473176473 m3

qt Quart volume .000946352946 m?3

r Radian plane angle .1591549343092

R Roentgen radiation exposure .000258 %gi

°R Degree Rankine temperature

rad Rad absorbed dose .01 fiz
s

rd Rod length 5.02921005842 m

rem Rem dose equivalent .01 fiz
s

s Second time 1s

. , A2.g3
S Siemens electric conductance

kg-m?P

108 Built-In Units

Unit Name Type Value

sb Stilb luminance 10000 ed
m?

slug Slug mass 14.5939029372 kg

sr Steradian solid angle 0795774715459

st Stere volume 1m3

St Stoke kinematic viscosity .0001 __,:_2_

Sv Sievert dose equivalent .01 fiz
s

t Metric ton mass 1000 kg

T Tesla magnetic flux 1 kg
As?

tbsp Tablespoon volume 1.47867647813x105 m3

therm EEC therm energy 105506000 _lgg?mj
s

ton Short ton mass 907.18474 kg

tonUK Long (U.K.) ton mass 1016.0469088 kg

torr Torr pressure 133.3223684212
m-s

tsp Teaspoon volume 4.92892159375x10°8 m3

u Unified atomic mass mass 1.66057x102" kg

v Volt electrical potential 1 E_E_rr;f_
‘S

w Watt power 1 figafi
s

Wb Weber magnetic flux 1 —k—i-%z—
‘S

yd Int’l yard length 9144 m

yd"2 Square yard area .83612736 m?

yd"3 Cubic yard volume 764554857984 m®

yr Year time 31556925.9747 s

° Degree plane angle 2.77777777778x1073

0 Ohm electric resistance 1 M
A2.g3

Built-In Units 109

Messages

This program (44 bytes, checksum #7EC6h) retrieves the text of
a message given its number by generating the error, then using
ERRM to get the text:

o oe

IFEER & DOEEE

THEH EEEHM

EH

Hex Dec General Messages

001 1 Insufficient Memory
002 2 Directory Recursion
003 3 Undefined Local Name
004 4 Undefined XLIB Name
005 5 Memory Clear
006 6 Power Lost
007 7 Warning:
008 8 Invalid Card Data
009 9 Object In Use
00A 10 Port Not Available
00oB 11 No Room in Port
00C 12 Object Not in Port
00D 13 Recovering Memory
00E 14 Try To Recover Memory?
00F 15 Replace RAM, Press ON
010 16 No Mem To Config All
101 257 No Room to Save Stack
102 258 Can’t Edit Null Char.
103 259 Invalid User Function

104 260 No Current Equation
106 262 Invalid Syntax

110 Messages

Hex Dec Object Types

107 263 Real Number
108 264 Complex Number
109 265 String
10A 266 Real Array
10B 267 Complex Array
10C 268 List
10D 269 Global Name
10E 270 Local Name
10F 271 Program
110 272 Algebraic
111 273 Binary Integer
112 274 Graphic
113 275 Tagged
114 276 Unit

115 277 XLIB Name
116 278 Directory
117 279 Library
118 280 Backup

119 281 Function

11A 282 Command
11B 283 System Binary
11C 284 Long Real
11D 285 Long Complex
11E 286 Linked Array

11F 287 Character
120 288 Code
121 289 Library Data

122 290 External
Messages 111

Hex Dec General Messages

123 291 Null message

124 292 LAST STACK Disabled
125 293 LAST CMD Disabled
126 294 HALT Not Allowed
127 295 Array

128 296 Wrong Argument Count
129 297 Circular Reference
12A 298 Directory Not Allowed
12B 299 Non-Empty Directory
12C 300 Invalid Definition
12D 301 Missing Library
12E 302 Invalid PPAR
12F 303 Non-Real Result
130 304 Unable to Isolate

Low Memory Messages

131 305 No Room to Show Stack
132 306 Warning
133 307 Error:
134 308 Purge?

135 309 Out of Memory
136 310 Stack
137 311 Last Stack
138 312 Last Commands
139 313 Key Assignments
13A 314 Alarms

13B 315 Last Arguments
13C 316 Name Conflict
13D 317 Command Line

112 Messages

Hex Dec Stack Errors

201 513 Too Few Arguments
202 514 Bad Argument Type
203 515 Bad Argument Value
204 516 Undefined Name
205 517 LASTARG Disabled

EquationWriter Messages

206 518 Incomplete Subexpression
207 519 Implicit () off
208 520 Implicit () on

Floating - Point Errors

301 769 Positive Underflow
302 770 Negative Underflow
303 771 Overflow
304 772 Undefined Result

305 773 Infinite Result

Array Messages

501 1281 Invalid Dimension

502 1282 Invalid Array Element
503 1283 Deleting Row

504 1284 Deleting Column
505 1285 Inserting Row
506 1286 Inserting Column

Statistics Messages

601 1537 Invalid X Data
602 1538 Nonexistent XDAT
603 1539 Insufficient X Data

604 1540 Invalid £PAR

605 1541 Invalid ¥ Data LN(Neq)
606 1542 Invalid ¥ Data LN(0)

Messages 113

Hex Dec Plot/Solve/Stat Messages

607 1543 Invalid EQ
608 1544 Current equation:
609 1545 No current equation.
60A 1546 Enter egn, press NEW
60B 1547 Name the equation, press ENTER
60C 1548 Select plot type
60D 1549 Empty catalog
60E 1550 undefined
60F 1551 No stat data to plot
610 1552 Autoscaling
611 1553 Solving for
612 1554 No current data. Enter
613 1555 data point, press L+
614 1556 Select a model

Alarm Messages

615 1557 No alarms pending.
616 1558 Press ALRM to create
617 1559 Next alarm:
618 1560 Past due alarm:
619 1561 Acknowledged

61A 1562 Enter alarm, press SET

61B 1563 Select repeat interval

1/0, Plot, Solve, Stat Messages

61C 1564 I/O setup menu
61D 1565 Plot type:
61E 1566 "

61F 1567 (OFF SCREEN)
620 1568 Invalid PTYPE
621 1569 Name the stat data, press ENTER
622 1570 Enter value (zoom out if >1), press ENTER

114 Messages

Hex Dec 1/0, Plot, Solve, Stat

623 1571 Copied to stack
624 1572 X axis zoom w/AUTO.
625 1573 X axis zoom.
626 1574 y axis zoom.
627 1575 X and y-axis zoom.
628 1576 IR/wire:
629 1577 ASCII/binary:
62A 1578 baud:
62B 1579 parity:
62C 1580 checksum type:
62D 1581 translate code:
62E 1582 Enter matrix, then NEW

A01 2561 Bad Guess(es)
A02 2562 Constant?
A03 2563 Interrupted
A04 2564 Root

A05 2565 Sign Reversal
A06 2566 Extremum

Unit Management

BO1 2817 Invalid Unit

B02 2818 Inconsistent Units

Messages 115

Hex Dec 1/0 and Printing

Co1 3073 Bad Packet Block Check
C02 3074 Timeout

Co3 3075 Receive Error
Co4 3076 Receive Buffer Overrun
Co5 3077 Parity Error
C06 3078 Transfer Failed
Co7 3079 Protocol Error
Co8 3080 Invalid Server Cmd.
C09 3081 Port Closed
COA 3082 Connecting
coB 3083 Retry #
CcoC 3084 Awaiting Server Cmd.
CoD 3085 Sending
COE 3086 Receiving
COF 3087 Object Discarded
C10 3088 Packet #
C11 3089 Processing Command
C12 3090 Invalid IOPAR
C13 3091 Invalid PRTPAR
C14 3092 Low Battery
C15 3093 Empty Stack
Ci16 3094 Row

C17 3095 Invalid Name

Time Messages

DO1 3329 Invalid Date

D02 3330 Invalid Time

D03 3331 Invalid Repeat
D04 3332 Nonexistent Alarm

116 Messages

Menu Numbers

The commands MENU, TMENU, and RCLMENU store and recall
menu numbers in the form mm.pp, where mm is the menu
number and pp is the page number.

Menu Name # Menu Name

0 LAST MENU 30 SOLVE SOLVR
1 CST 31 [&q) PLOT
2 VAR 32 PLOT PTYPE
3 MTH 33 PLOT PLOTR
4 MTH PARTS 34 [«1) ALGEBRA

5 MTH PROB 35 («q) TIME
6 MTH HYP 36 TIME ADJST
7 MTH MATRX 37 TIME ALRM

8 MTH VECTR 38 TIME ALRM RPT
9 MTH BASE 39 TIME SET
10 PRG 40 [«q) STAT
11 PRG STK 41 STAT MODL
12 PRG OBJ 42 [«] UNITS
13 PRG DISP 43 UNITS LENG
14 PRG CTRL 44 UNITS AREA
15 PRG BRCH 45 UNITS VOL
16 PRG TEST 46 UNITS TIME
17 PRINT 47 UNITS SPEED
18 1/0O 48 UNITS MASS
19 /O SETUP 49 UNITS FORCE
20 [«a) MODES 50 UNITS ENRG
21 (*] MODES 51 UNITS POWR
22 (\1] MEMORY 52 UNITS PRESS
23 () MEMORY 53 UNITS TEMP
24 (4] LIBRARY 54 UNITS ELEC
25 LIBRARY PORT 0 55 UNITS ANGL
26 LIBRARY PORT 1 56 UNITS LIGHT
27 LIBRARY PORT 2 57 UNITS RAD
28 (1) EDIT 58 UNITS VISC
29 [«v) SOLVE 59 (] UNITS

Menu Numbers 117

Character Codes

NUM CHR NUM CHR NUM CH NUM CHR

0 n 32 64 = 96 !
1 n 33 ! 65 A 97 3
2 = 34 " 66 E 98 ks

3 n 35 # 67 C 99 -
4 n 36 * 68 [100 d

5 n 37 = 69 E 101 =
6 n 38 70 F 102 f
7 n 39 ! 71 G 103 o
8 n 40 i 72 H 104 ki
9 n 41 3 73 I 105 i

10 n 42 * 74 N 106 J
11 m 43 + 75 k: 107 k
12 m 44 . 76 L 108 1
13 n 45 - 77 M 109 r
14 = 46 . 78 H 110 ri
15 = 47 79 0 111 o
16 n 48 A 80 F 112 P
17 m 49 1 81 I} 113 q

18 . 50 = 82 F 114 t
19 n 51 3 83 S 115 =
20 = 52 4 84 T 116 1.

21 = 53 5 85 I 117 i
22 m 54 & 86 L 118 L
23 = 55 T 87 I 119]

24 = 56 o 88 " 120 3
25 = 57 9 89 Y 121 i
26 n 58 : 90 z 122 z
27 n 59 : 91 L 123 i
28 n 60 92 124 I
29 n 61 = 93] 125 b

30 = 62 i 94 126
31 63 95 127

118 Character Codes

NUM CH NUM CHR NUM CHR NUM CHR

128 £ 160 192 A 224 A
129 = 161 i 193 A 225 A
130 7 162 + 194 A 226 &
131 I 163 f 195 A 227 5
132 I 164 i 196 A 228 3
133 = 165 ¥ 197 A 229 3
134 b 166 | 198 i 230 *
135 m 167 5 199 = 231 =

136 a 168 " 200 E 232 &
137 < 169 =] 201 E 233 &
138 3 170 a 202 g 234 &
139 # 171 % 203 E 235 &
140 o 172 - 204 1 236 i
141 + 173 - 205 i 237 i
142 - 174 K 206 t 238 i
143 + 175 - 207 i 239 1
144 + 176 a 208 £ 240 4
145 o 177 * 209 Fi 241 i
146 & 178 2 210 & 242 &
147 = 179 3 211 & 243 &
148 il 180 ’ 212 & 244 5

149 A 181 u 213 “ 245 =

150 4 182 1 214 4 246 o
151 F 183 . 215 " 247 =

152 o 184 - 216 o 248 o
153 T 185 1 217 [l 249 o
154 0 186 = 218 i 250 O

155 & 187 % 219 O 251 o

156 m 188 % 220 U 252 O
157 i 189 b 221 w 253 g
158 = 190 i 222 E 254 b
159 o 191 £ 223 F 255 0

The HP 48 character set can be remapped to match the HP
82240A printer with the OLDPRT command. The character set is
based on the ISO 8859 Latin 1 standard, except for characters
127 -159.

Character Codes 119

Object Types

Type Object Example

0 Real number 1.23245
1 Complex number (2.3:4.50
2 String "HEC"

3 Real array [1 23]
4 Complex array [€1,2) (3,42 1]
5 List £ "RBC" Var

6 Global name #
7 Local name Y
8 Program « A2+ »
9 Algebraic ta=Y2t
10 Binary integer # 247d
11 Graphics object Graphic 121 x &4
12 Tagged object Dizst: 24,45
13 Unit object 32_ftr="2
14 XLIB name HLIE V&g

15 Directory DIR ... EHD

16 Library L1t-r‘ar'u TEED .
17 Backup object ckup HOMED IF
18 Built—in function .': IH

19 Built—in command SKAF
20 System binary <2A1h>
21 Extended real
22 Extended complex
23 Linked array
24 Character Character
25 Code object Code

26 Library Data Library Data
27-31 External object

120 Object Types

Flags

User flags are numbered 1 through 64. System flags are
numbered from -1 through -64. By convention, application
developers are encouraged to restrict their use of user flags to
the range 31 -64.

All flags are clear by default, execpt for the wordsize (flags -5 —
-10).

The related commands CF, F57?, FC?, FS7?C,and FC?C
are found in the menu. RCLF and STOF return
or store a list of two binary integers representing the system and
userflag sets.

Flag Description Clear Set Default

Symbolic Math Flags

-1 Principal Solution Generalsolutions Principal solutions Clear

-2 Symbolic Constants Symbolic form Numeric form Clear

-3 Numeric Results Symbolic results Numeric results Clear

-4 Not used.

Binary Integer Math Flags

-5 — Binary integer wordsize n+1: 0<n <63

4
-10 Flag —10 is the most significant bit 6

Binary Integer Base -11 -12 DEC

-11, DEC Clear Clear

and BIN Clear Set

-12 OCT Set Clear

HEX Set Set

-13 and -14 are not used.

Flags 121

Flag Description Clear Set Default

Coordinate System Flags -15 -16 Rect.

-15 Rectangular Clear Clear

and Cylindrical Polar Clear Set

-16 Spherical Polar Set Set

Trigonometric Mode Flags -17 -18 Degrees

-17 Degrees Clear Clear

and Radians Set Clear

-18 Grads Clear Set

Math Exception Flags

-19 Vector/complex Vector Complex Vector

—-20 |Underflow Exception Return 0, Error Clear

set —23 or -24

-21 Overflow Exception Return + MAXR, Error Clear

set -25

-22 |Infinite Result Error Return £+ MAXR, Error

set —26

-23 Pos. Underflow Ind. No Exception Exception Clear

-24 Neg. Underflow Ind. No Exception Exception Clear

-25 Overflow Indicator No Exception Exception Clear

-26 |Infinite Result Ind. No Exception Exception Clear

—-27 through -29 are not used.

Plotting and Graphics Flags

-30 Function Plotting f(x) y and f(x) f(x)

-31 Curve Filling Filling Enabled Filling Disabled Enabled

-32 Graphics Cursor Visible Light Bkgnd Visible Dark Bkgnd Light

122 Flags

Flag Description Clear Set Default

1/0 and Printing Flags

-33 |I/O Device Serial IR Serial

-34 |Printing Device IR Serial IR

-35 |I/O Data Format ASCII Binary ASCII

-36 |RECV Overwrite New variable Overwrite New

-37 |Double -Spaced Print Single Double Single

-38 |Linefeed Inserts LF Suppresses LF Inserts

-39 [Kermit Messages Msg Displayed Msg Suppressed Displayed

Time Management Flags

-40 |[Clock Display TIME menu only All times TIME menu

-41 |Clock Format 12 hour 24 hour 12 hour

-42 |Date Format MM/DD/YY DD.MM.YY MM/DD/YY

—-43 |Rpt. Alarm Reschedule Rescheduled [Not Rescheduled |Rescheduled

-44 |Acknowledged Alarms Deleted Saved Deleted

Notes: If flag —43 is set, unacknowledged repeat alarms are not rescheduled.

If flag —44 is set, acknowledged alarms are saved in the alarm catalog.

Display Format Flags

-45 Set the number of digits in Fix, Scientific, and

—-48 |Engineering Modes

Number —49 ~50 STD
Display Format

-49 STD Clear Clear

and FIX Clear Set

-50 SCl Set Clear

ENG Set Set

-51 |Fraction Mark Decimal Comma Decimal

-52 |Single Line Display Multi - line Single -line Multi -line

-53 |Precedence () suppressed () displayed Suppressed
Flags 123

Flag Description Clear Set Default

Miscellaneous Flags

-54 Not used.

-55 Last Arguments Saved Not Saved Saved

-56 Beep On Off On

-57 Alarm Beep On Off On

-58 Verbose Messages On Off On

-59 Fast Catalog Display Off On Off

-60 Alpha Key Action Twice to lock Once to lock Twice

-61 USR Key Action Twice to lock Once to lock Twice

-62 User Mode Not active Active Not active

-63 Vectored Enter Off On Off
 Set by GETI or PUTI when their element indices wrap around

The HP 82211A HP Solve Equation Library application card uses

three userflags:

Flag Description Clear Set Default

60 Units Type Sl units English units Sl units

61 Units Usage Units used Units not used Units used

62 Payment Mode End mode Begin mode End mode

124 Flags

Subject Index

This index lists the commands and functions in the HP 48,
grouped into subject areas. Some commands or functions
appear more than once.

BINARY INTEGER MATH

AND Logicalbit - by —bit AND

ASR Arithmetic shift right

B—R Binary —to —real conversion

NOT One’s complement

OR Logical bit—by -bit OR
RCWS Recalls the binary integer wordsize

RL Rotates left by one bit

RLB Rotates left by one byte

RR Rotates right by one bit

RRB Rotates right by one byte

R—B Real -to —binary conversion

SL Shifts left by one bit

SLB Shifts left by one byte

SR Shifts right by one bit

SRB Shifts right by one byte

STWS Sets the binary integer wordsize
XOR Logical bit —by - bit XOR

COMPLEX NUMBER OPERATIONS

ABS

ARG

CONJ
C—-R

Subject Index

V32 +y?
Returns the polar angle 6 of a coordinate pair (x,y)

Complex conjugate
Complex —to —real conversion

Symbolic constant
Returns imaginary part of a number or array

Negates an argument

Complex decomposition
Returns the real part of a complex number

Real -to —complex conversion
Returns unit vectorin the direction of the argument

Separates (x,y) into x and y or r and 4

Combines x and y into (x,y) or (r,6) if flag —19 is set

125

ARRAY & LIST OBJECT MANIPULATION

ARRY— Separate array into individual elements
—ARRY Combines numbers into an array

CONVERT Performs a unit conversion
DTAG Removes all tags from object

EQ— Separates equation into left and right sides

GET Gets an element from a list, array, or matrix

GETI Gets an element from a list, increments and

returns the index, and returns the list

LIST— Separatesa list into individual objects

—LIST Combines objects into a list

OBJ— Decomposes a composite object into individual components.

POS Finds an object in a list

PUT Replaces an element in an array orlist

PUTI Replaces an element in an array or list and increments the index

REPL Writes an object into another object

SIZE Finds the number of elements in a list

suB Extracts a portion of a list
—TAG Builds a tagged object

—UNIT Builds a unit object

—V2 Combines two real numbers into vector
—V3 Combines three real numbers into vector

V— Separates a 2 or 3 element vector

CONSTANTS

i Symbolic constant i
e Symbolic constant e

MAXR Symbolic constant— maximum HP 48 real number
MINR Symbolic constant— minimum HP 48 real number

x Symbolic constant »

CUSTOMIZATION

ASN Make a single user —key assignment

DELKEYS Clears user - key assignments

DEFINE Creates variable or user —defined function

MENU Selects a built—in menu or creates a custom menu

ORDER Rearranges the VAR menu

RCLF Returns a list containing the system and user flags
RCLKEYS Lists user —key assignments

RCLMENU Recalls number and page of active menu

STOF Sets system and user flags

STOKEYS Makes multiple user —key assignments

TMENU Displays temporary built—in or list—defined menu

126 Subject Index

DATA ENTRY AND EDITING

FREEZE Freezes up to three display areas

INPUT Suspends program and waits for data

KEY Returns key in buffer

LAST Returns LAST arguments (if saved)

LASTARG Returns LAST arguments(if saved)

PROMPT Displays prompt and halts program

TEXT Selects the stack display

WAIT Pauses program execution or waits for a key

DEBUGGING AND ERRORS

DOERR Generates system or user —defined error

ERRO Clears the last error number

ERRM Returns the last error message

ERRN Returns the last error number
HALT Suspends program execution

IFERR Begins IFERR test

KILL Cancels all suspended programs

LAST Returns arguments (if saved)

LASTARG Returns arguments (if saved)

DISPLAY MANAGEMENT

CLLCD Clears the stack display
DISP Displays an object on line n

FREEZE Freezes up to three display areas

GRAPH Enters the graphics environment

INPUT Suspends program and waits for data
PROMPT Displays prompt and halts program
PVIEW Displays PICT at specified coordinate
TEXT Selects the stack display

GENERAL MATH

ABS Absolute value

ARG Returns the polar angle 6 of a coordinate pair (x,y)

CEIL Next greater integer

CONJ Complex conjugate

FACT Factorial or gamma function

FLOOR Next smaller integer

Subject Index 127

FP

HMS+

HMS-

HMS—

—HMS

INV

IP

MANT

MIN

MOD

NEG

RE

RND

ROOT

RSD
R—D

SIGN

TAYLR

TRNC

XPON

XROOT

9
f,
afl

Y
N
|

4+
D

128

Fractional part

Adds in H.MS format

Subtracts in H.MS format

Converts a number from H.MS format

Converts a number to H.MS format

\nverse (reciprocal)

. teger part

Returns the mantissa of a number

Returns the maximum of two numbers

Returns the minimum of two numbers

Modulo

Negates an argument

Converts number to fractional equivalent

—Q after factoring out
Returns the real part of a complex number

Rounds fractional part of number

Finds a numerical root

Computes a correction to the solution of a system of equations
Radians —to —degrees conversion

Sign of a number

Squares a number

Computes a Taylor series approximation

Truncates number

Returns the exponent of a number

Returns xt" root of y
Square root

Integral

Derivative

Adds two objects

Subtracts two objects
Multiplies two objects

Divides two objects

Raises a number to a power

Percent
Percent change
Percent total

Subject Index

GRAPHICS AND PLOTTING

ARC

AUTO

AXES
BAR

BARPLOT

BLANK

BOX

CENTR

CLLCD

CONIC

C—PX

DEPND

DRAW

DRAX

ERASE

FUNCTION

GOR

GRAPH

—GROB

GXOR
HISTOGRAM

HISTPLOT

INDEP

LABEL

LCD—

—LCD

LINE

NEG
PARAMETRIC

PDIM

PICT

PIXOFF

PIXON

PIX?

PMAX

PMIN

POLAR
PRLCD

PVIEW

Subject Index

Draws an arc in PICT

Scales y —axis

Sets intersection of axes and optionally stores labels

Selects bar plot

Draws a bar plot of the data in XDAT

Creates a blank graphics object

Draws a box in PICT

Sets center of plot display

Clears the stack display
Selects conic plot

User —unit to pixel coordinate conversion

Specifies plot dependent column, variable, or range

Draws a plot

Draws axes

Erases PICT

Selects function plot

Superimposes graphics objects
Enters the graphics environment

Converts object into graphics object

Superimposes and inverts graphics objects

Selects histogram plot
Draws a histogram of the data in ZDAT

Selects plot independent column, variable or range

Labels axes
Returns LCD as 131x64 pixel graphics object

Displays graphics object

Draws a line between two coordinates

Inverts a graphics object

Selects parametric plot

Changesthe size of PICT
Returns the name PICT

Turns off a pixel in PICT

Turns on a pixel in PICT
Tests a pixel in PICT

Sets the upper -right plot coordinates

Sets the lower - left plot coordinates

Selects polar plot
Prints an image of the display

Displays PICT at specified coordinate

129

PWRFIT Selects powercurve —fitting model

PX—C Pixel to user —unit coordinate conversion

RCEQ Recalls the current equation

REPL Writes one graphics object into another graphics object

RES Sets the plot resolution in user unit or pixel intervals

SCALE Specifies x and y scale in units per 10 pixels

SCATRPLOT Draws a scatter plot of the data in DAT

SCATTER Selects scatter plot

SIZE Finds the dimensions of a graphics object

STEQ Stores into reserved variable EQ

suB Extracts a sub-grob
TEXT Displays the stack display

TLINE Toggles pixels on a straight line

TRUTH Selects truth plot

XCOL Specifies LDAT column as independent variable

YCOL Specifies a ZDAT column as the dependent variable

YRNG Specifies y —axis plotting range

*H Adjusts the height of a plot

*W Adjusts the width of a plot

HYPERBOLIC OPERATIONS

ACOSH Inverse hyperbolic cosine
ASINH Inverse hyperbolic sine

ATANH Inverse hyperbolic tangent

COSH Hyperbolic cosine
EXPM Natural exponential minus 1

LNP1 Natural logarithm of (argument + 1)

SINH Hyperbolic sine
TANH Hyperbolic tangent

INPUT/OUTPUT AND DATA TRANSFER

BAUD

BEEP
BUFLEN

CKSM
CLOSEIO

FINISH

INPUT
KERRM

130

Sets the baud rate

Sounds a beep
Returns number of characters in the serial buffer

Select the checksum scheme

Closes the serial port

Terminates Kermit server mode

Suspends program and waits for data
Returns the last Kermit error message

Subject Index

KEY

KGET

OPENIO

PARITY

PKT

RECN

RECV

SBRK

SEND

SERVER

SRECV

STIME
TRANSIO
XMIT

Returns key in buffer

Gets named data from a remote device

Opens IR or wired port

Sets parity
Sends commands to server

Receives and renames file from remote Kermit

Receives file from remote Kermit, saved in a sender —named object

Sends serial break
Sends object to another Kermit device

Selects Kermit Server mode
Reads characters from |/O port without Kermit

Sends serial transmit/receive timeout

Selects character translation mode

Sends string through 1/O port without Kermit

LOGARITHMIC OPERATIONS

ALOG
e

EXP

EXPM

LN

LNP1

LOG
XPON

Antilogarithm

Symbolic constant e
Natural exponential

Natural exponential minus 1

Natural logarithm

Natural logarithm of (argument + 1)

Common (base 10) logarithm

Returns the exponent of a number

LOGICAL AND RELATIONAL OPERATORS

AND

NOT
OR
SAME

XOR

n
H
I
v
V
v
I
A
A

Subject Index

Logical or binary AND

Logical or binary NOT
Logical or binary OR
Tests two objects for equality

Logical or binary XOR

Less —than comparison

Less —than —or —equal comparison

Greater —than comparison
Greater —than —or —equal comparison

Not -equal comparison

Tests two objects for equality

131

MATRIX AND ARRAY OPERATIONS

ABS Square root of sum of squares of elements

ARRY— Separate array into individual elements

—ARRY Combines numbers into an array

C—-R Separates complex array into two arrays

CNRM Column norm
CON Creates a constant array

CONJ Complex conjugate

CROSS Cross product
DET Determinant of a matrix
DOT Dot product of two vectors

GET Gets an element from a list, array, or matrix

GETI Gets an element from a list, increments and

IDN Creates an identity matrix
M Returns array of imaginary parts from complex array

NEG Negates elements in an array

PUT Replaces an element in an array orlist

PUTI Replaces an element in an array orlist and increments the index

R—C Combines two arrays into complex array

RDM Redimensions an array

RE Returns array of real parts from complex array

RNRM Computes row norm of an array

SIZE Finds the number of elements in an array or matrix

sQ Squares a matrix

TRN Transposes a matrix
—V2 Combines two real numbers into vector

—V3 Combines three real numbers into vector

V— Separates a 2 or 3 element vector

MEMORY MANAGEMENT

ARCHIVE Makes backup copy of HOME directory
ATTACH Attacheslibrary to current directory

BYTES Returns the checksum and number of bytes of an object

CLUSR Purges all user variables in the current directory

CLVAR Purges all user variables in the current directory

CRDIR Creates a directory
DEFINE Creates user —defined function

DETACH Detacheslibrary from current directory

FREE Frees merged memory

132 Subject Index

HOME Selects the HOME directory

LIBS Lists libraries attached to current directory

MEM Returns available memory

MERGE Merges RAM card with main memory

NEWOB Separates object from list or backup name

ORDER Rearranges the VAR menu

PATH Returns a list showing the current path
PGDIR Purges specified directory and its contents

PURGE Purges one or more variables

PVARS Returns list of port objects

RCEQ Recalls the current equation

RCL Recalls the contents of a variable

RCLF Returns a list containing the system and user flags

RCLX Recalls the current statistics matrix

RESTORE Replaces HOME directory with backup copy

SAME Tests two objects for equality

SIZE Finds the dimensions of an object

STEQ Stores into reserved variable EQ
STO Stores an object into a variable
STOZ Stores into reserved variable ZDAT

TVARS Lists the variables of specified type

TYPE Returns the type of an object

UPDIR Makes parent directory the current directory
VARS Returnslist of variables in the current directory
VTYPE Returns type of object in named variable

— Assigns local variable(s)

MODES AND FLAGS

BIN Sets binary base

CF Clears a system or userflag
DEC Sets decimal base
DEG Sets Degrees mode

ENG Sets Engineering display mode

FC? Tests a system or userflag
FC?C Tests and clears a system or user flag
FIX Sets Fix display mode

FS? Tests a system or userflag

FS?C Tests and clears a system or user flag

GRAD Sets Grads mode
HEX Sets hexadecimal base

Subject Index 133

oCT Sets octal base

RAD Sets Radians mode

RCLF Returns a list containing the system and userflags

SCI Sets Scientific display mode

SF Sets a system or user tlag

STD Sets Standard display mode

STOF Sets system and user flags

PRINTING

CR Prints a carriage -right
DELAY Sets 0 < n < 6.9 sec delay between printed lines

OLDPRT Remaps to HP 82240A character set

PRLCD Prints an image of the display

PRST Prints the stack

PRSTC Prints the stack in compact format

PRVAR Prints the name and contents of one or more variables
PR1 Prints an object

PROBABILITY

COMB Combinations of n objects taken r at a time

FACT Factorial or gamma function

! Factorial or gamma function

PERM Permutations of n objects taken r at a time
RAND Returns a random number

RDZ Sets the random number seed

uUtPC Upper —tail Chi—Square distribuion

UTPF Upper —tail F —distribution
UTPN Upper —tail normal distribution

UTPT Upper —tail t —distribution

PROGRAM BRANCHING AND CONTROL

CASE

CONT
DO

DOERR

ELSE

END

EVAL

134

Begins CASEstructure

Continues a halted program
Begins DO loop

Generates user —defined error

Begins ELSE clause

Ends program structures

Evaluates an object

Subject Index

FOR Begins FOR loop

HALT Suspends program execution

IF Begins IF test

IFERR Begins IFERR test

IFT IF ... THEN ... ENDtest

IFTE IF ... THEN ... ELSE ... END test

INPUT Suspends program and waits for data
KILL Cancels all suspended programs

NEXT Ends FOR ... NEXT or START ... NEXT
—NUM Evaluates an object to yield a numeric result

OFF Turns the calculator off
PROMPT Displays prompt and halts program

REPEAT Part of WHILE ... REPEAT ... END

START Begins START ... NEXT or START ... STEP
STEP Ends FOR ... STEP or START ... STEP

SYSEVAL Executes a system object
THEN Begins THEN clause

UNTIL Part of DO ... UNTIL ... END

UPDIR Makes parent directory current directory
WAIT Pauses program execution or waits for a key

WHILE Begins WHILE ... REPEAT ... END

WSLOG Returns the four most recent system halts

— Assigns local variable(s)

STACK MANIPULATION

—ARRY Combines numbers into an array

CLEAR Clears the stack

DEPTH Counts the objects on the stack

DROP Drops one object from the stack
DROPN Drops n+1 objects from the stack

DROP2 Drops two objects from the stack

DUP Duplicates one object on the stack

DUPN Duplicates n objects on the stack

DUP2 Duplicates two objects on the stack

LAST Returns LAST arguments (if saved)

LASTARG Returns LAST arguments (if saved)

—LIST Combines objects into a list

OVER Copies the objectin level 2 into level1
PICK Copies nth object into level 1 (excluding n)

ROLL Moves level n+ 1 objectto level 1

ROLLD Moves the level 2 object to level n
ROT Moves the level 3 object to level 1

SWAP Swaps the objects in levels 1 and 2

Subject Index 135

STATISTICS

BAR
BARPLOT

BESTFIT

BINS

CLz

CNRM

COoLz

CORR

cov
EXPFIT
HISTOGRAM

HISTPLOT

LINFIT

LOGFIT

LR

MAXZ

MEAN

MINZ

NZ

PREDV

PREDX

PREDY

PWRFIT

RCLE
SCATRPLOT

SCATTER
SDEV

STOZ
TOT
VAR
XCoL

YCOL

XRNG

z
ZLINE

X

X2

Y

Y2

IX*Y

+
T-

136

Selects bar plot
Draws a bar plot of the data in ZDAT

Executes LR and computes the best curvefit

Sorts LDAT data into histogram bins

Purges the statistics matrix

Computes the column norm of an array
Specifies dependent and independent columns in XDAT

Correlation coefficient

Covariance

Selects exponential curve —fitting model

Selects histogram plot
Draws a histogram of the data in ZDAT

Selects linear curve —fitting model

Selects logarithmic curve —fitting model

Computeslinear regression

Finds the maximum coordinate values in EDAT

Computes means of the data in EDAT
Finds the minimum coordinate values in DAT

Returns the number of data points in ZDAT

Predicted dependent variable value

Predicted independent variable value

Predicted dependent variable value

Selects powercurve -fitting model

Recalls the current statistics matrix
Draws a scatter plot of the data in XDAT

Selects scatter plot

Computes standard deviations of the data in ZDAT
Stores into reserved variable EDAT
Sums the columns in ZDAT

Computes variances of the data in DAT
Specifies £DAT column as the independent variable

Specifies a ZDAT column as the dependent variable

Specifies x —axis plotting range

Summation
Returns best -fit line for data in XDAT

Sum of data in independent £DAT column

Sum of squares in independent £DAT column

Sum of data in dependent £DAT column

Sum of squares of data in dependent £DAT column

Sum of products in independent and dependent £DAT columns
Appends one or more data points to XDAT
Deletes last row from LDAT

Subject Index

STRING MANIPULATION

CHR Makes a one —character string

NUM Returns character code of a string’s first character

POS Finds a substring in a string

SIZE Finds the number of characters in a string

STR— Parses and evaluates a string

—STR Converts an object to a string

suB Extracts a portion of a string

SYMBOLIC MANIPULATION

APPLY Returns an evaluated expression as the

argument to an unevaluated local name

COLCT Collects like terms

EQ- Separates equation into left and right sides

EXPAN Expands an algebraic

e Symbolic constant e

i Symbolic constant i

x Symbolic constant x

ISOL Isolates a variable in an equation

tMATCH Match —-and -replace, beginning with subexpressions

JMATCH Match —-and -replace, beginning with the top —level expression

—NUM Evaluates an objectto yield a numeric result

oBJ— Separates outermost function and its arguments
QUAD Solves a quadratic polynomial

QUOTE Returns argument expression unevaluated

SHOW Resolves all references to a name implicit in an algebraic
TAYLR Computes a Taylor series approximation

/ Integral
3 Derivative

"Where": appends local name and value to evaluated expression

TRIGONOMETRIC OPERATIONS

ACOS

ASIN
ATAN

coSs
D—R
R—D

SIN
TAN

Subject Index

Arc cosine

Arc sine

Arc tangent

Cosine
Degrees —to —radians conversion
Radians —to —degrees conversion

Sine
Tangent

137

TIME AND ALARMS

ACK Acknowledges displayed past due alarm

ACKALL Acknowledges all past due alarms

CLKADJ Add clock ticks to the system time

DATE Returns the system date
—DATE Sets the system date

DATE+ Adds a number of days to a date

DDAYS Number of days between two dates

DELALARM Deletes an alarm

FINDALARM Returns alarm index n

HMS+ Adds in H.MS format

HMS- Subtracts in H.MS format

HMS— Converts a number from H.MS format

—HMS Converts a number to H.MS format

RCLALARM Recalls alarm from alarm list

STIME Sends serial transmit/receive timeout

STOALARM Stores alarm in system alarm list
TICKS Returns time in binary integer clock ticks
TIME Returns current time as number

—TIME Sets specified system time

TSTR Converts date & time numbers to string form

UNIT OBJECT OPERATIONS

CONVERT Performs a unit conversion
OBJ— Decomposes a unit object into a number and unit expression

UBASE Converts unit object to Sl base units

UFACT Factors specified compound unit
—UNIT Builds a unit object

UVAL Returns scalar portion of unit object

VARIABLE ARITHMETIC

DECR Decrements value of specified variable
INCR Increments and returns value of variable

SCONJ Conjugates the contents of a variable

SINV Inverts the contents of a variable

SNEG Negates the contents of a variable
STO+ Storage arithmetic add

STO- Storage arithmetic subtract

STO* Storage arithmetic multiply

STO/ Storage arithmetic divide

138 Subject Index

Command Reference

This command reference lists the stack diagrams for all

commands and functions in the HP 48. Each entry lists the name,
characteristics, description, and stack diagrams if applicable.

NAME Characteristics
Description

Input Output

Level, Level, Level, — Level; Level, Level,

Note:

Notes about the function or command

The characteristics are encoded as follows:

Symbol Characteristic

l Invertible
a Differentiable
J Integrable

For instance, ACOSH is a function which has an inverse and is

differentiable:

ACOSH | 8 Function
Inverse hyperbolic cosine

z — acosh z

'symb’ — 'ACOSH(symb)’
The following tablelists the terms used in the stack diagrams. Note
that system modes may affect the interpretation of input parameters

or the results of some functions.

Command Reference 139

Term Description

obj

xory

abcd

(x,y)
z

morn

#nor #m

X_unit

X_pa-unit

"string"

{list}

grob

{ #x #y}
hms

time

repeat

date

T/F

'symb’

[vector]

[[matrix]]

[R-array]

[C-array]

{row col}

position

‘'name’

‘global’

rc or rc.p

mm.pp

d.o.f.

port

backup

library

LID

Any object

Real number

Real number

Complex number

Real or complex number

Positive integer real number (rounded if non -integer)

Binary integer

Real number with units

Real with planar angular units

Character string

List of objects

Graphics object

Pixel coordinates

Real number in HH.MMSS format

Time in HH.MMSS format

Repeat interval in clock ticks (8192 ticks per second)

Date in current MM.DDYYYY or DD.MMYYYY format(flag —42)

Test result: O (false) or non-zero (true)

Expression or name treated as an algebraic

Real or complex vector

Real or complex matrix

Real vector or matrix

Complex vector or matrix

Coordinates of an element in a matrix

Real number specifying an element in a list, vector,
or matrix. May be a list containing two real
numbers specifying an element in a matrix.

Global or local name

Global name

Key location: row —col or row —col.plane (see User Keys)

Menu specified as menu.page

Positive integer degrees of freedom

Port number: 0, 1, 2, or & (wildcard)

Backup object

Library object

Library identifier (port:library number)

Command Reference

ABS d Function
Absolute value. The absolute value of a vector or matrix is the

square root of the sum of squares of the absolute values of

the elements.

x — [x]

(xy) — X2 +y?
[vector] — | vector |

[[matrix]] — | matrix |

'symb’ — 'ABS(symb)’

x_unit — |x|_unit

ACK Command
Acknowledges displayed past due alarm

ACKALL Command
Acknowledges all past due alarms

ACOS 1 8 [Function
Arc cosine

z — acosz

'symb’ — 'ACOS(symb)’

ACOSH | 8 Function
Inverse hyperbolic cosine

z — acosh z

'symb’ — 'ACOSH(symb)’

ALOG 1 8 [Function
Antilogarithm

z — 10?
'symb’ — 'ALOG (symb)’

AND Function
Logical or binary AND

#n, #n, — #n,
xy — TJF

x ‘'symb’ — ’'x AND symb’

'symb’ x — 'symb AND x'

'symb,’ ’'symb,’ — ’'symb; AND symb,’

"string," ‘"string," — “stringy"

Note:

String arguments must have the same length

Command Reference 141

APPLY A8 Function

Returns an evaluated expression as the argument to an

unevaluated local name

{ symb, ... symb, } 'name’ — ‘name(symby,, ... , symb,)’

'APPLY(name,symby, ..., symb,)’

ARC Command

Draws an arc in PICT centered at (x,y), radius r, counterclockwise

from 4, to 4,

(X’Y) r 01 02 -

{#x#y} #r 6, 6, —

ARCHIVE Command

Makes backup copy of HOME directory

:10: name —

‘n: name —

ARG d Function
Returns the polar angle 6 of a coordinate pair (x,y)

z — 0

'symb’ — 'ARG(symb)’

ARRY— Command
Separate array into individual elements

[vector] — Zy ...z, {n}

[[matrix]] — 241242 ... Zpy {N M}

—ARRY Command
Combines real or complex numbers into an array

z,..z, n — [vector]

244 Z42..2Zp {Nn M} — [[matrix]]

ASIN 1 8 [Function
Arc sine

z — asinz

'symb’ — ’ASIN(symb)’

ASINH 1 @ Function
Inverse hyperbolic sine

asinh z

’ASINH(symb)’L
l 'symb’

142 Command Reference

ASN Command
Make a single user —key assignment

object rcp —

'SKEY' rc.p — Reactivates standard key

ASR Command
Arithmetic shift right (preserves most significant bit)

#n;, — #n,

ATAN 1 8 [Function
Arc tangent

atan z

'ATAN(symb)’

ATANH 1 8 Function

Inverse hyperbolic tangent

z

'symb’ L
l

z — atanh z

'symb’ — 'ATANH(symb)’

ATTACH Command
Attaches library to current directory

library—number —

AUTO
Command

Scales y —-axis

AXES
Command

Sets intersection of axes and optionally stores labels

(xy) —
{(xy)} —

{ "Xlabel" "Ylabel"} —

{ (xy) "Xiabel" "Yiabel'} —

BAR Command

Selects bar plot

BARPLOT
Command Draws a bar plot of the data in XDAT

Command Reference 143

BAUD Command
Sets the serial baud rate: 1200, 2400, 4800, or 9600 (default)

n —

Note:

The clock should not be displayed during 9600 baud transfers.

BEEP Command
Sounds a beep. Maximum 4400 Hz, 1048 seconds.

Hz secs —

BESTFIT Command

Selects the statistics model that yields the largest correlation

coefficient and executes the LR command

BIN . Command

Sets binary base

BINS Command

Sorts the LDAT data into N bins using the independent variable

column as the sort key. The level 1 result shows the number of

data points less than and greater than the available bins.

Xmin Width N — [[b]..[by]] [by bgl]
BLANK Command
Creates a blank graphics object

#width #height — grob

BOX Command
Draws a box in PICT with opposite corners defined by user —unit

or pixel coordinates

(xy) (Xy) —
{#x #y} {#xX #y'} —

BUFLEN Command

Returns the number of characters in the serial buffer

— n T/F

BYTES Command

Returns the checksum and number of bytes of an object

'‘global’ — checksum size

object — checksum size

144 Command Reference

B—R Command
Binary —to —real conversion

#n — n

CASE Command
Begins CASE structure

CASE

test; THEN action, END

test, THEN action, END

test, THEN action, END

default action

END

CEIL Function
Next greater integer

X — n

'symb’ — 'CEIL(symb)’

x_unit — n_unit

CENTR Command
Sets center of plot display. Supplying x implies (x,0).

(xy) —
X —

CF Command
Clears a system or userflag

+n —_—

CHR Command
Makes a one —character string

n — “string"

CKSM Command
Select the checksum scheme

n —

1 1-digit arithmetic
2 2-digit arithmetic

3 3-digit-CRC (default)

CLEAR Command
Clears the stack

objects —

Command Reference 145

CLKADJ Command
Add clock ticks to the system time (8192 ticks per second)

*ticks —

CLLCD Command
Clears the stack display

CLOSEIO Command
Closes the serial port, clears input buffer and KERRM

CLUSR Command
CLVAR
Purges all user variables in the current directory

CL Command
Purges the statistics matrix

CNRM Command
Computes the maximum value of the sums of the absolute values

of all elements overall columns

[vector] — column-norm

[[matrix]] — column-norm

Note:

Since a vector is considered a 1-row matrix, CNRM returns the

sum of the absolute values of the elements in the vector.

COLCT Command

Collects like terms

z — z

'symb," — ’symb,’

COLE Command
Specifies dependent and independent columns in DAT

independent dependent —

COMB Function
Combinations of n objects taken m at a time

nm — G,

'symb’ n — 'COMB(symb,n)’

n ’'symb’ — 'COMB(n,symb)’

'symb,’ 'symb,’” — 'COMB(symb,,symb,)’

146 Command Reference

CON

array or named array
Creates a constant array or replaces the contents of an existing

Command

{rows cols} z — [[matrix]]
[vectory] z — [vector,]

[[matrix4]] z — [[matrix,]]

‘name’ z —

CONIC Command
Selects conic plot

CONJ | 8 Function
Complex conjugate

X — X

(xy) — (x-y)
[R-array] — [R-array]

[C-array,] — [C-array,]

'symb’ — 'CONJ(symb)’

CONT Command
Continues a halted program

CONVERT Command
Performs a unit conversion

xold ynew — x'new

X ypa-unit — x'_pa-unit

Xx_pa-unit 'y — x”_pa-unit

Xy — X

CORR Command
Correlation coefficient of XDAT data in columns specified by COLE

— correlation

COs 1 8 f Function
Cosine

z — cosz

'symb’ — 'COS(symb)’

X_pa-unit — cosx

Command Reference 147

COSH
Hyperbolic cosine

} 8@ { Function

z — coshz

'symb’ — 'COSH(symb)’

cov Command
Covariance of EDAT data in columns specified by COLE

— covariance

CR Command
Prints a carriage —right

CRDIR Command
Creates a directory

‘'name’ —

CROSS Command
Cross product

[A][B] — [A x B]

C—PX Command
User —unit to pixel coordinate conversion

(x,y) — {#col #row}

C—R Command
Complex —-to —-real conversion

(xy) — xy
[C‘arraY] — [R'a”ayreall [R'a"aYimag]

DATE Command
Returns the system date

— date

—DATE Command
Sets the system date

date —

DATE + Command
Adds a number of days to a date

date #days — date’

DDAYS Command
Number of days between two dates

date; date, — Adays

148 Command Reference

DEC Command

Sets decimal base

DECR Command
Decrements value of specified variable

'name’ — X

DEFINE Command
Creates user —defined function

‘equation’ —

DEG Command
Sets Degrees mode

DELALARM Command
Deletes one alarm or all alarms from the system alarm list

n — Deletes specified alarm

0o — Deletes all alarms

DELAY Command
Sets 0 < n < 6.9 second delay between printed lines (1.8 second default)

n —

DELKEYS Command
Clears user —key assignments

rc.

{rc.pyre.ps...

Clears a single key

Clears a list of keys

Clears standard key definitions
Clears list of keys & std key defs

Clears all user keys

DEPND Command
Specifies plot dependent column, variable, or range

n

‘name’

{ name }

start end

{ start end }

{ name start end}

DEPTH Command
Counts the objects on the stack

objects — objects n

{Src.p,rc.ps...

A

L
l

Command Reference 149

DET Command
Determinant of a square matrix

[[matrix]] — determinant

DETACH Command
Detaches library from current directory

library —-number —

DISP Command

Displays an object in medium font (5x7) on line n, where n=1

is the top line, n=7 is the bottom line

object n —

DO Command
Begins DO loop

DO loop-clause UNTIL test-clause END

DOERR Command

Generates system or user —defined error

0 — Simulates [ATTN]
n — Issues machine error n

#n — Issues machine error n

"string" — Issues string error

DOT Command

Dot product of two vectors

[A][B] — x

DRAW Command

Draws a plot

DRAX Command

Draws axes

DROP Command

Drops one object from the stack

object —

DROPN Command

Drops n and n objects from the stack

obj, ... obj; n —

150 Command Reference

DROP2 Command
Drops two objects from the stack

obj, obj; —

DTAG Command
Removes all tags from object

:tag:obj — obj

DUP Command
Duplicates one object on the stack

obj — obj obj

DUPN Command
Duplicates n objects on the stack (excluding n)

obj, ... objy n — obj, ... obj; obj, ... obj,

DUP2 Command
Duplicates two objects on the stack

obj; obj; — obj; obj, obj; obj,

D—R Function
Degrees —-to —radians conversion

X — (r/180)x
'symb’ — 'D—R(symb)’

e J Function
Symbolic constant e

— 2.71828182846

ELSE Command

Begins false —clause in IF ... THEN ... ELSE ... END
or IFERR ... THEN ... ELSE ... END

END Command
Ends program structures

ENG Command
Sets Engineering display mode

n —
Command Reference 151

EQ-
Separates equation into left and right sides

Command

'symb,=symb,’ — ’'symb,’ ’symb,’

z — z 0

'name’ — ’'name’ 0

x_unit — x_unit O

ERASE Command
Erases PICT

ERRM Command
Returns the last error message

— “error message"

ERRO Command
Clears the last error number

ERRN Command
Returns the last error number

— #n

EVAL Command
Evaluates an object

obj —

:port:name —

:port:{path name} —

{ port:name, port:name,...} —

EXP 1 8@ f Function
Natural exponential

z — expz

'symb’ — 'EXP(symb)’

EXPAN Command
Expands an algebraic

z — z

'symb,’ — ’'symb,’

EXPFIT Command
Selects exponential curve —fitting model

EXPM 1 8 J Function
Natural exponential minus 1

x — exp(x)-1
'symb’ — 'EXPM(symb)’

152 Command Reference

Begins FOR loop

start end FOR counter loop-clause NEXT

start end FOR counter loop-clause increment STEP

FACT Function
Factorial or gamma function

n — nl

x — T(x+1)

'symb’ — 'FACT(symb)’

FC? Command
Tests a system or userflag

*n — TJF

FC?C Command
Tests and clears a system or user flag

*tn — T/F

FINDALARM Command
Returns alarm index n

First alarm due after a date and time:

{ date time } — n

First alarm due on a specified date:

date — n

First past due alarm:

o — n

FINISH Command

Terminates Kermit server mode.

FIX Command
Sets Fix display mode

n —

FLOOR Function
Next smaller integer

X — n
'symb’ — 'FLOOR(symb)’

x_unit — n_unit

FOR Command

Command Reference 153

FP Function

Fractional part

X — y

'symb’ — 'FP(symb)’

x_unit — y_unit

FREE Command

Frees merged memory

LID port —

{ } port —

:port:name —

{ :port:names ... LIDs } port —

FREEZE Command

Freezes up to three display areas.

which area will be frozen.

The least significant bits control

n —

Bit: 0 Status area

1 Stack & command line

2 Menu area

FS? Command
Tests a system or user flag

tn — T/F

FS?C
Tests and clears a system or user flag

*n — TJF

FUNCTION Command
Selects function plot

GET Command
Gets an element from a list, vector, or matrix

{ list} position — object

'name’ position — object
[vector] position — z

[[matrix]] position — z
[[matrix]] {row col} — z

'name’ {row col} — z

154 Command Reference

GETI Command
Gets an element from a list, increments and returns the position, and

returns the list

{ list } position

'name’ position

[vector] position

[[matrix]] position

[[matrix]] { row col }

'name’ { row col }

{ list } position’ object

'name’ position’ object

[vector] position’ z

[[matrix]] position’ z

[[matrix]] {row col’} z

‘'name’ {row col'} z

GOR Command
Superimposes grob’ onto grob at the specified coordinates

grob (x,y) grob® — grob”
V
L
D

grob { #x #y} grob® — grob”

PICT (x,yy) grob’ —

PICT {#x#y} grob® —

GRAD Command
Sets Grads mode

GRAPH Command
Enters the Graphics environment until [ATTN] is pressed

—GROB Command
Converts object into graphics object

object n — grob

EquationWriter picture

Small font (3x5)
Medium font (5x7)

Large font (5x9)

GXOR Command
Superimposes and inverts grob’ onto grob at the specified coordinates

grob (x,y) grob® — grob”

grob { #x #y} grob® — grob”

PICT (x,y) grob’ —

PICT { #x#y} grob® —

W
h
N
h
-
=
-
0

Command Reference 155

Creates an identity matrix

HALT Command

Suspends program execution

HEX Command

Sets hexadecimal base

HISTOGRAM Command

Selects histogram plot

HISTPLOT Command

Draws a histogram of the data in DAT

HMS + Command

Adds in H.MS format

hms, hms, — hms, +hms,

HMS - Command

Subtracts in H.MS format

hms, hms, — hms,; - hms,

HMS— Command

Converts a number from H.MS format

hms — X

—HMS Command

Converts a number to H.MS format

X — hms

HOME Command

Selects the HOME directory

i 3 Function
Symbolic constant i

— (0,1)

IDN Command

n — [[n x n real —identity — matrix]]
[[matrix]] — [[identity —matrix]]

'name’ — replaces named matrix

156 Command Reference

IF Command
Begins IF test

IF test THEN true —clause END

IF test THEN true —clause ELSE false —clause END

IFERR Command
Begins IFERR test

IFERR test THEN true —clause END

IFERR test THEN true —clause ELSE false —clause END

IFT Command
IF ... THEN ... END test. Executes object if T/F is true.

T/F object —

IFTE d Function
IF ... THEN ... ELSE ... END test. Executes true -obj if T/F is true,

otherwise executes false —obj.

T/F true-obj false-obj —

'symb’ true-obj false-obj —

'IFTE(symb,true —obj,false —obj)’

IM Function
Returns imaginary part of a number or array

X — 0

(xy) — vy
[R-array] — [zero R-array]

[C-array] — [R-array]

'symb’ — 'IM(symb)’

INCR Command
Increments and returns value of variable

'name’ — X

INDEP Command
Specifies plot independent column, variable or range

n

'name’

{ name }
start end

{ start end}

{ name start end}

L
l

Command Reference 157

INPUT Command

Suspends program, displays message, and waits for data. mode can

be ALG, o, or V. The level 1 list may contain any of the options in

any order.

"message" "prompt" — ‘“result”

"‘message" { "prompt" column mode } — ‘result"

"message” { "prompt" {rowcol} mode} — ‘result"

INV 1 @ [Function
Inverse (reciprocal)

z — 1/z
[[matrix]] — [[1/matrix]]

'symb’ — ’INV(symb)’

x_unit — 1/x_1/unit

IP Function
Integer part

X — n

'symb’ — 'IP(symb)’

x_unit — n_unit

ISOL Command
Isolates a variable in an equation

'symb,’ ’'global’ — 'symb,’

KERRM Command
Returns the last Kermit error message

— "message"”

KEY Command

Returns 0 if no key in has been pressed, otherwise 1 in level 1 and

the keycode in level 2.

 — 0

— rc 1

KGET Command

Gets named data from a remote device

‘'name’

"name"

{ remote —name local-name }

{ name, name, ... }

remote -name, local-name, name, ...1 1 2 I

158 Command Reference

KILL Command

Cancels all suspended programs

LABEL Command

Labels axes

LAST Command

LASTARG

Returns arguments (saved if flag - 55 is clear)

— Last-Argument(s)

LCD— Command
Returns LCD as 131x64 pixel graphics object

— grob

—LCD Command
Displays graphics object at the upper —left corner of the display

grob —

LIBS Command
Lists library objects attached to current directory

— { "title," library—number, port, ... }

LINE Command

Draws a line between two coordinates

(xy) (Xy) —
{ #xy #y,} {#x; #y,} —

LINFIT Command
Selects linear curve -fitting model

LIST— Command
Separates a list into individual objects

{ obj; ... obj,} — obj; ... obj, n

—LIST Command
Combines objects into a list

obj, ... obj, n — {obj, ... obj,}

LN 1 8 [Function
Natural logarithm

z — Inz

'symb’ — 'LN(symb)’

Command Reference 159

LNP1 1 8 Function
Natural logarithm of (argument + 1)

X — In(1+x)

'symb’ — 'LNP1(symb)’

LOG 1 8 [Function
Common (base 10) logarithm

z — log z

'symb’ — 'LOG(symb)’

LOGFIT Command
Selects logarithmic curve —fitting model

LR Command
Computes linear regression of XDAT data

— intercept slope

MANT Function

Returns the mantissa of a number

X — y

'symb’ — 'MANT(symb)’

tMATCH Command
Match-and -replace, beginning with subexpressions

'symb’ { 'pattern’ ‘replacement’} — ’result’ T/F
'symb’ {’pat’ ’repl’ ‘'conditional’} — ’result’ T/F

IMATCH Command
Match -and -replace, beginning with the top —level expression

'symb’ { ’'pattern’ 'replacement’} — ‘’result’ T/F

'symb’ {’pat’ ’repl’ 'conditional’} — ‘’result’ T/F

MAX Function
Returns the maximum of two numbers

x y — max(xy)

X ’'symb’ — "MAX(x,symb)’

'symb’ x — 'MAX(symb,x)’
'symb;’ ’symb,’ — 'MAX(symb,,symb,)’

X ypa-unit — max (x,UBASE(y))

x_pa-unit y — max(UBASE(x),y)
Xx_unit yunit — max(x,y)_unit

160 Command Reference

MAXR d Function
Symbolic constant- maximum HP 48 real number

— 9.99999999999E499

MAXZ Command
Finds the maximum column values of the data in ZDAT

— X

— [x4 .0 Xy]

MEAN Command
Computes means of the data in SDAT

— X

- [x .0 %y]

MEM Command
Returns available memory

— X

MENU Command
Selects a built—in menu or creates a custom menu (see Menus)

mm.pp —

‘list—-name’ —
{ names and commands } —

MERGE Command
Merges RAM card with main memory

port —

MIN Function
Returns the minimum of two numbers

Xy — min(x,y)

X ‘'symb’ — 'MIN(x,symb)’

'symb’ x — 'MIN(symb,x)’

'symb,’ ’'symb,’ — 'MIN(symb,,symb,)’

X y pa-unit — min(x,UBASE(y))

x_pa-unit y — min(UBASE(x),y)
x__u_nit y_unit — min(x,y)unit

Command Reference 161

MINR d Function

Symbolic constant - minimum HP 48 real number

— 1.E-499

MINZ Command
Finds the minimum column values of the data in XDAT

— X

— [Xy .. Xp]

MOD Function
Modulo

Xy — x mod y

x ’'symb’ — 'MOD(x,symb)’

'symb’ x — 'MOD(symb,x)’

'symb,’ ’'symb,” — 'MOD(symb,,symb,)’

NEG | 8 Function
Negates an argument

z — -z

#n, — #n, (two’s complement)
X unit — —-x unit

[veEtor] — [—v_ector]

[[matrix]] — [[—matrix]]

'symb’ — '—(symb)’
grob — inverted —grob

PICT — inverts PICT

NEWOB Command
Separates object from list or backup object (see Temporary Memory)

object — object

NEXT Command
Ends FOR ... NEXT or START ... NEXT

NOT Function
Logical or binary NOT

#n, — #n,

x — T/F
'symb’ — 'NOT(symb)’

"string," — "string,"
162 Command Reference

NUM Command
Returns character code of a string’s first character

"string" — n

—NUM Command
Evaluates an object to yield a numeric result

object — z

N Command
Returns the number of data points in SDAT

— n

OoBJ— Command
Decomposes a composite object into individual components. String

objects are executed as a command line after the " " delimiters have

been removed.

:tag:object — object "tag"

(xy) — xy
X_units — X 1_units

X+Y — XY 2 +

[Xy..%,] — Xy..X%x, n

[[x11 X2Xy]l = Xq...%, {n m}
{ obj; ...obj,} — obj,...obj, n

"string" —

OoCT Command
Sets octal base

OFF Command
Turns the calculator off

OLDPRT Command
Remaps printer output to the HP 82240A character set

OPENIO Command
Opens IR or wired port

Command Reference 163

OR Command
Logical or binary OR

#n, #n, — #n,

xy — T/F

x 'symb’ — ’'x ORsymb’

'symb’ x — ’'symb ORx’

'symb,’ ’'symb,’” — ’'symb, OR symb,’
"string," "string," — "stringy"

Note:

String arguments must have the same length

ORDER Command
Rearranges the VAR menu

{names} —

OVER Command
Copies the object in level 2 into level 1

obj, obj; — obj, obj, obj,

PARAMETRIC Command
Selects parametric plot

PARITY Command
Sets parity. n<0 indicates transmit parity only.

n —

0 none
1 odd
2 even

3 mark

4 space

PATH Command
Returns a list showing the current path

— { HOME directory -names }
 PDIM Command
Changes the size of PICT

(XminYmin) (Xmax:Ymax) — Changes PICTrelative to the

current user coordinates

#horizontal #vertical — Does not affect current

user coordinates

164 Command Reference

PERM Function
Permutations of n objects taken m at a time

nm — Pom

'symb’ n — 'PERM(symb,n)’

n ’'symb’ — 'PERM(n,symb)’

'symb,’ ’'symb,’ — 'PERM(symb,,symb,)’

PGDIR Command
Purges specified directory and its contents

‘'name’ —

PICK Command
Copies nth object into level 1 (excluding n)

obj,...obj; n — obj, ... obj; obj,

PICT Command

Returns the name PICTto level 1

— PICT

PIXOFF Command

Turns off a pixel in PICT

(xy) —
{#x#y} —

PIXON Command

Turns on a pixel in PICT

(xy) —
{#x#y} —

PIX? Command

Tests a pixel in PICT

(xy) — T/F
{#x#y} — T/F

PKT Command

Sends commands to server

"contents” ‘"type" — “response”

Command Reference 165

Prints the stack in compact format

PMAX Command
Sets the upper —right plot coordinates

(xy) —

PMIN Command
Sets the lower —left plot coordinates

(xy) —

POLAR Command
Selects polar plot

POS Command
Finds a substring in a string or finds an object in a list

"string" "substring" — n

{list} obj — n

PREDV Command
Predicted dependent variable value

X — predicted —value

PREDX Command
Predicted independent variable value

y — predicted —value

PREDY Command
Predicted dependent variable value

X — predicted —value

PRLCD Command
Prints an image of the display

PROMPT Command
Displays prompt and halts program

"prompt" —

PRST Command
Prints the stack

PRSTC Command

166 Command Reference

PRVAR Command
Prints the name and contents of one or more variables

‘'name’ —

:port:name —

{ name, name,... } —

PR1 Command
Prints the level 1 object

object — object

PURGE Command
Purges one or more variables

‘global’ —

{ global, global,...} —

{ port:name, port:name,...} —

:port:name —

LD —

PICT —

PUT Command
Replaces an element in an array or list

{ list; } position obj — { list; }

'name’ position obj —
[vector,] position z — [vector,]

[[matrix,]] position z — [[matrix,]]

[[matrixy]] {rowcol} z — [[matrix,]]

‘'name’ {rowcol} x —

PUTI Command
Replaces an element in an array or list

{ list; } position obj

'name’ position obj
[vector,] position z

[[matrix,]] position z

[[matrix4]] {rowcol} z

'name’ {rowcol} x L
l

and increments the position

{ list, } position’

'name’ position’

[vector,] position’

[[matrix,]] position’

[[matrix,]] { row col }’

'name’ { row col }’

Command Reference 167

PVARS Command
Returns list of backup objects and library objects and the type of

memory (or amount of memory if independent RAM)

port — {list} "ROM"

port — {list} "SYSRAM"

port — {list} bytes

PVIEW Command

Displays PI/CT with the specified coordinate or pixel at the upper - left

corner. An emptylist displays PICT centered in the display, ready to

scroll.

(xy) —
{#x #y} —

{} —

PWRFIT Command
Selects power curve -fitting model

PX—C Command
Pixel to user —unit coordinate conversion

{ #col #row} — (x,y)

—Q Command
Converts numbers to fractional equivalent

x — ’a/b’
(xy — ‘a/b+c/d*i’

'X+1.4 — 'X+7/5

Note:

The display mode (such as 2 FIX) affects the result

—Qr Command
—Q after factoring out »

x — ’a/b*x’
x — ‘a/b’

(xy) — '‘a/b*x+c/d*x*i’
(x,y) — ‘a/b*x+c/d*i’

(xy) — '‘a/b+c/d*x*i’
(xy) — ‘a/b+c/d*i’

'(2.5,3.5)*X> — ’'(5/2+7/2*)*X

Note:

The display mode (such as 2 FIX) affects the result

168 Command Reference

QUAD Command
Solves a quadratic polynomial

'symb,’ ’global’ — 'symb,’

QUOTE Command
Returns argument expression unevaluated

'symb’ — 'symb’

RAD Command

Sets Radians mode

RAND Command

Returns a random number

— X

RCEQ Command

Recalls the current equation

— obj

RCL Command

Recalls the contents of a variable or backup object

‘'name’ — obj

PICT — grob

:port:name — obj
:port:{path name} — obj

RCLALARM Command
Recalls alarm from alarm list

l { date time action repeat }

RCLF Command

Returns a list containing two binary integers representing

the system and user flags

— { #system #user }

Note:

The wordsize should be set to 64 bits

RCLKEYS Command
Lists user —key assignments. S indicates standard keys are active.

— { obj, rc.py ... obj, rc.p, }

— {S obj, rc.p; ... obj, rc.p, }

Command Reference 169

RCLMENU Command
Recalls number and page of active menu

— mm.pp

RCWS Command

Recalls the binary integer wordsize

— n

RCLE Command

Recalls the current statistics matrix

— obj

RDM Command

Redimensions a matrix. Extra elements are dropped, missing elements

are padded with zeros.

[vector;] {cols} — [vector,]

[vector] {rowscols} — [[matrix]]

[[matrix]] {cols} — [vector]

[[matrix,]] {rowscols} — [[matrix,]]

'name’ {cols} —

'name’ {rowscols} —

RDZ Command
Sets the random number seed. Supply 0 to use the system clock.

X -

RE Function
Returns the real part of a complex number, array, or unit object

X — X

(xy) — x
[C-array] — [R-array]

'symb’ — 'RE(symb)’

x_unit — x

RECN Command

Receives file from remote Kermit, saved in an object named in level 1

'name’ —
Iinamell _’

RECV Command Receives file from remote Kermit, saved in a sender -named object

170 Command Reference

REPEAT Command
Begins loop clause in WHILE ... REPEAT ... END

T/F —

REPL Command
Replaces the level 1 object onto the level 3 object at the location

specified in level 2

{list} n {sublist} — {list'}

"string" n ‘“substring" — "string"

grob (x,y) subgrob — grob’

grob { #m #n} subgrob — grob’

PICT (x,y) subgrob —
PICT { #x #y} subgrob —

RES Command
Sets the plot resolution in user —unit or pixel intervals

n — Interval in user—units

#n — Interval in pixels

RESTORE Command
Replaces HOME directory with backup copy

backup —

RL Command

Rotates left by one bit

#n, — #n,

RLB Command
Rotates left by one byte

#n, — #n,

RND Function
Rounds fractional part of number

z, n — 1z,

z 'symb’ — 'RND(z,symb)’

'symb’ x — 'RND(symb,x)’

'symb,’ ’'symb,” — 'RND(symb,,symb,)’

x_unit n — X'_unit

X_unit ’'symb’ — 'RND(x_unit,symb)’

[vector,] n — [vector,]

[[matrix;]] n — [[matrix,]]
Command Reference 171

RNRM Command

Computes the maximum value of the sums of the absolute values

of all elements over all rows

[vector] — row-norm

[[matrix]] — row-norm

Note:

Since a vector is considered a 1-row matrix, RNRM returns the

largest element in the vector.

ROLL Command

Moves level n+1 object to level 1

obj, ... obj; n — obj,_; ... obj; obj,

ROLLD Command
Moves the level 2 object to level n

obj, ...obj, n — obj, obj,...0bj,_4

ROOT Command

Finds a numerical root

'symb’ ’'global’ guess — root

'symb’ ’global’ { guess, guess,} — root

'symb’ 'global’ { guess, guess, guess;} — root

«program» ‘'global’ guess — root

«program» ‘global’ { guess; guess,} — root

«program» ‘global’ { guess, guess, guess;} — root

ROT Command
Moves the level 3 object to level 1

obj; obj, obj; — obj, obj; obj,

RR Command

Rotates right by one bit

#n, — #n,

RRB Command
Rotates right by one byte

 #n, — #n,

172 Command Reference

RSD

[vector B] [[matrix A]] [vectorZ] —

[[matrix B]] [[matrix A]] [[matrix Z]] —

Computes a correction to the solution of a system of equations

[vector B -AZ]

[[matrix B -AZ]]

Command

R—B Command
Real -to —binary conversion

n — #n

R—-C Command
Real -to —complex conversion

xy — (xy)
[R'a"ayrea]] [R'arrayimag] - [C'a”aY]

R—D Command
Radians —to —degrees conversion

x — (180/7)x

SAME Command
Tests two objects for equality

obj, obj, — T/F

SBRK Command
Sends serial break

SCALE Command
Specifies x and y scale in units per 10 pixels

Xy —

SCATRPLOT Command
Draws a scatter plot of the data in EDAT

SCATTER Command
Selects scatter plot

SCI Command
Sets Scientific display mode

n —

SCONJ Command
Conjugates the contents of a variable

‘'name’ —

Command Reference 173

SDEV Command
Computes standard deviations of the data in XDAT

— X

— [X4 X5 .00 Xy]

SEND Command
Sends object to another Kermit device

‘local-name’ —

{{ local-name remote -name }} —

{ local-name, local-name, ... } —

{ { local-name, remote-name } local-name, ...} —

direction of z.

SERVER Command
Selects Kermit Server mode

SF Command
Sets a system or user flag

+n —

SHOW Command
Resolves all name references or all name references except

those in a list

'symb,’ ’'name’ — ’symb,’

'symb," {name} — 'symby’

SIGN f Function
Sign of a number. Complex numbers return a unit vector in the

x<0 — -1

x=0 — 0

x>0 — 1

Zy 73
x_unit — y

'symb’ — 'SIGN(symb)’

SIN 1 8@ f Function
Sine

z — sin z
'symb’ — 'SIN(symb)’

X_pa-unit — sinx

174 Command Reference

SINH
Hyperbolic sine

1 @ [Function

z — sinhz

SINV Command
Inverts the contents of a variable

‘'name’ —

SIZE Command
Finds the dimensions of an object

{list} — objects

‘algebraic’ — objects

"string" — characters

[vector] — { elements }

[[matrix]] — { rows cols }

grob — width height

PICT — width height
unitobject — objects

other — 1

SL Command
Shifts left by one bit

#n, — #n,

SLB Command
Shifts left by one byte

#n, — #n,

SNEG Command
Negates the contents of a variable

‘'name’ —

sQ 1 8 [Function
Squares a number or matrix

z — z°
[[matrix]] — [[matrix * matrix]]

'symb’ — 'SQ(symb)’

x_unit — x2unit?

Command Reference 175

SR Command
Shifts right by one bit

SRB Command
Shifts right by one byte

#n, — #n,

SRECV Command
Reads n characters from |/O port. T/F is 1 for successful receive.

n — ‘string" T/F

START Command
Begins START ... NEXT or START ... STEP

start end START loop-clause NEXT

start end START loop-clause increment STEP

STD Command
Sets Standard display mode

STEP Command
Ends FOR ... STEP or START ... STEP

increment —

STEQ Command

Stores into reserved variable EQ

obj —

STIME Command

Sets serial transmit/receive timeout. The valid range is 0 to 25.4
seconds. 0 means there is no time limit.
 STO Command
Stores an object into a variable

obj name —
obj :port:name —

obj name(position) —

grob PICT —

backup port-number —
library port—-number —

176 Command Reference

STOALARM Command

Stores alarm in system alarm list

time — alarm-number

{date} — alarm-number

{ date time } — alarm-number

{ date time action} — alarm-number

{ date time action repeat} — alarm-number

STOF Command

Sets the system flags or the system and user flags according to the

value of two binary integers in a list

#system —

{ #system #user} —

Note:

The wordsize should be set to 64 bits

STOKEYS Command

Makes multiple user —key assignments. Including S activates standard

key definitions.

S —

{ obj, rc.py ... obj, rc.p,} —

{ S obj, rc.p; ... obj, re.p,} —

STO+ Command
Storage addition (see +)

object ’'name’

'name’ object

STO- Command
Storage subtraction (see -)

object ’'name’
'name’ object

STO* Command
Storage multiplication (see *)

object ’'name’

'name’ object

STO/ Command
Storage division (see /)

object 'name’

'name’ object

L
l

1
l

L
l

L
l

Command Reference 177

STOX Command

Stores into reserved variable XDAT

obj —

STR— Command
Evaluates the commands defined by a string after removing the

" " delimiters

“string" —

—STR Command
Converts an object to a string

object — “object"

STWS Command
Sets the binary integer wordsize

n

#n

SuB Command
Extracts a portion of a list, string, or grob

{list} start end — { sublist }

"string" start end — "substring"

grob (x4,y,) (xz,y2) — subgrob

grob { #x, #y,} {#x, #y,} — subgrob

PICT (x4,y4) (x5,yo) — subgrob

PICT { #x, #y,} { #x, #y>,} — subgrob

SWAP Command
Swaps the objects in levels 1 and 2

obj, obj, — obj; obj

SYSEVAL Command

Executes a system object

 #n —

—TAG Command
Tags an object with another object

obj “tag" — :tag:obj

obj ’'name’ — :name:obj

obj x — :x:obj

178 Command Reference

TAN 1 @ f Function
Tangent

z — tanz

'symb’ — "TAN(symb)’

X_pa-unit — tanx

TANH 1 8 [Function
Hyperbolic tangent

z — tanh z

TAYLR Command
Computes a Taylor series approximation

'symb,’ ’'global’ degree — 'symb,’

TEXT Command

Selects the stack display

THEN Command

Begins true —clause of IF, IFERR, or CASE structures

T/F —

TICKS Command

Returns time in binary integer clock ticks (8192 per second)

— #n

TIME Command

Returns current time as number

— HH.MMSS

—TIME Command
Sets specified system time

HH.MMSS —

TLINE Command

Toggles pixels on a straight line

(xy) (xy) —
{ #x, #y,} {#x; #y,} —

Command Reference 179

TMENU Command
Displays temporary built-in or list—defined menu (see Menus)

mm.pp —

‘list-name’ —

{ names and commands } —

Note:

TMENU does not affect the contents of the variable CST

TOT Command

Sums the columns in XDAT

— X

— [Xy X3X]

TRANSIO Command

Selects character translation mode

n -

0 No translation

1 CR to CR/LF (default)

2 Chars 128-159

3 Chars 128-255

TRN Command

Transposes a matrix

[[matrix,]] — [[matrix,]]

‘name’ —

TRNC Command
Truncates number

z, n — z,

[vectory] n — [vector,]

[[matrix;]] n — [[matrix,]]
Xqy_unit n — X,unit

TRUTH Command
Selects truth plot

TSTR Command
Converts date and time numbers to string form

date time — "string"

180 Command Reference

TVARS Command

Lists the variables of specified type found in the current directory

(see Object Types)

type — { names }

{ type, type, ...} — {names}

TYPE Command
Returns the type of an object (see Object Types)

object — type

UBASE Function
Converts unit object to SI base units

X — X

'symb’ — 'UBASE(symb)’

X_units — ybase-units

UFACT Command
Factors specified compound unit

X Yy units — X

x_units, yunits, — x’_units, * units,

—UNIT Command
Combines number and unit object to create a new unit object

X yunits — x_units

UNTIL Command
Begins test—clause of DO ... UNTIL ... END

UPDIR Command
Makes parent directory the current directory

UTPC Command
Upper —tail Chi-Square distribution

dof x — utpc(d,x)

UTPF Command
Upper —tail F-distribution

dof., dof, x — utpf(d.of.,, d.o.f., x)

UTPN Command
Upper —tail normal distribution

mean variance x — utpn(mean, variance, x)

Command Reference 181

UTPT Command
Upper —tail t —distribution

dof x — utpt(d.o.f x)

UVAL Function
Returns scalar portion of unit object

X — X

'symb’ — 'UVAL(symb)’

X_unit — x

—V2 Command
Combines two real numbers into 2-D vector or complex number

according to flag —19 and the current Coordinate System

(flags —15 and -16)

xy — [xy]
xy — [x &Ay]
xy — (xy)
xy — (x&4y)

—V3 Command

Combines three real numbers into 3-D vector according to

the current Coordinate System (flags —15 and - 16)

xyz — [xyz]
X yp 2 — [x &Ayyz]
X Yo 24 — [x Ay, Az4]

VAR Command
Variances of XDAT data in columns specified by COLE

— X

— [%y X5 .00 Xy]

VARS Command
Returns list of variables in the current directory

— { names }

VTYPE Command

Returns the type of an object in the named variable, or -1 if the
variable is nonexistent (see Object Types)

‘'name’ — type

:port:name — type

182 Command Reference

V- Command

Separates a 2 or 3 element vector. If there are more than 3 elements,

the current Coordinate System (flags —15 and - 16)is ignored.

[xy] — x vy
[xr ZS*'yf)] - X Yo

[xyz] — x y z
[xr AYO Z] - X; Yo z

[x, &yy &z5] — X% Yy 24

(xy) — x vy
(Xr,AY) - X, Ay0

[xy X3...x,] — Xy Xp .oo Xp

WAIT Command
Pauses program execution or waits for a key

seconds —

o — rc.p Doesn’t update menu

-1 — rc.p Displays current menu

WHILE Command
Begins WHILE ... REPEAT ... END

WHILE test-clause REPEAT loop-clause END

WSLOG Command

Returns four strings indicating the time, date, and source of the

four most recent system halts (see System Operations)

— "string," "stringy" ‘“string," "string,"

XCOL Command
Specifies XDAT column as the independent variable

x-column —

XMIT Command
Sends string through 1/O port without Kermit

"string" — 1

"string" — "unsent string" 0

Command Reference 183

XOR Function
Logical or binary XOR

#n, #n, — #n,
xy — T/F

x ’'symb’ — ’'x XOR symb’

'symb’ x — ’'symb XOR x’

'symb,’ ’'symb,’ — ’'symb; XOR symb,’
"string," "stringy," — “stringy"

Note:

String arguments must have the same length

XPON Function
Returns the exponent of a number

X — n

'symb’ — 'XPON(symb)’

XRNG Command
Specifies x —axis plotting range

Xmin Xmax

XROOT Function
Returns xth root of y

y x — Vy
y x_pa-unit — y' 1

y_unit x — {(/;_unit7

y 'symb’ — 'XROOT(symb,y)’

'symb’ x — "XROOT(x,symb)’

'symb,’ ’'symb,” — 'XROOT(symb,,symb,)’

y_pa-unit x_unit — y'unit’

'symb;’ x_pa-unit — 'XROOT(x_pa-unit,symb,)’

y_unit ’'symb’ — 'XROOT(symb,yunit)’

YCOL Command
Specifies a XDAT column as the dependent variable

y-column —
 YRNG Command
Specifies y —axis plotting range

Ymin Ymax -

184 Command Reference

*H Command
Adjusts the height of a plot. Enlarges (zooms out) if factor > 1.

factor —

*W Command
Adjusts the width of a plot. Enlarges (zooms out) if factor > 1.

factor —

vV 1 8 f Function
Square root

z — sqrtz

'symb’ — '/(symb)’

x_unit — x°unit®

/ d [Function
Integral

lower-limit upper-limit ’integrand’ ’'name’ — integral

'[(lower —limit, upper —limit, integrand, name)’

Notes:

1) name is the variable of integration.

2) Set Numerical Results mode (flag —3) to perform a numerical

integration on the stack.

3) The display mode (such as 2 FIX) specifies the accuracy factor for
numerical integration, and the uncertainty of integration is

stored in reserved variable IERR.

o d [Function
Derivative

'symb,” 'name’ — ’symb,’ Complete

‘dname (expression)’ Stepwise

Note:

name is the variable of differentiation.

L3 d Function
Symbolic constant »

— ‘x’

z d Function
Summation

'summation-index’ initial-value final-value ’'summand’ — sum T(summation —index =initial -value,final —value, summand)’

Command Reference 185

YLINE Command

Returns best -fit line for data in EDAT with values for a and b filled in

Linear model — ‘a+b*X’

Logarithmic model — ’'a+b*LN(X)’

Exponential model — 'a*EXP(b*X)’

Power model — ‘a*X"b’

X Command
Sum of data of data in independent ZDAT column

— EXI

X"2 Command
Sum of squares of data in independent XDAT column

— E)(i2

Y Command
Sum of data in dependent ZDAT column

— XY,

YY"2 Command
Sum of squares of data in dependent LDAT column

— IY?

X*Y Command
Sum of products of data in independent and dependent XDAT columns

— XY,

T+ Command
Appends one or more data points to LDAT

X —

[vector] —

[[matrix]] —

r- Command
Deletes last row from LDAT

— X

— [vector]

186 Command Reference

<

Less —than comparison

Xy

X y_pa-unit

X_pa-unit y

X_unity y_unit,

x 'symb’

'symb’ x

'symb’ x_unit

X_unit 'symb’

'symb,’ ’symb,’

:tag:object object

object :tag:object

object object

Notes:

L
A

A
A

x<y (T/F)

T/F

T/F

T/F

'x <symb’

'symb<x’

'symb <x_unit’

'X_unit>symb’

'symb, <symb,’

T/F

T/F

T/F

1) Units must be dimensionally consistent

2) Tags are dropped before the comparison

Function

>

Greater —than comparison

Xy

X Yy_pa-unit

X_pa-unit y

X_unit, y_unity

X ’'symb’

'symb’ x

x_unit ’'symb’

'symb,’ ’symb,’

'symb’ x_unit

:tag:object object

object :tag:object

object object

Notes: e
x>y (T/F)

T/F

T/F

T/F

'x >symb’

'symb >x’

'x_unit>symb’

'symb, >symb,’

'symb >x_unit’

T/F

T/F

T/F

1) Units must be dimensionally consistent

2) Tags are dropped before the comparison

Function

Command Reference 187

<

Less —than-or-equal comparison

Xy

X Yy_pa-unit

X_pa-unit y

X_unit; y_unit,

X ’'symb’

'symb’ x

'symb’ x_unit

X_unit ’'symb’

'symb,’ ’'symb,’

:tag:object object

object :tag:object

object object

Notes:

L
R

1) Units must be dimensionally consistent

2) Tags are dropped before the comparison

Function

x<y (T/F)
T/F

T/F

T/F

'x < symb’

'symb < x’

'symb < x_unit’

'x_unit < symb’

'symb, < symb,’

T/F

T/F

T/F

>

Xy
X y_pa-unit

X_pa-unit y

X_unit; y_unit,

x ’'symb’

'symb’ x

'symb’ x_unit

X_unit 'symb’

'symb,’ ’'symb,’

:tag:object object

object :tag:object

object object

Notes:
Greater —than -or-equal comparison

!

1) Units must be dimensionally consistent

2) Tags are dropped before the comparison

Function

x>y (T/F)
T/F

T/F

T/F

'x > symb’

'symb > x’

'symb > x_unit’

'X_unit > symb’

'symb, > symb,’

T/F

T/F

T/F

188 Command Reference

#

Not -equal comparison

xy
X Z

z X

X y_pa-unit

X_pa-unit y

X_unit, yunit,

z ’'symb’

'symb’ z

'symb’ x_unit

x_unit ’'symb’

'symb,’ ’symb,’

:tag:object object

object :tag:object

object object

Notes: c
i
l
b
b
l
i
l
l
b
i
l
l
i
i
b
d

Function

x+y (T/F)
T/F

T/F

T/F

T/F

T/F

'z #symb’

'symb #2’

'symb # x_unit’
'x_unit # symb’

'symb, #symb,’

T/F

T/F

T/F

1) Units must be dimensionally consistent

2) Real - complex comparisons assume the imaginary part is 0

3) Tags are dropped before the comparison

Command Reference 189

Logical equality comparison

Xy
X z

zZ X

X y_pa-unit
X_pa-unit y

X_unit; y_unit,

z ’'symb’

'symb’ z

'symb’ x_unit
X_unit ’symb’

'symb’ x_unit

'symb;’ ’symb,’

:tag:object object

object :tag:object

object object

Notes:

L
A
A

Function

x==y (T/F)
T/F

T/F

T/F

T/F

T/F

'’z==symb’

'symb==2'

T/F

'X_unit == symb’

'symb == x_unit’

'symb, = =symb,’

T/F

T/F

T/F

1) Units must be dimensionally consistent

2) Real - complex comparisons assume the imaginary part is 0

3) Tags are dropped before the comparison
 — Command

Assigns local variable(s)

obj, ... obj,, —

190 Command Reference

4+

Adds two objects

z, 2,

#n m

n #m

#n #m

x_unit y_unit

X y_pa-unit

X_pa-unit y

'symb,’ ’'symb,’

z ’'symb’

'symb’ z

'symb’ x_unit

X_unit ’'symb’

[vector,] [vector,]

[[matrix4]] [[matrix,]]

grob, grob,

{list,} {listy}

“abc" "def"

{ list } object

object {list}

"string" object

object "string"

Notes: c
i
e
l
b
e
b
b
b
l
i
l

1) Grobs must have identical dimensions.

2) —STR is executed on objects added to strings.

3) Units must be dimensionally consistent

} @ Function

Z,+2,

#n+m

#n+m

#n+m

x+y_unit

x+y_pa-unit

X+y

'symb, + symb,’

'z+symb’

'symb + 2’

'symb +x_unit’

'X_unit +symb’

[vector, + vector,]

[[matrix, + matrix,]]

grob,

{list, list,}

“abcdef"

{ list object }

{ object list }

"stringobject"

"objectstring"

Command Reference 191

Subtracts two objects

Zy 2,

#n m

n #m

#n #m

X_unit yunit
X y_pa-unit

X_pa-unit y

z ’'symb’

'symb’ z

'symb,’ ’symb,’

'symb’ x_unit

X_unit ’symb’

[vector,] [vector,]

[[matrix4]] [[matrix,]]

Note:

Units must be dimensionally consistent

c
i
i
l
i
r
l
i
l
l
i
i
i
l
d

} 8 Function

Zy -~ 23
#n-m

#n-m

#n-m

X-Yy_unit

X-y_pa-unit

X-y
'z-symb’

'symb -2’

'symb; — symb,’

'symb —x_unit’

'X_unit-symb’

[vector,—vector,]

[[matrix, — matrix,]]

*

Multiplies two objects

z, Z,

#n #m

#n m

n #m

[vector] z

z [vector]

[[matrix]] [vector]

[[matrix]] [[matrix]]

z ’'symb’

'symb’ z

'symb,;’ ’'symb,’

X_unit, yunit,

X y_unit

X_unit 'y

X_unit ’symb’

'symb’ x_unit c
i
e
l
b
b
b
l
i
l

} @ Function

2,%z;,

#n*m

#n*m

#n*m

[vector*z]

[vector*z]

[matrix*vector]

[[matrix*matrix]]

'z*symb’

'symb*z’

"(symb,)* (symb,)’

x*yunity

x*yunit

x*y_unit

'(x_unit)*(symb)’

'(symb)* (x_unit)’

192 Command Reference

'symb4’ 'symb,,4| (name, =symb,,

/ } 8 Function
Divides two objects

2, 2, — 2,/
n #m — #n/m

#n m — #n/m

#n #m — #n/m

[vector] z — [vector/z]

[vector] [[matrix]] — [[vector/matrix]]

z ’'symb’ — ’z/(symb)’

'symb’ z — ’(symb)/z’

'symb,” ‘symb,’ — ’(symb,)/(symby)’
x_unit, yunit, — x/yunit;/unit,

x yunit — x/y1/unit

x_unit 'y — x/yunit

X_unit ’'symb’ — '(x_unit)/(symb)’

'symb’ x_unit — '(symb)/(x_unit)’

~ 1 8 [Function
Raises a number to a power

zy 2, — 2,712,

z 'symb’ — 'z”(symb)’

'symb’ z — ’(symb)”Z’

'symb,” ’'symb,” — ‘(symb,)”(symb,)’

x_unit ypa-unit — x7y_unit

X ypa-unit — X

x_unit y — x7yunit’y
x_unit ’'symb’ — '(x_unit)” (symb)’

'symb’ x_unit — '(symb)”(x_unit)’

! Function
Factorial or gamma function

n — n!
x — T(x+1)

'symb’ — ’(symb)!’

| (where) 8 Function
Substitutes symbolics for names in a symbolic expression

{ name, symb, ... name, symb, } — ’'symb,.,’

z {name,; symb, ... name, symb,} — z

..., Name,=symb,)’

Command Reference 193

Note: Units must be dimensionally consistent

% Function
Percent

x y — xy/100
x ’'symb’ — '%(x,symb)’

'symb’ x — '%(symb,x)’

'symb,’ ’'symb,’ — '%(symb,,symb,)’

x_unit 'y — xy/100_unit
X_unit 'symb’ — '%(x_unit,symb)’

'symb’ xunit — '%(symb,x_unit)’

X yunit — xy/100_unit

%CH Function
Percent change

Xy — 100(y —x)/x
x ’'symb’ — '%CH(x,symb)’

'symb’ x — '%CH(symb,x)’
'symb,” ’symb,’ — '%CH(symb,,symb,)’

x_unit yunit — 100(y-x)/x

X ypa-unit — 100(y’-x)/x

x_pa-unit y — 100(y-x’)/x’
x_unit 'symb’ — '%CH(x_unit,symb)’
'symb’ x_unit — '%CH (symb,x_unit)’

Note:

Units must be dimensionally consistent

%T Function
Percent total

x y — 100y/x
x ’'symb’ — '%T(x,symb)’

'symb’ x — '%T(symb,x)’

'symb,” ’symb,’ — '%T(symb,,symb,)’
x_unit yunit — 100y/x

X y_pa-unit — 100y’/x
X_pa-unit y — 100y/x’

X_unit ’'symb’ — "%T(x_unit,symb)’

'symb’ x_unit — '%T(symb,x_unit)’

194 Command Reference

Alpha Keyboard

)
<
K
S
x

o
/

%

w
-

o
3

l
-
l
L

el
J

xL
J
e
L
1

c
]
.
l
l
l
.
]
w
l
.
l
m
c
.

w
X

O
3

Wi
e

o
l

J

xl
1
o
L
1
3

-

o
c
r
/
—
r
l
/
r
t
M
/
E
e
E
.

0
-

a
>

Z
~

v
l

L
—
J
d

a
l
L
_
J

>
L
1

N
L
]

A
8
G
R
M

@
)

-
O

D
>
«

C
I
.
|
I
O
[
U
I
|
I
V
-
.
|
'

@
fl
]
.
l
#
]
l
.
r
l
@
]

Q
L

c
l
_
J

cl
1

«
L
_
_
J

w
l
-

r
—
/
-
1
b

Z
|

2

<
o

s
»

i
o
l

1
o
l

l
e
g
l

ol
1
%
L
1
9

195

A {}

« | [sPc] [+ |

| L=
x&—_ s

&) [4][5][6][x]

= []2]]
CONT OFF =

le] L7 J[8)[9o][+]

[ON] [0] |

Alpha Keyboard

The HP 48 Handbook

Introduction 1

Objects, Names, and Constants 3

Memory Organization 15

Graphics 21

Statistics Data 27

Data Transfer 29

Menus 40

User Keys 43

Programming 45

HP Solve Equation Library 64

System Operations 96

Printer Control 101

Built-In Units 103

Messages 110

Menu Numbers 117

Character Codes 118

Object Types 120

Flags 121

Subject Index 125

Command Reference 139

Alpha Keyboard 195

ISBN 1-879828-00-6

	Cover
	Contents
	Introduction
	Objects, Names, and Constants
	Object Evaluation
	Operator Precedence
	Object Types
	Real and Complex Numbers
	Binary Integers
	Unit Objects
	Backup Objects
	Library Objects
	Variable Names
	Symbolic Constants

	Memory Organization
	System Memory
	Configuring RAM Cards
	User Memory
	Temporary Memory

	Graphics
	Graphics Coordinates
	Stack View Program
	GROB Structure
	PPAR

	Statistics Data
	ΣPAR

	Data Transfer
	Pathways
	Kermit Protocol
	HP 48 ↔ HP 48
	HP 48 ↔ Computer
	Backing Up the HP 48
	Restoring the HP 48
	ASCII File Transfer
	Character Translations
	IOPAR
	Cables

	Menus
	Custom Menus
	Menu Traversal Program

	User Keys
	Setting User Mode
	Key Locations
	Standard Keys
	Key Assignment Program

	Programming
	Program Structure
	User-Defined Functions
	Looping Structures
	Conditional Structures
	Error Trapping
	Data Entry
	Recursion
	Meta-Objects

	HP Solve Equation Library
	Using Catalogs
	Equation Library
	Periodic Table
	Constants Library
	Finance
	Multiple Equation Solver
	Utilities
	Command Reference
	Reserved Variables
	Flags
	Messages
	Library Identifiers

	System Operations
	System Halt Log
	Interactive Self Test
	Memory Scanner

	Printer Control
	PRTPAR

	Built-In Units
	Messages
	Menu Numbers
	Character Codes
	Object Types
	Flags
	Subject Index
	Command Reference
	Alpha Keyboard

