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MASTERING YOUR HP48
Volume 2:

Programming and Applications  
 

You all'e holding the second volume in the series "Mastering your HP48", which will help you
to exploit
the power of your HP calculator to the full.

The "Mastering your HP48"series is in two volumes:
HPA48: Programming and Exercises.
HP48: Programming and Applications.

Each volume covers different aspects:

*  Volume 1 will help you to get to grips with programming your HP48. Separate
chapters each deal with a specific problem and each chapter is followed by
exercises for which answers and comments are given in the second half of the
book.
Volume 2 is a collection of programs designed to cater for the needs
(mathematics in general) of all HP48 users.

The two volumes therefore complement each other to enable you to get the best out of your
HP calculator.

The first volume (“Programming and Exercises") will have taught you - and, | hope enabled
you to master - how to program the HP48.

In this second volume, | have compiled a vast library of "ready-to-run" programs to cater for
the application you have in mind.

| hope that your reading of the first volume has made you feel at home enough with the
calculator to be able to make any changes you may feel necessary to the programs that
follow. | took a great deal of care in writing them and | therefore hope that you will get a lot of
use out of them.

| myself have done my utmost to make the algorithms used short and quick.

However, nobody can claim to be perfect on that score, and the constant adjustments that |
have made to my programs since | first wrote them make me think that you too will be able to
improve them in one way or another.

But before going any further, let me say that | hope you will get as much pleasure as | have
out of "taming" this demanding yet absorbing calculator.



 

THE STRUCTURE OF THIS BOOK J
 

The book is divided into 15 chapters, each corresponding to a family of programmes to be
installed in a specific directory.

1)

2

3)

4)

5)

6)

8)

9)

10)

11)

12)

13)

14)

15)

ARITHMETIC: Gcd, Lem, simplifying fractions, estimating rational expressions,
decomposing into a product of prime factors, equations of the type ax + by = cin Z, etc.

REAL AND COMPLEX NUMBERS:infinite products, continued fractions.
Iterative calculations. Trigonometric calculations.
Rational approximations of the elements of a table.
Calculations with the numberj. Nth roots of a complex number, etc.

POLYNOMIALS: Operations on polynomials. Roots of a polynomial of degree < 4.
Bairstow's method. Polynomial arithmetic, etc.

RATIONAL FRACTIONS: Various operations on rational fractions, especially
decomposition into partial fractions.

MATRICES: Basis changes. Powers of matrices. Calculating rank. Characteristic
polynomial, eigenvectors and eigenvalues. Solving a system of equations symbolically.
Pivot method. Linearrelations and equations of vector sub-spaces.

ANALYSIS TECHNIQUES: Tangents, local extreme points, points of inflection. Least
squares approximation. Non-linear systems. Fourier series. Differential equation, etc.

FINITE SERIES: Operations on finite series. Finite series of standard functions,
composition of finite series, etc.

AFFINE AND EUCLIDEAN GEOMETRY: Equations, distances, angular distances.

DIFFERENTIAL GEOMETRY: Differential, divergence, Laplacean, gradient, curl.
Length of a curve. Curvature. Area under a plane curve. Line integrals, etc.

GRAPHS: Plotting of parametric curves, curves with polar coordinates, family of
curves. Envelope of a family of straight lines, etc.

LARGE INTEGERS: Operations on large integers; arithmetic.

PROBABILITIES: Probability distributions and distribution functions. Enumerations.

SIMPLE STATISTICS: Various means and characteristics of a simple statistic. Gini
curve and coefficient. Histogram. Cumulative frequency polygon. 50% of cumulative
mass,etc.

STATISTICS IN TWO VARIABLES: Means, variances of marginal statistics.
Correlation, least squares straight lines, etc.

DATABASES: Creating a database and adding records. Reading, editing and sorting a
database.
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PROGRAM AND DIRECTORY NAMES
 

Each directory has its own specific name. This is also obviously true for the programs they
contain.

Be careful if you decide to change any of these names. Certain programs make calls to
others by calling their name. Likewise, certain programs may switch temporarily to another
sub-directory. Again, the name of the sub-directory will figure in the caller program.

These are the names | have used for the directories:

Arithmetic:'ARIT'
Real or complex numbers: 'R.C'
Polynomials: 'POLY"
Rational fractions: 'FRAC' (this directory must be installed in the 'POLY"directory)
Finite series:  'DL'
Matrix calculations: 'MATR'
Analysis techniques: 'ANAL'
Geometry: 'GEOM'
Differential geometry:'GDIF'

10) Graphs: 'GRPH'
11) Large integers: 'LONG'
12) Probabilities: 'PROBA'
13) Simple statistics: 'STAT1'
14) Statistics in two variables: 'STAT2'
15) Databases: ‘DATA'

O
C
O
N
O
N
D
W
N
—

WHICH PROGRAMS WILL YOU NEED?

If you haven't fitted your HP48 with extra memory, you will need to choose which programs
to install in your calculator. The programs in this book will take up 42 Kbytes.

The programs you choose will depend on your specialist subject, your personal tastes and
the memory taken up by the programs in the directories in question.

If you really have to choose,| think that the directories 'ARIT', 'R.C', 'POLY', 'FRAC', 'MATR'
and 'FS' will prove useful to everybody.
The directories 'PROBA', STAT1' and 'STAT2' will be essential for students preparing for
business school entrance examinations. Students preparing for engineering school entrance
examinations will find 'ANLY" or 'GDIF' more useful.

For your information, the approximate amount of memory taken up by the programs in the
various directories is given below (in bytes):

‘ARIT' : 1865 ‘R.C' : 2120 'POLY' 5591
'FRAC' 951 'FS' : 3626 'MATR' 4846
'‘ANLY" : 3265 '‘GEOM' 1008 '‘GDIF' ; 2715
'‘GRPH' 1447 ‘LONG' 1941 'PROBA' 1791
'STAT1' 3314 'STAT2' 1509 ‘DATA" 1547
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PROGRAM PRESENTATION:
 

Each chapter of this book sets out the programs of a specific directory, starting with a short
introduction.

Each program is briefly presented. A flowchart shows the contents of the stack before the
program is called up and after it has been run. Some extra comments may be given in the
notes (does the program make calls to other programs?, etc.).
There was not enough space here to comment on the large number of programs presented
(the book would have been twice the size). All programs are commented on at length in
volume 1 of this series ("Programming and Exercises'%.

| have tried, as far as possible, to make the program listings easy to copy and easy to
understand. For that reason:

* Words are clearly spaced.

* The program's structure is clearly shown using indents to distinguish between the start
and end of loops, conditional structures, subroutines, etc. You do not of course need to
stick to the same layout or use the same spacing when copying the listing.

* If a program uses a name for another program, a directory or a global variable that is
required for the program to run correctly, and if that name is specific to this book (i.e. is
not a known identifier used by the HP48), then it is underlined in the program listing in
which it appears.

* All programs are illustrated by examples.

TIPS AND ADVICE:

* Create your directory (by going first to the 'HOME' directory) before going into it and
installing the programs you require one at a time.

* Check that the programs run correctly using the examples | have given. A program 'A'
may need to make a call to a program 'B', for example, in which case 'B' will have to be
installed first if you want to run 'A'.

* If a program runs incorrectly, check it carefully against the reference listing.

* If -1 appears in a program, be careful not to confuse it with - 1. To enter -1 (with no
space between), key in 1 then press +/-.

* Avoid cluttering your directories with variables or programs you no longer need. It is far
more logical to create a specific directory for temporary applications and variables so
that you can clean it up regularly (CLVAR Instruction).

* If a directory contains more than 6 entries, ensure that the most useful programs are at
the top of the list and are grouped according to theme. This will enable you to work
more efficiently. Remember to use the VARS and ORDER instructions to change the
order in which programs appear in a given directory.

* Be careful when using the — sign, which appears in a large number of words in the
language used by the HP48. It is better to write these words via the menus: for
example, to write the words —-ARRY and ARRY—, go through the PRG OBJ menu.
The #sign is also used to create local variables, in which case it should be keyed in
with the corresponding key on the HP48.

-12-



| have used small letters to indicate local variables. Confusing a small letter with a
capital letter would cause an error to occur. You can of course stick to capital letters
only. If you do, you will need to check that there are no ambiguities between your local
variables and certain identifiers used by the HP48. For example,it is quite possible to
create a local variable and call it 'SIN', but this would make the HP's SINUS function
temporarily inaccessible. Likewise, we can define a local variable called 'end' but we
cannot use the name 'END'.

Certain programs in this book use the instruction IFERR...THEN. | have assumed that
the LASTARG function on your calculator is on (see user manual).

For programs using trogonometric functions, | have assumed that your calculatoris in
radians mode (otherwise the results given by the programs will be different).

For technical reasons, the character 0 (zero) is not barred in this edition. There is
therefore a slight risk of mistaking the letter for the figure 0, but the context should
allow you to distinguish them clearly, and | have not called any variables O (the letter).
An 0 on its own is therefore always the figure zero. But be careful all the same.

For each program, | have given the size (in bytes) and the checksum obtained by using
the BYTES instruction in the MEMORY menu for the program. The checksum lets you
check that the program has been correctly copied.

Jean-Michel FERRARD
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ARITHMETIC
  
 

The 'ARIT' directory contains programs written for integers and rational numbers.

You will find yourself using some of these programs on a regular basis, as they are
extremely useful. To take an example, one of the programs allows us to evaluate an
expression with rational numbers in it:

'1/25 + 27/11 - 3*51/4/9 + 13/7 - 9/5 + 22/17"',

giving an almost immediate result as a simple fraction:

(-52909/130900) .

You should install the following essential routines in the 'ARIT' directory:

'FCTR": resolving an integer into a product of prime factors.

'‘GCD" greatest common divisor of two integers.

‘LCM": least common multiple of two integers.

'SIMP": simplifying a fraction.

'ABCXY': solving the equation ax+by=c in integers.

'‘CALC" evaluating rational expressions.

You may also install the following more specialized programsif you so wish:

'LPRM": list of prime divisors of an integer.

'MOEB'":  Moebius function.

‘EULER": Euler index.

'CYCLO'" calculating cyclotomic polynomials.
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‘ARIT' directory Programs 'GgD'
and 'LCM'

 

CALCULATING THE G.C.D.
 

'GCD' calculates the greatest common divisor of two integers a and b as shown in the
calculation diagram below:

 
 

2: a 'GCD' 2:
  

 

    1: b 1: gcd( a,b )
  

'GCD": (checksum: # 31925d, size: 45 bytes)

 

 
 

  

  
 

« WHILE DUP

REPEAT SWAP OVER MOD END

DROP ABS
»

Example:

2: 17660160 'GCD' 2:

>
1: 9046890 1: 19710     
 

 

CALCULATING THE L.C.M.

'LCM' calculates the least common multiple of two integers a and b as shown in the
calculation diagram below:

  

2: a 'LCM' 2:
  

 

1: b 1: lcm(a,b)    
 

 

N.B.: program 'LCM' calls program ‘GCD":

'LCM": (checksum: # 43362d, size: 34 bytes )

 

« DUP2 GCD / *  ABS »
 

Exemple:
 

 

2: 45855 'LCM' 2:
 

 

1: 50895 1: 51862005    
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'ARIT' directory Program 'SIMP'

SIMPLIFYING A FRACTION
 

'SIMP' simplifies a fraction a/b (where a and b are both integers) as shown in the calculation
diagram below (c/d represents the resulting simple fraction):

  

2: a 'SIMP' 2: c
 

    
  

N.B.: 'SIMP' calls program 'GCD".

'SIMP": (checksum: # 10286d, size: 42.5 bytes )
 

« bDuP2 GCD ROT OVER / 3 ROLLD / »
 

Example: (in less than one second)

  

2: 1659276 'SIMP' 2: 46091
 

 

1: 464508 1: 12903    
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'‘ARIT' directory Program 'ABCXY"

RESOLVING THE EQUATION AX+BY=C (from 2)

'ABCXY" allows you to resolve the equation Ax+BY=C, where A, B and C are given and X
and Y are unknown, from the set Z of relative integers.
A sufficient necessary condition for solutions to be found - there are an infinite number- is
that C be divisible by the GCD of A and B.
This gives us the following calculation diagram:

  

  

  

3: A 3:

2: B 'ABCXY' 2:

>
1: C 1: Expression     

 

where "Expression" describes the general solution to the problem. If no such solution exists,
the error message "No solution"is displayed.

'ABCXY": (checksum: # 44788d, size: 306 bytes )

 

 
 

 

 

 

 

 

« - a b c

« o 1 b 3 —ARRY 1 0 a 3 —ARRY
WHILE DUP 3  GET
REPEAT

SWAP DUP2 3 GET OVER
3 GET / FLOOR * -

END
DROP c OVER 3 GET / DUP
IF DUP FLOOR ==  THEN

OVER 3  GET
-

« * OBJ> DROP2 a ROT b p /
'k'" * 4+ * b ROT a p / 'k'
* - * + c =

»

ELSE DROP2 a b c '""No solution"' DOERR
END

»

»

Example:(in less than three seconds)

3: 23
2:

2: 17 'ABCXY'
> '23*(3+17*k)+

1: 1 1: 17*(-4-23*k)=1"

Which means that the equation 23x+17y=1 is satisfied by the specific solution: x=3, y=-4

   
and that the general solution is:
X 3 +

Y

17*k
-4 - 23*k, where k is any relative integer.
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'ARIT' directory Program 'FCTR'

FACTORIZING AN INTEGER

'FCTR' resolves an integer n into a product of prime factors as shown in the calculation
diagram below:

 'FCTR'

1: n _ 1: resolution

 

    
  

where "resolution” is a list of complex numbers (p,k) each representing a prime integer p
resolved from n and the corresponding exponent k.

'FCTR': (checksum: # 50846d, size: 231 bytes )

 

« ABS {} SWAP 1
kind n

« WHILE n 1 >
REPEAT

IF k sQ n <
THEN k DUP 2 > + 1 +
ELSE n

END

'k' STO

IF n k MOD NOT THEN

k 0 n

WHILE DUP k MOD NOT

REPEAT

k / SWAP 1 + SWAP
END
'n’ STO R—C +

END
END   
 

Example: (in less than 2 seconds)

  '"FCTR'
> 1: { (2,7) (3,1) (5,1) (7,1) (11,1)} 

   
1: 147840
 

  

Since 147840 = 27 7*3*x5%x7*1].

Example: (in 19 seconds)

 '"FCTR'
1: 2840121 —> 1:| { (3,2) (315569,1) }
 

    
  

Since 2840121 = 32*315569.

-19-



'ARIT' directory Program ‘CALC'

EVALUATING RATIONAL EXPRESSIONS
 

'‘CALC' evaluates an algebraic expression consisting of sums, differences, products and
integer quotients, giving the solution as a simple fraction a/b. Program 'CALC' also calls
program 'SIMP'.

Calculation diagram:

  

2: ' CALC' 2: a
  

    1l:| 'expression' 1: b
  

'‘CALC'": (checksum: # 62365d, size: 300 bytes )

 

« DUP EVAL SWAP —-STR 1

- v c d

« WHILE c DUP nm POS DUP

REPEAT

1 + OVER SIZE suB DUP NUM

IF 10 == THEN 2 OVER SIZE SuB END

‘¢! STO 0

WHILE "0123456789" c 1 1 SUB POS DUP

REPEAT

1 - SWAP 10 * + c

2 OVER SIZE suB 'c' STO
END
DROP 'd’ STO*

END DROP2
*v d .5 + FLOOR d SIMP 
 

Example: (in 2 seconds)

  

        

2: 'CALC' 2: -1171

>
1:| '1/6-15/27+2/11+4/15/7" 1: 6930

Caution!
For the program to run correctly, each / sign in the expression to be evaluated must be
followed by a figure (and not an open bracket, for example).
Thus, '5/(11/3)"' must be written '5/11*3' or '15/11'. Likewise, denominators must
not be raised to a power.
Thus '3/275"' must be written '3/32"'.

Program 'CALC' calculates the product of all denominators in the expression. A round-off
error will therefore occurif the product is greater than 1E12.
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‘ARIT' directory Program 'LPRM'

PRIME DIVISORS OF AN INTEGER

‘LPRM' givesthelist of all positive prime divisors of an integer n, as shown in the calculation
diagram below:

 'LPRM'

1:
 

  
 

 
> 1: {list}

 
 

N.B.: Program 'LPRM' calls Program 'FCTR'.

'‘LPRM': (checksum: # 36961d, size: 61 bytes )

 « FCTR

IF DUP SIZE THEN

OoBJ— —ARRY RE

oBJ— 1 GET —-LIST
END  
 

Example: (one second)

 

 

'LPRM'

1: 518400 —_—
 
 

 
  
 

(infact, 518400 = (278)*(374)*(572) ).

N.B.: Program 'LPRM' is called by 'CYCLO' and 'EULER".
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'ARIT' directory Program 'CYCLO'

CYCLOTOMIC POLYNOMIALS

The cyclotomic polynomial ®, of order n is the unitary polynomial whose zeros are the nth
primitive roots of unity,i.e.

Wx=cos(2kn/n) + i sin(2kmn/n),

where k includes the integers between 1 and n that are prime to n. The degree of the
polynomial @, is ¢(n) where g is the Euler index.

This gives us the calculation diagram below:

  'CYCLO'
1: n _ 1 ®,

      

The result obtained is a vector representing the components of the polynomial, in decreasing
order of the powers of the unknown X.

Example: (in 4 seconds)

 'CYCLO'  

    
  

since @;o(X)= X4 -X"3 +X"2 -X +1.

Example: the polynomial @5, of degree 8 is obtained in 13 seconds. The polynomial
®,5 of degree 48 is obtained in 1 min. 5 s.

The program 'CYCLQ' uses the formula:

n

d
n

@, = [ (x¢ - 1)
d|n

  

where u is the Moebius function and where the product includes all positive divisors of n.

N.B.: Program 'CYCLO' calls program 'LPRM..
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'ARIT' directory Program '‘CYCLO'

TEXT OF PROGRAM 'CYCLO'

'CYCLQ'": (checksum: # 20046d, size: 643 bytes )

 

« DUP {} 0 0
- n m dp k pr

« IF n 1 = THEN [1-1]

1 dp SIZE FOR i
k dp i GET MOD NOT +

NEXT
2 MOD

»

« - W

« 1 OVER SIZE 1 GET n k / -
IF w -1 == THEN SWAP END
FOR i

n k / i + DUP2 GET
3 PICK i GET w * + PUT

w STEP
»

« OVER SIZE 1 GET n k /
ROT * - 1 —LIST RDM

»

I ip dm rd

« m LPRM DUP 'dp' STO
oBJ— 1 1 ROT START * NEXT
"pr' STO

(11
pr 1 FOR k

IF pr k MOD NOT THEN
IF ip EVAL NOT THEN

-1 rd EVAL -1 dm EVAL
END

END
-1 STEP
1 pr FOR k

IF pr k MOD NOT THEN
IF ip EVAL THEN

1 dm EVAL 1 rd EVAL

END
END

NEXT

END  
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'‘ARIT' directory Program 'EULER'

EULER INDEX

The Euler index ¢(n) of a natural integer n is equal to the number of natural integers p
between 1 and n and prime to n.

If we write the resolving of n into prime factors as:

n = plm1 P2 T p:: then ¢ (n) is equal to:

-1 -1 -1n (1 pl)(1 pz)....(1 pk).

In particular, if n is prime, then ¢(n) = n-1.

'EULER' calculates the Euler index of the integer n as shown in the calculation diagram
below:

  '"EULER'

1: n _—> 1: ¢(n)
      

N.B.: Program 'EULER' calls program 'LPRM'.

'EULER': (checksum: # 61654d, size: 93 bytes )
 

« IF DUP ABS 1 > THEN
- n

« n LPRM oBJ— n 1 ROT START
DupP ROT / -

NEXT

END    
Ex/ample: (1 second)

  'EULER'

1: 420 —_—> 1: 96
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'ARIT' directory Program 'MOEB'

MOEBIUS FUNCTION
 

The Moebius function u is defined for the set of non-zero natural integers. If n is a non-zero
natural integer,

p(n) = o0ifnis divisible by the square of a prime integer.

If n is not divisible by the square of a prime integer, then u is equal to 1 or -1 depending on
whether the number of prime divisors of n is even or odd.

'MOEB' calculates u(n) as shown in the calculation diagram below:

  'MOEB'

1: n _1 p(n)
      

N.B.: 'MOEB' calls program 'FCTR'.

'MOEB': (checksum: # 27678d, size: 101.5 bytes )

 

   

« FCTR OBJ—
- n

« IF n

THEN
n —-ARRY IM RNRM 2 < 1
n 2 MOD 2 * - *

ELSE 1
END

»

»

For example, we find:

p(l)=1, n(2)=-1, n(4)=0, n(6)=1

p(30)=-1 (in 1 second) p(210)=1 (in 1 second).
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REAL NUMBERS AND COMPLEX
NUMBERS

 
 

The directory devoted to real or complex numbers contains programs that you can use
regularly and which are related only by the fact that they do notfit easily into any of the more
specialized directories.

The 'R.C' directory contains the following programs:

- 'PROD'": Partial products of an infinite product.

- 'CNFR'" calculation of continued fractions and reduced fractions of a given real number.

- 'A—Q'": approximation, in the same manner as the instruction —Q, of the elements of an
array of real or complex coefficients.

- 'I-=J"  writing of a complex number in the form a+b;.

- 'ITER" allows you to do recursive calculations (with any size step required).

- 'NRCN': nth roots of a real or complex number.

- 'TRIG": linearization of the powers of cos(t) and sin(t), and the inverse operation to
linearization.

- 'INTZ'": integration along a line in the complex plane.
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'‘R.C' directory Program '‘PROD'

CALCULATING PARTIAL PRODUCTS

k=n
'PROD' calculates the product [] u, where u, is a real number depending on k.

k=m
m and n are the two integers representing the bounds of the index of the product k.

The product is calculated for the value k=m (the value at level 1 in the stack) and arrives at
the value k=n (at level 2). (It may be that m>n, in which case the values of k are given in
decreasing order. The advantage for the user is that there is no need to worry about the
order in which m and n are given. Another advantage is that we can thus control the order of
the product 1(1to get the most accurate results out of the calculator,it is best to multiply values
closest to 1 first.)).

This gives us the following functional diagram:

 

  

 

3: u(N)

2: n 'PROD' k = n

> ITu
1: m 1: kK = m      

(where u(N) is an algebraic expression or a program that can be used to evaluate the term
uy. A capital "N" must be used here).

'PROD": ( Checksum: # 32428d, Size: 108 bytes )
 

« DUP2 > 2 * 1 -

"« - N" 5 ROLL —-STR + OBJ—

- 8 u

« 1 SWAP ROT FOR N

N u —-NUM *

s STEP

»   
Example: (in 6 seconds)

  

  

  

    

3:| 'EXP(1/N)' 3

2: 200 'PROD' 2:

>

1: 100 1: 2.0150689848
  

(if in the case above we reverse the order of 100 and 200, i.e.if we calculate the product of
k=200 down to k=100, the result obtained is 2.01506898486. This result is without doubt the
most accurate).
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'‘R.C' directory Program 'CNFR'

CALCULATING CONTINUED FRACTIONS

Let x be areal number and a, its integer part. If x is not an integer, we can write:
X = a; + 1/x;, wherex; > 1

Let a, be the integer part of x,. If X, is not an integer, we can write:
X, = a; + 1/x, where x? > 1 and therefore:

1

a; + 1/x,

If we pursue this operation, we obtain a series of integers a,, a,, ...., a8, and a series of real
numbers x4, X5, ..... , such that:

 

 

 

 

Xn

The series is finite if x is a rational number (one of the values of x, is an integer), otherwise
it is infinite (no value of x,, is an integer).
The quantity shown above is called a continued fraction of x.
The values of a, are called the partial quotients of the continued fraction.
The continued fraction:

 

 

 

 

1

a; +

1

a; +

1

az +

1
dnpn-1 +

an

is written [a,/a.2/..../an] and called the nth reduced fraction of x. It is a rational number
rnexpressedas r, = pn / qnWhere p and q are two relatively prime integers.
The reduced fractions r, of x are useful approximations of x.
We can show that(if x is not a rational number):
- The series of reduced fractions of x converges to x.
- The series p, and g, convergeto infinity.
- x is always between two consecutive reduced fractions.
- the difference between x and its nth reduced fraction r, is such that:

1

dn-1 dn
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‘R.C' directory Program '‘CNFR'
(continued)

CONTINUED FRACTIONS (cont.)

The functional diagram for 'CNFR' is as follows:

  

 

      

2: X 'CNFR' 2: list2
>

1: n 1: listl

where:
* x is the real number for which we want to obtain reduced fractions.
* n is the numberof times we want to repeat the calculation of those reduced fractions.
* list1 is the list of partial quotients ay of x (up to n).
* list2 is t he list of reduced fractions px / qx (in the form (px,qx)) uptopn / gn.

'‘CNFR'": ( Checksum: # 56779d, Size: 206.5 bytes )

 

« {} (10 ©1)
- X n k r s

« 1 n START

X FLOOR 'k' OVER STO+
x OVER - INV 'x' STO r *

s + r 's' STO 'r! STO r

NEXT

n —LIST k  
 

Example:

We want to find 6 reduced fractions of it. In one second, we obtain:

 

 { (3,1) (22,7) (333,106) (355,113)
2:(3.14159265359 |'CNFR' (103993,33102) (104348,33215) }
 

1: 6 1: { 371512921}     
 

Meaning that the successive reduced fractions of m are:

[ 3]1=23
[ 3 /77 1=3+ 1/7 = 22/7 = 3.14285714286.

1

[3/7/15] = 3 + —= 333 / 106 = 3.14150943396.

1+ 1/15
[3/7 /15 /1 ] = 355 / 113 = 3.14159292035.

[3/7 /15 /1 / 292 ] = 103993 / 33102 = 3.14159265301.

{3/7/ 15/ 1/ 292 / 1] = 104348 / 33215 = 3.14159265392.
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'‘R.C' directory Program 'A—>Q'

RATIONAL APPROXIMATION OF A REAL OR COMPLEX ARRAY

'A—Q' calculates an approximation, using rational numbers, of the various elements of a
vector or of a matrix of real or complex coefficients, using the instruction —Q.

The accuracy of the approximation depends on the display mode used:

* If the n FIX mode is on, the approximation is correct to n decimal points.
* If the STD mode is on, the approximation is correct to 12 significant figures.

The functional diagram is as follows:

  

  
1: A  — 1: list
    

where "list" contains the elements obtained from the various approximations. For a matrix A,
"list" is made up of the sub-lists of each row of the matrix A.

If you switch to n FIX mode, the integer n must be large enough for the rational
approximation not to be too rough.
It must, however, take into account any round-off errors that may affect the numbers we want
to approach using rational numbers.
As a rule, values between n=8 and n=10 give correct results.

'A—Q": ( Checksum: # 25770d, Size: 183.5 bytes )

 

« OBJ— OBJ— IF 1

- lig col

« 1 lig FOR i

1 col START

—-Q col ROLLD

THEN 1 SWAP END

NEXT
col —LIST

col lig i - * i + ROLLD
NEXT
F lig 1 > THEN lig —LIST END  
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‘R.C' directory Program 'A—>Q'
(continued)

PROGRAM 'A—>Q': PRACTICAL EXAMPLES

Example 1:

We wantto resolve the system:

2x + y - z =1

x - 3y + 5z = -3
3x + 5y - z =0

into rational numbers.

[[ 2 1-1]
Weput[1,-3,0] atlevel2and [ 1 -3 5 ] atlevel 1.

[ 3 5-111

We do the operation / and find the solution, in real numbers, at level 1.
We then switch to 10 FIX mode and call '—=Q".
This gives us, in two seconds, at level 1:

'5/21' '-(13/42)' '-(5/6)"
Which proves that the exact solution to the system above is:

X = 5/21, y = -13/42, z = -5/6.

Example 2:

We want to find the inverse of the matrix A =

- w |(L
[ 8 -2
[ -5 = ~N

W

We put the matrix at level 1, then do the operation '1/x'.
We then switch to 9 FIX mode and call the program 'A—Q".

In about 3 seconds, we obtain the following list:
{{ '17/222' '25/222' '-1/222' }

{ '71/222"' '13/222' '35/222' }
{ '1/1112' '8/111' '13/111' } }.

[[ 17 25 -1
The inverse of A is therefore 1/222* [ 710 13 35

[ 2 16 26
Example 3:

This example uses certain programs in the 'FS' directory.
We wantto find the exact 5th order finite series, converging to zero of Tan(Ln(1+X)) .
We first go to the 'FS' directory.
We put 5 in the stack, then call the programs 'LG' and 'TG' one after the other. We thus find
the required series in real-number form.
Wethen go back to the 'R.C' directory and switch to 10 FIX mode.

We then call 'A—Q' and obtain the list:

{ o 1 '-172"' '2/3' '-3/4' '11/12' }

Which proves that the finite series we want to find is written:

Tan(Ln(1+X)) = X -1/2*X"2 +2/3*X"3 -3/4*X"4 +11/12*X"5 +0o(X"5)
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'R.C' directory Program 'I—=J'

WRITING A COMPLEX NUMBER IN THE FORM a+bj.
 

'I-=J' is used to write a complex number z in the form a+bj, where a and b are two real
numbers and j is the complex number with a modulus of 1 and an argument of 2*r/3.

The complex number z may be written in the form of an algebraic expression. In fact, 'l—J' is
especially designed to perform rapid calculations using the number j. It is therefore highly
recommended to create a variable j in the 'R.C' directory forthis purpose.

To create this variable, follow the sequence below:

 

1 ENTER NEG 3 v R—C 2 / J STO
 

The functional diagram for 'l=J' is as follows:

  1 I_’ JI

1: 2 _—> 1: expression
      

where "expression"is in the form a+bj, and a and b are two real numbers.

'1—=J": ( Checksum: # 8929d, Size: 62 bytes )
 

« —-NUM C-R 3 v / DUP 2 *
j' * 3 ROLLD + SWAP +

   

Examples: (in one second)

Both the examples below assume that a variable j has been created.

  'I—'J'

> 1:]'.210884353742+.340136054422*7"' 1:| '"(3+4*j)/(11-2*3)"'       

Switching to 10 FIX mode and running —Q, we obtain:

'31/147+50/147*5'

  'I—’J'

1: '(243%3)"5" —_—> 1:['149.000000002+87.0000000012* 75"
      

lle.: (2+43*3)75 = 149+87%7.
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'‘R.C' directory Program 'ITER'

ITERATIVE CALCULATIONS
 

'ITER' allows you to perform iterative calculations with as many steps as required.
We first take a recurrence relation:

Un = F(Un-p, Un-p+1, .- -, Un-1)

allowing us to calculate the "objects" u,, the series U being initialized by giving the p initial
terms Uy, Uy, ..... , Up-1.
This will enable us to afculate the following terms. This general type of problem can be
solved using the program 'ITER'".
For 'ITER' to run correctly, a variable called "LIST" must be entered in the directory in the
format shown below:

{ N Unp, Un-pt1, --., Una F(Un-p, Un-p+ti, ---, Un-1)

Once 'ITER'is called,it creates the variables N, U0, U1 .... U(p-2), U(p-1) inthe
directory.
'ITER' then halts and the value of Uy is given.
If we press CONT, the next value Uy;; is calculated and the program halts again. We can
then repeat the operation as many times as we want to obtain the successive values of the
series U.

To interrupt the program,it is best to empty the stack before pressing CONT. 'ITER' is thus
able to understand that the user has finished calculating and empties the directory of all the
variables that had been created.

ITER": ( Checksum: # 60091d, Size: 358 bytes)
 

« LIST SIZE

« ey SWAP —-»STR + OBJ— »

- d var

« LIST DUP 1 GET 'N' STO 2

0 d 2 - FOR i

GETI i var EVAL STO

NEXT

DROP2

DO

d 2 - var EVAL EVAL EVAL HALT

IF DEPTH NOT THEN

'N' PURGE

0 d 2 - FOR i

i var EVAL PURGE

NEXT

0 DOERR

ELSE

'N' 1 STO+

1 d 2 - FOR i

i var EVAL RCL i 1 - var EVAL STO

NEXT

d 3 - var EVAL STO

END

UNTIL 0 END
»

»   
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'‘R.C' directory Program 'ITER'
(continued)

PROGRAM 'ITER":
PRACTICAL EXAMPLES

Example 1:

We want to calculate the successive terms of the series whose general term is u and is
defined by the recurrence relation:

Un_l 2

U, = +

2 Up-1

  

and the initial term u = 1.
Weput { 1 1 'U0/2+2/U0'} in'LIST'and call ITER'.
After one second (while the variables are created) the program halts and gives the value of
uy, i.e. 2.5; we press CONT to obtain the value of u,, i.e. 2.05; the following values are:

u; = 2.0006097561, ug = 2.00000009292, thenus = 2.

The stack must be purged before pressing CONT if we want to interrupt the program by
purging the directory of all intermediate variables.

Example 2:

We want to calculate the successive terms of the matrix series M defined by the recurrence
relation:

Mn = Mpap - n*t ( Mp2 ).
and the initial terms

T
° [ 11 ‘ ]

Weput { 2 [[100[010[0011]] [[010[101[0101]]
« UL U0 TRN N * - » } inthe variable 'LIST' then call ITER'.

1
0
0 o

R
r
o

O
O = "

e o
R
r
o

B
O
o
O
R

o
p
R
r
o

—
e
a

([ -2 10]
The value of M, is rapidly calculated, ie.M, = [ 1 -2 1 ]

[ 0 1-2]]

The following matrices in the series M are given by pressing CONT to obtain each
subsequent matrix.

Example 3:

We want to calculate the successive terms of the series of polynomials defined by the
recurrence relation:

Pn (X) = nPpy (X) - XPp2 (X) +X?P'n3 (X).

and the initial terms:
Po (x) = 0, P; (x) = x and P, (x) = x2.

We put, in the variable 'LIST"

{ 3 [0] [10] [100] «N U2 Ul UO POLY — n u2 ul u0 « u2
n * ul [-1 0] PRODP ADDP u0 DERIV [1 0O 0] PRODP ADDP R.C »}

(note the switch to the 'POLY"directory, where the local variables u0, ul, u2, u3,andn
are created, before returning to the 'R.C' directory).
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‘R.C' directory Program 'NRCN'

Nth ROOTS OF A COMPLEX NUMBER
——————————————————————————————eeeeeeeeeeTTeTe.oee=eeeo——

'NRCN' calculates the nth roots x4, x;,..., Xn-1 Of 2 complex number z as shown in
the functional diagram below:

 

  

  

 
     

n:| Xo |

4 4: X -4

3 3: X, 3

2 zZ 'NRCN' 2 X
s n=2

1 n 1 X
n-1  

The formula used is:

if z = Rexp( i 8 ), then xx = 4R exp( i( 6/n + 2kn/n ) ).

'NRCN': ( Checksum: # 5849d, Size: 81 bytes )

 

  
 

  

  

  

 

« -1 OVER INV 2 * ”

- n w

« n INV ~

2 n START

DUP w *

NEXT
»

»

Example:

4: 4: ( 2,-1)

3 3 (1, 2)

2: (-7,-24) 'NRCN' 2: (-2, 1)

>

1: 4 1: (_11_2)       
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‘R.C' directory Program 'TRIG'

LINEARIZATION AND INVERSE OF LINEARIZATION
 

 

TRIG' lets you express cos(t)"n and sin(t) n in terms of quantities of the type
cos(pt) and sin(pt): this is the principle of linearization.

Conversely, 'TRIG' lets you express cos(nt) and sin(nt) in terms of the powers of
cos(t) andsin(t).

Note: program TRIG' calls programs 'TCHEB' and 'V—P', which must be in the 'POLY'
directory.

When you call TRIG', the following menu appears:

 

! cos” I SIN™ ] cos()J SIN()I | EXIT]
 

and the program is halted.

Press "EXIT" if you wish to quit the program.

Youfirst enter an integer n at level 1 then press one of the first 4 keys to perform one of the
following operations:
* linearization of cos (t) "n.
* linearization of sin(t) "n.
* express cos(nt).
* express sin(nt).

Example: if we put 3 at level 1 in the stack, we obtain at level 1:

"COS(T) " 3=(COS(3*T)+3*COS(T))/4" by pressing cos”

"SIN(T) 3=(-SIN(3*T)+3*SIN(T))/4' by pressing SIN~

'COS(3*T)=4*COS(T) " 3-3*COS(T)" by pressing cos( ).

"SIN(3*T)=-(4*SIN(T) 3)+3*SIN(T)' by pressingSIN( ).

Example: with n=15, results are computed within 3 to 9 seconds. We find, for example:

'SIN(15*T)=-(16384*SIN(T) 15)+61440*SIN(T) 13-92160*SIN(T) 11
+70400*SIN(T) " 9-28800*SIN(T) " 7+6048*SIN(T)"5
-560*SIN(T) " 3+15*SIN(T)'
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‘R.C' directory Program 'TRIG'
(continued)

TEXT OF PROGRAM 'TRIG'

TRIG": ( Checksum: # 49045d, Size: 984.5 bytes )

 

« 0 0 - n k

« « n k COMB n k 2 * - »

« IF DUP THEN 'T' * COos *

ELSE DROP 2 / END »

« 2 n 1 - ~ / »

« IF 2 MOD THEN NEG END »

- pl p2 p3
« { { n COSA "

« - n « 'cosm)’ n " 0
0 n 2 / FLOOR FOR k

p1 EVAL p2 EVAL +

NEXT p3 EVAL =

« — n « 'SINM)’ n A 0

0 n 2 / FLOOR

IF n 2 MOD THEN FOR k

p1 EVAL 'T' * SIN * k n

1 - 2 / + pa EVAL +

ELSE FOR k
pi EVAL p2 EVAL Kk n
2 / + p4 EVAL +

NEXT

END p3 EVAL =
» » }

{ "cos()'.

« — n « n 'T' * COS n POLY 1

TCHEB 'COSM' V—P RC =
» » }

{ "S|N()"

« - n « n 'T' * SIN

IF n 2 MOD THEN

n 1 POLY TCHEB n 1 - 2 /

pa EVAL 'SINM' V—P RC
ELSE

IF n DUP THEN

1 - 2 POLY TCHEB n 2 /

1 + p4a EVAL 'SINM' V—P
RC 'cosm' *

END

END =

» » }

{}
{ "EXIT" « CONT » }

}
TMENU  HALT 2  MENU  
 

-38-



'R.C' directory Program 'INTZ'

INTEGRATION ALONG A LINE IN THE COMPLEX PLANE

INTZ' calculates f (z)dz, where fis a function of the complex variable zand I is an arc
r

with the coordinates x=x(t), y=y(t), a<t<b.

This gives the functional diagram below:

  

2: 'INTZ' 2:
  

    1: list 1: integral
  

where "list" is a list containing the data required for the calculation to be performed and
"integral" is a value approaching the result (a complex number).

The accuracy of the calculation depends on the display mode used:
In STD mode, the calculation is performed as accurately as is possible (which will probably
take time).

In n FIX mode,it is will be correct to n decimal places.

The format of "list"is { ¥ z A B }, where:

F:  expresses the function f, with respect to the variable 'Z'.

Z: is the expression with respect to the variable 'T' in symbolic form, giving the parameters
of the arc I".
Z will be evaluated as a complex number representing the coordinates of the point (x(t),
y(t)) on the arc.

A,B: are the bounds of the parameter T.

'INTZ'": ( Checksum: # 44859d, Size: 133 bytes )
 

« EVAL ROT DUP 'Z' STO
'T! DUP PURGE a 4 ROLL 'T! SHOW
* 3 DUPN RE 'T! J —NUM 4 ROLLD
M 'T! J —NUM R—C 'Z' PURGE
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'‘R.C' directory Program 'INTZ'
(continued)

PRACTICAL EXAMPLES WITH PROGRAM 'INTZ'

Example 1:

Calculate J (1/2) 4z, wherer is the directed arc:
r

X(T)= EXP(T), Y(T)=T*LN(T), 1<T<2.

We switch, for example, to 6 FIX mode.
Wethenenter { '1/Z' 'EXP(T)+i*T*LN(T)' 1 2 } atlevel 1 of the stack and call
INTZ.

After 25 seconds we obtain:

 

1:1 ( 1.017297 , 0.185459 )
   

Example 2:

We know that J f(2z) 4z is purely a function of the bounds and direction of:
r

of the path of I', provided that the curve in T is continuous and within a domain of the
complex field where f is holomorphic.

This can be seen if we integrate £ (z)=EXP(Z) between the point A(1,0) and the point
B(0,1):

1; along the segment joining A to B.
2) along the arc of the unit circle joining A and B.

We switch, for example, to 5 FIX mode.
We then put in at level 1 of the stack:
Inthe firstcase: { 'EXP(Z)' '1-T+i*T' 0 1
and inthe second case: { 'EXP(Z)' 'EXP(i*T
and we call up 'INTZ'.

},
) o 'm/2' }.

In the first case, we obtain the following in 11 seconds:

 

1:| (-2.17798,0.84147)
 

In the second case, we obtain the following in 27 seconds:

 

  1:| (-2.17798,0.84147)
 

The exact result is:

exp(i)- exp(l) = ( -2.17797952259, .841470984808 ).
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POLYNOMIALS
  
 

The 'POLY" directory contains programs used for polynomials with one unknown (with real or
complex coefficients).

The programs listed below are some of the most useful and will relieve the user of time-
consuming tasks (where calculation errors frequently occur).

Polynomials will be represented here by the vector of their components in decreasing order
of powers of the unknown.

The polynomial P = 3X"7-2X"6+X"3-2X is thus represented by the vector:

[ 3-20010-201].

Polynomials that are arguments in a program must be written in the above form, which is
also the form in which they will be obtained if they are the results of a program.

Exceptions:

- The polynomials that are arguments in program 'DIVIP' (division in increasing order
of powers) must be represented by the vector of their components in increasing
order of powers of the unknown),

- In program 'REV' (which switches from increasing to decreasing powers).

- In program V—P (transformation of a polynomial written in ‘vector' form into a more
algebraic notation).

The 'POLY" directory is extremely complete. It includes:

‘ADDP' Addition of two polynomials.

'PRODP' : Product of two polynomials.

'‘POWP' Raising of a polynomial to an integer power.

'DIV' : Euclidean division of two polynomials.

'‘DIVIP* Division,in increasing order of powers, of two polynomials.

'COMP' Composition of two polynomials.

TRNS' Translation of a polynomial.
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'‘DEG2' Real or complex roots of a 2nd degree polynomial.

‘DEG3' Real or complex roots of a 3rd degree polynomial.

'‘DEG4’ Real or complex roots of a 4th degree polynomial.

'‘BRST' Real or complex roots of a polynomial of any degree (Bairstow's iterative
method).

‘VALP' Value of a polynomial at a point.

'REV' Reversing the order of the components of a vector

‘DERIV' Derivative of a polynomial.

'‘PRIM’ Primitive (cancelling to zero) of a polynomial.

'INTP' Integral of a polynomial from a to b.

'‘GCDP' GCD of two polynomials.

‘LCMP! LCM of two polynomials.

'TCHEB' Calculates Tchebyshev polynomials of the first or second kind.

V—p' Transforms a polynomial (written in vector form) into conventional algebraic
notation.

'PPCS' Primitive, in symbolic form, of an expression of the type:
P(x)Cos(ax)+Q(x)sin(ax), where P and Q are both polynomials.

'PPEX' Primitive, in symbolic form, of an expression of the type: P(x)Exp(ax),
where P is a polynomial.

‘PMAT' Calculates matrix polynomials.

'‘EXPPP' Expansion of a product of polynomial powers.

‘ABCUV' Finding a solution to the equation AU+BvV=C, where A, B and C are three
given polynomials and U and V are two unknown polynomials.

'ELML', 'ELMR' :  are 2 routines used for operations on polynomials where the aim is to
compensate for certain round-off errors.
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'POLY' directory Program 'ADDP'

 

ADDITION OF TWO POLYNOMIALS
 

'‘ADDP' calculates the sum of two polynomials P and Q as shown in the functional diagram
below:

 

2: P

 

'ADDP' 2:
 

1: Q   
N.B: 'ADDP' is useful when the vectors representing P and Q are of different length, orif we

 

1: P+Q   
donot know these lengths a priori (otherwise it is better to use +).

N.B: 'ADDP' calls program 'ELML', which deletes any zeros to the left of the resuiltant vector
when adding two polynomials of the same degree (see example 2).

'ADDP': ( Checksum: # 35585d, Size: 151 bytes )

 

»

END 

« IFERR + ELML THEN
OVER SIZE 1 GET OVER SIZE 1 GET -
IF DUP 0 < THEN ABS ROT SWAP END
- a d
« 1 d START 0 NEXT

a OoBJ— 1 GET d + —ARRY +

 
 

Example 1: (less than one second)

 

2:{[ 123 45 ]

 

'ADDP' 2:
 

1:| [ 10  100 ]
 

(since, ifp =

 

  1:| [ 12 3 14 105 ]
 

X" 4+42X"3+3X"2+4X+5and Q = 10X+100, then:
P+Q = X"4+2X"3+3X"2+14X+105)

Example 2: (less than one second)

 

2:/[ 12345 ]
 

'ADDP' 2:
 

  1:/[-1 -2111 ]
 

 

  1: [ 456 ]
 

Here we could quite simply have used the + operation, but the resultant would have been:

[ 00456 ].
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'POLY' directory Program '‘PRODP'

PRODUCT OF TWO POLYNOMIALS

'PRODP!' calculates the product of two polynomials A and B as shown in the functional
diagram below:

  

2: A ' PRODP' 2:
   

 
     

'PRODP': ( Checksum: # 51299d, Size: 202.5 bytes )

 

« DUP SIZE 1 GET

- a da

« DUP DUP 0 CON DUP SIZE 1 GET DUP

da + 1 - 1 —LIST

- b c db dim

« { 1} db + RDM

1 db START

a OBJ— DROP c OBJ— DROP

NEXT

db DROPN

db dim + —ARRY * dim RDM   
 

Example: (in 1 second)

 

2: [ 1 5 -9 7 21| 'prODP'
>

1: [ 3 2 -7 -11] 1:|[3 17 -24 -43 28 54 -91 -22 ]
   

    
  

since,if P = X"4 +5X"3 -9X"2 +7X +2 et Q = 3X"3 +2X"2 -7X -11,

then:

PQ = 3X"7 +17X"6 -24X"5 -43X"4 +28X"3 +54X"2 -91X -22
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'POLY' directory

 

Program 'POWP'

'POWP' calculates the nth power of a polynomial A (where n is a positive or zero integer) as
shown in the functional diagram below:

  

' POWP' 2:
  

      
N.B: Program 'POWP"calls program 'PRODP".

'POWP': ( Checksum: # 7170d, Size: 168 bytes )

 

  
 

« —> a n

« 1 DUP —ARRY

WHILE n 0 >

REPEAT

IF n 2 MOD THEN a PRODP END

n 2 / FLOOR 'n' STO

IF n THEN a DUP PRODP 'a' STO END

END

»

»

Example:

We want to calculate ( 2X"2 -3X +7 ) ~5.

We therefore enter the vector [ 2 -3 7 ] atlevel 2, the integer 5 at level 1 and call
'POWP..

The resultant vector is obtained in 3 seconds:

[ 32 -240 1280 -4440 12290 -25443 43015 -54390 54880 -36015 16807 ],

meaning that:

( 2X72 -3X +7 )75 = 32X710 - 240X"9 + 1280X"8
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'POLY' directory Program 'DIV'

DIVISION OF TWO POLYNOMIALS (Euclidean division)
 

'DIV' performs a Euclidean division (i.e. in decreasing order of powers) of a polynomial A by
a non-zero polynomial B.
This division is written A = BQ + R, where Q is the quotient of the division and R is the
remainder (the degree of R is always less than that of B).

This gives us the following functional diagram:

  

2: A 'DIV' 2: Q
   

    1: B 1: R
  

N.B: program 'DIV' calls program 'ELML".

'DIV": ( Checksum: # 24501d, Size: 379 bytes )
 

« ELML DUP 1 GET

« DUP IM ABS IF NOT THEN RE END »

— d real

« DUP SIZE 1 GET ROT DUP SIZE 1 GET

- b tb a ta

« a

IF tb 1 == THEN d / o0 1 —ARRY

ELSE IF ta tb < THEN o0 1 —-ARRY SWAP

ELSE

ta tb FOR i

DUP 1 GET d / SWAP OVER

 

  
 

  

 
 

b i {} + RDM * - OBJ—

1 GET 1 - —ARRY SWAP DROP

-1 STEP
ELML

- r

« ta tb - 1 + —ARRY real EVAL r

»

real EVAL

END

END
»

»

»

Example: (in 3 seconds)

2:/[ 1 2 3 45 6] 'DIV' 2:1 [ 1112]

>
1: [ 111] 1: [ 2 4]       

Meaning that for the division of polynomial A = X°5 +2X"4 +3X"3 +4X"2 + 5X +6 by
polynomial B = X~2 +X +1, the quotientis:
Q = X"3 +X"2 +X +2,andtheremainderisR = 2X+4.
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'POLY" directory Program 'DIVIP'

DIVISION OF TWO POLYNOMIALSIN INCREASING ORDER OF POWERS

'DIVIP' divides a polynomial A by a polynomial B (whose constant coefficient is non-zero) in
increasing order of powers upton .

This division is written:
A = BQ + X" R

where Q is the quotient (whose degree is less than or equal to n) and R is the remainder (the
polynomial Xx™*! R is also called the remainder).

This gives the following functional diagram:

  

  

  

3: A 3:

2: B 'DIVIP' 2: Q

>

1: n 1: R      

NOTE:

Unlike in most of the programs in the 'POLY' directory, the polynomials A and B must be
represented by the vector of their coefficients in increasing order of powers of the unknown.
For example, [ 1 5 -4 7 ] represents 1 +5 -4X"2 +7X"3. The polynomials Q and R
are obtained in the same format.

N.B: Program 'DIVIP' calls program 'DIV".

‘DIVIP": ( Checksum: # 6051d, Size: 53.5 bytes )

 

« OVER SIZE 1 GET + 1 —LIST
ROT SWAP RDM SWAP DIV

   
Example: (in 3 seconds)

  

  

  

    

3:/[ 1 2 3 4] 3:

2: [1 2 1] 'DIVIP' 2:/[1 0 2 0 -2 4]

>

1: 5 1: [-6 -4]
  

Meaning that:

1 +2X 43X72 +4X73 = (1 +2X +X72)(1 +2X"2 -2X"4 +4X"5) + X"6(-6-4X)
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'POLY" directory Program 'COMP'

COMPOSITION OF TWO POLYNOMIALS
 

 

'COMP' calculates the composite P(Q) of two polynomials P and Q as shown in the
functional diagram below:

  

2: Q 'COMP' 2:
  

 

1: P 1: P(Q)    
  

N.B: 'COMP’ calls programs 'PRODP' and 'REV'

'‘COMP": ( Checksum: # 53645d, Size: 125 bytes )

 

« REV  SWAP
- p
« IF DUP SIZE {1} = THEN

OBJ- 1 GET SWAP 1  —ARRY
2 ROT  START

p PRODP DUP  SIZE
DUP2 GET 4 ROLL + PUT

  
 

 

  

NEXT
END

»

»

Example: (in 2 seconds)

2:| [ 15 -23] 'COMP'
>

1:( [ 1 1 1] 1:( [ 1 10 21 -13 39 -14 13 ]    
  

Meaning that if we assume that:

P(X) = X"2 +4X +1 and Q(X) = X"3 +5X72 -2X +3, then

P(Q(X)) Q(X)"2 +Q(X) +1

X"6 + 10X™5 +21X"4 -13X"3 +39X"2 -14X +13
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'POLY' directory Program 'TRNS'

TRANSLATION OF A POLYNOMIAL
 

'TRNS' translates a polynomial x -> P(x) into the polynomial x -> Q(x)=P(x+a), as
shown in the functional diagram below:

  

2: P(x) 'TRNS' 2:
 

 

1: a 1: Q(x)=P(x+a)      

‘TRNS'": ( Checksum: # 40631d, Size: 145.5 bytes )
 

« OVER SIZE 1 GET

« IF n 1 > THEN

n 2 FOR i

2 i FOR
DUP j GET OVER | 1 -
GET a * + j SWAP PUT

NEXT
-1 STEP

END  
 

Example: (in less than 2 seconds)

 
 

2: [ 2 -1 0 3 5 ] '"TRNS' 2:
>

1: 3 1:| [ 2 23 99 192 149)]
 
 

    
 
 

since, if P(X) = 2X"4 -X"3 +3X +5 ,
then Q(X)= P(X+3) = 2X"4 +23X"3 +99X"2 +192X +149

Note:

Program 'TRNS' also gives the decomposition of the polynomial x -> P(x) as a function of
the powers of (x-a)

The example above can thus be interpreted by saying that:

if P(X) = 2X74 -X"3 +3X +5,
then P(X) = 2(X-3)"4 +23(X-3)73 +99(X-3)72 +192(X-3) +149

We can also say that 'TRNS' changes the variable y=(x-a) in the polynomial P(x) and that
the result is given as a polynomial of the variable y.
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‘POLY' directory

ROOTS OF

Program 'DEG2'

A 2ND DEGREE POLYNOMIAL

'DEG2' calculates the two real or complex roots a and b of a 2nd degree polynomial p, with
real or complex coefficients. This gives the following functional diagram:

 

2:

 

'DEG2' 2: a
 

1: P

 

1: b
 

'DEG2' also calculates the root a o
diagram below:

 

f a 1st degree polynomial as shown in the functional

        

 

   
  

  

   

  

        

  

  

'DEG2'
1: P > 1: a

N.B: 'DEG2' calls program 'ELML".

'DEG2": ( Checksum: # 60963d, Size: 354 bytes )

« ELML DUP SIZE
— P s

« IF s {3} == THEN
'P@*2 -4*p()*p(3)"' EVAL V
- rd

« '-(p(@+rd)/2/p (1)’ EVAL
"( -p(@+rd)/2/p (1)’ EVAL

ELSE

IF s {2} == THEN
p OBJ—> DROP SWAP
IF DUP THEN / NEG ELSE DROP2 END

END

END

Examples: (results obtained within 1 second)

2: 'DEG2' 2: -2
>

1: [ 1 3 2] 1: -1

2: 'DEG2' 2:|(-.5,-.866025403785)

>

1: [1 1 1] 1:| (-.5,.866025403785)

In 5 FIX mode:

2: 'DEG2' 2: ( -0.21392 , 2.48243 )

>
1 [ (1,1) (2,-1) (3,2) ] 1:| ( -0.28608 , -0.98243 )      
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'‘POLY' directory Program 'DEG3'

ROOTS OF A 3RD DEGREE POLYNOMIAL

'‘DEGS3' calculates the three real or complex roots a, b and c of a 3rd degree polynomial p,
with real or complex coefficients. This gives the following functional diagram:

  

  

  

3 3: a

2: 'DEG3' 2: b

>

1 P 1 c    
  

N.B: Those of the roots a, b or c that are real are however given in complex form (with a zero
or virtually zero imaginary part owing to round-off errors).

'DEGS3'": ( Checksum: # 23540d, Size: 404 bytes )

 
« DUP 1 GET / oBJ— DROP

- a b c

« DROP 'b -a*2/3' EVAL 3 /
'2*a"3/27 -a*b/3+c¢c' EVAL 2 /

- P q
« IF P ABS THEN

q P v P * / NEG ASINH
- z
« 0 2 FOR k

'2*Vp*SINH((z+2*i*k*m)/3)-a/3"' —-NUM
NEXT

ELSE
0 2 FOR k

'( -2*q)"(1/3)*EXP(2*i*k*m/3)-a/3"' —NUM
EXT

END  
 

Example: (in 5 FIX mode for the result, in 2 seconds)

  

  

 
 

 

3: 3: ( 0.19326, 0.42356 )

2: 'DEG3 2: ( 0.19326,-0.42356 )
>

1:] [ 1 -5 2 -1 ] 1:|( 4.61347, 7.48801E-12 )   
  

In this particular case, the polynomial P has 2 complex conjugate roots and a real root
approximately equal to 4.61347.

-51 -



'POLY" directory Program 'DEG4'

ROOTS OF A 4TH DEGREE POLYNOMIAL

'DEG4' calculates the four real or complex roots a, b, ¢ and d of a 4th degree polynomialp,
with real or complex coefficients. This gives the following functional diagram:

4: 4: a

3: 3: b

2: 'DEG4' 2: c
_—D

1: P 1: d  
N.B: 'DEG#¥calls programs 'DEG2' and 'DEG3'. The real roots are given in complex form,
with a zero imaginary part (taking round-off errors into account).

'‘DEG4": ( Checksum: # 58151d, Size: 630 bytes )
 

« DUP 1 GET / OBJ— DROP

- a b c d

« DROP 1 b NEG 'a*c -4*d' EVAL 'd*(4*b -a*a) -c*c' EVAL

4 —ARRY DEG3

3 —SARRY DUP {3} 'a*a/4 -b' EVAL CON + 1
— t ]

« IF  'ABS(t(2)) > ABS(t(1))' THEN 2 i STO  END
IF  'ABS(t(3)) > ABS(t(j))’ THEN 3 'j' STO  END

t i GET v SWAP i GET
- w y

« IF w (00 == THEN
a 4 / NEG DUP DUP2

ELSE

0 w 'a*y/2 -c' EVAL w |/ 2 / 3

« vi v2 + DEG2

  
 

 

  

  

  

vi v2 - DEG2

END ”

»
» »

Example: (in 5 seconds)

4: (-7, 0)

3: 3: (-1.9999999998 , -3 )

2: 'DEG4' 2: (11, 0)

1:{[1 0 -80 -360 -1001] >l: (-2, 3)     
 

Here the roots of P are -7, 11, -2-3i and -2+3i.
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'POLY' directory Program 'BRST'

ROOTS OF A POLYNOMIAL USING BAIRSTOW'S METHOD

'BRST' calculates an approximate value of the real or complex roots
. ..., apofan nth degree polynomial A(x) with real or complex coefficients

(|f n<5 'BRST' S|mply calls one of the programs 'DEG2', 'DEG3' or 'DEG4'). The functional
diagram is as shown below:

 

  

  

  

n: a,

4: Y.. !

3 3: a,

2: 'BRST' 2: a
2

>

1: A 1: a,      

B: 'BRST!'calls programs 'DEG2', 'DEG3', 'DEG4' and 'ELML".

The principle is as follows:
We want to find two complex numbers s and p such that A (x) will be divisible by x~2-sx-p.
This requires us to use Newton's iterative algorithm to find s and p.
We therefore start with an initial value [s,, po] then build a sequence [s,, pn] which
should converge towards a solution [s, p].
If [s, p] is found, the polynomial A can be written A(x)=(x"2-sx-p)B(x), where B is an
n-2 degree polynomial. We then enter the two roots of x~ 2-sx-p in the stack (using 'DEG2')
and apply the same procedure for the polynomial B.

The calculation sequence stops as soon as the degree of the polynomial obtained is less
than or equalto 4, in which case it is best to call 'DEG2', 'DEGS3' or 'DEG4".

'BRST' halts whenever two new roots of A are entered in the stack. The user then presses
CONT to search for other roots.
When 'BRST' halts, we can modify the default value of the variable 'eps', which is 1E-6 by
default and which alters the stage at which iterations are stopped, and the default value of
the variable 'max’, which is 20 (the maximum number of iterations before the process will be
considered to be divergent).
The process may in fact diverge (or converge slowly). This can be seen when the program
halts without two new roots having been entered in the stack. We can then modify the
variable 'v', which is the current value of [s,, p.] (and is a vector of two elements),
before resuming the iterative sequence via CONT. We can also resume the iterative
sequence without modifying anything at all.
Important note: if you modify variables while the program 'BRST' is halted, you must be
careful to ensure that the stack is as it was when the program was halted before pressing
CONT. Small letters must be used for the variables 'eps’, 'max' and 'v'.
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‘POLY" directory

TEXT OF PROGRAM 'BRST'

'BRST": ( Checksum: # 53898d, Size: 726 bytes )

Program 'BRST'
(continued)

 

« DUP SIZE 1 GET o0 o0 o0 O o0 o0 .000001 20
- a n v 8 p b d k eps max

« IF n 6 = THEN

1 DUP 2 —»ARRY 'v! STO

DO
o 'k' STO

DO
v 0OBJ— DROP 'p' STO 's' STO o0
a 1 GET
2 n FOR i

DuUP s * 3 PICK p
* + a 1 GET +

NEXT
n  —ARRY 'b' STO DROP v 0 O
b 1 GET
2 n 1 - FOR i

ROT DROP DUP s * 3 PICK
P * 4+ b i GET +

NEXT
SWAP DUP 4 ROLLD {2 2} —ARRY
INVN b n 1 - GET b n GET 2 —ARRY *
DUP RNRM v RNRM / 'd' STO
- 'v! STO 'k' 1 STO+

UNTIL d eps < k max 2 OR END

IF k max < THEN
1 s NEG p NEG 3 —ARRY
DEG2 'n' 2 STO-
b n 1 —LIST RDM 'a’ STO

END

HALT

UNTIL n 6 < k max < AND END

END

a ELML '""DEG" OVER SIZE 1 GET 1 -
2 MAX —»STR + 1 4 SUuB OBJ-—  
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'POLY' directory Program 'BRST'
(continued)

PRACTICAL EXAMPLE USING PROGRAM '‘BRST

We wantto find the roots of the polynomial:

P(X)= X710 +2X79 +3X"8 +4X"7 +5X"6 +6X"5 +7X"4 +8X"3 +9X"2 +10X +11.

We therefore enterthevector [ 1 2 3 4 5 6 7 8 9 10 11 ] atlevel 1 of the stack and
call 'BRST'.

After 32 seconds, we obtain two complex conjugate roots of P in the stack , i.e.:

a;= ( -1.26463096509, -.357261654484 )
and a;= ( -1.26463096509, .357261654484 )

We then press CONT and after 21 seconds, we find two new complex conjugate roots:

as= ( .442765764928, -1.17374073066 )
and as= ( .442765764928, 1.17374073066 )

Pressing CONT again, we find another two complex conjugate roots after 23 seconds:

as = ( -.246722626138, -1.26288540248 )
and ag= ( -.246722626138, 1.26288540248 )

Pressing CONT again, after 7 seconds we obtain the last four roots of P, which are both
pairs of complex conjugates. The program 'BRST' is now terminated. The last four roots are
obtained by 'DEG4' (called by 'BRST'). These roots are:

a; = ( -.88465843109, -.959966681655 )
ag = ( -.88465843109, .959966681655 )
ag = ( .95324625739, .72511051529 )

and ajo= ( .95324625739, -.72511051529 )

It is important to be able to control the accuracy of results obtained.
In the case of real roots (if there are any), we can improve the accuracy by transforming the
polynomial P (written in vector form) into conventional algebraic notation, i.e.
'X710 +2*X"9 +3*X78... +9*X"2 +10*X +11' (using the program V—P) and using
the program SOLVR, starting with the approximate root obtained with '‘BRST'.

In the general case, we can use the approximation (where a is an exact root of P and a is the
approximate value found, and provided that a is a simple root):

P(a) -P@) | = | a - a | |p(@) |

and therefore:

|l a - a | = |p@ | / | P(@|

Forthis calculation, we use the programs 'DERIV' (derivative of P) and 'VALP' (calculation of
values of P and P'in a).
For a,o, we therefore find | a;o - aio | = 3.18E-9 and therefore:

i aio - aio | < 5E-9

For ag, we find ag - ag ~ 6.01E-9
For ag, we find ag - ag =~ 9.05E-9
For a4, we find ag - ag = 6.33E-9
For a,, we find a, - a» = 1.48E-10
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'POLY' directory Programs 'VALP'
and 'REV'

VALUE OF A POLYNOMIAL AT A POINT
 

'VALP' calculates the value of the polynomial P at a point x, as shown in the functional
diagram below:
  

2: P 'VALP' 2:
 

1: X 1: P(x)      

N.B: program 'VALP' calls program 'REV'.

'VALP': ( Checksum: # 47419d, Size: 66.5 bytes )
 

« - X

« REV OBJ— 1 GET 0 1 ROT

START X * + NEXT
»

»

Example:(in less than one second)
   

  

2:|/[ 4 -56 3 -2009 ] 'VALP' 2:
  

  1: 1.57 1: 64.3440621073
    

We can also use the HP48's EVAL function by entering:
'4*X"6 -5*X"5 +6*X"4 +3*X"3 -2*X"2 +9' at level 1, then 1.57 for X and calling
EVAL. EVAL is quicker than 'VALP', but this does not make up for the fact that the
polynomial has to be entered in algebraic form.

REVERSING THE ORDER OF THE COMPONENTS OF A VECTOR
 

'‘REV' reverses the order of the components of a vector at level 1 of the stack. For example
(in less than one second):

  'REV'
1:{[ 123 45 6] ——>  1:|[ 6543 21]

      

'‘REV'": ( Checksum: # 55757d, Size: 67.5 bytes )
 

« OBJ— 1 GET

— n

« 1 n FOR i i ROLL NEXT n —ARR

»

»  
 

'‘REV'is useful when writing a polynomial in increasing or decreasing order of powers
(program 'DIVIC").
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'‘POLY' directory Programs 'DERIV'

DERIVATIVE OF A POLYNOMIAL
 

'DERIV' calculates the derivative polynomial P' of P, as shown in the functional diagram
below:

 

 

'DERIV'

  

'DERIV": ( Checksum: # 27163d, Size: 113.5 bytes )

 

   

 

  
 

 

« OBJ» 1 GET 1 =
- n

« DROP
IF n  THEN

1 n FOR i i * n ROLLD NEXT
n

ELSE 0 1 END
—ARRY

»

»

Example: (in less than one second)

'DERIV'
1:|[ 3 -2810 -6 4] —> 1:|[ 18 -10 32 3 0 -6]

   

Note:
This method is much quicker than entering:

 

2:|'3*X"6-2*X"5+8*X"4+X"3-6*X+4"'
 

lxl   
then doing 'd', which gives the following after 5 seconds:

 

   

 

1:| '"3%(6%X"5)-2%(5*X"4)+8%(4*X"3)+3*X"2-6"'  
 

We then have to go to the ALGEBRA menu and press COLCT, which gives the following
after 8 seconds:
 

 
1:| '"-6+3*X"2432*X73-10*X"4+18*X"5"'

  

-57-



'POLY' directory Programs 'PRIM'
and 'INTP'

PRIMITIVE OF A POLYNOMIAL

'PRIM' calculates the primitive Q cancelling to 0 of the polynomial P, as shown in the
functional diagram below:

  'PRIM'

      

'PRIM'": ( Checksum: # 61049d, Size: 83 bytes )

« OBJ—' 1 GET

- n

« 1 n FOR i i
0 n 1 + —ARRY

 

/ n ROLLD NEXT

»

»   
 

Example: (in less than one second)

 
 

1:| [12 -1 36 -1 5 ] —> 1:|{[ 2-.2 .75 2 -.550 ]
     
 

INTEGRAL OF A POLYNOMIAL OVER A SEGMENT

'INTP' calculates the integral of the polynomial P from a to, as shown in the functional
diagram below:

 

 
 

 

  

3: P

2: a 'INTP' b

> P(x) dx

1: b 1: a    
 

N.B: Program 'INTP' calls programs 'PRIM' and 'VALP".

INTP": ( Checksum: # 28489d, Size: 74 bytes )
 

« — a b

« PRIM DUP b VALP SWAP a VALP -
»

  »

 

Example: (in one second)
  

  

 

3:/[ 532 -84 ] 3:

2: -3 "INTP' 2:
>

1: 5 1:| 3845.33333335      
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'POLY' directory Programs 'GCDP'
and 'LCMP'

GCD OF TWO POLYNOMIALS

'GCDP' calculates the GCD (greatest common divisor) of two polynomials A and B, as shown
in the functional diagram below:

  

2: A 'GCDP' 2:
  

1: B 1: Gcd( A, B)     
  

The polynomial thus obtained is unitary (i.e. whose highest-degree term = 1).
N.B: program 'GCDP' calls program 'DIV'.

'GCDP'": ( Checksum: # 54781d, Size: 65 bytes )

« WHILE DUP ABS

SWAP OVER DIV SWAP DROP

DROP DUP 1 GET /

 

»   
 

Example: (in 4 seconds)
  

2:|[ -2 58 -13 1 -5 ] 'GCDP'  2:
>

1:| [ 253 -7 -15 ] 1:] [ 1 .5 -2.5 ]
  
 

      

(in this example the coefficient .5 of the gcd is obtained with a round-off error of 2E-12).

LCM OF TWO POLYNOMIALS

'LCMP' calculates the Ilcm (least common muiltiple) of two polynomials A and B, as shown in
the functional diagram below:

  

2: A 'LCMP' 2:

>
1: B 1: Lcm( A, B)

  

      

The polynomial thus obtained is unitarc\; (whose highest- degree term = 1).
N.B: program 'LCMP" calls programs 'CGDP", 'DIV' and 'PRODP".

'LCMP": ( Checksum: # 28888d, Size: 56 bytes )

« DUP2
GCDP Div DROP PRODP DUP 1 GET /

 

»   
 

Example: (in 6 seconds)

  

2: [ 517 7 3 ] 'LCMP' 2:
  

   1:| [ 25112 ] 1:([ 1 2.91.7 6.7 2.5 1.2]
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'POLY"directory Program 'V—P'

SWITCHING FROM VECTOR FORM TO ALGEBRAIC FORM
 

'V—P' transforms a vector (representing a polynomial P written in decreasing order of
powers) into an algebraic expression. This gives the following functional diagram:

  

2: vector 'v — p' 2:
 

1: expressionl 1:| expression2    
  

where "vector" is the vector representing the polynomial P, "expressioni” is the algebraic
expression replacing the unknown of the polynomial P and "expression2" is the algebraic
expression of the polynomial thus obtained.
If, for example, "expression1" is equal to 'X', we obtain the polynomial P written in
conventional algebraic form.

'V—P': ( Checksum: # 44891d, Size: 117.5 bytes )
 

  
 

  

  

« - v

« DUP SIZE {} + 1 GET
- P n

« 0 1 n FOR i
p i GET v n i - - * +

NEXT
»

»

»

Example: (in 2 seconds)

2:| [ 70-4120 ] 'V —- P ' 2:
>

1: ‘X! 1:|'7*X"5-4*X"3+X"2+2*X' 
    
 

We can replace 'X' with other algebraic expressions like, for example,
'y', 'x', 'cos(T)', etc. In the latter case, the polynomial above is written:

'7*COS(T)"5-4*COS(T) " 3+COS(T) 2+2*COS(T)"'

'V—P' is useful if we want to display a polynomial more easily in vector form (when obtained
as a result of one of the programs in the directory, for example) or when using the
calculator's SOLVR or DRAW programs.

'V—P' will also work if the argument at level 2 is a list. We can thus use it in conjunction with
program T—Q' in the 'R.C' directory.
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'POLY' directory Program 'TCHEB'

TCHEBYSHEV POLYNOMIALS

'TCHEB' calculates Tchebyshev polynomials of the first kind T,, and the second kind U,,.

Polynomials T, are defined by:
To (x)=1, T; (x)=x, andwheren > 2, T, (x)= 2XTn-1 (X) - Tn-2(x).

Polynomials Un are defined by:
Uo (x)=1, U; (x)=2x, andwheren > 2, U, (x) = 2XUp; (Xx) - Up-2 (X).

This gives the following functional diagram:

* to obtain Tchebyshev polynomials of the first kind:

  

2: n 'TCHEB' 2:
  

      

* to obtain Tchebyshev polynomials of the second kind:

  

2: n 'TCHEB' 2:
  

      

'TCHEB'": ( Checksum: # 24506d, Size: 231.5 bytes )

 

« |IF {12} OVER POS THEN 0 2 —ARRY 1 DUP —ARRY

n- b a

« IF n THEN

IF n 1 == THEN b ELSE

3 n 1 + FOR k

b DUP k 1 —LIST RDM 2 * 0 0

a V- k —ARRY - 'b' STO 'a’ STO

NEXT b

END
ELSE a END

END
»  
 

Example: (in less than two seconds)
  

2: 5 'TCHEB' 2:

>

1: 1 1:] [ 16 0 =20 0 5 0 ]
  

      

AsT (X) = 16*X”5 -20*X"3 +5*X
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'POLY"directory Program 'PMAT'

CALCULATING A MATRIX POLYNOMIAL

'PMAT' allows you to apply a polynomial P to a square matrix M, so as to obtain the matrix
P(M). The coefficients of polynomial P and/or matrix M can be either real or complex.

  

 

    
  

2: Matrix M 'PMAT' 2:
>

1: Polynomial 1:| Matrix P(M)

If P(x) = ax™ + bx™! + ... + cx + 4,then:

P(M) = aM™ + bM*™! + .. + cM + d4I,where I is the identity matrix with the
same format as M

NB: program 'PMAT' calls program 'REV"

'PMAT": ( Checksum: # 12277d, Size: 97 bytes )

 

« SWAP DUP IDN

- m id

« REV OBJ— 1 GET m 0 CON

1 ROT START

m * SWAP id * +

NEXT

  
 

Example: (in 2 seconds)

 

 

 

  

(L 1 0-2 ]
[ -3 1 4 ]

2 [ o 5 1 ]] 'PMAT' [[ 35 -20 -46 ]
> [ -69 75 104 ]

1:] [ 1-123 ] 1:| [ -30 115 75 1]  
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'POLY' directory Program 'EXPPP'

EXPANDING A PRODUCT OF POWERS OF POLYNOMIALS

'EXPPP' allows you to expand a product of powers of a polynomial, i.e. polynomials written:

a a Q.

A= B By ..... B,

The factorized form must be entered in the form of a list compiled as follows:

List={ By o B, ax ... Bn an }

All exponents, even if equal to 1, must be included.

The functional diagram can therefore be written:

  'EXPPP '

1: List _—> 1: A
      

where A is the polynomial (written in vector form) obtained from the expansion.

N.B: 'EXPPP' calls programs 'POWP' and 'PRODP".

'EXPPP": ( Checksum: # 60982d, Size: 87 bytes )
 

« 1 DUP —+ARRY
1 3 PICK SIZE FOR i

OVER i GETI 3 ROLLD GET POWP PRODP
2 STEP
SWAP DROP  
 

Example:(in five seconds)

 

  
1:{{[ 1512 [1-247]3}
 

 'EXPPP'
> 1:/ [1 4 -11 34 136 -536 1504 -1760 1600 

   

In other words: (X+5) " 2* (X" 2-2X+4) "3 is equal to:

X"8 + 4X"7 -11X"6 + 34X"5 + 136X4 -536X"3 + 1504X"2 -1760X + 1600
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'POLY" directory Program 'PPCS'

PRIMITIVE OF P(x)cos(ax)+Q(x)sin(ax)

'PPCS' calculates a primitive, in symbolic form, of a function written P(x)cos(ax)+Q(x)sin(ax),
where P and Q are both polynomials and a is a non-zero real number.
This gives the following functional diagram:

  

  

     
3: P 3:

2: Q 'PPCS' 2:

>

1: a 1: primitive
  

Here the polynomials P and Q are written in their usual format (as vectors of the components
in decreasing order of powers) and "primitive" is an algebraic expression representing a
symbolic primitive of the application P(x)cos(ax)+Q(x)sin(ax). This primitive is
obtained in the form A(x)cos(ax)+B(x)sin(ax), where A and B are both polynomial
expressions in terms of the variable 'X'.

N.B: 'PPCS' calls programs 'DERIV', 'ADDP' and 'V—P".

'PPCS": ( Checksum: # 26977d, Size: 311 bytes)

 

  
 

  

  

 

« - P q a

« p DERIV q a * NEG ADDP DUP SIZE 1 GET

- r n

« 0 0 n 1 FOR k
r n k - 1 + GET 3 PICK
k 1 + * k * - a SQ /

-1 STEP
n —ARRY 3 ROLLD DROP2 DUP ‘X' VP a
'X' * CcoSs * ] ROT DERIV NEG ADDP a

/ 'X' V=P a 'X' * SIN  * o+
»

»

»

Example: (in 5 seconds)

3:/ [ 1 -12 3] 2:

2: [ 2 -51] 'PPCS' '(8*X"2+2*X-58)*COS(
> L5*X)+(2*%X"3-2*X"2-

1: .5 1:| 28*X+2)*SIN(.5*X)'   
 

 
 

Indeed:J [ (X"3-X"2+2X+3)cos(X/2) + (2X"2-5X+1)sin(X/2) ] &X

is equal to (8X"2+2X-58)cos(X/2)+(2X"3-2X"2-28X+2)*sin(X/2) (tothe nearest
integration constant).
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'‘POLY' directory Program 'PPEX'

PRIMITIVE OF P(x)exp(ax)

'PPEX’ calculates a primitive, in symbolic form, of a function written P(x)exp (ax), where P
is a polynomial and a is a non-zero real number.

This gives the following functional diagram:

  

2: P 'PPEX' 2:
  

1: a 1: primitive      

Here the polynomial P is written in the usual format (as a vector of the components in
decreasing order of powers) and "primitive" is an algebraic expression representing a
symbolic primitive of the application P(x)exp(ax). This primitive is obtained in the form
A(x)exp(ax), where A is a polynomial expression in terms of the variable 'X'.

N.B: 'PPEX’ calls program 'V—P"'.

'PPEX": ( Checksum: # 44523d, Size: 163 bytes )

 

« OVER SIZE 1 GET

- P a n
« 0 n 1 FOR k

n k - 1 + GET OVER k * - a |
-1 STEP
n —>ARRY SWAP DROP 'X' V P a 'X' * EXP *

   
Example: (in two to three seconds)

 
 

 

     
 

2: [ 1000 0] ' PPEX'

> '"(-X"4-4*X"3-12*X"2-

1: -1 1: 24*X-24)*EXP(-X)'

Indeed: X"4 exp(-X) dX = (-X"4-4X"3-12X"2-24X-24)exp(-X)

(to the nearest integration constant).
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'POLY' directory Program '‘ABCUV'

SOLVING THE EQUATIONAU +BV=C

Program 'ABCUV" allows you to obtain the best possible solution (U,V) (i.e. the solution that
keeps the degrees of U and V to a minimum) to the equation AU+BV=c, where A, B and C
are three given polynomials and U and V are two unknown polynomials.

For such an equation to be satisfied by at least one solution (and it can be satisfied by an
infinite number of solutions) it is necessary and sufficient that the polynomial C be a multiple
of the GCD of the polynomials A and B.

This gives the following functional diagram:

  

  

 

3: A 3:

2: B 'ABCUV' 2: U

>

1: C 1: v       

where the polynomials A and B are written in their usual form (vector of the components in
decreasing order of powers).

If there is no solution to the equation AU+BV=C, the program is terminated by the message
“No solution”.

N.B: Program 'ABCUV' calls programs 'DIV', 'PRODP", 'ADDP' and 'ELML".

'ABCUV'": ( Checksum: # 6634d, Size: 358 bytes )

 

« 0 1 —ARRY 1 DUP —ARRY DUP2
- a b c u v y ¢

« WHILE a b DIV DUP ABS

REPEAT

b 'a' STO 'b’ STO

u DUP 3 PICK PRODP NEG

X ADDP 'u' STO 'x' STO

v DUP ROT PRODP NEG

ADDP 'v' STO 'y' STO

END

DROP2 c b DIv
IF ABS THEN

DROP ""No solution"'

u OVER PRODP ELML

v ROT PRODP ELML   
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'POLY' directory Program 'ABCUV'

 
 

 
 

 
 

  

(continued)

PRACTICAL EXAMPLES USING PROGRAM 'ABCUV'

Example 1: (computation time = 8 seconds, in 5 FIX mode)

3:] [ 1 -1 -2 3] 3:

2: [ 13 4] 'ABCUV' [ -0.03681 0.00613 ]

>
1: [ 1] 1:| [ 0.03681 -0.15337 .24540 ]     
 

 

If we use T—Q' in the 'R.C' directory, we find the following coefficients:

* { '-6/163' '1/163' } atlevel 2.
* { '6/163" '-25/163"' '40/163' } atlevel 1.

|.e. we obtain the result AU+BV=C with:

A

U

X3 -X"2 -2X +3, B X"2 +3X + 4, C
(-6X"2 + 1)/163, v 0(6X"3 -25X"2 +4

=1,

)/163it
n

Example 2: (in 5 seconds)

 
 

 
 

  

    
3:([ 1 -1 -1 -2 3:

2: [ 11-6] 'ABCUV' 2:
>

1: [ 11] 1: "No Solution"
  

This result means that the equation Au+BvV=C with:
A =X"3 -X"2 -X -2, B =X2+X -6, C=X+1,
has no solution.

The reason forthis is that the GCD of the two polynomials A and B is the polynomial X-2,
and C is not divisible by X-2.
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'POLY' directory Programs 'ELML'

ELIMINATING ZERO COEFFICIENTS TO THE LEFT OR THE RIGHT

'ELML' and 'ELMR' are two routines that eliminate zero coefficients at the start (ELML') or at
the end ('ELMR') of a vector V.

To avoid round-off errors, a coefficient is considered to be zero if its absolute value is less
than 1E-5 (this value may be modified in the text of programs 'ELML' and 'ELMR).

The functional diagram of 'ELML' and 'ELMR' is as follows:

  'ELML’

1: v —_—> 1: W
      'ELMR'

where W is the vector resulting from the truncation of V.

'ELML": ( Checksum: # 8202d, Size: 134.5 bytes )
 

« DUP RNRM
IF .00001 < THEN DROP 0 1 —ARRY

oBJ—» 1 GET 1 +
WHILE DuUP ROLL DUP ABS .00001
REPEAT DROP 1 - END
OVER ROLLD 1 - —ARRY

END

 

'ELMR'": ( Checksum: # 22420d, Size: 117 bytes )
 

« DUP RNRM
IF .00001 < THEN DROP 0 1 —ARRY

ELSE oBJ— 1 GET
WHILE OVER ABS .00001 <
REPEAT 1 - SWAP DROP END
—ARRY

END   
Example:

Thevectorv = [ 0 1E-11 1 -2 3 4 0 1E-7 0 ] istransformed:
intow=1[1-23 40 1E-7 0 ] by 'ELML'and into
W= [ 0 1E-11 1 -2 3 4 ] by'ELMR.
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RATIONAL FRACTIONS
  
 

The 'FRAC' directory must be installed as a sub-directory of the 'POLY"'directory.

It contains programs written for rational fractions,i.e. functions written as the quotient R=A/B
of two polynomial functions A and B.

'SMPF' Simplifying a rational fraction.

‘ADDF' Addition of two rational fractions.

'PRODF' : Product of two rational fractions.

'F-Q' : Conversion of the coefficients of a rational fraction into rational numbers.

V—F' : Writing a rationalfraction in algebraic form

‘VALF' Value of a rational fraction at a point.

'POWF' Powers of a rational fraction.

'‘DERVF' Derivative of a rational fraction.

And of special importance:

'DECPF' Decomposition of a rational fraction into partial fractions.

Most of the programs above require a rational fraction to be represented in the stack by
superimposing two vectors, one representing the numerator and the other the denominator.

X3 - 2X"2 + 5X -1
For example, the rational fraction; R = 

11X"2 - 15X + 21

 

2:/[ 1 -2 5 -1]
 is represented in the stack by:

  1:] [ 11 -15 21 ]
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'FRAC' directory Program 'SMPF'

SIMPLIFYING A RATIONAL FRACTION

Program 'SMPF' simplifies (where possible) a rational fraction R=A/B to obtain a rational
fraction C/D.

If the fraction A/B cannot be simplified it remains unchanged.

The functional diagram is as follows:

  

2: A ' SMPF' 2: Cc
 

    1: B 1: D
  

N.B: 'SMPF'calls programs 'GCDP' and 'DIV' in the 'POLY" directory.

'SMPF'": ( Checksum: # 5742d, Size: 94.5 bytes)

 

« DUP2  GCDP
IF DUP [1] = THEN

ROT OVER DNV DROP 3 ROLLD DIV
END
DROP   

Example: (in six seconds)

  

 

      

2:([ 1 -2 -2 -3 ] ' SMPF' 2: [1 1 1]
>

1: [ 1-1-6] 1: [ 1 2]

In fact:

X"3 - 2X"2 -2X -3 X"2 + X+ 1
—_— is equal to ——

X2 - X -6 X + 2
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'‘FRAC' directory Programsp'agDF'
and' DF'

ADDITION AND PRODUCT OF RATIONAL FRACTIONS

Programs 'ADDF' and 'PRODF' let you add and multiply respectively two rational fractions
A/B and C/D.
If we write the resulting rational fraction as E/F, the functional diagram is as follows:

4: 4:

3: 3:

2: 'ADDF' 2:

1: or 'PRODF'> 1:  
N.B: 'PRODF' calls 'PRODP' in the 'POLY" directory.

'ADDF'calls 'PRODP', 'ELML', and 'ADDP"'.

Note: no attempt to simplify is made after adding or multiplying.

'ADDF'":( Checksum: # 41809d, Size: 111.5 bytes)
 

« - a b c d

« a d PRODP b c PRODP ADDP ELML

b d PRODP
»

»   
'PRODF":( Checksum: # 14436d, Size: 46.5 bytes)
 

« ROT PRODP 3 ROLLD PRODP SWAP »
 

Example: ((ADDF' in 3 seconds, 'PRODF' in 2 seconds).

 

4: [121] 4:
 

3: [1-3] 3:
 

2:| [ 215 ] 'ADDF' 2:| [ 1 5 -1 5 -14 ]
 

1:| [111] 1: [1-2-2 -3 ]
 

 

 

 

   
 

4: [ 12 1] 4:

3: [ 1 -3] 3:

2: [ 215 ] '"PRODF' 2: 5 9 1 5]

1:] [111] ’ 1: [1-2 -2 -3 ]
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'FRAC' directory Programf,j 'I\’l—»g'
an " —> 1

CONVERTING THE COEFFICIENTS OF A
RATIONAL FRACTION INTO RATIONAL NUMBERS
 

'F—Q' transforms the coefficients of a rational fraction A/B into a rational approximation. This
is done by calling program 'A—Q' in the 'R.C' directory. The functional diagram looks like
this:
  

2: A 'F—- Q' 2: List A

>

1: B 1: List B

 

      
where ‘ListA" and "ListB" are the lists containing the rational approximations of the
coefficients of the polynomials A and B.
N.B: 'F—=Q' goes into the 'R.C' directory and calls 'A—»Q' before returning to the 'FRAC'
directory via the 'POLY" directory.

'F—Q":( Checksum: # 56371d, Size: 57 bytes)

 

« RC SWAP A—Q SWAP A—Q POLY FRAC »

Example: (in 3 seconds)  

  

2: [ 2.125 3.5 1.875 ] 'F - Q' { '17/8' '7/2' '15/8' }
 
 

1: [ .225 =-.025 .125 ] 1:|{ '9/40' '-1/40' '1/8'}      

WRITING A RATIONAL FRACTIONIN ALGEBRAIC FORM
 

V—F' expresses a rational fraction A/B in terms of the variable X', with A and B given in
vector form. This gives us the following functional diagram:

  

2: A 'V —- F' N

 v

1: B 1: Expression    
 

 

N.B: V—F' calls 'V—P'in the 'POLY"' directory.

'V—F':( Checksum: # 61852d, Size: 57 bytes)

 

« SWAP 'X! V—P SWAP 'X' V—P / »
 

Example: (in 2 seconds)

  

2:| [10-2] 'V — F' 2:
  

1: [ 3 -15] 1:| '"(X"2-2)/(3*X"2-X+5)"'    
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Programs 'VALF''FRAC' directory
and 'POWF'

VALUE OF A RATIONALFRACTlON AT APOINT

'VALF' calculates the value of the rational fraction R=A/B at a point x, as shown in the

  

  

   

functional diagram below:

3: A 3:

2: B 'VALF' 2:

1: X ’ 1: A(x)/B(x)  
 

 
 

N.B: 'VALF' calls program 'VALP' in the 'POLY" directory.

'VALF':( Checksum: # 39503d, Size: 46 bytes)

« ROT OVER VALP 3 ROLLD VALP / »

Example: (in one second)
 

3: [1321]
 

2: [ -157 ] 'VALF'
 

  
1: 2   1.92307692308

 
  
 

The result thus obtained is 25/13.

INTEGER POWERS OF A RATIONAL FRACTION

 

'POWF' calculates the nth power (where n is a positive integer) of a rational fraction A/B. The

  

  

   

functional diagram is as follows:

3: A 3:

2: B ' POWF' 2: A

1: n ’ 1 B  
 

 
 

N.B: 'POWF'calls 'POWP"' in the 'POLY"directory.

'POWF'":( Checksum: # 8253d, Size: 43.5 bytes)

 

 

 

  

 

 
 

« ROT OVER POWP 3 ROLLD POWP »

Example: (in 4 seconds)

3: [ 1-23]

2: [ 21] ' POWF' 2:| [ 1 -6 21 -44 63 -54 27 ]
>

1: 3 1: [ 8 12 6 1 ]  
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'FRAC'directory Program 'DERVF'

DERIVATIVE OF A RATIONAL FRACTION

'DERVF' calculates the derivative C/D of a rational fraction A/B, where:

  

  

C = A'B-AB' and D = BZ?.

This gives the following functional diagram:

2: A 'DERVF' 2: C
>

1: B 1: D       

N.B: Program 'DERVF' of course calls program 'DERIV' in the 'POLY' directory. Programs
'PRODP', 'ADDP' and 'ELML' are also called.

'DERVF':( Checksum: # 56824d, Size: 121 bytes)

 

  
 

  

 
 

     
 

« — a b

« a DERIV b PRODP

a b DERIV PRODP NEG
ADDP ELML

b DUP PRODP
»

»

Example: (in 3 seconds)

2: [ 1-2 3] ' DERVF' 2 [ 18 -11 ]

1: [ 14 ] 1 [ 18 16 ]

And we find that the derivative of:

X"2 -2X + 3 X2 + 8X - 11

R(X) = —— is R'(X) =—
X+ 4 X"2 + 8X + 16
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'FRAC'directory Program 'DECPF'

DECOMPOSITION OF A RATIONAL FRACTION
INTO PARTIAL FRACTIONS

'DECPF' allows you to decompose a rational fraction R=A/B, with real or complex
coefficients,into partial fractions.

The numerator A must be given in vector form.

The denominator B must be given in list form. More specifically, the decomposition of B into
products of irreducible factors is written:

B = B% B, % .. B,,an (where the a's are integers 2 1),

so B must be given in the following form:

B={B a B, a .... By ap 1}.

All exponents a; must be included in this list, even if equal to 1.
The various polynomials B; must be relatively prime and irreducible (therefore first or second-
degree but with real coefficients and a negative discriminant).

Program 'DECPF' does not make any check on the validity of the list given for B.
Should you fail to keep to the conditions described above, run errors will inevitably occur or
results obtained will not be able to be interpreted properly.

The functional diagram is as follows:

(program suspended)
  

2: A decomposition
 

    1: List 1: element(s)
  

The program progressively decomposes the fraction and gives each partial fraction, halting
at each intermediate resuit.
The program can be resumed by pressing CONT (without having to leave the stack as it
was) to obtain the next intermediate result.
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'FRAC' directory Prograzn ‘DECPF'
continued)

Let us suppose, therefore, that the rational fraction R is written:

R =eo The results will be given in the following order:

Bi' B2’ ..... Bn

First result: The integer part | (even if it is zero) in vector form (conventional polynomial
notation in the 'POLY" directory).

Second result: The main part which gives the factor B, as the denominator of the rational
action

 Aq + Ag-1 + _Aq-2 + A

Bi Bfi_l Bk-2 Bx

where A,, A.-1, ..., A; are polynomials of a degreestrictly less than the degree of By.
The result obtainedhere is a list written as follows:
List = { A4, Ra-1, ..., A1 }, where the various polynomials A; are written in
vector form.

Subsgfluent results: We subsequent!g obtain a succession of results giving the other factors
« as the denominator of the fraction as explained above.

Notes:

'DECPF' calls 'DIV' and 'ABCUV' in the 'POLY" directory.
'DECPF' has been made as short and as precise as possible. It can be improved upon by
taking into account certain special points (especially if the denominator has at most two
different factors, for example).
A special feature of 'DECPF" is that all the main parts are calculated with the same degree of
accuracy. Results already obtained are not in fact used in decomposing the fraction. This
would be possible (the intention being to save on computation time), but not without
spreading round-off errors to a dangerous extent.

'DECPF":( Checksum: # 46365d, Size: 331.5 bytes)
 

« DUP SIZE - a L1 n

« i+ 11]
1 n FOR i

L1 i GETI 3 ROLLD GET POWP ROT
OVER + 0 + 3 ROLLD PRODP

 

N w
0 - m °

DV 'a' STO  HALT

i GET b OVER DIV DROP SWAP a
ABCUVY DROP L1 i GETI 3 ROLLD GET 

k START d DIV SWAP  NEXT

HALT 2 STEP  
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'FRAC' directory Program 'DECPF'

 

 

 

(continued)

PROGRAM 'DECPF': PRACTICAL EXAMPLE

We want to decompose the following rational fraction into partial fractions:

X"13
R =

(X-1)72 * (X"2+4X+1) * (X"2+1)"3
We therefore create the stack:

2: [1000000000O0OO0O0DO0]
 

1:| { [1-17 2[111]1([101] 3}   
and call program 'DECPF'.
The program halts after ten seconds and we find the vector [1 1 -2 -1] at level 1 of the stack.
The integer part is therefore equal to X" 3+X"2-2X-1.

Pursuing) the program (with CONT), we obtain the following at level 1 of the stack (within 43
seconds):

 

  
1:| { [ .041666666661 ] [ .374999999959 ] }
 

(if we use —Q, we see that the numbers obtained are 1/24 and 3/8).
The main part corresponding to (X-1) "2 is thus:

1 3

24%(X-1)"2 8% (X-1)

Continuing with CONT, we obtain after a further 25 seconds:

 The corresponding term of the
1:| { [ .333333333344 ] } decomposition is therefore:

1   

3% (X7 2+4X+1)

Continuing again with CONT, after 49 seconds we find:
 

{ [ .50000000001 .00000000004 ]
[ -2.50000000003 -.25000000016 ]

1: [ 4.62500000008 1.25000000036 ] }   
We therefore obtain the next part of the decomposition:

X -10*X-1 37*X+10
+ +

2%x(X72+41)73  4%(X"2+1)72  8*(X"2+1)
 

We then press CONT again to terminate the program.
We therefore obtain a full decomposition into partial fractions of theinitial rational fraction.
Notice that the results obtained are extremely good with low round-off errors.
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MATRIX CALCULATIONS
  
 

The 'MATR' directory contains programs written for calculations performed on matrices or
linear systems.
This is an area in which the HP48 really comes into its own, as it is capable of solving
compute-intensive problems with relatively simple programs. The programmer no longer has
to worry about the time-consuming calculation of products of matrices or vectors, as these
are handled by the machine.
However, some of the programs shown here involve lengthy computation. Calculations on
arrays in fact take quite a long time, for two main reasons:
- Firstly, we have to use indexed addressing to access a coefficient of a given matrix.
- Secondly, such arrays frequently need to be copied into the stack.

The 'MATR' directory contains the following programs:

'CB' : changes the matrix of a linear transformation (where the initial matrix and
basis transformation matrix are known).

TR’ : calculates the trace of a square matrix.

'POWM' calculates the powers of a square matrix.

'INVN' : gives the inverse of a square matrix A whose elements are integers, giving
the determinant d and the matrix (whose coefficients are integers)
B=d*A" (-1).

‘ALY : lets you decompose a square matrix into the product of a lowertriangular
matrix with a unit diagonal and an uppertriangular matrix.

'‘PUTR' places a row in a matrix.

'PUTC' places a column in a matrix.

'GETR' extracts a row from a matrix.

'GETC' extracts a column from a matrix.

'SWPR' swaps two rows.

'SWPC' swaps two columns.

'‘CALCR' : lets you perform calculations on the rows of a matrix.

'‘CALCC' : lets you perform calculations on the columns of a matrix.

'‘CRARY' : Ifets y(lau create an array (matrix or vector) whose general term is given by a
ormula.
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‘CARP'

'‘EV234'

'DEFL'

‘RANK'

'SYST'

'‘EIGSP’

‘DIVAC'

‘INVAC'

‘ADDID'

‘MPOL'

‘PIVOT'

IEQI-RI

gives the characteristic polynomial of a square matrix.

gives the eigenvalues of a square matrix of order 2, 3 or4.

lets you approximate the eigenvalues and eigenvectors of matrices of an
order greater than 4.

calculates the rank of a matrix (by Gaussian elimination).

gives the symbolic expression of the general solution of a system of n
equations in p unknowns. Of particular interest when the system has an
infinite numberof solutions.

gives the equation(s) of the eigensubspace of a square matrix for a given
eigenvalue.

allows you to divide an array by a square matrix more accurately than
with '/'.

allows you to invert a square matrix more accurately than with the INV
command.

bounds a matrix A (with n rows) to the right with the identity matrix of order n
(useful when using programs 'MPOL', 'PIVOT' and 'EQLR).

calculates the minimal polynomial of a square matrix.

employs the Gaussian elimination or pivot method applied to a matrix.

finds any linear relations between n vectors or the equations of the vector
space generated by the same n vectors.
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'MATR' directory Programs '‘CB'
and 'TR’

CHANGING BASIS VIA A TRANSFORMATION MATRIX
 

'CB' calculates the new matrix B = P' A P of a linear transformation f, where the initial
matrix is A and the transformation matrix used to change from the initial basis to the new
basis is P.
The functional diagram is as follows:

  

 

   
  

   

 

  
 

 

 

2: A 'CB' 2:

>
1: P 1: P AP

'CB": ( Checksum: 31267# d, Size: 42.5 bytes)

« p /| p

Example:

(c 3 -1 2 ]
[ o 5 1 ]

2: [ 4 -2 7 1] 'CB' 2:
>

[[ 1 -1 1 ] [[ -15 24 -13 ]
[ -1 2 1 ] [ -13 21 -8 ]

1: [ O 0 1 1] 1: [ 6 -8 9 ]]  
 

 

 

   
 

'TR' calculates the trace tr(A) (i.e. the sum of the coefficients in the leading diagonal) of a
square matrix A, as shown in the functional diagram below:
 

   
 
 

   

 

  
 

lTRl

1: A > 1: tr(a)

TR'": ( Checksum: # 16159d, Size: 68 bytes)

« 0

1 3 PICK SIZE 2 GET FOR i
OVER i DUP 2  —LIST GET +

NEXT

SWAP DROP
»

(L3 5 -8] 'TR' 2:
[ 7 1 11 ] >

1:| [ 4 -5 6 1] 1: 10
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'MATR' directory Program 'POWM'

POWERS OF A SQUARE MATRIX

'POWM' calculates the powers A" (where the exponent n is a positive or negative integer) of
a square matrix A.
If the exponent is negative, the matrix A must be invertible.
If n is zero, the result is the identity matrix of the same order as A.

The functional diagram is as follows:

 
 

 

      
 

  
 

 

 

   
 

  

 

  

 

2 A 'POWM' 2:
>

1: n 1: A

'POWM': ( checksum: # 53967d, Size: 157 bytes)

« IF DUP 0 < THEN
SWAP INV  SWAP  NEG

END
OVER IDN
- n p

«  WHILE n
REPEAT

IF n 2 MOD THEN
DUP p' STO*

END
sQ n 2 / FLOOR 'n' STO

END
DROP p

»

»

Example 1: (in under 2 seconds)

(t r 2 2 ]
[ 0 -1 0 ]

2: [ 1 1 3 ]] ' POWM' [[ 110771 110770 302632 ]]
> 0 1 0 ]

1 10 1: [ 151316 151316 413403 ]]

Example 2: (in 2 seconds)

[[ 1 2 2 ]
[ 0 -1 0 ]

2: [ 1 1 3 11 'POWM' [[ 571 572 -418 ]]

> [ 0 -1 0 ]
1 -5 1: [ -209 -209 153 1]      
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'MATR' directory Program 'INVN'

INVERSE OFA MATRIX WHOSE COEFFICIENTS ARE INTEGERS
 

'INVN' will allow you to precisely calculate the inverse of a square matrix A whose
coefficients are integers.

The functional diagram is as follows:

  

2: 'INVN' 2: B
  

1: A (o
=

Q      

where "d" is the determinant of A (an integer) and B is the square matrix whose coefficients
are integers suchthat A" (-1)=(1/4)*B.

'INVN'": ( Checksum: # 24340d, Size: 56.5 bytes)
 

« DUP DET 5 + FLOOR SWAP
INV OVER * 0 RND SWAP

»   
Example: we wantto calculate the inverse of the matrix:

 

 

 

[([l1 3 -4]
A= [ -21 5]

(7 3 21]]

Within two seconds, we find:

[[-13 -18 19]

[ 39 30 3]
[l 1 3 -4] "INVN' 2: [-13 18 7]]

[ -2 1 5 1] >
1: [ 7 3 2]1] 1: 156       

The inverse of the matrix is therefore:

1 [[ -13 -18 19 ]
[ 39 30 3]

156 [ -13 18 7 ]

 

]
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'‘MATR'directory Program 'ALU'

DECOMPOSITION "A=LU" OF A SQUARE MATRIX A
 

  

'ALU' decomposes a square matrix A into the product LU of a square matrix L (Lower
triangular with unit diagonal) and a matrix U (Upper triangular).

N.B: Program 'ALU' will overwrite any variable 'L' in the directory. It calls programs 'GETR'
and 'PUTR..

The functional diagram is as follows:

  

2: 'ALU' 2: U
  

      

'ALU'": ( Checksum: # 23599d, Size: 249.5 bytes)

 

  
 

  

  

« DUP SIZE 1 GET DUP IDN L' STO
- d
« 1 d 1 - FOR i

DUP i GETR DUP i GET
- Lp p
« i 1 + d FOR j

'L' j i 2 LIST 3 PICK OVER
GET p / DUP 4 ROLLD PUT OVER
}J] GETR Lp ROT * - j PUIR

NEXT
»

NEXT
L
'L' PURGE

»

»

Example: (in 8 seconds)

(r 2 -2 3 1 ]
[ O 3 1 5 ]
[ o 0o 1 -4 ]

2 2: [ o o o 7 1]
>

(r 2 -2 3 1 ] 'ALU' [l 1. o o o0 ]
[ 6 -3 10 8 ] [ 3 1 0 o0 ]
[ 2 -14 0 -23] [ 1 -4 1 o0 ]

1: [ 6 0 18 -8 ]] 1: [ 3 2 7 1 1]      
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'MATR' directory Program 'PUTR'

PLACING A ROW IN A MATRIX
 

'PUTR' places a row R in a matrix A, at row number n, thus transforming matrix A into matrix
B, as shown in the functional diagram below:

  

  

  

3 A 3

2 R 'PUTR' 2
>

1 n 1 B    
  

'PUTR'": ( Checksum: # 8768d, Size: 84 bytes)

 

« {1} + SWAP
- L
« 1 3 PICK SIZE 2 GET FOR i

L i GET PUTI
NEXT
DROP

»  
 

N.B: R may be a row vector or a row matrix.

 

 

 

 

Example:

[t 4 7 5 1 ]
[ -3 10 -7 0 ]
[ 5 -1 5 3 ]

3: [ -9 15 0 2 1]]
[(r 4 7 5 1 ]

2: [ 7 1 8 9 ] 'PUTR' [ 7 1 8 9 ]

> [ 5 -1 5 3 ]
1 2 1 [ -9 15 0 2 1]]    
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'MATR'directory Program 'PUTC'

PLACING A COLUMN IN A MATRIX

'PUTC' places a column C in a matrix A, at column number n, thus transforming matrix A into
matrix B.

N.B: 'PUTC' calls program 'PUTR'.
Column C may be written as a column vector or column matrix.

The functional diagram is as follows:

  

  

  

3 A 3

2 C 'PUTC' 2

>
1 n 1 B      

'‘PUTC": ( Checksum: # 59798d, Size: 53.5 bytes)

 

« ROT TRN ROT
DUP SIZE 1 1 suB RDM
ROT PUTR TRN

  
 

 

 

 

 

Example:

[L 4 7 5 1 ]

[ -3 10 -7 0 ]
[ 5 -1 5 3 ]

3: [ -9 15 0 2 1]
(r 4 7 7 1 ]

2: [ 7 1 8 9 ] 'PUTC' [ -3 10 1 0 ]
> [ 5 -1 8 3 ]

1 3 1 [ -9 15 9 2 1]      
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'MATR' directory Program 'GETR'

EXTRACTING A ROW FROM A MATRIX

'GETR' extracts row number n from a matrix A, the result being a vector R.

The functional diagram is as follows:

  

2: A 'GETR' 2:
 

 

    
  

'GETR'": ( Checksum: # 60021d, Size: 51 bytes)

 

« SWAP TRN DUP SIZE 2 2 suB
0 CON ROT 1 PUT *

  
 

 

] 'GETR'
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‘MATR' directory Program '‘GETC'

EXTRACTING A COLUMN FROM A MATRIX

'GETC' extracts column number n from a matrix A, the result being a column matrix C.

The functional diagram is as follows:

  

2: A 'GETC' 2:
 

 

  
 

  
 

'GETC": ( Checksum: # 41771d, Size: 48.5 bytes)

 

« OVER SIZE 1 1 PUT 0 CON
TRN SWAP 1 PUT *

»  
 

 

 

 

[ 3]
[ 4 5 11 -9 4]

2: [ 3 -1 0 3 11]] 'GETC' (L 7 1
> [ -9 ]

1 4 1 [ 3 1]    
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'MATR' directory Programs 'SWPC'
and 'SWPR'

SWAPPING TWO COLUMNS OF A MATRIX

'SWPC' staps the columns numbered n and m of a matrix A, thus transforming matrix A into
a matrix B.

The functional diagram is as follows:
 

 

  

    
  

 

  
 

 

  

 

3: A

2: m 'SWPC'

>
1: n 1: B

'SWPC'": ( Checksum: # 47058d, Size: 126 bytes)

« - m n

« DUP SIZE 2 GET IDN m m 2 -LIST o PUT
n n 2 LIST 0 PUT m n 2 —LIST 1 PUT
n m 2 —LIST 1 PUT *

»

»

Example:

([ 1 -9 6 ]
[ 4 3 -9 ]
[ 11 5 7 1]

2 'SWPC' [r 1 6 -9 ]
> [ 4 -9 3 ]

3 1: [ 11 7 5 1]    
  

 

 

'SWPR' swaps the rows numbered n and m of a matrix A, thus transforming matrix A into a
matrix B.

The functional diagram is as above for 'SWPC'. 'SWPR' also calls 'SWPC'.

'SWPR': ( Checksum: # 19714d, Size: 38.5 bytes)
 

 

 

  

 

« ROT TRN 3 ROLLD SWPC TRN »

Example:

(f 1 -9 6 1
[ 4 3 -9 ]
[ 11 5 7 1]

1 'SWPR' [r 11 5 7 ]
> [ 4 3 -9 ]

3 1 [ 1 -9 6 11    
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'‘MATR'directory Program 'CALCR'

CALCULATIONS ON THE ROWS OF A MATRIX

'CALCR' allows you to perform calculations on the rows of a matrix A, and to modify rows if
required. There are two types of functional diagram:

  

 

  

  

  

 

2: A 'CALCR' 2: A

>
1: Expression 1: Result

3: A 3:

2: Expression 'CALCR' 2:
>

1: n 1: B      

In both cases, "Expression" is an algebraic expression or a program (written in RPN
notation) in which the rows of A are denoted by the names 'R1’, 'R2', 'R3',etc.
In the first case, "Result" indicates the result of the evaluation of "Expression”. This may be a
vector(in the same format as the rows of A) or any other object (particularly if "Expression" is
in fact an RPN program). If "Expression" is an RPN program and does not behave on the
stack like an algebraic expression, the stack may not look the way it does here after
computation.
In the second case, n denotes the number of the row of A to be modified. 'CALCR' places the
result of the evaluation of "Expression" in the nth row of A (the result must of course be a
vector in the same format as the rows of A) and 'B' denotes the matrix thus modified.

N.B: 'CALCR' creates the global variables 'R1', 'R2', etc. (for as many rows as there are in
the matrix) before purging them. It also calls programs 'GETR' and 'PUTR'.

'‘CALCR'": ( Checksum: # 40802d, Size: 218.5 bytes)
 

« DUP TYPE NOT DUP DROPN 3 PICK SIZE 1 GET

« "'R" SWAP —-STR + OBJ— » RCLF

- n t P f

« STD

1 t FOR i

OVER i GETR i P EVAL STO

NEXT

EVAL

1 t FOR i i P EVAL PURGE NEXT

IF n THEN n PUTR END

f STOF   
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‘MATR'directory

 

Program 'CALCR'

 

  

       

 

 

 

 

 

(continued)

PROGRAM 'CALCR': PRACTICAL EXAMPLES

Example 1: in 4 seconds,

(L 1 -1 3 0 ] (L 1 -1 3 0 ]
[ O 5 2 4 ] [ o 5 2 4 ]

2:| [ 6 -2 8 -7 1] 2:| [ 6 -2 8 -71]]
'CALCR'

1: 'R1+2*R3-R2' > 1:|[ 13 -10 17 -18 ]

This example simply evaluates the expression:

'R1+2*R3-R2', with R1 = [ 1 -1 3 0 ]
R2=[0 5 2 4]

and R3 = [ 6 -2 8 -7 ],
and enters the result at level 1.

Example 2: in five seconds,

[l 1 -1 3 o0 ]
[ o 5 2 4 ]

3:{ [ 6 -2 8 -7 1]]

2 'R1+2*R3-R2' [[ 13 -10 17 -18 ]
'CALCR' [ o 5 2 4]

1: > 1:| [ 6 -2 8 -7 1]      
Here, we take the data previously obtained and tell 'CALCR' to place the result in row 1 of

 

 

the matrix.

Example 3: in four seconds,

[L 1 -1 3 o0 ]
[ O 5 2 4 ]

[[ 1 -1 3 0 ] 4:| [ 6 -2 8 -7 1]
[ o 5 2 4 ]

2:{ [ 6 -2 8 -7 1] 3: 1

« R1 R2 DOT 2: 32
R1 R3 DOT 'CALCR'

1: R2 R3 DOT > 1: -22    

 

 

 

    
In this example, we evaluate a program that successively calculates the scalar products of
R1 and R2, R1 and R3, then R2 and R3.
We can see here that it is impossible to use an algebraic expression (as the instruction DOT
cannot be used).
Furthermore, we can also see that the contents of the stack once 'CALCR' has been run may
depend on what you put into the program to be evaluated.
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'MATR' directory Program '‘CALCC'

CALCULATIONS ON THE COLUMNS OF A MATRIX
 
 

'CALCC' allows you to perform calculations on the columns of a matrix A, and to modify
columns if required. There are two types of functional diagram:

  

 

  

  

  

 

2: A 'CALCC' 2: A

>
1: Expression 1: Result

3: A 3:

2: Expression 'CALCC' 2:
>

1: n 1: B      

In both cases, "Expression" is an algebraic expression or a program (written in RPN
notation) in which the columns of A are denoted by the names 'C1', 'C2', 'C3', etc.
In the first case, "Result" indicates the result of the evaluation of "Expression". This may be a
column matrix (in the same format as the columns of A) or any other object (particularly if
"Expression" is in fact an RPN program). If "Expression" is an RPN program and does not
behave on the stack like an algebraic expression, the stack may not look the way it does
here after computation.
In the second case, n denotes the number of the column of A to be modified. 'CALCC' places
the result of the evaluation of "Expression” (via program 'PUTC') in the nth column of A (the
resg!'; mdust of course be a vector or a column matrix) and 'B' denotes the matrix thus
modified.

N.B: 'CALCC creates the global variables 'C1', 'C2', etc. (for as many columns as there are
in the matrix) before purging them. It also calls programs 'GETC' and 'PUTC".

'CALCC": ( Checksum: # 39066d, Size: 218.5 bytes)
 

« DUP TYPE NOT bDupP DROPN 3 PICK SIZE 2 GET
« "re! SWAP —-STR + OoBJ—» » RCLF

- n t P t

« STD

1 t FOR i
OVER i GETC i p EVAL STO

NEXT
EVAL
1 t FOR i i P EVAL PURGE NEXT
IF n THEN n PUTC END
f STOF  
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'MATR' directory

Example 1:

Program 'CALCC'
(continued)

PROGRAM 'CALCC': PRACTICAL EXAMPLES
 

in five seconds,

 

 

 

 

 

([ 1 -1 3 0 ]
[ o 2 2 4 ]

([ 1 -1 3 0 ] 2:| [ 6 -2 8 -71]
[ o 2 2 4 ]
[ 6 -2 8 -7 ]] ([ 3 1]

' CALCC' [ 12 ]
'ABS(C2)*(C4+C1)" > 1 [ -3 1]      

This example simply evaluates the expression:
'ABS(C2)*(Cc4+Cl)', with:

 

  

 

 

([ 1] ([ -11] ([ o]
Ci= [ 0] c2=[ 2] ca4 =[ 4]

[ 6 1] [ -2 1]] (-7 1]

(therefore ABS(C2)=4(1+4+4)=3) and enters the result at level 1.

Example 2: in five to six seconds,

[[ 1 -1 3 0 ]
[ o 2 2 4 ]

3:] [ 6 -2 8 -7 1]

2 'ABS(C2)*(Cc4+C1)’ ([ 1 -1 3 0 ]
'CALCC' [ o 2 12 4 ]

1: 3 > 1:| [ 6 -2 -3 -7 1]    
  

Here, we take the data previously obtained and tell 'CALCC' to place the result in column 3
of the matrix.

Example 3: in five seconds,

 
 

 
 

 
 

([ 1 -1 3 0 ]
(Ll 1 -1 3 0 ] [ o 5 2 4 ]

[ o 2 2 4 ] 3:| [ 6 -2 8 -71]
[ 6 -2 8 -7 ]]

2: ([ -42 ]]
€« Cl1 TRN C4 * 'cALCC'

c3 {3} RDM » >  1: [ 328]      

In this example, we evaluate a program that calculates:
* The product of the transpose of column C1 and column C4 to obtain the matrix [[ -42 ]].
* The vector obtained by redimensioning column C3, which is equalto [ 32 8].
Here, the use of the commands TRN and RDM means that a program and not an expression
has to be evaluated.
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'MATR' directory Program 'CRARY'

CREATING AN ARRAY WHOSE GENERAL TERM
IS GIVEN BY A FORMULA

'CRARY' creates an array (a vector or matrix array) a whose general term (A(l) for a vector,
A(1,J) for a matrix) is given by the formula F(l) (for a vector) or F(l,J) (for a matrix).

The size of the array to be created must be entered atlevel1.

The calculation formula must be entered at level 2. This formula is an algebraic expression
or a program giving the value of each element of the array for a given value of | (row
number) and J (column number).

The functional diagram for the creation of a vector is as follows:

  

2: F(I) 'CRARY' 2:
 

1: {m} 1: A      

The functional diagram for the creation of a matrix is as follows:

  

2: F(I,J) 'CRARY' 2:
 

   1: { m,n } 1: A
   

'CRARY": ( Checksum: # 3883d, Size: 147.5 bytes)

 

« "« - | J" ROT —-STR + OBJ—

- d f

« d oBJ— DUP 1 = DROPN

- L c

« 1 L FOR i

1 ¢ FOR |
i j t EVAL

NEXT
NEXT
d  —ARRY
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'MATR' directory Program 'CRARY"
(continued)

PRACTICAL EXAMPLES USING PROGRAM 'CRARY"

 

  

      

Example 1: To create a vector of length 4 with a general term A(l)=1"3 (computation time
under two seconds).

2: '1°3" 'CRARY'
>

1: { 4} 1:{ [ 1 8 27 64 ]

Example 2: To create a 3-row, 4-column matrix with a general term A(l,J) equal to |
when |I=J and J"2 when | = J.

 
 

 

2: |'"(I==3)*I + (I # J)*J"2' 'CRARY' ([ 1 4 9 16 ]
> 1 2 9 16 ]

1: { 341} 1: 1 4 3 16 1]     
 

Example 3: To create a square matrix of order 5 with a general term A(l,J)=GCD(l,J). In
this example, the general term is calculated using a program that goes into
the 'ARIT' directory, calculates the GCD of | and J, then comes back into the
'MATR'directory (computation time approximately 4 seconds).

 

 

 

([ 1 1 1 1 1 ]
[ 1 2 1 2 1 ]

2: « I J ARIT GCD MATR » 'CRARY' [ 11 3 1 1 ]

> [ 1 2 1 4 1 ]
1: { 551} 1: [ 1.1 1 1 5 1]      
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'MATR' directory Program 'CARP'

CALCULATING THE CHARACTERISTIC
POLYNOMIAL OF A SQUARE MATRIX
  

'CARP!' calculates the characteristic pol nom:al P(x)=det(xI-A) of a square matrix A.
If A is a square matrix of order n, then P(x) is a nthdegree polynomial:

P(x) = an X" + ap; x1 ..., + ax xk ... + a; x + ag

Where:

an =1, anpa = -tr(A) (tr(A)=trace of A), ao = (-1)" det(A).

The roots of the characteristic polynomial P of A are also the eigenvalues of A.

The polynomial P is given in vector form:

[ an an-1 - a ap J.

N.B: Program 'CARP' calls program 'TR' (to calculate the trace of a square matrix).

The functional diagram is as follows:

 'CARP'

1: A _—> 1: P

 

    
  

'CARP': ( Checksum: # 20812d, Size: 137 bytes)

 

« DUP SIZE 2 GET DUP IDN

- a n id

« 1 id 1 n FOR k

a * DUP TR k / NEG

DUP 3 ROLLD id * +

NEXT

DROP n 1 + —ARRY

  
 

Example: (calculation time 4 seconds)

 

 

[[ 1 9 -5 2 ]
[ 4 0o 6 7 ]
[ 3 -4 -1 2 ] 'CARP'

1: [ 5 -3 1 1 1] >1:| [ 1 -1 11 -495 -1336 ]     
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'MATR' directory Program 'EV234'

EIGENVALUES OF A SQUARE MATRIX OF ORDER 2, 3 OR 4
WITH REAL OR COMPLEX COEFFICIENTS
 

 

'EV234' calculates the eigenvalues of a square matrix A of order 2, 3 or 4 and with real or
complex coefficients.
The eigenvalues of A are the coefficients k such that the system A(X)=kX has non-zero
solutions. They are also the roots of the characteristic polynomial of A.
'EV234' works as follows:

- it first calculates the characteristic polynomial (program 'CARP’);
- it then goes into the 'POLY" directory;
- it calculates the roots of the characteristic polynomial (using 'DEG2', 'DEG3' and

'DEG#4' in the 'POLY"directory);
- then it returns to the 'MATR' directory.

The eigenvalues are placed in a list at level 1 of the stack. The number of times a multiple
eigenvalue appears corresponds to its multiplicity.
Calculation times are approximately:

2 seconds for a 2x2 square matrix.
4 seconds for a 3x3 square matrix.
10 seconds for a 4x4 square matrix.

The functional diagram is as follows:

  'EV234'
1: A —_—> 1: liste

      

'EV234': ( Checksum: # 14042d, Size: 130.5 bytes)
 

« DUP SZE 2 GET
- n

« IF {234} n POS THEN
CARP POLY "DEG" n —STR +
1 4 SUB OBJ> MATR

   
  

END

n —LIST
»

»

Example: (Result in Mode 4 FIX)

[f 3 -1 1 -1 ] 'EV234' { (2.0000,0.0000)

[ 1 3 01 1 ] —_—— (2.0000,0.0000)
[ -1 1 1 1 ] (4.0000,0.0000)

1: [ -1 1 -3 5 1] 1: (4.0000,0.0000) }    
  

Matrix A above therefore has 4 real eigenvalues:
2 is a double eigenvalue.
4 is a double eigenvalue.
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'MATR' directory Program 'DEFL'

EIGENVALUES AND EIGENVECTORS OF A REAL SQUARE MATRIX
(DEFLATION METHOD)

'DEFL' lets you calculate the approximate eigenvalues and associated eigenvectors of a
square matrix A, of order n, with real coefficients, where A has n real and separate

  

  

  

  

 

eigenvalues
ki, k2, ..., kasuchthat |k;| < |kz| < ... < |kul.

Functional diagram:

5: . —elg;n;e;t;r—u;

4: 4: eigenvalue Kk,

3: 3: eigenvector u,

2: 'DEFL' 2: eigenvalue k,

1: A ’ 1: eigenvector u,      

'DEFL' halts whenever an eigenvalue k is obtained and the value is displayed at level 2 of
the stack. The unit eigenvectorfor the eigenvalue k appears at level 1. We then find all the
values up to the last eigenvalue by pressing CONT.
'DEFL' uses an iterative algorithm for finding eiegenvalues. Iteration halts when a value 'eps’,
which is equal by default to 1E-8,is reached (see this value in the text of the program). This
value can be modified by inserting a new value for 'eps' at level 1 of the stack (before calling
'DEFL’), in which case the matrix A is shifted up to level 2. The smaller 'eps' is the better the
approximation is, but calculation times are increased.
N.B: eigenvalues are calculated in order of decreasing absolute value. The speed with which
an eigenvalue is calculated will increase proportionally with the size of its absolute value,
with respect to other eigenvalues with lesser absolute values.

Example:

Let matrix A be equal to:
(L + -9 -9 -9

A=[-13 19 o0 22
[ -13 22 -3 22
[ 26 -31 13 -34

Wefind (in 8 FIX mode):
In 12 seconds: k =-24.9999989 and

u=1[ -2.0116359E-9 0.40824829 0.40824829 -.81649658 ].
In 24 seconds: k =10.00000001 and

u=_[ -0.50000000 0.50000000 0.50000000 -0.50000000 ].
In 23 seconds: k =-3.00000000 and

u = [ 3.97471899E-9 -0.70710678 -3.58306366E-9 0.70710678 ].
In15seconds: k = 1.00000000 and

u = [ 0.63245553 -.316222777 -.316222777 0.63245553 ].

We can therefore say that the eigenvalues of A are -25, 10, -3 and 1, and that the
corresponding eigenvectors associated with these values are:

(o,1,1,-21, (-1,1,1,-11, [(0,1,0,-1] and [2,-1,-1,2] respectively.
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'MATR' directory

 
 

Program 'DEFL'

 

(continued)

TEXT OF PROGRAM 'DEFL'

'DEFL": ( Checksum: # 29049d, Size: 485 bytes)

« |IF DUP TYPE THEN .00000001 END

SWAP DUP SIZE 2 2 SuB DUP 0 CON

DUP ROT 1 GET

- eps a old new p
«

« —> mat

« old 1

1 P START RAND PUTI NEXT DROP

DO
'old' STO mat old * DUP ABS /

IF DUP old DOT 0 < THEN NEG END

DUP ' new' STO
UNTIL ' ABS (new-old) < eps' END
mat new * DOT new ABS / new

»

»

-  evmax
« 1 P FOR k

a evmax EVAL

IF k p < THEN
HALT
DUP2 a TRN evmax EVAL

ROT DUP2 DOT /
DUP SIZE 1 + RDM SWAP
1 OVER SIZE + RDM *
3 ROLLD + 2 / *
'a’ SWAP STO-

END
NEXT

»

»

»  
 

N.B: in the practical example given above, the results depend on the HP48's random
number generator and might therefore differ from those | myself have obtained.
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'MATR' directory Program 'RANK'

CALCULATING THE RANK OF A MATRIX

'RANK' calculates the rank of a matrix A (i.e. the number of linear independent columns or
rows in A), having first transformed A into an upper triangular matrix B (using the Gaussian
pivot method).

Functional diagram:

  

2: ' RANK' 2: B
 

1: A 1: RANK (A)      

N.B: program 'RANK' calls program 'SWPR'.

'RANK' rounds off to 7 decimal places to avoid mistakes due to round-off errors and to
ensure that the pivotis of sufficient magnitude.
The final form of the matrix is also rounded off to 9 decimal places, which theoretically
prevents any zero coefficients from appearing.
The instructions "7 RND" and "9 RND" can be modified if you feel that figures are being
rounded off too strictly or notstrictly enough.

‘RANK': ( Checksum: # 49944d, Size: 582 bytes)

 

« DUP TYPE NOT DUP DROPN OVER SIZE EVAL
1 1 0 0 - f nr nc i j rk p

« « 0 i nr FOR ii

OVER ii j 2 -LIST GET ABS DUP2
IF < THEN ii 'rp' STO SWAP END

DROP NEXT

« DUP i j 2 —LST GET —  piv

1 f NOT i * + nr FOR ii
ii i - THEN

ii i 2 —LIST 3 PICK
ii 2 —LIST GET piv
/ NEG PUT

» - fp pv

« WHILE i nr <

REPEAT fp EVAL

IF 7 RND THEN

'rk' 1 STO+

IF i P < THEN i p SWPR END

IF i nr < f OR THEN pv EVAL END

'i! 1 STO+

j nc < AND
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'MATR' directory Program 'RANK'
(continued)

PRACTICAL EXAMPLE USING PROGRAM 'RANK'
  

Example 1: (in approximately 5 seconds)

 

 

 

 

      

(L5 -9 6 2 ]
'RANK' 2: 0 -1.6 -.6 =-2.2 ]

(c 2 -5 3 1 ] > 0 0 -2.25 -2.25]
[ 3 -7 3 -1 ] 0 0 0 1 1]
[ 5 -9 6 2 ]

1: [ 4 -6 3 1 1] 1: 4

Example 2: (in approximately 13 seconds)

Matrix A equal to:

[[ 18 -12 10 11 -9 -19 10 ]
[ 4 5 9 5 2 1 3 ]

A = [ 1 8 5 2 4 6 1 ]
[ 10 5 3 4 1 2 5 1]
[ -6 0 6 1 1 -1 -2 ]]

is a matrix of rank 3, and the triangular matrix B obtained is written (in 2 FIX mode):

[[ 18 -12 10 11 -9 -19 10 ]
[ 0 11.67 -2.56 -2.11 6 12.56 -.56 ]
[ 0 0 8.46 3.94 .06 -3.03 1.14 ]
[ 0 0 0 0 0 0 0 ]
[ 0 0 0 0 0 0 0 1]

Variant:

If we put a non-zero real number at level 1 of the stack before calling 'RANK' (matrix A is
shifted up to Tevel 2), triangulation of the resulting matrix B obtained is taken further, as all
the coefficients above a non-zero pivot have been cancelled out.
This variant is used in programs 'SYST' (symbolic resolution of a linear system) and 'EIGSP"
equations of eigensubspaces). In the example above, the matrix obtained using this variant
still in 2 FIX mode) would be:

[[ 18 0 0 5.39 -2.88 -3.45 8.43 ]
[ 0 11.67 0 -.92 6.02 11.64 -.21 ]
[ 0 0 8.46 3.94 .06 -3.03 1.14 ]
[ 0 0 0 0 0 0 0 ]
[ 0 0 0 0 0 0 0o 1]
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'MATR' directory Program 'SYST'

SYMBOLIC SOLUTION OFA SYSTEM OF LINEAR EQUATIONS

'SYST!'lets you find the symbolic solution of a system of n linear equations in p unknowns:

  

 

aill X1 + a2 X2 R + aip Xp = b,

a1 XxXi + az; X2 + ..... + a»p Xp = b,

anil X1 + an2 X2 + ... + anp Xp = bn

2: A 'SYST' Symbolic
> expression

1: B 1:| of solution.      

If we write the matrix of the system A and the vector of second members B, we get the
following functional diagram:

The s¥mbolic expression of the solution is:
he message "No solution"if the system has no solution.

- A list containing the equation(s) defining the general solution of the system. These may
be in the following forms:

'x3=-17" (for example) if -17 is the only value of the unknown X3 that satisfies the system;
or:
'X2=3*X4-2*X5" (for example) if the solution of the system expresses the unknown X2 in
terms of the unknowns X4 and X5 (which are both undetermined).
(The unknowns of the system are written X1, X2, X3,...).

N.B: program 'SYST' calls program 'RANK'.

Example: (in 16 seconds)

Solve the system:
{ 2X; + 5X; + 10X3 + 17X4 +26Xs

3X, 6X, + 11X3 + 18Xy +27Xs

4X;, + 7X; + 12X3 + 19X4 +28Xs

+

i
n

w
N
P

(Result in 8 FIX mode)
 

 

 
 

{ 'X1=1.33333333
([ 2 5 10 17 26 ] +1.66666667*X3

[ 3 6 11 18 27 ] 'SYST' +4*X4+7*X5"'
2: [ 4 7 12 19 28 ]] > 'X2=-0.33333333

-2.66666667*X3
1: [1 2 3] 1: -5*%X4-8*X5 }     
 

The above system therefore has an infinite number of solutions. The values of X3, X4 and X5
are arbitrary and X1 and X2 are given respectively by:

X1 4/3 + 5X3 /3 + 4X4 + 7Xs

X> -1/3 -8X3 /3 - 5X4 -8Xs
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'MATR!'directory Program 'SYST'

 

 

(continued)

TEXT OF PROGRAM 'SYST'

'SYST": ( Checksum: # 8818d, Size: 464 bytes)

« —STR SWAP TRN —-STR 1 OVER SIZE 1 - SuUB

SWAP + OoBJ— TRN 1 RANK OVER SIZE 2 GET

« RCLF STD nex ROT —-STR + OBJ— SWAP STOF »

- a rk nc var

« {}
1 rk FOR i

a i {1} + o
DO DROP GETI UNTIL DUP EVAL END

SWAP 2 GET

IF DUP 1 == THEN

3 DROPN ""No solution' DOERR

END
1 -

- piv

« DROP i var EVAL 'a(i,nc)/piv' EVAL
IF i 1 + nc < THEN

i 1 + nc 1 - FOR jj
'—a(i,jj)/piv' EVAL

var EVAL * +

NEXT
END

NEXT  
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‘MATR'directory Program 'EIGSP'

EQUATIONS OF EIGENSUBSPACES OF A SQUARE MATRIX
 

'EIGSP' lets you find the equation(s) of the eigensubspace of a square matrix A, with respect
to an eigenvalue k. It therefore calls program 'SYST' to solve the system (A-kI)X=0
symbolically, where | is the identity matrix of the same order as A and X is a vector whose
components are denoted by X1, X2, X3,etc.

Functional diagram:

  

 

2: A 'EIGSP' Equations of
> an eigen-

1: k 1: subspace      

The equation(s) is/are given in list form and according to the syntax of the program 'SYST". If
k is not a true eigenvalue of A, the resultis { 'X1=0' 'X2=0' 'X3=0' ...)

'EIGSP': ( Checksum: # 44125d, Size: 54.5 bytes)
 

« OVER IDN * - DUP SIZE
1 1 suB 0 CON SYST

   

Example: (in 12 seconds)

 

'EIGSP'
>  

1: |{'X1=X4' 'X2=X4' 'X3=X4'}

P
R
w
R

P
W
R
R

—
e   

N

m
~
r
T
r
e
E
.
T

P
R
P
W
w

W
R
R
R

 

 

   
In other words, 6 is a single eigenvalue of the matrix and the eigensubspace is the straight
line corresponding to the vector generated by [ 1 1 1 1 ] (obtained by giving a value of 1 to
the variable X4).

Similarly, with the same matrix and with k=2, the result is:
'X1=-X2-X3-X4'

meaning that 2 is a triple eigenvalue, the eigensubspace being generated by the vectors:
[-1001], [ -1 010 ]and [ -1 1 0 0 ] (obtained by giving a value of 1 to
one of the variables X2, X3 and X4 and a value of 0 to the other two).
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'‘MATR'directory Programs 'DIVAg'
and 'INVAC'

DIVIDING MATRICES WITH IMPROVED ACCURACY
 

'DIVAC'allows you to obtain greater accuracy than with the / command (dividing an array by
a matrix) by using the RSD instruction on the HP48. This gives us the following functional
diagram:

  

2: A 'DIVAC' 2:
  

1: B 1: B (-1)*a      

where A is an array and B is a square matrix.

'DIVAC': ( Checksum: # 63411d, Size: 44.5 bytes)
 

« DUP2 / 3 DUPN RSD ROT / + SWAP DROP »

Example:

 

([ 38 61 ] ([ 5-3 7]
With A = [ 8767 ] andB=[8 1 6 ] wefind:

[-31 -7 1] [ 4 -5 -2 ]]
Using /:

[[ 5.99999999998 2.99999999999 ]
B (-1)*A = [ 9.00000000002 .999999999994 ]

[ 5.00000000003 7.00000000001 ]]
and using 'DIVAC":

([ 6 3] o
B (-1)*Aa = [ 9 1 ] whichisthe exact result.

[ 5 711

INVERSE OF MATRICES WITH IMPROVED ACCURACY
 

'INVAC'lets you find the inverse of a square matrix with greater accuracy than with the INV
command (which has the same function as the 1/x key on the keypad).
The functional diagram is as follows ('INVAC' calls 'DIVAC'):

'INVAC'
1: A —_—> 1: AT (-1)
  

     
 

'INVAC": ( Checksum: # 64408d, Size: 35.5 bytes)
 

« DUP IDN SWAP DIVAC »
 

Examples:

[[-2 -3 2] _
witha=[6 1 6 ] , wefind

[ 4 5

[

N

-2 1]
Using INV:

[ -4.00000000022 .500000000027 -2.50000000014 ]
A"(-1)= [ 4.50000000026 -.500000000031 3.00000000016 ]

[ 3.25000000018 -.250000000021 2.00000000011 ]]
and using 'INVAC"

([ -4 .5 -2.
A“(-1)=[ 4.5 -.5 3

[ 3.25 -.25 2

5]
] which is the exact result.

] ]
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'MATR'directory Program 'ADDID'

BOUNDING A MATRIX TO THE RIGHT WITH THE IDENTITY MATRIX
 

 

'ADDID' lets you bound a matrix A in the format {n,p} to the right with the identity matrix of
order n. The result is a matrix B in the format { n, n+p }.

'ADDID' is called when running program 'EQLR'. It is also most useful when inverting a
matrix using the Gaussian pivot method (see program 'PIVOT').

The functional diagram is as follows:

  'ADDID'

1: A _—> 1: B
      

'ADDID": ( Checksum: # 38199d, Size: 135.5 bytes)
 

« TRN DUP SIZE EVAL
P

« p n + n 2 —LIST RDM
P * 1 + n P + n * FOR

i 1 PUT
n 1 + STEP

  
 

Example: (in one second)

  

 

[[1 3 2] [[1 3 2 1 0 0 0 0 0]
[8 7 5 ] 'ADDID' [8 7 5 0 1 0 0 0 O ]
[6 4 9 ] > [6 4 9 0 0 1 0 0 0]
[0 3 8] [0 3 8 0 0 0 1 0 0]
(7 7 7] [7 7 7 0 0 0 0 1 0 ]

1: [ 2 5 971 1: [2 5 9 0 0 0 0 0O 1 1]      
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'MATR' directory Program 'MPOL'

MINIMAL POLYNOMIAL OF A SQUARE MATRIX
 

'MPOL' calculates the minimal polynomial P of a square matrix A, i.e. the lowest-degree unit
polynomial such that P(A)=0 (the polynomial P divides the characteristic polynomial of A.
See program 'CARP' in the 'MATR' directory for further details).

The functional diagram is as follows:

 'MPOL'

1: A _—> 1: Expression

 

      

where "Expression" is an algebraic expression of the equation P(a)=0. If, for example, the
minimal polynomial of AisP = X3 - 3*X + 2, then the expression obtained is:

'"AT3-3*A+2*I=0"
where the letter | denotes the identity matrix with the same format as A.

N.B: 'MPOL' calls 'ADDID', 'RANK' and 'GETR' in the 'MATR' directory, and 'ELML'in the
'POLY"directory.

'MPOL": ( Checksum: # 24296d, Size: 341.5 bytes)

 

« DUP SIZE 1 GET DUP IDN

— a n b

« n 1 + DUP 2 —-LIST 0 CON
+

1

DUP sSQ n - FOR i

b oBJ— DROP 'b' a STO*

n 1 + n SQ 2 —-LIST —ARRY *
ADDID RANK DROP n 1 + GETR
POLY ELML MATR DuP 1 GET /| OBJ—
 

  »

 

Note:the coefficients obtained are real and likely to include round-off errors. If the
coefficients of A are rational, then so are those of the minimal polynomial P (betterstill:
if A has integer coefficients, then so does P).

It seems wise in such cases to force the approximation to produce rational values of the
coefficients obtained using the instruction —Q, first switching to n FIX mode (with the
integer simply serving to compensate for round-off errors).
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'MATR' directory Progr(am 'MP(chj.)'
continu

PROGRAM 'MPOL': PRACTICAL EXAMPLES
 

 

Note:

The run time and space required in memory for 'MPOL' increase considerably as the order of
the square matrix A for which we want to find the minimal polynomial increases.
Computation time is therefore approximately:

12 seconds for a 3x3 square matrix.
25 seconds for a 4x4 square matrix.

  

 

       

  

 

       

 

 

     
  

 

 

Example 1:
(Result obtained in STD mode)

(f 3 -1 1 ]
[ -1 3 1 ] 'MPOL'

1: [ 1 1 3 1] > 1: 'AT2-5*%A+4*I=0"

Example 2:
(Result obtained with —-Q in 8 FIX mode)

(f 1 1 1 ]
[ 1 1 1 ] 'MPOL'

1: [ 1 1 1 7] > 1: 'A"2-3*A=0"'

Example 3:
(Result obtained in STD mode)

[[ 5 1 3 -21]
[ 4 -1 6 -4 ]
[ 3 1 1-1] 'MPOL' 'AT4-8*A"3-14*A"2

1: [ -2 -1 -1 3 ]] > 1: +50*A+3*I=0"

Example 4:
(Result obtained in STD mode)

[[-142 21 -217 213 ]
[ 300 -47 463 -451 ]

[ 190 -30 293 -284 ] '"MPOL'
1: [ 68 -12 107 -102 ]] > 1:| 'A"4-2*A"3+A"2=0'     
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'MATR'directory Program 'PIVOT'

GAUSSIAN PIVOT METHOD

'PIVOT' allows you to apply the Gaussian elimination or "pivot" method to a matrix A. Two
options are open to the user, depending on how far you wish to pursue the method:

First option:

Each pivot found eliminates all the terms below it.
Matrix A will therefore be gradually transformed into a matrix whose coefficients below the
leading diagonal are zero (or more precisely, all the coefficients whose row numberis higher
than their column number).
This method is useful for determining the rank of a matrix, or for transforming a system of
linear equations into a "cascading" system.

Second option:

Each pivot found eliminates all the terms above and below it.
Wherever a pivot has been used in a column it therefore remains the only non-zero element.
This method is used to invert a square matrix A (A will need to be bounded first to the right
by the identity matrix, using program 'ADDID').
We can therefore use the method to solve a system of equations by making the system
matrix a diagonal matrix.

Let us suppose that A is a matrix in the format {n,p} (n rows, p columns). At the kth step in
the method, the pivot used is the term at the intersection of the kth row and the kth column.
The user will have to decide whether to swap rows (program 'SWPR') if ever the coefficient
to be used as the pivotis zero (in which case you will be prompted by a message).

There are two functional diagrams for the two options described above:

First option:

program halted)
  

2: 2: B
   

1: Matrix A 1: List      

(Here we simply eliminate the coefficients below the diagonal).

Second option:

program halted
  

2: Matrix A 2: B
  

    1: 1 1: List
  

(Here all coefficients on either side of the pivot in the same column will be eliminated).
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'MATR' directory Progra(lm 'PIVOT)'
continued

'PIVOT' halts at each step in the calculation,i.e. once a pivot has been used to its full extent.

The various operations done using the pivot are then listed in the form of algebraic
expressions.

To take an example, the expression:

'R4=2*R4-3*R2'

means that the 4th row (denoted R4) has been replaced by another row found using the
following operation:
"twice row R4 - three times row R2".

This means that the pivot is in the 2nd row and that, for example, rows 2 and 4 of the matrix
were in the following form:

Rl -> [[[ * * *x *x x| ]

R2 -> [0 2 * *x x | ]

R3 -> [0 * x *x x | ]

R4 -> [0 3 * *x *x ]

........ etc

The operation described above therefore eliminates the coefficient equal to 3 in row R4.

The program halts after each step in the method, so we therefore get a list of all operations
done at level 1 and the modified matrix at level 2.
You simply have to copy the list and the modified matrix onto a piece of paper before
pressing DROP (to delete the list) then CONT to continue the program and move on to the
next pivot. The program terminates once all the steps in the method have been completed.

Note:
PIVOT' constantly tests for integer coefficients in the matrix in question.
If required, it will perform simplifications while eliminating by calling program 'SIMP' in the
'ARIT" directory (the aim being to simplify all operations as far as possible).

Example:
In the case below, the operation used to eliminate the coefficient 6 in R4 is:

'L4 = 4*L4 - 3*L2'

Rl -> [[[ * * * *x *x . ]

R2 -> [0 8 *x *x x| ]

R3 -> [0 * x *x x. ]

R4 -> [0 6 * * *x . ]

........ etc

(which is simpler than 'R4 = 8*R4 - 6*R2').

Note:

Program 'PIVOT' calls program 'SIMP" in the 'ARIT' directory.
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'MATR' directory

 

 

Program 'PIVOT'

 

(continued)

TEXT OF PROGRAM 'PIVOT'

'PIVOT": ( Checksum: # 30359d, Size: 516.5 bytes)

« DUP TYPE NOT DUP DROPN OVER SIZE EVAL

« RCLF STD "'R" ROT —-STR + OoBJ— SWAP STOF »

- f r c R

« 1 r ft NOT - ¢ MIN FOR j
WHILE DUP j 2 —LIST GET NOT

REPEAT  "Zero pivot" HALT END
DUP j GETR DUP j GET

- R p

« {}
1 f NOT j * + r FOR i

F i j = THEN
OVER i GETR DUP j GET

IF DUP THEN

P
IF DUP 0 < THEN

R—C NEG C—R
END

IF OVER FP NOT OVER FP  NOT AND
THEN ARIT SIMP MATR

END
DUP2 SWAP i R EVAL ROT OVER *
ROT j R EVAL * - =
5 ROLL SWAP + 5 ROLLD

ROT * Rj ROT * - i PUTR SWAP
ELSE

DROP2

END

END

NEXT
»

HALT

NEXT   
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'MATR' directory Progr?m 'PIVOT)'
continued

PROGRAM PIVOT: PRACTICAL EXAMPLE

Example 1:

We want to find the inverse of the matrix:

[[ 4 3 8]
A= [251]

[ 632]]

We put matrix A at level 1. We then call program 'ADDID' to bound matrix A to the right with
the identity matrix of order 3.

We enter a value of 1 at level 1, the matrix is shifted up to level 2, and we call program
'PIVOT'. The following results are obtained on the stack (to move on to the next step, delete
the list at level 1 before pressing CONT):

 

 

 

 

   
 

 

[[4 3 8 1 0 0]
[ 0 7 -6-1 2 0]

2:| [ 0-3-20-3 0 21]]

{ 'R2=2*R2-R1'
1: 'R3=2*R3-3*R1' }

[[28 0 74 10 -6 0 ]
[07 -6 -1 2 0]

2:| [ 00 -158 -24 6 14 ]]

{ 'R1=7*R1-3*R2'
1: '"R3=7*R3+3*R2' }

[[ 2212 o© 0 -98 -252 518 ]
[ 0 553 0 -7 140 -42 ]

2:| [ o 0 -158 -24 6 14 ]]

{ 'R1=79*R1+37*R3'
1: '"R2=79*R2-3*R3"' }   

All we then need to do is divide the first row by 2212, the second by 553 and the third by
-158 to obtain the expression of the inverse of the initial matrix A in the right-hand part of the
array.

Forline 1, for example, do (having first deleted the list):

DUP 1 GETR 2212 / 1 PUTR

More precisely, using program 'A—Q' in the 'R.C' directory on each row, we find:

1 [[-7 -18 37]
A (-1) = — [-2 40 -12]

158 [24 -6 -14]]
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'MATR' directory Program '‘PIVOT'
(continued)

PROGRAM PIVOT: PRACTICAL EXAMPLE
 

Example 2:

We want to calculate the rank of the following family of vectors:

vi1=[1 5 913 17 ],
U2 =3 711 15 19 ],
u3=[2 6 1 011 ],
U4 = [ 1 3 14 21 16 ].

We put the matrix:
[l1 5 913 17 ]

[ 3 7 11 15 19 ]
A= [2 6 1 011 ]

[ 1 3 14 21 16 ]]

at level 1 and call program 'PIVOT'

We obtain the following steps:

 

 

 

 

 

 

 

 

(f1 s 9 13 17 ]
[0 -8 -16 -24 -32 ]
[ 0 -4 -17 -26 -23 ]

2: [0 -2 5 8 -11]]

{ 'R2=R2-3*R1'
'R3=R3-2*R1'

1: 'R4=R4-R1'

[(fr 5 9 13 17 ]
[0 -8 -16 -24 -32 ]
[0 0 18 28 14 ]

2: [0 ©0-36 -56 -28 ]]

{ 'R3=2*R3-R2'
'R4=4*R4-R2' }

1:

(fr 5 9 13 17 ]
[0 -8 -16 -24 -32 ]
[0 0 -18 -28 -14 ]

2:/ [0 o o 0 0 1]]

1: { 'R4=R4+2*R3' }   
The last step shows that the family of vectors U1, U2, U3 and U4 has a rank of 3
(triangulation finishes with precisely three non-zero pivots).
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'MATR' directory Program 'EQLR'

FINDING LINEAR RELATIONS OR EQUATIONS
  

'EQLR' is a program designed to find the linear equations of a vector space, or the linear
relations that may exist between two given vectors.

There are two functional diagrams for this program, depending on what you want to do with
it:

  

 

2: Matrix 'EQLR' Equations (if 1)
> or

1: 1 or 2 1:|Relations (if 2)      

'EQLR' calls programs 'ADDID' and 'RANK'.

See the practical examples on the following pages for further details.

‘EQLR': ( Checksum: # 32602d, Size: 307 bytes)

 

« { «TRN "'X" » "'u" } SWAP GET EVAL
OVER SIZE EVAL - 8 n P
« DUP  ADDID 1 RANK ROT RANK SWAP DROP -

« RCLF STD 8 ROT —»STR + OBJ—+ SWAP STOF »
- m u
« {} IF m THEN

n m - 1 + n FOR i

o 1 n FOR i
3 PICK i P i + 2  -LIST
GET | u EVAL * 4+

NEXT O = +
NEXT

END SWAP DROP  
 

Note:

The approximation of the coefficients in the relations found can be forced to give rational
numbers using the instruction —-Q (switching first to n FIX mode in order to prevent round-
off errors).
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'MATR' directory Program 'EQLR'
(continued)

PROGRAM 'EQLR': FINDING LINEAR EQUATIONS

Let us take the following problem: given n vectors Uy, U,, ..., U, all having p coefficients
(therefore vectors of RP, do the vectors form a family that generates [RP? If not, what are the
linear equations of the vector subspace of RP that they generate?
The dimension r of this vector subspace is called the family's rank:

If r=p, the vectors U, are generators in [RP.
If r<p, the vector subspace they generate is defined by a system of p-r linearly

independent equations.

Program 'EQLR' deals with this problem as shown in the functional diagram below:

 

2: Matrix
  'EQLR'

1: 1 —_—> 1: List      

'Matrix' is a matrix whose n rows are the n vectors U, (each with p coefficients).
'List' is a list of equations found:
This list is empty if the vectors Uy generate all of RP.
If the system of n vectors U, has a rank r<p, the list includes the p-r linear independent
equations defining the subspace generated by the vectors U,.
Each equation is written in the form of an algebraic expression linking the coordinates
denoted by X1, X2, etc.

Example:

We want to determine the subspace of R® generated by the vectors:

Ul
U3

[15 913 17 ] U2
[ 23 4 5 6] U4

[ 37 11 15 19 ]
[ 3915 21 27 ]

We therefore put the following matrix at level 2:

[ 15 913 17 ]
[ 37 11 15 19 ]
[ 23 4 5 6]
[ 3915 21 27 ] ]

And put the integer 1 at level 1 then call 'EQLR'".

After 32 seconds, we find the following at level 1 of the stack:

{ '—(.75*X1)+3%X4-2.25*X5=0"
'-(.66666667*X2)+2*X4-1.33333333*X5=0"
'-(.5*%X3)+X4-.5*X5=0" }

These three relations can be written in simpler form:

X1 - 4*X4 + 3*X5 = 0, X2 - 3*X4 + 2*X5 = 0, X3 - 2*X4 + X5 = 0.

Which proves that the system of vectors U, has a rank of 2, since 3 linearly independent
equations are needed to characterize the vector subspace of R® that they generate.
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'MATR' directory Progr?m 'EQLR)'
continued

PROGRAM 'EQLR': FINDING LINEAR RELATIONS
  

Let us take the following problem: given n vectors U,, U,, ..., U,, are there any non-trivial
linear relations between the vectors, i.e. relations of the type: a;U; + a,U, +...+aU, =0
where the scalars a, are not all equal to zero?

Program 'EQLR' deals with this question by giving (if the vectors are related) the largest
possible number of independent relations between the vectors (if the n vectors satisfy k
linearly independent relations, they form a system with a rank of n-k).

The functional diagram is as follows:

 

2: Matrix
  'EQLR'

1: 2 _—> 1: List      

‘Matrix' is a matrix whose rows are the vectors U,.
'List' is the list of relations found:
The list is empty if the vectors U, are free.
If the system of n vectors U, has a rank of n-k, the list includes k linearly independent
relations found between the vectors U,.
Each of these relations is an algebraic expression in which the vectors are denoted by U1,
U2, etc. according to the row in which they appearin the initial matrix.

Example:

We want to know if there are any linear relations between the vectors:

Ul
U3

[15 91317 ] U2 =137 11 15 19 ]
[ 23 4 5 6] U4=1[39 15 21 27 ]

We therefore put the following matrix at level 2:

And put the integer 2 at level 1 then call 'EQLR'.

After 20 seconds, we find the following list at level 1 of the stack:
{ '-(.75*%U1)-.5*U3+.58333333*U4=0"

'-(1.5*%U2)+U3+.83333333*U4=0"' }

The two relations found can be written more simply:

-9*Ul - 6*U3 + 7*U4 = 0, et -9*U2 + 6*U3 + 5*U4 = 0.

We can therefore deduce that U1, U2, U3 and U4 are related. More precisely, they form a
system with a rank of 2.
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ANALYSIS

 
 

This somewhat vague heading covers the programs in the 'ANLY' directory, which can be
used to solve standard types of problems such as:

*  the equation of the tangent to a given point on a curve Y=F(X).

* finding points on a curve Y=F(X) where the tangent is horizontal.

* finding the points of inflection of a curve Y=F(X).

* approximation of an application using the least squares method.

* interpolation by Lagrange polynomial.

* approximate numerical resolution of non-linear systems.

* partial sums of Fourier series.

A lot of other programs in other directories also use analytical techniques. The programs
here are those which do not clearly belong in a more specialized directory.

Here is the list of programs in the 'ANLY" directory:

TNGT'
'EXTRE'

'INFL'
'‘LSAP'

‘LAGR'

‘PLOT'

ISXYI

'SXYZ'

'‘RK4'

'FOUR’

Equation of the tangent to a curve Y=F(X) at a given point.

Finding the local extreme points of the function Y=F(X).
Finding the points of inflection on the curve Y=F(X).
Least squares approximation, using linear combinations of free functions, of
a function f whose values are known at a certain number of points.

Calculating the Lagrange interpolation polynomial through a family of given
points.
Plotting of the family of points used in programs 'LSAP' and 'LAGR', and of
the curve obtained.

Approximate numerical resolution, using Newton's method, of a system of 2
equations in 2 unknowns:

F(X,Y)=0, G(X,Y)=0
Approximate numerical resolution, using Newton's method, of a system of 3
equations in 3 unknowns:

F(X,Y,2)=0, G(X,Y,2)=0, H(X,Y,Z2)=0
Approximate resolution, using the 4th-order Runge-Kutta method, of the
differential equation Y'=F(X,Y).
Calculating the partial sums of the Fourier series of a given periodic function.
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'‘ANLY' directory Program 'TNGT'

TANGENT TO A CURVE Y=F(X)

‘TNGT' gives the equation of the tangent at the point x = a to the curve Y=F(X), i.e. the
straight line whose equation is:

Y = (X-a)f'(a) + f(a)

This equation is obtained in the form 'y=a*X+b'.

The functional diagram is as follows:

  

2: F(X) '"TNGT' 2:
 

    1: a 1: equation
  

where F(X) is the expression that characterizes the function F (a capital X must be used)
and a is a real number (the x-coordinate of the point of tangency).

TNGT": ( Checksum: # 8951d, Size: 131 bytes )
 

« 'X' STO DUP 'X! ? SWAP EVAL
- dt f
« 'Y' df X' * f X df * - o+ =

'X'  PURGE
»

   
Example:

Tangent to the curve y=LN(1+X2) at the point x=3.
In 3 FIX mode, we obtain:

  

2: "LN(1+X*X)"' 'TNGT' 2:
 

1: 3 1:['Y=0.600*X+0.503"'      
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‘ANLY" directory Program 'EXTRE'

POINTS ON THE CURVE Y=F(X) WHERE
THE TANGENT IS HORIZONTAL
  

'EXTRE!'lets you find the characteristics of a point on the curve Y=F (X ) where the tangentis
horizontal.

The functional diagram is as follows:

  

2: F(X) 'EXTRE'
 

1: a      

At level 2, F(X) is the expression of the function F (in terms of the variable X) and a is a
numerical value with which to start the program. The value of a must not be too far away
from the solution we want.

'EXTRE' uses the ROOT instruction to look for a value X to cancel out the derivative F'.

If it finds one, the program gives:
* the value of X (real number denoted by "X" at level 3).
* the value of F(X) (real number denoted by "F" at level 2).
* the value of the second derivative F" at the point X (in the form of a real number
denoted by "F"").

If F''(X) < 0,wefind alocal maximum.
If F''(X) > 0, wefind alocal minimum.
If F''(X) = 0, (neglecting round-off errors), we usually find a point of inflection where
the tangentis horizontal.

'EXTRE'": ( Checksum: # 51935d, Size: 166.5 bytes )
 

« 'X' PURGE OVER 'X! a9 DUP 'X!' ?
- f a df ddf
« df 'X' a ROOT "X —-TAG

f EVAL "F" —-TAG
ddf EVAL "frrM —-TAG 'X! PURGE

»   
Example: in 12 seconds in "5 FIX" mode:

  

 
2:| '"X*EXP(-{X)' '"EXTRE' 3: X: 4.00000

> 2 F: 0.54134
1: 1 1: F'': -0.01692      

The point (4,=0.54134) therefore represents a maximum value.
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'ANLY' directory Program 'INFL'

POINTS OF INFLECTION ON THE CURVE Y=F(X)
—————————————————————————————————————————
 

'INFL' lets you find the characteristics of a point with a zero second derivative (usually a point
of inflection) on the curve Y=F(X).

The functional diagram is as follows:

  

 

2: F(X) 'INFL' 3: X: .....
> 2: F: .....

1: a 1: F': .....      

At level 2, F(X) is the expression of the function F (in terms of the variable X) and a is a
numerical value with which to start the program. The value of a must not be too far away
from the solution we want.

'INFL' uses the ROOT instruction to look for a value X to cancel out the second derivative F".

If it finds one, the program gives:
* the value of X (real number denoted by "X" at level 3).
* the value of F(X) (real number denoted by "F" at level 2).
* the value of the derivative F' at the point X (in the form of a real number denoted by "F".

fr'(X) = 0, wefind a point of inflection.
fF'(X) = 0, (neglecting round-off errors), we cannot be sure that the point is a point of
inflection.

INFL": ( Checksum: # 16137d, Size: 164.5 bytes )
 

« 'X' PURGE OVER ‘X' d bDupP 'X! 2
- f a df ddf
« ddf 'X' a ROOT "X" —-TAG

f EVAL "F" —-TAG
df EVAL "fF'" —-TAG 'X! PURGE

  
 

Example: in 18 seconds in "5 FIX" mode

  

 

2:| '"X*EXP(-yX)' "INFL' 3: X: 9.00000
> 2 F: 0.44808

1: 6 1: F': -0.02489    
 
 

The point (9,=0.44808) is therefore a point of inflection.
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‘ANLY' directory Program '‘LSAP'

LEAST SQUARES APPROXIMATION

Let (x1,Y1), (X2,Y2),...., (Xi,Yi) be n points in the plane (of distinct pairs of x-
coordinates).
Let p be a family of linearly independent functions F1, ¥2,..., Fi,..., Fp, where
p < n.

This gives us a single application F, which is a linear combination of Fk, to find the best
approximation of the points (Xi,Yi) using the least squares method, i.e. to minimize the
sum:

i=n
(Yi - F(Xxi) )Z2.

1n
™

i

For program 'LSAP' to run correctly (and thus to determine the solution of F), we mustfirst:

* enter for a variable called 'DATA' a vector formed by the points (Xi,Yi) and written as
complex numbers.

example: 'DATA' <-- [ (-2,3) (-1,0) (0,1) (1,5) (2,3) ]

* enter for a variable called 'FUNC' the list of parameters characterizing the functions Fk.

The format of 'FUNC' must be as follows:
{ Fk start step number } where:
"Fk" is the algebraic expression of the function Fk.
"start" is the minimum value of the integer variable k.
"step” is the increment of the integer variable k.
"‘number" is the number of different values of k.

Example: {'X"K' 0 1 5} if we want to find the solution of F as a linear combination of the
functions 1, X, X"2, X3 and X" 4.

Note:Capital 'K' and 'X' must be used in the expression.

The stack is not affected by program 'LSAP', which places the solution F as an algebraic
expression in the variable 'EQ'. The result can thus be displayed using the DRAW instruction
or evaluated by SOLVR.
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'ANLY' directory Program 'LSAP'
(continued)

TEXT AND PRACTICAL EXAMPLE OF PROGRAM 'LSAP'

'LSAP': ( Checksum: # 16447d, Size: 348.5 bytes )
 

« DATA C-R DUP SIZE 1 GET FUNC EVAL
- a b c f m p L

« 1 L FOR i
m .

1
i 1 - P * + 'K' STO
c FOR i

a i GET 'X' STO f EVAL

NEXT

NEXT
L c 2 -LIST —ARRY DUP DUP TRN *
MATR DIVAC ANLY b * 'X! PURGE
0
1 L FOR i

OVER i GET m i 1 - p * +
'K' STO f EVAL * +

NEXT
STEQ DROP 'K' PURGE

»   
N.B: Program 'LSAP' calls program 'DIVAC' in directory 'MATR'.

Example:

We enter the vector [(-3,-1) (-2,1) (-1,2) (1,2) (2,1) (3,0)]
for the variable 'DATA'.

We then look for the application capable of finding the best approximation (using the least
squares method) of the cluster of points (-3,-1), ..., (3,0), written as follows:

F(X)= a + b*cos(X) + c*cos(2*X) + d*cos(3*X) + e*cos(4*X).

We therefore enterthe list { ' cos (K*x) ' 0 1 5) for the variable 'FUNC'.

We then call 'LSAP', which runs for 12 seconds.
'LSAP' puts the following algebraic expression into the variable 'EQ' (in 3 FIX mode):

'1.030+0.401*COS(X)+0.349*COS(2*X)+0.140*COS(3*X)-1.588*C0OS(4*X)"'

Evaluating 'EQ’ gives the following results:

X -3 -2 -1 1 2 3
 

F(X) -0.500 1.000 2.000 2.000 1.000 -0.500

(at-2, -1, 1, 2, the values obtained are correct to 1E-11).

Note:the families of functions most often used are:

Fk(X)=cos(kX), Fk(X)=sin(kX), Fk(X)=X"K, Fk(X)=exp(kX).
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'ANLY' directory Program 'LAGR'

CALCULATING THE LAGRANGE INTERPOLATION POLYNOMIAL
 

Let (x1,Y1), (X2,Y2),....,
distinct pairs of x-coordinates).
This gives us a single polynomial P of degree < n such that for any index i, P(Xi)=Yi. We
say that P is the Lagrange interpolation polynomial corresponding to the cluster of points
(X1i,Yi).

(Xi,Yi), ...., (Xn,¥n) be n points in the plane (of

'LAGR' computes this polynomial and enters it for the variable 'EQ' as an algebraic
expression. We can then plot the polynomial using DRAW or evaluate it using SOLVR.
To do this, we first have to enter the vector [ (X1,Y1) (X2,Y2), (Xn,¥Yn) ]
wi}\o%e\ elements are complex numbers representing the pomts (Xi,vi) for the variable
ID '

'LAGR': ( Checksum: # 17449d, Size: 221.5 bytes )

 

« DATA C-R SWAP DUP SIZE 1 GET

- a n

« 1 n FOR i

a i GET

o n 1 - FOR j

DUP i SWAP

NEXT

DROP

NEXT

n n 2 —LIST —ARRY MATR DIVAC ANLY

0

1 n FOR i

OVER i GET 'X! i - *

NEXT

STEQ DROP
»

»  
 

N.B: Program 'LAGR' calls program 'DIVAC' in the 'MATR' directory.

Example:

Having firstentered [ (-3,3) (-2,1) (-1,2) (1,3) (2,-1) (3,2) ]

for 'DATA' and run 'LAGR', we find in 'EQ' (in 5s):

"4 + 1.03333333333*X - 1.66666666667*X2 - .583333333333*X"3
+.166666666667*X4+ .05*X"5".

This polynomial confirms:

P(-3)=3, P(-2)=.99999999999,
P(2)=-1.00000000001, P(3)=2.

P(-1)=2, P(1)=3,
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‘ANLY' directory Program 'PLOT'

PLOTTING POINTS AND THE CURVE APPROXIMATING TO THEM
 

The variable 'DATA' is assumed to be a vector of complex numbers (Xi,Yi). These
complex numbers represent a cluster of points in the plane.

The variable 'EQ' is assumed to be an algebraic expression (or program) that can be plotted
on the display by DRAW.

'PLOTthen plots the following:

*  the points of the variable 'DATA'.
*  the expression (or program) 'EQ'".

N.B: The points of the variable 'DATA' in fact appear on the display as small squares to
make them easierto see.
The dimensions of PICT and the plotting intervals for the X and Y-axes are not
changed.

Program 'PLOT' is specially designed to be called after programs 'LAGR' (finding the
Lagrange interpolation polynomial) and 'LSAP' (least squares approximation).

We can thus display the cluster of points (Xi, Yi) and the curve approximating to it.

Once all points have been plotted, we return to the GRAPH environment.

We then press 'ON' to quit the program.

'PLOT": ( Checksum: # 60176d, Size: 202 bytes )

 

« {#1d #1d} PX>C {#0d#0d} PX»C -
- d
« ERASE {#0d #0d} PVIEW

DATA OBJ—» 1 GET
1  SWAP  START

DUP d - SWAP d + BOX
NEXT
FUNCTION 'X' INDEP DRAW  GRAPH  
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‘ANLY' directory Program 'SXY'

SOLVING A SYSTEM OF EQUATIONS
IN TWO UNKNOWNS BY ITERATION

'SXY' lets you find an approximate solution, using Newton's method, of a system of two
equations in two unknowns X and Y:

F(X,Y)=0, G(X,Y)=0

The principle is as follows:
We define a sequence (Xn,Yn) starting from an initial point (X0,Y0) and the relation:

-1
X(n+1) X(n)

- [J( X(n),¥(n) ) ]
Y(n+1) Y(n)

F( X(n),¥(n) )

| |

G( X(n),¥(n) )

where J is the Jacobian matrix:

J(X,Y) =
F. (X,Y) F (X,Y)
6l (X,¥) G (X,Y)

In certain conditions, the sequence (Xn,Yn) converges to a solution to the system.

The stack should look like this at the start:
 

2: F(X,Y)
 

1: G(X,Y)   
F(X,Y) and G(X,Y) are the algebraic expressions of the applications F and G (in which a
capital X and Y must be used).

We then call program 'SXY'. The program halts after a short time (as the partial derivatives
are c);omputed) and a menu is displayed with the entries NEW (on the left) and EXIT (on the
right).

We then enter the starting point [ X0, YO0 ] for iteration, in vector form, at level 1 of the
stack.

By pressing the NEW key we obtain [ X1, Y1 ].,then[ x2, Y2 ], etc.

Press the EXIT key to quit the program.

Whenever the program halts, you can enter a new starting point [ X0, Y0 ] atlevel 1 of
the stack (in place of the point [ Xn, ¥Yn ] just obtained) if you want to do another search
before pressing NEW.
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'ANLY' directory Pro%ram 'SXY)'
continued

TEXT OF PROGRAM 'SXY' AND PRACTICAL EXAMPLE
 

'SXY': ( Checksum: # 58688d, Size: 347.5 bytes )

 

f 9
« {XY} PURGE

f 'X' a f 'y' 2 g ‘X' 2 g 'y! d
- dfx dfy dgx dgy

« |
{ llNEwll

« DUP DUP V- 'y’ STO 'X! STO
dfx EVAL dfy EVAL dgx EVAL dgy EVAL
{22} —ARRY INV f EVAL g EVAL
2 —-ARRY * -

»

}
{} {+ {} {}

{ "Bar CONT }
}
TMENU HALT {XY} PURGE 2 MENU  
 

Example:

We want to solve the system x2+y%=1, 2X+Y=1.
We therefore create the stack shown below and call 'SXY".

 

2:| "X*X+Yy*y-1'
 

1:]| '2*X+y-1'   
The menu displaying the "NEW" and "EXIT" entries appears after three seconds. We then
enter the starting point, [1,0] for example, at level 1 and press "NEW".
The point [1,-1] is then entered into the stack after a few seconds. A new point is
displayed (computed within one second) each time you press NEW. In 6 FIX mode we
therefore find:

[ 0.833333 -0.666667 ], [ 0.801282 -0.602564 ],
and [ 0.800002 -0.600004 ], etc...

The sequence (Xn,¥Yn) convergesto [ 0.8, -0.6 ], which gives us a solution to the
problem.

We then press "EXIT" to quit the program.
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'‘ANLY'directory Program 'SXYZ'

SOLVING A SYSTEM OF EQUATIONS
IN THREE UNKNOWNS BY ITERATION

'SXYZ' lets you find an approximate solution, using Newton's method, of a system of three
equations in three unknowns X, Y and Z:

F(X,Y,2)=0
G(X,Y,2)=0
H(X,Y,2)=0

The principle is as follows:

Wle define a sequence (Xn,Yn,Zn) starting from an initial point (Xx0,Y0,z0) and the
relation:

-1

X(n+1) X(n) F(X(n),¥(n),2(n))
¥(n+l) = ¥(n) - [J( X(n),¥(n),z(n) ) ] G(X(n),¥(n),z(n))
Z(n+1) Z(n) H(X(n),¥(n),z(n))

where J is the matrix:

F' (X,Y,2) Fy' (X,Y,2) F,' (X,Y,2)
J(X,Y,2)) = Gx' (X,Y,2) Gy' (X,Y,2) G.' (X,Y,2)

He' (X,Y,2) Hy' (X,Y,2) H' (X,Y,2z)

In certain conditions, the sequence (Xn,Yn,Zn) converges to a solution to the system.

The stack should look like this at the start:
 

 

 

3: F(X,Y,Z)

2: G(X,Y,2)

1: H(X,Y,2)    
"F(X,Y,Z)", "G(X,Y,z)"and "H(X,Y,2Z)" are the expressions of the applications F, G
and H (in which a capital X, Y and Z must be used).

We then call program 'SXYZ'. The program halts after a short time (as the partial derivatives
are computed) and a menu is displayed with the entries NEW (on the left) and EXIT (on the
right).

We then enter the starting point [ X0, YO, ZO0 ] for iteration, in vector form, at level 1 of the
stack.

By pressing the NEW key we obtain [ x1, v1, z1 ].,then[ X2, Y2, Z2 ], etc.

Press the EXIT key to quit the program.

Whenever the program halts, you can enter a new starting point [ X0, Y0, z0 ] atlevel 1
of the stack (in place of the point [ Xn, ¥Yn, zn ] just obtained) if you want to do another
search before pressing NEW.
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'ANLY' directory Program 'SXY2'
(continued)

TEXT OF PROGRAM 'SXYZ' AND PRACTICAL EXAMPLE

 

 

« - f g h

« {XYZ} PURGE 'X' J f 'Y'
g 'X' d g d g 'z d
h 'X' d h a h 'z d
- dfx dfy dfz dgx dgy dgz dhx
« {

{ IINEwH

« DUP DUP V-
'z' STO 'y! STO
dfx EVAL dfy EVAL
dgx EVAL dgy EVAL
dhx EVAL dhy EVAL
{33} —>ARRY INV f
h EVAL 3 —>ARRY

}
{} {1} {}
{ "EXIT" CONT }

}
TMENU HALT {XY 2z} PURGE 2

s ft 'Z a

dhy dhz

'X' STO
dfz EVAL
dgz EVAL
dhz EVAL
EVAL g EVAL

* -

MENU  
 

Example: let us take the system X2+Y2+7Z2=6, X+3Y+2Z=5, X3+Y¥Z=-1.

We therefore create the stack shown below and call 'SXYZ":

3:

2:

1:

 

'X*X+Y*Y+Z*Z-6"'
 

'X+3*Y+2*Z-5"'
 

 'X"34Y*Z+1"'   
The menu displaying the "NEW" and "EXIT" appears. We then enter the starting point,
[3 2 0] for example, at level 1.

A new point is displayed each time you press NEW. In 3 FIX mode we therefore
find: [ 2.041 1.689 -1.053 ], and [1.427
[1.111 1.967 -1.006] etc.

Wesoonarriveat[ 1 2 -1 ].

The sequence (Xn,¥n,
problem.

We then press "EXIT" to quit the program.
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Zn) converges to [1,2,-1], which gives us a solution to the



'‘ANLY' directory Program 'RK4'

SOLVING ADIFFERENTIAL EQUATION Y'=F(X,Y)

'‘RK4' allows you to find an approximate solution to a differential equation Y'=F(X,Y) (a
first-order equation solved for Y').
The method used is the fourth-order Runge-Kutta method.

The principle is as follows:
We want to find the values of the solution f to Cauchy's problem:

£'(x) = F( x, £(x)), £(x0) = y0

where (x0,y0) is a given point (a unique solution can be found, if we admit certain
assumptions about the regularity of F).

We define the sequence Xxn = X0 + n*h, where h is the "step" of the method, and the
sequence Yn defined by its initial term is YO and by the system:

* F( X(n-1),Y(n-1) ).
* F( X(n-1) + h/2 , ¥(n-1) + a/2 ).
* F( X(n-1) + h/2 , ¥Y(n-1) + b/2 ).
* F( X(n-1) + h , Y(n-1) + c ).A

N
o
e

o
o

o
o
o
o

and Y(n) = Y(n-1) + (a + 2*b + 2*c + d ) / 6.

Y(n) are therefore approximate values of F(X(n) )=F(X0+n*h).

Before calling 'RK4', we have to enter the expression F(X,Y) (capital X and Y must be
used) at level 1.
We then start 'RK4'. The program halts after a short time (once the partial derivatives have
been computed) and the following menu is displayed:

 

l NEWJ I ->N ]—>STEPI | EXIT I
 

At the same time the real numbers denoted by "STEP: 0.05" and "N: 1" are entered at level 2
and 1, thus specifying that the default value for the step of the method (the number h) is 0.05
and that one point will be obtained at a time

The step can be changed by entering a new value at level 1 and pressing the "—>STEP" key.
We can also ask for n points each time by entering an integer n at level 1 and pressing the
II__’NII key.

Each time you press the "NEW" key, n points (default value n=1) are computed and
displayed.

All points are given in vector formi.e. [ X, Y ].

Press the "EXIT" key to quit the program.
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‘ANLY' directory Pro?ram 'RK4'
continued)

TEXT AND PRACTICAL EXAMPLE OF PROGRAM 'RK4'
 

‘RK4': ( Checksum: # 55009d, Size: 732 bytes )

 

« [00] .05 1 0 0 0 0

- f v h n k1 k2 k3 k4

« .05 "STEP" —-TAG 1 "N" —-»TAG

{ { "NEW"

« DUP DUP A STO V- 'y' STO 'X' STO

1 n START

f —->NUM h * 'kt' STO 'X' h 2 / STO+

'Y=v(2)+k1/

2' DEFINE f —NUM h * 'K2' STO

'Y=v(2)+k2/2' DEFINE f —=NUM h * 'k3' STO

'X! h 2 / STO+

'Y=v(2)+k3' DEFINE f —-NUM h * 'k4' STO

X 'v(2)+(k1+2*k2+2*k3+k4)/6' —-NUM

2 —ARRY DUP A STO

NEXT
»

} {} { "=N" « 'n' STO »
{ ">STEP" « 'h' STO » } {} { "EXIT" CONT }

}
TMENU HALT {XY} PURGE 2 MENU

» »

Example:

We wantto find the solution f of the equation Y'=2*x*(1+Y"2) equal to zero at the origin.
This solution is given by £ (X)=TAN(X"2).
We enter '2*xx(1+Y2) atlevel 1 and then call 'RK4"'.
The menu is displayed with the entries "NEW", "—»N", "->STEP" and "EXIT", along with the
real numbers denoted by "STEP: 0.05" and "N: 1" at levels 2 and 1.

 
 

Weenterthe starting point [0, 0] at level 1 of the stack and press "NEW".

We then obtain the next point (in 3 FIX mode: [0.050, 0.003]).
To save time, we enter 10 at level 1 and press the "—=N" key.
Pressing "NEW" again, we obtain the next 10 points:

For example, in STD mode:

[.2 4.00235117567E-2], the exact value being:
tan(.272) = 4.00213469955E-2.

[.5 .255700574089], the exact value being
tan(.572) = .255341921221.

Then press "EXIT" to quit the program.
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‘ANLY' directory Program 'FOUR'

PARTIAL SUMS OF A FOURIER SERIES

Let f be a periodic function with period T > 0. We assume that the expression of f is known
overtheinterval [ a, b ], where b=a+T.
The Fourier series of f, as long as it converges,is written:

4+ 2*“

2 ( ak*cos(k*w*x) + bk*sin(k*w*x) ) where w =
k=0 T

 

where, for all values of k = 0,

2 b 2 b
ak = — f(x)*cos(k*w*x)dx and bk = — f(x)*sin(k*w*x)dx

T a T a

(Exception:

1 b
a0 = — f(x)dx)

T a

'FOUR' allows you to calculate any partial sum in this series, i.e. any expression like:

n

% ( ak*cos(k*w*x) + bk*sin(k*w*x) )
k=m

The functional diagram is as follows:

  

  

  

3: list 3:

2: m 'FOUR' 2:
>

1: n 1: partial sum      

where "list" is a list in the format { F a b } where:
F is the expression of the function (a capital X must be used)
a and b are the end points of the interval (the period is taken to be equal to T = b-a)
m and n are the lower and upperlimit k respectively for which we calculate ak and bk.

Integrals are calculated to the degree of accuracy set by the display mode (in n FIX mode,
integrals are correct to n decimal places).

The result or "partial sum" is obtained in the form of an algebraic expression in which w and
x are denoted symbolically by the variables 'X' and 'W'. By pressing EVAL we can obtain the
value of W', i.e.:

2n
W = (W="angular frequency").

T
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‘ANLY' directory Progr?m 'FOUR)'
continued

TEXT OF PROGRAM 'FOUR’
 

'FOUR": ( Checksum: # 37251d, Size: 380.5 bytes )
 

  
 

« - m n

« 'X' PURGE EVAL DUP2 - NEG

- ft a b t
« RAD -2 SF 2 nm * t |/ 'w' STO

« a b ROT 'X' J —NuMm DUP
ABS IERR > * ot /

»

- int

« 0 m n FOR k
IF k THEN

k lwl * lxl *

- h

« h EVAL cos £ > int EVAL 2 *

h COSs * + h EVAL SIN f *

int EVAL 2 * h SIN * o+
»

ELSE f int EVAL + END

NEXT
»

»

»

»

Note:

If, during computation, program 'FOUR' finds a value for an integral with an absolute value
that is less than the absolute error given by the calculator for that integral, it considers it to be
zero and the corresponding quantity does not appear in the expression of the partial sum of
the Fourier series.

This is often the case with even functions (where values of "bk" are zero) or odd functions
(where values of "ak" are zero).

In such cases, any negligible terms are removed from the expression of the partial sum of
the Fourier series.
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‘ANLY' directory Program 'FOUR'
(continued)

PROGRAM 'FOUR': PRACTICAL EXAMPLES
 

 

Example 1:

Expand the periodic function f, with period 1, equal to X2 over the closed interval [ 0, 1 ]
into a Fourier series. We want, for example, to calculate the coefficients ak and bk for
0 < }a < 3. Integrals are calculated in 3 FIX mode. This gives us the following, within 33
seconds:
  

  

  

3:({ 'X*x' 0 1} 3:

2: 0 'FOUR' 2:
>

1: 3 1: expression      

where expression =
'0.333+0.101*COS(W*X)-0.318*SIN(W*X)+0.025*COS (2*W*X)
-0.159*SIN(2*W*X)+0.011*COS(3*W*X)-0.106*SIN(3*W*X)"'

By pressing EVAL we can then replace 'W' with its numerical value, i.e. 2*n/T = 2*n =
6.283.
In this example, we can concentrate solely on the coefficients a5 and b5, simply by entering
5and 5 atlevels 2 and 1.
We then obtain within 16 seconds at level 1 of the stack, the expression:

'0.004*COS(5*W*X)-0.064*SIN(5*W*X).

Example 2:

Let us now look at the same function X --> X2, but expanding over the interval [ 0, 1 ]
into a cosine series. We simply have to take the function to be even and defined over
[ 1, -1 ], and therefore periodic with period 2.

In 3 FIX mode, we obtain within 26 seconds:

  

  

  

    

3:]{ '"X*X' -11} 3:

2: 0 'FOUR' 2:
>

1: 3 1: expression
  

where the expression =
'0.333-0.405*COS(W*X)+0.101*COS(2*W*X)-0.045*COS(3*W*X)'

We can then use EVALto replace 'W' with its numerical value (2*n/T=n=3.142).

Example 3:

We can also expand X2 over [0, 1] into a sine series. We simply have to extend evenly over
[-1,0] and take the period to be 2. We enter { 'X*X*SIGN(X)' -1 1 } atlevel 3 (other
levels remaining the same as in example 2). We then obtain (in 3 FIX mode):

We can then use EVAL to replace 'W' with its numerical value ( 2n/T = n ).
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FINITE SERIES

   
The HP48 is capable of calculating a finite series at 0 of degree n of a function f, using
Taylor's formula (provided that f is sufficiently differentiable):

£'(0) £''(0) £ (0)
X + —x%? + ... + —m—— x + o(x").

1! 2! n!

To arrive at a result in this way, we have to use the TAYLR instruction in the ALGBRA menu.
The problem with this method is that the HP48 calculates the successive derivatives of f, in
symbolic form, before evaluating them for x = 0. Computation is sometimes extremely
lengthy and takes up large amounts of memory.

 f(x) = £(0) +

To take an example, the finite series at zero of degree 5 of the function f defined by
f(x) = exp(sin(x)) (hardly a complicated example!) is obtained in 1 min. 30 s, giving
the solution:

"1+X+.5*X"2-.125*%*X"4-6.6666666666TE-2*X"5" .

Using d'the same data, the programs in the 'FS' directory can find the same result in 11
seconds.
Other more convincing examples are not lacking.
If we want to calculate the series of ATAN(ASIN(X)) (arc tangent of arc sine of x), at 0 of
degree 5, using the TAYLR instruction in the ALGBRA menu, computation is halted after 2
minutes and an "Insufficient Memory" error message is displayed (even though the calculator
still has 4,500 bytes of free memory). On the same calculator, the same series can be
obtained in 11 seconds with the programs in the 'FS' directory, giving the solution:

'X-.166666666666*X3+.108333333333*X"5"

The time thus saved is considerable, and valuable memory space essential to computation is
also saved.

The main idea behind the programs in the 'FS' directory is that a finite series like
f(x) = a + bx + cx? + ... + dx™ + o(x™) can be represented by the vector:
[abc.... d]l.

It is in this form (in increasing order of powers of x) that finite series are used and
obtained in the 'FS' directory.
To make series easier to read, program 'FS—' transforms such vectors by expressing them
algebraically.
Each of the main operations performed on finite series (sum, product, power, quotient,
composite) required a separate program, and calculation of the finite series of each standard
function had to be programmed. The directory therefore contains a specific program for each
standard function (16 here), which leaves us with 27 programs in total.
We could have reduced the number of programs by storing standard series with a degree of
up to 7, for example, in a matrix (this would have given us an array of 7x16=112 real
numbers occupying 112*6=672 bytes of memory). But this posed a dual problem: taking the
same example, the degree of any finite series would have to be less than or equal to 7 and it
would therefore have been impossible to take advantage of the properties of the various
functions.
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important note: Some programs in the 'FS' directory call programs in the 'POLY'
irectory

Here is the list of programs in the 'FS' directory:

Operations on finite series:

‘DIM' : Degree and index of the first non-zero term of a given finite series.
('DIM' is used very regularly)

'ZFS' : sum of two finite series.
‘wFS' : product of two finite series.
'CPFS' composite of two finite series.
'‘QFS' : quotient of two finite series.
'FSN' : integer power of a finite series.

Standard operations on finite series:

'FS—' : Changes from "vector" form to conventional algebraic form of a finite series.
'‘DERFS' : derivative of a finite series.
INTFS' integration of a finite series.
A-=XN' replacing X with X" in a finite series.
A—=AX' replacing X with a*X in a finite series.

Standard finite series and composition using standard finite series:

'EX', 'AX','LG', 'XA';
'SN", 'CS", 'TG", 'SH, 'CH', 'TH;
'ASNS', 'ACS',"ATG', 'ASH', 'ATH';

These programs allow you to calculate the finite series of each of the functions f shown
below, and to calculate the composite of a given finite series using such a function f. These
functions f, in the order given above, are:

--> EXP(X), X --> A"X, X --> LN(X), X --> X"A;
--> SIN(X), X --> COS(X), X --> TAN(X);
--> SINH(X), X --> COSH(X), X --> TANH(X);
--> ASIN(X), X --> ACOS(X), X --> ATAN(X);
--> ASINH(X), X --> ATANH(X);L

]

NB:
The programs in the 'FS' directory accept finite series as arguments and give results in the
form of finite series.
When used as an argument, a finite series must be given in vector form. The programs in the
'FS' directory will interpret the length of the vector as giving the degree of the finite series.
For example, ifyouput [ 1 3 -4 ] into the stack, the corresponding finite series will be 1
+ 3*X -4*X? + o(X?). To calculate the finite series of SIN(1 + 3*X -4*x?) of
degree 6, you willneedtoput [ 1 3 -4 0 0 0 0 ] intothe stack (corresponding to the
finite series 1 + 3*X -4*X2 + o(X"6))
Likewise, when a program in the 'FS' directory gives a finite series as a result, the series is
calculated to the largest possible degree (depending on the data entered, of course) and all
the coefficients obtained are exact (neglecting round-off errors, which are often negligible).
Allthe finite series looked at here will be taken to be finite series at zero (this is an absolute
requirement for the F.S. of g when determining the F.S. of gof).
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'FS' directory Program 'DIM'

DEGREE AND INDEX OF THE FIRST
NON-ZERO TERM OF A FINITE SERIES
 

If £(x) = A0 + A1*X + A2*X2? + ... + An*X" + o(X") is a finite series, n is its
degree and p is the smallest index such that Ap = 0. p is equal to zero if the constant term is
non-zero.
n and p are very important in operations on finite series (product, quotient, composite), as
they allow us to calculate the degree of the finite series obtained from such operations.

'DIM' calculates these two indices from a finite series expressed in vector form.
The functional diagram of the program is as follows:

  

2: 'DIM' 2: degree
  

1: Vector 1: index p      

Here the degree n is equal to the dimension of the vector (given by SIZE) minus 1. A finite
series of degree n is in fact represented by a vector of n+1 coefficients.
The index p is an integer suchthat 0 < p < n. An exception to this rule arises when the
vector at level 1 contains zero coefficients only, in which case we get p=n+1.

Note: the user should not have to call program 'DIM' himself, as it is called by most of
the programs in the 'FS' directory.

'DIM': ( Checksum: # 9826d, Size: 105 bytes )
 

   
  

  

  
  

  

  
  

  

« DUP SIZE 1 GET 1 - SWAP
IF DUP RNRM

THEN

1 DO GET1 UNTIL ABS END

SWAP DROP 2 - OVER 1 + MOD

ELSE
DROP DUP 1 +

END
»

Examples:

2: 'DIM' 2: 3
>

1: [ 1058] 1: 0

2: 'DIM' 2 4
>

1:/[ 00 2 3 0 ] 1: 2

2: 'DIM' 2: 2
>

1: [ 000 ] 1: 3      
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'FS' directory Program 'FS—'

WRITING A FINITE SERIES IN ALGEBRAIC FORM
 

'FS—' expresses a finite series written in vector form algebraically. The variable used is X.

The last term of the algebraic expression of the series is in the form o(X"n), which
indicates the degree. This makes it possible to distinguish between finite series like, for
example, [ 1 -2 5 J]and [ 1 -2 5 0 0 ], which would otherwise give the same
expression.

The functional diagram is as follows:

  IFS — '

1: vector _—> 1: expression
    
  

'FS—'":( Checksum: # 31065d, Size: 156.5 bytes )

 

« oBJ— 1 GET 1 -
- n

« 0

0 n FOR i

n i - 2 + ROLL 'X' i " * +

NEXT

'o(X"Y)' {Y} n + |MATCH DROP +

  
 

Examples: (computation time = 3 seconds)

  

   
 

 
 

  

  
 

   

'FS_"

1: [1-25] —_1 '1-2%X+5%X"2+0(X"2)"

'FS—*'

1:| [ 1-2500 ] _—1 '1-2*X+5*X"2+0(X"4)"

'FS —'
1:| [ 000000 ] _—1 'o(X75)"   
  

-138 -



'FS' directory Program 'ZFS'

SUM OF TWO FINITE SERIES

'2FS' calculates the sum of two finite series FS1 and FS2, both expressed in vector form.
The result obtained is thus a vector.
If the two series have the same degree, adding them is like calculating the sum of two
vectors. Otherwise, the sum is calculated after truncating the series with the highest degree.
If FS1 and FS2 are of degree n and p, the result obtained is a finite series of minimum
degree (n,p).

The functional diagram is as follows:

  

2: FS2 'ZFS’ 2:
  

    1: FS1 1: FS1 + FS2
  

'ZFS":( Checksum: # 26598d, Size: 62.5 bytes )

 

« DUP2

SIZE 1 GET SWAP SIZE 1 GET

MIN 1 —LIST SWAP

OVER RDM 3 ROLLD RDM +

  
 

Examples: (in less than one second)

  

  

     

  

   

     

  

   

2:| [ 15 -23] 'SFS' 2:
>

1:{ [ 43 2 2] 1: [ 5805 ]

2: [ 15 -23] 'SFS' 2:
>

1:] [ 43 2219 2] 1: [ 5805 ]

2:| [ 15 -2 3] 'SFS' 2:
>

1:/ [ 000 ] 1: [ 15-2]     
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'FS' directory Program 'nFS'

PRODUCT OF TWO FINITE SERIES
 
 

'nFS' calculates the product of two finite series FS1 and FS2, both expressed in vector form.
The result obtained is thus a vector.
The degree of the finite series depends on the degree and the index of the first non-zero
term of the two series FS1 and FS2. 'nFS' always gives the result with the highest degree (all
coefficients obtained are exact).

The functional diagram is as follows:

  
2: FS2 'MFS' 2:
  

1: Fs1 1: FS1*FS2      

N.B: program 'mFS' calls 'DIM' and program 'PRODP" in the 'POLY" directory.

'mFS":( Checksum: # 3903d, Size: 94.5 bytes )
 

« DUP2 DM ROT DM 4 ROLL + 3 ROLLD
+# MN 1 + 1 UST 3 ROLLD
POLY PRODP FS SWAP  RDM

   
Examples:

* in less than 2 seconds:

  

2: [1-2301] 'nFs' 2:
 

    1: [201-13] 1:| [ 2 -4 7 -3 10 ]
  

As (1 -2*X 43*X72 +X74 4+0(X"4) ) * ( 2 +X"2 -X"3 +3*X74 +0(X"4) )
= 2 -4*X +7*X"2 -3*X"3 +10X"4 +0(X"4).

* in 2 seconds:

  

2:| [ 001320] "MFS' 2
 

    1: [ 0-1500 ] 1:{[ 00 0 -1 2 13 10 ]
  

As ( X2 +3*X"3 +2*X"4 +0(X"5) ) * ( -X +5*X"2 +0(X"4) )
= -X"3 +2*X"4 +13*X"5 +10*X"6 +0o(X"6)
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'FS' directory

COMPOSITE OF TWO FINITE SERIES
 

Program 'CPFS'

'CPFS' calculates the composite of two finite series FS1 and FS2, both expressed in vector
form. The result obtained is thus a vector.
The degree of the finite series obtained depends on the degree and the index of the first non-
zero term of each of the two series FS1 and FS2. 'CPFS' always gives the result with the
highest degree (all coefficients obtained are exact).

The functional diagram is as follows:
  

2: Fs2 'CPFS' 2:
  

1: Fs1 1: FS1 o Fs2      

N.B: program 'CPFS' calls 'DIM' and program 'PRODP" in the 'POLY"directory.
It is essential that the constant term (the value of FS2 at zero) be zero. If not, an error
message is displayed.

'CPFS':( Checksum: # 23153d, Size: 326 bytes )

 

  
 

  

 
 

      

« IF OVER 1 GET ABS NOT THEN
DUP 1 o PUT  SWAP {1} RDM
3 PICK DM 4 PICK DIM
- sf W sg vg

« IF sg THEN
'vi*(vg-1)+sf+1' EVAL 'vi*(sg+1) ' EVAL
MiIN 1 —LIST

- d

« d RDM

POLY 1 1 —ARRY
2 sg 1 + FOR i

4 PICK PRODP d RDM

DUP 4 PICK i GET *
ROT + SWAP

NEXT

DROP FS
»

END 3 ROLLD DROP2
»

END
»

Example: in 4 seconds,

2: [ 00-121] 'CPFS' 2:
>

1 [ 10 -21] 1:{[ 1 000 -28 -5 ]

Sinceif f(X) = -X"2 +2*X"3 +X"4 +0(X"4)
and if g(X) = 1 -2*X"2 +X"3 +0o(X"3), then:

gof(X) = 1 -2*X"4 +8*X"5 -5*X"6 +0(X"6).
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'FS' directory Program 'INVFS'

INVERSE OF A FINITE SERIES AND SERIES OF 1/(1 + X)
 

INVFS' finds the finite series of 1/(1+X) or 1/(1-X) of degree n, and also calculates the
inverse of a finite series FS1. (The result obtained is also a finite series, in which case it is
essential for the constant term of FS1 to be non-zero, otherwise a "divide by zero" error will
occur).

The functional diagram is as follows:

  

   

  

    

  

'INVFS'

1: n(20) _ 1:| FS of 1/(1+X) of degree n

or.
'INVFS'

1: n(<o0) _— 1:|FS of 1/(1-X) of degree (-n)

or:
'INVFS'

1: FS1 —_—> 1: FS of 1/Fs1      

INVFS':( Checksum: # 46632d, Size: 192.5 bytes )

 

« 0 n FOR i 8 i » NEXT n 1 + —-ARRY
»

SWAP  DUP
IF DUP TYPE THEN

1 GET DUP INV 3 ROLLD / 1 O PUT
DUP DM / FLOOR -1 5 ROLL EVAL CPFS *

ELSE
ABS SWAP SIGN NEG ROT EVAL  
 

  

  

  

  

    
   
 

END
»

Example:

*FS of 1/(1+x) of degree 5: (in under one second)
'INVFS'

1: 5 —_> 1:] [ 1 -11-11-11]

*FS of 1/(1-X) of degree 7: (in under one second)
'INVFS'

1: -7 —_ 1:{[ 1 1111111]

FSof1/(1 -X"2 + X™3 -2*X"4 + o(X~5)): in 3 seconds,
'INVFS'

1:] [ 10-11-20] _ 1:{ [ 101 -13 -2

which gives:

1/( 1 =X"2 + X*3 -2*X"4 + o(X"5)) = 1 +X"2 -X"3 +3*X"4 -2*X"5 +0(X"5)
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'FS' directory Program 'QFS'

QUOTIENT OF TWO FINITE SERIES
 

'‘QFS' calculates the quotient of two finite series FS1 and FS2, both expressed in vector form.
The result obtained is thus a vector.
The degree of the finite series obtained depends on the degree and the index of the first non-
zero term of the two series FS1 and FS2. 'QFS' always gives the result with the highest
possible degree (all coefficients obtained are exact).

The functional diagram is as follows:

  

2: FS2 'QFS' 2:
  

1: FS1 1: FS2 / FS1      

N.B: program 'QFS' calls 'DIM' and program 'DIVIP' in the 'POLY" directory.
The index p of the first non-zero term of FS2 or FS1 may be zero. It is essential,
however, that the index p of FS1 be less than or equal to that of FS2. If not, an error
message will be displayed.

'‘QFS":( Checksum: # 2650d, Size: 190.5 bytes )
 

« DUP2 DIM ROT DIM ROT MIN 3 ROLLD
MIN OVER - 1 + 1  —UST
- q r

« « oBJ—» 1 GET q - —ARRY
qQ 1 + ROLLD q DROPN r RDM

»

ROT OVER EVAL 3 ROLLD EVAL r 1 GET
POLY DIVIP FS
DROP r RDM   

Example: in under four seconds:

  

  

      

2:! [ 00231-1] 'QFSs' 2:
>

1: [ 01-211] 1: [ 027 13 ]

Which gives:

if )f(X 2*X72 4+ 3*X"3 +X"4 -X"5 +0(X"5)
and if g(x) X -2*X"2 +X"3 +X74 +0(X"4), then:

£(X)
 = 2*%X +7*X72 +13*X"3 + o(X"3).

g(Xx)
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'FS' directory Program 'FSN'

 

RAISING A FINITE SERIES TO AN INTEGER POWER
 

'FSN' allows you to raise a finite series FS1 (written in vector form) to an integer power n
(where n is zero or a positive integer). The result obtained is a vector representing FS1".

The degree of the series obtained depends on the degree and the index of the first non-zero
term of FS1. 'FSN' always gives the result to the highest possible degree (all coefficients
obtained are exact).

The functional diagram is as follows:

  

2: FS1 'FSN' 2:
  

    1: n 1: Fs1"
  

N.B: 'FSN' calls 'nFS'. 'FSN' also calls itself.

'FSN':( Checksum: # 50525d, Size: 104.5 bytes )

 

« IF DUP 1 s THEN DROP
ELSE

OVER DUP nofS OVER 2 |/ FLOOR FSN
IF SWAP 2  MOD

THEN  #fS
ELSE SWAP  DROP

  
 

  

 

END
END

»

Examples:

*in 4 seconds:

2: [112 -1] 'FSN' 2:
>

1: 5 1: [ 15 20 45 ]      

as (1 +X +2*X72 -X"3 +0o(X"3) )75 = 1 +5*X +20*X"2 +45*X"3 +0o(X"3).

* in under 4 seconds:

  

2:] [ 01 -12100 ]| '"FSN' 2:
> 

1: » 1:| [ 00001 -414 -24 37 -20 ]      

-X"2+2*X" 34X4+0(X"6) )4as (
= 4 -4*X"5 +14*X"6 -24*X"7 +37*X"8 -20*X"9 +0(X"9).
X
e
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'FS' directory Program 'X—XN'

TRANSFORMATION X — X“N IN A FINITE SERIES
 

'X—XN' allows you to transform the finite series of F(X) into a finite series of F(X"), where n
is a natural integer.

The functional diagram is as follows:

 
 

2: FS of F(X) 'X —=XN' 2:
  
 

    1: n 1: FS of F(X" )
 
 

'X—XN':( Checksum: # 4914d, Size: 48.5 bytes )
 

« OVER SIZE + RDM
TRN bupP SIZE EVAL *
1 —LIST RDM

  
 

Example: (in under one second)

  

2:| [ 134-1] 'X—XN' 2:
  

1: 3 1:{/ 100300400 -100]]      

Since, if F(X)= 1 +3*X +4*X"2 -X"3 +0(X"4), then
F(X"3)= 1 4+3*X™3 +4*X"6 -X"9 +0(X"11).
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'FS' directory Program 'X—AX'

TRANSFORMATION X — A*X IN A FINITE SERIES

'X—AX" allows you to transform the finite series of F(X) into a finite series of F(aX), where a
is a scalar.

The functional diagram is as follows:

  

2: FS of F(X) 'X —=AX' 2:
 
 

  1: a 1: FS of F(aX)
    

N.B: program X—AX' calls program 'DIM".

X—AX":( Checksum: # 550994, Size: 78.5 bytes )

 

« SWAP DUP DM FOR i
i 1 + DUP2  GET
4 PICK i * * PpUT

-1 STEP
SWAP  DROP  
 

Example: (in under one second)

  

2:{[ 12 -131] 'X—AX' 2:
 

1: -2 1:({[ 1 -4 -4 -24 16 ]      

Since, if F(X) = 1 +2*X -X"2 +3*X"3 +X"4 +0(X"4),
F(-2X)= 1 -4*X -4*X"2 -24*X"3 +16*X"4 +o(X"4).
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'FS' directory Program 'DERFS'

DERIVATIVE OF A FINITE SERIES

'DERFS' allows you to obtain a finite series F' (X) from a finite series F(X) by deriving each
coefficient term by term (provided that F is sufficiently differentiable.).

The functional diagram is as follows:

  'DERFS'

    
1: FS of F(X) —_ 1: FS of F'(X)
  

The degree of the finite series obtained is obviously one less than the degree of the initial
series.

'DERFS':( Checksum: # 29761d, Size: 121.5 bytes )

 

« OBJ— 1 GET 1 -

IF DUP THEN

— t

« t 1 FOR i i * t ROLLD -1

t —ARRY SWAP DROP
»

ELSE DROP2 0 1 —ARRY END  
 

Example: (in under one second)

  'DERFS'

   
 

 
1:| [ 2-132851 ] ——> 1:| [ -1 6 6 32 25 6 ]
 

The finite series:

2 =X +3*X72 +2*X"3 +8*X"4 +5*X"5 +X"6 +0(X"6)

therefore becomes:

-1 +6*X +6*X"2 +32*X"3 +25*X74 +6*X"5 +0(X"5).
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'FS' directory Program 'INTFS'

INTEGRATING A FINITE SERIES

'INTFS' allows you to obtain the primitive G(X), cancelling to zero, of the finite series F(X) by
integrating each coefficient term by term.

The functional diagram is as follows:

 'INTFS'
1: FS of F(X) —_1 FS of G(X)
 

      

The degree of the finite series obtained is obviously one more than the degree of the initial
series. Its constant term (i.e. the first coefficient of the vector obtained)is zero.

INTFS":( Checksum: # 64552d, Size: 89 bytes )

 

« 0 SWAP oBJ— 1 GET
t

  
 

Example: (in under one second)

 'INTFS'
1:1 [ 2 -1 3 2 8] _—> 1:{[ 0 2 -.51 .5 1.6]

 

      

The finite series:

2 -X +3*X72 +2*X"3 +8*X"4 +0o(X"4)

therefore becomes:

2*X - .5*X72 +X"3 +.5*X74 +1.6*X"5 +0(X"5).
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'FS' directory Program 'EX'

FINITE SERIES OF EXP(X) AND
EXPONENTIAL FUNCTION AN F.S.

'EX'lets you calculate the finite series of EXP (X ) or EXP(-X) of degree n,or the finite series
of EXP(F (X)) where F is entirely expressed by its finite series.
The functional diagram is as follows:

 
 

  

  

   

     

lExl

1: n(=20) —> 1: FS of EXP(X) of degree n

or.
lExl

1: n(<o0) —> 1:|FS of EXP(-X) of degree (-n)

or:
IExl

1: FS of F(X) —> 1: FS of EXP(F(X))
   

In the latter case, the F.S. of EXP(F(X) ) is obtained with the same degree as that of F(X).
N.B: 'EX' calls programs 'DIM' and 'CPFS'.

'EX":( Checksum: # 38699d, Size: 189 bytes )

 

« « - n ‘

« 0 n FOR i s i ~ i ! / NEXT

n 1 + —ARRY
»

»

SWAP DUP

IF DUP TYPE THEN
1 GET EXP SWAP 1 0 PUT DUP
DM / FLOOR 1 5 ROLL EVAL CPFS *

ELSE
ABS SWAP SIGN ROT  EVAL

END  
 

Examples:
*in un)aer one second:
  

     

  

    
 

  
 

lExl

1: 3 _—> 1: [1 1 .5 .166666666667 ]

* in under one second:
IEx|

1: -4 —> 1:|[1 -1 .5 -.166666666667 4.166666666667E-2]

*in 7 seconds:
lExl

[06 -1 21 5] >1:|[ 1 6 17 32.0000000001 49.5 76.8000000001 ]      

as: EXP( 6*X -X"2 +2*X"3 +X"4 +5*X”5 + o(X"5) ) ~
= 1 +6*X +17*X"2 +32*X"3 +49.5*X"4 +76.8*X"5 +0(X"5)
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'FS' directory Program 'AX'

FINITE SERIES OF A"X AND F.S. OF A"F(X)
 
 

'‘AX' lets you calculate the finite series of A"X or A” (-X) of degree n, or the finite series of
A" (F(X)) where F is entirely expressed by its finite series. A must be > 0.
The functional diagram is as follows:

  

 

 

 

 

  
 

 

 

 

    
 

 

2: A 'AX' 2:

>
1: n (2>20) 1: FS of A"X) of degree n

or.

2: A 'AX' 2:
>

1: n (<0) 1:|FS of A" (-X) of degree (-n)

or:

2: A 'AX' 2:

>
1: FS of F(X) 1: FS of A"F(X)      
In the latter case, the F.S. of A™ (F(X) ) is obtained with the same degree as that of F(X).
N.B: 'AX' calls programs 'EX' and 'X—AX".

'AX":( Checksum: # 32770d, Size: 72.5 bytes)
 

   

 
 

 

« IF DUP TYPE THEN SWAP LN * EX

ELSE EX SWAP LN X—=AX END
»

Examples:
in one second:

2 'Ax'

>
3 1:|[1 .69314718056 .240226506959 5.55041086649E-2 ]    

As:

  
2°X= 1+.69314718056*X .240226506959*X"2 +5.55041086649E-2*X"3 +0(X"3).

* in one second:
 

2

 

 

 -3

—_—> 

  1: [1 -.69314718056  .240226506959 -5.55041086649E-2 ]
  

(we thus obtain the F.S. of 27 (-X) of degree 3).
*in under 4 seconds:
 

2: 5 lel

 
1:([1 01 3 -2 ]   1:

 

>

 
[ 4.99999999998

24.1415686864

0O 8.04718956212
-9.61865313931 ]   

We thus obtainthe F.S. of 57 (1 +X"2 +3*X"3 -2*X"4 +o(X"4)) of degree 4.
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'FS' directory Program 'LG'

FINITE SERIES OF LN(1+X) ANDNAPIERIAN LOG OF AN F.S.
 

'LG' lets you calculate the finite series of LN(1+X) or LN(1-X) of degree n, or the finite
series of LN(F (X)) where F is entirely expressed by its finite series.
The functional diagram is as follows:
  

  

  

   

     

'LGI

1: n(20) —_—> 1: FS of LN(1+X) of degree n

or:

ILGI

1: n(<0) —> 1:|FS of LN(1-X) of degree (-n)

or:
|LGI

1: FS of F(X) _—> 1: FS of LN(F(X))
   

In the latter case, the F.S. of LN(F(X) ) is obtained with the same degree as that of F(X) .
We should also obtain F(0) > 0.
N.B: 'LG' calls programs 'DIM' and 'CPFS".

'LG":( Checksum: # 54237d, Size: 223.5 bytes )
 

« « - n 8

« 0 IF n THEN 1 n FOR i s i * i / NEXTEND

n 1 + —+ARRY NEG
»

»

SWAP DUP

IF DUP TYPE THEN
1 GET DUP LN 3 ROLLD / 1 0 PUT DUP
DM / FLOOR -1 5 ROLL EVAL CPFS 1 ROT PUT

  
 

  

     

  

ELSE

ABS SWAP SIGN NEG ROT EVAL

END
»

Examples:
*in un)aer one second:

ILGl

1: -3 _—> 1: [ 0 -1 -.5 -.333333333333 ]

* in under one second:
ILGI

1: 4 —> 1: [o 1 -.5 .333333333333 -.25 ]      
*in 5 seconds:
  
[2 1 -3 41]|—>1:([.69314718056 .5 -1.625 2.79166666667 -2.015625]

      
as LN( 2 +X -3*X"2 +4*X"3 +X"4 +0(X"4))=
.69314718056+.5*X-1.625 *X" 2+2.79166666667*X"3-2.015625*X"4 +0(X"4).
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'FS' directory Program XA’

FINITE SERIES OF (1+X)"A AND F.S. OF F(X)"A
  

'XA' lets you calculate the finite series of (1+X) A or (1-X) A of degree n, or the finite
series of (F(X) ) A where F is entirely expressed by its finite series.
The functional diagram is as follows:

  

 

    

  

  

   

  

  

2: n(=20) 'XA'  2:

1: A ;.: FS of (14+X) A of degree n

or:

2 n(<0) 'XA' 2

1: A >1: FS of (1-X) A of degree (-n)

or:

2: FS of F(X) 'XA' 2:

1: A >1: FS of F(X) A      

In the latter case, the F.S. of F(X) "A is obtained with the same degree as that of F(X). F(0)
must be Bositive.
N.B: calls programs 'DIM' and 'CPFS'.

'XA': ( Checksum: # 11288d, Size: 254.5 bytes )
 

« - a

« « - n 8

« 1 IF n THEN 1 n FOR i DUP 's*(a-i+1)/i'
EVAL * NEXT END n 1 + —ARRY

»

»

SWAP DUP

IF bup TYPE THEN
1 GET DUP a " 3 ROLLD / 1 0 PUT
DUP DIM / FLOOR 1 5 ROLL EVAL CPFS *

ELSE ABS SWAP SIGN ROT EVAL END  
 

Example: (in under one second)

  

2: 4 'Xa' 2:
  

1: .5 1:({[1 .5 -.125 .0625 -.0390625]      

as (1+X)7(1/2)=1+(1/2)*X-(1/8)*X"2+(1/16)*X"3-(5/128)*X"4 +0(X"4)

Note:If you are likely to run out of memory on your HP48, 'XA' can be written:
« SWAP LG * EX »

This is obviously a lot shorter, but is sometimes a little less accurate (as shown in the
example above) and is certalnlyslower.
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'FS' directory

FINITE SERIES OF SIN(X) AND SINE OF AN F.S.
 

 

Program 'SN'

'SN' lets you calculate the finite series of SIN(X) of degreen (n > 0), or the finite series of
SIN(F(X) where F is entirely expressed byits finite series.
The functional diagram is as follows:

  

    

  

lSNl

1: n(20) —> 1: FS of SIN(X) of degree n

or:
lSNI

1: FS of F(X) E——— 1: FS of SIN(F(X))      

In the latter case, the F.S. of SIN(F(X) is obtained with the same degree as that of F(X) .
N.B: 'SN' calls programs 'EX' and 'X—AX".

'SN':( Checksum: # 2996d, Size: 123 bytes )
 

« IF DUP TYPE THEN

©1 * EX
ELSE

  
 

  
 

  
 

  
 

EX (1,00 * (0,1) X—=AX
END
M

»

Examples:

* in two seconds:
'SN'

1: 4 > 1: [ 0 1 0 -.166666666667 0 ]

* in 7 seconds:
!SNI

1:/[0 1 2 -1 3] >1:| [ 0 1 2 -1.16666666667 2 ]      

As SIN( X +2*X"2 -X"3 +3*X"4 +0o(X"4)
= X +2*X72 -1.16666666667*X3 +2*X"4 +o(X"4).
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'FS' directory Program 'CS'

FINITE SERIES OF COS(X) AND COSINE OF AN F.S.

'CS' lets you calculate the finite series of cOs (X ) of degree n (n > 0), or the finite series of
COS (F(X) where F is entirely expressed by its finite series.
The functional diagram is as follows:

  lcsl

1: n(20) —> 1: FS of COS(X) of degree n
    

or:
  Icsl

1: FS of F(X) — 1: FS of COS(F(X))      

In the latter case, the F.S. of cOs(F(X) is obtained to the maximum possible degree, given
the index p of the F.S. of F(X) .
N.B: 'CS' calls programs 'DIM' 'CPFS', 'EX' and 'X—AX.

'CS":( Checksum: # 7756d, Size: 138 bytes )
 

« « EX (1,0) * (01) XiAX RE
»

IF OVER TYPE THEN
OVER DM / FLOOR 1 + SWAP EVAL CPFS

ELSE  EVAL
END

»

Examples:

* in two seconds:

   
  lcsl

 >1:f{ [ 1 0 -.5 0 4.16666666667E-2 0 ]
      

*in 6 seconds:

 
 

lcsl

 
 

1:|[0 01 -3 1 5] >1:( [ 1. o0 0 O -.5 3 =5.5 -2
     

As COS( X"2 -3*X"3 +X"4 +5*X"5 +0(X"5)
= 1 -.5*X74 +3*X"5 -5.5*X"6 -2*X"7 +0o(X"7).
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'FS' directory Program 'TG'

FINITE SERIES OF TAN(X) AND TANGENT OF AN F.S.

'TG' lets you calculate the finite series of TAN(X) of degree n (n = 0), or the finite series of
TAN (F(X) where F is entirely expressed byits finite series.
The functional diagram is as follows:

  

    

  

ITGI

1: n(20) —> 1: FS of TAN(X) of degree n

or:
ITGI

1: FS of F(X) _—> 1: FS of TAN(F(X))      

In the latter case, the F.S. of TAN(F(X) is obtained with the same degree as that of F(X).

N.B: TG’ calls programs 'CS' 'SN' and 'QFS".

‘TG"( Checksum: # 54897d, Size: 39 bytes )
 

« DUP SN SWAP CS QFS »
 

Examples:

*in 8 to 9 seconds:

  ITGI
 > 1:({[0 1 0 .333333333333 0 .133333333334]

      

As TAN(X) = X 4+ (1/3)*X"3 +(2/15)*X"5 + o(X"5).

*in 14 seconds:

  lTGI
 1:] [ 0 3 2 -1] >1: [ 0 3 2 7.99999999999 ]

      

As TAN( 3*X +2*X"2 -X"3 +0(X"3) ) = 3*X +2*X"2 +8*X"3 +0(X"3)
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'FS' directory Program 'SH'

FINITE SERIES OF SINH(X) AND HYPERBOLIC SINE OF AN F.S.
 

'SH' lets you calculate the finite series of SINH(X) of degree n (n = 0), orthe finite series of
SINH(F(X) where F is entirely expressed byits finite series.

The functional diagram is as follows:

 
 

     
 

  

ISHI

1: n(=20) —_—> 1: FS of SINH(X) of degree n

or:

ISHI

1: FS of F(X) > 1: FS of SINH(F(X)) 
     
 

In the latter case, the F.S. of SINH(F(X) is obtained with the same degree as that of F(X).

N.B: 'SH' calls programs 'DIM' 'CPFS' and 'EX'.

'SH":( Checksum: # 49613d, Size: 104 bytes )

 

« « DUP EX SWAP NEG EX - 2 /
»

IF OVER TYPE THEN
OVER DIM / FLOOR SWAP EVAL CPFS

ELSE  EVAL
END   

 
 

 
     
 

Examples:

* in one second:

'SH'

1 4 > 1: [ 0 1 0 .166666666667 0 ]

*in 5 to 6 seconds:

'SH' 
 

1:|[0 3 1 -1 2]  > 1:|[0 3 1 3.50000000001 6.50000000001]
     
 

As ( 3*X +X72 -X"3 +2*X"4 +0(X"4) )
= 3*X +X72 +3.5*X"3 +6.5*X"4 +0(X"4).
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'FS' directory Program 'CH'

FINITE SERIES OF COSH(X) AND HYPERBOLIC COSINE OF AN F.S.
 

'CH' lets you calculate the finite series of COSH(X) of degree n (n > 0), orthe finite series
of COSH(F(X) where F is entirely expressed byits finite series.

The functional diagram is as follows:

  

      

  

lCHl

1: n(=20) —_—> 1: FS of COSH(X) of degree n

or:

ICH'

1: FS of F(X) —_—> 1: FS of COSH(F(X))
      

In the latter case, the F.S. of COSH(F(X) is obtained to the maximum possible degree, given
the index p of the F.S. of F(X).

N.B: 'CH'calls programs 'DIM' 'CPFS' and 'EX".

'CH'":( Checksum: # 25150d, Size: 109 bytes )

 

« « DUP EX SWAP NEG EX + 2 |/
»

IF OVER TYPE THEN
OVER DM / FLOOR 1 + SWAP EVAL CPFS

ELSE  EVAL
END   

Examples:

* in one second:

  

 
      

  

ICHI

1: 5 >1:] [ 1 0 .5 0 4.16666666667E-2 0 ]

*in 7 to 8 seconds:

'CH'

1:{[0 02 -1311]| —>|[10002-26.5-16.16666666667 ]
      

As COSH( 2*X"2 -X"3 +3*X74 +X”5 +X"6 +o(X"6) ) ~
= 1 +2*X74 -2*X"5 +6.5*X"6 -X"7 +6.16666666667*X"8 + o(X"8).
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'FS' directory Program 'TH'

FINITE SERIES OF TANH(X) AND
HYPERBOLIC TANGENT OF ANF.S.

'TH' lets you calculate the finite series of TANH (X ) of degree n (n = 0), or the finite series of
TANH(F(X) where F is entirely expressed by its finite series.

The functional diagram is as follows:

  

      

  

ITHI

1: n(20) —_—> 1: FS of TANH(X) of degree n

or:

'TH'

1: FS of F(X) _—> 1: FS of TANH(F(X))
      

In the latter case, the F.S. of TANH(F(X) is obtained with the same degree as that of F(X).

N.B: TH' calls programs 'CH' 'SH' and 'QFS'.

TH':( Checksum: # 5325d, Size: 39 bytes )
 

« DUP SH SWAP CH QFS »
 

Examples:

* in 6 seconds:

  
ITHl

 
  

> 1:|[0 1 0 -.333333333333 0 .133333333334]
    

As TANH(X) = X - (1/3)*X"3 +(2/15)*X"5 + o(X"5).

*in 16 seconds:

  'THI
 1:|[0 2 -1 3 1] > 1:| [ 0 2 -1 .333333333334 5 ]

      

As TANH( 2*X -X"2 +3*X"3 +X"4 +0o(X"3) )
= 2*X -X"2 +(1/3)*X"3 +5*X74 +0(X"4)
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'FS' directory Program 'ASNS'

FINITE SERIES OF ARCSIN(X) AND ARC SINE OF AN F.S.
 

 

'ASNS' lets you calculate the finite series of ARCSIN(X) of degree n (n = 0), or the finite
series of ARCSIN(F(X) where F is entirely expressed byits finite series.

The functional diagram is as follows:

  'ASNS'

1: n(20) —> 1:|FS of ARCSIN(X) of degree n
      

or:

  'ASNS'
1: FS of F(X) ——> 1:| Fs of ASIN(F(X))

      

In the latter case, the F.S. of ARCSINH(F(X) is obtained with the same degree as that of
F(X). The coefficient F(0) must be zero.

N.B: 'ASNS' calls programs 'DIM' and 'CPFS'.

'ASNS'": ( Checksum: # 63273d, Size: 221 bytes )

 

FOR i
o i DuP 2 / COMB 2 i " /i 1 +

2 o 3

a
n

N
® - m v

= o o NOT DROPN
n 1 + —ARRY

»

»

IF OVER TYPE THEN

OVER 1 GET
IF ABS THEN DROP "Error"

ELSE OVER DIM / FLOOR SWAP EVAL CPFS END
ELSE EVAL
END  
 

Examples:

* in one second:

  'ASNS'
1: 6 —> 1:([0 1 0 .166666666667 0 .075 0]

      

*in 5 seconds:

  'ASNS'
>1: [ 0 1 -3 2.16666666667 3.5 ] 1:{[0 1 -3 2 5]

    
  

As ASIN( X -3*X"2 +2*X"3 +5*X"4 +0(X"4) )
= X -3*X"2 +2.16666666667*X" 3 +3.5*X"4 +0o(X"4).
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'FS' directory Program 'ACS'

FINITE SERIES OF ARCCOS(X) AND ARC COSINE OF AN F.S.
 

'ACS' lets you calculate the finite series of ARCCOS(X) of degree n (n = 0), or the finite
series of ARCCOS (F(X) where F is entirely expressed by its finite series.

The functional diagram is as follows:

  

  
 
 

  

'ACS'

1: n(20) | ——> 1:|FS of ARCCOS(X) of degree n

or:

'ACS'

1: FS of F(X) — 1: FS of ACOS(F(X))    
  

In the latter case, the F.S. of ARCCOS (F (X ) is obtained with the same degree as that of
F(X). The coefficient F(0) must be zero.

N.B: 'ACS' calls program 'ASNS'.

'ACS":( Checksum: # 63964d, Size: 42.5 bytes )

 

« ASNS NEG 1 o —NUM 2 / PUT »
 

Examples:

* in one second:

 'Acs’
> |[1.5707963268 -1 0 -.166666666667 0 -.075 ]

 

1: 5  
     
 

As ARCCOS(X)= mn/2 -X -(1/6)*X"3 -(3/40)*X"5 +0o(X"5).

*in 5 seconds:

 

 'ACS' [ 1.5707963268 -1 1
1:|[0 1 -1 2 1] > 1: -2.16666666667 -.499999999999 ] 

     
 

As ARCCOS( X -X"2 +2*X"3 +X"4 +0o(X"4)
= n/2 -X +X"2 -(13/6)*X"3 -(1/2)*X"4 +o(X"4).
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'FS' directory Program 'ATG'

FINITE SERIES OF ARCTAN(X) AND ARC TANGENT OF AN F.S.
 
 

'ATG' lets you calculate the finite series of ARCTAN(X) of degree n (n > 0), or the finite
series of ARCTAN (F(X) where F is entirely expressed byits finite series.

The functional diagram is as follows:

 
 'ATG'

1: n(20) _—> 1: FS of ATAN(X) of degree n
     
 

or:

 'ATG'
1: FS of F(X) —_—> :| FS of ATAN(F(X))

 

    
  

In the latter case, the F.S. of ARCTAN(F(X) is obtained with the same degree as that of
F(X). The coefficient F(0) must be zero.

N.B: 'ATG!'calls programs 'DIM' and 'CPFS'.

'ATG'": ( Checksum: # 55351d, Size: 213 bytes )

 

<« <« - n

« 0 n FOR i

0 i 1 + INV

0 i 3 + INV NEG

4 STEP

3 n 4 MOD - DROPN

n 1 + —ARRY
»

»

IF OVER TYPE THEN

OVER 1 GET

IF ABS THEN DROP "Error"

ELSE OVER DIM / FLOOR SWAP EVAL CPFS END
ELSE EVAL

END  
 

Examples:

* in one second:
 'ATG' 

1: 6  
  

>1:{[ 0 1 0 -.333333333333 0 .2 0 ]
  

*in 5 seconds:
 'ATG' 

1:{[0 3 1 -1 2]  > 1:|[0 3 1 -9.99999999999 -6.99999999999]    
  

As ATAN( 3*X +X"2 -X"3 +2*X"4 +0o(X"4) )
= 3*X +X72 -10*X"3 -7*X"4 +0(X"4).
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'FS' directory Program 'ASH'

Z OFINITE SERIES OF ARCSINH(X) A
HYPERBOLIC ARC SINE OF AN F.S.
 

'ASH' lets you calculate the finite series of ARCSINH(X) of degree n (n = 0), or the finite
series of ARCSINH(F(X) where F is entirely expressed byits finite series.

The functional diagram is as follows:

  

      

  

'ASH'

1: n(20) —> 1:|FS of ARCSINH(X) of degree n

or:

'ASH'

1: FS of F(X) —_—> 1: FS of ASINH(F(X))
      

In the latter case, the F.S. of ARCSINH(F(X) is obtained with the same degree as that of
F(X). The coefficient F(0) must be zero.

N.B: 'ASH'calls programs 'ASNS' and 'X—AX'.

'ASH': ( Checksum: # 25447d, Size: 128 bytes )

 

« IF DUP TYPE THEN
©1 * ASNS

ELSE
ASNS (1,00 * (0,1) X—AX

   

 
 

 
     
 

END

IM
»

Examples:

*in 2 seconds:

'ASH'
1 6 >1:|[0 1 0 -.166666666667 0 .075 0]

*in 6 to 7 seconds:

'ASH' 
 

1:|/[0 1 -3 2 5]  > 1:) [ 0 1 -3 1.83333333333 6.5 ]
     
 

As ASINH( X -3*X"2 +2*X"3 +5*X"4 +0(X"4) )
= X -3*X"2 +(11/6)*X"3 +(13/2)*X"4 +o(X"4).
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'FS' directory Program '‘ATH'

FINITE SERIES OF ARCTANH(X) AND
HYPERBOLIC ARC TANGENT OF AN F.S.
 

'ATH' lets you calculate the finite series of ARCTANH(X) of degree n (n = 0), or the finite
series of ARCTANH(F(X) where F is entirely expressed byits finite series.

The functional diagram is as follows:

  'ATH'

1: n(20) —> 1:|FS of ARCTANH(X) of degree n
      

or:

  'ATH'
1: FS of F(X) —_—> 1:| FS of ATANH(F(X))

      

In the latter case, the F.S. of ARCTANH(F(X) is obtained with the same degree as that of
F(X). The coefficient F(0) must be zero.

N.B: 'ATH' calls programs 'ATG' and 'X—AX'.

'ATH'":( Checksum: # 59212d, Size: 126 bytes )
 

« IF DUP TYPE THEN

©1) * ATG
ELSE

ATG (1) * (01) X—AX

  
 

  
 

      

END

™M

Examples:

* in 2 seconds:

'ATH'
1 6 > 1: [0o 1 o .333333333333 O .2 0]

*in 6 seconds:

'ATH'  
 1:([0 3 1 -1 2] > 1:/ [ 0 3 1 7.99999999999 11 ]

      

As ATANH( 3*X +X72 -X"3 +2*X"4 +0o(X"4) )
= 3*X +X72 +8*X”3 +11*X"4 +o(X"4).
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GEOMETRY
   

The 'GEOMdirectory contains programs for affine or Euclidean geometry.

These programs are used mainly to find the equation of a set of points (straight line, plane,
circle, sphere) whose main characteristics are already known, or to calculate distances or
angular distances.

Here is the list of programs in the 'GEOM' directory:

'STRT' equation of a straight line for which:
* two points

or * one point and a direction vector are known.

'‘PLAN' equation of a plane for which:
* three points

or * two points and a direction vector
*or one point and two direction vectors are known.

‘CIRC' : equation of a circle or sphere for which:
* the centre and the radius

or * two diametrically opposite points are known.

'‘DIST' : calculates the distance between:
* a point and a straight line (in 2 or 3 dimensions)
or * a point and a plane
or * two straight lines (in space).

'ANGL' calculates the angular distance between:
* two vectors

or * two straight lines
or * two planes.
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'GEOM' directory Program 'STRT"

EQUATION OF A STRAIGHT LINE

'STRT' lets you find, in symbolic form, the equation of a straight line S in the plane for which:

* two separate points P and Q
or * a point P and a direction vector u are known.

P and Q (or P and u) must be entered at levels 1 and 2.

A point with coordinates x and y is represented by the vector [x,y,1]. A vector whose
components are x and y is represented by [ x, y, 0 ].
It is therefore the third component that determines whether we are dealing with a point or a
vector.

The equation is obtained in symbolic form: 'A*X+B*Y+C=0".

'STRT": ( Checksum: # 63312d, Size: 65 bytes )

 

« CROSS V- ROT 'X' * ROT

'Y' * + SWAP + 0 =

  
 

Example 1:

(in one second)
The equation of the straight line passing through the points P(-1,3) and Q(2,5).

  

2:|[ -1 3 1 ] 'STRT' 2:
 

    1:|/[ 2 5 1 ] 1:| '-(2*X)+3*Y-11=0"'
  

Example 2:

(in one second)
Equation of the straightline passing through the point P (3, 2) and the direction vector
u(4,1).

  

2:|1[ 3 2 1 ] 'STRT' 2:
 

    1:{[ 4 1 o ] 1:| '-X+4*Y-5=0"
  

In the example above, the order in which P and u are given may be reversed.
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'GEOM'directory Program '‘PLAN'

EQUATION OF A PLANE

'PLAN' lets youfind, in symbolic form, the equation of a plane (r) for which:
*  three points P, Q and R

or * two points P and Q and a direction vector u
or * a point P and two direction vectors u and v are known.

A point whose coordinates are x, y and z is represented by the vector [ x y z 1 ].
A vector whose components are x, y and z is represented by the vector [ x y z 0 ].
It is therefore the fourth component that determines whether we are dealing with a vector or
a point.

The three elements P, Q and R (or P, Q and u or P, u and v) must be entered at levels 1, 2
and 3 of the stack, in any order.

The equation is obtained at level 1 in symbolic form, i.e.. 'A*X+B*Y+C*Z+D=0".

'PLAN": ( Checksum: # 63868d, Size: 166.5 bytes )

 

« { XY Z 1} - a b c L

« o o 0 o a V- b V- c V-
{ 4 a4 } —ARRY o
1 4 FOR k

OVER k 1 PUT DET L k GET * +
NEXT
0 = SWAP DROP

  
 

Example 1:

Equation of the plane passing through the points:
P(-1,2,3) Q(4,1,5)andRr(2,-3,0):
(in 3 seconds)
  

  

  

      

3:] [ -1 23 1] 3:

2:| [ 41511 'PLAN' 2:
>

1: [ 2 -301] 1:]'13*X+21*Y-22*Z2+37=0"'

Example 2:

Equation of the plane passing through the point P(-1,1,-3) and with direction vectors u(-2,1,3)
and v(-1,4-2).
(in 3 seconds)
 

 

 
 

  

3:1 [ -2 130 ]

2:{ [ -11-31] 'PLAN'

1:| [ -1 4 -2 0 ] '14*X+7*Y+7*Z+28=0"   
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'GEOM' directory Program 'CIRC'

EQUATION OF A CIRCLE OR A SPHERE
 

 

'‘CIRC' lets you find, in symbolic form, the equation of a circle (C) in two-dimensional space,
or of a sphere (S) in three-dimensional space for which:

* the centre Q and the radius R
or * two diametrically opposite points are known.

Here, a point is represented by the vector of its coordinates [x,y] (on a surface) or
[x y 2] (in space).
The radius R is a positive real number.

The two elements Q and R (or A and B) must be entered at levels 1 and 2, in any order. The
equation is therefore obtained at level 1 in symbolic form, i.e.:

'X"2+Y"2+2*X+B*Y+C=0" for a circle.
'X"2+Y"2+272+4A*X+B*Y+C*Z+D=0" for a sphere.

'CIRC'": ( Checksum: # 31394d, Size: 311.5 bytes )
 

« DUP2 TYPE SWAP TYPE IF < THEN SWAP END

DUP SIZE 1 GET - b a d

« IF b TYPE 3 = THEN

b a + 2 / b a - 2 /

ABS 'b' STO 'a' STO

END

NEXT

a k GET 2 * NEG nen

87 k + CHR + oBJ— * +

 
 
 NEXT

a DUP DOT b S@ - + O =
»

»

Example 1: (in two seconds)

Equation of the circle with centre (2, 3) and a radius of 5.

  

2: [ 2 3] 'CIRC' 2:
  

  1: 5 1:| "X2+4Y"2-4*X-6*Y-12=0"
 

   
Example 2: (in 3 to 4 seconds)

Equation of the sphere with diameter ABwherea = (1,1,1)andB = (3,5,5).

 
 

2:{ [1 1 1 ] |'CIRC' 2:
>

1:| [ 3 5 5 ] 1:| '"X"2+Y2427 2-4*X-6*Y-6*Z2+13=0"
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'GEOM'directory Program 'DIST'

CALCULATING DISTANCES

'DIST' calculates the distance between:
apoint A(x,y) and a straight line given by its equation (in two-dimensional space)

or * a point A(x,y,z) and a plane given by its equation
or * a point and a straight line given by a point and a direction vector (in two or three-

dimensional space
or * two straight lines each given by a point and a direction vector (in space).

ApointA(x,y) is represented by the vector [ x y ].
ApointA(x,y,z) isrepresented by thevector [ x y z ].
The straight line of the equation 'ax+by+c=0"' isrepresentedby [ a b ¢ ].
The plane 'ax+by+cz+d=0" isrepresentedby [ a b ¢ 4 ].

When a straight line is given by a point A(x,y,z) (or, in two dimensions, A(x,y)) and a
direction vector u(a,b,c) (oru(a,b)), itis represented in the stack by a list in the
following order:

[xyz][abc]
(Of{[xyl[ab]})

The two objects between which we wantto calculate the distance are entered at levels 1 and
2 of the stack. If one of them is a point, it must be entered a level 2.
The distance calculated is given at level 1.

'DIST": ( Checksum: # 49003d, Size: 344.5 bytes )

 

« DUP2 TYPE SWAP TYPE
- 1 ©2
« CASE

t1 3 = 2 3 == AND THEN

e

« e P SIZE RDM DuP p DOT e
DUP SIZE GET + ABS SWAP ABS /

END

2 3 == t1 5 == AND THEN

« d EVAL DUP ROT P -

CROSS ABS SWAP ABS /
»

END

« d 2 GET d2 2 GET DUP2 V-
4 ROLL V- di 1 GET
d2 1 GET - V- {3 3} —ARRY
DET ABS 3 ROLLD CROSS ABS /

END   
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'GEOM' directory

Example 1:

Program 'DIST'
(continued)

PROGRAM 'DIST': PRACTICAL EXAMPLES

(in under one second)

Distance from the point M(1,-2) to the straight line 3x+4y+1=0.

Example 2:

 
 

 

  
 

 

 

   

 

 
 

[ 1-2] 'DIST' 2:
>

[3 4 1 ] 1: 8

(in one second)

Distance from the point M(2,-1, 3) to the plane x+2y+2z-5=0.

[ 1-2] 'DIST' 2:
>

[ 3 4 1 ] 1: 8

Example 3:

Distance from the point M(1,-2) to the straight line given by the point A(5,-4) and the
direction vector u(-4, 3). The data is identical to example 1.

Example 4:

Distance from the pointM(3,-2,1) to the straight line S given by the pointa(-1,1,4) and

  
 

(in under one second)

 

[ 2-1 3] 'DIST' 2:

  
 

 

 

 [12 2 -5]  
 

(in under one second)

the direction vector u(2,-1,5).

Example 5:

Distance from the straight line S given by the point A(1,0,4) and the vectoru(2,3,5) and

 

[1-2] 'DIST'

 

 .333333333333  
 

 

 

 { [5-4] [-4 3]}  
 

(in one second)

 

   

the straight line D' given by the point B(-1,-5,2) and the vector v(4,3,0).

 

[3 -2 1] 'DIST'
 

1:|{[-114]1[2-151]1  
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'GEOM' directory Program 'ANGL'

CALCULATING ANGULAR DISTANCE

'ANGL' calculates the angular distance (6 (0 < 6 < mn/2) between:

* two vectors u and v (in two or three-dimensional space)

or * two straight lines with known direction vectors u and v (in two or three-
dimensional space)

or * two known planes given by their equations.

A vector u(a,b) (or, in three dimensions, u(a,b,c)) is represented by [ a b ] (or
[ a bc ])

[ ab ](or[ a b c ])alsoenables us to designate any straight line ax+by+c=0 (or any
plane ax+by+cz+d=0).

The two objects between which we want to calculate the angular distance must be entered at
levels 1 and 2.

The angular distance 8 is then obtained in radians, degrees (in HMS format) and gradians.
The 3 results are given to four decimal places in the form of signed real numbers (see the
example below).

'ANGL": ( Checksum: # 26751d, Size: 122 bytes )

 

« RAD 4 FIX DUP2 DOT ABS SWAP
ABS ROT ABS * |/ ACOS 'radians" —TAG
DUP R—D —HMS '"deg(HMS)" —TAG
DUP HMS— .9 / ‘"gradians" —TAG

»  
 

 

 

radians:

deg(HMS) :

1.2324
70.3642

Example:

Angular distance between the vectors u(1,-4,2) and v(3,1,5) (in one second):

2: [ 1-42] 'ANGL' 3
> 2:

1: [ 3 15 1   
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gradians: 78.4573
 





 

DIFFERENTIAL GEOMETRY
  
 

The 'DIFG' directory contains programs on differential geometry. This involves resolving
geometrical problems where derivatives and primitives have to be calculated.

This is an area in which the HP48 can be used to program relatively complex problems with
ease (problems that would prove tricky to resolve with a popular programming language like
Turbo Pascal).

What these programs do is exploit the HP48's ability to integrate and above all to
differentiate a function written in symbolic form. It is particularly useful to be able to obtain
expressions of the partial derivatives of a function (with respect to any of its variables).

Here is the list of programs in the 'DIFG' directory:

'‘RECTP' Rectifying (finding the length of) a plane curve (given by the equation
Y=F(X), or in polar coordinates or by the parametric equations X=X (T),
Y=Y(T)).

'RECTS' Rectifying (finding the length of) a space curve (three-dimensional curve)
given by parametric equations.

‘LINT' : Calculates a line integral in two or three-dimensional space along an arc.

'‘AREA' Area of a two-dimensional domain limited by a closed curve that is given by
parametric equations (with polar or Cartesian coordinates).

'CVTRE' : Calculates the radius of curvature and the centre of curvature of a point on a
plane curve.

'DIVRG' Calculates the divergence of a vectorfield.

'‘CURL' Calculates the curl of a vectorfield.

'‘GRADI' Gradient of a function of several variables.

'LAPL' Laplacean of a function of several variables.

'DIFF' : Calculates the differential of a function of several variables.
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'DIFG' directory Program 'RECTP'

RECTIFYING A PLANE CURVE

'RECTP' calculates the approximate length of a plane curve defined in either of three ways:
* by a Cartesian equation Y=F(X), whereAa < X < B.
* by parametric equations X=X (T), Y=Y (T), where A<T<B.
* by a polar equation RO=RO(T), whereA < T < B.

The functional diagram is as follows:

  'RECTP'

1: list _—> 1: length
      

where "list" is a list of the elements required for computation and "length" is an approximate
value of the resullt.

"List" is ordered as follows:

{ F(X) A B} in the first case,
{ X(T) ¥Y(T) A B } in the second case,
{ RO(T) A B } in the last case,

where:

A is the lower value of the parameter ( X or T ).
B is the upper value of the parameter (X or T ).
F(X) is the expression, in symbolic form, of the variable 'X'.
X(T), Y(T)and RO(T) are expressions, in symbolic form, of the variable 'T".

Integrals are calculated to the degree of accuracy specified by the display mode:

* In n FIX mode,integrals calculated are correct to n decimal places.
* In STD mode, integrals are calculated as accurately as possible (which may take

time).

The value of the variable IERR obtained is greater than the absolute error made.

'RECTP": ( Checksum: # 62297d, Size: 269.5 bytes )

 

« OBJ— {X T} PURGE

- a b n

« IF n 4 == THEN

'T' d 2 r SWAP 'T' d 2 " + v 'T'

ELSE
DUP 'T a
IF DUP 0 SAME THEN

DROP ‘X' 2 2 " 1 + v 'X!
ELSE

2 " SWAP 2 *~ + Vv 'T!
END

a b 4 ROLL 4 ROLL f —NUM  
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'DIFG' directory Program 'RECTP'

   

  

 

      

  

  

(continued)

PROGRAM 'RECTP': PRACTICAL EXAMPLES

Example 1:

Length of the catenary Y=CH(X ), where 0<x<1.
(Having first switched to 5 FIX mode)

2: 'RECTP' 2:
>

1: { 'COsSH(X)' 0 1} 1: 1.17520

The result is calculated within approximately 6 seconds. The exact result shown is:

SH(1)= ( e - 1/e )/2 = 1.17520119364.
Example 2:

Length of the cycloid Xx=COS(T), Y=T-SIN(T), O0<T<2m.
(Having first switched to 3 FIX mode)

2: '"RECTP'
>

1: { 'cos(T)' 'T-SIN(T)' 0 ‘'2*mn' } 1: 8.000      

The result is calculated within approximately 9 seconds. The exact result is 8.

Example 3:

Length of the cardioid RO=1+COS(T).
(Having first switched to 4 FIX mode)
To obtain the total length, T must vary between 0 and 2.

  

2: 'RECTP'
>

1: { '1+cos(T)' 0 '2*m' } 1: 8.0000

 

      

The result is calculated within approximately 9 seconds. The exact result is 8.
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‘DIFG' directory Program 'RECTS'

RECTIFYING A SPACE CURVE
 

 

'RECTS' calculates the approximate length of a space curve defined in either of two ways:

* by the parametric equations X=X(T), Y=Y(T), Z=Z(T), where T takes all the
values on the segment [A, B].

* by the parametric equations with cylindrical coordinates RO=RO(T), 2=Z(T),
whereA < T < B,.

The functional diagram is as follows:

  'RECTS'
1: list ———— 1 length

      

where "list" is a list of the elements required for computation and “length" is an approximate
value of the result.

“List" is ordered as follows:
{ X(T) Y(T) Z(T) A B }inthe first case,
{ RO(T) Z(T) A B } inthe second case,

where:
A is the lower bound of the parameter T.
B is the upper bound of the parameterT.
X(T), ¥Y(T), 2(T) and RO(T) are expressions, in symbolic form, of the variable 'T".

Integrals are calculated to the degree of accuracy specified by the display mode:
* In n FIX mode,integrals calculated are correct to n decimal places.
* In STD mode, integrals are calculated as accurately as possible (which may take

time).

The value of the variable IERR is greater than the absolute error made.

'RECTS": ( Checksum: # 41324d, Size: 203.5 bytes )
 

 

« OBJ— 'T' PURGE

- a b n

« 'T' d 2 ~ SWAP

IF n 5 == THEN

'T' d 2 . + SWAP 'T! 2 2 *

ELSE

DUP 'T' d 2 ~ SWAP 2 * +

END

+ v a b ROT 'T' f —-NUM
»

»  
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'DIFG' directory PrograEn 'RECTS)'
continued

PROGRAM 'RECTS': PRACTICAL EXAMPLES

Example 1:

Length of the arc given by the parametric equations:
Y=X?, Z=(2/3)X"3,where0 < X < 1.

Here, we take X as the parameter T.

  

  

We first switch to 4 FIX mode.

2: 'RECTS'
>

1:| { 'T" 'T72' '2*T"3/3' 0 1 } 1: 1.6667      

The result is obtained within 10 seconds.
The exactresultis 5/3 = 1.66666666667.

Example 2:

Length of the circular helix given in cylindrical coordinates by: RO=c0Os(T), Z=T, where
0 < T < 2m.
We first switch to 4 FIX mode.

  

2: 'RECTS'
 

1: { 'cos(T)' 'T' 0 '2*n' } 1: 8.8858      

The result is obtained within 4 seconds.
The exact resultis 2/2n =~ 8.8857658763.
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'DIFG' directory Program 'LINT'

CALCULATING LINE INTEGRALS
 

'LINT' calculates the line integral:

1)  of the differential form
w = P(X,Y)dX + Q(X,Y)dy
along the arc X=X(T), ¥Y=Y(T), wherea < T < B.

2) of the differential form
w = P(X,Y,2)dX + Q(X,Y,2)dY + R(X,Y,z2)dz
along the arc Xx=X(T), Y=Y(T), 2=Z(T), wherea < T < B.

The functional diagram is as follows:

  'LINT'

1: list _—> 1: integral
      

where "list" is a list containing the elements required for computation and "integral" is an
approximate value of the result.

"List" is ordered as follows:

{P(X,Y) Q(X,Y) X(T) Y(T) z(T) A B } inthe first case,
{fl(x,Y,z) Q(X,Y,Z) R(X,Y,2) X(T) Y(T) 2(T) A B }inthe second case,
where:

A is the lower bound of the parameter T.
B is the upper bound of the parameter T.

P(X,Y) and Q(X,Y) are expressions, in symbolic form, in terms of X and v.
P(X,Y,2), Q(X,Y,z) andR(X,Y,Z) are expressions, in symbolic form, in terms of X, Y
and z.
X(T), Y(T)and z(T) are expressions, in symbolic form, of the variable 'T".

Integrals are calculated to the degree of accuracy specified by the display mode:
* In n FIX mode, integrals calculated are correct to n decimal places.
* In STD mode, integrals are calculated as accurately as possible (which may take

time).

The value of the variable IERR obtained is greater than the absolute error made.

'LINT'": ( Checksum: # 58416d, Size: 282.5 bytes )
 

« OBJ— 'T' PURGE

— a b n

« IF n 8 == THEN 'z’ STO END

'y!' STO 'X' STO

IF n 8 == THEN
1 z ' 1 Tl a *

ELSE 0

END

3 ROLLD 'Y' 'T' d * SWAP

'X! 'T' 2 * + +
a b ROT 'T' SHOW 'T' [ —NUM
{X Y Z } PURGE    
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'DIFG' directory Program 'LINT'
(continued)

 
   

Example 1:

We wantto calculate the line integral:

J (2-y)dx + xdy ,
r

where I is the cycloid:
X=T-SIN(T), ¥Y=1-COS(T), 0 < T < 2*m.

We first switch to 4 FIX mode.

We then enterthe list:

{ '2-y' 'X' 'T-SIN(T)' '1-COS(T)' O '2*n' }

at level 1 of the stack and call 'LINT".

Within 17 seconds, we obtain:

The exact result being:
 

1: -6.2832 -2m = -6.28318530718.   

Example 2:

We want to calculate the line integral:

J (y-z)dx + (z-x)dy + (x-y)dz,
T

where T is the spiral helix Xx=COS(T), Y=SIN(T), Z=T, O0<T<2m.

We first switch to 4 FIX mode.
We then enter the list:

{ 'y-2' 'z-X' 'X-Y' 'cOsS(T)' 'SIN(T)' 'T' O '2*n' }
at level 1 of the stack and call 'LINT".

Within 19 seconds, we obtain:

The exact result being:
 

1: -12.5664 -4 = -12.5663706144.   
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'DIFG' directory Program 'AREA'

CALCULATING THE AREA UNDER A PLANE CURVE
 

'AREA!' calculates the area under a plane closed curve T given by:

1 the parametric equations x=X(T), Y=Y(T), A < T < B.
2 polar coordinates RO=RO(T), whereA < T < B.

The functional diagram is as follows:
  'AREA'

1: liste EE— 1: area
      

where "list" is a list containing the elements required for computation and "area" is an
approximate value of the result.

"List" is ordered as follows:
{ xX(T) Y(T) A B }inthe first case,
{ rRO(T) A B }inthe second case,

where:
A is the lower bound of the parameter T.
B is the upper bound of the parameter T.
X(T), Y(T) and RO(T) are expressions, in symbolic form, of the variable 'T'.

Integrals are calculated to the degree of accuracy specified by the display mode:

* In n FIX mode, integrals calculated are correct to n decimal places.
* In STD mode, integrals are calculated as accurately as possible (which may take

time).

The value of the variable IERR obtained is greater than the absolute error made.

Notes:

In the first case, the integral calculated is:

Xdy, where T is the boundary curve from T=Ato T=B.
r

In the second case, the integral calculated is:

B

(1/2)J RO2(T) dT.
A

The curve T from A to B must be in the anti-clockwise direction (the points in the area inside
the curve must be to the left), otherwise we obtain a negative value for the area.

If the curve has double points on it and the area inside it
has several components, the components covered in the _
anti-clockwise direction are counted as positive and the }
others as negative.

 

The program does not check whether the curve I is in fact
closed or not. For a curve defined by polar coordinates, \'. "h
and if it is not closed, we obtain the area under the curve I lflflml
and between the half lines with a polar angle A and B. A1 —

o I x
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'DIFG' directory Program 'AREA)'
(continued

TEXT OF PROGRAM 'AREA' AND PRACTICAL EXAMPLES
 

 

'AREA": ( Checksum: # 57317d, Size: 134 bytes )

 

« OBJ— 'T PURGE

  
 

Example 1:

We want to find the area inside the ellipse:
X*/4 + Y?/9 =1

The parametric equations of this ellipse are:

X=2COS(T), Y=3SIN(T),where0 < T < 2m.

We first switch to 5 FIX mode.

 
 

'AREA'
 

{'2*COsS(T)"' '3*SIN(T)' 0 '2*mn' } 1:] 18.84956    
 

 

We obtain a result within 8 seconds, the exact result being:
6én = 18.8495559215.

Example 2:

We wantto find the area inside the cardioid RO=1+C0OS (T) that is described over the
segmentT = [0,2n].
We first switch to 6 FIX mode.

Using program 'AREA', we find:

 
 

2: 'AREA'
 

    1: { '1+cos(T)' O '2*m' } 1: 4.712389
 

 

We obtain a result within 15 seconds, the exact result being:

3n/2 = 4.71238898038.
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'DIFG' directory Program 'CVTRE'

CENTRE AND RADIUS OF CURVATURE OF A PLANE CURVE
 

'CVTRE!' calculates the centre of curvature and the radius of curvature at a point on a plane
curve given by:

1 the equation Y=F (X)
2 the parametric equations X=X(T), ¥Y=Y(T)
3 polar coordinates RO=RO(T).

You should proceed as follows:

First, enter at level 1 of the stack:
* the algebraic expression characterizing F (X)) (first case)
* the list { X(T) Y(T) } characterizing the algebraic expressions X(T) and Y(T)

(second case)
*  the algebraic expression characterizing RO (T) (third case).

Then call program 'CVTRE".

Program 'CVTRE!'is halted after a moment while the partial derivatives are computed.
A personalized menu is then displayed on the display panel:

 

 

P
N
W
b

   —PAR l { CENT —[ RADS | I EXIT
 

To move to a specific point on the curve, we simply enter the value of the parameterat level
1, then press the "—=>PAR" key.

By pressing "CENT", we then obtain the coordinates (XR, YR) of the centre of curvature (in
the form of a complex number).

By pressing "RADS", we then obtain the radius of curvature R.

These operations can be repeated for any number of points, during which time program
'CVTRE'is halted.

Press "EXIT" to quit the program.

R and (XR,YR) are calculated very quickly (as program 'CVTRE' in fact determines R, XR
and YR, expressed symbolically. If we use the corresponding keys on the calculator, the
expressions will only be evaluated at the point previously indicated).

N.B: the radius of curvature is calculated for a curve that is described for an increasing value
of T.
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'DIFG' directory Program 'CVTRE'
(continued)

 

'‘CVTRE'": ( Checksum: # 10389d, Size: 609 bytes )

 

« 'T' PURGE
IF DUP TYPE 5 == THEN

EVAL
ELSE

IF DUP 'T' d o SAME THEN
'X! SWAP 'T' 'X' STO

ELSE
DUP 'cosm)’ * SWAP 'SINM)' *

END
END
- X
« X 'T 2 DUP 'T! 2 y 'T d DUP 'T 2

- x1 x2 y1 y2

« x1 y2 * yi x2 * - x1 sQ yi sQ +
I d n

{
{ "—>PAR" « 'T STO » }

{ 1}
{ HCENTII

« xt EVAL yr EVAL R—-C » }
{ "RADS" « r EVAL » }

{ 1}
{ "EXIT" CONT }

}
TMENU HALT {X T} PURGE 2 MENU  
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'DIFG' directory Progra;n 'CVTRE)'
continue

PROGRAM 'CVTRE': PRACTICAL EXAMPLES
 

Example 1:

Radius of curvature and curvature of the catenary Y = CH(X).
Wefirst enter ' COSH(X) ' at level 1 and call 'CVTRE'.
The personalized menu is displayed after two seconds.
If we give a value of 0 to the parameter (here Xx), we find:
Centre of curvature: (0, 2), Radius of curvature: 1.
if we give a value of 1 to the parameter, we find (in 5 FIX mode):
Centre of curvature: ( -0.81343, 3.08616 ),
Radius of curvature: 2.38110.
Press "EXIT" to quit the program.

Note:here, the theoretical values are at the point on the x-axis:

XR=X-COSH(X)*SINH(X), YR=2*COSH(X), R=COSH(X)?2.

Example 2:

Radius of curvature and curvature of the cycloid:
X(T)=T-SIN(T), Y(T)=1-COS(T).

Wefirstenter { 'T-SIN(T)' '1-cos(T)' } atlevel 1 and call 'CVTRE"
The personalized menu is displayed after two seconds.
If we give a value of r to the parameter (here T), we find:
Centre of curvature: (0, 2), Radius of curvature: 1.
If we give a value of 1 to the parameter, we find (in 5 FIX mode):
Centre of curvature: ( 3.14159, -2.00000 ),
Radius of curvature: -4.00000.

Note:here, the theoretical values are at the point with parameter T:
XR=T+SIN(T), YR=-1+COS(T), R=-4*SIN(T/2).

Example 3:

Radius of curvature and curvature of the cardioid defined by the polar equation
RO=1+COS(T).

Wefirst enter '1+cOs(T) ' atlevel 1 and call 'CVTRE'.
The personalized menu is displayed after 9 seconds.

if we give a value of 0 to the parameter, we find:
Centre of curvature: ( 0.66667, 0.00000),
Radius of curvature: 1.33333
if we give a value of n1/2 to the parameter, we find (in 5 FIX mode):
Centre of curvature: ( 0.66667, 0.33333 ),
Radius of curvature: 0.94281.

Note:the theoretical value of R at the point with parameter T is: R=4/3*C0OS(T/2).

-184 -



'DIFG' directory Program 'DIVRG'

DIVERGENCE OF A VECTOR FIELD
 

 

'‘DIVRG' calculates the divergence div(E) of a vector field E. The functional diagram is as
follows:

  

2: E 'DIVRG' 2:
  

1: variables 1: div(E)      

The field E must be represented here by the list of its components, each of which is an
algebraic expression.

“variables" denotes the list of variables with respect to which the partial derivatives are to be
calculated.

If we take the example of a field in three-dimensional space, with coordinates x, Y and z, the
field E is represented by the list of its three components (p,Q,R), where P=P(X,Y,Z2),
Q=Q(X,Y,Z) and R=R(X,Y,2) are expressions in terms of the variables X, Y and z and
"variables" is the list { X Y z}. Div(E) is therefore equal to:

a P d Q d R
— + — + —
d X Y Z

Program 'DIVRG!'is halted once the partial derivatives have been computed and a menu is
displayed including the entries "DIVG", "EXIT" and one entry per variable (which enables us
to enter values or purge them, etc.).

By pressing "DIVG", we can then calculate div(E) at specific points, or obtain it in symbolic
form.

Press "EXIT" to quit the program.

'DIVRG": ( Checksum: # 36444d, Size: 186.5 bytes )

 

« DUP PURGE —» f v
« 0 1 t SIZE FOR i

f i GET v i GET 9 +
NEXT 't'  STO
{ { "DNG" « f EVAL » }} v +
{ { "BXIT" CONT } } +
TMENU HALT v PURGE 2 MENU
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'DIFG' directory Program 'DIVRG'
(continued)

PROGRAM 'DIVRG': PRACTICAL EXAMPLES

Example 1:

Calculate the divergence of the field E(X,Y) = (cos(Y,X), EXP(X,Y), at any pointin
two-dimensional space (here, the point P(X,Y)=C0S(Y/X), W(X,Y)=EXP(XY) ).

 

2:|{'COS(Y/X)' 'EXP(X*Y)'}
 

  1: { XY}
 

We first create the stack above and call 'DIVRG!, which is halted after two seconds while a
menu with the entries "DIVG", "X", "Y" and "EXIT"is displayed.

Pressing "DIVG" without giving a value for X and Y, we find the following at level 1 of the
stack:
 

   
1: ' (SIN(Y/X)*-(Y/X"2))+X*EXP(X*Y)'

Meaning that:

P aQ Y
div(E)= —— + — = — SIN( Y / X ) + X EXP(XY).

X aY X2

We then press "EXIT" to quit the program.

Example 2:

We wantto calculate the divergence of the field
E(X,Y,2) = ( LN(X+Y), Y*22, Z/(YZ) ).
(Here,P = LN(X+Y), Q = Y*22 and R = X/(Y2) ).
We first create the stack below and call 'DIVRG'.

 

2:({ '"LN(X+Y)' 'y*z"2' 'X/Y/2' }
 

  1: { XY 2}
 

'DIVRG!' is halted and a menu with the entries "DIVG", "X", "Y", "Z" and "EXIT" is displayed.
We give X, Y and Z the values 1, 2 and 3 respectively (for example, enter 3 at level 1, press
"Z", then STO).

Pressing "DIVG", we obtain a result immediately.
Wefind:
 

1: 9.27777777171717
   

meaning that at the point (1,2,3):

JaP aQ JR
Div(E) = — (1,2,3) + — (1,2,3) + — (1,2,3)= 167 / 18

X ay 97z

We then press "EXIT" to quit the program.
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'DIFG' directory Program 'CURL'

CURL OF A VECTOR FIELD

'CURL' calculates the curl curl(E) of a vector field E in three-dimensional space. The
functional diagram is as follows:

  

2: E 'CURL' 2:
  

1: variables 1: curl(E)      

The field E must be represented here by the list { P, W, R } of its components, each of which
is an algebraic expression.
“variables" denotes the list of the three variables with respect to which the partial derivatives
of P, Q and R are to be calculated.
Curl(E) is a list of 3 algebraic expressions representing the components of the curl of E,i.e.
of the Ive)ctor field (if P, Q and R are the components of E, and if X, Y and Z are the three
variables):

ST od R d Q d P d R
( — - — - -

d X3Y o2z 8z

9 Q
— - —)

X
’

=
0

N.B: Program 'CURL' is halted and a menu is displayed including the entries "CURL", "EXIT"
(to quit) and one entry per variable (which enables us to enter values or purge them,
etc.).

By pressing "CURL", we can thus obtain the curl expressed symbolically or its value at a
point.

'CURL": ( Checksum: # 27663d, Size: 327 bytes )

 

« |F DUP SIZE 3 == THEN DUP PURGE 0 I f v j

« 1 3 FOR i
IF i 3 == THEN 1 ELSE i 1 + END

'§! STO f j GET v i GET d

f i GET v j GET 7 -

NEXT

3 ROLLD 3 —LIST 't STO
{ { HCURLH

« f EVAL 1 3 START ROT EVAL NEXT

IFERR 3 —ARRY THEN —LIST END

» }}
v + { { "EXIT" CONT } } +
TMENU HALT v PURGE 2 MENU

» END   
 

Note:

If we calculate the curl at a specific point, the result is given in the form of a three-
component vector.
Otherwise, the components of curl(E) are obtained in symbolic form and the result is given in
the form of a list containing three elements.
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'‘DIFG' directory Progr?m 'CUI:&)‘
continu

PROGRAM 'CURL': PRACTICAL EXAMPLE
 

Example 1:

We want to calculate the curl of the vectorfield:

E(X,Y,2) = ( XY, YZ, ZX )

We first create the stack below:

 

2:| [ 'X*xy' 'yxz' 'z*x' |}
 

  1: { XYz}
 

We then call program 'CURL".

The program is halted and a menu displays the following entries:

"CURL", "X", "Y', "Z"

1)  pressing "CURL" without giving values to X, Y and Z, we find:

 

  
 

The expression of the curl of E at any point (X, Y, zZ) is therefore:
curl(gE) = ( -2, -X, -Y ).

2) pressing "CURL" after giving only X a value of 1, we find:

 

1: { '-z' -1 '-y' }
  
 

We thus obtain the expression of the curl of E at any point (1,Y,2).

3) pressing "CURL" after giving X, Y and Z the values 1, 2 and 3 respectively, we find:

 

  
 

We thus obtain the value of the curl of E at the point (1,2,3).

Press "EXIT" to quit the program.
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'DIFG' directory Program 'GRADI'

GRADIENT OF A FUNCTION OF SEVERAL VARIABLES
 

 

'GRADI' calculates the gradient of a function f of several variables. The functional diagram is
as follows:

  

2: £ 'GRADI' 2:
  

1: variables 1: grad(f)      

Where “fis an algebraic expression characterizing the function f.

“variables" is the list of variables with respect to which the partial derivatives are to be
calculated.

"grad(f)" is the list of components of the vector of the gradient of f (where the components
are expressed symbolically). If the user tells the calculator to compute the gradient for a
specific point, the result is given as a vector.

For example, if f is a function of three variables X, Y and Z, then grad(f) is the vector:

D £ af 9f
( —, =)’ ’

9 x Y 2

N.B: program 'GRADI' is halted to display a menu with the entries "GRADI", "EXIT" (to quit)
and one entry per variable (which enables us to give each variable a value if required).

By pressing "GRADI", we can thus obtain the gradient expressed symbolically, orits value at
a point.

'GRADI'": ( Checksum: # 27380d, Size: 235 bytes )

 

« DUP PURGE DUP SIZE - f v n
« 1 n FOR i f v i GET 2 NEXT

n —LIST 't STO
{ { IIGRADIH

« 1 n FOR i f i GET EVAL NEXT
IFERR n —ARRY THEN —LIST END

» }}
v +

{ { "EXIT" CONT }} +
TMENU HALT v PURGE 2 MENU  
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'‘DIFG’ directory Progra(m 'GRADI)'
continued

PROGRAM 'GRADI': PRACTICAL EXAMPLES
 

 

Example 1:

We wantto calculate the gradient of £(X,Y) = EXP(XY)SIN(Y).
Wefirst create the stack below:

 

2: '"EXP(X*Y)*SIN(Y)'
 

1: { XY}   
We then call program 'GRADI'. The program is halted to display a personalized menu with
the entries "GRADI", "X", "Y" and "EXIT".

1)  pressing "GRADI" without giving values to X, Y and Z, we find (within 3 seconds):

 

1| { '"Y*EXP(X*Y)*SIN(Y)' 'X*EXP(X*Y)*SIN(Y)+EXP(X*Y)*COS(Y)'}
  
 

which is the expression of the gradient of f at any point (X,Y).

2) pressi)ng "GRADI" after giving X and Y the values 1 and 2 respectively, we find (in 5 FIX
mode):
 

 
1:| [ 13.43770 3.64392 ]

  

We thus obtain the value of the gradient of f at the point (1,2).
Press "EXIT" to quit the program.

 

 

Example 2:

We wantto calculate the gradient of £ (X,Y,2) = 'XY + 22 + Y/22'.
We first create the stack below:

2: 'X*Y+Z272+4Y/2"'

1: { XYz}   
We then call program 'GRADI'. The program is halted to display a personalized menu with
the entries "GRADI", "X", "Y" and "EXIT".

1)  pressing "GRADI" without giving values to X, Y and Z, we find (within 2 seconds):

 

  
1:| { Y '"X+1/2' '2*2-Y/272' }
 

which is the expression of the grad(f) at any point (X,Y,2Z).

2) pressing "GRADI" after giving X and Y the values 1 and 2 respectively, we find:
 

1: { 2 '1+1/2' '2*2-2/2"2' }
   

We thus obtain the expression the gradient of f at any point (1,2,2).
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'DIFG' directory Program 'LAPL'

LAPLACEAN OF A FUNCTION OF SEVERAL VARIABLES
 

'LAPL' calculates the Laplacean of a function f of several variables. The functional diagram is
as follows:

  

2: f 'LAPL' 2:
  

    1: variables A (f)
  

Where "f" is an algebraic expression characterizing the function f.

"variables" is the list of variables with respect to which the partial derivatives are to be
calculated.

" A (f)" is the expression of the Laplacean of f. If the usertells the calculator to compute for a
specific point, the result is given as a real number.

For example,if f is a function of three variables x, y and z, then A (f) is the scalar:

da2f d%f d%f
+ + .

dax? dy? 922

   

N.B: program 'LAPL' is halted to display a menu with the entries "LAPL", "EXIT" (to quit) and
one entry per variable (which enables us to give each variable a valueif required).

By pressing "LAPL", we can thus obtain the Laplacean expressed symbolically, orits value
at a point.

'LAPL": ( Checksum: # 58922d, Size: 188.5 bytes )

 

« DUP PURGE —» f v
« 0 1 v SRZE FOR i

f 1 2 START v i GET 3 NEXT +
NEXT 'f'  STO
{ { "LAPL" « f EVAL » } }
v +

{ { "EXIT" CONT } } +
TMENU HALT v PURGE 2  MENU  
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'DIFG' directory Progr(ign'tng)'

PROGRAM 'LAPL': PRACTICAL EXAMPLES
 

Example 1:

We wantto calculate the Laplacean of £(X,Y) = X2*SIN(Y).
We first create the stack below:

 

2: 'X"2*SIN(Y)'
 

1: { XY}  
 

We then call program 'LAPL'. The program is halted to display a personalized menu with the
entries "LAPL", "x", "y" and "EXIT".

1)  pressing "LAPL" without giving values to X and Y, we find:

 

  
1:| '2*SIN(Y)+X2*-SIN(Y)'
 

which is the expression of the Laplacean of f at a point (X,Y).

2) pressing "LAPL" after giving X and Y the values 1 and 2 respectively, we find:

 

1: 909297426824
  
 

We thus obtain the value of the Laplacean of f at the point (1,2).
Press "EXIT" to quit the program.

 

 

Example 2:

We wantto calculate the Laplacean of £ (X,Y,2) = 'XY + 22 + Y/2?%'.
We first create the stack below:

2: 'X*Y+272+4Y/2'

1: {xvYyz}  
 

We then call program 'LAPL'. The program is halted to display a personalized menu with the
entries "LAPL", "x", "y", "z" and "EXIT".

1)  pressing "LAPL" without giving values to X, Y and z, we find:

 

1:| '2+4Y*(2*2)/2"2"2"
  
 

as the expression of (F) atapoint (Xx,Y,2) is:
2 + 2*xY/z" 3 (use COLCT and EXPAN to see this).

2) pressing "LAPL" after giving z a value of 1, we find the expression of the Laplacean of f
atapoint (X,Y,1), i.e. '2+Y*2"'.

Press "EXIT" to quit the program.
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'DIFG' directory Program 'DIFF'

DIFFERENTIAL OF A FUNCTION OF SEVERAL VARIABLES

'DIf;'FI; calculates the differential of a function f of several variables. The functional diagram is
as follows:

  

2: f 'DIFF' 2:
  

1: variables daf      

Where "f' is an algebraic expression characterizing the function f.

"variables" is the list of variables with respect to which the partial derivatives are to be
calculated.

"df" is the expression of the differential of f.

For example,if f is a function of three variables x, y and z, then df is written:

N.B: program 'DIFF' is halted to display a menu with the entries "DIFF", "EXIT" (to quit) and
one entry per variable (which enables us to give each variable a value if required).

By pressing "DIFF", we can thus obtain the differential expressed symbolically, or its value at
a point.

'DIFF'": ( Checksum: # 43931d, Size: 221 bytes )

 

« DUP PURGE - f v
« 0 1 v SIZE FOR i

tf v i GET 4 ™" v i GET —STR
2 OVER SZE 1 - SUB + OBJ» * 4+

NEXT
't'  STO
{ { "DIFF" « f EVAL » } }
v +

{{ "BEXIT" CONT } } +
TMENU HALT v PURGE 2 MENU  
 

N.B: If, for example, the variables are called X, Y and Z, program 'DIFF' uses the names
'dX', dY' and 'dZ'. For the program to run correctly, none of the variables must have the
same name as another variable already in the directory.
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'DIFG' directory Prog(rcingfi'r?dzg)'

 
 

Example 1:

We wantto calculate the differential of £ (X,¥Y) = X“2*SIN(Y).
We first create the stack below:

 

2: 'X"2*SIN(Y)'
 

  1: {xvYyY}
 

We then call program 'DIFF'. The program is halted to display a personalized menu with the
entries "DIFF", "X", "Y" and "EXIT".

1)  pressing "DIFF" without giving values to X and Y, we find:
 

1:| '2*X*SIN(Y)*dX+X2*COS(Y)*dy'
   

which is the expression of df at a point (X,Y).

2 pressi)ng "DIFF" after giving X and Y the values 1 and 2 respectively, we find (in 5 FIX
mode):
 

  
1:| '1.81859*dX-0.41615*dy’
 

We thus obtain the value of df at the point (1,2).

Press "EXIT" to quit the program.

Example 2:

We want to calculate the differential of:
f(RO,TETA,FI) = RO?*SIN(TETA)*EXP(FI*TETA).

We first create the stack below:

 

2:| 'RO"2*SIN(TETA)*EXP(FI*TETA)'
 

1: { RO TETA FI }   
We then call 'DIFF'. The program is halted to display a personalized menu with the entries
"DIFF", "RO", "TETA", "FI" and "EXIT".

if we give RO, TETA and FI the values 1, 2 and 3 respectively, then press "DIFF", we find (in
2 FIX mode):
 

 
1:| '733.67*dRO+932.62*dTETA+733.67*dFI'

  

which is the expression of df at the point (1,2,3).

Press "EXIT" to quit the program.
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GRAPHS
  
 

The HP48 has a graphic screen with a resolution of 131 x 64 pixels. A large number of
instructions are related to managing this screen. These instructions are to be found in the
PLOT or PGR DSPL menus, or in the GRAPH environment.

In terms of graphic display, the HP48 marks a considerable improvement on the HP28S,
thus making the programs in this chapter, which were originally written for the HP28S,less
essential than they were before.

However, | have kept the following programs, modifying them where necessary:

'PAR' : plotting a parametric curve ( X=X(T), Y=Y(T) ).

'POL' : plotting a curve with polar coordinates ( Ro = Ro(8) ).

'POLP' plotting a curve of a polar equation:
( Ro = Ro(T), 6 = 6(T) ).

'PLOT" plotting program used by 'PAR’, 'POL' and 'POLP'.

‘ENV' : plotting an envelope of a family of straightlines.

'MTCL' using the Monte-Carlo method to display curves of implicit functions:
F(X,Y)=0.

'FAMT' plotting a family of curves dependingon T.

'‘ANIM' producing successive screen images.

Programs 'PAR/, 'POL', 'POLP' and 'ENV' are designed to plot curves while storing the points
of the curve in the matrix ZDAT, which is not possible using the DRAW instruction and
proves useful if you need to plot curves on paper.

| thought twice about keeping program 'MTCL'. We can in fact display a curve F(X,Y)=0 by
plotting the expression 'F(X,Y)>0' (or 'F(X,Y)<0',) using the DRAW instruction (first
having defined "TRUTH" as the type of plot).

However, 'MTCL' can be quicker, as it can be used to test a part of the points on screen (and
not all points as with "TRUTH" plots).
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‘GRPH' directory Program 'PAR'

PLOTTING A PARAMETRIC CURVE

'PAR' enables you to plot a curve given by parametric equations: X=X(T), Y=Y(T).

The functional diagram is as follows:

  

2: 'PAR'
 > plot

1: list      

The list at level 1 is in the format { M(T) start end step }, where:

* is an algebraic expression, whose value is the complex number giving the
coordmates (X?)t),Y(t)) of the point to be plotted (a capital T must be used here).

* "start" and "end" represent the initial value and the final value respectively of the
parameter T.

* "step" is the increment of the parameter T. Plotting time is obviously inversely
proportional to T.

Program 'PAR' calls program 'PLOT".
Points to be noted:
Plotting is not stopped if a point cannot be evaluated. The point is simply left out.
Points found are put into the matrix 3DAT (meaning that they can be re-read or used to
change the screen display mode with the SCATRPLOT instruction).
Once a curve has been fully plotted, the calculator automatically goes into the 'GRAPH'
environment.
Press 'ON' to quit the program

'PAR': ( Checksum: # 35659d, Size: 37.5 bytes )
 

« « » PLOT »
 

Example:

Plot the curve X(T)=6*COS(T), Y(T)=3*SIN(T) using the default values in PAR, where
0 < T < 2*nandastep of 0.2.

  
2. 'PAR'
 > plot

1:|{ '6*COS(T)+i*3*SIN(T)' 0 '2*n' .2 }      

The curve plotted within 25 seconds is an ellipse.
Once the curve has been fully plotted, the 32 points used are stored in the matrix ZDAT.
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'GRPH' directory Program 'POL'

PLOTTING A CURVE WITH POLAR COORDINATES
 

'POL' enables you to plot a curve given by polar coordinates: Ro=Ro(T).
The functional diagram is as follows:

  

2: 'POL’
 > plot

1: list      

The list at level 1 is in the format { Ro(T) start end step }, where:

* Ro(T) is an algebraic expression characterizing the radius vector of the point to be
plotted, with a polar angle T (a capital T must be used here).

* "start" and "end" represent the initial value and the final value respectively of the polar
angle T.

* "step" is the increment of the polar angle T. Plotting time is obviously inversely
proportional to T.

Program 'POL' calls program 'PLOT".
Points to be noted:
Plotting is not stopped if a point cannot be evaluated. The point is simply left out.
Points found are put into the matrix 2DAT (meanin%_ that they can be re-read or used to
change the screen display mode with the SCATRPLO instrucfion?.
Once a curve has been fully plotted, the calculator automatically goes into the 'GRAPH'
environment.
Press 'ON' to quit the program

'POL": ( Checksum: # 48083d, Size: 52 bytes )
 

« « T i * EXP * » PLOT » ‘1
 

Example:

Plot the curve Ro(8) = 2 * (COS(2*8) - 2*COS(8)) using the default values in PAR,
where 0 < 8 < 2*n and a step of 0.2.

  

2: 'POL'
 > plot

    1:| { '2*(COS(2*T)-2*COS(T))' 0 '2*mn' .2 }
  

The curve is obtained within 25 seconds.
Once the curve has been fully plotted, the 32 points used are stored in the matrix ZDAT.
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'GRPH'directory Program 'POLP'

PLOTTING A CURVE OF A POLAR EQUATION
 

'POLP' enables you to plot a curve of a polar equation: Ro=Ro(T), 6=6(T).
The functional diagram is as follows:

  

2: 'POLP'
 > plot

 1: list
     

The list at level 1 is in the format { M(T) start end step }, where:

* M(T) is an algebraic expression whose value is the complex number giving the pair of
polar coordinates (Ro(T),0(T)) of the point to be plotted (a capital T must be used here).

* "start" and "end" represent the initial value and the final value respectively of the
parameter T.

* "step" is the increment of the parameter T. Plotting time is obviously inversely
proportional to T.

Program 'POLP" calls program 'PLOT".
Points to be noted:
Plotting is not stopped if a point cannot be evaluated. The point is simply left out.
Points found are put into the matrix ZDAT (meanin%_ that they can be re-read or used to
change the screen display mode with the SCATRPLO instruction?.
Once a curve has been fully plotted, the calculator automatically goes into the 'GRAPH'
environment.

Press 'ON' to quit the program

'POLP'": ( Checksum: # 35459d, Size: 51 bytes )
 

« « C—»-R i * EXP * » PLOT »
 

Example:

Plot the curve 8=SIN(Ro+1/Ro) using the default values in PAR, where .1 < Ro < 3and a
step of 0.1.

 
 

2: 'POLP'
 > plot

    1: { '"T+i*SIN(T+1/T)' .1 3 .1}
 

 

The curve is obtained within 30 seconds.
Once the curve has been fully plotted, the 30 points used are stored in the matrix 2DAT.
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'GRPH' directory Program '‘PLOT'

PLOTTING PROGRAM USED BY 'PAR', 'POL' and 'POLP’
  

E;?grams 'PAR', 'POL' and 'POLP' use the same 'PLOT' program, the text of which is shown
ow:

'PLOT" ( Checksum: # 3577d, Size: 258.5 bytes )

 

« SWAP oBJ-» DROP CLx
ERASE {#0 #0} PVIEW DRAX 0
- sp m d f P v

« d —-NUM f —-NUM FOR i
i 'T' STO
IFERR

m —-NUM sp —NUM

DUP C—-R 2 —ARRY I+
DUP
IF v 0 >

THEN v SWAP LINE
ELSE PIXON

END
'v' STO

THEN
CLEAR

END
P STEP
'T PURGE GRAPH  
 

Points to be noted:

The variable 'v' contains the previous point (which is useful when plotting segments). We first
put a value of 0 in '0o' and the test "IF v 0 =" checks that we are not on the first point
(segments can only be plotted from the 2nd point onwards).

The various points (the end points of segments) are stored in the matrix ZDAT, which is
purged before the program is run.
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'‘GRPH' directory Program 'ENV'

PLOTTING THE ENVELOPE OF A FAMILY OF STRAIGHT LINES
  

'ENV' enables you to plot the envelope of a family of straight lines S(T), where the equation
of S(T) is written:

A(T)*X + B(T)*Y +C(T) = 0.

The functional diagram is as follows:

  

2: 'ENV'
 > plot

1: list      

The list at level 1 isinthe format { A(T) B(T) C(T) start end step }, where:

*  A(T), B(T) and C(T) are algebraic expressions of the variable T (a capital T must be
used here).

* "start" and "end" represent the initial value and the final value respectively of the
parameter T.

* "step" is the increment of the parameter T. Plotting time is obviously inversely
proportional to T.

Plotting is not stopped if an error occurs while computing a point on the curve. The point is
simply left out.

Program 'ENV' calls program 'PAR', which calls program 'PLOT".
The various points used to plot the curve are stored in the matrix ZDAT .

'ENV'": ( Checksum: # 3853d, Size: 272.5 bytes )
 

« 'T PURGE EVAL

- b c d t P

'T' 9 b 'T! d c 'T! 2

al b1 c1

cl b * c b1 * - a b1 * al b *

- DUP ROT ROT / SWAP al c * a c1
* -

SWAP / i * 4+ d t p 4 LST PAR

R
‘
.
.

  
 

Example:

To plot the envelope of the family of straight lines:

SIN(T)*XCOS(T)*Y-3*SIN(T)*COS(T)=0, we put the following at level 1 of the list:
{ 'SIN(T)' 'cos(T)' '-3*SIN(T)'*CcosS(T)' 0 '2*m' .1 }

The curve obtained within 1 min 40 secs is an astroid.
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'‘GRPH' directory Program 'MTCL'

MONTE CARLO METHOD (DISPLAYING A CURVE F(X,Y)=0)
 
 

We want to display a curve defined by the equation F(X,Y)=0. The principle used by the
Monte Carlo method, implemented here by program 'MTCL',is to test the sign of F at a
certain number of points (which are theoretically uniformly distributed) and to "highlight' the
points where F is positive and leave those where F is negative.
We are thus able to display the two-dimensional areas delimited by the curve F(X,Y)=0,
and thus get an idea of how the curve will look.

The functional diagram of 'MTCL' is as follows:

  

 'MTCL' plot
1: F(X,Y) _—      

where F(X,Y) is the algebraic expression of the application F (X and Y must be capital).

Program 'MTCL' uses a "step" h. The default value of h is h=1.
h=1 means that all pixels are tested.
h=2 means that every other row and column are tested, etc.
Pressing the + key during plotting increases h by 1. Pressing the - key reduces h by 1 (but h
must always remain between 1 and 8).

'MTCL'": ( Checksum: # 23081d, Size: 441.5 bytes )

 

« 1 - f h

« ERASE {#0 #0} PVIEW DRAX PICT SIZE
PPAR 2 GET PPAR 1 GET DUP2
- C—R § ROLL B—+R / SWAP 5§ ROLL B-R /
- pmax pmin sy 8X

« pmin RE pmax RE FOR i i 'X' STO
pmin M pmax ] FOR J J 'Y' STO

f EVAL
IF 0 > THEN i J R—C PIXON END
IF KEY THEN

{8 9 } SWAP POS 1 + {0 -1 1}
SWAP GET h + 1 MAX 8 MIN 'h' STO

END
sy h * STEP

X h * STEP
{X Y} PURGE GRAPH  
 

Note:

Once the curve has been plotted, the calculator goes into the GRAPH environment. Press
'ON' to quit the environment.
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'‘GRPH' directory Program '‘FAMT'

PLOTTING A FAMILY OF CURVES
VARYING ACCORDING TO A PARAMETER
  
 

'FAMT' lets you plot the various curves of a family of functions F varying according to a
parametert.
The functional diagram is as follows:

  

2: ' FAMT'
 > plot

1: list      

the list at level 1 is in the format: { F(X,T) start end step }, where:

* F(X,T) is the algebraic expression characterizing the function F; X is the variable and T
is the parameter (capitals must be used).

* "start" and "end" represent the initial value and the final value respectively of the
parameter T.

* "step" is the increment of the parameter T.

First option:

Each curve is plotted on the screen one after the other (the screen clears between two plots).
On quitting the program, a list containing the graphic objects for the plots is sentto level1.

Second option:

Before calling 'FAMT', we enter the integer 1 at level 1 of the stack and the list of data
therefore goes up to level 2.
All curves are then plotted one after the other, but this time all on screen at the same time.
On quitting, a graphic object (representing the image of the screen display)is sent to level 1.

'FAMT": ( Checksum: # 10702d, Size: 224 bytes )
 

« DUP 1 == DUP DROPN — t
« OBJ>» DROP —- d f p

« FUNCTION 'X' INDEP ERASE DRAX STEQ
F t NOT THEN {} END
d t FOR i

i 'T' STO DRAW
IF t NOT THEN

PICT RCL + ERASE DRAX
END

p STEP
IF t THEN PICT RCL END
{ EQ T} PURGE

»   
Example:

Using the default plotting parameters, plot { '2*SIN(X*T)*T' .5 1.5 .2 }.
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'‘GRPH' directory Program 'ANIM'

PRODUCING SUCCESSIVE SCREEN IMAGES

'‘ANIM' allows you to display different screen images successively.
These images must be represented by graphic objects grouped into a list.

The functional diagram is as follows:

  

 

      

 
 

 

First case:

2: 'ANIM'

> plot
1: list

Second case:

2: list 'ANIM'
> plot

1: time delay      

If the list has been stored in a variable, the name of that variable can be used. The images
are then sent to the screen one after the other, in the order in which they appear in the list.
When the last image has been displayed, the process loops back to the start.
Press the 'ON' key to quit program 'ANIM'.

In the first case:

The program halts when an image is displayed. 'ANIM' then waits for the user to press a key
(any key except 'ON', used to quit the program) before displaying the next image.

In the second case:

"time delay" is a positive real number representing the delay, in seconds, between two
successive displays. Images also scroll automatically on screen (the real number 0 takes you
back to the first case).

'ANIM': ( Checksum: # 57620d, Size: 99.5 bytes )
 

« |IF DUP TYPE THEN 0 ELSE ABS END
t—

« {1} { #0 #0 } PVIEW
DO

GET1 PICT {#0 #0} ROT REPL t WAIT
IF t NOT THEN DROP END

UNTIL 0 END
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LARGE INTEGERS
  
 

The programs in the 'LONG' directory are used to work with "large integers". By this, we
mean positive or zero inte?ers with a number of figures above the twelve significant figures
that the calculator is capable of storing in memory.
Here, a large integer n is represented by a vector whose components represent the
breakdown of n into base 10"5. These components must therefore be integers between 0
and 99999.

Forexample: N = 165088696783290882115695 is written:
[ 1650 88696 78329 8821 15695 ].

Conversely:
[ 87 132 6 78999 1 ]representsN = 8700132000067899900001.

More simply, 1iswritten [ 1 Jand[ 1 0 ]isequalto 100000 = 1075.

Here is the list of programs in the 'LONG' directory enabling you to perform standard
operations on large integers:

'ADDL' addition of two large integers.
'PRODL' : product of two large integers.
'POWL" integer powers of a large integer.
'DIVL' : division of 2 large integers (calculation of quotient and integer remainders).
'GCDL' gcd of two large integers.
'LCML' lcm of two large integers.
'FACTL' : factorial of a natural integer,in large integer form.

The 'LONG' directory also includes routines enabling you to switch from one form of a large
integer to another:

'L-ST writes a large integer as a string of characters.
'ST-»L' writes a string of characters in the form of a large integer.
'‘R—L' : switches from "real" to large integer form.
'L—-R' : switches from large integer to "real" form.

The last two routines in the directory are designed to ensure that the programs listed above
run correctly. The user should not usually have to use them directly:

'FRMT' manages overflows in large integer calculations.
‘ELML' eliminates any zero coefficients to the left in a large integer.

Note:

Due to the way in which large integers and polynomials are represented, a certain number of
large integer programs are in fact calls to similar polynomial programs (they therefore go into
the 'POLY" directory before returning to the 'LONG' directory). Programs 'ADDL', 'PRODL'
and 'ELML' make such calls.
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'LONG'directory Progrargsp'aggt'
an 1 1

ADDITION OF TWO LARGE INTEGERS

'ADDL' adds two large integers A and B, as shown in the functional diagram below:

  

Z: A 'ADDL' 2:
 

 

1: B 1: A+B      

The result is given in 'Iarge integer' format. Program 'ADDL' goes into the 'POLY" directory,
where it calls program 'ADDP'. It then returns to the 'LONG' directory, where it calls program
'FRMT' (overflow management).

'ADDL'": ( Checksum: # 63368d, Size: 48.5 bytes )

 

[ « POLY ADDP LONG FRMT »
 

Example: (in one second)

  

2:| [ 14 84721 632 ] 'ADDL' 2:
  

 1:|[ 911 4839 95825 2] 1:|[ 911 4854 80546 634 ]
     

as 14 84721 00632 + 911 04839 95825 00002 = 911 04854 80546 00634 .

PRODUCT OF TWO LARGE INTEGERS

'PRODL' multiplies two large integers A and B, as shown in the functional diagram below:
  

2: A 'PRODL' 2:

>

1: B 1: AB

  

      

The result is given in 'large integer' format. Program 'PRODL' goes into the 'POLY" directory,
where it calls program 'PRODP'. It then returns to the 'LONG' directory, where it calls
program 'FRMT' (overflow management).

'PRODL'": ( Checksum: # 40829d, Size: 50.5 bytes )
 

« POLY PRODP LONG FRMT »
 

Example: (in one second)
 

2:| [ 14 84721 632 ]
  

    
1:|[ 911 4839 95825 2] 1:1[13526 52696 63435 48708 30842 1264]
  

as 14 84721 00632 * 911 04839 95825 00002 is equal to:
13526 52696 63435 48708 30842 01264.
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'‘LONG'directory Program 'POWL'

 
RAISING A LARGE INTEGER TO AN INTEGER POWER

'POWL' calculates A", where A is a large integer and n is a naturalinteger.
The functional diagram is as follows:

  

2: A ' POWL' 2:
  

      

N.B: 'POWL' calls program 'PRODL'.

'‘POWL'": ( Checksum: # 51318d, Size: 169 bytes )

 

« - a n

« 1 DUP —ARRY

WHILE n 0 >

REPEAT
IF n 2 MOD THEN

a PRODL
END
n 2 / FLOOR 'n' STO
IF n THEN

a DuUP PRODL 'a' STO
END

END  
 

Example: (within 3 seconds)

 

2:| [ 1 84721 632 ]
 

1: 3 1:|[6 30302 25019 87618 19996 4636 35968]    
  

as ( 1 84721 00632 )"3 = 6 30302 25019 87618 19996 04636 35968.
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‘LONG" directory Program 'DIVL'

DIVISION OF TWO LARGE INTEGERS
 

DIVL' divides two large integers A and B, as shown in the functional diagram below:

  

2: A 'DIVL' 2: Q
   

1: B 1: R      

where Q and R are the quotient and integer remainder respectively of the division ( A = BQ +
R, where R < B)), both given in large integer format.

N.B: 'DIVL' calls programs 'ELML' and 'ADDL".

'DIVL": ( Checksum: # 27671d, Size: 411 bytes )
 

« ELML DUP 1 GET 1 + OVER SIZE 1 GET 0

— b d tb q

« 0 1 —ARRY SWAP
WHILE

bDupP 1 GET d / FLOOR 'q' STO
DUP SIZE 1 GET tb DUP2 > 3 ROLLD

IF DUP q NOT AND THEN
3 PICK b - ELML
1 GET o0 = 'q'  STO

END
q AND
OR

REPEAT
F q NOT THEN

OBJ- 1 GET 1 - —ARRY 1 OVER
1 GET 4 ROLL 100000 * +
DUP d / FLOOR 'q’ STO PUT

END
DupP 1 —ARRY 3 PICK SIZE 1 GET
- 1 + 1 —LIST RDM
ROLL ADDL 3 ROLLD
* NEG OVER SIZE RDM ADDLo

c
a
g
a
e

END   
Example: (within 9 seconds)

  
2:|[ 32415 738 2351 299 77314 ] 'DIVL' 2:| [ 7 15359 17612 ]
  

    1: [ 4531 29119 77813 ] 1:|[ 1887 12900 34758]
  

as 32415 00738 02351 00299 77314 is equal to

( 4531 29119 77813 ) * ( 7 15359 17612 ) + 1887 12900 34758.
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'LONG' directory Program '‘GCDL'

GCD OF TWO LARGE INTEGERS
 

'GCDL' calculates the gcd (greatest common divisor) of two large integers A and B. The
functional diagram is as follows:

  

2: A 'GCDL' 2:
  

    1: B 1: Pgcd( A,B )
  

The gcd is given in 'large integer' format.

N.B: 'GCDL' uses programs 'L—R', ‘R—L', 'FRMT' and 'DIVL' It also goes into the 'ARIT'
directory , where it calls program 'GCD' (gcd of two integers).

'GCDL' also calls itself.

'GCDL'": ( Checksum: # 19457d, Size: 165.5 bytes )

 

« |IF DuUP ABS THEN
IF DUP2 SIZE 1 GET SWAP SIZE 1 GET MAX 3 <
THEN

LR SWAP L—R ART GCD LONG 1 —ARRY FRMT
ELSE

DUP 3 ROLLD DIVL SWAP DROP GCDL
END

ELSE
DROP

END  
 

Example: (within 31 seconds)

  

2:| [ 116 14672 88165 91106 ] |'GCDL'
 

    1: [ 4252 10326 53607 7700 ] 1: [ 7858 ]
  

asthegcdof 116 14672 88165 91106 and of 4252 10326 53607 07700 is equal to
7858.
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'LONG'directory Progrargs;la%h#t'
an ' '

LCM OF TWO LARGE INTEGERS

'LCML' calculates the lcm (least common multiple) of two large integers A and B. The
functional diagram is as follows:
  

2: A 'LCML' 2:
  

  1: B 1: Ppcm( A,B )
    

The lcm is given in 'large integer' format.
N.B: 'LCML' calls programs 'GCDL", 'DIVL' and 'PRODL".

'LCML'": ( Checksum: # 53667d, Size: 47 bytes )
 

« DUP2 GCDL DIVL DROP PRODL

   
Example: (within 20 seconds)
 
 

2: [ 1245 865 ] 'LCML' 2:
>

1: [ 7841 88500 ] 1:|[ 19 52642 93146 10500 ]

  

      

asthecsmof ( 1245 00865, 7841 88500 ) = 19 52642 93146 10500.

FACTORIAL

'FACTL' calculates the factorial n! of a natural integer n. The functional diagram is as follows:

'FACTL'

1: n _—> 1: n!

  

      

n must be a natural integer. The result is given in 'large integer' form.
You can check for yourself that the "!" function on the HP48 only gives all the figures of n! up
ton=14 (in whichcasen! = 87178291200). The purpose of 'FACTL'is to be able to obtain
all the significant figures of n! when n>14.
Program 'FACTL' calls itself and 'FRMT'.

'FACTL": ( Checksum: # 56148d, Size: 121 bytes )
 

« IF n 14 < THEN n ! 1 —>ARRY FRMT
ELSE n n 1 - FACTL * FRMT END

   
Example:(in 4 seconds)
  'FACTL'

1: 25 —> 1:] [ 1 55112 10043 33098 59840 0 ]
     
 

as 25! = 1 55112 10043 33098 59840 00000.
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'‘LONG" directory Program 'L—-ST'

WRITING A LARGE INTEGER AS A STRING OF CHARACTERS

'L—ST'transforms a large integer n and writes it as a string of characters representing n in
spaced blocks of three figures.

The functional diagram is as follows:

  'L — sT'

1: n —_—> 1: string
    
  

'L—=ST": ( Checksum: # 46940d, Size: 233 bytes )

 

« ELML DUP 100000 CON + oBJ— 1 GET
- n

« "o 1 n START
SWAP -»STR 2 OVER SIZE suB SWAP +

NEXT
WHILE DUP NUM 48 ==

REPEAT 2 OVER SIZE suB END
DUP SIZE 3 -
IF DUP 0 > THEN

1 FOR i
DUP 1 i SuB "o + SWAP
i 1 + OVER SIZE suB +

-3 STEP
ELSE DROP END   
 

Example: (in one second)

 'L—ST'
> "2 456 008 185 499 743 411"

 

 [ 2456 818 54997 43411 ]
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'LONG' directory

 

Program 'ST—L'

WRITING A STRING OF CHARACTERS AS A LARGE INTEGER
 

‘ST—L' transforms a string of characters, consisting only of figures or spaces, and writes it as
its corresponding large integer n.
The functional diagram is as follows:

 'ST— L'  

1: string _— 1:
   
 

  

The program is halted by an error message if no figure is found, or if an unauthorized
characteris encountered.

N.B: in the text below,the string 0123456789 ' ends with a space.

‘ST—L": ( Checksum: # 16934d, Size: 364 bytes )

 

« DUP SIZE DEPTH
- ch n p
« 1 n FOR i

''0123456789" ch i i SuB POS
IF DUP THEN

IF DUP 1 == THEN DROP

ELSE 1 - END
ELSE "Error" DOERR END

NEXT

DEPTH p - 2 + DUP 5 MOD DUP2

- n r m
« IF r THEN

  
 

  

r 4 START 0 n 1 + ROLLD NEXT
END
m 1 + m 5 / 1 + FOR k

1 4 FOR i

SWAP 10 i " * +
NEXT
k ROLLD

-4 STEP
m S / 1 + —ARRY

»

»

»

Example: (in 2 seconds)

'SsT—L'

1:|"5 178 895 411 702 658" —> 1:|[ 5 17889 54117 2658 ]
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'LONG'directory Program 'R—L"

WRITING A REAL NUMBER AS A LARGE INTEGER

'R—L' writes a real number N (usually an integer) as its equivalent 'large integer' NL.

The functional diagram is as follows:

  
IR_-’L'

      

N.B: 'R—L'calls program 'FRMT".

'R—L": ( Checksum: # 7262d, Size: 45.5 bytes )

 

« 5 + FLOOR 1 —ARRY FRMT »
 

Examples: 1 is written as [ 17].
71875488654 iswritten [ 7 18754 88654 ].
125487.7 is written [ 1 25488 ].
1.49865E30 is written [ 1 49865 0 0 0 0 0 ].

WRITING A LARGE INTEGER AS A REAL NUMBER
 

‘L—R' writes a large integer NL as its real number equivalent N. The functional diagram is as
follows:

  'L'—’R'

1: NL _—> 1: N
      

Obviously, if NL is an integer greater than 1E12, then changing to real-number format will
mean a loss in precision. Program 'L—R' is nevertheless useful if we wantto find the order of
magnitude of an integer written in 'large integer' form quickly.

N.B: program 'L—R' goes into the 'POLY" directory, where it calls program 'VALP'.

'L—R": ( Checksum: # 34456d, Size: 50.5 bytes )

 

« POLY 100000 VALP LONG »
 

Example:(in under one second)

  
'L_’R'

[ 48566 25781 59522 35678 ] —_—> 1: 4.8566257816E19
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'LONG" directory Programs 'FRMT'
and 'ELML'

MANAGING OVERFLOWS ON LARGE INTEGERS

When doing calculations on vectors representing large integers (e.g. a subtraction), the
result may sometimes not exactly be in large integer format (with components all positive
and less than 100,000). The purpose of 'FRMT' is to manage any such "overflows" and to put
the vectorinto the required format.
'FRMT'is called by a large number of the programs in the 'LONG' directory. The user should
not normally have to call it directly himself. The functional diagram is as follows:

' FRMT'

1: v —_—> 1: W

  

    
  

where W is the resultant vectorif V needs to be modified.

'FRMT": ( Checksum: # 42172d, Size: 192.5 bytes )
 

« 0 SWAP OBJ—» 1 GET
- n

« 1 n START
DUP 1000000 MOD DUP n 3 + ROLLD - 100000 / +

NEXT
WHILE DUP 0 >

REPEAT
DUP 100000 MOD DUP 'n' 1 STO+
n 2 + ROLLD - 100000 /

END
DROP n —ARRY  
 

Examples:

[ 106622 110050 129366 ]Jiswritten [ 1 6623 10051 29366 ].
[ 13902 -35682 -21383 Jiswritten [ 13901 64317 78617 ].

ELIMINATING ZEROS TO THE LEFT

'ELML' eliminates all zero coefficients at the start of a vector. This routine is used by certain
programs in the 'LONG' directory. It should not normally have to be called directly by the
user. 'ELML' simply goes into the 'POLY' directory where it calls the program with the same
name.

'ELML": ( Checksum: # 11925d, Size: 41 bytes )

« POLY ELML LONG »
 

Example:

 
 'ELML'

1:|[ 0 0 157 67 ] —_—> 1: [ 157 67 ]
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PROBABILITIES
   

The programs in the 'PROBA' directory enable you to find standard probability distributions
and distribution functions (discrete or continuous) without having to use tables of numbers
(and therefore without having to interpolate).
As enumeration is frequently required when calculating probabilities, the 'PROBA' directory
also has a few small programs designed forthis.

We should also note that certain other programs in other directories will be useful to us here.
The most useful will be 'SIMP' and 'CALC'in the 'ARIT' directory and the instruction —Q (the
value of a probability often has to be given as a simplified fraction rather than a real number).
If, for example, we want to use 'CALC' from the 'PROBA' directory without transferring it to
the 'ARIT' directory, we simply have to write the following program:

« ARIT CALC PROBA »
in the 'PROBA' directory (and call it 'CALC' again, although this is not absolutely necessary).

Here, then,is the list of programs in the 'PROBA' directory:

'‘CNP' : number of combinations without repetition of p objects selected from n.
'PNP! : number of permutations of p objects selected from n.

'‘GANP' number of combinations with repetition of p objects selected from n.
'‘BINO' : list of binomial coefficients.

'‘BNP’ : binomial distribution.
'‘BNPF' binomial distribution function.
'HYP' : hypergeometric distribution.
'HYPF' hypergeometric distribution function.

'POIS' : Poisson distribution.
'POISF' Poisson distribution function.
'GEO' : geometric distribution.
'GEOF' geometric distribution function.
'PRP' : Pascal distribution P(r,p).
'PRPF' Pascal distribution function.

'JRP’ : negative binomial distribution.

‘JRPF' : negative binomial distribution function.

'EXPF' exponential distribution function.

'->NRM' normal distribution function.
'->SND' standard normal distribution function.

'SND-' inverse of the standard normal distribution function.

'NRM—-' inverse of the normal distribution function.

'FITN' : fitting a normal distribution N(m,0).
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'PROBA'directory Program(sj '%NFP"
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COMBINATIONS WITHOUT REPETITION

'CNP' calculates the number of selections of p different objects from a set of n
distinguishable objects (combinations without repetition). This number is denoted by C? and
is equal to:

n!

p!(n-p)!

'CNP' simply operates the same way as COMB, but it is more easily accessible and more
explicit. 'CNP' also gives a result of 0 if p is not between 0 and n.
The functional diagram is as follows:

  

2: n 'CNP' 2:
  

1: P 1: C      

'‘CNP'": ( Checksum: # 3917d, Size: 37.5 bytes )
 

[ « IFERR COomMB THEN DROP2 0 END »
 

Example:

  

2: 25 'CNP' 2:
  

    1: 8 1: 1081575
  

PERMUTATIONS

'PNP' calculates the number of permutations of p objects selected from a set of n
distinguishable objects (ordered combinations without repetition). This number is denoted by
PP and is equalto:

n!'

(n-p)!
‘PNP' snmplx’operates the same way as PERM, but it is more easily accessible and more

  

  

explicit. 'PNP"' also gives a result of 0 if p is not between 0 and n.
The functional diagram is as follows:

2: n 'PNP’ 2:
>

1: P 1: A      

'PNP'": ( Checksum: # 40761d, Size: 37.5 bytes )
 

« IFERR PERM THEN DROP2 0 END »
 

Example:

2: 25 'PNP' 2:

  

  

1: 8 1: 43609104000      
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'PROBA!' directory Programs 'GANP'
and 'BINO'

COMBINATIONS WITH REPETITION

'‘GANP' calculates the number of combinations, with possible repetition, of p objects selected
from a set of n distinguishable objects. This numberis denoted by r? and is equal to:

_ P
F,‘: = Cn-l»p-l

The functional diagram is as follows:

  

2: n ' GANP' 2:
  

1: p 1: T      

'GANP': ( Checksum: # 7101d, Size: 40 bytes )
 

 

  

  

« DUP ROT + 1 - SWAP CNP »

Example:

2: 25 ' GANP' 2:
>

1: 8 1: 10518300      

LIST OF BINOMIAL COEFFICIENTS
  

'BINO' gives thelist of binomial coefficients in the expansion of (x+y) “n, i.e. the
coefficients:

ckwhere 0 < k < n (listin order of k).

The functional diagram is as follows:

  '"BINO'

1: n —_—> 1: list
      

'BINO': ( Checksum: # 23431d, Size: 70.5 bytes )
 

2 o
3

3 FOR i n i COMB NEXT

n 1 + —LIST

   
Example:

  

      



'PROBA’ directory Program 'BNP'

BINOMIAL DISTRIBUTION B(n,p)

'‘BNP' calculates the probability Pr(X=k), where X is a discrete random variable that conforms
to a binomial distribution with parameters n and p.

In other words, Pr(x=k) is the probability of obtaining k successes in a series of n
independent trials at each of which the probability of success is p.

k and n must be integerswhere 0 < k < nando < p < 1.

The formula used is:

p(X=k)= c* p°"k (1-p) (n-k).

The functional diagram is as follows:

  

  

 

3 n 3

2: p 'BNP' 2:
>

1: k 1: Pr( X = k)      

N.B: 'BNP' calls program 'CNP".

'BNP': ( Checksum: # 2409d, Size: 109 bytes )

 

  
 

  

  

 

P k 1 P - n k - " * *

END
»

»

Example:

3 25 3

2: .5 'BNP' 2:
>

1: 10 1:]/.097416639328      

(we thus obtain the probability of obtaining heads 10 times if we toss a fair coin 25
consecutive times).

-218 -



'PROBA' directory Program 'BNPF'

BINOMIAL DISTRIBUTION FUNCTION B(n,p)
 

'BNPF' calculates the probability Pr(X < k), where X is a discrete random variable that
conforms to a binomial distribution with parameters n and p. We thus obtain the distribution
function of X.

In other words, Pr(X < k) is the probability of obtaining at most k successes in a series of
n independenttrials at each of which the probability of success is p.

k and n must be integerswhere 0 < k < nand0 < p < 1.

The formula used is:

  

  

  

i=k i
p(X < k)= 3 cC p'i (1-p) " (n-i).

i=0 n

The functional diagram is as follows:

3 n 3

2: P ' BNPF' 2:
>

1: k 1:] p( X <k)       

'BNPF": ( Checksum: # 51659d, Size: 172.5 bytes)

 

n p i BNP +

END   
 

Example: (within three seconds)

  

  

  

3: 100 3:

2:]1.166666666667 'BNPF' 2:
>

1: 15 1:1.387657551691       

Wethus obtain, for example, the probability of obtaining the result 6 at least 15 times if we
throw a fair die 100 consecutive times.
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'PROBA' directory Program 'HYP'

HYPERGEOMETRIC DISTRIBUTION H(n,a,p)
 

 

'HYP' calculates the probability Pr(x=k), where X is a discrete random variable that
conforms to a hypergeometric distribution with parameters n, a and p.

To take an example, Pr(X=k) is the probability, when simultaneously selecting a different
individuals from a total population n, of obtaining k individuals with a given property P,
assuming that the proportion of individuals having that property in the total population is
equal to p.

k, aand nmust be integerswhere0 < k < a < nand0 < p < 1.

The formula used is:

Ck Ca—k
p(X=k)= n n(1=p)

ca

The functional diagram is as follows:

4: 4:

3: 3:

2: 'HYP' 2:
>

1: 1:  
'HYP': ( Checksum: # 40776d, Size: 135.5 bytes )

« - n a P k

« n p * k CNP
n 1 P - * a k - CNP *

IF DUP THEN n a

 

0 Z v ~ m < o

  
 

Example:

4: 4:

3: 3:

2: 'HYP' 2:
>

1: 1:]1.273864227268  
We can say that this result represents the probability of obtaining exactly 3 white balls when
drawing 10 balls without replacement out of a hat containing 60 balls, 15 of which are white
(the proportion 15/60 = .25 is at level 2 of the stack).
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'PROBA' directory Program 'HYPF'

HYPERGEOMETRIC DISTRIBUTION FUNCTION H(n,a,p)

'HYPF' calculates the probability Pr(X < k), where X is a discrete random variable that
conforms to a hypergeometric distribution with parameters n, a and p. We thus obtain what is
called the distribution function of x.
To take an example, Pr(X<k) is the probability, when simultaneously selecting a different
individuals from a total population n, of obtaining at most k individuals with a given property
P, assuming that the proportion of individuals having that property in the total population is
equal to p.

The functional diagram is as follows:

'HYPF' 2:  
'HYPF': ( Checksum: # 39410d, Size: 221 bytes )

 

« —- n a p k

« 'a-n*(1-p)"' EVAL o MAX a n p * MIN
- mink maxk

« IF k mink 2> k maxk < AND THEN

0

mink k FOR i

n a p i HYP +

NEXT

ELSE 0 END

»   
Example: (in two seconds)

 

4: 30 4:
 

3: 10 3:
 

2: .4 '"HYPF' 2:
    

 

1: 5 1:].881728366586
 

ie.:
if we draw 10 balls without replacement out of a hat containing 30 balls (12 of which are
white, the proportion of white balls therefore being .4), the probability of obtaining at most 5
is approximately 0.88.
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'PROBA' directory Program 'POIS'

POISSON DISTRIBUTION P(L)

'POIS' calculates the probability Pr(x=k), where X is a discrete random variable that
conforms to a Poisson distribution with parameter L. L is a strictly positive real number and k
is a natural integer.

The formula used is:

Lk

 p(X=k)= exp(-L)

Poisson distributions can be used to construct models for solving traffic and queue problems.

The functional diagram is as follows:

  

2: L 'POIS' 2:
 

    1: k 1: p( X = k)
  

'POIS": ( Checksum: # 32314d, Size: 68 bytes )
 

« - L k "EXP(-L)*L"k/k!'

   

Example:

 

2: 2.5 'POIS'
 

1: 10 1: 2.15725184496E-4      
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'PROBA' directory Program 'POISF'

POISSON DISTRIBUTION FUNCTION P(L)

'POISF' calculates the probability Pr(X < k), where X is a discrete random variable that
conforms to a Poisson distribution with parameter L. L is a strictly positive real number and k
is a natural integer.

The formula used is:

i=k Li
 p( X £ k ) = exp(-L)

I
™
M
o

i=0 i!

Poisson distributions can be used to construct models for solving traffic and queue problems.

The functional diagram is as follows:

  

2: L 'POISF' 2:
  

1: k 1: p( X < k)      

'POISF': ( Checksum: # 45358d, Size: 86.5 bytes )
 

<« - L k 'Z(j:O,k,POlS(L,])'

   
Example: (in under one second)

 
 

2: 5 'POISF' 2:
>

1: 6 1: .762183462973
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'PROBA!'directory Program 'GEO'

GEOMETRIC DISTRIBUTION G(p)

'‘GEO' calculates the probability pr(x=k), where X is a discrete random variable that
conforms to a geometric distribution with parameter p. p is a real number between 0 and 1
and k is a strictly positive integer.

The formula used is:
Pr(X=k) = p*(1-p)” (k-1)

The geometric distribution of the parameter p gives the number of failures before the first
success in a series of independent trials at each of which the probability of successis p.

The functional diagram is as follows:

  

2: p 'GEO' 2:
 

    
  

'‘GEOQ'": ( Checksum: # 63475d, Size: 74.5 bytes )

 

  
 

  

 

« - P k "p*(1-p) " (k=-1)*(k>0)'
»

Example:

2: .25 'GEO' 2:
>

1: 3 1: .140625    
  

In other words, if we draw cards out of a normal deck and replace them, the probability of the
first club being the third card drawn is equal to 0.140625 (the probability of success at each
draw is 0.25).
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'PROBA' directory Program 'GEOF'

  

'‘GEOF' calculates the probability p(x<k), where X is a discrete random variable that
conforms to a geometric distribution with parameter p. p is a real number between 0 and 1
and k is a strictly positive integer.

The formula used is:
Pr(x<k) = 1-(1-p)’k

The geometric distribution of the parameter p gives the number of failures before the first
success in a series of independent trials at each of which the probability of success is p. We
can therefore find the probability of the first success being obtained on or before the kth
attempt.

The functional diagram is as follows:

  

2: p ' GEOF' 2:
  

1: k 1: p( X < k)      

'GEOF": ( Checksum: # 2016d, Size: 68.5 bytes )
 

   

  

  

« - P k "(1-(1-p)"k)*(k>0)"'
»

Example:

2: .5 ' GEOF' 2:

>
1: 4 1: .9375      

In other words, if we toss a fair coin several times consecutively, the probability of obtaining
heads on or before the 4th attempt is 0.9375.
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'PROBA' directory Program 'PRP'

PASCAL DISTRIBUTION P(r,p)

'PRP' calculates the probability Pr(x=k), where X is a discrete random variable that
conforms to a Pascal distribution with parameter r and p. p is a real number between 0 and 1
and r and k are both integers (1 < r < k).

The formula used is: ~
p(X=k)= Cij p r*x(1-p)~ (k-r).

The Pascal distribution with parameters r and p gives the number of failures before the rth
success in a series of independent trials at each of which the probability of success is p.
The geometric distribution with parameter p is quite simply the Pascal distribution with
parameters 1 and p.

The functional diagram is as follows:

  

  

  

3 r 3

2: p 'PRP' 2:
>

1: k 1: p( X = k)      

'PRP': ( Checksum: # 13969d, Size: 126.5 bytes )
 

  
 

  

  

 

« - r P k

« k 1 - r 1 - CNP

IF DUP  THEN "prr*(1-p)*(k-r)' EVAL * END
»

»

Example:

3 10 3

2: .4 'PRP' 2:
>

1: 15 1:1.016323761406      

If, for example, we draw a ball with replacement out of a hat containing 40% white balls, the
probability of the 10th white ball being the 15th ball to be drawn is 0.016323761406.
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'PROBA' directory Program 'PRPF'

PASCAL DISTRIBUTION FUNCTIONP(rp)
 

'PRPF' calculates the probability Pr(x<k), where X is a discrete random variable that
conforms to a Pascal distribution with parameter r and p. p is a real number between 0 and 1
and r and k are both integers (1 < r < k).

The Pascal distribution with parameters r and p gives the number of failures before the rth
success in a series of independent trials at each of which the probability of success is p. We
can therefore find the probability of the rth success being obtained on or before at the kth
attempt.

The functional diagram is as follows:

  

  

  

3 r 3

2: p ' PRPF' 2:
>

1: k 1: p( X < k)      

'PRPF': ( Checksum: # 53656d, Size: 95.5 bytes )

 

  
 

  

  

  

« - r P k "Z(j=r,k,PRP(r,p,j))"’
»

Example:

3 10 3

2: .5 ' PRPF' 2:

>

1: 15 1: .15087890625      

If we toss a fair coin several times consecutively, the probability of the 10th "head" being
obtained on or before the 15th attempt is 0.15087890625.
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'PROBA' directory Program 'JRP'

NEGATIVE BINOMIAL DISTRIBUTION J(r,p)

'JRP' calculates the probability Pr(x=k), where X is a discrete random variable that
conforms to a negative binomial distribution with parameters r and p. p is a real number
between 0 and 1 and r and k are both integers (1 < r, 0 < k).

The formula used is:

p(X=k)= ck
k+r-1

pr*(1-p)k.

The negative binomial distribution with parameter r and p gives the numberof failures before
the rth success in a series of independent trials at each of which the probability of success is
p.
Note:if we say that X conforms to the negative binomial distribution J(r,p) with parameters
n and p, then X+r conforms to the Pascal distribution P(r,p) with parameters r and p.

The functional diagram is as follows:

  

  

 
 

    

3 r 3

2: P 'JRP' 2:
>

1 1 p( X = k)
  

N.B: program 'JRP' calls program 'PRP".

'JRP': ( Checksum: # 32211d, Size: 31.5 bytes )
 

« 3 PICK + PRP »
 

  

 
 

 
 

   

Example:

3 5 3

2: .25 'JRP' 2:
>

1: 20 1:| 3.29075176397E-2
   

If we draw cards with replacement from a normal deck of cards, the probability of drawing
exactly 20 cards that are not clubs before drawing the fifth club is approximately equal to
0.0329.

- 228 -



'‘PROBA!'directory Program 'JRPF'

NEGATIVE BINOMIAL DISTRIBUTION FUNCTION J(r,p)

'JRPF' calculates the probability Pr(Xx < k), where X is a discrete random variable that
conforms to a negative binomial dlstnbutlon with parameters r and p. p is a real number
between 0 and 1 and r and k are both integers (1 < r, 0 < k).

The negative binomial distribution with parameter r and p gives the number of failures before
the rth success in a series of independent trials at each of which the probability of success is
p.

We can therefore find the probability of the number of failures before the rth success being
equal at mostto k.

The functional diagram is as follows:

  

  

  

      

 

 

  

  

  

3 r 3

2: p ' JRPF' 2:
>

1 1 p( X < k)

N.B: program 'JRPF' calls program 'PRPF".

'JRPF': ( Checksum: # 23661d, Size: 33.5 bytes )

« 3 PICK + PRPF » j

Example:

3 5 3

2: .6 'JRPF' 2:
>

1: 4 1: .73343232      

If we draw a ball with replacement out of a hat containing 60% white balls, the probability of
the number of non-white balls drawn before the 5th white ball being equal to 4 at the most is
0.73343232.
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'PROBA' directory Program 'EXPF'

EXPONENTIAL DISTRIBUTION FUNCTION
 

'EXPF' gives the probabilty Pr(X < x), where X is a discrete random variable that
conforms to an exponential distribution with parameter L, and x is a given real number.

The formulausedis: p(X<x) = 0 if x<O0.

X
and ifx 2 0: p(X<x) = J’ L exp( -Lt) dt = 1 - exp(-Lx)

0

The functional diagram is as follows:

  

2: L 'EXPF' 2:
  

    1: X 1: p( X £ x )
  

'EXPF": ( Checksum: # 6632d, Size: 68.5 bytes )
 

   

  

  

« - L x '"(1-EXP(-L*x))*(x=0)"'
»

Example:

2: 2 'EXPF' 2:
>

1: 1 1:|.864664716763      
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'PROBA' directory Programs 'eréRM'
and '->SND'

NORMAL DISTRIBUTION FUNCTIONN(m0)

'—>NRM' calculates the probability Pr(X < x), where X is a discrete random variable that
conforms to a normal distribution with parameters m and 0. m and o are both real numbers (
m represents the expectation of X and o is the standard deviation of X. Obviously, o > 0). x is
any real number. The formula used is:

1 X
p(X < x)= J exp( -(t-m)?/(20%) ) 4t

of(2n) -o
Normal distributions are useful in constructing models of problems related to large
populations. The functional diagram is as follows:

 

  

  

     

3: m 3:

2: o '— NRM' 2:
>

1: X 1: p( X € x )
 

 
 

'=>NRM': ( Checksum: # 64285d, Size: 36 bytes )

« SWAP sQ SWAP UTPN NEG 1 + »

  

  

  

Example:

3 4.5 3

2: .4 ' — NRM' 2:

>

1: 5 1:1.894350226333   
 

  
 

STANDARD NORMAL DISTRIBUTION FUNCTION

'=>SND' calculates Pr(X < x), where X is a discrete random variable that conforms to a
standard normal distribution N(0, 1), i.e. a special case of a normal distribution where m=0
and o=1.
The functional diagram below is therefore simpler:

 '— SND' 

   
 

 
 

N.B: program '=SND'calls program '=NRM".

'>SND': ( Checksum: # 52295d, Size: 33.5 bytes )

« 0 1 ROT —NRM »

Example:

 ' —SND' 

.76114793191
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'PROBA' directory Programds '323—»'
and' —'

INVERSE OF THENORMAL DISTRIBUTION FUNCTION N(0,1)
  

'SND—' calculates the inverse of the standard normal distribution function N(0,1). lfXis a
discrete random variable conforming to this distribution and p is a number between 0 and 1,
we calculate the unique real value of x such that p (X<x)=p.
The functional diagram is as follows:

  'SND—"'

1: p _— 1: X
      

Note:'SND—' uses the ROOT instruction to solve the equation p (X<x)=p. It is absolutely
necessary that p be an element within the interval ]0,1[.

'SND—»": ( Checksum: # 53511d, Size: 93.5 bytes )
 

« — p

« « 1 P - 0 1 X UTPN - »

'X! o ROOT 'X' PURGE
»

   
INVERSE OF THE NORMAL DISTRIBUTION FUNCTION N(m,0)
  

'NRM-' calculates the inverse of the normal distribution function N(m, o). If X is a discrete
random variable conforming to this distribution and p is a number between 0 and 1, we
calculate the unique real value of x such that p (X<x ) =p.
The functional diagram is as follows:

  

  

 

3: m 3:

2: o 'NRM—"' 2:
>

1: P 1: X       

Note:'NRM—' calls program 'SND—". It is absolutely necessary that p be an element within
the interval ]0,1].

'NRM-": ( Checksum: # 35961d, Size: 31 bytes )
 

« SND— * + »
 

Example: to calculate the 3rd quartile of the distributionN(2, 1.5), we enter:
.75 NRM-— toobtain 3.01173462529 in 3 seconds.
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'PROBA!' directory Program 'FITN'

FITTING A NORMAL DISTRIBUTION N(m,0)
 

'FITN' enables you to calculate the best possible fit of a normal distribution N(m,o) to a
distribution for which at least two values of the distribution function are known (or to a simple
statistic for which at least two points on the cumulative frequency polygon are known).

We therefore assume that, for a random variable X, a certain number of points:
(a,b), (c,d), ..., (x,y) areknown such that:

p(X<a)=b, p(X<c)=d, ..., p(Xsx)=y,

i.e. a certain number of values of the distribution function of X.

Program 'FITN' calculates the mean (m) and the standard deviation (o) of the normal
distribution N(m, o) that is the bestfit to the distribution of the variable x.

Before calling 'FITN', you should enter your data in the matrix ZDAT as follows,
using the notation given above:

The order of the rows in ZDAT is not important.

The functional diagram is as follows:

 

  'FITN'

      

'FITN': ( Checksum: # 50027d, Size: 117 bytes )
 

« XIDAT bup
1 NZ FOR i

i {2} + DUP2 GET SND PUT
NEXT
STOz 2 1 coLz LR ROT STOZz
SWAP DTAG "m" —-TAG SWAP DTAG "g" —-TAG  

N.B: on quitting 'FITN', the contents of ZDAT remain unchanged. 'FITN' calls 'SND—'.
Wemust be careful to make sure that all the elements in the second column are between 0
and 1.
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'PROBA' directory Prog(ram "Flw)'
continu

PROGRAM 'FITN': PRACTICAL EXAMPLES
 

Example 1:

A random variable X conforms to a normal distribution. We know that:
Pr(X<1l) = .1635 and Pr(X<5) = .8053.
Calculate the mean m and the standard deviation o of X.
Here, there is an exact solution to the problem, which can be found using 'FITN'".

We put the matrix [[ 1 .1635 ] in2XDAT,
[ 5 .8053 ]]

and call 'FITN'.

Within nine seconds, we obtain (in 4 FIX mode):
 

2: m: 3.1298
 

1: o: 2.1729   
Therefore, X conforms to a normal distribution N(m, o)
withameanm = 3.1298
and standard deviationc = 2.1729.
We can check these results with the sequence 1 —NRM, which gives the result 0.1635
from this stack.

 

 

 

 

 

 

 

 

Example 2:

Let us take a population of 100 individuals classified according to their height in cm:

Height Population We want to estimate the variable H equal to the
height of a random individual taken from this

[150,160[ 6 population using a normal distribution.
Wefirst calculate the vector of cumulative absolute

[160,165] 11 frequencies [ 6 17 37 .. 100 ].
We then divide by the total number of observations

[165,170] 20 (100) to obtain the vector of the cumulative relative
frequencies: [0.06 0.17 0.37 0.62 0.82 0.93 0.98 1 ].

[170,175([ 25 We put the followmg matrix in 2DAT:
[[ 160 0.06 ]

[175,180[ 20 [ 165 0.17 ]
[ 170 0.37 ]

[180,185] 11 [ 175 0.37 ]
[ 180 0.82 ]

[185,190] 5 [ 185 0.93 ]
[ 190 0.98 ]]

[190,200] 2    
(Note that we leave out the point (200,1) to avoid 'FITN' locking out).
We then call program 'FITN".
Within 37 seconds, we obtain (in 2 FIX mode):
 

2: m: 172.75
 

1: o: 8.26   
The height h of an individual in the population described can therefore best be approximated
by the normal distribution N(172.75,8.26).
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SIMPLE STATISTICS
  
 

The programs in the 'STAT1' directory are for studying simple discrete or class statistics with
known frequencies (absolute or relative) corresponding to each value or each class of an
attribute X to be studied.

For a discrete statistic (Xi, Ni), where Xi represents the values of the attribute X and Ni
the frequencies (absolute or relative), we put pairs of (Xi, Ni) in the matrix 2DAT (Xi
values in the first column, Ni values in the second).

For a class statistic ([Ai,A(i+1)[ ,Ni), we put a list that itself consists of sub-lists in a
variable called DATA. The first sub-list contains the class limits and the second the
frequencies (absolute or relative).

For example, the statistic:

 

Xi to,2f [2,6[ [6,8[ (8,14[
 

     Ni 22 25 15 10
 

will be represented in the variable DATA by the following list:

{ { 0268141} { 2225 15 10 } }.

A variable called ZBAK is used in certain programs in the 'STAT1' directory to back up the
contents of XDAT or to show intermediate calculations leading up to a given result
(calculation of the Gini coefficient, for example).

Here is the list of programs in the 'STAT1' directory:

Cc-D : transformation of a class statistic into a discrete statistic.
MK : calculating the kth moment.
KMM : calculating the kth moment about the mean.
SKMM calculating the standard kth moment about the mean.
YULE : Yule, Kelley and Pearson coefficients.
QTLE : calculating quantiles.
MDEV : calculating the mean deviation.

GEOM calculating the geometric mean.
HARM : calculating the harmonic mean.

MDL : calculating the value equal to 50% of the cumulative mass (computation
table in 2BAK).

GINI : calculating the Gini coefficient (computation table in ZBAK).
LRTZ : plotting a Lorentz curve (or concentration curve).

HIST : plotting a histogram.
CFP : plotting a cumulative frequency polygon.
—-CUM creating a cumulative table.
CUM— going back from a cumulative table to an initial table.
COLN displays any column in 2BAK (for GINI and MDL).
c.CcoL calculates a column depending on 2 columns in ZDAT.
MODz : modifying one or two columns in ZDAT.
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'STAT1' directory Program 'C—D'

TRANSFORMING A CLASS STATISTIC
INTO A DISCRETE STATISTIC

'‘C—D' transforms a simple class statistic into a discrete statistic. This is done by
concentrating the absolute class frequency at the mean.

The initial grouped statistic must be in 'DATA'. The result is sent to ZDAT.

The stack is left unchanged by 'C—D'. However, an error message will appear when calling
'‘C—D'if the first sub-list in 'DATA' does not contain exactly one more element than the
second.

'C—D" ( Checksum: # 15895d, Size: 111 bytes )
 

« DATA 1 GET OBJ—
- n

« 2 n  START
OVER + 2 / n ROLLD

NEXT
DROP DATA 2 GET OBJ—
{2} SWAP + —ARRY TRN STOX

  
 

Example:

The statistic:

 

Xi to,2f [2,6[ [6,8[ [8,14[
 

Ni 22 25 15 10      
represented in the variable DATA by the list:

{ {0268 14} { 22 25 15 10 } }.

is transformed into the matrix:

[ 1 22[ ]
[ 425 ]
[ 715 ]
[ 11 10 ] ]

This matrix is then put into ZDAT.
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'STAT1' directory Program 'MK'

KTH MOMENT OF A SIMPLE STATISTIC
 

‘MK’ calculates the kth moment (denoted by Mk) of the discrete statistic in the variable XDAT.
When dealing with a class statistic (in the variable 'DATA'), we first have to call program
'C—D'to transform it into a discrete statistic.

The formula giving the kth moment of the statistic (xi, Ni) is:

1
—— = Ni Xik
N

My =

If k=1, we obtain the arithmetic mean (= Ni Xi )

(N = total number of observations = X Ni)..

/ N.
If k=2, we obtain the square ( = Ni Xi?) / N of the quadratic mean.
The functional diagram is as follows:

 

   

 

   

 

  
 

 

 

     
 

  

IMKI

1: k > 1: Mk

'MK':( Checksum: # 17889d, Size: 80.5 bytes )

« - k

« IDAT OBJ—» DROP O
1 NI  START

ROT k ROT * +
NEXT
TOT 2 GET /

Example:

If we take the statistic:

represented in ZDAT
Xi 1 4 7 11 by the two-column matrix:

(1 22
Ni 22 25 15 10 [ 4 25 ]

[ 7 15 ]
[ 11 10 ] 1,

we obtain, for example (in under one second):

IMKI

1: 1 > 1:| 4.68055555556
 

(The arithmetic mean is

 

1: 2   

   
therefore approximately 4.68).

 IMKl

> 1: 32.875
   

(The quadratic mean is therefore v32.875 = 5.73).
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'STAT1' directory Program 'KMM'

KTH MOMENT ABOUT THE MEAN OF A SIMPLE STATISTIC
 

'KMM' calculates the kth moment about the mean (denoted by uk) of the discrete statistic in
the variable ZDAT. When dealing with a class statistic (in the variable 'DATA'), we first have
to call program 'C—D'to transform it into a discrete statistic.

The formula giving the kth moment about the mean of the statistic (Xi, Ni) is:

1
px = —— T Ni (Xi-X)k (N = £ Ni, X = mean).

N

If k=1, we obtain 0. _
If k=2, we obtain the variance (£ Ni (Xi-X)?2 /N (i.e. the square of the standard
deviation).
The functional diagram is as follows:

  'KMM'

1: k ————— 1: pk
      

N.B: Program 'KMM'calls program 'MK'.

'KMM':( Checksum: # 54860d, Size: 108.5 bytes )
 

« - k

« IDAT OBJ»> DROP 1 MK
- m

« 0 1 NI START

ROT m - k ” ROT * +

NEXT

TOT 2 GET /

   
Example:

If we take the statistic:

 represented in ZDAT by
Xi 1 4 7 11 the two-column matrix:

[
Ni 22 25 15 10 [

[
[

 

     
we obtain, for example (in one second):

  Iml

1: 2 —_—> 1:{10.9673996914      

(The variance is therefore approximately 10.97 and the standard deviation f (u2) = 3.31).

  iKMIdl

1: 3 —_—> 1:122.3069112224      
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'STAT1' directory Program 'SKMM'

KTH STANDARD MOMENT ABOUT THE MEAN
OF A SIMPLE STATISTIC
 

'SKMM' calculates the kth standard moment about the mean (denoted by ak) of the discrete
statistic in the variable ZDAT. When dealing with a class statistic (in the variable 'DATA'), we
first have to call program 'C—D' to transform it into a discrete statistic.

The formula giving the kth standard moment about the mean of the statistic (Xi, Ni) is:

ak = pk / (07k)

where uk is the kth moment about the mean (see program 'KMM') and o is the standard
deviation.

If k=1, we obtain 0.
If k=2, we obtain 1.
If k=3, we obtain the coefficient of skewness.
If k=4, we obtain the coefficient of kurtosis.

The functional diagram is as follows:

  'SKMM'

1: k _—> 1: ok
     

 

N.B: Program 'SKMM'calls program 'KMM'.

'SKMM':( Checksum: # 10141d, Size: 46.5 bytes )
 

« DUP KMM 2 KMM v ROT " /
»

   
Example:

If we take the statistic:
 represented in ZDAT
Xi 1 4 7 11 by the two-column matrix:

([ 1 22]
Ni 22 25 15 10 [ 4 25 ]

[ 7 15 ]
[ 1110 ] ],

 

      

we obtain, for example (in under two seconds):

  ' SKMM'

1: 3 —_—> 1: .61416340071
  

  'SKMM'
1: 4 —_—> 1:] 2.35842660849      
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'STAT1' directory Program 'YULE'

YULE, KELLEY AND PEARSON COEFFICIENTS
 

YULE' calculates the Yule, Kelley and Pearson coefficients of a class statistic in the variable
'DATA'.

The formulae used are:

Yule's coefficient: s = (g3+gl-2M) / (g3-ql).

Kelley's coefficient: k = 2*(g3-q1) / (d49-41).

Pearson's 1st coefficient: p1 = 3*(m-M) / o.
Pearson's 2nd coefficient: p2 = (m-md) / o (for a unimodal statistical series with mode

md).

Where g1 and g3 are the first and third quartiles.
d1 and d9 are the first and ninth deciles.
m is the arithmetic mean.
M is the median o is the standard deviation.

Note:

Pearson's 2nd coefficient is only useful for classes with the same amplitude. If the statistic is
not unimodal, this coefficient is not displayed.

The functional diagram is as follows:

  

  

  

   

4: 4:|YULE= ....

3: 3:|KELLEY= ....

2: 'YULE' 2: |PEARSON1= ....

1: ’ 1: |PEARSON2=      

N.B: 'YULE' calls programs 'QTLE', 'C—D', 'MK' and 'KMM'.
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'‘STAT1' directory Program 'YULE'
(continued)

TEXT OF PROGRAM 'YULE' AND PRACTICAL EXAMPLE

'YULE":( Checksum: # 49682d, Size: 535.5 bytes )
 

   
 

 

« {1 .25 5.7 9} QTLE EVAL cCD
1 MK 2 KMM v MAXZ 2 GET 0 0
- d1 ql med q3 do moy sig max num lig

« 1 NZ FOR i
'IDAT (1i,2)' EVAL
IF max == THEN

'num’' 1 STO+ i 'lig’ STO
END

NEXT
q3 q1 + med 2 * -

q3 q1 - / "YULE" —-TAG
q3 q1 - d9 d1 -
/ 2 * "KELLEY" —-TAG
moy med - 8ig / 3 *

"PEARSON1" —-TAG
IF num 1 == THEN

moy ' ZDAT (lig, 1)’ EVAL - sig /
"PEARSON2" —-TAG
END

»

»

Example:

If we take the statistic:

Xi [0,5[ [5,10[|[10,15[|[15,20][

Ni 22 25 15 10      
represented in the variable 'DATA' by the list:

{ {0510 15 20 } { 22 25 15 10 } 1},

we call 'YULE', which gives us the following within 4 seconds:

 

 

 

 

4:| YULE: 9.99999999953E-2

3: KELLEY: 1.11658456486

2:|PEARSON1: .355182651996

1: |PEARSON2: .177318528263   
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'‘STAT1' directory Program 'QTLE"

QUANTILES OF A SIMPLE STATISTIC

'‘QTLE' calculates the quantiles of the grouped (class) statistic in the variable 'DATA'.

Note:

If q is a real number between 0 and 1, its corresponding quantile is the value of the attribute
X for which the proportion of the cumulative absolute frequency is equal to q. The quantile is
calculated by linear interpolation in the class encompassing this proportion.

For example:

If g=. 5, we obtain the median of the statistic (value of the attribute at which half the absolute
frequency is reached).

If g=k/10 (k integer, 1 < k < 9), we obtain the kth decile dk.

If g=k/4 (k integer, 1 < k < 3), we obtain the kth quartile gk. Deciles, centiles and
1,000-iles, etc. are defined in the same way.

The functional diagram is as follows:

  'QTLE'
1: list _—> 1: quantiles

      

where "list" is the list of proportions q from ]0, 1[ for which we want to find the quantiles,
and "quantiles” is the corresponding list of quantiles.

Examples:

list={ .5 } ifweonly wantthe median.
list={ .25 .75 } if we want the first and third quatrtile.

N.B

If a proportion q in "list" is not between 0 and 1, the corresponding quantile (which therefore
cannot exist) is replaced in the list obtained by the string of characters representing q.
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'STAT1' directory Program 'QTLE'
(continued)

TEXT OF PROGRAM 'QTLE' AND PRACTICAL EXAMPLE

'‘QTLE":( Checksum: # 20526d, Size: 243 bytes )

 

« 0 DATA 2 GET + 0 + —CUM DUP DUP SIZE GET

- e k

« 1 OVER SIZE FOR j

i DUP2 GET

IF DUP FLOOR THEN

—-STR

ELSE

k * e 2

WHILE GETI 4 PICK < REPEAT END

2 - DUP 3 ROLLD GETI 3 ROLLD
GET OVER 5 ROLL - 3 ROLLD - /
DATA 1 GET ROT GETI 3 ROLLD
GET OVER - ROT * +

END
PUT

NEXT  
 

Example:

If we take the statistic:

 

Xi (o,2f [2,6[ [6,8[ [8,14[
 

Ni 22 25 15 10     
 

which will be represented in the variable 'DATA' by the list:

{ { 0261814} { 22 25 15 10 } 1},

weput{ .1 .25 .5 .75 .9 } atlevel 1 and then call 'QTLE"

Within 2 to 3 seconds we obtain the following list at level 1 of the stack (in 3 FIX mode):

{ 0.655 1.636 4.240 6.933 9.680 }.

Meaning, for example, that:
the first decile d1 = .655
the medianM = 4.240 and the third quartile = 6.933.
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'STAT1' directory Program 'MDEV'

MEAN DEVIATION OF A SIMPLE STATISTIC

'MDEV' calculates the mean deviation of the discrete statistic in the variable ZDAT. When
dealing with a class statistic (in the variable 'DATA'), we first have to call program 'C—D' to
transform it into a discrete statistic.

The formula giving the mean deviation of the statistic (Xi, Ni) is:

1 p—

— T Ni | Xi - X |
N

where N is the total number of observations £Ni and X is the arithmetic mean.

The functional diagram is as follows:

 'MDEV'

1: _—> 1: |[mean deviation

 

      

N.B: Program 'MDEV' calls program 'MK'.

'MDEV": ( Checksum: # 54392d, Size: 93 bytes )

 

« IDAT OBJ—» DROP 1 MK
- m

« 0 1 NZ START
ROT m - ABS ROT * +

NEXT
TOT 2 GET /

  
 

Example:

If we take the statistic:

 represented in 2DAT

 

     
 

Xi 1 4 7 11 by the two-column matrix:
[ [ 1 22 ]

Ni 22 25 15 10 [ 4 25 ]
[ 7 15 ]
[ 11 10 ] 7],

we obtain, for example (in one second):

 'MDEV'

1: —_—> 1: 2.72183641975
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'STAT1' directory Program 'GEOM'

GEOMETRIC MEAN OF A SIMPLE STATISTIC
  

'GEOM' calculates the geometric mean Mg of the discrete statistic in the variable XDAT.
When dealing with a class statistic (in the variable 'DATA'), we first have to call program
'C—D' to transform it into a discrete statistic.

The formula giving the geometric mean of the statistic (xi, Ni) is:

[ TT)=o) ]AWN)

where N is the total number of observations frequency ZNi.

The functional diagram is as follows:

 

   

'GEOM'

'GEOM': ( Checksum: # 12712d, Size: 80 bytes )

 

 Mg   

 

   

 

 

« IDAT OBJ—» DROP TOT GET
- t
« 1 1 NX  START

3 ROLLD t / *

NEXT
»

»

Example:

If we take the statistic:

represented in 2DAT
Xi 1 4 7 11 by the two-column matrix:

[ [ 1 22]
Ni 22 25 15 10 [ 4 25 ]      

we obtain, for example (in under one second):

 

   

'GEOM'
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[ 7 15 ]
[ 11 10 ] 7],

 

  
3.38648044939
 



'STAT1' directory Program 'HARM'

HARMONIC MEAN OF A SIMPLE STATISTIC
 

'HARM' calculates the harmonic mean Mh of the discrete statistic in the variable DAT.
When dealing with a class statistic (in the variable 'DATA'), we first have to call program
'C—D' to transform it into a discrete statistic.

The formula giving the harmonic mean of the statistic (xi, Ni) is
1 1 Ni
_:_—_E—

‘ Mh N Xi
where N is the total number of observations zNi.

The functional diagram is as follows:

 'HARM'

   

'HARM': ( Checksum: # 20323d, Size: 82.5 bytes )

 

  
Mh
 

 

   

 

 

      

« IDAT OBJ—> DROP TOT GET
- t
« o 1 NI  START

SWAP ROT / +

NEXT

INV
»

»

Example:

If we take the statistic:

represented in ZDAT
Xi 1 4 7 11 by the two-column matrix:

([ 1 22]
Ni 22 25 15 10 [ 4 25 ]

[ 7 15 ]
[ 11 10 ] 1,

we obtain, for example (in under one second):

 'HARM'
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2.30017633025
 



'STAT1' directory Program 'MDL'

MEDIAL OF A SIMPLE STATISTIC

'MDL' calculates the value equal to 50% of the cumulative mass of the grouped (class)
statistic X in the variable 'DATA'.

Note:
This value is the value of the attribute X for which we are able to reach 50% of the
cumulative "masses" of the attribute.
If the statistic X is given by the pairs ([Ai,A(i+I) [,Ni), the mass corresponding to the
class [Ai,A(i+I)[ with an absolute frequency Niis:

Nix( A(i+I) + A(1i) )/2.

The value is then calculated by linear interpolation in the class encompassing 50% of the
cumulative mass.

Program 'MDL' puts the table required to calculated the value equal to 50% of the cumulative
mass in 'ZBAK'.

Row N°i of this table has the following form (there are p rows for p classes):

 

class absolute cumulative

centre frequency mass mass

Xi Ni NiXi 2 NjXj

j<i     
 

The functional diagram is as follows:

 
 'MDL'

    
  

N.B: Program 'MDL' calls program 'C—D".

- 247 -



'STAT1' directory Progzram 'MD(lj.)'
continue

TEXT OF PROGRAM 'MDL' AND PRACTICAL EXAMPLE

'MDL'":( Checksum: # 28648d, Size: 272 bytes )

 

« C—D IX*Y o

« 0 1 NI FOR i
IDAT i {1} + GETl 3 ROLLD GET
DUP2 * 4 PICK OVER +
IF 5 PICK m 2 / < OVER m 2 / = AND

THEN

DUP m 2 / - 3 PICK / DATA 1 GET

i GETI 3 ROLLD GET DUP ROT - ROT * -

'md' STO

END

NI {4} + —ARRY
'IBAK' STO DROP md 
 

Example:

If we take the statistic:

 

Xi (o,2[ [2,6] [6,8( [8,14[
 

Ni 22 25 15 10      
 

represented in the variable DATA by the list:

{ {02618 14} { 22 25 15 10 } }

we obtain in two seconds:

 'MDL'

1: _—> 1:(6.88571428571
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'‘STAT1' directory Program 'GINI'

GINI COEFFICIENT OF A SIMPLE STATISTIC

'GINI' calculates the Gini coefficient (or concentration coefficient) of the discrete statistic in
the variable ZDAT. When dealing with a class statistic (in the variable 'DATA'), we first have
to call program 'C—D'to transform it into a discrete statistic.

This number is always between 0 and 1. The more concentrated the statistic is, the more it
approaches 1 (i.e. the masses of the statistical distribution are mostly spread over a
relatively small number of individuals).

The intermediate calculations required to compute the Gini coefficient (and also to plot the
Lorentz curve, see program 'LRTZ') are stored in a table backed up in the variable 'ZBAK'.
Row N°i of this table has the following form (there are as many rows as there are values of
the attribute studied):

 

       

 

      

cumulative

class absolute| absolute $ Ui of cum. cumulative

centre |frequency| frequency abs.freq. mass mass

100

Xi Ni % Nj — % Nj NixXi T NjXj
j<i N j<i j<i

columnl column2 column3 column4 column5 columné6

% Vi of cum. base of height of area of
mass. trapezium trapezium trapezium

100 Vi+Vv(i+1) base
— 3 NjXj Ui-U(i-1) _— *

M j<i 2 height

column? column8 column9 columnlO

 

The Gini coefficient is equal to 1 - (total area)/5,000, where "total area" is the sum of
coefficients in the tenth column of 'ZBAK'.

The functional diagram of 'GINI' is as follows:

  'GINI'

coefficient
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'‘STAT1' directory Program 'GINI'
(continued)

TEXTOF PROGRAM 'GINIAND PRACTICAL EXAMPLE

'GINI':( Checksum: # 50275d, Size: 335.5 bytes )

 

  
 

 

 

     
 

  

« TOT 2 GET XIX¥% O
- n m a

« o o0 o o o0 o0 o0 o
1 NX FOR i

IDAT i {1} + GETI 3 ROLLD GET DuUP2 *
OVER 12 PICK + DUP 100 * n / ROT DUP
11 PICK 4+ DUP 100 * m / 4 PICK 15 PICK
- OVER 13 PICK + 2 / DUuP2 * DUP
'a’ STO+

NEXT
NX {10} + —ARRY '3BAK' STO 8 DROPN
1 a 5000 / -

»

»

Example:

If we take the statistic:

represented in ZDAT
Xi 1 4 7 11 by the two-column matrix:

[ [ 1 22]
Ni 22 25 15 10 [4 25 ]

[ 7 15 ]
[ 11 10 ] ],

we obtain, for example (in 2 seconds):

'GINI'
1: —_— 1:| .383489943952
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'STAT1' directory Program 'LRTZ'

LORENTZ CURVE OF A SIMPLE STATISTIC

'LRTZ'plots the Lorentz curve (or concentration or Gini curve) of the discrete statistic in the
variable 2DAT. When dealing with a class statistic (in the variable 'DATA'), we first have to
call program 'C—D' to transform it into a discrete statistic.

Important note:

For program 'LRTZ' to run properly, we first have to run program 'GINI' (because we use the
contents of the table 'XBAK").

Using the notation from program 'GINI', the Lorentz curve is the polygonal line within the
square [0,100]x[0,100] and joining the point (0,0) to the point (100,100) passing
through the points (Ui,Vi). It is located underneath the first bisector.
The plotted curve fills the whole of the HP48's screen, giving it a horizontal scale of "131
pixels = 100 units" and a vertical scale of "64 pixels = 100 units". This breaks with the
convention of displaying a Gini curve within a square, but ensures greater legibility on the
screen.
N.B: the vertical sides of the trapezium are plotted.

The coordinates Ui and Vi of the points plotted are in columns 4 and 7 of '2BAK'.
When the curve has been plotted, we go into the graphic environment GRAPH. The stack
can be displayed by pressing "ON".

N.B: Program 'LRTZ"
* Goes into the 'MATR' dlrectory in order to use 'GETC'.
* Then returns to the 'STAT1' directory.

'LRTZ":( Checksum: # 57409d, Size: 280.5 bytes )
 

« (0,0) IBAK MATR DUP 4 GETC SWAP 7 GETC STATH
R>C OBJ» 1 GET —LIST +
0 100 XRNG O 100 YRNG  ERASE
{#0d #0d } PVIEW  DRAX
1 OVER SRZE 1 - FOR i

DUP i 1 + GET OVER i GET OVER LINE
DUP RE 0 R—C SWAP LINE

NEXT  DROP
(0,0)  (100,100) LINE  GRAPH    

Example:

If we take the statistic:

 represented in 2DAT

 

      

Xi 1 4 7 11 by the two-column matrix:
[ [ 1 22 ]

Ni 22 25 15 10 [ 4 25 ]
[ 7 15 ]
[ 11 10 ] 17,

the curve is plotted within 4 seconds.
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'STAT1' directory Program 'HIST'

HISTOGRAM OF A SIMPLE STATISTIC

'HIST' plots the histogram of a grouped (class) statistic X in the variable 'DATA'".

The histogram is plotted in such a way that it takes up as much screen space as possible.

Once it has been plotted, we go into the graphic environment GRAPH. We can display the
stack by pressing "ON".

'HIST':( Checksum: # 40551d, Size: 249 bytes )

 

  
 

 

 

« DATA EVAL

1 OVER SIZE FOR i
i DUP2 GET 4 PICK i GETI
3 ROLLD GET SWAP - / PUT

NEXT
OVER 1 GET 0 R—C PMIN OVER
DUP SIZE GET OVER 0OBJ—
2 SWAP START MAX NEXT
R—C PMAX ERASE {#0 #0} PVIEW DRAX
0 + 1 OVER SIZE 1 - FOR i

DUP i GET 3 PICK
i GETI 3 ROLLD GET
0 R—C 3 ROLLD SWAP R—C BOX

NEXT

DROP2 GRAPH
»

Example:

If we take the statistic:

Xi [0,2] [2,6] [6,8[ [8,14[

Ni 22 25 15 10     
 

which is represented in the variable 'DATA' by the list:

{

the histogram is plotted within 4 seconds.

{o26814 1} { 22 25 15 10 } 1},
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'STAT1' directory Program 'CFP'

CUMULATlVE FREQUENCY POLYGON OF A SIMPLE STATISTIC
 

'CFP' plots the cumulative frequency polygon of a grouped (class) statistic X in the variable
'DATA'.

The polygon is plotted in such a way thatit takes up as much screen space as possible.

Once it has been plotted, we go into the graphic environment GRAPH. We can display the
stack by pressing "ON".

N.B: Program 'CFP' uses program '->CUM'.

'CFP':( Checksum: # 56583d, Size: 204.5 bytes )

 

« DATA EVAL CUuM OVER 1 GET o R—C PMIN
1 2 START OVER DUP SIZE GET NEXT
R—C PMAX ERASE {#0 #0} PVIEW
DRAX SWAP oBJ— —ARRY
0 ROT + OoBJ— —ARRY R—C
2 OVER SIZE 1 GET FOR i

DUP i GET OVER i 1 - GET OVER LINE
DUP RE 0 R—C LINE

NEXT
DROP GRAPH

 

  
 

Example:

If we take the statistic:

 

Xi to,2f [2,6[ [6,8[ [8,14]
 

     Ni 22 25 15 10
 

which is represented in the variable 'DATA' by the list:

{ { 026814} { 222515 10 } },

the polygon is plotted within 4 seconds.
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'STAT1' directory Program '-CUM'

CREATING A CUMULATIVE TABLE

'->CUM' creates a table B of the same format as an initial table A by accumulating the
elements in table A with a lower index. A may be a vector or a matrix with one or more
columns. Totals are given in the natural order of coefficients (from left to right along a row
and from one row to the next row below).

Being able to create such tables is very useful for studying simple statistics.

The functional diagram is as follows:

 

1: A
   

Note:'=CUMis also able to calculate the totals of elements in a list.

'->CUM': ( Checksum: # 20274d, Size: 92 bytes )

 

   

 

  

 

   

 

   
 

« 2 OVER SIZE + 0oBJ—

IF 2 == THEN * END
FOR i

i DUP2 1 GET 3 GET + PUT
NEXT

»

Examples:

1 C[JM'

1:| [ 12 3 45 ] > 36 10 15]

[[ 99.7362347512 ] [ 99.7362347512 ]
[ 741.839762611 ] [ 841.575997362 ]
[ 1078.75865479 ] ' cuM’ [ 1920.33465215 ]

1:| [ 1162.21562809 ] > [ 3082.55028024 ]

([ 1 2 3] ' CcuM' 3 61
1 [ 4 5 6] > 10 15 21 ]]   
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'STAT1' directory Program 'CUM—'

GOING BACK FROM A CUMULATIVE TABLE
TO AN INITIAL TABLE

'CUM—»(':Iets you "break down" a cumulative table and thus do the reverse of what you do
with '=CUM'.

Program '=CUM' allows you to create a cumulative table, whereas program 'CUM—' allows
you to go back to the initial table you started with.

The functional diagram is as follows:

  'CUM— '
1: A _— 1: B

      

Here A is the initial table (matrix or vector) and B is the final table (A therefore represents the
cumulative table of B).

Note:'CUM—' is also able to "break down" a list.

'‘CUM-": ( Checksum: # 10763d, Size: 94.5 bytes )
 

   
  

      

  

      

  

« DUP SIZE {} + OBJ—
IF 2 == THEN * END
2 FOR i

i DUP2 GET 3 PICK i 1 - GET - PUT

-1 STEP
»

Examples:

'CUM—"

1:{ [ 1 3 6 10 15 ] —> 1:([ 1 2 3 45 ]

[[ 99.7362347512 ] [[ 99.7362347512 ]

[ 841.575997362 ] [ 741.839762611 ]

[ 1920.33465215 ] 'CUM —' [ 1078.75865479 ]
1: [ 3082.55028024 ]] _> 1 [ 1162.21562809 ]]

[[ 1 3 6] '"CUM—"' [[ 1 2 3]
1:| [ 10 15 21 ]] —> 1:| [ 4 5 6 1]      

- 255 -



'STAT1' directory Program 'COL.N'

EXTRACTING A COLUMN FROM ZBAK

'COL.N' extracts column number n from the matrix 'ZBAK' in the 'STAT1' directory.
The result is given in the form of a column matrix C. We also obtain the sum 2 of terms in the
column extracted at level 1 of the stack.

The functional diagram is as follows:

  

2: 'COLN' 2: C
 

      

N.B: Program '‘COL.N' calls program 'GETC' in the 'MATR' directory.

Program 'COL.N' is meant to be used along with programs 'MDL' and 'GINI. When
calculating the medial and the Gini coefficient of a discrete statistic using these two
programs, we in fact also have to load the table of intermediate calculations into the variable
'2BAK'. It can therefore be very useful to be able to consult this table column by column and
to find the sum of the columns.

'‘COL.N'": ( Checksum: # 23519d, Size: 75.5 bytes )
 

« IBAK SWAP MATR GETC STAT1 DUP OoBJ—
1 GET 2 SWAP START + NEXT

 

 »

  
Example:

If we take the statistic:

 represented in 2DAT
Xi 1 4 7 11 by the two-column matrix:

([ 1 22]
Ni 22 25 15 10 [ 4 25 ]

[ 7 15 ]
[ 11 10 ] ],

 

      

and call program 'GINI', the table of intermediate calculations is put into 'ZBAK'. We can thus
obtain (in 2 FIX mode):

  

  

[[  99.74 ]
[ 741.84 ]
[ 1078.76 ]

2: 'C.COL.'  2: [ 1162.22 ]]
>

1: 10 1: 3082.55      

We thus find the value of the areas of the trapezia used to construct the Gini curve. The Gini
coefficient is computed immediately afterwards:

I =1 - 3082.55/5000 = 0.38
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'‘STAT1' directory Program 'C.COL"

CREATING A COLUMN AS A FUNCTION OF COLUMNS IN ZDAT

The matrix ZDAT must contain the two columns representing a discrete statistic (the first for
the values of the attribute, or for the class centres, and the second for the absolute
frequencies).

  

  

'C.COL' lets you calculate a column as a function of the two columns in 2DAT.

The functional diagram is as follows:

2: 'C.COL' 2: C
>

1: f (X, N) 1: =      

where f(X,N) is the function used (an algebraic expression or program) and X and N denote
the elements of the first and second column of ZDAT respectively (capitals must be used),
and C is the column matrix obtained, where X is the sum of coefficients in the column C.
Program 'C.COL' is very useful for studying simple statistics. It allows you, for example, to
create a table of moments of a statistic (variance, etc.) column by column and within a very
short time.

'C.COL":( Checksum: # 3810d, Size: 176 bytes )

 

  
 

 

 

     
 

  

 

« 0 - P s

« P IDAT OBJ— DROP
NI 2 * 1 - NI FOR i

'N' STO 'X' STO P EVAL DUP
's' STO+ i ROLLD

-1 STEP

NZ {1} + —-ARRY SWAP DROP s
»

{XN} PURGE
»

Example:

If we take the statistic:

represented in 2DAT
Xi 1 4 7 11 by the two-column matrix:

([ 1 22]
Ni 22 25 15 10 [ 4 25 ]

[ 7 15 ]
[ 11 10 ] ],

We obtain, for example, within two seconds:

([ 22 ]
[ 1600 ]
[ 5145 ]

2: 'C.COL' 2: [ 13310 ]]
>

1: 'N*X"3' 1: 20077  
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'STAT1' directory Program 'MODZ'

MODIFYING COLUMNS IN ZDAT

The matrix ZDAT must theoretically contain the two columns representing a discrete statistic
(the first for the values of the attribute, or for the class centres, and the second for the
frequencies). 'MODZ' lets you modify either column (or both) in ZDAT.

The functional diagram is as follows:
  'MODZ'

1: list e— 1:
      

where "list" is a list in the format { prog1 prog2 } where:

prog1 is the program applied to the first column.
prog2 is the program applied to the second column.

prog1 and prog2 must be written in Reverse Polish Notation and must give a numerical result
as a function of the element in the stack. If we wish to keep the first column unchanged, we
simply write progl = « ».

If prog2 is not in the list the second column remains unchanged.
The contents of ZDAT are backed up and stored in 'ZBAK'.

'MODZ":( Checksum: # 50513d, Size: 152.5 bytes )
 

« ZIDAT 'IBAK' STO OBJ—

- n

« ' IDAT'

1 NZ FOR i

i {1} +
n 1 FOR i

DUP2 GET 3 i + PICK EVAL PUTI

-1 STEP

DROP

NEXT

n 1 + DROPN
»

»  
 

Example:

If we take the statistic:
 

 

represented in 2DAT
Xi 55 65 75 85 by the two-column matrix:

[ [ 55 220 ]
Ni 220 250 150 100 [ 65 250 ]     
 [ 75 150 ]

[ 85 100 ] 1,

Weenter{ « 5 / 14 - » « 10 / » } atlevel 1 of the stack and then call 'MODZ".

Within 2 to 3 seconds, the matrix 2DAT shows:

[ [-3 22]
[ -1 25 ]
[ 1 15 ]

3 10 ]
and the previous contents of ZDAT are stored in 3BAK.
Note:'MODZY'is useful for changing the scale and/or origin.
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STATISTICS IN TWO VARIABLES
  
 

The programs in the 'STAT2' directory can be used to study discrete statistics in two
variables (X,Y), where the absolute or relative frequency of each value (Xi,yi) is
known. This frequency (absolute or relative) is denoted by N1i j.

The different values of x (the first marginal statistic of the pair (X,Y)) must be entered, in
vector form, in a variable called 'X'.

Likewise, the different values of Y (the second marginal statistic of the pair (X,Y)) must be
entered, in vector form, in a variable called 'y".

The frequency table with the absolute frequencies Nij must be entered in a variable '2FRQ,
in matrix form, according to the following conventions:

The statistic X is therefore in the first column. The values of Y are in the first row of the table.
The matrix 'ZFRQ' contains a table with n‘rows and p columns with a general term Nij,
which is the absolute frequency of the value (xi,Yj) of the pair (X,Y).

 

 

 

 

Y1 Y2 ¥3 ......Yp

X1 N1,1 N1,2 N1,3 ... Nl,p

X2 N2,1 N2,2 N2,3 ... N2,p

Xn Nn,1 Nn, 2 Nn,3 ... Nn,p    
Note:

We will often want to study a statistic in two variables (X,Y) consisting of a set of points
(Xi,Yi) with an absolute frequency of 1, i.e. in the following form:

 

X X1 X2 X3 ..., Xn
 

 Y Y1 Y2 Y3 ..., Yn  

Certain programs in the 'STAT2' directory are well suited to this simple example. However,
the programs that use 'XFRQ' may still be used if the nth order identity matrix is put in
2FRQ".
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Here is the list of programs in the 'STAT2' directory:

'FRQX' frequencies of the first marginal statistic.

'FRQY' frequencies of the second marginal statistic.

‘MX' : arithmetic mean of the first marginal statistic.

‘My' : arithmetic mean of the second marginal statistic.

X' : variance of the first marginal statistic.

vY' : variance of the second marginal statistic.

‘NXY' : creates the matrix of Ni j*Xi*Y j, which is very useful for calculating
covariance.

'‘cv' : calculating the covariance of a pair (X,Y).

'‘COR' : linear correlation coefficient of a pair (X,Y) .

XY equation of the lines of regression of X in terms of Y.

LY-=X equation of the lines of regression of Y in terms of X.

'KXtA' fitting a power function Y=k*X" a to a statistic.

'KATX' fitting an exponential function Y=k*a "X to a statistic.

'SUMT' sum of the coefficients of a vector or matrix.

'PRODT' : term-by-term product of the coefficients of two vectors (useful for finding
variance or covariance).

'MODT' modifying the terms in a table (matrix or vector) using a certain formula.
'MODT!' is useful when fitting power or exponential functions to statistics.

Programs 'SUMT', 'PRODT' and 'MODT' are designed to enable the user to perform "step-
by-step" calculations. They may prove useful in directories other than 'STAT2'.
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'‘STAT2' directory Programs 'FRgX'
and 'FRQY'

ABSOLUTE FREQUENCIES OF MARGINAL STATISTICS
 

'FRQX' and 'FRQY" let you find the respective absolute frequencies of marginal statistics X
and Y. The result is obtained by addition:

row by row to calculate the absolute frequencies of X,
column by column to calculate the absolute frequencies of Y,
(see the purpose of the matrix 'XFRQ' in the introduction).

The result is obtained in vector form at level 1:

  '"FRQX' or 'FRQY'

1: _—> 1: vector
      

'FRQX': ( Checksum: # 48800d, Size: 46 bytes )

« IFRQ DUP SIZE 2 2 suB 1 CON * o, I
 

'FRQY': ( Checksum: # 52973d, Size: 48.5 bytes )

« ZFRQ TRN DUP SIZE 2 2 SUB 1 CON * » l
 

Example:

If we take the statistic:

 

 

 

X\Y 10 20 30 40

1 1 7 11 12

5 3 5 0 1

10 0 4 8 8  
 

and put the following matrix in '2ZFRQ'":

[[1 7 11 12 ]
[ 3 5 0 1]

(o 4 8 8 11,

thevector [ 1 5 10 ] in ‘X',
the vector [ 10 20 30 40 ] in'Y',

we obtain (in one second)

  'FRQX'
1: s 1: [ 31 9 20 ]
 
 

  ' FRQY'
1: —>  1:| [ 4 16 19 21 ]    
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'STAT2' directory Programs 'MX'
and 'MY'

ARITHMETIC MEANS OF MARGINAL STATISTICS

'MX' and 'MY" let you find the respective arithmetic means of the marginal statistics X and Y
(see purpose of '2FRQ' in the introduction).
The functional diagram is as follows:
  'MX' or 'MY'

1: _> 1: mean
      

N.B: program 'MX' calls 'FRQX' and 'SUMT'. Likewise, 'MY' calls 'FRQY"' and 'SUMT".

'MX':( Checksum: # 19074d, Size: 43.5 bytes )
 

| « FRQX DUP SUMT / X DOT » l
 

'MY':( Checksum: # 218d, Size: 43.5 bytes )
 

« FRQY DuUP SUMT / Y DOT » ]
 

Example:

If we take the statistic:

 

 

 

X\Y 10 20 30 40

1 7 11 12

5 3 5 0 1

10 0 4 8 8   
we put the following matrix in 'ZFRQ":

([ 1 7 11 12 ]

[3 5 0 1]

(o 4 8 81]],

andthevector [ 1 5 10 ] in'x',
andthevector [ 10 20 30 40 ] in'Y"

We obtain (in one second):
  lMXI

1:  
  

  'MY'

1:  > 1: 29.5      

The arithmetic means of X and Y are therefore X = 4.6 and Y = 29.5.

Note:when dealing with a variable in two statistics (X,Y) consisting of a set of points with an
absolute frequency of 1:
 

X X1 X2 X3 ..., Xn
 

Y Y1 Y2 Y3 ... Yn   
we can still use 'MX' and 'MY' provided that we put the nth order identity matrix in 'ZFRQ". It
is, however, simpler to apply program 'SUMT' to X and Y before dividing by n.
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'STATZ2' directory Programs 'VX'
and 'VY'

VARIANCES OF MARGINAL STATISTICS

'VX' and 'VY' let you find the respective variances of the marginal statistics X and Y (see
purpose of '2FRQ' in the introduction).

The functional diagram is as follows:
  'vVvX' or 'vy'

1: _— 1: variance
      

N.B: program 'VX' calls 'FRQX', 'SUMT', 'PRODT' and 'MX'. Likewise, 'VY' calls 'FRQY',
'SUMT', 'PRODT' and 'MY".

'VX':( Checksum: # 49353d, Size: 65 bytes )

« FRQX DUP SUMT / X DUP PRODT DOT MX SQ - » ]
 

'VY':( Checksum: # 45844d, Size: 65 bytes )

« FRQY DUP SUMT /Y DUP PRODT DOT MY sQ - » ‘
 

 

 

 

Example:

If we take the statistic:
X\Y 10 20 30 40

1 1 7 11 12

5 3 5 0 1

10 0 4 8 8   
we put the following matrix in 'ZFRQ":

([ 1 7 11 12 ]
[3 5 0 1]
[0 4 8 81]]

andthevector [ 1 5 10 ] in'xX',
andthevector [ 10 20 30 40 ]in'y"

We obtain (in under two seconds):
 
 lvxl

1:  > 1: 16.44
 
 

 
 lvyl

     1: > 1: 88.083333334
  

The variances of X and Y are therefore var(X) = 16.44 and var(Y) = 88.08; wecan
thus find their standard deviations, which are: o(X) = {16.44 = 4.05and
o(Y) = 9.39.

Note:when dealing with a variable in two statistics (X,Y) consisting of a set of points with an
absolute frequency of 1:
we can still use 'MX' and 'MY' provided that we put the nth order identity matrix in
'2FRQ'. It is, however, simpler to use programs 'MODT' (to calculate the vectors of Xi2
and Yi?) and 'SUMT', based on Huygens' formula:
 

 

   

X X1 X2 X3 ... Xn

Y Yyl Y2 Y3 ..... ¥Yn

var(X) = X% - (X)?2 (X = arithmetic mean of Xx).



'‘STAT2' directory Program 'NXY'

CREATING A MATRIX WITH GENERAL TERM Nij*Xi*Yj
 

'‘NXY' creates a matrix with the same format as '2FRQ' (see introduction for conventions
used) and a general term Ni jXiYj.
The result is put in a variable called 'ZNXY".

'NXY':( Checksum: # 44590d, Size: 181.5 bytes )

The stack is not affected by program 'NXY".
 

« ZXFRQ SIZE
- d
« 1 d 1 GET FOR i

1 d 2 GET FOR j
"IFRQ(i,j)*X(i)*Y(j)' EVAL

NEXT
NEXT
d —ARRY ' INXY' STO  
 

 

 

 

Example:

If we take the statistic:

X\Y 10 20 30 40

1 1 7 11 12

5 3 5 0 1

10 0 4 8 8   
we put the following matrix in 'ZFRQ":

({1 7 11 12 ]
[3 5 0 1]
[0 4 8 81]

andthevector [ 1 5 10 ] in'X',
andthevector [ 10 20 30 40 ] in'Y"

Program 'NXY' then puts the matrix:

[[ 10 140 330 480 ]
[ 150 500 0 200 ]
[ o 800 2400 3200]]

in 'INXY"', within 3 to 4 seconds. We then obtain, for example:

asX(2)=5, ¥(1)=10 and 'SFRQ'(2,1)'=3/

Note:when dealing with a variable in two statistics (X,Y) consisting of a set of points with an
absolute frequency of 1:

 

X X1 X2 X3 ... Xn
 

Y Y1 Y2 Y3 ..... ¥Yn  
 

we can still use 'NXY' provided that we put the nth order identity matrix in 'ZFRQ". This is not
really useful, however, as program 'PRODT' applied to the vectors X' and 'Y' is perfectly
suited here (as it gives the vector of XiYi).
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'STATZ2' directory Progra(rjnsé'g\é'
an 1 '

COVARIANCE AND LINEAR CORRELATION COEFFICIENT

'‘CV' calculates the covariance cov (X, Y) of a variable in two statistics (X,Y).
'COR' calculates their linear correlation coefficient ro(X,Y).
Note that:

1 _ _ 1 L
cov(X,¥)= — = Nij (Xi-X)(Yj-¥) = — = NijXiv¥j - X ¥

N N

and
cov(X,Y)

ro(x,Yy) =—

o(X) o(Y)

where X and Y denote the arithmetic means of X and Y and o(X) and o(Y) denote their
standard deviations.

The functional diagrams are as follows:
  lcvl

1: _— 1: cov(X,Y)
  
  'COR'

1: _— 1: ro(X,Y)

N.B: 'CV' calls programs 'FRQX', 'MX', 'MY' and 'SUMT".
'COR'calls programs 'CV', 'VY'and 'VX'.

'CV':( Checksum: # 45578d, Size: 71.5 bytes )

«ngnoY*DOTFRQXSUMT/M_XMY*—»]

      

 

'COR':( Checksum: # 20309d, Size: 44 bytes )

« cv w v |/ ¥ v ] » ]

Example:

If we take the statistic:

 

 

 

 

X\Y 10 20 30 40

1 1 7 11 12

5 3 5 0 1

10 0 4 8 8   
we put the following matrix in 'XFRQ":

(1 7 11 12 ]
[3 5 o0 1]
[o 4 8 81]],

and the vector [1 5 10] in ‘X',
and the vector [10 20 30 40] in'Y'".

We obtain, in under two seconds:

  

   

  

1 Cv 1

1: _ 1: 1.133333333

and, within four seconds:
'COR'

1: _—> 1: 2.97824132168E-2      

(X'and Y are therefore weakly correlated here).
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'STAT2' directory Programs 'LY—X'
and 'LX-Y'

LINES OF REGRESSION OF Y IN TERMS OF X
AND OF X IN TERMS OF Y

'LY—X' and 'LX—Y' calculate the equations of the lines of regression of Y in terms of X and
of X in terms of Y respectively (also called least squares lines) of the variable in two statistics

JY).
The functional diagram is as follows:

'LY —-X' or 'LX—Y'
1: _—> 1: equation

 
 

    
 

 

where "equation" is the equation we want to find, in the following form:
'y=a*x+b' for program 'LY—X"',
'x=a*y+b' for program 'LX—Y"'.

We should also note that the equation of the least squares line of Y in terms of X is:
cov(X,Y) _

y= —(x - X ) + ¥
var(X)

and that of the least squares line of X in terms of Y is:
cov(X,Y)

x= —(y - ¥) + X
var(Y)

(using normal notation).
N.B: 'LY—=X'calls 'CV', VX', 'MY' and 'MX'.

'LX-=Y'calls 'CV/, VY', 'MY' and 'MX'.

'LY—X":( Checksum: # 56991d, Size: 82 bytes )

« 'y' GV VX / DUP 'x' *
MY MX 4 ROLL * - 4+ =

 

»

'LX—Y"( Checksum: # 33808d, Size: 82 bytes )
« xlc_v fl / DUP |y| *

MX MY 4 ROLL * - + =

Example:
[f we take the statistic:

 

 

  
 

 

 

 

X\Y 10 20 30 40

1 1 7 11 12

5 3 5 0 1

10 0 4 8 8  
 

we put the following matrix in 'ZFRQ":
[[1 7 11 12 ]

[ 3 5 0 1]
[ 0 4 8 8 11,

[ 1510 JinX'and[ 10 20 30 40 ]in'Y"
We obtain, within four seconds:
 
 

 
 

 
 

'LY—X'

1: _— 1: 'y=0.069*x+29.183'

and:
'LX—Y'

1: ————>  1:| 'x=0.013*y+4.220'    
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'‘STATZ2' directory Programs 'KAtX'
and 'KXtA'

FITTING A FUNCTION Y=k*a"X or Y=k*X"a TO A STATISTIC

'KA1 X' and 'KX* A' can be used to fit:
an exponential function y=k*a"x (program 'KA%X'")
a powerfunction y=k*x"a (program 'KXtA"),

to a variable in two statistics (X,Y).

The functional diagram is as follows:
 'kat X'or 'kxfA'

1: —_—> 1: equation

 

      

where "equation” is the equation of the curve we want to find,in the following form:
y=k*a”x for program 'KAtX'
y=k*x"a for program 'KXtA'

N.B: 'KAtX'and 'KXtA' call 'MODT', 'CV', 'VX', 'MX' and 'MY".

Important note:
e contents of X and Y are modified while 'KX1A' is running (only Y is modified in 'KAtX').

The initial values of the variables X and Y are restored at the end of the program. We
therefore have to be careful not to quit the program by pressing "ON" before it has actually
terminated. If not, the initial values of X and Y are put in the stack.

'KAX':( Checksum: # 35728d, Size: 159 bytes )

DUP «LN» MODT 'y! STO cv VX / EXP

 

<«

2
11

<

'v'’ a MX NEG * MY EXP * a 'x' "~ * =
SWAP 'Y' STO

¥

»

 

'KX1A':( Checksum: # 14153d, Size: 207.5 bytes )

« 5 Y DUP2

 

« LN » MODT 'y! STO « LN » MODT 'X! STO

eV ovx
- a
« 'y' MY a MX * - EXP "x' a " * =

3 ROLLD 'Y' STO 'X! STO  
 

Example: using the data in the example illustrating 'LX—Y' and 'LY—X', we find (within 4
seconds, in 3 FIX mode):

  'ka t x!'
1: _ 1:| 'y=27.239*1.0037x'

   

 'kxTA’
1: ———— 1:| 'y=28.360*x"(-0.024)"
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'STAT2' directory Programsp'SgMT'
and 'PRODT'

SUM OF COEFFICIENTS OF A TABLE

'‘SUMT' calculates the sum X of terms in a table A (vector or matrix) as shown in the
functional diagram below:

  ' SUMT'

1: A _—> 1: =
      

'‘SUMT":( Checksum: # 7618d, Size: 51 bytes )
 

« OBJ— oBJ— IF 2 == THEN * END
2 SWAP START + NEXT

   

Example: (in under one second)

 

[[21 48 13 17 44
[ 8 64 47 11 29

1: [13 24 9 55 81
 ' SUMT'

]| ——1: 484  —
a
a

    

TERM-BY-TERM PRODUCT OF TWO VECTORS

  

   

      

 

   
  

 

'PRODT' calculates the term-by-term product of two vectors A=[X1,...,Xn] and
B=[Y1,...,¥n]. Theresultis the vector c=[X1*Y1l, X2*Y2, ., Xn*Yn].

The functional diagram is as follows:

2: A ' PRODT' 2:
>

1: B 1: Cc

'PRODT":( Checksum: # 27673d, Size: 122 bytes )

« DUP SIZE 1 GET
- a b n

« 1 n FOR i '"a(i)*b(i)"' EVAL  NEXT
n  —ARRY

»

Example: (in one second)

2:| [ 12 7 31 9 4] '"PRODT' 2:
>

1:| [ 4 11 2 18 ] 1:| [ 48 77 62 9 32 ]      
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'STATZ2' directory Program 'MODT'

APPLYING A SINGLE PROCEDURE TO THE
COEFFICIENTS OF A TABLE

'MODT' enables you to modify the coefficients of a table A by applying a single
transformation. If B is the table obtained, we get the following functional diagram:

  

2: A 'MODT' 2:
  

    1: procedure 1: B
  

where "procedure” is a program designed to be applied to each of the elements in A. This
program is supposed to apply to the element at level 1 of the stack and thus to give a
numerical result at the same level.

'MODT":( Checksum: # 48215d, Size: 110 bytes )

 

  
 

  

 

  
 

 

 

  
 

 

 

« - p

« OBJ» DUP - d
« OoBJ— IF 2 == THEN * END

- n

« 1 n START p EVAL n ROLLD  NEXT
d  —ARRY

»

»

»

Example 1: (in one second)

(Result in 3 FIX mode

2:| [ 1.7 3.5 4.25 ] 'MODT' 2:

1: « LN » 1:|[0.531 1.253 1.447]

Example 2: (in one second)

[[ 15 21 33 ]
12 36 99 ]

2: 6 45 12 ]] 'MODT' [[ 25 49 121 ]
> [ 16 144 1089 ]

1: « 3/ 8Q» 1: [ 4 225 16 1]    
  

(all coefficients were divided by 3 then squared).

Note:'MODT' is useful when attempting to find a relation of the type Y=K*X"a or Y=K*A"X
between two statistics X and Y. The program enables us to transform the vector of Xi
and/or Yi into that of LN(Xi) (or LN(Yi)) and to find the linear correlation between
these two new variables (programs 'CV', 'COR', 'LY—=X', etc).
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DATABASES
  
 

The HP48's large memory capacity means that it is able to manage databases. You will not,
of course, be able to enter huge amounts of data, but for a pocket calculator you can obtain
very impressive results.

A database is a set of records (that are usually in some way inter-related) in which we can
add, edit, delete, read, sort and select records.

A database will be stored in the HP48's memory as a list in the following form:
{C1C2C3...Cn},

where n is an integer representing the number of elements in the list and C1, C2, ..., Cn are
the various records.

A record is a string of characters.

For such a string to be displayed in full on screen, it should not exceed 7 lines in length, each
line containing no more than 22 characters (line feeds can be inserted with the NEWLINE
command).
However, as we shall see, longer strings can be used with the VISIT option of program
'READ'.

A database must be put in a variable and may be consulted using the name of the variable.

Here is the list of the programs in the 'DATA' directory:

‘ADD' : adds a record.

‘READ' reads the database and edits or deletes records.

'SORT' sorts the database.

'FIND' : finds the first record containing a given sub-string (and reads the database
starting from this record).

'SELEC' selects records containing a given sub-string, then reads the database
created from these records.
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'‘DATA' directory Program 'ADD'

ADDING A RECORD

'ADD' letsdyou add a record to an existing database or create a new database by entering a
new record.
This gives us two possible functional diagrams:
NAME denotes the name of the database to be updated or created.

Updating:

  

2: NAME 'ADD ' 2:

>

1: REC 1: NAME

  

      

Here REC is the string of characters representing the new record.

Creating:

  'ADD'

      

Here a "New Object" message is displayed to allow you to enter the new record.
The keyboard switches to Alpha mode: when you confirm the object to be entered by
pressing ENTER, it is converted into a string of characters (you do not need to include
inverted commas).

If the database is properly sorted, the new record is entered in such a way that the database
is resorted.

'‘ADD'": ( Checksum: # 227444, Size: 227 bytes )

 

« IF DUP TYPE 2 = THEN
"New Object:"  {"" a }  INPUT

END
- [

« IFERR DUP RCL THEN
DROP c 1 —LIST

" SWAP oBJ— - n

DUP n = OVER 3 + PICK c > AND

ROLLD n 1 + —LIST SWAP DROP

END OVER STO  
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'DATA!'directory Program 'READ'

 

READING AND EDITING THE DATABASE
 

'READ' allows you to consult and edit the contents of a database. The functional diagram is
as follows:

 

2: NOM
  'READ'

1: NOM _—> 1: Num      

where NAME is the name of the database and Num is the number of the record that has
been located (you can then put the record in the stack with GET).

N.B: You can also call 'READ' by putting the name of the database at level 2 and the record
number at level 1. The program then reads the database from the record whose
number you have entered (this can be useful when working with large databases if you
want to locate a record that is a long way from the start).

Program 'READ' halts as soon as you call it up and the contents of the record are displayed
on screen with the following menu:

 

I -> l <- ]->—> IVISIT[ DEL ] OK |
 

1) Press "—" to display the next record. If you are on the last record, this will take you
back to the start.

2) Press "«" to display the preceding record. If you are on the first record, this takes you
to the end.

3) Press "-»—" to scroll through the database. When you reach the end, scrolling
continues from the start. Press any key (except ON) to halt scrolling.

4) Press "VISIT" to display the record on the command line. You can thus consult the
record (especially if it is too large to be fully displayed on screen).
You can also edit the record at the same time.
Press ENTER to terminate consultation/editing.
I(f yc))u have edited the record, the program asks you to confirm by pressing Y (yes) or N
no).
By confirming, you replace the old record with the newly edited one.
If not, any changes made are cancelled.
In both cases, you can then continue reading the database.
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'DATA' directory Program 'READ'
(continued)

5) Press "DELET" to delete the record you are consulting. To avoid deleting by mistake,
the program asks for confirmation by Y (yes) or N (no). In both cases, you can then
continue reading the database.

6) Press "OK" to finish reading. The name of the database is then at level 2 and the record
N° at level 1. Press 'READ' again to continue reading from the point where youleft the
database.

Notes:

If you delete the last record of a database, the database is purged from the directory.
When scrolling, 0.2 seconds elapses between screens (see .2 WAIT instruction, which can
be modified, below).

'‘READ'": ( Checksum: # 48934d, Size: 651 bytes )

 

«

 

IF DUP TYPE 6 == THEN 1 END OVER RCL SIZE

- i n
« « i + n MOD 1 + 'i! STO DUP

i GET CLLCD 1 DISP 3 FREEZE
»

« "Confirm? (YN) :" {"" a}
INPUT "y SAME

» - ii ok

« -1 ii EVAL
{ { "« 0 ii EVAL » }

{ """« -2 ii EVAL » }
{ ll_’_’ll

« DO 0 ii EVAL 2 WAIT

UNTIL KEY END DROP

{ >I’| VISIT"

« DuUP i DUP2 GET " OVER

{-1} + INPUT
IF DUP ROT SAME THEN 0

ELSE ok EVAL

END

IF THEN PUT ELSE 3 DROPN END

-1 ii EVAL

« IF ok EVAL THEN

IF n 1 > THEN

DUP RCL DUP 1 i 1 - SuB

SWAP i 1 + OVER SIZE SuB

+ OVER STO 'n' 1 STO-

ELSE PURGE 2 MENU KILL

END

END -1 ii EVAL
» }

{ "oK" CONT }

} TMENU HALT 2 MENU i
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'DATA:' directory Program 'SORT'

 
SORTING THE DATABASE
 

'SORT' is used to sort a database in ascending alphabetical order (in ascending order of
ASCII codes to be more precise).

Sorting is only necessary if certain records have been edited (VISIT option in program
'READ'), thus cancelling the order established automatically when using 'ADD".

The functional diagram is simple:

  ' SORT'

1: NOM —_—> 1: NOM
      

where NAME represents the name of the database.

'‘SORT": ( Checksum: # 28921d, Size: 142.5 bytes)
 

« DUP RCL OBJ—

- n

« IF n 1 >

THEN

2 n FOR i

i ROLL i 1 +

WHILE DUP PICK 3 PICK <

REPEAT 1 - END

1 - ROLLD

NEXT

END

n —LIST OVER STO
»   

Note: It is impossible to estimate the time it will take to sort a database. This will depend
both on the size of the database and on how sorted or unsorted it already is. A
database containing 50 records should be able to be sorted within about 20
seconds.
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‘DATA' directory Program 'FIND'

FINDING A RECORD

'FIND' locates the first record containing a given sub-string in a database by searching
sequentially.

There are two possible functional diagrams:
NAME denotes the name of the database.

 

 

First case:

2: NOM

1: CHN   
Here CHN is the string of characters to be located.

Second case:

 

1: NOM
   

In this case the message "search first:" asks you to indicate the object to be located (which
is then automatically converted into a string of characters). The keyboard switches to Alpha
mode and you enter the object to be located (without including inverted commas) and then
confirm by pressing ENTER.

The message "In progress..." is displayed as the program searches.

If the sub-string is found in a record, you can then start reading the database from that
record.

If not, a "No occurences" messageis displayed.

'FIND'": ( Checksum: # 38062d, Size: 230.5 bytes )
 

« |IF DUP TYPE 2 = THEN

"Search first:" { "" a } INPUT

END

OVER RCL SIZE

- ch n

« CLLCD "In progress..." 1 DISP
0

DO 1 +

UNTIL
DUP2 n MIN GET ch POS OVER n > OR

END

IF DUP n > THEN

DROP ""No occurrences' DOERR

ELSE

READ

END  
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'DATA' directory Program 'SELEC'

SELECTING A RECORD
 

 

'SELEC'locates all the records containing a given sub-string in a database by searching
sequentially.

There are two possible functional diagrams:
NAME denotes the name of the database.

 

 

First case:

2: NOM

1: CHN   
Here CHN is the string of characters to be located.

Second case:

 

1: NOM
   

In this case the message "search:" asks you to indicate the object to be located (which is
then automatically converted into a string of characters). The keyboard switches to Alpha
mode and you enter the object to be located (without including inverted commas) and then
confirm by pressing ENTER.

The message "In progress..." is displayed as the program searches.

If the sub-string is found in a record, then 'SELEC' creates a new database called *'
containing all the records in which the sub-string is located.
You can then read the database *'.
Once you have finished reading, the variable *' is not purged.

If no sub-string is found, a "No occurences found" messageis displayed.

'‘SELEC'": ( Checksum: # 39471d, Size: 257 bytes )
 

« |F DUP TYPE 2 = THEN

"Search :" {"" @ } INPUT
END

OVER RCL SIZE — ch n

« CLLCD "In progress..." 1 DISP {}
1 n FOR j

OVER | GET
IF DUP ch POS THEN +

ELSE DROP

END

NEXT

IF DUP SIZE THEN

re STO re! READ

ELSE DROP ""No occurrences'' DOERR

END
» »   
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INDEX OF PROGRAM NAMES
 

 

 

  

        

  

  

  

   

  
   

  

 

NAME PROGRAM PAGE

iABCUV Resolving AU+BV=C (A, B and C are polynomials). ...........ccccecvrriiimnnieianeanenan. 66

ABCXY Resolving the equation ax+by=c (a,b,c,x,y integers = 0 or < 0)................ 18

ACS Finite series of ARCCOS(X) and arc cosine of an F.S. ............cccociiviiiiiiiniicneene. 160

ADD AAAING @ FECONM. .......oiiiieiiiiiieetttee e ee s ae e s e e beae s s stbreteee s sbaneaeae e saeees 272

ADDF Addition of two rational fraCtions. .............cccoiiiiiiiiiieie 71

ADDID Bounding a matrix to the right with the identity matrix...... 106

ADDL Addition Of tWo 1arge iNtEGErS............ccceiiiiiiiiiiiie 206

ADDP Addition of two polynomials.............. 43

A—-Q Rational approximations @n @rray...............cccoverieeriieeieeiiee 31

ALU Decomposition "A=LU" of @ sSquare MatriX. ............ccoeevevirinieneeininicnee 84
ANGL Calculating angular distances.......................... 171

ANIM Producing successive screen images............c...c.ceeve. 203

AREA Calculating areas under plane CUIVES..............ccooveviiiieiiinieniniee 180

ASH Finite series of ARCSINH(X) and hyperbolic arc sineof an F.S............................. 162
ASNS Finite series of ARCSIN(X) and arc sineof anF.S...........c.ccooc.... 159

ATG Finite series of ARCTAN(X) and arctangent of an F.S. ..........ccoceevienniicnicnicnnenn. 161

ATH Finite series of ARCTAN(X) and hyperbolic arc tangentof anF.S........................ 163

AX Finite series of A*X and F.S of A"F(X). .....c.ooceemiiiiiiiieciirest 150

BINO List of binomial coefficients. .............cccccceeviiiiiininie 217

BNP Binomial distribution. ..............cccccooviiieiiniene e, 218
BNPF Binomial distribution function................ccceceriiiininiiiie 219
BRST Roots of a polynomial using Bairstow's method...............ccccooviviiicininiee 53

C.COL Creates a column depending on 2 columns in ZDAT. .......ccccovieriniieniniee 257

CALC Evaluating rational @XpreSSions............c..eiieiiiiriiiest 20

CALCC Calculations on the columns of @ MatriX. ............coooeeeiiiiiiinee 92
CALCR Calculations on the rows of @ MatriX. .........ccccoeeieiriiiiiencieieceeeeee 90
CARP Characteristic polynomial of a square matriX.............ccccooverrieieresvereenens 96
cB Changing a matrix via a basis transformation. ................ccc.cco..... 81

CFP Cumulative frequency polygon of a grouped statistic. ..............cccccereecrenennnn. 253

CH Finite series of COSH(X) and hyperbolic cosine ofanF.S................ 157

C-D Transformation of a class statistic into a discrete statistic. ...............ccccevceciiniennnne. 236
CIRC Equation of a Circle or SPhere.............cc.oovieiiiieiiiceee 168

CNFR Continued fractions and reduced fractions of a given real number........................ 29

CNP Combinations without repetition. ...............cccoviiiiiiiniinne 216
COL.N Extracting a column in ZBAK..........ccccooiiiiiiiiiiiceeee 256

COMP Composition of two polynomials......... 48

COR Linear correlation coefficient of a statistic in two variables (X,Y). .......c.ccocceviniin 265

CPFS Composite of tWo fiNite SBMIES. ..............cceiiiiiiiiiiee 141

CRARY Creating an array given by a formula. ..............c.ooeeiiiinniee 94

Ccs Finite series of COS(X) and cosine of an F.S..........cccccoceeviviininicnicncci 154

CUM- Going back from a cumulative table to an initial table. ...............cccccceeniieiiinieiis 255

CURL Curl of @ VECOr field. .........ccviiiiiiiiiie 187
cv Covariance of a statistic in two variables (X, ¥ ). ..cccoovirnnininiiiiicccies 265
CVTRE Centre and radius of curvature of a plane curve...........ccccceeinnees 182

CYCLO Calculating cyclotomic polynomials.............ccc.coeiiiieiiiinieeiecee 22

DEFL Eigenvalues and eigenvectors of matrices of an order greaterthan 4. ................. 98

DEG2 Real or complex roots of a 2nd degree polynomial. ............cccccevviiiiiiiiiiiiiinnnen, 50

DEG3 Real or complex roots of a 3rd degree polynomial. ................ccooociiiiin, 51

DEG4 Real or complex roots of a 4th degree polynomial. ...........c.ccoccvviiiiiiniininiinnn. 52

DERFS Derivative of a finite SEries. ..............cccoevivi 147
DERIV Derivative of @ polynomial. .............ccieeiiiiiiiiicie 57

DERVF Derivative of a rational fraction................ccoceeiiiiiiiniiinii 74

DIFF Differential of a function of several variables..................ccocccvniiiniiiii 193  
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INDEX OF PROGRAM NAMES (Cont.)
 

 

 
 

NAME PROGRAM PAGE

DIM Degree and index of the first non-zero term of a finite series............ccccccccovveeennen. 137
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FSN Integer power of a fiNite SEMES..............coceiiiiriiiiiiiieeee 144
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NRCN Nth roots of a complex NUMDET..............c.ccociiiiiiiinini 36
NRM— Inverse of the normal distribution function..............c..cccccviinniniiiii 232
NXY Creates the matrix of Ni j*Xi*Y j (for a statistic in two variables)...................... 264
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PAR Plotting @ parametriC CUIVE...............cccciiviiiiiiniccceet 196
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POIS P0iSSON diStriDULON.........cocueiviiiiiiiie 222
POISF Poisson distribution fUNCHON..............cccciiiiiiiiiiiii 223

POL Plotting a curve with polar coordinates................ccccoceevviiiiiiniinniii 197

POLP Plotting a curve of a polar equUation.................ccceveeieiniiieininiin 198
POWF Powers of a rational fraCtion..............c..ccoviiiiiiniinnii 73
POWL Integer powers of a large iNteger..............ccocvveeiiiiiiiiiniiic 207

POWM Powers of @ SQUANre MatfiX. ........ccccverieiiiiiiiiiiieiicet 82
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PPEX Primitive, in symbolic form, of P (X )EXP (@X )...o 65

PRIM Primitive of @ polynomial. ..............cccoooiiiiiiii 58

PROD Calculating partial ProAUCES............ccceeiiiiiiiiiiee 28

PRODF Product of two rational fractions. ...... 71

PRODL Product of two 1arge iNtEGETS.............ooviviiiiiiiiiee 206

PRODP Product of tWo POIYNOMIAIS. .........coceiiiiiriiiiiicecee 44

PRODT Vector of the term-by-term product of the coefficients of two vectors.... 268

PRP Pascal distribUtion P(I,P). ....couiiuiiiiiieciieet 226

PRPF Pascal distribution fUNCHION. ..............cooviiiiiiiiiee 227
PUTC Places a column in @ MatriX. ........c.cccovvviiiiiniiniee 86
PUTR Places a row in @ MatriX. .........cccceoevveeiieniiiiienniee 85

QFS Quotient of two finite series..............cccocoviviiiiiniiee 143
QTLE Quantiles of @ grouped StatiStiC. .............ocueriiiiiriiiiiiee 242

RANK Calculates the rank of @ MatriX. ............ccceiiiiiiniiiiics 100
READ Reading the database and editing or deleting records..... 273

RECTP Finding the length of @ plane CUNVe.................cooiviiiiiiiee 174

RECTS Finding the length of @ SPACE CUNVE.............ccoviiiiiiiiieiiiee 176

REV Reversing the order of the components of a vector......... 56

R—L Switches from "real" to large integer form. ............ccocevinineneniieins 213

RK4 Differential equation Y' =F (X, Y ) by the Runge-Kutta method. .......................... 129
SELEC Selecting a record in @ database..............c.cocveveiiieri 277

SH Finite series of SINH(X) and hyperbolic sine of an F.S. ...........cccccoviiininiininiine 156

SIMP Simplifying @ fraCtioN. ..........cocooiiiiiiiiieeceee 17

SKMM Standard kth moment about the mean of a discrete statistic...... 239

SMPF Simplifying @ rational fraction. ...............cccciiieiicieriee 70

SN Finite series of SIN(X) and sine of an F.S. .............ooiiiiiiiiie 153

SND— Inverse of the standard normaldistribution function.................cccceveiiinniineeeee 232

SORT Sorting the database...............ccveiiiiiiiiiiiieettterae e steras 275

ST-L Writes a string of characters in the form of a large integer...............ccccccoeciiiincenns 212

STRT Equation of a two-dimensional straightline.......... 166

SUMT Sum of the coefficients of a vector or matrix....... 268

SWPC SWAPS WO COIUMNS. .....oeeiiiiiiieetttsttteee e e ente e erbeesseesasaeaaens 89

SWPR SWAPS tWO TOWS. ...c.eeiiiieiiieiiiieccceet 89

SXY Resolving systems F(X,Y ), G(X,Y) =0oo 125

SXYZ Systems F(X,Y,Z)=0, G(X,Y,Z)=0, H(X,Y,Z)=0. 127
SYST Symbolic expression of a system of linear equations..............cccecceveeviriennne 102

TCHEB Calculating Tchebyshev polynomials..............ccccoceriiiiniiniininiee 61

TG Finite series of TAN(X) and tangentof an F.S ...........c.cccooiiiiiiiiin 155
TH Finite series of TANH(X) and hyperbolic tangentof an F.S................c.....c.... 158

TNGT Equation of the tangent to a curve Y=F(X) at a given point................ccece.. e 118

TR Trace Of @ SQUATE MAITIX. .....c.coovviiiiiiiiieeeseestetbeesteeseeenaean 81

TRIG Trigonometric calculations (e.g. linearization). ...........ccccecerveveinininninicncccene 37

TRNS Translation of @ PolyNOMIAL ............ccceeiiiiiiiiiiee 49

VALF Value of a rational fraction at a point. ...... 73

VALP Value of a polynomial at @ Point. .............cocoiiiiiiiiiiiie 56

V—-F Writing a rational fraction in algebraic form .............cccccociiiiiiiniiiii 72

V—P Transforms a polynomial in vector form into an algebraic expression........... 60

VX Variance of X in a statistic in two variables (X,Y). ....ccccovviriiiniiiniiiiiciien 263

vy Variance of Y in a statistic in two variables (X,Y). ....c.ccoociiiiiniiiiiiininiiicicii 263

XA Finite series of (1+X) "AandF.Sof F(X) "A....cccceeene. v 152
X—=AX Replacing X with a*X in a finite Series. .............ccccceiviiriinniiieeceece 146

X—=>XN Replacing X with X™ in a finite series. ...........ccocoevviiiiiiiiincicc 145

YULE Yule, Kelley and Pearson coefficients. ..............ccccoviiviiniiiniiniiiciic 240 
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