
PAS
Vileleallale
KelglelVlelele
A Journey to the Center of the HPAS s/sx

Paul Courbis & Sébastien Lalande

ME ap 4 iDwh [oi
i - IT J Ed

atts 3
8 —-— Ea

: SE ow Pi

Pu bg
p Sh a

aX he
FN I~
viomR ae i
Me om
: L-) B

ay =
EE .
i RE
, os) »

HP 48S/SX

Machine Language

Journey to the Center of the HP 48

by Paul Courbis and Sébastien Lalande

translated to English from the French

by Douglas R. Cannon

HP 48

Machine Language

Journey to the Center of the HP 48

by Paul Courbis and Sébastien Lalande

translated to English from the French

by Douglas R. Cannon

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

Hewlett-Packard, HP-71, HP-28, HP 48, HP 48S, HP 48SX, Macintosh,
Atari, UNIX, Amiga and IBM are registered tradenames or trademarks.

© 1993, Paul Courbis and Sébastien Lalande. All rights reserved. No
portion of this book or its contents, nor any portion of the programs
contained herein, may be reproduced in any form, printed, electronic or
mechanical, without written permission from Paul Courbis, Sébastien
Lalande, and Grapevine Publications, Inc.

Printed in the United States of America

First Printing — December, 1993

Notice of Disclaimer: The authors and Grapevine Publications, Inc. make no express or implied

warranty with regard to the keystroke procedures and program materials herein offered, nor to their

merchantability nor fitness for any particular purpose. These keystroke procedures and program

materials are made available solely on an “as is” basis, and the entire risk as to their quality and

performance is with the user. Should the keystroke procedures and program materials prove defective,

the user (and not Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all

necessary correction and all incidental or consequential damages. Grapevine Publications, Inc. shall

not be liable for any incidental or consequential damages in connection with, or arising out of, the

furnishing, use, or performance of these keystroke procedures or program materials.

We would like to give special thanks to:

Our respective families for the help and support they have
given to us; Douglas R. Cannon for the enthusiasm and care
with which he has translated this work; Marc Bernard de

Courville for his numerous critiques; Ray Depew, without
whom this edition would have never seen the light of day;
Christophe Dupont de Dinechin for his program mSOLYER and
his excellent remarks; Dominique Moisescu for his program,
SSAG; Christophe Nguyen for his programs CIRCLE and
BANNER; Yann Rousse; Jean Tourrilhes; the Maubert Elec-
tronic Company; all the members of the comp.sys.hp48
group; and all those who have contributed with their remarks
and ideas for the realization of this work.

Note to the Reader

This work has been designed for both the beginner and the advanced
programmer. It contains information on the “classical” uses of the HP 48
as well as methods of accessing resources that are not documented by
Hewlett-Packard.

The book is divided into four parts:

Part One is to help you become familiar with the basic applications
of the HP 48. Among these are: reverse polish notation, the stack,
and the standard programming language. Also included are exer-

cises that we suggest you use to help you understand these
principles.

Part Two will teach you the hidden resources of the HP 48 in a
manner that is clear and helpful for a programmer of any level. This
initiation course in machine language can later serve as an excellent
reference manual.

Part Three is a library of various programs that are ready to use.
There are games, mathematical programs, utilities, music and

more.

TheAppendicesin the last partcontain programming references (an
exhaustive list of error messages, a complete list of instructions,
etc.).

Important Note: The different versions ofthe HP48 (S and SX) are taken
into account in this work: All programs, diagrams and other information
(with the exception of the plug-in cards) are independent of the type of

machine you have.

Now it's up to you! We hope you enjoy the reading.

Table of Contents

Part One: The HP 48
The basic principles of HP 48 usage, as described by the manufacturer.

INIFOAUCTION ...ieeeeiiireeccerreesenteeestsreesssensesesasnnesesanssnsensassesnsessanssnss 12

1.

o

First Approach to the HP 48ueriireniiiriiiinnrinnienens 14
Getting started and finding your way through

the maze of inscriptions on the HP 48 keyboard.

Reverse Polish Notationcccceeciiniicceeniicsineeninccsssnnennessnnenes 18
Basic principles of RPN, with examples and exercises.

Organizing Your Data Properlycccccceceriserisssinissenissnnanne 28
How to use directory trees to store data

in an easily retrievable manner.

Programming the HP 48cciivecuerierinreriirissnnnenicnenens 34
What a program is and how to write one;

how the HP 48 programming language works;
programming advice and step-by-step examples.

Presenting Your Data Properlycccccevnemiriirinnnrrennnnnnnnnnns 46
How to present your programs and data in a

user-friendly manner; the CST menu; key redefinitions.

Saving and Transmitting Datacccccceviriivnnnisiceniisecnnns 52
Taking advantage of the HP 48's ability to exchange data
with the outside world: memory cards, the RS-232C port,

the infrared receiver/transmitter.

Other Strong Points of the HP 48ccoveveeriensnnncnenes 58
Several incredible tools: symbolic calculation, graphics,

units management, and more.

CONCIUSIONceeiiiiieiceieneeeerseecseesssscsessesssrseessssssssssessansossesssnsssssssssansans 62

Part Two: Machine Language
The HP 48's hidden resources:

How to do more than Hewlett-Packard intended.

(23(oYo[Voo64

8. Machine Languagecccccccriiiienieiicsnnensenissnnesesssnassessssnsnns 68
An initiation to machine language; basic tools and useful

concepts for understanding the rest of this section.

9. The Saturn MiCrOProCeSSOrccccerernemeriiissnrncssnnsisssssessnnsenss 72
A general view of the HP 48's microprocessor;

a detailed view of all its registers and their unique roles.

10. The Saturn Instruction Setcccccviiiniiicinineisnnsissensennnne 82
All the available instructions, classified by

function type and by registers used.

11. HP 48 ODjJECLScooiiiiiiiiitnsenrss 122
Principles of memory storage for all objects accessible

to the user (real numbers, binary integers,
graphic objects, and others).

12. General Memory Organizationccccceeccciiniininineniicsnnnenns 158
A global view of HP 48 memory to prepare for

the detailed explanations that follow.

13. WO RAM ...tttssssenessesss ssee s cesses ssanssas 162
How to directly access certain HP 48 peripherals

(the clock,infrared 1/O, etc.).

LT =1V174
A detailed explanation of the HP 48's RAM organization.

15. Programming in Machine Languageccccceceerirircenrrnnnee 206
How to access all resources of the HP 48.

Part Three: Library of Programs
A collection of useful, ready-to-use programs.

[](o- JPP212
How to type in a machine language program.

Programs dealing with Machine Language

GASS Installing assembly language programsc.ceeeneee. 215
ALLBYTES Calculate all checksums in a directory 216
BYS Display code strings in a readable formccccccveennee 217
CLEAN Cleanup of code Stringsccoeeevreveeeeencreninecieicecene 218
PEEK Read from HP 48 MEMOIYccoveveviecviieereeeee 220
POKE Write to HP 48 MeMOTYooveeveeeiecveeecieeeeeee222
HRPEEK Read from the HP 48 hidden ROMcccoovevnenne. 224
TADR Determine the address of a stack objectc.ce..... 228
SSAG Inverse of GASS.oveieieeeeeeeeeeeeee 229
RASS A faster version of GASS.ccooooiiiiie 230
CHK An argument VEIIfIercoeueveveeeeererceeeeeecee232
REVERSE ReVErse StNGScccooceeveeevieeeeeeieecvcest236
CRNAME Create non-standard namescccoeceeeeeieiiencnenne 238
CLVYAR Remove the CLYAR functioncocoooveviieiiiee 239
SYSEVAL Remove the SYSEVAL functionccoooevvviiiie 240
CONTRAST Adjust the contrast from a programccc....... 241
DISPOFF and DISPON Turn off and on the display 241
FAST Speedingupthe HP 48c.covieveieeccireeee,242
DISASH A SATURN diSassembler............cccceovvereeeieninennenenns 243
B+SB Binary integer to system binarycoccooeveieniienecne. 258
SB+B System binary to binary integercc.ccoceveveieenennnn. 258
R+SB Real number to system binarycococeevveieceenecenes 258
SB*R System binary to real nUMbDerc...cooveveireerrieneinnee. 258
C+SB Character to system binaryccccceevveeveievieveieeee, 258
SB+C System binary to characterccoeeeeeereneeeeeneecnneee 258
ROMRCL Recall objects in hidden ROMccooeviirciiiciines 259
A+STR and STR*A Convert a string from and to an address260
BFREE Find free space on RAM card in BACKUP mode 261
SEARCH A subroutine for the other SEARCH programs 262

ROMSEARCH Find an object in ROMccocvveueuiieriiereienenee. 263
RAMSEARCH Find an object in RAMc.ccoovevieevieeceees 263
MODUSEARCH Find an objectin a plug-incardccccccveueeen. 264
CRC Calculate the CheCKSUMcoeveveeeeececeeeeeeeeee, 265
CRCLM Anassembly version of CRC.............cocovvvviveieiie 265

Mathematical Programs

CALC Aninfinite precision, integer calculatorc.c......... 266
PI Calculate mto any precisionccccocceveeeeveeecvieeeeeieenenns 286
VAL Value of a polynomial stored as a vector...............c.......... 288
DER Solve a polynomial stored as a vectorccccveuvenenne.. 288
A+*V andY*A Convert algebraic polynomial to/from a vector... 289
DIVP Division of two polynomials as vectorscccccceueevee. 290
PCAR Calculation of characteristic polynomials 291
LAGU Universal polynomial root finderccccoeevveienneenennne. 292
PMAT Multiplying a matrix by a polynomialccccocveveeerenenenn. 294
mSOLVER Solving systems of equationsc..cccveveieiinnnes 295

Games

MAZE Escape from the cursed maze!ccccccovveevveeneeeneennn. 298
MASTER Mastermindoooovveeieeeeeiee,304
ANAG Find all the anagrams of aWordcccccvevevieivieeennenene 307
SAUARE Magic SQUArec.cccoveveveeeeiceeeceeees 308

Miscellaneous Programs

PR4B Printin 40 COIUMNSoovvovieeee311
DSP and INITSCR A 33-column text displaycceeevrenee. 312
MUSICLM A BHE MUSIC..ot314
MODUL Sound effectSooueeeeeeeeieceeeeeeee 316
RABIP RandOmM MUSICooveeveeeeeieeeeeeeeeeeee318
JINGLE Some friendly muSiCcoeeveeieiieieeceecee 318
RENAME Renameavariablecccooevveiieeieeiecee 319
AUTOST A Start-up programccccceeeeeeeeeeveceeeeseeenesesennee. 319
CAL A calendar (one month diSplay)ccccceveeevieeeeeereiienieenes 320
CIRCLE Fastcircle drawingcccooeeeeeeieiceiieiceeceeeveee, 322
BAMNER Display in giant letterscccccoeeeeeeeieeieeeeeeeieve 324

Appendices
Answersto exercises; programmer's reference; glossary; index.

A. ANSWErS t0 EXCICISES ...cccccerrreeriemmecrrnneecrseeneresenseseseennssssesasnsenns 332

B. Background Informationccceccericceriiieniinnncinnnssnnninnnssnnisnnnns 338
How to find out your machine's ROM version;

what to do in case of a disaster;
explanations of concepts dear to computer scientists:

hexadecimal, binary, bits, nibbles, and bytes.

C. RPL Commands in alphabetical order............c.ccuuerruueuneee 345
by instruction numberccueeeenne 350

How to combine the speed of machine language with the
powerof the instructions already developed by Hewlett-Packard.

D. Objects in ROMccoviiiiniinnesnsennssnnssnnnssnnsssanssanssnsans 354
A list of objects already coded by Hewlett-Packard—

why go to all the trouble when the work is already done?

E. Error MeSSagescccccervrmmriiisssissesunannnissnssssssnnsnnnsssssssnsnasessssnnes 374
All the error messages that the HP 48 will ever display.

F. Machine Language Instruction Setccccevvrriiiicriniininrennnne 378
In two pages, all the HP 48 assemblyinstructions with accompanying

codes—ideal for the machine language programmer.

G. Glossaryccecveuenuen. teeneeneeestesssesensssansanesassasssnassns s sae st asnassrssasns 382

H. Handy Machine Language Routinesccceeevmrrriirernccnnnnnnn. 386
A few ML programs found in ROM that are already done for you.

e INAEX ceeeeeiiieeicieeeesesereressessasessssessssssssssssnssessssssssnsessssssssasssssnasssnnse 392

Part One:

The HP 48

11

12

Introduction

PaRT ONE: THE HP 48

You have in your hands one of the best calculators on the market—if not

indeed the best. Compared to other calculators, itis much more complex

in functionality, yet much simpler to use, and capable of solving problems

of great complexity.

Considering its vast assortment of internal functions and their power, the
HP 48 system had to be powerful and yet usable by everyone, whether a
skilled mathematician, an excellent programmer, a physicist, a statisti-
cian, or even someone who has nothing to do with these areas at all.

Since the capabilities of this machine are much dif ferent than those of a
regular calculator,it often appears at first to be very complicated, when

actually itis the simplest system there is. Itis justa question of habit, and
in a few days (with a little practice) you will master the HP 48.

The chapters of Part One cover a generalvision of the standard use of the
machine: a few tricks to learn, how to make simple programs, how to stay
organized, etc. Thegoal of Part One is notto replace the Hewlett-Packard

instruction manuals, but rather to show you the capabilities of your

machine in a way that will make it easier to use those manuals.

The Hewlett-Packard manuals show many things that the HP 48 can do.
With machine language, however, it is possible to access new resources
and create programs that are much faster. Thatis what Part Two teaches
you: With elegant examples accessible to programmers of all levels,it

shows you what programming in machine language is like, and it also

describes the internal structure of the HP 48. So even if you know nothing

at all about machine language or assembly language, here is a good

chance to learn!

Before we getto that, however, it is a good idea to know the normal uses

of your machine. To aid you in yourlearning, there are program examples,

ranging from elementary to very complex, foundin Part Three (Library of

Programs). By using these programs or modifying them as you wish, you

will soon be able to write sophisticated programs.

Introduction 13

14

1. First Approach to the HP 48

PART One: THE HP 48

Your machine sits before your eyes, covered with buttons. The blue,
orange, and white inscriptions don’t seem to mean much at the first
glance. Butthis should not alarm you. It is just like a Christmas tree: at
first glance it looks like chaos, but if you take a moment to look atit, you
notice that each decoration was placed carefully . Itthen becomes obvious
that the creator was working thoughtfully .

Like every electrical appliance, the HP 48 needs current. Verify that the
three batteries, in the back of the machine at the base, are in place and
facing in the correct directions. The batteries on top and bottom should
have the + side pointing left; the middle battery should point to the right.

The Keyboard

Next, turn it on. Simply press the (ON) button which is the lowerleft-most
button (written in white).

Abovethis you will find two buttons () (blue) and (&) (orange). Ifyou press
any key by itself, the function written in white will be executed. Pressing
the () (blue) shift key first will cause the function in blue to be executed.
Likewise, pressing the (&q) (orange) shift key first will cause the functionin
orange to the executed. For example, if you press () first, the key
then becomes the key; you are actually pressing (2JRCU, thus exe-
cuting the command RCL, which we will later see stands for recall (to recall
the contents of a variable).

Above the (&) keyis the (a) key. If you press (a) once, this activates alpha
mode for one keystroke. Notice that some keys have a white letter to the
right. If one of these is pressed after the (a) key, then that letter will appear
on the screen. For example, pressing (o) then (SIN) gives the letter S,
whereas pressing by itself simply executes the sine function.

To remain in alpha mode for more than one keystroke, you must press (a)
twice. To exit this mode, simply press (a) once more. To type 'AB' you
would press the buttons: Ja)a)(A]B]ENTER).

1. First Approach to the HP 48 15

The Screen

The screen is divided into 3 parts:

16

« Above the horizontal bar you will find the current status of the
machine. This will always include the directory path between curly
brackets ({}) (see Chapter 3 for more on this subject). It may also
include small numbers (1, 8, 3, 4, and §) indicating the state of
certain flags of the machine, an angle mode indicator (RAD, for
“radians,” or GRRD, for “gradians,” or nothing for “degrees”), or the

date and time.

Below this, separated from the first section by a horizontal bar, are

4 lines:
4:
3:
28
1:

This is the stack (see Chapter 2).

The third section, at the bottom of the screen, shows the current
“menu” or “directory.” This consists of six labels, each containing the
name of a function or variable. Pressing the key directly below a
label will execute that particular function. For example, the (a) key
would execute the function shown in the first label of the menu,
found in the lower left corner of the screen.

Some labels have a small horizontal bar on top, which makes them
look like little folders. These represent sub-menus or sub-directo-
ries. (Chapter 3 covers menus and directories more thoroughly .)

For example,if you were to execute the MEMORY command (press
(]MEMORY)), you would be placed in the memory menu:

GRI(TTAT

You could then execute the YARS command (for example) by
pressing the key.

PART ONE: THE HP 48

1-1.

1-2.

Exercises

What sequence of buttons would you need to press to getan =?

What sequence of buttons would you need to press to execute

the function RCL?

1. First Approach to the HP 48 17

18

2. Reverse Polish Notation

ParT One: THe HP 48

The HP 48 uses a calculating method called “Reverse Polish Notation”
(RPN). To understand this notation, we must first define the principle of
the stack.

The Stack

Imagine a stack of plates where the only accessible plate is the one on the
top ofthe stack. The HP 48 temporarily stores objects inthe same manner.
The first four stack entries can be seen on the screen preceded by their
stack number (1:,2%,3: and4:). Obviously this doesn’t look exactly like
our stack of plates, since the first “plate” is on the bottom, but the principle
is the same.

Although only the object atlevel 1 is available for use, thereare commands
that permit us to change the order of the stack. Before learning this,
however,let’s find out how to place objects on this stack.

The HP 48 handles many types of objects (real numbers, binary integers,
strings, names, programs, equations, graphic objects, etc.). Each of
these object types may be placed on the stack. To do this, simply type in
the object and press (BNTER). For example,to place the real number 123
on the stack, simply press the keys: (1]2]3)([E&NTER).

You then see the following on the screen:

 —
M
N
w
W
-
H

 123

This signifies that the stack contains one object, 123, in level 1.

Note: The HP 48 will show only the first 4 stack entries, although the stack
may contain many more. The size of the stack is limited only by the avail-
able memory.

2. Reverse Polish Notation 19

Calculating in RPN

The different functions of the HP 48 (addition, subtraction, etc.) take their
arguments from the stack. Afterthe calculation, the resultis placed on the
stack.

Reverse Polish Notation is often difficult for those who are used to a
standard notation. With continued use, however, you will find that RPN
performs much better. In particular, RPN does away with parenthesis
because the stack can store the intermediate arguments. For example,
to calculate (2+3)(4+5), we would perform the following commands:

+ Begin with an empty stack (if the stack isn’'t empty, use the CLR
command—{2JCcLR}—to clear it). The screen should look like this:

o
—
-
r
\
)
w
-
_
t
_
x

« Pressing (2)(ENTER) shows:

-
-
—
:
r
_
\
)
w
-
u

+ (3)B&NTER) shows:

2
: 3 w
h
w
R

Note that the 3 pushed the Z to the second level of the stack. This
is correct, since the “top plate” is now the 3.

20 PaRT ONE: THE HP 48

. adds the two numbers:

 —
N

* (4)(BNTER) shows:

 T
R

* (5)(BNTER) shows:

 —
M
N
W
-
h
H

a
s
o
n

. gives:

—
M
N
W
-
h

 And finally, gives the result:

—
M
N
W
-
H

 43

We typed no parentheses, yet we were able to handle the intermediate
results (5 and 9). Remember, a command takes its arguments (however
many it needs) from the stack and places the result(s) onto the stack.

2. Reverse Polish Notation 21

Managing the Stack

We have seen that various commands use only the first few stack entries,
so how can the others be accessed? W e have at our disposal commands
to manage the stack. In particular, we can use the following commands:

- SWAP (&)swap)) exchanges the stack entries in levels 1 and 2. For
example:

 —
r
N
W
-
h

—
\

After (GSWAP):

—
N
W
-
A

1
2

- DROP (&5)oRop)) drops (erases) the object in level 1. For example:

 —
M
N
W
-
h

3
2
1

After (&]DROP):
 —

M
N
W
-
H

« CLR ((®JcLr)) clears the stack. With the above stack, would
 give:

 —
M
N
w
W
-
H

22 ParT One: Tve HP 48

These are the most common commands, but there are others. They can

be accessed from the STK menu, which is in the PRG menu (press (PRG),
then JELIEM, which is the first menu key). Don'’t forget that menus are
shown in pages of six functions each. Other pages can be accessed by
pressing (next page) or (previous page). The commands in
this menu are as follows:

« OVER places a copy of the object found in level 2 on the stack:

123
436—

M
N
W
-
h

After pressing BEEA:

123

: 123—
M
N
W
A

« ROT rotates the 3 first stack entries:

—
M
N
W
-
H

—
M
N
w

After pressing IEEE:

 —
M
N
w
W
-
h

Q
W
—
M
N

- ROLL is asimilar function, but it takes one argument (from level 1 of

the stack) which is the number of objects to “roll.”

Thus, 2 ROLL isthe same as SWAP, and 3 ROLL is the same as ROT.

2. Reverse Polish Notation 23

24

« ROLLD is similar to ROLL except that it rotates the objects in the
opposite direction. For example if the stack contained the following:

 S
V

 wo
h
A
n
N
-
h

After pressing [AHNQ:

b
4
9

(Don't forget that ROLLD takes one argument, the 3).

 w
R
R
S

- PICK also takes one argument from the stack. PICK copies the
object found at that level and places itinlevel 1. So, 2 PICK would
be the same as OVER. For example:

4: 123456789
3t 1
2: 1
1: 3

After pressing I3

4: 123456769
3t 1
2t 1
1: 123456769

(rememberthat PICK takes one argument from the stack).

« DEPTH tells us the number of objects that are on the stack. If the
stack were empty, DEPTH would return 8. For example:

4:
3:

2: 33333
I: 44444

PaART ONE: THE HP 48

After pressing UL}

33333
44

 —
M
N
W
-
H

(there were 2 objects on the stack).

« DUP duplicates the object found in level 1:

—
N
W
-
h

-

After pressing [T

 —MNW
H

™

« DUPZ duplicates the first 2 objects of the stack:

—
M
N
W
-
p

—
N
d

After pressing TITGER:

—
_
N
W
-
h

—
P
N
)
—
d

« DUPHNis a generalization of DUP and DUPZ. It takes an argument(N)
and duplicates the first N objects of the stack.

Thus, 1 DUPN is the same as DUP, and 2 DUPN is the same as DUPZ.

2. Reverse Polish Notation 25

26

- DROPZ “drops” the first 2 objects from the stack:

 L
N
i

3
2
1

After pressing [dAHE:

—
M
N
W
-
h

3

DROPN is a generalization of DROP and DROPZ. It takes an argument
(N) and drops the first N objects from the stack.

Thus, 1 DROPN is the same as DROP, and2 DROPN is the same as
DROPZ.

Parr One: THe HP 48

Exercises

5
2-1. Calculate (3+1)-(9-5)

2-2. If the stack contains:

4:
3t 3
23 2
1: 1

how would you arrive at the following stack?

4:
3: 1
2t 2
1: 3

2-3. What would the following sequence of keys calculate?

EEeTEREXNEEEMEES)

Whatis the result?

2. Reverse Polish Notation 27

28

3. Organizing Your Data Properly

PaART ONe: THe HP 48

The HP 48 is a true computer, and as such it must be capable of storing
data—usually referred to as objects. These objects can be of different
types: real numbers, binary integers, programs,lists, etc. They can be
grouped into two families: internal objects (pre-programmed functions)
and user objects (those that you enter into the machine). All objects will
appeareither on the stack orin the form ofdirectory labels.

Menus and Directories

A menu or directory consists of a series of objects. Each object is
accessible by invoking its name or by pressing one of the six keys at the
top of the keyboard beneath the item in question.

For example, (MEMORY) takes you to the MEMORY menu,
which is a list of internal functions that provide memory management.
Now,if you press (&) (the white button below in the lowerleft corner
of the screen), the machine returns a value on the stack. The screen

should now look something like this:

4:

 —
P
N

: 26173.5

When you pressed the (A) button, the HP 48 knew that you wanted to
execute the object MEM, and it responded to your command. This function
returns the amount of memory that is free for use, expressed in nibbles
(see Appendix B for more about binary and hexadecimal notations).

If there are more than 6 objects in a menu, the others will appear by
scrolling through the list using (NEXT page) and (PREVious
page). Thus if you were to press (NxT), you would be able to use the other
functions of the menu MEMORY (and if you continually press ina
menu, after you arrive at the last page of the menu, you are returned to the

first page).

3. Organizing Your Data Properly 29

To give another example: puts you in the MODES menu, which
has 4 pages:

page 1: IEINNTENIENEITTEEEIET
page 2: ERTIETTENIETONTlT
ULDEG |FRDJGRAD]B2 |Kl |Fdd |
SCULRH HEXDECOCTEIN[FH.|

If you press (found at the end of page 2), the time and date appear

(or disappear) at the top of the screen, and the label becomes
N, When a “fI" appears in a menu label, it means that the option in
question has been activated. These menusallow us to personalize the HP
48 to function according to our own needs.

As mentioned in Chapter 1, certain menu labels will look like little folders.
Such is the case for the PROGRAMS menu (accessed by pressing (PRG)).
Thismeansthatif you press the corresponding button, you will enter a sub-
menu of the current menu.

30 PanrT One: THE HP 48

Menu Trees

The best way to explain a menu structure is by using the analogy of atree.
The first menu is called the root. In the root menu we will see “normal”
labels and perhaps the special “folder” labels. These “folder” labels are
parent menus that give us access to sub-menus. For exampie, the menu

TIME ((q]TIME)), has this tree structure (partially represented here):

TIME

SET ADJS1 ALRP ACK ACK/ CAT

NN

>DATE >TIME A/PP EXEC RPT SET

Sub-menus can contain objects, or they can have their own sub-menus
(for example RPT is a sub-menu of the sub-menu ALRM), and so on. To

distinguish the menus from one another, we refer to them as parent-
menus and child-menus. These menus are connected by a branch; the
parent being the one closest to the root, and the child is the one farther
from the root.

3. Organizing Your Data Properly 31

The VAR Menu

There are two types of menus: menus of built-in objects and user menus—
where you can store objects of your own choosing. The “VAR” menu is
your user menu. Here is where you may store your own objects, create

your owndirectories, etc. The rootdirectory ofthe VAR menuhasaspecial
name: HOME.

To enter a subdirectory, simply press the key that corresponds to the
subdirectory label (a “folder” label)—or, alternatively, type the name in full.
To return to the parent directory, press (UPDIR); to returndirectly to
the root, press (HOME). The directory that you are in atany instant
is referred to as the current directory.

To store an object, simply place it on the stack, and enter a name by typing

the letters between single quotes, and press (STOre). For example,
press (5]1)2]JE&NTER), which places the real number 912 on the stack. Then
press (*Ja]a]A]B]C]ENTER). The screen should show:

4:
3:

2: 912
1: 'ABC"

Now press (VAR), to place you in your working directory, then (sT0), to store
the number. I3should appearto the left of the current directory menu.

To recall this object, simply type @Jrcy. You may
also type IETEM or simply IETEHM (thatis, press the white menu button
below the IETEM label). Thus, to recall the real number 512 previously
stored, press the menu button for IETT.

If the name ABC already exists in the directory, you can store something
different under that name (which will erase the previous contents). Todo
so, you simply place the new object on the stack and press (G

32 PaRT One: THe HP 48

To create a subdirectory, use the [Ad[Acommand, found in the MEMORY
menu. You type the name of the intended new directory (for example
'DIREC'), then press (AAIA.

By creating subdirectories, you can group related objects together in one
area. For example,if you have stored mathematical programs, machine
language programs, and games, itwould be wise to create 3 subdirectories
inthe HOME directory: [fifl{lX,and. This allows youto find
each of your programs easily and quickly.

Three additional commands are important to know when working with
directories:

UPDIR (&&]up)) lets you go “up” to the parentof the current directory

HOME ((©JHOME)) lets you go directly to the HOME directory (the root
directory of VAR)

PATH (inthe MEMORY menu: (G]VARIGILE) permits you to see where
you currently are in the VAR tree structure. This command returns a list
containing the namesof directories (the first of which is always HOME).

Exercises

3-1. Create a subdirectoryIl in the HOME directory and place in
it three variables IEIE, B3 and A, containing the real
numbers 1, 2 and 3, respectively.

3-2. How many sub-menus are in the MTH menu?

3. Organizing Your Data Properly 33

4. Programming the HP 48

PaRT One: THE HP 48

Besides using the many internal functions of the HP 48, you can also
create your own functions from them. The HP 48 has a true programming
language, called RPL (Reverse Polish Lisp), derived from the language,
LISP (“LISt Processor"—a.k.a. “Lots of Insane and Stupid Parenthesis”).
LISP is very powerful (used for artificial intelligence), butits syntax is very
difficult, because every command is coded between parentheses. The
vast amount of parentheses in its programs make it very difficult to read.

However, Reverse Polish Notation, as you have seen, allows us to work
without parentheses—by using objects. Thatterm is intentionally vague:
The HP 48 makes the least possible distinction between the types of the
objects that it manipulates. The functions adaptto their given inputs. For
example,if the stack contains the real numbers 2 and 3...

9:

: 2

N

...pressing gives the proper result of 2+3:

2

1: 5

But if you place "RBC" and "DEF" on the stack...

s "ABC"
I: "DEF"

...then will “add” (i.e. concatenate) the two strings, giving this result:

 —
M
N
W
-
H

: "ABCOEF "
Thus the same + operation will add two real numbers, two binary integers,
two matrices, or areal and a binary, a character string and a list, etc. This
generic adaptation of functions makes complicated programming easier .

4. Programming the HP 48 35

Programming Methods

As we have seen, aprogram is a group of commands. Inthe case of RPL,
this group of commands is given between two symbols: € and ».

For example, to calculate the cube of a number, we would enter the
number, then this sequence: (3)Y¥. Butto calculate many such cubes,
it would be nice to simplify this procedure—create the program CUBE].

« To begin the program, we must enter a special character, ¥, by
pressing (]«»). As you can see, the closing delimiter (*) is also
present. The screen should now look like this*:

2
l:
&
»

There is also a blinking cursor to the right of the «. Itis here that the
next characters will be entered.

« The program’s first step is to place a 3 onto the stack, so press (3],

and a space ((SPc)) which will serve as a separator.

- Thesecondcommandisy?*, sopressthe ¥button. You may expect
y*to appear, but instead you see the symbol *. This signifies “raise
to the power.” The screen should now show this:

3A

 v
m
:
r
:
:
‘
)

And the cursor should be to the right of the *.

*Note: If you make a mistake while entering the program, the]button allows you to erase the character

to the left of the cursor. In the case of a more devastating mistake, pressindaTTN) (that's the (oN] key)

will erase everything you have entered—without destroying the contents of the stack.

36 PaRT One: Tve HP 48

« Ourprogram isfinished, so enteritonto the stack by pressing (BNTER).
The screen should now show:

 —
M
N
W
-
H

 € 3~ »

The program is now on the stack, and it is in level one. W e could now
execute the program by pressing (EVAL), but this would cause an error
(since the stack doesn’t contain enough arguments), and we would lose
the program (once executed, it disappears from the stack).

So before trying to use it, we will store it in a variable by entering the
following sequence: (Ja)a)]cJulBJE)1)[ENTER)(STO). Now,if you press the
button (VAR), you will see I3 in a label in the left of the menu. This is
your program.

Now enter a number onto the stack, press the button directly below I3,
The number on the stack will be cubed—with the touch of cne button

instead of three!

4. Programming the HP 48 37

There are other ways to program such a procedure. Here are a few
examples—presented as are the programs in the library (Part Three):

CUBE2 (# D645Sh)
X

DUP DUP = =
?

CUBES3 (# E4FBh)
&

* A
&

ARA=*A =
»

»

CUBE4 (# 4526h)
&

+ A
'A*A=A'

»

This listing is interpreted in the following manner:

« The name of the object (or program)is in bold letters;

- After the name, in parentheses,is the object’ s checksum value, to
help verify that the object was entered correctly. To calculate the
checksum, place the name of the object on the stack (e.g. 'CUBEZ')
and execute BYTES. This functionreturns two values: the checksum
and the object’s size. (The checksums here are in hexadecimal, so
to make comparisons, put your HP 48 in this mode by typing HEX)

- Below the object nameis the listing, as it would appearafter entry .

To enter these objects, you must:

- Type the object (just as with CUBE1) and enterit onto the stack;

» Enter its name onto the stack;

 Press (s10).

38 ParT One: THe HP 48

A few notes on these four programs:

- CUBE1 uses the pre-programmed internal function, the power nota-
tion™, which takes two arguments from the stack: areal numberand
the power to which youwould liketoraiseit. CUBE1 places the power
onto the stack (in this case 3);it’s up to youto supply the real number.

- CUBEZ uses the stack. The DUP function duplicates level 1 of the
stack. (It is very rapid, as are all stack functions.) Executing DUP
twice gives 3 copies of the object, which are then multiplied together.
For example,if CUBEZ were executed with this stack:

4:
3:
2

l: 9

After the first DUP we would have:

w
e
R

...after the second DUP:

—
N
W
-
h

a
d
i
g
u
a
n

...after the first multiplication:

9
23

...and after the second multiplication, the cube of 5:

—
M
N
W
-
H
A

 —
M
N
W
-
h

125

4. Programming the HP 48 39

40

« CUBE3 uses the “local variable” concept. W e have already seen
variables stored as objects in the VAR menu. A local variable is
visible only to the program in which it is declared. To create sucha
variable, we use the symbol *, followed by one or more variable
names, then a « to signify the end of the list of names. Thiswill create
local variables—using the values that were on the stack—from that
point on in the program until a matching * delimiter is reached. In
that part of the program, any use of a name of one of these variables
will recall the value given by *. A few notes on local variables:

+ conserves the order that the numberswere placed on the stack.
If the stack hasa Sinlevel2anda 42 inlevel 1, then> A B will
place 5 in the variable R and 42 in the variable B.

- If alocal variable has the same name as another variable, the
contents of the most local variable are used. For example, in the
followingprogram: <« 1 > R « 2 > R « A » » »
1 is placed in the first local variable R, then 2 in a local variable
of the same name. When A is recalled,its value is Z.

- Alllocal variables will disappear when the program terminates,
whether the program terminates normally or by interruption.

- While local variables are visible only locally, global variables
appear in the VAR menu and can be used from anywhere.

CUBE4 is similar to CUBE3, but instead of a program object, the + A
is followed by an algebraic that accomplishes the same task.

CUBE1 is the shortest of the four, but if the user forgets to give an
argument on the stack, he will get this error message: * Error:
Too Few Arsuments. Also a3 will be left on the stack, and this
is not very “clean.” By contrast, the other programs begin with a
function that first tests for the presence of an object on the stack.

The following program is the shortest, gives the best performance,

and is the most correctly programmed. :

CUBE (# C8/3h)

> A
1RAS!

»

ParT One: The HP 48

As ageneral programming rule, you will need to choose between the
methods in CUBEZ and CUBE3, knowing that CUBE3 is programmed
well because of its use of local variables to store arguments, and its
use of the stack for calculations; butit is slower than CUBEZ because
recalling a local variable is slower than executing a DUP.

You must avoid, at all costs, this method of programming:

« 'A' STO A A = A = 'A' PURGE »

This is very slow becauseit creates and purges a global variable,
and it may erase a preexisting global variable, R. Even so, sucha
method is occasionally necessary.

Variables and Directory Trees

We have seen that a local variable is visible only in a certain section of a
program, appearing at the beginning of execution of this section and
disappearing at the end. We have seen that a global variable is an object
stored in the VAR menu or in one of its subdirectories.

Variables can have identical names. You can have global variables of the
same name (in different directories as well as local variables with that
name). Which value will be used when we recall a variable? To under-
stand this, we must understand how the HP 48 searches its contents:

First step: The HP 48 checks for any local variables of the specified
name, beginning with the local variables most recently created.

If a local variable is not found, it looks for the name in the current
directory. If it finds i, it's done. If not, then if the user is not in the
HOME directory, the HP 48 checks the parent directory. If it gets to
HOME without finding the variable, then instead of using the contents
of the variable, it uses the name (between single quotes ' '). (For
a more detailed discussion of directory trees, see Chapter 3).

The HP 48’s capacity to manage local variables permits a classic pro-
gramming technique: recursion.

4. Programming the HP 48 41

Recursion

Certain mathematical problems use recursion. Thatis, they refer to them-
selves. For example, the calculation of a function fon a point ncould be:

« fin)=g(fin-1)), where g is a known, calculable function.

 fin)=f, a known value.

We are perfectly capable of calculating £n), for any ngreater than n,. We
simply apply the first formula repeatedly. If fn)=fis known, then so is
fifin)), and ARAn,))), etc. In other words,to calculate f{n), we use f(n-1)
to make the calculation; to calculate f{n-1), we use f{n-2), and so on.

Let’s calculate, for example, the factorial function:

« factorial(n) = n x factorial(n-1);

» factorial(0) = 1.

That is, to calculate factorial(n), we say:

« “lf n=0, we know this,itis 1.”

« “lf n> 0, we must calculate factorial(n-1) and multiply this by n.”

This can be programmeddirectly:

FACTORIAL (# 3386h)
€ >+ N

« I
N g ==

THEN
ELSE

N 1 - FACTORIAL N =
END

»

First we take a value from the stack and place it in the variable N. Nextwe
test if N is equal to 8. If so, we know the solution and return the value 1
to the stack. If not, we calculate factorial(N-1) and multiply it by N.

42 PaRT ONe: Tve HP 48

To better understand the operation of a recursive program, you must
understand that when a program “calls itself,” it executes a copy of itself—
a copy that has nothing to do with the original. Look, for example, at the
calculation of factorial(2). To calculate this we will need the values of
factorial(1) and factorial(0)—which we already know . Thus, 3 copies of
FACTORIAL are chained together. Observe:

Copy 1 Copy 2 Copy 3

This is the copy we call
with the value 2 on the
stack. In this case, N
has the real value of 2.
N # 8, so to find factor-
ial(N-1), itputs the value
(N-1=1)onthestackand
calls factorial.

It now waits for a re-|Factorialbeginswitha 1
sponse.... NisstillZ2. |as the N value for the

function. Again, N # 8,
so it finds factorial(N-1)
by putting that value (N-

1=0) onto the stack and
again calling factorial.

Still waiting; N is still 2. |Waiting here, too; N is|Factorial begins with N
still 1. =0. Butfactorial(0)=1,

so the value of 1 is re-
turned immediately to
the calling program.

Still waiting; N is still 2. |The value of factorial(0)
arrives and is multiplied
by Ntoget!.

Finally, the value of fac-

torial(1) arrives and is
multiplied by N to get 2.

4. Programming the HP 48 43

The principle is the same regardless of the value of the first N. Look at this
summarized example for 5. In all, there are six copies of the factorial
program in action:

Copy 1 Copy 2 Copy 3 Copy 4 Copy 5 Copy 6

N=5, f(4)=?

N=5...(wait) N=4, f(3)=?

N=5...(wait) N=4...(wait) N=3, f(2)=?

N=5...(wait) N=4...(wait) N=3...(wait) N=2, f(1)=?

N=5...(wait) N=4...(wait) N=3...(wait) N=2...(wait) N=1, f(0)=?

N=5...(wait) N=4...(wait) N=3...(wait) N=2...(wait) N=1...(wait) N=0, f{0)=1

N=5...(wait) N=4...(wait) N=3...(wait) N=2...(wait) N=1, f0)=1

-->f(1)=1

N=5...(wait) N=4...(wait) N=3...(wait) N=2, f(1)=1

->f(2)=2

N=5...(wait) N=4...(wait) N=3, f(2)=2

-->f(3)=6

N=5...(wait) N=4, f{3)=6

-->f(4)=24

N=5, f(4)=24

-->f(5)=120

Thus we find that factorial(5)=120.

44 PART OnNe: THe HP 48

Exercises

4-1. Write a program that will add two real numbers taken from the
stack. Would it also work for two strings?

4-2. What does the following program do?

¢« >AB<«AB+AHB =* /»3»

4-3. Write a recursive program to calculate the n"term of the Fi-
bonacci series U, defined by:

« lfnisgreaterthanorequalto2,U =U_+U,_,;
« U=U,=1.

4. Programming the HP 48 45

46

5. Presenting Your Data Properly

PanT One: Tve HP 48

So far, we have discussed the calculation capabilities, data storage, and
programming of the HP 48. But simply knowing these is not sufficient.

The memory of the HP 48 can be quite large. It has 32 Kb of base RAM,
which can expand up to 288 Kb with two 128 Kb cards—the equivalentof
more than200 pages of text. Therefore,itisimportantto be well organized

and to present your programs and data in @ manner that will make it easy
to find them later. To do this, there are a few techniques that we will now
study.

Making Data Access Easier

In Chapter 3, we studied menu and directory tree structures. This is an
essential element of organizing programs and data, because the tree
structure allows you to group similar classes of variables and programs
together. For example, Mathematical programs together in a 'MATH'
directory, matrix programs in a subdirectory, etc.

In any subdirectory,it is possible to orderthe variables and programs with
the function ORDER. This command takes, asits argument, a list contain-
ing the names of the variables in the desired order . The function then puts
them in that order. In this way, for example, you can place the important
programsfirst, followed by sub-programs that are less useful.

Itis also essential to choose program names carefully , so that simply see-

ing the title of a variable or program will suggestits contents. Occasionally ,
however,it is useful to associate a name of a pre-existing function or an
icon to a program thatwe havejustwritten. Thisis made possible by using
a CuSTom menu (via the button—next to (VAR)).

5. Presenting Your Data Properly 47

A custom menu permits us to connect objects of the HP 48 and a specific
menu label, without excessive memory consumption. The mechanism
behind this menu is simple: when you press the button, the HP 48
searches for a variable named CST.

If the variable is not found in the current directory, the HP 48 searches the
parent directory(s) until it reachesthe root. If no variable CST is found, an
empty menuis shown. Therefore, itis possible to have many dif ferent CST
menus, depending on which directory you are currently in (which rein-

forces the notion of good data organization).

The variable CST mustcontainalist. For each element of this list, we have

many possibilities:

« Aname: The menulabelis associated with the variable of that name.

« Astringof characters: The string is placed inthe command linewhen
that menu key is pressed.

« Alistof two objects: The first objectis the title of the menu label; the
second is the associated object. If the first element is a 21 x8
graphics object, the menu title is the corresponding graphic.

« All other objects will be executed. The object willappearinthe menu
label for the corresponding button.

Here is an example of a CST menu:

csT (# 9017h)
} { GROB 21 8

8888888498E1BHBBEB‘BFFFFBEFFFF1F?88E19CFF?8888888
"avion } L "in" "dans"} { "the" "le "1}
{HSkH“ ClEl Il} ll|ll }

After storing this object, enter the CST menu (by pressing (CsT), to the left
of(VAR)). Interesting, no? Now press in succession the six menu keys from
left to right. Your HP 48has just accomplished an English-French
translation!

48 PaRT One: The HP 48

A custom menu permits us to associate icons with functions. It also

permits us to mix the HP 48 internal functions with user functions on one

menu. Butwe can even do better than this. There is also a way to assign
functions to any key on the keyboard.

This method of redefining keys is best described through an example.
Here is a small program that plays an tune of random music:

&

-56 CF 1 18
START
Ex‘}r"rBB RAND * .1 RAND = BEEP

Type that in. The screen should look like this:

2

l:« =56 CF 1 18 START
4408 RAND + .1 RAND
* BEEP NEXT =

Now type: (5)()ETER)(AXS)N)ENTER). Then press (GJUsR), then (ENTER), and
you will hear a little music.

The explanation for this is simple. W e have assigned this particular pro-
gramtothe key. This assignmentis not valid exceptin USER mode.
We entered this mode temporarily by pressing (G]a) (this sequence puts
us in TUSR mode,that is, USER mode for one keypress). To remain in
USER mode, type &JUSR)&JUSR), and USER will appearat the top of the
screen. To return to normal mode,type once again.

Note: Any keys that are not defined for USER mode retain their original
functions in USER mode.

5. Presenting Your Data Properly 49

You may redefine the entire keyboard, including the (ON) button. The
syntax for ASN is the following:

argl arg2 RSN

argl is the function that you would like the machine to execute when you
press the key. This can be the name of a program, the program itself, or
a completely different object.

arg2 is a real number composed as follows:

+ Thefirstdigit (tens position) is the key’s row (a value between 1 and
9, where 1 is the top row of keys);

+ The second digit (ones position) is the key’s column (a value be-
tween 1 and 6, where 1 is the left-most column of keys);

« The decimal place is the button mode:
- Borl normal mode
-2 &) mode (orange shift)
- 3 (2) mode (blue shift)
- 4 (o) mode (alpha)
-5 (@)Eg) mode (alpha, orange shift)
- b (@)([@) mode (alpha, blue shift)

For example,to redefine the key, you would assign a new function
to the button 56.2.

Note that to restore a key to its standard function, you use the special pre-
defined name, 'SKEY'. Or, executing @ DELKEYS will return affbuttons
to their standard functions.

50 Panrr One: THe HP 48

Understanding Programs More Easily

Many methods exist to increase the understanding of programs or their
results. We will mention three important and easy-to-use methods:

» The HP 48 allows you to enter comments that begin with the char-
acter B ((@[®JENTER)). Unfortunately, these comments disappear as
soon as you press (ENTER). Therefore, they are not very useful unless
you are storing the programs on another computer. To leave com-
ments in a program more permanently, you can enter the following:
"comment" DROP, where " comment" is the desired text. This type of
comment will remain in the program. Thus you can note the pur-
pose of the program, its syntax (e.g. the number of arguments it
needs), and what results it will return.

- Messages: Itis good to tell the user whatis going on once in awhile.
For example, you can include error messages or indicate how (or
what) the program is doing in the case of lengthy calculations.

+ Explain the results: What is more frustrating than a program that
returns data of whose meaning we have no idea? To easily remedy
this, it is useful to “tag” the results—add a prefix to them (name,
comment, etc.) via a special HP 48 function: The function »TAG
takes as its arguments the object to be tagged, and itstag. The pro-
gram mSOLVER in the library of programs uses this technique.

Above all, remember that you should always write your programs as if
someone else must use them. In this way, if sometime later you decide
to look at them again, you should not encounter too many dif ficulties.

5. Presenting Your Data Properly 51

52

6. Saving and Transmitting Data

ParT One: THE HP 48

The memory of the HP 48 is not infinite. The defaultamountis only 32 Kb
(32 Kilobytes is about 32,000 characters). For this reason, it may be
necessary to increase the memory by using RAM cards. Inthe HP 48SX,
two ports are provided for this purpose (found on the back of the machine
underneath the cover at the top).

But even if you don’t need more memory, the HP 48 also allows you to
easily load information from other machines. Afterall, why re-type data or
programs that already exist on another HP 487? This is no fun, and errors
are easily made in the process. Itis much more useful to exchange data
directly between machines or store the programs on a computer.

Plug-In Cards (HP 48SX)

There are two types of plug-in cards: ROM and RAM.

ROM is memory that you can only read (Read Only Memory). Its
information cannot be modified. There are actually four types of ROM:

» real ROMs,(like those contained in the HP 48);

« PROMs or Programmable ROMs;

« EPROMs which are PROMSsthat can be erased by ultra-violet light;

« EEPROMSs which are Electronically Erasable PROMs.

The EEPROM type of card is the most common, and it is sold pre-
programmed (e.g. the HP SOLVER card). You could actually make one
of these yourself (using an EPROM or EEPROM), but it would be costly .

6. Saving and Transmitting Data 53

RAM is memory that you can modify (Random Access Memory). Existing
plug-in RAM cards for the HP 48 are 32 Kb or 128 Kb. On each of these
cards is a small switch that allows you to write-protectit (like transforming
it into ROM). These cards can be useful in two dif ferent ways:

+ Theycanbe usedas a memory extension using the internal function
MERGE. Toputacardin MERGE mode, turnthe machine of f, insert
the card in one of the two ports of your choice and turn the machine
on. Thentype 1 MERGE or2 MERGE, depending on whether you
placed the card in port 1 (the one on the bottom with the calculator
upside down) or in port 2. At this point, type MEM, and if all is well,
your memory will have been increased considerably .

» They can be used as a RAM disk in BACKUP mode. To put a card
in BACKUP mode, insert the card in a port, and store your data
directly on the card. The names of the objects of a port are not of
the form 'name' but are “tagged” objects in this form: *x: name
where x is the number of the port (8, 1 or2). For example, if the card
is in port 2, then "hello":Z2:BONJOUR will store the string
"hello" underthe name BONJOUR inport2. When storing, the card
must not be write protected. Itis wise to leave a backup card write
protected unless you are in the process of storing data.

We must mention three important notes:

« A card in MERGE mode must not be write protected.

+ Acardin BACKUP mode that is write-protected is not affected by g
‘memorylost’.

 Ifacardisinstalled in one of the ports, itis not “merged,” and no data
has yet been stored on it, you will get the message Invalid Card
Data when you turn on the machine. This is because the card has
not yet been configured.

54 Panrr One: Tue HP 48

HP 48 <-> Computer: RS-232C

HP sells a cable that connects your HP 48 to a Macintosh, an IBM-
compatible computer, or any computer with a standard (9 or 25 pin) RS-
232 serial port. Software is included with the cable to let you to save the
data of your HP 48 on a hard or floppy disk. This software is called
KERMIT.

You may transfer data in either direction:

» Transferring data from the HP 48 to the computer:
- onthe HP 48: 'nameoftheobject_tosend' SEND
- on the computer: RECEIVE.

- Transferring data from the computer to the HP 48:
- onthe HP 48: RECEIVE (/0 menu)
- onthe computer: SEND name_offileto_send

Forany transfer, you should always make sure thatthe I/0 parameters are
set to what you really need. Here is a good configuration:

+ Onthe HP 48, enter the /0 menu and press EMId, then, by pres-
sing the proper buttons, make your screen look like this:

[0 setup menu
IRyire: wire
ASCII-binary: ascii
aud: 9600

parity: none @
checksum type:
translate code: 1

« On the computer, you must be certain that the corresponding set-
tings are the same as above. In particular, on IBM PC compatibles,
you may type the following commands (after running Kermit each
time, and before the first transmission):

SET BAUD 9600
SET PORT 1

6. Saving and Transmitting Data 55

Infrared Transfers

Two HP 48 machines may exchange data without any wire connections
iftheyareless than2inches apart. Todo this, the two machines musthave
the same SETUP.

For example:

[0 setup menu
IRIR7wire:

ASCII/binary: ascii
baud: 9608
parity: none ©
checksum type:
translate code: 1

In particular, note that the transfer mode mustbe IR (Infra Red) instead of
wire, as with the connection to a computer.

Place the two machines head-to-head with the two little arrows pointing to
each other(the arrows are found just above the second ‘T’ in “HEWLETT-
PACKARD"). Atthe sametime, enter ' name_ofthe_object_to_send' SEND
on the sending machine, and RECEIVE on the other.

The object sent will be stored in the current directory of the receiving
machine. If that name already exists in the current directory of the re-
ceiving machine, the object will be stored with a new name in the form
original_name. 1 (then original_name.Z and so on with each transfer of an
object with the same name), unless flag -36 is set. Type -36 SF to set
the flag, and =36 CF to clear the flag. If the flag is set, then the old object
will be erased by the new one.

Caution: If the batteries are low, then transfers will not work properly.

56 Parr One: THe HP 48

6. Saving and Transmitting Data

Notes

57

58

7. Other Strong Points of the HP 48

ParT One: Twe HP 48

The HP 48 is above all a scientific calculator and we will see some of its
capabilities as such in this chapter. This chapter is not to give an in-depth
explanation of these functions, but rather to make you aware of their
existence. In this way, if you desire further understanding, you may look
these functions up in the manuals that were furnished with the machine.

Symbolic Calculations

The HP 48 is capable of “symbolic” calculations. Thatis, the HP 48 is not
limited to numeric calculations only, but is capable of applying complex
mathematical operations directly to literal expressions. Some examples:

« Derivatives: To take the derivative of an expression with respectto
a variable, type: 'expression' 'variable' ([©)3)

Thus, 'SINCRIZR' "K' (@) returns 'COS(K) 7K-SIN(K)/X*2'
Caution: Ifavalueis storedinavariable 'X' of the currentdirectory
orone of its parent directories, the expression willbe evaluated;you
will not obtain the desired symbolic result. In this case, you must
purge the variable 'X' or use a different variable in the expression.

« Taylor’'s Approximation: 'expression' 'var' n TAYLR
where 'expression' is the algebraic expression you wantto inte-
grate, 'var' is the dependent variable, and n is the order of the
polynomial with which the approximation will be made.

Example: 'SIN(X)' 'K' 5 TAYLR returns:
'K-1/31%K73+1 /51 #KA5!

Note: TAYLR is found in the ALGEBRA menu (&)ALGEBRA)).

« Solving equations; finding extrema; calculating the value of a
function on a point; all these may be done with the functions found
in the SOLVE menu ((&]SOLVE)).

7. Other Strong Points of the HP 48 59

Numerical Calculations

The HP 48 possesses many functions useful in numerical calculations
(and the list is too long to do justice here). Most of these functions are
found in the MTH menu and are grouped into six categories: fraction

calculations, probabilities, hyperbolic calculations, matrix calculations,
vector calculations, and binary integer calculations (in dif ferent bases).
There are also many statistical functions that are available in the ST AT

menu (EJSTAT).

The HP 48 uses 12 significant digits to give you a numeric result as
accurate as possible. Internal calculations are done with as many as 15
significant digits.

Note also that if the returned result could be represented in a fractional
form, the function *Q (&&)=0)) can convert the real numberto the closest
fraction.

Graphs

The PLOT menu (]PLoT)) has all the necessary functions for plotting
curves of all kinds (classic, conical, polar, parametric, etc.).

MNote that you can view and edit the current graph by pressing (&JGRAPH).
You can move the cursor using the four arrow keys, copy the coordinates
of the cursor to the stack by pressing ([ENTER), and return to normal mode
by pressing (oN). The many functions (zoom, moving blocks, plotting or
erasing points,lines, circles, marking points, etc.) are all available in this
menu.

60 PaART ONE: THE HP 48

Units

The HP 48 can do calculations with units. To create a unit object, simply
enter areal number, then the underscore character (_, obtained by (2]_),
followed by the characters representing the desired unit.

For example,to create 1_m, you would press (1)0)@laM).

Alternatively, you can place just the value on the stack, then go to the
UNITS menu ((&]JuNTs)), and choose the desired unit from one of the 16
possible categories (length, area, volume, time, speed, mass, force,
energy, power, pressure, temperature, electricity, angles, light, radiation,
and viscosity).

gives you another UNIT menu with various functions including
the CONVERT function which allows conversion between dif ferent units.

Time

The TIME menu ((&]TIME)) gives you access to a series of functions for the
clock. In particular, you can set alarms and perform certain calculations
at specific times or on specific days. Note that gives you direct
access to the alarm catalog.

7. Other Strong Points of the HP 48 61

Conclusion

What we have learned here is only the beginning of the great possibilities
ofthe HP 48. These are just the basics as well as a few tricks to give you
a general idea of the capabilities of the machine.

Use your machine as often as possible and study the HP 48 manuals to
gain a better understanding of what has been covered in this “first ap-
proach.” The more you practice, the easierit will become, and you will
soon learn to rapidly resolve long and tedious problems.

When you become familiar with the uses of the HP 48 (as defined by
Hewlett-Packard) you will realize thatit is indeed a marvelous tool. But
remember that this is not all there is to it! In Part Two you will discover
that you can do much better using machine language programming!

62 PaRT ONE: THE HP 48

Part Two:

Machine Language

63

Introduction

PART Two: MACHINE LANGUAGE

in Part Two we will not only learn how to write machine language
programs, we will also learn how the HP 48 memory is organized. Every
programmer who really wishes to use his machine to its fullest potential
must have an excellent knowledge of its structure. This knowledge makes
it possible to gain access to information needed—information that the
designers did not necessarily intend to be accessed.

This guided exploration of the HP 48 will be done in several steps,
including the lowestlevel, which is machine language. Machine language
is the only language that the HP 48’s processor can really understand and
execute. We will also be studyingthe HP 48 on a higher level (the memory
organization), with mention made of many objects used by the HP 48.

Basically we will learn:

* Machine language:

- What is machine language?

- The actual machine language used by the HP 48’s Saturn
microprocessor;

- Machine language instructions (grouped by function type).

« The HP 48’s objects:

- Regqular objects to which the user has access;

- Internal objects undocumented by Hewlett-Packard.

» The HP 48’s memory organization:

- Memory in general;

- The I/O RAM, or how to directly access the contrast, clock,

screen, efc.;

- reserved RAM that contains the HP 48’s internal information;

- User memory that contains the objects created by the user
(programs, variables, etc.).

« How to program in machine language.

Introduction 65

Some of these chapters will contain tables describing the calculator ’s
memory. In order to remain consistent, they will ook like the following

table:

address, contents, length,

address, contents, length,

address, contents, length,
address,

What you should know:

66

An address is a hexadecimal number (base 16) which is the position
in memory of the contents contained in the table boxes. These
addresses will always be organized in this manner: (address,) <
(address,) < (address,). The tableis read from top to bottom. Ifthe ob-

jectlisted is not at a fixed address, the symbol @ will be used (often
indexed with the form @, if more than one address is used) to indi-
cate the starting address of the object. The lastaddress (address,)
indicates the address of the first nibble following the last content
entry of the table.

The central column gives a brief description of whatis contained in
the specified memory area. The contents of this field are explained
in more detail in the text accompanying each table.

The length field (right column) indicates, in decimal, the number of
nibbles of the table entry (note that a nibble is the basic memory
element of the HP 48). Thus,length, = address,— address. This field

may correspond to a specific value in one of the objectfields. For
example length, can be contents,.

PART Two: MACHINE LANGUAGE

The first chapter of Part Two (Chapter 8) covers a general approach to
machine language. If you are somewhat familiar with machine language,
you will probably want to skip to Chapter 9.

Do not be overwhelmed by the vast amount of information found in Part
Two, as it is mainly a reference guide. To best understand this material,

the reading should be done twice. Thefirstreading should be done rapidly
to give you a basic understanding of the dif ferent ideas discussed. The
second time should be taken more slowly, and you should try some
machine language programming on your own asyougo. You willthen find
that Part Two will be an excellent reference for future machine language
programming.

Introduction 67

8. Machine Language

PART Two: MACHINE LANGUAGE

If you are already familiar with what an assembleris and does, and you
basically know what machine language is, then you may skip to the fol-
lowing chapter. Otherwise, you will find this chapter useful.

To explain the concept of machine language, we will compare itto a higher
level language. Consider an analogy: a little story about Mr. Jones and
Mr. Smith—two people eachwishtoinstall electrical outlets intheir homes.

Mr. Smith is nota handy man, so the most simple solution for him is to call
someone who is. He picks up the telephone and calls an electrician in his
neighborhood. Later that afternoon, the electrician finally shows up at Mr .
Smith’s house and does the work for him for a considerable sum of money
(materials + labor + travel + tips...). Mr. Smith pays grudgingly because
the work was not done exactly as he would have liked.

Mr. Jones, on the other hand, is quite good with his hands, and he decides
to do the work himself. He makes a trip to the hardware store where he
buys a plug and some wire. Then, at home, he installs the plug how and
where he wants it, all for a very modest sum of money .

You could say that in the first case, Mr. Smith used a high-level language
by giving an order that resulted in a number of elementary operations
being carried out (getting wire, getting a plug, installing, etc.). Mr. Jones,
on the other hand, carried out these elementary tasks himself. He used
a low-level language that was directly executable. It closely resembles

machine language.

The story illustrates these two types of languages in these otherrespects,

too:

« Calling the electrician is easier than doing the work yourself be-
cause you have only to give the orders!

- A high-level language is more costly in time (just as the electrician

costs more money).

- Oftenahigh-level language seldom does not let you do exactly what
you want; you cannot ask for just anything (just as an electrician will
probably not come to change a light bulb for you).

8. Machine Language 69

Machine language gives you direct access to all the available resources
of the machine in an extremely fast but complicated way. It can do this
because it is composed of very basic instructions. It is therefore neces-
sary to use many instructions to carry out even the simplest functions.

Machine language is the only language that the machine really under-
stands (thus all high-level languages are broken down into calls to pro-
grams written in machine language). However, if alanguage is easily un-
derstood by the machine,it is absolutely unreadable for a human being
because it is composed of a series of numbers.

This is why we will introduce a third language: assembly. This language
consists of a symbolic representation of machine language codes using
mnemonics—abridged names that help you remember what function is
executed by the machine instruction (for example, P=8 instead of 28).

But since the machine cannot understand these symbols,it is necessary
to transform them into a series of numbers that are understandable. This
translation of assembly to machine language is called assembling. The
inverse operationis called disassembling. Thus we would begin by writing
aprogram in assembly, then we would assembile it to make it executable
by the machine.

For the HP 48, we can do the assembling by hand, or automatically using
a more powerful computer. (There are at least two Saturn assemblers:
Areunhfor the IBM PC and UNIX machines, written by Pierre David and
Janick Taillandier; and Satas for the Atari St, Amiga, IBM PC and UNIX
machines, written by Christophe Dupont de Dinechin). A disassembler
that works on all HP 48 calculatorsis given in the library of programs.

70 PaRT Two: MACHINE LANGUAGE

The last term to define is the “microprocessor.” This is basically the heart
of the machine, the electronic entity that executes the machine language

instructions.

The basic unit of information recognized by the microprocessoris the bit
(which can only be a value of 0 or 1). Because the machine uses a binary
base, itis best for us to use a base that is a power of 2, which is why base
16 (hexadecimal) is used. The digits of base 16 are: 0,1, 2, 3,4, 5, 6, 7,
8,9,A,B,C,D,E,F, 10, 11, etc. Therefore, the value 23h (the ‘h’ signifies
that the numberis in hexadecimal) is equal to 35 in decimal (16 * 2 + 3).

However, it may sometimes be necessary to store numbers in decimal.
We can use a notation called “binary coded decimal.” This notation uses
ahexadecimal numberasifitwere decimal. Forexample, the number 15h
would be equal to 15 decimal.

This type of storage makes it necessary to have two dif ferent calculation
modes for the microprocessor: hexadecimal mode, where the registers
contain hexadecimal numbers, and decimal mode, where the registers
contain “binary coded decimal” numbers.

The current mode determines the manner in which the mathematical

operations are executed by the microprocessor. If you add the two num-

bers 9h and 3h in hexadecimal mode, the answer is Ch. If you add them
in decimal mode, the answer is 12h, which corresponds to the decimal

value 12 in “binary coded decimal” notation.

Exercises

8-1. Convert these decimal numbers into hexadecimal: 1, 10, 25,

65535, 48830.

8-2. Convert these hexadecimal numbers into decimal: 123h, 10h,

100h, B52h, 3h.

8. Machine Language 71

72

9. The Saturn Microprocessor

PaRT Two: MACHINE LANGUAGE

The HP 48 contains a 4-bit Saturn microprocessor. It is the same micro-
processor as in the HP 71 and the HP 28.

The Registers

The Saturn microprocessor has 19 registers. Aregisteris a memory loca-
tionin the microprocessor and can contain only binary integers. These 19
registers can be grouped into six categories:

« /O registers (2);

« Flag registers (3);

+ Data pointer registers (3);

« Scratch registers (6);

» Working registers (4);

 Field pointer register (1).

The I/Q Registers (2

« INPUT (16 bits). This register is used to read the state of the 16
inputs (particularly useful for reading the keyboard).

« OUTPUT (12 bits). This register is used to send current to one or
many of the 12 wires of the keyboard and the speaker. This register
can only be written to.

These two “registers” are used for the BEEP sound (writing to OUTPUT),
as well as for sampling the keyboard. To sample the keyboard, currentis
sent to a row of buttons. If current is detected in a column of buttons, this
lets us know that the button at the intersection of the row/column is being
pressed.

9. The Saturn Microprocessor 73

The table opposite shows each OUT/IN maskto testif a particular key is
pressed (all the values are given in hexadecimal). To test a button, write
the corresponding OUT, read the value coming IN, and AND this value with
the value given in the table. If the result is non zero, this signifies that the
button in question is pressed. It is possible to test many keys simulta-
neously by using an output mask constructed by ORing many masks to-
gether. (Caution: this method does not work for testing the ON button.
Interrupts are needed forthis, and we will study those later .)

Here are a few examples:

74

« Totestif the button “A” has been pressed, send an OUT #882h, and
read the value coming IN and do a logical AND with the mask
#8016h. This is done with a small program:

LCHEX #8862 output mask
ouT=C
GOSBVL #81168 thisis C=IN
LAHEX #86818 input mask
R=R&C A
TA=8 A
GOYES Key_not_pressed...
¥ key A is pressed

Note: the routine at #01160h is used instead of the instruction C=IN
because the latter does not function properly when used with RAM
(itcorrupts the memory area thatwas read). Anotherusefuladdress
is #01EECh, which successively executes OUT=C and C=IN.

Totestif any key has been pressed: The program above can still be
used, but the output mask would become #1FFh (#881h OR #862h
OR #BB4h OR #BBSh OR #B16h OR #B26h OR #B4Bh OR
#086h OR #186h); and the input mask #863Fh (#8081h OR
#000zh OR #0004h OR #0088h OR #6016h OR #0020h).

Toemitasound: alternate between output masks #888h and #886h
(to activate and deactivate the speaker).

ParT Two: MacHINE LANGUAGE

002 /0010

MTH
004 /0010

©
001 /0010

SN
008 /0010

100/ 0010

PRG
080/ 0010

010/0010

(@
008 / 0020

Gy
004 /0020

)
002 /0020

400 /8000

9. The Saturn Microprocessor

008 / 0008

(4)
004 /0008

(1
002 / 0008

©
001 /0008

100/ 0008

CST
080 /0008

010/ 0008

©
100/ 0004

080/ 0004

@
0407 0004

020/ 0004

010/ 0004

E
100/ 0002

(a)
080/ 0002

@
040/ 0002

020/ 0002

01070002

008 / 0004

&
004 / 0004

(2
002 /0004

)
001 / 0004

©
008 /0002

004 /0002

(3)
002 /0002

001/0002

100/ 0001

080/ 0001

>
040/ 0001

020/ 0001

(«)
010/ 0001

=
008 /0001

004/ 0001

=
002/ 0001

001/ 0001

OUTPUT / INPUT masks for the keyboard

Registers

CARRY(1 bit). Thisis the carry bit; when an operation resultsin a
carry, this flag is set.

HST (hardware status) (4 bits). This is a register with 4 flags (MP
module pulled, SR service request, SB sticky bit, XM external
module missing).

STATUS (16 bits). These flags are like those accessible by RPL
instructions SF and CF (but they are not the same). Flags 1210 15
are used by the HP 48, but flags 0 to 11 are available for use in
programs. This registeris represented by ST.

Data Pointer Registers (3)

These registers are used to point to a particular memory area. They each
have alength of 20 bits. The HP 48 is therefore capable of addressmg 22
nibbles (512 Kbytes). The three registers are:

T

D0 and D1 (20 bits each). These are used for reading and writing
to memory;

PC (program counter - 20 bits). This register contains the address
of the instruction currently being executed.

h jster

There are two types:

76

RSTK (return stack) (8 levels of 20 bits each): This is a stack with
8 levels used for saving addresses. This stack behaves exactly like
the HP 48 RPL stack with the difference that even if it's empty,it
contains zeros. It serves as an information backup, particularly for
saving the return address from a call to a subroutine.

RO, R1, R2, R3, and R4 (64 bits each): these are primarily used for
backing up the working registers.

PART Two: MACHINE LANGUAGE

Working Registers (4)

Theregisters A, B, C and D (64 bits each) are used for miscellaneous cal-
culations. A and C are dedicated specifically for reading and writing to
memory (they are therefore used in conjunction with DO and D1).

Fiel inter

The working registers A, B, C, and D are very long (64 bits) and few in
number. They are therefore divided into smaller pieces—“fields,” which

can be used independently, if they don’t overlap. This permits simulta-
neous calculations using only a few registers. Here is atable of the fields:

register’s nibble number

B|A 7

Thus,field M represents nibbles E to 3, A the nibbles 4 to 0, and W is the
entireregister, etc. The names ofthese field pointerregisters are the same
as those used by the HP 71. Each letter stands for the following name:

« A - Address: Field A is 5 nibbles long (which is the length of an
address) and was intended to contain addresses;

« B - Byte: Two nibbles equal one byte;

» M- Mantissa: Onthe HP 71, a real number was stored in a register
containing the sign, mantissa, exponent sign, and exponent. This
is the mantissa field.

» S -Sign: Corresponds to the sign field of the HP 71;

« X -eXponent: Corresponds to the exponentfield of the HP 71;

« XS -eXponent Sign: Corresponds to the HP 71 exponent sign field;

« W - Wide: In other words, the entire 64 bit register.

9. The Saturn Microprocessor 77

The length and position of those fields are fixed. However, there are two
otherfields, P and WP (for Wide-P). The size of WP depends on the con-
tents of P. P is one nibble in length, and can therefore contain a number
from O to F. WP will contain the nibbles 0 to P (see the table below). Note

also that the register P also affects the way values are loaded into registers
A and C (see instructions LAHEX and LCHEX in Chapter 10).

In an assembly program, the name of the intended field is written after an
instruction. Forexample: TC=B A means: “Isthe field A ofregister C equal
to zero?” There are two possible methods of indicating a specific field in
an assembly instruction:

« The code for the operation actually exists and can be given directly .
This is always the case for the A field, and sometimes for the B field.

« The code may be given as a small letter(a, f, or b) to be replaced by
the code for the desired field according to the table below .

Example: If you have this line in the list of instructions: Ab8 A=8 b , for
A=B W, you would use the code AFB (F for W since the letter given is b).

Another way manipulate fields is to define the number of nibbles the
operation will affect—indicated in the instruction listby an x. For example,
158 DATB=A x+1 means that the operation will take place for x+1
nibbles. Thus, 1583 would be “perform the operation DATB=A for the nib-
bles 0...x of A). This type of operation is equivalent to using a WP field
without having to change the value of the register P.

Field a f b

P 0 0 8

WP 1 1 9

XS 2 2 A

X 3 3 B

S 4 4 C

M 5 5 D

B 6 6 E

w 7 7 F

A F

78 PaRT Two: MACHINE LANGUAGE

Miscellaneous Notes

The Saturn microprocessor has a peculiarity to be aware of: It reverses
everything it reads. For example, if in memory location #00000h there is
aZ, and in #00001h there is a 3, reading 2 nibbles from #00000h would
return the value 32. Forthis reason, all values in memory must be written
inreverse—forall reading and writing operations to and from the registers.

Saturn microprocessorinstructions are listed using two dif ferent methods:

« By function type: This is useful when you are looking for a certain
operation without knowing the exact syntax or the registers used.
(This list is found in the following chapter).

» By code: Thislisting is found in the appendix, and is excellentas a
reference card for programmers who are already familiar with how

the operations work, or for someone who is disassembling an exist-
ing program.

One last note about the registers used by the HP 48:

» DO points to the nextinstruction to be executed (so we always finish
a machine language program by writing to this address).

« D1 points to the first level of the stack. Reading 5 nibbles from this
address returns the address of the object in level 1.

« B points to the return stack. As we execute instructions, we may
need to store return addresses. B points to the next free location in

the return stack. (Caution: This stack is not the RSTK register).

These registers are used by the system. They may be used ina machine
language program, but their original value must be restored at the end of
program execution. The flags 12 to 15 are also used by the system (for
interrupts), but, unlike the three system registers, they must neverbe mod-
ified. Note that Flag 15 is the one that can be used to change the way key-
board interrupts are handled. Flag 10 may be used and modified, butitis
also used by the HP 48 for memory allocations. If we clearthis flag before
trying to reserve memory, itwillbe set if garbage collection was necessary .

9. The Saturn Microprocessor 79

9-4.

80

Exercises

How would you code the W field for these instructions?

Ba3 0=D-C a
AbB C=D b

How would you code the above using fields P and WP.

Knowing that: Ra3 D=D+C a
Ab3 D=8 b

disassemble the instructions A13, A73, A83 and A93.

If #00321h contains 1, #00322h contains 1, #00323h contains 4,
#00324h contains C, and #00325h contains 8, what will your
register contain after reading 3 nibbles from #00321h?

Given the same values as question 9-4, what would yourregister

contain after reading 2 nibbles from #00322h?

Given the same values as question 9-4, what would yourregister
contain after reading 4 nibbles from #00321h?

If field X of register A contains 216h (2 in nibble 0, 1 in nibble 1
and B in nibble 2) and you write this value to #70080h, what do
memory locations #70080h, #70081h and #70082h contain?

PaART Two: MAcHINE LANGUAGE

9-8. If we then read 3 nibbles from #70080h into field X of register C,
what will be the value contained in this field? Field B? Field XS?

9-9. If P equals 2, how many nibbles are implied by the instruction
A=0DATB P 2

9. The Saturn Microprocessor 81

82

10. The Saturn Instruction Set

PaAT Two: MacHINe LANGUAGE

This chapter covers the entire instruction set of the Saturn microproces-

sor. This list will allow you to easily find each instruction that you will need
to write machine language programs. The instructions are grouped by
functionality, as follows:

*+ Moves:

Immediate
Exchanging Register Fields
Saving and Restoring (Rn and RSTK)
Reading and Writing to Memory
Input and Output

« Exchanging Register Contents

 Arithmetic Operations:
Increment
Addition
Decrement
Subtraction
Logical AND
Logical OR
Logical NOT
2's Complement
Multiplying by 2
Dividing by 2
Multiplying by 16
Dividing by 16
Rotating Left (one nibble)
Rotating Right (one nibble)

« Jumps:
Direct Relative Unconditional
Direct Relative Conditional
Absolute
Register Direct
Register Indirect
Getting the Program Counter

10. The Saturn Instruction Set 83

Calling subroutines:
- Direct Relative Unconditional

- Absolute
- Returning from Sub-routines

Comparisons:
- Immediate
- Comparing Registers

Bus Commands

Control Instructions

NOPs (Instructions with no effect)

Pseudo Operations

Each operation is described as instruction field (cycles) code ,where:

instruction is the mnemonic for a particular instruction (e.g.: A=8);

field is thefield in which the instruction has ef fect;

code is the hexadecimal code of the instruction.

cycles is the number of CPU cycles needed to execute the instruc-
tion—very useful for calculating the exacttime necessary to execute
certain programs (tone generation, IR transmitting/receiving, etc.).

Each CPU cycle lasts about 570 nanoseconds (the microprocessor
speed is 1.7 MHz).

The Saturn microprocessoris a 4 bit microprocessor , however the
peripherals (ROM, RAM, screen controller, ete.) use 8 bits. For this
reason there is a cache buffer between the microprocessor and the
peripherals. This internal buffer is 2 nibbles long (one byte) at an
even address location (for example, #00000h and #01234h are
even address locations). The use ofthis cache buffer requires one
clock cycle. The cache buffer is used when transferring machine
language instructions from memory to the microprocessor. Ifthe in-
struction is an odd numberof nibbles, the number of memory acces-
ses depends onwhether the instruction is atan even or odd address
location. Forthis reason, certain instructions will require n or n+1
cycles for execution. Forthis type of instruction, a speed of ».5 in-

PaRT Two: MACHINE LANGUAGE

struction cycles will be listed (4.5 for example). If the start of the
address is even, then this value should be rounded down; other-

wise it should be rounded up.

To make things even more complicated, instructions that read from
memory also use the cache buffer. The number of cycles for such
an instruction is listed in the form (n, n,), where n+n, is the number
of total cycles used for the instruction. The same rules apply for
rounding n, as above, butif the numberof nibbles read is odd, », will
be shown in fractional form. If the address of the area being read is
even, then n, is rounded down; otherwise it should be rounded up.
Certain instructions will have a different cycle time depending on
how many nibbles they affect (field sizes are different, or reading

and writing different nibble sizes to memory). Forthis case, g equals
the number of nibbles the instruction af fects. Finally, forcomparison
operations, two numbers are giveninthe form (n/n,). Thefirstisthe
number of cycles if the testis true, the second is if the test is false.

Example: Calculate the execution time of a loop. Here is a small
assembly program:

L1 97A8 TC=0 W
31 GOYES End
1B06BA8 DB=(5) ©BBBEB
142 A=DAT8 A
A7E C=C-1 W
6DEF GOTO L1

End

If the test is true, the instruction takes 32 or 33 cycles depending if
its address is even or odd. If the test is false, the instruction takes
24 or 25 cycles (the field in question is field W; g is 16 nibbles).

DB=(5) B0BB8B :10 or 11 cycles.
AR=0ATB A : 23 or 24 cycles (reading from even address).
C=C-1 W : 20 or 21 cycles.
GOTO L1 : 14 cycles.

There are 32 or 33 if the loop is not executed (C=B W) and 93 other-
wise (if an instruction with an odd length begins on an even address,
the next instruction will begin on an odd address and vice versa).

10. The Saturn Instruction Set 85

Moves

Immediate

You may move immediate values into certain registers. There are special
instructions for moving zero into aregister. Here is alist of possible moves:

« Forregister A:
- Setfield A to zero:

A=0 A (8) 0o
- Set any other field to zero:

A=0 b (4.5+q) AbB
- Setbit x to zero. The bit number must be from 0to F. Thus,

this instruction can only have effect on the first 4 nibbles of A:
ABIT=0 x (7.5) 8084x

- Setbitxtoone. Thisisthe inverse of the previous instruction.
ABIT=1 x (7.5) 8880x

- Move avalueinto A. This instruction moves x+1 nibbles into
the register (nibbles 4,...h), using the value of P: Nibble 4, is
moved into nibble P of A; k, is moved into nibble P+1, etc.
Remember that the processor reverses the nibbles moved.

LAHEX (x) h..h, (5+0+(5+Q)/2) 8982xho h,
« Forregister B:

- Setfield A to zero:
B=0 A (8) D1

- Set any otherfield to zero:
B=0 b (4.5+q) Abl

» Forregister C:
- Setfield A to zero:

C=0 A (8) 174
- Set any otherfield to zero:

C=0 b (4.5+q) Ab2
- Clear bit x (Oh £ x £ Fh):

CBIT=0 x (7.5) 8088«
- Setbitx (0h £ x£ Fh):

CBIT=1 x (7.5) 8689x
- Move a value into C:

LCHEX #hx...h, (2+q+(2+Q)/2) 3xh,h,

86 PaART Two: MacHINE LANGUAGE

For register D:
- Setfield A to zero:

D=6 A (8)
- Set any otherfield to zero:

D=0 b (4.5+q)
For register P:

- Move the value n (Oh £ n £ Fh) into P:
P= n (3)

For register DO:
- Move a value into the 2 least significant nibbles:

DB=(2) P (6)
- Move a value into the 4 least significant nibbles:

DB=(4) srap (9)
- Move a value into DO:

DB=(5) tsrap (10.5)
For register D1:

Move a value into the 2 least significant nibbles:
D1=(2) 9P (6)

- Move a value into the 4 least significant nibbles:
Di=(H) Srap (9)

- Move a value into D1:
D1=(5) tsrap (10.5)

For register HST:
- Clear flag XM:

KM= 9 (4.5)
- Clear flag SB:

= 8 (4.5)
- Clear flag SR:

SR= 8 (4.5)
Clear flag MP:

MP= 8 (4.5)
- Clearall four flags:

CLRHST (4.5)
For register ST:

- Clear flag d (Oh £ 4 £ Fh):
ST=0 d (5.5)

- Clear all flags:
CLRST (7)

- Setflag d:
ST=1 d (5.5)

10. The Saturn Instruction Set

03

Ab3

19pq

1Apars

1Bparst

10pq

1Epars

|Fparst

821

822

824

828

82F

844

88

854

87

Values

* For Register A:
- Move field A of B into field A:

A=B A (8)
- Move field b of B into field b:

A=B b (4.5+q)
- The same instructions exist for C:

A=C A (8)
A=C b (4.5+Q)

* For Register B:
- Movefield A of A into field A:

B=A A (8)
- Move field b of A into field b:

B=H b (4.5+q)

- The same instructions exist for C:
B=C A (8)
B=C b (4.5+Q)

« For Register C:
- Move field A of A into field A:

C=A A (8)

- Move field b of A into field b:

C=A b (4.5+q)

- The same instructions exist for B:

C=B A (8)

C=B b (4.5+Q)
- The same instructions exist for D:

C=D A (8)
C=D b (4.5+q)

- Move P into nibble n:

C=P n (8)

- Move flags 0 to 11 of ST into field X:
C=ST (7)

» For Register D:
- Move field A of C into field A:

D=C A (8)
- Move field b of C into field b:

D=C b (4.5+q)

D4

Ab4

DA
AbA

D8

Ab8

D5
AbS

06

Ab6

D9
Ab3

0B
AbB

86Cn

89

07

Ab?

88 ParRT Two: MACHINE LANGUAGE

« For Register P:
- Move nibble n of Cinto P:

P=C n (8) 880n
» For Register DO:

- Move field A of A into DO:
DB=A (9.5) 138

- Move nibbles 0 to 3 of A into DO:

DB=AS (8.5) 138
- The same instructions exist for C:

DB= (9.5) 134
DB=CS (8.5) 13C

« For Register D1:
- Move field A of Ainto D1:

D1=A (9.5) 131
- Move nibbles 0 to 3 of Ainto D1:

D1=AS (8.5) 139
- The same instructions exist for C:

D1=C (9.5) 135
D1=CS (8.5) 130

» For Register ST:
- Movefield X of C into flags 0 to 11 of ST:

ST=C (7) BA

10. The Saturn Instruction Set

ving an in nd RSTK

« For Register A:
- Save the entire register:

RB=A (20.5) 168
R1=A (20.5) 1681
R2=A (20.5) 162
R3=A (20.5) 163
R4=A (20.5) 164

- Savefield A only:
RB=A A (14) 81AFBL
R1=A A (14) 81ARFA1
R2=R A (14) 81AFB2
R3=A A (14) 81AFE3
R4=A A (14) 81AFB4

- Savefield a only:
RB=A a (9+0) 81Rab0
R1=A a (9+0) 81Ra061
RZ2=A a (9+q) 81Rab2
R3=A a (9+Q) 81Aab3
R4=A a (9+Q) 81RaB4

- Restore the entire register:
A=RB (20.5) 118
A=R1 (20.5) 111
A=R2 (20.5) 112
A=R3 (20.5) 113
A=R4 (20.5) 114

- Restore field A only:
A=RA A (14) 81AF18
A=R1 A (14) 81AF11
A=R2 A (14) 81AF12
A=R3 A (14) 81AF13
A=R4 A (14) 81AF14

- Restore field a only:
A=RA a (9+0) 81Ralv
A=R1 a (9+Q) 81Rall
A=RZ a (9+Q) 81Ral?
A=R3 a (9+Q) 81Ral3
A=R4 a (9+Q) B81Ral4

PART Two: MacHNE LANGUAGE

» For Register C:
- Save the entire register:

RB=C
R1=C
R2=C
R3=C
R4=C

- Save field A only:

R1=C
R2=C
R3=C
R4=C

- Save field a only:
RB=C
R1=C
R2=C
R3=C
R4=C

- Restore the entire register:

C=R1
C=R2
C=R3
C=R4

- Restore field A only:

C=R1
C=R2
C=R3
C=R4

- Restore field a only:
C=Ro
C=R1
C=R2
C=R3
C=R¢4

- Restore field A from RSTK:
C=RSTK

D
D
O
D
D
I
P
D

d

a

da

d

a

D
I
D
O
D
I
D
O
D
D
D

o
o

- Savefield A into RSTK:
RSTK=C

10. The Saturn Instruction Set

168
169
16A
16B
16C

81AFBS
81AFE9
81ARFBA
81AFBB
81AFEC

81Ra08
81RaB9
81Ra0A
81Ra0B
81RaBC

118
119
11A
11B
11C

81AF18
81AF19
81AF1A
81AF1B
81AFIC

81Ral8
81Ral9
81RalA
81RalB
81RalC

gr

B6

91

Readi | Writing to M

* ForRegnster A
Move the data pointed to by DO into field A:

A=DATH A (20.5, 3.5) 142
- Same forfield B:

A=DATH B (19.5) 14A
- Same forfield a:

A=0ATA a (20+q, (g+2)/2) 152a
- Same for x+1 nibbles:

A=0ATH x+1 (19+q, (g+2)/2) 15Ax
- The same instructions exist for D1:

A=DAT1 A (20.5, 3.5) 143
A=DAT1 B (19.5) 14B
A=0AT1 a (20+q, (q+2)/2) 153a
A=DAT1 x+1 (19+q, (g+2)/2) 19Bx

- Movefield A into the address pointed to by DO:
DATB=A A (19.5) 140

- Same forfield B:
DATB=A B (16.5) 148

- Same forfield a:
DATB=A a (19+q) 156a

- Same for x+1 nibbles:
DATB=A xt1 (18+Q) 1993

- The same instructions exist for D1:

DAT1=A A (19.5) 141
DAT1=A B (16.5) 149
DAT1=A a (19+q) 151a
DAT1=A xt1 (18+Q) 159

» ForReglster C:
Move the data pointed to by D0 into field A:

C=DATH A (20.5, 3.5) 146

- Same for field B:

C=DATH B (19.5) 14E
- Same for field a:

C=DATH a (20+q, (q+2)/2) 156a

- Same for x+1 nibbles:

C=DATH x+1 (19+q, (q+2)/2) 15Ex

92 PART Two: MACHINE LANGUAGE

- The same instructions exist for D1:

C=DAT1 A (20.5, 3.5) 147
C=DAT1 B (19.5) 14F
C=DAT1 a (20+q, (q+2)/2) 157a
C=DAT1 x+1 (19+q, (g+2)/2) 15Fx

- Move field A into the address pointed to by DO:
DATB=C A (19.5) 144

- Same forfield B:
DATB=C B (16.5) 14C

- Same forfield a:
DATB=C a (19+q) 154a

- Same for x+1 nibbles:

DATB=C xtl (18+Q) 15Cx
- The same instructions exist for D1:

DAT1=C A (19.5) 145
DAT1=C B (16.5) 14D
DAT1=C a (19+0) 155a
DAT1=C xtl (18+Q) 150x

In n

Thefollowinginstructions are forreading the keyboard as well as using the
HP 48’s speaker (see Chapter 9). Caution: The instructions A=IN and
C=IN corrupt the memory area read when used in RAM (see Chapter 9).

« For Register A:

- Read the Input(into nibbles 0,1,2 and 3 of A):
A=IN (8.5) 862

« For Register C:
- Read the Input (into nibbles 0,1,2 and 3 of C):

C=IN (8.5) 863
- Write field X to the output:

ouT=C (7.5) 881
- Write nibble 0 into nibble 0 of the output register:

ouT=CS (5.5) 808

10. The Saturn Instruction Set 93

Exchanging Register Contents

. For Register A:
Exchangefield A with field A of B:

ABEX A (8) oc
- Exchangefield b with field b of B:

ABEX b (4.5+q) AbC
- The same instructions exist for C:

ACEX A (8) DE
ACEX b (4.5+Q) AbE

- Exchange with RO:
ARBEX (20.5) 128

- Exchange field A with field A of RO:
ARBE A (14) 81AFZ8

- Exchange field a with field a of RO:
ARBEX a (9+0) 81RaZB

- The same instructions exist for R1:

ARIEX (20.5) 121
AR1EX A (14) 81AFZ1
AR1EX a (9+0) 81RazZ1

- The same instructions exist for R2:
ARZEX (20.5) 122
ARZEXR A (14) 81AF22
ARZEX a (9+0) 81Raz?

- The same instructions exist for R3:
AR3EX (20.5) 123
AR3EX A (14) 81AFZ3
AR3EX a (9+0) 81RaZ3

- The same instructions exist for R4:

AR4EX (20.5) 124
AR4EX A (14) 81AF24
AR4EX a (9+0) 81Raz4

- Exchange field A with DO:
ADBEX (9.5) 132

- Exchange nibbles 0 to 3 with those of DO:
ADBKS (8.5) 13A

- The same instructions exist for D1:

AD1EX (9.5) 133
AD1KS (8.5) 13B

PaRT Two: MacHINE LANGUAGE

» For register B:
- Exchange field A with field A of A:

BAEX A (8)
- Exchange field b with field b of A:

BREX b (4.5+Q)
- The same instructions exist for C:

BCEX A (8)
BCEX b (4.5+Q)

« For Register C:
- Exchange field A with field A of A:

CREX A (8)
- Exchange field b with field b of A:

CREX b (4.5+Q)
- The same instructions exist for B:

CBEX A (8)
CBEX b (4.5+Q)

- The same instructions exist for D:

CDEX A (8)
CDEX b (4.5+)

- Exchange with RO:
CRBEX (20.5)

- Exchange field A with field A of RO:
CRBEX A (14)

- Exchange field a with field a of RO:
CRBEX a (9+Q)

- The same instructions exist for R1:

CRIEX (20.5)
CRI1EX A (14)
CRIEX a (9+Q)

- The same instructions exist for R2:

CRZEX (20.5)
CRZEX A (14)
CRZEX a (9+Q)

- The same instructions exist for R3:

CR3EX (20.5)
CR3EY A (14)
CR3EX a (9+0)

10. The Saturn Instruction Set

0C

AbC

0D
AbD

OE

AbE

0D
AbD

DF
AbF

128

81AF28

81Ra28

129
81AF29
81Ra29

12A
81AF2A
81Ra2A

12B
81AF2B
81Ra2B

95

- The same instructions exist for R4:

CR4EX (20.5) 12C
CR4EX A (14) 81AF2C
CR4EX a (9+0) 81Ra2C

- Exchange field A with DO:
COBEX (9.5) 136

- Exchange nibbles 0 to 3 with those of DO:
CDBXS (8.5) 13E

- The same instructions exist for D1:
CD1EX (9.5) 137
CD1XS (8.5) 13F

- Exchange nibble n with P.
CPEX n (8) 86Fn

- Exchange field X with flags 0 to 11 of ST.
CSTEX (7) 6B

» Forregister D:
- Exchange field A with field A of C.

DCEX A (8) DF
- Exchangefield b with field b of C.

DCEX b (4.5+0) AbF

96 PART Two: MACHINE LANGUAGE

Arithmetic Operations

Increment

These instructions modify the value of the CARRYflag.

» Forregister A:
- Incrementfield A:

A=A+1 A (8)
- Increment field a:

A=A+1 a (4.5+Q)
- Increment field A by x+1 (Oh £ x £ Fh):

A=A+x+1 A (13)
- Incrementfield a by x+1:

A=A+x+1 a (8+0)

» Forregister B:
- Incrementfield A:

B=B+1 A (8)
- Incrementfield a:

B=B+1 a (4.5+0)
- Increment field A by x+1 (Oh £ x £ Fh):

B=B+x+1 A (13)
- Incrementfield a by x+1:

B=B+x+1 a (8+Q)

« Forregister C:
- Increment field A:

C=C+1 A (8)
Incrementfield a:

C=C+1 a (4.5+Q)

- Incrementfield A by x+1 (Oh £ x £ Fh):
C=C+x+1 A (13)

- Increment field a by x+1:
C=C+x+1 a (8+Q)

» Forregister D:
- Incrementfield A:

D=D+1 A (8)
- Increment field a:

D=D+1 a (4.5+q)

10. The Saturn Instruction Set

E4

Ba4

818FBx

818a6x

ES

Bad

818F1x

818alx

E6

Bab

816F2x

818a2x

E7

Bar

97

- Incrementfield A by x+1 (Oh £ x £ Fh):
D=D+x+1 A (13)

- Incrementfield a by x+1:
D=D+x+1 a (8+q)

« Forregister P:
- Increment:

P=P+1 (4)
» For register DO:

- Increment by x+1:

De=Do+ x+] (8.5)
» For register D1:

- Increment by x+1:
D1=D1+ x+t] {8.5)

Addition
These instructions modify the value of the CARRY flag.

« Forregister A:
- Add field A of B to field A:

A=A+B A (8)

- Add field a of B to field a:

A=A+B a (4.5+Q)
- The same instructions exist for C:

A=A+C A (8)
A=A+C a (4.5+q)

» For register B:
- Add field A of A to field A:

B=B+A A (8)
- Add field a of A to field a:

B=B+A a (4.5+q)
- The same instructions exist for C:

B=B+C A (8)
B=B+C a (4.5+q)

- For Register C:
- Add field A of A to field A:

C=C+A A (8)
- Add field a of A to field a:

C=C+A a (4.5+q)

818F3x

818a3x

6C

16x

17x

co

Aad

CA
AaA

c8

Aa8

Cl
Aal

c2

Aa2

98 PaRT Two: MacHiNe LANGuUAGE

- The same instructions exist for B:

C=C+B A (8)
C=C+B a (4.5+q)

- The same instructions exist for D:

C=C+D A (8)
C=C+D a (4.5+q)

- Add P+1 to field A:
C+P+1 (9.5)

» Forregister D:
- Add field A of C to field A:

D=D+C A (8)
- Add field a of C to field a:

D=D+C a (4.5+q)

Decrement

These instructions modify the value of the CARRYflag.

» Forregister A:
- Decrementfield A:

A=A-1 A (8)
- Decrementfield a:

A=A-1 a (4.5+Q)
- Decrementfield A by x+1 (Oh £ x £ Fh):

A=A-(x+1) A (13)
- Decrementfield a by x+1:*

A=A-(x+1) a (8+Q)
» For register B:

- Decrement field A:

B=B-1 A (8)
- Decrementfield a:

B=B-1 a (4.5+q)
- Decrementfield A by x+1 (Oh £ x £ Fh):

B=B-(x+1) A (13)
- Decrementfield a by x+1:*

B=B-(x+1) a (8+q)

*Caution: This instruction does not work correctly except for fieldsX, M, B, and W.

10. The Saturn Instruction Set

C9
Aa9

CB
AaB

889

Aa3

cC

AaC

818F8x

818a8x

CD

AaD

818F9x

818a9x

» Forregister C:
- Decrementfield A:

C=C-1 A (8) CE
- Decrementfield a:

C=C-1 a (4.5+Q) AaE
- Decrementfield A by x+1 (0Oh £ x £ Fh):

C=C-(x+1) A (13) 818FAx
- Decrementfield a by x+1:*

C=C-(x+1) a (8+Q) 818aAx
» Forregister D:

- Decrementfield A:

D=D-1 A (8) CF
- Decrementfield a:

0=0-1 a (4.5+Q) AaF
- Decrementfield A by x+1 (0h £ x£ Fh):

D=D-(x+1) A (13) 818FBx
- Decrementfield a by x+1:*

D=D-(x*1) a (8+0q) 818aBx
» Forregister P:

- Decrement:
P=P-1 (4) 0D

» For register DO:
- Decrement by x+1:

DB=Do- x+1 (8.5) 18x
» Forregister D1:

- Decrement by x+1:
D1=D1- x+1 (8.5) 1Cx

Subtraction

These instructions modify the value of the CARRYflag.

» Forregister A:
- Subtract field A of C from field A:

A=A-C A (8) EA
- Subtractfield a of C from field a:

A=A-C a (4.5+q) BaA

*Caution: This instruction does not work correctly except for fieldsX, M, B, and W.

100 PaRT Two: MACHINE LANGUAGE

- Subtractfield A from field A of B storing the result in field A:
A=B-A A (8) EC

- Subtract field a from field a of B storing the result in field a:
A=B-A a (4.5+Q) BaC

» Forregister B:
- Subtract field A of A from field A:

B=B-A A (8) ES
- Subtractfield a of A from field a:

B=B-A a (4.5+Q) Ba8
- These same instructions exist for C:

B=B-C A (8) El
B=B-C a (4.5+q) Bal

- Subtract field A from field A of C storing the result in field A:
B=C-B A (8) ED

- Subtract field a from field a of C storing the result in field a:
B=C-B a (4.5+q) BaD

» For Register C:
- Subtract field A of A from field A:

C=C-A A (8) E2
- Subtract field a of A from field a:

C=C-A a (4.5+0) Ba2
- These same instructions exist for D:

C=C-D A (8) EB
C=C-D a (4.5+q) BaB

- Subtract field A from field A of A storing the result in field A:
C=A-C A (8) EE

- Subtract field a from field a of A storing the result in field a:
C=A-C a (4.5+q) Bat

« For register D:
- Subtractfield A of C from field A:

D=D-C A (8) E3
- Subtract field a of C from field a:

D=D-C a (4.5+q) Ba3
- Subtract field A from field A of C storing the result in field A:

D=C-D A (8) EF
- Subtract field a from field a of C storing the result in field a:

D=C-D a (4.5+q) BaF

10. The Saturn Instruction Set 101

Logical AND

« Forregister A:
- Between field A and field A of B:

A=A%B A (11)
- Between field a and field a of B:

A=A&B a (6+Q)
- The same instructions exist for C:

A=A&C A (11)
A=A&C a (6+Q)

» Forregister B:
- Between field A and field A of A:

B=B&A A (11)
- Between field a and field a of A:

B=B&A a (6+Q)
- The same instructions exist for C:

B=B&C A (11)
B=B&C a (6+Q)

« For register C:
- Between field A and field A of A:

C=C%A A (11)
- Between field a and field a of A:

C=C&A a (6+Q)
- The same instructions exist for B:

C=C%B A (11)
C=CB a (6+0)

- The same instructions exist for D:

C=C&D A (11)
C=C4D a (6+0)

» Forregister D:
- Between field A and field A of C:

D=D&C A (11)

- Between field a and field a of C:

D=D&C a (6+0)

102

BEFB

BEab

BEF6
BEab

BEF4

BEat

BEF1
BEal

BEFZ

BEaZ

BEFS
BEaS

BEF?
BEa’

BEF3

BEa3

PaRT Two: MacHINE LANGUAGE

Logi R

» Forregister A:
- Between field A and field A of B:

A=A!B A (11)
- Between field a and field a of B:

R=A!B a (6+0)
- The same instructions exist for C:

A=A!C A (11)
A=A!C a (6+Q)

« For register B:
- Between field A and field A of A:

B=B!A A (11)
- Between field a and field a of A:

B=B!A a (6+0)
- The same instructions exist for C:

B=BIC A (11)
B=BIC a (6+Q)

» For register C:
- Between field A and field A of A:

C=C!A A (11)
- Between field a and field a of A:

C=C!A a (6+q)
- The same instructions exist for B:

C=C'B A (11)
C=C!B a (6+Q)

- The same instructions exist for D:

C=C!D A (11)
C=CID a (6+Q)

» For register D:
- Between field A and field A of C:

D=DIC A (11)
- Between field a and field a of C:

D=DIC a (6+Q)

10. The Saturn Instruction Set

BEF8

BEaB

BEFE
BEaE

BEFC

BEaC

BEF9
BEad

BEFA

BEaA

BEFD
BEaD

BEFF
BEaF

OEFB

BEaB

103

Logical

These instructions modify the value of the CARRYflag.

» Forregister A:

- Onfield A:
A=-A-1

- On field b:
A=-A-1

» Forregister B:

- On field A:
B=-B-1

- On field b:
B=-B-1

« Forregister C:
- On field A:

C=-C-1
- On field b:

C=—C-1
» Forregister D:

- On field A:

=-D-1
- Onfield b:

D=-D-1

2’s Complement

(8) FC

(4.5+q) BbC

(8) FD

(4.5+Q) BbD

(8) FE

(4.5+Q) BbE

(8) FF

(4.5+q) BbF

These instructions modify the value of the CARRY flag.

« Forregister A:
- Onfield A:

A=-A
- On field b:

A=-A
* Forregister B:

- Onfield A:
B=-B

- Onfield b:

B=-B

104

(8) F8

(4.5+q) Bb8

(8) F9

(4.5+q) Bb3

PART Two: MACHINE LANGUAGE

« For register C:
- Onfield A:

C=-C
- Onfield b:

C=-C
» Forregister D:

- Onfield A:
D=-D

- On field b:
D=-0

Multiplying by 2

« Forregister A:
- Multiply field A by 2:

A=A+A
- Multiply field a by 2:

A=A+A
» Forregister B:

- Multiply field A by 2:
B=B+B

- Multiply field a by 2:
B=B+B

« Forregister C:
- Multiply field A by 2:

C=C+C
- Multiply field a by 2:

C=C+C
« For register D:

- Multiply field A by 2:
0=0+D

- Multiply field a by 2:
D=0+D

10. The Saturn Instruction Set

(8)

(4.5+q)

(8)

(4.5+q)

FA

BbA

FB

BbB

C4

Aa4

C5

AaS

C6

ARab

C?

Ra’

105

Dividing by 2

This operation is performed by shifting the register right one bit. The bit
shifted out (least significant) is lost, but SB is setifitwas non-null (you must
do an SB=1 first), and the bit shifted in (mostsignificant) is always zero.

» Forregister A:
- Divide by 2:

ASRB
- Divide field A by 2:

ASRB
- Divide field a by 2:

ASRB
» Forregister B:

- Divide by 2:
BSRB

- Divide field A by 2:
BSRB

- Divide field a by 2:
BSRB

« Forregister C:
- Divide by 2:

CSRB
- Divide field A by 2:

CSRB
- Divide field a by 2:

CSRB
» Forregister D:

- Divide by 2:
DSRB

- Divide field A by 2:
DSRB

- Divide field a by 2:
DSRB

106

(21.5) 81C

(13.5) 819F8

(8.5+0) 819a8

(21.5) 810

(13.5) 819F1

(8.5+0) 819al

(21.5) 81E

(13.5) 819F2

(8.5+0) 819a?

(21.5) 81F

(13.5) 819F3

(8.5+q) 819a3

PaRT Two: MacHine LANGUAGE

Itiplyin 1

This operation shifts the register left one nibble. The nibble shifted out
(mostsignificant) is lost, but SB is set if it was non-null (you must do an
SB=0 first), and the nibble shifted in (least significant) is always zero.

» Forregister A:
- Muitiply field A by 16:

ASL A (9) Fo
- Muiltiply field b by 16:

ASL b (5.5+Q) Bbo
» Forregister B:

- Multiply field A by 16:
BSL A (9) Fl

- Muiltiply field b by 16:
BSL b (5.5+0) Bbl

« Forregister C:
- Multiply field A by 16:

CSL A (9) Fe
- Multiply field b by 16:

CSL b (5.5+q) BbZ
« Forregister D:

- Multiply field A by 16:
. DSL A (9) F3

- Multiply field b by 16:
DSL b (5.5+q) Bb3

Dividing by 16

This operation shifts the register right one nibble. The nibble shifted out
(least significant) is lost, but SB is set if it was non-null (you must do an
SB=8 first), and the nibble shifted in (most significant) is always zero.

« Forregister A:
- Divide field A by 16:

ASR A (9) F4
- Divide field b by 16:

ASR b (5.5+q) Bb4

10. The Saturn Instruction Set 107

» Forregister B:
- Divide field A by 16:

BSR A (9) FS
- Divide field b by 16:

BSR b (5.5+Q) BbS
» For register C:

- Divide field A by 16:
CSR A (9) Fb

- Divide field b by 16:
CSR b (5.5+0) Bbé

» Forregister D:
- Divide field A by 16:

DSR A (9) F?
- Divide field b by 16:

DSR b (5.5+Q) Bb?

Left
This operation performs a left circular rotation of the register by nibbles.
Nibble Oh is moved to 1h, 1h is moved to 2h, etc. The most significant
nibble is moved to the leastsignificant nibble position. SLC stands for
“Shift Left Circular.”

» Forregister A:
ASLC (22.5) 818

» For register B:
BSLC (22.5) 811

» Forregister C:
CSLC (22.5) 812

» Forregister D:
DSLC (22.5) 813

108 PaART Two: MACHINE LANGUAGE

BotatingRight (onenibble)

This operation performs a right circular rotation of the register by nibbles.
Nibble Fh is moved to Eh, Eh is moved to Dh, etc. The least significant
nibble is moved to the mostsignificant nibble position. SRC stands for
“Shift Right Circular.”

« Forregister A:

ASRC (22.5) 814
» Forregister B:

BSRC (22.5) 815
» Forregister C:

CSRC (22.5) 816
» Forregister D:

OSRC (22.5) 817

10. The Saturn Instruction Set 109

Jumps

To calculate the distance of relative jumps: Count the number of nibbles
from the end of the jump instruction (not including the distance nibbles) to
the beginning of the desired instruction. To jump backwards, use the 2’s
complementof the distance. Forarelative GOT O, thecode is baaa, where
aaa is the jump distance. Thus,to jump between addresses @, and @,

« Ifthejumpisforward, (@,-(@,+1)) calculates the distance. Youadd
110 @, because that’s the length of the jump instruction 6aaa (you
don’t count the nibbtes aaa in the calculation). Thus,if @,=#00123h
and @,=#00456h, the distance to jump is 332h nibbles, andis coded
as 6233 (don’t forget that the microprocessor reverses data).

« Ifthe jumpis backward,((@,+1)-@,) calculates the distance. Thus,

if @,=#00456h and @,=#00123h, the distance to jump is 334h
nibbles, coded as 6CCC (the 2’s complement of 334h is CCCh).

The limits of these jumps are as follows:

 Using 2 nibbles for the length, you can jump -80h to +7Fh nibbles.

« Using 3 nibbles for the length, -800h to +7FFFh nibbles.

« Using 4 nibbles for the length, -8000h to +7FFFh nibbles.

Note: In assembly program listings, you can use labels to indicate jump
addresses without needing to calculate the distance yourself.

Direct relative unconditional

GOTO abc (14) bcba
GOLONG abcd (17) 8Cdcba

Direct relativ nditional

These jumps depend on the state of the CARRY flag.

- Jump on CARRYclear:
GONC ab (12.5/4.5) oba

- Jump on CARRY set:
GOC ab (12.5/4.5) 4ba

110 PaART Two: MACHINE LANGUAGE

Absolute

GOVLNG abcde (18.5) 8Dedcba

Begister

« Using register A:
- Jump to the address contained in field A:

PC=A (19) 81B2
- Jump to the address contained in field A, saving the address

of the next instruction into field A:
APCex (19) 81B6

« Using register C:
- Jump to the address contained in field A:

PC=C (19) 81B3
- Jump to the address contained in field A, saving the address

of the next instruction into field A:
CPCex (19) 81B?

Register indirect

» Using register A:
- Jump to the address contained in the 5 nibbles pointed to by

field A (the 5 nibbles are read from the address contained in
field A, and execution continues at this address):

PC=(R) (26, 3.5) 8a8C
« Using register C:

- Jump to the address contained in the 5 nibbles pointed to by
field C:

PC=(C) (26, 3.5) 808E

ing the Program nter

Jump instructions cause changes to the program counter PC. The follow-
ing instructions allow you to find out exactly what address is contained in
the program counter—the address of the next instruction to be executed.

« Move PC into field A of register A:
A=PC (11) 81B4

« Move PC into field A of register C:
C=PC (11) 81B5

10. The Saturn Instruction Set 111

Calling Subroutines

The distance of a relative subroutine call is calculated dif ferently than for
a relative jump. You count from the first nibble of the instruction after the
subroutine call. Example: GOSUB @,

@, (next instruction)
@, (some useful subroutine)

In this program, the distance of the call would be @,-@,. As with jumps,
you must use the 2's complement of the distance if @,<@,. (Note: In
assembly programs listings, you can use labels to indicate subroutine
addresses without needing to calculate the distance yourself.)

Dir] ition

GOSUB abc (15) ’bca
GOSUBL abcd (18) 8Edcba

Absolute

GOSBVL abcde (19.5) 8Fedcba

Returning F Subrouti

* Unconditional returns:

- Simple return:
RTN (11) 81

- Return after clearing the CARRY::
RTNCC (11) B3

- Return after setting the CARRY:
RTNSC (11) B2

- Return after setting XM:
RTNSKM (11) 6e

- Return from interrupt
RTI (11) BF

« Conditional returns:

- Return if the CARRYis set:

RTNC (12.5/4.5) 460
- Return if the CARRY is clear:

RTNNC (12.5/4.5) o080

112 PaRT Two: MACHINE LANGUAGE

Comparisons

All comparisons are of the form

T <register> <comparator> <register Or immediate> <field>

A comparison instruction will always be followed by a jump (GOYES) or a
conditional return from subroutine (RTNYES). The instruction that follows
a comparison has the following rules:

« Theinstruction itself is always 2 nibbles long.

- 00is RTNYES;

« Anything else is the value of a relative jump GOYES. The jump
distance is counted from the address of the GOYES instruction (see
Section IV for more information on calculating jump distances).

Notes:

+ These instructions modify the value of the CARRY flag. The
CARRYis setif the comparisonis true.

» These are unsigned comparisons as the register values are positive
numbers.

Immediate

+ Forregister A:
- Is field A zero?

TA=6 A
- Isfield a zero?

TA=6 a
- Is field A non zero?

TA#O A
- lIs field a non zero?

TA#B a
- Is bit x (Oh £ x £ Fh) clear?

TABIT=0 x
- Is bit x (Oh £ x £ Fh) set?

TABIT=1 x

10. The Saturn Instruction Set

(21.5/13.5)

(16.5+q/8.5+q)

(21.5/13.5)

(16.5+0/8.5+q)

(20.5/12.5)

(20.5/12.5)

8A3

9a8

8AC

9aC

8686

8887x

113

114

For register B:
Is field A zero?

7B=0
Is field a zero?

7B=0
Is field A non zero?

7B#0
Is field a non zero?

TB#9
For register C:

Is field A zero?

7C=0
Is field a zero?

7C=0
Is field A non zero?

?CHO
Is field a non zero?

TCHO
Is bit x iOh £ x £ Fh) clear?
TCBIT=0

Is bit x (Oh £ x £ Fh) set?
7CBIT=1

For register D:
Is field A zero?

D=0
Is field a zero?

Is field A non zero?

T0#9
Is field a non zero?

7D#0
For register HST:

Is XM clear?

7RM=0
Is SB clear?

75B=0
Is SR clear?

7SR=0
Is MP clear?

MP=0

a

A

a

X

X

(21.5/13.5)

(16.5+0/8.5+Q)

(21.5/13.5)

(16.5+q/8.5+0Q)

(21.5/13.5)

(16.5+0/8.5+q)

(21.5/13.5)

(16.5+9/8.5+Q)

(20.5/12.5)

(20.5/12.5)

(21.5/13.5)

(16.5+0/8.5+Q)

(21.5/13.5)

(16.5+0/8.5+q)

(15.5/7.5)

(15.5/7.5)

(15.5/7.5)

(15.5/7.5)

PART Two: MACHINE LANGUAGE

8A3

939

8AD

9aD

8AA

9af

8AE

9ak

888Ax

808Bx

8AB

9aB

8AF

SaF

831

832

834

838

» Forregister P:
Is P equal to n?

TP= n (15.5/7.5) 89n
Is P not equal to n?

TP# n (15.5/7.5) 88n
« Forregister ST:

Is flag n clear?
7S5T=8 n (16.5/8.5) 86n

Is flag n set?
75T=1 n (16.5/8.5) g¢n

Is flag n not clear?
TSTHO n (16.5/8.5) 8¢n

Is flag n not set?
7STi#] n (16.5/8.5) 86n

Comparing registers

« Forregister A:
Is field A equal to field A of register B?
A= A (21.5/13.5) 8R4

Is field a equalto field a of register B?
7A=B a (16.5+q/8.5+q) 9aB

The same instructions exist for C:
?A=C A (21.5/13.5) 8A2
TA=C a (16.5+0/8.5+q) 9aZ

Is field A not equal to field A of register B?
TA#B A (21.5/13.5) SA4

Is field a not equal to field a of register B?
TA#B a (16.5+q/8.5+q) 9a4

The same instructions exist for C:
TRHC A (21.5/13.5) 8A6
TA#C a (16.5+0/8.5+q) 9ab

Is field A less than or equal to field A of register B?
TA<=B (21.5/13.5) 8BC

Is field a less than or equal to field a of register B?
TA<=B b (16.5+0/8.5+q) 9bC

Is field A less than field A of register B?
TA<B A (21.5/13.5) 8B4

Is field a less than field a of register B?
TA<B b (16.5+0/8.5+q) 9b4

10. The Saturn Instruction Set 115

- Is field A greater than or equal to field A of register B?
TA>=B A (21.5/13.5) 8B8

- Is field a greater than or equalto field a of register B?
TA>=B b (16.5+q/8.5+q) 9b8

- s field A greater than field A of register B?
TA>B A (21.5/13.5) 8B6

- Is field a greater than field a of register B?
TA>B b (16.5+q/8.5+q) Sb@

» Forregister B:
- Is field A equal to field A of register A?

?B=A A (21.5/13.5) 8RB
- s field a equal to field a of register A?

7B=A a (16.5+q/8.5+q) Jab
- The same instructions exist for C:

B=C A (21.5/13.5) 8A1
B=C a (16.5+q/8.5+q) 9al

- s field A not equalto field A of register A?
TB#A A (21.5/13.5) 8R4

- Is field a not equalto field a of register A?
TB#A a (16.5+q/8.5+q) 9a4

- The same instructions exist for C:
TB#C A (21.5/13.5) 8RS
TB#C a (16.5+0/8.5+q) 9ad

- Is field A less than or equal to field A of register C?
B<=C A (21.5/13.5) 8BD

- s field a less than or equalto field a of register C?
?B<=C b (16.5+q/8.5+q) 9bD

- Isfield A less than field A of register C?
7B<C A (21.5/13.5) 885

- Is field a less than field a of register C?
TB<C b (16.5+0/8.5+q) 9bd

- Is field A greater than or equal to field A of register C?
?B>=C A (21.5/13.5) 883

Is field a greater than or equal to field a of register C?
B>=C b (16.5+q/8.5+q) 9b%

- Is field A greater than field A of register C?
8>C A (21.5/13.5) 8B1

- Is field a greater than field a of register C?
TB>C b (16.5+q/8.5+q) 9bl

116 PaRT Two: MAcHINE LANGUAGE

« Forregister C:
- Isfield A equalto field A of register A?

7?C=A A (21.5/13.5) 8A2
- Is field a equalto field a of register A?

7?C=R a (16.5+q/8.5+q) 9a2
- The same instructions exist for B:

C=B A (21.5/13.5) 8A1
7C=B a (16.5+0/8.5+q) 9Yal

- The same instructions exist for D:
C=D A (21.5/13.5) 8A3
?C=D a (16.5+q/8.5+q) 9a3

- Isfield A not equal to field A of register A?
TCH#A A (21.5/13.5) BA6

- Is field a not equal to field a of register A?
7CH#A a (16.5+q/8.5+q) Sab

The same instructions exist for B:
TCHB A (21.5/13.5) 8A5
7C#B a (16.5+q/8.5+q) 9ad

- The same instructions exist for D:
TCH#D A (21.5/13.5) 8R?
?C#D a (16.5+0/8.5+q) 9ar

- Isfield A less than or equal to field A of register A?
?C<=A A (21.5/13.5) 8BE

- Isfield a less than or equal to field a of register C?
7C<=A b (16.5+q/8.5+q) SbE

- Isfield A less than field A of register A?
7C<A A (21.5/13.5) 8B6

- Is field a less than field a of register A?
?C<A b (16.5+q/8.5+q) 9bb

- Is field A greater than or equalto field A of register A?
7C>=A A (21.5/13.5) 8BA

- Is field a greater than or equalto field a of register A?
?C>=R b (16.5+9/8.5+q) 9bA

Is field A greater than field A of register A?
TCoA A (21.5/13.5) 8B2

Is field a greater than field a of register A?
TC>A b (16.5+0/8.5+q) 9b2

10. The Saturn Instruction Set 117

118

For register D:
Is field A equalto field A of register C?

70=C A (21.5/13.5) 8A3
Is field a equal to field a of register A?

?0=C a (16.5+q/8.5+q) Sa3
Is field A not equalto field A of register C?

TD#C A (21.5/13.5) 8A?
Is field a not equal to field a of register C?

TD#C a (16.5+q/8.5+q) 9a’
Is field A less than or equal to field A of register C?
K=C A (21.5/13.5) 8BF

Is field a less than or equalto field a of register C?
K=C b (16.5+q/8.5+q) 9bF

Is field A less than field A of register C?
KC A (21.5/13.5) 887

Is field a less than field a of register C?
?0<C b (16.5+q/8.5+q) Sb’?

Is field A greater than or equal to field A of register C?
T0>=C A (21.5/13.5) 8BB

Is field a greater than or equalto field a of register C?
0>=C b (16.5+q/8.5+q) 9bB

Is field A greater than field A of register C?
0>C A (21.5/13.5) 8B3

Is field a greater than field a of register C?
0>C b (16.5+0/8.5+q) b3

PART Two: MACHNE LANGUAGE

Bus Commands

These commands are not well known because there is little documenta-

tion in the HP 71 HDS published by Hewlett-Packard.

« Commands:

-

Command “B”:

BUSCB (10) gu83
Command “C”:

BUSCC (8.5) guB
Command “D”:

BUSCD (10) 8080
UN configure all chips on the bus:

REE;E1g (7.5) 86R
Shutdown all chips on the bus:

SHUTON (6.5) 867
Un-configure the module found at the address contained in

field A of register C:
UNCNFG (14.5) 804

Copyfield A of register C into the configuration register of the
current module (the first module not configured on the bus).
This command is generally executed just after an UNCNFG.
These two commands allow access to the hidden ROM by dis-
placing the user RAM (see the chapters on memory). Memo-
ries of 32 Kb or more need a double configuration. The first
is the 2’s complement of the module size (#100000 - the size
in nibbles), which permits use of only one part of the module.
The second is the starting address. Thus the displacementof
internal RAM from #70000h to #F0000 is done by an UNCNFG
on #70000h, then by a double CONF IG on #F0000h. Return-
ing to normal mode would be done byan UNCNFG on#Fo000h,
followed by CONFIG on #F0000h, then on #70000h.

CONFIG (13.5) 865
+ Get the identification of the current module. The identifier is stored

in field A of register C.
C=10 (13.5) 866

» Find the service requested by a module on the bus. The result is
stored in nibble 0 of register C, 1 bit for each type of request.

SREQT (9.5) 86E

10. The Saturn Instruction Set 119

Control Instructions

* Interrupt control instructions:
- Enable maskable interrupts:

INTON (7) 8080
- Disable maskable interrupts:

INTOFF (7) 888k
- Clear all interrupts:

RSI (8.5) 80810
» These instructions change the calculation mode for mathematical

operations as described in Chapter 2:
- Set mode to decimal:

SETDEC (4) 85
- Set mode to hexadecimal:

SETHEX (4) B4

NOPs (Instructions with No Effect)

In order to save room in a machine language program for future additions,
NOP instructions may be inserted. The three following jump instructions
are commonly used as such:

NOP3 420
NOP4 6360
NOPS 64606

Pseudo Operations

The pseudo instruction CON (constant) can be used to include data in a
program (for example, object prologues):

CONCn) q,.4, q..4,

120 ParT Two: MacHiNe LANGUAGE

10-1.

Exercises

Assemble the following program (it does not perform any particu-
lar function—its purpose is to be an exercise in assembly):

begin

subl

12

11

13

15

14

end

10-2.

CONCD)
CONCD)

GOTO

A=A-1

#820CC
(end)-(begin)

11

A
#12345

D
D

Using the table in the appendix, disassemble the following code:

14313 31791 5/7B7 61557 13114 21648 868C

10. The Saturn Instruction Set 121

122

11. HP 48 Objects

PaRT Two: MACHINE LANGUAGE

The HP 48 handles things called objects. There are 28 ofthem, 2 of which
are indirectly accessible to the user (indicated by one star), and 13 of
which are not accessible at all in the standard manner(indicated by two
stars). These objects always begin with a 5-nibble prolog number that
indicates their nature. Following is a list of all the objects with their prolog
number and their type (returned by the function TYPE):

Prolog Object Type

02911 System Binary (**) 20
02933 Real 0
02955 Long Real (**) 21
02977 Complex 1
0299D Long Complex (**) 22
029BF Character (*" 24
029E8 Array 3/4
02A0A Linked Array (**) 23
02A2C String 2
02A4E Binary Integer 10
02A74 List 5

02A96 Directory 15
02ABS8 Algebraic 9
02ADA Unit 13
02AFC Tagged 12
02B1E Graphic 11
02B40 Library (**) 16

02B62 Backup (*) 17
02B88 Library Data (*" 26
02BAA System Binary **) 27
02BCC System Binary **) 27
02BEE System Binary (**) 27
02C10 System Binary (**) 27

02D9D Program 8
02DCC Code (**) 25
02EA48 Global Name 6
02E6D Local Name (*) 7
02E92 XLIB Name *") 14

11. HP 48 Objects 123

Each of these 28 objects possesses a well-defined structure that we will

study in detail. Each object will be presented in table form with explana-
tions for each element of the table.

As you read this chapter, keep in mind that the microprocessor reverses
the values that it reads. This means that values are written backwards to
memory, including the prologs given here. Thus, the prolog 02911 would
be written 11920 in the HP 48’s memory.

Note that all values in memory are stored in hexadecimal, regardless of
the current binary base mode (binary, octal, decimal, or hexadecimal).

System Binary Object

@ Prolog (02911) 5 nibbles
@+5h Content 5 nibbles
@+Ah

A system binary is a short binary integer (5 nibbles) that is used internally

by the HP 48. It appears on the screen in the form < XXXXXb> where
XXXXX is the contents and bis the currentbinary base. In particular, itcan
be used to pass parameters between two dif ferent programs.

Examples

- 1192060068 is the system binary <00000h>;

« 11920854321 is the system binary <12345h>;

Exercises

11-1. What does 1192812345 represent?

11-2. Code the system binary <ABCDEh>;

11-3. Code the system binary <123d>.

124 ParT Two: MacHINE LANGUAGE

Real Number Object

@ Pr 02933 5 nibbles

@+5h 3 nibbles

@+8h Mantissa 12 nibbles

@+14h 1 nibble

@+15h

This is the usual real number accessible by the user. The code is

separated into 3 parts: The sign, the mantissa (a number from 1 to 9,
inclusive), and the exponent. Together these form the real number:

sign * mantissa * 1(exponent

The three parts are coded internally in the following manner:

+ |If the exponent is negative,it is replaced by “1000 - exponent” in
order to obtain a positive number. This number from 0 to 999 is
stored in Binary Coded Decimal using 3 nibbles. Thisis why the HP
48 can have exponents from -499 to +499.

» The mantissa is multiplied by 10" to make it an integer, and it is
stored in Binary Coded Decimal using 12 nibbles.

» Thesigniscodedin 1 nibble, using 0 for positive and 9 for negative.

Examples

- 12345.6789 is coded as 3392648660098765432186.

- =3.141592635359E-2 is coded as 339288999535629514139.

Exercises

11-4. Code the real number 12.

11-5. What does 3392646080600086543779 represent?

11. HP 48 Objects 125

Long Real Number Object

@ Pro 5 nibbles

@+5h 5 nibbles

@+Ah Mantissa 15 nibbles

@+19h 1 nibble

@+1Ah

This object is used internally by the HP 48 for calculations needing more

precision. The coding principle is the same as the real number, except that
the exponent can have a value in the range [-49999,49999], and the
mantissa can have 15 significant digits.

Examples

« 95920080800889798535629514138 represents the long-real
approximation of 1: 3.1415926535897

« The long real -123E45678 would be represented by
99926876546000000000063219

Exercises

11-6. How would the HP 48 code the long real 12345678901234567?

11-7. What does 5592689999608606000060860B819 represent?

126 PART Two: MACHINE LANGUAGE

Complex Number Object

@ Prolog (02977) 5 nibbles
@+5h Exponent 1 real 3 nibbles
@+8h Mantissa 1 part 12 nibbles
@+14h Sign 1 1 nibble

1 , , ibblS Foome— magnay 3t
@+24h Sign 2 1 nibble

@+25h

The structure of a complex number is simple. After the 5-nibble prolog,
there are two real numbers without prologs, the first being the real part of
the complex number, and the second being the imaginary part.

Example

 The complex number (123456789812, 218987654321) is coded
/7928116218987/654321081181234567890120

Exercises

11-8. Code the complex number (1,2).

11-9. What does the following code represent?
779281060066006B0B339 186BBEREEREE330

11. HP 48 Objects 127

Long Complex Number Object

@ Prolog (0299D) 5 nibbles
@+5h Exponent 1 real 5 nibbles
@+Ah Mantissa 1 part 15 nibbles
@+19h Sign 1 1 nibble

Ot e manay SIS,
@+2Eh Sign 2 1 nibble
@+2Fh

The long complex is similar to the complex number, with the two real
numbers being long reals.

Example
» Thelongcomplex (123456789012345,543210987654321) is coded:

099281 10868543218987654321011868123456/898123456

Exercises

11-10. Code the long complex (0,0).

11-11, What does this represent?
09920000868543218987654321911008123456/7898123459

128 PaRT Two: MACHINE LANGUAGE

Character Object

@ Prolog (029BF) 5 nibbles
@+5h Character 2 nibbles

@+7h

This is simply a number from 0 to 255 (00h to FFh), which represents a
character. The extended ASCII character codes can be found in the HP

48 manuals.

Example

- FB92814 is the character A (A is ASCII code 41h).

Exerciseg

11-12. Code the character C (ASCII code 43h).

11-13. What does FB92844 represent?

11. HP 48 Objects 129

Real/Complex Array Object

@ Prolog (029E8) 5 nibbles
@+5h Total length excluding prolog|, 5 nibbles
@+Ah Type of objects (of length |) 5 nibbles
@+Fh Number, d, of dimensions 5 nibbles
@+14h Dimension 1 (d,) 5 nibbles

@+d'5+14h Dimensiond (d,) 5 nibbles
@+d*5+19h Contents of object 1 |, nibbles

| Contents of object d,+1 | 1, nibbles

|@+1-1,+5h | Contents of object d,*...*d,
@+1+5h

Io nibbles

The array object is used for storing vectors and matrices. In fact, there is
no difference between a vector and a matrix.

Just after the length of the object is given the object type of the array
contents. This type number(5 nibbles long)is actually the prolog number
of the objects. For this reason an array can only contain objects of the
same type. Notice also that the dimension is not restricted to 1 (vector)
or 2 (matrix). This number can be just about as large as you like.

Next come the dimension sizes. For a matrix, this would be the number

of rows and columns.

After this come the actual values stored in the array object. These values
are objects themselves without a prolog (which is not necessary since it
was given earlier in the declaration part of the array). These objects are
arranged in order of dimensions. For example, a two-dimensional matrix
would be storedasrow 1, then as row 2 since thefirstdimension of amatrix

is its number of rows.

130 PART Two: MACHINE LANGUAGE

It must be noted that although it is possible to create matrices with many
dimensions(like a 25 dimensional matrix containing vectors), they are not
very useful because the HP 48 does not handle them correctly.

Example

« Thematrix [[1 21[3 41] is coded as:
BE9Z20 95088 33928 20008 20068 20080
VBBBBONBEBBBBA1 B VBBBBBBVBBEBERZ O
BBBBBBENBYBKBE3 B BBBVBEBEBBBEYEY B

Exercises

11-14. Give the first 35 nibbles of a 3x5x8 matrix containing system
binary numbers.

11-15. What type of elements are contained in a matrix that begins with

the following code?
BES20108FBBCZAZ01600691608852600 ...

11. HP 48 Objects 131

@
@+5h

@+Ah

@+Fh

@+14h

@+d'5+14h |
@+d*5+19h

Linked Array Object

Prolog (02A0A) 5 nibbles

Total length excluding prolog |, 5 nibbles

Type of objects (of length 1) 5 nibbles

Number, d, of dimensions 5 nibbles

Dimension 1 (d,) 5 nibbles

Dimension d (d) | 5 nibbles
 Pointer to object 1 5 nibbles

Pointer to objectd,+1 | 5 nibbles

Pointer to objectd.*..."d, | 5 nibbles

Element 1 I° nibbles

@+l+5h | Elementn
@+1+5h

| 1, nibbles

Linked arrays are arrays where the elements have been replaced by
pointers to objects found at the end of the array. ANULL pointer indicates
the absence of an element.

This structure permits a more economical storage for matrices that have
many identical elements. In the following example the identity matrix of
order 2 can be stored in 82 nibbles instead of 94.

xampl

» This is the code for the identity matrix of order 2:
ABRZB D40088 33920 20000 20000 20008 41060 F1000
A1688 50060 BBBBOOBBYNKENA10 BBBBEEBRBEBBBRGG

132 PART Two: MACHINE LANGUAGE

String Object

@ Prolog (02A2C) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah First character 2 nibbles

@+l-2h [Last character] 2 nibbles
@++5h

The coding of a string is simple. Itconsists ofa prolog, followed by the total
length of the string, followed by a list of ASCII character codes.

Example
. "STRING" is coded as: C2A28 11008 35 45 25 94 E4 74

Exercises
11-16. Code the string "Hello World".

11-17. Decode this object: CZAZB318062427166/F68212

11. HP 48 Objects 133

Binary Integer Object

@ Prolog (02A4E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Binary integer value -5 nibbles
@++5h

The maximum length of a binary integer is normally 15h (this is the length
of a 16 digit hexadecimal binary integer), but you can increase this length
considerably. In fact, the HP 48 uses large binary integers internally.

Example

- #12345678h is coded as E4A265180088765432 100060000

Exercises

11-18. Code the binary integer #87/654321d

11-19. Decode E4A2BABBBB12345

134 PART Two: MAcCHINE LANGUAGE

List Object

@ Prolog (02A74) 5 nibbles
@+5h First object

| Last object
Epilog (0312B) 5 nibbles

A list is simply a list of objects. Its structure consists of a prolog, a list of

objects, then an epilogue. You can think of the prolog as the list delimiter
{ and the epilogue as the list delimiter 3.

Example

« {"A" B} is coded as 47A2BCZAZB700BH1484E201824B2130

Exercises

11-20. Code an empty list.

11-21. Decode 4/A2084EZ6B20F4B4B2130

11. HP 48 Objects 135

Directory Object

@ Prolog(02A96) 5 nibbles
@+5h Number of attached libraries, n, 3 nibbles
@+8h N° Library 3 nibbles
@+Bh Address of Hash Table 1 5 nibbles
@+10h Address of Message Table 1 5 nibbles

Library n, 3 nibbles
Address of Hash Table n, 5 nibbles
Address of Message Table n, 5 nibbles

@, Offsetto last object (@-@.) 5 nibbles
@,+5h 00000 5 nibbles
@, n,, characters in name, 2 nibbles
@,+2h Character 1, name, name of 2 nibbles

character n object 1 2 nibbles
n 2 nibbles

@, e pr (5 nibbles
@,+2h n name 2 nibbles

@, n, characters in name 2 nibbles

@,+2h Character 1, name_ name of 2 nibbles

objectd ’
Character n, 2 nibbles
n, characters in name_ 2 nibbles
Object d

There are two different types of directories. The first type is the HOME
directory, which is the root directory of the VAR menu. Any number of
libraries may be attached to this directory. The second type is a
subdirectory, found eitherinthe HOMEdirectory, or one ofits subdirectories.
We will first look at the structure of the HOME directory , shown in the table
above.

136 PART Two: MACHINE LANGUAGE

Notice that in the code for a directory you will find information about any
libraries that mightbe attached. The first field after the prolog indicates the
number of libraries attached.

Nextcomesaseries ofdescriptorfields for each attached library . Thisfield
is divided into three parts:

« The library number: This number is assigned according to the
following criterion defined by Hewlett-Packard:

- #000h to #100h HP lib. in ROM;
- #101h to #200h HP lib. in RAM;
- #201h to #300h non HP lib. (distributed by HP);
- #301h to #6FFh free use;
- #700h to #7FFh used internally by the HP 48.

» The address of the hash table for the library (see page 143).

» Theaddress ofthe message table of the library (see page 143). This
pointer is NULL if there is no message table.

Note:

« The HOME directory always has a minimum of 2 libraries attached
to it: library #002h and library #700h.

- Ifthe address pointers are pointing to tables in the hidden ROM (see
Chapter 12), then anindirect address is given. The address points
to a system binary in normal ROM which contains the address of the
object in the hidden ROM.

11. HP 48 Objects 137

The beginning of a subdirectory is dif ferent than the HOME directory:

@ Prolog (02A96) 5 nibbles
@+5h Number of the attached library 3 nibbles
@+8h Offsetto last object (@,-@,) 5 nibbles
@+Dh 00000 5 nibbles
@+12h n, characters in name, 2 nibbles

If there is no attached library, then #7FFh will appearin the library number
field. The rest of the code is the same for both kinds of directories. The
next field contains an offset to the last object in the directory. Immediately
following this field is 5 zero nibbles to mark the first object in the directory .
This is useful when searching the directory backwards.

Each variable containedin the directory is defined with the following fields:

« The number of characters in the name (in 2 nibbles);
« The characters of the name (in ASCII code);
« The number of characters in the name (in 2 nibbles);
* The object;
» Thetotal length of the 4 fields just mentioned—useful when search-

ing the directory backwards (the last objectin the directory does not
have this field).

Examples

- This is the code for an empty directory: 69AZBFF/06860

« Adirectory that contains a 3 in a variable named 'D':
69AZ6FF7RBBB0B0B0B184418C2ARZ267000B6833

Exercises

11-22. Addthevariable 'A',containing4,tothe directoryin the example
above.

11-23. Attach library #123h with a hash table found at address #7FE30h
and without a message table to the directory above.

138 PaRT Two: MACHINE LANGUAGE

Algebraic Object

@ Prolog (02AB8) 5 nibbles
@+5h First object

| Last object
Epilog (0312B) 5 nibbles

The algebraic expression represented bythis objectis stored in RPL form.
For this reason, there is no need to store parenthesis.

The operations are coded by their address in ROM (in 5 nibbles). This
address points to the code that executes the desired algebraic function.

Example

« 'C+D' iscodedintheform C D + by:
B8BRZBB4EZ0183484E201844/6BA1B2130

Exercises

11-24. Code the expression 'A+B'.

11-25. The subtraction routine is found at address #1AD0Sh and the
multiplication routine is found at address #1ADEEh. Knowing
that, decode the following object:

6BAZ684E20181484E20182484E20103490DA1EEDA1B2138

11. HP 48 Objects 139

Unit Object

@ Prolog (02ADA) 5 nibbles

@+5h Object implied
| Desc 1 unit

Desc n description

Epilog (0312B) 5 nibbles
After the prolog comes the object implied by the unit. This is actually part
ofan RPL calculation that describesits relationtothe unit. The elementary
units themselves are stored in the form of objectstrings.

Only 3 operations are possible between units—all related to multiplication
(because it is not possible to create a unit by adding joules to seconds or
by subtracting grams from kilometers):

 Multiplication < Division + Raise to a power

Each operation is represented by a reference number to an object found
in ROM. The following table is useful in coding or decoding unit objects:

Operation ' / A
Reference #10B86h #10B68h #10B72h

Example

« 9.81_mss*2 is coded as
ADAZ83392680060006080081898C2AZ67BBBE06 ...
.. C2AZ870808373392000000000800008262/B81 ...
...06B0168BB1B2138 (Actually, the HP 48 would replace the
real number 2 by a pointer to a real number found in ROM).

Exercises

11-26. Code thefollowing: 1.2_m.

11-27. Decode: ADA28339200600606600000156C2A20/0666063 ...
..F2A227BB168B81B2130

140 PaRT Two: MACHINE LANGUAGE

@
@+5h

@+7h

@+12+5h

@+,"2+7h

Tagged Object

Prolog (02AFC)
Length |, of the tag

| Character 1

Character |,

characters of

the tag
 Object

5 nibbles

2 nibbles

| 2 nibbles

1 2 nibbles

This object has a prolog, the number of characters in the tag, the char-
acters themselves (in ASCII), and then the tagged object.

Example

- REAL:1.23456/89812 is coded as:
CFA2848255414C4339200062189876543218

Exercises

11-28. Code UN: THG

11-29. Decode CFAZBZBF4B484E206034F4252514C4

11. HP 48 Objects 141

Graphics Object

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n_ of columns (in pixels) 5 nibbles
@+14h Columns 1 to 8 Pixels in 1+1 nibbles

| Last pixels fine 1] 1+1 nibbles

| Columns 1108 pixelsin | 1+1 nibbles

line n, '
[Last pixels | 141 nibbles

@+1+5h

The dimensions of a graphics object are always given in pixels and stored
with a number of columns that is divisible by 8. Zero columns are added
if the number of columns is not already divisible by 8.

The first nibble stores the first 4 columns; the next nibble stores the next

4 columns, etc. The least significant bit of these nibbles is the left-most
column, and the most significant bit is the right-most column.

Example

- GROB 8 1 FF iscoded as: E1B2081160601066650006FF

Exercise

11-30. Decode: E1B2811060601660840006F0

142 PART Two: MACHINE LANGUAGE

Library Object

@ Prolog (02B40) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles

@+Ah n_characters in name 2 nibbles

@+Ch | Character 1 Characters | (2 nibbles)

@+n_"2 +Ah| Character n_ of the name (2 nibbles)
@+n_'2 +Ch| n_characters in name (2 nibbles)

@+n_'2 +Eh| Library number 3 nibbles

@, Offset to Hash Table (@,.-@.) 5 nibbles

@, Offset to Message Table (@-@,) 5 nibbles
@, Offset to Link Table (@-@,) 5 nibbles
@, Offset to Config. Object (@-@,) 5 nibbles
@, Hash Table
@, Message Table
@, Link Table

@_,-(7,.9h Type XLIB, (command/function) 1 or 3 nibbles
@,,-6h Library number of XLIB, 3 nibbles
@,,-3h Command number of XLIB, 3 nibbles

@,, Object XLIB,

@,_,-(7,9)h Type XLIB. (command/function) 1 or 3 nibbles

@,,-6h Library number of XLIB, 3 nibbles
@,,-3h Command number of XLIB_ 3 nibbles
@,, Object XLIB_

M |Otherobject! oher objects
— (notvisible)

@,.m) Other object m
@, Config. Object (notvisible)
@+l+1h Checksum (CRC) 4 nibbles
@+,+5h

The library is the most complex of allHP 48 abjects. The code begins with

the optional library name (in an unnamed library, the fields for the name
characters and the second field for the name length are absent). Afterthe
name comes the library number, which must be unique (see Directory

11. HP 48 Objects 143

Object). Next are 4 offsets —to the hash table, message table, link table
and configuration object (executed after each system halt). A NULL field
means that a table or the object does not exist. After the offsets come the
3tables, inany order,ifthey exist. After the tablescomethelibrary’s visible
objects, each preceded by its command number (3 nibbles before), its
library number (6 nibbles before), and a flag coded in either 1 or 3 nibbles:

144

« |Ifitis alibrary of commands (library number 2 #700h), the flag will

be only 1 nibble. Its significance is notclear, butthe value Sh (1001b)
seems best. The command itself is composed of 2 objects: first, the
object used when the command is executed; second, the object
used during the coding phase of the command line.

If it is a library of functions (library number £ #6FFh), then if bit 3 of
the nibble at@,-7h is 0, the function can be included inan algebraic
object, and the flag is 3 nibbles long. The bits mean the following:

Nibble at @,,-8h: bit 0 Unknown 12 (12) bit1 Unknown 11 (11)
bit2 INT (10) bit 3 RULES (9)

Nibble at @,-9h: bit 0 Unknown 8 (8) bit 1 Unknown 7 (7)
bit2 ISOL (6) bit 3 DER (5)

Nibble at @,,-7h: bit 0 ALG (4) bit 1 Unknown 3 (3)
bit2 EQWR (2) bit 3 0 (alg. obj. OK)

Each bit signifies the presence or absence of a special program for
the function (ISOL to invert, DER for derivative, INT for integration,
RULESto add functions in a sub-menu, ALG for algebraics; EQWR
for the EquationWriter). The function itself is a series of objects, led
by the program for the function. The others are supplemental func-
tions in the order of the numbers in parentheses. For example, if the
flag value is #C81h, there will be a principal program, PRG, plus
ALG, DER, RULES and INT, in that order. The code: <C81> <Lib
number> <Xlib number> <PRG> <ALG> <DER> <RULES> <INT>

Ifbit3 ofthe nibble at@_-7his 1,thenitisacommand (justlike those
in libraries with numbers > #700h). The flag is coded in 3 bits. The
other bits are different than for the regular library commands (bit 1
seems to indicate that the command also exists in function form).
The library checksum is calculated for the zone from @+5h to
@+l+1haccording to the formula described with the backup object.

PART Two: MACHINE LANGUAGE

To minimize library access time, the HP 48 uses hashing: A function takes
the name of a command and returns a number from #1h to #10h (the HP

48 uses the number of characters in the name). For each class, a part of
the table then gives the addresses of the name and number of each

command in that class. Here is the hash table structure:

@, Prolog (02A4E) 5 nibbles
@,+5h Total length excluding prolog |, 5 nibbles
@, Offset forclass 1 (@_,-@..) 5 nibbles

@, Offset for class 16 (@ _,.-@...) 5 nibbles
@+5Ah Length |_ of the name list 5 nibbles
@, Number of characters in name 2 nibbles
@,,+2h |character Characters 2 nibbles

' inname1 |
Last character 2 nibbles
Command number 1 3 nibbles

@, Number of characters in name x 2 nibbles
@,+2h First character Characters 2 nibbles

R innamex .
Last character 2 nibbles
Command number x 3 nibbles

@++5Ah | Offset to cmd name 1 (@ _-@.) | 5 nibbles

@, | Offset to cmd name x (@_-@,) |

| offsetto the last command name |

@,+,+5h

The hash table is one large binary integer. The first 16 fields are offsets
to the starts of each name table. The nextfield contains the length of the

entire nametable. The name tableisalist of these elements (in this order):
The name length, the name characters (in ASCII), the command number.
The last field gives (by command number) the of fsets used to find the
command namesin the table—used to display the names in the menu bar.

11. HP 48 Objects 145

The message table has the following structure:

@, Prolog (029E8) 5 nibbles
@,+5h Total length excluding prolog | 5 nibbles
@,+Ah ject types: string (02A2 5 nibbles
@_+Fh Number of dimensions (00001) 5 nibbles
@,+14h n number of messages 5 nibbles
@,+19nh Length |, 5 nibbles
@,+1Dh | First character Text for | 2 nibbles

i 1
@_+,+19h Last character message 2 nibbles

Length | 5 nibbles
| First character Text for 2 nibbles
' messagen |
[Last character 9 | 2 nibbles

@,+_+5h

This is a vector that contains strings (for more information on vectors, see
Real/Complex Array Object). This vector contains messages that are
used by the library. The message number correspondsto its place in the
vector. The internal library #002h uses such a table to store the HP 48’s
error messages.

146 PaART Two: MACHINE LANGUAGE

The link table has the following structure:

@, Prolog (02A4E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles

@, Offset to object 1 (@,-@,,) 5 nibbles

@, | Offset to objectd (@_,-@,) | 5 nibbles
@+l+5h

The link table is used forfinding the address of the beginning of a library

object. Thelinktableisreally justalarge binary integer containing aseries
of 5 nibble offsets. These offsets are in the same order as the library ob-

jects.

Example
« An empty library is coded as

84B26C06848865944454406FF68006066000BBEBBBBE49B1

Exercises

11-31. What s the library number of the above example?

11-32. Whatis the library name?

11-33. Does this library have a message table?

11. HP 48 Objects 147

Backup Object

@ Prolog (02B62) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah n_number of characters 2 nibbles
@+Ch | Character 1 Object | 2 nibbles

@+n_'2 +8h Character n_ name 2 nibbles
@+n_'2 +Ah| n_number of characters 2 nibbles
@+n_'2 +Ch| First Backup object

i Last Backup object]
@++5h

This is the object used for storing backups in a port. After the prolog and
the length fields is a field with the backup object’ s name, followed by each
object being backed up.

Normally, a backup object contains two objects: the object being backed
up and a system binary containing the CRC (Cyclic Redundancy Code, or
checksum) of the object. This type of backup object structure is shown
below:

@ Prolog (02B62) 5 nibbles

@+5h Total length excluding prolog |, 5 nibbles
@+Ah n_number of characters 2 nibbles
@+Ch . Character 1 Text for | 2 nibbles

' message 1 !@+n_*2 +8h Character n, I 2 nibbles
@+n,'2 +Ah| n_numberof characters 2 nibbles
@+n_2 +Ch| Object
@+1-5h Prolog 02911 System Binary 5 n!bbles

@+, o containing CRC 1 nibbles
@+l+1h CRC value 4 nibbles
@+1+5h

148 PaART Two: MACHINE LANGUAGE

A backup object contains only one object, followed by a system binary ,
which contains the checksum of the object. This sum is calculated using
the same formula used to calculate the CRCinalibrary . The formulaused
is also the same control code used by the Kermit protocol for data
transmission, thatis, the remainder of a division by the polynomial:

X4x124x5+1

The HP 48 does not perform this calculation with software. Rather,itisa
hard-wired function performed by a specialized circuit (see Chapter 13).
The CRC program presented in the Library of Programs does the same
calculation using software. For a backup object, this checksum is cal-

culated overthe area from @+5h to @+l , inclusive.

Example
- 26BZ8920084682434B48546C2AZB960B0BF4841 192686026

is the code for the backup object containing the string: "OK".

Exercises

11-34. What is the name of the backup object in the above example?

11-35. What is its checksum?

11. HP 48 Objects 149

@
@+5h

@+Ah
@++5h

Library Data Object

Prolog(02B88) 5 nibbles

Total length excluding prolog |, 5 nibbles

 Contents |-5 nibbles

This object does not exist as a basic object for the HP 48. It can be used
only in a library for storing data of any type. It could be used, for example,
in @ mini-spreadsheet library needing to store spreadsheets in a form dif-
ferent than that used for matrices.

There is no standard structure for this object except that it begins with its
prolog (as does every object), followed by its length, then data.

150 PART Two: MacHNE LANGUAGE

Reserved 1, 2, 3 and 4

@ Prolog 5 nibbles

@+5h Total length excluding prolog |, 5 nibbles
@+Ah Contents |-5 nibbles
@+1,+5h

These four objects have the same structure as the library data object.
They are notused, and are probably reserved for a future use. Inthisway ,
Hewlett-Packard can create a new object without needing to completely

re-structure the existing ROM.

The prologs are:

+ #02BAAh for Reserved 1;

« #02BCCh for Reserved 2;

« #02BEEh for Reserved 3;

« #02C10h for Reserved 4.

Since these objects don’t actually exist, no examples or exercises will be
given here.

11. HP 48 Objects 151

Program Object

@ Prolog (02D9D) 5 nibbles

@+5h First object

Last object
Epilog (0312B) 5 nibbles

This object is used to store all user programs. Its structure is similar to that
of a list: a prolog, a collection of objects (of any type), and an epilogue.
However, the prolog and epilogue do not correspond to the €« and *
program delimiters, as these are objects that must be included in the list.

Example

« Theprogram« A B + *iscoded as:
D9DZBE163284E20101484E28102476BA193632B2130

Exercises

Refer to the above example to answer these questions:

11-36. How are the program delimiters, € and *, coded?

11-37. How is the addition function (+) coded?

152 PaRT Two: MACHINE LANGUAGE

Code Object

@ Prolog (02DCC) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Machine code |-5 nibbles
@++5h

This object is used to store machine language programs. The “machine
code” field contains a series of machine language instructions.

Example

« See the machine language programs in the Library of Programs
for examples.

Exercises

11-38. How would you code an empty code object?

11-39. Using what you have learned from other chapters, write some
machine language code that does nothing.

11. HP 48 Objects 153

@
@+5h

@+7h

@+n_*2 +3h [Character n_
@+n,."2 +5h

Global Name Object

Prolog (02E48) 5 nibbles
n_number of characters 2 nibbles
Character1 Characters of | 2 nibbles

the name !
| 2nibbles

This object is used for storing global names. Thefield following the prolog
indicates the numberof characters in the name,followed by the characters
themselves (in ASCII).

Example

« The global name 'Journey’ is coded as:
84E207°BA4F6572/E65697

Exercises

11-40. Code 'Hello’.

11-41. What does 84EZ068 represent?

154 PART Two: MACHINE LANGUAGE

Local Name Object

@ Prolog (02E6D) 5 nibbles
@+5h n_number of characters 2 nibbles

@+7h Character 1 Characters of 2 nibbles

5 the name | _
@+n,'2 +3h[Character n_ | 2nibbles
@+n_'2 +5h

This object is used to store local variable names. Its structure is the same
as the global name (above) except for the prolog.

Example

-« 'Local' is coded as: D6EZB5BC4F63616C6

Exercises

11-42. How many characters are in this local name?
D6E2846E416D656

11-43. What is that name?

11. HP 48 Objects 155

XLIB Name Object

@ Prolog (02E92) 5 nibbles
@+5h Library number 3 nibbles
@+8h Command number 3 nibbles

@+Bh

The XLIB name is a method used to reference library commands. Inorder

to optimize access to these commands,theirname is replaced by an “XLIB
name” which contains the library number and the command number of the
command in question. This notation can by used to access the two stan-
dard HP 48 libraries (library #002h and library #700h).

Example

« The FREE command, which is library #002h, command number
#163h, can be represented as: 29E202008361

Exercises

11-44. Code command number #123h from library #456h.

11-45. What are the library and command numbers of the XLIB name:
29E2010082087

156 PART Two: MACHINE LANGUAGE

Other Objects

Any of the objects found in ROM may be added to your own objects. For
example, if you wanted to add a few RPL commands to your machine
language program, it is easy, using the method below. In fact, if you have
need ofan RPL command, acommon list,a machine language command,
or any other object found in ROM, here is how you could add one of these
to your object:

« RPL commands, lists, and other composite objects (listed in the
Appendix) can be added using their address only. For example, the
SWAP instruction can be represented by the ROM address#1FBBDh.

- Machine language routines stored in the form < current address + 5h>
<machine code>, or, more commonly, <address of an ML program>.
This method can be used only with objects in ROM where their

address is fixed. These objects are shown on the screen as
<External>, or, in other words, an external call.

11. HP 48 Objects 157

158

12. General Memory Organization

PART Two: MAcCHINE LANGUAGE

We have previously seen that the Saturn microprocessor has 20-bit

address registers and can thus address as many as 2 2 memory elements.
Since these basic memory elements are nibbles, the HP 48 can address
1 “Mega-nibble,” whichis 512 Kb (Kilobytes). This memory space is divid-
ed into 5 parts:

 ROM: This contains all programs used by the machine (square
roots, curve tracing, beep, etc.). This memory can not be modified,
and has a size of 256 Kb.

« /O RAM: This 64-nibble memory area is used to access the HP 48
peripherals (infrared receiver/transmitter, clock, screen, etc.). The
IO RAM is actually part of the ROM memory area.

« Built-in RAM: This is where all user data is stored (programs,
variables, alarms, etc.). The size of this memory area is 32 Kb.

 Plug-in card ports (2): Each of the ports can contain 1 card of up to
128 Kb.

Notice, however, that if you total the maximum amount of possible memory
(with two 128 Kb cards installed), the resultis 544 Kb, which is 32 Kb larger
than what the Saturn microprocessor is capable of addressing.

To overcome this problem, the HP 48 uses a technique called bank-

switching. Bank-switching assigns two distinct memory areas to the same
address, with one having priority over the other. This higher-priority mem-
ory is visible; the other is “hidden.” If you want to access the hidden mem-
ory, you must reconfigure the visible memory, to give it another address.
The hidden memory area is then accessible.

In order to minimize access time, the only thing that should be stored in
the hidden memory area is data that is infrequently used. The HP 48
stores the auto-test routines, error messages, etc.).

12. General Memory Organization 159

The HP 48 memory is therefore in one of two states:

« The standard state, where the built-in RAM occupies the memory
area from #70000h to #7FFFFh (see Figure 1 opposite).

« Aninformation access state where the built-in RAM is displaced to
address #F0000h. The HP 48 is in this state when using the mini-
editor (see Figure 2).

The mini-editor permits easy access to this second memory state, and
thus allows access to all the memory contents of the calculator . To use this
mini-editor, enter the manual auto-test (by pressing (ONHD)), then press the
(«) key. This editor uses one line of the screen to display 16 nibbles of
memory at the current address. The following commands may be used:

 (0J,(1.@....(3).(A)....(F)changes the value at the current address (to
be used with caution!);

 Movement commands:

- By#1000h with (v) and (a)
- By#100h with and ()
- By#1hwith[H and (5

« Serial port output commands:
- By#10h with (5
- By#10000h with

- Commands for accessing pre-defined memory areas:
- #00100h (I/O RAM) by
- #80000h (Port 1) by

#C0000h (Port 2) by
#FO00Ah (WSLOG data) by
#FOA8Ch (screen area) by

- To update the screen: («);

+ To execute the machine language program beginning at the current
address: (to be used with caution!).

160 PaAAT Two: MACHINE LANGUAGE

For the HP 48SX, when viewing the plug-in card contents, these contents
appear at memory locations #80000h and #C0000h, although they are

reconfigured to form a continuous memory area when used normally by
the machine.

#00000h Beginning of ROM 256 nibbles
#00100h I/0 RAM 64 nibbles
#00140h Continuation of ROM 458432 nibbles
#70000h Built-in RAM 65536 nibbles
#80000h | Port1 Plug-in 262144 nibbles
#C0000h Port 2 cards 262144 nibbles
#100000h

Figure 1: HP 48 memory, standard state

#00000h inning of ROM 256 nibbles

#00100h /O RAM 64 nibbles

#00140h 523968 nibbles

#80000h 262144 nibbles

#C0000h 196608 nibbles

#F0000h ilt-in RAM 65536 nibbles

#100000h

Figure 2: HP 48 memory, information access state

12. General Memory Organization 161

13. /O RAM

162 PART Two: MacHINE LANGUAGE

To communicate with its peripherals, the HP 48 uses, among other

methods, a special memory area called the /O RAM. This 64 nibble area
is a way to exchange data with the outside world. By reading and writing
to this area,it is possible to send commands or receive data from the
peripherals.

In the following pages, the I/0 RAM will be described bit by bit using tables
in the form shown below. In these tables, bit 3 is the nibble’s most sig-

nificant bit, and bit 0 is the least significant.

Bit3 Bit 2 Bit 1 Bit 0

#00100h
#00101h

13. VO RAM 163

164

#00100h
#00101h
#00102h
#00103h
#00104h
#00105h
#00106h
#00107h
#00108h
#00109h
#0010Ah
#0010Bh
#0010Ch
#0010Dh
#0010Eh
#0010Fh
#00110h
#00111h
#00112h
#00113h
#00114h
#00115h
#00116h
#00117h
#00118h
#00119h
#0011Ah
#0011Bh
#0011Ch
#0011Dh
#0011Eh
#0011Fh

CRC calculator

Batt. test

Alert ht shift left shift

RS 232C Input

RS 232C Output

PART Two: MACHINE LANGUAGE

Left Margin

The left margin is coded with 3 bits and therefore may have a value from
0to 7. Itcan be used for scrolling the main screen portion (everything but
the menu bar). For example, setting the left margin to 1 shifts the screen

contents one pixel to the left. To use the left margin properly, you will need
to understand the right margin and the address of the screen bitmap, both
of which are described later.

Display

Setting display to 0 turns off the screen display; setting it to 1 reactivates
it. Interestingly, turning off the screen deactivates the keyboard, and ac-
celerates the machine by about 13%. This is because the screen bitmap
isinmemory: ifthe screenis off, there is no memory access each time the
screen is updated. With this small burden lifted from the bus, exchanges
between the microprocessor and memory can be done more quickly , and
so program execution will be faster. The program FAST (see the Library
of Programs) uses this method to achieve rapid calculations.

Screen Contrast

The screen contrast is coded with 5 bits (the most significant bit being at
#00102h). Therefore, the contrast can be adjusted to 32 levels. However,
only the values from #3h to #13h are accessible by pressing and
(ONH=). The program CONTRAST (see the Library of Programs) uses
this address to adjust the contrast from software.

13. VO RAM 165

CRC Calculator

The HP 48 uses checksumsto verify the integrity of data (see Chapter4).
In order to obtain this value rapidly, a hardware circuit is used for the
calculation. This circuit reads the information going between the micro-
processor and memory and calculates the corresponding CRC (Cyclic
Redundancy Code).

To calculate the CRC of an object (just as the function BYTES does), set
the four nibbles to zero (nibbles #00104h to #00107h), then read the
nibbles of the object in question. The CRC of that object will then be found
in nibbles #00104h to #00107h.

This process must not be interrupted, so you must disable interrupts while
the calculation is taking place (using the assembly instruction INTOFF).
Don't forget to re-enable interrupts when the calculation is finished (using
the assembly instruction INTON).

Because these four nibbles are constantly changing, they are very useful
for generating random numbers in a machine language program. As the
CRC value is a function of nibbles read from memory, you can read a
pseudo-random number(for example, the clock, the address of the stack
end, the amount of free memory, etc.), then read the pseudo-random
number contained at #00104h.

166 PART Two: MACHINE LANGUAGE

Battery Test

The nibbles #00108h and #00109h are used for testing the HP 48’s
batteries (main batteries as well as batteries for the plug-in cards in the
case of the HP 48SX).

To begin the test, set bit 3 of nibble #00109h to 1 (by writing #Ch, the other

3 bits being 1, 0, and 0, respectively). Then, read the contents of nibble
#00108h. Each of the bits of this nibble indicates the state of one of the
batteries of the HP 48:

« |f bit 3 of #00108h is 1, the plug-in card battery for port 2 is weak;

« |f bit 2 of #00108h is 1, the plug-in card battery for port 1 is weak;

« If bit 1 of #00108h is 1, the HP 48’s main batteries are weak;

« If bit 0 of #00108h is 1, the main batteries are very weak.

Note that the HP 48’s internal battery tester reads the nibble #00108h
many times (6). If one of these reads returns a 1, then the battery is de-
clared weak.

When you finish the testing, don’t forget to change bit 3 of #00109h back
to 0 (by writing a #4h to #001039h).

Annunciators

The annunciators (a, X, etc.) each have 2 states controlled by one bit
(1=showing, 0=not showing). Bit 3 of #0010Ch determines whether any

ofthe annunciators will be showing (0=none showing, 1=showing, accord-
ing to their respective states).

13. VO RAM 167

RS-232C Speed

The transmission and reception of data from the RS-232C port is done at
a speed expressed as a “baud” rate. This numberrefers to the numberof
bits transmitted per second.

The HP 48 is capable of transferring data at four dif ferent speeds: 1200
baud, 2400 baud, 4800 baud, and 9600 baud. Bits 1 and 2 of #0010Dh
are used to setthis speed, as follows:

Bit2 Bit1 RS-232C Speed

0 1200 Baud
1 2400 Baud
0 4800 Baud
1 9600 Baud-

2
0
0

Port Information (HP 48SX)

Nibble #0010Fh gives the states of the two ports for the HP 48SX. The
possible states are:

Bit Number Significance

0 When set (1): Card present in port 1
1 When set (1): Card present in port 2
2 When set (1): Card in port 1 not write-protected
3 When set (1): Card in port 2 not write-protected

168 PaART Two: MACHINE LANGUAGE

RS-232C Interrupts

When a characteris sent to the HP via the RS-232C port, this can cause
an interrupt. This would cause the microprocessor to execute a special
interrupt handling routine. For example,if a characteris received through

the RS-232C port, then the character needs to be read and then stored in
the RS-232C buffer (see Chapter 14).

The nibble #00110h can be used to disable these interrupts as well as
determine if one has occurred. Each bit of this nibble has a distinct
function:

Bit Number Significance

0 When set (1): acharacter was received; an interrupt has occurred.
1 When set (1): receive interrupts are enabled.
2 When set (1): acharacter was transmitted; an interrupt has occurred.
3 When set (1): transmission interrupts are enabled.

To access the RS-232C port directly, you should disable these interrupts.

Input OK and Output OK

If the Input OK bit is set, then a character has just been received via the
RS-232C port. You may read this value from nibble #001 14h.

If the Output OK bitis set, then you may output a character to the RS-232C
port by writing to #00116h.

13. VO RAM 169

RS-232C Input and Output

Input and output through the RS-232C port are accomplished by a special
circuit. To receive a byte from this port, read the two nibbles at #001 14h.

To transmit a byte through the RS-232C port, write the two nibbles at
#00116h.

IR Input and Output

Nibble #0011Ah is used for IR input. Bit 3 is set if there was a reception;
itis clear if there was not. Bit 0 is set at the first reception and serves as
a reminder that there was an IR input. This bit must be set back to 0
manually.

Bit 3 of nibble #0011Ch is used for IR output. Setting this bit to 1 begins
the transfer, 0 stops it.

Base Address of Built-in RAM

#0011Fh contains the base address of the built-in RAM (#7h or #Fh). #7h
is the normal value (built-in RAM is at #70000h); #Fh means that the built-
in RAM has been displaced to #F0000h. This value is brought up to date
by the system when the reconfiguration takes place (in order to view the
hidden ROM).

Changing the value in #0011Fh has no effect on the base address of the
built-in RAM; itis for reading only. This nibble is used by routines that must
function in normal mode, as well as when the RAM is displaced (like the
routine that updates the screen). In this way, the location of the built-in
RAM makes no difference, and the machine is still capable of functioning.

170 PaART Two: MACHINE LANGUAGE

#00120h
#00121h
#00122h
#00123h
#00124h
#00125h
#00126h
#00127h
#00128h
#00129h
#0012Ah
#0012Bh
#0012Ch
#0012Dh
#0012Eh
#0012Fh
#00130h
#00131h
#00132h
#00133h
#00134h
#00135h
#00136h
#00137h
#00138h
#00139h
#0013Ah
#0013Bh
#0013Ch
#0013Dh
#0013Eh
#0013Fh

13. /O RAM

Bit 3 Bit 2 Bit 1 Bit 0

Beginning address of screen bitmap

Right margin (in nibbles)

Menu bar height & VSYNC

Beginning address of menu bar bitmap

Timer 1 Timer 2

171

Screen Bitmap Address

The HP 48 screen is divided into the screen itself (where the stack ap-
pears) and the menu bar (at the bottom). The information for these por-
tions may be stored at any address, but the screen driver must know that
address. The bitmap for the main screen is pointed to by #00120h. The
memory at that location is simply a GROB containing the screen contents.

« This address must be even (because a specialized circuit is used
that manages 8-bit screen portions only).

« This address can only be written to, but a readable duplicate of this
address is located in the reserved RAM (see Chapter 14).

Right Margin

The right margin for the screen bitmap is stored at #00125h. This value
is defined in nibbles, notin pixels as is the left margin. This number must
be even, so bit 0is ignored. To perform rapid screen scrolling, change the
left and right margins and the address pointing to the beginning of the
bitmap, and the screen will display the new area of the bitmap. The value
contained at #00125h follows the same rules as the bitmap address: It
cannot be read, butits value is backed up in the reserved RAM area.

Menu Bar Height

The separation height between the main screen area and the menu bar
is defined in #00128h. Setting this value to #3Fh causes the menu barto
disappear. The value at this location cannot be read, so it is backed up in
the reserved RAM area. The standard values (with no library attached):

« #7097Ch for the screen bitmap address (stack GROB);
« #70858h for the menu bitmap address;

#000h for the right margin; #0h for the left margin;
« #37h for the separation height.

172 PART Two: MACHINE LANGUAGE

VSYNC

We have seen that the menu bar height can only be written to. This is
because the nibbles #00128h and #00129h are also used for the VSYNC.
If you read the contents of these nibbles, you will get the line number that
the screen driver is currently working on during a screen refresh. This will
be a number that goes from #3Fh down to #0h every 1/64th of a second.

Timer 1

The nibble at#00137hisa 1/16th-second timer that counts down from #Fh

to #0h every second.

Clock

The lastareain the /O RAM is for the clock. Its value is in units of 1/8192
seconds, and is stored in an 8 nibble area, decreasing from #FFFFFFFFh
to #00000000h. The HP 48 does not actually use this entire value.

- Iftheclockis visible onthe screen, the machine counts down in one-
second cycles. Every second, the value of these 8 nibbles goes
from #00001FFFh to #00000000h (or 8192 8192 ™of a second).

- |fthe clock is not visible on the screen, and if an alarm is due in the

next hour, then the number of 8192remaining until the alarm is
stored in the clock section.

« If neither of the aboveis true, then the values used are from 0 to 1
hour (or #01C20000h to #00000000h) returning to 1 hour when a

button is pressed in interactive mode.

Each time the clock value reaches #00000000h an interruptis generated.

13. /O RAM 173

14. RAM

174 PaRT Two: MACHINE LANGUAGE

The HP 48 memory is divided into several zones, each with adistinctrole.
Before getting into the details of each zone, here is arepresentation of the
entire memory:

#70000h
(#70551h)
(#7056Ah)
(#7056Fh)
B
D1
(#7057EN)
(#70583h)
(#70588h)
(#7058Dh)
(#70592h)
(#70597h)
(#70669h)

Reserved RAM

Scr GROBS

D*5 nibbles

(#7069Fh) nib.

Command line 48 nibbles min.

Zeros 5 nibbles

Tem environment 78 nibbles

User variables (HOME dir

in 0

All of these zones, except the reserved RAM, are at variable addresses.
These addresses are stored in the reserved RAM (and certain registers).
We will describe the reserved RAM, and its contents in detail.

14. RAM 175

#70000h
#70005h
#70009h
#7000Ah
#7000Bh
#70018h
#7001Ch
#7001Dh
#7002Ah
#7002Eh
#7002Fh
#7003Ch
#70040h
#70041h
#7004Eh
#70052h
#7005Fh
#70063h
#70070h
#70072h
#7007Fh
#7008Ch

CMOS word

0000

Disable system-halt

Type
Date WSLOG 1
CRC
 T

Date WSLOG 2

CRC

Type
Date WSLOG 3

CRC

Type
Date WSLOG 4
CRC

~ Clock offset
CRC

0000000000000

FF

Auto-test start time

Auto-test fail time
 Mini editor screen preparatiop

CMOS Word

5 nibbles

4 nibbles

1 nibble

1 nibble

13 nibbles

4 nibbles

1 nibble

13 nibbles

4 nibbles

1 nibble

13 nibbles

4 nibbles

1 nibble

13 nibbles

4 nibbles

13 nibbles

4 nibbles

13 nibbles

2 nibbles

13 nibbles

13 nibbles

| 44 nibbles

The 5 first nibbles in reserved RAM are always #A5C3Fh, used to verify
the reserved RAM contents. Changing these values causes a system halt.

Setting bit 3 of nibble #70009h will disable the system halt (oNHc), manual

Disable System Halt

auto-test (ONJ{D), and automatic (ONJ{E). It also makes it impossible to turn
the machine off; it is automatically turned back on after a moment.

176 PART Two: MACHINE LANGUAGE

WSLOG

Data about the WSLOG command is stored in nibbles #7000Ah, #7001Ch,
#7002Eh, and #70040h. Thiscommand, (notdocumentedinthe HP man-
uals), returns the cause and time of the machine’s last warm boot. The
cause is coded (from #0h to #Fh) in the first nibble of the zone:

Code Cause of Warm Boot

0 The machine was turned on while in the COMA mode (COMA
mode is entered by pressing ON-SPC).

Batteries are very weak.
A hardware problem occurred during an infrared transmission.
The machine experienced a restart (execution of the program at

#00000h).
The clock offset (controlled by CRC) was corrupted.
Anuncontrolled data change occurred in one of the plug-in cards.
Not used.
A verificationword (5 nibbles) in RAM does not correspcnd to the

memory state (RAM is probably corrupted).
An error was detected while configuring one of the 5 peripherals.

One of them is not configured, or the configuration does not
correspond to a valid peripheral.

The alarm list is corrupted (its CRC is not valid).

Not used.
Plug-in card removed.
System reset (using the resetbutton found underneath one of the

machine’s rubber feet).

RPL error manager not found.
Configuration table corrupted.
RAM card removed.

N
O
O

W
N

—
(0
0]

M
m
O

O
W
>
»
o

Next is the date of the warm boot(in 8192 "of a second since January 1,
0001), coded in 13 nibbles. The final 4 nibbles are a checksum for the 14

preceding nibbles, calculated as in Chapter 11 (and as in CRC in the
Library of Programs).

14. RAM 177

Clock Offset

At#70052h is found the clock of fset (13 nibbles), followed by its checksum
(4 nibbles). As before,this offset is in units of 1/8192 seconds beginning
at January 1, 0001.

Autotest Start & Fail Time

The two 13 nibble zones at #70072h and #7007Fh are used during the
auto-test to store the test starting time, and the fail time respectively(if a
fail occurs). As these values havelittle importance, they are not validated
with a CRC.

Mini-Editor Screen Preparation

The 44 nibbles at #7008Ch are for preparing the display during the use of
the mini-editor (22 characters).

178 PART Two: MACHINE LANGUAGE

#700B8h 27?°...777 35 nibbles
#700DBh Plug-in cards (bits 0 and 1) 1 nibble
#700DCh 288 nibbles
#701FCh Data 512 nibbles
#703FCh BufLen ’"pf“‘ ‘t’f"”fer 2 nibbles
#703FEh BufFull RS 2?;209 4 1nibble
#703FFh BufStart POt 5 nhibbles
#70401h 39 nibbles
#70428h CRC for the configuration table 4 nibbles
#7042Ch Flags Information for 1 nibble
#7042Dh Size the plug-in 5 nibbles
#70432h Start card in port 1 5 nibbles
#70437h Flags Information for 1 nibble

#70438h Size the plug-in 5 nibbles
#7043Dh Start card in port 2 5 nibbles

#70442h 11 nibbles

#7044Dh End of Built-in RAM backup zone 5 nibbles

#70452h End of port 1 backup zone 5 nibbles

#70457h End of port 2 backup zone 5 nibbles
#7045Ch Temporary backup during interrupts 103 nibbles

#704C3h Output mask for keyboard test 3 nibbles
#704C6h 16 nibbles

Plug-In Cards (HP 48SX)

This nibble, #700DB, is the same as in the /O RAM at address #0010Fh:

Bit 0

1= Plug-in card
presentin Port 1

Bit 3 Bit 2 Bit 1

1=Port2not 1=Port1not 1=Plug-incard
write-protected write-protected present in Port 2

For example,if nibble #700DBh contains #Bh (#101 1b), this means that:
aplug-in card is in port 1 (bit 0 set); a plug-in card is in port 2 (bit 1 set);
port 1 is write-protected (bit 2 clear); port 2 is not write-protected (bit 3 set).

14. RAM 179

RS-232C Input Buffer

The RS-232C input buffer temporarily stores data coming from the exterior
still needing to be processed. It consists of:

« Adatablock of512 nibbles (256 characters) thatbegins at#701FCh;

- Astarting pointer, BufStart(2 nibbles at #703FFh), the numberof the
first character in the buffer. Its address is #701FCh+2*BufStart.

« Acharacter counter, BufLen (2 nibbles at #703FCh). The address
of the last character received is #701FCh+2*BufStart+2*BuflLen-2.

The nextcharacter will be stored at#701FCh+2*BufStart+2*BufLen;

« Afullindicator, BufFull (1 nibble at #703FEh) which is used to indi-

cate if the buffer is full. This nibble is 0 if the buffer is not full,8 if in-

formation was lost.

The buffer can be represented by this diagram:

Processing direction

BufStart

BufStart + BufL.en

The gray arearepresents
the area containing data

» waiting to be processed.
Next character

180 PART Two: MACHINE LANGUAGE

Configuration Table

The 37 nibbles beginning at #70428h are a configuration table describing
the state of the plug-in cards. The first 4 nibbles of this table are a check-
sum for the other 33 nibbles. This checksum is not calculated by the usual

CRC formula, but by a machine-language routine at #09B73h, which re-
turns the checksum in field A of register C.

Plug-In Card Information (HP 48SX)

These two 11 nibble blocks are part of the configuration table. Nibble
#7042Ch contains information for the plug-in card in port 1 (#70437h for

port 2).

This first nibble in the block consists of the following information:

« Bit 1 is set if the card is merged with RAM;
« Bit 2 is set if the card is not write-protected.;
 Bit 3 is set if the card is present

The next 5 nibbles (beginning at #70432h and #7043Dh) contain the start-
ing address of the plug-in card. And the size of the card (0’s complement)
is stored at #7042Dh and #70438h. A 32 Kb card will have a value of

#F0000h; a 128 Kb card will have a value of #C0000h. These values (the
starting address and size) are not valid if the card is merged with RAM.

The next 11 nibbles (at #70442h) are also part of the configuration table
and are probably reserved for future use.

14. RAM 181

Backup End

The three groups of 5 nibbles found at #7044Dh, #70452h and #70457h
contain, respectively: the ending addresses of the backup zonesfor the
built-in RAM,the card in port 1, and the card in port 2. Note thatif a card
is merged with built-in RAM, its backup zone is also merged.

To calculate the free space of a plug-in card that is not merged, simply use
the configuration table and the three addresses mentioned above. The
program BFREE in the Library of Programs uses this technique, which
allows it to calculate the free space evenif the card is write-protected (this
is not possible using the function PYARS).

Caution: ROM cards (which look like write-protected RAM cards to the HP
48SX) mayreturn false values if the data are not stored on the card using
the “normal” card BACKUP techniques. In particular, these data can be
found in memory after the theoretical end of the card.

Interrupt Backup

The 103 nibble block at #7045Ch is used by the system during interrupts
to temporarily backup the register contents. Interrupts are used by the HP
48 for processing keypresses, the RS-232C port, the clock, etc.

Output Mask for the Keyboard Test

The output mask at #704C3h is used as an argument for OUT=C for a
keyboard test done by an interrupt handling routine. It is set to #1FFh by
the system. Periodically setting these 3 nibbles to #FFFh will cause the
speaker to sputter since interrupts occur every second.

182 PART Two: MACHINE LANGUAGE

Machine Speed

The 5 nibbles at#704D6h contain the machine speed in number of cycles
per sixteenths of a second. To obtain the microprocessor speed, multiply
this value by 16. The following program calculates the machine speed
using the programs PEEK and STR*A found in the Library of Programs.

SPD (# 4BCSh
« # 794D6h #5> PEEK STR-+A

16 # B*R 1_Hz -UNIT
»

Invert the result to find the duration of one clock cycle—useful for calculat-
ing the execution time of a machine-language program (see Chapter 10).
If you change these 5 nibbles toalarger value, all sounds will have a higher

pitch (but this does not mean that the processor has been accelerated).

Disable Keyboard

Nibble #704DCh is used to disable the keyboard. Setting this nibble to a
non-zero value will accomplish this (#Fh for example). Note:

+ Neither the (ON) button nor the system halts are disabled.

+ Disabling the keyboard does not disable interrupts associated with
pressing certain buttons, but simply disables the execution of the
normal keyboard processing routine (the key codes will not be
stored in the keyboard buffer).

+ This nibble is set to zero by the system when the calculator returns
to interactive mode (at the end of program execution, for example).

Key State

This 13 nibble block, beginning at#704DDh, stores the current state of the
HP 48's 49 buttons. One bit per button is set if the buttonis being pressed.
This table is updated each time a keypress interrupt occurs.

14. RAM 183

Keyboard Buffer

The keyboard buffer is a 32-nibble block beginning at#704ECh. Each key
code is 2 nibbles long, so this buffer can hold 16 key codes. The buffer
contains only key presses that have notyetbeenprocessed. Two pointers
are used to keep track of the buffer contents:

» KeyStart indicates the position number of the first button pressed.

* KeyEndindicatesthe first free position number (where the next key
code will be stored).

The yet-to-be-processed key codes are therefore contained in nibbles
#704E2h+2"KeyStart to #704EC+2'KeyEnd. This is a circular buffer
similar to the RS-232C buffer:

Processing direction

Next character /

(In this diagram, KeyStart equals 4 and KeyEnd equals 8)

184 PART Two: MACHINE LANGUAGE

14. RAM 185

Key codes stored in the keyboard buffer

ENTER
19 1A 1B 1c S

BN (Cos
13 1 15 16 17

Y/x
18

o 0E
EVAL
OF S

oC

8

#704D6h
#704DBh
#704DCh
#704DDh
#704EAR
#704EBh
#704ECh
#7050Ch
#7050Eh
#70513h
#70516h
#7051Bh
#7051Dh
#70551h
#70556h
#7055Bh
#70560h
#70565h
#7056Ah
#7056Fh
#70574h
#70579n

186

Machine speed

Disable keyboard

Key state

KeyStart Keyboard
KeyEnd buffer

Key codes

Screen bitmap addr. (#00120h)

Right margin (#00125h)

Menu bitmap address (#00130h)

Menu height (#00128h)

@ of menu GROB

@ of stack GROB

@ of current GROB

@ of PICT GROB

@ of PICT GROB ?

Beginning @ of temporary objects

Ending @ of temporary objects

Beqinning @ of free mem. (B)
 Ending @ of free memory (D1)

PART Two: MacHiNeE LANGUAGE

5 nibbles

1 nibble

1 nibble

13 nibbles

1 nibble

1 nibbles

32 nibbles

2 nibbles

5 nibbles

3 nibbles

5 nibbles

2 nibbles

52 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

Backups

In Chapter 13 we saw that several blocks of ROM were used to define the
HP 48’s display (left margin, right margin, menu height, etc.), but some of
these could not be read. Forthis reason, they have been stored in the
reserved RAM area.

« The address of the screen bitmap is stored at #7050Eh (#00120h).

» The right margin is stored at #70513h (#00125h).

» The address of the menu bitmap is stored at #70516h (#00130h).

« The separation height between the main screen section and the
menu bar is stored at #7051Bh (#00128h).

These parameters are always stored in two locations (reserved RAM, and
I/0 RAM) by the HP 48 screen management routines.

Graphics Object Addresses

The following 5 addresses point to dif ferent graphics objects used by the
machine:

« #70551h stores the address of the menu bar GROB.

» #70556h stores the address of the stack GROB.

« #7055Bh stores the address of the current GROB (stack or PICT).

» #70560h stores the address of the PICT GROB.

« #70565h also stores the address of the PICT GROB.

These objects are all stored in the temporary object memory area.

14. RAM 187

Temporary Objects

#7056Ah and #7056Fh are beginning and ending addresses that define
amemory area used for storing temporary objects. Thisareais for objects

that won’t last long or that change frequently, such as stack objects, inter-
mediate results used by the machine, display preparation, etc. Each of
these objects is stored with the following format:

Flag (garbage collector) 1 nibble

Object |, - 6 nibbles
Object length |, 5 nibbles

As you use the machine, these objects accumulate in the temporary object
memory area. Itis necessary to do a clean-up from time to time to purge
the temporary objects that are no longer being used. This clean up

procedure (which is called each time the command MEM is executed) is
done by a program called the “garbage collector.” This program can be

called with a GOSBVL to address #0613Eh.

During this operation, the machine marks (in the flag area of the structure
shown above) each of the temporary objects that are stillbeing used. After

having checked each object, the HP 48 purges the objects that are not
marked. The temporary memory area has the following structure:

(#7056Ah) 00000 5 nibbles
Flag 1 nibble

Object -
Length 5 nibbles

Flag 1 nibble

Object
Length 5 nibbles

(#7056Fh)

188 PART Two: MAcCHINE LANGUAGE

Return Stack

The ending address of the temporary object memory area is also the
beginning address of the return stack. If a program is called within a pro-
gram, this stack stores the return address to the original program. An

address is placed on the stack when the program prolog is encountered
(#02D9Dh), and an address is taken from the stack when an epilog is
encountered (#031B2h), which indicates the end of a program.

Register B points to the end of this memory area (which is generally
backed up at #70574h). Here is a representation of the return stack:

(#7056Fh) Return address 1 5 nibbles
Return address 2 5 nibbles

[Return address n | 5 nibbles
(B)

In this list,address 1 isthe oldest. Register B points to the end of this stack,
which is the beginning of free memory. Since the routine SAYE_REG
(#0679Bh) saves B at #70574h, the value of B is often found there.

Free Memory

The free memory is the area between the address contained in B (end of
return stack) and the address contained in D1 (which points to the first
level of the stack). The size of the free memory is stored inregister D (field
A) as the number of 5-nibble “blocks” that are free. For example, iffield
A of D was #00100h, this would indicate that the amount of free memory

is between #00500h and #00504h nibbles.

The “blocks” are 5 nibbles because the return stack and the user stack also
use blocks of 5 nibbles each. This makes it easy to know if there is enough
free memory to extend one of these stacks, (which is a frequent opera-

tion): allthe machine has to dois check to see that field A of D is non-zero.

14. RAM 189

The User Stack

Justas Bisbacked upin #70574h, register D1, the stack pointer,isbacked
up in #70579h. The HP 48 stack may contain any object. Internally, the
stack contains only addresses that point to objects, because addresses
all have the same size: 5 nibbles. Register D1 points to the first level of
the stack. The stack ends at the location pointed to by #7057Eh:

(D1) Address of object in level 1 5 nibbles
Address of object in level 2 5 nibbles

Address of the last object 5 nibbles
00000 5 nibbles

(#7057Eh)

To find the address of an objectin level n, simply take the value of D1, add
(n-1)*5, and read the 5 nibbles at that address. The following assembly

program duplicates the SWAP function:

A=DAT1 A * Address of object 1
D1=D1+ 35 * Now pointing to level 2
C=DAT1 A * Address of object 2

* Write address of object1
D1=D1-5 * Now pointing to level 1

* Write address of object 2

Caution: This program does not check the size of the stack.

190 PART Two: MACHINE LANGUAGE

The Command Line

The command line begins at the address stored in #7057Eh and ends at

the address stored in #70583h. This memory area contains the command
line that is currently being edited.

The command line consists of ASCII character codes terminated by the
null character, which serves as an end of line delimiter. This explains why
you can’t edit strings containing the null character. The command line is
always at least 23 characters in length, plus the null character. Nonexist-
ent characters are replaced by “nulls.”

(#7057Eh) Character 1 2 nibbles
Character 2 2 nibbles

| Charactern (n 2 23) 2 nibbles
00 2 nibbles

(#70583h)

The Undo Stack

A copy of the stack contents (the Undo stack) and local variables are
stored in the same memory area. This area is divided into blocks:

(#70583h) Block 1
Block 2

Last block (undo)
00000 5 nibbles

(#70588h)

14. RAM 191

The last block is the copy of the stack contents (UNDO); the others are
local variables and their contents—from most recent to oldest. Each of

these blocks is divided into several fields:

@ 5 nibbles
5 nibbles

5 nibbles

. Addr of first contents | 5 nibbles

Address of the last local name 5 nibbles

Address of the last contents 5 nibbles

@+L

For local variables, the block identifier is #00000h. Alocal name address
points to an object of the form 'local name' . The address of the contents
points to the object stored in the local variable of the name preceding it.

For the undo stack, the structure is similar. The block identifier is #00001h

if there are no local variables; #00002h otherwise. To remain consistent

with the local variable block structures, we find pointers to local names in

the undo stack block structure—all pointing to the same address, #61D3Ah,
which is an address (in ROM) of the empty local name (' ').

@ 5 nibbles

5 nibbles
5 nibbles

5 nibbles
5 nibbles

5 nibbles

Address of ' ' (#61D3Ah) 5 nibbles
Address of the object in level n 5 nibbles

@+L

The otherfields contain the addresses of the objects in the undo stack and

the depth of the stack.

192 PART Two: MAcHINE LANGUAGE

Temporary Environment

The temporary environmentis used for managing the menus. This mem-
ory area contains the necessary addresses for displaying the menu labels
and for executing the associated routines.

The display addresses help the HP 48 determine the text to be displayed
in the menu label, as well as the text to place in the command line in PRG
or ALG modes. The execution addresses are used to find the address of
the program associated with a menu item. If a menu label has no assoc-
iated function, its name is the empty name (address #055DFh) and the
execution address is #3FDD1h, which is a program that makes a “beep.”

It seems that a block has been reserved for a seventh menu item. This
could be for future use, or, perhaps when these structures were first made,
the menu size was not completely decided.

(#7058Dh)
(#7058Dh)+3h
(#7058Dh)+8h
(#7058Dh)+Dh
(#7058Dh)+12h
(#7058Dh)+17h
(#7058Dh)+1Ch
(#7058Dh)+21h
(#7058Dh)+26h
(#7058Dh)+2Bh
(#7058Dh)+30h
(#7058Dh)+35h
(#7058Dh)+3Ah
(#7058Dh)+3Fh
(#7058Dh)+44h
(#7058Dh)+49h

14. RAM

#07Ch

Address of menu label 1

Address of menu label 2

Address of menu label 3

Address of menu label 4

Address of menu label 5

Address of menu label 6

Address of menu label 7 (reserved)

Execution address 1

Execution address 2

Execution address 3

Execution address 4

Execution address 5

Execution address 6
 Execution address 7 (reserved)

3 niobles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

193

Home Directory

At #70592h is a pointer to a directory object containing the home directory .
This directory is entered after a system halt, or the execution of the com-
mand HOME . This object is described in detailin Chapter 11. Thisaddress
is stored again at #705A1h.

Current Directory

The address of the current directory, which is also a directory object,is
stored at #7059Ch.

Backup Area

The HP 48 is capable of making backups, either for a plug-in card (for the
HP 48SX) orfor the built-in RAM (in port 0).

The backup area is organized in the same manner regardless of the port
used. In the case of the built-in RAM, (or that of the built-in RAM merged
with a plug-in card for the HP 48SX), we find the address of the beginning
of this area at #70597h. This memory area consists of a list of backup
objects (see Chapter 11).

Backup object 1

Backup object 2

Last backup object

00000 5 nibbles

194 PART Two: MACHINE LANGUAGE

#705A6h
#705ABh
#705B0h
#705B5h
#705BAh
#705BFh
#705C4h
#705C9n
#705CEh
#705D3h
#705D8h
#705DDh
#705E2h
#705E7h
#705ECh
#705F1h
#705F6h
#705FBh
#70600h
#70605h
#7061Eh
#70623h
#70628h
#70637h
#7063Ch
#70641h
#70646h
#7064Bh
#7065Fh
#70664h

#70669h
#7066Eh

14. RAM

@ of user key assignments
@ of alarm list

Pointer to next object to be evaluated

Backup area

LAST object1

LAST object 2 LAST
LAST object 3

| LAST object 4
LAST object 5

Stack

Large binary (table for internal use?)

00000

| Command 2
| Command 3

Command 1 Stack of the

four most recent

Command 4 command lines

@ of last error message

Current menu

Last menu

Unshifted menu key routine
Left-shifted menu key routine

Right-shifted menu key routine

Review key

Last RPL token

@ of the End of RAM
 . Free memory (5 nipble block§) (D)

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

25 nibbles

5 nibbles

5 nibbles

15 nibbles

5 nibbles

5 nibbles

5 nibbles

5 nibbles

20 nibbles

5 nibbles

5 nibbles

5 nibbles

. 5 nibbles

195

User Keys and Alarms

At#705A6h and #705ABh are the addresses of the user key assignments
and the alarm list, respectively. The two tables found at these addresses
are actually variables like any other user-created variables, except they
are stored in a hidden directory.

It is actually possible to “hide” objects stored in the user directory. The
principle is simple: If, during a clean-up of the currentdirectory (done peri-
odically to determine the names of the objects in this directory), the mach-
ine comes across an object with the empty name (' '), it stops its search.
To hide an object, you could either give it the name '’ (which is what the
HP 48 does for the directory that contains the user key assignments and
alarm list), or you could storeit after an object with the empty name. Inthis
case, the objectis executable but its name doesn’t appear inamenu label.

The HP 48’s hidden directory contains the following objects:

- 'Alarms’' contains the alarm list;

« 'UserKeys' contains the definition list for user-key assignments;

« 'UserKeys.CRC' contains the checksum for UserKeys (calculat-
ed viaUserKeys BYTES DROP).

To access this hidden directory, simply go to the home directory and type
#15781h SYSEVAL. You then find yourself in the hidden directory (the
SYSEVAL simply evaluates the empty name, '').

Access to different hidden objectsis also possible, but be advised never
to purge or even modify them, lest you experience Memory Lost. Tore-
turn to the home directory,just type HOME.

196 PaRT Two: MACHINE LANGUAGE

Next Object to be Executed

#705B0h serves as abackup for the register D0 and therefore pointsto the
next object to be executed.

LAST Stack

The LAST stackis a list of five addresses that point to objects being temp-
orarily saved (so the maximum numberof objects saved by LAST ARG is
5 even though only three parameters will usually be saved). If fewer than
5 objects are being saved, the other addresses are set to #00000h.

Address of a Large Binary Integer

At #705D3h is the address of a large binary integer (184 digits). It is
probably a table used internally by the HP 48. This objectis stcred in the
temporary environment. Since it is the first temporary object created by
the HP 48,it is always the first object found in this part of RAM.

Command Line Stack

The command line stackisbased on the same principle as the LASTstack.
It consists of four addresses pointing to character strings that contain the
last four command lines. The address of the most recent commandline
is contained in #705DDh; the oldest is in #705ECh.

Address of Last Error Message

At #70600h is the address of a characterstring which contains the last er-
ror message,if it was an error defined by the user (via " message" DOERR).
Otherwise, this address is set to #00000h.

14. RAM 197

Menus

At #7061Eh and #70623h are the addresses of the current menu, and the
last menu, respectively. The menu offsets are stored at #707C9h (current
menu) and #707CEh (last menu). The menus, or the objects pointed to
by these addresses, are lists. The content of theselists is identical to that
of the custom menu (CST) defined by the user (see Chapter 5).

An element of these menu lists may be one of the following:

198

A name: The name is placed in the menu label and is considered
to be the name of an executable object. Just like in the VAR menu,
if you press the menu button itself, then the object of that name is
executed. If you first press the left shift, then the object in level one
of the stackis stored under the menu name.Ifyou first press the right
shift, then the contents of the object are recalled to the stack.

A characterstring: The contents of the string serve as a name to be
placed in the menu label, and if the button is pressed, then the
contents of the string are added to the command line.

A 21x8 GROB: This GROB will be used for the menu label.

A list.
- The first element of the list will be used as the menu label. If

this element is a program object (prolog D9D20) that first
contains the address #40788h, this object will be executed,
and its result willbe used as a menu label (string, GROB,etc.).
Any program object beginning with 0902888784 will be exe-
cuted. Four addresses are particularly useful:

#3A328h takes a string from the stack and returns the corre-
sponding graphics object as itwould appearin the menu label.

#3A3ECh takes astring from the stack and returns a subdirec-
tory label GROB.

#3A44Eh takes a string from the stack and returns aninverse
menu label GROB (like in the SOLVR menu).

#3A38Ah takes a string and returns a menu label GROB such
as in the MODES menu (with a white box beside the name).

PART Two: MACHINE LANGUAGE

L
O
O
J
\
J
O
)
U
I
A
O
J
N
—
*
O
E

14. RAM

Note that since these particular program objects are executed
when the menu label is displayed, you can use this concept in
the CST menu to display special messages immediately after
entering the menu (just like the TIME menu, for example).

The second element of the list determines the action taken
when the menu button is pressed. It can also be a list whose
first element corresponds to the action taken when the menu
buttonis pressed by itself, the second element s if the left shift
was pressed first (), and the third elementis if the right shift
was pressed first ().

Menu Address
Last Menu

CST #3B23%h
VAR #3F6D8h
MTH #3B284h
MTH.PARTS #3B36Ch
MTH.PROB #3B3E4h
MTH.HYP #3B420h
MTH.MATR #3B452h
MTH.VECTR #3B48%h
MTH.BASE
PRG
PRG.STK
PRG.OBJ
PRG.DSPL
PRG.CTRL
PRG.BRCH
PRG.TEST
PRINT
70
I/0.SETUP
MODES
MODES2
MEMORY
MEMORY?2
LIBRARY
PORTO
PORT1
PORT2
EDIT
SOLVE

#3B4CAh
#3B542h
#3B622h

#3B67Fh
#3B6F7h
#3B7E2h
#3B8B4h

#3B90Eh
#3B972h

#3B9A4h
#3BA0O3h
#3BB46h

#3BC8Dh

#3BCE7h

#3BD46h
#3F376h

#3BD82h
#3BDAAh

#3BDD2h
#3BDFAh

#3BE22h

Menu
SOLVE.SOLVR
PLOT
PLOT.TYPE
PLOT.PLOTR
ALGEBRA
TIME
TIME.ADJST
TIME.SET
TIME.ALRM
TIME2
STAT
STAT.MODL
UNITS
UNITS.LENG
UNITS.AREA
UNITS.VOL
UNITS.TIME
UNITS.SPEED
UNITS.MASS
UNITS.FORCE
UNITS.ENRG
UNITS.POWR
UNITS.PRESS
UNITS.TEMP
UNITS.ELEC
UNITS.ANGL
UNITS.LIGHT
UNITS.RAD
UNITS.VISC
UNITS2

Address
#15200h
#3BEBS8h
#3C039h
#3COAFh
#3C483h
#3C4C9h
#3C671h
#3C79Ch
#3C8D5h
#3C9B8h
#3CAA7h
#3CD96h
#3CE65h
#3D08Ch
#3D1F3h
#3D2D6h
#3D451h
#3D4BAh
#3D553h
#3D642h
#3D6B5h
#3D764h
#3D797h
#3D838h
#3D887h
#3D93Ah
#3D9B3h
#3DA42h
#3DABFh
#3DAF2h

199

Last RPL Token

At #7065Fh is the address of the object that caused the command line to
be executed. If the key caused the execution, then the address
corresponds to an empty program object. If a VAR menu button was
pressed to cause the execution, thenthe address of the name of the object
to be executed will be stored here.

The End of RAM

The address of the end of RAM is stored at #70669h. The HP 48SX RAM
can be extended by adding one or more plug-in RAM cards. As each card
is added, the memory is reconfigured such that the user memory forms
one contiguous block. The program RAMSEARCH in the Library of Pro-
grams uses this address to determine the memory area to search.

Free Memory

Thefive nibbles at #7066Eh are used to backup register D, which contains
an approximation of the free memory. The value given is the number of
5-nibble blocks that are available. The routine at #069F7h recalculates
this value using the addresses stored in #70579n and #70574h (see the
earlier descriptions of these two addresses for more information).

200 PART Two: MACHINE LANGUAGE

#70673h Next error to display 5 nibbles
#70678h 1 nibble

#70679n ATTN flag 5 nibbles
#7067Eh 33 nibbles
#7069Fh Stack size 5 nibbles

#706A4h Random number seed 16 nibbles

#706B4h 15 nibbles
#706C3h Annunciators 2 nibbles

#706C5h System 16 nibbles
#706D5h User Flags 16 nibbles
#706E5h 26 nibbles
#706FFh Error number 5 nibbles

#70704h 15 nibbles
#70713h Prolog 5 nibbles
#70718h Length f iROBt 5 nibbles
#7071Dh | Height (6) ofcharacter s nipbles
#70722h Width (10) "g’;fif;. 5 nibbles
#70727h Pixels 20 nibbles
#7073Bh 142 nibbles
#707C9h Current menu offset 5 nibbles

#707CEh Last menu offset 5 nibbles

#707D3hn 6 nibbles

#707D9n Number of attached libraries 3 nibbles

#707DCh Number b , 3 nibbles

#707DFh @ of info. Firstibrary info- 5 nipbles

Number : : 3 nibbles

@ of info. Lastlibrary info. | bles

Next Error to Display

#70673h is used to store the number of the next error message to be

displayed. When the calculator returns to interactive mode,this address
is checked to see if a message is waiting. If so, then the error displayed.

14. RAM 201

Attn Flag

The five nibbles at#70679h are setto 0ifthe (ON)key has notbeen pressed.
Otherwise, they contain the number of times that the key was pressed.
These five nibbles are used by machine language programs (such as
BEEP) to know if they must stop execution.

Stack Size

At #7069Fh is the stack size, measured in nibbles. The stack always
contains atleast 5 zero nibbles, so the stack sizeisequalto 5*(DEPTH+1).

Random Number Seed

At #706A4h is a random number seed used by the RAND function. This
seed is a “real” object minus the prolog. RDZ is a function that can change
the value of the seed.

Annunciators

The two nibbles at #706C3h contain the current state of the HP 48’s an-
nunciators. If a bitis set, then the corresponding annunciator is showing:

Flags

These flags are stored in #706C5h and #706E4h, as shown opposite.

202 PART Two: MacHINE LANGUAGE

System Flags (-1 to -64):

Bit 3 Bit 2 Bit 1 Bit 0

#706C5h -4 -3 -2 -1
#706C6h -8 -/ -6 -5
#706C7h -12 -11 -10 -9
#706C8h -16 -15 -14 -13
#706C9h -20 -19 -18 -17
#706CAN -24 -23 -22 -21
#706CBh -28 -27 -26 -25
#706CCh -32 -31 -30 -29
#706CDh -36 -35 -34 -33
#706CEh -40 -39 -38 -37
#706CFh -44 -43 -42 -41
#706D0h -48 -47 -46 -45
#706D1h -52 -51 -50 -49
#706D2h -56 -55 -54 -53
#706D3h -60 -59 -58 -57
#706D4h -64 -63 -62 -61

User Flags (1 to 64):

Bit 3 Bit 2 Bit 1 Bit 0

#706D5h 4 3 2 1
#706D6h 8 7 6 5
#706D7h 12 11 10 9
#706D8h 16 15 14 13
#706D9h 20 19 18 17
#706DAN 24 23 22 21
#706DBh 28 27 26 25
#706DCh 32 31 30 29
#706DDh 36 35 34 33
#706DEh 40 39 38 37
#706DFh 44 43 42 41
#706E0N 48 47 46 45
#706E1h 52 51 50 49
#706E2h 56 55 54 53
#706E3h 60 59 58 57
#706E4h 64 63 62 61

14. RAM 203

Error Number

#706FFh stores the number of the last error that occurred. This number
is set to #00000h if no error is saved; it is set to #70000h if the error
messagewas one defined by the user. Alistof all error messages and their
numbers is given in the appendix.

GROB of the Character Under the Cursor

Starting at #70713 is a graphics object that is used to rememberthe char-
acter underneath the cursor during edit mode.

Menu Offsets

These two sets of 5 nibbles each at #707C9h and #707CEh contain the
offsets for the menu display (thatis, the numberof the first menu label to
display). For more information, see the explanation of the addresses
#7061Eh and #70623 on page 198.

Number of Attached Libraries

The 3 nibbles at #707D9h contain the number of attached libraries. Each
of these libraries is described by its number, followed by the address
where the library information is stored.

If the information is found in hidden ROM, then the address points to a

system binary (located in accessible memory) that contains the address
in hidden ROM. In every case, the address that points to the library’ s
declaration is found immediately after the name, at @+n _*2+Eh (using the
same notation as that in Chapter 11, page 143).

204 PART Two: MACHINE LANGUAGE

This library beginning contains all the necessary information for retrieving
the contents of the library (messages, commands, etc.). In particular, it
makes it easy to find the error messages, knowing that the number of such

a message has two parts: the library number in which it is stored (3 nib-
bles), and its order number in the messagetable (2 nibbles—a library can
therefore have a maximum of 256 messages). The message number is

Library number*256+order number

Using only an error number, we can easily determine the corresponding
library number. Thelist of attached libraries can then be used to find the
message table starting address which contains the error text.

It is possible to modify this information table, and then completely rewrite
the HP 48’s error messages. This could be very useful for translating all
the error messages to another language, for example.

Conclusion

The reserved memory area normally ends at #70844h, but it can be
extended, if necessary. Forexample, some ROM cards,like the HP solver
card, reserve some extra memory (for new libraries, among otherthings).

This description of RAM is not complete, but it contains the majority of
useful items necessary for the machine language programmer who
wishes to create programs that need access to the HP 48’s resources.

14. RAM 205

206

15. Programming in Machine

Language

PaART Two: MACHNE LANGUAGE

In the preceding chapters, we have studied the internal functionality of the
HP 48. We will now use this knowledge to access all the machine’s re-

sources, particularly for programming in machine language. The HP 48
can handle only objects, so we will use the Code object (see Chapter 11)
to contain a machine language program.

The problem is in creating this object. Using a more general approach, we
will see how to create any type of object. W e have seen that any object
can be represented by aseries of hexadecimaldigits. W e will write a func-
tion to transform a sequence of hexadecimal digits into the corresponding
object. The user will simply enter a string of characters containing the dig-
its to be transformed into a corresponding series of nibbles.

In a string, characters are stored using their ASCII code. For example, the
hexadecimal digit Ais 10indecimal, and is storedas #41hin ASCII. There
is a simple object that consists of hexadecimal digits when edited butis
stored as nibbles in memory. This objectis the GROB, or graphics object.
The transformation from hex digits to nibbles will be done using this object.

The GROB has the following structure:

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles

@+Ah Number n, of lines (in pixels) 5 nibbles

@+Fh Number n_of columns (in pixels) S nibbles
@+14h ’ Column§1 to 8 Pixels in | 1+1 nibbles

[Last pixels ine 1| 1+1 nibbles

| Columns 1 to 8 Pixels in] 1+1 nibbles

' — line n ')
[Last pixels ! | 1+1 nibbles

@+l+5h

We can see that the HP 48 uses blocks of 8 columns. W e will therefore

create a graphics object with 8 columns and the number of lines will be
equal to the number of hexadecimal digits (of our code) divided by 2 (8

15. Programming in Machine Language 207

pixels take up 2 nibbles, therefore 2 hexadecimal digits). If the numberof

hexadecimal digits is odd, we will round it up after the division. In this
manner, the memory occupied by the GROB (excluding the prolog, length,
and size information) will be, at the most, the number of hexadecimal
digits, plus one (in nibbles). This coding can be done with this sequence:

"GROB 8 " OVER SIZE 2 -~ CEIL + " " + SWAP + 0BJ»

This prepares the graphics object in a string in the following manner:

« The beginning of the GROB is placed in a string (“GROB 8);

* We calculate the number of lines in the GROB with OVER SIZE 2

/ CEIL and we add it to the first part of the GROB;

» Next, we add the list of hexadecimal digits (separating it from the rest
with the addition of " *) by " " + SWAP +;

« And, finally, we transform the string of characters into a graphics
object by the command OBJ>.

We can simplify this program slightly by removing the CEIL command
(which is done automatically when the string is transformed via 0BJ*). We
nowhave "GROB 8 " OVER SIZE 2 ~ + " " + SWAP + 0BJ»
This places a graphics object on the stack for the object that we want to
create. Now, in memory is the following structure:

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog|, 5 nibbles
@+Ah Number n,of lines (in pixels) 5 nibbles

@+Fh Number n_of columns (in pixels) 5 nibbles
@+14h Object to be created |-15 nibbles
@+1+5h

We know thatonly addresses are stored onthe stack. Toaccess the object
we wantto create, we need only take the address, @, of the GROB on the

stack andreplace itwith@+14h. Thisremoves the prolog, length, number
of columns, and number oflines. ThereisaSYSEVAL call thatwill perform
this function. The call to #056B6h takes a system binary as an argument
which contains the number of 5 nibble blocks to remove and returns the

208 PaART Two: MacHINE LANGUAGE

new object as well as an “external” which is not useful here. W e need to
remove 4 blocks of 5 nibbles, so we need a system binary equalto 4. Such
an objectis stored at #04017h. Therefore, the transformation from GROB
to object can be done by: #4817h SYSEVAL #56Beh SYSEVAL DROP
The first SYSEVAL recalls the system binary to the stack, and the second
SYSEVAL performs the transformation. The last thing to do is to recreate
the objectin such away thatthe pointer to it (on the stack) is really pointing
to the object itself, and not its contents. This is done easily with the
NEWOB function which recreates the object in level 1 of the stack, and
modifies all necessary pointers.

We now havethefinal version of the program GASS (Graphic ASSembler):

GASS (# _1DB3h)
« "GR " OVER SIZE 2 ~ + " " + SUAP + OBJ»

#4817h SYSEVAL #56B6h SYSEVAL DROP NEWOB
»

This program is quite fast; the transformation from hexadecimal digits to
nibbles is done by machine language routines found in ROM. [However,
those routines also perform verifications and calculations that slow down
the process a little. A faster version of GASS, written entirely in machine
language,is given in the Library of Programs (called RASS).

Let’s try this program to create a small object. (Note: To make this code
more readable,it is presented in blocks of 5 digits, but these spaces are
notpart of the code. You must enter this code in a contiguous manner—
no spaces, no new lines). Here is the code listing for a small object:

C2R28 B18BB 7556C 6C6B2 46F6E 63682 12

To code this object, just enter the code as a character string (with no
spaces, no new lines): "CZA2BB18887556C6C60246F6EES56H212"
Then execute GASS. A couple of secondslater, the object is on the stack.

Now that you know how to create any object, you can see how to create
machine language programs. In writing such programs, you should al-
ways remember these important points:

15. Programming in Machine Language 209

« The contents of certain registers:

- DO is the pointer to the next object to be executed (after the
machine language program). To continue to the next object
after the machine language program has finished, do this:
A=DATB A, DB=DB+5, PC=(A) (coded as 142164808C).

- D1 is the stack pointer. If we execute R=DAT1 R, field A of
register A contains the address of the object in level 1. If we
increment D1 by 5 (01=D1+5) then we move to level 2 (at this
point, the instruction A=DAT1 A will place the address of the
objectin level 2 into A field A).

- Bcontainsthe address of the return stack end—not too useful.

- D contains the amount of free memory in number of 5 nibble
blocks (the same size as the stack levels).

Unless you intend to change them, these 4 registers must be
restored to their original values before ending the program via
1421648608C. To restore them, here are 2 useful routines:

- SAVE_REG,at address #0679Bh (called with a GOSBVL
#0679B) saves these registers in the reserved RAM.

- LOAD_REG, at address #067D2h (called with a GOSBVL
#067D2) restores the register values previously saved.

« The structures of the objects: To take an object from the stack, you
must know its internalstructure to handle it properly . Also, including
HP 48 objectsin your program lets you profit from the RPL functions.

« The RAMstructure: This is a must if you ever need to access RAM.

You can also call routines found in ROM (e.g. SAVE_REG and LORD_REG).
One of the best exercises in applying Part Two is to analyze the machine
lan-guage programs in the Library of Programs, or to disassemble

certain routines in ROM.

The next step is to write your own machine language programs. Startwith
simple ideas. For example, to test the speed of machine language pro-
grams, you might compare the execution speeds of two programs, one in
machine language, onein RPL. This test could be two programs that sim-
ply count to 1000 (1 1888 START NEXT).

210 PART Two: MacHiINE LANGUAGE

Part Three:

Library of Programs

211

Notice

212 PART THREE: LIBRARY OF PROGRAMS

This Library of Programs contains numerous utilities written in machine
language. In most cases they can be used without any specific knowl-
edge, except for the method used to enter them.

To make the code more readable, the machine language programs (which
consist of hexadecimal digits 0...9, A...F) are presented in groups of 5
digits separated by spaces. For example, the program NOTHING (which
does nothing) would be presented in the form:

NOTHING ¢ B6F°h)
CCO28 FoBpe 14216 4868C

To type in this program you would do the following:

» Enterthe codeasacharacterstring with no spacesandnonewlines
(in this example,it would be "CCDZBFBB68142164808C").

« After verifying that the checksum given in parenthesis is correct,
(this step is optional, but strongly recommended), execute the pro-
gram GASS (or RASS once you have entered it) on the string. GASS
(or RASS) returns the desired object to the stack. In the case of a
machine language program, this is a “code” object, or a list of
instructions that the machine can understand. Note:

To calculate the checksum, place the object on the stack and
execute BYTES. This returns the object’s checksum and size.

Use hexadecimal mode (execute HEX) to make the checksum
comparisons; all checksums are given in hexadecimal.

The checksum for a machine language program is given for
the character string before executing GRSS (or RASS).

The program ALLBYTES will rapidly calculate all the checksums
for a directory.

The presence of libraries containing commands with the same
name as the programs used (or a similar name) may resultin

a checksum that is incorrect, even if the program is correct.

« The stack may now contain an unfamiliar object (shown by the word
Code). This object must never be edited—doing so may destroyit.
Juststoreitinto a variable name (in this example: '"NOTHING' STO).

213

To assist you in checking for errors, we have included two programs:

- BYS alters the character string to look like the form presented in this
book (groups of 5 digits, 8 groups perline).

« CLEBRN cleans a character string by removing all characters other
than hexadecimal digits. CLEAN is written partially in machine
language for speed.

One other note: Some programs contain the character "= " . This symbol
represents a carriage return, obtained by pressing the keys (2]-).

To summarize: Before typing any machine language programs, you will
need to enter the two RPL programs GASS and BYS. You should practice
entering an assembly program by entering NOTHING (which is quite short,
Ecgg&us less likely that you will make a mistake), then enter the program

At this point, you have the tools necessary to access all of your HP 48’s
resources that have been revealed in this book.

214 PART THRee: LiBRARY OF PROGRAMS

GASS

GASS is a program used to create objects. It can create any object from
a listing of hexadecimal codes. GRSS is explained in detail in Chapter15.
It takes a characterstring containing a series of hexadecimal codes from
the stack, and returns the corresponding object.

GHS«S # 10B3h)

"GROB 8 " OVER SIZE 2 ~ + " " + SWRP + 0OBJ»
#4817h SYSEVAL #56Béh SYSEVAL DROP NEWOB

»

Note: Creating objects is an operation that you must perform with caution.
You must not transform just any list of codes, onlylists which contain valid
objects. Therefore, you should carefully verify the character strings before
executing GASS.

215

ALLBYTES

The program ALLBYTES calculates the checksum for all objects con-
tained in the current directory. It returns a character string which contains
the names of each object followed by its checksum (in hexadecimal).

HLI;BYTES # S2FFh)

VARS
+ V
&

HEX "' 1 ¥ SIZE
FOR X

YV X GET SWAP OVER »STR 2 OVER SIZE 1 -
SUB ":t o+ M " OVER SIZE

NEXITS SUB + + SWAP BYTES DROP " =" + +

»

>

(There are 13 spaces in the text string
in the eighth line of the above program.)

216 PART THREE: LIBRARY OF PROGRAMS

BY5

BYS is asmall utility to change characterstrings into a more readable form.
This form is identical to that used in this book (groups of 5 digits, 8 groups
perline).

BYS is very useful as you look through your code for errors detected by the
checksum. For example,

"CCD26FoBu0142164868C" BYS

returns "CCO26 FOOBO8 14216 4808C "

BYS (# 74BAh)
&«

+ S
&«

"s" B S SIZE 1 -
FOR ¥

1 4
FOR ¥
SK¥Y+DUWP4+SUB+""+5

STEP
Nt 4

STEP

217

CLEAN

CLERN is the inverse function of BY3: It removes all characters from a
string that are not hexadecimaldigits (0...9, A...F). Itprepares a string for
the program GASS, after using BYS to check forerrors.

This program is written partially in machine language, so it must be en-

tered according to the specifications given on pages 213-214.

Here is the commented assembly source listing for CLEAN:

028 CONCS)
B4EB2 CON(CD)
(6BAl ON(S
CC0Z8 CON(S)

start 880608 CONCD)
8FB9768 GOSBYL
143 A=DAT1
138 DB=A
131 D1=
169 DB=Da+
174 D1=D1+
143 A=DAT1
174 D1=D1+
818F84 A=RA-5
819F8 ASRB
D8 =R

I 8R9 78=8
83 OYES
148 R=DAT1
31683 LCHER
9E2 7A<C
32 GOYES
3193 LCHEX
9ER PA<=C
41 GOYES
3114 LCHEX
9E2 TA<C
11 GOYES
3164 LCHEX

218

PROL_PRGM
STRING_SPC
ADD
PROL_CODE
(end)-(start)
SAVE_REG

o
o

A
o
G

—
M
N
)

I”’ro,gram object

+

Code object
Code length
Bckup regs.
A=Ssize
DO-Drsaddress

bject in level 1
DO- ackup Regs.
D1acontents adaar.

=# of characters
in the string

Done?
Yes --> end!

ASCII code for 0

Bad character
ASCII code for 9

Good character
ASCII code for A

Bad character
ASCII code for F

PART THRee: LiIBRARY OF PROGRAMS

2

13

14

end

88 GOYES
148 DATE=A
161 DB=Dg+
171 D1=D1+
CD B=B-1
68CF GOTO
REB A=
148 DATB=A
gF20/68 GOS

A=DATA
164 DB=Da+
868C PC=(A)

9C2R2 CONC(3)
92CF1 CONCS)
C2R28 CONC(3)
/0008 CONCS)
6o CONC2)
4BAC1 CONC3)
9C2A2 CONCS)
96DA1 CON(D)
£58C1 (3)
B2138 CONCS)

CLEAN (¢ CD56h)

09028 B4EBZ2 76BA1
11691 74143 17481
23231 939ER 41311

A26/8 boobd 4BACI

w
U
'
I
:
D
I
"
"
C
D
C
D
:
Z
D
N
N
C
D
'
—
'
C
D

REAL_1

08687
#0
POS
REAL _1
MINUS
SUB
EPILOG

 QJ

0AD_REG

OVER
§RPL STRING

Bad character
Good char --> rewrite
Next

One less
Loop again
Mark the end

with char 00
Restore regs.
Return to RPL

CHR 069

CCD26 068668 8FB9/ 60143 13613
8F848 19FBD 88A98 314B3 183SE
49E21 13164 9SE680 14816 1171C

D6BCF AEB14 B8BF2D 76814 21648 B8CIC 2R292 CF1C2
9C2R2 98DA1 CS8C1 BZ213@

219

PEEK

PEEK allows you to look at the memory contents at a specific address.
Simply give it an address and the numberof bytes to read, and it will return
a character string with the hexadecimal code that was read. For example,
#8 #5 PEEK returns the first 5 nibbles of the HP 48 ROM: "2369B".

PEEK does not offer access to the hidden ROM (ROM area at #70000h).
To access that area, use the program HRPEEK Hidden ROM PEEK).

Here is the commented assembly source listing for PEEK:

D9D28 CONCS) PROL_PRGM Program object
ZABF1 CON(5) DUP2 Veerify the number
3FBF1 CON(S) DROP2 of arguments
CCD28 CON(S) PROL_CODE Code object

start gFH%gSB CON(S) (end)-(start) Code length
B9 GOSBVL SAVE_REG Backup regs.

147 C=DAT1 A
134 DB=
169 De=0B+ 10 DO=address of contents

of object in stack level
1 (the PEEK length)

142 A=DATB A Read # ofnibbles to read
340FFF? LCHEX #/FFFB Maximum size
8B6 7C<R A

GOYES 18 Size correct
D6 C=AR A Size too big—set to max.

o C6 C=C+C A Number nibbles to
reserve (2 per character)

SFD/BS8 GOSBYL #85B/D Reserve
132 ADBex
147 C=DATI A
134 08=C DO=address of object in

stack level 1
169 DB=DB+ 18
146 C=DATB A Read the contents (size

to peek)
DS B=C A
174 D1=D1+ 5
147 C=DAT1 A

220 PART THRee: LiBRARY OF PROGRAMS

169 Do=DG+
146 C=DATH
135 D1=C
130 DB=A

11 8A9 7B=0
F2 GOYES

A=0
1588 R=DAT1
3163 LCHEX

A=R+C
3193 LCHEX

TC>=A
GOYES

3170 LCHEX
A6A A=R+C

2 148 DATB=A
161 DB=D8+
178 D1=D1+

B=B-1
610F GOTO

I3 8F2D/68 GOSBYL
174 D1=D1+
7 D=D+1
118 =R@
145 DAT1=C
142 A=DATO
164 DB=Da+
888C C=(A)

end B2138 CONC3)

PEEK (# EDB2h)

09028 2ABF1 3FBEI

68174 E7118 14514

D

o
w

N
N

O
W ©

EPILOG

CCD28 3AQ90B8 BFB9/? 6014
BD6C6 8FD/B 58132 1471
91461 35138 8ASFZ REBI
¢BA6A 14816 11/6C 061D

AD_REG

DoO=address of object in
stack level 2

Read the contents

Done?
Yes --> end

fiead one nibble

;TransForm
to ASCII code
(-
15->'F'=708)

3

Write into the string
Next character
Next nibble
One less
Loop
Restore regs.
DROP

Result -> stack
Return to RPL

Program end

¢ 13416
3 41691
5 BB318
F 8F20?

21648 ©8CB2 130

221

POKE

POKE is the inverse of PEEK. It will write data to a specific address. As
arguments,it takes a binary integer (the address), in level 2, and a series
of hexadecimal digits (the data), in level 1.

CAUTION: Use this program carefully! You can corrupt memory and
disturb the normal functionality of the HP 48 with this program. However,
the programs in this book that use POKE can be used with no danger.

Here is the commented assembly sourcelisting for POKE :

:

 Q

N v

028

start 48080
8FB9768
143

164
146

164

s
P
s

.
—
.
.
—
.
—
.
D

W
h
~
l

W
a
h
A
a
-
~
J
O
N

—
_
W
W
0

—
W
b
h

3456000
El
8h9
13
14A

n

222

CONCS)

CON(S)
GOSBYL
A=DAT1
ADBex

D6=D8+
C=DATB

LCHEX
B=B-C
7B=0
GOYES
R=DATO

PROL_PRGM Program Object

DUP2 Verify the number
DROP2 of arguments
ROL_CODE Code otg)jectP

(end)-(start) Code length
EFWE_REG Backup regs.

DoO=address of object in
5 stack level 1

A C=length (5+2*number
5 ofcharacters in string)

A
9
A

D1=address of object 2
(poke address,

16
A

D1=address of where to
poke

388895

A Done?
13 Yes -> end
B Read a char

PART THRee: LiBRARY OF PROGRAMS

B6A =f-
3196 LCHEX
9EA 7C>=A
8 GOYES

3170 LCHEX
BeA A=A-C

2 1396 DAT1=A
161 DB=Da+
178 D1=D1+
3420008 LCHEX
60CF GOTO 11

I3 8F20768 GOSBYL LORD_REG
179 D1=D1+ 16

D=D+1 A
E? D=D+1 A
142 A=DAT8 A
164 DB=Da+ 5
868C PC=(A)

end B2138 CONCS) EPILOG

POKE (# 14R5h)

09028 ZABF1 3FBF1
41461 64051 74143
314A3 163B6 A3190
bobo6 DCFSF 20766

CCD28 480068 8FB9/ 60l
13117 91431 3134
9EA9A 31768 6
17987 E7142 16488 8CB

Convert ASCII
%0Hexadecmal

7B="F' -> 19)

Write to memory
Next char
Next nibble

Loop...
fiesnweregs

§ DROP2
;?eturn to RPL

Program end

223

HRPEEK

HRPEEK allows you to read the contents of the hidden ROM, which is
normally notaccessible. In order to do this, HRPEEK mustcalculate its own
address (either in built-in RAM, or in a plug-in card), and then displace the
built-in RAM at #70000h to allow access to the hidden ROM (#70000h to
#7FFFFh). By calculating its own address, HRPEEK will be able to tell
whether or notit is affected by this memory displacement.

HRPEEK is generally the same as PEEK, and the argument syntax is the
same. For example, the command #78086h #18h HRPEEK (peek at 16
nibbles starting at #70000h in the hidden ROM) will return the character
string "D216898FFFB16BE/S" .

CAUTION: You should not use HRPEEK to peek at any memory location
except (#70000h - #7FFFFh) or you may get data that is invalid. This is
because of the built-in memory displacement that must take place.

One other note: As HRPEEK displaces the built-in RAM, the screen will
show a little “static” during the execution of the program. This is normal
and you need not worry aboutit.

Here is the commented assembly source for HRPEEK:

09028 CONCS) PROL_PRGM Program object
ZABF 1 CONC(S) OUPZ Verify the number
3FBF1 CONC(S) DROPZ of arguments
CCD2B CON(5) PROL_CODE Code object

start 04188 CON(5) C(end)-(start) Code length
8FB97608 EUSBVL gHVE_REG Backup regs.

=DAT1
134 D8=C DO=address of object in

stack level 1
169 Do=DB+ 16 DO=address of object

contents in stack level
1 (PEEK length)

142 A=DATB A Read number of nibbles
to be read

340FFF7 LCHEX #/FFFQ Maximum size

224 PART THRee: LiBRARY OF PROGRAMS

8B6
40
D6

11 C6

SFD7BSH
132
147
134

169
146

2 11C

28
8FFBe2e

7C<A A
GOYES 11
C=A A

C=C+C A

GOSBYL #85B70
ADBex
C=DAT1
DB=C

De=DB+ 16
C=DATB A

R4=C
Di=Dil+ 5
C=DAT1 A

=C

DB=DB+ 1@
C=DATB A
R2=C
R3=
ST= 15
C=R4
CH#8 A
GOYES 13
GOTO 18
=CEI A

INTOFF
=PC A

LC(5) #
C<=AH A
OYES 15

LC(5) (14)-Chere)
C-C+H A

15
CP 4

p= 8
GOSBYL #B826BF

Size correct
Size is too big—change

to maximum.
No. of nibbles to reserve

(2 per character)
Reserve

DoO=address of object in
stack level 1

Read the contents (size
ofpeek)

DO=address of object in
stack level 2

Read the contents

No keyb. int.

Done?

Yes --> end
One less

A=mem. address of‘here’
80008~(15)+(here)

where is HRPEEK ?
In a plug-in card

=memoryaddress of 'l4'

C=address of '14'afterdis-
placement of built-in
RAM to #F0000h

Displacebuilt-in RAMand
call routine found at
address in field A of C

225

14

15

16

17

18

226

6160 GOTO
112 =R2
131 Di=
REA A=0
1586 A=DAT1
161 Rl=
a1 RTN
3400007 LCHEX
804 UNCNFG
340600F LCHEX

CONFIG
349080006 LCHEX

CONFIG
112 A=R2
131 D1=
AEB A=0
15B9 A=DAT1
181 R1=A
3400006 LCHEX
804 UNCNFG
3490000F LCHEX
805 CONFIG
3400087 LCHEX
865 CONFIG
8080 INTON
111 A=R1
3183 LCHEX

A A=A+C
3193 LCHEX
9ER "=
99 GOYES
3178 LCHEX
A6A A=A+C
11B C=R3
134 DB=C
148 DATE=
161 DA=Dg+
136 CDBex
16B R3=
11R C=R2
E6 C=C+1
164 Re=C
BBEF GOTO
89 ST=1
8F2D/6e8 GOSBYL

#70000

#F0000

#60000

#606000

#F06000

#70000

C
e
—
—
D

o
I

AD_REG

s Read one nibble
s from RZ2 and
ysave it in
sregister Rl

isplace the RAM
#608006h

W
E
V
E
V
M
E
E
S
A

E
E
E
s

<
0

Q
-

Read one nibble

Return RANM
to #708006h

;
:
:
:
:
3
Interrupts OK

Convert the
nibble read to
ASCII

B
E
M
E
S
E
S

E
A
E
a
w
M
S

Write

Next!

Loop

Restore regs.

PART THRee: LIBRARY OF PROGRAMS

174 D1=D1+ 5 ;
E? D=D+1 A 3 DROP
118 C=R8
145 DATI=C A Resulting string on stack
142 A=DATB A Return to RPL
164 De=0g+ 5
888C PC=(A)

end BZ2130 CONC(5) EPILOG Program end

HRPEEK (# 4365h)

09028 2ABF1 3FBF1 CCDZ28 351889 B8FBI/ 6@147 13416
91423 46FFF /8B64 B06C6 BFD¢/B 58132 14713 41691
4619C 17414 71341 69146 10A18 384F1 1CBAE 66620
BCE16 C889F 81B43 46CFF ?8BE@ 33482 BAACZ 2F86C
4208F FB620 61681 12131 REALS BO161 081348 BOL/8
04340 BOOFS 65348 00E6S B5112 131AE A15BB 16134
00006 80434 0BBBBF 88534 bOBY/ 86583 80111 3163A
6A319 39ERY B317°8 AGA11 B1341 48161 13619 B11AE
610A6 B82FB85 FBF2D 76B17 4E711 81451 42164 888CB

227

?ADR

This program finds the address of the object in level 1 of the stack. Here
is the commented assembly source listing of TADR:

D9Dz6 CONCD) OL_PRGM Pro}qramobject

E4R28 CONC(D) 0L _INT Null binary integer where
CON(S) #00BBA the address will be
CONCD) #060u0
CONCS) NEWOB Recreate binary integer
CONCS) SWAP
ONCS) PROL_CODE Code object

C
CONCS) (end)-(start) Code length

147 C=DAT1 A C=@ of object
174 D1=D1+ 5 Remove object from
E? D=D+1 A stack
143 A=DAT1 A
133 ADlex
179 D1=Di+ 18
145 DAT1= A Write @
131 D1=A
142 A=DATB A Return to RPL
164 Dg=DB+ 5
8a8C PC=(A)

end B2138 CONCS) EPILOG Program end

TAOR (# 26RBH)
09028 E4A260 RBOBB B0B08 CBZA
14717 4E714 31331 79145 1311

1 OBBF1 CCD28 620080
4 21648 08CB2 130

228 PART THREE: LIBRARY OF PROGRAMS

SSAG

This program returns the hexadecimal codes of the object in level 1 of the
stack. It performs the inverse of GASS (thus, the name SSAG). SSAG uses
the programs PEEK and 7AOR.

To determine the size of the object, SSAG uses the SYSEVAL call #1A1FC
whichis the same function as BYTES, exceptitworks with any object given
as an argument. When BYTES is executed with a local name as an
argument, for example,it returns the checksum and length of the contents
of this name. The object on the stack is first stored in a global variable
called '0BJ. TMP' in orderto assign it a fixed address.

Example: "123" SSAG would return "CZAZ6BBBBA132333" whichis the
codefor a string object containing 3 characters: "1","2",and "3" (ASCII
codes #31h, #32h and #33h).

SSAG was written by Dominique Moisescu.

SSAG (# B/AFh)
&«

'0BJ.TMP' STO '0OBJ.TMP' RCL DUP 7TRDR SWAP
i'tjU}QF&%EFEh SYSEVAL SWAP DROP 2 * R+B PEEK '0BJ.TMP!

229

RASS

RASS is the same as GASS, only it is written completely in machine
language. Here is the commented assembly source listing for RASS:

start

I

2

230

PROL_PRGM
DUP
DROP

PROL_CODE
(end)-(start)
SAVE_REG

#06A08
12
#16330

11

D
D

Program object
sVerify there is
sat least one
3 aroument on st
Code object
Code length
Backup regs.

D1=string address

A=string length

Empty string?
Yes --> end

Number of codes

Reserve memory
Ok!
Ga}bage collector

Object reserved on
the stack

PART THRee: LiIBRARY OF PROGRAMS

I3 14B

4 1580

I5 8F20760

end B2130
PC
CONCD)

RASS (# B303h)
D9028 78BF1 BDBF1
91741 43395 00068
ASFBD A6B58 18FD3
11308 CD11A 13514
58816 8171C D908

Q
)

0
W
v

b —\
l

N
D
C
—
D
M
N
—
—
0
3
—
0

0
0
H
=
0
0

o
w

EPILOG

B3163 B6A31 989ER

AD_REG

read one code

ASCII Code
-> hexadecimal

N
S

E
A

E
E
a
E
E
E
s

Write

One less
Continue if necessary
Restore regs.
Retumn to RPL

Program end

231

CHK

This program checks the number of objects on the stack, and their type.
Itis notinteresting by itself, butitis extremely useful for aprogrammerwho
needs to check that the correct arguments were passed to his program.

CHK takes two binary integers from the stack. The first argument (stack
level 2) is the number of arguments—from 0 (meaning no arguments) to
8. The other argumentis the type description. Each type is represented
by a two digit hexadecimal number, as shown in the table below. If the
arguments passed to CHK are bad (i.e. numberof arguments larger than
8, or an invalid type), you'll get an error: Too Few RArsuments or Bad
Argument VYalue. If the arguments are valid, nothing will happen;the
arguments will disappear. Examples: To verify that the stack contains...

- acharacter string and another object of any type: #2 #8986h CHK

- two binary integers: #Zh #BABAh CHK

- eight objects of any type: #8h #Bh CHK

- aglobal name and two real numbers: #3h #1A8262h CHK

Prolog Object

02911
02933
02955
02977
0299D
029BF
029E8
02A0A
02A2C
02A4E
02A74
02A96
02AB8
02ADA
02AFC
02B1E

232

Any Object
System Binary
Real Number
Long Real
Complex Number
Long Complex
Character
Array
Linked Array
String
Binary Integer
List
Directo
Algebraic Object
Unit Object
Tagged Object
Graphic Object

Code
00
01
02
03
04
05
06
07
08
09
0A
oB
oC
oD
OE
OF
10

PART THRee: LIBRARY OF PROGRAMS

Prolog
02B40
02B62
02B88
02BAA
02BCC
02BEE
02C10
02D9D
02DCC
02E48
02E6D
02E92

CCDZ0
start 99160

9768

808262

33ABAY
(2r8
8F20/68

Object Code

Library 1
Backup Object 12
Library Data 13
Reserved 1 14
Reserved 2 15
Reserved 3 16
Reserved 4 17
Program 18

e 19

Global Name 1A
Local Name 1B
XLIB Name 1C

Here is the commented assembly source listing for CHK:

CONCS) PROL_CODE Code object
CON(S) (end)-(start) Code length
GOSBYL SAVE_REG Backup regs.
A=A W sFirst verify:
LAHEX #2 sthe arguments for
C=H W s CHK: two
LCHEX #BABA sbinary integers
GOSUB chk ;
GOSBVL LORD_REG Restore regs.
Di=Di+ 18 s DROP the two
D=B+% E sbinary integers

=]]+

GIIJSE'«{L ?SVE_REG Backup regs.

LCEIEX EBBBBB Maximum arguments

C=DAT1 A
B=C

Coonte i c= (W)=types
Di1=D1+ 5
A=DAT1 A
B=A
=@+ 10

A=DAT8 W
1=D1+ 5

TA>B A More than 8 args?
GOYES errl Yes --> error

233

err1

chk

234

O 2
F
r
I
N
N
I
N
S
N
S

N
S
N
S
L
N
T
N
L
N
S
N
S
N
N
N
N
S
N
S
N
S
P

d
J
i
o
n
a
a
i
o
n
a
n
a
n
a
i
a
n
a
n
a
n
a
i
a
n
a
n
a
n
a
n
a
i
o
i
a
n
a
a
i
c
i
d
i
a
n
a
n
a
d
i
a
a
n

"
"

"
l
N
e
S

N
f
o

N
t
N
e
S
N
e

M
l
N
l
N
N
o
e

N
t
N
o
N
N
N
N

N
t
s

chk
LOAD_REG
A
5

388293

LOAD_REG
#05623
chk2

Verify
Restore regs.
Return to RPL

Error: Bad Arg. Value

Restore regs.
Error
Finds starting address of

after prologue listing
Any object.
System binary
Real number
Long real
Complex number
Long complex
Character
Array
Linked array
String
Binary integer
List
Directory
Algebraic object
Unit object
Tagged object
Graphics object
Library
Backup object
Library data
Reserved 1
Reserved 2
Reserved 3
Reserved 4
Program
Code
Global name
Local name
XLIB name
Object number.

o=slarting address oflist
Done?
Yes

PART THRee: LiBRARY OF PROGRAMS

134 DB=C
B6 RSTK=C
3101 LCHER
SEY rD<C
60 GOYES
693F GOTO

2 96B D=
Co GOYES
AGF =0-1
164 DB=Dag+
64FF GOTO

3 147 =DAT1
8AE C#0
D9 GOYES
3416268 |CHEX
6E1F GOTO

14 137 CD1EXY
143 A=DAT1
135 D1=C
146 C=DATA
8AA ?C=0
21 GOYES
8A2 7A=C
DB GOYES
3426208 |CHEX
60FE 0710

15 CD B=B-1
BF? DSR
BF? DSR
174 D1=D1+
689F GOTO

end

CHKé# FD?Cth
CCDZ28 99188 8FB9Y
Fz20/6 B179E CE/SF
91567 17414 31381
14216 4888C 34362
88119 28339 26559
28C2A 2BE4R 204/A
28648 2826B 203888
28CC0 2084E 2BD6E
1019E 76869 3F96B
BB6E1 F1371 43135
DBF/B F7174 689F

~
R
E
E
Y

T

= Pt

a
n

H
L
H
E
E
:
D
Q
‘
%
G
:
D
O
—
'
Z
D
Z
D
D

O
—
D
D
O
H
—
N
T
O
—
0

R ~
N

2AF23
80068 D514/

Backup

Type OK?

{Vo --> error

; Get a
s Prolog

End of stack --> error
(Too Few Arguments)

A=o0bject prologue

Any object?
Yes --> OK
Prologue OK?
Yes --> 15
Obj.érologuei‘required
--> ‘BadArgument Type”
One less
Next type

Next object
Loop

235

REVERSE

The Saturn microprocessor writes all datato memory inreverse; you must
reverse it to get the proper order. REVERSE reverses the characters in a
string—which helpful for interpreting the data read by PEEK.

Example: "123" REVERSE returns "321".

Here is the commented assembly source listing for REVERSE:

09028 CON(CD)

CC028 ON(S)
start 86880 CONCS)

8FB9/68 (GOSBVL
143 A=DAT1
131 D1=
174 D1=D1+
137 CDlew
135 D1=C
143 A=DAT1
2 C=C+A
134 DB=
174 D1=D1+

181 DB=D8-

818F84 A=A-5
8A8 A=
952 GOYES

11 14B A=DAT1
14E C=DATAH
14D DAT1=
148 DATB=
171 D1=D1+
181 DB=D8-
133 ADlex
131 D1=
136 CDBex
134 DB=

236

PROL_PRGM Program object
#8550F Emgty stringl}
add +
PROL _CODE Code object
(efldf-(st art) Code length
afl Backup regs.

5 D1=string address

2 A=string length

9 D1=address offirst
character

2 DO=address of last
q character

A Empty string?
é2 Yes --> end

3

B s Switch two
E Echaracters

3

2
2

PART THRee: LIBRARY OF PROGRAMS

8BA M>=A A Again?
GOYES 11FD

2 ?550?68 GOSBYL LOAD_REG Restore regs.
A=DATB A Return to RPL

164 De=Dg+ 5
888C PC=(A)

end B2138 CONC5) EPILOG Program end

REVERSE (# AR7Dh

41
D

CCD28 866B8 8FB9/ 601
3 C2134 fi‘g%? IBéBF 848A8 521

8 FD 43 13117
1 35 4B 14E14
é E{ 348BA FD8FZ2 Dr6B1 42164

237

CRNAME

CRNAME is a program which can create any global name (including
“strange” names that cannot be entered from the keyboard, or the names
of existing functions). Here are two ideas for this program:

« Create variables under reserved names, which are then dif ficult to

purge,visit, or change (giving them a certain security).

« Create variables with the same name as an HP 48 internal function

in order to replace it. If the user types this name, then your program
is executed rather than the internal function.

CR!iFIHE # 11ESh)

1 127 SUB 116 CHR 42 CHR + 128 CHR +
228 CHR + 2 CHR + UVER SIZE CHR + SWAP
+ 43 CHR + 49 CHR + 8 C
11i gg?’&'h SYSEVAL # 56B6h SYSE‘JHL DROP NEWOB

>

The principle of this program is the same as with GRSS: a special object
is created (here it's a string), which contains the desired object codes (the
nameinalist). Thencertaininformationis stripped from the objectto leave
only the object contents.

We need to remove the prolog and the length of the string—2 blocks of 5
nibbles. The routine at#056B6h is used to take a system binary containing
the number of 5 nibble blocks to be removed. This system binary exists
in ROM (see the list of useful objects in ROM found in the appendix) at the
address #04003h. ltis recalled to the stack with #4883h SYSEVAL . After
the NEWOB, a list containing the desired name is on the stack. The oper-
ationl GET removes the name from thelist, and placesit on the stack by
itself.

238 PART THREE: LUBRARY OF PROGRAMS

CLVAR

The CLVAR instruction will purge all user variables in the current directory.
This command can be executed with the press of three buttons ((), (DEL),

ENTER).

In the hands of an amateur, this can be very dangerous. It would,

therefore, be wise to remove the access to this command. This can be
done using the program CRNAME in the following manner:

« Enter any program. For example:

« "CLVAR Not Available!" DOERR =»

« Thentype: "CLVAR" CRNAME STO

It is bestto store this false CLVAR in the HOME directory so that it is exe-
cutable from any subdirectory.

To remove this program, simply type: 'CLVAR' PURGE

239

SYSEVAL

The SYSEVAL instruction is used to execute objects found in the HP 48
memory. Haphazard use ofthis function could cause a loss of memory.

This function could be considered dangerous, and you may want to
prohibitits use. Allyou needtodois create aprogram with the same name:
'SYSEVAL ' . Asitis not normally possible to create such a name, we will
use the program CRNAME.

To prohibit the use of SYSEVAL, do the following:

» Enter the following suggested program:

« "SYSEVAL Not Available!"™ DOERR »

« Thentype: "SYSEVAL" CRNAME STO

Itis bestto store this false 'SYSEVAL' program in the HOME directory so
that it is executable from any subdirectory.

To removethis program, type: 'SYSEVAL' PURGE

Once the false program is installed, it is possible to enter the global name
'SYSEVAL ' normally (without the use of CRNAME).

240 PART THRee: LiBRARY OF PROGRAMS

CONTRAST

CONTRAST uses the programs PEEK and POKE to change the HP 48’s
screen contrast. Ittakes a binary integer between #0h and #1Fh from the
stack. #0h gives the lightest contrast, (the screen appears to be of f), and
#1Fh gives the darkest contrast (the screen appears completely black).
This allows access to a greater range of contrast values than do the
conventional and methods, which offer values from #3h to
#13h.

CUI:TRHST # 7BF1h)

HEX # 181h OVER # Fh AND »STR 3 3 SUB "#"
162h # 1h PEEK + STR»> # Eh AND 4 ROLL 16
»~ # 1h AND OR »STR 3 3 SUB + POKE

»

DISPON and DISPOFF

DISPON and DISPOFF are two programs that use PEEK and POKE to turn
the HP 48 screen on and off. Note that DISPOFF disables the keyboard,
so the two programs must always be used together (always call DISPON
after having called DISPOFF). If you execute DISPOFF alone, there is no
way to turn the screen back on other than with a system halt ((oNHC)).

DIEPUN (# 18B7h)

196h "#" OVER # 1h PEEK + STR» # 8h OR
»STR 3 3 SUB POKE

?

DISPOFF (¢ 8EF6h)
<«

166h "#" OVER # 1h PEEK + STR» # 7h AND
+STR 3 3 SUB POKE

»

241

FAST

FAST is a program that will enable you to speed up HP 48 calculations
more than 12%. This program turns off the screen, (using the programs
DISPOFF and DISPON), whichlightens the bus load slightly, enabling the
HP 48 to execute a little faster.

As an argument, FAST takes either a program, the name of a program, or
a list of commands. If any of these arguments require arguments
themselves, they must already be present on the stack.

Example: To calculate the second derivative of 'COS(COS(K))':

« 'COSCCOS(KIY' 'K' ® 'R' d » FAST

FFI%T(# 14A3h)

DISPOFF
IFERR

EVAL
THEN

DISPON ERRN DOERR
END
DISPON

242 PART THRee: LiBRARY OF PROGRAMS

DISASM

This fascinating program is monstrousin size but extremely useful: itcan
disassemble any machine language program. DISASM is the main pro-
gram; all the others are its subroutines. It takes two arguments:

In stack level 2, a character string which contains the hexadecimal
codes that you wish to disassemble.

In stack level 1, the beginning address of the code—useful when
disassembling ROM programs (for movable programs, as are all
programsin this book, give the value #0h for this argument).

For example, to disassemble the routine at address #067B9h:

#0867/BSh DUP #166h PEEK SWAP DISASHM

The disassembled code is found in the variable 'SOL' when DISASM has
finished. The programs SPC1 and SPC2 in thislisting are identical. They
calculate the number of spaces between columns of the output listing
given by DISASM. To change the column spacing, change one orthe other.

DISASM can disassemble only machine language; it does not recognize
objectprologs, forexample. Note that DISASM may terminatewithan error
if it lacks proper arguments or encounters an invalid code (e.g. 10E).

DIEHSI‘! (# 8DACh)

HEX 64 STWS S'Tflfl%gfl ST0 'Z' STO

IBSCHR + 'SOL' STO 1 'P' STO Z SIZE
>

<«

DO
P 'I' STO L READ 1 + GET EVAL + STOS

UNTIL
PS>

END
" - END - " ST0S

»

243

TAKE %# ¢AFDh)
« P DUP SUB »

REHD(# 3949h)
'#" Z P DUP SUB + STR» BsR »

INC(h C417h
'P' STO+ »

STIES (# 36895h)

18 CHR + DUP 1 DISP SOL SWAP + 'SOL' STO INC
>

L @ EB37h)
{ AB Al AZ A3 A4 AS A6 A7

Al A9 AR AB RC AC AC AC 2

A8 # AB9Bh)
€«

H;IC RERD DUP

14 #

RTNSHM" "RTN" "RTNSC" "RTNCC" "SETHEX"
"SETDEC" "RSTK=C" "C=RSTK" "CLRST" “"C=ST"
"ST=C" CSTexe" "P=p+1" "P=p-1" 4 "RTI" } SWAP
(L * GET CODE SUFP
ERUP INC READ INC RERD

X
&«

< 38 CHR 33 CHR IFTEY
3>

&

? MOD 2 = 1 + "ABBCCAROCBACBACCD"

A
v
N

L

u

tEUPSUBut1+DUPSUB
av

C

244 PaART THREe: LiBRARY OF PROGRAMS

Lilr[_JDEa"="azb++++SPC2+

Al é# 484Eh)

%VHLM + "18" READ »STR POS GET INC RERD 1 + GET

»

N@# 956Ch
{ Cg C8 C9 C8 C4 C4 Ce C6

C6 C9 C9C9 C6 C9C9C9 3

co (((# 65688h)

TAKE INC CODE "P" 3 ROLL + STR» RERD 1 + GET
»

Céé# FB0Ah)

{ "De=Do+" "D1=D1+" "D@=DB-" "D1=D1-" 3} READ 5 -
DUP 4 > 3 # - GET INC CODE SWAP SPC2 READ 1 +
sSTR +

»

245

c9 ‘({# 95A%h)

READ 8 - DUP
IF
3>

THEN
4 - "DI=("

ELSE
pP=("

END
{ 245) ROT GET SWAP OVER + ")" + SPC2
SWAP 1 -
? ¥
<«

INC Z P DUP x + SUB REVERSE + P % + 'P' STO
s CODE SWAP

>

Cfi* D7A3h)

READ INC RERD
PR Yy

&«

{ "DAT@=A" "DAT1=A" "A=DATE" "A=DAT1" "DAT@=C"
'DRTI=C" "C<DATE" "C-DATI") y 8 MOD 1+ GET

ELSE
INC READ
* Z
&

IF
y 8 <

THEN

246 PART THRee: LiBRARY oF PROGRAMS

z CH
ELSE

REARD 1 + »STR
END

»
END
+

>

CODE SWAP
>

Pgé# E419h)
llm=flll IIR1=HII IIR2=HII IIR3=HII lqu,:Hll 5 6 ? IIR9=CII

1} R l =[: n n R2=C n n R3=CnuR4=C i }

Pl @ 9F7h
é IIH=R82I IIH=R1II IIH=R2II IIH=R3II IIH=R4II 5 6 ? IIC=RBII

IIC=R1 n u C_._.Rz n u C=R3 n n C=R4 n }

P2 (4 DIC?h
& ERBex? "HR1ex "ARZe" "AR3ex "Rdex" 5 6 7

"CRBex" "(Riex" "CRZex" "CR3ex" "CRéex"

P3 (4 7EIBh)
DB...H n IIDI=HII iHmexn “HDlex n IIDB=C n IIDI=C n

"CDBex" "CDlex" "DE=RS" "DI-AS" "ADBXS" "ADIXS"
"fg=C5" "DI=Co" "CDBWS" "COIX")

A2(# 896Ah
INC CODE "P=" SPCZ READ »STR + »

A31 # 6DCAh)
&«

INC READ
* X
&

SPC2 Z INC P DUP % + DUP 'P' STO SUB
REVERSE +

247

A7 4((# 1C34h)

IIGUSUBII nu 1 3

TART
INC TRKE +

NEXT
1088h 4 SAUTREL CODE SWAP

>

A3 # DB24h)
« "LCHEX " A31 CODE SWAP »

A4 ‘(:# R72Dh)

%I;_IC TAKE INC TAKE + DUP

ngg" ==

THEN
DROP "RTNC"

LSE

THEN
DROP "NOP3"

ELSE
ENU"GUC" SWAP # 186h 1 SAUTREL

END
CODE SWAP

>

ASé# 4681h)

%I;_JC TAKE INC TAKE + DUP

npg" ==

HEN
SDERUP "RTNNC"

END"GUNC“ SWAP # 186h 1 SAUTREL

CODE SWAP

248 PART THRee: LIBRARY OF PROGRAMS

A6 (# A19Ch)
&«

%F INC P DUP 3 + SUB DUP

1 3 SUB "368@8" ==
THEN

DROP "NOP4"
ELSE

DUP

n4ppg" ==

HEN
EgéJP "NOPS" INC

£I'}D 3 SUB "GOTO" SWAP # 1886h 1 SRUTREL

END
INC INC CODE SWAP

»

M@ CCSCh)
{ B@ Bl Bl B3 B4 B4 B6 B6

Be6 B6 BA BA BC BC BC BC

Bl é# 9732h)

"U" TAKE + STR» INC READ 1 + GET EVAL CODE SWAP
»

B3 # FAS’h
« Bl GOYES »

B4 # 558%h)
€

{ "ST=@" "ST=1" 3} READ 3 - GET INC SPCZ2 RERD
+STR + CODE SWAP

»

249

B8 (# ESCDh)
&

B8 U8 INC RERD
X
<

x_ 1 + GET
IF

THEN
DROPZ_INC { 6 7 18 11 } READ POS V8 READ
1 + GET EVAL

ELSE

{15 13 12 } % POS
HEN
SPCZ INC TAKE +

ND

»

>

B6 ‘({# 398Bh)

{ "7S5T=@" "PST#B" "?P#" "PP=" } READ 5 - GET
INC SPC2 RERD »STR + CODE SWAP GOYES

>

U8# Searh)
"OUT=CS" "OUT=C" “A=IN" "C=IN" "UNCNFG" "CONFIG"
IIC=IDII IISHJTDNII 8 IIC+P+1" IIRESETII IIBLBCCII Il[::Pll

"B=C" VSREQ?" "CPex")

250 PART THREE: LUBRARY OF PROGRAMS

BA (# 2958h)
&«

READ INC RERD
> ® l:’

&«

CODE
IF

¥ 18 ==
THEN

A
ELSE

B
END
y 1 + GET SPCZ + "A" GOYES

»

»

BC ¢({# 2CCCh)

{ "GOLONG" 4 "GOWLNG" 5 "GOSUBL" 4 "GOSBVL" 5 3
EEF;U b2 * 23 - DUP 1 + SUB LIST» DROP

«?FZP1+DUPIJ+1-SUB

b 5 ==

ELS{NHP SPC2 SWAP REVERSE +

ND# 16666h 2 READ 14 == 4 * + SAUTREL
E
Pb+ 'P' STO CODE SWAP

»

»

Voé# ES24h
"INTONz' Va1 vz "BUSCB" VB4 vB4 VB4 VB4 Vo4
';{?;"r”gFal?“ 'J:?"r "PC=(RY" "BUSCD" "PC=(C)H"

251

Ulg(# 8790h)

REQD == INC READ INC RERD 1 +
> r

<

RA r GET
IF

t
THEN

DU"= SUFP + +
r 8 <

THEN
1} +ll

ELSE

END
+ INC READ 1 + +
SE
WCRB" +

END
f CHR

>

»

Ve¢t 33Ashy
BILgY "ABIT=1" "PABIT-8" "2FBIT=1" "CBIT=0"
"CBIT=1" "?CBIT=@" "?CBIT=1" }

UBI(# 2206h
INC "RSI" »

VB2 # 2584h)
« "LAHEX " A31 »

994(# C7a3h
V89 READ 3 - GET SPCZ INC TAKE + »

Ulé# CFBah)
IIHSLC] IIBSLCnnES‘LC n IIDSLC n IIHSRC n n BSRC n

"CSRC" "DSRC" U18 U188 UIA UIB "ASRB" "BSRB"
"CSRB" "DSRB" 3

252 PART THRee: LiBRARY of PROGRAMS

UIA (# BF1Sh)
&

INC RERD INC READ INC READ 1 +
> fxr
&«

RN r GET
IF

»

»

V1B ¢# BA48h
{ B 1 IIP =Hll IIPC=CII IIH___PCII IIE___PCII IIHPCEXII

"CPCex" 3

UlB @ CC94h
« VIB INC READ 1 + GET SPCZ "R" + »

RN# FC36h)
llmll IRIII IIRZII IIR3II IIR‘}II 5 6 ? IIRBII lIRlll

"R3" UR4" 1314 15)
IIRZII

253

RAg+ SACEN)
IIHII ngu IICII IIDII 4 5 6 ? IIHII IIBII IICII IIDII 12

13 14 15)

U2 ¢ SEDBh)
g "sKM=@" "SB=p" 3 "SR=B" 5 6 7 "MP=8" 9 10
11 12 13 14 "CLRHST" }

U3{# ERZCh
8 "Tkh=0" "?SB=B" 3 "TSR=@" 5 6 7 "™MP=0" }

A9 (¢ 48ADH
« A B NORMAL GOYES »

AR(# 2CBBh
« C D NORMAL »

AB # B467h
4(< EF Nf.)iRI'IHL »

ch({# BF15h)

{ CDEF 3 READ 11 - GET EVAL INC CODE
SWAP READ 1 + GET SPCZ "A" +

»

A DDBSh;
{ II?H_BI ll',’xB_.Ell II?C_HII llm_cu ?H#Bll ?B#tll II?C#HII

Il’ngEll ll‘pfl_all II?B_BII Il‘p[:Bll ll‘pD_Bll "?H#B" II?B#BII

II?C#BII "?0#8" }

B (# 32E3h)
{ ll?fl}Bl ll?B)[:ll II?C>HII II?D>CH II?H<BII II?B<CII II?C<HII

II’I?D<C" Il?HéBll II?BECII ll?CéHll "?D}t" ll?HéBll "?Bé[:"

i ?Céflnn?Déc " }

254 PART THRee: LIBRARY OF PROGRAMS

C# SBHflhb
{ "A=A+B" "B=B+C" "C=C+A" "D=D+C" "A=A+R" "B=B+B"

"C=C+C" "D=D+D" "B=B+R" "C=C+B" "R=A+C" "C=C+D"
"A=A-1" "B=B-1" "C=C-1" "D=D-1")

D@ 9936h)
{ IIH=BII IIB_-_BII “C=8" IID=BII IIH___BII IIB=Cll IIC=HII IID=CII

IIB=HII llt=B" IIH=CII IIC=D" IlHBexll IICBexII llCHexll

llmexll }

E@ C345h
{ IIH=H_§ 1} IIB__.B_E " IIC=C_H n IID=D_C i IIH=H+1nB=B+l "

n C=[:+ 1 w nD=D+ 1 n IIB=B_H n nC=C_BnH=H_C n nC=C_D n

nH=B_H n uB=E_BnuC=H_CnnD=C_D 1} }

F @# 7B6bh)
{ II%L i lIBSLII IICSL n IIDSLII IIHSR n IIBSR n IIESR n n [ISRII

llfl=_fl n IIB=_B i IIC=__C n u D=__D n IIH=_H__1 n IIB=_B_1 n

IIC=_E_1 n IlD=_D_1] }

SPC (# ER19h)
" " (7 spaces)

SPClg# DF86h)
« 5PC 1 7' 4 PICK SIZE - SUB + " " + »

SPCZ&# DF86h)
« 5PC 1 74 PICK SIZE - SUB + " " + »

ADRSTR (l# 1EFBh) |
« # 100006h + »STR 4 8 SUB »

CUEE (# A7D6h)

ROR I 1 - + AORSTR " " + Z I P SUB SPC1 +
»

255

SHl;l{TREL (# D63Eh)

2 abc
&

SPC2 AR I + 1 - c + "#" a REVERSE +
(IJEJ* DupP

b2~ <
THEN

+

ELSE
b SWAP - -

END
ADRSTR +

»

>

GU\;ES # E163h)

+ INC P 'I' STO TAKE INC THKE +
* a

R

18 CHR CODE
IF

a ll%ll -

HEN
“RTNVES"
"GOYES" a # 18Bh @ SAUTREL

END
+ +

»
»

NORMAL # BS51h)
&

> ab
<

INC READ INC RERD
LAY y

&

CODE
IF

¥ 8 <
THEN

256 PART THRee: LiBRARY OF PROGRAMS

a
ELSE

b
END
y 1 + GET SPCZ % CH +

»

»

»

REVERSE (# B227h)
&«

2 C
&«
"¢ SIZE 1

cw DUP SUB + -1
STEP

»

»

CH# 989Eh)
£

* 3
&

{ "PM WPM NYGH wyu oagn npe onge wpn 3 5 g

MOD 1
+ GET

»

»

CHA (# FOECH)
> f
&«

SPC2
IF

f 15 ==
THEN.,
ELSE

f CH
END +

257

Manipulating System Binaries

These programs convert between system binaries (SB) and other types
of objects commonly used by the machine: binary integers (B), real num-
bers (R), and characters (C).

» The required arguments are not verified for these programs. You
must be certain that you give the proper arguments if you would like
to obtain the proper results (giving a bad argument will not damage
the machine,just give unpredictable results).

« Thecharacter objectis not normally accessible to the user . Withthe
programs below, it can be easily generated. For example, to create
the character #40h (A), you would type #46h B»SB SB»C. The
corresponding characterwillappearas "Character" onthescreen.

B»SB &# A9zh)
« SAB3h SYSEVAL »

SB+B Sl# C4F4h)
« 59CCh SYSEVAL »

R+SB SH 41Ch
« 18CEAh SYSEVAL »

[
y

 SB+R¥# F1Eih)
« 18DBFh SYSEVAL »

C+SB &# 2109h)
« 5AS1h SYSEVAL »

SB-C S‘# 2796h)
« DA/Sh SYSEVAL »

258 PART THRee: LiBRARY OF PROGRAMS

ROMRCL

This very short program can recall objects from ROM to the stack. Simply
place the address of the object on the stack (as a binary integer), and
execute ROMRCL .

First the program B+5B is used to convert the binary integer into a system
binary, then the #0621h SYSEVAL is called to recall the object at the given
address to the stack.

Notes:

» This program can recall objects in hidden ROM by duplicating them
into RAM.

« Don’t try random addresses.

« Don't use ROMRCL except for address in ROM.

ROMRCL # B496h)
« B»SB # C612h SYSEVAL »

259

A*STR and STR*A

A+STR transforms a binary integer address to a character string (written
in reverse). STR*A does the opposite function. They are particularly use-
ful when using PEEK and POKE to read and write addresses in memory.
Each program uses the program REVERSE.

Examples:

#70806h R>STR returns "BBBAE7".

"BOBEF "STR+A returns # FBBBBh (in hexadecimal mode).

R+*STR (# E4F3h)
&«

HEX # 100066h + # 1FFFFFh AND »STR REVERSE
2 6 SUB

>

STIi-)FI (# 9287h)

"ggeeg" + 1 5 SUB "h" SWAP + "#" + REVERSE
STR»

>

260 PART THRee: LUBRARY OF PROGRAMS

BFREE

This program will determine the amountof free space leftonaplug-in RAM
card in BACKUP mode. It takes the port number as an argument, and
returns the free space in bytes. BFREE uses PEEK and STR *A.

BFREE (# 6BESh)
&

+ PORT
«

IF
PORT 1 # PORT 2 # AND

HEN
Ah DOERR

END
79421h PORT 11 *= + » ADR
&«

ADR # 1h PEEK STR+A » FLAGS
&«

IF
FLAGS # 8h AND # Bh ==

THEN
Ah DOERR

e
FLAGS # 2h AND # Bh #

THEN
"CARD MERGED !" DOERR

END

D oh PEEK STR»A # 106666h AOR
PEEK STR»A - + # /8940h PORT

»

AOR 1 + #
6 + # Sh
9 # + # Dh PEEK STR+A - B»R 2 ~

261

SEARCH

Here are 3 programs for searching memory: ROMSERRCH, RAMSERRCH,
and MODUSERRCH. These programs will search memory for a string of hex-
adecimal codes, and return the address(es) of any occurrences found.

« Use ROMSEARCH to search in ROM (including the hidden ROM).
Addresses greater than #70000h (which are addresses of objects in
the hidden ROM) should be used with ROMRCL to view the contents.

« UseRAMSEARCH to searchin RAM (including merged plug-in cards).

- Use MODUSEARRCH to search plug-in cards (HP 48SX only). This
program takes one extra argument than the others: a real number
that is the port number of the card you would like to search. After
checking the port for the presence of a card, the search will be done.
MODUSERRCH will search plug-in ROM cards as well as non-merged
plug-in RAM cards.

Note: these three programs use the program SERRCH, as well as PEEK,
HRPEEK (for ROMSERRCH) and STR=A (for RAMSEARCH and MODUSEARCH).

Examples:

« To find all character string objects in ROM: "C2A28" ROMSEARCH

» To do the same search in the plug-in card in port 2 (if the card is
present): "CZAZB" 2 MODUSEARCH

262 PART THREE: LiBRARY OF PROGRAMS

SEARCH (# EC/Sh)
&

> MOTIF RD FIN PRGM
&«

166h DUP MOTIF SIZE + » LEN LENP
<«

b’
Iilg DUP 1 DISP LENP PRGM EVAL

MOTIF POS AD OVER
THEN

;FDUP 'AD* STO 1 - DUP

FIN 2
THEN

DROP
ELSE
ENDDUP 2 DISP 1088 .97 BEEP +

ELSE
+ LEN + 'AD' STO
NDE

UNTIL
AD FIN 2

END
»

»

»

ROMSEARCH(# SE4Eh)
&

> MOTIF
«

MOTIF # ©h # (BB@6h 'PEEK' SEARCH MOTIF
70006h # 99006h 'HRPEEK' SEARCH +

>

»

RAMSEARCH# 88ABh)
€

¢/opBoh # 70665h # Sh PEEK STR»A 'PEEK’
SEARCH

263

MODUSERARCH(# CB6Dh)
&«

+ PORT
<«

IF
PORT 1 # PORT 2 # AND

THEN
Ah DOERR

END
78421h PORT 11 =+ +
> ADOR
€

ADR #1h PEEK STR+A
+ FLAGS
<«

FLAGS # 8h AND # Bh ==
HEN
Ah DOERR

ND

HE';ILHGS # 2h AND # Bh #

ND"PURT MERGED-USE RAMS" DOERR

STR+A DUP # 1006066h
STR*A - + 'PEEK' SEARCH

D +

=
3 a
n
> I

m
r
r

264 PART THREE: LIBRARY OF PROGRAMS

CRC

This program calculates the cyclic redundancy control (CRC) used by the
HP 48to verify data in certain objects. The program takes a string of hexa-
decimal codes (like those accepted by GRSS) and returns the correspond-
ing checksum.

For example, " 123456789ABCOEFB" CRC returns #ABECh on the stack.

CRC # 9D@gh)
&«

6Bh
+ S CRC.V

SXXSUBMJM48-DUP9>? # Bh
16~ SWAP CRC.Y_XOR # Fh AND

'CRC.V' STO3
=

— A (s
n]
uy
]

—
t

T
F
<

* > o
\

r
n

Here is a faster version written in machine language:

CRCLM # D298h)
D90z8 E4A20 ABBBB 00088 CBZA1 CCD?8 CCHBY 8FBIY
60147 13416 91741 43131 17414 70517 43458 BOLE}L
8A997 DB14B 31838 6A319 B9EA9 B3178 B6A14 67CoH
34F09 BBOEF 3DB8W 82168 C/A6C SAFCB 88821 48C7A
6CoAF CB142 F4/42 6DB14 41713 42008 BEESF 8FZ207
88%?% %?gg@ 8CD7F EBEF2 DFFCO EFZBE FBO1D BBF18

265

CALC

CALC is a collection of programs that will perform arithmetic calculations
with large integers. The HP 48 can already do arithmetic with integers, but
only those in the range from 0 to 18446744073709551615. These pro-
grams can use integers that are as large as your memory will permit. As
examples, they were used to calculate the factorial of 2000 (more than
5000 digits!), and the square root of 2, accurate to 500 decimal places.

These functions work with positive integers represented in string form.
(Forexample, "1234567898"is the integer 1234567890). The functions:

ADD to add two integers;

SUBS to subtract two integers and return the absolute value;

MULT to multiply two integers;

BFACT to calculate the factorial of the integer given as an argument.
It does this by making successive multiplications, and displays on
the screen the currentresult as well as the number of multiplications
left, so that the user can get an idea as to when it will be finished.

POW will raise the integer in level 2 to the powerin level 1 (just like
the * function). As withBFACT, step numbersare displayed to show
what work is left to do (0 will be displayed whenit's done).

E multiplies the integer in level 2 by 10 raised to the powerin level
1.

DIV divides the integerin level 2 by the integer in level 1, and returns
the integer part.

MODU is the modulo function. It returns the remainderof the integer
in level 2 divided by the integer in level 1.

SOR calculates the integer part of the square root of the argument
given.

These programs all use subroutines, most of which are written in assem-
bly. The commented source listings arefirst, then the hexadecimal codes.

266 PART THREE: LIBRARY OF PROGRAMS

DECODE.LM

This program converts an integer in a special format used by ADD.LHN,
SUB. LM, and MULT.LM into an integer in string form.

CCD2@
beginB6868

8FB9760

I1

2

end

132

CON(5)
CON(5)
GOSBYL
A=DAT1
ADGBex

DB=DG+
LCHEX
A=DATB
A=A-C

PROL _CODE
(end)-(begin)
SAVE_REG

o
D
A

W (
s

D
k

N

OARD_REG

D
D
N

N
)
—

Code object
Code Length
Backup regs.

DoO=address of object
in stack level 1

Object length

D1=address of object
in stack level 2

Done?
Yes --> end

Read a digit

One digit less

Restore regs.
Return to RPL

267

ENCODE.LM

This is the inverse function of DECODE.LM. It will convert an integer in
string form into an integer in a special format.

CCD28
 begin76060

I

2

end

268

8FB9768
14
132

W
O

CONCD)
CONCD)
GOSBYL
A=DAT1
ADBex

D@=D8+
LCHEX
A=0ATH

PC=(A)

PROL _CODE
(end)-(begin)
SAVE_REG

OAD_REG

A
N
D
C
—
D
—
"
0
V
—
M
N
0
—
D
D

D
N

Code object
Code length
Backup regs.

DO0=Address of object
in stack level 1

Object length

D1=Address of object
in stack level 2

Done?
Yes --> end

Read 1 digit

One digit less
Loop
Restore regs.
Return to RPL

PART THREE: LIBRARY OF PROGRAMS

FORMAT.LM

This program will remove any leading zeros from an integer (convert
"98123" to "123", for example).

CCDZ8 CONC5) PROL_CODE Code object
beginSEBBH CON(5) (end)-(besin) Code length

8FB9/68 GOSBYL SAVE_REG Backup regs.
143 A=DAT1 A
136 D8=A DO=Address of object

in stack level 1
169 Do=DB+ 18
174 D1=Dl+ 5
143 A=DAT1 A
131 D1=A D1=Address of object

in stack level 2
174 D1=Di+ 5
143 A=DAT1 A Objectlength
818F84 A=A-5 A
172 D1=Di+ 3
D3 D=8 A Number ofzeroes

to remove
1171 Di1=D1+ 2

E’ D=D+1 A
818F81 A=A-2 A
8A8 7A=H A Done?
BA GOYES 12 Yes --> end
1579 C=DAT1 P
96A 7C=0 P A zero?
9E GOYES 11 Yes --> loop

I2 DB C=D A
144 DATB=C A write the number of

zeros to remove
8Fe07e8 GOSBYL LOAD_REG Restore regs.
142 A=DAT8 A Return to RPL
164 DB=Dg+ 5
868C PC=(R)

end

269

ZERO.LM

This program sets the integer given as an argument to zero,in the special
integer format.

CCDZa
begin34600

?589?68

131

W
O

/1 SR8

b
2 8F20768

end

270

CONCS)
CONCS)
GOSBYL
A=DAT1
D1=A

PROL _CODE
(end)-(begin)
SAVE_REG

%
.
—
b

D_REG

l
’
.
J
'
l
:
D
l
—
r
—
"
_
'
D
C
D
C
D
r
'
G
Z
D
E
D
D

D
O
N

Code object
Code length
Backup regs.

D1=Address of object
in stack level 1

A=number of 8-digit
blocks forthis object

Done?
Yes --> end
Set to zero

Loop
Restore regs.
Return to RPL.

PART THRee: LiBRARY OF PROGRAMS

ADD.LM

This program will add two integers. It works with blocks of 8 digits.

beginS?BgB

I

2

end

CCD28

/60

8
9

4
3
1

4
7

o
O
h
b
d
W
A

O
V
W
-
A
T
W

CONC3)
CDN(SE

D1+

T
D
O
O
o
O
O
O
0
O
0
O
O

=
i

=
=
l

Y
O
O
I

Al

PROL _CODE
(end)-(begin)
SAYE_REG

18

ma
ld

y)
OAD_REG

N
D
C
—
O
I
D
O
0
0
0

=
Z
0
0
0
E
0

O
E
Z
E
—
D
O
E
N
D
I
D
I
D
I
D
O
A

Code object
Code length
Backup regs.

DO=Address of object
in stack level 1

D1=Address of object
in stack level 2

D= # of blocks for oby.

Carry to zero
Done?
Yes --> end

Carry
Decimal mode
Read first block
Add to carry
Read second block
Add
Hexadecimal mode
Read result
Next blocks

One block less
Carry --> P
Loop
Restore regs.
Return to RPL

27

SUB.LM

This program will subtract two integers. It works with blocks of 8 digits.

I

2

CCD28 CONCS) PROL_CODE Code object
begin6?888 CON(5) (end)-(besin) Code length

8FB9768 GOSBVL SHVEREG Backup regs.
143 A=DAT1 A
138 08=A DO=Address of object
169 De=Dg+ 10 in stack level 1
174 Di1=Di+ 5
143 A=DAT1 A
131 =A D1=Address of object
174 D1=D1+ 5 in stack level 2
147 C=DAT1 A
C6 C=C+C A
F6 CSR A
D? D=C A D= # of blocks in obj.
174 D1=D1+ 5
AFB A=8 W No carry
8AB D= A Done?
23 GOYES 12 Yes --> end
F2 C=9 W
15E7 =)ATA 8 Read 1 block
5 SET Decimal mode
/A A=A+C W Add to carry
15F7 C=DAT1 8 Block to subtract
Br2 C=C-A W Subtraction
B4 SETHER Hexadecimal mode
1507 DAT1= 8 Write result
1 D1=D1+ 8
167 De=DB+ 8
CF D=D-1 A One block less
AFH A=0 W
94A C=0 S Carry?
40 GOYES 11 No --> loop
Bo4 A=A+1 B Save the carry
6ECF GOTO 11 Loop
8F20/68 GOSBVYL LOARD_REG Restore regs.

HBD%B g Return to RPL
+

end

272 PART THRee: LIBRARY OF PROGRAMS

MULT.LM

This program will multiply two integers. It does this calculation much like
you would do it by hand on paper by working with one digit at a time.

CCD28
beginC1188

8FB9
143
818F@9
181

174

133

760

CONC3)
CONCS)

SBYL
A=DAT1
A=A+10
R1=A

o o

D1=D1+
A=0AT1
ADlex

D1=D1+

PROL_CODE
(end)-(begin)
EHVE_REG

A

N
=
E
E
E
E
D
D
E
W
L

D
o

D
=
=
=

Code object
Code length
Backup regs.

R1=address of con-
tents of level-1
object (the result)

D1=Address of object
in stack level 2

Number of blocks of
integerin level 2

R3=address of con-
tents of level-2 obj.

D1=address of object
in stack level 3

273

182 RZ2=R R2=address of object-
3 contents

11 99F D48 M More work?
60 GOYES 12 Yes --> continue
66908 GOTO 17 No --> stop

2 113 A=R3
131 El=fl 5

15F8 C=DAT1 1 Read a digit
D=C B

170 D1=Di+ 1
133 ADlex
183 R3=
RASF D=D-1 M Oneless digit
112 A=R2
131 D1=
ADD CBex M
AD9 C=B M
111 A=R1
138 DB=A
E4 A=A+1 A
181 R1=
96B D=0 B Muit by zero?
1C GOYES 11 Yes --> done
RE2 C=8 B

13 95D TB#8 M Again?
AB GOYE 14 Yes
1509 DATB= 1 No --> write final carry
62BF GOTO 11 And loop

14 B6 RSTK=C Backup C
1580 E=BHT1 é Read a digit

85 SETDEC Decimal mode
AE1 =B B

5 822 SB= 3
81968 ASRB P 3
832 75B= 3
8 GOYES 16 s Multiplication

A6l B=B+C B 3
16 H66 C=C+C B 3

96C TAHO P 3
AE GOYES 15 ’
a7 C=RSTK
A69 C=C+B B Add the carry
AEB A=0 B

274 PART THREE: LiBRARY OF PROGRAMS

17

end
N
D
I
C
—
O
Z
r
—
r
—

—
0
r
—

3
ORD_REG

Add to existing
Write result
Hexadecimal mode

Update carry
Loop
Restore regs.
Return to RPL

275

DIV.LM

This program divides two integers and returns the integer part of the result.

CCDZA
begin 76.100
®9NPR760

130

164

F84
Fo

P
t
s

s
P
t
e
t
b
O
O
O

£
W
O

r
—
_
h

W
L

N
I
N
-
A
W
W
D
O
O
N

o
0Fa?

S
O

H
I
O
—

g@
l
W
H
A
I
D
W
H

la
v]
-

] Q
o
—

N
~
H

—
D
—

0
0
0
0
+
—
0
0
)
+
—
+
—
0
0

n
m

—
(
)
=
=
O
=
D
o
(
)

W
W
W
O
W
O
O
S
0
0

J
e
—

— b

276

CONCS)
CONCS)
GOSBVL
A=DATI1
De=A

PROL_CODE
(end)-(begin)
SRVE_REG

D
U
N
D
D
D
N

g
l

D
O
D
D
D
N

U
0
D
D

D
D
O
D
D
D
D
U

Code object
Code length
Backup regs.

DO=Address of object
in stack level 1

R3= # of digits

R2=address of con-
tents of level-1 obj.

Next object
A=Address of object

in stack level 2

Next object
A=Address of object

in stack level 3

Next object
A=Address of object

in stack level 4

object 4 length

of digits in object 4

PART THREE: LIBRARY OF PROGRAMS

2

13

14

I5

A Again?
12
19 No --> end
A One less digit

S 8

3
H .

A 5
A s
A
E Elnitializations

S :
3

; o car
A Again ?ry
15
%{? No --> next

B Decimal mode

1 Read 1 digit
? Add to carry

A Subtract

A

1 Re-write
2

A
% Oneless digit

; Carry?arry’

i -es --> car
14 >

277

16

17

18

19

110

end

278

=
(
=
P
O
—

—

—

B
N

T

8F20760
822
81943
832

P
e
l
P
t
s
P
s

P
t

—T
0)

H
O
D
B
D
H
I
D

N
b
r
—
a
J
b
W
-
p
H

1C4
142
164
8a8C

o
b

o
y

D
N
E
W
H
C
D
H
C
D

~
N
w

— v

N
D
N
D
N
D
D
N
D
U
N
—

No carry

Carry at end
Yes --> stop
Increment quotient
Loop

Write quotient

Loop
Restore regs.

Need to change order
of stack objects?

{VO --> end

B
\
B
E
A
s
s

m X 0 ér D
w
3
o o < rn 0 "

B
e
s
e
s

P
t
g
t

o
3

< D
-
'
< D o1
}
3

3
3
Return to RPL

PART THREE: LiBRARY OF PROGRAMS

DECODE.LM@# D626h
CC028 BoBbd BFB9/
16417 41431 33174 1
EB150 1166C D6REF

ENCUDELI'I # BOBASH
’obb8 B8FB3?

1641? 41431 33174
08160 CD6AE F8FZD

FORMAT.LM@ 3371h
CCD28 ESBBY S8FB9?
3818F 84172 D3171
448F2 07681 42164 8Y8C

ZERO.LM# 69AAh
CC028 54008 8FB9Y
ASFB1 50717 /CC6l

HDDLI'Ié# E/4Ch)
57868 8FBI?

?C6F6 07174 AFB28
35284 15071 67177

SUB.LHé# C14h)
CCDZ28 67089 8FB9Y
¢CeF6 D7/174 AFBSA
gggl? /167C FAFB9

MULT.LM@ RCDBh
CCOz8 C1199 8FBI/
4AF21 47818 FR4BF
13117 4AF21 47818

AEB1S ABARGZ 15C60
86

P4C4F
885C

4AF28

8
Dr681

279

DIU.LHé# AD61h)
CCD28 76106 SFB9Y 68143 13816 41428 18F84 819F0
18316 41321 62174 14381 8FB/D 81741 43138 16717
41438 18F@4 13114 ¢CAS1 8F811 0B818 FA481 9r210
9AC31 138AC 6B61B BLC18 3AC21 11DED /DEI3 6C2C2
C8C8D D136B 40119 131RE 28AF6 B6/48 CFBSR EBLSH
BAc21 SABEE B84DC1 3215C 81811 320C1 811C1 A8
ARG31 186DB FAE26 6BF96 E9BB4 6658F 16113 60013
6161B 47112 13115 54171 13318 2694F 8F2D/7 68822
gégli? 832A1 17414 31741 47141 1C414 51C41 42164

DI':'{.C # BSCzZh)

EEH'IHT "g" SWAP + SWAP FORMAT "@" SWAP +

VER "@B" ==

THEN
LS%RUPZ # 305h DOERR

DUP NEWOB DUP 1 OVER SIZE 6 PICK SIZE - 1
SUB_DIV.LM SWAP ROT DROP DUP SIZE DUP 5 ROLL
SIZE - 1 + SWAP SUB

>

NULT.%# 7E’Ch
« DUP2 + ZERO.LM MULT.LM 3 ROLLD DROPZ =»

PREPFIRE # 1806h)

EURNHT SWAP FORMAT » N1 N2

IF
N1 SIZE N2 SIZE DUPZ >

THEN
DROPZ N2 Nl

LSE

<
THEN

N1 N2

280 PART THRee: LiBRARY OF PROGRAMS

END
EN%PQ%%?NHP ENCODE DUPZ SIZE SWAP SIZE SWAP

WHILE
DUP2 SIZE >

REPE%I
+

END
1 ROT SUB +

2

»

DECODE ¢# AB4Dh)
« DUP DUP + SWAP DECODE.LM DROP FORMAT »

ENEUDE(# 19A0h)

"geeeneg" SWAP + DUP SIZE 8 MOD 1 + OVER SIZE
BHEPDUP 1 OVER SIZE 2 ~ SUB ENCODE.LM SWAP

»

FORMAT (# E1BZh)
&«

"g" SWAP + # FFFFFh NEWOB FORMAT.LM B»R OVER
SIZE SuB

»

281

NUgU (¢ FB9Gh)

IF
FORMAT DUP "g" ==

THEN
ELSE

DIV.C SWAP DROP FORMAT
END

>

DIV # 606Rh
« DIV.C OROP FORMAT »

E (t SRY9Eh)

+STR STR» DUP
> N
«

IIBII

WHILE
NDUP 2~ IP 'N' STO

REPEAT
DUP +

END
1 ROT SUB +

»

»

PUE(# D4DBh)

*SIR STR»
> N
<

ENCODE 1 ENCODE
WHILE
NDUP 1 DISP B8 #

REPERT
IF
N2~ DUP IP 'N' STO FP

THEN
OVER MULT.C

282 PART ThRee: LiBRARY OF PROGRAMS

END
ENDSNHP DUP MULT.C SWAP

SWAP DROP DECODE
>

»

SGR (# C265h)
&«

69"+ FORWAT OUP 1 OVER SIZE 2 - SIB
<>

&«

DO
%A OVER DIV AOD 2 DIV
R OVER 'R' STO ==

END
R'1 OVER SIZE 1 - SUB

>

»

BFACT (¢ 23ESh)
&

E&ERXSTR-) DUP 2 DISP 1 ENCODE 1 ROT

a DUP 1 DISP ENCODE MULT.C
NEXT
DECODE

»

MULT (# ECSth[W
« ENCODE MULT.C DECODE »

SUBS(¥ 2a4th
« FSREPRRE)SUBLN OROP OECODE»

RDQ (# 781Ch)

PREPARE 8 CHR DUP + DUP + ROT OVER + 3 ROLLD +
ADD.LM DROP DECODE

»

283

Factorial 2000

This result was obtained using the programs in CALC, listed previously.

331,627,509,245,063, 324,117,539, 338,057, 632,403,828,111, 720,810, 578,039,
457,193,543,706,038,077, 905, 600,822, 400,273, 230,859, 732, 592, 255, 402, 352,
941,225,834,109,258,084,817,415, 293,796,131, 386,633,526, 343, 688,905,634,
0s8,556,163,940,605,117, 252,571,870, 647,856, 393, 544, 045, 405, 243,957, 467,
037,674,108,722,970,434,684,158,343,752,431, 580,877,533, 645,127,487, 995,
436,859,247,408,032, 408, 946, 561,507,233, 250,652,797, 655, 757,179,671, 536,
718,689,359,056,112,815,871,601,717,232,657,156,110,004,214,012,420,433,
842,573,712,700,175, 883, 547,796,899, 921, 283,528,996, 665, 853, 405, 579, 854,
903,657, 366,350,133, 386, 550,401,172,012,152,635,488,038, 268,152,152, 246,
920,995,206,031, 564,418, 565,480,675, 946,497,051, 552, 288, 205, 234,899, 995,
726,450,814,065,536, 678, 969,532,101, 467,622,671,332,026, 831, 552,205, 194,
494,461,618,239,275, 204,026,529,722,631,502,574,752,048, 296, 064,750, 927,
394,165,856,283,531,779, 574,482,876, 314, 596,450, 373,991, 327,334,177, 263,
608,852,490,093,506, 621, 610,144,459,709,412,707,821,313,732, 563,831,572,
302,019,949,914,958,316,470,942,774,473,870,327, 985, 549, 674,298, 608,839,
376,326,824,152,478, 834,387,469, 595,829,257,740, 574, 539, 837, 501, 585, 815,
468,136,294,217,949,972, 399,813,599, 481,016, 556,563,876, 034, 227,312,912,
250, 384,709,872,909, 626, 622,461,971,076, 605,931, 550,201, 895,135, 583,165,
357,871,492,290,916,779,049,702,247,094,611,937,607,785,165,110, 684,432,
255,905, 648,736,266, 530, 377, 384, 650, 390, 788,049, 524,600, 712, 549,402,614,
566,072,254,136,302,754,913,671,583,406,097,831,074, 945, 282, 217,490,781,
347,709,693,241,556,111, 339,828,051, 358, 600, 690, 594, 619, 965, 257, 310, 741,
177,081,519,922,564,516,778,571,458,056, 602, 185, 654, 760, 952, 377,463,016,
679,422,488,444,485,798, 349,801, 548,032, 620,829,890, 965, 857, 381, 751, 888,
619,376,692,828,279,888,453,584,639,896, 594,213,952, 984, 465, 291,092,009,
103,710,046,149,449,915, 828, 588,050,761,867,924, 946, 385, 180,879,874,512,
891,408,019, 340,074, 625, 920,057,098, 729, 578,599, 643, 650, 655, 895, 612,410,
231,018,690,556,060, 308, 783,629,110, 505, 601, 245, 908, 998, 383,410,799, 367,
902,052,076,858,669, 183,477,906, 558, 544, 700,148,692, 656, 924, 631,933, 337,
612,428,097,420,067,172,846,361,939,249, 698,628,468,719, 993, 450,393, 889,
367,270,487,127,172,734, 561,700, 354,867,477,509,102, 955, 523, 953, 547, 941,
107,421,913,301,356,819,541,091,941,462,766,417,542,161, 587, 625,262, 858,
089,801,222,443,890,248,677,182,054,959,415,751,991,701, 271,767,571,787,
495,861,619, 665,931,878,855,141,835,782,092,601,482,071, 777, 331,735, 396,
034,304,969,082,070, 589, 958,701, 381, 980,813,035, 590, 160, 762, 908, 388, 574,
561,288,217,698,136,182,483,576,739,218,303,118,414,719, 133, 986,892, 842,
344,000,779, 246,691, 209,766,731,651,433,494,437,473,235,636,572,048, 844,
478,331,854,941,693,030,124,531,676,232,745,367,879,322,847,473,824, 485,
092,283,139,952,509, 732, 505,979,127,031,047, 683, 601,481, 191, 102, 229, 253,
372,697,693,823,670,057, 565,612,400, 290,576,043,852,852, 902, 937, 606, 479,
533,458,179,666,123,839, 605,262, 549,107, 186,663,869,354, 766,108,455, 046,
198,102,084,050,635,827,676,526,589,492,393,249,519, 685,954,171,672,419,
329,530,683,673,495, 544,004, 586,359,838,161,043,059, 449, 826, 627, 530, 605,
423,580,755,894,108, 278, 880,427,825, 951, 089,880,635,410, 567,917,950, 974,
017,780, 688,782,869, 810,219,010, 900, 148,352,061, 688,883, 720, 250,310, 665,
922,068,601,483,649,830,532,782,088,263, 536,558,043, 605, 686, 781,284,169,
217,133,047,141,176,312,175,895,777,122,637,584,753,123, 517, 230,990, 549,
829,210,134,687,304,205,898,014,418,063,875,382,664,169,897,704,237,759,
406,280,877,253,702, 265,426,530, 580,862, 379,301,422,675,821,187,143, 502,
918,637,636,340,300,173,251,818,262,076,039,747,369, 595, 202, 642,632, 364,
145,446,851,113,427, 202,150,458, 383,851,010,136,941,313,034,856,221,916,

284 PART THRee: LiBRARY OF PROGRAMS

631,623,892,632,765,815, 355,011,276,307,825,059,969, 158, 824, 533,457,435,
437,863,683,173,730,673, 296, 589,355,199, 694,458,236,873, 508, 830,278,657,
700,879,749,889,992, 343, 555, 566, 240,682,834,763,784, 685, 183,844,973, 648,
873,952,475,103,224, 222,110, 561,201, 295,829,657,191, 368, 108, 693,825,475,
764,118,886,879, 346,725,191, 246,192,151,144,738,836,269, 591, 643,672,490,
071,653,428,228,152,661,247,800,463,922,544,945,170,363,723,627,940,757,
784,542,091,048, 305,461, 656,190,622,174, 286,981,602,973, 324,046, 520,201,
992,813,854,882, 681, 951, 007, 282, 869,701,070,737, 500,927, 666,487, 502,174,
775,372,742,351,508, 748, 246,720,274,170,031, 581,122,805, 896,178,122, 160,
747,437,947,510,950, 620, 938, 556, 674, 581,252,518, 376, 682, 157,712,807, 861,
499,255,876,132,352, 950,422, 346, 387,878,954,850,885, 764, 466, 136, 290, 394,
127,665,978,044, 202,092, 281, 337,987,115,900,896, 264,878, 942,413,210,454,
925,003,566,670,632, 909, 441,579, 372,986,743,421,470,507, 213, 588,932,019,
580,723,064,781,498,429, 522, 595, 589,012, 754,823,971,1773, 325,722,910, 325,
760,929,79%90,733,299, 545, 056, 388, 362, 640,474,650,245,080,809, 469,116,072,
632,087,494,143,973,000,704,111,418,595,530,278,827,357, 654, 819,182,002,
449,697,761,111, 346,318,195, 282,761, 590,964,189,790,958, 117, 338,627,206,
088,910,432,945,244,978,535,147,014,112,442,143,055, 486, 089, 639,578, 378,
347,325,323,595,763, 291,438,925, 288,393,986,256,273,242, 862,775, 563, 140,
463,830,389,168,421,633,113,445,636,309,571,965,978,466, 338, 551,492,316,
196,335,675,355,138,403,425,804,162,919,837,822,266,909, 521, 770,153,175,
338,730,284,610,841, 886, 554,138, 329,171,951,332,117,895, 728, 541, 662,084,
823,682,817,932,512, 931,237,521, 541,926, 970,269,703,299, 477, 643,823, 386,
483,008,871,530,373, 405, 666, 383,868,294,088,487,730,721, 762, 268,849,023,
084,934,661,194,260,180,272,613,802,108,005,078,215,741, 006,054, 848, 201,
347,859,578,102,770,707, 780, 655,512,772, 540,501, 674,332, 396, 066, 253,216,
415,004,808,772,403,047,611,929,032,210,154, 385,353,138, 685, 538,486,425,
570,790,795, 341,176, 519, 571, 188, 683,739,880,683,895,792, 743, 749, 683,498,
142,923,292,196,309,777,090,143,936,843,655, 333,359, 307,820,181, 312,993,
455,024,206,044,563, 340,578,606, 962,471,961, 505,603, 394, 899, 523, 321, 800,
434,359,967,256,623,927,196,435,402,872,055,475,012,079, 854, 331,970,674,
797,313,126,813,523, 653,744,085, 662,263,206,768,837,585,132, 782,896,252,
333,284,341,812,977,624,697,079,543,436,003,492,343,159, 239, 674,763,638,
912,115,285,406,657,783,646,213,911,247,447,051,255,226, 342,701, 239, 527,
018,127,045,491, 648,045, 932, 248,108,858,674, 600,952, 306, 793,175, 967,755,
581,011,679,940,005, 249, 806, 303,763,141, 344,412,269,037,034, 987, 355,799,
916,009,259,248,075,052, 485, 541, 568, 266, 281,760,815, 446, 308, 305, 406,677,
412,630,124,441,864,204,108,373,119,093,130,001,154,470, 560,277,773,724,
378,067,188,899,770,851,056,727,276,781,247,198,832,857, 695, 844,217,588,
895,160,467,868,204,810,010,047,816,462,358,220,838,532, 488, 134,270,834,
079,868,486,632,162, 720, 208,823,308,727,819,085,378,845, 469, 131, 556,021,
728,873,121,907, 393, 965, 209, 260, 229,101, 477,527,080, 930, 865, 364,979,858,
554,010,577,450,279, 289,814,603, 688,431,821, 508,637,246, 216, 967,872,282,
169,347,370,599,286,277,112,447, 690,920,902, 988,320,166, 830,170,273,420,
259,765,671,709,863, 311,216, 349,502,171,264,426,827,119, 650, 264,054,228,
231,759,630,874,475,301,847,194,095,524,263,411,498, 469, 508,073, 390,080,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 00, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000,000, 000C.

285

Pl

Calculating 7 has always been a fascinating problem for mathematicians.
Today, with computers,it is possible to calculate 1 accurately to millions
of decimal places. Using the CALC programs, we will also make this
calculation. However, because of the limited RAM, we can only calculate
a few thousand decimal places.

There is a well known formula:

n 1 1 1: _Am(2)+Am(5)+Am(8)

And we know that Atan can be calculated by:

- n x?.n+1

Atan(x) + z(_l) 2n+

which converges faster as x gets smaller.

We have, therefore:

SB
2n+1

As CALC can only manage positive integers, we must multiply everything
by a power of 10, and keep track of the sign manually. The program Pl
makes this calculation. It takes a real number from the stack which is the
number of significant digits you would like to calculate PI to.

Pl will constantly display the current step number (2n+1) as well as the
number of digits left to calculate. It takes about 10 seconds per decimal
during the calculation (depending on the amount of free memory, the
number of decimals desired, and other things).

286 PART THRee: LiIBRARY OF PROGRAMS

Here are a few decimals of PI:

3.1415926535897932384626433832795028841971693993751058209749445923078164
062862089986280348253421170679821480865132823066470938446095505822317253
594081284811174502841027019385211055596446229489549303819644288109756659
334461284756482337867831652712019091456485669234603486104543266482133936
072602491412737245870066063155881748815209209628292540917153643678925903
600113305305488204665213841469519415116094330572703657595919530921861173
819326117931051185480744623799627495673518857527248912279381830119491298
336733624406566430860213949463952247371907021798609437027705392171762931
767523846748184676694051320005681271452635608277857713427577896091736371
787214684409012249534301465495853710507922796892589235420199561121290219
608640344181598136297747713099605187072113499999983729780499510597317328
160963185950244594553469083026425223082533446850352619311881710100031378
387528865875332083814206171776691473035982534904287554687311595628638823

PI @ CFeDh)
&

1
8 DIV

S' ST0 A 4 DIV
DIY DUP 'B' STO
STO
UP 'N' STO

DUP 1 DISP DIV DUP SIZE 2 DISP
UNTIL

ouP "g" ==

END
DROP T ¢4 MULT 2 P SUB "3." SWAP +

»

»

287

VAL

This program evaluates a polynomial at any point. The first argumentis
the polynomial in vector form; the second is the point (real, complex, alge-
braic or name). To evaluate ¥*+2x+1 atx=2,type[1 2 1 1 2 VAL

VAL # 2681h)

° V X

‘ V SIZE LIST» DROP » A

’ 8 1A
FOR ¥
VYCGTXAY - %+

NEXT

DER

This program takes the derivative of a polynomial in vector form. For ex-
ample,to take the derivative of 3x%+2x+1,type [3 2 1 1 DER

DE& (# 90863h)

ARRY»> LIST» - » A
« [ROP

A ==

THEN
[6]

ELSE
1 A
FOR ¥

X * A ROLLD
NEXT
A 1 »LIST -ARRY

END

288 PART THREe: LIBRARY OF PROGRANS

A?V and V*A

A=V will convert a polynomial in algebraic form to vector form, and YA will
convert a polynomial in vector form to algebraic form.

Example: '3*X*2+2#K+1' AV returns[3 2 1 1.

Note that the program V2R uses the program VAL listed previously.

FI-fli (# 660h)

{38 'l' STO
DO

g 'X' ST0O OVER EVAL I FACT ~_1 sLIST SWAP +
SWAP 'KX' DUP PURGE » 1 'I' STO+ SWAP

UNTIL
EhDWER 8 SAME

SWAP DROP 'I' PURGE LIST» 1 »LIST -+ARRY
>

V2R (# 4E46h)
« 'R VAL »

289

DIVP

This program will calculate the Euclidean division of two polynomials in
vector form. For example, to divide the polynomial x?+2x+1 by the
polynomial x+1,type:[1 2 1 1 [1 1 1 DIVP. The program will
return the quotient in level 2, and the remainderin level 1.

DI':’:P (¥ 28E3h)

{DUPZ +AB

B 1 GET R SIZE 1 GET B SIZE 1 GET DUP2 -
>cnpaq

IF

THEN
DROP2 A c [8]

ELSE
¥ q
R
OVER 1 GET c ~ DUP 4 ROLLD #* n x -
1 SLIST ROM
- ARRY»> 1 GET 1 - ARRY SWAP DROP B

NEXT
ENDDROP q 2 + ROLLD 9 1 + »ARRY SWAP

290 PART THREE: LUIBRARY OF PROGRAMS

PCAR

PCAR will calculate the characteristic polynomial of any square matrix. The
resultis a polynomial in vector form. This vector can then be used with the
program LAGU in orderto find the roots of the polynomial, which makes
it easy to calculate all the correct values of the matrix.

Example: 3 IDN PCAR returns[1 -3 3 -1 1 (i.e. x¥-3x%+3x-1)

PCAR (# DB94h)
€

DUP IDN DUP SIZE LIST» DROPZ » M I N
<«

B N
FOR ¥

M T K * - DET
NEXT
N1+ 1-LIST »ARRY N 1 + IDN B8 N
FOR X

B N
FOR Y
Rl +NY-1+205-LISTRKY *PUT

291

LAGU

This program will find all the real and complex roots of any polynomial
(which has real or complex coefficients). To use it, place the polynomial
on the stack (in vector form) in order of decreasing coefficients of x': [a,
.. a,], the coefficient a, being the coefficient in front of the term x', and
execute LAGU. The program will display the different steps of the cal-
culation, and return a list of roots of the polynomial.

LAGU uses Laguerre’s algorithm to make the calculation: Z is fixed (an
approximation of the root. We can use 0 or the value of the previous root,
which saves a lot of time when calculating multiple roots), and calculate
Z,. =2 +S,,where Sis the Laguerre step equalto:

- -”-P(Zt)

P/(Z,)+Ey((n-1DP'(2,))’ - n(n—DP(Z,)P"(Z,)

In this formula, n is the degree of the polynomial, and P is the polynomial,
P’ is its first derivative, and P"’ is its second derivative. E can be either +1
or -1 to make the denominator as large as possible, in order that the
Laguerre step be as small as possible.

Caution: If the polynomial has roots with large multiplicity , the process will
oscillate without ever converging. The approximations are best for a
polynomial of degree less than 7, and with a maximum multiplicity of 4.
LAGU uses the programs VAL, DER, and DIVP previouslylisted.

Example: To find the roots of x%14.x*49.x%36 , just type:

[18-14 849 8 -36 1 LAGU

A few moments later, we getthe list of the six roots of the polynomial:

{123-1-2-31

292 PART THRee: LiBRARY OF PROGRANMS

LAGU # BABFh)
&

IF
?'IUP SIZE { 1 } ==

%?UP {3

EhLCD { 3 'SO0L' ST0 @8 'Z' ST0

DUP DUPZ 'P' STO 1 DISP 'Z' VAL SWAP DER
DUP 'Z' VAL SWAP DER 'Z' VAL P SIZE LIST»
- DUP 1 - DUP SQ 3 PICK 3 PICK * NEG
> PBPLPZNMAB
&«

"Root No " N »STR + 2 DISP Z
WHILE

bup 'Z' STO 3 DISP P8 EVAL DUP ABS
. 100666060681 >

EPEAT
P1 EVAL P2 EVAL
> RST

SASSA *BRT * x + I DUPZ
DUPZ + HBS 3 ROLLD - ABS » 2 «
1 - = + DUP

o8 .1 BEEP OROP RAND 40 * 28 -
RAND 48 * 28 - RsC "/B New Z0"
2 DISP

LSE
N NEG R = SWAP ~ Z +

END
»

END
DROP

»

SOL Z + 'SOL' STO P 1 Z NEG { 2 3
+ARRY DIVP DROP

UNTIL
DUP SIZE LIST» <

END
DROP { 2 P } PURGE SOL

END

293

PMAT

This program will calculate the image of any square matrix by a polyno-
mial. Ittakes the matrix and the polynomial (in vector form) as arguments.

Example: To calculate the image of the identity matrix of order 3 by the
polynomial 3x%+2x+1,type3 IDN [3 2 1 1 PMAT

PMAT (# 844Ch)
&«

SWAP OVER SIZE 1 GET » V X L
€

R B CONXINLI
FOR ¥

DUP V ¥ 1 »LIST GET # ROT + SWAP X * -1
STEP DROP

>

294 PART THRee: LiBRARY OF PROGRAMS

mSOLVER

mSOLVER will solve a system of non-linear equations containing many
unknowns, by using the Newton-Raphson algorithm. To use mSOLVER,
you place the various equations to be solved into a list, and store it in
'MEQ'. For example, the following system of equations will find the
intersection of two circles. You store it as a list into 'MEQ" :

{ 'SQCKI+SACY)=1" 'SQ(X-1)+50C(Y)=1' } 'MEQ' STO

Next, you place the names of the unknownsinalistand storeitin 'MVAR' .
(Inthisexample: { X Y } '"MVAR' STO) At this point, you may also
store approximations in the unknown variables. This step is optional, but
it will speed up the solution. For example,youcanput linto'X' and 'Y"'.

Thenplace the desired precision on the stack (for example, 0.00001), and
execute MSOLVER. During the search,it will display the margin of error of
the current calculation. Note that mSOLVER will automatically handle any
errors (division by zero, etc.). Atthe end of the search, itwill place dif ferent
approximations on the stack, “tagged” by the name of the corresponding
variable. In our example, we would obtain:

4:
3:

2: 8 .5
1:Y: 8660825483782

mSOLVER has two particularities:

+ Itallows you to find complex roots. To make such a search, simply
use complex numbers as an initial approximation.

- Itcontains many IFERR...END loops, so it is difficult to interrupt the
program by pressing (on). To stop it, press (ON) twice rapidly.

mSOLVER was written by Christophe Dupont de Dinechin.

295

JACOB (# EB865h)
£

> EV
&

'tmp. jacob' CRDIR
tmp. jacob CLVAR
{ J1E
FOR e

1 V SIZE
FOR v

E e GET V v GET » +
EXTN

NEXT
EPDIR 'tmp. jacob' PURGE

»

MSEJ{LUER (# CC30h)

ELLCD MEQ MVAR » P E V

E V JACOB E SIZE V SIZE
+ J SE SV

DROP "Wariable Error" 1 DISP B8

DUP V¥ v GET STO
EXT

SV 1 »LIST -»ARRY
1 SE
FOR e

E e GET
IFERR

>N
THEN
END"Function Error: =" ERRM + 1 DISP ©

296 PART THREE: LIBRARY OF PROGRAMS

NEXT
SE é »LIST -ARRY

"Jacobian Error: =" ERRM + |
DISP B

END
NEXT

NEXT
SE SV 2 -LIST -+ARRY
* X FJ
€

"Singular system: =" ERRM + 1 DISP
ENDDROP RAND =

»

0BJ+ DROP
SV 1
FOR v

V v GET STO -1
STEP
TIL

ENUFIBS "Current error:=" OVER + | DISP P ¢

1 MVYAR SIZE
FOR

MVAR % GET DUP RCL SWAP -»TAG
NEKT

297

MAZE

In the game MAZE you are lost in the middle of a maze, and you must try
to find the exit as quickly as possible.

To play this game, you mustbegin by entering all the programs that follow .
Then, enter the CST menu (by pressing (CsT}—found to the left of the
button). This will activate the 6 menu keys. They each have the following
functions:

. starts the game. Firsta maze will be chosen, then the player
is placed inside, and the view is displayed on the screen. The X

represents your current position.

« [HI3¥] will redraw the current view.

« The four arrows are for moving around in the maze.

Inthe following listing, only one maze is given. Itis possible to add as many
others as you wish. The different mazes are containedin alist 'MAZES'.
This is a list of lists (one list per maze) which consist of the following:

« A complex number which is the coordinates of the exit.

« A list of 4 binary integers representing the map of the maze.

Coding the map isdoneinthe followingway. Eachmazeis a16 by 16 grid.
Each of the grid boxes can be either a haliway (0) orawall (1). The map
is converted to 4 binary integers. (4 times 64 bits), each one representing
a fourth of the maze.

An example is given on the following page.

298 PART THREE: LIBRARY OF PROGRAMS

This diagram is the map
of the maze. Each white
box represents a section
of hallway, each black box
a section of wall.

Thegrayboxes represent
“virtual walls™—areas out-

side the maze. Only one
of these boxes is white—|]

ettt the exit—located at co-
L u ordinates (11,16).

012345678 9101112131415
1500000000{0010110015
14(0 1 01 1 11 11 11000 0 114
13/10 1 01 00 00l0000 110 0[13
1201010101{1110101012
110 1 01 01 1 0]1 000 10 1 0|11
1010010000:0110101010
9(0 1 0011110010101 0|9
8|01 010001l01 00000 1|8
7[00100010100101110|7
6/0 001100110000 0110[6
501010101}011110005
4|01 0101 00J0100010 1|4
301010111}011101103
2/0 1 0000O0GO0|0O0OO0OOOTO0 0|2
1011101011111011101
0/0 0001 000j0001000 0|0
012345¢678 9101112131415

This table shows the codes for the map. Each section of wall is coded by
a 1, each section of hallway by a 0.

299

The entire maze table can be coded in quadrants, by 4 binary integers,in
the following order:

2|4

3

Those binary integers would be (ignore the line breaks):

1. # 10100010160110001010181608101010
111810166666681010101110660106606b

2. i 0009000061111101000001601816181810
81101018006016611111601810881816b

3. # 011168106000001160811110600010601081
811101160600060001110111660010686b

4. # 00110100100001110011000001018111
81010001018181100101016610600816b

Converting these to hexadecimal, in order, gives the following list:

{ # AZ96AAZAERBZAEIBh # FABAARGABSFZ8Ah
74067845/60077°08h # 3487385751565482h

300 PART THREE: LIBRARY OF PROGRAMS

Here is the listing of programs to enter:

AL @ 5B/Ah)
« O RDZ 16 RAND = IP »

BL1 # 4998h)
"' (This is not a NEWLINE character but rather ASCII 127,

obtained via 127 CHR)

BLZ # 3D27/h)
"" (asingle space)

TS (¢ 3E34h
« R+C SO # »

TV (# _5AB0h
« TVP SWAP TVP + »

TVP (# 115Fh2
« DUP B SWAP 15 > + »

ETET (# 85Ah)

DUP2
IF

TV
THEN

15
ELSE

DuP2 8 ~ IP SWAP 8 ~ IP 2 * + + LAB SWAP1
GET 3 ROLLD 8 MOD SWAP 8 MOD SWAP 16 SWAP

Em’“DUP#lh**SNHPZSNHP“*HND#Bh>

I4 & AClh)
«R1-Y>»

301

I3 # BE4rh)
€« X1 + Y »

12 (# D‘}Shf .
« XY

I1@# E9E3h)
« XY 1+ »

TEST (¢ B24fh)
«

1 'COUP' STO+ DUPZ

ETAT
HEN
"WALL" 1 DISP DROP2

LSE
'Y' STO 'K' STO VIEW

END
LSE

END"BRFIUO" 1 DISP DROP2 1468 .1 BEEP

3 FREEZE
>

CH # C52Dh
« ETAT 95 = 32 + CHR »

MH%ES (# 38FBh)

{
11, 16
HZ298AAZAEABZAE1Bh # FABAARGABSFZ8AK
r486/8457°6867/08h # 34873095751565482h

N
t(

{

302 PART THRee: LiBRARY OF PROGRAMS

£0¢

M3IAOLSX:01SA,
ON3

111NN
10N1H132dN30WW2d0ddo

8801S.dNo3,T01S.05,0LS.847,
d0dd«ISIT133dI+T=ONHY3ZISdNdS3ZHW

»

(4s23S#)LINI

32338d8d
w.ON3NOW.dSIO0€+d4UMS_Sd
Sd5I0S5+44MSS++1713H)[
HJ€I218HJ#I++178HJT1I17802710

(seoeds6s.jey))S€y

 o

*

"
>

(YelHe#)M3IA

«1531+I>

YJ3E#49

«1531€I»

Y43,#¥0

«1531TI®

UGseH#A

«15312l»

YOeTa#ay

{40weoT8oTw2OMWb3OHDw3)
M3IHLINI

{

}
4rg4r#1S3

MASTER

MASTER is the well known game of Mastermind. The object of the game
is to try to guess a combination of digits from 0 to 9.

The length of the solution combination can be any size. To set this size,
(required to play the first time), simply enter the desired number and exe-
cute STOL. Then initialize the game by executing INIT.

To play, you enter a combination of numbers (your guess) in string form,

and then execute MASTER. The program will display the number of digits
in the right position (Correct) and the number of digits that are in the code,
but not in the right position (Found). For example,if the solution is 8548,
entering "8834" would return the following:

Guess No x

8834

Correct= |
Found= 2

The first 8 is in the right position; the second 8 and the 4 are part of the
solution, but are not in the right positions.

To play, enter the programs that follow.

STD«L (# CF28h)

DuP
IF

TYPE B ==
HEN

;EL' STO INIT
ELS

214 DOERR
END

304 PART THRee: LiBRARY OF PROGRAMS

INIT (# 49FSh)
&

g 1C0" ST0 1 L

RAND 18 # IP
NEXT
L »LIST 'SOL' STO

»

MASTER ¢ 2807h)
&

DUP
IF

TYPE 2 == DUP
THEN

DROP DUP SIZE L==
END
THEN
ELg%lED DUP 3 DISP STL PROG 7 FREEZE

214 DOERR
END

»

STL ¢ 4DBCh)
&

> S
€«

{ 315 SIZE
FOR ®

S ¥ ® SUB STR» +
NEXT

»

»

305

PR[zG (# 743Fh)

8 9
:PRCPCT

1 'CO' STO+ "Guess No " CO + 1 DISP
SOL PR 1 L
FOR X

?}:JP ® GET 3 PICK X GET

THEN
R -2 PUT SWAP X -1 PUT SWAP 1 CP +
'CP' ST0

NEXT
'PR' STO “"Correct= " CP + 5 DISP 1 L
FOR ¥

DUP X GET DUP
IF

-1 >
THEN

1 L
FOR Y

I;Ié Y DUP2 GET 4 PICK

TH
-2 PUT 'PR' STO 1 CT + 'CT' STO

'Y STO

NEXT
DROP "Found= " CT + 6 DISP

»

»

306 PART THREE: LUBRARY OF PROGRAMS

ANAG

This program takes a string of characters and displays all possible ana-
grams. For example, "ABC" ANAG will display these character strings:
"ABC" "ACB" "BAC" "BCA" "CAB" "CBAR" . Here are the programs:

PRQNHG (# R6B0h)

IF
BO >

THEN
EIIJRIEI STO+ PRDEPTH DUP B -

ROLL PRANARG X ROLLD -1
STEP
SIE '‘B' STO+

PRDEPTH DUPN PRDEPTH 2 -~ 1 - 1
START 1

+ -

STEP
4 DISP

END
»

PRDEPTH%# ERFFh)
« DEPTH C - »

ANAG (# 1F82h)
«

> A
&«

UfikC?{ A SIZE 'B' STO DEPTH 'C' STO 1 B

A ® DUP SUB
NEXT
PRANAG PRDEPTH DROPN { B C } PURGE

307

SQUARE

The goal of this gameis to arrive at a display of the “magic square,” which
is the following figure:

HEE
H B
HEN

Toaccomplishthis, the player may press dif ferent boxes (by using the keys
(1)to(9)). Pressing one of these will inverse the box as well as some ofits
neighbors.

To play, enter the following programs, and execute 'SQUARE'.

KEYS (# 2CE6h
{ 8283 8472 73 74 62 63 64 }

MESSé# 8019h)
"WORKING..."

T (#E 643%h)

{12452{1 > {2396 1}
{1473{245683}{369}
{45783 {7 1{5689 3}

M@ EEZh)
{ll _,llll 456 30

n 123 _),II}

308 PART THREE: LiBRARY OF PROGRAMS

CALC (# E38Ah)
&

BEress a key..." 1 DISP T 1

DROP KEYS
DO
UNTIL

KEY
END

UNTIL
POS DUP

END
1068 .85 BEEP MESS 1 DISP GET DUP 1 DUP
ROT SIZE
ART
GETI 1 - DUP 3 MOD 1 +
WHILE

DUP 3 >
REggHT

END
SWAP 3 -~ IP 1 + SWAP 2 »LIST CAR SWAP
DUPZ GET NOT PUT 'CAR' STO

NEXT
DROP2

>

TSULé# C888h)
C 111

[181]
[111 1][

y

P
P
t

CA

—
A
e o
—
u
—
-
'
—
‘
n

H
@
.
_
.
O
D

o
-
-
.
—
fl
—
‘
g

L
—
J
l
_
l
l
—
‘
v

309

VISU (# ES36h)
&

DO
CAR { 11313
FOR X

START
3 ROLLD GETI 95 * 32 + CHR 4 ROLL
SWAP +

NEXT
lfIrX GET SWAP + 142 CHR + 3 ROLLD

IJRDP%‘< 2 4

UNTIL
CAR SOL ==

ND
! Bravo..." 1 DISP 1 3

START
1908 .2 BEEP

NEXT
4

SQUARE (# 2DCzh)
&«

glfiLED MESS 1 DISP 8 RDZ CAR

{11319
START

RAND .5 > PUTI

E
'CAR' STO VISU

»

310 PART THRee: LiBRARY OF PROGRAMS

PR40

This program will print character strings with 40 characters per line instead
of 24 on the HP 82240A or HP 822408 infrared printer. The string may
contain carriage returns (®), and any line which contains more that 40
characters is split (just like the function PR1).

The program is simple. Ittakes the string and splits it, first at each carriage
return, then it cuts the portions that are longer than 40 characters. Each
of the sections thus obtained are transformed into graphics objects in the
smallest font (using 1 *GROB) and then printed using the function PR1.
Because ofthis, any small letters are changed to capitals.

This program is particularly useful for printing listings obtained from the
disassembler.

PR48(# 7B5Sh)
« "a¥ 4+ 3§

€

WH
S SIZE

REPERT
S DUP "=" POS DUP2 1 + OVER SIZE
SUBr 'S' STO 1 SWAP 1 - SUB
<>

«

WHILE
T SIZE

REPERT
T 148 SUB 1 »GROB PR1 DROP T 41
OVER SIZE SUB 'T' STO

END
>

END

311

DSP and INITSCR

These two programs, DSP and INITSCR, let you use the HP 48 screeniin
33-column mode. The display is shown line-by-line to allow you to see
each line while it is being displayed.

The two programs perform the following functions:

- INITSCR erases the screen and initializes the screen memory used
for the line-by-line display.

- DSP displays the message line-by-line scrolling up any text already
displayed.

The function *GROB is used to obtain the small fontcharacters. Agraphics
object is created for each line of the display, and then each line is saved,
in list form, in a variable called SCREEN. The lines are added using the OR
function onablank GROB, and then the result is displayed using the *LCD
function.

This program can be used with the program DISASM (the disassembler)
to view thelisting as itis disassembled. DSP can replace the RPL function
DISP. To do this, replace 1 DISP in the program STOS with DSP and add
INITSCR to the beginning of the program DISASM.

INITSCR ¢ 424&
« { } 'SCREEN' STO CLLCD »

312 PART THRee: LUBRARY OF PROGRAMS

DSP ¢ 7BA4h)
&«

"a«" QVER DUP SIZE DUP SUB OVER #

LE
TXT 1 OVER "=" POS DUP

REPERT
3 DUPN SWAP + OVER SIZE SUB 'TXT' STO
1 - SUB 1 »GROB SCREEN + 1 9 SUB
'SCREEN' STO # 83h # 46h BLANK 1 SCREEN
SIZEU DUP # bh =
>

&

FOR X
Bh O # 6h X * - 2 »LIST SCREEN
8 GET GOR

NEXT
>

+LCD
END
3 DROPN

>

»

313

MUSICML

MUSICML will play tunes without interruptions between notes. MUSICML is
a machine language program that has not yetbeen assembled. The RPL
program listed below will take a list of notes (frequency, duration) and

create a machine language program that will play them. It uses the two
programs GASS and A*STR, previously listed.

Example: { 1400 .1 2868 .1 1468 .1 } MUSICML EVAL

Note: The 'Code’' object (which is on the stack before executing EVAL)
can be stored in a variable to be used later.

The following is the RPLlisting of MUSICML ; the disassembled source
listing of the machine language portion is given on the next page.

MUSICML # ECBh)
<«

> L
&

"CCOZQ" # 4Fh L SIZE 2 + 5 % + R2STR +
"8FBI’6EBE" + L SIZE 2 + 5 * ASTR 1 4
SUB + 1 L SIZE
FOR X

L X GET A»STR + L X 1 + GET 1008 =
A>STR + 2

STEP
"80000800080608,°13514/0717414317413706068ARDBEF6A7"

"10690FB/8F2D/68142164888C" + + GRSS
»

»

314 PART THRee: LiBRARY OF PROGRAMS

start

I

2

end

CCD28 CON(S) PROL_CODE Code object
*¥x%%% CON(S) (end)-(start) Code length
8FB9768 GOSBVL SAVE_REG Backup regs.
BExxx* GOSUBL

LIST OF NOTES—Frequency / Duration (in milliseconds)

CONCS) #080000 End of notes
CON(S) #080000
a7 C=RSTK
135 D1=C
[1]g? C=DAT1 R Read frequency

174 Di1=Di+ 5
143 A=DAT1 A Read duration
174 Di1=D1+ 5
137 CDlex
B6 RSTK=C
6 C=A A

8AA C=08 A Done?
B GOYES 12

gF6A/18 GOSBYL BEEP_LM Beep
690F GOTO 11 Loop

C=RSTK
8F207/68 GOSBYL LORD_REG Restore regs.

A=DAT8 A Return to RPL
164 Dg=Dg+ S
888C PC=(R)

315

MODUL

This machine language program will quickly alternate between two sound
frequencies. The arguments are a starting frequency (START), an ending
frequency (END), a frequency increment (INCREMENT), and the duration of
each note (DUR). These settings are used by the RPL program MODUL,
which automatically creates a machine language program that will make
the sound. This program uses GASS and A*STR, listed previously.

Example: 1468 2868 58 .81 MODUL EVAL

Note: The 'Code' object (which is on the stack before executing EVAL)
can be stored in a variable to be used later.

Here is the commented assembly source listing for the assembly routine
created by MODUL . The asterisks (¥) represent code that depends on one
of the 4 arguments.

CCD28 CONC(S) PROL CODE Code object
start 15008 CON(S) (end)-(start) Code length

8FB9768 GOSBYL SRVE_REG Backup regs.
34=xsxx LCHEX START | Start frequency
D? D=C A

/1 DB C=D A
86 RSTK=C
Jdxxxxx |CHEX DUR (In milliseconds)
8F6A718 GOSBVL BEEP_LM Beep
g7 C=RSTK
D? D=C A
Jdxxxxx |CHEX INCREMENT Increment

5 LCHEY END EndingEEEXE n in, requency
e MGC A Ap=C
7D GOYES 11 Loop
8F20768 GOSBYL LOAD_REG Restore regs.
142 A=DAT8 A Return to RPL
164 DB=DB+ S
888C PC=(R)

end

316 PaRT THRee: LiBRARY oF PROGRANMS

MODUL ¢+ 1E1Fh)
&«

>DFIP
&

IF
THga 1668 = DUP 'P' STO # Bh + # Bh ==

"ZERO DURATION..." DOERR
END

I # 6h + % Bh ==
THEN
ND"ZERO INCREMENT..." DOERR

E
"CCD28150088FB9/6034" D A»STR + "D/DBBE34" +
?FflésTR + "8F6R710070734" + I ASSTR +

DFX
THEN

n 3"

ELSE
llE3|I

+
ND
"34" + F AeSTR +
D

THEN
IIBBFII

ELSE

+

IIBBBRI

ND
"7D8F2D768142164888C" + GASS

317

RABIP

Thislittle program will generate random sounds in the frequency range of
0 to 4400 Hz, for a duration of 0 to 0.1 seconds each. It stops when any
key is pressed. This could be used as an original way ofletting the user
know that some long program has finished its calculations.

RABIP # A7SBh)
&«

DO
4400 RAND = .1 RAND = BEEP

My
END
DROP

JINGLE

This program plays a little music. The notes for the tune are contained in
the list SOUNDS (an example is given here). Note that the SOUNDS list is
giveninreverse. The last frequency-duration pairis the first note played.

JINGLE # 83Elh)
&«

SOUNDS LIST» 1 SWAP 2 ~ MEM DROP
START

BEEP
NEXT

SOUNDS # 9A73h
{ 3% .75 448 .15 275 .15 358 .675 358 .15 399

070 699 .15 565 .15 398 .15 465 .15 565 .15
998 .875 398 .6875 398 .15 565 .3 399 .3 350
3%3 338 .15 515 .875 398 .675 398 .15 465 .3

318 PART THREe: LiBRARY OF PROGRAMS

RENAME

This program allows you to rename an object. It takes the old name and
the new name as arguments. The object is renamed without changing its
position in the directory order.

RENAME (# 1A24h)
&«

OVER RCL SWAP STO VARS DUPZ SWAP POS 2 SWAP
SUB ORDER PURGE

»

AUTOST

AUTOST is an example autostart program. You may add to this program
to improve it as you wish. As is, this program will be assigned to the
key automatically (i.e. it will make the assignment and put the calculator
into USER mode).

HU'LUST # BCESh)

&

IIZLLDCIDSPUFF 1468 .67 BEEP "HP48 : READY"

1666 .81 BEEP .5 WAIT
»

91.3 ASN -62 SF
»

319

CAL

CAL will display a one month calendar. As arguments,it takes a list of two
real numbers that specify the month to display: The number of the month
(between 1 and 12) and the year (between 1583 and 9999).

Or, a quicker method:

« |f the list contains only one element, this is considered to be the
month number, and the year will be the current year according to the
calculator clock.

« If the list is empty, then the current month is displayed.

Note that the calendar is “European” style; Monday is the first day of the
week.

Cfllé # 2E31h)

CLII.:CD # 4E2CFh SYSEVAL RCLF
<>

320

<

2 SF { 3 + DATE FP 168 = SWAP OVER IP +.4

SWAP FP 19888 = + DUP DUP SIZE 2 MOD 2 +
EEL %‘MFIP 1 GET

&

1
?
>

€«

8119 1 M 188 - + Y 1060008 - + DDAYS
MOD
S

"SEPTENBER" "OCTOBER" "NOVEMBER"
"DECEMBER"

{ "JANUARYY “FEBRUARY ! “NHRLll:gI; "APRIL"

3
M +

1 22 4 PICK SIZE - 2 ~ SUB
1 DISP " MO TU WE TH FR SR SuU" 2 DISP
{ Sél1 2}8 31 38 31 38 31 31 36

PART THRee: LIBRARY OF PROGRAMS

M GET M 2 ==Y 4
MOD @ == Y 168 MOD B == - Y 1888 MOD
8 == + AND +
> N
&«

85
FURIIII

FOR G
L7sC+s-" 'SP

DUP B8 > OVER N < AND
THEN

+

ELSE
DROP

END
NEXDI'UP SIZE DUP 2 - SWAP SUB +

L 16 = # 124/Bh + SYSEVAL
NEXT
7 FREEZE

b

321

CIRCLE

CIRCLE is a rapid circle drawing routine written by Christophe Nguyen. It
uses the Bresenham algorithm and takes two arguments: Areal number,
the diameterof the circle (if the diameteris negative, a white circle with a
diameterof that absolute value is drawn); and a complex number, the co-
ordinates of the center of the circle. These two arguments are left on the
stack. If they are no longer useful, you should drop them (with DROP2).

This program is self-modifying; it should not be used as a backup (saved
in a port). Three demonstration programs (TEST1, TESTZ, and TEST3)
show how fastit is. Its long disassembled source listing is omitted here.

TE%TI # D683h)

ERASE { # Bh # 6h 3 PVIEW 1 1660
START

RAND 28 = RAND 131 * 65 - RAND 64 * 32 -
NEX%?C CIRCLE DROPZ

>

TE‘.iTZ # SBEEh)

E_}Rflfl% { # 6h # 6h 3 PVIEW 18 (B,8) 1 20

CIRCLE DUPZ RAND 18 = 5 - RAND 18 = 5 -
R+C + CIRCLE

NEXT
110060
START

DUPZ RAND 18 * 5 - RAND 18 * 5 - R+C +
CIRCLE DEPTH ROLL -1 = DEPTH ROLL CIRCLE

>

TEST3 (# 35EFh)
&

INIT DEG
DO

322 PART THREE: LiIBRARY OF PROGRAMS

-180 180
FOR T

END
»

INIT #
&

oBF1h)

ERASE 1 206
START

(106, 168)
NEXT
{ # 6h # Bh 3 PVIEW

»

CIRCLE ¢ 9965h)

a
m
—
§
§
§
$
g
§
§
:
;
S
T
R
S
O

g
m
m
g
m
g
g
g
fi
fi
g
a
o

>

D
O
O
O

M —

S
D
A
T
I
Q
W
N
D
U
e

D
O
m
0

=5 ® ~J

N -
&
-
A
\
I
I
}
\
_
R

M
B
S

O
O
0

11531

2ABF1
13

3FBF1
41371

CIRCLE DROPZ 2
STEP

UNE}L

9 T = COS 68 = 7 T % SIN 38 = R+C 3
OVER CIRCLE DROPZ DEPTH ROLL -3 SWAP

323

BANNER

The program BANNER will allow you to display a scrolling message in giant
letters. BANNER was written by Christophe Nguyen.

Notes:

+ The accepted characters are the ASCII characters from 31 to 90
(numbers, punctuation, and capital letters).

« BANNER uses a table to draw the characters. Because this table
needs to be generated by the program MKT, entering the programs
is a little different than usual. To enter BANNER, do the following:

- Enter the code for BANNER1, as a string on one line with no
spaces, and place it on the stack.

- Enter and execute the program MKT (which will produce a
string of 2100 characters).

- Enter the code for BANNERZ, as a string on one line with no
spaces, and place it on the stack.

- Concatenate the three strings (by pressing (¥ twice).

- Execute GASS (or RASS) and store the result as 'BANNER' .
nggesultmg program should look like 8 CHR + CLLCD Code
D

To use BANNER, simply give it a string of characters, and watch the resullts.
Example: "JOURNEY TO THE CENTER OF THE HP48..." BANNER

Here is the commented assembly source listing for BANNER, then the
codes for BANNER1, and BANNERZ, and the program MKT:

324 PaRT THRee: LiBRARY OF PROGRAMS

PROL _PRGHM
#2A2B4

PROL__CODE
(end)-(start)

REGSAVE
EBS@E

#0062 1
A

B
#0608

B
#62

18

856k

s
s
s

I

O
O

Cont
Done

Program object
Null
CHR
Addition
CLLCD
Code object
Code length
Backup regs.

A=@ screen bitmap

Current position

Big pixel height

Big pixel width
(2 nibbles,8 bits)

A=@ string

D1=@ offirst char.

DO0=@ screen bitmap

ds screen position

D1=@ char.

Read 1 char.
CHR(0)?
Continue
Done

325

Cont 34F1668 LCHEX #0081F
C=A-C A

326

EE
DA A=C A
C6 C=C+C A
C6 C=C+(A
Cé6 C=C+C A
C6 C=C+C A
C6 C=C+C A
C2 C=C+f A
C2 C=C+A A
C2 C=C+A A
DA A=C A
8E4388 GOSUBL Get_code

alculate the
ffset to

C
0
find the
{epresentat1on of

1
C

ch
char= 39 data

har between 31
nd 968, then
FFset=(c-31)*35

M
E
V
E
N
E
e

N
S
E
E
M
R
s
e
e
"

O
m

Gosub after the data
(to determineaddress)

* End of BANNER1 and beginning of the character codes

* These codes are 1 nibble per pixel (0 or F) to speed up
* execution. They are coded column by column.

* Take, for example, the letter A:

8888

The code for A looks like:

%»
%

%
%

%
%

¥
%

%
¥

%
%

%
%

%
%

%
¥

¥
¥

@

H
&

B
R

B
&
O

O
O
O

o
o
H

O
o
o
l

o
o
H
w

O
O
O

o
o
M

h
1

1
1

&
1
O

OFFFFFFFOOF000FO0F000F0O0FO000FFFFFF...

* End of character codes, and beginning of BANNERZ2

PART THREE: LiBRARY OF PROGRAMS

Get_code

#3

St _col
Blank

#87
B

B
End_col
WP

Repeat _H

Wr_col

B
858k
A

o
o
o
o
o
o
o
o
o

=@ of data
Add offset
@next char

Save

5 columns

If not done
Otherwise --> blank

7 lines

Done
Read pixel
Big pixel height

Done
Write

3 Go to_the
s next line
3

Next big pixel

We have written on
right of screen:
Now we must
scroll to the left

Recalculate the num-
ber of lines to
scroll.

327

Repeat_L
AED B=B-1
471 GOC
1BEBSA? DB=(5)
142 A=DATA
130 DB=A
7050 GOSUB
68EF GOTO

Next_col
11A C=R2
134 B=
607F GOTO

Blankl1A =R2
134 DB=C
118 C=R@
AEA =
A64 A=A+A
A64 A=A+A
A64 A=A+A
B6E C=A-C
AES B=C
A99 A=0

Part AGE C=C-1
431 GOC
15681 DATB=A
16F B=DB+
16F D8=D8+
161 D8=Dg+
6CEF GOTO

LeftbiAE9 C=B
1BEBSB? DB=(5)
192 A=DATH
136 DB=A
7600 GOSUB
8C896F GOLONG

Left B6 RSTK=C
AE4 A=B
RES B=C
AE6 C=A
B6 RSTK=C

328

Next col
?856E
A

Left
Repeat _L

Next

=
0
0
0
o
o
o
o
o
o
o
o

e

fibl

N
r
—
—
E
2

0
0

o
h
N
O
N
O
D

o o] = o

B
?856E
A

Left
Loop

Extension of
width

Scroll

Addingspacebetween
two characters

Write a blank column

Scroll

Scroll the visible part
of the display.

C= # of lines
DO=@ screen bitmap

PaART THREE: LiBRARY OF PROGRAMS

Loop._Ift
"A6D
571
87
AES
34BBooa

Wait CEF

68BF
Done8F20768

142
164
888C

end 8DBF1
B2139

B
Next1ft

B
gBBBBB

Wait

opP
EPILOGUE

Delay to slow scrolling

Done.

Scroll one single line

Next line
Continue
Restore regs.
Return to RPL

329

Here are the programs that you will need to enter. The method ofentering
these is not the same as usual. Please read the notes on page 324.

BANNER1 (# 4CB6h
09028 4

Re 1 ¢76BA1 858A1 CCD28 23068 8FBI7
601BE 085871 42341 2006C 21341 BA137 13566 AE

80 100RE 08882 12018 18713 51431 31179 13713
98618 EBSEB7 14213 B16F1 6F160 87135 DB14B 96
8!30‘99 B34F1 BOBEE DAC6C 6C6Cé CeCZ2C 2C2DA 8E438

I'IKI(# DF28h)

FSR{H* 6h # Bh } PVIEW 31 90

F[I]ng{ # 6h # 6h > A CHR 2 »GROB REPL 8 4

8 6
FURIFY

>r<'lR-)B Y RsB 2 »LIST PIK?

ELSE
IIBII

END
+

NEXT
NERT

NEXT
>

BANNERZ (# B995h
g/CA1 71137 66131 3B5AI FS 686F7 083178 AESAG
D4721 53111 8AIE4 F1 6F161 6CEF1 /068D
Fl 1BE AE ARG4R 64A64 BGERG
D4711 BE@SB 71421 30705 B68EF 11R13 460/F 11A13
41187 EAAG64 A64A6 4B6EA ESASG AGE43 11581 16F16
Fl6l6 CEFRE 91BEQ 56714 21387 6688C §96FB 6AE4R
ESAE6 B6AED 57187 AES34 BBOBO CESDF 67812 F1521
B9415 B116E 1521B 94158 116E1 42F41 56328 16368
BFBFZ D768l 42164 808C8 DBF1B 2130

330 PaRT THRee: LuBRARY OF PROGRAMS

Appendices

331

A. Answers to Exercises

332 APPENDICES

5-1.

5-2.

(the left-shifted (0) key)

(the right-shifted key)

One possible sequence is ()NTERI3)&TER) (DH(E)ETER)(5)
X)&). (With some functions, like (#), &), and (X), you don't need
to press after pressing them).

For example SWAP ROT

COS((3%3)-11)4-1) which gives 1 (C0S(B)).

Type (]HoME) CJEIXIO)ENTER) (JMEmoRY)AT(VAR)I(1)
@B EE(CIC

6 (PARTS, PROB, HYP, MATR, VECTR, and BASE).

« > A B « A B + » » This canalso be used to add two strings.

It calculates the fraction (A+B)/(A*B) where Aand B are two real
numbers taken from the stack.

An example:

FIEU (# SB7Eh)

> N
£«

IF
 J

THE1N

ELSE
N1-FIBONZ- FIBO +

END

1h, Ah, 19h, FFFFh, BEBEh.

291, 16, 256, 2898, 3.

A. Answers to Exercises 333

6-1.

6-2.

6-3.

64.

6-5.

6-6.

6-7.

6-8.

7-1.

334

B73, AFB.

For P: BO3 and A8B ; for WP: B13 and ASB.

R13 D=D+C WP, A’3 D=0+C W, AB3 D=6 P, A93 D=0 WP.

411.

41,

C411.

#70080hn:0, #70081h:1, #70082h:2.

C field X contains 210, C field B contains 10, and C field XS

contains 2.

3 (the nibbles 0, 1, and 2).

The program codes are as follows:

CCDZ28 CONCS) #820CC
45000 beginCON(S) (end)-(begin)
6310 GOTO 11
cC sub1 A=A-1 A
3954321 LCHEX #12345
CE iz C=C-1 A
o0F GONC 12
83 RTNCC
3450008 /1 LCHEX #00085
DA A=C A
¢CEF /3 GOSUB 12
eAC TAH#G A
9F GOYES 13
3410000 LCHEX #00001
DA A=C A
7110 GOSUB 14
8A3 TA=0 A
10 GOYES 15
CC A=A-1 A
142 15 R=DATH A
164 D8=Da+ 9
808C PC=(A)

APPENDICES

8-2.

8-3.

8-4.

8-5.

8-6.

8-7.

8AA 4 7C=0 A
60 RTNYES
D2 C=8 A
E4 A=A+1 A
81 RTN

end

The code listing would look like this:

CCO028 45608 6316C C3454 321CE SDFB3 34568 BODA?
CEFBA C9F34 10068 DA’11 B8R84 BCC14 21648 BBCEA
RBB0D2 E481

The listing decodes to:

143 A=DAT1 A
133 AD1EX
1 D1=D1+ 16
1577 C=DAT1 W

C=C+1 W
1557 DAT1= W

Dl=a
142 A=DATH A

DB=DB+ 5
808C PC=(A)

The system binary <54321h>.

11928 EDCBA

11928 Bro06

33928 108 0BEBBOOBROZ] B

-77345.

Some precision would be lost by coding it as 55928 51868
943218987654321 8.

-1E-2 (-B,81).

/7920 060 0ObBbBBEENB] B 10068 BEBBVNOBBEZ O

A. Answers to Exercises 335

8-9.

8-10.

8-11.

8-12.

8-13.

8-14.

8-15.

8-16.

8-17.

8-18.

8-19.

8-20.

8-21.

8-22.

8-23.

8-24.

8-25.

8-26.

8-27.

336

(-33,33).

09920 00000 VBBBBBBRBBOBBBEE B8 BBEE ...
...0B000BBYBB000EE B

Thelong complex (1.23456789812345, -543218987654321)

FB9Z28 34

The character 'D' (ASCII code 44h).

8E920 67208 11920 30008 30008 SVBEE 86060 ...

It contains character strings.

C2A2e Bl1ovd 84 S6 C6 Co F6 B2 7S F6 27 C6 46

"Bravo !"

E4A20 51668 1BF/935000000000

#54321h

47/A2082130

{ 0K 3

69A28 FF?7 12000 060000 10 44 18 CZ2A26/000033
21008 18 14 19 CZ2ARZ267/0000643

69A20 188 321 G3EF7 DOBOY 12008 DOLEO 18 44 108
C2A207008033 21068 18 14 18 C2R20/060043

8BAZ0 84E201014 84E201624 /6BA1 B2136

'Ax(B-C)'

ADAZB 33920000000BBBONN0Z18 C2RZ0/0B6006
68891 B2130

9.1_m"3

APPENDICES

8-28.

8-29.

8-30.

8-31.

8-22.

8-33.

8-35.

8-36.

8-37.

8-38.

8-39.

8-40.

8-41.

8-42.

8-43.

8-44.

8-45.

CFAZ8 28 55E4 84E2638451474

OK: CORRAL

GROB 4 1 F8

#6FFh

'VIDE'

No.

'BCKP'

#62D6h

With #2361Eh and #23639h.

With #1AB67h.

CCOze 50669

CCDZ0 FBOB8 142 164 888C . Thisisthe program, whichdoes
nothing but pass control to the next object:

142 A=DATH A
164 De=D@+ 2
8688C PC=(R)

84E28 58 84 56 C6 C6 F6.

An empty name.

4

'Name ' .

29E28 654 321

Library #001h, command #002h.

A. Answers to Exercises 337

338

B. Background Information

APPENDICES

Manufacturing Information

Todetermine the version number of your machine, turnthe HP48 on, press
and hold down the (ON) key. While holding that down, press (D). Now
release (D), then release (ON). Three lines should show on the screen.

Now press backspace ((«)). The text "78509: 1B8DA178ESA111B6"
should appearat the top of the screen. Now press (EVAL). You should see
something similarto this:

Version HP48->
Copyrisht HP 1989

The ? is your ROM version (A, B, C, D, E, etc.). To return to the normal
state, press the buttons (just as you pressed (ONHD)).

When and where was your HP48 manufactured? The serial number (on
the back of the calculator, above the battery compartment) tells you:

+ The first two digits show the number of years since 1960.

« The next two digits are the week number of that year.

« Thencomes the initial of the countrywhere the machinewas manuf-
actured (A for America, B for Brazil, S for Singapore).

» The last 5 digits tell its manufacturing order for that week.

Thus, for example, the HP 48 with serial number 3007A01051 was the
1051% machine made in America during the 7™ week of 1990.

B. Background Information 339

Troubleshooting

When your HP48 is locked up (i.e. it doesn't seem to respond to any key
presses) try, in this order, these possible solutions:

340

(oN) will interrupt the majority of programs in execution without
danger of losing memory.

is a system reset, or "warm boot", and will not af fect memary
(except the stack is lost).

(ONHAHF)will erase the memory. You will be asked the question, Try
To Recover Memory?. Atthis point you can either answer YES,
or NO. This restoration can fail if there are serious problems with
RAM. Thisrestoration can sometimescause the machine tolock up,
S0 you will need to use the next solution given here.

On the bottom of the HP48 are 4 rubber feet that are not glued in,
so they can be removed and replaced easily. Underneath one of the
feet near the top (eitherthe left or the right, depending on the model),
you will find alittle hole with the letter 'R’ next to it (as in RESET). By
inserting a thin object, (like a paper clip), you can press a reset
button inside. If you only press it for a short while, the User data will
be preserved. By pressing it for longer (one or two seconds), the
HP48 memory will be completely erased. CAUTION: this button is
fragile. Do not use this method unless absolutely necessary.

As a last resort, you can remove the batteries. There are some
capacitors inside the calculator that still give it power even when the
batteries are out, so you will need to discharge them. Two solutions
are possible: wait a few hours, or insert the batteries backwards for
a few seconds (there is no danger, the HP48 is protected with
diodes). Then insert the batteries properly and turn it on.

If none of the methods listed above work, then the best thing to do
is to return the calculator to an authorized Hewlett-Packard dealer

for repairs.

APPENDICES

Binary, Hexadecimal, and Other Barbarities

Here are a few principles that you will need to know well in order to
understand the majority of the subjects discussed in this book.

[”

In mathematics, a base is the number of symbols that are used to count
with. Usually, we use base 10. The symbols used are the digits from 0 to
9. If we want to count in base 4, then we would use only 4 symbols (0, 1,
2, and 3, for example).

As we count in base 10 we proceed as follows:

« We begin with zero (0);

+ Togotothe nextnumberwe replace the right-most digit with the next
symbolin the series (0 becomes 1, 1 becomes 2, etc.);

« When the right-most digit is the last in the series (9), we replace it
with the first (0) and we replace the digit to the left with the next sym-
bol in the series (if there is no digit to the left, we say that it was 0).

This general principle is the same in all bases, the only dif ference being

the symbollist used.

Forexample, to countin base 4, wewould have: 0 ,,1,,2,,3,,10,,11,,12,,
13,,20,,21,,22,,23,,30,31,32,33,100,,101,,... (which, in base 10,
corresponds to the sequence: 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,
15,16, 17,...).

Note, however, that the number 102, would read "one-zero-two"— not
"one hundred two," which is our common lingual notation that can only be

used with base-10 numbers.

Two bases are frequently used with computers: base 2, which is called
binary, and base 16, which is called hexadecimal.

B. Background Information 341

Binary

To examine the contents of a memory location, the computer checks for
electric current: either there is current present, or there is not. Thus, an
electronic computer can only have two basic memory states, 1 or 0. And
since only two states are possible, all of computer science is based on cal-
culations in base 2. Such calculations are called boolean algebra, named
after George Boole who developed this type of two-state arithmetic in
1846. In base 2, we count as follows: 0, 1, 10, 11, 100, 101, 110, 111,

1000,... This idea leads to another: the bit.

Bit

A bitis a binary unit which canbe 0 or 1, and thus correspondsto the basic
unit found in computers. These bits are usually grouped together, some-
times by four (to form a nibble), but more often by eight (to form a byte).
Note that, in groups, the order of the bits is important.

Nibble

The HP48 groups the bits in blocks of four. These blocks are called
nibbles. There are 16 possible nibble values: 0000, 0001, 0010, 001 1,
0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Byte

Other computers usually use blocks of 8 bits, or bytes. There are 256
possible bytecombinations: 00000000, 00000001, 00000010, ...1 1111110,
11111111, As you can see, binary is not real great to work with, since you
must frequently manipulate very long numbers. Abase with more symbols
would be much more convenient. If the basic unit is binary , then it would
be best to use a base that is a multiple of 2. Hexadecimal, or base 16, is
what has been chosen.

342 APPENDICES

Hexadecimal

Hexadecimal, or base 16, needs 16 symbols to count with. There are not
enough of the traditional digits, so we add 6 more: A, B, C, D, E, and F.
(Of course, the symbols used are not important in and of themselves; you
can choose any symbols that you wish to do your mathematics. For
example, the symbols { 6, e, and $ } could be used for a base 3 system.
You would be able to count, and do mathematics using the sequence of
numbers: 6, e, $, €6, ee, €9, $6, $e, $$, €66, ebe, €63, eeb, eee, ee$, ...
This might be very clearto you, but others may not completely understand.
This is why it would probably be best to use the same symbols as the rest
of the world.) With the digits chosen for base 16, we count as follows: 0,
1,2,3,4,5,6,7,8,9,A,B,C,D,E, F, 10, 11, ...19, 1A, 1B, 1C,...

A nibble can therefore have a value 0f0, 1,2, 3,4,5,6,7,8,9, A, B, C,
D, E, or F. And a byte can have a value of 00, 01, 02, 03, 04, ... 0A, 0B,
0C, 0D, 0E,0F, 10, ... FE, or FF. As youcan see, these numbers are much
easier to use than those composed of only zeros and ones.

Between

The following program will produce atable of conversions betweenbinary ,
decimal, and hexadecimal, for the numbers from 0 to 255, which are the

most useful to programmers. Each line will have, in this order, binary,
decimal, then hexadecimal, all equal to the same number.

CUI:U (# A7B9h)

4
A 1 DISP ¥ RsB SWAP BIN OVER ->STR 3 OVER
SIZE 1 - SUB ' ' SWAP_ + DUP SIZE
¢ - 999 5UB +DEC UVER »STR_3 OVER SIZE
1 DUP SIZE 3 - 9990B " " gf 3
SUB + HEX SUP JIR 3 OVER S17E-1 - a0B

ey | SRR CDUP SIZE 2= 939 SUB + Ta¥ 4

B. Background Information 343

344

C. RPL Commands

APPENDICES

Here is the complete list of HP 48 RPL commands,listed in alphabetical
order (which is the same order in the HP reference manual). This listis
divided into the two library parts (#002h and #700h). Note that some
commands have no name, perform no function, and are probably re-

served by HP for future use.

Each line consists of the name of the function, its command number in

hexadecimal, its command number in decimal, then the command ad-

dress (which can be called with a SYSEVAL). For example, ABS is com-
mand #03Dh (61) and can be called by #1RA1Fh SYSEVAL .

These addresses can be used in program objects. For example, to
duplicate the object in level 1 three times, using the instructions DUP and
DUPZ, note from the table that a program object has prologue #02D9Dh
and epilog #0312Bh. The desired object is therefore:

"D902678BF12ABF1B2138"

This program saves 10 nibbles over the regular method of using the two
delimiters (¥ and *), and still performs exactly the same function.

These tables are also useful to the user that would like to disassemble a
particular RPL command (these addresses are addresses of machine
language routines in ROM).

The second list of HP48 RPL commands is ordered by command number.
Each command is defined by its library number and its command number.

Note that, just as there are commands with the same name in the first list,
(commands with the same name, but defined by their context—such as «
which can be the beginning of a program or the beginning of local variable
assignments with *), there are commands in the second list with the same
number. This can be explained by the fact that some “commands,” such
as DIR, C$, etc., are not real commands. They all have the same
function—to serve as delimiters for objects.

C. RPL Commands 345

Thefirst alphabetized table is for library #002h:

ABS #630h 61 #1AAIFh COLCT #140h 333 #28A15h
ACK #815h 21 #1987&h CoLZ #138h 312 #208%h
ACKALL #814h 28 #19863h o8 #881h 129 #1CIF6h
ACOS #858h 68 #1B872Fh CON #ofDh 173 #10186h
ACOSH #858h 91 #1B8836h CONIC #000h 221 #1E681h
ALOG #066h 9 #1BAGh CONJ #63Eh 62 #AAGEh
AND #6E5h 229 #1E/83h CONT #63fh 58 #1ABBBh
APPLY #182h 258 #1FSSDh CONVERT #08Bh 11 #19%60Bh
APPLY #183h 259 #IFSSCHh CORR #121h 289 #IFDC1h

#60Bh 216 #1ESDZh coS #852h 82 #1BSBSHh
ARCHIVE #168h 32 #N125h COSH #855h 85 #1B666h

#640h 77 #1B20Bh cov #122h 298 #1FDOCh
ARRY» #6ABh 171 #108%2h R #6F3h 243 #1EER4Hh
HRRY #6Afh 178 #10688%h CROIR #626h 3R #1A165Hh
ASIN #85sh 67 #1B6Hh CROSS #87Ah 122 #1081Eh
ASINY #85hh 98 #1B7tBh DATE #811h 1?7 #19812h
RSN #$178h 379 #224F4h +DATE #816h 22 #198%h
ASR #008h 8 #19%5/Bh DATE+ #81Fh 31 #19902h
ATAN #85%h 689 #1879Ch DR #876h 112 #1BECBh
ATANY #85Ch 2 #1B8A2h DDRYS #81Eh 38 #19982h
ATTACH #165h 357 W1446h DEC #991h 145 #1C5/h
AUTO #8CBh 192 #1E1MBh DECR #14Ch 332 #289%Fhh
AXES #68Rh 186 #1EBBEH DEFINE #156h 342 #28065h
BAR #6E3h 227 #1EM1h DEG #687h 135 #1C3%%h
BARPLOT #13Ch 316 #28133h DELALARM #81Ch 28 #19972h
BALUD #172h 379 DELAY #0FSh 245 #1EF43h
BeR #66rh 18 #196BBh DELKEYS #170h 381 #22546h

#83¢h 2 #ASC4h DEPND #0Ct4h 196 #1E22Bh
BESTFIT #143h 323 #¥2825kh DEPTH #i4h 276 #I1FC44h
BIN 144 #1C55% DET #876h 128 #1BFDEh
BINS #138h 315 #2816th DETARCH #166h 358 #214/Ch
BLANK #601h 289 #1E416h DISP #832h S8 #1A584h
BOX #60Bh 288 #1E3ECH DOERR #62rh 42 #1A33%
BUFLEN #176h 374 1)) #879h 121 #1BFFEh
BYTES 3 #1A10%h ORAM #66Fh 191 #1E198h
CoPR #6C7h 199 #1E2%h DRAX #6Clh 193 #1EIC6h
CR #8%Fh 159 #1C98Eh DROP #116h 272 #1FBOBh
CEIL #066h 184 #1BCOFh DROP2 #111h 273 #1FBF3h
CENTR #68Bh 187 #1EBEBh DROPN #115h 277 #1FC64h
cF #88¢h 132 #C205h OTRG #186h 384 #22633h
*CH #87h 126 #1C14%h P #180h 269 #1FB87h
CHR #6A5h 165 #1CB66h DuP2 #16Eh 278 #1FBRZh
CKSH #171h 369 #21FECh DUPN #116h 278 #IFC/Fh
CLERR #11fh 282 #1FCEBh ENG #08Ch 148 #1C452h
CLKADJ #818h 24 #1980Eh EQ» #0Ach 168 #1CEE3h
CLLCO #836h 56 #1AB3Bh ERASE #0CSh 197 #1E25Fh
CLOSEIO #16h 362 #21EDGHh ERRB #928h 43 #1A360h
Lz #11Ch 284 #1FD2Bh ERRM #620h 45 #1A3AH
CLUSR #158h 36 #216FCh ERRN #92Ch 44 #1A38Bh
CLWAR #15h 346 #2168FCh EVAL #92Eh 46 #1A3BEh
CNRM #977h 119 #1BFBEh EXP #850h 93 #1B9%Sh

346 APPENDICES

EXPAN
EXPFIT
EXPH

FINDALARM
FINISH

#83%6h
#836h
#005h
#806h

C. RPL Commands

#1A873h

#1R664h

#1E580h
o
M
D
D

3
R
E

La
sz
ma

—
—

#164h

£

PR1
“A
39
RE
Ad

hg
g-

a
é
g
g
é
g
fi
a
m
g
fl
g
w
i

ga
ég
gg
gs
sfl
gfi
gg
gm
gg

8
#6A1h

#12Fh
#131h
#138h

#6F1h

#15/h
#886h
#6B1h
#13Eh

#142h
#8C6h
#187h

#151h
#181h

— 2R—
FE

R8
2

I
S
R

“B
RR
YE
TB
RB
RR
E

153

#6t1h

#13%h

#144h

#153h

#916h

123

194
318

O
V
B
R
T
I
E
R
E
2
I
P
L
E
R
I
R
I
G
N

BR
BE

ZI
IX

ZR
TI

EE
DB

RN
ER

IP
2

- D
- -
~

16

#1CB3Eh
#26A70h
#1E761h
#220Ch
$1E1ELR
#2818Ch
#1E/81h
#1C41Eh
#280Cth
#283CCh
#1FECFh
#21EFBh
#21FD1h
#1C27h
#26A03h
#1832fh
#1B4ACh
#18587h
#282Cth

#1B655h
#20826h
#1E686h
#19820h
#97F7h

APPENDICES

G & ¥

5 3

NIT #167h
#6EBh

T
N

EE
TE

EE
Es

5
5

C. RPL Commands

SR
RY
RI
N=
IT
BI
YP
RR
T

#198BEh

+
M
M
M
N
O

l
—
s

e
y

#11Eh
#11Fh
#34Fh
#6FFh
#188h
#188h
#164h
#165h
#186h

-
RE
RR
RY
US
RI
TR
RI
AN
ER
Y

Alphabetized forlibrary #700h:
#81BhCe 27 #23813h

CASE #8019 25 #23780h
DIR #81Bh 27 #23813h
Do #087h 7 #230C3h
ELSE #082h 2 #2FBSh
END #083h 3 #2ZFD5h
END #8l16h 22 #236%h
END #817h 23 #236B%h
FOR #06fh 18 #231ABh
GROB #81Bh 27 #23813h
HALT #06Eh 14 #23472h
IF #006h B8 #22eC3h
IFERR #080h 13 #2330Fh
NEXT #866h 11 #2324Ch
PROMPT #8i1Ch 28 #23824h
REPEAT #98Gh 6 #23850Dh
START #68%h 9 #23183h
STEP #08Ch 12
THEN #081h 1
THEN #818h 24 #23¢1Fh
THEN #681Ah 26 #237M6h
UNTIL #085h 8 #23BEDh
WHILE #085h S5 #23833h
I8 #81Bh 27 #23813h
< #812h 18 #2361Eh
» #ith 17
» #813h 19 #2363%h
» #08¢h 4 #22FEBh
* #16h 16 #23HClh
' #014h 28 #23654h
! #915h 21 #236/%h

#06Fh 17 #2349Ch

The numerical table for library #002h:

#668h #1957Bh ASR 51 #833h #1ASA4h FREEZE
#681h #1959%8h RL 2 #83th #1ASC4h BEEP
#662h #19588h RLB 53 #835h #1ASE4h NUM
#083h #1950Bh RR ¥ #83%6h #1A604¢h LAST
#66¢h #195FBh RRB 4 #8%h #1A6B4h LASTARG
#085h #19%1Bh SL S #837h #1A71Fh WAIT
#686h #19%3Bh 9B 56 #838h #1ABSBh CLLCD
#087h #19%65Bh SR 5 #63%h #1A873h KEY
#686h #197/Bh SRB S8 #83Rh #1ABBBh CONT
#68% #19%%h R+B 39 #Bh #1AB0BHh =

18 #08Rh #196BBh BsR 68 #8Xh #1A9%h NEG
11 #88Bh #1960Bh CONVERT 61 #830h #1AAIFh ABS
12 #88Ch #1971Bh VAL 62 #8%kh #1AAcEh CONJ
13 4680h #1974Fh »NIT 63 #8Fh #1AARB0h ¥
14 #68Eh #19771h UBASE 64 1046h S$1AADFh MARR
15 #06Fh #1976h UFRCT 65 #841h #1ABB1H HMINR
16 #816h #197F7h TIE 66 #84Zh #1ABZ3h e
17 #811h #1981zh DATE 67 #913h #1AB4Sh |
18 #812h #19820h TICKS 68 #84h #1AB6/H +
19 #813h #19846h WSLOG 69 #945h #1ACODh +
28 #014h #19863h ACKALL 78 #846h #1A0BSHh -
21 #815h #198%&h ACK 71 #847h #1ADEEh =
22 #916h #198%h +DATE 72 #916h #1AFESHh
23 #817h #198BEh TIME 73 #945h #1BB2Dh ~
24 #616h #1980Eh CLKAOJ 74 #040h #1B185h XROOT
25 #81%h #198FEh STOALARM 76 #04Ch #1B278h INV
26 #81fh #19928h 77 #940h #1B20Bh ARG
2?7 #01Bh #19946h FINDALARM 78 #94th #1B32fh SIGN
28 #81Ch #19972h 79 #04h #1B3Mh [
23 #810h #199%2h TSIR 88 #856h #1B426h SO
3 #01Eh #19982h DOAYS 81 #851h #1B4ACh SIN
31 #61Fh #19902h DATE+ 82 #852h #18585h COS
R #1A165h CROIR 83 #853h #1BS5Eh TAN
33 #6821h #1R125h PATH 84 #85th #1B587h SIMH
M #1R146hH 85 #055h #1B6B6h COSH
35 #823h #1A15Bh UPDIR 86 #856h #1B65Sh TANH
3% #82¢h #1R19%h 87 #85/h #1B6Rth ASIN
37 #825h #1AIAFh TVARS 88 #85Bh #1B72Fh ACOS
38 #826h #1AI0%h BYTES 83 #85%h #1B79Ch ATAN
39 #827h #1AZBCh NEWDB 9 #@5Ah #1B7EBh ASINH
48 #820h #1A3B3h KILL 91 #85Bh #1B83Bh ACOSH
41 #82%h #1A31Eh OFF 2 #8Ch #1B8AZh ATANH
42 #626h #1A33% DOERR 93 #850h #1B98Sh EXP
43 #82Bh #1A36Dh ERRG 94 #05Eh #1B94Fh LN
44 #82Ch #1A388h ERRN 95 #85Fh #1B9C6h LOG
45 #820h #1A3ASh ERMM 9% #066h #1BA30h ALOG
46 #62th #IA3BEh EVAL 97 #061h #1BABCh LNP1
47 #82Fh #IA3FER IFTE 98 #062h #1BACZh EXPM
48 #33Bh #1MCOh IFT 99 #963h #1BBGZh |
49 #831h #1ASZth 168 #964h #1BB41h FRCT
S8 #83%h #1AS84h DISP 181 #965h #1BB6Dh IP

APPENDICESa S

162 #966h #1BBA3h FP 155 #89%Bh #1CB1%h IM
163 #867h #1BBDSh FLOOR 156 #89Ch #1C83Ch SUB
104 4#068h #1BCBFh CEIL 157 #890h #1CBERh REPL
185 #965h #1BC45h XPON 158 #@%h #1C95Rh LIST»
106 #06Ah #1BC71h MAX 159 #3%h #1C98Eh CsR
187 #06Bh #1BCE3h MIN 168 #6Ach #1C988h SIZE
168 #96Ch #1BOSSh RND 161 #6Alh #1CAB4h POS
169 #06Dh #1B001h TRNC 162 #6R%h #1CBBBh +STR
118 #06Eh #1BE40h MOD 163 #8A3h #1CB26h STR+»
111 #86Fh #1BESCh MANT 164 #0Rth #1CB46h NUM
112 #876h #1BECBh D4R 165 #6ASh #1CB66h CHR
113 #871h #1BEF4h R+D 166 #6A6h #1CBB6h TYPE
114 #872h #1BFIEh +iMS 167 #8A7h #I1CE2Bh VTYPE
115 #373h #1BF3Eh HMS» 168 #6ABh #I1CEE3h EQ»
116 #874h #1BFSEh HMS+ 169 #6ASh #I1CF/Bh 0BJ»
117 #875h #1BF7Eh HMS- 178 #0Afh #1008%h +ARRY
118 #876h #1BFSEh RNRM 171 #0ABh #10892h ARRY»
119 #877h #1BFBEh CNRM 172 #0ACh #1080Fh ROM
128 #876h #1BFDEh DET 173 #6A0h #1D0186h CON
121 #879h #1BFFEh DOT 174 #6REh #1020Ch IDN
122 #879h #1C81Eh CROSS 175 #06fFh #103%2h TRN
123 #878h #1C83kh RSO 176 #0B6Bh #10487h PUT
124 #8/Ch #10866h 2 177 #6Blh #1050Fh PUTI
125 #870h #10807h &7 178 #682h #107C6h GET
126 #87th #1C14%h %CH 179 #083h #108C7h GETI
127 #87Fh #1C1BSh RAND 188 #604h #10086h W+
128 #086h #1C104h ROZ 181 #8B5h #10E66h 2
129 #881h #1CIF6h COMB 182 #8B6h #10ECZh 3
138 #082h #1C23%6h PERM 183 #88/h #1EB46h INDEP
131 #883h #1C27h SF 184 #688h #1EB7Eh PMIN
132 #684¢h #1C205h CF 185 #085h #1EB9Eh PMAX
133 #885h #1C313h FS? 186 #8BAh #1EBBEh AXES
134 #886h #1C368h FC? 187 #0BBh #1EBEBh CENTR
135 #887h #103%%h DEG 188 #8BCh #1E126h RES
136 #888h #1(3B¢h RAD 189 #0B0h #1E1SBh sH
137 #88%h #1C3CFh GRAD 198 #9BEh #1E1/Bh =
138 #68Ah #1C3EAh FIX 191 #06Fh #1E198h DORAM
139 #88Bh #1C41Eh SCI 192 #9C6h #1E1RBh AUTO
148 #88Ch #1C452h ENG 193 #8Clh #1E1C6h ORAX
141 #680h #1C486h STD 194 #8C2h #IEIELIh SCALE
142 #88th #1C4Alh FSTC 195 #6C3h #1E281h POINM
143 #86Fh #1C526h FC?C 196 #0C4h #1E22Bh DEPND
144 #89%h #1C55%h BIN 197 #8CSh #1E25Fh ERASE
145 #891h #1C5¢#4h DEC 198 #9C6h #1E278h PXaC
146 #892h #1C58Fh HEX 199 #9C7h #1E29%h CaPX
147 #893h #1C5ARh OCT 208 #8CBh #1E2BRh GRAPH
148 #9%4h #1C5CSh STWS 281 #0C%h #1E205h LABEL
149 #895h #1CSFEh RCWS 202 #0CAh #1E2FBh PVIEW
158 #89%6h #1061%h RCLF 283 #8CBh #1E31Ah PIXON
151 #897h #1C67Fh STOF 204 #0CCh #1E344h PIXOFF
152 #898h #1CPB3h »LIST 285 #08C0Oh #1E36Eh PIX?
153 #89%h #I1C79%Eh R»C 206 #0CEh #1E398h LINE
154 #8%h #1C7CAh RE 207 #8CFh #1E3C2h TLINE

C. RPL Commands 351

#006h #1E3ECh BOX 261 #185h #1F9%h
#601h #1E416h BLANK 262 #186h #1F9FEh
#602h #1E436h PICT 263 #167h #1FC¢h 0
#003h #1E456h GOR 264 #188h #1F9%ESh 0w
#004h #1E4E4h GXOR 265 #18%h #1FASSh THATCH
#005h #1ES7Zh LCD» 266 #16fh #1FABDh IMATCH
#606h #1ES80h +LCD 267 #166h #1FREBh _
#007h #1ESADh 268 #18Ch #1FBSDh RATIO
#608h #1ESOZh ARC 269 #180h #1FB87h DUP
#60%h #1E686h TEXT 278 #16Eh #1FBRZh DUP2
#60Rh #1E621h ¥RNG 271 #16Fh #1FBBOh SWAP
#00Bh #1E641h YRNG 272 #116h #1FBOBh DOROP
#60Ch #1E661h FUNCTION 273 #111h #1FBF3h OROP2
#000h #1E681h CONIC 274 #112h #1FCBEh ROT
#60Eh #1E6A1h POLAR 275 #113h #1FC2%h OMER
#80Fh #1E6C1h PARAMETRIC 276 #114h #1FC44h DEPTH
#0E6h #1E6E1h TRUTH 277 #115h #1FCoth DOROPN
#6Elh #1E78lh 278 #116h #1FCFh DUPN
#0E2h #1EP21h HISTOGRAM 273 #117h #1FCOAh PICK
#6E3h #1E/41h BAR 268 #116h #1FCBSh ROLL
#0E4h #1E761h SAME 281 #11%9 #1FCDBh ROLLD
#8E5h #1E783h AND 262 #11Ah #1FCEBh CLERR
#0E6h #1E88%h (R 263 #11Bh #1FDBBh STOZ
#6E7h #1EBSFh NOT 284 #11Ch #1FO02Bh CLZ
#6EBh #1EBF6h XOR 285 #110h #1FD46h RCLZ
#0E9h #1E97°2h == 286 #11Eh #1FD61h 2+
#0ERh #1ERDh # 287 #11Fh #1FDBBh Z-
#6EBh #1EBBEh < 208 #128h #1FDAGh N2
#6ECh $1ECSDh O 289 #121h #1FDClh CORR
#0EDh #1ECFCh £ 298 #12zh #1FDOCh COV
#6EEh #1ED9BHh & 291 #1Z3h #FOF/AA X
#0EFh #1EE38h OLDPRT 292 #124h #FE1ZH Y
#6FBh #1EES3h PRI 293 #1Z5h #IFE2Dh X2
#6F1h #1EEGEh PRSTC 294 #126h #1FE4Bh Y2

$1EEB%h PRST 295 #12h #1FE63h HsY
#6F3h #1EERth CR 296 #128h #IFEEh MAXE
#6F4h S1EEBFh PRVAR 297 #129h #1FE9h MERN
#6FSh #EF43h DELAY 298 #120h #1FEBth MINZ
#0F6h #1EF63h PRLCD 299 #128h #IFECFh SDEV
#0F7h #IEFEh ? 308 #12Ch #IFEERh TOT
#0FBh #1EFD2h » 301 #120h #1FFBSh WR
#0F%h #1F133h RCEQ 302 #12&h #FF28h LR
#0rAh #1F14Eh STEQ 383 #12Fh #1FF/Ah PREDV
#0FBh #1F16Eh ROOT 384 #13Bh #1FF9%h PREDY
#0FCh #1F1D¢h S 385 #131h #1FFBAh PREDK
#0FDh #1F223h S 306 #132h #1FFDRh XCOL
#0FEh #1F2C%h 2 307 #133h #1FFFRh YCOL
#0FFh #1F3%h | 38 #134h #2081Rh UTPC
#108h #1F3F3h | 303 #135h #2083kh UTPN
#161h #1F588h QUOTE 318 #136h #2085Rh UTPF
#182h #1F550h APPLY 311 #137h #20878h UTPT
#183h #1F55Ch APPLY 312 #138h #208%h COLZ
#1864h #1F648h 313 #13%h #208C¢h SCLE

APPENDICES

314

316
317
318
319

RE
NN

E
L
R
R
L
U
R
B
L
E
R
B
B
U
R
Y
K
S

#200F
#28168Eh
#28133h
#2816/h

#281B1h

#21F24h
#21F62h

C. RPL Commands

J
I
L
E
L
R

B
E
I
I
T
I
F
F
I
N

£
$
8
8

B
N

R
R
S
N
S
N
A
N
D
R
S
S
P
R
N
O
U
N
A
W
N
—
® #606h

#681h

#21F9%h
#21FBé6h
#21FD1h

#22EC3h
#22EFhh

RECV
FINISH
SERVER
CKSM
BAUD
PARITY
TRANSIO
KERRM
BUFLEN
STIME
SBRK
PKT
INPUT
ASN
STOKEYS
DELKEYS
RCLKEYS
+TAG
OTAG

umerical table for library#700h:
IF
THEN
ELSE
END
»

WHILE
REPEAT
D0
UNTIL
START
FOR
NEXT
STEP
IFERR
HALT

*
»

<

»

'

!

END
EMD
THEN
CASE
THEN
Cs
DIR
GROB
XLIB
PROMPT

353

354

D. Objects in ROM

APPENDICES

Thisisanaddress list of objectsin ROM. Thislistis notcomplete, butgives
many useful objects. Rather than coding some object that you need, you
can simply refer to itwitha ROM address. Notice: Addresses greater than
#70000h are objects in the hidden ROM and cannot be used directly . You
will need to use the ROMRCL routine found in the Library of Programs.

i i #6481Ch <2oh 15System Binaries o4moeh oh 4

#03FEFh B 8 #64836h <2FhD) 47
#83FFSh {1h> 1 #6483hh Gohy 18
#04603h <Zh> 2 #64844h Gl 19
#84080h G 3 #64B4Eh <32h> 59
#01817/h < 4 #64856h <33h> 51
#04821h Sh 5 #64B62h 3h) 52
#0482Bh <6h> 6 #64B6Ch 53
#04835h o 7 #64876h <3th> 4
160483Fh Bh 8 #648906h am 5
#64045h S 9 #6486h~h 3th> 5%
#040853h <Ah 18 #6489h <3%h)> 57
#04850h B 11 #648B9Eh Gah 58
#84667/h <h 12 #64BAch <3Bh> 9
#04871h D 13 #64882h ath 68

<Eh 14 #6488Ch 3oh> 61
#04685h 15 #64BC6h <Eh 62
#0406Fh 16h 16 #64806h G 63
#0499%h {11k 17 #6480~h {18h> 64
#040A3h A2 18 #64BE4h {41k 65
#040ADh {3 19 <¢2h> 66

{14h> #64BFBh <{43h)> 67
#0468C1h <{15h> 21 {44h> 68
#040CBh <{16h> 22 #64CoCh {45h> 69
#04605h <A 23 #64C16h <{46h> 78
#0400Fh <{18h> 24 #64C20h {4Ah> 4
#040E%h <1%> 25 <{4Bh> 7
#040F3h <1fh> 26 #6B5C4h {40h> 7°
#046FDh <1Bh> 27 #64C20h {4FhD> 79

<1Cth> Z8 #64C34h Goh) 98
#04111h <10h> 29 #64C3¥Eh Gl 81
#0411Bh 1> 3 #64C45h a2 82
#04125h {iFh> 31 #64C52h S 83
#0412Fh 2h> 2 #64CSCh 94
#08413%h 21ih> 33 #64C66h <5h) 85
#04143h <Zh) M #64C76h S6h> 86

140h Z3h> 35 #64C70h S 87
#9415/h <24h> 3% #3A215h $5Bh 83
#04161h <Z5h» 37 #64C04h <SBh)> 91
#0416Bh {26h> 38 #1CCOBh GFh 95
#04175h m> 39 #64CBEh <{6Bh> 9%
#06417Fh {28h) 149 4C98h <61h> 97
#0418%h %> 41 #6B696h <61h> 97
#84193h 2Rt 42 #64CAZh <62h)> 98
#34190h <{2Bh> 43 #64CACh <64h> 168
#64B12h <2Cth> 14 #64CBoh <65h> 181

D. Objects in ROM 355

SIOIANIddY

EIRCRERRER

@i

#4A398h <611h> 1553 #64FF4h Azzh> 2594
#HA3AZH <612h> 1554 #64FFEh <AzZRh> 2682
#HA3ACHh <613h> 1555 #65008h <A6lh> 265¢
#H4A386h <614h> 155 #63812h <A6Zh> 2638

<615h> 1557 #63581Ch <A6Sh> 2661
#HA3CAK <616h> 1558 #65826h 2678
#HA304h <617h> 1553 #65836h <Mty 2721
#HA30ER <618h> 1568 #65830h Aeh>y 2722
#HA3EBh <619 1561 #65844h
#HAFZh <61ph> 1562 Bolh> 2817
#HA3FCh <61Bh> 1563 <Ceh> 3BM
#4A486h <61Ch> 1564 #6584th <{CB6h> 3878
#A416h <610h> 1565 #65856h <Cah> 3B\
#HA416h <6lEh> 1566 #65062h <CB8sh> 3808
HA424h <6IFh> 1567 #6586Ch <Corh> 3082
#HiMZEh <6ZBh> 1568 #65876h <CBBh> 3883
#41438h <621h> 1569 #20R7Ch <CaCh> 3804
H42h <6Zzh> 1578 #2FBEBh <Cbh> 3885
#H4Ch <623h> 1571 #2FBEEh <CeEh> 3886
#H456h <62¢h> 1572 #2FR9Ch <CoFh> 3887
#HAR466h <6Z8h> 1576 #2FB4fh <Clgh> 3068

<62%h> 1577 #2006Fh <{Ciih> 3889
HA174h <6zrh> 1578 #2eC3% {1zh> 33198
#HA47Eh <6zZBh> 1579 § <{C15h> 3893
#41488h <6ZCh> 1588 #31BF1h <Cilch> 38%
#192h <620h> 1581 Cich> 3IH
#4A49Ch <6Zth> 1582 #1C88%h <C22h> 3186
#2849%h <6Hh> 1664 #1E58Ch <CLh> 3116
#64F86h <63Bh> 1616 #1C870h <€Hh> 357
#64F95h 1792 $1E4EER <CCh> 3164
#10446h ¢y 1 {CFFh> 3327
#1042Fh 1872 #65886h <{OFFh> 3583
#88E14h {FFh> 2847 #650860h 3504
#48320h <8@Bh> 2848 #1E50Ch <2111
#1C8A7h <8zzh> 2882 #83FB8Bh 18547
#1E546h <BZCh> 2892 <2955h> 18381
#1C898h <855h> 2133 #83F95h <2977h> 18615
#1C912h 8Ch> 2148 #83FFh {2A74h> 18868
#1E49Ch <B3Ch> 2148 #8FC7h <29%6h> 18982
#1E526h B8Xh> 2148 #19173h <2A%6h> 18982
#64F9Fh <B86th> 2145 #83FB0h <2ABth> 18936
#64FRdh 8e2h> 2146 #3FESh <2A0Ah> 18978
#64FAER <B865h> 2149 #25C3%h <281Eh> 11638
#64FB8h <B6Eh> 2138 #83FB3h <2080h> 11677
#2004Hh <BF1h> 2289 #83FASh 2E46h> 11648

OFlh> 2545 #93¥D1h <2e6Dh> 11885
#33CBFh <Adlh> 2561 #39740h <383%h)> 12345

2562 #16A06h <4686h> 16384
#34381h <Ag3h> 2563 #16AE5h <5086h)>
#33091h <ABdh> 2564 #16AF4h <8886h> 32768
#33C2%h <AgSh> 2565 #16B43h <9986h> 36864
#33C83h <AB6h> 2566 #16821h <098oh> 53248
#64FCCh Allth> 2577 #16812h <EBBGh> 57344
#64FDoh <Al1zh> 2578 #65894h <70808h> 458752
#64FEBh <Alph> 2586 #67012h <88888h> 524288
#64FERN <A21h> 2593 #6589%h <FFFFFh> 1848575

D. Objects in ROM 357

Real Numbers

#2A487h -9.9999999999%499
#2R107h —4.77451811461E441
#2813%h -268
#2A42th -9
#2A41%h -8
#2A404h -7
#2R3EFh)
#2R308h -5
#2A3CSh -4
#2R388h -3
#2A3%h -2
#2/386h -1
#65802h 4.5
#2MB1h -1E-499
#2A2B4h 8
#2A49Ch 1E-499
B 1E-12
#8864h 3. 4986 -2
#94B4h .1
#0277 4. 34294481984t~1
#65880h 8.5
#9616h 8.15
#2R2C%h 1
#31F4Fh 1.8
#2R20Eh 2
#AZZ3h 2.5
#650Abh 2.71828182846
#2R2F3h 3
#2f143h 3. 14159265359
#2R3686h

. 28318538718& g

O
O
0

SBE7h 18
#1CCB3H 11
#1CC10h 12
$1CC37%h 13
#1CC51h 14
#1CC85h 15
#1C03Ah 16
#1004 1?
#1COFZh 18
$1CEB/h 19
#1CC6Bh pa’)
#1CCRth 21
#1CCC3h 22
$1CCEZh 23
#1C081hH 24
#1C026h fas)

26
27
19

#1C080h
#9161h

358

#32881h 2
#15F1h 108
#658FCh 189
#65111h 208
#288CEh 268
#65126h %8
#6513Bh 409
#4CB35h 499
#4CB66h 499
#22352h 1268
#22367h 2408
#2237Ch 4808
#BEFEEh 8192
#1A7CEh 8192
#22391h %08
#6FB83h 491528
#0FB16h 29491208
#6FB20h 787788608
#8FB42h 4954521608
#2R472h 9.9999999999%499

Long Real Numbers

#28106h -1E-10608
#2831Fh -495.928119817593
#2836Ch -76. 5594818148268
#2838% -1.2114285714285¢7
#2R4C6h 8
#281BCh 1E-10808
#2R62Ch 1. 7453292519943-2
#18EDBh ?7.95774715459477E-2
#2°562h 8.1
#28300h 8.4
#2f57/Ch 8.5
#16E68h 5. 55555555555556E-1
#5202Fh 8.7
#28416h 9. 18938533284673%-1
#274E8h 1
#2R4FFh 2
#5236Fh 2. 38258589299485
#21514h 3
#2R456h 3. 14159265358979
#2752h 4
#27546h 5
#0F686h 6. 28318538717959
#281FFh ?

9. 33584985668377
#2°5%h 18
#2820Ch 12
#28343h 30. 3479686873615
#9F547h R

68
1 108

#18E9Ch 273.15
#10EB6h 459. 67
#280F2h 1£16000

APPENDICES

Complex Numbers ¥3406h
HH4E2h :C'

' #0

v gp EAE OV e
(-1,8) #6 g tegn :) '

#5267Fh (1,8)
#6 6! reaen .z'o S4F7h i #65680h :

fear g #65698h : :

. #6551/h i X 3

ng Complex #65521h H 256% &

Numbers # 'N: '6552% i

oo -EE
(8,8) #65530h :P' seorcs .':.2 IE: fimmh 8|

Characters e 3 e
‘655% 3. 7036 i3

msglah 8 #65566h 'U. .mmm <

127h R #65567h 'U. '?FB‘H:h 3

] #6556Eh 'H' : 2

#080318h » #65575h 3 '?H%Bh <

RB
Iy m l

:IBIGFh 'g' '658319o £ .?i'n'ggaaa||" lE :

e X fe6h :bl #7A976h 1§

! s ¥ ':l #7A970h)

mfi@ ‘Al #6559%Fh g, .?Mh .a'

174h 1 ¥ :e' =m i

64725 Iy ! #655A0h f ' 1

#6 5 #65584h 'gl '?FBH?h .

.65*2&\
#65586h M '?agpsh T

|65433h g #655C2h '1' ' T

'654% Ig! %mflflq lg'
4

'quth 1yt % ' ' v 3

.65463\ ' #65507h = $ec 5

ko T
=

,65“56h T #655E5h o :?fl%m :

#6 1 #655ECh '0: '?ngmh &

= L |82 § | :
#65472h e g s iA #65681h g ' %

'654|?9h 13 46688 i 'mm)

’651% 14! YoS08h lt : 'mmfh 'U

'6549?h 5 #o3616h v : '“'

'654% g! 63610 ! : i

'65495h) Ho6zth ! 47 i

K\sqxh g! 163620 s 'ml% i

ik feeo '9: 7AA17h ‘¢!

#6948 It #6263%h > '?m;i IzclEhh v

#6 1h 13 ¥o3640h "' '”“33" ¥

'Gmah e hodoth l" '”“a"' :

#5406 Ig!
#6564Eh ',

'?m' 'P

#0 h "y f6365h ": : l

#6 T-1 #6565Ch 'b' : A 72 a1 e566Ah le! : 'gl#78A56h '$!

D. Objects in ROM 359

Arrays

#r2008h

#72281h

#7232Ch

#72660h

#726/5h

#7279th

#720CFh

#72F1Eh

#72FE6h

360

["Insufficient Memory" 'Directorg Recursion® "Undefined Local Name"
"Undefined XLIB Name" Pemr!i Clear® "Power Lost® "Harning!"
Irvalid Card Data '[bjectn Use® "Port Not Auailable®
"No Room in Port" 'Object in Port® “"Recovering Memory"
"Try To Recouerflevu'\{ "Replace RAM, Press ON*
"No Mem To Config All

["Bad Guess(es)® "Constant?" "Interrupted® "Zero® "Sisn Reversal®
"Extremum®]

["Bad Packet Block Check® "Timeout® "Receive Error*
"Recejve Buffer Overrun® "Parity Error® "Transfer Failed"
"Protocol Error® "Invalid Server Cad.® "Port Closed® 'Comectine
'Retrg #* "Auaiting Server Cmd.® "Sending " "Receiving
"Object Di o"Packet #" "Processing Command" 'Imalld 10PAR"
"Trwalid PRTPAR® "Low Battery®" "Empty Stack® "Rou *
"Invalid Name®]

["Irvalid Date® "Invalid Time® *"Inualid Repeat®
"Nonexistent Alarm®]

["Invalid Unit® "Inconsistent Units® 1]

["No Room to Save Stack® "Can't Edit Null Char
"Irwalid User Function® "No Current Equation® **® 'Inualid "
"Real Number® "Complex Number® 'String''Real Array® 'Conpleu ay"
"ist® "Global Naue' 'Local Name® "Prooram® "RAlsebraic®
"Binary Integer Grmh'Tagged' "Unit® "XLIB Name®" "Directory"
'Library Lr mction "Command” "Sustem Binary® "L Real®
Corpleu' Linked Array® "Character® "Code® “*Library Data"

Ewtema "E WQST STFD(Disabled® "LAST CMD Disabled"
"HAT Not Allowed" "Array® “Wroms Hr?uuentCount®
"Circular Reference" 'Directorg Not A . "Non-EnPtB Directory®
*Irwal id DeFinitim' "Missing Librrx-" "Inval id
"Non—Real Result® lhd)leto Isolate "No Room to Show Stack®
'Hrning"' 'En‘orl of Memory" "Stack® "Last Stadz'
"ast Commands® iE-nnent<" 'fllams' "Last Arouments®
"Nane Conflict' 'Commd

["Too Few Arguments® "Bad Aroument Tupe" "Bad Aroument Value®
"Undefined Name® "LASTARG Disabled" "IncompletefSubexpression®
"Implicit () off" “Implicit O on* 1]

["Positive Underflou" "Negative Underflou® "Overflow"
“Undefined Result® "Infinite Result"]

['Inualld T Data" "Nonexistent ZDAT" "Insufficient £ Data"
id ZPAR" "Invalid £ Data LN(Neg)® "Invalid I Data LN(B)"

"Inualid EQ" "Current equationt® "No curn.-nt equation.”
"“Erter eqn, press NEW" "Name the equa +«press ENTER"
"Select plot type® "Empty catalog' 'mdeFined' "Nostat data to plot"
"Autoscaling® "Solving for "No current data. Enter®
"data point, press Z+" "Select a model"” "No alarms pending. *
"Press ALRM to create® "Next alarmt® "Past due alarm:"
"Acknowledged" "Enter alarm, press SET" "Select repeat interval®

APPENDICES

" 10 setup merwu® "Plot type: * ** *% ® (OFF SCREEN)"®
"Invalid PTYPE® "Name the stat data, ¢press ENTER"
l'Enter value (zoom oute¢if >1), press ENTER" "Copied to stack”
x avis zoom wAUTO.¢* "x awis zoom.¢" "y axis zoom.+¢
"w and 9 axnis zoom.0-" *"IRnvire: " "qSCII/binaryt " “"bauds
"paritys "checksum typet " "translate code:®
"Entermatris, then NEW"]

#736F%h [“Irwalid Dinension' "Invalid Array Element® "Deleting Row*
"Deleting Column® "Inserting Row® "Inserting Column® 1]

<FFIBh> <FFF4h> <48880h> <6ACDh> <65583h> <7HIZ%h>

<{4883Fh> <48826h> <48858h> <65404h> <6558Ah> (7H968H>

<48871h> <4988fh> <48BA3h> <63ADBh> <65591h> <7R96Fh>

<4808Ch> <49805h> <4BOEEh> <B54EZh> <6559Bh> </RI7%6h>

<48167h> <48128h> <4813%h)> <6HAE%D> <635%Fh> <{/MITh>

<48152h> <4816Bh> <48184h> <654FBh> <655A6h> <ARSBth>

<A057h> <AE3F> <IEES3h> <654F7h> <655A0h> <PR98Bh>

<HEIAR> C3AGESh> <21FDLh> <654FEh> <655B¢h> <AR9%Zh>

<3RB72h> <3A0AZh> <3AOBBh> <65585h> <6558Bh> </H9ABH>

#7°C4Ch <3AF37h> <3A078h> CGADBSh> <655BCh> <BS5C2h> <AMSACH

#7AC83h <3A930h> <3AEGFh> <3BBBEh> <63513h> <655C%h> </R9AEhH>

#A3Dh

[

[

[

[

[

[

[

[

[

[

#7°CBAh [C3A?ICh> <3AP3Sh> <3\211h> <6551Ah> <6550Bh> <AR9BSH>

[

[

[

(

[

[

[

[

[

[

[

(

#70A%4h

#7ARCBh

#7AB68Zh

#7AB3%h

#7AB876h

#7FBA’

#7AB0ER

#7AC15h

#7ACF1h <3A69Rh> <1A15Bh> <1R14Bh> <63521h> <65507h> <{/R937h>

#7A028h <3A9%2h> <28D65h> <28B4Bh> <65526h> <6550Eh> <7H9BCH>

#7A05Fh <IA3BER> <1F9C4h> <1ASE4h> <6552Fh> <6S5ESh> <AR9CHh>

#7A0%h <3AB34h> <1EZBAh> <3AFEGh> <65536h> <BS5ECh> <A9D1h>

#7ADC0h <3R64Sh> <3AE4Ch> C3AFESh> <65530h> <655F3h> <7R90BH>

#77E04h <3ABDER> <IFBBOh> <3ABBCH> <65544h> <655FRh> <{PA9DFh>

#77E3Bh <IB4ACh> <1B6A4h> <IEF7Eh> <6554Bh> <65681h> <AR9EGh>

#7AE72h <1BSB5h> <1B72Fh> <IF1D4h> <6555Zh> <65688h> </RSEDH>

#77EASHh <IBSSEh> <1B79Ch> <1F2C%h)> <6355%h) <65668Fh> </R938h>

#7AEEBh <1B374h> <1B426h> <1B185h> <6556Bh> <65616h> <7HI61h>

#°HF17h <1B820h> <1BA3Dh> <1BIC6h> <65567h> <65610h> <7R9FBH>

#r°AF4Eh <1B278h> <1B9BSh> <1B9MFh> <6556Eh> <65624h> <7RABZh> e
t
d

e
d

b
d

b
d

b
e
d
b

b
d
b

b
e

e
b

b
d
b

A
e

e
e
l

e
d

e
d
W

D. Objects in ROM 361

#70F85h

#76FBCh

#76FF3h

#7882fh

#78B861h

#78896h

#7BACFh

#7B166h

#7B130h

#7B1Mh

#781ABh

#781E2h

#7821%h

#78256h

#78287h

362

[<3AF3h> <AFSEh
<38B66h> CAFIh <MAtth>
<7ARfFh>]

[<3AABZh> <3A7C6h>
<3B12Bh> <65575h> <65628h>
<PRAB%N]

[<3AC3AN> <B150H>
<3B19Fh> <6557Ch> <65632h>
<PAA1Bh>]

[<3AB8%> <3B1DFh>
<3AAEBh) <3ABA%h>
<PR99%>]

[<3ASFBh> <1FBDBh
<1FCEBh> CG3RSFBh> </MRtih>
<PRF4h>]

[<3AABAK> <3B9DBh>
<38881h> (3B836h> CESEEh
ESAFh]

[<65495h> <3AEBth>
CBESHh 65495 <Fledy
GFI78h]

[<65495Ch> <3ADEDH
<48FD6hY <6549Ch> CF18Fh>
GFIR3k]

[<654A3h> <3ABS%h>
<47B5Ah> <654A3h> CF1B
<3F1CBh>]

[<1AFBSh> <3A6CCh>
<3AC8Bh> <65430h> AeCCh>
64K]

[<3A893h> <3ABACH>
<3A833h> CAA37h> C3AASEL>
GRA3]

[<65488h> <3A7A3h
{47FE7h> <65488h> <PRAS6h>
<AL]

[<65487h> <3REBSh)
CIAEEZh> <65487h> </AA1Eh>
<PAAZSh>]

[<6548Eh> <3AFBSh>
C3AF1Eh) <6548Eh> <PRAZCh>
<PAA33h>]

[<1ADEEh> <3ABA4h>
<3A6B3h> <6543Ah> <3ABAth>
<65680h> 1

#782BEh

#782F5h

#7832Ch

#78363h

#783%h

#78301h

#78468h

#7843Fh

#78476h

#704F0h

#7B4E4h

[<3ABCSh> <3ABCSH
<3ABACHh> <3AA6Sh> <3ARESH>
GARSBh>]

[<6546Bh> <3B1CBh
<3B1Bh> <65168h>

[<65472h> <3ACFBh>
<1A684h> <65472h> <65488h>
<6406]

[<65479h> <3ACBCH>
C3ARGFER> <6547%h> <PHI3EH>
<P9Sh>]

[_<1R08%h> _<3RBD6h>
C3AC21h> <6544Fh> <3ABE0H>
<EHM2ZLh]

[<3A3C0h> <1R8BBH
MHD(]}BCI}DQW

[<65464h> <1A80BH>
<ZZFEBh> <65464h>
<6563%> 1

[<A7S53h> CA7Bh
<3A004h> <AA7S3h> CA77Bh>
ADDth>]

[<65686h> <1RABOH>
<6564Eh> <65686h> <65671h>
<65%4th>]

[<1AB6/h> <3ABBBh>
C3ABEFh> <65441h> <3ABBBH>
<634Ah]

[<7RASDh> <7AR%4h)>
<7AACBh> <7ABAZh> </AB3%h>

</RBOEh>

</R0Z8h>
<7R0COh>

<{7B130h> </B1Mh> {/B1ABh>
<{/BIEZh> 19h>
{/BZ8h> BEh
<{7B32Ch> </B363h> </B3%h>
<{7B301h> <7B48Bh> </B43Fh>
{7B476h> <7B40h>]

APPENDICES

Strings

second(s)"

#222%h "invalid"
#22207h "IF-prompt”

D. Objects in ROM

“SORT"
ISQI

IIWI

*Irwalid Esxpression®
l| ‘,.

l".

IF.

IGI

IR.

"t
" "

"N

Ny "

" "

l? .

eT
1SR
Iml

l&Gl

.ml

" "

Ill n

" n

363

¥
#38E3Bh
#38ED1h
:33-'%

n GHTI

APPENDICES

D. Objects in ROM

365

#H8816h “EQ+"

" nedl

#59823h "1
#59860h 1"
#598F3h "+1-1"
#59955h et
#59981h "ef"
#59908h “A+"
#59A1Fh “eT®
#59A6Eh “T»*
#59A80h “(e"
#59868Ch "»)*
#598%h ()"

#59C86h "M
#59C55h *-O"
#59C83h *1-()"
#59C83h “EQ)"
#59CElh "LO*"
#5900Fh "La*
#59038h “E*"
#59%06h 0"

#5%06/ “D»*
#5%56h "+TRG"
#59%86h "*»()"
#5%07h “2DEF"
#59F87h "TRG#"
#65156h “1"

366 APPENDICES

#65757h

l["

l[.

l{l

l}l

I'I

n "

l;l

I&I

an

.’.

l"

IEI

I‘I

lzl

l‘,.

'dfl..

nn

"UNCNOWN®
ann

nin

1GR08"

D. Objects in ROM

Binary Integers

#16E3¢h #9900PBABRERAABAGH
#16E4Eh #96008060100800806h
#1A215h #6686h
#18471h #8526268416h
#1A9F%

Lists

#20F81h

368

"1_n '"1_R'

K''l_od' '1_mol'

’
-
.
'
.
‘

-
V
W

u
—
:
‘

-
-
=

=

o
t
=
D
-

=
g
l
g
o
o
W
|

halt)

g—
:
- o
t

P
N
V
E
N
P
N
E
N
P
N
N
E
N
N
E
N

=
e

[+
~ = =

© g

4954521608 787788008
29491208 491528 8192 | }
{ * week(s)" " day(s)" *
hour(s)® ® minute(s)"
' second(s)® " ticks")
{ 'nm }
{ "Intercept® "Slope" 1}
{ "none * "odd " “even *
"mark ")

1208 2408 46808 9608)

141
(}Z‘b(&\)(flh)(l&\))

'1'2 '3
'ttt 'str 'ofs 'tok 'rbu

'{dffls 'tmeop 'tmepdat
ploc 'bu 'unbound }

A
N
P
N

~
a & - R o

}

8 LINFIT)

-
A
P
P
P
N
P
N
S
N

ERRMSG)
LNAME 'KMODE 'KRM 2”

~
#3820Ch

#382FBh

#3836Ch

#38452h

#38556h

#38575h

'KP 'PKNO)
'KP_'PKNO)
'LNAME 'KMODE 'KRM)
%08 8868311
}
'LNAME '0BJ 'PACKET

}
{ 'KLIST 'OPOS 'KML)}
{ 'RETRY)
{ 'Irap)
(1)
{ 1.8 *" 88 “e* }
{ 'nohalt }
{ B}
{)
{1
{
{
{
{
{
{
{
{

-
N
N

P
N
N
N

<3h)
3}
fa b)

PUT GET PUTI GETI 2)

APPENDICES

#385F

#38622h

#3B65%h
#3867/Fh

#3896Eh

#38972h

#3BC80h

#38CE/h

#38046h

#3C83Eh

#30061h
#3C483h

#3C980h

#3C09%h

DELKEYS MENU CST TMENU
RCLMENU STOF RCLF SF CF
FS? FC? FS?C FC?C)

SCATTER
{ "HIST® HISTOGRAM }
{ COLCT EXPAN ISOL QUAD
SHOM TRYLR TMATCH IMATCH
| APPLY QUOTE +Qw)
{ "»DATE" +DATE }
{ "»TIME" »TIME)}
€ € "LIN" LINFIT > { "LOG"
LOGFIT } { "EXP" EXPFIT
} { "PWR" PURFIT) (
*BEST" BESTFIT } 2

"LIN* LINFIT }
"LOG* LOGFIT }

N
N
N
S

é
=

% - (
)

.in. IMI .Pcl Ilwl

"au®" "km" "mi® "nmi® "milS"
"chain® "rd" "fath" "ftus"
"mil® "u* YAY "fermi" }

D. Objects in ROM

#301FDh

#302E8h

#30458h

#304C4h

#30550h

#3064Ch

#306BFh

#3076Eh
#307A1h

#30842h
#30891h

#30944h

#30980h

#30A4Ch

#3DACSh
#30RF2h

#41320h
#43308h

#5716h
#47873h

#4919%h

#HCF38h

{ ln~2l IGQI lbl Im.

"EEA2Y *in*2" "km*2" "ha"
"a' "mi*2® "miUS*2"*
Yacre")
{ lnhal lstl lmhal lgdhal

NELA3 WipA3t]t
lgallxl IgaICI lgall lqtl

"pt" "ml* "cu" "ozfl"
lod‘kl ltbspl ltspl lel

lbul lwl lfhl }

{ le Idl lhl Ininl lsl

n "

{ "ws" "cws" "ftrs"
"tph" "mph®" "knot" "c*
" al

{ Ikgl .9. llbl Iozl

*slug® *1bt" "ton" *tonlK®
ltl Ioztl Idl lgrainl IUI

"wol®)
{ INI ld’\l lgfl IkiP.

IleI " ll

{ *J* "erg® *cal® cal®
"Btu" *felbf* *thern®
IMI Ievl }

IHI 0 "

{ "Pa® "atm* "bar"
lPsil ltu.rl Im’bl

"irHg" *inHe0")
{ l'cl I-Fl IKI I'RI }

{ Iul Inl Ic- IL‘II IFI Iul

'Fdjl IHI In'.DI ISI ITI

lwl }

{ nen lrl lg.u’l lminl

"arcs" “sr")}
{ IFCI IFlml lel Iml

lsbI Ilnl lcdl Ilml }

{ .G‘J. Iradl Iml I&)l

qul IC1l IRI }

{ "P" "St")}
{ CONVERT UBASE WAL UFRCT
HUNIT)
{ lal Ill l2l l&l

{ " <> <1h> <1h> <&
<gh> }

{ '"EnvOK 'EXITFCN 2

369

#59116h
#5928Bh

#6419%h
#68484h

370

{ lxe l* lx l9 lgc 'BC

'r2 'left 'up 'exit)
'PlotErw 1}

'tcls 'fcls)

ge
8

-
¢
8
-
\
-
—
"

L)

i
.

.. 2
o
-

w
e
m
o
o

I

3 — W ?

al
}

1+1-)
'piflag)
'd 'r)
'd 'R 'est ' 'T)}
'bnds 'dvar }
'wvhich 'opl 'op2 }
2r-711i)
v/)
ld 'PP'EP)

o
n i

N
N
V

E
N
P
N
P
N
E
N
P
N
P
N
P
P
N
V

P
N
V
N
N

P
P
N
P
P
N
P
N
P
P
N
P
P

L
-

L
S o
t

'reg 'sur 'cts 'sun 'nlg
‘'ckd 'prd 'prp 'rhs)
{ 'patternls 'compos
lvarls)}
:(){){}{}&1&2
3 4)
£§13E}1)<1231><DFFh>}

#69A9Zh { 'Radix 'KeysOK? 'Expriit
'Buffil 'BuffH 'SauveBlank
'Man0p 'nohalt 'AppMode
'NameGrob 'EXITFCN
'FontGauge 'LE 'LB 'TE

APPENDICES

Graphics Objects

#130B4h GROB 6 18 FIFIFIFIFIFIFIF1F168

#39820h GROB 131 2

#3A39%h GROB 21 8

#3A3FBh GROB 21 8

#3M50h GROB 21 8

#585Ch GROB 5 5

#66EASh GROB 6 18

#66ECDh GROB 6 8

#66EFIh GROB 4 6

#66F11h GROB 6 8

#66F35h GROB 6 18

#66FSDh GROB 7 5

#66F70h GROB S5 4

D. Objects in ROM

1CFFFFB860980080880000000000000808
0988000800008

FFFFFF180681 166081 1008081160081 1668
81106081FFFFFF

4840F14048

11A846A811

F111111111111111F108

F11111111111F168

FB98989896F

B90880VRRBERE0A0

B3089660000860000000

F777B60SF7F

F1B151F1

i

B8
[
E
E
C
E

3
g

371

Global Names

h 'Alarms’

!

!

'

!

!

'

'

!

!

s}'
IERR
n8

Local Names

BE4TRH '
#OE4Bch N'

C ¥ INI

#0e4Clh 'M'
#143%h ''halt’
#14483h ''nohalt’
#1F96Fh ' 'num’
#1F97%Eh !''fcn'
#2372th
#2373Fh ' 'noname’

372

 #36C3Fh36CEFh
#36018
 #

#3 FHED

''{oinprosress’
lstl

lofsl

ek
'OFS'

Itc*l

'i'

.i'

1q

1191

Qe

1y

ll2l

Hq

g
llstrl

" sl

lltdl

“ldFFl?

L]

" !

HRLIST!
' IKPTRN
" !

" !

" !

" !

::IHrap'

l'al

l*bl

l*bl

l*al

ib
' 'SavedUI"
'SKEY'

APPENDICES

 S
o

llPiFlagl

114

Ilrl

11 41

1Hipt

llestl

Q
v

D. Objects in ROM

373

E. Error Messages

374 APPENDICES

Excluding any errors in supplementary libraries,this is the complete list of

error messages that the HP 48 will display. They are listed by order of their
code, given in both decimal and hexadecimal.

W
O
N
O
U
S
W
M
=

W
A
e

g
e

g
N
g
s

s
o

g
k
g

881h "Insufficient Memory"
882h "Directory Recursion®
883h "Undefined Local Name"
004h "Undefined XLIB Name"
085h "Memory Clear®
806h "Power Lost”
887h "Harning:®
886h "Irwalid Card Data"
89%h "Object In Use®
86fh "Port Not Auailable"
Bfi!’r "No Room in Port®
88Ch "Object Not in Port'
980h "Recovering
8%th "Try ToRecwerHenorg?'
80Fh "Replace RAM, Press ON
816h "No Mem To Config All*

181h "No Room to Save Stack"
162h "Can't Edit Null Char."
163h "Irwalid User

Function®
164h *"No Current Equation®

166h "Irvalid Syntax"
167h "Real Number"
108h "Complex Number"
18%h "String"
16Ah "Real Array®
16Bh "Complex frray"
18Ch "List"
180h "Global Name"
16Eh "Local Name"
16Fh “Prosram"
116h "Algebraic®
111h "Binary Integer
112h "Graphic"
113h "Tagged"
114h "Unit*

E. Error Messages

 R
E
R
E
L
U
R
L
L
T
I
R
F
T
I
R

IB
FI
RF
BU
RB
ZI
IT

e
e
A
e
A
e
M

S
s
M
s
s
A
i
s
s
s
s
s

ai
s
i
s
s

ag
is
s
s
=

i
k
M
N
i
g
g
N

N
k
N
k
N 11S5h "XLIB Name®

116h "Directory"”
117h "Library®
118h "Backup®
119h "Function®
118h “"Command"
11Bh "System Binary"
11Ch "Long Real®
110h "Long Complex®
11Eh "Linked Array®
11Fh "Character®

124h "LAST STACK Disabled"
125h "LAST CMD Disabled"
126h "HALT Not Allowed"
127h "Array”
126h “"Wrong Aroument Count®
129h "Circular Reference"
126h "Directory Not Allowed"
128h "Non-Empty Directory®
12Ch *Irwalid Definition®
120h "Missing Library®
12th "Irvalid PPAR"
12Fh "Non—Real Result®
136h "Unable to Isolate"
131h "No Room to Show Stack®
132h "Warning:"
133h “Error:®
134h "Puroe?"
135h *0ut of Memory"
136h "Stack"
137h "Last Stack®
138h *Last Commands"
13%h "Key Assigrnments”
13fh "Alarms"

Last Arouments"
"Name Conflict"

130h "Command Line"

375

913
o14
515
916
al?
518

219

N
I

376

281h "Too Few fArguments®
262h "Bad Argument Type"
263h "Bad frgument Value"
204h "Undefined Name®
265h "LASTARG Disabled"®
286h "Incomplete]

ionSubexpress
267h "Implicit () off"
206h "Implicit () on*

381h "Positive Underflou®
382h "Necgative Underflou®
363h "Overflou"”
394h "Undefined Result®
385h "Infinite Result®

581h "Irvalid Dimension®
582h "Invalid Array Element
583h "Deleting Row"
584h "Deleting Column®
585h "Inserting Rouw"
586h "Inserting Column®

681h "Irvalid ZData"
682h "Nonexistent ZDAT"
683h "Insufficient ZData"
684h "Irvalid ZPAR"
685h "Irvalid Z0ata LN(Neg)"
606h "Irvalid ZOata LN(B)*
687h "Irnvalid EQ*
688h "Current equations®
68% "No current equation.”
60fh "Enter eqn, press NEW®
60Bh 'Hane the eqw.ltimu

ess
68Ch 'Select plot tupe®
680h "Empty catalos®
60Eh "undefined®
66Fh "No stat data to plot®
616h "Autoscaling®
611h "Solving for *
612h "No Egurrent data.

t
613h "data point, press Z+*
614h "Select a model®
615h "No alarms pendins.”
616h "Press ALRM to oreate"
617h "Next alarm:®
616h "Past due alarm:"
61%h "Acknouwledoed"
61fh "Enter alarm,

i‘rl

61Bh "Select repeat
interval®

61Ch * 10 setup meru®
610h "Plot types *
619‘ nuun

61Fh * (OFF SCREEN)*
626h "Irvalid PTYPE"
621h "Nanethe stat data,

s ENTER"
622h "Enterualue (zoom out if

1), press ENTER"
623h "Copied to stack"
624h "w axis zoom w/AUTO.®
625h "x axis zoon."
626h 'g avis zoom.
62/h "x and y axis zoom.
628h "IR/uire!
62%h "ASCII/binary:s *
62fh "baud: "
62Bh "paritys "
62Ch "checksum type: *
620h “translate code:*®
62Eh "Enter matriw,

then NEW®

press

APPENDICES

BL
an
La
Rs

58
92

30
08

00
3R

RB
E3

3Y
35
58

ABlh "Bad Guess(es)® 3329 # DB1h "Invalid Date"
ABZh "Constant?" 3330 # DB2h "Invalid Time®
AB3h "Interrupted" 3331 # D6B3h "Irnvalid Repeat®
AB4h “Zero" 3332 # DB4h "Nonexistent Alarm®
ABSh "Sign Reversal®
AB6h “Esxtremum®
BAlh *Irwalid Unit"
BBZh "Inconsistent Units"®

458752 % 70006h Last user message
(message DOERR)

CBih "Bad Packet Block Check*
Cezh *Timeout®
C83h "Receive Error®
CB4h "Receive BuFFsr

Ouerrun
CéSh "Parity Error"
Co6h "Transfer Failed"
C8/h "Protocol Error®
C8Bh "Irwalid Server Cmd."
Ca%h "Port Closed"
CoAh "Connecting”
CoBh "Retry #*
CaCh "Auaiting Server Cmd.*
Cooh “Sending *
COEh "Receiving *
CoFh "Object Discarded”
CiBh "Packet #"
Ciih "Processing Command"
Cizh "Irwalid IOPAR"
C13h "Irwvalid PRTPAR®
Cl4h "Low Battery"
CiSh "Empty Stack®

IRw "C1
Ci7h "Irvalid Name"

E. Error Messages 377

378

F. Machine Language Instructions

APPENDICES

The instructions on the following pages are given in order of their codes.
The HP HDS manual gives them in alphabetical order, but they are given
here by code value, to make it easier to disassemble machine language
programs (especially those in ROM). To make it even easier, the entire
instruction set is given on two pages next to each other so that you won't
even need to turn the page. More detailed explanations for these instruc-
tions are found in Chapters 9 and 10.

For the registers and fields, here is a summary of what we have already
seen:

Field a f b

P 0 0 8

WP 1 1 9

XS 2 2 A

X 3 3 B

S 4 4 C

M 5 5 D

B 6 6 E

W 7 7 F

A F

F. Machine Language Instructions 379

00 RTNSXM 13 DO=Cs 8083 BUSCB
01 RIN 13D D1=CS 8084d ABIT=0 d
02 RTNSC 13E CDOXs 8085d ABIT=1 d
03 RTNCC 13F CD1IXS 8086d ?ABIT=0 d

04 SETHEX 140 DATO=A A 8087d ?ABIT=1 d
05 SETDEC 141 DAT1=A A 8088d CBIT=0 d
06 RSTX=C 142 A=DATO A 8089d CBIT=1 d

07 C=RSTK 143 A=DAT1 A 808Ad 2CBIT=0 d
08 CLRST 144 DATO=C A 808Bd 2CBIT=1 d

09 C=ST 145 DAT1=C A 808C PC=(A)
QA ST=C 146 C=DATO A 808D BUSCD

B CSTEX 147 C=DAT1 A 808E PC=(C)
oc P=P+1 148 DATO=A B 808F INTOFF
0 P=P-1 149 DAT1=A B 809 C+P+1
OE£0 A=MB f 14A A=DATO B 80A RESET
O0Efl1 B=B¢C f 14B A=DAT1 B 80B BUsCC
OEf2 C=CtA f 14C DATO=C B 80Cx C=P x
CE£3 D=DsC f 14D DAT1=C B 80Dx P=C x

OEf4 B=B&A f 14E C=DATO B 80E SREQ?
C0E£S C=CsB f 14F C=DAT1 B 80Fx CPEX x
OE£6 A=AsC f 150a DATO=A a 810 ASLC
0E£7 C=CsD f 151a DAT1=A a 811 BSIC
OEf8 A=A!B f 152a A=DATO a 812 CSLC

CE£9 B=B!C f 153a A=DAT1 a 813 DSLC
OEfA C=C'!A f 154a DATO=C a 814 ASRC
OEfB D=D!C f 155a DAT1=C a 815 BSRC
CELC B=B!A f 156a C=DATO a 816 CSRC
OEfD C=C!B f 157a C=DAT1 a 817 DSRC

OEfE A=A!C f 158x DATO=A x+1 818£0x A=A+x+1 f
OEfF C=C!D f 159x% DAT1=A x+1 818f1x B=B+x+1 f
oF RT1 15Ax A=DATO x+1 818f2x C=C+x+1 f

15Bx A=DAT1 x+1 818£3x D=D+x+1 £
100 RO=A 15Cx DATO=C x+1 818f8x A=A-(x+1) f
101 Rl=A 15Dx DAT1=C x+1 818£9x B=B-(x+1) f

102 R2=A 15Ex C=DATO x+1 818fAx C=C-(x+l) f
103 R3=A 15Fx C=DAT1 x+1 818fBx D=D-(x+1) f
104 R4=A 16n DO=D0+ n+l 819£0 ASRB f
108 RO=C 1M D1=D1+ n+l 819£1 BSRB f
109 Rl=C 18n DO=D0- n+l 8192 f
10A R2=C 19pq DO=(2) P 819f3 f
10B R3=C 1Apqrs D0=(4) srgp 81Af00 RO=A f
10C R4=C 1Bpqgrst DO=(5) tsrgp 81Af01 Rl=A £
110 A=RO 1t D1=D1- n+l 81Af02 R2=A f
111 A=R1 1Dpq D1=(2) P 81Af03 R3=A f
112 A=R2 1Epqrs D1=(4) srap 81Af04 R4=A £

113 A=R3 1Fpqrst D1=(5) tsrgp 81Af08 RO=C f
114 A=R4 81A£09 R1=C f
118 C=R0 n P= n 81AfC0A R2=C f
119 C=R1 81Af0B R3=C £
11A C=R2 3xh0.hx LCHEX #hx.h0 81Af0C R4=C f

11B C=R3 81Af10 A=RO f
11C C=R4 400 RTNC 81Af11 A=R1 £
120 AROEX 420 NOP3 81Af12 A=R2 f
121 AR1EX 4yz xC zy 81Af13 A=R3 f
122 AR2EX 81Af14 A=R4 f

123 AR3EX 500 RTNNC 81Af18 C=R0 f
124 AR4EX Syz QONC zy 81Af19 C=R1 f
128 CROEX 81Af1A C=R2 f
129 CRI1EX 6300 NOP4 81Af1B C=R3 f
12A CR2EX 64000 NOPS 81Af1C C=R4 £
12B CR3EX 6yzt GoTO tzy 81Af20 AROEX f

12C CRAEX 81Af21 AR1EX f
130 DO=A Tyzt QOsUB tzy 81A£22 AR2EX f
131 D1=A 81Af23 AR3EX £
132 ADOEX 800 QUT=CS 81Af24 AR4EX f
133 AD1EX 801 QUT=C 81Af28 CROEX f
134 DO=C 802 A=IN 81Af29 CR1EX f
135 D1=C 803 C=IN 81Af2A CR2EX £
136 CDOEX 804 UNCNFG 81Af2B CR3EX f
137 CD1EX 805 QONF'IG 81Af2C CR4EX f
138 DO=AS 806 C=1D 81B2 PC=A
139 D1=AS 807 SHUTDN 81B3 PC=C
13A ADOXS 8080 INTON 81B4 A=PC
13B AD1XS 80810 RSI 81B5 C=PC

8082xh0.hx LAHEX #hx.h0
380 APPENDICES

81B6 APCEX 9bl
81B7 CPCEX 9b2
81C ASRB 9b3
81D BSRB 9b4
81E CSRB 9b5
81F DSRB 9b6
821 XM=0 9b7
822 SB=0 9b8
824 SR=0 9b9
828 MP=0 9bA
82F CLRHST 9bB
831 2XM=0 9bC
832 2SB=0 9bD
834 ?SR=0 9bE
838 MP=0 9bF
84d ST=0 d
85d ST=1 d Aa0
86d ?ST=0 d Aal
87d ?ST=1 d Aa2
88n 2P n Aa3
89n P= n Aad
8A0 7B=A A Aa5
8Al =B A Aa6
8A2 2A=C A Aal
8A3 =D A Aa8
8A4 ?B¥A A Aa9
8AS 2C¥B A AaA
8A6 2MAC A AaB
8A7 2D¥C A AaC
8A8 =0 A AaD
aa9 ?B=0 A AaE
8AA =0 A AaF
8AB 2D=0 A Ab0
8AC /40 A Abl
8AD ?B¥0 A Ab2
8AE 2040 A Ab3
8AF 20%0 A Ab4
880 M5B A AbS
8B1 7B>C A Ab6
882 TR A Ab?
aB3 D>C A Ab8
8B4 7AB A Ab9
8B5S BT A AbA
886 C<A A AbB
&7 D A ARC
8B8 2ARB A AbD
8B9 ?BXC A AbE
8BA 2CRA A AbF
8BB 2DRC A
8BC ?2A£B A Ba0
8BD ?B£C A Bal
8BE 2CEA A Ba2
8BF ?2D4C A Ba3
8Cpqrs GOLONG srqgp Ba4
8Dpqrst GOVLNG tsrgqp BaS

8Epqrs GOSUBL srgp Baé
8Fpqrst GOSBVL tsrqgp Ba?

Ba8
9a0 ?A=B a Ba9
9al 7B=C a BaA
9a2 C=A a BaB
9a3 =D a BaC
9a4 ?A¥B a BaD
9a5 ?BAC a BaE
9a6 2C¥A a BaF
9a7 2D%C a Bb0
9a8 ?A=0 a Bbl
9a9 7B=0 a Bb2
9aA 2¢=0 a Bb3
9aB D=0 a Bb4
9aC 2A¥0 a BbS
9aD ?2B¥0 a Bbé
9aE 20¥0 a Bb7
9aF 20%0 a Bb8
9b0 M>B b

F. Machine Language Instructions

O
O

U
O
D
C
U
O
D
U
O
D
O
D
U
D
U
O
D
D
O
D
U
O
D
U
O
U
U
D

C
O
U
O
C
U
O
U
O
C
U
O
D
U
O
U
0
D
U
O
O
0
O
0
U
0
U
0
0
0
0
O
N
e
e
e
N
N
N
N
N
0
N
e
0
N
N

D
C
O
U
C
T
U
O
U
O
D
U
O
D
U
O
U
0
T
U
O
M
D
D
N
D
M
M
M

N

w o o

A
E
d
A
d
Y
3
3
d
I
I
A
T
A
I
I
3

M
A
B
D
R
B
P
B
E
T
R
O
N
B
R
E
E

H
N
H
B
R
E
R
E
R
S
R
E
R
B
R
B
E
E

A
R
C
A
R
S
G
R
3
3
R
3
2
3
0
A
2
8

E
E
E
E
E
E

B=-B
c=<C

A=-A-1
B=-B-1

D=-D-1

HB
ES

XI
ER

ER
IL

LL
E

g 2
B=B-C
C=C-A

D=DC
A=A+l

C=C+1
D=D+1

B=B-A
C=C-B
A=A-C

A=B-A
B=C-B
C=AC
D=C-D

A=-A-1
B=-B-1
c=-C-1
D=-D-1 P

P
P
O
P
P
O
P
Y

P
P
O
I
P
O
I
I
D
P
D
O
I
I
O
O
P
O
D
Y

D
R
P
B
P
B
P
O
I
P
I
O
D
O
O
O
O
D
Y
D

D
O
L
D
P
O
P
O
D
O
D
P
I
I
O
O
D
I
P
O
P
P

U
O
O
U
U
O
D
U
U
D

381

G. Glossary

382 APPENDICES

Address A number between 0 and FFFFF (in hexadecimal) which indi-

cates the location in memory of some data.

Annunciator One of the symbols that appearin the status area (the very
top of the HP48 calculator) to indicate the machine's current status (DEG,
RAD, GRAD, a, X, etc.).

Assemble The act of translating an assembly program into machine
language.

Assembler A program that will translate an assembly program into ma-
chine language.

Bank-switching A technique used to have two distinct memory areas
exist at the same address. One of the two is visible, while the other is
hidden. To access the hidden memory, the visible memory mustbe moved
to another address.

BCD (Binary Coded Decimal) This is a method of storing a decimal
number in binary. For example, the number 20 (in decimal) would be
stored as 20h (in hexadecimal) which actually equals 32 (in decimal).

Bit A memory location that can equal 0 or 1. This is the basic unit that
makes up a nibble.

Bit clear To say that a bit is clear means thatit equals zero.

Bit set To say that a bit is set means that it equals one.

Buffer Amemory areathatis used as atemporary storage for information
that is waiting to be used. For example, each keypressis storedin abuf fer,
and the data going out or coming inthe RS232¢ port goes through abuffer.

Byte 8 bits of data. The basic unit of measurement for memory size. A
byte can represent any value from 0 to 255 (decimal) or from 0 to FF
(hexadecimal).

G. Glossary 383

Disassemble Translate a machine language program into assembly .

Disassembler A program thatwill translate a machine language program
into assembly.

Field A part of a register.

Flag One bit in memory that serves as an indicator.

Garbage Collector This operation is performed when the machine does
not have enough free memory to perform an operation. This operation
consists of purging any temporary objects that are no longer being used.
The MEM command will cause garbage collection to occur.

Hexadecimal Base 16. The digitsare0,1,2,3,4,5,6,7,8,9, A,B,C,
D,E,and F.

Kilobyte (Kb) 1024 (2'°) bytes. A unit of measurement for memory size.

LCD (Liquid Crystal Display) The HP48 screen is an LCD screen.

Machine Language A list of codes which represent elementary instruc-
tions that the microprocessor is capable of understanding.

Memory A place used for storing data. See RAM and ROM.

Nibble 4 bits of data. This is the basic unit if memory for the HP 48
calculator. Anibble can represent any value from 0to 15 (decimal) or from
0 to F (hexadecimal).

Object Everythingthat RPL canhandleis calledan object. Areal number,
for example, is an object.

Peek A program (or instruction) that will read the contents of a specific
memeory location.

384 APPENDICES

Poke A program (or instruction) that will write data to a specific memory
location.

Processor See microprocessor.

Prolog Agroup of 5 nibbles which serve as an object's identification. The
prolog is always the first 5 nibbles of an object.

RAM (Random Access Memory) RAM consists of electronic circuits that
are capable of storing data. RAM can be modified.

Register A memory location for the microprocessor. Typically faster
access than RAM, so most operations are performed in registers. Reg-
isters can contain only positive integers.

ROM (Read Only Memory) ROM consists of electronic circuits that are
capable of storing data. ROM cannot be modified. ROM contains the
machine language instructions for RPL, among other things.

RS-232C A data communications method used by the HP 48 to transfer
information between itself and another computer. The data is sent
serially—one bit at a time.

Stack The stack is a method of temporary storage. The user stack is
displayed in the central part of the HP 48 screen. RPL is based on the
principle of the stack.

G. Glossary 385

H. Handy Machine Language

Routines

386 APPENDICES

Here are a few machine language routines found in ROM that will perform

useful functions to add to your machine language programs. They should
generally be called with a GOSBVL .

SAVE_REG (# 0679Bh) will backup the registers DO, D1, B, field A,
and D, field A into a specific memory area (see Part 2, Chapter 7).
Note that they are not saved on a stack, so if you call this routine a
second time, the first values are lost.

LORD_REG (# 067D2h) restores the values saved by SAVE_REG.

TRDN (# 0670Ch) copies C, field A nibbles pointed to by DO to the
address in D1 (beginning addresses of two memory areas). D1
should be less than DO forthis routine (transfer down).

TRUP (# 066B9h) copies C,field A nibbles pointed to by DO to the
address in D1 (ending addresses of two memory areas). D1 should
be less than DO for this routine (transfer up).

ZEROM (# 0675Ch) sets C,field A nibbles pointed to by D1 to zero.

RES_ROOM (# 039BEN) reserves C, field A nibbles of RAM. The
address of the reserved area is stored in DO. If the free memory is
not sufficient, then a garbage collection will occur. If this does not
free enough memory, then the program will halt, and an error
message will be displayed.

GARB_COLL (# 0613Eh) cleans the HP48 memory by purging all
unused objects (unreferenced objects found in temporary RAM).

RES_STR (# 05B7Dh) reserves a string of characters of length (in
nibbles) C, field A. This routine returns the address of the string in
RO, field A and the address of its contents in DO. If the free memory
is not sufficient, then a garbage collection will occur. If this does not
free enough memory, then the program will halt, and an error
message will be displayed.

PUSH_R®@ (# 06537n) places the value of RO, field A onto the stack
as a system binary. CAUTION: The registers D1 and D must have
been previously saved with a call to SAVE_REG.

H. Handy Machine Language Routines 387

388

PUSH_RB_R1 (# 06529n) places the values of RO, field A and R1,
field A onto the stack as system binaries. RO will be in level 2, and
R1 will be in level 1. CAUTION: The registers D1 and D must be
saved previously with a call to SAVE_REG.

POP_C (# 06641h) takes the value of a system binary from the stack
and puts itin C, field A. CAUTION: The registers D1 and D must
be the system values (stack pointer and free memory). Their values
will be modified by POP_C (since the objectin level 1 was removed).

POP_C_R (# 03F5Dh) takes the values of two system binaries from
the stack. As with the routine above, D1 and D are modified. C, field

A will contain the number from level 1, and A,field A will contain the

number from level 2.

DIVS (# 06A8EN) divides the contents of C,field Aby 5. This routine
uses the first 10 nibbles of registers A, C, and D. This actually

performs a multiplication by 3355444, then adivisionby 16777216,
which is just about a division by 5.

MULTA (# 03991h) multiplies A, field A and C, field A, and puts the
result in B, field A.

BEEP (# 017A6h) emits a sound with a frequency of D, field A and
a duration in milliseconds of C, field A. This routine takes into
account flag -56.

ERROR (# 05023h) displays the error message for the number
contained in A, field A. CAUTION: This routine must be called with

aGOTO, and nota GOSUB. It will haltthe program currently executing.
This call must be preceded by a call to LORD_REG, if you have called
SAVE_REG.

STOP (# 10FDBh)called with a GOTO, will halt the program currently
executing. Itgenerates error #123h which IFERR cannothandle, so
the calculator is returned to interactive mode. This call must be
preceded by a call to LORD_REG, if you have called SAVE_REG.

EXHR (# 026BFh) will execute the routine in hidden ROM at the
address contained in C, field A.

APPENDICES

- DIV (#65807h) divides A,field W by C, field W. The resultis placed
in field W of both registers A and C, and the remainderis placed in

B, field W.

« MULT (# 53EE4h) multiplies A,field W and C, field W. The resultis
placed in field W of both registers A, and C.

- FREEMEM (# 069F7h) recalculates the value in #7066Eh (free
memory in 5 nibble blocks) using the addresses in #70579h and
#70574h. This call should only be used if you have previously called
SAVE_REG (which you would typically do at the beginning of your
program).

- FREEMEMQ (# 06806h) calculates the amount of free memory in
nibbles. The result is placed in C, field A. This call should only be
used if you have previously called SAVE_REG.

- ASLWS (# oD5F6h) executes the function ASL on field W 5 times,
which helps you use one register as three fields of 5 nibbles (when
used in conjunction with ASLWD).

- ASRWS (# 0D5ES5h) executes the function ASR on field W 5 times.

- CSLUWS (# oD618h) executes the function CSL on field W 5 times.

- CSRWS (# 0D607h) executes the function CSR on field W 5 times.

- DA7FMAP (# 0C1BON) stores in nibble #4 of DO, the base address of
built-in RAM (7 or F).

- DI7FMAP (# 0C1A1h) stores in nibble #4 of D 1, the base address of
built-in RAM (7 or F).

- DI7FMAPZ (# 0C154h) stores in nibble #4 of D 1, the base address
of built-in RAM (7 or F). This routine is slowerthat D17FMAP, but it
modifies only nibble #4, and the others are left unchanged.

- CONFTABCRC (# 09B73h) calculates the checksum for the configu-
ration table at #7042Ch. The result is placed in C,field A.

. Handy Machine Language Routines 389

390

CHECK_BAT (# 006EDN) checks the batteries, depending on the
value in nibble #0 of C: 1 to testif the main batteries are very weak,
2 to test if the main batteries are weak, 4 to test the battery for the
plug-in card in port 1, and 8 to test the batter for the plug-in card in
port 2. On return, the CARRYis setif the battery is weak.

CHECK_BATI (# 325AAh) checks the main batteries. Ifthe batteries
are weak, the CARRYis set, and the corresponding error number
is placed in C,field A.

DBTOS (# 6384Eh) places the address stored in #70579h (the
address of the object in stack level 1) into D0. SAVE_REG must have
been called previously.

DITOS (# 6385Dh) places the address stored in #70579h (the
address of the objectin stack level 1) into D1. SAYE_REG musthave
been called previously.

DISINTR (# 01115h) disables interrupts.

ALLINTR (# 010E5h) enables interrupts.

DISPOFF (# 01BBDN) turns off the display.

RDISPOFF (# 01BD3n) turns off the display and the annunciators.

DISPON (# 01B8Fh) turns on the display.

ADISPON (# 01BAS5h) turns on the display and the annunciators.

EMPTKBUF (# 00D57h) clears the keyboard buffer.

EMPTATTN (# 00D8EN) sets the five nibbles at #70679h to zero.
(This is the area that stores how many times the (ON) key has been
pressed).

KEYINBUFF (#04999h) tests the keybuffer for keys that have been
pressed. On return the CARRYis clear if the buffer is empty.

APPENDICES

- DISPINGROB (# 11D8Fh) writes text into a graphics object using the
5x7 font. Ittakes the address of the textbeginningin D1,the address
of where to write into the GROB in D0, the number of characters to
write in C, field A, the left margin (in characters) in B,field A, and the

size (in nibbles) of the GROB in D,field A. CAUTION: This size is
the total size of the GROB, and can be calculated by finding the
integer part of [((size in pixels) + 7)) / 4].

- IR7PCONF (# 026E6h) configures the built-in RAM to the address
#70000h. This routine updates the graphics pointers.

- IRFCONF (# 0228Eh) configures the built-in RAM to #F0000h. Do
displace the built-in RAM to this address, first unconfigure it, then
call IRFCONF , then CONFGRAPH.

- CONFGRAPH (# 01C7Fh) recalculates the graphics pointers after
displacing the built-in RAM.

- BUSYON (# 42333h) turns on the BUSY annunciator.

« BUSYNO (# 42359h) turns off the BUSY annunciator.

H. Handy Machine Language Routines 391

392

l. Index

APPENDICES

02911 123, 124
02933 123, 125
02955 123, 126
02977 123, 127
0299D 123, 128
029BF 123, 129
029E8 123, 130, 146
02A0A 123, 132
02A2C 123, 133, 146
02A4E 123, 134, 145, 147
02A74 123, 135
02A96 123, 136, 138
02AB8 123, 139
02ADA 123, 140
02AFC 123, 141
02B1E 123, 142
02B40 123, 143
02B62 123, 148
02B88 123, 150
02BAA 123, 151
02BCC 123, 151
02BEE 123, 151
02C10 123, 151
02D9D 123, 152
02DCC 123, 153
02E48 123, 154
02E6D 123, 155
02E92 123, 156
0312B 135, 139, 140, 152

2's complement 83, 110
?ADR 228
mSOLVER 295
¥ 286

@ of alarms 196
@ of backup area 187, 194
@ of command line 191
@ of current GROB 186
@ of last error message 195
@ of menu GROB 186
@ of next object to execute 197
@ of PICT GROB 186
@ of stack GROB 186
@ of temporary environment 186, 193
@ of the current directory 194
@ of the End of RAM 195
@ of the home directory 194
@ of the undo stack and local vars 191
@ of user-keys 196
@i 66

A 77,78
A->STR 260
A->V 289
Absolute 84, 111, 112
ADD 283
Addition 83, 98
Address 66, 77, 243, 383

I. Index

Address of Last Error Message 195
Address of an object in level n 200
Address of Hash Table 136
Address of Message Table 136
ADISPOFF 390
ADISPON 390
Alarms 196
Alert 164
Algebraic object 123, 139
ALLBYTES 216
ALLINTR 390
Alpha 164
ANAG 307
Annunciators 164, 201, 202, 383
Arithmetic operations 83, 97
Arrays 360
ASCIl code 129
ASLW5 389
ASN 50
ASRWS 389
Assemble 383
Assembler 69, 383
Assembling 70
Assembly 70
Attn Flag 201
Auto-test fail time 176, 178
Auto-test start time 176, 178
AUTOST 319

B 77,78, 175, 186, 210
B->SB 258
BACKUP 54, 145, 175, 194
Backup Area 194
Backup End 194
Backup object 123, 148
Backups 194
Bank-switching 159, 383
BANNER 324
Base 341
Base address of built-in RAM 164, 170
Batteries 164, 177
Battery Test 164
BCD 71, 125, 383
BEEP 73, 388
Beginning @ of free mem. 186
Beginning @ of temporary objects 186
BFACT 283
BFREE 261
Binary 342
Binary coded decimal 71, 125, 383
Binary integer 123, 134
Binary Integers 367
Bit 71, 342, 383
Bit clear 383
Bit set 383
Boolean algebra 342
Buffer 179, 183, 184, 185, 383
BufFull 179
BufLen 179

393

BufStart 179
Built-in RAM 159, 160
Bus commands 84, 119
Busy 164
BUSYNO 391
BUSYON 391
BY5 217
Byte 77, 342, 383

c77
C->SB 258
Cache butfer 85, 92
CAL 320
CALC 266
Calling subroutines 84, 112
Card present in port 168
CARRY 76
Character 123, 129, 133, 359
Checksum 143, 144
CHECK_BAT 390
CHECK_BATI 390
CHK 232
CIRCLE 322
CLEAN 218
Clock 159, 176, 177
Clock Offset 176, 178
CLR 22
CLVAR 239
CMOS word 176, 177
Code 123, 153
COMA 177
Command line 175, 191
Command Line Stack 197
Comments 51
Comparing registers 84, 113
Comparisons 84, 113
Complex Numbers 123, 127, 359
CONFGRAPH 391
Config. Object 143
Configuration Table 181
CONFTABCRC 389
Contrast 164, 165, 241
Control code 148, 149
Control instructions 84, 120
Converting Between Bases 343
CPU cycles 84
CRC 143, 148, 149, 164, 166, 265
CRC calculator 166
CRC value 149
CRCLM 265
CRDIR 33
CRNAME 238
CSLWS 389
CSRWS5 389
CST 48
Current Directory 194
Current menu offset 201
Cycles 84
Cyclic Redundancy Control 148, 166

394

D 77,175, 189, 210
DO 76,77,210

DO7FMAP 389
DOTOS 390
D1 76,77,175, 186, 189, 210
D17FMAP 389
D17FMAP2 389
D1TOS 390
Data 179
Data pointer registers 73, 76
Decrement 83, 99
DEPTH 24
DER 288
Derivatives 59
Direct relative conditional 84, 111
Direct relative unconditional 84, 111, 112
Directories 16, 29, 123, 136
Disable keyboard 186
Disable system-halt 176
DISASM 243
Disassembler 384
Disassembling 70
DISINTR 390
DISPINGROB 390
Display 164, 165
DISPOFF 241, 390
DISPON 241, 390
DIV 276, 389
DIV5 388
Dividing by 16 83, 107
Dividing by 2 83, 106
DIVP 290
DROP 22, 26
DROP2 26
DROPN 26
DSP 312
DUP 25
DUP2 25
DUPN 25

E 266
EEPROM 53
EMPTATTN 390
EMPTKBUF 390
Empty name 196
End of RAM 201
Ending @ of free memory 186
Ending @ of temporary objects 186
Epilog 135, 139, 140, 152
EPROM 53
Error 177, 388
Error messages 146, 374
Error number 201, 204
Exchanging register contents 83, 94
Exchanging register fields 83
EXHR 388
EXponent 77, 78, 125, 126, 127, 128
External 157
External module missing 76

APPENDICES

f 78
Factorial 2000 284
FAST 165, 242
Field pointer register 73, 77
Fields 77
Finding extrema 59
Flag 384
Flag registers 73, 76
Flags 191, 201, 202
Free memory 175, 189, 201
FREEMEM 389
FREEMEMQ 389

Garbage collector 188, 384
GARB_COLL 387
GASS 209, 215
Getting the program counter 84, 111
Global name 123, 154, 372
Global variables 41
Graphics object 123, 142, 188, 371
Graphs 59
GROBof the character under the Cursor 204

Hash Table 136, 143, 145
Hexadecimal 71, 343, 384
Hidden directory 196
Hidden memory 159
Hidden ROM 170, 224
High-level language 69
HOME 32, 33, 137, 194
HP28 73
HP71 73
HRPEEK 224
HST 76

VYO RAM 159, 160, 163
VO registers 73
Icons 50
Immediate 83, 84, 86, 113
Increment 83, 97
Infra red 56, 177
Infrared receiverAransmitter 159
INPUT 73, 164
Input and output 83, 93
Input OK 169
Instruction Set 83
Instructions with no effect 84
Interrupt Backup 182
Interrupts 80, 164, 169, 182
IR 56
IRin mem. 164
IRinput 164, 169
IR output 164, 170
IR7CONF 391
IRFCONF 391

JINGLE 318
Jumps 83,110

l. Index

KERMIT 55, 149
Key codes 184, 185, 186
Key state 183, 184, 186
Keyboard 15,73, 179, 184, 185
Keyboard Buffer 184, 185, 186
KeyEnd 184, 186
KEYINBUFF 390
KeyStart 184, 186

LAGU 292
Large binary integer 134, 145, 147
LAST 197
Last menu offset 201
Last RPL Token 201
LAST Stack 197
LCD 384
Left Shift 164
Library 123, 136, 143
Library Data 123, 136
Library number 137, 143
Link Table 143, 147
Linked array 123, 132
LISP 35
List 123, 135
Lists 368
LOAD_REG 210, 387
Local name 123, 155, 372
Local variable 41, 191,192
Logical AND 83, 102
Logical NOT 83, 104
Logical OR 83, 103
Long Complex Numbers 123, 128, 359
Long Real Numbers 123, 126, 358
Low-level language 69

M 77,78
Machine language 69, 384
Machine speed 186
Making data access easier 48
Managing the Stack 22
Mantissa 77, 126, 127, 128, 132
Margin 164, 165
MASTER 304
MAZE 298
MEM 29
Memory 66, 384
Menu 16
Menu bar 172, 198
Menu bar bitmap 171
Menu bar height 171, 172
Menu bitmap 198
Menu bitmap address 186
Menu height 186
Menu Offsets 204
Menu trees 31
Menus 29, 198
MERGE 54
Message 146
Message Table 136, 143, 146

395

Microprocessor 71
Mini editor screen prep. 176
Mini-editor 160
Mini-Editor Screen Preparation 178
Miscellaneous notes 79
MODU 266, 282
MODUL 316
Module pulled 76
MODUSEARCH 264
Moves 83, 86
Moving values 88
MP 76
mSOLVER 295
MULT 266, 283, 389
MULTA 388
Muliplying by 16 83, 107
Multiplying by 2 83, 105
MUSICML 314

NEXT 29
Next error to display 201
Next Object to be Executed 197
Nibble 342, 385
NOPs (instructions with no effect) 84, 120
Number of attached libraries 136, 201, 204
Numerical calculation 59

Object 385
Objects 35, 123, 354
ON-D 160
Other Objects 157
OUTPUT 164
Output Mask for the Keyboard Test 182
Output OK 169
OVER 22

P 78
PATH 33
PC 76
PCAR 291
PEEK 220, 385
Peripherals 159
Pl 286, 287
PICK 24
Pixel 142
Plug-incard 179
Plug-in card ports 159
Plug-in card removed 177
Plug-In cards 53, 179, 181
PMAT 294
POKE 222, 385
POP_C 388
POP_C_A 388
Port 179, 181
Port0 194
Port 1 161, 179
Port2 161, 179
Port information (HP48sx) 179, 181
POW 266, 282

396

PR40 311
PREVIOUS 29
Processor 385
Program 36, 123, 152
Programming Methods 36
Prolog 385
PROM 53
Pseudo operations 84, 120
PUSH_RO 388
PUSH_RO_R1 388

R->SB 258
RO 76
R1 76
R2 76
R3 76
R4 76

RAM 53, 54, 175, 385
RAMSEARCH 263
Random number seed 201, 202
RASS 230
Reading and writing to memory 83, 92
Real number 123, 125
Real Numbers 358
Real/Complex array 123, 130
Recursion 42
Redefining keys 50
Register 385
Register direct 84, 111
Register indirect 84, 111
Registers 73
Registers used by the HP48 79
RENAME 319
Reserved 1 123
Reserved 1, 2,3 and 4 151
Reserved 2 123
Reserved 3 123
Reserved 4 123
Reserved RAM 175
Restart 177
RES_ROOM 387
RES_STR 387
Return stack 76, 175, 189
Returning from subroutines 84, 112
REVERSE 236
Reverse Polish Lisp 35
Reverse Polish Notation 18
Right Margin 171, 172
Right Shift 164
ROLL 23
ROLLD 23
ROM 53, 159, 385
ROMRCL 259
ROMSEARCH 263
ROT 22
Rotating left (one nibble) 83, 108
Rotating right (one nibble) 83, 109
RPL 35

APPENDICES

RPL Commands 345, 350
RS232c 54, 164, 179, 385

RS232c Input 164, 169, 170

RS232c¢ Input Buffer 180
RS232c Interrupts 164, 169
RS232c Output 164, 169, 170
RS232c Speed 164, 168
RSTK 76

S 77,78
Saturn 73
SAVE_REG 210, 387
Saving and Restoring (Rn and RSTK) 83, 90
SB 76
SB->B 258
SB->C 258
SB->R 258
Scratch registers 73, 76
Screen 16, 160
Screen bitmap 78, 171, 172, 186
Screen bitmap addr. 171, 172, 186
Screen GROBS 175
Service request 76
Sign 77, 126, 127, 128
Solving equations 59
Sound 74
Speaker 74
SQR 266, 283
SQUARE 308
SR 76
SSAG 229
ST 76
Stack 16, 175, 385
Stack size 190, 201, 202
Statistical functions 59
STATUS 76
Sticky bit 76
STO 32
STOP 388
Store 32
STR->A 260
String 123, 133
Strings 363
SUBS 266, 283
Subtraction 83, 100
SWAP 22
Symbol @ 66
Symbolic Calculations 59
SYSEVAL 240
System Binaries 123, 124, 355
System Flags 202

TAG 51, 141
Tagged object 123, 141
Taylor's Approximation 59
Temporary backup during interrupts 179
Temporary environment 175, 193
Temporary objects 175, 188
Time 61

I. Index

Timer1 171,173
Timer2 171
Transmitting 164
TRDN 387
TRUP 387

Understanding programs easier 51
Undo Stack 191, 192
Undo stack, local variables 175
Unit 140
Unit object 123, 140
Units 61,370
UPDIR 33
Useful Routines 387
User Flags 203
User Stack 189
User variables 175
User-keys 196

V->A 289
VAL 288
“VAR" Menu 32
Variables and directory trees 41
VSYNC 171, 173

W 77,78
Wide 78
Wide-P 78
Working registers 73, 77
WP 78
WSLOG 160, 176, 177

X 77,78,79
XLIB name 123, 156
XM 76
XS 77,78

ZEROM 387

397

a. LE a

el[Re advanced.book
Il about. machine language
‘programming FRIST TD
 HP48 $/sx EELS Wig
this book you'll'be able to
Eei do] best of your
favourite3

og
yod
SEWi2* from the
French book « Voyage au
centre ded HP48 s/sx »
by Douglas R. Cannon

, Le

gs

. -

i El| ISBN 9789995911959
'] La ll

: on
y J .N
gd

	Cover
	Table of Contents
	Part 1
	Introduction
	1. First Approach to the HP 48
	2. Reverse Polish Notation
	3. Organizing Your Data Properly
	4. Programming the HP 48
	5. Presenting Your Data Properly
	6. Saving and Transmitting
	7. Other Strong Points of the HP 48
	Conclusion

	Part 2
	Introduction
	8. Machine Language
	9. The Saturn Microprocessor
	10. The Saturn Instruction Set
	11. HP 48 Objects
	12. General Memory Organization
	13. I/O RAM
	14. RAM
	15. Programming in Machine Language

	Part 3
	Notice
	Programs dealing with Machine Language
	GASS
	ALLBYTES
	BY5
	CLEAN
	PEEK
	POKE
	HRPEEK
	?ADR
	SSAG
	RASS
	CHK
	REVERSE
	CRNAME
	CLVAR
	SYSEVAL
	CONTRAST
	DISPOFF and DISPON
	FAST
	DISASM
	B→SB
	SB→B
	R→SB
	SB→R
	C→SB
	SB→C
	ROMRCL
	A→STR and STR→A
	BFREE
	SEARCH
	ROMSEARCH
	RAMSEARCH
	MODUSEARCH
	CRC
	CRCLM

	Mathematical Programs
	CALC
	PI
	VAL
	DER
	A→V and V→A
	DIVP
	PCAR
	LAGU
	PMAT
	mSOLVER

	Games
	MAZE
	MASTER
	ANAG
	SQUARE

	Miscellaneous Programs
	PR40
	DSP and INITSCR
	MUSICLM
	MODUL
	RABIP
	JINGLE
	RENAME
	AUTOST
	CAL
	CIRCLE
	BANNER

	Appendices
	A. Answers to Exercises
	B. Background Information
	C. RPL Commands
	In Alphabetical Order
	By Instruction Number

	D. Objects in ROM
	E. Error Messages
	F. Machine Language Instruction Set
	G. Glossary
	H. Handy Machine Language Routines
	I. Index

