S
-
C
9
O
—
C
o
K%,
@)
0
‘Q
N
39)
£
O
C
)
O
.
>
L

HP 48S/SX
Machine Language

Journey to the Center of the HP 48

by Paul Courbis and Sébastien Lalande

translated to English from the French
by Douglas R. Cannon

HP 48
Machine Language

Journey to the Center of the HP 48

by Paul Courbis and Sébastien Lalande

translated to English from the French

by Douglas R. Cannon

Grapevine Publications, Inc.
P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

Hewlett-Packard, HP-71, HP-28, HP 48, HP 48S, HP 48SX, Macintosh,
Atari, UNIX, Amiga and IBM are registered tradenames or trademarks.

© 1993, Paul Courbis and Sébastien Lalande. All rights reserved. No
portion of this book or its contents, nor any portion of the programs
contained herein, may be reproduced in any form, printed, electronic or
mechanical, without written permission from Paul Courbis, Sébastien
Lalande, and Grapevine Publications, Inc.

Printed in the United States of America

First Printing — December, 1993

Notice of Disclaimer: The authors and Grapevine Publications, Inc. make no express or implied
warranty with regard to the keystroke procedures and program materials herein offered, nor to their
merchantability nor fitness for any particular purpose. These keystroke procedures and program
materials are made available solely on an “as is” basis, and the entire risk as to their quality and
performance is with the user. Should the keystroke procedures and program materials prove defective,
the user (and not Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all
necessary correction and all incidental or consequential damages. Grapevine Publications, Inc. shall
not be liable for any incidental or consequential damages in connection with, or arising out of, the
furnishing, use, or performance of these keystroke procedures or program materials.

We would like to give special thanks to:

Our respective families for the help and support they have
given to us; Douglas R. Cannon for the enthusiasm and care
with which he has translated this work; Marc Bernard de
Courville for his numerous critiques; Ray Depew, without
whom this edition would have never seen the light of day;
Christophe Dupont de Dinechin for his program mSOLVER and
his excellent remarks; Dominique Moisescu for his program,
SSAG; Christophe Nguyen for his programs CIRCLE and
BANNER; Yann Rousse; Jean Tourrilhes; the Maubert Elec-
tronic Company; all the members of the comp.sys.hp48

group; and all those who have contributed with their remarks
and ideas for the realization of this work.

Note to the Reader

This work has been designed for both the beginner and the advanced
programmer. It contains information on the “classical” uses of the HP 48
as well as methods of accessing resources that are not documented by
Hewlett-Packard.

The book is divided into four parts:

Part One is to help you become familiar with the basic applications
of the HP 48. Among these are: reverse polish notation, the stack,
and the standard programming language. Also included are exer-
cises that we suggest you use to help you understand these
principles.

Part Two will teach you the hidden resources of the HP 48 in a
manner that is clear and helpful for a programmer of any level. This
initiation course in machine language can later serve as an excellent
reference manual.

Part Three is a library of various programs that are ready to use.
There are games, mathematical programs, utilities, music and
more.

The Appendicesinthe last partcontain programming references (an
exhaustive list of error messages, a complete list of instructions,
etc.).

Important Note: The different versions of the HP 48 (S and SX) are taken
into account in this work: All programs, diagrams and other information
(with the exception of the plug-in cards) are independent of the type of
machine you have.

Now it's up to you! We hope you enjoy the reading.

Table of Contents

Part One: The HP 48

The basic principles of HP 48 usage, as described by the manufacturer.

[133 (g0 Yo [173 1o 2 T PORP

1.

(2}

First Approach to the HP 48ccoeirrimnenincnnennncenne
Getting started and finding your way through
the maze of inscriptions on the HP 48 keyboard.

Reverse Polish Notationccccciccnineriseinnenisscenssnnssnnisensens
Basic principles of RPN, with examples and exercises.

Organizing Your Data Properlyccccoevieineininnrieccsersannanne
How to use directory trees to store data
in an easily retrievable manner.

Programming the HP 48ccccvvevrvriciinnicenicsencsnccseennen,
What a program is and how to write one;
how the HP 48 programming language works;
programming advice and step-by-step examples.

Presenting Your Data Properlyccccveeriiiiienninrsnssnnsansnnns
How to present your programs and data in a
user-friendly manner; the CST menu; key redefinitions.

Saving and Transmitting Datac..cccceveuieneriinsnnsenceneseniennns
Taking advantage of the HP 48's ability to exchange data
with the outside world: memory cards, the RS-232C port,
the infrared receiver/transmitter.

Other Strong Points of the HP 48ueeververinccnennnnnen.
Several incredible tools: symbolic calculation, graphics,
units management, and more.

CONCIUSIONueeeeeeriririciscreseresessesssssnseseesssssssnssasensasaeesesssessessssnsnsnsssnans

Introduction

8.

10.

1.

12.

13.

14.

15.

Part Two: Machine Language

The HP 48's hidden resources:
How to do more than Hewlett-Packard intended.

Machine Languageccccccevriiceinsecnnsnenssenissnnsssssssnsesses

An initiation to machine language; basic tools and useful
concepts for understanding the rest of this section.

The Saturn MiCroproCesSsorc.cccevvrinsetisenisnnsssnsesanss

A general view of the HP 48's microprocessor;
a detailed view of all its registers and their unique roles.

The Saturn INStruction Setcccceeeeeerieeieireeiessesnneeneneenes

All the available instructions, classified by
function type and by registers used.

HP 48 ODjJECEScccevvirririncnnne e e

Principles of memory storage for all objects accessible
to the user (real numbers, binary integers,
graphic objects, and others).

General Memory Organizationcccoecvieiineiniiniennen.

A global view of HP 48 memory to prepare for
the detailed explanations that follow.

HO RAM ...t s snsss s ssssanss

How to directly access certain HP 48 peripherals
(the clock, infrared I/O, etc.).

A detailed explanation of the HP 48's RAM organization.

Programming in Machine Languagecccccecevsuerunranene

How to access all resources of the HP 48.

..

Part Three: Library of Programs

A collection of useful, ready-to-use programs.

How to type in a machine language program.

Programs dealing with Machine Language

GASS Installing assembly language programscceeee... 215
ALLBYTES Calculate all checksums in a directory 216
BYS Display code strings in a readable formccoeueueee. 217
CLEAN Cleanup of code StriNGSccooeveereeeevremeireneriiseeeeeeiees 218
PEEK Read from HP 48 MEMOIYccoovveueeeeceeeieeeereieeerieeenn 220
POKE Write to HP 48 MEMOTYovvciiiiiiiiccciciice e 222
HRPEEK Read from the HP 48 hidden ROMcccovevevinene. 224
TADR Determine the address of a stack 0bjectc.ccceeeeee. 228
SSAG Inverse of GASS.cooveeveieree e 229
RASS A faster version of GASS. ..o 230
CHK An argument VEFIfiercooueueneeuneeesceenenei e 232
REVERSE Reverse StrinNgscccoeeueurueieieseseeeeenscseeeeseineeenns 236
CRNAME Create non-standard namesc.ccococvevercereinnunnnne 238
CLVAR Remove the CLYAR functionccoooevveiininicrne. 239
SYSEVAL Remove the SYSEVAL functionccccovvvvvieececinnnne 240
CONTRAST Adjust the contrast from a programcccc...... 241
DISPOFF and DISPON Turn off and on the display 241
FAST Speeding upthe HP 48ccoouviimiereciiice e 242
DISASM A SATURN disassembler............c.cccouvureenececieencenenenn. 243
B»SB Binary integer to system binaryccooceveriierciiininne. 258
SB+B System binary to binary integercocceveerencinencines 258
R+SB Real number to system binarycocococoeveriericninnenee 258
SB¥R System binary t0 real NUMDETcccoeeeieeurireercrceeines 258
C»SB Character to SyStem DINaryccccccveveeeeeeevreenececenas 258
SB2C System binary to charactercceeveveeeureveceenennene 258
ROMRCL Recall objects in hidden ROMccccocveveniivininencenne 259
A+STR and STR*A Convert a string from and to an address260
BFREE Find free space on RAM card in BACKUP mode 261

SEARCH A subroutine for the other SEARCH programs 262

ROMSEARCH Find an object in ROMc.c.ovevviieceiicieieieeenes
RAMSEARCH Find an objectin RAMcc.coevvieiceeivieieens
MODUSEARCH Find an object in a plug-in cardc.cccceueee.
CRC Calculate the CheCkSUMc.ccceeiviveeeriniieeeecieieeeeeee e
CRCLM Anassembly version of CRC...........coccovieiiiiiriciin

Mathematical Programs

CALC Aninfinite precision, integer calculatorc........
PI Calculate mto any precisionccceeeeveveeeveverereeeeeeeeenaeenans
VAL Value of a polynomial stored as a vectorcc..........
DER Solve a polynomial stored as a vectorc.cccouevevrenne.
A+*Y and VA Convert algebraic polynomial to/from a vector ...
DIVP Division of two polynomials as vectorscccceeevenee.
PCAR Calculation of characteristic polynomialsccccce.cue..
LAGU Universal polynomial root findercccooeeviivinieecennenne
PMAT Multiplying a matrix by a polynomialcccccceueeeeeunnen
mSOLVER Solving systems of equationsccceeveeiieeeennee

Games

MAZE Escape from the cursed Mmaze!cccocoeevveeeevieriennes
MASTER Mastermindccccoovevoieeeeeeeeeeeeeeee e
ANAG Find all the anagrams of 2 WOrdcccccocevervevereerinnens
SAUARE Magic SQUArecooooveeeveieeeeeeeeeeecee e

Miscellaneous Programs

PR48 Printin 40 COIUMNSocoovovieeeeeececeeeeee e
DSP and INITSCR A 33-column text displaycccceoeenreenenen.
MUSICLM A ltHe MUSIC ..o.oeeeeeeee e
MODUL SouUNd €ffECES ...cvoveeeeeeceeeeece e
RABIP Random MUSICc.ovoveeeeeeeeececeeeee e
JINGLE Some friendly MUSICcovveiriiiiciecc e
RENAME Rename avariableccccoooeuieeiiiocnieieee
AUTOST A Start-up programccccceeeeeereeiesseeeseereeeeneeeiees
CAL Acalendar (one month display)cccecerueereeeeiereeenene.
CIRCLE Fast Circle drawingccoeeeeeeeceeeiiee e
BANMER Display in giant letterscccceeeveivieviieeiecieeens

298
304

Appendices

Answers to exercises; programmer's reference; glossary; index.

A. ANSWErS t0 EXEICISeScccceuerrrererreieeenersecsassnsnnnsnnnseseeniessssssssenne

B. Background Informationcceccevsceinnimncsenssinsennneninnsnsnsnnnns
How to find out your machine’'s ROM version;
what to do in case of a disaster;
explanations of concepts dear to computer scientists:
hexadecimal, binary, bits, nibbles, and bytes.

C. RPL Commands in alphabetical orderccocesererneennane

by instruction number
How to combine the speed of machine language with the
power of the instructions already developed by Hewlett-Packard.

D. Objects in ROMcccciiinininninssensnisisssnssnnsssnnssssesansssneas
A list of objects already coded by Hewlett-Packard—
why go to all the trouble when the work is already done?

E. Error MeSSaQescccccevurverssersssnnmsssnnsssssssssssnsssassesensssnsssnsssnessnns
All the error messages that the HP 48 will ever display.

F. Machine Language Instruction Setcccccevvvinirininnernenne
In two pages, all the HP 48 assembly instructions with accompanying
codes—ideal for the machine language programmer.

G. GIOSSANY ...ccoeerrecereesiississssisstsstsssnsss s sssssssssssnssssssasssssssessnasesanse

H. Handy Machine Language Routinescccceceeeeereeriucecnsensunenns
A few ML programs found in ROM that are already done for you.

Part One:

The HP 48

11

12

Introduction

ParT OnE: The HP 48

You have in your hands one of the best calculators on the market—if not
indeed the best. Compared to other calculators, it is much more complex
in functionality, yet much simpler to use, and capable of solving problems
of great complexity.

Considering its vast assortment of internal functions and their power , the
HP 48 system had to be powerful and yet usable by everyone, whether a
skilled mathematician, an excellent programmer, a physicist, a statisti-
cian, or even someone who has nothing to do with these areas at all.

Since the capabilities of this machine are much dif ferent than those of a
regular calculator, it often appears at first to be very complicated, when
actually itis the simplest system there is. Itis justa question of habit, and
in a few days (with a little practice) you will master the HP 48.

The chapters of Part One cover a general vision of the standard use ofthe
machine: a few tricks to learn, how to make simple programs, how to stay
organized, etc. The goal of Part One is notto replace the Hewlett-Packard
instruction manuals, but rather to show you the capabilities of your
machine in a way that will make it easier to use those manuals.

The Hewlett-Packard manuals show many things that the HP 48 can do.

With machine language, however, it is possible to access new resources
and create programs that are much faster. Thatis what Part Two teaches
you: With elegant examples accessible to programmers of all levels, it

shows you what programming in machine language is like, and it also

describes the internal structure of the HP 48. So even if you know nothing

at all about machine language or assembly language, here is a good

chance to learn!

Before we get to that, however, it is a good idea to know the normal uses
of your machine. Toaid you in your learning, there are program examples,

ranging from elementary to very complex, found in Part Three (Library of
Programs). By using these programs or modifying them as you wish, you

will soon be able to write sophisticated programs.

Introduction 13

14

1. First Approach to the HP 48

PaRT One: THe HP 48

Your machine sits before your eyes, covered with buttons. The blue,
orange, and white inscriptions don’t seem to mean much at the first
glance. But this should not alarm you. ltis just like a Christmas tree: at
first glance it looks like chaos, but if you take a moment to look at it, you
notice that each decoration was placed carefully . Itthen becomes obvious
that the creator was working thoughtfully.

Like every electrical appliance, the HP 48 needs current. Verify that the
three batteries, in the back of the machine at the base, are in place and
facing in the correct directions. The batteries on top and bottom should
have the + side pointing left; the middle battery should point to the right.

The Keyboard

Next, turn it on. Simply press the (ON) button which is the lower left-most
button (written in white).

Above this you will find two buttons () (blue) and &) (orange). |fyou press
any key by itself, the function written in white will be executed. Pressing

the () (blue) shift key first will cause the function in blue to be executed.

Likewise, pressing the (&) (orange) shift key first will cause the functionin
orange to the executed. For example, if you press () first, the key
then becomes the key; you are actually pressing (@JRcL), thus exe-
cuting the command RCL, which we will later see stands for recall (to recall

the contents of a variable).

Above the (&) key is the (a) key. If you press (@) once, this activates alpha
mode for one keystroke. Notice that some keys have a white letter to the
right. If one of these is pressed after the (a] key, then that letter will appear
on the screen. For example, pressing (o) then [SIN) gives the letter S,
whereas pressing (SIN) by itself simply executes the sine function.

To remain in alpha mode for more than one keystroke, you must press ()

twice. To exit this mode, simply press () once more. To type 'AB' you
would press the buttons: (*)a]a)(A]BJENTER).

1. First Approach to the HP 48 15

The Screen

The screen is divided into 3 parts:

16

+ Above the horizontal bar you will find the current status of the

machine. This will always include the directory path between curly
brackets ({}) (see Chapter 3 for more on this subject). It may also
include small numbers (1, 8, 3, 4, and 5) indicating the state of
certain flags of the machine, an angle mode indicator (RAD, for
“radians,” or GRAD, for “gradians,” or nothing for “degrees”), or the
date and time.

Below this, separated from the first section by a horizontal bar , are
4 lines:

cH

2

1:
This is the stack (see Chapter 2).

The third section, at the bottom of the screen, shows the current
“menu” or “directory.” This consists of six labels, each containing the
name of a function or variable. Pressing the key directly below a
label will execute that particular function. For example, the (a) key
would execute the function shown in the first label of the menu,
found in the lower left corner of the screen.

Some labels have a small horizontal bar on top, which makes them
look like little folders. These represent sub-menus or sub-directo-
ries. (Chapter 3 covers menus and directories more thoroughly .)
For example, if you were to execute the MEMORY command (press
[(&]MEMORY)), you would be placed in the memory menu:

| HEH JEVTES WAR: JORDER] PATH [CRDIR]

You could then execute the YARS command (for example) by
pressing the (c) key.

PaRT One: The HP 48

Exercises

1-1. What sequence of buttons would you need to press to getan =?

1-2. What sequence of buttons would you need to press to execute
the function RCL?

1. First Approach to the HP 48 17

18

2. Reverse Polish Notation

PaRT One: Tue HP 48

The HP 48 uses a calculating method called “Reverse Polish Notation”
(RPN). To understand this notation, we must first define the principle of
the stack.

The Stack

Imagine a stack of plates where the only accessible plate is the one on the

top ofthe stack. The HP 48 temporarily stores objectsinthe same manner.
The first four stack entries can be seen on the screen preceded by their

stacknumber (12,22 ,3% and4:). Obviously this doesn’t look exactly like
our stack of plates, since the first “plate” is on the bottom, but the principle

is the same.

Although only the object atlevel 1 is available for use, there are commands
that permit us to change the order of the stack. Before learning this,
however, let's find out how to place objects on this stack.

The HP 48 handles many types of objects (real numbers, binary integers,
strings, names, programs, equations, graphic objects, etc.). Each of
these object types may be placed on the stack. To do this, simply type in
the object and press @NTER). For example, to place the real number 123
on the stack, simply press the keys: (1)2)3)[ENTER).

You then see the following on the screen:

—MNwW-H

123

This signifies that the stack contains one object, 123, in level 1.
Note: The HP 48 will show only the first 4 stack entries, although the stack

may contain many more. The size of the stack is limited only by the avail-
able memory.

2. Reverse Polish Notation 19

Calculating in RPN

The different functions of the HP 48 (addition, subtraction, etc.) take their
arguments from the stack. After the calculation, the resultis placed on the
stack.

Reverse Polish Notation is often difficult for those who are used to a
standard notation. With continued use, however, you will find that RPN
performs much better. In particular, RPN does away with parenthesis
because the stack can store the intermediate arguments. For example,
to calculate (2+3)(4+5), we would perform the following commands:

+ Begin with an empty stack (if the stack isn’t empty, use the CLR
command—]CLR}—to clear it). The screen should look like this:

wwd

+ Pressing (2)[&NTER) shows:

whwR

- Q)&TER) shows:

2
: 3

whed

Note that the 3 pushed the 2 to the second level of the stack. This
is correct, since the “top plate” is now the 3.

20 PART One: THE HP 48

. adds the two numbers:

—MNwW-H

+ (4)[BVTER) shows:

LR

* (5)[&TER) shows:

—MNW-h

. gives:

—MNwW-h

« And finally, (X) gives the result:

—MNwWh

45

We typed no parentheses, yet we were able to handle the intermediate
results (D and 9). Remember, a command takes its arguments (however
many it needs) from the stack and places the result(s) onto the stack.

2. Reverse Polish Notation 21

Managing the Stack

We have seen that various commands use only the first few stack entries,
so how can the others be accessed? W e have at our disposal commands
to manage the stack. In particular, we can use the following commands:

+ SWAP (5)swap)) exchanges the stack entries in levels 1 and 2. For
example:

—N)

—NW-H

After (&]SWAP):

1
2

—MNW-h

« DROP (&)oRop)) drops (erases) the object in level 1. For example:

—MNW-H

3
P4
1

After (&]DROP):

—NW-s

« CLR (@JctR) clears the stack. With the above stack, would
give:

—NW-H

22 ParT One: The HP 48

These are the most common commands, but there are others. They can
be accessed from the STK menu, which is in the PRG menu (press (PRG),
then M, which is the first menu key). Don't forget that menus are
shown in pages of six functions each. Other pages can be accessed by

pressing (next page) or (previous page). The commands in
this menu are as follows:

« OVER places a copy of the object found in level 2 on the stack:

4:

3z

2t 123

1: 456
After pressing DA

4:

3: 123

2 456

1 123

« ROT rotates the 3 first stack entries:

4:

3: 3

2: 2

1: 1
After pressing IFTEM:

4:

3: 2

2: 1

1: 3

+ ROLL isasimilar function, but it takes one argument (from level 1 of
the stack) which is the number of objects to “roll.”

Thus, 2 ROLL isthe same as SWAP, and 3 ROLL is the same as ROT.

2. Reverse Polish Notation 23

24

« ROLLD is similar to ROLL except that it rotates the objects in the
opposite direction. For example if the stack contained the following:

4 4
3 9
2 6
1 3
Atter pressing [{HNY:

4:

3t 6
2k 4
1: 5

(Don't forget that ROLLD takes one argument, the 3).

« PICK also takes one argument from the stack. PICK copies the
object found at that level and placesiitin level 1. So, 2 PICK would
be the same as OVER. For example:

4: 123456789
3t 1
2t 1
1: 3
After pressing AN
4: 123456789
3t 1
2t 1
1: 123456789

(remember that PICK takes one argument from the stack).

« DEPTH tells us the number of objects that are on the stack. If the
stack were empty, DEPTH would return 8. For example:

4:
3:
2: 33333
I: 44444

PaRT OnE: The HP 48

After pressing 43l

4:
3t 33333
2 433

(there were 2 objects on the stack).

« DUP duplicates the object found in level 1:

4:
3:
2: 2
1: 1
Aiter pressing IR
4:
3: 2
2: |
1:
« DUPZ duplicates the first 2 objects of the stack:
4:
3:
2: 2
1: |
After pressing IIGER:
4: 2
3: 1
2: 2
1: 1

« DUPN is a generalization of DUP and DUPZ. It takes an argument (N)

and duplicates the first N objects of the stack.

Thus, 1 DUPN is the same as DUP,and 2 DUPN is the same as DUPZ.

2. Reverse Polish Notation

25

26

- DROPZ “drops” the first 2 objects from the stack:

wheR

3
2
1

Atter pressing [T[H:

3

nhwd

- DROPN is a generalization of DROP and DROPZ. 1t takes an argument
(N) and drops the first N objects from the stack.

Thus, 1 DROPN is the same as DROP, and 2 DROPN is the same as

DROPZ.

PanRT One: Tue HP 48

Exercises

5
2'1. CalCulate (3+ 1) (9 _ 5)

2-2, If the stack contains:

4:

3: 3
2: 2
1: 1

how would you arrive at the following stack?

4:

3: 1
2: 2
1: 3

2-3. What would the following sequence of keys calculate?

BETEREIXHNEEBEECS)

What is the result?

2. Reverse Polish Notation

27

28

3. Organizing Your Data Properly

PaRT One: THE HP 48

The HP 48 is a true computer, and as such it must be capable of storing

data—usually referred to as objects. These objects can be of different
types: real numbers, binary integers, programs, lists, etc. They can be
grouped into two families: internal objects (pre-programmed functions)

and user objects (those that you enter into the machine). All objects will
appear either on the stack or in the form of directory labels.

Menus and Directories

A menu or directory consists of a series of objects. Each object is
accessible by invoking its name or by pressing one of the six keys at the
top of the keyboard beneath the item in question.

For example, (MEMORY) takes you to the MEMORY menu,
which is a list of internal functions that provide memory management.
Now, if you press (&) (the white button below IEIIEN in the lower left corner
of the screen), the machine returns a value on the stack. The screen
should now look something like this:

—MNW-H

26173.5

When you pressed the (a) button, the HP 48 knew that you wanted to
execute the object MEM, and it responded to your command. This function
returns the amount of memory that is free for use, expressed in nibbles
(see Appendix B for more about binary and hexadecimal notations).

If there are more than 6 objects in a menu, the others will appear by
scrolling through the list using (NEXT page) and (PREVious
page). Thus if you were to press (NxT), you would be able to use the other
functions of the menu MEMORY (and if you continually press ina
menu, after you arrive at the last page of the menu, you are returned to the
first page).

3. Organizing Your Data Properly 29

To give another example: puts you in the MODES menu, which
has 4 pages:

page 1: IENNTIRENEETETIEE
page 2: [T ITTEN IATON ST T IR
UL [EG | RAD |SRAD] HY2 | Rds | Fuld |
CUCRSN HE: | DEC | DCT | EIN JFH- |

If you press (found at the end of page 2), the time and date appear
(or disappear) at the top of the screen, and the label becomes
XD When a “IF appears in a menu label, it means that the option in
question has been activated. These menusallow us to personalize the HP
48 to function according to our own needs.

As mentioned in Chapter 1, certain menu labels will look like little folders.
Such is the case for the PROGRAMS menu (accessed by pressing (PRG)).
Thismeans thatif you press the corresponding button, you will enter asub-
menu of the current menu.

30 ParT One: THe HP 48

Menu Trees

The best way to explain a menu structure is by using the analogy of a tree.
The first menu is called the root. In the root menu we will see “normal”
labels and perhaps the special “folder” labels. These “folder” labels are
parent menus that give us access to sub-menus. For example, the menu
TIME ((&]TIME)), has this tree structure (partially represented here):

TIME

SET ADJST ALRP ACk ACK/ CAT

NN

>DATE >TIME A/PPH EXEC RPT SET

Sub-menus can contain objects, or they can have their own sub-menus
(for example RPT is a sub-menu of the sub-menu ALRM), and so on. To
distinguish the menus from one another, we refer to them as parent-
menus and child-menus. These menus are connected by a branch; the
parent being the one closest to the root, and the child is the one farther
from the root.

3. Organizing Your Data Properly 31

The VAR Menu

There are two types of menus: menus of built-in objects and user menus—
where you can store objects of your own choosing. The “VAR™ menu is
your user menu. Here is where you may store your own objects, create
your own directories, etc. The rootdirectory ofthe VAR menu has a special
name: HOME.

To enter a subdirectory, simply press the key that corresponds to the
subdirectory label (a “folder” label)—or, alternatively, type the name in full.
To return to the parent directory, press (UPDIR); to return directly to
the root, press (HOME). The directory that you arein atany instant
is referred to as the current directory.

To store an object, simply place it on the stack, and enter a name by typing
the letters between single quotes, and press (STOre). For example,
press (5)1)2)ENTER), which places the real number 512 on the stack. Then
press (Ja]aJA]BJCJENTER). The screen should show:

4:
3z
2z 512
1: 'ABC"

Now press (VAR), to place you in your working directory, then (STo), to store
the number. IETZ8M should appear to the left of the current directory menu.

To recall this object, simply type @JRcL). You may
also type G or simply IETEHM (that is, press the white menu button
below the IETEMM label). Thus, to recall the real number 512 previously
stored, press the menu button for IETZE.

If the name ABC already exists in the directory, you can store something

different under that name (which will erase the previous contents). To do
s0, you simply place the new object on the stack and press SIEIZM.

32 PaRT One: The HP 48

To create a subdirectory, use the A command, found in the MEMORY

menu. You type the name of the intended new directory (for example
'DIREC'), then press (ATA.

By creating subdirectories, you can group related objects together in one
area. For example, if you have stored mathematical programs, machine
language programs, and games, itwould be wise to create 3 subdirectories
in the HOME directory: dﬂﬂ and ERIZA. This allows you to find
each of your programs easily and quickly.

Three additional commands are important to know when working with
directories:

UPDIR (&&)uP)) lets you go “up” to the parent of the current directory

HOME (=)JHOME)) lets you go directly to the HOME directory (the root
directory of VAR)

PATH (inthe MEMORY menu: (] VARIEELLN) permits you to see where
you currently are in the VAR tree structure. This command returns a list
containing the names of directories (the first of which is always HOME).

Exercises

3-1. Create a subdirectory l[3H1ll in the HOME directory and place in
it three variables [HIEEN, W and MM, containing the real

numbers 1, 2 and 3, respectively.

3-2. How many sub-menus are in the MTH menu?

3. Organizing Your Data Properly 33

4. Programming the HP 48

PaRT OnE: THE HP 48

Besides using the many internal functions of the HP 48, you can also
create your own functions from them. The HP 48 has a true programming
language, called RPL (Reverse Polish Lisp), derived from the language,
LISP (“LISt Processor"—a.k.a. “Lots of Insane and Stupid Parenthesis”).
LISP is very powerful (used for artificial intelligence), but its syntax is very
difficult, because every command is coded between parentheses. The
vast amount of parentheses in its programs make it very difficult to read.

However, Reverse Polish Notation, as you have seen, allows us to work
without parentheses—by using objects. That term is intentionally vague:
The HP 48 makes the least possible distinction between the types of the
objects that it manipulates. The functions adapt to their given inputs. For
example, if the stack contains the real numbers € and 3...

N A

...pressing (4] gives the proper result of 2+3:

But if you place "ABC" and "DEF" on the stack...

4:

3:

2: "ABC"
1: "DEF"

...then () will “add” (i.e. concatenate) the two strings, giving this result:

—NW-H

"ABCDEF"

Thus the same + operation will add two real numbers, two binary integers,
two matrices, or areal and a binary, a character string and a list, etc. This
generic adaptation of functions makes complicated programming easier .

4. Programming the HP 48 35

Programming Methods

As we have seen, a program is a group of commands. Inthe case of RPL,
this group of commands is given between two symbols: « and *.

For example, to calculate the cube of a number, we would enter the
number, then this sequence: (3)¥. But to calculate many such cubes,
it would be nice to simplify this procedure—create the program CUBE1.

+ To begin the program, we must enter a special character, &, by
pressing [&J«»). As you can see, the closing delimiter (*) is also
present. The screen should now look like this*:

2

1
«
»

There is also a blinking cursor to the right of the «. Itis here that the
next characters will be entered.

« The program’s first step is to place a 3 onto the stack, so press (3),
and a space ((SPc)) which will serve as a separator.

« Thesecondcommandisy®*, sopressthe (YJbutton. You may expect
y*to appear, but instead you see the symbol *. This signifies “raise
to the power.” The screen should now show this:

And the cursor should be to the right of the *.

*Note: If you make a mistake while entering the program, the)button allows you to erase the character
to the left of the cursor. In the case of a more devastating mistake, pressindaTTN) (that's the (on) key)
will erase everything you have entered—without destroying the contents of the stack.

36 ParT One: THe HP 48

« Ourprogram isfinished, so enter itonto the stack by pressing (ENTER).
The screen should now show:

-.—:r__aw.a

£ 3 " 3%

The program is now on the stack, and it is in level one. W e could now
execute the program by pressing (EVAL, but this would cause an error
(since the stack doesn’t contain enough arguments), and we would lose
the program (once executed, it disappears from the stack).

So before trying to use it, we will store it in a variable by entering the
following sequence: (JaJaJc U BYE(1)ENTER)(STO). Now, if you press the
button (VAR), you will see in a label in the left of the menu. This is
your program.

Now entera number onto the stack, press the button directly below [EIEF1.

The number on the stack will be cubed—with the touch of cne button
instead of three!

4. Programming the HP 48 37

There are other ways to program such a procedure. Here are a few
examples—presented as are the programs in the library (Part Three):

CUBE2 (# D645h)
&
DUP DUP * #

»

CUBE3 (# E4Foh)
&
> A

&

AR =*= A *
»
»

CUBE4 (# 4526h)
€

+ A
'A=A=A'
»
This listing is interpreted in the following manner:
< The name of the object (or program) is in bold letters;

« After the name, in parentheses, is the object’ s checksum value, to
help verify that the object was entered correctly. To calculate the
checksum, place the name of the object on the stack (e.g. 'CUBEZ")
and execute BYTES. Thisfunction returns two values: the checksum
and the object’s size. (The checksums here are in hexadecimal, so
to make comparisons, put your HP 48 in this mode by typing HEX)

- Below the object name is the listing, as it would appear after entry .

To enter these objects, you must:
 Type the object (just as with CUBE1) and enter it onto the stack;
» Enter its name onto the stack;
» Press (S70).

38 PaRT One: Tve HP 48

A few notes on these four programs:

« CUBE1 uses the pre-programmed internal function, the power nota-
tion®, which takes two arguments from the stack: a real numberand

the power to which youwould liketoraiseit. CUBE1 places the power

onto the stack (in this case 3);it’s up to youto supply the real number.

« CUBEZ uses the stack. The DUP function duplicates level 1 of the
stack. (ltis very rapid, as are all stack functions.) Executing DUP
twice gives 3 copies of the object, which are then multiplied together .
For example, if CUBEZ were executed with this stack:

4:
3:
2:
i:

After the first DUP we would have:

—MNW-p

...after the second DUP:

—NwW-H

(d [y]d)]

...after the first multiplication:

—NW-HA

9
29

...and after the second multiplication, the cube of 5:

—NW-H

125

4. Programming the HP 48

39

40

« CUBE3 uses the “local variable” concept. W e have already seen

variables stored as objects in the VAR menu. A local variable is
visible only to the program in which it is declared. To create sucha
variable, we use the symbol *, followed by one or more variable
names, then a « to signify the end of the list of names. Thiswill create
local variables—using the values that were on the stack—from that
point on in the program until a matching * delimiter is reached. In
that part of the program, any use of a name of one of these variables
will recall the value given by *. A few notes on local variables:

- 2 conserves the order that the numbers were placed on the stack.
If the stack has a S inlevel2anda42 inlevel 1, then*> A B will
place S in the variable R and 42 in the variable B.

- If a local variable has the same name as another variable, the
contents of the most local variable are used. For example, in the
folowingprogram: <« 1 * A « 2 > A « R » » »

1 is placed in the first local variable R, then 2 in a local variable
of the same name. When A is recalled, its value is 2.

- All local variables will disappear when the program terminates,
whether the program terminates normally or by interruption.

- While local variables are visible only locally, global variables
appear in the VAR menu and can be used from anywhere.

CUBE4 is similar to CUBE3, but instead of a program object, the *+ A
is followed by an algebraic that accomplishes the same task.

CUBE1 is the shortest of the four, but if the user forgets to give an
argument on the stack, he will get this error message: * Error:
Too Few Arsuments. Also a3 will be left on the stack, and this
is not very “clean.” By contrast, the other programs begin with a
function that first tests for the presence of an object on the stack.
The following program is the shortest, gives the best performance,
and is the most correctly programmed. :

CUBE (# C875h)

> A
1A~

»

ParT One: THe HP 48

As ageneral programming rule, you will need to choose between the
methods in CUBE2 and CUBE3, knowing that CUBE3 is programmed
well because of its use of local variables to store arguments, and its
use of the stack for calculations; butit is slower than CUBEZ because
recalling a local variable is slower than executinga DUP.

You must avoid, at all costs, this method of programming:
« 'A' STO AR A * A * 'A" PURGE »
This is very slow because it creates and purges a global variable,

and it may erase a preexisting global variable, A. Even so, sucha
method is occasionally necessary.

Variables and Directory Trees

We have seen that a local variable is visible only in a certain section of a
program, appearing at the beginning of execution of this section and
disappearing at the end. We have seen that a global variable is an object
stored in the VAR menu or in one of its subdirectories.

Variables can have identical names. You can have global variables of the
same name (in different directories as well as local variables with that
name). Which value will be used when we recall a variable? To under-
stand this, we must understand how the HP 48 searches its contents:

First step: The HP 48 checks for any local variables of the specified
name, beginning with the local variables most recently created.

If a local variable is not found, it looks for the name in the current
directory. If it finds it, it's done. If not, then if the user is not in the
HOME directory, the HP 48 checks the parent directory. If it gets to
HOME without finding the variable, then instead of using the contents
of the variable, it uses the name (between single quotes ' '). (For
a more detailed discussion of directory trees, see Chapter 3).

The HP 48’s capacity to manage local variables permits a classic pro-
gramming technique: recursion.

4. Programming the HP 48 41

Recursion

Certain mathematical problems use recursion. Thatis, they refer to them-
selves. For example, the calculation of a function fon a point ncould be:

* fin)=g(fin-1)), where g is a known, calculable function.
+ fin)=f, a known value.

We are perfectly capable of calculating f{n), forany ngreater than n,. We
simply apply the first formula repeatedly. If fn)=f, is known, then so is
fifn,), and fiff(n,))), etc. In other words, to calculate fn), we use f(n-1)
to make the calculation; to calculate f{n-1), we use f{n-2), and so on.
Let’s calculate, for example, the factorial function:

« factorial(n) = n x factorial(n-1);

« factorial(0) = 1.
That is, to calculate factorial(n), we say:

+ “If n=0, we know this, itis 1.”
« “If n> 0, we must calculate factorial(n-1) and multiply this by n.”

This can be programmed directly:

FACTORIAL (# 3386h)
£« > N

« IF
Ng ==
THEIN

ELSE
NDN 1 - FACTORIAL N =

b4
First we take a value from the stack and place itin the variable N. Next we

testif N is equal to B. If so, we know the solution and return the value 1
to the stack. If not, we calculate factorial(N-1) and multiply it by N.

42 PaART One: THe HP 48

To better understand the operation of a recursive program, you must
understand that when a program “calls itself,” it executes a copy of itself—
a copy that has nothing to do with the original. Look, for example, at the
calculation of factorial(2). To calculate this we will need the values of
factorial(1) and factorial(0)—which we already know . Thus, 3 copies of
FACTORIAL are chained together. Observe:

Copy 1

Copy 2

Copy 3

This is the copy we call
with the value 2 on the
stack. In this case, N
has the real value of 2.
N # 8, so to find factor-
ial(N-1),itputs the value
(N-1=1)onthestackand
calls factorial.

It now waits for a re-
sponse.... Nis still 2.

Factorialbeginswitha 1
as the N value for the
function. Again, N # 8,
so it finds factorial(N-1)
by putting that value (N-
1=0) onto the stack and
again calling factorial.

Still waiting; N is still 2.

Waiting here, too; N is
still 1.

Factorial begins with N
=0. Butfactorial(0)=1,
so the value of 1 is re-
turned immediately to
the calling program.

Still waiting; M is still 2.

The value of factorial(0)
arrives and is multiplied
byNtoget!l.

Finally, the value of fac-
torial(1) arrives and is
multiplied by N to get 2.

4. Programming the HP 48

43

The principle is the same regardless of the value of the first N. Look at this
summarized example for 5. In all, there are six copies of the factorial
program in action:

Copy 1 Copy 2 Copy 3 Copy 4 Copy 5 Copy 6
N=5, (4)=?
N=5...(wait) | N=4, f(3)=?
N=5...(wait) | N=4...(wait) | N=3, f2)=?
N=5...(wait) | N=4...(wait) [N=3...(wait) | N=2, f{1)=?
N=5...(wait) | N=4...(wait) | N=3...(wait) | N=2...(wait) | N=1, f0)=?
N=5...(wait) | N=4...(wait) | N=3...(wait) | N=2...(wait) | N=1...(wait) | N=0, f{0)=1
N=5...(wait) [N=4...(wait) | N=3...(wait) | N=2...(wait) | N=1, f{0)=1
-->f(1)=1
N=5...(wait) | N=4...(wait) | N=3...(wait) [N=2, f(1)=1
-->f(2)=2
N=5...(wait) | N=4...(wait) | N=3, f(2)=2
-->£(3)=6
N=5...(wait) | N=4, f{3)=6
-->f(4)=24
N=5, f(4)=24
-->f{(5)=120

Thus we find that factorial(5)=120.

44

PaRT One: THe HP 48

4-1.

4-2.

Exercises

Write a program that will add two real numbers taken from the
stack. Would it also work for two strings?

What does the following program do?
<« >HB<«HAB+HAHHB#* 7 » »

Write a recursive program to calculate the n"term of the Fi-
bonacci series U, defined by:

« Ifnisgreaterthanorequalto2,U =U_+U_,;
¢ U=U=1.

4. Programming the HP 48 45

46

5. Presenting Your Data Properly

Panr One: Tve HP 48

So far, we have discussed the calculation capabilities, data storage, and
programming of the HP 48. But simply knowing these is not suf ficient.

The memory of the HP 48 can be quite large. It has 32 Kb of base RAM,
which can expand up to 288 Kb with two 128 Kb cards—the equivalent of
more than 200 pages of text. Therefore, itisimportantto be well organized
and to present your programs and data in a manner that will make it easy
to find them later. To do this, there are a few techniques that we will now
study.

Making Data Access Easier

In Chapter 3, we studied menu and directory tree structures. This is an
essential element of organizing programs and data, because the tree
structure allows you to group similar classes of variables and programs
together. For example, Mathematical programs together in a 'MATH'
directory, matrix programs in a subdirectory, etc.

In any subdirectory, it is possible to order the variables and programs with
the function ORDER . This command takes, as its argument, a list contain-
ing the names of the variables in the desired order . The function then puts
them in that order. In this way, for example, you can place the important
programs first, followed by sub-programs that are less useful.

Itis also essential to choose program names carefully , so that simply see-
ing the title of a variable or program will suggest its contents. Occasionally ,
however, it is useful to associate a name of a pre-existing function or an

icon to a program thatwe have justwritten. This is made possible by using
a CuSTom menu (via the button—next to (VAR)).

5. Presenting Your Data Properly 47

A custom menu permits us to connect objects of the HP 48 and a specific
menu label, without excessive memory consumption. The mechanism
behind this menu is simple: when you press the button, the HP 48
searches for a variable named CST.

If the variable is not found in the current directory, the HP 48 searches the
parent directory(s) until it reaches the root. If no variable CST is found, an
empty menuis shown. Therefore, itis possible to have many dif ferent CST
menus, depending on which directory you are currently in (which rein-

forces the notion of good data organization).

The variable CST mustcontain alist. For each element of this list, we have
many possibilities:

« Aname: The menulabelis associated with the variable of that name.

« Astring of characters: The stringis placed inthe command linewhen
that menu key is pressed.

+ Alistof two objects: The first objectis the title of the menu label; the
second is the associated object. If the first element is a 21 x8
graphics object, the menu title is the corresponding graphic.

« Allother objects willbe executed. The object willappearinthe menu
label for the corresponding button.

Here is an example of a CST menu:

CST (# 9D17h)

"R" "Un " 3 { GROB 21 8
VBErBBY4006C1BARBEBSFFFFBEFFFF 1F 706C16CFF /00080000
1} q n { Ilinll Ildansll} { Ilthell Ille ll}
{"Sk"_"“ l|ciel II} ll!ll }

After storing this object, enter the CST menu (by pressing (CsT), to the left
of (VAR)). Interesting, no? Now press in succession the six menu keys from

left to right. Your HP 48 has just accomplished an English-French
translation!

48 PART One: The HP 48

A custom menu permits us to associate icons with functions. It also
permits us to mix the HP 48 internal functions with user functions on one
menu. Butwe can even do better than this. There is also a way to assign
functions to any key on the keyboard.

This method of redefining keys is best described through an example.
Here is a small program that plays an tune of random music:

&

-56 CF 1 18
START
EX‘}F’:BB RAND = .1 RAND = BEEP

Type that in. The screen should look like this:

2

l:« -56 CF 1 18 START
4468 RAND * .1 RAND
*# BEEP NEXT =»

Now type: (5))ETER(AIS)NETER). Then press (oJUsR), then ([ENTER), and
you will hear a little music.

The explanation for this is simple. W e have assigned this particular pro-
gram tothe key. This assignmentis not valid exceptin USER mode.
We entered this mode temporarily by pressing (G]a) (this sequence puts
us in 1TUSR mode, that is, USER mode for one keypress). To remain in
USER mode, type JUSR)&JUSR), and USER will appear at the top of the
screen. To return to normal mode, type once again.

Note: Any keys that are not defined for USER mode retain their original
functions in USER mode.

5. Presenting Your Data Properly 49

You may redefine the entire keyboard, including the (ON) button. The
syntax for ASN is the following:

argl arg2 RSN

argl is the function that you would like the machine to execute when you
press the key. This can be the name of a program, the program itself, or
a completely different object.

arg2 is a real number composed as follows:

+ The first digit (tens position) is the key’s row (a value between 1 and
9, where 1 is the top row of keys);

+ The second digit (ones position) is the key’s column (a value be-
tween 1 and 6, where 1 is the left-most column of keys);

+ The decimal place is the button mode:
- Borl normal mode

-2 &) mode (orange shift)

- 3 (@) mode (blue shift)

- 4 (a) mode (alpha)

-5 (@& mode (alpha, orange shift)
- b (@) mode (alpha, blue shift)

For example, to redefine the key, you would assign a new function
to the button 56.2.

Note that to restore a key to its standard function, you use the special pre-

defined name, 'SKEY'. Or, executing @ DELKEYS will return al/buttons
to their standard functions.

50 PaRT One: THe HP 48

Understanding Programs More Easily

Many methods exist to increase the understanding of programs or their
results. We will mention three important and easy-to-use methods:

« The HP 48 allows you to enter comments that begin with the char-
acter B (@)[@]&NTeER)). Unfortunately, these comments disappear as
soon as you press (ENTER). Therefore, they are not very useful unless
you are storing the programs on another computer. To leave com-
ments in a program more permanently, you can enter the following:
" comment" DROP, where " comment" is the desired text. This type of
comment will remain in the program. Thus you can note the pur-
pose of the program, its syntax (e.g. the number of arguments it
needs), and what results it will return.

+ Messages: Itis good to tell the user what is going on once in a while.
For example, you can include error messages or indicate how (or
what) the program is doing in the case of lengthy calculations.

+ Explain the results: What is more frustrating than a program that
returns data of whose meaning we have no idea? To easily remedy
this, it is useful to “tag” the results—add a prefix to them (name,
comment, etc.) via a special HP 48 function: The function *TAG
takes as its arguments the object to be tagged, and itstag. The pro-
gram mSOLVER in the library of programs uses this technique.

Above all, remember that you should always write your programs as if

someone else must use them. In this way, if sometime later you decide
to look at them again, you should not encounter too many dif ficulties.

5. Presenting Your Data Properly 51

52

6. Saving and Transmitting Data

ParT One: The HP 48

The memory of the HP 48 is notinfinite. The defaultamountis only 32 Kb
(32 Kilobytes is about 32,000 characters). For this reason, it may be
necessary to increase the memory by using RAM cards. Inthe HP 48SX,
two ports are provided for this purpose (found on the back of the machine
underneath the cover at the top).

But even if you don’t need more memory, the HP 48 also allows you to
easily load information from other machines. Afterall, why re-type data or
programs that already exist on another HP 487 This is no fun, and errors
are easily made in the process. Itis much more useful to exchange data
directly between machines or store the programs on a computer .

Plug-In Cards (HP 48SX)

There are two types of plug-in cards: ROM and RAM.
ROM is memory that you can only read (Read Only Memory). Its
information cannot be modified. There are actually four types of ROM:
» real ROMs, (like those contained in the HP 48);
« PROMs or Programmable ROMs;
« EPROMs which are PROMSs that can be erased by ultra-violet light;
« EEPROMSs which are Electronically Erasable PROMs.
The EEPROM type of card is the most common, and it is sold pre-

programmed (e.g. the HP SOLVER card). You could actually make one
of these yourself (using an EPROM or EEPROM), but it would be costly .

6. Saving and Transmitting Data 53

RAM is memory that you can modify (Random Access Memory). Existing
plug-in RAM cards for the HP 48 are 32 Kb or 128 Kb. On each of these
cards is a small switch that allows you to write-protect it (like transforming
it into ROM). These cards can be useful in two dif ferent ways:

» They canbe usedas a memory extension using the internal function
MERGE. To putacardin MERGE mode, turn the machine of f, insert
the card in one of the two ports of your choice and turn the machine
on. Thentype 1 MERGE or2 MERGE, depending on whether you
placed the card in port 1 (the one on the bottom with the calculator
upside down) or in port 2. At this point, type MEM, and if all is well,
your memory will have been increased considerably .

» They can be used as a RAM disk in BACKUP mode. To put a card
in BACKUP mode, insert the card in a port, and store your data
directly on the card. The names of the objects of a port are not of
the form 'name' but are “tagged” objects in this form: 2 xi name
where x is the number of the port (8, 1 or2). For example, if the card
is in port 2, then "hello":2:BONJOUR will store the string
"hello" underthe name BONJOUR inport2. When storing, the card
must not be write protected. Itis wise to leave a backup card write
protected unless you are in the process of storing data.

We must mention three important notes:
« A card in MERGE mode must not be write protected.

+ Acardin BACKUP mode that is write-protected is not affected by a
‘memorylost’.

» Ifacardisinstalledin one of the ports, itis not “merged,” and no data
has yet been stored on it, you will get the message Invalid Card
Data when you turn on the machine. This is because the card has
not yet been configured.

54 Panr One: Tve HP 48

HP 48 <-> Computer: RS-232C

HP sells a cable that connects your HP 48 to a Macintosh, an IBM-
compatible computer, or any computer with a standard (9 or 25 pin) RS-
232 serial port. Software is included with the cable to let you to save the
data of your HP 48 on a hard or floppy disk. This software is called
KERMIT.

You may transfer data in either direction:

+ Transferring data from the HP 48 to the computer:
- onthe HP 48: 'name_of the_object_to_send' SEND
- onthe computer: RECEIVE.

+ Transferring data from the computer to the HP 48:
- onthe HP 48: RECEIVE (/0 menu)
- onthe computer: SEND name_of file_to_send

Forany transfer, you should always make sure that the I/O parameters are
set to what you really need. Here is a good configuration:

« Onthe HP 48, enter the /0 menu and press B34, then, by pres-
sing the proper buttons, make your screen look like this:

I[-0 setup menu

IR wire: wire
ASCII/binary: ascii
baud: 9600
parity: none 9

checksum type:
translate code: 1

« On the computer, you must be certain that the corresponding set-
tings are the same as above. In particular, on IBM PC compatibles,
you may type the following commands (after running Kermit each
time, and before the first transmission):

SET BAUD 9600
SET PORT 1

6. Saving and Transmitting Data 55

Infrared Transfers

Two HP 48 machines may exchange data without any wire connections
iftheyareless than2inches apart. Todo this, the two machines musthave
the same SETUP.

For example:

[0 setup menu
IR

IR wire:

RASCII-/binary: ascii
baud: 9680
parity: none ©

checksum type:
translate code: 1

In particular, note that the transfer mode mustbe IR (Infra Red) instead of
wire, as with the connection to a computer.

Place the two machines head-to-head with the two little arrows pointing to
each other (the arrows are found just above the second ‘T’ in “HEWLETT-
PACKARD"). Atthe sametime, enter ' name_of the_object_to_send' SEND
on the sending machine, and RECEIVE on the other.

The object sent will be stored in the current directory of the receiving
machine. If that name already exists in the current directory of the re-
ceiving machine, the object will be stored with a new name in the form
original_name. 1 (then original_name .2 and so on with each transfer of an
object with the same name), unless flag -36 is set. Type -36 SF to set
the flag, and =36 CF to clear the flag. If the flag is set, then the old object
will be erased by the new one.

Caution: If the batteries are low, then transfers will not work properly.

56 PART ONe: THE HP 48

6. Saving and Transmitting Data

Notes

57

58

7. Other Strong Points of the HP 48

ParT One: Te HP 48

The HP 48 is above all a scientific calculator and we will see some of its
capabilities as such in this chapter. This chapter is not to give an in-depth
explanation of these functions, but rather to make you aware of their
existence. In this way, if you desire further understanding, you may look
these functions up in the manuals that were furnished with the machine.

Symbolic Calculations

The HP 48 is capable of “symbolic” calculations. Thatis, the HP 48 is not
limited to numeric calculations only, but is capable of applying complex
mathematical operations directly to literal expressions. Some examples:

+ Derivatives: To take the derivative of an expression with respect to
a variable, type: 'expression' 'variable' (=3

Thus, 'SINCK)ZK' 'R' (@@ returns 'COS(KI/K-SIN(KI /K 2!

Caution: Ifavalueis storedinavariable 'X' of the current directory
orone of its parent directories, the expression willbe evaluated;you
will not obtain the desired symbolic result. In this case, you must
purge the variable 'X' or use a different variable in the expression.

+ Taylor’'s Approximation: 'expression' 'var' n TAYLR
where 'expression' is the algebraic expression you want to inte-
grate, 'var' is the dependent variable, and n is the order of the
polynomial with which the approximation will be made.

Example: 'SIN(X)' 'X' 5 TAYLR returns:
"K-1/31%873+1 /51 #¥*5!

Note: TAYLR is found in the ALGEBRA menu (&)ALGEBRA)).

« Solving equations; finding extrema; calculating the value of a
function on a point; all these may be done with the functions found
in the SOLVE menu (&JSOLVE)).

7. Other Strong Points of the HP 48 59

Numerical Calculations

The HP 48 possesses many functions useful in numerical calculations
(and the list is too long to do justice here). Most of these functions are
found in the MTH menu and are grouped into six categories: fraction
calculations, probabilities, hyperbolic calculations, matrix calculations,
vector calculations, and binary integer calculations (in dif ferent bases).
There are also many statistical functions that are available in the ST AT
menu (EJSTAT).

The HP 48 uses 12 significant digits to give you a numeric resuilt as
accurate as possible. Internal calculations are done with as many as 15
significant digits.

Note also that if the returned result could be represented in a fractional
form, the function *Q (&]=9) can convert the real number to the closest
fraction.

Graphs

The PLOT menu (JPLoT)) has all the necessary functions for plotting
curves of all kinds (classic, conical, polar, parametric, etc.).

Note that you can view and edit the current graph by pressing &JGRAPH).
You can move the cursor using the four arrow keys, copy the coordinates
of the cursor to the stack by pressing (ENTER), and return to normal mode
by pressing (oN). The many functions (zoom, moving blocks, plotting or
erasing points, lines, circles, marking points, etc.) are all available in this
menu.

60 PaRT OnE: THE HP 48

Units

The HP 48 can do calculations with units. To create a unit object, simply
enter areal number, then the underscore character (_, obtained by (2]0),
followed by the characters representing the desired unit.

For example, to create 1_m, you would press 1)@2D)@EM.

Alternatively, you can place just the value on the stack, then go to the
UNITS menu (E&JUNTS)), and choose the desired unit from one of the 16
possible categories (length, area, volume, time, speed, mass, force,
energy, power, pressure, temperature, electricity, angles, light, radiation,
and viscosity).

gives you another UNIT menu with various functions including
the CONVERT function which allows conversion between dif ferent units.

Time

The TIME menu ((&]TIME)) gives you access to a series of functions for the
clock. In particular, you can set alarms and perform certain calculations
at specific times or on specific days. Note that gives you direct
access to the alarm catalog.

7. Other Strong Points of the HP 48 61

Conclusion

What we have learned here is only the beginning of the great possibilities
of the HP 48. These are just the basics as well as a few tricks to give you
a general idea of the capabilities of the machine.

Use your machine as often as possible and study the HP 48 manuals to
gain a better understanding of what has been covered in this “first ap-
proach.” The more you practice, the easier it will become, and you will
soon learn to rapidly resolve long and tedious problems.

When you become familiar with the uses of the HP 48 (as defined by
Hewlett-Packard) you will realize that it is indeed a marvelous tool. But
remember that this is not all there is to it! In Part Two you will discover
that you can do much better using machine language programming!

62 PaRT One: The HP 48

Part Two:

Machine Language

63

Introduction

PaRT Two: MACHINE LANGUAGE

in Part Two we will not only learn how to write machine language
programs, we will also learn how the HP 48 memory is organized. Every
programmer who really wishes to use his machine to its fullest potential
must have an excellent knowledge of its structure. This knowledge makes
it possible to gain access to information needed—information that the
designers did not necessarily intend to be accessed.

This guided exploration of the HP 48 will be done in several steps,
including the lowest level, which is machine language. Machine language
is the only language that the HP 48’s processor can really understand and
execute. We will also be studyingthe HP 48 on ahigher level (the memory
organization), with mention made of many objects used by the HP 48.

Basically we will learn:

« Machine language:
- What is machine language?

- The actual machine language used by the HP 48’s Saturn
microprocessor;

- Machine language instructions (grouped by function type).

+ The HP 48’s objects:
- Regular objects to which the user has access;
- Internal objects undocumented by Hewlett-Packard.

» The HP 48’s memory organization:
- Memory in general;

- The /O RAM, or how to directly access the contrast, clock,
screen, efc.;

- reserved RAM that contains the HP 48’s internal information;

- User memory that contains the objects created by the user
(programs, variables, etc.).

- How to program in machine language.

Introduction 65

Some of these chapters will contain tables describing the calculator s
memory. In order to remain consistent, they will look like the following

table:
address, contents, length,
address, contents, length,
address, contents, length,
address,,

What you should know:

An address is a hexadecimal number (base 16) which is the position
in memory of the contents contained in the table boxes. These
addresses will always be organized in this manner: (address,) <
(address,) < (address,). The table is read from top to bottom. Ifthe ob-
jectlisted is not at a fixed address, the symbol @ will be used (often
indexed with the form @ if more than one address is used) to indi-
cate the starting address of the object. The lastaddress (address,)
indicates the address of the first nibble following the last content
entry of the table.

The central column gives a brief description of what is contained in
the specified memory area. The contents of this field are explained
in more detail in the text accompanying each table.

The length field (right column) indicates, in decimal, the number of
nibbles of the table entry (note that a nibble is the basic memory
element of the HP 48). Thus, length, = address, - address,. This field
may correspond to a specific value in one of the object fields. For
example length, can be contents,.

PART Two: MACHINE LANGUAGE

The first chapter of Part Two (Chapter 8) covers a general approach to
machine language. If you are somewhat familiar with machine language,
you will probably want to skip to Chapter 9.

Do not be overwhelmed by the vast amount of information found in Part
Two, as it is mainly a reference guide. To best understand this material,
the reading should be done twice. The first reading should be done rapidly
to give you a basic understanding of the dif ferent ideas discussed. The
second time should be taken more slowly, and you should try some
machine language programming on your own as yougo. You willthen find
that Part Two will be an excellent reference for future machine language
programming.

Introduction 67

8. Machine Language

PaRT Two: MACHINE LANGUAGE

If you are already familiar with what an assembler is and does, and you
basically know what machine language is, then you may skip to the fol-
lowing chapter. Otherwise, you will find this chapter useful.

To explain the concept of machine language, we will compare it to a higher
level language. Consider an analogy: a little story about Mr . Jones and
Mr. Smith—two people eachwishtoinstall electrical outlets intheir homes.

Mr. Smith is not a handy man, so the most simple solution for him is to call

someone who is. He picks up the telephone and calls an electrician in his

neighborhood. Later that afternoon, the electrician finally shows up at Mr .
Smith’s house and does the work for him for a considerable sum of money

(materials + labor + travel + tips...). Mr. Smith pays grudgingly because
the work was not done exactly as he would have liked.

Mr. Jones, on the other hand, is quite good with his hands, and he decides
to do the work himself. He makes a trip to the hardware store where he
buys a plug and some wire. Then, at home, he installs the plug how and
where he wants it, all for a very modest sum of money.

You could say that in the first case, Mr. Smith used a high-level language
by giving an order that resulted in a number of elementary operations
being carried out (getting wire, getting a plug, installing, etc.). Mr. Jones,
on the other hand, carried out these elementary tasks himself. He used
a low-level language that was directly executable. It closely resembles
machine language.

The story illustrates these two types of languages in these other respects,
too:

+ Calling the electrician is easier than doing the work yourself be-
cause you have only to give the orders!

+ A high-level language is more costly in time (just as the electrician
costs more money).

+ Oftenahigh-level language seldom does not let you do exactly what
you want; you cannot ask for just anything (just as an electrician will
probably not come to change a light bulb for you).

8. Machine Language 69

Machine language gives you direct access to all the available resources
of the machine in an extremely fast but complicated way . It can do this
because it is composed of very basic instructions. It is therefore neces-
sary to use many instructions to carry out even the simplest functions.

Machine language is the only language that the machine really under-
stands (thus all high-level languages are broken down into calls to pro-
grams written in machine language). However, if a language is easily un-
derstood by the machine, it is absolutely unreadable for a human being
because it is composed of a series of numbers.

This is why we will introduce a third language: assembly. This language
consists of a symbolic representation of machine language codes using
mnemonics—abridged names that help you remember what function is
executed by the machine instruction (for example, P=8 instead of 28).

But since the machine cannot understand these symbols, it is necessary
to transform them into a series of numbers that are understandable. This
translation of assembly to machine language is called assembling. The
inverse operation is called disassembling. Thus we would begin by writing
aprogram in assembly, then we would assemble it to make it executable
by the machine.

For the HP 48, we can do the assembling by hand, or automatically using
a more powerful computer. (There are at least two Saturn assemblers:
Areuh for the IBM PC and UNIX machines, written by Pierre David and
Janick Taillandier; and Satas for the Atari St, Amiga, IBM PC and UNIX
machines, written by Christophe Dupont de Dinechin). A disassembler
that works on all HP 48 calculators is given in the library of programs.

70 PaRT Two: MACHINE LANGUAGE

The last term to define is the “microprocessor.” This is basically the heart
of the machine, the electronic entity that executes the machine language
instructions.

The basic unit of information recognized by the microprocessor is the bit
(which can only be a value of 0 or 1). Because the machine uses a binary
base, itis best for us to use a base that is a power of 2, which is why base
16 (hexadecimal) is used. The digits of base 16 are: 0, 1,2, 3,4, 5, 6, 7,
8,9,A,B,C,D,E, F, 10, 11, etc. Therefore, the value 23h (the ‘h’ signifies
that the number is in hexadecimal) is equal to 35 in decimal (16 * 2 + 3).

However, it may sometimes be necessary to store numbers in decimal.
We can use a notation called “binary coded decimal.” This notation uses
ahexadecimal number as if it were decimal. Forexample, the number 15h
would be equal to 15 decimal.

This type of storage makes it necessary to have two dif ferent calculation
modes for the microprocessor: hexadecimal mode, where the registers
contain hexadecimal numbers, and decimal mode, where the registers
contain “binary coded decimal” numbers.

The current mode determines the manner in which the mathematical
operations are executed by the microprocessor. If you add the two num-
bers 9h and 3h in hexadecimal mode, the answer is Ch. If you add them
in decimal mode, the answer is 12h, which corresponds to the decimal
value 12 in “binary coded decimal” notation.

Exercises

8-1. Convert these decimal numbers into hexadecimal: 1, 10, 25,
65535, 48830.

8-2. Convert these hexadecimal numbers into decimal: 123h, 10h,
100h, B52h, 3h.

8. Machine Language 71

72

9. The Saturn Microprocessor

PaART Two: MACHINE LANGUAGE

The HP 48 contains a 4-bit Saturn microprocessor. It is the same micro-
processor as in the HP 71 and the HP 28.

The Registers

The Saturn microprocessor has 19 registers. Aregisterisamemory loca-
tion in the microprocessor and can contain only binary integers. These 19
registers can be grouped into six categories:

« /O registers (2);

+ Flag registers (3);

+ Data pointer registers (3);

« Scratch registers (6);

« Working registers (4);

* Field pointer register (1).

The I/Q Register

« INPUT (16 bits). This register is used to read the state of the 16
inputs (particularly useful for reading the keyboard).

« OUTPUT (12 bits). This register is used to send current to one or
many of the 12 wires of the keyboard and the speaker . This register
can only be written to.

These two “registers” are used for the BEEP sound (writingto OUTPUT),
as well as for sampling the keyboard. To sample the keyboard, current is
sent to a row of buttons. If current is detected in a column of buttons, this
lets us know that the button at the intersection of the row/column is being
pressed.

9. The Saturn Microprocessor 73

The table opposite shows each OUT/IN mask to test if a particular key is
pressed (all the values are given in hexadecimal). To test a button, write
the corresponding OUT, read the value coming IN, and AND this value with
the value given in the table. If the result is non zero, this signifies that the
button in question is pressed. It is possible to test many keys simulta-
neously by using an output mask constructed by ORing many masks to-
gether. (Caution: this method does not work for testing the ON button.
Interrupts are needed for this, and we will study those later .)

Here are a few examples:

74

+ Totestif the button “A” has been pressed, send an OUT #8082h, and

read the value coming IN and do a logical AND with the mask
#08016h. This is done with a small program:

LCHEX #0662 output mask
ouT=C

GOSBYL #81168 thisis C=IN
LAHEX #BB818 input mask
A=A&C A

=8 A

GOYES Key_not_pressed...
*# key A is pressed

Note: the routine at #01160h is used instead of the instruction C=IN
because the latter does not function properly when used with RAM
(itcorrupts the memory area thatwas read). Anotherusefuladdress
is #01EECh, which successively executes OUT=C and C=IN.

Totestif any key has been pressed: The program above can still be
used, but the output mask would become #1FFh #881h OR #0882h
OR #084h OR #088h OR #B16h OR #B26h OR #B46h OR
#086h OR #18Bh); and the input mask #863Fh (#8001h OR
#0862h OR #80B4h OR #0008h OR #0016h OR #9620h).

Toemitasound: alternate between output masks #888h and #886h
(to activate and deactivate the speaker).

PaRT Two: MacHine LANGUAGE

(&)

002/0010 100/0010 100/0008
(MTH) (PRG) CST
004 /0010 080/0010 080/0008

) 69 Eal
001/0010 040/0010 040/0008
SN TAN
008 /0010 020/0010 020/0008

+/-
010/0010 010/ 0008

@

008 /0020 008 /0008

GaY @)

004 /0020 004 /0008

=

002/0020 002 /0008

©

400/8000 001 /0008

008 / 0004

8

004 / 0004

@

002 / 0004

¢J

001/ 0004

©

100/ 0004

080/ 0004

«

040/ 0004

020/ 0004

010/ 0004

E

100/ 0002

(a)

080/ 0002

@

040/ 0002

020/0002

010/0002

©

008/ 0002

004 /0002

8

002 /0002

001 /0002

100/ 0001

NXT
080/ 0001

®)

040/ 0001

020/ 0001

(e

010/ 0001

=

008 / 0001

004/ 0001

S

002/ 0001

001 /0001

OUTPUT / INPUT masks for the keyboard

9. The Saturn Microprocessor

Flag Registers (3)

CARRY (1 bit). Thisis the carry bit; when an operation resultsin a
carry, this flag is set.

HST (hardware status) (4 bits). This is a register with 4 flags (MP
module pulled, SR service request, SB sticky bit, XM external
module missing).

STATUS (16 bits). These flags are like those accessible by RPL
instructions SF and CF (but they are not the same). Flags 12t0 15
are used by the HP 48, but flags 0 to 11 are available for use in
programs. This register is represented by ST.

Data Pointer Registers (3)

These registers are used to point to a particular memory area. They each
have a length of 20 bits. The HP 48 is therefore capable of addressmg 2%
nibbles (512 Kbytes). The three registers are:

it

D0 and D1 (20 bits each). These are used for reading and writing
to memory;

PC (program counter - 20 bits). This register contains the address
of the instruction currently being executed.

h ister

There are two types:

76

RSTK (return stack) (8 levels of 20 bits each): This is a stack with
8 levels used for saving addresses. This stack behaves exactly like
the HP 48 RPL stack with the difference that even if it's empty, it
contains zeros. It serves as an information backup, particularly for
saving the return address from a call to a subroutine.

RO, R1, R2, R3, and R4 (64 bits each): these are primarily used for
backing up the working registers.

PaRT Two: MACHINE LANGUAGE

Working Regi: 4

Theregisters A, B, C and D (64 bits each) are used for miscellaneous cal-
culations. A and C are dedicated specifically for reading and writing to
memory (they are therefore used in conjunction with DO and D1).

Fiel

The working registers A, B, C, and D are very long (64 bits) and few in
number. They are therefore divided into smaller pieces—“fields,” which
can be used independently, if they don’t overlap. This permits simulta-
neous calculations using only a few registers. Here is atable of the fields:

register’s nibble number

FIEIplciBlAlels8l7]6[5]a]3][2]1]0
w
s | M xs| B
I A
| X

Thus, field M represents nibbles E to 3, A the nibbles 4 to 0, and W is the
entireregister, etc. The names of these field pointerregisters are the same
as those used by the HP 71. Each letter stands for the following name:

+ A - Address: Field A is 5 nibbles long (which is the length of an
address) and was intended to contain addresses;

« B - Byte: Two nibbles equal one byte;

* M-Mantissa: Onthe HP 71, a real number was stored in a register
containing the sign, mantissa, exponent sign, and exponent. This
is the mantissa field.

« S - Sign: Corresponds to the sign field of the HP 71;

+ X - eXponent: Corresponds to the exponent field of the HP 71;

+ XS -eXponent Sign: Corresponds to the HP 71 exponent sign field;
+ W - Wide: In other words, the entire 64 bit register.

9. The Saturn Microprocessor 77

The length and position of those fields are fixed. However , there are two
other fields, P and WP (for Wide-P). The size of WP depends on the con-
tents of P. P is one nibble in length, and can therefore contain a number
from 0 to F. WP will contain the nibbles 0 to P (see the table below). Note
alsothatthe register P also affects the way values are loaded into registers
A and C (see instructions LAHEX and LCHEX in Chapter 10).

In an assembly program, the name of the intended field is written after an
instruction. Forexample: TC=8 A means: “Isthefield A of register C equal
to zero?” There are two possible methods of indicating a specific field in
an assembly instruction:

» The code for the operation actually exists and can be given directly .
This is always the case for the A field, and sometimes for the B field.

+ The code may be given as a small letter (a, f, or b) to be replaced by
the code for the desired field according to the table below .

Example: If you have this line in the list of instructions: Ab8 A=B b | for
A=B W, you would use the code AFB (F for W since the letter given is b).

Another way manipulate fields is to define the number of nibbles the
operation will affect—indicated in the instruction listby an x. For example,
198% DATB=A x+1 means that the operation will take place for x+I
nibbles. Thus, 1583 would be “perform the operation DATB=A for the nib-
bles 0...x of A). This type of operation is equivalent to using a WP field
without having to change the value of the register P.

Field a f b
P 0 0 8
WP 1 1 9
XS 2 2 A
X 3 3 B
S 4 4 C
M 5 5 D
B 6 6 E
W 7 7 F
A F

78 PaRT Two: MACHINE LANGUAGE

Miscellaneous Notes

The Saturn microprocessor has a peculiarity to be aware of: It reverses
everything itreads. For example, if in memory location #00000h there is
a?Z, and in #00001h there is a 3, reading 2 nibbles from #00000h would
return the value 32. For this reason, all values in memory must be written
in reverse—for all reading and writing operations to and from the registers.

Saturn microprocessor instructions are listed using two dif ferent methods:

« By function type: This is useful when you are looking for a certain
operation without knowing the exact syntax or the registers used.
(This list is found in the following chapter).

« Bycode: Thislisting is found in the appendix, and is excellentas a
reference card for programmers who are already familiar with how
the operations work, or for someone who is disassembling an exist-
ing program.

One last note about the registers used by the HP 48:

+ DO points to the nextinstruction to be executed (so we always finish
a machine language program by writing to this address).

« D1 points to the first level of the stack. Reading 5 nibbles from this
address returns the address of the object in level 1.

« B points to the return stack. As we execute instructions, we may
need to store return addresses. B points to the next free location in
the return stack. (Caution: This stack is not the RSTK register).

These registers are used by the system. They may be used ina machine
language program, but their original value must be restored at the end of
program execution. The flags 12 to 15 are also used by the system (for
interrupts), but, unlike the three system registers, they mustneverbe mod-
ified. Note that Flag 15is the one that can be used to change the way key-
board interrupts are handled. Flag 10 may be used and modified, but it is
also used by the HP 48 for memory allocations. If we clear this flag before
trying to reserve memory, itwillbe set if garbage collection was necessary .

9. The Saturn Microprocessor 79

9-1.

9-2.

94,

9-5.

9-7.

80

Exercises

How would you code the W field for these instructions?

Ba3 D=D-C a
AbB C=D b

How would you code the above using fields P and WP.

Knowing that: Aa3 D=D+C a
Ab3 D=8 b

disassemble the instructions A13, A73, A83 and A93.

If #00321h contains 1, #00322h contains 1, #00323h contains 4,
#00324h contains C, and #00325h contains 8, what will your
register contain after reading 3 nibbles from #00321h?

Giventhe same values as question 9-4, what would your register
contain after reading 2 nibbles from #00322h?

Given the same values as question 9-4, what would your register
contain after reading 4 nibbles from #00321h?

If field X of register A contains 216h (2 in nibble 0, 1 in nibble 1
and 8 in nibble 2) and you write this value to #70080h, what do
memory locations #70080h, #70081h and #70082h contain?

PaRT Two: MACHINE LANGUAGE

9-8. If we then read 3 nibbles from #70080h into field X of register C,
what will be the value contained in this field? Field B? Field XS?

9-9. If P equals 2, how many nibbles are implied by the instruction
A=0ATB P 2

9. The Saturn Microprocessor

81

82

10. The Saturn Instruction Set

PaRT Two: MacHNe LANGUAGE

This chapter covers the entire instruction set of the Saturn microproces-
sor. This list will allow you to easily find each instruction that you will need
to write machine language programs. The instructions are grouped by
functionality, as follows:

* Moves:

Immediate

Exchanging Register Fields

Saving and Restoring (Rn and RSTK)
Reading and Writing to Memory

input and Output

« Exchanging Register Contents

+ Arithmetic Operations:

Increment

Addition

Decrement

Subtraction

Logical AND

Logical OR

Logical NOT

2's Complement
Multiplying by 2

Dividing by 2

Multiplying by 16
Dividing by 16

Rotating Left (one nibble)
Rotating Right (one nibble)

+ Jumps:

Direct Relative Unconditional
Direct Relative Conditional
Absolute

Register Direct

Register Indirect

Getting the Program Counter

10. The Saturn Instruction Set 83

Calling subroutines:
- Direct Relative Unconditional
- Absolute
- Returning from Sub-routines

Comparisons:
- Immediate
- Comparing Registers

Bus Commands

Control Instructions

NOPs (Instructions with no effect)
Pseudo Operations

Each operation is described as instruction field (cycles) code ,where:

instruction is the mnemonic for a particular instruction (e.g.: A=8);
field is the field in which the instruction has ef fect;
code is the hexadecimal code of the instruction.

cycles is the number of CPU cycles needed to execute the instruc-
tion—very useful for calculating the exacttime necessary to execute
certain programs (tone generation, IR transmitting/receiving, etc.).
Each CPU cycle lasts about 570 nanoseconds (the microprocessor
speed is 1.7 MHz).

The Saturn microprocessor is a 4 bit microprocessor , however the
peripherals (ROM, RAM, screen controller, etc.) use 8 bits. For this
reason there is a cache buffer between the microprocessor and the
peripherals. This internal buffer is 2 nibbles long (one byte) at an
even address location (for example, #00000h and #01234h are
even address locations). The use of this cache buffer requires one
clock cycle. The cache buffer is used when transferring machine
language instructions from memory to the microprocessor . If the in-
struction is an odd number of nibbles, the number of memory acces-
ses depends onwhether the instruction is atan even or odd address
location. For this reason, certain instructions will require n or n+1
cycles for execution. For this type of instruction, a speed of .5 in-

PaRT Two: MACHINE LANGUAGE

struction cycles will be listed (4.5 for example). If the start of the
address is even, then this value should be rounded down; other-
wise it should be rounded up.

To make things even more complicated, instructions that read from
memory also use the cache buffer. The number of cycles for such
an instruction is listed in the form (n,, n,), where n +n, is the number
of total cycles used for the instruction. The same rules apply for
rounding », as above, butif the number of nibbles read is odd, », will
be shown in fractional form. If the address of the area being read is
even, then n, is rounded down; otherwise it should be rounded up.
Certain instructions will have a different cycle time depending on
how many nibbles they affect (field sizes are different, or reading
and writing different nibble sizes to memory). Forthis case, g equals
the number of nibbles the instruction af fects. Finally, forcomparison
operations, two numbers are giveninthe form (n/n,). The firstisthe
number of cycles if the test is true, the second is if the test is false.

Example: Calculate the execution time of a loop. Here is a small
assembly program:

L1 97A =0 W
31 GOYES End
1866866 DB=(5) ©BBO8
142 A=DAT8 A
A7E C=C-1 W
6DEF GOTO L1
End

If the test is true, the instruction takes 32 or 33 cycles depending if
its address is even or odd. If the test is false, the instruction takes
24 or 25 cycles (the field in question is field W; g is 16 nibbles).

DB=(5) 60888 :10or 11 cycles.

A=DATB A : 23 or 24 cycles (reading from even address).
C=C-1 W :20 or 21 cycles.
GOTO L1 : 14 cycles.

There are 32 or 33 if the loop is not executed (C=B W) and 93 other-
wise (if aninstruction with an odd length begins onan even address,
the next instruction will begin on an odd address and vice versa).

10. The Saturn Instruction Set a5

Moves

Immediate
You may move immediate values into certain registers. There are special
instructions for moving zero into aregister. Here is alist of possible moves:

» Forregister A:
- Set field A to zero:

A=0 A (8) 0o
- Set any other field to zero:
A=0 b (4.5+q) AbB

- Setbit x to zero. The bit number must be from 0to F. Thus,
this instruction can only have effect on the first 4 nibbles of A:

ABIT=0 x (7.5) 8084x
- Setbitxtoone. Thisisthe inverse of the previous instruction.
ABIT=1 x (7.5) 8085«

- Move avalue into A. This instruction moves x+1 nibbles into
the register (nibbles 4,,...h), using the value of P: Nibble 4, is
moved into nibble P of A; h, is moved into nibble P+1, etc.
Remember that the processor reverses the nibbles moved.

LAHEX(x) h..h, (5+q+(5+q)/2) 8882xh, h
+ For register B:
- Set field A to zero:

B=0 A (8) D1
- Set any other field to zero:
B=6 b (4.5+q) Abl

» Forregister C:
- Setfield A to zero:

C=0 A (8) D2
- Set any other field to zero:

C=6 b (4.5+q) Ab2
- Clear bit x (Oh £ x £ Fh):

CBIT=8 x (7.5) 8088«
- Setbitx (Oh £ x£ Fh):

CBIT=1 x (7.5) 8889x
- Move avalue into C:

LCHEX thx...h, (2+g+(2+0)/2) 3xha“hx

86 PaRT Two: MacHINe LANGUAGE

« Forregister D:
- Set field A to zero:

D=6 A (8) 03
- Set any other field to zero:
D=8 b (4.5+q) Ab3

* Forregister P:
- Move the value n (0h £ n £ Fh) into P:
P= n (3) 2n
+ For register DO:
- Move a value into the 2 least significant nibbles:

DB=(2) 9P (6) 19pq
- Move a value into the 4 least significant nibbles:

De=(1) srap (9) 1Apars
- Move a value into DO:

DB=(5) tsrap (10.5) 1Bparst

» Forregister D1:
- Move a value into the 2 least significant nibbles:

D1=(2) 9P (6) 1Dpq
- Move a value into the 4 least significant nibbles:

D1=(4) srap (9) 1Epars
- Move a value into D1:

D1=(5) tsrap (10.5) 1Fparst

» Forregister HST:
- Clear flag XM:
W=

8 (4.5) 821
- Clear flag SB:
= %) (4.5) 822
- Clear flag SR:
SR= 8 (4.5) 824
- Clear flag MP:
MP=) (4.5) 828
- Clear all four flags:
CLRHST (4.5) 82F
For register ST:
- Clear flag d (Oh £ d £ Fh):
ST=0 d (5.5) 844
- Clear all flags:
CLRST (7) 88
- Setflag 4:
ST=1 d (5.5) 854

10. The Saturn Instruction Set 87

Moving Values
« For Register A:
- Move field A of B into field A:

A=B A (8) D4
- Move field b of B into field b:

A=B b (4.5+q) Ab4
- The same instructions exist for C:

A=C A (8) DA

A=C b (4.5+q) AbA

* For Register B:
- Move field A of A into field A:

B=A A (8) D8
- Move field b of A into field b:

B=A b (4.5+q) Ab8
- The same instructions exist for C:

B=C A (8) 05

B=C b (4.5+q) AbS

« For Register C:
- Move field A of A into field A:

C=A A (8) D6
- Move field b of A into field b:

C=A b (4.5+0) Abb
- The same instructions exist for B:

C=B A (8) 09

C=B b (4.5+q) Ab9
- The same instructions exist for D:

C=D A (8) DB

C=D b (4.5+q) AbB
- Move P into nibble n:

c=P n (8) 86Cn
- Move flags 0 to 11 of ST into field X:

C=ST (7) 89

» For Register D:

- Move field A of C into field A:

D=C A (8) D7
- Move field b of C into field b:

pD=C b (4.5+q) Ab?

88 ParT Two: MACHINE LANGUAGE

« For Register P:
- Move nibble n of Cinto P:
p=C n (8) 880~
» For Register DO:
- Move field A of A into DO:

DB=A (9.5) 136
Move nibbles 0 to 3 of A into DO:
D8=AS (8.5) 138
- The same instructions exist for C:
De=C (9.5) 134
pB=CS (8.5) 13C

« For Register D1:
- Move field A of Aiinto D1:

D1=A (9.5) 131
- Move nibbles 0 to 3 of A into D1:

D1=AS (8.5) 139
- The same instructions exist for C:

D1=C (9.5) 135

D1=CS (8.5) 130

» For Register ST:
- Move field X of C into flags 0 to 11 of ST:
ST=C (7) BA

10. The Saturn Instruction Set

in nd RSTK

- For Register A:

- Save the entire register:

RB=A (20.5) 198
R1=A (20.5) 181
R2=A (20.5) 162
R3=A (20.5) 163
R4=A (20.5) 164
- Save field A only:
RB=A A (14) 81RFBA
R1=A A (14) 81AFB1
R2=A A (14) 81AFB2
R3=A A (14) 81AFB3
R4=A A (14) 81RFB4
- Save field a only:
RB=A a (9+0) 81Aa00
R1=A a (9+q) 81Ra061
R2=A a (9+q) 81RaB2
R3=A a (9+q) 81Ra63
R4=A a (9+q) 81RaB4
- Restore the entire register:
A=R6 (20.5) 119
A=R1 (20.5) 111
A=RZ (20.5) 112
A=R3 (20.5) 113
A=R4 (20.5) 114
- Restore field A only:
A=RA A (14) 81AF10
A=R1 A (14) 81AF11
A=R2 A (14) 81AF12
A=R3 A (14) 81AF13
A=R4 A (14) 81AF14
- Restore field a only:
A=RA a (9+0) 81RalB
A=R1 a (9+q) 81Rall
A=R2 a (9+q) 81Ral?
A=R3 a (9+q) 81Ral3
A=R4 a (9+q) 81Ral4

PaRT Two: MACHINE LANGUAGE

« For Register C:

- Save the entire register:
RB=C
R1=C
R2=C
R3=C
R4=C

- Save field A only:

R1=C
R2=C
R3=C
R4=C
- Save field a only:

DDODDDD

a
R1=C a
R2=C a
R3=C a
R4=C a
- Restore the entire register:

C=R1
C=R2
C=R3
C=R4
- Restore field A only:

C=R1
C=R2
C=R3
C=R¢
- Restore field a only:

C=R1
C=R2
C=R3
C=R4

- Restore field A from RSTK:
C=RSTK

- Save field A into RSTK:
RSTK=C

DDODDODIDD

oo

10. The Saturn Instruction Set

188
169
18R
168
16C

81AFO8
81RFB9
81AFGA
81RFOB
81AFAC

81Ra08
81Raf9
81RakA
81RaB
81Ra6C

118
119
11R
11B
11C

81ARF18
81AF19
81AF1A
81AF1B
81AF1IC

81Ral8
81Ral9
81RalA
81RalB
81RalC

87
B6

91

Readi | Writing to M

» For Reglster A:
Move the data pointed to by DO into field A:

A=DATA A (20.5, 3.5) 142
- Same for field B:

A=DATH B (19.5) 14A
- Same for field a:

A=DATA a (20+q, (q+2)/2) 152a
- Same for x+1 nibbles:

A=DATH x+1 (19+q, (g+2)/2) 15Ax
- The same instructions exist for D1:

A=DAT1 A (20.5, 3.5) 143

A=DAT1 B (19.5) 14B

A=DAT1 a (20+q, (q+2)/2) 153a

A=DAT1 x+1 (19+q, (g+2)/2) 19Bx
- Move field A into the address pointed to by DO:

DATB=A A (19.5) 140
- Same for field B:

DATB=A B (16.5) 148
- Same for field a:

DATB=A a (19+0) 158a
- Same for x+1 nibbles:

DATB=A x+1 (18+q) 1993
- The same instructions exist for D1:

DAT1=A A (19.5) 141

DAT1=A B (16.5) 149

DAT1=A a (19+q) 151a

DAT1=A Pad! (18+q) 159x%

* For Regnster C:
Move the data pointed to by D0 into field A:

C=DATH A (20.5, 3.5) 146
- Same for field B:

C=DATHB B (19.5) 14E
- Same for field a:

C=DATHB a (20+q, (q+2)/2) 196a
- Same for x+1 nibbles:

C=DAT8 x+1 (19+q, (g+2)/2) 15Ex

92 PaRT Two: MACHINE LANGUAGE

- The same instructions exist for D1:

C=DAT1 A (20.5, 3.5) 147
C=DAT1 B (19.5) 14F
C=DAT1 a (20+q, (q+2)/2) 157a
C=DAT1 x+] (19+q, (g+2)/2) 15Fx
- Move field A into the address pointed to by DO:
DATB=C A (19.5) 144
- Same for field B:
DATB=C B (16.5) 14C
- Same for field a:
DATB=C a (19+0) 154a
- Same for x+1 nibbles:
DATE=C xtl (18+Qq) 15Cx
- The same instructions exist for D1:
DAT1=C A (19.5) 145
DAT1=C B (16.5) 14D
DAT1=C a (19+q) 155a
DAT1=C xtl (18+Qq) 150x

In n

The followinginstructions are forreading the keyboard as well as using the
HP 48’s speaker (see Chapter 9). Caution: The instructions A=IN and
C=IN corrupt the memory area read when used in RAM (see Chapter 9).

+ For Register A:
- Read the Input (into nibbles 0,1,2 and 3 of A):
A=IN (8.5) 802
- For Register C:
- Read the Input (into nibbles 0,1,2 and 3 of C):

C=IN (8.5) 863
- Write field X to the output:

ouT=C (7.5) 8a1
- Write nibble 0 into nibble 0 of the output register:

0UT=CS (5.5) 800

10. The Saturn Instruction Set

93

Exchanging Register Contents

. For Register A

Exchange field A with field A of B:

ABEX A (8) oc
- Exchange field b with field b of B:
ABEX b (4.5+q) AbC
- The same instructions exist for C:
ACEX A (8) DE
ACEX b (4.5+q) AbE
- Exchange with RO:
ARBE (20.5) 126
- Exchange field A with field A of RO:
ARGE A (14) 81AFZ0
- Exchange field a with field a of RO:
ARBEX a (9+0) 81Ra206
- The same instructions exist for R1:
ARIEX (20.5) 121
ARI1EX A (14) 81AFZ1
ARIEX a (9+0) 81AaZ1
- The same instructions exist for R2:
ARZEX (20.5) 122
ARZEX A (14) 81AFZ22
ARZEX a (9+0) 81Ra22
- The same instructions exist for R3:
AR3EX (20.5) 123
AR3EX A (14) 81AFZ3
AR3EX a (9+0) 81RaZ3
- The same instructions exist for R4:
AR4EX (20.5) 124
AR4EX A (14) 81AF24
AR4EX a (9+0) 81Aaz4
- Exchange field A with DO:
ADBE (9.5) 132
- Exchange nibbles 0 to 3 with those of DO:
ADBRS (8.5) 13A
- The same instructions exist for D1:
AD1EX (9.5) 133
AD1XS (8.5) 13B

PaRT Two: MAcHINE LANGUAGE

» For register B:
- Exchange field A with field A of A:

BREX A (8)
- Exchange field b with field b of A:
BAEX b (4.5+q)
- The same instructions exist for C:
BCEX A (8)
BCEX b (4.5+q)

» For Register C:
- Exchange field A with field A of A:

CAREX A (8)

- Exchange field b with field b of A:
CREX b (4.5+q)

- The same instructions exist for B:
CBEX A (8)
CBEX b (4.5+q)

- The same instructions exist for D:
CDEX A (8)
CDEX b (4.5+q)

- Exchange with RO:

CRBEX (20.5)

- Exchange field A with field A of RO:
CRBEX A (14)

- Exchange field a with field a of RO:
CRBEX a (9+0)

- The same instructions exist for R1:
CRI1EX (20.5)
CRIEX A (14)
CRIEX a (9+q)

- The same instructions exist for R2:
CRZEX (20.5)
CR2EX A (14)
CR2EX a (9+q)

- The same instructions exist for R3:
CR3EX (20.5)
CR3EX A (14)

CR3EX a (9+q)

10. The Saturn Instruction Set

0c
AbC
DD
AbD
DE
AbE

DD
AbD

DF
AbF

128
81AFZ8
81RaZ8
129
81AF29
81Ra29
12A
81AF2A
81Ra2ZA
128

81AFZB
81RaZB

95

- The same instructions exist for R4:

CR4EX (20.5) 12C
CR4EX A (14) 81AF2ZC
CR4EX a (9+q) 81Ra2C
- Exchange field A with DO:
COBEX (9.5) 136
- Exchange nibbles 0 to 3 with those of DO:
COBKS (8.5) 13
- The same instructions exist for D1:
CD1EX (9.5) 137
CDIXS (8.5) 13F
- Exchange nibble n with P.
CPEX n (8) 86F »
- Exchange field X with flags 0 to 11 of ST.
CSTEX (7) 6B

« Forregister D:

- Exchange field A with field A of C.

DCEX A (8) DF
- Exchange field b with field b of C.
DCEX b (4.5+q) AbF

PART Two: MACHINE LANGUAGE

Arithmetic Operations

Increment
These instructions modify the value of the CARRY flag.

« Forregister A:
- Increment field A:

A=A+1 A (8)
- Increment field a:
A=A+1 a (4.5+q)
- Increment field A by x+1 (0Oh £ x £ Fh):
A=A+x+1 A (13)
- Increment field a by x+1:
A=A+x+1 a (8+0)

» Forregqister B:
- Increment field A:

B=B+1 A (8)
- Increment field a:
B=B+1 a (4.5+q)
- Increment field A by x+1 (Oh £ x £ Fh):
B=B+x+1 A (13)
- Increment field a by x+1:
B=B+x+1 a (8+Q)

« For register C:
- Increment field A:

C=C+1 A (8)
- Increment field a:
C=C+1 a (4.5+q)
- Increment field A by x+1 (Oh £ x £ Fh):
C=C+x+1 A (13)
- Increment field a by x+1:
C=C+x+1 a (8+Q)

« Forregister D:
- Increment field A:

D=D+1 A (8)
- Increment field a:
D=D+1 a (4.5+Q)

10. The Saturn Instruction Set

E4

Bat
818F0x
818a0x

ES

BaS
818F1x
818alx

E6
Bab
818F2x
818aZx

E?
Ba?

97

- Increment field A by x+1 (Oh £ x £ Fh):

D=D+x+1 A (13) 818F3x
- Increment field a by x+1:
D=D+x+1 a (8+0) 818a3x
« For register P:
- Increment:
P=P+1 (4) 6c

 For register DO:
- Increment by x+1:

De=Da+ xt1 (8.5) 16x
 For register D1:
- Increment by x+1:
D1=D1+ x+1 {(8.5) 17x

Addition
These instructions modify the value of the CARRY flag.

» Forregister A:
- Add field A of B to field A:

A=A+B A (8) co
- Add field a of B to field a:

A=A+B a (4.5+0) ARaB
- The same instructions exist for C:

A=A+C A (8) CA

A=A+C a (4.5+q) ARaA

» For register B:
- Add field A of A to field A:

B=B+A A (8) C8
- Add field a of A to field a:

B=B+A a (4.5+0) Aad
- The same instructions exist for C:

B=B+C A (8) C1

B=B+C a (4.5+q) Aal

- For Register C:
- Add field A of A to field A:

C=C+A A (8) ce
- Add field a of A to field a:
C=C+A a (4.5+0) Aa2

98 PaRT Two: MacHiNe LANGUAGE

- The same instructions exist for B:

C=C+B A (8)

C=C+B a (4.5+q)
- The same instructions exist for D:

C=C+D A (8)

C=C+D a (4.5+q)
- Add P+1 to field A:

C+P+1 (9.5)

« For register D:
- Add field A of C to field A:

D=D+C A (8)
- Add field a of C to field a:
D=D+C a (4.5+q)

Decrement

These instructions modify the value of the CARRY flag.

* Forregister A:
- Decrement field A:

A=A-1 A (8)
- Decrement field a:
A=A-1 a (4.5+0)
- Decrement field A by x+1 (Oh £ x £ Fh):
A=A-(x+1) A (13)
- Decrement field a by x+1:*
A=A-(x+1) a (8+0)

« For register B:
- Decrement field A:

B=B-1 A (8)
- Decrement field a:
B=B-1 a (4.5+0)
- Decrement field A by x+1 (Oh £ x £ Fh):
B=B-(x+1) A (13)
- Decrement field aby x+1:*
B=B-(x+1) a (8+0)

*Caution: This instruction does not work correctly except for fieldsX, M, B, and W.

10. The Saturn Instruction Set

c9
Aa9

CB
AaB

Ra3

cC

AaC
819F8x
81848«

co
AaD
818F9«
818a9x

» Forregister C:
- Decrement field A:

C=C-1 A (8) CE
- Decrement field a:

C=C-1 a (4.5+q) Aak
- Decrement field A by x+1 (Oh £ x £ Fh):

C=C-(x+1) A (13) 818FAx
- Decrement field a by x+1:*

C=C-(1) a (8+0) 818aAx

» For register D:
- Decrementfield A:

D=D-1 A (8) CF
- Decrement field a:
D=D-1 a (4.5+q) RaF
- Decrement field A by x+1 (0h £ x £ Fh):
D=D-(x+1) A (13) 818FBx
Decrement field a by x+1:*
D=D-(x1) a (8+q) 818aBx
» For register P:
- Decrement:
P=P-1 (4) 0D

» For register DO:
- Decrement by x+1:
De=Do- x+1 (8.5) 18x
« For register D1:
- Decrement by x+1:
D1=D1- x+1 (8.5) 1Cx

Subtraction

These instructions modify the value of the CARRY flag.

« Forregister A:
- Subtract field A of C from field A:

A=A-C A (8) EA
- Subtract field a of C from field a:
A=A-C a (4.5+q) BafA

*Caution: This instruction does not work correctly except for fieldsX, M, B, and W.

100 PART Two: MAcCHINE LANGUAGE

- Subtract field A from field A of B storing the result in field A:

A=B-A A (8) EC
- Subtract field a from field a of B storing the result in field a:
A=B-A a (4.5+q) BaC

» Forregister B:
- Subtract field A of A from field A:

B=B-A A (8) E8

- Subtract field a of A from field a:
B=B-A a (4.5+q) Ba8

- These same instructions exist for C:
B=B-C A (8) El
B=B-C a (4.5+q) Bal

- Subtract field A from field A of C storing the result in field A:
B=C-B A (8) ED

- Subtract field a from field a of C storing the result in field a:
B=C-B a (4.5+q) BaD

» For Register C:
- Subtract field A of A from field A:

C=C-A A (8) E2

- Subtract field a of A from field a:
C=C-A a (4.5+q) BaZ

- These same instructions exist for D:
C=C-D A (8) EB
C=C-D a (4.5+q) BaB

- Subtract field A from field A of A storing the result in field A:
C=A-C A (8) EE

- Subtract field a from field a of A storing the result in field a:
C=R-C a (4.5+q) Bat

- Forregister D:
- Subtract field A of C from field A:

D=D-C A (8) E3

- Subtract field a of C from field a:
D=D-C a (4.5+q) Ba3

- Subtract field A from field A of C storing the result in field A:
pD=C-D A (8) EF

- Subtract field a from field a of C storing the result in field a:
D=C-D a (4.5+q) BaF

10. The Saturn Instruction Set 101

ical AN

« Forregister A:
- Between field A and field A of B:

A=A%&B A (11)
- Between field a and field a of B:
A=A%&B a (6+Qq)
- The same instructions exist for C:
A=A&C A (11)
A=A&C a (6+0)

+ Forregister B:
- Between field A and field A of A:

B=B&A A (11)
- Between field a and field a of A:
B=B&A a (6+Q)
- The same instructions exist for C:
B=B&C A (11)
B=B&C a (6+0)

 Forregister C:
- Between field A and field A of A:

C=C&A A (11)
- Between field a and field a of A:
C=C&A a (6+0)
- The same instructions exist for B:
C=C&B A (11)
C=C&B a (6+0)
- The same instructions exist for D:
C=C&D A (11)
C=C&D a (6+0)

« For register D:
- Between field A and field A of C:

D=D&C A (11)
- Between field a and field a of C:
D=D&C a (6+0)

102

BEFO
BEaB
BEF6
BEab
BEF4
BEat
BEF1
BEal
BEF2
BEa2

BEFS
BEaS

BEF?
BEa’

BEF3
BEa3

PaRT Two: MACHINE LANGUAGE

Logical OR
» For register A:
- Between field A and field A of B:

A=A!B A (11)
- Between field a and field a of B:
A=A!B a (6+0)
- The same instructions exist for C:
A=A!IC A (11)
A=A!C a (6+Q)

» For register B:
- Between field A and field A of A:

B=B!A A (11)
- Between field a and field a of A:
B=B!A a (6+a)
- The same instructions exist for C:
B=BIC A (11)
B=BIC a (6+Q)

+ For register C:
- Between field A and field A of A:

C=C!n A (11)
- Between field a and field a of A:
C=C!A a (6+q)
- The same instructions exist for B:
C=CIB A (11)
C=C!B a (6+q)
- The same instructions exist for D:
C=CID A (11)
C=CID a (6+0)

» For register D:
- Between field A and field A of C:

D=DIC A (1
- Between field a and field a of C:
D=DIC a (6+q)

10. The Saturn Instruction Set

BEF8
BEaB
BEFE
BEaE
BEFC
BEaC
BEF9
BEa9
BEFA
BEaA

BEFD
BEaD

OEFF
BEaF
OEFB
BEaB

103

Logical NOT

These instructions modify the value of the CARRY flag.

* For register A:

- Onfield A:

=-fA-1
- Onfield b:
A=-A-1

» Forregister B:

- Onfield A:

B=-B-1

- Onfield b:
B=-B-1

« Forregister C:

- Onfield A:

C=-C-1

- Onfield b:
C=-C-1

» Forregister D:

- Onfield A:

D=-0-1
- Onfield b:
D=-D-1

2’s Complement

(8) FC
(4.5+q) BbC
(8) FD
(4.5+q) BbD
(8) FE
(4.5+q) BbE
(8) FF
(4.5+q) BbF

These instructions modify the value of the CARRY flag.

« Forregister A:

- Onfield A:

=-f

- Onfield b:
A=-A

* For register B:

- Onfield A:

B=-B
- On field b:
B=-B

104

(8) F8
(4.5+q) Bb3
(8) F9
(4.5+q) Bb9

PART Two: MACHINE LANGUAGE

- Forregister C:
- Onfield A:
C=-C
- Onfield b:
C=-C
« Forregister D:
- Onfield A:
D=-D
- Onfield b:
D=-D

Multiplying by 2

» Forregister A:

- Multiply field A by 2:

A=A+A

- Multiply field a by 2:
A=A+A
» For register B:

- Multiply field A by 2:

B=B+B

- Multiply field a by 2:

B=B+B
» For register C:

- Multiply field A by 2:

C=C+C

- Multiply field a by 2:

C=C+C
« For register D:

- Multiply field A by 2:

D=0D+D

- Multiply field a by 2:

D=0+D

10. The Saturn Instruction Set

(8)
(4.5+q)

(8)
(4.5+q)

(8)
(4.5+q)

(8)
(4.5+Qq)

(4.5+q)

(8)
(4.5+0)

FA
BbA

FB
BbB

C4
Aa4

C5
Aa5

(1)
Aab

c?
Aa?

105

Dividing by 2
This operation is performed by shifting the register right one bit. The bit

shifted out (least significant) is lost, but SB is setif it was non-null (you must
do an SB=8 first), and the bit shifted in (most significant) is always zero.

» Forregister A:

- Divide by 2:
ASRB

- Divide field A by 2:

ASRB

- Divide field a by 2:

ASRB

 For register B:

- Divide by 2:
BSRB

- Divide field A by 2:

BSRB

- Divide field a by 2:

BSRB

 For register C:

- Divide by 2:
CSRB

- Divide field A by 2:

CSRB

- Divide field a by 2:

CSRB

« For register D:

106

- Divide by 2:
DSRB

- Divide field A by 2:

DSRB

- Divide field a by 2:

DSRB

(21.5)
(13.5)

(8.5+q)

(21.5)
(13.5)

(8.5+0)

(21.5)
(13.5)

(8.5+q)

(21.5)
(13.5)

(8.5+q)

PaRT Two: MacHINe LANGUAGE

81C
819F8
819a8

81D
819F1
819al

81E
819F2
819a2

81F
819F3
819a3

Itiplyin 1
This operation shifts the register left one nibble. The nibble shifted out

(most significant) is lost, but SB is set if it was non-null (you must do an
SB=8 first), and the nibble shifted in (least significant) is always zero.

* Forregister A:
- Multiply field A by 16:

ASL A (9) Fe
- Multiply field b by 16:
ASL b (5.5+q) Bb@

+ For register B:
- Multiply field A by 16:

BSL A (9) Fl
- Multiply field b by 16:
BSL b (5.5+Q) Bbl
» Forregister C:
- Multiply field A by 16:
CSL A (9) Fe
- Multiply field b by 16:
CSL b (5.5+Q) Bb2
 For register D:
- Multiply field A by 16:
. DSL A (9) F3
- Multiply field b by 16:
DSL b (5.5+q) Bb3
Dividing by 16

This operation shifts the register right one nibble. The nibble shifted out
(least significant) is lost, but SB is set if it was non-null (you must do an
SB=1 first), and the nibble shifted in (most significant) is always zero.

» Forregister A:
- Divide field A by 16:

ASR A (9) F4
- Divide field b by 16:
ASR b (5.5+0) Bb4

10. The Saturn Instruction Set 107

For register B:

- Divide field A by 16:

BSR

- Divide field b by 16:

BSR
For register C:

- Divide field A by 16:

CSR
- Divide field b by 16:
CSR
For register D:

- Divide field A by 16:

DSR
- Divide field b by 16:
DSR

Rotating Left (ibble)
This operation performs a left circular rotation of the register by nibbles.
Nibble Oh is moved to 1h, 1h is moved to 2h, etc. The most significant
nibble is moved to the least significant nibble position. SLC stands for
“Shift Left Circular.”

108

For register A:
ASLC
For register B:
BSLC
For register C:
CSLC
For register D:
DSLC

(9)
(5.5+q)

(9)
(5.5+q)

9
(5.5+q)

(22.5)
(22.5)
(22.5)

(22.5)

FS
Bb5

Fé
Bbé

F?
Bb?

818
811
812
813

PART Two: MACHINE LANGUAGE

Botating Right (one nibble)
This operation performs a right circular rotation of the register by nibbles.
Nibble Fh is moved to Eh, Eh is moved to Dh, etc. The least significant

nibble is moved to the most significant nibble position. SRC stands for
“Shift Right Circular.”

» Forregister A:

ASRC (22.5) 814
» For register B:

BSRC (22.5) 815
 For register C:

CSRC (22.5) 816
» Forregister D:

DSRC (22.5) 817

10. The Saturn Instruction Set 109

Jumps

To calculate the distance of relative jumps: Count the number of nibbles
from the end of the jump instruction (not including the distance nibbles) to
the beginning of the desired instruction. To jump backwards, use the 2’s
complement of the distance. For arelative GOT O, the code is baaa, where
aaa is the jump distance. Thus, to jump between addresses @, and @,

+ lfthejumpisforward, (@,-(@,+1)) calculates the distance. You add
110 @, because that’s the length of the jump instruction 6aaa (you
don’t count the nibbles aaa in the calculation). Thus, if @ =#00123h
and @,=#00456h, the distance to jump is 332h nibbles, and is coded
as 6233 (don't forget that the microprocessor reverses data).

« Ifthe jumpis backward, ((@,+1)-@,) calculates the distance. Thus,
if @,=#00456h and @,=#00123h, the distance to jump is 334h
nibbles, coded as 6CCC (the 2’s complement of 334h is CCCh).

The limits of these jumps are as follows:

+ Using 2 nibbles for the length, you can jump -80h to +7Fh nibbles.

+ Using 3 nibbles for the length, -800h to +7FFFh nibbles.

 Using 4 nibbles for the length, -8000h to +7FFFh nibbles.

Note: In assembly program listings, you can use labels to indicate jump
addresses without needing to calculate the distance yourself.
Direct relative unconditional

GOTO abc (19 6cba
GOLONG abcd (17) 8Cdcba

Direct relativ nditional
These jumps depend on the state of the CARRY flag.

- Jump on CARRY clear:
GONC ab (12.5/4.5) Sba
- Jump on CARRY set:
GOC ab (12.5/4.5) 4ba

110 PaRT Two: MACHINE LANGUAGE

Absolute
GOVLNG abcde (18.5) 8Dedcba

Begqister direct
» Using register A:

- Jump to the address contained in field A:

PC=R (19) 81B2

- Jump to the address contained in field A, saving the address
of the next instruction into field A:

APCex (19) 81B6
« Using register C:

- Jump to the address contained in field A:

PC=C (19) 81B3

- Jump to the address contained in field A, saving the address
of the next instruction into field A:

CPCex (19) 81B7?
Register indirect
« Using register A:

- Jump to the address contained in the 5 nibbles pointed to by
field A (the 5 nibbles are read from the address contained in
field A, and execution continues at this address):

PC=(R) (26, 3.5) 868C
- Using register C:

- Jump to the address contained in the 5 nibbles pointed to by
field C:

PC=(C) (26, 3.5) 808E

ing the Program nter

Jump instructions cause changes to the program counter PC. The follow-
ing instructions allow you to find out exactly what address is contained in
the program counter—the address of the next instruction to be executed.

+ Move PC into field A of register A:

A=PC (11) 81B4
« Move PC into field A of register C:
C=PC (11) 81B5

10. The Saturn Instruction Set 111

Calling Subroutines

The distance of a relative subroutine call is calculated dif ferently than for
arelative jump. You count from the first nibble of the instruction after the

subroutine call. Example: GOSUB @,
@, (next instruction)
@, (some useful subroutine)

In this program, the distance of the call would be @,-@,. As with jumps,
you must use the 2's complement of the distance if @,<@,. (Note: In
assembly programs listings, you can use labels to indicate subroutine
addresses without needing to calculate the distance yourself.)

Di i ition
GOSuB abc (15) 7bca
GOSuBL abcd (18) 8Edcba
Absolute
GOSBVL abcde (19.5) 8Fedcba
Returning From Subroutines

* Unconditional returns:
- Simple return:

RTN (11) a1
- Return after clearing the CARRY:

RTNCC (11) 83
- Return after setting the CARRY:

RTNSC (11) B2
- Return after setting XM:

RTNSKM (11) 6o
- Return from interrupt

RTI (11) BF

« Conditional returns:
- Return if the CARRY is set:

RTNC (12.5/4.5) 460
- Return if the CARRY is clear:
RTNNC (12.5/4.5) 568

112 PART Two: MACHINE LANGUAGE

Comparisons

All comparisons are of the form

T <register> <comparator> <register Or immediate> <field>

A comparison instruction will always be followed by a jump (GOYES) or a
conditional return from subroutine (RTNYES). The instruction that follows

a comparison has the following rules:

+ The instruction itself is always 2 nibbles long.

- 00is RTNYES;

 Anything else is the value of a relative jump GOYES. The jump
distance is counted from the address of the GOYES instruction (see

Section IV for more information on calculating jump distances).

Notes:

» These instructions modify the value of the CARRY flag. The
CARRY is set if the comparison is true.

» These are unsigned comparisons as the register values are positive

numbers.

Immediate

« Forregister A:
- Isfield A zero?

TA=6 A
- s field a zero?

TA=0 a
- Is field A non zero?

TA#G A
- Is field a non zero?

TA#O a
- Is bit x (Oh £ x £ Fh) clear?

TABIT=0 x
- Is bit x (Oh £ x £ Fh) set?

TABIT=1 x

10. The Saturn Instruction Set

(21.5/13.5)
(16.5+0/8.5+q)
(21.5/13.5)
(16.5+0/8.5+q)
(20.5/12.5)

(20.5/12.5)

8RS
9a8
8AC
9aC
8086
80887x

113

114

For register B
- s field A zero?
7B=8
- Isfield a zero?
"B=0
- Isfield A non zero?
7B#08
Is field a non zero?
TB#0
For register C:
- Isfield A zero?
TC=8
- Isfield a zero?
TC=8
- Isfield A non zero?
TC#0
- Isfield a non zero?
TCHO

Is bit x {Oh £ x £ Fh) clear?
7CB

- Is bit x (Oh £ x £ Fh) set?

?CBIT=1
For register D
Is field A zero?
D=8
Is field a zero?

Is field A non zero?
TD#8
Is field a non zero?
TD#8
For register HST:
Is XM clear?
T®M=0
Is SB clear?
7SB=0
- Is SR clear?
?SR=8
- Is MP clear?
MP=6

a

X

X

(21.5/13.5)
(16.5+/8.5+0)
(21.5/13.5)

(16.5+0/8.5+0q)

(21.5/13.5)
(16.5+0/8.5+Q)
(21.5/13.5)
(16.5+q/8.5+q)
(20.5/12.5)

(20.5/12.5)

(21.5/13.5)
(16.5+0/8.5+q)
(21.5/13.5)

(16.5+9/8.5+0q)

(15.5/7.5)
(15.5/7.5)
(15.5/7.5)

(15.5/7.5)

Part Two:

8RS
9a9
8AD
9aD

8AR
9aR
8ARE
9ak
888Ax
868Bx

8AB
9aB
8AF
SaF

831
832
834
838

MAacHINE LANGUAGE

» For register P:

Is P equal to n?
"P=

n (15.5/7.5) 89

- Is P not equal to n?

TP# n (15.5/7.5) 88n

 Forregister ST:

- Isflag n clear?

75T=0 n (16.5/8.5) 86n
- Isflag n set?

75T=1 n (16.5/8.5) 8¢n
- Isflag n not clear?

TSTHO n (16.5/8.5) 87n
- Isflag n not set?

PST# n (16.5/8.5) 86n

regi

m,

« Forregister A:

Is field A equal to field A of register B?
A= A (21.5/13.5) 8AY
Is field a equal to field a of register B?

7A=B a (16.5+q/8.5+q) 9ab
The same instructions exist for C:

PR=C A (21.5/13.5) 8A2

TA=C a (16.5+0/8.5+q) 9a2
Is field A not equal to field A of register B?

Th#B A (21.5/13.5) 8R4
Is field a not equal to field a of register B?

TA#B a (16.5+9/8.5+q) 9at
The same instructions exist for C:

TA#C A (21.5/13.5) 8A6

PRH#C a (16.5+0/8.5+q) 9ab
Is field A less than or equal to field A of register B?

PA<=B (21.5/13.5) 8BC
Is field a less than or equal to field a of register B?

TA<=B b (16.5+q/8.5+q) 9bC
Is field A less than field A of register B?

TA<B A (21.5/13.5) 8B4
Is field a less than field a of register B?

7A<B b (16.5+9/8.5+q) 9b4

10. The Saturn Instruction Set

115

- Is field A greater than or equal to field A of register B?

TA>=B A (21.5/13.5) 8B8
- Is field a greater than or equal to field a of register B?

TA>=B b (16.5+q/8.5+q) 9b8
- Is field A greater than field A of register B?

TA>B A (21.5/13.5) 888
- s field a greater than field a of register B?

TA>B b (16.5+q/8.5+q) b8

 For register B:
- Is field A equal to field A of register A?

7B=A A (21.5/13.5) 8RB
- Is field a equal to field a of register A?

7B=A a (16.5+q/8.5+q) 9ab
- The same instructions exist for C:

78=C A (21.5/13.5) 8A1

?B=C a (16.5+q/8.5+q) 9al
- Isfield A not equal to field A of register A?

7B#A A (21.5/13.5) 8A4
- Is field a not equal to field a of register A?

TB#A a (16.5+q/8.5+q) 9at
- The same instructions exist for C:

TB#C A (21.5/13.5) 8RS

TB#C a (16.5+q/8.5+q) 9ad
- Is field A less than or equal to field A of register C?

?B<=C A (21.5/13.5) 8BD
- Is field a less than or equal to field a of register C?

B<=C b (16.5+q/8.5+q) 9bD
- Isfield A less than field A of register C?

7B<C A (21.5/13.5) 8B5
- Is field a less than field a of register C?

B<C b (16.5+q/8.5+q) 9b5
- Is field A greater than or equal to field A of register C?

B>=C A (21.5/13.5) 8B9
- Is field a greater than or equal to field a of register C?

8>=C b (16.5+q/8.5+q) 9b9
- Is field A greater than field A of register C?

B8>C A (21.5/13.5) 8B1
- s field a greater than field a of register C?

8>C b (16.5+q/8.5+q) 9bl

116 PaRT Two: MAcHINE LANGUAGE

+ For register C:

Is field A equal to field A of register A?

7C=A A (21.5/13.5) BAZ
Is field a equal to field a of register A?

7?C=A a (16.5+0/8.5+q) 9aZ
The same instructions exist for B:

?C=B A (21.5/13.5) 8A1

7C=B a (16.5+q/8.5+q) 9al
The same instructions exist for D:

7C=D A (21.5/13.5) 8A3

?C=D a (16.5+q/8.5+q) 9a3
Is field A not equal to field A of register A?

?CH#A A (21.5/13.5) BA6
Is field a not equal to field a of register A?

?CH#A a (16.5+0/8.5+q) 9ab
The same instructions exist for B:

TCH#B A (21.5/13.5) 8RS

7CHB a (16.5+0/8.5+.q) 9a5
The same instructions exist for D:

7CH#D A (21.5/13.5) BA?

?CHD a (16.5+0/8.5+q) 9a?
Is field A less than or equal to field A of register A?

?C<=A A (21.5/13.5) 8BE
Is field a less than or equal to field a of register C?

7C<=A b (16.5+9/8.5+q) 9bE
Is field A less than field A of register A?

7C<A A (21.5/13.5) 8B6
Is field a less than field a of register A?

7C<A b (16.5+q/8.5+q) 9bb
Is field A greater than or equal to field A of register A?

7C>=A A (21.5/13.5) 8BA
Is field a greater than or equal to field a of register A?

?C>=A b (16.5+0/8.5+q) 9bA
Is field A greater than field A of register A?

C>A A (21.5/13.5) 8B2
Is field a greater than field a of register A?

?CoA b (16.5+0/8.5+q) 9bZ

10. The Saturn Instruction Set

117

118

For register D:

Is field A equal to field A of register C?

70=C A (21.5/13.5) 8A3
Is field a equal to field a of register A?

0=C a (16.5+q/8.5+q) 9a3
Is field A not equal to field A of register C?

T0#C A (21.5/13.5) 8R7
Is field a not equal to field a of register C?

TD4#C a (16.5+q/8.5+q) 9ar
Is field A less than or equal to field A of register C?

70<=C A (21.5/13.5) 8BF
Is field a less than or equal to field a of register C?

70<=C b (16.5+q/8.5+q) 9bF
Is field A less than field A of register C?

70<C A (21.5/13.5) 8B7
Is field a less than field a of register C?

70<C b (16.5+q/8.5+q) 9b?
Is field A greater than or equal to field A of register C?

*0>=C A (21.5/13.5) oBB
Is field a greater than or equal to field a of register C?

7D>=C b (16.5+q/8.5+q) 9bB
Is field A greater than field A of register C?

>C A (21.5/13.5) 8B3
Is field a greater than field a of register C?

T0>C b (16.5+q/8.5+q) 9b3

PART Two: MACHINE LANGUAGE

Bus Commands

These commands are not well known because there is little documenta-
tion in the HP 71 HDS published by Hewlett-Packard.

« Commands:

Command “B™:

BUSCB (10) 8u83
Command “C”™:

BUSCC (8.5) 86B
Command “D™:

BUSCD (10) 888D
UN configure all chips on the bus:

(7.5) 86A
Shutdown all chips on the bus:

SHUTDN (6.5) 887
Un-configure the module found at the address contained in
field A of register C:

UNCNFG (14.5) 804

Copy field A of register C into the configuration register of the
current module (the first module not configured on the bus).
This command is generally executed just after an UNCNFG.
These two commands allow access to the hidden ROM by dis-
placing the user RAM (see the chapters on memory). Memo-
ries of 32 Kb or more need a double configuration. The first
is the 2's complement of the module size (#100000 - the size
in nibbles), which permits use of only one part of the module.
The second is the starting address. Thus the displacement of
internal RAM from #70000h to #F0000 is done by an UNCNFG
on #70000h, then by a double CONFIG on #F0000h. Return-
ing to normal mode would be done by an UNCNFG on #F0000h,
followed by CONFIG on #F0000h, then on #70000h.
CONFIG (13.5) 865

« Get the identification of the current module. The identifier is stored

in field A of register C.
C=ID

(13.5) 866

« Find the service requested by a module on the bus. The result is
stored in nibble 0 of register C, 1 bit for each type of request.

SREQ? (9.5) 86E

10. The Saturn Instruction Set 119

Control Instructions

* Interrupt control instructions:
- Enable maskable interrupts:

INTON (7 8680
- Disable maskable interrupts:

INTOFF (7) 808F
- Clear all interrupts:

RSI (8.5) 80818

» These instructions change the calculation mode for mathematical
operations as described in Chapter 2:
- Set mode to decimal:

SETDEC (4) 85
- Set mode to hexadecimal:
SETHEX (4) 84

NOPs (Instructions with No Effect)

In order to save room in a machine language program for future additions,
NOP instructions may be inserted. The three following jump instructions
are commonly used as such:

NOP3 428
NOP4 6306
NOPS 64600

Pseudo Operations

The pseudo instruction CON (constant) can be used to include data in a
program (for example, object prologues):

CONCA) q,-4, q,.4,

120 PaRT Two: MACHINE LANGUAGE

Exercises

10-1. Assemble the following program (it does not perform any particu-

lar function—its purpose is to be an exercise in assembly):

begin

subl
12

11
13

15

14

end

CONCS)
CONCS)

GOTO
A=A-1
L

PC=(A)
7C=0
RTNYES
C=0
A=A+1
RTN

#820CC
(end)-(begin)

11

A
#12345
A

12

D

DD

10-2. Using the table in the appendix, disassemble the following code:

14313 31791 577B7 61557 13114 21648 68C

10. The Saturn Instruction Set

121

122

11. HP 48 Objects

PaART Two: MACHINE LANGUAGE

The HP 48 handles things called objects. There are 28 of them, 2 of which
are indirectly accessible to the user (indicated by one star), and 13 of
which are not accessible at all in the standard manner (indicated by two
stars). These objects always begin with a 5-nibble prolog number that
indicates their nature. Following is a list of all the objects with their prolog

number and their type (returned by the function TYPE):

Prolog Object Type
02911 System Binary *" 20
02933 Real 0
02955 Long Real " 21
02977 Complex 1
0299D Long Complex *") 22
029BF Character *" 24
029E8 Array 3/4
02A0A Linked Array (**) 23
02A2C String 2
02A4E Binary Integer 10
02A74 List 5
02A96 Directory 15
02AB8 Algebraic 9
02ADA Unit 13
02AFC Tagged 12
02B1E Graphic 11
02B40 Library *" 16
02B62 Backup (* 17
02B88 Library Data ™" 26
02BAA System Binary) 27 .
02BCC System Binary *" 27
02BEE System Binary *" 27
02C10 System Binary (*") 27
02D3D Program 8
02DCC Code **) 25
02E48 Global Name 6
02E6D Local Name @] 7
02E92 XLIB Name ** 14

11. HP 48 Objects

123

Each of these 28 objects possesses a well-defined structure that we will
study in detail. Each object will be presented in table form with explana-
tions for each element of the table.

As you read this chapter, keep in mind that the microprocessor reverses
the values that it reads. This means that values are written backwards to
memory, including the prologs given here. Thus, the prolog 02911 would
be written 11920 in the HP 48’s memory.

Note that all values in memory are stored in hexadecimal, regardless of
the current binary base mode (binary, octal, decimal, or hexadecimal).

System Binary Object

@ Prolog (02911) 5 nibbles
@+5h Content 5 nibbles
@+Ah

A system binary is a short binary integer (5 nibbles) that is used internally
by the HP 48. It appears on the screen in the form < XXXXXb> where
XXXXX is the contents and b is the current binary base. In particular, it can
be used to pass parameters between two dif ferent programs.

Examples
+ 119200800809 is the system binary <00000h>;

+ 1192854321 is the system binary <12345h>,
Exercises
11-1. What does 1192812345 represent?

11-2. Code the system binary <ABCDEh>;
11-3. Code the system binary <123d>.

124 PART Two: MACHINE LANGUAGE

Real Number Object

@ Prolog (02933) 5 nibbles
@+5h Exponent 3 nibbles
@+8h Mantissa 12 nibbles
@+14h Sign 1 nibble
@+15h

This is the usual real number accessible by the user. The code is
separated into 3 parts: The sign, the mantissa (a number from 1 to 9,
inclusive), and the exponent. Together these form the real number:

sign * mantissa * 1Qexponert

The three parts are coded internally in the following manner:

 If the exponent is negative, it is replaced by “1000 - exponent” in
order to obtain a positive number. This number from 0 to 999 is
stored in Binary Coded Decimal using 3 nibbles. Thisis why the HP
48 can have exponents from -499 to +499.

+ The mantissa is multiplied by 10" to make it an integer, and it is
stored in Binary Coded Decimal using 12 nibbles.

+ Thesigniscodedin 1 nibble, using 0 for positive and 9 for negative.

Examples
. 12345.6789 is coded as 3392040009A9876543210 .
. -3.14159265359E-2 is coded as 339208999535629514139.

Exercises
11-4. Code the real number 12.
11-5. What does 33920480008068086543779 represent?

11. HP 48 Objects 125

Long Real Number Object

@ Prolog (02955) 5 nibbles
@+5h Exponent 5 nibbles
@+Ah Mantissa 15 nibbles
@+19h Sign 1 nibble
@+1Ah

This object is used internally by the HP 48 for calculations needing more
precision. The coding principle is the same as the real number , except that
the exponent can have a value in the range [-49999,49999], and the
mantissa can have 15 significant digits.

Examples

« 99920080009798535629514138 represents the long-real
approximation of ¥: 3.1415926535897

» The long real -123E45678 would be represented by
95926876510000000000003219

Exercises
11-6. How would the HP 48 code the long real 12345678901234567
11-7. What does 55920899990000660000000019 represent?

126 PART Two: MACHINE LANGUAGE

Complex Number Object

@ Prolog (02977) 5 nibbles
@+5h Exponent 1 real 3 nibbles
@+8h Mantissa 1 part 12 nibbles
@+14h Sign 1 1 nibble

1 E 2 . . ibbl
21122 M:%?;igtz ’mﬁ'f’f’y ?2mr?igt§2s
@+24h Sign 2 1 nibble
@+25h

The structure of a complex number is simple. After the 5-nibble prolog,
there are two real numbers without prologs, the first being the real part of
the complex number, and the second being the imaginary part.

Example
« The complex number (1234956789812, 218987/654321) is coded

77920116821898765432181181234567898128
Exercises
11-8. Code the complex number (1,2).

11-9. What does the following code represent?
77920810008088006000339 186B0EBVBEBE330

11. HP 48 Objects 127

@
@+5h
@+Ah
@+19h
@+1Ah
@+1Fh
@+2Eh
@+2Fh

Long Complex Number Object

Prolog (0299D) 5 nibbles
|f\iﬁxpo_nent: real 155n|b.ttzlt<)els
ssZT'f = part fnibple
Exponent 2 : ; 5 nibbles

- imaginary !
Mant:ssa 2 part 15 _mbbles
Sign 2 1 nibble

The long complex is similar to the complex number, with the two real
numbers being long reals.

Example

» Thelongcomplex (123456789012345,543210987654321) is coded:
D99281108608543218987654321811800123456/898123456

Exercises
11-10.
1-11,

128

Code the long complex (0,0).
What does this represent?

D992600800854321098765432191108001234567/898123459

PaRT Two: MACHINE LANGUAGE

Character Object

@ Prolog (029BF) 5 nibbles
@+5h Character 2 nibbles
@+7h

This is simply a number from 0 to 255 (00h to FFh), which represents a
character. The extended ASCII character codes can be found in the HP
48 manuals.

Example
- FB9ZB14 is the character A (A is ASCII code 41h).

Exercises
11-12. Code the character C (ASCII code 43h).
11-13. What does FB92844 represent?

11. HP 48 Objects 129

Real/Complex Array Object

@ Prolog (029E8) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Type of objects (of length |) 5 nibbles
@+Fh Number, d, of dimensions 5 nibbles
@+14h Dimension 1 (d,) 5 nibbles
@+0"5+14h [Dimension d (d,) | 5 nibbles
@+d*5+19h | Contents of object 1 |, nibbles

| Contents of object d,+1 | |, nibbles
@+I1,+5h | Contents of objectd,*..."d, | 1, nibbles
@+l +5h

The array object is used for storing vectors and matrices. In fact, there is
no difference between a vector and a matrix.

Just after the length of the object is given the object type of the array
contents. This type number (5 nibbles long) is actually the prolog number
of the objects. For this reason an array can only contain objects of the
same type. Notice also that the dimension is not restricted to 1 (vector)
or 2 (matrix). This number can be just about as large as you like.

Next come the dimension sizes. For a matrix, this would be the number
of rows and columns.

After this come the actual values stored in the array object. These values
are objects themselves without a prolog (which is not necessary since it
was given earlier in the declaration part of the array). These objects are
arranged in order of dimensions. For example, a two-dimensional matrix
would be stored asrow 1, then as row 2 since the firstdimension of amatrix
is its number of rows.

130 PaRT Two: MACHINE LANGUAGE

It must be noted that although it is possible to create matrices with many
dimensions (like a 25 dimensional matrix containing vectors), they are not
very useful because the HP 48 does not handle them correctly.

Example

« Thematrix [[1 21[3 411 is coded as:
SE920 95088 33920 70608 20068 20060
14]512,%15121%1%1% %1215 1%]%) N % %% 14512141525 14]%)5 P
00000BBBBKE0NBE3 B BBBBBBBBNBBBBBY B

Exercises
11-14. Give the first 35 nibbles of a 3x5x8 matrix containing system
binary numbers.

11-15. What type of elements are contained in a matrix that begins with
the following code?

BE92016FBBCZAZ61066609166652060 ...

11. HP 48 Objects 131

Linked Array Object

@

Prolog (02A0A)

5 nibbles

@+5h

Total length excluding prolog |,

5 nibbles

@+Ah

Type of objects (of length |)

5 nibbles

@+Fh

Number, d, of dimensions

5 nibbles

@+14h

Dimension 1 (d,)

5 nibbles

@+d*5+14h

Dimensiond (d)

5 nibbles

@+d*5+19h

Pointer to object 1

5 nibbles

Pointer to object d,+1

5 nibbles

Pointer to objectd.*..."d,

5 nibbles

Element 1

|, nibbles

@+ +5h |

Element n

| 1, nibbles

@+ +5h

Linked arrays are arrays where the elements have been replaced by
pointers to objects found at the end of the array. A NULL pointer indicates
the absence of an element.

This structure permits a more economical storage for matrices that have
many identical elements. In the following example the identity matrix of
order 2 can be stored in 82 nibbles instead of 94.

xamp!

» This is the code for the identity matrix of order 2:
ABR26 D40668 33920 20000 20000 20000 41000 F10660
A1666 SbbbE BBBBEEPBEEYBEB18 BBBBBBBBBBERRBER

132

PART Two: MACHINE LANGUAGE

@
@+5h
@+Ah

@+,-2h
@+l +5h

String Object

Prolog (02A2C)

5 nibbles

Total length excluding prolog |,

5 nibbles

First character

2 nibbles

i Last character

| 2 nibbles

The coding of a string is simple. It consists ofa prolog, followed by the total
length of the string, followed by a list of ASCII character codes.

Example

« "STRING" is coded as: CZ2A28 11888 35 45 25 94 E4 74

Exercises

11-16. Code the string "Hello World".
11-17. Decode this object: C2R283188824271667F60212

11. HP 48 Objects

133

Binary Integer Object

@ Prolog (02A4E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Binary integer value 1,-5 nibbles
@+1,+5h

The maximum length of a binary integer is normally 15h (this is the length
of a 16 digit hexadecimal binary integer), but you can increase this length
considerably. In fact, the HP 48 uses large binary integers internally.

Example
- #12345676h is coded as E4A205100687654321060008000

Exercises
11-18. Code the binary integer #87654321d
11-19. Decode E4R26ABBBA12345

134 PaRT Two: MACHINE LANGUAGE

List Object

@ Prolog (02A74) 5 nibbles
@+5h First object

Last object
Epilog (0312B) 5 nibbles

A list is simply a list of objects. Its structure consists of a prolog, a list of
objects, then an epilogue. You can think of the prolog as the list delimiter
{ and the epilogue as the list delimiter }.

Example
- {"A" B} iscoded as 47AZBCZAZ0/80B0B1484E201824B2136

Exercises
11-20. Code an empty list.
11-21. Decode 47A2884E2020F4B4BZ130

11. HP 48 Objects 135

Directory Object

@ Prolog (02A96) 5 nibbles
@+5h Number of attached libraries, n, 3 nibbles
@+8h N° Library 3 nibbles
@+Bh Address of Hash Table 1 5 nibbles
@+10h Address of Message Table 1 5 nibbles
Library n, 3 nibbles
Address of Hash Table n, 5 nibbles
Address of Message Table n, 5 nibbles
@, Offset to last object (@ -@,) 5 nibbles
@,+5h 00000 5 nibbles
@, n,, characters in name, 2 nibbles
@,+2h Character 1, name, name of 2 nibbles
character n, object 1 2 nibbles
n, characters in name, 2 nibbles
Object 1
@, Size of previous fields (@, @,) 5 nibbles
@,+2h n, characters in name, 2 nibbles
@, n, characters in name,_ 2 nibbles
@ +2h Character 1, name, name of 2 nibbles
' object d :
Character n, 2 nibbles
n, characters in name, 2 nibbles
Object d

There are two different types of directories. The first type is the HOME
directory, which is the root directory of the VAR menu. Any number of
libraries may be attached to this directory. The second type is a
subdirectory, found either inthe HOME directory, or one of its subdirectories.
We will firstlook at the structure of the HOME directory , shown in the table
above.

136 PART Two: MACHINE LANGUAGE

Notice that in the code for a directory you will find information about any
libraries that might be attached. The firstfield after the prolog indicates the
number of libraries attached.

Nextcomesaseries of descriptor fields for each attached library . Thisfield
is divided into three parts:

« The library number: This number is assigned according to the
following criterion defined by Hewlett-Packard:
- #000h to #100h HP lib. in ROM;
- #101h to #200h HP lib. in RAM;
- #201h to #300h non HP lib. (distributed by HP);
- #301h to #6FFh free use;
- #700h to #7FFh used internally by the HP 48.

« The address of the hash table for the library (see page 143).
+ Theaddress ofthe message table of the library (see page 143). This
pointer is NULL if there is no message table.
Note:

« The HOME directory always has a minimum of 2 libraries attached
to it: library #002h and library #700h.

+ Ifthe address pointers are pointing to tables in the hidden ROM (see
Chapter 12), then anindirect address is given. The address points
to a system binary in normal ROM which contains the address of the
object in the hidden ROM.

11. HP 48 Objects 137

The beginning of a subdirectory is dif ferent than the HOME directory:

@ Prolog (02A96) 5 nibbles
@+5h Number of the attached library 3 nibbles
@+8h Offset to last object (@ -@.) 5 nibbles
@+Dh 00000 5 nibbles
@+12h n, characters in name, 2 nibbles

If there is no attached library, then #7FFh will appear in the library number
field. The rest of the code is the same for both kinds of directories. The
next field contains an offset to the last object in the directory. Immediately
following this field is 5 zero nibbles to mark the first object in the directory .
This is useful when searching the directory backwards.

Each variable contained in the directory is defined with the following fields:

« The number of characters in the name (in 2 nibbles);

» The characters of the name (in ASCII code);

+ The number of characters in the name (in 2 nibbles);

» The object;

+ The total length of the 4 fields just mentioned—useful when search-
ing the directory backwards (the last object in the directory does not
have this field).

Examples
+ This is the code for an empty directory: 6SAZBFF 788069

« Adirectory that contains a 3 in a variable named 'D":
69A26FF 7ABBBBBBB0B1 844 1 8CZAZ26 7008833

Exercises

11-22. Addthevariable 'R',containing 4, tothe directory in the example
above.

11-23. Attachlibrary #123h with a hash table found at address #7FE30h
and without a message table to the directory above.

138 PaRT Two: MACHINE LANGUAGE

Algebraic Object

@ Prolog (02AB8) 5 nibbles
@+5h First object
' Last object '
Epilog (0312B) 5 nibbles

The algebraic expression represented by this objectis stored in RPL form.
For this reason, there is no need to store parenthesis.

The operations are coded by their address in ROM (in 5 nibbles). This
address points to the code that executes the desired algebraic function.

Example

« 'C+D' iscodedintheformC D + by:
B8BAZB84E20183484E28104476BA1BZ2138

Exercises
11-24. Code the expression 'A+B".

11-25. The subtraction routine is found at address #1AD0Sh and the
multiplication routine is found at address #1ADEEh. Knowing
that, decode the following object:

8BAR2084E20181484E20182484E201834900A1EEDA1B2138

11. HP 48 Objects 139

Unit Object

@ Prolog (02ADA) 5 nibbles
@+5h Object implied
. Desc 1 unit
Desc n description
Epilog (0312B) 5 nibbles

After the prolog comes the object implied by the unit. This is actually part
ofan RPL calculation that describesits relationto the unit. The elementary
units themselves are stored in the form of object strings.

Only 3 operations are possible between units—all related to multiplication
(because it is not possible to create a unit by adding joules to seconds or
by subtracting grams from kilometers):

 Multiplication + Division < Raise to a power

Each operation is represented by a reference number to an object found
in ROM. The following table is useful in coding or decoding unit objects:

Operation * / A
Reference #10B86h #10B68h #10B72h

Example

« 9.81_mss"2 is coded as
ADAZ6339200006000006081898C2AZ876BB606 ...
.. L2A26706003733920000000000000002027B01 ...
...06BB168BB1B2138 (Actually, the HP 48 would replace the
real number Z by a pointer to a real number found in ROM).

Exercises
11-26. Code the following: 1.2_m.

11-27. Decode: ADA208339206000000000008156C2A267/08BA063 ...
..F2R227B8168BB1B2130

140 PART Two: MACHINE LANGUAGE

@
@+5h
@+7h

@+12+5h
@+12+7h

Tagged Object

Prolog (02AFC)

Length | of the tag

Character 1

Character |,

characters of
the tag

Object

5 nibbles
2 nibbles

| 2nibbles

] 2 nibbles

This object has a prolog, the number of characters in the tag, the char-

acters themselves (in ASCIl), and then the tagged object.

Example

- REAL:1.23456/7899812 is coded as:

CFAZB48255414C4339200002189876543210

Exercises

11-28. Code UN:TAG

11-29. Decode CFRZB2BF 4B484E206834F4252514C4

11. HP 48 Objects

141

Graphics Object

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n_ of columns (in pixels) 5 nibbles
@+14h | Columns 1to 8 Pixels in | 1+1 nibbles

i Last pixels line 1 [1+1 nibbles

| Columns 1 to 8 pixelsin | 1+1 nibbles

'I : line n, | .

Last pixels I 1+1 nibbles

@+l +5h

The dimensions of a graphics object are always given in pixels and stored
with a number of columns that is divisible by 8. Zero columns are added
if the number of columns is not already divisible by 8.

The first nibble stores the first 4 columns; the next nibble stores the next

4 columns, etc. The least significant bit of these nibbles is the left-most
column, and the most significant bit is the right-most column.

Example
- GROB 8 1 FF iscoded as: E1B20110091800050000FF

Exercise
11-30. Decode: E1B28110661066846006F0

142 PART Two: MACHINE LANGUAGE

Library Object

@ Prolog (02B40) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah n_characters in name 2 nibbles
@+Ch ' Character 1 Characters | (2 nibbles)
@+n,2 +Ah| Character n, of the name (2 nibbles)
@+n_'2 +Ch|_n_characters in name (2 nibbles)
@+n,.2 +Eh| Library number 3 nibbles
@, Offset to Hash Table (@,-@.) 5 nibbles
@, Offset to Message Table (@,-@,) 5 nibbles
@, Offset to Link Table (@-@,) 5 nibbles
@, Offset to Config. Object (@ -@,) 5 nibbles
@, Hash Table
@, Message Table
@, Link Table
@,,-(7,99h | Type XLIB, (command/function) 1 or 3 nibbles
@,,-6h Library number of XLIB, 3 nibbles
@,,-3h Command number of XLIB, 3 nibbles
@, Object XLIB,
@, -(7.9)h Type XLIB_ (command/function) 1 or 3 nibbles
@,,-6h Library number of XLIB_ 3 nibbles
@,,-3h Command number of XLIB_ 3 nibbles
@,, Object XLIB_
s | Other object 1 Other objects

r - (not visible)
@, imy Other object m
@, Config. Object (not visible)
@+l +1h Checksum (CRC) 4 nibbles
@+ +5h

The library is the most complex of all HP 48 abjects. The code begins with
the optional library name (in an unnamed library, the fields for the name
characters and the second field for the name length are absent). Afterthe
name comes the library number, which must be unique (see Directory

11. HP 48 Objects 143

Object). Nextare 4 offsets —to the hash table, message table, link table
and configuration object (executed after each system halt). A NULL field
means that a table or the object does not exist. After the offsets come the
3tables, inany order, ifthey exist. After the tables comethelibrary’s visible
objects, each preceded by its command number (3 nibbles before), its
library number (6 nibbles before), and a flag coded in either 1 or 3 nibbles:

« Ifitis alibrary of commands (library number 2 #700h), the flag will

144

beonly 1 nibble. Itssignificance is notclear, butthe value 9h (1001b)
seems best. The command itself is composed of 2 objects: first, the
object used when the command is executed; second, the object
used during the coding phase of the command line.

If it is a library of functions (library number £ #6FFh), then if bit 3 of
the nibble at@ - 7h is 0, the function can be included inan algebraic
object, and the flag is 3 nibbles long. The bits mean the following:

Nibble at @,,-8h: bit 0 Unknown 12 (12) bit1 Unknown 11 (11)

bit2 INT (10) bit 3 RULES (9)
Nibble at @,,-9h: bit 0 Unknown 8 (8) bit 1 Unknown 7 (7)

bit2 ISOL (6) bit 3 DER (5)
Nibble at @ ,-7h: bit 0 ALG (4) bit 1 Unknown 3 (3)

bit2 EQWR (2) bit 3 0 (alg. obj. OK)

Each bit signifies the presence or absence of a special program for

the function (ISOL to invert, DER for derivative, INT for integration,

RULES to add functionsin a sub-menu, ALG for algebraics; EQWR
for the EquationWriter). The function itself is a series of objects, led
by the program for the function. The others are supplemental func-
tions in the order of the numbers in parentheses. For example, if the

flag value is #C81h, there will be a principal program, PRG, plus

ALG, DER, RULES and INT, in that order. The code: <C81> <Lib
number> <Xlib number> <PRG> <ALG> <DER> <RULES> <INT>

Ifbit3 of the nibble at@ - 7his 1,thenitisacommand (just like those
in libraries with numbers > #700h). The flag is coded in 3 bits. The
other bits are different than for the regular library commands (bit 1
seems to indicate that the command also exists in function form).
The library checksum is calculated for the zone from @+5h to
@+]+1haccording to the formula described with the backup object.

PaRT Two: MACHINE LANGUAGE

To minimize library access time, the HP 48 uses hashing: A function takes
the name of a command and returns a number from #1h to #10h (the HP
48 uses the number of characters in the name). For each class, a part of
the table then gives the addresses of the name and number of each
command in that class. Here is the hash table structure:

@, Prolog (02A4E) 5 nibbles
@,+5h Total length excluding prolog |, 5 nibbles
@, Offset for class 1 (@ _,-@..) 5 nibbles
@, Offset for class 16 (@_,.-@...) 5 nibbles
@+5Ah Length | of the name list 5 nibbles
@, Number of characters in name 2 nibbles
@,,+2h First character Characters 2 nibbles
' inname 1 ' .
Last character 2 nibbles
Command number 1 3 nibbles
@,, Number of characters in name x 2 nibbles
@,,+2h First character Characters 2 nibbles
: in name x :
Last character 2 nibbles
Command number x 3 nibbles
@+ +5Ah | Offset to cmd name 1 (@,,-@,,) | 5 nibbles
@, | Offset to cmd name x (@_ -@.) |

| offset to the last command name]

@, +,+5h

The hash table is one large binary integer. The first 16 fields are offsets
to the starts of each name table. The next field contains the length of the
entire nametable. The nametableisalist of these elements (inthis order):
The name length, the name characters (in ASCIl), the command number.
The last field gives (by command number) the of fsets used to find the
command names in the table—used to display the names in the menu bar .

11. HP 48 Objects 145

The message table has the following structure:

@, Prolog (029E8) 5 nibbles
@,+5h Total length excluding prolog | 5 nibbles
@, +Ah Object types: string (02A2C) 5 nibbles
@, +Fh Number of dimensions (00001) 5 nibbles
@,+14h n number of messages 5 nibbles
@,+19n Length |, 5 nibbles
@,+1Dh ’ First character Text for | 2 nibbles
@,+,+19n | Last character message 1 2 nibbles
Length |, 5 nibbles
First character Text for 2 nibbles

: messagen
[Last character 9 | 2 nibbles

@+, +5h

This is a vector that contains strings (for more information on vectors, see
Real/Complex Array Object). This vector contains messages that are
used by the library. The message number corresponds to its place in the
vector. The internal library #002h uses such a table to store the HP 48’s
error messages.

146 PART Two: MACHINE LANGUAGE

The link table has the following structure:

@, Prolog (02A4E) 5 nibbles
@,+5nh Total length excluding prolog |, 5 nibbles
@, Offset to object 1 (@_,-@,,) 5 nibbles
@, [Offset to object d (@ @) | 5 nibbles
@,++5h

The link table is used for finding the address of the beginning of a library
object. Thelinktableis really justa large binary integer containing a series
of 5 nibble offsets. These offsets are in the same order as the library ob-
jects.

Example

» An empty library is coded as
84B208C00684886591445446F F 660600006000BBBBBEE49B1
Exercises
11-31. What is the library number of the above example?
11-32. What is the library name?
11-33. Does this library have a message table?

11. HP 48 Objects 147

Backup Object

@ Prolog (02B62) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah n_number of characters 2 nibbles
@+Ch | Character 1 Object | 2 nibbles
@+n.'2 +8h | Character n_ hame 2 nibbles
@+n,"2 +Ah| n_number of characters 2 nibbles
@+n.'2 +Ch| First Backup object

i Last Backup object]

@+l+5h

This is the object used for storing backups in a port. After the prolog and
the length fields is a field with the backup object’ s name, followed by each
object being backed up.

Normally, a backup object contains two objects: the object being backed
up and a system binary containing the CRC (Cyclic Redundancy Code, or
checksum) of the object. This type of backup object structure is shown
below:

@ Prolog (02B62) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah n_number of characters 2 nibbles
@+Ch ‘ Character 1 Text for | 2 nibbles

' message 1 |
@+n_ 2 +8h| Character n_ 9 2 nibbles

@+n,"2 +Ah| n_number of characters 2 nibbles
@+n.'2+Ch| Object

@+!-5h Prolog 02911 System Binary 5 nfbbles
@+, 0 containing CRC | 1nibbles
@+l +1h CRC value 4 nibbles

@+1+5h

148 PART Two: MACHNE LANGUAGE

A backup object contains only one object, followed by a system binary ,
which contains the checksum of the object. This sum is calculated using
the same formula used to calculate the CRCinalibrary. The formulaused
is also the same control code used by the Kermit protocol for data
transmission, that is, the remainder of a division by the polynomial:

X164x124x5+1

The HP 48 does not perform this calculation with software. Rather , itisa
hard-wired function performed by a specialized circuit (see Chapter 13).
The CRC program presented in the Library of Programs does the same
calculation using software. For a backup object, this checksum is cal-
culated over the area from @+5h to @+l, , inclusive.

Example

- 26B2892008462434B48546CZRZ6B9000BF4B41 192006026
is the code for the backup object containing the string: "OK".

Exercises
11-34. What is the name of the backup object in the above example?
11-35. What is its checksum?

11. HP 48 Objects 149

@
@+5h
@+Ah
@+l +5h

Library Data Object

Prolog (02B88)

5 nibbles

Total length excluding prolog |,

5 nibbles

Contents

|-5 nibbles

This object does not exist as a basic object for the HP 48. It can be used
only in a library for storing data of any type. It could be used, for example,
in a mini-spreadsheet library needing to store spreadsheets in a form dif-
ferent than that used for matrices.

There is no standard structure for this object except that it begins with its
prolog (as does every object), followed by its length, then data.

150

PART Two: MACHINE LANGUAGE

Reserved 1, 2,3 and 4

@ Prolog 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Contents I-5 nibbles
@+,+5h

These four objects have the same structure as the library data object.
They are notused, and are probably reserved for a future use. Inthisway ,
Hewlett-Packard can create a new object without needing to completely
re-structure the existing ROM.

The prologs are:
+ #02BAAh for Reserved 1;
« #02BCCh for Reserved 2;
- #02BEEh for Reserved 3;
« #02C10h for Reserved 4.

Since these objects don't actually exist, no examples or exercises will be
given here.

11. HP 48 Objects 151

Program Object

@ Prolog (02D39D) 5 nibbles
@+5h First object

Last object

Epilog (0312B) 5 nibbles

This object is used to store all user programs. Its structure is similar to that
of alist: a prolog, a collection of objects (of any type), and an epilogue.
However, the prolog and epilogue do not correspond to the « and *
program delimiters, as these are objects that must be included in the list.

Example
« Theprogram« A B + *iscoded as:

D902BE163284E20181484E26162476BR193632B2138
Exercises
Refer to the above example to answer these questions:
11-36. How are the program delimiters, ¢ and *, coded?
11-37. How is the addition function (+) coded?

152 PART Two: MACHINE LANGUAGE

Code Object

@ Prolog (02DCC) 5 nibbles
@+5h Total length excluding prolog I, 5 nibbles
@+Ah Machine code -5 nibbles
@+ +5h

This object is used to store machine language programs. The “machine
code” field contains a series of machine language instructions.

Example

+ See the machine language programs in the Library of Programs
for examples.

Exercises
11-38. How would you code an empty code object?

11-39. Using what you have learned from other chapters, write some
machine language code that does nothing.

11. HP 48 Objects 153

@
@+5h
@+7h

Global Name Object

Prolog (02E48)

5 nibbles

n_number of characters

2 nibbles

Character 1

@+n,2 +3h L Character n_

@+n,2 +5h

This object is used for storing global names. The field following the prolog
indicates the number of characters in the name, followed by the characters

Characters of
the name

2 nibbles

| 2nibbles

themselves (in ASCI!).

Example

« The global name 'Journey’ is coded as:

84E2070A4F65727EBS697

Exercises

11-40. Code 'Hello'.

11-41. What does 84E20088 represent?

154

PART Two: MACHINE LANGUAGE

@
@+5h
@+7h

@+nc'2 +3h
@+n,2 +5h

Local Name Object

Prolog (02E6D)

5 nibbles

n_number of characters

2 nibbles

Character 1

| Character n_

Characters of
the name

2 nibbles

j 2 nibbles

This object is used to store local variable names. Its structure is the same
as the global name (above) except for the prolog.

Example

+ 'Local' is coded as: D6EZ2BSBC4F63616C6

Exercises

11-42. How many characters are in this local name?
D6EZB406E4160656

11-43. What is that name?

11. HP 48 Objects

155

XLIB Name Object

@ Prolog (02E92) 5 nibbles
@+5h Library number 3 nibbles
@+8h Command number 3 nibbles
@+Bh

The XLIB name is a method used to reference library commands. In order
to optimize access to these commands, their name is replaced by an “XLIB
name”which contains the library number and the command number of the
command in question. This notation can by used to access the two stan-
dard HP 48 libraries (library #002h and library #700h).

Example

« The FREE command, which is library #002h, command number
#163h, can be represented as: 29E20200361

Exercises
11-44. Code command number #123h from library #456h.

11-45. What are the library and command numbers of the XLIB name:
29E20810020087

156 PART Two: MACHINE LANGUAGE

Other Objects

Any of the objects found in ROM may be added to your own objects. For
example, if you wanted to add a few RPL commands to your machine
language program, it is easy, using the method below. Infact, if you have
need ofan RPL command, acommon list, a machine language command,
or any other object found in ROM, here is how you could add one of these
to your object:

« RPL commands, lists, and other composite objects (listed in the
Appendix) can be added using theiraddress only. Forexample, the
SWAP instruction canberepresented by the ROM address #1FBBDh.

« Machine language routines stored in the form < current address + 5h>
<machine code>, or, more commonly, <address of an ML program>.
This method can be used only with objects in ROM where their
address is fixed. These objects are shown on the screen as
<External>, or, in other words, an external call.

11. HP 48 Objects 157

158

12. General Memory Organization

PART Two: MACHINE LANGUAGE

We have previously seen that the Saturn microprocessor has 20-bit
address registers and can thus address as many as 2 2 memory elements.
Since these basic memory elements are nibbles, the HP 48 can address
1 “Mega-nibble,” whichis 512 Kb (Kilobytes). This memory space is divid-
ed into 5 parts:

« ROM: This contains all programs used by the machine (square
roots, curve tracing, beep, etc.). This memory can not be modified,
and has a size of 256 Kb.

« 1/0 RAM: This 64-nibble memory area is used to access the HP 48
peripherals (infrared receiver/transmitter, clock, screen, etc.). The
IO RAM is actually part of the ROM memory area.

« Built-in RAM: This is where all user data is stored (programs,
variables, alarms, etc.). The size of this memory area is 32 Kb.

 Plug-in card ports (2): Each of the ports can contain 1 card of up to
128 Kb.

Notice, however, thatif you total the maximum amount of possible memory
(with two 128 Kb cards installed), the resultis 544 Kb, which is 32 Kb larger
than what the Saturn microprocessor is capable of addressing.

To overcome this problem, the HP 48 uses a technique called bank-
switching. Bank-switching assigns two distinct memory areas to the same

address, with one having priority over the other. This higher-priority mem-
ory is visible; the other is “hidden.” If you want to access the hidden mem-

ory, you must reconfigure the visible memory, to give it another address.
The hidden memory area is then accessible.

In order to minimize access time, the only thing that should be stored in

the hidden memory area is data that is infrequently used. The HP 48
stores the auto-test routines, error messages, efc.).

12. General Memory Organization 159

The HP 48 memory is therefore in one of two states:

» The standard state, where the built-in RAM occupies the memory
area from #70000h to #7FFFFh (see Figure 1 opposite).

» Aninformation access state where the built-in RAM is displaced to
address #F0000h. The HP 48 is in this state when using the mini-
editor (see Figure 2).

The mini-editor permits easy access to this second memory state, and
thus allows access to all the memory contents of the calculator . To use this
mini-editor, enter the manual auto-test (by pressing (oNHD)), then press the
(«) key. This editor uses one line of the screen to display 16 nibbles of
memory at the current address. The following commands may be used:

* 0.@.@..(9.(A)....[F)changes the value at the current address (to
be used with caution!);

« Movement commands:
- By#1000h with (¥) and (a)
- By#100h with (X) and &
- By#thwith(#Hand (5

« Serial port output commands:
- By#10h with (5]
- By#10000h with

» Commands for accessing pre-defined memory areas:
- #00100h (/O RAM) by
- #80000h (Port 1) by

#C0000h (Port 2) by

#FO000Ah (WSLOG data) by

#FOA8Ch (screen area) by

« To update the screen: (e);

+ To execute the machine language program beginning at the current
address: (to be used with caution!).

160 PART Two: MACHINE LANGUAGE

For the HP 48SX, when viewing the plug-in card contents, these contents
appear at memory locations #80000h and #C0000h, although they are
reconfigured to form a continuous memory area when used normally by

the machine.

#00000h
#00100h
#00140h
#70000h
#80000h
#C0000h
#100000h

#00000h
#00100h
#00140h
#80000h
#C0000h
#F0O000h
#100000h

Beginning of ROM

I/0 RAM

Continuation of ROM

Built-in RAM

Port 1 Plug-in

Port 2 cards

Beginning of ROM

/0 RAM

Continuation of ROM

Port 1 Plug-in
Port 2 (partial) cards

Built-in RAM (displaced)

256 nibbles

64 nibbles
458432 nibbles
65536 nibbles
262144 nibbles
262144 nibbles

Figure 1: HP 48 memory, standard state

256 nibbles

64 nibbles
523968 nibbles
262144 nibbles
196608 nibbles
65536 nibbles

Figure 2: HP 48 memory, information access state

12. General Memory Organization

161

13. /O RAM

162 PART Two: MACHINE LANGUAGE

To communicate with its peripherals, the HP 48 uses, among other
methods, a special memory area called the I/O RAM. This 64 nibble area
is a way to exchange data with the outside world. By reading and writing
to this area, it is possible to send commands or receive data from the
peripherals.

In the following pages, the I/O RAM will be described bit by bit using tables

in the form shown below. In these tables, bit 3 is the nibble’s most sig-
nificant bit, and bit 0 is the least significant.

Bit 3 Bit 2 Bit 1 Bit0

#00100h
#00101h

13. VO RAM 163

164

#00100h
#00101h
#00102h
#00103h
#00104h
#00105h
#00106h
#00107h
#00108h
#00109h
#0010Ah
#0010Bh
#0010Ch
#0010Dh
#0010Eh
#0010Fh
#00110h
#00111h
#00112h
#00113h
#00114h
#00115h
#00116h
#00117h
#00118h
#00119h
#0011Ah
#0011Bh
#0011Ch
#0011Dh
#0011Eh
#0011Fh

Bit 3 Bit 2 Bit 1 Bit 0
Display | Left margin
Screen contrast
CRC calculator
Batt. test
Alert Alpha |right shift | left shift
nnunciator ransmitting| Busy
RS232 spee
Port information (HP 48SX)
RS 232C interrupts
input OK loutput O
RS 232C Input
RS 232C Output
IR input Rin mem
IR output
Base address qf built-in RlAM

PaRT Two: MAcHINE LANGUAGE

Left Margin

The left margin is coded with 3 bits and therefore may have a value from
0to 7. Itcan be used for scrolling the main screen portion (everything but
the menu bar). For example, setting the left margin to 1 shifts the screen
contents one pixel to the left. To use the left margin properly, you will need
to understand the right margin and the address of the screen bitmap, both
of which are described later.

Display

Setting display to 0 turns off the screen display; setting it to 1 reactivates
it. Interestingly, turning off the screen deactivates the keyboard, and ac-
celerates the machine by about 13%. This is because the screen bitmap
isin memory: ifthe screenis off, there is no memory access each time the
screen is updated. With this small burden lifted from the bus, exchanges
between the microprocessor and memory can be done more quickly , and
so program execution will be faster. The program FAST (see the Library
of Programs) uses this method to achieve rapid calculations.

Screen Contrast

The screen contrast is coded with 5 bits (the most significant bit being at
#00102h). Therefore, the contrast can be adjusted to 32 levels. However,
only the values from #3h to #13h are accessible by pressing and
(ONH=). The program CONTRAST (see the Library of Programs) uses
this address to adjust the contrast from software.

13. VO RAM 165

CRC Calculator

The HP 48 uses checksums to verify the integrity of data (see Chapter4).
In order to obtain this value rapidly, a hardware circuit is used for the
calculation. This circuit reads the information going between the micro-
processor and memory and calculates the corresponding CRC (Cyclic
Redundancy Code).

To calculate the CRC of an object (just as the function BYTES does), set
the four nibbles to zero (nibbles #00104h to #00107h), then read the
nibbles of the object in question. The CRC of that object will then be found
in nibbles #00104h to #00107h.

This process must not be interrupted, so you must disable interrupts while

the calculation is taking place (using the assembly instruction INTOFF).
Don't forget to re-enable interrupts when the calculation is finished (using

the assembly instruction INTON).

Because these four nibbles are constantly changing, they are very useful

for generating random numbers in a machine language program. As the
CRC value is a function of nibbles read from memory, you can read a
pseudo-random number (for example, the clock, the address of the stack

end, the amount of free memory, etc.), then read the pseudo-random
number contained at #00104h.

166 PART Two: MACHINE LANGUAGE

Battery Test

The nibbles #00108h and #00109h are used for testing the HP 48’s
batteries (main batteries as well as batteries for the plug-in cards in the
case of the HP 48SX).

To begin the test, set bit 3 of nibble #00103h to 1 (by writing #Ch, the other
3 bits being 1, 0, and 0, respectively). Then, read the contents of nibble
#00108h. Each of the bits of this nibble indicates the state of one of the
batteries of the HP 48:

« If bit 3 of #00108h is 1, the plug-in card battery for port 2 is weak;
 If bit 2 of #00108h is 1, the plug-in card battery for port 1 is weak;
- Ifbit 1 of #00108h is 1, the HP 48’s main batteries are weak;
 If bit 0 of #00108h is 1, the main batteries are very weak.

Note that the HP 48’s internal battery tester reads the nibble #00108h
many times (6). If one of these reads returns a 1, then the battery is de-
clared weak.

When you finish the testing, don’t forget to change bit 3 of #00109h back
to 0 (by writing a #4h to #001039h).

Annunciators

The annunciators (a, X, etc.) each have 2 states controlled by one bit
(1=showing, 0=not showing). Bit 3 of #0010Ch determines whether any
of the annunciators will be showing (0=none showing, 1=showing, accord-
ing to their respective states).

13. VO RAM 167

RS-232C Speed

The transmission and reception of data from the RS-232C port is done at
a speed expressed as a “baud” rate. This number refers to the number of

bits transmitted per second.

The HP 48 is capable of transferring data at four dif ferent speeds: 1200
baud, 2400 baud, 4800 baud, and 9600 baud. Bits 1 and 2 of #0010Dh
are used to set this speed, as follows:

Bit 2 Bit 1
0 0
0 1
1 0
1 1

RS-232C Speed

1200 Baud
2400 Baud
4800 Baud
9600 Baud

Port Information (HP 48SX)

Nibble #0010Fh gives the states of the two ports for the HP 48SX. The

possible states are:

Bit Number

W= O

168

When set (1):
When set (1):
When set (1):
When set (1):

Significance

Card present in port 1
Card present in port 2
Card in port 1 not write-protected
Card in port 2 not write-protected

PaRT Two: MACHINE LANGUAGE

RS-232C Interrupts

When a character is sent to the HP via the RS-232C port, this can cause
an interrupt. This would cause the microprocessor to execute a special
interrupt handling routine. For example, if a character is received through
the RS-232C port, then the character needs to be read and then stored in
the RS-232C buffer (see Chapter 14).

The nibble #00110h can be used to disable these interrupts as well as
determine if one has occurred. Each bit of this nibble has a distinct
function:

Bit Number Significance

0 When set (1): a character was received; an interrupt has occurred.
1 When set (1): receive interrupts are enabled.

2 When set (1): a character was transmitted; an interrupt has occurred.
3 When set (1): transmission interrupts are enabled.

To access the RS-232C port directly, you should disable these interrupts.

Input OK and Output OK

If the Input OK bit is set, then a character has just been received via the
RS-232C port. You may read this value from nibble #001 14h.

If the Output OK bit is set, then you may output acharacter to the RS-232C
port by writing to #00116h.

13. VO RAM 169

RS-232C Input and Output

Input and output through the RS-232C port are accomplished by a special
circuit. To receive a byte from this port, read the two nibbles at #001 14h.

To transmit a byte through the RS-232C port, write the two nibbles at
#00116h.

IR Input and Output

Nibble #0011Ah is used for IR input. Bit 3 is set if there was a reception;
it is clear if there was not. Bit 0 is set at the first reception and serves as
a reminder that there was an IR input. This bit must be set back to 0
manually.

Bit 3 of nibble #0011Ch is used for IR output. Setting this bit to 1 begins
the transfer, 0 stops it.

Base Address of Built-in RAM

#0011Fh contains the base address of the built-in RAM (#7h or #Fh). #7h
is the normal value (built-in RAM is at #70000h); #Fh means that the built-
in RAM has been displaced to #F0000h. This value is brought up to date
by the system when the reconfiguration takes place (in order to view the
hidden ROM).

Changing the value in #0011Fh has no effect on the base address of the
built-in RAM; itis for reading only. This nibble is used by routines that must
function in normal mode, as well as when the RAM is displaced (like the
routine that updates the screen). In this way, the location of the built-in
RAM makes no difference, and the machine is still capable of functioning.

170 PaART Two: MACHINE LANGUAGE

#00120h
#00121h
#00122h
#00123h
#00124h
#00125h
#00126h
#00127h
#00128h
#00129n
#0012Ah
#0012Bh
#0012Ch
#0012Dh
#0012Eh
#0012Fh
#00130h
#00131h
#00132h
#00133h
#00134h
#00135h
#00136h
#00137h
#00138h
#00139h
#0013Ah
#0013Bh
#0013Ch
#0013Dh
#0013Eh
#0013Fh

13. VO RAM

Bit 3 Bit 2 Bit 1 Bit0

Beginning address of screen bitmap

Right margin (in nibbles)

Menu bar height & VSYNC

Beginning address of menu bar bitmap

Timer 1

Timer 2

171

Screen Bitmap Address

The HP 48 screen is divided into the screen itself (where the stack ap-
pears) and the menu bar (at the bottom). The information for these por-
tions may be stored at any address, but the screen driver must know that
address. The bitmap for the main screen is pointed to by #00120h. The
memory at that location is simply a GROB containing the screen contents.

« This address must be even (because a specialized circuit is used
that manages 8-bit screen portions only).

« This address can only be written to, but a readable duplicate of this
address is located in the reserved RAM (see Chapter 14).

Right Margin

The right margin for the screen bitmap is stored at #00125h. This value
is defined in nibbles, not in pixels as is the left margin. This number must
be even, so bit 0is ignored. To perform rapid screen scrolling, change the
left and right margins and the address pointing to the beginning of the
bitmap, and the screen will display the new area of the bitmap. The value
contained at #00125h follows the same rules as the bitmap address: It
cannot be read, but its value is backed up in the reserved RAM area.

Menu Bar Height

The separation height between the main screen area and the menu bar
is defined in #00128h. Setting this value to #3Fh causes the menu bar to
disappear. The value at this location cannot be read, so it is backed up in
the reserved RAM area. The standard values (with no library attached):

« #7097Ch for the screen bitmap address (stack GROB);
« #70858h for the menu bitmap address;

#000h for the right margin; #0h for the left margin;

« #37h for the separation height.

172 PaRT Two: MACHINE LANGUAGE

VSYNC

We have seen that the menu bar height can only be written to. This is
because the nibbles #00128h and #00129h are also used for the VSYNC.
If you read the contents of these nibbles, you will get the line number that
the screen driver is currently working on during a screen refresh. This will
be a number that goes from #3Fh down to #0h every 1/64th of a second.

Timer 1

The nibble at#00137his a 1/16th -second timer that counts down from #Fh
to #0h every second.

Clock

The last areain the I/O RAM is for the clock. Its value is in units of 1/8192
seconds, and is stored in an 8 nibble area, decreasing from #FFFFFFFFh
to #00000000h. The HP 48 does not actually use this entire value.

+ Ifthe clockis visible onthe screen, the machine counts down in one-
second cycles. Every second, the value of these 8 nibbles goes
from #00001FFFh to #00000000h (or 8192 8192 ™ of a second).

« Ifthe clock is not visible on the screen, and if an alarm is due in the
next hour, then the number of 8192™¢ remaining until the alarm is
stored in the clock section.

« If neither of the above is true, then the values used are from 0 to 1
hour (or #01C20000h to #00000000h) returning to 1 hour when a
button is pressed in interactive mode.

Each time the clock value reaches #00000000h an interrupt is generated.

13. VO RAM 173

14. RAM

174 PaRT Two: MACHINE LANGUAGE

The HP 48 memory is divided into several zones, each with a distinct role.
Before getting into the details of each zone, here is arepresentation of the

entire memory:

#70000n

Reserved RAM

(#70551h)

Screen GROBS

(#7056Ah)

Temporary objects

(#7056Fh)

Return stack

B

Free memory

D1

The stack

(#7057Eh)

Command line

(#70583h)

Undo stack, local variables

(#70588h)

5 zeros

(#7058Dh)

Temporary environment

(#70592h)

User variables (HOME dir)

(#70597h)

Backup in port 0

(#70669h)

D*5 nibbles
(#7069Fh) nib.
48 nibbles min.

5 nibbles
78 nibbles

All of these zones, except the reserved RAM, are at variable addresses.
These addresses are stored in the reserved RAM (and certain registers).
We will describe the reserved RAM, and its contents in detail.

14. RAM

175

#70000h
#70005h
#70009h
#7000Ah
#7000Bh
#70018h
#7001Ch
#7001Dh
#7002Ah
#7002Eh
#7002Fh
#7003Ch
#70040h
#70041h
#7004Eh
#70052h
#7005Fh
#70063h
#70070h
#70072h
#7007Fh
#7008Ch

CMOS word

0000

Disable system-halt

Type

Date WSLOG 1

CRC

Type

Date WSLOG 2

CRC

Type

Date WSLOG 3

CRC

Type

Date WSLOG 4

CRC

Value Clock offset

CRC

0000000000000

FF

Auto-test start time

Auto-test fail time

Mini editor screen preparation
' . 1]

CMOS Word

5 nibbles
4 nibbles
1 nibble

1 nibble
13 nibbles
4 nibbles
1 nibble
13 nibbles
4 nibbles
1 nibble
13 nibbles
4 nibbles
1 nibble
13 nibbles
4 nibbles
13 nibbles
4 nibbles
13 nibbles
2 nibbles
13 nibbles
13 nibbles

| 44 nibbles

The 5 first nibbles in reserved RAM are always #A5C3Fh, used to verify
the reserved RAM contents. Changing these values causes a system halt.

Setting bit 3 of nibble #70009h will disable the system halt (oNH{(c), manual

Disable System Halt

auto-test (ON){D), and automatic (ONHE). It also makes it impossible to turn
the machine off; it is automatically turned back on after a moment.

176

PaRT Two: MACHINE LANGUAGE

WSLOG

Data about the WSLOG command is stored in nibbles #7000Ah, #7001Ch,
#7002Eh, and #70040h. Thiscommand, (notdocumented inthe HP man-
uals), returns the cause and time of the machine’s last warm boot. The
cause is coded (from #0h to #Fh) in the first nibble of the zone:

Code

0

QOW>P» O (o] NOoO O~ wWN =

mmo

Cause of Warm Boot

The machine was turned on while in the COMA mode (COMA
mode is entered by pressing ON-SPC).

Batteries are very weak.

A hardware problem occurred during an infrared transmission.

The machine experienced a restart (execution of the program at
#00000h).

The clock offset (controlled by CRC) was corrupted.

Anuncontrolled data change occurredin one of the plug-in cards.

Not used.

A verificationword (5 nibbles) in RAM does not correspcnd to the
memory state (RAM is probably corrupted).

An error was detected while configuring one of the 5 peripherals.
One of them is not configured, or the configuration does not
correspond to a valid peripheral.

The alarm list is corrupted (its CRC is not valid).

Not used.

Plug-in card removed.

System reset (using the resetbutton found underneath one of the
machine’s rubber feet).

RPL error manager not found.

Configuration table corrupted.

RAM card removed.

Next is the date of the warm boot (in 8192 ™ of a second since January 1,
0001), coded in 13 nibbles. The final 4 nibbles are a checksum for the 14
preceding nibbles, calculated as in Chapter 11 (and as in CRC in the
Library of Programs).

14. RAM

177

Clock Offset

At#70052h is found the clock of fset (13 nibbles), followed by its checksum
(4 nibbles). As before, this offset is in units of 1/8192 seconds beginning
at January 1, 0001.

Autotest Start & Fail Time

The two 13 nibble zones at #70072h and #7007Fh are used during the
auto-test to store the test starting time, and the fail time respectively (if a
fail occurs). As these values have little importance, they are not validated
with a CRC.

Mini-Editor Screen Preparation

The 44 nibbles at #7008Ch are for preparing the display during the use of
the mini-editor (22 characters).

178 PART Two: MACHINE LANGUAGE

#700B8h 2?7...777 35 nibbles
#700DBh Plug-in cards (bits 0 and 1) 1 nibble
#700DCh 288 nibbles
#701FCh Data 512 nibbles
#703FCh | BufLen ’”pf“’ ‘t’:”e’ 2 nibbles
#703FEh | BufFull RS 205209 4 | 1nibble
#703FFh | BufStart PO 1 2 nibbles
#70401h 39 nibbles
#70428h CRC for the configuration table 4 nibbles
#7042Ch Flags Information for 1 nibble
#7042Dh Size the plug-in 5 nibbles
#70432h Start card in port 1 5 nibbles
#70437h Flags Information for 1 nibble
#70438h Size the plug-in 5 nibbles
#7043Dh Start card in port 2 5 nibbles
#70442h 11 nibbles
#7044Dh End of Built-in RAM backup zone 5 nibbles
#70452h End of port 1 backup zone 5 nibbles
#70457h End of port 2 backup zone 5 nibbles
#7045Ch Temporary backup during interrupts 103 nibbles
#704C3h Output mask for keyboard test 3 nibbles
#704C6h 16 nibbles

Plug-In Cards (HP 48SX)

This nibble, #700DB, is the same as in the I/O RAM at address #0010Fh:

Bit3 Bit 2 Bit 1 Bit 0

1=Port2not 1=Port1not 1=Plug-incard
write-protected write-protected present in Port 2

1= Plug-in card
presentinPort 1

For example, if nibble #700DBh contains #Bh (#101 1b), this means that:

aplug-in card is in port 1 (bit 0 set); a plug-in card is in port 2 (bit 1 set);
port 1 is write-protected (bit 2 clear); port 2 is not write-protected (bit 3 set).

14. RAM 179

RS-232C Input Buffer

The RS-232C inputbuffer temporarily stores data coming from the exterior
still needing to be processed. It consists of:

« Adatablock of 512 nibbles (256 characters) thatbegins at#701FCh;

« Astarting pointer, BufStart (2 nibbles at #703FFh), the number of the
first character in the buffer. Its address is #701FCh+2*BufStart.

« Acharacter counter, BufLen (2 nibbles at #703FCh). The address
of the last character received is #701FCh+2*BufStart+2*BufLen-2.
The nextcharacter will be stored at#701FCh+2*BufStart+2*BuflLen;

« Afull indicator, BufFull (1 nibble at #703FEh) which is used to indi-
cate if the buffer is full. This nibble is 0 if the buffer is not full, 8 if in-
formation was lost.

The buffer can be represented by this diagram:

Processing direction

BufStart

BufStart + Buften

The gray arearepresents
the area containing data

4 waiting to be processed.
Next character

180 PART Two: MACHINE LANGUAGE

Configuration Table

The 37 nibbles beginning at #70428h are a configuration table describing
the state of the plug-in cards. The first 4 nibbles of this table are a check-
sum for the other 33 nibbles. This checksum is notcalculated by the usual
CRC formula, but by a machine-language routine at #09B73h, which re-
turns the checksum in field A of register C.

Plug-In Card Information (HP 48SX)

These two 11 nibble blocks are part of the configuration table. Nibble
#7042Ch contains information for the plug-in card in port 1 (#70437h for
port 2).

This first nibble in the block consists of the following information:

- Bit 1 is set if the card is merged with RAM;
+ Bit 2 is set if the card is not write-protected.;
 Bit 3 is set if the card is present

The next 5 nibbles (beginning at #70432h and #7043Dh) contain the start-
ing address of the plug-in card. And the size of the card (0’s complement)
is stored at #7042Dh and #70438h. A 32 Kb card will have a value of
#F0000h; a 128 Kb card will have a value of #80000h. These values (the
starting address and size) are not valid if the card is merged with RAM.

The next 11 nibbles (at #70442h) are also part of the configuration table
and are probably reserved for future use.

14. RAM 181

Backup End

The three groups of 5 nibbles found at #7044Dh, #70452h and #70457h
contain, respectively: the ending addresses of the backup zones for the
built-in RAM, the card in port 1, and the card in port 2. Note that if a card
is merged with built-in RAM, its backup zone is also merged.

To calculate the free space of a plug-in card that is not merged, simply use
the configuration table and the three addresses mentioned above. The
program BFREE in the Library of Programs uses this technique, which
allows itto calculate the free space even if the card is write-protected (this
is not possible using the function PVARS).

Caution: ROM cards (which look like write-protected RAM cards to the HP
48SX) may return false values if the data are not stored on the card using
the “normal” card BACKUP techniques. In particular, these data can be
found in memory after the theoretical end of the card.

Interrupt Backup

The 103 nibble block at #7045Ch is used by the system during interrupts
to temporarily backup the register contents. Interrupts are used by the HP
48 for processing keypresses, the RS-232C port, the clock, etc.

Output Mask for the Keyboard Test

The output mask at #704C3h is used as an argument for OUT=C for a
keyboard test done by an interrupt handling routine. Itis set to #1FFh by
the system. Periodically setting these 3 nibbles to #FFFh will cause the
speaker to sputter since interrupts occur every second.

182 PaRT Two: MACHINE LANGUAGE

Machine Speed

The 5 nibbles at #704D6h contain the machine speed in number of cycles
per sixteenths of a second. To obtain the microprocessor speed, multiply
this value by 16. The following program calculates the machine speed
using the programs PEEK and STR*A found inthe Library of Programs.
SPD ¢ 4BCSh
« # 784D6h #5 PEEK STR-A
16 # B»R 1_Hz »UNIT

»

Invert the result to find the duration of one clock cycle—useful for calculat-
ing the execution time of a machine-language program (see Chapter 10).
If youchange these 5nibblestoalarger value, all sounds will have a higher
pitch (but this does not mean that the processor has been accelerated).

Disable Keyboard

Nibble #704DCh is used to disable the keyboard. Setting this nibble to a
non-zero value will accomplish this (#Fh for example). Note:

+ Neither the (ON) button nor the system halts are disabled.

« Disabling the keyboard does not disable interrupts associated with
pressing certain buttons, but simply disables the execution of the
normal keyboard processing routine (the key codes will not be
stored in the keyboard buffer).

+ This nibble is set to zero by the system when the calculator returns
to interactive mode (at the end of program execution, for example).

Key State

This 13 nibble block, beginning at#704DDh, stores the current state of the
HP 48’s 49 buttons. One bit per button is set if the buttonis being pressed.
This table is updated each time a keypress interrupt occurs.

14. RAM 183

Keyboard Buffer

The keyboard buffer is a 32-nibble block beginning at #704ECh. Each key
code is 2 nibbles long, so this buffer can hold 16 key codes. The buffer
contains only key presses that have notyetbeen processed. Twopointers
are used to keep track of the buffer contents:

* KeyStart indicates the position number of the first button pressed.
* KeyEndindicates the first free position number (where the next key
code will be stored).

The yet-to-be-processed key codes are therefore contained in nibbles
#704E2h+2"KeyStart to #704EC+2°KeyEnd. This is a circular buffer
similar to the RS-232C buffer:

Processing direction

Next character /

(In this diagram, KeyStart equals 4 and KeyEnd equals 8)

184 PaRT Two: MACHINE LANGUAGE

07

)
oD

)

14. RAM

ENTER

02 03
(PRG) (CsT)
08 09
EVAL
OE OF
14 15
1A
1F
(4
24
0
29
(©
2E

Key codes stored in the keyboard buffer

2

0A

W

10

16

1B

17

1C

30

/x
18

185

#704D6h Machine speed 5 nibbles
#704DBh 1 nibble
#704DCh Disable keyboard 1 nibble
#704DDh Key state 13 nibbles
#704EAN KeyStart Keyboard 1 nibble
#704EBh KeyEnd buffer 1 nibbles
#704ECh Key codes 32 nibbles
#7050Ch 2 nibbles
#7050Eh Screen bitmap addr. (#00120h) 5 nibbles
#70513h | Right margin (#00125h) 3 nibbles
#70516h Menu bitmap address (#00130h) 5 nibbles
#7051Bh Menu height (#00128h) 2 nibbles
#7051Dh 52 nibbles
#70551h | @ of menu GROB 5 nibbles
#70556h @ of stack GROB 5 nibbles
#7055Bh @ of current GROB 5 nibbles
#70560h @ of PICT GROB 5 nibbles
#70565h @ of PICT GROB ? 5 nibbles
#7056Ah Beginning @ of temporary objects 5 nibbles
#7056Fh Ending @ of temporary objects 5 nibbles
#70574h Beginning @ of free mem. (B) 5 nibbles
#70579n Ending @ of free memory (D1) 5 nibbles

186 PaRT Two: MACHINE LANGUAGE

Backups

In Chapter 13 we saw that several blocks of ROM were used to define the
HP 48’s display (left margin, right margin, menu height, etc.), but some of
these could not be read. For this reason, they have been stored in the
reserved RAM area.

+ The address of the screen bitmap is stored at #7050Eh (#00120h).

« The right margin is stored at #70513h (#00125h).

« The address of the menu bitmap is stored at #70516h (#00130h).

» The separation height between the main screen section and the
menu bar is stored at #7051Bh (#00128h).

These parameters are always stored in two locations (reserved RAM, and
IO RAM) by the HP 48 screen management routines.

Graphics Object Addresses

The following 5 addresses point to dif ferent graphics objects used by the
machine:

* #70551h stores the address of the menu bar GROB.

« #70556h stores the address of the stack GROB.

+ #7055Bh stores the address of the current GROB (stack or PICT).
» #70560h stores the address of the PICT GROB.

« #70565h also stores the address of the PICT GROB.

These objects are all stored in the temporary object memory area.

14. RAM 187

Temporary Objects

#7056Ah and #7056Fh are beginning and ending addresses that define
amemory area used for storing temporary objects. Thisareais for objects
that won't last long or that change frequently, such as stack objects, inter-
mediate results used by the machine, display preparation, etc. Each of
these objects is stored with the following format:

Flag (garbage collector) 1 nibble
Object l, - 6 nibbles
Object length | 5 nibbles

As you use the machine, these objects accumulate in the temporary object
memory area. Itis necessary to do a clean-up from time to time to purge
the temporary objects that are no longer being used. This clean up
procedure (which is called each time the command MEM is executed) is
done by a program called the “garbage collector.” This program can be
called with a GOSBYL to address #0613Eh.

During this operation, the machine marks (in the flag area of the structure
shown above) each of the temporary objects that are still being used. After
having checked each object, the HP 48 purges the objects that are not
marked. The temporary memory area has the following structure:

(#7056Ah) | 00000 5 nibbles
Flag 1 nibble
Object
Length 5 nibbles
Flag 1 nibble
Object
Length 5 nibbles
(#7056Fn)

188 PART Two: MACHINE LANGUAGE

Return Stack

The ending address of the temporary object memory area is also the
beginning address of the return stack. If a program is called within a pro-
gram, this stack stores the return address to the original program. An
address is placed on the stack when the program prolog is encountered
(#02D9Dh), and an address is taken from the stack when an epilog is
encountered (#031B2h), which indicates the end of a program.

Register B points to the end of this memory area (which is generally
backed up at #70574h). Here is a representation of the return stack:

(#7056Fh) Return address 1 5 nibbles
Return address 2 5 nibbles
r Return address n J 5 nibbles

(B)

Inthis list,address 1 isthe oldest. Register B points to the end of this stack,
which is the beginning of free memory. Since the routine SAVE_REG
(#0679Bh) saves B at #70574h, the value of B is often found there.

Free Memory

The free memory is the area between the address contained in B (end of
return stack) and the address contained in D1 (which points to the first
level of the stack). The size of the free memory is stored inregister D (field
A) as the number of 5-nibble “blocks” that are free. For example, if field
A of D was #00100h, this would indicate that the amount of free memory
is between #00500h and #00504h nibbles.

The “blocks™are 5 nibbles because the return stack and the user stack also
use blocks of 5 nibbles each. This makes it easy to know if there is enough
free memory to extend one of these stacks, (which is a frequent opera-
tion): allthe machine has to dois check to see that field A of D is non-zero.

14. RAM 189

The User Stack

Justas Bis backed upin #70574h, register D1, the stack pointer, is backed
up in #70579h. The HP 48 stack may contain any object. Internally, the
stack contains only addresses that point to objects, because addresses
all have the same size: 5 nibbles. Register D1 points to the first level of
the stack. The stack ends at the location pointed to by #7057Eh:

(D1) Address of object in level 1 5 nibbles
Address of object in level 2 5 nibbles
Address of the last object 5 nibbles
00000 5 nibbles
(#7057Eh)

To find the address of an objectin level n, simply take the value of D1, add
(n-1)*5, and read the 5 nibbles at that address. The following assembly
program duplicates the SWAP function:

A=DAT1 A * Address of object 1
D1=D1+5 * Now pointing to level 2
C=DAT1 A * Address of object 2
DAT1=A A * Write address of object 1
D1=D1-5 * Now pointing to level 1

Write address of object 2

Caution: This program does not check the size of the stack.

190 PART Two: MACHINE LANGUAGE

The Command Line

The command line begins at the address stored in #7057Eh and ends at
the address stored in #70583h. This memory area contains the command
line that is currently being edited.

The command line consists of ASCII character codes terminated by the
null character, which serves as an end of line delimiter. This explains why
you can't edit strings containing the null character. The command line is
always at least 23 characters in length, plus the null character . Nonexist-
ent characters are replaced by “nulls.”

(#7057Eh) | Character 1 2 nibbles
Character 2 2 nibbles
Charactern(n 2 23) 2 nibbles
00 2 nibbles

(#70583h)

The Undo Stack

A copy of the stack contents (the Undo stack) and local variables are
stored in the same memory area. This area is divided into blocks:

(#70583h) [Block 1
Block 2

Last block (undo)
00000 5 nibbles

(#70588h)

14. RAM 191

The last block is the copy of the stack contents (UNDO); the others are
local variables and their contents—from most recent to oldest. Each of
these blocks is divided into several fields:

@ Total length L 5 nibbles
Block identifier 5 nibbles
Address of the first local name 5 nibbles
Address of the first contents | 5 nibbles
Address of the last local name 5 nibbles
Address of the last contents 5 nibbles
@+L

For local variables, the block identifier is #00000h. Alocal name address
points to an object of the form ' local name' . The address of the contents
points to the object stored in the local variable of the name preceding it.

For the undo stack, the structure is similar. The block identifier is #00001h
if there are no local variables; #00002h otherwise. To remain consistent
with the local variable block structures, we find pointers to local names in
the undo stack block structure—all pointing to the same address, #61D3Ah,
which is an address (in ROM) of the empty local name (' ').

@ Total length L 5 nibbles
Block identifier 5 nibbles
Address of ' ' (#61D3Ah) 5 nibbles
Number of elements on the stack 5 nibbles
Address of ' ' (#61D3Ah) 5 nibbles
' Address of the object in level 1 | 5 nibbles
Address of ' ' (#61D3Ah) 5 nibbles
Address of the object in level n 5 nibbles
@+L

The other fields contain the addresses of the objects in the undo stack and
the depth of the stack.

192 PaRT Two: MACHINE LANGUAGE

Temporary Environment

The temporary environment is used for managing the menus. This mem-
ory area contains the necessary addresses for displaying the menu labels
and for executing the associated routines.

The display addresses help the HP 48 determine the text to be displayed
in the menu label, as well as the text to place in the command line in PRG
or ALG modes. The execution addresses are used to find the address of
the program associated with a menu item. If a menu label has no assoc-
iated function, its name is the empty name (address #055DFh) and the
execution address is #3FDD1h, which is a program that makes a “beep.”

It seems that a block has been reserved for a seventh menu item. This
could be for future use, or, perhaps when these structures were first made,
the menu size was not completely decided.

(#7058Dh)
(#7058Dh)+3h
(#7058Dh)+8h
(#7058Dh)+Dh
(#7058Dh)+12h
(#7058Dh)+17h
(#7058Dh)+1Ch
(#7058Dh)+21h
(#7058Dh)+26h
(#7058Dh)+2Bh
(#7058Dh)+30h
(#7058Dh)+35h
(#7058Dh)+3Ah
(#7058Dh)+3Fh
(#7058Dh)+44h
(#7058Dh)+49h

14. RAM

#07Ch

Address of menu label 1

Address of menu label 2

Address of menu label 3

Address of menu label 4

Address of menu label 5

Address of menu label 6

Address of menu label 7 (reserved)

Execution address 1

Execution address 2

Execution address 3

Execution address 4

Execution address 5

Execution address 6

Execution address 7 (reserved)

3 niobles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles

193

Home Directory

At #70592h is a pointer to a directory object containing the home directory .
This directory is entered after a system halt, or the execution of the com-
mand HOME. This objectis described in detailin Chapter 11. Thisaddress
is stored again at #705A1h.

Current Directory

The address of the current directory, which is also a directory object, is
stored at #7059Ch.

Backup Area

The HP 48 is capable of making backups, either for a plug-in card (for the
HP 48SX) or for the built-in RAM (in port 0).

The backup area is organized in the same manner regardless of the port
used. In the case of the built-in RAM, (or that of the built-in RAM merged
with a plug-in card for the HP 48SX), we find the address of the beginning
of this area at #70597h. This memory area consists of a list of backup
objects (see Chapter 11).

Backup object 1
Backup object 2

Last backup object
00000 5 nibbles

194 PART Two: MACHINE LANGUAGE

#705A6h
#705ABh
#705B0h
#705B5h
#705BAh
#705BFh
#705C4h
#705C9h
#705CEh
#705D3h
#705D8n
#705DDh
#705E2h
#705E7h
#705ECh
#705F1h
#705F6h
#705FBh
#70600h
#70605h
#7061Eh
#70623h
#70628h
#70637h
#7063Ch
#70641h
#70646h
#7064Bh
#7065Fh
#70664h
#70669h
#7066Eh

14. RAM

@ of user key assignments

@ of alarm list

Pointer to next object to be evaluated

Backup area

LAST object 1

LAST object 2 LAST

LAST object 3

LAST object 4 Stack

LAST object 5

Large binary (table for internal use?)

00000

Command 1 Stack of the

Command 2

Command 3 four most recent

Command 4 command lines

@ of last error message

Current menu

Last menu

Unshifted menu key routine

Left-shifted menu key routine

Right-shifted menu key routine

Review key

Last RPL token

@ of the End of RAM

. Free memory (5 nibble blocks) (D)

5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
25 nibbles
5 nibbles
5 nibbles
15 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
20 nibbles
5 nibbles
5 nibbles
5 nibbles

| 5 nibbles

195

User Keys and Alarms

At#705A6h and #705ABh are the addresses of the user key assignments
and the alarm list, respectively. The two tables found at these addresses
are actually variables like any other user-created variables, except they
are stored in a hidden directory.

It is actually possible to “hide” objects stored in the user directory. The
principle is simple: If, during a clean-up of the current directory (done peri-
odically to determine the names of the objects in this directory), the mach-
ine comes across an object with the empty name (' '), it stops its search.
To hide an object, you could either give it the name ' ' (which is what the
HP 48 does for the directory that contains the user key assignments and
alarm list), or you could store it after an object with the empty name. Inthis
case, the objectis executable butits name doesn’tappearin amenu label.

The HP 48's hidden directory contains the following objects:
- 'Alarms’' contains the alarm list;
« 'UserKeys' contains the definition list for user-key assignments;
« 'UserKeys.CRC' contains the checksum for UserKeys (calculat-
ed via UserKeys BYTES DROP).

To access this hidden directory, simply go to the home directory and type
#15781h SYSEVAL. You then find yourself in the hidden directory (the
SYSEVAL simply evaluates the empty name, '').

Access to different hidden objects is also possible, but be advised never

to purge or even modify them, lest you experience Memory Lost . Tore-
turn to the home directory, just type HOME.

196 PaRT Two: MACHINE LANGUAGE

Next Object to be Executed

#705B0h serves as a backup for the register DO and therefore pointsto the
next object to be executed.

LAST Stack

The LAST stackis alist of five addresses that point to objects being temp-
orarily saved (so the maximum number of objects saved by LAST ARG is
5 even though only three parameters will usually be saved). If fewer than
5 objects are being saved, the other addresses are set to #00000h.

Address of a Large Binary Integer

At #705D3h is the address of a large binary integer (184 digits). It is
probably a table used internally by the HP 48. This objectis stcred in the
temporary environment. Since it is the first temporary object created by
the HP 48, it is always the first object found in this part of RAM.

Command Line Stack

The command line stackis based on the same principle as the LAST stack.
It consists of four addresses pointing to character strings that contain the
last four command lines. The address of the most recent command line
is contained in #705DDh; the oldest is in #705ECh.

Address of Last Error Message

At #70600h is the address of a character string which contains the last er-
ror message, if it was an error defined by the user (via " message" DOERR).
Otherwise, this address is set to #00000h.

14. RAM 197

Menus

At #7061Eh and #70623h are the addresses of the current menu, and the
last menu, respectively. The menu offsets are stored at #707C9h (current
menu) and #707CEh (last menu). The menus, or the objects pointed to
by these addresses, are lists. The content of these lists is identical to that
of the custom menu (CST) defined by the user (see Chapter 5).

An element of these menu lists may be one of the following:

198

A name: The name is placed in the menu label and is considered
to be the name of an executable object. Just like inthe VAR menu,
if you press the menu button itself, then the object of that name is
executed. If you first press the left shift, then the object in level one
ofthe stackis stored under the menu name. If you firstpress the right
shift, then the contents of the object are recalled to the stack.

A character string: The contents of the string serve as aname to be
placed in the menu label, and if the button is pressed, then the
contents of the string are added to the command line.

A 21x8 GROB: This GROB will be used for the menu label.

A list;

- The first element of the list will be used as the menu label. If
this element is a program object (prolog D9D20) that first
contains the address #40788h, this object will be executed,
andits result willbe used as amenu label (string, GROB, etc.).
Any program object beginning with 0902888784 will be exe-
cuted. Four addresses are particularly useful:

#3A328h takes a string from the stack and returns the corre-
sponding graphics object as itwould appear in the menu label.
#3A3ECh takes a string from the stack and returns a subdirec-
tory label GROB.

#3A44Eh takes a string from the stack and returns an inverse
menu label GROB (like in the SOLVR menu).

#3A38Ah takes a string and returns a menu label GROB such
as in the MODES menu (with a white box beside the name).

PaRT Two: MACHINE LANGUAGE

3

- O0O~NOOMdWN-—=-O0O

14. RAM

Note that since these particular program objects are executed
when the menu label is displayed, you can use this conceptin
the CST menu to display special messages immediately after
entering the menu (just like the TIME menu, for example).

The second element of the list determines the action taken
when the menu button is pressed. It can also be a list whose
first element corresponds to the action taken when the menu
button is pressed by itself, the second element is if the left shift
was pressed first (&), and the third element is if the right shift

was pressed first ().
Menu Address

Last Menu

CST #3B23%h

VAR #3F6D8h

MTH #3B284h

MTH.PARTS #3B36Ch
MTH.PROB #3B3E4h
MTH.HYP #3B420h
MTH.MATR #3B452h
MTH.VECTR #3B489h

MTH.BASE #3B4CAh
PRG #3B542h
PRG.STK #3B622h
PRG.OBJ #3B67Fh
PRG.DSPL #3B6F7h
PRG.CTRL #3B7E2h
PRG.BRCH #3B8B4h
PRG.TEST #3B90Eh
PRINT #3B972h
/o] #3B9A4h
I/0.SETUP #3BAO03h
MODES #3BB46h
MODES2 #3BC8Dh
MEMORY #3BCE7h
MEMORY2 #3BD46h
LIBRARY #3F376h
PORTO #3BD82h
PORT1 #3BDAAN
PORT2 #3BDD2h
EDIT #3BDFAh
SOLVE #3BE22h

Menu
SOLVE.SOLVR
PLOT
PLOT.TYPE
PLOT.PLOTR
ALGEBRA
TIME
TIME.ADJST
TIME.SET
TIME.ALRM
TIME2
STAT
STAT.MODL
UNITS
UNITS.LENG
UNITS.AREA
UNITS.VOL
UNITS.TIME
UNITS.SPEED
UNITS.MASS
UNITS.FORCE
UNITS.ENRG
UNITS.POWR
UNITS.PRESS
UNITS.TEMP
UNITS.ELEC
UNITS.ANGL
UNITS.LIGHT
UNITS.RAD
UNITS.VISC
UNITS2

Address
#15200h

#3BEBSh
#3C039%h
#3COAFh
#3C483h
#3C4C9h
#3C671h
#3C79Ch
#3C8D5h
#3C9B8h
#3CAA7h
#3CD96h
#3CE65h
#3D08Ch
#3D1F3h
#3D2D6h
#3D451h
#3D4BAh
#3D553h
#3D642h
#3D6B5h
#3D764h
#3D797h
#3D838h
#3D887h
#3D93Ah
#3D9B3h
#3DA42h
#3DABFh
#3DAF2h

199

Last RPL Token

At #7065Fh is the address of the object that caused the command line to
be executed. If the key caused the execution, then the address
corresponds to an empty program object. |f a VAR menu button was
pressed to cause the execution, then the address of the name of the object
to be executed will be stored here.

The End of RAM

The address of the end of RAM is stored at #70669h. The HP 48SX RAM
can be extended by adding one or more plug-in RAM cards. As each card
is added, the memory is reconfigured such that the user memory forms
one contiguous block. The program RAMSEARCH in the Library of Pro-
grams uses this address to determine the memory area to search.

Free Memory

The five nibbles at #7066Eh are used to backup register D, which contains
an approximation of the free memory. The value given is the number of
5-nibble blocks that are available. The routine at #069F7h recalculates
this value using the addresses stored in #70579h and #70574h (see the
earlier descriptions of these two addresses for more information).

200 PaRT Two: MACHINE LANGUAGE

#70673h
#70678h
#70679h
#7067Eh
#7069Fh
#706A4h
#706B4h
#706C3n
#706C5h
#706D5h
#706E5h
#706FFh
#70704h
#70713h
#70718h
#7071Dh
#70722h
#70727h
#7073Bh
#707C9h
#707CEh
#707D3h
#707D%9h
#707DCh
#707DFh

Next error to display

ATTN flag

Stack size

Random number seed

Annunciators

System Flags

User

Error number

Prolog

Length GROB

Height (6) of character

Width (10) under

Pixels the cursor

Current menu offset

Last menu offset

Number of attached libraries

Number

@ of infp.

First library info.

T T
' 1

Number Last library info.

@ of info.

Next Error to Display

5 nibbles
1 nibble

5 nibbles
33 nibbles
5 nibbles
16 nibbles
15 nibbles
2 nibbles
16 nibbles
16 nibbles
26 nibbles
5 nibbles
15 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
20 nibbles
142 nibbles
5 nibbles
5 nibbles
6 nibbles
3 nibbles
3 nibbles

5 nibbles

3 nibbles
5 nibbles

#70673h is used to store the number of the next error message to be
displayed. When the calculator returns to interactive mode, this address
is checked to see if a message is waiting. If so, then the error displayed.

14. RAM

201

Attn Flag

Thefive nibblesat#70679hare setto 0ifthe (ON) key has notbeen pressed.
Otherwise, they contain the number of times that the key was pressed.
These five nibbles are used by machine language programs (such as
BEEP) to know if they must stop execution.

Stack Size

At #7069Fh is the stack size, measured in nibbles. The stack always
contains atleast5 zero nibbles, so the stack size is equal to 5*(DEPTH+1).

Random Number Seed

At #706A4h is a random number seed used by the RAND function. This
seed is a “real” object minus the prolog. RDZ is a function that can change
the value of the seed.

Annunciators
The two nibbles at #706C3h contain the current state of the HP 48’s an-

nunciators. If abit is set, then the corresponding annunciator is showing:

Flags

These flags are stored in #706C5h and #706E4h, as shown opposite.

202 PaART Two: MAcHINE LANGUAGE

System Flags (-1 to -64):

#706C5h
#706C6h
#706C7h
#706C8h
#706C9n
#706CAh
#706CBh
#706CCh
#706CDh
#706CEh
#706CFh
#706D0h
#706D1h
#706D2h
#706D3h
#706D4h

User Flags (1 to 64):

#706D5h
#706D6h
#706D7h
#706D8h
#706D9n
#706DAh
#706DBh
#706DCh
#706DDh
#706DEh
#706DFh
#706E0N
#706E1h
#706E2h
#706E3h
#706E4h

14. RAM

Bit 3 Bit 2 Bit 1 Bit 0
-4 -3 -2 -1
-8 -7 -6 -5

-12 -1 -10 -9
-16 -15 -14 -13
-20 -19 -18 -17
-24 -23 -22 -21
-28 -27 -26 -25
-32 -31 -30 -29
-36 -35 -34 -33
-40 -39 -38 -37
-44 -43 -42 -41
-48 -47 -46 -45
-52 -51 -50 -49
-56 -55 -54 -53
-60 -59 -58 -57
-64 -63 -62 -61
Bit 3 Bit 2 Bit 1 Bit 0
4 3 2 1
8 7 6 5
12 11 10 9
16 15 14 13
20 19 18 17
24 23 22 21
28 27 26 25
32 31 30 29
36 35 34 33
40 39 38 37
44 43 42 41
48 47 46 45
52 51 50 49
56 55 54 53
60 59 58 57
64 63 62 61

203

Error Number

#706FFh stores the number of the last error that occurred. This number
is set to #00000h if no error is saved; it is set to #70000h if the error
messagewas one defined by the user. Alistof all error messages and their
numbers is given in the appendix.

GROB of the Character Under the Cursor

Starting at #70713 is a graphics object that is used to remember the char-
acter underneath the cursor during edit mode.

Menu Offsets

These two sets of 5 nibbles each at #707C9h and #707CEh contain the
offsets for the menu display (that is, the number of the first menu label to
display). For more information, see the explanation of the addresses
#7061Eh and #70623 on page 198.

Number of Attached Libraries

The 3 nibbles at #707D9h contain the number of attached libraries. Each
of these libraries is described by its number, followed by the address
where the library information is stored.

If the information is found in hidden ROM, then the address points to a
system binary (located in accessible memory) that contains the address
in hidden ROM. In every case, the address that points to the library’ s
declaration is found immediately after the name, at @+n ,*2+Eh (using the
same notation as that in Chapter 11, page 143).

204 PART Two: MACHINE LANGUAGE

This library beginning contains all the necessary information for retrieving
the contents of the library (messages, commands, etc.). In particular, it
makes it easy to find the error messages, knowing that the number of such
a message has two parts: the library number in which it is stored (3 nib-
bles), and its order number in the message table (2 nibbles —a library can
therefore have a maximum of 256 messages). The message number is

Library number*256+order number

Using only an error number, we can easily determine the corresponding
library number. The list of attached libraries can then be used to find the
message table starting address which contains the error text.

It is possible to modify this information table, and then completely rewrite
the HP 48’s error messages. This could be very useful for translating all
the error messages to another language, for example.

Conclusion

The reserved memory area normally ends at #70844h, but it can be
extended, if necessary. Forexample, some ROM cards, like the HP solver
card, reserve some extra memory (for new libraries, among other things).

This description of RAM is not complete, but it contains the majority of

useful items necessary for the machine language programmer who
wishes to create programs that need access to the HP 48’s resources.

14. RAM 205

206

15. Programming in Machine
Language

PART Two: MACHINE LANGUAGE

In the preceding chapters, we have studied the internal functionality of the
HP 48. We will now use this knowledge to access all the machine’s re-
sources, particularly for programming in machine language. The HP 48
can handle only objects, so we will use the Code object (see Chapter 11)
to contain a machine language program.

The problem is in creating this object. Using a more general approach, we

will see how to create any type of object. W e have seen that any object
can be represented by aseries of hexadecimal digits. W e will write a func-
tion to transform a sequence of hexadecimal digits into the corresponding

object. The user will simply enter a string of characters containing the dig-

its to be transformed into a corresponding series of nibbles.

Inastring, characters are stored using their ASCll code. Forexample, the
hexadecimal digit Ais 10in decimal, andis storedas #41hin ASCII. There
is a simple object that consists of hexadecimal digits when edited but is
stored as nibbles in memory. This object is the GROB, or graphics object.
The transformation from hex digits to nibbles will be done using this object.

The GROB has the following structure:

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n, of columns (in pixels) S nibbles
@+14h | Column$1 to 8 Pixels in | 1+1 nibbles
| Last pixels line 1 | 1+1 nibbles
| Columns 1 10 8 Pixelsin | 1+1nibbles
: - linen :
| Last pixels ! | 1+1 nibbles

@+,+5h
We can see that the HP 48 uses blocks of 8 columns. W e will therefore

create a graphics object with 8 columns and the number of lines will be
equal to the number of hexadecimal digits (of our code) divided by 2 (8

15. Programming in Machine Language 207

pixels take up 2 nibbles, therefore 2 hexadecimal digits). If the number of
hexadecimal digits is odd, we will round it up after the division. In this
manner, the memory occupied by the GROB (excluding the prolog, length,
and size information) will be, at the most, the number of hexadecimal
digits, plus one (in nibbles). This coding can be done with this sequence:

“GROB 8 " OVER SIZE 2 -~ CEIL + " " + SWAP + OBJ»

This prepares the graphics object in a string in the following manner:
« The beginning of the GROB is placed in a string (“GROB 8 “);

« We calculate the number of lines in the GROB with OVER SIZE 2
/ CEIL and we add it to the first part of the GROB;

+ Next, we addthe list of hexadecimal digits (separating it from the rest
with the addition of " ") by " " + SWAP +;

* And, finally, we transform the string of characters into a graphics
object by the command OBJ~.

We can simplify this program slightly by removing the CEIL command
(whichis done automatically when the string is transformed via 0BJ+#). We
nowhave "GROB 8 " OVER SIZE 2 -~ + " " + SWAP + OBJ»
This places a graphics object on the stack for the object that we want to
create. Now, in memory is the following structure:

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n_ of columns (in pixels) 5 nibbles
@+14h Object to be created ,-15 nibbles
@++5h

We know thatonly addresses are stored on the stack. Toaccess the object
we want to create, we need only take the address, @, of the GROB on the
stackandreplace itwith@+14h. This removesthe prolog, length, number
of columns, and number of lines. Thereisa SYSEVAL call that will perform
this function. The call to #056B6h takes a system binary as an argument
which contains the number of 5 nibble blocks to remove and returns the

208 PaRT Two: MAcHINE LANGUAGE

new object as well as an “external” which is not useful here. W e need to
remove 4 blocks of 5 nibbles, so we need a system binary equalto 4. Such

anobjectis stored at #04017h. Therefore, the transformation from GROB
to object can be done by: #4817h SYSEVAL #56B6h SYSEVAL DROP
The first SYSEVAL recalls the system binary to the stack, and the second
SYSEVAL performs the transformation. The last thing to do is to recreate
the objectin such away thatthe pointer to it (on the stack) is really pointing

to the object itself, and not its contents. This is done easily with the
NEWOB function which recreates the object in level 1 of the stack, and

modifies all necessary pointers.

We now have the final version of the program GRSS (Graphic ASSembler):

GHSS S# 10B3h)
'GR L OVER SIZE 2 ~ + " " + SWAP + (OBJ»
#4817h SYSEVAL #56B6h SYSEVAL DROP NEWOB

»

This program is quite fast; the transformation from hexadecimal digits to
nibbles is done by machine language routines found in ROM. However,
those routines also perform verifications and calculations that slow down
the process a little. A faster version of GASS, written entirely in machine
language, is given in the Library of Programs (called RASS).

Let’s try this program to create a small object. (Note: To make this code
more readable, it is presented in blocks of 5 digits, but these spaces are
not part of the code. You must enter this code in a contiguous manner —
no spaces, no new lines). Here is the code listing for a small object:

C2A28 B1BBA 7556C 6C6B2 46FEE 65662 12

To code this object, just enter the code as a character string (with no
spaces, no new lines): "CZA2BB168987556C6C6B246F6E6S68212"
Then execute GASS. A couple of seconds later, the object is on the stack.

Now that you know how to create any object, you can see how to create

machine language programs. In writing such programs, you should al-
ways remember these important points:

15. Programming in Machine Language 209

 The contents of certain registers:
- DO is the pointer to the next object to be executed (after the
machine language program). To continue to the next object

after the machine language program has finished, do this:
A=DATB A, DB=DB+5, PC=(A) (coded as 142164888C).

- D1is the stack pointer. If we execute A=DAT1 R, field A of
register A contains the address of the object in level 1. Ifwe
increment D1 by 5 (D1=D1+3) then we move to level 2 (at this
point, the instruction A=DAT1 A will place the address of the
objectin level 2 into A field A).

- Bcontainstheaddress of the return stack end—nottoo useful.

- D contains the amount of free memory in number of 5 nibble
blocks (the same size as the stack levels).

Unless you intend to change them, these 4 registers must be
restored to their original values before ending the program via
142164868C. To restore them, here are 2 useful routines:
- SAVE_REG, at address #0679Bh (called with a GOSBVL
#0679B) saves these registers in the reserved RAM.

- LOAD_REG, at address #067D2h (called with a GOSBVL
#067D2) restores the register values previously saved.

 The structures of the objects: To take an object from the stack, you
must know its internal structure to handle it properly . Also, including
HP 48 objectsin your program lets you profit from the RPL functions.

« The RAM structure: This is a must if you ever need to access RAM.

You canalso call routines found in ROM (e.g. SAVE_REG and LOAD_REG).
One of the best exercises in applying Part Two is to analyze the machine
lan-guage programs in the Library of Programs, or to disassemble
certain routines in ROM.

The next step is to write your own machine language programs. Startwith
simple ideas. For example, to test the speed of machine language pro-
grams, you might compare the execution speeds of two programs, one in
machine language, onein RPL. This test could be two programs that sim-
ply count to 1000 (1 1688 START NEXT).

210 PART Two: MACHINE LANGUAGE

Part Three:

Library of Programs

211

Notice

212 PART THRee: LiBRARY OF PROGRAMS

This Library of Programs contains numerous utilities written in machine
language. In most cases they can be used without any specific knowl-
edge, except for the method used to enter them.

To make the code more readable, the machine language programs (which
consist of hexadecimal digits 0...9, A...F) are presented in groups of 5
digits separated by spaces. For example, the program NOTHING (which
does nothing) would be presented in the form:

NOTHING (# B6F7h)
CCDZo FoBu8 14216 4888C

To type in this program you would do the following:

+ Enterthe code as a character string with no spaces and no new lines
(in this example, it would be "CCD26FBB68142164868C").

« After verifying that the checksum given in parenthesis is correct,
(this step is optional, but strongly recommended), execute the pro-
gram GASS (or RASS once you have entered it) on the string. GASS
(or RASS) returns the desired object to the stack. In the case of a
machine language program, this is a “code” object, or a list of
instructions that the machine can understand. Note:

To calculate the checksum, place the object on the stack and
execute BYTES. This returns the object’s checksum and size.
Use hexadecimal mode (execute HEX) to make the checksum
comparisons; all checksums are given in hexadecimal.

The checksum for a machine language program is given for
the character string before executing GASS (or RASS).

The program ALLBYTES will rapidly calculate all the checksums
for a directory.

The presence oflibraries containing commands with the same
name as the programs used (or a similar name) may resultin
a checksum that is incorrect, even if the program is correct.

+ The stack may now contain an unfamiliar object (shown by the word
Code). This object must never be edited—doing so may destroy it.
Juststoreitintoa variable name (inthisexample: '"NOTHING' STO).

213

To assist you in checking for errors, we have included two programs:

- BYS alters the character string to look like the form presented in this
book (groups of 5 digits, 8 groups per line).

+ CLERN cleans a character string by removing all characters other
than hexadecimal digits. CLERAN is written partially in machine
language for speed.

One other note: Some programs contain the character "= ". This symbol
represents a carriage return, obtained by pressing the keys ([2]-].

To summarize: Before typing any machine language programs, you will

need to enter the two RPL programs GASS and BYS. You should practice

entering an assembly program by entering NOTHING (which is quite short,

EmE, Ft’;:'us less likely that you will make a mistake), then enter the program
LEAN.

At this point, you have the tools necessary to access all of your HP 48’s
resources that have been revealed in this book.

214 PART ThRee: LiBRARY OF PROGRAMS

GASS

GASS is a program used to create objects. It can create any object from
alisting of hexadecimal codes. GASS is explained in detail in Chapter 15.
It takes a character string containing a series of hexadecimal codes from
the stack, and returns the corresponding object.

GFlgS @ 1083h)

"GROB 8 " OVER SIZE 2 ~ + " " + SUAP + OBJ»
#4817h SYSEVAL #56B6h SYSEVAL DROP NEWOB

*»

Note: Creating objects is an operation that you must perform with caution.
You must not transform just any list of codes, only lists which contain valid
objects. Therefore, you should carefully verify the character strings before
executing GASS.

215

ALLBYTES

The program ALLBYTES calculates the checksum for all objects con-
tained in the current directory. It returns a character string which contains
the names of each object followed by its checksum (in hexadecimal).

HLI‘.{BYTES (# S2ZFFh)

VARS
>y
&
HEX "= 1 V SIZE
FOR ¥
Y ¥ GET SWAP OVER »STR 2 OVER SIZE 1 -
SU Well L 0] UwR SIZE
15 SUB + + SWAP BYTES DROP "s" + +
NEXT
»

(There are 13 spaces in the text string
in the eighth line of the above program.)

216 PaRT THREE: LIBRARY OF PROGRAMS

BY5

BYS is asmall utility to change character strings into a more readable form.

This form is identical to that used in this book (groups of 5 digits, 8 groups
per line).

BYS is very useful as you look through your code for errors detected by the
checksum. For example,

"CCDZ0FO0B08142164808C" BYS
returns "CCDZ0 FOBOB 14216 4808C "

BYS # 74BAh)
&
> 5
&
"sa" g S SIZE 1 -
FOR X
1 48

FOR Y

SKXKY+DUP4+SB+""+5
STEP

ngh 4

STEP

217

CLEAN

CLERN is the inverse function of BYS: It removes all characters from a
string that are not hexadecimal digits (0...9, A...F). Itprepares astring for
the program GRSS, after using BYS to check for errors.

This program is written partially in machine language, so it must be en-
tered according to the specifications given on pages 213-214.

Here is the commented assembly source listing for CLEAN:

09028 CON(CD)
B4EB2 CON(D)
(6BA1 ONCS)
CC02B8 CON(CD)
start 88808 CONCD)
8FB9768 GOSBVL
143 A=DAT1
139 =A
131 D1=
169 De=pa+
174 D1=D1+
143 A=DAT1
174 1=D1+
819F84 A=A-5
819F8 ASRB
D8 =A
11 8A9 7B=0
83 OYES
148 R=DAT1
3103 CHER
9E2 PR<C
74 GOYES
3193 LCHEX
9EA A<=
41 GOYES
3114 LCHER
9E2 TA<C
11 GOYES
3164 LCHEX

218

PROL_PRGM
STRING_SPC

RDD
PROL_CODE
(end)-(start)
SAVE_REG

(2]

5

.m—-u:-a--—cuw-—-m%m-—-:n DIDDNDN—

oW =N DW

I"’rogram object

+

Code object

Code length

Bckup regs.

A=Ssize

DO=D1=address
lgect in level 1

DO=Backup Regs.

D1-contents adar.

B=# of characters
in the string

Done?

Yes --> end!

ASCII code for 0

Bad character
ASCII code for 9

Good character
ASCII code for A

Bad character
ASCII code for F

PART THREE: LIBRARY OF PROGRAMS

2
13

4

end

9E6 TR>C
88 GOYES
148 DATB=A
161 DB=Dg+
171 D1=D1+
cD B=B-1
68CF GOTO
REA A=

148 DATB=A
8F20768 GOSBYL
142 A=DATB
164 DB=Dg+
8e8C PC=CR)
9C2A2 CONC3)
92CF1 CONC(S)
C2AZ8 CONCS)
/8008 CONCD)
08 CONCZ)
4BAC1 CONCD)
9C2RZ CONC(S)
960A1 CONCS)
C98C1 CONCS)
B2138 CONC(S)

CLERAN @ CDSéh)

09026 B4EBZ 76BAI
11691 74143 17481
23231 939EA 41311

w

OARD_REG

(JIII""UJW:JJNNUJ'—'UD

REAL_1

gg%ﬁ STRING
#0000/

#00
POS
REAL 1
MINUS

SUB
EPILOG

Bad character
Good char --> rewrite
Next

One less

Loop again

Mark the end
with char 00

Restore regs.

Return to RPL

CHR 68

CCD28 ©8bBB 8FBI7 68143 13813
8FB848 19FBD 88A98 314B3 1839E
49E21 13164 9E688 14816 1171C

D6SCF AEB14 88F2D 76814 21648 B8COC 2A292 CF1C2

A2678 0oBBO 4BACI

9C2AZ 990A1 CS58C1 BZ2138

219

PEEK

PEEK allows you to look at the memory contents at a specific address.
Simply give it an address and the number of bytes to read, and it will return
acharacter string with the hexadecimal code that was read. For example,
#8 #5 PEEK returns the first 5 nibbles of the HP 48 ROM: "Z2369B".

PEEK does not offer access to the hidden ROM (ROM area at #70000h).
To access that area, use the program HRPEEK (Hidden ROM PEEK).

Here is the commented assembly source listing for PEEK:

D90zZe CON(S)
ZABF 1 CON(S)
3FBF1 CONCS)
CCD28 CONCS)
start 3A0B0 CON(S)
FB9768 GOS
7 C=DAT1
134 DB=C
169 pDe=0g+
42 A=DATH
346FFF7 LCHEX
B6 7C<R
40 GOYES
D6 C=A
o C6 C=C+C
SFD/BS8 GOSBYL
132 ADBex
147 C=DAT1
134 De=C
169 DB=0D0+
146 C=DATH
DS B=C
174 D1=D1+
147 C=DAT1

220

PROL _PRGM
DUPZ

Program object

Verify the number
DROP2 of arguments
PROL _CODE Code object
(end)-(start) Code length
EHVE_REG Backup regs.
10 DO=address of contents
of object in stack level
1 (the PEEK length)
A Read # of nibbles to read
g?FFFB Maximum size
18 Size correct
A Size too big—set to max.
A Number of nibbles to
reserve (2 per character)
#085B7D Reserve
A
DoO=address of object in
19 stack level 1
A Read the contents (size
to peek)
A
S
A

PART THRee: LiIBRARY OF PROGRAMS

169 DB=D@+
146 C=DATO
135 G1=C
139 Dg=f
11 89 *B=0
F2 GOYES
E A=0
1589 A=DATI
3183 LCHEY
6R A=A+C
3193 LCHEX
ER =R
g GOYES
3178 LCHER
A6A f=R+C
2 148 DATE=A
161 08=D0+
170 D1=D1+
CD B=B-1
6IDF_ GOTO
13 8F20768 GOSBYL
174 Di=D1+
E¢ 0=D+1
118 C=RP
145 GAT1=C
142 A=DATE
164 09=Dg+
898C PC=(A)
end B2138 CONCS)

PEEK (# ED@2h)
09020 2ABF1 3FBF1

68174 E7118 14514

Der—
[an]

w

O W
[av]

=~

O

RD_REG

DD DAC—D—MNO0OO—00Wo03E— 00— DD

EPILOG

76A6A 14816 1176C D
21648 ©88CB2 139

DoO=address of object in
stack level 2

Read the contents
Done?

Yes --> end

ﬁead one nibble

3

s Transform

sto ASCII code

3 (B->'1"'=48

1 15->'F'=7@)

3

Write into the string
Next character
Next nibble

One less

Loop

Restore regs.
DROP

Result -> stack
Return to RPL

Program end

221

POKE

POKE is the inverse of PEEK. It will write data to a specific address. As
arguments, it takes a binary integer (the address), in level 2, and a series
of hexadecimal digits (the data), in level 1.

CAUTION: Use this program carefully! You can corrupt memory and
disturb the normal functionality of the HP 48 with this program. However,
the programs in this book that use POKE can be used with no danger.

Here is the commented assembly source listing for POKE :

1174
Z2ABF 1
3F -l
LLUZu
start 48999
8FB9/68
143
132

164
146

164
DS

174
143
131
179
143
131
3450000
El

8A9

13
14A

n

222

CON(S)

LCHEX
B=B-C
78=9
GOYES
A=DATO

PROL _PRGM Program Object
DUP2 Verify the number
DROP2 of arguments
PROL _CODE Code object
(end)-(start) Code length
SAVE_REG Backup regs.

DO=address of object in
stack level 1

]
A C=length (5+2*number
5 of characters in string)
A
]
A
D1=address of object 2
(poke address)
19
A
D1=address of where to
poke
gBBBBS
A Done?
13 Yes -> end
B Read a char

PART THREE: LIBRARY OF PROGRANMS

BeA A=R-
3196 LCHEX 89
9ER 7C>=A
GOYES 12

3178 LCHEX @7
BeA A=A-C_ B

2 1998 DATI=A 1
161 De=Dg+ 2
108 D1=D1+ 1
3420000 LCHEX #00062
60CF GOTO 11

13 8F20768 GOSBYL LOAD_REG
179 D1=Di1+ 10
E? D=D+1 A
E? D=D+1 A
142 A=DRTG A
164 De=Dg+ 5
888C PC=CA)

end B2138 CONCS) EPILOG

POKE 4 14ASh)

09028 2ABF1 3FBF1 CCD2B 48000 8FBY7 60143
41461 64051 74143 13117 91431 31345 BBOGE
314A3 19386 A3198 SEA9B 31768 6A159 Bl611
0006 DCFSF 20768 179E7 E7142 16488 8CB21

nvert RASCII
tllex;adecimal

='F' 7 15)

S Lol agl o]
OHO O
[aa)

3

Write to memory
Next char

Next nibble

Loop...
f?estore regs.

3

3 DROP2

;

Return to RPL

Program end

223

HRPEEK

HRPEEK allows you to read the contents of the hidden ROM, which is
normally notaccessible. In order todo this, HRPEEK must calculate its own
address (either in built-in RAM, or in a plug-in card), and then displace the
built-in RAM at #70000h to allow access to the hidden ROM (#70000h to
#7FFFFh). By calculating its own address, HRPEEK will be able to tell
whether or not it is affected by this memory displacement.

HRPEEK is generally the same as PEEK, and the argument syntax is the
same. For example, the command #78006h #18h HRPEEK (peek at 16
nibbles starting at #70000h in the hidden ROM) will return the character
string "D21898FFFB1B8BE/8" .

CAUTION: You should not use HRPEEK to peek at any memory location
except (#70000h - #7FFFFh) or you may get data that is invalid. This is
because of the built-in memory displacement that must take place.

One other note: As HRPEEK displaces the built-in RAM, the screen will
show a little “static” during the execution of the program. This is normal
and you need not worry about it.

Here is the commented assembly source for HRPEEK:

1) 0747] CONCS) PROL_PRGM Program object

Z2ABF1 CONCS) DUP2 Verify the number

3FBF1 CONCS) DROP2 of arguments
)20 CONCS) OL_CODE Code object

CCh2 P

start 04188 CON(5) Cend)-(start) Code length
8FB9/68 GOSBVL SAVE_REG Backup regs.
147 C=DAT1 A

134 Da=C DO=address of object in
stack level 1

169 Do=Dg+ 18 DO=address of object
contents in stack level
1 (PEEK length)

142 R=DATB A Read number of nibbles
to be read

340FFF? LCHEX #/FFFB Maximum size

224 PART ThReE: LIBRARY OF PROGRAMS

n

2

13

here

8B6

40

De

Cé
8FD7BS0
132

147
134

169
146

28
8FFB626

7C<A A
GOYES 11
C=R A

an

C=C+C A
GOSBYL #85B7D
ADBex
C=DAT1
De=C
De=Dg+ 18
C=DAT8 A
R4=
Di1=Di+ 5
C=DAT1 A
=C
De=DB+ 18
C=DAT8 A
Re=C
R3=
ST= 15
C=R4
CHA A
OYES 13
GOTO 18
=CEI A
INTOFF
=PC A
LC(S) #
<= A
OYES 15
LC(5) (14)-Chere)
C=C+A ?
4

P_
C=P

p= 8
GOSBVL #B26BF

Size correct

Size is too big—change
to maximum.

No. of nibbles to reserve
(2 per character)

Reserve

DO=address of object in
stack level 1

Read the contents (size
of peek)

DoO=address of object in
stack level 2

Read the contents

No keyb. int.
Done?

Yes --> end
One less

A=mem. address of ‘here’

80068-(15)+Chere)

where is HRPEEK ?
In a plug-in card

=memory address of 14’
=address of 14’ after dis-
placement of built-in
RAM to #F0000h
Displace built-in RAM and

call routine found at
address in field A of C

225

14

15

16

17

18

226

6168 GOTO
112 A=R2
131 D1=
REQ A=0
1580 A=DAT1
181 R1=

a1 RTN
34000807 LCHEX
804 UNCNFG
340800F LCHEX
895 CONFIG
3400086 LCHEX
885 CONFIG
112 A=R2
131 D1=
AEQ A=0
1589 A=DAT1
181 R1=
3400086 LCHEX
894 UNCNFG
340000F LCHEX
895 CONFIG
3400087 LCHEX
885 CONFIG
8080 INTON
111 A=R1
3183 LCHER
AGA A=A+C
3193 LCHEY
9ER)=
98 GOYES
3178 LCHEX
A6A A=A+C
11B C=R3
134 DB=C
148 DATB=
161 De=Do+
136 CDBex
18B R3=C
11A C=R2
E6 C=C+1
198 R2=C
682F GOTO

89F ST=1
8F20768 GOSBYL

#70000
#Fo000
#60000

#60000
#Fo000
#0000

PYIERTR

[pvlas)

C—— DD
ouN

AD_REG

Read one nibble
from RZ and
save it in
:register R1

)

Displace the RAM
'to #60006h

Read one nibble
3

$Return RAM
Eto #70006h
)
3

Interrupts OK

Convert the
nibble read to
ASCII

YT T IVT LV T LV RV LV Y

Write

Next!
Loop

Restore regs.

PaRT THREE: LIBRARY OF PROGRAMS

174 D1=D1+ 9 ;
7 D=0+1 A 5 DROP
118 =R@
145 DAT1= A Resulting string on stack
142 A=0AT8 A Return to RPL
4 D=0+ S
888C PC=(R)

end B2130 CONCS) EPILOG Program end

HRPEEK (# 4385h)

09028 2ABF1 3FBF1 CCDZB 351088 8FB97 68147 13416
91423 49FFF 78B64 B06C6 SFO/B 50132 14713 41691
46 17414 713 9146 10A10 384F1 1CBAE 68620
BCE1Q C808F 81B43 46CFF 7BBEG 33482 B0ECZ 2F86C
4280F FB628 61681 12131 AEGIS BO1G1 B1340 B0GB/8
04340 BOOFS 05340 0909068 B5112 131AE A15B8 168134
00096 80434 0BUAF 80534 bBBE/ 88599 80111 3163A
6A319 39ER9 063178 AGAIl B1341 48161 13619 BllAE
610A6 82F85 FOFZD ve@17 4E711 81451 42164 B808CB

227

?ADR

This program finds the address of the object in level 1 of the stack. Here
is the commented assembly source listing of TADR:

CONCS) PROL_PRGM Pro]qram object

) PRUL INT Null binary integer where
ABBO0 CONCD) 00PaA the address will be
BogEe CONCD) 212%,%%)
CB2 CONCS) NEWOB Recreate binary integer
DBB CONCS) SWAP
CCDZ28 CONCS) PROL_CODE Code object
start 62088 CONCS) (end)-(start) Code length
47 C=DAT1 A C=@ of object
74 Di=D1+ 5 Remove object from
D=D+1 A stack
143 A=DAT1 A
33 AD1ex
79 Di1=Di+ 1@
15 DAT]1= A Write @
31 D1=A
92 A=DAT8 A Retum to RPL
64 De=DB+ 5
8u8C PC=(R)
end B2138 CONCS) EPILOG Program end

TADR (# 26ABH)
09028 E4A28 AG0EE8 BOBO
14717 4E714 31331 7914

1 DBBF1 CCD28 62099
4 21648 08(B2 130

o

CB2A
1311

228 PART ThRee: LiBRARY OF PROGRAMS

SSAG

This program returns the hexadecimal codes of the object in level 1 of the
stack. It performs the inverse of GASS (thus, the name SSAG). SSAG uses
the programs PEEK and 7ADR.

To determine the size of the object, SSAG uses the SYSEVAL call #1A1FC
which is the same function as BYTES, exceptitworks with any object given
as an argument. When BYTES is executed with a local name as an
argument, for example, it returns the checksum and length of the contents
of this name. The object on the stack is first stored in a global variable
called '0OBJ.TMP' in order to assign it a fixed address.

Example: "123" SSAG would return "CZAZ26BBBBBB132333" whichisthe
code for a string object containing 3 characters: "1","2",and "3" (ASCII
codes #31h, #32h and #33h).

SSAG was written by Dominique Moisescu.

SSAG (# B7AFh)
&

'0BJ.TMP' STO '0BJ,TMP' RCL DUP 7RAOR SWAP
#II=D U%Q%%EFCh SYSEVAL SWAP DROP 2 = R»B PEEK 'OBJ.TMP!

229

RASS

RASS is the same as GASS, only it is written completely in machine
language. Here is the commented assembly source listing for RASS:

start

1

2

230

PROL_PRGM
pupP

DROP

PROL _CODE

é end)-(start)

AVE_REG

#060085

#06R08
#16330
11

DD

Program object
sVerify there is
sat least one

s aroument on stack
Code object

Code length

Backup regs.

D1=string address

A=string length

Empty string?
Yes --> end

Number of codes

Reserve memory
Ok!

Garbage collector

Object reserved on
the stack

PaRT THREE: LIBRARY OF PROGRANS

I3 14B

4 1580

290
I5 8F20768

C
end B2130

PC=
CONCS)

RASS (# BSD3h)

D90Z6 78BF1 8
91741 43345 066003
ASFBD RGBS 18FD

DBF 1

w

11308 CD11R 13514
58616 8171C D5908

0w
O ©

O
=~J

ow

AD_REG

NDC—DN—— 03— 0= 0H=00

EPILOG

CCDZ8 BAOBB BFBY
A2S¢7E AZIC1 B317
36111 BeBEF 1191
B3183 BeA31 9B9E
F2h76 81421 6480

read one code
L]

ASCII Code
-> hexadecimal

MENAEEEEEEAEEE

Write

One less

Continue if necessary
Restore regs.

Retumn to RPL

Program end

7 68147 13719
4 13718 AD684
3 51321 41130
A 90317 BB6A1
8 CB213 B

231

CHK

This program checks the number of objects on the stack, and their type.
ltis notinteresting by itself, butitis extremely useful foraprogrammer who
needs to check that the correct arguments were passed to his program.

CHK takes two binary integers from the stack. The first argument (stack
level 2) is the number of arguments—from 0 (meaning no arguments) to
8. The other argument is the type description. Each type is represented
by a two digit hexadecimal number, as shown in the table below. If the
arguments passed to CHK are bad (i.e. number of arguments larger than
8, or an invalid type), you'll get an error: Too Few RArguments orBad
Aroument Value. If the arguments are valid, nothing will happen; the
arguments will disappear. Examples: To verify that the stack contains...

« acharacter string and another object of any type: #2 #8988h CHK
- two binary integers: #2h #BABARK CHK

- eight objects of any type: #8h #Bh CHK

- aglobal name and two real numbers: #3h #1A8262h CHK

Prolog Object Type Code
Any Object 00
02911 System Binary 01
02933 Real Number 02
02955 Long Real 03
02977 Complex Number 04
0299D Long Complex 05
029BF Character 06
029E8 Array 07
02A0A Linked Array 08
02A2C String 09
02A4E Binary Integer 0A
02A74 List 0B
02A96 Directory 0C
02AB8 Algebraic Object oD
02ADA Unit Object OE
02AFC Tagged Object OF
02B1E Graphic Object 10

232 PART THREE: LIBRARY OF PROGRAMS

Prolog

02B40
02B62
02B88
02BAA
02BCC
02BEE
02C10
02D9D
02DCC
02E48
02E6D
02E92

Object Type

Library

Backup Object
Library Data

Reserved 1
Reserved 2
Reserved 3
Reserved 4
Program

e

Global Name
Local Name

XLIB Name

1

12
13
14
15
16
17
18
19
1A
1B
1C

Here is the commented assembly source listing for CHK:

CCDz0
start 99108
9760
868262
33ABA0

78
8F20760

CONGS)
CONG)
GOSBVL

A=0
LAHER
C=0
LCHER

GOSUB
GOSBYL

PROL _CODE

Code object

(end)-(start) Code length

aHUE_REG
#2

W

#BABA
chk
LOAD_REG
18
SAVE_REG
#00003

DDIE—UNDD
©

rrl

Backup regs.
sFirst verify:

sthe arguments for

s CHK: two
5 binary integers

3

Restore regs.

s DROP the two
sbinary integers
Backup regs.

Maximum arguments

C(W)=types

More than 8 args?
Yes --> error

233

7828 GOSUB chk Verify
?5%0?68 GOSBYL LOAD_REG Restore regs.

A=DAT8 A Return to RPL
164 Dg=Dg+ S
888C PC=(R)
err1 3436208 LCHEX #0606203 Error: Bad Arg. Value
DAerr =C A
gF2D/68 Gl LOAD_REG Restore regs.
8032050 GOVLNG #85623 Error
chk 7198 GOSUB chk2 Finds starting address of
after prologue listing
poeee CONCD) #00099 Any object.
11928 CON(D) #082911 System binary
33928 CONCS) #82933 Real number
59928 CON(D) #82955 Long real
77920 CONCD) #82977 Complex number
09920 CONCS) #8299D Long complex
FB926 CONCS) #829BF Character
BE92H CONCS) #B29E8 Array
ABAZE CONCD) #92ABA Linked array
C2A28 CONCS) #82A2C String
E4A28 CON(S) #OB2R4E Binary integer
4728 CONCD) #82A74 List
69120 CONCD) #0 Directory
gBAzd CON(S) #8Z2AB8 Algebraic object
ADAZ8 CON(D) #82ADA Unit object
CFA28 CONCS) #82AFC Tagged object
E1B28 CON(D) #82BIE Graphics object
B4B28 CON(S) #82B49 Library
26B28 CON(D) #82B62 Backup object
80B28 CON(S) #02B38 Library data
AAB2@ CON(D) #02BAA Reserved 1
CCB28 CON(S) #82BCC Reserved 2
EEB28 CON(S) #B2ZBEE Reserved 3
g1C28 CON(D) #82C19 Reserved 4
D90z8 CONCS) #B6209D Program
CCD28 CONCD) #820CC Code
84E28 CON(D) #02E48 Global name
Eel8 CONCD) #B2E6D Local name
29820 CONCS) #82E92 XLIB name
chk2 D8 =A A Object number.
AF? =C W Zypes
1 8c C=RSTK =starting address of list
8A9 7B=0 A Done?

%%} RTNYES Yes

234 PART THRee: LIBRARY OF PROGRAMS

end

CHK (# FD?ChZaB
CCD28 99149 8

F2De6
91567
14216

~N

IO

(4]

—UIEEDD #—D—DD D O $H—DD—N00—0
Jod

-J

Backup
Type OK?
{Vo --> error

; Get a
s prolos

aac\as

End of stack --> error
(Too Few Arguments)

A=object prologue

Any object?

Yes --> OK

Prologue OK?

();%5 on 115 # ired
)j. prologue®requir

-> “gadArgument Type”

One less

Next type

Next object
Loop

2AFZ3 3ABARB 7?2788
80008 05147 13416
Ba717 8208F 20768
803% 85871 96606

235

REVERSE

The Saturn microprocessor writes all data to memory inreverse; you must
reverse it to get the proper order. REVERSE reverses the characters in a
string—which helpful for interpreting the data read by PEEK.

Example: "123" REVERSE returns "321".

Here is the commented assembly source listing for REVERSE :

D9028 CONCS) PROL_PRGM Program object
FDSS8 CONCS) #8550F Empty string

dd +
(CD?8 CONG3) PROL_CODE Code object
start 8698968 CONC(S) (end)-(start) Code length

8FB9 GOSBVL SRVE_REG Backup regs.
143 =DAT1 A
131 D1=A D1=string address
174 Di1=D1+ S
137 Dlex
135 1=C
143 A=DAT1 A A=string length
c2 C=C+A A
134 DB=
174 Di1=Di+ 5 D1=address of first
character
181 De=DB- 2 DoO=address of last
character
818F84 RA=A-5 A
8As A= A Empty string?
52 GOYES 12 Yes --> end
11 14B A=DAT1 B ;
4E C=DATB B s Switch two
40 DAT1= B s characters
48 DATB=A B H
7l D1=D1+ 2
81 pDe=DB- 2
33 ADlex
31 D1=
36 CDBex
134 DB=C

236 PART THREE: LIBRARY OF PROGRAMS

8BA TC>=R
FD GOYES
2 8F2D/68 GOSBYL
142 A=DATH
164 D8=Dg+

808C PC=(A)
end B2138 CON(S)

REVERSE (# AR/Dh
09026 FO558 /6BA1
41371 35143 (2134
D1481 71181 13313
808CB 2136

Tl Again?

LOARD_REG Restore regs.
g Return to RPL
EPILOG Program end

CCDZ20 86688 8FBI? 6061
17418 1818F 848A8 521
11361 348BR FDBF2 D76

D
N

43 13117
4B 14E14
B1 42164

237

CRNAME

CRNAME is a program which can create any global name (including
“strange” names that cannot be entered from the keyboard, or the names
of existing functions). Here are two ideas for this program:

« Create variables under reserved names, which are then dif ficult to
purge, visit, or change (giving them a certain security).

» Create variables with the same name as an HP 48 internal function
in order to replace it. If the user types this name, then your program
is executed rather than the internal function.

CRI;IHHE (# 11ESh)

1 127 SUB 116 CHR 42 CHR + 128 CHR +

228 CHR + 2 CHR + UUER SIZE CHR + SWAP
+ 43 CHR + 49 CHR + @ C
1{ gg?&‘h SYSEVHL # 56B6h SYSEVHL DROP NEWOB

>

The principle of this program is the same as with GRSS: a special object
is created (here it's a string), which contains the desired object codes (the
nameinalist). Thencertaininformation is stripped from the objectto leave
only the object contents.

We need to remove the prolog and the length of the string—2 blocks of 5
nibbles. The routine at#056B6h is used to take a system binary containing
the number of 5 nibble blocks to be removed. This system binary exists
in ROM (see the list of useful objects in ROM found in the appendix) at the
address #04003h. Itis recalled to the stack with #4883h SYSEVAL . After
the NEWOB, a list containing the desired name is on the stack. The oper-
ation1 GET removes the name from the list, and places it on the stack by
itself.

238 PART THREE: LIBRARY OF PROGRAMS

CLVAR

The CLVAR instruction will purge all user variables in the current directory .
This command can be executed with the press of three buttons ((), DEL,
E&T=R).

In the hands of an amateur, this can be very dangerous. It would,
therefore, be wise to remove the access to this command. This can be
done using the program CRNAME in the following manner:

« Enter any program. For example:
« "CLVAR Not Available!" DOERR »

« Thentype: "CLVAR" CRNAME STO

It is best to store this false CLVAR in the HOME directory so that it is exe-
cutable from any subdirectory.

To remove this program, simply type: 'CLVAR' PURGE

239

SYSEVAL

The SYSEVAL instruction is used to execute objects found in the HP 48
memory. Haphazard use of this function could cause a loss of memory .

This function could be considered dangerous, and you may want to
prohibitits use. All you needtodo is create a program with the same name:
'SYSEVAL ' . Asitis not normally possible to create such a name, we will
use the program CRNAME.

To prohibit the use of SYSEVAL, do the following:

» Enter the following suggested program:
« "SYSEVAL Not Available!" DOERR »

+ Thentype: "SYSEVAL" CRNAME STO

Itis best to store this false 'SYSEVAL' program in the HOME directory so
that it is executable from any subdirectory.

To remove this program, type: 'SYSEVAL' PURGE

Once the false program is installed, it is possible to enter the global name
'SYSEVAL ' normally (without the use of CRNAME).

240 PART THREE: LIBRARY OF PROGRAMS

CONTRAST

CONTRAST uses the programs PEEK and POKE to change the HP 48’s
screen contrast. Ittakes a binary integer between #0h and #1Fh from the

stack. #0h gives the lightest contrast, (the screen appears to be of f), and
#1Fh gives the darkest contrast (the screen appears completely black).

This allows access to a greater range of contrast values than do the

conventional and methods, which offer values from #3h to
#13h.

CUI:TRHST (# 7BF1h)

HEX # 191h OVER # Fh _AND »STR 3 3 SUB "#"
162h # 1h PEEK + STR> # Eh AND 4 ROLL 16
»~ # 1h AND OR »STR 3 3 SUB + POKE

»

DISPON and DISPOFF

DISPON and DISPOFF are two programs that use PEEK and POKE to turn
the HP 48 screen on and off. Note that DISPOFF disables the keyboard,
so the two programs must always be used together (always call DISPON
after having called DISPOFF). If you execute DISPOFF alone, there is no
way to turn the screen back on other than with a system halt ((oNHC)).

DI’.:;iPUN(# 18B7h)
166h "#" OVER # 1h PEEK + STR» # 8h OR
+STR 3 3 SUB POKE
»
DISPOFF (# BEF6h)
«
166h "#" OVER # 1h PEEK + STR» # 7?h AND
»STR 3 3 SUB POKE

b4

241

FAST

FAST is a program that will enable you to speed up HP 48 calculations
more than 12%. This program turns off the screen, (using the programs
DISPOFF and DISPON), which lightens the bus load slightly, enabling the
HP 48 to execute a little faster.

As an argument, FAST takes either a program, the name of a program, or
a list of commands. If any of these arguments require arguments
themselves, they must already be present on the stack.

Example: To calculate the second derivative of 'COSC(COS(K))':
« 'COSCCOS(RI)' 'X' o 'K' & » FAST

FFIET (* 14R3h)
DISPOFF
IFERR
EVAL
THEN
DISPON ERRN DOERR
END
DISPON

242 PART THREE: LIBRARY OF PROGRAMS

DISASM

This fascinating program is monstrous in size but extremely useful: itcan
disassemble any machine language program. DISASM is the main pro-
gram; all the others are its subroutines. It takes two arguments:

In stack level 2, a character string which contains the hexadecimal
codes that you wish to disassemble.

In stack level 1, the beginning address of the code—useful when
disassembling ROM programs (for movable programs, as are all
programs in this book, give the value #0h for this argument).

For example, to disassemble the routine at address #067B9h:
#067B%h DUP #186h PEEK SWAP DISASM

The disassembled code is found in the variable 'SOL' whenDISASM has
finished. The programs SPC1 and SPC2 in this listing are identical. They
calculate the number of spaces between columns of the output listing

given by DISASM. To change the column spacing, change one or the other .

DISASM can disassemble only machine language; it does not recognize
objectprologs, for example. Note that DISASM may terminate with an error
if it lacks proper arguments or encounters an invalid code (e.g. 10E).

DIEHSH (# 8DACh)

HEX 64 STUS ADR' ST0 '2' STO
16 CHR + 'SOL''STO 1 'P' STO Z SIZE
>
&«
D0
P 'I' STO L READ 1 + GET EVAL + STOS
PS>
" - END - " STOS

243

TAKE %# 7AFDh)
« Z P DUP

B »

REHD (# 3949h)
'#" Z P DUP SUB + STR» B»R »

INC(h CHI7h
'P'STO+ »

STOS (# 3895h)
<«
18 CHR + DUP 1 DISP SOL SWAP + 'SOL' STO INC
b 4

L ¢# EB37h)
{ A Al AZ A3 A4 AS A6 A7
Al A9 AR AB AC AC AC AC }

RB (# A89Bh)
«
INC READ DUP
IF
14 #

"RTNSKM" "RTN" "RTNSC" VRTNCC" "SETHEX"
"SETDEC" "RSTK=C" 'C=RSTK" "CLRST" “"C=ST"

"ST=CY ICSTex" "P=p+" "P=p-17 14 "RTI") SWfP
L+ GET CODE SiRP

DROP INC RERD INC READ
> X
&«

< 38 CHR 33 CHR IFTE

R VL

Y
8
z
J ? MOD 2 = 1 + "ABBCCADCBACBACCD"
«

u
tEUPSUBut1+DUPSUB
a

v C

244 PART THREE: LIBRARY OF PROGRAMS

[%EDEa"="aZb++++SPCZ+
¥ 15 ==

IIHII

ELSE
g
END

Al ‘(:# 484Eh)
{ NM?3 "18" READ +STR POS GET INC READ 1 + GET
EVAL

»

N (# 956 Ef
B Cd CB CB C4 C4 C6 C6
Cs C9 C9C9C6 C9C9 (9 3
Co # 65688h)
&
TAKE INC CODE "P" 3 ROLL + STR» READ 1 + GET
»
C6 (# FoDAh)
L 4
% "Dg=08+" "D1=D1+" "DB=DB-" "D1=D1-" } READ 5 -

P4 > 3 * - GET INC CODE SWAP SPC2 READ 1 +
>STR +

»

245

CI# 95A%h)
L 4

READ 8 - DUP
IF
3>
THEN
4 - "D1=("
ELSE
mng=("
END
{ 245) ROT GET SWAP OVER + ")" + SPC2
SWAP 1 -
* %
&«
INC Z P DUP x + SUB REVERSE + P x + 'P' STO
. CODE SWAP
>
Cﬂ({# D7A3h)
READ INC RERD
PNy

&
{ "DRT@=A" "DAT1=R" "A=DAT@" "A=DAT1" "DATG=C"
DATIC" "C-DRTE" "C-DATI" 3 y 8 MOD 1+ GET

ELSE
INC RERD
>z
&«

IF

y 8 <
THEN

246 PART THReE: LiBRARY OF PROGRAMS

z CH
ELSE

READ 1 + »STR
END

»
END
+

»
CODE SWAP

»

PO *, E419h)
"RB=A"" "R1=A" "R2=A" "R3=A" "R4=A" S5 6 7 "RB=C"
"R1=C" “"R2=C" “"R3=C" "R4=C" }

P1 (#
é IIH_RG‘I IIH Rlu IIH RZII IIH Rall IIH Rq,ll 5 6 ? IIC RB“
IIC_RIII IIC_RZII IIC_RBII ll[: Rq,ll }
P2 é# D1C7h)
"ARBex" "ARlex" "ARZex" "AR3ex" "AR4ex" 5 6 7
"CRBex" "CRlex" "CRZex" "CR3ex" "CR4ex" 3}
P3 é# 7E1Bh)

_Hll IIDI_HII IIH[B n llHDlexll IIDG=CII llDl=Cll
"CDBex" "CDlex" "D@-HS" "D1=AS" "ADBKS" "ADIKS"
“DB=CS" "D1=CS" "CDBXS" "CDIXS" 1}

A2 (# 856Ah

INC CODE "P=" SPCZ READ »STR + »

FBE< (# 6DCAh)
INC READ

? R
€

SPC2 Z INC P DUP % + DUP 'P' STO SUB
REVERSE +

247

A7 @ 1C34h)
L 4
IIGUSUBII un 1 3
TART
INC TAKE +
NEXT
1006h 4 SAUTREL CODE SWAP

»

A3 (¢ DB24h)
« "LCHEX " A31 CODE SWAP »

R4+ A72Dh)
%l’:ﬁ TAKE INC TAKE + DUP
ngg" ==
THEN
DROP "RTNC"
ELSE
DuP
IF 17 L J—
THEN
DROP “"NOP3"
ELSE
"GOC" SWAP # 188h 1 SAUTREL
END
END
. CODE SWAP
AS i# 4681h)
%IEIC TAKE INC TAKE + DUP
" ==
HEN
%RUP "RTNNC"
END"GDNC" SWAP # 186h 1 SAUTREL
CODE SWAP

248 PART THREE: LIBRARY OF PROGRAMS

A6 (# A19Ch)
&«

2 INC P OUP 3 + SUB DLP
1 3 SUB "308" ==

THEN
DROP "NOP4"

ELSE
DuP

1] 49%]}

HEN

DROP "NOPS" INC

ELSE

. r%n 3 SUB "GOTO" SWAP # 1886h 1 SRUTREL

END
INC INC CODE SWAP

b4

M@# CCSCh)
{ B3 Bl Bl B3 B4 B4 Bt B6
B6 B6 BA BA BC BC BC BC 3}
B1 é# 973zh)
N "U" TAKE + STR» INC READ 1 + GET EVAL CODE SWAP

B3 # FAB’H
« Bl GOYES »

B4 (# 558%h)

{ "ST=@" "ST=1" } READ 3 - GET INC SPC2 RERD
»STR + CODE SWAP

»

249

BB (# ESCDh)
L 4
B8 U8 INC REARD
X

&«

x_1 + GET
IF

THEN
DROPZ_INC { 6 7 18 11 X READ POS V@ READ
ELSIE + GET EVAL

IF

{1513 12 } % POS
THEN
NDSPC‘Z INC TRKE +

|]

0DE SWAP
ROT
HEN
GOYES
END

b 4
>

B6 ‘((# 396Bh)

{ "7ST=R" "POT#R" "PP#£" "?P=" } READ 5 - GET
INC SPCZ2 READ »STR + CODE SWAP GOYES

b 4

Ua # seerh)
"OUT=CS" "OUT=C" "R=IN" "C=IN" "UNCNFG" "CONFIG"
IIC=IDII IISHJTDNII 8 IIC+P+1]I IIR:SETII IIBLBCCII IIC=PII
n P=E non SREQ? n n CPex n }

250 PART THREE: LIBRARY OF PROGRAMS

BA é# 2958h)

READ INC READ
> W y

€
CODE

I
x 18 ==
THEN

A
ELSE
B

END
y 1 + GET SPCZ + "R" GOYES

>
b4

BC ‘({# 2CCCh)

{ "GOLONG" 4 "GOVLNG" 5 "GOSUBL" ¢ "GOSBVL" 5 3
IEEF;D b2 * 23 - DP 1 + SUB LIST» DROP
«?FZP1+DUPb+1-SUB
b § ==
ELSSENHP SPC2 SWAP REVERSE +
10006h 2 READ 14 == 4 * + SAUTREL

END
P b+ 'P' STO CODE SWAP

»
»

Ve # ES24h

"INTUNI' Va1 vez "BUSCB" VB4 VB4 vBq Yae Vod
l"'l?l"}ﬂ gFBI?" Vgl‘} "PC=(R>" "BUSCD" "PC=(C)"

251

Ulg(# 8795h)

REQD 8 == INC READ INC REARD 1 +
*

fr
L 4

RA r GET
IF

t
THEN
0P *=" SUfP + +

r 8 <
THEN

II+II

ELSE

END
+ INC READ 1 + +
SE
] SRB n o,
END
f CHA

vea ¢ 33A5h)
¢ 'ABIT=g" "ABIT=1" "?ABIT=@" "7ABIT=1" "CBIT-9"
"CBIT=1" "?CBIT=8" "?CBIT=1" 3

Vo1 ¢ 2206h
& Im IIR III by

Va2 & 2584h)
« "LAHEX ™ A31 »

Vo4 # Crash
« Vo8 READ 3 - GET SPCZ INC TAKE + »

Ul gh CrBay)
IIHSLC " IIBSLD n IIESLCII IIDSLEII IIHSRC n n BSRCII
nCSRE" “DSRE" UIB U18 UIA UIB "ASRB™ "BSRB"
"CSRE" "DSRE" 3

252 PaRT THRee: LiBRARY OF PROGRAMS

UIR (# BF1%h)
&«
INC RERD INC READ INC READ 1 +

> fxrr

&«
RN r GET
IF

r 8 <
THEN.,

ELSE

IICII

END

»
»

V1B # BFHShe
{ B" lc IIP“ =?II llPC=[:II IIH=PCII IIC=PCII “HPCEXII
ex

UIB ¢# CCY4h
« VIB INC READ 1 + GET SPC2 "A" + »

RN # FCsehy
Ilmll IRIII IIRZII IIRBII IIR4II 5 6 ? IIRBII llRlII
"R3" UR4" 13 14 15)

IIRz"

253

RA (# BHCEhE?
IIHII ngn IICII IIDII 4 5 6 ? IIHII IIBII IIEII IIDII 12

13 14 15 }
UZé# SEDBh)
g "’m=" "SB=p" 3 "SR=B" 5 6 7 "MP=0" 9 19
11 12 13 14 "CLRHST" 3
USf# ER2Ch
8 "7TRM=g" "?SB=B" 3 "TSR=B" 5 6 7 "MP=6" }
A9 (# 48ADh
« A B NORMAL GOYES »
AR (# 2CBoh
« C D NORMAL »

AB (¢ B467h
! EF N&RNHL »

HCQ BF15h)

{ CDEF X READ 11 - GET EVAL INC CODE
SWAP REARD 1 + GET SPCZ "A" +

»

H(# qp?ﬂﬁi%)! II’P =" =A" " =" n # n ll?B#CII £ n
II?D#CII II‘?H_BI! II?B all ll"'?c=all ll’:}D___BII II‘:PH#BII II?B#BII
"?C#a" II‘PD#@!I }

B # 32ESh
ll? zl ll?B}Dll ll?t)ﬂll Il?D)Cll II‘PH<BII II‘PB<E" H?C(Hll

"?[KC nPAABY "PRACY ll?céﬂn "?DEC" "'?FléB" neBZCH
weCLA" "D)

254 PART THREE: LIBRARY OF PROGRAMS

C SBHﬂhb
{ IIH=H+ 1] IIB=B+C 1] IIC=C+HII
IIC=[:+C n IID=D+D " IIB=B+H n
llﬂ=ﬂ_1 1] IIB=B_1] IIE__.C_I n

D@# 9936h)
{ Ilﬂ=all IIB=BII IIC=BII IID=BII
n =HII IIC=BII IIR=[:II IlC=DII
Ilmexll }
E @ C345hb
{ IIH_H 1} IIB_B_CII IIC..C Hll
IIC_C+11I IID +1ll np=

n H_B HII IIB_C_BII I|C H_Cll

F @# 7Bebh)
{ n [} IIBSLII IICSLII IIDSLII

"R=-R" Y“B=-B" "C=-C" "p=-p"

"C=-C-1" "D=-D-1" 3}

SPC (# EAI9h)
" " (7 spaces)

SPCI # DF86h)
PC 1

SPCZ # DFB6h)

n D=D+CII n H=H+H]} IIB=B+B n
IIC=C+BII IIH=H+C non C=C+D]
"G=D-1" 3

"A=B" "B=C" "C=A" "p=C"
"ABex" "CBex" "CHex"

IID=D_CII n H=H+1 1] IIB=B+1 1}
IIE._.C_B n o H=H_C na C=C_D]
"G=C-D" 3

"ASR" "BSR" "CSR" "DSR"
"A=-A-1" "B=-B-1"

7 4 PICK SIZE - SUB + " " + »

PC 1 7 4 PICK SIZE - SUB + " " + »

FIDRSTR # 1EFBh)

Begash + »STR 4 8 SUB »

CUQE (# A7D6h)
ADR I 1 - + ADRSTR " "

»

+ Z [P SUB SPC1 +

255

SFII.‘JCTREL # D63Eh)

2abc
L 4

SPC2 ADR I + 1 - c + "#" a REVERSE +
?Ed* DUP

b2~/<
THEN
+

»
b 4

GU‘:ES # E183h)
+ INC P 'I' STO TAKE INC TRKE +
* 3

R

18 CHR CODE
IF

Ilmll —

HEN

“ERTNYES"

"GOYES" a # 186h 8 SRUTREL
END

+ +
»
»

NORMAL (¢ BS51h)
&

2 ab
&«
INC REARD INC RERD
> x \d
&
CODE
IF

x 8 <
THEN

256 PaRT THREE: LIBRARY OF PROGRAMS

a
ELSE
b

END
y 1 + GET SPC2 % CH +

»
»
»

REVERSE (# B22¢h)
&«

?C
€

" oc SIZE 1
FOR

c x DUP SUB + -1
STEP

»
»

CH # 989Eh)
&

IIPII IIWII IIXSII lell IISII IIMII IIBII IINII } a 8

CHA (4 FDECh)
> f
&«

SPC2
IF

£ 15 ==
THEI?‘ L]
ELSE

£ CH
END +

257

Manipulating System Binaries

These programs convert between system binaries (SB) and other types
of objects commonly used by the machine: binary integers (B), real num-
bers (R), and characters (C).

« The required arguments are not verified for these programs. You
must be certain that you give the proper arguments if you would like
to obtain the proper results (giving a bad argument will not damage
the machine, just give unpredictable results).

+ Thecharacter objectis not normally accessible to the user . Withthe
programs below, it can be easily generated. For example, to create
the character #40h (A), you would type #46h B+SB SB+C. The
corresponding characterwillappearas "Charact er" onthescreen.

B»SB &# A92h)
« # SAB3h SYSEVAL »

SB+B &# C4F4h)
« # 59CCh SYSEVAL »

R+SB gf 9
« 1

IChF?
CEAh SYSEVAL »

SB-’R&# F1E1h)
« # 18DBFh SYSEVAL »

C»5B S}* 2108h)
« # OAS1h SYSEVAL »

SB+C (# 2756h)
« # SA75h SYSEVAL »

258 PART THREE: LIBRARY OF PROGRAMS

ROMRCL

This very short program can recall objects from ROM to the stack. Simply
place the address of the object on the stack (as a binary integer), and
execute ROMRCL.

First the program B+5B is used to convert the binary integer into a system
binary, thenthe #0621h SYSEVAL is called to recall the object at the given
address to the stack.

Notes:

+ This program can recall objects in hidden ROM by duplicating them
into RAM.

+ Don’t try random addresses.
+ Don’t use ROMRCL except for address in ROM.

ROMRCL (# B498h)
« B»SB # C612h SYSEVAL »

259

A*STR and STR*A

A+STR transforms a binary integer address to a character string (written
inreverse). STR*A does the opposite function. They are particularly use-
ful when using PEEK and POKE to read and write addresses in memory.
Each program uses the program REVERSE.

Examples:
#70086h A>STR returns "BBBG7" .
"8080F " STR2A returns # FBBBBh (in hexadecimal mode).

H+§TR (# E4F3h)
HEX # 100006h + # 1FFFFFh AND »STR REVERSE
2 6 SUB

>

STE->H (# 9287h)
"ggope" + 1 5 SUB "h" SWAP + "#" + REVERSE
STR»

>

260 PART THREE: LIBRARY OF PROGRAMS

BFREE

This program will determine the amount of free space lefton a plug-in RAM
card in BACKUP mode. It takes the port number as an argument, and
returns the free space in bytes. BFREE uses PEEK and STR *A.

BFREE (# 6BESh)
&
+ PORT
<«

IF
PORT 1 # PORT 2 # AND
HEN
Ah DOERR
END
76421h PORT 11 # + » ADR
&«
ADR # 1h PEEK STR+A » FLAGS
<«

IF

FLAGS # 8h AND # Bh ==
THEN

Ah DOERR
i

FLAGS # 2h AND # Bh #
THEN
ND“CHRD MERGED !" DOERR

DR 1 + # 5h PEEK STR+A # 1608666h ADR
+ # Eh PEEK STR+*A - + # 7844Dh PORT
x +

»
E #
3 oh PEEK STR+A - B»R 2 ~

261

SEARCH

Here are 3 programs for searching memory: ROMSEARCH, RAMSEARCH,
and MODUSEARCH. These programs will search memory for astring of hex-
adecimal codes, and return the address(es) of any occurrences found.

« Use ROMSERRCH to search in ROM (including the hidden ROM).
Addresses greater than #70000h (which are addresses of objects in
the hidden ROM) should be used with ROMRCL to view the contents.

« UseRAMSEARCH to searchin RAM (including merged plug-in cards).

« Use MODUSERRCH to search plug-in cards (HP 48SX only). This
program takes one extra argument than the others: a real number
that is the port number of the card you would like to search. After
checking the port for the presence of a card, the search will be done.
MODUSEARCH will search plug-in ROM cards as well as non-merged
plug-in RAM cards.

Note: these three programs use the program SEARCH, as well as PEEK,
HRPEEK (for ROMSEARCH) and STR»A (for RAMSEARCH and MODUSEARCH).

Examples:
« To find all character string objects in ROM: "C2A26" ROMSEARCH

» To do the same search in the plug-in card in port 2 (if the card is
present): "CZA28" 2 MODUSEARCH

262 PaRT THRee: LiBRARY oF PROGRAMS

SEARCH (# EC?Sh)
&
> MOTIF AD FIN PRGM
«
166h DUP MOTIF SIZE + » LEN LENP
&«
N
?E DUP 1 DISP LENP PRGM EVAL
MOTIF POS AD OVER
HEN
;FDUP 'AD* STO 1 - DUP
FIN 2
THEN
DROP
ELSE
ENDIJUP 2 DISP 1668 .97 BEEP +

ELSE
+ LEN + 'AD' STO
ND

E
UNTIL

AD FIN 2
END

»
»
»

ROMSEARCH(# SE4Eh)
&«
> MOTIF
&«

MOTIF # ©h # ¢60@6h 'PEEK' SEARCH MOTIF
70006h # 80006h 'HRPEEK' SEARCH +

»
»

RAMSEARCH@# 88ABh)
&
r0006h # 79665h # Sh PEEK STR+A 'PEEK'
SEARCH

MUIZUSEHRCH(# Co60h)
> PORT
&«

IF
EI;IURT 1 # PORT 2 # AND
Ah DOERR

END

78421h PORT 11 #* +

> ADR

€«

AOR #1h PEEK STR-A
+ FLAGS

L 3

IF

FLAGS # 8h AND # Bh ==
THEN

RAh DOERR
g
TFEI;JLFIGS # 2h AND # Bh #
END"PDRT MERGED-USE RAMS" DOERR

»
ADR 1 + # Sh PEEK STR»A DUP # 180866h
ADR 6 + # Sh PEEK STR+A - + 'PEEK' SEARCH

264 PART THRee: LIBRARY OF PROGRAMS

CRC

This program calculates the cyclic redundancy control (CRC) used by the
HP 48to verify data in certain objects. The program takes a string of hexa-
decimal codes (like those accepted by GASS) and returns the correspond-
ing checksum.

For example, " 123456789ABCOEFB" CRC returns #ABECH on the stack.
CRC # 9Degh)
&

6h
»+ S CRC.V

&«
1 S SIZE
FOR X
S X XSUB NUM48 - OUP 9 > 7+ - ¢ bh
+ CRC.V 16 ~ SWAP CRC.Y_KOR # Fh AND
1881h = XOR 'CRC.V' STO

Here is a faster version written in machine language:

CRCLM ¢# D298h)
09028 E4AZ6° AOO0O 0BAEB (BZA1 CCD2@ CCBEY 8FB9Y
60147 13416 91741 43131 17414 70517 43450 QBGE}
8A%987 DA14B 31038 6A319 B9EAS B31/8 BOAl4 67C5H
34F00 GOQEF 30DB8O 82168 C/HEC SAFCB 89821 46C/A
6CoAF CB142 F4742 BDB14 41713 42088 B6ESF 8F2D7
Egé‘f% %?gg@ 8CD/F EBEFZ DFFCO EFZ2BE FBOID BBF18

265

CALC

CALC is a collection of programs that will perform arithmetic calculations
with large integers. The HP 48 can already do arithmetic withintegers, but
only those in the range from 0 to 18446744073709551615. These pro-
grams can use integers that are as large as your memory will permit. As
examples, they were used to calculate the factorial of 2000 (more than
5000 digits!), and the square root of 2, accurate to 500 decimal places.

These functions work with positive integers represented in string form.
(Forexample, "1234567898" is the integer 1234567890). The functions:

ADD to add two integers;
SUBS to subtract two integers and return the absolute value;
MULT to multiply two integers;

BFACT to calculate the factorial of the integer given as an argument.
It does this by making successive multiplications, and displays on
the screen the currentresultas well as the number of multiplications
left, so that the user can get an idea as to when it will be finished.

POW will raise the integer in level 2 to the power in level 1 (just like
the * function). As with BFACT, step numbers are displayed to show
what work is left to do (0 will be displayed when it's done).

E multiplies the integer in level 2 by 10 raised to the power in level
1.

DIV divides the integerin level 2 by the integer in level 1, and returns
the integer part.

MODU is the modulo function. It returns the remainder of the integer
in level 2 divided by the integer in level 1.

SOR calculates the integer part of the square root of the argument
given.

These programs all use subroutines, most of which are written in assem-
bly. The commented source listings are first, then the hexadecimal codes.

266

PART THREE: LIBRARY OF PROGRAMS

DECODE.LM

This program converts an integer in a special format used by ADD.LM,
SUB. LM, and MULT.LM into an integer in string form.

CC028

beginB6886
8FB9760

I

2

end

132

CONC(S)
CON(S)
GOSBYL
A=DAT1
ADBex

DB=Dg+
LCHEX
A=DATA
A=A-C

PROL_CODE
(end)-(besgin)
SAVE_REG

3=
(o)
D
S
an

DANDDDDOHELN

D DA

[48)
<

N—D3=
™~

OARD_REG

DI DN

Code object

Code Length

Backup regs.
DO=address of object
in stack level 1

Object length

D1=address of object
in stack level 2

Done?
Yes --> end

Read a digit
One digit less

Restore regs.
Return to RPL

267

ENCODE.LM

This is the inverse function of DECODE.LM. It will convert an integer in
string form into an integer in a special format.

CCD20 CONCS)
begin6b68 CONC(S)
8FB9768 GOSBVL
143 A=DAT1
132 ADBex
164 De=Do+
34500008 LCHEX
142 A=DATH
ER =A-C
D8 =
164 De=De+
174 D1=D1+
143 A=DAT1
133 ADlex
174 D1=D1+
147 C=DAT1
133 ADlex
c2 C=C+A
137 CDlex
/1 8RS 7B=0
61 GOYES
D1=D1-
1589 A=DAT1
1568 DATB=A
166 DB=Dg+
B=B-1
6REF GOTO 1
I2 8F2D768 GOSBYL
142 A=DATH
164 DB=D6+
8688C PC=(R)

end

268

PROL_CODE
(end)-(begin)
SAVE_REG

%=
[an]
(o)
&
a

DANDDDHEUN

OAD_REG

ANDC—D—0—N—D D DN

Code object
Code length
Backup regs.

DO0=Address of object
in stack level 1

Object length

D1=Address of object
in stack level 2

Done?
Yes --> end

Read 1 digit

One digit less
Loop

Restore regs.
Return to RPL

PART THRee: LiBRARY OF PROGRAMS

FORMAT.LM

This program will remove any leading zeros from an integer (convert
"88123" to "123", for example).

CCDz8 CONC(5) PROL_CODE Code object
beginSEBBB CON(S) (end)-(beain) Code length
8FB9768 GOSBYL SAVE_REG Backup regs.
143 A=DAT1 A
130 De=A DO=Address of object
in stack level 1
169 De=DB+ 18
174 D1=D1+ 5
143 A=DAT1 A
131 D1=A D1=Address of object
in stack level 2
174 D1=D1+ 5
143 A=DAT1 A Object length
818F84 A=A-5 A
172 D1=D1+ 3
D3 = A Number of zeroes
to remove
171 D1=D1+ 2
E’ D=D+1 A
818F81 A=A-2 A
8A8 7A=8 A Done?
BO GOYES 12 Yes --> end
1579 C=DAT1 P
96A ?C=0 P A zero?
9E GOYES 11 Yes --> loop
2 DB C=D A
144 DATB=C A write the number of
zeros to remove
8F2D/68 GOSBYL LOAD_REG Restore regs.
142 A=DAT8 A Return to RPL
164 DB=Dg+ 5
868C PC=(R)

end

269

ZERO.LM

This program sets the integer given as an argument to zero, in the special

integer format.

CCD28 CONCS) PROL_CODE

begin54888 CON(5) (end)-(besin)
8FB9768 GOSBYL SAVE_REG
143 A=DAT1
131 D1=A
174 D1=Di+ 5
143 A=DAT1 A
174 D1=Di+ 5
C4 A=A+A A
F4 ASR A
AF2 C= W
/1 8A8 7A=0 A
F@ G 12
1507 DAT1= 8
177 D1=D1+ 8
A=A-1 A
61FF GOTO 11
l2 8F20768 GOSBVWL LOAD_REG
142 A=DAT8 A
B=Dg+ 5

164 D
808C PC=(R)
end

270

Code object
Code length
Backup regs.

D1=Address of object
in stack level 1

A=number of 8-digit
blocks for this object

Done?
Yes --> end
Set to zero

Loop
Restore regs.
Return to RPL.

PART THRee: LIBRARY OF PROGRAMS

ADD.LM

This program will add two integers. It works with blocks of 8 digits.

begina7808
8FB9

1

2

end

CCD20
768

CONCS)

PROL_CODE
(end)-(begin)
SAVE_REG

18

mald)]

O

AD_REG

NDC—0o0D000000 =EOEO OE—DOE=NDIDIDIDA

Code object
Code length
Backup regs.

DO=Address of object
in stack level 1

D1=Address of object
in stack level 2

D= # of blocks for oby.

Carry to zero
Done?
Yes --> end

Carry

Decimal mode
Read first block
Add to carry

Read second block
Add

Hexadecimal mode
Read result

Next blocks

One block less
Carry --> P
Loop

Restore regs.
Return to RPL

271

SUB.LM

This program will subtract two integers. It works with blocks of 8 digits.

CCD28 CONCS) PROL_CODE Code object
begin67888 CON(5) (end)-(besin) Code length
8FB9/68 GOSBVL SAVE_REG Backup regs.
13 A=DAT1 A
D8=A DO=Address of object
69 Dg=Dg+ 198 in stack level 1
74 DI=D1+ 5
43 A=DAT1 A
31 D1=A D1=Address of object
74 D1=D1+ 5 in stack level 2
47 C=DAT1 A
Cé C=C+C A
F6 CSR A
D? D=C A D= # of blocks in obj.
174 D1=D1+ 5
AFG A=8 W No carry
/1 BAB 70=0 A Done?
23 GOYES 12 Yes --> end
AF2 C=0 W
15E7 =DATG 8 Read 1 block
85 SET Decimal mode
7A A=A+C W Add to carry
15F7 C=DAT1 8 Block to subtract
B72 C=C-A W Subtraction
B4 SETHER Hexadecimal mode
1507 DAT1= 8 Write result
1 D1=D1+ 8
167 D=+ 8
CF D=D-1 A One block less
AFY A=0 W
94A C= S Carry?
4D GOYES 11 No --> loop
64 A=A+1 B Save the carry
6ECF GOTO 11 Loop
l2 8F2D768 GOSBVL LOAD_REG Restore regs.
142 EEDE%B g Return to RPL
=l Y+

end

272

164
8e8C PC=(A)

PART THREE: LIBRARY OF PROGRAMS

MULT.LM

This program will multiply two integers. It does this calculation much like
you would do it by hand on paper by working with one digit at a time.

CCD2a
beginC1168
8FB9
143
818F@9
181
174
133

768

CONCS)
EUN(SE

PROL_CODE
(end)-(begin)
SAVE_REG

R
R

meld)) N ZEEZ=DDDEAC mald))

NEE=E=Z=DDE=A

Code object
Code length
Backup regs.

R1=address of con-
tents of level-1
object (the result)

D1=Address of object
in stack level 2

Number of blocks of
integer in level 2

R3=address of con-
tents of level-2 obj.

D1=address of object
in stack level 3

273

182 R2=R R2=address of object-

3 contents
1 99F 7D#08 M More work?
68 GOYES 12 Yes --> continue
6699 GOTO 17 No --> stop
2 113 A=R3
131 D1=
AE2 C= B
15F0 C=DAT1 1 Read a digit
AE? D= B
170 D1=D1+ 1
133 ADlex
183 R3=
ASF D=D-1 M One less digit
112 A=R2
131 D1=
ADD CBex M
AD9 C=B M
111 A=R1
138 DB=
E4 A=A+1 A
161 R1=A
96B =8 B Muit by zero?
1C GOYES 11 Yes --> done
AE2 C=0 B
13 950 TB#8 M Again?
Ag GOYES 14 Yes
15C8 DATE=C | No --> write final carry
62BF GOTO 11 And loop
14 B6 RSTK= Backup C
1589 A=DAT1 1 Read a digit
AEB C=D B
85 SETDEC Decimal mode
AE1 B=0 B
5 822 SB= 3
81968 ASRB P)
832 75B=0 ;
1%} GOYES 16 sy Multiplication
A6l B=B+C B H
16 A66 C=C+C B H
99C TA#0 P)
AE GOYES 15 ;
g7 C=RSTK
A69 C=C+B B Add the carry
AED A=0 B

274 PaRT THRee: LiBRARY OF PROGRAMS

15A8 A=DATB 1
C=C+A B Add to existing

15C8 DATE= 1 Write result
SETHEX Hexadecimal mode

168 De=Dg+ 1

179 Di=D1+ |

ASD =B-1 M

BEG CSR B Update carry

6BAF GOTO 13 Loop

17 8F20768 GOSBYL LORD_REG Restore regs.

142 A=DAT8 A Return to RPL
De=Dg+ S

888C PC=(A)

end

275

DIV.LM

This program divides two integers and returns the integer part of the result.

CCD28 CONC(S)
begin?6188 CON(S)
8FB9 GOSBVL

768
A=DATI
3 De-A
64 Do=Dg+

42 A=DATH
818F84 A=A-5
BégFB ASRB

R3=
64 De=Do+
32 ADBex
|62 R2=A
74 D1=D1+
43 A=DAT1
818F@7 E=H+B
174 D1=D1+
143 R=DAT1
139 DB=
167 DB=Da+
174 D1=D1+
143 R=DAT1
818FB4 A=A+5
131 D1=A
147 C=DAT1
CA A=A+C
818F81 A=A-2
160 RB=A
818FA4 C=C-
819F2 CSRB
189 Ri=
AC3 D=0
1 113 A=R3

276

PROL_CODE
(end)-(begin)
SAVE_REG

DUNDD DN ol DDODODN

Uy DD DDODD D DO

Code object
Code length
Backup regs.

DO=Address of object
in stack level 1

R3= # of digits

R2=address of con-
tents of level-1 obj.

Next object

A=Address of object
in stack level 2

Next object
A=Address of object
in stack level 3

Next object
A=Address of object
in stack level 4

object 4 length

of digits in object 4

PART THReE: LIBRARY OF PROGRAMS

[Valph]

o DDODDODDD DDODD O D——D

=~Jun

—®O—0oNMND N— D D—D0—00 D—r—Do

BN

Again?

No --> end
One less digit

EE A S EsEsas

Initializations

No carry
Again?

No --> next
Decimal mode

Read 1 digit
Add to carry

Subtract

Re-write

One less digit

Carry?

Yes --> carry

277

16
17

18

19

110

end

278

w o b

2B

N D N—UN—O—0

i
W RO

bt St PN\ 0t
-

[pe1dp)

[=A]
281

—
(2]

NDNDNDDNDN—

No carry

Carry at end

Yes --> stop
Increment quotient
Loop

Write quotient

Loop
Restore regs.

Need to change order
of stack objects?
{VO --> end

n level 2 and

3
3
EExchange objects
s i
;level 3

)
3
Return to RPL

PART THREE: LIBRARY OF PROGRAMS

DECODE.LM# D626h
CCDZ8 Bobbd 8FBI?
16417 41431 33174
EB15D 1166C D6AEF

ENCODE. LM# BBFBIB
CCDZ8 /o608 SFBI?
16417 41431 33174
08168 CD6AE FBFZD

FORMAT.LM@ 3371h
CCDZ20 ESBBA SFBI?
3818F 84172 D3171

448F2 07681 42164 868C

ZEROD.LM@# 69AAh
CCDZB 54608 SFBIY
ASFB1 50717 7CCél

HDD.LHé# E/4Ch)

CC028 57088 BFB9?
¢CoF6 07174 AFB2B
EEZB4 15071 67177

SUB. Lné# E14h)
CCD28 67808 8FB9?
?C6F6 D7174 AFBSA
gggl? 7167C FAFB9

NULT LM@ ACDBh
CCOza C1168 8FB9?
4AF21 47818 FR4BF
13117 4AF21 47818
06698 11313 1REZ2]
DOADS 11113 BE418
oBOAE BASAE 18228 1
AEBLS ABARGZ 15CH0
868C

DIU.LHé# AD61h)
CCD2

76108 SFB97 60143 13816 41428 18F84 819FH
18316 41321 82174 14381 8FB/D 81741 43138 16717
41438 18F@4 13114 7CAS1 SFB11 066818 FA481 9FZ1B
9AC31 138AC 6861B BCC18 3ACZ21 11DED /DE13 6CZC2
C8C8D D136B 47119 131RE 2BAF6 86748 CFBSA EBLISH
BA6Z1 5 B40C1 3215C 01811 811C1 A8
AAG31 186DB FAE26 6BF96 E9BB4 6658F 16113 60013
61618 47112 13115 54171 13318 2694F 8F2D7 68822
81943 832R1 17414 31741 47141 1C414 51C41 42164

DI':'{.C (# B3CZh)

FORMAT 0" SURP + SUAP FORWAT '2" SIRP +
OVER "09" ==
THEN
 ROPZ # 365h DOERR
DUP NEWOB DUP 1 OVER SIZE 6 PICK SIZE - 1 +
SUB_DIV.LM SWRP ROT DROP DUP SIZE DUP 5 ROLL
SIZE - 1 + SUAP SUB
b 4
MULT.C 7Eqth
< D0P2 + ZERO.LM MULT.LM 3 ROLLD DROPZ »
PREPARE(# 18D6h)

I;URHHT SWAP FORMAT » N1 N2
IF
N1 SIZE N2 SIZE DUPZ >
THEN
DROP2 N2 N1
LSE

<
THEN
N1 N2

280 PaART THREE: LIBRARY OF PROGRAMS

END
EN%UD&{RSNHP ENCODE DUPZ SIZE SWAP SIZE SWAP
WHILE
puPZ SIZE >
REPEAT
P +

END
1 ROT SUB +

b4
»

DECODE 4 RG40h)
« DUP DUP + SWAP DECODE.LM DROP FORMAT »
ENCODE # 19F0h)

"@eopBee" SWAP + DUP SIZE 8 MOD 1 + OVER SIZE
BIRIEPDUP 1 OVER SIZE 2 ~ SUB ENCODE.LM SWAP

»

FORMAT (¢ E1B2zh)
&«

"g" SWAP + # FFFFFh NEWOB FORMAT.LM B»R OVER
SIZE SUB

»

281

NOgU(# FB9%Bh)

IF
FORMAT DUP "g" ==
HEN

ELSE
DIV.C SWAP DROP FORMAT
END

»

DIV # SBG%H
« DIV.C OROP FORMAT »
E(t SR%Eh)
»STR STR» DUP
> N
&«
nau
WHILE

NDUP 2~ IP 'N' STO
REPEAT
DuP +

END
1 ROT SUB +

»
»

Pﬂg(# D40Bh)
3SIR SIR»
+ N

<
ENCODE 1 ENCOOE
WHILE
N DUP | DISP B #
REPERT

IF
N2~ DUP IP 'N' STO FP
THEN

OVER MULT.C

282 PART THREe: LIBRARY OF PROGRAMS

END
ENDSNHP DUP MULT.C SWAP
SWAP DROP DECODE

»
b 4

SUR (# C265h)
‘" + FORWAT OUP 1 OVER SIZE 2 < SIB
L 4
00
* A OVER DIV ADD 2 DIV
¥ OVER 'R®' STO ==
END
¥ 1 OVER SIZE 1 - SUB

»
»

BFACT (¢ 23ESh)
&«
E%RXSTR* DUP 2 DISP 1 ENCODE 1 ROT
o DUP 1 DISP ENCODE MULT.C
NEXT
DECODE

»

%Tgtgghgﬁw ENCODE MULT.C DECODE »

SUBS (# 284Fh
« gm)SUBLM DROP DECOOE »

ﬂﬂg (# 781Ch)

PREPARE 8 CHR DUP + DUP + ROT OVER + 3 ROLLD +
ADD.LM DROP DECODE

»

283

Factorial 2000

This result was obtained using the programs in CALC, listed previously.

331,627,509,245,063,324,117,539,338,057, 632,403,828,111, 720, 810,578,039,
457,193,543,706,038,077, 905, 600,822,400, 273, 230, 859, 732, 592, 255, 402, 352,
941,225,834,109,258,084,817,415,293,796,131, 386,633,526, 343, 688,905, 634,
058,556,163, 940,605,117, 252,571,870,647,856, 393, 544,045, 405, 243,957, 467,
037,674,108,722,970, 434, 684,158, 343,752,431, 580,877,533, 645,127,487, 995,
436,859,247,408,032, 408, 946,561,507, 233, 250, 652,797, 655,757,179, 671, 536,
718, 689,359,056,112,815,871,601,717,232,657,156,110,004, 214,012,420,433,
842,573,712,700,175, 883, 547,796,899,921, 283, 528, 996, 665, 853, 405,579, 854,
903,657,366, 350,133, 386, 550,401,172,012,152, 635,488,038, 268,152,152, 246,
920,995,206,031,564,418, 565,480,675, 946,497,051, 552, 288, 205, 234,899,995,
726,450,814,065, 536, 678, 969,532,101, 467,622, 671,332,026, 831, 552,205, 194,
494,461,618,239,275, 204,026, 529,722,631, 502, 574,752,048, 296, 064,750, 927,
394,165,856,283,531,779, 574,482,876, 314, 596,450, 373,991, 327, 334,177,263,
608,852,490,093, 506, 621, 610,144, 459,709,412,707,821, 313,732, 563,831, 572,
302,019,949,914,958,316,470,942,774,473,870, 327,985, 549, 674, 298, 608,839,
376,326,824,152,478,834, 387,469, 595,829, 257,740, 574, 539, 837, 501, 585, 815,
468,136,294,217,949,972, 399,813, 599,481,016, 556, 563,876, 034, 227,312,912,
250, 384,709,872, 909, 626, 622,461,971,076, 605,931, 550,201, 895, 135, 583, 165,
357,871,492,290,916,779,049,702,247,094,611,937,607, 785,165,110, 684,432,
255,905,648,736,266, 530,377, 384,650,390, 788,049, 524,600,712, 549,402,614,
566,072,254,136,302,754,913,671, 583, 406,097,831,074, 945, 282, 217,490,781,
347,709,693,241,556,111, 339,828,051, 358, 600, 690, 594, 619, 965, 257,310, 741,
177,081,519,922,564,516,778,571,458,056, 602, 185, 654, 760, 952, 377,463,016,
679,422,488,444,485,798, 349,801, 548,032, 620,829,890, 965, 857, 381,751, 888,
619,376,692,828,279, 888,453,584, 639,896, 594,213,952, 984, 465, 291,092, 009,
103,710,046,149,449,915, 828, 588,050,761,867, 924, 946, 385, 180,879,874, 512,
891,408,019,340,074, 625, 920,057,098, 729, 578, 599, 643, 650, 655, 895,612,410,
231,018,690,556,060, 308, 783,629,110, 505, 601, 245,908, 998, 383,410,799, 367,
902,052,076,858, 669, 183,477,906, 558, 544,700, 148, 692, 656, 924, 631,933,337,
612,428,097,420,067,172,846,361,939,249,698,628,468,719, 993,450,393, 889,
367,270,487,127,172,734, 561,700, 354,867,477, 509,102, 955, 523, 953, 547, 941,
107,421,913,301,356,819, 541,091, 941,462,766,417,542, 161, 587, 625,262,858,
089,801,222,443,890, 248, 677,182,054, 959,415,751,991,701, 271,767,571, 787,
495,861,619, 665,931,878,855,141,835,782,092,601,482,071, 777, 331,735, 396,
034,304,969,082,070, 589, 958,701, 381, 980,813,035, 590, 160, 762, 908,388, 574,
561,288,217,698,136,182,483,576,739,218,303,118,414,719, 133, 986,892,842,
344,000,779,246,691,209,766,731,651,433,494,437,473,235, 636,572,048, 844,
478,331,854,941,693,030,124,531,676,232,745,367,879,322,847,473,824, 485,
092,283,139,952, 509,732, 505,979,127,031,047, 683,601,481, 191, 102,229, 253,
372,697,693,823,670,057, 565,612,400, 290, 576,043,852, 852, 902, 937, 606,479,
533,458,179,666,123,839, 605,262,549,107,186, 663,869,354, 766, 108,455, 046,
198,102,084,050, 635,827, 676,526, 589,492, 393,249,519, 685,954, 171,672,419,
329,530,683,673,495, 544,004, 586, 359,838, 161,043,059, 449, 826, 627, 530, 605,
423,580,755,894,108,278,880,427,825,951, 089, 880, 635,410, 567,917,950, 974,
017,780, 688,782,869,810,219,010, 900,148, 352,061, 688,883, 720, 250, 310, 665,
922,068,601,483,649,830,532,782,088,263,536,558,043, 605, 686, 781,284,169,
217,133,047,141,176,312,175,895,777,122,637,584,753,123, 517, 230, 990, 549,
829,210,134, 687,304, 205,898,014,418,063,875,382,664,169,897,704,237,759,
406, 280,877,253,702, 265, 426,530, 580,862, 379, 301,422,675, 821, 187, 143, 502,
918,637,636,340,300,173,251,818,262,076,039,747, 369, 595, 202, 642,632, 364,
145,446,851,113,427, 202,150,458, 383,851,010,136, 941,313, 034,856,221, 916,

284 PART THRee: LisRARY OF PROGRAMS

631,623,892,632,765,815, 355,011,276,307,825,059,969,158, 824, 533,457,435,
437,863,683,173,730,673, 296, 589, 355,199,694, 458,236,873, 508, 830,278,657,
700,879,749,889,992, 343, 555,566, 240,682,834,763,784,685,183, 844,973,648,
873,952,475,103,224, 222,110, 561, 201, 295,829,657,191, 368, 108, 693,825,475,
764,118,886,879,346,725,191,246,192,151,144,738,836,269, 591, 643,672,490,
071,653,428,228,152, 661,247,800,463,922,544,945,170,363,723, 627,940,757,
784,542,091,048, 305, 461, 656,190, 622,174, 286,981, 602,973, 324, 046, 520, 201,
992,813,854,882,681, 951,007, 282, 869,701,070,737,500,927, 666, 487,502,174,
775,372,742,351,508, 748, 246,720, 274,170,031, 581,122,805, 896, 178,122,160,
747,437,947,510, 950, 620, 938, 556, 674, 581,252,518, 376, 682,157, 712,807,861,
499, 255,876,132,352,950, 422, 346, 387,878, 954,850,885, 764, 466, 136,290, 394,
127,665,978,044,202,092, 281, 337,987,115, 900,896,264,878, 942, 413,210,454,
925,003,566,670,632,909, 441,579, 372,986,743,421, 470,507, 213, 588,932,019,
580,723,064,781,498, 429, 522, 595,589,012, 754,823,971,773, 325,722,910, 325,
760,929,790,733, 299, 545, 056, 388, 362,640,474, 650,245,080, 809, 469,116,072,
632,087,494,143,973,000,704,111, 418,595, 530,278,827,357, 654, 819,182,002,
449,697,761,111, 346, 318, 195,282,761, 590,964,189,790,958, 117, 338, 627, 206,
088,910,432,945,244,978,535,147,014,112,442,143,055, 486, 089, 639,578,378,
347,325,323,595,763, 291, 438,925, 288,393, 986, 256,273,242, 862, 775, 563, 140,
463,830,389,168,421,633,113,445,636,309,571,965,978,466, 338, 551,492, 316,
196,335,675,355,138,403,425,804,162,919,837,822,266,909, 521,770, 153,175,
338,730,284,610,841, 886, 554,138, 329,171,951, 332,117,895, 728, 541, 662,084,
823,682,817,932,512, 931,237,521, 541, 926,970,269,703,299, 477, 643,823, 386,
483,008,871,530,373, 405, 666, 383,868,294,088,487,730,721, 762, 268,849,023,
084,934,661,194,260,180,272,613,802,108,005,078,215,741, 006, 054, 848, 201,
347,859,578,102,770,707, 780, 655,512,772, 540,501,674, 332, 396, 066, 253,216,
415,004,808,772,403,047,611,929,032,210,154, 385,353,138, 685, 538,486,425,
570,790,795,341,176, 519,571,188, 683,739,880,683,895,792, 743, 749, 683,498,
142,923,292,196, 309,777,090, 143, 936,843,655,333,359, 307, 820, 181,312,993,
455,024,206,044,563, 340, 578, 606, 962,471,961, 505,603, 394, 899, 523,321,800,
434,359,967,256,623,927,196,435,402,872,055,475,012,079, 854, 331,970,674,
797,313,126,813,523, 653,744,085, 662,263,206,768,837, 585, 132, 782,896,252,
333,284,341,812,977, 624, 697,079, 543,436,003,492,343,159, 239, 674,763,638,
912,115,285,406,657,783, 646,213,911,247,447,051, 255,226, 342,701, 239, 527,
018,127,045,491, 648,045, 932, 248, 108,858,674, 600,952, 306, 793,175, 967,755,
581,011,679, 940,005, 249, 806, 303,763,141, 344,412,269,037, 034, 987, 355,799,
916,009, 259,248,075,052, 485, 541, 568,266, 281,760,815, 446, 308, 305, 406,677,
412,630,124,441,864,204,108,373,119,093,130,001,154, 470, 560,277,773,724,
378,067,188,899,770, 851, 056,727,276,781,247,198,832,857, 695, 844,217,588,
895,160,467,868,204,810,010,047,816,462, 358,220,838, 532, 488, 134,270,834,
079,868,486,632,162, 720, 208,823, 308,727,819,085, 378,845, 469, 131, 556,021,
728,873,121,907,393, 965, 209, 260, 229,101, 477,527,080, 930, 865, 364,979,858,
554,010,577,450,279, 289, 814, 603, 688,431,821,508,637,246, 216, 967,872,282,
169,347,370,599,286,277,112,447, 690,920,902, 988, 320, 166, 830,170, 273,420,
259,765,671,709,863, 311, 216, 349,502,171, 264,426,827,119, 650, 264,054, 228,
231,759,630,874,475,301,847,194,095,524,263,411, 498,469, 508,073, 390,080,
000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000, 000,000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000, 000,000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000, 000,000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000, 000,000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000,000, 000, 000, 000, 000, 000, 000, 000, 000,
000,000, 000,000,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000,000,000, 000, 000, 000, 000, 000, 000, 000,000, 000, 000, 000, 000, 000,
000,000,00C,000C.

285

Pl

Calculating has always been a fascinating problem for mathematicians.
Today, with computers, it is possible to calculate T accurately to millions
of decimal places. Using the CALC programs, we will also make this
calculation. However, because of the limited RAM, we can only calculate
a few thousand decimal places.

There is a well known formula:
n 1 1 1
2" Atan(z)+Atan(5)+ Atan(8)
And we know that Atan can be calculated by:

- n xhﬂ
Atan(x) +z(_l) 2n+1

which converges faster as x gets smaller.

We have, therefore:

S A

2n+1

n=0

As CALC can only manage positive integers, we must multiply everything
by a power of 10, and keep track of the sign manually. The program PI
makes this calculation. It takes a real number from the stack which is the
number of significant digits you would like to calculate PI to.

P1 will constantly display the current step number (2n+1) as well as the
number of digits left to calculate. It takes about 10 seconds per decimal
during the calculation (depending on the amount of free memory, the
number of decimals desired, and other things).

286 PaRT THREE: LIBRARY OF PROGRAMS

Here are a few decimals of Pl:

3.1415926535897932384626433832795028841971693993751058209749445923078164
062862089986280348253421170679821480865132823066470938446095505822317253
594081284811174502841027019385211055596446229489549303819644288109756659
334461284756482337867831652712019091456485669234603486104543266482133936
072602491412737245870066063155881748815209209628292540917153643678925903
600113305305488204665213841469519415116094330572703657595919530921861173
819326117931051185480744623799627495673518857527248912279381830119491298
336733624406566430860213949463952247371907021798609437027705392171762931
767523846748184676694051320005681271452635608277857713427577896091736371
787214684409012249534301465495853710507922796892589235420199561121290219
608640344181598136297747713099605187072113499999983729780499510597317328
160963185950244594553469083026425223082533446850352619311881710100031378
387528865875332083814206171776691473035982534904287554687311595628638823

Plé# CFe0h)

1
8 DIV

END

'T'' S10 1. S - 'S' STO A 4 DIV

DuP 'A' STO B 25 DIV DUP 'B' STO

C 64 DIV DUP 'C' STO

ADD ADD N 2 ADD DUP 'N' STO

DuP 1 DISP DIV DUP SIZE 2 DISP
UNTIL

DUP IIBII -

END
DROP T 4 MULT 2 P SUB "3." SWAP +

»
»
»

287

VAL

This program evaluates a polynomial at any point. The first argument is
the polynomial in vector form; the second is the point (real, complex, alge-
braic or name). To evaluate ¥*+2x+1 atx=2,type [1 2 1 1 2 VAL

VAL (# 2681h)
¢ > VX
) V SIZE LIST»> DROP » A
¢ 61A

FOR ¥
VYCGETXKAY -~ =+
NEXT

DER

This program takes the derivative of a polynomial in vector form. For ex-
ample, to take the derivative of 3x2+2x+1,type [3 2 1 1 DER

DEIi (# 9863h)
ARRY»> LIST» - » A
« DROP
IF
A B
THEN
[8]
ELSE
1 A

FOR X
? * A ROLLD
NEXT

A 1 sLIST -ARRY
END

288 PaRT THReE: LIBRARY OF PROGRAMS

A?*V and V*A

A-+V will converta polynomial in algebraic form to vector form,and Y+A will
convert a polynomial in vector form to algebraic form.

Example: '3*X*2+2#X+1' AW returns[3 2 1 1.

Note that the program Y+A uses the program VAL listed previously.

Fl-ﬂi (# 680h)
{8 'l' STO
Do

g '®' STO OVER EVAL I FACT ~ 1 -LIST SWAP +
SWAP 'X' DUP PURGE & 1 'I' STO+ SWAP

UNTIL

EmU'JER 8 SAME
SWAP DROP 'I' PURGE LIST» 1 sLIST -+ARRY
b4

V+A # 4E46h)
« 'R' VAL »

289

DIVP

This program will calculate the Euclidean division of two polynomials in
vector form. For example, to divide the polynomial x?+2x+1 by the
polynomial x+1,type:[1 2 1 1 [1 1 1 DIVP. The program will
return the quotient in level 2, and the remainder in level 1.

DI\‘):P (¥ 28E3h)
‘DUPZ A B

B 1 GET A SIZE 1 GET B SIZE 1 GET DUPZ -
>cnpq

IF

THEN
DROPZ A c ~ [8]
ELSE
8 q

OR x
OVER 1 GET ¢ ~ DUP 4 ROLLD * n % -

1 LIST

- ARRY»> 1 GET 1 - +ARRY SWAP DROP B

NEXT
ENDDRUP q 2 + ROLLD 9 1 + +ARRY SWAP

290 PaRT THREE: LIBRARY OF PROGRAMS

PCAR

PCAR will calculate the characteristic polynomial of any square matrix. The
resultisa polynomial in vector form. This vector can then be used with the
program LAGU in order to find the roots of the polynomial, which makes

it easy to calculate all the correct values of the matrix.

Example: 3 IDN PCAR returns [1 -3 3 -1 1 (i.e. x*-3x%+3x-1)
PCQR (# DB94h)

DUP IDN DUP SIZE LIST» DROPZ » M I N

«

8 N
FOR X
MmIK=+-DET
NEX
N1+ 1->LIST»ARRY N1 + IDN @ N
FOR

Y
Rl +NY-1+25LISTXY *PUT

291

LAGU

This program will find all the real and complex roots of any polynomial
(which has real or complex coefficients). To use it, place the polynomial
on the stack (in vector form) in order of decreasing coef ficients of x': [a,

. a,], the coefficient a, being the coefficient in front of the term X', and
execute LAGU. The program will display the different steps of the cal-
culation, and return a list of roots of the polynomial.

LAGU uses Laguerre’s algorithm to make the calculation: Z is fixed (an
approximation of the root. We can use 0 or the value of the previous root,
which saves a lot of time when calculating multiple roots), and calculate
Z.=2+8S,,where S, is the Laguerre step equal to:

- —nP(Z,) — —
P(Z,)+ Eyf((n-1DP(Z,))’ - n(n-DP(2,)P"(2,)

In this formula, n is the degree of the polynomial, and P is the polynomial;
P’ is its first derivative, and P’ is its second derivative. E can be either +1
or -1 to make the denominator as large as possible, in order that the
Laguerre step be as small as possible.

Caution: If the polynomial has roots with large multiplicity , the process will
oscillate without ever converging. The approximations are best for a
polynomial of degree less than 7, and with @ maximum multiplicity of 4.
LAGU uses the programs VAL, DER, and DIVP previously listed.
Example: To find the roots of x%14.x*49.x%36 , just type:

[18 -1498498 -36 1 LAGU

A few moments later, we get the list of the six roots of the polynomial:
{123-1-2-312

292 PART THRee: LiBRARY OF PROGRANS

LFIEU (# BABFh)

IF
I%JUP SIZE { 1 } ==
S%RUP {3
%LCD { 3 'S0L' ST0 8 'Z' STO

DuP DuPZ 'P' STO 1 DISP 'Z' VAL SWAP DER
DupP 'Z' VAL SWAP DER 'Z' VAL P SIZE LIST
- DUP 1 - DUP SQ 3 PICK 3 PICK * NEG

> PBPLPZNMAB

&

ﬂﬁ?ﬁ% No " N »STR + 2 DISP 2
pup 'Z' STO 3 DISP PB EVAL DUP ABS
. 0000000001 >
EAT
P1 _EVAL P2 EVAL
»RST

&

S AHS SO * BRT**+IDUP2
DUPZ + ABS 3 ROLLD - ABS > 2 «

1 - = + DUP

THEN
98 .1 BEEP OROP RAND 48 + 28 -
EH%UISBB 28 - Rs>C "/B New ZB"

LSE
N NEG R *= SWAP -~ Z +
END

»
END
DROP
»

SOL Z + 'SOL' STO P 1 Z NEG { 2 3
»ARRY DIVP DROP

UNTIL

ENDDUP SIZE LIST» <

DROP { Z P } PURGE SOL
END

<>

293

PMAT

This program will calculate the image of any square matrix by a polyno-
mial. Ittakes the matrix and the polynomial (in vector form) as arguments.

Example: To calculate the image of the identity matrix of order 3 by the
polynomial 3x+2x+1,type3 IDN [3 2 1 1 PMAT

PMAT (# 844Ch)
«
SWAP OVER SIZE 1 GET » V X L
&
KO CONXIDNLI

FOR ¥
DUP V ¥ 1 »LIST GET =+ ROT + SWAP X #* -1

STEP DROP

»

294 PaRT THREE: LIBRARY OF PROGRAMS

mSOLVER

mSOLVER will solve a system of non-linear equations containing many
unknowns, by using the Newton-Raphson algorithm. To use mSOLVER,
you place the various equations to be solved into a list, and store it in
'MEQ'. For example, the following system of equations will find the
intersection of two circles. You store it as a list into 'MEQ" :

{ 'SQCXI+SACY)=1" 'SQCR-1)+5QC¢Y)=1" } 'MEQ' STO

Next, you place the names of the unknownsinalistand storeitin 'MVAR'.
(Inthisexample: { K ¥ 2} 'MVAR' STO) At this point, you may also
store approximations in the unknown variables. This step is optional, but
it will speed up the solution. For example,youcanput linto '®' and'Y"'.

Then place the desired precision on the stack (for example, 0.00001), and

execute mSOLVER. During the search, it will display the margin of error of
the current calculation. Note that WSOLVER will automatically handle any
errors (division by zero, etc.). Atthe end of the search, it will place dif ferent
approximations on the stack, “tagged” by the name of the corresponding

variable. In our example, we would obtain:

4:
3:
2: 8 .5

1:Y: .8660825163782

mSOLVER has two particularities:

+ Itallows you to find complex roots. To make such a search, simply
use complex numbers as an initial approximation.

+ Itcontains many IFERR...END loops, so it is difficult to interrupt the
program by pressing (ON). To stop it, press (ON) twice rapidly.

mSOLVER was written by Christophe Dupont de Dinechin.

295

JACOB (# EB65h)
L 4
+ EV
&
'tmp. jacob' CROIR
tmp. jacob CLVAR
{3Y1E
FOR e
1 V SIZE
FOR v
E e GET V v GET & +
NEXT

NEXT
EPDIR 'tmp.jacob' PURGE

b 4

uS(lLVER (# CC30h)
ELLCD MEQ MVAR » P E V
E v JACOB E SIZE V SIZE
» J SE SV

DDRUP "“Yariable Error" 1 DISP 8
DUP ¥ v GET STO
EXT
SV 1 »LIST +ARRY
1 SE
FOR e
E e GET
IFERR
>N
THEN
ENdThnction Error: =" ERRM + 1 DISP @

296 PaRT THREE: LIBRARY OF PROGRAMS

NEXT
SE é »LIST +ARRY

"Jacobian Error: =" ERRM + 1|
DISP B
END
NEXT
NEXT
SE SV 2 »LIST -»ARRY
+» R F J

&«

"Singular system: =" ERRM + 1 DISP
ENDDRUP RAND =

»
0BJ» DROP
SV 1
FOR v
V v GET STO -1
T
ABS "Current error:s" OVER + 1 DISP P

END
1 MVYAR SIZE
FOR x
MVAR % GET DUP RCL SWAP -TAG
NEXT

£

297

MAZE

In the game MAZE you are lost in the middle of a maze, and you must try
to find the exit as quickly as possible.

To play this game, you mustbegin by entering all the programs that follow .
Then, enter the CST menu (by pressing (€sT)—found to the left of the
button). This will activate the 6 menu keys. They each have the following
functions:

. starts the game. Firsta maze will be chosen, then the player
is placed inside, and the view is displayed on the screen. The X
represents your current position.

. will redraw the current view.

» The four arrows are for moving around in the maze.
Inthe following listing, only one maze is given. Itis possible toadd as many
others as you wish. The different mazes are contained in alist 'MAZES' .
This is a list of lists (one list per maze) which consist of the following:

» A complex number which is the coordinates of the exit.

+ Alist of 4 binary integers representing the map of the maze.
Coding the mapis doneinthe followingway. Eachmazeis a16 by 16 grid.
Each of the grid boxes can be either a hallway (0) or awall (1). The map

is converted to 4 binary integers. (4 times 64 bits), each one representing
a fourth of the maze.

An example is given on the following page.

298 PART THReE: LIBRARY OF PROGRAMS

3268 5352/ .

c =9 @ o

ESO wo99=3g

2835 D N >FE

Qo 0@ R

S8 oo 20 g

(3} = - © R4 ©

.SES.W% %_&SMJ VITOATTSgoN0OOLTON~ O

me.mw%f MnSﬂmmﬁ ._w01000001"00010000

» _-0 = o -

(1] (=] D

.Imwm.h.. mmhsnm -0 r~ro0oo0oo0coocolrro+~v+o~o

Se®sF 5ISgEFT 2 !

— ~— =N~

Fo8%m Fs&s®woEo Tfloocooooooloo~o+~oo ~
40I<I10104I10“10101010
901010101_00111010
801011000|“..00000010
701010011_11101010
601001010“00001000
501011010_1011104’0
¢/lo-~ro0o0o0c0o0o+~o0lo~o0o0ooo -
301111101“01111010
N|jO OO OO0 o oo|loooo oo~ o
101111011“10111110
Oolooooor~-~o0oo0ojoo0oo0oo0oooo
w0 ™ N
WINDNANZCTCSaoo~No0oW0OTONTT O

299

0123456 7 8 9101112131415

This table shows the codes for the map. Each section of wall is coded by

a 1, each section of hallway by a 0.

The entire maze table can be coded in quadrants, by 4 binary integers, in
the following order:

2|4
3

Those binary integers would be (ignore the line breaks):

1. # 10100010160110001610101000101810
11181010600608181010111660010006b

2. i 0000B0001111101600001018101010108
81101010000816011111601010081816b

3. # 01118100600001100111100081000181
81110110000060000111011100081006b

4. # 00110100100001110011000861018111
810160018101011661091010010006018b

Converting these to hexadecimal, in order, gives the following list:

{ # AZ9BAAZAEABZAEIBh # FABRARGABSFZ28Ah
7406784576087708h # 3487385751565482h }

300 PART THREE: LIBRARY OF PROGRAMS

Here is the listing of programs to enter:

AL # SBrAh)
« O RDZ 16 RAND = IP »

BL1 (# 4998h)
fatt (This is not a NEWLINE character but rather ASCII 127,
obtained via 127 CHR)

BLZ (# 3D27h)
e (a single space)

TS (# 3E54h
« RsC SO # »

TV # SHGDI'H
« TVWP SWAP TVWP + »

TVR b 115Fh)
« DUP B < SWAP 15 > + »

ETQT (# 85Ah)

puP2
IF
TV
THEN
1S
ELSE
pupz 8 ~ IP SWAP 8 ~ IP 2 *= + | + LAB SWAP

1
GET 3 ROLLD 8 MOD SWAP 8 MOD SWAP 16 SWAP
END"DUP#1h**8MHP28NHP“*HND#Bh>

14 @# AClh)
&K1 -Y»

301

I3 # 8E47/h)
¢« X1 +Y>»

12 (# D48hf
«X¥Y1-

»
I1 # E9E3h)
« XY 1+ »

TE%T (# B24fh)
1 _'COUP' STO+ DUP2

%THT
S"NHLL" 1 DISP DROPZ

E
'Y' STO0 'R' STO VIEW
END

LSE
ENU"BRH'-)U" 1 DISP DROP2 1468 .1 BEEP
3 FREEZE

b4

CH # C52Dh
« ETAT 95 # 32 + CHR »

MH%ES (# 38FBh)
{

[y
g

(11,16
{" ¥ A?90ARZAEARZAEIGh # FABRARGABIF2SAN
740678457°6867708h # 348730575156548zh

302 PART THRee: LiIBRARY OF PROGRAMS

CST ¢k 1FBIMy
INIT VIEW
, CRTER D O O R D O R)

AR (# Dl3[lhg
« [2 TEST »

RY # FI‘ZS
(EgT »

DR ¢ 7Efh
I3 TEST »

GA ‘(:# 37ED EgT N

UIEH (* 9A7°7h)

: "3 5 (that's 9 spaces)
CLLCD BL1 I1 CH BL1 + + I4 CH BLZ I3 CH

+ S SWAP + 5 DISP S

E'PZE 3 DISP "MOVE No "

INU # SE7Sh)

MAZES DUP SIZE RAND = 1 + IP GET LIST»> DROP
'LAB' STO 'S0’ STO 1 'COUP' STO @ @

DO
DROPZ AL AL DUPZ ETAT NOT
UNTIL

END
"Y' STO 'R' STO VIEW

303

MASTER

MASTER is the well known game of Mastermind. The object of the game
is to try to guess a combination of digits from 0 to 9.

The length of the solution combination can be any size. To set this size,
(required to play the first time), simply enter the desired number and exe-
cute STOL. Then initialize the game by executing INIT.

To play, you enter a combination of numbers (your guess) in string form,
and then execute MASTER. The program will display the number of digits
in the right position (Correct) and the number of digits that are in the code,
but not in the right position (Found). For example, if the solution is 8548,
entering "8834" would return the following:

Guess No x
8834

Correct= |
Found=

The first 8 is in the right position; the second 8 and the 4 are part of the
solution, but are not in the right positions.

To play, enter the programs that follow.

STgL (# CFZ8h)
DuP
IF
TYPE 8 ==
HEN
L_L' STO INIT

ELS
914 DOERR
END

304 PART THREE: LIBRARY OF PROGRAMS

INIT(# 49FSh)
B_'C0' STO 1L
ART
RAND 18 * IP
NEXT
, LoLIST 'soL sTo
MASTER 4 2807h)
&«
DUP
IF
TYPE 2 == DUP
THEN
DROP DUP SIZE L ==
END

THEN
o GLLCD DUP 3 DISP STL PROG 7 FREEZE
514 DOERR
END
»
STL 4 4DBCh)
«
>
&
{315 SIZE
FOR ¥
SR ¥ SUB STR» +
NEXT

»
»

305

PROG (# 743Fh)

80
> PR CP CT

1 'CO' STO+ "Guess No " CO + 1 DISP
SOL PR1IL

FOR ¥
?EP % GET 3 PICK X GET

THEN
% -2 PUT SWAP ¥ -1 PUT SWAP 1 CP +
'CP' STO

NEXT
'PR' STO "Correct= " CP + 5 DISP 1 L
FOR ¥
DUP X GET DUP
IF
-1>
THEP

L
FOR Y
?E Y DUPZ GET 4 PICK

TH
-2 PUT _'PR' STO 1 CT + 'CT' STO
'Y' STO0

NEXT
DROP "Found= " CT + 6 DISP

»
»

306 PART THREE: LIBRARY OF PROGRAMS

ANAG

This program takes a string of characters and displays all possible ana-
grams. For example, "ABC" ANAG will display these character strings:
"ABC" "ACB" "BAC" "BCR" "CAB" "CBA" . Here are the programs:

PRQNHG (# RA68Dh)

IF
B B>

THEN
I;EIIR 'E' STO+ PRDEPTH DUP B -
% ROLL PRANAG ¥ ROLLD -1
STEP
SIE 'B' STO+
PRDEPTH DUPN PRDEPTH 2 - 1 - 1
STHBT 1

STEP
4 DISP
END

b4
PRDEPTH {_# EAFFh)
« DEPTH C - »

ANAG (# 1F82h)
«

» f

<«
[ZLlﬁC[g< A SIZE 'B' STO DEPTH 'C' STO 1 B

A X DUP SUB

NEXT
PRANAG PRDEPTH DROPN { B C 3} PURGE

307

SQUARE

The goal of this game is to arrive at a display of the “magic square,” which

is the following figure:
HEN
H N
HEN

Toaccomplishthis, the player may press dif ferent boxes (by using the keys
(1)to(9)). Pressing one of these will inverse the box as well as some of its
neighbors.

To play, enter the following programs, and execute 'SQUARE"'.

KEYS g} 2CE6h
{ 82 83 8¢ 72 73 74 62 63 64 3}

MESS 6# 8019h)
"WORKING. .."

T (#{F 6459h)

M@ EEZh)
{n 789 NI 456 N

n 123 N }

308 PART THRee: LiBRARY OF PROGRAMS

CALC (#
&«

E36Ah)

Bgress a key..." 1 DISP T 1
DROP KEYS
Do

UNTIL
KEY
END

UNTIL

POS DUP

ND
1808 .85 BEEP MESS 1 DISP GET DUP 1 DUP
ROT SIZE

NEX
DROP2

»

SD% f# £888h)

[
[

[—

CH% # C

e
[—ya—

T
GETI 1 - DUP 3 MOD 1 +
WHILE

DUP 3 >
RE%EHT

END
SWAP 3 ~ IP 1 + SWAP 2 »LIST CAR SWAP
qUPZ GET NOT PUT 'CAR' STO

——

1
8
1

b—-m’—‘g
Pt ot 4 T
——a

309

VISU # ES36h)
<«

Do
CAR { 11313
FOR ¥

TART
3 ROLLD GETI 95 # 32 + CHR 4 ROLL
SWAP +

XT
N M ® GET SWAP + 142 CHR + 3 ROLLD
ERUPZ 2 4

UNTIL
CAR SOL ==
ND

" Bravo..." 1 DISP 1 3
START

1898 .2 BEEP
NEXT

>

SQUARE (# 2DC2h)
&«

BLLCD MESS 1 DISP 8 RDZ CAR
{11319
RAND .5 > PUTI

EX

END
'CAR' STO VISU

»

310 PaRT THREE: LIBRARY OF PROGRAMS

PR40

This program will print character strings with 40 characters per line instead
of 24 on the HP 82240A or HP 822408 infrared printer. The string may
contain carriage returns (®), and any line which contains more that 40
characters is split (just like the function PR1).

The program is simple. Ittakes the string and splits it, first at each carriage

return, then it cuts the portions that are longer than 40 characters. Each

of the sections thus obtained are transformed into graphics objects in the

smallest font (using 1 *GROB) and then printed using the function PR1.
Because of this, any small letters are changed to capitals.

This program is particularly useful for printing listings obtained from the
disassembler.

PR48 (# /B3Sh)
« "a' + 3§
<

WH
S SIZE
REPEAT
S DUP "=" POS DUPZ 1 + OVER SIZE

SUE% 'S' STO 1 SWAP 1 - SUB
.)

&«

WHILE
T SIZE

REPEAT
1 48 SUB 1 »GROB PR1 OROP T 41

7
OVER SIZE SUB 'T' STO
END

»
END

311

DSP and INITSCR

These two programs, DSP and INITSCR, let you use the HP 48 screen in
33-column mode. The display is shown line-by-line to allow you to see
each line while it is being displayed.

The two programs perform the following functions:

+ INITSCR erases the screen and initializes the screen memory used
for the line-by-line display.

« DSP displays the message line-by-line scrolling up any text already
displayed.

The function *GROB is used to obtain the small fontcharacters. Agraphics
object is created for each line of the display, and then each line is saved,
in list form, in a variable called SCREEN. The lines are added using the OR
function onablank GROB, and then the resultis displayed using the *LCD
function.

This program can be used with the program DISASM (the disassembler)
to view the listing as itis disassembled. DSP can replace the RPL function
DISP. Todothis, replace 1 DISP in the program STOS with DSP and add
INITSCR to the beginning of the program DISASM.

INITSCR (# 424h
« { } 'SCREEN' STO CLLCD »

312 PART THRee: LIBRARY OF PROGRAMS

DSP ¢ 7BRth)
&«

»

»

"s" OVER DUP SIZE DUP SUB OVER #

WHILE
TXT 1 OVER "=" POS DUP
REP

ERT
3 DUPN SWAP + OVER SIZE SUB 'TXT' STO

1 - SUB 1 »GROB SCREEN + 1 9 SUB
'SCREEN' STO # 83h # 48h BLANK 1 SCREEN
SIZEU DUP # bh *

>

€«

FOR X
Bh_ 0 # 6h X * - 2 »LIST SCREEN

? GET GOR
NEXT

»
»LCD

END
3 DROPN

313

MUSICML

MUSICML will play tunes without interruptions between notes. MUSICML is
amachine language program that has not yetbeen assembled. The RPL
program listed below will take a list of notes (frequency, duration) and
create a machine language program that will play them. It uses the two

programs GASS and A*STR, previously listed.

Example: { 1460 .1 28608 .1 1488 .1 3} MUSICML EVAL

Note: The 'Code' object (which is on the stack before executing EVAL)
can be stored in a variable to be used later.

The following is the RPL listing of MUSICML ; the disassembled source
listing of the machine language portion is given on the next page.

HU% ICML (# ECBh)

> L

&
"CCD28" # 4Fh L SIZE 2 + 5 # + AsSTR +
"S8FBI’6OBE" + L SIZE 2 + 5 = ASSTR 1 ¢
SuB + 1 L SIZE

FOR X
L X GET A»STR + L X 1 + GET 10098 =
A*STR + 2

STEP
"800000000807°13514 /071 /41431 7413786D6BARDBBFE6A7"
"10690FB78F207608142164888C" + + GRSS

»
»

314 PART THREE: LIBRARY OF PROGRAMS

start

4]

12

end

CCD28 CON(S) PROL_CODE Code object
*xxx% CON(S) (end)-(start) Code length
8FB9768 GOSBVL SAVE_REG Backup regs.
BEx**+ GOSUBL

LIST OF NOTES—Frequency / Duration (in milliseconds)

CONCS) #B00vBo End of notes
CON(S) #b06ro
g/ C=RSTK
135 D1=C
147 C=DAT1 A Read frequency
D? pD=C A
174 D1=Di+ 5
143 A=DAT1 A Read duration
174 D1=Di+ S
137 CDlex
B6 RSTK=C
C=A A
8AA =4 A Done?
GOYES 12
SF6A718 GOSBVL BEEP_LM Beep
690F Gﬂégm 11 Loop
8F20768 GOSBVL LOAD_REG Restore regs.
A=DAT8 A Return to RPL
164 De=Dv+ S
8038C PC=(R)

315

MODUL

This machine language program will quickly alternate between two sound
frequencies. The arguments are a starting frequency (START), an ending
frequency (END), afrequency increment (INCREMENT), and the duration of
each note (DUR). These settings are used by the RPL program MODUL,
which automatically creates a machine language program that will make
the sound. This program uses GASS and A+STR, listed previously.

Example: 1408 26608 58 .81 MODUL EVAL

Note: The 'Code’' object (which is on the stack before executing EVAL)
can be stored in a variable to be used later.

Here is the commented assembly source listing for the assembly routine
created by MODUL . The asterisks (¥) represent code that depends on one
of the 4 arguments.

CCD28 CONC(S) PROL CODE Code object
start 15068 CON(5) (end)-(start) Code length
8FB9768 GOSBVL SRVE_REG Backup regs.
J4==xxx LCHEX START Start frequency
D? D=C A
n 0B C=D A
86 RSTK=C
Jqxxxx L CHEX DUR (In milliseconds)
8F6A718 GOSBVL BEEP_LM Beep
a7 C=RSTK
07 pD=C A
I4xxxxx LCHEX INCREMENT Increment
e [Do o
XXX En in requency
3 WL A ApL
7D GOYES 11 Loop
8F2D768 GOSBYL LOAD_REG Restore regs.
142 A=DAT8 AR Return to RPL
164 D=0+ S
808C PC=(R)

end

316 PaRT THRee: LiBRARY OF PROGRAMS

MODUL (¢ 1E1Fh)
&
>DFIP
&«

IF

THE%I 1668 = DUP 'P' STO # Bh + # Bh ==
"ZERO DURATION..." DOERR

END

F
I # 6h + # Bh ==
THEN
ND"ZERU INCREMENT..." DOERR

E
"CCD20156008FBI76034" D A+STR + "D/DBO634" +
II’FH->STR + "GF6A7186870734" + I ASSIR +

DF <
LSE
IIE3 1]
END
+ 34" + F AeSTR +

DF <
THEN

" BBFII

ELSE
[} BBB 1]

END
+ "7DBF20768142164888C" + GASS

317

RABIP

This little program will generate random sounds in the frequency range of
0 to 4400 Hz, for a duration of 0 to 0.1 seconds each. It stops when any
key is pressed. This could be used as an original way of letting the user
know that some long program has finished its calculations.

RABIP (# A75Bh)
L 3

DO

4408 RAND * .1 RAND *= BEEP
UNTIL

KEY

END
DROP

JINGLE

This program plays a little music. The notes for the tune are contained in
the list SOUNDS (an example is given here). Note that the SOUNDS list is
giveninreverse. The last frequency-duration pair is the first note played.

JINGLE (¢ 83Elh)
&
SOUNDS LIST» 1 SWAP 2 ~ MEM DROP
START

BEEP
NEXT

»

SOUNDS ¢# 9A73h
{ 3% .75 448 .15 275 .15 358 _.875 358 .15 399
.875 698 .15 565 .15 398 .15 465 .15 565 .15
599,875 399 _.875 398 .15 565 .3 39 .3 350
3%8 3%8 157515 L0875 399 .875 390 .15 465 .3

318 PART THRee: LiBRARY OF PROGRAMS

RENAME

This program allows you to rename an object. It takes the old name and
the new name as arguments. The object is renamed without changing its
position in the directory order.

RENAME (¢ 1A24h)
&«

OVER RCL SWAP STO VARS DUPZ SWAP POS 2 SWAP
SUB ORDER PURGE

»

AUTOST

AUTOST is an example autostart program. You may add to this program
to improve it as you wish. As is, this program will be assigned to the
key automatically (i.e. it will make the assignment and put the calculator
into USER mode).

HULDST # BCESh)

&«

IIZLLDEIDSPDFF 1468 .67 BEEP "HP48 : REARDY"
1969 .81 BEEP .5 WAIT

»

91.3 ASN -62 SF

»

319

CAL

CAL will display a one month calendar. As arguments, it takes a list of two
real numbers that specify the month to display: The number of the month
(between 1 and 12) and the year (between 1583 and 9999).

Or, a quicker method:

« If the list contains only one element, this is considered to be the
month number, and the year will be the current year according to the
calculator clock.

« Ifthe list is empty, then the current month is displayed.

Note that the calendar is “European” style; Monday is the first day of the
week.

CFII; (# 2E31h)
ELII.:DD # 4E2CFh SYSEVAL RCLF

L S

-42 SF { } + DATE FP 188 = SWAP OVER IP +
SWAP FP 108089 + + DUP DUP SIZE 2 MOD 2 +
EEI{ %NHP 1 GET

&

1.0119 1 M 188 ~ + Y 1060008 - + DDAYS
7 MOD
> S
&«

"SEPTEWBER" "OCTOBER" "NOVEMBER"
"DECEMBER"

¢ "JANUARY" "FEBRUARY' “MARCH" "APRIL"
GUST"

3

m +]]

1 22 4 PICK SIZE - 2 ~ SUB SWAP +

1 DISP " MO _TU WE TH FR_SA_Su" 2 DISP
{ 3311 %8 31 36 31 39 31 31 38 31 38

320 PART THREe: LIBRARY OF PROGRAMS

GET M 2 ==Y 4
0D @ ==Y 168 MOD 8 == - Y 1868 MOD
==+ AND +
N
B
FU un
FOR G
L7*C+s-" " SR
DUP 8 > OVER N < AND
EN
+
ELSE
DROP

END
DUP SIZE DUP 2 - SWAP SUB +

NEXT

L 16 = # 124/Bh + SYSEVAL
NEXT
7 FREEZE

»

321

CIRCLE

CIRCLE is a rapid circle drawing routine written by Christophe Nguyen. It
uses the Bresenham algorithm and takes two arguments: Areal number,
the diameter of the circle (if the diameter is negative, a white circle with a
diameter of that absolute value is drawn); and a complex number , the co-
ordinates of the center of the circle. These two arguments are left on the
stack. If they are no longer useful, you should drop them (with DROPZ).

This program is self-modifying; it should not be used as a backup (saved
in a port). Three demonstration programs (TEST1, TESTZ, and TEST3)
show how fast it is. Its long disassembled source listing is omitted here.

TE%TI(# D683h)
ERASE { # 6h # Bh } PVIEW 1 1069
START

RAND 20 = RAND 131 * 65 - RAND 64 * 32 -
NEXBI?C CIRCLE DROPZ

»
TE§T2 (# SBEEh)

E?ﬂﬂ% { #6h # 6h 3 PVIEW 18 (B,8) 1 20
CIRCLE DUPZ RAND 19 = 5 - RAND 18 = 5 -
R+C + CIRCLE

NEXT

1_ 10068

START
DUPZ RAND 18 = 5 - RAND 18 # 5 - R+C +
CIRCLE DEPTH ROLL -1 = DEPTH ROLL CIRCLE

l'~IEXI:JI'RUP2

»

TE§T3 # 35EFh)
INIT DEG
DO

322 PART THREE: LIBRARY OF PROGRAMS

-189_189

FOR T

9 T = COS 68 = 7 T % SIN 39 = R+C 3

OVER CIRCLE DRUPZ DEPTH ROLL -3 SWAP

CIRCLE DROPZ 2

STEP

UNTIL
8

END

»

INIT (# SBF1h)
&«
ERASE 1 20
START
(100, 108)
NEXT
{ # 6h # 6h X PVIEW

»

CIRCLE é# 9965h)
ngF 1 BI;BI; % CCD28 99368 SFB9? 66201

7 133917 4
6 13517 41471 35174 13713 5/5F0 108887
39174 _}_?EZB T1}5?‘19 1511 16F81 066863

~N
8
[av]
[an)
D
[an]
o)
an
w
B
5
[
n
[an]
[an)
o)
O
—
w
=~J
—
~H
O
—
(an)

o
m
D
)
[av)
—
H
~N
a0
D
[wn)
o
\l
N
[av)
D
[ae]
(av]
w
-
g
~n
[an]
[av]
MNO— O TIOUIN) — W

RE TR o BI

OO0 bt bt =\ 1= = (I D = O

S

S
— OO MO H— IO

DOVOOEOOMI— 00—
et et et (O = T I B)
=MW —
w
—‘d
-
~Nd
[av)
mn
o)
w
w
—
~N
[a~]
—
)
an
[av]
[an)
[av)
[av)
&

m
—
[av]
D
—_
|
[V}
m
o
—
[a]
(Va]
o
)
[a 5]
M
—
|
—
P
—
D
=
[ae)
[av]
—\-l
S
[av]

24811 90511 A189D 916A7 I%Fg D9168R 76201

SISII
Qo

w
S

afss
— OO0 \I— 0
[an]
D
M
e
O
—
[av]
Xs]
-~J
w
—
[a)
n
[Va]
B
—
[an]
(Va]
[a)
[a~)
oA
[a]
o)
D
as)]
)
B
—

n

3

323

BANNER

The program BANNER will allow you to display a scrolling message in giant
letters. BANNER was written by Christophe Nguyen.

Notes:

» The accepted characters are the ASCII characters from 31 to 90
(numbers, punctuation, and capital letters).

- BANNER uses a table to draw the characters. Because this table
needs to be generated by the program KT, entering the programs
is a little different than usual. To enter BANNER, do the following:

Enter the code for BANNER1, as a string on one line with no
spaces, and place it on the stack.

Enter and execute the program MKT (which will produce a
string of 2100 characters).

Enter the code for BANNERZ, as a string on one line with no
spaces, and place it on the stack.

Concatenate the three strings (by pressing (3 twice).
Execute GASS (or RASS) and store the result as 'BANNER' .

ngpresultmg program should look like 8 CHR + CLLCD Code
D

To use BANNER, simply give it a string of characters, and watch the results.
Example: "JOURNEY TO THE CENTER OF THE HP48..." BANNER

Here is the commented assembly source listing for BANNER, then the
codes for BANNER1, and BANNERZ, and the program MKT:

324

PART THReE: LiBRARY OF PROGRAMS

D9D28 CONCS)
4B2A2 CONCS)
66BC1 CONCS)
76BA1 CONC(D)
858A1 CONCS)
CCDz8 CONCS)
start 23A08 CON(S)
9FB9/68 GOSBYL
1BEBSB? DB=(5)
42 A=DATH
3412688 LCHEX
2 C=C+A
134 DB=
18R Rz=C
137 CDlex
135 D1=C
v6 RSTK=C
AEQ =@
80982188 LAHEX
1096 RB=A
AEQ =
8882128 LAHEX
181 R1=A
07 C=RSTK
135 D1=C
143 A=DAT1
131 D1=A
179 D1=D1+
137 CDlex
135 D1=
86 RSTK=C
Loop 1BEBSA? DB=(5)
142 A=DATH
138 DB=A
16F DB=DB+
16F DB=DB+
168 DB=DB+
%1 C=RSTK
135 D1=
0]%) A=0
14B A=DAT1
96C PAHB
0 GOYES
8C0998 GOLONG

PROL _PRGM
#2A264

PROL_CODE
(end)-(start)
SAVE _REG
EB5BE

#8002 1

A

B
#08

B
#62

7B56E

s s s m

Cont
Done

Program object
Null

CHR

Addition
CLLCD

Code object
Code length
Backup regs.

A=@ screen bitmap

Current position

Big pixel height

Big pixel width

(2 nibbles,8 bits)
A=@ string

D1=@ of first char.

DO=@ screen bitmap

ds screen position
D1=@ char.

Read 1 char.
CHR(0)?

Continue
Done

325

Cont 34F1888 LCHEX #0001F H
C=A-C s Calculate the

EE A

DA A=C A offset to

cé C=C+C A find the

ceé C=C+C A s representation of
cé C=C+C A e char.

cé C=C+C A 1 char= 35 data
cé C=C+C A Char between 31
C2 C=C+A A and 98, then:

c2 C=C+A A of fset=(c-31)%35
ce C=C+A A

DA A=C A]

8E43880 GOSUBL Get_code Gosub after the data

(to determine address)

: End of BANNER1 and beginning of the character codes

* These codes are 1 nibble per pixel (0 or F) to speed up
* execution. They are coded column by column.

: Take, for example, the letter A:

8888

The code for A looks like:
OFFFFFFFOOFO00FO0F000FO0F0000FFFFFF...

I & & & & B O
O oo ooHn
oOooHmlooH9w
O OO ooH
T B & 1 B B O

% % % % % % % ¥ % ¥ ¥ % % % ¥ ¥ & % ¥ B B

End of character codes, and beginning of BANNER2

326 PART THReE: LIBRARY OF PROGRANS

#3

St _col
Blank

#07
B

B
End_col
WP

Repeat _H

Wr_col

B
B56E
A

oooooooo

C=@ of data
Add offset
@next char

Save

5 columns

If not done
Otherwise --> blank

7 lines

Done
Read pixel
Big pixel height

Done
Write
Go to the
next line

Next big pixel

We have written on
right of screen:
Now we must
scroll to the left

Recalculate the num-

ber of lines to
scroll.

327

Repeat L
AED

B=B-1 B Extension of
471 GOC Next _col width
1BEBSB? DB=(5) 7B56E
142 A=DAT8 A
130 DB=A
7050 GOSUB Left Scroll
68EF GOTO Repeat _L
Next_col
118 C=R2
134 Dg=
607F GOTO Next
Blank11R C=R2 Adding spacebetween
134 D= two characters
118 C=R@
AEA = B
A64 A=R+A B
A64 A=A+ B
A64 A B
B6E C=A-C B
AES =C B
A998 =0 WP
Part RGE C=C-1 B Write a blank column
431 GOC Leftbl
981 DATB=A WP
De=Dg+ 16
6F Dg=DB+ 16
61 Do=Dg+ 2
6CEF GOTO Part
Leftb/AE9 C=B B Scroll
BEBSE? DB=(5) 7BS6E
92 A=DAT8 A
139 DB=A
7600 GOSUB Left
8C896F GOLONG Loop
Left B6 RSTK=C Scroll the visible part
AE4 A=B B of the display.
AES B=C B
AE6 B C=#of lines

C=A
66 RSTK=C DO=@ screen bitmap

328 PART THREE: LIBRARY OF PROGRAMS

Loop_lIft

"RED

971

a7

AES

34BBoB6
Wait CE

oDF

68BF
Done8F20768

142

164

808C
end 8DBF1
B2138

B
Newxt1ft

B
EBBBBB
Wait

0P
EPILOGUE

Delay to slow scrolling

Done.

Scroll one single line

Next line
Continue

Restore regs.

Return to

PL

329

Here are the programs that you will need to enter. The method of entering
these is not the same as usual. Please read the notes on page 324.

BANNERI (# 4!386!}3)
09028 4BZA2 66BC1 76BA1 858A1 CCDZB 23A08 BFB9Y
001BE 89071 42341 2086C 21341 BA137 13506 AEGS
82189 100AE 08082 120819 18713 51431 31179 13713
90618 E@SE7 14213 B16F1 6F168 67135 DB14B 96C8
6C 6C6C6 C6C2C 2C20A 8E438

gCD99 834F1 BBOEE DAC

I‘IK];(# DF2oh)
II-:BR{H* Bh # 6h X PVIEW 31 90
FII]ETX{ # 6h # Bh 3 A CHR 2 »GROB REPL 8 ¢

8 6
FURIFY
>§IR->B Y R+B 2 »LIST PIX?

ELSE

Ilall

END
+

NEXT
NEXT
NEXT

>

BANNER?Z # B99SIH
g7CA1 71137 o 6B6F7 03178 RESAG

1 6F161 6CEF1 70680
1BE AE AA64R 64A64 BGEAG

D4711 BEBSA 7?1421 38705 B6BEF 11R13 4607F 11R13
41187 EAAG4 A64A6 4B6EA ESA9A AGE43 11581 16F16
E 91BEQ 50714 21307 6008C 896FB 6AE4A

ESHEG B6RED 57187 AES34 BBOEA CESDF 67012 F1521
B9415 @116k 1521B 94158 116E1 42F41 56320 16368

330 PART THREE: LIBRARY OF PROGRAMS

Appendices

331

A. Answers to Exercises

332 APPENDICES

5-1.
5-2.

(the left-shifted (o) key)
(the right-shifted key)

One possible sequence is (5)EBNTER)(3)ENTER) () H(Q)ENTER))3
X)®. (With some functions, like (8, (3, and (X), you don't need
to press after pressing them).

For example SWAP ROT
C0SC(3#5)-11)-4-1) which gives 1 (C0S(8)).

Type (EX[0)EWTER) Mevory) IR var) IETH (1)
(JA) 10 (2)(*)B) (519) (3) () BT9)

6 (PARTS, PROB, HYP, MATR, VECTR, and BASE).

« > A B « A B + » » Thiscanalso be used to add two strings.

It calculates the fraction (A+B)/(A*B) where Aand B zre two real
numbers taken from the stack.

An example:
FIEU (# SB7Eh)

> N

&«

IF
N1s<
THEIN

ELSE
N1-FIBONZ- FIBO +
END

1h, Ah, 19h, FFFFh, BEBEh.
291, 16, 256, 2898, 3.

A. Answers to Exercises 333

6-1.
6-2.
6-3.
64.
6-5.
6-6.

334

B73, AFB.

For P: BO3 and A8B ; for WP: B13 and ASB.

R13 D=D+C WP, A?3 D=D+C W, AS3 D=8 P, A93 D=0 WP.
411.

41.

Ca11.

#70080h:0, #70081h:1, #70082h:2.

C field X contains 210, C field B contains 10, and C field XS
contains 2.

3 (the nibbles 0, 1, and 2).

The program codes are as follows:

CCDz8 CONCS) #620CC
45088 beginCON(S) (end)-(begin)
6310 GOTO 11

cc sub1 A=A-1 A
3454321 LCHEX #12345
CE 2 C=C-1 A

o0F GONC 12

a3 RTNCC

3450008 11 LCHEX #0600685
DA A=C A

(CEF 13 GOSUB 12

8AC Thitg A

9F GOYES 13
3410000 LCHEX #00001
DA =C A

/118 GOSUB 14

8As h=0 R

48 GOYES 15

cC A=A-1 A

142 I5 R=DATA A

164 DB=DB+ 3

APPENDICES

8-1.
8-2.
8-3.
8-4.
8-5.
8-6.

8-7.
8-8.

8AA 4 7C=B

08 RTNYES
174 C=0 A
E4 A=A+1 A
81 RTN

end

The code listing would look like this:

CC020 45600 6318C C3454 321CE SDFE3 34560 ©BDA7
CEFBA C9F34 16066 DAR/11 B8R84 BCC14 21648 B8CEA
RoeD2 E461

The listing decodes to:

143 A=DAT1 A
133 AD1EX

179 D1=D1+ 18
1577 C=DAT1 W
7’6 C=C+ W
1957 DAT1= W
131 D1=a

142 R=DATO A
64 D=0+]
808C PC=(A)

The system binary <54321h>.
11928 EDCBA

11926 Broee

33920 168 VROBOBOPEOZ]1 @
-77345.

Some precision would be lost by coding it as 95928 51688
943219987654321 9.

-1E-2 (-6,81).
77920 000 DBANDBONOBB] O 10000 VOBBBOLOOZ O

A. Answers to Exercises 335

8-9.

8-10.

8-11.
8-12.
8-13.
8-14.
8-15.
8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.

8-23.

8-24.
8-25.
8-26.

8-27.

336

(-33,33).

09920 00EO0 VBAVEEBENOBOBEY B 6060 ...
...500000000000000 ©

Thelongcomplex (1.23456789812345, -543218987654321)
FB928 34

The character ‘D' (ASCII code 44h).

BE920 67208 11920 30000 30008 S0000 GOOLO ...

It contains character strings.

C2R20 Blowd 84 56 C6 C6 F6 B2 75 F6 27 C6 46
"Bravo "

E4A28 51068 1BF7935008000000

#54321h

47A2082130

{ 0K 3

69A28 FF?7 12000 00008 18 44 18 CZA28/0068033
21008 18 14 18 CZA26/000043

69A20 100 321 G3EF?7 DBOOB 12008 BOOBO 18 44 10
(2A2070000933 21080 18 14 18 C2RZ26/060043

8BA20 84E201014 84E201624 76BA1 B2130
'Ax(B-C)'

ADAZ8 33920000000006000B210 C2AZ267/0B0006
68881 B2130

5.1_m"3

APPENDICES

8-28.
8-29.
8-30.
8-31.
8-22.
8-33.
8-34.
8-35.

8-37.
8-38.
8-39.

8-40.
8-41.
8-42.
8-43.
8-44.
8-45.

CFRZB 28 55E4 84E2838451474
OK: CORRAL

GROB ¢4 1 FB

#6FFh

'VIDE!

No.

'BCKP'

#62D6h

With #2361Eh and #23639h.
With #1AB67h.

CCDZo 58060

CCD28 FBBBB 142 164 888C. Thisisthe program, which does
nothing but pass control to the next object:

142 A=DATA A
164 DB=Dg+ S
808C PC=(A)

84E28 58 84 56 Cé6 C6 F6.
An empty name.

4

'Name ' .

29E28 654 321

Library #001h, command #002h.

A. Answers to Exercises 337

338

B. Background Information

APPENDICES

Manufacturing Information

Todetermine the version number of your machine, turn the HP48 on, press
and hold down the (oN) key. While holding that down, press (0). Now
release (D), then release (ON). Three lines should show on the screen.

Now press backspace (()). The text "78509: 1B8DA178ESA111B6"
should appear at the top of the screen. Now press ([EVAL. You should see
something similar to this:

Version HP48-?
Copyrisht HP 1989

The ? is your ROM version (A, B, C, D, E, etc.). To return to the normal
state, press the buttons (just as you pressed (ONHD)).
When and where was your HP48 manufactured? The serial number (on
the back of the calculator, above the battery compartment) tells you:

» The first two digits show the number of years since 1960.

« The next two digits are the week number of that year .

« Thencomes theinitial of the country where the machine was manuf-
actured (A for America, B for Brazil, S for Singapore).

» The last 5 digits tell its manufacturing order for that week.

Thus, for example, the HP 48 with serial number 3007A01051 was the
1051* machine made in America during the 7" week of 1990.

B. Background Information 339

Troubleshooting

When your HP48 is locked up (i.e. it doesn't seem to respond to any key
presses) try, in this order, these possible solutions:

340

(oN) will interrupt the majority of programs in execution without
danger of losing memory.

is a system reset, or "warm boot", and will not af fect memory
(except the stack is lost).

(ONHAHF)will erase the memory. You will be asked the question, Try
To Recover Memory?. Atthis point you can either answer YES,
or NO. This restoration can fail if there are serious problems with
RAM. Thisrestoration can sometimes cause the machine tolock up,
s0 you will need to use the next solution given here.

On the bottom of the HP48 are 4 rubber feet that are not glued in,
so they can be removed and replaced easily. Underneath one of the
feetnear the top (eitherthe left or the right, depending on the model),
you will find alittle hole with the letter 'R’ next toiit (as in RESET). By
inserting a thin object, (like a paper clip), you can press a reset
button inside. If you only press it for a short while, the User data will
be preserved. By pressing it for longer (one or two seconds), the
HP48 memory will be completely erased. CAUTION: this button is
fragile. Do not use this method unless absolutely necessary .

As a last resort, you can remove the batteries. There are some
capacitors inside the calculator that still give it power even when the

batteries are out, so you will need to discharge them. Two solutions
are possible: waita few hours, or insert the batteries backwards for

a few seconds (there is no danger, the HP48 is protected with
diodes). Then insert the batteries properly and turn it on.

If none of the methods listed above work, then the best thing to do
is to return the calculator to an authorized Hewlett-Packard dealer
for repairs.

APPENDICES

Binary, Hexadecimal, and Other Barbarities

Here are a few principles that you will need to know well in order to
understand the majority of the subjects discussed in this book.

.5 »”

In mathematics, a base is the number of symbols that are used to count
with. Usually, we use base 10. The symbols used are the digits from 0 to
9. If we want to count in base 4, then we would use only 4 symbols (0, 1,
2, and 3, for example).

As we count in base 10 we proceed as follows:
« We begin with zero (0);

+ Togotothe nextnumber we replace the right-most digit with the next
symbol in the series (0 becomes 1, 1 becomes 2, etc.);

« When the right-most digit is the last in the series (9), we replace it
with the first (0) and we replace the digit to the left with the next sym-
bol in the series (if there is no digit to the left, we say that it was 0).

This general principle is the same in all bases, the only dif ference being
the symbol list used.

Forexample, to countin base 4, wewould have: 0 ,,1,,2,,3,,10,,11,,12,,
13,.20,,21,,22,,23,, 30, 31,32, 33, 100,, 101,,... (which, in base 10,
corresponds to the sequence: 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,

15,16, 17,...).

Note, however, that the number 102, would read "one-zero-two"—not
"one hundred two," which is our common lingual notation that can only be
used with base-10 numbers.

Two bases are frequently used with computers: base 2, which is called
binary, and base 16, which is called hexadecimal.

B. Background Information 341

Binary

To examine the contents of a memory location, the computer checks for
electric current: either there is current present, or there is not. Thus, an
electronic computer can only have two basic memory states, 1 or 0. And
since only two states are possible, all of computer science is based on cal-
culationsin base 2. Such calculations are called boolean algebra, named
after George Boole who developed this type of two-state arithmetic in
1846. In base 2, we count as follows: 0, 1, 10, 11, 100, 101, 110, 111,
1000,... This idea leads to another: the bit.

Ihe Bit

A bitis abinary unit which canbe 0 or 1, and thus corresponds to the basic
unit found in computers. These bits are usually grouped together, some-
times by four (to form a nibble), but more often by eight (to form a byte).
Note that, in groups, the order of the bits is important.

Ihe Nibble

The HP48 groups the bits in blocks of four. These blocks are called
nibbles. There are 16 possible nibble values: 0000, 0001, 0010, 001 1,
0100, 0101,0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Ihe Byte

Other computers usually use blocks of 8 bits, or bytes. There are 256
possible byte combinations: 00000000, 00000001, 00000010, ...1 1111110,
11111111, As you can see, binary is not real great to work with, since you
must frequently manipulate very long numbers. Abase with more symbols
would be much more convenient. If the basic unit is binary , then it would
be best to use a base that is a multiple of 2. Hexadecimal, or base 16, is
what has been chosen.

342 APPENDICES

Hexadecimal

Hexadecimal, or base 16, needs 16 symbols to count with. There are not
enough of the traditional digits, so we add 6 more: A, B, C, D, E, and F.
(Of course, the symbols used are not important in and of themselves; you

can choose any symbols that you wish to do your mathematics. For
example, the symbols { 6, e, and $ } could be used for a base 3 system.

You would be able to count, and do mathematics using the sequence of
numbers: 6, e, $, €6, ee, €3, $6, $e, $3, €66, ebe, e6$, eeb, eee, ees,...

This might be very clearto you, but others may not completely understand.

This is why it would probably be best to use the same symbols as the rest

of the world.) With the digits chosen for base 16, we count as follows: 0,

1,2,3,4,5,6,7,8,9,A,B,C,D,E, F, 10,11, ...19, 1A, 1B, 1C,...

A nibble can therefore have a value 0f 0, 1,2, 3,4,5,6,7,8,9, A, B, C,
D, E, or F. And a byte can have a value of 00, 01, 02, 03, 04, ... 0A, 0B,
0C, 0D, OE, OF, 10, ... FE, or FF. As you can see, these numbers are much
easier to use than those composed of only zeros and ones.

Converting Between Bases
The following program will produce a table of conversions betweenbinary ,
decimal, and hexadecimal, for the numbers from 0 to 255, which are the

most useful to programmers. Each line will have, in this order, binary,
decimal, then hexadecimal, all equal to the same number.

cm:v # A78%h)

gt a 255

FOR X
% 1 DISP ¥ R+B SWAP BIN OVER *STR 3 OVER
SIZE 1 - SUB ! ' SWAP_+ DUP SIZE
¢ - 939 5UB + DEC L'NER »STR_3 OVER SIZE
1 U DuP SIZE 3 -

SUB ¥ v Glpp + 999
B + HER SUFP S4TR 3 OVER STZE1 - 0B
ey | P H WP SIZE 2959 SUB + Mt s

B. Background Information 343

344

C. RPL Commands

APPENDICES

Here is the complete list of HP 48 RPL commands, listed in alphabetical
order (which is the same order in the HP reference manual). This list is
divided into the two library parts (#002h and #700h). Note that some
commands have no name, perform no function, and are probably re-
served by HP for future use.

Each line consists of the name of the function, its command number in
hexadecimal, its command number in decimal, then the command ad-
dress (which can be called with a SYSEVAL). For example, ABS is com-
mand #03Dh (61) and can be called by #1RA1Fh SYSEVAL.

These addresses can be used in program objects. For example, to
duplicate the object in level 1 three times, using the instructions DUP and
DUPZ, note from the table that a program object has prologue #02D9Dh
and epilog #0312Bh. The desired object is therefore:

"D9026878BF 12ABF 1B2138"

This program saves 10 nibbles over the regular method of using the two
delimiters (¥ and *), and still performs exactly the same function.

These tables are also useful to the user that would like to disassemble a
particular RPL command (these addresses are addresses of machine
language routines in ROM).

The second list of HP48 RPL commands is ordered by command number.
Each command is defined by its library number and its command number .

Note that, just as there are commands with the same name in the first list,

(commands with the same name, but defined by their context—such as «
which can be the beginning of a program or the beginning of local variable

assignments with), there are commands in the second list with the same
number. This can be explained by the fact that some “commands,” such

as DIR, C$, etc., are not real commands. They all have the same
function—to serve as delimiters for objects.

C. RPL Commands 345

The first alphabetized table is for library #002h:

ABS #830h
ACK #815h
ACKALL #814h
ACOS #856h
ACOSH #858h
ALOG #068h
AND #8E5h
APPLY #162h
APRLY #183h
ARC #808h
ARCHIVE #168h
ARG #840h
ARRY» #6ABh
HRRY #6ffh
ASIN #85%h
ASINH #85hh
#178h

ASR #868h
ATAN #85%h
ATANY #83Ch
ATTACH #165h
AUTO #8CBh
AXES #88rh
BAR #6E3h
BARPLOT #13Ch
BAUD #172h
BR 188rh
BEEP #83th
BESTFIT #143h
BIN #8%h
BINS #13Bh
BLANK #801h
BOX #808h
BUFLEN #176h
BYTES #826h
CoPX #8Ch
C:R #8%Fh
CEIL #065h
CENTR #88Bh
cF #884h
*CH #87th
CHR #6f5h
CKSH #171h
CLERR #11fh
CLKROJ #818h
CLLCD #836h
CLOSEIO #16Ah
) #11Ch
CLUSR #158h
CLVAR #158h
CNRH #877h

61
4|

BRRRLBE

~nN
—
o

KRS IRRRRYSI“FBIZIIY

COLCT
CoLE
coM8
CON
CONIC

#140h

APPENDICES

EXPAN #14Eh 33¢ #28A4%h LIBS #164h 356 #21420h
EXPFIT #141h 321 #281FBh LINE #6CEh 286 #1E3%h
EXPH #062h 98 #BACZh SLINE #13ph 314
e #942h 66 #1ABZ3h LINFIT #1Fh 319 #281Blh
FRCT #06¢h 108 #1BB41h LIST» #8%h 158 #1C95Ah
FC? #086h 134 #1C366h SLIST #8%Bh 152 #1C783h
FC?C #68Fh 143 #1C526h N #85th #1B94Fh
FINDALARM #81Bh 27 #19946h LNP1 #961h 97 #1BABCH
FINISH #16Fh 367 #21FB6h LOG #Fh 95 #1B9C6h
FIX #68fh 138 #1C3EAh LOGFIT #148h 328 #2810D6h
FLOOR #067h 163 #1BB0%h LR #12Eh 382 #1FF26h
FP #066h 182 #1BBA3H MANT #96Fh 111 #1BESCh
FREE #163h 355 #21301h THATCH #18%h 265 #1FASSH
FREEZE #833h 51 HASHth JMATCH #18h 266 #1FABOH
FS? #685h 133 #1C313h MAX #866h 186 #1BC?1h
#68Eh 142 #C4Alh MR #128h 296 #IFEZEh
FUNCTION #80Ch 228 #1E66lh MR #646h 64 H1AAOFh
GET #082h 178 #107C6h MEAN #129h 297 #IFEIh
GETI #683h 179 #108C/h MEM #158h 344 #20FAAh
GOR #003h 211 #1E456h MENU #13Ch 348 #211%h
GRAD #08%h 137 #1C3CFh MERGE #162h 354 #2137%Fh
GRAPH #6CBh 208 #1E2BAh MIN #66Bh 187 #1BCE3h
+GROB #807h 215 #1ESADHh HINE #12h 298 #1FEB4h
GXOR #600¢h 212 #1E4E4h MINR #841h #1AB81h
4 #680h 189 #IE1S8h MO0D #06Eh 118 #1BE4Dh
HEX #8%2h 146 #1CS6Fh NEG #8xh 68 #1A3%h
HISTOGRAM #8E2h 226 #1EF2lh NEWOB #827h 33 #1AZBCh

HISTPLOT #130h 317 #2816/h NOT #6Esh 231 #1EBBFh
#874h 116 #1BFSEh) #128h 288 #1FDAGh
HMS- #875h 117 #1BF7Eh NM #60Rth 164 #1CB46h
HMS» #873h 115 #1BF3Eh NN #835h 53 #IASE4h
HMS #872h 114 #IBF1Eh 0BJ» #0%h 169 #I1CF/Bh
HOME #822h #1R148h ocT #893h 147 #1CSARh
IDN #6fEh 174 #1020Ch OFF #82%h 41 #1A31Eh
IFT #336h #1A4C0h OLDPRT #0EFh 239 #EE3%h
IFTE #82Fh 47 #1A3FEh OPENIO #16%h 361 #21EBSh
) #8%h 155 #1081%h R #8E6h 238 #1EB8%h
INCR #148h 331 #280F4h ORDER #15%h M5
INDEP #087h 183 #1EB4Fh OVER #13h 275 #1FC2%
INPUT #7ph 378 PARAMETRIC #60Fh 223 #1E6C1h
IN #84Ch 76 #1B278h PARITY #173h 371
IP #065h 181 #1BB6Dh PATH #821h 33 #1A125h
IsoL #158h 336 POIN #C3h 195 #EZ281h
i #843h 67 #1AB45h PERM #082h 138 #1C23%6h
KERRM #175h 373 #2286Ch PGDIR #15Fh 351 #2123Fh
KEY #33%h 57 #1A873h PICK #17h 279 #1FC9h
KGET #16Ch 364 #21F24h PICT #00Zh 218 #1E436h
KILL #028h 48 #1A363h PIX? #9C0h 285 #1E36Eh
LABEL #0C%h 281 #1E205h PIROFF #9CCh 284 #1E344h
LAST #83%6h 54 #1A66th PIXON #9CBh 283 #1E31Ah
LASTARG #83%h 54 #1A6Bth KT #M7h 377
LCD» #005h 213 #1E572h PMAX #98%h 185 #1EB%Eh
+AC0 #006h 214 #1ES80Hh PMIN #688h 184 #1EB7Eh

C. RPL Commands 347

2ad

RN

£
L

Pgﬁﬁéé aeggegﬁazzzgzzng

#6A1h
#12Fh
#131h
#136h
#6F1h
#1572
#886h
#681h
#15Eh
#142h
#8C6h
#187h

#151h
#181h

#161h

#116h
#11%h

#112h
#984h

—
2R
2

28882

SEE£ 5

BNIRERTREITE BIRYLTRBNRY

#878h
#14Fh

#176h
#08C2h
#13Eh
#0E1h
#13%h

#153h

#916h

BRBYREIRZREIEZREINERIP=

-
D -
-~

16

#1C83Eh
#26A70h
#1E761h
#2208C2h
#1E1ELh
#2818Ch
#1E/BLHh
#1C41Eh
#288C4h

#283CCh
#1FECFh
#21EFBh
#21F01h
#1C27h
#28R03h
#1B32Fh

#1B4ACh
#1B587h
#282Cth

#1B55Eh
#1B655h
#28826h
#1E686h
#19820h
#97Fh

APPENDICES

»TIME #817h 23 #198BEh ==
TLINE #CFh 287 #1E3CZh #
THENU #158h 347 #21130h |
ToT #12Ch 308 #IFEERHh !
TRANSIO #h 32 !
#0Fh 175 #103%2h 3
TRNC #06Dh 189 #1B001h d
TRUTH #0EBh 224 #1EGELh]
TSTR #810h 29 #1999%2h ¥
TVARS #825h 37 #1A1FFh P
TYPE #0R6h 166 #1CBB6h I+
UBASE #08Eh 14 #19771h z-
UFACT #06Fh 15 #197/5h I
SUNIT #080h 13 #1974Fh |
UPDIR #23h 35 #1R15Bh |

#655h 181 #10EG6h ﬁ%
#66h 182 HOEC?h o
07 167 #1CEZ8h Do
#9%Eh 199 #1E176h e
WRIT 83h 5 HAI B
506 #813h 19 #1%46h e
X #2h 291 H1FOFh e
2 #25h 293 HIFEZh o
XL HZh 6 HFFDR e
LT $67h T9 HIESH b
XOR ¥EBh 232 #1ESFGh TR
XPON #06% 105 HBEC4H Nz
XRNG 00 218 HEEZIh N
XROOT #4h 74 #1818 il
oY HZ7h 295 HIFEEH 3
Y H2h 232 H#IFEIZh SR
Sy~ #2Eh 234 HIFEMH ST
Yoo H3T© 3/ HFFTH TN
YRNG #006h 219 H1EG4H e
+ #94h 68 #1AB6/ UNTIL
. #B45h 63 HIACIOh WILE
- #046h 78 $1A0E%h e
. 047 71 HIAEER A
/ Bih 72 HFBH N
» #64%h 73 #18820h :
¢ $9EBh 235 #1EBGE :
‘ #EDh 237 HIECFCh :
> #9Ch 236 HIECTh .
> $9Eh 238 #1EDSBH .
- #©%h 59 #1A808h

C. RPL Commands

#8E%h 233 #1E972h
#0ERh 234 #1EASCHh
#963h 99 #1BBEZh
#9FCh 252 #1F1D4h
#9FDh 253 #1F223h
#0F7h 247 #1EFED
#9FBh 248 #1EFDZh
#97Ch 124 #1CB6Bh
#93Fh 63 #1AAB0h
#0FEh 254 #1F2C%h
#11Eh 286 #1FD6lh
#11Fh 287 #1FD8Bh
#34Fh 79 #183%h
#0FFh 255 #1F354h
#108h 256 #1F3F3h
#18Bh 267 #1FAEBh
#16¢h 268 #1F646h
#185h 261 #1F9%h
#186h 262 #IF9fEh
Alphabetlzed for llbrary #700h:
#81Bh #23813h
#81%h 25 #23780h
#81Bh 27 #23813h
#087h ? #230C3h
#082h 2 #22FB5h
#983h 3 #22FD5h
#816h 22 #236%4h
#817h 23 #236B%h
#00h 18 #231ABh
#81Bh 27 #23813h
#06Eh 14 #23472h
#008h 08 #22EC3h
#880h 13 #2330Fh
#886h 11 #2324Ch
#81Ch 28 #23824h
#886h 6 #23850h
#88%h 9 #23183h
#98Ch 12
#981h 1
#818h 24 #2371Fh
8ifh 26 #23/M8h
#088h 8 #236EDh
#985h S #23833h
#81Bh 27 #23813h
#812h 18 #236l1Eh
#ih 17
#813h 19 #2363%h
#084h 4 #22FEBh
#016h 16 #231Clh
¥1dh 28 #23654h
#915h 21 #2367/%h
#099Fh 17 #2349Ch

The numerical table for library #002h:

#086h #1957Bh ASR 51 #3833h #IASA4h FREEZE
#001h #195%h RL 2 #83¢h #IASC4h BEEP
#082h #1958Bh RLB 53 #635h #IASEth MM
#083h #1950Bh RR 54 #836h #1A6B4h LAST
1004h #195FBh RRB 54 #836h #1A604h LASTARG
#885h #19%1Bh SL 5 #837h #A?IFh WAIT
#086h #19%3Bh 98 56 #838h #1ABSBh CLLCD
#887h #19%65Bh SR 57 #83%h #1AB73h KEY
#086h #19%/Mh SRB S8 #03rh #1ABEBh CONT
#08%h #19%6%h R+B 59 #43Bh #1AB0Bh =
18 #06hh #1968Bh BR 68 #83Ch #1A995h MNEG
11 #08Bh #1960Bh CONVERT 61 #830h #1AAIFh ABS
12 #88Ch #1971Bh VAL 62 #83&h #1ARGEh CONJ
13 4680h #1974Fh SUNIT 63 #8Fh #1AABDh ¥
14 #08Eh #19771h UBASE 64 #840h #1AADFh MR
15 408Fh #197f5h UFACT 65 #041h #1ABBlh MINR
16 #816h #19%F7h TIE 66 #012h #1ABZ3h e
17 #611h #19812h DATE 67 #913h #1AB4Sh i
18 #01zh #19820h TICKS 68 #84h #1AB6*h +
19 #813h #19846h WSLOG 69 #645h #1ACODh +
28 #814h #19863h ACKALL 7 #84ch #1ADBH -
21 #815h #1987%&h ACK 71 4047h #IADEEh #
22 #916h #198%h +DATE 72 1016h MAFESH /
23 #817h #1988Eh TIME 73 #04%h #1BBZDHh ~
24 #816h #1980Eh CLKADJ 74 1046h #1B18Sh XROOT
25 #81%h #196FEh STOALARM 76 #01Ch #1B278h INV
2 #816h #19926h 77 4040h #1820Bh ARG
27 191Bh #19346h FINDALARM 78 #04Eh #1B32fh SIGN
28 #8I1Ch #19972h 79 #04fh #1B3Mh {
23 #010h #199%h TSR 88 #858h #1B426h S0
38 #81Eh #19%82h (DAYS 81 #851h #1B4ACh SIN
31 #81Fh #19902h DATE+ 82 #852h #1BS85h COS
4 #1R185h CROIR 83 #853h #IBSSEh TAN
33 #921h #IRIZSh PRTH 84 #854h #1BSB/h SINH
£y #1A148h 85 #855h #1B686h COSH
35 #823h #IAISBh UPDIR 86 #856ch #1B6SSh TAMH
3% 182¢h #1A194h 87 #85h #1BeRth ASIN
37 #825h MAIAFh TVARS 88 #858h #1B7ZFh ACOS
38 #826h #1A10%h BYTES 83 #85%h #1B79Ch ATAN
33 #8Z7h #1RZBCh NEWOB 98 #85°h #1B7EBh ASINH
48 #826h #IA3ESh KILL 91 #85Bh #1B83h ACOSH
41 #82%h #1A31Eh 92 #85Ch #1BBAZh ATANH
42 #026h #1A33%h DOERR 93 #850h #1B98Sh EXP
43 #8ZBh #1A360h ERRG 94 #8%Eh #1B94Fh N
44 #82Ch #1A3BBh ERRN 95 #8%Fh #1BIC6h LOG
45 #820h #IA3A3h ERRM 9% #06Bh #1BA3Gh ALOG
46 #82Eh #1A3BEh EVAL 97 #061h #1BRECh LNPI
47 #82Fh #1A3FEh IFTE 98 #062h #1BACZh EXPM
48 #836h #1A4COh IFT 99 #063h #1BBEZh |
43 #331h #IASZEh SYSEVAL 168 #96¢h #1BB4lh FACT
58 #832h #1A584h DISP 181 #065h #1BB6Dh IP

APPENDICES

2
S

154 #8%h #I1C/CHh

C. RPL Commands

SHEELLEREERL RO L REAR P LR PR EEE TR EFEEE LR

STOF
L IST
RaC
RE

355383

g
T

LR L L L R R R B

TLINE

351

#1E3ECh BOX 261 #185h #1F9%h
#801h #1E416h BLANK 262 #186h #1F9fEh
#002h #1E436h PICT 263 #187h #FCth 0
#003h #1E456h GOR 264 #188h #1F9%ESh v
#004h #1E4E4h GXOR 265 #185h #1FASSh TMATCH
#005h #1ES72h LCD» 266 #10ph #IFABDHh IMATCH
#006h #1E580h +LCD 267 #16Bh #IFREBh _
#807h #1ESADh +GROB 268 #18Ch #1FBSDh RATIO
#608h #1ES02h FRC 269 #180h #1FBS7h DUP
#00%h #1E6B6h TEXT 278 #16Eh #1FBRZh DUP2
#000h #1E621h XRNG 271 #16Fh #1FBEOh SWAP
#00Bh #1E641h YRNG 272 #116h #1FBOBh DROP
#80Ch #1E661h FUNCTION 273 #111h #1FBF3h DROP2
#000h #1E681h CONIC 274 #112h #1FCeEh ROT
#60Eh #1E6Rlh POLAR 275 #113h #1FC2%h OVER
#80Fh #1E6CIh PRARAMETRIC 276 #114h #IFC44h DEPTH
#0EBh #1EGELh TRUTH 277 #115h #IFC6th DROPN
#6Elh #1E7Blh SCATTER 278 #116h #IFC/Fh DUPN
#0E2h #1E721h HISTOGRAM 273 #117h #1FC%h PICK
#0E3h #1E/41h BAR 208 #118h #1FCBSh ROLL
#0E4h $1E/6lh SAME 281 #115h #IFCOBh ROLLD
#9E5h #1E783h AND 262 #11fh #IFCEBh CLERR
#0E6h #1EB8%h (R 283 #11Bh #1FDBBh STOZ
#8E7h #1EBGFh NOT 284 #11Ch #IFDZBh CLE
#0EBh #1EDF6h XOR 285 #110h #1FD46h RCLE
#0E9h #1E97Zh == 206 #11Eh #FD61h E+
#6ERh #1ERSDh # 267 #11Fh #IFD8Bh 2-
#0EBh #1EBBER < 280 #126h #FDAGh NE
#0ECh SI1ECSDh > 289 #121h #IFOCith CORR
#0EDh BIECFCh <« 298 #122h #IFDOCh COV
#0EEh $1ED%BHh 2 291 #1Z3h MFOFHh X
#0EFh #1EE38h OLDPRT 292 #12¢h MFE1Zh %Y
#6FBh #1EESh PRI 293 #125h #IFEZDh X2
#9F1h #1EEGEh PRSTC 294 #12ch #IFE46h ZY*2

#1EEB%h PRST 295 #1ZMh #IFE6Sh XsY
#6F3h HEERth (R 296 #126h #FEER MAXZ
#6F4h SIEEBFh PRVWR 297 #12%h #FESh
#0F5h #EF43h DELAY 298 #120h #IFEBth MING
#9Fch #1EF63h PRLCD 299 #178h #FECFh SDEV
#0F7h $IEF7Eh 308 #12Ch #IFEERh TOT
#0F8h #EFIZh » 381 #120h #FFBSh WR
#0F%h #1F133h RCEQ 302 #1ZEh #MFFZ8h LR
#6FAh #1F14Eh STEQ 363 #12%Fh #FFRh PREDV
#0FBh #IF16Eh ROOT 304 #13Bh #FF9%h PREDY
#0FCh #1F1D4h f 385 #131h #FFBrh PREDR
#0FDh #1F223h § 306 #132h #FFDRh XCOL
#0FEh #IF2CHh 2 3687 #133h #IFFFAh YCOL
#0FFh #1F35th | 398 #13¢h #2081fh UTPC
#108h #1F3F3h | 309 #135h #2083ph UTPN
#181h #1F588h QUOTE 318 #136h #20850h UTPF
#182h #IFS30h APPLY 311 #137h #2087h UTPT
#183h #1FSCh APPLY 312 #138h #208%h COLS
#184h #1F6d6h 313 #13%h #280Cth SCLZ

APPENDICES

314

316
317
318
319

RIRNE

FERXLRYURRIURBBYBRRR

#200F3h
#2816Eh
#28133h
#28167/h

#20181h

C. RPL Commands

SILLER

BEIIYFFTIR

£ BE8

SYJJIIRRRBREBEBNUANIBREgOPNTANLwN=®

#0688h
#081h

#21F9%h
#21FB6h
#21FD1h

#22tFhh

RECV
FINISH
SERVER

CKSH
BAUD
PARITY
TRANSIO
KERRM

BUFLEN
STIME
SBRK
PKT
INPUT
ASN
STOKEYS
DELKEYS
RCLKEYS
>TAG
DTAG

umerical table for library #700h:
#22EC3h

IF
THEN
ELSE
END

>
WHILE
REPEAT

Do
UNTIL
START
FOR
NEXT
STEP
IFERR
HALT

= E

353

354

D. Objects in ROM

APPENDICES

This isan address list of objectsin ROM. Thislistis notcomplete, butgives
many useful objects. Rather than coding some object that you need, you

can simply refer to itwitha ROM address. Notice: Addresses greaterthan
#70000h are objects in the hidden ROM and cannot be used directly . You
will need to use the ROMRCL routine found in the Library of Programs.

System Binaries

#83FEFh
#33FF9h
#64083h
#84860h
#34817h
#694821h

<Bh>
<1h>

<4h>

D. Objects in ROM

WONOUI-SWN — D

IDI2BBBYRREBRY/L2BIBIRRRBR

SZBIYIRRABIRFARBR2BAINIIBEIRRRTR2SBBIRALD LSS BIRS:

355

IR

S F S B L A At S vttt At b it

APPENDICES

#A398h <611h> 1553 #64FF4h <A2zh> 2594
#HA3AZH <612h> 1554 #64FFER <Aenh> 2682
HA3ACHh <613h> 155 #65086h <Aelh> 2657
#HA3B6h <614h> 1556 #3812h <AezZh> 2638
<615h> 1557 #381Ch <AeSh> 2661
#HA3CHHh <616h> 1538 #65826h 2678
#A30¢h <617h> 1559 #65836h <Milth> 2r2l
#HA30ER <618h> 1568 #6583rh <ARzh> 2722
#HA3EBh <619 1561 #65844h
#HAIFZh <61Ah> 1562 <B8lh> 2817
#HA3FCH <61Bh> 1563 <CBzh> 387
#A486h <61Ch> 1564 #6584Eh <Cobh> 3878
#HAt16h <610h> 1565 #65856h <C8h> 3879
#Hi16h <61ER> 1566 #65062h <CBch> 3968
#Hf24h <61Fh> 1567 #6386Ch <Corh> 3882
#HAMZEh <628h> 1568 #65876h <CBBh> 3883
#A438h <621h> 1569 #20A7Ch <CaCh> 3884
Hi4zh <62Zh> 1578 #2FBEBh <CBoh> 3885
#Hi4Ch <623 1571 #2FBEEh <CBEh> 3886
#456h <62¢h> 1572 #2FASCh <CoFh> 3887
#HA166h <628h> 1576 #2FB4th 3088
<629h> 1577 #2006Fh <Ciih> 3889
Hirdh <62ph> 1578 #2EC3%h <C1zh> 389
HA47Eh <62Bh> 1579 <C15h> 3893
#f486h <62Ch> 1580 #31BF1h <Cich> 3894
#H492h <62nh> 1581 #6 <17m> 38%H
#MCh <6%th> 1582 #1C88%h <C?zh> 3186
#2849%h <644h> 1684 #1E58Ch <CZch> 3116
#64F86h <63h> 1616 #1C870h <€HBh> 3
#64F%h 1792 #1E4EEh <CCh> 3164
#1D448h e 1 #2628% <{CFFh> 3327
#1042Fh 1872 #65880h <OFFh> 3583
#08E14h <FFh> 2847 #650680h 3584
#B8320h <gaBh> 2848 #1E50Ch <2111h>
#1C8AZh <gezh> 2082 #43FB8Bh 18547
#1E548h <gech> 2892 <2955h> 18581
#1C898h <8zh> 2133 #43F95h <2977 18615
#1C912h <B8Ch> 2148 #93F9%Fh 2A74h> 18868
#1E49Ch <B8Ch> 21448 <2%6h> 18982
#1E520h <BCh> 2148 #19173h <2A%6h> 18982
#64F9%h <g6th> 2145 #93FB0h <2ABBh> 18936
#64FAth <geZh> 2146 #93FESh <2A0fh> 18978
#64FAER <gesh> 2149 #23C37h <2B1Eh> 11838
#4FBsh <BeEh> 2158 #43FB3h <2090h> 11677
#2004th <BF1h> 2289 #33FASh <2E46h> 11848
#2803Bh OFIh> 2545 #93F01h <2E6Dh> 11885
#33CBFh <AdLh> 2561 #39740h <363%> 12345
#33C03h <AaBzh> 2562 #16A06h <4096h> 16384
#34301h <Ag3h> 2563 #16AESH <Shggh> 28488
#33091h <Agdh> 2564 #16AF4h <80agh) 32768
#33C2% <ABSh> 2563 #16Ba3h <9086h> 36064
#33C83h <ABBh> 2566 #16B21h <00g6h> 53248
#64FCCh <Alth> 2577 #16B12h <EB9Gh> 57344
#64FD6h <A1zh> 2578 #65894h <70008h> 458752
#64FEBh <A1Ah> 2586 #67012h <80088h> 524288
#64FERh <A21h> 2593 #6589Eh <FFFFFh> 1848575

D. Objects in ROM 357

Real Numbers

#$31F4Fh

358

-9.9999999939% 493
-365745181 1461E441

bb

-7

ddd

-3

2

-1

4.5
J1E49

1E-12
. 49965858399 -2
12512944919945—1

al?s

1.8

2.5
2.71820182846

.FQQW

~N

pm
—
'y
g

. 28318538718

et pt 0 \D QO OV OV LT B

WN O

SYRRRBRIE

#32881h
#15F1h

#650FCh
#65111h
#288CEh
#65126h
#6513Bh
#MCBIh

#HCB68h
#22352h
#2236/
Feeh
#1A7CEh
#22391h
#0FBa3h
#9F818h
#9F820h 7977886808
19F842h 4954521608

JeEsRedasIaLRaE"
3

¥2A472h 9.9999999399% 499
Long Real Numbers
#28106h -1E-1008098

#2831Fh -495.928119817593
#2836Ch -76, 5594818146208
#2838%h -1.21142857142857

#2R4C6h 8
#2818Ch 1E-10008

#2A62Ch 1. 7453292519943 -2
#18EDBh 7.9577471545947 &2
#2/562h .
#28300h 8.4
#2f5/Ch 8.5
#18E68h 3. 55555555555556E -1
#52°2Fh 8.7
#28416h 9. 1893853328467 3 -1
#2A4EBh 1
#2R4FEh 2
#5236Fh 2.38258589299185
#2f514h 3
#2A438h 3. 14159265358979
#2152th 4
#21516h
#9F668h 6.28318538717959
#281FFh ?

9. 3358496566837
#25%h 19
#2820Ch 12
#28343h 38.3479606873615
#9F547h 4
#28306h 68
#2C1 1

APPENDICES

Complex Numbers | ¥ [T
S4E2h
#HAB2Ah (8,8) 06545 IF&EEh g i
'5|524FF1 h (8,8) i F: i :g:
%mh (-1,0) o o
oieh e s s
(8 1) 43 it ==
o R i} #65694h i
#524F 7h 2%558:' :kl: gﬁﬁ%;} ']
l“\ ir
hOng Complex '6552552anlh x ﬁgg 'gl
umbers 2552& i h :‘:
- #65536h i St l='
9%h (3,8 fesaan 3 =
- 2ssenh 5 Ko 5
aracters ﬁm .%: =mnh lul
crrscrs '655521. g8 2 A
— . fe% "W #7R93h '
= :g: mﬁﬁﬂ\m e I?ﬂQﬁiSilf': 1::
MIQ‘ 7 '6 :H: ?Mh gt
#90333h Vs 25583\ 'E' : 2
=2 » ke gt) h 'g!
e :?: Esssmlh :E: gm?ﬂh :E:
. €S 20
pe A ¥ 9%Fh] #7A968Bh IB'
HH " =R oA
#6472Fh ,>«' |6553m|h 'g! 'm l‘..
foom #* e '?HBFEh ;
#654 A Beh 'mm it
554% H L .1| # "e
#65441h :’: "gg% ld' : :T:
T B
g o EE B |
- e
65464+ 7" lGSSECh 14 '?H9E6h :
e o Ko o '?HSEDh :
o '1. e et) 'P'
b L % 1h gt) 'c'
b 2 '6$w.| i #709F4h lf'
ks :4. ﬁ%ﬁ "' #7A9FBh 'L'
5y Is, 'Ggﬁlﬁh y! #7AR8Zh '9'
ﬁs‘q% 6! .S.Esl[h lu' '?m l!'
ko, 8, IGE 24h to! #7AA16h 3!
oy :g: et :gl :?H“?h :l:
) m
ke 19, 25633?1 |E| .?mlEh e
'Glemsqm :i: '6%1% gt #7AR2Ch :V'
o i e e
: ; & ﬁ%ﬁh .g. #78A3Fh e
: 5 %%g:h 2! #70R41h "
3 - h 5 #7A8R46h 'y
o S66ph ‘¢! : H
#7AR56h '$!

D. Objects in ROM
359

Arrays
#72006h

#72281h

#7232th

#7260Ah

#726A5h
#72784h

#720CFh

#72ZF 1Eh

#72FEGh

360

["Insufficient Henory' 'Directors Recwsion' "Undefined Local Name®
"Undefined XLIB Name Clear" "Pouver Lost® 'Hrnlngi'
*Irwalid Card Data" "Obj ect n Use® "Port Not Auailable®

"No Room in Port® 'Object in Port® "Recovering Memory

"Try To Recwerl'emq"RePlaceRm Press ON®

"No Mem To Config Al1® 1]

["Bad Guess(es)' "Constant?" "Interrupted® "Zero® "Sion Reversal"
YExct remun®

["Bad Packet Block Check® *Timeout" "Receive Error®

"Receive Buffer Ouverrun® "Parity Error' "Transfer Failed®
*Protoco Error' *Irwalid Seruer Cnd.® "Port Closed® 'Connectine
'Retry l' "Buaiting Server Cmd." "Sending ® "Receiui

"Obj Discarded” 'Packet #* "Processi Comand' 'Inualid 10PAR"
*"Trwalid PRTPAR" "Low Battery® "Empty Stack® "Row *

"Irvalid Name®]

["Irvalid Date® "Invalid Time® *Inualid Repeat®
"Nonexistent Alarm®]

["Irnvalid Unit® *Inconsistent Units®" 1
["No Room to Save Stack® "Can't Edit Null Ch

'Inualld User Function® "No Current Equation® " 'Inualid "
Number® "Complex Number® 'String" "Real Array® 'Corpleu ay"

'Ltst' "Global Nuue' 'Loca "Prosran® "Algebraic®
"Binary Integer Grqah 'Tagged' "Unit® "XLIB Name® 'Dlrectcrrg
'Libr \.rl:tion "Command® "System Binary" "L Real'

Corpleu' l!,Linlcm:l Array® "Character® "Code® *Library
External' e 8 AST STFD(Disabled® "LAST CMD Disabled"
"HALT Not Allowed® "Array® "Wrong Pr?.nent Count®
"Circular Reference® 'Dlrecttrs Not A " "Non-Empty Directory®
*Irwalid Definitlm' "Missing Librr\i' "Invalid PPAR"
"Non—Real Result® *Unable to Isolate "No Room to Shouw Stack
o Ermans® ey Rorin 1E.m : -m""""-“:LLEE‘m S
s arms
"Name Conflict® 'Commd

['TooFeu&gunent' "Bad Arogument Tupe" "Bad Argument Value®
"Undefined Name® "LASTARG Disd:led' *Incomp et effSubexpression®
"Imelicit O oFF" *"Implicit () on® 1

["Positive Underflou® "Negative Underflou" "Ouerflow®
*Undefined Result® *Infinite Result®]

['Inualld T Data® "Nonewistent EDAT* “Insufficient £ Data®
rwalid ZPAR® "Irwalid T Data LN(Neg)" “Invalid I Data LN(B)*

'Inualid EQ" "Current equationt® "No current emaum.

"Erter eqn, press NEW® "Name the equa

"Select plot tupe® "Empty ca‘lalog' 'mdeﬂned' "No stat data to plot®

"Autoscaling® "Solving for " "No current data. Enter®

"data point, press Z+" "Select a model” "No alarms Pending

"Press ALRM to create" "Next alarmi® “"Past due alarm

"Acknouwledged” “Enter alarm, press SET" "Select r'epeat interval®

APPENDICES

. 10 setup meru® "Plot type: " ** "* ® (OFF SCREEN)*
"Invalid PTYPE" "Name the stat data, epress ENTER®

'Enter value (zoom out¢if >1), press ENTER" "Copied to stack"”
x avis zoom wAUTO.¢* "w axis zoom.¢" "y axis zoom.+¢

"w and y axis zoom. *' *IR/vire: * *qASClI/binaryt " “bauds
"parityt "checksum tupet " "translate code:®
"Enter‘ natriu. then NEN®]

#736F%h ["Irwalid Dimension® *Invalid &'rag Element® "Deleting Rouw"®
"Deleting Column® “Inserting Row" "Inserting Column®]

<FFOBh> <FFF4h> <48880h> <6HACOh> <65583h> <AH9Z%h>
<4883Fh> <48826h> <48E56h> <654D4h> <6558Rh> <AR968h>
<48871h> <4888Ah> <480A3h> <634DBh> <65591h> <PR9EFh>
<4888Ch> <498DSh> <48EEEh> <654E2h> <655%Bh> <(MR9K%h>
<48187h> <48128h> <4813%> <6H4ESh> <6559%Fh> </RI7Th>
<48152h> <4816Bh> <48184h> <654FBh> <6SSREh> <(PR9Bth>
<3A0S/M> <3AE33h> <IEES3h)> <654F7h)> <6S5A0h> <A%EBh>
<HEIRD> <3AGESH> <21FD1h> <654FEh> <655Bth> <AA9%xZh>
<3AB72h> <3RDAZh> <3A0BBh> <65585h> <655EBH> <(7R9ABH>
#7AC4Ch [<3AF37h> <3A07Bh> <3ADBSh> <6558Ch> <655CZh> <PR9ATH:
#7AC83h [<3A%30h> <3AEGFh> <3BBBEh> <65513h> <6559 (AROMER>

#7AADh [
[
C
[
[
[
[
[
4
[
[

#77CBRh [C3APICH> <3A7P3Sh> <3B211h> <6551Ah> <655DBH> <PROESH>
[
[
[
L
[
L
C
L
L
[
[
C

#70R9%4h
#7ARCBh
#7AB82h
#7783%h
#71876h
#7887
#7AB0Eh
#7AC15h

#7ACF1h [<3A69Ah> <IAISBh> <1A148h> <65521h> <65507h> <AHII7H>
#7A028h [<3A9%2h> <28065h> <28B4Bh> <6552Bh> <6SSDEh> <(PR9BCH>
#7A05Fh <IA3BEh> <1FC4h> <IASE4h> <6552Fh> <6SSESh> <PRICAN>
#7A0%h [<3A83th> <1EZBAh> <3AFEGh> <65536h> <65S5ECh> <PRIDLh>
#7A0C0h [<3A645h> <3AE4Ch> C3AFESh> <65530h> <655F3h> <PA90Bh>
#7AE64h [<3AB0ER> <IFBBOh> <3ABACh> <65544h> <6S5FAN> <PRIOFh>
#77E3Bh <IB4ACh> <1B6A4h> <IEF7ER)> <6554Bhd> <65681h> <PRIEGh>
#7FE72h <1B8585h> <1B72Fh> <IF1D4h> <65352h> <65688h> (PR9EDHh>
#7RERSh <1BSSEh> <1B79Ch> <IF2C%h> <6535%h)> <6568Fh> <7RI3Bh>
#7REEBHh <1837h> <1B426h> <1B1BSh> <6556Bh> <65616h> <PHIG1h>
#°AF17h <1B8820h> <1BA3Dh> <1BSC6h> <65567h> <65610h> <(PASFBh>
#7AF4Eh <1B278h> <1B9BSh> <1B94Fh> <6556Eh> <65624h> <AAABZh>

e e e e e bd ed el ed bd ed el bd bd el bed bed bd bd bed bed ed

D. Objects in ROM 361

#7AF85h

#7AFBCh

#77FF3h

#7882th

#78861h

#788%6h

#7B8CFh

#78186h

#7B130h

#78174h

#781ABh

#781EZh

#7821%h

#78256h

#78287h

362

[<65495h> <3AEBth>
CIBEFh) <65495h> CFlesh>
<$GFi7Bh]

[<6549Ch> <3REDh>
<46FDEh> <6549Ch> <F18Fh>
<F1R3h>]

[<654A3h> <3RS
<4785Rh> <654A3h> <F1B7h>
<3F1CBh>]

[_<1AFEsh> <3R6CCh>

<3AC8th> <65450h> <3RECCh>
<65433h>]

[_<3A893h> <3ABACH
<3A893h> C3AAR3M> C3AASEH
R3]

[<65488h> <3A7A3h)
<47FE7h> <65488h> <PRASEh>
<RI]

[<65487h> <3AEBSh>
SIEEZh) <65487h> <PRALEh>
<7ARZSH>)

[<6548Eh> <3AFBSH>
<3AF1Eh> <6548Eh> <7PRAZCh>
<FAR33H]

[<1ADEEh> <3ABA4h>
<3A6B3h> <6543rh> <3ABAtHh>
<65680h> 1]

#7828Eh

#782F5h

#7832Ch

#78363h

#783%h

#78301h

#7B488h

#7B43Fh

#7B476h

#7B4f0h

#7B4E4h

[<3A8CSh> <3RECSH>
<3ABACHh> <3AR6SH> <3AABSH>
<3AASBh>]

[<6546Bh> <3B1CBH>
<3B1B7h> <6546Bh>
<PR3Ch>]

[<65472h> COACFBh>
<1A6B4h> <65472h> <654B8h>
<651C6h>]

[<65479h> <3ACBCH
<3AEFEh> <6547%h> <MRI3Eh>
<7A345h>]

[<1ADB%h> <3ABD6h>
<3AC21h> <6544Fh> <3ABB0H>
<EHLh>]

[<3ASCOh> <1A8BBh>
<3ACEh (35!1]1)] <1R8BBh>
[<65464h> <1ABDBh>
<22FEBhY <65464h>
<6563%h>]

[<3A753h> <A77Bh
<3A004h> <3A7S3h> <A77Bh>
<3A00th> 1]

[<65686h> <1AABOh>
<6564Eh> <65686h> <65671h>
<6564th>]

[<1AB6/h> <3ABSBh
<3ABEFh) <65441h> <3ABEBH>
<654Ah>]

<7B363h> </B3%h>
<78301h> {7B48BBh> </B43Fh>
<{7B476h> <7B4A0h>]

APPENDICES

Strings

second(s)"”

*invalid"
"IF-prompt

D. Objects in ROM

363

L] mﬂl

APPENDICES

#30712h "fislbf"
#30726h "thern®
#3073Ch "Mey*
#3074Ch "eV*
#30773h "W"
#3077Fh “he"
#307A6h "Pa"
#30784¢h “atn*
#307C4h "bar*
#30704¢h "psi”
#307E4h :torr:
30888h “inHg"
#3081Ah i .
#30847h “°C*
#30855h “°F"
#30863h K"
#3086Fh “°R"
#3089%6h "y
#308A2h A"
#308AEh “C"
#308BRh "Q"

D. Objects in ROM

#8816h

(L]
",qe
nyl-q®
[P]
"ef®
"gar
"eT®
uTyn
u(en
LIS

"""
Iml

IH’I
I_() n
1,0
"EQ)"
"LO"
IL‘I
IEAI

I’()l

ID’I
I’TRGI
I’() L]
I’[EFI
"TRGH"
ll]l

APPENDICES

'6515:‘1 '[. “65?6% 'EXIT'
#65168h “[* #65778h "Undefined"
¥5176h (" Horoh "RADE
51820 ") #650f7h "GRAD"
#6518Eh "#" ¥67365h *d"
#%519h " * #96%2h " RATIO *
#651A6h " #5770 "RULES®
#65182h """ #A59h “EDIT®
$651BER ° * $6500h "EXPR"
#51Chh "»* #6R5ELh "SUB*
#5106h "« ¥RE00h "REPL"
¥51E%h "E #6B413h *NOT *
¥51EEh <"

o e

#65212h : , " Binary Integers

*

"dor® #16E34h $009ARARARARGAAAGH
hxih $1PE4ER #099G09190300900h
2526&\ RUNKNOWN® #1R215h #0886h

#A471h #8526268416h
BN #1A9F%h #8816h
pozth #IAC75h #781687h
ﬁmszech o ’ #9091

o A #18613h #3584188h
A AR #1B164h #9818%

")m #1B113h #358418%h
#5200h ") ' ol
Yoo e #$1882°h #910fh
o #15604h #99168h
oz #ECEh #59165h
= HESD Hee
H aqe $ERZ1h #68186h
B e,
#537Ch "GROB® #1F241h #853626868416h

"y #1F319h #952606873416h
ﬁmhm -E'-' #1F48Ch #85B6B73¢4122h

5358h 1" #F523h #852416h
§5364h -é- #1F500%h #859963416h

"ge $1FBI0h #7218%h
#5378h '3 P
o 4 e
#653%h "6" ¥26DF3h #959604

53Rh ¥26E05h #3586068416h
“Saﬂjh g #26E15h #85PEA6A6A416h
ﬁsaaeh -g- #35860696069410h
#565h "Rec” ¥26E47h #99700h
#65605h "R<2"

#656E5h "KYZ"

l(,l

I(}I
#5011h *[1"

s?th nin
S5¢20h "1
¥%57%h *O"
%ngh nunn
#65750h “ECHO"

D. Objects in ROM 367

deete coltebbdtanaiil

'LNAME 'KMODE 'KRM)

%08 888311

~-

LNAME '0BJ 'PACKET

Zged B, 28

:

N
(ppuupmnuuumWUU{{mmnn{mw

a

~f gt

m}

Iw-ap

;. et
E sm

g i sy sf B
m -_.l - w HmL}{m} w
=

g

oES m

mmw Fzp D
mmm }mrumm
mm mmmmauummm

P

#38452h
#38556h
#38575h

Lists

- it

< 5 .3 8o tp

. % Ry

ol Ty -® 2 BTE g Vo
,;”uwm>uuuuummmmmwmwm%mmmmmmmmwu“
JUC cEaseRRhSb U oEC RuEhELit

}

'
#2569%h { <2h> <Bh> Bh> <18h> }
'2 '3

APPENDICES

368

#385F7h

#38622h

#3865%h

#3867Fh

#3896th

#38972h

#38C80h

#38CEsh

#38046h
#3C83th

#30861h
#3C483h

#30980h
#3C09%Bh

DELKEYS MENU CST TMENU
RCLMENU STOF RCLF SF CF
FS? FC? FS?C FC?C)

{ MEM BYTES VARS ORDER
PATH CROIR PVARS

{ "+DATE" »0ATE)

{ "2TIME® »TIME)

€ € "LIN® LINFIT } € "LOG"
LOGFIT) { "EXP* EXPFIT
} { "PR" PWRFIT) {
"BEST" BESTFIT 1} }
"LIN" LINFIT }

"LOG* LOGFIT }

"EXP" EXPFIT)

"PUR" PRRFIT)

"BEST" BESTFIT)

lnl .ml Iml Igdl IFtI
Iinl " L I] " Ilg-l
lwl Iknl lnil Imll .nllB.
*chain" "rd" "fath® "ftUS"
..11. lul Iﬁl lFmil }

Lo X Lo Yo X X}

D. Objects in ROM

#301FDh

#302E6h

#30438h
#304Cth

#30550h

#3064Ch

#306BFh

#3076Eh
#307AR1h

#30842h
#30891h
#30944h
#30980h
#30A4Ch

#30ACSH
#30AFZh

#41320h
#43308h

#M5716h
#7873h

#4919%h

#HCFSBh

{ IHQZI lm?l Ibl .m.
“FEA2" *inr2" "km*2" "ha"
Yat "mi*2" "milS*2"
Yacre®)

{ lnhal Istl lcnhal lgdhal
IFtAaI Iinhal lll
lgalLKl 'BalC' lgall lqtl
|] tl lnll lcul .MFI.

lbul l*l lfhl }
{ le ldl lhl l.lnl lsl
IHZI

{ "ws" "cws* "fi/s"
Ikﬂ.'l Iml lkrntl ICI
[] al

{ Ikgl .9' llbl Iozl
"slug" "1bt" "ton" “tonlK"*
ltl Ioztl ld. Igralnl lul
"mol")

(INI IMI IBFI lklpl
"1bf" "pdl® }

{ "J" "erg" "Kcal" "cal®
"Btu" "ftslbf"® "thern®
IMI levl }

(IHI []]

{ "Pa" "atmn" "bar"
.PS‘.. ltml lml
"inHe" "inH20")

{ Ilcl I'Fl IKI I'RI }
(lul IHI Icl lcll IFI IHI
lle IHI ln'.nl Isl ITI
le }

(uen lrI lg-wl lminl
Iarcsl l,.l }

(IFCI lFlml .l”. l”..l
Isbl .l'. chl llml }
c 'G‘J' Iradl lml I&,l
qul lc1l IRI)

{ P *Spr)

{ CONVERT UBRSE VAL UFRCT
SUNIT)

{ lal lll l2l ll. }
> b <ih>

{

<Bh>

{ b <1h>)
{91512
{31512
{1}

{ LINFIT LOGFIT EXPFIT
PWRFIT 3

{ 'smax 'N }

{ '"EnvOK 'EXITFCN }

369

#59118h
#59288h

#641%h
#8484h

370

(In I* l! Ig Igc 'BC
'r2 'left 'up 'exit)
'PlotErw)

'tcls 'fcls)

- - |
eeﬁsg

- e e
$ NNN\No
3
(S)

- SV
.

T T
T SO
Lo

3
- b
ow
-

't al

In Im)

‘n)

1+1-1

'piflag }
r

'd 'R 'est '%X 'T }
'bnds 'dvar)
'which 'opl 'op2 }
2~-711
v/ e}
lct I" IeP }
'reg 'sur 'cts 'sun 'nlg
'ckd 'prd 'prp 'rhs)
'patternls 'compos
varls }

CYCXYL YOl e2

4)
§13Eh> 123> <TFFH 3

Lo o Yo X L o o X Lo N N N Mo Mo Yoo N Mo o e X o Mo Womn Waam o Xam W Moo X X o Mo R R Mo X N X Xam)
L4 L4

-~

~
&

~rn

#69A32h ('Radix 'Keys(K? 'Expriit

'Buffil 'BuffH 'SauveBlank
'Man0p 'nohalt 'AppiMode
'NameGrob 'EXITFCN

'FontGauge 'LE 'LB 'TE

APPENDICES

Graphics Objects

#130B¢h GROB 6 18 FIFIFIFIFIFIFIF1F168

#39820h GROB 131 2 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [oemeesssi iaweeesess)

#3A39%h GROB 21 8

#3A3FBh GROB 21 8

#3M430h GROB 21 8 FFFFFF1080811000811080011608011008
81108081 FFFFFF
#585h GROB 5 5 4846F14840

#5855Rh GROB 5 5 11RB48AB11

#66EASh GROB 6 18 F111111111111111F168

#66ECDh GROB 6 8 F11111111111F168

#66EFIh GROB 4 6 FB98989898F8

#66F11h GROB 6 8 BOGBEBHBABEAO0ES

#66F35h GROB 6 18 B0BAEOBOBRAGABE0R0A

#66FSDh GROB 7 5 F777B6DSF7F?

BB

#66F70h GROB 5 4 F1BISIF1

D. Objects in ROM 371

Global Names REXD | .ipinerosress!
wFath Alarns) Lo ot
¥506ch EQT 234h st'
H TR e
' ALRMDAT eh (to
#$181Fh ' ALRYDAT’ edghh 1]
$1908Eh ' ALRYDAT fo4f3eh 1)
#2iip4h 'CST' 311 AN
750h 'S i
m:lﬂ;lh :%: ©24810h ‘i’
- :1 JOPFR! #24836h :i:
ER5oh ' I0PFR! fedomeh)
$1FE7h 'PRTPRR’ fodBsh 4
$31FBBh 'PRTPRR’ gD
#3408Bh 'émb' h nll
H0EEh =t #25R16h 112
Pooeh 'oENTER! i N
h | ' ©25h 112!
. B
HiB07Ah 'S’ . forethh [ttt
Wim o #2720Ch str!
358fh 'a! :% --fﬁﬁ-
T B e
HE048h ' ALRMDAT $20370h ' 'tmpop
#Al45h X #27348h ''twppdat’
HAIER 'R #2035 ''ploc’
HAllEh wrEm b
172 #7375 'wbound'
“BIcth 'X' 2! “PKNJ '
HBlch X #20081h ' 'PACKET
H T $203Ch | TRETRY
H R AL L S
517850 'PPAR! Eh K
$14%h 's’ M0FBh | ILNAE!
1a%h e #20%Eh '08J"
S65oh | IER ©0410h ''0PS!
50950h 's8! e R
'5939“\ 'Sl' nnml
$20450h ' 'KPTRN'
llml
Local Names lewm ::m'
ME47RR 'MW #2F46Eh ''KEOF'
43 v 'N! 31C37h ' IWrap’
WE4Rh N B
' F G DCC
#143%h ''halt’ ';G?h ;gb:
4 1 1 L.
feh | nohalt ¥3CEFh b
$1F37%h ''fen' 3601sh '#b'
¥237%Eh ' 'top! q%h ' 'SavedU]"
#2373Fh ' 'noname’ 3FAESh 'SKEY!'

372 APPENDICES

e

o
=

—
n
- o) d ad o d d D D D T

PP PRE PR
o

#5A761h ''d’
#5A76Ch ''R!
#5A77ch 'est!

D. Objects in ROM

#5A786h
A7S1h
ARESh

Puipib;
RA
3

&
=8

UL1

T
T

2

av]
X

FXXXXXRTXER
2Raan

Ql\ll\l
S
¢

R RRaas

¥

(=)

b
FIF3

Yo

—
—CN\DIT
JIIIFTIITIII

LRt

T

:

333‘3333?33%3383333}3‘8

1
1'patternls

373

E. Error Messages

374 APPENDICES

Excluding any errors in supplementary libraries, this is the complete list of
error messages thatthe HP 48 will display. They are listed by order of their

code, given in both decimal and hexadecimal.

WO NOUIS WN) =

E A R X E 2 X 2 B 2 % K L % 1 SN BN L 3
—

881h "Insufficient Memory®
86z2h "Directory Recursion®
883h "Undefined Local Name®
084h "Undefined XLIB Name"
085h "Memory Clear®

886h "Power Lost®

867h "Warningt*®

886h *Irvalid Card Data®
08a%h "Object In Use®

86fh "Port Not Auailable”
88Bh "No Room in Port®
8aCh "Object Not in Port®
980h "Recovering Memory"
B88Eh "Try To Recover Memory?*
B86Fh "Replace RAM, Press ON
816h "No Mem To Config All®

181h "No Room to Save Stack"
182h "Can't Edit Null Char.*
163h "Irwalid User
Function®
184h "No Current Equation"

186h "Invalid Suntax"
167h "Real Number®

160h "Global Name®

16Eh "Local Name"
Ipmg,.ml

116h "Algebraic"”

111h "Binary Integer"

112h *Graphic"”

113h "Tagged"

114h "Unit"

E. Error Messages

SEERBYLYLLEIWRRIBI JPILRRIVIBFIIY

bR R B 2 B 2 b £ 2 & b & 2 2 £ £ 1 2 & 3 & & & & ¥ B 7 ¥ 1 £ ¥ 3 F 3 ¥ ¥ ¥ ¥ ¥ 3

115h "XLIB Name®
116h "Directory"
117h *"Library"

116h "Backup®

11%h "Function®
116h "Command"

11Bh "System Binary"
11Ch "Long Real"
110h "Long Complex”
11Eh "Linked Array"
11Fh "Character®
126h "Code"

121h *Library Data"
122h "External®

124h "LAST STACK Disabled"
125h "LAST (MD Disabled"
126h "HALT Not Allowed"
127h “frray"

126h "Wrong Aroument Count®
12%h "Circular Reference"
"Directory Not Allowed"
128h "Non-Empty Directory"
12Ch "Invalid Definition®
120h "Missing Library®
12eh "Invalid PPAR"

12Fh "Non—Real Result"
136h "Unable to Isolate"
131h "No Room to Show Stack"
"Warning:*

133h "Error:®

134h "Purge?"

135h "0ut of Memory"

136h "Stack"

137h "Last Stack®

138h "Last Commands"

13%h "Key Assigrments"
13h "Alarms®

138h "Last Arguments"

13Ch "Name Conflict"

130h “Command Line"

375

513
514
515
516
517
518

519

769

RRREY

376

281h "Too Few Arguments®
262h "Bad frgument Type"
28%h "Bad Argument Value®
284h "Undefined Name®
285h "LASTARG Disabled"
266h "Incomplete \
ion

Subespress
287h "Implicit () off"
208h "Implicit OO on®

301h "Positive Underflow®
382h "Negative Underflou®
383h "Ouverflou®

384h "Undefined Result®
385h "Infinite Result®”

581h "Irwalid Dimension®
562h "Irwalid Array Element
583h "Deleting Rouw"

584h "Deleting Column®
585h "Inserting Rou"

586h "Inserting Column®

681h "Irvalid ZData”

68%h "Nonexistent ZDAT"

683h "Insufficient ZData"

684h "Invalid ZPAR"

685h "Irvalid ZData LN(Neg)"

686h "Invalid ZData LN(B)"

687h "Invalid EQ"

688h "Current equations®

68% "No current equation.”

66fh "Enter eqn, press NEW"

68Bh "Name the equation,
press ENTER"

68Ch "Select plot tupe®

660h "Empty catalog®

66Eh “"undefined®

66Fh "No stat data to plot"

616h "Autoscaling”

611h "Solving for *

61Zh "No ment data.

Enter
613h "data poinrt. press Z+"
614h "Select a model®
615h "No alarms pending.”
616h "Press ALRM to create”
617h "Next alarm:®
616h "Past due alarm:®
61%h "Acknowl edged"”
61fh "Enter alarm,
Erl

61Bh "Select repeat
interval®
6iCh * 10 setup menu®
610h "Plot types *
619' L1l
61Fh * (OFF SCREEN)"
626h "Irvalid PTYPE"
621h 'Nme the stat data,
s ENTER"
62Zh 'Enter ualue (zoom out if
>1), press ENTER"
623h "Copied to stack"
624h "x axis zoom w/AUTO."
625h '! ais zoon.'
626h " 'y axis zoom.
"w and y axis zoom.
626h "IR‘uires
62%h "ASClI/binarys *
62fh "baud: .
"parityt "
62Ch "checksum type: *
620h "translate code:*
62th "Enter matriy,
then NEW®

press

APPENDICES

R

ERERRREERERLE R SRR

E A X 2 2 b 2 2 2 2 2 & & 2 & & 1 % BN % 1 % J

ABlh "Bad Guess(es)"
AB2h "Constant?*

AG3h "Interrupted”®

Rd4h “Zero"

AB5Sh "Sisn Reversal®
A96h “Estremum®

Bolh "Irwalid Unit*

B2h "Inconsistent Units"

C81h "Bad Packet Block Check"

Cazh "Timeout"

C83h "Receive Ervor®

C84h "Receive Buffer
Overrun®

CaSh "Parity Error"
CB6h "Transfer Failed"
Cé7h "Protocol Error®
CoBh "Irwalid Server Cnd.®
Ca%h "Port Closed"
Cofh "Connecting”
CaBh "Retry #"
CaCh "Auaiting Server Cmd.*
Co0h "Sending *
CoEh “Receiving *
CoFh "Object Discarded”
C16h "Packet #"
Cllh "Processing Command"®
Ci2h "Invalid I0PAR"
C13h "Invalid PRTPAR"
Cl4h "Low Battery"
CiSh "Empty Stack®

lRw L]

C1
Ci7h "Irvalid Name®

E. Error Messages

3329 # DB1h "Irwalid Date®
3330 # DBZh "Irnvalid Time®
3331 # DB3h "Invalid Repeat®
3332 # DB4h "Nonexistent Alarm®

458752 # 70000h Last user message
(message DOERR)

377

378

F. Machine Language Instructions

APPENDICES

The instructions on the following pages are given in order of their codes.
The HP HDS manual gives them in alphabetical order, but they are given
here by code value, to make it easier to disassemble machine language
programs (especially those in ROM). To make it even easier, the entire
instruction set is given on two pages next to each other so that you won't
even need to turn the page. More detailed explanations for these instruc-
tions are found in Chapters 9 and 10.

For the registers and fields, here is a summary of what we have already
seen:

FIEIplc[BlAlo]8]7]6l5]al3[21]0

w
s | M xs| B
A
| X

Field a f b
P 0 0 8
WP 1 1 9
XS 2 2 A
X 3 3 B
S 4 4 o}
M 5 5 D
B 6 6 E
W 7 7 F
A F

F. Machine Language Instructions 379

00 RTNSXM 1x DO=CS 8083 BUSCB
01 RIN 13D D1=Cs 8084d ABIT=0 d
@ RTNSC 13 CDOXS 8085d ABIT=1 d
03 RTNCC 13F CDIXs 8086d ?ABIT=0 d
04 SETHEX 140 DATO=A A 8087d ?ABIT=1 d
05 SETDEC 141 DAT1=A A 8088d CBIT=0 d
06 RSTK=C 142 A=DATO A 8089d CBIT=1 d
07 C=RSTK 143 A=DAT1 A 808Ad 2CBIT=0 d
08 CLRST 144 DATO=C A 808Bd 2CBIT=1 d
09 C=ST 145 DAT1=C A 808C PC=(A)
OA ST=C 146 C=DATO A 808D BUSCD
® CSTEX 147 C=DAT1 A 808E PC=(C)
oc P=P+1 148 DATO=A B 808F INTOEFF
m P=P-1 149 DAT1=A B 809 C+P+1
CEf0 A=MB f 14A A=DATO B 80A RESET
QEf1 B=B&C f 14 A=DAT1 B 80B BUSCC
OEf2 C=CsA f 14C DATO=C B 80Cx C=P x
CEf3 D=DsC f 14D DAT1=C B 80Dx P=C x
OEf4 B=B&éA f 14E C=DATO B 80E SREQ?
OE£S C=CsB f 14F C=DAT1 B 80Fx CPEX x
CEf6 A=NaC f 150a DATO=A a 810 AsIC
CEf7 C=CsD f 151a DAT1=A a 811 BSILC
OEf8 A=A!B f 152a A=DATO a 812 CSIC
OE£9 B=B!C f 153a A=DAT1 a 813 DsIc
OEfA C=C!A f 154a DATO=C a 814 ASRC
CEfB D=D!C £ 155a DAT1=C a 815 BSRC
EfC B=B!A f 156a C=DATO a 816 CSRC
OEfD C=C!'B f 157a C=DAT1 a 817 DSRC
OEfE A=A!C f 158x DATO=A x+1 818£0x A=A+x+1 f
CEF C=C!D f 159x% DAT1=A x+1 818f1x B=B+x+1 £
F RTI 15Ax A=DATO x+1 818f2x C=C+x+1 £
15Bx A=DAT1 x+1 818£3x D=D+x+1 f
100 RO=A 15Cx DATO=C x+1 818f8x A=A-(x+1) f
101 Rl=A 15Dx DAT1=C x+1 818£9x B=B-(x+1) f
102 R2=A 15Ex C=DATO x+1 818fAx C=C-(x+1) f
103 R3=A 1SFx C=DAT1 x+1 818fBx D=D-(x+1) f
104 R4=A 16n DO=D0+ n+l 819£0 ASRB f
108 RO=C 1Mn D1=D1+ n+l 819£1 BSRB f
109 Rl=C lén DO=D0- n+l 819£2 4
108 R=C 19pq DO=(2) ® 819£3 £
108 R3=C 1Apqrs DO=(4) srqp 81Af00 RO=A f
10c R4=C 1Bpqgrst DO=(5) tsrgp | B1A£01 Rl=A £
110 A=RO 1t D1=D1- n+l 81Af02 R2=A f
m Rl 1Dpq Dl=(2) P 81A£03 R3=A £
112 MR2 1Epqrs Dl=(4) srqp | 81Af04 R4=A £
13 AR3 1Fpqrst D1=(5) tsrqp | 81A£08 RO=C £
114 A=R4 81A£09 R1=C f
118 C=R0O n P= n 81AfOA R2=C £
119 C=R1 81Af0B R3=C f
11A C=R2 3xh0.hx LCHEX #hx.h0 | 81Af0C R4=C f
11B C=R3 81Af10 A=RO f
11C C=R4 400 RTNC 81Af11 A=R1 4
120 AROEX 420 NOP3 81Af12 A=R2 £
121 ARIEX 4yz @c 7y 81Af13 AR3 £
122 ARZ2EX 81Af14 A=R4 f
123 AR3EX 500 RTNNC 81Af18 C=R0 f
124 ARAEX Syz feot zy 81Af19 C=R1 £
128 CROEX 81Af1A C=R2 f
129 CR1EX 6300 NOP4 81Af1B C=R3 f
12A CR2EX 64000 NOPS 81Af1C C=R4 £
128 CRIEX 6yzt @TO0 tzy 81A£20 AROEX £
12C CRAEX 81Af21 AR1EX f
130 DO=A Tyzt QosUB tzy 81Af22 AR2EX f
131 Dl=A 81Af23 AR3EX £
132 ADOEX 800 QUT=CS 81Af24 AR4EX f
133 AD1EX 801 QUT=C 81Af28 CROEX f
134 DO=C 802 AIN 81Af29 CR1EX £
135 D1=C 803 C=IN 81Af2A CR2EX £
136 CDOEX 804 UNCNFG 81Af2B CR3EX f
137 CD1EX 805 QONFIG 81Af2C CRAEX f
138 DO=AS 806 C=ID 81B2 PC=A
139 Dl=AS 807 SHUTDN 81B3 PC=C
13A ADOXS 8080 INTON 81B4 A=PC
13B AD1XS 80810 RSI 81BS C=pPC
8082xh0..hx LAHEX #hx.h0

380 APPENDICES

81B6 APCEX 9bl
8187 CPCEX 9b2
81C ASRB 9b3
81D BSRB 9b4
81E CSRB 9bS
81F DSRB 9b6
821 M=0 9b7
822 sB=0 9b8
824 SR=0 9b9
828 M=0 9baA
82F CLRHST 9bB
831 2XM=0 9bC
832 2?SB=0 9bD
834 ?SR=0 9bE
838 ™MP=0 9bF
84d ST=0 d
85d ST=1 d Ra0
86d 2ST=0 d RAal
81d ?ST=1 d Aa2
88n 2P n Aa3
89n P= n Aa4
80 7B=A A Aa5
8A1 =B A Aaé
A2 Pt A Aa?
8a3 =D A Aa8
8A4 ?B¥A A Aa9
8AS 20¥8 A RAaA
8A6 2MAC A AaB
8A7 2D%C A AaC
8A8 ?A=0 A AaD
8A9 7B=0 A AaE
8AA =0 A AaF
8AB 2D=0 A Ab0
8AC 240 A Abl
8AD ?2B%0 A Ab2
8AE 2000 A Ab3
8AF 2090 A Ab4
880 2A>B A AbS
8Bl 7B>XC A Ab6
882 oA A Ab?
&B3 D>C A Ab8
8B4 AB A Ab9
885 B A AbA
886 <A A AbB
887 D A AC
8B8 2ARB A AbD
8B9 ?BRC A AbE
8BA 2CRA A AbF
8BB 2DRC A
8BC 2A£B A Ba0
8BD ?B4C A Bal
8BE 2CEA A Ba2
8BF ?DéC A Ba3
8&Cpqrs GOLONG srqp Ba4
8Dpqrst GOVLNG tsrgp | BaS
8Epqrs GOSUBL srqp Baé
8Fpqrst GOSBVL tsrgp | Bal
Ba8
9a0 ?A=B a Ba9
9al 7B=C a BaA
9a2 C=A a BaB
9a3 =D a BaC
9a4 2A¥B a BaD
9as ?B¥C a BaE
9a6 2C¥A a BaF
9a7 2D%C a Bb0
9a8 ?A=0 a Bbl
9a9 ?B=0 a Bb2
9aA =0 a Bb3
9aB D=0 a Bb4
9aC 2A¥40 a BbS
9aD 2B¥0 a Bbé
9aE 2040 a Bb7
9aF 20%0 a Bb8
9b0 2M>B b

F. Machine Language Instructions

Lo - o - o o oo

Lo« - - o TV T T T)

oo - - - - - . -

w
o
©

FH3A8Y3ATARABIAN3 FAHCABIBEIREROREE HHEBREEERSRRRBREE QACARSG23’4G230888 BREEREE

B=-B
c=<

A=-A-1
B=-B-1
C=-C-1
D=-D-1

A=-A-1
B=-B-1
Cc=<C-1
p=-D-1

ToUroovouoyo

PRI IPPPPY PPOOPIPIDPIDPPIDD POBOPBIOOBPBODDDDD DRI OPBPOIBODDDBDYD

381

382

G. Glossary

APPENDICES

Address A number between 0 and FFFFF (in hexadecimal) which indi-
cates the location in memory of some data.

Annunciator One of the symbols that appear in the status area (the very
top of the HP48 calculator) to indicate the machine's current status (DEG,
RAD, GRAD, a, X, etc.).

Assemble The act of translating an assembly program into machine
language.

Assembler A program that will translate an assembly program into ma-
chine language.

Bank-switching A technique used to have two distinct memory areas
exist at the same address. One of the two is visible, while the other is
hidden. Toaccess the hidden memory, the visible memory mustbe moved
to another address.

BCD (Binary Coded Decimal) This is a method of storing a decimal
number in binary. For example, the number 20 (in decimal) would be
stored as 20h (in hexadecimal) which actually equals 32 (in decimal).

Bit A memory location that can equal 0 or 1. This is the basic unit that
makes up a nibble.

Bit clear To say that a bit is clear means that it equals zero.

Bit set To say that a bit is set means that it equals one.

Buffer Amemory area thatis used as a temporary storage for information
that is waiting tobe used. For example, each keypress is storedin a buf fer,
and the data going out or coming in the RS232¢ port goes through a buf fer.
Byte 8 bits of data. The basic unit of measurement for memory size. A

byte can represent any value from 0 to 255 (decimal) or from 0 to FF
(hexadecimal).

G. Glossary 383

Disassemble Translate a machine language program into assembly .

Disassembler A program that will translate a machine language program
into assembly.

Field A part of a register.

Flag One bit in memory that serves as an indicator.

Garbage Collector This operation is performed when the machine does
not have enough free memory to perform an operation. This operation
consists of purging any temporary objects that are no longer being used.
The MEM command will cause garbage collection to occur .

Hexadecimal Base 16. The digitsare0,1,2,3,4,5,6,7,8,9, A,B,C,
D,E,and F.

Kilobyte (Kb) 1024 (2'°) bytes. A unit of measurement for memory size.
LCD (Liquid Crystal Display) The HP48 screen is an LCD screen.

Machine Language A list of codes which represent elementary instruc-
tions that the microprocessor is capable of understanding.

Memory A place used for storing data. See RAM and ROM.

Nibble 4 bits of data. This is the basic unit if memory for the HP 48
calculator. Anibble can represent any value from 0to 15 (decimal) or from
0 to F (hexadecimal).

Object Everythingthat RPL canhandleis called an object. Areal number,
for example, is an object.

Peek A program (or instruction) that will read the contents of a specific
memory location.

384 APPENDICES

Poke A program (or instruction) that will write data to a specific memory
location.

Processor See microprocessor.

Prolog Agroup of 5 nibbles which serve as an object's identification. The
prolog is always the first 5 nibbles of an object.

RAM (Random Access Memory) RAM consists of electronic circuits that
are capable of storing data. RAM can be modified.

Register A memory location for the microprocessor. Typically faster
access than RAM, so most operations are performed in registers. Reg-
isters can contain only positive integers.

ROM (Read Only Memory) ROM consists of electronic circuits that are
capable of storing data. ROM cannot be modified. ROM contains the
machine language instructions for RPL, among other things.

RS-232C A data communications method used by the HP 48 to transfer
information between itself and another computer. The data is sent
serially—one bit at a time.

Stack The stack is @ method of temporary storage. The user stack is

displayed in the central part of the HP 48 screen. RPL is based on the
principle of the stack.

G. Glossary 385

H. Handy Machine Language
Routines

386 APPENDICES

Here are afew machine language routines found in ROM that will perform
useful functions to add to your machine language programs. They should
generally be called with a GOSBYL .

SAVE_REG (# 0679Bh) will backup the registers DO, D1, B, field A,
and D, field A into a specific memory area (see Part 2, Chapter 7).
Note that they are not saved on a stack, so if you call this routine a
second time, the first values are lost.

LOARD_REG (# 067D2h) restores the values saved by SAVE _REG.

TRON (# 0670Ch) copies C, field A nibbles pointed to by DO to the
address in D1 (beginning addresses of two memory areas). D1
should be less than DO for this routine (transfer down).

TRUP (# 066Bgh) copies C, field A nibbles pointed to by DO to the
address in D1 (ending addresses of two memory areas). D1 should
be less than DO for this routine (transfer up).

ZEROM (# 0675Ch) sets C, field A nibbles pointed to by D1 to zero.

RES_ROOM (# 039BEN) reserves C, field A nibbles of RAM. The
address of the reserved area is stored in DO. If the free memory is
not sufficient, then a garbage collection will occur. If this does not
free enough memory, then the program will halt, and an error
message will be displayed.

GARB_COLL (# 0613EN) cleans the HP48 memory by purging all
unused objects (unreferenced objects found in temporary RAM).

RES_STR (# 05B7Dh) reserves a string of characters of length (in
nibbles) C, field A. This routine returns the address of the string in
RO, field A and the address of its contents in DO. If the free memory
is not sufficient, then a garbage collection will occur. If this does not
free enough memory, then the program will halt, and an error
message will be displayed.

PUSH_R® (# 06537h) places the value of R0, field A onto the stack
as a system binary. CAUTION: The registers D1 and D must have
been previously saved with a call to SAYE_REG.

H. Handy Machine Language Routines 387

388

PUSH_RB_R1 (# 06529h) places the values of RO, field A and R1,
field A onto the stack as system binaries. RO will be in level 2, and
R1 will be in level 1. CAUTION: The registers D1 and D must be
saved previously with a call to SAVE_REG.

POP_C (#06641h) takes the value of a system binary from the stack
and puts itin C, field A. CAUTION: The registers D1 and D must
be the system values (stack pointer and free memory). Their values
willbe modified by POP_C (since the objectin level 1 was removed).

POP_C_A (# 03F5Dh) takes the values of two system binaries from
the stack. As with the routine above, D1 and D are modified. C, field
A will contain the number from level 1, and A, field A will contain the
number from level 2.

DIVS (# 06A8EN) divides the contents of C, field Aby 5. This routine
uses the first 10 nibbles of registers A, C, and D. This actually
performs a multiplication by 3355444, then a divisionby 16777216,
which is just about a division by 5.

MULTA (# 03991h) multiplies A, field A and C, field A, and puts the
result in B, field A.

BEEP (# 017A6h) emits a sound with a frequency of D, field A and
a duration in milliseconds of C, field A. This routine takes into
account flag -56.

ERROR (# 05023h) displays the error message for the number
containedin A, field A. CAUTION: This routine must be called with
aGOTO0, and nota GOSUB. It will halt the program currently executing.
This call must be preceded by a call to LORD_REG, if you have called
SAVE_REG.

STOP (# 10FDBh) called with a GOTO, will halt the program currently
executing. Itgenerates error #123hwhich IFERR cannothandle, so
the calculator is returned to interactive mode. This call must be
preceded by a call to LOARD_REG, if you have called SAVE _REG.

EXHR (# 026BFh) will execute the routine in hidden ROM at the
address contained in C, field A.

APPENDICES

- DIV (#65807h) divides A, field W by C, field W. The resultis placed
in field W of both registers A and C, and the remainder is placed in
B, field W.

« MULT (# 53EE4h) multiplies A, field W and C, field W. The resultis
placed in field W of both registers A, and C.

- FREEMEM (# 069F7h) recalculates the value in #7066Eh (free
memory in 5 nibble blocks) using the addresses in #70579h and
#70574h. This call should only be used if you have previously called
SAVE_REG (which you would typically do at the beginning of your
program).

- FREEMEMQ (# 06806h) calculates the amount of free memory in
nibbles. The result is placed in C, field A. This call should only be
used if you have previously called SAVE_REG.

« ASLWS (# oD5F6h) executes the function ASL on field W 5 times,
which helps you use one register as three fields of 5 nibbles (when
used in conjunction with ASLWS).

« ASRWS (# OD5E5h) executes the function ASR on field W 5 times.
- CSLWS (# 0D618h) executes the function CSL on field W 5 times.
- CSRUWS (# 0D607h) executes the function CSR on field W 5 times.

- DB7FMAP (# 0C1BON) stores in nibble #4 of DO, the base address of
built-in RAM (7 or F).

- D17FMAP (# 0C1A1h) storesin nibble #4 of D 1, the base address of
built-in RAM (7 or F).

- DI7PFMAPZ (# 0C154h) stores in nibble #4 of D 1, the base address
of built-in RAM (7 or F). This routine is slower that D17FMAP, but it
modifies only nibble #4, and the others are left unchanged.

« CONFTABCRC (# 09B73h) calculates the checksum for the configu-
ration table at #7042Ch. The result is placed in C, field A.

. Handy Machine Language Routines 389

390

CHECK_BAT (# 006EDh) checks the batteries, depending on the
value in nibble #0 of C: 1 to test if the main batteries are very weak,
2 to test if the main batteries are weak, 4 to test the battery for the
plug-in card in port 1, and 8 to test the batter for the plug-in card in
port 2. On return, the CARRY is set if the battery is weak.

CHECK_BRATI (# 325AAh) checks the main batteries. If the batteries
are weak, the CARRY is set, and the corresponding error number
is placed in C, field A.

DBTOS (# 6384Eh) places the address stored in #70579h (the
address of the objectin stack level 1) into D0. SAVE_REG must have
been called previously.

DITOS (# 6385Dh) places the address stored in #70579h (the
address of the objectin stack level 1) into D1. SAVE_REG must have
been called previously.

DISINTR (# 01115h) disables interrupts.

RLLINTR (# 010E5h) enables interrupts.

DISPOFF (# 01BBDNh) turns off the display.

RDISPOFF (# 01BD3h) turns off the display and the annunciators.
DISPON (# 01B8Fh) turns on the display.

ADISPON (# 01BA5h) turns on the display and the annunciators.
EMPTKBUF (# 00D57h) clears the keyboard buffer.

EMPTATTN (# 00D8EN) sets the five nibbles at #70679h to zero.
(This is the area that stores how many times the (ON) key has been
pressed).

KEYINBUFF (#04999h) tests the keybuffer for keys that have been
pressed. On return the CARRY is clear if the buffer is empty.

APPENDICES

- DISPINGROB (# 11D8Fh) writes textinto a graphics object using the
5x7 font. Ittakes the address of the textbeginning in D1, the address
of where to write into the GROB in D0, the number of characters to
write in C, field A, the left margin (in characters) in B, field A, and the
size (in nibbles) of the GROB in D, field A. CAUTION: This size is
the total size of the GROB, and can be calculated by finding the
integer part of [((size in pixels) + 7)) / 4].

- IR7CONF (# 026E6h) configures the built-in RAM to the address
#70000h. This routine updates the graphics pointers.

« IRFCONF (# 0228Eh) configures the built-in RAM to #F0000h. Do
displace the built-in RAM to this address, first unconfigure it, then
call IRFCONF , then CONFGRAPH .

- CONFGRAPH (# 01C7Fh) recalculates the graphics pointers after
displacing the built-in RAM.

« BUSYON (# 42333h) turns on the BUSY annunciator.
« BUSYNO (# 42359h) turns off the BUSY annunciator.

H. Handy Machine Language Routines 391

392

. Index

APPENDICES

02911 123, 124 Address of Last Error Message 195

02933 123, 125 Address of an object in level n 200
02955 123, 126 Address of Hash Table 136
02977 123, 127 Address of Message Table 136
0299D 123, 128 ADISPOFF 390

029BF 123, 129 ADISPON 390

029E8 123, 130, 146 Alarms 196

02A0A 123, 132 Alert 164

02A2C 123, 133, 146 Algebraic object 123, 139
02A4E 123, 134, 145, 147 ALLBYTES 216

02A74 123,135 ALLINTR 390

02A96 123, 136, 138 Alpha 164

02AB8 123, 139 ANAG 307

02ADA 123, 140 Annunciators 164, 201, 202, 383
02AFC 123, 141 Arithmetic operations 83, 97
02B1E 123, 142 Arrays 360

02B40 123, 143 ASCIl code 129

02B62 123, 148 ASLWS 389

02B88 123, 150 ASN 50

02BAA 123, 151 ASRWS 389

02BCC 123, 151 Assemble 383

02BEE 123, 151 Assembler 69, 383

02C10 123, 151 Assembling 70

02D9D 123, 152 Assembly 70

02DCC 123, 153 Attn Flag 201

02E48 123,154 Auto-test fail time 176, 178
02E6D 123, 155 Auto-test start time 176, 178
02E92 123, 156 AUTOST 319

0312B 135, 139, 140, 152
B 77,78, 175, 186, 210

2's complement 83, 110 B->SB 258
?ADR 228 BACKUP 54, 145, 175, 194
mSOLVER 295 Backup Area 194
¥ 286 Backup End 194
Backup object 123, 148
@ of alarms 196 Backups 194
@ of backup area 187, 194 Bank-switching 159, 383
@ of command line 191 BANNER 324
@ of current GROB 186 Base 341
@ of last error message 195 Base address of built-in RAM 164, 170
@ of menu GROB 186 Batteries 164, 177
@ of next object to execute 197 Battery Test 164
@ of PICT GROB 186 BCD 71, 125, 383
@ of stack GROB 186 BEEP 73, 388
@ of temporary environment 186, 193 Beginning @ of free mem. 186
@ of the current directory 194 Beginning @ of temporary objects 186
@ of the End of RAM 195 BFACT 283
@ of the home directory 194 BFREE 261
@ of the undo stack and local vars 191 Binary 342
@ of user-keys 196 Binary coded decimal 71, 125, 383
@i 66 Binary integer 123, 134
Binary Integers 367
A 77,78 Bit 71, 342, 383
A->STR 260 Bit clear 383
A->V 289 Bit set 383
Absolute 84, 111, 112 Boolean algebra 342
ADD 283 Buffer 179, 183, 184, 185, 383
Addition 83, 98 BufFull 179
Address 66, 77, 243, 383 BufLen 179

1. Index 393

BufStart 179

Buiit-in RAM 159, 160
Bus commands 84, 119
Busy 164

BUSYNO 391
BUSYON 391

BY5 217

Byte 77, 342, 383

c77

C->SB 258

Cache buffer 85, 92

CAL 320

CALC 266

Calling subroutines 84, 112
Card present in port 168
CARRY 76

Character 123, 129, 133, 359
Checksum 143, 144
CHECK_BAT 390
CHECK_BATI 390

CHK 232

CIRCLE 322

CLEAN 218

Clock 159, 176, 177

Clock Offset 176, 178

CLR 22

CLVAR 239

CMOS word 176, 177

Code 123, 153

COMA 177

Command line 175, 191
Command Line Stack 197
Comments 51

Comparing registers 84, 113
Comparisons 84, 113
Complex Numbers 123, 127, 359
CONFGRAPH 391

Config. Object 143
Configuration Table 181
CONFTABCRC 389
Contrast 164, 165, 241
Control code 148, 149
Control instructions 84, 120
Converting Between Bases 343
CPU cycles 84

CRC 143, 148, 149, 164, 166, 265
CRC calculator 166

CRC value 149

CRCLM 265

CRDIR 33

CRNAME 238

CSLWS 389

CSRWS5 389

CST 48

Current Directory 194
Current menu offset 201
Cycles 84

Cyclic Redundancy Control 148, 166

394

D 77,175, 189, 210

DO 76,77,210

DO7FMAP 389

DOTOS 390

D1 76,77, 175, 186, 189, 210
D17FMAP 389

D17FMAP2 389

D1TOS 390

Data 179

Data pointer registers 73, 76
Decrement 83, 99

DEPTH 24

DER 288

Derivatives 59

Direct relative conditional 84, 111

Direct relative unconditional 84, 111, 112

Directories 16, 29, 123, 136
Disable keyboard 186
Disable system-halt 176
DISASM 243
Disassembler 384
Disassembling 70
DISINTR 390
DISPINGROB 390
Display 164, 165
DISPOFF 241,390
DISPON 241, 390
DIV 276, 389

DIV5 388

Dividing by 16 83, 107
Dividing by 2 83, 106
DIVP 290

DROP 22, 26

DROP2 26

DROPN 26

DSP 312

DUP 25

DUP2 25

DUPN 25

E 266

EEPROM 53

EMPTATTN 390

EMPTKBUF 390

Empty name 196

End of RAM 201

Ending @ of free memory 186
Ending @ of temporary objects 186
Epilog 135, 139, 140, 152

EPROM 53

Emor 177, 388

Error messages 146, 374

Error number 201, 204

Exchanging register contents 83, 94
Exchanging register fields 83

EXHR 388

EXponent 77, 78, 125, 126, 127, 128
External 157

External module missing 76

APPENDICES

f 78

Factorial 2000 284

FAST 165, 242

Field pointer register 73, 77
Fields 77

Finding extrema 59

Flag 384

Flag registers 73, 76

Flags 191, 201, 202

Free memory 175, 189, 201
FREEMEM 389
FREEMEMQ 389

Garbage collector 188, 384

GARB_COLL 387

GASS 209, 215

Getting the program counter 84, 111

Global name 123, 154, 372

Global variables 41

Graphics object 123, 142, 188, 371

Graphs 59

GROB of the character under the Cursor 204

Hash Table 136, 143, 145
Hexadecimal 71, 343, 384
Hidden directory 196
Hidden memory 159
Hidden ROM 170, 224
High-level language 69
HOME 32, 33, 137, 194
HP28 73

HP71 73

HRPEEK 224

HST 76

O RAM 159, 160, 163

VO registers 73

Icons 50

Immediate 83, 84, 86, 113
Increment 83, 97

Infra red 56, 177

Infrared receivertransmitter 159
INPUT 73, 164

Input and output 83, 93

Input OK 169

Instruction Set 83
Instructions with no effect 84
Interrupt Backup 182
Interrupts 80, 164, 169, 182
IR 56

IRin mem. 164

IR input 164, 169

IR output 164, 170
IR7CONF 391

IRFCONF 391

JINGLE 318
Jumps 83,110

. Index

KERMIT 55, 149

Key codes 184, 185, 186

Key state 183, 184, 186
Keyboard 15,73, 179, 184, 185
Keyboard Buffer 184, 185, 186
KeyEnd 184, 186

KEYINBUFF 390

KeyStart 184, 186

LAGU 292

Large binary integer 134, 145, 147
LAST 197

Last menu offset 201

Last RPL Token 201

LAST Stack 197

LCD 384

Left Shift 164

Library 123, 136, 143

Library Data 123, 136

Library number 137, 143

Link Table 143, 147

Linked array 123, 132

LISP 35

List 123, 135

Lists 368

LOAD_REG 210, 387

Local name 123, 155, 372

Local variable 41, 191, 192
Logical AND 83, 102

Logical NOT 83, 104

Logical OR 83, 103

Long Complex Numbers 123, 128, 359
Long Real Numbers 123, 126, 358
Low-level language 69

M 77,78

Machine language 69, 384
Machine speed 186

Making data access easier 48
Managing the Stack 22
Mantissa 77, 126, 127, 128, 132
Margin 164, 165

MASTER 304

MAZE 298

MEM 29

Memory 66, 384

Menu 16

Menu bar 172, 198

Menu bar bitmap 171

Menu bar height 171, 172
Menu bitmap 198

Menu bitmap address 186
Menu height 186

Menu Offsets 204

Menu trees 31

Menus 29, 198

MERGE 54

Message 146

Message Table 136, 143, 146

395

Microprocessor 71

Mini editor screen prep. 176
Mini-editor 160

Mini-Editor Screen Preparation 178
Miscellaneous notes 79
MODU 266, 282

MODUL 316

Module pulled 76
MODUSEARCH 264
Moves 83, 86

Moving values 88

MP 76

mSOLVER 295

MULT 266, 283, 389
MULTA 388

Multiplying by 16 83, 107
Muliplying by 2 83, 105
MUSICML 314

NEXT 29

Next error to display 201

Next Object to be Executed 197

Nibble 342, 385

NOPs (instructions with no effect) 84, 120
Number of attached libraries 136, 201, 204
Numerical calculation 59

Object 385

Objects 35, 123, 354

ON-D 160

Other Objects 157

OUTPUT 164

Output Mask for the Keyboard Test 182
Output OK 169

OVER 22

P 78

PATH 33

PC 76

PCAR 291

PEEK 220, 385
Peripherals 159

Pl 286, 287

PICK 24

Pixel 142

Plug-in card 179

Plug-in card ports 159
Plug-in card removed 177
Plug-In cards 53, 179, 181
PMAT 294

POKE 222, 385

POP_C 388

POP_C_A 388

Port 179, 181

Port0 194

Port 1 161, 179

Port2 161, 179

Port information (HP48sx) 179, 181
POW 266, 282

396

PR40 311

PREVIOUS 29

Processor 385

Program 36, 123, 152
Programming Methods 36
Prolog 385

PROM 53

Pseudo operations 84, 120
PUSH_RO 388
PUSH_RO_R1 388

R->SB 258

RO 76

R1 76

R2 76

R3 76

R4 76

RABIP 318

RAM 53, 54, 175, 385
RAMSEARCH 263

Random number seed 201, 202
RASS 230

Reading and writing to memory 83, 92
Real number 123, 125

Real Numbers 358
Real/Complex array 123, 130
Recursion 42

Redefining keys 50

Register 385

Register direct 84, 111
Register indirect 84, 111
Registers 73

Registers used by the HP48 79
RENAME 319

Reserved 1 123

Reserved 1,2,3 and 4 151
Reserved 2 123

Reserved 3 123

Reserved 4 123

Reserved RAM 175

Restart 177

RES_ROOM 387

RES_STR 387

Return stack 76, 175, 189
Returning from subroutines 84, 112
REVERSE 236

Reverse Polish Lisp 35
Reverse Polish Notation 18
Right Margin 171, 172

Right Shift 164

ROLL 23

ROLLD 23

ROM 53, 159, 385

ROMRCL 259

ROMSEARCH 263

ROT 22

Rotating left (one nibble) 83, 108
Rotating right (one nibble) 83, 109
RPL 35

APPENDICES

RPL Commands 345, 350
RS232c 54, 164, 179, 385
RS232c Input 164, 169, 170
RS232c¢ Input Buffer 180
RS232c¢ Interrupts 164, 169
RS232c Output 164, 169, 170
RS232c Speed 164, 168
RSTK 76

S 77,78

Satum 73

SAVE_REG 210, 387
Saving and Restoring (Rn and RSTK) 83, 90
SB 76

SB->B 258

SB->C 258

SB->R 258

Scratch registers 73, 76
Screen 16, 160

Screen bitmap 78, 171, 172, 186
Screen bitmap addr. 171, 172, 186
Screen GROBS 175
Service request 76

Sign 77, 126, 127, 128
Solving equations 59
Sound 74

Speaker 74

SQR 266, 283

SQUARE 308

SR 76

SSAG 229

ST 76

Stack 16, 175, 385
Stack size 190, 201, 202
Statistical functions 59
STATUS 76

Sticky bit 76

STO 32

STOP 388

Store 32

STR->A 260

String 123, 133

Strings 363

SUBS 266, 283
Subtraction 83, 100
SWAP 22

Symbol @ 66

Symbolic Calculations 59
SYSEVAL 240

System Binaries 123, 124, 355
System Flags 202

TAG 51, 141

Tagged object 123, 141

Taylor's Approximation 59

Temporary backup during interrupts 179
Temporary environment 175, 193
Temporary objects 175, 188

Time 61

I. Index

Timer1 171,173
Timer2 171
Transmitting 164
TRDN 387
TRUP 387

Understanding programs easier 51

Undo Stack 191, 192

Undo stack, local variables 175

Unit 140

Unit object 123, 140
Units 61, 370
UPDIR 33

Useful Routines 387
User Flags 203
User Stack 189
User variables 175
User-keys 196

V->A 289
VAL 288
“VAR" Menu 32

Variables and directory trees 41

VSYNC 171,173

W 77,78

Wide 78

Wide-P 78

Working registers 73, 77
WP 78

WSLOG 160, 176,177

X 77,78,79

XLIB name 123, 156
XM 76

XS 77,78

ZEROM 387

397

B e e

The most odvonced book
uobout machine Ionguoge
programming «=on the N
- HP48 s/sx sarjes. With
. this book you'll'be able to
- get the best=of your
favourite colculotor |

" "t

iy, L]
e
.

.l' f v

: g, e

Translated * from the
French book « Voyage au
centre de Ja HP48 s/sx »
by DouglasR. Cannon

“ “90000‘“‘

| 1sBN 9789995911950

n-_g@&aq .

	Cover
	Table of Contents
	Part 1
	Introduction
	1. First Approach to the HP 48
	2. Reverse Polish Notation
	3. Organizing Your Data Properly
	4. Programming the HP 48
	5. Presenting Your Data Properly
	6. Saving and Transmitting
	7. Other Strong Points of the HP 48
	Conclusion

	Part 2
	Introduction
	8. Machine Language
	9. The Saturn Microprocessor
	10. The Saturn Instruction Set
	11. HP 48 Objects
	12. General Memory Organization
	13. I/O RAM
	14. RAM
	15. Programming in Machine Language

	Part 3
	Notice
	Programs dealing with Machine Language
	GASS
	ALLBYTES
	BY5
	CLEAN
	PEEK
	POKE
	HRPEEK
	?ADR
	SSAG
	RASS
	CHK
	REVERSE
	CRNAME
	CLVAR
	SYSEVAL
	CONTRAST
	DISPOFF and DISPON
	FAST
	DISASM
	B→SB
	SB→B
	R→SB
	SB→R
	C→SB
	SB→C
	ROMRCL
	A→STR and STR→A
	BFREE
	SEARCH
	ROMSEARCH
	RAMSEARCH
	MODUSEARCH
	CRC
	CRCLM

	Mathematical Programs
	CALC
	PI
	VAL
	DER
	A→V and V→A
	DIVP
	PCAR
	LAGU
	PMAT
	mSOLVER

	Games
	MAZE
	MASTER
	ANAG
	SQUARE

	Miscellaneous Programs
	PR40
	DSP and INITSCR
	MUSICLM
	MODUL
	RABIP
	JINGLE
	RENAME
	AUTOST
	CAL
	CIRCLE
	BANNER

	Appendices
	A. Answers to Exercises
	B. Background Information
	C. RPL Commands
	In Alphabetical Order
	By Instruction Number

	D. Objects in ROM
	E. Error Messages
	F. Machine Language Instruction Set
	G. Glossary
	H. Handy Machine Language Routines
	I. Index

