
.
3

S

L

S

b

eL.
e
Bee

|asex
.

¢

-
L

B

§
o

Sl
T

-o L
.
L.

.
e

.
%\E

]

L
.
.

L
S

SR
e

L
PS

i

L -

-
el

P
L

-

.
. 1

.
.s

T

..

Eo
me
sn
ns
e

e

|
i

b

-———

i S

ENTE
R

il
a

LGye
e aL

HP 48 Programming Examples

Hewlett-Packard Press Series

Binstock et al., Programmingfor the Laserjet Il in C

Dowden, Inside the EISA Computers

Eppler, A Beginner's Guide to SCPI

Hewlett-Packard, HP-GL/2 Reference Guide

Hewlett-Packard, The Ultimate Guide to the vi and ex Text Editors

Kasper/Ams, Graphics Programming with PHIGS andPHIGS Plus

Kobara, Visual Design with OSF/Motif

Mackenroth, HP 48 Programming Examples

McMinds, Mastering MotifWidgets

Monday/Robinson, Using Your HP 95LX: Practical Examples andApplications

Rosenberg, KornShell Programming Tutorial

Schoonover/Bowie/Amold,GNUEmacs:UNIXTextProcessing andProgramming

HP 48 Programming Examples

D. R. Mackenroth

vv Addison-Wesley Publishing Company,Inc.
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam

Bonn Paris Milan Madrid Sydney Singapore

Tokyo Seoul Taipei Mexico City SanJuan

Many of the designations used by manufacturers and sellersto distinguish their

products are claimed as trademarks. Where those designations appear in this book

and Addison-Wesley was aware of a trademark claim, the designations have been

printed in initial capital letters.

The programs and applications presented in this book have been included for their

instructional value. They have been tested with care, but are not guaranteed for any

particular purpose. The publisher does not offer any warrantees or representations,

nor does it accept any liabilities with respectto the programs or applications.

The publisher offers discounts on this book when ordered in quanity for special
sales. For more information please contact:

Corporate & Professional Publishing Group

Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Copyright © 1992 by Hewlett-Packard Company

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechani-

cal, photocopying, recording, or otherwise, without the prior written permission of

the publisher. Printed in the United States of America. Published simultaneously in

Canada.

ISBN 0-201-56325-8

12345678910 MA 9594939291

First printing, October 1991

Contents

1. Introduction

Why Program the HP 48, Anyway? 1

The Programs 2
How to Use This Book e e e e e e e e 3

2. Introduction to HP 48 Programming
A Quick Review 5

Writing a Program C e e e e e e e 5
Saving a Program 7
Running the Program 8

Conventions C e e e e 9
Command Names 10

Variable Names C e e e e e e 10

Names of Local Variables 10

Structured Programming 11
Writing a Main Program C e e e 12
Top-Down or Bottom-Up? 13

The GetA Subprogram Coe e 14
The GetB Subprogram 15
The ComputeH Subprogram Coe 16
The Label Subprogram Coe e 17
Running the Complete Hypotenuse Program Coe . 17

A Top-Down Programming Strategy 18
A Painless Programming Procedure 19

Hints for Entering Programs Coe e 20
Keying in Alphabetic Characters 20

Use Menus and Commandsto Help 21

Use All the Alpha Keys Ce e 21

Program Names and How They’re Used Coe e 22

Faster Character Deletions 23

Working with Directories 23

Creating a Directory 23

vii

viii

Examining a Directory’s Contents
Reordering a VAR Menu

Working with Programs
Viewing and Editing a ProgramsContents
Deleting Programs .

Copying, Renaming, and Movmg Programs

What about Entire Directories? .
Debugging . . . C e e e e e e

Using Subprogram Calls :
Single-Step Debugging Ce e
Single Step and Subprograms

General Programming Hints

How to Halt a Runaway Program
How to Manually Test a Flag
How to Manage Memory Usage . .

Never Assume Anything .

Consider Different Object Types for leferent Tasks .

Remember the Order of Evaluation

Maintain Good Housekeeping . .
Don’t Use Loops Unless They’re Necessary .

Put Messages in Catalogs .
A Final Word

Business and Finance
Hypertext, The Information Dispenser

The Hypertext Directory .

Pricing—Displaying Text

Running the Pricing Notecard
Figuring Depreciation

The Depreciation Dlrectory

The Main Depreciation Program

Getvals—Labeling Input from the Keyboard

Stline—Using Local Variables in Formulas

Ddbalance—Different Names for Local Variables

Output—Combining Answers into a Single Display .
Running the Depreciation Program

Compound Interest Amount

Keyboard Example of HP Solve .

The Compound Directory

The Main Compound Program-—Programmlng HP

Solve

23
24
25
25
26
26
28
29
29
29
29
30
30
30
30
31
31
32
32
32
33
33

35
36
37
40
40
42
42
44
46
48
50
93
96
26
a7

58

Init—Specifying a Built-In Menu 59
Msgl—Displaying a Message without FREEZE . . 60
Msg2—Displaying a Second Message 62
Cprompt—A Good PROMPT Application 63
Cleanup—A Programmatic Purge of Variables . . . 64
Running the Compound Interest Program 65

4. Statistics Programs
Normal Probability 69
Keyboard Example 70

The NormalProb Directory 71

The Main NormalProb Program 71

Init—Answers to Two Decimal Places 73

Message—Halting for a Display 73
Getmean—Verifying Input with PROMPT 75
Getsdevo 77
7 78
Getbo 79
Compute—Local Variables and Stack Calculations . 81
Label—Using Local Variables to Rearrange the Stack 83
Running the NormalProb Program 85

Hypothesis Tester 87

Keyboard Example 90
The Hypotest Directory 91

The Main Hypotest Program 91
Init—Initializing to Two Decimal Places 94
Message—Display without Stopping 94

Getvars—Labeling Values on INPUT 96
T1—Calculations Made Easy with Local Variables . 99

T2 101
Getalpha—INPUT with a Blank Command Line . . 102
Test—Comparing Local Variables 103
Reject—Adding a Calculated Value to the Display . 105
Failreject 109

Exit—Changing Menu Displays 110
Running the Hypotest Program 111

ix

5. Calculus and Analytic Geometry
Distance Between Two Points 115

Keyboard Example 116

The Distance Directory 118
The Main Distance Program 118
Init—Using Flags to Guarantee Status 119
Plget—Multiple Inputs from One Prompt 120
P2get0 123
Compute—Using Local Variables for Math 124
Change—A Programmatic Rectangular-to-Polar

Conversion 126

Display—Tagging Output 127
Running the Distance Program 128

Slope of a Straight Line 129
Keyboard Example 129

The Slope Directory 130

The Main Slope Program 131

Xyl—Checking for Valid Input 132
Xy2—More of the Same 134

Findslope—Using Local Variables 135
Running the Slope Program 138

Performing Integration Programmatically 139
Keyboard Example 139

The Integrator Directory 141

The Main Integrator Program 142
Init—Specifying Numerical Results Mode 143
Accuracy—Setting the Number of Displayed Digits . 144
Equation—Temporarily Returning to the Keyboard . 145

Limits—Adding to the Stack with INPUT 146
Doit—Performing Numerical Integration in a Program 148
Labelit—AddingaTag 149
Running the Integrator Program 150

6. Sound and Music
The SFX Programs 154
The SFX Directory 154

Alarm—Repeating Until Any Key 154

Klaxon—Waiting for a Specific Key 156

Bird—Eliminating Recursion with Nested Loops . . 159
Car—Using Local Variables to Control Loops . . . 163

The HP48asaPiano 166

The Piano Directory 167
The Main Piano Program 168
Message—Displaying User Instructions 169

Init—Setting User Mode 170
Menulist—Specifying a Menu Key and Action . . . 171

Dokeys—Redefining the Entire Keyboard 172

Keylist—Defining Specific Keys 174
Exit—Restoring the Calculator Keyboard 177
Playing the Piano 177

7. General Graphics and Animation
HP 48 Graphics Fundamentals 179

Three Steps to Seeing Your Pictures 180
The Circs Directory 182
Circl 182
Designing Your Own Graphics Grid 184
Circ2 185

Plotting a Sine Curve 188
The Sinel Directory 188

The Main Sinel Program 188
GraphArea—Setting the PICT Size 189
AddSine—Plotting a Curve on PICT 190
ShowGraph—Displaying PICT 192
Running Sinel 193.

Add Some Motion 193
The Sine2 Directory 194
The Main Sine2 Program 194
Modified Sine2—Featuring Directories and Paths . . 195
AddS2—Sequential PICT Displays 196
ShoS2—Placing PICT in a Corner of the Display . . 197
Running Sine2 L L. 198

Animating Objects 198
The Flight Directory 198

Graphics Objects 199
Freehand Drawing of a Graphics Object 199

Saving Your Picture 201
Viewing Your Drawing 202

Animating a Drawing 203
The Main Flight Program 203
Screen—Specifying a Flight Grid 204
Showpict—Displaying PICT 205

Xi

Floop—Simulating Movement Across the Screen . . 206

Running the Flight Program 209
A Better Flight—Flit2 210

The Flit2 Directory Co 210

The Main Flit2 Programo 210
Headline—Putting Text on the Graphics Screen . . 211
Flop2 C e e e e e 213

Running the Flit2 Program Coe e 214

8. Fun and Games
Random Number Generator Coe e 215
Keyboard Example 216

The Random Directory 216

The Main Random Program oo 216
Init—Displaying Whole Numbers Only 218

Title—Displaying Until Continue oo 219

GetVal—Waiting for User Input 220

Create—Generating a Random Number 222

Adjust—Defining Local Variables without a Program 223
Tagit—Labeling the Result 224
Running Random 225

Rolling Dice C e e e e e e 226

The Dice Directory . . Co 227

The Main Dice Program—A Temporary Menu Coe 227

Init—Creating Blank Pictures 231
Title—Detailed User Instructions 233
Interim—Providing an Action Message . . .o 234

Rollnum—Testing a Flag and Making a Dec1s1on .o 235

Die—Drawing a Box Coe e 237

Ranum—Producing a Random Integer Coe e 241
Number—Selecting a Drawing 242

D1—Placing a Dot in the Center 244

D2—Placing Two Dots 246

D4—Placing Four Dots 248
Dot—Using ARCto Draw 249
Saveit—Preserving PICT 252
Showit—Displaying PICT 253

Getfirst—Replacing PICT Coe e 254
Getlast—Another Replacement for PICT Ce 255

Exit—Getting the VAR Menu Back 256

Running the Dice Program 256

9. Health and General Interest

Reflex Tester 259
The Reflex Directory 260

The Main Reflex Program 260
Inmit 261
Title—Waiting for Any Key 262

Randstart—Waiting a Random Time 263

Startime—“Starting” the Timer 266
Stoptime—Determining Time Between Events . . . 267
Computime—Converting Clock Ticks to Real Time . 269
Calfactor—An Experimentally Determined Value . . 270

Storetime—Using the Statistical Matrix in a Program 270
Showresult—Displaying a Result in a String 271
Running the Reflex Program 273
Call—Determining the Calfactor 274

Autogetem, Your Automatic Assistant 276

The Autogetem Directory 277

The Main Autogetem Program 277

Init—Ensuring an Audible Alarm 278
Message—An Introductory Display 279
Mainmenu—A Menu Without a Loop 281

Menulist—The TMENU List of Lists 283
Controltime—Setting Up the Automatic Alarm . . 284
Getemp—Adding toa List 287
Datetag—Saving the Display Mode 290
Templist—Startinga List 292
Avgtemp—Using Stat Commands Programmatically 292
Reset—Clearing a List 294
Show—Displaying a Built-In Menu 295
Running the Autogetem Program 297
Autogetem and Your Directories 299

Race Timer 300
The Racers Directory 301

The Main Racers Program 301
Openmsg 302

Menu L0 303

Mmsg 305

Newo 306

Inmit 307
Smsg 308
Smenu 309

xiii

xiv

Tmsg

Getnum

Crossline

Getime

Calctime

Storem

View

Vtimes

Exxt

..............

..............

..............

..............

..............

..............

Running the Racers Program
Where to Go from Here

Index

310
311
312
313
314
316
317
318
319
320
321
322
324
326
326
330

Preface

I undertook to write these programs for the Hewlett-Packard HP 48
calculator because I thought it would be fun and it would be easy.

Fun because the HP 48 has every possible feature and function a
scientific programmer could want. And easy because I already had a
healthy dollop of experience—both as the writer of owner’s manuals

for early Hewlett-Packard programmables like the HP 25 and HP 97,

and as the author of several books on programming in BASIC.

Turns out I was half right.

Creating programs for the HP 48 s fun, simply because this calculator
has everything going for it. It’s chock full of mathematic and scientific
functions, along with a panoply of graphics, sound, and timekeeping

features. And almost everything you can do from the keyboard can be

done from a program.

Truth to tell, though, it wasn’t easy at first. I made every mistake

in the book—and some that probably hadn’t been invented yet.

Moreover, I was immutably tied to tired old programming techniques

that failed to take full advantage of the HP 48’s power.

But now it can be told: The HP 48 is remarkably easy to program—

once you nail down a few principles. In these pages, you’ll profit from

what I so painfully learned. And I can now proselytize for HP 48

programming with the zeal of the newly converted.

What I hope you’ll find in these pages is a source of practical

programming knowledge:

m Application programs from the fields of calculus, statistics, business,

and more.

s Fun programs from the realms of music, games, and health.

m In-depth explanations of many commands, and plenty of program

annotation explaining every step.

m Detailed step-by-step procedures for creating, saving, and running

the programs.

m Structured programming techniques that make it easier to construct
large applicatious from tiny “building-block” subprograms.

s Hints and tips for getting the most from the calculator’s display and
menu.

m Graphics programming details that show how to draw pictures—and
how to animate them, too.

m A proven management strategy for handling programs and
directories.

m Index entries that lead you to explanations of key commands and

techniques.

In short, this is the book I wish I’d had when I was learning to

program the HP 48 calculator!

News Flash: Companion Disk Available! Now there’s no need

to laboriously type in program instructions. If you have an

IBM-compatible or Macintosh personal computer, simply purchase the

companion disk that contains all the application programs for HP /8

Programming Ezamples. Use the handy order form that accompanies

this book.

xvi

Acknowledgements

This book is the brainchild of Don Cole of Hewlett-Packard, and

to him I extend profound thanks. As my erstwhile manager and

present-day mentor, Don brought me under the HP Press umbrella

and gave generously of time and resources. Thanks also to John
Wait of Addison-Wesley, and to Bob Silvey and Steve Beitler of

Hewlett-Packard for their efforts in making HP Press a reality.

Special appreciation goes to HP’s Hank Schroeder. Hank played

a major part in every phase of this book, from first inchoate

outline to complete, final manuscript. As the key reviewer, he was

instrumental in making the programs easier to use and the text easier
to understand.

Kudos also to Dennis York, Ron Brooks, and Tom Hender for their

thorough and incisive review and debugging efforts. And thanks to
Sandy Allen, who not only brought much-needed consistency to
punctuation and grammar, but also goaded author and reviewers

toward better on-time performance.

This book was produced using Hewlett-Packard’s HP Tag text markup
language. Paul Johnson supplied the software, hardware, and know-
how for getting HP 48 programs and screens onto the printed page.
Human intervention was present in the form of Jim Woods, who took

my rough penciled drawings and magically transmogrified them into
illustrations that are clear and precise. My special gratitude goes to
Anne Shatrau Todd, who set up an easily modified template of HP
Tag files for me to follow, and who was a source of knowledge and
guidance at every turn.

As the primary contact at Addison-Wesley, Alan Apt was everything
an author could hope for, offering aid and encouragement just when it
was needed. Sheri Dearing, Kathleen Manley, and Shirley McGuire (in
Oregon, Massachusetts, and Colorado, respectively) made certain that

all parts of the publishing puzzle came quickly and smoothly together.

Finally, to everyone else who helped, including those unsung heroes at

HP Calculator Support and the typists at Laser Works: thanks.

D.R. Mackenroth

Mountain View, California

xvii

Introduction

Welcome to HP 48 Programming Examples! Whether you’re looking

for a cookbook of instant applications, a source of information about

HP 48 functions, or a means by which to learn how to program, this

book is for you. You’ll find HP 48 Programming Ezamples is friendly

and easy to use, with all example programs and procedures thoroughly

explained.

Why Program the HP 48, Anyway?

If you use your HP 48 calculator for the same purpose over and over—

or if you want to lug around the full set of manuals at all times—
you may never need to write a program. After all, with over 500

number-crunching commands built in, your HP 48 has plenty of

functionality. Whatever you want to do, mathematics-wise, chances

are there’s an HP 48 function to fill the bill.

Nevertheless, programming can make the calculator a lot easier to use
and more fun to have around. Here’s how:

m Detailed prompts: Programming is a timesaver if, like most students

and not a few engineers, you’re switching applications several

times a day. With just a few program lines, you can add prompts

and labels to accompany your most-used functions. This “in-line
user documentation” can tell you what to enter, when to enter it,

and what your output is. By adding meaningful prompts such

as "Input the tangent" or "Calculate the number of

wobulators and enter it in the displays then press

CONT", you’ll always do the right thing.

introduction 1

Explanatory text: A program can include titles, remarks,

clarification, examples, moral support—in short, anything that

makes it easier to understand and use. You can display up to seven

lines of text at a time, or scroll it past the reader, so you’ll never

again ask “What did that program do?”

Decisions: Need to pick an alternative in a hurry? Programming is
how you get to take advantage of the decision-making powers of the
HP 48. Flags and structures such as IF ... THEN, CASE ... END,

and DO ... UNTIL can automatically choose the best selection,

then proceed.

Repetitive tasks: With loops like FOR ... NEXT and
START ... STEP, a program can replace recurring and tiresome
keystroke routines, freeing you for more creative activity.

New functions: Even with all the built-in power of the HP 48,

from time to time you’re sure to need something that’s just a

little different. Programming your own functions gives you the
performance you want—and does it your way.

The Programs

There are programs here from the worlds of finance, calculus,

statistics, and more—including real-world solutions and classroom
aids. You’ll also find fun applications such as music, games, and

graphics. There’s even a chapter with programs for health!

Because this book emphasizes structured programming, even long
applications are a series of short, easy-to-enter subprograms. You can

type the keystrokes for any subprogram in a few minutes, test it, then

go on to the next one. (Naturally, if you can enter the program lines

in a computer, then download them, so much the better.)

2 Introduction

How to Use This Book

This book is self-contained. All you need is your calculator, and away

you go. You can jump around—it’s not necessary to read the chapters,

or enter the programs, in any particular order. But you may want to

begin with chapter 2, “Introduction to HP 48 Programming.” This
valuable chapter gives you step-by-step procedures for keying in a

program, running it, and saving it, and it also explains the techniques

and advantages of structured programming. Furthermore, chapter 2
offers a wealth of hints and tips for better HP 48 programs.

Most programs in this book are preceded by an ezplanation and

keystroke example that illustrate the principles involved. You can whip

through this example in a few moments, so you’ll be better prepared

to understand the actual program. And occasionally referring back to
this preliminary description makes it easy to follow even long, detailed

programs to their logical conclusion.

Programmers and HP 48 users can employ these programs in many
different ways:

m Use the entire program. Each one is complete. Refer to chapter 2 if

you need help on how to enter a program.

m Modify the program. No need to begin at ground zero every time
you want to do something new on your HP 48. Just study and

adapt these programs for your own ends.

m Learn to program by doing it. Study the explanations for the
programs, and you’ll learn valuable programming techniques. Don’t
be afraid to experiment either!

m Pick up hints and tips. Whether you’re already a sophisticated
programmer, or you're trying to learn how to use the calculator,

you’ll find the code explanations an invaluable source of tips and

tricks for HP 48 functions and programming.

You can think of this book as a rich source of prewritten programs,

or as templates to alter or augment. The important thing is not to

feel bound by the programs in this book. Use them, study them,

change them—they’ll help you be a better HP 48 user, and a better

programmer, too.

Introduction 3

2
Introduction to HP 48 Programming

Programming releases the full power of the HP 48, and lets you
completely command the calculator. You can create everything from

simple, job-specific programs that handle repetitive tasks, to complex,

detailed, applications with multifarious features.

This chapter contains hints and tips for programming, a few simple
precepts to follow that will ease your life as an HP 48 programmer.

You’ll also find an explanation of the structured programming

techniques used later in the example programs. Structured

programming is an ordered, logical approach that makes it easier to
create even long, complex applications.

A Quick Review

In the HP 48, a program is an object, similar to a number, a variable

name, a list, an array, or any other object. It can be placed on

the stack, stored using a variable name, and evaluated (executed)
repeatedly.

A program begins with the open program bracket, %, and ends with
the close bracket, ». Between the brackets are HP 48 objects and

commands that are not executed until the program is run.

Writing a Program

To write a program, press (¢9) («»), then press keys for the commands
and other objects in the program. In many cases, the keys you press

are the same ones you would press to make the calculation from the

keyboard.

Introduction to HP 48 Programming 5

Here’s an example: The Pythagorean theorem computes the

hypotenuse of a right triangle, if the two sides are known. The formula

is:

H =+/A? + B?

Here’s how to enter a program to find the hypotenuse, H, of a right

triangle, assuming the values for sides A and B are on the stack:

B)

H
U
E
E
E

@
%
@

Jx

As you key in the HP 48 commands, they aren’t executed. Instead,

the command name is written into the program. The keystrokes create
the following program.

6 Introduction to HP 48 Programming

Program Instructions Comments
Beginning of program.

y
)
= Squares the number A in level 1 of the

stack.

SLAF Exchanges the contents of stack levels 1
and 2.

SE Squares the number B now in level 1 of the

stack.

+ Adds the squares of A and B.

I Takes the square root to find the

hypotenuse.

uf End of program.

Now that you’ve entered the program, your next task is to save it

under a name.

Saving a Program

To save the program, you create it and press to place it on
the stack. Then you enter a name and press (STO). The program is
stored in the current directory.

For instance, to save the program under the name Hyp:

Keystrokes Display Comments

S@ SWAP S& + [@ Puts program on the stack.

() Hyp Stores the program as Hyp.

If you look at the VAR menu after you save the program, you see the

program name in a label, like this:

CHYR
If the name is a long one, then you see only the first four or five

letters. Even if you enter part of the name as lowercase letters, the

name in the menu is seen as all uppercase. Within the HP 48, though,

the program retains its name just as you entered it. If you enter

Introduction to HP 48 Programming 7

HYFOT, that’s the program name; and if you enter Hupotenuse, then

that’s the name, even though you see HYFPOTon the menu display.

Running the Program

There are several ways to run a program:

m Press the menu key (in the VAR menu).

m Type the program name in the command line, then press (ENTER).

m Place the program name in level 1 of the stack, then press (EVAL).

m Use the unquoted program name in another program.

As a simple illustration, here’s how to find the hypotenuse of a

triangle with side A of 3 units and side B of 4 units:

Keystrokes Display Comments

3 2.88 Enters side A on the stack.

4 4 Puts side B on the stack.

5. 08 Calculates the hypotenuse.

With 51desA nd B entered onto levels 1 and 2 of the HP 48 stack,

pressing F ~ executes the complete program. The values for

sides A and B are “used up” by the program, and the result (the
hypotenuse, 5) is left on the stack when the program is done.

That’s HP-48 programming in a nutshell. Now let’s look at some ways
you can handle programs, and make them easier to understand and

use.

8 Introduction to HP 48 Programming

Conventions

Here’s a word about the conventions used in this book. When a

program (such as Hyp) changes the HP 48’s stack, you’ll see a table of

arguments and results, like this:

Arguments Results

2: side A |2:

1: side B |1: hypotenuse H
This means that the program ezpects two arguments to be on the
stack; in this case, side A is in level 2 and side B is in level 1. The

program consumes these two arguments (leaving the rest of the stack

unchanged), and returns a value for the hypotenuse, H. The net result

is that two values are gobbled up by the program, and a single value is

left on the stack when it’s done.

If you’re recording and documenting your own programs (and you

should), an arguments-results table is a good thing to provide.

Many programs in this book have a neutral effect on the stack; they

expect nothing and leave nothing. When the stack is unchanged by a
program, the table of arguments and results isn’t needed.

Because of the structured programming techniques used in this book—
in which one program may call several other programs—intermediate

results are sometimes present when a program is called. When such

a result is present on the stack, but isn’t used by the program, you’ll
often see it in italic type, like this:

Arguments Results

2 2t tagged number of wobulators

 1: tagged number of wobulators |1: wobulator efficiency factor

In this example, the program in question doesn’t need anything on the

stack when it’s executed; and it adds the “wobulator efficiency factor”

to the stack. However, the “tagged number of wobulators” is also
present on the stack so it appears in italic type.

Introduction to HP 48 Programming 9

Now for the operation of this program, it doesn’t matter whether that
“tagged number of wobulators” is on the stack or not; this particular
program runs equally well with or without it. But in the overall
flow of things, the quantity will be used by a later program, so I've

included it for clarity’s sake. (You can omit these unused-but-present
quantities in your own documentation, or underline them or

something.)

Command Names

In this book, as in the HP 48 calculator, commands are always capital

letters:

FOIM COS RESET

Variable Names

HP 48 variables—and that includes programs, of course—can have
astonishingly long, detailed names, and can contain letters and digits.
You can’t use dashes or periods though!

In this book, programs and subprograms are shown with an initial

capital letter, followed by lowercase, or by caps and lowercase:

Sinel Getuwal=s AddSine

This is just a convention that is used in this book, and you don’t have

to follow it. You can make your variable names all uppercase letters,

all lowercase, or any combination.

Names of Local Variables

Finally, local variables follow the same convention used in the owner’s

literature; that is, they’re all lowercase:

a3 C max

You don’t have to follow any of these conventions. But I find they

work for me, especially in differentiating among variables and
commands in long listings.

10 Introduction to HP 48 Programming

Structured Programming

Structured programming is good practice with any language from C to
Cobol. But it’s even more important when you’re working with the
HP 48. That’s because the very act of punching all those tiny keys to

enter a single long program is, frankly, arduous, and the frustration is
great if you make a mistake.

In programming, the natural tendency is hit the (¢q) («») key and
begin throwing in commands. But as the program grows, it becomes
harder and harder to find any errors that occur. Moreover, long

programs are more difficult to edit, because you have to use keys like

(¥) to move through the steps.

In structured programming, you break down each application into a
series of tasks or jobs that are done in order. Perhaps you break down

those tasks into simpler tasks. You arrange the tasks in the order
to be performed, always working to reduce each task into a series of

smaller ones.

You finally wind up with a list of very simple jobs, each of which

can be accomplished in a few keystrokes. The list itself is your main

program, and those individual simple jobs, or tasks, become your

subprograms.

For instance, here’s a list of tasks for an improved version of the
Pythagorean theorem program:

1. Get the value of side A.

2. Get the value of side B.

3. Compute the hypotenuse, H.

4. Label the output.

Introduction to HP 48 Programming 11

Writing a Main Program

Using the list of tasks, you can write a main program that shows them

all. Here’s the task list for the Pythagorean theorem calculation,
shown as a main program:

GetA

LetB

Comput eH

Label

With this program in the command line, save the program as
Hypotenuse:

Keystrokes Comments

Puts program on the stack.

(") Hypotenuse Stores the program as Hypotenuse.

You have created and saved the main Hypotenuse program. Even

though you save it with a name that includes both uppercase and
lowercase letters, the menu display shows only uppercase characters:

See how easy it is to understand the main Hypotenuse program? The

program consists of nothing more than calls to other programs. In

this book, we call them “subprograms,” but there’s nothing special

about them. An HP 48 subprogram (or “subroutine”) is actually just
another program. Its name shows up in the menu display.

Using structured programming techniques, you break down your main
application into a series of bite-sized subprograms. You can write

each of the subprograms individually, test it to make sure it works

correctly, then include it in the main program.

What happens if you run Hypotenuse now? Remember, none of the

subprograms have been created yet. Hypotenuse is just a “shell” that

shows individual subprograms and the order in which they will be
executed. However, there’s no problem in running Hypotenuse. When

a program like Hypotenuse tries to execute a subprogram that is not

12 Introduction to HP 48 Programming

available in the current directory (or a higher one), the calculator
simply puts the name on the stack.

Keystrokes Display

'GetR'

'GetB'

'ComputeH’

'Label’

Your next step is to write and store the individual subprograms.

Top-Down or Bottom-Up?

As you write your main program and subprograms, you have a choice

of at least two basic strategies:

m Top-down programming.

m Bottom-up programming.

Top-Down Programming: In top-down programming, you write the

main program—the task list—first. In it, you include all the names of

the subprograms, in the order they’re called. Using descriptive names
such as GetA and ComputeH tells you exactly what each subprogram

will do; it’s like a notepad.

Bottom-Up Programming: In bottom-up programming, you create
the subprograms first, then write the main program. The HP 48
is particularly well suited to this technique, because to “write” a

subprogram name into the main program, you simply press its VAR
menu key.

Whether you’re using top-down or bottom-up programming, the

procedure for writing individual subprograms is the same. You write
the subprogram, store it, and test it before moving on to the next

subprogram.

Let’s enter the individual subprograms for the Hypotenuse program.

Introduction to HP 48 Programming 13

The GetA Subprogram

The GetA subprogram pauses execution, and gets a single value from

the user. It takes nothing from the stack, and leaves a single number
(the value of side A of a right triangle) on the stack when it finishes
running.

Writing the Subprogram: You enter subprograms just as you do any

program. (In fact, a subprogram is just another program in the eyes of

your HP 48.)

Program Instructions Comments

€ Begins subprogram.

"Input A" Prompt string for INPUT command.

" Command-line string (an empty string) for
INPUT.

IHPUT Pauses program to get one value.

oBJ» Converts from object to a number.

* Ends subprogram.

Saving the Subprogram: To save this subprogram as GetA:

Keystrokes Comments

Puts program on the stack.

() GetA Stores the program as GetA.

Testing the Subprogram: GetA doesn’t need anything on the stack,

and it leaves a single value there. Before going on to the next
subprogram, you should verify that the current one works as it’s

supposed to. PressGETHto test it.

14 Introduction to HP 48 Programming

Keystrokes Display Comments

GETH Input A GetA prompts for input and
halts.

3 3.88 GetA leaves the value of A on

the stack.

The GetB Subprogram

The GetB subprogram is similar to GetA; it gets a single value from

the user, taking nothing from the stack. It leaves the value of side B
on the stack.

Program Instructions Comments

2

"Input B Prompt string.

" Command-line string.

IMFUT Pauses program to get one value.

OB+ Converts from object to a number.

o

To save this program as GetB:

Keystrokes Comments

Puts program on the stack.

() GetB Stores the program as GetB.

As with GetA (or any subprogram) you should test GetB before
continuing. GetB should pause and prompt for input of a single value,

then leave that value on the stack.

Introduction to HP 48 Programming 15

The ComputeH Subprogram

This is where the hypotenuse of a right triangle is computed.
ComputeH expects values for sides A and B to be in levels 2 and 1

of the stack. It plugs these values into the Pythagorean theorem to
compute the value of the hypotenuse, H. A single value (H) is left on

the stack when the program is finished.

Program Instructions Comiments

i
y

o Squares the number in level 1 of the stack.

SLAF Exchanges the contents of stack levels 1 and 2.

Squares the number now in level 1 of the stack.

+ Adds the squares.

I Takes the square root to find the hypotenuse.

Keystrokes Comments

Puts program on the stack.

() ComputeH Stores the program as ComputeH .

To test ComputeH, you need to supply it with two values on the

stack, then see that the correct hypotenuse is calculated. If you write

and test your subprograms in the order they’re called, the expected

values should already be on the stack now, which makes testing of

ComputeH easy. But if you like, you can supply the two values

manually:

Keystrokes Display Comments

3 2,68 Enters value for A.

4 4 Enters value for B.

COME .88 Calculates correct hypotenuse.

16 Introduction to HP 48 Programming

The Label Subprogram

The Label subprogram takes the hypotenuse and adds a tag for easy

identification. It removes one value from the stack, and returns that

value, tagged with the letter “H.”

Program Instructions Comments

&

"H" Puts the letter H on the stack.

+TAG Tags stack level 2 with the contents of level 1.

#

Keystrokes Comments

Puts this program on the stack.

() Label Stores the program.

To test this subprogram, make sure one number is on the stack, then
press L

Keystrokes Display Comments

H: 5. = -1

A Labels hypotenuse as H.

Running the Complete Hypotenuse Program

Now comes the acid test—running the Hypotenuse program. Because
we’ve practiced structured programming, and tested each individual
program in turn, there should be no surprises now. Run Hypotenuse

to find the hypotenuse of a triangle with side A of 3 meters and side B

of 4 meters:

Keystrokes Display Comments

H Input A Prompts for side A.

3 Input B Prompts for side B.

4 H: 5.88 Program calculates and labels
the hypotenuse.

Introduction to HP 48 Programming 17

Structured programming lets you create a long, fully-formed HP
48 application out of simple, easily-tested subprograms. Instead of

trying to build a single long program, it’s so much easier to create a
group of “subprograms” or “subroutines,” each consisting of just a
few keystrokes. Then you can test each subprogram individually and
get it working correctly before you proceed to the next one. When

all subprograms are written, you combine them into one bodacious,

world-beating application.

A Top-Down Programming Strategy

Using structured programming techniques means shorter, simpler
individual programs—but it also means you’ll have a lot of programs,

variables, and other objects floating around. There are a number of
strategies for managing programs. Here’s one that works for me.

HOME

Directories GFX

Directorie§———3 TEST DRAWIT

Programs Test Init Menu Cleanup

I I |
Drawit Init Create Embellish Exit

Each complete “application” is placed in its own directory. For

instance, in the figure, Test and Draw:t are applications, so each has a

directory. (I make the directories all capital letters, though this isn’t

really important.)

Within the directory, there’s a main program, named with the same

name as the directory. It’s always the first program in the directory,

so it shows up on the left of the menu label display when you press

(VAR). The other programs and objects in the directory are all

18 Introduction to HP 48 Programming

subprograms—that is, they’re all called, in one way or another, by the

main program.

Pressing the main program key starts the application running. From
here on, the main program takes over, calling each subprogram in
turn, and prompting for input when necessary. Often, the main
program displays a menu of choices. The whole point is that once you

press the main program key, that program takes over completely.

For instance, if you’re in the HOME directory and want to run Test,

you press

to get into the TEST directory. Then press
"TESTtorun the Test program. From that point, Test takes over,

prompting you for data, displaying menus for choices, and so on. You

don’t have to make any decisions about what subprograms to run, and
in what order.

A Painless Programming Procedure

If you’re careless when programming, you can easily wind up with

your program in the wrong directory; or worse, you might even hit

and lose all those valuable keystrokes. Here’s a safe and

pain-free procedure for creating an application program and its

individual subprograms:

1. Before doing anything else, make sure you’re in the directory where

you want to place the program:

s Use (o) for the home directory.

m Use (&) for the next level up.

m Use (VAR), (NXT), and the menu keys to move downward through
subdirectories.

2. Create the name of the program, and make it a directory. For

example:

(O TEST (&) CRDIR
3. Get into that new, now-empty directory:

Introduction to HP 48 Programming 19

4. Store only the program brackets as a program with that name:

@
() Test

5. Now you have a “shell” program that you can fill in with

keystrokes. Just use to get into the program and begin
programming:
O IEsr @)

Hints for Entering Programs

The HP 48’s tiny keyboard, while well-designed, isn’t going to win any

touch-typing contests. Here are some helpful hints for getting your

programs into the calculator.

Keying in Alphabetic Characters

To follow the conventions used in this book, you’ll need to use both

uppercase and lowercase alphabetic characters. To get to locked

alphabetic characters, you press the (a) key twice. To then switch
between uppercase and lowercase, press (4] (@)

For instance, here’s how to enter lowercase alphanumeric characters,

and how to switch back and forth between uppercase and lowercase:

s (@) (@) (1) (@) gives you alpha-locked lowercase alpha, so the next
characters you type are lowercase, like abc.

m (#9) () gets you back to uppercase alpha, so you can enter letters as
LEF.

m () (@) gets you back to lowercase alpha again: ghi.

m (@) gets you out of alpha mode.

With alpha mode locked, just use (¢q) (@) every time you want to
switch from uppercase to lowercase or vice versa.

20 Introduction to HP 48 Programming

Use Menus and Commands to Help

Use built-in menus to help you. To avoid the tedium of typing, use the

menus and their commands as typing aids to put keystrokes1nto your

programs. Some menu commands, such as those in the

menu, help you remember what options are available for commands

such as FOR and WHILE.

Use All the Alpha Keys

Remember, you’re not limited to the characters shown on the face

of the HP 48. There’s a whole slew of special characters, including
ones such as x and «, that you can use to make your program’s user

instructions, screens, and output labels even more accurate and easy

to read.

These special characters are shown in the owner’s manual and on the

back of the calculator’s quick reference guide. To “type” one of these

special characters, make sure the calculator is in alpha mode, then

press the right or left shift key ((») or (&), followed by the key that
gives your the special character. For instance, here’s how you’d get the

string "From here to «" into the display:

Keystrokes Display Comments

@) e Starts a text string.

@@ Selects alpha mode.

F F Enters first letter as
uppercase.

H@®@ Switches to lowercase alpha.

rom here to "From here Enters next letters as
to " lowercase characters (end with

a space).

) "Frraom here Types the infinity symbol.
to !

Introduction to HP 48 Programming 21

Program Names and How They’re Used

Commands in programs must be capital letters because that’s what
the HP 48 expects. If you enter the word Ewtal into a program, the

calculator won’t execute the EVAL command; instead, it will look for

a program or other object named FEwval.

The HP 48 is picky about program names, too. If you enter a program

and name it, say, Init, that name appears in the menu display as

IMIT. Well, that’s the way the HP 48 displays the name, but

internally it’s still Init. And if you try to call a subprogram called

INIT (or INit, or init) from another program, you’re going to come
up empty- handed. Your calling program has to call Init. Don’t say

you haven’t been warned!

Actually, it’s pretty easy to make sure you call a subprogram by

its correct name: just press its menu key whenever you want to

“write” the name. Menu keys make it easier to manage variables and
programs with long descriptive names because they can “key in” the
program or variable name for you.

What about length, anyhow? The menu key display shows only

four or five characters (depending on how fat the characters are), so
you may want to limit variable and program names to that length.

Personally, I find it’s easier to use longer, more meaningful names,

even though I don’t see the entire name in the menu display.

But think about what happens if you want to select Program3 from

the keyboard from among the following programs:

Program1

Program?2
Program3

Program/

Program$

Programé

The menu display looks like this:

You’re better off naming these programs Pgm1, Pgm2, etc.

Another consideration, if you’re moving programs to and from

the HP 48 and your personal computer, is how those names will

look in the new environment. A Macintosh computer, of course,

22 Introduction to HP 48 Programming

doesn’t limit names; but your DOS-based PC limits HP 48 names to
8 characters. So the HP 48 variable Mygraphics, for instance, becomes
MYGRAPHI. (not MYGRAPHI.CS) when it’s brought into the DOS
environment.

Faster Character Deletions

When it comes to character-by-character deletions, (+) is somewhat

faster than (DEL). Move the cursor to the last character you want to
delete and use («) to go backwards through the program commands.

Working with Directories

Particularly with structured programming, where each main program
is made up of several subprograms, the number of programs in your

HP 48 can become very large. Directories are essential for managing

programs and other objects—and for preserving your sanity as well.

Creating a Directory

To create a directory:

1. Press (') to start the directory name.

2. Key in the alphabetic characters for the name. (Or place the name

on the stack.)

3. Press (&) CRDTRto create the directory.

Examining a Directory’s Contents

To see just the abbreviated names of objects in a directory, press
followed by the directory’s menu key to get into the directory. Then

use to review the names shown by the menu keys.

To display the names of menu pageful of objects in a directory, press

(«9) (REVIEW);this shows you the object names on the HP 48’s liquid
crystal display screen. When you’re done examining one page, press

to return to the stack display.

Introduction to HP 48 Programming 23

You can also see the full names and contents of every program in the

directory, viewing them all at once. Here’s what to do:

1. Press (&) to get to the directory above the one in which the
programs are located.

2. Press (¢») followed by the directory name. For instance, to see

the contents of a directory called SFX, press ()$F® . This

brings the directory and its contents into the stack. You’ll see the

heading D IR, followed by the name and contents of each individual

program.

3. Press (¥) to scroll down through the programs. The display shows

the word ['IF, followed by the first program name, followed by the

program itself. The display might begin something like this:

LIE

Alarm

OO zeg,. 868 1 BEEF 0,28 WRIT

4. When you’ve finished, press (the key) or (ENTER).

Reordering a VAR Menu

Each time you create and name a new object, including a program,

it goes to the beginning of the current directory’s VAR menu list. If

you’re doing top-down programming—in which you create the main

program first—your main program will always be at the tail end of the

directory list, making it somewhat hard to find.

It’s an easy matter, though, to reorder variables in the menu list so

you see the main program first, followed by the first program called,

and so on. Here’s how to do it:

1. Use (&) fff
directory.

2. Press (&) (or (¥)) to edit the list. It’s easiest to erase
variable names with or (¢). Use the VAR menu and press

individual menu keys to save time when you want to “type” names.

3. Press (ENTER) to put the edited list on the stack.

4. Use (&) (MEMORY) ORDERto order the list. ORDER places
programs and other obJects into the menu in the order you’ve

% to create a list of all variables in the

24 Introduction to HP 48 Programming

chosen. Objects not in the list aren’t deleted. They’re simply
added at the end, so their menu keys will appear later, perhaps on

a later page of the menu.

There’s an even easier procedure to use. Suppose you have a large

number of variables, but care about seeing only the first few; the order

of the rest doesn’t matter. In this case, create a list using just those
variable names, and use it as the argument for ORDER:

1. Press (&) to start the list.

2. Use the VAR menu, and press the first menu key you want to see,

then the second, and so on.

3. Press to place the list on the stack.

list will now appear beginning on the left side of the first page of
the VAR menu; all other variables in this directory will appear after

them.

If you have a large number of variables, this second procedure can

be significantly faster, since the HP 48 is actually reordering a small
number of variables instead of all of them.

Working with Programs

Editing and copying an existing program is usually easier than writing

an entirely new one. And there are plenty of times when you’ll want

to copy a program from one directory to another, rename a program,

or move it.

Viewing and Editing a Program’s Contents

To view and edit the contents of a program—or any variable—you

can:

1. Press C) and the variable name.

2. Press (o) to get into the program.

3. Do your editing.

4. Press to save the edited program.

Introduction to HP 48 Programming 25

When using (VISIT) to edit a program, remember this:

m To exit and save your changes, press (ENTER).

m To exit without saving the changes (preserving the previous
program version), press (the key).

Deleting Programs

To purge a program (or any other object):

1. Press (') to put a pair of tick marks in the command line.

2. Press the menu key for the program. This puts the program name

between the tick marks (for example, 'Eigprog').

3. Press () (PURGE).

The safest way to purge a directory is to use (PURGE), which means

that you must first delete all the individual programs and other
objects in it. To delete several programs at once, you can put them

into a list, then purge the entire list:

1. Press (&) to begin the list.

2. Press the menu keys for the individual programs or other objects.

Put them between the braces. For example, the display might look

like this: { Bigproa Littleproa Testprog

3. Press (|9) (PURGE). All the objects in the list are deleted.

Copying, Renaming, and Moving Programs

On the HP 48, copying, renaming, and moving a program or other

object are quite similar. The general procedure is as follows:

1. To begin, put the program contents into the stack by pressing the

() key, followed by the program’s menu key.

2. Then press the () key, and enter a name between the ' ' tick

characters. (If you’re copying, you can simply press the program’s

menu key to enter the name.) Now the program’s contents are in

level 2 of the stack, and the ultimate name is in level 1.

3. If it’s a move or a copy, use () and to get to the
directory where you want to place the program.

26 Introduction to HP 48 Programming

Press to store the program under the name you specified
(that is, the name between the tick marks).

If you’re renaming or moving the program, purge the original

program. (Go back to its original directory, press (") followed by

the program name, then press () (PURGE).)

Example: Renaming a Program. To rename a program, you give it a
different name within the same directory. For example, here’s how to

rename the program Myway to Yrway:

1.

2.

Press (o).

Press the MYlWWHY menu key. This brings the contents of that

program into the stack.

. Press () to place double tick marks in the command line.

Enter the name f't-wwayg between the tick marks.

. Press to store the program under that name. At this point,
there are two copies of the same program: Myway and Yrway.

. Press (") MYWAYagain. Then press (&) to delete Myway,
leaving only Yrway.

Example: Moving a Program. Moving is similar to renaming. For
instance, suppose you want to move the program Test from a directory

called MYSTAT to the directory called PROGS:

HOME
|

l l
MYSTAT PROGS

Test

The procedure is as follows:

1. Press (») followed by the MYSTHTmenu key to get into
the MYSTAT directory.

Introduction to HP 48 Programming 27

' to put the contents of the Test program on the2. Press (&) TEST

stack.

3. Press (") and enter the new program name. If it’s going to be Test,
you can press = instead of typing the characters.

4. Press (o») followed by PROGSto get into the PROGS
directory. Even though you’ve changed the current directory, the
contents of Test are still in level 2, and the name is in level 1.

5. Once you’re in the new directory, press to store the program

there.

6. Now you have two copies of the same program. If you don’t need
the original one, go back to the MYSTAT directory, bring the
original Test into the stack by pressing (') TEST, then press ()

to deleteit.

What about Entire Directories?

You can copy, rename, and move entire directories at once. Just bring

the entire contents of the directory into the stack with () followed

by the directory name. Then move or rename those contents as you

would a single program.

The safest way to erase a directory is to use (&) to purge all
programs and other objects from that directory, Then purge the empty

directory itself.

To erase a full directory all at once, put its name on the stack, then

execute the PGDIR command ((¢g) (MEMORY) (NXT) (NXT) FGD'IR.

However, be very careful using this command—make sure you know

what’s in the directory before you erase it!

28 Introduction to HP 48 Programming

Debugging

The HP 48 has several features that help in writing and debugging
programs.

Using Subprogram Calls

Remember that if a subprogram doesn’t exist when called, the HP

48 does not produce an error. Instead, it merely puts that name

on the stack. As you write structured programs with many calls

to subprograms, you may want to use top-down programming and

purposely leave some subprograms undefined until they’re written.

Single-Step Debugging

An invaluable aid in debugging is running a subprogram one step
at a time to see how it works. After each step, you usually see the

stack, so you can examine—or even change—the current value before
proceeding.

To single-step through, say, a subprogram called Test:

1. Press () to put 'Te=t ' on the stack.

2. Press ;

3. Pres to single step through the program.

4. Use : to abandon program execution. This doesn’t affect the
program itself.

_appears on the menu line, of course. What if your program

displays its own custom menu at some point, and you no longer see

? Just press (PRG) CTRLto get back to the program control
menu, then resume single-stepping with =| .

Single Step and Subprograms

When single-stepping through a main program rem mber that

subprograms are ezecuted when called by the | " key. Thus, each

press of executes the next subprogram To see every step of

the main program and the steps of each individual subprogram, use

nstead.

Introduction to HP 48 Programming 29

General Programming Hints

Keep these hints and tricks in mind as you write your own programs.

How to Halt a Runaway Program

If you want to stop a running program and return to the stack display,

press (the key). You can use this technique almost any
time, even to halt a runaway program or an endless loop.

If you're really in trouble—a program has taken over the keyboard and

has locked out all keys, for example—press and the top-row
key at the same time.

How to Manually Test a Flag

Need to know the status of a system flag or a user flag? Here’s how
you can determine it quickly:

1. Enter the flag number.

2. Execute (PRG) TEST (NXT)(NXT) FS7. If the flag is set, you'll
see a 1 on the stack. If it’s clear, you’ll get a 0.

For instance, to test system flag —56, which gives the status of the

error and BEEP command beeps:

Keystrokes Display

56 -56
(PRG) TEST(NXT)(NXT) F&57 @.68

Thus, user flag —56 is clear, which means error beeps and the BEEP

command are on.

How to Manage Memory Usage

With a calculator as powerful and flexible as the HP 48, there are

often dozens of ways to accomplish any objective. In this book,

we’ve haven’t always taken the most direct or memory-saving route.

Instead, we’ve opted for clarity, even if it chews up a few more bytes.

30 Introduction to HP 48 Programming

This is particularly true when it comes to variable names and user

instructions, which we’ve made long and descriptive.

To check the available memory, use (¢9) 'MEM. If this
command shows you’re running low on memory, or if you start getting

Out of Memory or Insufficient Memory messages, you’ll have to
take action. Here are some tricks you can use to save those valuable

bytes:

m Slash variable names to reduce the number of characters.

m Reduce user instructions.

m Use local variables, which go away after you’ve used them, instead

of global variables (which stick around).

m Don’t use recursive programs. (A recursive program is one that calls
itself.)

Another option, if your calculator permits it, is to add memory. The

procedure is fast and easy, and need not affect the programs and

variables you now have in your HP 48.

Never Assume Anything

Never assume the calculator will be “set up” a particular way when
you run a program. If your program needs degrees mode or should
display answers to two decimal places, be sure to specifically set all

those parameters—or prompt the user to do it.

Consider Different Object Types for Different Tasks

Remember the different types of objects available in the HP 48.

For instance, a program is surrounded by « and #, while a list has

£ and . A list lets you combine objects—including programs—for

manipulation.

Introduction to HP 48 Programming 31

Remember the Order of Evaluation

Keep the following evaluation rules in mind when you’re entering

formulas. The HP 48’s order of precedence, from first to last, is as

follows:

Parentheses (working from inside out).
Functions (SIN, LOG, etc.).
Factorial.

Power and square root.

Negation, multiplication, division.

Addition and subtraction.S
T
w
0
N

If in doubt, use the Equation Writer to enter equations. It takes care

of most precedence problems for you.

Maintain Good Housekeeping

Use local variables whenever you can. Local variables are used only by

the current program, and vanish upon exit. They keep your directories

from filling up.

If your program generates lots of variables, including those that are

automatically generated by the calculator’s own functions (such

as PPAR), you may want to write a short routine to purge them

upon exiting. Otherwise, your directories are going to be so full that

looking for a particular program name will be like finding a needle in a
haystack.

Besides purging variables, your programs and subprograms should take
into account what they do to the stack. Sometimes, of course, you’ll

want a result or series of results left on the stack. But if your program

has left unneeded items on the stack, you can DROP the stack to

eliminate them upon exit.

Don’t Use Loops Unless They’re Necessary

An HP 48 “program” doesn’t have to run continually to be effective.

For instance, if you’ve programmed computers in another language,
such as BASIC, you know that to get a menu display, you need to set

up a continuous loop. With the HP 48, however, you can eliminate

menu loops, since the calculator itself can display menus.

32 Introduction to HP 48 Programming

Put Messages in Catalogs

If you’re writing long programs with lots of messages, you may want
to do what the pros do: make up a “catalog” of messages, and

call each one by its number when you need it. By putting all your

messages in one place (a list works particularly well), you make it

easier to check meaning, spelling, and grammar. It’s also easier to
compare them for consistency, or even translate them into other

languages.

A Final Word

Remember, most (all!) of the programs in this book can be modified
or improved. And you’re encouraged to do so. Modifying and
changing programs is a great way to learn.

Introduction to HP 48 Programming 33

Business and Finance

Dedicated business calculators (especially those from Hewlett-
Packard) are well-known in the business and financial community.
And with the right programs, the HP 48 can handle virtually anything
that can be done on one of these dedicated business machines.

Thanks to the HP Solve application, TVM (time, value, money)
calculations are remarkably easy, and the added benefits of the HP

48’s sophisticated graphics and analysis can help you create a peerless

business calculator.

This chapter shows a few programs for use in business and finance. As
you’ll see, the programs in this chapter aren’t complex, yet they’re

very useful.

Hypertext, The Information Dispenser

Giving an important speech or presentation? Need a few

memory-jogging notes to get you through your next meeting? The HP
48 can be a pocket-sized dispenser of valuable and timely information,

a veritable fount of knowledge at your fingertips. With its excellent
memory and comparatively large display, this calculator can handle,
organize, and display all kinds of data. You begin by writing a series

of “notecards” containing the notes, text, graphics, or formulas you’ll

need. Then when you go to that meeting or presentation, you whip

out the HP 48, go into the HYPERTEXT directory, and start pressing

menu keys—which you’ve thoughtfully prearranged in the order you’ll

need them. The menu display means you can take topics in any order,

too, ready to field questions or provide answers.

Business and Finance 35

The Hypertext Directory

Begin by creating a directory for HYPERTEXT, then get into that
directory:

() HYPERTEXT

@ CRDIR
HYFER

The HYPERTEXT directory is where you’ll put all the subdirectories

and individual “notecards.” Inside this directory, you can create

a subdirectory for each topic. Within each topic, you can place

notecards—and more subdirectories, if desired—in the order you’ll

need them.

HOME

HYPERTEXT

I_L_—I
SALES MARKETING

Model Forecast People

| I l
Pricing DISTRIBUTION Promotion

Reasons Methods

If you use a structure like that shown in the figure, for instance, you

merely stride into that marketing meeting, pull out your HP 48,

and press the MAEFKkey. This gets you into the MARKETING

subdirectory. Within this subdirectory, your notecards are laid out in

order for your presentation:

FRICI DISTREI FROM

36 Business and Finance

You press the FEICTkey, and key pricing information appears frozen

on the HP 48’s display. You confidently begin your speech, referring

to your notes as necessary. Distribution is a deeper subject, so when

you press DISTREI, you have several entries for it. It’s like outlining,

only you’re using directories and subdirectories instead of topics and

subtopics.

Get the idea? Now let’s look at an example of a hypertext notecard.

Pricing—Displaying Text

Pricing 1s a notecard that displays text. It’s really a short program

that pauses to display one screen of text, moves to the next screen

when you press a key, then ends. Pricing has no overall effect on the

stack.

Program Instructions

CLLCD

"PRICIHG DECISION:

Lefine tat mkt=.

LLesian mktng mix.

Eztimate price

lasticity of dmnd."

1 DISF

N
o
F

0
0
P
O

i

v FREEZE

8 WAIT

CROF

CLLCD

Eztimate mkt potntl.

[Develop positioning.

Comments

Clears calculator display.

Be sure to end each line

with an endline character

() (&) to get a
display as shown here.

Displays text string beginning on

row 1.

Freezes display until next key

press.

Waits for a key press.

Throws away the key address

generated by WAIT.

Business and Finance 37

Program Instructions Comments

"6.Estimate rlunt csts.

Y.Analyze environment

factors.

2.5et pricing objctus.,

9. 0evelop price

structure."

1 DISF

¥ FEEEZE

B WAIT

LROP12

&

To save this notecard program as Pricing:

Keystrokes Comments

Puts program on the stack.

(") Pricing Stores the program.

Pricing is a typical notecard program. It begins with a CLLCD (clear

LCD) command that gets rid of any previous information from the

calculator display. Then a long text string is placed on the stack. If

you enter this string by typing, be sure to place an endline character

(press (#) («2)) at the end of each text line shown in the listing.

With a text string on the stack, the number 1 is entered next. This
puts the necessary arguments for DISP on the stack: the text string

in level 2, and the number 1 in level 1. When DISP is executed, it

displays the text beginning on the left side of row 1 in the display—in

other words, it fills up the calculator’s display screen.

How large can we make each screen of text? DISP can display up to

seven rows of text on the screen at once. The number of words you

can get in each row depends on whether the letters themselves are fat

(like M and [') or thin (such as I and t). A good rule of thumb is to
use about 17-20 characters per row.

38 Business and Finance

Some words may appear to trail off the edge when you’re typing them

in. Because of the different size of the characters in the display,

though, some of these “lost” characters may actually be visible when

the program is run.

After the DISP command, we execute 7 FREEZE, which freezes the

entire display until the next key press—or until the next DISP or

graphics command. This is an important point. We need some way to

halt the program, allowing display of that first screen, before we move

on to display the second Pricing screen.

For this we use WAIT, with 0 as its argument. WAIT normally pauses

execution for a specified number of seconds; thus, 2 MAIT gives you

a three-second breather, 18 WAIT pauses a program for 10 seconds,

and so on. The 0 argument works a little differently, though. The &
WAIT command waits for the press of any key before continuing. If

you don’t press a key, the program will be paused forever.

Here’s another advantage to using WAIT here: the key you press isn’t

executed. It’s swallowed up by WAIT, so you don’t have to worry

about annoying error beeps during your critical presentation.

Using @ WAIT does have one effect that we need to handle, however.
Although it doesn’t execute the key you press to continue, WAIT does

put the keyboard address of the key on the stack. So if you press the

key, you wind up with 51 on the stack. For this reason, right
after executing @ WAIT, we use DROP. This drops the stack one level,

which gets rid of that key address.

In the case of Pricing, there are two screens of information, so the

program goes through the entire sequence twice. It clears the display
with CLLCD,displays a window of text using 1 DISF, freezes the

display with FREEZE and waits for a key press with WAIT. When

you press any key to continue, the program executes DROP to rid the

stack of the key address.

Pricing shows two screenfuls of text, then ends. You can, if you like,

put all the notes for an entire 30-minute presentation in one program,

so that successive presses of any key bring up screen after screen. But

this makes it difficult to change the order, or to refer back to your

earlier notes. You’re usually better off with many programs containing

short one- or two-screen displays.

Business and Finance 39

Running the Pricing Notecard

To run a notecard such as Pricing, just press the menu key and view

the text.

Program Prompt or Display Your Action

FRICI

FRICING DECISIOM:

1.Define tat mkts.

Z.Estimate mkt potntl.

Develop positionina.

J
a

2
0

Lesian mktng mix.

S.Eztimate price

elaszticity of dmnd.

Now hit any key to see the next screenful of text for this notecard.

Program Prompt or Display Your Action

ENTER) (or any key)

B.Eztimate rlunt csts=s.

FeHAnaluyze environment

factors.

.52t pricing objctus,

A, Develop price

structure.

Figuring Depreciation

In business, when you purchase an asset like a building, a computer,

or a vehicle, its value gradually lessens over a period of time. This

lessening of value is known as depreciation, and it’s used in figuring

business expenses and for tax purposes.

To figure depreciation, you need to know the cost of the asset, its

life (how many years before it has no value left), and the method of
figuring depreciation. For tax purposes, an asset falls into a class with

40 Business and Finance

a specified life; for instance, a computer’s class life is five years, while

the class life for a building is 31.5 years.

There are several different formulas for depreciation. The simplest

is called the straight-line method. Using straight-line depreciation,
an asset loses a fixed percentage each year ofits life. For example, a

computer with a life of five years loses 20% ofits value each year.

Thus, if the computer costs $1000, it depreciates by $200 the first

year, $200 the second year, and so on. The formula for the amount of

straight-line depreciation for any one year is:

cost

life

Another method of depreciation uses the declining-balance formula,

in which the undepreciated balance (known as the book value) is
reduced by a certain percentage each year. This method is often used

by businesses because it places the largest amount of depreciation in

the first years of ownership. The formula for one year’s amount of

double-declining-balance (or 200% declining balance) depreciation is:

y—12 () 2)
n n

¢ = cost of the asset

n = number of years in class life

y = this year

For the $1,000 computer with a class life of five years, this results in a

depreciation of 40%, or $400, the first year, 24% the second year, and
SO on.

In figuring depreciation, it’s also useful to know how much of
an asset’s value (its book value) remains after deductions. For
double-declining-balance depreciation, this is given by the following

The Depreciation program and its associated subprograms let you

choose your type of depreciation. The program then prompts you to

input the cost, class life, and the year of the asset’s life in which the

depreciation occurs. Finally, you see a display with everything you

need to know.

Business and Finance 41

The Depreciation Directory

To create a directory for the depreciation programs, then get into that

directory:

() DEPRECIATION

@ CRDIR

The DEPRECIATION directory will hold all programs and

subprograms for calculating depreciation. Any objects (including

programs and equations) that you enter and save will be placed in this

directory.

The Main Depreciation Program

The main Depreciation program changes the key menu to show

only two keys: STLIHand DD ERAL. Depending on which key you

press, Depreciation calls three subprograms to figure straight-line

depreciation, or it calls three subprograms to figure depreciation

using the double-declining-balance method. The main program takes
nothing from the stack and leaves nothing there.

Program Instructions Comments

Start of Depreciation program.

Starts key list used by TMENU.

Begins defining list for first menu key.

"STLIH" First menu key display.

Begins defining program for first menu key.

Getwals Calls subprogram to get needed values.

Stline Calls subprogram to figure straight-line

depreciation.

Ot put Calls subprogram for output.

Ends first key procedure.

Ends list for first menu key.

42 Business and Finance

Program Instructions Comments

{ Begins defining list for second menu key.

"DDBAL" Second menu key display.

€ Begins defining program for second menu key.

Getvals Gets needed values.

Ddbalance Figures double-declining balance depreciation.

Out put Shows output.

® Ends defining program for second menu key.

> Ends defining list for second menu key.

¥ Ends key list for TMENU.

THEHNL Uses the above list to create two menu keys.

&

To save the program:

Keystrokes Comments

Puts program on the stack.

() Depreciation Stores the program as Depreciation.

The main Depreciation program uses the TMENU (temporary menu)

command to define two menu keys that will appear in the display. For
its argument, TMENU needs a list that contains menu key labels and
definitions, in the following format:

£ {"labell" objectl1> {"labelZ2" object2+...Z

The list used by TMENU is actually made of several internal lists.

Each list contains a label for the key and an object—that is, an action

to be taken if that key is pressed.

In thecase of Depreciation, the list specifies just two keys. If you

press STL IH, you call the subprograms Getvals, Stline, and Output.

Press [[and you summon Getvals, followed this time by

Ddbalance and finally Output. Notice that each key can execute

only a smgle object. Thus, to call more than one subprogram with

Business and Finance 43

each key, you have to place each set of subprogram names in its own

program,; that is, you place the names between program brackets
within the list.

Getvals—Labeling Input from the Keyboard

The Getvals subprogram is the first one called, whether you press

STLIHor DDEAL. Getvals prompts for keyboard input of values for

cost, class life, and the year. It tags these values and leaves them on

the stack for later use by Stline or Ddbalance.

Arguments Results

0

3 tagged cost

2: tagged life

 1: tagged year of life

Program Instructions

"Input the cost or

basis of the asset"

":Cost: "

IHFUT

OB+

"Input the class

life in gears"

"rlife:
IHFUT
eJd+

44 Business and Finance

Comments

Prompt string for INPUT.

Tag (on command line
during INPUT).

Pauses for input of cost,

displaying

above messages.

Converts keyboard input into a

tagged number.

Prompt string.

Command-line tag.

Pauses for input of class life.

Converts to tagged number.

Program Instructions Comments

"Emter this year (1 for Prompt string.

1=t, 2 for 2nd, etc.2"

"!:This year: " Command-line tag.

INFUT Pauses for input of year.

0B.J+ Converts to tagged number.

When you enter the commands for Getvals, be sure to place ((2) (<2))
to end lines within the message strings as shown. Otherwise, when you
run the program, lines of message text may extend past the edges of
the display screen.

To save this subprogram:

Keystrokes Comments

() Getvals Stores the program as Getvals.

Getvals is really nothing more than three INPUT commands, one after
another. Together, they leave three tagged values on the stack when

Getvals is finished.

Let’s look at how one of these INPUT commands works. INPUT takes
as its argument two strings from the stack. In level 2 is the prompt
string, which in this case can be up to three lines of text. In level 1 is
the command-line string. When INPUTis executed, it takes these two
quantities from the stack, displays them, and waits for input.

When you enter a number from the keyboard and press (ENTER), the
INPUT command actually combines the command-line string and
your input. By placing a leading and trailing semicolon around the

command line, we create a tagged object—without using the -TAG

command.

Thus, for a three-year old asset with a cost of $1,000 and a class life of

five years, Getvals leaves the following quantities on the stack:

Business and Finance 45

Stack Level Contents

Level 3: Cost: 1880.00

Level 2: Life: 5.806

Level 1: This uear: 2.68

Because each of these quantities has been converted to a number with

OBJ—, you can use them as you would any number. You can add,

subtract, multiply, divide, just as if the number stands alone. As

you’ll see, you can easily convert a tagged value to a string, too.

Stline—Using Local Variables in Formulas

The Stline subprogram takes three values (cost, life, and year) from

the stack, and uses them to figure depreciation by the straight-line
method. It leaves four quantities on the stack: a string, "5t lines";
the tagged cost of the asset; the amount of this year’s depreciation,;
and the amount remaining to be depreciated.

Arguments Results

41 41 "5t line"

[
k] : tagged cost ! tagged cost

2: tagged life : tagged depreciationM

 —
t : tagged year of life 1: tagged remaining value

46 Business and Finance

Program Instructions Comments

&

+ cost life year Creates local variables.

« Begins defining
procedure for local

variables.

"St. line" Places this string on the
stack.

cost Places the value of this

variable on the stack.

'costslife' EVAL Calculates depreciation

and places it on stack.

"This uear" »TAG Adds tag to depreciation
value.

'cost-year#cost-life' EVAL Calculates remaining
value.

"Remaining" TAG Adds tag to remaining
value.

® Ends defining procedure
for local variables.

Ends program.

To save the program:

Keystrokes Comments

Puts subprogram on the stack.

() Stline Stores the Stline subprogram.

Using local variables in this subprogram makes it much easier to follow

than if we’d done all these depreciation calculations on the stack. The

program begins by taking three quantities from the stack and creating

the local variables cost, life, and year. Because we’ve used meaningful

names, anyone who comes across this program, say, 100 years from

now will know what values it needs.

Business and Finance 47

In order to create local variables, we have to immediately follow their

declaration with a defining procedure. Here, as is often the case, the
defining procedure is a program, enclosed between program brackets.

The defining program first places the string "5t 1ine" on the stack.

Our Output program is going to use this, and it will also use the value
for cost, which we place on the stack after the string.

The formula for any year’s depreciation is the cost of the asset divided

by the number of years of its life. It’s a simple matter to turn this into

the formula 'cazt~1ife', then perform that calculation with the

EVAL command. We tag the result using the "Thiz g=ar" tag and

the =TAG command.

Similarly, the formula for the asset’s remaining value (another quantity

that’s prized in accounting and tax circles) is given by the cost minus

the total depreciation to date; or 'coszt— ysars*cost-life’.

Again, within the program we use EVAL to get a result from
this easy-to-read formula, and we tag the result with the string

"Remaining" for later use.

Ddbalance—Different Names for Local Variables

Ddbalance 1s very similar to Stline; it takes the cost, number of years

of total life, and age in years from the stack. (They were placed

there by Getvals, remember?) Ddbalance uses these quantities to

calculate the amount of depreciation by the double-declining-balance

method, and returns four quantities to the stack: a string describing

the method, the cost, the depreciation for this year, and the amount

remaining for depreciation in future years.

Arguments Results

41 4: "Zz@@ DE"

o3t tagged cost : tagged cost

2: tagged life 2: tagged depreciation

1: tagged year oflife 1: tagged remaining value

48 Business and Finance

Program Instructions

EVAL

"Thiz wear" *THG

‘o (1-2smagt EVAL

"Remainina" *TAHG

Keystrokes

(') Ddbalance

Comments

Begins program.

Creates local variables.

Begins defining procedure for

local variables.

Puts string on stack.

Puts value of ¢ (cost) on stack.

Formula for this year’s

depreciation.

Calculates depreciation, returns

result to stack.

Tags depreciation result.

Calculates remaining value.

Tags remaining value.

Ends defining procedure.

Ends program.

Comments

Stores Ddbalance program.

As in the Stline program, Ddbalance converts the three values on the
stack to local variables before doing anything else. Those values were

placed on the stack by the preceding program, and they’re always in

the same order, of course. But compare Ddbalance and Stline; notice

that although each expects the same values from the stack, we use

different variable names to refer to them within the subprogram. For

instance, in Stline the variable is cost, while in Ddbalance it’s c.

Here the local variables are called ¢ (for cost), n (for total number of
years of life), and y (for this year), to correspond to the formulas
we’re using. Because local variables are lost when the program is

finished running, you can use whatever names you want within the

program.

Business and Finance 49

As with Stline, when Ddbalance is finished running, it leaves four
quantities on the stack: a string (this time the string is "288 DE");
the tagged cost of the asset; the tagged amount of depreciation for this
year; and the tagged remaining value of the asset after this year. Now
we’re ready for the Qutput subprogram.

Output—Combining Answers into a Single Display

The Output subprogram takes four values from the stack, converts

them to local variables, and combines them to create a detailed,

easy-to-read output display. It also leaves the tagged values for this

year’s depreciation and remaining value on the stack.

Arguments Results

4: identifying string

3t tagged cost

2: tagged depreciation

 1: tagged remaining value

A
0
a
n

2: tagged depreciation

 1: tagged remaining value

Program Instructions

+ method cost depcn

rualue

"DEFRECIATION

st

+5TR

50 Business and Finance

Comments

Begins program.

Creates local variables.

Begins defining procedure for local
variables.

Begins text string for use by DISP.

Blank line (that is, a newline
character)

End of text string.

Puts local variable cost in stack.

Converts to a string.

Adds the two strings.

Program Instructions
W

":Method: " +

met hod

depcn

+STR +

" +

rvalue

sSTR +

CLLCD

1 DISP
7 FREEZE

depcn rwalue

&

Comments

(Put a newline character after the
quotation mark.)

Adds the newline character to the

string.

Adds this word to the string.

Places the string from method in the
stack.

Adds the two strings.

(Again, put a newline character after
the quotation mark.)

Adds the newline character to the

string.

Places the value of depcn in the

stack.

Converts value to a string, and adds
it.

(Put a newline character after the
quotes.)

Adds another newline.

Gets the value of rvalue.

Converts to a string, and adds to the
display string.

Clears the calculator’s liquid crystal
display.

Displays string beginning on line 1.

Freezes all parts of display until next

key press.

Leaves two values on the stack.

Ends defining procedure for local
variables.

Ends program.

Business and Finance 51

To save the Output subprogram:

Keystrokes Comments

() Output Stores the subprogram.

In this program, we take the four quantities passed from the preceding

program (either Stline or Ddbalance) and put them in a long string for
display by DISP. The DISP command uses as its argument a string in

stack level 2, and a number in level 1. The string is what’s displayed,

and the number tells DISP where (that is, what line of the display) to

begin showing it.

To create the display string, we begin with a headline,

"DEFRECIATIOH". Before we end this string, though, we add a

couple of newline characters (((») (&2)), which has the effect of adding
a blank line before beginning a new one.

Next we bring the value of the cost variable into the stack. The value

1s a tagged number, so both the tag and the value appear. When

the =STR command is executed, it converts the entire quantity—

including its tag—to a string. If cost is $1000, the stack looks like
this:

Stack Level Contents

Level 2: "DEPRECIATION

Level 1: ":Cost: 1866.00"
Thus, when + is executed, the string in level 1 is added to that in

level 2, creating one single long multi-line string. We add another

newline character, then bring the rest of the variables into the stack

and add them to the string, too.

Notice that we add the word "Method" to the string before adding
the value of the variable method. Also notice that because "Mzt hod"

is already a string, we don’t have to use -=STR on it.

52 Business and Finance

After we’ve added all the necessary labels and the four variables to the

display string, we execute 1 DISP to exhibit that string beginning
with line 1 of the HP 48’s display. The display looks something like
this:

DEFRECIATION

iCost: 1888, 00

tMethod: St line

tThis year: 260.80

tRemalining: 4684, 686

If we didn’t throw in a FREEZE command here, you’d see the display

only for a fleeting moment. By adding ¥ FREEZE before exiting the
program, we guarantee the display will remain until the next key

press.

Just before exit, we use the local variables depcn and rvalue to place

these two quantities on the stack. They’re tagged, of course, for easy

identification, so you can use them in other calculations.

Running the Depreciation Program

To run the Depreciation program, just hit the DEFREke
presents you with a pair of menu choices, STLIHand DDEHL

you can use the program to compare depreciation using these two

alternatives.

For instance, suppose you purchased a computer for $3250, and you

want to see how much depreciation to allow in the first year. Its life is

five years.

Business and Finance 53

Program Prompt or Display Your Action

STLIN

Input the cost or

baszis of the asset

:Cost: 3250

Input the class

life in years

tLife: 9 (ENTER

Enter this year (1 for

1st, 2 for 2nd, etc.?

:This year: 1 (ENTER

DEFEECIATION

tCost: 2258.80

tMethod: St line

tThiz year: &50.00

tRemaining: Z2680.88

Now compare the amount you can take in the first year using straight
line depreciation with that allowed by the double-declining-balance

method.

54 Business and Finance

Program Prompt or Display Your Action

Input the cost or

basis of the asset

:Cost: 3250

Input the class

life in years

Lifes 5 (ENTER)
Enter this year (1 for

1st, 2 for 2nd, etc.?

:This year: 1 (ENTER

DEPRECIATIOHN

tCost: 3256.88

tMethod: 288 DB

:This year: 1260.88

tRemaining: 1950.88

After these two depreciation calculations, the following values are left

on the stack:

Stack Level Contents

Level 4: This year: 658.088

Level 3: Remaining: 26806.00

Level 2: This year: 13068.068

Level 1: Remaining: 1958.008

You may have noticed that using double-declining-balance

depreciation, the asset is never fully depreciated to zero. For

this reason, tax authorities usually permit you to switch to the

straight-line method any time during the life of the asset. You make
the switch in the first year the amount of depreciation is greater using
straight-line.

Business and Finance 55

Compound Interest Amount

Who in our society hasn’t been exposed to the vagaries of compound

interest? Whether it’s a savings account, an auto loan, or a

“revolving” credit balance that seems to grow exponentially,

compound interest touches all of our lives in some way.

In compound interest, the interest earned on a sum (the principal) is
added to that sum, and interest is then earned on the entire amount.

The formula for computing compound interest is:

mt

A=P (1 + -'L)
m

where

P = amount of principal

r = Interest rate per year, expressed as a decimal

m = number of compounding periods per year

t = time; that is, number of years

A = amount accumulated at the end of ¢t years

Looking at this equation, you can see that it won’t be too difficult to

solve for the amount, A. But what if you want to know the number of

years, t, that it will take to accumulate a certain sum, or the effective

interest rate, r, given an amount and principal?

When you have complex equations with many interacting variables,

the easiest way to handle them is with the HP Solve application. With

HP Solve, you enter and store the equation, then see a menu of that

equation’s variables in the display. HP Solve lets you enter the known

variables, then solve for an unknown. It’s a lot easier than trying to

write a program to do the same thing.

Keyboard Example of HP Solve

For instance, let’s suppose you want a million dollars when you retire

20 years from now. Here’s how you could use HP Solve to find the

total amount you’d need to invest now, assuming an interest rate of

7.5% compounded quarterly:

() EIETD)
AQG
POEOIBDr@m
OOt

56 Business and Finance

Store this as the current equation:

() Gome)
STEG

Then use the SOLVR menu of variables to find the amount. First

input the known variables:

Keystrokes Display Comments

SOLVE Displays SOLVR menu.

PR 1,888,888, 88 Enter amount.

eo|. 83 Enter interest rate.

m: 4,80 Enter compounding

periods per year.

200 T t: z@.88 Enter time in years.

Then solve for the principal:

Keystrokes Display Comments

eF P: 226258.87 The required principal.

This shows you need to invest $226,250.87 in order to have a million

dollars 20 years from now.

The Compound Directory

To create a program for compound interest, begin by creating a

directory for the Compound program and its subprograms:

() COMPOUND
) CRODIR

COMFP

The COMPOUND directory will hold all programs and subprograms

for this application . Any objects (including programs) that you now
enter and save will be placed in this directory.

Business and Finance 57

The Main Compound Program—Programming HP Solve

Using the HP Solve application means you don’t have to write
complicated programs. With HP Solve, the hard part—the linking

of many variables in a formula so you can solve for any of them—is

done for you. However, you can surround HP Solve with a shell that

automatically loads the correct formula, provides user instructions,

and cleans up when it’s done.

The advantage of programming an equation is simplicity: you press

one of the VAR keys (for example,COMP for the Compound
program) and you get:

m The correct equation.

m The HP Solve SOLVR menu of variables for that equation.

m User instructions on the screen.

The disadvantage is that all those variables used in the formula remain
in your VAR list when you’re through. However, you can purge the

variables with a cleanup routine.

Now let’s look at the main compound interest program, Compound.

This main program merely calls a series of subprograms in order. By
itself, Compound takes nothing from the stack and leaves nothing

there, although as you’ll see, HP Solve leaves its results on the stack,

ready for you to use them in other calculations.

Program Instructions Comments

&

Init Initializes calculator and stores equation.

M=al First part of user instructions.

Mz Second part of user instructions.

Cprompt Halts execution and displays SOLVR menu.

Cleanup Purges variables and shows VAR menu again.

58 Business and Finance

To save this main compound interest program as Compound:

Keystrokes Comments

Puts program on the stack.

(D) Compound Stores the program as Compound.

Now let’s look at the individual subprograms and what they do.

Init—Specifying a Built-In Menu

The Init subprogram “writes” the compound interest formula into the

stack and stores it as the current equation. Then Init displays the HP
Solve menu of variables—which, of course, are the variables from that

current equation. Init also sets the display mode to show two decimal

places, and ensures that the time doesn’t appear during display of user

messages. This subprogram has no overall effect on the stack.

Program Instructions Comments

&

'"A=P*{1+r/m>"~(m*t>' Compound interest formula.

STEG Stores formula as current equation.

38 MENU Displays HP Solve SOLVR menu.

-48 CF Turns off display of time.

2 FIX Shows numbers to two decimal places.

¥

To save this subprogram:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program as Init.

This subprogram begins by “writing” the compound interest formula

into the display and placing it on the stack. When you surround the

Business and Finance 59

formula with tick marks ('), it means the formula won’t be evaluated
by a running program. Instead it’s merely placed on the stack.

Next, Init executes the STEQ (store equation) command. STEQ
stores the formula as the current equation. This equation and its

variables are usable within the current COMPOUND directory, but

don’t affect operations and variables in the rest of the calculator.

Thus, the current equation affects only the current directory; other

directories may have different current equations.

With the equation stored, Init executes Z8 MEHILI. The MENU

command lets you call up any of the built-in calculator menus; and

28 MEHU specifies HP Solve’s SOLVR menu. It’s just as if you’d
pressed (&) SOLVE.

Clearing system flag —40 with the —4& CF instruction keeps the

internal timer display from appearing in the middle of some later

messages. And the 2 FIstatement specifies that numbers will be
shown to two decimal places (that is, as dollars and cents).

If you press to run this program, you’ll find that the HP 48

switches to its HP Solve application, and you see the menu of HP

Solve variables at the bottom of the display:

H o F ik iiom o T iESPR=

In fact, this is all you really need to run the HP Solve application.
You can plug known values into those variables, and use the (&)
key followed by the variable key to solve for a value, just as in the

keyboard example. But we’re going to use additional subprograms to
include some memory-jogging instructional messages. We’ll also add

a cleanup routine, so that each time you run Compound, you’ll start

with a clean slate of variables.

Msg1—Displaying a Message without FREEZE

The Msgl subprogram displays the first of two user messages. It waits

for you to press any key before continuing, and has no overall effect on

the stack.

60 Business and Finance

Program Instructions Comments

&=

CLLCD Clears previous
messages from display.

"COMPOUND IWTEREST

Enter each known

quantity, then press Message for display by

itz menu ke, To solue DISP.

for a quantitu, press

the [+]1 kegy followed

by the menu keg,"

U
]

1 DISP Displays message
beginning on line 1.

-1 WRIT Waits for key press.

DROF Throws away key

address from key press.

To save the Msgl program:

Keystrokes Comments

Puts program on the stack.

() Msgl Stores the program.

To begin, a CLLCD command clears the HP 48’s liquid crystal

display of any previous messages or information. Then Msgl places a

seven-line message string on the stack, followed by the number 1. (As

usual, place endlines, () (&2), after each line of the message string.)
The message itself tells users the name of the program, and how to

run it.

DISP takes two quantities from the stack, the message string from

level 2 and the number from level 1. Since the number is 1, DISP

displays the message string beginning on line 1 of the calculator’s

screen—that is, at the top. This seven-line message pretty well fills up

the available display area.

Business and Finance 61

With the message string now displayed, WAIT gives you time to read
it. Because nothing happens between the execution of DISP and the

WALIT, the display isn’t updated, so we don’t need to use FREEZE

here.

Both 8 MAIT and -1 WAIT will wait for the press of any key before

continuing. Here we’ve used —1 WAIT, so that along with the message,
you also allow the user-key menu to be updated. This lets you see the

latest menu—that is, the menu of SOLVR variables.

After reading the message displayed in Msg1, you press any key

to continue to the next subprogram. However, with 0 or —1 as its

argument, WAIT not only waits for you to punch a key, but also

returns a number representing the address of the key that was pressed.

That’s why we need to DROP the stack before exiting Msg1; the

DROP “throws away” that useless address.

Msg2—Displaying a Second Message

Msg?2 displays a detailed explanation of each of the quantities called

by the list of SOLVR variables. Like Msg1, it has no effect on the

stack.

Program Instructions Comments

CLLCD Clears previous display.

"P=Frincipal amount

~=ygearly interest rate

as decimal (.87,etc)

m=no. of compounding Text string for display
periods per dear by DISP.

t=no. of uears

A=Amount after t gears"

1 DISP Displays text beginning
on line 1.

a WAIT Waits for a key press.

DROP Throws away key

address left by WAIT.

62 Business and Finance

Keystrokes Comments

Puts program on the stack.

() Msg2 Stores the program.

Although the message itself is different, Msg?2 is very similar to Msg1.

The only real difference lies in the use of WAIT. We still want to

display the message while waiting for a key press, so we can use either

B WAIT or =1 WAIT here. Now in Msgl, we needed —1 WAIT, so that

the menu keys could be updated while waiting. Because those keys

have now been updated, though, we don’t need to use =1 WAIT here;

we can use @ WAIT instead. @ WAIT merely waits for you to press any

key, while maintaining the previous list of menu keys.

At this point in the Compound program, we want to give control

back to the user temporarily, to allow the use of the SOLVR menu of

variables. So the next subprogram that is called is Cprompt.

Cprompt—A Good PROMPT Application

The Cprompt subprogram temporarily suspends execution of

Compound, giving complete keyboard control back to the user.

Cprompt provides a message to explain what’s happening. By itself,

Cprompt has no overall effect on the stack, but when execution is

resumed, it’s highly likely that a computed value will be present there.

Program Instructions Comments

&

"Mow in HP Solve. Prompt string for use by PROMPT.

Fress COMT when done."

FROMPT Displays prompt string, returns

control to keyboard.

®

Keystrokes Comments

Puts this short program on the stack.

() Cprompt Stores Cprompt program.

Business and Finance 63

At this point in Compound, it’s time to put values into the SOLVR

variables and make some compound interest calculations. Temporarily

returning control to the keyboard like this is a perfect application for

PROMPT or HALT. And as it happens, Cprompt is really nothing

more than a PROMPT command.

PROMPT takes as its argument a text string, which it displays at
the top of the HP 48’s LCD. PROMPT also returns control to the

keyboard—but it expects that when you’re done pressing keys, you’ll

press (&) to continue. If you forget to press (CONT), you're
likely to find the word HALT in the status area.

When you finally do resume execution, Compound calls Cleanup to

take care of some housekeeping before it ends.

Cleanup—A Programmatic Purge of Variables

After you’re done computing compound interest, you’re left with

the menu of SOLVR variables in the current directory, along with
all of Compound’s subprograms. Cleanup purges the variables, and
redisplays the VAR menu. It doesn’t affect the stack.

Program Instructions Comments

CAPrmt 2 Makes a list of variables.

FURGE Deletes those variables.

2 MEHU Displays the VAR menu again.

Keystrokes Comments

() Cleanup Stores the Cleanup program.

The PURGE command deletes objects from the HP 48. The PURGE

command, which is available on the keyboard as (¢9) (PURGE), can take
a single variable name as its argument, or it can take a list of names.

In the Cleanup subprogram, we supply PURGE with a list of variable

64 Business and Finance

names—the very names that form the SOLVR list of variables, left

over when you’re done making compound interest calculations.

Using PURGE to clean up is an excellent way to get rid of unneeded

objects before exiting a program. You can use PURGE in this manner

to erase SOLVR variables and delete reserved names, such as PPAR

and YDAT, that have been created in the current directory by the HP

48.

Finally, Cleanup executes 2 MEHL. This does nothing more than
display the updated list of variables; it’s exactly as if you’d pressed the

key now. However, changing back to the normal VAR menu on
exit provides “visual feedback” that something has happened, and

makes it easy for the user to find COMPfor running the program
again.

Running the Compound Interest Program

Now let’s run that compound interest program to see how much

we’d need to invest now in order to have a million dollars 20 years

from now. Again, assume an interest rate of 7.5%, and quarterly

Program Prompt or Display Your Action

COMFOUND IMTEREEST

Enter each known

quantitu, then press

its menu ke, To solwe

for a quantitu, press

the [£] kegy, followsd

bu the menu kew. (ENTER) (or any key)

Now you see the next message.

Business and Finance 65

Program Prompt or Display Your Action

F=Principal amount

~=yearly interest rate

as decimal (.87 ,etcd

m=no. of compounding

periods per Jdear

t=no. of Jgears

A=Amount after t gears (or any key)

MHow in HPF Solwe

Fress COWMT when done.

The HP 48 is now in HP Solve, all ready for you to key in quantities

for the different variables. The menu of SOLVR variables is shown at

the bottom of the display:

 AoRRY ERPR=

Using this menu, you can store the known values in their variables,

and solve for P. The amount, A, is $1,000,000.00. Interest rate

ris 7.5% (that is, .075), and the time, ¢, is 20 years. Number of

compounding periods (m) is 4 per year.

Keystrokes Display

The answer is shown in the display. To continue the program, and

clean up the current directory:

@@D

66 Business and Finance

That does it! You’ve quickly calculated the necessary principal value.
And the VAR menu keys for the current directory are once again

displayed.

Business and Finance 67

4

Statistics Programs

The HP 48 has several statistics functions built into the calculator.

Like other functions, you can use them individually or as parts of a

program. This section illustrates a few techniques for getting the most
from the statistics features of the HP 48.

Normal Probability

A normal distribution, with the mean in the middle, produces a

bell-shaped probability curve. The probability that a given individual

z is between a and b can be computed using calculus, of course, but
most statistics texts use a method that involves finding the standard
score, and then using a table to determine probability.

The HP 48’s UTPN function gives the probability of something above

a particular point—the probability that you’ll be in the top 10 percent

of your class, for instance. It requires three quantities in the stack.

Statistics Programs 69

Stack Level| Contents

Level 3: Mean, T

Level 2: Variance, s2
 Level 1: Value of z

Given these quantities, the UTPN function returns the upper-tail
probability; that is, the probability represented by the area under the
curve from z to the right.

Keyboard Example

To find the probability of the area from a to b, we need to subtract

the upper-tail probability of a from that of b. For instance,

intelligence quotients are normally distributed with a mean (Z) of 100
and a standard deviation (s) of 10.

What good is knowing the probability of a normal distribution?

Suppose that a hot new electronic dating service, Compumeet, intends

to provide you with an introduction to someone chosen completely

at random. You can use the following procedure to determine the
probability that Mr. or Ms. Right has an IQ between 95 and 105:

Keystrokes Display Comments

100 168, 68 Enter the mean, 7.

10 16,86 Enter the standard deviation,
s.

() 186, 64 Square it to get the variance,
s2.

95 35 Enter the value for a.

PROB
UTFH .69 Compute the upper- tail

probability for a.

Recall levels 1, 2, and 3 (the
last arguments) to the stack.

L n - A 1
=@CSTARD)

70 Statistics Programs

Keystrokes Display Comments

=) 166,08 Drop the stack to leave mean
and variance in levels 2 and 1,

respectively.

105 8.31 Compute upper-tail
probability for b.

e a.38 Subtract upper-tail probability

of b from that of a to get
probability between a and b.

The probability is .38, or about 38 percent that a person chosen at

random will have an IQ between 95 and 105.

The NormalProb Directory

To create a directory for the normal probability program and
subprograms, then get into that directory:

() NORMALPROB
@ CR

The NORMALPROB directory will hold all programs and
subprograms for calculating normal probability. Any objects

(including programs) that you enter and save will now be placed in
this directory.

The Main NormalProb Program

Here’s the main program for computing the probability from a to

b. It prompts for the quantities as they’re needed. The program

determines probabilities of individual values for a normal population.

The NormalProb program requires nothing on the stack when it

begins; when finished, it leaves your tagged a and b values in levels 3

and 2, and it leaves the calculated probability in level 1 of the stack.

Statistics Programs 71

Arguments Results

3: 3: tagged value for a

2: 2: tagged value for b

1: 1: tagged probability

Program Instructions Comments

Init Initializes HP 48 calculator.

Meszaqe Displays program title and user

instructions.

Getmean Prompts user to enter the mean.

Get sdewy Prompts for standard deviation.

Geta Prompts for point a.

Gethb Prompts for point b.

Compute Computes normal probability.

Label Labels the output.

To save the main NormalProb program:

Keystrokes Comments

Puts program on the stack.

() NormalProb Stores the program as NormalProb.

This is about as straightforward an example of structured
programming as you’ll find anywhere. NormalProb calls several

subprograms in turn, and each one performs a single task. Init,

of course, sets up the HP 48 for this calculation. The Message

subprogram displays some user instructions, explaining what the

program does.

72 Statistics Programs

Getmean, Getsdev, Geta, and Getb all prompt the user to input
quantities needed for the actual probability calculation. Each of these

subprograms gives the user an opportunity to verify (or change) the
value entered. Finally, Compute uses the UTPN command to calculate
normal probability, and Label tags and displays the final answer.

Init—Answers to Two Decimal Places

The first program called by NormalProb is Init, which initializes

the HP 48 calculator to display answers to two decimal places. Init

doesn’t affect the stack.

Program Instructions Comments

"

S

2 FIX Sets HP 48 to display answers to two

decimal places.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program.

Although this subprogram as now written merely sets the display

mode for the calculator, you could also use it for other settings as well.

Message—Halting for a Display

The Message subprogram halts to display a main title and some brief

user 1nstructions. It has no overall effect on the stack.

Statistics Programs 73

Program Instructions Comments

CLLCD Clears the calculator’s liquid

crystal display.

"HORMAL FROBREILITY

Frobabilituy between

two points on normal Text string for display by

distribution. You'll DISP. Place endline characters

be prompted to enter () (&) at the end of each
left points then right line.

point. Do COWHT now."

1 DISF Displays text beginning on
line 1.

7 FEEEZE Freezes the entire display until

next key press.

HALT Halts program until (&)
is pressed.

To save this subprogram:

Keystrokes Comments

() Message Stores the program in the current
directory.

The Message subprogram begins with a CLLCD command, which
clears any previous information from the calculator display. If you

don’t use CLLCD, the later DISP command simply writes over the

existing display; and any areas unaffected by the new text or message

remain just as they were. We use CLLCD to guarantee a clean slate.

Then Message places a long text string in the stack for later use

by the DISP command. This string is so long, in fact, that when

displayed, it fills the HP 48’s screen. As you enter the Message

74 Statistics Programs

subprogram, be sure to press (¢») at the end of each text line, to
make sure the entire message is displayed with no scrolling.

The DISP command requires two arguments on the stack: a text
string in level 2, and a number in level 1. When executed, DISP places

that text string in the calculator display, with the first character of

text beginning on the row specified by the number. Thus, "Text "
1 DISP would place the word Text in row 1 (the top row) of the
display, while "He1l1la" 4 DISF would put this familiar greeting in

the center row.

The 7 FREEZE command freezes the entire display, preventing it from

being updated until the next key press. Without this command, you’ll

see the message displayed by DISP all right, but it will immediately

disappear as soon as the stack is updated. Thanks to FREEZE, the

stack can be working and changing behind the scenes, while you read
the message frozen in the calculator display.

There are a couple of ways to pause an HP 48 program, but in

Message we’ve chosen to HALT it. The HALT command suspends

program execution and returns control to the keyboard; to continue

the program, you press (¢9) (CONT).

With HALT, you don’t have to continue the program now. Instead,

you can go off and use the statistics keys to input data, or compute

mean or standard deviation, or perform other calculations. Then you

can come back and continue on to the next subprogram.

Getmean—Verifying Input with PROMPT

The next subprogram call is to Getmean, which prompts the user for

input of the mean value. Before the subprogram continues, the user

can double-check the value, and change it if necessary. Getmean takes
nothing from the stack, and leaves the tagged value of the mean there
when it has completed execution.

Arguments Results

1: 1: tagged mean

Statistics Programs 75

Program Instructions Comments

&

"Enter the mean (x>" Prompt string for INPUT.

i M Command-line string.

INFPUT Pauses for input, displaying

prompt and command-line

strings.

OB+ Converts user input to a

tagged object.

"Press COWT if = is OK" String for PROMPT.

FROMPT Waits for (CONT).

Keystrokes Comments

Puts program on the stack.

() Getmean Saves the program.

This subprogram uses INPUT to get a value for mean from the
user, and PROMPT to allow an extra verification (or input) before
continuing.

INPUT requires two strings as it arguments, so Getmean begins by

placing two text strings on the stack. The first is "Enter the mean
¢2", which is the prompt string for INPUT; this is what will be seen

in row 1, at the top of the display, when INPUT is executed. The

second text string is ":x=: ". This text appears on the command line,

with the cursor right after it, and whatever is input by the user will be

added to this string.

When the INPUT command is executed, the program halts, displays

the prompt and command-line strings, andwaits for the user to input

a value for the mean. (What it’s actually waiting for is the next press

of (ENTER))
See the colons at the beginning and end of the command-line string?
Because of these colons, the value that’s INPUT is added to the string
to create the form of a tagged object, like this: ":tag: object". Then

76 Statistics Programs

the OBE.J+ command removes the quotation marks from the string
and converts it into the tagged object. When this tagged object
is displayed on the stack, the leading colon is dropped, so you see

something like this:

=i 16808

Now the subprogram is halted again, this time by PROMPT. As
used here, the PROMPT command takes as its argument the string
"Press CONT if % is OK". When executed, PROMPT displays this

prompt string and halts execution, returning control to the keyboard.

The user can now verify whether or not the value input for mean

is correct. If the value is correct, the user presses (&) to
continue.

Notice the difference between HALT (used in Message) and
PROMPT. Both cause the program to halt and return control to the
keyboard until orSSTis pressed. However, HALT doesn’t
display a prompt string, but does display the word HALT in the status

line.

The next three subprograms, Getsdev, Geta, and Getb, all function

the same way—with INPUT followed by PROMPT.

Getsdev

Getsdev prompts the user to input a value for standard deviation.

This subprogram takes nothing from the stack, and adds a tagged
standard deviation.

Arguments Results

2: 2: tagged mean

1: tagged mean 1: tagged standard deviation

Statistics Programs 77

Program Instructions Comments

-"~

"Enter the standard Prompt string for INPUT.
dewviation (s)"

Command-line string for
INPUT.

IHNFUT Waits for keyboard input of

standard deviation.

OE.-+ Converts command-line string
and value to tagged object.

"Press COMT if = iz OK" Prompt string for PROMPT.

FROMFT Halts execution and waits for

@@D

Keystrokes Comments

Puts program on the stack.

() Getsdev Stores the program.

Getsdev gets the value for standard deviation from the user. Like

Getmean, this subprogram includes an extra verification step (the
PROMPT command) to make sure the right value has been entered.

Geta

The Geta subprogram prompts the user to input a value for a, the

left-hand point. This subprogram takes nothing from the stack, and

adds a suitably tagged value for a.

78 Statistics Programs

Arguments Results

w
M : tagged mean

 1: tagged standard deviation

o3: tagged mean

2: tagged standard deviation

 1: tagged value for a

Program Instructions

3

"Enter the left

point (a>»"

Il:a= "

IHPUT

OE.J+

"Press COWT if a is OK"

PROMFT

o

Keystrokes

(O Geta

Getb

Comments

Prompt string for INPUT.

Command-line string for
INPUT.

Waits for keyboard input of

value.

Converts command-line string

and value to tagged object.

Promptstring for PROMPT.

Halts execution and waits for

@@)

Comments

Puts program on the stack.

Stores the program.

This subprogram prompts the user to input a value for b, the

right-hand point. Getb takes nothing from the stack, and puts a

tagged value for b there.

Statistics Programs 79

Arguments Results

41

! tagged meanol
M ! tagged standard deviation

P
t : tagged value for a

4z

2t

tagged mean

tagged standard deviation

tagged value for a

1: tagged value for b

Program Instructions

"Enter the riaht

point (b

Il:t.: n

IHFUT

OB.J+

"Press COHT if b

FROMFPT

i=s OK"

Keystrokes

(D Getb

Comments

Prompt string for INPUT.

Command-line string for
INPUT.

Waits for keyboard input of

value.

Converts command-line string

and value to tagged object.

Prompt string for PROMPT.

Halts execution and waits for

@@D

Comments

Puts Getb on the stack.

Stores the program Getb.

After Getb and the previously called subprograms have been executed,
all four needed values are on the stack. Now the actual probability

computation can take place.

80 Statistics Programs

Compute—Local Variables and Stack Calculations

The Compute subprogram handles the computational chores in

NormalProb. It accomplishes the same thing you saw in the earlier
keyboard example: with the values for mean, standard deviation,

point a, and point b on the stack, Compute calls UTPN twice to find

the difference between the probability of ¢ and the probability of

b. This subprogram takes four values from the stack, and returns
three: a tagged a, a tagged b, and the probability a random value lies
between a and b.

Arguments Results

4: tagged mean

3: tagged standard deviation

2: tagged value for a

1: tagged value for b

2t probability

2: tagged value for a

1: tagged value for b
Program Instructions

+ m =

e

m

o on

UTFH

ab

Comments

Begins main program.

Converts four values on stack to

local variables.

Begins defining procedure for local
variables.

Places mean (m) on stack.

Squares standard deviation (s) and
places on stack.

Places left-hand point (a) on stack.

Computes upper-tail probability for

left-hand point.

Statistics Programs 81

Program Instructions Comments

M Places mean on stack.

= =@ Squares standard deviation to get

variance.

b Places right-hand point (b) on stack.

UTFH Computes upper-tail probability for

right-hand point.

- Subtracts to find probability from a

to b.

3 Places a on stack.

b Places b on stack.

Ends defining procedure.

Ends main program.

To save the Compute program:

Keystrokes Comments

() Compute Stores this program.

When Compute is called, four quantities are on the stack. We need to

use some of these quantities more than once, and we want to return

two of them (@ and b) to the stack along with the final calculated
value for probability. So we turn them into local variables, which can

be summoned again and again within the defining procedure.

Within the Compute program, + m = a b takes four quantities (mean,

standard deviation, @, and b) from the stack and converts them to

local variables. The defining procedure, which is a program, follows

immediately.

Now we use those local variables to calculate the two upper-tail

probabilities we need. The mean, local variable m, is put on the stack

first, followed by the standard deviation, s. The standard deviation is

squared to get the variance. Next, the value for the left-hand point,

represented by local variable a, is put onto the stack.

82 Statistics Programs

With the three values are in place, we can execute the UTPN
command. This command, remember, returns the upper-tail

probability for point a.

The next step is to perform the same calculation for point . Within

the defining procedure, a local variable can be used as often as it’s
needed. So we simply put m and s on the stack again, square s, and

put b on the stack. Then we execute UTPN again to find the second
upper-tail probability. We want the probability from a to b, so we

subtract P(b) from P(a).

It would be nice if the user could see the values for a and b along

with the probability, so we return these two values to the stack before

exiting Compute. Local variables a and b are still tagged numbers, so
they appear in the stack with their tags still attached.

Label—Using Local Variables to Rearrange the Stack

The final subprogram called by NormalProb is Label, which adds a

tag to the calculated value for probability. Label also rearranges the

values so the user has a more useful stack display upon exit. This

subprogram takes three values from the stack and returns three.

Arguments Results

: tagged value for a: probability

: tagged value for a 2: tagged value for b[
— : tagged value for b 1: tagged probability

Statistics Programs 83

Program Instructions Comments

Begins main program.

+pab Creates local variables.

L Begins defining procedure for local
variables.

abep Puts local variables back on stack in

different order.

"P{a*bi" Text string that is tag for p
(probability).

+THG Combines text string and value for p.

Ends defining procedure.

* Ends program.

Keystrokes Comments

() Label Stores the subprogram Label.

The Label subprogram takes three values off the stack and converts

them to local variables. Within the defining procedure, the three

variables are put back on the stack in a different order. This brings
the value for probability (p) into level 1, where it can easily be used in

other calculations.

Notice that with a slight modification to Compute (placing the values
for a and b on the stack before computing probability), you could

eliminate some of the steps of this Label program. But as shown here,

Label illustrates how local variables make it easy to change the order
of quantities on the stack.

We also want to label the probability, so the user knows what this

value represents. Thus, we now place a text string on the stack; this

puts the calculated value for probability in level 2 and the text string

in level 1, ready to be combined.

84 Statistics Programs

Stack Level Contents

Level 2: Calculated probability

 Level 1: "Pia+br"

Now +THG is executed. +TAG combines the value in level 2 with the

tag in level 1 to create a single tagged object. Like all tagged objects,
this one can be used in calculations involving addition, multiplication,
and so on. And because the value for probability is now clearly

labeled, the user knows exactly what it means: the probability

between a and b.

Running the NormalProb Program

Run the NormalProb program to find the probability that a random

Mr. or Ms. Right possesses an IQ between 95 and 105. Press HORHM
to start the program.

Program Prompt or Display Your Action

HOEM

HOEMAL FROBAEBILITY

Frobability between

two points on normal

distribution. You'll

be prompted to enter

left points then riaht

point. Do COMT now.)

Enter the mean (x>

P 3 100
Frress COMT if = is QK

1: =! 188,88 () (conT)

Now continue in this manner. Enter each needed variable when

prompted, verify each one, then press (&) to continue.

Statistics Programs 85

Program Prompt or Display Your Action

Enter the standard

deviation <=2

10 (ENTER)
'ress COMT if = is 0K

184,

16. 00 @@D

r'
l_

'l
o

LT
I

a
n
s

i:

Enter th

point Cal

i — D e
,

o

:a. 95 (ENTER

res=z COMT if a iz 0K

= 186.488

=
a
3

T

Enter the right

point Cho

b 105 (ENTER)
Fress CONT if b is OK
4: =i 183,684
= =i 18,448

Z* ar 93.04
12 b: 165,06 (€ (ConT)
S ar F5.80
2 b: 165,08
1 Flasbr: @,328

The probability is about 38 percent that someone you meet has an I1Q

between 95 and 105.

86 Statistics Programs

Hypothesis Tester

Statistics is often used to make assumptions about a population (all

members of a group) based on what is known about a sample (a few
members of a group). In hypothesis testing, we take a sample, test the

sample, then determine whether that sample is representative of the

population.

The classic approach to hypothesis testing involves finding a test

statistic (a so-called z score), and comparing this to the test statistic
for the desired confidence level. A more modern approach, and one

that works well on the HP 48, is the probability value or p-value

method, in which the calculated probability is compared directly to

the confidence level. We’ll use the p-value approach in this section.

Let’s start with an example to show how hypothesis testing works.

A certain coach claims that in an annual school-wide test of general
knowledge, athletes actually score higher than the general student
population. In particular, the coach points to scores achieved by 40

members of the football team, whose mean score (Z) was 75.3, with
a standard deviation of 13.0. The school average, (u), for the same
test given year after year is 72. At the .05 level of significance, do the

football team’s test results prove the coach right or wrong?

Well, “right or wrong” is an elusive concept, especially in statistics.
Instead of proving right or wrong, what we do is prove or disprove a
null hypothesis. To do this, we follow a step-by-step procedure:

1. Formulate two hypotheses, a null and an alternate.

2. State the level ofsignificance, a probability value called «.

3. Calculate the critical value.
4. Calculate the test probability, or p-value.

5. Compare the p-value to «, and accept or reject the null hypothesis.

Formulating the Hypotheses: Wefirst formulate two hypotheses, a

null hypothesis and an alternate hypothesis. For the coach’s claim,

the hypotheses might look like this:

m Hy, null hypothesis: The mean of athletes’ scores is less than or

equal to 72.

m Hy4, alternate hypothesis: The mean of athletes’ scores is greater

than 72.

Statistics Programs 87

Notice that the alternate hypothesis, Hp, is what you want to prove,

but you don’t ever really prove it. Instead, what you do is either reject

or fail to reject the null hypothesis, Hy.

The null hypothesis always has an equals sign in it. It might be
something like “Scores = 100” or “IQ > = 130.” If there is only an

equals sign in the null hypothesis, you’ll do a two-tail test. If the null
hypothesis includes the words “greater than or equal to” or “less than

or equal to,” you’ll do a one-tail test.

Determining the Level of Significance: The level of significance is
called alpha («), and it represents the probability of error of a certain

type. The level of significance is really a measure of how much risk

you’re willing to take. If error would have serious consequences, use a

small value for «; if you can accept more risk, use a larger value.

Typical values for a are .05 and .01. We’ll give the coach some leeway

and use .05 for our illustration.

Calculating the Critical Value: Most illustrations of hypothesis testing

focus on the standard normal distribution—the familiar bell curve—

and its critical value, z. But there are several other formulas available,

depending on the size of the population and how much information

is known about it. We’re going to use the Student’s ¢ distribution,

because it works for small samples (of 30 or fewer) and you can use
the sample standard deviation, s, instead of the population standard

deviation, . Another reason for choosing the Student’s ¢ distribution
1s that for samples of 30 and above, the critical values (called ¢
values) are about the same as z, the critical value used with normal
distribution.

The formula is:

z—p

s/vn
 t =

For our illustration, then:

_75.3-1T2

~ 13/v/40

Calculating the P-Value: To calculate the probability, or p-value, you

use the critical value and the degrees of freedom.

= 1.6055

The degrees of freedom, or df, are given as the sample size less one.

Thus, the degrees of freedom in our illustration are given by:

88 Statistics Programs

df =40 —1=39

In the pre-HP 48 days, you then took ¢ and df, and used a table in

the back of a statistics book to find the p-value. Today, though, you

can use the calculator’s UTPT function. With the degrees of freedom
in stack level 2, and the value for ¢ in level 1, executing UTPT

gives the probability that a random variable is greater than ¢. (The
probability returned by UTPT for this calculation is 0.0582.)

Accepting or Rejecting the Null Hypothesis: To determine whether
to accept or reject the null hypothesis, you compare the calculated

p-value to a.

m If the p-value is less than or equal to a, reject the null hypothesis.

m If the p-value is greater than «, fail to reject the null hypothesis

(which implies that you accept the alternate hypothesis).

Because the p-value (.0582) is greater than a (.05), we fail to reject
the null hypothesis—which means there is insufficient data to accept

the coach’s claim that the football team athletes have higher scores.

One-Tail or Two-Tail? If the null hypothesis contains a “less than or

equal to” or “more than or equal to” statement, as in the previous

example, it’s known as a one-tail test. However, if the null hypothesis

has an equals sign only, the alternate hypothesis has two conditions:

one above and one below the distribution.

For instance, if the coach had said the mean scores for the football

team were the same as that of the entire school, there is a chance

for rejection both above and below the hypothesized mean. The
hypotheses look like this:

m Null hypothesis: The mean of athletes’ scores is equal to 72.

m Alternate hypothesis: The mean of athletes’ scores is greater than 72
or less than 72.

In this case, you need to divide a by two, or double the calculated

p-value, to test the hypothesis.

Statistics Programs 89

One-tall test

 a/2 a/2

 N/e

Two-tall test

Keyboard Example

Here are the keystrokes used to calculate the p-value in our one-tail

example:

Keystrokes Display Comments

.05 B, 560 Enter .

40 43, BEEE Enter sample size n.

1) 29,8860 Calculate degrees of
freedom (df).

75.3 75. 2000 Enter sample mean (7).

72 (9) 2. 20808 Subtract hypothesized
population mean ().

13 12, pEag Enter sample standard

deviation (s).

90 Statistics Programs

Keystrokes Display Comments

40 £.3246 Square root of n.

B0E 1.6855 Calculate t.

 3.8532 Calculate p-value.

With both o and the p-value left on the stack, you can easily see

which is larger, and make your conclusions about whether to accept or

reject the null hypothesis.

The Hypotest Directory

To create a directory for the hypothesis testing programs, then get

into that directory:

C) HYPOTEST
() CRDIR

HYPOT
The HYPOTEST directory will hold all programs and subprograms

for hypothesis testing. Any programs that you enter and save will be

placed in this directory.

The Main Hypotest Program

Hypotest presents you with a temporary menu of choices:

MSSGITRIL 2TRIL - EXIT

By pressing one of these menu keys, you select whether to:

m See a message of user instructions (MSSG).

m Perform a one-tail hypothesis test (1THIL).

m Do a two-tail hypothesis test (ZTHIL).

m Exit from the application (EXIT).

Hypotest runs different subprograms, depending on which menu key is

pressed. It has no overall effect on the stack.

Statistics Programs 91

Program Instructions

&

Init

i

L"MSSG" Messagel

C"1TRIL"

Getalpha

Test

.,
-~ :"

£ "2TRIL"

92 Statistics Programs

Comments

Initialize HP 48.

Begins list for TMENU (outer list).

List for first menu key.

Begins list for second menu key;
menu key label.

Begins program executed when you

Gets variables.

Calculates p-value for one-tail
hypothesis.

Gets level ofsignificance.

Compares p-value to level of

significance; rejects or fails to reject.

Ends program executed by 1

Ends list for second menu key.

Begins list for third menu key.

Begins program executed when you

press 2TAIL).

Gets variables.

Calculates p-value for two-tail

hypothesis.

Gets level ofsignificance.

Compares p-value to alpha; reject or

fail to reject.

Ends 2TAILprogram.

Ends list for third menu key.

Program Instructions Comments

£ Fourth menu key is blank.

L3 Fifth menu key is blank.

{"EXIT" Exitl List for sixth menu key.

{ Ends list for TMENU (outer list).

THEHU

&

To save the main Hypotest program:

Keystrokes Comments

Puts program on the stack.

() Hypotest Stores the program.

The main Hypotest program begins by executing Init, a subprogram
that readies the HP 48 for things to come. Then Hypotest puts a long
list—it’s really a “list of lists”—on the stack, and executes TMENU.

When executed, the TMENU command uses the information in that

long list to create a temporary menu across the bottom of the display.

TMENU requires as its argument a list of lists that looks like this:

£ {"label1" object! > <"1label2" object2...%

Each inner list consists of a label and an object. The label (it’s the
word in quotation marks) is what you see in the menu display. The

object is what is executed when you press that key. The first inner list

is assigned to the left menu key (at key address 11), the second list to
the second key (address 12), and so on. Only one object can follow
the label.

If you press the key labeled MSSG| the Message subprogram is

executed. Message displays some user instructions and information

about the Hypotest application.

Here’s an instance where we’ve placed user instructions separate from

other parts of the program. You can pressMEZSGto get help or jog

your memory; but if you want to do several tests without having to

view the message each time, you can go directly to 1TRILor ZTHIL.

Statistics Programs 93

Init—Initializing to Two Decimal Places

The Init subprogram is always called when you run Hypotest. It

merely sets the HP 48 to display answers to two decimal places. It

does not affect the stack.

Program Instructions Comments

2 FIX Sets HP 48 to display numbers to

two decimal places.

To save this short subprogram:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program.

If you want to see your answers to more decimal places, change this

subprogram to execute 2 FIX or 4 FIX.

Message—Display without Stopping

If you press the MZSGE menu key, Hypotest calls the Message

subprogram. A message fills up the display, explaining a little about
hypothesis testing. When you’re done reading the message, you press

any of the menu keys (or any key) to continue. Message has no overall

effect on the stack.

94 Statistics Programs

Program Instructions

&«

CLLCD

"HYPOTHESIS TEST:

Tests null hypothesis

at « level of

conf idence. Choose

one-tail if HO

contains £ or 2,

two-tail if = onlu."

1

DISP

v FREEZE

&

To save this subprogram:

Keystrokes

() Message

Comments

Clears HP 48’s display.

Text for display by DISP. Be sure to
put endline characters ((») (&2)) at
the end of each line.

Row where text will begin.

Displays text beginning on
LCD row 1.

Freezes display until next key press.

Comments

Puts program on the stack.

Stores the program.

Message begins with a CLLCD (clear LCD) command, which clears
the calculator’s display of any previous information. Then Message
puts a long text string into the stack. This text string includes

everything between the quotation marks; if you don’t want to have to
scroll to see the message, be sure to place endline characters (press

() (&) at the end of each line as shown.

The text string is one of the two arguments required by DISP. The
second argument is the number 1, which is placed on the stack next.

This value tells DISP where to display the text string. When DISP is

executed now, it displays the long text message, beginning on row 1 of
the calculator’s LCD.

The final command executed by the subprogram is ¥ FREEZE. With

the number 7 as its argument, FREEZE prevents updating of any of

Statistics Programs 95

the display areas until the next key press. Because FREEZE is the

final command of this subprogram, and because no other subprograms
are executed after Message until you press a menu key, the Hypotest

program appears to be paused here.

At this point, the main Hypotest program has already been run. (It

displays the temporary menu, remember?) Message is also finished

running. You see the results: Message’s text message in the display,
along with Hypotest’s temporary menu.

If you’ve programmed in computer languages—or even worked with

some of the other program examples in this book—you know that

it’s often necessary to place a HALT or WAIT or some similar

command after a message, to give the user time to read the text
before a program continues to some other task. No need to do that
here, though. The Hypotest program isn’t actually “running” while

Message’s text is being displayed. Instead, it merely displays a menu

of top-row keys which,if pressed, perform the different functions of the

Hypotest program. Interestingly, all other keys on the keyboard are

active, too.

When you now press another key, such as 1TRIL, that key is ezecuted

and the display updated. You don’t need to use or perform
any intermediate steps.

Now let’s see what happens when you press 1THILor ZTHIL.

Getvars—LabeIing Values on INPUT

Z2TAILmenu key. Getvars gets four of the five values needed forthe
hypothesis test, tags each with an appropriate label, and puts them on

the stack.

Arguments Results

4: 4: tagged X

a: 3t tagged p

2t 2: tagged s

1: 1: tagged n
96 Statistics Programs

Program Instructions

&

"Enter the sample

mean (=x>»"

! . ;: !

IMPUT

OB+

"Enter the

hypothesized

population meanm (p>"

"=,U: "

INFUT

oeJ»

"Enter the sample

standard deviation (s>"

Has
s =

INFUT

OB+

"Enter the sample

size Cn)"

Nepet

IHPUT

DEJ»

&

Keystrokes

() Getvars

Comments

Promptstring for INPUT.

Command-line string for
INPUT.

Waits for input of mean from
the keyboard.

Converts keyboard input to a

number.

Prompt string.

Command-line string.

Waits for keyboard input.

Converts to number.

Prompt string.

Command-line string.

Waits for keyboard input.

Converts to number.

Prompt string.

Command-line string.

Waits for keyboard input.

Converts to number.

Comments

Puts program on the stack.

Stores the program as Getvars.

Statistics Programs 97

Getvars contains four INPUT commands, which cause the subprogram
to stop four times. You are prompted to enter the appropriate value

each time.

INPUT takes two arguments: a prompt string from level 2 of the
stack, and a command-line string from level 1. For the first INPUT
command, the prompt string in level 2 is "Enter the sample me=an

¢=)". By adding an endline character ((»)(<2)) after the word
zamrple, you ensure that you’ll be able to view the entire prompt

message on two lines. (Without the added endline character, the
prompt message will trail off the screen like this....) When shown by

INPUT, the prompt message begins on the top row of the display, and

is shown on rows 1 and 2. Your prompt messages can be shown on as

many as three rows.

(If you have trouble typing the characters for 7 and y, look at the

table of Alpha Mode left- and right-shifted keys in the owner’s manual

or the quick reference guide. To type Z, for instance, you first make

sure you’re in alpha-entry mode; then press () together.)

As for the INPUT’s level 1 argument, a number of options are

available. Here we’ve chosen to add only the command-line string
e _-"lull

P .

When the first INPUT command is executed, here’s what you see:

Enter the zample

mean L=

The value you enter from the keyboard is combined with the

command-line string by INPUT. By placing colons before and after

the Z, we ensure that when you input a value for the mean, then

execute OE.1+the resulting object is a number that’s tagged with the
T label, like this:

-
I on . ok io

L.

This tagged number can be used in mathematical formulas as ifit

didn’t have a tag at all. In fact, if you run the Getvars subprogram

by pressing 1THILor 2TAIL, you’ll never see the tagged result.

However, labeling values with tags is extremely useful in debugging.

The other INPUT commands function the same way: A prompt

string is placed in level 2 of the stack, a command-line string is put

98 Statistics Programs

in level 1, and INPUT is executed. At the end of Getvars, the four

tagged values (for mean, the hypothesized p, standard deviation
s, and sample size n) are on the stack, ready for the calculations

performed by T'1 or T2.

T1—Calculations Made Easy with Local Variables

If you pressed the 1TRTLmenu key, the next subprogram executed

after Getvars is T1. The T1 subprogram calculates the p-value for a
one-tail test. It takes four values (sample mean, hypothesized mean,

sample standard deviation, and sample size) from the stack, and

returns the p-value probability.

Arguments Results

4: tagged X

3: tagged p

2: tagged s

1: tagged n

o
M

— : tagged p-value
Program Instructions

3

* X U s n

‘'m-1' EVAL

'Cx—ud)ss¥din' EVAL

ARES

UTPT

"1IT p-wvalue" *TAHG

&

Comments

Begins subprogram.

Creates local variables.

Begins defining procedure

for local variables.

Calculates degrees of
freedom.

Calculates .

Ensures t is positive.

Calculates p-value.

Labels the answer.

Ends defining procedure.

Ends subprogram.

Statistics Programs 99

To save this subprogram as T'1:

Keystrokes Comments

Puts program on the stack.

(T1 Saves the program.

T1 begins by taking all four quantities from the stack and converting
them to local variables. As a shorthand, we’ve used the local variable

z to identify the quantity Z, and u to identify u. You could just as

easily use the actual characters 7 and p as the local variable names.

The defining procedure for the local variables must begin right after
they are created. Here, as in most cases, the defining procedure is a

program. The local variables have meaning only within this inner

program.

The UTPT command requires the degrees of freedom in stack level 2,
and the value for ¢ in level 1. The statement 'n—1' EYAL computes

the degrees of freedom and places it on the stack. Then the formula
for ¢ is entered and evaluated the same way. With the appropriate

values in stack levels 2 and 1, UTPT computes probability—the

p-value.

There’s no law that says you have to use local variables for these

calculations, of course. You could also have manipulated the stack, as

we did in the keyboard example. But using local variables makes these

calculations much more straightforward and easy to understand—all
the more important when you don’t add explanatory comments within

your program code.

With the calculated p-value now on the stack, we want to label it. So

we place the string "1T p—walue" in level 1, moving the p-value

up to level 2. The #TAG command then tags the value from level 2

with the tag from level 1. If you compare this procedure with that for

INPUT, you’ll notice that you don’t need any colons for +THG’s string;

the colon is added automatically.

100 Statistics Programs

T2

If you press 271 to choose a two-tail test, the only difference
from pressing THIL is that T2 is called instead of T1. The T2
subprogram is almost the same as T1; it takes four values from the

stack (Z, s, s, and n) and returns the p-value. However, the p-value is
double the probability calculated by UTPT,since this is for a two-tail

test.

Arguments Results

4: tagged X 4:

3: tagged u 3:

2: tagged s 21

! tagged n 1: tagged p-value

Program Instructions Comments

€ Begins subprogram.

+ XU sn Creates local variables.

€ Begins defining procedure
for local variables.

'n-1' EVAL Calculates degrees of
freedom.

'(x-u)-ss*In' EVAL Calculates ¢.

ABS Ensures t is positive.

UTPT Calculates probability.

2 % Doubles calculated
probability for two-tail
p-value.

"2T p-value" »TAG Labels the answer.

® Ends defining procedure.

® Ends main program.

Statistics Programs 101

Keystrokes Comments

Puts program on the stack.

T2 Stores the program.

As you can see, within the defining procedure, T2 takes the

probability calculated by UTPT and doubles it to get the p-value.
This accounts for the two-tail test.

all subprograms in the same order TheneXi: éallis toget the value
of a.

Getalpha—INPUT with a Blank Command Line

Getalpha performs the final task necessary to get ready for the actual

hypothesis test: it gets the level ofsignificance, a, from the user.

Getalpha takes nothing from the stack, and leaves the untagged value
for a.

Arguments Results

2: 2: tagged p-value

1: tagged p-value 1! «

Program Instructions Comments

&

"Enter the desired Prompt string for INPUT.
level of

zignificance ()"

Command-line string (blank) for
INPUT.

INPUT Waits for input of significance level

(a).
OB Converts to number.

3

102 Statistics Programs

Keystrokes Comments

() Getalpha Stores the Getalpha program.

Getalpha is similar to any of the INPUT commands used in Getvars.

A prompt string is placed in level 2 of the stack, a command-line

string is put in level 1, and INPUTis executed. The INPUT
command halts execution until you press to signify that a

number has been entered on the command line. (To enter the o
character in the prompt string, make sure the calculator is in alpha

mode, then press the () and (&) keys.)

The major difference in how Getalpha uses INPUT is on the command
line. Using the characters " " as the command-line string results in
a completely empty command line, so when INPUT is executed, the

command line is blank. You enter a number on this line in response
to INPUT, and the number is placed on the stack alone, with no tag

attached.

After Getalpha has been run, both the p-value and « are on the stack.

It’s time to perform the hypothesis test.

Test—Comparing Local Variables

Test compares the p-value and «a, and determines whether to reject or

fail to reject the null hypothesis. Test takes two values (p-value and

a) from the stack, and returns the two values in reverse order.

Arguments Results

2: tagged p-value 2: tagged a

 1! o 1: tagged p-value

Statistics Programs 103

Program Instructions

&«

* P a

IF 'pga’

THEH

a

Reject

ELSE

Keystrokes

(D Test

Comments

Begins subprogram.

Makes p-value and a local variables

p and a.

Begins defining procedure for local
variables.

Begins test structure.

If p is less than or equal to a,

puts a on the stack,

and calls the subprogram Reject.

If p is greater than a,

puts a on the stack,

and calls the subprogram Fazlreject.

End of test structure.

Puts the value of a on the stack.

Puts text string “a” on the stack.

Tags the value of a.

Puts the tagged p-value on the stack.

Ends defining procedure for local
variables.

Ends Test subprogram.

Comments

Puts Test program on the stack.

Stores the program.

The Test subprogram takes the p-value and a from the stack and

turns them into local variables p and a. As soon as those local

variables are created, the defining procedure (a program) begins.

104 Statistics Programs

The heart of the defining procedure is the IF ... THEN ... ELSE
structure. Remember the rules for hypothesis testing using the
p-value?

m If the p-value is less than or equal to «, reject the null hypothesis.
m If the p-value is greater than a, fail to reject the null hypothesis

(and accept the alternate hypothesis).

You can easily see these conditions in the IF ... THEN ... ELSE
construction. If p is less than a, or equal to a, it means that our
assumption was correct. We can reject the null hypothesis (what we’re
trying, in fact, to disprove), and accept the alternate hypothesis.

In this case, Test puts the value of a on the stack and calls the
subprogram Reject.

If p is greater than a, the THEN condition is false, and the ELSE

condition is true. This means we have insufficient evidence to reject
the null hypothesis. So Test places the value of a on the stack and
calls the Failreject subprogram.

Test, then, is going to call either Reject or Failreject. Each of these

subprograms takes the value of a from the stack, and displays a rather

detailed message explaining the decision.

After executing the IF ... THEN ... ELSE structure, Test again
places a on the stack, tags it as a, then places p on the stack. The
variable p, recall, was tagged earlier with the label “p-value”. And
through all of these machinations, being passed from one subprogram
to the next, that value retains its tag. Thus, after you press either
: ., you wind up with the tagged a and p-value on the

stack for your perusal or further use.

Reject—Adding a Calculated Value to the Display

Reject is called by Test if the p-value is less than or equal to a. It

combines a with text strings to display a comprehensive message
explaining the decision to reject the null hypothesis. Reject removes
one value from the stack.

Arguments Results

Statistics Programs 105

Program Instructions

&

+ 3

CLLCD

"REJECT:

At the "

a +5TR

level of significance,

there is sufficient

evidence to reject the

nJll hypothesis (and

accept the alternate)."

+

1 DISP

2 FREEZE

a8 WAIT

DROP

106 Statistics Programs

Comments

Begins subprogram.

Takes a from stack, creates

local variable a.

Begins defining procedure for
local variable.

Clears HP 48’s LCD.

Begins first text string.

Ends first text string.

Converts a into second text

string.

Combines first and second text

strings.

Begins third text string.

Ends third text string.

Adds third string to combined
first and second strings.

Displays resulting long string.

Freezes main display and

status area.

Waits for a key press.

Throws away address of the

key that was pressed.

Ends defining procedure for
local variable.

Ends subprogram.

To save this subprogram in the current directory:

Keystrokes Comments

Puts program on the stack.

() Reject Stores the program as Reject.

Reject starts by taking the value of o from the stack and creating a
local variable called a. Then the defining procedure for that local
variable begins. The defining procedure is itself a program.

Within the defining procedure, the HP 48’s display is cleared by

CLLCD, then a short string is placed on the stack: "REJECT:=At
the ". (The = stands for the endline character.) If these words seem
rather incomplete, it’s because this is actually the first of three text
strings. Reject combines all three strings into a single long, highly
detailed display. To make your displays look like the ones shown for

this example, be sure to enter everything between quotation marks

just as shown, and type endline characters, () (&2), at the end of

each line.

With the first string in the stack, Reject now places the value of a

(that is, a), on the stack, too. The variable a is a number, so we use
the *STR command to convert it to a string. Now two strings are on
the stack, so it might look like this:

Stack Level Contents

Level 2: "REJECT:mAt the "

Level 1: "g.85"
Two strings are now on the stack. Reject executes + to add them
together, leaving the resulting string in level 1:

Stack Level Contents

 Level 1: "REJECT:mRt the 6.85"

A third string is now placed on the stack by Reject. This string

begins with quotation marks (") followed immediately by an endline

Statistics Programs 107

character. (Press (¢») to type it.) Several lines of text follow,
explaining the outcome and meaning of the test. Then Reject adds
this string to the combined first and second string. The result
is a long, detailed string that includes both text entered by the
subprogram and a value you keyed in earlier.

The 1 DISP command displays that text, beginning in row 1 of the
HP 48’s liquid crystal display. Here’s an example of the result you can

expect:

REJECT:

At the 8.85

level of significance,

there iz sufficient

evidence toreject the

null hupothesis (and

accept the alternate?.

See how we left a fairly long space to insert the a value? This

prevents subsequent words from trailing off the screen if you happen

to be showing numbers like a with a lot of displayed digits (for
example, as 0.0500000).

In order to hold the display on the screen until the next key press,

we use 3 FREEZE. With 3 as its argument, FREEZE prevents the
updating of anything in the display except the menu area until the
next key press.

Reject is an instance where we want to leave the message on the

screen until a key press, but don’t want the key press to do anything.

That is, we want to be able to press any key to continue, but not have

that key affect the stack or the calculator. Thus the next command,

@ WAIT, which waits for the press of a key. With an argument of 0,

WAIT “swallows up” the next key press so that—except for
the key doesn’t perform its usual function. You can press or

or (1), and not worry about generating an error.

@ WAIT does do one thing in response to a key press, though: It

returns the address of the key. We don’t need that address, so before

exiting Reject, we execute DROF to drop the stack one level, effectively

expunging the key address from the stack.

108 Statistics Programs

Failreject

The Failreject subprogram is just like Reject, except, of course,

the displayed message is different. Failreject is called by Test if the
calculated p-value is greater than a. It takes one quantity () from
the stack, and returns nothing.

Arguments Results

1! a 1:

Program Instructions Comments

Begins subprogram.

+ a Takes a from stack, creates

local variable a.

LS Begins defining procedure for

local variable.

CLLCD Clears HP 48’s LCD.

"FRIL TO REJECT:

At the " Begins text string.

a *5TR Converts a to text.

+ Adds the two strings together.

" Begins another text string.
(D] after ".)

lewvel of significance,

there is insufficient

evidenc D to reject the

null hypotheszis."

+ Adds strings together.

Statistics Programs 109

Program Instructions Comments

1 DISP Displays complete text string.

3 FREEZE Freezes main display and

status area.

8 WAIT Waits for a key press.

DROP Gets rid of key address.

® Ends defining procedure.

& Ends subprogram.

To save this subprogram:

Keystrokes Comments

() Failreject Stores the program.

Notice that we can’t say “accept the null hypothesis.” All that the

hypothesis test tells us is that either we have enough information to

reject the null hypothesis, or else we don’t have enough information to

reject it. Hence the headline "FARIL TO REJECT".

Exit—Changing Menu Displays

There’s one more menu option to consider. If you run Hypotest and

press the EXITkey, the Ezit subprogram is run. Ezit simply

changes the menu back to the ordinary VAR menu, to give an
indication that you’re done with Hypotest’s temporary menu for now.

Ezit has no effect on the stack.

Program Instructions Comments

@ MEMU Changes back to previous menu
display.

W

110 Statistics Programs

Keystrokes Comments

Puts Ezit program on the stack.

() Exit Stores the program.

As written now, Ezit merely gives you some visual feedback when
you’re done. It changes the displayed menu from the temporary menu

back to the previous VAR menu, but doesn’t otherwise affect the

calculator.

Although it may seem trivial, having an exit routine like this is always

a good idea. It gives you a place to reset flags and add other cleanup
commands as your application grows.

Running the Hypotest Program

Let’s try running Hypotest to check out that coach’s contention. The
hypotheses are as follows:

m Hy, null hypothesis: The mean of athletes’ scores is equal to or less

than 72.

m Hy, alternate hypothesis: The mean of athletes’ scores is greater

than 72.

The mean of football players’ scores is 75.3. Standard deviation is 13,
and sample size is 40. Test at a level of significance of 0.05.

To get started, press the HYPOTkey to fire up Hypotest. You see the

display of menu keys:

Statistics Programs 111

First look at the message:

Program Prompt or Display Your Action

MSSG

HYPOTHESIS TEST:

Tests null hypothesis

at alphaj; level of

conf idence. Choose

one-tail if HO

contains £ or 2,

two-tail if = only.

The null hypothesis contains the words “equal to or less than,” so this

is a one-tail test. Press 1TRIL.

Program Prompt or Display Your Action
ITRIL

Enter the zample

mean (=2

Dm0t 75.3

Enter the

hupothesized

population mean (upl

tpt 72 (ENTER

Enter the zample

st andard deviation <=l

13 (ENTER)
Enter the sample

size (Ml

10 ENTER)
Enter the desired

level of

significance Cal

05

112 Statistics Programs

Now you see the answer in the display.

Program Prompt or Display Your Action

FRIL TO REJECT:

At the 8.835

level of significance,

there iz insufficient

evidence to reject the

null hypothesis.

Although the coach may be able to sway the alumni and fans, the

school’s statisticians will remain unconvinced by the claim that

football players’ scores are higher than the school average.

When you exit the program, the values for alpha and the calculated
p-value are left on the stack:

Program Prompt or Display Your Action

EXIT
2: «xt 8,85

1: 1T p-value: 4.8

To see what happens with a little more allowable error, change the
desired level of significance to 0.10 instead of 0.05. What happens to

the coach’s hypothesis now?

Statistics Programs 113

S
Calculus and Analytic Geometry

If ever a calculator was built for calculus, the HP 48 is it. With its

full complement of built-in functions, including derivatives, integrals,

and curve drawing, the HP 48 is astonishingly well-equipped—right

out of the box—to handle most calculus problems. It’s so powerful

and sophisticated, in fact, that it’s ready to go, with no programming
whatsoever needed on your part.

Nevertheless, you may want to incorporate this powerful arsenal

of calculus features into a program. You can add a “shell” of
comprehensive user instructions to an existing feature, including
detailed prompts—for example, a prompt for the limits over which a

curve is drawn. Naturally, you can include calculus commands in other

programs, too, using them as you would any mathematical function.

This chapter illustrates a few ways the HP 48 can help you get the

most from a calculus class or a calculus-intensive application.

Distance Between Two Points

One of the first things required by almost any basic mathematics
class—including first-quarter calculus—is to find the distance between
two points in the Cartesian coordinate system. You can laboriously

grind it out using the Pythagorean theorem, of course. But an easier
way is to use the HP 48’s remarkable ability to convert between

rectangular and polar coordinates, and to subtract rectangular

coordinates.

Calculus and Analytic Geometry 115

Keyboard Example

When the HP 48 is in rectangular mode, numbers in parentheses—
that is, complex numbers—represent points in the Cartesian system.
Thus (1,2) is a point 1 unit along the x-axis and 2 units along the
y-axis.

You can actually key in numbers in this format, using the parentheses
and comma on the calculator. To find distance, you subtract two such

points in rectangular mode, then switch to polar mode and read the

distance. For example, consider the distance between the points (4,3)
and (—6,5) in the Cartesian coordinate system.

(-6, 5)

To find the distance between the points (4,3) and (—6,5), you can use
the following procedure.

116 Calculus and Analytic Geometry

Keystrokes

=

®EoED)

@O
1 @03@E

@
6@V

©

@EoED)

Display

¢ 2

(4.0808,3.88)

o2

(=633

(18.88,-2.80)

(10.28,£-11.31>

Comments

Sets degrees
mode.

Switches to
rectangular
mode; press until

the R<Z2
annunciator is

off .

Enters first point.

(You can use
instead of

the comma if you

want.)

Enters second

point.

Subtracts

rectangular
coordinates.

Distance and

angle.

When you switch to polar mode with () (POLAR), you see the
distance (10.2 units), as well as the angle in degrees between the two
points.

That’s not too difficult. But if you didn’t do it every day, you could
easily forget the procedure. So let’s see how we can accomplish the
same thing in a program, one that will prompt for input and give us

the correct result every time.

Calculus and Analytic Geometry 117

The Distance Directory

To create a directory for the Cartesian distance programs, then get
into that directory:

() DISTANCE
Y CR

The DISTANCE directory will hold all programs and subprograms for

calculating distance. Any objects (including programs and equations)
that you enter and save will be placed in this directory.

The Main Distance Program

The main Distance program consists of nothing more than calls to
seven subprograms. In the course of the program, you are asked to

input point 1 and point 2; the program leaves the value for distance on
the stack.

Arguments Results

1: 1: tagged distance

Program Instructions Comments

&

Init Initializes for rectangular and
degrees modes.

Flget Gets first point.

F2get Gets second point.

Compute Subtracts second point from first.

Change Changes to polar mode.

Display Displays the distance only.

»

118 Calculus and Analytic Geometry

To save the main Distance program:

Keystrokes Comments

Puts program on the stack.

() Distance Stores the program.

The program begins with an initialization routine, Init, that places

the calculator in rectangular and degrees modes. It then calls a pair
of subprograms, Plget and P2get, to prompt for the two Cartesian

points. These points are subtracted, by Compute and the result (still
in rectangular mode) is passed to Change. The Change subprogram
switches to polar mode, which automatically converts any complex

number in the stack to polar mode. Finally, Display tags and displays

the result.

Init—Using Flags to Guarantee Status

The Init subprogram clears several system flags to ensure that HP 48
status is the way you want it before actual calculations begin. Init has
no overall effect on the stack.

Program Instructions Comments

&«

-15 CF

-16 CF Ensures rectangular mode.

-17 CF

-18 CF Ensures degrees mode.

-19 SF Ensures that —V2 creates complex

numbers from real numbers.

Calculus and Analytic Geometry 119

To save the program:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program as Init.

Flags —15 and —16 are used together to specify the type of
coordinates assumed by the HP 48. To specify rectangular mode,

coordinate system flags —15 and —16 must both be clear. By
specifying rectangular mode here, Init guarantees that any subsequent
operations involving complex numbers, such as (3,5), assume the value

is a Cartesian coordinate. (Later in the program, we’ll change the
status of flag —16, which will change HP 48 status to polar—and any

complex numbers to polar form.)

Flags —17 and —18 are also used together. They specify the angle
mode for trigonometric functions. When both are clear, the calculator

is in degrees mode.

Setting flag —19 ensures that the —V2 command we use later creates

a complex number from two real numbers (instead of creating a
two-dimensional vector). Interestingly, the setting of this flag has no
effect on the final output of the Distance program. However, it will
affect your intermediate results.

P1get—Multiple Inputs from One Prompt

After initialization, the next subprogram called by Distance is Plget.
This subprogram prompts for input of the first point, and lets the
user enter one coordinate on one line, and the second coordinate

on another line. Plget takes nothing from the stack, and leaves a

complex number—two coordinates in parentheses.

Arguments Results

 1: 1: (x1,y1)

120 Calculus and Analytic Geometry

Program Instructions

&

"Enter point P1"

{

"ix1:

syl:”

{18 %

>

IMPUT

oBJ>»

V2

To save the Plget program:

Keystrokes

(O Plget

Comments

Prompt string for use by INPUT.

Beginning of command-line list for
INPUT.

Prompt for z1. (Add a () (&2).)

Prompt for y1I.

Places cursor in first row of

command line.

End of command-line list for INPUT.

Prompts for input, using prompt

string and command-line list.

Converts resulting string into its
component objects.

Combines two real numbers into

complex number.

Comments

Saves the program.

Plget makes use of the INPUT command to prompt for and process

input from command-line rows. INPUT takes as its arguments a
prompt string from level 2 and a command-line string from level 1.

The command pauses program execution with the cursor on the

command line, so that you can enter the needed value or values.

When you enter the data and press (ENTER), the program continues.

Let’s take a close look at those prompt and command-line strings.
Plget begins by placing the string "Enter point P1" on the stack.
This is the prompt string used by INPUT.

Calculus and Analytic Geometry 121

The next item placed on the stack is a long list. This list contains a
command-line string and an inner list with two numbers in it. The
complete list is also used by INPUT. Here’s what those different items
mean:

m The string ":x1:m:yl:" appears on the command line when
INPUT is executed. If you place an endline ((») (&2)) after :3x1:
as you’re supposed to, this string will occupy two rows of the

display. (The = indicates the newline character.)

m The list { 1 8 specifies the row and column where the cursor will

be placed on the command line. The first number in the list, 1,

specifies row 1 (the top row of the two). The second number in
the list, 0, specifies that the cursor will be at the end of that row.

Because the number 1 is positive, you will see an insert cursor

instead of a replace cursor, although this doesn’t really matter here.

Thus, when you run Plget and INPUT is executed, you see the

following display:

Enter point P1:

ixls
tyl:

The cursor is initially at row 1, the row labeled :x1:. You enter

the x-coordinate for the first point here, then use (¥) to move to

the bottom row, where you enter the y-coordinate. Then you press

ENTER) and the program continues.

INPUT combines your keyboard input with the command-line string,
and places the entire quantity on the stack. Let’s say you enter values

for the point (4,3). After INPUT is executed, the stack contains the
following string;:

"ixlidmigl:i3z"

Next we want to take that string and convert it to its component
objects. So we execute OBJ—. This command converts the string into

two tagged objects:

x1: 4.680

gl: 3.6806

122 Calculus and Analytic Geometry

With these two numbers now on the stack, all that remains is to

combine them into a complex number. The —V2 command takes the
two values from level 2 and level 1 of the stack, strips off the tags, and

places them together in a set of parentheses. This command even adds

the comma between them for you.

(4.008,3.88)

The setting of flag —19 determines what is done by —V2. If this flag
is clear, —V2 creates a two-dimensional vector from two real numbers

on the stack;if it’s set (we set it in Init, remember?), —V2 creates a
complex number. The overall Distance application gives identical

answers regardless of the setting of flag —19, but the intermediate
results may be different.

With the coordinates for the first point now on the stack, in
parentheses, we’re ready to get the second point.

P2get

With the exception of its prompt and command-line strings, P2get is
identical to Plget. It takes nothing from the stack, and leaves the
coordinates for the second point there. After running P2get, the stack

contains both pairs of coordinates.

Arguments Results

2: 2: (x1,y1)

1: (x1,y1) 1: (x2,y2)

Calculus and Analytic Geometry 123

Program Instructions

4

"Enter point P2"

i

"ix2s

Ty2s

£18 2

INPUT

oBJ-»

2z

&

Keystrokes

(O P2get

Comments

Al@D
to this prompt for y2.

Prompts for input.

Converts resulting string.

Combines into complex number.

Comments

Saves the subprogram.

After Plget and P2get are called, the stack has both points, in

coordinate form, all ready to be combined.

Compute—Using Local Variables for Math

The next subprogram called by Distance is Compute. It finds the
difference between two sets of coordinates, and puts the difference on

the stack as a complex number. Compute gets two complex numbers

from the stack, and returns a single complex number.

Arguments Results

2: (x1,y1)

1: (x2, y2)

M

 1: (x,y)

124 Calculus and Analytic Geometry

Program Instructions Comments

€ Begins program.

+ pl p2 Creates local variables.

% Begins defining procedure (a
program) for local variables.

'pl-p2' +HUM Subtracts point 2 from point 1.

» Ends defining procedure.

® Ends program.

To store this subprogram as Compute:

Keystrokes Comments

Places subprogram on the stack.

() Compute Stores subprogram.

The Compute subprogram simply subtracts one point from the other.

With coordinates for the two points on the stack, you could very easily

subtract with —. But we’ll turn the two points into local variables and

subtract them algebraically. This will illustrate how local variables
are used, and also will make the entire Distance program easier to
understand.

Compute offers a very simple illustration of how to create and use

local variables. The subprogram expects a pair of complex numbers on
the stack. The expression + p1 p2 takes these two complex numbers
and turns them into local variables.

In creating local variables, the value from stack level 1 is used by
the final variable in the list. The value from stack level 2 is used

by the next-to-last variable, and so on. Thus, the complex number

representing the coordinates for point 2 is assigned to p2, and the

complex number representing point 1 is assigned to p1.

In order for local variables to be created, the defining procedure must

itmmediately follow the declaration. Here, as in most cases, we’re using

a program as the defining procedure. Those local variables, p! and
p2, exist only within the defining procedure—that is, between the

internal set of program braces, % and ».

Calculus and Analytic Geometry 125

To use the local variables, we place them into an algebraic object, the

equation pl1-p2. Then we evaluate that object. Some other programs

in this book use EVAL for this purpose, but here we’ve used =NUM
to actually evaluate the equation into a numerical result.

The result, which is placed on the stack, is the difference between p1

and p2—and since both of these quantities are complex numbers, the

result is also a complex number.

The HP 48 is still in rectangular mode, so the complex number left on
the stack by Compute represents the distance in the x-direction and

the distance in the y-direction between points p/ and p2. The next

thing to do is convert this quantity into polar distance and angle.

Change—A Programmatic Rectangular-to-Polar
Conversion

The Change subprogram takes a complex number representing

rectangular distances, and converts it to polar distance and angle. In
fact, Change converts every complex number on the stack to polar.

Arguments Results

1: (x,y) 1: (distance, angle)

Program Instructions Comments

&

-16 SF Changes from rectangular to polar
mode.

#

Keystrokes Comments

() Change Stores the program as Change.

Recall that to convert a rectangular quantity to polar from the

keyboard, you simply press ((#) (POLAR). This command isn’t

126 Calculus and Analytic Geometry

programmable, but you can accomplish the same thing with system

flag —16.

When flags —15 and —16 are both clear, the HP 48 is in rectangular
mode. To change to polar/cylindrical mode, we set flag —16 with
the SF command. Notice that if you have other complex numbers
elsewhere on the stack, they’ll be changed to polar magnitude and
angle, too.

Display—Tagging Output

The Display subprogram gets a polar complex number from the stack,

throws away the angle portion, and tags the distance, leaving it on the
stack.

Arguments Results

1: (distance, angle) 1: tagged distance

Program Instructions Comments

&«

Y Separates polar vector into its

elements (distance and angle).

DROP Gets rid of the angle.

"Distance" *TAG Creates tagged object for easy

identification.

®

To save the Display program:

Keystrokes Comments

Puts program on the stack.

() Display Stores it.

The Display subprogram makes use of the V— command to take

apart the complex number. In polar mode, with a complex number in

level 1, V— does the same thing as (&q) 2D from the keyboard: the

Calculus and Analytic Geometry 127

magnitude is returned to stack level 2 and the angle is returned to

level 1. Thus, after V— is executed, the stack contains two quantities:

Stack Level Contents

Level 2: magnitude

 Level 1: angle

For our purposes, we don’t care about the angle. So Display uses

DROP to drop the stack, throwing away the angle and leaving the

magnitude—that is, the polar distance between the two points—in

level 1.

To make the output easier to read, we label it with —TAG. This

command takes two arguments: the value for distance from level 2,
and the tag from level 1. It combines them to form a tagged object.
This tagged value for distance is just like any other number—you can

add, subtract, multiply, or divide it—except that it now has a label,

making it easy to identify.

Running the Distance Program

Run the distance program and see if you come up with the same value

as calculated from the keyboard. For our illustration, we want the

distance between the points (4,3) and (—6,5). Press 'ISTH to begin
the program.

Program Prompt or Display Your Action

DISTH

Enter point P11

1]
4@

o 3 ENTER)
Enter point P2

S
6@

Pl 5 ENTER)

1: Diztance: 18.28

128 Calculus and Analytic Geometry

There’s the correct distance, all right. Armed with this little program,

you're ready to calculate distance on any Cartesian grid.

The Distance program has been kept simple on purpose. You might

want to add a call to a cleanup subprogram that resets the calculator

for rectangular mode (by clearing flag —16 again), and performs other
tasks.

Slope of a Straight Line

Most of the HP 48’s commands are programmable, but the £l
menu key (in the GRAPHICS FCN menu) is one that isn’t. To find
the slope of a line, you can use this GRAPHICS FCN menu, but if you

Just need to find several slopes in a hurry—particularly if the lines are

straight—that’s like using a cannon to blast a flea.

Keyboard Example

To find the slope of a line between points a and b, the following

formula is used:

_y2-yl
T z2-1rl

where

m is the slope.

zl and ylI are the coordinates of point a.

2 and y2 are the coordinates of point b.

Calculus and Analytic Geometry 129

Y1

 Yo b

Thus, to find the slope of the line connecting points (2,8) and (12,3),

you could use the following procedure:

Keystrokes Display Comments

3 8(=) -5.88 Calculates y2—ylI.

12 2() 1a.

@ -

=

Calculates z2—z1.,. e
’

=
)

NA Slope, m, of line.

This example uses the stack to calculate slope, and it works pretty

well. Now let’s see how we can accomplish the same thing using a

program—with a few enhancements that make the whole procedure a

“no-brainer.”

The Slope Directory

To create a directory for the Slope programs, then get into that

directory:

(D SLOPE
) CRDIR

SLOPE

130 Calculus and Analytic Geometry

The SLOPE directory will hold all programs and subprograms for
calculating slope. Any objects (including programs and equations)

that you enter and save will be placed in this directory.

The Main Slope Program

The Slope program is a fast, simple way to calculate the slope of a

straight line. It prompts for the input of both coordinates of one
point, followed by the coordinates of the second point. Then it

displays the slope, labeled with a tag for easy identification.

The main Slope program consists of calls to three subprograms. When

viewed as an overall program, Slope takes nothing from the stack, and

leaves the tagged slope there.

Arguments Results

1: 1: tagged slope

Program Instructions Comments

&

Xl Gets point (z1,y1).

Ky Gets point (z2,y2).

Findslope Calculates and tags the slope.

#

To save this program:

Keystrokes Comments

() Slope Saves the program as Slope.

This simple program is another classic example of structured

programming. The main Slope program consists entirely of calls to

subprograms. XylI prompts for entry of coordinates for the first point,

while Xy2 gets coordinates for the second point. (It actually doesn’t

Calculus and Analytic Geometry 131

matter which point is designated point 1 and which is point 2.) After

these two programs have been called, the coordinates for both points

are on the HP 48’s stack. Then Slope calls the subprogram Findslope,

which handles the actual calculation and display.

Xy1—Checking for Valid Input

The program Xyl prompts and waits for input of coordinates for the

first point. It allows input of both the x- and y-coordinate in the

display, and verifies that the entry is made up of valid objects. XyI1

takes nothing from the stack and leaves both coordinates there; the

coordinates are tagged for identification.

Arguments Results

[

2: tagged x1

1: tagged yl
Program Instructions

"Enter x1 and g1"

Mixl

:'51:"

18 2

IHMFUT

OBJ=+

Comments

Prompt string for use by INPUT.

Begins command line list.

Prompt for z1. (Add a () (&2).)

Prompt for y1.

Places cursor 1n first row of

command line.

Checks for proper syntax.

Ends command-line list for INPUT.

Prompts and waits for input of z1

and ylI.

Converts input into its component

objects.

132 Calculus and Analytic Geometry

Xyl is very similar to Plget, used in the Distance program. However,

it adds a validity checking to the INPUT command.

INPUT uses both a general prompt string and a command-line list.

When called by Slope, the Xy!I subprogram places a general prompt
string on the stack, then begins the command-line list. This list
contains one more element than Plget: the letter V. Here’s what the

different parts of that command-line string mean:

m The string "ix1: miyl:" appears on the command line when
INPUT is executed. (w shows location of the newline character.)

m The list £ 1 8 specifies the row and column where the cursor will

be placed on the command line. Thus, the cursor is placed in row 1

(the top of two rows), column 0.

m The 'verifies that the characters in the result string—that is, the
characters you enter in response to INPUT—are a valid object. You

get a warning message, and INPUT re-prompts,if you fail to enter a

valid object.

Using ¥ here gives an added measure of error prevention right in the
INPUT command. When INPUT is executed, the program pauses and

waits for input from the keyboard, displaying the following message

and prompts just as Plget does:

Enter point P1:

txle

iyl

You enter an x-value at the 1 prompt, then use the down arrow key

to go to the ul prompt and enter another value. Because you’ve

included the ¥ in the command-line string, INPUT checks to see if all
parts of your input make up a valid object before continuing.

After INPUT of both points, a string is on the stack that consists of
something like the following:

Stack Level Contents

 Level 1: "ixliZmiyglig®

Calculus and Analytic Geometry 133

The OBJ— command converts the string into two tagged objects,
breaking the string where the newline (m) character is placed. The
result is that Xy leaves two tagged objects on the stack:

Stack Level Contents

Level 2: txls 2

 Level 1: tyl: 2

Xy2—More of the Same

The Xy2 program accomplishes virtually the same thing as Xy1,

except that it gets the second point (z2,y2). Xy2 takes nothing from

the stack, and places coordinate z2 in level 2 and y2 in level 1.

Arguments Results

.

1:
2t tagged x2

 1: tagged y2

Program Instructions

ol

"Enter =2 and g2"

Comments

Prompt string for use by INPUT.

Begins command line list.

Prompt for z2. (Add a () (&2).)

Prompt for y2.

Places cursor in first row of

command line.

Checks for proper syntax.

Ends command-line list for INPUT.

134 Calculus and Analytic Geometry

Program Instructions

INPUT

oBJ>

Comments

Prompts and waits for input of z2
and y2.

Converts input into its component

objects.

After Xy2 is executed, the stack contains all four coordinates,
arranged as follows:

Stack Level Contents

Level 4: zl

Level 3: yl

Level 2: z2
 Level 1: y2

With the four needed points on the stack, all that remains is to
calculate the slope.

Findslope—Using Local Variables

Findslope is the last subprogram called by Slope. It takes four

quantities from the stack and calculates the slope, tagging the result
and leaving it on the stack.

Arguments Results

4: tagged x1

3: tagged yl

2: tagged x2

 1: tagged y2

J
a

o
rJ

 i: tagged slope

Calculus and Analytic Geometry 135

Program Instructions Comments

+ w1l gl =2 g2 Converts to local variables.

'og2-ygl e CeZ-ul ! Defining procedure (an algebraic) for

local variables.

"' Places the letter “m” on the stack.

+THG Tags the slope with “m”.

Keystrokes Comments

() Findslope Stores the program.

This i1s a case where you could use stack operations to calculate the

slope. But it’s so much easier to understand what’s happening if you

use local variables instead.

Findslope takes four quantities from the stack, and converts them

immediately to the local variables z1, y1, 22, and y2. To help you

remember how local variables are created, think of their creation as

occurring from right to left. That is, y2 is created from the quantity

in level 1, z2 from level 2, yI from level 3, and so on.

As soon as the local variables have been created, their defining

procedure is executed. Here, the defining procedure isn’t a program.

Instead, it’s the algebraic object ' {uZ—uls-¢x2-x12"'—which is
easily recognizable as the formula for slope of a straight line.

Since we’re using an algebraic object as the defining procedure,
instead of using a program, we don’t need the EVAL command. We

wind up with a smaller, more concise overall program, one that uses

less memory.

The parentheses are necessary, because without them, the HP 48

would use its own order of evaluation, performing division first,

followed by subtraction. Without the parentheses in this expression,

what you’d wind up with would be the result of the following formula:

136 Calculus and Analytic Geometry

1
w2-L g1

zl

which isn’t the result you want at all. However, the HP 48 evaluates

quantities inside parentheses first, then works outward. Even if you’re

not sure of the order of evaluation, using parentheses can guarantee
you get what you want.

Placing the object (yZ2-u1){x2-x1) inside single quotation

marks in the program prevents each of those variables from being

evaluated “on the fly.” For instance, if this program “executed” the

local variable 1, what you’d get would be the value (1 or 3 or 99,

or something) assigned to that variable. By putting the variable or

expression inside single quotation marks, we make sure it’s evaluated
all at once.

The entire expression is evaluated, using the current values for local
variables z1, y1, 2, and y2. The result of executing this algebraic

object, the slope of the line, is placed on the stack.

All that’s left is to put a suitable label on our output. When the

program adds 'm' to the stack, the stage is set for the -TAG
command.

Stack Level Contents

Level 2: slope of the line

Level 1: "m'
—TAG combines two objects from the stack to form a single tagged
object. The quantity comes from level 2, and the tag from level 1.

The tag is usually a string, marked by double quotation marks ("").

Here, however, we’ve used a name marked with single quotation marks

(tick marks), which is also valid. When —TAG is executed, the result
is the slope of the line, labeled with an identifying tag of m.

Calculus and Analytic Geometry 137

Running the Slope Program

The Slope program quickly gives you the slope of the line between any

two points in the Cartesian coordinate system. Here’s an example

of finding the slope between a line drawn from point (2,8) to point
(12,3).

T @8.1 @8

1 (12, 3)

e+3> X
2 12

Press SLOFPEto begin the program.

Program Prompt or Display Your Action

SLOFE

Enter =1 and gl

ixl 2(M)

Bl 8
Enter =2 and a2

Pl 12 ®

138 Calculus and Analytic Geometry

The result is a nicely labeled slope. Since the slope in the stack

is a tagged number, you can use it in other calculations without
modification.

Performing Integration Programmatically

Calculus is one of the things the HP 48 does best. Its calculus
functions are so sophisticated and well-designed that you may never

need to program them. However, you can easily add a “shell” to an

existing function, with user instructions that prompt for the exact

input and with a label for the result. The Integrator program below is

such a shell.

Keyboard Example

Consider the following integral:

4

/ (:c3 — 622+ 9z + l)dz
0 .5

One way to think about this integral is that it’s the area under the
curve from 0.5 to 4.

 .
4.0

The HP 48 has several ways to calculate this integral. One method
(the one that is easiest to program) is to place all the necessary

quantities in the stack, then use the f command. For numerical

integration, the f command requires the HP 48’s numerical results

flag (system flag —3) to be set, and it needs the following quantities in
the stack:

Calculus and Analytic Geometry 139

Stack Level Contents

Level 4: lower limit of integration

Level 3: upper limit of integration

Level 2: integrand (the equation)
 Level 1: variable of integration

Before performing the integration, you need to decide the accuracy

factor, which is determined by the prevailing display format. Thus, if

you want an accuracy of 0.01 (that is, 1%), you specify 2 FIX before

performing the integration.

The keystrokes for getting these quantities into the stack and
computing the integral are shown below.

Keystrokes Display Comments

(=) 219 Specifies accuracy to two
decimal places.

3 TEST Sets flag to produce numerical
SF results.

0.5 A, 53 Enters lower limit of
integration.

4 4, 08 Enters upper limit of
integration.

With the limits of integration on the stack, you can enter the
integrand—that is, the equation. The easiest way to handle this is to

switch to the Equation Writer, enter the equation, and place it on the

stack.

140 Calculus and Analytic Geometry

Keystrokes Comments

=) Switches to Equation Writer.

XD3ImE)6X

D20 X 1 Enters equation into Equation
Writer.

Places equation on stack.

Now you add the variable of integration, X, and perform the

integration:

Keystrokes Display Comments

X PR Puts variable of integration on stack.

) 18.£1 Area under the curve.

Frankly, if you have just a single problem to solve, this method is less

efficient than several other HP 48 integration options. But the above
procedure is easily converted to the Integrator program, which can

prompt for all necessary values and label the result. It’s just the ticket

for grinding through long problem sets. Read on!

The Integrator Directory

Before you begin writing the Integrator program and subprograms,

make a directory for them, then get into that directory:

(D INTEGRATOR

INTEG

This INTEGRATOR directory will hold all the necessary programs

and subprograms for the Integrator program.

Calculus and Analytic Geometry 141

The Main Integrator Program

As with other structured programs, the main Integrator program is

made up entirely of calls to subprograms. When executed in order

by Integrator, these subprograms prompt for the input of accuracy

level, then halt to allow you to input the equation (using the HP 48’s

Equation Writer, if you want). You are then prompted to enter the

limits of integration, and the result is calculated. The program expects
nothing on the stack, and leaves the tagged result there.

Arguments Results

1: 1: tagged answer

Program Instructions Comments

Init Initializes HP 48.

Accuracy Prompts for input of desired
accuracy level.

Equation Prompts for input of equation as

function of X.

Limits Prompts for limits of integration.

Doit Performs the integration.

Labelit Tags the answer.

To save this program as Integrator:

Keystrokes Comments

Puts program on the stack.

() Integrator Stores the program.

The Init subprogram sets up the HP 48 for the other subprograms to
come. Init is followed by Accuracy, which lets you enter the number of

decimal places of accuracy to which you want to see the result.

142 Calculus and Analytic Geometry

The Equation subprogram is executed next. It prompts you to enter
the equation as a function of X, then turns over control to the

calculator keyboard. You can enter the equation any way you want—

in the command line or using the Equation Writer. When done, you

use (CONT) to continue.

Program execution resumes with Limits, which prompts you to

enter first the lower limit of integration, then the upper limit. With

the equation and the limits of integration on the stack (and the
calculator set to the correct number of decimal places for the accuracy

you want), Doit performs the actual integration and produces the

answer. Finally, Labelit tags the answer with a suitable label for easy

identification.

Init—Specifying Numerical Results Mode

The Init subprogram consists of a single command that sets user
flag —3. It doesn’t alter the stack.

Program Instructions Comments

&

-3 SF Sets numerical results mode.

®

To save the program:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program.

When user flag —3 is clear, you might wind up with symbolic results

instead of the numeric ones you’re looking for. So Init sets this flag to

guarantee you’ll get a numeric output.

Init is pretty small right now, and this single instruction could easily
be placed in another subprogram. But creating a separate Init

subprogram to like this makes Integrator easy to modify if you want to

set other initialization conditions at a later date.

Calculus and Analytic Geometry 143

Accuracy—Setting the Number of Displayed Digits

Accuracy prompts you to enter the desired level of accuracy. Accuracy

uses the FIX command to set the number of displayed digits; it has no
effect on the stack contents.

Program Instructions Comments

"Enter accuracy as Prompt-line string for INPUT.
no. of decimal places (Place endline characters, () (<2),
teg. 2 for @.881%" at the end of each line as shown

here.)

" Command-line string (a blank

string) for INPUT.

IMFUT Halts program for user input.

OB+ Converts input to a real number.

FIA Specifies number of displayed

To save the program:

decimal places.

Keystrokes Comments

Puts program on the stack.

() Accuracy Stores the program as Accuracy.

Accuracy begins by placing two text strings on the stack. Both are

required by the INPUT command that follows. The first text string

will prompt the user for input, while the second appears on the

command line. That second text string is a null string ("").

When INPUT is executed, it displays the two text strings, and waits

for input from the keyboard. The first text string occupies three rows

in the display. (In fact, this is the maximum number of rows you can

display with INPUT.) Nothing is really displayed by the second text

string, but it’s still needed by INPUT.

144 Calculus and Analytic Geometry

In doing numerical integration from the keyboard, you set the

accuracy factor by means of the (&) "FI¥Xkey. You input
the number of decimal places to which you want the answer to be

accurate. For instance, if you want an accuracy of 0.001%, you execute
3

That’s what you do in Accuracy, too. When prompted by INPUT,

you enter the number of digits of accuracy that you want. The value

you input is converted to a real number by OBJ—, then used as the

argument for FIX. After Accuracy, the HP 48 is set for numerical
integration at the accuracy level you desire.

Equation—Temporarily Returning to the Keyboard

The next subprogram, Fquation, prompts you to enter the equation as

a function of X, then returns control to the keyboard. When you’ve

entered the equation, you hit () to continue the program.
Fquation takes nothing from the stack, and leaves your equation there.

Arguments Results

1: 1: equation as function of X

Program Instructions Comments

&

"Enter EGQUATION as Prompt string for PROMPT.

f(¥»y then press COHT."

FROMFT Displays prompt string,

returns control to keyboard.

To save this subprogram:

Keystrokes Comments

() Equation Stores the program.

Calculus and Analytic Geometry 145

When it comes to entering equations, it’s hard to improve on the HP

48’s way of doing things. Thus, in Fquation we return control to the

keyboard, to allow you to enter an equation in the fastest and easiest

manner you know how. You can use the command line, or you can

press (&) and take advantage of the Equation Writer.

Fquation places a text string in the stack, then executes the

PROMPT command. (If you want your prompt text to fit on the
screen, be sure to add an endline character after the word “as.”

PROMPT displays the string beginning on the first row of the HP 48’s
liquid crystal display, and returns control to the keyboard.

You enter an equation. We’ve specified that the equation must be

as a function of X, so if you have an equation in T or s, you’ll need

to change it to X when you enter that equation. (You could easily

specify “f(x)” instead of “f(X),” but “X” is easier to enter from the
keyboard than its lowercase cousin.) After you press to put
the equation on the stack, you press (&) to continue. The
Fquation subprogram finishes running, and the next subprogram is
called by Integrator.

Accuracy and Equation illustrate an interesting difference between
INPUT and PROMPT. With INPUT, your prompt string can occupy

three rows of the display. For PROMPT, though, you’re limited to

two lines.

Limits—Adding to the Stack with INPUT

Limaits prompts for the lower and upper limits of integration, and

places these on the stack after the equation. It takes nothing from the

stack.

Arguments Results

3 2t equation as function of X

2 2: lower limit of integration

1: equation as function of X 1: upper limit of integration

146 Calculus and Analytic Geometry

Program Instructions

&«

"Enter the lower limit

of integration"

INFUT

OBJ»

"Enter the upper limit

of integration”

IMFUT

OBJ»

&

To save this subprogram:

Keystrokes

() Limits

Comments

Prompt string for use by

INPUT.

Blank command-line string for
INPUT.

Prompts and waits for input

of lower limit.

Converts input to real number.

Prompt string for use by

INPUT.

Blank command-line string for
INPUT.

Prompts and waits for input

of upper limit.

Converts input to real number.

Comments

Puts program on the stack.

Limits illustrates the simple, straightforward use of a pair of INPUT

statements. The first INPUT prompts for the lower limit, while the

second INPUT asks you to input the upper limit.

As usual, each INPUT requires two strings as its arguments. The

first string ("Enter the...integration") is the prompt string,
and appears at the top of the central display area. The second string

("") is a null string that is placed on the command line by INPUT.
Execution is halted by INPUT until you enter a limit, then press

ENTER), whereupon execution resumes.

Calculus and Analytic Geometry 147

Doit—Performing Numerical Integration in a Program

Dozt is the subprogram that actually performs integration. It takes
three quantities from the stack: the equation, the lower integration

limit, and the upper limit. Doit adds X, the variable of integration, to

the stack. Then it takes all the necessary quantities and calculates the
integral, leaving the answer on the stack.

Arguments Results

! equation as function of X

2t lower limit of integration 2:

1: upper limit of integration 1: answer

Program Instructions Comments

Begins program.

+ e 1 u Creates local variables.

Begins defining procedure (a
program) for local variables.

1 ue 'S Places lower limit, upper limit,

equation, and '*' (the variable of

integration) on the stack.

r Performs the integration.

i Ends defining procedure.

Ends program.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Doit Stores the program.

Dozit uses local variables to perform integration. It begins by taking

three quantities from the stack and turning them into the local

148 Calculus and Analytic Geometry

variables e (the equation), I (the lower limit of integration), and u
(the upper limit).

As soon as the local variables have been declared, they must be

defined. Dozt uses a short program to define them. The program
prepares the stack for numerical integration:

Stack Level Contents

Level 4: lower limit, {

Level 3: upper limit, u

Level 2: integrand (the equation, e)
 Level 1: variable of integration, '

Notice that for the sake of simplicity, Doit plugs in '%"' as the
variable of integration. You could easily change this to an INPUT

command that asks the user to supply the variable of integration.

With the necessary quantities on the stack, Doit executes the f

command. This performs the integration, and produces the answer:
the area under the curve from [to u. All that’s left now is to label

that answer.

Labelit—Adding a Tag

Labelit simply adds a tag to the answer that’s on the stack. It takes a

quantity from the stack, tags it with the word “Answer,” and places it

back on the stack, ready for use.

Arguments Results

1: answer 1: tagged answer

Calculus and Analytic Geometry 149

Program Instructions Comments

%

"Area" Puts label on the stack.

+TAG Labels the answer.

%

To save the program as Labelit:

Keystrokes Comments

Puts program on the stack.

() Labelit Stores the program.

Labelit shows the simple use of the =TAG command to label the

answer. When Labelit is executed, the numerical result of integration
(from Doit) is already on the stack. Labelit adds a string label. Here
the label is "Area", because the answer represents the area under a
curve—but of course, any label that helps you identify the answer will

do. When —TAG is executed, it adds the label before the numerical

result, and automatically includes a colon to separate the two items.

Tagging a number doesn’t affect its value at all. You can still move
it, store it, or use it in other calculations. In fact, the tag stays right

with the number as long as that numberis intact. (That is, until you
combine it with other numbers in addition, subtraction, or some other

operation.)

Running the Integrator Program

 To run the Integrator program, just hit the EGkey and respond

to the prompts. For instance, try it for the integral you calculated

earlier from the keyboard, but show the answer to four decimal places:

4

/ (:c3 — 62249z + l)dz
0.5

150 Calculus and Analytic Geometry

Program Prompt or Display Your Action

INTEG

Enter accuracy as

no. of decimal places

(egy, 3 for B6.8061%) 4

At this point, you enter the equation, making sure it’s expressed as a

function of X. You can enter the equation on the command line, or

switch to the Equation Writer application as in the earlier keyboard
example. Here’s how to enter the equation using the command line:

Program Prompt or Display Your Action

Enter EQUATION as OXP306®X
f(¥)s, then press CONT. 2390 X ()1 (ENTER

©@D
Enter the lower limit

of integration 5

Enter the upper limit

of intearation 4

1: Area: 18,5894

Calculus and Analytic Geometry 151

Sound and Music

Whether you appreciate them for their own aesthetic value or use

them in other applications, sound and music play an important role in

programming. Now, the HP 48 is no Stradivarius, but it’s capable of

some pretty amazing sounds and audio effects. As you’ll see in this

chapter, you can make your calculator sing like a bird, or you can play

it like a piano.

The key to producing sound on the HP 48 is its BEEP command.

BEEP takes two arguments: the frequency in Hertz from level 2 of

the stack, and the duration in seconds from level 1. For instance, to

sound a middle C (523.25 Hertz) for 1 second, you could execute the
following:

Keystrokes Comments

523.25 Frequency placed on the stack.

1 Duration placed on the stack.

PRG

 Sounds the beep.

In order for BEEP to generate sound, flag —56 must be cleared.
(Clearing this flag also enables beeps for errors.) As it happens, the

BEEP command has some practical limits, too. For instance, if you

specify a frequency higher than about 4400 Hertz, you’ll get some kind

of a sound, but probably not the frequency you expected.

Well, who wants to sit around plugging in frequencies and durations
all day? Better to let a program do it for you—as in the following

examples.

Sound and Music 153

The SFX Programs

These SFX (sound effects) programs illustrate how the HP 48 can
produce some pretty amazing tone patterns. These are just a start, of

course. You’ll want to experiment with your own sounds.

The SFX Directory

First, make a directory for the sound effects programs, then get into

that directory:

() SFX
@ CRDIR

The SFX directory will hold all the sound effects programs. Any

objects (including programs) that you enter and save will now be
placed in this directory.

Alarm—Repeating Until Any Key

The first, and simplest, of the sound effects is a repeating alarm. It

could be the dive alarm on a submarine game, the signal that a long
program has completed execution, or the first sound you hear when

the HP 48 gently wakes you from blissful slumber. The alarm itself

is a long tone, followed by a shorter pause, then another long tone,
and so on. Here, it keeps on sounding until you press any key on the

calculator, but you could easily give it a different sort ofexit.

154 Sound and Music

Program Instructions Comments

&

Do Begins DO loop.

288 1 BEEP Sounds a beep at 200 Hertz for one

second.

-3 WAIT Pauses for one-half second

UMTIL KEY Repeats until a key is pressed.

END

DROF

&

If you’ve entered the program, you can store it as Alarm:

Keystrokes Comments

Puts program on the stack.

() Alarm Stores program as Alarm.

The program is nothing more than a DO ... UNTIL loop that is
executed over and over again. The loop clause, the “heart” of the
program, consists of a BEEP and a WAIT instruction. Each time
through the loop, the number 200 is placed in level 1. Then 1 is

placed in level 1, bumping the 200 up to level 2. With these quantities

on the stack, the BEEP command uses them to sound a 200-Hertz

tone for one second.

Next the quantity 0.5 is placed in level 1 of the stack, and WAIT uses

it to “wait” for one-half second before continuing. Up to this point, all

the quantities placed on the stack have been consumed.

Everything between DO and UNTIL is executed over and over
again. Every time that UNTIL is encountered, the test clause (that

is, between UNTIL and END) is performed. If the result of the test
clause is 0 (false), the loop is executed again. If it’s a 1 (true), then
execution falls out of the loop. Remember, the test clause is executed

just like any other statement. Whatever the test clause puts in level 1

is then evaluated (and consumed) by UNTIL.

Sound and Music 155

For the test clause, we use the KEY statement. Now KEY, remember,

is executed just like any other statement; however, if you haven’t

pressed a key, it returns 0 to stack level 1.

Stack Level Contents

 Level 1: g

UNTIL evaluates this as “false,” and bounces execution back up to the

DO, where the loop clause is executed again.

When you press a key—any key—that press is remembered by KEY.

Now, when execution comes to the test clause again, KEY is executed

just as before. This time, though, you’ve pressed a key, so the results

are different. KEY places the key address in stack level 2, and a 1

in level 1. Let’s say you pressed the key. KEY returns its
address (51) in level 2, and 1 in level 1.

Stack Level Contents

Level 2: 51

 Level 1: 1

The UNTIL test gobbles up the 1 from level 1 and evaluates it as
“true.” The key address drops to level 1, and execution falls out of the

loop and continues. Since we have the key address in level 1 when we

exit, we add a DROP statement to the program to clean up the stack.

An interesting feature of KEY 1is that it won’t register a key press

while the BEEP tone is being executed. To exit by pressing a key,

you’ll have to hit the key before or after the tone. (Naturally, you can

press to exit any time.)

Klaxon—Waiting for a Specific Key

Ah, the sounds of Paris! The sharp clipping of heels along the

Champs-Elysees, the rush of the Metro—and, inevitably, the

distinctive two-tone Klaxons of police and emergency vehicles. To

replicate the sound of the Klaxon, you can use the BEEP statement

with two different frequencies. The following program sounds a

156 Sound and Music

Klaxon, repeating the same series of two tones over and over, until you

press user key F.

Program Instructions

&

DO

588 .5 BEEP

358 .5 BEEP

UHTIL

KEY

EHD

IF 1&g =

THEH Klaxon

EHD

&

Comments

Start of loop clause.

Sounds tone at 500 Hertz for a half-

second.

Sounds tone at 350 Hertz for a half-

second.

End of loop clause, start of test

clause.

Test clause

Tests to see if key address is not 16.

If key 16 was not pressed, starts the

loop again.

Otherwise, ends the program.

For this program to run correctly, you’ll need to store it as Klazon (or

change the name of the program called by THEN).

Keystrokes

() Klaxon

Comments

Puts program on the stack.

Stores program as Klazon.

The main part of the program consists of a DO ... UNTIL loop. Each

time through the loop, the quantity 500 is placed in stack level 2 and

0.5 in level 1; and BEEP uses these to sound a 500-Hertz tone for

one-half second. Then 350 is placed in level 2 and 0.5 in level 1, and

BEEP uses them to generate a lower tone (350 Hertz) for the same
length of time.

Sound and Music 157

As in the Alarm program, the test clause after UNTIL is a KEY

statement. As long as you don’t press a key, the KEY statement

returns 0 to level 1, UNTIL consumes it and evaluates it as false, and

the loop is executed again. When you do press a key, its keycode is
returned to level 2, and a 1 is returned to level 1. UNTIL evaluates

this as “true,” and execution falls out of the DO ... UNTIL loop and

continues with the next statement after END.

So far, the Klazon is very similar to the Alarm. In this program,

though, we’re going to keep that Klazon sounding until the user
presses not just any key, but a specific key.

Remember, when execution falls out of the loop, the address of the

key pressed is still in level 1 of the stack. We can test this address

with an IF ... THEN structure to find out if it’s the key we want. In

this case, we want the exit key to be user key F—that is, at row 1, key

6 (address 16).

Key 16

OIS

OO0

OO0UM™ O]

OO
(ewer () (D (] ()

(OO C)

&]

@O

k(D[JOJJ) L)

158 Sound and Music

Let’s say the user pressed the key to exit. That means 51 is
in level 1 when the DO ... UNTIL ... END loop is exited. The IF

statement puts 16 in level 1, bumping 51 up to level 2.

Stack Level Contents

Level 2: 51

 Level 1: 16

Then IF removes both these quantities from the stack, asking the
question “Is level 1 unequal to level 27” Since the answer is yes (true),
the true clause after THEN is executed. This clause is K1axon (the
name of the program), so the program simply calls itself again. Thus,
Klazon calls itself recursively if the user tries to exit by pressing any

key on the keyboard except key F (or (ATTN)).

If the user finally gets smart and hits user key F, KEY returns 16 to

the stack, and that’s what’s left when the DO ... UNTIL ... END

loop is exited. When the test IF 1& # is performed, there’s a 16

in level 2 and a 16 in level 1, so the test for inequality is false. The

THEN clause isn’t executed, and the program (finally) halts.

Bird—Eliminating Recursion with Nested Loops

The HP 48 lends itself surprisingly well to a creating multitudes of
ornithological sounds. While our fine feathered friends might not be
fooled, cheeps and peeps from your calculator can add spice and verve

to games and other keyboard activities.

The program below illustrates one way of summoning birdlike sounds
from the bowels of the HP 48. It simulates the mating cry of the
long-necked doofus, a mythical creature in the turkey family.

Sound and Music 159

Program Instructions

Lo

Lo

i .81 BEEP

i .81 EEEF

.= WARIT

UHMTIL KEY

EHD

UMTIL 18 ==

EHD

160 Sound and Music

Comments

Begins outer DO ... UNTIL loop.

Begins inner DO ... UNTIL loop.

Start and finish for FOR.

FOR loop counter goes from 2500 to

3000.

Generates .01-second tone at 2500

Hz., 2550 Hz., and so on.

Step interval for FOR loop.

Pauses for 0.3 second.

Another loop like the one above.

Start and finish for FOR.

This loop goes from 3000 to 2500.

Negative step.

End of inner DO ... UNTIL loop

clause; loop executed until any key is

pressed.

End of inner DO ... UNTIL

structure.

Outer loop continues until key

pressed is key 16.

End of IF structure.

Save the program as shown here.

Keystrokes Comments

Puts program on the stack.

() Bird Stores program as Bird.

Recursion (the calling of a program by itself, as in the earlier Klazon

program) consumes memory. To avoid recursion, Bird uses a pair

of nested DO ... UNTIL loops. The inner loop waits until any key

is pressed, while the outer loop waits until the key is the F key (at

address 16).

The inner DO ... UNTIL ... END loop is much like the loops in
the other SFX programs. It is repeated over and over until the user
presses a key. Within this loop, however, we add three FOR ... STEP

loops to create the bird’s characteristic call.

FOR takes two numbers from the stack: a start and a finish. So

we begin by placing the numbers 2500 and 3000 in levels 2 and 1,

respectively. FOR removes these from the stack and uses them to

determine where it is to begin and end. In this case, the loop will go
from 2500 to 3000. Since this is a FOR ... STEP loop, we can specify

the increment, too. The 5@ STEF instruction specifies an increment of

50, so the loop counter begins at 2500, goes to 2550, then to 2600, and

SO on.

An interesting feature of FOR (and one we’ll put to use here) is that it
creates a local variable. The name you use immediately after the word

FOR is a local variable that exists between FOR and STEP (or FOR
and NEXT) only. We’ve called it i, to keep with the convention found
in many programming texts, but you can give it any name you like.

In essence, all you’re doing with the words FOR i is creating a local
variable called i that contains the value of the loop counter. It’s not

part of the loop clause, and isn’t put on the stack yet.

The first time through the loop, ¢ has a value of 2500. The line

i .81 BEEF puts ¢ and .01 on the stack, then uses them to generate

a 2500-Hertz tone that lasts .01 second. The next time through the

loop i is 2550, so the tone is 2550 Hertz. This continues until the loop

reaches 3000. Notice that the duration of each tone is very short.

Sound and Music 161

Taken together, these tones create a “chirp” going from 2500 Hertz to

3000 Hertz.

When the FOR ... STEP loop has been executed 11 times, execution

continues to the WAIT, which pauses for 0.3 second—just enough time
for the long-necked doofus to catch its breath! Then we follow up
with another FOR ... STEP loop that’s exactly the same as the first,

creating a second identical chirp.

The third component of this bird’s call is a chirp that starts high and

falls, instead of the other way around. For this, we use yet another

FOR ... STEP loop; it goes from 3000 Hertz to 2500 Hertz. The
STEP increment is negative, so the first time through the loop, 1 is

3000, then next time 2950, the next time 2900, and so on.

Each time through the inner DO ... UNTIL loop, the bird
chirps twice from low to high, then once from high to low.
Rising-rising-falling, rising-rising-falling, the melodic song of the
long-necked doofus continues until you press a key. As in other

programs, we’ve used KEY for the UNTIL test clause, so upon exit

from the inner DO ... UNTIL ... END loop, the value of the key

address is present in level 1.

Now we make use of the outer DO ... UNTIL ... END loop to check

that key address. The outer loop is executed UNTIL that key address

is equal to 16. If the key address is not equal to 16, execution begins

again at the first DO instruction, and you hear the sequence of chirps

once more. When you finally press the user key at location 16—that

1s, the first row, sixth key—execution falls out of the outer loop and

the chirping ends.

Using KEY to end execution is pretty effective here—a lot more

so than in the Alarm or Klazon programs, where you have a long
continuous tone. That’s because the HP 48 doesn’t read its key buffer

while BEEP is being executed. The chirps in this program, though,

are made up of many very short BEEPs, so there are many more

opportunities for the HP 48 to recognize your key press.

162 Sound and Music

Car—Using Local Variables to Control Loops

A powerful sports car pulls away from a stop light. The car

accelerates, the engine revving up almost to the tachometer’s red line.
The driver shifts gears, the engine slows down, then revs again, higher

this time. Another shift, and the car’s engine revs higher still.

Close your eyes when you run the following program and you just may

find yourself at the wheel of that sports car. The program uses three

FOR ... STEP loops to simulate three gears. It also features a set of
local variables that make it easy for you to change and experiment

with different values.

Program Instructions

188 460 = - o o
l

1] s
l
—

+be

FOR i

i t BEEP

= STEF

7o WARIT

b 186 +

i e 1
=
= +

Comments

Four quantities placed on stack.

Quantities converted to local

variables.

Begins defining procedure (here, a
program).

Variables for begin and end of loop
placed on stack.

Begins FOR loop.

Tone sounds at frequency of loop

counter (i) for duration of ¢.

STEP interval is s.

Pauses for 0.75 second.

Second loop begins 100 Hertz higher
than b.

Loop ends 100 Hertz higher than e.

Sound and Music 163

Program Instructions Comments

FOR 1

i t EEEFP

= STEF

.o WRIT

b zeo + Third loop begins 200 Hertz higher
than b.

e 288 + It ends 200 Hertz higher than e.

FOR i

i t BEEFP

= STEF

End of local variables.

End of program.e

To store the program as Car:

Keystrokes Comments

Puts program on the stack.

() Car Stores Car program.

We begin by placing four values on the stack, then converting them

to local variables. We start with b (begin) of 100, e (end) of 400, s
(step) of 10, and t (time) of .03. Because all the variables are right
at the beginning of the program, you can easily edit the program

to change them if you want to experiment. Or you could eliminate

the 186 488 16 . B3 entirely, and simply make sure that these four

quantities are on the stack when the program is run.

Declaring the local variables b & = 1 removes the four numbers from
the stack. In order for these local variables to work properly in the HP

48, they must be immediately followed by the defining procedure.

Here, the defining procedure is a program.

164 Sound and Music

Within the inner program, the variables b and e are placed on the

stack. This means that level 2 contains the value for b (that is, 100),
while level 1 has the value for e (400).

Stack Level Contents

Level 2: 166

Level 1: 408
Now the first FOR ... STEP loop is run. It runs from 100 to 400,
using a STEP increment of s (that is, 10). The variable i contains the
latest incremental value; so the first time through the loop, i is 100,

the second time it’s 110, the third time 120, and so on.

Each time through the loop, BEEP sounds a tone at a frequency of

¢ Hertz for a duration of ¢ seconds. So you hear a 100-Hertz tone

for 0.03 second, then a 110-Hertz tone for the same time, then a

120-Hertz tone, and all the rest of the tones up to 400 Hertz. The

rising tones come in rapid succession—not unlike the sound of an
accelerating motor.

When the tones for “first gear” have been generated, the program
WAITSsfor three-quarters of a second to simulate the shifting of gears.

Then the program places on the stack the beginning and ending values
for another FOR ... STEP loop. This time we add 100 to the value

of b and e, so that the loop goes from 200 to 500. The higher values
mean that the range of tones for “second gear” is somewhat higher
than for first gear. The loop uses the same STEP interval, s.

For “third gear,” we execute a third FOR ... STEP loop, with the

range of tones slightly higher still. The program shown here doesn’t
repeat itself as the other sound effects do—after all, an automobile

accelerates only once, then it’s gone—but you can easily add a DO ...
UNTIL loop if you want to hear the roar of the engine over and over.

Also, you can play around with the values for b and e, until you have

that motor purring!

Sound and Music 165

The HP 48 as a Piano

As you know, all it takes is the right values in stack level 1 and level

2, and the HP 48 can play any note you’ll find on many musical

instruments. Moreover, you can redefine the HP 48 keyboard so that

each key plays a specific note. Does that sound like a piano or organ?

Read on!

Music is highly mathematical; the same note in the next-higher
octave, for instance, is approximately double the frequency of that

note in the current octave. The following table shows the relationship
of frequencies and notes.

Musical Frequency Musical Frequency
Note in Hertz Note in Hertz

C 130.81 Middle C 523.25

D 146.83 D 587.33

E 164.81 E 659.26

F 174.61 F 698.46

G 196.00 G 783.99

A 220.00 A 880.00

B 246.94 B 987.77

C 261.63 C 1046.50

D 293.66 D 1174.70

E 329.63 E 1318.50

F 349.23 F 1396.90

G 392.00 G 1568.00

A 440.00 A 1760.00

B 493.88 B 1975.50
The programs in this section convert your HP 48 into a one-octave

piano. The piano’s “keys” are all the calculator keys along the right

side of the HP 48 keyboard (except for the top-row user key). Thatis,

166 Sound and Music

they’re the keys addressed by location codes of 26, 36, 46, 55, 65, 75,

85, and 95. To play the piano, you rotate the calculator so the display

is on your left, then play the eight black keys of what is now the top

row. Except for those eight keys and an exit key, all other keys on the

keyboard are “locked out” when you’re playing the piano.

Rotate the calculator 5
90 degrees counterclockwise

Play these keys
1

G A _

4
_

)

r

O -k O m M

-

I | I |

O
O
0

® Y

J
I

(

)
(

)
(

)
(

 (

O
O

O
O
O
0
O
O
C
O
C
s

(C
ev

er
(
)
(
)
(
)
(
s

(
J
C
J
C
I
C

O
O

@
O
I
O

@
C
I
C
(

The Piano Directory

Begin by creating a directory to hold the Piano program and
subprograms. Then get into that directory:

() PIANO
= CRDIR

FIAHD

Sound and Music 167

The PIANO directory will hold all programs and subprograms for

the HP 48 piano. All the programs and subprograms you write now
should be saved here.

The Main Piano Program

Following the tenets of structured programming, the main program

consists almost entirely of calls to other objects—including

subprograms and a list of keys. When Piano has been run, it leaves a

list on the stack containing the notes you’ve played—a timeless record

of your composition.

Arguments Results

1: 1: list of musical notes

Program Instructions Comments

Meszage Calls Message for general user

instructions.

Init Calls Init for initialization.

Merulist THEHMU Uses the list Menulist to create a

temporary menu.

Dokeyus Locks out all keys except the ones

for Piano.

After a general message to the user and an initialization routine, this

main program creates a temporary menu using the TMENU command

and an external list in Menulist. Then it calls the program Dokeys,

which prevents you from using any keys except those assigned for the

piano.

168 Sound and Music

Once you’ve entered this main program, you can store it as Piano:

Keystrokes Comments

Puts the program on the stack.

() Piano Stores program as Piano.

Now let’s take a closer look at those individual subprograms and how
they work.

Message—Displaying User Instructions

The Message subprogram is the first object called by the main Piano

program. It displays a general message to the user, then waits for a
press of any key before continuing. Message has no overall effect on

the stack.

Program Instructions Comments

&

"PIAKWO

Turn the HF 48 a

quarter-turn counter—- Message that is displayed by DISP.

clockwise, then play

the 28 top keus.

Ang keg to continue."”

CLLCD Clears the LCD display.

1 DISP Displays message beginning in the
first line of the display.

7 FREEZE Freezes the entire display.

8 WAIT Waits for press of any key.

DROP Gets rid of the key address returned

by WAIT.

»

Sound and Music 169

To save the subprogram:

Keystrokes Comments

() Message Stores program as Message.

The subprogram begins by creating a message to the user; this
message is placed in level 1 of the stack. Next, the CLLCD instruction
clears the entire calculator display. (It doesn’t affect the stack,

though.)

A 1 is placed on the stack, so that the message is in level 2 and the
1 is in level 1. Then DISP is executed. DISP means “display the

message that’s in level 2, beginning at the display line specified in level
1.” Thus, the message to the user is put in the display, beginning with
line 1.

The next program line, ¥ FREEZE, freezes the entire display, showing

the user message. Now, if we let the program simply continue, you’d

see the message for only a split-second; FREEZE doesn’t halt the

program. So we place 0 in level 1 and execute a WAIT instruction.

With 0 as the argument, WAIT suspends execution until the next key

press.

When you press a key, any key, the subprogram continues execution.

WAIT leaves the key’s address in level 1 of the stack, so we do a

DROP to clean things up before exiting.

Init—Setting User Mode

The next subprogram called is Init, which performs initialization.

This subprogram doesn’t affect the stack.

Program Instructions Comments

-62 SF Sets flag for User mode.

-5& CF Enables audible BEEPs.

170 Sound and Music

To save the program:

Keystrokes Comments

Puts program on the stack.

(D) Init Stores the program.

The HP 48 lets you create a user keyboard, assigning any function
to any key on the keyboard. This user keyboard is active whenever

the calculator is in User mode. To place the calculator into User

mode from a program, you can set system flag —62, as in this Init

routine. (We’ll clear the flag when we exit the program, to return the
calculator to its normal operation.)

We’re going to use BEEP to create the musical “notes,” so the next

thing we need to do is make sure the BEEPs are audible. Thus, we
clear system flag —56. When this flag is cleared, it enables both the
BEEP command and error beeps.

Menulist—Specifying a Menu Key and Action

Menulist is the argument for the TMENU command. TMENU,
remember, requires for its argument a “list oflists”; each of the
internal lists contains a key name and its action. In the case of the

Piano, our temporary menu contains just one key, the choice for

exiting the program. Hence, Menulist is very simple:

Program Instructions Comments

{ Starts list for use by TMENU.

£ "EXRIT" Exit 2 Only one user key is specified.

> End of list.

Sound and Music 171

To save the list, follow the same procedure as for a program:

Keystrokes Comments

Places the list on the stack.

() Menulist Stores it as Menulist.

When used as the argument for TMENU, Menulist creates a
temporary menu in the display. Only one key is shown: user key A,

which has the label EXIT. All other keys in the display are blank.

When you’re finished playing the piano, there’s only one way you can

exit, and that’s by pressing the EXITkey. When you press EXIT,

it calls the subprogram FEzit, which gets the program out of User mode

and restores the normal keyboard and menu. More about Ezit in a

moment.

Dokeys—Redefining the Entire Keyboard

Dokeys is what makes the piano possible. It’s where most of the real

work takes place. Dokeys assigns functions to those HP 48 keys you

want active, and turns off all other keys—including even (ATTN)! It
also prepares the HP 48 to record your notes for future reference or

shipment to Nashville.

Program Instructions Comments

S DELKEYS Disables all unassigned keys.

Keuglist STOKEYS Assigns functions only to keys in

Keylist.

'SKEY'

11.1

ASH Assigns user key (A), needed for exit.

Places null string on the stack.

172 Sound and Music

To save this subprogram:

Keystrokes Comments

() Dokeys Stores Dokeys.

Dokeys begins by placing S in level 1, then executing DELKEYS.
This S DELKEYS statement has the effect of “killing” all standard
key definitions on the keyboard. If you could stop the program after

this step, not a key would be active, and all you’d get would be error
beeps.

Here’s a conundrum, though: The use of DELKEYS means that if
you hit a non-piano key while you’re playing, it’s not executed—but

it does produce an error beep. Because flag —56 controls both BEEP

and error beeps, you get them both, or you get neither. (To eliminate

the error beep that comes from hitting the wrong key, you can

eliminate the S DELKEYS instruction from your program. In this case,

however, all those extraneous keys are active—they aren’t locked out.)

Now that we’ve turned off all standard keys , we can set up the
keyboard the way we want. That’s a job for STOKEYS. This
command takes as its argument a list of key definitions and locations,
one after another, like this:

{ definitionl locationl definition2 location? ...

Our list of definitions and locations is called Keylist. You’ll see the

details of Keylist in a moment; for now, it’s enough to understand that

this list assigns the correct “note” to each of the keys we’ll use for the
piano. STOKEYS, with a list of definitions and locations, is perfect

for multiple key assignments like the ones we need here.

Before we examine Keylist, see how we use ASN to provide an exit

from the user keyboard. ASN, remember, lets you reassign a single

standard key. As the arguments for ASN, you need 'SKEY' in level

2 of the stack, and the three-digit key address in level 1. We want to
make sure user key (A) is still active, so we place its address, 11.1 (or

11.0, or simply 11) in level 1.

Finally, Dokeys places "" in level 1 of the stack. This is a so-called

“null string” (that is, a string with nothing in it). When you press the

Sound and Music 173

first “piano” key, not only do you hear the note, but that key is also
written into the display by adding it to the null string. Other keys you
press are also added. Thus, when you’re done, level 1 of the stack

contains a complete record of every note you played.

Keylist—Defining Specific Keys

To understand how the piano actually makes music, you have to

understand Keylist. This list contains all the information needed to

turn HP 48 buttons into piano keys. Keylist consists of a definition

followed by a key location, another definition followed by another key

location, and so on. STOKEYS,in the Dokeys subprogram, uses

Keylist as its argument, and actually does the assignment.

Here’s one of the definitions and its location:

261.62 .2 BEEP "C1" + » 28

You can see that the definition, everything between #« and #, is a

program. The location is 26, which is the second row, sixth key. (It’s

actually the key.) After this definition has been assigned and
the user keyboard is active, when you press (NXT), the following
mini-program is executed:

Program Instructions Comments

261.63 .2 BEEP Sounds 261.63-Hertz tone for 0.2

second.

"C1" + Adds the substring C1 to the string
in level 1.

u

The definition program places 261.63 in stack level 2 and .2 in level

1. Then it uses these as arguments for BEEP, causing the calculator
to emit a 261.63-Hertz tone (that’s middle C on a real piano) for 0.2
second.

After sounding its note, the program places the letters "C1" in level
1. If this is the first key pressed, the null string, " ", is in level 2 now.

(If this isn’t the first key pressed, the string in level 2 contains a list

of the notes sounded.) The + operator adds the letters “C1” to the

174 Sound and Music

null string (or list of notes). Thus, there’s always a “running total” of
notes visible in level 1 of the stack.

The complete Keylist, with all the definitions and locations, is shown
below.

Program Instructions

{

€ 261.63 .2 BEEF

"C1" + »

26

€ 2932.66 .2 BEEF

llDIl + »

36

329.82 .2 BEEP

"EN 4 3

46

% 349.23 .2 BEEF

"F" o+ s

55

% 448 .2 BEEF

% 493.88 .2 BEEFP

m + F

Comments

Begins the list.

Sounds tone for middle C.

Adds note to string in level 1.

Assigns middle C to key.

Assigns D to row 3, key 6.

Assigns E to row 4, key 6.

Assigns F to row 5, key 5.

Assigns G to row 6, key 5.

Assigns A to row 7, key 5.

Assigns B to row 8, key 5.

Sound and Music 175

Program Instructions Comments

522.25 .2 EBEEF

#" CE " +

25 Assigns C above middle C to row 9,
key 5.

i End oflist.

To save this list as Keylist:

Keystrokes Comments

Puts the list in level 1.

() Keylist Stores it.

When Piano calls Dokeys, the STOKEYS command uses this list

to assign the specified programs to the appropriate keys. Then you

simply rotate the calculator 90 degrees counterclockwise, and you’ve

got a piano!

For one octave, we need to go from middle C to the next-higher C. To
differentiate between these two, we call one of these notes “C1” and

the next “C2.” You might also want to make other octaves available.

For the sake of simplicity, we’ve used “hard-coded” values of 0.2 for

the duration of the beeps. This produces sounds that are rather slow

(approximately an andante tempo). You can experiment to find other

values, or you might even create another key that allows different

tempos (that is, different values for the duration of the BEEPs) to be
passed to Keylist, then used as a local variable.

When you run Piano, all keys except those specified by STOKEYS

and ASN are “locked out.” They have no effect. What this means is

that the only way you can exit is by pressing EXIT, which calls the

Ezit subprogram. Upon exit, the list of notes you played is left in level

1 of the stack, for you to examine or save.

176 Sound and Music

Exit—Restoring the Calculator Keyboard

Ezit is the subprogram that’s executed when you press the EXIT
menu key. This subprogram isn’t very long, but it’s extremely

important. Without it, your calculator will continue to function only

as a piano—never again as a calculator. Not even will help!

Program Instructions Comments

&

-&2 CF Clears system flag —62 to kill User
mode.

A DELKEYS Clears user-mode key assignments.

a MEHU Gets back to normal VAR menu.

#

Keystrokes Comments

() Exit Stores this program as Ezit.

The line -62 CF clears system flag —62, switching the calculator
from User mode back to normal operation. The next instruction,

A DELKEYS, clears all user keys and reassigns all those useless keys

deactivated by S DELKEYS.

The @ MEHL instruction switches back from the temporary menu to

the ordinary menu of variables again. This step isn’t really necessary,

but it gives you some “visual feedback” when you exit, and presents

you with PTAHND key, ready for another run.

Playing the Piano

To run the Piano program, press FI1AHO.

Sound and Music 177

Program Prompt or Display Your Action

FIAHO

FIAKHO

Turn the HF 48 3

quarter-turn counter-

clockwise, then play

the 8 top keys.

Arng key to continue.

Now you just follow the instructions. Rotate the HP 48 a quarter-

turn counterclockwise, and start creating some beautiful music. As
you play the notes, they appear in the display:

"™ T
C1EGGGGEGEC2G

When you’re done with your composition, press EXI1Tto convert

your HP 48 back to a calculator again.

178 Sound and Music

General Graphics and Animation

Even without programming, the HP 48 calculator is capable of

creating pretty amazing charts and graphics on its tiny screen. You

can plug in some data, press a key, and presto, you’ve got a bar

chart, a plot of a complicated function, even a polar plot. In fact,

the calculator’s high-level plotting functions will take care of most
mathematical plotting.

If you care to do a little graphics programming yourself, you can

extend the pictorial powers of the HP 48 even further. You can create

a full range of graphics effects, from a simple circle to a racing rocket
ship.

HP 48 Graphics Fundamentals

Plotting or programming graphics on the HP 48 isn’t difficult, but

it takes some practice. Moreover, you have to get used to dealing

with the reserved PICT variable, graphics objects, and the stack and

display.

Let’s start with PICT. As an artist, you use PICT as your “canvas.”

You can think of it as a drawing area that’s separate from the rest of
the calculator. Although you can specify the size of this area, and

“draw” on it in a program, nothing is actually visible until you place

PICT into the calculator display.

General Graphics and Animation 179

Three Steps to Seeing Your Pictures

Creating graphics and making them visible from a program is really a

three-step process: You specify the size of PICT, add graphics objects,

then display PICT.

1. Specify the

drawing area, PICT

2. Add graphics

objects to PICT

o

[]

1
3. Put PICT into

5 bl the calculator display

1. Specify PICT. You begin by specifying the size of PICT. From the

keyboard, you can do this with the HP 48’s RESEToperation,

which erases PICT and restores it to the default size of 131 by 64

pixels.

180 General Graphics and Animation

{#O #0} {130 #0}

{#0 #63} {#130 #63}

- however, isn’t programmable. So in a program, you can

use PDIM, as shownin the following example:

1268d

62d
PDIM
3

PDIM (PICT dimension) specifies the size of PICT. In this case,
using the two binary numbers shown sets PICT to its default size—
that i1s, 0 to 130 horizontal units, and 0 to 63 vertical units.

Another way to specify the size of PICT is with XRNG and

YRNG.

. Put a graphics object in PICT. You place a graphics object into
PICT in any of several ways:

m Draw the object using LINE, BOX, ARC, and similar commands.

These commands actually “draw” right on PICT.

or

m Put both PICT and the graphics object on the stack, then

combine them with GOR, GXOR, or REPL.

. Put PICT into the calculator display. The —LCD or PVIEW

command will allow you to actually see PICT in the display.

General Graphics and Animation 181

The Circs Directory

You’'re going to see how to draw some circles. First, create a directory
for those circle programs:

() CIRCS

CIRCS

5

Circ1

The Circl program shown below illustrates very simply the procedure

for drawing on and displaying PICT.

Program Instructions Comments

ERASE Erases PICT.

1264 # 524 PDIM Sets default pixel dimensions for

PICT.

L # 65d # 22d > Center of arc is center of PICT.

18d Radius of arc is 10 pixels.

& Starting angle for arc.

I8 Ending angle for arc.

ARC Draws 360-degree arc (a circle).

FICT Puts PICT on the stack.

RCL Recalls contents of PICT to stack.

+LCD Displays graphics object (that is,

PICT) from level 1.

7 FREEZE Freezes display until next key press.

182 General Graphics and Animation

To save this program as Circl:

Keystrokes Comments

Puts program on the stack.

() Cirel Stores the program as Circl.

When you run Circl, it produces a graphics display with a circle in

the middle.

to begin the program.

O

Circ1 draws a circle on the screen

The program begins with ERASE, which clears any previous graphics

from PICT. Then it places a pair of binary numbers, # 138d and

&3d, on the stack. PDIM uses these numbers to set the maximum

dimensions for PICT; thus, PICT is a grid that’s 0 to 130 pixels wide

by 0 to 63 pixels tall.

Now Circl uses the ARC command to draw a circle. ARC requires

the following arguments on the stack.

General Graphics and Animation 183

Stack Level Contents

Level 4: center of arc

Level 3: radius of arc

Level 2: beginning angle of arc

Level 1: ending angle of arc
With these quantities on the stack, ARC draws a counterclockwise arc

in PICT. Since we’ve specified the beginning angle as 0 degrees and

the ending angle as 360 degrees, we get a complete circle.

ARC isn’t the only command you can use to “draw” in PICT; there

are also LINE, TLINE, BOX, PIXON, and PIXOFF. These commands

are terrific for creating charts and graphs in PICT. (As you’ll see,

there are easier ways to draw more complicated shapes.)

The next command in Circl is FICT, which puts PICT on the stack.

In fact, PICT is just a big graphics object; you can place it on the

stack, store another graphics object in that name, or purge PICT. The

important thing to remember is that when you draw a shape in PICT,

that shape is part of PICT—it’s not a separate graphics object. (Not

yet, anyway.)

With the object PICT on the stack, the program Circl executes

RCL, which brings the contents of PICT into the stack. Then the
—LCD command puts those contents into the calculator’s display for

viewing. So that the display doesn’t flit by too quickly, it’s frozen by

7 FREEZE, which freezes the entire display until the next key press.

Designing Your Own Graphics Grid

You can think of # 128d and # &2d as absolute pixel coordinates.

They represent the actual number of pixels on the graphics display,

and you can’t really change them.

But you don’t have to use those HP 48 pixels as graphics coordinates.

Instead, you can set up PICT in your own units—that is, user units—

to cover any range you want. You can change PICT into a grid that’s

20 by 20, or that goes from 0 to 720 in the horizontal direction and

—1 to +1 along the vertical axis. It all depends on how you set up the

grid with PDIM or with XRNG and YRNG.

184 General Graphics and Animation

Because you can design PICT as a grid that suits your application,

user units are a lot easier to manipulate than pixels. Moreover, user
units are specified as complex numbers—which for graphics are

nothing more complicated than the two-point (x,y) form so familiar to

students of the Cartesian coordinate system.

Circ2

Let’s go back to our circle again. Trying to figure out the exact center

of a 130 x 63 grid isn’t easy. It’s much simpler to set up, say, a

20 x 20 grid with (0,0) in the center.

(-10, 10) (10, 10)

(0,0

(-10, -10) (10, -10)

The Circ2 program shown below is a modified version of Circl. It

accomplishes the same thing—drawing a circle in PICT and placing
it in the center of the display—but Circ2 shows how to replace those

difficult-to-remember absolute pixel coordinates with user units.

General Graphics and Animation 185

Program Instructions

v FREEZE

To save Circ2:

Keystrokes

() Circ2

Comments

Erases PICT.

Sets dimensions of PICT to be a

20 x 20 grid.

Center of arc is at point (0,0) on
PICT.

Radius of arc is 1 unit.

Starting angle for arc.

Ending angle for arc.

Draws 360-degree arc (a circle).

Puts PICT on the stack.

Recalls contents of PICT to stack.

Displays graphics object (that is,

PICT) from level 1.

Freezes display until next key press.

Comments

Stores the program.

When you press CIFECZto run this program, the coordinates

(—10, —10) and (10, 10) are placed in levels 2 and 1 of the stack.
Then PDIM is executed. With two complex numbers as arguments
(instead of two binary numbers), PDIM turns the PICT drawing
surface into the grid you’ve specified. The value in level 2, which is

(—=10, —10), is used by PDIM to specify the lower left coordinates of

186 General Graphics and Animation

PICT. The value in level 1, (10, 10), gives the upper right coordinates.

With two complex numbers as arguments as shown here, PDIM does
something else, too: It creates the variable PPAR in the current
directory. PPAR (which stands for PLOT parameters) is where the
HP 48 keeps information about its graphics environment. You don’t
need to worry about PPAR, although if you prefer, you can make
changes to this variable instead of using commands such as PDIM.
Just remember that if PPAR suddenly appears in a directory, it’s a

good bet that user units are afoot.

With PICT specified as a 20 x 20 grid, we need a different center and

radius for the ARC command that draws the circle. Since the PICT

grid was specified in user units, we can utilize those same units as

arguments for the ARC command.

In Circ2, we specify the center of the arc with a complex number,

(0, 0), instead of with a list of two binary numbers. This puts the
center of the circle in the center of PICT—which is also the center of

the calculator’s display when PICT is shown. The radius of the arc is

now 1 user unit. To draw a circle, ARC begins at 0 degrees and goes
through 360 degrees, just as in Circl.

O

Circ2 creates a circle out of user units

General Graphics and Animation 187

Plotting a Sine Curve

The sine function is always in the range between +1 and —1. To
plot the sines of all angles from 0 through 720 degrees, you can use a

graphics area that is laid out with 0 to 720 units in the horizontal (x)
direction and —1 to +1 unit in the vertical (y) direction.

+1
(720, 1)

Sine 0—

0, -1Lo]
0 360 720

Degrees

The Sinel program turns the HP 48’s PICT area into this grid, and

draws a sine curve onit.

The Sine1 Directory

To create a directory for the Sinel program and subprograms, then get

into that directory:

(D SINE1
(«) (MEMORY) CRD'IR

SIHNEL

The SINE1 directory will hold all programs and subprograms for this

sine-drawing program.

The Main Sine1 Program

The main Sinel program consists of calls to three subprograms.

188 General Graphics and Animation

Program Instructions

&

GraphArea

AddSine

ShowGraph

W

To save the program:

Keystrokes

() Sinel

Comments

Calls subprogram to set PICT
graphics grid.

Calls subprogram to add sine curve
to PICT.

Calls subprogram to show PICT in
display.

Comments

Stores the program.

GraphArea—Setting the PICT Size

The first subprogram called by Sinel is GraphArea, which initializes
the HP 48 and turns PICT into the grid that’s needed:

Program Instructions

&

DEG

ERASE

B 728 XENG

-1 1 %¥EHG

Comments

Sets degrees mode.

Clears any previous graphics from

PICT.

Specifies x (horizontal) range of 0 to
720 units.

Specifies y (vertical) range of —1 to 1
unit.

General Graphics and Animation 189

To save the program:

Keystrokes Comments

Puts program on the stack.

() GraphArea(sT0) Stores the program.

In GraphArea, we haven’t used PDIM to set the dimensions of the

PICT graphics area. Instead, we’ve called on the XRNG and YRNG

commands.

The subprogram begins by setting degrees mode with the DEG
command. After ERASE clears any leftover graphics from PICT, the

program places the value 0 in level 2 of the stack, and 720 in level

1. XRNG takes these two values off the stack and uses them as the

“from” and “to” values, respectively. Executing XRNG with these

values in the stack sets the range of x-values—that is, the horizontal
range—of PICT to be 0 to 720.

Then the program places —1 and 1 on the stack, and executes the

YRNG command. Like XRNG, the YRNG command takes two

arguments off the stack and uses them to specify the “from” and “to”

range. Thus, the y-range (the horizontal axis) of PICT is set to be
from —1 to 1.

AddSine—Plotting a Curve on PICT

The next subprogram called by Sinel is AddSine, and it’s here that

the real work of calculating and drawing the sine curve is performed.
AddSine plots each calculated sine as a single point on PICT, creating

what appears as a curve. Although AddSine plots the curve on PICT,

you don’t see it yet.

190 General Graphics and Animation

Program Instructions Comments

&

8 7z@ Sets up beginning and ending of
FOR loop.

FOR a Starts loop, creating local variable a.

a Puts a on the stack.

a SIH Puts sine of a on the stack.

R=C Converts two quantities to (x,y)

form.

PIX0H Puts a dot at point (x,y).

5 STEF Increases a by 5 and goes through

loop again.

*

To save the program:

Keystrokes Comments

(") AddSine Stores the program.

AddSine begins by placing the numbers 0 and 720 on the stack. Then
the FOR a command begins the loop clause of the FOR ... STEP
loop. The loop counter a (it represents the angle) goes from 0 degrees
to 720 degrees, in steps of 5 degrees.

Each time through the loop, the program places the current value of a

on the stack, then puts a on the stack again and calculates its sine. At

this point, two quantities are on the stack: the current value of a and

the sine of a.

We’re going to use PIXON to actually plot each sine on PICT. Now,

PIXON will turn on the specified pixel or point in PICT, but it needs

as its argument the coordinates of that point, in the current units.
Because in this program everything is in user units, we need to convert

the two quantities now on the stack to a single complex number in

(x,y) form.

General Graphics and Animation 191

Thus, before PIXON is executed, the program executes R—C. This

command changes the two quantities into a complex number. For
instance, suppose this is the third time through the loop. Thus a is

10, and the sine of a is 0.1736. With these two quantities on the stack,

executing R—C produces the complex number (10, 0.1736), ready for
PIXON.

PIXON actually places the point into PICT. With a complex-number

argument, PIXON draws a point in PICT at the (x, y) coordinates
specified by the number. The third time through the loop, then,

PIXON places a point at 10 along x-axis (the horizontal) and at
+0.1736 along the y-axis (the vertical). One point is plotted each time
through the loop.

Because we’ve specified 5 STEF, this subprogram takes a while to

run. To speed it up, you can use a larger STEP value, such as 14
STEF, but you’ll get fewer plotted points. Also, notice that although

the program plots the sines of every fifth angle from 0 through 720

degrees, you don’t see the plot yet.

ShowGraph—Displaying PICT

PICT now contains the plotted sine curve. But PICT is off in its own

never-never land right now, not in the display. To let you see the plot,

ShowGraph brings PICT into the display.

Program Instructions Comments

> PVYIEM Brings PICT into the calculator
display.

Keystrokes Comments

() ShowGraph

PVIEW brings PICT into the calculator display. If its argument is an
empty list, as in this case, PICT is shown centered in the display, with

scrolling mode activated.

192 General Graphics and Animation

Running Sine1

To run the program, just press the menu key. There’s a

long pause while the sine curve is drawn on PICT. You don’t see
anything happening; it’s all off-screen. When the sine curve has been

completely drawn on PICT, you finally see it displayed.

I~ N)
¢ . > 1
. . . .

. . . .
: > . -,

SNt S
Sine curve drawn by Sine1

Press to get back to the normal display.

Add Some Motion

What about movement, or watching something as it’s plotted or
drawn? One way to provide movement or animation is to re-show

PICT every time it changes. That is, your program draws a point or

object on PICT, then shows PICT in the calculator display. Then a

point is added or the object moved, and PICT is displayed again. By

using a loop to cycle through this procedure very quickly, you can

see a line drawn on the screen, or follow the movements of a cartoon

character. The Sine2 program uses this technique to display the sine

curve as it’s drawn.

General Graphics and Animation 193

The Sine2 Directory

To begin, create a directory for the Sine2 program and subprograms:

(D) SINE2
() (MEMORY) |

This SINE2 directory is going to be the repository for the main Sine2
program and its subprograms.

The Main Sine2 Program

Program Sine2 is even simpler than Sinel. It calls just two
subprograms.

Program Instructions Comments

GraphArea Same graphics area used in Sinel.

AddS2 Subprogram to show drawing of sine
curve.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Sine2 Saves the Sine2 program.

GraphArea is the very same subprogram used in Sinel. It sets degrees

mode, erases PICT, and sets its plotting area to be from 0 to 720

along the x-axis, and from —1 to +1 on the y-axis.

The subprogram AddS2 adds the sine plot to PICT, and displays it

after each change, creating a “dynamic” drawing that happens before
your eyes.

194 General Graphics and Animation

Modified Sine2—Featuring Directories and Paths

The main Sine2 program brings up an interesting little problem:
GraphArea. You used it in Sinel, and now you want to use it in

Sine2 as well. But if you’ve practiced good structured programming
techniques, those main programs are in separate directories—SINE1

and SINE2, respectively.

How can you use a subprogram in this directory that you’ve created

in another directory? Well, you could easily copy GraphArea to the

SINE2 directory, using the techniques explained in chapter 2 of this

book. But there’s another way—adding path information with the
PATH command. The following example illustrates how the Sine2
program can go to another directory, execute a program there, and

return to the current directory.

Program Instructions Comments

FATH Gets copy of current directory path

(for example, HOME

MYGRAPHICS SINE2) and places
it in the stack.

SIHE1l GraphArea Goes to directory SINE1 and

executes the GraphArea subprogram.

(GraphArea leaves nothing on the
stack.)

EVAL Changes back to the SINE2
directory.

Adds2 Executes subprogram to show

drawing of sine curve.

This modified version of Sine2 begins with a PATH command. PATH
puts a copy of the complete current path (for example, HOME

MYGRAPHICS SINE2) on the stack. Then Sine2 goes looking for the

GraphArea subprogram.

Now remember that when a program tells the HP 48 to execute an
object, the calculator searches first in its current directory, then in the

General Graphics and Animation 195

directory above the current one, then in the directory above that, and

so on. So unless GraphArea is in the same directory, or one above

Sine2, the program won’t find it. Thus, in this modified version, we

add the directory, SINE1, in which GraphArea resides.

Now, GraphArea leaves nothing on the stack. However, after executing

GraphArea, the calculator is set to the SINE1 directory. So we use the

EVAL command to evaluate the path that’s currently on the stack.

This path (HOME MYGRAPHICS SINE2), when evaluated, changes

the HP 48 back to the SINE2 directory again. Now it can execute the

next subprogram, AddS2, and proceed normally.

AddS2—Sequential PICT Displays

The AddS2 subprogram is similar to AddSine, but it calls another
subprogram, ShoS2, to display PICT every time a new point is drawn.

Program Instructions Comments

1 =
J

[
0

1= T i a
0

Wy Begins FOR ... STEP loop, with a
from 0 to 720.

a Puts a on stack.

a SIH Puts a on stack and calculates its

sine.

R+C Converts a and sine of a to complex

number (x,y) form.

FIX0H Draws a dot at point (a, sine a).

Shos2 Calls subprogram to put PICT in

calculator display.

= STEF

Keystrokes Comments

Puts program on the stack.

() Adds2 Stores this program as AddS2.

196 General Graphics and Animation

AddS? is virtually the same FOR ... STEP loop as that found in the
earlier AddSine subprogram—with one important difference. After
plotting a point on PICT, AddS2 calls the subprogram ShoS2 to
display PICT. This happens every time through the loop, so you see

a continuously updated graphics screen. You watch as each dot is

drawn, creating the familiar sine curve before your eyes. What appears

to be a single graphics display, with dots added to it as the line is
drawn, is actually a whole series of PICT displays, one after another.

3 | Plot next point,
and add it to PICT

Repeat ¢

[¥ oanc)

. Put PICT into

" the calculator
display

ShoS2—Placing PICT in a Corner of the Display

This subprogram is similar to an earlier program, ShowGraph. It
displays PICT. Instead of an empty list as the argument for PVIEW,

however, ShoS2 supplies coordinates that put PICT at the upper
left-hand corner of the display.

Program Instructions Comments

&

(@,1> PVIEHW Puts PICT at upper left corner of

display.

B

General Graphics and Animation 197

Keystrokes Comments

() ShoS2 Saves program as ShoS2.

Because ShoS2 supplies the coordinates (@, 1> as the argument for

PVIEW (instead of the empty list supplied by ShowGraph), PICT
appears in the display only briefly. In fact, if you press the £

key, you’ll get a lightning-fast look at PICT before the normal stack
display returns.

In AddS2’s loop, though, ShoS2 is called many times each second.

You see several different images of PICT, one after another, until the

loop has been executed—and the sine curve drawn for you.

Running Sine2

To run Sine2 with all its subprograms, press the menu key marked

. You’ll see the same sine curve as you did with Sinel, but

this time you get to view the drawing of every dot that makes up the
curve—as it happens.

Animating Objects

You’ve seen how to handle PICT, and how to manipulate PICT’s

pixels to generate curves. Now we’ll look at some techniques for
adding graphics objects to PICT, and for moving those objects around.

The Flight Directory

Before you start learning about animation, make a directory to hold

the programs and graphics objects you’ll create. Here’s how to make a

directory agnd name it FLIGHT:

(D FLIGHT
& ;;:;s

198 General Graphics and Animation

The FLIGHT directory will hold all programs and subprograms for
these animation experiments. Any graphics objects and programs that

you save will now be safely tucked away in this directory.

Graphics Objects

One of the most fascinating features of the HP 48 calculator is the
way it lets you work with graphics objects. A graphics object might
be something as simple as a circle or a box, or it could be a face, a

figure, or a fiery rocket. The graphics objects you create are limited

only by your imagination and skill.

You create graphics objects using several different techniques. For

instance, the HP 48 has its PIXON, LINE, BOX, and ARC commands

for drawing on the PICT graphics area. Once something created with

any of these tools appears in PICT, it can be saved as a graphics

object and used again and again.

But that’s not all. The HP 48 has an added feature: You can actually

make “freehand” drawings, save them as graphics objects, and use
them again in your programs.

Freehand Drawing of a Graphics Object

Here’s how to use your freehand drawing skills to create a graphics

object, one that you can then animate and manipulate in your

programs.

1. Show the graphics screen. Use the following keys:

a. (1) FLOTEgets you to the PLOTR menu.

c. (@) (or () GRAFH) places PICT in the display for viewing or
editing.

2. Make your drawing. You can draw using (&), @@
move the cursor; and0oT DOT-,LIHE,

CIRCL, and HMARKto add lines and shapes.

= erases anything already on PICT.

and () to

The cursor is the cross (+) you see in the main part of the screen. It
shows the location where the next graphics action isgoing to happen.

Fto toggle
dots on, and you’ll see a box next to the + SIgn in the menu display

General Graphics and Animation 199

that shows this function is on. Now, as you move the cursor around

the screen, you’re drawing.

n and

D makes the cursor an eraser. To erase, toggle [

go back over the part you want to erase.

To erase a large area:

1. Move thecursor to the upper left of the area you want to erase.

3. Move thecursor to the lower right of the area to erase.
4. Press (DEL).

This leaves a small :x where the mark was set.

LIHEis perhaps your most useful drawing tool. LIHEdraws a

line between the mark and the cursor, and moves the mark to the

cursor. It’s especially useful for creating diagonals.

Here’s how to draw a figure with a lot of straight lines—Ilike, say, a

rocket ship:

1. Leave [T+off and set the cursor where you want to begin

drawing. Then press MAEEK.

Mark and cursor 1. Set mark where

you want to begin

Mark Cursor
¥ + 2. Move the cursor

Mark and

cursor 3. Press LINEto draw

—3 line and move mark

4. Keep moving cursor

and pressing LINE

2. Move the cursor to the first corner. Nothing is drawn yet.

200 General Graphics and Animation

3. Press

mark moves.

. You get a line from the mark to the cursor, and the

4. Move the cursor and press | again. Keep following this

procedure until your figureis drawn. Naturally, you can use

to fill in, or to erase, as you go.

. toggles pixels on and off on the line between the mark and the
cursor, so you can use it to erase entire lines. doesn’t move

the mark. Also, if the pixels between the cursor and mark are off, or

clear, toggles them on.

 For circles and boxes, use | and

Although seems to leave a cross on the screen, the cross isn’t
part of the drawing, and disappears when you save a graphics object.

Saving Your Picture

Once you’ve created a picture, you probably want to save it. The .

easiest way is to convert it to a graphics object. You can then put

this object on the stack, in a list, or anywhere into PICT (that is,

anywhere in the graphics area) that you want. Here’s the procedure:

along with (A),

1. Draw a picture using

(™), (W),), and the other rawmg eys.

2. Move the cursor to the drawing’s top left corner and press

3. Move the cursor to the lower right corner, so an imaginary box

surrounds everything you want to save.

2. Place mark here

1. Draw the picture

]1
3. Place cursor here

In thls rectangle on the

stack as a graphic object

General Graphics and Animation 201

4. PressSUE. This puts the object on the stack.

5. Press to get back to the stack. You can see the size of the
graphics object.

6. Key in 'Rocket ' (or any other name), then press the key.

Now your drawing is stored as a graphics object. You can view it

manually or use it in a program.

Viewing Your Drawing

You may want to check your graphics object manually, before using it

in a program. Here’s how:

1. Press "ROCE (or the name of the variable under which
you’ve saved the drawing). This puts it on the stack.

2. Press (€] to get to the graphics display and its menu keys.

3. Use the cursor keys to set the cursor where you want to put the top

left corner of the object.

4. Press EEFL. This puts the object into the displayed PICT.

FEFL, of course, “uses up” the object from the stack. To put

several graphics objects on the screen, you first put several in
the stack, one after another. Then press () to get the graphics
environment, and press REFL. Move the cursor and press EEFL

again, repeating the process until all your rockets (or other objects)

are used up.

Note to our readers: We’re going to use the rocket to show how

you can do animation on the HP 48. To follow along, you’ll need

something in the variable called Rocket. You can try your hand at

drawing your own rocket, as explained here. But any old object will

do. In fact, if you want a rocket in a hurry, you can just use the word

“Rocket” instead of drawing it. The following keystrokes show how to

turn text into a graphics object.

202 General Graphics and Animation

Keystrokes Comments

(™) Rocket

Puts the word “Rocket” on the stack.

1 DISPL
Turns that text into a graphics
object, with letters sized small.

() Rocket Saves the object as the variable
Rocket.

If you use this procedure instead of actually drawing a rocket, you’ll

see the word “Rocket” flying past on your screen.

Animating a Drawing

Once you’ve created a graphics object, by whatever means, the next

step is to animate it, make it move or jump around in the display.

Here’s one way to do it:

1. Determine the screen grid—that is, the size of PICT.

2. Show PICT using PVIEW.

3. Place the object in PICT. Use GOR or GXOR to combine

the object with PICT, with its upper left corner at one set of

coordinates.

4. Erase the object by using GXOR. If you GXOR the same object
onto itself, the result is that the object is erased.

5. Keep repeating steps 3 and 4 with new coordinates each time. The

result will be an appearance of movement.

The Main Flight Program

The Flight program gives a rudimentary procedure for making

your rocket fly across the screen from left to right. It calls three

subprograms, and has no overall effect on the stack.

General Graphics and Animation 203

Program Instructions Comments

Screen Sets up the desired screen grid.

Showpict Places PICT into the display.

Floop Adds an object and makes it fly

across the screen.

To save the main Flight program:

Keystrokes Comments

Puts program on the stack.

(") Flight Stores the program.

Screen—Specifying a Flight Grid

We begin with the Screen subprogram, which sets up a screen grid

that’s 0 to 100 in both the horizontal and vertical directions. This

subprogram leaves the stack unchanged.

Program Instructions Comments

B 188 XEHG Specifies horizontal axis from 0 to

100.

d 188 YEHG Sets vertical axis from 0 to 100.

ERASE Erases PICT.

CLLCD Clears the HP 48’s display.

204 General Graphics and Animation

To save the program:

Keystrokes Comments

Puts program on the stack.

() Screen Stores the program.

The statements 8 188 XREHG and @ 188 YREMG set up a PICT grid
that’s 100 x 100 units. The point (0, 0) is in the lower left corner and
(100, 100) is in the upper right. We ERASE the graphics area, and
clear the LCD screen with CLLCD.

(0, 100) (100, 100)

\I(— 100 units ——)I/

<

" ~
(100, 0)e

\
|
<
-
1
o
o
un

it
s

S

Now we’re ready to display PICT.

Showpict—Displaying PICT

The Showpict subprogram places PICT in the display.

Program Instructions Comments

&

(B, 108> PYIEW Sets 100 x 100 grid.

&

General Graphics and Animation 205

To save this Showpict subprogram:

Keystrokes Comments

Puts program on the stack.

() Showpict Stores the program.

In order for you to see all of PICT, the PVIEW (PICT view)
statement needs to know where to put PICT’s upper left-hand

corner. If we’re using pixel units, PVIEW takes as its argument a list

containing a pair of binary numbers like this:

“#ad #0d4> PYIEM

Since we have chosen user units, though, PVIEW accepts a number

that’s in the commonly used (x,y) point form. (The HP 48 knows
these as complex numbers.) We use <@, 188> PVYIEW because it will

place PICT’s upper left corner 0 units along the x-axis, and 100 units

up on the y-axis—that is in the upper left-hand corner of the display,

right where we wantit.

Floop—Simulating Movement Across the Screen

We’ve specified our screen grid size, and set the program to place

PICT in the display. Now it’s time for action. The Floop (flight loop)
subprogram makes your rocket fly across the screen.

206 General Graphics and Animation

Program Instructions

&

B 188 FOR i

PICT

i 58 R»C

Rocket

GXOR

PICT

i 58 R=3C

Rocket

GHOR

5 STEP

»

To save the program:

Keystrokes

(D Floop

Comments

Begins FOR ... STEP loop.

Places PICT on stack.

Puts (i, 50) on stack.

Puts graphics object on stack.

Puts object in PICT at specified
coordinates.

Does the same thing again.

This time, GXOR erases the object.

Ends FOR ... STEP loop.

Comments

Puts program on the stack.

Stores the program.

To begin, we set up a FOR ... STEP loop. The statement
8 186 FOR i is the beginning of the loop. It says “execute a loop that
begins with an i of zero and goes up to an 2 of 100.”

Everything between FOR i and 5 STEP makes up the body—that is

the loop clause. These instructions are all executed each time through
the loop.

The key to “dynamically” placing a graphics object on PICT (and

seeing it) is GOR or GXOR. Both operate much the same way. GOR
and GXOR require the stack to be set up as shown below.

General Graphics and Animation 207

Stack Level Contents

Level 3: PICT

Level 2: coordinates in PICT where graphics object will go
 Level 1: graphics object

Both of these commands use the three quantities shown, putting

the graphics object into PICT at the location of the coordinates.

(Actually, the upper left corner of the object is placed at the specified

location in PICT.) PICT is left on the stack.

There’s a subtle difference between GOR and GXOR. The GOR

command draws the object in PICT no matter what. GXOR, however,

toggles the PICT pixels underneath it. If they’re light, the GXOR’ed
object turns them dark—drawing the object. But if they’re dark, the

GXOR’ed object turns them light again. Simply put, if you GXOR an

object onto itself, that object is erased.

To get ready for GXOR, within the loop, we begin by placing PICT

on the stack. This is followed by two numbers. The first number is the

current value of :—which is 0 the first time the loop is executed, S the

second time, 1@ the third time, and so on. This value will be used as

the x-coordinate.

The second number onto the stack is 53. We use this as the

y-coordinate. Although x changes, y is always the same; so whatever

object we’re placing in PICT move horizontally, but always keeps the

same vertical position.

Now we have PICT in level 3, and those two numbers in levels 2 and

1 of the stack. But we need the numbers to be coordinates in a form

GOR or GXOR can use. Since we’re dealing in user units, that means
a complex number—so we convert the number with R—C.

The R—C command takes two numbers off the stack and converts

them to a complex number. Suppose this is the third time through

the loop. The two numbers on the stack are 1 (in level 2) and 5@
(in level 1). Executing R—C produces ¢18,583, which are the
coordinates we need in the form we need them for GOR or GXOR.

208 General Graphics and Animation

Finally we put the graphics object—the Rocket—on the stack. Now
the three stack levels are set up for GOR or GXOR.If this is the third
time through the loop, the stack is set up this way:

Stack Level Contents

Level 3: PICT

Level 2: (18,58

Level 1: Rocket

When we execute GOR or GXOR (it doesn’t matter which), the
rocket is drawn in PICT, with its upper left-hand corner at the

specified coordinates.

Rocket's upperleft

corner is at (10, 50)

By drawing and erasing the rocket many times, each time at a new

position, we simulate its flight across the screen.

Running the Flight Program

 To run the program, press the F H menu key. You’ll see the rocket

travel once across the screen.

Note that this is one place where you can’t simulate the FIzght

 program by pressmg the £ * menu key followed by

followed by ¥ . In order for PICT to be used “dynamlca.lly

like this, it has to appear after PVIEW, and before program control

returns to the keyboard.

General Graphics and Animation 209

A Better Flight—Flit2

The Flight program works fine—as far as it goes. Now let’s look at
Flit2, which is a modified version of Flight. However, it has a few

more bells and whistles.

The Flit2 Directory

If you want to keep the Flit2 programs separate from your other

graphics applications, create a separate directory.

() FLIT2

Flit2 uses some of the same subprograms as Flight. If you elect to

use a separate directory, you can proceed as you did with Sine2:

either copy the programs Screen and Showpict from FLIGHT; or else

place the current path on the stack with the PATH command, specify

the path to the needed subprograms in FLIGHT, then use EVAL to

evaluate the current path and get back to the FLIT2 directory.

The Main Flit2 Program

Flit2 is very similar to Flight. It calls Screen to set up PICT as a 100

x 100 grid, then calls Showpict to place PICT in the upper left corner

of the display, ready for viewing. After that, though, we make some

changes. We execute the Headline subprogram, then call Flop2 as the
main loop.

Program Instructions Comments

Screen Declares PICT as 100 x 100 screen
grid.

Showpict Displays PICT.

Headline Displays a title on the screen.

Flop2 Main flight loop for Flit2.

=

210 General Graphics and Animation

To save the main Flit2 program:

Keystrokes Comments

() Flit2 Saves the program as Flit2.

Headline—Putting Text on the Graphics Screen

You’re not limited in the number of graphics objects you can put into

PICT. For instance, the Headline subprogram adds a written word to
the top of the display, so as the rocket whizzes past, you also get a

textual clue to what’s going on.

After setting the screen grid and displaying PICT the Flit2 program
next calls Headline. This subprogram places the word ROCKETING in
about the center of the display, and leaves it there.

Program Instructions Comments

FICT PICT goes in level 3, ready for
—GROB.

(38,94) Coordinates where level 1 object will

be put in PICT.

"ROCKETING" Word to be placed in PICT.

3 »GROB Converts "ROCKETING" to graphics
object.

GOR Puts the word “ROCKETING” into
PICT at coordinates (30,90).

General Graphics and Animation 211

To save the program:

Keystrokes Comments

Puts program on the stack.

() Headline Stores the program.

This tiny subprogram illustrates the use of =GROB (to graphics
object). —=GROB takes an object from level 2 and a number from
level 1, and converts the object into a graphics object—thatis,

something you can put into PICT and its display.

In this case, the object is a text string, "ROCKEETIHG". The number

just before —=GROB specifies the character size; it can be from 0 to

3. Here, the =signifies that the text string will be large letters. (A 2

would be medium-sized, and a 1 would give small letters. 0 is the
same as 3 for text strings.)

Once "ROCKETIHG" has been converted to a graphics object, the

stack is all set up for GOR. (You can see this if you execute the

subprogram using the CTELDEBUGkeys, followed by

88T)

Stack Level Contents

Level 3: PICT

Level 2: 0 1, 98o
~

s, L

 Level 1: Graphic 54 x 10 (graphics object)

With these quantities on the stack, we execute GOR. The command

puts the word ROCKETIMG into PICT at the specified coordinates—

that is, with its top left-hand corner 30 units along the horizontal (x)
axis, and 90 units up along the vertical (y) axis. This locates it above

the rocket’s path, in approximately the center of the display.

Notice that we’re inserting the word ROCKETING into PICT before
we call the animation loop in Flop2. In fact, using subprograms is an

excellent way to add many graphics objects to a display.

212 General Graphics and Animation

Flop2

We’ve rewritten the animation loop so that now it uses local variables,

and is executed continuously until you press a key.

Program Instructions

&

Do

B 188 58 5

+ xb xe gy =

Rocket

GHOR

FICT

i g R3C

ket

IE

AO

GH)J
'

o
N

s STEP

UNTIL KEY END
DROF

&

Comments

Starts DO loop.

Puts appropriate numbers

on stack.

Declares local variables.

Begins defining procedure
(a program) for local
variables.

FOR zb to ze ...

Puts PICT in level 3.

Converts these coordinates

to (i, y) form; put in level
2.

Puts graphics object
Rocket in level 1.

Places Rocket into PICT.

GXORs again to turn off
rocket display.

STEPs by s units

General Graphics and Animation 213

To save this program:

(D Flop?

Running the Flit2 Program

With the main Flit2 program and all subprograms in one directory of
the calculator, just hit the F > menu key to run it.

Keystrokes Comments

Press to begin program

The rocket speeds across the screen, highlighted by the word
"ROCKETIMG" above. When you’ve had yourfill of this animated
display, press any key to stop the program after this complete passage

of the rocket. Or hit to end the program immediately.

ROCKETING

>

The rocketing rocket as captured by Flit2

214 General Graphics and Animation

8
Fun and Games

Small size, a phantasmagoric array of functions, and a sophisticated

graphics capability make your HP 48 calculator ideal for creating

games. You can slay dragons, rescue knights or damsels in distress,

blast deep-space aliens from the skies, and more. All it takes is the

right software.

Although complex, full-featured games are beyond the scope of this

book, this chapter illustrates some of the fundamental techniques

for creating games. Among other things, this section features a
standalone random number generator that can easily be adapted to
other uses.

Random Number Generator

One thing that makes computer games so intriguing is their

unpredictability. When you play a really good video game, for

instance, you never know where the next alien will land, or where

the next turn in the road is going to take you. Chances are this lack
of predictability is ensured by a random number generator within the
game.

The program shown in this section is a general random number
generator that can be “scaled” to any number. For instance, if you’re

creating a card game, you might want the random number to be
between 1 and 52, to account for all 52 cards in a deck. If you’re

rolling a single die, you’d want the random number to be between 1

and 6. A lottery program might require six random numbers between

1 and 100. The random number generator can produce all these

numbers, and a lot more besides.

Fun and Games 215

Keyboard Example

First, let’s look at how we can create random numbers on the HP 48.

We begin with the RAND function. RAND produces a pseudo-random
number between 0 and 1. For instance, look what happens if you press

RAND several times in a row:

Keystrokes Display Comments

MTH) | H B. 2633 First random number.

B.5162 Second random

number.

ERHD 8. 5493 Third random number.

The numbers on your calculator will be different—after all, they’re

random, aren’t they? However, they’ll definitely be between 0 and 1.

The biggest task of the random number generator is to adjust or scale
these values so they fall in the correct range—whether 1 to 6, 1 to 52,

20 to 50, and so on.

The Random Directory

To create a directory for the random number program and
subprograms, then get into that directory:

() RANDO
M

&) CROIR

RAND
The RANDOM directory will hold all programs and subprograms for

generating random numbers. Any objects (including programs) that

you enter and save will now be placed in this directory.

The Main Random Program

We use structured programming to create the main program, which is
mostly a series of calls to various subprograms. Since we need to get

two values, however, we set up the appropriate screen display message

for each value, then call a generic GetVal subprogram.

216 Fun and Games

The program prompts the user to enter a bottom limit and a top limit

for the random number. For instance, if you want to throw a single

die, you’d enter “1” for the bottom limit, and “6” for the top limit.

The random number generated by the program will then be adjusted

so it’s somewhere in that range. If you wanted to simulate drawing a
single playing card from a deck, you’d enter “1” for the bottom limit
and “52” for the top. Random takes nothing from the stack, and
leaves a tagged random number there. In the course of generating a
random number, the main Random program places a string on the

stack for use by one of its subprograms.

Arguments Results

 1: tagged random number

Program Instructions

&

Init

Title

"Enter the top limit"

GetYal

"Enter the bottom limit"

GetYal

Create

Adjust

Tagit

Comments

Calls initialization routine.

Shows a message to the user.

User instructions for upper

value.

Gets a value from the user.

User instructions for lower

value.

Gets another value from the

user.

Creates a random number.

Scales the random number

between upper and lower

values.

Adds label to the random

number.

Fun and Games 217

To save this main program as Random:

Keystrokes Comments

Puts program on the stack.

() Random Stores the program as Random.

The main Random program calls Init to perform some rudimentary

initialization, then runs Ttitle to introduce what’s going to happen

next. Then Random places a string onto stack level 1. This string is
present when GetVal is called, and it’s used by GetVal to explain

which limit to enter.

Once both limits have been entered, Random calls the subprogram
Create, which actually creates the random number. Then it calls

Adjust, which scales the random number to the specified range.

Finally, Random calls Tagit to add a suitable tag to the number.

Init—Displaying Whole Numbers Only

The Init subprogram does nothing more than set the calculator to
show each number to zero decimal places:

Program Instructions Comments

B FIA From now on, numbers are shown

with no decimal places.

o

Keystrokes Comments

() Init Stores this short subprogram.

It’s true that Init is almost too simple now, with a single instruction
perhaps undeserving of a subprogram of its own. But this illustrates

the benefits of structured programming. If you need further

initialization in the future (such as setting a system or user flag, or

218 Fun and Games

displaying a menu), it’s much easier to add to a simple subprogram
like this than to wade through lines and lines of code in a long
program, trying to find out where initialization begins.

Title—Displaying Until Continue

Next comes the Title subprogram, which tells the user what’s coming

up. As with nearly all the title or message subprograms in this book,

you can omit Title and all references to it without changing the actual

program operation. Title has no overall effect on the stack.

Program Instructions Comments

&

"RAMDOM HUMEBER

GEHERRTOR

You enter the top and

bottom of the ranae. Message displayed by DISP.
You get a random

number in that ranage.

COWMT to continue."”

CLLCD Clears the calculator’s entire display.

1 DISP Shows the message, beginning at line
1 of the display.

7 FREEZE Freezes the display, showing the
message.

HALT Halts the program until the user
presses CONT.

&

Use the following keystrokes to store this subprogram:

Keystrokes Comments

() Title Stores the program as Title.

Fun and Games 219

Title begins by placing a long string on the stack. If you want your
entire message to be displayed at once, without scrolling, use the

endline ((;#) (&) to break the lines exactly where they’re shown on
this listing.)

We execute CLLCD to clear the calculator’s LCD. Then we place a

1 in level 1 of the stack. Using the message string from level 2 and

the 1 in level 1, DISP displays the message beginning at line 1 of the
display—that is, at the top.

The next instruction, ¥ FEEEZE, freezes the display so all that’s

visible is the message. Because we’ve used 7 as the argument, you

don’t even see the status line or the menu keys.

Finally, Title has a HALT instruction. This stops program execution

and returns control to the keyboard; to continue, you have to press

(«) (CONT). There are other ways of continuing here—for instance,
using & WAIT instead of HALT would suspend execution only until the

next key press.

GetVal—Waiting for User Input

Up to this point, all the subprograms have been “neutral.” They

expect nothing from the stack when they’re called, and they return

nothing to the stack when finished. GetVal, however, is different.
GetVal expects a string to be in level 1 of the stack. It uses this string
to display a user instruction as it waits for input.

Arguments Results

 1: text string of user instructions 1: number (top or bottom limit)

220 Fun and Games

Program Instructions Comments

&

"Limit:" Second part of two-string argument
for INPUT.

INFUT Prompts and wait for input from the

user.

OBJ=» Converts user input into numeric

object.

>

To save this as GetVal:

Keystrokes Comments

Puts program on the stack.

() GetVal Watch the capitalization!

INPUT, remember, prompts for data input. It requires a prompt

string in level 2, and a command-line string in level 1. In the case of
GetVal, the prompt string is placed on the stack by the main program,

Random. The command-line string is ":Limit: " and it’s added at
the beginning of the GetVal subprogram.

Thus, the first time through the GetVal program, the following
quantities are on the stack when INPUT is executed:

Stack Level Contents

Level 2: "Emter the top limit"

Level 1: "rLimita®
Thus, INPUT exhibits the prompt string from level 2 in the middle

portion of the display, and the command-line string in the command

line. The cursor is poised at the command line, ready for you to enter

a number for the upper limit.

At this point in the running program, you enter a value for the upper

limit, then press (ENTER). The OE.J+ instruction turns your keyboard

Fun and Games 221

input into an object—that is, a number—and places it on the stack.

Thus, GetVal expects a string on the stack when it’s called, and

returns a number when it’s done.

GetVal is called once by Random, resulting in the upper limit being

placed on the stack. Then the calling program places "Enter the
bottom limit" on the stack and calls GetVal again. And once again
GetVal returns a number, this time the lower limit.

Create—Generating a Random Number

With the top and bottom limits loaded on the stack, Random now

calls the Create subprogram. Create generates a random number

between 0 and 1, and places it on the stack (below the upper and

lower limits).

Arguments Results

=H 3: top limit

2: top limat 2: bottom limit

1: bottom limit 1: decimal random number

Program Instructions Comments

RAHD Generates a random number.

To save it:

Keystrokes Comments

Puts this one-line program on the
stack.

() Create Stores the program as Create.

222 Fun and Games

As you can see, Create now consists of just one instruction: RAND.

This produces a pseudo-random number between 0 and 1 and places it

on the stack.

Adjust—Defining Local Variables without a Program

The Adjust subprogram takes three quantities from the stack, the top
and bottom limit and the decimal random number. It returns a scaled
random integer that is no higher than the top limit, and no lower than
the bottom limit.

Arguments Results

2: top limit =H

2: bottom limit 2:

1: decimal random number : scaled random number

Program Instructions Comments

« +t br Makes local variables ¢, b, r.

'b+{t-b+1r*r"' Algebraic object scales random
number.

IF Uses only integer portion.

Keystrokes Comments

Puts program on the stack.

() Adjust Stores it as Adjust.

This program takes three numbers off the stack, and turns them

into local variables ¢, b, and r (for top, bottom, and random,

respectively). As soon as the three local variables are created, they’re

used immediately in their defining procedure.

In many cases the defining procedure is another program. Here,
though, it’s an algebraic object. Putting the entire formula
b+t -b+1>*r between tick marks means that those local variables

Fun and Games 223

aren’t placed one by one on the stack. Instead, they’re evaluated

together, producing a random number that’s scaled in the correct
range.

Let’s see how this formula works. Suppose we’re playing a stock

market game, and the stock price must be somewhere between 20 and

50. Thus, when the defining procedure is run, ¢ is 50 and b is 20.

Random number r, remember, is between 0 and 1. For purposes

of this illustration, we’ll say it could be as low as 0.00001 or as

high as 0.99999. Let’s take 0.99999 first. With this value as
the random number, the algebraic object evaluates like this:

20 + (50 — 20 + 1) * 0.99999 = 50.99969.

Remember, the HP 48 does everything according to a strict order
of evaluation—that is, according to rules of precedence. It does the
subtraction and addition in parentheses first to get 31, then multiplies
by 0.99999, then adds the value 20. The result is greater than 50, but

by just a smidgin—and we’ll take care of that soon enough.

What about the opposite pole: suppose r is around 0.000017 In this

case, 20 + (50 — 20 + 1) * 0.00001 = 20.00031. The answer is just a
little more than 20.

At this point, we are guaranteed to have a random number that’s

in the range of just a little more than 20 to just a little more than

50. (It could be anywhere in between, too.) Now Adjust uses IP to
extract just the integer portion of this value and put it on the stack.

(The fractional part of the number—all those numbers to the right of
the decimal point—is thrown away.) And voila! We have a random

number that’s in the range from 20, 21, 22 ... up to 49 or 50.

This subprogram illustrates one of the benefits of local variables:
they make your programs more understandable. We make a simple,

easy-to-read formula out of the variables, then evaluate that formula

to produce the random result.

Tagit—Labeling the Resuit

This is another of those nice-but-not-really-necessary fillips we’ve

added to Random. When Tagit is called, the random number is on the

stack. Tagit merely adds an identifying tag to the number.

224 Fun and Games

Arguments Results

1: scaled random number 1: tagged, scaled random

number

Program Instructions Comments

&

"Random no" Tag for number.

+TAG Adds tag to the number.

»

Keystrokes Comments

() Tagit Stores the Tagit program.

Thanks to Tagit, the Random program produces a tagged random
number.

Running Random

To run the Random program and generate a random number from 1
to 6, just press the key fo

Program Prompt or Display Your Action

RAHMDOM HUMBER

GEMERRATOR

You enter the top and

bottom of the range.

You get a random

number in that ranage.

CONT to continue.

There are the user instructions. Now use the (CONT) key to continue.

Fun and Games 225

Program Prompt or Display Your Action

@@D
Enter the top limit

tLimits 6 (ENTER)

Enter the bottom limit:

sLimit s 1 (ENTER)

Fandom no: 4.

Your random number, of course, may be different from the one we got.

The Random no: tag doesn’t affect the number itself, and is simply

lost if you use the number. So you can apply the random numbers

generated by this program in other programs, if you choose.

Rolling Dice

Dice are at the heart of many popular games—and it’s been that way

for thousands of years. These small cubes, made of ivory, bone, or

wood, were used during the heyday of Greece and Rome, and have

even been found in ancient Egyptian tombs.

The dice program lets you “roll” a pair of six-sided dice, then see

the result on the HP 48’s liquid crystal display. The program also

remembers your first roll and your latest roll, and displays them on

demand.

The Dice program makes use of a random number generator and
actually shows the dice on the graphics screen. It supplies a menu of

choices for you, too.

226 Fun and Games

The Dice Directory

This program has a lot of subprograms associated with it, so it’s best
to create a separate directory, called DICE. Here’s how to do it:

() DICE

Now you’re in the DICE directory, and can begin typing the main

program and subprograms.

The Main Dice Program—A Temporary Menu

The main Dice program accomplishes three tasks:

m Initializes the calculator.

m Displays a menu of user keys.

m Displays user instructions.

With menu keys, you can roll the dice, review your first roll, review

your latest roll, begin a new game, or exit. After any choice (except

exit), you’re brought back to the menu and user instructions again.
Dice has no overall effect on the HP 48 stack.

Program Instructions Comments

&

Init Initializes HP 48.

{ Begins temporary menus

{ "Roll" Label for menu key.

Begins key definition (a program of
subprogram calls).

Interim Displays message while rolling.

Rollnum Determines which of two dice is

being rolled.

Fun and Games 227

Program Instructions

Fanum

Humber

Faollrnum

Farum

Humber

it(
]L
A

Showit

Title

"FIRST"

Getfirst

Showit

&

"
~ "LAST"

Getlast

Showit

&

228 Fun and Games

Comments

Generates random number, 1

through 6.

Draws a die.

Draws a die again.

Saves this roll (and first roll, if
applicable).

Displays the pair of dice and waits

for (AT
Displays user instructions.

Ends key definition.

Ends list for first menu key.

Label for second menu key.

Begins key definition.

Gets the first roll.

Displays the first roll.

Ends key definition.

Ends list for second menu key.

Key label for third menu key

Begins key definition.

Gets the latest roll.

Displays that latest roll.

Ends key definition.

Ends list for third menu key.

Program Instructions

£ "MEW"

Dice

Exit

>

THEHU

Title

&

To save the program:

Keystrokes

(D Dice

Comments

Label for fourth menu key.

Initializes program, shows menu and

user instructions.

Ends list for fourth menu key.

Label and action for fifth menu key.

Ends temporary menu list.

Creates temporary menu, using list.

Displays user instructions.

Comments

Puts program on the stack.

Stores the main Dice program.

Dice calls the Init subprogram to prepare the calculator and specify

graphics display range. Then Dice places a long list—it’s actually
a “list oflists” in the stack, and TMENU uses this list to create a

temporary menu. The temporary menu looks like this:

The nice thing about TMENU, from a programming point of view,is
that it creates a menu, but doesn’t “lock up” the calculator waiting
for you to press a key. That is, none of the actions actually occur, nor

are any of the subprograms executed (other than Init and Title), until

you press one of the five defined menu keys.

TMENU uses as its argument a list that’s in this format:

£ {"labell" objectl > £{"1abel2" object2k...*

An outer set of curly brackets defines TMENU’s entire list. Within

this outer set of brackets are several inner sets of curly brackets—that

is, several “inner lists.” Each inner list contains the label and the

definition (an object) for one menu key. The key’s label is a string,

Fun and Games 229

enclosed in quotation marks. The key’s definition, which is what
happens when you press that key, is usually a program.

If you press . the HP 48 executes the object that is the

definition of that key—that is, the program of subprogram calls. All

the programs in that first inner list are called, in the order shown.

Interim displays a message that stays on the screen until the actual

dice are displayed. While that’s happening, the Rollnum subprogram

determines whether this is the first or second die, and sets up display

coordinates accordingly. Ranum generates a random number from
1 through 6, and Number actually draws the die and the required

number of dots on PICT, the HP 48’s “canvas.” Rollnum, Ranum,

and Number are called twice, resulting in a pair of dice being drawn.

The next program, Saveit, saves a “picture” of this roll of the dice;

and if this is the first roll, that picture is also saved in another

location.

With the dice drawn in PICT and copies safely stored, Showit is called

to overwrite the interim message and actually display the dice on the

HP 48’s LCD. The display persists until you press (ATTN). Then
TMENU’s temporary menu is displayed again, and Title is called to

redisplay detailed user instructions.

Notice that the a definition for a menu key used by TMENU must be

a single object—often a name or a program. Thus, when using one key

to call several programs like this, you must place their names between

program brackets in the list. If you’re only calling one program (look
at the lists for you can use the program name

alone.

ST or - menu key, Dice executes

Getfirst or Getlastto put acopy of yourfirst roll or your latest roll,

respectively, into PICT. Then Showit is called to display PICT, and

you can verify what your roll was.

Pressing _allows Dice to call itself recursively. This erases the
copies of the first and latest rolls, preparing the HP 48 for a new

game.

Finally, take a close look at the “list” for the fifth menu action—

exit. This shows another technique for simplifying and saving space

in your menu displays. Notice that there’s no separate set of curly

brackets, and no separate program call. In this case, the word“Ex1t”

is both the program name and the menu key label. You see |

230 Fun and Games

on the menu line. But the program executed if you hit this key is Ezit
(which shows the ordinary VAR menu and stack display again). You
don’t need the curly brackets here, because the label and its called

subprogram are spelled exactly the same.

Init—Creating Blank Pictures

Init prepares the calculator to roll dice. The Init subprogram puts

blank copies of PICT in two variables, First and Last. It also sets the
X-Y display range, and clears two user flags for keeping track of things
later on. Init doesn’t affect the stack.

Program Instructions Comments

&

ERASE Erases graphics area, PICT.

PICT RCL Recalls copy of erased PICT to the
stack.

DUP Copies erased PICT to stack level 2.

'First' STO Stores copy of erased PICT in

variable First.

'Last' STO Stores copy of erased PICT in Last.

1 131 XRHG Sets horizontal display range.

1 64 YERHG Sets vertical display range

11 CF Clears flag to keep track of die 1 or
die 2.

22 CF Clears flag to mark first roll.

%

To save the Init program:

Keystrokes Comments

() Init Stores the program.

Fun and Games 231

Init begins by using ERASE to clear the entire graphics “canvas”,
known as PICT. Then FICT RCL puts this graphics object into the

stack, and DUF duplicates it. Thus, two copies of the empty PICT are

on the stack.

Next, 'First ' STO takes one of those blank graphics objects and

stores it in a variable called First. Then a copy is also stored in the
variable Last.

Although we’ll be employing user units in Dice, we’re going to set

them to be the same number of pixels as are on the screen. This

ensures the optimum in resolution. Thus, the horizontal display range

is set to be 1 to 131 units by XRNG; and the vertical display range is

set for 1 to 64 units by YRNG. This results in a display area that’s in

user units, but is the same size as the pixel-unit display.

—
_
-
t

- -
t
N

(131, 1)

 |<
€
~
6
4

un
it

s
|

—(1, 64) |€ 131 units ——|(131, 64)

Finally, Init clears a pair of user flags. The numbers for system flags
are preceded by — signs, but user flags are not. The numbers for these
flags are purely arbitrary, and were selected to make them easy to

remember.

Flag 11 will keep track of whether this displayed die is the first or

second one. It really determines whether Number draws this die on

the left or right side of the display area. Flag 22 will be cleared if
this is the first roll of the dice, and set for all other rolls. The flag’s

condition will tell us whether to store this roll in First.

232 Fun and Games

Title—Detailed User Instructions

After Init has initialized the program and TMENU has displayed the

temporary menu of key choices, Dice executes the Title subprogram.

Title displays detailed instructions that explain more fully what each

menu key does. Title has no overall effect on the stack.

Program Instructions

&

CLLCD

"ROLLING DICE

ROLL-To roll dice

FIRST-Review 1st roll

LAST-Review last roll

HEW-Hew game

EXIT-To quit

[ATTH] after dice"

1 DISF

2 FREEZE

&

Keystrokes

() Title

Comments

Clears liquid crystal display

Seven-line display string for use by

DISP.

Displays string beginning on line 1.

Freezes everything but menu keys.

Comments

Puts program on the stack.

Saves the program as Title.

Title begins by clearing any previous messages from the HP 48’s LCD,
then places a long text string into the stack. (If you want all your text
display to be visible at once, be sure to place endline characters, (»)

(22), at the end of each line.) The text string occupies seven lines—
which is the maximum number of lines that your HP 48 can display at

once.

DISP needs two quantities on the stack: a string in level 2, and a
number from 1 to 7 in level 1. The level 1 number tells DISP where to

display that text. In this case, DISP displays these user instructions

beginning at the top (line 1) of the display.

Fun and Games 233

To keep the display from disappearing as quickly as it appears, we use

2 FREEZE. This command freezes the status line and main part of the

display (the stack area) but permits the menu-key area to be updated.

So you see only the user-instruction display and the temporary menu

keys.

Interim—Providing an Action Message

Because of internal calculations and graphics requlrements the HP 48

JLL until you see

the pair of dice on the screen. Interim dlsplaysa message during this

entire time. It doesn’t affect the stack.

Program Instructions Comments

ERASE Erases PICT.

CLLCD Erases liquid crystal display.

"Rolling..." Text for display by DISP

4 DISP Displays text on line 4 of LCD.

2 FREEZE Freezes status area and stack area

until next key press or next display.

To save this Interim program:

Keystrokes Comments

Puts program on the stack.

() Interim Stores the program.

Interim begins by clearing the graphics area with ERASE. This

command doesn’t affect the calculator’s liquid crystal display (which is

what you’re viewing at the moment). Instead, it erases PICT, which

is the HP 48’s “canvas” for drawing pictures. Later on, we’ll draw

something on PICT and put PICT into the display for viewing—but

for now, we use ERASE to get rid of any dice that may already be

drawn on PICT.

234 Fun and Games

To clear any previous messages or graphics from the display we use
CLLCD. This command erases the HP 48’s liquid crystal display and
prepares it for new information.

Now Interim displays its message, "Rollina...". This status string

is put into the stack, followed by the number 4. The DISP command

takes these two quantities and displays the text right smack in the

center row (row 4 of 7) of the display.

Because other actions occur right after Interim has run, we need
FREEZE here. 2 FREEZE keeps the message on the screen while the
rest of the subprograms are running. FREEZE, remember, freezes
the display until the next key press or the next display. All the while
the HP 48 is running the subprograms Rollnum, Ranum, Number,

Rollnum, Ranum, Number, you see the message "Rolling..."

in the display. Although a zillion things are happening in the

background, you see only the message.

Rolinum—Testing a Flag and Making a Decision

This subprogram determines which of the two dice is drawn in PICT.
It expects nothing from the stack, but after running, it leaves an x-
and y-value on the stack for use by later subprograms. It also calls

Die, to draw a die’s outline on the left or the right side of PICT.

Arguments Results

2: 2: x-coordinate

1: 1: y-coordinate

Fun and Games 235

Program Instructions

IF 11 FC 7

THEMN

16

&

11 SF

ELZE

e

11 CF

EHD

Die

To save the program:

Keystrokes

() Rollnum

Comments

Tests user flag 11.

If flag 11 is clear ...

Places coordinates 10

and 6 on the stack.

Sets flag 11.

If flag 11 is set ...

Places coordinates 70

and 6 on the stack.

Clears flag 11.

End of IF ... THEN ... ELSE.

Calls subprogram to draw one die.

Comments

Puts program on the stack.

Stores Rollnum.

The subprogram begins by examining user flag 11. If this is the first
time the subprogram is called, flag 11 is clear (it was cleared by Init),

and the subprogram places the numbers 10 and 6 on the stack. These

are the upper left coordinates of the left “die.”

Next, the program sets flag 11, so the next time Rollnum is called,

it places the coordinates 70 and 6 on the stack. These coordinates

will be used as starting points to draw the die, and for the individual
dots for each die in the PICT graphics area. Rollnum calls Die to
draw one half of a pair of dice. The die is drawn on the left or right

side depending on the coordinates in the stack. Nothing is actually

displayed yet, though.

236 Fun and Games

After drawing the outline of the die, the Rollnum subprogram leaves
the numbers on the stack. These are beginning x- and y- coordinates
for the dots that will later be drawn. The coordinates mark the upper
left-hand corner of the current die.

What happens if flag 11 happens to be set when Rollnum is called?

In this case, the statement IF 11 FC? is false, so everything between

ELSE and EMD is executed. The program puts coordinates 70 and 6

on the stack for later use by Die and the dot-drawing program. Then

Rollnum clears flag 11.

In successive calls, Rollnum toggles back and forth:

m 1st call to Rollnum: draws left die, sets flag 11.

m 2nd call to Rollnum: draws right die, clears flag 11.

m 3rd call to Rollnum: same as first call.

m 4th call to Rollnum: same as second call.

Since Rollnum is called twice for each “roll” of the dice, it draws both

dice in the PICT graphics area.

Die—Drawing a Box

Die draws a die in PICT; where the die is drawn (on the left or right
side) depends on the coordinates passed from Rollnum. Die expects

two numbers on the stack, and leaves the same two numbers there

when finished.

Arguments Results

2: starting x-coordinate 2: starting x-coordinate

1: starting y-coordinate 1: starting y-coordinate

Fun and Games 237

Program Instructions

&«

* x Yy

*
W

Keystrokes

() Die

Comments

Creates local variables z and y.

Starts defining procedure for local
variables.

Places z and y on stack.

Converts to complex number; upper

left BOX coordinates.

Adds 50 to z.

Adds 50 to y.

Converts to complex number; lower
right BOX coordinates.

Draws box.

Leaves z and y on stack for next

subprogram.

Comments

Stores the program.

The heart of Die is the BOX command, which draws a box on the

PICT graphics area. But BOX requires as its argument two sets of

coordinates, in complex-number form: for example (10,6) or (60,56).

This is a perfect spot to use local variables. Die takes the x- and

y-coordinates passed from Rollnum, and converts them to local

variables z and y. Then the defining procedure (a program) for the

local variables begins.

Executing + x u uses up the two quantities from the stack. So the

first thing we do in the defining procedure is put them back. Then

the R+C command converts two quantities on the stack to a complex

238 Fun and Games

number. For instance, suppose the stack has x- and y-coordinates on

it like the following;:

Stack Level Contents

Level 2: 18

Level 1: 6
After the R+C command, the stack looks like this:

Stack Level Contents

 Level 1: ClB, 6D

That takes care of the upper left coordinates needed by BOX. Now

we’ll generate the lower right coordinates.

When we draw a die—a box—we want it to be 50 units by 50 units in
size. So we add 50 to z, then add 50 to y. Using the algebraic form,

as we have here (for example, 'x + S8' EVAL) makes the process
easier to understand. But we could have saved a few bytes by using
stack operations instead. (For example, x 58 +.)

After execution of 'x + S8' EVAL and 'u + S8' EVAL, the two lower

right coordinates are on the stack. Another E+C command turns these
into a complex number so everything is set up for BOX. If the left die

is to be drawn, the stack looks like this:

Stack Level Contents

Level 2: (18,62

Level 1: (6B, 562
If we’re drawing the right die, 70 and 6 have been passed from
Rollnum, so the stack winds up looking like the following example.

Fun and Games 239

Stack Level Contents

Level 2: CYB, 6D

 Level 1: (128,562

Now BOX takes those two sets of coordinates and draws a box (the
outline of a die) on PICT. Nothing is actually displayed yet. The

location of the box is determined by the coordinates—and those have
been determined by whether this is the first or second time Rollnum

has been called. The effect for two calls to Rollnum is to draw both

the left and right dice on PICT.

10
61 T

56 4

60
Left die (First run of Rolinum)

70 120

64

56 4

Right die (Second run of Rollnum)

One more thing remains to be done. Die has consumed the x- and

y-coordinates passed by Rollnum. But there are other subprograms

out there waiting to use these coordinates, too. So we execute 3
within the defining procedure to place those quantities on the stack

before exiting.

240 Fun and Games

Ranum—Producing a Random Integer

Ranum, the next program called by the ROLLmenu choice,

produces a random number. It removes g from the stack, and
leaves an integer in the range from 1 through 6.

Arguments Results

: 3: starting z-coordinate

2: starting z-coordinate 2: starting y-coordinate

1: starting y-coordinate 1: random integer (1-6)

Program Instructions Comments

RAHC Generates random number.

* Makes number a local variable.

& Begins defining procedure for local
variable r.

'6¥r+1' EWAL Scales the number to the range 1-6.

IF Uses only the integer portion.

&

To save the Ranum program:

Keystrokes Comments

Puts program on the stack.

() Ranum Stores the program.

This subprogram begins with RAND, which generates a random

number that’s between zero and one. Then the subprogram converts

the random number to the local variable r.

Fun and Games 241

The defining procedure for r is a program; it must begin right after
the + r statement.

Now think about what values are needed to simulate a single die.

The die has one spot on one surface, two on another, and so on. The

greatest number of spots on one surface is six.

This knowledge tells us that to simulate the throw of one die, we need
a random number in the range from one through six. The algebraic
object '&#r+1' scales the number to fit the desired range.

After scaling, the random number is a decimal; it could be 3.1567,

or it could be as low as 1.0001 ... , or as high as 6.9999.... We
don’t need the decimal part of the number, though, so we use the IP
command to return the integer portion (throwing away the decimal
part). Thus 3.1567 becomes simply 3.

Number—Selecting a Drawing

Number, the next subprogram called, actually draws dots on the die

in PICT. The number of dots is determined by the random integer
passed from Ranum; and the location of the dots (left die or right

die) depends on the x- and y-coordinate received by Number. This

subprogram, then, removes a random number and two coordinates

from the stack. It returns nothing to the stack.

Arguments Results

3: starting x-coordinate 3:

2: starting y-coordinate 2:

1: random integer (1-6) 1:

242 Fun and Games

Program Instructions

&«

*n

®

CASE n

n

r

n s

THEH

EHML:

B ==

THEHN

EMD

EMD

DROFPZ

b2

1

D4

01 04

D4

Comments

Makes the random integer
a local variable, n.

Begins defining procedure.

Ifn=1

then draws one dot.

Ifn =2

then draws two dots.

Ifn=3

then draws one dot and

two dots.

Ifn=4

then draws four dots.

Ifn=>5

then draws one dot and

four dots.

Ifn=26

then draws two dots and

four dots.

Ends defining procedure.

Gets rid of starting x- and

y-coordinates.

Fun and Games 243

Keystrokes Comments

Puts program on the stack.

() Number Stores the program as Number.

Number converts the random integer to a local variable called n.
Within the defining procedure, n is used in a CASE ... END

structure. Between the CASE and final END statements, n is

compared to 1, to 2, to 3, and so on. When the test is true, everything

between THEN and its END is executed—and these are calls to

subprograms D1, D2, and so on, to draw the requisite number of dots

on PICT.

Say the random number passed from Ranum is three. Thus, n is

three. The case statement n = == means “Does 3 equal 2?” Since the

answer is yes, THEH ['1 ['2 EMLis executed. D1 draws one dot on the

current die, while D2 draws two dots—for a total of three.

At the beginning of Number, the starting x- and y-coordinates are in

levels 1 and 2 of the stack. We’ll show how DI, D2, and D4 use these

coordinates to draw dots in a moment. For now you should know that

although they’re going to use the coordinates, D1, D2, and D4 have

no effect on the stack. So we need to execute a DEOFZ command upon

exit, to clear the two coordinates from the stack. This comes under

the heading of “good housekeeping.”

We could have had a separate drawing routine for each number of dots
needed: DI for one dot, D2 for two dots, and so on—right up to D6.

But we don’t need that many routines. In fact, we need only D1, D2,

and D4. To generate three dots, we draw one dot with D1, then two

dots with D2. To draw five dots, we call DI followed by D4, and so

on.

Now let’s see how and where these dots are actually drawn.

D1—Placing a Dot in the Center

D1 calls Dot to draw a single dot in the exact center of the current
(left or right) die. It requires the starting x- and y-coordinates to
be on the stack, using them to calculate where on the graphics area

to place the dot. In case more dots will be drawn, DI returns the

starting x- and y-coordinates, so it has no overall effect on the stack.

244 Fun and Games

Arguments Results

2: starting x-coordinate

 1: starting y-coordinate

2: starting x-coordinate

 1: starting y-coordinate

Program Instructions

&

* Xy

#

23 +

25 +

Dot

=
1w

®d

W

To save the program:

Keystrokes

@1

Comments

Creates local variables x and y.

Begins defining procedure for local
variables.

Adds 25 to x-coordinate.

Adds 25 to y-coordinate.

Calls Dot to draw the dot.

Puts original x- and y-coordinate

back on the stack.

Ends defining procedure.

Comments

Stores the program.

D1 begins by using the starting x-coordinate (either 10 or 70) and the
starting y-coordinate (6) to create local variables z and y. Within the
defining procedure, 25 is added to z and 25 to y, producing a pair of

coordinates that represent the exact center of the current die. Then

Dot is called to draw a dot there.

If this happens to be the left die, remember, its outline that was

drawn on PICT by Die extends from an upper left corner at (10,6) to

a lower right corner at (60,56). DI uses an z of 10 and a y of 6, adds

Fun and Games 245

25 to each, and puts the coordinates 35 and 31 on the stack. Dot is

then called, and uses these coordinates to draw a dot at that location.

If this is the right die, £ and y are 70 and 6, respectively. D1 adds 25

to each, and calls Dot to draw a dot at (95,31)—which is the exact
center of the right die.

1.0 3§
6—‘ I T 1

31¢

One dot on the left die

70 95
61 —

311

One dot on the right die

D2—Placing Two Dots

D2 is similar to D1, except that it draws two dots on the current die.

Like D1, this subprogram expects a starting x- and y-coordinate to be
on the stack, and it returns these coordinates to the stack upon exit.

Arguments Results

2: starting x-coordinate 2: starting x-coordinate

1: starting y-coordinate 1: starting y-coordinate

246 Fun and Games

Program Instructions

&«

'}}{g

Keystrokes

DDz

Comments

Creates local variables z and y.

Begins defining procedure for
variables.

Adds 15 to x-coordinate.

Adds 25 to y-coordinate.

Draws a dot at the new coordinates.

Adds 35 to x-coordinate.

Adds 25 to y-coordinate.

Draws a dot here, too.

Returns the original z and y to the
stack.

Ends defining procedure.

Comments

Puts program on the stack.

Stores the D2 program.

D2 draws a pair of dots, one on each side of the center of the current

die.

10 25 45

314

Two dots on the left die

Fun and Games 247

D4—Placing Four Dots

D4 calls Dot four times, to draw four dots on the current die.

Arguments Results

2: starting x-coordinate 2: starting x-coordinate

1: starting y-coordinate 1: starting y-coordinate

Program Instructions Comments

* xoy Creates local variables z and y.

Begins defining procedure.

® 19 + Adds 15 to z.

g 12 + Adds 13 to y.

Dot Places a dot at the new coordinates.

25+ Adds 35 to z.

g 12 + Adds 13 to y.

[rot Draws a dot there, too.

15 + Adds 15 to z.

g 37 + and 37 to y.

Lot Draws another dot.

35+ Adds 35 to z.

g 37 + Adds 37 to y.

Dot Draws the fourth dot.

o Puts z and y back on the stack.

Ends defining procedure.

248 Fun and Games

Keystrokes Comments

() D4 Stores the program DJ.

D4 adds four dots to the current die. The dots are left and right of
the die’s center and above and below it, too.

70 85 105
6l et

191

43+

Four dots on the right die

None of the dots drawn by D1, D2, or D4 overlaps another dot, and

no dots are erased from PICT yet. Thus, these three subprograms,

D1, D2 and D4, let you draw any combination of one to six dots on

either die.

Dot—Using ARC to Draw

The Dot subprogram actually does the drawing of a single dot on
PICT, at the coordinates passed from D1, D2, or D4. It takes two

values from the stack and consumes them, leaving nothing on the
stack when finished.

Arguments Results

2% x-coordinate 23

1: y-coordinate 1:

Fun and Games 249

Program Instructions

&

R3C

(A
N

]
2

T =

I A ol

To save the program:

Keystrokes

(D Dot

Comments

Converts starting coordinates to
complex number.

Radius for arc.

Starting angle for arc.

Ending angle for arc.

Draws the arc (a circle) from 0 to
360 degrees.

Comments

Puts program on the stack.

Stores the program.

Dot uses the ARC command to draw a tiny circle (a dot) in PICT.
ARC draws an arc centered at coordinates (x,y) in level 4, with a

given radius (level 3), counterclockwise from one angle (level 2) to
another (level 1).

When passed by D1, D2, or Dj, the x- and y-coordinates are

separate: one is in level 2 and one is in level 1. The first command in

Dot is R+C, which converts these numbers to (x,y) form. The rest of
the values entered by Dot prepare for the execution of ARC.

For example, if Dot has just been called by D1, and this is the left

die, the coordinates passed to Dot are 35 (in level 2) and 31 (in level
1). Just before the execution of ARC, the stack is set up with all the
necessary quantities.

250 Fun and Games

Stack Level Contents

Level 4: (35,31

Level 3: 2

Level 2: B

Level 1: S68

When ARC is executed, it draws an arc on PICT, with its center at

coordinates (35,31). The radius is 2 units (rather tiny), and the arc
goes from 0 degrees to 360 degrees—in other words, it’s a circle.

At this point, the EOLL choice from the Dice menu has executed

the sequence Rollnum Ranum Number, followed by another Rollnum

Ranum Number. Two dice have been drawn on PICT, and a

random number of dots placed in each die. But all the user sees is

Rolling.... Now we need to save a copy of PICT, with its dice, as

the current roll. If this is the first roll, we’ll save it twice.

Fun and Games 251

Saveit—Preserving PICT

The Saveit subprogram stores a copy of PICT in a variable called

Last. If this is the first roll, Saveit also puts a copy in First. The

Saveit subprogram doesn’t affect the stack.

Program Instructions Comments

IF 22 FC? THEH If user flag 22 is clear, then:

FICT Places the PICT name on the stack.

RCL Recalls the contents of PICT (a
graphics object).

'First’ Places the name 'Fir=t’ on the

stack.

STO Stores the contents of PICT in First.

EHD Ends IF clause.

FICT

RCL Recalls PICT’s contents again.

'Last’

STO Stores contents of PICT in Last.

Keystrokes Comments

() Saveit Stores the program.

Saveit begins by testing user flag 22. This is the flag we’ve designated
to keep track of the roll. If flag 22 is clear, it means this is the first

roll, so we want to preserve the dice for later examination. We could

simply save the number (1 or 3 or 6) in a variable. But we’ll get a

little fancy and save the entire graphics screen.

The FICT command puts the name of the HP 48’s graphics area on

the stack. This is just like a variable name. Then RCL recalls the

252 Fun and Games

contents of PICT—that is, a graphics object containing the dice that

have been drawn (plus anything else that happens to be drawn on
PICT). The stack shows the size of PICT:

1: Graphic 131 x 64

Now we store this graphics object in a variable, just as we’d store a

number or any other object. It’s stored in a variable called First.

Similarly the PICT graphics object is also stored in Last. This lets

you keep track of your latest roll. Unlike First, the contents of Last
are updated with every roll of the dice.

Showit—Displaying PICT

Showit displays the dice where you can see them. It brings PICT

into the display and waits for you to press before continuing.
Showit has no overall effect on the stack.

Program Instructions Comments

&

L Empty list for PVIEW.

PYIEW Shows PICT centered in display.

7 FREEZE Freezes the display until the next key

press.

»

Keystrokes Comments

Puts program on the stack.

() Showit Stores the program.

Showit places an empty list on the stack and executes PVIEW. With

this particular argument, PVIEW shows PICT centered in the HP 48’s

display, with scrolling mode activated. The current display is visible

until you press (ATTN).

The 7 FREEZE command freezes the display. You don’t really need

this when Showit is called as a result of pressin .. However,

Showit is also called by temporary menu keys FIESTand , to

Fun and Games 253

display the contents of First and Last, respectively. And in this case,

you need 7 FREEZE to prevent a return to the stack display after

Showst.

Getfirst—Replacing PICT

Most of the work in the Dice program happens when you press the

menu key However there are other menu choices, too. One

, which runs the subprograms Getfirst and

Showst to redlsplayyour first roll.

Getfirst recalls the contents of the First variable into the stack. (The
contents are a graphics object that is exactly the same size as PICT.)

Then it stores this graphics object in PICT, ready for later display by

Showit. Getfirst has no overall effect on the stack.

Program Instructions Comments

%

First Places the contents of First (a
graphics object) on the stack.

FPICT Places the name PICT on the stack.

STO Stores the contents of First in PICT.

To save the program:

Keystrokes Comments

() Getfirst Stores the program.

In this subprogram, Fir=t is executed first. First, remember, is a

variable that contains a graphics object: the PICT display after your

first roll. After First is executed, the PICT-sized graphics object is

in level 1.

254 Fun and Games

Stack Level Contents

Level 1: Graphic 131 x 64
Now Getfirst puts the name PICT on the stack. This special reserved

variable isn’t executed; only the name is recalled.

Stack Level Contents

Level 2: Graphic 121 x &4

Level 1: FPICT
When the next command, ST0, is executed, the object in level 2 is

stored in the name that’s in level 1. Voila! A copy of yourfirst roll
has overwritten PICT, and is now ready for display by Showst.

Getlast—Another Replacement for PICT

Getlast, which is called when you press the menu key, is

similar to Getfirst; except that Getlast puts the contents of the

variable Last (a graphics object containing your latest roll) into PICT.
Like Getfirst, the Getlast subprogram has no effect on the stack.

Program Instructions Comments

&

Last Recalls contents of Last (a graphics
object).

PICT Places the name PICT or the stack.

STO Stores the contents of Last in PICT.

#

Keystrokes Comments

() Getlast Stores the program.

Fun and Games 255

When you press ., Getlast is executed, followed by Show:t. The

result? You see a redisplay of your latest roll of the dice.

Exit—Getting the VAR Menu Back

Pressing the _ menu key calls EFzit. This subprogram simply

brings back the original VAR menu; it has no overall effect on the
stack.

Program Instructions Comments

2 MEMU Displays the VAR menu again.

To save this program:

Keystrokes Comments

Puts program on the stack.

() Exit Stores the Erit program.

All that Ez:it really does is provide some visual feedback that you are

done running Dice. Ezit places 2 in the stack, then executes MEHLI—
which simply replaces Dice’s temporary menu with the VAR menu.

Ezit doesn’t erase PICT or Last or First, so these all maintain their

contents until you run Dice again.

Running the Dice Program

At last, it’s time to run the Dice program. The following is one simple

run; your own displays, of course, may be different.

When you press ['ICE , you see the following menu display:

FOLE: EIFST (CAST SHEW EXITi

256 Fun and Games

Program Prompt or Display

ROLLING DICE

ROLL-To roll dice

FIRST-Review 15t roll

LAST-Review last roll

HEW-Hew game

EXIT-To quit

[ATTH] after dice

Rolling...

Your first roll is a 5:

Your Action

Program Prompt or Display

ROLLING DICE

ROLL-To roll dice

FIRST-Review 1st roll

LAST-Review last roll

HEW-Hew game

ERIT-To quit

[ATTH] after dice

Rolling...

Your Action

Fun and Games 257

Your second roll is a 7:

RST; or to se th latest roll, press

15T. You can also start a newgame (with HEW) or exit from
theprogram (with E¥

258 Fun and Games

9
Health and General Interest

You probably don’t think of a scientific calculator like the HP 48 as

being much good outside the laboratory—for instance, in the realm of
health, or travel, or other areas. But with the right kind of programs,

this amazing little machine can be an invaluable aid in your quest for
fitness, enlightenment, or just plain fun. With its small size, the HP

48 is the perfect companion wherever you go.

Reflex Tester

How fast are your reflexes? The program shown below will tell you.

Each time you see the word “GO” flash on the calculator screen,

you press the key once as quickly as you can; the HP 48
automatically measures how long it took for you to respond. For

greater accuracy, you go through five tests, then see your average

response time on the screen.

This program shows off several features of the HP 48, but the most
important is the use of the random number function, RAND,to

make sure you can’t anticipate the prompt. You’ll find a detailed

explanation of how RAND is used to produce random numbers, and

how those numbers are scaled, in the random number generator in

chapter 8.

Health and General Interest 259

The Reflex Directory

To create a directory for the Reflez program and subprograms, then

get into that directory:

() REFLEX
(«9) (MEMORY) CRD IR

REFLE

The REFLEX directory will hold all programs and subprograms for

the reflex tester. Any objects you create, including programs and

statistical data such as XDAT, will now be placed in this directory.

The Main Reflex Program

The main program, Reflez, like most main programs in this book,
is almost nothing but calls to subprograms. Since there will be five
trials, though, one portion of the program is executed five times,

by means of a START ... NEXT loop. Although a number of the

subprograms pass values to one another, your HP 48’s stack is the

same when Reflez ends as it was when the program began.

Program Instructions Comments

Init Initialization routine.

Title Displays user instructions.

1 5 STRART Begins START ... NEXT loop.

Randstart Waits for random length of time.

Startime Prompts for input, begins timing.

Stoptime Stops timing when key is pressed.

Comput ime Computes reflex (start-to-stop) time.

Storetime Stores start-to-stop time.

HE=ST Executes loop five times.

Showresult Displays average reflex time.

260 Health and General Interest

To save the program:

Keystrokes Comments

Puts program on the stack.

() Reflex Stores the program.

Reflez runs from beginning to end, with no need for menu choices. By

using a START ... NEXT loop (instead of FOR ... NEXT), you
don’t need to create a local variable within the loop.

Init

The Init subprogram sets the HP 48 to display numbers to four

decimal places, and it clears the statistical data from the current

directory. Init leaves the stack unchanged.

Program Instructions Comments

&

4 FIX Sets display to four decimal places.

CLE Clears reserved variable ¥DAT.

*

To save the program:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program.

Although the display is set to four decimal places by the 4 FIx

command, your calculator always uses the full value of any number

internally.

The STAT functions are going to be used later to keep track of reflex
times, so we use CLXY to make sure no data remains left over from

previous runs of the program. CLX clears only the ¥DAT variable in

the current directory; so if you use good structured programming

Health and General Interest 261

practice and keep all Reflez programs in their own unique directory

(perhaps called REFLEX), you’ll have no worries about purging

statistical data in other directories.

Title—Waiting for Any Key

The Title subprogram is where the title and user instructions
appear. You see a full screen explaining what comes next. The title

is displayed until you press any key (except (ATTN)); then the test
begins. Title doesn’t affect the stack overall.

Program Instructions Comments

&

"REFLEX TESTER

This tests your Message displayed by DISP.

response time. MWhen Be sure to place newline

you see GO, press characters where the lines end

[ENTER]. There are five in this string.
tests. Press any key

now to go for it."

1 DISP Displays message beginning on
LCD row 1.

7 FREEZE Freezes entire display until

next key press.

A WARIT Waits for the press of any key.

DROP Throws away key address

returned by WAIT.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Title Stores the program.

262 Health and General Interest

Title begins by using DISP to display a long message of user
instructions. The DISP command takes as its arguments a string from
level 2 of the stack, and a number from level 1. The string is what is
displayed—exactly as you key it in. Use newline characters ((¢») (<2))
to end the lines as they’re shown, or you’ll wind up with a long string
that extends past the edge of the display screen. The number that’s

in stack level 1 when DISP is executed determines where the first
character of the string will be placed. 4 DISP would start the string
at the left side of row 4 (the middle row) of the calculator’s liquid
crystal display. Since we’ve specified 1 DISP, the message begins on

row 1. Thus, we’ll see all seven rows of the message in the display.

FREEZE locks the display until the next key press. Without

FREEZE, you’d see the title for a fleeting moment, then you’d see
the stack display again as the HP 48 updated its display. 7 FREEZE

freezes the entire display—including the status area, stack area (that

is, the central main area), and the menu area.

Finally, we want to give time to read this display, so we add a @ WRIT
command. WAIT pauses execution for a specified time: 1 WAIT for

one second, 2 WAIT for two seconds, and so on. With an argument of
0, though, WAIT suspends execution until the next key press. Thus,

8 WAIT holds up the execution of Reflez, displaying the message until
you press any key. (The keystroke doesn’t do anything—in effect, it’s

“swallowed up.”)

For our purposes here, @ WAIT has an unfortunate side effect—it

returns the address of the key that was pressed. So we execute a

DROP command to rid the stack of that number.

Randstart—Waiting a Random Time

The START ... NEXT loop is executed five times. Each time through
the loop, Randstart pauses execution for a period from 0 to 5 seconds.

Randstart has no overall effect on the stack—unless you try to cheat,
when it leaves in level 1 the telltale address of the key you pressed.

Health and General Interest 263

Program Instructions Comments

&

0 Begins DO ... UNTIL loop.

"Get ready..." String for DISP.

CLLCD Clears HP 48’s LCD.

4 DISF Displays string on LCD row 4.

7 FREEZE Freezes display until updated.

RAML Generates random number between 0

and 1.

6 * Scales number to the range 0 to 6.

MAIT Pauses execution for 0 to 6 seconds.

UNTIL KEY B8 ==

EHD

To save the program:

Keystrokes Comments

Puts program on the stack.

(') Randstart Stores the program.

Randstart is a DO ... UNTIL loop that should be executed only once.

(More about the loop in a minute.) Randstart begins by placing a
short message string, "Get readd...", in level 1 of the stack. The

next command CLLCD, clears the display, but has no effect on the

stack. Thus, when 4 DISF is executed, it displays the message on the

middle row (row 4) of the display. 7 FREEZE freezes the entire display
until it’s updated—in this case by another DISP command in the

succeeding program, Startime.

WAIT pauses execution for the number of seconds specified in level

1 of the stack. Thus, = MAIT pauses execution for three seconds,

5.2 WAIT for five and two-tenths seconds, and so on. We don’t

264 Health and General Interest

want the waiting period between "Get ready..." and "GO" to be

predictable, so we use a random number as the argument for WAIT.

RAND puts a random number on the stack; the number is somewhere

between 0 and 1. It could be, say 0.00001 or it might be 0.99999. This

number is scaled—it’s multiplied by 6, which gives a random number

between 0 and 6. (It’s actually from, say, 0.00001 second to 5.9999

seconds.)

WAIT uses this random number as its argument, causing the program
to pause and display the message Get readu... for a random length

of time before continuing to the next subprogram.

The next subprogram, Startime, is going to start timing, then display
the word GO and use @ WAIT to time how long you take to respond.
But what if (you sly devil) you press a key while Get readu... is
on the screen? That @ WAIT waits for a key press; and a key press is

recorded by the HP 48 even if you press a key while you’re supposed

to be waiting in Randstart. Why, you could even cheat by pressing a

key in the middle of Randstart so that when Startime is executed, a

key has already been pressed. Startime’s @ WAIT instruction would

see the key press, and think you pressed the key after seeing G0, not

while Get readyd... was displayed. The result: your reflexes would

seem faster than is humanly possible.

That’s the purpose for the DO ... UNTIL loop. If you do as you’re

supposed to and wait until you see GO to press a key, the loop clause

is executed just once. Within the test clause (after UNTIL), KEY
returns a 0 if no key was pressed. Then the test @ == asks “Is 0 equal

to what’s in level 1 of the stack?” Since the answer is “yes,” the

UNTIL test is true, and execution falls out of the loop and continues.

If you press a key while Randstart’s loop is being executed, though,

KEY returns the key’s address to level 2, and the number 1 to level 1.

Now the test == is false, so the loop is executed again, and the key’s

address left on the stack. A good way to think of it is that the loop is
executed UNTIL no key is pressed.

Health and General Interest 265

Startime—“Starting” the Timer

Startime “starts the time” by placing the value of TICKS in the stack.
It flashes the word GO and waits for you to press any key. Startime

expects nothing from the stack, and leaves a binary integer there;

the binary integer is the current number of clock ticks. Startime also
leaves the key address of the key you pressed.

Arguments Results

rJ 2: beginning time

1: 1: key address

Program Instructions Comments

CLLCD Clears the HP 48 liquid crystal

display.

TICKS Places current value of clock on

stack.

"Go" String for use by DISP.

4 DISP Displays GO on row 4 of 7-row LCD.

7 FREEZE Freezes entire display.

8 WAIT Waits for press of any key before

continuing.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Startime Stores the program.

CLLCD clears the previous message from the calculator’s liquid
crystal display. Then TICKS places the current number of clock ticks

266 Health and General Interest

on the stack. The HP 48’s clock, you see, never goes backward—it
keeps adding to the accumulated number of ticks at the rate of 8192
every second.

In a sense then, we aren’t “starting” anything here—we’re merely
recording the value of clock ticks when you first see the word GO.

To display the word GO, a string containing that word is placed on the

stack, after the number of tick marks. Then 4 DISP consumes the

string, displaying it on row 4 (the middle row) of the LCD. 7 FREEZE
freezes the entire display so it’s not updated yet, and @ WAIT pauses

execution until a key—any key—is pressed.

Now comes the actual reflex test. As soon as you see GO, you press a

key. Startime ends, leaving the clock ticks on the stack, and execution

continues to the next program, Stoptime. In addition, 8 WAIT leaves
the key address on the stack, too.

Stoptime—Determining Time Between Events

Stoptime takes the number of ticks from the stack, records the new
number of ticks, and subtracts them. This gives the elapsed time (in
clock ticks) between the start of timing (when you see the GO prompt)
and the end of timing (when your speedy fingers finally make their

response). It takes the key address and the beginning time from the

stack, and leaves the elapsed time there.

Arguments Results

2: beginning time 2:

1: key address 1: elapsed time

Health and General Interest 267

Program Instructions Comments

#

TICKS Puts ending time on the stack.

SLAF Puts key address in level 1, ending
time in level 2.

DROFP Throws away key address.

SHAF Puts ending time in level 2,
beginning time in level 1.

- Subtracts.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Stoptime Stores the program.

The first thing we do is use TICKS to place the ending time on the
stack. We wait to throw away the key address from the previous

subprogram until after recording the ending time.

To throw away the key address, we SWAP the ending time and the

key address, leaving the stack as shown here:

Stack Level Contents

Level 3: beginning time

Level 2: ending time

Level 1: key address
DROP gets rid of the key address then SWAP puts ending time above
beginning time. Finally, the — arithmetic operator subtracts, leaving
elapsed time on the stack.

268 Health and General Interest

Computime—Converting Clock Ticks to Real Time

The Computime subprogram converts elapsed time from clock ticks

to seconds. It also subtracts a calibration factor to account for the

time taken by the calculator for internal processing of a key press.
Computime takes a binary integer from the stack and returns a

number representing time in seconds.

Arguments Results

1: elapsed time (binary) 1: elapsed time (hh.mmss)

Program Instructions Comments

EB+R Converts binary to real number.

8192 - Divides by ticks/second.

Calfactor - Subtracts calibration factor.

&

To save the program:

Keystrokes Comments

Puts program on the stack.

() Computime Stores the program.

The number passed from Stoptime is the elapsed time, but it’s not

really in a form we can use. It’s a binary integer, something like

#3272d. So the first thing we do is convert it to a real number using
the BE+R command.

The resulting number, while more useful, is still in clock ticks. There

are 8192 clock ticks for every second, so the number 3278 represents

just 0.4 second. Thus, we divide by 8192 to give us the time in

seconds.

That would be our answer, if we weren’t careful. It turns out,

however, that the HP 48’s internal processing time—primarily, the

Health and General Interest 269

time it takes between pressing a key and recording the keystroke—
is fairly substantial (especially when weighed against your own

quicksilver-like reflexes). So we subtract a calibration factor, which

is held in the variable Calfactor. After subtracting Calfactor, the

resulting elapsed time, in seconds,is left on the stack.

Calfactor—An Experimentally Determined Value

Calfactor, the number you subtract to get the true elapsed time for
your response, will vary somewhat from calculator to calculator. For

now, just use the value I obtained for my calculator, which is 0.3418

seconds. Use these keystrokes to store Calfactor:

.3418
() Calfactor

You can determine the Calfactor time for your own HP 48 by using
the Call program. You’ll find Call a few pages down the road, at the

end of this program description.

Storetime—Using the Statistical Matrix in a Program

The last subprogram called each time through Reflez’s
START ... NEXT loop is Storetime. This subprogram takes the
elapsed time from the stack and stores it in this directory’s statistical

matrix. It takes one number from the stack, and leaves nothing on the
stack.

Arguments Results

1: elapsed time 1:

Program Instructions Comments

Z+ Stores this elapsed time in ¥DAT.

270 Health and General Interest

Keystrokes Comments

() Storetime Stores the program Storetime.

You could, if you wanted, create a separate list or array to hold the

five elapsed times. But why bother? Using ¥+ adds this new elapsed
time to the statistical matrix, XDAT. You’ll thus be able to use

the statistics functions of the calculator to view a bar plot of your

individual reflex times, or to do other kinds of analyses.

The reserved EDAT variable for each directory is unique to that

directory. Even though you’re creating and using ¥DAT here, any
YDATSs you may have in other directories remain pure and inviolate.

Storetime is the last subprogram called by the loop. Each time
Storetime is called, it uses ¥+ to add the latest reflex time to the

other times stored in the current statistical matrix. When five times

have been stored, execution falls out of the START ... NEXT loop in

Reflex, and Showresult is called.

Showresult—Displaying a Result in a String

Showresult the final subprogram called by Reflez, calculates the

average reflex time, combines it with an explanatory string, and

displays a detailed explanation of reflex time. Showresult uses the

values stored in XDAT; it takes nothing from the stack, and leaves
nothing there either.

Health and General Interest 271

Program Instructions Comments

"Your average reflex

time in seconds Beginning of display string.
was"

MERH Calculates average reflex time.

+5TR Converts average to a string.

+ Combine the two strings.

CLLCD Clears HP 48’s display screen.

1 DISF Displays string beginning on row 1.

v FEEEZE

To save this subprogram:

Keystrokes Comments

Puts program on the stack.

() Showresult Stores the program.

The subprogram Showresult begins by placing a long string on the
stack. (Unless you want the sentence to run past the edges of the HP
48’s display, be sure to add line breaks where they’re shown in the

listing.)

Next the subprogram uses MEAN to calculate the average reflex time.
The MEAN command doesn’t require anything to be on the stack.
Instead, it uses information that’s stored in the current statistical

matrix, which in our case is XDAT.

At this point we have a partial sentence (a string) in stack level 2, and

the average reflex time (a real number) in level 1. We want to combine
these into a single string. So we use —STR to convert the real number

to a string, then use + to add the two strings together. (The string

from level 1—the reflex time—is appended to the end of the string

from level 2.)

272 Health and General Interest

CLLCD clears the liquid crystal display of any information, and
1 DISP displays the string with its first character beginning at the left
of row 1 of the HP 48’s screen. 7 FREEZE freezes the entire display

until the next key press, to let you see your results.

Running the Reflex Program

then follow the

To run the Reflex program, just press |

prompts.

Program Prompt or Display Your Action

REFLEX TESTER

This tests ygour

response time. When

Jou see GO, press

EHTER. There are five

tests. Press anyg key

now to go for it.

Get ready...

oD
Get readd...

o

You answer the GO prompt five times. Then you see something like

the following display:

Your average reflex

time in seconds

was 8.2784

Because the reflex times are saved in XDAT, you can use the HP 48’s

STAT keys ((¢) (STAT)) to view the result of each of the five tests, or
to display a bar plot (E _) of the reflex times.

Health and General Interest 273

This bar plot shows your first trial was the slowest, while your second

and fourth were the fastest.

Cal1—Determining the Calfactor

This program, called Call, isn’t really part of the Reflez program.

However,it returns a calibration value you can store in Calfactor.

Arguments Results

1: 1: calibration factor

Program Instructions Comments

"Press a kedg now" String for display by DISP.

CLLCD Clears LCD.

1 DISP Displays the string.

2 WRIT Waits three seconds.

Startime Begins timing.

Stoptime Stops timing.

E+R Converts result to real number.

3192 -~ Converts to seconds.

&

274 Health and General Interest

To save the program:

Keystrokes Comments

Puts program on the stack.

() Call Stores the program.

The Call program actually encourages you to cheat. It prompts for
you to press a key, and waits for three seconds. Then it calls Startime
and Stoptime, just as they’re called by the loop in Refler.

There’s one big difference between Reflez and Call, though. Reflez,

remember, uses Randstart to tell you to "Get ready...", and to

prevent your pressing a key until Startime is called. In Call, though,
you can press a key during the 3-second WAIT period after the

"Press a ked now" message. That key press is remembered by the

HP 48.

If you press a key during the three-second interval, it means that

when Startime is called, a key has already been pressed. The 8 WAIT

command, which is waiting for a key press, immediately allows

execution to proceed, with no pause between GO and the Stoptime

call. The result is that only the amount of time consumed internally

by Startime and Stoptime is recorded—with no molasses-slow user

involved.

The remainder of Call is just a duplication of part of Computime,
converting the time to seconds.

Press to run Call and store the value in Calfactor:

Program Prompt or Display Your Action

Press a key now ENTER

GO

. 2418

You may want to run Call several times, then use an average value,

My values were always around .3416 to .3420. Interestingly, the

Health and General Interest 275

calibration time is affected by the number of items on the stack, so

execute (&) between runs.

Autogetem, Your Automatic Assistant

Consider the problem of a scientist who needs to perform a

complicated series of tasks, or record a value (say, temperature), at

specified intervals. Even if an ordinary alarm goes off, the harried

researcher can lose valuable time trying to remember the exact
keystrokes to execute, or the location to place the data.

The Autogetem program not only sets off an alarm, but it also

executes a program that automatically prompts for data. Here, the

prompt is for daily input of temperature, allowing you to record the

temperature at the same time each day. However, you could have it do

almost anything:

m Prompt for blood pressure three times a day.

m Awaken you and ask for your waking pulse rate.

m Determine which television show you’re watching at a specified time.

Autogetem turns the HP 48 into an automatic data-gathering device.

Think of the research possibilities: legions of Autogetem-equipped

HP 48 users around the world, all of whom enter the same type of

information at the same time.

No matter what you’re doing, the Autogetem program interrupts to

request its daily dose of data. If you happen to be editing another
program at the time, the alarm returns you to the stack, then prompts

for input. If the calculator is off, Autogetem turns it back on at the

appointed hour. And what if, heaven forbid, you happen not to have

your HP 48 close at hand when the alarm sounds? No problem—when

you return and switch on the calculator, there’s the Autogetem prompt

waiting hopefully for your input.

As written, Autogetem has some other features, too. It can display

the average value of all the data, or switch you to the calculator’s

statistics menu if you want to plot a bar chart or do further

manipulations.

276 Health and General Interest

The Autogetem Directory

To create a directory for the Autogetem program and subprograms,

then get into that directory:

(D) AUTOGETEM
() (MEVGRY)

Use the AUTOGETEM directory to hold all the programs and
subprograms for this application.

The Main Autogetem Program

The main program calls three subprograms in order:

Program Instructions Comments

&

Init Initializes the calculator.

Message Displays a preliminary message.

Mainmenu Displays main menu keys and

instructions.

#

The Init subprogram handles initialization chores, of course. Message
is simply a preliminary message to users explaining the program.
Mainmenu shows the main menu, allowing the user to choose among
five options.

To save this three-line program as Autogetem:

Keystrokes Comments

() Autogetem Stores the program as Autogetem.

Health and General Interest 277

Init—Ensuring an Audible Alarm

The initialization program, Init, takes nothing from the stack and
leaves nothing on it.

Program Instructions Comments

&

-48 SF Displays ticking clock at all times.

-41 5F Sets for 24-hour format.

-56 CF Enables sound for BEEP command.

CLE Clears current statistical matrix.

»

To save the program:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program.

Init prepares the calculator for subsequent operations by setting or

clearing certain system flags. Flag —40 determines whether or not the
ticking clock is shown in the display at all times; when it’s set, you

see the clock, and when it’s cleared, you see the clock only when the

TIME menu is selected. We won’t be using the TIME menu; but it’s a

nice gesture to put the clock in the display along with the alarm. So

we’ll set flag —40.

Flag —41 determines the clock format: 12-hour (flag clear) or 24-hour
(flag set). If you’re keying in an alarm time using the keyboard
and the TIME menu, you can use the and keys.

However, these particular functions aren’t programmable, so we’ll stick

to 24-hour format and set flag —41.

We’re going to sound an alarm to make sure our users do the right

thing—at the right time. One way to sound an audible alarm is

simply to make use of the calculator’s alarm beep. However, we’re

278 Health and General Interest

going to specify our own alarm using the BEEP command, so we set
flag —56; this enables sound for the BEEP.

The last thing accomplished by Init is to clear the current statistical

matrix—that is, to clear any statistical data that happens to be in this

directory. When you do statistical functions, a reserved variable called

YDAT is created. If you’ve placed all the Autogetem programs in their
own separate directory (and you should), the ¥XDAT for this directory
is different from, and unaffected by, statistical operations in other

directories. Thus, CLY purges EDAT data from this directory, but

doesn’t affect any YDATSs that may be in other parts of the calculator.

Message—An Introductory Display

The Message program also expects nothing from the stack and leaves
nothing on when it’s through. Message displays a general program
title; the user reads the title, then presses any key to continue.

Program Instructions Comments

&«

"AUTOGETEM

This proaram

automatically prompts Message displayed by DISP.

daily for input.

Freszs any keu to

continue."

CLLCD Clears the liquid crystal display.

1 DISFP Shows message, beginning on row 1
of the display.

7 FREEZE Freezes display; doesn’t update until
a key press.

a8 WAIT Waits for the press of any key.

DROFP Removes the results of @ WAIT from

the stack.

¥

Health and General Interest 279

To save the program:

Keystrokes Comments

Puts program on the stack.

() Message Stores the program.

The Message subprogram begins by placing a long string on the stack.
If you want your message to look like the one shown here, make sure
you end yourlines by pressing (¢») at the end of each line.

CLLCD (clear LCD) then erases everything from the display,

including menu labels, stack display, and the status area. The message

string is still on the stack, though, so executing 1 DISF places the

message into the LCD, with the first line of the message on the top
row (row 1) of the 7-row display.

If all we did was display the message, you’d have to have pretty good

eyes to read it—it would flit past in a heartbeat, to be replaced by

the stack display as the program continued. So we use ¥ FEEEZE

to immobilize the display until the next key press. We use 7 as the

argument because we don’t want to update anything yet—mnot the
status area, not the stack display, not even the menu labels. With an

argument of 7, FREEZE freezes the entire display.

Finally, we want the user to be able to linger over every pearl-

like word of our message, so we place the command @ WARIT after
FREEZE. With an argument of 0, WAIT causes the program to be
suspended, again until the next key press. Thus, the next time the

user presses a key, the display is updated and execution continues.

The command @ WAIT has a side effect, though—it places a number

on the stack. The number represents the keyboard address of the key

that was pressed: 51 (row 5, key 1) for (ENTER), 26 for (NXT), and
so on. Here, we don’t need the key address, so we execute a DROP

command to rid the stack of this value before exiting the subprogram.

280 Health and General Interest

Mainmenu—A Menu Without a Loop

The Mainmenu program displays the main user menu of choices for

Autogetem. It shows a temporary menu of key labels at the bottom

of the display, and it also displays user instructions for those keys.

Mainmenu takes nothing from the stack, and it leaves nothing for the
next subprogram.

Program Instructions

S

Mernulist

THMEHU

"MAIH MEHLI:

SETUP-Daily time

LIST-Dates, temps

AYGT-Average temp

RESET-Al11l temps

SHOW-5t at menu"

CLLCD

1 DISP

2 FREEZE

To save the program:

Keystrokes

ENTER

() Mainmenu

Comments

Calls list that is argument for
TMENU.

Uses list to display temporary menu.

Text string for display by DISP.

Clears calculator display.

Displays long text string beginning

on row 1.

Freezes status area and main area of

display.

Comments

Stores the program.

The program begins by calling Menulist, which is actually a list

containing all the information needed by the TMENU command.
Then the program executes TMENU (temporary menu). TMENU uses

Health and General Interest 281

the list to create the menu labels you see across the bottom of the

display, and to determine what happens when you press any of the

menu keys. You see the following labels:

SETUP 'GTRESET SHOW

Naturally, the information in Menulist must be in a specific format

for TMENU to work correctly. (We’ll discuss the actual contents of
Menulist in a moment.)

After executing TMENU to create the menu labels, Mainmenu then
goes about displaying some instructions on how to use those labels.

First, a long string is placed on the stack. When you enter the string,
be sure to put a line break (((») (&2)) at the end ofevery line.

With the string on the stack, Mainmenu now performs a CLLCD

(clear LCD) to erase anything from the display. Next, 1 DISF is

executed; this puts the string from level 1 of the stack into the display

where you can read it. The display begins on row 1 of the calculator’s

viewing area.

The last command in this subprogram is 3 FEEEZE, which freezes

a portion of the display until the next key press. Using 3 as the

argument for FREEZE means that the display’s status area and stack

display (that is, the central main part of the display) are frozen, but
the display of menu keys is not. This is necessary because TMENU

doesn’t actually make the menu “switch” until its program ends;

which means that using 7 FREEZE here would freeze the display,

including the old set of menu labels.

Notice that we don’t need to provide a loop or WAIT command at the

end of Mainmenu. That’s because the main part of the program is

completely finished executing at this point. From now on, you make

your choices from the menu key display—and your list of options is

from the Menulist displayed by TMENU.

If you're entering and testing this subprogram by itself, remember
that you’ll need to supply the Menulist, too. Also, Mainmenu leaves

the labels for the temporary menu in the display when it’s finished
running. To get back to labels for your variables, you can press (VAR).

282 Health and General Interest

Menulist—The TMENU List of Lists

Menulist is the argument for the TMENU command found in
Mainmenu. Menulist isn’t a subprogram;it’s really a “list of lists,”

with each inner list containing the information for one menu key.

Program Instructions Comments

{ Begins Menulist.

{ "Setup" Controltime 2 First menu label and object.

{ "List" Templist 2 Second menu label and object.

{ "Avat" Avatemp 2 Third menu label and object.

Reset Combined label/object for
fourth menu key.

Show Combined label/object for
fifth menu key.

3 End oflist.

Saving the list is just like saving a program:

Keystrokes Comments

Puts list on the stack.

() Menulist Stores list as Menulist.

Menulist, remember, is used by the TMENU command to build a

temporary menu. TMENU normally expects as its argument a list in

this form:

{ {"labell" objecti> {"label2" object2...2

In the case of Menulist, we have defined five labels; these are

the words that appear on the menu keys at the bottom of the

display. Each label is followed by an object, which happens to be a

subprogram. If you press the key marked P, it runs the program

named Controltime. If you press e Avgtemp program is

run.

Health and General Interest 283

To save space, you can combine the label and the object in the list, as

in the labels for the fourth and fifth menu keys. For instance, “Reset,”

the word assigned to the fourth menu key, is actually a program name.

So inserting it by itself into the TMENU argument list, without its
own set of separate curly brackets, causes this word to do double duty.

You see the word EESETas the label for the fourth menu key. And if

you press this key, the subprogram Reset is run. Similarly, “Show” is

both a label and an object for the fifth menu key.

Now let’s take a closer look at the subprograms summoned by those
different menu keys.

Controltime—Setting Up the Automatic Alarm

If you press the SETLUF key, the Controltime program is run.

Controltime prompts for the daily alarm time, and uses the

STOALARM command to place the alarm information in the

calculator’s catalog of system alarms. Controltime expects nothing
from the stack, and leaves nothing on it.

Program Instructions Comments

Begins list for use by STOALARM.

DATE Gets today’s date.

+ Adds date to list.

"TIME: Inmput daily Message displayed by INPUT

time as HH.MMSS. command.

Use 24-hour format."

Ensures nothing is on command line

for INPUT.

IMPUT Displays message, waits for input of

time.

OB+ Converts time to a number.

+ Adds time to list.

284 Health and General Interest

Program Instructions Comments

'Getemp' Name of the program that will be
executed when the alarm sounds.

+ Adds the name 'Getemp' to the

list.

7B7788800 Repeat interval (24 hours) in clock
ticks.

+ Adds repeat interval to the list.

STOALARM Uses list to add alarm to the HP 48’s

alarm list.

CROP Removes alarm index from stack.

B

Keystrokes Comments

() Controltime Stores the program.

Controltime uses the STOALARM command to set up a daily

alarm at the time you choose. Before proceeding, let’s review how

STOALARM works.

STOALARM lets you specify an alarm date; a date and time; a date,

time, and action; or date, time, action, and repeat interval. We’re

going to use this last option, so STOALARM needs as its argument a
list that looks like this:

{ date time action repeat *

The date is the beginning date of the alarm, in the HP 48’s format of
mm.ddyyyy. The time has to be in the hh.mmss format; this is the

time each day when the alarm will occur.

When the alarm goes off, the action is executed. The action is what
makes the HP 48 such a good assistant. It can be a string that’s
placed on the stack, or it can even be a complete program.

Health and General Interest 285

The action is executed no matter what else the calculator is doing.
Even if the calculator happens to be turned off, the alarm turns it on

so the action can be executed.

The repeat interval is specified in clock ticks. One clock tick is 1/8192

second, which means that some common repeat intervals you might

want to use are:

For This Alarm Interval: Use This for the Repeat Parameter:

1 minute 491,520

1 hour 24,491,200

1 day 707,788,800
Now let’s return to the Controltime program. It begins by creating an

empty list. Then it gets the date, using the DATE command. If the

date is, say, September 20, 1991, the following quantities are now on

the stack:

Stack Level Contents

Level 2: {

Level 1: 9.281991
The next instruction, +, combines these two. The date is added to the

list, and the list left on the stack:

Stack Level Contents

Level 2:

Level 1: £9.281991
Next, the program gets the daily alarm time. The prompt string is
placed on the stack followed by an empty string. INPUT then uses

these two strings to prompt (and wait for) you to enter the time in
24-hour format. When you enter the number and press (ENTER), the

program resumes. The 0OE.J+ command changes your input to a real
number, and + adds it to the list. If you specified a daily alarm at

2:00 every afternoon, the list now looks like this:

286 Health and General Interest

{9.2081991 14.8080%

Now comes the action. We want to execute a program, which is
named Getemp. We add this name to the list by specifying 'Getemp'

+. When the program name is placed in the list, the tick marks

disappear, and we’re left with:

{9.2081991 14.8080 Getempl

The final component of our list is the repeat interval. We know it’s
going to be one day (which is 707,788,800 ticks of the clock). So we
add that number to the list, too:

£9.201991 14,0088 Getenp 777288682

The list is now set up for the calculator’s STOALARM command.

When STOALARM with this list as the argument, it uses the list to
set an alarm that:

m Begins today.

m Goes off at 2:00 p.m.

m Automatically executes the program Getemp.

m Resets itself to go off again tomorrow at 2:00 p.m.

STOALARM leaves the index number of the alarm on the stack. For

the sake of simplicity, we won’t use it here. However, you could easily

store this index number, then use it each time to delete the previous

alarm before storing the latest one. Since we don’t use the index
number, we’ll drop the stack before ending the program.

Getemp—Adding to a List

Every time the alarm goes off, it calls this Getemp subprogram.

Getemp beeps, then prompts for the user to enter the current

temperature. It tags this temperature with the date, and adds the

tagged value to a list of all temperatures. Getemp expects an alarm

number on the stack, and leaves nothing on the stack when it’s done.

Arguments Results

1: alarm index number 1:

Health and General Interest 287

Program Instructions

CROF

448 1 BEEF

"TEMFERATURE IHPUT

Datetaqg

IHFUT

OB.=

Templist

+

'Templist'

STO

Comments

Throws away alarm index number.

Beeps at 440 Hertz for one second.

INPUT displays this prompt string.

Calls subprogram to place date in

stack as a tag.

Waits for input from the keyboard.

Converts tagged keyboard input to a
tagged number.

Brings contents of temperature list
into stack.

Adds current temperature to list.

Stores updated list as Templist.

Now save the program as Getemp.

Keystrokes

() Getemp

Comments

Puts program on the stack.

Stores the program.

The HP 48 alarm places the alarm’s index number on the stack before

calling this program. So the first thing we have to do is drop to the

stack to get rid of the index number. (Notice that if you’re testing

Getemp by running it using its menu key, you’ll need to provide

something on the stack before you execute this subprogram.)

Getemp then beeps and prompts for input of temperature. INPUT,

you remember, needs two arguments on the stack. The first is the

prompt string, a message that appears at the top of the display. The

second is a message appearing on the command line. If you begin

288 Health and General Interest

and end this message with colon (:), the message acts as a tag for the
keyboard input that follows.

Getemp calls another subprogram, Datetag, to provide this tag.

Datetag merely gets the current date and turns it into a string,

with colons. For instance, if the date is April 29, Datetag returns
":14,29:" to the stack. (More about how Datetag does this in a
moment.)

Now INPUT has what it needs—two strings on the stack. When the
INPUT command is executed the program halts, and you see a display

like the following:

TEMFERATURE INPUT

4,29

The cursor is positioned to the right of : 4.29: ready for your

temperature input.

Now you press number keys for the temperature. When you hit

(ENTER), the program continues. INPUT combines the date and the
temperature into a tagged object, and OB+ turns that tagged object
into something you can use in addition, subtraction, even statistics.

With the tagged temperature now on the stack, Getemp brings the
contents of Templist into the stack. (Executing Templist, with no
single quotation marks, evaluates the object—that is, brings in the list

contents. Executing 'Templist ', however, puts just the name on

the stack.)

We now have two quantities on the stack. For example:

Stack Level Contents

Level 2: 14,29: 75

 Level 1: £:4,28: 56 14,27 42 14.26% 613
With a single date-tagged temperature in level 2 and a list of them in
level 1, we execute + to combine them. The result in level 1 is:

£34,290 7?5 14,280 56 14,270 43 14,268 613

Health and General Interest 289

When you add quantities, level 1 is always appended to level 2. So the

list is appended to the current temperature, with the result that the

latest temperature is always first.

Now all we need to do is save the updated list as Templist again. For

this, the program places the name 'Templist ' on the stack, then

executes STO. It’s as if you had done the same thing yourself.

Datetag—Saving the Display Mode

Datetag is called by Getemp, and puts on the stack a string containing

the current date surrounded by colons. Datetag expects nothing from

the stack, and leaves the string there when it’s done.

Arguments Results

1: ! ":today’s date: "

Program Instructions Comments

&

RCLF Gets the flag status (including
display mode.)

2 FIX Temporarily sets display mode to

two decimal places.

o Creates string containing first colon.

DATE Gets today’s date.

+ Adds date to string.

e Creates string containing second

colon.

+ Adds second string to first, leaving a
single string.

SWAP Brings flag status into the stack.

STOF Restores original flag status and
display mode.

»

290 Health and General Interest

To save Datetag:

Keystrokes Comments

Puts program on the stack.

() Datetag Stores the program.

Datetag uses the FIX command to set the number of displayed

decimal places to two. (You’ll see why in a minute.) Since this
subprogram is called as part of an alarm action, you might be in the

middle of another application—an application that requires, say, 8 SCI
display mode. So we want to save the current display mode when we

enter Datetag, and restore it when we exit.

The RCLF and STOF commands are how we save the display mode.

RCLF brings a list containing the status of all flags, including the
display mode flag, into the stack. Moreover, RCLF also recalls the

current number of displayed digits—for example, 8 SCI, 6 FIX, or
whatever. (Status, including that of display mode and number of

digits, is actually all lumped together in a pair of binary integers.)
After the main portion of Datetag does its duty, the STOF command
restores all flags to their original status. Most important for us, STOF
also restores the display mode and number of displayed digits.

Datetag uses the HP 48’s ability to add strings—and to add objects

to strings—to create the date tag needed by the INPUT command in
Getemp. The value retrieved by DATE (say 4.29) doesn’t need to be

a string; it becomes part of the string when it’s added to ": ", creating
"ig4,29".

Notice how the FIX mode affects the date tag. For instance, if you
specified & F1X, the tag would include the year: ":4.291991:". But

4 FI¥ would give ":4.2928", which might be confusing. We use 2
FIX because it gives us useful date information, yet results in a short,

concise tag.

Health and General Interest 291

Templist—Starting a List

Templist is a list containing date-tagged temperatures. As you’ll see, a
portion of Autogetem’s main menu lets you clear all temperature data.

To be certain that the program runs the first time, though, you should

create the variable Templist, containing an empty list, before firing up

Autogetem:

Keystrokes Comments

) Creates empty list.

() Templist

STO Saves empty list as Templist

Templist is used not only by the SETUFP menu key, but also by all

other menu selections as well. For instance, when you press LIST

the contents of Templist are brought into the display. There you

can use (V) and the other cursor control keys to view all data and

temperatures. Press when you’re done.

One interesting feature of this tagged list is that you’ll see the
temperatures in the current display format: & FI¥ (no decimal

places), 2 FI(two decimal places), or whatever. The tag, though,
is frozen at two decimal places—or whatever display mode is set by

Datetag.

Avgtemp—Using Stat Commands Programmatically

Avgtemp is called when you press theAVGTkey from the main

menu. It uses ¥+ to place the contents of the temperature list into

the current directory’s YDAT variable, then calculates the average.

Avgtemp expects nothing from the stack, and leaves the tagged

average temperature there.

Arguments Results

1: 1: tagged average temperature

292 Health and General Interest

Program Instructions

&

CLZ

Templist

0oBJ>

1 SHARF

FOR i

I+

HEXT

MEAH

"Auverage"

+TAHG

&

To save the program:

Keystrokes

(O Avgtemp

Comments

Clears this directory’s statistical

data.

Gets contents of the list of

temperatures.

Separates list into its elements.

Puts 1 in level 2, number of list

elements in level 1.

Starts FOR ... NEXT loop, from 1
to number of list elements.

Adds next element to statistical

data.

End of FOR ... NEXT loop.

Calculates average temperature.

Labels the average temperature.

Comments

Puts program on the stack.

Stores the program.

First, the program clears any previous data from this directory’s

YDAT reserved variable. Then, when this subprogram “executes”
Templist, the contents of the temperature list—all those date-tagged

values—are brought into level 1 of the stack. Next, the OB+

command separates the list into its elements, returning the number

of elements to level 1, and the first temperature to level 2, the second

temperature to level 3, and so on.

Health and General Interest 293

We want to use a FOR ... NEXT loop to add up all the

temperatures, so the program next places a 1 in level 1 and executes

SWAP. The stack is now set like this:

Stack Level Contents

Level 4: Second temperature

Level 3: First temperature

Level 2: 1

Level 1: Number of temperatures
When executed, FOR goes “from” the number in level 2 “to” the
number in level 1. It executes everything down to NEXT, then
does the loop again and again. The only command executed each
time through the loop is Z+, which adds the current temperature to

the statistical data for all the temperatures. (It’s all saved in this
directory’s reserved XDAT variable).

To find the average temperature now, you could press (&)
But we’ll place this command in the program, too, so

that Avgtemp gives us the average (or mean) temperature.

With the average temperature on the stack, the program next inputs

the string "Average". The +*TAG command tags the average
temperature for easy identification, and leaves the tagged value on the

stack, as shown in the following example.

Average: 61.22

Even though the average temperature is tagged, you can add,
subtract, multiply, or divide this quantity, just as you can any other

number.

Reset—Clearing a List

The Reset subprogram clears all data from Templist, the list of
temperatures. It expects nothing from the stack, and adds nothing

when it exits.

294 Health and General Interest

Program Instructions Comments

&

L Puts empty list on stack.

'Templist ' Places variable name on stack.

STO Stores empty list in Templist.

»

To save the program:

Keystrokes Comments

Puts program on the stack.

() Reset Stores the program.

To reset and begin storing a new set of temperatures, we simply store
an empty list in the variable Templist.

If you want to check and clear alarms, the easiest way is to go right to
the HP 48’s alarm catalog by pressing (&) Catalogs
are different from menus—you can’t get to them from a program. But
although you can’t get to this CAT or its menu keys from a program,
you could easily toss in some user instructions and a DISP command

to tell users how to do it.

This is not to say you can’t clear an alarm programmatically, either.

On the contrary, you could:

1. Save the alarm index in a variable when you create the alarm.

2. Bring the alarm index into level 1 of the stack and execute DEL
ALARM to delete the alarm without affecting other alarms.

Show—Displaying a Built-In Menu

Pressing Autogetem’s ZHOImenu key executes the Show

subprogram. This does nothing more than bring up page 3 of the HP
48’s statistics menu, so you can easily create a bar chart showing the

data in ¥DAT. It leaves the stack unchanged.

Health and General Interest 295

Program Instructions Comments

%

48,83 Number for page 3 of STAT menu.

MEHLU Displays that menu.

Auvatemp Calls the Avgtemp program.

CROF Removes the result of Avgtemp from

the stack.

To save the program:

Keystrokes Comments

() Show Puts program on the stack.

O Stores the program.

The MENU command lets you display any of the HP 48’s built-in

menus. MENU takes as its argument a number of the form zz.yy,

where zz is the menu number and yy is the page.

The argument for MENU is 40.03. The 40 refers to the STAT menu,

while 03 means page 3 of this menu. Thus, executing 48. 832 MEHLin

a program has the same effect as pressing (&) (NXT): You
see page 3 of the STAT menu. You can then press EARFL, or use

another STAT key to analyze the temperature data.

There’s a potential problem with trying to execute any of the statistics

commands, even from the keyboard. What if Avgiemp hasn’t been

executed yet, and there’s no EDAT reserved variable? You’ll get

an error if you try to execute a statistics function like BARPL on a

nonexistent XDAT.

For this reason, Show calls Avgtemp, which, as you know, creates

YDAT when it calculates the average temperature. Avgtemp also

leaves the average temperature on the stack, though; so Show’s DROP

command gets rid of that value, and leaves the stack just as it was
before Show was called.

296 Health and General Interest

After performing statistics operations, the user can press to get
back to the menu of variables, then hit - to see Autogetem’s

main menu again.

Running the Autogetem Program

Here’s how to set up Autogetem so it prompts for temperature input

every day at 6:00 am:

Program Prompt or Display Your Action

AUTOGETEM

This proaram

automatically prompts

daily for input

FPress ang keyu to

cont inue (or any key)

MAIN MEHU:

SETUP-Daily time

LIST-Dates, temps

AYGT-Averaqae temp

RESET-A11l temps

SHOW-5t at menu

You see the following menu key display at the bottom of the main

menu:

Program Prompt or Display Your Action

TIME: Inmput daily

time as HH.MMSS.

Use 24-hour format. 6.0000

Now the alarm is set. Every morning at 6 am, you’ll hear a one-

second beep. When you peer at the HP 48, you’ll see a display

Health and General Interest 297

showing today’s date. The cursor will be on the command line,
waiting patiently for you to input the temperature:

Program Prompt or Display Your Action

TEMPERATURE INPUT 65

:D.84:

After, let’s say, a couple of weeks of this, you want to see how those

temperatures look. You can bring the list of temperatures into the

display with LIST.

Program Prompt or Display Your Action

, then any

key to get to main
menu

MAINM MEHNU:

SETUP-Daily time

LIST-Dates, temps

AVYGT-Averaaqe temp

RESET-A11l temps

SHOW-St at menu

1: £:5.84: £5.80 :5.083: 95,00

$0.82: S8.648...

The temperatures are all there, tagged with their dates of entry. To
examine the complete list, use (V) to scroll through the list.
gets you back to the main menu.

The other menu keys perform their own functions.

298 Health and General Interest

Keystrokes Display Comments

1: Average: 64.15 Display of average

temperature.

Brings up the page 3 of the
STAT menu.

Produces a bar plot of the

recorded temperatures, as

shown below.

Press EESETto reset the temperature list back to an empty list

again. When you reset the application, you’re all ready for a new set

of temperatures.

Even after EESET, the alarm will continue to prompt you every day.

Moreover, every alarm you create with ! F will repeat itself daily,

unless you explicitly purge it with the TIMEmenu:

Keystrokes Comments

) Shows catalog of alarms.

() Purges the current alarm.

Autogetem and Your Directories

One caveat: When the alarm goes off, it looks for Getemp (and

Datetag and Templist). It looks first in whatever is the current

directory at the time. If Getemp isn’t there the next directory up is

searched, then the next, until HOME is reached. If Getemp still isn’t

found, the calculator simply puts the name 'Getemp' onto the stack.

Health and General Interest 299

To ensure that Getemp, Datetag, and Templist are found, you could

put copies of them in your HOME directory. But the easiest way to

handle this situation is to add path information to the STOALARM
list in Controltime. For instance, instead of 'Getemp' in the list, you

could use a program,like this:

Program Instructions Comments

HOME Goes to HOME directory.

HEALTH Goes to HEALTH subdirectory.

AUTOGETEM Goes to AUTOGETEM subdirectory.

Getemp Runs Getemp program.

Just place this entire program, brackets and all, in the list created in

Controltime. Use it in place of the 'Getemp' instruction that’s now

there. (And of course, substitute your own path for HOME HEALTH

AUTOGETEM.)

Race Timer

The final program in this book converts the HP 48 to a race timer,

one that can store the numbers and record the times of hundreds of

competitors. Actually, “converts” isn’t the right word—because even

while it’s handling the timing chores, your HP 48 is available for other

uses as well.

The application is called Racers, and it relies heavily on one of the

HP 48’s most impressive features: the ability to display menus—and

menus within menus—while waiting passively for the press of a key.

In fact, except when you’re actually performing a task like entering a

competitor’s number or viewing the latest list of times, Racers isn’t

really “running” at all. It just looks that way.

Racers has a main menu and several “sub-menus”. One sub-menu

starts a new race. Another handles the timing chores—you identify

runners by the numbers attached to their jerseys, then press

300 Health and General Interest

to record each runner’s number as he or she crosses the finish line.

There’s still another sub-menu that lets you examine the times of all
runners who have finished.

Racers isn’t for sprints, but it will handle a 10K or a marathon pretty

well. In fact, it’s good for any situation where you need to keep a
record of people, things, or tasks and their comparative times.

The Racers Directory

First, create a directory for the Racers program and subprograms,
then get into that directory:

(D RACERS

The RACERS directory takes care of the Racers program and all its

subprograms, as well as the list of competitors and their times.

The Main Racers Program

The main Racers program is deceptively simple. It consists of an

opening message and a menu. It doesn’t affect the stack.

Program Instructions Comments

Openmsg Pauses to display opening message.

Menu Displays main menu keys and user

instructions.

Health and General Interest 301

To save the program:

Keystrokes Comments

Puts program on the stack.

() Racers Stores the program.

Openmsg

Openmsg displays an opening message that’s seen any time you press

the B - menu key. It waits for you to press the (ENTER) key before
it lets you continue. If you press any key except (ENTER), you see the
same opening message again. Openmsg also sets the display mode to

four decimal places, so that you can view times in the HP 48’s format

of hh.mmss.

Program Instructions Comments

&

"RACERS Message for display by DISP. Add a
This is a race timer newline character after each line.

for recording and

storing the times

of mang competitors.

Fress ENTER to see

the menu."

CLLCD Clears HP 48’s LCD.

1 DISP Displays message beginning on line 1
of LCD.

7 FREEZE Freezes entire display to show

message.

302 Health and General Interest

Program Instructions

a8 WRIT

IF

21.1 =

THEN

Opernmsg

EHD

4 FIx

To save the program:

Keystrokes

(O Openmsg

Menu

Comments

Waits for press of any key.

Begins IF clause; checks key address
left by WAIT.

If key pressed wasn’t (ENTER),
executes the THEN action.

Calls itself again unless key was

ETER).

Sets display mode to four decimal

places.

Comments

Puts program on the stack.

Stores the program.

Menu is the main menu for Racers. You see this main menu after

the opening message displayed by Openmsg, and you also see it after
exiting from “sub-menus” displayed by other subprograms. In a sense,
Menu is like a starting point to which you always return.

Health and General Interest 303

Program Instructions Comments

=

£ Begins key list for use by TMENU.

£ "HEW" Hew X Label and object for first menu key.

£ "THMHG" Timing 2 Second menu key’s label and object.

£ "WIEW" VYiew X Third menu key’s label and object.

£ "ERIT" Exit 2 Fourth menu key’s label and object.

"MEHU" Mernua Fifth menu key’s label and object.

Ends key list.

THEHL Displays menu keys specified in list.

Mm=g Displays main message.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Menu Stores the program.

When executed, the TMENU command uses as its argument the “list
of lists” that’s placed on the stack by Menu, creating the following
menu keys across the bottom of the display:

MEW THMHG WIEW EXIT MEHU

For clarity, we’ve provided just one object for each of the main menu

keys displayed by TMENU. However, each of these objects is actually

a full-fledged “sub-application” in its own right. And what exactly are

those sub-applications? As it happens, they’re explained in Mmsg, the

subprogram that’s run by Menu. Read on!

304 Health and General Interest

Mmsg

When the Menu subprogram is executed, it displays the main menu

keys. It also calls Mmsg, the main message subprogram, to explain

more fully how to use those keys.

Program Instructions Comments

&«

"MAIN MEHNU:

MEW-5tart new race

TMHG-At finish line Message for display by DISP.

VIEW-All competitors

and times

EAIT-While timing

MEMU-Shows thizs menu"

CLLCD : Clears HP 48’s LCD.

1 DISP Displays message beginning on line 1
of LCD.

3 FREEZE

=

To save the program:

Keystrokes Comments

Puts program on the stack.

() Mmsg Stores the program.

Mmsg explains what all those menu keys mean:

s for starting a new race. Before you can start, it warns

that all existing data and times will be lost if you continue. When
you press to continue, you can then start the timer at the
same time you fire a gun to begin the race.

m TMHGgets to the timing menu. From this menu, you can input a

competitor’s number, then record the time when that competitor

crosses the finish line.

Health and General Interest 305

! | gets to the view menu. From here, you can see the numbers

andtimes for all competitors who have finished.

lets you exit from the Racers application without affecting

the timing. Thus, even while the race goes on, you can go out and
use the calculator for other purposes. Then you can come back to
the main menu, go to the timing menu, and pick up where you left
off.

displays the main menu. It’s a way to get user instructions

and the main menu keys back on the screen.

New

New is executed when you press theHNEWkey. It displays a

warning, and allows you to abort bypressmg any key except (ENTER).
If you do press (ENTER) to continue, New runs Init, to initialize the

calculator, then calls Smsg and Smenu to provide a start message and

a start menu.

Program Instructions Comments

"WARHIHG: Message for display by DISP.

All race data will be Add a newline character after

LOST if gou start a each line.

new race! Press EHTER

for a new race, or any

other key to keep

existing race times."

CLLCD Clears HP 48’s LCD.

1 DISP Displays message; it starts on

row 1 of the calculator display.

-1 HWRIT Waits for key press while

displaying current menu.

306 Health and General Interest

Program Instructions Comments

IF Begins IF clause; checks key
address left by WAIT.

51.1 = If key pressed was (ENTER),
executes everything between
THEN and ELSE.

THEHN

Init Initializes calculator.

Smsa Displays user instructions for

starting the race.

Smenu Displays start menu.

ELSE

Menu Returns to main menu.

END

®

To save the program:

Keystrokes Comments

Puts program on the stack.

() New Stores the program.

Init

If in New you choose to continue and begin a new race, Init saves
an empty list in the variable Clist. This list is where the competitor
numbers and times will be stored.

Health and General Interest 307

Program Instructions Comments

'‘Clist’

STO

To save the program:

Keystrokes Comments

Puts program on the stack.

() Init Stores the program.

Smsg

After running Init, the New subprogram calls Smsg and Smenu. They
work hand in hand: Smsg displays user instructions, while Smenu

puts the necessary keys on the display screen. Smsg uses 3 FREEZE

after displaying its message, allowing the new menu keys to be added

to the display by Smenu.

Program Instructions Comments

"Press START at the Message for display by DISP.

instant to start

timing."

CLLCD Clears HP 48’s LCD.

a2 DIsSF Displays message beginning on row 3

of LCD.

2 FREEZE Freezes display, but allows updating

of menu area.

308 Health and General Interest

To save the program:

Keystrokes Comments

Puts program on the stack.

() Smsg Stores the program.

Smenu

Smenu provides a temporary menu with just two keys: If you press

$ you run the Start subprogram, then return to the Menu

subprogram. Pressing the other option,MEHL, gets you back to the

main menu without running Start to reset the start time.

Program Instructions Comments

&

{ Begins key list for use by TMENU.

£ "START" Label for first menu key.

4 Begins object (a program) for first
menu key.

St art Begins race timer.

Menu Returns to main menu.

#

> Ends key list.

£ "MEHU" Mernu Label and object for second menu

key.

TMEHNU Displays menu keys specified in list.

p

Health and General Interest 309

To save the program:

Keystrokes Comments

Puts program on the stack.

() Smenu Stores the program.

Start

This subprogram is run when you press the 8TAF.T menu key

displayed by Smenu. It stores the current number of clock ticks in a

variable. This variable, called Begintime, actually records the starting

time of the race; by subtracting it from each competitor’s time later,

we’ll come up with that runner’s elapsed time.

Program Instructions Comments

<

TICKS Returns current system time as

binary integer.

'Beaintime’ Places name 1n stack.

5TO Stores current system time in

variable Begintime.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Start Stores the program.

Well, that takes care of starting the race. Now let’s see what happens

at the finish line.

310 Health and General Interest

Timing

The second option in the main menu key list isTMHG. When you

press this key, you run the Timing program; this program displays the
timing menu (using TMENU again) and calls Tmsg to display the user
instructions for timing.

Program Instructions Comments

&

{ Begins key list for use by TMENU.

{ "TIME" Label for first menu key.

& Begins object (a program) executed
by first key.

Getnum Gets a competitor’s number.

Crossline Prepares to record time for that
competitor.

Getime Records competitor’s raw time at the

finish line.

Calctime Calculates competitor’s elapsed time.

Storem Stores competitor’s time in Clist.

Timing Returns to timing menu again.

% End offirst key’s object.

¥ End offirst key list.

L Blank key.

02 Blank key.

{2 Blank key.

{ 2 Blank key.

{ "MEHU" Merwu 2 Sixth menu key returns to main

menu.

e
t Ends key list.

Health and General Interest 311

Program Instructions Comments

THMEHU Displays menu keys specified in list.

Tmzg Displays user instructions for timing

menu.

Keystrokes Comments

Puts program on the stack.

() Timing Stores the program.

We’ll see the individual subprograms for handling timing in a moment.
First, let’s take a fast look at Tmsg.

Tmsg

When Timing is run, it shows the timing menu keys at the bottom

of the display, and it also calls Tmsg to provide more detailed

instructions on how to handle the finish-line action. Tmsg is a

straightforward use of DISP and FREEZE to show a message; notice
that we’ve used 3 FREEZE to allow the menu list to be updated while

the rest of the display is frozen.

312 Health and General Interest

Program Instructions

&

"TIMING MEHU:

Choose one:

TIME to time next

competitor,

MEHU to return to

main menud."

CLLCD

1 DISP

3 FREEZE

&

To save the program:

Keystrokes

(D Trmsg

Getnum

Comments

Message for display by DISP. Add a

newline character after each line.

Clears HP 48’s LCD.

Displays message beginning on line 1
of LCD.

Comments

Puts program on the stack.

Stores the program.

OK,you started the race, and the runners are off. Now you go to

the finish line and wait for the first runner to come into sight. While
you’re waiting, you press HG to display the timing menu.

When you see a competitor, you press TIME. This key calls several

subprograms, the first of which is Getnum. The Getnum subprogram

prompts you to enter a competitor’s number, and it puts that number

on the stack. The number is identified by the word “Ha..”

Arguments Results

 1: competitor’s number

Health and General Interest 313

Program Instructions Comments

&

"Put next competitor's Prompt string for INPUT.
number in display.

Then press ENMTER."

"No. " Command-line string for
INPUT.

INPUT Displays prompt and

command-line messages, waits
for keyboard input.

b

To save the program:

Keystrokes Comments

Puts program on the stack.

() Getnum Stores the program.

If the runner’s number is 765, you enter that number at the prompt.

The quantity placed on the stack, then, looks like this:

Mao. ¥e3

Notice that although Getnum asks for a runner’s number, it accepts
virtually any kind of input. You could even enter a runner’s name, like

“Fred.” Of course, the “number” then would read Ho. Fred.

Crossline

The next subprogram called when you press is Crossline. It

prompts you to press when the runner crosses the finish line,
then waits for a press of that key. The prompt is individualized; that

is, it shows the runner’s number. If you hit any key except (ENTER),
input is aborted and execution returns to the Timing subprogram.

314 Health and General Interest

Program Instructions Comments

&

+ n Creates local variable n.

& Begins defining procedure for
local variable.

"Hit ENMTER when Begins text string. (Add
newline character.)

" Ends text string.

n + Adds n to text string.

" crosses

the finish line.

Ang other key cancels."

+

CLLCD

1 DISP

v FREEZE

8 WAIT

IF

21.1 =

THEH

Timing

END

n

&

Begins second text string.

Blank line in second text

string.

Ends second text string.

Adds text strings to form
prompt message.

Clears HP 48’s LCD.

Displays message beginning on
line 1 of LCD.

Freezes entire display to show

message.

Waits for press of any key.

Begins IF clause; checks key
address left by WAIT.

If key pressed wasn’t (ENTER),
executes the THEN action.

Calls Timing subprogram if

key wasn’t (ENTER).

Ends IF ... THEN structure.

Puts number n on the stack.

Health and General Interest 315

To save the program:

Keystrokes Comments

Puts program on the stack.

() Crossline Stores the program.

If you press to record the time, execution falls through to
the next subprogram (Getime). In this case, Crossline leaves the
competitor’s number on the stack. The number isn’t left on the stack,

however, if you abort by pressing any key except (ENTER).

Getime

Getime records the competitor’s raw time. It does this by placing

the current value of TICKS on the stack, then brings in the value
of Begintime, which was the time at the start of the race. Finally,

Getime subtracts the beginning time from the current time to get
the elapsed time for this competitor. The time is raw—thatis, it’s a

binary integer in units of 1/8192 second.

Arguments Results

2 2: competitor’s number

1: competitor’s number 1: time in clock ticks (binary
integer)

Program Instructions Comments

TICES Records current system time in clock

ticks.

Begint ime Puts beginning time on the stack.

- Subtracts beginning time from
current time.

316 Health and General Interest

To save the program:

Keystrokes Comments

Puts program on the stack.

() Getime Stores the program.

Now the stack has two quantities on it: the competitor’s number and

that competitor’s time in clock ticks.

Calctime

Calctime converts the competitor’s time in clock ticks to elapsed time

in hours, minutes, and seconds. The converted time is in the HP 48’s

hh.mmss format.

Arguments Results

21 competitor’s number 2: competitor’s number

1: time in clock ticks (binary 1: time as hh.mmss
integer)

Program Instructions Comments

B+R Converts binary integer to number.

8192 ~ Converts clock ticks to seconds.

Zebd - Converts seconds to decimal hours.

+HMS Converts decimal hours to hours,

minutes, seconds (hh.mmss) form.

Health and General Interest 317

To save the program:

Keystrokes Comments

Puts program on the stack.

() Calctime Stores the program.

Now we’re ready to combine and store the competitor’s number and

time.

Storem

Storem uses SWAP to reverse the order of the competitor’s number

and time on the stack. Then it combines them with —-TAG,

producing a time that’s tagged with the runner’s number. Finally,
Storem adds the runner’s tagged time to the competitor list, Clist.

Arguments Results

M2: competitor’s number

 1: time as hh.mmss 1:

Program Instructions Comments

&

SLAP Exchanges competitor’s number and
time on the stack.

+TAG Tags time with competitor’s number.

Clist Brings competitor list into the stack.

+ Adds the list to the tagged time in
the stack.

'Clist' STO Saves the updated list.

W

318 Health and General Interest

To save the program:

Keystrokes Comments

Puts program on the stack.

() Storem Stores the program.

That takes care of the timing for one competitor. The timing menu
appears again and again, allowing you to enter runner’s numbers and
times as they cross the finish line.

Notice that the information for the latest competitor is placed first in

the list, bumping subsequent information down. Thus, the runner with
the fastest time is at the list’s tail end. (This will be important later
on, when we show the runners and their times.)

Now what about displaying those times?

View

 For displaying race mformatnon you use ' ~ to get back to the
main menu, then press | i. This executes the View subprogram,

which dlsplays the view menu and user instructions.

Program Instructions Comments

&

Ymenu Displays view menu.

Ymsag Displays user instructions for the
view menu.

»

To save the program:

Keystrokes Comments

Puts program on the stack.

() View Stores the program.

Health and General Interest 319

Vmenu

The Vmenu subprogram uses TMENU to create a temporary menu,

one with three active keys and three blank ones.

Program Instructions

S

L

L O"SHOMW"

Viirst

Viimes

L "CLIST" Clist

T

+ "MEHU" Mernug

TMEHRLI

320 Health and General Interest

Comments

Begins key list for use by TMENU.

Label for first menu key.

Begins object (a program) for first
menu key.

Begins display string showing latest
finisher.

Adds allfinishers to the string and

displays them.

Ends object for first menu key.

Ends first menu key.

Second menu key is blank.

Label and object for third menu key;

brings Clist into stack.

Blank key.

Blank key.

Sixth menu key returns to main
menu.

Ends key list.

Displays menu keys specified in list.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Vmenu Stores the program.

Vmenu, then, provides a display of three menu keys, with the other

three keys blank.

Here’s what those view menu keys mean:

calls several subprograms to show you competitor numbers

and times. You see up to seven competitors at once, and they cycle

through the display automatically. At the end, you’re left with the
top seven finishers in the display.

brings the entire competitor list (numbers and times) into
the stack, where you can examine it.

of course, returns to the main menu.

Vmsg

Vmsg supplies user instructions for the view menu keys displayed by

Vmenu. It uses FREEZE with an argument of 3; this allows updating

of the menu list while freezing the rest of the display to show the text.

Health and General Interest 321

Program Instructions Comments

&

"WIEW MEMU: Message for display by DISP.

SHOW-Autodisplay all

times

CLIST-Examine times

MEHU-Main menu"

CLLCD Clears HP 48’s LCD.

1 DISP Displays message beginning on line 1

of LCD.

2 FREEZE Freezes all of display except menu

key area.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Vmsg Stores the program.

Vfirst

If you press the SHOMWkey for autodisplay of competitors and

times, Vfirst is executed. This subprogram sets up the stack for

the automatic display of all competitors. Vfirst leaves on the stack

a string that contains the latest competitor followed by an endline

character.

Arguments Results

 1: 1: latest competitor (string)

322 Health and General Interest

Program Instructions

&

Clist

1 GET

DUFP

CLLCD

1 DISF

1 WARIT

-

To save the program:

Keystrokes

() Vfirst

Comments

Brings competitor list into stack.

Gets first competitor.

Converts to string.

Begins second string. (Add endline.)

Ends second string.

Adds the two strings.

Duplicates the resulting string.

Clears HP 48’s LCD.

Displays string on row 1 of the
calculator display.

Waits one second.

Comments

Puts program on the stack.

Stores the program.

Vfirst places the tagged time of the last finisher (first element of the
list) on the stack and converts it to a string. Then Vfirst creates
a second string, consisting of an endline character surrounded by
quotation marks, and adds it to the first. After duplicating the string

(for passing to the next subprogram), Vfirst displays the string in row

1 of the calculator’s LCD, then pauses for one second.

Health and General Interest 323

Vtimes

Vtimes brings the rest of the competitor times into the display for

viewing, updating the LCD every second. Each new time is added on
the top, and subsequent times are bumped down. At the end, you're

left with a display of the top seven competitors—that is, the first

seven to cross the finish line. Viimes requires a string on the stack,

and leaves nothing when it’s done.

Arguments Results

1: latest competitor (string) 1:

Program Instructions Comments

Clist Brings Clist into stack.

SIZE Puts size of Clist (how many
competitors) on stack.

+last Converts size to local variable last.

Begins defining procedure for local
variable.

2 last FOR num Begins FOR loop from 2 to last.

Clist Brings Clist into stack.

nur GET Gets the next competitor from the

list.

+5TR Converts to string.

" Begins another string. (Add
endline.)

Ends string.

+ Adds the two strings.

SLAF Exchanges first competitor’s string

and the new string.

+ Adds the two strings to form string
that includes latest competitor.

324 Health and General Interest

Program Instructions Comments

DuUpP Duplicates resulting string.

CLLCD Clears HP 48’s LCD.

1 DISP Displays complete string, beginning

on row 1 of the calculator display.

1 WRIT Pauses one second.

MEXT Does the FOR loop again.

DROP Throws away final string from stack.

7 FREEZE Freezes entire display to show

message.

* Ends defining procedure for local
variable.

To save the program:

Keystrokes Comments

Puts program on the stack.

() Vtimes Stores the program.

When Viimes is called, the first element of Clist is already on the

stack. So the FOR ... NEXT loop in this subprogram goes from 2
to the maximum number of elements. Each time through the loop,
GET gets a copy of the current competitor’s information, then —STR

converts it to a string.

We add another string containing an endline character (to put the

next competitor on a separate row), then SWAP the two strings. Next

we add the strings together; this places the latest element from the
list at the top of this string. Finally, we display the resulting string

for one second, beginning on row 1 of the calculator’s liquid-crystal

display screen.

In effect, we start by displaying the slowest runner first, then the

next-slowest, and so on. Each faster runner is added in at the top of

Health and General Interest 325

the display, and the rest bumped down. Thus, at the end, we have a

display of the top seven runners and their times.

Exit

Well, what do you think Ezit does? If you said “Exit from the

program,” you’re right. Actually, Ezit does nothing more than return
the calculator to the normal VAR menu.

Program Instructions Comments

&

MEMU)

To save the program:

Keystrokes Comments

Puts program on the stack.

() Exit Stores the program.

In truth, you can start a race, then use to leave. When you

press KHCERto come back, you eventually get back to the main menu

agaln—and the timeris still “running.” You can press 5for

timing or to see race results just as if you’d never left.

Running the Racers Program

It’s time to start the Calculator Classic, a popular marathon race that

attracts HP 48’ers from all over the world.

326 Health and General Interest

Program Prompt or Display

RACERS

This is a race timer

for recording and

storing the times

of many competitors.

Press ENTER to see

the menu.

MAIN MENU:

HEW-Start new race

TMHG-At finish line

VIEW-All competitors

and times

EXIT-Hhile timing

MEHU-Shows this menu

Your Action

Naturally, we want to begin by starting a new race.

Program Prompt or Display

WARMIMNG:

All race data will be

LOST if vou start a

new trace! Press ENTER

for a new race, or and

other key to keep

existing race times.

Press START at the

instant to start

timing.

Your Action

Now you see the main menu keys again, with their accompanying user

instructions. After a couple of hours, you see the first finisher in the

distance, so you switch to the timing menu.

Health and General Interest 327

Program Prompt or Display Your Action

MAIN MEHU:

HEW-5Start new race

TMHG-At finish line

VIEW-All competitors

and times

EXIT-While timing

MEHU-Shows this menu

TIMIMNG MEMHU:

Choose one:

TIME to time next

competitor.,

MEHU to return to

Mmain menud.

As the competitor comes closer, you see it’s runner number 1139. You

enter that number.

Program Prompt or Display Your Action

Fut next competitor's

number in displayg.

Then press EMTER.

Ha. 1139

The application includes the runner’s number in its next prompt. You

wait until runner 1139 reaches the finish, then hit the key.

328 Health and General Interest

Program Prompt or Display Your Action

Hit ENTER when

Mo. 1139 crosses

the finish line.

Any other key cancels. ENTER

TIMIHMG MENU:

Choose one:

TIME to time next

competitor.

MEHU to return to

Mmain mend.

You proceed in this fashion, pressing the =menu key, followed

by the competitor’s number, then hittingm(ENTER) the instant that
runner crosses the finish line.

At the end of the race—or even in the middle—you can go to the view
menu to see results.

Program Prompt or Display Your Action

MENU-
MAIN MEMU:

HEW-Start new race

THHG-At finish line

VIEW-All competitors

and times

EXIT-While timing

MENU-Shows this menu

This gets you into the view menu, where you can view an automatic

display of times or examine the competitor list.

Health and General Interest 329

Program Prompt or Display Your Action

VYIEW MEHU:

SHOW-Autodisplay all

times

CLIST-Examine times

MEHU-Main menu SHOW

The information about competitors and their times is cycled through

the display, with the faster runner always being added to row 1, until

you're left with the top seven runners frozen on the screen:

Mo, 1139: 2.8355

sMo. &1 2.1237

iMo. Fred: 2.13248

Mo, 8528 2.2117

‘Ho. 14888 2.2135

iMo. 8V Z2.2ve2

tHo. 3418 2.3412

Looks like runner number 1139 came in at 2 hours, 3 minutes, and 55

seconds—a new world record. And even old Fred will qualify for the

Olympics with that time!

Where to Go from Here

This programs in this book are just the beginning. Moreover,

programming is just one facet of the HP 48’s remarkable set of

capabilities. As you modify these programs or write solutions for your

own applications, try to take advantage of the calculator’s complete

set of tools; don’t be afraid to experiment with several ways to do

things.

Above all, have fun programming your HP 48!

330 Health and General Interest

Index

A

aborting program via key press,

306
accuracy factor in integration,

140, 144
Accuracy subprogram, 144

addition, effect of on list, 290

AddS2 subprogram, 196
AddSine subprogram, 190
Adjust subprogram, 223

alarm

audible, 278

checking, 295
clearing from catalog, 295
executed if calculator is off,

286
storing with STOALARM,

284
Alarm program, 154

algebraic object, evaluating with
—NUM, 126

alphabetic characters, entering,

20
alpha mode, 20

alternate hypothesis, 87

angle mode, specifying with

flags, 120
animation, 198, 203

ARC, 183, 249
and user units, 187

arguments/results table, 9
italics, 9

ASN, 173
Autogetem program, 277
Avgtemp subprogram, 292

BEEP, 153
ensuring audibility, 171
flag —56 enables, 153, 279

binary number, converting, 269

Birds program, 159
blank text line, 52

bottom-up programming, 13
BOX, 238
box, drawing, 237

B—R, 269

C

Call subprogram, 274
Calctime subprogram, 317

Calfactor subprogram, 270
calibration factor for Random,

270
determining, 274

Cartesian coordinate system,
116

CASE ... END, 244
CF, 60
Change subprogram, 126
character, deleting, 23
characters, special, 21, 98

Circl program, 182

Circ2 program, 185

331

circle, drawing with ARC, 183,

250
Cleanup subprogram, 64

CLLCD, 38, 61, 74, 235, 280
no effect on stack, 170, 264

CLX, 262, 279
command name, 10, 22

comparisons using local
variables, 103

complex number

converting rectangular

coordinates to polar,

126
converting to, 192, 208, 250

creating, 123, 239

operations controlled by flags,

120
separating with V—, 128

subtracting, 126
used for graphics, 185

compound interest, 56

Compound program, 58

ComputeH subprogram, 16

Compute subprogram
in Distance program, 124

in NormalProb program, 81

Computime subprogram, 269

Controltime subprogram, 284
conventions, 9

Cprompt subprogram, 63

Create subprogram, 222
critical value, 88

Crossline subprogram, 314

D

D1 subprogram, 244

D2 subprogram, 246

D4 subprogram, 248

DATE, 286, 291
date, mm.ddyyyy format of, 285

Datetag subprogram, 290

332

DBUG,29
Ddbalance subprogram, 48
debugging, 29

declining-balance depreciation,

41
defining procedure, algebraic,

224
DEG, 190
degrees mode

setting with DEG, 190
specifying with flags, 120

degrees of freedom, 88
deleting a directory, 28

deleting a program, 26
deleting several programs, 26
DELKEYS

with 0 argument, 177

with S argument, 173
depreciation, 40

Depreciation program, 42

Dice program, 227
Die subprogram, 237
directory

copying, moving, renaming,
28

creating, 19, 23

examining, 23

path in program, 195, 299

search path, 196

working with, 23

DISP, 52, 53, 170, 220
arguments, 95, 233

consumes text string, 267

effect on existing display, 74

location of displayed message,

61, 75
row, 108, 235, 273
size of displayed message, 38,

263
display

adding to top, 324

clearing, 74
freezing entire, 75, 263
halting for, 73
viewing PICT,181

display mode, saving, 290

display range, setting, 232

Display subprogram, 127

distance between points, 115
Distance program, 118
DO ... UNTIL, 155, 157, 264,

265
nested loops, 161

Doit subprogram, 148
Dokeys subprogram, 172

Dot subprogram, 249

drawing a graphics object, 199

DROP, 39, 62
DROP2, 244

E

editing a program, 25

elapsed time, calculating, 316
endline character, 38, 61

entering a program, 20
equation

entering from command line,
151

entering with Equation Writer,

140
storing as current, 60

Equation subprogram, 145

Equation Writer, and programs,

146
ERASE, 183, 190, 232, 234
erasing a graphics object, 200

error beep, enabling, 153, 171

EVAL, 48
eliminating, 136

evaluation, order of, 32, 224

Exit subprogram

in Dice program, 256

in Hypotest program, 110

in Piano program, 177
in Racers program, 326

F

Failreject subprogram, 109

Findslope subprogram, 135

FIX, 60, 261
accuracy factor for integration,

140, 145
effect on date display, 291

flag
clearing, 60
—3 and numerical results,

139, 143
—40 and clock display, 278

—41 and time format, 278

—56 enables BEEP, 153, 171,

279
—56 enables BEEP and error

beeps, 173

—62, User mode, 171

saving and retrieving status,
291

testing, 30, 235

toggling, 237
user, 232, 252

using to guarantee status,

119
Flight program, 203
Flit2 program, 210
Floop subprogram, 206

Flop2 subprogram, 213

FOR ... NEXT, 294, 325
compared to START ...

NEXT, 261
FOR ... STEP, 161, 165, 191,

197, 207
with negative increment, 162

formula

placing on stack, 60

333

FREEZE, 53, 184, 235
as final program command,

96
not needed, 62

updated by DISP, 264

with 3 argument, 108, 234,
282, 308, 312, 321

with 7 argument, 39, 75, 170,

220, 263, 280
FS?, 30

G

GET, 325
Getalpha subprogram, 102
Geta subprogram, 78
GetA subprogram, 14

Getb subprogram, 79

GetB subprogram, 15
Getemp subprogram, 287

Getfirst subprogram, 254
Getime subprogram, 316
Getlast subprogram, 255
Getmean subprogram, 75
Getnum subprogram, 313

Getsdev subprogram, 77
Getvals subprogram, 44
GetVal subprogram, 220
Getvars subprogram, 96
GOR,203, 207
GraphArea subprogram, 189

graphics, 179

motion, 193

graphics information in PPAR,
187

graphics object, 199

animating, 203

combining with PICT, 181

converting stack object, 212
drawing, 181, 199
erasing with GXOR,203, 208
moving, 198

334

putting into PICT, 181
saving, 201, 253

using text, 202, 211
viewing manually, 202

—GROB,212
GXOR, 203, 207

H

HALT, 75, 220
different from PROMPT, 77

halting a program, 30
Headline subprogram, 211
HP Solve
keyboard example, 56
programming, 58

Hypertext program, 35

Hypotenuse program, 12

Hypotest program, 91

hypothesis testing, 87

IF ... THEN, 158
IF ... THEN ... ELSE, 105
IF flag clear, 237
Init subprogram

in Autogetem program, 278
in Compound program, 59
in Dice program, 231
in Distance program, 119
in Hypotest program, 94

in Integrator program, 143

in NormalProb program, 73

in Piano program, 170

in Racers program, 307

in Random program, 218
in Reflex program, 261

input

changing to real number, 286

checking validity of, 132

INPUT
accepts any input, 314

arguments, 76, 121, 147, 221

blank command line, 102

command-line string, 98
creating tag with, 289
cursor location, 122

cursor row and column, 133

different from PROMPT, 146

pausing with, 76
prompt string length, 45, 98,

144
tagging with, 45, 77, 96
with V argument, 133

input, labeling, 44

[, 139, 149
integration, 139
Integrator program, 142

intelligence quotient, 70
Interim subprogram, 234
IP, 224, 242

key

0 WAIT waits for, 39, 280

aborting program with, 306
eliminating effect with WAIT,

263
reassigning single with ASN,

173
repeat until any, 154
repeat until specific, 156
returning address with KEY,

265
waiting for any, 262

waiting for specific, 314
KEY, 158, 162

action of, 156

doesn’t register during beep,
156

returns 0 if no key pressed,
265

returns address of key, 265

keyboard

redefining, 172
returning control to, 64, 75,

145
Keylist, 174

keys

disabling, 172
killing standard definitions,

173
redefining with STOKEYS,

173
resuming normal operation

after reassignment, 177
KILL, 29
Klaxon program, 156

L

Labelit subprogram, 149
Label subprogram

in Hypotenuse program, 17

in NormalProb program, 83
—LCD, 181, 184
level ofsignificance, 88
Limits subprogram, 146
list, 31

adding to, 286, 287, 290, 318
clearing, 294
getting element of, 325
OBJ— separates into

elements, 293

saving empty, 307

storing, 290
viewing contents with (¥),

292
local variable, 124

and the stack, 81

as tagged number, 83
calculation with, 99

created by FOR loop, 161

defining with algebraic object,
223

location of defining procedure,
48

name, 10, 48, 100

rearranging stack with, 83
stack order and, 125

using, 46
local variables, 238

controlling loops with, 163
defining with algebraic object,

136
location of defining procedure,

125
stack order and, 136

loop, eliminating, 32

lowercase characters, entering,

20

M

Mainmenu subprogram, 281

main program, 12, 19
MEAN, 272
MEM,31
memory, saving, 31

menu
changing display of, 110

creating temporary with

TMENU, 43, 93, 227,
304

creting temporary with
TMENU, 171

displaying HP Solve, 60

displaying updated, 65

reordering, 24
returning to user, 303
returning to VAR, 256, 282

specifying a built-in, 59, 60,

295
updating during frozen

display, 108, 234, 312,

321
updating while waiting, 62

336

using object name as label,

231, 284
without loop, 281

MENU, 60, 65, 256
argument for, 296
with 0 argument, 177

menu display, 8, 19

Menulist

in Autogetem program, 283
in Piano program, 171

Menu subprogram, 303
message

displaying, 95

displaying without FREEZE,

60
interim, 234

location, 33

skipping initial, 93

Message subprogram
in Autogetem program, 279
in Hypotest program, 94

in NormalProb program, 73

in Piano program, 169
Mmsg subprogram, 305
Msgl subprogram, 60
Msg2 subprogram, 62

multiple inputs, 120

musical notes, 166

name
for command, 22

for program, 22

length of, 22
of variable, 10

nested loops, 159

newline character, 52

New subprogram, 306
normal probability, 69

NormalProb program, 71
notecard, 37

null hypothesis, 87

null string, 174

—NUM, 126
number

converting to string, 107, 272
creating from keyboard input,

145, 222
displaying whole, 218

display versus internal value,

261
integer portion, 224, 242

Number subprogram, 242
numerical results flag —3, 139
numerical results mode,

specifying, 143

o

—0OBJ, 77

OBJ—, 46, 122, 134, 145, 222,
286

separates list into elements,

293
one-tail test, 89, 99

Openmsg subprogram, 302
ORDER, 25
order of evaluation, 32, 136

Output subprogram, 50

P

Plget subprogram, 120
P2get subprogram, 123
parentheses and order of

evaluation, 137

path

evaluating, 196
specifying in program, 195,

300
PATH, 195
pause

for key press, 108

for random time, 265

simulated, 96

PDIM, 183
with binary number

arguments, 181

with complex number
arguments, 187

PGDIR, 28
Piano program, 168
PICT, 179
adding graphics object to,

198
bringing into stack, 184, 232
combining graphics objects

with, 181
creating motion, 193
displaying, 181, 184, 192, 197,

199, 205, 206
displaying from a program,

253
drawing a circle in, 250
drawing box on, 238
drawing on, 181, 184

erasing, 183, 232, 234

erasing portion of, 200
inserting a graphics object

in, 181
overwriting with another

graphics object, 255
plotting a curve on, 190
preserving, 252
replacing, 254
sequential display, 196
showing size of, 253
specifying size of, 180, 187

turning on a point in, 191

PIXON, 191
plotting a curve, 190

polar mode

from rectangular mode, 117
to rectangular mode using

flag —16, 127

337

PPAR, 187
Pricing subprogram, 37
probability, normal, 69

program, 5
copying, 26

executed by alarm, 276

moving, 27

name, 22

renaming, 27
programming procedure, 19
PROMPT, 63, 75, 146

different from HALT, 77

different from INPUT, 146

PURGE, 26, 65
purging a program, 26
p-value, 88

PVIEW, 181
to display PICT, 253

with complex-number

argument, 198

with empty list as argument,

192
with pixel units, 206

with user units, 206

Pythagorean theorem, 6

Q

quotation marks, effect on

evaluation, 289

Racers program, 301

RAND,216, 223, 241
random number

generating, 222, 241

scaling, 215, 223, 242, 265

Random program, 216
Randstart subprogram, 263
Ranum subprogram, 241
R—C, 192, 208, 239, 250
RCLF,291

338

real number, converting from
binary, 269

rectangular coordinates,
subtracting, 117

rectangular mode
from polar, 116, 127

specifying with flags, 120
rectangular-to-polar conversion,

programmatic, 126
recursion, 159, 230

and memory, 31

eliminating with nested loops,
159

redefining the keyboard, 172
Reflex program, 260
reflex testing, 259

Reject subprogram, 105

repeat

until any key, 154

until specific key, 156

RESET operation, 180

Reset subprogram, 294

result
labeling, 224

rocket, drawing a, 200
Rollnum subprogram, 235
running a program, 8

S

Saveit subprogram, 252
saving a program, 7

Screen subprogram, 204

search for object, 196

SF, 143
SFX programs, 154
shell program, 20, 139
ShoS2 subprogram, 197
ShowGraph subprogram, 192
Showit subprogram, 253
Showpict subprogram, 205
Showresult subprogram, 271

Show subprogram, 295
¥4, 271, 294
YDAT, 262, 271, 279, 293, 296
Sinel program, 188
Sine2 program, 194
sine curve, plotting, 188

single-step, 29
slope of a line, 129

Slope program, 131

Smenu subprogram, 309
Smsg subprogram, 308
SOLVR menu, 57, 58, 60

sound effects, 154

SST, 29
stack

dropping two levels, 244

rearranging with local
variables, 83

saving bytes by using, 239
START ... NEXT

advantage over FOR ...
NEXT, 261

Startime subprogram, 266
Start subprogram, 310
statistical data in directory,

262, 271
statistical matrix, 270

STEQ, 60
Stline subprogram, 46
STO, 290
STOALARM, 284
STOF, 291
STOKEYS, 173

list as argument for, 174

Stoptime subprogram, 267

Storem subprogram, 318

Storetime subprogram, 270
—STR, 52, 107, 272, 325
straight-line depreciation, 41
string

converting time to, 323

converting to, 52, 107, 325

strings, combining, 50, 107, 272,

325
structured programming, 11
Student’s t distribution, 88

subprogram, 12, 19

subroutine, 12

SWAP, 318

T

T1 subprogram, 99
T2 subprogram, 101

tag

adding, 149
adding with INPUT, 289
applying with INPUT, 45, 96

—TAG, 48, 85, 100, 137, 150,
225, 294, 318

tagged number, using, 150

tagged object, 85

creating with —TAG, 127
debugging with, 98

Tagit subprogram, 224
Templist, 292
temporary menu, 93

switching from, 177
test

with IF ... THEN, 158
test clause as statement, 155

Test subprogram, 103
text string

adding to, 175
combining with user input,

122
displaying, 37

displaying numerical result

in, 271

placing on graphics screen,

211
separating into objects with

OBJ—, 134

339

using as graphics object, 202

TICKS, 266
time

calculating elapsed, 316
calculating from clock ticks,

269
converting to string, 323
determining between events,

267
hh.mmss format, 285

measuring with TICKS, 266
timer display, suppressing, 60

Timing subprogram, 311

Title subprogram
in Dice program, 233

in Random program, 219
in Reflex program, 262

TMENU, 93, 171, 282
advantages of in programming,

229
display of keys by, 321

list, 43, 230, 283, 304
using external list, 168

using object name as menu
label, 231, 284

when executed, 282

Tmsg subprogram, 312
toggling with flag, 237
top-down programming, 13, 18
two-tail test, 89, 101

U

uppercase characters, entering,

20

upper-tail probability, 70

User mode, 170

setting from program, 171

switching from, 177

using a menu key to exit, 172

user units for graphics, 184

user units, specifying, 205

340

UTPN,69

UTPT, 89, 100

two-tail test and, 101

v

V—, 128

—V2, 120, 123
validity checking of input, 133

variable

purging from a program, 64
variable name, 10

variables, reordering, 24
VAR menu, 8

getting back to, 256
returning to, 326

verifying input, 75

Vfirst subprogram, 322

View subprogram, 319

VISIT, 25
Vmenu subprogram, 320

Vmsg subprogram, 321
Vtimes subprogram, 324

w

WAIT, 155, 162
eliminating, 282
with 0 argument, 39, 63, 108,

170, 220, 263, 265, 280
with —1 argument, 62
with random number

argument, 265

waiting for any key, 39, 262,

280
waiting for specific key, 314

writing a program, 5

X

XRNG, 190, 205, 232

Xyl subprogram, 132

Xy2 subprogram, 134

Y

YRNG,190, 205, 232

A1

Save Time with the Companion Disk for
HP 48 Programming Examples

If you have a personal computer, there’s no need to type in code listings for HP 48

ProgrammingExamples. All application programs and subprogramsin the book are

available on a floppy disk, and can be transferred to the HP 48 using the Serial

Interface Kit (available from Hewlett-Packard).

Requirements:

* Macintosh® personal computer

or
« MS-DOS IBM PC® or compatible, with floppy disk drive and serial port

 Serial Interface Kit for the HP 48

« File transfer software

Use the coupon below to order.

Please send me:

(quantity) 5 !/4", 360K IBM PC-compatible disk(s) to accompany HP 48

Programming Examples at $19.95 each. ISBN: 0-201-56359-2
(quantity) 3'/2", 720K IBM PC-compatible disk(s) to accompany HP 48

Programming Examples at $19.95 each. ISBN: 0-201-56360-6

(quantity) 3'/2", Macintosh-compatible disk(s) to accompany HP 48

Programming Examples at $19.95 each. ISBN: 0-201-56361-4

Check enclosed (include yourstate sales tax; Addison-Wesley will pay

postage and handling).

Charge my Visa card #

Expiration date
Charge my MasterCard #

Expiration date
Four digits above your name

Charge my American Express #

Expiration date

Your signature:

Name:

Title & company if applicable:

Address

City State ——— Zip

Mail to: Addison-Wesley Publishing Company, Inc.

Order Department, 1 Jacob Way, Reading, MA 01867

Calculators HEWLETT-PACKARD PRESS

HP48 Programming Examples
D. R.Mackenroth

Anyone who owns a Hewlett-Packard HP 48 calculator will find this book invalu-

able. No other book on the HP 48 has as many real world examples or such thorough

step-by-step explanations of HP 48 programs.

Whether you are an engineer, student, business person, mathematician, or

scientist, you will appreciate the wide variety of usable programs. Programs

are drawn from the diverse areas of business, statistics, calculus, and graphics.

Each program begins with simple problem statements and is followed by a

sample run to show exactly how it works.

This highly accessible book does not assume any programming expertise. Each

of the more than 150 usable example programs is accompanied by detailed expla-

nations so anyone with an HP 48 can easily understand them. HP 48 Programming

Examples features:

« Structured examples that can be used for real work immediately.

* Lots of fun programs for games, sound effects, piano, notepads, graphics; and

step-by-step procedures for entering, running, and saving the programs.

» Complete program listings and detailed discussions that allow experienced

programmers to easily modify programs.

D. R. Mackenroth is an experienced programmer and the author of several success-

ful programming and electronics books. He is a former Hewlett-Packard Learning

Products Engineer and wrote a wide variety of owners’ and service manuals for

HP calculators.

Other books of interest:

Monday/Robinson, Using YourHP 95LX:
Practical Examples and Applications

90000>

oo
% Printed on recycled paper

Cover design by Joyce C. Weston I ”

9 "780201"563252
Corporate & Professional Publishing Group

Addison-Wesley Publishing Company, Inc. ISBN 0-201-5kL325-8

	Cover
	Contents
	1. Introduction
	Why Program the HP 48, Anyway?
	The Programs
	How to Use This Book

	2. Introduction to HP 48 Programming
	A Quick Review
	Writing a Program
	Saving a Program
	Running the Program

	Conventions
	Command Names
	Variable Names
	Names of Local Variables

	Structured Programming
	Writing a Main Program
	Top-Down or Bottom-Up?
	The GetA Subprogram
	The GetB Subprogram
	The ComputeH Subprogram
	The Label Subprogram
	Running the Complete Hypotenuse Program
	A Top-Down Programming Strategy
	A Painless Programming Procedure

	Hints for Entering Programs
	Keying in Alphabetic Characters
	Use Menus and Commandsto Help
	Use All the Alpha Keys
	Program Names and How They're Used
	Faster Character Deletions

	Working with Directories
	Creating a Directory
	Examining a Directory's Contents
	Reordering a VAR Menu

	Working with Programs
	Viewing and Editing a Program's Contents
	Deleting Programs
	Copying, Renaming, and Moving Programs
	What about Entire Directories?

	Debugging
	Using Subprogram Calls
	Single-Step Debugging
	Single Step and Subprograms

	General Programming Hints
	How to Halt a Runaway Program
	How to Manually Test a Flag
	How to Manage Memory Usage
	Never Assume Anything
	Consider Different Object Types for Different Tasks
	Remember the Order of Evaluation
	Maintain Good Housekeeping
	Don't Use Loops Unless They're Necessary
	Put Messages in Catalogs

	A Final Word

	3. Business and Finance
	Hypertext, The Information Dispenser
	The Hypertext Directory
	Pricing—Displaying Text
	Running the Pricing Notecard

	Figuring Depreciation
	The Depreciation Dlrectory
	The Main Depreciation Program
	Getvals—Labeling Input from the Keyboard
	Stline—Using Local Variables in Formulas
	Ddbalance—Different Names for Local Variables
	Output—Combining Answers into a Single Display
	Running the Depreciation Program

	Compound Interest Amount
	Keyboard Example of HP Solve
	The Compound Directory
	The Main Compound Program—Programmlng HP Solve
	Init—Specifying a Built-In Menu
	Msg1—Displaying a Message without FREEZE
	Msg2—Displaying a Second Message
	Cprompt—A Good PROMPT Application
	Cleanup—A Programmatic Purge of Variables
	Running the Compound Interest Program

	4. Statistics Programs
	Normal Probability
	Keyboard Example
	The NormalProb Directory
	The Main NormalProb Program
	Init—Answers to Two Decimal Places
	Message—Halting for a Display
	Getmean—Verifying Input with PROMPT
	Getsdev
	Geta
	Getb
	Compute—Local Variables and Stack Calculations
	Label—Using Local Variables to Rearrange the Stack
	Running the NormalProb Program

	Hypothesis Tester
	Keyboard Example
	The Hypotest Directory
	The Main Hypotest Program
	Init—Initializing to Two Decimal Places
	Message—Display without Stopping
	Getvars—Labeling Values on INPUT
	T1—Calculations Made Easy with Local Variables
	T2
	Getalpha—INPUT with a Blank Command Line
	Test—Comparing Local Variables
	Reject—Adding a Calculated Value to the Display
	Failreject
	Exit—Changing Menu Displays
	Running the Hypotest Program

	5. Calculus and Analytic Geometry
	Distance Between Two Points
	Keyboard Example
	The Distance Directory
	The Main Distance Program
	Init—Using Flags to Guarantee Status
	P1get—Multiple Inputs from One Prompt
	P2get
	Compute—Using Local Variables for Math
	Change—A Programmatic Rectangular-to-Polar Conversion
	DisplayTagging Output
	Running the Distance Program

	Slope of a Straight Line
	Keyboard Example
	The Slope Directory
	The Main Slope Program
	Xy1—Checking for Valid Input
	Xy2—More of the Same
	Findslope—Using Local Variables
	Running the Slope Program

	Performing Integration Programmatically
	Keyboard Example
	The Integrator Directory
	The Main Integrator Program
	Init—Specifying Numerical Results Mode
	Accuracy—Setting the Number of Displayed Digits
	Equation—Temporarily Returning to the Keyboard
	Limits—Adding to the Stack with INPUT
	Doit—Performing Numerical Integration in a Program
	Labelit—Adding a Tag
	Running the Integrator Program

	6. Sound and Music
	The SFX Programs
	The SFX Directory
	Alarm—Repeating Until Any Key
	Klaxon—Waiting for a Specific Key
	Bird—Eliminating Recursion with Nested Loops
	Car—Using Local Variables to Control Loops

	The HP 48 as a Piano
	The Piano Directory
	The Main Piano Program
	Message—Displaying User Instructions
	Init—Setting User Mode
	Menulist—Specifying a Menu Key and Action
	Dokeys—Redefining the Entire Keyboard
	Keylist—Defining Specific Keys
	Exit—Restoring the Calculator Keyboard
	Playing the Piano

	7. General Graphics and Animation
	HP 48 Graphics Fundamentals
	Three Steps to Seeing Your Pictures
	The Circs Directory
	Circ1
	Designing Your Own Graphics Grid
	Circ2

	Plotting a Sine Curve
	The Sine1 Directory
	The Main Sine1 Program
	GraphArea—Setting the PICT Size
	AddSine—Plotting a Curve on PICT
	ShowGraph—Displaying PICT
	Running Sine1

	Add Some Motion
	The Sine2 Directory
	The Main Sine2 Program
	Modified Sine2—Featuring Directories and Paths
	AddS2—Sequential PICT Displays
	ShoS2—Placing PICT in a Corner of the Display
	Running Sine2

	Animating Objects
	The Flight Directory
	Graphics Objects
	Freehand Drawing of a Graphics Object
	Saving Your Picture
	Viewing Your Drawing
	Animating a Drawing
	The Main Flight Program
	Screen—Specifying a Flight Grid
	Showpict—Displaying PICT
	Floop—Simulating Movement Across the Screen
	Running the Flight Program

	A Better Flight—Flit2
	The Flit2 Directory
	The Main Flit2 Program
	Headline—Putting Text on the Graphics Screen
	Flop2
	Running the Flit2 Program

	8. Fun and Games
	Random Number Generator
	Keyboard Example
	The Random Directory
	The Main Random Program
	Init—Displaying Whole Numbers Only
	Title—Displaying Until Continue
	GetVal—Waiting for User Input
	Create—Generating a Random Number
	Adjust—Defining Local Variables without a Program
	Tagit—Labeling the Result
	Running Random

	Rolling Dice
	The Dice Directory
	The Main Dice Program—A Temporary Menu
	Init—Creating Blank Pictures
	Title—Detailed User Instructions
	Interim—Providing an Action Message
	Rollnum—Testing a Flag and Making a Decision
	Die—Drawing a Box
	Ranum—Producing a Random Integer
	Number—Selecting a Drawing
	D1—Placing a Dot in the Center
	D2—Placing Two Dots
	D4—Placing Four Dots
	Dot—Using ARC to Draw
	Saveit—Preserving PICT
	Showit—Displaying PICT
	Getfirst—Replacing PICT
	Getlast—Another Replacement for PICT
	Exit—Getting the VAR Menu Back
	Running the Dice Program

	9. Health and General Interest
	Reflex Tester
	The Reflex Directory
	The Main Reflex Program
	Init
	Title—Waiting for Any Key
	Randstart—Waiting a Random Time
	Startime—Starting the Timer
	Stoptime—Determining Time Between Events
	Computime—Converting Clock Ticks to Real Time
	Calfactor—An Experimentally Determined Value
	Storetime—Using the Statistical Matrix in a Program
	Showresult—Displaying a Result in a String
	Running the Reflex Program
	Call—Determining the Calfactor

	Autogetem, Your Automatic Assistant
	The Autogetem Directory
	The Main Autogetem Program
	Init—Ensuring an Audible Alarm
	Message—An Introductory Display
	Mainmenu—A Menu Without a Loop
	Menulist—The TMENU List of Lists
	Controltime—Setting Up the Automatic Alarm
	Getemp—Adding to a List
	Datetag—Saving the Display Mode
	Templist—Startinga List
	Avgtemp—Using Stat Commands Programmatically
	Reset—Clearing a List
	Show—Displaying a Built-In Menu
	Running the Autogetem Program
	Autogetem and Your Directories

	Race Timer
	The Racers Directory
	The Main Racers Program
	Openmsg
	Menu
	Mmsg
	New
	Init
	Smsg
	Smenu
	Start
	Timing
	Tmsg
	Getnum
	Crossline
	Getime
	Calctime
	Storem
	View
	Vmenu
	Vmsg
	Vfirst
	Vtimes
	Exit
	Running the Racers Program

	Where to Go from Here

	Index

