(ﬁﬁ HEWLETT

PACKARD

Yo

B -2R+9dK

)

Tl ExPa LisOL luAD ISHOMW]

PRG CST (VAR
" | ;
s10
cos
EOAAION WATPX

ENTER
v ENTRY

o

® ®

HP 48 Programming Examples

Hewlett-Packard Press Series

Binstock et al., Programming for the Laserjet 11 in C

Dowden, Inside the EISA Computers

Eppler, A Beginner's Guide to SCPI

Hewlett-Packard, HP-GL/2 Reference Guide

Hewlett-Packard, The Ultimate Guide to the vi and ex Text Editors

Kasper/Ams, Graphics Programming with PHIGS and PHIGS Plus

Kobara, Visual Design with OSFI/Motif

Mackenroth, HP 48 Programming Examples

McMinds, Mastering Motif Widgets

Monday/Robinson, Using Your HP 951X : Practical Examples and Applications
Rosenberg, KornShell Programming Tutorial

Schoonover/Bowie/Amold, GNU Emacs:UNIX Text Processing and Programming

HP 48 Programming Examples

D. R. Mackenroth

vv Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam
Bonn Paris Milan Madrid Sydney Singapore
Tokyo Seoul Taipei Mexico City SanJuan

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial capital letters.

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care, but are not guaranteed for any
particular purpose. The publisher does not offer any warrantees or representations,
nor does it accept any liabilities with respect to the programs or applications.

The publisher offers discounts on this book when ordered in quanity for special
sales. For more information please contact:

Corporate & Professional Publishing Group

Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Copyright © 1992 by Hewlett-Packard Company

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of
the publisher. Printed in the United States of America. Published simultaneously in
Canada.

ISBN 0-201-56325-8
12345678910 MA 9594939291
First printing, October 1991

Contents

1.

Introduction

Why Program the HP 48, Anyway?
The Programs
How to Use This Book

Introduction to HP 48 Programming
A Quick Review

Writing a Program
Saving a Program
Running the Program

Conventions

Command Names
Variable Names
Names of Local Variables

Structured Programming

Writing a Main Program
Top-Down or Bottom-Up?
The GetA Subprogram
The GetB Subprogram
The ComputeH Subprogram

The Label Subprogram
Running the Complete Hypotenuse Program .
A Top-Down Programming Strategy
A Painless Programming Procedure

Hints for Entering Programs

Keying in Alphabetic Characters

Use Menus and Commands to Help

Use All the Alpha Keys
Program Names and How They’re Used .
Faster Character Deletions .

Working with Directories

Creating a Directory

W N =

vii

viii

Examining a Directory’s Contents
Reordering a VAR Menu

Working with Programs

Viewing and Editing a Program s Contents
Deleting Programs .
Copying, Renaming, and Movmg Programs
What about Entire Directories? . .

Debugging . .

Using Subprogram Calls .
Single-Step Debugging .
Single Step and Subprograms .

General Programming Hints

How to Halt a Runaway Program
How to Manually Test a Flag

How to Manage Memory Usage . .
Never Assume Anything .

Consider Different Object Types for Dlﬂ'erent Tasks .

Remember the Order of Evaluation
Maintain Good Housekeeping . .
Don’t Use Loops Unless They’re Necessary .
Put Messages in Catalogs

A Final Word

Business and Finance
Hypertext, The Information Dispenser

The Hypertext Directory .
Pricing—Displaying Text
Running the Pricing Notecard

Figuring Depreciation

The Depreciation Dlrectory

The Main Depreciation Program
Getvals—Labeling Input from the Keyboard
Stline—Using Local Variables in Formulas
Ddbalance—Different Names for Local Variables
Output—Combining Answers into a Single Display
Running the Depreciation Program Coe

Compound Interest Amount

Keyboard Example of HP Solve

The Compound Directory

The Main Compound Program—Programmmg HP
Solve

23
24
25
25
26
26
28
29
29
29
29
30
30
30
30
31
31
32
32
32
33
33

35
36
37
40
40
42
42
44
46
48
50
53
56
56
57

58

Init—Specifying a Built-In Menu 59

Msgl—Displaying a Message without FREEZE . . 60
Msg2—Displaying a Second Message 62
Cprompt—A Good PROMPT Application 63
Cleanup—A Programmatic Purge of Variables . . . 64
Running the Compound Interest Program 65

4. Statistics Programs

Normal Probability 69
Keyboard Example 70
The NormalProb Directory 71
The Main NormalProb Program 71
Init—Answers to Two Decimal Places 73
Message—Halting for a Display 73
Getmean—Verifying Input with PROMPT 75
Getsdev 77
Geta 78
Getbo 79
Compute—Local Variables and Stack Calculations . 81
Label—Using Local Variables to Rearrange the Stack 83
Running the NormalProb Program 85

Hypothesis Tester 87
Keyboard Example 90
The Hypotest Directory 91
The Main Hypotest Program 91
Init—Initializing to Two Decimal Places 94
Message—Display without Stopping 94
Getvars—Labeling Values on INPUT 96
T1—Calculations Made Easy with Local Variables . 99
T2 101
Getalpha—INPUT with a Blank Command Line . . 102
Test—Comparing Local Variables 103
Reject—Adding a Calculated Value to the Display . 105
Failrejecto 109
Exit—Changing Menu Displays 110
Running the Hypotest Program 111

ix

5. Calculus and Analytic Geometry

Distance Between Two Points 115
Keyboard Example 116
The Distance Directory 118
The Main Distance Program 118
Init—Using Flags to Guarantee Status 119
Plget—Multiple Inputs from One Prompt 120
P2geto 123
Compute—Using Local Variables for Math 124
Change—A Programmatic Rectangular-to-Polar

Conversion 126
Display—Tagging Qutput 127
Running the Distance Program 128

Slope of a Straight Line 129
Keyboard Example 129
The Slope Directory 130
The Main Slope Program 131
Xyl—Checking for Valid Input 132
Xy2—More of the Same 134
Findslope—Using Local Variables 135
Running the Slope Program 138

Performing Integration Programmatically 139
Keyboard Example 139
The Integrator Directory 141
The Main Integrator Program 142
Init—Specifying Numerical Results Mode 143
Accuracy—Setting the Number of Displayed Digits . 144
Equation—Temporarily Returning to the Keyboard . 145
Limits—Adding to the Stack with INPUT 146
Doit—Performing Numerical Integration in a Program 148
Labelit—AddingaTag 149
Running the Integrator Program 150

6. Sound and Music

The SFX Programs 154
The SFX Directory 154
Alarm—Repeating Until Any Key 154
Klaxon—Waiting for a Specific Key 156
Bird—Eliminating Recursion with Nested Loops . . 159
Car—Using Local Variables to Control Loops . . . 163

The HP48asaPiano 166

The Piano Directory 167

The Main Piano Program 168
Message—Displaying User Instructions 169
Init—Setting User Mode 170
Menulist—Specifying a Menu Key and Action . . . 171
Dokeys—Redefining the Entire Keyboard 172
Keylist—Defining Specific Keys 174
Exit—Restoring the Calculator Keyboard 177
Playing the Piano 177
7. General Graphics and Animation
HP 48 Graphics Fundamentals 179
Three Steps to Seeing Your Pictures 180
The Circs Directory 182
Circl o s 182
Designing Your Own Graphics Grid 184
Cire2 o 185
Plotting a Sine Curve 188
The Sinel Directory 188
The Main Sinel Program 188
GraphArea—Setting the PICT Size 189
AddSine—Plotting a Curve on PICT 190
ShowGraph—Displaying PICT 192
Running Sinel L. 193.
Add Some Motiono 193
The Sine2 Directory 194
The Main Sine2 Program 194
Modified Sine2—Featuring Directories and Paths . . 195
AddS2—Sequential PICT Displays 196
ShoS2—Placing PICT in a Corner of the Display . . 197
Running Sine2 198
Animating Objects 198
The Flight Directory 198
Graphics Objects 199
Freehand Drawing of a Graphics Object 199
Saving Your Picture 201
Viewing Your Drawing 202
Animating a Drawing 203
The Main Flight Program 203
Screen—Specifying a Flight Grid 204
Showpict—Displaying PICT 205

xi

8.

xii

Floop—Simulating Movement Across the Screen
Running the Flight Program

A Better Flight—Flit2

The Flit2 Directory
The Main Flit2 Program
Headline—Putting Text on the Graphics Screen

Flop2
Running the Flit2 Program

Fun and Games
Random Number Generator

Keyboard Example C e e e
The Random Directory
The Main Random Program
Init—Displaying Whole Numbers Only
Title—Displaying Until Continue
GetVal—Waiting for User Input .
Create—Generating a Random Number
Adjust—Defining Local Variables without a Program
Tagit—Labeling the Result

Running Random

Rolling Dice

The Dice Directoryo
The Main Dice Program—A Temporary Menu R
Init—Creating Blank Pictures Coe
Title—Detailed User Instructions . . .
Interim—Providing an Action Message
Rollnum—Testing a Flag and Making a DeClSlOIl
Die—DrawingaBox R
Ranum—Producing a Random Integer
Number—Selecting a Drawing e
D1—Placing a Dot in the Center
D2—Placing Two Dots

D4—Placing Four Dots

Dot—Using ARC to Draw
Saveit—Preserving PICT o
Showit—Displaying PICT
Getfirst—Replacing PICT
Getlast—Another Replacement for PICT
Exit—Getting the VAR Menu Back
Running the Dice Program

206
209
210
210
210
211
213
214

215
216
216
216
218
219
220
222
223
224
225
226
227
227
231
233
234
235
237
241
242
244
246
248
249
252
253
254
255
256
256

9. Health and General Interest

Reflex Tester 259
The Reflex Directory 260
The Main Reflex Program 260
Imito 261
Title—Waiting for Any Key 262
Randstart—Waiting a Random Time 263
Startime—“Starting” the Timer 266
Stoptime—Determining Time Between Events . . . 267
Computime—Converting Clock Ticks to Real Time . 269
Calfactor—An Experimentally Determined Value . . 270
Storetime—Using the Statistical Matrix in a Program 270
Showresult—Displaying a Result in a String 271
Running the Reflex Program Coe 273
Call—Determining the Calfactor 274

Autogetem, Your Automatic Assistant 276
The Autogetem Directory 277
The Main Autogetem Program 277
Init—Ensuring an Audible Alarm 278
Message—An Introductory Display 279
Mainmenu—A Menu Without a Loop 281
Menulist—The TMENU List of Lists 283
Controltime—Setting Up the Automatic Alarm . . 284
Getemp—Adding toa List 287
Datetag—Saving the Display Mode 290
Templist—Starting a List 292
Avgtemp—Using Stat Commands Programmatlcally 292
Reset—Clearing a List 294
Show—Displaying a Built-In Menu 295
Running the Autogetem Program 297
Autogetem and Your Directories 299

Race Timer 300
The Racers Directory 301
The Main Racers Program 301
Openmsg 302
Menu Ce 303
Mmsg Coe e 305
Newo 306
Imit Coe e 307
Smsg Coe 308

Smenu e 309

xiii

xiv

Tmsg
Getnum
Crossline
Getime
Calctime
Storem
View
Vmenu

Running the Racers Program

Where to Go from Here

Index

310
311
312
313
314
316
317
318
319
320
321
322
324
326
326
330

Preface

I undertook to write these programs for the Hewlett-Packard HP 48
calculator because I thought it would be fun and it would be easy.

Fun because the HP 48 has every possible feature and function a
scientific programmer could want. And easy because I already had a
healthy dollop of experience—both as the writer of owner’s manuals
for early Hewlett-Packard programmables like the HP 25 and HP 97,
and as the author of several books on programming in BASIC.

Turns out I was half right.

Creating programs for the HP 48 is fun, simply because this calculator
has everything going for it. It’s chock full of mathematic and scientific
functions, along with a panoply of graphics, sound, and timekeeping
features. And almost everything you can do from the keyboard can be
done from a program.

Truth to tell, though, it wasn’t easy at first. I made every mistake
in the book—and some that probably hadn’t been invented yet.
Moreover, I was immutably tied to tired old programming techniques
that failed to take full advantage of the HP 48’s power.

But now it can be told: The HP 48 is remarkably easy to program—
once you nail down a few principles. In these pages, you’ll profit from
what I so painfully learned. And I can now proselytize for HP 48
programming with the zeal of the newly converted.

What I hope you’ll find in these pages is a source of practical
programming knowledge:

m Application programs from the fields of calculus, statistics, business,
and more.

m Fun programs from the realms of music, games, and health.

m In-depth explanations of many commands, and plenty of program
annotation explaining every step.

m Detailed step-by-step procedures for creating, saving, and running
the programs.

m Structured programming techniques that make it easier to construct
large applicatious from tiny “building-block” subprograms.

s Hints and tips for getting the most from the calculator’s display and
menu.

m Graphics programming details that show how to draw pictures—and
how to animate them, too.

= A proven management strategy for handling programs and
directories.

s Index entries that lead you to explanations of key commands and
techniques.

In short, this is the book I wish I'd had when I was learning to
program the HP 48 calculator!

News Flash: Companion Disk Available! Now there’s no need

to laboriously type in program instructions. If you have an
IBM-compatible or Macintosh personal computer, simply purchase the
companion disk that contains all the application programs for HP /8

Programming Ezamples. Use the handy order form that accompanies
this book.

xvi

Acknowledgements

This book is the brainchild of Don Cole of Hewlett-Packard, and
to him I extend profound thanks. As my erstwhile manager and
present-day mentor, Don brought me under the HP Press umbrella
and gave generously of time and resources. Thanks also to John
Wait of Addison-Wesley, and to Bob Silvey and Steve Beitler of
Hewlett-Packard for their efforts in making HP Press a reality.

Special appreciation goes to HP’s Hank Schroeder. Hank played

a major part in every phase of this book, from first inchoate

outline to complete, final manuscript. As the key reviewer, he was
instrumental in making the programs easier to use and the text easier
to understand.

Kudos also to Dennis York, Ron Brooks, and Tom Hender for their
thorough and incisive review and debugging efforts. And thanks to
Sandy Allen, who not only brought much-needed consistency to
punctuation and grammar, but also goaded author and reviewers
toward better on-time performance.

This book was produced using Hewlett-Packard’s HP Tag text markup
language. Paul Johnson supplied the software, hardware, and know-
how for getting HP 48 programs and screens onto the printed page.
Human intervention was present in the form of Jim Woods, who took
my rough penciled drawings and magically transmogrified them into
illustrations that are clear and precise. My special gratitude goes to
Anne Shatrau Todd, who set up an easily modified template of HP
Tag files for me to follow, and who was a source of knowledge and
guidance at every turn.

As the primary contact at Addison-Wesley, Alan Apt was everything

an author could hope for, offering aid and encouragement just when it
was needed. Sheri Dearing, Kathleen Manley, and Shirley McGuire (in
Oregon, Massachusetts, and Colorado, respectively) made certain that
all parts of the publishing puzzle came quickly and smoothly together.

Finally, to everyone else who helped, including those unsung heroes at
HP Calculator Support and the typists at Laser Works: thanks.

D.R. Mackenroth
Mountain View, California

xvil

Introduction

Welcome to HP 48 Programming Ezamples! Whether you’re looking
for a cookbook of instant applications, a source of information about
HP 48 functions, or a means by which to learn how to program, this
book is for you. You’ll find HP 48 Programming Ezamples is friendly
and easy to use, with all example programs and procedures thoroughly
explained.

Why Program the HP 48, Anyway?

If you use your HP 48 calculator for the same purpose over and over—
or if you want to lug around the full set of manuals at all times—

you may never need to write a program. After all, with over 500
number-crunching commands built in, your HP 48 has plenty of
functionality. Whatever you want to do, mathematics-wise, chances
are there’s an HP 48 function to fill the bill.

Nevertheless, programming can make the calculator a lot easier to use
and more fun to have around. Here’s how:

m Detailed prompts: Programming is a timesaver if, like most students
and not a few engineers, you’re switching applications several
times a day. With just a few program lines, you can add prompts
and labels to accompany your most-used functions. This “in-line
user documentation” can tell you what to enter, when to enter it,
and what your output is. By adding meaningful prompts such
as "Input the tangent" or "Calculate the number of
wobulators and enter it in the displayu; then press
CONT", you'll always do the right thing.

Introduction 1

Explanatory text: A program can include titles, remarks,
clarification, examples, moral support—in short, anything that
makes it easier to understand and use. You can display up to seven
lines of text at a time, or scroll it past the reader, so you’ll never
again ask “What did that program do?”

Decisions: Need to pick an alternative in a hurry? Programming is
how you get to take advantage of the decision-making powers of the
HP 48. Flags and structures such as IF ... THEN, CASE ... END,
and DO ... UNTIL can automatically choose the best selection,
then proceed.

Repetitive tasks: With loops like FOR ... NEXT and
START ... STEP, a program can replace recurring and tiresome
keystroke routines, freeing you for more creative activity.

New functions: Even with all the built-in power of the HP 48,
from time to time you’re sure to need something that’s just a
little different. Programming your own functions gives you the
performance you want—and does it your way.

The Programs

There are programs here from the worlds of finance, calculus,
statistics, and more—including real-world solutions and classroom
aids. You’ll also find fun applications such as music, games, and
graphics. There’s even a chapter with programs for health!

Because this book emphasizes structured programming, even long
applications are a series of short, easy-to-enter subprograms. You can
type the keystrokes for any subprogram in a few minutes, test it, then
go on to the next one. (Naturally, if you can enter the program lines
in a computer, then download them, so much the better.)

Introduction

How to Use This Book

This book is self-contained. All you need is your calculator, and away
you go. You can jump around—it’s not necessary to read the chapters,
or enter the programs, in any particular order. But you may want to
begin with chapter 2, “Introduction to HP 48 Programming.” This
valuable chapter gives you step-by-step procedures for keying in a
program, running it, and saving it, and it also explains the techniques
and advantages of structured programming. Furthermore, chapter 2
offers a wealth of hints and tips for better HP 48 programs.

Most programs in this book are preceded by an ezplanation and
keystroke example that illustrate the principles involved. You can whip
through this example in a few moments, so you’ll be better prepared
to understand the actual program. And occasionally referring back to
this preliminary description makes it easy to follow even long, detailed
programs to their logical conclusion.

Programmers and HP 48 users can employ these programs in many
different ways:

m Use the entire program. Each one is complete. Refer to chapter 2 if
you need help on how to enter a program.

m Modify the program. No need to begin at ground zero every time
you want to do something new on your HP 48. Just study and
adapt these programs for your own ends.

m Learn to program by doing it. Study the explanations for the
programs, and you’ll learn valuable programming techniques. Don’t
be afraid to experiment either!

m Pick up hints and tips. Whether you’re already a sophisticated
programmer, or you’re trying to learn how to use the calculator,
you’ll find the code explanations an invaluable source of tips and
tricks for HP 48 functions and programming.

You can think of this book as a rich source of prewritten programs,
or as templates to alter or augment. The important thing is not to
feel bound by the programs in this book. Use them, study them,
change them—they’ll help you be a better HP 48 user, and a better
programmer, too.

Introduction 3

2

Introduction to HP 48 Programming

Programming releases the full power of the HP 48, and lets you
completely command the calculator. You can create everything from
simple, job-specific programs that handle repetitive tasks, to complex,
detailed, applications with multifarious features.

This chapter contains hints and tips for programming, a few simple
precepts to follow that will ease your life as an HP 48 programmer.
You’ll also find an explanation of the structured programming
techniques used later in the example programs. Structured
programming is an ordered, logical approach that makes it easier to
create even long, complex applications.

A Quick Review

In the HP 48, a program is an object, similar to a number, a variable
name, a list, an array, or any other object. It can be placed on

the stack, stored using a variable name, and evaluated (executed)
repeatedly.

A program begins with the open program bracket, %, and ends with
the close bracket, ». Between the brackets are HP 48 objects and
commands that are not executed until the program is run.

Writing a Program

To write a program, press (¢9) («»), then press keys for the commands
and other objects in the program. In many cases, the keys you press
are the same ones you would press to make the calculation from the
keyboard.

Introduction to HP 48 Programming 5

Here’s an example: The Pythagorean theorem computes the
hypotenuse of a right triangle, if the two sides are known. The formula

is:
H=+/A2+ B2

Here’s how to enter a program to find the hypotenuse, H, of a right
triangle, assuming the values for sides A and B are on the stack:

@E

v

§a950
@%@

As you key in the HP 48 commands, they aren’t executed. Instead,
the command name is written into the program. The keystrokes create
the following program.

6 Introduction to HP 48 Programming

Program Instructions Comments

% Beginning of program.

sE Squares the number A in level 1 of the
stack.

SKAP Exchanges the contents of stack levels 1
and 2.

SR Squares the number B now in level 1 of the
stack.

Adds the squares of A and B.

Takes the square root to find the
hypotenuse.

b End of program.

Now that you’ve entered the program, your next task is to save it
under a name.

Saving a Program

To save the program, you create it and press to place it on
the stack. Then you enter a name and press (STO). The program is
stored in the current directory.

For instance, to save the program under the name Hyp:

Keystrokes Display Comments
4 S SWAP S + T » Puts program on the stack.
(D Hyp Stores the program as Hyp.

If you look at the VAR menu after you save the program, you see the
program name in a label, like this:

HYF

If the name is a long one, then you see only the first four or five
letters. Even if you enter part of the name as lowercase letters, the

name in the menu is seen as all uppercase. Within the HP 48, though,
the program retains its name just as you entered it. If you enter

Introduction to HP 48 Programming 7

HYPOT, that’s the program name; and if you enter Hypot enuse, then
that’s the name, even though you see HYFOT on the menu display.

Running the Program

There are several ways to run a program:

m Press the menu key (in the VAR menu).

m Type the program name in the command line, then press (ENTER).
m Place the program name in level 1 of the stack, then press (EVAL).
m Use the unquoted program name in another program.

As a simple illustration, here’s how to find the hypotenuse of a
triangle with side A of 3 units and side B of 4 units:

Keystrokes Display Comments
3 2.88 Enters side A on the stack.
4 4 Puts side B on the stack.

5.84 Calculates the hypotenuse.

With sides A and B entered onto levels 1 and 2 of the HP 48 stack,
pressing HYF executes the complete program. The values for
sides A and B are “used up” by the program, and the result (the
hypotenuse, 5) is left on the stack when the program is done.

That’s HP-48 programming in a nutshell. Now let’s look at some ways
you can handle programs, and make them easier to understand and
use.

8 Introduction to HP 48 Programming

Conventions

Here’s a word about the conventions used in this book. When a
program (such as Hyp) changes the HP 48’s stack, you’ll see a table of
arguments and results, like this:

Arguments Results

2: side A |2:
t side B |1: hypotenuse H

This means that the program ezpects two arguments to be on the
stack; in this case, side A is in level 2 and side B is in level 1. The
program consumes these two arguments (leaving the rest of the stack
unchanged), and returns a value for the hypotenuse, H. The net result
is that two values are gobbled up by the program, and a single value is
left on the stack when it’s done.

If you’re recording and documenting your own programs (and you
should), an arguments-results table is a good thing to provide.

Many programs in this book have a neutral effect on the stack; they
expect nothing and leave nothing. When the stack is unchanged by a
program, the table of arguments and results isn’t needed.

Because of the structured programming techniques used in this book—
in which one program may call several other programs—intermediate
results are sometimes present when a program is called. When such

a result is present on the stack, but isn’t used by the program, you’ll
often see it in italic type, like this:

Arguments Results

2: 2: tagged number of wobulators

1: tagged number of wobulators |1: wobulator efficiency factor

In this example, the program in question doesn’t need anything on the
stack when it’s executed; and it adds the “wobulator efficiency factor”
to the stack. However, the “tagged number of wobulators” is also
present on the stack so it appears in italic type.

Introduction to HP 48 Programming 9

Now for the operation of this program, it doesn’t matter whether that
“tagged number of wobulators” is on the stack or not; this particular
program runs equally well with or without it. But in the overall

flow of things, the quantity will be used by a later program, so I've
included it for clarity’s sake. (You can omit these unused-but-present
quantities in your own documentation, or underline them or
something.)

Command Names

In this book, as in the HP 48 calculator, commands are always capital
letters:

FDIM COS RESET

Variable Names

HP 48 variables—and that includes programs, of course—can have
astonishingly long, detailed names, and can contain letters and digits.
You can’t use dashes or periods though!

In this book, programs and subprograms are shown with an initial
capital letter, followed by lowercase, or by caps and lowercase:

Sinel Getwals AddSine

This is just a convention that is used in this book, and you don’t have
to follow it. You can make your variable names all uppercase letters,
all lowercase, or any combination.

Names of Local Variables

Finally, local variables follow the same convention used in the owner’s
literature; that is, they’re all lowercase:

a3 C max

You don’t have to follow any of these conventions. But I find they
work for me, especially in differentiating among variables and
commands in long listings.

10 Introduction to HP 48 Programming

Structured Programming

Structured programming is good practice with any language from C to
Cobol. But it’s even more important when you’re working with the
HP 48. That’s because the very act of punching all those tiny keys to
enter a single long program is, frankly, arduous, and the frustration is
great if you make a mistake.

In programming, the natural tendency is hit the () («») key and
begin throwing in commands. But as the program grows, it becomes
harder and harder to find any errors that occur. Moreover, long
programs are more difficult to edit, because you have to use keys like
(¥) to move through the steps.

In structured programming, you break down each application into a
series of tasks or jobs that are done in order. Perhaps you break down
those tasks into simpler tasks. You arrange the tasks in the order

to be performed, always working to reduce each task into a series of
smaller ones.

You finally wind up with a list of very simple jobs, each of which
can be accomplished in a few keystrokes. The list itself is your main
program, and those individual simple jobs, or tasks, become your
subprograms.

For instance, here’s a list of tasks for an improved version of the
Pythagorean theorem program:

1. Get the value of side A.

2. Get the value of side B.

3. Compute the hypotenuse, H.
4. Label the output.

Introduction to HP 48 Programming 11

Writing a Main Program

Using the list of tasks, you can write a main program that shows them
all. Here’s the task list for the Pythagorean theorem calculation,
shown as a main program:

L

m D

omputeH

I I I v B e Y
w b
o o+ o+
i
—

With this program in the command line, save the program as
Hypotenuse:

Keystrokes Comments
Puts program on the stack.

() Hypotenuse Stores the program as Hypotenuse.

You have created and saved the main Hypotenuse program. Even
though you save it with a name that includes both uppercase and
lowercase letters, the menu display shows only uppercase characters:

HYFOT

See how easy it is to understand the main Hypotenuse program? The
program consists of nothing more than calls to other programs. In
this book, we call them “subprograms,” but there’s nothing special
about them. An HP 48 subprogram (or “subroutine”) is actually just
another program. Its name shows up in the menu display.

Using structured programming techniques, you break down your main
application into a series of bite-sized subprograms. You can write
each of the subprograms individually, test it to make sure it works
correctly, then include it in the main program.

What happens if you run Hypotenuse now? Remember, none of the
subprograms have been created yet. Hypotenuse is just a “shell” that
shows individual subprograms and the order in which they will be
executed. However, there’s no problem in running Hypotenuse. When
a program like Hypotenuse tries to execute a subprogram that is not

12 Introduction to HP 48 Programming

available in the current directory (or a higher one), the calculator
simply puts the name on the stack.

Keystrokes Display

HYROT 'GetR'
'GetB’
'ComputeH’
'Label’

Your next step is to write and store the individual subprograms.

Top-Down or Bottom-Up?

As you write your main program and subprograms, you have a choice
of at least two basic strategies:

m Top-down programming,.
m Bottom-up programming.

Top-Down Programming: In top-down programming, you write the
main program—the task list—first. In it, you include all the names of
the subprograms, in the order they’re called. Using descriptive names
such as GetA and ComputeH tells you exactly what each subprogram
will do; it’s like a notepad.

Bottom-Up Programming: In bottom-up programming, you create
the subprograms first, then write the main program. The HP 48

is particularly well suited to this technique, because to “write” a
subprogram name into the main program, you simply press its VAR
menu key.

Whether you’re using top-down or bottom-up programming, the
procedure for writing individual subprograms is the same. You write
the subprogram, store it, and test it before moving on to the next
subprogram.

Let’s enter the individual subprograms for the Hypotenuse program.

Introduction to HP 48 Programming 13

The GetA Subprogram

The GetA subprogram pauses execution, and gets a single value from
the user. It takes nothing from the stack, and leaves a single number
(the value of side A of a right triangle) on the stack when it finishes
running.

Writing the Subprogram: You enter subprograms just as you do any
program. (In fact, a subprogram is just another program in the eyes of
your HP 48.)

Program Instructions =~ Comments

Begins subprogram.

"Input A" Prompt string for INPUT command.

e Command-line string (an empty string) for
INPUT.

INPUT Pauses program to get one value.

oBJ=+ Converts from object to a number.

* Ends subprogram.

Saving the Subprogram: To save this subprogram as GetA:

Keystrokes Comments
Puts program on the stack.

(D GetA Stores the program as GetA.

Testing the Subprogram: GetA doesn’t need anything on the stack,
and it leaves a single value there. Before going on to the next
subprogram, you should verify that the current one works as it’s
supposed to. Press GETH to test it.

14 Introduction to HP 48 Programming

Keystrokes Display Comments

GETH Input A GetA prompts for input and
halts.

3 3.08 GetA leaves the value of 4 on
the stack.

The GetB Subprogram

The GetB subprogram is similar to GetA; it gets a single value from
the user, taking nothing from the stack. It leaves the value of side B
on the stack.

Program Instructions Comments

&

"Input E" Prompt string.

e Command-line string.

INPUT Pauses program to get one value.
OB.J+ Converts from object to a number.
¥

To save this program as GetB:

Keystrokes Comments
Puts program on the stack.

(D GetB Stores the program as GetB.

As with GetA (or any subprogram) you should test GetB before
continuing. GetB should pause and prompt for input of a single value,
then leave that value on the stack.

Introduction to HP 48 Programming 15

The ComputeH Subprogram

This is where the hypotenuse of a right triangle is computed.
ComputeH expects values for sides A and B to be in levels 2 and 1
of the stack. It plugs these values into the Pythagorean theorem to
compute the value of the hypotenuse, H. A single value (H) is left on
the stack when the program is finished.

Program Instructions Comments

Squares the number in level 1 of the stack.

SLAF Exchanges the contents of stack levels 1 and 2.

Squares the number now in level 1 of the stack.

+ Adds the squares.

I Takes the square root to find the hypotenuse.
Keystrokes Comments

Puts program on the stack.

(D) ComputeH Stores the program as ComputeH .

To test ComputeH , you need to supply it with two values on the
stack, then see that the correct hypotenuse is calculated. If you write
and test your subprograms in the order they’re called, the expected
values should already be on the stack now, which makes testing of
ComputeH easy. But if you like, you can supply the two values
manually:

Keystrokes Display Comments
3 3. 60 Enters value for A.
4 4 Enters value for B.
COMF 5,88 Calculates correct hypotenuse.

16 Introduction to HP 48 Programming

The Label Subprogram

The Label subprogram takes the hypotenuse and adds a tag for easy
identification. It removes one value from the stack, and returns that
value, tagged with the letter “H.”

Program Instructions Comments

&

"H" Puts the letter H on the stack.

+TAG Tags stack level 2 with the contents of level 1.
#

Keystrokes Comments

Puts this program on the stack.

(D Label Stores the program.

To test this subprogram, make sure one number is on the stack, then

Keystrokes Display Comments
5 LA

H: 5.84 Labels hypotenuse as H.

Running the Complete Hypotenuse Program

Now comes the acid test—running the Hypotenuse program. Because
we’ve practiced structured programming, and tested each individual
program in turn, there should be no surprises now. Run Hypotenuse
to find the hypotenuse of a triangle with side A of 3 meters and side B
of 4 meters:

Keystrokes Display Comments

HYEOT Input A Prompts for side A.

3 Input B Prompts for side B.

4 H: S5.08 Program calculates and labels

the hypotenuse.

Introduction to HP 48 Programming 17

Structured programming lets you create a long, fully-formed HP

48 application out of simple, easily-tested subprograms. Instead of
trying to build a single long program, it’s so much easier to create a
group of “subprograms” or “subroutines,” each consisting of just a
few keystrokes. Then you can test each subprogram individually and
get it working correctly before you proceed to the next one. When
all subprograms are written, you combine them into one bodacious,
world-beating application.

A Top-Down Programming Strategy

Using structured programming techniques means shorter, simpler
individual programs—but it also means you’ll have a lot of programs,
variables, and other objects floating around. There are a number of
strategies for managing programs. Here’s one that works for me.

HOME
Directories GII=X
Directories —————3 TEST DRAWIT

Programs 1 Test Init Menu Cleanup

Drawit Init Create Embellish Exit

Each complete “application” is placed in its own directory. For
instance, in the figure, Test and Drawit are applications, so each has a
directory. (I make the directories all capital letters, though this isn’t
really important.)

Within the directory, there’s a main program, named with the same
name as the directory. It’s always the first program in the directory,
so it shows up on the left of the menu label display when you press
(VAR). The other programs and objects in the directory are all

18 Introduction to HP 48 Programming

subprograms—that is, they’re all called, in one way or another, by the
main program.

Pressing the main program key starts the application running. From
here on, the main program takes over, calling each subprogram in
turn, and prompting for input when necessary. Often, the main
program displays a menu of choices. The whole point is that once you
press the main program key, that program takes over completely.

For instance, if you’re in the HOME directory and want to run Test,
you press | GF® [TEST to get into the TEST directory. Then press
"TEST to run the Test program. From that point, Test takes over,
prompting you for data, displaying menus for choices, and so on. You
don’t have to make any decisions about what subprograms to run, and
in what order.

A Painless Programming Procedure

If you’re careless when programming, you can easily wind up with
your program in the wrong directory; or worse, you might even hit
and lose all those valuable keystrokes. Here’s a safe and
pain-free procedure for creating an application program and its
individual subprograms:

1. Before doing anything else, make sure you’re in the directory where
you want to place the program:

s Use () for the home directory.
s Use (&) for the next level up.

m Use (VAR), (NXT), and the menu keys to move downward through
subdirectories.

2. Create the name of the program, and make it a directory. For
example:

(D) TEST () (MEMORY) CRDIR

3. Get into that new, now-empty directory:

TEST

Introduction to HP 48 Programming 19

4. Store only the program brackets as a program with that name:

@O

() Test

5. Now you have a “shell” program that you can fill in with
keystrokes. Just use to get into the program and begin
programming:

O TE5T @ EED

Hints for Entering Programs

The HP 48’s tiny keyboard, while well-designed, isn’t going to win any
touch-typing contests. Here are some helpful hints for getting your
programs into the calculator.

Keying in Alphabetic Characters

To follow the conventions used in this book, you’ll need to use both
uppercase and lowercase alphabetic characters. To get to locked
alphabetic characters, you press the (a) key twice. To then switch
between uppercase and lowercase, press () (@)

For instance, here’s how to enter lowercase alphanumeric characters,
and how to switch back and forth between uppercase and lowercase:

s (@) (@) (v) (@) gives you alpha-locked lowercase alpha, so the next
characters you type are lowercase, like abc.

m (6) (@) gets you back to uppercase alpha, so you can enter letters as
DEF.

m (&) () gets you back to lowercase alpha again: ghi.
m (a) gets you out of alpha mode.

With alpha mode locked, just use (4q) (@) every time you want to
switch from uppercase to lowercase or vice versa.

20 Introduction to HP 48 Programming

Use Menus and Commands to Help

Use built-in menus to help you. To avoid the tedium of typing, use the
menus and their commands as typing aids to put keystrokes into your
programs. Some menu commands, such as those in the EBRCH
menu, help you remember what options are available for commands
such as FOR and WHILE.

Use All the Alpha Keys

Remember, you’re not limited to the characters shown on the face
of the HP 48. There’s a whole slew of special characters, including
ones such as = and =, that you can use to make your program’s user
instructions, screens, and output labels even more accurate and easy
to read.

These special characters are shown in the owner’s manual and on the
back of the calculator’s quick reference guide. To “type” one of these
special characters, make sure the calculator is in alpha mode, then
press the right or left shift key () or (&), followed by the key that
gives your the special character. For instance, here’s how you’d get the
string "From here to «" into the display:

Keystrokes Display Comments
@ " Starts a text string.
@@ Selects alpha mode.
F F Enters first letter as
uppercase.
W@ Switches to lowercase alpha.
rom here to "From here Enters next letters as
to " lowercase characters (end with
a space).
) "From here Types the infinity symbol.
to e

Introduction to HP 48 Programming 21

Program Names and How They’re Used

Commands in programs must be capital letters because that’s what
the HP 48 expects. If you enter the word Evtal into a program, the
calculator won’t execute the EVAL command; instead, it will look for
a program or other object named Ewval.

The HP 48 is picky about program names, too. If you enter a program
and name it, say, Init, that name appears in the menu display as
'THIT . Well, that’s the way the HP 48 displays the name, but
internally it’s still Init. And if you try to call a subprogram called
INIT (or INit, or init) from another program, you’re going to come
up empty- handed. Your calling program has to call Init. Don’t say
you haven’t been warned!

Actually, it’s pretty easy to make sure you call a subprogram by

its correct name: just press its menu key whenever you want to
“write” the name. Menu keys make it easier to manage variables and
programs with long descriptive names because they can “key in” the
program or variable name for you.

What about length, anyhow? The menu key display shows only
four or five characters (depending on how fat the characters are), so
you may want to limit variable and program names to that length.
Personally, I find it’s easier to use longer, more meaningful names,
even though I don’t see the entire name in the menu display.

But think about what happens if you want to select Program3 from
the keyboard from among the following programs:

Program1
Program?2
Program3
Programj
Programb
Programé

The menu display looks like this:
FEOG PEOG FROG PROG FROG PREOG
You’re better off naming these programs Pgm1, Pgm2, etc.

Another consideration, if you’re moving programs to and from
the HP 48 and your personal computer, is how those names will
look in the new environment. A Macintosh computer, of course,

22 Introduction to HP 48 Programming

doesn’t limit names; but your DOS-based PC limits HP 48 names to
8 characters. So the HP 48 variable Mygraphics, for instance, becomes
MYGRAPHI. (not MYGRAPHI.CS) when it’s brought into the DOS

environment.

Faster Character Deletions

When it comes to character-by-character deletions, («) is somewhat
faster than (DEL). Move the cursor to the last character you want to
delete and use (<) to go backwards through the program commands.

Working with Directories

Particularly with structured programming, where each main program
is made up of several subprograms, the number of programs in your
HP 48 can become very large. Directories are essential for managing
programs and other objects—and for preserving your sanity as well.

Creating a Directory
To create a directory:
1. Press () to start the directory name.

2. Key in the alphabetic characters for the name. (Or place the name
on the stack.)

3. Press (&) CRUIR to create the directory.

Examining a Directory’s Contents

To see just the abbreviated names of objects in a directory, press
followed by the directory’s menu key to get into the directory. Then
use to review the names shown by the menu keys.

To display the names of menu pageful of objects in a directory, press
(«9) (REVIEW); this shows you the object names on the HP 48’s liquid
crystal display screen. When you’re done examining one page, press

to return to the stack display.

Introduction to HP 48 Programming 23

You can also see the full names and contents of every program in the
directory, viewing them all at once. Here’s what to do:

1. Press (&) to get to the directory above the one in which the
programs are located.

2. Press (p») followed by the directory name. For ins
the contents of a directory called SFX, press (¢#) §
brings the directory and its contents into the stack. You’ll see the
heading ' IR, followed by the name and contents of each individual
program.

3. Press (¥) to scroll down through the programs. The display shows
the word D'IFR, followed by the first program name, followed by the
program itself. The display might begin something like this:

LIE
Alarm

OO 286,88 1 BEEF 8,58 WAIT
4. When you’ve finished, press (the key) or (ENTER).

Reordering a VAR Menu

Each time you create and name a new object, including a program,

it goes to the beginning of the current directory’s VAR menu list. If
you’re doing top-down programming—in which you create the main
program first—your main program will always be at the tail end of the
directory list, making it somewhat hard to find.

It’s an easy matter, though, to reorder variables in the menu list so
you see the main program first, followed by the first program called,
and so on. Here’s how to do it:

1. Use () S'HRS" to create a list of all variables in the

directory.

2. Press (&) (or (¥)) to edit the list. It’s easiest to erase
variable names with or (¢). Use the VAR menu and press
individual menu keys to save time when you want to “type” names.

3. Press to put the edited list on the stack.

4. Use (&) UHEDER to order the list. ORDER places
programs and other objects into the menu in the order you’ve

24 Introduction to HP 48 Programming

chosen. Objects not in the list aren’t deleted. They’re simply
added at the end, so their menu keys will appear later, perhaps on
a later page of the menu.

There’s an even easier procedure to use. Suppose you have a large
number of variables, but care about seeing only the first few; the order
of the rest doesn’t matter. In this case, create a list using just those
variable names, and use it as the argument for ORDER:

1. Press (&) to start the list.

2. Use the VAR menu, and press the first menu key you want to see,
then the second, and so on.

3. Press to place the list on the stack.

4. Press () URDER to order the list. The variables in the
list will now appear beginning on the left side of the first page of
the VAR menu; all other variables in this directory will appear after
them.

If you have a large number of variables, this second procedure can
be significantly faster, since the HP 48 is actually reordering a small
number of variables instead of all of them.

Working with Programs

Editing and copying an existing program is usually easier than writing
an entirely new one. And there are plenty of times when you’ll want
to copy a program from one directory to another, rename a program,
or move it.

Viewing and Editing a Program’s Contents

To view and edit the contents of a program—or any variable—you
can:

1. Press C) and the variable name.

2. Press (o) to get into the program.
3. Do your editing.

4. Press to save the edited program.

Introduction to HP 48 Programming 25

When using (VISIT) to edit a program, remember this:
m To exit and save your changes, press (ENTER).

m To exit without saving the changes (preserving the previous

program version), press (the key).

Deleting Programs
To purge a program (or any other object):
1. Press () to put a pair of tick marks in the command line.

2. Press the menu key for the program. This puts the program name
between the tick marks (for example, 'Eigprog’').

3. Press (&) (PURGE).

The safest way to purge a directory is to use (PURGE), which means
that you must first delete all the individual programs and other
objects in it. To delete several programs at once, you can put them
into a list, then purge the entire list:

1. Press (&) to begin the list.

2. Press the menu keys for the individual programs or other objects.
Put them between the braces. For example, the display might look
like this: { Bigprog Littleprog Testprog 3

3. Press (¢9) (PURGE). All the objects in the list are deleted.

Copying, Renaming, and Moving Programs

On the HP 48, copying, renaming, and moving a program or other
object are quite similar. The general procedure is as follows:

1. To begin, put the program contents into the stack by pressing the
() key, followed by the program’s menu key.

2. Then press the () key, and enter a name between the ' * tick
characters. (If you’re copying, you can simply press the program’s
menu key to enter the name.) Now the program’s contents are in
level 2 of the stack, and the ultimate name is in level 1.

3. If it’s a move or a copy, use () and to get to the

directory where you want to place the program.

26 Introduction to HP 48 Programming

Press to store the program under the name you specified
(that is, the name between the tick marks).

If you’re renaming or moving the program, purge the original
program. (Go back to its original directory, press (') followed by

the program name, then press (&) (PURGE).)

Example: Renaming a Program. To rename a program, you give it a
different name within the same directory. For example, here’s how to
rename the program Myway to Yrway:

1.
2.

Press (o).

Press the M'YHAY menu key. This brings the contents of that
program into the stack.

Press () to place double tick marks in the command line.

Enter the name '+11ay between the tick marks.

. Press to store the program under that name. At this point,

there are two copies of the same program: Myway and Yrway.

. Press () M¥KAY again. Then press (&) to delete Myway,

leaving only Yrway.

Example: Moving a Program. Moving is similar to renaming. For
instance, suppose you want to move the program Test from a directory
called MYSTAT to the directory called PROGS:

HOME

]
| |
MYSTAT PROGS

Test

The procedure is as follows:

1.

Press (o) followed by the MYSTHT menu key to get into
the MYSTAT directory.

Introduction to HP 48 Programming 27

2. Press (;#) TEST to put the contents of the Test program on the
stack.

3. Press () and enter the new program name. If it’s going to be Test,
you can press TEST instead of typing the characters.

4. Press () (HOME) followed by PRUGSY to get into the PROGS
directory. Even though you’ve changed the current directory, the
contents of Test are still in level 2, and the name is in level 1.

5. Once you’re in the new directory, press to store the program
there.

6. Now you have two copies of the same program. If you don’t need
the original one, go back to the MYSTAT directory, bring the
original Test into the stack by pressing () TEST , then press (&)

to delete it.

What about Entire Directories?

You can copy, rename, and move entire directories at once. Just bring
the entire contents of the directory into the stack with () followed
by the directory name. Then move or rename those contents as you
would a single program.

The safest way to erase a directory is to use (&) to purge all
programs and other objects from that directory, Then purge the empty
directory itself.

To erase a full directory all at once, put its name on the stack, then
execute the PGDIR command ((¢g) (MEMORY) (NXT) (NXT) FGD'IR.
However, be very careful using this command—make sure you know
what’s in the directory before you erase it!

28 Introduction to HP 48 Programming

Debugging

The HP 48 has several features that help in writing and debugging
programs.

Using Subprogram Calls

Remember that if a subprogram doesn’t exist when called, the HP
48 does not produce an error. Instead, it merely puts that name
on the stack. As you write structured programs with many calls
to subprograms, you may want to use top-down programming and
purposely leave some subprograms undefined until they’re written.

Single-Step Debugging

An invaluable aid in debugging is running a subprogram one step

at a time to see how it works. After each step, you usually see the
stack, so you can examine—or even change—the current value before
proceeding.

To single-step through, say, a subprogram called Test:

1. Press ()

o put 'Test ' on the stack.

2. Press
3. Press to single step through the program.
4. Use: to abandon program execution. This doesn’t affect the

program itself.

' appears on the menu line, of course. What if your program
its own custom menu at some point, and you no longer see
. 7 Just press (PRG) CTRL to get back to the program control
menu, then resume single-stepping with = 88T

Single Step and Subprograms

When single-stepping through a main program, remember that

subprograms are ezecuted when called by the | 8T key. Thus, each

press of 88T executes the next subprogram To see every step of

the main program and the steps of each individual subprogram, use
instead.

Introduction to HP 48 Programming 29

General Programming Hints

Keep these hints and tricks in mind as you write your own programs.

How to Halt a Runaway Program

If you want to stop a running program and return to the stack display,

press (the key). You can use this technique almost any

time, even to halt a runaway program or an endless loop.

If you’re really in trouble—a program has taken over the keyboard and
has locked out all keys, for example—press and the (C) top-row
key at the same time.

How to Manually Test a Flag

Need to know the status of a system flag or a user flag? Here’s how
you can determine it quickly:

1. Enter the flag number.
2. Execute TEST FS? . If the flag is set, you’ll

see a 1 on the stack. If it’s clear, you’ll get a 0.

For instance, to test system flag —56, which gives the status of the
error and BEEP command beeps:

Keystrokes Display
56 -56

(PRG) . TEET (NXT)(NXT) FS57 @B.88

Thus, user flag —56 is clear, which means error beeps and the BEEP
command are on.

How to Manage Memory Usage

With a calculator as powerful and flexible as the HP 48, there are
often dozens of ways to accomplish any objective. In this book,
we’ve haven’t always taken the most direct or memory-saving route.
Instead, we’ve opted for clarity, even if it chews up a few more bytes.

30 Introduction to HP 48 Programming

This is particularly true when it comes to variable names and user
instructions, which we’ve made long and descriptive.

To check the available memory, use (&) MEM . If this
command shows you’re running low on memory, or if you start getting
Out of Memord or Insufficient Memory messages, you'll have to
take action. Here are some tricks you can use to save those valuable
bytes:

m Slash variable names to reduce the number of characters.
s Reduce user instructions.

m Use local variables, which go away after you’ve used them, instead
of global variables (which stick around).

m Don’t use recursive programs. (A recursive program is one that calls
itself.)

Another option, if your calculator permits it, is to add memory. The
procedure is fast and easy, and need not affect the programs and
variables you now have in your HP 48.

Never Assume Anything

Never assume the calculator will be “set up” a particular way when
you run a program. If your program needs degrees mode or should
display answers to two decimal places, be sure to specifically set all
those parameters—or prompt the user to do it.

Consider Different Object Types for Different Tasks

Remember the different types of objects available in the HP 48.
For instance, a program is surrounded by % and #, while a list has
£ and . A list lets you combine objects—including programs—for
manipulation.

Introduction to HP 48 Programming 31

Remember the Order of Evaluation

Keep the following evaluation rules in mind when you’re entering
formulas. The HP 48’s order of precedence, from first to last, is as
follows:

Parentheses (working from inside out).
Functions (SIN, LOG, etc.).

Factorial.

Power and square root.

Negation, multiplication, division.
Addition and subtraction.

S O N

If in doubt, use the Equation Writer to enter equations. It takes care
of most precedence problems for you.

Maintain Good Housekeeping

Use local variables whenever you can. Local variables are used only by
the current program, and vanish upon exit. They keep your directories
from filling up.

If your program generates lots of variables, including those that are
automatically generated by the calculator’s own functions (such

as PPAR), you may want to write a short routine to purge them

upon exiting. Otherwise, your directories are going to be so full that
looking for a particular program name will be like finding a needle in a
haystack.

Besides purging variables, your programs and subprograms should take
into account what they do to the stack. Sometimes, of course, you’ll
want a result or series of results left on the stack. But if your program
has left unneeded items on the stack, you can DROP the stack to
eliminate them upon exit.

Don’t Use Loops Unless They’re Necessary

An HP 48 “program” doesn’t have to run continually to be effective.
For instance, if you’ve programmed computers in another language,
such as BASIC, you know that to get a menu display, you need to set
up a continuous loop. With the HP 48, however, you can eliminate
menu loops, since the calculator itself can display menus.

32 Introduction to HP 48 Programming

Put Messages in Catalogs

If you’re writing long programs with lots of messages, you may want
to do what the pros do: make up a “catalog” of messages, and

call each one by its number when you need it. By putting all your
messages in one place (a list works particularly well), you make it
easier to check meaning, spelling, and grammar. It’s also easier to
compare them for consistency, or even translate them into other
languages.

A Final Word

Remember, most (all!) of the programs in this book can be modified
or improved. And you’re encouraged to do so. Modifying and
changing programs is a great way to learn.

Introduction to HP 48 Programming 33

Business and Finance

Dedicated business calculators (especially those from Hewlett-
Packard) are well-known in the business and financial community.

And with the right programs, the HP 48 can handle virtually anything
that can be done on one of these dedicated business machines.

Thanks to the HP Solve application, TVM (time, value, money)
calculations are remarkably easy, and the added benefits of the HP
48’s sophisticated graphics and analysis can help you create a peerless
business calculator.

This chapter shows a few programs for use in business and finance. As
you’ll see, the programs in this chapter aren’t complex, yet they’re
very useful.

Hypertext, The Information Dispenser

Giving an important speech or presentation? Need a few
memory-jogging notes to get you through your next meeting? The HP
48 can be a pocket-sized dispenser of valuable and timely information,
a veritable fount of knowledge at your fingertips. With its excellent
memory and comparatively large display, this calculator can handle,
organize, and display all kinds of data. You begin by writing a series
of “notecards” containing the notes, text, graphics, or formulas you’ll
need. Then when you go to that meeting or presentation, you whip
out the HP 48, go into the HYPERTEXT directory, and start pressing
menu keys—which you’ve thoughtfully prearranged in the order you’ll
need them. The menu display means you can take topics in any order,
too, ready to field questions or provide answers.

Business and Finance 35

The Hypertext Directory

Begin by creating a directory for HYPERTEXT, then get into that
directory:

(D HYPERTEXT

($2) (MEMORY) CRD IR

HYFER

The HYPERTEXT directory is where you’ll put all the subdirectories
and individual “notecards.” Inside this directory, you can create

a subdirectory for each topic. Within each topic, you can place
notecards—and more subdirectories, if desired—in the order you’ll
need them.

HOME

HYPERTEXT
|
| |

SALES MARKETING

Model Forecast People

Pricing DISTRIBUTION Promotion

Reasons Methods

If you use a structure like that shown in the figure, for instance, you
merely stride into that marketing meeting, pull out your HP 48,

and press the MAREK key. This gets you into the MARKETING
subdirectory. Within this subdirectory, your notecards are laid out in
order for your presentation:

FEICI DISTEI FROHM

36 Business and Finance

You press the FEICTI key, and key pricing information appears frozen
on the HP 48’s display. You confidently begin your speech, referring
to your notes as necessary. Distribution is a deeper subject, so when
you press DISTRT, you have several entries for it. It’s like outlining,
only you’re using directories and subdirectories instead of topics and

subtopics.

Get the idea? Now let’s look at an example of a hypertext notecard.

Pricing—Displaying Text

Pricing is a notecard that displays text. It’s really a short program
that pauses to display one screen of text, moves to the next screen
when you press a key, then ends. Pricing has no overall effect on the

stack.

Program Instructions

CLLCD
"PRICIMG DECISIOH:
Lefine taot mkts,

Leziagn mktng mix.
Eztimate price
asticity of dmnd."

L) I SN L N

[}
—
'

—
Lo
—
1y}
m

v FREEZE

& WARIT
CROF

CLLCD

Ezstimate mkt potntl.
Levelop positioning.

Comments

Clears calculator display.

Be sure to end each line
with an endline character

(@) () to get a

display as shown here.

Displays text string beginning on
row 1.

Freezes display until next key
press.

Waits for a key press.

Throws away the key address
generated by WAIT.

Business and Finance 37

Program Instructions Comments

"6.Estimate rlunt csts.
F.Analuze environment
factors.

2.8t pricing objctus,
9. Dbevelop price
structure.”

1 ISP
7 FREEZE
8 WAIT
CROFP

-

To save this notecard program as Pricing:

Keystrokes Comments
Puts program on the stack.

() Pricing Stores the program.

Pricing is a typical notecard program. It begins with a CLLCD (clear
LCD) command that gets rid of any previous information from the
calculator display. Then a long text string is placed on the stack. If
you enter this string by typing, be sure to place an endline character
(press (#) (&2)) at the end of each text line shown in the listing.

With a text string on the stack, the number 1 is entered next. This
puts the necessary arguments for DISP on the stack: the text string
in level 2, and the number 1 in level 1. When DISP is executed, it
displays the text beginning on the left side of row 1 in the display—in
other words, it fills up the calculator’s display screen.

How large can we make each screen of text? DISP can display up to
seven rows of text on the screen at once. The number of words you
can get in each row depends on whether the letters themselves are fat
(like M and D) or thin (such as I and t). A good rule of thumb is to
use about 17-20 characters per row.

38 Business and Finance

Some words may appear to trail off the edge when you’re typing them
in. Because of the different size of the characters in the display,
though, some of these “lost” characters may actually be visible when
the program is run.

After the DISP command, we execute 7 FREEZE, which freezes the
entire display until the next key press—or until the next DISP or
graphics command. This is an important point. We need some way to
halt the program, allowing display of that first screen, before we move
on to display the second Pricing screen.

For this we use WAIT, with 0 as its argument. WAIT normally pauses
execution for a specified number of seconds; thus, 2 WAIT gives you

a three-second breather, 18 WAIT pauses a program for 10 seconds,
and so on. The 0 argument works a little differently, though. The @
WAIT command waits for the press of any key before continuing. If
you don’t press a key, the program will be paused forever.

Here’s another advantage to using WAIT here: the key you press isn’t
executed. It’s swallowed up by WAIT, so you don’t have to worry
about annoying error beeps during your critical presentation.

Using 8 WAIT does have one effect that we need to handle, however.
Although it doesn’t execute the key you press to continue, WAIT does
put the keyboard address of the key on the stack. So if you press the
key, you wind up with 51 on the stack. For this reason, right
after executing @ WAIT, we use DROP. This drops the stack one level,
which gets rid of that key address.

In the case of Pricing, there are two screens of information, so the
program goes through the entire sequence twice. It clears the display
with CLLCD, displays a window of text using 1 DISF, freezes the
display with FREEZE and waits for a key press with WAIT. When
you press any key to continue, the program executes DROP to rid the
stack of the key address.

Pricing shows two screenfuls of text, then ends. You can, if you like,
put all the notes for an entire 30-minute presentation in one program,
so that successive presses of any key bring up screen after screen. But
this makes it difficult to change the order, or to refer back to your
earlier notes. You're usually better off with many programs containing
short one- or two-screen displays.

Business and Finance 39

Running the Pricing Notecard

To run a notecard such as Pricing, just press the menu key and view
the text.

Program Prompt or Display Your Action
PRICI

FRICIMG DECISION:
1.0efine tat mkts.
2.Eztimate mkt potntl.
S.bevelop positioninag.
LLesian mktna mix.
Eztimate price
lasticity of dmnd.

Ju

n

[

Now hit any key to see the next screenful of text for this notecard.

Program Prompt or Display Your Action
(or any key)
t.Estimate rlunt csts.

tima
" Analuze environment

toSet pricing objctuws,
evelop price

Figuring Depreciation

In business, when you purchase an asset like a building, a computer,
or a vehicle, its value gradually lessens over a period of time. This
lessening of value is known as depreciation, and it’s used in figuring
business expenses and for tax purposes.

To figure depreciation, you need to know the cost of the asset, its
life (how many years before it has no value left), and the method of
figuring depreciation. For tax purposes, an asset falls into a class with

40 Business and Finance

a specified life; for instance, a computer’s class life is five years, while
the class life for a building is 31.5 years.

There are several different formulas for depreciation. The simplest

is called the straight-line method. Using straight-line depreciation,

an asset loses a fixed percentage each year of its life. For example, a
computer with a life of five years loses 20% of its value each year.
Thus, if the computer costs $1000, it depreciates by $200 the first
year, $200 the second year, and so on. The formula for the amount of
straight-line depreciation for any one year is:

cost

life
Another method of depreciation uses the declining-balance formula,
in which the undepreciated balance (known as the book value) is
reduced by a certain percentage each year. This method is often used
by businesses because it places the largest amount of depreciation in
the first years of ownership. The formula for one year’s amount of
double-declining-balance (or 200% declining balance) depreciation is:

y—1
2 (1_ 2)
n n

¢ = cost of the asset
n = number of years in class life
y = this year

For the $1,000 computer with a class life of five years, this results in a
depreciation of 40%, or $400, the first year, 24% the second year, and
S0 on.

In figuring depreciation, it’s also useful to know how much of
an asset’s value (its book value) remains after deductions. For
double-declining-balance depreciation, this is given by the following

(- _"')

The Depreciation program and its associated subprograms let you
choose your type of depreciation. The program then prompts you to
input the cost, class life, and the year of the asset’s life in which the
depreciation occurs. Finally, you see a display with everything you
need to know.

Business and Finance 41

The Depreciation Directory

To create a directory for the depreciation programs, then get into that
directory:

@ DEPRECIATION
(S (WEWGRY) CRDIR

DEFEE

The DEPRECIATION directory will hold all programs and
subprograms for calculating depreciation. Any objects (including

programs and equations) that you enter and save will be placed in this
directory.

The Main Depreciation Program

The main Depreciation program changes the key menu to show

only two keys: STLIH and DDERL. Depending on which key you
press, Depreciation calls three subprograms to figure straight-line
depreciation, or it calls three subprograms to figure depreciation
using the double-declining-balance method. The main program takes
nothing from the stack and leaves nothing there.

Program Instructions Comments
Start of Depreciation program.
i Starts key list used by TMENU.

Begins defining list for first menu key.
"STLIH" First menu key display.

B

Begins defining program for first menu key.

Getuals Calls subprogram to get needed values.

Stline Calls subprogram to figure straight-line
depreciation.

Out put Calls subprogram for output.

B Ends first key procedure.

L]

Ends list for first menu key.

42 Business and Finance

Program Instructions Comments

{ Begins defining list for second menu key.
"DDBAL" Second menu key display.
« Begins defining program for second menu key.
Getvals Gets needed values.
Ddbalance Figures double-declining balance depreciation.
Output Shows output.
® Ends defining program for second menu key.
) Ends defining list for second menu key.
3 Ends key list for TMENU.
THMEHU Uses the above list to create two menu keys.

&

To save the program:

Keystrokes Comments
Puts program on the stack.

(D Depreciation Stores the program as Depreciation.

The main Depreciation program uses the TMENU (temporary menu)

command to define two menu keys that will appear in the display. For
its argument, TMENU needs a list that contains menu key labels and
definitions, in the following format:

{ {"labell" objectl > {"1abelZ" object2...Z

The list used by TMENU is actually made of several internal lists.
Each list contains a label for the key and an object—that is, an action
to be taken if that key is pressed.

In the case of Depreciation, the list specifies just two keys. If you
press STL IH, you call the subprograms Getvals, Stline, and Output.
Press BEBAL and you summon Getvals, followed this time by
Ddbalance, and finally Output. Notice that each key can execute
only a single object. Thus, to call more than one subprogram with

Business and Finance 43

each key, you have to place each set of subprogram names in its own
program; that is, you place the names between program brackets

within the list.

Getvals—Labeling Input from the Keyboard

The Getvals subprogram is the first one called, whether you press
STLIH or DDEAL. Getvals prompts for keyboard input of values for
cost, class life, and the year. It tags these values and leaves them on
the stack for later use by Stline or Ddbalance.

Arguments

Results

Z: tagged cost
2: tagged life

1: tagged year of life

Program Instructions

"Input the cost or
bazi=z of the asset"
"iCost: ¢

IMFUT

oe.J+

"Input the class
life in ysars'

"ilLifer "
INPUT

OB+

44 Business and Finance

Comments

Prompt string for INPUT.

Tag (on command line
during INPUT).

Pauses for input of cost,
displaying
above messages.

Converts keyboard input into a
tagged number.

Prompt string.

Command-line tag.
Pauses for input of class life.

Converts to tagged number.

Program Instructions Comments

"Enter this ygear {1 for Prompt string.
1=t, 2 for 2nd, etc.2"

":This year: " Command-line tag.
IHFUT Pauses for input of year.
OB+ Converts to tagged number.

&

When you enter the commands for Getvals, be sure to place () (<2))
to end lines within the message strings as shown. Otherwise, when you
run the program, lines of message text may extend past the edges of
the display screen.

To save this subprogram:

Keystrokes Comments

() Getvals Stores the program as Getvals.

Getvals is really nothing more than three INPUT commands, one after
another. Together, they leave three tagged values on the stack when
Getvals is finished.

Let’s look at how one of these INPUT commands works. INPUT takes
as its argument two strings from the stack. In level 2 is the prompt
string, which in this case can be up to three lines of text. In level 1 is
the command-line string. When INPUT is executed, it takes these two
quantities from the stack, displays them, and waits for input.

When you enter a number from the keyboard and press (ENTER), the
INPUT command actually combines the command-line string and
your input. By placing a leading and trailing semicolon around the
command line, we create a tagged object—without using the —-TAG
command.

Thus, for a three-year old asset with a cost of $1,000 and a class life of
five years, Getvals leaves the following quantities on the stack:

Business and Finance 45

Stack Level Contents

Level 3: Cost: 1888.68

Level 2: Life: 5.88

Level 1: Thiz year: 2.88

Because each of these quantities has been converted to a number with
OBJ—, you can use them as you would any number. You can add,
subtract, multiply, divide, just as if the number stands alone. As
you’ll see, you can easily convert a tagged value to a string, too.

Stline—Using Local Variables in Formulas

The Stline subprogram takes three values (cost, life, and year) from
the stack, and uses them to figure depreciation by the straight-line
method. It leaves four quantities on the stack: a string, "5t line",
the tagged cost of the asset; the amount of this year’s depreciation;
and the amount remaining to be depreciated.

Arguments Results
4: 4: "S5t lime"
2: tagged cost 3t tagged cost
2: tagged life 2: tagged depreciation
1: tagged year of life 1: tagged remaining value

46 Business and Finance

Program Instructions Comments
&
+ cost life year Creates local variables.

% Begins defining
procedure for local
variables.

"S5t. line" Places this string on the
stack.

cost Places the value of this
variable on the stack.

‘cost-slife’ EVAL Calculates depreciation
and places it on stack.

"This vear" »TAG Adds tag to depreciation
value.

'cost-year#costslife' EVAL Calculates remaining
value.

"Remaining" »TAG Adds tag to remaining
value.

% Ends defining procedure
for local variables.

® Ends program.

To save the program:

Keystrokes Comments
Puts subprogram on the stack.
() Stline Stores the Stline subprogram.

Using local variables in this subprogram makes it much easier to follow
than if we’d done all these depreciation calculations on the stack. The
program begins by taking three quantities from the stack and creating
the local variables cost, life, and year. Because we’ve used meaningful
names, anyone who comes across this program, say, 100 years from
now will know what values it needs.

Business and Finance 47

In order to create local variables, we have to immediately follow their
declaration with a defining procedure. Here, as is often the case, the
defining procedure is a program, enclosed between program brackets.

The defining program first places the string "5t 1ine" on the stack.
Our Output program is going to use this, and it will also use the value
for cost, which we place on the stack after the string.

The formula for any year’s depreciation is the cost of the asset divided
by the number of years of its life. It’s a simple matter to turn this into
the formula 'cast~1ife', then perform that calculation with the
EVAL command. We tag the result using the "Thiz g=ar" tag and

the - TAG command.

Similarly, the formula for the asset’s remaining value (another quantity
that’s prized in accounting and tax circles) is given by the cost minus
the total depreciation to date; or 'cost— ysarscost-life’.

Again, within the program we use EVAL to get a result from

this easy-to-read formula, and we tag the result with the string
"Remaining" for later use.

Ddbalance—Different Names for Local Variables

Ddbalance is very similar to Stline; it takes the cost, number of years
of total life, and age in years from the stack. (They were placed
there by Getvals, remember?) Ddbalance uses these quantities to
calculate the amount of depreciation by the double-declining-balance
method, and returns four quantities to the stack: a string describing
the method, the cost, the depreciation for this year, and the amount
remaining for depreciation in future years.

Arguments Results
41 4: "z2p08 DE"
2t tagged cost It tagged cost
2: tagged life 2: tagged depreciation
1: tagged year of life 1: tagged remaining value

48 Business and Finance

Program Instructions Comments
Begins program.
+Cocny Creates local variables.

Begins defining procedure for
local variables.

z28a De" Puts string on stack.

c Puts value of ¢ (cost) on stack.

)

'2¥cemECL-2om M g—10 Formula for this year’s

depreciation.
EVAL Calculates depreciation, returns
result to stack.
"Thiz wear" *TAG Tags depreciation result.
'exdl-2em My EVAL Calculates remaining value.
"Remaining" *TAG Tags remaining value.

Ends defining procedure.

® Ends program.
Keystrokes Comments
(D) Ddbalance Stores Ddbalance program.

As in the Stline program, Ddbalance converts the three values on the
stack to local variables before doing anything else. Those values were
placed on the stack by the preceding program, and they’re always in
the same order, of course. But compare Ddbalance and Stline; notice
that although each expects the same values from the stack, we use
different variable names to refer to them within the subprogram. For
instance, in Stline the variable is cost, while in Ddbalance it’s c.

Here the local variables are called ¢ (for cost), n (for total number of
years of life), and y (for this year), to correspond to the formulas
we’re using. Because local variables are lost when the program is
finished running, you can use whatever names you want within the
program.

Business and Finance 49

As with Stline, when Ddbalance is finished running, it leaves four
quantities on the stack: a string (this time the string is "Z@8 DE");
the tagged cost of the asset; the tagged amount of depreciation for this
year; and the tagged remaining value of the asset after this year. Now
we’re ready for the Output subprogram.

Output—Combining Answers into a Single Display

The Output subprogram takes four values from the stack, converts
them to local variables, and combines them to create a detailed,
easy-to-read output display. It also leaves the tagged values for this
year’s depreciation and remaining value on the stack.

Arguments Results

4: identifying string 4:

oy

! tagged cost

¢ tagged depreciation

)

2: tagged depreciation

1: tagged remaining value 1: tagged remaining value
Program Instructions Comments

& Begins program.

+ method cost depcn Creates local variables.
rualue

Begins defining procedure for local
variables.

"DEFRECIATIOHN Begins text string for use by DISP.

Blank line (that is, a newline
character)

End of text string.

cost Puts local variable cost in stack.
+5TR Converts to a string.
+ Adds the two strings.

50 Business and Finance

Program Instructions Comments

" (Put a newline character after the

quotation mark.)

"o+ Adds the newline character to the
string.

"tMethod: " + Adds this word to the string.

method Places the string from method in the
stack.

+ Adds the two strings.

(Again, put a newline character after
the quotation mark.)

"o+ Adds the newline character to the
string.

depcn Places the value of depcn in the
stack.

+5TR + Converts value to a string, and adds
it.

" (Put a newline character after the
quotes.)

"o+ Adds another newline.

ruvalue Gets the value of rvalue.

*5TR + Converts to a string, and adds to the
display string.

CLLCD Clears the calculator’s liquid crystal
display.

1 DISP Displays string beginning on line 1.

7 FREEZE Freezes all parts of display until next
key press.

depcn rwalue Leaves two values on the stack.

& Ends defining procedure for local
variables.

3 Ends program.

Business and Finance 51

To save the Output subprogram:

Keystrokes Comments

(D Output Stores the subprogram.

In this program, we take the four quantities passed from the preceding
program (either Stline or Ddbalance) and put them in a long string for
display by DISP. The DISP command uses as its argument a string in
stack level 2, and a number in level 1. The string is what’s displayed,

and the number tells DISP where (that is, what line of the display) to
begin showing it.

To create the display string, we begin with a headline,
"DEPRECIATION". Before we end this string, though, we add a
couple of newline characters ((») (<2)), which has the effect of adding

a blank line before beginning a new one.

Next we bring the value of the cost variable into the stack. The value
is a tagged number, so both the tag and the value appear. When

the =STR command is executed, it converts the entire quantity—
including its tag—to a string. If cost is $1000, the stack looks like
this:

Stack Level Contents
Level 2: "DEPRECIARTION
Level 1: ":Cost: 10686.88"

Thus, when + is executed, the string in level 1 is added to that in
level 2, creating one single long multi-line string. We add another
newline character, then bring the rest of the variables into the stack
and add them to the string, too.

Notice that we add the word "Method" to the string before adding
the value of the variable method. Also notice that because "Met hiod"
is already a string, we don’t have to use =STR on it.

52 Business and Finance

After we’ve added all the necessary labels and the four variables to the
display string, we execute 1 DISP to exhibit that string beginning
with line 1 of the HP 48’s display. The display looks something like
this:

DEPRECIATION

:Cost: 1080,80
tMethod: St line
tThis year: 288.0606
tRemaining: 488,088

If we didn’t throw in a FREEZE command here, you’d see the display
only for a fleeting moment. By adding 7 FEEEZE before exiting the
program, we guarantee the display will remain until the next key
press.

Just before exit, we use the local variables depcn and rvalue to place
these two quantities on the stack. They’re tagged, of course, for easy
identification, so you can use them in other calculations.

Running the Depreciation Program

To run the Depreciation program, just hit the DEFRE key. This
presents you with a pair of menu choices, STL IN and DDEHL. Then
you can use the program to compare depreciation using these two
alternatives.

For instance, suppose you purchased a computer for $3250, and you
want to see how much depreciation to allow in the first year. Its life is
five years.

Business and Finance 53

Program Prompt or Display Your Action
DEPRE
STLIH
Input the cost or

bazis of the asset

tCost: 3250

Input the class
life in uears

tLife: 5 (ENTER

Enter this uear (1 far
1st, 2 for 2nd, e=tc.?

tThis year: 1 (ENTER

DEFRECIATION

tCost: 22568.6008
tMethod: St line
tThiz uear: £58.00
tRemaining: Z2E88.008

Now compare the amount you can take in the first year using straight
line depreciation with that allowed by the double-declining-balance
method.

54 Business and Finance

Program Prompt or Display Your Action
DDBRL

Input the cost or
basis of the asset

:Cost: 3250

Input the class
life in years

Lifes 5 ENTER)

Enter this year (1 for
1st, 2 for 2nd, etc.?

tThis year: 1 (ENTER

DEPRECIATIOHN

tCost: 2256.0A0
tMethod: 286 DB
:This uear: 1388.6008
tRemaining: 1958.68

After these two depreciation calculations, the following values are left
on the stack:

Stack Level Contents

Level 4: This year: &658.08

Level 3: Remaining: 2680.680

Level 2: This uear: 1380.80

Level 1: Remaining: 1950.68

You may have noticed that using double-declining-balance
depreciation, the asset is never fully depreciated to zero. For

this reason, tax authorities usually permit you to switch to the
straight-line method any time during the life of the asset. You make
the switch in the first year the amount of depreciation is greater using
straight-line.

Business and Finance 55

Compound Interest Amount

Who in our society hasn’t been exposed to the vagaries of compound
interest? Whether it’s a savings account, an auto loan, or a
“revolving” credit balance that seems to grow exponentially,
compound interest touches all of our lives in some way.

In compound interest, the interest earned on a sum (the principal) is
added to that sum, and interest is then earned on the entire amount.
The formula for computing compound interest is:

mt
a=p(1+2)
m
where

P = amount of principal

r = interest rate per year, expressed as a decimal
m = number of compounding periods per year

t = time; that is, number of years

A = amount accumulated at the end of ¢ years

Looking at this equation, you can see that it won’t be too difficult to

solve for the amount, A. But what if you want to know the number of
years, t, that it will take to accumulate a certain sum, or the effective
interest rate, r, given an amount and principal?

When you have complex equations with many interacting variables,
the easiest way to handle them is with the HP Solve application. With
HP Solve, you enter and store the equation, then see a menu of that
equation’s variables in the display. HP Solve lets you enter the known
variables, then solve for an unknown. It’s a lot easier than trying to
write a program to do the same thing.

Keyboard Example of HP Solve

For instance, let’s suppose you want a million dollars when you retire
20 years from now. Here’s how you could use HP Solve to find the
total amount you’d need to invest now, assuming an interest rate of
7.5% compounded quarterly:

@ EEDD
A

Q)
PHOO)IPr@m
HOOHOmtE

56 Business and Finance

Store this as the current equation:

o)
STER®

Then use the SOLVR menu of variables to find the amount. First
input the known variables:

Keystrokes Display Comments
SOLVE Displays SOLVR menu.
PORAT 1,008,800, 00 Enter amount.

o o8.88 Enter interest rate.

m: 4,80 Enter compounding
periods per year.

t: Z@.@8 Enter time in years.

Then solve for the principal:

Keystrokes Display Comments

@

P: z226250.27 The required principal.

This shows you need to invest $226,250.87 in order to have a million
dollars 20 years from now.

The Compound Directory

To create a program for compound interest, begin by creating a
directory for the Compound program and its subprograms:

() COMPOUND
@ CRDIR

COME

The COMPOUND directory will hold all programs and subprograms
for this application . Any objects (including programs) that you now
enter and save will be placed in this directory.

Business and Finance 57

The Main Compound Program—Programming HP Solve

Using the HP Solve application means you don’t have to write
complicated programs. With HP Solve, the hard part—the linking
of many variables in a formula so you can solve for any of them—is
done for you. However, you can surround HP Solve with a shell that
automatically loads the correct formula, provides user instructions,
and cleans up when it’s done.

The advantage of programming an equation is simplicity: you press
one of the VAR keys (for example, ‘COMP for the Compound
program) and you get:

m The correct equation.
m The HP Solve SOLVR menu of variables for that equation.
m User instructions on the screen.

The disadvantage is that all those variables used in the formula remain
in your VAR list when you’re through. However, you can purge the
variables with a cleanup routine.

Now let’s look at the main compound interest program, Compound.
This main program merely calls a series of subprograms in order. By
itself, Compound takes nothing from the stack and leaves nothing
there, although as you’ll see, HP Solve leaves its results on the stack,
ready for you to use them in other calculations.

Program Instructions Comments

B

Init Initializes calculator and stores equation.
M=al First part of user instructions.

M=o Second part of user instructions.

Cprompt Halts execution and displays SOLVR menu.
Cleanup Purges variables and shows VAR menu again.
kS

58 Business and Finance

To save this main compound interest program as Compound:

Keystrokes Comments
Puts program on the stack.

() Compound Stores the program as Compound.

Now let’s look at the individual subprograms and what they do.

Init—Specifying a Built-In Menu

The Init subprogram “writes” the compound interest formula into the
stack and stores it as the current equation. Then Init displays the HP
Solve menu of variables—which, of course, are the variables from that

current equation. Init also sets the display mode to show two decimal

places, and ensures that the time doesn’t appear during display of user
messages. This subprogram has no overall effect on the stack.

Program Instructions Comments

&

'A=P*(1+r/m>"~(m#%¥t)>' Compound interest formula.

STER Stores formula as current equation.
38 MENU Displays HP Solve SOLVR menu.
-48 CF Turns off display of time.

2 FIX Shows numbers to two decimal places.
»

To save this subprogram:

Keystrokes Comments
Puts program on the stack.
() Init Stores the program as Init.

This subprogram begins by “writing” the compound interest formula
into the display and placing it on the stack. When you surround the

Business and Finance 59

formula with tick marks ('), it means the formula won’t be evaluated
by a running program. Instead it’s merely placed on the stack.

Next, Init executes the STEQ (store equation) command. STEQ
stores the formula as the current equation. This equation and its
variables are usable within the current COMPOUND directory, but
don’t affect operations and variables in the rest of the calculator.
Thus, the current equation affects only the current directory; other
directories may have different current equations.

With the equation stored, Init executes Z& MEHLI. The MENU
command lets you call up any of the built-in calculator menus; and
28 MEHMU specifies HP Solve’s SOLVR menu. It’s just as if you’d

pressed () SOLVE.

Clearing system flag —40 with the —48 CF instruction keeps the
internal timer display from appearing in the middle of some later
messages. And the 2 FIX statement specifies that numbers will be
shown to two decimal places (that is, as dollars and cents).

If you press . IHIT to run this program, you’ll find that the HP 48
switches to its HP Solve application, and you see the menu of HP
Solve variables at the bottom of the display:

A i P i R i M T T ERPR=

In fact, this is all you really need to run the HP Solve application.
You can plug known values into those variables, and use the (&)

key followed by the variable key to solve for a value, just as in the
keyboard example. But we’re going to use additional subprograms to
include some memory-jogging instructional messages. We’ll also add
a cleanup routine, so that each time you run Compound, you’ll start
with a clean slate of variables.

Msg1—Displaying a Message without FREEZE

The Msgl subprogram displays the first of two user messages. It waits
for you to press any key before continuing, and has no overall effect on
the stack.

60 Business and Finance

Program Instructions Comments
E:3

CLLCD Clears previous
messages from display.

"COMPOUND INTEREST

Enter =sach known

quantity, then press Message for display by
its menu kedg. To solve DISP.

for a quantity, press

the [+] kedy, followed

buy the menu keg."

1 bISF Displays message
beginning on line 1.

-1 MWAIT Waits for key press.

DROF Throws away key

address from key press.

To save the Msgl program:

Keystrokes Comments
Puts program on the stack.
(D Msgl Stores the program.

To begin, a CLLCD command clears the HP 48’s liquid crystal
display of any previous messages or information. Then Msgl places a
seven-line message string on the stack, followed by the number 1. (As
usual, place endlines, () (&2), after each line of the message string.)
The message itself tells users the name of the program, and how to
run it.

DISP takes two quantities from the stack, the message string from
level 2 and the number from level 1. Since the number is 1, DISP
displays the message string beginning on line 1 of the calculator’s
screen—that is, at the top. This seven-line message pretty well fills up
the available display area.

Business and Finance 61

With the message string now displayed, WAIT gives you time to read
it. Because nothing happens between the execution of DISP and the
WAIT, the display isn’t updated, so we don’t need to use FREEZE
here.

Both @ WAIT and —1 WAIT will wait for the press of any key before
continuing. Here we’ve used —1 WAIT, so that along with the message,
you also allow the user-key menu to be updated. This lets you see the
latest menu—that is, the menu of SOLVR variables.

After reading the message displayed in Msg1, you press any key

to continue to the next subprogram. However, with 0 or —1 as its
argument, WAIT not only waits for you to punch a key, but also
returns a number representing the address of the key that was pressed.
That’s why we need to DROP the stack before exiting Msg1; the
DROP “throws away” that useless address.

Msg2—Displaying a Second Message

Msg2 displays a detailed explanation of each of the quantities called
by the list of SOLVR variables. Like Msgl, it has no effect on the
stack.

Program Instructions Comments

-
“

CLLCD Clears previous display.

"P=Principal amount

r=yearly interest rate

as decimal (.87,etc)

m=no. of compounding Text string for display
periods per dear by DISP

t=no. of dears

A=Amount after t uears"

1 DISP Displays text beginning
on line 1.

8 WAIT Waits for a key press.

DROP Throws away key

address left by WAIT.

62 Business and Finance

Keystrokes Comments

Puts program on the stack.
(O Msg2 Stores the program.

Although the message itself is different, Msg2 is very similar to Msg!.
The only real difference lies in the use of WAIT. We still want to
display the message while waiting for a key press, so we can use either
8 WAIT or -1 WAIT here. Now in Msgl, we needed —1 WAIT, so that
the menu keys could be updated while waiting. Because those keys
have now been updated, though, we don’t need to use —1 WAIT here;
we can use @ WAIT instead. @ WAIT merely waits for you to press any
key, while maintaining the previous list of menu keys.

At this point in the Compound program, we want to give control
back to the user temporarily, to allow the use of the SOLVR menu of
variables. So the next subprogram that is called is Cprompt.

Cprompt—A Good PROMPT Application

The Cprompt subprogram temporarily suspends execution of
Compound, giving complete keyboard control back to the user.
Cprompt provides a message to explain what’s happening. By itself,
Cprompt has no overall effect on the stack, but when execution is
resumed, it’s highly likely that a computed value will be present there.

Program Instructions Comments

%

"Mow in HP Soluve. Prompt string for use by PROMPT.

Press CONT when done."

FROMPT Displays prompt string, returns
control to keyboard.

»

Keystrokes Comments

Puts this short program on the stack.

(D Cprompt Stores Cprompt program.

Business and Finance 63

At this point in Compound, it’s time to put values into the SOLVR
variables and make some compound interest calculations. Temporarily
returning control to the keyboard like this is a perfect application for
PROMPT or HALT. And as it happens, Cprompt is really nothing
more than a PROMPT command.

PROMPT takes as its argument a text string, which it displays at
the top of the HP 48’s LCD. PROMPT also returns control to the
keyboard—but it expects that when you’re done pressing keys, you’ll

press (&) to continue. If you forget to press (CONT), you’re
likely to find the word HALT in the status area.

When you finally do resume execution, Compound calls Cleanup to
take care of some housekeeping before it ends.

Cleanup—A Programmatic Purge of Variables

After you’re done computing compound interest, you’re left with
the menu of SOLVR variables in the current directory, along with
all of Compound’s subprograms. Cleanup purges the variables, and
redisplays the VAR menu. It doesn’t affect the stack.

Program Instructions Comments

THAPrmt X Makes a list of variables.
FLRGE Deletes those variables.

2 MEHU Displays the VAR menu again.
Keystrokes Comments

() Cleanup Stores the Cleanup program.

The PURGE command deletes objects from the HP 48. The PURGE
command, which is available on the keyboard as (¢) (PURGE), can take
a single variable name as its argument, or it can take a list of names.
In the Cleanup subprogram, we supply PURGE with a list of variable

64 Business and Finance

names—the very names that form the SOLVR list of variables, left
over when you’re done making compound interest calculations.

Using PURGE to clean up is an excellent way to get rid of unneeded
objects before exiting a program. You can use PURGE in this manner
to erase SOLVR variables and delete reserved names, such as PPAR
and LDAT, that have been created in the current directory by the HP
48.

Finally, Cleanup executes 2 MEHLI. This does nothing more than
display the updated list of variables; it’s exactly as if you’d pressed the
key now. However, changing back to the normal VAR menu on
exit provides “visual feedback” that something has happened, and
makes it easy for the user to find COMP for running the program
again.

Running the Compound Interest Program

Now let’s run that compound interest program to see how much
we’d need to invest now in order to have a million dollars 20 years
from now. Again, assume an interest rate of 7.5%, and quarterly
compounding. Press COMP to begin the program.

Program Prompt or Display Your Action
COME

COMPOUMD IMTEREST

Enter esach known

quantity, then press

its menu keg. To soluve

for a quantitu, press

the [+] keg, followsd

bu the menu kew. (or any key)

Now you see the next message.

Business and Finance 65

Program Prompt or Display Your Action

FP=Princirpal armount
-=ygearly interest rate
as decimal (,87,etcl
m=no. of Compounding
Feriods per Jear

t=no. of dears

A=Amount after t wears (or any key)
How in HF Solwe
Freszs COMT when dons.

The HP 48 is now in HP Solve, all ready for you to key in quantities
for the different variables. The menu of SOLVR variables is shown at
the bottom of the display:

A i P v ROt M T G ERFRE=

Using this menu, you can store the known values in their variables,
and solve for P. The amount, A, is $1,000,000.00. Interest rate
ris 7.5% (that is, .075), and the time, ¢, is 20 years. Number of
compounding periods (m) is 4 per year.

Keystrokes Display

]

The answer is shown in the display. To continue the program, and
clean up the current directory:

@@

66 Business and Finance

That does it! You’ve quickly calculated the necessary principal value.
And the VAR menu keys for the current directory are once again
displayed.

Business and Finance 67

4

Statistics Programs

The HP 48 has several statistics functions built into the calculator.
Like other functions, you can use them individually or as parts of a
program. This section illustrates a few techniques for getting the most
from the statistics features of the HP 48.

Normal Probability

A normal distribution, with the mean in the middle, produces a
bell-shaped probability curve. The probability that a given individual
z is between a and b can be computed using calculus, of course, but
most statistics texts use a method that involves finding the standard
score, and then using a table to determine probability.

The HP 48’s UTPN function gives the probability of something above
a particular point—the probability that you’ll be in the top 10 percent
of your class, for instance. It requires three quantities in the stack.

Statistics Programs 69

Stack Level| Contents

Level 3: Mean, T
Level 2: Variance, s2
Level 1: Value of z

Given these quantities, the UTPN function returns the upper-tail
probability; that is, the probability represented by the area under the
curve from z to the right.

Keyboard Example

To find the probability of the area from a to b, we need to subtract
the upper-tail probability of a from that of b. For instance,
intelligence quotients are normally distributed with a mean (%) of 100
and a standard deviation (s) of 10.

What good is knowing the probability of a normal distribution?
Suppose that a hot new electronic dating service, Compumeet, intends
to provide you with an introduction to someone chosen completely

at random. You can use the following procedure to determine the
probability that Mr. or Ms. Right has an IQ between 95 and 105:

Keystrokes Display Comments

100 166, 68 Enter the mean, 7.

10 16,66 Enter the standard deviation,
s.

) 188,88 Square it to get the variance,

2

s2.

95 25 Enter the value for a.

(MTH) FEOE (NXT)

UTEH B.&59 Compute the upper- tail

probability for a.

) 95, BE Recall levels 1, 2, and 3 (the

last arguments) to the stack.

70 Statistics Programs

Keystrokes Display Comments

) 184, 08 Drop the stack to leave mean
and variance in levels 2 and 1,
respectively.

105 8.31 Compute upper-tail
probability for b.

@) a.38 Subtract upper-tail probability

of b from that of a to get
probability between a and b.

The probability is .38, or about 38 percent that a person chosen at
random will have an IQ between 95 and 105.

The NormalProb Directory

To create a directory for the normal probability program and
subprograms, then get into that directory:

(D) NORMALPROB

) CRDIR

OrRM

The NORMALPROB directory will hold all programs and
subprograms for calculating normal probability. Any objects
(including programs) that you enter and save will now be placed in
this directory.

The Main NormalProb Program

Here’s the main program for computing the probability from a to

b. It prompts for the quantities as they’re needed. The program
determines probabilities of individual values for a normal population.
The NormalProb program requires nothing on the stack when it
begins; when finished, it leaves your tagged a and b values in levels 3
and 2, and it leaves the calculated probability in level 1 of the stack.

Statistics Programs 71

Arguments Results
3: 3: tagged value for a
2: 2: tagged value for b
1: 1: tagged probability
Program Instructions Comments
Init Initializes HP 48 calculator.
Meszage Displays program title and user

instructions.

Getmean Prompts user to enter the mean.
Getsdew Prompts for standard deviation.
Geta Prompts for point a.
Geth Prompts for point b.
Compute Computes normal probability.
Label Labels the output.

=3
RS

To save the main NormalProb program:

Keystrokes Comments
Puts program on the stack.
(D NormalProb Stores the program as NormalProb.

This is about as straightforward an example of structured
programming as you’ll find anywhere. NormalProb calls several
subprograms in turn, and each one performs a single task. Init,
of course, sets up the HP 48 for this calculation. The Message
subprogram displays some user instructions, explaining what the
program does.

72 Statistics Programs

Getmean, Getsdev, Geta, and Getb all prompt the user to input
quantities needed for the actual probability calculation. Each of these
subprograms gives the user an opportunity to verify (or change) the
value entered. Finally, Compute uses the UTPN command to calculate
normal probability, and Label tags and displays the final answer.

Init—Answers to Two Decimal Places

The first program called by NormalProb is Init, which initializes
the HP 48 calculator to display answers to two decimal places. Init
doesn’t affect the stack.

Program Instructions Comments

&

2 FIX Sets HP 48 to display answers to two
decimal places.

w

To save the program:

Keystrokes Comments
Puts program on the stack.
() Init Stores the program.

Although this subprogram as now written merely sets the display
mode for the calculator, you could also use it for other settings as well.

Message—Halting for a Display

The Message subprogram halts to display a main title and some brief
user instructions. It has no overall effect on the stack.

Statistics Programs 73

Program Instructions Comments

CLLCD Clears the calculator’s liquid
crystal display.

"MORMAL FROBAEBILITY

Frobability between

two pointzs on normal Text string for display by
distribution. You'll DISP. Place endline characters
be prompted to enter () (&) at the end of each
left pointy then right line.
point. Do COMT now, "
1 DISF Displays text beginning on
line 1.
7 FREEZE Freezes the entire display until
next key press.
HALT Halts program until (&)
is pressed.

To save this subprogram:

Keystrokes Comments
() Message Stores the program in the current
directory.

The Message subprogram begins with a CLLCD command, which
clears any previous information from the calculator display. If you
don’t use CLLCD, the later DISP command simply writes over the
existing display; and any areas unaffected by the new text or message
remain just as they were. We use CLLCD to guarantee a clean slate.

Then Message places a long text string in the stack for later use
by the DISP command. This string is so long, in fact, that when
displayed, it fills the HP 48’s screen. As you enter the Message

74 Statistics Programs

subprogram, be sure to press (¢») at the end of each text line, to
make sure the entire message is displayed with no scrolling.

The DISP command requires two arguments on the stack: a text
string in level 2, and a number in level 1. When executed, DISP places
that text string in the calculator display, with the first character of
text beginning on the row specified by the number. Thus, "Text "

1 DISP would place the word Text in row 1 (the top row) of the
display, while "H=11a" 4 DISF would put this familiar greeting in
the center row.

The 7 FREEZE command freezes the entire display, preventing it from
being updated until the next key press. Without this command, you’ll
see the message displayed by DISP all right, but it will immediately
disappear as soon as the stack is updated. Thanks to FREEZE, the
stack can be working and changing behind the scenes, while you read
the message frozen in the calculator display.

There are a couple of ways to pause an HP 48 program, but in
Message we’ve chosen to HALT it. The HALT command suspends
program execution and returns control to the keyboard; to continue

the program, you press («9) (CONT).

With HALT, you don’t have to continue the program now. Instead,
you can go off and use the statistics keys to input data, or compute
mean or standard deviation, or perform other calculations. Then you
can come back and continue on to the next subprogram.

Getmean—Verifying Input with PROMPT

The next subprogram call is to Getmean, which prompts the user for
input of the mean value. Before the subprogram continues, the user
can double-check the value, and change it if necessary. Getmean takes
nothing from the stack, and leaves the tagged value of the mean there
when it has completed execution.

Arguments Results

1: 1: tagged mean

Statistics Programs 75

Program Instructions Comments

&

"Enter the mean (O" Prompt string for INPUT.

nimroM Command-line string.

INPUT Pauses for input, displaying
prompt and command-line
strings.

OB+ Converts user input to a
tagged object.

"Press CONT if = is OK" String for PROMPT.

PROMPT Waits for (CONT).

®

Keystrokes Comments

Puts program on the stack.

(D Getmean Saves the program.

This subprogram uses INPUT to get a value for mean from the
user, and PROMPT to allow an extra verification (or input) before
continuing.

INPUT requires two strings as it arguments, so Getmean begins by
placing two text strings on the stack. The first is "Enter the mean
32", which is the prompt string for INPUT; this is what will be seen
in row 1, at the top of the display, when INPUT is executed. The
second text string is ":%: ". This text appears on the command line,
with the cursor right after it, and whatever is input by the user will be
added to this string.

When the INPUT command is executed, the program halts, displays
the prompt and command-line strings, and waits for the user to input
a value for the mean. (What it’s actually waiting for is the next press

of (ENTER))

See the colons at the beginning and end of the command-line string?
Because of these colons, the value that’s INPUT is added to the string
to create the form of a tagged object, like this: ":tag: object". Then

76 Statistics Programs

the OB+ command removes the quotation marks from the string
and converts it into the tagged object. When this tagged object
is displayed on the stack, the leading colon is dropped, so you see
something like this:

=: 188

Now the subprogram is halted again, this time by PROMPT. As

used here, the PROMPT command takes as its argument the string
"Press COMT if x iz OK". When executed, PROMPT displays this
prompt string and halts execution, returning control to the keyboard.
The user can now verify whether or not the value input for mean

is correct. If the value is correct, the user presses (|q) (CONT) to
continue.

Notice the difference between HALT (used in Message) and
PROMPT. Both cause the program to halt and return control to the
keyboard until or S5T is pressed. However, HALT doesn’t
display a prompt string, but does display the word HALT in the status
line.

The next three subprograms, Getsdev, Geta, and Getb, all function
the same way—with INPUT followed by PROMPT.

Getsdev

Getsdev prompts the user to input a value for standard deviation.
This subprogram takes nothing from the stack, and adds a tagged
standard deviation.

Arguments Results
2: 2: tagged mean
1: tagged mean 1: tagged standard deviation

Statistics Programs 77

Program Instructions Comments

"Enter the standard Prompt string for INPUT.

deviation <=2"

LR Command-line string for
INPUT.

IHNFUT Waits for keyboard input of
standard deviation.

OB+ Converts command-line string
and value to tagged object.

"Press CONT if = is OK Prompt string for PROMPT.

FROMFT Halts execution and waits for

i)

Keystrokes Comments
Puts program on the stack.
(D Getsdev Stores the program.

Getsdev gets the value for standard deviation from the user. Like
Getmean, this subprogram includes an extra verification step (the
PROMPT command) to make sure the right value has been entered.

Geta

The Geta subprogram prompts the user to input a value for a, the
left-hand point. This subprogram takes nothing from the stack, and
adds a suitably tagged value for a.

78 Statistics Programs

Arguments

Results

2: tagged mean
1: tagged standard deviation

: tagged mean

[}

2: tagged standard deviation

1: tagged value for a

Program Instructions

&

"Enter the left
point (a»"

tal
INFUT
OB.J+

"Press COMT if a is QK"
PROMPT

Keystrokes
(D Geta

Getb

Comments

Prompt string for INPUT.

Command-line string for
INPUT.

Waits for keyboard input of
value.

Converts command-line string
and value to tagged object.

Prompt string for PROMPT.

Halts execution and waits for

@ @)

Comments
Puts program on the stack.

Stores the program.

This subprogram prompts the user to input a value for b, the
right-hand point. Getb takes nothing from the stack, and puts a

tagged value for b there.

Statistics Programs 79

Arguments

Results

b

t tagged mean

)

t tagged standard deviation

I

1: tagged value for a

4: tagged mean

3: tagged standard deviation

2: tagged value for a

1: tagged value for b

Program Instructions

"Enter the riaht
point Cb»"

"a tl: n
INFUT

OB+

"Press COMT if b is OK"
FREOMPT

Keystrokes
(D Geth

Comments

Prompt string for INPUT.

Command-line string for
INPUT.

Waits for keyboard input of
value.

Converts command-line string
and value to tagged object.

Prompt string for PROMPT.

Halts execution and waits for

@ @)

Comments
Puts Getb on the stack.
Stores the program Getb.

After Getb and the previously called subprograms have been executed,
all four needed values are on the stack. Now the actual probability

computation can take place.

80 Statistics Programs

Compute—Local Variables and Stack Calculations

The Compute subprogram handles the computational chores in
NormalProb. It accomplishes the same thing you saw in the earlier
keyboard example: with the values for mean, standard deviation,
point @, and point b on the stack, Compute calls UTPN twice to find
the difference between the probability of ¢ and the probability of

b. This subprogram takes four values from the stack, and returns
three: a tagged a, a tagged b, and the probability a random value lies

between a and b.

Arguments

Results

4: tagged mean
3t tagged standard deviation
2: tagged value for a

1: tagged value for b

EY
Z: probability
2: tagged value for a

1: tagged value for b

Program Instructions

&

+m=ahb

"M

S0

]

UTFH

Comments
Begins main program.

Converts four values on stack to
local variables.

Begins defining procedure for local
variables.

Places mean (m) on stack.

Squares standard deviation (s) and
places on stack.

Places left-hand point (a) on stack.

Computes upper-tail probability for
left-hand point.

Statistics Programs 81

Program Instructions Comments

I Places mean on stack.

Squares standard deviation to get
variance.

b Places right-hand point (b) on stack.

UTPH Computes upper-tail probability for
right-hand point.

- Subtracts to find probability from a

to b.
a Places a on stack.
b Places b on stack.

Ends defining procedure.

Ends main program.

To save the Compute program:

Keystrokes Comments
() Compute Stores this program.

When Compute is called, four quantities are on the stack. We need to
use some of these quantities more than once, and we want to return
two of them (a and b) to the stack along with the final calculated
value for probability. So we turn them into local variables, which can
be summoned again and again within the defining procedure.

Within the Compute program, + m = a b takes four quantities (mean,
standard deviation, a, and b) from the stack and converts them to
local variables. The defining procedure, which is a program, follows
immediately.

Now we use those local variables to calculate the two upper-tail
probabilities we need. The mean, local variable m, is put on the stack
first, followed by the standard deviation, s. The standard deviation is
squared to get the variance. Next, the value for the left-hand point,
represented by local variable a, is put onto the stack.

82 Statistics Programs

With the three values are in place, we can execute the UTPN
command. This command, remember, returns the upper-tail
probability for point a.

The next step is to perform the same calculation for point . Within
the defining procedure, a local variable can be used as often as it’s
needed. So we simply put m and s on the stack again, square s, and
put b on the stack. Then we execute UTPN again to find the second
upper-tail probability. We want the probability from a to b, so we
subtract P(b) from P(a).

It would be nice if the user could see the values for a and b along
with the probability, so we return these two values to the stack before
exiting Compute. Local variables ¢ and b are still tagged numbers, so
they appear in the stack with their tags still attached.

Label—Using Local Variables to Rearrange the Stack

The final subprogram called by NormalProb is Label, which adds a
tag to the calculated value for probability. Label also rearranges the
values so the user has a more useful stack display upon exit. This
subprogram takes three values from the stack and returns three.

Arguments Results
Z2: probability Z: tagged value for a
2: tagged value for a 2: tagged value for b
1: tagged value for b 1: tagged probability

Statistics Programs 83

Program Instructions Comments

4 Begins main program.
+pab Creates local variables.
& Begins defining procedure for local
variables.
abp Puts local variables back on stack in

different order.

"Plasba" Text string that is tag for p
(probability).
+THG Combines text string and value for p.
Ends defining procedure.
Ends program.
Keystrokes Comments
() Label Stores the subprogram Label.

The Label subprogram takes three values off the stack and converts
them to local variables. Within the defining procedure, the three
variables are put back on the stack in a different order. This brings
the value for probability (p) into level 1, where it can easily be used in
other calculations.

Notice that with a slight modification to Compute (placing the values
for a and b on the stack before computing probability), you could
eliminate some of the steps of this Label program. But as shown here,
Label illustrates how local variables make it easy to change the order
of quantities on the stack.

We also want to label the probability, so the user knows what this
value represents. Thus, we now place a text string on the stack; this
puts the calculated value for probability in level 2 and the text string
in level 1, ready to be combined.

84 Statistics Programs

Stack Level Contents

Level 2: Calculated probability

Level 1: "Plasba"

Now +THG is executed. +TAG combines the value in level 2 with the
tag in level 1 to create a single tagged object. Like all tagged objects,
this one can be used in calculations involving addition, multiplication,
and so on. And because the value for probability is now clearly
labeled, the user knows exactly what it means: the probability
between a and b.

Running the NormalProb Program

Run the NormalProb program to find the probability that a random
Mr. or Ms. Right possesses an IQ) between 95 and 105. Press HOREHM
to start the program.

Program Prompt or Display Your Action
HORM

HORMAL FROEBABILITY
Frobability between
two points on normal
distribution. You'll
be prompted to enter
left pointy then right

point. Do COMT now. (9 (conT)
Enter the mean (=

He=H 100
Firess COMT if % is QK

1: Z! 108,80 @

Now continue in this manner. Enter each needed variable when

prompted, verify each one, then press (&) (CONT) to continue.

Statistics Programs 85

Program Prompt or Display Your Action

Enter the standard
deviation (=2

10 (ETER)
Fres=z COMT if = i= 0K

= =: 160.606

13 =t 10,68)

Enter the left
=

point Ca

95 (ERTER)
Fres= COMT if a i= OK

=Y =: 194,88

=H = 18,88

1: at 95,60 () (con)

Enter the right

point (b

b 105 (ENTER)
= COMT if b i= 0K

.

=
[}
[}
[}

—
[xn]
[x]
U A |
=

=:

L —
3 Do I
= = =
[x)
Dl

EH
b

a0 T

—
2
=)
noon
MU A
MU

[l KX A}
o
o
—
DN]
wnoan
[oURoY
DUy

=)
. =
o
[x]

Fiasho:

The probability is about 38 percent that someone you meet has an 1Q
between 95 and 105.

86 Statistics Programs

Hypothesis Tester

Statistics is often used to make assumptions about a population (all
members of a group) based on what is known about a sample (a few
members of a group). In hypothesis testing, we take a sample, test the
sample, then determine whether that sample is representative of the
population.

The classic approach to hypothesis testing involves finding a test
statistic (a so-called z score), and comparing this to the test statistic
for the desired confidence level. A more modern approach, and one
that works well on the HP 48, is the probability value or p-value
method, in which the calculated probability is compared directly to
the confidence level. We’ll use the p-value approach in this section.

Let’s start with an example to show how hypothesis testing works.

A certain coach claims that in an annual school-wide test of general
knowledge, athletes actually score higher than the general student
population. In particular, the coach points to scores achieved by 40
members of the football team, whose mean score (z) was 75.3, with

a standard deviation of 13.0. The school average, (1), for the same
test given year after year is 72. At the .05 level of significance, do the
football team’s test results prove the coach right or wrong?

Well, “right or wrong” is an elusive concept, especially in statistics.
Instead of proving right or wrong, what we do is prove or disprove a
null hypothesis. To do this, we follow a step-by-step procedure:

1. Formulate two hypotheses, a null and an alternate.

2. State the level of significance, a probability value called «.

3. Calculate the critical value.

4. Calculate the test probability, or p-value.

5. Compare the p-value to a, and accept or reject the null hypothesis.

Formulating the Hypotheses: We first formulate two hypotheses, a
null hypothesis and an alternate hypothesis. For the coach’s claim,
the hypotheses might look like this:

m Hy, null hypothesis: The mean of athletes’ scores is less than or
equal to 72.

m Hy, alternate hypothesis: The mean of athletes’ scores is greater
than 72.

Statistics Programs 87

Notice that the alternate hypothesis, Ha, is what you want to prove,
but you don’t ever really prove it. Instead, what you do is either reject
or fail to reject the null hypothesis, Hy.

The null hypothesis always has an equals sign in it. It might be
something like “Scores = 100” or “IQ > = 130.” If there is only an
equals sign in the null hypothesis, you’ll do a two-tail test. If the null
hypothesis includes the words “greater than or equal to” or “less than
or equal to,” you’ll do a one-tail test.

Determining the Level of Significance: The level of significance is
called alpha (), and it represents the probability of error of a certain
type. The level of significance is really a measure of how much risk
you’re willing to take. If error would have serious consequences, use a
small value for a; if you can accept more risk, use a larger value.

Typical values for a are .05 and .01. We’ll give the coach some leeway
and use .05 for our illustration.

Calculating the Critical Value: Most illustrations of hypothesis testing
focus on the standard normal distribution—the familiar bell curve—
and its critical value, z. But there are several other formulas available,
depending on the size of the population and how much information

is known about it. We’re going to use the Student’s ¢ distribution,
because it works for small samples (of 30 or fewer) and you can use
the sample standard deviation, s, instead of the population standard
deviation, 6. Another reason for choosing the Student’s ¢ distribution
is that for samples of 30 and above, the critical values (called ¢

values) are about the same as z, the critical value used with normal
distribution.

The formula is:

t =

T—p

s/v/n

For our illustration, then:
_75.3-1T2
©13/V/40

Calculating the P-Value: To calculate the probability, or p-value, you
use the critical value and the degrees of freedom.

= 1.6055

The degrees of freedom, or df, are given as the sample size less one.
Thus, the degrees of freedom in our illustration are given by:

88 Statistics Programs

df =40-1=139

In the pre-HP 48 days, you then took ¢ and df, and used a table in
the back of a statistics book to find the p-value. Today, though, you
can use the calculator’s UTPT function. With the degrees of freedom
in stack level 2, and the value for ¢ in level 1, executing UTPT

gives the probability that a random variable is greater than ¢. (The
probability returned by UTPT for this calculation is 0.0582.)

Accepting or Rejecting the Null Hypothesis: To determine whether
to accept or reject the null hypothesis, you compare the calculated
p-value to a.

m If the p-value is less than or equal to «, reject the null hypothesis.
m If the p-value is greater than a, fail to reject the null hypothesis
(which implies that you accept the alternate hypothesis).

Because the p-value (.0582) is greater than « (.05), we fail to reject
the null hypothesis—which means there is insufficient data to accept
the coach’s claim that the football team athletes have higher scores.

One-Tail or Two-Tail? If the null hypothesis contains a “less than or
equal to” or “more than or equal to” statement, as in the previous
example, it’s known as a one-tail test. However, if the null hypothesis
has an equals sign only, the alternate hypothesis has two conditions:
one above and one below the distribution.

For instance, if the coach had said the mean scores for the football
team were the same as that of the entire school, there is a chance
for rejection both above and below the hypothesized mean. The
hypotheses look like this:

m Null hypothesis: The mean of athletes’ scores is equal to 72.

m Alternate hypothesis: The mean of athletes’ scores is greater than 72
or less than 72.

In this case, you need to divide a by two, or double the calculated
p-value, to test the hypothesis.

Statistics Programs 89

One-tall test

a2
Y
//////////////m....

Two-tall test

Keyboard Example

Here are the keystrokes used to calculate the p-value in our one-tail
example:

Keystrokes Display Comments

.05 A, 85600 Enter a.

40 48, BREE Enter sample size n.
1 29, AREG Calculate degrees of

freedom (df).
Enter sample mean (7).

753
720

Subtract hypothesized
population mean (u).

13 12, 368 Enter sample standard
deviation (s).

90 Statistics Programs

Keystrokes Display Comments

40 . 3245 Square root of n.
B]0)] 1.68355 Calculate ¢.
_MTH FROB

UTRT /. 0532 Calculate p-value.

With both a and the p-value left on the stack, you can easily see
which is larger, and make your conclusions about whether to accept or
reject the null hypothesis.

The Hypotest Directory

To create a directory for the hypothesis testing programs, then get
into that directory:

(D) HYPOTEST
@ CRDIR

HYFOT

The HYPOTEST directory will hold all programs and subprograms
for hypothesis testing. Any programs that you enter and save will be
placed in this directory.

The Main Hypotest Program

Hypotest presents you with a temporary menu of choices:
MESSG 1TRIL 2TAIL EXIT

By pressing one of these menu keys, you select whether to:

m See a message of user instructions (MS5G).

Perform a one-tail hypothesis test (1TRIL).
m Do a two-tail hypothesis test (ZTHIL).
m Exit from the application (EXIT).

Hypotest runs different subprograms, depending on which menu key is
pressed. It has no overall effect on the stack.

Statistics Programs 91

Program Instructions
&
Init
{"MS5G" Messagel

{"1TARIL"

£

Getalpha
Test

B

[

£ "2TRIL"

&

Getuvars

uh

92 Statistics Programs

Comments

Initialize HP 48.
Begins list for TMENU (outer list).
List for first menu key.

Begins list for second menu key;
menu key label.

Begins program executed when you
press 1THIL.

Gets variables.

Calculates p-value for one-tail
hypothesis.

Gets level of significance.

Compares p-value to level of
significance; rejects or fails to reject.

Ends program executed by 1 THIL.
Ends list for second menu key.
Begins list for third menu key.

Begins program executed when you
press 2TRIL).

Gets variables.

Calculates p-value for two-tail
hypothesis.

Gets level of significance.

Compares p-value to alpha; reject or
fail to reject.

Ends 2TAIL program.
Ends list for third menu key.

Program Instructions Comments

L Fourth menu key is blank.
L2 Fifth menu key is blank.
{"EKIT" ExitZ List for sixth menu key.
{ Ends list for TMENU (outer list).
THENU

Ed

To save the main Hypotest program:

Keystrokes Comments
Puts program on the stack.
() Hypotest Stores the program.

The main Hypotest program begins by executing Init, a subprogram
that readies the HP 48 for things to come. Then Hypotest puts a long
list—it’s really a “list of lists”—on the stack, and executes TMENU.

When executed, the TMENU command uses the information in that
long list to create a temporary menu across the bottom of the display.
TMENU requires as its argument a list of lists that looks like this:

{4"labell" objectl > {"labelZ" object2+...%

Each inner list consists of a label and an object. The label (it’s the
word in quotation marks) is what you see in the menu display. The
object is what is executed when you press that key. The first inner list
is assigned to the left menu key (at key address 11), the second list to
the second key (address 12), and so on. Only one object can follow

the label.

If you press the key labeled MZZG | the Message subprogram is
executed. Message displays some user instructions and information
about the Hypotest application.

Here’s an instance where we’ve placed user instructions separate from
other parts of the program. You can press MZSG to get help or jog
your memory; but if you want to do several tests without having to
view the message each time, you can go directly to 1TRIL or Z2THIL.

Statistics Programs 93

Init—Initializing to Two Decimal Places

The Init subprogram is always called when you run Hypotest. It
merely sets the HP 48 to display answers to two decimal places. It
does not affect the stack.

Program Instructions Comments

kS

2 FIX Sets HP 48 to display numbers to
two decimal places.

To save this short subprogram:

Keystrokes Comments
Puts program on the stack.
() Init Stores the program.

If you want to see your answers to more decimal places, change this
subprogram to execute = FIX or 4 FIx.

Message—Display without Stopping

If you press the MZZG menu key, Hypotest calls the Message
subprogram. A message fills up the display, explaining a little about
hypothesis testing. When you’re done reading the message, you press
any of the menu keys (or any key) to continue. Message has no overall
effect on the stack.

94 Statistics Programs

Program Instructions Comments
%
CLLCD Clears HP 48’s display.

"HYPOTHESIS TEST:
Tests null hypothesis

at « level of Text for display by DISP. Be sure to
conf idence. Choose put endline characters () (<2)) at
one-tail if HO the end of each line.

contains £ or 2,
two-tail if = onlu.”

1 Row where text will begin.
DISP Displays text beginning on
LCD row 1.
7 FREEZE Freezes display until next key press.
»

To save this subprogram:

Keystrokes Comments
Puts program on the stack.
(D) Message Stores the program.

Message begins with a CLLCD (clear LCD) command, which clears
the calculator’s display of any previous information. Then Message
puts a long text string into the stack. This text string includes
everything between the quotation marks; if you don’t want to have to
scroll to see the message, be sure to place endline characters (press

() (&) at the end of each line as shown.

The text string is one of the two arguments required by DISP. The
second argument is the number 1, which is placed on the stack next.
This value tells DISP where to display the text string. When DISP is
executed now, it displays the long text message, beginning on row 1 of
the calculator’s LCD.

The final command executed by the subprogram is 7 FREEZE. With
the number 7 as its argument, FREEZE prevents updating of any of

Statistics Programs 95

the display areas until the next key press. Because FREEZE is the
final command of this subprogram, and because no other subprograms
are executed after Message until you press a menu key, the Hypotest
program appears to be paused here.

At this point, the main Hypotest program has already been run. (It
displays the temporary menu, remember?) Message is also finished
running. You see the results: Message’s text message in the display,
along with Hypotest’s temporary menu.

If you’ve programmed in computer languages—or even worked with
some of the other program examples in this book—you know that

it’s often necessary to place a HALT or WAIT or some similar
command after a message, to give the user time to read the text
before a program continues to some other task. No need to do that
here, though. The Hypotest program isn’t actually “running” while
Message’s text is being displayed. Instead, it merely displays a menu
of top-row keys which, if pressed, perform the different functions of the
Hypotest program. Interestingly, all other keys on the keyboard are
active, too.

When you now press another key, such as 1 TRIL, that key is ezecuted
and the display updated. You don’t need to use or perform
any intermediate steps.

Now let’s see what happens when you press 1 THIL or 2THIL.

Getvars—Labeling Values on INPUT

Getvars is the first subprogram called when you press the 1 TRHIL or
ZTAIL menu key. Getvars gets four of the five values needed for the
hypothesis test, tags each with an appropriate label, and puts them on
the stack.

Arguments Results
4: 4: tagged X
3: 2: tagged p
2: 2: tagged s
1: 1: tagged n

96 Statistics Programs

Program Instructions

&«

"Enter the sample
mean (x»"

1 [l

1] H ;: Ll
INPUT
OB.J=»

"Enter the
hypothesized
population mean (pd"

I
INFUT
aBJ=

"Enter the sample
standard deviation (s>"

" —
s =

Comments

Prompt string for INPUT.

Command-line string for
INPUT.

Waits for input of mean from

the keyboard.

Converts keyboard input to a

number.

Prompt string.

Command-line string.
Waits for keyboard input.
Converts to number.

Prompt string.

Command-line string.

INPUT Waits for keyboard input.
oBJ+ Converts to number.
"Enter the sample Prompt string.

size (n)"

it Command-line string.
INPUT Waits for keyboard input.
oBJ+ Converts to number.

»

Keystrokes Comments

Puts program on the stack.

(D Getvars Stores the program as Getvars.

Statistics Programs 97

Getvars contains four INPUT commands, which cause the subprogram
to stop four times. You are prompted to enter the appropriate value
each time.

INPUT takes two arguments: a prompt string from level 2 of the
stack, and a command-line string from level 1. For the first INPUT
command, the prompt string in level 2 is "Enter the sample mean
¢z3»". By adding an endline character ((#) (&2)) after the word
zample, you ensure that you’ll be able to view the entire prompt
message on two lines. (Without the added endline character, the
prompt message will trail off the screen like this. ...) When shown by
INPUT, the prompt message begins on the top row of the display, and
is shown on rows 1 and 2. Your prompt messages can be shown on as
many as three rows.

(If you have trouble typing the characters for Z and u, look at the
table of Alpha Mode left- and right-shifted keys in the owner’s manual
or the quick reference guide. To type T, for instance, you first make
sure you’re in alpha-entry mode; then press (¢») together.)

As for the INPUT’s level 1 argument, a number of options are
available. Here we’ve chosen to add only the command-line string

WagZrya
When the first INPUT command is executed, here’s what you see:

Enter the zample
mean Cxl

-8
]

The value you enter from the keyboard is combined with the
command-line string by INPUT. By placing colons before and after
the Z, we ensure that when you input a value for the mean, then
execute OE.J+, the resulting object is a number that’s tagged with the
T label, like this:

= ¥5.3E

X
=

This tagged number can be used in mathematical formulas as if it
didn’t have a tag at all. In fact, if you run the Getvars subprogram
by pressing 1 THIL or ZTAIL, you’ll never see the tagged result.
However, labeling values with tags is extremely useful in debugging.

The other INPUT commands function the same way: A prompt
string is placed in level 2 of the stack, a command-line string is put

98 Statistics Programs

in level 1, and INPUT is executed. At the end of Getvars, the four
tagged values (for mean, the hypothesized p, standard deviation
s, and sample size n) are on the stack, ready for the calculations

performed by T1 or T2.

T1—Calculations Made Easy with Local Variables

If you pressed the 1 THTL menu key, the next subprogram executed
after Getvars is T1. The T1 subprogram calculates the p-value for a
one-tail test. It takes four values (sample mean, hypothesized mean,
sample standard deviation, and sample size) from the stack, and

returns the p-value probability.

Arguments

Results

4: tagged X
3: tagged p
2: tagged s
1: tagged n

N

3:

2

1: tagged p-value

Program Instructions

L3

* X US N

'm-1' EVAL

'(x—udss#In' EVAL
ABS
UTPT
"IT p-value" *TAG

&

Comments
Begins subprogram.
Creates local variables.

Begins defining procedure
for local variables.

Calculates degrees of
freedom.

Calculates t.

Ensures t is positive.
Calculates p-value.
Labels the answer.

Ends defining procedure.

Ends subprogram.

Statistics Programs 99

To save this subprogram as T'I:

Keystrokes Comments
Puts program on the stack.
(! Saves the program.

T1 begins by taking all four quantities from the stack and converting
them to local variables. As a shorthand, we’ve used the local variable
r to identify the quantity Z, and u to identify pu. You could just as
easily use the actual characters 7 and p as the local variable names.

The defining procedure for the local variables must begin right after
they are created. Here, as in most cases, the defining procedure is a
program. The local variables have meaning only within this inner
program.

The UTPT command requires the degrees of freedom in stack level 2,
and the value for ¢ in level 1. The statement 'n-1' EYAL computes
the degrees of freedom and places it on the stack. Then the formula
for t is entered and evaluated the same way. With the appropriate
values in stack levels 2 and 1, UTPT computes probability—the
p-value.

There’s no law that says you have to use local variables for these
calculations, of course. You could also have manipulated the stack, as
we did in the keyboard example. But using local variables makes these
calculations much more straightforward and easy to understand—all
the more important when you don’t add explanatory comments within
your program code.

With the calculated p-value now on the stack, we want to label it. So
we place the string "1T p—walus" in level 1, moving the p-value

up to level 2. The +TAG command then tags the value from level 2
with the tag from level 1. If you compare this procedure with that for
INPUT, you’ll notice that you don’t need any colons for +THG’s string;
the colon is added automatically.

100 Statistics Programs

T2

If you press 2TAIL to choose a two-tail test, the only difference

from pressin

1L is that T2 is called instead of T1. The T2

subprogram is almost the same as T1; it takes four values from the
stack (Z, 4, s, and n) and returns the p-value. However, the p-value is
double the probability calculated by UTPT, since this is for a two-tail

test.

Arguments

Results

4: tagged X
3: tagged p
2: tagged s

1: tagged n

: tagged p-value

Program Instructions

&

XU EN

'm-1' EVAL

'{x-udss#In' EVYAL
ABS
UTrPT
Z ¥

"2T p-value" »TAG

b

Comments
Begins subprogram.
Creates local variables.

Begins defining procedure
for local variables.

Calculates degrees of
freedom.

Calculates .
Ensures t is positive.
Calculates probability.

Doubles calculated
probability for two-tail
p-value.

Labels the answer.
Ends defining procedure.

Ends main program.

Statistics Programs 101

Keystrokes Comments

Puts program on the stack.
T2 Stores the program.

As you can see, within the defining procedure, T2 takes the
probability calculated by UTPT and doubles it to get the p-value.
This accounts for the two-tail test.

Except for the call to T1 or T2, pressing TTATIL or ZTHIL executes
all subprograms in the same order. The next call is to get the value
of a.

Getalpha—INPUT with a Blank Command Line

Getalpha performs the final task necessary to get ready for the actual
hypothesis test: it gets the level of significance, a, from the user.
Getalpha takes nothing from the stack, and leaves the untagged value
for a.

Arguments Results
2: 2: tagged p-value
1: tagged p-value 1t «
Program Instructions Comments
%
"Enter the desired Prompt string for INPUT.
level of

siganificance (x2"

Command-line string (blank) for

INPUT.

INPUT Waits for input of significance level
(a).

0B.J>» Converts to number.

2

102 Statistics Programs

Keystrokes Comments

(D Getalpha Stores the Getalpha program.

Getalpha is similar to any of the INPUT commands used in Getvars.
A prompt string is placed in level 2 of the stack, a command-line
string is put in level 1, and INPUT is executed. The INPUT
command halts execution until you press to signify that a
number has been entered on the command line. (To enter the «
character in the prompt string, make sure the calculator is in alpha

mode, then press the () and (&) keys.)

The major difference in how Getalpha uses INPUT is on the command
line. Using the characters " " as the command-line string results in

a completely empty command line, so when INPUT is executed, the
command line is blank. You enter a number on this line in response

to INPUT, and the number is placed on the stack alone, with no tag
attached.

After Getalpha has been run, both the p-value and a are on the stack.
It’s time to perform the hypothesis test.

Test—Comparing Local Variables

Test compares the p-value and «, and determines whether to reject or
fail to reject the null hypothesis. Test takes two values (p-value and
a) from the stack, and returns the two values in reverse order.

Arguments Results

2: tagged p-value 2: tagged a

1t a 1: tagged p-value

Statistics Programs 103

Program Instructions

L4

+ p a

IF 'p£a’
THEH

a

Reject
ELSE

a

Failreject
EHD

Keystrokes
(O Test

Comments
Begins subprogram.

Makes p-value and a local variables
p and a.

Begins defining procedure for local
variables.

Begins test structure.

If p is less than or equal to a,

puts a on the stack,

and calls the subprogram Reject.

If p is greater than a,

puts a on the stack,

and calls the subprogram Fazilreject.
End of test structure.

Puts the value of a on the stack.
Puts text string “a” on the stack.
Tags the value of a.

Puts the tagged p-value on the stack.

Ends defining procedure for local
variables.

Ends Test subprogram.

Comments
Puts Test program on the stack.

Stores the program.

The Test subprogram takes the p-value and o from the stack and
turns them into local variables p and a. As soon as those local
variables are created, the defining procedure (a program) begins.

104 Statistics Programs

The heart of the defining procedure is the IF ... THEN ... ELSE
structure. Remember the rules for hypothesis testing using the
p-value?

m If the p-value is less than or equal to «, reject the null hypothesis.
m If the p-value is greater than «, fail to reject the null hypothesis
(and accept the alternate hypothesis).

You can easily see these conditions in the IF ... THEN ... ELSE
construction. If p is less than a, or equal to a, it means that our
assumption was correct. We can reject the null hypothesis (what we’re
trying, in fact, to disprove), and accept the alternate hypothesis.

In this case, Test puts the value of a on the stack and calls the
subprogram Reject.

If p is greater than a, the THEN condition is false, and the ELSE
condition is true. This means we have insufficient evidence to reject
the null hypothesis. So Test places the value of @ on the stack and
calls the Failreject subprogram.

Test, then, is going to call either Reject or Failreject. Each of these
subprograms takes the value of o from the stack, and displays a rather
detailed message explaining the decision.

After executing the IF ... THEN ... ELSE structure, Test again
places a on the stack, tags it as «, then places p on the stack. The
variable p, recall, was tagged earlier with the label “p-value”. And
through all of these machinations, being passed from one subprogram
to the next that value retains its tag. Thus, after you press either

, . or & you wind up with the tagged o and p-value on the
stack for yout perusal or further use.

Reject—Adding a Calculated Value to the Display

Reject is called by Test if the p-value is less than or equal to a. It
combines « with text strings to display a comprehensive message
explaining the decision to reject the null hypothesis. Reject removes
one value from the stack.

Arguments Results

Statistics Programs 105

Program Instructions

&

* a

CLLCD
"REJECT:
At the "

a +5TR

level of significance,
there is sufficient
evidence to reject the

rnull hupothesis <(and

accept the alternatel.”

+

1 DISP
3 FREEZE

8 WAIT
DROP

106 Statistics Programs

Comments
Begins subprogram.

Takes a from stack, creates
local variable a.

Begins defining procedure for
local variable.

Clears HP 48’s LCD.
Begins first text string.
Ends first text string.

Converts e into second text
string.

Combines first and second text
strings.

Begins third text string.

Ends third text string.

Adds third string to combined
first and second strings.

Displays resulting long string.

Freezes main display and
status area.

Waits for a key press.

Throws away address of the
key that was pressed.

Ends defining procedure for
local variable.

Ends subprogram.

To save this subprogram in the current directory:

Keystrokes Comments
Puts program on the stack.
(D Reject Stores the program as Reject.

Reject starts by taking the value of o from the stack and creating a
local variable called a. Then the defining procedure for that local
variable begins. The defining procedure is itself a program.

Within the defining procedure, the HP 48’s display is cleared by
CLLCD, then a short string is placed on the stack: "REJECT:mAt
the ". (The = stands for the endline character.) If these words seem
rather incomplete, it’s because this is actually the first of three text
strings. Reject combines all three strings into a single long, highly
detailed display. To make your displays look like the ones shown for
this example, be sure to enter everything between quotation marks
just as shown, and type endline characters, () (&2), at the end of
each line.

With the first string in the stack, Reject now places the value of a
(that is,), on the stack, too. The variable a is a number, so we use
the +STR command to convert it to a string. Now two strings are on
the stack, so it might look like this:

Stack Level Contents
Level 2: "REJECT:mAt the "
Level 1: "@.85"

Two strings are now on the stack. Reject executes + to add them
together, leaving the resulting string in level 1:

Stack Level Contents

Level 1: "REJECT:mAt the B.835"

A third string is now placed on the stack by Reject. This string
begins with quotation marks (") followed immediately by an endline

Statistics Programs 107

character. (Press (o) to type it.) Several lines of text follow,
explaining the outcome and meaning of the test. Then Reject adds
this string to the combined first and second string. The result

is a long, detailed string that includes both text entered by the
subprogram and a value you keyed in earlier.

The 1 DISP command displays that text, beginning in row 1 of the
HP 48’s liquid crystal display. Here’s an example of the result you can
expect:

REJECT:

At the B.85

level of significance,
there is sufficient
evidence to reject the
null hypothesis (and
accept the alternatel.

See how we left a fairly long space to insert the o value? This
prevents subsequent words from trailing off the screen if you happen
to be showing numbers like o with a lot of displayed digits (for
example, as 0.0500000).

In order to hold the display on the screen until the next key press,
we use 3 FREEZE. With 3 as its argument, FREEZE prevents the

updating of anything in the display except the menu area until the
next key press.

Reject is an instance where we want to leave the message on the
screen until a key press, but don’t want the key press to do anything.
That is, we want to be able to press any key to continue, but not have
that key affect the stack or the calculator. Thus the next command,

8 WAIT, which waits for the press of a key. With an argument of 0,
WAIT “swallows up” the next key press so that—except for
the key doesn’t perform its usual function. You can press or
or (1), and not worry about generating an error.

B WAIT does do one thing in response to a key press, though: It
returns the address of the key. We don’t need that address, so before
exiting Reject, we execute DROF to drop the stack one level, effectively
expunging the key address from the stack.

108 Statistics Programs

Failreject

The Fatilreject subprogram is just like Reject, except, of course,

the displayed message is different. Failreject is called by Test if the
calculated p-value is greater than a. It takes one quantity («) from
the stack, and returns nothing.

Arguments Results
1! o 1:
Program Instructions Comments
Begins subprogram.
+ a Takes a from stack, creates

local variable a.

Begins defining procedure for
local variable.

CLLCD Clears HP 48’s LCD.

"FAIL TO REJECT:

At the " Begins text string.

a »5TR Converts a to text.

+ Adds the two strings together.

Begins another text string.
() after ".)

level of significance,
there is insufficient

evidence to reject the
rnull hypothesis."

+ Adds strings together.

Statistics Programs

109

Program Instructions Comments

1 DISP Displays complete text string.
3 FREEZE Freezes main display and
status area.
8 WAIT Waits for a key press.
DROP Gets rid of key address.
b3 Ends defining procedure.
Ends subprogram.

To save this subprogram:

Keystrokes Comments
() Failreject Stores the program.

Notice that we can’t say “accept the null hypothesis.” All that the
hypothesis test tells us is that either we have enough information to
reject the null hypothesis, or else we don’t have enough information to
reject it. Hence the headline "FAIL TO REJECT".

Exit—Changing Menu Displays

There’s one more menu option to consider. If you run Hypotest and
press the EXIT key, the Ezit subprogram is run. Ezit simply
changes the menu back to the ordinary VAR menu, to give an
indication that you’re done with Hypotest’s temporary menu for now.
Ezit has no effect on the stack.

Program Instructions Comments

%

8 MEMU Changes back to previous menu
display.

by

110 Statistics Programs

Keystrokes Comments

Puts Erit program on the stack.
(D Exit Stores the program.

As written now, Ezit merely gives you some visual feedback when
you’re done. It changes the displayed menu from the temporary menu
back to the previous VAR menu, but doesn’t otherwise affect the
calculator.

Although it may seem trivial, having an exit routine like this is always
a good idea. It gives you a place to reset flags and add other cleanup
commands as your application grows.

Running the Hypotest Program

Let’s try running Hypotest to check out that coach’s contention. The
hypotheses are as follows:

w Hy, null hypothesis: The mean of athletes’ scores is equal to or less
than 72.

m H,, alternate hypothesis: The mean of athletes’ scores is greater
than 72.

The mean of football players’ scores is 75.3. Standard deviation is 13,
and sample size is 40. Test at a level of significance of 0.05.

To get started, press the HYFUT key to fire up Hypotest. You see the
display of menu keys:

EXIT

Statistics Programs 111

First look at the message:

Program Prompt or Display Your Action
MSEG

HYPOTHESIS TEST:
Tests null hypothesis
at alphas lewel of
conf idence. Choose
one-tail if HA
contains £ or =,
two-tail if = only.

The null hypothesis contains the words “equal to or less than,” so this
is a one-tail test. Press 1 TATL

Program Prompt or Display Your Action
1TRHIL

Enter the =sample

mean (=)

$(Eh: 75.3

Enter the

hupothesized

population mean (pd

72 (ERTER)

Enter the =sample
standard deviation (=3

13 (ENTER)
Enter the =sample

size (N2

40 ENTER)
Enter the desired

level of

significance (ol

05 (ERTER)

112 Statistics Programs

Now you see the answer in the display.

Program Prompt or Display Your Action

FAIL TO REJECT:

At the 8.85

level of significance,
there i= insufficient

evidence to reject the
null hupothesis.

Although the coach may be able to sway the alumni and fans, the
school’s statisticians will remain unconvinced by the claim that
football players’ scores are higher than the school average.

When you exit the program, the values for alpha and the calculated
p-value are left on the stack:
Program Prompt or Display Your Action
EXIT
2t «xf B.85

1: 1T p-value: 8,85

To see what happens with a little more allowable error, change the
desired level of significance to 0.10 instead of 0.05. What happens to
the coach’s hypothesis now?

Statistics Programs 113

S

Calculus and Analytic Geometry

If ever a calculator was built for calculus, the HP 48 is it. With its
full complement of built-in functions, including derivatives, integrals,
and curve drawing, the HP 48 is astonishingly well-equipped—right
out of the box—to handle most calculus problems. It’s so powerful
and sophisticated, in fact, that it’s ready to go, with no programming
whatsoever needed on your part.

Nevertheless, you may want to incorporate this powerful arsenal

of calculus features into a program. You can add a “shell” of
comprehensive user instructions to an existing feature, including
detailed prompts—for example, a prompt for the limits over which a
curve is drawn. Naturally, you can include calculus commands in other
programs, too, using them as you would any mathematical function.
This chapter illustrates a few ways the HP 48 can help you get the
most from a calculus class or a calculus-intensive application.

Distance Between Two Points

One of the first things required by almost any basic mathematics
class—including first-quarter calculus—is to find the distance between
two points in the Cartesian coordinate system. You can laboriously
grind it out using the Pythagorean theorem, of course. But an easier
way is to use the HP 48’s remarkable ability to convert between
rectangular and polar coordinates, and to subtract rectangular
coordinates.

Calculus and Analytic Geometry 115

Keyboard Example

When the HP 48 is in rectangular mode, numbers in parentheses—
that is, complex numbers—represent points in the Cartesian system.
Thus (1,2) is a point 1 unit along the x-axis and 2 units along the
y-axis.

You can actually key in numbers in this format, using the parentheses
and comma on the calculator. To find distance, you subtract two such
points in rectangular mode, then switch to polar mode and read the
distance. For example, consider the distance between the points (4,3)
and (—6,5) in the Cartesian coordinate system.

(-6,5)

To find the distance between the points (4,3) and (—6,5), you can use
the following procedure.

116 Calculus and Analytic Geometry

Keystrokes Display Comments

) Sets degrees
(NxT) DEG mode.

@ Switches to
rectangular
mode; press until
the R«2
annunciator is

off.
@) ¢
193 (4.08,3.08)> Enters first point.

(You can use

instead of

the comma if you
want.)

@O ¢
6 @ O 5 (=5,5) Enters second

point.

O {18.808,-2.08) Subtracts
rectangular
coordinates.

() (POLAR) €18.208,£-11.31) Distance and

angle.

When you switch to polar mode with (%) (POLAR), you see the
distance (10.2 units), as well as the angle in degrees between the two
points.

That’s not too difficult. But if you didn’t do it every day, you could
easily forget the procedure. So let’s see how we can accomplish the
same thing in a program, one that will prompt for input and give us
the correct result every time.

Calculus and Analytic Geometry 117

The Distance Directory

To create a directory for the Cartesian distance programs, then get
into that directory:

D DISTANCE
(@) (MEWORY) CRDIR
R

The DISTANCE directory will hold all programs and subprograms for
calculating distance. Any objects (including programs and equations)
that you enter and save will be placed in this directory.

The Main Distance Program

The main Distance program consists of nothing more than calls to
seven subprograms. In the course of the program, you are asked to
input point 1 and point 2; the program leaves the value for distance on
the stack.

Arguments Results

1: 1: tagged distance
Program Instructions Comments
#

Init Initializes for rectangular and

degrees modes.

Flget Gets first point.
F2aet Gets second point.
Compute Subtracts second point from first.
Change Changes to polar mode.
Dizplay Displays the distance only.
*

118 Calculus and Analytic Geometry

To save the main Distance program:

Keystrokes Comments
Puts program on the stack.
() Distance Stores the program.

The program begins with an initialization routine, Init, that places
the calculator in rectangular and degrees modes. It then calls a pair
of subprograms, PIget and P2get, to prompt for the two Cartesian
points. These points are subtracted, by Compute and the result (still
in rectangular mode) is passed to Change. The Change subprogram
switches to polar mode, which automatically converts any complex
number in the stack to polar mode. Finally, Display tags and displays
the result.

Init—Using Flags to Guarantee Status

The Init subprogram clears several system flags to ensure that HP 48
status is the way you want it before actual calculations begin. Init has
no overall effect on the stack.

Program Instructions Comments

%

-15 CF

-16 CF Ensures rectangular mode.

-17 CF

-18 CF Ensures degrees mode.

-19 SF Ensures that —V2 creates complex

numbers from real numbers.

Calculus and Analytic Geometry 119

To save the program:

Keystrokes Comments
Puts program on the stack.
() Init Stores the program as Init.

Flags —15 and —16 are used together to specify the type of
coordinates assumed by the HP 48. To specify rectangular mode,
coordinate system flags —15 and —16 must both be clear. By
specifying rectangular mode here, Init guarantees that any subsequent
operations involving complex numbers, such as (3,5), assume the value
is a Cartesian coordinate. (Later in the program, we’ll change the
status of flag —16, which will change HP 48 status to polar—and any
complex numbers to polar form.)

Flags —17 and —18 are also used together. They specify the angle
mode for trigonometric functions. When both are clear, the calculator
is in degrees mode.

Setting flag —19 ensures that the —V2 command we use later creates
a complex number from two real numbers (instead of creating a
two-dimensional vector). Interestingly, the setting of this flag has no
effect on the final output of the Distance program. However, it will
affect your intermediate results.

P1get—Multiple Inputs from One Prompt

After initialization, the next subprogram called by Distance is P1get.
This subprogram prompts for input of the first point, and lets the
user enter one coordinate on one line, and the second coordinate

on another line. Plget takes nothing from the stack, and leaves a
complex number—two coordinates in parentheses.

Arguments Results

1: 1: (x1,y1)

120 Calculus and Analytic Geometry

Program Instructions Comments

€

"Enter point P1" Prompt string for use by INPUT.

{ Beginning of command-line list for
INPUT.

"ixl: Prompt for z1. (Add a () (&2).)

T L Prompt for y1.

£18 3 Places cursor in first row of
command line.

) End of command-line list for INPUT.

INPUT Prompts for input, using prompt
string and command-line list.

0BJ- Converts resulting string into its
component objects.

e Combines two real numbers into
complex number.

»

To save the Plget program:

Keystrokes Comments
(D Plget Saves the program.

Plget makes use of the INPUT command to prompt for and process
input from command-line rows. INPUT takes as its arguments a
prompt string from level 2 and a command-line string from level 1.
The command pauses program execution with the cursor on the
command line, so that you can enter the needed value or values.
When you enter the data and press (ENTER), the program continues.

Let’s take a close look at those prompt and command-line strings.
Plget begins by placing the string "Enter point P1" on the stack.
This is the prompt string used by INPUT.

Calculus and Analytic Geometry 121

The next item placed on the stack is a long list. This list contains a
command-line string and an inner list with two numbers in it. The
complete list is also used by INPUT. Here’s what those different items
mean:

m The string ":x1:w:yl:" appears on the command line when
INPUT is executed. If you place an endline ((#) (<2)) after :x1:
as you’re supposed to, this string will occupy two rows of the
display. (The = indicates the newline character.)

m The list { 1 8 » specifies the row and column where the cursor will
be placed on the command line. The first number in the list, 1,
specifies row 1 (the top row of the two). The second number in
the list, 0, specifies that the cursor will be at the end of that row.
Because the number 1 is positive, you will see an insert cursor
instead of a replace cursor, although this doesn’t really matter here.

Thus, when you run Plget and INPUT is executed, you see the
following display:

Enter point F1:

txls
tyl:

The cursor is initially at row 1, the row labeled :x1:. You enter
the x-coordinate for the first point here, then use (¥) to move to
the bottom row, where you enter the y-coordinate. Then you press

ENTER) and the program continues.

INPUT combines your keyboard input with the command-line string,
and places the entire quantity on the stack. Let’s say you enter values
for the point (4,3). After INPUT is executed, the stack contains the
following string:

"ixlidmiygl:3"®

Next we want to take that string and convert it to its component
objects. So we execute OBJ—. This command converts the string into
two tagged objects:

=*1: 4,680
gl: 3.686

122 Calculus and Analytic Geometry

With these two numbers now on the stack, all that remains is to
combine them into a complex number. The —V2 command takes the
two values from level 2 and level 1 of the stack, strips off the tags, and
places them together in a set of parentheses. This command even adds
the comma between them for you.

(4.688,3.08)

The setting of flag —19 determines what is done by —V2. If this flag
is clear, —V2 creates a two-dimensional vector from two real numbers
on the stack; if it’s set (we set it in Init, remember?), —V2 creates a
complex number. The overall Distance application gives identical
answers regardless of the setting of flag —19, but the intermediate
results may be different.

With the coordinates for the first point now on the stack, in
parentheses, we’re ready to get the second point.

P2get

With the exception of its prompt and command-line strings, P2get is
identical to PIget. It takes nothing from the stack, and leaves the
coordinates for the second point there. After running P2get, the stack
contains both pairs of coordinates.

Arguments Results
2: 2: (x1,y1)
1: (x1,yl) 1: (x2,y2)

Calculus and Analytic Geometry 123

Program Instructions Comments

&

"Enter point P2"

£

"ix2l Add a ()

fy2:" to this prompt for y2.
{1832

¥

IHPUT Prompts for input.

0OBJ+ Converts resulting string.
2 Combines into complex number.
kS

Keystrokes Comments

(D P2get Saves the subprogram.

After Plget and P2get are called, the stack has both points, in
coordinate form, all ready to be combined.

Compute—Using Local Variables for Math

The next subprogram called by Distance is Compute. It finds the
difference between two sets of coordinates, and puts the difference on
the stack as a complex number. Compute gets two complex numbers
from the stack, and returns a single complex number.

Arguments Results

M

2: (x1,y1)
1t (x2, y2) 1

(x,y)

124 Calculus and Analytic Geometry

Program Instructions Comments
4 Begins program.
+ pl p2 Creates local variables.

% Begins defining procedure (a
program) for local variables.

'pl-p2' *HUM Subtracts point 2 from point 1.
» Ends defining procedure.

Ends program.

To store this subprogram as Compute:

Keystrokes Comments
Places subprogram on the stack.
(D Compute Stores subprogram.

The Compute subprogram simply subtracts one point from the other.
With coordinates for the two points on the stack, you could very easily
subtract with —. But we’ll turn the two points into local vari<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>