
The HP 48
ogcrammer’s ToolKit

pTC
l

preEe Bh
ru

(3 E Ww 0 LS L

aE ee a ed 1

1 mal «4 v la
0 » 2 a

Td

James Donnelly

The HP 48

Programmer’s ToolKit

James Donnelly

Copyright © James Donnelly 1990

All rights reserved. No part of this book may be reproduced,
transmitted, or stored in a retrieval system in any form or by
any process, electronic, mechanical, photocopying or means
yet to be invented, without specific prior written permission of
the author.

The software, this manual, and any examples contained herein
are provided "as is" and are subject to change without notice.
James Donnelly makes no warranty of any kind with regard to
this software or manual, including, but not limited to, the
implied warranties of merchantability and fitness for any
purpose. James Donnelly shall not be liable for any error or
for incidental or consequential damages in connection with
the furnishing, performance, or use of this software, manual,
or examples presented herein.

The owner of this book is granted a one-user, non-
commercial license to use the enclosed software, and may not
copy, distribute, or transfer the software under any
circumstances without specific prior written permission of the

author. Commercial software developers may apply for

licensing.

First Edition

First Printing, July 1990
Second Printing, January 1991
Third Printing, July 1992

Armstrong Publishing Company
3135 NW Ashwood Drive
Corvallis, OR 97330 USA

Acknowledgements

Special thanks go to Dan Allen, Scott Burke, Ray Depew,
Alonzo Gariepy, Joseph Horn, Wilodek A.C. Mier-
Jedrzejowicz, Bob Moore, Richard Nelson, Jake Schwartz,
Eric L. Vogel, Frank Wales, and Dennis York for their advice,

ideas, support, and encouragement.

The cover photograph was provided by the Hewlett-Packard
Company.

Contents

Getting Started
Additional Information
Installing the ToolKit
Removing the ToolKit
Example Programs

Character Set Catalog
Menu Label Builder
Flag Catalog
Viewing All Flag Settings
Viewing Flag Descriptions
Supplying User Flag Descriptions

Data Browser
Input Parameters
Output Parameters
Active Keys

Title Browser

Input Parameters
Output Parameters
Active Keys

Tool Library
Graphics
Set Utilities
Meta Objects
Temporary Memory

Command Index
Error Messages

Command Reference
Object Types
Character Codes
Character Translations
Flags

Alpha Keyboard

Getting Started

The HP 48 Programmer's ToolKit is a collection of software tools
designed with the programmer in mind. These tools improve
program performance by combining some common, slow
operations into faster internal system languages and provide
additional capability in object manipulation not directly available
in the HP 48 command set.

There are seven main chapters and several reference tables in
this manual:

« Character Set Catalog describes an interactive character
set catalog.

« Menu Label Builder describes an interactive program for
building graphics objects for use in custom menus.

« Flag Catalog describes the interactive Flag Catalog.

e Data Browser and Title Browser describe two powerful
screen — oriented user interface utilities that may be used to
enhance the appearance of an application.

e Tool Library describes the new commands provided in the
Tool Library, including the meta— object concepts used by
some of the new commands.

« Command Reference describes the full syntax for each new
command in the Tool Library with examples.

« Additional chapters provide reference tables for object

types, the character set, and flags.

Additional Information
Part 5 of The HP 48 Owner’s Manual discusses data transfer. The

documentation that comes with the Serial Interface Kit for an

IBM-compatible personal computer (HP 82208A) or an Apple
Macintosh computer (HP 82209A) may also be helpful.

Getting Started 1

The HP 48 Handbook by the same author contains complete
stack diagrams for all the HP 48 commands, further discussions
of graphics, menus, data transfer topics, and includes other
helpful information and reference tables.

Installing the ToolKit
The HP 48 Programmer's ToolKit consists of two system
programs and four library objects that extend the built-in
command set. All objects must be downloaded in binary mode.

Name Type Lib Id Description

CSCAT System Program Character Set Catalog
LBLD System Program Menu Label Builder
FCLIB Library 775 Flag Catalog
TLLIB Library 776 Tool Library
TBLIB Library 777 Title Browser
DBLIB Library 778 Data Browser

Installing System Programs
The system programs CSCAT and LBLD are implemented in
system languages and must be downloaded to the HP 48 in

binary mode. They may be stored in any variable and evaluated
like any other program.

Note: When CSCAT and LBLD are on the stack, the copyright
message appears. The programs may not be edited. If you press

or (¥] while they are in level one, the HP 48 will take a very
long time to display the programs in the command line. Pressing

thereafter will only result in a Syntax Error. To abort the
long display delay, just press [ATTN].

2 Getting Started

Installing Library Objects
Libraries are referenced by a library# or a library identifier
(= port#: library#), depending on the command. The title of a
library may be displayed by pressing [4] in the
LIBRARY menu.

Library objects only extend the command set when they are
stored in a port (0, 1, or 2) and attached to a directory in user
memory. To install a ToolKit library, perform the following:

« Download the library to the HP 48 in binary mode.

« Recall the library to the stack.

« Purge the variable that the library was stored in.

« Store the library object in a port, such as port 0. For instance,
when the library object is in level one of the stack, execute
0 STO.

« Turn the calculator off, then on again. The calculator will
perform a system halt, which updates the system
configuration to recognize the new library. All ToolKit libraries
automatically attach themselves to the HOME directory.

Removing the ToolKit
To remove the Alpha Catalog and the Label Builder, just purge the

variable in which they are stored. To remove ToolKit libraries,
perform the following steps:

« Ensure that the library object to be purged does not appear
on the stack as Library nnn: ... Either store the
library in a variable or execute NEWOB to create a unique
copy.

« The ToolKit libraries are attached to the HOME directory.
Switch to the HOME directory, enter the port-tagged
library number, such as :@: 775 and execute DETACH.

« Enter the library number as above and execute PURGE.

Getting Started 3

Example Programs
There are several example programs and program fragments in
this book. Each complete program is named and printed with a
size and checksum.

All characters in the programs are case-sensitive. The names of
commands are always uppercase. By convention, the names of
global variables are uppercase and of local variables are
lowercase.

While the command line entry of a program may be free form,
with the keystroke being valid between words, graphics
objects must be entered exactly as shown, with no extra breaks in
the command line when entering the data.

If you type a program into the HP 48, use the BYTES command to
make sure the program in the calculator matches the version in
the book. For instance, the program « DROF SHAF =» is 15
bytes long and has the checksum #5197h. The sizes for named
programs include the size of the program name. Named
programs may be found on the disk.

Note: The libraries used by example programs must be installed
before an example program is either entered or downloaded into
the HP 48. For instance, the LUNCH example on page 21 uses
commands from the Data Browser and the Tool Library.
Therefore the Data Browser and Tool Library must be installed
before LUNCH is entered, otherwise the library commands (such
as DBR or PRVOB) will be interpreted as names, and the example
programs will not work properly.

4 Getting Started

Character Set Catalog

The Character Set Catalog provides an interactive character set
catalog (see Character Codes). To display the Character Set
Catalog, execute the system program CSCAT:

CHR WER DEC OCT BIN A
>» A 41 065 101 01000001 [Exam]

BE 43 066 102 01000010
C 43 067 103 01000011 HR
D YY 068 10M 01000100 Gz]
E 45 063 105 01000101 |
F 45 070 106 010001 A
G M7 071 107 010001
H NB 073 110 oloolooo [MO

-15 +54

The display above shows eight characters at a time. Each
character is shown with its character code displayed in HEX,
DECimal, OCTal, and BINary modes. The right side of the display
shows the characterin three additional forms:

« The characterin the large (5x9) font.

« The character in the medium (5x7) font.

« Translated using the current TRANSIO setting. The TIO 1
labelreflects the current TRANSIO setting.

The display above assumes the current TRANSIO setting is 1.
The display below shows the display with character codes 136 -

143 displayed and TRANSIO set to 3:

 Character Set Catalog 5

When the catalog is displayed, you can do the following:

« Press the arrow keys to move the pointer. The left shifted
arrow keys move a screen (8 characters) at a time. The
right shifted arrow keys move to character codes 0 or 255.

e Press the menu keys to move the

pointer backwardsor forwards 16 characters.

e Press the =-32or +32menu keys to move the
pointer backwards or forwards 32 characters. For A—Z,

2yields lowercase a—z.

o Press the . menu keys to move the
pointer backwardsor forwards 64 characters. For A—Z,
_=&4yields control codes control —-A—control -Z.

e Press [ENTER] to return the character code to the stack as

an alpha -tagged character code, such as A: &5:

{ HOME }

4:
3:
2:

Lr A: 65
EEEEEECRARERE

By executing OBJ— on the result, the character and its
code are available as separate objects.

Press to end the application.

Note: The current TRANSIO setting is stored in the reserved
variable /OPAR. If this variable does not exist, CSCAT will create

IOPAR in the HOME directory with default values.

6 Character Set Catalog

Menu Label Builder

The Label Builder has been designed to facilitate the creation of
graphic menu key labels. It is used in conjunction with custom
menu definitions supplied to the MENU or TMENU commands
which may contain a 21x8 graphics object to define the menu
label.

Example: The following list contains a menu definition for four
keys. Each keyis labeled with a graphics object, and the first key
has a different definition for the left and right shifts:

ELEC (225 bytes, checksum #9447h)

GROB 21 8 0000000000000101008282006444C0082820001010000000
n ian" WEHENY "EHEO" H

GROB 21 8 00000000A00000A00000A000CFBF7000A00000A00000A000

"CAPACITOR"

GROB 21 8 0000000040000041000045000F7510004500004100004000

"GROUND"

GROB 21 8 000000000000000750002150E77750002450000720000000

1" VCC i"

{ HOME }
4:
3:

“
AA —— —n-_—e5 EE—

Menu Label Builder 7

The Label Builder. The variable LBLD contains the Label Builder.
While primarily intended for creating graphic menu labels, the
Label Builder is also useful for creating smaller graphics objects
as well.

To start the Label Builder, execute LBLD:

The cursor appears in the upper-left corner of the grid, and the
cursor coordinates are shown on the right side of the display.

While the grid is displayed, you can do the following:

Press the arrow keys to move the cursor (wraparound is
enabled).

Press [ENTER] to toggle the current state of a pixel.

Press

upper-left corner and the cursor to the stack.

 Press _to return the menu key graphics object and
its inverse to the stack.

Press [ATTN] to end the label builder.

The second and fourth menu keys at the bottom of the display
show how the menu key would appearin its final form:

 Menu Label Builder

The Label Builder returns a graphics object and its inverse to the
stack:

HOME }

{

5
2s Lou! graphic £1 X 3
1: Reg: (Gra icEh X
|EEEERLE pry

These graphics objects are ready to supply to a custom menu
definition. The object returned to level 1 with the tag "Reg"

represents the second menu key from the left in the builder; the
level 2 object represents the fourth menu key.

The Label Builder may also be used to prepare smaller graphics
objects. For instance, to construct a small arrow, set the desired
pixels and place the cursor on the lower -right pixel:

then ATTN]toend the application. The graphics objects in levels
one and two contain the arrow:

HOME }

: Inv: Graphic 5 x 5
Reg: Graphic 5 x 5

rma MECTR]ERE

«
3:
3:
2:
Li

Menu Label Builder 9

Flag Catalog

The Flag Catalog provides a rapid view of all the system flags
(-1 - -64) and the user flags (1 — 64). To display the Flag
Catalog, execute the command FCAT ([«] FCLIE

ECHT).

Viewing All Flag Settings
When the Flag Catalog starts, the first display shows all the
system flags:

 w OC wn o
b

D 0 © + w — o 0

3
P
t
f
d
f
d
e
d
e
d
f
d
p
d

m
n

S
W

N
n
A
M
K
A
A

m
u
n
N
L
w
u
~
a
w
m

A
A
A
A
N
V
V
K

TU
PU

PU
PU

PU
p
t

L
W
n
-
a
m
m
=
N

A
C
A
A
A
A
A
A
S

La
dl

ad
WJ

PU
RI

RU
PU

TU
n
u
=
Q
w
@
m
N
m
L
n

TT
]

A
A
A
A
A
A
A
A
=

L
i
l
i

S
w
m
N
G
W
N
I
W
g

M
A
A
A
A
V
M
A
A
A

L
£
E
L
E
L
E
L
L
E
L
L
L

@
W
N
V
N
C
W

A
A
A
A
A
A
A
A

n
u
n
n
u
W
W
n

EE
h
i
n
S
W
w
n
-
a
W

A
A
A
A
A
A
A
A

E
N
E

EV
ER
L
N

L
w
n
-
a
W
m
m
-
N

BR
A
A
A
C
A
N
A
A

 XH]EE)ITE[THA

This display shows all the system flags or user flags at once.
When all the flags are displayed, you can do the following:

« Press the arrow keys to move around the display. The
left — shifted arrow keys move to the boundaries, and the
right — shifted arrow keys move to the first or last flags.

e Pressthe menu keys to set or clear the

indicated flag.

e Pressthe or USERmenu keys to view either the

system f lags oruser flags.

e Press the [ESCmenu key to display the flag
descriptions.

oe Press IIITor to end the application.

10 Flag Catalog

Viewing Flag Descriptions
The [ESC key displays the flag descriptions for either the

system flags or userflags:

System Flag Catalog

When the flag descriptions are displayed, you can do the
following:

« Press the arrow keys to move the pointer. The left - shifted
arrow keys move a screen at a time. The right shifted
arrow keys move to the ends ofthe list.

e PresstheSF or(CFmenu keys to set or clear the

indicated flag.

oe Pressthe =4¥S or USER menu keys to view either the

system flags or user flags.

e Press the HALL menu key to display the flag

descriptions.

e Press [GIT or to end the application.

Supplying User Flag Descriptions
When the user flag descriptions are displayed, the current path is
searched for the variable UFLAGS. If UFLAGS is a list containing
strings, the first two characters of each string will be examined for
a flag number, and the remainder of the string will be displayed
as the flag description.

Flag Catalog 11

The following list supplies definitions for the flags used by the
HP 82211A Solve Equation Library application card:

UFLAGS (107.5 bytes, checksum #7BABh)

{

"6BUNHIT TYPE ¢ B8=51 1=EHGLISH"

"&1UNITS USED: B=YES 1=HO"

"62PMT MODE : ©=END 1=BEG"

¥

User Flag Catalog
? C USER FLAG
B USER FLAG

If UFLAGS does not contain a list, or the list does not contain a

valid string definition, UFLAGS will be ignored.

12 Flag Catalog

Data Browser

The Data Browser is a utility which provides an efficient interface
for examining and editing a series of objects.

The Data Browser appears to the user as a list of optionally -
labeled data with a movable pointer to indicate a choice:

In the display above, the pointer indicates the currently selected
item, and the arrows in the upper-left corner of the display
indicate that more data items reside above and below those
shown in the display. Each line of the display contains a label
(such as "Addr: ") and data (such as "123 ANYSTREET"). The
menu keys have been defined by the input parameters.

The input parameters to the Data Browser control the appearance
of the data and the options available to the user. For instance, by
omitting the title bar and specifying a small font, many data items
can be shown in the display at once:

 Data Browser 13

Input Parameters
The input parameters to the Data Browser are fourlists:

Level 4:

Level 3:

Level 2:

Level 1:

14

i label list

This list contains the label objects. Long labels will be
truncated to 25 characters. An empty list may be
supplied if no labels are desired.

+ data list
This list contains the data objects, and must contain at
least one object. The data list and label list must be the
same length.

< menu label list =
This list contains the objects which will be presented as
menu labels. If the label object is an empty string, the
menu label will be black and the menu key will generate
an error beep when pressed. If the label object is the
string "NULLKEY", the menu label will be white and the

menu key will generate an error beep when pressed. A
21x8 graphics object may be used for the key label
(see The Menu Label Builder). An empty list is
acceptable, but the display will still show black labels.

font first_item currentitem editflag title =
The font is specified by a real number: 1 for the small
font (3x5), or 2 for the medium font (5x7). The real
number first_item specifies the index of the first data
item displayed. The real number currentitem
specifies which data item will be pointed to by the
pointer. If first_item specifies a row that would force
the last data item to appear above the bottom of the
display, the value is adjusted to place the last data item
at the bottom of the display. If the pointer is off-
screen relative to the first_item, the data is positioned
to place the pointer in the display. If the real number
edit_flag is non-zero, the user may edit the data
items. If editflag<0, no type checking will be
performed. The title is specified by a string. The title
string may contain 21 characters. Longer strings will be

Data Browser

truncated to 20 characters with a trailing ellipsis (...)
character. If an empty string is supplied, the top of the
display will be used to present additional data and the
arrows indicating data beyond the boundaries of the
display will not appear.

Output Parameters
The results from the Data Browser are either three or four items,

depending on the original state of the editflag:

Level 4:

Level 3:

Level 2:

Level 1:

{ data list =
This list contains the data objects (which may have
been edited). The data list will not be returned if
edit_flag was zero.

{ font first_item current_item editflag title
This list is similar to the level 1 input list. The real
numberfirstitem is the index in the data list of the first
data item displayed when the Data Browser terminated.
The real number current_item is the index of the data
item at the pointer when the Data Browser terminated.
The font, editflag, and title are the same as the input
parameter.

currentitem
The real number current_item is the index of the data
item at the pointer when the Data Browser terminated.

terminatorkey
The terminator_key indicates how the user terminated
the Data Browser:

0: Zero is returned when the user presses [ATTN].

1: One is returned when the user presses [ENTER].

-n: If the result is a negative number, the absolute
value indicates which menu key was pressed.

Data Browser 15

Active Keys
While the Data Browseris running, the following keys are active:

16

(a] (v]

(=) [VISIT

(4) [EDIT

MENU

ENTER

ATTN

The arrow keys may be used to move the pointer.
Press (\q) and an arrow key to move the pointer

one screen at a time. Press [®] and an arrow key

to move to the ends of the catalog.

If a data item cannotfit within the display (indicated
by ...), the key displays as much of the item
as will fit in the display, up to 154 characters.
Pressing or will return to the original
Data Browser display. If the data item fits entirely in
the display, [*] will generate an error beep.
See Viewing Large Data Items below.

If the editflag is non-zero, pressing [4]
presents a line editor for the current data item. The

edit session can be aborted by pressing [ATTN], or
accepted by pressing [ENTER]. The input supplied
by the user is checked for proper syntax to confirm
that a legitimate object results. See Editing Data
Items below.

Pressing [a] produces a prompt for a search string.
The data list will be searched for a data item
containing the search string starting at the next item
and wrapping around if necessary. The search is
case-sensitive. See Searching for Data below.

Pressing a non-null menu key will terminate the
Data Browser, indicating which menu key was
pressed and the location of the pointer.

Terminates the Data Browser, indicating the
location of the pointer.

Terminates the Data Browser.

Data Browser

Viewing Large Data Items. The Data Browser has a facility for
viewing data items that are too large to fit within a line on the
display. For example, consider the display below:

$ ADDRESS LIST
Name: JOHN DOE

+Addr: 9876 WINCHESTE..
City: CORVALLIS

I

o
e

8
8

o
s

97330
Ph 903-555-1212

ICTETCITTAINETT

The current data item will not fit in the display, as indicated by the
ellipses (...) at the end of the line. Pressing [®] produces a
full — screen display showing up to 154 characters:

9876 WINCHESTER BLVD.

 PRESS [ENTER] TO CONTINUE ...

Pressing [ATTN] or [ENTER] will return to the original Data Browser
display.

Editing Data Items. If the editflag is non-zero, pressing
(a) presents the command line editor:

PRG

{ HOME }

 «CORVALLIS"
AEEETM[ESITED

The menu keys are identical to the command line editor, but the
stack is not available. User key definitions and HP 48 menus may
be used. The edit session can be aborted by pressing [ATTN], or
the new data can be accepted by pressing [ENTER]. There are
two important points to consider about editing data items:

Data Browser 17

» The new data is checked for proper syntax, and must result
in a legitimate object. For instance, if the new data
represents a program, it must be syntactically correct.

String data objects must be surrounded by quotes.

« If editflag is negative, no type-checking occurs. If the
results of the browser session are destined for a type-
dependent procedure, such as filling a numeric array, it
may be wise set editflag positive to check the user’s input.

Searching for Data. Pressing [a] produces a prompt for a
search string:

PRG
{ HOME }

Search for:

 4
£ZEIP[KIPA]<DELDELS[INS|

The menu keys are identical to the command line editor, but the
stack is not available. User key definitions and HP 48 menus may
be used. The search prompt can be aborted by pressing [ATTN],
or the search string can be accepted by pressing [ENTER].

The search begins just past the current data item, and wraps
around if necessary. The search ends at the first data item found
that contains the search string. Labels are ignored during the
search.

18 Data Browser

Example: The “address list" example on the first page of this
chapter was illustrated using the following program:

NAMES (308 bytes, checksum #2C49h)

"Mbr#: " "Mame: " “Addr: " "City: "
"ot . . " "Zip . " "Ph# . n "Date: "

La
e}

47
"JOE SMITH"
"123 ANYSTREET"
"CORVALLIS"
n or "

97330
"S5@3-555-1212"
11.241989

i "ADDL" "DEL" nu nau nu "RaUIT")

tz2231" ADDRESS LIST"

STD DEE

Note that in this example, the first row has been set to two and
current row has been set to three, so that the name appears first
at the top of the display and the pointer is set to the address line.

Data Browser 19

Example: The program LUNCH on the next page illustrates a
small application that uses the Data Browser and four Tool Library
commands: EXTRACT, NXTOB, PRVOB, and REPLACE.

Select Your Lunch:

While the program LUNCH is running, the HE
keys may be used to change the selection for each of five
categories. For instance, pressing NEXT with the pointer on

the "Fruit" line selects the next available fruit selection:

Apple
Ira Cream
Cola

The program is terminated by pressing either ", [ENTER], or
ATTN]. The selections are returned in a list:

{ HOME }

1: { "Steak" "Salad"
"Orange"
"Ice Cream"
"Coffee" }

EREMEEITENATREEI

20 Data Browser

LUNCH (733.5 bytes, checksum #C4ACh)

i

{ "Cheeseburger" "Steak" "Chicken" "Hot Dog"

{ "Fries" "Salad" "Baked Beans" "Corn" >

{ "Orange" "Apple" "Banana" "Pear"

© "Ice Cream" "Yogurt" "Cookies" >
{ "Cola" "Coffee" "Milk" "Water" >

"Coursel: " "Coursez: " "Dessert : "
"Fruit = " "Drink = "

OYER LIST» 1 EXTRACT LIST 1

+ Choices Labels Lunch Running

{2118 "Select Your Lunch:" 3

WHILE Running

REPERT

Labels Lunch

{

"PEEM" "HEXT" "“HULLEEY

"MULLKEY "HULLKEY" "QUIT"

+

4 ROLL DER

IF

DUP -& SAME OVER © = OF

THEM

2 DEOFH Lunch 8 'Running' STO

ELSE

Lunch 2 PICK GET Choices 4 ROLL GET

OVER 4 ROLL

IF -1 SAME THEW FPEYOE ELSE HATOEB EHD

Lunch 2 ROLLD REPLACE 'Lunch' STO

EHD

EHD

Data Browser 21

Title Browser

The Title Browser is a utility which provides an efficient method
for presenting a series of names or choices to the user with a
definable set of menu keys.

The Title Browser appears to the user as three columns oftitles
with a movable underscore to indicate a choice:

| _Choose a planet: |

LUEEL
ECTBETTE JUPITER
[URANUSNEPTUNEPLUTO

ZUN[HOON] TEMP] 012T[OREIT]GUIT

In the display above, there are nine choices available. If there are
more than fifteen choices, the title bar will be changed:

[#] Choose a number: |

IIIITE

The display above shows the order in which the choices are
displayed from the input list. The arrows in the upper-left corner
of the display indicate that more data items reside above and
below those shown in the display.

22 Title Browser

Input Parameters
The input parameters to the Title Browser are three lists:

Level 3: <{ data list >

Thislist contains the objects which will be presented as
the data. The objects will be converted to a string and
centered within the highlighted screen areas. The list
must contain at least one object.

Level 2: { menu label list

This list contains the objects which will be presented as
menu labels. If the label object is an empty string the
menu label will be black and the menu key will generate
an error beep when pressed. If the label object is the
string "NULLKEY" the menu label will be white and the
menu key will generate an error beep when pressed. A
21x8 graphics object may will be used for the key label
(see Menu Label Builder). An emptylist is acceptable,
but the display will still show black labels.

Level 1: <£ current item first row title

The real numbercurrentitem specifies the index in the
data list indicated by the underscore. The real number
first_row specifies the first row of data elements to
appear in the display. If firstrow specifies a row that
would force the last row of data to appear above the
bottom of the display, the value is adjusted to place the
last row of data at the bottom of the display. If the
underscore is off-screen relative to the first_row, the
data is positioned to place the pointer in the display.
The title is specified by a string. Long titles will be
truncated to 21 characters. If there are more then 15
data items, only 20 characters will be displayed, in
order to make room for the arrows.

Title Browser

Output Parameters
The results from the Title Browser are three items:

Level 3:

Level 2:

Level 1:

24

< current_item first_row title
This list is similar to the level 1 input list. The real
number currentitem is the index in the data list of the
underscored data item when the Title Browser
terminated. The real number firstrow specifies the
first row of data elements that appeared in the display
when the Title Browser terminated. The title is the
same as the input parameter.

current_item
The real number current_item is the index in the data
list of the underscored data item when the Title
Browser terminated.

terminator_key
The terminator_key indicates how the user terminated
the Title Browser:

0: Zero is returned when the user presses [ATTN].

1: One is returned when the user presses [ENTER].

-n: If the result is a negative number, the absolute

value indicates which menu key was pressed.

Title Browser

Active Keys
While the Title Browseris running, the following keys are active:

(4] (v] (>) [«] The arrow keys may be used to move the
underscore. Press [qq] [A] or [#q] [VY] to
move the underscore one screen at a time.

Press [*] [4] or [*] [¥] to move to the ends
of the catalog.

Pressing a non-null menu key will terminate
the Title Browser, indicating which menu key
was pressed and which item was
underscored.

ENTER Terminates the Title Browser with a 1,

indicating which item was underscored.

ATTN Terminates the Title Browser with a 0,

indicating which item was underscored.

Example
The "planets" example at the beginning of this chapter was
illustrated using the following program:

PLANETS (223 bytes, checksum #4A3Fh):

"MERCURY" "“VEHUS" "ERRTH" "MARS" "SATURN"

"JUPITER" "URARHUS" "HEFTUWE" "FLUTO"

£ "SUN" "MOON" "TEMP" "DIST" "ORBIT" "QUIT" >
+11" Choose a planet: "oa

TER

Title Browser 25

Tool Library

The Tool Library provides 74 new commands that extend the
built-in command set of the HP 48. The new commands fall into
the following categories (see Command Index):

« Array Operations. Ten commands facilitate the addition,
deletion, exchange, or replacement of rows and columns in
an array.

« Graphics. Eight commands provide pixel manipulation for
graphics objects on the stack, coordinate conversions, and
graphics object rotation.

e List Manipulation. Twelve commands perform list
decomposition, manipulation, and sorting.

o Meta-Object Utilities. Fourteen commands provide tools
for manipulating meta — objects.

« Set Utilities. Six commands manipulate lists as sets.

o Stack Manipulation. Seven commands perform stack
movement and sorting.

o String Manipulation. Twenty-two commands perform
extensive string manipulations.

o Other Commands. Two commands calculate the day of the
week or the day of the year given a date. Two commands
extract variable names from a program or equation and
search user memory for variables by name or type. The
XTIME command calculates execution times.

26 Tool Library

Graphics
The graphics commands in the Tool Library use pixel coordinates
to identify a pixel in a graphics object. A pixel coordinate consists
of a list containing two binary integers, { #col #row }.

The upper-left pixel of a graphics object is represented by
{ #0 #0 }. Graphics objects placed into or extracted from PICT
with the built-in commands GOR, GXOR, SUB, or REPL are
located by their upper-left corner. Similarly, the Tool Library
commands PXOFF, PXON, and PX? assume that the upper-left
pixel of a graphics object is { #0 #0 }.

(#040) HP 48 Display Coordinates (#130 #0}

{ #col #row } il

{ #0 #63 } O{ #130 #63 }
The built-in commands PX—C and C—PX convert between user
coordinates, such as (x,y), and pixel coordinates. The Tool
Library commands PX—R and R—PX simplify the translation
between pixel coordinates and loop indices or calculation results.

Example: The following program fragment (64.5 bytes,
checksum #6331h) draws a dotted line in PICT. The command
R—PX is used to form the pixel coordinate for PIXON.

,

— 15
! £2 FOR 1 1 2 ¥ 1 R*PX PIXON 2 STEP { 3 PVIEMW

Tool Library 27

Set Utilities
The set utilities assume (but do not require) that a set is defined
as a list of unique objects. In combination with other commands,
the set utilities can simplify some otherwise complicated
procedures.

A set on the stack may be as simple as an empty list, or a list of
many different objects. The command —SET may be used to
ensure that all the objects in a set are unique. The command
ADJOIN adds an object to a list onlyif the object does not appear
in the list.

The commands DIFF, INTERSECT, SDIFF, and UNION perform
set operations or comparisons.

Example: Variables From Equations. The following program
fragment (49 bytes, checksum #81A2h) uses the set utility
UNION and the command EQNVARS to return a list of all the
variables used by a list of equations:

&

OBJ» MREVERSE { 2

1 ROT

STHRT

SWAP EQHNYARS DROP UNION

NEXT
®

In the example above, the UNION command is used to ensure
that the variables found are added to the output list only if they
are unique. The MREVERSE command is used here to reverse

the order of the equations on the stack so the variables in the
output list appear in the left-to-right order that you would read
them in the input list.

28 Tool Library

Example: Finding Variables Containing Real Numbers.
A complex directory structure can lead to confusion: where is a
variable X which does not contain a real number? The following
program fragment (43.5 bytes, checksum #5584h) uses the set
utility INTERSECT and the command VFIND to return a list of all
the variables named X that contain a real number:

&«

'X' VFIND LIST 8 VFIND LIST INTERSECT
»

In the example above, each call to the VFIND command returns a
list of paths. The INTERSECT command is used to ensure that
only variables that do contain real numbers are returned.

Example: Finding Variables NOT Containing Real Numbers.
The following program fragment (43.5 bytes, checksum #96A9h)
uses the set utility DIFF and the command VFIND to return a list

of all the variables named X that do not contain a real number:

%

'®' VFIND »LIST © VFIMD LIST DIFF
»

In the example above, each call to the VFIND command returns a

list of paths. The DIFF command is used to ensure that only
variables that do not contain real numbers are returned.

Tool Library 29

Meta- Objects
The term meta-object refers to a group of objects and their
count that resides on the stack. Since stack operations are by
nature very efficient, there will be instances when manipulating
groups objects on the stack is more efficient than keeping the
objects in lists. The meta-object utilities presented below
condense the stack operations into efficient system -code.

The following display shows a meta—-object consisting of three
objects and their count:

{ HOME }

4: (4,5
3: "STRING"
2: [5129]

PRATZ]PROE]HIPMTRYEE]EAZE

The term meta —stack refers to a group of objects on the stack,
some of which may be meta- objects. The term position is used
instead of level when discussing meta - stacks, because a meta-
object actually occupies multiple stack levels.

The following meta -stack consists of the complex number (3,4)
in position 1, and meta - objects in positions 2 and 3:

"MARS" "JUPITER" 2 2 19 89 3 (3,42

Position 3 Position 2 Position 1

Notation
To simplify discussions about meta-objects, the following
notation is presented. The count is always assumed to be below
the elements on the stack.

Stack Notation. The following symbols are used to indicate
objects and meta-objects on the stack, where the right —most
element is at the bottom of the stack:

30 Tool Library

<..>

< obj; obj, obj; >

<..> obj

< obj... >

< ... obj >

< meta, > < meta, >

An empty meta-object on the stack
(which is just a 0, because the meta-
object must have a count).

An arbitrary meta —- object on the stack.

A meta-object composed of three
objects.

An object in level 1 and a meta- object
beginning at level 2.

A meta-object on the stack, with obj at
the head. The head is the element
farthest from the count. This is
equivalent to the decomposition of the
list { obj ... }.

A meta - object on the stack, with obj at
the tail. The tail is the element closest to
the count. This is equivalent to the
decomposition of the list { ... obj }.

Two meta —- objects on the meta - stack.

Utility Names. The meta- object command names start with M,

for Meta - object, and use the following naming convention:

Refers to a list.

|
M
N
A
I
T
r
z
o
O
>
»

Tool Library

Refers to the addition of an object to a meta — object.

Refers to the deletion of an object from a meta - object.

Refers to a meta —- object.

Refers to the head of a meta — object.

Refers to the tail of a meta — object.

Refers to an empty meta - object.

Refers to the meta — object in position 2.

The phrase “to" (converting to another form).

31

Utilities
To establish an empty meta—-object on the stack, just place a
zero in level 1. To convert a list or vector into a meta-object,
execute OBJ—. To convert a meta—- object back to a list, execute
—LIST. To convert a meta-object back to a vector, execute
—ARRY.

The meta-object utilities, described in the command reference,
consist of the following commands:

MDH

MDH2

MDT

MDT2

ML—-M

MM-L

MREVERSE

MSWAP

MZ2

Adds an object to the head of a meta —obj in position 1

Adds an object to the head of a meta —obj in position 2

Concatenates two meta —objs

Adds an object to the tail of a meta -obj in position 1

Adds an objectto the tail of a meta -obj in position 2

Extracts an element from the head of a meta —obj in pos.1

Extracts an element from the head of a meta —obj in pos. 2

Extracts an element from the tail of a meta -obj in pos. 1

Extracts an element from the tail of a meta —obj in pos. 2

Convertslists in positions 1 and 2 into meta -objs

Converts meta —objs in positions 1 and 2 into lists

Reverses the order of the objects in a meta —obj

Swaps the meta —objs in positions 1 and 2

Places an empty meta -obj in meta —stack position 2
Other commands in the Tool Library that accept or return
parameters in the form of meta — objects are:

EXTRACT Returns the mth element from n lists

LSORT Sorts a series of n lists based on the mth element

QSORT Sorts a series of objects

VFIND Finds variables in user memory

—WORDS Separates a string into individual words

32 Tool Library

Example: Testing Variables. If the variables used by a program
or equation depend upon the initial conditions of certain
variables, a program to show which variables exist in the current
path may be helpful.

The following program expects an equation or program as input
and returns lists indicating which global variables are defined and
undefined. The program uses the meta-object utilities MZ2,
MDT, MAH, MAH2, and MM—L. The undefined variables are kept
in position 1, and the defined variables are moved to the meta-
object in position 2.

ESCAN (161 bytes, checksum #8B5Dh)
&

EGHYRARS DROP DTARG Get global variables

oeJd+» Explode list for count

IF DUP THEN Process if there are some globalvars

MZz2 DUP 1 SHAP

START

MDT DUP VYTYPE

IF -1 SHME Does variable exist?

THEH If nonexistent,

MAH and add to “undefined” meta-obj.

ELSE

MAHZ If exists, add to “defined” meta-obj.

EHD

HEXT MM=+L Convert meta-obs to lists.

ELSE

CROP If there were no global variables,

£242 return two empty lists.

END

"Undefined" *THG SWAP Add tags.

"Defined" TRG
%

Tool Library 33

Temporary Memory
A large part of the motivation for using meta- objects has to do
with the use of temporary memory in the HP 48. The stack in the
HP 48 is actually a stack of pointers which refer to objects
elsewhere in memory. Temporary memory is the calculator’s
"scratchpad®. All objects that are not stored in a port or in a user
variable reside in temporary memory. Many commands require
temporary memory to construct intermediate objects or new
objects returned as results to the stack.

Use of Temporary Memory
To understand temporary memory a little more, consider what
happens when two math operations are performed. Enter the
numbers 1.5 and 2.6 on the stack. These numbers now reside in
temporary memory, referred to by pointers on the stack. When
the numbers are added, the result, 4.1, is a number in temporary
memory referenced by a pointer in level 1 of the stack. The
objects 1.5 and 2.6 remain in temporary memory, referenced by
pointers that point to the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the
stack refers to the object 6.9 in temporary memory. The Last
Arguments pointers now refer to the objects 2.8 and 4.1, and the
objects 1.5 and 2.6 are no longer referenced.

Garbage Collection
From time to time the HP 48 will "hesitate" during an operation.
This hesitation is usually caused by the removal of objects in
temporary memory which are no longer being used. Objects
which are no longer referenced continue to accumulate in
temporary memory until memory has been filled. When memory
is full, the calculator scans the objects in temporary memory,
deleting those without references to them. This process, known
as "garbage collection”, is similar in concept to garbage collection
in LISP.

A large number of pointers on the stack that point to temporary

A Tool Library

memory can slow down the garbage collection process to an
uncomfortable degree. This occurs when there are a large
number of objects on the stack, or an object has been extracted
from a large list. List operations can be optimized by storing the
lists in global variables, effectively moving the operations from
temporary memory to user memory.

The MEM command returns the amount of available memory,
forcing an initial garbage collection to return an accurate result. It
may be helpful to insert the sequence MEM DROP to force
garbage collection prior to speed —- sensitive program sequences.

The NEWOB Command
The command NEWOB may be used to create a new copy of an
object in temporary memory, whose only reference is on the

stack. In general, the system will perform an automatic NEWOB
where it makes sense. For instance,if you recall the contents of a
variable to the stack and press , the object will be copied to
temporary memory before editing begins. There are three
situations in which NEWOB can be used explicitly for better
control of temporary memory usage:

« NEWOB ‘frees an object that was extracted from a list.
Considerthe following program:

« { "AE" "CD" "EF" > 2 GET »

After executing this program, level 1 of the stack contains a
pointer into the list, which still resides in temporary memory.
Executing NEWOB now would create the unique object
"AB" in temporary memory, and release the list for garbage
collection. Note: Set the Last Arguments flag (-55) to
prevent the list from being referenced as one of the GET
command’s arguments.

Tool Library 35

« Recalling an object to the stack places a pointer to the
object on the stack. In the case of backup objects in a port,
which consist of an object, name, and checksum combined
into a single object, recalling it to the stack places a pointer
to the object within the backup object on the stack. This is
why the system does not do an automatic NEWOB. To
purge a backup object from a port while retaining a copy in
temporary memory, recall it and execute NEWOB. Then the
backup object may be purged because there are no
referencesto it.

« The commands PXON and PXOFF in the Tool Library
modify the graphics object directly without creating a copy.
If there are several pointers on the stack to a graphics
object modified by PXON or PXOFF, each of those pointers
will point to the changed graphics object in memory. The
NEWOB command may be used in this situation to ensure
there are no other references to the graphics object being
changed.

Tool Library

Command Index
This index lists the commands in the Tool Library, grouped into
subject areas. Some commands or functions appear more than

once.

ARRAY OPERATIONS

DELCOL Deletes a column from an array

DELROW Deletes a row from an array

EXCOL Exchanges two columns in an array
EXROW Exchanges two rows in an array

GETCOL Extracts a column from an array

GETROW Extracts a row from an array

INSCOL Inserts a column into an array

INSROW Inserts a row into an array
PUTCOL Replaces a column in an array

PUTROW Replaces a row in an array

GRAPHICS

PX+ Adds two graphics pixel coordinates

PX- Subtracts two graphics pixel coordinates

PXOFF Clears a pixel in an arbitrary graphics object

PXON Sets a pixel in an arbitrary graphics object

PX? Tests a pixel in an arbitrary graphics object

PX—R Converts pixel coordinates into two real numbers

ROTATE Rotates a graphics object

R—PX Converts two real numbers into pixel coordinates

LIST MANIPULATION

CAR Returns the first object of a list

CDR Returns a list minus its first object

CUT Splits a list into the first and remaining objects

EXTRACT Returns the mth element from each of a series of lists

LSORT Sorts a series of lists based on the mth element

NXTOB Returns the next choice from a list of choices

PRVOB Returns the previous choice from a list of choices

SPLIT Splits a list into two lists
REPLACE Replaces all occurrences of an object in a list

REVERSE Reverses the order of objects in a list

ROTATE Rotates the objects in a list

—SET Removes duplicate objects from a list

Tool Library

META-OBJECT UTILITIES

MAH Adds an object to the head of a meta —obj in position 1
MAH2 Adds an object to the head of a meta —obj in position 2

MAM2 Concatenates two meta —objs

MAT Adds an objectto the tail of a meta —obj in position 1

MAT2 Adds an object to the tail of a meta —obj in position 2

MDH Extracts an element from the head of a meta -obj in pos. 1

MDH2 Extracts an element from the head of a meta -obj in pos. 2

MDT Extracts an element from the tail of a meta -obj in pos. 1

MDT2 Extracts an element from the tail of a meta —-obj in pos. 2
ML—-M Convertsin lists positions 1 and 2 into meta -objs
MM-L Converts meta—obs in positions 1 and 2 into lists

MREVERSE Reverses the order of the objects in a meta —obj

MSWAP Swaps the meta —objs in positions 1 and 2

Mz2 Places an empty meta —obj in meta — stack position 2

SET UTILITIES

ADJOIN Adds an objectto a listif it is unique

DIFF Returns the set difference of two lists

INTERSECT Returns the set intersection between two lists

SDIFF Returns the set symmetric difference of two lists
—SET Removes duplicate objects from a list

UNION Returns the set union of two lists

STACK MANIPULATION

KEEP Keeps the bottom n objects on the stack
MREVERSE Reverses the order of the first n stack objects
NDUP Creates n copies of an object

QSORT Sorts n objects on the stack
SRLL Rotates n objects on the stack up m times

SRLLD Rotates n objects on the stack down m times
SXCH Exchanges objects at levels m and n

38 Tool Library

STRING MANIPULATION

CAR Returns the first character of a string

CDR Returns a string minus its first character

Cut Splits a string into the first and remaining characters

ICAPS Converts the words in a string to initial caps

LCASE Converts the characters in a string to lowercase
LTRIM Removes leading spaces and tabs from a string

PUTCHR Places character code n in a string
REPLACE Replaces all occurrences of a substring in a string

REVERSE Reverses the order of characters in a string

ROTATE Rotates the characters in a string

RPTSTR Creates a string of n substrings

RTRIM Removes trailing spaces and tabs from a string

SPLIT Divides a string into two strings
—STDSTR Converts an object to a string in standard display mode

STRCON Rapid creation of new character strings

STRCTR Centers a string in a specified number of spaces

SUBNUM Returns the character code of a string’s nth character
—TIO Converts a string to its translated form for 1/0

TIO— Converts a string from its translated form for I/O
TRIM Removes leading and trailing spaces and tabs from a string

UCASE Converts the characters in a string to uppercase

—WORDS Separates a string into individual words

OTHER COMMANDS

DOW Returns the day of the week given a date

DOY Returns the day of the year given a date

EQNVARS Returns a list of global variables in an equation or program
VFIND Find all occurrences of a variable or object type in user memory
XTIME Calculates execution times

Error Messages
The Tool Library contains four new error messages:

Hex Dec Error Message

30801 198657 Invalid Pos 1 Meta - Obj
30802 198658 Invalid Pos 2 Meta —- Obj
30803 198659 Empty Meta- Obj
30804 198660 Inconsistent Data

Tool Library 39

Command Reference

This command reference lists the stack diagrams for each of the
commands in the Tool Library. Each entry lists the name,
description, and stack diagrams. An example is provided to show
how each command works.

NAME
Input Output

Level, Level, Level, — Level; Level, Level,

The following table lists the terms used in the stack diagrams. Note
that system modes may affect the interpretation of input parameters
or the results of some functions.

Term Description

obj Any object

x ory Real number

(x,y) Complex number

z Real or complex number

morn Positive integer real number (rounded if non -integer)

#nor #m Binary integer

"string" Characterstring

“chr” Character string containing only one character

{list} List of objects

grob Graphics object

{ #x #y} Pixel coordinates

date Date in current date format

meta Meta -object (see Meta — Objects)

type Object type (see Object Types)

[vector] Real or complex vector

[[matrix]] Real or complex matrix

‘global’ Global name

T/F Test result: 0 (false) or non-zero (true)

Meta - object utilities are described with a notation presented
in Meta - Objects.

40 Command Reference

ADJOIN
Adds an object to a list if the object is not a member of the list.

ADJOIN

 {list;} obj — {list,}

Examples:

{ 11 22 33 >33 — {11 22 33 3

11 22 33 x44 — {11 22 33 44 3

Related Commands: DIFF, INTERSECT, SDIFF, —SET,
UNION

Command Reference 41

CAR
The command CAR may be used to extract the first element of
a list or the first character from a string. When a list object is
extracted, a NEWOB is performed to free the element from the

list (see Temporary Memory).

CAR
—

"string," — “string,”

{yy = {1}
{obj, ... obj,} — obj,

Examples:

"HECD" —_ "gn

Related Commands: CDR, CUT, EXTRACT, NXTOB, PRVOB,

SPLIT, REPLACE, REVERSE, ROTATE, —SET

42 Command Reference

CDR
The command CDR may be used to remove the first object
from a list or the first character from a string.

CDR
—

"string," — "string,"

{} = {1}
{obj, ... obj,} — {obj,... obj,}

Examples:

"HBCD" —_ "BCD"

£3982 — £09 o
o

MN LL
Related Commands: CAR, CUT, EXTRACT, NXTOB, PRVOB,
SPLIT, REPLACE, REVERSE, ROTATE, —SET

Command Reference 43

CUT
The command CUT may be used to split a list or string into the
first and remaining components.

When a list object is extracted, a NEWOB is performed to free
the element from the list (see Temporary Memory).

CUT

"string," — “stringy,” "chr"

{} = {1} {1}
{obj, ... obj,} — {obj... obj,} obj,

Examples:

""HeCD" —_ "n BCD" "a"

£3982 —- {983273% 3

Related Commands: CAR, CDR, EXTRACT, NXTOB, PRVOB,

SPLIT, REPLACE, REVERSE, ROTATE, —»SET

44 Command Reference

DELCOL
The command DELCOL may be used to delete a column from
a vector or matrix. The vector or matrix must have at least two

columns.

DELCOL
[vector,] n — [vector]

[[matrix,]] n — [[matrix,]]

Examples:

[39821 3 —- [3921

[C 11 22 22 1 (fC 11 32

5
—_—

44 33 66 11 2 [44

Related Commands: DELROW, EXCOL, EXROW, GETCOL,

GETROW, INSCOL, INSROW, PUTCOL, PUTROW

Command Reference 45

DELROW
The command DELROW may be used to delete a row from a
matrix. The matrix must have at least two rows.

DELROW

[[matrixy]] n — [[matrix;]]

Example:

[L 11 22 33 1 (fC 11 22 32 1

44 55 66 1] 2 — [L 7/7 88 99 11]

77 88 99 11]

Related Commands: DELCOL, EXCOL, EXROW, GETCOL,

GETROW, INSCOL, INSROW, PUTCOL, PUTROW

46 Command Reference

DIFF
Returns the set difference of two lists.

DIFF

 {list} {list,} — {lista Ano NOT B}

Examples:

{1234 2{5e 2 — {123

{1234303453 — {123

Related Commands: ADJOIN, INTERSECT, SDIFF, —SET,
UNION

Command Reference 47

DOW
Returns the day of the week given a date in the current date
format. The days are numbered starting with Monday=1,
Tuesday=2, etc. The earliest valid date for this function is
October 15, 1582.

DOW

 date — n

Examples:

9.181957 — ©

3.231981 — 1

Related Command: DOY

48 Command Reference

DOY
Returns the day of the year given a date in the current date
format. The earliest valid date for this function is January 1,

1583.

DOY
date — n

Examples:

2.121957 — 138

3.231981 — 82

Related Command: DOW

Command Reference 49

EQNVARS
Given a program or equation, EQNVARS returnslists of global
and local variables used in the program or equation. If the
input to EQNVARS is a global name, the contents of the name
must contain an equation or program, and that object will be
scanned for variables.

EQNVARS
« program» — Global: { names } Local:{ names }

‘equation’ — Global: { names } Local:{ names }

‘name’ — Global: { names } Local:{ names }

Examples:

‘Seg! — Global: £ * Local: £ 3

"R=x242! — Global: £ BR ¥%Y > Local: {

How yg Ex 2 y 2

Note: The built-in Solver in the HP 48 performs a recursive
search through variables to find named programs or
equations and adds variables found in those objects to the
Solve menu. EQNVARS only searches the program or
equation itself. Therefore the variables returned by EQNVARS
may be a subset of the variables displayed by the Solve menu.

50 Command Reference

EXCOL
Exchanges two columns in an array.

EXCOL
[vector] col; col, — [vector,]

[[matrix,]] col, col, — [matrix,]]

Examples:

[12241 2 23 — [1 324]

(t12103411 1 2 — [21104311]

Related Commands: DELCOL, DELROW, EXROW, GETCOL,

GETROW, INSCOL, INSROW, PUTCOL, PUTROW

Command Reference 51

EXROW
Exchanges two rows in an array.

EXROW
[[matrix,]] row; row, — [matrix,]]

Example:

(t1 213103411 1 2 — [[34101211]

Related Commands: DELCOL, DELROW, EXCOL, GETCOL,

GETROW, INSCOL, INSROW, PUTCOL, PUTROW

52 Command Reference

EXTRACT
The command EXTRACT may be used to return the mth
element from each of a series of n lists. The input and result
are formed as meta-objects. A NEWOB is performed to free
each element from the list (see Temporary Memory).

EXTRACT
{list,} ... {list,} n obj-number — obj, ...obj, n

Example:

291 x{1vex{8123r22 — 917312 3

Related Commands: LSORT, MREVERSE

Command Reference 53

GETCOL
Returns a column from an array as a matrix consisting of 1-
element rows.

GETCOL
[vector] col — [[column data]]

[[matrix]] col — [[column data]]

Examples:

(1231 2 — [IL 2 11

(C1 231C045356 112 — [021053511]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,

GETROW, INSCOL, INSROW, PUTCOL, PUTROW

54 Command Reference

GETROW
Returns a row from an array as a vector.

GETROW
[vector] row — [row data]

[[matrix]] row — [row data]

Examples:

Related Commands: DELCOL, DELROW, EXCOL, EXROW,

GETCOL, INSCOL, INSROW, PUTCOL, PUTROW

Command Reference 55

ICAPS
Converts the first character of each word in a string to
uppercase, and the remaining characters to lowercase. The
separation characters are any character code <30, 32, and
160.

ICAPS

"string," — “stringy”

The case conversion supports the ISO 8859-1 character set
in the following ranges:

Lowercase Uppercase

61h-7Ah «— 41h-5Ah
EOh-F6h «— COh-D6h
F8h-FEh «— D8h-DEh

Examples:

"JOHH SMITH" — "John Smith"

Sentence"[d
y]

hj(
]"sample zentence" — "Sampl mh

Related Commands: LCASE, UCASE

56 Command Reference

INSCOL
The command INSCOL may be used to insert a column into
an array. The column number specifies which column will be
zero-filled, and may be one greater than the number of
columns in the array.

INSCOL
[vector;] n — [vector,]

[[matrix,]] n — [[matrix,]]

Examples:

[39821 3 — [39882]

[C954) (8,30 1 23 — [(9,4) (5,3) (8,8) 1]

[fC 11 22 22 1 [[L 11 8 22 23 1

44 35 66 1] 2 — [44 8 55 &6

ve 88 99 11] [77 8 88 939 11]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,

GETCOL, GETROW, INSROW, PUTCOL, PUTROW

Command Reference 57

INSROW
The command INSROW may be used to insert a row into an
array. If the input is a vector (one-dimensional), the result will
be a matrix (two-dimensional). The row number specifies
which column will be zero-filled, and may be one greater
than the number of rows in the array.

INSROW
[vector] n — [[matrix]]

[[matrix,]] n — [[matrix,]]

Examples:

— [[BB B88]q

L&ne2y 1+ [3982 11

[(C 11 22 33 1 (CL 11 22 33 1]

44 33 66 1 4 — [44 35 66 1

77 88 99 11] [77 88 99 1

[L 6 8 6 11]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,

GETCOL, GETROW, INSCOL, PUTCOL, PUTROW

58 Command Reference

INTERSECT
Returns the set intersection between two lists.

INTERSECT

{list,} {list} — {lista AnD pb)

Examples:

{12242562 — {32

{123433453 — {343

Related Commands: ADJOIN, DIFF, SDIFF, -=SET, UNION

Command Reference 59

KEEP
Keeps the bottom n objects on the stack while deleting all
objects above n.

KEEP

 ... obj, ... obj; n — obj, ... obj,

Example:

"AR" 32 Y.1 "B" 2 — Y.1 "B"

Related Commands: NDUP, SRLL, SRLLD, SXCH

60 Command Reference

LCASE
Converts each character in a string to lowercase.

LCASE

"string," — "string,"

The case conversion supports the ISO 8859-1 character set
in the following ranges:

Lowercase Uppercase

61h-7Ah — 41h-5Ah

EOh-F6h «+ COh-D6h

F8h-FEh «— D8h-DEh

Example:

"SAMPLE SENTENCE" — "zample sentence”

Related Commands: ICAPS, UCASE

Command Reference 61

LSORT
The command LSORT may be used to sort a series of n lists
based on the mth element of each list. The input and result
are formed as meta - objects.

The mth object in each list must be of the same type and
comparable with >. The lists are returned in ascending order
(the largest at the bottom of the stack). Use MREVERSE after
LSORT to produce a descending order result. The sort order
for strings follows the ISO 8859-1 character set (see
Character Codes).

LSORT
{listy} ... {list,} n m — {list,} ... {listy} n

Example:

{393173823121 —
: Lg J

y

(“ QQ M
a

w
o

w

Related Commands: EXTRACT, MREVERSE, QSORT

62 Command Reference

LTRIM
Removes leading space and tab (#09h) characters from a
string.

LTRIM

 "string," — ‘“string,"

Example:

" SAMPLE STRING " — "SAMPLE STRING “

Related Commands: RTRIM, TRIM, =WORDS

Command Reference 63

MAH
Adds an object to the head of a meta - object.

MAH
meta, obj — meta,

 <..> obj — < obj... >

Example:

21 32 47 3 99 — 99 21 32 47 4

Related Commands: MAH2, MAM2, MAT, MAT2, MDH,
MDH2, MDT, MDT2, ML—M, MM—-L, MREVERSE, MSWAP,
MZ2

64 Command Reference

MAH2
Adds an object to the head of a meta - object in position 2.

MAH2
meta, meta, obj — meta,’ meta,

 < meta, > < meta, > obj — < objmeta, > < meta, >

Example:

21 32 2 2.2 4.7 299 — 939 21 32 3 2.3 4.7 2

Related Commands: MAH, MAM2, MAT, MAT2, MDH, MDH2,
MDT, MDT2, ML—M, MM—L, MREVERSE, MSWAP, MZ2

Command Reference 65

MAM2
Concatenates two meta —- objects.

MAM2
meta, meta, obj — meta,,,

< meta, > < meta; > — < meta;>

Example:

21 32 47 37.34.82 — 21 32 47 7.3 4.8 5

Related Commands: MAH, MAH2, MAT, MAT2, MDH, MDH2,

MDT, MDT2, ML—M, MM—L, MREVERSE, MSWAP, MZ2

66 Command Reference

MAT
Adds an object to the tail of a meta - object.

MAT
meta; obj — meta,

<..> obj — < ..obj >

Example:

21 32 47 3 99 — Mr 1 32 47 99 4

Related Commands: MAH, MAH2, MAM2, MAT2, MDH,

MDH2, MDT, MDT2, ML—M, MM—-L, MREVERSE, MSWAP,

MZ2

Command Reference 67

MAT2
Adds an objectto the tail of a meta-object in position 2.

 MAT2
meta, meta, obj — meta,’ meta,

 < meta, > <meta; > obj — < meta, obj > < meta, >

Example:

21 32 2 2.3 4.7 299 — 21 32 99 3 2.3 4.7 2

Related Commands: MAH, MAH2, MAM2, MAT, MDH, MDH2,

MDT, MDT2, ML—M, MM—L, MREVERSE, MSWAP, MZ2

Command Reference

MDH
Extracts an object from the head of a meta — object.

MDH
meta; — meta, obj

 <obj..> — <.. > obj

Example:

99 21 32 47 4 — 21 32 47 3 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2,
MDH2, MDT, MDT2, ML—M, MM—L, MREVERSE, MSWAP,
MZ2

Command Reference 69

MDH2
Extracts an object from the head of a meta-object in
position 2.

MDH2
meta, meta, — meta,’ meta; obj

 < obj meta, > < meta, > — < meta,’ > < meta; > obj

Example:

99 21 32 3 2.34.7 2 — 21 322 2.3 4.7 2 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,

MDT, MDT2, ML—M, MM—L, MREVERSE, MSWAP, MZ2

70 Command Reference

MDT
Extracts an object from the tail of a meta - object.

MDT
meta, — meta, obj

<..obj> — <..> obj

Example:

21 32 47 99 4 — 21 32 47 3 99

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,

MDH2, MDT2, ML—M, MM—L, MREVERSE, MSWAP, MZ2

Command Reference 71

MDT2
Extracts an object from the tail of a meta- object in position 2.

MDT2
meta, meta, — meta,’ meta; obj

 < meta, obj > <meta, > — <meta,’ > < meta, > obj

Example:

o
l

M
a

M
a

M
a w $
a

=
~

M
a

p
V u
r21 32 99 3 2.34.7 2 — 21 3

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,
MDH2, MDT, ML—M, MM—L, MREVERSE, MSWAP, MZ2

72 Command Reference

ML-M
Converts twolists into meta - objects.

ML—-M

{list} {list} —

{listy} {list,} —

meta, meta,

< meta, > < meta, >

Example:

11 22 > { 3.1 4.2 5.1 3 —

1 22 2 o
y

. 1 4.2 5S.

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,
MDH2, MDT, MDT2, MM—L, MREVERSE, MSWAP, MZ2

Command Reference 73

MM-L
Converts two meta - objects into lists.

MM—-L

meta, meta; — {listy} A{listy}

< meta, > < meta, > — {list;} {list}

Example:

11 22 2 3.1 4.2 5.1 3 —

C11 22 3 ¢ 3.1 4.2 5.1 3

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,
MDH2, MDT, MDT2, ML—M, MREVERSE, MSWAP, MZ2

74 Command Reference

MREVERSE
Reverses the order of n objects on the stack. This command
will reverse the order of 5000 stack items about two seconds.

MREVERSE

obj, ... obj, n — obj, ...obj; n

meta, — meta,

< obj, obj, obj; > — < obj; obj, obj, >

Example:

11 22 .23.12535 — r
a 3.1 .2 22 11 5

Related Commands: KEEP, MAH, MAH2, MAM2, MAT, MAT2,
MDH, MDH2, MDT, MDT2, ML—M, MM—L, MSWAP, MZ2,
NDUP, SRLL, SRLLD, SXCH

Command Reference 75

MSWAP
Swaps two meta - objects on the stack.

MSWAP
meta, meta, — meta; meta,

< meta, > < meta; > — < meta, > < meta, >

Example:

11 22 2 3.1 4.2 3.1 3 — 3.1 4.2 5.1 3 11 22 2

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,

MDH2, MDT, MDT2, ML—M, MM—L, MREVERSE, MZ2

76 Command Reference

MZ2
Places an empty meta - object in meta —- stack position 2.

MZ2
meta; — metagy,y, meta,

< meta, > — < > <meta; >

Example:

3.1 4.25.13 — 8 3.1 4.2 5.1 3

Related Commands: MAH, MAH2, MAM2, MAT, MAT2, MDH,

MDH2, MDT, MDT2, ML—M, MM—L, MREVERSE, MSWAP

Command Reference 77

NDUP
Creates n copies of an object on the stack. If n is zero, no
objects will be returned.

NDUP

 obj n — obj... obj

Examples:

23 8 —

2.1 3 — 5.1 5.1 5.1

Related Commands: KEEP, MREVERSE, SRLL, SRLLD SXCH

78 Command Reference

NXTOB
Given a list of n objects and an object, NXTOB finds the
location of the object in the list and returns the following
object. If the object is found at the end of the list, the first
object is returned. If the object is not found in the list, the
same object is returned.

NXTOB

{obj ... obj} objg, Objm1

Examples:

{ 2 "FRED" "FRED"

£11 22 33 » 22 23

£11 22 32 > 332 11

Related Commands: CDR, CUT, EXTRACT, LSORT, PRVOB,
SPLIT, REPLACE, REVERSE, ROTATE, —SET

Command Reference 79

PRVOB
Given a list of n objects and an object, PRVOB finds the
location of the object in the list and returns the previous
object. If the object is found at the beginning of the list, the
last object is returned. If the object is not found in the list, the
same objectis returned.

PRVOB

{obj, oe obj} objm - obj.4

Examples:

{ » "FRED" — "FRED"

{11 22332 22 — 11

£11 2233 3 11 — w o
l

Related Commands: CDR, CUT, EXTRACT, LSORT, NXTOB,
SPLIT, REPLACE, REVERSE, ROTATE, —SET

80 Command Reference

PUTCHR
Places a character at a specified position in a string. The
character may be specified by a real number character code
or by the first character in a string. In the second instance,
PUTCHR is similar to REPL, except that only one character is
changed.

PUTCHR
"string," position code — "string,"

"string," position "string," — “string,”

The commands PUTCHR and SUBNUM are designed for
applications requiring an index array for values less than 255.
Using a string to store the indices as character codes saves
considerable memory compared to other storage methods,
such aslists or arrays.

Examples:

"JOHH" 2 65 — "JOAH"

" J0OHH un = "AEC" — "OAM Hn

Related Commands: STRCON, SUBNUM

Command Reference 81

PUTCOL
Replaces a column of data in an array.

PUTCOL
[[matrix,]] col [[new-col]] — [[matrix,]]

Examples:

[1231 2 [C4411] — [144 31]

[C1 23145611 2TILC11 1022 11 —
[C111 31CLC4226¢6 11

Related Commands: DELCOL, DELROW, EXCOL, EXROW,

GETCOL, GETROW, INSCOL, INSROW, PUTROW

82 Command Reference

PUTROW
Replaces a row of data in an array.

PUTROW

[vector,] row [new-row] — [vector,]

[[matrix,]] row [new-row] — [[matrix,]]

Examples:

[12231 1 [4561 — [4561

[C1 2314561127891

(C1 231C7829 11]

Related Commands: DELCOL, DELROW, EXCOL, EXROW,

GETCOL, GETROW, INSCOL, INSROW, PUTCOL

Command Reference 83

PX+
Adds two graphics pixel coordinates.

PX+

 { #, #2} {#3 #,} — {#,,3 #244}

Example:

{ #3d #7d > { #6d #1d 3

Related Command: PX-

84

— { #9d #&d >

Command Reference

PX-
Subtracts two graphics pixel coordinates.

PX-

 {#, #2} {#; #,} — {#,.;5 #,_4}

£ #23d #54d > { #6d #1d > — { #17d #53d >

Related Command: PX +

Command Reference 85

PXOFF
Clears a pixel in an arbitrary graphics object.

PXOFF

gob {#x #y} — grob’

Notes:

e This command does not work for PICT. Use the
command PIXOFFfor clearing pixels in PICT.

e The upper-left pixel in a graphics object has the
coordinate { #0 #0 } (see Graphics).

o This command does not return a unique copy of the
graphics object. You may wish to execute NEWOB first
to ensure that the result is a unique object (See
Temporary Memory).

Example:

GREOE 8 2 6384 { #6d #1d > — GROB 2 2 6380

Related Commands: PXON, PX?

86 Command Reference

PXON
Sets a pixel in an arbitrary graphics object.

PXON

 gob {#x #y} — grob’

Notes:

o This command does not work for PICT. Use the
command PIXOFF for clearing pixels in PICT.

o The upper-left pixel in a graphics object has the
coordinate { #0 #0 } (see Graphics).

o This command does not return a unique copy of the
graphics object. You may wish to execute NEWOB first
to ensure that the result is a unique object (See
Temporary Memory).

Example:

GROB 23 2 8380 { #ed #1d > — GROB 8 2 b364

Related Commands: PXOFF, PX?

Command Reference 87

PX?
Tests a pixel in an arbitrary graphics object.

PX?

grob { #x #v} — T/F

Notes:

e This command does not work for PICT. Use the
command PIX? for testing pixels in PICT.

e The upper-left pixel in a graphics object has the
coordinate { #0 #0 } (see Graphics).

Example:

GROB 8 2 8308 #c6d #1d > — B

GROE & 2 6284 £ #c6d #1d — 1

Related Commands: PXOFF, PXON

88 Command Reference

PX—-R
Converts a list of two binary integers to two real numbers.

PX—-R

 { #col #row} — col row

Example:

ca{ #4d #18d > — 4 1

Related Command: R—PX

Command Reference

QSORT
The command QSORT may be used to sort a series of n
objects on the stack. The input and result are formed as
meta — objects.

Each object must be of the same type and comparable with >.
The objects are returned in ascending order (the largest at the
bottom of the stack). Use MREVERSE after QSORT to
produce a descending order result. The sort order for strings
follows the ISO 8859-1 character set (see Character Codes).

QSORT

 obj; ...obj, n — obj; .. obj, n

Examples:

32874 —- 2323784

"FRED" "ANNE" "ZOE" 3 — "AMME" "FRED" "ZOE" 3

Related Commands: LSORT, MREVERSE

90 Command Reference

REPLACE
The command REPLACE may be used to replace all
occurrences of a substring within a string or of objects within
a list. String comparisons require an exact match.

REPLACE
"string," "stringgeqrch” “Stringep” — “stringy”

{list,} Objsearch obj epi — {list,}

Examples:

wAOHH"Y nH" ng" — "OAM"

"HAECED" ng "w__n — "A-C-D"

£13233 344 — C144 2 44 5 3

£01.10 2.2 "fred" 44 F "fred" #223d —

To0l,10 2.2 #32d 44 3

Related Commands:

REVERSE, ROTATE, —SET

Command Reference

CAR, CDR, CUT, EXTRACT, SPLIT,

91

REVERSE
The command REVERSE may be used to reverse the order of
characters in a string or objects in a list.

Reversals of large lists will be significantly fasterif the list was
originally stored in a global variable. The time to reverse a
large list is longer than the time required for the MREVERSE
command, owing to the overhead of unpacking and re-
packing the list objects. Reversing a 1000-element list
originating from a global variable should take about three
seconds. If the same list originates in temporary memory, the
reversal could take several minutes.

String reversals are accomplished at a rate near 12,000
characters per second.

REVERSE
—

"string," — "string,"

{} =» {}
{ obj; ... obj, } — { obj, ... obj; }

Examples:

"ABCD" — "DCER"

{123452 —- {54321373

Related Commands: CAR, CDR, CUT, EXTRACT, LSORT,
SPLIT, REPLACE, ROTATE, —SET

92 Command Reference

ROTATE
The command ROTATE may be used to rotate the contents of
a list, string, or graphics object. The direction of rotation is
controlled by the sign of x:

x<0 Rotates left
x=0 No change
x>0 Rotates right

Graphics objects are rotated 90° to the left for x<0, or 90° to
the right for x>0. If |x| is greater than the length of the list or
string, the rotation count will be calculated MOD the list or
string size.

ROTATE
"string," x — "string,"

listy, x — list,

grob, x — grob,

String Examples:

we 5, wm

"AECDE" 2 — "DEHREC"

"ABCDE" -2 — "CDERB"

List Examples:

{ 3 5 —- = .

{123453 2 —- £43123 7%

{123452-2 —- {3451237

Command Reference 93

Graphics Examples:

Graphic 21 x 8 -1 — Graphic 8 x 21

Graphic 21 x 8 8 — Graphic 21 x 8

Graphic 21 x 8 1 — Graphic 8 x 21

« "123" 2 »GROB -1 ROTATE PICT STO { > PVIEW =»

oN
vd

« "123" 2 3GROEB 1 ROTATE PICT STO £ > PYIEW =»

g
e
t

Note: Rotation performance for graphics objects is reasonable
for small objects, such as axis labels for graphs, however the
algorithm for rotating graphics was optimized for space as
opposed to speed. Consequently, rotating a 131x64 graphics
object takes just under 15 seconds. The rotation requires
enough free memory to construct a second temporary
graphics object.

Related Commands: CAR, CDR, CUT, EXTRACT, LSORT,
NXTOB, PRVOB, SPLIT, REPLACE, REVERSE, —»SET

94 Command Reference

RPTSTR
Creates a string consisting of n repetitions of an input string.
If only one character is to be repeated, the STRCON
command will give faster performance.

RPTSTR
“string” n — "string... string"

Examples:

"ABC" 8 —_ nu

"RBC" 3 — “AECHECHEC"

Related Command: STRCON

Command Reference 95

RTRIM
Removes trailing space and tab (#09h) characters from a
string.

RTRIM
"string," — ‘“string,’

Example:

" SAMPLE STRING " — " SHMPLE STRING"

Related Commands: LTRIM, TRIM, =WORDS

96 Command Reference

R—PX
Converts two real numbers to a list of two binary integers.

R—PX

 col row — { #col #row}

Example:

45 37 — { #45d #37d >

Related Command: PX—R

Command Reference 97

SDIFF
Returns the set symmetric difference of two lists.

SDIFF

{lista} {list} — {list, xoRb}

Examples:

£{12343{562 — {12345673

{12343>{(3453 — {1253

Related Commands: ADJOIN, DIFF, INTERSECT, —SET,
UNION

98 Command Reference

—SET
Removes duplicate objects from a list.

—SET

 (list,} — {list}

Examples:

{1234 —= {123473

{41232132 — {412373

Related Commands: ADJOIN, INTERSECT, CAR, CDR, CUT,

DIFF, EXTRACT, NXTOB, PRVOB, SDIFF, SPLIT, REPLACE,

REVERSE, ROTATE, UNION

Command Reference 99

SPLIT
The command SPLIT may be used to divide a list or string into
first m and remaining components.

SPLIT
“nm = Me ww

"string," m — “stringy,” "stringy"

{}m — {1} {}
{obj, ... obj,} m — {obj,,;...0bj,} {obj ... obj,}

Examples:

n RABCDE" 8 —_ "AECDE" nun

un DE" " REC n

w !"RECDE"

{~
~

w
u

w l ~ 5
398273 8 —- L32395827 2 {3

398273 2 —- L827 >L39:;3

Related Commands: CAR, CDR, CUT, REVERSE, ROTATE

100 Command Reference

SRLL
Rotates n objects on the stack up m times.

SRLL

 obj, ...obj, n m — obj,m1... Obj, Obj; ...0bj,4

Example:

on [
a
2

e
t

e
t

I L
a

c
n
N
n11 22 22 44 55 11 22

Related Commands: KEEP, MREVERSE, NDUP, SRLLD,

SXCH

Command Reference 101

SRLLD
Rotates n objects on the stack down m times.

SRLL

 obj, ...obj, n m — obj... obj, obj, ... obj,

Example:

2 — 44 35 11 22 3311 22 22 44 5S i
n

Related Commands: KEEP, MREVERSE, NDUP, SRLL, SXCH

102 Command Reference

—STDSTR
Converts an object to a string (like —STR), using STD display
mode and a wordsize of 64 bits.

—STDSTR

 obj — “string”

Examples:

Assuming the current display mode is 2 FIX, execute 'x’
—NUM, then —STDSTR:

3.14 — "3,14153265359"Ww

Assuming the current wordsize is 8 and HEX mode is set,
enter # 123h. The wordsize of 8 causes the binary integer to
be displayed as # 23h. To see the full value, execute
—STDSTR:

23h — "# 123h"

Command Reference 103

STRCON
Creates a string consisting of n repetitions of a character
code. Strings are created at a rate nearing 20,000 characters
per second.

STRCON
code n — “string”

Examples:

65 8 —_ nu

65 18 — "AAARAAARARAAR"

Related Commands: PUTCHR, RPTSTR, SUBNUM

104 Command Reference

STRCTR
Centers a string in a specified number of spaces. If the
number of spaces added is not even, the extra space will be
added to the end of the string.

STRCTR

"string," n — “string,”

Example:

"SHMFLE" 3 —t " SHAHMFLE

"SHMFLE" 168 —_— " SHMFLE "

Note: If the string is longer than the specified number of
spaces, the string will be truncated and an ellipsis character
(...) will be added at the end.

Related Command: TRIM

Command Reference 105

SUBNUM
Returns the character code of the nth character of a string.

SUBNUM

 "string" n — code

The commands PUTCHR and SUBNUM are designed for
applications requiring an index array for values less than 255.
Using a string to store the indices as character codes saves
considerable memory compared to other storage methods,
such aslists or arrays.

Example:

"ALPHABET" 4 — 72

Related Commands: PUTCHR, STRCON

106 Command Reference

SXCH
Exchanges objects at levels m and n on the stack.

SXCH
.. obj, .. obj, .. m n — ... obj, .. obj, ...

Example:

28 22 87 34 14 4 2 — 55 324 87 22 14

Related Commands: KEEP, MREVERSE, NDUP, QSORT,

SRLL, SRLLD

Command Reference 107

—TIO
Converts a string to its translated form for output, respecting
the current TRANSIO setting in JOPAR. If there is no /OPAR in
the HOME directory, a new one will be created in the HOME
directory with the default TRANSIO setting of 1 (see Character
Translations).

—-TIO

 "string," — "string,"

Example:

"€ + x € x SIN x 7 » »" —
"SC N= or NK x STH x 2 ND NR

Related Command: TIO—

108 Command Reference

TIO—
Converts a string from its translated form for output,
respecting the current TRANSIO setting in /OPAR. If there is
no /OPAR in the HOME directory, a new one will be created in
the HOME directory with the default TRANSIO setting of 1 (see
Character Translations).

TIO—

 "string," — "string,"

Example:

"(<< N=3 or NE x SIN x 72 ND NH! —
"# 3 x & x SIH x 2 % »"

Related Command: —TIO

Command Reference 109

TRIM
Removes leading and trailing space and tab (#09h) characters
from a string.

TRIM
"string," — "string,"

Example:

" SAMPLE STRING " — "SAMPLE STRING"

Related Commands: LTRIM, RTRIM, STRCTR, WORDS

110 Command Reference

UCASE
Converts each character in a string to uppercase.

UCASE

 "string" — “string,”

The case conversion supports the ISO 8859-1 character set
in the following ranges:

Lowercase Uppercase

61th-7Ah — 41h-5Ah

EOh-F6h — COh-D6h

F8h-FEh — D8h-DEh

Example:

"sample sentence" — "SHMFLE SEWTEMCE"

Related Commands: ICAPS, LCASE

Command Reference 111

UNION
Returns the set union of two lists.

UNION

 {list} {list} — {lista or b}

Examples:

{12343{56 — {1

{12343>{(3452> — {1

23456 1%

2345 2

Related Commands: ADJOIN, DIFF, INTERSECT, SDIFF,

—SET

112 Command Reference

VFIND
Given an global variable name or an object type, VFIND
performs a recursive search for a global variables starting at
HOME and returns a series of paths (each of which is a list) to
each occurrence of a variable in user memory meeting the
search criteria (see Object Types).

VFIND

name — {path} ... {path} n

type — {path} ... {path} n

Examples:

4 — 8

BH — { HOME ¥ 3 £ HOME EEALS % > 2

ta — £ HOME = + © HOME EEALS ® + 2

Command Reference 113

—WORDS
Separates a string into words and their count. The separation
characters are any character code <30, 32, and 160. Adjacent
separator characters are treated as a single separator
character.

—WORDS

 ‘word, ... word," — ‘“word,"... "word," n

Examples:

un J 8B

"HR TEST STRIWG" — "RA" "TEST" "STRING" 3

Related Commands: LTRIM, RTRIM, TRIM

114 Command Reference

XTIME
Times the execution time for an object such as a command or
program. An initial garbage collection is performed (see
Temporary Memory) to produce the most reliable result, and
the result is rounded to the nearest thousandth of a second.

XTIME
object — seconds

Example:

« 1 188 START NEXT » — Time: .387_s

Command Reference 115

Object Types

Type Object Example

0 Real number 1.2345

1 Complex number (2.3,4.5)

2 String "REC"

3 Real array [123]

4 Complex array [(1,2) (3,4) 1]

5 List { "REC" Var

6 Global name #

7 Local name y

8 Program “« A 2+ »

9 Algebraic 'a=ynz!

10 Binary integer # 247d

11 Graphics object Graphic 131 x 64

12 Tagged object Dist: 24.45

13 Unit object 32_ftr="2

14 XLIB name ALIB 7e& 1

15 Directory DIR ... EHD

16 Library Library 7é6: ...

17 Backup object Backup HOMEDIR

18 Built-in function SIH

19 Built-in command SLAF

26 Library Data Library Data

116 Object Types

Character Codes

NUM CHR NUM CHR NUM CHR NUM CHR

0 » 32 64 © 96 !
1 = 33 | 65 AH 97 a

2 = 34 " 66 E 98 b
3 = 35 # 67 C a9 C
4 = 36 $ 68 D 100 d
5 = 37 % 69 E 101 a
6 = 38 2 70 F 102 f
7 » 39 ' 71 G 103 g
8 . 40 (72 H 104 h
9 = 41) 73 I 105 i

10 . 42 * 74 J 106 J
11 = 43 + 75 K 107 k
12 = 44 ’ 76 L 108 1
13 = 45 - 77 M 109 mM
14 = 46 . 78 H 110 ri
15 . 47 / 79 0 111 o
16 = 48 a 80 F 112 P

17 m 49 1 81 C 113 q
18 = 50 2 82 F 114 r
19 = 51 3 83 S 115 s
20 = 52 4 84 T 116 t
21 - 53 5 85 0] 117 u
22 . 54 é 86 Y 118 ¥
23 = 55 7 87 W 119 WW
24 = 56 a 88 bs 120 ®
25 = 57 9 89 Y 121 y
26 = 58 : 90 z 122 z
27 = 59 ; 91 C 123 {
28 » 60 { 92 ~ 124 I
29 = 61 = a3] 125 ¥
30 = 62 > 94 ~ 126 ~
31 63 ? 95 _ 127 %

Character Codes 117

NUM CHR NUM CHR NUM CH NUM CHR

128 £ 160 192 A 224 &
129 x 161 i 193 A 225 &
130 v 162 ¢ 194 A 226 a
131 I 163 £ 195 A 227 &
132 J 164 g 196 A 228 a
133 z 165 ¥ 197 A 229 a
134 » 166 I 198 Ee 230 ®
135 m 167 & 199 G 231 S
136 3 168 ” 200 E 232 &
137 £ 169 8 201 E 233 &
138 = 170 3 202 e 234 &
139 # 171 « 203 E 235 &
140 172 - 204 ¢ 236 i
141 3 173 - 205 i 237 i
142 € 174 8 206 i 238 i
143 + 175 = 207 I 239 1
144 + 176 ° 208 b 240 J
145 ~ 177 : 209 Fi 241 i
146 & 178 2 210 & 242 &
147 € 179 3 21 & 243 S
148 a 180 ’ 212 & 244 &
149 a 181 L 213 & 245 S
150 Mn 182 1 214 GO 246 o
151 FP 183 . 215 4 247 +

152 o 184 » 216 a 248 3
153 T 185 1 217 0 249 0
154 @ 186 e 218 J 250 d
155 & 187 » 219 a 251 5
156 m 188 % 220 J 252 0
157 Q 189 % 221 wv 253 9
158 = 190 y 222 F 254 a)
159 ® 191 ¢ 223 F 255 J

118 Character Codes

Character Translations

When data is transferred between the HP 48 and a computer
using translate codes 2 (000—159) or 3 (000—255), conversions
are used to represent some characters. The command TRANSIO
may be used to assert the current translation code.

For data being transferred to a computer with translate codes 2 or
3, each ~is replaced with ~~. For data being transferred to the
HP 48, characters may be converted using a text conversion or
=~), where xxx is the three — digit (decimal) character code.

NUM HP 48 ASCII NUM HP 48 ASCII

128 £ \<) 147 e \Ge
129 = \x - 148 “| \Gn

130 7 \.V 149 A \Gh
131 I \v/ 150 hy \GlI
132 xr \.S 151 F \Gr
133 = \GS 152 o \Gs
134 bk \|> 153 T \Gt
135 m \pi 154 i \Gw
136 a \.d 155 & \GD
137 £ \<= 156 m \PI
138 = \>= 157 i \GW
139 # \=/ 158 n \[]
140 io \Ga 159 0) \oo

141 + -> 171 # \<<
142 3 \<- 176 ° \"o
143 4 \|v 181 u \Gm
144 + \|~ 187 3 \>>
145 “ \Gg 215 x \.X

146 & \Gd 216 @ \O/
247 + \:-

Character Translations 119

Flags

User flags are numbered 1 through 64. System flags are
numbered from -1 through -64. By convention, application
developers are encouraged to restrict their use of user flags to
the range 31-64.

All flags are clear by default, execpt for the wordsize (flags -5 —

-10).

Flag Description Clear Set Default

Symbolic Math Flags

-1 Principal Solution Generalsolutions Principal solutions Clear

-2 Symbolic Constants Symbolic form Numeric form Clear

-3 Numeric Results Symbolic results Numeric results Clear

-4 Not used.

Binary Integer Math Flags

-5 — Binary integer wordsize n+1: 0 <n <63 64

-10 Flag —10 is the most significant bit

Binary Integer Base -11 -12 DEC

-11, DEC Clear Clear

and BIN Clear Set

-12 OCT Set Clear

HEX Set Set

-13 and -14 are not used.

120 Flags

Flag Description Clear Set Default

Coordinate System Flags -15 -16 Rect.

-15 Rectangular Clear Clear

and Cylindrical Polar Clear Set

-16 Spherical Polar Set Set

Trigonometric Mode Flags -17 -18 Degrees

-17 Degrees Clear Clear

and Radians Set Clear

-18 Grads Clear Set

Math Exception Flags

-19 [Vector/complex Vector Complex Vector

-20 |Underflow Exception Return 0, Error Clear
set -23 or -24

-21 Overflow Exception Return + MAXR, Error Clear

set -25

-22 Infinite Result Error Return + MAXR, Error

set -26

-23 Pos. Underflow Ind. No Exception Exception Clear

-24 Neg. Underflow Ind. No Exception Exception Clear

-25 Overflow Indicator No Exception Exception Clear

-26 [Infinite Result Ind. No Exception Exception Clear

—-27 through -29 are not used.

Plotting and Graphics Flags

-30 Function Plotting f(x) y and f(x) f(x)

-31 [Curve Filling Filling Enabled Filling Disabled Enabled

-32 Graphics Cursor Visible Light Bkgnd Visible Dark Bkgnd Light

Flags 121

Flag Description Clear Set Default

1/0 and Printing Flags

-33 |I/O Device Serial IR Serial

-34 |Printing Device IR Serial IR

-35 |I/O Data Format ASCII Binary ASCII

-36 |RECV Overwrite New variable Overwrite New

-37 |Double -Spaced Print Single Double Single

-38 |Linefeed Inserts LF Suppresses LF Inserts

-39 |Kermit Messages Msg Displayed Msg Suppressed Displayed

Time Management Flags

-40 [Clock Display TIME menu only All times TIME menu

-41 |Clock Format 12 hour 24 hour 12 hour

-42 |Date Format MM/DD/YY DD.MM.YY MM/DD/YY

-43 |Rpt. Alarm Reschedule Rescheduled [Not Rescheduled |Rescheduled

-44 [Acknowledged Alarms Deleted Saved Deleted

Notes: If flag —43 is set, unacknowledged repeat alarms are not rescheduled.

If flag —44 is set, acknowledged alarms are saved in the alarm catalog.

Display Format Flags

-45 —|Set the numberof digits in Fix, Scientific, and 0

-48 |Engineering Modes

Number a9 50 STD
Display Format

-49 STD Clear Clear

and FIX Clear Set

-50 SCI Set Clear

ENG Set Set

-51 |Fraction Mark Decimal Comma Decimal

-52 |Single Line Display Multi-line Single -line Multi -line

-53 |Precedence () suppressed () displayed Suppressed

122 Flags

Flag Description Clear Set Default

Miscellaneous Flags

-54 Not used.

-55 Last Arguments Saved Not Saved Saved

-56 Beep On Off On

-57 Alarm Beep On Off On

-58 Verbose Messages On Off On

-59 Fast Catalog Display Off On Off

-60 Alpha Key Action Twice to lock Once to lock Twice

-61 USR Key Action Twice to lock Once to lock Twice

-62 User Mode Not active Active Not active

-63 Vectored Enter Off On Off

-64 Set by GETI or PUTI when their element indices wrap around

The HP 82211A HP Solve Equation Library application card uses
three user flags:

Flag Description Clear Set Default

60 Units Type Sl units English units Sl units

61 Units Usage Units used Units not used Units used

62 Payment Mode End mode Begin mode End mode

Flags 123

PTg>®XY«£a
A
K
)
S
I
X
N
R

I
—

2

wi
|

|=]
[x]

[1
oe

x|
|

+
L
J

—
=
L
J
L
J

x
L
J
o
J

_
_

—
~

~
~

o
O

o
e

o
m
3
m

m
y
T
m
Y
E

S
a
m

I
E
E

E
E
_

«
w

x
oO

=
w
e

Al
|

_
l
a
]
e

oO
O
o

o
l

xl
J
o
l

3L
J

b
e
d

o
n

©
™
»

an
N

>
0

=
o
a

>
N
—

_
_

_

Q
o
l
d

.
L
_
J
a
l

L
J
~
N

*
3

4
A
r
8
1
C
r

R
H
O

©
0

N
*

o
O

—
o
O

o
D

>
l
¢

L
J
l
J

L
J

~
L
_
_

©
o
l

JL
J
o
l
J
L

>
L
_
—

—
_

—
c

s
r
!

0
R
C
I
S
1
1

r
1
e
r
1

|~
<

-
o

—
o
m

I
=

-
c
l
.

-
I

<
a
l

Jel
J
e
l
J
L

wi
—

—
n
=

=
w

s
r
e
r
r
r

1
2
1
4

e
l

m
l
S
i
e

o3
Q

ol
J

o
l
d
g
d
o
l

J
Y
L

L
J

—
1
g
q

«N-

The HP 48

Programmer’s ToolKit

Getting Started 1

Character Set Catalog 5

Menu Label Builder 7

Flag Catalog 10

Data Browser 13

Title Browser 22

Tool Library 26

Command Reference 40

Object Types 116

Character Codes 117

Character Translations 119

Flags 120

Alpha Keyboard 124

The HP 48 Programmer’s ToolKit

Includes Disk for IBM-Compatible Computers

The HP 48 Programmer's ToolKit is a collection of software tools designed with the
programmer in mind. These tools improve program performance by combining

some common, slow operations into faster internal system languages and provide
additional capability in object manipulation not directly available in the HP 48.

o The Character Set Catalog is an interactive catalog that displays the HP 48
character setin all three available fonts and shows the I/O translation forms.

« The Menu Label Builderis an interactive program for building graphics objects

for use in custom menus.

« The Flag Catalog is an interactive program that shows the states and

descriptions of system and userflags.

o The Data Browser and Title Browser are two powerful screen—oriented user

interface utilities that may be used to enhance an application:

[Choose a planet: I
MERCURYITIVE TTA

SATURN MEE
URANUS NEPTUNE PLUTO

: CORVALLIS
OR

973306
293-555-1212Ph

[nopJOEL|][aut SUN[MOON]TEMP]DIETJOREIT]QUIT

« The Tool Library provides 74 new commands for arrays, graphics, list utilities,
meta — objects, sorting, sets, stack utilities, string utilities, and more. These
commands are fast and powerful. For instance, the command MREVERSE will
reverse the order of 1000 objects on the stack in less than a second, and
ROTATE will rotate character strings, lists, or graphics objects.

The 124 page manual provides complete descriptions of all the new catalogs,
programs, and commands with examples. Additional chapters provide reference
tables for object types, the character set, and flags.

Armstrong Publishing Company
3135 N.W. Ashwood Drive Corvallis, OR 97330 USA

	Cover
	Contents
	Getting Started
	Additional Information
	Installing the ToolKit
	Removing the ToolKit
	Example Programs

	Character Set Catalog
	Menu Label Builder
	Flag Catalog
	Viewing All Flag Settings
	Viewing Flag Descriptions
	Supplying User Flag Descriptions

	Data Browser
	Input Parameters
	Output Parameters
	Active Keys

	Title Browser
	Input Parameters
	Output Parameters
	Active Keys

	Tool Library
	Graphics
	Set Utilities
	Meta Objects
	Temporary Memory
	Command Index
	Error Messages

	Command Reference
	ADJOIN
	CAR
	CDR
	CUT
	DELCOL
	DELROW
	DIFF
	DOW
	DOY
	EQNVARS
	EXCOL
	EXROW
	EXTRACT
	GETCOL
	GETROW
	ICAPS
	INSCOL
	INSROW
	INTERSECT
	KEEP
	LCASE
	LSORT
	LTRIM
	MAH
	MAH2
	MAM2
	MAT
	MAT2
	MDH
	MDH2
	MDT
	MDT2
	ML→M
	MM→L
	MREVERSE
	MSWAP
	MZ2
	NDUP
	NXTOB
	PRVOB
	PUTCHR
	PUTCOL
	PUTROW
	PX+
	PX-
	PXOFF
	PXON
	PX?
	PX→R
	QSORT
	REPLACE
	REVERSE
	ROTATE
	RPTSTR
	RTRIM
	R→PX
	SDIFF
	→SET
	SPLIT
	SRLL
	SRLLD
	→STDSTR
	STRCON
	STRCTR
	SUBNUM
	SXCH
	→TIO
	TIO→
	TRIM
	UCASE
	UNION
	VFIND
	→WORDS
	XTIME

	Object Types
	Character Codes
	Character Translations
	Flags
	Alpha Keyboard

