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Getting Started

The centerplece of the Regression Analysis Package is the CFIT
library which provides the HP 48 community with a powerful curve
fitting capability never before seen in a handheld calculator. Two
routines perform both multiple linear regressions and nonlinear
regressions with up to 16 fit parameters. The package also contains
a menu driven constants library as an alternative to the one found
in the HP Equation Library Application Card. The constants library
contains 21 constants from the physical sciences, 60 astronomical
constants, and 43 mathematical constants. Finally, a Time Value of

Money program is included which is modeled after the routine
found in the PPC ROM for the HP 41. The version here includes
many enhancements over the TVM found in the HP Equation
Library Application Card, including the ability to generate

amortization tables and summaries quickly and with great
precision. The program allows for full and independent control over
the payment and compounding frequencies, including continuous

compounding, and handles ordinary annuities and annuities due.

 

 

 

 

 

NAME TYPE LIB ID SIZE LIBRARY

(kb) COMMANDS

CFIT Library 913 11.1 NLR, MLR

CONSTANT Library 914 8.4 CONSTANT,
PHYSC,
EARTHC,
SOLARC,
GALAXYC,
COSMC,
MATHC

TVOM Program -- 5.9 --         
Installing the Software

The software in this package consists of two libraries and a
program. The program can be renamed in the event that a name



conflict exists. The libraries have a number of library commands. A

library command must not exist as a named object anywhere else

in the current path. Notice that CONSTANT is a library command
as well as the name of the library. The function of the library
command, CONSTANT,is to create and display a menu of the other
commands in the library. The advantage in doing this is that
CONSTANTcan be evaluated, making the constant library available
from the CST menu, or even from the command line.

Refer to the HP 48 Owners Manual for information on installing
libraries. In brief, the procedure is as follows.

Download the library to the HP 48.
Recall the library to the stack.
Store the library object in a port. For example, 0 STO.
Purge the variable that the library was stored in.
Turn the calculator off, then on again. The calculator performs
a system halt due to the existence of the new library. Both CFIT
and CONSTANT automatically attach themselves to the HOME
directory.

To install TVOM, simply download the program. As a program
object, it can be stored in any variable and evaluated like any other

program.

Removing the Software

The procedure for removing the libraries is as follows.

e Make sure that the library object does not exist on the stack.
e Go to the HOME directory.

e Enter the library number, tagged by its port number, for
example :0:913, and execute DETACH.

¢« Enter the library name as above and execute PURGE.

Remove the program object TVOM as with any other named
variable.



CFIT

Curve FIT

Introduction

A commonly encountered problem in science, medicine, and social

studies is - given a collection of measured data y,, associated with
some quantity x;, find a function, or adjust the parameters of a
function such that the quantity )(2=[y,-F(xi)l2 is minimized. This
minimization condition is termed the method of maximum

likelihood, or the method of least squares. Of course, the method
assumes that the function, F,is the correct function for the problem

to be solved. Also implicit in the method is the assumption that the
observed measurements, y,, about the actual value, F(x,), are
normally distributed, with zero mean. In most typical problems of
practical concern, these assumptions hold true.

The general problem offitting a function to experimental data can
be classified as linear or nonlinear. The nonlinear case is
characterized by the function containing terms nonlinear in the
fitting parameters. In other words, at least one of the partial
derivatives of F with respect to the fit parameters, depends on at
least one of the fit parameters. This distinction is a critical one. The

linear problem reduces to the problem of simultaneous equations
which can be solved analytically. The nonlinear problem introduces

considerable complexity. An analytic solution, in general, is not

possible. Solutions are obtained by providing a "first guess" and
iterating to a solution.

Linear methods are fairly easy to understand and implement.
Straight line and polynomial fit programs abound, many in the

public domain. Nonlinear methods are a different story. One
generally goes, physically or electronically, to a library of scientific

or mathematical routines to locate the proper tools. These packages
usually run on a fairly substantial machine, usually one that will
not fit conveniently on your desk.

The two curve fit programs included in this package are the most
powerful curve fit programs available for a handheld calculator. NLR
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(NonLinear Regression) is a general purpose program used to fit any

type of single variable function to a data set, from a straight line to
a function totally nonlinear in the fitting parameters. MLR (Multiple
Linear Regression) is restricted to functions that are linear in the
fitting parameters. MLR will fit a simple polynomial, an orthogonal
polynomial set, or any linear single variable function to a data set.
Both NLR and MLR generate fits which correctly account for
Poisson, or instrumental (user defined) weighted data. Both NLR
and MLR can solve for up to 16 fitting parameters.

Measurement Uncertainties (Weighting of Data)

The role that measurement uncertainties play in determining the fit
function is not always appreciated. Data weighting is in essence the
reality that the numerical values of measured data have some
intrinsic uncertainty associated with them. The precise nature of
the uncertainty depends on the specifics of the experiment. The

data from one experiment may have the same random uncertainties
for each measurement. The data from another may involve
numerous electronic scale changes in the instrumentation, each
scale characterized by a particular noise or random error. Still a
third experiment may involve counting of events, say photons or
decays. Counting experiments are characterized by Poisson noise.
The relative uncertainties or "error bars" associated with the data
set can frequently produce fits that differ from the unweighted case.
In orderfor a fit, or regression analysis, to have meaning it must be
done correctly, taking into account measurement uncertainties.

Even when measured data have equal uncertainties, care is needed

to avoid the pitfalls encountered when transformations are used.

The simple function y=A1*EXP(-x/A2) is often fitted to exponential
decay data by transforming it to a linear form by taking the
logarithm of both sides of the equation, yielding
LOG(y)=-x/A2+LOG(A1). We take the logarithm of all ofour y values
and proceed with a simple linear straight line fit. The answer

obtained is useful but not correct. It is not correct because when we

transform a measured data set, we must also transform the

uncertainties. The net effect of neglecting the transformed
uncertainties in the example cited was to weight the data points in
the exponential tail too heavily during subsequent curve fit. In
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many cases where weighting or data transformation is involved, the
answer obtained by a simple (or simple minded) curve fit which
ignores measurement uncertainties is no better than the answer
obtained by graphical estimation using a pencil and ruler.



NonLinear Regression (using Marquardt's algorithm)

NLR will fit data to a function containing up to 16 fitting
parameters, for the general case where the fitting parameters are
nonlinear, eg. the Gaussian, F(X) = A,exp|-%((X-A,)/A;)?]. This type
offit is usually performed using a computing engine ofconsiderable
power, and the algorithms used are frequently sophisticated enough
to account for somewhat pathological functions or very bad first
guesses. The algorithm implemented here is not as robust and
"bullet proof' as some of the routines running on large computer
systems, but will do an excellent job of fitting data using well
behaved functions of the type encountered in the real world. The

algorithm chosen is of necessity a compromise, but perhaps most
importantly, the method has the advantage of converging to a
solution rapidly, which is of paramount importance for a machine

of limited computing capabllities. NLR has the capability of

providing for three types of data weighting; no (equal) weighting,
Poisson weighting, or instrumental weighting.

Background

Most nonlinear regression algorithms are usually variants of one of
two methods. The first method is one of linearization of the
function, or a Gauss-Newton approach. The method begins,

conceptually, with the first order Taylor expansion of the function
in the fitting parameters, A;, resulting in a function which is linear
in the A’s. The method of linear least squares can then be applied

to arrive at a "solution" for the A’s. Repeated linearization of the
function for each new set of A's results in convergence to a final
solution. This method has the advantage that it converges fairly
rapidly to the minimum in x2 from points nearby. However,it does

not do such a great job for points outside the region where x2 is

nearly parabolic. In fact it can totally fail!

The second method, the method of steepest descent, is one which
relies on calculation ofthe gradient Vyx? to determine the magnitude
and direction by which the A's are incremented. The method of

steepest descent works very well for values of the A’s far from the



minimum in x2. since it does not assume or require that x2 be
nearly parabolic. A disadvantage is that the method becomes

computationally inefficient as the minimum is approached. The

method will usually converge, though, and is generally more robust
than the Gauss-Newton method.

Marquardt's Method

The method of Marquardt, also called the gradient expansion
algorithm, relies on a variable conditioning factor, A, which inflates
the diagonal of the curvature matrix multiplicatively when x? fails
to decrease. This will become clear shortly.

First some definitions:

i index over the number of data points.

J index over the fitting parameters.
Aj the jth fitting parameter.

X, the ith independent data point.
Yy, the i'" dependent data point.
A the vector of A's, [A,, ... A,].

F(X,,A) the value of the fit function at X, A.

I the identity matrix.

A conditioning factor.
o, Standard deviation or error bar (weight) ofmeasurement

data.
A*B  term-by-term product of A and B. (A*B),=a;,*by.

Using these definitions, we want to find A such that chi-square is
minimized:

x2=12(0,'2ly,-F(X,.A)12).

We will need to calculate the following quantities:

K,=(y,-F(X,A))  ;a 1-D matrix which is obtained when x? is
calculated.

DU=(')Fi/aAJ ;a 2-D matrix.



The quantity DD" (where DT is the transpose of D) is called the

curvature matrix. The curvature matrix yields the local shape ofthe

x2 hypersurface, and contains information on the behavior of

parameter space in the neighborhood of the current estimate for A.
The curvature matrix provides information on the direction ofthe
correction to A ,le the direction of the 8A vector. K is a measure of

the distance from the evaluated function to the real data, using the
current A. K therefore provides a measure of the required
magnitude of the correction to A.

Without providing any derivation, the resulting algorithm is very
simple:

Set tolerance: %tol=1
Set conditioning factor: A=0.01

!
Compute x2

|
ComputeD <~ ——————— — — — 1

!
r — bA=(DDT+AI*DDT)DK

|
|

| A=A+dA |
A=10A | |
A=A-BA |2ewXoial /X® < %t0l/100? -END 1

t {no yes l
L« inew>x2old ? I

yes {no |
A=A/5 |

Ly —eJ

Onthe first pass, A inflates the diagonal of the curvature matrix by

1%. An uninflated diagonal is equivalent to a Gauss-Newton
approach, which converges very quickly, if the x2 minimum is
nearby. If the first iteration does result in a reduced %2, A is
decreased, and the algorithm continues to converge to a solution
with each successive pass. If the new% is greater than the old, the
step (or 6A) was in the wrong direction, meaning that the current
point in x2 hyperspace is too far from the minimum for linearization
of the function to be a valid approach. The conditioning factor is



increased and the curvature matrix is modified to get a new step
direction. Notice that in this case, the derivatives associated with D
need not be recalculated, rather the diagonal is simply inflated. This
loop executes rapidly. As the diagonal terms come to dominate, the
curvature matrix begins to look like that obtained when gradients
are used, since cross terms become negligible with respect to the
diagonal terms. In other words, the method resorts to a steepest
descent approach. In reality, Marquardt’'s method is more than an

either/or method. It can be shown that the best step direction is in
fact somewhere between the directions given by Gauss-Newton and
steepest descent. Marquardt always chooses a direction between the

two.

Data Weighting

NLR permits 3 types of data weighting;

Equal weighting (no weighting).
The standard deviations of the measured data are set

internally to 1, (o=1).

Poisson weighting.
Poisson weighting is characteristic ofcounting experiments.
The standard deviations of the measured data are equal to

the square root of the measurement (o,=Vy,).
Instrumental weighting.

Instrumental weighting is user specified for each data point.
This weighting is appropriate when the random errors for
the dependent data vary from measurement to measurement

in a way determined by the instrumentation used.

Instructions

First create the function F(X,A1,A2,..An), in a manner that assumes

that the variables X,A1,A2,..,An exist (they will be created at run

time). The variables are all upper case. Store the function (a

program or an algebraic) in any variable name. Create, or port in,

the data array and store it under any variable name. The data array

is/a 2 or 3 column matrix (ordered as X,Y or X,Y,0) with the number

of rows equal to the number of data points. If the third column is



present, it represents the error bars or standard deviations of the

measured data. Create a first guess vector or 1-D matrix and store
it under any variable name. The vector is ordered Al through An.
Generally, it will be necessary to inspect a rough plot ofthe data, or
at least do a few trial calculations to gain some information as to
the approximate values of the fit parameters.

Run NLR. A sign-on message appears as well as a menu with
choices of CONTINUE, HELP, and QUIT. The help menu choice
summarizes the paragraph above and is designed to remind the
experienced user of the required procedures. The continue choice

bypasses the help screens and begins the body of the program.

Once the program begins, only 3 bits of information are required.
The first prompt asks for the data variable name. The second
prompt asks for the fit function name and the third prompt asks for

the name of the first guess vector. If a third column exists in the
data array, MLR knows that instrumental weighting is required. If
a third column does not exist, NLR asks for the user to specify

EQUAL or POISSON weighting using a highlight bar. The up and
down arrow keys are active until a choice is made using the ENTER
key. Before execution, the user is offered a menu choice as to
whether or not a solution plot is desired.

Upon completion, the program beeps and the final values of x2 and
the resultant fit parameters are placed on the stack, all tagged for
easy identification. NLR also creates two global variables.

SCOEF - The solution fit coefficient matrix, the first column
containing the A’s, and the second columncontaining
the P.E., or probable error in the corresponding

coefficient. (P.E. = 0.67450). The statistical probability of
the "actual” coefficient falling within the range A;*PE,is
1a.

CHISQR - The solution %2 for the fit.

Example 1

We will fit a function of 3 Gaussians to a data set composed of 32
points. Each Gaussian has 3 unknown parameters, so there will be
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a total of 9 fit parameters. The function is shown below in both RPN
and algebraic representation, as well as EquationWriter form.

FX: <«AlXA2-A3/SQ 'A1*EXP(-(SQ((X-A2)
2 / NEGEXP *A4 X /A3)/2))+A4*EXP(-(
A5 -A6/SQ2/ SQI(X-A5)/A6)/2))+
NEG EXP * + A7 X A8 A7*EXP(-(SQ((X-A8)/

-A9 / SQ2 / NEG A9)/2)r
EXP * + »

 

eo)52
  
 

The data array, which can be entered using the matrix editor, or in
real life might be ported in over the serial line from a PC, is shown
below.

 DATINLR :
[ [5900 .05 ] oty

[ 5950 .1 |
[ 6000 .12 | .
[ 6050 .35 ] el .
[6100 .5 | Lt
[6150 .7 | et gy]
[ 6200 1.2 ] 5,900, ;a_l T 2,500,
[ 6250 1.72]
[ 6300 2.5 |
[ 6350 3.05]
[ 6400 3.4 |
[ 6450 3.72]
[ 6500 3.8 |
[ 6550 4.1 |
[ 6600 4.6 ]
[ 6650 5.5 |
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[ 6700 6.68 ]
[ 6750 8.15 )
[ 6800 8.68 )
[ 6850 8.5 ]

[ 6900 7.2 ]
[ 6950 5.55 ]
[ 7000 4.15 )
[ 7050 3.6 |
[ 7100 3.22 )
[ 7150 2.45 )
[ 7200 1.95 ]
[ 7250 1.55)
[ 7300 .88 |
[ 7350 .42 ]
[ 7400 .2 ]
[ 7450 .1 | |

The data array might represent spectral data, where the first

column would be wavelength and the second column, output
voltage from a digital meter which could represent light intensity.

The first guess vector can be obtained by inspection ofa crude data
plot and is chosen to be:

GUESS: [ 36400 120 8 6800 100 2.5 7100 100 },

where the members of each triplet represent intensity, position of

the peak, and peak width at half maximum, for each component
Gaussian.

Now run NLR and enter the names DATINLR, FX, and GUESS at
the prompts for data name, function name, and first guess vector.
Select EQUAL when prompted for the weighting type. Finally, select
YES from the "Plot Data" menu to begin execution.The program
displays a status screen during computation, showing the current

iteration, the current value of x2. and the current value of the

conditioning factor, A. This example requires about 7% minutes to

converge to a solution after 4 iterations. Upon completion the
program will beep and proceed to plot the resulting data and fit
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curve. The results for the problem here are displayed on the stack
(CHISQR is also stored as a variable);

o

Al

m
N
O
R
O
N
®
O
=

CHISQR : 0.213
: 3.670

A2 :

A3 :

A4 :

Ab :

A6 :

A7 :

A8 :

A9 :

6469.774
183.129
7.994
6815.541
121.928
2.517
7112.859
127.634

The final plot produced by NLR showing both the data and the

function is shown in the figure below.

 

 

 

   
It is usually worth the effort to spend some time inspecting the data

to develop a good first guess. The following first guess results in
convergence to the same solution, but requires 7 iterations and 13
minutes.

GUESS2: [ 2 6400 250 8.5 6800 2002 7150 100 ]
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Example 2

In this example we will fit a function to a data set that represents
the latitude dependence of some hypothetical parameter. Let's

assume that a function is desired which is ofthe form shown below:

 

 

FX: <«AlA7-XA3-A5 '(A1-A7)/(EXP((X-A3

*EXP1 +/ A2 A7 - )*A5)+1)+(A2-A7)/(

XA4-A6*EXP1 + EXP((X-A4)*A6)+1)+

/ +A7 + > A7

Hl"‘fl? ) HZ’H? n?

EXP((X-R3) A5)+1 EXP((X-R4)AG)+1

  
 

The data array is:

 

DAT2NLR :

[ [-90 105] "+, 110.000fY
[-80 104

[-70 95

[ -60 77

[ -50 54

[-40 35

[-30 31

[ -20 32

[-10 29

[ O 30

10 30

20 31

30 33

40 37

50 54

2 a

" 100,000
 

=100.000 '-a'o.n-'ool s   
 

—
S
G

G
t
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t
S
t
S
t
m
—
o
t
S
t
S
—
S
t

g
g
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r
m
—
p
—
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[ 60 73 ]
[ 70 87 ]
[ 80 93 ]
[ 90 95 ] |

A first guess is made which is not very close to the solution, but
shows what happens when the first guess yields a %2 neighborhood
whose curvature results in a parameter step which is in the wrong
direction. The guess is:

GUESS : |

Now run NLR, respond to the prompts (assume equal weighting),
and observe iteration 1, followed by sub-iterations 1.1, 1.2, & 1.3.
Finally, the algorithm has found the correct direction to the solution
and continues with iterations 2, 3, 4, 5, & 6. At iteration 1.3 the
value of the conditioning factor had increased to 10, meaning the
diagonal terms were weighted 10 times more than the off diagonal
terms. The algorithm at this point is nearly equivalent to a steepest

descent. The execution time is 5 minutes. The plot produced by NLR

is shownin the figure below, along with the solution placed on the
stack.

 

CHISQR : 17.117 “'fl'ux

Al : 105.93 el
A2 : 95.54 o r

A3 : -56.26 L
Ad : 54.72 % R
A5 : 0.137
A6 : -0.127
A7 : 29.67=
R

N
®
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Example 3

In this example the data set represents a decay process with
Poisson statistics governing the measurement uncertainties. Lets
assume that a major contaminant is producing a significant fraction
of the observed decay events. The contaminant is thought to be
about 20% of the target species and have a lifetime on the same
order as the target species. We therefore wish to fit the data using
a double exponential decay in order separate the decay constant of

the target species from that of the contaminant. The function is
shown in RPN, algebraic and EquationWriter form:

F(X): <« Al XNEG A2 / EXP 'Al1*EXP(-X/A2)+A3*EXP(-X/A4)
* A3 X NEG A4 / EXP
*+ >

 

AL ExP(7|3e[78

   
The data array is:

DAT3NLR: | 608 |
554 ]
441 |
455 |
408 |
417 ]
342 |
310
293 |
253 )
221 ]

223 ]
195 |
188 ]
154 )m

E
m
E
E
E
O
0
0
0
0
0
0
0
0

N
h
r
W
N
—
~
O
O
R
I
N
D
L
R
W
~
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[2.7
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[ 3.0
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[ 3.2
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[ 3.4
[ 3.5
[ 3.6

[ 3.7
[ 3.8

B
0

-
0

©
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W
B
N

U
L
W
N

176 ]
150 ]
124 ]
137 ]
123 ]

123 |
99
89
87
74
67
74
66
52
52
53
45
53
42
34
28
31
27
21
24
25
17
20
27
20
22
14
18
12
12 S
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—

Examination of the plot shows that the data decays to a value of

1/e times the t=0 value at about 1/5 of the x range. Time ranges
from O to 5, so the decay constant is about 1. We know that the
total counts at t=0 is about 650 and that the contaminant is about
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20%, so we might guess A1=500, A3=150, and A2=1. We don’'t know
what A4 is, so we make two calculations, one with A4=2 and one

with A4=0.5.

GUESS1: [5001 1502 ]
GUESS2: [ 5001 150 0.5]

Now run NLR and enter the names DAT3NLR, FX, and GUESS]1at
the prompts for data name, function name, and first guess vector.
Select POISSON when prompted for the weighting type. Finally,
select YES from the "Plot Data" menu to begin execution.The
program displays a status screen duringzcomputatlon. showing the

current iteration, the current value of x“, and the current value of
the conditioning factor, A. This example requires about 2 minutes
to converge to a solution after 2 iterations. Upon completion the
program will beep and proceed to plot the resulting data and fit

curve. The results for the problem here are displayed on the stack.

CHISQR : 38.49

Al : 483.9

A2 :0.973

A3:158.4

A4 :1.81m
h
N
w
A
e
O

The final plot produced by NLR showing both the data and the
function is shown in the figure below. Save the contents of SCOEF
into another variable.

 

Now run NLR again with
GUESS2. With this first
guess, the program
converges in 5 iterations
after 4% minutes. The
stack output is shown
below:

 

   5. CHISQR : 37.71
4. Al : 486.0
3. A2 :1.35
2. A3:174.2
1. A4 : 0.563
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The plot from GUESS2 is not substantially different from that
obtained by GUESS] yet the value ofx? for GUESS?2is better than
for GUESS1. More importantly, look at the probable errors
assoclated with the coefficients for the two guesses. For GUESS]1,
the probable errors for A1-A4 are +260, +0.22, +268, and +0.97. For
GUESS?2they are +84, +0.078, £75, and +0.21. Problems associated

with double or triple exponential decays are frequently ill defined
and more data would help, but based on the data at hand, it
appears that the fit parameters produced by GUESS2Z are the
correct ones.

Hints

Execution time.

In order to run the regression in reasonable times (a few minutes as
opposed to many tens of minutes) it may be necessary to edit the
number of data points in large data sets to a few dozens of points,
at least for fits with 5 to 10 fitting parameters. Once a first guess is
found which leads to rapid convergence to the proper solution, the
entire data set can be included for the final calculation.

Validity of results.

As with any non-analytic regression, always check the results for
reasonableness. Paying attention to the plot of the fitted data is
usually a good indicator. It is sometimes the case that man
different "solutions" are possible, differing only slightly in their x~.
This is often the case for multiple closely spaced Gaussians and
multiple exponentials, where the minima in x2 hyperspace are
shallow and there may be many of them. The final answer in these
cases is often dependent on which minimum was closest to the first

guess. A sampling of first guesses may be required for certain
problems.

Unexpected Termination.

If convergence does not occur, the fit parameters can go to infinity

as the algorithm goes unstable. Ifa program termination occurs due
to a system error such as overflow or singular matrix, check the
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values of the Al fit parameters that are left behind as variables in
the current directory to determine if lack of convergence was the
underlying cause. Examination ofthe stack may also provide a clue.
A poorfirst guess is likely to be the cause of termination. The stack
and fit parameters are not normally saved when program
termination occurs. To view of these items, create the variable
'nirdebug’ and store the value of 1 into it before running NLR. The
automatic cleanup of the stack and variables created by the
program will be suppressed.

Parameter control.

For certain applications, the user may wish control over the loop

control parameters. These include; tolerance: %tol, initial

conditioning factor: SA, inflation factor: $Ainf, and the deflation
factor: SAdef. NLR checks to see if any of the variables exist at run
time. If any of these variables do exist when NLR is run, the value

of that variable will be used rather than the built-in default values.

The default values are shown in the flow chart. They are %tol=1,
SA=0.01, SAinf=10, and SAdef=5.

References

"Data Reduction and ErrorAnalysis for the Physical Sciences" Philip
R. Bevington, McGraw-Hill.

"Nonlinear Regression Analysis and it's Applications" D. Bates & D.
Watts, Wiley.
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Multiple Linear Regression

MLR can analytically solve for up to 16 fitting parameters for the
case where the fit function is linear in the fit coefficients, i.e. F =
Al1*F1 + A2*F2 + ... An*Fn, where the A’s are the fit coefficients and
the F's are the user supplied fit functions. Examples are polynomial
regressions, where Fi=X""!, and Fourier fits, where Fi=sin[2x(i-1)X].
MLR has the capability of providing for three types of data
weighting; no (equal) weighting, Poisson weighting, or instrumental
weighting.

Theory

The solution coefficients, A,, result when the weighted chi-square is
minimized. MLR uses the matrix inversion technique to obtain an

analytic solution to the equation resulting from minimization:

a2/Ay = 3/A, X 0,2 {y,-IJIAjX% =0 (1)

where: i - index over data points
J.k - index over fit parameters
x’= Xo,2 (y,-F(X,) } 2 (weighted chi-square)
o, = standard deviation or error bar (weight) ofmeasurement

After differentiation, Equation (1) results in n simultaneous
equations, one for each kh partial derivative.

):lI 0%y, Fi(X,) = j3:( A, %:t 0,2 Fy(X,) F(X,)) (2)

In matrix form; B = AC,

with B, = X 0,2 y, F,.(X,)
and Cy, = X 0,2 F\(X)) Fy(X,)

The symmetric matrix C is called the curvature matrix.

Solving for A, we have;

A=BC (3)

21



Data Weighting

MLR permits 3 types of data weighting;

Equal weighting (no weighting).
The standard deviations of the measured data are set
internally to 1, (o=1).

Poisson weighting.
Poisson weighting is characteristic ofcounting experiments.
The standard deviations of the measured data are equal to
the square root of the measurement (o=vy).

Instrumental weighting.
Instrumental weighting is user specified for each data point.
This weighting is appropriate when the random errors for
the dependent data vary from measurement to measurement
in a way determined by the instrumentation used.

Instructions

Before running MLR, prepare an i row by j column X,y data matrix
(or X,y,0 matrix, where the third column of the data matrix is
required for instrumental, or user specified weighting). Also create
n function definitions, F,, corresponding to each of the fit
coefficients, A;. When writing the function definitions, assume the
variable X exists as a global. It will be created at run-time.

Run MLR. The introduction page displays a menu with choices;

CONTINUE, HELP, and QUIT. HELP serves as a reminder of what

to prepare as input, and how to interpret the output of MLR. After

choosing CONTINUE or paging through the HELP option, MLR
prompts for the number of independent variables, ie. a 1D or a 2D

fit. MLR then prompts for the data name. Enter the name of the
data array. If a third column exists in the data array, MLR knows
that instrumental weighting is required. If a third column does not
exist, MLR asks for the user to specify EQUAL or POISSON
weighting using a highlight bar. The up and down arrow keys are
active until a choice is made using the ENTER key. MLR finally
prompts for the list of fit functions (or the name of a previously
defined list). The list consists of global names for the Fy's created by
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the user. The order of the variable names implicitly corresponds to
the order of the A/'s that are returned as the solution. Before

execution, the user is offered a menu choice as to whether or not a

solution plot is desired.

Upon completion, the program beeps and displays the results. The
stack contains the final value of 2 and all of the resultant fit
parameters, all tagged for easy identification. MLR creates 3 global
variables. They are:

SCOEF - The solution fit coefficient matrix, the first column
containing the A's, and the second column containing
the P.E., or probable error in the corresponding
coeflicient. (P.E. = 0.67450). The statistical probability of
the "actual” coeflicient falling within the range A;*PE,is
Va.

S$FX - An algebraic representation of the fit function,
constructed from the function list and the fit coefficient

vector.

CHISQR - The solution x2 for the fit.

Example 1

We will do a quadratic polynomial fit to the first 20 primes. Three
fit functions are required.
Fl:<l> '’
F2 : <X» X
F3 : <X SQ»> "SQ(X)

The data array is constructed as shown below.

DAT1MLR:

[ (1 2]
(2 3]

[3 5]
(4 7]
5 11)

(6 13]

[7 17]

(8 19]

23



[9 23]
(10
(11

(12
(13

(14
(15
(16
(17
(18

(19
(20

29]

31)
37]
41])
43]

47]
53]
59]
61]
67]
71]

 

b

a A a2
  2.0000 20,0000
 

Run MLR, select 1 independent variable, and enter the name
DATI1MLR in response to the data name query. Hit the ENTER key
in order to select the default condition of equal weighting. Finally,
enter the list of fit functions to be used for the fit; {F1 F2 F3}. Select

YES from the "Plot data" menu. About 25 seconds later, MLR beeps
and generates a solution plot, shown below with the stack output.

T
R

CHJISQR: 22.9901
Al: -1.9237

A2: 2.2055

A3: 0.0747

 

 

 

 

Example 2

We will use a function composed of the first three even Legendre
polynomials to fit a data set which represents counts versus angle.
The function we want is: F(X) = A1*PO + A2*P2 + A3*'P4, where
PO=1, P2=(3t2-1)/2, and P4=(35t*-30t*+3)/8, with t=cos(X).
The three function definitions are:
PO: «1>»

P2: <X COSSQ3*1-2/>
P4: <X COS 4"35*XCOSSQ30*-3+8/>
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The data set is constructed as shown below. Set the angular mode
to degrees.

 

DAT2MLR: . !
[ (0 301] T

[15 296] T
(30 230] T
(45 181] T
(75 170] T
(90 194] e ———————
(120 167]
[150 208]
(180 312] ]

     

Run MLR, select 1 independent variable, and enter the name
DAT2MLR in response to the data name query. Hit the down arrow,
then the ENTER Kkey in order to select Poisson weighting (count data
is governed by Poisson statistics). Finally, enter the list of fit

functions to be used for the fit; {PO P2 P4}. Select YES from the "Plot
data" menu. About 15 seconds later, MLR beeps and generates a
solution plot, shown below with the stack output.

 4: CHISQR : 3.0146 ]
3: Al : 189.8206 Ay 7
2: A2 :52.6633 :
1: A3:66.4901 - 7

K o5

  Lets look at the the probable
error in the coefficients. Recall
the variable SCOEF and examine the second column for the

probable errors. We see that Al, A2, and A3 have probable errors
of +3.73, +6.83, and *8.12 respectively.

 

Example 3

A final example will illustrate the use of instrumental weighting of
data. Assume that a hypothetical experiment is performed and data
is collected. All of the data is good data and is free of systematic
errors. Half of the data is measured with instrumentation which
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yields 0.5 error bars (uncertainties) and the other half of the data

is measured with instrumentation which ylelds +0.15 error bars.

Let’'s say we know that a linear function describes the relationship
between the X and y values and we wish to extrapolate a linear fit
to obtain an estimate for some physical parameter at X=0. The data
is shown below, where the third column contains the instrumental
uncertainties.

DAT3MLR:
[ [2.5 2.125 0.5

[3.0 1.875 0.5 ]
[3.5 2.560 0.5]
[4.0 2.50 0.5]
[4.5 2.125 0.5 ]
[6.0 3.00 0.5]
[6.5 2.50 0.15]
[6.0 2.75 0.15]
[6.5 2.75 0.15]
[7.0 3.25 0.15]
[7.5 3.25 0.15]
[8.0 3.50 0.15] |

We will fit the data to F(X) = A1*F1 + A2*F2. The functions are

constructed as follows.

Fl : <1> T

F2 : «X» X'

Run MLR,select 1 independent variable, and enter the name

DAT3MLR in response to the data name query. Enter the list of

functions to be used for the fit: {F1 F2}. Select YES from the "Plot

Data" menu. About 10 seconds later, MLR beeps and generates a
solution plot, shown below with the stack output.
 

3: CHISQR: 7.2505

2: Al: 0.9559

1: A2: 0.3062

The best estimate for the X=0
intercept, given the available
data, is y=0.96.
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A Comment on Weighting of Data

If the fit in example 3 were done without utilizing the different
weights for the two halves of the data set, the calculated intercept
would be y=1.38, as shown in the figure below. This may be
acceptable if one needs only a quick estimate for the intercept, but
this answer is not the correct one because important information
was thrown away in arriving at the value of the intercept. Inclusion
of weighting in general (instrumental or Poisson) is especially
important when the number of data points is small. If the data is

really free of non-random errors, then the unweighted fit will
converge to the weighted fit as the number of regularly spaced data
points goes to infinity.

 

   

  

   

    

  
  
 

Linear Pot of 'DATA' to Y=AT1 Fl1 + A2 F2

3.8 T unweighted fit
Chisquare=0.608

3 T Al=1.38 +/-0.15
A2=0.247 +/-0.02

25 4+

2 -4

Y
1.6 +

1 J Weighted fit
Chisquare=7.25

0.8 Al=0.956 +/-0.22
A2=0.306 +/-0.033

o + ' '

o 2 4 6 8

X

References

"Data Reduction and Error Analysis for the Physical Sciences" Philip
R. Bevington, McGraw-Hill.
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2 Dimensional Linear Regression

The minimization condition presented in Equation 1, need not be
restricted to functions of a single independent variable, X. The
method can be broadened to include functions of more than one
variable, ie F(X1,X2). In this case our data set would consist of an

array with 3 columns, one each for the independent variables X1

and X2, and one for the dependent variable Y. In a fashion
analogous to the 1 dimensional case, instrumental weighting ofthe
Y data values can be represented by a fourth column in the data
array.

Instructions

The instructions are similar to those described in the general
section on multiple linear regression. First create or port in an
X1,X2,y data matrix ( or X1,X2,y,0 ifinstrumental weghting). Create
n function definitions, F,, corresponding to each of the fit
coefficients, A;. When writing the function definitions, assume the
variables X1 and X1 exist as globals. They will be created at run
time.

When MLR is run,select 2 as the number ofindependent variables,
and proceed as described in the general section on Multiple Linear

Regression. Plots ofthe data and fit function are not done when the
two dimension option is chosen.

Example 1

We will fit a function to a data set which represents the dependence

ofsome parameter on both latitude and time, y=F(L,t). The function

which describes the dependence is

F(L,t) = a + b*(1-COS(L)) + c*SIN(360*(t+d)/52),

where the arguments of the SIN function indicate that we must set
the angular mode to degrees, and that the unit of time in the data
set is week. The function in its current form is not linear in the fit
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parameters, but is easily transformed to a linear representation.
After expanding the SIN function,

F(X1,X2) = Al + A2*(1-COS(X1))
+ A3*SIN(360*X2/52) + A4*COS(360*X2/52),

where X1=L, X2-=t,

c=(A32+A4%)'/2, d=52*ATAN(A4/A3)/360.

The fit functions are:

F1: <l> '1°

F2: <1 X1 COS -» '1-COS(X1)

F3: <360 X2 * 52 / SIN»> 'SIN(360*X2/52)

F4: <360 X2 * 52 / COS» 'COS(360*X2/52)

Since the seasons in the northern and southern hemispheres are 26
weeks out of‘phase and the time dependence is a seasonal one, the
raw data for the minus latitudes has to be adjusted by adding 26
weeks ( modulo 52.). The data set shown below incorporates this

modification:
DAT4MLR:
[ [-77 44 301 ]

[ -77 48 330 ]
[ -77 50 292 |
[-77 52 318 ]
[-77 3 331]
[ -32 30 269 ]
[ -32 35 255 ]

[ -32 43 275 ]
[ -32 14 309 ]
[-32 17 320
[-17 31 241 ]
[ -17 38 240 ]
[ -17 52 269 ]
[-17 16 270 ]
[-1720 260 ]
[ 4 2 296 ]
[ 410 302 ]
[ 414 284
[ 432 245
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Run

CHISQR: 5545.266
Al:

A2:

A3:

A4:

4 42 263
21 1 284
21 4 289
2111 306 ]
21 30 261 ]
21 46 289 ]
46 4 298]
46 6 296 |
46 9 297 ]
46 25 278 |
46 38 253 ]
62 6 335 ]
62 7 314 ]
62 31 270
62 49 315 ]
62 52 296 ]
82 8 345
82 11 333]
8218 309]
82 29 300 ]
82 31 287 ]

MLR, select 2 independent variables, and enter the name

DAT4MLR in response to the data name query. Enter the list of
functions to be used in the fit: {F1 F2 F3 F4}. About 90 seconds
later MLR beeps and displays the results on the stack.

270.717
47.982
19.478
12.793

The values of ¢ and d are calculated from A3 and A4.

c=23.3

d= 4.8 weeks.

-the amplitude of the seasonal dependence.

-the phase difference
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TVOM
Time Value of Money

Introduction

This financial program is an improved and expanded version of the
one developed for the HP-41 PPC ROM. This version of TVOM
includes the ability to generate amortization schedules and
summaries quickly and with great precision. The program allows for
full anid independent control over the payment and compounding
frequencies, including continuous compounding, and handles
ordinary annuities and annuities due.

Assumptions/Defaults

The interest rate defines the base period. A one year base period is
usually implied, ie a 10% mortgage rate defines the base period as
1 year. Other base periods are possible. The payment and
compounding frequencies are the number of payments or
compoundings in a single base period, le. 12 if the payment and
compounding periods are monthly with a yearly base period, 13 if

the payment and compounding periods are weekly with a quarterly

base period. The default mode assumes 12 payment and

compounding periods per base period, which is useful for the most
common problem of monthly compounding and monthly payment

frequencies, with an implied yearly base period. (ie. yearly interest
rate). Qrdinary annuity is the default. The financial parameters (n,
%int, PV, PMT, & FV are set to zero when TVOM is started.

Definitions/Functions

n Total number of payments, or number of compounding
periods if no payments.

* If no payments and continuous compounding, then n is
defined as the number of base periods.

%int Nominal interest rate per base period (usually a year).

PV Present value.
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PMT Payment amount.

FV Future value.

PF Payment frequency, or number ofpayments per base period.
* Automatically set to CF ifthere are no payments (PMT=0).
* Automatically set to 1 if PMT=0 and -continuous
compounding.

CF Compounding frequency, or number of compoundings per
base period.

* Ignored if compounding is continuous.

C/D Toggle function: continuous or discrete compounding.

B/E Toggle function: E (ordinary annuity) - payment due at
the end of the payment period.

B (annuity due) - payment due at the
beginning of the payment period.

Equations

Standard financial definitions are used. Money received is positive,
money paid out is negative.

The basic financial equation is:
PV(1+,)" + PMT(1+i,*OAAD)*[(1+i.)"-1)/i, + FV =0

where OAAD=0 for ordinary annuity
OAAD=1 for annuity due

and .=cffective interest rate per payment period.

The relation between nominal interest rate per base period and
effective interest rate per payment period is:

el%int/PF)4 continuous compoundingl =

i = (1+%lnt/CF‘)(CF/PF)_1  discrete compounding.
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The solution for interest is accomplished iteratively by root solving

which executes rapidly for a sufficiently good initial guess. The
initial guess used is:

i, = |PMT/(|PV|+|FV|)| + [(|PV]|+|FV]|)/(PMT*n%)].

The amortization formulas used are (through N periods):

interest contribution = N*PMT - (PV+PMT/1,)*((1+1,)N-1).
principal contribution = N*PMT - interest contribution.
balance remaining = PV - principal contribution.

Menu Keys

n, %int, PV, PMT, FV
Inverse background keys that function as those in SOLVER, ie,
unshifted to enter a value, left-shift to solve, right-shift to recall.

QUIT
The only proper method of exit. 'Quit’ purges globals and
restores user and system flags.

INIT
Initializes all parameters to their default values.

VIEW
Temporary display showing current option values.

C/D, B/E
Toggle functions described in Definitions/Functions.

CF, PF
Compounding and Payment Frequency functions. Unshifted key
stores a new value, right-shifted key recalls the value.

AMRT
Amortization summary for input number of periods.

AT.I
Amortization Table showing Incremental interest and principal
contributions at each pay period, along with new balance.

AT.C
Amortization Table showing Cumulative interest and principal

at each pay period, along with new balance.

INDX
Used to index amortization tables, ie. a new column is added to

the table to represent payment number. This function is
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intended for use where a table is to be ported out to a PC. An
index is required to make the raw data readable outside the
HP-48 environment.

Caveats/Limitations

The program gives accurate results for terms of 100 years with
monthly payment and compounding frequencies, at least for

reasonable values of the financial parameters. The cumulative

errors over 1200 payments might amount to a few cents. The
results for each period are rounded and displayed to the nearest

cent, except for the amortization summary which is rounded to the
nearest 100th cent. The only real limitations the user is likely to
find are resource driven limitations encountered in generating
amortization tables. Generating tables for 1200 payments takes
about 5 minutes, and more importantly, uses large amounts of
memory. Be aware that an out of memory condition may occur if
these large tables need to be generated.

References:

PPC ROM User’'s Manual, 1981, and references contained therein.

In particular:

Greynolds, Aronofsky, Frame, "Financial Analysis Using
Calculators", McGraw-Hill, 1980.
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Examples

The following examples illustrate some of the uses of TVOM. Each
example assumes a fresh start of TVOM or execution of the INIT
function which initializes all variables to their default values. In
these examples, gold-shift or left-shift is represented by the symbol
~ and blue-shift or right-shift is represented by the symbol ». The
ENTER key is represented by the symbol 1. Menu keys will be
represented by outlined characters eg. %int. What you see will be
noted by the superscript s if it is displayed in the status area rather
than the stack.

Example 1 Find the monthly payments for a 4 year, $12,000 car

loan at 11%2%. (Assume PF=CF=12 and ordinary annuity).

Do: See: Comment:

44112*n *n: 48 48 monthly payments
11.5 %int %int: 11.50 nominal interest rate
12000 PV S PV: 12000.00 cash received (+)
“PMT PMT: -313.07 monthly payment, cash out (-)

Example 2 Find the monthly end-of-period payment necessary to
fully amortize a 15 year $70,000 loan at 8.75%, compounded
quarterly.

Do: See: Comment:

4 CF ® COMPFREQ: 4 quarterly compounding
15112*n  °n: 180 180 payments
8.75 %int S int: 8.75 nominal interest rate

70000 PV S PV: 70000 cash received (+)
PMT PMT: -697.01 payment, cash out (-)

How much interest was paid out the first year?

12 AMRT Princpl: -2376.39
Interest: -5987.74 shows total interest paid
Bal: 67623.61 & balance remaining
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Example 3 Compute the future value of bi-weekly savings of $100
for 3 years at 7.5%, compounded daily. Interest is paid on deposits
beginning from when they are deposited, so set B/E toB (or annuity
due). The account is opened with a $300 deposit.

Do: See: Comment:

26 PF * PMTFREQ: 26 deposit every 2 weeks
365 CF s COMPFREQ: 365 daily compounding
B/E ® Annuity Due (BEG)
3126*n *n: 78 3 years; (26/yr)
7.5 %int % int: 7.50 nominal interest rate
-300 PV *PV: -300 $300 to open (cash out)
-100 PMT * PMT: -100 $100 deposits
FV FV: 9135.39 withdrawal at 3 years

Example 4 If you purchase a single payment annuity with a value
of$60,000, invested at a nominal interest rate of 14%, compounded

continuously, what is the maximum monthly return which does not
disturb the principal? (This is an ordinary annuity). Notice n is a

dummy entry since the annuity is a perpetuity one. Also note that
CF is irrelevant in this case.

Do: See: Comment:

C/D ® Continuous Compounding
l1n *n: 1 dummy entry
14 %int % int: 14.00

-60000 PV ® PV: -60000 initial cost
60000 FV * FV: 60000 final value (unchanged)
~PMT PMT: 704.10 monthly return.
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CONSTANT

Introduction

CONSTANTis a library ofphysical, astronomical, and mathematical
constants accessible via a menu. The library contains 21 constants
from the physical sciences, 60 constants from astronomy and
cosmology, and 43 mathematical constants.

The units for the entries are, with some exceptions, SI units (MKS).

The exceptions are the Hubble and galactic distance units, which
are in Mpc or kpc, and the constants for the planets other than
earth, which are expressed as earth unit ratios and are therefore

dimensionless.

The available library commands are:
e PHYSC Physics & chemistry
« EARTHC Earth & moon
e SOLARC Sun & planets
« GALAXYC Galaxy
« COSMC Cosmology
« MATHC Mathematics
e CONSTANT

Notice that CONSTANT is not only the name of the library, but is

also a library command. The library command CONSTANT, when
evaluated, creates a temporary menu of the other library
commands. The benefit of this feature is that the menu of library
commands can become available by evaluating the name
CONSTANT, rather that having to go into the LIBRARY menu, page
to the menu entry for CONSTANT(the library name), and push its
menu key.

The library’s entries are accessed through a menu structure which
emulates a directory with subdirectories. The library commands are

the first level of entries in the directory-like structure. The entry for
EARTHC contains an entry named MOON which emulates another

subdirectory, one level down. The entry for SOLAR also contains a
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subdirectory-like entry named PLAN (planets). PLAN contains
entries for all of the planets except earth, which are themselves
subdirectory-like. The planetary constants are finally contained as
entries under each of the planet names. Each level of menus
contains an up arrow key ( t ) which allows easy switching among
the various levels of menu pages.

Instructions

To bring up the constant menu, evaluate the command CONSTANT,
or go to the library menu and find and push the key labeled CONS.
A menu of the 6 categories of constants will appear. Press one. In

order to bring the value of a constant to the stack, press the menu
key corresponding to the constant’s symbol. The value returned will
be the constant value, usually with units, and always with a
descriptive tag. As a convenience, the label can be stripped by

immediately pushing the same menu key a second time. If the value
has units, a third press of the same menu key will strip the units
and leave the bare number in level 1.

Library Contents

The various constants contained in the library are shown below.

PHYSC  universal gas constant
Boltzmann's constant
Planck’s constant
speed of light
gravitational constant
Avogadro’s number
molar volume
electron charge
electron mass
proton mass

Bohr radius
Rydberg constant
fine structure constant
Compton wavelength (electron)
Bohr magneton
nuclear magneton
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EARTHC

SOLARC

vacuum permittivity

Vacuum permeability

Faraday constant
Stefan-Boltzmann constant
Wein displacement

mass
equatorial radius
flattening factor
mean density

equatorial surface gravity

escape velocity
orbital velocity at 350 km
Geosynchronous altitude from the equator
albedo

solar constant at the earth

MOON mass
radius

earth-moon distance
equatorial surface gravity
escape velocity
orbital velocity at 100 km
albedo

mass
equatorial radius
equatorial surface gravity
solar luminosity

PLAN MERC

mass

radius

distance to sun

VEN
nn

MARS
nn

JUP
nn
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SAT
nn

URAN

NEPT

PLUTO

GALAXYC mass of galaxy

COSMC

MATHC

radius of galaxy
number of stars
sun to galaxy center distance
relative velocity of sun

galaxy luminosity

Hubble constant
critical density of the universe
Planck length
Planck time

Planck mass
nuclear density

radiation temperature

Euler’'s constant

golden ratio
Catalan’s constant

Bernoulli numbers (0-16)

Euler numbers (0-16)

perfect numbers (1-6)

(the last three entries require an argument)
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