
[/ brcinro

HP 48G Series

Advanced User’s

Reference Manual

HP 48G Series Advanced

User’s Reference Manual

AFacicanc
HP Part No. 00048-90136

Printed in Singapore

Notice

This manual and any examples contained herein are provided “as is” and are

subject to change without notice. Hewlett-Packard Company makes no

warranty of any kind with regard to this manual, including, but not

limited to, the implied warranties of merchantability and fitness for

a particular purpose. Hewlett-Packard Co. shall not be liable for any errors

or for incidental or consequential damages in connection with the furnishing,

performance, or use of this manual or the examples herein.

© Copyright Hewlett-Packard Company 1993. All rights reserved.

Reproduction, adaptation, or translation of this manual is prohibited without

prior written permission of Hewlett-Packard Company, except as allowed under

the copyright laws.

The programs that control this product are copyrighted and all rights are

reserved. Reproduction, adaptation, or translation of those programs without

prior written permission of Hewlett-Packard Co. is also prohibited.

© Trustees of Columbia University in the City of New York, 1989. Permission

is granted to any individual or institution to use, copy, or redistribute Kermit

software so long as it is not sold for profit, provided this notice is retained.

Hewlett-Packard Company

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Acknowledgements

Hewlett-Packard gratefully acknowledges the members of the Education

Advisory Committee (Dr. Thomas Dick, Dr. Lynn Garner, Dr. John Kenelly,

Dr. Don LaTorre, Dr. Jerold Mathews, and Dr. Gil Proctor) for their

assistance in the development of this product. Special thanks are also due to

Donald R. Asmus, Scott Burke, Bhushan Gupta and his students at the Oregon

Institute of Technology, and Carla Randall and her AP Calculus students.

Edition History

Edition 1 ...eJuly 1993

Edition 2January 1994

Edition 3May 1994

Editlon 4December 1994

Contents

1. Programming

Understanding Programming .
The Contents of a Program

Calculations in a Program

Entering and Executing Programs .

Viewing and Editing Programs

Creating Programs on a Computer

Using Local Variables
Creating Local Variables .
Evaluating Local Names .

Defining the Scope of Local Varlables
Compiled Local Variables .

Creating User-Defined Functions as Plograms

Using Tests and Conditional Structures

Testing Conditions

Using Comparison Functlons
Using Logical Functions

Testing Object Types

Testing Linear Structure . .

Using Conditional Structures and (Jommands .

The 1F ... THEN ... END Structure .

The IFT Command .

The IF ... THEN ... ELSE ... END Structure

The IFTE Functlon .

The CASE ... END Stlucture

Conditional Examples .

Using Loop Structures . .

Using Definite Loop Stluctures .

The START ... NEXT Structure .

The START ... STEP Structure

The FOR ... NEXT Structure

The FOR ... STEP Structure

1-1

1-1

1-3

1-4

1-9

1-10

1-11

1-11

1-13

1-14

1-15

1-16

1-17

1-17

1-17

1-19

1-20

1-20

1-20

1-20

1-21

1-21

1-22

1-22

1-23

1-27

1-28

1-28

1-30

1-32

1-34

Contents-1

Using Indefinite Loop Structures . . .
The DO ... UNTIL ... END Structure
The WHILE . REPEAT ... END Structure

Using Loop Counters .

Using Summations Instead of Loops .
Using Flags
Types of Flags . .

Setting, Clearing, and Testlng Flags .
Recalling and Storing the Flag States

Using Subroutines .

Single-Stepping through aProgram

Trapping Errors ..

Causing and Analyzing Errors

Making an Error Trap . C e e e

The IFERR ... THEN ... END Structure .

The IFERR ... THEN ... ELSE ... END
Structure .

Input

Data Input Commands .

Using PROMPT ... CONT for Input

Using DISP FREEZE HALT ... CONT for Input .

Using INPUT ... ENTER for Input .

Using INFORM and CHOOSE for Input .
Beeping to Get Attention . .

Stopping a Program for Keystroke Input .

Using WAIT for Keystroke Input

Using KEY for Keystroke Input

Output .

Data Output Commands .

Labeling Output with Tags . .

Labeling and Displaying Output as Strmgs .

Pausing to Display Output . ..

Using MSGBOX to Display Output .

Using Menus with Programs

Using Menus for Input .

Using Menus to Run Programs

Turning Off the HP 48 from a Program

Contents-2

1-36
1-36
1-38
1-39
1-40
1-42
1-42
1-42
1-44
1-45
1-47
1-50
1-51
1-53
1-53

1-54

1-55

1-56

1-56

1-58

1-60

1-67

1-71

1-72

1-72

1-73

1-74

1-74

1-74

1-75

1-76

1-77

1-77

1-79

1-79

1-82

2.

3.

Programming Examples

Fibonacci Numbers o
FIB1 (Fibonacci Numbers, Recurswe Versmn)

FIB2 (Fibonacci Numbers, Loop Version)

FIBT (Comparing Program—Execution Time) .

Displaying a Binary Integer

PAD (Pad with Leading Spaces) .
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display) . .

Median of Statistics Data
%TILE (Percentile of a List)
MEDIAN (Median of Statistics Data)

Expanding and Collecting Completely .

MULTT (Multiple Execution) . .
EXCO (Expand and Collect (ompletely)

Minimum and Maximum Array Elements

MNX (Minimum or Maximum Element—Version 1) .

MNX2 (Minimum or Maximum Element—Version 2)

Applying a Program to an Array

Converting Between Number Bases

Verifying Program Arguments

NAMES (Check List for Exactly TWO Names)
VFY (Verify Program Argument) . . .

Converting Procedures from Algebraic to RPN

Bessel Functions

Animation of Successive TavlmsPolynomlals

SINTP (Converting a Plot to a Graphics Object)
SETTS (Superimposing Taylor’s Polynomials)

TSA (Animating Taylor’s Polynomials)
Programmatic Use of Statistics and Plotting

Trace Mode

Inverse-Function Solver

Animating a Graphical Image

Command Reference

ABS

ACK

ACKALL

ACOS .

ACOSH

ADD

2-10

2-14

2-14

2-16

2-19

2-19

2-20

2-22

2-22

2-25

2-29

2-32

2-36

2-36

2-38

2-40

2-43

2-45

2-45

2-46

2-47

2-49

2-53

2-54

2-56

3-5

3-6

3-6

3-7

3-9

3-11

Contents-3

ALOGo 3-12

AMORT 3-12

AND . ..o 3-13

ANIMATE 3-14

APPLY 3-15

ARC . ..o 3-17

ARCHIVE 3-18

ARG . .o 3-19

ARRY—o 3-19

—ARRY 3-20

ASIN 0 ooo 3-21

ASINH 0oo 3-23

ASNoo 3-24

ASR . .. 3-25

ATAN . . © 0 0ooo 3-26

ATANHo 3-28

ATICK ooo 3-30

ATTACH 3-31

AUTO o o o 0oo 3-32

BARoo 3-34

BARPLOT 3-36

BAUDoo 3-36

BEEPoo 3-37

BESTFIT 3-37

BINSo 3-38

BLANKoo 3-39

BOXo 3-40

BUFLEN0 3-40

BYTES0 3-41

B—=R342

CASEo 3-42

CEILo 3-44

CENTRo 3-44

CF 345

CHOOSE, 346

74Oo¥

CKSMo 3-49

CLEAR 3-50

Contents-4

CLKADJo 350

CLLCD 3-51

CLOSEIO 3-51

CLY .. 3-52

CLTEACHoo 3-52

CLUSRo 3-52
CLVAR 3-53
CNRM 3-53
—COL . .. 3-54

COL+ . .. 3-54

COL= 3-55

COL— . .. 3-56

COLCT 3-56

COLY 3-57
COMB 3-58
CON .. 3-59
COND 3-60
CONICoo 3-61
CONJ 3-62
CONLIB o oo 3-63
CONST oo 3-63
CONT 3-64
CONVERT o oo, 3-65
CORRo 3-65
COS. 3-66
COSH 3-67
COV .. 3-67
CR . .. 3-68
CRDIR 3-69
CROSS 3-69
CSWP 3-70
CYLIN 3-70
C—PX .. 3-71
C—R . .. 3-71
DARCY 3-72
DATE 3-73
—DATE 3-73

DATE+ 3-74
DBUGe 3-74

DDAYS . .. 3-75
DEC . .. 3-75

Contents-5

DECR 3-76
DEFINE 3-77
DEG 3-78
DELALARM 3-78
DELAY 3-79
DELKEYS 3-80
DEPNDo 3-81
DEPTH 3-82
DET 3-82
DETACH 3-84
DIAG— 3-84
—DIAG 3-85
DIFFEQ 3-86
DISP 3-88
DO 3-89
DOERR 3-90
DOLIST 3-91
DOSUBS 3-92
DOT 3-94
DRAW . .. 3-94
DRAX 3-95
DROP 3-95
DROPN 3-96
DROP2 3-96
DTAG 3-97
DUP 3-97
DUPN 3-98
DUP2, 3-98

D—R 3-99

€Ls 3-99

EGV . . .o8-100

EGVL 35101
ELSE 5101
END3102
ENDSUB 3102

ENG 3103

EQ—3104

EQNLIB 3104
ERASE 3105
ERRM 3105
ERRN 3106

Contents-6

ERRO .
EVAL .
EXP
EXPAN
EXPFIT . .
EXPM
EYEPT
FOXx
FACT . . .
FANNING .
FC?7-. . ..
FC?C
FFT
FINDALARM

FINISH
FIX
FLOOR . .
FOR
Fp ..
FREE .
FREE1
FREEZE
FS? . .
FS?C .
FUNCTION
GET
GETI
GOR
GRAD
GRAPH . .
GRIDMAP .
—GROB

GXOR
«H . .

HALT .

HEAD .

HEX

HISTOGRAM

HISTPLOT

HMS+

HMS—

3-106

3-107

3-108

3-109

3-110

3-110

3-111

3-112

3-112

3-113

3-114

3-114

oo 3105

..... 3-116

3-117

3-117

3-118

3-119

3-121

3-121

3-122

3-123

3-124

3-125

3-125

3-127

3-129

3-130

3-131

3-131

3-132

3-133

3-134

3-135

3-136

3-136

3-137

3-137

3-139

3-139

3-140

Contents-7

HMS—314l
—HMS3142
HOME 3142
Lo3143
IDN . ..o 3143
IF .s 3144
IFERR 3146
IFFT3147
IET . ..3148
IFTE3149
IM ..3150
INCR 3150
INDEP 315
INFORM 3152
INPUT 3154
INV.... 3156
IP . ..oo 3157
TR . ..35T
ISOL 3158
KERRM 3159
KEY3159
KGET 3160
KILL 3161
LABEL 3162
LASTo362
LASTARG 3163
LCD— 3163
—LCD 3164
LIBEVAL 3165
LIBS 3165
LINE 3166
YLINE 3166
LINFIT 3167
LININ 3168
LIST—o 3-169
—LIST3169
ZLIST3170
ALISTo3170
IILIST3
LN .o3T2
LNPLo 3174

Contents-8

LOG
LOGFIT . .

LQ
LR . .
LSQ . .
Lu . .
MANT
IMATCH
|IMATCH
MAX
MAXR
MAXY. . .
MCALC . .
MEAN
MEM
MENU
MERGE . .
MERGEL1
MIN
MINEHUNT . .

MINIT
MINR . . .
MINZ . . .
MITM .
MOD
MROOT
MSGBOX

MSOLVR

MUSER . .

NDIST

NEG

NEWOB . .

NEXT .

NEXT .

NOT

NOVAL

NSUB .

NUM

—NUM

NUMX

NUMY

3-174
3-176
3-176
3-177
3-178
3-179
3-179
3-180
3-181

3-183
3-183
3-184
3-185
3-185
3-186
3-187
3-190
3-190
3-191
3-192
3-193
3-193
3-194
3-194
3-195
3-195
3-196
3-197
3-197
3-198
3-199
3-200
3-201
3-201
3-201
3-203
3-203
3-204
3-207
3-207
3-208

Contents-9

NZ.3208
OBJ— . ..39209
OCT3210
OFF3o
OLDPRT 3211
OPENIO 39212
ORo 3913
ORDER 39214
OVER 3215
PARAMETRIC 3215
PARITY37
PARSURFACE 3218
PATH 3219
PCOEF o.3922
PCONTOUR o o o it o 39221
PCOV3229
PDIM o..o3223
PERM 39224
PEVAL 3924
PGDIR 392%
PICKo329
PICT3226
PICTURE 3297
PINIT 3228
PIXOFF 328
PIXON 3229
PIX? . ..3229
PKTo oo3230
PMAX oo.393
PMIN 3231

POLARo 3232
POS3234
PREDV 3234
PREDX 393
PREDYo 3236
PRLCDoo3237
PROMPT 3238
PROOT i 3938
PRST 39239
PRSTC o o o3240
PRVAR o . o3240

Contents-10

PSDEV, 3-242
PURGE 3-243
PUT3-244
PUTLo 3-246
PVAR 3-247
PVARS 3-248
PVIEW 3-249
PWRFIT 3-250
PX—C ..3-250
—Q.3-251
QT3-251
QR . ..3-253
QUAD3-253
QUOTE 3-254
RAD3-256
RAND 3-256
RANK 3-257
RANM 3-257
RATIO 3-258
RCEQ 3-259
127)R 3-260
RCIJ3-260
RCL 3-261
RCLALARM 3-262
RCLF 3-262
RCLKEYS 3-263
RCLMENU 3-264
RCLY 3-264
RCWS3-265
RDM3-266
RDZ3-267
RE3-267
RECN 3-268
RECT 3-269
RECV 3-269
REPEATo 3-270
REPL 3-270
RES 3-271
RESTORE 3-273
REVLIST 3-274

Contents-11

RKFo 3214
RKFERR 3276
RKFSTEPo39277
RL 3278
RLB 3278
RNDoo 3219
RNRM 3280
ROLL 3-280
ROLLD 3281
ROOT 39281
ROT 39282
—ROW3282
ROW+ 3283
ROW—o 384
ROW— 39284
RR 3285
RRB 328
RREF 3286
RRK 3928
RRKSTEP 3288
RSBERR 329
RSD329
RSWP3292
R—B3292
R—C 3293
R—D 3294
SAME 3294
SBRK 329%
SCALE 329
SCATRPLOT 329
SCATTER 3297
SCHUR o o o o 3298
SCL . . .o3299
SCLY3299
SCONJ53300
SDEV 3300
SEND 3301
SEQ3-302
SERVER 3303
SF 3304
SHOW 3305

Contents-12

SIDENS .
SIGN
SIMU . . .
SIN . .
SINH
SINV
SIZE
SL ..
SLB . .
SLOPEFIELD

SNEG . . .
SNRM .
SOLVEQN . . .
SORT .
SPHERE
5Q
SR . .
SRAD .
SRB
SRECV
SST . .
SST|
START
STD
STEP .
STEQ . . .
STIME
STO
STOALARM . .
STOF .

STOKEYS .

STO+ .

STO-— .

STOx*

STO/ . . .

STOZL .
STREAM

STR—

—STR

STWS .

SUB

3-305
3-306
3-307
3-307
3-308
3-309
3-309
3-310
3-311
3-312
3-313
3-314
3-314
3-315
3-316
3-316
3-317
3-317
3-318
3-318
3-320
3-320
3-321
3-322
3-323
3-324
3-324
3-325
3-326
3-327
3-328
3-329
3-330
3-330
3-331
3-332
3-333
3-333
3-334
3-335
3-336

Contents-13

SVD

SVL . .

SWAP .

SYSEVAL

%T . ..

—TAG .

TAIL

TAN

TANH . .

TAYLR

TDELTA

TEACH

TEXT .

THEN . .

TICKS

TIME . .

—TIME .

TINC

TLINE

TMENU .

TOT

TRACE

TRANSIO |
TRN .

TRNC . .

TRUTH .

TSTR . .

TVARS

TVM

TVMBEG

TVMEND

TVMROOT

TYPE . .

UBASE

UFACT

—UNIT

UNTIL

UPDIR

UTPC . .

UTPF .

UTPN . .

Contents-14

UTPT .
UVAL .
VAR
VARS . . .
VERSION
VTYPE
—V2

—V3
V— . .

WAIT .
WHILE
WIREFRAME
WSLOG . .
22X .
X2 .
XCOL . . .
XMIT .
XOR
XPON .
XRECV . .
XRNG
XROOT . .
XSEND
XVOL . . .
XXRNG .
XY .
XY .
2Y'2 .
YCOL .
YRNG
YSLICE . .
YVOL .
YYRNG .
ZFACTOR. .
ZVOL .
+ .

>
N

¥
3-365
3-366
3-367
3-367
3-368
3-368
3-369
3-370
3-371
3-372
3-373
3-374
3-375
3-377
3-379
3-379
3-380
3-381
3-382
3-383
3-384
3-384
3-385
3-386
3-386
3-387
3-388
3-388
3-389
3-389
3-390
3-391
3-392
3-393
3-393
3-394
3-395
3-397
3-399
3-401
3-402

Contents-15

1
V

V
I
A
A

Q
—
T

|
o

% .

3
2+
y_
v .

Ii (Wfier;a) .

4. Equation Reference

Columns and Beams (1) .

Elastic Buckling (1, 1) .
Eccentric Columns (1, 2) .

Simple Deflection (1, 3)
Simple Slope (1, 4)

Simple Moment (1, 5)
Simple Shear (1, 6) S
Cantilever Deflection (1, 7) .
Cantilever Slope (1, 8) .

Cantilever Moment (1, 9)
Cantilever Shear (1, 10)

Electricity (2) S
Coulomb’s Law (2, 1)

Ohm’s Law and Power(2, 2)

Voltage Divider (2, 3)
Current Divider (2, 4) .

Wire Resistance (2, 5) . .

Series and Parallel R (2, 6) .
Series and Parallel C (2, 7) .

Series and Parallel L (2, 8) .

Contents-16

3-403

3-404

3-406

3-407

3-408

3-410

3-411

3-412

3-413

3-415

3-416

3-417

3-418

3-419

3-420

3-420

3-423

3-423

3-424

4-1

4-3

4-3

4-4

4-5

4-9

4-9

4-11

4-11

4-12

4-12

4-13

4-13

4-14

4-14

Capacitive Energy (2, 9) .
Inductive Energy (2, 10) . .
RLC Current Delay (2, 11) . . .
DC Capacitor Current (2, 12)
Capacitor Charge (2, 13) . .
DC Inductor Voltage (2, 14)
RC Transient(2, 15)
RL Transient (2, 16)

Resonant Frequency (2, 17)
Plate Capacitor (2, 18)

Cylindrical Capacitor (2, 19) . .

Solenoid Inductance (2, 20)
Toroid Inductance (2, 21)
Sinusoidal Voltage (2, 22)
Sinusoidal Current (2, 23)

Fluds (3)
Pressure at Depth (3, 1) . .

Bernoulli Equation (3, 2)
Flow with Losses (3, 3)
Flow in Full Pipes (3,4) . .

Forces and Energy (4) . .
Linear Mechanics (4, 1)
Angular Mechanics (4, 2)
Centripetal Force (4, 3)
Hooke’s Law (4, 4) S
1D Elastic Collisions (4, 5) .
Drag Force (4,6) . .
Law of Gravitation (4, 7)

Mass-Energy Relation (4, 8)
Gases (5)

Ideal Gas Law (5, 1)
Ideal Gas State Change (5, 2)
Isothermal Expansion (5, 3)

Polytropic Processes (5, 4) .

Isentropic Flow (5, 5) .
Real Gas Law (5, 6) . . .

Real Gas State Change (5, 7) . .
Kinetic Theory (5, 8)

Heat Transfer (6)

Heat Capacity (6, 1)

Thermal Expansion (6, 2)

4-15

4-15

4-16

4-16

4-17

4-17

4-18

4-18

4-19

4-19

4-20

4-20

4-21

4-21

4-21

4-22

4-23

4-23

4-24

4-26

4-27

4-28

4-29

4-29

4-30

4-30

4-31

4-31

4-31

4-32

4-33

4-33

4-34

4-34

4-35

4-36

4-36

4-37

4-37

4-38

4-39

Contents-17

Conduction (6,3) 439
Convection (6,4) 440
Conduction + Convection (6,5) 4-41

Black Body Radiation (6,6) 442

Magnetism (7) 443
Straight Wire (7, 1) C e e o448
Force between Wires (7,2) 444
Magnetic (B) Field in Solenoid (7,3) 444
Magnetic (B) Field in Toroid (7 4h) 445

Motion (8) . C e 448
Linear Motlon () C e AT
Object in Free Fall (8, 2)o 4-47

Projectile Motion (8,3) 448
Angular Motion (8,4) 448
Circular Motion (8,5) 449
Terminal Velocity (8,6) 449

Escape Velocity (8,7) 449

Opties (9) 450
Law of Refraction (9,1) 451

Critical Angle (9,2) 451
Brewster’s Law (9,3) 452
Spherical Reflection (9,4) 452

Spherical Refraction (9,5) 453
Thin Lens (9,6) 4b4

Oscillations (10)T
Mass-Spring System (10, 1) S o 455
Simple Pendulum (10, 2) . C e o ... 458

Conical Pendulum (10,3) 456

Torsional Pendulum (10,4) 457
Simple Harmonic (10,5) 4-57

Plane Geometry (11) 458

Circle (11, 1) 4589

Ellipse (11,2) 4-59

Rectangle (11,3) 460
Regular Polygon (11,4) 461
Circular Ring (11,5) 461

Triangle (11,6) 4062
Solid Geometry (12) 4-63

Cone (12, 1) 4-64

Cylinder (12,2) 464
Parallelepiped (12,3) 465

Contents-18

Sphere (12, 4)
Solid State Devices (13)
PN Step Junctions (13, 1)
NMOS Transistors (13, 2)
Bipolar Transistors (13, 3)
JFETs (13, 4) .

Stress Analysis (14) .
Normal Stress (14, 1)
Shear Stress (14, 2)
Stress on an Element (14, 3)
Mohr’s Circle (14, 4)

Waves (15) . Ce
Transverse Waves (15, 1) . .

Longitudinal Waves (15, 2) .
Sound Waves (15, 3)

References

A. Error and Status Messages

B. Table of Units

C. SystemFlags

D. Reserved Variables

Contents of the Reserved Variables

ALRMDAT

CST .

“der-” Names .

EQ . .

EXPR .

IOPAR

MHpar

Mpar

nl, n2, ...

Nmines

PPAR .

PRTPAR

sl, s2, ...

VPAR .

ZPAR .

2DAT .
ZPAR .

4-66

4-67

4-69

4-71

4-73

4-74

4-76

4-77

4-77

4-78

4-79

4-80

4-80

4-81

4-81

4-82

D-2

D-2

D-3

D-4

D-4

D-5

D-5

D-7

D-7

D-7

D-8

D-8

D-11

D-12

D-13

D-14

D-15

D-16

Contents-19

E. New Comunands

F. Technical Reference

Object Sizes

Automatic Simplification Rules .

Symbolic Integration Patterns

Trigonometric Expansions

Source References .

G. Parallel Processing with Lists

Index

Contents-20

F-2

F-3

F-5

F-7

F-9

Programming

If you’ve used a calculator or computer before, you’re probably

familiar with the idea of programs. Generally speaking, a program is

something that gets the calculator or computer to do certain tasks
for you—more than a built-in command might do. In the HP 48, a

program is an object that does the same thing.

Understanding Programming

An HP 48 program is an object with # # delimiters containing a

sequence of numbers, commands, and other objects you want to

execute automatically to perform a task.

For example, a program that takes a number from that stack, finds its

factorial, and divides the result by 2 would look like this: !

or

The Contents of a Program

As mentioned above, a program contains a sequence of objects. As

each object is processed in a program, the action depends on the type

of object, as summarized below.

Programming 1-1

Actions for Certain Objects in Programs

Object Action

Command Erecuted.

Number Put on the stack.

Algebraic Put on the stack.

String Put on the stack.

List Put on the stack.

Program Put on the stack.

Global name (quoted) Put on the stack.

Global name (unquoted) m Program ezecuted.
m Name evaluated.

m Directory becomes current.

m Other object put on the stack.

Local name (quoted) Put on the stack.

Local name (unquoted) Contents put on the stack.
As you can see from this table, most types of objects are simply put

on the stack—but built-in commands and programs called by name

cause execution. The following examples show the results of executing

programs containing different sequences of objects.

Examples of Program Actions

Program Results

po
t
%

T i

pe
i
[

;e fo
ls

=n i

et i

12 4+ i T =& 4

12+ EVAL i

1-2 Programming

Programs can also contain structures. A structure is a program
segment with a defined organization. Two basic kinds of structures are
available:

m Local variable structure. The + command defines local variable
names and a corresponding algebraic or program object that’s
evaluated using those variables.

m Branching structures. Structure words (like DO ... UNTIL ...
END) define conditional or loop structures to control the order of
execution within a program.

A local variable structure has one of the following organizations inside
a program:

#F namey ... name, 'algebraic'

“ ok opamey ... mamen # program ¥ i

The — command removes n objects from the stack and stores them
in the named local variables. The algebraic or program object in
the structure is automatically evaluated because it’s an element of
the structure—even though algebraic and program objects are put
on the stack in other situations. Each time a local variable name
appears in the algebraic or program object, the variable’s contents are
substituted.

So the following program takes two numbers from the stack and
returns a numeric result:

o oz | TAEBRS

Calculations in a Program

Many calculations in programs take data from the stack. Two typical
ways to manipulate stack data are:

m Stack commands. Operate directly on the objects on the stack.
m Local variable structures. Stores the stack objects in temporary

local variables, then uses the variable names to represent the data in
the following algebraic or program object.

Numeric calculations provide convenient examples of these methods.
The following programs use two numbers from the stack to calculate
the hypotenuse of a right triangle using the formula /2% + y2.

Programming 1-3

The first program uses stack commands to manipulate the numbers

on the stack—the calculation uses stack syntax. The second program

uses a local variable structure to store and retrieve the numbers—the

calculation uses stack syntax. The third program also uses a local

variable structure—the calculation uses algebraic syntax. Note that

the underlying formula is most apparent in the third program. This

third method is often the easiest to write, read, and debug.

Entering and Executing Programs

A programis an object—it occupies one level on the stack, and you

can store it in a variable.

To enter a program:

1. Press (&q) («»). The annunciator appears, indicating

Program-entry mode is active.

2. Enter the commands and other objects (with appropriate

delimiters) in order for the operations you want the program to

execute.

m Press to separate consecutive numbers.

m Press () to move past closing delimiters.

3. Optional: Press ()(<2) (newline) to start a new line in the

command line at any time.

4. Press to put the program on the stack.

In Program-entry mode (F annunciator on), command keys

aren’t executed—they’re entered in the command line instead. Only

nonprogrammable operations such as («) and are executed.

Line breaks are discarded when you press (ENTER).

To enter commands and other objects in a program:

m Press the keyboard or menu key for the command or object.

or
m Type the characters using the alpha keyboard.

1-4 Programming

To store or name a program:

1. Enter the program on the stack.

2. Enter the variable name (with ' delimiters) and press (STO).

You can choose descriptive names for programs. Here are some ideas

of what the name can describe:

m The calculation or action. Examples: SPH (spherical-cap volume),

SORT (sort a list).

m The iniput and output. Examples: X—FX (z to f(z)), RH—V
(radius-and-height to volume).

m The technique. Example: SPHLV (spherical-cap volume using local

variables).

To execute a program:

m Press then the menu key for the program name.
or

m Enter the program name (with no delimiters) and press (ENTER).
or

» Put the program name in level 1 and press (EVAL).
or

m Put the program object in level 1 and press (EVAL).

To stop an executing program:

m Press (CANCEL).

Example: Enter a program that takes a radius value from the stack
and calculates the volume of a sphere of radius r using

4
V=_mr®

3
If you were going to calculate the volume manually after entering the
radius on the stack, you might press these keys:

3@@® 4 ETER) 3 () &))EHm

Programming 1-5

Enter the same keystrokes in a program. ((»)(<2)just starts a new

line.)

=)IM@EDE4EDOE
@@GEwW
Put the program on the stack.

€« 343
*NUM +
*

FMT |AMGLFLiE[KEYS[MENU]Mz

 seaw43
-+ *

[FHT[ANGL[FLAG[KEYE[MENU|MIZE |

Store the program in variable VOL. Then put a radius of 4 on the

stack and run the VOL program.

(O voL 1: 268, B325731 86
4 (VAR) T(7TTON

The program is

e e e B EEERA e
Tood g M w R

Example: Replace the program from the previous example with

one that’s easier to read. Enter a program that uses a local variable

structure to calculate the volume of a sphere. The programis

(You need to include —NUM because 7 causes a symbolic result.)

Enter the program. ((2)(<2)just starts a new line.)

@)
@G
DIXEDE
1093)@)
)
Put the program on the stack, store it in VOL, and calculate the

volume for a radius of 4.

4

& 5 '4s3EmEr3!
SNUM
&

BT(TTTT

1: 268, B82573186
T3TTT

1-6 Programming

Example: Enter a program SPH that calculates the volume of a
spherical cap of height A within a sphere of radius R using values

stored in variables H and R.

V= %wh2(3r —h)

In this and following chapters on programming, “stack diagrams” show
what arguments must be on the stack before a program is executed
and what results the program leaves on the stack. Here’s the stack
diagram for SPH.

Level 1 - Level 1

— volume

The diagram indicates that SPH takes no arguments from the stack
and returns the volume of the spherical cap to level 1. (SPH assumes
that you’ve stored the numerical value for the radius in variable R
and the numerical value for the height in variable H. These are global
variables—they exist outside the program.)

Program listings are shown with program steps in the left column and
associated comments in the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Programming 1-7

Program: Keys: Comments:

() Begins the program.

tyen @MOE Begins the algebraic expression to

calculate the volume.

X@E@ Multiplies by mh?.

®HED?2

X@O Multiplies by 3r — h, completing

3SXRE) the calculation and ending the

H®) () expression.

()(=Num) Converts the expression with 7 to

a number.

Ends the program.

Puts the program on the stack.

C)SpH Stores the program in variable

SPH.

This is the program:

ClomewEb

Now use SPH to calculate the volume of a spherical cap of radius

r = 10 and height h = 3.

First, store the data in the appropriate variables. Thenselect the

VAR menu and execute the program. The answer is returned to level

1 of the stack.

10OR i 554 . 4690804942
3 () H GT0) ITTTVT

EFH

1-8 Programming

Viewing and Editing Programs

You view and edit programs the same way you view and edit other

objects—using the command line.

To view or edit a program:

1. View the program:

m If the program is in level 1, press («)(EDIT), or (V).

m If the programis stored in a variable, use the Memory Browser

(()(MEMORY)) to view the variable, or press () and the
variable’s menu key, followed by (¥).

2. Optional: Make changes.
3. Press to save any changes (or press to discard

changes) and return to the stack.

The Memory Browser lets you change a stored program without

having to do a store operation. (¢)(EDIT) lets you change a program
and then store the new version in a different variable.

While you're editing a program, you may want to switch the

command-line entry mode between Program-entry mode (for editing

most objects) and Algeblalc/Plogram—entIy mode (for editing
algebraic objects). The FEG and ALannunciators indicate the
current mode.

To switch between entry modes:

= Press (@)ENTEY)
Example: Edit SPH from the previous example so that it stores the

number from level 1 into variable # and the number from level 2 into

variable R.

Use EDIT to start editing SPH .

@

']-3#peH22(3*R-H
Jt =NUM
B

[ATKT=TPT

2EH (W)

Programming 1-9

Move the cursor past the first program delimiter and insert the new

programsteps.

OH @) (ETO)
OREET)

 «'H' ST0 'R' 5T0 '1-3.
30 =NUM
®
T[e=eTBT

Save the edited version of SPH in the variable. Then, to verify that

the changes were saved, view SPH in the command line.

+ 'H' STO 'R' 570 '
1-3EmH22 (3=R-H)'
+MUM
#
AL

 [ZKIP+[£DELJOEL+ |IMZm]-+=TE]

Press (CANCEL) to stop viewing.

Creating Programs on a Computer

It is convenient to create programs and other objects on a computer

and then load them into the HP 48 using the calculator’s serial port.

If you are creating programs on a computer, you can include

“comments” in the computer version of the program.

To include a comment in a program:

m Enclose the comment text between two @ characters.

or

s Enclose the comment text between one @ character and the end of

the line.

Whenever the HP 48 processes text entered in the command line—

either from keyboard entry or transferred from a computer—it strips

away the @ characters and the text they surround. However, @

characters are not affected if they’re inside a string.

1-10 Programming

Using Local Variables

The program SPH in the previous example uses global variables for

data storage and recall. There are disadvantages to using global

variables in programs:

m After program execution, global variables that you no longer need

to use must be purged if you want to clear the VAR menu and free

user memory.
m You must explicitly store data in global variables prior to program

execution, or have the program execute STO.

Local variables address the disadvantages of global variables in

programs. Local variables are temporary variables created by a

program. They exist only while the program is being executed and

cannot be used outside the program. They never appear in the VAR

menu. In addition, local variables are accessed faster than global

variables. (By convention, this manual uses lowercase names for local
variables.) A compiled local variable is a form of local variable that
can be used outside of the program that creates it. See “Compiled

Local Variables” on page 1-15 for more information.

Creating Local Variables

In a program, a local variable structure creates local variables.

To enter a local variable structure in a program:

1. Enter the — command (press (2)(=2)).

2. Enter one or more variable names.

3. Enter a defining procedure (an algebraic or program object) that

uses the names.

-+ mame; names ... namep 'algebraic'
or

-k pame; names ... namey # program F ¥

When the — command is executed in a program, n values are taken

from the stack and assigned to variables name;, names, ... name,.

For example, if the stack looks like this:

Programming 1-11

HOME }1
4:
3: 18
gt b
1:

MECTE[MATRLIETHYPKEALEASE

-+ z creates local variable ¢ = 20.

ix creates local variables ¢ = 6 and b = 20.

 & = creates local variables a = 10, b = 6, and ¢ = 20.

The defining procedure then uses the local variables to do calculations.

Local variable structures have these advantages:

m The — command stores the values from the stack in the

corresponding variables—you don’t need to explicitly execute STO.

m Local variables automatically disappear when the defining procedure

for which they are created has completed execution. Consequently,

local variables don’t appear in the VAR menu, and they occupy user

memory only during program execution.

m Local variables exist only within their defining procedure—different

local variable structures can use the same variable names without

conflict.

Example: The following program SPHLV calculates the volume of
a spherical cap using local variables. The defining procedure is an

algebraic expression.

Level 2 Level 1 — Level 1

r h — volume

1-12 Programming

Program: Comments:

* oI Creates local variables r and h

for the radius of the sphere and

height of the cap.

Pt Expresses the defining procedure.

In this program, the defining
procedure for the local variable

structure is an algebraic

expression.

Converts expression to a number.

() SPHLV Stores the program in variable
SPHLV.

Now use SPHLV to calculate the volume of aspherical cap of radius

7 = 10 and height h = 3. Enter the data on the stack in the correct

order, then execute the program.

10 (ERTER) 3 1: 254. 469804942
EPHLY]B[PWOlJERnH]

Evaluating Local Names

Local names are evaluated differently from global names. When a

global name is evaluated, the object stored in the corresponding

variable is itself evaluated. (You've seen how programs stored in

global variables are automatically evaluated when the name is

evaluated.)

When alocal name is evaluated, the object stored in the

corresponding variable is returned to the stack but is not evaluated.

When a local variable contains a number, the effect is identical to

evaluation of a global name, since putting a number on the stack is

equivalent to evaluating it. However, if a local variable contains a

program, algebraic expression, or global variable name—and if you

want it evaluated—the program should execute EVAL after the object

is put on the stack.

Programming 1-13

Defining the Scope of Local Variables

Local variables exist only inside the defining procedure.

Example: The following program excerpt illustrates the availability
of local variables in nested defining procedures (procedures within

procedures). Because local variables a, b, and ¢ already exist when

the defining procedure for local variables d, e, and f is executed,

they’re available for use in that procedure.

Program: Comments:

No local variables are available.

= b Defines local variables a, b, c.

Local variables a, b, ¢ are

available in this procedure.

Defines local variables d, e, f.

Local variables a, b, ¢ and d, ¢, f

are available in this procedure.

2 < < - Only local variables a, b, c are
available.

No local variables are available.

Example: In the following program excerpt, the defining procedure

for local variables d, e, and f calls a program that you previously

created and stored in global variable P1.

1-14 Programming

Program: Comments:

Defines local variables d, e, f.

Local variables a, b, c and d, e, f

are available in this procedure.

The defining procedure executes

the program stored in variable

P1.

The six local variables are not available in program P! because they

didn’t exist when you created PI. The objects stored in the local

variables are available to program P1 only if you put those objects on

the stack for P to use or store those objects in global variables.

Conversely, program P1 can create its own local variable structure

(with any names, such as a, ¢, and f, for example) without conflicting

with the local variables of the same name in the procedure that calls

P1. Tt is possible to create a special type of local variable that can be

used in other programs or subroutines. This type of local variable is

called a compiled local variable.

Compiled Local Variables

Global variables use up memory, and local variables can’t be used

outside of the program they were created in. Compiled local variables

bridge the gap between these two variable types. To programs,

compiled local variables look like global variables, but to the calculator

they act like local variables. This means you can create a compiled

local variable in a local variable structure, use it in any other program

that is called within that structure, and when the program finishes,

the variable is gone.

Programming 1-15

Compiled local variables have a special naming convention: they must

begin with a . For example,

The variable +u is a compiled local variable that can be used in the

two programs BELOW and ABOVE.

Creating User-Defined Functions as Programs

The defining procedure for a local variable structure can be either an

algebraic or program object.

A program that consists solely of a local variable structure whose

defining procedure is an algebraic expression is a user-defined function.

If a program begins with alocal variable structure and has a

program as the defining procedure, the complete program acts like

a user-defined function in two ways: it takes numeric or symbolic

arguments, and takes those arguments either from the stack or

in algebraic syntax. However, it does not have a derivative. (The

defining program must, like algebraic defining procedures, return only

one result to the stack.)

There’s an advantage to using a program as the defining procedure for

a local variable structure: The program can contain commands not

allowed in algebraic expressions. For example, loop structures are not

allowed in algebraic expressions.

1-16 Programming

Using Tests and Conditional Structures

You can use commands and branching structures that let programs

ask questions and make decisions. Comparison functions and logical

functions test whether or not specified conditions exist. Conditional

structures and conditional commands use test results to make

decisions.

Testing Conditions

A test is an algebraic or a command sequence that returns a test result

to the stack. A test result is either true—indicated by a value of 1—or

it is false—indicated by a value of 0.

To include a test in a program:

m To use stack syntax, enter the two arguments, then enter the test

command.

m To use algebraic syntax, enter the test expression (with

delimiters).

You often use test results in conditional structures to determine

which clause of the structure to execute. Conditional structures are

described under “Using Conditional Structures and Commands” on

page 1-20.

ExampleTest whether or not Xis less than Y.To use stack syntax,

enter i ¥ <. To use algebraic syntax, enter *#<% . (For bothcases,

if X contalns 5 and Y contains 10, then the test is true and 1

returned to the stack.)

Using Comparison Functions

Comparison functions compare two objects, using either stack syntax

or algebraic syntax.

Programming 1-17

Comparison Functions

Key Programmable Description

Command

PRG =T (pages 1 and 2):

== == Tests equality of two objects.

5 Not equal.

Less than.

Greater than.

Less than or equal to.

I
V

I
N
V
A

Greater than or equal to.

SAME Identical. Like ==, but doesn’t allow a

comparison between the numerical value

of an algebraic (or name) and a
number. Also considers the wordsize of

a binary integer.

The comparison commands return 1 (true) or 0 (false) based on the
comparison—or an expression that can evaluate to 1 or 0. The order

of the comparison is “level 2 test level 1,” where test is the comparison

function.

All comparison commands except SAME return the following:

m If neither object is an algebraic or a name, returns 1 if the two

objects are the same type and havethe same value, or 0 otherwise.

For example, if 6 is stored in X, 7 puts 6 and 5 on the stack,

then removes them and returns 0.(Llsts and programs are
considered to have the same value if the objects they contain are

identical. For strings, “less than” means “alphabetically previous.”)

m If one objectis an algebraic (or name) and the other object is an
algebraic (or name) or a number, returns an expression that must be

evaluated to get a test result based on numeric values. For example,

if 6 1s stored in X, '®"' 5 < returns '¥<%5', then —NUM returns 0.

(Note that == is used for comparisons, while = separates two sides of

an equation.)

SAME returns 1 (true) if two objects are identical. For example,

PEEERT . returns 0 regardless of the value of X because the

* is not identical to the real number 4. Binary integers

algebraic

1-18 Programming

must have the same wordsize and the same value to be identical. For

all object types other than algebraics, names, and binary integers,

SAME works just like ==.

You can use any comparison function (except SAME) in an algebraic

by puttmg it between its two arguments. For example, if 6 is stored in

A5 MUreturns 0.

Using Logical Functions

Logical functions return a test result based on the outcomes of two

previously executed tests. Note that these four functions interpret any

nonzero argument as a true result.

Logical Functions

Keys Programmable Description

Command

PRG) TEST (page 2):

FH AND Returns 1 (true) only if both arguments
are true.

O OR Returns 1 (true) if either or both
arguments are true.

HOE XOR Returns 1 (true) if either argument, but
not both, is true.

HOT NOT Returns 1 (true) if the argument is 0
(false); otherwise, returns 0 (false).

AND, OR, and XOR combine two test results. For example,if 4 is

stored in Y, ¥ & < 5 AMD returns 1. First, ¥ & « returns 1 to the

stack. AND removes 1 and 5 from the stack, interpreting both as true

results, and returns 1 to the stack.

NOT returns the logical inverse of a test result. For example, if 1 is

stored in X and 2 is stored in Y, ¥ ¥ < HiT returns 0.

You can use AND, OR,

example, 'z

and XORin algebraics as infiz functions. For

""" returns 1.

You can use NOT as a prefiz function in algebraics. For example,

THOT 2£4 0 -+returns 0 1f 7 = 2.

Programming 1-19

Testing Object Types

The TYPE command ((PRG) =T (NXT) T%FE) takes any
object as its argument and returns the number that identifies that

object type. For example, "HELLD® T¥FE returns 2, the value for

a string object. See the table of obJect types in chapter 3, in the

TYPE command, to find HP 48 objects and their corresponding type

numbers.

Testing Linear Structure

The LININ command ((PRG)(NXT) TEZT (2)(PREV) L i)
takes an algebraic equation on level 2 and an variable on level 1 as

arguments and returns 1 if the equatlon is linear for that variable, or

0 if it is not. For example, 'H+¥ =2 *H' LIMIM returns 1 because

the equation is structurally linear for H. See the LININ command in

chapter 3 for more information.

Using Conditional Structures and Commands

Conditional structures let a program make a decision based on the

results of tests.

Conditional commands let you execute a true-clause or a false-clause

(each of which are a single command or object).

These conditional structures and commands are contained in the PRG

BRCH menu ((PRG) Ho):

m IF ... THEN ... END structure.

a [F ... THEN ... ELSE ... END structure.

s CASE ... END structure.

a

n

IFT (if-then) command.

IFTE (if-then-else) function.

The IF ... THEN ... END Structure

The syntax for this structure is

 18 test-clause THEM true-clause

IF ... THEN ... END executes the sequence of commands in the

true-clause only if the test-clause evaluates to true. The test-clause

can be a command sequence (for example, & E) or an algebraic (for

1-20 Programming

example,). If the test-clause is an algebraic, it’s automatically

evaluated to a number—you don’t need —=NUM or EVAL.

IF begins the test-clause, which leaves a test result on the stack.

THEN removes the test result from the stack. If the value is nonzero,

the true-clause is executed—otherwise, program execution resumes

following END. See “Conditional Examples” on page 1-23.

To enter IF ... THEN ... END in a program:

m Press !

The IFT Command

The IFT command takes two arguments: a test-result in level 2 and a

true-clause object in level 1. If the test-result is true, the true-clause

object is executed—otherwise, the two arguments are removed from

the stack. See “Conditional Examples” on page 1-23.

To enter IFT in a program:

" Press @
The IF ... THEN ... ELSE ... END Structure

The syntax for this structure is

test-clause

 iE false-clause

IF ... THEN ... ELSE ... END executes either the true-clause

sequence of commands if the test-clause is true, or the false-clause

sequence of commands if the test-clause is false. If the test-clause is an

algebraic, it’s automatically evaluated to a number—you don’t need

—NUM or EVAL.

! true-clause F

IF begins the test-clause, which leaves a test result on the stack.

THEN removes the test result from the stack. If the value is nonzero,

the true-clause is executed—otherwise, the false-clause is executed.

After the appropriate clause is executed, execution resumes following

END. See “Conditional Examples” on page 1-23.

To enter IF ... THEN ... ELSE ... END in a program:

m Press

Programming 1-21

The IFTE Function

The algebraic syntax for this function is

IFTECtests true-clauses false-clauses !

If test evaluates true, the true-clause algebraic is evaluated—

otherwise, the false-clause algebraic is evaluated.

You can also use the IFTE function with stack syntax. It takes three

arguments: a test-result in level 3, a true-clause object in level 2, and

a false-clause object in level 1. See “Conditional Examples” on page

1-23.

To enter IFTE in a program or in an algebraic:

m Press H (NEXT) () IFTE .

The CASE ... END Structure

The syntax for this structure is

test-clause; THEHM true-clause; EHM

 test-clausey Tt true-clauses

test-clause, Tt true-clause, EHI:

defauli-clause (optional)

The CASE ... END structure lets you execute a series of test-clause

commands, then execute the appropriate true-clause sequence of

commands. The first test that returns a true result causes execution of

the corresponding true-clause, ending the CASE ... END structure.

Optionally, you can include after the last test a default-clause that’s

executed if all the tests evaluate to false. If a test-clause is an

algebraic, it’s automatically evaluated to a number—you don’t need

—NUM or EVAL.

When CASE is executed, test-clause; is evaluated. If the test is true,

true-clause; is executed, and execution skips to END. If test-clause;

is false, execution proceeds to test-clause;. Execution within the

CASE structure continues until a true-clause is executed, or until all

the test-clauses evaluate to false. If a default clause is included, it’s

1-22 Programming

executed if all the test-clauses evaluate to false. See “Conditional

Examples” below.

To enter CASE ... END in a program:

1. Press BECH () UHAZE to enter CASE ... THEN ...

END ... END.

2. For each additional test-clause, move the cursor after a test-clause

END and press (») CAZE to enter THEN ... END.

Conditional Examples

These examples illustrate conditional structures in programs.

Example: One Conditional Action. The programs below test the
value in level 1—if the value is positive, it’s made negative. The first

program uses a command sequence as the test-clause:

DUF IF @ > THEM HEG EMD &

The value on the stack must be duplicated because the > command

removes two arguments from the stack (0 and the copy of the value

made by DUP).

The following version uses an algebraic as the test clause:

o owo# w IF 'wxit THEM MEG EMD » @

The following version uses the IFT command:

[P o8 o ow MHEGS » IFT 3T

Example: One Conditional Action. This program multiplies two
numbers if both are nonzero.

Programming 1-23

Program: Comments:

FoH o Creates local variables z and y

containing the two numbers from

the stack.

Starts the test-clause.

Tests one of the numbers and

leaves a test result on the stack.

Tests the other number, leaving

another test result on the stack.

Tests whether both tests were

true.

Ends the test-clause, starts the

true-clause.

W E Multiplies the two numbers

together only if AND returns

true.

Ends the true-clause.

The following program accomplishes the same task as the previous

program:

 1

wi' returns “true” if both numbers are

The test-clause '

nonzero.

The following version uses the IFT command:

i Py

1-24 Programming

Example: Two Conditional Actions. This program takes a value z
from the stack and calculates (sin z)/z. At = 0 the division would
error, so the program returns the limit value 1 in this case.

THEH w0 SIM w EHD 5 %

The following version uses IFTE algebraic syntax:

ok ow i

Example: Two Conditional Actions. This program multiplies two

numbers together if they’re both nonzero—otherwise, it returns the

string * i

Program: Comments:

ol onE Creates the local variables.

Starts the defining procedure.

IF Starts the test clause.

Tests nl and n2.

If both numbers are nonzero,

multiplies the two values.

Otherwise, returns the string

EERD.

Ends the conditional.

Ends the defining procedure.

Programming 1-25

Example: Two Conditional Actions. This program tests if two
numbers on the stack have the same value. If so, it drops one of the

numbers and stores the other in variable V1—otherwise, it stores the

number from level 1 in V1 and the number from level 2 in V2.

Program: Comments:

For the test clause, copies the

numbers in levels 1 and 2 and

tests if they have the same value.

For the true clause, drops one of

the numbers and stores the other

m VI.

For the false clause, stores the

level 1 number in V1 and the

level 2 number in V2.

Ends the conditional structure.

Puts the program on the stack.

() TsT Stores it in T'ST.

Enter the numbers 26 and 52, then execute T'ST to compare their

values. Because the two number aren’t equal, the VAR menu now

contalins two new variables V1 and V2.

26 (ENTER) 52
VAR : T

 w2W1TET[TORS|TOREA[SPHLY]

1-26 Programming

Example: Multiple Conditional Actions. The following program

stores the level 1 argument in a variable if the argument is a string,

list, or program.

Program: Comments:

o Defines local variable y.

Starts the defining

procedure.

Starts the case structure.

Case 1: If the argument is
a string, stores it in STR.

Case 2: If the argument is
a list, stores it in LIST.

Case 3: If the argument is

a program, stores it in

PROG.

EM Ends the case structure.

Ends the defining

procedure.

Using Loop Structures

You can use loop structures to execute a part of a program repeatedly.

To specify in advance how many times to repeat the loop, use a

definite loop. To use a test to determine whether or not to repeat the

loop, use an indefinite loop.

Loop structures let a program execute a sequence of commands several

times. Loop structures are built with commands—called structure

words—that work only when used in proper combination with each

other. These loop structure commands are contained in the PRG

BRCH menu ((PRG) ERLH):

START ... NEXT and START ... STEP.

FOR ... NEXT and FOR ... STEP.

DO ... UNTIL ... END.

WHILE ... REPEAT ... END.

Programming 1-27

In addition, the ¥ function provides an alternative to definite loop

structures for summations.

Using Definite Loop Structures

Each of the two definite loop structures has two variations:

m NEXT. The counter increases by 1 for each loop.

m STEP. The counter increases or decreases by a specified amount for

each loop.

The START ... NEXT Structure

The syntax for this structure is

. start finish :

I loop-clause HEXT

START ... NEXT executes the loop-clause sequence of commands one

time for each number in the range start to finish. The loop-clause is

always executed at least once.

Syntax Flowchart

start 1:start

finish 2:finish
‘ v

counter = start
START Store finish

| v

loop-clause Bodyof loop «

v

(counter = counter+1

‘ | v

NEXT {

yes

no

START ... NEXT Structure

1-28 Programming

START takes two numbers (start and finish) from the stack and stores

them as the starting and ending values for a loop counter. Then, the

loop-clause is executed. NEXT increments the counter by 1 and tests

to see if its value is less than or equal to finish. If so, the loop-clause

is executed again—otherwise, execution resumes following NEXT.

To enter START ... NEXT in a program:

m Press

Example: The following program creates a list containing 10 copies

ot the string "

Programming 1-29

The START ... STEP Structure

The syntax for this structure is

. start finish STERT

loop-clause increment STEF ... =

START ... STEP executes the loop-clause sequence just like
START ... NEXT does—except that the program specifies the
increment value for the counter, rather than incrementing by 1. The
loop-clause is always executed at least once.

Syntax Flowchart

start 1:start
finish 2:finish

‘ v

counter = start
START Store finish

| J
loop-clause Body of loop <«

\ v
increment 1:increment

v

r counter = counter+
increment

v
STEP <

L yes

no

START ... STEP Structure

START takes two numbers (start and finish) from the stack and stores

them as the starting and ending values of the loop counter. Then

the loop-clause is executed. STEP takes the increment value from

the stack and increments the counter by that value. If the argument

1-30 Programming

of STEP is an algebraic or a name, it’s automatically evaluated to a

number.

The increment value can be positive or negative. If it’s positive, the

loop is executed again if the counter is less than or equal to finish. If

the increment value is negative, the loop is executed if the counter is

greater than or equal to finish. Otherwise, execution resumes following

STEP. In the previous flowchart, the increment value is positive.

To enter START ... STEP in a program:

m Press H (P)ETART.

Example: The following program takes a number z from the stack

and calculates the square of that number several times (z/3 times):

¢ DUF + w0 & = 1 START x 50 -3 STEP * 3

Programming 1-31

The FOR ... NEXT Structure

The syntax for this structure is

. start finish counter loop-clause

FOR ... NEXT executes the loop-clause program segment one time

for each number in the range start to finish, using local variable

counter as the loop counter. You can use this variable in the

loop-clause. The loop-clause is always executed at least once.

Syntax Flowchart

S‘ta.fi 1:start
finish 2:finish

‘ v

counter = start
FOR Storefinish

| v
loop-clause Body of loop D

v

‘ counter = counter+1

(v

|

NEXT {

7 ves

no

FOR ... NEXT Structure

FOR takes start and finish from the stack as the beginning and ending

values for the loop counter, then creates the local variable counter as a

loop counter. Then the loop-clause is executed—counter can appear

within the loop-clause. NEXT increments counter-name by one, and

then tests whether its value is less than or equal to finish. If so, the

loop-clause is repeated (with the new value of counter)—otherwise,

1-32 Programming

execution resumes following NEXT. When the loop is exited, counter

is purged.

To enter FOR ... NEXT in a program:

m Press ROH (9 FORE

Example: The following program places the squares of the integers 1

through 5 on the stack:

i :

o eR
=00 B FOR 3 3 o HER

Example: The following program takes the value z from the stack

and computes the integer powers 7 of z. For example, when z = 12

and start and finish are 3 and b respectively, the program returns 123,

124, and 12°. It requires as inputs start and finish in levels 3 and 2,

and z in level 1. (+ = removes z from the stack, leaving start and
finish there as arguments for FOR.)

g 4w o FOR m'm*n' EVAL HERT 3 @

Programming 1-33

The FOR ... STEP Structure

The syntax for this structure is

. start finish FiF counter loop-clause increment ZTEFR

FOR ... STEP executes the loop-clause sequence just like FOR ...

NEXT does—except that the program specifies the increment value

for counter, rather than incrementing by 1. The loop-clause is always

executed at least once.

Syntax Flowchart

start 1:start

finish 2:finish
v

counter = start
FOR Store finish

v

loop-clause Body of loop <

| v

increment 1:increment
v

{/ counter = counter+
increment

| ¥
STEP {

\

1

no

FOR ... STEP Structure

FOR takes start and finish from the stack as the beginning and ending

values for the loop counter, then creates the local variable counter as a

loop counter. Next, the loop-clause is executed—counter can appear

within the loop-clause. STEP takes the increment value from the

1-34 Programming

stack and increments counter by that value. If the argument of STEP
is an algebraic or a name, it’s automatically evaluated to a number.

The increment value can be positive or negative. If the increment is
positive, the loop is executed again if’ counter is less than or equal to
finish. If the increment is negative, the loop is executed if counter
is greater than or equal to finish. Otherwise, counter is purged and
execution resumes following STEP. In the previous flowchart, the
increment value is positive.

To enter FOR ... STEP in a program:

m Press H () FORb

Example: The following program places the squares of the integers 1,
3,5, 7, and 9 on the stack:

e
9 FOR = o&

Example: The following program takes n from the stack, and returns
the series of numbers 1, 2,4, 8,16, ... , n. If n isn’t in the series, the
program stops at the last value less than n.

“OR normon STER #

The first n is the local variable declaration for the FOR loop. The
second n is put on the stack each iteration of the loop. The third n is
used by STEP as the step increment.

Programming 1-35

Using Indefinite Loop Structures

The DO ... UNTIL ... END Structure

The syntax for this structure is

. [0 loop-clause UHTIL. test-clause

DO ... UNTIL ... END executes the loop-clause sequence repeatedly

until test-clause returns a true (nonzero) result. Because the

test-clause is executed after the loop-clause, the loop-clause is always

executed at least once.

Syntax Flowchart

DO

\
loop-clause Body of loop <+

| {
UNTIL (

| Test

test-clause ¢ v

l \ 1:test result
L v

‘ Is test
END no

result non-zero?

DO ... UNTIL ... END Structure

DO starts execution ofthe loop-clause. UNTIL marks the end of

the loop-clause. The test-clause leaves a test result on the stack.

END removes the test result from the stack. If its value is zero,

the loop-clause is executed again—otherwise, execution resumes

following END. If the argument of END is an algebraic or a name, it’s

automatically evaluated to a number.

1-36 Programming

To enter DO ... UNTIL ... END in a program:

m Press

Example: The following program calculates n + 2n + 3n+ ... for
a value ot n. The program stops when the sum exceeds 1000, and

returns the sum and the coefficient of n.

Program: Comments:

Duplicates n, stores the value into

opoE oo n and s, and initializes ¢ to 1.

Starts the defining procedure.

[Starts the loop-clause.

Increments the counter by 1. (See

“Using Loop Counters” on page

1-39.)

Calculates ¢ x n and adds the

product to s.

Starts the test clause.

Repeats loop until s > 1000.

Ends the test-clause.

Puts s and ¢ on the stack.

Ends the defining procedure.

Programming 1-37

The WHILE ... REPEAT ... END Structure

The syntax for this structure is

. WHILE test-clause REFEAT loop-clause EMDr ... %

WHILE ... REPEAT ... END repeatedly evaluates test-clause and

executes the loop-clause sequence if the test is true. Because the

test-clause is executed before the loop-clause, the loop-clause is not

executed if the test is initially false.

Syntax Flowchart

WHILE
| J Test <+

test-clause l

| W 1:test result
v

REPEAT

Is test
result non-zero?

yes

loop-clause Body of loop
|

END

WHILE ... REPEAT ... END Structure

WHILE starts execution of the test-clause, which returns a test result

to the stack. REPEAT takes the value from the stack. If the value

is nonzero, execution continues with the loop-clause—otherwise,

execution resumes following END. If the argument of REPEATis an

algebraic or a name, it’s automatically evaluated to a number.

To enter WHILE ... REPEAT ... END in a program:

m Press BROH (@WHILE.

1-38 Programming

Example: The following program starts with a number on the stack,
and repeatedly performs a division by 2 as long as the result is evenly

divisible. For example, starting with the number 24, the program

computes 12, then 6, then 3.

= WHILE DUR 2 MOD 8 == REFERT 2 - DUP EHD DROP @

Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.

(The vectors and arrays must have the same number of columns.)
WHILE ... REPEAT ... END is used instead of DO ... UNTIL ...
END because the test must be done before the addition. (If only
vectors or arrays with the same number of columns are on the stack,
the program errors after the last vector or array is added to the

statistics matrix.)

 WHILE DUP TYPE & == REPEAT E+ EMD @

Using Loop Counters

For certain problems you may need a counterinside aloop structure
to keep track of the number of loops. (This counter isn’t related to the
counter variable in a FOR ... NEXT/STEP structure.) You can use
any global or local variable as a counter. You can use the INCR or
DECR command to increment or decrement the counter value and put
its new value on the stack.

The syntax for INCR and DECR is

Yvariable ' THCRE ... #

or

‘vartable ' GECE .. o®

To enter INCR or DECR in a program:

= Press (Q)(MEMORY) AR ITH IHCE or DECE.
The INCR and DECR commands take a global or local variable name
(with ' delimiters) as their argument—the variable must contain a
real number. The command does the following:

1. Changes the value stored in the variable by +1 or —1.
2. Returns the new value to the stack.

Programming 1-39

Examples: If ¢ contains the value 5, then ' 1

and returns 6 to the stack.

The following program takes a maximum of five vectors from the stack

and adds them to the current statistics matrix.

Program: Comments:

B Stores 0 in local variable c.

Starts the defining procedure.

Starts the test clause.

Returns true if level 1 contains a

vector.

Increments and returns the value

in c.

Returns true if the counter ¢ <5.

Returns true if the two previous

test results are true.

Adds the vector to XDAT.

Fnds the structure.

FEnds the defining procedure.

Using Summations Instead of Loops

For certain calculations that involve summations, you can use the

¥ function instead of loops. You can use ¥ with stack syntax or

with algebraic syntax. ¥ automatically repeats the addition for the

specified range of the index variable—without using a loop structure.

Example: The following programs take an integer upper limit n from

the stack, then find the summation

>7
j=1

One program uses a FOR ... NEXT loop—the other uses .

1-40 Programming

Program:

Comuments:

Initializes the summation and

puts the limits in place.

Loops through the calculation.

Comments:

Uses ¥ to calculate the

summadtion.

Example: The following program uses YLIST to calculate the

summation of all elements of a vector or matrix. The program takes

from the stack an array or a name that evaluates to an array, and

returns the summation.

Program:

Comments:

Finds the dimensions of the array

and leaves it in a list on level 1.

Adds 1 to the list. (If the array is
a vector, the list on level 1 has

only one element. IILIST will

error if the list has fewer than two

elements.)

Multiplies all of the list elements

together.

Converts the array elements into

a list, and sums them.

Programming 1-41

Using Flags

You can use flags to control calculator behavior and program

execution. You can think of a flag as a switch that is either on
(set) or off (clear). You can test a flag’s state within a conditional
or loop structure to make a decision. Because certain flags have

unique meanings for the calculator, flag tests expand a program’s

decision-making capabilities beyond that available with comparison

and logical functions.

Types of Flags

The HP 48 has two types of flags:

m System flags. Flags —1 through —64. These flags have predefined

meanings for the calculator.

m User flags. Flags 1 through 64. User flags are not used by any

built-in operations. What they mean depends entirely on how the

program uses them.

Appendix C lists the 64 system flags and their definitions. For

example, system flag —40 controls the clock display—when this flag

is clear (the default state), the clock is not displayed—when this
flag is set, the clockis displayed. (When you press LK in the

@m menu, you are setting or clearing flag —40.)

When you set user flag 1 through 5, the corresponding annunciatoris

turned on. Certain plug-in cards may use user-flags in the range 31

through 64.

Setting, Clearing, and Testing Flags

Flag commands take a flag number from the stack—an integer 1

through 64 (for user flags) or —1 through —64 (for system flags).

To set, clear, or test a flag:

1. Enter the flag number (positive or negative).

2. Execute the flag command—see the table below.

1-42 Programming

Flag Commands

Key Programmable

Command

Description

PRG) TEZT (NXT)(NXT)or (&)(MODES) FLFL :

op SF

CF

FS?

Fiw FC?

FEil FS7C

FOPD FC?C

Sets the flag.

Clears the flag.

Returns 1 (true) if the flag is set, or 0
(false) if the flag is clear.

Returns 1 (true) if the flag is clear, or 0
(false) if the flag is set.

Tests the flag (returns true if the flag is

set), then clears the flag.

Tests the flag (returns true if the flag is

clear), then clears the flag.

Example: System Flag. The following program sets an alarm for
June 6, 1993 at 5:05 PM. It first tests the status of system flag —42

(Date Format flag) in a conditional structure and then supplies the

alarm date in the current date format, based on the test result.

Program:

Comments:

Tests the status of flag —42, the

Date Format flag.

If flag —42 is clear, supplies the

date in month/day/year format.

If flag —42 is set, supplies the

date in day.month.year format.

Ends the conditional.

Sets the alarm: 17.05 is the alarm

time and “TEST COMPLETE”

is the alarm message.

Example: User Flag. The following program returns either the

fractional or integer part of the numberin level 1, depending on the

state of user flag 10.

Programming 1-43

Program: Comments:

Starts the conditional.

Tests the status of user flag 10.

If flag 10 is set, returns the

integer part.

If flag 10 is clear, returns the

fractional part.

Ends the conditional.

To use this program, you enter a number, either set flag 10 (to get the

integer part) or clear flag 10 (to get the fractional part), then run the

program.

Recalling and Storing the Flag States

If you have a program that changes the state of a flag during

execution, you may want it to save and restore original flag states.

The RCLF (recall flags) and STOF (store flags) commands let you

recall and store the states of the HP 48 flags. For these commands,

a 64-bit binary integer represents the states of 64 flags—each 0 bit

corresponds to a flag that’s clear, each 1 bit corresponds to a flag

that’s set. The rightmost (least significant) bit corresponds to system

flag —1 or user flag 1.

To recall the current flag states:

m Execute RCLF ((«9)(MODES) F FELLE).

RCLF returns a list containing two 64-bit binary integers representing

the current states of the system and user flags:

To change the current flag states:

1. Enter the flag-state arg,ument—see below

2. Execute STOF ((«9)(MODES) F

1-44 Programming

STOF sets the current states of flags based on the flag-state argument:

#ng Changes the states of only the system flags.

#ins #n, ¥ Changes the states of the system and user flags.

Example: The program PRESERVE on page 2-8 uses RCLF and

STOF.

Using Subroutines

Because a programis itself an object, it can be used in another

program as a subroutine. When program B is used by program

A, program A calls program B, and program B is a subroutine in

program A.

Example: The program TORSA calculates the surface areaof a torus
of inner radius @ and outer radius . TORSA is used as a subroutine

in a second program TORSV, which calculates the volume of a torus.

The surface area and volume are calculated by

2 9 1 2 2

A =720 - d?) V= ifl"(bz-—a“)(b—a)

(The quantity 72(b% — a?) in the second equation is the surface area of

a torus calculated by TORSA.)

Programming 1-45

Here are the stack diagram and program listing for TORSA.

Program:

() TORSA

Level 2 Level 1 — Level 1

a b — surface area

Comments:

Creates local variables @ and b.

Calculates the surface area.

Converts algebraic to a number.

Puts the program on the stack.

Stores the program in TORSA.

Here is a stack diagram and program listing for TORSV .

Program:

() TORSV

1-46 Programming

Level 2 Level 1 - Level 1

a b — volume

Comments:

Creates local variables ¢ and b.

Starts a program as the defining

procedure.

Puts the numbers stored in ¢ and

b on the stack, then calls TORSA

with those arguments.

Completes the volume calculation

using the surface area.

Ends the defining procedure.

Puts the program on the stack.

Stores the program in TORSV .

Now use TORSV to calculate the volume of a torus of inner radius

a = 6 and outer radius b = 8.

6 EITERD) 8
VAR

1' 138. 174461616
TTOITI

Single-Stepping through a Program

It’s easier to understand how a program works if you execute it step

by step, observing the effect of each step. Doing this can help you

debug your own programs or understand programs written by others.

To single-step from the start of a program:

1. Put the program or program name in level 1 (or the command

line).

2. Press Rl REUG to start and immediately

suspend execution.

HAL.T appears in the status area.

3. Take any action:

m To see the next program step displayed in the status area and

then executed, press ZET

m To display but not execute the next one or two program steps,

press HEHT

m To continue w1th normal execution, press («q)(CONT).

m To abandon further execution, press FILL.

4. Repeat the previous step as desired.

To turn off the HALT annunciator at any time:

u Press RUH EILL

Example: Execute program TORSV step by step. Use a = 6 and

b=28.

Programming 1-47

Select the VAR menu and enter the data. Enter the program name
and start the debugging. HFLT indicates program execution is

suspended.

@R
:

6 8]
O 5

Display and execute the first program step. Notice that it takes the

two arguments from the stack and stored themin local variables ¢ and

b.

[DEWS55T [S5T4 [N

+ ab
a
0

[DEUG55T[55T4[HERT[HALTKILL

Continue single-stepping until the status area shows the current

directory. Watch the stack and status area as you single-step through

the program.

 1: 138. 174461616

To single-step from the middle of a program:

1. Insert a HALT command in the program where you want to begin

single-stepping.

2. Execute the program normally. The program stops when the HALT

commandis executed, and the Hf annunciator appears.

3. Take any action:

m To sce the next program step displayed in the status area and

then executed, press Z#

m To display but not execute the next one or two programsteps,

press i

m To continue Wlth normal execution, press@m

m To abandon further execution, press

4. Repeat the previous step as desued.

1-48 Programming

When you want the program to run normally again, remove the HALT

command from the program.

To single-step when the next step is a subroutine:

m To execute the subroutine in one step, press

m To execute the subroutine step-by-step, press

ZET executes the next step in a program—if the next step is a

subroutme BET executes the subroutine in one step. =H&ET4

works just like %&T —except if the next program step is a

subroutine,it smglesteps to the first step in the subroutine.

Example: In the previous example, you used EET to execute

subroutine TORSA in one step. Now execute program TORSV step

by step to calculate the volume of atorus of radii @ = 10 and b = 12.

When you reach subroutine TORSA, execute it step by step.

Select the VARmenu and enter the data. Enter the program name

and start the debugging. Execute the first four steps of the program,

then check the next step.

()CERD))

TORSA b

i0 12 4+
(D - W 3;

(4 times) 1: 12
 TRil SR Y

The next step is . Single-step into TORSA, then check that

you’re at the first step of TORSA.

Press («9)(CONT) (&9)(CONT) to complete subroutine and program

execution.

The following table summarizes the operations for single-stepping

through a program.

Programming 1-49

Single-Step Operations

Key Programmable Description

Command

Starts program execution, then

suspends it as if HALT were the first

program command. Takes as its

argument the program or program

name in level 1.

Executes the next object or command

in the suspended program.

 Same as , except if the next

program step is a subroutine,

single-steps to the first step in that

subroutine.

Displays the next one or two objects,

but does not execute them. The display

persists until the next keystroke.

HALT Suspends program execution at the

location of the HALT command in the

program.

KILL Cancels all suspended programs and

turns off the HFLT annunciator. (s)(conNT) CONT Resumes execution of a halted program.

Trapping Errors

If you attempt an invalid operation from the keyboard, the operation

is not executed and an error message appears. For example, if you

execute 4+ with a vector and a real number on the stack, the HP 48

returns the message + Eroi A T

arguments to the stack (if Last Arguments is enabled).

and returns the

In a program, the same thing happens, but program execution is also

aborted. If you anticipate error conditions, your program can process

them without interrupting execution.

1-50 Programming

For simple programs, you can run the program again if it stops with

an error. For other programs, you can design them to trap errors and

continue executing. You can also create user-defined errors to trap

certain conditions in programs. The error trapping commands are

located in the PRG ERROR menu.

Causing and Analyzing Errors

Many conditions are automatically recognized by the HP 48 as error

conditions—and they’re automatically treated as errors in programs.

You can also define conditions that cause errors. You can cause a

user-defined error (with auser-defined error message)—or you can
cause a built-in error. Normally, you’ll include a conditional or loop

structure with a test for the error condition—and if it occurs, you'll

cause the user-defined or built-in error to occur.

To cause a user-defined error to occur in a program:

1. Enter a string (with * * delimiters) containing the desired error

message.
2. Enter the DOERRcommand (PRG ERROR menu).

To artificially cause a built-in error to occur in a program:

1. Enter the error number(as a binary integer or real number) for the
error.

2. Enter the DOERR command (PRG ERROR menu).

If DOERR is trapped in an IFERR structure (described in the next

topic), execution continues. If it’s not trapped, execution is abandoned

at the DOERR command and the error message appears.

To analyze an error in a program:

m To get the error number for the last error, execute ERRN (PRG

ERROR menu).
m To get the error message for the last error, execute ERRM (PRG
ERROR menu).

m To clear the last-error information, execute ERRO (PRG ERROR

menu).

The error number for a user-defined error is #70000h. See the list of

built-in error numbers in appendix A, “Error and Status Messages.”

Programming 1-51

Example: The following program aborts execution if the list in level

1 contains three objects.

The following table summarizes error trapping commands.

Error Trapping Commands

Description

Key Programmable

Command

(PRG)(NXT) R

DOERR

ERRN

ERRM

ERRO

Causes an error. For a string in level 1,

causes a user-defined error: the

calculator behaves just as if an

ordinary error has occurred. For a

binary integer or real number in level 1,

causes the corresponding built-in error.

If the error isn’t trapped in an IFERR

structure, DOERR. displays the

message and abandons program

execution. (For 0 in level 1, abandons

execution without updating the error

number or message—Tlike (CANCEL).)

Returns the error number, as a binary

integer, of the most recent error.

Returns if the error number was

cleared by ERRO.

Returns the error message (astring) for

the most recent error. Returns an

empty string if the error number was

cleared by ERRO.

Clears the last error number and

message.

1-52 Programming

Making an Error Trap

You can construct an error trap with one of the following conditional

structures:

m [FERR ... THEN ... END.

s I[FERR ... THEN ... ELSE ... END.

The IFERR ... THEN ... END Structure

The syntax for this structure is

i error-clause trap-clause

The commands in the error-clause are executed only if an error is

generated during execution of the trap-clause. If an error occurs in the

trap-clause, the error is ignored, the remainder of the trap-clause is

skipped, and program execution jumps to the error-clause. If no errors

occur in the trap-clause, the error-clause is skipped and execution

resumes after the END command.

To enter IFERR ... THEN ... END in a program:

= Press
Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.

However, the program stops with an errorif a vector or array with

a different number of columns is encountered. In addition, if only

vectors or arrays with the same number of columns are on the stack,

the program stops with an error after the last vector or array has been

removed from the stack.

f OWHILE I

In the following revised version, the program simply attempts to add

the level 1 object to the statistics matrix until an error occurs. Then,

it ends by displaying the message i

Programming 1-53

Program: Comments:

Starts the trap-clause.

The WHILE structure repeats

indefinitely, adding the vectors

and arrays to the statistics matrix

until an error occurs.

Starts the error clause. If an error

occurs in the WHILE structure,

displays the message L(IHE in the

status area.

Ends the error structure.

The IFERR ... THEN ... ELSE ... END Structure

The syntax for this structure is

¢ trap-clause

“E normal-clause EHD

1 error-clause E

The commands in the error-clause are executed only if an error is

generated during execution of the trap-clause. If an error occurs in the

trap-clause, the error is ignored, the remainder of the trap-clause is

skipped, and program execution jumps to the error-clause. If no errors

occur in the trap-clause, execution jumps to the normal-clause at the

completion of the trap-clause.

To enter IFERR ... THEN ... ELSE ... END in a program:

m Press B (@)IF

Example: The following program prompts for two numbers, then

adds them. If only one number is supplied, the program displays an

error message and prompts again.

1-54 Programming

Program: Comments:

Begins the main loop.

weow Prompts for two numbers.

Starts the loop test clause.

The error trap contains only the

+ command.

If an error occurs, recalls and

displays the Tom Few

Araourmsnt s message for 2

seconds, then puts 0 (false) on

the stack for the main loop.

If no error occurs, puts 1 (true)
on the stack for the main loop.

Ends the error trap.

Ends the main loop. If the error

trap left 0 (false) on the stack,
the main loop repeats—otherwise,

the program ends.

Input

A program can stop for user input, then resume execution, or can use

choose boxes or input forms (dialog boxes) for input. You can use
several commands to get input:

PROMPT ((«9)(CONT) to resume).
m DISP FREEZE HALT ((«9)(CONT) to resume).
m INPUT ((ENTER) to resume).

s INFORM

s CHOOSE

Programming 1-55

Data Input Commands

Key ‘ Command ‘ Description

INFORM Creates a user-defined input form.

NOVAL Place holder for the INFORM

command. Returned when a value 1s

not present in an input form field.

CHOOSE Creates auser-defined choose box.

KEY Returns a test result to level 1 and, if a

key is pressed, the location of that key

(level 2).

WAIT Suspends program execution for a

specified duration (in seconds, level 1).

INPUT Suspends program execution for data

input.

PROMPT Halts program execution for data input.

Using PROMPT ... CONT for Input

PROMPT uses the status area for prompting, and allows the user to

use normal keyboard operations during input.

To enter PROMPT in a program:

1. Enter astring (with * * delimiters) to be displayed as a prompt in

the status area.

2. Enter the PROMPTcommand (PRG IN menu).

“prompt-string”

PROMPTtakes a string argument from level 1, displays the string

(without the " * delimiters) in the status area, and halts program

execution. Calculator control is returned to the keyboard.

When execution resumes, the inputis left on the stack as entered.

To respond to PROMPT while running a program:

1. Enter your input—you can use keyboard operations to calculate the

input.

1-56 Programming

2. Press (|q)(CONT).

The message remains until you press (ENTER) or (CANCEL) or until you

update the status area.

Example: If you execute this program segment

Example: The following program, TPROMPT, prompts you for the

dimensions of a torus, then calls program TORSA (from page 1-45) to
calculate its surface area. You don’t have to enter data on the stack

prior to program execution.

Program: Comments:

Puts the prompting string on the

stack.

Displays the string in the status

area, halts program execution,

and returns calculator control to

the keyboard.

Executes TORSA using the
just-entered stack arguments.

iH

() TPROMPT Stores the program in
TPROMPT.

Execute TPROMPT to calculate the volume of a torus with inner

radius @ = 8 and outer radius b = 10.

Programming 1-57

Execute TPROMPT . The program prompts you for data.

(9)(CLEAR) ENTER a, b IM ORDER:
(VAR)

TRRD[TORSV[TORSA]¥2W1[PHLY]

Enter the inner and outer radii. After you press (ENTER), the prompt

message 1s cleared from the status area.

8 (ENTER) 10

HOME }

TPRO [TOREWTOREA]w2w1[SPHLY]

Continue the program.

 (B)(conT) 1: 309, 3H57/58439
I))TPNT

Note that when program execution is suspended by PROMPT, you

can execute calculator operations just as you did before you started

the program. If the outer radius b of the torus in the previous

example is measured as 0.83 feet, you can convert that value to inches

while the program is suspended for data input by pressing .83

12 (x), then (&9)(CONT).

Using DISP FREEZE HALT ... CONT for Input

DISP FREEZE HALT lets you control the entire display during input,

and allows the user to use normal keyboard operations during input.

To enter DISP FREEZE HALT in a program:

— Enter a string or other object to be displayed as a prompt.

Enter a number specifying the line to display it on.

Enter the DISP command (PRG OUT menu).
Enter a number specifying the areas of the display to “freeze.”

Enter the FREEZE command (PRG OUT menu).

Enter the HALT command (PRG OUT menu).

1-58 Programming

. prompt-object display-line [IZF

freeze-area F E HALT

DISP displays an object in a specified line of the display. DISP

takes two arguments from the stack: an object from level 2, and a

display-line number 1 through 7 from level 1. If the object is a string,

it’s displayed without the * * delimiters. The display created by

DISP persists only as long as the program continues execution—if the

program ends or is suspended by HALT, the calculator returns to the

normal stack environment and updates the display. However, you can

use FREEZE to retain the prompt display.

FREEZE “freezes” display areas so they aren’t updated until a key

press. Argument n in level 1 is the sum of the codes for the areas to

be frozen: 1 for the status area, 2 for the stack/command line area, 4
for the menu area.

HALT suspends program execution at the location of the HALT

command and turns on the HAL.T annunciator. Calculator control is

returned to the keyboard for normal operations.

When execution resumes, the input remains on the stack as entered.

To respond to HALT while running a program:

1. Enter your input—you can use keyboard operations to calculate the

input.

2. Press («q)(CONT).

Example: If you execute this program segment

i x‘_‘gE: = GHIM CLLCD 1 DISF 2

the display looks like this:

IR EILL

(The ® in the previous program is the calculator’s representation for

the # newline character after you enter a program on the stack.)

Programming 1-59

Using INPUT ... ENTER for Input

INPUT lets you use the stack area for prompting, lets you supply

default input, and prevents the user from using normal stack

operations or altering data on the stack.

To enter INPUT in a program:

1. Enter a string (with * * delimiters) to be displayed as a prompt at

the top of the stack area.

2. Enter a string or list (with delimiters) that specifies the

command-line content and behavior—see below.

3. Enter the INPUT command (PRG IN menu).

4. Enter OBJ— (PRG TYPE menu) or other command that processes

the input as a string object.

. "prompt-string* ¥ command-line®

or

. Hprompt-string* < command-lines IH

INPUT, in its simplest form, takes two strings as arguments—see the

list of additional options following. INPUT blanks the stack area,

displays the contents of the level-2 string at the top of the stack area,

and displays the contents of the level-1 string in the command line. It

then activates Program-entry mode, puts the insert cursor after the

string in the command line, and suspends execution.

When execution resumes, the input is returned to level 1 as astring

object, called the result string.

To respond to INPUT while running a program:

1. Enter your input. (You can’t execute commands—they’re simply

echoed in the command line.)

2. Optional: To clear the command line and start over, press

(e,
3. Press (ENTER).

Example: If you execute this program segment

the display looks like this:

1-60 Programming

{ HOME 3
Variable name?

: YAR:
(TTSTlAT

Example: The following program, VSPH, calculates the volume of a
sphere. VSPH prompts for the radius of the sphere, then cubes it and

multiplies by /3 7. VSPH executes INPUT to prompt for the radius.

INPUT sets Program-entry mode when program execution pauses for

data entry.

Program: Comments:

Specifies the prompt string.

Specifies the command-line string.

In this case, the command line

will be empty.

Displays the prompt, puts the

cursor at the start of the

command line, and suspends the

program for data input (the
radius of the sphere).
Converts the result string into its

component object—areal

number.

Cubes the radius.

Completes the calculation.

(C) VSPH (sT0) Stores the program in VSPH.

Programming 1-61

Execute VSPH to calculate the volume of a sphere of radius 2.5.

VAR
{ HOME }
Key in radius

+
4:PHTRRO[TOR:ZV[TORSA]w2W1

Key in the radius and continue program execution.

2.5 1: 6a. 4498469497
VEPH TPED [TOREMTORER]w2W1

To include INPUT options:

m Use a list (with £ * delimiters) as the command-line argument for

INPUT. The list can contain one or more of the following:

o Command-line string (with * * delimiters).
o Cursor position as a real number or as a list containing two real

numbers.

o Operating options FL.is, =, or %.

In its general form, the level 1 argument for INPUT is a list that

specifies the content and interpretation of the command line. The list

can contain one or more of the following parameters in any order:

“command-line® cursor-position operating-options

“command-line® Specifies the content of the command line

when the program pauses. Embedded newline
characters produce multiple lines in the display.

(If not included, the command line is blank.)

cursor-position Specifies the position of the cursor in the

command line and its type. (If not included, an

insert cursor is at the end of the command line.)

m A real number n specifies the nth character in

the first row (line) of the command line. Zero

specifies the end of the command-line string. A

positive number specifies the insert cursor—a

negative number specifies the replace cursor.

m A list {row character’ specifies the row and

character position. Row 1 is the first row (line)

of the command line. Characters count from

1-62 Programming

the left end of each row—character 0 specifies

the end of the row. A positive row number

specifies the insert cursor—a negative row

number specifies the replace cursor.

operating-options Specify the input setup and processing using zero

or more of these unquoted names:

m ALG activates Algebraic/Program-entry mode

(for algebraic syntax). (If not included,
Program-entry mode is active.)

m = ((@) ()(A)) specifies alpha lock. (If not
included, alpha is inactive.)

m verifies whether the result string (without the
“ " delimiters) is a valid object or sequence of

objects. If the result string isn’t valid, INPUT

displays the Irusmlicd Sumt zx message and

prompts again for data. (If not included, syntax

isn’t checked.)

To design the command-line string for INPUT:

m For simple input, use a string that produces a valid object:

o Use an empty string.

o Use a :label: tag.

o Use a Efext® comment.

m For special input, use astring that produces a recognizable pattern.

After the user enters input in the command line and presses (ENTER

to resume execution, the contents of the command line are returned

to level 1 as the result string. The result string normally contains the

original command-line string, too. If you design the command-line

string carefully, you can ease the process of extracting the input data.

To process the resuit string from INPUT:

m For simple input, use OBJ— to convert the string into its

corresponding objects.

m For sensitive input, use the % option for INPUT to check for valid

objects, then use OBJ— to convert the string into those objects.

m For special input, process the input as a string object, possibly

extracting data as substrings.

Programming 1-63

Example: The program VSPH on page 1-61 uses an empty

command-line string.

Example: The program SSEC on page 1-66 uses a command-line
string whose characters form a pattern. The program extracts

substrings from the result string.

Example: The command-line string * displays

It in the Command line If you press 200 (ENTER),

the return strlng 18 " ". When OBJ— extracts
the text from the string, it strips away the @ characters and the

enclosed characters, and it returns the number 200. (See “Creating
Programs on a Computer” on page 1-10 for more information about @

comments.)

Example: The following program, TINPUT, executes INPUTto
prompt for the inner and outer radii of a torus, then calls TORSA

(page 1-45) to calculate its surface area. TINPUT prompts for ¢ and

b in a two-row command line. The level 1 argument for INPUT is a

list that contains:

m The command-line string, which forms the tags and delimiters for

two tagged objects.

m An embedded list specifying the initial cursor position.

m The % parameter to check for invalid syntax in the result string.

1-64 Programming

Program:

() TINPUT (sT0O)

Comments:

The level 2 string, displayed at

the top of the stack area.

The level 1 list contains a string,

a list, and the verify option. (To

key in the string, press ()" ")

PO®EE@E@.
After you press to put

the finished program on the stack,

the string is shown on one line,

with & indicating the newline

character.) The embedded list

puts the insert cursor at the end

of row 1.

Displays the stack and

command-line strings, positions
the cursor, sets Program-entry

mode, and suspends execution for

input.

Converts the string into its

component objects—two tagged

objects.

Calls TORSA to calculate the

surface area.

Stores the program in TINPUT.

Execute TINPUT to calculate the surface area of a torus of inner

radius ¢ = 10 and outer radius b = 20.

VAR
{ HOME 1

Keg in as, b

AT TITYITTTI

Programming 1-65

Key in the value for a, press (¥) to move the cursor to the next

prompt, then key in the value for b.

10 20
© 1 HOME } FRa

kKeyg in a, b

t3: 1@

%mm
Continue program execution.

= 1: 2966, 88132633RT0)O

Example: The following program executes INPUT to prompt for a

social security number, then extracts two strings: the first three digits

and last four digits. The level 1 argument for INPUT specifies:

m A command-line string with dashes.

m The replace cursor positioned at the start of the prompt string (—1).

This lets the user “fill in” the command line string, using () to skip

over the dashes in the pattern.

m By default, no verification of object syntax—the dashes make the

content invalid as objects.

Level 1 — Level 2 Level 1

 — " last four digits" " first three digits"

1-66 Programming

Program: Comments:

S.E. #Y Promptstring.

- o1k Command-line string (3 spaces
before the first ~, 2 spaces

between, and 4 spaces after the

last —).
THFUT Suspends the program for input.

Copies the result string, then

extracts the first three and last

four digits in string form.

(F) SSEC Stores the program in SSEC.

Using INFORM and CHOOSEfor Input

You can use input forms (dialog boxes), and choose boxes for program

input. Programs that contain input forms or choose boxes wait until

you acknowledge them ([or (CANCEL)) before they continue
execution.

If OK is pressed, CHOOSE returns the selected item (or its designated
returned value) to level 2 and a 1 to level 1. INFORM returns a list of
field values to level 2 and a 1 to level 1.

Both the INFORM and CHOOSE commands return 0 if CANCEL is

pressed.

To set up an input form:

Enter a title string for the input form (use (@)(™™)).
Enter a list of field specifications.

Enter a list of format options.

Enter a list of reset values (values that appear when £

pressed).

5. Enter a list of default values.

6. Execute the INFORM command.

Example: Entera title "F E" (ENTER).

Specify a field < 3

Enter format optlons (one column, taba stop width five) £ 1 5

w
0
0
b
=

Programming 1-67

Enter reset value for the field <

Enter default value for the field £

Execute INFORM ((PRG) (NXT)
The screen on the left appears. Press (NXT)

screen on the right appears.

(EnTER).
and the

ManE:] - AR

ET] [[[AHiL]OF REZET[CHLC[TYRES] [iAMIL]Ok

You can specify a help message and the type of datathat must be

enteredin afield by enteringfield spec1ficat10ns as lists. For example,

: & % defines the Name field,

dlsplavs E . across the bottom of the input form, and

accepts only object type 2 (strings) as input.

To set up a choose box:

1. Enter a title string for the choose box.

9. Enter a list of items. If this is a list of two-element lists, the first

element is displayed in the choose box, and the second elementis

returned to level 2 when OK is pressed.

3. Enter a position number for the default highlighted item. (0 makes

a view-only choose box.)

4. Execute the CHOOSE command.

Example: Enter a title *F (ENTER).

Enter a list of items # 1

Enter a position number for default hlghhghted Value Z (ENTER)

Execute CHOOSE ((PRG) (NXT) IH &).
The following choose box appears:

1-68 Programming

HOERET ORE

3
[[[[iNi[Ok

Example: The following program uses input forms, choose boxes, and

message boxes to create a simple phone list database.

Program: Comments:

Checks 1if the name list

(NAMES) exists, if not,

creates an empty one.

While cancel is not pressed,

creates a choose box that

lists the database options.

When OK is pressed, the

second item in the list pair

is returned to the stack.

Stores the returned value in

c.
Case 1 (ADD name), while
cancel is not pressed, do the

following;:

 Programming 1-69

i

 1-70

Program:

Programming

Comments:

Creates an input form that

gets the name and phone

number. The two fields

accept only strings (object

type 2).

Checks if either field in the

new entry is blank.

If either one is, displays a

message.

If neither are, adds the list

to NAMES, sorts it, and

stores it back in NAMES.

Ends the IF structure, the

WHILE loop, and the

CASE statement.

Case 2 (View a Number).

Checks if NAMES is an

empty list.

If it is, displays a message.

Program: Comments:
ELSE If NAMES isn’t empty,

WHILE creates a choose box using
NAMES as choice items.

When OK is pressed, the

FETR MSGEDN second item in the NAMES

list pairs (the phone
number) is returned. Makes
it a string and displays it.

EL Ends the WHILE loop, the

I IF structure, and the CASE

R statement.

EHD Ends the CASE structure,

2 marks the end of the local
B variable defining procedure,

ends the WHILE loop, and

marks the end the program.

() PHONES Stores the program in
PHONES.

You can delete names and numbers by editing the NAMES variable.
To improve upon this program, create a delete name routine.

Beeping to Get Attention

To enter BEEP in a program:

1. Enter a number that specifies the tone frequency in hertz.
2. Enter a number that specifies the tone duration in seconds.
3. Enter the BEEP command ((PRG) (NXT) ©LIT menu).

... frequency duration EEEF ... @

BEEP takes two arguments from the stack: the tone frequency from
level 2 and the tone duration from level 1.

Example: The following edited version of TPROMPT sounds a
440-hertz, one-balf-second tone at the prompt for data input.

Programming 1-71

Program: Comments:

Sounds atone just before the

prompt for data input.

Stopping a Program for Keystroke Input

A program can stop for keystroke input—it can wait for the user to

press a key. You can do this with the WAIT and KEY commands.

Using WAIT for Keystroke Input

The WAIT command normally suspends execution for a specified

number of seconds. However, you can specify that it wait indefinitely

until a key is pressed.

To enter WAIT in a program:

» To stop without changing the display, enter 0 and the WAIT

command (PRG IN menu).
» To stop and display the current menu, enter —1 and the WAI'T

command (PRG IN menu).

WAIT takes the 0 or —1 from level 1, then suspends execution until a

valid keystroke is executed.

For an argument of —1, WAIT displays the currently specified menu.

This lets you build and display a menu of user choices while the

program is paused. (A menu built with MENU or TMENU is not

normally displayed until the program ends or is halted.)

When execution resumes, the three-digit key location number of

the pressed key is left on the stack. This number indicates the row,

column, and shift level of the key.

1-72 Programming

To respond to WAIT while running a program:

m Press any valid keystroke. (A prefix key such as (&) or (@) by itself

1s not a valid keystroke.)

Using KEY for Keystroke Input

You can use KEY inside an indefinite loop to “pause” execution until
any key—or a certain key—is pressed.

To enter a KEY loop in a program:

1. Enter the loop structure.

2. In the test-clause sequence, enter the KEY command (PRG IN
menu) plus any necessarytest commands.

3. In the loop-clause, enter no commands to give the appearance of a
“paused” condition.

KEY returns 0 to level 1 when the loop begins. It continues to return
0 until a key is pressed—then it returns 1 to level 1 andthe two-digit
row-column number of the pressed key to level 2. For example,
ENTER]) returns 51, and (¢) returns 71.

The test-clause should normallycause the loop to repeat until a key is
pressed. Ifa keyis pressed, you can use comparisontests to check the
value of the key number. (See “Using Indefinite Loop Structures” on
page 1-36 and “Using Comparison Functions” on page 1-17.)

To respond to a KEY loop while running a program:

m Press any key. (A prefix key such as Q) or (@) is a valid key.)

Example: The following program segment returns 1 to level 1 if
1s pressed, or 0 to level 1 if any other key is pressed:

Programming 1-73

Output

You can determine how a program presents its output. You can make

the output more recognizable using the techniques described in this

section.

Data Output Commands

Key l Command ‘ Description

P Bl PVIEW Displays PICT starting at the given

coordinates.

TEXT Displays the stack display.

CLLCD Blanks the stack display.

DISP Displays an object in the specified line.

FREEZE “Freezes” a specified area of the display

until a key press.

MSGBOX

|

Creates a user-defined message box.

BEEP Sounds a beep at a specified frequency

(in hertz, level 2) and duration (in
seconds, level 1).

Labeling Output with Tags

To label a result with a tag:

1. Put the output object on the stack.

2. Enter a tag—a string, a quoted name, or a number.

3. Enter the —TAG command (PRG TYPE menu).

. object tag +THE ... *

—TAG takes two arguments—an object and a tag—from the stack

and returns a tagged object.

Example: The following program TTAG is identical to TINPUT,

except that it returns the result as AREF: value.

1-74 Programming

Program: Comments:

Enters the tag (a string).

Uses the program result and

string to create the tagged object.

() TTAG Stores the program in TTAG.

Execute TTAG to calculate the area of a torus of inner radius a = 1.5

and outer radius b = 1.85. The answer is returned as a tagged object.

TTAG 1: AREA: 11.57Z1111663
15 (¥) 1.85 [TTi[TINPU]5PHTREDTORZV[TORZH

Labeling and Displaying Output as Strings

To label and display a result as a string:

Put the output object on the stack.

Enter the —STR command (PRG TYPE menu).
Enter a string to label the object (with " " delimiters).
Enter the SWAP + commands to swap and concatenate the strings.

Enter a number specifying the line to display the string on.

Enter the DISP command (PRG OUT menu).O

. object +ETE label SMWAF + line ISR ... =

DISP displays a string without its * " delimiters.

Example: The following program TSTRING is identical to TINPUT,

except that it converts the program result to a string and appends a

labeling string to it.

Programming 1-75

Program: Comments:

Converts the result to astring.

Enters the labeling string.

Swaps and adds the two strings.

Displays the resultant string,

without its delimiters, in line 1 of

the display.

() TSTRING (s70) Stores the program in TSTRING.

Execute TSTRING to calculate the area of the torus with ¢ = 1.5 and

b = 1.85. The labeled answer appears in the status area.

@CEER)
1.5 (¥) 1.85

Area = 11.3721111682

 ANTTT

Pausing to Display Output

To pause to display a result:

1. Enter commands to set up the display.

2. Enter the number of seconds you want to pause.

3. Enter the WAIT command (PRG IN menu).

WAIT suspends execution for the number of seconds in level 1.

You can use WAIT with DISP to display messages during program

execution—for example, to display intermediate program results.

(WAIT interprets arguments 0 and —1 differently—see “Using WAIT

for Keystroke Input” on page 1-72.)

1-76 Programming

Using MSGBOX to Display Output

To set up a message box:

1. Enter a message string.

2. Execute the MSGBOX command.

Example: Enter a string *
Execute MSGBOX ((PRG) (NXT)
The following message appears:

1 _HOME }

gf HELLO, WORLD
g

l: "HELLO, WORLOD"
[[T[[oK]

You must acknowledge a message box by pressing (il or

(CancED),

Using Menus with Programs

You can use menus with programs for different purposes:

m Menu-based input. A program can set up a menu to get input

during a halt in a program—then resume executing the same

program.

m Menu-based application. A program can set up a menu and finish

executing, leaving the menu to start executing other related

programs.

To set up a built-in or library menu:

1. Enter the menu number.

2. Enter the MENU command (MODES MENU menu).

Programming 1-77

To set up a custom menu:

1. Enter a list (with £ * delimiters) or the name of a list defining the
menu actions. If a list of two element lists is given, the first element

appears in the menu, but it is the second element that is returned

to the stack when the menu keyis pressed.

2. Activate the menu:
m To save the menu as the CST menu, enter the MENU command

(MODES MENU menu).
m To make the menu temporary, enter the TMENU command

(MODES MENU menu).

The menu isn’t displayed until program execution halts.

Menu numbers for built-in menus are listed in chapter 3, under the

MENU command. Library menus also have numbers—the library

number serves as the menu number. So you can activate applications

menus (such as the SOLVE and PLOT menus) and other menus (such
as the VAR and CST menus) in programs. The menus behave just as

they do during normal keyboard operations.

You create a custom menu to cause the behavior you need in your

program—see the topics that follow. You can save the menu as the

CST menu, so the user can get it again by pressing (CST). Or you can

make it {emporary—it remains active (even after execution stops), but

only until a new menu is selected—and it doesn’t affect the contents of

variable CST'.

To specify a particular page of a menu, enter the number as m.pp,

where m is the menu number and pp is the page number (such as

94.02 for page 2 of the TIME menu). If page pp doesn’t exist, page 1

is displayed (94 gives page 1 of the TIME menu).

Example: Enter “HL to get page 1 of the MODES MISC menu.

Enter £%. &2 MEHL to get page 2 of the MODES MISC menu.

To restore the previous menu:

m Execute 0 MENU.

To recall the menu number for the current menu:

s Execute the ROCLMENU command (MODES MENU menu).

1-78 Programming

Using Menus for Input

To display a menu for input in a program:

1. Set up the menu—see the previous section.

2. Enter a command sequence that halts execution (such as DISP,
PROMPT, or HALT).

The program remains halted until it’s resumed by a CONT command,

such as by pressing (&9)(CONT). If you create a custom menu for input,

you can include a CONT command to automatically resume the

program when you press the menu key.

Example: The following program activates page 1 of the MODES
ANGL menu and prompts you to set the angle mode. After you press

the menu key, you have to press (¢9)(CONT) to resume execution.

OMEHU "D

ot Fnmle Mods® PREOMFT =

Example: The PIE program on page 2-49 assigns the CONT

command to one key in a temporary menu.

Example: The MNX program on page 2-22 sets up a temporary

menu that includes a program containing CONT to resume execution

automatically.

Using Menus to Run Programs

You can use a custom menu to run other programs. That menu

can serve as the main interface for an application (a collection of

programs).

To create a menu-based application:

1. Create a custom menu list for the application that specifies

programs as menu objects.

2. Optional: Create a main program that sets up the application

menu—either as the CST menu or as a temporary menu.

Example: The following program, WGT, calculates the mass of an

object in either English or SI units given the weight. WGT displays

a temporary custom menu, from which you run the appropriate

program. Each program prompts you to enter the weight in the

desired unit system, then calculates the mass. The menu remains

Programming 1-79

active until you select a new menu, so you can do as many calculations

as you want.

Enter the following list and store it in LST:

() LSTG

Program: Comments:

LET THEMU 3 Displays the custom menu stored

in LST.

() WGT (s10) Stores the program in WGT.

Use WGT to calculate the mass of an object of weight 12.5 N. The

program sets up the menu, then completes execution.

Mewsi]=1[[[N

Select the ST unit system, which starts the program in the menu list.

VAR

=1 ENTER MWt in HEWTOHNS

1:
EWGL]=t] |[[|

Key in the weight, then resume the program.

12.5 (4) (CONT) 13 1. 274208995951
YIN

Example: The following program, EIZ, constructs a custom menu

to emulate the HP Solve application for a capacitive electrical circuit.

The program uses the equation £ = IZ, where F is the voltage, I is

the current, and 7 is the impedance.

Because the voltage, current, and impedance are complex numbers,

you can’t use the HP Solve application to find solutions. The custom

menu in EIZ assigns a direct solution to the left-shifted menu key for

each variable, and assigns store and recall functions to the unshifted

and right-shifted keys—the actions are analogous to the HP Solve

1-80 Programming

application. The custom menu is automatically stored in CST,

replacing the previous custom menu—you can press to restore

the menu.

Program:

O 1z GT0)

Comments:

Sets Degrees mode. Sets flags
—15 and —16 to display complex

numbers in polar form. Sets the

display mode to 2 Fix.

Starts the custom menu list.

Builds menu key 1 for E.

Unshifted action: stores the

object in E. Left-shift action:

calculates I x 7, stores it in F/|

and displays it with a label.

Right-shift action: recalls the

object in F.

Builds menu key 2.

Builds menu key 3.

Ends thelist.

Displays the custom menu.

Stores the program in EIZ.

For a 10-volt power supply at phase angle 0°, you measure a current of

0.37-amp at phase angle 68°. Find the impedance of the circuit using

ElZ.

()R(ER)

e[+=[[M

Programming 1-81

Key in the voltage value.

@10 EE)0 l(llasEH |
E1[[[|

Store the voltage value. Then key in and store the current value.

Solve for the impedance.

2i (27.03,68,6868
QO@@ 68 1 +
@ = Js

%:

E+@1[

Recall the current and double it. Then find the voltage.

@ ! Ef (20.00,4-1.07E-16)
2

]

Press (¢q)(MODES) FHMT &Th and H
EELT to restore Standard and Rectangular modes.

Turning Off the HP 48 from a Program

To turn off the calculator in a program:

m Execute the OFF command (PRG RUN menu).

The OFF command turns off the HP 48. If a program executes OFF,

the program resumes when the calculator is next turned on.

1-82 Programming

Programming Examples

The programs in this chapter demonstrate basic programming

concepts. These programs are intended to improve your programming

skills, and to provide supplementary functions for your calculator.

At the end of each program, the program’s checksum and size in bytes

are listed to help make sure you typed the program in correctly. (The

checksum is a binary integer that uniquely identifies the program

based on its contents). To make sure you’ve keyed the program in

correctly, store it in its name, put the name in level 1, then execute

the BYTES command ((«g)(MEMORY) Ev TE#). This returns the
program’s checksum to level 2, and its size in bytes to level 1. (If

you execute BYTES with the program object in level 1, you'll get a

different byte count.)

The programs in this chapter are also included in the online

information of the Program Development Link software for developing

HP 48 programs on computers. This software lets you load these

programs from the online information into your HP 48 through its

serial port.

The examples in this chapter assume the HP 48 is in its initial,

default condition—they assume you haven’t changed any of the

HP 48 operating modes. (To reset the calculator to this condition, see

“Memory Reset” in chapter 5 of the HP 48 User’s Guide.)

BFach program listing in this chapter gives the following information:

m A brief description of the program.

m A syntax diagram (where needed) showing the program’s required

mputs and resulting outputs.

Discussion of special programming techniques in the program.

Any other programs needed.

The program listing.

The program’s checksum and byte size.

Programming Examples 2-1

Fibonacci Numbers

This section includes three programs that calculate Fibonacci

numbers:

m FIB] is a user-defined function that is defined recursively (that is,

its defining procedure contains its own name). FIBI is short.

m FIB? is a user-defined function with a definite loop. It’s longer and

more complicated than FIBI, but faster.

m FIBT calls both FIBI and FIB2 and calculates the execution time

of each subprogram.

FIB! and FIB2 demonstrate an approach to calculating the nth

Fibonacci number F,,, where:

Fo =0, Fl——‘l, Fn=Fo_1+Fo_2

FIB1 (Fibonacci Numbers, Recursive Version)

\ Level 1 — Level 1

’ n — Fn

Techniques used in FIB1

m IFTE (if-then-else function). The defining procedure for FIBI
contains the conditional function IFTE, which can take its

argument either from the stack or in algebraic syntax.

m Recursion. The defining procedure for FIBI is written in terms of

FIBI1, just as F,, is defined in terms of F,_; and F,_,.

2-2 Programming Examples

FIB1 program listing

Program: Comments:

Defines local variable n.

PIFTEOnS1, The defining procedure, an

algebraic expression. If n < 1,

Fno=n, else Fy=F,_+F,_,.

(") FIB1 (ST0) Stores the program in FIBI.

Checksum: # 41467d (press (O)

Bytes: 113.5

Example: Calculate T'g. Calculate Fip using algebraic syntax.

First calculate Fg.

VAR 1: g
6 IEENEFCEAT

Next, calculate Fig using algebraic syntax.

O F18t @O 10 EAD 2: 2
@mmm--

FIB2 (Fibonacci Numbers, Loop Version)

} Level 1 ~ Level 1

 ‘ n - Fn

Techniques used in FIB2

m IF ... THEN ... ELSE ... END. FIB2 uses the program-structure

form ofthe conditional. (FIBI uses IFTE.)

Programming Examples 2-3

m START ... NEXT (definite loop). To calculate F,, FIB2 starts

with Fy and F; and repeats a loop to calculate successive values of

F;.

FIB2 program listing

Program:

(D) FIB2 (570)

Checksum: # 51820d (press () F

Bytes: 89

Example: Calculate Fg and Fyo.

Calculate Fg.

VAR
6 |

2-4 Programming Examples

Comments:

Creates a local variable structure.

If n<1,

then F,, = n;

otherwise ...

Puts Fy and F1 on the stack.

From 2 to n does the following

loop:

Copies the latest F (initially Fy).

Gets the previous F (initially Fy).

Calculates the next F (initially
Fs).
Repeats the loop.

Drops I,;.

Ends the ELSE clause.

Ends the defining procedure.

Stores the program in FIB2.

= @) B

1: g
[Fli2FIELNNPPk[I0PAK]|

Calculate Fqg.

’ : J
li.lfllm‘.'lflmm-

FIBT (Comparing Program-Execution Time)

FIBI calculates intermediate values F; more than once, while FIB2

calculates each intermediate F; only once. Consequently, FIB2 is

faster. The difference in speed increases with the size of n because the

time required for FIBI grows exponentially with n, while the time

required for FIB2 grows only linearly with n.

FIBT executes the TICKS command to record the execution time of

FIBI and FIB2 for a given value of n.

Level 1 — Level 3 Level 2 Level 1

n — Fn FIB1 TIME: z FIB2 TIME: z

Techniques used in FIBT

m Structured programming. FIBT calls both FIB1 and FIB2.

m Programmatic use of calculator clock. FIBT executes the TICKS

command to record the start and finish of each subprogram.

» Labeling output. FI/BT tags each execution time with a descriptive

message.

Required Programs

m FIBI (page 2-2) calculates F', using recursion.

m FIB2 (page 2-3) calculates F, using looping.

Programming Examples 2-5

FIBT program listing

Program: Comments:

Copies n, then executes FIBI,

recording the start and stop time.

Calculates the elapsed time,

converts it to a real number, and

converts that number to seconds.

Leaves the answer returned by

FIBI in level 2.

Tags the execution time.

Executes FIB2, recording the

start and stop time.

Drops the answer returned by

FIB2 (FIBI returned the same

answer). Calculates the elapsed
time for FIB2 and converts to

seconds.

Tags the execution time.

C) FIBT Stores the program in FIBT.

Checksum: # 22248d

Bytes: 135

Example: Calculate F13 and compare the execution time for the two

methods.

Select the VAR menu and do the calculation.

VAR

13 F i HOME }

3t £33
¢: FIBL TIME: 22.38%..

: FIBZ TIME:1: FI :
. H82272390625

[FIET|FIEZ[FIEL|WJN]PRaR[I0PAE]

F,5 is 233. FIB2 takes fewer seconds to execute than FIBI (far fewer

if n is large). (The times required for the calculations depend on the

2-6 Programming Examples

contents of memory and other factors, so you may not get the exact

times shown above.)

Displaying a Binary Integer

This section contains three programs:

m PAD is a utility program that converts an object to a string for

right-justified display.

m PRESERVE is a utility program for use in programs that change

the calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN

bases. It calls PAD to show the displayed numbers right-justified,

and it calls PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to astring, and if the string contains fewer

than 22 characters, adds spaces to the beginning of the string till the

string reaches 22 characters.

When a short string is displayed with DISP, it appears left-justified:

its first character appears at the left end of the display. By adding

spaces to the beginning of a short string, PAD moves the string to

the right. When the string (including leading spaces) reaches 22

characters, it appears right-justified: its last character appears at the

right end of the display. PAD has no effect on longer strings.

r Level 1 — Level 1

1 object — " object"

Techniques used in PAD

m WHILE ... REPEAT ... END (indefinite loop). The WHILE

clause contains atest that executes the REPEAT clause and tests

again (if true) or skips the REPEAT clause and exits (if false).

Programming Examples 2-7

m String operations. PAD demonstrates how to convert an object

to string form, count the number of characters, and combine two

strings.

PAD program listing

Program: Comments:

Makes sure the object is in string
form. (Strings are unaffected by

this command.)
Repeats if the string contains

fewer than 22 characters.

Loop-clause adds a leading space.

Ends loop.

CJ)PAD Stores the program in PAD.

Checksum: # 38912d

Bytes: 61.5

PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

PRESERVE stores the current calculator (flag) status, executes a

program from the stack, and restores the previous status.

Level 1 — Level 1

& program > — result of program

'program name' — result of program

2-8 Programming Examples

Techniques used in PRESERVE

m Preserving calculator flag status. PRESERVE uses RCLF (recall

flags) to record the current status of the calculator in a binary

integer, and STOF (store flags) to restore the status from that

binary integer.

m Local-variable structure. PRESERVE creates a local variable

structure to briefly remove the binary integer from the stack. Its

defining procedure simply evaluates the program argument, then

puts the binary integer back on the stack and executes STOF.

m Error trapping. PRESERVE uses IFERR to trap faulty program

execution on the stack and to restore flags. DOERR shows the error

if one occurs.

PRESERVE program listing

Program: Comments:

Recalls the list of two 64-bit

binary integers representing the

status of the 64 system flags and

64 user flags.

¥ Stores the list in local variable f.

Begins the defining procedure.

Starts the error trap.

Executes the program placed on

the stack as the level 1 argument.

If the program caused an error,

STOF FERREH DOFRR restores flags, shows the error,

and aborts execution.

Ends the error routine.

Puts the list back on the stack,

then restores the status of all

flags.

Ends the defining procedure.

() PRESERVE Stores the program in
PRESERVE.

Programming Examples 2-9

Checksum: # 7284d

Bytes: 71

PRESERVE is demonstrated in the program BDISP.

BDISP (Binary Display)

BDISP displays areal or binary number in HEX, DEC, OCT, and

BIN bases.

Level 1 - Level 1

#n — #n

n — n

Techniques used in BDISP

s IFERR ... THEN ... END (error trap). To accommodate

real-number arguments, BDISP includes the command R—B

(real-to-binary). However, this command causes an error if the

argument is already a binary integer. To maintain execution if

an error occurs, the R—B command is placed inside an IFERR

clause. No action is required when an error occurs (since a binary

number is an acceptable argument), so the THEN clause contains no

commands.

s Enabling LASTARG. In case an error occurs, the LASTARG

recovery feature must be enabled to return the argument (the

binary number) to the stack. BDISP clears flag —55 to enable this.

s FOR ... NEXT loop (definite loop with counter). BDISP executes
a loop from 1 to 4, each time displaying n (the number) in a

different base on a different line. The loop counter (named j in this

program) is a local variable created by the FOR ... NEXT program

structure (rather than by a + command), and automatically

incremented by NEXT.

m Unnamed programs as arguments. A program defined only by its

and # delimiters (not stored in a variable) is not automatically

evaluated, but is placed on the stack and can be used as an

2-10 Programming Examples

argument for a subroutine. BDISP demonstrates two uses for
unnamed program arguments:

o BDISP contains a main program argument and a call to

PRESERVE. This program argument goes on the stack and is

executed by PRESERVE.

o BDISP also contains four program arguments that “customize”

the action of the loop. Each of these contains a command to

change the binary base, and each iteration of the loop evaluates

one of these arguments.

When BDISP creates a local variable for n, the defining procedure

is an unnamed program. However, since this program is a defining

procedure for alocal variable structure, it is automatically executed.

Required Programs

m PAD (page 2-7) expands astring to 22 characters so that DISP

shows it right-justified.

m PRESERVE (page 2-8) stores the current status, executes the main

nested program, and restores the status.

BDISP program listing

Program:

Comments:

Begins the main nested program.

Makes a copy of n.

Clears flag —55 to enable

LASTARG.
Begins error trap.

Converts n to a binary integer.

If an error occurs, do nothing (no
commands in the THEN clause).

Creates a local variable n and

begins the defining program.

Clears the display.

Nested program for BIN.

Nested program for OCT.

Nested program for DEC.

Nested program for HEX.

Programming Examples 2-11

Program: Comments:

i 4 Sets the counter limits.
Starts the loop with counter j.

Executes one of the nested base

programs (initially for HEX).

Makes a string showing n in the

current base.

Pads the string to 22 characters.

Displays the string in the jth line.

Increments j and repeats the

loop.

Ends the defining program.

Freezes the status and stack

areas.

Ends the main nested program.

Stores the current flag status,

executes the main nested

program, and restores the status.

() BDISP (sT0) Stores the program in BDISP.

Checksum: # 18055d

Bytes: 191

Example: Switch to DEC base, display #100 in all bases, and check

that BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the

current base is DEC and enter # 100.

 ()(CLEAR) 1: ¥ IBBd
(MTH) - EEEDTRTRT

@@ 100

2-12 Programming Examples

Execute BDISP.

BLIsp

RIGEESTRIR

Return to the normal stack display and check the current base.

CANCEL IEEDIETET

MTH) BEHEE

Although the main nested program left the calculator in BIN base,
PRESERVE restored DEC base. To check that BDISP also works for
real numbers, try 144.

144 B1 5F

2200
l1o616888b

TNETE N(GGGWETE

Press to return to the stack display.

Programming Examples 2-13

Median of Statistics Data

This section contains two programs:

m %TILE returns the value of a specified percentile of a list.

m MEDIAN uses %TILE to calculate the median of the current

statistics data.

(%TILE and MEDIAN are included in the TEACH function’s
EXAMPLES directory. See the entry for TEACH in chapter 3.)

%TILE (Percentile of a List)

ZTILE sorts a list, then returns the value of a specified percentile of

the list. For example, typing « list * 5@ and pressing % 7T L¥ returns

the median (50th percentile) of the list.

Level 2 Level 1 — Level 1

{ list } n — n*" percentile of sorted list

Techniques used in %TILE

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return

that integer; for a noninteger, FLOOR and CEIL return successive

integers that bracket the noninteger.

m SORT. The SORT command sorts the list elements into ascending

order.

2-14 Programming Examples

%TILE program listing

Program: Comments:

Brings the list to level 1 and sorts

it.
Copies the list, then finds its size.

- Calculates the position of the

specified percentile.

£ Stores the center position in local

variable p.

Begins the defining procedure.

Makes a copy of the list.

Gets the number at or below the

center position.

Moves the list to level 1.

Gets the numberat or above the

center position.

Calculates the average of the two

numbers.

Ends the defining procedure.

(D) %TILE (sT0) Stores the program in %TILE.

Checksum: # 42718d

Bytes: 99

Example: Calculate the median of the list { 8 3152 }.

@@}15 2 ETER) 1 3
(VAR) 50 5T [CTILE[EDI5P

|

FIE3|PRESE|PAD

|

FIET

Programming Examples 2-15

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector containing the medians of the columns of

the statistics data. Note that for a sorted list with an odd number of
elements, the median is the value of the center element; for a list with

an even number of elements, the median is the average value of the

elements just above and below the center.

Level 1 - Level 1

 — [X1 X5 oo Xm]
Techniques used in MEDIAN

m Arrays, lists, and stack elements. MEDIAN extracts a column of

data from YDAT in vector form. To convert the vector to alist,

MEDIAN puts the vector elements on the stack and combines them

into a list. From this list the median is calculated using %ZTILE.

The median for the mth column is calculated first, and the median

for the first column is calculated last. As each median 1s calculated,

ROLLD is used to move it to the top of the stack.

After all medians are calculated and positioned on the stack, they’re

combined into a vector.

m FOR ... NEXT (definite loop with counter). MEDIAN uses a loop

to calculate the median of each column. Because the medians are

calculated in reverse order (last column first), the counter is used to

reverse the order of the medians.

Required Program

m %TILE (page) sorts a list and returns the value of a specified
percentile.

2-16 Programming Examples

MEDIAN program listing

Program:

Comumnents:

Puts acopy of the current

statistics matrix X'DAT on the

stack.

Puts the list { » m } on the
stack, where n is the number of

rows in XY DAT and m is the

number of columns.

Puts n and m on the stack, and

drops the list size.

Creates local variables for s, n,

and m.

Begins the defining procedure.

Recalls and transposes YDAT.

Now n 1s the number of columns

in YDAT and m is the number of

rows. (To key in the Z character,

press (#)(x), then delete the

parentheses.)
Specifies the first and last rows.

For each row, does the following:

Extracts the last row in YDAT.

Initially this is the mth row,

which corresponds to the mth

column in the original YDAT.

(To key in the ¥~ command,

press (&)(STAT) LATH

Puts the row elements on the

stack. Drops the index list { n }.
Makes an n-element list.

Sorts the list and calculates its

median.

Moves the median to the proper

stack level.

Increments j and repeats the

loop.

Programming Examples 2-17

Program: Comments:

vy Combines all the medians into an

m-element vector.

Restores YDAT to its previous

value.

Ends the defining procedure.

() MEDIAN (s70) Stores the program in MEDIAN .

Checksum: # 57504d

Bytes: 140

Example: Calculate the median of the following data.

18 12

4 7

3 2

11 1

31 48

20 17

There are two columns of data, so MEDIAN will return a two-element

vector.

Enter the matrix.

@)WATRX)
18 12 ®
1 7
3 2
11 1
31 13
20 17

Store the matrix in YDAT, and calculate the median.

Sy kel

2-18 Programming Examples

Expanding and Collecting Completely

This section contains two programs:

m MULTTI repeats a program until the program has no effect on its

argument.

m EXCO calls MULTI to completely expand and collect an algebraic.

MULTI (Multiple Execution)

Given an object and aprogram that acts on the object, MULTT

applies the program to the object repeatedly until the program no

longer changes the object.

Level 2 Level 1 — Level 1

 object & program > — object¢ 1t

Techniques used in MULTI

m DO ... UNTIL ... END (indefinite loop). The DO clause contains

the steps to be repeated. The UNTIL clause contains the test that

repeats both clauses again (if false) orexits (if true).

m Programs as arguments. Although programs are commonly named

and then executed by calling their names, programs can also be put

on the stack and used as arguments to other programs.

m Evaluation of local variables. The program argument to be executed

repeatedly is stored in a local variable.

It’s convenient to store an object in a local variable when you don’t

know beforehand how many copies you’ll need. An object stored in

alocal variable is simply put on the stack when the local variable is

evaluated. MULTI uses the local variable name to put the program

argument on the stack and then executes EVAL to execute the
program.

Programming Examples 2-19

MULTI program listing

Program: Comments:

o Creates a local variable p that

contains the program from level 1.

Begins the defining procedure.

[l Begins the DO loop clause.

DLF Makes a copy of the object, now

in level 1.

g EWFL Applies the program to the

object, returning its new version.

Makes a copy of the new object.

Moves the old version to level 1.

Begins the DO test clause.

Tests whether the old version and

the new version are the same.

Ends the DO structure.

Ends the defining procedure.

C)MULTI Stores the program in MULTI.

Checksum: # 34314d

Bytes: 56

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

EXCO repeatedly executes EXPAN on an algebraic until the algebraic

doesn’t change, then repeatedly executes COLCT until the algebraic

doesn’t change. In some cases the result will be a number.

Expressions with many products of sums or with powers can take

many iterations of EXPAN to expand completely, resulting in a long

execution time for EXCO.

2-20 Programming Examples

Level 1 — Level 1

'algebraic' — 'algebraic'

 'algebraic' — z
Techniques used in EXCO

m Subroutines. EXCO calls the program MULTI twice. It is more

efficient to create program MULTI and simply call its name twice

than write each step in MULTI two times.

Required Programs

m MULTI (page 2-19) repeatedly executes the programs that EXCO

provides as arguments.

EXCO program listing

Program: Comments:

£ ERFAM = Puts a program on the stack as

the level 1 argument for MULTI.

The program executes the

EXPAN command.

MULTI Executes EXPAN until the

algebraic object doesn’t change.

£ DOLCT s Puts another program on the

stack for MULTI. The program

executes the COLCT command.

FULTI Executes COLCT until the

algebraic object doesn’t change.

() EXCO Stores the program in EXCO.

Checksum: # 48008d

Bytes: 65.5

Programming Examples 2-21

Example: Expand and collect completely the expression:

3x(4y + 2) + (8= — 5z)?

Enter the expression.

 30X 1: ;3*&;(4*%2%(8*&'—5
1X)Y 7 :

%% 8 % X5 gzg) [VECTE[MATR]LIETHYPREALBRSE

)02

Select the VAR menu and start the program.

13 B2+2EREY-75NVAR FL+PO¥EE !
ITTTBTT

Minimum and Maximum Array Elements

This section contains two programs that find the minimum or

maximumelement of an array:

m MNX uses a DO ... UNTIL ... END (indefinite) loop.

m MNX2 uses a FOR ... NEXT(definite) loop.

MNX (Minimum or Maximum Element—Version 1)

MNX finds the minimum or maximumelement of an array on the

stack.

‘ Level 1 — Level 2 Level 1
 L Carrayll — [aray]l Zyiy OF Zmax

2-22 Programming Examples

Techniques used in MNX

= DO ... UNTIL ... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag

test that determines whether to repeat the sort instructions.

m User and system flags for logic control:

o User flag 10 defines the sort: When flag 10 is set, MNX finds the

maximumelement; when flag 10 is clear, it finds the minimum
element. You determine the state of flag 10 at the beginning of

the program.

o System flag —64, the Index Wrap Indicator flag, determines when

to end the sort. While flag —64 is clear, the sort loop continues.

When the index invoked by GETI wraps back to the first array

element, flag —64 is automatically set, and the sort loop ends.

m Nested conditional. An IF ... THEN ... END conditional is nested

in the DO ... UNTIL ... END conditional, and determines the

following:

o Whether to maintain the current minimum or maximum element,

or make the current element the new minimum or maximum.

o The sense of the comparison of elements (either < or >) based on

the status of flag 10.

s Custom menu. MNX builds a custom menu that lets you choose

whether to sort for the minimum or maximum element. Key 1,

labeled FM#K | sets flag 10. Key 2, labeled #1H | clears flag 10.

m Logical function. MNX executes XOR (exclusive OR) to test the

combined state of the relative value of the two elements and the

status of flag 10.

Programming Examples 2-23

MNX program listing

Program:

DR

() MNX GT9)

2-24 Programming Examples

Comments:

Defines the option menu. [#ix

sets flag 10 and continues

execution. PIH clears flag 10

and continues execution.

Displays the temporary menu and

a prompt message.

Gets the first element of the array.

Begins the DO loop.

Puts the index and the array in

levels 1 and 2, then gets the new

array element.

Moves the current minimum or

maximum array element from

level 4 to level 1, then copies

both.

Tests the combined state of the

relative value of the two elements

and the status of flag 10.

If the new element is either less

than the current maximum or

greater than the current

minimum, swaps the new element

into level 1.
Drops the other element off the

stack.

Begins the DO test-clause.

Tests if flag —64 is set—if the

index reached the end of the

array.

Ends the DO loop.

Swaps the index to level 1 and

drops it. Restores the last menu.

Stores the program in MNX.

Checksum: # 57179d

Bytes: 210.5

Example: Find the maximum element of the following matrix:

12 56

45 1

9 14

Enter the matrix.

@)@ETER)
12 (ENTER) 56 (ENTER) (V)
45 (ENTER) | (ENTER)
9 (ENTER) 14 (ENTER)

Select the VAR menu and execute MNX .

MHE Sort for MAX or MIN?

Find the maximum element.

FAE

2: (L1256 1 [45 L,
IMEH'EI

MNX2 (Minimum or Maximum Element—Version 2)

Given an array on the stack, MNX2 finds the minimum or maximum
element in the array. MNX2 uses a different approach than MNX: it

executes OBJ— to break the array into individual elements on the

stack for testing, rather than executing GETT to index through the

array.

Level 1 — Level 2 Level 1

[[array 1] — [array]] Zmax OF Zmip

Programming Examples 2-25

Techniques used in MNX2

FOR ... NEXT (definite loop). The initial counter value is 1. The
final counter value is nm — 1, where nm is the number of elements

in the array. The loop-clause contains the sort instructions.

User flag for logic control. User flag 10 defines the sort: When flag

10 1is set, MNX2 finds the maximum element; when flag 10 is clear,

it finds the minimum element. You determine the status of flag 10

at the beginning of the program.

Nested conditional. An IF ... THEN ... END conditional is nested

in the FOR ... NEXT loop, and determines the following:

o Whether to maintain the current minimum or maximum element,

or make the current element the new minimum or maximum.

o The sense of the comparison of elements (either < or >) based on

the status of flag 10.

Logical function. MNX2 executes XOR (ezclusive OR) to test the

combined state of the relative value of the two elements and the

status of flag 10.

Custom menu. MNX2 builds a custom menu that lets you choose

whether to sort for the minimum or maximum element. Key 1,

labeled. , sets flag 10. Key 2, labeled , clears flag 10.

2-26 Programming Examples

MNX2 program listing

Program: Comments:

Defines the temporary option

menu. [iFE sets flag 10 and
continues execution. [IH

clears flag 10 and continues

execution.

Displays the temporary menu

and a prompting message.

Copies the array. Returns the

individual array elements to

levels 2 through nm+1, and

returns the list containing n

and m to level 1.

Sets the initial counter value.

Converts the list to individual

elements on the stack.

GEOF % 1 - Drops the list size, then

calculates the final counter

value (nm — 1).

FUOE Starts the FOR ... NEXT

loop.

Saves the array elements to be

tested (initially the last two
elements). Uses the last array

element as the current

minimum or maximum.

IF Tests the combined state of

the relative value of the two

elements and the status of flag

10.

If the new element is either

less than the current

maximum or greater than the

current minimum, swaps the

new element into level 1.

Programming Examples 2-27

Program: Comments:

DROF Drops the other element off

the stack.

HEXT Ends the FOR ... NEXT

loop.

& MEHL Restores the last menu.

() MNX2 (s70) Stores the program in MNX2.

Checksum: # 12277d

Bytes: 200.5

Example: Use MNX2 to find the minimum element of the matrix

from the previous example:

12 56

45 1

9 14

Enter the matrix (or retrieve it from the previous example).

)EETER)
12 (ENTER) 56 (ENTER) (V)
45 (ENTER) | (ENTER)
9 (ENTER) 14 (ENTER)

Select the VAR menu and execute MNX2.

Find the minimum element.

%5 [[12561 [45 1.i.

ARNTSTT

2-28 Programming Examples

Applying a Program to an Array

APLYmakes use of list processing to transform each element of an

array according to a desired procedure. The input array must be

numeric, but the output “array” may be symbolic. Since arrays

cannot actually contain symbolic objects, a convention for symbolic

“pseudo-arrays” is used. Each row of elements is grouped into a single

list and the set of rows is grouped into a list. For example, a 2 x 2

pseudo-array looks like this:

element;; element;o

elements; elementas

The procedure applied to each element must be a program that takes

exactly one argument (i.e. the element) and returns exactly one result

(i.e. the transformed element).

Level 2 Level 1 — Level 1

[array] <« program > — [[array 1] or {{ array }}

Techniques used in APLY

m Manipulating Meta-Objects. Meta-objects are composite objects like

arrays and lists that have been disassembled on the stack. APLY

illustrates several approaches to manipulating the elements and

dimensions of such objects.

m Application of List Processing. APLY makes use of DOSUBS

(although DOLIST might also have been used) to perform the

actual transformation of array elements.

m Using an IFERR ... THEN ... ELSE ... END Structure. The

entire symbolic pseudo-array case is handled within a error

structure—triggered when the —ARRY command generates an error

when symbolic elements are present.

m Using Flags. User flag 1 is used to track the case when the input

array is a vector.

Programming Examples 2-29

APLY program listing

Program:

EHD DUR OBJds DROP

2-30 Programming Examples

Comments:

Store the array and program in

local variables.

Begin the main local variable

structure.

Make sure the flag 1 is clear to

begin the procedure.

Retrieve the dimensions of the

array.

Determine if the arrayis a

vector.

If array is a vector,set flag 1 and

add a second dimension by

treating the vector as an n x 1

matrix.

Disassemble the original vector,

leaving the element count, n, in

level 1.

Roll the elements up the stack

and bring the “matrix”

dimensions of the vector to level

1.

If array is a matrix, clean up

the stack and decompose the

matrix into its elements, leaving

its dimension list on level 1.

Duplicate the dimension list

and compute the total number

of elements.

Roll up the element count and

combine all elements into a list.

Note that the elements in the

list are in row-major order.

Recalls the program and uses it

as an argument for DOSUBS

(DOLIST works in this case as

well). Result is a list of
transformed elements.

Comments:

Disassembles the result list and

brings the array dimensions to

level 1.

Begins the error-trapping

structure. Its purpose is to find

and handle the cases when the

result list contains symbolic

elements.

Was original array a vector?

If the original array was a

vector, then drop the second

dimension (1) from the

dimension list.

Convert the elements into a

array with the given dimensions.

If there are symbolic elements

present, an error will be

generated and the error-clause
which follows will be executed.

Regin the error clause.

Put the array dimensions on

levels 2 and 1. If the array is a

vector, level 1 contains a 1.

Is original array a matrix? Clear

flag 1 after performing the test.

Drop the number of matrix

elements.

Store the array dimensions in

local variables.

Begin local variable structure

and initiate FOR..NEXT loop

for each row.

Collect a group of elements into

a row (a list).

Computes the number of

elements to roll so that the next

row can be collected.

Repeat loop for the next row.

Gather rows into a list, forming

a list of lists (symbolic

pseudo-array).

Programming Examples 2-31

Program: Comments:

Close the local variable

1 CF structure and end the

IFERR..THEN..END structure.

Clear flag 1 before exiting the

program.

() APLY Stores the program in APLY .

Checksum: # 49768d

Bytes: 319

Example: Apply the function, f(z) = Az — 7 to each element z of
the vector [3-24-81].

QO3 ED2EA4EE) 8 EA L |1: § L '27#h-7! } { -
(B#M)=7' 3 {_TEdxf-

Q)3 0)A®OETER) g 36 QI2L A=Y
! [NEnPPA:[IEDIAIFIEDNWPLY25PN

Converting Between Number Bases

nBASE converts a positive decimal number (z) into a tagged string
representation of the equivalent value in a different number base ().

Both z and b must be real numbers. nBASE automatically rounds

both arguments to the nearest integer.

Level 2 Level 1 — Level 1

X b — X baseb: " string"

2-32 Programming Examples

Techniques used in nBASE

m String Concatenation and Character Manipulation. nBASE makes

use of several string and character manipulation techniques to build

up the result string.

» Tagged Output. nBASE labels (“tags”) the output string with 1its

original arguments so that the output is a complete record of the

command.

» Indefinite Loops. nBASE accomplishes most of its work

using indefinite loops—both DO..UNTIL..END and
WHILE..REPEAT..END loops.

nBASE program listing

Program: Comments:

1 CF @ EMD SHAF 8 RHD Clear flag 1 and round both

arguments to integers.

b Store the base and number in

local variables.

Begin the outer local variable
structure.

moLOG b LOG - Computes the ratio of the

common logarithms of number

and base.

18 RHD Rounds result to remove

imprecision in last decimal

place.

IF@ Find the integer part of log

ratio, recall the original number,

and initialize the counter

variable k for use in the

DO..UNTIL loop.

i ook Store the values in local

variables.

Programming Examples 2-33

Program:

 2-34 Programming Examples

Comments:

Begin inner local variable

structure, enter an emptystring

and begin the

DO..UNTIL..END loop.

Compute the decimal value of

the (i — k)th position in the
string.

Makes a copy of the arguments

and computes the decimal value

still remaining that must be

accounted for by other

positions.

Is the remainder zero and

m > b7

If the test is true, then set flag

1.
Store the remainder in m.

Compute the number of times

the current position-value goes

into the remaining decimal

value. This is the “digit” that

belongs in the current position.

Is the “digit” > 107
Then convert the digit into a

alphabetic digit (such as A, B,

C,...).
Append the digit to the current

result string and incrementthe

counter variable k.

Program:

UHTIL 'm' EVAL & ==

EMD

IF 1 FS?C

THEH & +

EVALWHILE i 'k

- #o o

FEFEAT B8 +

1 k' STO+

EHD

EHD

noSHAP + STAG

(ENTER) (D nBASE

Checksum: # 36427d

Bytes: 416.5

Comments:

Repeat the DO..UNTIL loop

until m = 0 (i.e. all decimal
value has been accounted for).

Is flag 1 set? Clear the flag after
the test.

Then add a placeholder zero to

the result string.

Begin WHILE..REPEAT loop

to determine if additional

placeholder zeros are needed.

Loop repeats as long as 7 # k.
Add an additional placeholding

zero and increment k before

repeating the test-clause.

End the

WHILE..REPEAT..END loop,

the IF..THEN..END structure,

and the inner local variable

structure.

End the outermost

IF.THEN..ELSE..END

structure and create the label

string and tag the result string

using the original arguments.

Stores the program in nBASE.

Example: Convert 100010 to base 23.

1000 23 HERZE 1: 1808 basez3: "1kB"
[NEi |PPRF[HEDIA[FIEDN]WPLY [+PR]

Programming Examples 2-35

Verifying Program Arguments

The two utility programs in this section verify that the argument to a

program is the correct object type.

m NAMES verifies that a list argument contains exactly two names.

m VFY verifies that the argument is either a name or a list containing
exactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object

content.

NAMES (Check List for Exactly Two Names)

If the argument for a program is a list (as determined by VFY'),

NAMES verifies that the list contains exactly two names. If the list

does not contain exactly two names, an error message appears in the

status area and program execution is aborted.

Level 1 — Level 1

{ valid list } —

{ invalid list } — (error message in status area)
Techniques used in NAMES

m Nested conditionals. The outer conditional verifies that there are

two objects in the list. If so, the inner conditional verifies that both

objects are names.

= Logical functions. NAMES uses the AND command in the inner

conditional to determine if both objects are names, and the NOT

command to display the error message if they are not both names.

2-36 Programming Examples

NAMES program listing

Program: Comments:

IF Starts the outer conditional

structure.

R Returns the n objects in the list

to levels 2 through (» + 1), and
returns the list size n to level 1.

DUR 2 SANE Copies the list size and tests if

it’s 2.

If the size is 2, moves the

objects to levels 1 and 2, and

iF starts the inner conditional

structure.

TYFE & SAME Tests if the first object is a

name: returns 1 if so, otherwise

0.

SWEF TYPE & SAME Moves the second object to level

1, then tests if 1t is a name

(returns 1 or 0).

A Combines test results: Returns

1 if both tests were true,

otherwise returns 0.

HOT Reverses the final test result.

THEHM If the objects are not both

Hoist meeds tuo namsst names, displays an error

message and aborts execution.

Ends the inner conditional

structure.

If the list size is not 2, drops the

list size, displays an error

wa ! message, and aborts execution.

Ends the outer conditional.

() NAMES(sT0) Stores the program in NAMES.

Programming Examples 2-37

Checksum: # 40666d

Bytes: 141.5

NAMES is demonstrated in the program VFY .

VFY (Verify Program Argument)

VFY verifies that an argument on the stack is either a name or alist

that contains exactly two names.

’ Level 1 — Level 1 ‘

'name' — 'name’ I

{ valid list } — { valid list }

{ invalid list } — { invalid list } (and error message in status area)

invalid object — invalid object (and error message in status area)

Techniques used in VFY

Utility programs. VFY byitself has little use. However, it can be

used with minor modifications by other programs to verify that

specific object types are valid arguments.

CASE ... END (case structure). VF'Yuses a case structure to

determine if the argument is a list or a name.

Structured programming. If the argument is a list, VFY calls

NAMES to verify that the list contains exactly two names.

Local variable structure. VFY stores its argument in a local

variable so that it can be passed to NAMES if necessary.

Logical function. VFY uses NOT to display an error message.

Required Programs

NAMES (page 2-36) verifies that alist argument contains exactly

two names.

2-38 Programming Examples

VFY program listing

Program: Comments:

i Copies the original argument

to leave on the stack.

DTAG Removes any tags from the

argument for subsequent

testing.

Stores the argument in local

variable argm.

Begins the defining procedure.

Begins the case structure.

Tests if the argument is a list.

If so, puts the argument back

on the stack and calls NAMES

to verify that the list is valid,

then leaves the CASE
structure.

Tests if the argument 1s not a

name. If so, displays an error

message and aborts execution.

Ends the CASE structure.

Ends the defining procedure.

() VFY (s70) Enters the program, then
stores it in VF'Y.

Checksum: # 36796d

Bytes: 139.5

Example: Execute VFY to test the validity of the name argument

BEN . (The argumentis valid and is simply returned to the stack.)

 () BEN 1: 'BEN'

Programming Examples 2-39

Example: Execute VFY to test the validity of the list argument
{ BEN JEFF SARAH }. Use the name from the previous example,
then enter the names JEFF and SARAH and convert the three names
to a list.

() JEFF (ENTER 1 { BEN JEFF SHRRH 2
() SARAH (ENTER ITRIIT
3 EIBT s

Execute VF'Y. Since the list contains too many names, the error

message s displayed and execution is aborted.

VAR) HFY Illegal list size

4:

3:
2

1: { BEM JEFF SARAH
ICTTTTRTP=RT

Converting Procedures from Algebraic to RPN

This section contains a program, —RPN, that converts an algebraic

expression into a series (list) of objects in equivalent RPN order. Note
that —RPN is a program provided with the TEACH command. You

can find it in the EXAMPLES directory by pressing E P

Level 1 - Level 1

'symb' — { objects }

Techniques used in —RPN

m Recursion. The —RPN program calls itself as a subroutine. This

powerful technique works just like calling another subroutine as long

as the stack contains the proper arguments before the program calls

itself. In this case the level 1 argument is tested first to be sure that

it is an algebraic expression before —RPN is called again.

2-40 Programming Examples

s Object Type-Checking. —RPN uses conditional branching that

depends on the object type of the level 1 object.

s Nested Program Structures. —RPN nests IF ... THEN ... END

structures inside FOR ... NEXT loops inside a IF ... THEN ...

ELSE ... END structure.

s List Concatenation. The result list of objects in RPN orderis

built by using the ability of the + command to sequentially

append additional elements to a list. This is a handy technique for

gathering results from a looping procedure.

—RPN program listing

Program:

=NE]

IF WER

THEH + o §

inm

FORE i

IF DUF TYFE 9 SAME

THEH =+REFPH

EHD m ROLLD

F DUF TYFE & =

Comments:

Take the expression apart.

If the argument count is

nonzero, then store the count

and the function.

Begins local variable defining

procedure.

Begins FOR ... NEXT loop,

which converts any algebraic

arguments to lists.

Tests whether argument is an

algebraic.

If argument is an algebraic,

convert it to a list first.

Roll down the stack to prepare

for the next argument.

Repeat the loop for the next

argument.

Tests to see if level 1 object is a

list.

If not a list, then convert it to

one.

Ends the IF ... THEN ...

END structure.

Programming Examples 2-41

Program: Comments:

IF b Tests to see if there is more

than one argument.

Combine all of the arguments

into alist.

Append the function to the end

of the list.

End the local variable defining

procedure.

For functions with no

arguments, converts to a simple

list.

End the IF ... THEN ...

ELSE ... END structure.

Checksum: # 28598d

Bytes: 189.5

Example: Convert the followi
objects in RPN syntax: 'F

DAREDEDDEDCO |1 {AELD T + 003
") 3(ENTER) # H 3

D E)EE] B+ D7 TR [N

|

PPik[MEUIA[FIEDN]4PLY

[

RPN

]

2-42 Programming Examples

Bessel Functions

This section contains a program, BER, that calculates the real part

Ber, (x) of the Bessel function J,(ze3™/*). When n =0,

(x/2)* (2/2)° Ber(z) =1-—

912 412

Level 1 _ Level 1 ‘

z — Ber(z) I
Techniques used in BER

m Local variable structure. At its outer level, BER consists solely of a

local variable structure and so has two properties of a user-defined

function: it can take numeric or symbolic arguments from the stack,

or it can take arguments in algebraic syntax. However, because

BER uses a DO ... UNTIL ... END loop, its defining procedure

is a program. (Loop structures are not allowed in algebraic

expressions.) Therefore, unlike user-defined functions, BER is not

differentiable.

m DO ... UNTIL ... END loop (indefinite loop with counter). BER

calculates successive terms in the series using a counter variable.

When the new term does not differ from the previous term to within

the 12-digit precision of the calculator, the loop ends.

m Nested local variable structures. The outer structure is consistent

with the requirements of a user-defined function. The inner

structure allows storing and recalling of key parameters.

Programming Examples 2-43

BER program listing

Program: Comiments:

o Creates local variable z.

Begins outer defining procedure.

Enters z/2, the first counter
value, and the first term of the

series, then creates local

variables.

Begins inner defining procedure.

Begins the loop.

Recalls the old sum and

calculates the new sum.

Increments the counter.

Stores the new sum.

Ends the loop clause.

Tests the old and new sums.

Ends the loop.

Recalls the sum.

Ends inner defining procedure.

Ends outer defining procedure.

() BER Stores the program in BER.

Checksum: # 36388d

Bytes: 200.5

Example: Calculate Ber(3).

1: -. 2213802496
TT(TeI

1: . /21734182714
EERWFY[WAME[MMEE]NEHCO

2-44 Programming Examples

Animation of Successive Taylor’s Polynomials

This section contains three programs that manipulate graphics objects

to display a sequence of Taylor’s polynomials for the sine function.

m SINTP draws asine curve, and saves the plot in a variable.

m SETTS superimposes plots of successive Taylor’s polynomials on

the sine curve plot from SINTP, and saves the resulting graphics

objects in a list.

m 7SA uses the ANIMATE command to display in succession each

graphics object from the list built in SETTS.

SINTP (Converting a Plot to a Graphics Object)

SINTP draws a sine curve, returns the plot to the stack as a graphics

object, and stores that graphics object in a variable. Make sure your

calculator is in Radians mode.

Techniques used in SINTP

m Programmatic use of PLOT commands. SINTP uses PLOT

commands to build and display a graphics object.

Programming Examples 2-45

SINTP program listing

Program: Comments:

PmIMOEY!

Stores the expression for sin z in

EQ.

Sets the plot type and z- and

y-axis display ranges.

Erases PICT, then plots the

expression.

Recalls the resultant graphics

object and stores it in SINT.

() SINTP Stores the program in SINTP.

Checksum: # 1971d

Bytes: 91.5

SINTP is demonstrated in the program T.SA.

SETTS (Superimposing Taylor’s Polynomials)

SETTS superimposes successive Taylor’s polynomials on a sine curve

and stores each graphics object in alist.

Techniques used in SETTS

Structured programming. SETTS calls SINTP to build a sine curve

and convert it to a graphics object.

FOR ... STEP (definite loop). SETTS calculates successive

Taylor’s polynomials for the sine function in a definite loop. The

loop counter serves as the value of the order of each polynomial.

Programmatic use of PLOT commands. SETTS draws a plot of

each Taylor’s polynomial.

Manipulation of graphics objects. SETTS converts each Taylor’s

polynomial plot into a graphics object. Then it executes + to

combine each graphics object with the sine curve stored in SINT,

creating nine new graphics objects, each the superposition of a

2-46 Programming Examples

Taylor’s polynomial on a sine curve. SETTS then puts the nine new

graphics objects, and the sine curve graphics object itself, in a list.

SETTS program listing

Program:

() SETTS (sT0)

Checksum: # 28102d

Bytes: 138.5

Comments:

Plots a sine curve and stores the

graphics object in SINT.

Sets the range for the FOR loop

using local variable n.

Plots the Taylor’s polynomial of

order n.

Returns the plot to the stack as a

graphics object and executes + to

superimpose the sine plot from

SINT.
Increments the loop counter n by

2 and repeats the loop.

Puts the sine curve graphics

object on the stack, then builds a

list containing it and the nine
graphics objects created in the

loop. Stores the list in T'SL.

Stores the program in SETTS.

SETTSis demonstrated in the program T'SA.

TSA (Animating Taylor’s Polynomials)

TSA displays in succession each graphics object created in SETTS.

Techniques used in TSA

m Passing a global variable. Because SETTS takes several minutes to

execute, TSA does not call SETTS. Instead, you must first execute

SETTS to create the global variable T'SL containing the list of

Programming Examples 2-47

graphics objects. T'SA simply executes that global variable to put

the list on the stack.

m FOR ... NEXT (definite loop). TSA executes a definite loop to

display in succession each graphics object from the list.

TSA program listing

Program: Comments:

TEL OB Puts the list TSL on the stack

and converts it to 10 graphics

objects and the list count.

DB #8 F .53 8 o+ Set up the parameters for

ANIMATE.

At Displays the graphics in

succession.

11 DROFPH Removes the graphics objects and

list count from the stack.

() TSA Stores the program in TSA.

Checksum: # 59350d

Bytes: 96.5

Example: Execute SETTS and TSA to build and display in

succession a series of Taylor’s polynomial approximations of the sine

function.

Set Radians mode and execute SETTS to build the list of graphics

objects. (SETTS takes several minutes to execute.) Then execute
TSA to display each plot in succession. The display shows TSA in

progress.

if necessary)

IT=ITT

2-48 Programming Examples

Press (CANCEL) to stop the animation. Press (.q)(RAD) to restore

Degrees mode.

Programmatic Use of Statistics and Plotting

This section describes a program PIE you can use to draw pie charts.

PIE prompts for single variable data, stores that data in the statistics

matrix 5DAT, then draws a labeled pie chart that shows each data

point as a percentage of the total.

Techniques used in PIE

m Programmatic use of PLOT commands. P/E executes XRNG and

YRNG to define z- and y-axis display ranges in user units, and

executes ARC and LINE to draw the circle and individual slices.

s Programmatic use of matrices and statistics commands.

» Manipulating graphics objects. PIE recalls PICT to the stack and

executes GOR to merge the label for each slice with the plot.

m FOR ... NEXT (definite loop). Each slice is calculated, drawn, and

labeled in a definite loop.

m CASE ... END structure. To avoid overwriting the circle, each

label is offset from the midpoint of the arc of the slice. The offset

for each label depends on the position of the slice in the circle. The

CASE ... END structure assigns an offset to the label based on the
position of the slice.

m Preserving calculator flag status. Before specifying Radians mode,

PIE saves the current flag status in a local variable, then restores

that status at the end of the program.

m Nested local variable structures. At different parts of the process,

intermediate results are saved in local variables for convenient recall

as needed.

a Temporary menu for data input.

Programming Examples 2-49

PIE program listing

Program:

2-50 Programming Examples

Comuments:

Recalls the current flag status

and stores it in variable flags.

Sets Radians mode.

Defines the input menu: Key 1

executes X+ to store each data

point in XDAT, key 3 clears

YDAT, and key 6 continues

program execution after data

entry.

Displays the temporary menu.

Prompts for inputs.

& represents the newline

character (()(<2)) after you

enter the program on the stack.

Erases the current PICT and

sets plot parameters.

Displays “drawing” message.

Draws the circle.

Displays the empty circle.

Recalls the statistics data

matrix, computes totals, and

calculates the proportions.

Converts the proportions to

percentages.

Stores the percentage matrix in

prents.

Multiplies the proportion

matrix by 27, and enters the

initial angle (0).

Program: Comments:

; Stores the angle matrix in prop

and angle in angle.

Sets up 1 to mas loop counter

range.

Begins loop-clause.

Puts the center of the circle on

the stack, then gets the nth
value from the proportion

matrix and adds it to angle.

Computes the endpoint and

draws the line for the nth slice.

Recalls PICT to the stack.

For labeling the slice, computes

the midpoint of the arc of the

slice.

Starts the CASE structure to

test angle and determine the

offset value for the label.

From 0 to 1.5 radians, doesn’t

offset the label.

From 1.5 to 4.4 radians, offsets

the label 15 user units left.

From 4.4 to 5 radians, offsets

the label 3 units right and 2

units up.

Ends the CASE structure.

Programming Examples 2-51

Comments:

Gets the nth value from the

percentage matrix, rounds it to

one decimal place, and converts

it to a string with “%”
appended.

Converts the string to a
graphics object.

Adds the label to the plot and

stores the new plot.

Displays the updated plot.

Ends the loop structure.

Displays the finished plot.

Restores the original flag status.

Restores the previous menu.

(You must first press
to clear the plot.)

() PIE Stores the program in PIE.

Checksum: # 1177d

Bytes: 765

Example: The inventory at Fruit of the Vroom, a drive-in fruit
stand, includes 983 oranges, 416 apples, and 85 bananas. Draw a pie

chart to show each fruit’s percentage of total inventory.

KEH values into SLICE,
DREAW restarts program.

 LIl
—‘
l'
\:
If
.L
‘l
-l
-\

CE] [CLEnR]|[DRAK]

2-52 Programming Examples

Clear the current statistics data. (The prompt is removed from the

display.) Key in the new data and draw the pie chart.

66.2%

5.7%

 287

Press to return to the stack display.

Trace Mode

This section contains two programs, «ENTER and fSENTER, which

together provide “trace mode” for the HP 48 using an external printer.

To turn on “trace mode,” set flag —63 and activate User mode. To

turn off “trace mode,” clear flag —63 or turn off User mode.

Techniques used in «ENTER and SENTER

m Vectored ENTER. Setting flag —63 and activating User mode turns
on vectored ENTER. When vectored ENTER is turned on and

variable «ENTER exists, the command-line text is put on the stack

as a string and «ENTER is evaluated. Then, if variable BENTER

exists, the command that triggered the command-line processing is

put on the stack as a string and FENTER is evaluated.

«ENTER program listing

Program: Comments:

oy o
Prints the command line text,

then converts the string to an

object and evaluates it.

() «ENTER Stores the program in «ENTER.
(Press (@) (/)A to type . You

must use this name.)

Programming Examples 2-53

Checksum: # 51789d

Bytes: 25.5

SENTER program listing

Program: Comments:

Prints the command that caused

the processing, then drops it and

prints the stack in compact form.

() FENTER Stores the program in SENTER.
(Press (@) () B to type £. You

must use this name.)

Checksum: # 37631d

Bytes: 28

Inverse-Function Solver

This section describes the program ROOTR, which finds the value of

z at which f(2) = y. You supply the variable name for the program

that calculates f(x), the value of y, and a guess for z (in case there
are multiple solutions).

Level 3 Level 2 Level 1 — Level 1

'function name' y Xguess - X

Techniques used in ROOTR

m Programmatic use of root-finder. ROOTR executes ROOT to find

the desired z-value.

m Programs as arguments. Although programs are commonly named

and then executed by calling their names, programs can also be put

on the stack and used as arguments to other programs.

2-54 Programming Examples

ROOTR program listing

Program: Comments:

Creates local variables.

Begins the defining procedure.

Creates variable XTEMP (to be
solvedfor).

Enters program that evaluates

f(x) —y.
Enters name of unknown variable.

Enters guess for XTEMP.

Solves program for XTEMP.

Ends the defining procedure.

Purges the temporary variable.

() ROOTR (sT0) Stores the program in ROOTR.

Checksum: # 13007d

Bytes: 163

Example: Assume you often work with the expression

3.72% + 4.52% + 3.92 + 5 and have created the program X—FXto

calculate the value:

You can use ROOTR to calculate the inverse function.

Example: Find the value of z for which X—FXequals 599.5. Use a

guess in the vicinity of 1.

Start by keying in X—F.X:

@)@E) x GF9) (37
 @03 @15 @02 L

@396 x (@) 5 ENTER) 2,
1t & 2+ w '3, 7Pew"3+4. 5=
o3, FEntg ! e

(TRTTTT

Programming Examples 2-55

Store the program in X—FX | then enter the program name, the

y-value 599.5, and the guess 1, and execute ROOTR:

 () X—FX

2
Hi+Fit [ROOTR[EENT[ENT]Z0ATPIE

Animating a Graphical Image

Program WALK shows a small person walking across the display.

It animates this custom graphical image by incrementing the image

position in a loop structure.

Techniques used in WALK

s Custom graphical image. (Note that the programmer compiles

the full information content of the graphical image before writing

the program by building the image interactively in the Graphics

environment and then returning it to the command line.)

m FOR ... STEP (definite loop). WALKuses this loop to animate
the graphical image. The ending value for the loop is MAXR.

Since the counter value cannot exceed MAXR, the loop executes

indefinitely.

2-56 Programming Examples

WALK program listing

Program: Comments:

Puts the graphical image of the

walker in the command line.

(Note that the hexadecimal
portion of the graphics object is a

continuous integer EZEE

The linebreaks do not

represent spaces.)

Fowall Creates local variable walk

containing the graphics object.

Clears PICT, then displays it.

Puts the first position on the

stack and turns on the first

image. This readies the stack and

PICT for the loop.

Starts the loop to generate

horizontal coordinates

indefinitely.

i 181 MOD BB Computes the horizontal

coordinate for the next image.

ol IET Specifies a fixed vertical

coordinate. Puts the two

coordinates in a list.

Displays the new image, leaving

its coordinates on the stack.

Turns off the old image, removing

its coordinates from the stack.

5 STER Increments the horizontal

coordinate by 5.

 FEOT walk

() WALK Stores the program in WALK.

Checksum: # 18146d

Bytes: 240.5

Programming Examples 2-57

Example: Send the small person out for a walk.

VAR

Press when you think the walker’s tired.

2-58 Programming Examples

Command Reference

This chapter contains an alphabetical listing of the programmable

commands and functions available on the HP 48. The listings include

the following information:

a brief definition of what the command or function does

a stack diagram showing the arguments it requires (if any)

the keys to press to gain access to it

any flags that may affect how it works

additional information about how it works and how to use it

an example of its use

related commands or functions

The next few pages explain how to read the stack diagrams in the

command reference, how commands are alphabetized, and the

meaning of the command classifications at the upper right corner of

each stack diagram.

How to Read Stack Diagrams

Each entry in the command reference includes a stack diagram. This

is a table showing the arguments that the command, function, or

analytic function takes from the stack and the results that it returns

to the stack. The “—” character in the table separates the arguments

from the results. The stack diagram for a command may contain more

than one “argument — result” line, reflecting all possible combinations
of arguments and results for that command.

Command Reference 3-1

Consider this example:

ACOS

Arc Cosine Analytic Function: Returns the value of the angle having
the given cosine.

{1

Level 1 — Level 1

z - arc cos z

'symb' — 'ACOS(symb)'

This diagram indicates that the analytic function ACOS (Arc Cosine)

takes a single argument fromlevel 1 and returns one result (to level
1). ACOS can take either a real or complex number or an algebraic

object as its argument. In the first case, it returns the numeric

arccosine; in the second, it returns the symbolic arccosine expression of

the argument.

Some commands affect a calculator state—a mode, a reserved variable,

a flag, or a display— without taking any arguments from the stack or

returning any results to the stack. No stack diagrams are shown for

these commands.

Parallel Processing with Lists

Commands that can use the parallel list processing feature are

denoted by the “{}” symbol located above the stack diagram. This

feature is discussed in greater detail in Appendix G.

As a rule-of-thumb, a command can use parallel list processing if all

the following are true:

m The command checks for valid argument types. Commands that

apply to all object types, such as DUP, SWAP, ROT, and so forth,

do not use parallel list processing.

m The command takes exactly one, two, three, four, or five arguments,

none of which may itself be alist. Commands, such as —LIST,

3-2 Command Reference

that have an indefinite number of arguments do not use parallel list
processing.

m The command isn’t a programming branch command (IF, FOR,

CASE, NEXT, and so forth).

The HP 48 also has a few commands (PURGE and DELKEYS

are examples) that have list processing capability built into their

definitions, and so do not also use the parallel list processing feature.

How Commands Are Alphabetized

Commands appear in alphabetical order. Command names that

contain special (non-alphabetic) characters are organized as follows:

m For commands that contain both special and alphabetic characters:

o A special character at the start of a command name is ignored.

Therefore, the command *H follows the command GXOR and

precedes the command HALT.

o A special character within or at the end of a command name is

considered to follow “Z” at the end of the alphabet. Therefore,

the command R—B follows the command RSD and precedes the

command R—C.

m Commands that contain only special characters appear at the end of

the dictionary.

Classification of Operations

The command dictionary contains HP 48 commands, functions, and

analytic functions. Commands are calculator operations that can

be executed from a program. Functions are commands that can be

included in algebraic objects. Analytic functions are functions for

which the HP 48 provides an inverse and a derivative. There are also

four non-programmmable operations (DBUG, NEXT, SST, and SST|)

that are included with the programmable commands as a convenience

because they are used interactively while programming.

The definitions of the abbreviations used for argument and result

objects are contained in the following table, “Terms Used in Stack

Diagrams.” Often, descriptive subscripts are added to convey more

information.

Command Reference 3-3

Terms Used in Stack Diagrams

Term Description

arg Argument.

[array 1 Real or complex vector or matrix.

[C-array] Complex vector or matrix.

date Date in form MM.DDYYYY or DD.MMYYYY.

{ dim } List of one or two array dimensions (real numbers).

"global’ Global name.

grob Graphics object.

HMS A real-number time or angle in hours-minutes-seconds

{ list }

local

[[matriz 1]

norm

Mport:NAMEbackup

Mport:Mibrary

#n

{#n #m}
"name

obg

PICT

< program >

[R-array]

string"

symb’

T/F

0/1

time

[vector]

T ory

r_unit

(z,y)

format.

List of objects.

Local name.

Real or complex matrix.

Positive integer real number (rounded if noninteger).

Backup identifier.

Library identifier.

Binary integer.

Pixel coordinates. (Uses binary integers.)

Global or local name.

Any object.

Current graphics object.

Program.

Real vector or matrix.

Character string.

Expression, equation, or name treated as an algebraic.

Test result used as an argument: zero (false) or non-zero
(true)real number.

Test result returned by a command: zero (false) or one

(true).

Time in form HH.MMSSs.

Real or complex vector.

Real number.

Unit object, or a real number treated as a dimensionless

object.

Complex number in rectangular form, or user-unit

coordinate.

Real or complex number.

3-4 Command Reference

ABS

ABS
Absolute Value Function: Returns the absolute value of its

argument.

{}

Level 1 — Level 1

X — |X|

x.y) - Ve +y?

x_unit — |x|—unit

[array] — || array ||

‘ 'symb' — 'ABS(symb)'

Keyboard Access:

MTH) HH

MTH)

Affected by Flags: Numerical Results (—3)

Remarks: ABS has a derivative (SIGN) but not an inverse.

In the case of an array, ABS returns the Frobenius (Euclidean) norm
of the array, defined as the square root of the sumof the squares of

the absolute values of all n elements. That is,

n

> sl
i=1

Related Commands: NEG, SIGN

Command Reference 3-5

ACK

Acknowledge Alarm Command: Acknowledges the oldest past-due
alarm.

Keyboard Access: (1)(TIME)

Affected by Flags: Repeat Alarms Not Rescheduled (—43),
Acknowledged Alarms Saved (—44)

Remarks: ACK clears the alert annunciator if there are both no
other past-due alarms and no other active alert sources (such as a low
battery condition).

ACK has no effect on control alarms. Control alarms that come due
are automatically acknowledged and saved in the system alarm list.

Related Commands: ACKALL

ACKALL

Acknowledge All Alarms Command: Acknowledges all past-due
alarms.

Keyboard Access: («)(TIME)

Affected by Flags: Repeat Alarms Not Rescheduled (—43),

Acknowledged Alarms Saved (—44)

Remarks: ACKALL clears the alert annunciator if there are no other
active alert sources (such as a low battery condition).

ACKALL has no effect on control alarms. Control alarms that come

due are automatically acknowledged and saved in the system alarm
list.

Related Commands: ACK

3-6 Command Reference

ACOS

ACOS

Arc Cosine Analytic Function: Returns the value of the angle having

the given cosine.

{}

Level 1 - Level 1

z — arc cos z

'symb' — 'ACOS(symb)'
Keyboard Access: (+)(ACOS)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument z in the domain —1 < z < 1, the

result ranges from 0 to 180 degrees (0 to 7 radians; 0 to 200 grads).

A real argument outside of this domain is converted to a complex

argument z — z + 01, and the result is complex.

The inverse of COS is a relation, not a function, since COS sends

more than one argument to the same result. The inverse relation for

COS is expressed by ISOL as the general solution

The function ACOS is the inverse of a part of COS, a part defined by

restricting the domain of COS such that 1) each argument is sent to

a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of COS are called the principal values of the

inverse relation. ACOS in its entirety is called the principal branch of

the inverse relation, and the points sent by ACOS to the boundary of

the restricted domain of COS formthe branch cuts of ACOS.

The principal branch used by the HP 48 for ACOS was chosen because

it is analytic in the regions where the arguments of the real-valued

inverse function are defined. The branch cut for the complex-valued

arc cosine function occurs where the corresponding real-valued

function is undefined. The principal branch also preserves most of the

important symmetries.

Command Reference 3-7

ACOS

The graphs below show the domain and range of ACOS. The graph of
the domain shows where the branch cuts occur: the heavy solid line

marks one side of a cut, while the feathered lines mark the other side

of a cut. The graph of the range shows where each side of each cut is

mapped under the function.

These graphs show the inverse relation =1 %7 il for

the case s71=1 and n/=0. For other values of sI and nI, the vertical

band in the lower graph is translated to the right or to the left. Taken

together, the bands cover the whole complex plane, which is the

domain of COS.

View these graphs with domain and range reversed to see how the

domain of COS is restricted to make an inverse function possible.

Consider the vertical band in the lower graph as the restricted domain

Z = izy yr. COS sends this domain onto the whole complex plane in

the range i = {uy v = CO%<z, gyin the upper graph.

Related Commands: ASIN, ATAN, COS, ISOL

Domain: Z = (x.y)

Range: W = (u,v) = ACOS(x,y)

1
1
1
1
1
0
0
1
0
1
0
0
1

Branch Cuts for ACOS(2)

3-8 Command Reference

ACOSH

ACOSH

Inverse Hyperbolic Cosine Analytic Function: Returns the inverse

hyperbolic cosine of the argument.

{1}

Level 1 - Level 1

z — acosh z

'symb' — 'ACOSH(symb)'

 Keyboard Access:

Affected by Flags: Principal Solution (—1), Numerical Results (—3)

Remarks: For real arguments |z| < 1, ACOSH returns the complex
result obtained for the argument (z, 0).

The inverse of ACOSH is a relation, not a function, since COSH sends

more than one argument to the same result. The inverse relation for

COSH is expressed by ISOL as the general solution

The function ACOSHis the inverse of a part of COSH, a part defined

by restricting the domain of COSH such that 1) each argument is sent

to a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of COSH are called the principal values of

the inverse relation. ACOSH in its entirety is called the principal

branch of the inverse relation, and the points sent by ACOSH to the

boundary of the restricted domain of COSH form the branch cuts of

ACOSH.

The principal branch used by the HP 48 for ACOSH was chosen

because it is analytic in the regions where the arguments of the

real-valued inverse function are defined. The branch cut for the

complex-valued hyperbolic arc cosine function occurs where the

corresponding real-valued function is undefined. The principal branch

also preserves most of the important symmetries.

The graphs below show the domain and range of ACOSH. The graph

of the domain shows where the branch cut occurs: the heavy solid line

Command Reference 3-9

ACOSH

marks one side of the cut, while the feathered lines mark the other
side of the cut. The graph of the range shows where each side of the
cut is mapped under the function.

These graphs show the inverse relation ‘= e £yl
for the case s1=1 and nI=0. For other values of s’] and nl, the
horizontal half-band in the lower graph is rotated to the left and
translated up and down. Taken together, the bands cover the whole
complex plane, which is the domain of COSH.

View these graphs with domain and range reversed to see how the
domain of COSH is restricted to make an inverse function possible.
Consider the horizontal half-band in the lower graph as the restricted
domain £ = <z, y COSH sends this domain onto the whole complex

plane in the range i ¢ Ty yIin the upper graph.

Related Commands: ASINH, ATANH, COSH, ISOL

Domain: Z = (x,y)

sh
40 1

Range: W = (u,v) = ACOSH(x,y)

in
‘i~e
k4

,
|
r(—

0%\
vRN
N€-TR<--
R ¥R

-ITR1hrriiinineg
Branch Cut for ACOSH(2)

3-10 Command Reference

ADD

ADD

Add List Command: Adds corresponding elements of two lists or
adds a number to each of the elements of alist.

{1}

Level 2 Level 1 — Level 1

{ list; } { list, } — { list,osuit }

{ tist } Obj, o0 _iist - { listggyit }

Obj, o _ist { list } - { fistrggut }

Keyboard Access:

Affected by Flags: None

Remarks: ADD executes the + command once for each of the

elements in the list. If two lists are the arguments, they must have

the same number of elements as ADD will execute the + command

once for each corresponding pair of elements. If one argument is a

non-list object, ADD will attempt to execute the + command using

the non-list object and each elementof the list argument, returning

the result to the corresponding position in the result. (See the +

command entry to see the object combinations that are defined.) If

an undefined addition is encountered, a Ear: !

results.

Related Commands: ALIST, IILIST, ¥LIST

Command Reference 3-11

ALOG

Common Antilogarithm Analytic Function: Returns the common
antilogarithm; that is, 10 raised to the given power.

{}

Level 1 — Level 1

z — 10*

'symb' — 'ALOG(symb)'
Keyboard Access: («)(107)

Affected by Flags: Numerical Results (—3)

Remarks: For complex arguments:

10%Y) = ¢ cos ¢y + 1 * sin cy

where ¢ = In 10.

Related Commands: EXP, LN, LOG

AMORT

Amortize Command: Amortizes a loan or investment based upon the

current amortization settings.

{}

Level 1 — Level 3 Level 2 Level 1

n — principal interest balance

Keyboard Access: (&)(SOLVE) TWii

Affected by Flags: Financial Payment Mode (—14)

3-12 Command Reference

AND

Remarks: Values must be stored in the TVMvariables (/% YR, PV,
PMT, and PYR). The number of payments n is taken from level 1

and flag —14.

Related Commands: TVM, TVMBEG, TVMEND, TVMROOT

AND

And Function: Returns the logical AND of two arguments.

{}

Level 2 Level 1 — Level 1

#0ny # 1y - #n3

"string," "string,” — "strings”

T/F, T/F, — 0/1

T/F 'symb' — 'T/F AND symb'

'symb' T/F — 'symb AND T/F'

'symb, ' 'symb, — 'symb, AND symb,'
Keyboard Access:

'
Affected by Flags: Numerical Results (—3), Binary Integer Wordsize
(=5 through —10)

NXT) |

NXT

Remarks: When the arguments are binary integers or strings, AND

does a bit-by-bit (base 2) logical comparison.

m An argument that is a binary integer is treated as a sequence of bits

as long as the current wordsize. Each bit in the result is determined

by comparing the corresponding bits (b:t; and bels) in the two

arguments as shown in the following table:

Command Reference 3-13

AND

bitq bity bit; AND bit,

0 0 0

0 1 0

1 0 0

1 1 1
m An argument that is a string is treated as a sequence of bits, using 8

bits per character (that is, using the binary version of the character

code). The two string arguments must have the same number of
characters.

When the arguments are real numbers or symbolics, AND simply

does a true/false test. The result is 1 (true) if both arguments are
non-zero; it is &(false) if either or both arguments are zero. This test

is usually done to compare two test results.

If either or both of the arguments are algebraic expressions, then the

result is an algebraic of the form *symb, FAHD symbs’'. Execute =i

(or set flag —3 before executing AND) to produce a numeric result

from the algebraic result.

Related Commands: NOT, OR, XOR

ANIMATE

Animate Command: Displays graphic objects in sequence.

Level n+1...Level 2 Level 1 — Level 1

groby, ...grob, Nyrobs — same stack

groby, ...grob, {n{ #X#Y } delay rep} — same stack

Keyboard Access:

PRG NXT FkH

Affected by Flags: None

3-14 Command Reference

APPLY

Remarks: ANIMATE displays a series of graphics objects (or

variables containing them) one after the other. You can use a list to

specify the area of the screen you want to animate (pixel coordinates

#X and #Y), the number of seconds before the next grob is displayed

(delay), and the number of times the sequence is run (rep). If rep is

set to 0, the sequence is played one million times, or until you press

(CARCED).
If you use alist on level 1, all parameters must be present.

The animation displays PICT while displaying the grobs. The grobs

and the animate parameters are left on the stack.

Example: The following program draws half a cylinder and rotates it:

This programalso illustrates the use of SEQ and PARSURFACE.

You can adjust the increment value used with SEQ (8 is used here)

to change the number of images drawn by the program, or to use less

memory.

APPLY
Apply to Arguments Function: Creates an expression from the

specified function name and arguments.

Level 2 Level 1 — Level 1

{ symb, ... symby, } ‘name' — ‘name(symb; ... symby)'

Keyboard Access: (&)(SYMBOLIC f

Command Reference 3-15

APPLY

Affected by Flags: None

Remarks: A user-defined function f that checks its arguments for

special cases often can’t determine whether a symbolic argument z

represents one of the special cases. The function f can use APPLY to

create a new expression ¥ ¢xi ‘. If the user now evaluates ° ¢ o

is evaluated before f, so the argument to f will be the result obtained

by evaluating z.

The algebraic syntax for APPLY is this:

inamessymby: ... & symby i’

When evaluated in an algebraic expression, APPLY evaluates the

arguments (to resolve local names in user-defined functions) before
creating the new object.

Example: The following user-defined function Asin is a variant

of the built-in function ASIN. Asin checks for special numerical

arguments. If the argument on the stack is symbolic (the second case

in the case stlucture) Asin uses APPLY to return the expression

! 1L argument

() Asin GT9)

Related Commands: QUOTE,|

3-16 Command Reference

ARC

ARC

Draw Arc Command: Draws an arc in PICT counterclockwise from

zg, to zp,, with its center at the coordinate specified in level 4 and its

radius specified in level 3.

Level 4 Level 3 Level 2 Level 1 — Level 1

(xa ZI) Zradius N Zgq -

{#n #m} FH Nradius Ty, g, —

Keyboard Access: (PRG) FILT HEL

Affected by Flags: Angle Mode (—17 and —18)

The setting of flags —17 and —18 determine the interpretation of zy,

and zp, (degrees, radians, or grads).

Remarks: ARC always draws an arc of constant radius in pixels,

even when the radius and center are specified in user-units, regardless

of the relative scales in user-units of the z- and y-axes. With user-unit

arguments, the arc starts at the pixel specified by (z, y) + (a, b),
where (a, b) is the rectangular conversion of the polar coordinate

(Zradius, 1791). The resultant distance in pixels from the starting point

to the center pixel is used as the actual radius, r'. The arc stops at

the pixel specified by (', zy,).

If 2y, = zg,, ARC plots one point. If |zg, — zg,| > 360 degrees, 27

radians, or 400 grads, ARC draws a complete circle.

Example: In Degrees mode, with the z-axis display range (XRNG)

specified as —6.5 to 6.5, the command sequence &,1 & 28 ARD

draws an arc counterclockwise from 0 to 90 degrees with a constant
radius of 10 pixels.

Related Commands: BOX, LINE, TLINE

Command Reference 3-17

ARCHIVE

Archive HOME Command: Creates a backup copy of the HOME

directory (that is, all variables), the user-key assignments, and the

alarm catalog in the specified backup object (% nport : name) in

independent RAM.

Level 1 - Level 1 T

:nport ‘hame —

1O name —

Keyboard Access: («)(MEMORY) A

Affected by Flags: 1/O Device (—33), I/O Messages (—39) if the
argument is * It name

Remarks: The specified port number can be 0 through 33. The port

used (except 0) must be configured as independent RAM. (See FREE.)
An error will result if there is not enough independent RAM in the

specified port to copy the HOME directory.

If the backup object 1s # Iit name, then the copied directory is

transmitted in binary via Kermit protocol through the current I/0

port to the specified filename.

To save flag settings, execute RCLF and store the resulting list in a

variable.

Related Commands: RESTORE

3-18 Command Reference

ARRY—

ARG
Argument Function: Returns the (real) polar angle ¢ of a complex
number iz, y .

{}

Level 1 — Level 1

(x.y) — 6

'symb' — 'ARG(symb)'
Keyboard Access: CHMFL ARG

Affected by Flags: Angle mode (—17, —18)

Remarks: The polar angle is equal to:

m arc tan y/z forz > 0

m arc tan y/z + 7 sign y for z < 0, Radians mode

m arc tan y/z + 180 sign y for z < 0, Degrees mode

m arc tan y/z + 200 sign y for z < 0, Grads mode

A real argument z is treated as the complex argument <z, 0.

ARRY—

Array to Stack Command: Takes an array and returns its elements

as separate real or complex numbers. Also returns a list of the

dimensions of the array.

Level 1 — Levelnm+1 ... Level 2 Level 1

[vector] — Zy .o Zn { Netement }

[[matrix]] — Zyq1 -+ Zam { frow Mg, }

Command Reference 3-19

ARRY—

Keyboard Access: None. Must be typedin.

Affected by Flags: None

Remarks: The command OBJ— includes this functionality. ARRY—

is included for compatibility with the HP 285. ARRY— is not in a

menu.

If the argumentis an n-element vector, the first element is returned to

level n + 1 (not level nm + 1), and the nth element to level 2.

Related Commands: —ARRY, DTAG, EQ—, LIST—, OBJ—,

STR—

—ARRY

Stack to Array Command: Returns a vector of n real or complex

elements or a matrix of n X m real or complex elements.

Level nm+1 ... Level 2 Level 1 — Level 1

Zy ... Zy Nglement — [vector]

Zi1 -+ Znm { Mrow Mg+ — [[matrix]
Keyboard Access: THFE

Affected by Flags: None

Remarks: The elements of the result array should be entered into the

stack in row order, with z1; (or z1) in level nm + 1 (or n 4+ 1), and

Znm (Or zy) in level 2. If one or more of the elements is a complex

number, the result array will be complex.

Related Commands: ARRY—, LIST—, —LIST, OBJ—, STR—,

—TAG, -UNIT

3-20 Command Reference

ASIN

ASIN

Arc Sine Analytic Function: Returns the value of the angle having
the given sine.

{1}

Level 1 - Level 1

z — arc sin z

'symb' — 'ASIN(symb)'
Keyboard Access: (&)(AsIN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument 2 in the domain —1 < z < 1, the

result ranges from —90 to +90 degrees (—m/2 to +/2 radians; —100
to +100 grads).

A real argument outside of this domain is converted to a complex

argument z = = + 0z, and the result is complex.

The inverse of SIN is a relation, not a function, since SIN sends more

than one argument to the same result. The inverse relation for SIN is

expressed by ISOL as the general solution

The function ASIN is the inverse of a part of SIN, a part defined by

restricting the domain of SIN such that 1) each argumentis sent to
a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of SIN are called the principal values of the

inverse relation. ASIN in its entirety is called the principal branch of

the inverse relation, and the points sent by ASIN to the boundary of

the restricted domain of SIN form the branch cuts of ASIN.

The principal branch used by the HP 48 for ASIN was chosen because

it is analytic in the regions where the arguments of the real-valued

inverse function are defined. The branch cut for the complex-valued

arc sine function occurs where the corresponding real-valued function

Command Reference 3-21

ASIN

1s undefined. The principal branch also preserves most of the

important symmetries.

The graphs below show the domain and range of ASIN. The graph of

the domain shows where the branch cuts occur: the heavy solid line

marks one side of a cut, while the feathered lines mark the other side

of a cut. The graph of the range shows where each side of each cut is

mapped under the function.

These graphs show the inverse relation ' Py

for the case n1=0. For other values of n1, the vertlcal bandin the

lower graph is translated to the right (for n] positive) or to the left

(for nl negative). Taken together, the bands cover the whole complex

plane, which is the domain of SIN.

View these graphs with domain and range reversed to see how the

domain of SIN is restricted to make an inverse function possible.

Consider the vertical band in the lower graph as therestricted domain

Z = izy yr. SIN sends this domaln onto the whole complex plane in

the range i = fuy v = % y» in the upper graph.

Related Commands: ACOS, ATAN, ISOL, SIN

Domain: Z = (x,y)

Range: W = (u,v) = ASIN(x,y)

1
1
1
0
8
0
0
7
1
0
2
1
4

 1

1
1
1
1
1
1
1
1
1
1
7

Branch Cuts for ASIN(Z)

3-22 Command Reference

ASINH

ASINH

Arc Hyperbolic Sine Analytic Function: Returns the inverse
hyperbolic sine of the argument.

{}

Level 1 — Level 1

z — asinh z

'symb' — 'ASINH(symb)'

Keyboard Access: HiyF A

Affected by Flags: Principal Solution (—1), Numerical Results (—3)

IHH

Remarks: The inverse of SINH is a relation, not a function, since

SINH sends more than one argument to the same result. The inverse

relation for SINH is expressed by ISOL as the general solution

CErEC-LeiEnl

The function ASINH is the inverse of a part of SINH, a part defined

by restricting the domain of SINH such that 1) each argument is sent

to a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of SINH are called the principal values of the

inverse relation. ASINH in its entirety is called the principal branch of

the inverse relation, and the points sent by ASINH to the boundary of

the restricted domain of SINH form the branch cuts of ASINH.

The principal branch used by the HP 48 for ASINH was chosen

because it is analytic in the regions where the arguments of

the real-valued function are defined. The branch cut for the

complex-valued ASINH function occurs where the corresponding

real-valued function is undefined. The principal branch also preserves

most of the important symmetries.

The graph for ASINH can be found from the graph for ASIN (see

ASIN) and the relationship asinh 2 = —¢ asin iz.

Related Commands: ACOSH, ATANH, ISOL, SINH

Command Reference 3-23

ASN

Assign Command: Defines a single key on the user keyboard by

assigning the given object to the key zyey, which is specified as rc.p.

{}

Level 2 Level 1 — Level 1

obj Xkey —

'SKEY' Xcey -
Keyboard Access: (¢)(MODES) KEYS AEH

Affected by Flags: User-Mode Lock (—61) and User Mode (—62)
affect the status of the user keyboard

Remarks: The argument zy.y is a real number rc.p specifying the

key by its row number r, column number ¢, and plane (shift) p. The

legal values for p are as follows:

Plane, p Shift

Oorl unshifted

2 (€) left-shifted

() right-shifted

4 (@) alpha-shifted

5 (@) (\) alpha left-shifted

6 (@) () alpha right-shifted
Once ASN has been executed, pressing a given key in User or 1-User

mode executes the user-assigned object. The user key assignment

remains in effect until the assignment is altered by ASN, STOKEYS,

or DELKEYS. Keys without user assignments maintain their standard

definitions.

If the argument obj is the name ' 1 then the specified key 1s

restored to its standard key assignment on the user keyboard. This

3-24 Command Reference

ASR

is meaningful only when all standard key assignments had been

suppressed (for the user keyboard) by the command *&* DEL

(see DELKEYS).

To make multiple key assignments simultaneously, use STOKEYS. To

delete key assignments, use DELKEYS.

Be careful not to reassign or suppress the keys necessary to cancel
User mode. If this happens, exit User mode by doing a system halt

(“warm start”): press and hold and the C key simultaneously,

releasing the Ckey first. This cancels User mode.
Example: Executing ASN with GETI 55,310 level
1 assigns GETI to () ("_7) on the user keyboard. (@) (") has a
location of 85.3 because it is eight rows down, five columns across, and

right-shifted.) When the calculator is in User mode, pressing () ")
now executes GETI (instead of executing ("7)).

Related Commands: DELKEYS, RCLKEYS, STOKEYS

ASR

Arithmetic Shift Right Command: Shifts a binary integer one bit to

the right, except for the most significant bit, which is maintained.

{1

Level 1 - Level 1

 #ny — #n,

NXT bzl i Keyboard Access: E

Affected by Flags: Binary Integer Wordsize (—5 through —10),

Binary Integer Base (—11, —12)

Remarks: The mostsignificant bit is preserved while the remaining

(wordsize—1) bits are shifted right one bit. The second-most

significant bit is replaced with a zero. The least significant bit is

shifted out and lost.

Command Reference 3-25

ASR

An arithmetic shift is useful for preserving the sign bit of a binary

integer that will be shifted. Although the HP 48 makes no special
provision for signed binary integers, you can still interpret a number

as a signed quantity.

Related Commands: SL, SLB, SR, SRB

ATAN

Arc Tangent Analytic Function: Returns the value of the angle
having the given tangent.

{}

Level 1 — Level 1

z — arc tan z

'symb' — 'ATAN(symb)'

Keyboard Access: (+e)(ATAN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument, the result ranges from —90 to +90

degrees (—7/2 to +m/2 radians; —100 to +100 grads).

The inverse of TAN is a relation, not a function, since TAN sends

more than one argument to the same result. The inverse relation for

TAN is expressed by ISOL as the general solution

The function ATAN is the inverse of a part of TAN, a part defined by

restricting the domain of TAN such that 1) each argument is sent to a

distinct result, and 2) each possible result is achieved. The points in

this restricted domain of TAN are called the principal values of the

inverse relation. ATAN in its entirety is called the principal branch of

the inverse relation, and the points sent by ATAN to the boundary of

the restricted domain of TAN form the branch cuts of ATAN.

3-26 Command Reference

ATAN

The principal branch used by the HP 48 for ATAN was chosen because

it is analytic in the regions where the arguments of the real-valued

inverse function are defined. The branch cuts for the complex-valued

arc tangent function occur where the corresponding real-valued

function is undefined. The principal branch also preserves most of the

important symmetries.

The graphs below show the domain and range of ATAN. The graph of

the domain shows where the branch cuts occur: the heavy solid line

marks one side of a cut, while the feathered lines mark the other side

of a cut. The graph of the range shows where each side of each cut is

mapped under the function.

These graphs show the inverse relation ‘ATAH{Z »+mw#ri* for the

case nl=0. For other values of n1, the vertical band in the lower

graph is translated to the right (for nl positive) or to the left (for n1

negative). Taken together, the bands cover the whole complex plane,

which is the domain of TAN.

View these graphs with domain and range reversed to see how the
domain of TANis restricted to make an inverse function possible.

Consider the vertical band in the lower graph as the restricted domain

&= try yi. TAN sends this domain onto the whole complex plane in

the range W = {u, v= TAM{zs y2 in the upper graph.

Related Commands: ACOS, ASIN, ISOL, TAN

Command Reference 3-27

ATAN

Domain: Z = (x,y)

J
L
M
E
L
L
L
L

7

- -~

T ‘

& ' ~
.

T
N
T

Range: W = (u,v) = ATAN(x.y)

A
L
Y

1

Branch Cuts for ATAN(Z)

ATANH

Arc Hyperbolic Tangent Analytic Function: Returns the inverse
hyperbolic tangent of the argument.

{}

Level 1 — Level 1

z — atanh z

'symb' — 'ATANH(symb)'
Keyboard Access: (MTH]) HYF

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Infinite Result Exception (—22)

3-28 Command Reference

ATANH

Remarks: For real arguments |z| > 1, ATANH returns the complex
result obtalned for the argument (z, 0). For a real argument r==1,
an Infinite Resuli exception occurs. If flag —22 is set (no error),
the sign of the result (MAXR) matches that of the argument.

The inverse of TANH is a relation, not a function, since TANH sends

more than one argument to the same result. The inverse relation for

TANH is expressed by ISOLas the general solution

 TETHMHOZbisnd !

The function ATANH is the inverse of a part of TANH, a part defined

by restricting the domain of TANH such that 1) each argument is sent

to a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of TANH are called the principal values of

the inverse relation. ATANH in 1ts entirety is called the principal

branch of the inverse relation, and the points sent by ATANH to the

boundary of the restricted domain of TANH form the branch cuts of

ATANH.

The principal branch used by the HP 48 for ATANH was chosen

because it is analytic in the regions where the arguments of

the real-valued function are defined. The branch cut for the

complex-valued ATANH function occurs where the corresponding
real-valued function is undefined. The principal branch also preserves

most of the important symmetries.

The graph for ATANH can be found from the graph for ATAN (see

ATAN) and the relationship atanh z = —7 atan i2.

Related Commands: ACOSH, ASINH, ISOL, TANH

Command Reference 3-29

ATICK

Axes Tick-Mark Command: Sets the axes tick-mark annotation in

the reserved variable PPAR.

‘ Level 1 = Level 1

l -
#n —

{xy} —
{ #n #m } —

Keyboard Access: («)(PLOT) F

Affected by Flags: None

Remarks: Given z, ATICK sets the tick-mark annotation to z units

on both the z- and the y-axis. For example, 2 would place tick-marks

every 2 units on both axes.

Given #n, ATICK sets the tick-mark annotation to #n pixels on both

the z- and the y-axis. For example, #5 would place tick-marks every

5 pixels on both axes.

Given { z y }, ATICK sets the tick-mark unit annotation for each axis

individually. For example, { 10 3 } would mark the z-axis at every
multiple of 10 units, and the y-axis at every multiple of 3 units.

Given { #n #m } ATICK sets the tick-mark pixel annotation for each
axis individually. For example, { 6 2 } would mark the z-axis every 6

pixels, and the y-axis every 2 pixels.

Related Commands: AXES, DRAX

3-30 Command Reference

ATTACH

ATTACH

Attach Library Command: Attaches the library with the specified
number to the current directory. Each library has a unique number. If

a port number is specified, it is ignored.

{}

Level 1 - Level 1

Mibrary -

Noort Mivrary -
Keyboard Access: (+)(LIBRARY) ATTRED

Affected by Flags: None

Remarks: To use a library object, it must be in a port and it must

be attached. A library object from an application card (ROM) is

automatically in a port (1-33), but a library object copied into RAM

(such as through the PC Link) must be stored into a port using STO.

Many libraries are attached automatically when an application card is

installed. Others require you to ATTACH them, as do many libraries

copied into RAM. (The owner’s manual for the application card or

library will tell you which of its library objects must be attached

manually.) You can also ascertain whether a library is attached to the

current directory by executing LIBS.

A library that has been copied into RAM and then stored (with STO)

into a port can be attached only afier the calculator has been turned off

and then on again following the STO command. This action (off/on)
creates a system halt, which makes the library object “attachable.”

Note that it also clears the stack, local variables, and the LAST stack,

and it dlsplays the MATH menu. (To save the stack first, execute

DEFTH +LIST "name’ STO)

The number of libraries that can be attached to the HOME directory

is limited only by the available memory. However, only one library

at a time can be attached to any other directory. If you attempt to

attach a second library to a non-HOME directory, the new library will

overwrite the old one.

Command Reference 3-31

ATTACH

Related Commands: DETACH, LIBS

AUTO

Autoscale Command: Calculates a y-axis display range, or an z-

and y-axis display range.

Keyboard Access: («)(PLOT) (NXT) FLITH

Affected by Flags: None

Remarks: The action of AUTO depends on the plot type as follows:

Plot Type Scaling Action

FUNCTION |Samples the equation in F@Q at 40 values of the

independent variable, equally spaced through the

z-axis plotting range, discards points that return

+00, then sets the y-axis display range to include

the maximum, minimum, and origin.

CONIC Sets the y-axis scale equal to the z-axis scale.

POLAR Samples the equation in £Q at 40 values of the

independent variable; equally spaced through

plotting range, discards points that return oo,

then sets both the z- and y-axis display ranges in

the same manner as for plot type FUNCTION.

PARAMETRIC Same as POLAR.

TRUTH No action.

BAR Sets the z-axis display range from 0 to the number of elements in ¥DAT, plus 1. Sets the y-range to

the minimum and maximum of the elements. The

z-axis is always included.

3-32 Command Reference

AXES

Plot Type Scaling Action

HISTOGRAM Sets the z-axis display range to the minimum and

maximum of the elements in ¥DAT. Sets the

y-axis display range from 0 to the number of rows

in YDAT.

SCATTER Sets the z-axis display range to the minimum and

maximum of the independent variable column

(XCOL) in YDAT. Sets the y-axis display range to

the minimum and maximum of the dependent

variable column (YCOL).
AUTO does not affect 3D plots.

AUTO actually calculates a y-axis display range and then expands

that range so that the menu labels do not obscure the resultant plot.

AUTO does not draw a plot—execute DRAW to do so.

Example: The program + 3 DREAR DRAX # sets the
plot type to FUNCTION, autoscales the y-axis, plots the equatlon in

EQ, and adds axes to the plot.

Related Commands: DRAW, «H, SCALE, SCLX, *W, XRNG,

YRNG

AXES

Axes Command: Specifies the intersection coordinates of the z- and

y-axes, tick-mark annotation, and the labels for the z- and y-axes.

This information is stored in the reserved variable PPAR.

Level 1 — Level 1

x, ¥ —

{ (x, y) atick “x-axis label" "y-axis label" } —

Command Reference 3-33

AXES

Keyboard Access: («)(PLOT) Fi

Affected by Flags: None

Remarks: The argument for AXES (a complex numberor list) is
stored as the fifth parameter in the reserved variable PPAR. How the

argument is used depends on the type of object itis:

m If the argument is a complex number,it replaces the current entry

in PPAR.

m If the argument is alist containing any or all of the above variables,

only variables that are specified are affected.

atick has the same format as the argument for the ATICK command.

This is the variable that is affected by the ATICK command.

The default value for AXES is 1

Axes labels are not displayed in PICT until subsequent execution of

LABEL.

Example: The command sequence

By 0 L [... i i i

 specifies an axes intersection at i 53, tick-mark annotation every 2

units, and puts the labels % and 1 in PICT. The labels are positioned

to identify the horizontal and veltlcal axes respectively.

Related Commands: ATICK, DRAW, DRAX, LABEL

BAR

Bar Plot Type Command: Sets the plot type to BAR.

Keyboard Access: («)(PLOT) (NXT)

Affected by Flags: None

Remarks: When the plot type is BAR, the DRAW command plots a

bar chart using data from one column of the current statistics matrix

(reserved variable ¥DAT). The column to be plotted is specified

by the XCOL command, and is stored in the first parameter of the

reserved variable X PAR. The plotting parameters are specified in the

reserved variable PPAR, which has the following form:

3-34 Command Reference

BAR

STt Ymind UTmar: Ymar: indep res azes ptype depend

For plot type BAR, the elements of PPAR are used as follows:

® {Zmin, Ymin. 1S a complex number specifying the lower left corner of

PICT (the lowerleft corner of the display range). The default value

IS G, Sy -3, 10,

B {Zmax, Ymax . 15 a complex number specifying the upper right corner

of PICT (the upper right corner of the display range). The default

value is {6, 55, 20

m indep is either a name specifying a label for the horizontal axis, or a

list containing such a name and two numbers, with the smaller of

the numbers specifying the horizontal location of the first bar. The
default value of indep 1s X.

m res is a real number specifying the bar width in user-unit

coordinates, or a binary integer specifying the bar width in pixels.

The default value is £, which specifies a bar width of 1 in user-unit

coordinates.

m azes is alist containing one or more of the following, in the order
listed: a complex number specifying the user-unit coordinates of

the plot origin, alist specifying the tick-mark annotation, and two

strings specifying labels for the horizontal and vertical axes. The

default value is :

m piype is a command name specifying the plot type. Executing the

command BAR places the command name BAR in PPAR.

m depend is a name specifying alabel for the vertical axis. The default

value 1s Y.

A bar is drawn for each element of the column in ¥DAT'. Its width

is specified by res and its height is the value of the element. The

location of the first bar can be specified by indep; otherwise, the value

N Zmin, Ymin* 18 used.

Related Commands: CONIC, DIFFEQ, FUNCTION, GRIDMAP,

HISTOGRAM, PARAMETRIC, PARSURFACE, PCONTOUR,
POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,

YSLICE

Command Reference 3-35

BARPLOT

Draw Bar Plot Command: Plots a bar chart of the specified column

of the current statistics matrix (reserved variable ¥DAT).

Keyboard Access: ()(STAT) FLIUT EF

Affected by Flags: None

Remarks: The data column to be plotted is specified by XCOL

and is stored as the first parameter in reserved variable ¥PAR. The

default column is 1. Data can be positive or negative, resulting in bars

above or below the axis. The y-axis is autoscaled, and the plot type is

set to BAR.

When BARPLOT is executed from a program, the resulting plot does

not persist unless PICTURE, PVIEW (with an empty list argument),

or FREEZE is subsequently executed.

Related Commands: FREEZE, HISTPLOT, PICTURE, PVIEW,

SCATRPLOT, XCOL

BAUD

Baud Rate Command: Specifies bit-transfer rate.

{1}

Level 1 - Level 1

Mpaudrate -

Keyboard Access: ()(1/0) 1PFF

Affected by Flags: None

Remarks: Legal baud rates are 1200, 2400, 4800, and 9600 (default).

For more information, refer also to the reserved variable JOPAR (I/0
parameters) in appendix D, “Reserved Variables.”

Related Commands: CKSM, PARITY, TRANSIO

3-36 Command Reference

BESTFIT

BEEP
Beep Command: Sounds atone at n hertz for z seconds.

{}

Level 2 Level 1 - Level 1

nfrequency Xduration -

Keyboard Access: GUT (NXT) E

Affected by Flags: Error Beep (—56)

Remarks: The frequency of the tone is subject to the resolution of

the built-in tone generator. The maximum frequency is approximately

4400 Hz; the maximum duration is 1048.575 seconds. Arguments

greater than these maximum values default to the maxima.

Related Commands: HALT, INPUT, PROMPT, WAIT

BESTFIT

Best-Fitting Model Command: Executes LR with each of the

four curve fitting models, and selects the model yielding the largest

correlation coeflicient.

Keyboard Access: (¢)(STAT)

Affected by Flags: None

Remarks: The selected model is stored as the fifth parameter in the

reserved variable X' PAR, and the associated regression coeflicients,

intercept and slope, are stored as the third and fourth parameters,

respectively. For a description of X' PAR, see appendix D, “Reserved

Variables.”

Related Commands: EXPFIT, LINFIT, LOGFIT, LR, PWRFIT

Command Reference 3-37

BIN

Binary Mode Command: Selects binary base for binary integer

operations. (The default base is decimal.)

Keyboard Access: (MTH)

Affected by Flags: Binary Integer Wordsize (=5 through —10),
Binary Integer Base (—11, —12)

Remarks: Binary integers require the prefix #. Binary integers

entered and returned in binary base automatically show the suffix .

If the current base is not binary, binary numbers can still be entered

by using the suffix & (the numbers are displayed in the current base,

however).

The current base does not affect the internal representation of binary

integers as unsigned binary numbers.

Related Commands: DEC, HEX, OCT, STWS, RCWS

BINS
Sort Into Frequency Bins Command: Sorts the elements of the
independent column (XCOL) of the current statistics matrix (the
reserved variable YDAT) into (nuins + 2) bins, where the left edge of

bin 1 starts at value zn,;, and each bin has width zwiqeh.

{1

Level 3 Level2 Level1 — Level 2 Level 1

 Xmin Xwidth Myins = Il Mging -~ Moing 11 [Poinc Mping |

 Keyboard Access: ()(STAT)

Affected by Flags: None

Remarks: BINS returns a matrix containing the frequency of

occurrences in each bin, and a 2-element array containing the

frequency of occurrences falling below or above the defined range of

z-values. The array can be stored into the reserved variable XDAT

3-38 Command Reference

BLANK

and used to plot a bar histogram of the bin data(for example, by

executing BARPLOT).

For each element z in YDAT, the nth bin count n¢eq pin n 18

incremented, where:

T — Ty
Nfregbinn — IpP {fl}

Lwidth

for 2min < ¢ < Tmax, where Zmax = Zmin + (pins) (Twidtn)-

Example: If the independent column of ¥DAT contains the following

data:

The data has been sorted into 5 bins of width 2, starting at z-value 1

and ending at z-value 11. The first element of the matrix shows that5

z-values (# 1 1 1 #) fell in bin 1, where bin 1 ranges from z-value 1

through 2.99999999999. The vector shows that one z-value was less

than z.;, (), and one was greater than zmax (1).

Related Commands: BARPLOT, XCOL

BLANK

Blank Graphics Object Command: Creates a blank graphics object

of the specified width and height.

{1

Level 2 Level 1 — Level 1

 FNyyiqtn FMyeignt - 9roby 4k J

Keyboard Access: GROB

Affected by Flags: None

Related Commands: —GROB, LCD—

Command Reference 3-39

BOX

Box Command: Draws in PICT a box whose opposite corners are
defined by the specified pixel or user-unit coordinates.

i}

Level 2 Level 1 - Level 1

{ #ny #my } { #n, #m, } -

Xy, ¥1) (X2, ¥3) —

Keyboard Access: (PRG

Affected by Flags: None

Related Commands: ARC, LINE, TLINE

BUFLEN

Buffer Length Command: Returns the number of characters in the

HP 48’s serial input buffer and a single digit indicating whether an

error occurred during data reception.

Level 1 — Level 2 Level 1

fMenars 0/1

Keyboard Access: («)(1/0) B

Affected by Flags: None

Remarks: The digit returned to level 1 is i if no framing, UART

overrun, or input-buffer overflow errors occurred during reception,

or £ if one of these errors did occur. (The input buffer holds up to

255 bytes.) When a framing or overrun error occurs, data reception

ceases until the error is cleared (which BUFLEN does); therefore, n

represents the data received before the error.

3-40 Command Reference

BYTES

Use ERRM to see which error has occurred when BUFLEN returns &

to level 1.

Related Commands: CLOSEIO, OPENIO, SBRK, SRECV, STIME,

XMIT

BYTES

Byte Size Command: Returns the number of bytes and the

checksum for the given object.

O

B Level 1 ~ Level 2 Level 1 \

 obj - #nchecksum Xsize ‘

Keyboard Access: (¥) BYTES

Affected by Flags: None

Remarks: If the argumentis a built-in object, then the size is 2.5

bytes and the checksum is # £.

If the argument is a global name, then the size represents the name

and its contents, while the checksum represents the contents only. The

size of the name alone is (3.5 + 2 x n), where n is the number of
characters in the name.

Example: Objects that decompile identically can have different byte

sizes and checksums. For instance,

and

both produce lists containing the number 1. However, the first list

contains the built-in object 1 (for asize of 7.5 bytes), while the second

list contains a RAM copy of 1 (for a size of 15.5 bytes).

Related Commands: MEM

Command Reference 3-41

B—R

Binary to Real Command: Converts a binary integer to its
floating-point equivalent.

{1

‘ Level 1 - Level 1

’ #n — n

Keyboard Access: BASE B=2R

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: If £ n > # {GGH @ (base 10), only the 12 most
significant decimal digits are preserved in the resulting mantissa.

Related Commands: R—B

CASE

CASE Conditional Structure Command: Starts CASE ... END

conditional structure.

Level 1 - Level 1

CASE _

THEN T/F —

END _

END N
Keyboard Access: B

Affected by Flags: None

3-42 Command Reference

CASE

Remarks: The CASE ... END structure executes aseries of cases

(tests). The first test that returns atrue result causes execution of

the corresponding true-clause, ending the CASE ... END structure.

A default clause can also be included: this clause executes if all tests

evaluate to false.

The CASE ... END structure has this syntax:

test-clause; THEH true-clause; EMD

test-clauses THEHM true-clauses EMD

test-clause, “+ true-clause, EHD

default-clause (optional)

When CASE executes, test-clause; is evaluated. If the test is true,

true-clause; executes, then execution skips to END. If test-clause; is

false, test-clause, executes. Execution within the CASE structure

continues until atrue clause is executed, or until all the test clauses

evaluate to false. If the default clause is included, it executes if all test

clauses evaluate to false.

Example: The following program takes a numeric argument from the

stack:

m if the argumentis negative, it is added to itself

m if the argumentis positive, it is negated

m if the argument is zero, the program aborts

Command Reference 3-43

CASE

Related Commands: END, IF, IFERR, THEN

CEIL

Ceiling Function: Returns the smallest integer greater than or equal
to the argument.

Level 1 — Level 1

X — n

X_unit — n_unit

'symb' — 'CEIL(symb)'

Keyboard Access: (NXT) (NXT) EELL

Affected by Flags: Numerical Results (—3)

 Examples:

L. returns #; L. returns -,

Related Commands: FLOOR, IP, RND, TRNC

CENTR

Center Command Adjusts the first two parameters in the reserved

variable PPAR, <20, Ymin* and $Zmax, Ymax , 50 that the point

represented by the argument <z, y 3 is the plot center.

3-44 Command Reference

CF

{}

Level 1 — Level 1

x, ¥) —

X —

 Keyboard Access: («)(PLOT) F

Affected by Flags: None

Remarks: The center pixel is in row 32, column 65 when PICT is its

default size (131 x 64).

If the argument is areal number z, CENTR makes the point <z, &3

the plot center.

Related Commands: SCALE

CF

Clear Flag Command: Clears the specified user or system flag.

Level 1 - Level 1

snflagnumber

Keyboard Access:

 PRG

Affected by Flags: None

Remarks: User flags are numbered 1 through 64. Systemflags are

numbered —1 through —64. See appendix C, “System Flags,” for a

listing of HP 48 system flags and their flag numbers.

Related Commands: FC?, FC?C, FS?, FS7C, SF

Command Reference 3-45

CHOOSE

Create User-Defined Choose Box Command: Creates a

user-defined choose box.

Level 3 Level 2

" prompt" {c ...

"prompt” { ¢y ...

Level1 — Level 2 Level 1

¢} Npos — obj or result s

Cn } Npos _ agn

Keyboard Access: I o

Affected by Flags: None

Remarks: CHOOSE creates a standard single-choice choose box

based on the following specifications.

Variable Function

“prompt”

{C1 Cn}

Npos

A message that appears at the top of chooqe

box. If “prompt” is an empty string (“”), no

message is displayed.

Definitions that appear within the choose

box. A choice definition (¢;) can have two
formats.

m obj, any object.

u { Objdisplay 0bjresuls }a the object to be

displayed followed by the result returned to

the stack if that object is selected.

The position number of an item definition.

This item is highlighted when the choose box

appears. If np,,=0, no item is highlighted,

and the choose box can be used to view items

only.

If you choose an item from the choose box and press

=

[if
CHOOSE returns the result (or the object itself if no result is

3-46 Command Reference

%CH

specified) to level 2 and 1 to level 1. If you press CHHGL, CHOOSE

returns &. Also, if n,0,=0, CHOOSE returns &.

Example: CHOOSE withthe following three lines on the display.

i B
lst 1o

Inverse Funct 1.
Animate Taulor

Related Commands: INFORM, NOVAL

%CH

Percent Change Function: Returns the percent change from z (level

2) to y (level 1) as a percentage of z.

{}

Level 2 Level 1 — Level 1

y — 100(y—x)/x

'symb' — '%CH(x,symb)"

'symb' X — '%CH(symb,x)"

'symb, 'symb, " — '%CH(symb, ,symb,)"

x_unit y_unit — 100(y_unit—x_unit)/x_unit

x_unit 'symb' — "%CH(x_unit,symb)"

‘ 'symb' Xx_unit — "%CH(symb,x_unit)'

Command Reference 3-47

%CH

Keyboard Access: (MTH) F

Affected by Flags: Numerical Results (—=3)

%OH

Remarks: If both arguments are unit objects, the units must be
consistent with each other. The dimensions of a unit object are
dropped from the result, but units are part of the calculation.

For more information on using temperature units with arithmetic
functions, refer to the keyword entry for 4.

 Examples: i_

represents an increase of 400% over 1 m.

= %EH returns

‘M returns S,

Related Commands: %, %T

CHR

Character Command: Returns a string representing the HP 48
character corresponding to the character code n.

Level 1 - Level 1 T

 n — " string” ’

Keyboard Access:

(R)(CHARS) CHE

Affected by Flags: None

 PRG

Remarks: The character codes are an extension of ISO 8859/1.
Codes 128 through 159 are unique to the HP 48. See the entry for
NUM for a complete list of characters and character codes.

The default character = is supplied for all character codes that are not
part of the normal HP 48 display character set.

3-48 Command Reference

CKSM

Character code 0 is used for the special purpose of marking the end

of the command line. Attempting to edit a string containing this

character causes the error Car 't Edit CHECE.

You can use the CHARS application to find the character code for any

character used by the HP 48. See “Keying in Special Characters” in

chapter 2 of the HP 48 User’s Guide.

Related Commands: NUM, POS, REPL, SIZE, SUB

CKSM

Checksum Command: Specifies the error-detection scheme.

{}

Level 1 - Level 1

n checksum

Keyboard Access: (+)(1/0) IIFHE

Affected by Flags: None

Remarks: Legal values for ncpecksum are as follows:

m 1: 1-digit arithmetic checksum.

m 2: 2-digit arithmetic checksum.

m 3: 3-digit cyclic redundancy check (default).

The CKSM specified is the error-detection scheme that will be

requested by KGET, PKT, or SEND. If the sender and receiver

disagree about the request, however, then a 1-digit arithmetic

checksum will be used.

IR transmission should use checksum type 3.

Related Commands: BAUD, PARITY, TRANSIO

Command Reference 3-49

CLEAR

Clear Command: Removes all objects from the stack.

Leveln ... Level 1 - Leveln ... Level 1

objn ... obj; — J

Keyboard Access: ()(CLEAR)

Affected by Flags: None

Remarks: To recover a cleared stack, press () (UNDO) before
executing any other operation. There is no programmable command
to recover the stack.

Related Commands: CLVAR, PURGE

CLKADJ

Adjust System Clock Command: Adjusts the system time by z
clock ticks, where 8192 clock ticks equal 1 second.

{}

Level 1 - Level 1

X —

Keyboard Access: ()(TIME) (NXT) (NXT) ©

Affected by Flags: None

Remarks: If z is positive, z clock ticks are added to the system time.
If z is negative, z clock ticks are subtracted from the system time.

Example: Alxt decrements the system time by 2.5
seconds.

3-50 Command Reference

CLOSEIO

Related Commands: —TIME

CLLCD

Clear LCD Command: Clears (blanks) the stack display.

Keyboard Access: oHT CELER

Affected by Flags: None

Remarks: The menu labels continue to be displayed after execution

of CLLCD.

When executed from a program, the blank display persists only until

the keyboard is ready for input. To cause the blank display to persist

until a key is pressed, execute FREEZE after executing CLLCD.

(When executed from the keyboard, CLLCD automatically freezes the

display.)

Example: Evaluating # CLLCE ¥ FREEZE ® blanks the display

(except the menu labels), then freezes the entire display.

Related Commands: DISP, FREEZE

CLOSEIO
Close 1/0 Port Command: Closes the serial port and the IR port,

and clears the input buffer and any error messages for KERRM.

Keyboard Access: (#)(1/0) CLOSE

Affected by Flags: None

Remarks: When the HP 48 turns off, it automatically closes the

serial and IR ports, but does not clear KERRM. Therefore, CLOSEIO

is not needed to close the ports, but can conserve power without

turning off the calculator.

Executing HP 48 Kermit protocol commands automatically clears

the input buffer; however, executing non-Kermit commands (such as

SRECV and XMIT) does not.

Command Reference 3-51

CLOSEIO

CLOSEIO also clears error messages from KERRM. This can be useful
when debugging.

Related Commands: BUFLEN, OPENIO

CLz
Clear Sigma Command: Purges the current statistics matrix
(reserved variable YDAT).

Keyboard Access: ()(STAT) @i

Affected by Flags: None

Related Commands: RCLY, STOX, 4+, ©—

CLTEACH

Clear Teaching Examples Command: Removes the EXAMPLES
subdirectory and its contents from the HOME directory.

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Related Commands: TEACH

CLUSR

Clear Variables Command: Provided for compatibility with the HP

28. CLUSR is the same as CLVAR. See CLVAR.

3-52 Command Reference

CNRM

CLVAR

Clear Variables Command: Purges all variables and empty

subdirectories in the current directory.

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Related Commands: CLUSR, PGDIR, PURGE

CNRM

Column Norm Command: Returns the column norm (one-norm) of

the array argument.

{1}

Level 1 = Level 1

[array] - Xcolumnnorm

Keyboard Access: i

Affected by Flags: None

Remarks: The column norm of a matrix is the maximum (over all
columns) of the sum of the absolute values of all elements in each

column. For a vector, the column norm is the sum of the absolute

values of the vector elements. For complex arrays, the absolute value

of a given element (z, y) is \/m

Related Commands: CROSS, DET, DOT, RNRM

Command Reference 3-53

—COL

Matrix to Columns Command: Transforms a matrix into a series
of column vectors and returns the vectors and a column count, or
transforms a vector into its elements and returns the elements and an
element count.

{}

Level 1 — Level n+1 ... Level 2 Level 1

[[matrix]] — [vector]o4 [vector].o Neolcount

[vector] — element, element, Nglementcount

Keyboard Access: (MTH) FHATE

Affected by Flags: None

Remarks: —COL introduces no rounding error.

Related Commands: COL—, —ROW, ROW—

COL+

Insert Column Command: Inserts an array (vector or matrix) into
a matrix (or one or more elements into a vector) at the position
indicated by ni,4ex, and returns the modified array.

{}

Level 3 Level 2 Level 1 — Level 1

[[matrix 11, [matrix], M0 dex — [[matrix 15

[[matrix 1], [vector I.oiumn 0 dex — [[matrix 1],

[vector], Nglement Mndex - [vector],

Keyboard Access: (MTH) i

Affected by Flags: None

3-54 Command Reference

COL-

Remarks: The inserted array must have the same number of rows as

the target array.

Ningex 18 Tounded to the nearest integer. The original array is

redimensioned to include the new columns or elements, and the

elements at and to the right of the insertion point are shifted to the
right.

Related Commands: COL-—, CSWP, ROW+, ROW—

COL-

Delete Column Command: Deletes column n of a matrix (or element
n of a vector), and returns the modified matrix (or vector) and the
deleted column (or element).

{}

Level 2 Level 1 — Level 2 Level 1

[[matrix 1], Neoiumn — [[matrix 1], [vector 1.oiumn

[vector 1, Nolement — [vector], element,

Keyboard Access: MATE COL £0l-

Affected by Flags: None

Remarks: n is rounded to the nearest integer.

Related Commands: COL+, CSWP, ROW+4, ROW—

Command Reference 3-55

COL—

Columns to Matrix Command: Transforms a series of column vectors

and a column count into a matrix containing those columns, or

transforms a sequence of numbers and an element count into a vector

with those numbers as elements.

Level n+1 ... Level 2 Level 1 — Level 1

[vector] [vector]columnn cotumncount [[matrix]

element; element, n

columnl

 elementcount [VeCtor]

Keyboard Access: (MTH) I

Affected by Flags: None

Remarks: All vectors must have the same length. The column or

element count is rounded to the nearest integer.

Related Commands: —COL, —ROW, ROW—

COLCT

Collect Like Terms Command: Simplifies an algebraic expression or

equation by “collecting” like terms.

{}

Level 1 — Level 1

'symb, — 'symb, "

X — X

x, v — x,)

Keyboard Access: (e)(SYMBOLIC)

Affected by Flags: None

3-56 Command Reference

COoLZ

Remarks: COLCT operates separately on the two sides of an

equation, so that like terms on opposite sides of the equation are not

combined.

Examples: ‘&+ERFCIE: T COLCT returns &, 715

PSRt COLCT returns flddnt

' T returns ' 1§

LOT returns FESC -
LT returns P adEERSEEY

Related Commands: EXPAN, ISOL, QUAD, SHOW

COLz
Sigma Columns Command: Specifies the independent-variable and

dependent-variable columns of the current statistics matrix (the
reserved variable XDAT).

{}

Level 2 Level 1 — Level 1

 Xcol Xycol

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: COLX combines the functionality of XCOL and YCOL. It

is included in the HP 48 for compatibility with the HP 28S.

The independent-variable column number z,.., 1s stored as the first

parameter in the reserved variable XPAR (the default is 1). The
dependent-variable column number z,.o, is stored as the second

parameter in XPAR (the default is 2).

COLY accepts and stores noninteger real numbers, but subsequent

commands that use these two parameters in ¥PAR will cause errors.

Command Reference 3-57

COoLZ

Example: t sets column 2 in YDAT as the independent-
variable column, sets column 5 as the dependent-variable column, and

stores i and % as the first and second elements in ¥PAR.

Related Commands: BARPLOT, BESTFIT, CORR, COV,

EXPFIT, HISTPLOT,LINFIT, LOGFIT, LR, PREDX, PREDY,
PWRFIT, SCATRPLOT, XCOL, YCOL

COMB

Combinations Function: Returns the number of possible

combinations of n items taken mat a time.

{}

Level 2 Level 1 — Level 1

n m — Cn ,m

'symby ' m — 'COMB(symby,, m)"

n 'symbm ' — 'COMB(n, symbm)'

'symby ' 'symbpm, ! — 'COMB(symby , symbm)"

Keyboard Access: (MTH) FEOE DOHE

Affected by Flags: Numerical Results (—3)

Remarks: The following formula is used to calculate Cp m .

!n.
v

Cn,?n -
ml(n — mT!

The arguments n and m must each be less than 1012,

Related Commands: PERM, !

3-58 Command Reference

CON

CON
Constant Array Command: Returns a constant array, defined as an

array whose elements all have the same value.

Level 2 Level 1 — Level 1

{ Neorumns + Zconstant - [vector.gnstant

{ Prows Megiymans Zeonstant - ([matrix.qnstant 1l

[R-array] Xconstant - [R-array.qnstant |

[Carray] Zconstant - [C-array 5nstant |

‘name' Zeconstant -

Keyboard Access: MATE MAKE COM

Affected by Flags: None

Remarks: The constant value is a real or complex number taken

from level 1. The resulting array is either a new array, or an existing

array with its elements replaced by the constant, depending on the

object 1n level 2.

m Creating a new array: If level 2 contains a list of one or two

integers, CON returns a new array. If the list contains a single

integer ncyiymns, CON returns a constant vector with n elements.

If the list contains two integers nrows and Moy mas, CON returns a

constant matrix with n rows and m columns.

m Replacing the elements of an existing array: If level 2 contains an

array, CON returns an array of the same dimensions, with each

element equal to the constant. If the constant is a complex number,

the original array must also be complex.

If level 2 contains a name, the name must identify a variable that

contains an array. In this case, the elements of the array are

replaced by the constant. If the constant is a complex number, the

original array must also be complex.

3+ & [0returns the matrix [

Examples:

returns the complex vector

Command Reference 3-59

CON

Related Commands: IDN

COND

Condition Number Command: Returns the 1-norm (column norm)
condition number of a square matrix.

i}

Level 1 — Level 1

([matrix]]“X” - Xconditionnumber

Keyboard Access: MATE HOEM COHD

Affected by Flags: None

Remarks: The condition number of a matrix is the product of the

norm of the matrix and the norm of the inverse of the matrix. COND

uses the 1-norm and computes the condition number of the matrix

without computing the inverse of the matrix.

The condition number expresses the sensitivity of the problem of

solving a system of linear equations having coefficients represented by

the elements of the matrix (this includes inverting the matrix). That
is, it indicates how much an error in the inputs may be magnified in

the outputs of calculations using the matrix.

In many linear algebra computations, the base 10 logarithm of the

condition number of the matrix is an estimate of the number of digits

of precision that might be lost in computations using that matrix. A

reasonable rule of thumb is that the number of digits of accuracy in

the result is approximately MIN(12,15—log, o (COND)).

Example: The following program computes the above rule of thumb

for the number of accurate digits:

3-60 Command Reference

CONIC

Related Commands: SNRM, SRAD, TRACE

CONIC
Conic Plot Type Command: Sets the plot type to CONIC.

Keyboard Access: («)(PLOT)F1

Affected by Flags: None

Remarks: When the plot type is CONIC, the DRAW command

plots the current equation as a second-order polynomial of two real

variables. The current equation is specified in the reserved variable

EQ. The plotting parameters are specified in the reserved variable

PPAR, which has this form:

CTmins Ymin+ Tmax: Ymax: ndep res aves ptype depend

For plot type CONIC, the elements of PPAR are used as follows:

B ST, Ymin 4 18 @ complex number specifying the lower left corner

of PICT (the lower left corner of the display range). The default

value i ¢~

B {Zmax, Ymax1s a complex numberspecifying the upper right

corner of PICT (the upper right corner of the display range). The

default value is ¢ S

m :ndep is a name specifying the independent variable, or a list

containing such a name and two numbers specifying the minimum

and maximumvalues for the independent variable (the plotting

range). The default value is X.

m res is a real numberspecifying the interval (in user-unit

coordinates) between plotted values of the independent variable, or

a binary integer specifying the interval in pixels. The default value

is &, which specifies an interval of 1 pixel.

m ares is a complex number specifying the user-unit coordinates of the

intersection of the horizontal and vertical axes, or a list containing

such a number and two strings specifying labels for the horizontal

and vertical axes. The default value is :

Command Reference 3-61

CONIC

m ptype 1s a command name specifying the plot type. Executing the

command CONIC places the command name CONIC in PPAR.

m depend is a name specifying the dependent variable. The default

value is Y.

The current equation is used to define a pair of functions of

the independent variable. These functions are derived from the

second-order Taylor’s approximation to the current equation. The

minimum and maximum values of the independent variable (the

plotting range) can be specified in indep; otherwise, the values in

STmin, Umin t and CZmax, Umax ¢ (the display range) are used. Lines

are drawn between plotted points unless flag —31 is set.

Related Commands: BAR, DIFFEQ, FUNCTION, GRIDMAP,

HISTOGRAM, PARAMETRIC, PARSURFACE, PCONTOUR,

POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,

YSLICE

CONJ

Conjugate Analytic Function: Conjugates a complex number or a

complex array.

{1}

Level 1 - Level 1 fi

X — X

‘ (x, ¥) - x, =)

[R-array] — [R-array]

[C-array], — [C-array 1,

‘ 'symb' — 'CONJ(symb)' 1

Keyboard Access: BHEL. (NXT

Affected by Flags: Numerical Results (—3)

3-62 Command Reference

CONST

Remarks: Conjugation is the negation (sign reversal) of the
imaginary part of a complex number. For real numbers and real

arrays, the conjugate is identical to the original argument.

Example: [o3 2 1 QMG returns [O3, -4y OF-2 1

A square matrix A containing complex elements is said to be

Hermitian if AY = A, where A" is the same as a normal transpose
except that the complex conjugate of each element is used. The

following program returns 1 if the input matrix is Hermitian, and a &

if it is not.

| SAME

Related Commands: ABS, IM, RE, SCONJ, SIGN

CONLIB

Open Constants Library Command: Opens the Constants Library

catalog.

Keyboard Access: («)(EQLIB) Uil ITE COHL I

Affected by Flags: None

Related Commands: CONST

CONST

Constant Value Command: Returns the value of a constant.

{}

l Level 1 — Level 1

J ‘name’ — X

Keyboard Access: ()(EQLIB) Uil IE kS

Affected by Flags: Units Type (60), Units Usage (61)

Command Reference 3-63

CONST

Remarks: CONST returns the value of the specified constant. It

chooses the unit type depending on flag 60 (ST if clear, English if set),

and uses the units depending on flag 61 (uses units if clear, no units if

set).

See “Using the Constants Library” in chapter 25 of the HP 48 User’s

Guide for a list of the constants available in the HP 48’s Constants

Library.

Related Commands: CONLIB

CONT

Continue Program Execution Command: Resumes execution of a
halted program.

Keyboard Access: («)(CONT)

Affected by Flags: None

Remarks: Since CONT is a command, it can be assigned to a key or

to a custom menu.

Example: The program

PEnber He o

displays a prompt message, builds a menu with the CONT command

assigned to the first menu key, and halts the program for data input.

After entering data, pressing ©{iHT resumes program execution.

(Note that pressing (4q)(CONT) is equivalent to pressing)

Related Commands: HALT, KILL, PROMPT

3-64 Command Reference

CORR

CONVERT

Convert Units Command: Converts a source unit object to the

dimensions of a target unit.

{1

Level 2 Level 1 - Level 1

Xy —UnitSsoyrce xz,unn.“starget — x3_unlifstarget

Keyboard Access: («)(UNITS)

Affected by Flags: None

Remarks: The source and target units must be compatible. The

number part z, of the target unit object is ignored.

Related Commands: UBASE, UFACT, —UNIT, UVAL

CORR

Correlation Command: Returns the correlation coefficient of the

independent and dependent data columns in the current statistics

matrix (reserved variable ¥DAT).

[Level 1 - Level 1

- Xcorrelation

Keyboard Access: (&)(STAT) FIT CORER

Affected by Flags: None

Remarks: The columns are specified by the first two elements in the

reserved variable ¥PAR, set by XCOL and YCOL, respectively. If

YPAR does not exist, CORR creates it and sets the elements to their

default values (1 and 2).

Command Reference 3-65

CORR

The correlation is computed with the following formula:

Z?:l(xinl - f711)($i712 - Eflg)

\/Z:-;l(minl — fnl)zz?:l(wmz - fng)2

where x;,, 1s the ¢th coordinate value in column n,, z;,, is the ith

coordinate value in the column n,, Z,, is the mean of the data in

column ny, Z,, is the mean of the data in column n,, and n is the

number of data points.

Related Commands: COLY, COV, PREDX, PREDY, XCOL,
YCOL

Cos

Cosine Analytic Function: Returns the cosine of the argument.

{}

Level 1 - Level 1

z — cos z

'symb' — 'COS(symb)'

X_unity o uiar — cos (x,unitangular)
Keyboard Access: (Cos

Affected by Flags: Numerical Results (—3), Angle Mode (—17, —18)

Remarks: For real arguments, the current angle mode determines

the number’s interpretation as an angle, unless the angular units are

specified.

For complex arguments, cos(z + ty) = cosz coshy — ¢ sinz sinhy.

If the argument for COS is a unit object, then the specified angular

unit overrides the angle mode to determine the result. Integration and

differentiation, on the other hand, always observe the angle mode.

Therefore, to correctly integrate or differentiate expressions containing

COS with a unit object, the angle mode must be set to Radians (since

this is a “neutral” mode).

3-66 Command Reference

cov

Related Commands: ACOS, SIN, TAN

COSH

Hyperbolic Cosine Analytic Function: Returns the hyperbolic cosine

of the argument.

{}

Level 1 — Level 1

z — cosh z

'symb' — 'COSH(symb)'
 Keyboard Access:

Affected by Flags: Numerical Results (—3)

Remarks: For complex arguments, cosh(z + ty) = coshz cosy + ¢

sinhz siny.

Related Commands: ACOSH, SINH, TANH

cov

Covariance Command: Returns the sample covariance of the
independent and dependent data columns in the current statistics

matrix (reserved variable YDAT).

Level 1 — Level 1

Xcovariance

Keyboard Access: (q)(STAT) FIT

Command Reference 3-67

cov

Affected by Flags: None

Remarks: The columns are specified by the first two elements in

reserved variable XPAR, set by XCOL and YCOL respectively. If

YPAR does not exist, COV creates it and sets the elements to their

default values (1 and 2).

The covariance is calculated with the following formula:

n

S(s(O)Lin, — Tny \Tiny, — Tnn — 1 1 1 2 2

i=1

where z;,,, 1s the 1th coordinate value in column n,, x5, is the ith

coordinate value in the column n,, T, is the mean of the data in

column n,, #,, is the mean of the data in column n,, and n is the

number of data points.

Related Commands: COLX, CORR, PCOV, PREDX, PREDY,
XCOL, YCOL

CR
Carriage Right Command: Prints the contents, if any, of the printer
buffer.

Keyboard Access: («)(I/O)FRIMT LR

Affected by Flags: Double-Spaced Printing (—37), Printing Device

(—34), 1/0 Device (—33)

If flag —34 is set (printer output directed to the serial port), flag —33

must be clear.

Remarks: When using the HP 82240B Infrared Printer (flag —34

clear), CR leaves the printhead on the right end of the just printed

line.

When printing to the serial port (flag —34 set), CR sends to the

printer a string that encodes the line termination method. The default

termination method is carriage-return/linefeed. The string is the

fourth parameter in the reserved variable PRTPAR.

Related Commands: DELAY, OLDPRT, PRLCD, PRST, PRSTC,

PRVAR, PR1

3-68 Command Reference

CROSS

CRDIR

Create Directory Command: Creates an empty subdirectory with
the specified name within the current directory.

{}

Level 1 - Level 1

‘global' —

Keyboard Access: (e)(MEMORY) IR CREIR

Affected by Flags: None

Remarks: CRDIR does not change the current directory; evaluate

the name of the new subdirectory to make it the current directory.

Related Commands: HOME, PATH, PGDIR, UPDIR

CROSS

Cross Product Command: CROSS returns the cross product
C = A x B of vectors A and B.

{}

Level 2 Level 1 - Level 1

[vector], [vector 1g — [vector Jox g

Keyboard Access: WELTR CROES

Affected by Flags: None

Remarks: The arguments must be vectors having two or three

elements, and do not both need the same number of elements. (The

HP 48 automatically converts a two-element argument [d; d, Itoa

three-element argument [d; d, & 1.)

Command Reference 3-69

CROSS

Related Commands: CNRM, DET, DOT, RNRM

CSwpP

Column Swap Command: Swaps columns ¢ and j of the argument
matrix and returns the modified matrix, or swaps elements 7 and j of

the argument vector and returns the modified vector.

{}

Level 3 Level 2 Level 1 — Level 1

[[matrix]]1 Neotumni Neoium nj - [[matrix]]2

[vector], Nalementi Nelementj - [vector],

 Keyboard Access: e

Affected by Flags: None

Remarks: Column numbers are rounded to the nearest integer.
Vector arguments are treated as row vectors.

Related Commands: COL+, COL—, RSWP

CYLIN

Cylindrical Mode Command: Sets Cylindrical coordinate mode.

Keyboard Access:

(=) FRGES Byl

YELTIRE ENLIH

Affected by Flags: None

Remarks: CYLIN clears flag —15 and sets flag —16, and displays the

3-70 Command Reference

C—R

In Cylindrical mode, vectors are displayed as polar components.

Therefore, a 3D vector would appear as [R A.0 Z].

Related Commands: RECT, SPHERE

C—PX

Complex to Pixel Command: Converts the specified user-unit
coordinates to pixel coordinates.

{1

Level 1 - Level 1 T

x, ¥ — { #n #m} ‘

Keyboard Access: FICT CHFH

Affected by Flags: None

Remarks: The user-unit coordinates are derived from the

(Zemin, Ymin) a0d (Zmax, Ymax) parameters in the reserved variable

PPAR.

Related Commands: PX—C

C—R

Complex to Real Command: Separates the real and imaginary parts

of a complex number or complex array.

{}

’ Level 1 - Level 2 Level 1

N x. ¥ - X y

‘ [C-array] — [R-array 1, [R-array 15

Command Reference 3-71

C—R

Keyboard Access:

L FEEET(PRG) TYFE

Affected by Flags: None

Remarks: The result in level 2 represents the real part of the
complex argument. The result in level 1 represents the imaginary part
of the complex argument.

Related Commands: R—C, RE, IM

DARCY

Darcy Friction Factor Function: Calculates the Darcy friction factor
of certain fluid flows.

{1

Level 2 Level 1 - Level 1

Te/D Yre - XDarcy

Keyboard Access: («)(EQ LIB) i

Affected by Flags: None

Remarks: DARCY calculates the Fanning friction factor and

multiplies it by 4. z./p is the relative roughness—the ratio of the

conduit roughness to its diameter. yg, is the Reynolds number.

The function uses different computation routines for laminar flow

(e < 2100) and turbulent flow (Re > 2100). zesp and yg. must be

real numbers or unit objects that reduce to dimensionless numbers,

and both numbers must be greater than 0.

Related Commands: FANNING

3-72 Command Reference

—DATE

DATE
Date Command: Returns the system date to level 1.

Level 1 — Level 1

— date

Keyboard Access: («)(TIME) [

Affected by Flags: Date Format (—42)

Example: If the current date is May 12, 1990, if flag 42is clear,

and if the display mode is Standard, 'ATE returns 5. (The

trailing zeros are dropped.)

Related Commands: DATE+, DDAYS, TIME, TSTR

—DATE

Set Date Command: Sets the system date to date.

{}

Level 1 — Level 1

date —

Keyboard Access: ()(TIME) -

Affected by Flags: Date Format (—42)

Remarks: date has the form MM.DDYYYY or DD.MMYYYY,

depending on the state of flag —42. MM is month, DD is day, and

YYYY is year. If YYYYis not supplied, the current specification for

the year is used. The range of allowable dates is January 1, 1991 to

December 31, 2090.

Command Reference 3-73

—DATE

Example: If flag —42 is set and the current system year is 1995, then

22,87 +DATE sets the system date as July 28, 1995.

Related Commands: —TIME

DATE+

Date Addition Command: Returns a past or future date, given a
date in level 2 and a number of days in level 1.

£}

' Level 2 Level 1 - Level 1

‘ date; Xdays — datepeyw

Keyboard Access: (&)(TIME) BRTE+

Affected by Flags: Date Format (—42)

Remarks: If z,,,, is negative, DATE+ calculates a past date. The

range of allowable dates is October 15, 1582, to December 31, 9999.

Related Commands: DATE, DDAYS

DBUG

Debug Operation: Starts program execution, then suspends it as if

HALT were the first program command.

Level 1 — Level 1

 & program > or 'program name' —

Keyboard Access: FLH DELG

3-74 Command Reference

DEC

Affected by Flags: None

Remarks: DBUG is not programmable.

Related Commands: HALT, NEXT, SST, SST|

DDAYS

Delta Days Command: Returns the number of days between two

dates.

{1}
]

Level 2 Level 1 — Level 1

date; date, — Xdays

Keyboard Access: («)(TIME) DlAYE

Affected by Flags: Date Format (—42)

Remarks: If the level 2 date is chronologically later than the level 1

date, the result is negative. The range of allowable dates is October

15, 1582, to December 31, 9999.

Related Commands: DATE, DATE+

DEC
Decimal Mode Command: Selects decimal base for binary integer

operations. (The default base is decimal.)

Keyboard Access: ERZE DEC

Affected by Flags: Binary Integer Wordsize (=5 through —10),
Binary Integer Base (—11, —12)

Remarks: Binary integers require the prefix #. Binary integers

entered and returned in decimal base automatically show the suffix

A. If the current base is not decimal, then you can enter a decimal

Command Reference 3-75

DEC

number by ending it with . It will be displayed in the current base

when it is entered.

The current base does not affect the internal representation of binary

integers as unsigned binary numbers.

Related Commands: BIN, HEX, OCT, RCWS, STWS

DECR

Decrement Command: Takes a variable on level 1, subtracts 1,

stores the new value back into the original variable, and returns the

new value to level 1.

{}

Level 1 — Level 1

'name' — Xnew

Keyboard Access: («)(MEMORY)

Affected by Flags: None

Remarks: The contents of name must be a real number.

 R DECEreturnsS, 7.Example: If 55,7

The following program counts down from 100 to 0 and leaves the
integers 100 to 0 on the stack:

Related Commands: INCR

3-76 Command Reference

DEFINE

DEFINE

Define Variable or Function Command: Stores the expression on the

right side of the = in the variable specified on the left side, or creates a

user-defined function.

{}

Level 1 — Level 1

'name=exp' —

'name(name, ... name,)=exp(name; ... name,)' —
Keyboard Access: (+)(DEF)

Affected by Flags: Numerical Results (—3)

For arguments of the form *name=exp ', if flag —3 is set, ezpression

will be evaluated to a number before it is stored in name. (If ezp

contains a formal variable, DEFINE will error if flag —3 is set.)

Remarks: If the left side of the equation is name only, DEFINE

stores ezp in the variable name.

If the left side of the equation is name followed by parenthetical

arguments name; ... name,, DEFINE creates a user-defined

function and stores it in the variable name.

:' in varlable A.

ned function A. The

 Examples:

PRY S reates a user-defi

contents of A is the program # + &% FEY

Related Commands: STO

Command Reference 3-77

DEG

Degrees Command: Sets Degrees angle mode.

Keyboard Access: («)(MODES)

Affected by Flags: None

Remarks: DEG clears flags —17 and —18, and clears the Ffif and
il annunciators.

In Degrees angle mode, real-number arguments that represent angles
are interpreted as degrees, and real-number results that represent
angles are expressed in degrees.

Related Commands: GRAD, RAD

DELALARM

Delete Alarm Command: Deletes the alarm specified in level 1.

{}

Level 1 - Level 1 ‘

Mindex -

Keyboard Access: («)(TIME) #il

Affected by Flags: None

Remarks: If nj,4., is 0, all alarms in the system alarm list are
deleted.

Related Commands: FINDALARM, RCLALARM, STOALARM

3-78 Command Reference

DELAY

DELAY

Delay Command: Specifies how many seconds the HP 48 waits

between sending lines of information to the printer.

{1

Level 1 — Level 1

 Xdelay

Keyboard Access: (e)(1/0)}

Affected by Flags: Printing Device (—34) and 1/O Device (—33)

Setting flag —34 directs printer output to the serial port. In this case,

flag —33 must be clear.

If flag —34 is set and transmit pacing is enabled (nonzero) in reserved

variable JOPAR, then XON/XOFF handshaking controls data

transmission and the delay setting has no effect.

Remarks: 1z, specifies the delay time in seconds. The default

delay is 1.8 seconds. The maximum delay is 6.9 seconds. (The sign of

)
The delay setting is the first parameter in the reserved variable

PRTPAR.

Tgelay 1S ignored, so —4 ¥ s equivalent to # DEL

A shorter delay setting can be useful when the HP 48 sends multiple

lines of information to your printer (for example, when printing a

program). To optimize printing efficiency, set the delay just longer

than the time the printhead requires to print one line of information.

If you set the delay shorier than the time to print one line, you may

lose information. Also, as the batteries in the printer lose their charge,

the printhead slows down, and, if you have previously decreased

the delay, you may have to increase it to avoid losing information.

(Battery discharge will not cause the printhead to slow to more than

the 1.8-second default delay setting.)

Related Commands: CR, OLDPRT, PRLCD, PRST, PRSTC,

PRVAR, PR1

Command Reference 3-79

DELKEYS

Delete Key Assignments Command: Clears user-defined key

assignments.

Level 1 — Level 1

Xkey —

{ Xkeyl Xkeyn } -

0 —

ISI —

Keyboard Access: («)(MODES) kE

Affected by Flags: User-Mode Lock (—61) and User Mode (—62)
affect the status of the user keyboard.

Remarks: The argument z,,, is a real number rc.p specifying the

key by its row number, its column number, and its plane (shift). For

a defimition of plane, see ASN.

Specifying & for z,., clears all user key assignments and restores the

standard key assignments.

Specifying = as the argument for DELKEYS suppresses all standard

key assignments on the user keyboard. This makes keys without

user key assignments inactive on the user keyboard. (You can make

exceptions using ASN, or restore them all using STOKEYS.) If you

are stuck in User mode—probably with a “locked” keyboard—because

you have reassigned or suppressed the keys necessary to cancel User

mode, do asystem halt (“warm start”): press and hold (ON) and the

C key simultaneously, releasing the C key first. This cancels User

mode.

Deleted user key assignments still take up from 2.5 to 15 bytes of

memory each. You can free this memory by packing your user key

assignments by executing Fi: 5

Related Commands: ASN, RCLKEYS, STOKEYS

3-80 Command Reference

DEPND

DEPND
Dependent Variable Command: Specifies the dependent variable
(and its plotting range for TRUTH plots).

Level 2 Level 1 — Level 1

'global' —

{ global } —

{ global ¥i3:t Yeng | —

{ Ystart Yena } -

Ystart Yena -

Keyboard Access: («)(PLOT) FFHE DEFH

Affected by Flags: None

Remarks: The specification for the dependent variable name and its

plotting range is stored in the reserved variable PPAR as follows:

If the argument is a global variable name, that name replaces the

dependent variable entry in PPAR.

If the argument is a list containing a global name, that name

replaces the dependent variable name but leaves unchanged any

existing plotting range.

If the argument is a list containing a global name and two real

numbers, or alist containing a name, array, and real number, that

list replaces the dependent variable entry.

If the argument is a list containing two real numbers, or two real

numbers from levels 1 and 2, those two numbers specify a new

plotting range, leaving the dependent variable name unchanged.

(LASTARG returns alist, even if the two numbers were entered

separately.)

The default entry is Y.

The plotting range for the dependent variable is meaningful only for

plot type TRUTH, where it restricts the region for which the equation

Command Reference 3-81

DEPND

is tested, and for plot type DIFFEQ, where it specifies the initial

solution value and absolute error tolerance.

Related Commands: INDEP

DEPTH

Depth Command: Returns areal number representing the number of
objects present on the stack (before DEPTH was executed).

Level 1 - Level 1

Keyboard Access: (&)(STACK) [

Affected by Flags: None

DET

Determinant Function: Returns the determinant of a square matrix.

{1}

Level 1 - Level 1

 [[matrix]] - Xdeterminant

 Keyboard Access:

Affected by Flags: Tiny Element (—54)

NXT

Remarks: The argument matrix must be square. DET computes

the determinant of 1x1 and 2x2 matrices directly from the defining

expression for the determinant. DET computes the determinant of

a larger matrix by computing the Crout LU decomposition of the

3-82 Command Reference

DET

matrix and accumulating the product of the decomposition’s diagonal

elements.

Since floating-point division is used to do this, the computed

determinant of an integer matrix is often not an integer, even though

the actual determinant of an integer matrix must be an integer.

DET corrects this by rounding the computed determinant to an

integer value. This technique is also used for noninteger matrices with

determinants having fewer than 15 nonzero digits: the computed

determinant is rounded at the appropriate digit position to restore

some or all of the accuracy lost to floating-point arithmetic.

This refinement technique can cause the computed determinant to

exhibit discontinuity. To avoid this, you can disable the refinement by

setting flag —bH4.

Example: For a square matrix A, the minor of element a;; is the

determinant of the submatrix that remains after deleting row ¢ and

column j from the original matrix. Given a square matrix in level 3, z

in level 2, and j in level 1, the following program, MINOR determines

the minor of the submatrix:

 o= DREOF BET

 For example, entering LD 1 & = 30 4 5 ¢

returng =g,

Related Commands: CNRM, CROSS, DOT, RNRM

Command Reference 3-83

DETACH

Detach Library Command: Detaches the library with the specified
number from the current directory. Each library has a unique number.

If a port number is specified, it is ignored.

{1

Level 1 - Level 1

Mipra ry

 :nport :nlibrary

Keyboard Access: («)(LIBRARY) i

Affected by Flags: None

Remarks: A RAM-based library object attached to the HOME

directory must be detached before it can be purged, whereas a library

attached to any other directory does not. Also, a library object

attached to a non-HOME directory is automatically detached (without

using DETACH) whenever a new library object is attached there.

Related Commands: ATTACH, LIBS, PURGE

DIAG—

Array to Matrix Diagonal Command: Takes an array and a specified

dimension and returns a matrix whose major diagonal elements are

the elements of the array.

Level 2 Level 1 — Level 1

[array]Oliagonals { dim } — [[matrix]]

Keyboard Access: (MTH)

Affected by Flags: None

: DIRG

3-84 Command Reference

—DIAG

Remarks: Real number dimensions are rounded to integers. If
a single dimension is given, a square matrix is returned. If two
dimensions are given, the proper order is { number of rows, number of

columns }. No more than two dimensions can be specified.

If the main diagonal of the resulting matrix has more elements than

the array, additional diagonal elements are set to zero. If the main

diagonal of the resulting matrix has fewer elements than the array,

extra array elements are dropped.

Related Commands: —DIAG

—DIAG

Matrix Diagonal to Array Command: Returns a vector that contains
the major diagonal elements of a matrix.

{1}

Level 1 = Level 1

[[matrix] — [vector]diagonals

Keyboard Access: HATE =DIAG

Affected by Flags: None

Remarks: The input matrix does not have to be square.

Related Commands: DIAG—

Command Reference 3-85

DIFFEQ

Differential Equation Plot Type Command: Sets the plot type to

DIFFEQ.

Keyboard Access: («)(PLOT) ¥

Affected by Flags: None

Remarks: When the plot type is DIFFEQ and the reserved variable

FQ does not contain alist, the initial value problem is solved and

plotted over an interval using the Runge-Kutta-Fehlberg (4,5) method.

The plotting parameters are specified in the reserved variable PPAR,

which has the following form:

CTmin: Ymint Ldmax: Umax: (ndep res axes ptype depend

For plot type DIFFEQ, the elements of PPAR are used as follows:

® T, Ymin 4 18 @ complex number specifying the lower left corner

of PICT (theIower left corner of the display range). The default
Value18 &~

B $Tmax, Ymax18 @ complex number specifying the upper right

corner of PICT (the upper rlght corner of the display range). The

default value is ©&, 5, 3, 23,

m indep is alist, © "X ' zy 7 ¥, containing a name that specifies the

independent variable, and two numbers that specify the initial and

final values for the independent variable. The default values for

these elements are © * X' & Tmax 4.

m 7es is a real number specifying the maximum interval, in user-unit

coordinates, between values of the independent variable. The

default value is &. If res does not equal zero, then the maximum

interval is res. If res equals zero, the maximum interval is

unlimited.

m azes 1s a list containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, a list specifying the tick-mark annotation, and two

strings specifying labels for the horizontal and vertical axes. If the

solution is real-valued, these strings can specify the dependent or

the independent variable; if the solution is vector valued, the strings

can specify a solution component:

o "0" specifies the independent variable (X)

3-86 Command Reference

DIFFEQ

o "1" specifies the dependent variable (1Y)
o "n" specifies a solution component Y,

If azes contains any strings other than "0", "1" or “n", the

DIFFEQ-plotter uses the default strings “0" and *1", and plots

the independent variable on the horizontal axis and the dependent

variable on the vertical.

m plype is a command name specifying the plot type. Executing the

command DIFFEQ places the command name DIFFEQ in PPAR.

m depend is alist, £ 'Y yp zgrr1or %, containing a name that

specifies the dependent variable (the solution), and two numbers

that specify the inital value of ¥ and the global absolute error

tolerance in the solution Y. The default values for these elements

are £ 'Y & @BEL

E@Q must define the right-hand side of the initial value problem

Y ' (X)=F(X,Y). Y can return a real value or real vector when
evaluated.

The DIFFEQ-plotter attempts to make the interval between values

of the independent variable as large as possible, while keeping the

computed solution within the specified error tolerance zgp7. This

tolerance may hold only at the computed points. Straight lines are

drawn between computed step endpoints, and these lines may not

accurately represent the actual shape of the solution. res limits the

maximum interval size to provide higher plot resolution.

On exit from DIFFEQ plot, the first elements of indep and depnd

(identifiers) contain the final values of X and Y, respectively.

If EQ contains alist, the inital value problemis solved and plotted

using a combination of Rosenbrock (3,4) and Runge-Kutta-Fehlberg
(4,5) methods. In this case DIFFEQ uses RRKSTEP to calculate yy,
and F@Q must contain two additional elements:

m The second element of F@Q must evaluate to the partial derivative

of Y' with respect to X, and can return a real value or real vector

when evaluated.

m The third element of FQ must evaluate to the partial derivative of

Y * with respect to Y, and can return a real value or a real matrix

when evaluated.

Command Reference 3-87

DIFFEQ

Related Commands: AXES, CONIC, FUNCTION, PARAMETRIC,

POLAR, RKFSTEP, RRKSTEP,TRUTH

DISP

Display Command: Displays 0bj in the nth display line.

{}

Level 2 Level 1 — Level 1

obj n —

Keyboard Access: OuT DIEE

Affected by Flags: None

Remarks: » < 1 indicates the top line of the display; n > 7 indicates

the bottom line.

To facilitate the display of messages, strings are displayed without

the surrounding " " delimiters. All other objects are displayed in

the same form as would be used if the object were in level 1 in the

multiline display format. If the object display requires more than

one display line, the display starts in line n, and continues down the

display either to the end of the object or the bottom of the display.

The object displayed by DISP persists in the display only until the

keyboard is ready for input. The FREEZE command can be used to

cause the object to persist in the display until a key is pressed.

Example: The program

% "EHTER 7 FREEZE HALT

Data Mow® 1 [i

 displays EMTER

entire display, and halts

Related Commands: FREEZE, HALT, INPUT, PROMPT

w1at the top of the display, “freezes” the

3-88 Command Reference

DO

DO

DO Indefinite Loop Structure Command: Starts DO ... UNTIL ...

END indefinite loop structure.

Level 1 - Level 1

DO —

UNTIL -

END T/F -

Keyboard Access:

Affected by Flags: None

Remarks: DO ... UNTIL ... END executes a loop repeatedly until

a test returns a true (nonzero) result. Since the test clause is executed
after the loop clause, the loop is always executed at least once. The

syntax is:

L loop-clause

L. test-clause EHMI

DO starts execution of the loop clause. UNTIL ends the loop clause

and begins the test clause. The test clause must return a test result to

the stack. END removes the test result from the stack. If its value is

zero, the loop clause is executed again; otherwise, execution resumes

following END.

Example: The following program counts down from 100 to 0 and

leaves the integers 100 to 0 on the stack:

Command Reference 3-89

DO

Related Commands: END, UNTIL, WHILE

DOERR

Do Error Command: Executes a “user-specified” error, causing a

program to behave exactly as if a normal error had occurred during

program execution.

{}

Level 1 — Level 1

Nerror —

#Nerror —

‘error" —

0 —

Keyboard Access: E

Affected by Flags: None

Remarks: DOERR causes a program to behave exactly as if a
normal error has occurred during program execution. The error

message depends on the argument provided to DOERR:

B Nerror OF #Merror display the corresponding built-in error message.

m "error" displays the contents of the string. (A subsequent execution
of ERRM returns "error®. ERRN returns # 1)

1 abandons program execution withoutdlsplaylng a message—&

= 1s equivalent to pressing (CANCEL).

Example: The following program takes a number from the stack and

returns an error if the number is greater than 10:

3-90 Command Reference

DOLIST

EHD

Related Commands: ERRM, ERRN, ERRO

DOLIST
Do to List Command: Applies commands, programs, or user-defined

functions to lists.

Level n...Level 3 Level 2 Level 1 — Level 1

{ list }; ... { list }q n & program>» — { results }

{ list }, ... { list }, n command — { results }

{ fist }; ... { list }, n name — { results }

{ list }; ... { list }n & program>» — { results }

{ list }; ... { list }n command — { results }

{ list }; ... { list }n name — { results }
Keyboard Access: LIST FROC DOLIE

Affected by Flags: None

Remarks: The number of lists, n, can be omitted when the level 1

argument is any of the following:

m A command.

m A program containing exactly one command (e.g. < DUP >>).

m A program conforming to the structure of a user-defined function.

The level 1 object can be a local or global name that refers to a

program or command.

All lists must be the same length [. The program is executed [times:

on the sth iteration, n objects each taken from the ¢th position in each

list are entered on the stack in the same order as in their original lists,

and the program is executed. The results from each execution are left

on the stack. After the final iteration, any new results are combined

into a single list.

Command Reference 3-91

DOLIST

 Example: 1 i

oA

Related Commands: DOSUBS, ENDSUB, NSUB, STREAM

DOSUBS

Do to Sublist Command: Applies a program or command to groups

of elements in a list.

Level 3 Level 2 Level 1 — Level 1

{ list }; n < program > — { list },

{ list }; n command — { list },

{ list }; n name — { list },

{ list }; & program > — { list },

{ list }; command — { list },

{ list }; name — { list },

 Keyboard Access: L]

Affected by Flags: None

Remarks: The real number n can be omitted when the level 1

argument is one of the following:

m A command.

m A user program containing a single command.

m A program with a user-defined function structure.

m A global or local name that refers to one of the above.

The first iteration uses elements 1 through n from the list; the second

iteration uses elements 2 through n+1; and so on. In general, the m?

iteration uses the elements from the list corresponding to positions m

through m+n—1.

During an iteration, the position of the first element used in that

iteration is available to the user using the command NSUB, and

the number of groups of elements is available using the command

3-92 Command Reference

DOSUBS

ENDSUB. Both of these commands return an Undefined Local Name

error if executed when DOSUBS is not active.

DOSUBS returns the Invalid User Function error if the level 1

argument is a user program that does not contain only one command

and does not have a user-defined function structure. DOSUBS also

returns the Moo sumert Cound error if the level 1 argument is

a command that does not accept 1 to b arguments of specific types

(DUP, ROT, or —LIST,for example).

Examples:

returns

Related Commands: DOLIST, ENDSUB, NSUB, STREAM

Command Reference 3-93

DOT

Dot Product Command: Returns the dot product A-B of two arrays

A and B, calculated as the sum of the products of the corresponding

elements of the two arrays.

{1}

Level 2 Level 1 - Level 1

[array A] [array B] — X

Keyboard Access: (MTH) ¥

Affected by Flags: None

LOT

Remarks: Both arrays must have the same dimensions.

Some authorities define the dot product of two complex arrays as the

sum of the products of the conjugated elements of one array with their

corresponding elements from the other array. The HP 48 uses the

ordinary products without conjugation. If you prefer the alternate

definition, apply CONJ to one or both arrays before using DOT.

Example: © !
+2 x5+ 3 x6).

Related Commands: CNRM, CROSS, DET, RNRM

 returns #2 (by calculating 1 x 4

DRAW

Draw Plot Command: Plots the mathematical datain the reserved

variable F@Q or the statistical data in the reserved variable YDAT,

using the specified 2z- and y-axis display ranges.

Keyboard Access: (&)(PLOT) [}

Affected by Flags: Simultaneous or Sequential Plot (—28), Curve

Filling (—31)

Remarks: The plot type determines if the data in the reserved

variable Q) or the data in the reserved variable XDAT is plotted.

3-94 Command Reference

DROP

DRAW does not erase PICT before plotting—execute ERASE to do

so. DRAW does not draw axes—execute DRAX to do so.

When DRAW is executed from aprogram, the graphics display, which

shows the resultant plot, does not persist unless PICTURE, PVIEW

(with an empty list argument), or FREEZE is subsequently executed.

Related Commands: AUTO, AXES, DRAX, ERASE, FREEZE,

PICTURE, LABEL, PVIEW

DRAX

Draw Axes Command: Draws axes in PICT.

Keyboard Access: (e)(PLOT) LiFF:

Affected by Flags: None

Remarks: The coordinates of the axes intersection are specified by

AXES. Axes tick-marks are specified in PPAR with the ATICK, or

AXES command. DRAX does not draw axes labels—execute LABEL

to do so.

Related Commands: AXES, DRAW, LABEL

DROP

Drop Object Command: Removes the level 1 object from the stack.

Level 1 — Level 1

Ob_] —

Keyboard Access: («)(DROP)

Affected by Flags: None

Related Commands: CLEAR, DROPN, DROP2

Command Reference 3-95

DROPN

Drop n Objects Command Removes the first n + 1 objects from the

stack (the first n objects excluding the integer n itself).

‘ Level n+1 ... Level 2 Level 1 - Level 1

' obj; ... obj, n —

Keyboard Access: (¢)(STACK) (NXT) &

Affected by Flags: None

Related Commands: CLEAR, DROP, DROP2

DROP2

Drop 2 Objects Command: Removes the first two objects from the

stack.

Level 2 Level 1 — Level 1

obj; obj, —

Keyboard Access: (9)(STACK) LR

Affected by Flags: None

Related Commands: CLEAR, DROP, DROPN

3-96 Command Reference

DUP

DTAG

Delete Tag Command: DTAG removes all tags (labels) from an

object.

{}

Level 1 — Level 1

:tag:obj — obj

Keyboard Access: NXT) L THE

Affected by Flags: None

Remarks: The leading colon is not shown for readability when the

tagged object is on the stack.

DTAG has no effect on an untagged object.

Related Commands: LIST—, —TAG

DUP
Duplicate Object Command: DUP returns a copy to level 1 of the

object in level 1.

Level 1 - Level 2 Level 1

obj — obj obj

Keyboard Access:

Pressing duplicates the item on level 1.

Affected by Flags: None

Related Commands: DUPN, DUP2, PICK

Command Reference 3-97

DUPN
Duplicate n Objects Command: Takes an integer n from level 1 of
the stack, and returns copies of the objects in stack levels 2n through
n + 1.

‘ Lvint1..Lvli2 Lvl1 — Lvl2n.Lvin+1 Lvin..Lvi1 N

F objy ...0bj; n — objy ...obj, objy ...obj;

Keyboard Access: («)(STACK)

Affected by Flags: None

Related Commands: DUP, DUP2, PICK

DUP2

Duplicate 2 Objects Command: DUP2 returns copies of the objects

in levels 1 and 2 of the stack.

Level2 Levell — Leveld4 Level3 Level2 Level 1

obj, obj; — obj, obj; obj, obj;

Keyboard Access: (€)(STACK)

Affected by Flags: None

Related Commands: DUP, DUPN, PICK

3-98 Command Reference

D—R

Degrees to Radians Function: Converts a real number representing
an angle in degrees to its equivalent in radians.

{1}

Level 1 — Level 1

x - (r/180) x

'symb' — 'D—R(symb)'

 Keyboard Access: REAL [

Affected by Flags: Numerical Results (—3)

Remarks: This function operates independently of the angle mode.

Related Commands R—D

e

e Function: Returns the symbolic constant e or its numerical

representation, 2.71828182846.

Level 1 - Level 1

— Iel

— 2.71828182846

Keyboard Access:

@@F
g E

Affected by Flags: Symbolic Constants (—2), Numerical Results

(=3)

Command Reference 3-99

e

When evaluated, e returns its numerical representation if flag —2 or

flag —3 is set; otherwise, e returns its symbolic representation.

Remarks: The number returned for & is the closest approximation

of the constant e to 12-digit accuracy. For exponentiation, use the

expression '} #a ' rather than '&™4' since the function EXP

uses a special algorithm to compute the exponentlal to greater

accuracy.

Related Commands: EXP, EXPM, i, LN, LNP1, MAXR, MINR, =

EGV

Eigenvalues and Eigenvectors Command: Computes the

eigenvalues and right eigenvectors for a square matrix.

{1

Level 1 - Level 2 Level 1

 [[matrix]]5 — [[matrix 11z oc [vector Jcy 4

Keyboard Access: METE

Affected by Flags: None

Remarks: The resulting vector EVal contains the computed

eigenvalues. The columns of matrix EVec contain the right

eigenvectors corresponding to the elements of vector EVal.

The computed results should minimize (within computational
precision):

|A-EVec— EVec- diag(EVal)|

n-|Al

where diag(E'Val) denotes the n x n diagonal matrix containing the

eigenvalues E'Val.

Related Commands: EGVL

3-100 Command Reference

ELSE

EGVL
Eigenvalues Command: Computes the eigenvalues of a square

matrix.

{}

Level 1 - Level1
[[matrix J] — [vector 1gy, 4, }

Keyboard Access: (MTH EGVL

Affected by Flags: None

Remarks: The resulting vector L contains the computed eigenvalues.

Related Commands: EGV

ELSE

ELSE Command: Starts false clause in conditional or error-trapping

structure.

See the IF and IFERR keyword entries for syntax information.

Keyboard Access:

(PRG) EF IF LEE

(BRG) (NxT)
Remarks: See the IF and IFERR keyword entries for more

information.

Related Commands: IF, IFERR, THEN, END

Command Reference 3-101

END

END Command: Ends conditional, error-trapping, and indefinite loop

structures.

See the IF, CASE, IFERR, DO, and WHILE keyword entries for
syntax information.

Keyboard Access:

PRG

PRG

PRG

(BrRG) (NXT)
Remarks: Sece the IF, CASE, IFERR, DO, and WHILE keyword

entries for more information.

Related Commands: IF, CASE, DO, ELSE, IFERR, REPEAT,

THEN, UNTIL, WHILE,

ENDSUB

Ending Sublist Command: Provides a way to access the total
number of sublists contained in the list used by DOSUBS.

Keyboard Access: LIaT

Affected by Flags: None

D

Remarks: Returns an Undefined Local Name error if executed when

DOSURBS is not active.

Example: The following program subtracts the number of elements

in a list from each elementin the list:

3-102 Command Reference

ENG

Related Commands: DOSUBS, NSUB

ENG

Engineering Mode Command: Sets the number display format to

Engineering mode, which displays one to three digits to the left of the

fraction mark (decimal point) and an exponent that is a multiple of

three. The total number of significant digits displayed is n + 1.

{}

Level 1 — Level 1

n —

 Keyboard Access: (+)(MODES) F

Affected by Flags: None

Remarks: Engineering mode uses n + 1 significant digits, where

0 < n < 11. (Values for noutside this range are rounded up or down.)

A number is displayed or printed as follows:

(sign) mantissa E (sign) exponent

where the mantissa is ofthe form (nn)n.(n ...) (with up to 12 digits
total) and the exponent has one to three digits.

A number with an exponent of —499 is displayed automatically in

Scientific mode.

Example: The number 103.6 in Engineering mode with five

significant digits (n=4) would appear as ! 5. This same

number with one significant digit (n=0) would appear as }

Related Commands: FIX, SCI, STD

Command Reference 3-103

EQ—

Equation to Stack Command: Separates an equation into its left
and right sides.

{}

Level 1 - Level 2 Level 1

'symb, =symb.' — 'symb, ' 'symb, '

z — z 0

'name' — 'name' 0

X_unit — X_unit 0

'symb' — 'symb' 0

Keyboard Access: TiEE (NXT) Eg=

Affected by Flags: None

Remarks: If the argument is an expression,it is treated as an

equation whose right side equals zero.

Related Commands: ARRY—, DTAG, LIST—, OBJ—, STR—

EQNLIB

Equation Library Command: Starts the Equation Library
application.

Keyboard Access: (Q)(EQ LIB) E&LIE ERHLI

Affected by Flags: None

Remarks: The Equation Library is a collection of equations and

commands useful for solving typical science and engineering problems.

Related Commands: MSOLVR, SOLVEQN

3-104 Command Reference

ERRM

ERASE
Erase PICT Command: Erases PICT, leaving a blank PICT of the

same dimensions.

Keyboard Access:

(@ECTIRD)
(@)(FICTURD) (@)(AR
(w)(LoD)

Affected by Flags: None

Related Commands: DRAW

ERRM

Error Message Command: Returns a string containing the error
message of the most recent calculator error.

Level 1 - Level 1

 — "error message"

Keyboard Access:

Affected by Flags: None

Remarks: ERRM returns the string for an error generated by
DOERR. If the argument to DOERRwas &, the string returned by

ERRM is empty.

 Example The ploglam + [+ % returns "

=" to le\/el 1 if improper arguments (for example, a

complex number and a binary integer) are in levels 1 and 2.

Related Commands: DOERR, ERRN, ERRO

Command Reference 3-105

ERRN

Error Number Command: Returns the error number of the most

recent calculator error.

Level 1 - Level 1

- #FNerror

Keyboard Access: i

Affected by Flags: None

Remarks: If the most recent error was generated by DOERR with a

string argument, ERRN returns # | 1. If the most recent error

was generated by DOERR with a bmary integer argument, ERRN

returns that binary integer. (If the most recent error was generated

by DOERR with a real number argument, ERRN returns the binary

integer conversion of the real number.)

Example The program « +] » % returns

to level 1 if improper arguments (for, example, a complex

number and a binary integer) are in levels 1 and 2.

Related Commands: DOERR, ERRM, ERRO

ERRO

Clear Last Error Number Command: Clears the last error number

so that a subsequent execution of ERRN returns # #if, and clears the

last error message.

Keyboard Access:

Affected by Flags: None

Related Commands: DOERR, ERRM, ERRN

3-106 Command Reference

EVAL

EVAL

Evaluate Object Command: Evaluates the object.

‘ Level 1 ~ Level 1 T

‘ obj — (see below) ‘

Keyboard Access:

Affected by Flags: Numerical Results (—3)

Remarks: The following table describes the effect of the evaluation

on different object types.

Obj. Type Effect of Evaluation

Local Name Recalls the contents of the variable.

Global Name Calls the contents of the variable:

m A name is evaluated.

m A program is evaluated.

m A directory becomes the current directory.

m Other objects are put on the stack.

If no variable exists for a given name, evaluating

the name returns the name to the stack.

Program Enters each object in the program:

m Names are evaluated (unless quoted).
s Commands are evaluated.
m Other objects are put on the stack.

List Enters each object in the list:

® Names are evaluated.

m Commands are evaluated.

m Programs are evaluated.

E Other objects are put on the stack.

Command Reference 3-107

EVAL

Obj. Type Effect of Evaluation

Tagged If the tag specifies a port, recalls and evaluates the

specified object. Otherwise, puts the untagged

object on the stack.

Algebraic Enters each object in the algebraic expression:

m Names are evaluated.

» Commands are evaluated.

m Other objects are put on the stack.

Command, Evaluates the specified object.

Function, XLIB

Name
 Other Objects Puts the object on the stack.

To evaluate a symbolic argument to a numerical result, evaluate the

argument in Numerical Result mode (flag —3 set) or execute —NUM
on that function.

Related Commands: —NUM, SYSEVAL

EXP

Exponential Analytic Function: Returns the exponential, or natural
antilogarithm, of the argument; that is, e raised to the given power.

{1}

Level 1 — Level 1

z — e*

'symb' — 'EXP(symb)'
Keyboard Access: ()(")

Affected by Flags: Numerical Results (—3)

3-108 Command Reference

EXPAN

Remarks: EXP uses extended precision constants and a special

algorithm to compute its result to full 12-digit precision for all

arguments that do nottrigger and underflow or overflowerror.

EXP provides a more accurate result for the exponential than can be

obtained by using e (¥). The difference in accuracy increases as z

increases. For example:

Z EXP(z) eZ

3

10

100

500

1000

20.0855369232

22026.4657948

2.68811714182E43

1.40359221785E217

1.97007111402E434

20.0855369232

22026.4657949

2.68811714191E43

1.40359221809E217

1.97007111469E434

For complex arguments,

Y = ¢%cosy + ie® siny

Related Commands: ALOG, EXPM, LN, LOG

EXPAN
Expand Products Command: Rewrites an algebraic expression or
equation by expanding products and powers.

{}

Level 1 - Level 1

'symb, ' — 'symb, "

X — X

x, — x,)

Keyboard Access: («)(SYMBOLIC) ExFH

Affected by Flags: None

Examples: Pyi

Command Reference 3-109

| returns 'Fi

EIE&

{ returns

..... 4k returns ' ¥

Related Commands: COLCT, ISOL, QUAD, SHOW

EXPFIT

Exponential Curve Fit Command: Stores EXPFIT as the fifth
parameter in the reserved variable ¥’ PAR, indicating that subsequent

executions of LR are to use the exponential curve fitting model.

Keyboard Access: («)(STAT)

Affected by Flags: None

Remarks: LINFIT is the default specification in YPAR. For a

description of XY PAR, see appendix D, “Reserved Variables.”

Related Commands: BESTFIT, LR, LINFIT, LOGFIT, PWRFIT

EXPM

Exponential Minus 1 Analytic Function: Returns ¢* — 1.

{}

Level 1 — Level 1

X — et —1

'symb' — 'EXPM(symb)'

Keyboard Access: (MTH) HYF (NXT

Affected by Flags: Numerical Results (—3)

 .z +' returns aRemarks: For values of z close to zero

: (Usmg EXPMallowsmore accurate result than does

3-110 Command Reference

EYEPT

both the argument and the result to be near zero, and avoids an

intermediate result near 1. The calculator can express numbers within

107%49 of zero, but within only 107! of 1.)

Related Commands: EXP, LNP1

EYEPT

Eye Point Command: Specifies the coordinates of the eye point in a

perspective plot.

{}

Level 3 Level 2 Level 1 - Level 1

 Xpoint ypoint Zpoint

Keyboard Access: (&)(PLOT) ah

Affected by Flags: None

Remarks: z,0int, Upoint, and Zpoint are real numbers that set the x-,

y-, and z-coordinates as the eye-point from which to view a 3D plot’s

view volume. The y-coordinate must always be 1 unit less than the

view volume’s nearest point (ypeqr of YVOL). These coordinates are

stored in the reserved variable VPAR.

Related Commands: NUMX, NUMY, XVOL, XXRNG, YVOL,

YYRNG, ZVOL

Command Reference 3-111

FOA

Black Body Emissive Power Function: Returns the fraction of total
black-body emissive power.

{}

Level 2 Level 1 — Level 1

Yiambda X - Xpower

ylambda Isymbl - I':O"\(ylaml)da'symb)l

'symb' X — 'FOA(symb,x+)'

‘symb, ' 'symb," — 'FOX(symb, ,symb,)’

Keyboard Access: («)(EQ LIB) !

Affected by Flags: Numerical Results (—3)

Remarks: FO0A calculates the fraction of total black-body emissive

power at temperature z+ between wavelengths 0 and y,mpqa- If

units are not specified, ¥,mpqa has implied units of meters and z+

has implied units of K.

FOM returns a dimensionless fraction.

FACT

Factorial (Gamma) Function: Provided for compatibility with the

HP 28. FACT is the same as !. See !

{1}

Level 1 - Level 1

n — n!

X — I'(x+1)

'symb' — "(symb)!'

3-112 Command Reference

FANNING

Keyboard Access: None. Must be typed in.

FANNING
Fanning Friction Factor Function: Calculates the Fanning friction

factor of certain fluid flows.

{}

Level 2 Level 1 — Level 1

Zz/D Yre - Xtanning

Ta/D 'symb' — 'FANNING(z,/p,symb)’

'symb' Yre — 'FANNING(symb,ygo)'

'symb, ' 'symb, — 'FANNING(symb, ,symb,)’

Keyboard Access: («)(EQ LIB) U

Affected by Flags: Numerical Results (—3)

Remarks: FANNING calculates the Fanning friction factor, a
correction factor for the frictional effects of fluid flows having constant

temperature, cross-section, velocity, and viscosity (a typical pipe flow,

for example). z,,p is the relative roughness (the ratio of the conduit

roughness to its diameter). yg, is the Reynolds number. The function

uses different computation routines for laminar flow (Re < 2100) and
turbulent flow (Re > 2100). z,/p and yg. must be real numbers or

unit objects that reduce to dimensionless numbers, and both numbers

must be greater than 0.

Related Commands: DARCY

Command Reference 3-113

FC?

Flag Clear? Command: Tests whether the system or user flag
specified by ng,4 nymper 1S clear, and returns a corresponding test

result: 1 (true) if the flag is clear or & (false) if the flag is set.

{1

Level 1 - Level 1

Nagnumber - 0/1

Keyboard Access:

: Foo

Affected by Flags: None

Related Commands: CF, FC?C, FS?, FS?C, SF

FC?C

Flag Clear? Clear Command: Tests whether the system or user flag
specified by 74,4 numper 15 clear, and returns a corresponding test

result: 1 (true) if the flag is clear or &(false) if the flag is set. After
testing, clears the flag.

{1

Level 1 - Level 1

 nflagnumber - 0/1

Keyboard Access:

(NXT) (NXT) Fii7i

3-114 Command Reference

FFT

Affected by Flags: None

Example: If flag —44 is set, =44 FC7C returns @ to level 1 and clears

flag —44.

Related Commands: CF, FC?, FS?, FS7C, SF

FFT
Discrete Fourier Transform Command: Computes the one- or

two-dimensional discrete Fourier transform of an array.

{1

Level 1 - Level 1

[array]; — [array 1,

o
t
L eKeyboard Access: EET

Affected by Flags: None

Remarks: If the argument is an N-vector or an N x1 or 1x N matrix,

FFT computes the one-dimensional transform. If the argument is an

M x N matrix, FFT computes the two-dimensional transform. M and

N must be integral powers of 2.

The one-dimensional discrete Fourier transform of an N-vector X is

the N-vector Y where:

N-1

Vi= Y XpeT =yl
n=0

fork=0,1, ..., N—1.

The two-dimensional discrete Fourier transform of an M x N matrix X

is the M x N matrix Y where:

M-1 N-1

Yie= Y ZX,,me—L"A‘?*’-"‘e“% L i=A—1
m=0 n=0

fork=0,1, .., M—1land!=0,1, .., N—-1.

Command Reference 3-115

FFT

The discrete Fourier transform and its inverse are defined for any

positive sequence length. However, the calculation can be performed

very rapidly when the sequence length is a power of two, and the

resulting algorithms are called the fast Fourier transform (FFT) and

inverse fast Fourier transform (IFFT).

The FF'T command uses truncated 15-digit arithmetic and

intermediate storage, then rounds the result to 12-digit precision.

Related Commands: IFFT

FINDALARM

Find Alarm Command: Returns the alarm index n;,40, of the first
alarm due after the specified time.

Level 1 — Level 1

date — My dex

{ date time } — M dex

0 - Mindex

Keyboard Access: («)(TIME)

Affected by Flags: Date Format (—42)

Remarks: If the level 1 argument is a real number date,

FINDALARM returns the index of the first alarm due after 12:00 aMm

on that date. If the argument is a list £ date time *, it returns the

index of the first alarm due after that date and time. If the argument

1s the real number &, FINDALARM returns the first past-due alarm.

For any of the three arguments, FINDALARM returns #if no alarm is

found.

Related Commands: DELALARM, RCLALARM, STOALARM

3-116 Command Reference

FIX

FINISH

Finish Server Mode Command: Terminates Kermit Server mode in

a device connected to an HP 48

Keyboard Access: (e)(1/0) &EY¥E FIHIZ

Affected by Flags: 1/0 Device flag (—33), /O Messages (—39)

Remarks: FINISH is used by a local Kermit device to tell a server

Kermit (connected via the serial port or the IR port) to exit Server

mode.

Related Commands: BAUD, CKSM, KGET, PARITY, PKT,

RECN, RECV, SEND, SERVER

FIX

Fix Mode Command: Sets the number display format to Fix mode,

which rounds the display to n decimal places.

{}

Level 1 — Level 1

n —_—

Keyboard Access: (&)(MODES) FHT FIH

Affected by Flags: None

Remarks: Fix mode shows n digits to the right of the fraction mark

(decimal point), where 0 < n < 11. (Values for n outside this range

are rounded to the nearest integer.) A numberis displayed or printed

as follows:

(sign) mantissa

where the mantissa can be of any form. However, the calculator

automatically displays a number in Scientific mode if either of the

following is true:

Command Reference 3-117

FIX

m The number of digits to be displayed exceeds 12.

m A nonzero value rounded to n decimal places otherwise would be

displayed as zero.

Example: The number 103.6 in Fix mode to four decimal places
would appear as 163, SEHE

Related Commands: FIX, SCI, STD

FLOOR

Floor Function: Returns the greatest integer that is less than or
equal to the argument.

{}

Level 1 — Level 1

X — n

X_unit — n_unit

‘'symb' — 'FLOOR(symb)'

 Keyboard Access: F FLOOR

Affected by Flags: Numerical Results (—3)

{F returns =; ~3, 2 FLOOR returns —4. Examples:

Related Commands: CEIL, IP, RND, TRNC

3-118 Command Reference

FOR

FOR
FOR Definite Loop Structure Command: Starts FOR ... NEXT
and FOR ... STEP definite loop structures.

Level 2 Level 1 — Level 1

FOR Xstart Xfinish -

NEXT —

FOR Xstart Xfinish -

STEP Xincrement -

STEP Is-ymbincrer\f\ent' -
Keyboard Access:

To begin a definite loop:

BELH

To type FOR NEXT

ERCH (&) F

To type FOR STEP:

() For

Affected by Flags: None

PRG

Remarks: Definite loop structures execute a command or sequence of

commands a specified number of times.

m A FOR ... NEXT loop executes a program segment a specified

number of times using a local variable as the loop counter. You can

use this variable within the loop. The syntax is this:

Totart Lfinish FUR counter loop-clause HEHT

FOR takes z¢;5,t and zq,;5, from the stack as the beginning and

ending values for the loop counter, then creates the local variable

counter as a loop counter. Then, the loop clause is executed;

counter can be referenced or have its value changed within the loop

clause. NEXT increments counter by one, and then tests whether

Command Reference 3-119

FOR

counter is less than or equal to x4s . If s0, the loop clause is

repeated (with the new value of counter).

When the loop is exited, counter is purged.

m FOR ... STEP works just like FOR ... NEXT, except that it lets

you specify an increment value other than 1. The syntax is:

counter loop-clause Tincrement = Tstart Zfinish |

FOR takes z¢,.¢ and z4,;, from the stack as the beginning and

ending values for the loop counter, then creates the local variable

counter as a loop counter. Next, the loop clause is executed; counter

can can be referenced or have its value changed within the loop

clause. STEP takes 2i,crement from the stack and increments

counter by that value. If the argument of STEP is an algebraic

expression or a name, it is automatically evaluated to a number.

The increment value can be positive or negative. If the increment

is positive, the loop is executed again when counter is less than or

equal to 4,5, - If the increment is negative, the loop is executed

when counter is greater than or equal to z¢,ish -

When the loop is exited, counter is purged.

Example: The following program sums all odd integers in the range 1

to 100:

Related Commands: NEXT, START, STEP

3-120 Command Reference

FREE

FP
Fractional Part Function: Returns the fractional part of the

argument.

{}

Level 1 - Level 1

X — y

x_unit — y_unit

'symb' — 'FP(symb)'
Keyboard Access: REHA]

Affected by Flags: Numerical Results (—3)

NXT) FF

Remarks: The result has the same sign as the argument.

Examples: -3, 3 FF returns —. % 82,2_m FF returns . 2_m.

Related Commands: IP

FREE

Free RAM Card Command: Frees (makes independent) the
previously merged RAM in port 1. FREE is provided for compatibility

with the HP 485X, which could merge RAM in port 2 as well. See

FREEL

Level 2 Level 1 — Level 1

{} Moort -

{namebackup nlibrary} Moort -

namey, ;ckup Moort -

Mivrary Nport -

Command Reference 3-121

FREE

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: Any prior contents of the port are moved into user

memory. If level 2 specifies backup or library objects, those objects

are moved from port 0 to the newly freed RAM port.

Related Commands: FREE1l, MERGEL1

FREE1

Free RAM Card Command: Frees (makes independent) the
previously merged RAM in port 1. Any prior contents of the port are

moved into user memory. If level 1 specifies backup or library objects,

those objects are moved from port 0 to the newly freed RAM port.

Level 1 — Level 1

{namebackup nlibrary} -

namebackup -

Mibrary -

Keyboard Access: («)(LIBRARY)

Affected by Flags: None

Remarks: The list in level 1 can be empty (in which case no objects

are moved to the newly independent RAM) or it can contain any

number of backup names and library numbers. Level 1 cannot be

completely empty, however.

Related Commands: FREE, MERGE, MERGEI1

3-122 Command Reference

FREEZE

FREEZE

Freeze Display Command: Freezes the part of the display specified
by ngispiay area, 0 that it is not updated until akey is pressed.

{}

Level 1 — Level 1

 ndisplayarea

Keyboard Access: ouT

Affected by Flags: None

Remarks: Normally, the stack display is updated as soon as the

calculator is ready for data input. For example, when HALT stops a

running program, or when a programends, any displayed messages

are cleared. The FREEZE command “freezes” a part or all of the

display so that it is not updated until a key is pressed. This allows,

for example, a prompting message to persist after a program halts to

await data input.

Ngisplay area 15 the sum of the value codes for the areas to be frozen:

Display Area Value Code

Status area 1

Stack/Command-line area 2

Menu area 4

So, for example, = FE - freezes the stack/command-line area,

E freezes the status area and the stack/command-line area,

= freezes all three areas.

Values of n4ispiay area = 7 0r < 0 freeze the entire display (are

equivalent to value 7). To freeze the graphics display, you must freeze

the status and stack/command-line areas (by entering 3), or the entire

display (by entering 7).

Command Reference 3-123

FREEZE

Examples:

This program:

displays the contents of the string in the top line of the display, then

freezes the status areaso that the string contents persist in the display

after HALT is executed:

This program:

selects the graphics display and then freezes the entire display so that

the graphics display persists after the program ends. (If FREEZE was

not executed, the stack display would be selected after the program

ends.)

To use FREEZE with PVIEW (or any graphics display), you must
enter 3 or 7.

Related Commands: CLLCD, DISP, HALT

FS?
Flag Set? Command: Tests whether the system or user flag specified

bY Nag number is set, and returns a corresponding test result: 1

(true) if the flag is set or & (false) if the flag is clear.

‘ Level 1 — Level 1

- 0/1 ‘ nflagnumber

Keyboard Access:

@D
@) FLAG

Affected by Flags: None

Related Commands: CF, FC? FC?C, FS?7C, SF

PRG) 1

3-124 Command Reference

FUNCTION

FS?C

Flag Set? Clear Command: Tests whether the system or user flag
specified by 74,4 numper 1S set, and returns a corresponding test

result: 1 (true) if the flag is set or & (false) if the flag is clear. After
testing, clears the flag.

{}

Level 1 — Level 1

nflagnumber - 0/1

Keyboard Access:

PRG) it

Affected by Flags: None

‘> returns 1 to level 1 and clears

Example: If flag —44 is set, —4
flag —44.

Related Commands: CF, FC?, FC?C, FS?, SF

FUNCTION

Function Plot Type Command: Sets the plot type to FUNCTION.

Keyboard Access: («)(PLOT)F

Affected by Flags: Simultaneous Plotting (—28), Curve Filling

(=31)
Remarks: Whenthe plot type is FUNCTION, the DRAW command

plots the current equation as a real-valued function of one real

variable. The current equation is specified in the reserved variable

EQ. The plotting parameters are specified in the reserved variable

PPAR, which has the form:

 1

CZmin: Ymin' “Tmazrs Ymas: ndep res axes ptype depend

Command Reference 3-125

FUNCTION

For plot type FUNCTION, the elements of PPAR are used as follows:

B SZmin, Ymin & 18 & complex number specifying the lower left corner

of PICT (the lower left corner of the display range). The default

value 1s «

B CZmax, Ymax + 1s @ complex number specifying the upper right

corner of PICT (theupperrlght corner of the display range). The

default value 1s & a

m indep is a name specifying the independent variable, or a list

containing such a name and two numbers specifying the minimum

and maximum values for the independent variable (the plotting

range). The default value of indep is X.

m 7es 1s a real number specifying the interval (in user-unit

coordinates) between plotted values of the independent variable, or

a binary integer specifying the interval in pixels. The default value

is #, which specifies an interval of 1 pixel.

m azes is a list containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, a list specifying the tick-mark annotation, and two

strings specifying labels for the horizontal and vertical axes. The

default value is

m ptype is a command name specifying the plot type. Executing the

command FUNCTION places the name FUNCTION in PPAR.

m depend is a name specifying a label for the vertical axis. The default

value i1s Y.

The current equation is plotted as afunction of the variable specified

in tndep. The minimum and maximum values of the independent

variable (the plotting range) can be specified in indep; otherwise, the

values In 52 min; Ymin * and SZmax, Ymax + (the display range) are

used. Lines are drawn between plotted points unless flag —31 is set.

If EQ contains an expression or program, the expression or program

is evaluated in Numerical Results mode for each value of the

independent variable to give the values of the dependent variable. If

EQ@ contains an equation, the plotting action depends on the form of

the equation, as shown in the following table.

3-126 Command Reference

GET

Form of

Current Equation Plotting Action

fexpr=expr’ Each expression is plotted separately. The

intersection of the two graphs shows where

the expressions are equal.

"name=ezrpr’ Only the expression is plotted.

“indep=constant A vertical line is plotted.

If flag —28 is set, all equations are plotted simultaneously.

If the independent variable in the current equation represents a unit

object, you must specify the units by storing a unit object in the

corresponding variable in the current directory. For example, if the

current equation is '+ ' and you want X to represent some

number of inches, you would store 1 _ir (the number part of the unit

object is ignored) in X . For each plotted point, the numerical value of

the independent variable is combined with the specified unit (inches in

this example) before the current equation is evaluated. If the result is

a unit object, only the number part is plotted.

Related Commands: BAR, CONIC, DIFFEQ, GRIDMAP,

HISTOGRAM, PARAMETRIC, PARSURFACE, PCONTOUR,

POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,

YSLICE

GET

Get Element Command: Returns from the level 2 array or list (or

named array or list) the real or complex number zge; or object 0bjges

whose position is specified in level 1.

Command Reference 3-127

GET

Level 2 Level 1 - Level 1

[[matrix] Ny osition - Zget

[[matrix 1] { frow Mg, } - Zget

InamematrixI nposition - det

‘namegiy { row Mgy } - Zget

[vector | My osition - Zget

[vector] { Nposition } - Zget

InamevectorI nposition - det

Inarnevector. { nposition } - det

{ fist } Ny osition - Objget

{ list } { My osition } - Objget

Inamelist| nposition - Objget

I’7amelistl { s osition } - Objget

Keyboard Access:

Affected by Flags:

PRG

None

Remarks: For matrices, n,qgition is incremented in row order.

Related Commands:

T returns ‘H°

GETI, PUT, PUTI

3-128 Command Reference

returns .

GETI

GETI

Get and Increment Index Command: Returns from the level 2 array

or list (or named array or list) the real or complex number zge¢ or

object 0bjqer Whose position is specified in level 1, along with the level

2 argument and the next position in that argument.

Level 2 Level1 — Level3 Level2 Level 1

[[matrix 1] Myos1 — [[matrix 1] Myos2 Zget

[[matrix]] {neme}y — ([matrix]] { nr mc }, Zget

‘namep, ;" Nposi1 = ‘nameg .’ Npos2 Zget

‘nameq, ;' {nr mc}; — ‘nameg..,' {n mc}, Zget

[vect] Npost — [vect] Npos2 Zget

[vect] { Mhos1 } — [vect] { Mpos2 } Zget

'namevectl Mpos1 - |namevectl Npos2 Zget

‘name,q ' { Npos1 } — 'name,' { Npos2 } Zget

{ list } Mpost — { list } Myos2 Objget

{ list } { Nyos1 } - { list } { Npos2 } Objget

InamelistI Mpos1 - Inamelistl Npos2 Objget

I"amelistI { nposl } - 'namenst' { npos2 } 0bjget

Keyboard Access: LI=T ELENM GETI

Affected by Flags: Index Wrap Indicator (—64)

The Index Wrap Indicator flag is cleared on each execution of GETI

until the position index wraps to the first position in the argument, at

which point the flag is set. The next execution of GETI clears the flag
again.

Remarks: For matrices, the position is incremented in row order.

Related Commands: GET, PUT, PUTI

Command Reference 3-129

GOR

Graphics OR Command: Superimposes grob; onto grobiarget or

PICT, with the upper left corner pixel of grob; positioned at the

specified coordinate in groby, ger or PICT.

Level 3 Level 2 Level 1 - Level 1

grObtarget { #n #m } grob, - 9robesuit

grobtarget x.y) grob, - 9roba5t

PICT { #n #m} grob, -

PICT (x,y) grob, —

Keyboard Access:

Affected by Flags: None

Remarks: GOR uses a logical OR to determine the state (on or off)
of each pixel in the overlapping portion of the argument graphics

object.

If the level 3 argument is any graphics object other than PICT, then

grob.oq, ¢ 18 returned to the stack. If the level 3 argument is PICT, no

result is returned to the stack.

Any portion of grob, that extends past groby,cqer or PICT is

truncated.

Related Commands: GXOR, REPL, SUB

3-130 Command Reference

GRAPH

GRAD

Grads Mode Command: Sets Grads angle mode.

Keyboard Access: ()(MODES) FHEL [GF

Affected by Flags: None

Remarks: GRAD clears flag —17 and sets flag —18, and displays the

GEAD annunciator.

In Grads angle mode, real-number arguments that represent angles are

interpreted as grads, and real-number results that represent angles are
expressed in grads.

Related Commands: DEG, RAD

GRAPH

Picture Environment Command: Selects the Picture environment

(selects the graphics display and activates the graphics cursor and

Picture menu).

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: GRAPH is provided for compatibility with the HP 48S

series, and is the same as the PICTURE command. See PICTURE.

Related Commands: PICTURE, PVIEW, TEXT

Command Reference 3-131

GRIDMAP

GRIDMAP Plot Type Command: Sets plot type to GRIDMAP.

Keyboard Access: («)(PLOT) s

Affected by Flags: None

Remarks: When plot type is set GRIDMAP, the DRAW command

plots a mapping grid representation of a 2-vector-valued function of

two variables. GRIDMAP requires values in the reserved variables

EQ, VPAR, and PPAR.

VPAR has the following form:

“Teft Trignt Ynear Yrar Zlow Zhigh Tmin Tmax Ymin Ymax Teye Yeye

Zeye Tstep Ystep -

For plot type GRIDMARP, the elements of VPAR are used as follows:

m Zor; and &4y, are real numbers that specify the width of the view

space.

B Ynear and ys,, are real numbers that specify the depth of the view

space.

m Zo, and z,ig, are real numbers that specify the height of the view

space.

m Z, and Zmax are real numbers the specify the input region’s

width. The default value is ©—14 1.

Ymin and ymax are real numbers that specify the input region’s

depth. The default value is ©—14 1.

B Toye, Yeye, and zeye are real numbers that specify the point in

space from which you view the graph.

B Zgiep and yYgep are real numbers that set the number of

x-coordinates versus the number of y-coordinates plotted. These can

be used instead of (or in combination with) RES.

The plotting parameters are specified in the reserved variable PPAR,

which has the following form:

£ 0% min, Ymin & “Tmax, Ymax + tndep res azes ptype depend

For plot type GRIDMAP, the elements of PPAR are used as follows:

m LTCmin, Ymin & 18 DOt used.

3-132 Command Reference

—GROB

B CZmayx, Umax + 1S not used.

m indep is a name specifying the independent variable. The default

value of indep 1s X.

m 7es is a real number specifying the interval (in user-unit

coordinates) between plotted values of the independent variable, or

a binary integer specifying the interval in pixels. The default value

is #, which specifies an interval of 1 pixel.

m azes 1s not used.

m plype is a command name specifying the plot type. Executing the

command GRIDMAP places the command name GRIDMAP in

PPAR.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

HISTOGRAM, PARAMETRIC, PARSURFACE, PCONTOUR,
POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,

YSLICE

—GROB

Stack to Graphics Object Command: Creates a graphics object
representing the level 2 object, where the argument n., ., si;o Specifies

the character size of the representation.

{1

Level 2 Level 1 - Level 1

obj Ncharsize - grob

Keyboard Access: (PRG

Affected by Flags: None

Remarks: 7... size can be 0, 1 (small), 2 (medium), or 3 (large).
Nenar size = 018 the same as n¢,,, size = 3, except for unit objects

Command Reference 3-133

—GROB

and algebraic objects, where 0 specifies the EquationWriter application

picture.

Example: This program:

 - PWIEM ®B —GF

returns a graphics obJect to the stack representing the EquationWriter

application picture of '‘'= 2" then stores the graphics object in

PICT and shows it in the graphlcs display with scrolling activated.

Related Commands: —LCD, LCD—

GXOR

Graphics Exclusive OR Command: Superimposes grob; onto
grobigrger or PICT, with the upper left corner pixel of grob,

positioned at the specified coordinate in grobi,,ger or PICT.

Level 3 Level 2 Level 1 — Level 1

9robiarget { #n #m } grob, - grobesyit

groby, get) groby - 9robres it
PICT { #n #m } groby —

PICT x,¥) groby —

Keyboard Access: GREOE GEOR

Affected by Flags: None

Remarks: GXOR is used for creating cursors, for example, to make

the cursor image appear dark on a light background and light on

a dark background. Executing GXOR again with the same image

restores the original picture.

GXOR uses a logical exclusive OR to determine the state of the

pixels (on or off) in the overlapping portion of the argument graphics

objects.

3-134 Command Reference

+H

Any portion of grob, that extends past ¢robisrqer or PICT is
truncated.

If the level 3 argument(the target graphics object) is any graphics

object other than PICT, then grob,.q,: is returned to the stack. If

the level 3 argument is PICT, no result is returned to the stack.

Example: This program:

£ 0# &d #Ed 2

I GEOR LASTARG
turns on (makes dark) every pixel in PICT, then superimposes a 5

x b graphics object on PICT at pixel coordinates < #£l # B .

Each on-pixel in the 5 by 5 graphics object turns off (makes light) the
corresponding pixel in PICT. Then, the original picture is restored by

executing GXOR again with the same arguments.

Related Commands: GOR, REPL, SUB

xH

Multiply Height Command: Multiplies the vertical plot scale by

ZTfactor-

{}

Level 1 — Level 1

Xfactor -

Keyboard Access: (€)(PLOT) FFHE (NXT #H

Affected by Flags: None

Remarks: Executing *H changes the y-axis display range—the

Ymin and ¥max components of the first two complex numbers in the

reserved variable PPAR. The plot origin (the user-unit coordinate of
the center pixel) is not changed.

Related Commands: AUTO, *W, YRNG

Command Reference 3-135

HALT

Halt Program Command: Halts program execution.

Keyboard Access: RUM HALT

Affected by Flags: None

Remarks: Program execution is halted at the location of the

HALT command in the program. The HALT annunciator is turned

on. Program execution is resumed by executing CONT (usually by

pressing (49)(CONT)). Executing KILL (usually by pressing
UH TNXT) E ILL) cancels all halted programs.

Related Commands: CONT, KILL

HEAD

First Listed Element Command: Returns the first element of a list

or string.

Level 1 — Level 1

{ obj; ... obj,} — obj;

vstring" o “element, "
Keyboard Access:

PRG

Affected by Flags: None

Example: “lesd" HEAD returns “[:°

The following program takes a list of coordinates { A B C } that

define a right triangle, and finds the length of the hypotenuse AC:

SWAF REYLISET HEAD ~ AE

For example, entering @ «f.82 (8, %2 ¢34 returns 5.

3-136 Command Reference

HISTOGRAM

Related Commands: TAIL

HEX

Hexadecimal Mode Command: Selects hexadecimal base for binary

integer operations. (The default base is decimal.)

Keyboard Access:

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: Binary integers require the prefix #. Binary integers

entered and returned in hexadecimal base automatically show the

suffix f. If the current base is not hexadecimal, then you can enter a

hexadecimal number by ending it with I+. It will be displayed in the

current base when it is entered.

The current base does not affect the internal representation of binary

integers as unsigned binary numbers.

Related Commands: BIN, DEC, OCT, RCWS, STWS

HISTOGRAM

Histogram Plot Type Command: Sets the plot type to

HISTOGRAM.

Keyboard Access: («)(PLOT)(NXT) &

Affected by Flags: None

Remarks: When the plot type is HISTOGRAM, the DRAW

command creates a histogram using data from one column of the

current statistics matrix (reserved variable YDAT'). The column is

specified by the first parameter in the reserved variable YPAR (using

the XCOL command). The plotting parameters are specified in the

reserved variable PPAR, which has the form:

CTmint Ymind S Tmar: Ymazt ndep res ares ptype depend

Command Reference 3-137

HISTOGRAM

For plot type HISTOGRAM, the elements of PPAR are used as

follows:

B ST, Ymin 4 1S @ complex number specifying the lower left corner

of PICT (the lower left corner of the display range). The default
.

value Is @ =&, Sy =5, 13,

B YTmax, Ymax ! 18 @ complex number specifying the upper right

corner of PICT (the upper right corner of the display range). The

default value is €&, 5, 5, &5,

m ndep is either a name specifying a label for the horizontal axis, or

a list containing such a name and two numbers that specify the

minimum and maximum values of the data to be plotted. The

default value of indep 1s X .

m res is a real number specifying the bin size, in user-unit coordinates,

or a binary integer specifying the bin size in pixels. The default

value is £, which specifies the bin size to be 1/13 of the difference

between the specified minimum and maximumvalues of the data.

m azes is a list containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, a list specifying the tick-mark annotation, and two

strings specifying labels for the horizontal and vertical axes. The

default value 1s G, &2,

m piype is a command name specifying the plot type. Executing the

command HISTOGRAM places the command name HISTOGRAM

in PPAR.

m depend 1s a name specifying a label for the vertical axis. The default

value is Y.

The frequency of the datais plotted as bars, where each bar represents

a collection of data points. The base of each bar spans the values of

the data points, and the height indicates the number of data points.

The width of each bar is specified by res. The overall maximum and

minimum values for the data can be specified by indep; otherwise, the

values In 220, Ymin * and “Zmax, Ymax ¢ are used.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, PARAMETRIC, PARSURFACE, PCONTOUR, POLAR,

SCATTER, SLOPEFIELD, TRUTH, WIREFRAME, YSLICE

3-138 Command Reference

HMS+

HISTPLOT

Draw Histogram Plot Command: Plots a frequency histogram of the

specified column in the current statistics matrix (reserved variable

YDAT).

Keyboard Access: (€)(STAT) FLOT HIZTF

Affected by Flags: None

Remarks: The data column to be plottedis specified by XCOL and

is stored as the first parameter in the reserved variable ¥ PAR. If no

data column is specified, column 1 is selected by default. The y-axis is

autoscaled and the plot type is set to HISTOGRAM.

HISTPLOT plots relative frequencies, using 13 bins as the default

number of partitions. The RES command lets you specify a different

number of bins by specifying the bin width. To plot a frequency

histogram with numerical frequencies, store the frequencies in XDAT

and execute BINS and then BARPLOT.

When HISTPLOT is executed from a program, the graphics display,

which shows the resultant plot, does not persist unless PICTURE,

PVIEW (with an empty list argument), or FREEZE is subsequently

executed.

Related Commands: BARPLOT, BINS, FREEZE, PICTURE,
PVIEW, RES, SCATRPLOT, XCOL

HMS+

Hours-Minutes-Seconds Plus Command: Returns the sum of two
real numbers, where the arguments and the result are interpreted in

hours-minutes-seconds format.

i}

Level 2 Level 1 - Level 1

 HMS, HMS, - HMS, + HMS,

Command Reference 3-139

HMS+

Keyboard Access: ()(TIME) (NXT)

Affected by Flags: None

Remarks: The format for HMS (a time or an angle) is H. MMSSs,
where:

m [is zero or more digits representing the integer part of the number.

m MM are two digits representing the number of minutes.

m S5S are two digits representing the number of seconds.

m s is zero or more digits (as many as allowed by the current display

mode) representing the decimal fractional part of seconds.

Related Commands: HMS—, —HMS, HMS—

HMS—

Hours-Minutes-Seconds Minus Command: Returns the difference
of two real numbers, where the arguments and the result are

interpreted in hours-minutes-seconds format.

{3

Level 2 Level 1 - Level 1

 HMS, HMS, — HMS, —HMS,

Keyboard Access: (e)(TIME) (NXT) ki

Affected by Flags: None

Remarks: The format for HMS (a time or an angle) is H.MMSSs,

where:

m [is zero or more digits representing the integer part of the number.

m MM are two digits representing the number of minutes.

m 5SS are two digits representing the number of seconds.

m s is zero or more digits (as many as allowed by the current display

mode) representing the decimal fractional part of seconds.

3-140 Command Reference

HMS—

Related Commands: HMS—, —HMS, HMS+

HMS—

Hours-Minutes-Seconds to Decimal Command: Converts a real
number in hours-minutes-seconds format to its decimal form (hours or

degrees with a decimal fraction).

{}

Level 1 - Level 1

HMS — X

Keyboard Access: («)(TIME) (NXT) F

Affected by Flags: None

Remarks: The format for HMS (atime or an angle) is H. MMSSs,
where:

m [is zero or more digits representing the integer part of the number.

m MM are two digits representing the number of minutes.

m 55 are two digits representing the number of seconds.

m 5 is zero or more digits (as many as allowed by the current display

mode) representing the decimal fractional part of seconds.

Related Commands: —HMS, HMS+, HMS—

Command Reference 3-141

—HMS

Decimal to Hours-Minutes-Seconds Command: Converts a real

numberrepresenting hours or degrees with a decimal fraction to

hours-minutes-seconds format.

{}

Level 1 = Level 1

X — HMS

Keyboard Access: («)(TIME)

Affected by Flags: None

Remarks: The format for HMS (atime or an angle) is H. MMSSs,
where:

m H is zero or more digits representing the integer part of the number.

m MM are two digits representing the number of minutes.

m 55 are two digits representing the number of seconds.

m s is zero or more digits (as many as allowed by the current display

mode) representing the decimal fractional part of seconds.

Related Commands: HMS—, HMS+, HMS—

HOME

HOME Directory Command: Makes the HOMFE directory the

current directory.

Keyboard Access: ()(HOME)

Affected by Flags: None

Related Commands: CRDIR, PATH, PGDIR, UPDIR

3-142 Command Reference

IDN

i

i Function: Returns the symbolic constant ¢ or its numerical

representation, (0, 1).

Level 1 — Level 1

— Iil

— (0,1)
Keyboard Access:

@@

Affected by Flags: Symbolic Constants (—2), Numerical Results

(=3)
Evaluating 7 returns its numerical representation if flag —2 or —3 is

set; otherwise, its symbolic representation is returned.

Related Commands: e, MAXR, MINR, =

IDN

Identity Matrix Command: Returns an identity matrix; that

is, a square matrix with its diagonal elements equal to 1 and its

off-diagonal elements equal to 0.

{}

Level 1 - Level 1

n — [R-matriXgeqtiry 1l
[[matrix 1] — ([matrixigentiry

‘name' —

Command Reference 3-143

IDN

Keyboard Access: (MTH) |

Affected by Flags: None

Remarks: The result is either a new square matrix, or it’s an existing

square matrix with its elements replaced by the elements of the

identity matrix, according to the argument in level 1.

m Creating a new matrix: If the argument is a real number n, a new
real identity matrix is returned to level 1, with its number of rows

and number of columns equal to n.

m Replacing the elements of an existing matrix: If the argument
is a square matrix, an identity matrix of the same dimensions is

returned. If the original matrix is complex, the Iesultlng identity

matrix will also be complex, with diagonal values ¢i

If the argumentis a name, the name must identify a variable

containing a square matrix. In this case, the elements of the matrix

are replaced by those of the identity matrix (complex if the original

matrix is complex).

Related Commands: CON

IF

IF Conditional Structure Command: Starts IF ... THEN ... END

and IF ... THEN ... ELSE ... END conditional structures.

Level 1 Level 1}

THEN T/F

END

THEN T/F

ELSE

END L
o
b
b
b

3-144 Command Reference

IF

Keyboard Access:

Affected by Flags: None

Remarks: Conditional structures, used in combination with program

tests, enable a program to make decisions.

m IF ... THEN ... END executes a sequence of commands only if a

test returns a nonzero (true) result. The syntax is:

M true-clause E

IF test-clause

IF begins the test clause, which must return a test result to the

stack. THEN removes the test result from the stack. If the value is

nonzero, the true clause is executed. Otherwise, program execution

resumes following END.

m [F ... THEN ... ELSE ... END executes one sequence of

commands if a test returns a true (nonzero) result, or another
sequence of commands if that test returns a false (zero) result. The
syntax 1s:

IF test-clause THEH true-clause SE false-clause EMD:

IF begins the test clause, which must return a test result to the

stack. THEN removes the test result from the stack. If the value

is nonzero, the true clause is executed. Otherwise, the false clause

is executed. After the appropriate clause is executed, execution

resumes following END.

The test clause can be a command sequence (for example,

an algebraic (for example, 'FzE). If the test clause is an algebraic,

it is automatically evaluated to a number (—NUM or EVAL isn’t
necessary).

Related Commands: CASE, ELSE, END, IFERR, THEN

Command Reference 3-145

IFERR

If Error Conditional Structure Command Starts IFERR. . ..

THEN ... END and IFERR ... THEN ... ELSE ... END error
trapping structures.

Keyboard Access: ERROR IF

Affected by Flags: Last Arguments (—55)

Remarks: Error trapping structures enable program execution to

continue after a “trapped” error occurs.

m [FERR ... THEN ... END executes a sequence of commands if an

error occurs. The syntax of IFERR ... THEN ... END is:

 % trap-clause THEM error-clause F

If an error occurs during execution of the trap clause:

1. The error is ignored.

2. The remainder of the trap clause is discarded.

3. The key buffer is cleared.

4 . If any or all of the display is “frozen” (by FREEZE), that state is

canceled.

5. If Last Arguments is enabled, the arguments to the command

that caused the error are returned to the stack.

6. Program execution jumps to the error clause.

The commands in the error clause are executed only if an error is

generated during execution of the trap clause.

m [FERR ... THEN ... ELSE ... END executes one sequence of

commands if an error occurs or another sequence of commands

if an error does not occur. The syntax of IFERR, ... THEN ...

ELSE ... END is:

 normal-clause F

R trap-clause THEM error-clause EL

If an error occurs during execution of the trap clause, the same six
events listed above occur.

If no error occurs, execution jumps to the normal clause at the

completion of the trap clause.

3-146 Command Reference

IFFT

Example: The following program uses IFERR muchlike the built-in
linear system of equations solver. The program takes a result vector

and a matrix of coefficients and returns aleast-squares solution to the

equations.

Related Commands: CASE, ELSE, END, IF, THEN

IFFT
Inverse Discrete Fourier Transform Command: Computes the one-

or two-dimensional inverse discrete Fourier transform of an array.

{}

Level 1 — Level 1

[array 1, — [array 1,

Keyboard Access: FFT IFFT

Affected by Flags: None

Remarks: If the argument is an N-vector or an N x1 or 1xN

matrix, IFFT computes the one-dimensional inverse transform. If the

argument is an M x N matrix, IFFT computes the two-dimensional

inverse transform. M and N must be integral powers of 2.

The one-dimensional inverse discrete Fourier transform of an N-vector

Y is the N-vector X where:

1 .
Xn,:—ZYke ¥ i=+—1

forn=0,1, ..., N —1.

Command Reference 3-147

IFFT

The two-dimensional inverse discrete Fourier transform of an M x N

matrix Y is the M x N matrix X where:

| Moiv-t
2mikm 2midn . —

Xon = 175 SN vte =
k=0 l=0

foom=0,1, .., M—landn=0,1, .., N-1.

The discrete Fourier transform and its inverse are defined for any

positive sequence length. However, the calculation can be performed

very rapidly when the sequence length is a power of two, and the

resulting algorithms are called the fast Fourier transform (FFT) and

inverse fast Fourier transform (IFFT).

The IFFT command uses truncated 15-digit arithmetic and

intermediate storage, then rounds the result to 12-digit precision.

Related Commands: FFT

IFT

IF-THEN Command: Executes obj if 7/F is nonzero. Discards obj if

T/F is zero.

Level 2 Level 1 - Level 1

T/F obj - It depends!

 Keyboard Access:

Affected by Flags: None

Remarks: IFT lets you execute in stack syntax the decision-making

process of the IF ... THEN ... END conditional structure. The “true

clause” is 0bj 1n level 1.

m level 1

Example: « &> *F
if X contains a positive real

Related Commands: IFTE

FT % puts "F i

3-148 Command Reference

IFTE

IFTE
IF-THEN-ELSE Function: Executes the obj on level 2 if T/F is
nonzero. Executes the obj on level 1if T/F is zero.

Level 3 Level 2 Level 1 = Level 1

T/F 0bji 1y e 0bji;e — It depends!

Keyboard Access: BRCH IFTE

Affected by Flags: None

Remarks: IFTE lets you execute in stack syntax the decision-making

process of the IF ... THEN ... ELSE ... END conditional structure.

The “true clause” is 0bj;,ye in level 2. The “false clause” is 0bj1515¢ 1N
level 1.

IFTE is also allowed in algebraic expressions, with the following

syntax:

"IFTE«test,true-clause,false-clause’

When an algebraic containing IFTE is evaluated, its first argument

test is evaluated to a test result. If it returns a nonzero real number,

true-clause is evaluated. If it returns zero, false-clause is evaluated.

"
Examples: The command sequence Fositiwve®

Pegat iwe” IFTE leaves "Froziti

non-negative real number, or "

real number.

on the stack if X contains a

=" if X contains a negative

=

The algebraic ' IFTECH THOHE22%, 137 returns the value of
sin(z)/z, even for z = 0, which would normally cause an Irf irit e

Fezull error.

Related Commands: IFT

Command Reference 3-149

IM

Imaginary Part Function: Returns the imaginary part of its

(complex) argument.

{}

Level 1 — Level 1

X — 0

&, ¥ - y

[R-array] — [R-array]

[C-array] — [R-array]

'symb' — "IM(symb)'
Keyboard Access: (MTH)

Affected by Flags: Numerical Results (—3)

Remarks: If the argument is an array, IM returns a real array,

the elements of which are equal to the imaginary parts of the

corresponding elements of the argument array. If the argument array

is real; all of the elements of the result array are zero.

Related Commands: C—R, RE, R—C

INCR

Increment Command: Takes a variable on level 1, adds 1, stores the

new value back into the original variable, and returns the new value to

level 1.

{}

Level 1 — Level 1

1 1

name - Xincrement

3-150 Command Reference

INDEP

G SR
Eik LHLEKeyboard Access: (&)(MEMORY) FiF I |

Affected by Flags: None

Remarks: The value in name must be a real number.

7 is stored n A, "H' IH "R returns e

Example: If:

Related Commands: DECR

INDEP

Independent Variable Command: Specifies the independent variable

and its plotting range.

Level 2 Level 1 — Level 1

'global' —

{ global } —

{ global Xg14¢t Xenqg } —

{ Xstart Xena } -

Xstart Xend -

Keyboard Access: (1)(PLOT) FFHE

Affected by Flags: None

Remarks: The specification for the independent variable name and

its plotting range is stored as the third parameter in the reserved

variable PPAR. If the argument to INDEP is a:

m Global variable name, that name replaces the independent variable

entry in PPAR.

m List containing a global name, that name replaces the independent

variable name but leaves unchanged any existing plotting range.

m List containing a global name and two real numbers, that list

replaces the independent variable entry.

Command Reference 3-151

INDEP

m List containing two real numbers, or two real numbers from levels 1
and 2, those two numbers specify a new plotting range, leaving the
independent variable name unchanged. (LASTARG returns a list,
even if the two numbers were entered separately.)

The default entry is X .

Related Commands: DEPND

INFORM

User-Defined Dialog Box Command: Creates a user-defined input
form (dialog box).

Lvl5 Lvl 4 Lvl3 Lvl 2 Lvl1 - Lvli2 Lvl1

"title' { s, s,...sy } format { resets} {init} — { vals} 1

"title® { sy s,...sn } format { resets} { init} — 0

Keyboard Access: IH IHEOE

Affected by Flags: None

Remarks: INFORM creates a standard dialog box based upon the

following specifications:

3-152 Command Reference

INFORM

Variable Function

“tatle” Title. This appears at the top of the dialog box.

{51 s2 s} Field definitions. A field definition (s;) can have

format

{ resets }

{ tnit }

two formats: “label”, a field label, or { “label”
“helpInfo” typey type; ... typen }, a field label
with optional help text that appears near the

bottom of the screen, and an optional list of valid

object types for that field. If object types aren’t

specified, all object types are valid. For infomation

about object types, see the TYPE command.

When creating a multi-column dialog box, you can

span columns by using an empty list as a field

definition. A field that appears to the left of an

empty field automatically expands to fill the empty

space.

Field format information. This is the number col or

a list of the form { col tabs }: col is the number of
columns the dialog box has, and {abs optionally

specifies the number of tab stops between the labels

and the highlighted fields. This list can be empty.

col defaults to 1 and tabs defaults to 3.

Default values displayed when EEZET is selected.

Specify reset values in the list in the same order as

the fields were specified. To specify no value, use

the NOVAL command as a place holder. This list

can be empty.

Initial values displayed when the dialog box

appears. Specify initial values in the list in the

same order as the fields were specified. To specify

no value, use the NOVAL command as a place

holder. This list can be empty.

If you exit the dialog box by selecting ik or (ENTER), INFORM

returns the field values { vals } on level 2, and puts a 1 on level 1. (If
a field is empty, NOVAL is returned as a place holder.) If you exit the

dialog box by selecting &

.. o (CANCEL), INFORM returns 0.

Command Reference 3-153

INFORM

Example: If the following five lines are on the stack:

Title text Help text Empty field Field definition
|

"The Title" ‘ f““A“L““**W

{ { "ONE" "Name?" 2 } { } { "TWO" "Age?" }
{ "THREE" "Lucky numbers?" 5 } }

Column count — {2} :
Resetvalues —— { NOVAL NOVAL { 1 2 3 } } Allowed object type

{ "Charflotte" NOYAL {4561})

Field 1 default value Field 2 place holder “Field 3 default value

E would produce:

Pressing 1t

¥ THE TITLE
OME RS%A0

THREE L

HAME?
EMT][[iAMiL]OK

Related Commands: CHOOSE, INPUT, NOVAL, TYPE

INPUT

Input Command: Prompts for data input to the command line and

prevents the user access to stack operations.

Level 2 Level 1 — Level 1

"stack prompt’ "command-line prompt" — " result’

"stack prompt" {ist.ommand—line J — " result”

3-154 Command Reference

INPUT

Keyboard Access: I IHRUT

Affected by Flags: None

Remarks: When INPUT is executed, the stack area is blanked and

program execution is suspended for datainput to the command line.

The contents of "stack prompt" are displayed at the top of the stack

area. Depending on the level 1 argument, the command line may also

contain the contents of a string, or it may be empty. Pressing

resumes program execution and returns the contents of the command

line in string form to level 1.

In its general form, the level 1 argument for INPUT is a list that

specifies the content and interpretation of the command line. The list

can contain one or more of the following parameters, in any order:

m “command-line prompt*, whose contents are placed in the command

line for prompting when the program pauses.

m Either a real number, or a list containing two real numbers, that

specifies the initial cursor position in the command line:

o A real number n at the nth character from the left end of the

first row (line) of the command line. A positive n specifies the

insert cursor; a negative n specifies the replace cursor. & specifies

the end of the command-line string.

A list that specifies the initial row and column position of

the cursor: the first number in the list specifies a row in the

command line (1 specifies the first row of the command line);
the second number counts by characters from the left end of the

specified line. & specifies the end of the command-line string in

the specified row. A positive row number specifies the insert

cursor; a negative row numberspecifies the replace cursor.

O

m One or more of the parameters FL.i:, =, or %, entered as unquoted

names:

o ALG activates Algebraic/Program-entry mode.

o = ((@) (2)(A)) specifies alphalock.

o % verifies if the characters in the result string *result®, without

the * delimiters, compose a valid object or objects. If the

result-string characters do not compose a valid object or objects,

INPUT displays the I zx warning and prompts

again for data.

Command Reference 3-155

INPUT

You can choose to specify as few as one of the level-1 list parameters.

The default states for these parameters are:

m Blank command line.

m Insert cursor placed at the end of the command-line prompt string.

m Program-entry mode.

m Result string not checked for invalid syntax.

If you specify only a command-line prompt string for the level 1

argument, you don’t need to put it in a list.

Related Commands: PROMPT, STR—

INV

Inverse (1/x) Analytic Function: Returns the reciprocal or the

matrix inverse.

{}

Level 1 — Level 1

z — 1/z

[matrix 1] — [matrix]] —*

'symb' — 'INV(symb)'

X_unit — 1/x_1/unit
Keyboard Access:

Affected by Flags: Numerical Results (—3)

Remarks: For a complez argument (z, y), the inverse is the complex

© -ynumber (L_zfllg , x2+y2) .

Matrix arguments must be square (real or complex). The computed

inverse matrix A! satisfies Ax A™* = I,,, where I, is the nxn identity

matrix.

Related Commands: SINV, /

3-156 Command Reference

IR

Integer Part Function: Returns the integer part of its argument.

{}

Level 1 - Level 1

X — n

x_unit — n_unit

'symb' — 'IP(symb)'
Keyboard Access: REAL (xxT) IR

Affected by Flags: Numerical Results (—3)

Remarks: The result has the same sign as the argument.

Example: =

Related Commands: FP

IR

Infrared/Serial Transmission Command: Directs I/O and printer
output to the infrared or serial port (“wire").

Keyboard Access: («)(1/0) IFFR IE

Affected by Flags: 1/0 Device (—33), Printing Device (—34)

Remarks: Toggles between IR and wire.

For more information, refer also to the reserved variable JOPAR (1/0

parameters) in appendix D, “Reserved Variables.”

Related Commands: BAUD, CKSM, PARITY, TRANSIO

Command Reference 3-157

ISOL

Isolate Variable Command: Returns an algebraic ' symb, * that
rearranges ‘symb; ' to “isolate” the first occurrence of variable global.

{1

Level 2 Level 1 — Level 1

‘symb, ' 'global' — 'symb, "

Keyboard Access: («)(SYMBOLIC) I

Affected by Flags: Principal Solution (—1), Numerical Results (—3)

When flag —3 is set, symbolic results are evaluated to real numbers.

This means that the = sign is evaluated. If global or any other variable

in the result equation is formal, an i {ame error results;

if global and all other variables have values, a numerical result is

returned from the calculation global — expression. This result has

limited value. In general, execute ISOL with flag —3 clear.

Remarks: The result *symb, ' is an equation of the form

"global=expression . If global appears more than once, then *symb,

is effectively the right side of an equation obtained by rearranging and

solving * symb, ' to isolate the first occurrence of global on the left

side of the equation.

If *symb, ' 1s an expression, it is treated as the leftside of an

equation 'symbq =it

If global appears in the argument of a function within 'symb, *, that

function must be an analytic function—a function for which the HP 48

provides an inverse. Thus ISOL cannot solve ' =3t for X, since

IP has no inverse.

Related Commands: COLCT, EXPAN, QUAD, SHOW

3-158 Command Reference

KEY

KERRM

Kermit Error Message Command: Returns the text of the most

recent Kermit error packet.

Level 1 — Level 1

— “error-message"

Keyboard Access: (1)(1/0) BERR

Affected by Flags: None

Remarks: If a Kermit transfer fails due to an error packet sent from

the connected Kermit device to the HP 48, then executing KERRM

retrieves and displays the error message. (Kermit errors not in packets

are retrieved by ERRM rather than KERRM.)

Related Commands: FINISH, KGET, PKT, RECN, RECV, SEND,

SERVER

KEY

Key Command: Returns to level 1 a test result and, if a key is

pressed, returns to level 2 the row-column location z,m of that key.

Level 1 - Level 2 Level 1

g Xnm 1

- 0

Keyboard Access: IH

Affected by Flags: None

Remarks: KEY returns afalse result (%) to level 1 until a key is

pressed. When akey is pressed, it returns atrue result (1) to level

Command Reference 3-159

KEY

1 and z,m to level 2. The result z,m is a two-digit number that

identifies the row and column location of the key just pressed. Unlike

WAIT, which returns a three-digit number that identifies alpha and

shifted keyboard planes, KEY returns the row-column location of any

key pressed, including (&), (), and ().

Example: The program « [LIHT I # returns
1 to the stack if the (&) Leyis pressed while themdefimte loopis

running.

Related Commands: WAIT

KGET

Kermit Get Command: Used by a local Kermit to get a Kermit
server to transmit the named object(s).

Level 1 — Level 1

'name' —

"name" —

{ name,,, namenew } —

{ name; ... name, } —

{{ name, 4 nameyew } name ... } — ‘

Keyboard Access: («)(1/0)

Affected by Flags: I/0 Device (—33), RECV Overwrite (—36), 1/O
Messages (—39)

I/O Data Format (—35) also affects KGET as follows:

m If the server is an HP 48, then the server’s flag —35 affects KGET.

m If the server is not an HP 48 but the file being transferred

originated from an HP 48, flag —35 has no effect.

m If the server is not an HP 48 and the file being transferred does not

have the Z%HP. . . .: header, flag —35 tells the HP 48 whetherto
attempt parsing the incoming data.

3-160 Command Reference

KILL

Remarks: To rename an object when the local device gets it,

include the old and new names in an embedded list. For example,

L4 AR i gets the Varlable named AAA but changes its

name to BBB gets AAA as BBB and

gets CCC under its own name. (If the original nameis not legal on

the HP 48, enterit as astring.)

Related Commands: BAUD, CKSM, FINISH, PARITY, RECN,

RECV, SEND, SERVER, TRANSIO

KILL

Cancel Halted Programs Command: Cancels all currently halted
programis. (Halted programs are typically canceled by pressing (PRG)

(NXT) FUH EILL .) If KILL is executed within a program, that
program 1is also canceled

Keyboard Access: (PRG)

Affected by Flags: None

Remarks: Canceled programs cannot be resumed.

KILL cancels only halted programs and the program from which KILL

was executed, if any. Commands that halt programs are HALT and

PROMPT.

Suspended programs cannot be canceled. Commands that suspend

programs are INPUT and WAIT.

Related Commands: CONT, DOERR, HALT, PROMPT

Command Reference 3-161

LABEL

Label Axes Command: Labels axes in PICT with z- and y-axis
variable names and with the minimum and maximum values of the

display ranges.

Keyboard Access: («)(PLOT) L F

Affected by Flags: None

Remarks: The horizontal axis name is chosen in the following

priority order:

1. If the azes parameter in the reserved variable PPAR is a list, then

the z-azis element from that list is used.

2. If azes parameter is not a list, then the independent variable name

in PPAR 1s used.

The vertical axis name is chosen in the following priority order:

1. If the azes parameter in PPAR is a list, then the y-azis element

from that list is used.

2. If azes is not a list, then the dependent variable name from PPAR

is used.

Related Commands: AXES, DRAW, DRAX

LAST

Last Arguments Command: Returns copies of the arguments of the
most recently executed command.

Keyboard Access: None. Must be typed in.

Remarks: LAST is provided for compatibility with the HP 28S.

LAST is the same as LASTARG. See LASTARG.

3-162 Command Reference

LCD—

LASTARG

Last Arguments Command: Returns copies of the arguments of the

most recently executed command.

Level 1 — Level n . Level 1

 — objn S obj;

Keyboard Access:

@EED

Affected by Flags: Last Arguments (—55)

Remarks: The objects return to the same stack levels that they

originally occupied. Commands that take no arguments leave the

current saved arguments unchanged.

When LASTARG follows a command that evaluates an algebraic

expression or a program (as do d, f, TAYLR, COLCT, DRAW,

ROOT, ISOL, EVAL, and —NUM), the last arguments saved are from

the evaluated algebraic expression or program, not from the original

command.

Related Commands: LAST

LCD—

LCD to Graphics Object Command: Returns the current stack and
menu display as a 131 x 64 graphics object.

’ Level 1 — Level 1

 \ — grob

Command Reference 3-163

I.CD—

Keyboard Access: GRELE Lohs

Affected by Flags: None

Example: L.Civ+ FICT STFICTURE returns the current display to

level 1 as a graphics object, stores it in PICT, then shows the image

in the Picture environment.

Related Commands: —GROB, —LCD

—LCD

Graphics Object to LCD Command: Displays the graphics object
from level 1, with its upper left pixel in the upper left corner of the

display.

{1

Level 1 — Level 1

grob —

Keyboard Access: GEOE (NXT) =Ll

Affected by Flags: None

Remarks: If the graphics object is larger than 131 x 56, it is
truncated.

Related Commands: BLANK, -GROB, LCD—

3-164 Command Reference

LIBS

LIBEVAL

Evaluate Library Function Command: Evaluates unnamed library

functions.

{}

| Level 1 — Level 1

#Ntynction -

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: Using LIBEVAL with random addresses can corrupt

Memory. #ns,nction 1S of the form l[Ifffh, where [l is the library

number, and fff the function number.

Related Commands: EVAL, SYSEVAL

LIBS

Libraries Command: Lists the title, number, and port of each library

attached to the current directory.

Level1 — Level 1

 — { title" myy Nport “title” nyy Ngory b

Keyboard Access: («)(LIBRARY)

Affected by Flags: None

Remarks: The title of alibrary often takes the form

LIBRARY-NAME : Description. A library without a title is displayed
as "

Related Commands: ATTACH, DETACH

Command Reference 3-165

LINE

Draw Line Command: Draws a line in PICT between the

coordinates in levels 1 and 2.

‘ Level 2 Level 1 - Level 1

‘ (leyl) (er J/Q) —

' {#n #my } {#n, #my } —

Keyboard Access: PICT LIME

Affected by Flags: None

Example: This program:

Zr LIME £ # 8d # 8d > Py

draws a line in PICT between two user-unit coordinates, displays

PICT with pixel coordinate ¢ # il ¥ at the upper left corner of

the picture display, and freezes the display.

Related Commands: ARC, BOX, TLINE

sLINE

Regression Model Formula Command: Returns an expression

representing the best fit line according to the current statistical model,

using X as the independent variable name, and explicit values of the

slope and intercept taken from the reserved variable ¥PAR.

Level 1 — Level 1

1

formula — 'symb

Keyboard Access: («)(STAT)

3-166 Command Reference

LINFIT

Affected by Flags: None

Remarks: For each curve fitting model, the following table indicates

the form of the expression returned by LLINE, where mis the slope, z

is the independent variable, and b is the intercept.

Model Formof Expression

LINFIT mz + b

LOGFIT m In(z) + b

EXPFIT bemx

PWRFIT bz™
Example: If the current modelis L‘(PFIT and if the slope is 5 and
the intercept 3, YLINE returns ' o

Related Commands: BESTFIT, COLY, CORR, COV, EXPFIT,

LINFIT, LOGFIT, LR, PREDX, PREDY, PWRFIT, XCOL, YCOL

LINFIT
Linear Curve Fit Command: Stores LINFIT as the fifth parameter in
the reserved variable ¥PAR, indicating that subsequent executions of

LR are to use the linear curve fitting model.

Keyboard Access: ()(STAT) :

Affected by Flags: None

Remarks: LINFIT is the default specification in Y PAR. For a

description of YPAR, see appendix D, “Reserved Variables.”

Related Commands: BESTFIT, EXPFIT, LOGFIT, LR, PWRFIT

Command Reference 3-167

LININ

Linear Test Function: Tests whether an algebraic is structurally
linear for a given variable.

{}

Level 2 Level 1 = Level 1

'symb' 'name' — 0/1

Keyboard Access: TEET (@)PREV) LIHIH

Affected by Flags: None

Remarks: If any two subexpressions containing a variable (name) are

combined only with addition and subtraction, and any subexpression

containing the variable is at-most multiplied or divided by another

factor not containing the variable, the algebraic (*symb') is

determined to be linear for that variable.

LININ returns a 1 if the algebraic is linear for the variable, and a 0 if

not.

Example:
i 4

returns 1.

i|-

returns .

(Although this equation yields a linear equation when factored, LININ

tests the equation as described above.)

3-168 Command Reference

—LIST

LIST—

List to Stack Command: Takes a list of n objects and returns them

to separate levels, and returns the total number of objects to level 1.

Level 1 — Leveln+1 ... Level 2 Level 1

 { objy ... objn } — obj; ... obj, n

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: The command OBJ— also provides this function. LIST—

is included for compatibility with the HP 28S.

Related Commands: ARRY—, DTAG, EQ—, —LIST, OBJ—,

STR—

—LIST

Stack to List Command: Takes n objects from level n+1 through

level 2 and returns a list of those n objects.

Level n+1 ... Level2 Level1 — Level 1

obj; ... objn, n — {obj; ... objy }

Keyboard Access: (PRG

Affected by Flags: None

Example: The program

combines the entire contents of the stack into a list that is stored in

varlable A.

Command Reference 3-169

—LIST

Related Commands: —ARRY, LIST—, —STR, —TAG, —UNIT

ZLIST

List Sum Command: Returns the sum of the elements in alist.

{ Level 1 - Level 1

’ { list } — sum

Keyboard Access: (MTH) 15T ZLIST

Affected by Flags: None

Remarks: The elements in the list must be suitable for mutual

addition.

£=T returns 15, Examples:

CREBCLYE

Related Commands: IILIST, STREAM

IET returns 'H+E+CHL

List Differences Command: Returns the first differences of the

elements in a list.

Level 1 - Level 1

{ list } — { differences }

Keyboard Access: LITET alisy

Affected by Flags: None

3-170 Command Reference

IILIST

Remarks: Adjacent elements in the list must be suitable for mutual
subtraction.

 T returns © 18 ~-1% 1&

Examples: 43
o i
e}

Related Commands: XLIST, IILIST, STREAM

[1LIST

List Product Command: Returns the product of the elements in a

list.

Level 1 - Level 1

{ list } — product

Keyboard Access: LIET mLI=d

Affected by Flags: None

Remarks: The elements in the list must be suitable for mutual

multiplication.

Examples:

=T returns SE.

THEBCL 3 TLIST returns FHxkExD

Related Commands: XLIST, ALIST, STREAM

Command Reference 3-171

LN

Natural Logarithm Analytic Function: Returns the natural (base ¢)

logarithm of the argument.

{}

Level 1 — Level 1 {

z — In z ‘

'symb' — 'LN(symb)' ’

Keyboard Access: ()(LN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Infinite Result Exception (—22)

Remarks: For z=0 or (0, 0), an I =11lexception
occurs, or, if flag —22 is set, —MAXR is returned.

The inverse of EXP is a relation, not a function, since EXP sends

more than one argument to the same result. The inverse relation for

EXP is expressed by ISOL as the general solution

The function LN is the inverse of a part of EXP, a part defined by

restricting the domain of EXP such that 1) each argument is sent to

a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of EXP are called the principal values of the

inverse relation. LN in its entirety is called the principal branch of the

inverse relation, and the points sent by LN to the boundary of the

restricted domain of EXP form the branch cuts of LN.

The principal branch used by the HP 48 for LN was chosen because

it is analytic in the regions where the arguments of the real-valued

inverse function are defined. The branch cut for the complex-valued

natural log function occurs where the corresponding real-valued

function is undefined. The principal branch also preserves most of the

important symmetries.

The graphs below show the domain and range of LN. The graph of the

domain shows where the branch cut occurs: the heavy solid line marks

3-172 Command Reference

LN

one side of the cut, while the feathered lines mark the other side of

the cut. The graph of the range shows where each side of the cut is

mapped under the function.

 These graphs show the inverse relation 'LHiZ i%nl ' for the

case n1=0. For other values of nl, the horlzontal band in the lower

graph is translated up (for nf pos1t1ve) or down (for nl negative).

Taken together, the bands cover the whole complex plane, whichis the

domain of EXP.

You can view these graphs with domain and range reversed to see how

the domain of EXP is restricted to make an inverse function possible.

Consider the vertical band in the lower graph as the restricted domain

7= {z,y. EXP sends this domain onto the whole complex plane in

the range W = fu.v» = EXFiz;y» in the upper graph.

Related Commands: ALOG, EXP, ISOL, LNP1, LOG

Domain: Z = (x,y)

Range: W = (u,v) = LN(x,y)

 y v
1rrrrlrrieineg /1176/////1//1/

Command Reference 3-173

LNP1

Natural Log of x Plus 1 Analytic Function: Returns In (z + 1).

{}

Level 1 — Level 1

X — In(x+1)

'symb' — 'LNP1(symb)'

Keyboard Access: HY P (NXT) LHEL

Affected by Flags: Numerical Results (—3), Infinite Result

Exception (—22)

Remarks: For values of z close to zero, 'L.MF1iz"' returns a more

accurate result than does 'iH<z+13'. Using LNP1 allows both the

argument and the result to be near zero, and it avoids an intermediate

result near 1. The calculator can express numbers within 10744° of

zero, but within only 10711 of 1.

1% error results. ForFor values of © < —1, an

t exception occurs, or, if flag —22 is set,r=—1,an Infimits

LNP1 returns —MAXR.

Related Commands: EXPM, LN

LOG

Common Logarithm Analytic Function: Returns the common
logarithm (base 10) of the argument.

3-174 Command Reference

LOG

{1}

\ Level 1 ~ Level 1

z — log z

'symb' — 'LOG(symb)'

Keyboard Access: ()(LOG)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),

Infinite Result Exception (—22)

Remarks: For z=0 or (0, 0), an Irfinite Rezult exception

occurs, or, if flag —22 is set (no error), LOG returns —MAXR.

The inverse of ALOG is a relation, not a function, since ALOG sends

more than one argument to the same result. The inverse relation for

ALOG is expressed by ISOL as the general solution

o
e

The function LOG is the inverse of a part of ALOG, a part defined by

restricting the domain of ALOG such that 1) each argument is sent to

a distinct result, and 2) each possible result is achieved. The points in

this restricted domain of ALOG are called the principal values of the

inverse relation. LOG in its entirety is called the principal branch of

the inverse relation, and the points sent by LOG to the boundary of

the restricted domain of ALOG form the branch cuts of LOG.

The principal branch used by the HP 48 for LOG(z) was chosen

because it is analytic in the regions where the arguments of

the real-valued function are defined. The branch cut for the

complex-valued LOG function occurs where the corresponding

real-valued function is undefined. The principal branch also preserves

most of the important symmetries.

You can determine the graph for LOG(z) from the graph for LN (see

LN) and the relationship log z = In z / In 10.

Related Commands: ALOG, EXP, ISOL, LN

Command Reference 3-175

LOGFIT

Logarithmic Curve Fit Command: Stores LOGFIT as the fifth
parameter in the reserved variable ¥PAR, indicating that subsequent
executions of LR are to use the logarithmic curve-fitting model.

Keyboard Access: ()(STAT) :

Affected by Flags: None

Remarks: LINFIT is the default specification in £ PAR. For a

description of XPAR, see appendix D, “Reserved Variables.”

Related Commands: BESTFIT, EXPFIT, LINFIT, LR, PWRFIT

LQ

LQ Factorization of a Matrix Command: Returns the LQ

factorization of an nxm matrix.

{}

Level 1 — Level 3 Level 2 Level 1

 [[matrix 1] — [[matrix 1] ([matrix Jlq [[matrix 1]

Keyboard Access: (MTH)

Affected by Flags: None

Remarks: LQ factors an m xn matrix A into three matrices:

m [is a lower mxn trapezoidal matrix.

m) is an nXn orthogonal matrix.

m P is a mxm permutation matrix.

Where PxA = Lx Q.

Related Commands: LSQ, QR

3-176 Command Reference

LR

LR

Linear Regression Command: Uses the currently selected statistical

model to calculate the linear regression coefficients (intercept and

slope) for the selected dependent and independent variables in the

current statistics matrix (reserved variable YDAT).

Level 1 — Level 2 Level 1

 — Intercept: x; Slope: X,

Keyboard Access: (&)(STAT)

Affected by Flags: None

Remarks: The columns of independent and dependent data are

specified by the first two elements in the reserved variable ¥PAR, set

by XCOL and YCOL, respectively. (The default independent and

dependent columns are 1 and 2.) The selected statistical model is the
fifth element in ¥PAR. LR stores the intercept and slope (untagged)

as the third and fourth elements, respectively, in YPAR.

The coefficients of the exponential (EXPFIT), logarithmic (LOGFIT),
and power (PWRFIT) models are calculated using transformations

that allow the data to be fitted by standard linear regression. The

equations for these transformations appear in the table below, where b

is the intercept and m is the slope. The logarithmic model requires

positive z-values (XCOL), the exponential model requires positive

y-values (YCOL), and the power model requires positive z- and

y-values.

For a description of X PAR, see appendix D, “Reserved Variables.”

Transformation Equations

Model Transformation

Logarithmic y = b+ mIn(z)

Exponential In(y) = In(b) + mz

Power In(y) = In(d) + m In(z)
Command Reference 3-177

LR

Related Commands: BESTFIT, COLY, CORR, COV, EXPFIT,
YLINE, LINFIT, LOGFIT, PREDX, PREDY, PWRFIT, XCOL,
YCOL

LSQ

Least Squares Solution Command: Returns the minimum norm
least squares solution to any system of linear equations where
Ax X =B.

{}

Level 2 Level 1 — Level 1

[array 1g [[matrix 115 — [array 1

[[matrix 1] [[matrix 1], — [[matrix 1]y

Keyboard Access:

@ED)
MTH

Affected by Flags: Singular Values (—54)

Remarks: If B is a vector, the resulting vector has a minimum

Euclidean norm || X|| over all vector solutions that minimize the
residual Euclidean norm ||A x X — B||. If B is a matrix, each column
of the resulting matrix, X;, has a minimum Euclidean norm || X;||

over all vector solutions that minimize the residual Euclidean norm

HA X ‘Xi — Bz”

If A has less than full row rank (the system of equations is

underdetermined), an infinite number of solutions exist. LSQ returns

the solution with the minimum Euclidean length.

If A has less than full column rank (the system of equations is

overdetermined), a solution that satisfies all the equations may not

exist. LSQ returns the solution with the minimum residuals of

AxX—B.

Related Commands: LQ, RANK, QR, /

3-178 Command Reference

MANT

LU

LU Decomposition of a Square Matrix Command: Returns the LU

decomposition of a square matrix.

{1

Level 1 - Level 3 Level 2 Level 1

 [[matrix 1] — [[matrix 1] [[matrix 1]y [[matrix]]PJ

Keyboard Access: (MTH) MATRE FAI

Affected by Flags: None

Remarks: When solving an exactly determined system of equations,

inverting a square matrix, or computing the determinant of a matrix,

the HP 48 factors a square matrix into its Crout LU decomposition

using partial pivoting.

The Crout LU decomposition of A is a lower-triangular matrix L,

an upper-triangular matrix U with ones on its diagonal, and a

permutation matrix P, such that PxA = Lx U. The results satisfy

PxA=LxU.

Related Commands: DET, INV, LSQ, /

MANT

Mantissa Function: Returns the mantissa of the argument.

{}

Level 1 — Level 1

X - Ymant

'symb' — 'MANT(symb)'

Keyboard Access: (MTH

Command Reference 3-179

MANT

Affected by Flags: Numerical Results (—3)

Example: -

{T returns 1. 2.

Related Commands: SIGN, XPON

IMATCH
Bottom-Up Match and Replace Command: Rewrites an expression.

Level 2 Level 1 — Level 2 Level 1 J

'symb; ' {'symb,,"' 'symb., " } — ‘'symb,' 0/1 ‘

'symb; ' { 'symbpat' 'symbrepl ! symbCond "} — l'symb,' 0/1 ‘

Keyboard Access: (+)(SYMBOLIC) (NXT)

Affected by Flags: None

Remarks: [MATCH rewrites expressions or subexpressions that

match a specified pattern 'symb,,;*. An optional condition,

Fsymbegng °, can further restrict whether a rewrite occurs. A test

result is also returned to indicate if command execution produced a

rewrite; i if it did, & if it did not.

The pattern 'symb,, ' and replacement 'symb, ' can be normal

expressions; for example, you can replace 'HIHwe53 " with

"1-z'. You can also use a “wildcard” in the pattern (to match any

subexpression) and in the replacement (to represent that expre<51on)

A wildcard is a namethat begins Wlthsuch as the name ‘5!

used in replacing i 1t . Multiple

occurrences of a partlculeu WlldcardIn a pattern must match identical

subexpressions.

TMATCH works from bottom up; that is, it checks the lowest level

(most deeply nested) subexpressions first. This approach works well

for simplification. A subexpression simplified during one execution of

[MATCH will be a simpler argument of its parent expression, so the

parent expression can be simplified by another execution of TMATCH.

3-180 Command Reference

|MATCH

Several subexpressions can be simplified by one execution of TMATCH
provided none is a subexpression of any other.

Examples: This sequence:

returns 1%

to level 1.

This sequence:

returns F~=IHE2 T to level 2 and 1 to level 1.

This sequence:

P Pl ot OTERADOTE PoEMRTOH

returns to level 2 and 1 to level 1.

Related Commands: |MATCH

|MATCH
Match Pattern Down Command: Rewrites an expression.

Level 2 Level 1 — Level 2 Level 1

'symb, ' { 'symb, "' ‘symb. " } — ‘'symb,' 0/1

'symbl' { lsymbpatl ISymbreplI ISymbcondl } - IsymeI 0/1

Keyboard Access: («)(SYMBOLIC) (NXT) i

Affected by Flags: None

Remarks: |MATCH rewrites expressions or subexpressions that

match a specified pattern 'symb,,: . An optional condition,

"symbeong ', can further restrict whether a rewrite occurs. A test

result is also returned to indicate if command execution produced a

rewrite; 1 1f it did, & if it did not.

Command Reference 3-181

IMATCH

The pattern *symb,,; ' and replacement 'symb,em ' can benounal

expressions; for example, you can replace .5 with ' % 211, You

can also use a “wildcard” in the pattern (to match any subexpresswn)

and in the replacement (to represent that expresswn) A wildcard is a

name that begins with

= " with 3 :

Multiple occurrences of a partlculal Wlldcardin a pattern must match

identical subexpressions.

%, such as the name *, used in replacmg

IMATCH works from top down; that is, it checks the entire expression

first. This approach works well for expansion. An expression

expanded during one execution of |MATCH will contain additional

subexpressions, and those subexpressions can be expanded by another

execution of |MATCH. Several expressions can be expanded by one

execution of |[MATCH provided none is a subexpression of any other.

Examples:

oy - RL

fd Lot Ln

EE

returns *' tolevel 2 and i to level 1.

 ei

‘2! to level 2 and i to

returns ‘=

level 1.

This sequence:

returns

to level 2 and 1 to level 1.

Related Commands: [MATCH

3-182 Command Reference

MAXR

Maximum Function: Returns the greater (more positive) of the
arguments.

{}

Level 2 Level 1 - Level 1

X y — max(x, y)

X 'symb' — 'MAX(x, symb)'

'symb' X — '"MAX(symb, x)'

'symb, ' ‘symb, - 'MAX(symb,, symb,)'

X_unit; y_unit, — max(x_unit, , y_unit,)

Keyboard Access: RERL MAH

Affected by Flags: Numerical Results (—3)

Examples: 1§ ® returns 18.

~18 - returns — 1.

L.m %_cm MAX returns i

Related Commands: MIN

Maximum Real Function: Returns the symbolic constant 'Hf:E "' or

its numerical representation, @, 9SSTIHILDDESBD,

Level 1 - Level 1

— 'MAXR'

— 9.99999999999E499

Keyboard Access: GOE P

Command Reference 3-183

MAXR

Affected by Flags: Symbolic Constants (—2), Numerical Results

(=3)
MAXRreturns its numerical representation if flag —2 or —3 is set;
otherwise, it returns its symbolic representation.

Remarks: MAXR is the largest numerical value that can be

represented by the HP 48.

Related Commands: e, i, MINR, =

MAXZ

Maximum Sigma Command: Finds the maximum coordinate value
in each of the m columns of the current statistics matrix (reserved

variable YDAT).

Level 1 — Level 1

- Xmax

- [Xmax1 Xmax2 - Xmaxm]

Keyboard Access: (&)(STAT) |

Affected by Flags: None

Remarks: The maxima are returned as a vector of m real numbers,

or as a single real number if m = 1.

Related Commands: BINS, MEAN, MINX, SDEV, TOT, VAR

3-184 Command Reference

MEAN

MCALC

Make Calculated Value Command: Designates a variable as a
calculated value (not user-defined) for the Multiple-Equation Solver.

Level 1 — Level 1

‘name’ —

{ list } —

"ALL" _

 Keyboard Access: («)(EQLIB) fif

Affected by Flags: None

Remarks: MCALC designates asingle variable, a list of variables, or

all variables as calculated values.

Related Commands: MUSER

MEAN

Mean Command: Returns the mean of each of the m columns of

coordinate values in the current statistics matrix (reserved variable

SDAT).

Level 1 — Level 1

- Xmean

- [Xmeani Xmean2 --- Xmeanm]

Keyboard Access: (&)(STAT) 1i%HE

Affected by Flags: None

Command Reference 3-185

MEAN

Remarks: The mean is returned as a vector of m real numbers, or

as a single real number if m = 1. The mean is computed from the

formula:

n
1

Pn
i=1

where z; is the 7th coordinate value in a column, and n is the number

of data points.

Related Commands: BINS, MAXY, MINX, SDEV, TOT, VAR

MEM

Memory Available Command: Returns the number of bytes of
available RAM.

Level 1 — Level 1

— X

Keyboard Access: ()(MEMORY) HMEM

Affected by Flags: None

Remarks: The number returned is only a rough indicator of usable

available memory, since recovery features (LASTARG, ()(UNDO), and

()(EMD)) consume or release varying amounts of memory with each

operation.

Before it can assess the amount of memory available, MEM must

remove objects in temporary memory that are no longer being used.

This clean-up process (also called “garbage collection”) also occurs

automatically at other times when memory is full. Since this process

can slow down calculator operation at undesired times, you can force

it to occur at a desired time by executing MEf1. In a program, execute

Related Commands: BYTES

3-186 Command Reference

MENU

MENU

Display Menu Command: Displays a built-in menu or a library
menu, or defines and displays a custom menu.

Level 1 — Level 1

Xmenu -

{ ’iStdefinition } -

'‘nameyqfinition -

obj —

Affected by Flags: None

Remarks: A built-in menuis specified by a real number zymeny. The

format of zmeny 18 mm.pp, where mmis the menu number and pp

is the page of the menu. If pp doesn’t correspond to a page of the

specified menu, the first page is displayed. The following table lists the

HP 48 built-in menus and the corresponding menu numbers.

Menu Menu

Menu Name # Menu Name

Last Menu 15 MTH BASE

1 CST 16 |MTH BASE LOGIC

2 VAR 17 |MTH BASE BIT

3 MTH 18 |MATH BASE BYTE

4 MTH VECTR 19 |MTH FFT

5 MTH MATR 20 |MTH CMPL

6 MTH MATR MAKE 21 |MTH CONS

7 MTH MATR NORM 22 PRG

8 MTH MATR FACTR 23 |PRG BRCH

MTH MATR COL 24 |PRG BRCH IF

10 |MTH MATR ROW 25 PRG BRCH CASE

11 MTH LIST 26 PRG BRCH START

12 |MTH HYP 27 |PRG BRCH FOR

13 |MTH PROB 28 |EDIT

14 |MTH REAL 29 |PRG BRCH DO

Command Reference 3-187

MENU

Menu Menu

Menu Name # Menu Name

30 |SOLVE ROOT SOLVR 62 |CHARS

31 PRG BRCH WHILE 63 MODES

32 |PRG TEST 64 |MODES FMT

33 |PRG TYPE 65 |MODES ANGL

34 |PRG LIST 66 |MODES FLAG

35 |PRG LIST ELEM 67 |MODES KEYS

36 |PRG LIST PROC 68 |MODES MENU

37 |PRG GROB 69 |MODES MISC

38 |PRG PICT 70 MEMORY

39 |PRG IN 71 MEMORY DIR

40 |PRG OUT 72 |MEMORY ARITH

41 PRG RUN 73 STACK

42 UNITS (Units Catalog Menu) 74 |SOLVE

43 UNITS LENG 75 SOLVE ROOT

44 |UNITS AREA 76 |SOLVE DIFFE

45 |UNITS VOL 77 |SOLVE POLY

46 UNITS TIME 78 |SOLVE SYS

47 UNITS SPEED 79 |SOLVE TVM

48 UNITS MASS 80 |SOLVE TVM SOLVR

49 |UNITS FORCE 81 |PLOT

50 |UNITS ENRG 82 |PLOT PTYPE

51 UNITS POWR 83 |PLOT PPAR

52 |UNITS PRESS 84 |PLOT 3D

53 |UNITS TEMP 85 |PLOT 3D PTYPE

54 |UNITS ELEC 86 |PLOT 3D VPAR

55 |UNITS ANGL 87 |PLOT STAT

56 UNITS LIGHT 88 |PLOT STAT PTYPE

57 |UNITS RAD 89 |PLOT STAT LPAR

58 |UNITS VISC 90 |PLOT STAT XPAR MODL

59 |UNITS 91 PLOT STAT DATA

60 |PRG ERROR IFERR 92 |PLOT FLAG

61 |PRG ERROR 93 |SYMBOLIC

3-188 Command Reference

MENU

Menu Menu

#* Menu Name # Menu Name

94 TIME 107 |10 PRINT

95 TIME ALARM 108 |IO PRINT PRTPA

96 STAT 109 |IO SERIA

97 STAT DATA 110 |LIBRARY

98 STAT YLPAR 111 |LIBRARY PORTS

99 STAT YPAR MODL 112 |LIBRARY PORTS :0:

100 |STAT 1VAR 113 |EQ LIB

101 |STAT PLOT 114 |EQ LIB EQLIB

102 STAT FIT 115 |EQ LIB COLIB

103 STAT SUMS 116 |EQ LIB MES

104 IO 117 |EQ LIB UTILS

105 |10 SRVR

106 IO IOPAR

Library menus are specified in the same way as built-in menus, with

the library number serving as the menu number.

Custom menus are specified by a list of the form

i« "label-object” action-object * (see appendix D, “Reserved

Variables,” for details) or a name containing a list ('nameqqafinition ')

Either argument is stored in reserved variable C'ST', and the custom

menu is subsequently displayed.

MENUtakes any object as a valid argument and stores it in CST'.

However, the calculator can build a custom menu only if CST

contains a list or a name containing a list. Thus, if an object other

than a list or name containinga list is supplied to MENU,a i

et Tupe error will occur when the calculator attempts to
dlsplay the custom menu.

! displays the first page of the MTH MATR

Examples:
NORM menu.

displays the second page of the UNITS MASS menu.

I displays the custom menu defined by the list

i I displays the custom menu defined by the name

argument.

Command Reference 3-189

MENU

Related Commands: RCLMENU, TMENU

MERGE

Merge RAM Card Command: Merges the RAM from the card in
port 1 with the rest of main user memory. Merged memory is no

longer independent.

Level 1 — Level 1

1 —

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: MERGE is provided for compatibility with the HP 485

series. See MERGEL.

Related Commands: FREE1, MERGE1

MERGE 1

Merge RAM Card Command: Merges the RAM from the card in
port 1 with the rest of main user memory. Merged memory is no

longer independent.

Keyboard Access: («)(LIBRARY) HMERLE

Affected by Flags: None

Remarks: If the RAM card contains library or backup objects, they

are moved to port 0 before the RAM is merged. Library and backup

objects can exist only in independent memory (port 1 through 33

unmerged, or port 0).

Cards larger than 128K cannot be merged, and cannot be plugged into

port 1.

3-190 Command Reference

MIN

Related Commands: FREE, FREE1, MERGE

Minimum Function: Returns the lesser (more negative) of its two
arguments.

{}

Level 2 Level 1 — Level 1

X y — min(x, y¥)

X 'symb' — 'MIN(x, symb)'

'symb' X — 'MIN(symb, x)'

'symb, ' 'symb, " — 'MIN(symb, , symb,)'

Xx_unity y_unity — min(x_unit; , y_unity)

Keyboard Access: FEAL MIH

Affected by Flags: Numerical Results (—3)

Examples: 18 % MIM returns 18,

-1 -23 MIH returns —Z3.

1om S_om MIN returns 9o,

Related Commands: MAX

Command Reference 3-191

MINEHUNT

MINEHUNT Game Command: Starts the MINEHUNT game.

Keyboard Access: («)(EQLIB) L

Affected by Flags: None

Remarks: In the game, you are standing in the upper-left corner

of an 8 x 16 battlefield grid. Your mission is to travel safely to the

lower-right corner, avoiding invisible mines along the way. The game

tells you how many mines are under the eight squares adjacent to your

position.

—
Z
C
I
M
Z
H
I

[k

—
Z
C
I
M
Z
H
I

(¥

Use the number or arrow keys to cross the battlefield one square at a

time. (Use (7), (9), (1), and (3) to move diagonally.) You can exit the

game any time by pressing (CANCEL).

To interrupt and save a game, press (ST0). This creates a variable

MHpar in the current directory and ends the game. If MHpar exists

when you next start Minehunt, the interrupted game resumes and

MHpar is purged.

You can change the number of mines in the battlefield by creating a

variable named Nmines containing the desired number. Nmines must

contain areal number (1 to 64). If Nmines is negative, the mines are

visible during the game.

3-192 Command Reference

MINR

MINIT

Multiple Equation Menu Initialization Command: Creates the
reserved variable Mpar.

Keyboard Access: (1)(EQLIB) HES=

Affected by Flags: None

Remarks: MINIT takes multiple equations stored in F'@Q and creates

the multiple equation reserved variable Mpar. See appendix D,

“Reserved Variables,” for information about Mpar.

Related Commands: MITM, MROOT, MSOLVR

MINR

Minimum Real Function: Returns the symbohc constant 'FIHRE' or

its numerical representation, 1.& i

Level 1 — Level 1

— 'MINR'

= 1.00000000000E—499

 Keyboard Access: i i

Affected by Flags: Symbolic Constants (—2), Numerical Results

(=3)
MAXR returns its numerical representation if flag —2 or —3 is set;

otherwise, it returns its symbolic representation.

Remarks: MINR is the smallest nonzero numerical value that can be

represented by the HP 48.

Related Commands: e¢,i, MAXR, 7

Command Reference 3-193

MINZ

Minimum Sigma Command: Finds the minimum coordinate value
in each of the m columns of the current statistics matrix (reserved
variable XDAT).

Level 1 — Level 1

- Xmin

- [Xminl Xmin2 - Xminm]

 Keyboard Access: (&)(STAT) i*

Affected by Flags: None

Remarks: The minima are returned as a vector of m real numbers,

or as asingle real number if m = 1.

Related Commands: BINS, MAXY, MEAN, SDEV, TOT, VAR

MITM

Multiple Equation Menu Item Order Command: Changes multiple
equation menu titles and order.

Level 2 Level 1 — Level 1

" title’ { list } —

Keyboard Access: (q)(EQ LIB)

Affected by FFlags: None

Remarks: /ist contains the variable names in the order you want.

Use ** to indicate a blank label. You must include all variables in the

original menu and no others.

3-194 Command Reference

MROOT

Related Commands: MINIT

MOD

Modulo Function: Returns a remainder defined by:

zmod y =z — y floor (z/y)

{1}

Level 2 Level 1 — Level 1

X y — x mod y

X 'symb' — 'MOD(x, symb)'

'symb' X — 'MOD(symb, x)'

'symb; ' 'symb,' — 'MOD(symb; , symb,)'

Keyboard Access: RERL MOD

Affected by Flags: Numerical Results (—3)

Remarks: Mod (z, y) is periodic in z with period y. Mod (z, y) lies

in the interval [0, y) for y > 0 and in (y, 0] for y < 0.

Related Commands: FLOOR, /

MROOT

Multiple Roots Command: Uses the Multiple-Equation Solver to

solve for one or more variables using the equation set in Mpar.

{}

J Level 1 - Level 1 ‘

‘'name’ — X

TALL" -

Command Reference 3-195

MROOT

Keyboard Access: («)(EQLIB) !

Affected by Flags: None

Remarks: Solves for one or more variables starting with only
user-defined values, and leaves found values in the variables. No status

messages are displayed. Given a variable name, MROOT returns the

found value; it can also take "FL.L." (stores a found value for each
variable) and return nothing to the stack.

Related Commands: MCALC, MUSER

MSGBOX

Message Box Command: Creates a user-defined message box.

{3

Level 1 - Level 1

"message" —

Keyboard Access: ouT

Affected by Flags: None

Remarks: MSGBOX displays "message" in the form of a standard

message box. Message text longer than 75 characters (including

spaces) is truncated to 75 characters. You can use spaces and new-line
characters ((;(»)(e=#)) to control word-wrapping and line breaks within

the message.

Program execution resumes when the message box is exited by

selecting [E or DHHIL.

Related Commands: CHOOSE, INFORM, PROMPT

3-196 Command Reference

MUSER

MSOLVR
Multiple-Equation Solver Command: Gets the Multiple-Equation
Solver variable menu for the set of equations defined by Mpar.

Keyboard Access:

(@ELLE)
@Em):

Affected by Flags: None

Remarks: The Multiple-Equation Solver application can solve a set

of two or more equations for unknown variables by finding the roots of

each equation, one at a time.

The Multiple-Equation Solver uses the list of equations stored in

FQ. “Equations” in this context includes programs, expressions, and

variable names that evaluate to asingle value. The Multiple-Equation

Solver requires that E'Q contain more than one equation—thatis,

the HP Solve application would include the % menu label for

EQ@. The solver uses EQ to create areserved variable Mpar that is

used during the solution process. Mpar contains the equation set plus

additional information. See appendix D, “Reserved Variables,” for

information about Mpar.

Related Commands: EQNLIB, SOLVEQN

MUSER
Make User-Defined Variable Command: Designates a variable as
user-defined for the Multiple-Equation Solver.

Level 1 — I:ével 1

‘name’ —

{ list } —

"TALL" —

Command Reference 3-197

MUSER

Keyboard Access: («)(EQLIB) HEZ HUSE

Affected by Flags: None

Remarks: MUSER designates a single variable, a list of variables, or
all variables as user-defined.

Related Commands: MCALC

NDIST

Normal Distribution Command: Returns the normal probability

distribution (bell curve) at z based on the mean m and variance v of

the normal distribution.

{1}

Level 3 Level 2 Level 1 — Level 1

m v X — ndist(m,v,x)

Keyboard Access: FELE MOTET

Affected by Flags: None

Remarks: NDIST is calcluated using this formula:

_ (:l:-—m)2
. e v

ndist(m,v,z) =
27y

Related Commands: UTPN

3-198 Command Reference

NEG

NEG

Negate Analytic Function: Changes the sign or negates an object.

{}

Level 1 = Level 1

z — -z

#'71 - #n2

[array] — [—array]

'symb' — '—(symb)'

X_unit — —x_unit

grobl e grob2

PICT, — PICT,
Keyboard Access:

P NXT) HEG

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize
(=5 through —10)

Remarks: Negating an array creates a new array containing the

negative of each of the original elements. Negating a binary number
takes its two’s complement (complements each bit and adds 1).

Negating agraphics object “inverts” it (toggles each pixel from on to

off, or vice-versa). If the argument is PICT, the graphics object stored

in PICT is inverted.

Related Commands: ABS, CONJ, NOT, SIGN

Command Reference 3-199

NEWOB

New Object Command: Creates a new copy of the specified object.

Level 1 — Level 1

obj — obj

Keyboard Access: («)(MEMORY) H

Affected by Flags: Last Arguments (—55)

In order for NEWOB to immediately release the memory occupied by

the original copy, flag —55 must be set so that the copy is not saved as

a last argument.

Remarks: NEWOB has two main uses:

m NEWOB enables the purging of a library or backup object that has

been recalled from a port. NEWOB creates a new, separate copy

of the object in memory, thereby allowing the original copy to be

purged.

m Creating a new copy of an object that originated in a larger

composite object (such as a list) allows you to recover the memory

associated with the larger object when that larger objectis no

longer needed.

recalls and

Examples:

purges the backup object BKUPI.

i1 retrieves the third element out ofa list in the stack,

recovering the memory occupied by the wholelist.

Related Commands: MEM, PURGE

3-200 Command Reference

NOT

NEXT
NEXT Command: Ends definite loop structures.

See the FOR and START command entries for syntax information.

Keyboard Access:

PRG

Remarks: See the FOR and START keyword entries for more

information.

Related Commands: FOR, START, STEP

NEXT
Next Operation: Returns but does not execute the next one or two

steps of a program.

Keyboard Access:

Affected by Flags: None

Related Commands: SST, SST|

NOT

NOT Command: Returns the one’s complementor logical inverse of
the argument.

Command Reference 3-201

NOT

{}

Level 1 — Level 1

#nl — #'72

T/F — 0/1

"string, " — " string,"

'symb' — 'NOT symb'

Keyboard Access:

i

MTH NXT)LOGIE MHOT

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize

(=5 through —10)

Remarks: When the argument is a binary integer or string, NOT

complements each bit in the argument to produce the result.

m A binary integer is treated as a sequence of bits as long as the

current wordsize.

m A string is treated as a sequence of bits, using 8 bits per character

(that is, using the binary version of the character code).

When the argument is a real number or symbolic, NOT does a

true/false test. The result is 1 (true) if the argument is zero; it is &

(false) if the argument is nonzero. This test is usually done on a test

result (T/F).

If the argument i1s an algebraic object, then the result is an algebraic

of the form ‘| symb'. Execute -} (or set flag —3 before

executing NOT) to produce a numeric result from the algebraic result.

Related Commands: AND, OR, XOR

3-202 Command Reference

NSUB

NOVAL

INFORM Place Holder/Result Command: Place holder for reset and
initial values in user-defined dialog boxes. NOVAL is returned to the
stack when a field is empty.

Keyboard Access: IM MO

Affected by Flags: None

Remarks: NOVAL is used to mark an empty field in a user-defined

dialog box created with the INFORM command. INFORM defines

fields sequentially. If default values are used for those fields, the

defaults must be defined in the same order as the fields were defined.

To skip over (not provide defaults for) some of the fields, use the
NOVAL command.

After INFORM terminates, NOVAL is returned to the stack (on level

2) if a field is empty and ik or is selected.

Related Commands: INFORM

NSUB

Number of Sublist Command: Provides a way to access the current
sublist position during an iteration of a program or command applied

using DOSUBS.

Keyboard Access: (PRG) L I%T

Affected by Flags: None

wecd Looal Hame error if executed

Remarks: Returns an limcisf

when DOSUBS is not active.

Related Commands: DOSUBS, ENDSUB

Command Reference 3-203

NUM

Character Number Command:

first character in the string.

Returns the character code n for the

{1}

Level 1 Level 1

" string” n

Keyboard Access:

PRG

NXT) -B

Affected by Flags: None

Remarks: The character codes are an extension of ISO 8859/1.
Codes 128 through 159 are unique to the HP 48.

The following tables show the relation between character codes

(results of NUM, arguments to CHR) and characters (results of CHR,

arguments to NUM).

3-204 Command Reference

Character Codes (0 — 127)

NUM

NUM CHR NUM CHR NUM

i ®

o =iA

4
4

NUM CHR

i

Command Reference 3-205

NUM

Character Codes (128 — 255)

NUM CHR NUM CHR

NUM CHR

R
l

i

NUM CHR

Related Commands:

3-206 Command Reference

CHR, POS, REPL, SIZE, SUB

NUMX

—NUM
Evaluate to Number Command: Evaluates a symbolic argument
object (other than a list) and returns the numerical result.

{1}

Level 1 — Level 1

Obisymo - z

Keyboard Access: (q)(=NUum)

Affected by Flags: None

Remarks: —NUM repeatedly evaluates a symbolic argument until a

numerical result is achieved. The effect is the same as evaluating the

symbolic argument in Numerical Result mode (flag —3 set).

Related Commands: EVAL, SYSEVAL

NUMX

Number of X-Steps Command: Sets the number of x-steps for each
y-step in 3D perspective plots.

{1}

Level 1 - Level 1

 Ny —

L

Keyboard Access: («)(PLOT) o

Affected by Flags: None

HLIME

Remarks: The number of x-steps is the number of independent

variable points plotted for each dependent variable point plotted.

This number must be 2 or more. This value is stored in the reserved

Command Reference 3-207

NUMX

variable VPAR. YSLICE is the only 3D plot type that does not use

this value.

Related Commands: NUMY

NUMY
Number of Y-Steps Command: Sets the number of y-steps across

the view volume in 3D perspective plots.

{}

Level 1 — Level 1

ny —

NXT

Keyboard Access: (e)(PLOT) (NXT)

Affected by Flags: None

Remarks: The number of y-steps is the number of dependent

variable points plotted across the view volume. This number must be

2 or more. This value is stored in the reserved variable VPAR.

Related Commands: NUMX

NZ
Number of Rows Command: Returns the number of rows in the

current statistical matrix (reserved variable YDAT).

Level 1 — Level 1

 - Mrows

Keyboard Access: (&)(STAT) &

3-208 Command Reference

OBJ—

Affected by Flags: None

Related Commands: XX, IX*Y, ¥X"2 XY, XY2

OBJ—

Object to Stack Command: Separates an object into its components

onto the stack. For some object types, the number of components is

returned to level 1.

Level 1 — Leveln+1 ... Level 2 Level 1

x¥ - x y

{obj; ... objy } — obj; objn n

[x; .o xa] — Xy Xn {n}

[[x;1 -+ Xma Il — Xq1 Xm n {mn}

"obj" — evaluated-object

'symb' — arg, ... argn n "function’

x_unit - X 1 _unit
‘ :tag:obj - obj "tag"

Keyboard Access:

@EER) (XD
PRG

Affected by Flags: None

Remarks: If the argument is a complex number, list, array, or string,

OBJ— provides the same functions as C—R, LIST—, ARRY—, and

STR—, respectively. For lists, OBJ— also returns the number of

list elements. If the argument is an array, OBJ— also returns the

dimensions { m n } of the array, where mis the number of rows and n

1s the number of columns.

For algebraic objects, OBJ— returns the arguments of the top-level

(least-nested) function (arg, ... arg,), the number of arguments

Command Reference 3-209

OBJ—

of the top-level function (n), and the name of the top-level function

(function).

If the argument is a string, the object sequence defined by the string is

executed.

Example: The command sequence '@i 1,

returns:

g 5 first argument

second argument

third argument

fourth argument

o & number of arguments for f

function name

Related Commands: ARRY—, C—R, DTAG, EQ—, LIST—, R—C,

STR—, —TAG

OCT

Octal Mode Command: Selects octal base for binary integer
operations. (The default base is decimal.)

Keyboard Access:

Affected by Flags: Binary Integer Wordsize (—5 through —10),

Binary Integer Base (—11, —12)

Remarks: Binary integers require the prefix #. Binary integers

entered and returned in octal base automatically show the suffix . If

the current base is not octal, enter an octal number by ending it with

o, It will be displayed in the current base when entered.

The current base does not affect the internal representation of binary

integers as unsigned binary numbers.

Related Commands: BIN, DEC, HEX, RCWS, STWS

3-210 Command Reference

OLDPRT

OFF
Off Command: Turns off the calculator.

Keyboard Access: RUH (NXT) OFF

Affected by Flags: None

Remarks: When executed from a program, that program will

resume execution when the calculator is turned on. This provides a

programmable “autostart.”

Related Commands: CONT, HALT, KILL

OLDPRT

Old Printer Command: Modifies the remapping string in the reserved
variable PRTPAR so that the extended character set of the HP 48

matches that of the HP 82240A Infrared Printer.

Keyboard Access: («)(/O) FEINT FETFH OLLFE

Affected by Flags: None

Remarks: The character set in the HP 82240A Infrared Printer does

not match the HP 48 character set:

m 24 characters in the HP 48 character set are not available in the

HP 82240A Infrared Printer. (From the table in the keyword listing
for NUM, these characters are numbers 129, 130, 143-157, 159,

166, 169, 172, 174, 184, and 185.) The HP 82240A prints a ¥ in

substitution.

m Many characters in the extended character table (character codes

128 through 255) do not have the same character code. For
example, the « character has code 171 in the HP 48 and code 146 in

the HP 82240A Infrared Printer.

To use the CHR command to print extended characters with an HP

82240A Infrared Printer, first execute OLDPRT. The remapping string

modified by OLDPRT is the second parameter in PRTPAR. This

string (which is empty in the default state) changes the character code
of each byte to match the codes in the HP 82240A Infrared Printer
character table.

Command Reference 3-211

OLDPRT

To cancel OLDPRT character mapping, purge the variable PRTPAR,

or enter =

To print a string containing graphics data, disable OLDPRT.

Related Commands: CR, DELAY, PRLCD, PRST, PRSTC,

PRVAR, PR1

OPENIO
Open I/O Port Command: Opens the serial port or the IR port using

the I/O parameters in the reserved variable JOPAR.

Keyboard Access: (9)(/0)

Affected by Flags: 1/0 Device (—33)

Remarks: Since all HP 48 Kermit-protocol commands automatically

effect an OPENIO first, OPENIO is not normally needed, but can be

used if an I/O transmission does not work. OPENIO is necessary for
interaction with devices that interpret a closed port as a break.

OPENIO is also necessary for the automatic reception of data into

the input buffer using non-Kermit commands. If the portis closed,

incoming characters are ignored. If the port is open, incoming

characters are automatically placed in the input buffer. These

characters can be detected with BUFLEN, and can be read out of the

input buffer using SRECV.

If the port is already open, OPENIO does not affect the data in the

input buffer. However, if the port is closed, executing OPENIO clears

the data in the input buffer.

For more information, refer to the reserved variable JOPAR in

appendix D, “Reserved Variables.”

Related Commands: BUFLEN, CLOSEIO, SBRK, SRECV, STIME,

XMIT

3-212 Command Reference

OR

OR
OR Function: Returns the logical OR of two arguments.

{1}

Level 2 Level 1 — Level 1

#*ny #n, — Fns

" string," "string," — " strings"

T/F1 T/F2 — 0/1

T/F 'symb' — 'T/F OR symb'

'symb' T/F — 'symb OR T/F'

'symb, ' ‘symb, — 'symb; OR symb,'

Keyboard Access:

PRG NXT AL

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize
(=5 through —10)

Remarks: When the arguments are binary integers or strings, OR

does a bit-by-bit (base 2) logical comparison.

m An argument that is a binary integer is treated as a sequence of bits

as long as the current wordsize. Each bit in the result is determined

by comparing the corresponding bits (bit; and bit,) in the two

arguments as shown in the following table.

bity bito bit; OR bity

0 0 0

0 1 1

1 0 1

1 1 1

m An argument that is a string is treated as a sequence of bits, using 8

bits per character (that is, using the binary version of the character

code). The two string arguments must be the same length.

Command Reference 3-213

OR

When the arguments are real numbers or symbolics, OR simply does a

true/false test. The result is 1 (true) if either or both arguments are
nonzero; it is & (false) if both arguments are zero. This test is usually
done to compare two test results.

If either or both of the arguments are algebraic objects, then the result

is an algebraic of the form 'symb, OF symb, '. Execute - (or set

flag —3 before executing OR) to produce a numeric result from the

algebraic result.

Related Commands: AND, NOT, XOR

ORDER

Order Variables Command: Reorders the variables in the current
directory (shown in the VAR menu) to the order specified.

Level 1 - Level 1

{ global; ... globaly } —

Keyboard Access: (&)(MEMORY) [11FE

Affected by Flags: None

Remarks: The names that appear first in the list will be the first to

appear in the VAR menu. Variables not specified in the list are placed

after the reordered variables.

If the list includes the name of alarge subdirectory, there may be

insufficient memory to execute ORDER.

Related Commands: VARS

3-214 Command Reference

PARAMETRIC

OVER
Over Command: Returns a copy to stack level 1 of the object in

level 2.

Level 2 Level 1 — Level 3 Level 2 Level 1

 obj; obj, — obj; obj, obj;

Keyboard Access: ()(STACK) [WER

Affected by Flags: None

Related Commands: PICK, ROLL, ROLLD, ROT, SWAP

PARAMETRIC

Parametric Plot Type Command: Sets the plot type to

PARAMETRIC.

Keyboard Access: (q)(PLOT)FT¥FE FHER

Affected by Flags: Simultaneous Plotting (—28), Curve Filling

(—28)
Remarks: When the plot type is PARAMETRIC, the DRAW
command plots the current equation as a complex-valued function of

one real variable. The current equation is specified in the reserved

variable EQ. The plotting parameters are specified in the reserved

variable PPAR, which has the following form:

CZming: Ymintd “ZTmaz: Ymar! ndep res axes ptype depend

For plot type PARAMETRIC, the elements of PPAR are used as

follows:

B (Zqin, Ymin ¢ 18 @ complex number specifying the lower left corner

of PICT (thelower left corner of the display range). The default

value 1s ©—&. 5y ~%. 15,

Command Reference 3-215

PARAMETRIC

B {Zmax, Ymax ¢ 1S a complex number specifying the upper right

corner of PICT (the upper right corner of the display range). The

default value is ©&, 5 1.

m :ndep is a list containing a name that specifies the independent

variable, and two numbers specifying the minimum and maximum

values for the independent variable (the plotting range). Note
that the default value is X. If X is not modified and included

in a list with a plotting range, the values in <z, ¥min # and

TZmax, Ymax ¢ are used as the plotting range, which generally leads

to meaningless results.

m res is a real number specifying the interval, in user-unit coordinates,

between values of the independent variable. The default value is &

which specifies an interval equal to 1/130 of the difference between
the maximum and minimum values in indep (the plotting range).

)

m azes is a list containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, a list specifying the tick-mark annotation, and two

strings specifying labels for the horizontal and vertical axes. The

default value is ©

m pilype is a command name specifying the plot type. Executing the

command PARAMETRIC places the name PARAMETRIC in

PPAR.

m depend is a name specifying a label for the vertical axis. The default

value is Y.

The contents of £@Q must be an expression or program; it cannot be

an equation. It is evaluated for each value of the independent variable.

The results, which must be complex numbers, give the coordinates

of the points to be plotted. Lines are drawn between plotted points

unless flag —31 is set.

If flag —28 is set, all equations are plotted simultaneously.

See chapter 23 of the HP /8 User’s Guide for an example using the

PARAMETRIC plot type.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARSURFACE, PCONTOUR, POLAR,

SCATTER, SLOPEFIELD, TRUTH, WIREFRAME, YSLICE

3-216 Command Reference

PARITY
Parity Command: Sets the parity value in the reserved variable

IOPAR.

{}

Level 1 — Level 1

 npa rity

Keyboard Access: («)(1/0) |

Affected by Flags: None

Remarks: Legal values are shown below. A negative value means the

HP 48 does not check parity on bytes received during Kermit transfers

or with SRECV. Parity is still used during data transmission, however.

n-Value Meaning

0 no parity (the default value)

1 odd parity

2 even parity

3 mark

4 space
For more information, refer to the reserved variable JOPAR

(I/0 parameters) in appendix D, “Reserved Variables.”

Related Commands: BAUD, CKSM, TRANSIO

Command Reference 3-217

PARSURFACE

PARSURFACE Plot Type Command: Sets plot type to

PARSURFACE.

Keyboard Access: ()(PLOT) (NXT) &I

Affected by Flags: None

Remarks: When plot type is set to PARSURFACE, the DRAW

command plots an image graph of a 3-vector-valued function of two

variables. PARSURFACE requires values in the reserved variables

FQ, VPAR, and PPAR.

VPAR is made up of the following elements:

i Tiett mright Ynear Ytar Ziow Zhigh Zmin Tmax Ymin Ymax Teye Yeye

Zeye Tstep Ystep +

For plot type PARSURFACE, the elements of VPAR are used as

follows:

W Iy and Z4,¢ are real numbers that specify the width of the view

space.

B Ynear and y¢,, are real numbers that specify the depth of the view

space.

B %o, and z,;4, are real numbers that specify the height of the view

space.

B T, and znax are real numbers the specify the input region’s

width. The default value is ©=1:1%

B Yoin and Ymax are real numbers that specify the input region’s

depth. The default value is —14 1.

B Zeye, Yeye, and zeye are real numbers that specify the point in

space from which the graph is viewed.

B Toiep and Yo, are real numbers that set the number of

x-coordinates versus the number of y-coordinates plotted.

The plotting parameters are specified in the reserved variable PPAR,

which has this form:

. S Zmins Ymin F “Zmax, Ymax & indep res azes ptype depend =

3-218 Command Reference

PATH

For plot type PARSURFACE, the elements of PPAR are used as
follows:

® UZqin, Ymin & 18 DOt used.

B {Zmax, Ymax # 18 not used.

m :ndep is a name specifying the independent variable. The default

value of indep is X .

m res is not used.

m azes 1s not used.

m piype is a command name specifying the plot type. Executing the

command PARSURFACE places the name PARSURFACE in pitype.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PCONTOUR, POLAR,
SCATTER, SLOPEFIELD, TRUTH, WIREFRAME, YSLICE

PATH

Current Path Command: Returns a list specifying the path to the

current directory.

Level 1 — Level 1

 — { HOME directory-name; ... directory-name, }

Keyboard Access: (e)(MEMORY) IR FATH

Affected by Flags: None

Remarks: The first directory is always HOME, and the last directory

1s always the current directory.

If a program needs to switch to aspecific directory, it can do so by

evaluating a directory list, such as one created earlier by PATH.

Command Reference 3-219

PATH

Related Commands: CRDIR, HOME, PGDIR, UPDIR

PCOEF

Monic Polynomial Coefficients Command: Returns the coefficients
of a monic polynomial (a polynomial with a leading coeflicient of1)

having specific roots.

\ Level 1 - Level 1

’ [array loots - [array leoerncients

Keyboard Access: («)(SOLVE) #

Affected by Flags: None

Remarks: The argument must be a real or complex array of length

n containing the polynomial’s roots. The resultis a real or complex

vector of length n+1 containing the coefficients listed from highest

order to lowest, with a leading coeflicient of 1.

Example: Find the polynomial that has the roots 2, —3, 4, —b:

 returns I 1 : i, representing the

polynomial z* + 223 — 2522 — 26z + 120.

Related Commands: PEVAL, PROOT

3-220 Command Reference

PCONTOUR

PCONTOUR
PCONTOUR Plot Type Command: Sets the plot type to
PCONTOUR.

Keyboard Access: («)(PLOT) 2 PTYFE

Affected by Flags: None

Remarks: When plot type is set PCONTOUR, the DRAW command

plots a contour-map view of a scalar function of two variables.

PCONTOUR requires values in the reserved variables EQ, VPAR, and
PPAR.

VPAR is made up of the following elements:

“Ziett Tright Ynear Yrar Ziow Znigh Tmin Lmax Ymin Ymax Teye Yeye

Zeye Tstep Ystep

For plot type PCONTOUR, the elements of VPAR are used as follows:

B Zop and g, are real numbers that specify the width of the view

space.

B Ynear and yg,, are real numbers that specify the depth of the view
space.

® Zo, and zy;4, are real numbers that specify the height of the view
space.

® Zi, and zmay are not used.

B Y, and ymax are not used.

B Zeye, Yeye, and zeye are real numbers that specify the point in
space from which the graph is viewed.

B Zgiep and ygpe, are real numbers that set the number of
x-coordinates versus the number of y-coordinates plotted.

The plotting parameters are specified in the reserved variable PPAR,
which has this form:

Tl Zming Ymin # STmaxs Ymax # indep res aves ptype depend

For plot type PCONTOUR,the elements of PPAR are used as follows:

B CThin, Ymin 4 18 DOL used.

B Zmax, Ymax £ 1S not used.

Command Reference 3-221

PCONTOUR

m indep is a name specifying the independent variable. The default

value of indep is X.

m 7es is not used.

m azes 1s not used.

m piype is a command name specifying the plot type. Executing the

command PCONTOQOUR places the name PCONTOUR in ptype.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,
POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,

YSLICE

PCOV

Population Covariance Command: Returns the population

covariance of the independent and dependent data columns in the

current statistics matrix (reserved variable XDAT).

(Level 1 — Level 1

L - chovariance

Keyboard Access: (&)(STAT) FIT Fi

Affected by Flags: None

Remarks: The columns are specified by the first two elements in

reserved variable ¥PAR, set by XCOL and YCOL respectively. If

YPAR does not exist, PCOV creates it and sets the elements to their

default values (1 and 2).

The population covariance is calculated with the following formula:

I
EZ(‘U]CTM - m)(l’km - rflz)

k=1

3-222 Command Reference

PDIM

where zgy,, is the kth coordinate value in column N1, Tkn, 18 the kth
coordinate value in the column n,, Z,,, is the mean of the data in
column ny, ¥, is the mean of the data in column n,, and n is the
number of data points.

Related Commands: COLY, CORR, COV, PREDX, PREDY,
XCOL, YCOL

PDIM

PICT Dimension Command: Replaces PICT with a blank PICT of
the specified dimensions.

{}

Level 2 Level 1 - Level 1 '

(Xmin'ymin) (Xmax Ymax) —

FNy iqtn FMaignt -

Keyboard Access: FLET PRIM

Affected by Flags: None

Remarks: If the arguments are complex numbers, PDIM changes the
size of PICT and makes the arguments the new values of (Zmins Ymin)
and (zmax, Ymax) 10 the reserved variable PPAR. Thus, the scale
of a subsequent plotis not changed. If the arguments are binary
integers, PPAR remains unchanged, so the scale of a subsequent plot
s changed.

PICT cannot be smaller than 131 pixels wide x 64 pixels high, nor
wider than 2048 pixels (heightis unlimited).

Related Commands: PMAX, PMIN

Command Reference 3-223

PERM

Permutations Function: Returns the number of possible

permutations of n items taken m at a time.

{}

Level 2 Level 1 - Level 1

n m — Pnm

'symby ' m — 'PERM(symbn .m)’

n 'symbpm ' — '"PERM(n, symbm)'

L 'symby ' 'symbpm ' — '"PERM(symby, , symbm)’

Keyboard Access: (MTH)

Affected by Flags: Numerical Results (—3)

Remarks: The formula used to calculate Ppg is this:

n!
Pym =

’ (n —m)!

The arguments n and m must each be less than 1012,

Related Commands: COMB,!

PEVAL

Polynomial Evaluation Command: Evaluates an n-degree

polynomial at z.

{}

Level 2 Level 1 — Level 1

[array legetmicients X - p(x)

Keyboard Access: (6)(SOLVE)

3-224 Command Reference

PGDIR

Affected by Flags: None

Remarks: The arguments must be an array of length n+1 containing
the polynomial’s coefficients listed from highest order to lowest, and
the value z at which the polynomial is to be evaluated.

Example: Evaluate the polynomial z% + 2% — 2522 — 26z + 120
at z = 8&:

Related Commands: PCOEF, PROOT

PGDIR

Purge Directory Command: Purges the named directory (whether
empty or not).

{}

Level 1 - Level 1

'global' —

Keyboard Access: (Q)(MEMORY) [ilf FELIR

Affected by Flags: None

Related Commands: CLVAR, CRDIR, HOME, PATH, PURGE,
UPDIR

Command Reference 3-225

PICK

Pick Object Command: Copies the contents of a specified level to

level 1.

Level n+1.. Level2 Level1 — Leveln+1.. Level2 Level1

objy .. obj; n — objn, .. obj; objn

Keyboard Access: (®)(STACK) FILK

Affected by Flags: None

Related Commands: DUP, DUPN, DUP2, OVER, ROLL, ROLLD,

ROT, SWAP

PICT

PICT Command: Puts the name 1T on the stack.

Level 1 — Level 1

— PICT L
]

Keyboard Access: Fror FICT

Affected by Flags: None

Remarks: PICT is the name of a storage location in calculator

memory containing the current graphics object. The command PICT

enables access to the contents of that memory location as if it were a

variable. Note, however, that PICT is not a variable as defined in the

HP 48: its name cannot be quoted, and only graphics objects may be

“stored” in it.

3-226 Command Reference

PICTURE

If a graphics object smaller than 131 wide x 64 pixels high is stored in
PICT, it is enlarged to 131 x 64. A graphics object of unlimited pixel
height and up to 2048 pixels wide can be stored in PICT.

Examples: FICT RCL returns the current graphics object to the
stack.

GRAPHIC 121 = &4 PICT S7T0 stores a graphics object in PICT
makmg it the current graphics object.

Related Commands: GOR, GXOR, NEG, PICTURE, PVIEW,
RCL, REPL, SIZE, STO, SUB

PICTURE

Picture Environment Command: Selects the Picture environment
(selects the graphics display and activates the graphics cursor and
Picture menu).

Keyboard Access: (€)(PICTURE)

Affected by Flags: None

Remarks: When executed from a program, PICTURE suspends
program execution until is pressed.

Example: This program:

tooreturnsto shack" 1 DISP

displays a message for 3 seconds, then selects the Picture environment.
(The w character in the program indicates a linefeed.)

Related Commands: PICTURE, PVIEW, TEXT

Command Reference 3-227

PINIT
Port Initialize Command: Initializes all currently active ports. Does

not affect data already stored in a port.

Keyboard Access: ()(LIBRARY)

Affected by Flags: None

Related Commands: None

Remarks: PINIT is particularly useful when using a plug-in card

that can hold multiple ports. Itstores and then purges an object

in each port (128K partition) that can be accessed at the time the

command is executed. This has the effect of initializing each port

without disturbing any previously-stored data.

PIXOFF

Pixel Off Command: Turns off the pixel at the specified coordinate

in PICT.

Level 1 - Level 1 —(

x. ¥ -

{ #n#m} -

Keyboard Access:

Affected by Flags: None

Related Commands: PIXON, PIX?

3-228 Command Reference

PIX?

PIXON

Pixel On Command: Turns on the pixel at the specified coordinate in
PICT.

‘ Level 1 — Level 1

x, ¥ -

{ #n #m} —
Keyboard Access: (PRG

Affected by Flags: None

Related Commands: PIXOFF, PIX?

PIX?

Pixel On? Command: Tests whether the specified pixel in PICT is
on; returns 1 (true) if the pixel is on, and @ (false) if the pixel is off.

r Level 1 - Level 1

r (x, ¥) — 0/1
L {#n#m} — 0/1

 Keyboard Access: (PRG T

Affected by Flags: None

Related Commands: PIXON, PIXOFF

Command Reference 3-229

PKT

Packet Command: Used to send command “packets” (and receive

requested data) to a Kermit server.

{}

Level 2 Level 1 — Level 1 1

 "data" “type" — "response" \

 Keyboard Access: (¢)(I/0) HEVE

Affected by Flags: 1/0 Device (—33), I/O Messages (—39)

FET

The 1/O Data Format flag (—35) can be significant if the server sends

back more than one packet.

Remarks: To send HP 48 objects, use SEND.

PKT allows additional commands to be sent to a Kermit server. For

more information, refer to Using MS-DOS Kermit by Christine M.

Gianone, Digital Press, 1990; or KERMIT, A File Transfer Protocol

by Frank da Cruz, Digital Press, 1987, especially chapter 11, “The

Client/Server Model.”

The packet data, packet type, and the response to the packet

transmission are all in string form. PKT first does an I (initialization)

packet exchange with the Kermit server, then sends the server a

packet constructed from the data and packet-type arguments supplied

to PKT. The response to PKT will be either an acknowledging string

(possibly blank) or an error packet (see KERRM).

For the type argument, only the first letter is significant.

Examples: A PKT command to send a generic directory request is

Rpn e PET.

To send a host command packet, use a command from the server’s

operating system for the data string and ":* for the fype string. For

example, * FHED FLUREG ~¢ PET on a local HP 48 would instruct

an HP 48 server to purge variable ABC.

Related Commands: CLOSEIO, KERRM, SERVER

3-230 Command Reference

PMIN

PMAX

PICT Maximum Command: Specifies ©z, y» as the coordinates at
the upper right corner of the display.

{1

Level 1 - Level 1

 x, ¥) —

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: The complex number iz, y is stored as the second

element in the reserved variable PPAR.

Related Commands: PDIM, PMIN, XRNG, YRNG

PMIN

PICT Minimum Command: Specifies £z, yas the coordinates at the
lower left corner of the display.

i}

j Level 1 — Level 1

 ‘ x.¥) -

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: The complex number ¢z, yis stored as the first element
in the reserved variable PPAR.

Related Commands: PDIM, PMAX, XRNG, YRNG

Command Reference 3-231

POLAR
Polar Plot Type Command: Sets the plot type to POLAR.

Keyboard Access: (¢)(PLOT)

Affected by Flags: Simultaneous Plotting (—28), Curve Filling

(=31)
Remarks: When the plot type is POLAR, the DRAW command

plots the current equation in polar coordinates, where the independent

variable is the polar angle and the dependent variable is the radius.

The current equation is specified in the reserved variable FQ.

The plotting parameters are specified in the reserved variable PPAR,

which has this form:

S L Zmin, Ymin ® “Tmax, Ymax * indep res azes ptype depend

For plot type POLAR,the elements of PPAR are used as follows:

® $Zoin, Ymin * is a complex number specifying the lower left corner

of PICT (the lower left corner of the display range). The default

value 1s =&, 5y

BZmax, Ymax ¢ is a complex number specifying the upper right

corner of PICT (the upper r15ht corner of the display range). The

default value is ¢ 3

m indep is a name specifying the independent variable, or a list

containing such a name and two numbers specifying the minimum

and maximum values for the independent variable (the plotting

range). The default value of indep is X.

m res is a real number specifying the interval, in user-unit coordinates,

between values of the independent variable. The defaultvalue is &,

which specifies an interval of 2 degrees, 2 grads, or 7/90 radians.

m azes is alist containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, a list specifying the tick-mark annotation, and two

strings specifying 1abels for the horizontal and vertical axes. The

default value 1s &

m plype is a command name specifying the plot type. Executing the

command POLAR places the name POLAR in ptype.

3-232 Command Reference

POLAR

m depend 1s a name specifying a label for the vertical axis. The default

value is Y.

The current equation is plotted as a function of the variable specified

in imdep. The minimum and maximumvalues of the independent

variable (the plotting range) can be specifed in indep; otherwise,

the default minimum value is 0 and the default maximum value

corresponds to one full circle in the current angle mode (360 degrees,

400 grads, or 27 radians). Lines are drawn between plotted points

unless flag —31 is set.

If flag —28 is set, all equations are plotted simultaneously.

If EQ contains an expression or program, the expression or program

is evaluated in Numerical Results mode for each value of the

independent variable to give the values of the dependent variable. If

EQ contains an equation, the plotting action depends on the form of

the equation.

Form of

Current Equation Plotting Action

Pexpr=erpr’ Each expression is plotted separately.

The intersection of the two graphs shows

where the expressions are equal.

"name=erpr’ Only the expression is plotted.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,

PCONTOUR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,

YSLICE

Command Reference 3-233

POS
Position Command: Returns the position of a substring within a
string or the position of an object within a list.

Level 2 Level 1 — Level 1

" string" " substring" — n

{ list } obj — n
Keyboard Access:

(«) B

LIST ELEHM POz

Affected by Flags: None

Remarks: If there is no match for obj or substring, POS returns

Z€ero.

Related Commands: CHR, NUM, REPL, SIZE, SUB

PREDV

Predicted y-Value Command: Returns the predicted dependent-

variable value ¥gepenqgent, based on the independent-variable value

Tindependent, the currently selected statistical model, and the current

regression coefficients in the reserved variable X' PAR.

{7}

Level 1 _ Level 1 ‘

Xindependent ydependent \

Keyboard Access: None. Must be typed in.

3-234 Command Reference

PREDX

Remarks: Provided for compatibility with the HP 28. PREDV is the
same as PREDY. See PREDY.

PREDX

Predicted x-Value Command: Returns the predicted independent-
variable value #;,4epenqgent, based on the dependent-variable value
Ydependent, the currently selected statistical model, and the current
regression coefficients in the reserved variable ¥PAR.

{}

’ Level 1 - Level 1]

L Ydependent - Xindependent .

Keyboard Access: (Q)(STAT) FIT FREDLY

Affected by Flags: None

Remarks: The value is predicted using the regression coefficients
most recently computed with LR and stored in the reserved variable
2PAR. For the linear statistical model, the equation used is this:

Ydependent = (mxindependent) +b

where m is the slope (the third element in £PAR) and b is the
intercept (the fourth element in £PAR).

For the other statistical models, the equations used by PREDX are
listed in the LR entry.

If PREDX is executed without having previously generated regression
coefficients in ¥PAR, a default value of zero is used for both
regression coefficients, and an error results.

Example: Given five columns of data in YDAT, the command
sequence:

 e PRT RT
B "ot Tbbt

sets column 2 as the independent variable column, sets column 5 as
the dependent variable column, and sets the logarithmic statistical

Command Reference 3-235

PREDX

model. It then executes LR, generating intercept and slope regression

coefficients, and storing them in £PAR. Then, given a dependent

value of £, it returns a predicted independent value based on the

regression coefficients and the statistical model.

Related Commands: COLY, CORR, COV, EXPFIT, XLINE,

LINFIT, LOGFIT, LR, PREDY, PWRFIT, XCOL, YCOL

PREDY

Predicted y-Value Command: Returns the predicted dependent-

variable value Ygependent, Pased on the independent-variable value

Tindependent, the currently selected statistical model, and the current

regression coefficients in the reserved variable LPAR.

{1

r Level 1 _ Level 1

\ X‘lndependent ydependent

Keyboard Access: (q)(STAT) Fif

Affected by Flags: None

Remarks: The value is predicted using the regression coefficients

most recently computed with LR and stored in the reserved variable

S PAR. For the linear statistical model, the equation used is this:

Ydependent = (mxindependent) +b

where m is the slope (the third element in YPAR) and b is the

intercept (the fourth element in Y PAR).

For the other statistical models, the equations used by PREDY are

listed 1n the LR entry.

If PREDY is executed without having previously generated regression

coefficients in XPAR, a default value of zero is used for both

regression coefficients—in this case PREDY will return & for statistical

models LINFIT and LOGFIT, and error for statistical models

EXPFIT and PWRFIT.

3-236 Command Reference

PRLCD

Example: Given four columns of data in Y DAT, the command
sequence:

sets column 2 as the independent variable column, sets column 4

as the dependent variable column, and sets the power statistical

model. It then executes LR, generating intercept and slope regression

coefficients, and storing them in ¥PAR. Then, given an independent

value of 11, it returns a predicted dependent value based on the

regression coefficients and the statistical model.

Related Commands: COLX, CORR, COV, EXPFIT, XLINE,

LINFIT, LOGFIT, LR, PREDX, PWRFIT, XCOL, YCOL

PRLCD

Print LCD Command: Prints a pixel-by-pixel image of the current

display (excluding the annunciators).

Keyboard Access: ()(/0) FRIH

Affected by Flags: Printing Device (—34), I/O Device (—33),
Linefeed (—38)

If flag —34 is set (printer output directed to the serial port), flag —33
must be clear.

Flag —38 must be clear.

Remarks: The width of the printed image of characters in the
display is narrower using PRLCD than using a print command such
as PR1. The difference results from the spacing between characters.
On the display there is a single blank column between characters, and
PRLCD prints this spacing. Print commands such as PRI print two
blank columns between adjacent characters.

 Example: The command sequence ER : [clears PICT,
plots the current equation, then prints the glaphl% display.

Related Commands: CR, DELAY, OLDPRT, PRST, PRSTC,
PRVAR, PRI

Command Reference 3-237

PROMPT
Prompt Command: Displays the contents of "prompt" in the status

area, and halts program execution.

{3

‘ Level 1 - Level 1

L "prompt" —

Keyboard Access: P (NXT

Affected by Flags: None

Remarks: PROMPT is equivalent to 1 [3IEF 1 F

Related Commands: CONT, DISP, FREEZE, HALT, INFORM,

INPUT, MSGBOX

PROOT

Polynomial Roots Command: Returns all roots of an n-degree

polynomial having real or complex coefficients.

{3

r Level 1 — Level 1 T

l [array]coefficients - [array]roots ~

Keyboard Access: (€)(SOLVE) FiiLy FREOOT

Affected by Flags: Infinite Result Exception (—22)

Remarks: For an n'"-order polynomial, the argument must be a

real or complex array of length n+1 containing the coefficients listed

from highest order to lowest. The result is a real or complex vector of

length n containing the computed roots.

3-238 Command Reference

PRST

PROOT interprets leading coefficients of zero in a limiting sense.

As a leading coefficient approaches zero, a root of the polynomial

approaches infinity: therefore, if flag —22 is clear (the default),

PROOTreports an Infinite Result error if a leading coefficient is zero.

If flag —22 is set, PROOT returns aroot of (MAXREAL,0) for each
leading zero in an array containing real coefficients, and a root of

(MAXREAL,MAXREAL) for each leading zero in an array containing

complex coefficients.

Example: Find the roots of the polynomial 2442232527 —262+120:

iR Treturns [& —3 4 ~5 1.

Related Commands: PCOEF, PEVAL

PRST

Print Stack Command: Prints all objects in the stack, starting with

the object in the highest level.

Keyboard Access: (9)(/0) FF

Affected by Flags: Double-Spaced Printing (—37), Printing Device
(—34), 1/O Device (—33), Linefeed (—38)

If flag —34 is set (printer output directed to the serial port), flag —33

must be clear.

When flag —38 is set, linefeeds are not added at the end of each print
line. Generally, flag —38 should be clear for execution of PRST. PRST

leaves the stack unchanged.

Remarks: Objects are printed in multiline printer format. See the

PR1 entry for a description of multiline printer format.

Related Commands: CR, DELAY, OLDPRT, PRLCD, PRSTC,

PRVAR, PR1

Command Reference 3-239

PRSTC

Print Stack (Compact) Command: Prints in compact form all
objects in the stack, starting with the object in the highest level.

Keyboard Access: («)(i/0) '}

Affected by Flags: Double-Spaced Printing (—37), Printing Device
(—34), I/O Device (—33), Linefeed (—38)

If flag —34 is set (printer output directed to the serial port), flag —33

must be clear.

When flag —38 is set, linefeeds are not added at the end of each print
line. Generally, flag —38 should be clear for execution of PRSTC.

Remarks: Compact printer format is the same as compact display

format. Multiline objects are truncated and appear on one line only.

PRSTC leaves the stack unchanged.

Related Commands: CR, DELAY, OLDPRT, PRLCD, PRST,

PRVAR, PR1

PRVAR

Print Variable Command: Searches the current directory path or

port for the specified variables and prints the name and contents of

each variable.

Level 1 — Level 1

'name' -

{ name; name, ... } —

Nyort 1 global’ —

Keyboard Access: («)(i/0)F

Affected by Flags: Double-Spaced Printing (—37), Printing Device

(—34), I/O Device (—33), Linefeed (—38)

3-240 Command Reference

PR1

If flag —34 is set (printer outputdirected to the serial port), flag —33
must be clear.

When flag —38 is set, linefeeds are not added at the end ofeach print

line. Generally, flag —38 should be clear for execution of PRVAR.

Remarks: Objects are printed in multiline printer format. See the

PRI entry for a description of multiline printer format.

Related Commands: CR, DELAY, OLDPRT, PR1, PRLCD, PRST,

PRSTC

PR1
Print Level 1 Command: Prints an object in multiline printer

format.

Keyboard Access: («)(1/0)

Affected by Flags: Double-Spaced Printing (—37), Printing Device
(—34), 1/O Device (—33), Linefeed (—38)

If flag —34 is set (printer output directed to the serial port), flag —33

must be clear.

Remarks: All objects except strings are printed with their identifying

delimiters. Strings are printed without the leading and trailing *

delimiters. PRI leaves the stack unchanged.

Multiline printer format is similar to multiline display format, with the

following exceptions:

m Strings and names that are more than 24 characters long are

continued on the next printer line.

m The real and imaginary parts of complex numbers are printed on

separate lines if they don’t fit on the same line.

m Arrays are printed with a numbered heading for each row and with

a column number before each element. For example, the 2 x 3 array

1 2 3

4 5 6

would be printed as follows:

Command Reference 3-241

PR1

Arrag £ 2 3 > — Array dimensions

Row number — Row 1

111

Column number 21 2

.81 3

Row 2

11 4

21 5

31 &

Related Commands: CR, DELAY, OLDPRT, PRLCD, PRST,
PRSTC, PRVAR

PSDEV

Population Standard Deviation Command: Calculates the

population standard deviation of each of the m columns of coordinate

values in the current statistics matrix (reserved variable XDAT).

Level 1 — Level 1

- Xpsdev

- [Xpsdevl Xpsdev2 Xpsdevm]

Keyboard Access: (€)(STAT) i*

Affected by Flags: None

Remarks: PSDEYVreturns a vector of m real numbers, or a single

real number if m = 1. The population standard deviation is computed

using this formula:

3-242 Command Reference

PURGE

where z, is the kth coordinate value in a column, ¥ is the mean of the

data in this column, and n is the number of data points.

Related Commands: MEAN, PCOV, PVAR, SDEV, TOT, VAR

PURGE

Purge Command: Purges the named variables or empty

subdirectories from the current directory.

Level 1 — Level 1

'global' —

{ global, ... global, } —

PICT —

MNpory NMAMEL4 yp -

:nport :nlibrary -
Keyboard Access: («)(PURGE)

Affected by Flags: None

Remarks: PURGE executed in a program does not save its argument

for recovery by LASTARG.

To empty a named directory before purging it, use PGDIR.

To help prepare a list of variables for purging, use VARS.

Purging PICT replaces the current graphics object with a 0 x 0

graphics object.

If a list of objects (with global names, backup objects, library objects,

or PICT) for purging contains an invalid object, then the objects

Command Reference 3-243

PURGE

preceding the invalid object are purged, and the error s #i-

Tups oceurs.

To purge a library or backup object, tag the library number or backup

name with the appropriate port number (# n,4,¢), which must be in
the range from 0 to 33. (A library can be purged from RAM only.)

For a backup object, the port number can be replaced with the

wildcard character %, in which case the HP 48 will search ports 33

through 0, and then main memory for the named backup object.

Library objects in RAM can be purged, while those in ROM

(application cards and write-protected RAM cards) cannot. A library

object must be detached before it can be purged from the HOME

directory.

Neither a library object nor a backup object can be purged if it is

currently “referenced” internally by stack pointers (such as an object

on the stack, in a local variable, on the LAST stack, or on an internal

return stack) This produces the error ize. To avoid
these restrictions, use NEWOB before purging. (See NEWOB.)

Related Commands: CLEAR, CLUSR, CLVAR, NEWOB, PGDIR

PUT

Put Element Command: In the level 3 array or list, PUT replaces

with z,,¢ or obj, ¢ the object whose position is specified in level 2; if

the array or list is unnamed, returns the new array or list.

3-244 Command Reference

PUT

Level 3 Level 2 Level1 — Level 1

[[matrix]]; Ny osition Zyyt — [[matrix]],

[[matrix 1], { nrow Meoy } Zyyt — [[matrix 1],

‘name, , iy My osition Zput -

lr'amematrixl { neow Mg} Zout -

[vector 1y My osition Zyyt — [vector 1,

[vector]; { Nposition } Zyyt — [vector],

I’7amevectorl Nposition Zout -

Inamevectorl { My osition } Zout -

{ list }, Ny osition objy ¢ — { list },

{ list }; { Nyosition } objDut — { list },

lnamelist' M osition Objput -

Inamelist' { ”position } ODJDU'C -

 Keyboard Access: (PRG) i

Affected by Flags: None

Remarks: For matrices, n,,5iti0, counts in row order.

If the argument in level 3 is a name, PUT alters the named array or

list and returns nothing to the stack.

Examples: This command sequence:

B 1141 HLUIT returns

returns

 UT returnsThe command sequence <

Related Commands: GET, GETI, PUTI

Command Reference 3-245

PUTI

Put and Increment Index Command: 1In the level 3 array or list,
replaces with z,,; or obj,,; the object whose position is specified in

level 2, returning the new array or list and the next position in that
array or list.

Level 3 Level2 Level1 — Level 2 Level 1

[[matrix 1], Npos1 Zout — [matrix]I, Npos2

[[matrix 11y { n me }4 Zy ¢ — [matrix1l, {n me 3},

‘nameq oy Nposi Zput = 'nameq iy Npos2

|namematrixl { ne me }1 Zput - InamematrixI { e me }2

[vector], Npost Zout — [vector], Myos2

[vector]; { Mpos1 } Zpyt — [vector], { Mpos2 }

In‘:"rr'evectorl Npos Zout - |né'mevector. Myos2

I”amevectorl { Npos1 } Zout - Inam'svectorl { Npos2 }

{ list }; Myos1 Objput - { list t2 Myos2

{ list }, { Npos1 } Objy ¢ - { list }, { Nyos2 }

‘name;;g, ' Npost Objpyr = ‘name;;g" Npos2

Ir"’"nelis‘cI { Nposi } Objput - I”amelistl { Npos2 }

 Keyboard Access: LIsT El

Affected by Flags: Index Wrap Indicator (—64)

The Index Wrap Indicator flag is cleared on each execution of PUTI

until the position (index) wraps to the first position in the array or

list, at which point the flag is set. The next execution of PUTI again

clears the flag.

Remarks: For matrices, the position is incremented in row order.

Unlike PUT, PUTI returns a named array or list (to level 2). This

enables a subsequent execution of PUTI at the next position of a

named array or list.

Example: The following program uses PUTT and flag —64 to replace

A, B, and C in the list with X .

3-246 Command Reference

PVAR

Related Commands: GET, GETI, PUT

PVAR

Population Variance Command: Calculates the population variance
of the coordinate values in each of the m columns in the current

statistics matrix (YDAT).

Level 1 — Level 1

xpvaflance

— [x X pvariancel pvariancem]

Keyboard Access: (e)(STAT) 1YHAE FuAR

Affected by Flags: None

Remarks: The population variance (equal to the square of the

population standard deviation) is returned as a vector of m real

numbers, or as a single real number if m = 1. The population

variances are computed using this formula:

1 n

D(o =)’
k=1

where z, is the kth coordinate value in a column, Z is the mean of the

datain this column, and n is the number of data points.

Related Commands: MEAN, PCOV, PSDEV, SDEV, VAR

Command Reference 3-247

PVARS

Port-Variables Command: Returns a list of the backup objects

(¥ npore # name) and the library objects (3 nport® Ryiprary) in the
specified port. Also returns the available memory size (if RAM) or the

memory type.

{1

Level1 - Level 2 Level 1

Mhort — { Poort 1NAMEL iy oo) memory

Myort — { Moort Mivrary -+ 1} memory

Keyboard Access: (¢)(LIBRARY) F

Affected by Flags: None

Remarks: The port number, n;q,, must be in the range from 0 to

33.

m If n,o¢ = 0, then memory is bytes of available main RAM.

m If the port contains independent RAM, then memory is bytes of

available RAM in that port.

m If the port contains merged RAM, then memory is *:

m If the port contains ROM, then memory is *

m If the port is empty, then the message Fort Hol fuailabls

appears.

Related Commands: PVARS, VARS

3-248 Command Reference

PVIEW

PVIEW
PICT View Command: Displays PICT with the specified coordinate

at the upper left corner of the graphics display.

Level 1 — Level 1

x, ¥) —

{ #n #m} -

{} -
Keyboard Access:

(FR®) (XD ©
BT =

Affected by Flags: None

Remarks: PICT must fill the entire display on execution of PVIEW.

Thus, if a position other than the upperleft corner of PICT is

specified, PICT must be large enough to fill a rectangle that extends

131 pixels to the right and 64 pixels down.

If PVIEWis executed from a program with a coordinate argument

(versus an empty list), the graphics display persists only until the

keyboard is ready for input (for example, until the end of program

execution). However, the FREEZE command freezes the display until

a key 1s pressed.

If PVIEW is executed with an empty list argument, PICT is centered

in the graphics display with scrolling mode activated. In this case, the

graphics display persists until is pressed.

PVIEW does not activate the graphics cursor or the Picture menu. To

activate the graphics cursor and Picture menu, execute PICTURE.

Example: The program

G

displays PICT in the graphics display with coordinates £ # £ # &icf

in the upper left corner of the display, then freezes the full display

until a key is pressed.

Command Reference 3-249

PVIEW

Related Commands: FREEZE, PICTURE, TEXT

PWRFIT

Power Curve Fit Command: Stores PWRFIT as the fifth parameter
in the reserved variable ¥PAR, indicating that subsequent executions

of LR are to use the power curve fitting model.

Keyboard Access: (#)(STAT) :

Affected by Flags: None

Remarks: LINFIT is the default specification in X PAR. For a

description of XPAR, see appendix D, “Reserved Variables.”

Related Commands: BESTFIT, EXPFIT, LINFIT, LOGFIT, LR

 HiOnL

PX—C

Pixel to Complex Command: Converts the specified pixel

coordinates to user-unit coordinates.

Level 1 — Level 1

 { #n #m} - >)

Keyboard Access: pIoT

Affected by Flags: None

Remarks: The user-unit coordinates are derived from the

CZminy Ymin & and CZmax, ¥Ymax ¢ parameters in the reserved variable

PPAR. The coordinates correspond to the geometrical center of the

pixel.

Related Commands: C—PX

3-250 Command Reference

—Qr

—Q

To Quotient Command: Returns a rational form of the argument.

{}

Level 1 — Level 1

X — 'a/b'

x.¥ — 'a/b+c/d*i’

'symb; ' — 'symb, '
Keyboard Access: («)(SYMBOLIC)(NXT) =0

Affected by Flags: Number Display (—45 to —50)

Remarks: The rational result is a “best guess”, since there might be

more than one rational expression consistent with the argument. —Q

finds a quotient of integers that agrees with the argument to within

the number of decimal places specified by the display format mode.

—Q also acts on numbers that are part of algebraic expressions or

equations.

P returns YHRSE

Example:

Related Commands: —Qm, /

—Qr
To Quotient Times = Command: Returns a rational form of the
argument, or a rational form of the argument with = factored out,

whichever yields the smaller denominator.

Command Reference 3-251

—Qr

{}

r Level 1 — Level 1

X — 'a/b*r'

X — ‘a/b'

'symb, — 'symb, '

x.y) — ‘a/b¥r+4c/d*rH'

x. — 'a/b+c/d*i'
Keyboard Access: (€)(SYMBOLIC) (NXT) +iiw

Affected by Flags: Number Format (—45 to —50)

Remarks: —Qm computes two quotients (rational expressions) and

compares them: the quotient of the argument, and the quotient of

the argument divided by #. It returns the fraction with the smaller

denominator; if the argument was divided by =, then 7 is a factor in

the result.

The rational result is a “best guess,” since there might be more than

one rational expression consistent with the argument. —Qn finds a
quotient of integers that agrees with the argument to the number of

decimal places specified by the display format mode.

—Qm also acts on numbers that are part of algebraic expressions or

equations.

For a complex argument, the real or imaginary part (or both) can

have 7 as a factor.

Example: In Fix mode to four decimal places

fE . In Standard mode, however, ..

i returns

Related Commands: —Q, /, =

3-252 Command Reference

QUAD

QR
QR Factorization of a Matrix Command: Returns the QR
factorization of an nxm matrix.

{1

Level 1 — Level 3 Level 2 Level 1

 [[matrix J] - [[matrix J]q [[matrix J]1g [[matrix],

Keyboard Access: MATE

Affected by Flags: None

Remarks: QR factors mxn matrix A into three matrices:

m () is an mxm orthogonal matrix.

m R is an mXxn upper trapezoidal matrix.

m P is a nxn permutation matrix.

Where AxP = @XR.

Related Commands: LQ, LSQ

QUAD

Solve Quadratic Equation Command: Solves an algebraic object
‘symb, ' for the variable global, and returns an expression 'symb,

representing the solution.

{}

Level 2 Level 1 — Level 1

 'symb; ' 'global' — 'symb,

Keyboard Access: (#)(SYMBOLIC)

Affected by Flags: Principal Solution (—1)

Command Reference 3-253

QUAD

Remarks: QUAD calculates the second-degree Taylor series

approximation of 'symb; * to convert it to quadratic form. The

solution ‘symb, ‘ is exact if 'symb, ' is second degree or less in

global.

Since QUAD evaluates ‘symb; ', any variables in ' symb; * other than

global should not exist in the current directory if they are to remain in

the solution as formal variables.

QUAD generally does not work if global needs units to satisfy the

equation.

Example
g""EB

which reduces to the familiar quadratic solution:

—B++vB? —4AC

2A

Related Commands: COLCT, EXPAN, ISOL, SHOW

X =

QUOTE

Quote Argument Function: Returns its argument unevaluated.

{}

Level 1 — Level 1

'symb' — 'symb'

obj — obj

Keyboard Access: (4e)(SYMBOLIC) (NXT) (NXT) GLIEIT

Affected by Flags: None

Remarks: When an algebraic expression is evaluated, the arguments

to a function in the expressmn are evaluated before the function. For

example, when * % [+ is evaluated, the name X is evaluated first,

and the resultis left on the stack as the argument for SIN.

3-254 Command Reference

QUOTE

This process creates a problem for functions that require symbolic
arguments. For example, the function f requires as one of its

arguments a name specifying the variable of integration. If evaluating

an integral expression caused the name to be evaluated, the result of

evaluation would be left on the stack for f, rather than the name

itself. To avoid this problem, the HP 48 automatically (and invisibly)

quotes such arguments. When the quoted argument is evaluated, the

unquoted argument is returned.

If a user-defined function takes symbolic arguments, those arguments

must be quoted using QUOTE, as demonstrated in the following

example.

Example: The following user-defined function ArcLen calculates the
arc length of a function:

+ =tart end expr war

5

expr war o4 S0l o+

T

ENTER) () ArcLen

To use this user-defined function in an algebraic expression, the

symbolic arguments must be quoted:

"Arclent@, my GUOTECSIHS oy BUOTE0

Related Commands: APPLY, | (Where)

Command Reference 3-255

RAD

Radians Mode Command: Sets Radians angle mode.

Keyboard Access:

@ED

Affected by Flags: None

Remarks: RAD sets flag —17 and clears flag —18, and displays the

annunciator.

In Radians angle mode, real-number arguments that represent angles

are interpreted as radians, and real-number results that represent

angles are expressed in radians.

Related Commands: DEG, GRAD

RAND

Random Number Command: Returns a pseudo-random number

generated using a seed value, and updates the seed value.

Level 1 — Level 1

Xrandom

Keyboard Access: (MTH) (NXT) FEOE EAHD

Affected by Flags: None

Remarks: The HP 48 uses a linear congruential method and a seed

value to generate a random number z,,,40m 10 the range 0 < z < 1.

Each succeeding execution of RAND returns a value computed from a

seed value based upon the previous RAND value. (Use RDZ to change

the seed.)

Related Commands: COMB, PERM, RDZ, !

3-256 Command Reference

RANM

RANK
Matrix Rank Command: Returns the rank of a rectangular matrix.

{}

Level 1 — Level 1

 [[matrix 1] — Nank

Keyboard Access: MATRE HORM R

Affected by Flags: Singular Value (—54)

Remarks: Rank is computed by calculating the singular values of
the matrix and counting the number of nonnegligible values. If all

computed singular values are zero, RANK returns zero. Otherwise

RANK consults flag —54 as follows:

m If flag —54 is clear (the default), RANK counts all computed

singular values that are less than or equal to 1.E—14 times the

largest computed singular value.

m If flag —54 is set, RANK counts all nonzero computed singular

values.

Related Commands: LQ, LSQ, QR

RANM
Random Matrix Command: Returns a matrix of specified dimensions

that contains random integers in the range —9 through 9.

Level 1 — Level 1

{mn} — [[random matrix [lmxn

[[matrix 11mxn — [[random matrix [lmxn
Keyboard Access: i

MARE EBREH

Command Reference 3-257

RANM

Affected by Flags: None

Remarks: The probability of a particular nonzero digit occurring is

0.05; the probability of 0 occurring is 0.1.

Related Commands: RAND, RDZ

RATIO

Prefix Divide Function: Prefix form of / (divide) generated by the
EquationWriter application.

{}

Level 2 Level 1 — Level 1

Z1 22 - 2z, /7

[array] [matrix 1] — [[array x matrix—1 1]

[array] z — [array/z]

z 'symb' — 'z/symb'

'symb' z — 'symb/z'

'symb, 'symb, ' — ‘symb, / symb,'

#n, n, - #n3

ny #n, - #03
#ny Fn, — #Hn

x_unity y_unit, — (x/y)—unity /unit,

X y_unit — (x/y)_1/unit

x_unit y — (x/y)_unit

'symb' x_unit — 'symb/x_unit'

x_unit 'symb' — 'x_unit/symb'

Keyboard Access: None

Affected by Flags: None

3-258 Command Reference

. Must be typed in.

RCEQ

Remarks: RATIO is identical to / (divide), except that, in algebraic

syntax, RATIO is a prefir function, while / is an ¢nfiz function. For
P ek

' is equivalent to 'F-Z

example, 'REATIC

RATIO is generated internally by the EquationWriter application

when (&) is used to start a numerator. It provides no additional

functionality to / and appears externally only in the string that the

EquationWriter application leaves on the stack when (@)("") is

pressed or when the calculator runs out of memory.

Related Commands: /

RCEQ
Recall from EQ Command: Returns the unevaluated contents of the

reserved variable EQ fromthe current directory.

Level 1 — Level 1

— objEQ

Keyboard Access:

@ELD Eo
(@)PLOT) (NXT) =k ER

QPO() E& (program-entry mode)

(w)(eLoT)
Affected by Flags: None

@) E& (program-entry mode)

Remarks: To recall the contents of EQ from a parent directory

(when EQ doesn’t exist in the current directory) evaluate the name

EQ.

Related Commands: STEQ

Command Reference 3-259

RCI

Multiply Row by Constant Command: Multiplies row n of a matrix
(or element 2 of a vector) by a constant z;,cio,, and returns the
modified matrix.

{}

Level 3 Level 2 Level 1 — Level 1

([matrix]I, Xtactor Nownumber - [[matrix 1],

[vector]y Xtactor Nelementnumber - [vector],

Keyboard Access: MATE BoW ROI

Affected by Flags: None

Remarks: RCI rounds the row number to the nearest integer, and

treats vector arguments as column vectors.

Related Commands: RCIJ

RCIJ

Add Multiplied Row Command: Multiplies row 7 of a matrix by

a constant (,c1o,, adds this product to row j of the matrix, and
returns the modified matrix. Or, multiplies element ¢ of a vector by

a constant i,c10r, adds this product to element j of the vector, and
returns the modified vector.

{1}

Level4 Level3 Level2 Levell — Level1

([matrix]]1 Xtactor Neowi nrovvj - ([matrix]]2

[VeCtor]l Xfactor Natementi Nalement; - [vector]2

O EOLJKeyboard Access: B

3-260 Command Reference

RCL

Affected by Flags: None

Remarks: RCIJ rounds the row numbers to the nearest integer, and

treats vector arguments as column vectors.

Related Commands: RCI

RCL
Recall Command: Returns the unevaluated contents of a specified

variable or plug-in object.

Level 1 — Level 1

'name’ — obj

PICT — grob

:nport :nlibrary - obj

NMyort NAMELL cyp — obj
Keyboard Access: ()(RCL)

Affected by Flags: None

Remarks: RCL searches the entire current path, starting with the
current directory. To search a different path, specify ¢ path name Z,

where path is the new path to the variable name. The path

subdirectory does not become the current subdirectory (unlike EVAL).

To recall a library or backup object, tag the library number or backup

name with the appropriate port number (n,4,¢), which must be an

integer in the range 0 to 33. (A library can be recalled from RAM

only.) Recalling a backup object brings a copy of its contents to the

stack, not the entire backup object.

To search for a backup object, replace the port number with the

wildcard character # , in which case the HP 48 will search (in order)

ports 33 through 0, and the main memory for the named backup

object.

Related Commands: STO

Command Reference 3-261

RCLALARM

Recall Alarm Command: Recalls a specified alarm.

{}

Level 1 — Level 1

index - { date time Objaction Xrepeat }

Keyboard Access: («)(TIME) !

Affected by Flags: None

Remarks: 0bj, iion is the alarm execution action. If an execution

action was not specified, 0bj,c1ion defaults to an empty string.

Trepeat 15 the repeat interval in clock ticks, where 1 clock tick equals

1/8192 second. If a repeat interval was not specified, the defaultis 0.

Related Commands: DELALARM, FINDALARM, STOALARM

RCLF

Recall Flags Command: Returns a list containing two 64-bit binary

integers representing the states of the 64 system and user flags,

respectively.

Level 1 - Level 1

— { #nsystem #nyser }

 Keyboard Access: («)(MODES) Fi NXT

Affected by Flags: Binary Integer Wordsize (—5 through —10)

The current wordsize must be 64 bits (the default wordsize) to recall

the states of all 64 user flags and 64 system flags. If the current

wordsize i1s 32, for example, RCLF returns two 32-bit binary integers.

3-262 Command Reference

RCLKEYS

Remarks: A bit with value 1 indicates that the corresponding flag is

set; a bit with value 0 indicates that the corresponding flag is clear.

The rightmost (least significant) bit of #nsystem and #nuser indicate

the states of system flag —1 and user flag +1, respectively.

Used with STOF, RCLF lets a programthat alters the state of a flag

or flags during program execution preserve the pre-program-execution

flag status.

Related Commands: STOF

RCLKEYS

Recall Key Assignments Command: Returns the current user key

assignments. This includes an %if the standard definitions are active

(not suppressed) for those keys without user key assignments.

Level 1 — Level 1

— { obj; Xeey1 - objn Xkeyn }

— { S obj; Xay1 -+ Objn Xyeyn }

Keyboard Access: (&)(MODES)

Affected by Flags: User-Mode Lock (—61) and User Mode (—62)

affect the status of the user keyboard.

Remarks: The argument z,., is a real number of the form rc.p

specifying the key by its row number 7, its column number ¢, and its

plane (shift) p. (For a definition of plane, see the entry for ASN.)

Related Commands: ASN, DELKEYS, STOKEYS

Command Reference 3-263

RCLMENU
Recall Menu Number Command: Returns the menu number of the
currently displayed menu.

Level 1 - Level 1

— Xmenu

Keyboard Access: («)(MODES)

Affected by Flags: None

Remarks: 1.,y has the form mm.pp, where mm is the menu
number and pp is the page of the menu. See the MENU entry for a
list of the HP 48 built-in menus and the corresponding menu numbers.

Executing RCLMENU when the current menu is a user-defined menu
(built by TMENU) returns &. &1 (in 2 Fix mode), indicating “Last
menu”.

Example: If the third page of the PRG DSPL menu is currently
active, RCLMENU returns 1%, &% (in 2 Fix mode).

Related Commands: MENU, TMENU

RCLz

Recall Sigma Command: Returns the currentstatistics matrix (the
contents of reserved variable ¥DAT) from the current directory.

Level 1 — Level 1
 L — Obj

Keyboard Access:

3-264 Command Reference

RCWS

(0)ETAT) &

(B)(eLom)

@GEED
Affected by Flags: None

(program-entry mode) (program-entry mode)

Remarks: To recall YDAT from aparent directory (when XDAT

doesn’t exist in the current directory), evaluate the name XDAT.

Related Commands: CLX, STOX, ¥+, Y¥—

RCWS

Recall Wordsize Command: Returns the current wordsize in bits (1

through 64).

T Level 1 . Level 1 ‘

_ n ~

Keyboard Access:

Affected by Flags: Binary Integer Wordsize (—5 through —10),

Binary Integer Base (—11, —12)

Related Commands: BIN, DEC, HEX, OCT, STWS

 NXT

Command Reference 3-265

RDM

Redimension Array Command: Rearranges the elements of the
argument according to specified dimensions.

Level 2 Level 1 — Level 1

[vector], { Nglements } — [vector],

[vector] { Prows Mm.gs + — [[matrix 1]

[[matrix 1] { Noiements J — [vector]

[[matrix 1], { Nrows Meois) — [[matrix 1],

'global’ { Melements -

'global' { Nrows Megis) —

Keyboard Access: (MTH) HATR MAKE

Affected by Flags: None

Remarks: If the list contains a single number nq,ements, the result

is an n-element vector. If the list contains two numbers n,oys and

Meois, the result is an n x m matrix.

Elements taken from the argument vector or matrix preserve the

same row order in the resulting vector or matrix. If the result is

dimensioned to contain fewer elements than the argument vector or

matrix, excess elements from the argument vector or matrix at the end

of the row order are discarded. If the result is dimensioned to contain

more elements than the argument vector or matrix, the additional

elements in the result at the end of the row order are filled with zeros

(v @if the argument is complex).

If the argument vector or matrix is specified by global, the result

replaces the argument as the contents of the variable.

Examples:

i oo1o

Related Commands: TRN

3-266 Command Reference

RE

RDZ
Randomize Command: Uses areal number z,..4 as a seed for the

RAND command.

{3

Level 1 - Level 1

Xseed -

Keyboard Access: FROB EDZ

Affected by Flags: None

Remarks: If the argument is &, a random value based on the system

clock is used as the seed.

Related Commands: COMB, PERM, RAND,!

RE

Real Part Function: Returns the real part of the argument.

{}

Level 1 — Level 1

X — X

X_unit — X

x, v — X

[R-array] — [R-array]

[C-array] — [R-array]

'symb' — 'RE(symb)"'

Keyboard Access: i

Affected by Flags: Numerical Results (—3)

Command Reference 3-267

RE

Remarks: If the argumentis a vector or matrix, RE returns a
real array, the elements of which are equal to the real parts of the

corresponding elements of the argument array.

Related Commands: C—R, IM, R—C

RECN

Receive Renamed Object Command: Prepares the HP 48 to
receive a file from another Kermit device, and to store the file in a

specified variable.

{1}

Level 1 — Level 1

'name' —

"name" —

Keyboard Access: («)(/0)

Affected by Flags: 1/0 Device (—33), I/O Data Format (—35),
RECV Overwrite (—36), 1/O Messages (—39)

When an HP 48 sends an object, it automatically appends a header

that tells a receiving HP 48 whether to use ASCII or binary mode.

Flag —35 has an effect only if this header is not present.

Remarks: RECN is identical to RECV except that the name under

which the received data is stored is specified in the stack.

Related Commands: BAUD, CKSM, CLOSEIO, FINISH, KERRM,
KGET, PARITY, RECV, SEND, SERVER, TRANSIO

3-268 Command Reference

RECV

RECT
Rectangular Mode Command: Sets Rectangular coordinate mode.

Keyboard Access:

(©)(WODES) |
Affected by Flags: None

B (NXT

:Z and

Remarks: RECT clears flags —15 and —16, and clears the

F.u< annuclators.

In Rectangular mode, vectors are displayed as rectangular

components. Therefore, a 3D vector would appear as [X Y Z].

Related Commands: CYLIN, SPHERE

RECV

Receive Object Command: Instructs the HP 48 to look for a named

file from another Kermit device. The received file is stored in a

variable named by the sender.

Keyboard Access: ()(1/0) F

Affected by Flags: 1/0 Device (—33), I/O Data Format (—35),
RECV Overwrite (—36), I/O Messages (—39)

When an HP 48 sends an object, it automatically appends a header

that tells areceiving HP 48 whether to use ASCII or binary mode.

Flag —35 has an effect only if this header is not present.

Remarks: Since the HP 48does not normally look for incoming

Kermit files, you must use RECVto tell it to do so.

Related Commands: BAUD, CKSM, FINISH, KGET, PARITY,

RECN, SEND, SERVER, TRANSIO

Command Reference 3-269

REPEAT

REPEAT Command: Starts loop clause in WHILE ... REPEAT

.

..
END indefinite loop structure.

See the WHILE entry for syntax information.

Keyboard Access:

Remarks: See the WHILE entry for more information.

Related Commands: END, WHILE

REPL

Replace Command: Replaces a portion of the level 3 target object
with the level 1 object, beginning at a position specified in level 2.

Level 3 Level 2 Level 1 — Level 1

[[matrix 1], Ny osition [[matrix]l, — [[matrix]]5

[[matrix 1], { Mrow Negrumn + [matrix1l, — [matrix 1]5

[vector]y Nyosition [vector], — [vector]

{ listygt My osition { list; } — {listoo}

"stringtarget" My osition vstring" — "string¢ 1"

grobtarget {#n #m} grob, — grob.. it

grob, rget (x,¥) grob, — grobo<1t

PICT {#n #m} grob, —

PICT (x,y) grob, —

Keyboard Access:

@RS F

PRG

(MTH)

3-270 Command Reference

NXT

RES

Affected by Flags: None

Remarks: For arrays, n,qsition counts in row order. For matrices,
position Specifies the new location of the upper left-hand element of

the replacement matrix.

n

For graphics objects, the upper left corner of grob, is positioned at

the user-unit or pixel coordinates tz,yor « #n #m *. From there,

it overwrites a rectangular portion of grobi,.ge¢ or PICT. If grob,

extends past groby, ger or PICT in either direction, it is truncated in

that direction. If the specified coordinate is not on the target graphics
object, the target graphics object does not change.

Examples: [[1111301131131 0111133

> 2 1022 11 REEPL returns

TTHBODE ?ZOFG EEPL returns € A F G 03
TRECDEY 5 OU"FEY BEPL returns MAEBD

ERFSE PICT (8, B# 54 # 5d BLAME HEG FEFLreplaces a portion

of PICT with a 5 x 5 graphics object, each of whose pixels is on

(dark), and whose upper left corner is positioned at ©&,5% in PICT.

Related Commands: CHR, GOR, GXOR, NUM, POS, SIZE, SUB

RES

Resolution Command: Specifies the resolution of mathematical and

statistical plots, where the resolution is the interval between values of

the independent variable used to generate the plot.

{}

Level 1 — Level 1

Minterval -

#FNinterval -

a
1

i
tKeyboard Access: (&)(PLOT) FFHE

Command Reference 3-271

RES

Affected by Flags: None

Remarks: A real number n,;o,,4, specifies the interval in user units.

A binary integer #n,ervas Specifies the interval in pixels.

The resolution is stored as the fourth item in PPAR, with default

value 0. The interpretation of the default value is summarized in the

following table.

Plot Type Default Interval

BAR 10 pixels (bar width = 10 pixel columns)

DIFFEQ unlimited: step size is not constrained

FUNCTION 1 pixel (plots a point in every column of pixels)

CONIC 1 pixel (plots a point in every column of pixels)

TRUTH 1 pixel (plots a point in every column of pixels)

GRIDMAP RES does not apply

HISTOGRAM 10 pixels (bin width = 10 pixel columns)

PARAMETRIC [independent variable range in user units]/130

PARSURFACE RES does not apply

PCONTOUR RES does not apply

POLAR 2° 2 grads, or 7/90 radians

SCATTER RES does not apply

SLOPEFIELD |RES does not apply

WIREFRAME RES does not apply

YSLICE 1 pixel (plots a point in every column of pixels)

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,

PCONTOUR, POLAR, SCATTER, SLOPEFIELD, TRUTH,

WIREFRAME, YSLICE

3-272 Command Reference

RESTORE

RESTORE

Restore HOME Command: Replaces the current HOME directory

with the specified backup copy (im0t 8 R@Mey,cky,) Previously
created by ARCHIVE.

{}

Level 1 - Level 1

:nport :namebacku P

backup —

Keyboard Access: («)(MEMORY)

Affected by Flags: None

Remarks: The specified port number must be in the range 0 to 33.

Ports 1 and 2 must be configured as independent RAM (see FREE).

To restore a HOME directory that was saved on a remote system

using :10:name ARCHIVE, put the backup object itself on the stack

and execute RESTORE.

Example: To restore a HOME dlrectorythat was saved as the file

AUGI on a remote system, execute *#ill » on the remote

system, then execute the following on theHP48

ey oo, i g [
EECY RUGLY RO

Related Commands: ARCHIVE

Command Reference 3-273

REVLIST

Reverse List Command: Reverses the order of the elements in a list.

Level 1 = Level 1

{objn ... obj; } — { obj; ... objy }

Keyboard Access:

Affected by Flags: None

Related Commands: [SORT

RKF

Solve for Initial Values (Runge-Kutta-Fehlberg) Command:

Computes the solution to an initial value problem for a differential

equation, using the Runge-Kutta-Fehlberg (4,5) method.

Level 3 Level 2 Level 1 —~ Level2 Level1

{ fist } Xtol XTtinal - { list } Xtol

{ tist } { Xeor Xnstep XTfinal - { fist } Xtol

Keyboard Access: (&)(SOLVE)'IFFE

Affected by Flags: None

Remarks: RKF solves y’(t)=f(t,y), where y(t;)=yo,. The arguments

and results are as follows:

3-274 Command Reference

RKF

m { list } contains three items in this order: the independent (¢) and
solution (y) variables, and the right-hand side of the differential
equation (or a variable where the expression is stored).

B I, sets the absolute error tolerance. If a list is used, the first value

is the absolute error tolerance and the second value is the initial

candidate step size.

B I1gna Specifies the final value of the independent variable.

RKF repeatedly calls RKFSTEP as it steps from the initial value to

TTfinal

Example: Solve the following initial value problem for y(8), given
that y(0) = 0:

1/o 2 _
Y —m—zfl —f(t,y)

1. Store the independent variable’s initial value, 0, in 7.

2. Store the dependent variable’s initial value, 0, in Y.

3. Store the expression, (TkltT) —2y%,in F.

4. Enter a list containing these three items: £ T ¥ F .

5. Enter the tolerance. Use estimated decimal place accuracy as a

guideline for choosing a tolerance: 0.00001.

6. Enter the final value for the independent variable: 8.

The stack should look like this:

7. Press EEF . (The calculation takes a moment.) The variable T

now contains 8, and Y now contains the value .123077277659.

The actual answeris .123076923077, so the calculated answer has an

error of approximately .00000035, well within the specified tolerance.

Related Commands: RKFERR, RKFSTEP, RRK, RRKSTEP,

RSBERR

Command Reference 3-275

RKFERR

Error Estimate for Runge-Kutta-Fehlberg Method Command:
Returns the absolute error estimate for a given step A when solving an

initial value problem for a differential equation.

Level2 Level1 — Leveld4d Level3 Level2 Level 1

{ list } h — { list } h Yielta error

Keyboard Access: («)(SOLVE) i

Affected by Flags: None

Remarks: The arguments and results are as follows:

m { list } contains three items in this order: the independent (¢) and
solution (y) variables, and the right-hand side of the differential

equation (or a variable where the expression is stored).

m) is a real number that specifies the step.

B Y4eta displays the change in solution for the specified step.

m error displays the absolute error for that step. A zero error

indicates that the Runge-Kutta-Fehlberg method failed and that

Euler’s method was used instead.

The absolute error is the absolute value of the estimated error for a

scalar problem, and the row (infinity) norm of the estimated error

vector for a vector problem. (The latter is a bound on the maximum

error of any component of the solution.)

Related Commands: RKF, RKFSTEP, RRK, RRKSTEP, RSBERR

3-276 Command Reference

RKFSTEP

RKFSTEP
Next Solution Step for RKF Command: Computes the next solution
step (hpex:) to an initial value problem for a differential equation.

Level3 Level2 Levell — Level3 Level2 Leveli

 { list } Xio h — { list } Xto Ay ot

Keyboard Access: («)(SOLVE)

Affected by Flags: None

Remarks: The arguments and results are as follows:

m { list } contains three items in this order: the independent (¢) and
solution (y) variables, and the right-hand side of the differential
equation (or avariable where the expression is stored).

m ., sets the tolerance value.

m £ specifies the initial candidate step.

m h,ex: 1S the next candidate step.

The independent and solution variables must have values stored

in them. RKFSTEP steps these variables to the next point upon

completion.

Note that the actual step used by RKFSTEP will be less than the

input value h if the global error tolerance is not satisfied by that value.

If a stringent global error tolerance forces RKFSTEP to reduce its

stepsize to the point that the Runge-Kutta-Fehlberg method fails,

then RKFSTEP will use the Euler method to compute the next

solution step and will consider the error tolerance satisfied. The

Runge-Kutta-Fehlberg method will fail if the current independent

variable is zero and the stepsize < 1.3 x 107*°® orif the variable is

nonzero and the stepsize is 1.3 x 107*° times its magnitude.

Related Commands: RKF, RKFERR, RRK, RRKSTEP, RSBERR

Command Reference 3-277

RL

Rotate Left Command: Rotates a binary integer one bit to the left.

i

Level 1 — Level 1

#nl — .;afi‘fn2

Keyboard Access: BHEE BLIT RL

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: The leftmost bit of #n,; becomes the rightmost bit of #n,.

Related Commands: RLB, RR, RRB

RLB

Rotate Left Byte Command: Rotates a binary integer one byte to

the left.

{}

Level 1 - Level 1

#I’Il — #n2

Keyboard Access: (MTH) BREZE BYTE ELE

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: The leftmost byte of #n,; becomes the rightmost byte of

#n,. RLB is equivalent to executing RL eight times.

Related Commands: RL, RR, RRB

3-278 Command Reference

RND

RND

Round Function: Rounds an object to a specified number of decimal

places or significant digits, or to fit the current display format.

{}

Level 2 Level 1 - Level 1

7y Nound - 23

z 'symb,onq' — 'RND(z,symb,o nq)'

'symb' Nound — 'RND(symb,n,g nq)'

'symb; ' 'symb.nqg — 'RND(symby ,symb,g, nq)'

[array;] Mound — [array,]

X_unit Mound — y_unit

X_unit 'symb,ong — 'RND(x_unit,symbg .4)"

Keyboard Access: REAL R

Affected by Flags: Numerical Results (—3)

Remarks: n,.,,,q4 (or symbo, ,q if flag —3 is set) controls how the
level 2 argument is rounded, as follows:

Nround OF SYMbround Effect on Level 2 Argument

0 through 11 Rounded to n decimal places.

—1 through —11 Rounded to n significant digits.

12 Rounded to the current display format.

For complex numbers and arrays, each real number element is

rounded. For unit objects, the numerical part of the object is rounded.

Examples: 4,57

3 F FHD returns 4

L

returns [=

Related Commands: TRNC

Command Reference 3-279

RNRM

Row Norm Command: Returns the row norm (infinity norm) ofits
argument array.

{1

Level 1 - Level 1

[array] — Xrownorm

Keyboard Access: (MTH) HATE R

Affected by Flags: None

Remarks: The row norm is the maximum (over all rows) of the sums
of the absolute values of all elements in each row. For a vector, the

row norm is the largest absolute value of any of its elements.

Related Commands: CNRM, CROSS, DET, DOT

ROLL
Roll Objects Command: Moves the contents of a specified level
to level 1, and rolls upwards the portion of the stack beneath the

specified level.

Level n+1 ... Level 2 Level1 — Leveln... Level2 Level 1

objn ... obj; n — obj,_y ... obj; objn

Keyboard Access: (€)(STACK)

Affected by Flags: None

Remarks: = Rl is equivalent to ROT.

Related Commands: OVER, PICK, ROLLD, ROT, SWAP

3-280 Command Reference

ROOT

ROLLD
Roll Down Command: Moves the contents of level 1 to a specified

level, and rolls downwards the portion of the stack beneath the

specified level.

 T

Lvint1... Lvi2 Lvi1 — Lvin Lvin-1...Lvl1 |

obj, ... obj; n — obj; obj, ... obj,

Keyboard Access: (€) ROLLD

Affected by Flags: None

Related Commands: OVER, PICK, ROLL, ROT, SWAP

ROOT
Root-Finder Command: Returns a real number z,,,; that is a value

of the specified variable global for which the specified program or

algebraic object most nearly evaluates to zero or alocal extremum.

Level 3 Level 2 Level 1 — Level 1

& program > 'global' guess — Xroot

& program > 'global' { guesses } — Xroot

'symb' 'global' guess — Xroot

'symb' 'global' { guesses } — Xroot

Keyboard Access: («)(SOLVE) EOT E

Affected by Flags: None

Remarks: ROOT is the programmable form of the HP Solve

application.

Command Reference 3-281

ROOT

guess is an initial estimate of the solution. ROOT produces an error

if it cannot find a solution, returning the message Ead Guszsies)

if one or more of the guesses lie outside the domain of the equation,

or returns the message Cornzt ant ? if the equation returns the same

value at every sample point. ROOT does not return interpretive

messages when a root is found.

ROT

Rotate Objects Command: Rotates the first three objects on the
stack, moving the object in level 3 to level 1.

Level3 Level2 Levell — Level3 Level2 Levelt

obj obj, obj; — obj, obj, obj,

Keyboard Access: (€)(STACK)

Affected by Flags: None

Remarks: ROT is equivalent to & Rill_i..

Related Commands: OVER, PICK, ROLL, ROLLD, SWAP

—ROW

Matrix to Rows Command: Transforms a matrix into a series of

row vectors and returns the vectors and a row count, or transforms

a vector into its elements and returns the elements and an element

count.

3-282 Command Reference

ROW+

{}

Level 1 — Level n+1 ... Level 2 Level 1

[matrix]] — [vector Jiow1 [vector lrown Mowecount

[vector] — element; element, Nelementcount

Keyboard Access: MATE EOM #ROM

Affected by Flags: None

Related Commands: —COL, COL—, ROW—

ROW+

Insert Row Command: Inserts an array into a matrix (or one or

more numbers into a vector) at the position indicated by n;,4ey, and

returns the modified matrix (or vector).

{}

Level 3 Level 2 Level 1 - Level 1

[[matrix 1], [matrix], Mo dex — [[matrix J]5

[[matrix 1], [vector Jrow M dex — [[matrix]],

[vector], Nelement Mo dex — [vector],

Keyboard Access: (MTH) MHTRE EOW REips+

Affected by Flags: None

Remarks: The inserted array must have the same number of columns

as the target array.

Ningex 18 rounded to the nearest integer. The original array is

redimensioned to include the new columns or elements, and the

elements at and below the insertion point are shifted down.

Related Commands: COL-, COL+, ROW—, RSWP

Command Reference 3-283

ROW-
Delete Row Command: Deletes row n of a matrix (or element n of a
vector), and returns the modified matrix (or vector) and the deleted
row (or element).

{}

Level 2 Level 1 — Level 2 Level 1

[[matrix J]; Nrow — [[matrix 1], [vector Jrow

[vector]; Nglement — [vector], element,

Keyboard Access: |

Affected by Flags: None

 RO~

Remarks: niow O gement 18 rounded to the nearest integer.

Related Commands: COL-—, COL+, ROW+, RSWP

ROW—

Rows to Matrix Command: Transforms a series of row vectors and

a row count into a matrix containing those rows, or transforms a

sequence of numbers and an element count into a vector with those

numbers as elements.

Level, ;.. Level 2 Level 1 - Level 1

[vector l,ow1 [vector lrown Nowcount — [[matrix 1]

element; element, — [vector]Nelementcount column

Keyboard Access: (MTH) |

Affected by Flags: None

Related Commands: —COL, COL—, —ROW

3-284 Command Reference

RRB

RR

Rotate Right Command: Rotates a binary integer one bit to the

right.

{}

Level 1 — Level 1

#y - #15

NXT) EIT i

Keyboard Access:

Affected by Flags: Binary Integer Wordsize (=5 through —10),
Binary Integer Base (—11, —12)

Remarks: The rightmost bit of #n,; becomes the leftmost bit of #n, .

Related Commands: RL, RLB, RRB

RRB

Rotate Right Byte Command: Rotates a binary integer one byte to

the right.

{}

Level 1 - Level 1

#n, — #ny

 Keyboard Access: NXT

Affected by Flags: Binary Integer Wordsize (—5 through —10),

Binary Integer Base (—11, —12).

Remarks: The rightmost byte of #n,; becomes the leftmost byte of

#n,. RRB is equivalent to doing RR eight times.

Related Commands: RL, RLB, RR

Command Reference 3-285

RREF

Reduced Row Echelon Form Command: Converts a rectangular

matrix to reduced row echelon form.

{1}

Level 1 = Level 1

 [[matrix 1] 5 — [[matrix]15

Keyboard Access: (MTH) i

Affected by Flags: Singular Values (—54)

Remarks: Converts a given matrix into reduced row echelon form.
Since row echelon form is primarly used for studying systems of linear

equations, RREF ignores very small pivots if system flag —54 is clear.

Related Commands: LU

RRK

Solve for Initial Values (Rosenbrock, Runge-Kutta) Command:

Computes the solution to an intial value problem for a differential

equation with known partial derivatives.

Level 3 Level 2 Level1 - Level2 Level1

{ list } Xtol XTfinal - { list } Xtol

{ list } { Xto1 Xnstep } XTfinal - { fist } Xtol

Keyboard Access: («¢)(SOLVE) 1]

Affected by Flags: None

Remarks: RRK solves y’(t)=f(t,y), where y(to)=yq. The arguments

and results are as follows:

3-286 Command Reference

RRK

m { list } contains five items in this order:

o The independent variable ().
o The solution variable (y).

o The right-hand side of the differential equation (or a variable

where the expression is stored).

o The partial derivative of y ' (t) with respect to the solution

variable) (or a variable where the expression is stored).
o The partial derivative of y*(t) with respect to the independent

variable (or a variable where the expression is stored).

m 1., sets the tolerance value. If a list is used, the first value is the

tolerance and the second value is the initial candidate step size.

B Z1qqa Specifies the final value of the independent variable.

RRK repeatedly calls RKFSTEP as it steps from from the initial value

to Zrfinal-

Example: Solve the following initial value problem for y(8), given

that y(0) = 0:

1

T (1+£7)
The derivative of the function with respect to y (9f /0y) is -4y, and

the derivative of the function with respect to ¢ (0f/01) isfi

/
y - 2y2 = f(tay)

1. Store the independent variable’s initial value, 0, in 7'.

2. Store the dependent variable’s initial value, 0, in Y.

3. Store the expression, fiT) — 2y, in F.

4. Store 9f /dy, -4y, in FY.

5. Store 9f/01, fi, in FT.

6. Enter these five items in a list: © T % F FY FTx

7. Enter the tolerance. Use estimated decimal place accuracy as a

guideline for choosing a tolerance: 0.00001.

8. Enter the final value for the independent variable: 8.

Command Reference 3-287

RRK

The stack should look like this:

9. Press REK . (The calculation takes a moment.) The variable T'
now contams 8 and Y now contains the value .123077277659.

The actual answer is .123076923077, so the calculated answer has an

error of approximately .00000035, well within the specified tolerance.

Related Commands: RKF, RKFERR, RKFSTEP, RRKSTEP,
RSBERR

RRKSTEP

Next Solution Step and Method (RKF or RRK) Command:
Computes the next solution step (h,qy:) to an intial value problem for

a differential equation, and displays the method used to arrive at that

result.

Lvi4 Lvi3 Lvl2 Lvi1 — Lvi4d Lvi3 Lvli2 Lvit

{fist } x., h last — {list} X hy eyt current

Keyboard Access: («)(SOLVE) [

Affected by Flags: None

Remarks: The arguments and results are as follows:

m { list } contains five items in this order:

The independent variable ().

The solution variable (y).
The right-hand side of the differential equation (or a variable

where the expression is stored).

The partial derivative of y ' (t) with respect to the solution

variable) (or a variable where the expression is stored).

3-288 Command Reference

RRKSTEP

o The partial derivative of y*(t) with respect to the independent

variable (or a variable where the expression is stored).

Tio, 18 the tolerance value.

h specifies the initial candidate step.

m last specifies the last method used (RKF = 1, RRK = 2). If this is

the first time you are using RRKSTEP, enter 0.

m current displays the current method used to arrive at the next step.

m Aoy18 the next candidate step.

The independent and solution variables must have values stored

in them. RRKSTEP steps these variables to the next point upon

completion.

Note that the actual step used by RRKSTEP will be less than the

input value A if the global error tolerance is not satisfied by that

value. If a stringent global error tolerance forces RRKSTEP to

reduce its stepsize to the point that the Runge-Kutta-Fehlberg or

Rosenbrock methods fails, then RRKSTEP will use the Euler method

to compute the next solution step and will consider the error tolerance

satisfied. The Rosenbrock method will fail if the current independent

variable is zero and the stepsize < 2.5 x 107*°° or if the variable is
nonzero and the stepsize is 2.5 x 1071! times its magnitude. The

Runge-Kutta-Fehlberg method will fail if the current independent

variable is zero and the stepsize < 1.3 x 10°*°® or if the variable is
nonzero and the stepsize is 1.3 x 1071° times its magnitude.

Related Commands: RKF, RKFERR, RKFSTEP, RRK, RSBERR

Command Reference 3-289

RSBERR
Error Estimate for Rosenbrock Method Command: Returns
an error estimate for a given step h whensolving an initial values

problemfor a differential equation.

‘ Level 2 Level1 _ Level4 Level3 Level2 Level1

’ { list } h — { fist } h Ydelta error

Keyboard Access: ()(SOLVE) I

Affected by Flags: None

Remarks: The arguments and results are as follows:

m { list } contains five items in this order:

o The independent variable (?).
o The solution variable (y).

The right-hand side of the differential equation (or a variable
where the expression is stored).

o The partial derivative of y ' (t) with respect to the solution

variable) (or a variable where the expressionis stored).

The partial derivative of y ' (t) with respect to the independent

variable (or a variable where the expression is stored).

m h 1s a real number that specifies the initial step.

B Y412 displays the change in solution.

m error displays the absolute error for that step. The absolute error

1s the absolute value of the estimated error for a scalar problem,

and the row (infinity) norm of the estimated error vector for a

vector problem. (The latter is a bound on the maximumerror of

any component of the solution.) A zero error indicates that the

Rosenbrock method failed and Euler’s method was used instead.

Related Commands: RKF, RKFERR, RKFSTEP, RRK, RRKSTEP

3-290 Command Reference

RSD

RSD
Residual Command: Computes the residual B — AZ of the arrays B,

A, and Z.

{}

Level 3 Level 2 Level 1 — Level 1

[vector 1g [[matrix 1] [vector], — [vector 1g _a >

 [[matrix Jlg [[matrix 115 [[matrix]l; — [[matrix]lg _az

Keyboard Access: MATE RED

Affected by Flags: None

Remarks: A, B, and Z are restricted as follows:

m A must be a matrix.

m The number of columns of A must equal the number of elements of

Z if Z is a vector, or the number of rows of Z if Z is a matrix.

m The number of rows of A must equal the number of elements of B if

B is a vector, or the number of rows of B if B is a matrix.

m B and Z must both be vectors or both be matrices.

m B and Z must have the same number of columns if they are

matrices.

RSD is typically used for computing a correction to Z, where Z has

been obtained as an approximation to the solution X to the system of

equations AX = B.

Command Reference 3-291

RSWP

Row Swap Command: Swaps rows : and j of a matrix and returns

the modified matrix, or swaps elements ¢ and j of a vector and returns

the modified vector.

{}

Level 3 Level 2 Level 1 - Level 1

[[matrix 1], Nowi Mrow) — [[matrix 1],

[vector]1 Nalementi Nalementj - [vector]2

Keyboard Access: (MTH) 4

Affected by Flags: None

Remarks: Row numbers are rounded to the nearest integer. Vector

arguments are treated as column vectors.

Related Commands: CSWP, ROW+, ROW—

R—B

Real to Binary Command: Converts a positive real integer to its

binary integer equivalent.

{}

Level 1 — Level 1

n — #n

 i Keyboard Access: (MTH)

Affected by Flags: Binary Integer Wordsize (—5 through —10),

Binary Integer Base (—11, —12)

3-292 Command Reference

R—-C

Remarks: For any valueof n < @, the result is # . For any
value of n > 1. % (base 10), the result is

FFFFFFFFFF

Related Commands: B—R

R—C

Real to Complex Command: Combines two real numbers or real
arrays into a single complex number or complex array.

{}

Level 2 Level 1 — Level 1

x y — x.y

[R-array; 1] [R-array,] — [C-array]
Keyboard Access:

PRG NXT) &

(MTH) (IXT) -
Affected by Flags: None

Remarks: The level 2 argument represents the real element(s) of
the complex result. The level 1 argument represents the imaginary

element(s) of the complex result.

Array arguments must have the same dimensions.

Related Commands: C—R, IM, RE

Command Reference 3-293

R—D

Radians to Degrees Function: Converts a real number expressed in
radians to its equivalent in degrees.

{1

Level 1 - Level 1

x - (180/7) x

'symb' — 'R—D(symb)'

Keyboard Access: (MTH) FEFL Rl

Affected by Flags: Numerical Results (—3)

Remarks: This function operates independently of the angle mode.

Related Commands: D—R

SAME

Same Object Command: Compares two objects, and returns a true

result (1) if they are identical, and a false result (0) if they are not.

Level 2 Level 1 - Level 1

obj; obj, — 0/1

Keyboard Access: TESET (NXT

Affected by Flags: None

Remarks: SAME is identical in effect to == for all object types

except algebraics, names, and some units. (For algebraics and names,

== returns an expression that can be evaluated to produce a test

result based on numerical values.)

Examples: < A B > <d,! returns &.

3-294 Command Reference

SCALE

= returns .

returns 1.

Related Commands: TYPE, ==

SBRK

Serial Break Command: Interrupts serial transmission or reception.

Keyboard Access: (+)(1/0)

Affected by Flags: 1/0 Device (—33)

Remarks: SBRKis typically used when a problem occurs in a serial

data transmission.

Related Commands: BUFLEN, SRECV, STIME, XMIT

SCALE

Scale Plot Command: Adjusts the first two parameters in PPAR,

CZminy Ymin * ad £ Tmax, Ymax !, 80 that Zocaie and yscaie are the

new plot horizontal and vertical scales, and the center point doesn’t

change.

{1

‘ Level 2 Level 1 - Level 1

‘ Xscale yscale

 Keyboard Access: (&)(PLOT) | NXT) &

Affected by Flags: None

Remarks: The scale in either direction is the number of user units

per tick mark. The default scale in both directions is 1 user unit per

tick mark.

Command Reference 3-295

SCALE

Related Commands: AUTO, CENTR, *H, «W

SCATRPLOT

Draw Scatter Plot Command: Draws a scatterplot of (z, y) data
points from the specified columns of the current statistics matrix
(reserved variable YDAT).

Keyboard Access: (&)(STAT) FLOT

Affected by Flags: None

Remarks: The data columns plotted are specified by XCOL and

YCOL, and are stored as the first two parameters in the reserved

variable YPAR. If no data columns are specified, columns 1
(independent) and 2 (dependent) are selected by default. The y-axis is
autoscaled and the plot type is set to SCATTER.

When SCATRPLOT is executed from a program, the resulting

display does not persist unless PICTURE or PVIEW is subsequently
executed.

If PICTURE :s subsequently executed, pressing ST#TL in the Picture

environment draws a line to fit the data using the currently specified

statistical model.

Example: The following program plots a scatter plot of the datain

columns 3 and 4 of YDAT, draws a best fit line, and displays the plot:

Related Commands: BARPLOT, PICTURE, HISTPLOT, PVIEW,
SCLY, XCOL, YCOL

3-296 Command Reference

SCATTER

SCATTER

Scatter Plot Type Command: Sets the plot type to SCATTER.

Keyboard Access: (q)(PLOT)(NXT) £

Affected by Flags: None

Remarks: When the plot type is SCATTER, the DRAW command

plots points by obtaining z and y coordinates from two columns of the

current statistics matrix (reserved variable Z DAT). The columns are

specified by the first and second parameters in the reserved variable

SPAR (using the XCOL and YCOL commands). The plotting

parameters are specified in the reserved variable PPAR, which has this

form:

{Tmin: Ymin! “Zmax: Imax: indep res axes plype depend

For plot type SCATTER, the elements of PPAR are used as follows:

B (L, Ymin ¢ 1S @ complex number specifying the lower left corner

of PICT (the lower left corner of the display range). The default

value is {—&. 5, -3, 13,

B (Zmax, Ymax ? is a complex number specifying the upper right

corner of PICT (the upperrlght corner of the display range). The

default value is

m indep is a name specifying the independent variable. The default

value of ndep is X .

m res is not used.

m azes is a list containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, a list specifying the tick-mark annotation, and two

strings spec1fy1ng labels for the horizontal and vertical axes. The

default value is ©

m ptype is a command name specifying the plot type. Executing the

command SCATTER places the name SCATTER in ptype.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,

Command Reference 3-297

SCATTER

PCONTOUR, POLAR, SLOPEFIELD, TRUTH, WIREFRAME,
YSLICE

SCHUR

Schur Decomposition of a Square Matrix Command: Returns the
Schur decomposition of a square matrix.

{}

Level 1 - Level 2 Level 1

[[matrix 1], — [[matrix Jlg [[matrix 1]+

Keyboard Access: MATRE FARCTE

Affected by Flags: None

Remarks: SCHUR decomposes A into two matrices @ and T':

m If A is a complex matrix, @ is a unitary matrix, and 7T is an

upper-triangular matrix.

m If A is a real matrix, € is an orthogonal matrix, and T is an upper

quasi-triangular matrix (T is upper block triangular with 1x1 or

2x2 diagonal blocks where the 2x2 blocks have complex conjugate

eigenvalues).

In either case, A =2 @x TXxTRN(Q).

Related Commands: 1.Q, LU, QR, SVD, SVL, TRN

3-298 Command Reference

SCLX

SCIi
Scientific Mode Command: Sets the number display format to

Scientific mode, which displays one digit to the left of the fraction

mark and n significant digits to the right.

{3

Level 1 - Level 1

" - |

Keyboard Access: (&)(MODES) FHMT =CI

Affected by Flags: None

Remarks: Scientific mode is equivalent to scientific notation using

n + 1 significant digits, where 0 < n < 11. (Values for n outside this

range are rounded to the nearest integer.) In Scientific mode, numbers

are displayed and printed like this:

(sign) mantissa E (sign) exponent

where the mantissa has the form n.(n ...) and has zero to 11 decimal

places, and the exponent has one to three digits.

Example: The number 103.6 in Scientific mode to four decimal

places appears as 1.8 .

Related Commands: ENG, FIX, STD

SCLx

Scale Sigma Command: Adjusts “Zyin, Ymin* a0d Zmax, Ymax -+

in PPAR so that a subsequent scatter plot exactly fills PICT.

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: When the plot type is SCATTER, the command AUTO

incorporates the functions of SCLY. In addition, the command

Command Reference 3-299

SCLZ

SCATRPLOT automatically executes AUTO to achieve the same
result. SCLY is included in the HP 48 for compatibility with the HP
28.

Related Commands: AUTO, SCATRPLOT

SCONJ

Store Conjugate Command: Conjugates the contents of a named
object.

{}

Level 1 — Level 1

'name' —

Keyboard Access: (+)(MEMORY) FF 1 TH

Affected by Flags: None

Remarks: The named object must be a number, an array, or an

algebraic object. For information on conjugation, see CONJ.

Related Commands: CONJ, SINV, SNEG

SDEV

Standard Deviation Command: Calculates the sample standard

deviation of each of the m columns of coordinate values in the current

statistics matrix (reserved variable X DAT').

Level 1 — Level 1

‘ - Xsdev

‘ - [Xsdevl Xsdev2 - Xsdevm]
3-300 Command Reference

SEND

 Keyboard Access: (q)(STAT) 1

Affected by Flags: None

Remarks: SDEV returns a vector of m real numbers, or a single real
number if m = 1. The standard deviations (the square root of the
variances) are computed using this formula:

where z; is the ith coordinate value in a column, Z is the mean of the

data in this column, and n is the number of data points.

Related Commands: MAXY, MEAN, MINY, PSDEV, PVAR, TOT,

VAR

SEND

Send Object Command: Sends a copy of the named objects to a

Kermit device.

Level 1 — Level 1

'name' —

{ name; ... name, } —

{{ name,y nameyew } name ... } —

Keyboard Access: (1)(i/0) =

Affected by Flags: 1/0 Device (—33), I/O Data Format (—35), I/O
Messages (—39)

If flag —35 is clear (ASCII transfer), the translation setting also has an

effect.

Remarks: Data is always sent from a local Kermit, but can be sent

either to another local Kermit (which must execute RECV or RECN)

or to a server Kermit.

Command Reference 3-301

SEND

To rename an object when sending it, include the old and new names

in an embedded list.

Examples: Executing ©< AARA -+ SEMD sends the variable

named AAA but changes its name to BBB.

Executing +{ FfRf BEE » COC 3 SEMD sends AAA as BBB and sends

CCC under its own name. (If the new name is not legal on the HP 48,

just enter it as a string.)

Related Commands: BAUD, CLOSEIO, CKSM, FINISH, KERRM,
KGET, PARITY, RECN, RECV, SERVER, TRANSIO

SEQ
Sequential Calculation Command: Returns a list of results
generated by repeatedly executing o0bjexec using indezx over the range

Totart 1O Tapg, 10 Increments of z;,.,.

{1

Level 5 Leveld4d Level3 Level2 Levell — Level1

 Objexec index Xstart Xand — { list }

Keyboard Access: LIsT

Affected by Flags: None

 NXT

Remarks: 00j.s.. is nominally a program or algebraic object that is

a function of indez, but can actually be any object. inder must be a

global or local name. The remaining objects can be anything that will

evaluate to real numbers.

The action of SEQ for arbitrary inputs can be predicted exactly from

this equivalent program:

Zstart Tend FOR indexr 0bjere. EVAL 2. STEP n — LIST

where n is the number of new objects left on the stack by the FOR ...

STEP loop. Notice that indez becomes a local variable regardless of

its original type.

3-302 Command Reference

SERVER

Example: ‘r™&° ‘m' 14 1returns £ 1 4% ig X

Related Commands: DOSUBS, STREAM

SERVER
Server Mode Command: Selects Kermit Server mode.

Keyboard Access:

Q{/0) =EYE

>
Affected by Flags: 1/0 Device (—33), I/O Data Format (—35),
RECYV Overwrite (—36), [/O Messages (—39)

R
L

Remarks: A Kermit server (a Kermit device in Server mode)
passively processes requests sent to it by the local Kermit. The server

receives data in response to SEND, transmits data in response to

KGET, terminates Server mode in response to FINISH or LOGOUT,

and transmits a directory listing in response to a generic directory

request.

Server mode supports Kermit Host Command packets. This allows

you, for instance, to use a PC to type into the HP 48’s command line.

(This is especially convenient while testing programs.) Do this as

follows:

1. Set up the HP 48 for data transfer to a computer, as described in

“Transferring Data Between the HP 48 and a Computer” in chapter

27 of the HP 48 User’s Guide.

2. Execute SERVER to set the HP 48 to Server mode.

3. On the PC, type REMITE HIZT followed by up to 89 characters to

be entered into the HP 48 command line.

4. Press to transmit and execute the commands. The HP 48

executes the transmitted commands, then sends back to the PC’s

display the resulting contents of the stack as the HP 48 would

normally display them.

Command Reference 3-303

SERVER

If you use a PC to write programs for the HP 48, you should include

the Z%HP .. .: header in the program. See the discussion of ASCII
mode in chapter 27 of the HP 48 User’s Guide.

Related Commands: BAUD, CKSM, FINISH, KERRM, KGET,

PARITY, PKT, RECN, RECV, SEND, TRANSIO

SF

Set Flag Command: Sets a specified user or systemflag.

{}

Level 1 - Level 1

nflagnumber

Keyboard Access:

PRG) TEZT (NXT)(NXT) &F

(«|)(MODES) F sE

Affected by Flags: None

Remarks: User flags are numbered 1 through 64. System flags are

numbered —1 through —64. See appendix C, “System Flags,” for a

listing of HP 48 system flags and their flag numbers.

Related Commands: CF, FC?, FC?C, FS?, FS?C

3-304 Command Reference

SIDENS

SHOW
Show Variable Command: Returns 'symb, ', which is equivalent to
‘symb, ' except that all implicit references to a variable name are

made explicit.

Level 2 Level 1 — Level 1

'symb; ' 'name' — 'symby '

'symb; ' { name, name, ... } — 'symb, '
Keyboard Access: (e)(SYMBOLIC) &HIIE

Affected by Flags: Numerical Results (—3)

Remarks: If the level 1 argument is a list, SHOW evaluates all global
variables in 'symb; * not contained in the list.

Example: If 7 is stored in C' and 5 is stored in D, then

LR LW Y 3 SHOM

returns ‘-1 d-

Related Commands: COLCT, EXPAN, ISOL, QUAD

SIDENS

Silicon Intrinsic Density Command: Calculates the intrinsic density
of silicon as a function of temperature, z—.

{1}

Level 1 - Level 1

X1 - Xdensity

X_unit — x_1/cm®

'symb' — 'SIDENS(symb)'
Command Reference 3-305

SIDENS

Keyboard Access: ()(EQ LB)LITIL®

Affected by Flags: Numerical Results (—3)

Remarks: If z is a unit object, it must reduce to a pure

temperature, and the density is returned as a unit object with units of

1/em3.

If z+ 1s a real number, its units are assumed to be K, and the density

is returned as a real number with implied units of 1/cm?.

z+ must be between 0 and 1685 K.

SIGN

Sign Function: Returns the sign of a real number argument, the sign
of the numerical part of a unit object argument, or the unit vector in

the direction of a complex number argument.

{}

Level 1 — Level 1

zy — z,

X_unit — Xsign

'symb' — 'SIGN(symb)'
Keyboard Access:

 MTH - S16GH

(@)
complex number)

(returns the sign of a number)

(returns the unit vector of a

Affected by Flags: Numerical Results (—3)

Remarks: For real number and unit object arguments, the sign is

defined as +1 for positive arguments, —1 for negative arguments, and

0 for argument 0.

For a complex argument:

3-306 Command Reference

SIN

x 1y
-4Z
/$2+y2 /$2+y2

Examples: SE_F1 SIGH returns 1.

SIGN(z + 1y) =

TaLTEFIBSTELIIET Yo
tC1a1% SIGH returns o, FEFTIEEFELL

Related Commands: ABS, MANT, XPON

SIMU
Simultaneous Plotting Command: Enables and disables
simultaneous plotting.

Keyboard Access: (+)(PLOT) FLAG sInd

Affected by Flags: Simultaneous Plotting (—28)

Remarks: 51fili changes to S1Hiie when flag —28 is enabled (and

simultaneous plotting is enabled).

If the calculator is in program entry mode, pressing the menu key

echoes AXES, CNCT, and SIMU flag numbers to the command line.

Pressing (&) or () first echoes the flag numbers and SF or CF to the

command line.

Related Commands: AXES, CF, SF

Sine Analytic Function: Returns the sine of the argument.

{1}

Level 1 — Level 1

z — sin z

'symb' — 'SIN(symb)'

x,unitangular — sin (x,unitangmar)

Command Reference 3-307

SIN

Keyboard Access:

Affected by Flags: Numerical Results (—3), Angle Mode (—17, —18)

Remarks: For real arguments, the current angle mode determines the
number’s units, unless angular units are specified.

For complex arguments, sin(z + iy) = sinz coshy + 7 cosz sinhy.

If the argument for SIN is a unit object, then the specified angular

unit overrides the angle mode to determine the result. Integration and
differentiation, on the other hand, always observe the angle mode.

Therefore, to correctly integrate or differentiate expressions containing

SIN with a unit object, the angle mode must be set to Radians (since

this is a “neutral” mode).

Related Commands: ASIN, COS, TAN

SINH

Hyperbolic Sine Analytic Function: Returns the hyperbolic sine of
the argument.

{}

Level 1 — Level 1

z — sinh z

'symb' — 'SINH(symb)'

Keyboard Access: (MTH) H*¥F

Affected by Flags: Numerical Results (—3)

Remarks: For complex arguments,

sinh(z + 4éy) = sinhz cosy + ¢ coshr siny.

Related Commands: ASINH, COSH, TANH

3-308 Command Reference

SIZE

SINV

Store Inverse Command: Replaces the contents of the named

variable with its inverse.

{1

Level 1 - Level 1

‘name' —

Keyboard Access: (+q)(MEMORY) AR ITH 5

Affected by Flags: None

Remarks: The named object must be a number, a matrix, an

algebraic object, or a unit object. For information on reciprocals, see

INV.

Related Commands: INV, SCONJ, SNEG

SIZE

Size Command: Returns the number of characters in a string, the
number of elements in alist, the dimensions of an array, the number

of objects in a unit object or algebraic object, or the dimensions of a

graphics object.

Command Reference 3-309

SIZE

Level 1 — Level 2 Level 1

vstring" — n

{ list } — n

[vector] — {n}

[[matrix 1] — {nm}

'symb' — n

grob - Ny idtn #FMyeignt

PICT - Fyidtn #mheight

x_unit — n
Keyboard Access:

(B)(CHARS) EIZE

PRG): | 7 ;

LEOE (NXT

Affected by Flags: None

Remarks: The size of a unit is computed as follows: the scalar (41),
the underscore (+1), each unit name (+1), operator or exponent (+1),
and each prefix (+2).

Any object type not listed above returns a value of 1.

Related Commands: CHR, NUM, POS, REPL, SUB

SL

Shift Left Command: Shifts a binary integer one bit to the left.

{}

Level 1 — Level 1

Ny - #n,

3-310 Command Reference

SLB

Keyboard Access: BEASE

Affected by Flags: Binary Integer Wordsize (—5 through —10),

Binary Integer Base (—11, —12)

Remarks: The most significant bit is shifted out to the left and lost,

while the least significant bit is regenerated as a zero. SL is equivalent

to binary multiplication by 2, truncated to the current wordsize.

Related Commands: ASR, SLB, SR, SRB

SLB
Shift Left Byte Command: Shifts a binary integer one byte to the
left.

{}

Level 1 — Level 1

#n]_ - #n2

Keyboard Access: BHZE BYTE ELE

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: The most significant byte is shifted out to the left and

lost, while the least significant byte is regenerated as zero. SLB is

equivalent to binary multiplication by 28 (or executing SL eight

times), truncated to the current wordsize.

Related Commands: ASR, SL, SR, SRB

Command Reference 3-311

SLOPEFIELD

SLOPEFIELD Plot Type Command: Sets the plot type to
SLOPEFIELD.

Keyboard Access: ()(PLOT) 2l BIWFE

Affected by Flags: None

Remarks: When plot type is set to SLOPEFIELD, the DRAW

command plots a slope representation of a scalar function with two

variables. SLOPEFIELD requires values in the reserved variables £Q,

VPAR, and PPAR.

VPAR has the following form:

“ Tiett Lright Ynear Yrar Ziow Znigh Tmin Tmax Ymin Ymax ZLeye

Yeye Zeye Tstep Ystep -

For plot type SLOPEFIELD, the elements of VPAR are used as

follows:

B Ziort and zq,¢ are real numbers that specify the width of the view

space.

B Ynear and y¢,, are real numbers that specify the depth of the view

space.

® 25y and zyi4, are real numbers that specify the height of the view

space.

B I, and zy,ax are not used.

B Yoand ymax are not used.

B Zeye, Yeye, and Zeye are real numbers that specify the point in

space from which the graph is viewed.

B Zgiep and Ysiep are real numbers that set the number of

x-coordinates versus the number of y-coordinates plotted.

The plotting parameters are specified in the reserved variable PPAR,

which has this form:

L 92 min, Ymin“Tmax, Ymax » tndep res axes plype depend =

For plot type SLOPEFIELD, the elements of PPAR are used as

follows:

® (T, Ymin # 18 nOt used.

3-312 Command Reference

SNEG

CTmax, Ymax ¢ 18 not used.

m indep is a name specifying the independent variable. The default

value of indep is X.

m res is not used.

m azes Is not used.

m ptype is a command name specifying the plot type. Executing the

command SLOPEFIELD places the command name SLOPEFIELD

in ptype.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,
PCONTOUR, POLAR, SCATTER, TRUTH, WIREFRAME,

YSLICE

SNEG
Store Negate Command: Replaces the contents of a variable with
its negative.

{}

Level 1 - Level 1

'name' —

Keyboard Access: («q)(MEMORY) ARTH BHEL

Affected by Flags: None

Remarks: The named object must be a number, an array, an

algebraic object, a unit object, or a graphics object. For information

on negation, see NEG.

Related Commands: NEG, SCONJ, SINV

Command Reference 3-313

SNRM

Spectral Norm Command: Returns the spectral norm of an array.

{1

Level 1 = Level 1

 [array] - Xspectralnorm

Keyboard Access: METE HOEM SHEHN

Affected by Flags: None

Remarks: The spectral norm of a vector is its Euclidean length, and
is equal to the largest singular value of a matrix.

Related Commands: ABS, CNRM, COND, RNRM, SRAD, TRACE

SOLVEQN

Start Equation Solver Command: Starts the appropriate solver for a
specified set of equations.

{1

Level 3 Level 2 Level 1 — Level 1

n m 0/1 —

Keyboard Access: («)(EQ LIB) ERLIE S0LVE

Affected by Flags: Unit Type (60), Units Usage (61)

Remarks: SOLVEQN sets up and starts the appropriate solver

for the specified set of equations, bypassing the Equation Library

catalogs. It sets EQ (and Mpar if more than one equation is being

solved), sets the unit options according to flags 60 and 61, and starts

the appropriate solver.

3-314 Command Reference

SORT

SOLVEQN uses subject and title numbers (levels 3 and 2) and a
“PICT” option (level 1), and returns nothing. Subject and title

numbers are listed in chapter 4. If the “PICT” option is 0, PICT is

not affected; otherwise, the equation picture is copied into PICT.

Related Commands: EQNLIB, MSOLVER

SORT
Ascending Order Sort Command: Sorts the elements in a list in

ascending order.

Level 1 - Level 1

 { list }; — { list },

Keyboard Access:

(MTH) LIST

Affected by Flags: None

NXT) SERET

Remarks: The elements in the list can be real numbers, strings, lists,

names, binary integers, or unit objects. However, all elements in the

list must all be of the same type. Strings and names are sorted by

character code number. Lists of lists are sorted by the first element in

each list.

To sort in reverse order, use SORT REVLIST.

Related Commands: REVLIST

Command Reference 3-315

SPHERE

Spherical Mode Command: Sets Spherical coordinate mode.

Keyboard Access:

 VEDTE 5

Affected by Flags: None

 Remarks: SPHERE sets flags —15 and —16, and displays the Fss
annunciator.

In Spherical mode, vectors are displayed as polar components.

Therefore, a 3D vector would appear as [r £.0 X.¢].

Related Commands: CYLIN, RECT

SQ

Square Analytic Function: Returns the square of the argument.

{}

r Level 1 - Level 1

Z — 22

x_unit — z? _unit?

[[matrix 1] — [[matrix x matrix]]

‘'symb' — 'SQ(symb)'

Keyboard Access: (&)%)

Affected by Flags: Numerical Results (—3)

Remarks: The square of a complex argument (z, y) is the complex

number (2?2 —y2, 2zy).

Matrix arguments must be square.

Related Commands: ./, °

3-316 Command Reference

SRAD

SR
Shift Right Command: Shifts a binary integer one bit to the right.

{}

Level 1 - Level 1

#’71 — #I72

Keyboard Access: SR

Affected by Flags: Binary Integer Wordsize (=5 through —10),
Binary Integer Base (—11, —12)

Remarks: The least significant bit is shifted out to the right and lost,

while the most significant bit is regenerated as a zero. SR is equivalent

to binary division by 2.

Related Commands: ASR. SL, SLB. SRB

SRAD

Spectral Radius Command: Returns the spectral radius of a square

matrix.

{}

Level 1 — Level 1

[[matrix]]”X” - Xspectralradius

Keyboard Access:

Affected by Flags: None

Remarks: The spectral radius of a matrix is a measure of the size of

the matrix, and is equal to the absolute value of the largest eigenvalue

of the matrix.

Command Reference 3-317

SRAD

Related Commands: COND, SNRM, TRACE

SRB

Shift Right Byte Command: Shifts a binary integer one byte to the
right.

{}

Level 1 - Level 1

#Ny — #n,

Keyboard Access: BHSE (NXT) BYTE

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: The least significant byte is shifted out to the right and

lost, while the most significant byte is regenerated as zero. SRB is

equivalent to binary division by 2% (or executing SR eight times).

Related Commands: ASR, SL, SLB, SR

SRECV
Serial Receive Command: Reads up to n characters from the serial

input buffer and returns them as a string, along with a digit indicating

whether errors occurred.

{}

Level 1 — Level 2 Level 1

n — 'string' 0/1

Keyboard Access: (€)(1/0)

3-318 Command Reference

SRECV

Affected by Flags: 1/0 Device (—33)

Remarks: SRECV does not use Kermit protocol.

If n characters are not received within the time specified by STIME

(default is 10 seconds), SRECV “times out”, returning a & to level 1

and as many characters as were received to level 2.

If the level 2 output from BUFLEN is used as the input for SRECV,

SRECYV will not have to wait for more characters to be received.

Instead, it returns the characters already in the input buffer.

If you want to accumulate bytes in the input buffer before executing

SRECV, you must first open the port using OPENIO (if the port isn’t

already open).

SRECV can detect three types of error when reading the input buffer:

R RNT

s Framing errors and UART overruns (both causing "F

Error® in ERRM).
m Input-buffer overflows (causing
ERRM).

m Parity errors (causing "Farity Error® in ERRM).

fReosiuve Buffer Ouerfd low® in

SRECYV returns & if an error is detected when reading the input

buffer, or 1 if no error is detected.

Parity errors do not stop dataflow into the input buffer. However, if a

parity error occurs, SRECV stops reading data after encountering a

character with an error.

Framing, overrun, and overflow errors cause all subsequently received

characters to be ignored until the error is cleared. SRECV does not

detect and clear any of these types of errors until it tries to read the

byte where the error occurred. Since these three errors cause the byte

where the error occurred and all subsequent bytes to be ignored, the

input buffer will be empty after all previously received good bytes
have been read. Therefore, SRECV detects and clears these errors

when it tries to read a byte from an empty input buffer.

Note that BUFLEN also clears the above-mentioned framing, overrun,

and overflow errors. Therefore, SRECV cannot detect an input-buffer

overflow after BUFLEN is executed, unless more characters were

received after BUFLEN was executed (causing the input buffer to

overflow again). SRECV also cannot detect framing and UART

overrun errors cleared by BUFLEN. To find where the data error

Command Reference 3-319

SRECV

occurred, save the number of characters returned by BUFLEN (which
gives the number of “good” characters received), because as soon as
the error is cleared, new characters can enter the input buffer.

Example: If 10 good bytes were received followed by a framing error
then an SRECV command told to read 10 bytes would not indicate
an error. Only when SRECYV tries to read the byte that caused
the framing error does it return a #. Similarly, if the input buffer
overflowed, SRECV would not indicate an error until it tried to read
the first byte that was lost due to the overflow.

Related Commands: BUFLEN, CLOSEIO, OPENIO, SBRK,
STIME, XMIT

)

SST

Execute Program Step Operation: Returns and executes the next
step of a program. If the next step is a subroutine, executes the

subroutine in a single step.

Keyboard Access:

Affected by Flags: None

Remarks: SST is not programmable.

Related Commands: NEXT (operation), SST|

SST|
Execute Subroutine Step Operation: Returns and executes the
next step of a program or subroutine. If the next step is a subroutine,

returns and executes the first step of the subroutine.

Keyboard Access:

Affected by Flags: None

Remarks: SST| is not programmable.

Related Commands: NEXT (operation), SST

3-320 Command Reference

START

START

START Definite Loop Structure Command: Begins START . ..

NEXT and START ... STEP definite loop structures.

Level 2 Level 1 — Level 1

START Xstart Xfinish -

NEXT —

STEP Xincrement -

STEP IsymbincrementI -

 Keyboard Access: (PRG) E

Affected by Flags: None

Remarks: Definite loop structures execute a command or sequence of

commands a specified number of times.

m START ... NEXT executes a portion of a program a specified

number of times. The syntax is this:

Tstart Lfinish START loop-clause HERT

START takes two numbers (zg;a,¢ and zg,isn) from the stack and

stores them as the starting and ending values for a loop counter.

Then the loop clause is executed. NEXT increments the counter by

1 and tests to see if its value is less than or equal to zg,sn . If SO,

the loop clause is executed again. Notice that the loop clause is

always executed at least once.

m START ... STEP works just like START ... NEXT, except that it

can use an increment value other than 1. The syntax is this:

 Tstart Tfinish = loop-clause Tipcrement =TF

START takes two numbers (2ga,t and Zgqisp) from the stack and

stores them as the starting and ending values of the loop counter.

Then the loop clause is executed. STEP takes zi,crement from the

stack and increments the counter by that value. If the argument of

STEP is an algebraic or a name, it is automatically evaluated to a

number.

Command Reference 3-321

START

The increment value can be positive or negative:

o If positive, the loop is executed again when the counter is less
than or equal to zg,isp -

o If negative, the loop is executed when the counter is greater than

or equal to Zqish -

Related Commands: FOR, NEXT, STEP

STD

Standard Mode Command: Sets the number display format to
Standard mode.

Keyboard Access: (€)(MODES) FHT &TI

Affected by Flags: None

Remarks: Executing STD has the same effect as clearing flags —49

and —50.

Standard format (ANSI Minimal BASIC Standard X3J2) produces the
following results when displaying or printing a number:

s Numbers that can be represented exactly as integers with 12 or

fewer digits are displayed without a fraction mark or exponent. Zero

is displayed as @.

®m Numbers that can be represented exactly with 12 or fewer digits,

but not as integers, are displayed with a fraction mark but no

exponent. Leading zeros to the left of the fraction mark and trailing

zeros to the right of the fraction mark are omitted.

m All other numbers are displayedin scientific notation (see SCI) with

both a fraction mark (with one number to the left) and an exponent

(of one to three digits). There are no leading or trailing zeros.

In algebraic objects, integers less than 10° are always displayed in

Standard mode.

Example: The following table provides examples of numbers

displayed in Standard mode:

3-322 Command Reference

STEP

Representable

Number Displayed As With 12 Digits?

10t Yes (integer)

102 No

10— Yes

1.2 x 1071 No

12.345 Yes

Related Commands: ENG, FIX, SCI

STEP

STEP Command: Defines the increment (step) value, and ends
definite loop structure.

See the FOR and START command entries for syntax information.

Keyboard Access:

BFCH FOR STEF

BRECH ZTHRT STEFR

Remarks: See the FOR and START keyword entries for more

information.

Related Commands: FOR, NEXT, START

Command Reference 3-323

STEQ

Store in EQ Command: Stores an object into the reserved variable

EQ in the current directory.

{1

Level 1 — Level 1

Obj —

Keyboard Access: This command must be typed in, but you can

store an object in FQ) with:

©@CELD*)
QPO(NXT) &2k (q) E@

Affected by Flags: None

Related Commands: RCEQ

STIME

Serial Time-Out Command: Specifies the period that SRECV (serial

reception) and XMIT (serial transmission) wait before timing out.

{}

Level 1 — Level 1

Xseconds -

0 —
Keyboard Access: (9)(1/0) BEETY wrone

Affected by Flags: None

Remarks: The value for z is interpreted as a positive value from 0 to

25.4 seconds. If no value is given, the default is 10 seconds. If z 1s 0,

3-324 Command Reference

STO

there is no time-out; that is, the device waits indefinitely, which can

drain the batteries.

STIMEis not used for Kermit time-out.

Related Commands: BUFLEN, CLOSEIO, SBRK, SRECV, XMIT

STO

Store Command: Stores an object into a specified variable or object.

{}

Level 2 Level 1 — Level 1

obj ‘name’ —

grob PICT —

obj Nygre 1NAMELLy —

obj 'name(index)’ —

backup Nyort —

library Myort —

library Noort Mivrary —
Keyboard Access:

Affected by Flags: None

Remarks: Storing a graphics object into PICT makes it the current

graphics object.

To create a backup object, store the 0bj into the desired backup

location (identified as * npyort ¥ RAMELacyp). OTO will not overwrite

an existing backup object.

To store backup objects and library objects, specify a port number (0

through 33). Ports 1 and 2 must be configured as independent RAM,

since backup and library objects can be stored only in independent

RAM (see the entry for FREE).

To use a library object, the object must be in a port and it must

be attached. A library object from an application card (ROM) is

Command Reference 3-325

STO

automatically in a port (1 through 33), but a library object copied

into RAM (such as through the PC Link) must be stored into a port
using STO.

After storing a library object in a port, it must then be attached to its

directory before it can be used. To make a stored library “attachable”,

turn the calculator off and then on. (See the entry for ATTACH.)
This action (storing a library object, then turning the calculator off
and on) also causes the calculator to perform a system halt, which

clears the stack, the LAST stack, and all local variables, and returns

the MATH menu to the display.

STO can also replace a single element of an array or list stcred in a

variable. Specify the variable in level 1 as *nametindex s, which is a

user function with indez as the argument. The index can be n or n,m,

where n specifies the row position in a vector or list, and n,m specifies

the row-and-column position in a matrix.

 Example: g+p+CHDt VEUNMADR S

A+B+C+D in the variable SUMAD.

e

{1 stores the expression

' ET0 stores the integer 5 in the third element in a list or

vector A.

ZOPROE, D0 BTO stores the integer 2 in the element in the third row

and fifth column of matrix A.

Related Commands: DEFINE, RCL, —

STOALARM

Store Alarm Command: Stores an alarm in the system alarm list

and returns its alarm index number.

Level 1 — Level 1

Xiim e - Mndex

{ date time } — Mndex

{ date time obj, .;ion } — Mingex

{ date time obj, 1ion Xrepeat J — Mndex
3-326 Command Reference

STOF

Keyboard Access: («)(TIME) ALEM ZTOAL

Affected by Flags: Date Format (—42), Repeat Alarms Not

Rescheduled (—43), Acknowledged Alarms Saved (—44)

Remarks: If the argumentis a real numbero, the alarm date

will be the current system date by default.

If 0bj,crion is @ string, the alarmis an appointmentalarm, and the

string is the alarm message. If 0bj,cti0n is any other object type, the

alarm is a control alarm, and the object is executed when the alarm

comes due.

Trepeat 18 the repeat interval for the alarm in clock ticks, where 8192

clock ticks equals 1 second.

Mingex is @ real integer identifying the alarm based on its chronological

position in the system alarm list.

Example: With flag —42 clear, this command:

FoETOARLARN

sets a repeating control alarm for November 6 of the currently

specified year, at 3:25:30 PM. The alarm action is to execute variable

RUN. The repeatinterval is 491520 clock ticks (1 minute).

Related Commands: DELALARM, FINDALARM, RCLALARM

STOF

Store Flags Command: Sets the states of the systemflags or the

system and user flags.

Level 1 — Level 1

#nsystem -

{ #nsystem #Fnuser } -

Keyboard Access: (e)(MODES) Fl

Affected by Flags: Binary Integer Wordsize (—5 through —10)

Command Reference 3-327

STOF

The current wordsize must be 64 bits (the default wordsize) to store
all flags. For example, executing STOF with a 32-bit binary integer
stores only flags —1 through —32 and clears the other system flags.

Remarks: With argument #n.,q;om, STOF sets the states
of the system flags (—1 through —64) only. With argument
T #ngystem #nyser 1, STOF sets the states of both the system and user
flags.

A bit with value 1 sets the corresponding flag; a bit with value 0
clears the corresponding flag. The rightmost (least significant) bit of
#nsystem and #nyser correspond to the states of system flag —1 and
user flag +1, respectively. If #ngygrem OF #nyser contains fewer than
64 bits, the unspecified most significant bits are taken to have value 0.

STOF can preserve the states of flags before a program executes and
changes the states. RCLF can then recall the flag’s states after the
program is executed.

Related Commands: RCLF

STOKEYS

Store Key Assignments Command: Defines multiple keys on the

user keyboard by assigning objects to specified keys.

Level 1 - Level 1

{ obj; Xkeyl - objn Xkeyn } —

{S obj; Xiey1 - objn Xkeyn } —

lsl —
Keyboard Access: (¢)(MODES) kKEYS

Affected by Flags: User-Mode Lock (—61) and User Mode (—62)
affect the status of the user keyboard.

Remarks: =z, is a real numberof the form re.p specifying the key

by its row number r, its column number ¢, and its plane (shift) p.

(For a definition of plane, see the entry for ASN.)

3-328 Command Reference

STO+

The optional initial list parameter or argument S restores all keys
without user assignments to their standard key assignments on

the user keyboard. This is meaningful only when all standard key

assignments had been suppressed (for the user keyboard) by the

command 'S’ DELKEYS (see DELKEYS).

If the argument obj is the name 'SKEY ', the specified key is restored

to its standard key assignment.

Related Commands: ASN, DELKEYS, RCLKEYS

STO+

Store Plus Command: Adds a number or other object to the
contents of a specified variable.

{}

Level 2 Level 1 - Level 1

obj 'name' —

'name’ obj —

Keyboard Access: ()(MEMORY)FRITH &T0+

Affected by Flags: None

Remarks: The object on the stack and the object in the variable

must be suitable for addition to each other. STO+ can add any

combination of objects suitable for stack addition (see the entry for

+).

Using STO+ to add two arrays (where obj is an array and name is the

global name of an array) requires less memory than using the stack to

add them.

Related Commands: STO-, STOx, STO/, +

Command Reference 3-329

STO-

Store Minus Command: Calculates the difference between a number

(or other object) and the contents of a specified variable, and stores

the new value to the specified variable.

{1}

Level 2 Level 1 — Level 1

obj 'name’ —

'name' obj —

Keyboard Access: («)(MEMORY) Hif

Affected by Flags: None

Remarks: The object on the stack and the object in the variable

must be suitable for subtraction with each other. STO— can subtract

any combination of objects suitable for stack subtraction (see the

entry for —).

Using STO— to subtract two arrays (where obj is an array and name

is the global name of an array) requires less memory than using the

stack to subtract them.

Related Commands: STO+, STOx, STO/, —

STOx

Store Times Command: Multiplies the contents of a specified

variable by a number or other object.

{1}

Level 2 Level 1 — Level 1

obj 'name' —

'name’ obj —

3-330 Command Reference

STO/

Keyboard Access: («)(MEMORY)

Affected by Flags: None

Remarks: The object on the stack and the objectin the variable

must be suitable for multiplication with each other. When multiplying

two arrays, the result depends on the order of the arguments. The

new object of the named variable is the level 2 array times the level 1

array. The arrays must be conformable for multiplication.

Using STO# to multiply two arrays or to multiply a number and an

array (where obj is an array or a number and name is the global name

of an array) requires less memory than using the stack to multiply

them.

Related Commands: STO+, STO—, STO/,

STO/

Store Divide Command: Calculates the quotient of a number (or
other object) and the contents of a specified variable, and stores the

new value to the specified variable.

{}

Level 2 Level 1 - Level 1

obj 'name' —

‘name' obj —

Keyboard Access: («)(MEMORY) FiFI

Affected by Flags: None

Remarks: The new object of the specified variable is the level 2

object divided by the level 1 object.

The object on the stack and the object in the variable must be

suitable for division with each other. If both objects are arrays, the

divisor (level 1) must be a square matrix, and the dividend (level 2)

must have the same number of columns as the divisor.

Command Reference 3-331

STO/

Using STO/ to divide one array by another array or to divide an array

by a number (where 0bj is an array or a number and name is the

global name of an array) requires less memory than using the stack to

divide them.

Related Commands: STO+, STO—, STOx,/

STOx
Store Sigma Command: Stores obj in the reserved variable ZDAT.

{1

Level 1 - Level 1

Obj —

Keyboard Access: This command must be typed in, but you can

store an object in YDAT with either of the following:

@GETED b
Affected by Flags: None

Remarks: STOX accepts any object and stores it in XDAT.

However, if the object is not a matrix or the name of a variable

containing a matrix, an Iriszli [mi = error occurs upon

subsequent execution of a statistics command.

Related Commands: CLX, RCLY, X+, ¥—

3-332 Command Reference

STR—

STREAM

Stream Execution Command: Moves the first two elements from the

list onto the stack, and executes obj. Then moves the next element (if

any) onto the stack, and executes obj again using the previous result

and the new element. Repeats this until the list is exhausted, and

returns the final result.

Level 2 Level 1 - Level 1

{ list } obj — result

Keyboard Access:

Affected by Flags: None

Remarks: STREAM is nominally designed for ¢y to be a program

or command that requires two arguments and returns one result.

Examples:

 is equivalent to ZL.

Related Commands: DOSUBS

STR—

Evaluate String Command: Evaluates the text of astring as if the
text were entered from the command line.

{}

Level 1 — Level 1

 "obj" — evaluated-object

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Command Reference 3-333

STR—

Remarks: OBJ— also includes this function. STR— is included for

compatibility with the HP 28S.

Related Commands: ARRY—, DTAG, EQ—, LIST—, OBJ—,

—STR

—STR

Object to String Command: Converts any object to string form.

Level 1 - Level 1

obj — "obj"

Keyboard Access:

PRG

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12), Number Display Format (—49, —50)

Remarks: The full-precision internal form of a number is not

necessarily represented in the result string. To ensure that —STR

preserves the full precision of a number, select Standard number

display format or a wordsize of 64 bits (or both) before executing
—STR.

The result string includes the entire object, even if the displayed form

of the object is too large to fit in the display.

If the argument object is normally displayed in two or more lines, the

result string will contain newline characters (character 10) at the end

of each line. The newlines are displayed as the character =.

If the argument object is already a string, —STR returns the string.

Example: —STR can create special displays to label program output

or provide prompts for input. The sequence

"Result = U SWAFP STR + 1 DISF 1 FREEZE

3-334 Command Reference

STWS

displays 1+ = object in line 1 of the display, where object s a

string form of an objecttaken from level 1.

Related Commands: —ARRY, —LIST, STR—, —TAG, —UNIT

STWS

Set Wordsize Command: Sets the current binary integer wordsize to

n bits, where n is a value from 1 through 64 (the default is 64).

{}

Level 1 - Level 1

n —_

#n -

Keyboard Access: (MTH) EBFEE (NXT) ZTH=

Affected by Flags: Binary Integer Wordsize (=5 through —10),

Binary Integer Base (—11, —12)

Remarks: Values of nless than 1 or greater than 64 are interpreted

as 1 or 64, respectively.

If the wordsize is smaller than an integer entered in the command

line, then the most significant bits are not displayed upon entry. The

truncated bits are still present internally (unless they exceed 64), but

they are not used for calculations and they are lost when a command

uses this binary integer as an argument.

Results that exceed the given wordsize are also truncated to the

wordsize.

Related Commands: BIN, DEC, HEX, OCT, RCWS

Ccommand Reference 3-335

SuB

Subset Command: Returns the portion of a string or list defined by
specified positions, or returns the rectangular portion of a graphics
object or PICT defined by two corner pixel coordinates.

Level 3 Level 2 Level 1 — Level 1

([matrix], Nstartposition Mendposition — [[matrix]],

([matrix]]1 { nrow Neotumn 3 Nendposition — ([matrix]]2

([matrix 1], Nstartposition { Mrow Negiymn b — [[matrix 1],

[[matrix 11, { Mrow Neotumn + 1 frow Megiumn + — L[matrix 11

"Str’.ngtarget” nstartposition nend position - IIStr’.ngresult'I

{ ’iSttarget } nstartposition nendposition - { IiStresult }

grobtarget { #n, #m, } { #n, #m, } = grob,¢t

grobi, get (X1, ¥1) (X2, ¥72) = grob..q ¢

PICT {#ny #my } { #ny #my b — grob.,

picT (xy, 1) (X2, ¥2) — grob...t

Keyboard Access:

@RS

 (NxT)
Affected by Flags: None

Remarks: If n.nqg position 1S less than ngy,it position, SUB returns an

empty string or list. Values of n less than 1 are treated as 1; values of

n exceeding the length of the string or list are treated as that length.

For graphics objects, a user-unit coordinate less than the minimum

user-unit coordinate of the graphics object is treated as that

minimum. A pixel or user-unit coordinate greater than the maximum

pixel or user-unit coordinate of the graphics object is treated as that
maximum.

Examples: & A E

returns

3-336 Command Reference

SVD

returns

Related Commands: CHR, GOR, GXOR, NUM, POS, REPL, SIZE

SVvD
Singular Value Decomposition Command: Returns the singular

value decomposition of an mXxn matrix.

{1}
]

‘ Level 1 — Level 3 Level 2 Level 1

 L [[matrix J], — [[matrix 1]y [[matrix 11y, [vector]g

Affected by Flags: None

Remarks: SVD decomposes A into 2 matrices and a vector. U is an

mxm orthogonal matrix, V is an nxn orthogonal matrix, and S 1s a

real vector, such that A = U x diag(5) x V.S has length MIN(m,n)

and contains the singular values of A in nonincreasing order. The

matrix diag(S) is an mxn diagonal matrix containing the singular

values 5.

The computed results should minimize (within computational

precision):

|4 — U- diag(S) - V|
min(m,n) - |A]

where diag(S) denotes the m x n diagonal matrix containing the

singular values 5.

Related Commands: DIAG—, MIN, SVL

Command Reference 3-337

SVL

Singular Values Command: Returns the singular values of an mxn

matrix.

{}

F Level 1 — Level 1 T

' [[matrix]] — [vector]

Keyboard Access: (MTH) MATRE FACTR (NXT) WL

Affected by Flags: None

Remarks: SVL returns a real vector that contains the singular values
of an mxn matrix in nonincreasing order. The vector has length
MIN(m,n).

Related Commands: MIN, SVD

SWAP

Swap Objects Command: Interchanges the first two objects on the
stack.

Level 2 Level 1 — Level 2 Level 1

obj; obj, — obj, obj,

Keyboard Access: («)(SWAP)

Affected by Flags: None

Related Commands: DUP, DUPN, DUP2, OVER, PICK, ROLL,
ROLLD, ROT

3-338 Command Reference

%T

SYSEVAL
Evaluate System Object Command: Evaluates unnamed operating
system objects specified by their memory addresses.

{1

Level 1 - Level 1

 #naddress -

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: Using SYSEVAL with random addresses can corrupt

memory.

Example Dlsplay the version letter of an HP 48 by executing

h . Version A, for example, would display

Related Commands: EVAL, LIBEVAL

%T

Percent of Total Function: Returns the percent of the level 2

argument that is represented by the level 1 argument.

Command Reference 3-339

%T

{}

Level 2 Level 1 — Level 1

X y — 100y/x

X 'symb' — '%T(x, symb)'

'symb' X — "%T(symb, x)'

'symb, ' ‘symb, ' — "%T(symby, symb,)'

x_unity y_unit, — 100y_unit, /x_unit;

x_unit 'symb' — "%T(x_unit, symb)'

'symb' Xx_unit — '%T(symb, x_unit)'

Keyboard Access: (MTH

Affected by Flags: Numerical Results (—3)

Remarks: If both arguments are unit objects, the units must be

consistent with each other.

The dimensions of a unit object are dropped from the result, but units

are part of the calculation.

For more information on using temperature units with arithmetic

functions, refer to the entry for +.

Example: I returns

500% of 1 m.

, because 500 cm represents

.7 returns S,

Related Commands: %, %CH

3-340 Command Reference

TAIL

—TAG

Stack to Tag Command: Combines objects in levels 1 and 2 to
create tagged (labeled) object.

Level 2 Level 1 - Level 1

obj "tag" — :tag:obj

obj 'name’ — :name:obj

obj X — :x:obj

Keyboard Access: THFE =+ THE

Affected by Flags: None

Remarks: The “tag™ argument is a string of fewer than 256

characters.

Related Commands: —ARRY, DTAG, —LIST, OBJ—, —STR,

—UNIT

TAIL
Last Listed Elements Command: Returns all but the first element

of a list or string.

Level 1 — Level 1

{ obj; ... objy } — { obj, ... objn }

" string, " — " string,"

Keyboard Access:

PRG) LIST ELEH THIL

(e)(CHARS THIL

Command Reference 3-341

TAIL

Affected by Flags: None

Example: "ifz11" TRILreturns "a

Related Commands: HEAD

TAN

Tangent Analytic Function: Returns the tangent of the argument.

{}

Level 1 — Level 1

z — tan z

'symb' — "TAN(symb)'

x,unitangular — tan (x,unitangu,ar)

Keyboard Access:

Affected by Flags: Numerical Results (—3), Angle Mode (—17,
—18), Infinite Result Exception (—22)

Remarks: For real arguments, the current angle mode determines

the number’s interpretation as an angle, unless the angular units are

specified.

For a real argument that is an odd-integer multiple of 90 in Degrees

mode, an Irmfimit 1 exception occurs. If flag —22 is set (no

error), the sign of the result (MAXR) matches that of the argument.

For complex arguments,

(sinz)(cos z) + ¢(sinh y)(cosh y)

tan (x + iy)= sinh?y + cos?

If the argument for TAN is a unit object, then the specified angular

unit overrides the angle mode to determine the result. Integration and

differentiation, on the other hand, always observe the angle mode.

Therefore, to correctly integrate or differentiate expressions containing

TAN with a unit object, the angle mode must be set to Radians (since

this is a “neutral” mode).

3-342 Command Reference

TAYLR

Related Commands: ATAN, COS, SIN

TANH

Hyperbolic Tangent Analytic Function: Returns the hyperbolic

tangent of the argument.

{1

Level 1 - Level 1

z — tanh z

'symb' — "TANH(symb)'

Keyboard Access: (MTH) HYF T

Affected by Flags: Numerical Results (—3)

Remarks: For complex arguments,

,) sinh 22 4+ ¢ sin 2y
tanl =7
anh (z +iy) cosh 2z + cos 2y

Related Commands: ATANH, COSH, SINH

TAYLR

Taylor’s Polynomial Command: Calculates the nth order Taylor’s

polynomial of ‘'symb® in the variable global.

{1

Level 3 Level 2 Level 1 - Level 1

'symb' 'global' n
1 1

order - Symb’l’aylor

Keyboard Access: («)(SYMBOLIC) TH'LE

Command Reference 3-343

TAYLR

Affected by Flags: None

Remarks: The polynomial is calculated at the point global = 0

(called a MacLaurin series).

TAYLR always returns a symbolic result, regardless of the state of the

Numeric Results flag (—3).

Example: The command sequence ' L +SIHH

returns ' i-E"E

 2-Bod L EHE

Related Commands: 9, [,

TDELTA

Temperature Delta Function: Calculates a temperature change.

{}

Level 2 Level 1 — Level 1

X y - Xdelta

x_unitl y_unit2 — X_unitly, i,

x_unit 'symb' — '"TDELTA(x_unit,symb)'

'symb' y_unit — '"TDELTA(symb,y_unit)'

'symb, ' 'symb,' — "TDELTA(symb, ,symb,)'

Keyboard Access: (q)(EQLB)UTILE THELT

Affected by Flags: Numerical Results (—3)

Remarks: TDELTA subtracts two points on a temperature scale,

yielding a temperature increment (not an actual temperature). z

or z_unitl is the final temperature, and y or y_unit2 is the initial

temperature. If unit objects are given, the increment is returned as a

unit object with the same units as z_unitl. If real numbers are given,

the increment is returned as a real number.

Related Commands: TINC

3-344 Command Reference

TEXT

TEACH

Teaching Examples Function: Creates an EXAMPLES (EXAM)
subdirectory in the HOME directory and loads HP 48 programming,

graphing, and solver examples from ROM into it.

Keyboard Access: None. Must be typed in.

Affected by Flags: None

Remarks: Items stored in the EXAMPLES subdirectory are deleted

when CLTEACH is executed.

Related Commands: CLTEACH

TEXT

Show Stack Display Command: Displays the stack display.

Keyboard Access: GuT

Affected by Flags: None

Remarks: TEXT switches from the graphics display to the stack

display. TEXT does not update the stack display.

-
Example: The command sequence DRAK 5 WRIT TEXT selects the

graphics display and plots the contents of the reserved variable EQ (or

reserved variable XDAT'). It subsequently waits for 5 seconds, and

then switches back from the graphics display to the stack display.

Related Commands: PICTURE, PVIEW

Command Reference 3-345

THEN

THEN Command: Starts the true-clause in conditional or

error-trapping structure.

See the IF and IFERR entries for syntax information.

Keyboard Access:

mmiRREOR TFE

PRG

ERCH 1F

Remarks: See the IF and IFERR entries for more information.

Related Commands: CASE, ELSE, END, IF, IFERR

THEH

TICKS

Ticks Command: Returns the system time as a binary integer, in

units of 1/8192 second.

‘ Level 1 — Level 1

Keyboard Access: (9)(TIME) TICKS

Affected by Flags: None

Remarks: TICKS enables elapsed time computations.

Example: If the result from a previous invocation from TICKS is in

level 1, then T1I FF « returns a real number whose

value is the elapsed time in seconds between the two invocations.

Related Commands: TIME

3-346 Command Reference

—TIME

TIME

Time Command: Returns the system time in the form HH.MMSSs.

Level 1 — Level 1

— time

Keyboard Access: («)(TIME) TIHE

Affected by Flags: None

Remarks: time has the form HHMMSSs, where HH is hours, MM

is minutes, 5is seconds, and s is zero or more digits (as many as

allowed by the current display mode) representing fractional seconds.

time is always returned in 24-hour format, regardless of the state of

the Clock Format flag (—41).

Related Commands: DATE, TICKS, TSTR

—TIME

Set System Time Command: Sets the system time.

{1}

Level 1 — Level 1

 time —

Keyboard Access: («)(TIME) +T1IH

Affected by Flags: None

Remarks: ¢ime must have the form HH.MMSSs, where HH is hours,

MM is minutes, SSis seconds, and s is zero or more digits (as many

as allowed by the current display mode) representing fractional

seconds. fime must use 24-hour format.

Command Reference 3-347

—TIME

Example: iz

Related Commands: CLKADJ, —DATE

I +TIMEsets the system time to 1:33:41 PM.

TINC

Temperature Increment Command: Calculates a temperature

increment.

{1}

Level 2 Level 1 — Level 1

Xinitial Ydelta - Xfinal

x_unitl y_ uniitZ'delta — x_unitlg .,

x_unit 'symb' — '"TINC(x_unit,symb)'

'symb' y_unityg i, — '"TINC(symb,y_unity1,

'symb, 'symb, ' — '"TINC(symb, ,symb, ")’

Keyboard Access: (&)(EQ LIB) LiTIL % (NXT

Affected by Flags: Numerical Results (—3)

Remarks: TINC adds a temperature tncrement (not an actual
temperature) to a point on a temperature scale. Use a negative

increment to subtract the increment from the temperature. z;ntiq1 OT

z_unit! is the initial temperature, and ygeiq OF Y- unit2qenq 1s the

temperature increment. The returned temperature is the resulting

final temperature. If unit objects are given, the final temperature

is returned as a unit object with the same units as z_unit!. If real

numbers are given, the final temperature is returned as a real number.

Related Commands: TDELTA

3-348 Command Reference

TLINE

TLINE

Toggle Line Command: For each pixel along the line in PICT
defined by the specified coordinates, TLINE turns off every pixel that

is on, and turns on every pixel that is off.

Level 2 Level 1 - Level 1

(X1, ¥1) (X2, ¥2) -

{#n, #my } { #ny #my } -

Keyboard Access: FICT TLIHE

Affected by Flags: None

Example: The following program toggles on and off 10 times the

pixels on the line defined by user-unit coordinates « 1,1 and ¢, %%,

Each state is maintained for .25 seconds.

Related Commands: ARC, BOX, LINE

Command Reference 3-349

TMENU
Temporary Menu Command: Displays a built-in menu, library

menu, or user-defined menu.

Level 1 — Level 1

Xmenu -

{ listyeqinition } -

'‘namegyqfqition | -

Keyboard Access: («)(MODES)

Affected by Flags: None

Remarks: TMENU works just like MENU, except for user-defined

menus (specified by a list or by the name of a variable that contains

a list). Such menus are displayed like a custom menu and work like

a custom menu, but are not stored in reserved variable CST'. Thus,

a menu defined and displayed by TMENU cannot be redisplayed by

evaluating CST.

See the MENUentry for alist of the HP 48 built-in menus and the

corresponding menu numbers (Zmenu)-

kil displays the first page of the MTH MATR
 Examples:

menu.

i displays the second page of the UNITS MASS menu.

displays the first page of commands inlibrary 768.

Hii displays the custom menu defined by the list

| displays the custom menu defined by the name

argument.

Related Commands: MENU, RCLMENU

3-350 Command Reference

TRACE

TOT

Total Command: Computes the sumof each of the m columns of

coordinate values in the current statistics matrix (reserved variable

SDAT).

Level 1 - Level 1

- Xsum

 - [Xsum1 Xsum2 --- Xsumm]

Keyboard Access: ()(STAT) 1

Affected by Flags: None

Remarks: The sums are returned as a vector of m real numbers, or

as a single real number if m = 1.

Related Commands: MAXY, MINY, MEAN, PSDEV, PVAR,

SDEV, VAR

TRACE
Matrix Trace Command: Returns the trace of a square matrix.

{3

Level 1 — Level 1

[[matrix 1]nxn — Xtrace

Keyboard Access:

Affected by Flags: None

 NXT)

Remarks: The trace of a square matrix is the sum of its diagonal

elements.

Command Reference 3-351

TRANSIO
I/0 Translation Command: Specifies the character translation
option. These translations affect only ASCII Kermit transfers and files
printed to the serial port.

{}

Level 1 - Level 1

 noption

Keyboard Access: (&)(i/0) 1 ¢

Affected by Flags: None

Remarks: Legal values for n are as follows:

n Effect

0 No translation

1 Translate character 10 (line feed only)
to/from characters 10 and 13 (line feed with
carriage return, the Kermit protocol) (the

default value)

2 Translate characters 128 through 159 (80

through 9F hexadecimal)

3 Translate all characters (128 through 255)

Related Commands: BAUD, CKSM, PARITY

3-352 Command Reference

TRNC

TRN

Transpose Matrix Command: Returns the (conjugate) transpose of

a matrix.

{3

Level 1 - Level 1

[[matrix]] - [[matrix It ranspose

'name’ —
Keyboard Access:

Affected by Flags: None

Remarks: TRN replaces an n x m matrix A with an m x n matrix

AT where:

A; " = A;; for real matrices

A; 7 = CONJ(Ay;) for complex matrices

If the matrix is specified by name, AT replaces A in name.

Example: 11 TEH returns

CE &4 3t

Related Commands: CONJ

TRNC
Truncate Function: Truncates an object to a specified number of

decimal places or significant digits, or to fit the current display format.

command Reference 3-353

TRNC

{}—

Level 2 Level 1 - Level 1]

Z Mtruncate - 23

Z1 Isymbtruncate' - ITRNC(Zl'Syrnb‘cruncate)I

'Symbll ntruncate - ITRNC(S—Vmbl'ntruncate)'

ISymbll ‘Symbtruncate' - ITRNC(Syrnbl'syrm‘[)trunca‘ce)I

[array]l Mruncate - [array]2

x_unit N uncate — y_unit

X_unit 'symb; yncate — "TRNC(x_unit,symb,1 cate)’
 Keyboard Access:

Affected by Flags: Numerical Results (—3)

Remarks: n;. ,cate (Or 'symby, ncate’ if flag —3 is set) controls how
the level 2 argument is truncated, as follows:

Ntruncate Effect on Level 2 Argument

0 through 11

—1 through —11

truncated to n decimal places

truncated to n significant digits

12 truncated to the current display format
For complex numbers and arrays, each real number element is

truncated. For unit objects, the number part of the object is
truncated.

 Examples: returns ¢+
= TEHreturns

i

Related Commands: RND

3-354 Command Reference

TRUTH

TRUTH
Truth Plot Type Command: Sets the plot type to TRUTH.

Keyboard Access: (&)(PLOT)FT TRUTH

Affected by Flags: None

Remarks: When the plot type is TRUTH, the DRAW command

plots the current equation as a truth-valued function of two real

variables. The current equationis specified in the reserved variable

EQ. The plotting parameters are specified in the reserved variable

PPAR, which has this form:

CZmint Ymind UTmars Ymard indep Tes aves plype depend

For plot type TRUTH, the elements of PPAR are used as follows:

$Zmins Ymin * is a complex number specifying the lower left corner

of PICT (thelower left corner of the display range). The default

value is @ 2

B {Zmax, Ymax ? is a complex number specifying the upper right

corner of PICT (theupper rlght corner of the display range). The

default value is € ;

» indep is a name specifying the independent variable on the

horizontal axis, or alist containing such a name and two numbers

specifying the minimum and maximum values for the independent

variable (the horizontal plotting range). The default value is X.

m res is a real number specifying the interval (in user-unit

coordinates) between plotted values of the independent variable on

the horizontal axis, or a binary integer specifying that interval in

pixels. The default value is &, which specifies an interval of 1 pixel.

m azes is a list containing one or more of the following, in the order

listed: a complex number specifying the user-unit coordinates of

the plot origin, alist specifying the tick-mark annotation, and two

strings specifying labels for the horizontal and vertical axes. The

default value is ¢

m plype is a command name specifying the plot type. Executing the

command TRUTH places the name TRUTH in ptype.

m depend is a name specifying the independent variable on the vertical

axis, or a list containing such a name and two numbers specifying

Command Reference 3-355

TRUTH

the minimum and maximum values for the independent variable on
the vertical axis (the vertical plotting range). The default value is
Y.

The contents of £Q must be an expression or program, and cannot be
an equation. It is evaluated for each pixel in the plot region. The
minimum and maximum values of the independent variables (the
plotting ranges) can be specified in indep and depend; otherwise,
the values in C2 0, ¥min * and £Zmax, Ymax ? (the display range)
are used. The result of each evaluation must be a real number. If
the result is zero, the state of the pixel is unchanged. If the result is
nonzero, the pixel is turned on (made dark).

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,
GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,
PCONTOUR, POLAR, SCATTER, SLOPEFIELD, WIREFRAME,
YSLICE

TSTR

Date and Time String Command: Returns astring derived from the
date and time.

{}

Level 2 Level 1 — Level 1 T

date time — "DOW DATE TIME"

Keyboard Access: ()(TIME) (NXT) (NXT) T#

Affected by Flags: Date Format (—42), Time Format (—41)

Remarks: The string has the form *DOW DATE TIME™",

where DOW is a three-letter abbreviation of the day of the week
corresponding to the argument date and time, DATE is the argument
date in the current date format, and TIMFE is the argument time in
the current time format.

Example: With flags —42 and —41 clear, #

returns ¥ b

3-356 Command Reference

TVM

Related Commands: DATE, TICKS, TIME

TVARS

Typed Variables Command: Lists all global variables in the current

directory that contain objects of the specified types.

Level 1 = Level 1

Niype - { global ... }

{ Nype -} — { global ... }

Keyboard Access: (&)(MEMORY) [*IFE TWH

Affected by Flags: None

Remarks: If the current directory contains no variables of the

specified types, TVARS returns an empty lst.

For a table of the object-type numbers, see the entry for TYPE.

Related Commands: PVARS, TYPE, VARS

TVM

TVM Menu Command: Displays the TVM Solver menu.

Keyboard Access: This command must be typed in, but you can

also access the menu using (&q)(SOLVE) T4HM &L JF.

Affected by Flags: None

Related Commands: AMORT, TVMBEG, TVMEND, TVMROOT

Command Reference 3-357

TVMBEG
Payment at Start of Period Command: Specifies that TVM
calculations treat payments as being made at the beginning of the
compounding periods.

Keyboard Access: This command must betyped i
control begin/end mode with («9)(SOLVE)

Affected by Flags: None

Related Commands: AMORT, TVM, TVMEND, TVMROOT

, but you can

TVMEND
Payment at End of Period Command: Specifies that TVM
calculations treat payments as being made at the end of the
compounding periods.

Keyboard Access: This command must be typed in, but you can
control begin/end mode with (&)(SOLVE) TWM E

Affected by Flags: None

Related Commands: AMORT, TVM, TVMBEG, TVMROOT

TVMROOT
TVM Root Command: Solves for the specified TVM variable using
values from the remaining TVM variables.

{1

Level 1 — Level 1

'TVM variable' — XTVMvariable

Keyboard Access: (q)(SOLVE) TWi TwHE

3-358 Command Reference

TYPE

Affected by Flags: None

Related Commands: AMORT, TVM, TVMBEG, TVMEND

TYPE

Type Command: Returns the type number of an object.

Level 1 - Level 1

 obj — Niype

Keyboard Access:

PRG) THFE

NXT

 PRG

Affected by Flags: None

Remarks: The following table lists object types and their type

numbers.

Object Type Numbers

Object Type Number

User Objects:

Real number

Complex number

Character string

Real array

Complex array

List

Global name

Local name

Program

Algebraic object

Binary integer

O
0
0

~
I
O
T
W
N
—

O

 —
_
o

Command Reference 3-359

TYPE

Object Type Numbers (continued)

Object Type Number

Graphics object 11

Tagged object 12

Unit object 13

XLIB name 14

Directory 15

Library 16

Backup object 17

Built-in Commands:

Built-in function 18

Built-in command 19

System Objects:

System binary 20

Extended real 21

Extended complex 22

Linked array 23

Character 24

Code object 25

Library data 26

External object 27-31
The HP 285 TYPE command returns number 8 for built-in functions

and built-in commands (HP 48 TYPE numbers 18 and 19).

Related Commands: SAME, TVARS, VIYPE, ==

UBASE

Convert to Sl Base Units Function: Converts a unit object to SI

base units.

3-360 Command Reference

UFACT

{3

\ Level 1 ~ Level 1 ‘

x_unit — y_base-units

'symb' — '"UBASE(symb)"

Keyboard Access: (#)(UNITS)

Affected by Flags: Numerical Results (—3)

Example: E returns 1%

Related Commands: CONVERT, UFACT, —UNIT, UVAL

UFACT

Factor Unit Command: Factors the level 1 unit from the unit

expression of the level 2 unit object.

{}

Level2 Levell — Level 1 T

 Xq —unity Xo _unit, — X3 _Unity xunity ‘

Keyboard Access: (#)(UNITS)

Affected by Flags: None

Remarks: UFACT is equivalent to this sequence:

Example: 1_i I returns 1

Related Commands: CONVERT, UBASE, —UNIT, UVAL

Command Reference 3-361

—UNIT

Stack to Unit Object Command: Creates a unit object from areal
number and the unit part of a unit object.

Level 2 Level 1 - Level 1

{}

X y_unit — X_unit J

Keyboard Access:

PRG) 1%

(@@Ts) +
Affected by Flags: None

Remarks: —UNIT adds units to a real number, combining the

number and the unit part of a unit object (the numerical part of the

unit object is ignored). —UNIT is the reverse of OBJ— applied to a

unit object.

Related Commands: —ARRY, —LIST, -=STR, —=TAG

UNTIL

UNTIL Command: Starts test-clause in a DO ... UNTIL ... END

indefinite loop structure.

See the DO entry for syntax information.

Keyboard Access: BRCH o

Remarks: Sece the DO entry for more information.

Related Commands DO, END

3-362 Command Reference

UTPC

UPDIR

Up Directory Command: Makes the parent of the current directory

the new current directory.

Keyboard Access: ()(UP)

Affected by Flags: None

Remarks: UPDIR has no effect if the current directory is HOME.

Related Commands: CRDIR, HOME, PATH, PGDIR

UTPC
Upper Chi-Square Distribution Command: Returns the probability

utpe(n, z) that a chi-square random variable is greater than z, where

n is the number of degrees of freedom of the distribution.

i}

Level 2 Level 1 — Level 1

n X — utpc(n, x)

Keyboard Access:

Affected by Flags: None

Remarks: The defining equations are these:

m For x > 0O:

25T (

o
3
~
—
1

E
\ ‘w
\;

i | —
@

|
wl [O
~utpe(n, z) = [

m For x < 0:

utpe(n,z) =1

For any value z, T’ () = (5 — 1) !, where ! is the HP 48 factorial2
command.

Command Reference 3-363

UTPC

The value n is rounded to the nearest integer and, when rounded,

must be positive.

Related Commands: UTPF, UTPN, UTPT

UTPF
Upper Snedecor’s F Distribution Command: Returns the

probability utpf(n,, n,, z) that a Snedecor’s F random variable is

greater than z, where n; and n, are the numerator and denominator

degrees of freedom of the I distribution.

{1

Level 3 Level 2 Level 1 - Level 1

 ny n, X — utpf(ny, ny, x)

 Keyboard Access: P

Affected by Flags: None

Remarks: The defining equations for utpf(n;, n,, z) are these:

m Forx > 0:

(1) |[Ty()AR ENC A ‘

m For x < 0:

utpf(ng,no,z) =1

For any value z, T’ (%) = (% — 1) !, where ! is the HP 48 factorial

command.

The values n; and n, are rounded to the nearest integers and, when

rounded, must be positive.

Related Commands: UTPC, UTPN, UTPT

3-364 Command Reference

UTPT

UTPN

Upper Normal Distribution Command: Returns the probability

utpn(m, v, z) that a normal random variable is greater than z, where

m and v are the mean and variance, respectively, of the normal

distribution.

{}

Level 3 Level 2 Level 1 - Level 1

m v X — utpn(m, v, x)

Keyboard Access: B

Affected by Flags: None

Remarks: For all z and m, and for v > 0, the defining equation is

this:

. 1 o (t—=m)?

ulpn(m,v,r) = |:4 e~vdt
Vemv |J,

For v = 0, UTPN returns & for z > m, and i for z < m.

Related Commands: UTPC, UTPF, UTPT

UTPT

Upper Student’s t Distribution Command: Returns the probability

utpt(n, z) that a Student’s ¢ randomvariable is greater than z, where

n is the number of degrees of freedom of the distribution.

{}

’ Level 2 Level 1 - Level 1 T

‘ n X — utpt(n, x) ‘

Keyboard Access: (NXT) MTFT

Command Reference 3-365

UTPT

Affected by Flags: None

Remarks: The following is the defining equation for all z.

nt1

i)= [#}[(8)

For any value z, T’ (%) = (% - 1).’, where ! is the P 48 factorial
command.

The value n is rounded to the nearest integer and, when rounded.
must be positive.

Related Commands: UTPC, UTPF, UTPN

UVAL

Unit Value Function: Returns the numerical part of a unit object.

UVAL Unit Value Function

Level 1 - Level 1 ‘

X_unit — X

'symb' — '"UVAL(symb)'

Keyboard Access: («)(UNITS) U

Affected by Flags: Numerical Results (—3)

Related Commands: CONVERT, UBASE, UFACT, —UNIT

3-366 Command Reference

VARS

VAR

Variance Command: Calculates the sample variance of the

coordinate values in each of the m columns in the current statistics

matrix (XDAT).

‘ Level 1 — Level 1

‘ - Xvariance

’ - [Xyariance1 Xyariancem]

Keyboard Access: (1)(STAT) 1

Affected by Flags: None

Remarks: The variance (equal to the square of the standard

deviation) is returned as a vector of m real numbers, or as a single real
number if m = 1. The variances are computed using this formula:

1 o,

n— 1Z(£i B ;,3’)?
i=1

where z; is the ith coordinate value in a column, ¥ is the mean of the

data in this column, and nis the number of data points.

Related Commands: MAXY, MEAN, MINY, PSDEV, PVAR,

SDEV, TOT

VARS
Variables Command: Returns alist ofall variables’ names in the

VAR menu (the current directory).

‘ Level 1 — Level 1

 ‘ — { global, ... global, }

Command Reference 3-367

VARS

Keyboard Access: («)(MEMORY)

Affected by Flags: None

Related Commands: ORDER, PVARS, TVARS

VERSION

Software Version Command: Displays the software version and

copyright message.

‘ Level 1 — Level 2 Level 1 T

— "version number" "copyright message" J

Keyboard Access: None. Must be typed in.

Affected by Flags: None

VTYPE

Variable Type Command: Returns the type number of the object

contained in the named variable.

Level 1 — Level 1

'name' — Miype

Myort - NAMEL, — Niype

Toort © Mibrary - Mype

Keyboard Access: (PRG) 7

Affected by Flags: None

3-368 Command Reference

—V2

Remarks: If the named variable does not exist, VI'YPE returns —1.

For a table of the objects’ type numbers, see the entry for TYPE.

Related Commands: TYPE

—V2

Stack to Vector/Complex Number Command: Converts two

numbers from the stack into a 2-element vector or a complex number.

{}

Level 2 Level 1 - Level 1 ‘

X y — [xy] }

X vy — [x &y]

X y — x. ¥

X y — (x, &y) ‘

Keyboard Access: (MTH) “E

Affected by Flags: Complex Mode (—19), Coordinate System (—16)

Remarks: The result returned depends on the setting of flags —16

and and —19, as shown in the following table:

Flag —19 clear Flag —19 set

Flag —16 clear [xy] (x,y)
(Rectangular mode)

Flag —16 set [x Ay] (x, &y)
(Polar mode)

Examples: With flag —19 clear, and flags —16 clear,: 'Z returns

With flag —19 set and flag —16 set (Polar/Spherical mode), & & +4/Z
returns +: D

Command Reference 3-369

—V2

Related Commands: V—, —V3

—V3

Stack to 3-Element Vector Command:

a 3-element vector.

Converts three numbers into

{3

‘Level3 Level2 Level 1 — Level 1

X1 Xo X3 —

X1 Xtheta Xz -

X1 Xtheta Xphi -

Keyboard Access: (MTH

[X; X5 X3]

[X1 BXipeta Xz]

[X1 &Xheta BXpni]

Affected by Flags: Coordinate System (—15 and —16)

Remarks: The result returned depends on the coordinate mode used,

as shown in the following table:

Mode Result

Rectangular

(flag —16 clear)
[X1 X2X3]

Polar/Cylindrical
(flag —15 clear and —16 set)

[Xl XAtheta Xz }

Polar/Spherical
(flag —15 and —16 set) [X1 XA—theta XA—phi]

Examples: Wlth flag —16 clear (Rectangular mode),

returns £ 1

With flag —1) clear and —16 set (Polar/Cylindrical mode),

returns [

3-370 Command Reference

V—

With flags —15 and —16 set (Polar/Spherical mode), 1 & & +4&
returns [1 £2 £33 1.

Related Commands: V——V2

V—
Vector/Complex Number to Stack Command: Separates a vector or

complex number into its component elements.

{}

Level 1 — Leveln.. Level 3 Level2 Level 1

[xy] — X y

[Xt &Yineta] - Xr Yineta

[x1 % x3] - X1 X2 X3

[X1 AXipeta X2 | - X1 Xtheta Xz

[X, &Xipeta SXpni] — X1 Xtheta Xoni

[x; x5 ... xn] — Xy o Xy _o Xn_1 Xn

x, ¥ - X y

(xr, A'ytheta) - Xr Yineta
Keyboard Access: (MTH) WELTRE W+

Affected by Flags: Coordinate System (—15 and —16)

The elements of the argument complex number or vector are converted

from their values in Rectangular mode (the form in which the complex
number or vector is stored internally) to the current coordinate system

mode before being returned to the stack. This means that the element

values returned to the stack always match the displayed element values

of the argument vector or complex number.

Remarks: For vectors with four or more elements, V— executes

mndependently of the coordinate system mode, and always returns the

elements of the vector to the stack as they are stored internally (in

rectangular form). Thus, V— is equivalent to OBJ— for vectors with
four or more elements.

Command Reference 3-371

Vo

Examples: With flag —16 clear (Rectangular mode), «&, &3 ¥
returns 2 to level 2 and # to level 1.

Wlthflag —15 clear and flag —16 set(Polar/Cyhndncal mode),
&7 4 1 %+ returns 2 to level 3, 7 to level 2, and # to level 1.

T 3 Wreturns F to level 4, ¥ to level 3, & to level 2, and

level 1, mdependent of the state of flags —15 and —16

Related Commands: —V2, —V3

+*W

Multiply Width Command: Multiplies a plot’s horizontal scale by

Tiactor-

{1}

Level 1 - Level 1

Xfactor

Keyboard Access: («)(PLOT)

Affected by Flags: None

NXT b

Remarks: Executing *W changes the z-axis display range (z,;, and
Zmax 1N the reserved variable PPAR). The plot center (the user-unit
coordinate of the center pixel) does not change.

Related Commands: AUTO, «xH, XRNG

3-372 Command Reference

WAIT

WAIT

Wait Command: Suspends program execution for specified time, or

until a key is pressed.

{1}

Level 1 — Level 1

X —

- Xkey

-1 - xkey

Keyboard Access: IH

Affected by Flags: None

Remarks: The function of WAIT depends on the argument, as

follows:

m Argument z interrupts program execution for z seconds.

m Argument 0 suspends program execution until a valid key is pressed

(see below). WAITthen returns z.,, which defines where the
pressed key is on the keyboard, and resumes program execution.

ZTyey is a three-digit number that identifies akey’s location on the

keyboard. See the entry for ASN for a description of the format of

Tyay -

m Argument —1 works as with argument 0, except that the currently

specified menu is also displayed.

@), () @), (@)(*\), and ()(>) are not by themselves valid keys.

Arguments & or ~1 do not affect the display, so that messages

persist even though the keyboard is ready for input (FREEZE is not

required).

Normally, the MENU command does not update the menu keys

until a program halts or ends. WAIT with argument —1 enables a

previous execution of MENU to display that menu while the program

is suspended for a key press.

Command Reference 3-373

WAIT

Examples: This program:

cmE oarnd obher key o subbract?

AME THEM + ELSE — EMD =

displays a prompting message and halts program execution until a key

is pressed. If the key (location 82.1) is pressed, two numbers on the

stack are added. If any other key is pressed, two numbers on the stack

are subtracted.

This program:

AL L% 4 OBRUR T OMEMU "Fras

tooadde Press [BUBRI fo subiract® 1 QISP —1 WA

IF 11,1 SAME THEM + ELSE — EHD =

builds a custom menu with labels &t and Zii# and a

prompting message. Executing ~1 HAIT displays the custom menu

(note that it’s not active) and suspends execution for keyboard input.

If the ALIr menu key (location 11.1) is pressed, two numbers on the

stack are added. If any other key is pressed, two numbers on the stack

are subtracted.

Related Commands: KEY

WHILE

WHILE Indefinite Loop Structure Command: Starts the WHILE . ..

REPEAT ... END indefinite loop structure.

Level 1 = Level 1

WHILE -

REPEAT T/F -

END -

Keyboard Access: BECH HHILE MHILE

Affected by Flags: None

3-374 Command Reference

WIREFRAME

Remarks: WHILE ... REPEAT ... END repeatedly evaluates a test

and executes a loop clause if the test is true. Since the test clause

occurs before the loop-clause, the loop clause is never executed if the

test is initially false. The syntax is this:

 WHILE test-clause F iT loop-clause EHD

The test clause is executed and must return a test result to the stack.

REPEAT takes the value from the stack. If the value is not zero,

execution continues with the loop clause; otherwise, execution resumes

following END.

Related Commands: DO, END, REPEAT

WIREFRAME

WIREFRAME Plot Type Command: Sets the plot type to
WIREFRAME.

Keyboard Access: (&)(PLOT) 4L PTYPE WIREE
Affected by Flags: None

Remarks: When the plot type is set to WIREFRAME, the DRAW
command plots a perspective view of the graph of a scalar function of
two variables. WIREFRAME requires values in the reserved variables
EQ, VPAR, and PPAR.

VPAR has the following form:

W Tiett Tright Ynear Ytar Ziow Zhigh Lmin Tmax Ymin Ymax Teye
Yeye Zeye Tstep Ystep -

For plot type WIREFRAME, the elements of VPAR are used as
follows:

B Zioq; and 4y, are real numbers that specify the width of the view
space.

B Ynear and yy,, are real numbers that specify the depth of the view
space.

® Ziow and zp;g, are real numbers that specify the height of the view
space.

Command Reference 3-375

WIREFRAME

® 7., and zmax are not used.

B Yo, and Ymax are not used.

W Teye, Yeye, and zeye are real numbers that specify the point in

space from which the graph is viewed.

m Zge, and yYgrep are real numbers that set the number of

x-coordinates versus the number of y-coordinates plotted.

The plotting parameters are specified in the reserved variable PPAR,

which has this form:

£ S Zminy Ymin d “Tmax, Ymax * indep res axes ptype depend

For plot type WIREFRAME, the elements of PPAR are used as

follows:

B T, Ymin # 18 DOt used.

B {Zmax, Ymax + 18 not used.

m indep is a name specifying the independent variable. The default

value of indep is X.

m res 1s not used.

m azes is not used.

m plype is a name specifying the plot type. Executing the command

WIREFRAME places the command name WIREFRAME in piype.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,

PCONTOUR, POLAR, SCATTER, SLOPEFIELD, TRUTH, YSLICE

3-376 Command Reference

WSLOG

WSLOG

Warmstart Log Command: Returns four strings recording the date,

time, and cause of the four most recent warmstart events.

Level 1 - Level4 ... Level 1

_ ||log4|| "logl”

Keyboard Access: None. Must be typed in.

Affected by Flags: Date Format (—42)

Remarks: Each string *log, " has the form *code~date time?.

The following table summarizes the legal values of code and their

meanings.

Code Description

£ The warmstart log was cleared by pressing and

then to wake the calculator up. SPC) puts the

HP 48 in “Coma mode” (very low power with the system

clock stopped). Pressing then clears the log and

warmstarts the system.

i The interrupt system detected a very low battery

condition at the battery contacts (not the same as a low
system voltage), and put the calculator in a “Deep Sleep

mode” (with the system clock running). When is
pressed after the battery voltage is restored, the system

warmstarts and puts a 1 in the log.

z Hardware failed during IR transmission (timeout).

Run through address 0.

System time is corrupt.

A Deep Sleep wakeup (for example, (ON), Alarm)

detected no change to port status, but some changes in

data on one or both cards.

Command Reference 3-377

WSLOG

Code Description

Unused.

A 5-nibble word (CMOStest word) in RAM was corrupt.
(This word is checked on every interrupt, but it is used

only as an indicator of potentially corrupt RAM.)

One of the following anomalies involving device

configuration was detected:

m The interrupt system detected that one of the five

devices was not configured.

m During a warmstart, an unexpected device ID chain

was encountered while attempting to configure 3

(Portl, Port2, Xtra) of the 5 devices.

m Same as previous, but detected during Deep Sleep

wakeup.

The alarm list 1s corrupt.

Unused.

The card module was removed (or card bounce).

Hardware reset occurred (for example, an

electrostatic-discharge or user reset).

An expected System (RPL) error handler was not found

in runstream.

The configuration table is corrupt (bad checksum for

table data).

The system RAM card was removed.

The date and time stamp (date time) part of the log may be displayed

for one of three reasons:

m The system time was corrupt when the stamp was recorded.

m The date and time stamp itself is corrupt (bad checksum).

m Fewer than four warmstarts have occurred since the log was last

cleared.

3-378 Command Reference

2X"2

X

Sum of x-Values Command: Sums the values in the independent-
variable column of the current statistical matrix (reserved variable

SDAT).

Level 1 - Level 1

— Xsum

Keyboard Access: (¢)(STAT) =ilmME =i

Affected by Flags: None

Remarks: The independent-variable columnis specified by XCOL

and is stored as the first parameter in the reserved variable YPAR.

The default independent-variable column numberis 1.

Related Commands: NX, XCOL, ©XxY, ¥X 2, ¥Y, XY2

X2

Sum of Squares of x-Values Command: Sums the squares of the
values in the independent-variable column of the current statistical
matrix (reserved variable XDAT).

Level 1 - Level 1 ‘

— Xsum ’

Keyboard Access: («)(STAT) =ilifis

Affected by Flags: None

Remarks: The independent-variable column is specified by XCOL
and is stored as the first parameter in the reserved variable XPAR.
The default independent-variable column number is 1.

Command Reference 3-379

xX"2

Related Commands: NY, ¥X, XCOL, £X«Y, XY, ¥Y "2

XCOL
Independent Column Command: Specifies the independent-variable
column of the current statistics matrix (reserved variable X' DAT).

{}

Level 1 — Level 1 N

Keyboard Access: (€)(STAT) &

Affected by Flags: None

Remarks: The independent-variable column numberis stored as

the first parameter in the reserved variable YPAR. The default

independent-variable column numberis 1.

XCOL will accept a noninteger real number and store it in L' PAR, but

subsequent commands that utilize the XCOL specification in L'PAR

will cause an error.

Related Commands: BARPLOT, BESTFIT, COLY, CORR, COV,

EXPFIT, HISTPLOT, LINFIT, LOGFIT, LR, PREDX, PREDY,

PWRFIT, SCATRPLOT, YCOL

3-380 Command Reference

XMIT

XMIT

Serial Transmit Command: Sends astring serially without using

Kermit protocol, and returns a single digit that indicates whether the

transmission was successful.

{1

Level 1 - Level 2 Level 1

"string" — 1

"string" — "substring \sent" 0

Keyboard Access: (€)(1/0)

Affected by Flags: 1/0 Device (—33)

Remarks: XMIT is useful for communicating with non-Kermit

devices such as RS-232 printers.

If the transmission is successful, XMIT returns a i. If the

transmission is not successful, XMIT returns the unsent portion of the

string and a &. Use ERRM to get the error message.

After receiving an XOFF command (with transmit pacing in the

reserved variable JOPAR set), XMIT stops transmitting and waits

for an XON command. XMIT resumes transmitting if an XON is
received before the time-out set by STIME elapses; otherwise, XMIT
terminates, returns a #, and stores "T gtin ERRM.

Related Commands: BUFLEN, SBRK, SRECV, STIME

Command Reference 3-381

XOR

Exclusive OR Function: Returns the logical exclusive OR of two

arguments.

{}

Level 2 Level 1 — Level 1

#ny F#n, — F#ng

“string, " vstring, " — "strings"

T/Fl T/F2 — 0/1

T/F 'symb' — 'T/F XOR symb'

'symb' T/F — 'symb XOR T/F'

'symb, ' 'symb, — 'symb; XOR symb, "

Keyboard Access:

MTH Lo

PRG a1

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize

(=5 through —10)

Remarks: When the arguments are binary integers or strings, XOR

does a bit-by-bit (base 2) logical comparison:

m Binary integer arguments are treated as sequences of bits with

length equal to the current wordsize. Each bit in the result is

determined by comparing the corresponding bits (bit; and bit,) in

the two arguments, as shown in the following table.

bitq bita |bit; XOR bity

0 0 0

0 1 1

1 0 1

1 1 0

3-382 Command Reference

XPON

m String arguments are treated as sequences of bits, using 8 bits per

character (that is, using the binary version of the character code).

The two string arguments must be the same length.

When the arguments are real numbers or symbolics, XOR simply

does a true/false test. The result is 1 (true) if either, but not both,

arguments are nonzero; it is & (false) if both arguments are nonzero or

zero. This test is usually done to compare two test results.

If either or both of the arguments are algebraic objects, then the result

is an algebraic of the form *symb; HOR symb, '. Execute +HLIM (or

set flag —3 before executing XOR) to produce a numeric result from

the algebraic result.

Related Commands: AND, NOT, OR

XPON

Exponent Function: Returns the exponent of the argument.

{}

Level 1 - Level 1

X - Nexpon

'symb' — 'XPON(symb)'

Keyboard Access: REAL MPOH

Affected by Flags: Numerical Results (—3)

Examples: 1. 4 #=POH returns Z4.

12, 4ES =F0H returns #.

PRTESS HP0H returns PHEPOMOAsIEDSL

Related Commands: MANT, SIGN

Command Reference 3-383

XRECV

XModem Receive Command: Prepares the HP 48 to receive an
object via XModem. The received object is stored in the given
variable name.

(fi Level 1 ~ Level 1

'name' — }

Keyboard Access: (1)(1/0)

Affected by Flags: 1/0 Device (—33), RECV Overwrite (—36)

Remarks: The transfer will start more quicklyif you start the
XModem sender before executing XRECV.

Invalid object names cause an error. If flag —36 is clear, object names
that are already in use also cause an error.

data between two HP 48s, executing

receives AAA BBB, and CCC. You also

i for

If you are tra,nsferrin

need to use alist on the sending end (4
example).

Related Commands: BAUD, RECV, RECN, SEND, XSEND

XRNG

x-Axis Display Range Command: Specifies the z-axis display range.

{}

F Level 2 Levei 1 — Level 1

{ Xmin Xm ax

Keyboard Access: («)(PLOT)

3-384 Command Reference

XROOT

Affected by Flags: None

Remarks: The z-axis display range is stored in the reserved variable

PPAR as zm;, and zmax in the complex numbers £Zmin, ¥min * and

CZmax, Ymax 1. These complex numbers are the first two elements of

PPAR and specify the coordinates of the lower left and upper right

corners of the display ranges.

The default values of zi, and Tmax are —6.5 and 6.5, respectively.

Related Commands: AUTO, PDIM, PMAX, PMIN, YRNG

XROOT

xth Root of y Command: Computes the zth root of a real number.

{}

Level 2 Level 1 — Level 1 W

y X — Yy

'symby 'symb, ' — 'XROOT(symb,, symby)'

'symb' X — 'XROOT(x, symb)'

y 'symb' — 'XROOT(symb, y)'

y_unit X — &/y_unit'/®

y_unit 'symb' — 'XROOT(symb, y_unit)'

Keyboard Access: ()()

Affected by Flags: Numerical Results (—3)

Remarks: Note that while the stack syntax is y z T (the root

is the second argument), the algebraic syntax is £zsy? (the

root is the first argument) for consistency with the EquationWriter

application.

XROOT is equivalent to y1/*, but with greater accuracy.

If y < 0, z must be an integer.

Related Commands:

Ccommand Reference 3-385

XSEND

XModem Send Command: Sends a copy of the named object via
XModem.

J Level 1 — Level 1

} 'name’ —

Keyboard Access: («)(i70) (NXT) :

Affected by Flags: 1/0 Device (—33)

Remarks: A receiving HP 48 must execute XRECV to receive an
object via XModem.

To start the transfer more quickly, start the receiving XModem after
executing XSEND. Also, configuring the receiving modem not to do
CRC checksums (if possible) will avoid a 30 to 60-second delay when
starting the transfer.

If you aretransferung data between two HP 48s, executing
; [* sends AAA, BBB, and CCC'. You also
need to use a list on the receiving end (+ , ‘
example).

Related Commands: BAUD, RECN, RECV, SEND, XRECV

XVOL

X Volume Coordinates Command: Sets the width of the view
volume in the reserved variable VPAR.

‘ Level 2 Level 1 — Level 1

Xiett Xright -

3-386 Command Reference

Keyboard Access: (|)(PLOT) 20 NPAR EMOL

Affected by Flags: None

Remarks: 1z,and z,4,, set the x-coordinates for the view volume

used in 3D plots. These values are stored in the reserved variable

VPAR. See appendix D, “Reserved Variables,” for more information

about VPAR.

Related Commands: EYEPT, XXRNG, YVOL, YYRNG, ZVOL

XXRNG

X Range of an Input Plane (Domain) Command: Specifies the x

range of an input plane (domain) for GRIDMAP and PARSURFACE

plots.

{}

Level 2 Level 1 - Level 1

Xmin Xmax —

Keyboard Access: (&)(PLOT)(NXT) &I WFAER

Affected by Flags: None

Remarks: =z, and z,ax are real numbers that set the

x-coordinates for the input plane. These values are stored in the

reserved variable VPAR. See appendix D, “Reserved Variables,” for

more information about VPAR.

Related Commands: EYEPT, NUMX, NUMY, XVOL, YVOL,

YYRNG, ZVOL

Command Reference 3-387

>XY

Sum of x Times y Command: Sums the products of each of the
corresponding values in the independent- and dependent-variable

columns of the current statistical matrix (reserved variable 'DAT).

Level 1 — Level 1 ‘

 - Xsum !

Keyboard Access: ()(STAT) =LiHE

Affected by Flags: None

Remarks: The independent-variable column is specified by XCOL

and is stored as the first parameter in the reserved variable ¥PAR.

The default independent-variable column number is 1.

The dependent-variable column is specified by YCOL and is stored

as the second parameter in reserved variable XPAR. The default

dependent-variable column number is 2.

Related Commands: NX, XX, XCOL, £¥X 2, XY, XY2

»Y

Sum of y-Values Command: Sums the values in the dependent
variable column of the current statistical matrix (reserved variable
SDAT).

Level 1 - Level 1

— Xsum

Keyboard Access: («)(STAT) &

Affected by Flags: None

3-388 Command Reference

YCOL

Remarks: The dependent variable columnis specified by YCOL, and

is stored as the second parameter in the reserved variable YPAR. The

default dependent variable column number is 2.

Related Commands: NY, ©X, XCOL, ©XxY, £¥X 2, YCOL, ¥Y2

»Y"2

Sum of Squares of y-Values Command: Sums the squares of the

values in the dependent variable column of the current statistical

matrix (reserved variable XDAT).

Level 1 — Level 1 W

 — Xsum ‘

 Keyboard Access: ()(STAT) &

Affected by Flags: None

Remarks: The dependent variable columnis specified by YCOL. The

default dependent variable column number is 2.

Related Commands: NX, X, XCOL, ¥XxY, ¥X 2, YCOL, XY

YCOL

Dependent Column Command: Specifies the dependent variable

column of the current statistics matrix (reserved variable YDAT).

{}

r Level 1 = Level 1 T

‘ n —

Command Reference 3-389

YCOL

Keyboard Access: (q)(STAT)

Affected by Flags: None

Remarks: The dependent variable column number is stored as
the second parameterin the reserved variable ¥PAR. The default
dependent variable column number is 2.

YCOL will accept anoninteger real number and store it in XPAR, but
subsequent commands that utilize the YCOL specification in 5PAR
will cause an error.

Related Commands: BARPLOT, BESTFIT, COLY, CORR, COV,
EXPFIT, HISTPLOT, LINFIT, LOGFIT, LR, PREDX, PREDY,
PWRFIT, SCATRPLOT, XCOL

YRNG

y-Axis Display Range Command: Specifies the y-axis display range.

{}

Level 2 Level 1 - Level 1

Ymin Ymax -

 Keyboard Access: ()(PLOT) FF

Affected by Flags: None

Remarks: The y-axis display range is stored in the reserved variable

PPAR as yni, and ymax in the complex numbers @z 10, ¥min ¢ and

CZmax, Ymax +. These complex numbers are the first two elements of

PPAR and specify the coordinates of the lower left and upper right

corners of the display ranges.

The default values of ¥, and ymax are —3.1 and 3.2, respectively.

Related Commands: AUTO, PDIM, PMAX, PMIN, XRNG

3-390 Command Reference

YSLICE

YSLICE

Y-Slice Plot Command: Sets the plot type to YSLICE.

Keyboard Access: («)(PLOT)

Affected by Flags: None

Remarks: When plot type is set YSLICE, the DRAW command

plots a slicing view of ascalar function of two variables. YSLICE

requires values in the reserved variables EQ, VPAR, and PPAR.

VPAR has the following form:

T Ziert Trignt Ynear Yrar Zlow “high Tmin Tmax Ymin Ymax Teye

Yeye Zeye Tstep Ystep -

For plot type YSLICE, the elements of VPAR are used as follows:

m 2o and z,y, are real numbers that specify the width of the view

space.

B Ynear and yy,, are real numbers that specify the depth of the view

space.

® 2o, and zgg, are real numbers that specify the height of the view

space.

® 7., and zmax are not used.

B Yoand Ymax are not used.

B Teye, Yeye, and Zeye are real numbers that specify the point in

space from which the graph is viewed.

m 2., determines the interval between plotted x-values within each
«, 3 9slice”.

B Ystep determines the number ofslices to draw.

The plotting parameters are specified in the reserved variable PPAR,

which has this form:

£ 0Ti, Ymin d STmax, Umax ¢ (ndep res azes ptype depend

For plot type YSLICE, the elements of PPAR are used as follows:

B ST, Ymin + 18 DOt used.

B (Tmax, Ymax .+ 18 not used.

Command Reference 3-391

YSLICE

m indep is a name specifying the independent variable. The default
value of indep is X .

m 7es 1s a real number specifying the interval, in user-unit coordinates,
between plotted values of the independent variable; or a binary
integer specifying the interval in pixels. The default value is &,
which specifies an interval of 1 pixel.

m azes 1s not used.

m piype is a command name specifying the plot type. Executing the
command YSLICE places YSLICE in ptype.

m depend is a name specifying the dependent variable. The default

value is Y.

Related Commands: BAR, CONIC, DIFFEQ, FUNCTION,

GRIDMAP, HISTOGRAM, PARAMETRIC, PARSURFACE,
PCONTOUR, POLAR, SCATTER, SLOPEFIELD, TRUTH,

WIREFRAME

YVOL

Y Volume Coordinates Command: Sets the depth of the view

volume in the reserved variable VPAR.

{1}

' Level 2 Level 1 - Level 1

’ Ynear Yiar -

Keyboard Access: («)(PLOT) (NXT) &

Affected by Flags: None

Remarks: The variables ynea, and y,,, are real numbers that set the

y-coordinates for the view volume used in 3D plots. y,car must be less

than y;,,. These values are stored in the reserved variable VPAR.

Related Commands: EYEPT, XVOL, XXRNG, YYRNG, ZVOL

3-392 Command Reference

ZFACTOR

YYRNG

Y Range of an Input Plane (Domain) Command: Specifies the y

range of an input plane (domain) for GRIDMAP and PARSURFACE

plots.

{1}

Level 2 Level 1 — Level 1

Ynear Yiar -

 Keyboard Access: (q)(PLOT) sk

Affected by Flags: None

Remarks: The variables yy near and y, 1, are real numbers that set
the y-coordinates for the input plane. These values are stored in the

reserved variable VPAR.

Related Commands: EYEPT, XVOL, XXRNG, YVOL, ZVOL

ZFACTOR

Gas Compressibility Z Factor Function: Calculates the gas
compressibility correction factor for nonideal behavior of a

hydrocarbon gas.

{}

Level 2 Level 1 — Level 1

XTr Yer - Xz tactor

X, 'symb' — 'ZFACTOR(X, ,symb)’

'symb' Yoo — 'ZFACTOR(symb,yp)"

'symb; ' 'symb, — 'ZFACTOR(symby ,symb,)’

Keyboard Access: ()(EQLIB) LTILE

Command Reference 3-393

ZFACTOR

Affected by Flags: Numerical Results (—3)

Remarks: zp. is the reduced temperature: the ratio of the actual

temperature (1') to the pseudocritical temperature (7). (Calculate
the ratio using absolute temperatures.) z7, must be between 1.05 and

3.0.

ypr 1s the reduced pressure: the ratio of the actual pressure (P) to the

pseudocritical pressure (Pc). yp, must be between 0 and 30.

r7- and yp. must be real numbers or unit objects that reduce to

dimensionless numbers.

ZVOL

Z Volume Coordinates Command: Sets the height of the view
volume in the reserved variable VPAR.

Level 2 Level 1 - Level 1

Xiow Xhigh

Keyboard Access: («)(PLOT)(NXT) =i

Affected by Flags: None

Remarks: z, and z,;4, are real numbers that set the z-coordinates

for the view volume used in 3D plots. These values are stored in the

reserved variable VPAR.

Related Commands: EYEPT, XVOL, XXRNG, YVOL, YYRNG

3-394 Command Reference

-+

Add Analytic Function: Returns the sum of the arguments.

Level 2 Level 1 — Level 1

z, Z — z,+2z,

[array |, [array 1, — [array]i774 222

z 'symb' — 'z4+(symb)'

'symb' z — 'symb+2z'

'symb; ' 'symb, ' — 'symb, +symb, "

{ flist; } { list, } — { list; list, }

obj, {obj; ... objs } — { obj, obj; ... objy }

{ obj; ... objn } obj, — { obj; ... obj, obj, }

" string, " " string," — " string, string,"

obj " string"” — "obj string"

" string" obj — " string obj"

F#ny ny — #ng

ny #n, — #Hng

#n #ny - #ig

Xq _unit; y_unit, — (x5 +y) —unit,

'symb' x_unit — 'symb+x_unit'

x_unit 'symb' — 'x_unit+symb'

grob, grob, — groby
Keyboard Access:

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize

(=5 through —10)

Remarks: The sum of a real number a and a complex number (z, y)

is the complex number (z+g, y).

The sum of two complex numbers (z;, y;) and (z4, y,) is the

complex number (z; +z,, y; +y,).

Command Reference 3-395

+

The sum of a real array and a complex array is a complex array, where

each element r of the real array is treated as a complex element (z, 0).

The arrays must have the same dimensions.

The sum of a binary integer and a real number is a binary integer that

is the sum of the two arguments, truncated to the current wordsize.
(The real number is converted to a binary integer before the addition.)

The sum of two binary integers is truncated to the current binary

integer wordsize.

The sumof two unit objects is a unit object with the same dimensions

as the level 1 argument. The units of the two arguments must be

consistent.

The sum of two graphics objects is the same as the result of

performing a logical OR, except that the two graphics objects must

have the same dimensions.

Common usage is ambiguous about some units of temperature. When
°C or °F represents a thermometer reading, then the temperature

i1s a unit with an additive constant: 0 °C = 273.15 K, and 0 °F =

459.67 °R. But when °Cor °Frepresents a difference in thermometer

readings, then the temperature is a unit with no additive constant: 1

°C=1Kand1°F =1°R.

The calculator assumes that the simple temperature units z_*: and

z_"Frepresent thermometer temperatures when used as arguments

to the functions <, >, <, >, ==, and #. This means that, in

order to do the calculation, the calculator will first convert any

Celsius temperature to kelvins and any Fahrenheit temperature to

Rankines. (For other functions or compound temperature units, such

i, the calculator assumes temperature units represent

temperature differences, so there is no additive constant involved, and

hence no conversion.)

The arithmetic operators +, —, %CH, and %T treat temperatures as

differences, without any additive constant, but require both arguments

to be either absolute (K and °R), both °C, or both °F. No other

combinations are allowed.

 returns iExamples:

+ returns

 1 11 + returns 1§

3-396 Command Reference

Related Commands: —, x, /, =

+ returns 'F

Subtract Analytic Function: Returns the difference of the arguments:
the object in level 1 is subtracted from the object in level 2.

{}

Level 2 Level 1 Level 1

z; 2z, z -2,

[array], [array 1, [array 1, _»

z 'symb' 'z—symb'

'symb' z 'symb—2'

'symb; ' 'symb, " 'symb, —symb, '

#ny n, Fn3

ny #Hy #ng

#ny #n, #n3

Xy —unit; y_unit, (x5 —=y)_unit,

'symb' x_unit 'symb—x_unit'

x_unit 'symb' 'x_unit—symb'
Keyboard Access:

Affected by Flags:

o
Numerical Results (—3)

Remarks: The difference of a real number a and a complex number

(z, y)is (z—a, y) or (a—z, —y). The difference of two complex

numbers (z1, y1) and (24, y,) is (71 =74, y1—¥2).

The difference of areal array and a complex array is a complex array,

where each element z of the real array is treated as a complex element

(z, 0). The two array arguments must have the same dimensions.

The difference of a binary integer and a real numberis a binary

integer that is the sum of the level 2 number and the two’s

Command Reference 3-397

complement of the level 1 number. (The real number is converted to a
binary integer before the subtraction.)

The difference of two binary integers is a binary integer that is the

sum of the level 2 number and the two’s complement of the level 1

number.

The difference of two unit objects is a unit object with the same

dimensions as the level 1 object. The units of the two arguments must

be consistent.

Common usage is ambiguous about some units of temperature.

When °C or °F represents a thermometer reading, then the

temperature is a unit with an additive constant: 0 °C = 273.15 K,

and 0 °F = 459.67 °R. But when °C or °F represents a difference in

thermometer readings, then the temperature is a unit with no additive

constant: 1 °C =1 K and 1°F =1 °R.

The calculator assumes that the simple temperature units z_*: and

z_"F represent thermometer temperatures when used as arguments

to the functions <, >, <, >, ==, and #. This means that, in

order to do the calculation, the calculator will first convert any

Celsius temperature to kelvins and any Fahrenheit temperature to

Rankines. (For other functions or compound temperature units, such

-, the calculator assumes temperature units represent

temperature differences, so there is no additive constant involved, and

hence no conversion.)

The arithmetic operators +, —, %CH, and %T treat temperatures as

differences, without any additive constant, but require both arguments

to be either absolute (K and °R), both °C, or both °F. No other

combinations are allowed.

Example:

----- returns ‘-

Related Commands: +, x, /, =

3-398 Command Reference

Multiply Analytic Function: Returns the product of the arguments.

{}

Level 2 Level 1 Level 1

z, z, 2y 2,

[[matrix 1] [array] [[matrix x array]]

z [array] [z x array]

[array] z [array x z]

z 'symb' 'z x symb'

'symb' z 'symb x z'

'symb, ' 'symb, ' 'symb; * symb,'

F#ny n, Fns

n #n, #0n3
#ny #n, #ng

X_unit y_unit Xy_unity X unity

X y_unit xy_unit

x_unit y Xy_unit

'symb' X_unit 'symb * x_unit'

X_unit 'symb' 'x_unit « symb'

Keyboard Access: (x)

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize

(=5 through —10)

Remarks: The product of a real number a and a complex number

(z, y) is the complex number (za, ya).

The product of two complex numbers (z,, y;) and (z,, y,) is the

complex number (212, — ¥y Yo, T1Y2 + T2¥Y1).

The product of a real array and a complex array or number is a

complex array. Each element z of the real array is treated as a

complex element (z, 0).

Command Reference 3-399

*

Multiplying a matrix (level 2) by an array (level 1) returns a matrix
product. The matrix must have the same number of columns as the
array in level 1 has rows (or elements, if it is a vector).

Although a vector is entered and displayed as a row of numbers, the
HP 48 treats a vector as an n x 1 matrix when multiplying matrices
or computing matrix norms.

Multiplying a binary integer by a real number returns a binary integer
that is the product of the two arguments, truncated to the current
wordsize. (The real number is converted to a binary integer before the
multiplication.)

The product of two binary integers is truncated to the current binary
integer wordsize.

When multiplying two unit objects, the scalar parts and the unit parts
are multiplied separately.

Related Commands: +, — /, =

3-400 Command Reference

/

Divide Analytic Function: Returns the quotient of the arguments:

the level 2 object divided by the level 1 object.

{}

(Level 2 Level 1 - Level 1

Z 22 - 7 /7

[array] [matrix 1] — [matrix~! x array 1]

[array] z — [array/z]

z ‘symb' — 'z/symb'

'symb' z — 'symb/z'

'symb, ' 'symb, ' — 'symb, / symb,'

#ny n, — #Ns

ny #ny — FEng

#ny #n, — #nNs

Xx_unity y_unit, — (x/y)_unit; / unit,

X y_unit — (x/y)_1/unit

x_unit y — (x/y) _unit

‘'symb' X_unit — 'symb/x_unit'

x_unit 'symb' — 'x_unit/symb'
Keyboard Access:

(@G
®

Affected by Flags: Numerical Results (—3)

Remarks: A real number ¢ divided by a complex number (z, y)

_ ay

1:2+y2

number a returns the complex number (z/a , y/a).

 returns (Lfl_fyg,) A complex number (z, y) divided by a real

A complex number(z,, y;) divided by another complex number (z-,

y,) returns this complex quotient:

Ccommand Reference 3-401

T1Zo + Y1Y2 Y122 — T1Y2

o2 +yp? 7 29?4 yo?

An array B divided by a matrix A solves the system of equations
AX=B for X; that is, X = A7!B. This operation uses 15-digit
internal precision, prov1d1ng a more precise result than the calculation
IH The matrix must be square, and must have the same
number of columns as the array has rows (or elements, if the array is a
vector).

A binary integer divided by areal or binary number returns a binary
integer that is the integral part of the quotient. (The real numberis
converted to a binary integer before the division.) A divisor of zero
returns # &.

When dividing two unit objects, the scalar parts and the unit parts
are divided separately.

Related Commands: +, — «, =

Power Analytic Function: Returns the value of the level 2 object
raised to the power of the level 1 object.

{}

Level 2 Level 1 — Level 1

w z — w?

z 'symb' — z"(symb)'

'symb' z — '(symb) "z'

'symb, ' 'symb. " — 'symb, “(symb,)"

x_unit y — ¥ _unit¥

x_unit 'symb' — '(x_unit) “(symb)"
Keyboard Access:

3-402 Command Reference

<

Affected by Flags: Principal Solution (—1), Numerical Results (-3)

Remarks: If either argument is complex, the result is complex.

The branch cuts and inverse relations for w? are determined by this

relationship:

w? = exp(z(ln w))

Related Commands: EXP, ISOL, LN, XROOT

<

Less Than Function: Tests whether one object is less than another

object.

{}

Level 2 Level 1 — Level 1 j

X y — 0/1

#n, #n, — 0/1

"string," "string," — 0/1

X 'symb' — 'x<symb'

'symb' X — 'symb<x'

'symb, ' ‘symb,' — 'symb, <symb,'

Xx_unit; y_unit, — 0/1

x_unit 'symb' — 'x_unit<symb'

'symb' x_unit — 'symb<x_unit'

Keyboard Access: (PRG) TEESTi

Affected by Flags: Numerical Results (—3)

Remarks: The function < returns atrue test result (1) if the level 2
argument is less than the level 1 argument, or a false test result (&)

otherwise.

Command Reference 3-403

<

If one object is a symbolic (an algebraic or a name), and the other is a
number or symbolic or unit object, < returns a symbolic comparison
expression that can be evaluated to return a test result.

For real numbers and binary integers, “less than” means numerically
smaller (1 is less than 2). For real numbers, “less than” also means
more negative (—2 is less than —1).

For strings, “less than” means alphabetically previous (“ABC” isless
than “DEF”; “AAA” is less than “AAB”; “A” is less than “AA”). In
general, characters are ordered according to their character codes.
This means, for example, that “B” is less than “a”, since “B” is

WLcharacter code 66, and “a” is character code 97.

For unit objects, the two objects must be dimensionally consistent,
and are converted to common units for comparison. If you use

simple temperature units, the calculator assumes the values represent
temperatures and not differences in temperatures. For compound

temperature units, the calculator assumes temperature units represent

temperature differences. For more information on using temperature

units with arithmetic functions, refer to the entry for +.

Related Commands: <, >>== +#

<

Less Than or Equal Function: Tests whether one object is less than

or equal to another object.

3-404 Command Reference

I

{}

r Level 2 Level 1 — Level 1

X y — 0/1

F#n, #n, — 0/1

"string, " " string," — 0/1

X 'symb' — 'x < symb'

'symb' X — 'symb < x'

‘symb, " 'symb,' — 'symb; < symb,'

X_unit; y_unit, — 0/1

x_unit 'symb' — 'x_unit < symb'

'symb' x_unit — 'symb < x_unit'

Keyboard Access: (PRG

Affected by Flags: Numerical Results (—3)

Remarks: The function < returns a true test result (1) if the level 2

argument is less than or equal to the level 1 argument, or a false test

result (&) otherwise.

If one object is a symbolic (an algebraic or a name), and the other is a

number or symbolic or unit object, < returns a symbolic comparison

expression that can be evaluated to return a test result.

For real numbers and binary integers, “less than or equal” means

numerically equal or smaller (1 is less than 2). For real numbers, “less

than or equal” also means equally or more negative (—2 is less than

~1).

For strings, “less than or equal” means alphabetically equal or

previous (“ABC” is less than or equal to “DEF”; “AAA” is less than

or equal to “AAB”; “A” is less than or equal to “AA”). In general,

characters are ordered according to their character codes. This means,

for example, that “B” is less than “a”, since “B” is character code 66,

and “a” is character code 97.

For unit objects, the two objects must be dimensionally consistent

and are converted to common units for comparison. If you use

simple temperature units, the calculator assumes the values represent

temperature and not differences in temperature. For compound

temperature units, the calculator assumes temperature units represent

Command Reference 3-405

<

temperature differences. For more information on using temperature
units with arithmetic functions, refer to the entry for +.

Related Commands: <, >> ==#

>

Greater Than Function: Tests whether one object is greater than
another object.

{}

Level 2 Level 1 - Level 1

X y — 0/1

#Em #n, — 0/1

" string," " string," — 0/1

X 'symb' — 'x>symb'

'symb' X — 'symb>x'

'symb; ' ‘symb, ' — 'symb; >symb, '

X_unity y_unit, — 0/1

x_unit 'symb' — 'x_unit>symb'

'symb' x_unit — 'symb>x_unit'

Keyboard Access: (PRG

Affected by Flags: Numerical Results (—3)

Remarks: The function > returns a true test result (1) if the level 2

argument is greater than the level 1 argument, or a false test result

(&) otherwise.

If one object is a symbolic (an algebraic or a name), and the other is a

number or symbolic or unit object, > returns a symbolic comparison

expression that can be evaluated to return a test result.

For real numbers and binary integers, “greater than” means

numerically greater (2 is greater than 1). For real numbers, “greater

than” also means less negative (—1 is greater than —2).

3-406 Command Reference

>

Forstrings, “greater than” means alphabetically subsequent (“DEF”

is greater than “ABC”; “AAB” is greater than “AAA”; “AA” is

greater than “A”). In general, characters are ordered according to

their character codes. This means, for example, that “a” is greater

than “B”, since “B” is character code 66, and “a” is character code 97.

For unit objects, the two objects must be dimensionally consistent

and are converted to common units for comparison. If you use

simple temperature units, the calculator assumes the values represent

temperatures and not differences in temperature. For compound

temperature units, the calculator assumes temperature units represent

temperature differences. For more information on using temperature

units with arithmetic functions, refer to the entry for +.

Related Commands: <, <, > ==, #

2

Greater Than or Equal Function: Tests whether one object is
greater than or equal to another object.

{}

Level 2 Level 1 — Level 1

X y — 0/1

#n, #n, — 0/1

"string," " string," — 0/1

X 'symb' — 'x > symb'

'symb' X — 'symb > x'

'symb, ' ‘symb, ' — 'symb, > symb,'

x_unit, y_unit, — 0/1

x_unit 'symb' — 'x_unit > symb'

'symb' x_unit — 'symb > x_unit'

Keyboard Access:

Affected by Flags: Numerical Results (—3)

Command Reference 3-407

>

Remarks: The function > returns a true test result (1) if the level 2
argument is greater than or equal to the level 1 argument, or a false

test result (&) otherwise.

If one object is a symbolic (an algebraic or a name), and the other is a

number or symbolic or unit object, > returns a symbolic comparison

expression that can be evaluated to return a test result.

For real numbers and binary integers, “greater than or equal to”

means numerically equal or greater (2 is greater than or equal to 1).

For real numbers, “greater than or equal to” also means equally or less

negative (—1 is greater than or equal to —2).

For strings, “greater than or equal to” means alphabetically equal or

subsequent (“DEF” is greater than or equal to “ABC”; “AAB” is

greater than or equal to “AAA”; “AA” is greater than or equal to

“A”). In general, characters are ordered according to their character
codes. This means, for example, that “a” is greater than or equal to

W“B”, since “B” is character code 66, and “a” is character code 97.

For unit objects, the two objects must be dimensionally consistent

and are converted to common units for comparison. If you use

simple temperature units, the calculator assumes the values represent

temperatures and not differences in temperature. For compound

temperature units, the calculator assumes temperature units represent

temperature differences. For more information on using temperature

units with arithmetic functions, refer to the entry for +.

Related Commands: <, <, >, ==, #

Equals Analytic Function: Returns an equation formed from the two

arguments.

3-408 Command Reference

{1

Level 2 Level 1 - Level 1

zy Zy — 'z, =2z,

z 'symb' — 'z=symb'

'symb' z — 'symb=2z'

'symb; 'symb, ' — 'symb, =symb, '

y X_unit — 'y=x_unit'

y_unit X — 'y_unit=x'

y_unit x_unit — 'y_unit=x_unit'

'symb' x_unit — 'symb=x_unit'

x_unit 'symb' — 'x_unit=symb'
Keyboard Access: (q)(=)

Affected by Flags: Numerical Results (—3)

Remarks: The equals sign equates two expressions such that the

difference between the two expressions is zero.

In Symbolic Results mode, the result is an algebraic equation. In

Numerical Results mode, the result is the difference of the two

arguments because = acts equivalent to —. This allows expressions

and equations to be used interchangeably as arguments for symbolic

and numerical rootfinders.

The numerical evaluation of an equation using the HP Solve

application implicitly involves the subtraction of terms. See the entry

for “—” for information about the effects of subtraction.

Common usage 1s ambiguous about some units of temperature. When
°C or °F represents a thermometer reading, then the temperature

is a unit with an additive constant: 0 °C = 273.15 K, and 0 °F =

459.67 °R. But when °C or °F represents a difference in thermometer

readings, then the temperature is a unit with no additive constant: 1

°C=1Kand 1°F =1 °R.

The arithmetic operators 4+, —, %, %CH, and %T treat temperatures

as differences, without any additive constant. However, +, —, %CH,

and %T require both arguments to be either absolute (K and °R),

both °C, or both °F. No other combinations are allowed.

Command Reference 3-409

Related Commands: DEFINE, EVAL, —

Logical Equality Function: Tests if two objects are equal.

{}

Level 2 Level 1 — Level 1

obj; obj, — 0/1

(x,0) X — 0/1

X (x,0) — 0/1

z 'symb' — 'z==symb'

'symb' z — 'symb==z'

'symb, ' 'symb, ' — 'symb, ==symb, "'
Keyboard Access: TEST ==

Affected by Flags: Numerical Results (—3)

Remarks: The function == returns a true result (1) if the two

objects are the same type and have the same value, or a false result

(8) otherwise. Lists and programs are considered to have the same

values if the objects they contain are identical.

If one object is algebraic (or a name), and the other is a number

(real or complex) or an algebraic, == returns a symbolic comparison

expression that can be evaluated to return a test result.

Note that == is used for comparisons, while = separates two sides of

an equation.

If the imaginary part of a complex number is 0, itis ignored when the

complex number is compared to a real number, so, for example, #

== returns 1.

For unit objects, the two objects must be dimensionally consistent

and are converted to common units for comparison. If you use

simple temperature units, the calculator assumes the values represent

3-410 Command Reference

a
temperatures and not differences in temperature. For compound

temperature units, the calculator assumes temperature units represent

temperature differences. For more information on using temperature

units with arithmetic functions, refer to the entry for +.

Related Commands: SAME, TYPE, <, <, >, >, #

7
Not Equal Function: Tests if two objects are not equal.

{1}

Level 2 Level 1 — Level 1

obj; obj, - 0/1
(x,0) X — 0/1

X (x,0) — 0/1

z 'symb' — 'z # symb'

'symb’ z — 'symb # Z'

'symb, ! 'symb, — ‘symb, # symb,'

Keyboard Access: (PRG) TEET

Affected by Flags: Numerical Results (—3)

Remarks: The function # returns a true result (1) if the two objects
have different values, or afalse result (&) otherwise. (Lists and
programs are considered to have the same values if the objects they
contain are identical.)

If one objectis algebraic or a name, and the other is a number, a

name, or algebraic, # returns a symbolic comparison expression that

can be evaluated to return atest result.

If the imaginary part of a complex numberis 0, it is ignored when

the complex number is compared to real number, so, for example, &

LBy B3 @ returns #.

Command Reference 3-411

7
For unit objects, the two objects must be dimensionally consistent

and are converted to common units for comparison. If you use

simple temperature units, the calculator assumes the values represent

temperatures and not differences in temperatures. For compound

temperature units, the calculator assumes temperature units represent

temperature differences. For more information on using temperature

units with arithmetic functions, refer to the entry for +.

Related Commands: SAME, TYPE, <, <, >, >, ==

!

Factorial (Gamma) Function: Returns the factorial n! of a positive

integer argument n, or the gamma function I'(z+1) of a non-integer

argument z.

{1}

Level 1 - Level 1]

n — n

X — I'(x+1)

'symb' — '(symb')'

Keyboard Access: (MTH) (NXT) FE

Affected by Flags: Numerical Results (—3), Underflow Exception

(—20), Overflow Exception (—21)

Remarks: For z > 253.1190554375 or » < 0, ! causes an Overflow

exception (if flag —21 is set, the exception is treated as an error). For

non-integer z < —254.1082426465, ! causes an Underflow exception (if

flag —20 is set, the exception is treated as an error).

In algebraic syntax, ! follows its argument. Thus the algebraic syntax

for the factorial of 71s *7i*

For non-integer arguments z, z! = I'(z + 1), defined for z > —1 as

this:

3-412 Command Reference

I(z+1)= / e~v dt
0

and defined for other values of z by analytic continuation:

I(z+1)=n T(x)

Related Commands: COMB, PERM

/

Integral Function: Integrates an integrand from lower limit to upper

limit with respect to a specified variable of integration.

{1}

Level4 Level3 Level2 Level1 — Level 1

lower limit upper limit integrand 'name' — 'symbintegra,'

Keyboard Access: ()(/)

Affected by Flags: Numerical Results (—3), Number Format (—45
to —50)

Remarks: The algebraic syntax for f parallels its stack syntax:

Filower limit, upper limil, integrand, name?

where lower limit, upper limit, and integrand can be real or complex
numbers, unit objects, names, or algebraic expressions.

Evaluating f in Symbolic Results mode (flag —3 clear) returns a
symbolic result to level 1. The HP 48 does symbolic integration by
pattern maiching. The HP 48 can integrate the following:

m All built-in functions whose antiderivatives can be expressed
in terms of other built-in functions—for example, SIN can be
integrated since its antiderivative COS is a built-in function. The
arguments for these functions must be linear.

Command Reference 3-413

m Sums, differences, and negations of built-in functions whose

antiderivatives can be expressed in terms of othm built-in

functions—for example,

m Derivatives of all built-in functions i

can be integrated because itis the donvatlve of the bulltn functlon

ATAN.

u Polynomlals whose base term is linear—for example

! +&' can be integrated since * is alinear term.

 1 ¢ cannot be 1nteg1ated since *

not linear.

m Selected patterns composed of functions whose antiderivatives can

be e\(pressedin terms of other built-in functions—for example,

% returns LB 3

If the result of the integration is an expression with no integral sign

in the result, the symbolic integration was successful. If, however, the

result still contains an integral sign, try rearranging the expression and

evaluating again, or estimate the answer using numerical integration.

A successful result of symbolic integration has this form:

“result! < namesupper limit:—<resulti v name=lower limatss*

 s functionality. A

second evaluation substitutes the limits of integration into the variable

of integration, completing the procedure.

Evaluating f in Numerical Results mode (flag —3 set) returns a
numerical approximation, and stores the error of integration in

variable IERR. f consults the number format setting to determine

how accurately to compute the result.

Examples: In Symbolic Results mode (flag —3 clear) this command

sequence:

returns

Subsequent evaluation substitutes the limits of integration, and

returns 15

3-414 Command Reference

In Numeric Results mode (flag —3 set) the above command
sequence returns the numerical approximation 1. In addition,

the variable IERR is created, and contains the error of integration

L BEEREERRE]S

Related Commands: TAYLR, d, &

0

Derivative Function: Takes the derivative of an expression, number,

or unit object with respect to a specified variable of differentiation.

{1}

Level 2 Level 1 — Level 1

'symb, ' ‘name’ — 'symb, '

z 'name' — 0

x_unit 'name' — 0
Keyboard Access: ()(3)

Affected by Flags: Numerical Results (—3)

Remarks: When executed in stack syntax, 9 executes a complete

differentiation: the expression *symb;' is evaluated repeatedly until

it contains no derivatives. As part of this process, if the variable of

differentiation name has a value, the final form of the expression

substitutes that value substituted for all occurrences of the variable.

The algebraic syntax for J is *@nameisymb, »'. When executed

in algebraic syntax, 0 executes a stepwise differentiation of symb, ,

invoking the chain rule of differentiation—the result of one evaluation

of the expression is the derivative of the argument expression symb, ,

multiplied by a new subexpression representing the derivative of

symb, ’s argument.

If 0 is applied to a function for which the HP 48 does not provide a

derivative, 0 returns a new function whose name is der followed by the

original function name.

Command Reference 3-415

0

Al returns o

 When Y has the value , the command sequence 4 #

returns ' # . The differentiation has been executed

in stack syntax, so that all of the steps of differentiation have been

carried out in a single operation.

Related Commands: TAYLR, [, ¥

%

Percent Function: Returns z (level 2) percent of y (level 1).

{}

Level 2 Level 1 - Level 1

X y — xy/100

X 'symb' — "%(x,symb)'

'symb' X — "% (symb,x)"

'symb; ' 'symb,' — "%(symb, , symb,)'

X y_unit — (xy/100)_unit

x_unit y — (xy/100)_unit

'symb' x_unit — "%(symb,x_unit)'

x_unit 'symb" — "% (x_unit,symb)'

Keyboard Access: (MTH) Fi

Affected by Flags: Numerical Results (—3)

Remarks: Common usage is ambiguous about some units of

temperature. When °C or °F represents a thermometer reading, then

the temperature is a unit with an additive constant: 0 °C = 273.15 K,

and 0 °F = 459.67 °R. But when °C or °F represents a difference in

thermometer readings, then the temperature is a unit with no additive

constant: 1 °C =1 K and 1 °F =1 °R.

3-416 Command Reference

T

The arithmetic operators +, —, %, %CH, and %T treat temperatures
as differences, without any additive constant. However, +, —, %CH,

and %T require both arguments to be either absolute (K and °R),
both °C, or both °F. No other combinations are allowed.

For more information on using temperature units with arithmetic

functions, see the entry for +.

Example: % returns

151

% returns :

Related Commands: %CH, %T

T

7 Function: Returns the symbolic constant 'w' or its numerical

representation, 3.14159265359.

Level 1 - Level 1

— lfl_l

— 3.14159265359

Keyboard Access: («)(m)

Affected by Flags: Symbolic Constants (—2), Numerical Results

(=3)
Evaluating 7 returns its numerical representation if flag —2 or —3 is

set; otherwise, returns its symbolic representation.

Remarks: The number returned for 7 is the closest approximation of

the constant 7 to 12-digit accuracy.

In Radians mode with flags —2 and —3 clear (to return symbolic

results), trigonometric functions of 7 and 7/2 are automatically
simplified. For example, evaluating * w2 returns zero.

However, if flag —2 or flag —3 is set (to return numerical results),

Command Reference 3-417

™

Related Commands: e, i, MAXR, MINR, —Qn

z

Summation Function: Calculates the value of a finite series.

{1}

Level 4 Level3 Level2 Level1 — Level 1

'indx' Xinit Xinal smnd — Xsum

'indx' 'init' Xfinal smnd — 'S(indx=init,xg,,, . smnd)'

'indx' Xinit 'final' smnd — 'B(indx=x,,;, final,smnd)'

'indx' 'init' 'final' smnd — 'S(indx=init,final,smnd)"

Keyboard Access: ()(T)

Affected by Flags: Symbolic Constants (—2), Numerical Results

(=3)
Remarks: The summand argument smnd can be a real number, a

complex number, a unit object, a local or global name, or an algebraic

object.

The algebraic syntax for X differs from the stack syntax. The

algebraic syntax is this:

‘Edindex=initialfinal summand:

Examples: In Symbolic Results mode (flags —2 and —3

clear), the command sequence 'H' 1 5 'F“H*' I returns

& returnsThe command sequence *H' i ‘F’

 £

Related Commands: TAYLR, [, 9

3-418 Command Reference

2+

2+

Sigma Plus Command: Adds one or more data points to the current

statistics matrix (reserved variable YDAT).

Levelm ... Level 2 Level 1 — Level 1

X —_

[X3 Xp... Xm] —

[[X1 Xtm T Xp1o Xnm 11 —

Xq oo Xm—1 Xm —

Keyboard Access: ()(STAT) DATH E+

Affected by Flags: None

Remarks: For a statistics matrix with m columns, arguments for £+

can be entered several ways:

= To enter one data point with a single coordinate value, the

argument for ¥+ must be a real number.

m To enter one data point with multiple coordinate values, the

argument for X+ must be a vector of m real coordinate values.

m To enter several data points, the argument for ¥4+ must be a matrix

of n rows of m real coordinate values.

In each case, the coordinate values of the data point(s) are added as

new rows to the current statistics matrix (reserved variable Y DAT).
If YDAT does not exist, X+ creates an n X m matrix and stores the

matrix in YDAT. If YDAT does exist, an error occurs if it does not

contaln a real matrix, or if the number of coordinate values in each

data point entered with X+ does not match the number of columns in

the current statistics matrix.

Once YDAT exists, individual data points of m coordinates can be

entered as m separate real numbers or an m-element vector.

LASTARG returns the m-element vector in either case.

Example: The sequence %1 7 E+ creates the
matrix [[Z 4 30217 131n YDAT.

Command Reference 3-419

Z+

Related Commands: CLY, RCLY, STOY, ¥—

> —

Sigma Minus Command: Returns a vector of m real numbers (or
one number z if m = 1) corresponding to the coordinate values of

the last data point entered by ¥+ into the current statistics matrix

(reserved variable XDAT).

— Level 1

— X

- [x; X5 ... Xxm]
Keyboard Access: (&)(STAT) D#TH -

Affected by Flags: None

Remarks: The last row of the statistics matrix is deleted.

The vector returned by X— can be edited or replaced, then restored to

the statistics matrix by X+.

Related Commands: CLX, RCLY, STOX, ¥+

v
Square Root Analytic Function: Returns the (positive) square root
of the argument.

3-420 Command Reference

{1}

Level 1 — Level 1

z — Vz

x_unit — \/Eunitl /2

'symb' — '\/ (symb)'
Keyboard Access:

Affected by Flags: Principal Solution (—1), Numerical Results (—3)

Remarks: For a complex number (z,, y;), the square rootis this

complex number:

0 0
(z9,y2) = (VT cosé,\/;sini)

where r = ABS (z,, Y1), and § = ARG (1?1, yl).

If (21, y;) = (0, 0), then the square root is (0, 0).

The inverse of SQ is a relation, not a function, since SQ sends more

than one argument to the same result. The inverse relation for SQ is

expressed by ISOL as this general solution:

The function / is the inverse of a part of SQ, a part defined by

restricting the domain of SQ such that 1) each argument is sent to a

distinct result, and 2) each possible result is achieved. The points

in this restricted domain of SQ are called the principal values of the

inverse relation. The / function in its entirety is called the principal

branch of the inverse relation, and the points sent by 1/ to the

boundary of the restricted domain of SQ form the branch cuts of /.

The principal branch used by the HP 48 for / was chosen because

it is analytic in the regions where the arguments of the real-valued

inverse function are defined. The branch cut for the complex-valued

square root function occurs where the corresponding real-valued

function is undefined. The principal branch also preserves most of the

important symmetries.

The graphs below show the domain and range of /. The graph ofthe

domain shows where the branch cut occurs: the heavy solid line marks

one side of the cut, while the feathered lines mark the other side of

Command Reference 3-421

v
the cut. The graph of the range shows where each side of the cutis
mapped under the function.

These graphs show the inverse relation '=1#7 " for the case s/=1.
For the other value of s1, the half-plane in the lower graph is rotated.
Taken together, the half-planes cover the whole complex plane, which
1s the domain of SQ.

View these graphs with domain and range reversed to see how the

domain of SQ is restricted to make an inverse function possible.

Consider the half-plane in the lower graph as the restricted domain

Z = {r:y>. SQ sends this domain onto the whole complex plane in

the range I = fuy v= Sz, gin the upper graph.

Related Commands: SQ, ", ISOL

Domain: Z = (x,y)

Range: W = (u,v) =./(x,y)

3-422 Command Reference

| (Where)

Attach Unit Function: Attaches a unit expression to a real number.

Performed automatically in the Unit Catalog ((»)(UNITS)).

Level 2 Level 1 - Level 1

X 'unit expression’ — X_unit

Keyboard Access: (2)()

Affected by Flags: None

Related Commands: —UNIT

| (Where)

Where Function: Substitutes values for names in an expression.

Level 2 Level 1 — Level 1

'symb, 4" { name; 'symb,' name, 'symb,' ... } — ‘'symbpew'

X { name; 'symb;' name, 'symb,' ... } — X

(x, ¥) { name, 'symb,' name, 'symb,' ... } — (x, ¥)
Keyboard Access: (9)(SYMBOLIC i

Affected by Flags: Numerical Results (—3)

Remarks: | is used primarily in algebraic objects, where its syntax is:

fsymboira | tnamey=symby: nameg=symby ...

It enables algebraics to include variable-like substitution information

about names. Symbolic functions that delay name evaluation (such

as [and 8) can then extract substitution information from local

Command Reference 3-423

| (Where)

variables and include that information in the expression, avoiding the

problem that would occur if the local variables no longer existed when

the local names were finally evaluated.

Related Commands: APPLY, QUOTE

Create Local Variables Command: Creates local variables.

Leveln ... Level 1 - Level 1

 obj; ... objy —

Keyboard Access: ()(>)

Affected by Flags: None

Remarks: Local variable structures specify one or more local

variables and a defining procedure.

A local variable structure consists of the — command, followed by one

or more names, followed by a defining procedure—either a program or

an algebraic. The — command stores objects from the stack into local
variables with the specified names. The resultant local variables exist

only while the defining procedure is being executed. The syntax of a

local variable structure is one of the following:

m ¢+ name; names ... NaAMe, E program

m -+ name; names ... namey, ' algebraic expression’

Example: This program:

o owow E wouW ® ooy — b

takes an object from level 2 and stores it in local variable z, takes

an object from level 1 and stores it in local variable y, and executes

calculations with z and y in the defining procedure (in this case a

program). When the defining procedure ends, local variables z and y

disappear.

3-424 Command Reference

User-Defined Functions. A user-defined function is a variable
containing a program that consists solely of alocal variable structure.

For example, the variable A, containing this program:

is a user-defined function. Like a built-in function, a user-defined

function can take its arguments in stack syntax or algebraic syntax,

and can take symbolic arguments. In addition, a user-defined function

is differentiable if its defining procedure is an algebraic expression that

contains only differentiable functions.

Related Commands: DEFINE, STO

Command Reference 3-425

Equation Reference

The Equation Library consists of 15 subjects and more than 100

titles. Each subject and title has a number that you can use with

SOLVEQN to specify the set of equations. These numbers are shown

in parentheses after the headings.

See the end of this section for references given in each subject

(Reference:). Remember that some equations are estimates and
assume certain conditions. See the references or other standard texts

for assumptions and limitations of the equations.

Solutions in the examples have been rounded to four decimal places.

Columns and Beams (1)

Variable Names and Descriptions

€ Eccentricity (offset) of load

ocr Critical stress

omaz Maximumstress

0 Slope at z

A Cross-sectional area

a Distance to point load

c Distance to edge fiber (Eccentric Columns), or

Distance to applied moment (beams)

FE Modulus of elasticity

1 Moment of inertia

Equation Reference 4-1

Variable Names and Descriptions (continued)

K Effective length factor of column

L Length of column or beam

M Applied moment

Mz Internal bending moment at z

P Load (Eccentric Columns), or
Point load (beams)

Per Critical load

T Radius of gyration

Vv Shear force at z

w Distributed load

T Distance along beam

y Deflection at z

For simply supported beams and cantilever beams (“Simple

Deflection” through “Cantilever Shear”), the calculations differ

depending upon the location of z relative to the loads.

m Applied loads are positive downward.

m The applied moment is positive counterclockwise.

m Deflection is positive upward.

m Slope is positive counterclockwise.

m Internal bending momentis positive counterclockwise on the

left-hand part.

m Shear force is positive downward on the left-hand part.

Reference: 2.

4-2 Equation Reference

Elastic Buckling (1, 1)

These equations apply to a slender column (K-L/r > 100) with length

factor K.

Pcr . % +

[T
K=5 K=1 K=1 K=

TIRTTTT

Equations:

72 E-A 72 E-1 Per I
Pcr:—2~ Pcr:—2 acr:T r= i

T

Example:

Given: [=7.3152_m, r=4.1148cm, E=199947961.502_kPa,

A=53.0967_cm 2, K=0.7, 1=8990598.7930_mm 4.

Solution: Pcr=676.6019kN, ocr=127428.2444kPa.

Eccentric Columns (1, 2)

See “Elastic Buckling.”

P

e T
L

SO

[0L%EGH[VaksPIE[+PICT]ERIT

Equation Reference 4-3

Equations:

omax = 1—|—v2~ ;—— r:\/T

r cos KL P A
’ 2.1 E-A

Example:

Given: [=6.6542_m, A=187.9351_cm"2, r=8.4836_cm,

E=206842718.795_kPa, [=135259652.16_mm~4, K=1,
P=1908.2571_kN, ¢=15.24_cm, ¢=1.1806_cm.

Solution: cmar=140853.0970_kPa.

Simple Deflection (1, 3)

Equation:

4-4 Equation Reference

Example:

Given: L=20_ft, £=29000000_psi, /=40_in"4, a=10_ft,

P=674.427_Ibf, ¢=17_ft, M=3687.81 _ft«lbf, w=102.783 _Ibf/ft,

z=9_1t.

Solution: y=—.6005_in.

Simple Slope (1, 4)

Equation:

p [L—a])
9 = s+ (1-] _12
0= 1L E1 [3K+(2

M x? L ¢_ XL
E-1 2L 3 2L

v 32 (44—]S [L +x [4x< ()L]

Example:

Given: L=20_ft, £=29000000_psi, /=40_in"4, a=10_ft,

P=674.427_Ibf, c=17_ft, M=3687.81_ft+lbf, w=102.783 _Ibf/ft,

r=9_ft.

Solution: ©@=—.0876_°.

Equation Reference 4-5

Simple Moment (1, 5)

Equation:

Example:

Given: [=20_ft, a=10_ft, P=674.427_Ibf, ¢=17_ft,

M=3687.81_ft«lbf, w=102.783_1bf/ft, z=9_ft.

Solution: Mz=9782.1945_ft*lbf.

Simple Shear (1, 6)

Equation:

4-6 Equation Reference

Example:

Given: L=20_ft, a=10_ft, P=674.427_lbf, M=3687.81_ft«Ibf,

w=102.783_1bf/ft, =9_ft.

Solution: V =624.387_Ibf.

Cantilever Deflection (1, 7)

Z0LYEcHWkRIC[*PICT]EXIT

Equation:

Example:

Given: L=10_ft, £=29000000_psi, [=15_in"4, P=500_lbf,
M=800_ft+lbf, a=3_ft, c=6_ft, w=100_lbf/ft, 2=8_ft.

Solution: y=-—.3316_in.

Cantilever Slope (1, 8)

TITTT

Equation Reference 4-7

Equation:

_ P-x M-x w-X 9 9

O=3E1 [X"z'a] TET T6ET [3'LB]

Example:

Given: L=10_ft, E=29000000_psi, [=15_in"4, P=500_1bf,
M=800_ft«lbf, a=3_ft, ¢c=6_ft, w=100_lbf/ft, =8_ft.

Solution: ©®=-.2652_°.

Cantilever Moment (1, 9)

Equation:

Example:

Given: L=10_ft, P=500_1bf, M=800_ft*lbf, a=3_ft, c=6_ft,

w=100_1bf/ft, z=8_ft.

Solution: Mz=-200_ft«lbf.

4-8 Equation Reference

Cantilever Shear (1, 10)

TITTRX

Equation:

Example:

Given: [=10_ft, P=500_Ibf, a=3_ft, z=8_ft, w=100_Ibf/ft.

Solution: V' =200_1bf.

Electricity (2)

Variable Names and Descriptions

er Relative permittivity

ur Relative permeability

w Angular frequency

wl Resonant angular frequency

@ Phase angle

op,Ps Parallel and series phase angles

P Resistivity

Equation Reference 4-9

Variable Names and Descriptions (continued)

Al

At

AV

C,C1,C2

Cp,Cs

d

E

F

f
fo

1

Current change

Time change

Voltage change

Wire cross-section area (Wire Resistance), or
Solenoid cross-section area (Solenoid Inductance), or

Plate area (Plate Capacitor)

Capacitance

Parallel and series capacitances

Plate separation

Energy

Force between charges

Frequency

Resonant frequency

Current, or

Total current (Current Divider)

Current in R1

Maximum current

Inductance, or

Length (Wire Resistance, Cylindrical Capacitor)

Inductance

Parallel and series inductances

Number of turns

Number of turns per unit length

Power

Charge

Point charge

Parallel and series quality factors

Charge distance

Resistance

Inside and outside radii Parallel and series resistances

4-10 Equation Reference

Variable Names and Descriptions (continued)

t Time

te tf Initial and final times

vV Voltage, or

Total voltage (Voltage Divider)

Vi Voltage across R1

Vi, Vf Initial and final voltages

Vmaz Maximum voltage

XC Reactance of capacitor

XL Reactance of inductor

Reference: 3.

Coulomb’s Law (2, 1)

This equation describes the electrostatic force between two charged

particles.

Equation:

Fo# . (q1~q2]

4.m-€0-er r2

Example:

Given: ¢/=1.6E-19_C, ¢2=1.6E-19_C, r=4.00E—13_cm, er=1.00.

Solution: F'=14.3801_N.

Ohm’s Law and Power (2, 2)

Equations:

Equation Reference 4-11

Example:

Given: V=24_V, 6 I=16_A.

Solution: R=1.5_, P=384_W.

Voltage Divider (2, 3)

R2
R1.41

[0LMEMWAESPIC[+PICT]EXIT

Equation:

vi=Vv. [RlTRz]

Example:

Given: R1=40_Q, R2=10_Q, V=100_V.

Solution: V1=80_V.

Current Divider (2, 4)

 —_—

I11
R2

IECTNIEETTTYTT

4-12 Equation Reference

Equation:

I1
I[R2]

R1+R2

Example:

Given: R1=10_Q, R2=6_Q, I=15_A.

Solution: /71=5.6250_A.

Wire Resistance (2, 5)

Equation:

-L

R="%

Example:

Given: p=.0035_Q*cm, L=50_cm, A=1_cm2.

Solution: R=0.175_9.

Series and Parallel R (2, 6)

R1

— —
Rz R2 Rp Rz

TITTT

Equations:

1 1 1
s + Rp

~

Rl | R2

Equation Reference 4-13

Example:

Given: R1=2_%Q, R2=3_Q.

Solution: Rs=5_Q, Rp=1.2000_£2.

Series and Parallel C (2, 7)

_}

Cp -~ il

[Z0LY [EcM [Viks |PIC_[+FICT]EXIT |

Equations:

1 1 1
= Cp=Cl+C2
Gs —C1 7 C2 p=Cl+

Example:

Given: C1=2puF, C2=3_uF.

Solution: Cs=1.2000_puF, Cp=5_uF.

Series and Parallel L (2, 8)

L1

— —

Ls L= Lp Lz

TWTTT

4-14 Equation Reference

Equations:

Ls=L1+ L2 — =4

Example:

Given: [1=17_mH, L2=16.5_mH.

Solution: Ls=33.5000_mIl, Lp=8.3731_mH.

Capacitive Energy (2, 9)

Equation:

C-v?
E=

2

Example:

Given: F=.025_J, C=20_uF.

Solution: V=50_V.

Inductive Energy (2, 10)

Equation:

L-I?

b=

Example:

Given: F=4_J L=15_mH.

Solution: 7=23.0940_A.

Equation Reference 4-15

RLC Current Delay (2, 11)

The phase delay (angle) is positive for current lagging voltage.

gs K Bp _=, L% _}RE:%E,

[SOLVEGNJWARSPICJ+PICT]EXIT

21

Equations:

1 1
— X v vT

TAN[qss] :&R_g TAN[qsp] - NCNT

R

1
XC=—— XL =w-L w=27f

w-C

Example:

Given: f=107_Hz, C=80_uF, L=20_mH, R=5_€.

Solution: w=672.3008_r/s, ¢s=—45.8292_°, ¢p=—5.8772 °,
XC=18.5929_Q, XI=13.4460_.

DC Capacitor Current (2, 12)

These equations approximate the dc current required to change the

voltage on a capacitor in a certain time interval.

Equations:

AV
I=C- [f] AV =Vf - Vi At =tf-t1

At

4-16 Equation Reference

Example:

Given: C=15_puF, Vi=23_V, Vf=3.2_V, I=10_A, ti=0_s.

Solution: AV=.9000_V, At=1.3500_ps, tf=1.3500_pus.

Capacitor Charge (2, 13)

Equation:

q=0C-V

Example:

Given: C'=20_uF, V=100_V.

Solution: ¢=0.0020_C.

DC Inductor Voltage (2, 14)

These equations approximate the dc voltage induced in an inductor by

a change in current in a certain time interval.

Equations:

VI—L~[AI] Al=1If-Ti At =tf —ti
At

Example:

Given: [=100_mH, V=52_V, At=32_ps, [i=23A, ti=0_s.

Solution: AI=—0.0166_A, [f=22.9834_A, #f=32_us.

Equation Reference 4-17

RC Transient (2, 15)

T

we R 1T[C v
Vi _i

TTTTTil

Equation:

—t

V= Vi [Vf—Vi] e

Example:

Given: Vi=0_V, C=50_uF, Vf=10_V, R=100_w, =2ms.

Solution: V=3.2968_V.

RL Transient (2, 16)

¥f R l
I

‘v‘iJ— -

TITTT

Equation:

—t-R

1 L
1=~ |vi= [Vf—Vi] e

R

4-18 Equation Reference

Example:

Given: Vi=0_V, Vf=5_V, R=50_w, L=50_mH, t=T75_pus.

Solution: 7=0.0072_A.

Resonant Frequency (2, 17)

Equations:

1 1 L /C
w0 JiC Qs r Ve Qp =R T w0 7r

Example:

Given: =500mH, C=8_uF, R=10_w.

Solution: w0=500_r/s, Qs=25.0000, Qp=0.0400, f0=79.5775_Hz.

Plate Capacitor (2, 18)

LSOLN |ERH[WRES]PIC[+PICT]EXIT |

Equation:

C= eo.zr,A

Example:

Given: C=25_uF, er=2.26, A=1_cm 2.

Solution: d=8.0042E—9_cm.

Equation Reference 4-19

Cylindrical Capacitor (2, 19)

et LA

5
(20NEGN[VARE]PICJ*PICT]EXIT

Equation:

Example:

Given: ¢r=1, ro=1_cm, 17=.999_cm, L=10_cm.

Solution: C'=0.0056_uF.

Solenoid Inductance (2, 20)

b—h—A
nnnannnnnn1

l |ur
LLLLLLLLI

L-_

TIEECTTX

Equation:

L = p0-pur-n®-A-h

Example:

Given: pr=2.5, n=40_1/cm, A=2_cm"2, h=3_cm.

Solution: 7=0.0302_mH.

4-20 Equation Reference

Toroid Inductance (2, 21)

TIRTTTT

Equation:

L= /fr0~/ir-N2~h.LN [E]
2.7 1

Example:

Given: pur=1, N=5000, h=2_cm, ri=2_cm, ro=4_cm.

Solution: £L=69.3147_mH.

Sinusoidal Voltage (2, 22)

Equations:

V:Vmax-SIN[w-t+¢) w=21f

Example:

Given: Vmaz=110_V, t=30_ps, f=60_Hz, ¢=15_°.

Solution: w=376.9911 r/s, V=29.6699_V.

Sinusoidal Current (2, 23)

Equations:

I = Imax-SIN [w~t+q§] w=27°f

Equation Reference 4-21

Example:

Given: =32s, Imaz=10_A, w=636_1/s, $=30_°.

Solution: /=9.5983_A, f=101.2225_Hz.

Fluids (3)

Variable Names and Descriptions

YK

Al,A2

D1,D2

hL

M

n

P

PO

P1,P2

Q
Re

vl v2

vavyg

w

yl,y2

Roughness

Dynamic viscosity

Density

Pressure change

Height change

Total fitting coeflicients

Cross-sectional area

Initial and final cross-sectional areas

Diameter

Initial and final diameters

Depth relative to PO reference depth

Head loss

Length

Mass flow rate

Kinematic viscosity

Pressure at h

Reference pressure

Initial and final pressures

Volume flow rate

Reynolds number

Initial and final velocities

Average velocity

Power input

Initial andfinal heights

References: 3, 6, 9.

4-22 Equation Reference

Pressure at Depth (3, 1)

This equation describes hydrostatic pressure for an incompressible

fluid. Depth & is positive downward from the reference.

[TITTRT

Equation:

P=P0+pgh

Example:

Given: h=100_m, p=1025.1817kg/m"3, P0=1_atm.

Solution: P=1106.6848 _kPa.

Bernoulli Equation (3, 2)

These equations represent the streamlined flow of an incompressible
fluid.

TRTTATTI

Equation Reference 4-23

Equations:

AP VQZ—Vl
—+ +g-Ay=0
p

A2Y)?
v22 11— ==

AP Al
- —|—g~Ay:0
p 2

A1)?
v1Z. [‘—] -1

AP A2
—_—e4 eAy=0
P 2

AP=P2-P1 Ay=y2—-yl M=p-Q

Q=A2-v2 Q=A1-vl

.D12 .D22A,l:zTDl A2:7TD2

4 4

Example:

Given: P2=25_psi, P1=T75_psi, y2=35_ft, y1=0_ft, DI=18_in,

p=64_1b/ft"3, v1=100_ft/s.

Solution: @=10602.8752_ft"3/min, M=678584.0132_lb/min,

v2=122.4213ft/s, A2=207.8633_in"2, D2=16.2684 _in,
A1=254.4690_in"2, AP=-50_psi, Ay=35_ft.

Flow with Losses (3, 3)

These equations extend Bernoulli’s equation to include power input

(or output) and head loss.

TNTTT

4-24 Equation Reference

Equations:

212R
v2r |1 [A2]

AP Al
M- 7+5 +g-Ay +hL

V12 [A1)2_1
AP A2

M-

|

=+377

7

5 +g-Ay+hL

|

=W
p

AP =P2-P1 Ay =y2 -yl M=pQ

Q=A2v2 Q=Al-vl

7-D1? 7-D2?
Al = 1 A2 = 1

Example:

Given: P2=30_psi, P1=65_psi, y2=100_ft, y1=0_ft, p=64_1b/ft"3,

D1=24_in, hL=2.0_ft"2/s"2, W=25_hp, vI=100_ft/s.

Solution: @=18849.5559_ft"3/min, M=1206371.5790_1b/min,

AP=-35_psi, Ay=100_ft, v2=93.1269_ft/s, A1=452.3893_in"2,
A2=485.7773_in"2, D2=24.8699 in.

Equation Reference 4-25

Flow in Full Pipes (3, 4)

These equations adapt Bernoulli’s equation for flow in a round, full

pipe, including power input (or output) and frictional losses. (See

“FANNING” in chapter 3.)

IECTR=TTTYTT

Equations:

-D? AP L YK
p~[7r]'vavgy[—|—g~Ay—|—vavg2~[2~f~[—]+]] =W

4 p D 2

AP =P2-P1 Ay =y2 -yl M=pQ

7-D? D-vavg-p
Q = A-vavg A= Re= ——— n=—

4 p

Example:

Given: p=62.4_1b/ft"3, D=12_in, vavg=8_ft/s, P2=15_psi,
P1=20_psi, y2=40_ft, y1=0_ft, u=.00002Ibfss/ft 2, &K=2.25,
e=.02_in, L=250_ft.

Solution: AP=—5_psi, Ay=40_ft, A=113.0973_in"2,

n=1.0312_ft"2/s, Q=376.9911_ft"3/min, M=23524.2458 _lb/min,

W=25.8897_hp, Re=T75780.5.

4-26 Equation Reference

o
=

Forces and Energy (4)

Variable Names and Descriptions

1

k

Ki,Kf

m,ml ,m2

N

Ni,Nf

p

Pavg

Angular acceleration

Angular velocity

Initial and final angular velocities

Fluid density

Torque

Angular displacement

Acceleration

Projected area relative to flow

Centripetal acceleration at r

Tangential acceleration at r

Drag coefficient

Energy

Force at r or z, or

Spring force (Hooke’s Law), or

Attractive force (Law of Gravitation), or

Drag force (Drag Force)

Moment of inertia

Spring constant

Initial and final kinetic energies

Mass

Rotational speed

Initial and final rotational speeds

Instantaneous power

Average power

Equation Reference 4-27

Variable Names and Descriptions (continued)

r Radius from rotation axis, or

Separation distance (Law of Gravitation)

t Time

v Velocity

of ,wif ,v2f Final velocity

ve, vl Initial velocity

w Work

T Displacement
Reference: 3.

Linear Mechanics (4, 1)

Equations:

1, L,
F=m-a K1:§~m~v1 Kf:§~mvf W=Fx

W =Kf - Ki P=Fv Pavg = — vi=vita-t

Example:

Given: t=10_s, m=50_1b, a=12.5_ft/s"2, vi=0_ft/s.

Solution: vf=125_ft/s, z=625_ft, F'=19.4256_1bf Ki=0_ftxlbf,

Kf=12140.9961 _ft«1bf, W =12140.9961_ft«Ibf, Pavg=2.2075_hp.

4-28 Equation Reference

Angular Mechanics (4, 2)

Equations:

1
r=Ia Ki= §~I~wi2 Kf= _T.wf? W=7.0

. W .
W =Kf-Ki P=rw Pa‘vg:T wf=wi+ a-t

at = a1 w=2-mN wi=2-m-Ni wf=2.7-Nf

Example:

Given: [=1750_lb*in"2, @=360_°, r=3.5_in, a=10.5_r/min"2,
wi=0_r/s.

Solution: 7=1.1017E—-3_ft«lbf, Ki=0_ft«Ibf, W =6.9221E—3_ft«Ibf,

Kf=6.9221E—3_ft«lbf, at=8.5069E—4_ft/s 2, Ni=0_rpm,

wf=11.4868_r/min, {=1.0940_min, Nf=1.8282_rpm,

Pavg=1.91T4E—7_hp.

Centripetal Force (4, 3)

Equations:

F=mw?r w = ar = — w=27-N

=
<

<

Example:

Given: m=1_kg, r=5_cm, N=2000_Hz.

Solution: w=12566.3706_r/s, ar=7895683.5209_m/s,
F=7895683.5209_N, v=628.3185_m/s.

Equation Reference 4-29

Hooke’s Law (4, 4)

The force is that exerted by the spring.

Equations:

Example:

akf—F
-3+ X

[S0LY |EGN [Vikis |PIC_[+PICT]ERIT |

Given: k=1725_lbf/in, z=1.25_in.

Solution: F'=-—2156.25_lbf, W=—112.3047 _ft+Ibf.

1D Elastic Collisions (4, 5)

Equations:

mi m2

TNTTET

ml-m2 vof =
ml + m2

uli— u2i=a

ml ma
ulf = —u2f

4-30 Equation Reference

2-ml
STy
ml + m?2

11

Example:

Given: m1=10_kg, m2=25kg, v1i=100_m/s.

Solution: vI1f=—42.8571_m/s, v2f=57.1429_m/s.

Drag Force (4, 6)

Equation:

"2

F:Cd.[”z‘]~A

Example:

Given: Cd=.05, p=1000_kg/m"3, A=7.5E6_cm"2, v=35_m/s.

Solution: F=22968750_N.

Law of Gravitation (4, 7)

Equation:

F=qG. [ml-m?)

5
12

Example:

Given: mi=2E15_kg, m2=2E18kg, r=1000000_km.

Solution: F'=266903.6_N.

Mass-Energy Relation (4, 8)

Equation:

Equation Reference 4-31

Example:

Given: m=9.1E-31_kg.

Solution: E=8.178TE—14_J.

Gases (5)

Variable Names and Descriptions

3

MW

n

PO

Pe

Pi, Pf

Meanfree path

Flow density

Stagnation density

Flow area

Throat area

Molecular diameter

Specific heat ratio

Mach number

Mass

Molecular weight

Number of moles, or

Polytropic constant (Polytropic Processes)

Pressure, or

Flow pressure (Isentropic Flow)

Stagnation pressure

Pseudocritical pressure

Initial and final pressures

Temperature, or

Flow temperature (Isentropic Flow)

4-32 Equation Reference

Variable Names and Descriptions (continued)

T0 Stagnation temperature

Tc Pseudocritical temperature

T, Tf Initial and final temperatures

vV Volume

Vi, Vf Initial and final volumes

vrms Root-mean-square (rms) velocity

w Work

References: 1, 3.

Ideal Gas Law (5, 1)

Equations:

P-V=nRT m=n-MW

Example:

Given: T=16.85_°C, P=1_atm, V=25_1, MW=36_g/gmol.

Solution: n=1.0506_gmol, m=3.7820E—2_kg.

Ideal Gas State Change (5, 2)

Equation:

Pf-VE _ Pi-Vi
T ~ T

Example:

Given: Pi=1.5_kPa, Pf=1.5_kPa, Vi=2_1, Ti=100_°C,

Tf=373.15_K.

Solution: Vf=2_1.

Equation Reference 4-33

Isothermal Expansion (5, 3)

These equations apply to an ideal gas.

Equations:

W =n-R-T-LN [\\i—f] m=nMW
1

Example:

Given: Vi=2_1, Vf=125_1, T=300_°C, n=0.25_gmol,
MW=64_g/gmol.

Solution: W=4926.4942_J, m=.016_kg.

Polytropic Processes (5, 4)

These equations describe a reversible pressure-volume change of an

ideal gas such that P* V™ is constant. Special cases include isothermal

processes (n=1), isentropic processes (n=k, the specific heat ratio),

and constant-pressure processes (n=0).

Equations:

n—1

v) wme(w)Pi lwvi Ti Pi

Example:

Given: Pi=15_psi, Pf=3b_psi, Vi=1_ft"3, Vf=0.50_ft"3, Tu=T75_°F.

Solution: n=1.2224, Tf=164.1117_°F.

4-34 Equation Reference

Isentropic Flow (5, 5)

The calculation differs at velocities below and above Mach 1. The

Mach number is based on the speed of sound in the compressible fluid.

IOTTTEXTI

Equations:

k
T _ 2 P [T] k—1
TO 24 (k—1)-M2 PO TO

1

’ [T]k—l
p0 TO

k+1
A 1 2 k—1 2.(k=1)S2] M?
At M [k+1 [* 2]]

Example:

Given: k=2, M=.9, T)=26.85°C, T=373.15_K, p0=100_kg/m"3,
P0=100_kPa, A=1_cm2.

Solution: P=464.1152_kPa, A1=0.9928_cm"2, p=215.4333_kg/m"3.

Equation Reference 4-35

Real Gas Law (5, 6)

These equations adapt the ideal gas law to emulate real-gas behavior.

(See “ZFACTOR” in chapter 3.)

Equations:

PV=nZRT m=n-MW

Example:

Given: Pc=48_atm, Tc=298_K, P=5_kPa, V=10_l,

MW=64_g/gmol, T=75_°C.

Solution: »=0.0173_gmol, m=1.1057E—3_kg.

Real Gas State Change (5, 7)

This equation adapts the ideal gas state-change equation to emulate

real-gas behavior. (See “ZFACTOR” in chapter 3.)

Equation:

Pf-VE Pi-Vi
Z0Tf ~ Zi-Ti

Example:

Given: Pc=48_atm, Pi=100_kPa, Pf=50_kPa, Ti=75_°C,
Te=298_K, Vi=10_1, Tf=250_°C.

(Remember Zf and Z: are automatically calculated by the HP 48

using these variables.)

Solution: Vf=30.1703_1.

4-36 Equation Reference

Kinetic Theory (5, 8)

These equations describe properties of an ideal gas.

Equations:

p_ n-MW -vrms? s — 3-R-T
= 3.V YV MW

1
A= aNAY m=n-MW

n 2
ver(")

Example:

Given: P=100_kPa, V=21, T=26.85_°C, MW=18_g/gmol,

d=2.5_nm.

Solution: vrms=644.7678_m/s, m=1.4433E—3_kg, n=.0802_gmol,
A=1.4916_nm.

Heat Transfer (6)

Variable Names and Descriptions

Expansion coefficient

6 Elongation

AlA2 Lower and upper wavelength limits

Amaz Wavelength of maximum emissive power

AT Temperature difference

A Area

c Specific heat

Equation Reference 4-37

Variable Names and Descriptions (continued)

eb12

eb

f
h,hi,h3

k. k1,k2.k3

L,L1,L2,L3

m

Q

q

T

Tec

Th

Ti, Tf
U

Emissive power in the range A to A2

Total emissive power

Fraction of emissive power in the range A to A2

Convective heat-transfer coefficient

Thermal conductivity

Length

Mass

Heat capacity

Heat transfer rate

Temperature

Cold surface temperature (Conduction), or

Cold fluid temperature

Hot surface temperature, or

Hot fluid temperature (Conduction + Convection)

Initial and final temperatures

Overall heat transfer coefficient

References: 7, 9.

Heat Capacity (6, 1)

Equations:

Example:

Q=m-c.AT Q=m-c [Tf—Ti]

Given: AT=15_°C, Ti=0_°C, m=10_kg, Q=25_kJ.

Solution: Tf= 15_°C, ¢=.1667_kJ/(kgxK).

4-38 Equation Reference

Thermal Expansion (6, 2)

[T|}
k—L —Hsk

ETITTEXT

Equations:

§=aLAT §=aL. (Tf—Ti]

Example:

Given: AT=15"°C, L=10_m, Tf=25_°C, 6=1_cm.

Solution: 7i=10_°C, a=6.666TE-5_1/°C.

Conduction (6, 3)

HA Lk

——Ek%—+q
ThEzdTC

[Z0LU |EGN [VRS |PIC_[#FICT[ERIT |

Equations:

k-A k-A
q 0 T q I [Th Tc]

Equation Reference 4-39

Example:

Given: Tc=25_°C, Th=75_°C, A=12.5_m"2, L=1.5_cm,

k=.12_W/(m*K).

Solution: ¢=5000_W, AT=50_°C.

Convection (6, 4)

h
q

Tc
Th

[Z0CYEGNWikPIC_[*PICT]ERIT

Equations:

q=h-A-AT q=h-A. [Th—Tc]

Example:

Given: Tc=300_K, A=200_m"2, h=.005_W/(m"2xK), ¢=10_W.

Solution: AT=10_°C, Th=36.8500_°C.

4-40 Equation Reference

Conduction + Convection (6, 5)

If you have fewer than three layers, give the extra layers a zero

thickness and any nonzero conductivity. The two temperatures are

fluid temperatures—if instead you know a surface temperature, set the

corresponding convective coefficient to 10*°9.

HLLKLEA LA K

bl h3

ThEKIEK2ZEKITC
s oRS

TTTTT

Equations:

. AT A [Th—Tc]
q—i+2+g+g+1 q_1+L1 2 L3 1

h1 ki k2 k3 h3 TteTt

q q
U= U =

A-AT A [Th—Tc]

Example:

Given: AT=35°C, Th=55_°C, A=10_m"2, h1=.05_W/(m"2+K),
h3=.05_W/(m"2+K), L1=3_cm, L2=5_cm, L3=3_cm,
k1=.1_W/(m+K), k2=.5_W/(m+K), k3=.1_W/(m+K).
Solution: Tc=20_°C, U=0.0246_W/(m2*K), ¢=8.5995_W.

Equation Reference 4-41

Black Body Radiation (6, 6)

See “FOX” in chapter 3.

TRW=TTEXTT

Equations:

eb = ¢-T* f:FO/\[)\Q;T] —FO/\[/\l;T]

ebl12 =f-eb Amax-T = c3 q=-¢eb-A

Example:

Given: T=1000_°C, A1=1000_nm, A2=600_nm, A=1_cm"2.

Solution: Amazr=2276.0523_nm, eb=148984.2703_W/m"2, f=.0036,

eb12=537.7264_W/m"2, ¢=14.8984W.

4-42 Equation Reference

Magnetism (7)

Variable Names and Descriptions

ur Relative permeability

B Magnetic field

d Separation distance

Fba Force

I,Ia,Ib Current

L Length

N Total number of turns

n Number of turns per unit length

r Distance from center of wire

72,70 Inside and outside radii of toroid

rw Radius of wire

Reference: 3.

Straight Wire (7, 1)

The magnetic field calculation differs depending upon whether the

point is inside or outside the wire.

)
e .1=<::-

ETITTTT

Equation:

p#0-pr-I
B =

2-m1

Equation Reference 4-43

Example:

Given: pr=1, rw=.25_cm, r=.2_cm, I=25_A.

Solution: B=.0016_T.

Force between Wires (7, 2)

The force between wires is positive for an attractive force (for currents
having the same sign).

Equation:

Example:

Given: [a=10_A, Ib=20_A, ur=1, L=50_cm, d=1_cm.

Fba Fba

 Iat+ tIb
TNTTST

Fha — p#0-pr-L-Ib-Ia

2.m-d

Solution: Fba=2.0000E—3_N.

Magnetic (B) Field in Solenoid (7, 3)

0 AN

=B
 UL Ui

IETRTTTRXRl

4-44 Equation Reference

Equation:

B =p0-pur-I'n

Example:

Given: ur=10, n=>50, [=1.25_A.

Solution: B=0.0785_T.

Magnetic (B) Field in Toroid (7, 4)

ri

IELT=TTTRTTl

Equation:

B p0-pur-I-N [2]

- 2.7 ro+ri

Example:

Given: pur=10, N=50, ri=5_cm, ro=7_cm, [=10_A.

Solution: B=1.6667E—2_T.

Equation Reference 4-45

Motion (8)

Variable Names and Descriptions

v

vl

v

vy
T

z0

Yy

y0

Angular acceleration

Angular velocity (Circular Motion), or
Angular velocity at ¢ (Angular Motion)

Initial angular velocity

Fluid density

Angular position at ¢

Initial angular position (Angular Motion), or
Initial vertical angle (Projectile Motion)

Acceleration

Projected horizontal area

Centripetal acceleration at r

Drag coefficient

Mass

Planet mass

Rotational speed

Horizontal range (Projectile Motion), or
Planet radius (Escape Velocity)

Radius

Time

Velocity at ¢ (Linear Motion), or

Tangential velocity at r (Circular Motion), or

Terminal velocity (Terminal Velocity), or

Escape velocity (Escape Velocity)

Initial velocity

Horizontal component of velocity at ¢

Vertical component of velocity at ¢

Horizontal position at ¢

Initial horizontal position

Vertical position at ¢

Initial vertical position

Reference: 3.

4-46 Equation Reference

Linear Motion (8, 1)

Equations:

1 1 .
x:x0+v0-t+§~a-t2 X:X0+V~t—§-a~t“

1
X:X0+§-[V’0+V]~t v=v0+a-t

Example:

Given: z0=0_m, z=100_m, {=10_s, v0=1_m/s.

Solution: v=19m/s, a=1.8_m/s 2.

Object in Free Fall (8, 2)

Equations:

1 1y:y0+v0-t—§-g-t2 y:y()—i—v~t.+§-g~t2

v2:v02—2~g~[y——y0] v=v0—g-t

Example:

Given: y0=1000_ft, y=0_ft, v0=0_ft/s.

Solution: 1=7.8843_s, v=—253.6991 _ft/s.

Equation Reference 4-47

Projectile Motion (8, 3)

Wi

X

—— k—H

TNTTA

Equations:

X:xO+V0~COS[6’0)-t y:yo+vo-SIN(9o] -t—%-g-tz

vx:vo-cos[eo] vy:vo.SIN[ao] _ gt

2

R = "0 SN [2.00]
g

Example:

Given: z0=0_ft, y0=0_ft, @(0=45_°, v0=200_ft/s, {=10_s.

Solution: R=1243.2399_ft, ve=141.4214 _ft /s, vy=—180.3186_ft/s,

r=1414.2136_ft, y=—194.4864 _ft.

Angular Motion (8, 4)

Equations:

9:90+w0-t+%~a~t2 0:00+w4t—%-a-t2

1
0:00+§~[w0—|—w]~t w=wl+a-t

4-48 Equation Reference

Example:

Given: 00=0_°, w0=0_r/min, a=1.5_r/min"2, t=30_s.

Solution: ©@=10.7430_°, w=.7500_r/min.

Circular Motion (8, 5)

Equations:

v

W= — ar = — w=2mN
T

Example:

Given: r=25_in, v=2500_ft/s.

Solution: w=72000_r/min, ¢r=3000000_ft/s 2, N=11459.1559_rpm.

Terminal Velocity (8, 6)

Equation:

Example:

Given: Cd=.15, p=.0251b/ft"3, A=100000_in"2, m=1250_1b.

Solution: v=1757.4709_ft/s.

Escape Velocity (8, 7)

Equation:

Equation Reference 4-49

Example:

Given: M=1.5E23_lb, R=5000_mi.

Solution: v=3485.1106_ft/s.

Optics (9)

Variable Names and Descriptions

01 Angle of incidence

02 Angle of refraction

6B Brewster angle

Oc Critical angle

f Focallength

m Magnification

n,nl,n2 |Index of refraction

r,rl,r2 Radius of curvature

U Distance to object

v Distance to image

For reflection and refraction problems, the focal length and radius of

curvature are positive in the direction of the outgoing light (reflected

or refracted). The object distance is positive in front of the surface.

The image distance is positive in the direction of the outgoing light

(reflected or refracted). The magnification is positive for an upright

image.

Reference: 3.

4-50 Equation Reference

Law of Refraction (9, 1)

TNRTTRTR

Equation:

nl-SIN [01] — n2.SIN [92)

Example:

Given: nl/=1, n2=1.333, 61=45_°.

Solution: #2=32.0367_°.

Critical Angle (9, 2)

Equation:

Equation Reference 4-51

Example:

Given: nl=1, n2=15.

Solution: 6c=41.8103_°.

Brewster’s Law (9, 3)

The Brewster angle is the angle of incidence at which the reflected

wave is completely polarized.

Equations:

TAN[&B] - 0B + 62 = 90
n

Example:

Given: nl=1, n2=15.

Solution: §B5=56.3099_°, #2=33.6901_°.

Spherical Reflection (9, 4)

k=

—_—
—- b uSHuge
TTTTRTN

4-52 Equation Reference

Equations:

Example:

Given: u=10_cm, v=300_cm, r=19.35_cm.

Solution: m=-30, f=9.6774_cm.

Spherical Refraction (9, 5)

 u Ivl e

[SOLV

]

BN

[

URES

[

RIC[+PICT]EXIT

|

Equation:

nl n2 _n2-nl

u v r

Example:

Given: u=8_cm, v=12_cm, r=2_cm, nl=1.

Solution: n2=1.5000.

Equation Reference 4-53

Thin Lens (9, 6)

r1 is for the front surface, and r2 is for the back surface.

 =2

ri—

— U———U—3

ITTTRTW

Equations:

L, 1 1_(1][1 1] _
u' v f f " rl 12 e

Example:

Given: r1=5_cm, 72=20_cm, n=1.5, u=50_cm.

Solution: f=13.3333 __cm, v=18.1818 _cm, m=—.3636.

Oscillations (10)

Variable Names and Descriptions

w Angular frequency

@ Phase angle

0 Cone angle

a Acceleration at ¢

f Frequency

G Shear modulus of elasticity

h Cone height

4-54 Equation Reference

Variable Names and Descriptions (continued)

Moment of inertia

Polar momentof inertia

Spring constant

Length of pendulum

Mass

Time

Period

Velocity at ¢

Displacement at ¢B
2

g
o~
3
o
o
A
~

8 3 Displacement amplitude
Reference: 3.

Mass-Spring System (10, 1)

 ol

[SOLY |EGH [VAR |PIC[3PICT]ENIT |

Equations:

k 9.

w=1/ = T= ZJ w=27-f
m w

Example:

Given: £k=20_N/m, m=>5_kg.

Solution: w=2_r/s, T=3.1416_s, f=.3183_Hz.

Equation Reference 4-55

Simple Pendulum (10, 2)

mé ¥

TTTTYTT

Equations:

w=2x-f

Example:

Given: L=15_cm.

Solution: w==8.0856 _r/s, T=.7771_s, f=1.2869_Hz.

Conical Pendulum (10, 3)

Equations:

w=4/8 h:L-Cos[e] T=2"
w

w=2mx1

4-56 Equation Reference

Example:

Given: L=25_cm, h=20_cm.

Solution: §=36.899_°, T'=.8973_s, w=7.0024_r/s, f=1.1145_Hz.

Torsional Pendulum (10, 4)

G ?

J L
*

et

BT=TTTTI

Equations:

G-J 2._ = _ =" =97
v L1 T w “ T

Example:

Given: (G=1000_kPa, J=17_mm4, L=26_cm, I=50_kg*m"2.

Solution: w=1.1435E—-3_r/s, f=1.8200E—4_Hz, T=5494.4862_s.

Simple Harmonic (10, 5)

Equations:

x = xm-COS [w~t+¢] v = —w-xm-SIN [w~t+¢>)

a=—w?xm-COS [w-t—}—¢>] w=2x1

Equation Reference 4-57

Example:

Given: zm=10_cm, w=15_1/s, ¢=25_°, t=25_ps.

Solution: 7=9.0615_cm, v=—0.6344_m/s, a=—20.3884_m/s 2,

f=2.3873_Hz.

Plane Geometry (11)

Variable Names and Descriptions

g Central angle of polygon

0 Vertex angle of polygon

A Area

b Base length (Rectangle, Triangle), or

Length of semiaxis in z direction (Ellipse)

C Circumference

d Distance to rotation axis in y direction

h Height (Rectangle, Triangle), or

Length of semiaxis in y direction (Ellipse)

1,1z Moment of inertia about z axis

Id Moment of inertia in z direction at d

Iy Moment of inertia about y axis

J Polar moment of inertia at centroid

L Side length of polygon

n Number of sides

P Perimeter

r Radius

1,70 Inside and outside radii

T8 Distance to side of polygon

v Distance to vertex of polygon

v Horizontal distance to vertex

Reference: 4.

4-58 Equation Reference

Circle (11, 1)

Equations:

Example:

Given: r=5_cm, d=1.5_cm.

Solution: ('=31.4159_cm, A=78.5398cm 2, [=4908738.5_mm4,
J=9817477.0_mm"4, Id=6675884.4_mm4.

Ellipse (11, 2)

d
x

 — b i
_,—"’"'P-’

ETTTTRTRT

Equation Reference 4-59

Equations:

 A=mbh C=27-

Example:

Given: b=17.85_um, h=78.9725_puin, d=.00000012_ft.

Solution: A=1.1249E—6_cm2, C'=7.9805E—3_cm,

I=1.1315E—10_mm"4, J=9.0733E—9_mm"4, Id=1.1330E—10_mm 4.

Rectangle (11, 3)

 b
(30LV]ERN |Viks |PIC_L+PICT [EAIT

Equations:

b.h3

A=bh P=2b+2h -
12

J:%~[b2+h?] Id=TI+A-d2

Example:

Given: b=4_chain, h=7_rd, d=39.26_in.

Set guesses for I, J, and Id in km™4.

Solution: A=28328108.2691cm2, P=23134.3662_cm,

1=2.9257E—7_km4, J=1.8211E—6_km4, [d=2.9539E—7_km4.

4-60 Equation Reference

Regular Polygon (11, 4)

L B F

4 L
Fsk B+

n=6

[0yERN[YaksPIC[3PICT]ERIT

Equations:

1 5 L
I -

A= 4 130 P=n1L rs = 2180

TAN [7) TAN [;]
n n

L

v = e 6=""2 15 g = 3%
SIN [*] n n

n

Example:

Given: n=8, [=.5_yd.

Solution: A=10092.9501 c¢m 2, P=365.7600_cm, rs=55.1889_cm,
rv=59.7361 _cm, #=135_°, 3=45_°.

Circular Ring (11, 5)

TTTTRTR

Equation Reference 4-61

Equations:

A:7T~[r02—ri2] I= . [ro4 —ri4]

J:g~[ro4—ri4] d=1+Ad?

e

Example:

Given: ro=4_p, ri=25.0_kA, d=.1_mil.

Solution: A=3.0631E—7_cm2, [=1.7038E—10_mm4,

J=3.4076E—10_mm4, Id=3.0648E—10_mm"4.

Triangle (11, 6)

Equations:

b-=22 P=bt /2t b2t /(b—v)? + b2

b-h? b-h 2 2
IX—W Iy = 36'[b —b~v+V]

J:%-[h2+b2—b-v+v2] 1d = Ix + A-d’

4-62 Equation Reference

Example:

Given: h=4.33012781892_in, v=2.5_in, P=15_in, d=2_in.

Solution: 6=5.0000_in, /z=11.2764in"4, [y=11.2764in "4,

J=22.5527_in"4, A=10.8253_in"2, Id=54.5776_in"4.

Solid Geometry (12)

Variable Names and Descriptions

A Total surface area

b Base length

d Distance to rotation axis in z direction

h Height in z direction (Cone, Cylinder), or

Height in y direction (Parallelepiped)

I, Izz Moment of inertia about z axis

Id Moment of inertia in z direction at d

Izz Moment of inertia about z axis

m Mass

r Radius

t Thickness in z direction

V Volume

Reference: 4.

Equation Reference 4-63

Cone (12, 1)

TITTAi

Equations:

V:Z.lfl.h A:71-~r2—|—71'-r-\/r2—}-fih2
3

_ 3 2 3 2 _ 2Ixx = %~m~r + 8—0~m-h Izz = Eqn-r

Id = Ixx + m-d?

Example:

Given: r=7_cm, h=12.5_cm, m=12.25kg, d=3.5_cm.

Solution: V=641.4085_cm"3, A=468.9953_cm"2, lzz=0.0162_kg+m2,
22=0.0180_kg+m "2, 1d=0.0312_kg+m 2.

Cylinder (12, 2)

TTTTXT

4-64 Equation Reference

Equations:

V=rr12h A=2712+271-h

1 1 1
Ixx = Zom~r2—|— Eqn-hg Izz = §~m~r2

Id = Ixx + m-d?

Example:

Given: r=8.5_in, h=65_in, m=12000_lbs, d=2.5_in.

Solution: V=14753.7045_in"3, A=3925.4200_in"2,

Izz=4441750_lb*in"2, Iz2=433500 _lb*in"2, Id=4516750_lb*in"2.

Parallelepiped (12, 3)

TNTAY

Equations:

V = bh-t A=2. [b~h+b-t+h»t]

1 2 2 2I:fiqn(h —i—t] Id=1+m-d

Equation Reference 4-65

Example:

Given: b=36_in, h=12_in, t=72_in, m=83_lb, d=T_in.

Solution: V=31104_in"3, A=7776_in"2, 1=36852_lb*in"2,

Id=40919_lbx*in" 2.

Sphere (12, 4)

Equations:

4 2
V:g-w-r?’ A=4.71? I:gqn-r?’ Id=1+m-d?

Example:

Given: d=14_cm, m=3.75_kg, Id=486.5_lb*in"2.

Solution: r=21.4273_cm, V=41208.7268_cm"3, A=5769.5719_cm 2,
1=0.0689_kg+m2.

4-66 Equation Reference

Solid State Devices (13)

Variable Names and Descriptions

aF Forward common-base current gain

aR Reverse common-base current gain

¥ Body factor

A Modulation parameter

un Electron mobility

op Fermi potential

AL Length adjustment (PN Step Junctions), or
Channel encroachment (NMOS Transistors)

AW Width adjustment (PN Step Junctions), or

Width contraction (NMOS Transistors)

a Channel thickness

Ajg Effective junction area

BV Breakdown voltage

Cy Junction capacitance per unit area

Coz Silicon dioxide capacitance per unit area

E1 Breakdown-voltage field factor

Emaz Maximumelectric field

G0 Channel conductance

gds Output conductance

gm Transconductance

1 Diode current

IB Total base current

ic Total collector current

ICEO Collector current (collector-to-base open)

1CO Collector current (emitter-to-base open)

1CSs Collector-to-base saturation current

ID,IDS Drain current

IE Total emitter current

IES Emitter-to-base saturation current

Equation Reference 4-67

Variable Names and Descriptions (continued)

Le

NA

ND

tox

Va

VBC

VBE

Vbi

VBS

VCFEsat

VDS

VDsat

VGS

Vi

Vio

We

zd

zdmaz

)

Transistor saturation current

Current density

Saturation current density

Drawn mask length (PN Step Junctions), or

Drawn gate length (NMOS Transistors), or

Channel length (JFETs)

Effective gate length

P-side doping (PN Step Junctions), or
Substrate doping (NMOS Transistors)

N-side doping (PN Step Junctions), or
N-channel doping (JFETs)

Temperature

Gate silicon dioxide thickness

Applied voltage

Base-to-collector voltage

Base-to-emitter voltage

Built-in voltage

Substrate voltage

Collector-to-emitter saturation voltage

Applied drain voltage

Saturation voltage

Applied gate voltage

Threshold voltage

Threshold voltage (at zero substrate voltage)

Drawn mask width (PN Step Junctions), or

Drawn width (NMOS Transistors), or
Channel width (JFETs)

Effective width

Depletion-region width

Depletion-layer width

Junction depth
References: 5, 8.

4-68 Equation Reference

PN Step Junctions (13, 1)

These equations for a silicon PN-junction diode use a “two-sided

step-junction” model—the doping density changes abruptly at the
Junction. The equations assume the current density is determined
by minority carriers injected across the depletion region and the PN
Junction is rectangular in its layout. The temperature should be
between 77 and 500 K. (See “SIDENS” in chapter 3.)

4—- Va— I

néh\\n
3 xd e

EMAR

TITTTT

 Equation Reference 4-69

Equations:

q NA ND

o i o (Vbi—Va]
1= xd fax = xd

) q-Va

es1-€0-E1 1 1 kT

Toq (5atwo) J=dsofe =

Aj = [W+2.Aw] : [L—I—?AL]

4 [W+L+2~AW+2~AL] X 4 207x

[=J Aj

Example:

Given: ND=1E22_cm-3, NA=1E15_1/cm3, T=26.85_°C,

Js=1E—6_pA/cm2, Va=—-20_V, F1=33E5_V/cm, W=10_g,

AW=1_p, L=10_p, AL=1_p, j=2_p.

Solution: Vbi=.9962_V, zd=>5.2551_pu, Cj=2005.0141_pF/cm 2,

Emaz=79908.5240_V/cm, BV=358.0825_V, J=—1.0E—12_A/cm"2,

Aj=3.1993E—6_cm"2, I=—3.1993E—15_mA.

4-70 Equation Reference

NMOS Transistors (13, 2)

These equations for asilicon NMOS transistor use a two-port

network model. Theyinclude linear and nonlinear regionsin

the device characteristics and are based on a gradual-channel
approximation (the electric fields in the direction of current flow are
small compared to those perpendicular to the flow). The drain current
and transconductance calculations differ depending on whether the
transistoris in the linear, saturated, or cutoff region. The equations
assume the physical geometry of the device is arectangle, second-order
length-parameter effects are negligible, short-channel, hot-carrier, and
velocity-saturation effects are negligible, and subthreshold currents are
negligible. (See “SIDENS Function” in chapter 3.)

[ZOLYEGN[WARSRIC[*PICT]ERIT

Equation Reference 4-71

Equations:

 We =W - 2.AW Le=1L-2-AL Cox =

We
2

IDS = Cox-pn- [VDS
Le

] : [(VGS—Vt)-VDS—] (14 A-VDS)

\2-es1-€0-q-NA

T= Cox

Vi = Vi0+ 7 - [/2-ABS(¢p) + ABS(VBS) — \/2~ABS(¢p)]

—k-
op = —T—LN [E] gds = IDS- A

q ni

gm = \/Cox~/m- [%] . (1+)\-VDS] -2-1DS

VDsat = VGS — Vt

Example:

Given: toz=700_A, NA=1E15_1/cm3, pun=600_cm2/(Vxs),
T=26.85_°C, Vt0=.75_V, VGS=5_V, VBS=0_V, VDS=5_V,
W=25_p, AW=1_p, L=4_m, AL=.75_p, A=.05_1/V.
Solution: We=23_p, Le=2.5 pu, Cor=49330.4750_pF/cm"2,

v=.3725_V .5, ¢p=—2898_V, Vi=.75_V, VDsat=4.25_V,

IDS=3.0741_mA, gds=1.5370E—4_S, gm=1.4466_mA/V.

4-72 Equation Reference

Bipolar Transistors (13, 3)

These equations for an NPN silicon bipolar transistor are based
on large-signal models developed by J.J. Ebers and J.L. Moll. The
offset-voltage calculation differs depending on whether the transistor
is saturated or not. The equations also include the special conditions
when the emitter-base or collector-base junction is open, which are
convenient for measuring transistor parameters.

VCE

IC I
le— E

E
M P H 1 IE

TNTTeT

Equations:

q-VBE q'VBC

IE=-IES-|e 7 _—1]| 4ar1CS-|e ¥T _;

q-VBC q-VBE

1IC=-1CS- e " _1| +ar1Es. |e T _;

IS = oF-IES IS = aR-ICS IB +IE +1IC = 0

1CO = ICS- [l—aF~aR] ICEO = 1€0
1—«aF

IC. 1+ (1 - aR]
VOEsat = TN 1B

q J

Equation Reference 4-73

Example:

Given: JES=1E—5_nA, ICS=2E—5_nA, T=26.85_°C, aF'=.98,

aR=.49, IC=1_mA, VBC=-10_V.

Solution: VBE=.6553_V, 1S=0.0000098_nA, ICO=.000010396_nA,

ICE0=.0005198_nA, IE=—1.0204_mA, IB=.0204_mA, VCEsat=0_V.

JFETs (13, 4)
These equations for a silicon N-channel junction field-effect transistor

(JFET) are based on the single-sided step-junction approximation,

which assumes the gates are heavily doped compared to the channel

doping. The drain-current calculation differs depending on whether

the gate-junction depletion-layer thickness is less than or greater than

the channel thickness. The equations assume the channel is uniformly

doped and end effects (such as contact, drain, and source resistances)

are negligible. (See “SIDENS” in chapter 3.)

 ys=0 vGs vps

TRTR
Ne JLP JIL_He)

K—L—H

TWTGT=T

4-74 Equation Reference

Equations:

. ND
Vbi = k*T-LN [‘]

q ni

2 o <0deax:,/%. [Vbi—VGS+VDs]

a-W]

L

 GO:q‘ND~un-[

2 2 -¢es1-¢e0
D =G0 DS—fW/‘1 GO [V 3 4 ND - a2

3 3

[[Vbi—VGS—i—VDS] 2 _ [Vbi—VGS] 2]]

q-ND-a? . . q-ND-a?
=-= — x t=Vbi— ——VDsat 5 esi e (Vbi— VGS) Vt

=

Vbi 9 esi <0

gm = GO - [1 —

Example:

Given: ND=1E16_1/cm"3, W=6_u, a=1_p, L=2_p,
pn=1248cm2/(Vxs), VGS=—4_V, VDS=4_V, T=26.85_°C.

Solution: Vbi=.3493_V, zdmazr=1.0479_p, G0=5.9986E—4_8S,
ID=2268mA, VDsat=3.2537_V, Vi=—7.2537_V, gm=.1462_mA/V.

Equation Reference 4-75

Stress Analysis (14)

Variable Names and Descriptions

oyl

Tmaz

Telyl

TZY

Opl

>
~N

o=
"
U
b
«
%
@
@
b
?
%

Elongation

Normal strain

Shear strain

Angle of twist

Normal stress

Maximum principal normal stress

Minimum principal normal stress

Normal stress on plane of maximum shear stress

Normal stress in z direction

Normal stress in rotated-z direction

Normal stress in y direction

Normal stress in rotated-y direction

Shear stress

Maximum shear stress

Rotated shear stress

Shear stress

Rotation angle

Angle to plane of maximum principal normal stress

Angle to plane of minimum principal normal stress

Angle to plane of maximum shear stress

Area

Modulus of elasticity

Shear modulus of elasticity

Polar moment of inertia

Length

Load

Radius

Torque

Reference: 2.

4-76 Equation Reference

Normal Stress (14, 1)

 P P
—L —lak

 IETTTTRYT

Equations:

c=E-«¢ €= % o= AE

Example:

Given: P=40000_1bf, L=1_ft, A=3.14159265359 _in" 2, E=10E6_psi.

Solution: $=0.0153 _in, €¢=0.0013, 0=12732.3954 _psi.

Shear Stress (14, 2)

k—L— @

TNTTTRiI

Equations:

r.¢
T'I'T=Gy TS T

Equation Reference 4-77

Example:

Given: L=6_ft, r=2_in, J=10.4003897419_in"4, G=12000000_pst,

7=12000_psi.

Solution: T=5200.1949_ft+Ibf, $=2.0626_°, y=5.7296E-2_°.

Stress on an Element (14, 3)

Stresses and strains are positive in the directions shown.

Y Y1 ¥ |t-Hl'n‘1 w1
\

T gy Y1 | G‘Hl

l Tyu =2y
| TH \\N ld__.-'

TTTT

Equations:

oxl = ”X;7TCOS(2:0) + mxy SIN(2-0)

oxl + oyl =ox+ oy

rxlyl = — (oX— oy] . SIN(2-0) + Txy-COS(2-0)

Example:

Given: oz=15000_kPa, ocy=4755_kPa, rzy=7500_kPa, §=30_°.

Solution: oz!=18933.9405_kPa, ocyl=821.0595_kPa,

rrlyl=—686.2151_kPa.

4-78 Equation Reference

Mohr’s Circle (14, 4)

Equations:

. , _ 2Ulfia\—;(r)‘ [O'XZO'] p—

ocl+02=o0x+o0y

SIN(2:6pl) = ——=¥
2

[(rx:oy] +rxy?

1—02
fp2 = Opl + 90 rmax = = 5 7

fs = Opl — 45 cavg = UX;L 7y

Example:

Given: 0x=-5600_psi, cy=—18400_psi, 72y=4800_psi.

Solution: o1=-4000_psi, 02=—20000_psi, fp1=18.4349_°,
0p2=108.4349 °, maz=8000_psi, #5s=—26.5651_°, cavg=—12000_psi.

Equation Reference 4-79

Waves (15)

Variable Names and Descriptions

@
o
A
~
T

&
>

sm

v

T

Y

ym

Sound level

Wavelength

Angular frequency

Density of medium

Bulk modulus of elasticity

Frequency

Sound intensity

Angular wave number

Longitudinal displacement at z and ¢

Longitudinal amplitude

Time

Speed of sound in medium (Sound Waves), or

Wave speed (Transverse Waves, Longitudinal Waves)

Position

Transverse displacement at z and 1

Transverse amplitude

Reference: 3.

Transverse Waves (15, 1)

Equations:

y = ym-SIN (k-x—w~t] v=2Af k=

4-80 Equation Reference

Example:

Given: ym=06.37_cm, k=32.11_r/cm, £=.03_cm, w=7000_r/s, {=1_s.

Solution: f=1114.0846_Hz, A=.0020_cm, y¥=2.6655_cm,
v=218.0006 _cm/s.

Longitudinal Waves (15, 2)

Equations:

2-T
N w=2mrfs = sm-COS (k-x—w~t] N

Example:

Given: sm=6.37_cm, k=32.11_r/cm, r=.03_cm, w=7000_r/s, t=1_s.

Solution: s=5.7855_cm, v=2.1800_m/s, A=.1957_cm,
f=1114.0846_Hz.

Sound Waves (15, 3)

Equations:

I
£ =10-LOG [E] w=27f

Example:

Given: sm=10_cm, w=6000_r/s, B=12500_kPa, p=65_kg/m"3.

Solution: v=438.5290m/s, I=5130789412.97W/m2,
B$=217.1018_dB, f=954.9297Hz.

Equation Reference 4-81

References

1. Dranchuk, P.M., R.A. Purvis, and D.B. Robinson. “Computer

Calculations of Natural Gas Compressibility Factors Using the

Standing and Katz Correlation,” In Institute of Petroleum Technical

Series, no. IP 74-008. 1974.

2. Gere, James M., and Stephen P. Timoshenko. Mechanics of

Materials, 2d ed. PWS Engineering, Boston, 1984.

3. Halliday, David, and Robert Resnick. Fundamentals of Physics,

3d ed. John Wiley & Sons, 1988.

4. Meriam, J.L., and L.G. Kraige. Engineering Mechanics, 2d ed. John

Wiley & Sons, 1986.

5. Muller, Richard S., and Theodore 1. Kamins. Device Electronics for

Integrated Cicuits, 2d ed. John Wiley & Sons, 1986.

6. Serghides, T.K. “Estimate Friction Factor Accurately,” In Chemecal

Engineering, Mar. 5, 1934.

7. Siegel, Robert, and John Howell. Thermal Radiation Heat Transfer,

Vol. 1. National Aeronautics and Space Administration, 1968.

8. Sze, S. Physics of Semiconductors, 2d ed. John Wiley & Sons, 1981.

9. Welty, Wicks, and Wilson. Fundamentals of Momentum, Heat and

Mass Transfer. John Wiley & Sons, 1969.

4-82 Equation Reference

A
Error and Status Messages

In the following tables, messages are first arranged alphabetically by
name and then numerically by message number.

Messages Listed Alphabetically

Message Meaning # (hex)

Alarm acknowledged. 619

No unknowns to slove for. E405

Calculator is autoscaling z- 610
and/or y- axis.

Indicates Server mode active. CoC

One or more stack arguments 202
were incorrect type for

operation.

Argument value out of 203
operation’s range.

Guess(es) supplied to HP Solve| A0l
application or ROOT lie

outside domain of equation.
Error and Status Messages A-1

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Computed packet checksum Co1

doesn’t match checksum in

packet.

Hull Attempted to edit a string 102

containing character

(character code 0).

Attempted to store a variable 129

name into itself.

Indicates verifying IR or serial COA

connection.

HP Solve application or ROOT A02

returned same value at every

sample point of current

equation.

“5TE copied selected 623

equation to stack.

Identifies current equation. 608

MatrixWriter application is 504

deleting a column.

MatrixWriter application is 503

deleting a row.

Name of existing directory 12A

variable used as argument.

Attempted to store a directory 002

into itself.

Lo No data in current catalog 60D

(Equation, Statistics, Alarm).

The stack contains no data. C15

A-2 Error and Status Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

alarm. Alarm entry prompt. 61A
o

Store new equation in EQ. 60A

Zoomoperations prompt. 622

E@ must contain at least two E403

equations (or programs) and

two variables.

Bt ramum Result returned by HP Solve A06

application or ROOT is an

extremum rather than a root.

A program containing HALT 126

executed while MatrixWriter

application, DRAW, or HP

Solve application active.

Identifies I/O setup menu. 61C

Multiple-Equation Solver E406

command attempted during

MROOT execution.

Implicit parentheses off. 207

Implicit parentheses on. 208

®), (V), or pressed 206

before all function arguments

supplied.

Error and Status Messages A-3

Messages Listed Alphabetically (continued)

 dimensions.

Message Meaning # (hex)

Attempted unit conversion B02

with incompatible units.

Imfi Math exception: Calculation 305

such as 1/0 infinite result.

sL MatrixWriter application is 506

inserting a column.

MatrixWriter application is 505

inserting a row.

Not enough free memory to 001

execute operation.

A Statistics command was 603

executed when YDAT did not

contain enough data points for

calculation.

The HP Solve application or A03

ROOT was interrupted by

(CancED),
returned object of 502

wrong type for current matrix.

HP 48 does not recognize data 008

on plug-in card.

Trslicd Date Date argument not real D01

number in correct format, or

was out of range.

Irsalicd Defindition Incorrect structure of equation 12C

argument for DEFINE.

Array argument had wrong 501

A-4 Error and Status Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

I,i
Trecalid IOPAE

Imnvalid FRETRRE

Irwalid PTY

ITricalid Fepeat

Attempted operation from

PICTURE FCN menu when

FQ did not contain algebraic,

or, attempted DRAW with

CONIC plot type when EQ

did not contain algebraic.

IOPAR not a list, or one or

more objects in list missing or

invalid.

Mpar variable not created by

MINIT.

Received illegal filename, or

server asked to send illegal

filename.

PPAR not alist, or one or

more objects in list missing or

invalid.

PRTPAR not a list, or one or

more objects in list missing or

invalid.

Plot type invalid for current

equation.

Alarm repeat interval out of

range.

Invalid command received

while in Server mode.

HP 48 unable execute (ENTER),

OBJ—, or STR— due to

invalid object syntax.

607

C12

12E

C13

620

D03

106

Error and Status Messages A-5

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Time argument notreal

number in correct format, or

out of range.

Unit operation attempted with

invalid or undefined user unit.

Type or structure of object

executed as user-defined

function was incorrect.

Statistics command executed

with invalid object stored in

YDAT.

Non-linear curve fit attempted

when YDAT matrix contained

a negative element.

Non-linear curve fit attempted

when YDAT matrix contained

a 0 element.

YPAR not list, or one or more

objects in list missing or

invalid.

A plug-in card conflicts with

an equation library variable.

Remove the card to continue.

()(CMD) pressed while that

recovery feature disabled.

(2»)(UNDO) pressed while that
recovery feature disabled.

()(ARG) executed while that

recovery feature disabled.

D02

BO1

103

601

606

604

E303

D
Y
< o
t

A-6 Error and Status Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

System batteries too low to Cl14

safely print or perform I/0.

HP 48 memory was cleared. 005

Femoryg

Execution of | (where) 13C
attempted to assign value to

variable of integration or

summation index.

Mame Donfd1

Name equation and store it in 60B

EQ.

Name statistics data and store 621

it in YDAT.

Math exception: Calculation 302

returned negative, non-zero

result greater than —MINR.

=0LYE, DRAW, or RCEQ 104

executed with nonexistent FQ.

Plot and HP Solve application 609

status message.

No picture is included for the E304

selected equation.

Insufficient free memory in 00B

specified RAM port.

Not enough free memory to 101

save copy of the stack. LAST

STACK is automatically

disabled.

Error and Status Messages A-7

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Stack objects displayed by 131

type only due to low memory

condition.

No data stored in YDAT. 60F

Attempted to purge non-empty 12B

directory.

Execution of HP Solve 12F

application, ROOT, DRAW, or

f returned result other than

real number or unit.

AL arm Alarm list did not contain D04

alarm specified by alarm

command.

Statistics command executed 602

when YDAT did not exist.

Sender sent an EOF (Z) packet COF
with a “D” in the data field.

Attempted PURGE or STO 009

into a backup object when its

stored object was in use.

Odeot

Attempted to access a 00C

nonexistent backup object or

library.

Function value, root, 61F

extremum, or intersection was

not visible in current display.

A-8 Error and Status Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Ot of

flemorug

One or more objects must be

purged to continue calculator

operation.

Math exception: Calculation

returned result greater in

absolute value than MAXR.

Indicates packet number

during send or receive.

Received bytes’” parity bit

doesn’t match current parity

setting.

Label introducing current plot

type.

Possible I/R or serial hardware
failure. Run self-test.

Used a port command on an

empty port, or one containing

ROM instead of RAM.

Attempted to execute a server

command that itself uses the

1/0O port.

Math exception: Calculation

returned positive, non-zero

result less than MINR.

Calculator turned on following

a powerloss. Memory may

have been corrupted.

135

303

C10

C05

301

006

Error and Status Messages A-9

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Frocsssing Command Indicates processing of host Cl11

command packet.

Received apacket whose length Co7

was shorter than a null packet.

Maximum packet length

parameter from other machine

is illegal.

Kermit: More than 255 bytes Co4

of retries sent before HP 48

received another packet.

SRECV: Incoming data

overflowed the buffer.

UART overrun or framing C03

€ITor.

B Identifies object name while COE

receiving.

Indicates number of retries COB

while retrying packet exchange.

 Select statistics curve fitting 614

model.

Select plot type. 60C

Select alarm repeat interval. 61B

Identifies object name while COD

sending.

A-10 Error and Status Messages

Messages Listed Alphabetically (continued)

Meaning # (hex)

L0

Timsout

Too Faw Hrgums

oo Marg Urnkno

HP Solve application or ROOT

unable to find point at which

current equation evaluates to

zero, but did find two

neighboring points at which

equation changed sign.

Only one equation supplied to

Multiple-Equation Solver. Use

HP Solve application.

Printing to serial port:

Received XOFF and timed out

waiting for XON.

Kermit: Timed out waiting for

packet to arrive.

Command required more

arguments than were available
on stack.

Multiple Equation Solver can’t

calculate a value given the

current knowns. Supply

another value or add an

equation.

Ten successive attempts to

receive a good packet were

unsuccessful.

PROOT is unable to determine

all roots of the polynomial.

ISOL failed because specified

name absent or contained in

argument a function with no

inverse.

A05

E402

€02

201

E404

C06

€001

130

Error and Status Messages A-11

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Executed or recalled local 003

name for which corresponding

local variable did not exist.

Executed or recalled global 204

name for which corresponding

variable does not exist.

Calculation such as 0/0 304
generated mathematically

undefined result.

Executed an XLIB name when 004

specified library absent.

Label introducing current 007

status message.

User-defined function 128

evaluated with an incorrect

number of parenthetical

arguments.

FRROn Identifies zoom option. 627

Identifies zoom option. 625

Identifies zoom option. 624

Identifies zoom option. 626

Result returned by the HP A04

Solve application or ROOT is a

root (a point at which current

equation evaluates to zero).

Identifies no execution action 61E

when E % pressed.

A-12 Error and Status Messages

Messages Listed Numerically

(hex) | Message

General Messages

002

003

004

005

006

008

009

00A

00B

00C

101

102

103

104

106

124

125

126

128

129

12A

12B

12C

12E

12F

130

131

001

Ty

 : :
ok

rompts
 135

13C Out-of-Memory P

Error and Status Messages A-13

Messages Listed Numerically (continued)

(hex) ‘ Message

Stack Errors

201

202

203

204

205 L

206

207

208

Floating-Point Errors

301 P ive U]

302

303

304

305

503

504

505

506

601

602

603

604

605

606

A-14 Error and Status Messages

Messages Listed Numerically (continued)

(hex) 1 Message

Plot, I/0, Time and HP Solve Application Messages

607 Imuwalicd EB
608 _

609

60A

60B

60C

60D

60F

610

614

619

61A

61B

61C

61D .

61E "
61F .

620

621

622

623

624

625

626

627

A01

A02

A03

A04

A05

A06 Ewd rerum

 4
Flaiimrmg]

Error and Status Messages A-15

Messages Listed Numerically (continued)

(hex) ' Message

Unit Management

B01

B02

C01

€02

C03

Co4

C05

€06

Co7

C08

€09

CO0A

C0B

CoC

CO0D

COE

COF

C10

Cl1

C12

C13

C14

C15

C17
A-16 Error and Status Messages

Messages Listed Numerically (continued)

(hex) l Message

Time Messages

D01

D02

D03

D04

Equation Library Messages
 E303

E304

LAET

Multiple-Equation Solver Messages

E401 Irmal

E402

E403

E404

E405

E406

Tid

Miscellaneous Messages
 70000 ’ (user-defined message created with DOERR)

Error and Status Messages A-17

Table of Units

HP 48 Units

Unit (Full Name) Value in SI Units

a (are) 100 m?

A (ampere) 1A

acre (acre)

arcmin (minute of arc)

arcs (second of arc)

atm (atmosphere)

au (astronomical unit)

A (Angstrom)

b (barn)

bar (bar)

bbl (barrel)

Bq (becquerel)

Btu (international table Btu)

bu (bushel)

°C (degree Celsius)

¢ (speed of light)

C (coulomb)

cal (calorie)

cd (candela)

chain (chain)

Ci (curie)

ct (carat)

cu (US cup)

° (degree)

d (day)

4046.87260987 m?

2.90888208666 x 107 r

4.8481368111 x 10°® r

101325 kg/m-s?

1.495979 x 10! m

1x 1010 m

1 x 10728 m?

100000 kg/m-s?

.158987294928 m®

11/s

1055.05585262 kg-m? /s?

.03523907 m®

1 K or 274.15 K

299792458 m/s

1As

4.1868 kg-m? /s?

1cd

20.1168402337 m

3.7 x 1010 1/s

.0002 kg

2.365882365 x 10~ * m?

1.74532925199 x 10~ 2 r

86400 s

Table of Units B-1

HP 48 Units (continued)

Unit (Full Name) Value in SI Units

dyn (dyne)

erg (erg)
eV (electron volt)

F (farad)

°F (degrees Fahrenheit)

fath (fathom)

fbm (board foot)

fc (footcandle)

Fdy (faraday)

fermi (fermi)

flam (footlambert)

ft (international foot)

ftUS (survey foot)

g (gram)
ga (standard freefall)

gal (US gallon)

galC (Canadian gallon)

galUK (UK gallon)

gf (gram-force)

grad (gradient)

grain (grain)

Gy (gray)
H (henry)

h (Hour)

hp (horsepower)

Hz (hertz)

in (inch)

inHg (inches of mercury, 0°C)

inH20 (inches of water, 60°F)

J (joule)

K (kelvins)

kg (kilogram)

.00001 kg-m/s?

.0000001 kg-m? /s>

1.60217733 x 10712 kg:m?/s?

1 A%.s* /kg.m?

0.555555555556 K or

255.927777778 K

1.82880365761 m

.002359737216 m?

10.7639104167 cd-sr/m?

96487 A-s

1x 10715 m

3.42625909964 cd/m?

.3048 m

.304800609601 m

.001 kg

9.80665 m/s?

.003785411784 m>

.00454609m?

.004546092 m?

.00980665 kg-m/s>

1.57079632679 x 102 r

.00006479891 kg

1 m?/s?

1 kg-m?/A2.s2

3600 s

745.699871582 kg-m? /s>

1/s

.0254 m

3386.38815789 kg/ms>

248.84 kg/m-s?

1 kgm?/s?

1K

1 kg

B-2 Table of Units

HP 48 Units (continued)

Unit (Full Name) Value in SI Units

kip (kilopound-force)

knot (nautical miles per hour)

kph (kilometers per hour)

1 (liter)

lam (lambert)

1b (avoirdupois pound)

1bf (pound-force)

1bt (troy pound)

1m (lumen)

1x (lux)

lyr (light year)

m (meter)

1+ (micron)

mho (mho)

mi (international mile)

mil (mil)

min (minute)

miUS (US statute mile)

mmHg (millimeter of mercury (torr), 0°C)

mol (mole)

mph (miles per hour)

0 (newton)

mmi (nautical mile)

i3 (ohm)

oz (ounce)

o0zfl (US fluid ounce)

ozt (troy ounce)

0zUK (UK fluid ounce)

P (poise)

Pa (pascal)

pc (parsec)

pdl (poundal)

ph (phot)

pk (peck)

4448.22161526 kg-m/s>

.514444444444 m/s

277TTITTTTI8 mfs

.001 m*

3183.09886184 cd/m?

45359237 kg

444822161526 kg-m/s>

.3732417216 kg

1 cd-sr

1 cd-sr/m?

9.46052840488 x 10'° m

1m

1x 107%m

1 A?.s% [kg-m?

1609.344 m

.0000254 m

60 s

1609.34721869 m

133.322368421 kg/m-s?

1 mol

44704 m/s

1 kg-m/s?

1852 m

1 kgm?/A2.s°

.028349523125 kg

2.95735295625 x 107° m?

.0311034768 kg

2.8413075 x 107° m?

.1 kg/m-s

1 kg/m-s®

3.08567818585 x 101 m

.138254954376 kg-m/s?

10000 cd-sr/m?

.0088097675 m>

Table of Units

HP 48 Units (continued)

Unit (Full Name) Value in SI Units

psi (pounds per square inch)

pt (pint)

gt (quart)

r (radian)

R (roentgen)

°R (degrees Rankine)

rad (rad)

rd (rod)

rem (rem)

s (second)

S (siemens)

sb (stilb)

slug (slug)

sr (steradian)

st (stere)

St (stokes)

Sv (slevert)

t (metric ton)

T (tesla)

tbsp (tablespoon)

therm (EEC therm)

ton (short ton)

tonUK (long ton (UK))

torr (torr (mmHg))

tsp (teaspoon)

u (unified atomic mass)

V (volt)

W (watt)

Wb (weber)

yd (international yard)

yr (year)

6894.75729317 kg/m-s?

.000473176473 m®

.000946352946 m?

1r

.000258 A-s/kg

0.555555555556 K

.01 m? /s?

5.02921005842 m

.01 m? /s2

1s

1 A%.s3 /kg-m?

10000 cd/m?

14.5939029372 kg

1 sr

1 m?

.0001 m? /s

1 m?/s?

1000 kg

1 kg/A-s?

1.47867647813 x 107> m®

105506000 kg-m? /s?

907.18474 kg

1016.0469088 kg

133.322368421 kg/m-s?

4.92892159375 x 107% m?

1.6605402 x 10727 kg

1 kg-m?/A-s?

1 kg-m?/s?

1 kgm?/A-s?

9144 m

31556925.9747 s

B-4 Table of Units

C
System Flags

This appendix lists the HP 48 system flags. You can set, clear, and

test all flags. The default state of the flags is clear—except for the

Binary Integer Wordsize flags (flags —5 through —10).

System Flags

Flag Description

—1 Principal Solution.

Clear: QUAD and ISOL return a result representing all

possible solutions.

Set: QUAD and ISOL return only the principal solution.

—2 Symbolic Constants.

Clear: Symbolic constants (e, i, 7, MAXR, and MINR)

retain their symbolic form when evaluated, unless the

Numerical Results flag —3 is set.

Set: Symbolic constants evaluate to numbers, regardless of

the state of the Numerical Results flag —3.

—3 Numerical Results.

Clear: Functions with symbolic arguments, including

symbolic constants, evaluate to symbolic results.

Set: Functions with symbolic arguments, including symbolic

constants, evaluate to numbers.

—4 Not used.

—5 Binary Integer Wordsize.

thru Combined states of flags —5 through —10 set the wordsize

—10 |from 1 to 64 bits.

System Flags C-1

System Flags (continued)

Flag Description

—11 Binary Integer Base.
and HEX: —11 set, —12 set. DEC: —11 clear, —12 clear.

=12 |OCT: —11 set, —12 clear. BIN: —11 clear, —12 set.

—13 Not used.

—14 Financial Payment Mode.

Clear: TVM calculations assume end-of-period payments.

Set: TVM calculations assume beginning-of-period payments.

—15 Rectangular: —16 clear.

and Polar/Cylindrical: —15 clear, —16 set.
—16 Polar/Spherical: —15 set, —16 set.

—17 Degrees: —17 clear, —18 clear.

and |Radians: —17 set.

—18 Grads: —17 clear, —18 set.

—19 Clear:—V2 and creates a 2-dimensional vector from 2 real

numbers.

Set:—V2 and creates a complex number from 2 real numbers.

—20 Underflow Exception.

Clear: Underflow exception returns 0, sets flag —23 or —24.

Set: Underflow exception treated as an error.

—21 Overflow Exception.

Clear: Overflow exception returns +9.99999999999FE499 and
sets flag —25.

Set: Overflow exception treated as an error.

—22 |Infinite Result Exception.

Clear: Infinite result exception treated as an error.

Set: Infinite result exception returns +9.99999999999E499

and sets flag —26.

—23 Negative Underflow Indicator.

—24 Positive Underflow Indicator.

—25 Overflow Indicator.

—26 Infinite Result Indicator. When an exception occurs, corresponding flag (—23 through

—26) is set only if the exception is not treated as an error.

C-2 System Flags

System Flags (continued)

Flag Description

—27 Display of symbolic complex numbers.

Clear: Displays symbolic complex numbers in coordinate

form (ie. 'amauwi).

Set: Displays symbolic complex numbers using *i ' (i.e.

—28 Simultaneous Plotting of Multiple Functions.

Clear: Multiple equations are plotted serially.

Set: Multiple equations are plotted simultaneously.

—29 Draw Axes.

Clear: Axes are drawn for two-dimensional and statistical

plots.

Set: Axes are not drawn for two-dimensional and statistical

plots.

—30 |Not used.

—31 Curve Filling.

Clear: Curve filling between plotted points enabled.

Set: Curve filling between plotted points suppressed.

—32 Graphics Cursor.

Clear: Graphics cursor always dark.

Set: Graphics cursor dark on light background and light on

dark background.

—33 |1/0O Device.

Clear: 1/O directed to serial port.

Set: 1/0 directed to IR port.

—34 Printing Device.

Clear: Printer output directed to IR printer.

Set: Printer output directed to serial port if flag —33 is clear.
 —35 |I/O Data Format.

Clear: Objects transmitted in ASCII form.

Set: Objects transmitted in binary (memory image) form.
System Flags C-3

System Flags (continued)

Flag Description

—36 I/O Receive Overwrite.

Clear: If file name received by HP 48 matches existing

HP 48 variable name, new variable name with number

extension is created to prevent overwrite.

Set: If file name received by HP 48 matches existing HP 48
variable name, existing variable is overwritten.

—37 Double-Spaced Printing.

Clear: Single-spaced printing.

Set: Double-spaced printing.

—38 Line Feed.

Clear: Linefeed added at end of each print line.

Set: No linefeed added at end of each print line.

-39 I/O Messages.

Clear: 1/O messages displayed.

Set: 1/O messages suppressed.

—40 Clock Display.

Clear: Clock displayed only when TIME menu selected.

Set: Ticking clock displayed at all times.

—41 Clock Format.

Clear: 12-hour clock.

Set: 24-hour clock.

—42 Date Format.

Clear: MM/DD/YY (month/day/year) format.

Set: DD.MM.YY (day.month.year) format.

—43 Repeat Alarms Not Rescheduled.

Clear: Unacknowledged repeat appointment alarms

automatically rescheduled.

Set: Unacknowledged repeat appointment alarms not

rescheduled.

—44 Acknowledged Alarms Saved.

Clear: Acknowledged appointment alarms deleted from

alarm list.

Set: Acknowledged appointment alarms saved in alarm list.

C-4 System Flags

System Flags (continued)

Flag Description

—45

thru

—48

Number of Decimal Digits.

Combined states of flags —45 through —48 sets number of

decimal digits in Fix, Scientific, and Engineering modes.

—49

and

—50

Number Display Format.

Standard: —49 clear, —50 clear.

Fix: —49 set, —50 clear.

Scientific: —49 clear, —50 set.

Engineering: —49 set, —50 set.

—51 Fraction Mark.

Clear: Fraction mark is . (period).

Set: Fraction mark is , (comma).

Single-Line Display.

Clear: Display gives preference to object in level 1, using up

to four lines of stack display.

Set: Display of object in level 1 restricted to one line.

—53 Precedence.

Clear: Certain parentheses in algebraic expressions

suppressed to improve legibility.

Set: All parentheses in algebraic expressions displayed.

—54 Tiny Array Elements.

Clear: Singular values computed by RANK (and other

commands that compute the rank of a matrix) that are more
than 1 x 107** times smaller than the largest computed
singular value in the matrix are converted to zero.
Automatic rounding for DET is enabled.

Set: Small computed singular values (see above) not
converted. Automatic rounding for DET is disabled.

Last Arguments.

Clear: Command arguments saved.

Set: Command arguments not saved.
 —56 Error Beep.

Clear: Error and BEEP-command beeps enabled. Set: Error and BEEP-command beeps suppressed.

System Flags C-5

System Flags (continued)

Flag Description

—57 Alarm Beep.

Clear: Alarm beep enabled.

Set: Alarm beep suppressed.

—58 Verbose Messages.

Clear: Parameter variable data automatically displayed.

Set: Automatic display of parameter variable data is

suppressed.

—59 Fast Browser Display.

Clear: Variable Browser shows variable names and contents.

Set: Variable Browser shows variable names only.

—60 Alpha Lock.

Clear: Single-Alpha activated by pressing (a) once. Alpha

lock activated by pressing (o) twice.

Set: Alpha lock activated by pressing (@) once. (Single-Alpha
not available.)

—61 User-Mode Lock.

Clear: 1-User mode activated by pressing (+«9)(USER) once.

User mode activated by pressing («9)(USER) twice.

Set: User mode activated by pressing (4|q)(USER) once.

(1-User mode not available.)

—62 User Mode.

Clear: User mode not active.

Set: User mode active.

—63 Vectored (ENTER).

Clear: (ENTER) evaluates command line.

Set: User-defined activated.

—64 Index Wrap Indicator.

Clear: Last execution of GETI or PUTI did not increment

index to first element.

Set: Last execution of GETI or PUTI did increment index to

first element.

C-6 System Flags

Reserved Variables

D

The HP 48 uses the following reserved variables. These have specific
purposes, and their names are used as implicit arguments for certain

commands. Avoid using these variables’ names for other purposes, or

you may interfere with the execution of the commands that use these

variables.

You can change some of the values in these variables with

programmable commands, while others require you to store new values

into the appropriate place.

Reserved

Variable What It Contains Used By

ALRMDAT Alarm parameters. TIME ALRM operations

CST List defining the CST MENU,
(custom) menu.

“der”-names User-defined derivative. |J

EQ Current equation. ROOT, DRAW

EXPR Current expression. SYMBOLIC

IOPAR I/O parameters. I/O commands

MHpar Minehunt game status. MINEHUNT

Mpar Multiple-Equation Solver EQ LIB

equations.

nl, n2, ... Arbitrary integers. ISOL, QUAD

Nmanes Minehunt game data. MINEHUNT

Reserved Variables D-1

Reserved

Variable What It Contains Used By

PPAR Plotting parameters. DRAW

PRTPAR Printing parameters. PRINT commands

sl, s2, ... Arbitrary signs. ISOL, QUAD

VPAR Viewing parameters. DRAW

ZPAR Plot zoom factors. DRAW

YDAT Statistical data. Statistics application,

DRAW

YPAR Statistical parameters. Statistics application,

DRAW

Contents of the Reserved Variables

Most reserved variables (except ALRMDAT, IOPAR and PRTPAR)

can be stored with different contents in different directories. This

allows you, for example, to save several sets of statistical data in

different directories.

ALRMDAT

ALRMDAT does not reside in a particular directory. You cannot

access the variable itself, but you can access its data from any

directory using the RCLALARM and STOALARM commands, or

through the Alarm Catalog.

ALRMDAT contains a list of these alarm parameters:

D-2 Reserved Variables

Parameter Default

(Command) Description Value
date (—DATE)

|

A real number specifying the date of

|

Current
the alarm: MM.DDYYYY (or date.
DD.MMYYYYif flag —42 is set). If
YYYYis not included, the current

year is used.

time (—=TIME)

|

A real number specifying the time of

|

00.0000
the alarm: HH .MMSS.

action A string or object: Empty

m a string creates an appointment strmg.
. . (appoint-

alarm, which beeps and displays
. mentthe string

. alarm).
m any other object creates a control

alarm, which executes the object

repeat A real number specifying the interval

|

0
between automatic recurrences of the

alarm, given in ticks (atick is /g190

of a second).
Parameters without commands can be modified with a program by
storing new values in the list contained in ALRMDAT (use the PUT
command).

CsT

CST contains alist (or a name specifying a list) of the objects that
define the CST (custom) menu. Objects in the custom menu behave
as do objects in built-in menus. For example:

m Names behave like the VAR menu keys. Thus, if ABC is a variable
evaluates ABC, () FEC recalls its contents, and

stores new contents in ABC'.
® The menulabel for the name of a directory has a bar over the left

side of the label; pressing the menu key switches to that directory.

m Unit objects act like unit catalog entries (and have left-shifted
conversion capabilities, for example).

Reserved Variables D-3

m String keys echo the string.

m You can include backup objects in the list defining a custom menu

by tagging the name of the backup object with its port location (0

through 33).

You can specify menu labels and key actions independently by

replacing a single object within the custom-menu list with a list of the

form © "label-object” action-object . (See “Customizing Menus” and

“Enhancing Custom Menus” in chapter 30 of the HP 48 User’s Guide

for more information.)

To provide different shifted actions for custom menu keys,

action-object can be a list containing three action objects in this order:

» The unshifted action (required if you want to specify the shifted

actions).
m The left-shifted action.

m The right-shifted action.

See “Enhancing Custom Menus” in chapter 30 of the HP 48 User’s

Guide.

“der-” Names

If 8 is applied to a function for which there is no built-in derivative, 1t

returns a new function whose name is “der” followed by the original

function name. These “der”-function names are reserved variable

names.

For an example, refer to “Creating User-Defined Derivatives” in

chapter 20 of the HP 48 User’s Guide.

EQ

EQ contains the current equation or the name of the variable

containing the current equation.

EQ supplies the equation for ROOT, as well as for the plotting

command DRAW when the plot type is FUNCTION, CONIC,

POLAR, PARAMETER, TRUTH, or DIFFEQ. (£DAT supplies

the information when the plot type is HISTOGRAM, BAR, or

SCATTER.)

D-4 Reserved Variables

The object in EQ can be an algebraic object, a number, a name, or a
program. How DRAW interprets EQ depends on the plot type.

For graphics use, £Q can also be a list of equations or other objects.
If EQ contains a list, then DRAW treats each object in turn as the
current equation, and plots them successively. However, ROOT in the
HP Solve application cannot solve an EQ containing a list.

To alter the contents of £Q, use the command STEQ.

EXPR

EXPR contains the current algebraic expression (or the name of the
variable containing the current expression) used by the SYMBOLIC
application and its associated commands. The object in £Q must be
an algebraic or a name.

IOPAR

IOPAR is a variable in the HOME directory that contains a list of the
I/O parameters needed for a communications link with a computer.
It is created the first time you transfer dataor open the serial port
(OPENIO), and is automatically updated whenever you change the
I/O settings. All IOPAR parameters are integers.

Parameter Default
(Command) Description Value

baud (BAUD) The baud rate: 1200, 2400, 4800, or 9600
9600.

parity (PARITY)

|

The parity used: O=none, 1=odd, 0
2=even, 3=mark, 4=space. The value

can be positive or negative: apositive

parity is used upon both transmit and

receive; a negative parity is used only

upon transmit.

Reserved Variables D-5

Parameter

(Command) Description

Default

Value

recetve pacing

transmit pacing

checksum

(CKSM)

translation code

(TRANSIO)

Controls whether receive pacing is
used: a nonzero real value enables

pacing, while zero disables it. Receive

pacing sends an XOFF signal when the
receive buffer is almost full, and sends

an XON signal when it can take more

dataagain. Pacing is not used for

Kermit I/O, but is used for other
serial /O transfers.

Controls whether transmit pacing is

used: a nonzero real value enables

pacing, while zero disables it.

Transmit pacing stops transmission

upon receipt of XOFF, and resumes

transmission upon receipt of XON.

Pacing is not used for Kermit 1/O, but
is used for other serial I/O transfers.

Error-detection scheme requested

when initiating SEND:

w 1=1-digit arithmetic checksum

m 2=2-digit arithmetic checksum

m 3=3-digit cyclic redundancy check.

Controls which characters are
translated:

s O=none
m l=translate character 10 (line feed

only) to/from characters 10 and 13

(line feed and carriage return)

m 2—translate characters with numbers

128 through 159 (80-9F hex)

m 3=translate characters with

numbers 128 through 255.

0 (no
pacing)

0 (no
pacing)

Parameters without commands can be modified with a program

by storing new values in the list contained in JOPAR (use the PUT

command), or by editing JOPAR directly.

D-6 Reserved Variables

MHpar

MHpar stores the status of an interrupted Minehunt game. MHpar is

created when you exit Minehunt by pressing (STO). If MHpar still

exists when you restart Minehunt, the interrupted game resumes and

MHpar is purged.

Mpar

Mpar is created when you use the Equation Library’s

Multiple-Equation Solver, and it stores the set of equations you’re

using.

When the Equation Library starts the Multiple-Equation Solver, it

first stores a list of the equation set in £@Q, and stores the equation

set, a list of variables, and additional information in Mpar. Mpar is

then used to set up the Solver menu for the current equation set.

Mpar is structured as library data dedicated to the Multiple Equation

Solver application. This means that although you can view and edit

Mpar directly, you can edit it only indirectly by executing commands

that modify it.

You can also use the MINIT command ((«)(EQLB) HMEZ HIHIT)
to create MHpar from a set of equations on the stack. See “Defining a

Set of Equations” in chapter 25 of the HP 48 User’s Guide.

ni, n2, ...

The ISOL and QUAD commands return general solutions (as opposed

to principal solutions) for operations. A general solution contains

variables for arbitrary integers or arbitrary signs, or both.

The variable ni represents an arbitrary integer 0, 1, 42, etc.

Additional arbitrary integers are represented by n2, n3, etc.

If flag —1 is set, then ISOL and QUAD return principal solutions, in

which case the arbitrary integer is always zero.

Reserved Variables D-7

Nmines

Nmines is avariable you create in the current directory to control

the number of mines used in the Minehunt game. Nmaines contains

an integer in the range 1 to 64; if Nmines is negative, the mines are

visible during the game.

PPAR

PPAR is a variable in the current directory. It contains a list

of plotting parameters used by the DRAW command for all

mathematical and statistical plots, by AUTO for autoscaling, and by

the interactive (nonprogrammable) graphics operations.

 name and two numbers that specify

the minimum and maximum values

for the independent variable (the
plotting range).

Parameter Default

(Command) Description Value

(Zwmin,Ymin) A complex number specifying the (—6.50, =3.1)
(XRNG, lower left corner of PICT (the lower
YRNG) left corner of the display range).

(% max,Ymax) A complex number specifying the (6.5, 3.2)

(XRNG, upper right corner of PICT (the
YRNG) upper right corner of the display

range).

mndep A name specifying the independent X

(INDEP) variable, or a list containing that

D-8 Reserved Variables

Parameter

(Command) Description

Default

Value

res

(RES)

ares

(AXES)

plype
(BAR,etc.)

Resolution. A real number specifying

the interval between values of the

independent variable. For plots of

equations, this determines the

plotting interval along the z-axis. A

binary number specifies the pizel

resolution (how many columns of
pixels between points). An integer

specifies the resolution in user units

(how many user units between
points). Resolution for statistical
plots is different (see below).

A complex number specifying the

user-unit coordinates of the plot

origin, or a list containing the
following:

m the complex number specifying the

origin

m a real number, binary integer, or

list containing two real numbers or

binary integers specifying the

tick-mark annotation (see ATICK)
m two strings specifying labels for

the horizontal and vertical axes

A command name specifying the plot

type (BAR, CONIC, DIFFEQ),

FUNCTION, GRIDMAP,
HISTOGRAM, PARAMETRIC,
PARSURFACE, PCONTOUR,
POLAR, SCATTER, SLOPEFIELD,
TRUTH, WIREFRAME, or
YSLICE).

(0, 0)

FUNCTION

Reserved Variables D-9

Parameter Default

(Command) Description Value

depend A name specifying the dependent Y

(DEPND) variable, or a list containing the
name and two numbers that specify

vertical plotting range. For

DIFFEQ, the second element of the

list may also be a real vector that

represents the initial value.
Parameters without commands can be modified with a program

by storing new values in the list contained in PPAR (use the PUT

command).

The REZET operation ((¢)(PLOT) FFHE E ") resets the PPAR
parameters (except ptype) to their default values, and erases PICT.

Note that res behaves differently for the statistical plot types BAR,

HISTOGRAM, and SCATTER than for other plot types. For BAR,

res specifies bar width; for HISTOGRAM, res specifies bin width; res

does not affect SCATTER.

D-10 Reserved Variables

PRTPAR

PRTPAR is a variable in the HOME directory that contains alist of

printing parameters. It is created automatically the first time you use

a printing command.

Parameter

(Command) Description

Default

Value

delay time

(DELAY)

remap

(OLDPRT stores
the character-

remapping string

for the HP

82240A Infrared

Printer)

line length

line termination

A real number, in the range 0 to

6.9, specifying the number of

seconds the HP 48 waits between

sending lines. This should be at
least as long as the time required to

print the longest line. If the delay

is too short for the printer, you will

lose data. The delay setting also

affects serial printing if

transmit-pacing (in JOPAR) is not
being used.

A string defining the current
remapping of the extended

character set for printing. The

string can contain as many

characters as you want to remap,

with the first character being the

new character 128, the second being

the new charcter 129, etc. (Any
character number that exceeds the

string length will not be

remapped.) See the example below.

A real number specifying the

number of characters in a line for

serial printing. This does not affect

infrared printing.

A string specifying the

line-termination method for serial

printing. This does not affect

infrared printing.

1.8

Empty

string.

80

Control

characters 13

(carriage

return) and

10 (line

feed).
Reserved Variables D-11

Parameters without commands can be modified with a program by

storing new values in the list contained in PRTPAR (use the PUT
command).

A change in a parameter is effective immediately, ezcept when printing

the display using the simultaneous keystrokes (because this

does not use PRTPAR). This printing method is affected only by the

delay parameter, a change in which will not affect until after

the next printing command has been executed. To use a new delay

time with immediately, use the DELAY command.

Example: If the remapping string were “ABCDEFGH” and the

character to be printed had value 131, then the character actually

printed would be “D”| since 131—128=3 and “A” has the value zero.

A character code of 136 or greater would not be remapped since

136—128=8, which exceeds the length of the string.

si, 82, ...

The ISOL and QUAD commands return general solutions (as opposed

to principal solutions) for operations. A general solution contains

variables for arbitrary integers or arbitrary signs or both.

The variable s/ represents an arbitrary + or — sign. Additional

arbitrary signs are represented by s2, s3, etc.

If flag —1 is set, then ISOL and QUAD return principal solutions, in

which case the arbitrary sign is always +1.

D-12 Reserved Variables

VPAR

VPAR is a variable in the current directory. It contains a list of

parameters used by the 3D plot types. The main data structure stored

in VPAR describes the “view volume,”

region in which the function is plotted.

the abstract three-dimensional

(NUMX,NUMY)

(ml‘left 3 Izrigh(;)

(XXRNG)

(yyfara YYnear)

(YYRNG)
increments between of x-coordinates

and y-coordinates plotted. The

increments are equal to the range for

the axes divided by the number of

steps. Used instead of (or in

combination with) res.

Real numbers that specify the width

of the input plane (domain). Used

by GRIDMAP and PARSURFACE.

Real numbers that specify the depth

of the input plane (domain). Used

by GRIDMAP and PARSURFACE.

Parameter Description Default

(Command) Value

(Tieft, Tright) Real numbers that specify the width (-1, 1)

(XVOL) of the view volume.

(Ytar, Ynear) Real numbers that specify the depth (-1, 1)
(YVOL) of the view volume.

(Z1ow, Zhigh) Real numbers that specify the height (-1, 1)

(ZVOL) of the view volume.

(Zeye, Yeye, Zeye) Real numbers that specify the point (0, —3, 0)

(EYEPT) in space from which the plot is
viewed.

(Zstep, Ystep) Real numbers that specify the (10, 8)

Parameters without commands can be modified programmatically

by storing new values in the list contained in VPAR (use the PUT

command).

The

operation ((@)(ELOT) (@XT)
[) resets the VPARparameters to their dofault Values

Reserved Variables D-13

NXT

ZPAR

ZPAR is a variable in the current directory. It contains a list of

zooming parameters used by the DRAW command for all 2-D

mathematical and statistical plots.

recenter flag

{ list }
vertical zoom factor.

0 or 1 depending on whether the

recenter at crosshairs option was

selected in the set zoom factors input

form.

An empty list, or a copy of the last

PPAR.

Parameter Description Default

(Command) Value

h-factor Real number that specifies the

horizontal zoom factor.

v-factor Real number that specifies the

Use the set zoom factors input form(Z

D-14 Reserved Variables

') to modify ZPAR.

2DAT

YDAT is a variable in the current directory that contains either the

current statistical matrix or the name of the variable containing

this matrix. This matrix contains the data used by the Statistics

applications.

Statistical Matrix for Variables 1 to m

vary vars VAT

11 T21 I'mi

Ti2 T22 Tm2

Tin T2n Z'mn

You can designate a new current statistical matrix by entering new

data, editing the current data, or selecting another matrix.

The command CLY clears the current statistical matrix.

Reserved Variables D-15

ZPAR

YPAR is a variable in the current directory that contains either

the current statistical parameter list or the name of the variable

containing this list.

Parameter Description Default

(Command) Value

columnindep A real number specifying the 1

(XCOL) independent-variable’s column
number.

columngep A real number specifying the 2

(YCOL) dependent-variable’s column number.

intercept A real number specifying the 0

(LR) coefficient of intercept as determined
by the current regression.

slope A real number specifying the 0

(LR) coeflicient of slope as determined by

the current regression.

model A command specifying the regression LINFIT

(LINFIT, etc.) model (LINFIT, EXPFIT,
PWRFIT, or LOGFIT).

D-16 Reserved Variables

E
New Commands

In the following tables, new commands (commands that were not
available on a standard HP 48S series calculator) are arranged
alphabetically and followed by brief descriptions. All of these

commands are described in chapter 3.

New Commands Listed Alphabetically

Command Brief Description

ADD Adds list elements.

AMORT Amortizes a loan or investment based upon the

current amortization settings.

ANIMATE Displays graphic objects in sequence.

ATICK Sets the axes tick-mark annotation in the reserved

variable PPAR.

CHOOSE Creates a user-defined choose box.

CLTEACH Removes the EXAMPLES subdirectory and its

contents from the HOME directory.

COL+ Inserts an array (vector or matrix) into a matrix.

COL—- Deletes a column from of a matrix.

COL— Transforms a series of column vectors and a column

count into a matrix, or transforms a sequence of

numbers and an element count into a vector.

—COL Transforms a matrix into a series of column vectors,

or transforms a vector into its elements.
New Commands E-1

New Commands Listed Alphabetically (continued)

Command Brief Description

COND Returns the 1-norm (column norm) condition
number of a square matrix.

CONLIB Opens the Constants Library catalog.

CONST Returns the value of a constant.

CSWP Swaps columns in a matrix.

CYLIN Sets Cylindrical coordinate mode.

DARCY Calculates the Darcy friction factor of certain fluid

flows.

DIAG— Takes an array and a specified dimension and

returns a matrix whose main diagonal elements are

the elements of the array.

—DIAG Returns a vector that contains the major diagonal

elements of a matrix.

DIFFEQ Specifies differential equations as the plot type.

DOLIST Applies commands, programs, or user-defined

functions to lists.

DOSUBS Applies a program or command to groups of

elements in a list.

EGV Computes the eigenvalues and right eigenvectors for

a square matrix.

EGVL Computes the eigenvalues of a square matrix.

ENDSUB Provides a way to access the total number of

sublists used while executing a program or

command using DOSUBS.

EQNLIB Starts the Equation Library application.

EYEPT Specifies the coordinates of the eye point in a perspective plot.

E-2 New Commands

New Commands Listed Alphabetically (continued)

Command Brief Description

FOA Returns the fraction of total black-body emissive

power.

FANNING Calculates the Fanning friction factor of certain

fluid flows.

FFT Computes the one- or two-dimensional discrete

Fourier transform of an array.

FREE1 Frees the previously merged RAM in port 1.

GRIDMAP Specifies grid mapping as the plot type.

HEAD Returns the first element of a list or string.

IFFT Computes the one- or two-dimensional inverse

discrete Fourier transform of a vector or matrix.

INFORM Creates a user-defined dialog box (Input Form).

LIBEVAL Evaluates unnamed library objects by their

memory addresses.

LININ Tests whether an algebraic is structurally linear for

a given variable.

YLIST Returns the sum of the elements in a list.

IILIST Returns the product of the elements in a list.

ALIST Returns the set offirst differences.

LQ Returns the LQ factorization of an nxm matrix.

LSQ Returns the minimum normleast squares solution

to any system of linear equations.

LU Returns the LU decomposition of a square matrix.

MCALC Designates avariable as a calculated value (not

user-defined).

MERGE1 Merges the RAM from the card in port 1 with the rest of main user memory.
New Commands E-3

New Commands Listed Alphabetically (continued)

Command Brief Description

MINEHUNT Starts the MINEHUNT game.

MINIT Creates the reserved variable Mpar.

MITM Changes multiple equation menu titles and order.

MROOT Solves for one or more variables.

MSGBOX Creates a user-defined message box.

MSOLVR Gets the Multiple-Equation Solver variable menu

for the set of equations defined by Mpar.

MUSER Designates a variable as user-defined.

NDIST Returns the normal probability distribution.

NOVAL Place holder for reset and initial values in

user-defined dialog boxes.

NSUB Provides a way to access the current sublist number

during an iteration of a program or command

applied using DOSUBS.

NUMX Sets the number of x-steps for each y-step in 3D

perspective plots.

NUMY Sets the number of y-steps across the view volume

in 3D perspective plots.

PARSURFACE |Specifies 3D parameterized surface grip mapping as

the plot type.

PCOEF Returns the coefficients of a monic polynomial.

PCOV Calculates population covariance.

PCONTOUR Specifies pseudo-contour as the plot type.

PEVAL Evaluates an n-degree polynomial at z.

PINIT Initializes the plug-in card ports.

PROOT Returns all roots of an n-degree polynomial having real or complex coefficients.

E-4 New Commands

New Commands Listed Alphabetically (continued)

Command Brief Description

PSDEV Calculates population standard deviation.

PVAR Calculates population variance.

QR Returns the QR factorization of an nxm matrix.

RANK Returns the rank of a rectangular matrix.

RANM Returns a matrix of random integers.

RCI Multiplies a row of a matrix by a constant.

RC1J Multiplies a row of a matrix by a constant, and

then adds the product to another row of the matrix.

RECT Sets Rectangular coordinate mode.

REVLIST Reverses the order of the elements in a list.

RKF Computes the solution to an initial value problem

for a differential equation, using the

Runge-Kutta-Fehlberg method.

RKFERR Returns the absolute error estimate for a given step

when solving an initial value problem for a

differential equation (using RKF method).

RKFSTEP Computes the next solution step to an initial value

problem for a differential equation.

ROW+ Inserts an array into a matrix.

ROW-— Deletes a row from a matrix.

RREF Converts a rectangular matrix to reduced row

echelon form.

RRK Computes the solution to an initial value problem

for a differential equation with known partial

derivatives.

RRKSTEP Computes the next solution step to an initial value problemfor a differential equation, and displays the

method used to arrive at that result.
New Commands E-5

New Commands Listed Alphabetically (continued)

Command Brief Description

RSBERR Returns an error estimate for a given step when

solving an initial values problem for a differential

equation (using the Rosenbrock method).

RSWP Swaps rows in a matrix.

SCHUR Returns the Schur decomposition of a square

matrix.

SEQ Returns a list of results generated by repeatedly

executing an object on a specified range of

elements.

SIDENS Calculates the intrinsic density of silicon as a

function of temperature.

SLOPEFIELD Specifies slopefield as the plot type.

SNRM Returns the spectral norm of an array.

SOLVEQN Starts the solver for a specified set of equations.

SORT Sorts the elements in a list in ascending order.

SPHERE Sets Spherical coordinate mode.

SRAD Returns the spectral radius of a square matrix.

STREAM Applies an object to every element in a list.

SVD Returns the singular value decomposition of an

nxm matrix.

SVL Returns the singular values of an mxn matrix.

TAIL Returns all but the first element of a list or string.

TDELTA Calculates a temperature change.

TEACH Creates an EXAMPLES subdirectory in the HOME

directory and loads HP 48 programming, graphing,

and solver examples from ROM into it.

TINC Calculates a temperature increment.

TRACE Returns the trace of a square matrix.
E-6 New Commands

New Commands Listed Alphabetically (continued)

Command Brief Description

TVM Start the TVM solver.

TVMBEG Specifies that payments are made at the beginning

of compounding periods.

TVMEND Specifies that payments are made at the end of

compounding periods.

TVMROOT Solves for the specified TVM variable using values

from the remaining TVM variables.

VERSION Returns the software version and copyright

message.

WIREFRAME Specifies wireframe as the plot type.

XRECV Receives an object via XModem.

XSEND Sends an object via XModem.

XVOL Sets the width of the view volume in the reserved

variable VPAR.

XXRNG Specifies the x range of an input plane (domain) for
GRIDMAP and PARSURFACE plots.

YSLICE Specifies y-slice cross sections as the plot type.

YVOL Sets the depth of the view volume in the reserved

variable VPAR.

YYRNG Specifies the y range of an input plane (domain) for

GRIDMAP and PARSURFACE plots.

ZFACTOR Calculates the the gas compressibility correction

factor for nonideal behavior of a hydrocarbon gas.

ZVOL Sets the height of the view volume in the reserved variable VPAR.
New Commands E-7

Technical Reference

This appendix contains the following information:

m Object sizes.

m Mathematical simplification rules used by the HP 48.

m Symbolic differentiation patterns used by the HP 48.

m The EquationWriter’s expansion rules.

m References used as sources for constants and equations in the HP 48

(other than those in the Equation Library).

Technical Reference F-1

Object Sizes

The following table lists object types and their size in bytes. (Note

that characters in names, strings, and tags use 1 byte each.)

Object Size

Object Type Size (bytes)

Algebraic

Backup Object

Binary Integer

Command

Complex matrix

Complex number

Complex vector

Directory

Graphics Object

List

Matrix

Program

Quoted global or local

name
Real number

String

Tagged Object

Unit Object

real magnitude

each prefix

each unit name

each x,” or /
each exponent

Unquoted global or local

name

Vector

XLIB name

5 + size of included objects

12 4+ number of name characters 4+ size

of included object

13

2.5

15 4+ 16 x number of elements

18.5

12.5 + 16 x number of elements

6.5 + size of included variables

10 + number of rows x

CEIL(columns/8)

5 + size of included objects

15 + 8 x number of elements

12.5 + size of included objects

8.5 + number of characters

10.5

5 4+ number of characters

3.5 + number of tag characters + size of

untagged object

7.5 +

2.5 0r 10.5

6

5 + number of characters

2.5

2.5 or 10.5

3.5 + number of characters

12.5 + 8 x number of elements

5.5

F-2 Technical Reference

Automatic Simplification Rules

The following tables list the automatic simplification rules for the

HP 48.

Addition and Subtraction

Object Simplified Object Simplified

T—1 0 z+(0,0) T

0+z T z+—p T—p

(0,0)+=z z z—0 T

0—z NEG(z) z—(0,0) r

(0,0)—z NEG(z) T——p z+p

z+0 T

Multiplication and Division

Object Simplified Object Simplified

INV(i) —i rx(1,0) z
yxINV(z) y/z rx(—1) NEG(z)

y/INV(z) yxa zx(—1,0) NEG(z)

Oxz 0 z/1 T

(0,0)xz (0,0) z/(1,0) z

iX1i -1 z/(—1) NEG(z)

Ixz z z/(—1,0) NEG(z)

(1,0)xz T 0/z 0

(—1)xz NEG(z) (0,0)/z (0,0)
(—1,0)xz NEG(z) /2 INV(z)

2x0 0 (1,0)z INV(z)
zx(0,0) (0,0) (-1)/z —INV(z)

zx1 z (-1,0)/z —INV(z)

Technical Reference F-3

Powers

Object Simplified Object Simplified

1* 1 z(L0) T

(1,0)% (1,0 (=D INV(z)

SQ(V/(2)) : p(—10) INV(a2)
SQ(y*) y(2x7) (Vz)? z

5Q(i) -1 (/o)) :
z° 1 i2 -1

z(0.0) (1,0 §(2.0) (—1,0)

Z'l xr

Parts

Object Simplified Object Simplified

ABS(ABS(z)) ABS(z) MIN(z,z) T

ABS(NEG(z)) ABS(z) MOD(0,z) 0
CONJ(CONJ(z)) z MOD(z,z) 0

CONJ(IM(z)) IM(z) MOD(z,0) T

CONJ(RE(z)) RE(z) ¢t MOD y MODy =z MOD y

CONJ(¢) —i RE(CONJ(z)) RE(z)

IM(CONI(z)) —IM(z) RE(IM(z)) IM(z)
IM(IM(z)) 0 RE(RE(z)) RE(z)

IM(RE(z)) 0 RE(r) 7

IM(p) 0 RE(1) 0

IM(7) 1 SIGN(SIGN(z)) SIGN(z)

MAX(z,z) z

F-4 Technical Reference

Symbolic Integration Patterns

This table lists the symbolic integration patterns used by the HP 48.

These are the integrands that the HP 48 can integrate symbolically.

¢ is a linear function of the variable of integration. The antiderivatives

should be divided by the first-order coefficient in ¢ to reduce the

expression to its simplest form. Also, patterns beginning with 1/

match INV: for example, 1/¢ is the same as INV(¢).

Symbolic Integration

Pattern Antiderivative

ACOS(¢) $XACOS(¢)—/(1-¢?)
ALOG(¢) 434294481904 X ALOG(4)

ASIN(4) XASIN(8)++/(1-¢?)
ATAN(¢) éXx ATAN(¢p—LN(1+¢2)/2

COS(¢) SIN(¢)
1/(COS(#)xSIN(4)) LN(TAN($))
COSH(¢) SINH(¢)

1/(COSH(¢)xSINH(¢)) LN(TANH(¢))

1/(COSH($)?) TANH(¢)
EXP(¢) EXP(¢)

EXPM(g) EXP(6)—¢
LN(4) XLN(¢)—¢
LOG(¢) 434294481904 X ¢ X LN() — ¢

SIGN(¢) ABS(¢)

SIN(¢) -COS(¢)

1/(SIN(#)x COS(9)) LN(TAN(#))
1/(SIN($) x TAN(#)) —INV(SIN(#))
1/(SIN($)x TAN(&)) ~INV(SIN($))
1/(SIN(#)?) —INV(TAN(¢))

SINH(¢) COSH(¢)

1/(SINH(¢)x2 —INV(SIN(¢))
Technical Reference F-5

Symbolic Integration (continued)

Pattern Antiderivative

1/(SINH(¢)x COSH(4)) LN(TANH(¢))

1/(SINH(¢) x TANH(4)) —INV(SINH(¢))

SQ(#) ¢*/3

TAN(¢)2 TAN(¢)—¢

TAN(4) —LN(COS(4))

TAN(¢)/COS(¢) INV(COS(¢))

1/TAN(¢) LN(SIN(¢))
1/TAN(¢)xSIN(4)) —INV(SIN(¢))

TANH(¢) LN(COSH(¢))

TANH(¢)/COSH(4) INV(COSH(4))

1/TANH(¢) LN(SINH(¢))

1/TANH(¢) xSINH(¢)) —INV(SINH(¢))

Vb 2x¢!°/3

1/V¢é 2x/¢

1/(2x+/(4)) 2x/(¢)x.5
¢ (2 symbolic) IFTE(z==—1,LN($),6(*T1) /(2 4+1))

% (2 real, #0,—1) d>(2‘+1)/(z+1)

¢° ¢

¢! LN(¢)

1/¢ LN(#)

1/(1-¢?) ATANH(¢)
1/(14¢?) ATAN(4)

1/(4241) ATAN(¢)

1/(V(¢=1)x/(¢+1)) ACOSH(¢)
1//(1=¢?) ASIN(¢)

1//(1+42) ASINH(¢)

1//(¢2+1) ASINH(#)

F-6 Technical Reference

Trigonometric Expansions

The following tables list expansions for trigonometric functions in

Radians mode when using the —DEF, TRG+, and —TRG operations.

These operations appear in the EquationWriter RULES menu.

—DEF Expansions

Function Expansion

SIN(z) EXP(x x i) — EXP(~(z x i)
2x1

COS(z) EXP(x x i)+ EXP(—(z x i)

2

TAN(z) EXP(zxix2)—1
(EXP(xxix2)+1)x1i

SINH(z) —(SIN(z x i) x 1)

COSH(z) COS(z x 1)
TANH(z) TAN(x x i) x —i
ASIN(z) —ix IN(VI= 22 +ix x)
ACOS(z) T 4ix IN(VI—2Z+ixz)
ATAN ;=) _ix pn(LEIXD))Vit
ASINH(z) —LN(V1+ 22 —z)

ACOSH(z) T
1/—(§+ixLN(1 —2244xz))?

ATANH(z) (1-=2)—LNi

Technical Reference F-7

TRG+ Expansions

Function Expansion

SIN(z + ¥) SIN(z) x COS(y)+ COS(x) x SIN(x)

COS(z + v) COS(x) x COS(y) + SIN(z) x SIN(y)

TAN(z + y) TAN(z)+TAN(y)

1—-TAN(z) x TAN(y)

SINH(z + y) SINH(z)x COSH(y)+COSH(2)xSINH(x)

COSH(z + v) COSH(z)xCOSH(y)+SINH(x)xSINH(y)

TANH(z + y) TANH(z) + TANH(y)
1+ TANH(z) x TANH(y)

—TRG Expansion

Function Expansion

EXP(z) x

1
005(§)+51N() x i

F-8 Technical Reference

Source References

The following references were used as sources for many of the

constants and equations used in the HP 48. (See “References” in
chapter 4, “Equation Reference,” for the references used as sources for

the Equation Library.)

1. E.A. Mechtly. The International System of Units, Physical

Constants and Conversion Factors, Second Revision. National

Aeronautics and Space Administration, Washington DC, 1973.

2. The American Heritage Dictionary. Houghton Mifflin Company,

Boston, MA, 1979.

3. American National Standard Metric Practice ANSI/IEEE Std
268-1982. The Institute of Electrical and Electronics Engineers, Inc.,

New York, 1982.

4. ASTM Standard Practice for Use of the International System of

Units (SI) E380-89a. American Society for Testing and Materials,
Philadelphia, 1989.

5. Handbook of Chemistry and Physics, 64th Edition, 1983-1984. CRC

Press, Inc, Boca Raton, FL, 1983.

6. International Standard publication No. 1SO 31/1-1978 (E).

7. The International System of Units (SI), Fourth Edition. The
National Bureau of Standards Special Publication 330, Washington

D.C., 1981.

8. National Aerospace Standard. Aerospace Industries Association of

America, Inc., Washington D.C., 1977.

9. Physics Letters B, vol 204, 14 April 1988 (ISSN 0370-2693).

Technical Reference F-9

G
Parallel Processing with Lists

Parallel processing is the idea that, generally, if a command can
be applied to one or more individual arguments, then it can also be
extended to be applied to one or more sets of arguments.

Some examples:

"
m I THY returns . 2, so § 4

* IHY returns 4 . &5 .

General Rules for Parallel Processing

As a rule-of-thumb, a given command can use parallel list processing if
all the following are true:

m The command checks for valid argument types. Commands that
apply to all objecttypes, such as DUP, SWAP, ROT, and so forth,
do not use parallel list processing.

m The command takes exactly one, two, three, four, or five arguments,
none of which may itself be a list. Commands that use an indefinite
number of arguments (such as —LIST) do not use parallel list
processing.

m The command isn’t a programming branch command (IF, FOR,
CASE, NEXT, and so forth).

The remainder of this appendix describes how the many and various
commands available on the HP 48 are grouped with respect to parallel
processing.

Group 1: Commands that cannot parallel process

A command must take arguments before it can parallel process, since
a zero-argument command (such as RAND, VARS, or REC) has no
arguments with which to form a group.

Parallel Processing with Lists G-1

Group 2: Commands that must use DOLIST to parallel process

This group of commands cannot use parallel processing directly, but

can be “coerced” into it using the DOLIST command (see “Using

DOLIST for Parallel Processing” later in this appendix). This group

consists of several subgroups:

m Stack manipulation commands. A stack manipulation command

cannot parallel process because the stack is manipulated as a whole

and list objects are treated the same as any other object. Stack

commands (such as DROPN) that take level 1 arguments will not

accept level 1 list arguments.

s Commands that operate on lists as wholes. Certain commands

accept lists as arguments but treat them no differently than any

other data object. They perform their function on the object as

a whole without respect to its elements. For example, =STR

converts the entire list object to a string rather than converting each

individual element, and the == command tests the level 1 object

against the level 2 object regardless of the objects’ types.

s List manipulation commands. List manipulation commands will

not parallel process since they operate on list arguments as lists

rather than as sets of parallel data. However, a list manipulation

command can be forced to parallel process hsts of hsts by usmg the

the DOLI%T command. For example LD ES A T

E 5 =T returns < :

s Other commands that have list arguments. Because a list can hold

any number of objects of any type, it is commonly used to hold a

variable number of parameters of various types. Some commands

accept such lists, and because of this are insensitive to parallel

processing, except by using DOLIST.

s Index-oriented commands. Many array commands either establish

the size of an array in rows and columns or manipulate individual

elements by their row and column indices. These commands expect

these row and column indices to be real number pairs collected in

lists. For example, £ & ¢ ®AHM will generate a random integer

matrix having 3 rows and 4 columns Since these commands can

normally use lists as arguments, they cannot perform parallel

processing, except by using DOLIST.

» Program control commands. Program control structures and

commands do not perform parallel processing and cannot be forced

G-2 Parallel Processing with Lists

to do so. However, programs containing these structures can be
nlade toparallel process by using DOLIST. For example, © 1 #

=M E =T returns -

Group 3: Commands that sometimes work with parallel processing

Graphics commands that can take pixel coordinates as arguments

expect those coordinates to be presented as two-element lists of binary

integers. Since these commands can normally use lists as arguments,

they cannot parallel process, except by using DOLIST.

For the two-argument graphics commands (BOX, LINE, TLINE),

if either argumentis not alist (a complex number, for example),

then the commands will parallel process, taking the list argument

to be multiple Complex number coordinates. For example,

BB = will draw two lines—between (0,0)

and (1,1) and between (0,0) and (3,2).

g -
G ! i (Ak. doHOE

Group 4: ADD and +

On HP 48S and HP 48SX calculators, the + command has been used
to append hstsor toappend elements to lists. Thus ¢ 1
returns i 1 + x. With the advent of parallel processing in the
HP 48G series, theADD command was created to perform parallel
addition instead of +.

This has several ramifications:

m To add two lists in parallel, you must do one of the following:

o Use ADD from the (MTH) menu.
o Create a custom menu containing the ADD command.
o Assign the ADD command to a user-defined key.

m User programs must be written using ADD instead of + if the
programis to be able to perform direct parallel processing, or
written with + and applied to their argumentfi by using DOLIST.
For example, programs such as # = % will produce list
concatenation when zisa hst rather than parallel addition, unless

rewritten as #

m Algebraic expressions capable of calculating with variables
containing lists (including those intended to become user-defined
functions) cannot be created in RPN syntax since using

Parallel Processing with Lists G-3

ADD to add two symbolic arguments concatenates the

argumentsWlth + ratherthan w1th ADD For example,

5 Mt E oduces

 ratherthan 'F

Group 5: Commands that set modes/states

Commands that store values in system-specific locations so as to

control certain modes and machine states can generally be used to

parallel process data. The problem is that each successive parameter

in the list cancels thesettmg established by the previous parameter

For example, + | 4 5 3 Fi#is effectively the same as 5 F

Group 6: One-argument, one-result commands

These commands are the easiest to use with parallel processing.

Simply provide the command with a list of arguments instead of the

expected single argument. Some examples:

 = returns 4

 G5 TH returns 4 8 L5 TOLF PEIMOZYY T IMW returns 1

Group 7: Two-argument, one-result commands

Two-argument commands can operate in parallel in any of three

different ways:

m { lsty i hst:

m i listobject

m object 1 list

In the first form, parallel elements are comblned by the command:
- — -

Sl EE L4568 ¥returns 4 L84 L1 18 T

In the second form, the level 1 object is combined with each element

in the level 2 list in succession:

£1 2» 30 %CH returns § FRAE 1400 FO8 I,

In the third form, the level 2 object is combined with each element of

the level 1 list in succession:

EE L T 5T returns £ 2 4 & I

G-4 Parallel Processing with Lists

Group 8: Multiple-argument, one-result commands

Commands that take multiple (3, 4, or 5) arguments can perform

parallel processing only if all arguments are lists. For example,

£OUEIHCHY Y CCOSCHY Y CTAHOCH) ' POMHE LB 66 T ROOT
returns £ & 28 & . Notice that lists must be used even though the

level 1 and level 2 llsts each contain multiples of the same element.

Group 9: Multiple-result commands

Any command that allows parallel processing, but produces multiple

results from its input data, will return its results as a single list. For

example, © 1 22 {4 5 & T R+C+R produces1425363

rather than the more expected ¢ 1 & = 4 3

The following UNMIX program will unmix the data given the number

of expected result lists:

OOVER SIZE + 1 nmo=

in

FOR 1 1 =

FOR 1 1 4 GET n

SZTEF = noo 2LIET

MEHT

Taking © 1 4 Z 5 % & » from above as the result of C—R (a command
which should return two results), 2 UHMIX gives £ 1 & & 24 4 58 3.

Group 10: Quirky commands

A few commands behave uniquely with respect to parallel processing:

s DELALARM. This command can take a list of arguments. Note,

however, that deletions from early in the alarm list will change the

alarm indices of the later alarm entries. Thus, if there are only three

alarms, © 1 2 * DELALARM will cause an error, whereas < & 1 2

DELALARM will not.

s DOERR. This command forces an error state that causes all

running programs and commands to halt. Thus, even though

providing the command with a list argument will cause the

command to perform parallel processing, the first error state

Parallel Processing with Lists G-5

will cause the command to abort and none of the rest of the list

arguments will be used.

FREE, MERGE. Only port 1 can be freed or merged on the

HP 48GX. Thus, even though a list argumentis acceptable, an error

will occur for any list except £ 1 Z.

RESTORE. This command performs a system warmstart after

installing the backup object into memory. All functions are

terminated at that time. Thus, only the first backup object in a list

will be restored.

_ (Attach Unit). This command will create unit obJectsin parallel

only 1flevel 1 contams a hst Thus LLFL imw produces £

 produces an error.
STO+. STO+ performs parallel list addition only if both arguments

are lists. If one argument is a list and the other is not, STO+

appends the non-list argument to each elementin the list.

STO—, STO*, STO/. These commands perform parallel processing

if both arguments are lists, but fail otherwise.

Using DOLIST for Parallel Processing

Almost any command or user program can be made to work in parallel

over a list or lists of data by using the DOLIST command. Use

DOLIST as follows.

Level 1 must contain a command, a program object, or the name of

a variable that contains a command or program object.

Level 2 must contain an argument, count unless the level 1 object is

a command that accepts parallel processing, a program containing

only one command that accepts parallel processing, or a user-defined

function. In these special cases, Level 2 contains the first of the list

arguments.

If level 2 was the argument count, then level 3 is the first of the

argument lists. Otherwise, levels 2 through n are the argument lists.

G-6 Parallel Processing with Lists

As an example, the following program takes three objects from the

stack, tags them with the names a, &z, and i, and displays them one

after the other in line 1 of the display.

DR

Parallel Processing with Lists G-7

Index

Special characters

i# character, 1-10

A

absolute value, 3-5

alarms
acknowledging, 3-6

deleting, 3-78

finding, 3-116
index number, 3-116

recalling, 3-262

storing, 3-326

ALannunciator, 1-9

algebraic

linear structure, 1-20

Algebraic/Program-entry mode,
1-9, 1-63

algebraics

action in programs, 1-2

collecting terms, 3-56

comparing, 1-19

conditional testing, 1-22

editing in programs, 1-9

expanding, 3-109

in local variable structure,

1-3, 1-11
isolating variables, 3-158

rearranging, 3-104, 3-158

rearranging programmatically,

2-19
simplifying, 3-56

testing for linearity, 3-168

tests in, 1-19

algebraic syntax

conditional testing, 1-22

in local variable structures,

1-4

test commands, 1-17, 1-19

alpha keyboard

automatically locking, 1-63

amortization (TVM), 3-12
angle mode

setting, 3-78, 3-131, 3-256

angles

converting units, 3-99, 3-294

angular mechanics, 4-29

angular motion, 4-48
animation, 2-45, 2-56, 3-14

annunciators

user flags, 1-42

applications, 1-79

archives

creating, 3-18

arcs, 3-17

arguments

comparing, 3-183, 3-191

recalling last, 3-162, 3-163

verifying, 2-36

arrays

applying aprogram to, 2-29

column norm, 3-53

complex conjugates, 3-62

constant, 3-59

Index-1

creating from stack, 3-20,

3-369
deleting columns, 3-55

disassembling, 3-19

disassembling complex, 3-71

extracting elements, 3-127,

3-129
Fourier transforms, 3-115

inserting columns, 3-54

inserting diagonals, 3-84

inverse Fourier transform,

3-147
manipulating, 2-16, 2-49

maximum and minimum

elements, 2-22

redimensioning, 3-266

replacing elements in, 3-244,

3-246
residual, 3-291

row norm, 3-280

sorting elements, 2-23

spectral norm of, 3-314

swapping columns, 3-70

symbolic, 2-29

axes (plots)
controlling, 3-33

including, 3-95

labeling, 3-162

B

backup objects, 3-248

creating, 3-18

restoring, 3-273

bar graphs, 3-34

base

setting, 3-38, 3-75, 3-137,

3-210

baud rate

specifying, 3-36

beams, 4-1

Index-2

beeper

in programs, 1-71

sounding, 3-37

specifying tone and duration,

3-37

Bernoulli equation, 4-23

Bessel functions, 2-43

binary integers

comparing, 1-19

converting to floating-point,

3-42

customdisplay, 2-7

representing flags, 1-44

shifting one bit right, 3-25

wordsize, 1-19, 3-335

binary wordsize

recalling, 3-265

bipolar transistors, 4-73

bit

rotate left, 3-278

rotate right, 3-285

shift left, 3-310

shift right, 3-317

black-body emissive power,

3-112

black body radiation, 4-42

boxes, 3-40

branch cuts, 3-7, 3-9, 3-21,

3-23, 3-26, 3-29

branching structures

conditional structures, 1-20,

1-53, 3-101

ending, 3-102

loop structures, 1-27

program element, 1-3

BRCH menu, 1-20, 1-27

Brewster angle, 4-52

buckling, 4-3

buffer (serial)

clearing, 3-51

sizing data in, 3-40

byte

rotate left, 3-278

rotate right, 3-285

shiftleft, 3-311

shift right, 3-318

C

calculator

turning off, 1-82

calculator clock, 2-5

cantilevers, 4-1

capacitor, 4-16, 4-17, 4-19, 4-20

“case” branching, 1-22, 2-38,

2-49, 3-42

case structures, 2-49

centripetal force, 4-29

character codes

remapping to match HP

82240A, 3-211

to characters, 3-48

characters

codes, 3-204

character translation, 3-352

checksums, 3-41

specifying type of, 3-49

verify programs, 2-1

chi-square distribution, 3-363

choose boxes

custom, 1-68, 3-46

in programs, 1-68

circle, 4-59, 4-79

circular motion, 4-49

clearing

command line, 3-50

directorles, 3-53

display, 1-74

flags, 1-42, 3-45

stack, 3-50

stack display, 3-51

subdirectories, 3-52

variables, 3-52, 3-53

clock

adjusting, 3-50

coefficients

of monic polynomials, 3-220

regression, 3-177

collisions, 4-30

column operations

converting matrices into

columns, 3-54

converting vectors into
elements, 3-54

creating matrices from

columns, 3-56

creating vectors from elements,

3-56

deleting, 3-55

inserting, 3-54

columns, 4-1

combilnations, 3-58

command line

clearing, 3-50

during program input, 1-62

commands

applying to list elements,

3-92, 3-102, 3-203

applying to lists, 3-91

in programs, 1-2

comments, 1-10

comparing objects, 3-294

comparison functions, 1-17,

1-19

compiled local variable structures

defining procedure, 1-15

complex numbers

conjugates, 3-62

disassembling, 3-71

imaginary parts, 3-150

polar angle 6, 3-19

real parts, 3-267

computer

creating programs on, 1-10

Index-3

conditional commands, 1-20,

1-21, 1-22

conditionals

nested, 2-23, 2-26, 2-36

conditional structures

“case” branching, 1-22, 3-42

conditional commands, 1-20

ending, 3-102

error branching, 1-53, 1-54,

3-146

examples, 1-23

“if” branching, 1-20, 1-21,

1-22, 1-53, 1-54, 3-101,

3-144, 3-148, 3-149

program element, 1-3

test commands in, 1-17, 1-20

conduction, 4-39, 4-41

cone, 4-64

conjugates, 3-62

of matrices, 3-353

of objects, 3-300

constants

symbolic, 3-99, 3-143, 3-183,

3-193

Constants Library

opening, 3-63

continuing execution, 1-47,

1-48, 1-57, 1-59, 3-64

convection, 4-40, 4-41

converting base units, 3-360

coordinate modes

specifying, 3-70, 3-269, 3-316

coordinates

pixels to user units, 3-250

specifying for PICT, 3-231

user units to pixels, 3-71

coordinates of PICT

specifying, 3-231

correlation (statistical), 3-65
Coulomb’s law, 4-11

Index-4

counters

loop structures, 1-29, 1-31,

1-33, 1-35

negative steps, 1-31, 1-35,

1-39

stepping, 1-39

covariance, 3-222

creating 2D vectors, 3-369

creating 3D vectors, 3-370

critical angle, 4-51

current, 4-9, 4-43, 4-67

cursor (command line), 1-63
curve fitting, 3-37, 3-110, 3-166,

3-167, 3-176, 3-250
custom menus

creating, 3-187

displaying, 3-187

in programs, 1-78, 1-79

menu-based applications,

1-79
cylinder, 4-64

D

Darcy friction factor, 3-72

data mput, 3-154

data transmission

closing ports, 3-51

detecting errors, 3-49

error testing, 3-40

parity, 3-217

receiving, 3-268, 3-269

serial, 3-381

size of, 3-40

specifying baud rate, 3-36

terminating Server mode,

3-117

time-out, 3-324

via Kermit, 3-160, 3-301

via Kermit server, 3-160,

3-303

data transmissions

opening ports, 3-212

dates

calculating days between,

3-75

calculating past or future,

3-74

displaying, 3-73, 3-356

setting, 3-73

debugging, 1-47, 1-49, 3-74,

3-201

decomposing vectors, 3-371

defining procedures
compiled local variables in,

1-15

local variables in, 1-14

local variable structures, 1-11

definite loops, 2-3, 2-26, 2-46,

2-47, 2-49, 2-56

with counters, 2-10, 2-16

delimiters

% for programs, 1-1

dependent variables

specifying in matrices, 3-389

specifying in plots, 3-81

specifying in statistical data,

3-57

summation of squares, 3-389

summations of, 3-388

dialog boxes (input forms),
3-152

dimensions

converting, 3-65

of PICT, 3-223

diodes, 4-69

directories

changing, 3-142, 3-363

clearing, 3-53

creating, 3-69

current, 3-142

HOME, 3-142

paths, 3-219

purging, 3-225

display

area numbers, 1-59

clearing, 1-74

clearing stack, 3-51

creating graphics objects from,

3-163
freezing, 1-58, 3-123

printing, 3-237

display mode

setting, 3-103, 3-117, 3-299,
3-322

“do” looping, 1-36, 2-19, 2-23,

2-43, 3-89, 3-362
drag force, 4-31

E

editing

programs, 1-9

eigenvalues

of matrices, 3-100, 3-101

elgenvectors

of matrices, 3-100

elastic buckling, 4-3

elastic collisions, 4-30

electricity, 4-9

electrostatic force, 4-11

ellipse, 4-59

energy, 4-15, 4-31

Equation Library

references, 4-1, 4-82

starting, 3-104

subjects, 4-1

titles, 4-1

equations

defining sets, 3-193

disassembling, 3-104

expanding, 3-109

least squares solution, 3-178

rearranging, 3-104

Index-5

recalling, 3-259

reordering sets, 3-194

retitling sets, 3-194

sets, 3-194

solving linear systems, 3-178

solving quadratic, 3-253

solving sets, 3-197

testing for linearity, 3-168

equation sets

changing titles, 3-194

defining, 3-193

reordering, 3-194

solving, 3-197

errors

actions in programs, 1-51

analyzing, 1-51

causes, 1-b1

causing, 1-51, 3-90

clearing last, 1-51, 3-106

conditional structures, 1-b3,

1-54, 3-146

detecting in transmission,

3-49

display messages, 1-51

Kermit, 3-159

numbers for, 1-51, 3-106

recalling messages, 1-51,

3-105, 3-159

trapping, 1-53, 1-54, 3-146

user-defined, 1-51

error-trapping, 2-29

error trapping, 2-9, 2-10

escape velocity, 4-49

evaluation

of local variables, 1-13

of test clauses, 1-21, 1-22,

1-36, 1-38

example program

UNMIX, G-b

Index-6

example programs

animating graphics, 2-45,

2-47, 2-56

applying programs repeatedly,

2-19

Bessel functions, 2-43

calculating median, 2-14

converting from algebraic to
RPN, 2-40

converting plots to grobs,
2-45

custom menus, 1-80

displaying binary integers,

2-10

execution times, 2-5

Fibonacci numbers, 2-2

input forms, 1-67

input routines, 1-54, 1-57,

1-60, 1-64, 1-66

inverse functions, 2-54

manipulating math curves,

2-46

mass of an object, 1-79

maximum and minimum

elements, 2-22

percentile of a list, 2-14

phone list, 1-67

plotting pie charts, 2-49

preserving calculator status,

2-8

rearranging algebraics, 2-19

right-justifying strings, 2-7

summations, 1-41

surface area of a torus, 1-45

system flags, 1-43

Taylor’s polynomials, 2-45

trace mode, 2-53

using conditionals, 1-23, 1-24,

1-25, 1-26

using loops, 1-29, 1-31, 1-33,

1-35, 1-37, 1-40

verifying arguments, 2-36

volume of a sphere, 1-5, 1-6

volume of a spherical cap,

1-6, 1-9, 1-12

Examples subdirectory

creating, 3-345

removing, 3-52

exponents, 3-383

expressions

creating from arguments,

3-15

pattern replacement, 3-180,

3-181

rewriting, 3-180, 3-181

extrapolation, 3-234, 3-235,

3-236

F

factorials, 3-112

factor units, 3-361

false (test result), 1-17, 1-19

Fanning friction factor, 3-113

F distribution, 3-364

Fibonacci numbers, 2-2

flags

annunciators, 1-42

binary integer form, 1-44

clearing, 1-42, 3-45, 3-114,

3-125

control behavior, 1-42

controlling logic with, 2-23,

2-26

default states, C-1

preserving and restoring

status, 2-8, 2-9, 2-49

program control, 1-42

recalling, 3-262

recalling states, 1-44

restoring states, 1-44

setting, 1-42, 2-10, 2-23, 2-26,
2-53, 3-304, 3-327

storing states, 1-44

system, 1-42, 1-44, C-1

testing, 1-42, 2-23, 2-26,

3-114, 3-124, 3-125

testing and clearing, 3-114,

3-125

types, 1-42

user, 1-42, 1-44

fluid flows

Darcy friction factor, 3-72

Fanning friction factor, 3-113

fluids, 4-22

focal length, 4-50

force, 4-11, 4-27, 4-44

“for” looping, 1-32, 1-34, 2-10,

2-16, 2-26, 2-46, 2-47, 2-49,

2-56, 3-119, 3-201

formatting

ports, 3-228

Fourier transforms

inverse, 3-147

of arrays, 3-115, 3-147

free fall motion, 4-47

freeing merged memory, 3-121,

3-122

frequency

resonant, 4-19

friction losses, 4-26

functions

applying to list elements,

3-92, 3-102, 3-203

applying to lists, 3-91

defining, 3-77

G

gamma function, 3-112

gas compressibility correction

factor, 3-393

gas-compressibility factor, 4-36

gases, 4-32

geometry, 4-58, 4-63

Index-7

global variables

action in programs, 1-2

disadvantages in programs,

1-11
list of, 3-357

graphics

creating, 3-17, 3-40, 3-131,

3-166, 3-227
custom, 2-56

displaying, 3-249

environment, 3-131

Picture environment, 3-227

graphics commands
parallel processing with, G-3

graphics objects

animating, 3-14

creating blank, 3-39

creating from display, 3-163

creating from stack, 3-133

displaying, 3-164

manipulating, 2-23, 2-46,

2-47, 2-49, 2-56
superimposing, 3-130, 3-134

gravitation, 4-31, 4-47, 4-48,

4-49

41T annunciator, 1-47, 1-59

haltmg programs, 1-48, 3-136

harmonic motion, 4-54

head loss, 4-24

heat, 4-37

heat capacity, 4-38

heat transfer, 4-37

histograms, 3-137, 3-139

HMS format

adding in, 3-139

converting from, 3-141

converting to, 3-142

subtracting in, 3-140

Hooke’s law, 4-30

Index-8

ideal gases, 4-32

“if” branching, 1-20, 1-21, 1-22,

1-53, 1-54, 2-2, 2-23, 2-26,

2-36, 3-101, 3-144, 3-148,

3-149, 3-346

“iferror” branching, 2-29

implicit variable references,

3-305

indefinite loops, 2-7, 2-19, 2-23

ending, 3-89, 3-102, 3-374

with counters, 2-43

independent variables

specifying for plotting, 3-151

specifying in matrices, 3-380

specifying in statistical data,

3-57

summation of squares, 3-379

summations of, 3-379, 3-388

index of refraction, 4-50

inductor, 4-17, 4-20, 4-21

initial value problems, 3-274

error estimate, 3-276, 3-290

next step, 3-288

solution step size, 3-277

with known partials, 3-286

input

prompting for, 3-238

input forms

creating, 3-152

custom, 1-67, 3-152

for program input, 1-67

in programs, 1-67

resetting, 3-203

saving initial values, 3-203

input plane

setting the x range, 3-387

setting the y range, 3-393

intrinsic density of silicon, 3-305

inverses
calculating, 3-156

logical, 3-201

of matrices, 3-156

storing, 3-309

I/0

closing ports, 3-51

IR port, 3-157

Kermit errors, 3-159

Kermit transmission, 3-160

selecting port, 3-157

serial port, 3-157

isothermal expansion, 4-34

J

junction field-effect transistors,

4-74

K

Kermit, 3-212, 3-217, 3-230,

3-268, 3-269, 3-301, 3-303

error messages, 3-159

server, 3-160

transmission, 3-160

keyboard

defining user, 3-24, 3-328

in programs, 1-72, 1-73

recalling definitions, 3-263

unassigning user keys, 3-80

key location numbers, 1-73

keys

defining in user keyboard,

3-24

testing, 3-159

keystrokes

as program input, 1-72, 1-73

waiting for , 3-373

killing programs, 1-47, 1-48,

3-161

L

last argument

recalling, 2-10, 3-162, 3-163

length factor, 4-3

libraries

attaching, 3-31

detaching, 3-84

displaying menus, 3-187

listing, 3-165

light, 4-50

linear mechanics, 4-28

linear motion, 4-47

linear structure, 1-20

lines, 3-166

list concatenation, G-3

list processing

programming example, 2-29

lists

action in programs, 1-2

adding elements of two, 3-11

applying commands, functions,

or programs to, 3-91,

3-92, 3-102, 3-203, 3-302,

3-333, 3-336

applying executable object

repeatedly, 3-302

assembling, 3-169

creating from stack, 3-169

differences between elements,

3-170

disassembling, 3-169

extracting elements, 3-127,

3-129, 3-136, 3-341

first element, 3-136

last elements, 3-341

locating objects in, 3-234

multiplying elements of, 3-171

parallel processing, G-1

product of, 3-171

replacing elements in, 3-244,

3-246

Index-9

reversing element order, 3-274

sorting, 2-14, 3-315

sublist position in, 3-203

summing elements of, 3-170

local variables, 2-9

action in programs, 1-2

compiled, 1-15

creating, 1-3, 1-11

evaluating, 1-13, 2-19

exist temporarily, 1-11, 1-12,

1-14

naming, 1-11

nested, 2-43, 2-49

passing between programs,

2-47

storing objects in, 2-19, 2-38

local variable structures

advantages, 1-12

as user-defined functions,

1-16

calculations with, 1-3

create local variables, 1-11

defining procedure, 1-11, 1-14

entering, 1-11

operation, 1-3, 1-11

program element, 1-3

syntax, 1-3, 1-11

logic

controlling, 2-26

controlling with flags, 2-23,

2-26

functions, 2-23, 2-26, 2-36,

2-38

logical functions, 1-17, 1-19,

3-13, 3-201, 3-213, 3-382

longitudinal waves, 4-81

loop structures

counters, 1-29, 1-31, 1-33,

1-35, 1-39, 3-323

Index-10

definite, 1-27, 1-28, 2-3, 2-26,

2-46, 2-47, 2-49, 2-56,

3-119, 3-201, 3-321

“do” looping, 1-36, 3-89

“for” looping, 1-32, 1-34,

3-119, 3-201, 3-323

indefinite, 1-27, 1-36, 2-7,

2-19, 2-23, 3-374

keystroke input, 1-73

negative steps, 1-31, 1-35

program element, 1-3

“start” looping, 1-28, 1-30,

3-201, 3-321

summation alternative, 1-40

test commands in, 1-36, 1-38

“while” looping, 1-38

lowercase letters

in names, 1-11

M

Mach number, 4-35

magnetic field, 4-15, 4-43, 4-44,

4-45

magnetism, 4-43

magnification, 4-50

mantissas, 3-179

mass

related to energy, 4-31

mathematical data

plotting, 3-94

matrices

adding rows, 3-283

condition number, 3-60

conjugates of, 3-353

converting to columns, 3-54

converting to rows, 3-282

creating from columns, 3-56

creating from rows, 3-284

deleting rows, 3-284

determinants, 3-82

eigenvalues, 3-101

eigenvalues and eigenvectors,

3-100

extracting diagonals, 3-85

identity, 3-143

inverting, 3-156

least squares solution, 3-178

LQ factorization, 3-176

LU decomposition, 3-179

multiplying rows by a

constant, 3-260

QR factorization, 3-253

random element, 3-257

rank of, 3-257

reduced row echelon form,

3-286

Schur decomposition, 3-298

singular value decomposition,

3-337

singular values of, 3-338

spectral radius, 3-317

squaring, 3-316

sum of diagonal elements,
3-351

swapping rows, 3-292

transposing, 3-353

mechanics, 4-28, 4-29

memory

checking available, 3-186

freeing merged, 3-121
merging RAM card, 3-190

menu-based applications, 1-79

menu descriptions

PRG BRCH, 1-20, 1-27

PRG RUN, 1-49

PRG TEST, 1-18

menus

custom, 1-78, 1-79, 2-23,

3-187

defining, 3-187

delayed display, 1-72, 1-78

displaying, 3-187

displaying in programs, 1-72,

1-77, 1-79
for libraries, 1-77

for program input, 1-79

last menu, 1-78

numbers for, 1-77, 1-78, 3-264

pages in, 1-78

programmatic uses, 1:77

recalling, 3-264

recalling numbers, 1-78

resuming programs, 1-79

running programs, 1-79

temporary, 2-49, 3-350

message boxes

creating, 3-196

custom, 1-77, 3-196

in programs, 1-77

messages, A-1-17

displaying, 3-88

prompting, 1-56

meta-objects, 2-29

Minehunt game, 3-192

cheating, 3-192

storing, 3-192
mode names

Algebraic-entry, 1-63

Algebraic/Program-entry,
1-9, 1-63

Program-entry, 1-4, 1-9

modes

programentry, 1-4, 1-9

setting, 1-9
Mohr’s circle, 4-79

motion, 4-46

N

names

action in programs, 1-2

negatives, 3-199

nested structures, 2-40, 2-43

new commands, E-1-7

Index-11

newlines, 1-4, 1-59

NMOS transistors, 4-71

nonideal hydrocarbon gas, 3-393

normal distribution, 3-365

NPN bipolar transistors, 4-73

number bases

converting between, 2-32

numbers

action in programs, 1-2

complex, 3-19

complex conjugates, 3-62

disassembling complex, 3-71

fractional part, 3-121

imaginary parts, 3-150

integer part, 3-157

largest available, 3-183

rational form, 3-251

rational form with 7, 3-251

real parts, 3-267

real to binary, 3-292

real to complex, 3-293

rounding, 3-279
rounding to integer, 3-44,

3-118

smallest available, 3-193

squaring, 3-316

0

objects

actions in programs, 1-2

backup, 3-248

comparing, 3-294

conjugates, 3-300

converting dimensions, 3-65

copying, 3-200, 3-226

decomposing, 3-209

displaying, 3-88

duplicating, 3-97, 3-98

entering in programs, 1-4

evaluating, 3-107

evaluating by addresses, 3-339

Index-12

evaluating symbolic, 3-207

operating system, 3-339

printing, 3-241

recalling, 3-261

removing from stack, 3-95,

3-96

removing labels from, 3-97

removing pointers to, 3-200

replacing a portion of, 3-270

sign of, 3-306

size of, 3-41, 3-309

storing, 3-325

storing in reserved variables,

3-324

storing objects in, 3-325

testing types, 1-20

truncating, 3-353

type numbers, 1-20

type numbers of, 3-359

unevaluated, 3-254

object type numbers, 1-20

Ohm’s law, 4-11

optics, 4-50

oscillations, 4-54

output

labeling, 2-5

P

packets

sending, 3-230

parallel addition, G-3

parallelepiped, 4-65

parallel processing, G-1

DOLIST, G-2, G-6

multiple-result commands,

G-b

parity

setting, 3-217

pendulum, 4-56, 4-57

percent functions, 3-47, 3-339

permutations, 3-224

phase delay, 4-16

PICT, 3-226

clearing, 3-105

editing, 3-17, 3-40, 3-166

specifying coordinates, 3-231

superimposing grobs onto,

3-130, 3-134

Picture environment

selecting, 3-131, 3-227

pie charts, 2-49

pixels

checking if on, 3-229

coordinates, 3-71, 3-250

toggling, 3-349

turning off, 3-228

turning on, 3-229

plane geometry, 4-58

plots

3D, 3-207, 3-208

3D perspective, 3-111

autoscaling, 3-32

center, 3-44

changing horizontal width,

3-372

controlling axes, 3-33

creating, 3-36

drawing, 3-94, 3-139, 3-296

drawing axes, 3-95

labeling axes, 3-162

mathematical data, 3-94

resolution, 3-207, 3-208, 3-271

scaling, 3-135, 3-299

setting axes tick-marks, 3-30

setting types, 3-34, 3-61, 3-86,

3-125, 3-132, 3-137, 3-215,

3-296, 3-297, 3-355, 3-375,

3-391

simultaneous, 3-307

specifying dependent variable,

3-81

specifying eye point, 3-111

specifying x-axis display range,
3-384

specifying y-axis display range,

3-390

statistical data, 3-36, 3-94,

3-137, 3-139

plot types

setting, 3-218, 3-221, 3-312

specifying, 3-232

plug-in cards
initializing, 3-228

PN step-junction devices, 4-69

polarization, 4-52

polygon, 4-61

polynomials

evaluating, 3-224

monic, 3-220

roots, 3-238

Taylor’s, 3-343

polytropic processes, 4-34

population covariance, 3-222

population standard deviation,

3-242

population variance, 3-247

port

opening, 3-212

selecting, 3-157

ports

closing, 3-51

initializing, 3-228

pressure

hydrostatic, 4-23

FREZG annunciator, 1-4, 1-9

PRG BRCH menu, 1-20, 1-27

PRG RUN menu, 1-49

PRG TEST menu, 1-18

print buffer

printing, 3-68

printing

HP 822404, 3-211

print buffer, 3-68

Index-13

setting delay, 3-79

trace mode, 2-53

Program Development Link,

1-10, 2-1

programs included, 2-1

Program-entry mode, 1-4, 1-9

program examples

arbitrary number bases, 2-32

programming techniques
applied list processing, 2-29

“case” branches, 2-38, 2-49

case structures, 2-38, 2-49

controlling logic with flags,

2-23, 2-26

custom graphics, 2-56

custom menus, 2-23, 2-26

definite loops, 2-3, 2-26, 2-46,

2-47, 2-49, 2-56

definite loops with counters,

2-10, 2-16

“do” loops, 2-19, 2-23, 2-43

error-trapping, 2-29

error trapping, 2-9, 2-10

evaluating local variables,

2-19

“for” loops, 2-10, 2-16, 2-26,

2-46, 2-47, 2-49, 2-56

“if” branches, 2-23, 2-26

indefinite looping, 2-33

indefinite loops, 2-7, 2-19,

2-23

indefinite loops with counters,

2-43

interpolation, 2-14

labeling output, 2-5

list concatenation, 2-40

local variables, 2-9, 2-38,

2-43, 2-47, 2-49

logical functions, 2-23, 2-26,

2-36, 2-38

logic control, 2-26

Index-14

manipulating grobs, 2-23,

2-46, 2-47, 2-49, 2-56

meta-object manipulation,

2-29

nested conditionals, 2-23,

2-26, 2-36

nested structures, 2-40, 2-43

object type-checking, 2-40

plot commands, 2-45, 2-46,

2-49

preserving flag status, 2-9,

2-49

programs as arguments, 2-10,

2-19, 2-54

recursion, 2-2, 2-40

restoring flag status, 2-9,

2-49

restoring last argument, 2-10

root-finder, 2-54

setting flags, 2-10, 2-23, 2-26,

2-53

simulating new object types,

2-29

sorting array elements, 2-23

sorting lists, 2-14

“start” loops, 2-3

string and character

manipulation, 2-33

string operations, 2-7

structures, 2-5

subroutines, 2-5, 2-10, 2-21,

2-38

tagged output, 2-33

temporary menus, 2-49

testing flags, 2-23, 2-26

using arrays, 2-16, 2-49

using calculator clock, 2-5

using flags, 2-29

using other programs, 2-5,

2-10, 2-21, 2-38

using statistics commands,
2-49

utility programs, 2-38

vectored enter, 2-53

“while” loops, 2-7

programs

actions for object types, 1-2

applying to elements of a

matrix, 2-29

applying to list elements,

3-92, 3-102, 3-203

applying to lists, 3-91

are sequences of objects, 1-1

beeping, 1-71

calculation styles, 1-3

cancelling halted, 3-161

causing errors, 1-51

checksums, 2-1

comments 1n, 1-10

conditional structures, 1-20,

1-53, 1-54

creating on computer, 1-10

cursor position during input,

1-63

debugging, 1-47, 3-74, 3-201

default input, 1-60

displaying input forms, 1-67

displaying menus, 1-72, 1-77,

1-79, 2-23, 2-26, 2-49

displaying output, 1-74, 1-75,

1-76

displaying string output, 1-75

editing, 1-9

elapsed time, 2-5

entering, 1-4

entry modes, 1-4, 1-9

entry modes during input,

1-63

error actions, 1-51

evaluating local variables,

1-13

executing, 1-5

finding roots in, 2-54

flags in, 1-42

getting input, 1-55, 1-56,

1-58, 1-60, 1-72, 1-73,

3-154

" annunciator, 1-47

haltmg, 1-48, 3-136

in local vauable structure,

1-3, 1-11

input as strings, 1-60

input forms, 3-152

introduction, 1-1

killing, 1-47, 1-48, 3-161

labeling output, 1-74, 1-75

local variable structures, 1-3,

1-11

loop structures, 1-27, 3-89,

3-374

naming, 1-5

newlines in, 1-4

not evaluating local variables,

1-13

not executing in programs,

1-2

objects in, 1-2

on the stack, 1-4

pausing, 3-373

pausing for output, 1-76

prompting, 1-56, 1-58, 1-60,

3-154

recursion, 2-2

resuming, 1-47, 1-48, 1-56,

1-59, 1-79, 1-82, 3-64

samples, 3-345

scope of local variables in,

1-14, 1-15

single-step execution, 1-47,

1-48, 1-49, 3-320

size of, 2-1

stepping through, 3-201

Index-15

stopping, 1-5, 3-102, 3-161

storing, 1-5

structures in, 1-3

subroutines, 1-45

test commands, 1-17

trapping errors, 1-53, 1-54,

3-102

turning off calculator, 1-82

user-defined functions, 1-16

using as arguments, 2-10,

2-19, 2-54

using as subroutines, 2-5,

2-10, 2-21, 2-38

utility, 2-38

verifying, 2-1

verifying input, 1-63, 2-36

viewing, 1-9

waiting for keystrokes, 1-72,

1-73, 3-373

projectile motion, 4-48

prompting, 1-56, 1-58, 1-60

prompts, 3-154

Q

quadratic equations

solving, 3-253

quality factor, 4-19

R

RAM

checking available, 3-186

RAM cards

freeing, 3-121, 3-122

merging, 3-190

random numbers

generating, 3-256

in matrices, 3-257

seeding, 3-267

reactance, 4-16

real gases, 4-32

Index-16

real numbers

converting to binary, 3-292

converting to complex, 3-293

manipulating, 2-33

recalling

flag states, 1-44

last arguments, 3-163

menu numbers, 1-78

rectangle, 4-60

recursion, 2-2, 2-40

reduced row echelon, 3-286

reflection, 4-52

refraction, 4-50

regression

calculating, 3-177

formula used, 3-166

power, 3-250

setting type, 3-37, 3-110,

3-167, 3-176

remainders, 3-195

reserved variables

storing objects in, 3-324

resistance

wire, 4-13

resonant frequency, 4-19

ring, 4-61

root-finder

in programs, 2-54

roots

finding, 3-281

in programs, 2-54, 3-385

of polynomials, 3-238

row operations

adding rows, 3-283

converting rows to a matrix,

3-284

deleting rows, 3-284

multiplying and adding to

another row, 3-260

multiplying by a constant,

3-260

norms, 3-280

swapping rows, 3-292

RPN syntax

converting to, 2-40

Runge-Kutta-Fehlberg, 3-274

RUN menu, 1-49

S

sample standard deviation,

3-300

sample variance, 3-367

Schur decomposition, 3-298

sequential calculations, 3-302,

3-336

serial input buffer, 3-318

serial interrupt, 3-295

serial transmissions, 3-381

input buffer, 3-318

interrupting, 3-295

Server mode

terminating, 3-117

silicon

intrinsic density of, 3-305

silicon devices, 4-67

single-step execution, 1-47,

1-48, 1-49

sinusoidal signal, 4-21

SI units, 3-360

size

binary wordsize, 3-265

initial value solution step,

3-277

of data transmissions, 3-40

of objects, 3-41, 3-309

of programs, 2-1

of stack, 3-82

software

version and date, 3-368

solenoid, 4-20, 4-44

solid geometry, 4-63

solid state devices, 4-67

solver

starting, 3-314

sound waves, 4-81

spectral norm, 3-314

spectral radius of a matrix,

3-317

sphere, 4-66

spring, 4-30, 4-55

squaring, 3-316

stack

calculations on, 1-3

clearing, 3-50

displaying, 3-345

duplicating objects in, 3-97,

3-98, 3-215

manipulating, 3-280, 3-281,

3-282, 3-338

printing, 3-239, 3-240, 3-241

removing objects from, 3-95,

3-96

selecting objects from, 3-226

size of, 3-82

stack display

clearing, 3-51

stack elements to vectors, 3-370

stack syntax

in local variable structures,

1-4

test commands, 1-17

standard deviation

population, 3-242

sample, 3-300

“start” looping, 1-28, 1-30, 2-3,

3-201

state change, 4-33, 4-36

statistical data

chi-square distribution, 3-363

clearing, 3-52

correlation, 3-65, 3-177

covariance, 3-222

extrapolating X, 3-235

Index-17

extrapolating Y, 3-234, 3-236

F distribution, 3-364

maxima, 3-184

mean, 3-185, 3-198

minima, 3-194

normal distribution, 3-198,

3-365

plotting, 3-36, 3-94, 3-137,

3-139, 3-296

population covariance, 3-222

population standard deviation,

3-242

population variance, 3-247

recalling, 3-264

regression, 3-166, 3-177

sample covariance, 3-67

sample standard deviation,

3-300

sample variance, 3-367

sorting by frequency, 3-38

specifying dependent variable,

3-389

specifying independent and

dependent variables,

3-57

specifying independent

variable, 3-380

stored in UDAT, 3-208

storing, 3-332

summing, 3-351

summing dependent variables,

3-388

summing independent

variables, 3-379

summing products of variables,

3-388

summing squared dependent

variable, 3-389

summing squared independent

variables, 3-379

t distribution, 3-365

Index-18

upper chi-square distribution,

3-363

upper normal distribution,

3-365

upper Snedecor’s F

distribution, 3-364

upper students t distribution,

3-365

variance, 3-198

step junction, 4-69, 4-74

storing

flag states, 1-44

programs, 1-5

strain, 4-76

stress, 4-1, 4-76

strings

action in programs, 1-2

as program output, 1-75

concatenation, 2-33

evaluating, 3-333

first characters, 3-204

input converted to, 1-60,

3-334

locating elements in, 3-234

manipulating, 2-7

subdirectories

clearing, 3-52

sublists

number used with DOSUBS,

3-102

subroutines, 2-5, 2-10, 2-21,

2-38

debugging, 1-49

in programs, 1-45

operation, 1-4H

single-step execution, 1-49,

3-320

summations

alternative to looping, 1-40

of dependent variables, 3-388

of independent variables,

3-379

of products of statistical

variables, 3-388

of squared dependent

variables, 3-389

of squared independent

variables, 3-379

of statistical data, 3-351

symbolic arrays, 2-29

symbolic constants, 3-99, 3-143,

3-183, 3-193

evaluating, 3-63

symbolic objects

evaluating, 3-207

system time, 3-346, 3-347

setting, 3-347

T

tagged objects

as program output, 1-74

creating, 3-341

Taylor’s polynomials

graphing, 2-45

t distribution, 3-365

temperature

change, 3-344

increment, 3-348

terminal velocity, 4-49

test commands

algebraic syntax, 1-17
combining results, 1-19

comparison functions, 1-17

flag tests, 1-42

in conditional structures,

1-17, 1-20

in loop structures, 1-36, 1-38

logical functions, 1-19

results of, 1-17, 1-18, 3-159

stack syntax, 1-17

testing

algebraics, 1-19

binary integers, 1-19

flag states, 1-42

testing linear structure, 1-20

TEST menu, 1-18

thermal expansion, 4-39

tick-marks

setting in plots, 3-30

time, 3-347

and date, 3-356
setting, 3-347

time-out

during data transmission,

3-324
toroid, 4-21, 4-45

trace mode, 2-53

transistors, 4-67

transverse waves, 4-80

trapping errors, 1-51

triangle, 4-62

true (test result), 1-17, 1-19
turning off the calculator, 3-211
TVM, 3-357

begin mode, 3-358

end mode, 3-358

solving, 3-358

u

units

converting angular, 3-99,

3-294

creating from stack, 3-362

factoring, 3-361

numeric portion, 3-366

SI, 3-360

upper chi-square distribution,

3-363

upper normal distribution,

3-365

Index-19

upper Snedecor’s F distribution,

3-364

upper students t distribution,

3-365

user-defined errors, 1-51

user-defined functions

internal structure, 1-16

user keyboard

defining keys, 3-24

user keys

assigning, 3-24

unassigning, 3-80
utility programs, 2-38

Vv

variables

action in programs, 1-2

adding objects to, 3-329

clearing, 3-52, 3-53

decrementing, 1-39, 3-76

defining, 3-77

dependent, 3-57, 3-388, 3-389

designated as calculated,

3-185

designating user-defined,

3-197

dividing by, 3-331

incrementing, 1-39, 3-150

independent, 3-57, 3-151,

3-379, 3-380, 3-388

isolating, 3-158

list of currently used, 3-367

list of particular type, 3-357

multiplying, 3-330

negating, 3-313

ordering, 3-214

picture, 3-226

port, 3-248

printing, 3-240

purging, 3-243

showing, 3-305

Index-20

solving multiple, 3-195

storing objects in, 3-325

subtracting objects from,

3-330

types, 3-368

variable types, 3-357

variance, 3-198

population, 3-247

sample, 3-367

vectored enter, 2-53

vectors

converting from matrices,

3-54

converting to elements, 3-54

creating from elements, 3-56

creating from stack, 3-369

from stack elements, 3-370

to stack elements, 3-371

vibrations, 4-80

view volume

setting the depth, 3-392

setting the height, 3-394

setting the width, 3-386

voltage, 4-9, 4-67

Vroom, Fruit of the, 2-52

W

waiting

displaying output, 1-76

for keystrokes, 1-72, 1-73

warmstart log, 3-377

waves, 4-80

“while” looping, 1-38, 2-7,

3-270, 3-374

while loops, 3-374

wordsize (binary)
testing, 1-19

wordsize of binary integers,

3-335

X Y

X-axis y-axis
specifying display range, specifying display range,

3-384 3-390
Xmodem

receiving objects, 3-384

sending objects, 3-386

Index-21

Contacting Hewlett-Packard

For Information about Using the Calculator. If you have
questions about how to use the calculator, that are not covered in

this manual, first check the table of contents, the subject index,

and “Answers to Common Questions” in appendix A of the

HP 48 User’s Guide. If you can’t find an answer in either

manual, you can contact the Calculator Support Department:

Hewlett-Packard

Calculator Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 715-2004 (Mon.-Fri., 8:00am-3:00pm Pacific time)
(503) 715-3628 FAX

For Hardware Service. See appendix A of the HP 48 User’s

Guide for diagnostic instructions and information on obtaining

service. But, before you send your unit for service, please call HP

Calculator Support at the number listed below.

Hewlett-Packard

Corvallis Service Center

1030 N.E. Circle Blvd., Bldg. 11

Corvallis, OR 97330, U.S.A.

(503) 715-2004 (HP Calculator Support)

If you are outside the United States, see appendix A of the

HP /8 User’s Guide for information on locating the nearest

service center.

HP Electronic Information Service. This service provides

information on HP 48 calculators and is free of charge—you pay

only for the phone call or Internet service. There are two ways to

connect:

m via modem: (503)715-4448. It operates at 2400/9600/14400
baud, full duplex, no parity, 8 bits, 1 stop bit.

m via the Internet: Access as hpcvbbs.external.hp.com

(192.6.221.13) using telnet, ftp, or World-Wide-Web browser

(http://hpcvbbs.external.hp.com/hp48g.html).

Contents

: Programming

: Programming Examples

: Command Reference

: Equation ReferenceB
2
O
W
N
=

: Error and Status Messages
: Table of Units

: System Flags
: Reserved Variables

: New Commands in the HP 48G Series

: Technical Reference

G: Parallel Processing with Lists

M
m
o
o

W
w
)
»

088698"01 574|z

PACKARD
. Part Number 00048-90136 Edition 4

English

S H || ‘ || || |'|| | |||| || |||||} || ||‘

(b/’ HEWLETT

12345678810 11
85 G6 97 98 GG =

	Cover
	Contents
	Chapter 1 - Programming
	Understanding Programming
	The Contents of a Program
	Calculation in a Program

	Entering and Executing Programs
	Viewing and Editing Programs
	Creating Programs on a Computer
	Using Local Variables
	Creating Local Variables
	Evaluating Local Names
	Defining the Scope of Local Variables
	Compiled Local Variables
	Creating User-Defined Functions as Programs

	Using Test and Conditional Structures
	Testing Conditions
	Using Conditional Structures and Commands

	Using Loop Structures
	Using Definite Loop Structures
	Using Loop Counters
	Using Summations Instead of Loops

	Using Flags
	Types of Flags
	Setting, Clearing, and Testing Flags
	Recalling and Storing the Flag States

	Using Subroutines
	Single-Stepping through a Program
	Trapping Errors
	Causing and Analyzing Errors
	Making an Error Trap

	Input
	Data Input Commands
	Using PROMPT...CONT for Input
	Using DISP FREEZE HALT...CONT for Input
	Using INPUT...ENTER for Input
	Using INFORM and CHOOSE for Input
	Beeping to Get Attention

	Stopping a Program for Keystroke Input
	Using WAIT for Keystroke Input
	Using KEY for Keystroke Input

	Output
	Data Output Commands
	Labeling Output with Tags
	Labeling and Displaying Output as Strings
	Pausing to Display Output
	Using MSGBOX to Display Output

	Using Menus with Programs
	Using Menus for Input
	Using Menus to Run Programs

	Turning Off the HP 48 from a Program

	Chapter 2 - Programming Examples
	Fibonacci Numbers
	FIB1 (Fibonacci Numbers, Recursive Version)
	FIB2 (Fibonacci Numbers, Loop Version)
	FIBT (Comparing Program-Execution Time)

	Displaying a Binary Integer
	PAD (Pad with Leading Spaces)
	PRESERVE (Save and Restore Previous Status)
	BDISP (Binary Display)

	Median of Statistics Data
	%TILE (Percentile of a List)
	MEDIAN (Median of Statistics Data)

	Expanding and Collecting Completely
	MULTI (Multiple Execution)
	EXCO (Expand and Collect Completely)

	Minimum and Maximum Array Elements
	MNX (Minimum or Maximum Element---Version 1)
	MNX2 (Minimum or Maximum Elements---Version 2)

	Applying a Program to an Array (APLY)
	Converting Between Number Bases (nBASE)
	Verifying Program Arguments
	NAMES (Check List for Exactly Two Names)
	VFY (Verify Program Argument)

	Converting Procedures from Algebraic to RPN (→RPN)
	Bessel Functions (BER)
	Animation of Successive Taylor's Polynomials
	SINTP (Converting a Plot to a Graphics Object)
	SETTS (Superimposing Taylor's Polynomials)
	TSA (Animating Taylor's Polynomials)

	Programmatic Use of Statistics and Plotting (PIE)
	Trace Mode (Vectored Enter)
	Inverse-Function Solver (ROOTR)
	Animating a Graphical Image (WALK)

	Chapter 3 - Command Reference
	Example with ACOS
	ABS
	ACK
	ACKALL
	ACOS
	ACOSH
	ADD
	ALOG
	AMORT
	AND
	ANIMATE
	APPLY
	ARC
	ARCHIVE
	ARG
	ARRY→
	→ARRY
	ASIN
	ASINH
	ASN
	ASR
	ATAN
	ATANH
	ATICK
	ATTACH
	AUTO
	AXES
	BAR
	BARPLOT
	BAUD
	BEEP
	BESTFIT
	BIN
	BINS
	BLANK
	BOX
	BUFLEN
	BYTES
	B→R
	CASE
	CEIL
	CENTR
	CF
	CHOOSE
	%CH
	CHR
	CKSM
	CLEAR
	CLKADJ
	CLLCD
	CLOSEIO
	CLΣ
	CLTEACH
	CLUSR
	CLVAR
	CNRM
	→COL
	COL+
	COL-
	COL→
	COLCT
	COLΣ
	COMB
	CON
	COND
	CONIC
	CONJ
	CONLIB
	CONST
	CONT
	CONVERT
	CORR
	COS
	COSH
	COV
	CR
	CRDIR
	CROSS
	CSWP
	CYLIN
	C→PX
	C→R
	DARCY
	DATE
	→DATE
	DATE+
	DBUG
	DDAYS
	DEC
	DECR
	DEFINE
	DEG
	DELALARM
	DELAY
	DELKEYS
	DEPND
	DEPTH
	DET
	DETACH
	DIAG→
	→DIAG
	DIFFEQ
	DISP
	DO
	DOERR
	DOLIST
	DOSUBS
	DOT
	DRAW
	DRAX
	DROP
	DROPN
	DROP2
	DTAG
	DUP
	DUPN
	DUP2
	D→R
	e
	EGV
	EGVL
	ELSE
	END
	ENDSUB
	ENG
	EQ→
	EQNLIB
	ERASE
	ERRM
	ERRN
	ERR0
	EVAL
	EXP
	EXPAN
	EXPFIT
	EXPM
	EYEPT
	F0λ
	FACT
	FANNING
	FC?
	FC?C
	FFT
	FINDALARM
	FINISH
	FIX
	FLOOR
	FOR
	FP
	FREE
	FREE1
	FREEZE
	FS?
	FS?C
	FUNCTION
	GET
	GETI
	GOR
	GRAD
	GRAPH
	GRIDMAP
	→GROB
	GXOR
	*H
	HALT
	HEAD
	HEX
	HISTOGRAM
	HISTPLOT
	HMS+
	HMS-
	HMS→
	→HMS
	HOME
	i
	IDN
	IF
	IFERR
	IFFT
	IFT
	IFTE
	IM
	INCR
	INDEP
	INFORM
	INPUT
	INV
	IP
	IR
	ISOL
	KERRM
	KEY
	KGET
	KILL
	LABEL
	LAST
	LASTARG
	LCD→
	→LCD
	LIBEVAL
	LIBS
	LINE
	ΣLINE
	LINFIT
	LININ
	LIST→
	→LIST
	ΣLIST
	ΔLIST
	ΠLIST
	LN
	LNP1
	LOG
	LOGFIT
	LQ
	LR
	LSQ
	LU
	MANT
	↑MATCH
	↓MATCH
	MAX
	MAXR
	MAXΣ
	MCALC
	MEAN
	MEM
	MENU
	MERGE
	MERGE1
	MIN
	MINEHUNT
	MINIT
	MINR
	MINΣ
	MITM
	MOD
	MROOT
	MSGBOX
	MSOLVR
	MUSER
	NDIST
	NEG
	NEWOB
	NEXT
	NEXT (debug)
	NOT
	NOVAL
	NSUB
	NUM
	→NUM
	NUMX
	NUMY
	NΣ
	OBJ→
	OCT
	OFF
	OLDPRT
	OPENIO
	OR
	ORDER
	OVER
	PARAMETRIC
	PARITY
	PARSURFACE
	PATH
	PCOEF
	PCONTOUR
	PCOV
	PDIM
	PERM
	PEVAL
	PGDIR
	PICK
	PICT
	PICTURE
	PINIT
	PIXOFF
	PIXON
	PIX?
	PKT
	PMAX
	PMIN
	POLAR
	POS
	PREDV
	PREDX
	PREDY
	PRLCD
	PROMPT
	PROOT
	PRST
	PRSTC
	PRVAR
	PR1
	PSDEV
	PURGE
	PUT
	PUTI
	PVAR
	PVARS
	PVIEW
	PWRFIT
	PX→C
	→Q
	→Qπ
	QR
	QUAD
	QUOTE
	RAD
	RAND
	RANK
	RANM
	RATIO
	RCEQ
	RCI
	RCIJ
	RCL
	RCLALARM
	RCLF
	RCLKEYS
	RCLMENU
	RCLΣ
	RCWS
	RDM
	RDZ
	RE
	RECN
	RECT
	RECV
	REPEAT
	REPL
	RES
	RESTORE
	REVLIST
	RKF
	RKFERR
	RKFSTEP
	RL
	RLB
	RND
	RNRM
	ROLL
	ROLLD
	ROOT
	ROT
	→ROW
	ROW+
	ROW-
	ROW→
	RR
	RRB
	RREF
	RRK
	RRKSTEP
	RSBERR
	RSD
	RSWP
	R→B
	R→C
	R→D
	SAME
	SBRK
	SCALE
	SCATRPLOT
	SCATTER
	SCHUR
	SCI
	SCIΣ
	SCONJ
	SDEV
	SEND
	SEQ
	SERVER
	SF
	SHOW
	SIDENS
	SIGN
	SIMU
	SIN
	SINH
	SINV
	SIZE
	SL
	SLB
	SLOPEFIELD
	SNEG
	SNRM
	SOLVEQN
	SORT
	SPHERE
	SQ
	SR
	SRAD
	SRB
	SRECV
	SST
	SST↓
	START
	STD
	STEP
	STEQ
	STIME
	STO
	STOALARM
	STOF
	STOKEYS
	STO+
	STO-
	STO*
	STO/
	STOΣ
	STREAM
	STR→
	→STR
	STWS
	SUB
	SVD
	SVL
	SWAP
	SYSEVAL
	%T
	→TAG
	TAIL
	TAN
	TANH
	TAYLR
	TDELTA
	TEACH
	TEXT
	THEN
	TICKS
	TIME
	→TIME
	TINC
	TLINE
	TMENU
	TOT
	TRACE
	TRANSIO
	TRN
	TRNC
	TRUTH
	TSTR
	TVARS
	TVM
	TVMBEG
	TVMEND
	TVMROOT
	TYPE
	UBASE
	UFACT
	→UNIT
	UNTIL
	UPDIR
	UTPC
	UTPF
	UTPN
	UTPT
	UVAL
	VAR
	VARS
	VERSION
	VTYPE
	→V2
	→V3
	V→
	*W
	WAIT
	WHILE
	WIREFRAME
	WSLOG
	ΣX^2
	XCOL
	XMIT
	XOR
	XPON
	XRECV
	XRNG
	XROOT
	XSEND
	XVOL
	XXRNG
	ΣX*Y
	ΣY
	ΣY^2
	YCOL
	YRNG
	YSLICE
	YVOL
	YYRNG
	ZFACTOR
	ZVOL
	+
	-
	^
	<
	≤
	>
	≥
	=
	==
	≠
	!
	∫
	∂
	π
	Σ
	Σ+
	Σ
	√
	| (Where)
	→

	Chapter 4 - Equation Reference
	Columns and Beams (1)
	Electricity (2)
	Fluids (3)
	Forces and Energy (4)
	Gases (5)
	Heat Transfer (6)
	Magnetism (7)
	Motion (8)
	Optics (9)
	Oscillations (10)
	Plane Geometry (11)
	Solid Geometry (12)
	Solid State Devices (13)
	Stress Analysis (14)
	Waves (15)
	References

	Appendix A - Error and Status Messages
	Appendix B - Table of Units
	Appendix C - System Flags
	Appendix D - Reserved Variables
	Contents of the Reserved Variables

	Appendix E - New Commands
	Appendix F - Technical Reference
	Object Sizes
	Automatic Simplification Rules
	Symbolic Integration Patterns
	Trigonometric Expansions
	Source References

	Appendix G - Parallel Processing with Lists
	Index
	Back Cover

