[/ Eacinro

HP 48G Series
Advanced User’s
Reference Manual

HP 48G Series Advanced
User’s Reference Manual

(/A Facicanc

HP Part No. 00048-90136
Printed in Singapore

Notice

This manual and any examples contained herein are provided “as is” and are
subject to change without notice. Hewlett-Packard Company makes no
warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for
a particular purpose. Hewlett-Packard Co. shall not be liable for any errors
or for incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the examples herein.

© Copyright Hewlett-Packard Company 1993. All rights reserved.
Reproduction, adaptation, or translation of this manual is prohibited without
prior written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control this product are copyrighted and all rights are
reserved. Reproduction, adaptation, or translation of those programs without
prior written permission of Hewlett-Packard Co. is also prohibited.

© Trustees of Columbia University in the City of New York, 1989. Permission
is granted to any individual or institution to use, copy, or redistribute Kermit
software so long as it is not sold for profit, provided this notice is retained.

Hewlett-Packard Company
Corvallis Division

1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Acknowledgements

Hewlett-Packard gratefully acknowledges the members of the Education
Advisory Committee (Dr. Thomas Dick, Dr. Lynn Garner, Dr. John Kenelly,
Dr. Don LaTorre, Dr. Jerold Mathews, and Dr. Gil Proctor) for their
assistance in the development of this product. Special thanks are also due to
Donald R. Asmus, Scott Burke, Bhushan Gupta and his students at the Oregon
Institute of Technology, and Carla Randall and her AP Calculus students.

Edition History

Edition 1 July 1993
Edition 2 January 1994
Edition 3 May 1994
Edition 4 December 1994

Contents

1. Programming

Understanding Programming 1-1
The Contents of a Program 1-1
Calculations in a Program 1-3

Entering and Executing Programs 1-4

Viewing and Editing Programs 1-9

Creating Programs on a Computer 1-10

Using Local Variables 111
Creating Local Variables 111
Evaluating Local Names . . . e 1-13
Defining the Scope of Local Vauables P O
Compiled Local Variables C 1-15
Creating User-Defined Functions as Ploglams Coe 1-16

Using Tests and Conditional Structures 1-17
Testing Conditions 1-17

Using Comparison Functions 1-17
Using Logical Functions 1-19
Testing Object Types 1-20
Testing Linear Structure oo 120
Using Conditional Structures and Commands e 1-20
The IF ... THEN ... END Structure 1-20
The IFT Command 1-21
The IF ... THEN ... ELSE ... END Structure . 1-21
The IFTE Functlon Co e 1-22
The CASE ... END ‘Stluctule e 1-22
Conditional Examples C e 1-23

Using Loop Structures . . . e e 1-27

Using Definite Loop ‘)tluctme\ e 1-28
The START ... NEXT Structure 1-28
The START ... STEP Structure 1-30
The FOR ... NEXT Structure 1-32
The FOR ... STEP Structure 1-34

Contents-1

Using Indefinite Loop Structures . . .
The DO ... UNTIL ... END Structure
The WHILE . REPEAT ... END Structure
Using Loop Counters .
Using Summations Instead of Loops .
Using Flags
Types of Flags . .
Setting, Clearing, and Testlng Flags .
Recalling and Storing the Flag States
Using Subroutines .
Single-Stepping through a Program
Trapping Errors .
Causing and Analyzing Errors
Making an Error Trap . Ce e
The IFERR ... THEN ... END Structure .
The IFERR ... THEN ... ELSE ... END
Structure .
Input
Data Input Commands .
Using PROMPT ... CONT for Input

Using DISP FREEZE HALT ... CONT for Input .

Using INPUT ... ENTER for Input .
Using INFORM and CHOOSE for Input .
Beeping to Get Attention . .
Stopping a Program for Keystroke Input .
Using WAIT for Keystroke Input
Using KEY for Keystroke Input
Output .
Data Output Commands .
Labeling Output with Tags . .
Labeling and Displaying Output as Strmgs .
Pausing to Display Output . ..
Using MSGBOX to Display Output .
Using Menus with Programs
Using Menus for Input .
Using Menus to Run Programs
Turning Off the HP 48 from a Program

Contents-2

1-36
1-36
1-38
1-39
1-40
1-42
1-42
1-42
1-44
1-45
1-47
1-50
1-51
1-53
1-53

1-54
1-55
1-56
1-56
1-58
1-60
1-67
1-71
1-72
1-72
1-73
1-74
1-74
1-74
1-75
1-76
1-77
1-77
1-79
1-79
1-82

2.

Programming Examples
Fibonacci Numbers e
FIB1 (Fibonacci Numbers, Recurswe Versmn)
FIB2 (Fibonacci Numbers, Loop Version)
FIBT (Comparing Program—Execution Time) .
Displaying a Binary Integer
PAD (Pad with Leading Spaces) .
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display) . .
Median of Statistics Data
%TILE (Percentile of a List)
MEDIAN (Median of Statistics Data)
Expanding and Collecting Completely .
MULTI (Multiple Execution) . .
EXCO (Expand and Collect (ompletely)
Minimum and Maximum Array Elements

MNX (Minimum or Maximum Element—Version 1) .

MNX2 (Minimum or Maximum Element—Version 2)
Applying a Program to an Array
Converting Between Number Bases
Verifying Program Arguments
NAMES (Check List for Exactly TWO Names)
VFY (Verify Program Argument) . . .
Converting Procedures from Algebraic to RPN
Bessel Functions
Animation of Successive Tavlm s Polynomlals
SINTP (Converting a Plot to a Graphics Object)
SETTS (Superimposing Taylor’s Polynomials)
TSA (Animating Taylor’s Polynomials)
Programmatic Use of Statistics and Plotting
Trace Mode
Inverse-Function Solver
Animating a Graphical Image

Command Reference

ABS
ACK
ACKALL
ACOS .
ACOSH
ADD

2-10
2-14
2-14
2-16
2-19
2-19
2-20
2-22
2-22
2-25
2-29
2-32
2-36
2-36
2-38
2-40
2-43
2-45
2-45
2-46
2-47
2-49
2-53
2-54
2-56

3-5
3-6
3-6
3-7
3-9
3-11

Contents-3

ALOG o 3-12
AMORT 3-12
AND . . oo 3-13
ANIMATE 3-14
APPLYo 3-15
ARC . . . oo 3-17
ARCHIVE 3-18
ARG . . o 3-19
ARRY— oo 3-19
—ARRY 3-20
ASIN 0 o oo 3-21
ASINH 0 oo 3-23
ASN L oo 3-24
ASR . . . 3-25
ATAN . . © 0 0 0o 3-26
ATANH oo 3-28
ATICK o o oo 3-30
ATTACH 3-31
AUTO o . o o oo 3-32
BARo oo 3-34
BARPLOT 3-36
BAUD oo 3-36
BEEP oo 3-37
BESTFIT 3-37
BINSo 3-38
BLANK oo 3-39
BOXo 3-40
BUFLEN 00 3-40
BYTES o0 3-41
B—=R s 342
CASE oo 3-42
CEILo 3-44
CENTR 3-44
CF 345
CHOOSE, 346
723 & R o
CKSM o 3-49
CLEARo 3-50

Contents-4

CLKADJo 350

CLLCD o 3-51
CLOSEIO 3-51
CLY . . 3-52
CLTEACH 3-52
CLUSR o 3-52
CLVAR 3-53
CNRM 3-53
—COL . . . 3-54
COL+ . . o 3-54
COL= 3-55
COL— . . . 3-56
COLCT 3-56
COLY. 3-57
COMB 3-58
CON . . 3-59
COND 3-60
CONIC oo 3-61
CONJ 3-62
CONLIB o o i o 3-63
CONST o oo 3-63
CONT 3-64
CONVERT o o oo 3-65
CORR 3-65
COS . 3-66
COSH 3-67
COV . . . 3-67
CR . . . 3-68
CRDIR 3-69
CROSS 3-69
CSWP 3-70
CYLIN 3-70
C—PX . 3-71
C—R . . . 3-71
DARCY 3-72
DATE 3-73
—DATE 3-73
DATE+ 3-74
DBUG 3-74
DDAYS . . . 3-75
DEC . . . 3-75

Contents-5

DECR . .
DEFINE .
DEG . .
DELALARM .
DELAY . . .
DELKEYS . .
DEPND .
DEPTH

DET .
DETACH
DIAG— .
—DIAG .
DIFFEQ .
DISP

DO . . .
DOERR .
DOLIST .
DOSUBS
DOT

DRAW .
DRAX . .
DROP . .
DROPN .
DROP2
DTAG . .
DUP
DUPN . .
DUP2 . .
D—R

e ..

EGV
EGVL . .
ELSE

END
ENDSUB
ENG

EQ—
EQNLIB .
ERASE
ERRM
ERRN .

Contents-6

3-76
3-77
3-78
3-78
3-79
3-80
3-81
3-82
3-82
3-84
3-84
3-85
3-86
3-88
3-89
3-90
3-91
3-92
3-94
3-94
3-95
3-95
3-96
3-96
3-97
3-97
3-98
3-98
3-99
3-99
3-100
3-101
3-101
3-102
3-102
3-103
3-104
3-104
3-105
3-105
3-106

ERRO .
EVAL .
EXP
EXPAN
EXPFIT . .
EXPM
EYEPT
Fox
FACT . . .
FANNING .
FC?-. . ..
FC?C

FFT

FINDALARM

FINISH

FIX
FLOOR . .
FOR

Fp ..
FREE .
FREE1
FREEZE
FS? . .
FS?C .
FUNCTION
GET

GETI

GOR
GRAD
GRAPH . .
GRIDMAP .

—GROB

GXOR
«H . .
HALT .
HEAD .
HEX

HISTOGRAM

HISTPLOT
HMS+
HMS—

3-106
3-107
3-108
3-109
3-110
3-110
3-111
3-112
3-112
3-113
3-114
3-114
B 1Y N &)
..... 3-116
3-117
3-117
3-118
3-119
3-121
3-121
3-122
3-123
3-124
3-125
3-125
3-127
3-129
3-130
3-131
3-131
3-132
3-133
3-134
3-135
3-136
3-136
3-137
3-137
3-139
3-139
3-140

Contents-7

HMS— 314l
—HMS . .. 3142
HOME 3142
Lo 3143
IDN . . . o 3143
IF . s 3144
IFERR 3146
IFFT L 3147
IET . . . L3148
IFTE 3149
IM . . . 3150
INCR 3150
INDEP 315
INFORM 3152
INPUT 3154
INV 3156
IP . . . 3157
TR . . . 3T
ISOL 3158
KERRM 315
KEY 3159
KGET 3160
KILL 3161
LABEL 3162
LAST o3162
LASTARG 3163
LCD— 3163
—LCD 3164
LIBEVAL 3165
LIBS 3165
LINE 3166
YLINE 3166
LINFIT 3167
LININ 3168
LIST— 3169
ZLIST . . . 3169
ZLIST 3170
ALISTo3170
IILIST o3
LN . . 3T2
LNPL o 3174

Contents-8

LOG .
LOGFIT . .
LQ

LR . .
LSQ . .
Lu . .
MANT
IMATCH
|IMATCH
MAX
MAXR
MAXY . .
MCALC . .
MEAN
MEM
MENU .
MERGE . .
MERGEL1
MIN

MINEHUNT . .

MINIT
MINR . . .
MINZ . . .
MITM .
MOD

MROOT

MSGBOX
MSOLVR
MUSER . .
NDIST

NEG
NEWOB . .
NEXT .
NEXT .
NOT
NOVAL
NSUB .
NUM
—NUM
NUMX
NUMY

3-174
3-176
3-176
3-177
3-178
3-179
3-179
3-180
3-181
3-183
3-183
3-184
3-185
3-185
3-186
3-187
3-190
3-190
3-191
3-192
3-193
3-193
3-194
3-194
3-195
3-195
3-196
3-197
3-197
3-198
3-199
3-200
3-201
3-201
3-201
3-203
3-203
3-204
3-207
3-207
3-208

Contents-9

NZ ...
OBJ—
oCT

OLDPRT

OPENIO
OR . ..
ORDER .
OVER . .

PARAMETRIC

PARITY . .
PARSURFACE . .
PATH . .
PCOEF . . .
PCONTOUR .
PCOV . .

PDIM . .

PERM

PEVAL

PGDIR

PICK

pICT
PICTURE . .
PINIT . .
PIXOFF .

PIXON

PIX?

PKT

PMAX

PMIN
POLAR
POS .

PREDV

PREDX . . .
PREDY
PRLCD
PROMPT
PROOT .

PRST . .

PRSTC

PRVAR

Contents-10

3-208
3-209
3-210
3-211
3-211
3-212
3-213
3-214
3-215
3-215
3-217
3-218
3-219
3-220
3-221
3-222
3-223
3-224
3-224
3-225
3-226
3-226
3-227
3-228
3-228
3-229
3-229
3-230
3-231
3-231
3-232
3-234
3-234
3-235
3-236
3-237
3-238
3-238
3-239
3-240
3-240

PSDEV 3-242
PURGE 3-243
PUT 3-244
PUTL o 3-246
PVAR 3-247
PVARS 3-248
PVIEW 3-249
PWRFIT 3-250
PX—C . . 3-250
—Q . 3-251
QT 3-251
QR . . . 3-253
QUAD 3-253
QUOTE 3-254
RAD 3-256
RAND 3-256
RANK 3-257
RANM 3-257
RATIO 3-258
RCEQ 3-259
RCL 3-260
RCIJ 3-260
RCL 3-261
RCLALARM 3-262
RCLF 3-262
RCLKEYS 3-263
RCLMENU 3-264
RCLY 3-264
RCWS 3-265
RDM 3-266
RDZo 3-267
RE 3-267
RECN 3-268
RECT 3-269
RECV 3-269
REPEATo 3-270
REPL 3-270
RES 3-271
RESTORE 3-273
REVLIST 3-274

Contents-11

RKFo 3214
RKFERR 327
RKFSTEPo3217
RL 3278
RLB 3278
RND 3219
RNRM 3280
ROLL 3-980
ROLLD 3281
ROOT 3281
ROT 39282
—ROW 3282
ROW+ 3283
ROW— o 384
ROW— 39284
RR 328
RRB 328
RREF 3286
RRK 3928
RRKSTEP 3288
RSBERR 329
RSD s 32,
RSWP 3292
R—B 3292
R—C . . . oo 3293
R—D o 3294
SAME 3294
SBRK 325
SCALE 329
SCATRPLOT o 329
SCATTER 53297
SCHUR« o . o o o398
SCL . . . o 3299
SCLY 3299
SCONJ 53300
SDEV 3300
SEND o 3301
SEQ 3302
SERVER 3303
SFo 3304
SHOW 3305

Contents-12

SIDENS .
SIGN

SIMU . . .
SIN . .
SINH

SINV

SIZE

SL . .
SLB . .

SLOPEFIELD

SNEG . . .
SNRM .

SOLVEQN . . .

SORT .
SPHERE
5Q

SR . .
SRAD .
SRB
SRECV
SST . .
SST|
START
STD

STEP .
STEQ . . .
STIME

STO

STOALARM . .

STOF .
STOKEYS .
STO+ .
STO- .
STOx*
STO/ . . .
STOL .
STREAM
STR—
—STR
STWS .
SUB

3-305
3-306
3-307
3-307
3-308
3-309
3-309
3-310
3-311
3-312
3-313
3-314
3-314
3-315
3-316
3-316
3-317
3-317
3-318
3-318
3-320
3-320
3-321
3-322
3-323
3-324
3-324
3-325
3-326
3-327
3-328
3-329
3-330
3-330
3-331
3-332
3-333
3-333
3-334
3-335
3-336

Contents-13

SVD
SVL . .
SWAP .
SYSEVAL
%T . ..
—TAG .
TAIL
TAN
TANH . .
TAYLR
TDELTA
TEACH
TEXT .
THEN . .
TICKS
TIME . .
—TIME .
TINC
TLINE
TMENU .
TOT
TRACE

TRANSIO .

TRN .
TRNC . .
TRUTH .
TSTR . .
TVARS
TVM
TVMBEG
TVMEND
TVMROOT
TYPE . .
UBASE
UFACT
—UNIT
UNTIL
UPDIR .
UTPC . .
UTPF .

UTPN . .

Contents-14

UTPT 3365
UVAL o 3-366
VAR . . . oo 3-367
VARS ooo.3-367
VERSION 3368
VIYPE 3368
V2 3369
—V3 3310
Ve o83
W 3372
WAIT 3373
WHILE 3374
WIREFRAME 337
WSLOG 3371
X 8319
X2 3379
XCOL 3380
XMIT o 3381
XOR oL 3382
XPON 3383
XRECV 3384
XRNG . . . oo 3384
XROOT 338
XSEND 3386
XVOL 3386
XXRNG 3387
EXAY ... 3388
XY ... 3388
Y2 o 3389
YCOL 338
YRNG . . .o C L. 3390
YSLICE 331
YVOLo 3392
YYRNG 3393
ZFACTOR 339
ZVOL 339
o 339
o 3397
3-399
3-401
3-402

>N ¥

Contents-15

1V VIA A

Q— T |
o

% .
T
2+
y_
v .

Ii (Wﬁer;a) .

4. Equation Reference

Columns and Beams (1) .
Elastic Buckling (1, 1) .
Eccentric Columns (1, 2) .
Simple Deflection (1, 3)
Simple Slope (1, 4)

Simple Moment (1, 5)
Simple Shear (1, 6) S
Cantilever Deflection (1, 7) .
Cantilever Slope (1, 8) .
Cantilever Moment (1, 9)
Cantilever Shear (1, 10)

Electricity (2) S
Coulomb’s Law (2, 1)
Ohm’s Law and Power (2, 2)
Voltage Divider (2, 3)
Current Divider (2, 4) .

Wire Resistance (2, 5) . :
Series and Parallel R (2, 6) .
Series and Parallel C (2, 7) .
Series and Parallel L (2, 8) .

Contents-16

3-403
3-404
3-406
3-407
3-408
3-410
3-411
3-412
3-413
3-415
3-416
3-417
3-418
3-419
3-420
3-420
3-423
3-423
3-424

4-1
4-3
4-3
4-4
4-5

4-9

4-9
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-14

Capacitive Energy (2, 9) .
Inductive Energy (2, 10) . .

RLC Current Delay (2, 11) . . .

DC Capacitor Current (2, 12)
Capacitor Charge (2, 13) . .
DC Inductor Voltage (2, 14)
RC Transient (2, 15)

RL Transient (2, 16)
Resonant Frequency (2, 17)
Plate Capacitor (2, 18)

Cylindrical Capacitor (2, 19) . .

Solenoid Inductance (2, 20)
Toroid Inductance (2, 21)
Sinusoidal Voltage (2, 22)
Sinusoidal Current (2, 23)
Fluds (3)
Pressure at Depth (3, 1) . .
Bernoulli Equation (3, 2)
Flow with Losses (3, 3)
Flow in Full Pipes (3,4) . .
Forces and Energy (4) . .
Linear Mechanics (4, 1)
Angular Mechanics (4, 2)
Centripetal Force (4, 3)
Hooke’s Law (4, 4) S
1D Elastic Collisions (4, 5) .
Drag Force (4,6) . . .
Law of Gravitation (4, 7)
Mass-Energy Relation (4, 8)
Gases (5)
Ideal Gas Law (5, 1)

Ideal Gas State Change (5, 2)

Isothermal Expansion (5, 3)
Polytropic Processes (5, 4) .
Isentropic Flow (5, 5) .
Real Gas Law (5, 6) . . .

Real Gas State Change (5, 7) . .

Kinetic Theory (5, 8)

Heat Transfer (6)

Heat Capacity (6, 1)
Thermal Expansion (6, 2)

4-15
4-15
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-19
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-23
4-24
4-26
4-27
4-28
4-29
4-29
4-30
4-30
4-31
4-31
4-31
4-32
4-33
4-33
4-34
4-34
4-35
4-36
4-36
4-37
4-37
4-38
4-39

Contents-17

Conduction (6,3) 439

Convection (6,4) 440
Conduction + Convection (6,5) 4-41
Black Body Radiation (6,6) 442
Magnetism (7) 443
Straight Wire (7, 1) C e e oo 44
Force between Wires (7,2) 444
Magnetic (B) Field in Solenoid (7, 3) oo oo 444
Magnetic (B) Field in Toroid (7 T)
Motion (8) . C e e 448
Linear Motlon () e Y
Object in Free Fall (8, 2) S 4-47
Projectile Motion (8,3) 448
Angular Motion (8,4) 448
Circular Motion (8,5) 449
Terminal Velocity (8,6) 449
Escape Velocity (8, 7) 449
Opties (9) 450
Law of Refraction (9,1) 451
Critical Angle (9,2) 451
Brewster’s Law (9,3) 452
Spherical Reflection (9,4) 452
Spherical Refraction (9,5) 453
Thin Lens (9,6) 4b4
Oscillations (10) C e oo 454
Mass-Spring System (10, 1) 455
Simple Pendulum (10,2) 456
Conical Pendulum (10,3) 456
Torsional Pendulum (10,4) 457
Simple Harmonic (10,5) 4-57
Plane Geometry (11) 458
Circle (11, 1) 4589
Ellipse (11,2) 4-59
Rectangle (11,3) 460
Regular Polygon (11,4) 461
Circular Ring (11,5) 461
Triangle (11,6) 4062
Solid Geometry (12) 4-63
Cone (12, 1) L 4-64
Cylinder (12,2) 464
Parallelepiped (12,3) 465

Contents-18

Sphere (12, 4)

Solid State Devices (13)

PN Step Junctions (13, 1)

NMOS Transistors (13, 2)

Bipolar Transistors (13, 3)

JFETs (13, 4) .
Stress Analysis (14) .

Normal Stress (14, 1)

Shear Stress (14, 2)

Stress on an Element (14, 3)

Mohr’s Circle (14, 4)

Waves (15) . Ce
Transverse Waves (15, 1) . .
Longitudinal Waves (15, 2) .
Sound Waves (15, 3)

References

A. Error and Status Messages
B. Table of Units
C. System Flags

D. Reserved Variables

Contents of the Reserved Variables
ALRMDAT
CST .

“der-” Names .
EQ . .
EXPR .
IOPAR
MHpar
Mpar

nl, n2, ...
Nmines
PPAR .
PRTPAR
sl, s2, ...
VPAR .
ZPAR .
2DAT .
ZPAR .

4-66
4-67
4-69
4-71
4-73
4-74
4-76
4-77
4-77
4-78
4-79
4-80
4-80
4-81
4-81
4-82

D-2
D-2
D-3
D-4
D-4
D-5
D-5
D-7
D-7
D-7
D-8
D-8
D-11
D-12
D-13
D-14
D-15
D-16

Contents-19

E. New Conunands

F. Technical Reference

Object Sizes

Automatic Simplification Rules .

Symbolic Integration Patterns
Trigonometric Expansions
Source References .

G. Parallel Processing with Lists

Index

Contents-20

F-2
F-3
F-5
F-7
F-9

Programming

If you’ve used a calculator or computer before, you’re probably
familiar with the idea of programs. Generally speaking, a program is
something that gets the calculator or computer to do certain tasks
for you—more than a built-in command might do. In the HP 48, a
program is an object that does the same thing.

Understanding Programming

An HP 48 program is an object with # # delimiters containing a
sequence of numbers, commands, and other objects you want to
execute automatically to perform a task.

For example, a program that takes a number from that stack, ﬁnds its
factorial, and divides the result by 2 would look like this: !
or

The Contents of a Program

As mentioned above, a program contains a sequence of objects. As
each object is processed in a program, the action depends on the type
of object, as summarized below.

Programming 1-1

Actions for Certain Objects in Programs

Object Action
Command Erecuted.
Number Put on the stack.
Algebraic Put on the stack.
String Put on the stack.
List Put on the stack.
Program Put on the stack.
Global name (quoted) Put on the stack.
Global name (unquoted) m Program ezecuted.
m Name evaluated.
m Directory becomes current.
m Other object put on the stack.
Local name (quoted) Put on the stack.
Local name (unquoted) Contents put on the stack.

As you can see from this table, most types of objects are simply put
on the stack—but built-in commands and programs called by name
cause execution. The following examples show the results of executing
programs containing different sequences of objects.

Examples of Program Actions

Program Results

et %

T
i
[AN

e

fols

nn
i

tiet i
15 4+ i T = 4
i+ EVAL i

1-2 Programming

Programs can also contain structures. A structure is a program
segment with a defined organization. Two basic kinds of structures are
available:

m Local variable structure. The + command defines local variable
names and a corresponding algebraic or program object that’s
evaluated using those variables.

m Branching structures. Structure words (like DO ... UNTIL ...
END) define conditional or loop structures to control the order of
execution within a program.

A local variable structure has one of the following organizations inside
a program:

% F namey ... name, 'algebraic’
“oFopamey ... mamen ¥ program ¥ i

The — command removes n objects from the stack and stores them
in the named local variables. The algebraic or program object in

the structure is automatically evaluated because it’s an element of

the structure—even though algebraic and program objects are put

on the stack in other situations. Each time a local variable name
appears in the algebraic or program object, the variable’s contents are
substituted.

So the following program takes two numbers from the stack and
returns a numeric result:

o oz b TABRS

Calculations in a Program

Many calculations in programs take data from the stack. Two typical
ways to manipulate stack data are:

m Stack commands. Operate directly on the objects on the stack.

m Local variable structures. Stores the stack objects in temporary
local variables, then uses the variable names to represent the data in
the following algebraic or program object.

Numeric calculations provide convenient examples of these methods.
The following programs use two numbers from the stack to calculate

the hypotenuse of a right triangle using the formula /2% + y2.

Programming 1-3

The first program uses stack commands to manipulate the numbers
on the stack—the calculation uses stack syntax. The second program
uses a local variable structure to store and retrieve the numbers—the
calculation uses stack syntax. The third program also uses a local
variable structure—the calculation uses algebraic syntax. Note that
the underlying formula is most apparent in the third program. This
third method is often the easiest to write, read, and debug.

Entering and Executing Programs

A program is an object—it occupies one level on the stack, and you
can store it in a variable.

To enter a program:

1. Press (&q) («»). The annunciator appears, indicating

Program-entry mode is active.

2. Enter the commands and other objects (with appropriate
delimiters) in order for the operations you want the program to
execute.

m Press to separate consecutive numbers.
m Press () to move past closing delimiters.

3. Optional: Press ()(<) (newline) to start a new line in the

command line at any time.

4. Press to put the program on the stack.

In Program-entry mode (F annunciator on), command keys
aren’t executed—they’re entered in the command line instead. Only
nonprogrammable operations such as («) and are executed.

Line breaks are discarded when you press (ENTER).

To enter commands and other objects in a program:

m Press the keyboard or menu key for the command or object.
or
m Type the characters using the alpha keyboard.

1-4 Programming

To store or name a program:

1. Enter the program on the stack.
2. Enter the variable name (with ' delimiters) and press (STO).

You can choose descriptive names for programs. Here are some ideas
of what the name can describe:

m The calculation or action. Examples: SPH (spherical-cap volume),
SORT (sort a list).

m The iniput and output. Examples: X—FX (z to f(z)), RH—V
(radius-and-height to volume).

m The technique. Example: SPHLV (spherical-cap volume using local
variables).

To execute a program:

m Press then the menu key for the program name.

or
m Enter the program name (with no delimiters) and press (ENTER).
or
» Put the program name in level 1 and press (EVAL).
or

m Put the program object in level 1 and press (EVAL).

To stop an executing program:

m Press (CANCEL).

Example: Enter a program that takes a radius value from the stack

and calculates the volume of a sphere of radius r using
4
V=_mr®

3

If you were going to calculate the volume manually after entering the
radius on the stack, you might press these keys:

3 @@ ® 4 ETER) 3 () &) @) Em

Programming 1-5

Enter the same keystrokes in a program. ((»)(<2)just starts a new
line.)

@ €37 % 43
300 ®@E@X® 463 H™ UM+

®
RICICYCIIT FAPIT TANSLIFLAG IKELS [MENU Izt
Put the program on the stack.
1«3~ qpx43/%

+NUM =
[FHT [ANGL[FLAG [KEYS [HENU] HISC]

Store the program in variable VOL. Then put a radius of 4 on the
stack and run the VOL program.

() VoL 1: 268, B325731686
4 (VoL TEshk | 0PRE] N_] Pk | Py |

The program is

e e e B EEERA e
I S, S N 1 1 L -

Example: Replace the program from the previous example with
one that’s easier to read. Enter a program that uses a local variable
structure to calculate the volume of a sphere. The program is

(You need to include —NUM because 7 causes a symbolic result.)
Enter the program. ((2)(<2)just starts a new line.)

@)

@) G
0iD:XEDE
1093) @S
e

Put the program on the stack, store it in VOL, and calculate the
volume for a radius of 4.

4

& 5 '43EmE3!
SNUM
&

| voL [Exar[IOPAR] N[15VE [BY]

1: 268, B825731 86
(oL [Ent]inPRE] W] T [P]

1-6 Programming

Example: Enter a program SPH that calculates the volume of a
spherical cap of height A within a sphere of radius R using values
stored in variables H and R.

V= %wh2(3r —h)

In this and following chapters on programming, “stack diagrams” show
what arguments must be on the stack before a program is executed
and what results the program leaves on the stack. Here’s the stack
diagram for SPH.

Level 1 - Level 1

— volume

The diagram indicates that SPH takes no arguments from the stack
and returns the volume of the spherical cap to level 1. (SPH assumes
that you’ve stored the numerical value for the radius in variable R
and the numerical value for the height in variable H. These are global
variables—they exist outside the program.)

Program listings are shown with program steps in the left column and
associated comments in the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Programming 1-7

Program: Keys: Comments:

() Begins the program.
fyen O1E3 Begins the algebraic expression to

calculate the volume.

@@ Multiplies by mh?.
HED?2

S @)) Multiplies by 3r — h, completing
3SXRE) the calculation and ending the

H®)0) expression.
() (=Num) Converts the expression with 7 to

a number.

Ends the program.

Puts the program on the stack.
C)sSpeH Stores the program in variable
SPH.

This is the program:

Plomsweb

Now use SPH to calculate the volume of a spherical cap of radius
r = 10 and height h = 3.

First, store the data in the appropriate variables. Then select the
VAR menu and execute the program. The answer is returned to level
1 of the stack.

10OR i 554 . 4690804942
3 () H GT0) W 1 F 1 cPH | VOL [Esnr] I0PAE]
EFH

1-8 Programming

Viewing and Editing Programs

You view and edit programs the same way you view and edit other
objects—using the command line.

To view or edit a program:

1. View the program:

m If the program is in level 1, press («)(EDIT), or (V).
m If the program is stored in a variable, use the Memory Browser

(()(MEMORY)) to view the variable, or press () and the
variable’s menu key, followed by (¥).
2. Optional: Make changes.
3. Press to save any changes (or press to discard
changes) and return to the stack.

The Memory Browser lets you change a stored program without
having to do a store operation. (¢)(EDIT) lets you change a program
and then store the new version in a different variable.

While you’re editing a program, you may want to switch the
command-line entry mode between Program-entry mode (for editing
most objects) and Algeblalc/Plogram—entIy mode (for editing
algebraic objects). The FEG and AL annunciators indicate the
current mode.

To switch between entry modes:

= Press (@)ENTEY)

Example: Edit SPH from the previous example so that it stores the
number from level 1 into variable # and the number from level 2 into
variable R.

Use EDIT to start editing SPH .

@

']-3#peH 2= (3+R-H
At =NUM

&
EZEIR[ZEIPS] £DEL [OEL# [INS o]+ 3TH]

EH (W)

Programming 1-9

Move the cursor past the first program delimiter and insert the new
program steps.

®OH) ETO)
OREET)

«'H' ST0 'R' 5T0 '1-3.
30 =NUM

®
£3EIP|sKIP#[£0EL [DEL* | INE wf+-3TK]
Save the edited version of SPH in the variable. Then, to verify that
the changes were saved, view SPH in the command line.

+ 'H' 5TO0 'R' 570 '

1 JEmw*H 22 (32R-H)'
+MUM

#
£ZHIP

[ZKIP+{ £DEL [OEL+ | IMZ m[-+=TE]

Press (CANCEL) to stop viewing.

Creating Programs on a Computer

It is convenient to create programs and other objects on a computer
and then load them into the HP 48 using the calculator’s serial port.

If you are creating programs on a computer, you can include
“comments” in the computer version of the program.

To include a comment in a program:

s Enclose the comment text between two @ characters.
or

& Enclose the comment text between one @ character and the end of
the line.

Whenever the HP 48 processes text entered in the command line—
either from keyboard entry or transferred from a computer—it strips
away the @ characters and the text they surround. However, @
characters are not affected if they’re inside a string.

1-10 Programming

Using Local Variables

The program SPH in the previous example uses global variables for
data storage and recall. There are disadvantages to using global
variables in programs:

m After program execution, global variables that you no longer need
to use must be purged if you want to clear the VAR menu and free
user memory.

m You must explicitly store data in global variables prior to program
execution, or have the program execute STO.

Local variables address the disadvantages of global variables in
programs. Local variables are temporary variables created by a
program. They exist only while the program is being executed and
cannot be used outside the program. They never appear in the VAR
menu. In addition, local variables are accessed faster than global
variables. (By convention, this manual uses lowercase names for local
variables.) A compiled local variable is a form of local variable that
can be used outside of the program that creates it. See “Compiled
Local Variables” on page 1-15 for more information.

Creating Local Variables

In a program, a local variable structure creates local variables.

To enter a local variable structure in a program:

1. Enter the — command (press (2)(=)).

2. Enter one or more variable names.

3. Enter a defining procedure (an algebraic or program object) that
uses the names.

-+ mame; names ... name, 'algebraic'
or
-k pamey names ... namey # program F ¥

When the — command is executed in a program, n values are taken
from the stack and assigned to variables name;, names, ... name,.
For example, if the stack looks like this:

Programming 1-11

HOME }

1
4:
3: 18
ct b
1:

MECTE[MATR | LIET | HYP [KEAL | EASE |

-+ z creates local variable ¢ = 20.

v creates local variables ¢ = 6 and b = 20.

& = creates local variables a = 10, b = 6, and ¢ = 20.
The defining procedure then uses the local variables to do calculations.
Local variable structures have these advantages:

m The — command stores the values from the stack in the
corresponding variables—you don’t need to explicitly execute STO.

m Local variables automatically disappear when the defining procedure
for which they are created has completed execution. Consequently,
local variables don’t appear in the VAR menu, and they occupy user
memory only during program execution.

m Local variables exist only within their defining procedure—different
local variable structures can use the same variable names without
conflict.

Example: The following program SPHLV calculates the volume of
a spherical cap using local variables. The defining procedure is an
algebraic expression.

Level 2 Level 1 — Level 1

r h — volume

1-12 Programming

Program: Comments:

* oo Creates local variables r and h
for the radius of the sphere and
height of the cap.

Pt Expresses the defining procedure.
In this program, the defining
procedure for the local variable
structure is an algebraic
expression.

Converts expression to a number.

() SPHLV Stores the program in variable
SPHLV .

Now use SPHLV to calculate the volume of a spherical cap of radius
7 = 10 and height h = 3. Enter the data on the stack in the correct
order, then execute the program.

10 (ERTER) 3

1: 254. 469804942
SPHLY] B [T P T WOl JERAH]

Evaluating Local Names

Local names are evaluated differently from global names. When a
global name is evaluated, the object stored in the corresponding
variable is itself evaluated. (You've seen how programs stored in
global variables are automatically evaluated when the name is
evaluated.)

When a local name is evaluated, the object stored in the
corresponding variable is returned to the stack but is not evaluated.
When a local variable contains a number, the effect is identical to
evaluation of a global name, since putting a number on the stack is
equivalent to evaluating it. However, if a local variable contains a
program, algebraic expression, or global variable name—and if you
want it evaluated—the program should execute EVAL after the object
is put on the stack.

Programming 1-13

Defining the Scope of Local Variables
Local variables exist only inside the defining procedure.

Example: The following program excerpt illustrates the availability
of local variables in nested defining procedures (procedures within
procedures). Because local variables a, b, and ¢ already exist when
the defining procedure for local variables d, e, and f is executed,
they’re available for use in that procedure.

Program: Comments:

No local variables are available.

=)

b Defines local variables a, b, c.
Local variables a, b, ¢ are
available in this procedure.

Defines local variables d, e, f.
Local variables a, b, ¢ and d, ¢, f
are available in this procedure.

2 < - Only local variables a, b, c are
available.

No local variables are available.

Example: In the following program excerpt, the defining procedure
for local variables d, e, and f calls a program that you previously
created and stored in global variable P1.

1-14 Programming

Program: Comments:

Defines local variables d, e, f.
Local variables a, b, c and d, e, f
are available in this procedure.
The defining procedure executes
the program stored in variable
P1.

The six local variables are not available in program P! because they
didn’t exist when you created PI. The objects stored in the local
variables are available to program P1 only if you put those objects on
the stack for P to use or store those objects in global variables.

Conversely, program P1 can create its own local variable structure
(with any names, such as a, ¢, and f, for example) without conflicting
with the local variables of the same name in the procedure that calls
P1. Tt is possible to create a special type of local variable that can be
used in other programs or subroutines. This type of local variable is
called a compiled local variable.

Compiled Local Variables

Global variables use up memory, and local variables can’t be used
outside of the program they were created in. Compiled local variables
bridge the gap between these two variable types. To programs,
compiled local variables look like global variables, but to the calculator
they act like local variables. This means you can create a compiled
local variable in a local variable structure, use it in any other program
that is called within that structure, and when the program finishes,
the variable is gone.

Programming 1-15

Compiled local variables have a special naming convention: they must
begin with a +. For example,

The variable +u is a compiled local variable that can be used in the
two programs BELOW and ABOVE.

Creating User-Defined Functions as Programs

The defining procedure for a local variable structure can be either an
algebraic or program object.

A program that consists solely of a local variable structure whose
defining procedure is an algebraic expression is a user-defined function.

If a program begins with a local variable structure and has a
program as the defining procedure, the complete program acts like

a user-defined function in two ways: it takes numeric or symbolic
arguments, and takes those arguments either from the stack or

in algebraic syntax. However, it does not have a derivative. (The
defining program must, like algebraic defining procedures, return only
one result to the stack.)

There’s an advantage to using a program as the defining procedure for
a local variable structure: The program can contain commands not
allowed in algebraic expressions. For example, loop structures are not
allowed in algebraic expressions.

1-16 Programming

Using Tests and Conditional Structures

You can use commands and branching structures that let programs
ask questions and make decisions. Comparison functions and logical
functions test whether or not specified conditions exist. Conditional
structures and conditional commands use test results to make
decisions.

Testing Conditions

A test is an algebraic or a command sequence that returns a test result
to the stack. A test result is either true—indicated by a value of 1—or
it is false—indicated by a value of 0.

To include a test in a program:

m To use stack syntax, enter the two arguments, then enter the test
command.

m To use algebraic syntax, enter the test expression (with
delimiters).

You often use test results in conditional structures to determine
which clause of the structure to execute. Conditional structures are
described under “Using Conditional Structures and Commands” on
page 1-20.

Example Test whether or not X is less than Y. To use stack syntax,
enter i % <. To use algebraic syntax, enter * <% ', (For both cases,

if X contalns 5 and Y contains 10, then the test is true and 1

returned to the stack.)

Using Comparison Functions

Comparison functions compare two objects, using either stack syntax
or algebraic syntax.

Programming 1-17

Comparison Functions

Key Programmable Description
Command
PRG =T (pages 1 and 2):
= == Tests equality of two objects.
@ Not equal.
Less than.

Greater than.
Less than or equal to.

IVIAN VA

Greater than or equal to.
SAME Identical. Like ==, but doesn’t allow a

comparison between the numerical value
of an algebraic (or name) and a
number. Also considers the wordsize of
a binary integer.

The comparison commands return 1 (true) or 0 (false) based on the
comparison—or an expression that can evaluate to 1 or 0. The order
of the comparison is “level 2 test level 1,” where test is the comparison
function.

All comparison commands except SAME return the following:

m If neither object is an algebraic or a name, returns 1 if the two
objects are the same type and have the same value, or 0 otherwise.
For example, if 6 is stored in X, 7 puts 6 and b on the stack,
then removes them and returns 0. (Llsts and programs are
considered to have the same value if the objects they contain are
identical. For strings, “less than” means “alphabetically previous.”)

m If one object is an algebraic (or name) and the other object is an
algebraic (or name) or a number, returns an expression that must be
evaluated to get a test result based on numeric values. For example,
if 6 1s stored in X, '®"' 5 < returns '¥<%5', then —NUM returns 0.

(Note that == is used for comparisons, while = separates two sides of
an equation.)

SAME returns 1 (true) if two objects are identical. For example,
PEERT s returns 0 regardless of the value of X because the
* is not identical to the real number 4. Binary integers

algebraic

1-18 Programming

must have the same wordsize and the same value to be identical. For
all object types other than algebraics, names, and binary integers,
SAME works just like ==.

You can use any comparison function (except SAME) in an algebraic
by puttmg it between its two arguments. For example, if 6 is stored in
A5 MU returns 0.

Using Logical Functions

Logical functions return a test result based on the outcomes of two
previously executed tests. Note that these four functions interpret any
nonzero argument as a true result.

Logical Functions

Keys Programmable Description
Command
PRG) TEXT (page 2):

HH AND Returns 1 (true) only if both arguments
are true.

O OR Returns 1 (true) if either or both
arguments are true.

HOE XOR Returns 1 (true) if either argument, but
not both, is true.

HOT NOT Returns 1 (true) if the argument is 0
(false); otherwise, returns 0 (false).

AND, OR, and XOR combine two test results. For example, if 4 is
stored in Y, ¥ & < 5 AMD returns 1. First, ¥ & « returns 1 to the
stack. AND removes 1 and 5 from the stack, interpreting both as true
results, and returns 1 to the stack.

NOT returns the logical inverse of a test result. For example, if 1 is
stored in X and 2 is stored in Y, ¥ ¥ < Hi

T returns 0.
You can use AND, OR,
example, 'z

and XOR in algebraics as infiz functions. For
""" returns 1.

You can use NOT as a prefiz function in algebraics. For example,
THOT 240 -+ returns 0 1f 7 = 2.

Programming 1-19

Testing Object Types

The TYPE command ((PRG) =T (NXT) T%FE) takes any
object as its argument and returns the number that identifies that
object type. For example, "HELLD® T¥FE returns 2, the value for

a string object. See the table of obJect types in chapter 3, in the
TYPE command, to find HP 48 objects and their corresponding type
numbers.

Testing Linear Structure

The LININ command ((PRG)(NXT) TEZT (2)(PREV) L i)

takes an algebraic equation on level 2 and an variable on level 1 as
arguments and returns 1 if the equatlon is linear for that variable, or
0 if it is not. For example, 'H+¥ =2 *HY LIHIMN returns 1 because
the equation is structurally linear for H. See the LININ command in
chapter 3 for more information.

Using Conditional Structures and Commands

Conditional structures let a program make a decision based on the
results of tests.

Conditional commands let you execute a true-clause or a false-clause
(each of which are a single command or object).

These conditional structures and commands are contained in the PRG

BRCH menu ((PRG) M)

m IFF ... THEN ... END structure.

a [F ... THEN ... ELSE ... END structure.
m CASE ... END structure.
|
n

IFT (if-then) command.
IFTE (if-then-else) function.

The IF ... THEN ... END Structure

The syntax for this structure is

18 test-clause THEM true-clause

IF ... THEN ... END executes the sequence of commands in the
true-clause only if the test-clause evaluates to true. The test-clause
can be a command sequence (for example, & E &) or an algebraic (for

1-20 Programming

example,). If the test-clause is an algebraic, it’s automatically
evaluated to a number—you don’t need —=NUM or EVAL.

IF begins the test-clause, which leaves a test result on the stack.
THEN removes the test result from the stack. If the value is nonzero,
the true-clause is executed—otherwise, program execution resumes
following END. See “Conditional Examples” on page 1-23.

Toenter IF ... THEN ... END in a program:

m Press :

The IFT Command

The IFT command takes two arguments: a test-result in level 2 and a
true-clause object in level 1. If the test-result is true, the true-clause
object is executed—otherwise, the two arguments are removed from
the stack. See “Conditional Examples” on page 1-23.

To enter IFT in a program:

" Press @

The IF ... THEN ... ELSE ... END Structure

The syntax for this structure is

test-clause

i

E false-clause

IF ... THEN ... ELSE ... END executes either the true-clause
sequence of commands if the test-clause is true, or the false-clause
sequence of commands if the test-clause is false. If the test-clause is an
algebraic, it’s automatically evaluated to a number—you don’t need
—NUM or EVAL.

! true-clause F

IF begins the test-clause, which leaves a test result on the stack.
THEN removes the test result from the stack. If the value is nonzero,
the true-clause is executed—otherwise, the false-clause is executed.
After the appropriate clause is executed, execution resumes following
END. See “Conditional Examples” on page 1-23.

To enter IF ... THEN ... ELSE ... END in a program:

m Press

Programming 1-21

The IFTE Function
The algebraic syntax for this function is
"IFTECtests true-clauses false-clause’s !

If test evaluates true, the true-clause algebraic is evaluated—
otherwise, the false-clause algebraic is evaluated.

You can also use the IFTE function with stack syntax. It takes three
arguments: a test-result in level 3, a true-clause object in level 2, and
a false-clause object in level 1. See “Conditional Examples” on page

1-23.

To enter IFTE in a program or in an algebraic:
m Press TH () IFTE.

The CASE ... END Structure

The syntax for this structure is

test-clause; THEHM true-clause; EHMD

test-clausey Tt true-clauses

test-clause, Tt true-clause, EHI:

defauli-clause (optional)

The CASE ... END structure lets you execute a series of test-clause
commands, then execute the appropriate true-clause sequence of
commands. The first test that returns a true result causes execution of
the corresponding true-clause, ending the CASE ... END structure.
Optionally, you can include after the last test a defaull-clause that’s
executed if all the tests evaluate to false. If a test-clause is an
algebraic, it’s automatically evaluated to a number—you don’t need

—NUM or EVAL.

When CASE is executed, test-clause; is evaluated. If the test is true,
true-clause; is executed, and execution skips to END. If test-clause;
is false, execution proceeds to test-clause;. Execution within the
CASE structure continues until a true-clause is executed, or until all
the test-clauses evaluate to false. If a default clause is included, it’s

1-22 Programming

executed 1f all the test-clauses evaluate to false. See “Conditional
Examples” below.

To enter CASE ... END in a program:

1. Press BECH () CUHAZE to enter CASE ... THEN ...
END ... END.

2. For each additional test-clause, move the cursor after a test-clause
END and press (») CAZE to enter THEN ... END.

Conditional Examples
These examples illustrate conditional structures in programs.

Example: One Conditional Action. The programs below test the
value in level 1—if the value is positive, it’s made negative. The first
program uses a command sequence as the test-clause:

DUF IF @ > THEM HEG EMD

The value on the stack must be duplicated because the > command
removes two arguments from the stack (0 and the copy of the value
made by DUP).

The following version uses an algebraic as the test clause:
0% w & w IF 'ur@' THEH HEG EMD 3

The following version uses the IFT command:
[P o8 o ow HEGS » IFT 3

T

Example: One Conditional Action. This program multiplies two
numbers if both are nonzero.

Programming 1-23

Program: Comments:

FoE Creates local variables z and y
containing the two numbers from
the stack.

Starts the test-clause.

Tests one of the numbers and
leaves a test result on the stack.
Tests the other number, leaving
another test result on the stack.
Tests whether both tests were
true.

Ends the test-clause, starts the
true-clause.

W E Multiplies the two numbers
together only if AND returns
true.

Ends the true-clause.

The following program accomplishes the same task as the previous
program:

i

v’ returns “true” if both numbers are

The test-clause '
nonzero.

The following version uses the IFT command:

i

Py

1-24 Programming

Example: Two Conditional Actions. This program takes a value z
from the stack and calculates (sin z)/z. At = 0 the division would
error, so the program returns the limit value 1 in this case.

o L R Y
it 1 LI

The following version uses IFTE algebraic syntax:

ok ow s i

Example: Two Conditional Actions. This program multiplies two
numbers together if they’re both nonzero—otherwise, it returns the
string * i

Program: Comments:
ol onE Creates the local variables.
Starts the defining procedure.
IF Starts the test clause.

Tests nl and n2.
If both numbers are nonzero,
multiplies the two values.

Otherwise, returns the string

Ends the conditional.

Ends the defining procedure.

Programming 1-25

Example: Two Conditional Actions. This program tests if two
numbers on the stack have the same value. If so, it drops one of the
numbers and stores the other in variable V1—otherwise, it stores the
number from level 1 in V1 and the number from level 2 in V2.

Program: Comments:

For the test clause, copies the
numbers in levels 1 and 2 and
tests if they have the same value.

For the true clause, drops one of
the numbers and stores the other
m VI.

For the false clause, stores the
level 1 number in V1 and the
level 2 number in V2.

Ends the conditional structure.

Puts the program on the stack.
() TsT Stores it in T'ST.

Enter the numbers 26 and 52, then execute T'ST to compare their
values. Because the two number aren’t equal, the VAR menu now
contains two new variables V1 and V2.

26 (ENTER) 52

VAR 2T

| v2 | M1] TET [TORS|TORZA|SPHLY]

1-26 Programming

Example: Multiple Conditional Actions. The following program
stores the level 1 argument in a variable if the argument is a string,
list, or program.

Program: Comments:
EaT Defines local variable y.
Starts the defining
procedure.

Starts the case structure.
Case 1: If the argument is
a string, stores it in STR.
Case 2: If the argument is
a list, stores it in LIST.
Case 3: If the argument is
ST EMD a program, stores it in
PROG.
EMD Ends the case structure.
Ends the defining
procedure.

Using Loop Structures

You can use loop structures to execute a part of a program repeatedly.
To specify in advance how many times to repeat the loop, use a
definite loop. To use a test to determine whether or not to repeat the
loop, use an indefinite loop.

Loop structures let a program execute a sequence of commands several
times. Loop structures are built with commands—called structure
words—that work only when used in proper combination with each
other. These loop structure commands are contained in the PRG

BRCH menu ((PRG) ERLH):

START ... NEXT and START ... STEP.
FOR ... NEXT and FOR ... STEP.

DO ... UNTIL ... END.

WHILE ... REPEAT ... END.

Programming 1-27

In addition, the ¥ function provides an alternative to definite loop
structures for summations.

Using Definite Loop Structures

Each of the two definite loop structures has two variations:

m NEXT. The counter increases by 1 for each loop.
m STEP. The counter increases or decreases by a specified amount for
each loop.

The START ... NEXT Structure

The syntax for this structure is

. start finish = T loop-clause Hi

START ... NEXT executes the loop-clause sequence of commands one
time for each number in the range start to finish. The loop-clause is
always executed at least once.

Syntax Flowchart
start 1:start
finish 2:finish
| v
| counter = start
START Store finish
| !
loop-clause Body of loop <
‘ v
‘ ‘ counter = counter+1
L X

Is
counter < finish?

yes

START ... NEXT Structure

1-28 Programming

START takes two numbers (start and finish) from the stack and stores
them as the starting and ending values for a loop counter. Then, the
loop-clause is executed. NEXT increments the counter by 1 and tests
to see if its value is less than or equal to finish. If so, the loop-clause
is executed again—otherwise, execution resumes following NEXT.

To enter START ... NEXT in a program:
m Press

Example: The following program creates a list containing 10 copies
ot the string "

Programming 1-29

The START ... STEP Structure
The syntax for this structure is

. start finish STERT

START ... STEP executes the loop-clause sequence just like
START ... NEXT does—except that the program specifies the
increment value for the counter, rather than incrementing by 1. The
loop-clause is always executed at least once.

Syntax Flowchart
start 1:start
finish 2:finish
‘ v
counter = start
START Store finish
loop-clause Body of loop a—
v
increment 1:increment
v
(counter = counter+
increment
| v
STEP /\
I yes
no

START ... STEP Structure

START takes two numbers (start and finish) from the stack and stores
them as the starting and ending values of the loop counter. Then

the loop-clause is executed. STEP takes the increment value from

the stack and increments the counter by that value. If the argument

1-30 Programming

of STEP is an algebraic or a name, it’s automatically evaluated to a
number.

The increment value can be positive or negative. If it’s positive, the
loop is executed again if the counter is less than or equal to finish. If
the increment value is negative, the loop is executed if the counter is
greater than or equal to finish. Otherwise, execution resumes following
STEP. In the previous flowchart, the increment value is positive.

To enter START ... STEP in a program:

m Press H O (P)ETARRT.

Example: The following program takes a number z from the stack
and calculates the square of that number several times (z/3 times):

g QDR+ ow o ow w1 OBTARET = 50 -3 STER » &

Programming 1-31

The FOR ... NEXT Structure
The syntax for this structure is

. start finish

counter loop-clause

FOR ... NEXT executes the loop-clause program segment one time
for each number in the range start to finish, using local variable
counter as the loop counter. You can use this variable in the
loop-clause. The loop-clause is always executed at least once.

Syntax Flowchart
S‘ta.ﬁ 1:start
finish 2:finish
‘ v
counter = start
FOR Store finish
| v
loop-clause Body of loop *
v
‘ counter = counter+1
f v
NEXT
3 ves
no

FOR ... NEXT Structure

FOR takes start and finish from the stack as the beginning and ending
values for the loop counter, then creates the local variable counter as a
loop counter. Then the loop-clause is executed—counter can appear
within the loop-clause. NEXT increments counter-name by one, and
then tests whether its value is less than or equal to finish. If so, the
loop-clause is repeated (with the new value of counter)—otherwise,

1-32 Programming

execution resumes following NEXT. When the loop is exited, counter
is purged.

To enter FOR ... NEXT in a program:

m Press ROH (9 FORE

Example: The following program places the squares of the integers 1
through 5 on the stack:

i
f

Example: The following program takes the value z from the stack
and computes the integer powers 7 of z. For example, when z = 12
and start and finish are 3 and b respectively, the program returns 123,
124, and 12°. It requires as inputs start and finish in levels 3 and 2,
and z in level 1. (+ = removes z from the stack, leaving start and
finish there as arguments for FOR.)

g 4 w o FOR m 'w*n' EVAL HERT 3 @

Programming 1-33

The FOR ... STEP Structure

The syntax for this structure is

. start finish FiF counter loop-clause increment STEFR

FOR ... STEP executes the loop-clause sequence just like FOR ...
NEXT does—except that the program specifies the increment value
for counter, rather than incrementing by 1. The loop-clause is always
executed at least once.

Syntax Flowchart
start 1:start
finish 2:finish
v
counter = start
FOR Store finish
v
loop-clause Body of loop <
| v
increment 1:increment
v
(counter = counter+
increment
/} v
STEP {
\\
’ yes
no

FOR ... STEP Structure

FOR takes start and finish from the stack as the beginning and ending
values for the loop counter, then creates the local variable counter as a
loop counter. Next, the loop-clause is executed—counter can appear
within the loop-clause. STEP takes the increment value from the

1-34 Programming

stack and increments counter by that value. If the argument of STEP
is an algebraic or a name, it’s automatically evaluated to a number.

The increment value can be positive or negative. If the increment is
positive, the loop is executed again if’ counter is less than or equal to
finish. If the increment is negative, the loop is executed if counter

is greater than or equal to finish. Otherwise, counter is purged and
execution resumes following STEP. In the previous flowchart, the
increment value is positive.

To enter FOR ... STEP in a program:
m Press “H () FOR

B
Example: The following program places the squares of the integers 1,
3,5, 7, and 9 on the stack:

Example: The following program takes n from the stack, and returns
the series of numbers 1, 2,4, 8,16, ... , n. If n isn’t in the series, the
program stops at the last value less than n.

“OR momon STER #

The first n is the local variable declaration for the FOR loop. The
second n is put on the stack each iteration of the loop. The third n is
used by STEP as the step increment.

Programming 1-35

Using Indefinite Loop Structures

The DO ... UNTIL ... END Structure

The syntax for this structure is

. [0 loop-clause UHTIL. test-clause

DO ... UNTIL ... END executes the loop-clause sequence repeatedly
until test-clause returns a true (nonzero) result. Because the
test-clause is executed after the loop-clause, the loop-clause 1s always
executed at least once.

Syntax Flowchart
DO
\
loop-clause Body of loop <+
| !
UNTIL (
| j Test
test-clause v
\ ‘1 1-test result
L v
|
Is test no
END result non-zero?
AN /

AN

AN

DO ... UNTIL ... END Structure

yes

DO starts execution of the loop-clause. UNTIL marks the end of

the loop-clause. The test-clause leaves a test result on the stack.

END removes the test result from the stack. If its value is zero,

the loop-clause is executed again—otherwise, execution resumes
following END. If the argument of END is an algebraic or a name, it’s
automatically evaluated to a number.

1-36 Programming

To enter DO ... UNTIL ... END in a program:
m Press

Example: The following program calculates n + 2n + 3n+ ... for
a value ot n. The program stops when the sum exceeds 1000, and
returns the sum and the coefficient of n.

Program: Comments:

Duplicates n, stores the value into
o oE e n and s, and initializes ¢ to 1.

Starts the defining procedure.
[Starts the loop-clause.

Increments the counter by 1. (See
“Using Loop Counters” on page
1-39.)

Calculates ¢ x n and adds the
product to s.

Starts the test clause.

Repeats loop until s > 1000.
Ends the test-clause.

Puts s and ¢ on the stack.

Ends the defining procedure.

Programming 1-37

The WHILE ... REPEAT ... END Structure
The syntax for this structure is
. WHILE test-clause REFEAT loop-clause EMDr ... %

WHILE ... REPEAT ... END repeatedly evaluates test-clause and
executes the loop-clause sequence if the test is true. Because the
test-clause is executed before the loop-clause, the loop-clause is not
executed if the test is initially false.

Syntax Flowchart
WHILE
| J Test <+
test-clause l
\ W 1:test result
v
REPEAT
Is test
result non-zero?
yes
loop-clause Body of loop
| v
END

WHILE ... REPEAT ... END Structure

WHILE starts execution of the test-clause, which returns a test result
to the stack. REPEAT takes the value from the stack. If the value

is nonzero, execution continues with the loop-clause—otherwise,
execution resumes following END. If the argument of REPEAT is an
algebraic or a name, it’s automatically evaluated to a number.

To enter WHILE ... REPEAT ... END in a program:
m Press =

1-38 Programming

Example: The following program starts with a number on the stack,
and repeatedly performs a division by 2 as long as the result is evenly
divisible. For example, starting with the number 24, the program
computes 12, then 6, then 3.

= WHILE DUR 2 MOD 8 == REFERT 2 < DUP EHD DROP @

Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.
(The vectors and arrays must have the same number of columns.)
WHILE ... REPEAT ... END is used instead of DO ... UNTIL ...
END because the test must be done before the addition. (If only
vectors or arrays with the same number of columns are on the stack,
the program errors after the last vector or array is added to the
statistics matrix.)

WHILE DUP TYPE & == REPEAT E+ EMD @

Using Loop Counters

For certain problems you may need a counter inside a loop structure
to keep track of the number of loops. (This counter isn’t related to the
counter variable in a FOR ... NEXT/STEP structure.) You can use
any global or local variable as a counter. You can use the INCR or
DECR command to increment or decrement the counter value and put
its new value on the stack.

The syntax for INCR and DECR is

"variable ' THCE ... #
or

‘vartable ' GECE .. o®

To enter INCR or DECR in a program:

= Press (Q)(MEMORY) AR ITH IMCF or DECE .

The INCR and DECR commands take a global or local variable name
(with ' delimiters) as their argument—the variable must contain a
real number. The command does the following:

1. Changes the value stored in the variable by +1 or —1.
2. Returns the new value to the stack.

Programming 1-39

Examples: If ¢ contains the value 5, then o' 1
and returns 6 to the stack.

The following program takes a maximum of five vectors from the stack
and adds them to the current statistics matrix.

Program: Comments:

B Stores 0 in local variable c.
Starts the defining procedure.
Starts the test clause.

Returns true if level 1 contains a
vector.

Increments and returns the value
in c.

Returns true if the counter ¢ <'5.
Returns true if the two previous
test results are true.

Adds the vector to X DAT.
Fnds the structure.
FEnds the defining procedure.

Using Summations Instead of Loops

For certain calculations that involve summations, you can use the

¥ function instead of loops. You can use ¥ with stack syntax or
with algebraic syntax. ¥ automatically repeats the addition for the
specified range of the index variable—without using a loop structure.

Example: The following programs take an integer upper limit n from
the stack, then find the summation

>
j=1
One program uses a FOR ... NEXT loop—the other uses .

1-40 Programming

Program: Comments:
g 1 ROT Initializes the summation and

puts the limits in place.
Loops through the calculation.

Comments:

Uses ¥ to calculate the
summadtion.

Example: The following program uses LLIST to calculate the
summation of all elements of a vector or matrix. The program takes
from the stack an array or a name that evaluates to an array, and
returns the summation.

Program: Comments:

Finds the dimensions of the array
and leaves it in a list on level 1.
Adds 1 to the list. (If the array is
+ a vector, the list on level 1 has
only one element. IILIST will
error if the list has fewer than two
elements.)

Multiplies all of the list elements
together.

Converts the array elements into
a list, and sums them.

Programming 1-41

Using Flags

You can use flags to control calculator behavior and program
execution. You can think of a flag as a switch that is either on
(set) or off (clear). You can test a flag’s state within a conditional
or loop structure to make a decision. Because certain flags have
unique meanings for the calculator, flag tests expand a program’s
decision-making capabilities beyond that available with comparison
and logical functions.

Types of Flags
The HP 48 has two types of flags:

m System flags. Flags —1 through —64. These flags have predefined
meanings for the calculator.

m User flags. Flags 1 through 64. User flags are not used by any
built-in operations. What they mean depends entirely on how the
program uses them.

Appendix C lists the 64 system flags and their definitions. For
example, system flag —40 controls the clock display—when this flag
is clear (the default state), the clock is not displayed—when this
flag is set, the clock is displayed. (When you press LK in the

@m menu, you are setting or clearing flag —40.)

When you set user flag 1 through 5, the corresponding annunciator is
turned on. Certain plug-in cards may use user-flags in the range 31

through 64.

Setting, Clearing, and Testing Flags
Flag commands take a flag number from the stack—an integer 1

through 64 (for user flags) or —1 through —64 (for system flags).

To set, clear, or test a flag:

1. Enter the flag number (positive or negative).
2. Execute the flag command—see the table below.

1-42 Programming

Flag Commands

Key Programmable
Command

Description

PRG) TEST (NXT)(NXT)or (&)(MODES) FLHL :

oE SF
CF
FS?
Fiw FC?
FEil FS7C
FOPE FC?C

Sets the flag.

Clears the flag.

Returns 1 (true) if the flag is set, or 0
(false) if the flag is clear.

Returns 1 (true) if the flag is clear, or 0
(false) if the flag is set.

Tests the flag (returns true if the flag is
set), then clears the flag.

Tests the flag (returns true if the flag is
clear), then clears the flag.

Example: System Flag. The following program sets an alarm for
June 6, 1993 at 5:05 PM. It first tests the status of system flag —42
(Date Format flag) in a conditional structure and then supplies the
alarm date in the current date format, based on the test result.

Program:

Comments:

Tests the status of flag —42, the
Date Format flag.

If flag —42 1s clear, supplies the
date in month/day/year format.
If flag —42 is set, supplies the
date in day.month.year format.
Ends the conditional.

Sets the alarm: 17.05 is the alarm
time and “TEST COMPLETE”

1s the alarm message.

Example: User Flag. The following program returns either the
fractional or integer part of the number in level 1, depending on the

state of user flag 10.

Programming 1-43

Program: Comments:

Starts the conditional.

Tests the status of user flag 10.
If flag 10 is set, returns the
integer part.

If flag 10 is clear, returns the
fractional part.

Ends the conditional.

To use this program, you enter a number, either set flag 10 (to get the
integer part) or clear flag 10 (to get the fractional part), then run the
program.

Recalling and Storing the Flag States

If you have a program that changes the state of a flag during
execution, you may want it to save and restore original flag states.

The RCLF (recall flags) and STOF (store flags) commands let you
recall and store the states of the HP 48 flags. For these commands,

a 64-bit binary integer represents the states of 64 flags—each 0 bit
corresponds to a flag that’s clear, each 1 bit corresponds to a flag
that’s set. The rightmost (least significant) bit corresponds to system
flag —1 or user flag 1.

To recall the current flag states:

m Execute RCLF ((&9)(MODES) F FLLLE).

RCLF returns a list containing two 64-bit binary integers representing
the current states of the system and user flags:

To change the current flag states:

1. Enter the flag-state arg,ument—see below

2. Execute STOF ((«9)(MODES) F

1-44 Programming

STOF sets the current states of flags based on the flag-state argument:

#ng Changes the states of only the system flags.

i #ne #ny, ¥ Changes the states of the system and user flags.

Example: The program PRESERVE on page 2-8 uses RCLF and
STOF.

Using Subroutines

Because a program is itself an object, it can be used in another
program as a subroutine. When program B is used by program
A, program A calls program B, and program B is a subroutine in
program A.

Example: The program TORSA calculates the surface area of a torus
of inner radius @ and outer radius . TORSA is used as a subroutine
in a second program TORSV, which calculates the volume of a torus.

o>

The surface area and volume are calculated by
¥l 9 1 2 2
A=720% - d?) V= iﬂ"(bz-—a“)(b—a)

(The quantity 72(b% — a?) in the second equation is the surface area of
a torus calculated by TORSA.)

Programming 1-45

Here are the stack diagram and program listing for TORSA.

Program:

() TORSA

Level 2 Level 1 — Level 1
a b — surface area
Comments:

Creates local variables @ and b.
Calculates the surface area.
Converts algebraic to a number.

Puts the program on the stack.
Stores the program in TORSA.

Here is a stack diagram and program listing for TORSV .

Program:

() TORSV

1-46 Programming

Level 2 Level 1 - Level 1
a b — volume
Comments:

Creates local variables ¢ and b.
Starts a program as the defining
procedure.

Puts the numbers stored in ¢ and
b on the stack, then calls TORSA
with those arguments.

Completes the volume calculation
using the surface area.

Ends the defining procedure.

Puts the program on the stack.
Stores the program in TORSV .

Now use TORSV to calculate the volume of a torus of inner radius
a = 6 and outer radius b = 8.

6 EITED 8

VAR

1' 138. 174461616
[Tok:v[TORzH] b2 | 41 [iPHLM] W |

Single-Stepping through a Program

It’s easier to understand how a program works if you execute it step
by step, observing the effect of each step. Doing this can help you
debug your own programs or understand programs written by others.

To single-step from the start of a program:

1. Put the program or program name in level 1 (or the command
line).

2. Press Rl DELUG to start and immediately
suspend execution.

HALT appears in the status area.
3. Take any action:
m To see the next program step displayed in the status area and

then executed, press ZET
m To display but not execute the next one or two program steps,
press HEHT

a To continue w1th normal execution, press («q)(CONT).
m To abandon further execution, press FILL .
4. Repeat the previous step as desired.

To turn off the HALT annunciator at any time:

u Press RUH EILL
Example: Execute program TORSV step by step. Use a = 6 and
b=28.

Programming 1-47

Select the VAR menu and enter the data. Enter the program name

and start the debugging. HfiL.T
suspended.

(@ (CEAR)
7
6 (ENTER) 8 (ENTER) 3
) Z

Display and execute the first program step. Notice that it takes the
two arguments from the stack and stored them in local variables a and

b.

indicates program execution is

[DEWS | 5T [S5T4 EILL

+

ab

a0

[DEUG | 55T [35T4 [MERT [HALT [KILL |
Continue single-stepping until the status area shows the current
directory. Watch the stack and status area as you single-step through
the program.

1: 138. 174461616

To single-step from the middle of a program:

1. Insert a HALT command in the program where you want to begin
single-stepping.
2. Execute the program normally. The program stops when the HALT
command is executed, and the Hf annunciator appears.
3. Take any action:
m To see the next program step displayed in the status area and
then executed, press Z#
m To display but not execute the next one or two program steps,
press i
m To continue Wlth normal execution, press @m
m To abandon further execution, press
4. Repeat the previous step as desued.

1-48 Programming

When you want the program to run normally again, remove the HALT
command from the program.

To single-step when the next step is a subroutine:

m To execute the subroutine in one step, press
m To execute the subroutine step-by-step, press

L&Y executes the next step in a program—if the next step is a
subroutme BET executes the subroutine in one step. =H&ET4
works just like %&T —except if the next program step is a
subroutine, it smgle steps to the first step in the subroutine.

Example: In the previous example, you used EET to execute
subroutine TORSA in one step. Now execute program TORSV step
by step to calculate the volume of a torus of radii @ = 10 and b = 12.
When you reach subroutine TORSA, execute it step by step.

Select the VAR menu and enter the data. Enter the program name
and start the debugging. Execute the first four steps of the program,
then check the next step.

(@) CERD))
10 (ENTeR) 12

TORSA b

o) S
R0 (D) R 7 18
(4 tlmes) 1: 12

[DEUG | 55T [S5T4 EILL

The next step is . Single-step into TORSA, then check that
you’re at the first step of TORSA.

Press (&9)(CONT) (&9)(CONT) to complete subroutine and program
execution.

The following table summarizes the operations for single-stepping
through a program.

Programming 1-49

Single-Step Operations

Key Programmable Description
Command

Starts program execution, then
suspends it as if HALT were the first
program command. Takes as its
argument the program or program
name in level 1.

Executes the next object or command
in the suspended program.

Same as , except if the next
program step is a subroutine,
single-steps to the first step in that
subroutine.

Displays the next one or two objects,
but does not execute them. The display
persists until the next keystroke.

HALT Suspends program execution at the
location of the HALT command in the
program.

KILL Cancels all suspended programs and
turns off the HALT annunciator.

(s)(conT) CONT Resumes execution of a halted program.

Trapping Errors

If you attempt an invalid operation from the keyboard, the operation
is not executed and an error message appears. For example, if you
execute 4+ with a vector and a real number on the stack, the HP 48

returns the message + Ervoi A T T
arguments to the stack (if Last Arguments is enabled).

and returns the

In a program, the same thing happens, but program execution is also
aborted. If you anticipate error conditions, your program can process
them without interrupting execution.

1-50 Programming

For simple programs, you can run the program again if it stops with
an error. For other programs, you can design them to trap errors and
continue executing. You can also create user-defined errors to trap
certain conditions in programs. The error trapping commands are
located in the PRG ERROR menu.

Causing and Analyzing Errors

Many conditions are automatically recognized by the HP 48 as error
conditions—and they’re automatically treated as errors in programs.

You can also define conditions that cause errors. You can cause a
user-defined error (with a user-defined error message)—or you can
cause a built-in error. Normally, you’ll include a conditional or loop
structure with a test for the error condition—and if it occurs, you'll
cause the user-defined or built-in error to occur.

To cause a user-defined error to occur in a program:

1. Enter a string (with * * delimiters) containing the desired error

message.
2. Enter the DOERR command (PRG ERROR menu).

To artificially cause a built-in error to occur in a program:

1. Enter the error number (as a binary integer or real number) for the
error.

2. Enter the DOERR command (PRG ERROR menu).

If DOERR is trapped in an IFERR structure (described in the next
topic), execution continues. If it’s not trapped, execution is abandoned
at the DOERR command and the error message appears.

To analyze an error in a program:

m To get the error number for the last error, execute ERRN (PRG
ERROR menu).

m To get the error message for the last error, execute ERRM (PRG
ERROR menu).

m To clear the last-error information, execute ERRO (PRG ERROR

menu).

The error number for a user-defined error is #70000h. See the list of
built-in error numbers in appendix A, “Error and Status Messages.”

Programming 1-51

Example: The following program aborts execution if the list in level

1 contains three objects.

The following table summarizes error trapping commands.

Error Trapping Commands

Description

Key Programmable
Command
(PRG)(NXT) R
DOERR
ERRN
ERRM
ERRO

Causes an error. For a string in level 1,
causes a user-defined error: the
calculator behaves just as if an
ordinary error has occurred. For a
binary integer or real number in level 1,
causes the corresponding built-in error.
If the error isn’t trapped in an IFERR
structure, DOERR. displays the
message and abandons program
execution. (For 0 in level 1, abandons
execution without updating the error

number or message—Tlike (CANCEL).)

Returns the error number, as a binary
integer, of the most recent error.
Returns if the error number was
cleared by ERRO.

Returns the error message (a string) for
the most recent error. Returns an
empty string if the error number was
cleared by ERRO.

Clears the last error number and
message.

1-52 Programming

Making an Error Trap

You can construct an error trap with one of the following conditional
structures:

= [FERR ... THEN ... END.
s I[FERR ... THEN ... ELSE ... END.

The IFERR ... THEN ... END Structure

The syntax for this structure is

i error-clause

trap-clause

The commands in the error-clause are executed only if an error is
generated during execution of the trap-clause. If an error occurs in the
trap-clause, the error is ignored, the remainder of the trap-clause is
skipped, and program execution jumps to the error-clause. If no errors
occur in the trap-clause, the error-clause is skipped and execution
resumes after the END command.

To enter IFERR ... THEN ... END in a program:
= Press

Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.
However, the program stops with an error if a vector or array with

a different number of columns is encountered. In addition, if only
vectors or arrays with the same number of columns are on the stack,
the program stops with an error after the last vector or array has been
removed from the stack.

i WHILE I
In the following revised version, the program simply attempts to add
the level 1 object to the statistics matrix until an error occurs. Then,
it ends by displaying the message i

Programming 1-53

Program: Comments:

Starts the trap-clause.

The WHILE structure repeats
indefinitely, adding the vectors
and arrays to the statistics matrix
until an error occurs.

Starts the error clause. If an error
occurs in the WHILE structure,
displays the message [(IHE in the
status area.

Ends the error structure.

The IFERR ... THEN ... ELSE ... END Structure
The syntax for this structure is

¢ trap-clause

i error-clause EL.SE normal-clause EMD

The commands in the error-clause are executed only if an error is
generated during execution of the trap-clause. If an error occurs in the
trap-clause, the error is ignored, the remainder of the trap-clause is
skipped, and program execution jumps to the error-clause. If no errors
occur in the trap-clause, execution jumps to the normal-clause at the
completion of the trap-clause.

To enter IFERR ... THEN ... ELSE ... END in a program:
= Press

Example: The following program prompts for two numbers, then
adds them. If only one number is supplied, the program displays an
error message and prompts again.

1-54 Programming

Program: Comments:

Begins the main loop.
weow Prompts for two numbers.

Starts the loop test clause.
The error trap contains only the
+ command.

If an error occurs, recalls and
Araourmsnt = message for 2
seconds, then puts 0 (false) on
the stack for the main loop.

If no error occurs, puts 1 (true)
on the stack for the main loop.

Ends the error trap.

Ends the main loop. If the error
trap left 0 (false) on the stack,
the main loop repeats—otherwise,
the program ends.

Input

A program can stop for user input, then resume execution, or can use
choose boxes or input forms (dialog boxes) for input. You can use
several commands to get input:

PROMPT ((«q)(CONT) to resume).
m DISP FREEZE HALT ((«9)(CONT) to resume).

m INPUT ((ENTER) to resume).
s INFORM
s CHOOSE

Programming 1-55

Data Input Commands

Key ‘ Command ‘ Description

INFORM Creates a user-defined input form.
NOVAL Place holder for the INFORM

command. Returned when a value 1s
not present in an input form field.
CHOOSE Creates a user-defined choose box.

KEY Returns a test result to level 1 and, if a
key is pressed, the location of that key
(level 2).

WAIT Suspends program execution for a

specified duration (in seconds, level 1).

INPUT Suspends program execution for data
input.

PROMPT Halts program execution for data input.

Using PROMPT ... CONT for Input

PROMPT uses the status area for prompting, and allows the user to
use normal keyboard operations during input.

To enter PROMPT in a program:

1. Enter a string (with * * delimiters) to be displayed as a prompt in
the status area.
2. Enter the PROMPT command (PRG IN menu).

#prompt-string”

PROMPT takes a string argument from level 1, displays the string
(without the " * delimiters) in the status area, and halts program
execution. Calculator control is returned to the keyboard.

When execution resumes, the input is left on the stack as entered.

To respond to PROMPT while running a program:

1. Enter your input—you can use keyboard operations to calculate the
input.

1-56 Programming

2. Press (|q)(CONT).

The message remains until you press (ENTER) or (CANCEL) or until you
update the status area.

Example: If you execute this program segment

o

the display looks like this:

Example: The following program, TPROMPT, prompts you for the
dimensions of a torus, then calls program TORSA (from page 1-45) to
calculate its surface area. You don’t have to enter data on the stack
prior to program execution.

Program: Comments:

Puts the prompting string on the
stack.

Displays the string in the status
area, halts program execution,
and returns calculator control to
the keyboard.

Executes TORSA using the

just-entered stack arguments.

() TPROMPT Stores the program in
TPROMPT.

Execute TPROMPT to calculate the volume of a torus with inner
radius @ = 8 and outer radius b = 10.

Programming 1-57

Execute TPROMPT . The program prompts you for data.

(9)(CLEAR) ENTER a, b IM ORDER:
(VAR)

Enter the inner and outer radii. After you press (ENTER), the prompt
message 1s cleared from the status area.

8 (ENTER) 10 HALT
M

| TRRO [TOREV[TORER] w8 | W1 [SPHLA]
Continue the program.

(B)(conT) 1: 309.3H5758439
[TRRD [T0k:N[TORZA]_¥2 | 41 [sPHLY

Note that when program execution is suspended by PROMPT, you
can execute calculator operations just as you did before you started
the program. If the outer radius b of the torus in the previous
example is measured as 0.83 feet, you can convert that value to inches
while the program is suspended for data input by pressing .83
12 (x), then («9)(CONT).

Using DISP FREEZE HALT ... CONT for Input

DISP FREEZE HALT lets you control the entire display during input,
and allows the user to use normal keyboard operations during input.

To enter DISP FREEZE HALT in a program:

—

Enter a string or other object to be displayed as a prompt.
Enter a number specifying the line to display it on.

Enter the DISP command (PRG OUT menu).

Enter a number specifying the areas of the display to “freeze.”
Enter the FREEZE command (PRG OUT menu).

Enter the HALT command (PRG OUT menu).

1-58 Programming

. prompt-object display-line [IZF

freeze-area F E HALT

DISP displays an object in a specified line of the display. DISP

takes two arguments from the stack: an object from level 2, and a
display-line number 1 through 7 from level 1. If the object is a string,
it’s displayed without the * * delimiters. The display created by
DISP persists only as long as the program continues execution—if the
program ends or is suspended by HALT, the calculator returns to the
normal stack environment and updates the display. However, you can
use FREEZE to retain the prompt display.

FREEZE “freezes” display areas so they aren’t updated until a key
press. Argument n in level 1 is the sum of the codes for the areas to
be frozen: 1 for the status area, 2 for the stack/command line area, 4
for the menu area.

HALT suspends program execution at the location of the HALT
command and turns on the HAL.T annunciator. Calculator control is
returned to the keyboard for normal operations.

When execution resumes, the input remains on the stack as entered.

To respond to HALT while running a program:

1. Enter your input—you can use keyboard operations to calculate the
input.
2. Press (q)(CONT).

Example: If you execute this program segment

i x‘_‘gE: =

GHIM CLLCR 1 DIBF 3

the display looks like this:

[OEUG | 55T [S5T4 EILL

(The ® in the previous program is the calculator’s representation for
the # newline character after you enter a program on the stack.)

Programming 1-59

Using INPUT ... ENTER for Input

INPUT lets you use the stack area for prompting, lets you supply
default input, and prevents the user from using normal stack
operations or altering data on the stack.

To enter INPUT in a program:

1. Enter a string (with * * delimiters) to be displayed as a prompt at
the top of the stack area.

2. Enter a string or list (with delimiters) that specifies the
command-line content and behavior—see below.

3. Enter the INPUT command (PRG IN menu).

4. Enter OBJ— (PRG TYPE menu) or other command that processes
the input as a string object.

. "prompt-string* ¥ command-line®
or

. Hprompt-string* < command-lines IH

INPUT, in its simplest form, takes two strings as arguments—see the
list of additional options following. INPUT blanks the stack area,
displays the contents of the level-2 string at the top of the stack area,
and displays the contents of the level-1 string in the command line. It
then activates Program-entry mode, puts the insert cursor after the
string in the command line, and suspends execution.

When execution resumes, the input is returned to level 1 as a string
object, called the result string.

To respond to INPUT while running a program:

1. Enter your input. (You can’t execute commands—they’re simply
echoed in the command line.)
2. Optional: To clear the command line and start over, press

(e,
3. Press (ENTER).

Example: If you execute this program segment

the display looks like this:

1-60 Programming

{ HOME }
Variable name?

: YAR:
INFOF [WOV [CHODS[INPUT] KEY ThAIT]

Example: The following program, VSPH, calculates the volume of a
sphere. VSPH prompts for the radius of the sphere, then cubes it and
multiplies by /3 7. VSPH executes INPUT to prompt for the radius.
INPUT sets Program-entry mode when program execution pauses for

data entry.

Program: Comments:

Specifies the prompt string.

Specifies the command-line string.
In this case, the command line
will be empty.

Displays the prompt, puts the
cursor at the start of the
command line, and suspends the
program for data input (the
radius of the sphere).

Converts the result string into its
component object—a real
number.

Cubes the radius.

Completes the calculation.

(C) VSPH (sT0) Stores the program in VSPH.

Programming 1-61

Execute VSPH to calculate the volume of a sphere of radius 2.5.

VAR PRiG
1 HOME }
Key in radius
+
[WiRH [TRED [TORZW[TORZA] w8 | W1 |
Key in the radius and continue program execution.
2.5 1: 63, 4498469497
[MERH [TRED [TORSV[TORSA] w2 | w1 |
To include INPUT options:
m Use a list (with £ * delimiters) as the command-line argument for
INPUT. The list can contain one or more of the following:
o Command-line string (with * * delimiters).
o Cursor position as a real number or as a list containing two real
numbers.
o Operating options FL.is, =, or %.

In its general form, the level 1 argument for INPUT is a list that
specifies the content and interpretation of the command line. The list
can contain one or more of the following parameters in any order:

“command-line® cursor-position operating-options

“command-line® Specifies the content of the command line
when the program pauses. Embedded newline
characters produce multiple lines in the display.
(If not included, the command line is blank.)

cursor-position Specifies the position of the cursor in the
command line and its type. (If not included, an

insert cursor is at the end of the command line.)

m A real number n specifies the nth character in
the first row (line) of the command line. Zero
specifies the end of the command-line string. A
positive number specifies the insert cursor—a
negative number specifies the replace cursor.

m A list {row character’ specifies the row and
character position. Row 1 is the first row (line)
of the command line. Characters count from

1-62 Programming

the left end of each row—character 0 specifies
the end of the row. A positive row number
specifies the insert cursor—a negative row
number specifies the replace cursor.

operating-options Specify the input setup and processing using zero
or more of these unquoted names:

m ALG activates Algebraic/Program-entry mode
(for algebraic syntax). (If not included,
Program-entry mode is active.)

m = ((@) ()(A)) specifies alpha lock. (If not
included, alpha is inactive.)

m * verifies whether the result string (without the
“ 1 delimiters) is a valid object or sequence of
objects. If the result string isn’t valid, INPUT
displays the Irusmlicd Sumt zx message and
prompts again for data. (If not included, syntax
isn’t checked.)

To design the command-line string for INPUT:

m For simple input, use a string that produces a valid object:
o Use an empty string.
o Use a :label: tag.
o Use a Efext® comment.
m For special input, use a string that produces a recognizable pattern.

After the user enters input in the command line and presses (ENTER
to resume execution, the contents of the command line are returned

to level 1 as the result string. The result string normally contains the
original command-line string, too. If you design the command-line
string carefully, you can ease the process of extracting the input data.

To process the result string from INPUT:

m For simple input, use OBJ— to convert the string into its
corresponding objects.

m For sensitive input, use the % option for INPUT to check for valid
objects, then use OBJ— to convert the string into those objects.

m For special input, process the input as a string object, possibly
extracting data as substrings.

Programming 1-63

Example: The program VSPH on page 1-61 uses an empty
command-line string.

Example: The program SSEC on page 1-66 uses a command-line
string whose characters form a pattern. The program extracts
substrings from the result string.

Example: The command-line string * displays

It in the Command line If you press 200 (ENTER),

the return strlng s " ". When OBJ— extracts
the text from the string, it strips away the @ characters and the
enclosed characters, and it returns the number 200. (See “Creating
Programs on a Computer” on page 1-10 for more information about @
comments.)

Example: The following program, TINPUT, executes INPUT to
prompt for the inner and outer radii of a torus, then calls TORSA
(page 1-45) to calculate its surface area. TINPUT prompts for ¢ and
b in a two-row command line. The level 1 argument for INPUT is a
list that contains:

m The command-line string, which forms the tags and delimiters for
two tagged objects.

m An embedded list specifying the initial cursor position.

m The % parameter to check for invalid syntax in the result string.

1-64 Programming

Program: Comments:

The level 2 string, displayed at
the top of the stack area.

The level 1 list contains a string,
a list, and the verify option. (To

key in the string, press ()" ")
PO ®EE@E@.
After you press to put
the finished program on the stack,

the string is shown on one line,
with & indicating the newline
character.) The embedded list
puts the insert cursor at the end

of row 1.

Displays the stack and
command-line strings, positions
the cursor, sets Program-entry
mode, and suspends execution for
input.

Converts the string into its
component objects—two tagged
objects.

Calls TORSA to calculate the

surface area.

() TINPUT (570) Stores the program in TINPUT.

Execute TINPUT to calculate the surface area of a torus of inner
radius ¢ = 10 and outer radius b = 20.

VAR

{ HOME 1
Keg in a, b

TINPU| WZPH | TPRO [TORZV[TOREA] V2]

Programming 1-65

Key in the value for a, press (¥) to move the cursor to the next
prompt, then key in the value for b.

10 20
© 1 HOME } Fra

Key in a, b
aslH
b: A

Continue program execution.

) I: 2966, 88137633

Example: The following program executes INPUT to prompt for a
social security number, then extracts two strings: the first three digits
and last four digits. The level 1 argument for INPUT specifies:

m A command-line string with dashes.

m The replace cursor positioned at the start of the prompt string (—1).
This lets the user “fill in” the command line string, using () to skip
over the dashes in the pattern.

m By default, no verification of object syntax—the dashes make the
content invalid as objects.

Level 1 — Level 2 Level 1

— " last four digits" " first three digits"

1-66 Programming

Program: Comments:

S.E. #Y Prompt string.

- RS Command-line string (3 spaces
before the first —, 2 spaces
between, and 4 spaces after the
last -).

THFUT Suspends the program for input.
Copies the result string, then
extracts the first three and last
four digits in string form.

(F) SSEC Stores the program in SSEC.

Using INFORM and CHOOSE for Input

You can use input forms (dialog boxes), and choose boxes for program
input. Programs that contain input forms or choose boxes wait until

you acknowledge them ([or (CANCEL)) before they continue

execution.

If OK is pressed, CHOOSE returns the selected item (or its designated
returned value) to level 2 and a 1 to level 1. INFORM returns a list of
field values to level 2 and a 1 to level 1.

Both the INFORM and CHOOSE commands return 0 if CANCEL is
pressed.

To set up an input form:

Enter a title string for the input form (use (@)(™™)).
Enter a list of field specifications.

Enter a list of format options.

Enter a list of reset values (values that appear when
pressed).

5. Enter a list of default values.

6. Execute the INFORM command.

Example: Enter a title "F E" (ENTER).
Specify a field < =

Enter format optlons (one column, taba stop width five) £ 1 5

Ll

Programming 1-67

Enter reset value for the field <
Enter default value for the field £
Execute INFORM ((PRG) (NXT)
The screen on the left appears. Press (NXT)
screen on the right appears.

(EnTER).

and the

ManE:] N THERESH'

EMT] [[[AHiL] OF] REZET[CHLC [TYRES] [iAMIL] Ok |

You can specify a help message and the type of data that must be
entered in a ﬁeld by entering field spec1ﬁcat10ns as lists. For example,

: &% % defines the Name field,
dlsplavs E . across the bottom of the input form, and
accepts only object type 2 (strings) as input.

To set up a choose box:

1. Enter a title string for the choose box.

9. Enter a list of items. If this is a list of two-element lists, the first
element is displayed in the choose box, and the second element is
returned to level 2 when OK is pressed.

3. Enter a position number for the default highlighted item. (0 makes
a view-only choose box.)

4. Execute the CHOOSE command.

Example: Enter a title *F (ENTER).
Enter a list of items + 1
Enter a position number for default hlghhghted Value # (ENTER).
Execute CHOOSE ((PRG) (NXT) IH &).

The following choose box appears:

1-68 Programming

L HOERET ORE

3
[[[[[iNi[Ok |

Example: The following program uses input forms, choose boxes, and
message boxes to create a simple phone list database.

Program: Comments:

Checks 1if the name list
(NAMES) exists, if not,
creates an empty one.

While cancel is not pressed,
creates a choose box that
lists the database options.
When OK is pressed, the
second item in the list pair
is returned to the stack.

Stores the returned value in
c.

Case 1 (ADD name), while
cancel is not pressed, do the
following;:

Programming 1-69

i

1-70

Program:

Programming

Comments:

Creates an input form that
gets the name and phone
number. The two fields
accept only strings (object
type 2).

Checks if either field in the

new entry is blank.

If either one is, displays a
message.

If neither are, adds the list
to NAMES, sorts it, and
stores it back in NAMES.
Ends the IF structure, the
WHILE loop, and the
CASE statement.

Case 2 (View a Number).

Checks if NAMES is an
empty list.
If it is, displays a message.

Program: Comments:

ELSE If NAMES isn’t empty,
WHILE creates a choose box using

NAMES as choice items.

When OK is pressed, the
*ETR MSGEDN second item in the NAMES
list pairs (the phone
number) is returned. Makes
it a string and displays it.

ErL Ends the WHILE loop, the
B IF structure, and the CASE
R statement.
EHD Ends the CASE structure,
2 marks the end of the local
D variable defining procedure,

ends the WHILE loop, and
marks the end the program.

() PHONES Stores the program in
PHONES.

You can delete names and numbers by editing the NAMES variable.
To improve upon this program, create a delete name routine.

Beeping to Get Attention

To enter BEEP in a program:

1. Enter a number that specifies the tone frequency in hertz.
2. Enter a number that specifies the tone duration in seconds.

3. Enter the BEEP command ((PRG) (NXT) ©LIT menu).
... frequency duration EEEF ... @

BEEP takes two arguments from the stack: the tone frequency from
level 2 and the tone duration from level 1.

Example: The following edited version of TPROMPT sounds a
440-hertz, one-balf-second tone at the prompt for data input.

Programming 1-71

Program: Comments:

Sounds a tone just before the
prompt for data input.

Stopping a Program for Keystroke Input

A program can stop for keystroke input—it can wait for the user to
press a key. You can do this with the WAIT and KEY commands.

Using WAIT for Keystroke Input

The WAIT command normally suspends execution for a specified
number of seconds. However, you can specify that it wait indefinitely
until a key is pressed.

To enter WAIT in a program:

» To stop without changing the display, enter 0 and the WAIT
command (PRG IN menu).

» To stop and display the current menu, enter —1 and the WAI'T
command (PRG IN menu).

WAIT takes the 0 or —1 from level 1, then suspends execution until a
valid keystroke is executed.

For an argument of —1, WAIT displays the currently specified menu.
This lets you build and display a menu of user choices while the
program is paused. (A menu built with MENU or TMENU is not
normally displayed until the program ends or is halted.)

When execution resumes, the three-digit key location number of
the pressed key is left on the stack. This number indicates the row,
column, and shift level of the key.

1-72 Programming

To respond to WAIT while running a program:

m Press any valid keystroke. (A prefix key such as (&) or (@) by itself
1s not a valid keystroke.)

Using KEY for Keystroke Input

You can use KEY inside an indefinite loop to “pause” execution until
any key—or a certain key—is pressed.

To enter a KEY loop in a program:

1. Enter the loop structure.

2. In the test-clause sequence, enter the KEY command (PRG IN
menu) plus any necessary test commands.

3. In the loop-clause, enter no commands to give the appearance of a

“paused” condition.

KEY returns 0 to level 1 when the loop begins. It continues to return
0 until a key is pressed—then it returns 1 to level 1 and the two-digit
row-column number of the pressed key to level 2. For example,

ENTER]) returns 51, and (&) returns 71.

The test-clause should normally cause the loop to repeat until a key is
pressed. If a key is pressed, you can use comparison tests to check the
value of the key number. (See “Using Indefinite Loop Structures” on
page 1-36 and “Using Comparison Functions” on page 1-17.)

To respond to a KEY loop while running a program:

m Press any key. (A prefix key such as Q) or (@) is a valid key.)

Example: The following program segment returns 1 to level 1 if
1s pressed, or 0 to level 1 if any other key is pressed:

Programming 1-73

Output

You can determine how a program presents its output. You can make
the output more recognizable using the techniques described in this
section.

Data Output Commands

Key l Command ‘ Description

: Bl PVIEW Displays PICT starting at the given
coordinates.

TEXT Displays the stack display.
CLLCD Blanks the stack display.

DISP Displays an object in the specified line.
FREEZE “Freezes” a specified area of the display
until a key press.

MSGBOX | Creates a user-defined message box.

BEEP Sounds a beep at a specified frequency
(in hertz, level 2) and duration (in
seconds, level 1).

Labeling Output with Tags

To label a result with a tag:

1. Put the output object on the stack.
2. Enter a tag—a string, a quoted name, or a number.
3. Enter the —TAG command (PRG TYPE menu).
. object tag *THE ... *
—TAG takes two arguments—an object and a tag—from the stack

and returns a tagged object.

Example: The following program TTAG is identical to TINPUT,

A value.

1-74 Programming

Program: Comments:

Enters the tag (a string).
Uses the program result and
string to create the tagged object.

() TTAG Stores the program in TTAG.

Execute TTAG to calculate the area of a torus of inner radius a = 1.5
and outer radius b = 1.85. The answer is returned as a tagged object.

TTAG 1: AREA: 11.57Z1111663
15 (¥) 1.85 [TTi [TINPU | 5PH] TRED TORZV[TORZH

Labeling and Displaying Output as Strings

To label and display a result as a string:

Put the output object on the stack.

Enter the —STR command (PRG TYPE menu).

Enter a string to label the object (with " " delimiters).

Enter the SWAP + commands to swap and concatenate the strings.

Enter a number specifying the line to display the string on.
Enter the DISP command (PRG OUT menu).

T

. object +ETE label SMWAF + line DISF ... =
DISP displays a string without its * " delimiters.

Example: The following program TSTRING is identical to TINPUT,
except that it converts the program result to a string and appends a
labeling string to it.

Programming 1-75

Program: Comments:

Converts the result to a string.
Enters the labeling string.

Swaps and adds the two strings.
Displays the resultant string,
without its delimiters, in line 1 of
the display.

() TSTRING (s70) Stores the program in TSTRING.

Execute TSTRING to calculate the area of the torus with ¢ = 1.5 and
b = 1.85. The labeled answer appears in the status area.

@CEER)
1.5 (¥) 1.85

Area = 11.3721111682

TETRI| TTRSE |TINPU] ¥5PH | TPED

Pausing to Display Output

To pause to display a result:

1. Enter commands to set up the display.
2. Enter the number of seconds you want to pause.

3. Enter the WAIT command (PRG IN menu).

WAIT suspends execution for the number of seconds in level 1.

You can use WAIT with DISP to display messages during program
execution—for example, to display intermediate program results.
(WAIT interprets arguments 0 and —1 differently—see “Using WAIT
for Keystroke Input” on page 1-72.)

1-76 Programming

Using MSGBOX to Display Output

To set up a message box:

1. Enter a message string.
2. Execute the MSGBOX command.

Example: Enter a string *

Execute MSGBOX ((PRG) (NXT)

The following message appears:

1 HOME }

gf HELLO, WORLD

g

l: "HELLO, WORLD"

[1 [1 [[oK]
You must acknowledge a message box by pressing (il = or
(CancED),

Using Menus with Programs

You can use menus with programs for different purposes:

m Menu-based input. A program can set up a menu to get input
during a halt in a program—then resume executing the same
program.

m Menu-based application. A program can set up a menu and finish
executing, leaving the menu to start executing other related
programs.

To set up a built-in or library menu:

1. Enter the menu number.

2. Enter the MENU command (MODES MENU menu).

Programming 1-77

To set up a custom menu:

1. Enter a list (with £ * delimiters) or the name of a list defining the
menu actions. If a list of two element lists is given, the first element
appears in the menu, but it is the second element that is returned
to the stack when the menu key is pressed.

2. Activate the menu:

m To save the menu as the CST menu, enter the MENU command
(MODES MENU menu).

m To make the menu temporary, enter the TMENU command
(MODES MENU menu).

The menu isn’t displayed until program execution halts.

Menu numbers for built-in menus are listed in chapter 3, under the
MENU command. Library menus also have numbers—the library
number serves as the menu number. So you can activate applications
menus (such as the SOLVE and PLOT menus) and other menus (such
as the VAR and CST menus) in programs. The menus behave just as
they do during normal keyboard operations.

You create a custom menu to cause the behavior you need in your
program—see the topics that follow. You can save the menu as the
CST menu, so the user can get it again by pressing (CST). Or you can
make it {emporary—it remains active (even after execution stops), but
only until a new menu is selected—and it doesn’t affect the contents of
variable CST'.

To specify a particular page of a menu, enter the number as m.pp,
where m is the menu number and pp is the page number (such as
94.02 for page 2 of the TIME menu). If page pp doesn’t exist, page 1
is displayed (94 gives page 1 of the TIME menu).

Example: Enter “HL to get page 1 of the MODES MISC menu.
Enter £%. 82 MEHL to get page 2 of the MODES MISC menu.

To restore the previous menu:
m Execute 0 MENU.

To recall the menu number for the current menu:
s Execute the RCLMENU command (MODES MENU menu).

1-78 Programming

Using Menus for Input

To display a menu for input in a program:

1. Set up the menu—see the previous section.
2. Enter a command sequence that halts execution (such as DISP,
PROMPT, or HALT).

The program remains halted until it’s resumed by a CONT command,

such as by pressing (&9)(CONT). If you create a custom menu for input,
you can include a CONT command to automatically resume the
program when you press the menu key.

Example: The following program activates page 1 of the MODES
ANGL menu and prompts you to set the angle mode. After you press
the menu key, you have to press (&9)(CONT) to resume execution.

MEHL "o

ot FAmsles Mode! PREOMFT =

Example: The PIE program on page 2-49 assigns the CONT
command to one key in a temporary menu.

Example: The MNX program on page 2-22 sets up a temporary
menu that includes a program containing CONT to resume execution
automatically.

Using Menus to Run Programs

You can use a custom menu to run other programs. That menu
can serve as the main interface for an application (a collection of
programs).

To create a menu-based application:

1. Create a custom menu list for the application that specifies
programs as menu objects.

2. Optional: Create a main program that sets up the application
menu—either as the CST menu or as a temporary menu.

Example: The following program, WGT, calculates the mass of an
object in either English or SI units given the weight. WGT displays
a temporary custom menu, from which you run the appropriate
program. Each program prompts you to enter the weight in the
desired unit system, then calculates the mass. The menu remains

Programming 1-79

active until you select a new menu, so you can do as many calculations
as you want.

Enter the following list and store it in LST:

() LST G

Program: Comments:

LET THEMU 3 Displays the custom menu stored
in LST.

() WGT (s10) Stores the program in WGT.

Use WGT to calculate the mass of an object of weight 12.5 N. The
program sets up the menu, then completes execution.

Mewsi] =1 | | [[W

Select the ST unit system, which starts the program in the menu list.

VAR

=1 ENTER MWt in HEWTOHNS

4
3
i
[EWGL] =t | | [[|
Key in the weight, then resume the program.

12.5 (4) (CONT) 1 1. 27420993951
I T

Example: The following program, EIZ, constructs a custom menu
to emulate the HP Solve application for a capacitive electrical circuit.
The program uses the equation £ = IZ, where F is the voltage, I is
the current, and 7 is the impedance.

Because the voltage, current, and impedance are complex numbers,
you can’t use the HP Solve application to find solutions. The custom
menu in EIZ assigns a direct solution to the left-shifted menu key for
each variable, and assigns store and recall functions to the unshifted
and right-shifted keys—the actions are analogous to the HP Solve

1-80 Programming

application. The custom menu is automatically stored in CST,
replacing the previous custom menu—you can press to restore

the menu.

Program:

O 1z GT0)

Comments:

Sets Degrees mode. Sets flags
—15 and —16 to display complex
numbers in polar form. Sets the
display mode to 2 Fix.

Starts the custom menu list.
Builds menu key 1 for E.
Unshifted action: stores the
object in E. Left-shift action:
calculates I x 7, stores it in F|
and displays it with a label.
Right-shift action: recalls the
object in F.

Builds menu key 2.

Builds menu key 3.

Ends the list.
Displays the custom menu.

Stores the program in EIZ.

For a 10-volt power supply at phase angle 0°, you measure a current of
0.37-amp at phase angle 68°. Find the impedance of the circuit using

ElZ.
()R (R

e [+ [= [[[M

Programming 1-81

Key in the voltage value.

@O 10 (@)&)0 [1B<A+4
lnnﬂ--- |

Store the voltage value. Then key in and store the current value.
Solve for the impedance.

Zi (27.03, 68,6868
QO @@ 6 ! +
@ = eH
%:
| E 1 + [2 [1 [|
Recall the current and double it. Then find the voltage.
@ ! Ef (20.00,4-1.07E-16)
2
@k
Press (¢q)(MODES) FHMT &Tk and f

EELT to restore Standard and Rectangular modes.

Turning Off the HP 48 from a Program

To turn off the calculator in a program:

m Execute the OFF command (PRG RUN menu).

The OFF command turns off the HP 48. If a program executes OFF,
the program resumes when the calculator is next turned on.

1-82 Programming

Programming Examples

The programs in this chapter demonstrate basic programming
concepts. These programs are intended to improve your programming
skills, and to provide supplementary functions for your calculator.

At the end of each program, the program’s checksum and size in bytes
are listed to help make sure you typed the program in correctly. (The
checksum is a binary integer that uniquely identifies the program
based on its contents). To make sure you’ve keyed the program in
correctly, store it in its name, put the name in level 1, then execute

program’s checksum to level 2, and its size in bytes to level 1. (If
you execute BYTES with the program object in level 1, you’ll get a
different byte count.)

The programs in this chapter are also included in the online
information of the Program Development Link software for developing
HP 48 programs on computers. This software lets you load these
programs from the online information into your HP 48 through its
serial port.

The examples in this chapter assume the HP 48 is in its initial,
default condition—they assume you haven’t changed any of the

HP 48 operating modes. (To reset the calculator to this condition, see
“Memory Reset” in chapter 5 of the HP 48 User’s Guide.)

Each program listing in this chapter gives the following information:

m A brief description of the program.

m A syntax diagram (where needed) showing the program’s required
inputs and resulting outputs.

Discussion of special programming techniques in the program.
Any other programs needed.

The program listing.

The program’s checksum and byte size.

Programming Examples 2-1

Fibonacci Numbers

This section includes three programs that calculate Fibonacci
numbers:

m FIB] is a user-defined function that is defined recursively (that is,
its defining procedure contains its own name). FIBI is short.

m FIB2 is a user-defined function with a definite loop. It’s longer and
more complicated than FIBI, but faster.

m FIBT calls both FIBI and FIB2 and calculates the execution time
of each subprogram.

FIB1 and FIB2 demonstrate an approach to calculating the nth
Fibonacci number F,,, where:

Fo=0, Fl——‘l, Fon=Fo_1+Fo_2

FIB1 (Fibonacci Numbers, Recursive Version)

\ Level 1 — Level 1

’ n — Fn

Techniques used in FIB1

m IFTE (if-then-else function). The defining procedure for FIBI
contains the conditional function IFTE, which can take its
argument either from the stack or in algebraic syntax.

m Recursion. The defining procedure for FIBI is written in terms of
FIBI1, just as F,, is defined in terms of F,_; and F,_,.

2-2 Programming Examples

FIB1 program listing

Program: Comments:

Defines local variable n.
PIFTEOnS1, The defining procedure, an
algebraic expression. If n < 1,
Fno=n, else Fy=F,_+F,_,.

(7) FIB1 (ST0) Stores the program in FIBI.

Checksum: # 41467d (press ()
Bytes: 113.5

Example: Calculate T'g. Calculate Fip using algebraic syntax.

First calculate Fg.

VAR 1: g
6 [FIEL [MJM [PPeE[IOPRE] []

Next, calculate Fig using algebraic syntax.

O F18t @O 10 EAD 2: R
@mmm--

FIB2 (Fibonacci Numbers, Loop Version)

} Level 1 ~ Level 1

‘ n - Fn

Techniques used in FIB2

w IF ... THEN ... ELSE ... END. FIB2 uses the program-structure
form of the conditional. (FIBI uses IFTE.)

Programming Examples 2-3

m START ... NEXT (definite loop). To calculate Fy,, FIB2 starts

with Fy and F; and repeats a loop to calculate successive values of

F;.
FIB2 program listing

Program:

() FIB2 (570)

Checksum: # 51820d (press () F
Bytes: 89
Example: Calculate Fg and Fyo.

Calculate Fg.

VAR
6

2-4 Programming Examples

Comments:
Creates a local variable structure.

Ifn<l,

then F,, = n;

otherwise ...

Puts Fy and F{ on the stack.
From 2 to n does the following
loop:

Copies the latest F (initially Fy).
Gets the previous F (initially Fy).
Calculates the next F (initially
Fs).

Repeats the loop.

Drops I ;.

Ends the ELSE clause.

Ends the defining procedure.

Stores the program in FIB2.

@) B

1: g
[Fli2 [FIEL [NJN [PP [I0PAE] |

Calculate Fqg.

" t :
li.lﬂlm‘.'lﬂmm-

FIBT (Comparing Program-Execution Time)

FIBI calculates intermediate values F; more than once, while FIB2
calculates each intermediate F; only once. Consequently, FIB2 is
faster. The difference in speed increases with the size of n because the
time required for FIBI grows exponentially with n, while the time
required for FIB2 grows only linearly with n.

FIBT executes the TICKS command to record the execution time of
FIBI and FIB2 for a given value of n.

Level 1 — Level 3 Level 2 Level 1

n — Fn FIB1 TIME: z FIB2 TIME: z

Techniques used in FIBT
m Structured programming. FIBT calls both FIB! and FIB2.

m Programmatic use of calculator clock. FIBT executes the TICKS
command to record the start and finish of each subprogram.

m Labeling output. F/BT tags each execution time with a descriptive
message.

Required Programs

m FIBI (page 2-2) calculates F',, using recursion.

m FIB2 (page 2-3) calculates F, using looping.

Programming Examples 2-5

FIBT program listing

Program: Comments:

Copies n, then executes FIBI,
recording the start and stop time.

Calculates the elapsed time,
converts it to a real number, and
converts that number to seconds.
Leaves the answer returned by
FIBI in level 2.

Tags the execution time.
Executes FIB2, recording the
start and stop time.

Drops the answer returned by
FIB2 (FIBI returned the same
answer). Calculates the elapsed
time for FIB2 and converts to
seconds.

Tags the execution time.

C) FIBT Stores the program in FIBT.

Checksum: # 22248d
Bytes: 135

Example: Calculate F13 and compare the execution time for the two
methods.

Select the VAR menu and do the calculation.

VAR

13 i HOME }

3 233
2: FIBL TINE: 22.38%.

1= FIBZ TIME:
. HE822 72390625
[FIET | FIEZ [FIEL | WJN] PRaR [I0PAE]

Fi5 is 233. FIB2 takes fewer seconds to execute than FIBI (far fewer
if n is large). (The times required for the calculations depend on the

2-6 Programming Examples

contents of memory and other factors, so you may not get the exact
times shown above.)

Displaying a Binary Integer
This section contains three programs:

m PAD is a utility program that converts an object to a string for
right-justified display.

m PRESERVE is a utility program for use in programs that change
the calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN
bases. It calls PAD to show the displayed numbers right-justified,
and it calls PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to a string, and if the string contains fewer
than 22 characters, adds spaces to the beginning of the string till the
string reaches 22 characters.

When a short string is displayed with DISP, it appears left-justified:
its first character appears at the left end of the display. By adding
spaces to the beginning of a short string, PAD moves the string to
the right. When the string (including leading spaces) reaches 22
characters, it appears right-justified: its last character appears at the
right end of the display. PAD has no effect on longer strings.

r Level 1 — Level 1

1 object — " object"

Techniques used in PAD

s WHILE ... REPEAT ... END (indefinite loop). The WHILE
clause contains a test that executes the REPEAT clause and tests
again (if true) or skips the REPEAT clause and exits (if false).

Programming Examples 2-7

m String operations. PAD demonstrates how to convert an object
to string form, count the number of characters, and combine two
strings.

PAD program listing

Program: Comments:

Makes sure the object is in string
form. (Strings are unaffected by
this command.)

Repeats if the string contains
fewer than 22 characters.

Loop-clause adds a leading space.

Ends loop.
CJPAD Stores the program in PAD.

Checksum: # 38912d
Bytes: 61.5

PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

PRESERVE stores the current calculator (flag) status, executes a
program from the stack, and restores the previous status.

Level 1 — Level 1
& program > — result of program
'program name' — result of program

2-8 Programming Examples

Techniques used in PRESERVE

m Preserving calculator flag status. PRESERVE uses RCLF (recall
flags) to record the current status of the calculator in a binary
integer, and STOF (store flags) to restore the status from that
binary integer.

m Local-variable structure. PRESERVE creates a local variable
structure to briefly remove the binary integer from the stack. Its
defining procedure simply evaluates the program argument, then
puts the binary integer back on the stack and executes STOF.

n Error trapping. PRESERVE uses IFERR to trap faulty program
execution on the stack and to restore flags. DOERR shows the error
if one occurs.

PRESERVE program listing

Program: Comments:

Recalls the list of two 64-bit
binary integers representing the
status of the 64 system flags and
64 user flags.

¥ Stores the list in local variable f.

Begins the defining procedure.

Starts the error trap.

Executes the program placed on
the stack as the level 1 argument.
If the program caused an error,
STOF ERREH DOFRRE restores flags, shows the error,
and aborts execution.

Ends the error routine.

Puts the list back on the stack,
then restores the status of all
flags.

Ends the defining procedure.

() PRESERVE Stores the program in
PRESERVE.

Programming Examples 2-9

Checksum: # 7284d
Bytes: 71

PRESERVE is demonstrated in the program BDISP.

BDISP (Binary Display)

BDISP displays a real or binary number in HEX, DEC, OCT, and
BIN bases.

Level 1 — Level 1
#n — #n
n — n

Techniques used in BDISP

s IFERR ... THEN ... END (error trap). To accommodate
real-number arguments, BDISP includes the command R—B
(real-to-binary). However, this command causes an error if the
argument is already a binary integer. To maintain execution if
an error occurs, the R—B command is placed inside an IFERR
clause. No action is required when an error occurs (since a binary
number is an acceptable argument), so the THEN clause contains no
commands.

s Enabling LASTARG. In case an error occurs, the LASTARG
recovery feature must be enabled to return the argument (the
binary number) to the stack. BDISP clears flag —55 to enable this.

s FOR ... NEXT loop (definite loop with counter). BDISP executes
a loop from 1 to 4, each time displaying n (the number) in a
different base on a different line. The loop counter (named j in this
program) is a local variable created by the FOR ... NEXT program
structure (rather than by a + command), and automatically
incremented by NEXT.

m Unnamed programs as arguments. A program defined only by its
and # delimiters (not stored in a variable) is not automatically
evaluated, but is placed on the stack and can be used as an

2-10 Programming Examples

argument for a subroutine. BDISP demonstrates two uses for

unnamed program arguments:

o BDISP contains a main program argument and a call to

PRESERVE. This program argument goes on the stack and is

executed by PRESERVE.

o BDISP also contains four program arguments that “customize”
the action of the loop. Each of these contains a command to
change the binary base, and each iteration of the loop evaluates

one of these arguments.

When BDISP creates a local variable for n, the defining procedure
is an unnamed program. However, since this program is a defining
procedure for a local variable structure, it is automatically executed.

Required Programs

m PAD (page 2-7) expands a string to 22 characters so that DISP

shows it right-justified.

m PRESERVE (page 2-8) stores the current status, executes the main
nested program, and restores the status.

BDISP program listing

Program:

Comments:

Begins the main nested program.
Makes a copy of n.

Clears flag —55 to enable
LASTARG.

Begins error trap.

Converts n to a binary integer.
If an error occurs, do nothing (no
commands in the THEN clause).
Creates a local variable n and
begins the defining program.
Clears the display.

Nested program for BIN.

Nested program for OCT.
Nested program for DEC.
Nested program for HEX.

Programming Examples 2-11

Program: Comments:
i 4 Sets the counter limits.

Starts the loop with counter j.
Executes one of the nested base
programs (initially for HEX).
Makes a string showing n in the
current base.

Pads the string to 22 characters.
Displays the string in the jth line.
Increments j and repeats the
loop.

Ends the defining program.

Freezes the status and stack
areas.
Ends the main nested program.

Stores the current flag status,
executes the main nested
program, and restores the status.

(") BDISP (sT0) Stores the program in BDISP.

Checksum: # 18055d
Bytes: 191

Example: Switch to DEC base, display #100 in all bases, and check
that BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the
current base is DEC and enter # 100.

() (CLEAR) 1: # IBBd
(MTH) 3 [HE: | UEC o[0CT | BIN | hk [B3 |

@@ 100

2-12 Programming Examples

Execute BDISP.

BhIsp

[E01:P [FIE3 [PRESE] PAD | FIET | FIE2 |
Return to the normal stack display and check the current base.
CANCEL [HEW [DEC o] 0CT | EIN | Rk | ESF |
MTH) EHESE

Although the main nested program left the calculator in BIN base,
PRESERVE restored DEC base. To check that BDISP also works for
real numbers, try 144.

144 B I 5F

2200
l1o@1ea88b

[E0IZP] FIES [PRESE] PAD [FIET | FIE2 |

Press to return to the stack display.

Programming Examples 2-13

Median of Statistics Data

This section contains two programs:

m %TILE returns the value of a specified percentile of a list.

m MEDIAN uses %TILE to calculate the median of the current
statistics data.

(%TILE and MEDIAN are included in the TEACH function’s
EXAMPLES directory. See the entry for TEACH in chapter 3.)

%TILE (Percentile of a List)

% TILE sorts a list, then returns the value of a specified percentile of

the list. For example, typing « list * 5@ and pressing % 7T L E returns
the median (50th percentile) of the list.

Level 2 Level 1 — Level 1

{ list } n — n*" percentile of sorted list

Techniques used in %TILE

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a noninteger, FLOOR and CEIL return successive
integers that bracket the noninteger.

m SORT. The SORT command sorts the list elements into ascending
order.

2-14 Programming Examples

%TILE program listing

Program: Comments:

Brings the list to level 1 and sorts
it.
Copies the list, then finds its size.
o Calculates the position of the
specified percentile.
£ Stores the center position in local
variable p.
Begins the defining procedure.
Makes a copy of the list.
Gets the number at or below the
center position.
Moves the list to level 1.
Gets the number at or above the
center position.
Calculates the average of the two
numbers.
Ends the defining procedure.

(D) %TILE (sT0) Stores the program in %TILE.

Checksum: # 42718d
Bytes: 99

Example: Calculate the median of the list { 83152 }.
@@} 15 2 @) 1

=
(VAR) 50 * [CTILE [EDISP | FIE3 |PRESE| PAO | FIET

Programming Examples 2-15

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector containing the medians of the columns of
the statistics data. Note that for a sorted list with an odd number of
elements, the median is the value of the center element; for a list with
an even number of elements, the median is the average value of the
elements just above and below the center.

Level 1 . Level 1

— [X1 X5 oo Xm]

Techniques used in MEDIAN

m Arrays, lists, and stack elements. MEDIAN extracts a column of
data from Y DAT in vector form. To convert the vector to a list,
MEDIAN puts the vector elements on the stack and combines them
into a list. From this list the median is calculated using %ZTILE.

The median for the mth column is calculated first, and the median
for the first column is calculated last. As each median 1s calculated,
ROLLD is used to move it to the top of the stack.

After all medians are calculated and positioned on the stack, they’re
combined nto a vector.

m FOR ... NEXT (definite loop with counter). MEDIAN uses a loop
to calculate the median of each column. Because the medians are
calculated in reverse order (last column first), the counter is used to
reverse the order of the medians.

Required Program

m %TILE (page) sorts a list and returns the value of a specified
percentile.

2-16 Programming Examples

MEDIAN program listing

Program:

Comuments:

Puts a copy of the current
statistics matrix X' DAT on the
stack.

Puts the list { n m } on the
stack, where n is the number of
rows in Y DAT and m is the
number of columns.

Puts n and m on the stack, and
drops the list size.

Creates local variables for s, n,
and m.

Begins the defining procedure.
Recalls and transposes Y DAT.
Now n is the number of columns
in Y DAT and m is the number of
rows. (To key in the % character,
press (#)(x), then delete the
parentheses.)

Specifies the first and last rows.
For each row, does the following:
Extracts the last row in X DAT.
Initially this is the mth row,
which corresponds to the mth
column in the original Y DAT.
(To key in the ¥~ command,
press (&)(STAT) LATH

Puts the row elements on the
stack. Drops the index list { n }.
Makes an n-element list.

Sorts the list and calculates its
median.

Moves the median to the proper
stack level.

Increments j and repeats the
loop.

Programming Examples 2-17

() MEDIAN (s70)

Checksum: # 57504d
Bytes: 140

Comments:

Combines all the medians into an
m-element vector.

Restores Y DAT to its previous
value.

Ends the defining procedure.

Stores the program in MEDIAN .

Example: Calculate the median of the following data.

18
4
3

11

31

20

12
7
2
1

48

17

There are two columns of data, so MEDIAN will return a two-element

vector.

Enter the matrix.

(@ WARX)

18 (ENTER) 12 (ENTER) (¥)
4 (ENTER) 7 (ENTER)

3 (ENTER) 2 (ENTER)

11 (ENTER) 1 (ENTER)

31 (ENTER) 48 (ENTER)

20 (ENTER) 17 (ENTER)

Store the matrix in Y DAT, and calculate the median.

BETAD

2-18 Programming Examples

1: [14.5 9.5 1]
[Z04T [HEDIA]:TILE [E0ISP] FIE3 [PREZE]

Expanding and Collecting Completely

This section contains two programs:

m MULTTI repeats a program until the program has no effect on its
argument.

m EXCO calls MULTI to completely expand and collect an algebraic.

MULTI (Multiple Execution)

Given an object and a program that acts on the object, MULTT
applies the program to the object repeatedly until the program no
longer changes the object.

Level 2 Level 1 — Level 1

object & program > — object ¢ 1t

Techniques used in MULTI

m DO ... UNTIL ... END (indefinite loop). The DO clause contains
the steps to be repeated. The UNTIL clause contains the test that
repeats both clauses again (if false) or exits (if true).

m Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

m Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable.

It’s convenient to store an object in a local variable when you don’t
know beforehand how many copies you’ll need. An object stored in
a local variable is simply put on the stack when the local variable is
evaluated. MULTI uses the local variable name to put the program
argument on the stack and then executes EVAL to execute the
program.

Programming Examples 2-19

MULTI program listing

Program: Comments:

o Creates a local variable p that
contains the program from level 1.

Begins the defining procedure.

[l Begins the DO loop clause.

DR Makes a copy of the object, now
in level 1.
g EWFL Applies the program to the

object, returning its new version.
Makes a copy of the new object.
Moves the old version to level 1.
Begins the DO test clause.

Tests whether the old version and
the new version are the same.
Ends the DO structure.

Ends the defining procedure.

C)MULTI Stores the program in MULTI.

Checksum: # 34314d
Bytes: 56

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

EXCO repeatedly executes EXPAN on an algebraic until the algebraic
doesn’t change, then repeatedly executes COLCT until the algebraic
doesn’t change. In some cases the result will be a number.

Expressions with many products of sums or with powers can take
many iterations of EXPAN to expand completely, resulting in a long
execution time for EXCO.

2-20 Programming Examples

Level 1 — Level 1

'algebraic' — 'algebraic'

'algebraic' — z

Techniques used in EXCO

m Subroutines. EXCO calls the program MULTI twice. It is more
efficient to create program MULTI and simply call its name twice
than write each step in MULTI two times.

Required Programs

m MULTI (page 2-19) repeatedly executes the programs that EXCO
provides as arguments.

EXCO program listing

Program: Comments:

£ ERFAM = Puts a program on the stack as
the level 1 argument for MULTI.
The program executes the
EXPAN command.

MULTI Executes EXPAN until the
algebraic object doesn’t change.

£ DOLCT s Puts another program on the
stack for MULTI. The program
executes the COLCT command.

FULTI Executes COLCT until the
algebraic object doesn’t change.

() EXCO Stores the program in EXCO.

Checksum: # 48008d
Bytes: 65.5

Programming Examples 2-21

Example: Expand and collect completely the expression:
3x(4y + 2) + (8= — 5z)?

Enter the expression.

D3 XX® 1: ;3*&;(4*%2%(8*&'—5
41X)Y 7 :

%% 8 % X 5 gzg) [VECTR[MATR] LIET | HYP | REAL | BRSE]

)02

Select the VAR menu and start the program.

VAR 13 'EAERTEH] 2EREY -7 5N

#Z+PO¥EE !
[Exc0 [HULTI[E0AT [MEDIAL: TILE[EDIZF]

Minimum and Maximum Array Elements

This section contains two programs that find the minimum or
maximum element of an array:

m MNX uses a DO ... UNTIL ... END (indefinite) loop.
m MNX2 uses a FOR ... NEXT (definite) loop.

MNX (Minimum or Maximum Element—Version 1)

MNX finds the minimum or maximum element of an array on the
stack.

‘ Level 1 — Level 2 Level 1

L Carrayll — [aray]l Zuyi OF Zmax

2-22 Programming Examples

Techniques used in MNX

m DO ... UNTIL ... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag
test that determines whether to repeat the sort instructions.

m User and system flags for logic control:

o User flag 10 defines the sort: When flag 10 is set, MNX finds the
maximum element; when flag 10 is clear, it finds the minimum
element. You determine the state of flag 10 at the beginning of
the program.

o System flag —64, the Index Wrap Indicator flag, determines when
to end the sort. While flag —64 is clear, the sort loop continues.
When the index invoked by GETI wraps back to the first array
element, flag —64 is automatically set, and the sort loop ends.

m Nested conditional. An IF ... THEN ... END conditional is nested
in the DO ... UNTIL ... END conditional, and determines the
following:

o0 Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

o The sense of the comparison of elements (either < or >) based on
the status of flag 10.

s Custom menu. MNX builds a custom menu that lets you choose
whether to sort for the minimum or maximum element. Key 1,

labeled = [M#FH | sets flag 10. Key 2, labeled #1H | clears flag 10.

m Logical function. MNX executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the
status of flag 10.

Programming Examples 2-23

MNX program listing

Program:

U
LA

LlPZ

() MNX GT9)

2-24 Programming Examples

Comments:

Defines the option menu. [#ix
sets flag 10 and continues
execution. P IH clears flag 10
and continues execution.

Displays the temporary menu and
a prompt message.

Gets the first element of the array.
Begins the DO loop.

Puts the index and the array in
levels 1 and 2, then gets the new
array element.

Moves the current minimum or
maximum array element from
level 4 to level 1, then copies
both.

Tests the combined state of the
relative value of the two elements
and the status of flag 10.

If the new element is either less
than the current maximum or
greater than the current
minimum, swaps the new element
into level 1.

Drops the other element off the
stack.

Begins the DO test-clause.

Tests if flag —64 is set—if the
index reached the end of the
array.

Ends the DO loop.

Swaps the index to level 1 and
drops it. Restores the last menu.

Stores the program in MNX.

Checksum: # 57179d
Bytes: 210.5

Example: Find the maximum element of the following matrix:

12 56
45 1
9 14

Enter the matrix.

@) WATRX)
12 (ENTER) 56 (ENTER) (V)

45 (ENTER) 1 (ENTER)
9 (ENTER) 14 (ENTER)

Select the VAR menu and execute MNX .

Mk Sort for MAX or MIN?
ot
1= [[12 96_1]
[451]
[914 1]
| MTCEER UGN N N I

Find the maximum element.
MAH "rlf ([125 1 [45 %E-
IMEH'EI

MNX2 (Minimum or Maximum Element—Version 2)

Given an array on the stack, MNX2 finds the minimum or maximum
element in the array. MNX2 uses a different approach than MNX: it
executes OBJ— to break the array into individual elements on the
stack for testing, rather than executing GETT to index through the
array.

Level 1 — Level 2 Level 1

[[array 1] — [[array]] Zmax OF Zmip

Programming Examples 2-25

Techniques used in MNX2

FOR ... NEXT (definite loop). The initial counter value is 1. The
final counter value is nm — 1, where nm is the number of elements
in the array. The loop-clause contains the sort instructions.

User flag for logic control. User flag 10 defines the sort: When flag
10 is set, MNX2 finds the maximum element; when flag 10 is clear,
it finds the minimum element. You determine the status of flag 10

at the beginning of the program.

Nested conditional. An IF ... THEN ... END conditional is nested
in the FOR ... NEXT loop, and determines the following:

o Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

o The sense of the comparison of elements (either < or >) based on
the status of flag 10.

Logical function. MNX2 executes XOR (ezclusive OR) to test the
combined state of the relative value of the two elements and the
status of flag 10.

Custom menu. MNX2 builds a custom menu that lets you choose

whether to sort for the minimum or maximum element. Key 1,
labeled. , sets flag 10. Key 2, labeled , clears flag 10.

2-26 Programming Examples

MNX2 program listing

Program: Comments:

Defines the temporary option
menu. [iFE sets flag 10 and
continues execution. [IH
clears flag 10 and continues
execution.

Displays the temporary menu
and a prompting message.

Copies the array. Returns the

individual array elements to

levels 2 through nm+1, and

returns the list containing n

and m to level 1.

Sets the initial counter value.

Converts the list to individual

elements on the stack.

GEOF % 1 - Drops the list size, then
calculates the final counter
value (nm — 1).

FOE Starts the FOR ... NEXT

loop.

Saves the array elements to be

tested (initially the last two

elements). Uses the last array

element as the current

minimum or maximum.

IF Tests the combined state of
the relative value of the two
elements and the status of flag
10.

If the new element is either
less than the current
maximum or greater than the
current minimum, swaps the
new element into level 1.

Programming Examples 2-27

Program: Comments:
DREOF Drops the other element off

the stack.
HEXT Ends the FOR ... NEXT
loop.
& pMEHL Restores the last menu.
() MNX2 (s70) Stores the program in MNX2.

Checksum: # 12277d
Bytes: 200.5

Example: Use MNX2 to find the minimum element of the matrix

from the previous example:
12 56
45 1
9 14

Enter the matrix (or retrieve it from the previous example).

(@ MATRX)
12 (ENTER) 56 (ENTER) (V)

45 (ENTER) 1 (ENTER)
9 (ENTER) 14 (ENTER)

Select the VAR menu and execute MNX2.

1= [[12 56_]
[451 1]
[914 1]
T T N Y N B

Find the minimum element.

MIH % (125 1 [45 1.i.
Fihii2] MG EEO THULTI 0T THEDIR

2-28 Programming Examples

Applying a Program to an Array

APLY makes use of list processing to transform each element of an
array according to a desired procedure. The input array must be
numeric, but the output “array” may be symbolic. Since arrays
cannot actually contain symbolic objects, a convention for symbolic
“pseudo-arrays” is used. Each row of elements is grouped into a single
list and the set of rows is grouped into a list. For example, a 2 x 2
pseudo-array looks like this:

element;; element;o
elements; elementas

The procedure applied to each element must be a program that takes
exactly one argument (i.e. the element) and returns exactly one result
(i.e. the transformed element).

Level 2 Level 1 — Level 1

[array] <« program > — [[array 1] or {{ array }}

Techniques used in APLY

m Manipulating Meta-Objects. Meta-objects are composite objects like
arrays and lists that have been disassembled on the stack. APLY
illustrates several approaches to manipulating the elements and
dimensions of such objects.

m Application of List Processing. APLY makes use of DOSUBS
(although DOLIST might also have been used) to perform the

actual transformation of array elements.

m Using an IFERR ... THEN ... ELSE ... END Structure. The
entire symbolic pseudo-array case is handled within a error
structure—triggered when the —ARRY command generates an error
when symbolic elements are present.

m Using Flags. User flag 1 is used to track the case when the input
array is a vector.

Programming Examples 2-29

APLY program listing
Program:

EHD DUFR OBJs DROP

2-30 Programming Examples

Comments:

Store the array and program in
local variables.

Begin the main local variable
structure.

Make sure the flag 1 is clear to
begin the procedure.

Retrieve the dimensions of the
array.

Determine if the array is a
vector.

If array is a vector,set flag 1 and
add a second dimension by
treating the vector as an n x 1
matrix.

Disassemble the original vector,
leaving the element count, n, in
level 1.

Roll the elements up the stack
and bring the “matrix”
dimensions of the vector to level
1.

If array is a matrix, clean up
the stack and decompose the
matrix into its elements, leaving
its dimension list on level 1.
Duplicate the dimension list
and compute the total number
of elements.

Roll up the element count and
combine all elements into a list.
Note that the elements in the
list are in row-major order.
Recalls the program and uses it
as an argument for DOSUBS
(DOLIST works in this case as
well). Result is a list of
transformed elements.

Comments:

Disassembles the result list and
brings the array dimensions to
level 1.

Begins the error-trapping
structure. Its purpose is to find
and handle the cases when the
result list contains symbolic
elements.

Was original array a vector?

If the original array was a
vector, then drop the second
dimension (1) from the
dimension list.

Convert the elements into a
array with the given dimensions.
If there are symbolic elements
present, an error will be
generated and the error-clause
which follows will be executed.
Regin the error clause.

Put the array dimensions on
levels 2 and 1. If the array is a
vector, level 1 contains a 1.

Is original array a matrix? Clear
flag 1 after performing the test.
Drop the number of matrix
elements.

Store the array dimensions in
local variables.

Begin local variable structure
and initiate FOR..NEXT loop
for each row.

Collect a group of elements into
a row (a list).

Computes the number of
elements to roll so that the next
row can be collected.

Repeat loop for the next row.
Gather rows into a list, forming
a list of lists (symbolic
pseudo-array).

Programming Examples 2-31

Program: Comments:
Close the local variable
1 CF structure and end the
IFERR.. THEN..END structure.
Clear flag 1 before exiting the
program.

() APLY Stores the program in APLY .

Checksum: # 49768d
Bytes: 319

Example: Apply the function, f(z) = Az — 7 to each element z of
the vector [3-24-81].

QO 3ED2EA4EE)8EA L |1: { L '27sh-7! } { -

(B#M)=7' 3 { TEdxf-

Q)3 0)A® O ETE) g3 h STl
2L A= Y

: [NEn | PPA: IEDIAIFIEDN | WPLY | 25PN

Converting Between Number Bases

nBASE converts a positive decimal number (z) into a tagged string
representation of the equivalent value in a different number base (4).
Both z and & must be real numbers. nBASE automatically rounds
both arguments to the nearest integer.

Level 2 Level 1 — Level 1

X b — X baseb: " string"

2-32 Programming Examples

Techniques used in nBASE

m String Concatenation and Character Manipulation. nBASE makes
use of several string and character manipulation techniques to build

up the result string.

» Tagged Output. nBASE labels (“tags”) the output string with its
original arguments so that the output is a complete record of the

command.

» Indefinite Loops. nBASE accomplishes most of its work
using indefinite loops—both DO..UNTIL..END and

WHILE.. REPEAT..END loops.

nBASE program listing

Program:

1 CF @ REMD SMAF 8 EHD

+ ko
r LG b LOG S
16 EMD
iF @
S U

Comments:

Clear flag 1 and round both
arguments to integers.

Store the base and number in
local variables.

Begin the outer local variable
structure.

Computes the ratio of the
common logarithms of number
and base.

Rounds result to remove
imprecision in last decimal
place.

Find the integer part of log
ratio, recall the original number,
and initialize the counter
variable k for use in the
DO..UNTIL loop.

Store the values in local
variables.

Programming Examples 2-33

Program:

2-34 Programming Examples

Comments:

Begin inner local variable
structure, enter an empty string
and begin the
DO..UNTIL..END loop.
Compute the decimal value of
the (¢ — k)th position in the
string.

Makes a copy of the arguments
and computes the decimal value
still remaining that must be
accounted for by other
positions.

Is the remainder zero and

m > b7

If the test is true, then set flag
1.

Store the remainder in m.
Compute the number of times
the current position-value goes
into the remaining decimal
value. This is the “digit” that
belongs in the current position.
Is the “digit” > 107

Then convert the digit into a
alphabetic digit (such as A, B,
C,...).

Append the digit to the current
result string and increment the
counter variable k.

Program:
UHTIL 'm' EVAL & ==

EHD
IF 1 FS?C
THEH & +

EVAL

WHILE i 'k
- #

o
Lot

FEFEAT & +
1 k' STO+

EHD
ERD

n SHAP + +TAG

(ENTER) (D nBASE

Checksum: # 36427d
Bytes: 416.5

Comments:

Repeat the DO..UNTIL loop
until m = 0 (i.e. all decimal
value has been accounted for).
Is flag 1 set? Clear the flag after
the test.

Then add a placeholder zero to
the result string.

Begin WHILE..REPEAT loop
to determine if additional
placeholder zeros are needed.
Loop repeats as long as 7 # k.
Add an additional placeholding
zero and increment k before
repeating the test-clause.

End the
WHILE..REPEAT..END loop,
the IF.. THEN..END structure,
and the inner local variable
structure.

End the outermost

IF. THEN..ELSE..END
structure and create the label
string and tag the result string
using the original arguments.

Stores the program in nBASE.

Example: Convert 10001¢ to base 23.

1000 23 HERZE

1: 1808 base23: "1kB"
[NEi2 | PPRF [HEDIA[FIEDN] HPLY [+ PR]

Programming Examples 2-35

Verifying Program Arguments

The two utility programs in this section verify that the argument to a
program is the correct object type.

m NAMES verifies that a list argument contains exactly two names.

m VFY verifies that the argument is either a name or a list containing
exactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object
content.

NAMES (Check List for Exactly Two Names)

If the argument for a program is a list (as determined by VFY'),
NAMES verifies that the list contains exactly two names. If the list
does not contain exactly two names, an error message appears in the
status area and program execution is aborted.

Level 1 — Level 1
{ valid list } —
{ invalid list } — (error message in status area)

Techniques used in NAMES

m Nested conditionals. The outer conditional verifies that there are
two objects in the list. If so, the inner conditional verifies that both
objects are names.

m Logical functions. NAMES uses the AND command in the inner
conditional to determine if both objects are names, and the NOT
command to display the error message if they are not both names.

2-36 Programming Examples

NAMES program listing

Program: Comments:
iF Starts the outer conditional
structure.
R Returns the n objects in the list

to levels 2 through (n + 1), and
returns the list size n to level 1.
DUF 2 SANE Copies the list size and tests if
it’s 2.
If the size is 2, moves the
objects to levels 1 and 2, and
H starts the inner conditional
structure.
TYFE & SAME Tests if the first object is a
name: returns 1 if so, otherwise
0.
SWAF TYPE & SAME Moves the second object to level
1, then tests if 1t is a name
(returns 1 or 0).
A Combines test results: Returns
1 if both tests were true,
otherwise returns 0.

HOT Reverses the final test result.
THEHM If the objects are not both
Hoist meeds tuo namsst names, displays an error

message and aborts execution.

Ends the inner conditional
structure.
If the list size is not 2, drops the
list size, displays an error

za ! message, and aborts execution.

Ends the outer conditional.

() NAMES (sT0) Stores the program in NAMES.

Programming Examples 2-37

Checksum: # 40666d
Bytes: 141.5

NAMES is demonstrated in the program VFY .

VFY (Verify Program Argument)

VFY verifies that an argument on the stack is either a name or a list
that contains exactly two names.

Level 1 — Level 1
'name' — 'name'
{ valid list } — { valid list }

{ invalid list } — { invalid list } (and error message in status area)

invalid object — invalid object (and error message in status area)

Techniques used in VFY

Utility programs. VFY by itself has little use. However, it can be
used with minor modifications by other programs to verify that
specific object types are valid arguments.

CASE ... END (case structure). VFY uses a case structure to
determine if the argument is a list or a name.

Structured programming. If the argument is a list, VFY calls
NAMES to verify that the list contains exactly two names.

Local variable structure. VFY stores its argument in a local
variable so that it can be passed to NAMES if necessary.

Logical function. VFY uses NOT to display an error message.

Required Programs

NAMES (page 2-36) verifies that a list argument contains exactly
two names.

2-38 Programming Examples

VFY program listing

Program: Comments:
i Copies the original argument
to leave on the stack.
DTAG Removes any tags from the
argument for subsequent
testing.

Stores the argument in local
variable argm.

Begins the defining procedure.
Begins the case structure.

Tests if the argument is a list.
If so, puts the argument back
on the stack and calls NAMES
to verify that the list is valid,
then leaves the CASE
structure.

Tests if the argument 1s not a
name. If so, displays an error
message and aborts execution.

Ends the CASE structure.
Ends the defining procedure.

() VFY (s70) Enters the program, then
stores it in VF'Y .

Checksum: # 36796d
Bytes: 139.5

Example: Execute VFY to test the validity of the name argument
BEN . (The argument is valid and is simply returned to the stack.)

() BEN 1: 'BEN'

Programming Examples 2-39

Example: Execute VFY to test the validity of the list argument

{ BEN JEFF SARAH }. Use the name from the previous example,
then enter the names JEFF and SARAH and convert the three names
to a list.

() JEFF (ENTER 1 { BEN JEFF SHRRH 2
() SARAH (ENTER [UFi [NKME [FN:ia] FWe | Etcd MULT]
3(PRG) LIET =+LI&7

Execute VF'Y. Since the list contains too many names, the error
message is displayed and execution is aborted.

VAR) HFY Illegal list size

4:
3

Z
1: { BEM JEFF SARAH }
[WF7 TNAHE [Fii2 [Nz | ERCD [HULT]

Converting Procedures from Algebraic to RPN

This section contains a program, — RPN, that converts an algebraic
expression into a series (list) of objects in equivalent RPN order. Note
that —>RPN is a program prov1ded with the TEACH command You

Level 1 - Level 1

'symb' — { objects }

Techniques used in —RPN

m Recursion. The —RPN program calls itself as a subroutine. This
powerful technique works just like calling another subroutine as long
as the stack contains the proper arguments before the program calls
itself. In this case the level 1 argument is tested first to be sure that
it is an algebraic expression before —RPN is called again.

2-40 Programming Examples

» Object Type-Checking. —RPN uses conditional branching that
depends on the object type of the level 1 object.

s Nested Program Structures. —RPN nests IF ... THEN ... END
structures inside FOR ... NEXT loops inside a IF ... THEN ...

ELSE ... END structure.

a List Concatenation. The result list of objects in RPN order is
built by using the ability of the + command to sequentially
append additional elements to a list. This is a handy technique for
gathering results from a looping procedure.

—RPN program listing
Program:

OE =
IF WER

THEH + m §

inm
FOR i

IF DR TYFE 9 SAME
THEH =+EFPH
EHD m ROLLD

F DUF TYFE & =

Comments:

Take the expression apart.

If the argument count is
nonzero, then store the count
and the function.

Begins local variable defining
procedure.

Begins FOR ... NEXT loop,
which converts any algebraic
arguments to lists.

Tests whether argument is an
algebraic.

If argument is an algebraic,
convert it to a list first.

Roll down the stack to prepare
for the next argument.
Repeat the loop for the next
argument.

Tests to see if level 1 object is a
list.

If not a list, then convert it to
one.

Ends the IF ... THEN ...
END structure.

Programming Examples 2-41

Program: Comments:

Tests to see if there is more
than one argument.

Combine all of the arguments
into a list.

Append the function to the end
of the list.

End the local variable defining
procedure.

For functions with no
arguments, converts to a simple
list.

End the IF ... THEN ...
ELSE ... END structure.

Checksum: # 28598d
Bytes: 189.5

Example: Convert the followi
objects in RPN syntax: 'F

DAREDEDDEDCO |1 {AELD T + 003

) 3 (ENTER) # H 3
D E)EE] B+ 07 TR [N | PPik [MEUIAIFIEDN] 4PLY [+RPN]

2-42 Programming Examples

Bessel Functions

This section contains a program, BER, that calculates the real part
Ber, (x) of the Bessel function J,(ze>*/*). When n =0,

(x/2)* (x/2)°

Ber(z)=1-—

SIE 412
Level 1 _ Level 1 ‘
z — Ber(z) I

Techniques used in BER

m Local variable structure. At its outer level, BER consists solely of a
local variable structure and so has two properties of a user-defined
function: it can take numeric or symbolic arguments from the stack,
or it can take arguments in algebraic syntax. However, because
BER uses a DO ... UNTIL ... END loop, its defining procedure
is a program. (Loop structures are not allowed in algebraic
expressions.) Therefore, unlike user-defined functions, BER is not
differentiable.

m DO ... UNTIL ... END loop (indefinite loop with counter). BER
calculates successive terms in the series using a counter variable.
When the new term does not differ from the previous term to within
the 12-digit precision of the calculator, the loop ends.

m Nested local variable structures. The outer structure is consistent
with the requirements of a user-defined function. The inner
structure allows storing and recalling of key parameters.

Programming Examples 2-43

BER program listing

Program: Comiments:

o Creates local variable z.

Begins outer defining procedure.
Enters z/2, the first counter
value, and the first term of the
series, then creates local
variables.

Begins inner defining procedure.
Begins the loop.

Recalls the old sum and
calculates the new sum.

Increments the counter.
Stores the new sum.

Ends the loop clause.

Tests the old and new sums.
Ends the loop.

Recalls the sum.

Ends inner defining procedure.
Ends outer defining procedure.

() BER Stores the program in BER.

Checksum: # 36388d
Bytes: 200.5

Example: Calculate Ber(3).

1: -. 2213802496
[EER [VY [WAHE [MN:2] MR TERCD |

1: . 721734182714
| EER [WFY [WAME[MMEE] WY | EHCO |

2-44 Programming Examples

Animation of Successive Taylor’s Polynomials

This section contains three programs that manipulate graphics objects
to display a sequence of Taylor’s polynomials for the sine function.

m SINTP draws a sine curve, and saves the plot in a variable.

m SETTS superimposes plots of successive Taylor’s polynomials on
the sine curve plot from SINTP, and saves the resulting graphics
objects in a list.

m TSA uses the ANIMATE command to display in succession each
graphics object from the list built in SETTS.

SINTP (Converting a Plot to a Graphics Object)

SINTP draws a sine curve, returns the plot to the stack as a graphics
object, and stores that graphics object in a variable. Make sure your
calculator is in Radians mode.

Techniques used in SINTP

m Programmatic use of PLOT commands. SINTP uses PLOT
commands to build and display a graphics object.

Programming Examples 2-45

SINTP program listing

Program: Comments:

PEIHOEY!

Stores the expression for sin z in
EQ.

Sets the plot type and z- and
y-axis display ranges.

Erases PICT, then plots the

expression.

Recalls the resultant graphics
object and stores it in SINT.

() SINTP Stores the program in SINTP.

Checksum: # 1971d
Bytes: 91.5

SINTP is demonstrated in the program TSA.

SETTS (Superimposing Taylor’s Polynomials)

SETTS superimposes successive Taylor’s polynomials on a sine curve
and stores each graphics object in a list.

Techniques used in SETTS

Structured programming. SETTS calls SINTP to build a sine curve
and convert it to a graphics object.

FOR ... STEP (definite loop). SETTS calculates successive
Taylor’s polynomials for the sine function in a definite loop. The
loop counter serves as the value of the order of each polynomial.

Programmatic use of PLOT commands. SETTS draws a plot of
each Taylor’s polynomial.

Manipulation of graphics objects. SETTS converts each Taylor’s
polynomial plot into a graphics object. Then it executes + to
combine each graphics object with the sine curve stored in SINT,
creating nine new graphics objects, each the superposition of a

2-46 Programming Examples

Taylor’s polynomial on a sine curve. SETTS then puts the nine new
graphics objects, and the sine curve graphics object itself, in a list.

SETTS program listing

Program: Comments:

Plots a sine curve and stores the
graphics object in SINT.

Sets the range for the FOR loop
using local variable n.

Plots the Taylor’s polynomial of
order n.

Returns the plot to the stack as a
graphics object and executes + to
superimpose the sine plot from
SINT.

z STEFR Increments the loop counter n by
2 and repeats the loop.

Puts the sine curve graphics
object on the stack, then builds a
list containing it and the nine
graphics objects created in the
loop. Stores the list in T'SL.

() SETTS (sT0) Stores the program in SETTS.

Checksum: # 28102d
Bytes: 138.5

SETTS is demonstrated in the program T'SA.

TSA (Animating Taylor’s Polynomials)
TSA displays in succession each graphics object created in SETTS.

Techniques used in TSA

m Passing a global variable. Because SETTS takes several minutes to
execute, TSA does not call SETTS. Instead, you must first execute
SETTS to create the global variable T'SL containing the list of

Programming Examples 2-47

graphics objects. T'SA simply executes that global variable to put
the list on the stack.

m FOR ... NEXT (definite loop). T'SA executes a definite loop to
display in succession each graphics object from the list.

TSA program listing

Program: Comments:

TEL OB Puts the list TSL on the stack
and converts it to 10 graphics
objects and the list count.

DB #E Y .58 o+ Set up the parameters for
ANIMATE.
A Displays the graphics in
succession.
11 DROPH Removes the graphics objects and

list count from the stack.

() TSA Stores the program in TSA.

Checksum: # 59350d
Bytes: 96.5

Example: Execute SETTS and TSA to build and display in
succession a series of Taylor’s polynomial approximations of the sine
function.

Set Radians mode and execute SETTS to build the list of graphics
objects. (SETTS takes several minutes to execute.) Then execute
TSA to display each plot in succession. The display shows TSA in

progress.

if necessary)

[TEL [TEn [SETTE[SINT | EC [EIWTP

2-48 Programming Examples

Press (CANCEL) to stop the animation. Press (¢9)(RAD) to restore

Degrees mode.

Programmatic Use of Statistics and Plotting

This section describes a program PIE you can use to draw pie charts.
PIE prompts for single variable data, stores that data in the statistics
matrix 5 DAT, then draws a labeled pie chart that shows each data
point as a percentage of the total.

Techniques used in PIE

Programmatic use of PLOT commands. PIE executes XRNG and
YRNG to define z- and y-axis display ranges in user units, and
executes ARC and LINE to draw the circle and individual slices.

Programmatic use of matrices and statistics commands.

Manipulating graphics objects. PIE recalls PICT to the stack and
executes GOR to merge the label for each slice with the plot.

FOR ... NEXT (definite loop). Each slice is calculated, drawn, and
labeled in a definite loop.

CASE ... END structure. To avoid overwriting the circle, each
label is offset from the midpoint of the arc of the slice. The offset
for each label depends on the position of the slice in the circle. The
CASE ... END structure assigns an offset to the label based on the
position of the slice.

Preserving calculator flag status. Before specifying Radians mode,
PIE saves the current flag status in a local variable, then restores
that status at the end of the program.

Nested local variable structures. At different parts of the process,
intermediate results are saved in local variables for convenient recall
as needed.

Temporary menu for data input.

Programming Examples 2-49

PIE program listing

Program:

2-50 Programming Examples

Comuents:

Recalls the current flag status
and stores it in variable flags.

Sets Radians mode.

Defines the input menu: Key 1
executes X+ to store each data
point in X DAT, key 3 clears

Y DAT, and key 6 continues
program execution after data
entry.

Displays the temporary menu.
Prompts for inputs.

represents the newline
character (()(<2)) after you
enter the program on the stack.
Erases the current PICT and
sets plot parameters.

Displays “drawing” message.

Draws the circle.

Displays the empty circle.
Recalls the statistics data
matrix, computes totals, and
calculates the proportions.
Converts the proportions to
percentages.

Stores the percentage matrix in
prents.

Multiplies the proportion
matrix by 27, and enters the
initial angle (0).

Program: Comments:
: Stores the angle matrix in prop
and angle in angle.

Sets up 1 to m as loop counter
range.

Begins loop-clause.

Puts the center of the circle on
the stack, then gets the nth
value from the proportion
matrix and adds it to angle.
Computes the endpoint and
draws the line for the nth slice.

Recalls PICT to the stack.

For labeling the slice, computes
the midpoint of the arc of the
slice.

Starts the CASE structure to
test angle and determine the
offset value for the label.
From 0 to 1.5 radians, doesn’t
offset the label.

From 1.5 to 4.4 radians, offsets
the label 15 user units left.

From 4.4 to 5 radians, offsets
the label 3 units right and 2
units up.

Ends the CASE structure.

Programming Examples 2-51

Comments:

Gets the nth value from the
percentage matrix, rounds it to
one decimal place, and converts
it to a string with “%”
appended.

Converts the string to a
graphics object.

Adds the label to the plot and
stores the new plot.

Displays the updated plot.
Ends the loop structure.
Displays the finished plot.

Restores the original flag status.
Restores the previous menu.

(You must first press
to clear the plot.)

() PIE Stores the program in PIE.

Checksum: # 1177d
Bytes: 765

Example: The inventory at Fruit of the Vroom, a drive-in fruit
stand, includes 983 oranges, 416 apples, and 85 bananas. Draw a pie
chart to show each fruit’s percentage of total inventory.

KEH values into SLICE,
DRAW restarts program.

L

Il—‘l'\:If.L‘l-l-\

CE] [CLEnR] | [DRAW]

2-52 Programming Examples

Clear the current statistics data. (The prompt is removed from the
display.) Key in the new data and draw the pie chart.

66.2%

5.7%

287

Press to return to the stack display.

Trace Mode

This section contains two programs, « ENTER and fENTER, which
together provide “trace mode” for the HP 48 using an external printer.
To turn on “trace mode,” set flag —63 and activate User mode. To
turn off “trace mode,” clear flag —63 or turn off User mode.

Techniques used in «ENTER and SENTER

m Vectored ENTER. Setting flag —63 and activating User mode turns
on vectored ENTER. When vectored ENTER is turned on and
variable « ENTER exists, the command-line text is put on the stack
as a string and « ENTER is evaluated. Then, if variable BENTER
exists, the command that triggered the command-line processing is
put on the stack as a string and FENTER is evaluated.

«ENTER program listing

Program: Comments:

oy o

Prints the command line text,
then converts the string to an
object and evaluates it.

() «ENTER Stores the program in « ENTER.
(Press (@) (/) A to type . You

must use this name.)

Programming Examples 2-53

Checksum: # 51789d
Bytes: 25.5
SENTER program listing

Program: Comments:

Prints the command that caused
the processing, then drops it and
prints the stack in compact form.

() FENTER Stores the program in SENTER.
(Press () () B to type £. You

must use this name.)

Checksum: # 37631d
Bytes: 28

Inverse-Function Solver

This section describes the program ROOTR, which finds the value of
z at which f(2) = y. You supply the variable name for the program
that calculates f(x), the value of y, and a guess for z (in case there
are multiple solutions).

Level 3 Level 2 Level 1 — Level 1

'function name' y Xguess - X

Techniques used in ROOTR

m Programmatic use of root-finder. ROOTR executes ROOT to find
the desired z-value.

m Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

2-54 Programming Examples

ROOTR program listing

Program: Comments:

Creates local variables.

Begins the defining procedure.
Creates variable XTEMP (to be
solved for).

Enters program that evaluates
f(x) —y.

Enters name of unknown variable.
Enters guess for XTEMP.

Solves program for XTEMP.
Ends the defining procedure.

Purges the temporary variable.
() ROOTR (sT0) Stores the program in ROOTR.

Checksum: # 13007d
Bytes: 163

Example: Assume you often work with the expression
3.7¢% + 4.52% + 3.92 + 5 and have created the program X—FX to
calculate the value:

You can use ROOTR to calculate the tnverse function.

Example: Find the value of # for which X —FX equals 599.5. Use a
guess in the vicinity of 1.

Start by keying in X —FX:

@) @E) x GO ()37

@03 @15 @ 0?2 -
3969 x (@) 5 (ETER) 2,
It & 2+ w '3, 7Pew3+4. 5=

s e+d, FEntg !
ROOTE[EENT [oENT{Z0AT | PIE [T5L |

Programming Examples 2-55

Store the program in X — FX | then enter the program name, the
y-value 599.5, and the guess 1, and execute ROOTR:

() X—FX

2

Hi+Fit [ROOTR[EENT [ENT]ZO0AT | PIE |

Animating a Graphical Image

Program WALK shows a small person walking across the display.
It animates this custom graphical image by incrementing the image
position in a loop structure.

Techniques used in WALK

s Custom graphical image. (Note that the programmer compiles
the full information content of the graphical image before writing
the program by building the image interactively in the Graphics
environment and then returning it to the command line.)

s FOR ... STEP (definite loop). WALK uses this loop to animate
the graphical image. The ending value for the loop is MAXR.
Since the counter value cannot exceed MAXR, the loop executes
indefinitely.

2-56 Programming Examples

WALK program listing

Program: Comments:

Puts the graphical image of the
walker in the command line.
(Note that the hexadecimal
portion of the graphics object is a
continuous integer EZEE
The linebreaks do not
represent spaces.)
F owall Creates local variable walk
containing the graphics object.

Clears PICT, then displays it.

Puts the first position on the
stack and turns on the first
image. This readies the stack and
PICT for the loop.

Starts the loop to generate
horizontal coordinates
indefinitely.

i 131 pOD RE=E Computes the horizontal
coordinate for the next image.
ol IET Specifies a fixed vertical

coordinate. Puts the two

coordinates in a list.

Displays the new image, leaving

its coordinates on the stack.

Turns off the old image, removing

its coordinates from the stack.

5 STERP Increments the horizontal
coordinate by 5.

P EOT walk

() WALK Stores the program in WALK.

Checksum: # 18146d
Bytes: 240.5

Programming Examples 2-57

Example: Send the small person out for a walk.

VAR

Press when you think the walker’s tired.

2-58 Programming Examples

Command Reference

This chapter contains an alphabetical listing of the programmable
commands and functions available on the HP 48. The listings include
the following information:

a brief definition of what the command or function does

a stack diagram showing the arguments it requires (if any)
the keys to press to gain access to it

any flags that may affect how it works

additional information about how it works and how to use it
an example of its use

related commands or functions

The next few pages explain how to read the stack diagrams in the
command reference, how commands are alphabetized, and the
meaning of the command classifications at the upper right corner of
each stack diagram.

How to Read Stack Diagrams

Each entry in the command reference includes a stack diagram. This
is a table showing the arguments that the command, function, or
analytic function takes from the stack and the results that it returns
to the stack. The “—” character in the table separates the arguments
from the results. The stack diagram for a command may contain more
than one “argument — result” line, reflecting all possible combinations
of arguments and results for that command.

Command Reference 3-1

Consider this example:

ACOS

Arc Cosine Analytic Function: Returns the value of the angle having
the given cosine.

{}
Level 1 — Level 1
z — arc cos z
'symb' — 'ACOS(symb)'

This diagram indicates that the analytic function ACOS (Arc Cosine)
takes a single argument from level 1 and returns one result (to level

1). ACOS can take either a real or complex number or an algebraic
object as its argument. In the first case, it returns the numeric
arccosine; in the second, it returns the symbolic arccosine expression of

the argument.

Some commands affect a calculator state—a mode, a reserved variable,
a flag, or a display— without taking any arguments from the stack or
returning any results to the stack. No stack diagrams are shown for
these commands.

Parallel Processing with Lists

Commands that can use the parallel list processing feature are
denoted by the “{}” symbol located above the stack diagram. This
feature is discussed in greater detail in Appendix G.

As a rule-of-thumb, a command can use parallel list processing if all
the following are true:

m The command checks for valid argument types. Commands that
apply to all object types, such as DUP, SWAP, ROT, and so forth,
do not use parallel list processing.

m The command takes exactly one, two, three, four, or five arguments,
none of which may itself be a list. Commands, such as —LIST,

3-2 Command Reference

that have an indefinite number of arguments do not use parallel list
processing.

m The command isn’t a programming branch command (IF, FOR,
CASE, NEXT, and so forth).

The HP 48 also has a few commands (PURGE and DELKEYS
are examples) that have list processing capability built into their
definitions, and so do not also use the parallel list processing feature.

How Commands Are Alphabetized

Commands appear in alphabetical order. Command names that
contain special (non-alphabetic) characters are organized as follows:

m For commands that contain both special and alphabetic characters:
o A special character at the start of a command name is ignored.
Therefore, the command *H follows the command GXOR and

precedes the command HALT.

o A special character within or at the end of a command name is
considered to follow “Z” at the end of the alphabet. Therefore,
the command R—B follows the command RSD and precedes the
command R—C.

m Commands that contain only special characters appear at the end of
the dictionary.

Classification of Operations

The command dictionary contains HP 48 commands, functions, and
analytic functions. Commands are calculator operations that can

be executed from a program. Functions are commands that can be
included in algebraic objects. Analytic functions are functions for
which the HP 48 provides an inverse and a derivative. There are also
four non-programmmable operations (DBUG, NEXT, SST, and SST|)
that are included with the programmable commands as a convenience
because they are used interactively while programming.

The definitions of the abbreviations used for argument and result
objects are contained in the following table, “Terms Used in Stack
Diagrams.” Often, descriptive subscripts are added to convey more
information.

Command Reference 3-3

Terms Used in Stack Diagrams

Term Description
aryg Argument.
[array 1 Real or complex vector or matrix.
[C-array] Complex vector or matrix.
date Date in form MM.DDYYYY or DD.MMYYYY.
{ dim } List of one or two array dimensions (real numbers).
"global’ Global name.
grob Graphics object.
HMS A real-number time or angle in hours-minutes-seconds

{ list }

local

[[matriz 1]
norm
Mport:NAMEhackup
“Mport:Mibrary
#n

{#n #m}
"name '

0bg

PICT

< program >
[R-array]

string"

symb '’

T/F
0/1

time
[vector]
T ory

r_unit

(z,y)

format.

List of objects.

Local name.

Real or complex matrix.

Positive integer real number (rounded if noninteger).
Backup identifier.

Library identifier.

Binary integer.

Pixel coordinates. (Uses binary integers.)

Global or local name.

Any object.

Current graphics object.

Program.

Real vector or matrix.

Character string.

Expression, equation, or name treated as an algebraic.

Test result used as an argument: zero (false) or non-zero
(true)real number.

Test result returned by a command: zero (false) or one
(true).

Time in form HH.MMSSs.

Real or complex vector.

Real number.

Unit object, or a real number treated as a dimensionless
object.

Complex number in rectangular form, or user-unit
coordinate.

Real or complex number.

3-4 Command Reference

ABS

ABS

Absolute Value Function: Returns the absolute value of its

argument.
{}
Level 1 — Level 1
X — |X|

x.» — 2+ 2

x_unit — |x|—unit
[array] — | array ||

'symb' — 'ABS(symb)'

Keyboard Access:

MTH) HHA

MTH

Affected by Flags: Numerical Results (—3)
Remarks: ABS has a derivative (SIGN) but not an inverse.

In the case of an array, ABS returns the Frobenius (Euclidean) norm
of the array, defined as the square root of the sum of the squares of
the absolute values of all n elements. That is,

n

> sl

i=1

Related Commands: NEG, SIGN

Command Reference 3-5

ACK

Acknowledge Alarm Command: Acknowledges the oldest past-due
alarm.

Keyboard Access: (1)(TIME)

Affected by Flags: Repeat Alarms Not Rescheduled (—43),
Acknowledged Alarms Saved (—44)

Remarks: ACK clears the alert annunciator if there are both no
other past-due alarms and no other active alert sources (such as a low
battery condition).

ACK has no effect on control alarms. Control alarms that come due
are automatically acknowledged and saved in the system alarm list.

Related Commands: ACKALL

ACKALL

Acknowledge All Alarms Command: Acknowledges all past-due
alarms.
Keyboard Access: («)(TIME)

Affected by Flags: Repeat Alarms Not Rescheduled (—43),
Acknowledged Alarms Saved (—44)

Remarks: ACKALL clears the alert annunciator if there are no other
active alert sources (such as a low battery condition).

ACKALL has no effect on control alarms. Control alarms that come
due are automatically acknowledged and saved in the system alarm
list.

Related Commands: ACK

3-6 Command Reference

ACOS

ACOS

Arc Cosine Analytic Function: Returns the value of the angle having
the given cosine.

{}
Level 1 - Level 1
z — arc cos z
'symb' — 'ACOS(symb)'

Keyboard Access: (+)(ACOS)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument z in the domain —1 < z < 1, the
result ranges from 0 to 180 degrees (0 to 7 radians; 0 to 200 grads).

A real argument outside of this domain is converted to a complex
argument z = z + 01, and the result is complex.

The inverse of COS is a relation, not a function, since COS sends
more than one argument to the same result. The inverse relation for
COS is expressed by ISOL as the general solution

The function ACOS is the inverse of a part of COS, a part defined by
restricting the domain of COS such that 1) each argument is sent to
a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of COS are called the principal values of the
inverse relation. ACOS in its entirety is called the principal branch of
the inverse relation, and the points sent by ACOS to the boundary of

the restricted domain of COS form the branch cuts of ACOS.

The principal branch used by the HP 48 for ACOS was chosen because
it is analytic in the regions where the arguments of the real-valued
inverse function are defined. The branch cut for the complex-valued
arc cosine function occurs where the corresponding real-valued
function is undefined. The principal branch also preserves most of the
important symmetries.

Command Reference 3-7

ACOS

The graphs below show the domain and range of ACOS. The graph of
the domain shows where the branch cuts occur: the heavy solid line
marks one side of a cut, while the feathered lines mark the other side
of a cut. The graph of the range shows where each side of each cut is
mapped under the function.

These graphs show the inverse relation =1 %7 il for
the case s71=1 and n/=0. For other values of sI and nf, the vertical
band in the lower graph is translated to the right or to the left. Taken
together, the bands cover the whole complex plane, which is the
domain of COS.

View these graphs with domain and range reversed to see how the
domain of COS is restricted to make an inverse function possible.
Consider the vertical band in the lower graph as the restricted domain

&= izs yr. COS sends this domain onto the whole complex plane in
the range i = {uy v = CO%<{z, y» in the upper graph.

Related Commands: ASIN, ATAN, COS, ISOL

Domain: Z = (x.y)
o RN v

IIIIIIII-I1 . LA L
;0

e v

Range: W = (u,v) = ACOS(x.y)

$111111111111

ITITT77

Branch Cuts for ACOS(2)

3-8 Command Reference

ACOSH

ACOSH

Inverse Hyperbolic Cosine Analytic Function: Returns the inverse
hyperbolic cosine of the argument.

{1}
Level 1 - Level 1
z — acosh z
'symb' — 'ACOSH(symb)'

Keyboard Access:
Affected by Flags: Principal Solution (—1), Numerical Results (—3)

Remarks: For real arguments |z| < 1, ACOSH returns the complex
result obtained for the argument (z, 0).

The inverse of ACOSH is a relation, not a function, since COSH sends
more than one argument to the same result. The inverse relation for
COSH is expressed by ISOL as the general solution

The function ACOSH is the inverse of a part of COSH, a part defined
by restricting the domain of COSH such that 1) each argument is sent
to a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of COSH are called the principal values of
the inverse relation. ACOSH in its entirety is called the principal
branch of the inverse relation, and the points sent by ACOSH to the
boundary of the restricted domain of COSH form the branch cuts of

ACOSH.

The principal branch used by the HP 48 for ACOSH was chosen
because it is analytic in the regions where the arguments of the
real-valued inverse function are defined. The branch cut for the
complex-valued hyperbolic arc cosine function occurs where the
corresponding real-valued function is undefined. The principal branch
also preserves most of the important symmetries.

The graphs below show the domain and range of ACOSH. The graph
of the domain shows where the branch cut occurs: the heavy solid line

Command Reference 3-9

ACOSH

marks one side of the cut, while the feathered lines mark the other
side of the cut. The graph of the range shows where each side of the
cut is mapped under the function.

These graphs show the inverse relation '=1%F e TEi#Ern L
for the case s1=1 and nI=0. For other values of s’] and ni, the
horizontal half-band in the lower graph is rotated to the left and

translated up and down. Taken together, the bands cover the whole

complex plane, which is the domain of COSH.

View these graphs with domain and range reversed to see how the
domain of COSH is restricted to make an inverse function possible.
Consider the horizontal half-band in the lower graph as the restricted

domain Z = {z, yx COSH sends this domain onto the whole complex
plane in the range i = ; y# in the upper graph.

Related Commands: ASINH, ATANH, COSH, ISOL

Domain: Z = (x,y)

A A A
ITTTTTTTTTTTTITT77

S T

Range: W = (u,v) = ACOSH(x,y)

L

-IT

FITrTiTy

'
1rriiiiined

Branch Cut for ACOSH(2)

3-10 Command Reference

ADD

ADD

Add List Command: Adds corresponding elements of two lists or
adds a number to each of the elements of a list.

{1}
Level 2 Level 1 — Level 1
{ list; } { listy } — { list,asuit }
{ tist } Obj, o0 _iist - { listrggyie }
Obj, o _ist { list } - { fistrggyt }

Keyboard Access:
Affected by Flags: None

Remarks: ADD executes the + command once for each of the
elements in the list. If two lists are the arguments, they must have
the same number of elements as ADD will execute the + command
once for each corresponding pair of elements. If one argument is a
non-list object, ADD will attempt to execute the + command using
the non-list object and each element of the list argument, returning
the result to the corresponding position in the result. (See the +
command entry to see the object combinations that are defined.) If
an undefined addition is encountered, a Ear !
results.

Related Commands: ALIST, IILIST, ¥LIST

Command Reference 3-11

ALOG

Common Antilogarithm Analytic Function: Returns the common

antilogarithm; that is, 10 raised to the given power.

{1}
Level 1 — Level 1
z — 10*
'symb' — 'ALOG(symb)'

Keyboard Access: («)(107)
Affected by Flags: Numerical Results (—3)
Remarks: For complex arguments:
105Y) = X cos ey + ¢ * sin cy
where ¢ = In 10.

Related Commands: EXP, LN, LOG

AMORT

Amortize Command: Amortizes a loan or investment based upon the

current amortization settings.

{1}
Level 1 — Level 3 Level 2 Level 1
n — principal interest balance

Keyboard Access: (&)(SOLVE) TWii
Affected by Flags: Financial Payment Mode (—14)

3-12 Command Reference

AND

Remarks: Values must be stored in the TVM variables (/% YR, PV,

PMT, and PYR). The number of payments n is taken from level 1
and flag —14.

Related Commands: TVM, TVMBEG, TVMEND, TVMROOT

AND

And Function: Returns the logical AND of two arguments.

{}

Level 2 Level 1 — Level 1

#ny # 1y - #n3
"string," "string,” — "strings”

T/F; T/F, — 0/1

T/F 'symb' — 'T/F AND symb'

'symb' T/F — 'symb AND T/F'

'symb, ' 'symb, — 'symb, AND symb,'

Keyboard Access:
'

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize
(=5 through —10)

NXT) i

NXT

Remarks: When the arguments are binary integers or strings, AND
does a bit-by-bit (base 2) logical comparison.

m An argument that is a binary integer is treated as a sequence of bits
as long as the current wordsize. Each bit in the result is determined
by comparing the corresponding bits (bit; and bels) in the two
arguments as shown in the following table:

Command Reference 3-13

AND

bitq bity | bit; AND bit,
0 0 0
0 1 0
1 0 0
1 1 1

m An argument that is a string is treated as a sequence of bits, using 8
bits per character (that is, using the binary version of the character
code). The two string arguments must have the same number of
characters.

When the arguments are real numbers or symbolics, AND simply
does a true/false test. The result is 1 (true) if both arguments are
non-zero; it is & (false) if either or both arguments are zero. This test
is usually done to compare two test results.

If either or both of the arguments are algebraic expressions, then the
result is an algebraic of the form *symb; FAHD symbs’'. Execute =#H
(or set flag —3 before executing AND) to produce a numeric result
from the algebraic result.

Related Commands: NOT, OR, XOR

ANIMATE

Animate Command: Displays graphic objects in sequence.

Level n+1...Level 2 Level 1 — Level 1
groby, ...grob, Nyrobs — same stack
groby, ...grob, {n{ #X #Y } delay rep} — same stack

Keyboard Access:

PRG NXT) FbLH

Affected by Flags: None

3-14 Command Reference

APPLY

Remarks: ANIMATE displays a series of graphics objects (or
variables containing them) one after the other. You can use a list to
specify the area of the screen you want to animate (pixel coordinates
#X and #Y), the number of seconds before the next grob 1s displayed
(delay), and the number of times the sequence is run (rep). If rep is
set to 0, the sequence is played one million times, or until you press

(CARCED).

If you use a list on level 1, all parameters must be present.

The animation displays PICT while displaying the grobs. The grobs
and the animate parameters are left on the stack.

Example: The following program draws half a cylinder and rotates it:

This program also illustrates the use of SEQ and PARSURFACE.
You can adjust the increment value used with SEQ (8 is used here)
to change the number of images drawn by the program, or to use less
memory.

APPLY

Apply to Arguments Function: Creates an expression from the
specified function name and arguments.

Level 2 Level 1 — Level 1

{ symb, ... symb, } ‘name' — ‘name(symb; ... symby,)'

Keyboard Access: (&)(SYMBOLIC) (NXT) !

Command Reference 3-15

APPLY
Affected by Flags: None

Remarks: A user-defined function f that checks its arguments for
special cases often can’t determine whether a symbolic argument z
represents one of the special cases. The function f can use APPLY to
create a new expression ‘f <=7 '. If the user now evaluates *# s7!
is evaluated before f, so the argument to f will be the result obtained
by evaluating z.

The algebraic syntax for APPLY is this:

inamessymby: ... & symby i’

When evaluated in an algebraic expression, APPLY evaluates the
arguments (to resolve local names in user-defined functions) before
creating the new object.

Example: The following user-defined function Asin is a variant

of the built-in function ASIN. Asin checks for special numerical
arguments. If the argument on the stack is symbolic (the second case
in the case stlucture) Asin uses APPLY to return the expression

! 1L argument

() Asin GT9)

Related Commands: QUOTE, |

3-16 Command Reference

ARC

ARC

Draw Arc Command: Draws an arc in PICT counterclockwise from
zg, to zp,, with its center at the coordinate specified in level 4 and its
radius specified in level 3.

Level 4 Level 3 Level 2 Level 1 — Level 1
(xa ZI) Zradius N Zgq -
{#n #m} H# N radius Ty, g, -
Keyboard Access: (PRG) FICT HELD

Affected by Flags: Angle Mode (—17 and —18)

The setting of flags —17 and —18 determine the interpretation of zp,
and zp, (degrees, radians, or grads).

Remarks: ARC always draws an arc of constant radius in pixels,
even when the radius and center are specified in user-units, regardless
of the relative scales in user-units of the z- and y-axes. With user-unit
arguments, the arc starts at the pixel specified by (z, y) + (a, b),
where (a, b) is the rectangular conversion of the polar coordinate
(Zradius, 1791). The resultant distance in pixels from the starting point
to the center pixel is used as the actual radius, r'. The arc stops at
the pixel specified by (', zy,).

If g, = g,, ARC plots one point. If [z, — zg,| > 360 degrees, 2
radians, or 400 grads, ARC draws a complete circle.

Example: In Degrees mode, with the z-axis display range (XRNG)
specified as —6.5 to 6.5, the command sequence &, 8 1 & 28 ARD
draws an arc counterclockwise from 0 to 90 degrees with a constant
radius of 10 pixels.

Related Commands: BOX, LINE, TLINE

Command Reference 3-17

ARCHIVE

Archive HOME Command: Creates a backup copy of the HOME
directory (that is, all variables), the user-key assignments, and the
alarm catalog in the specified backup object (% nport : name) in
independent RAM.

Level 1 — Level 1 T
:nport ‘hame —
1O name —

Keyboard Access: («)(MEMORY) i
Affected by Flags: 1/O Device (—33), I/O Messages (—39) if the

Remarks: The specified port number can be 0 through 33. The port
used (except 0) must be configured as independent RAM. (See FREE.)
An error will result if there is not enough independent RAM in the
specified port to copy the HOME directory.

If the backup object is # Iit name, then the copied directory is
transmitted in binary via Kermit protocol through the current 1/0
port to the specified filename.

To save flag settings, execute RCLF and store the resulting list in a
variable.

Related Commands: RESTORE

3-18 Command Reference

ARRY—

ARG

Argument Function: Returns the (real) polar angle ¢ of a complex
number iz, y.

{}
Level 1 — Level 1
(x.y —]
'symb' — 'ARG(symb)"'

Keyboard Access: CHMFL ARG
Affected by Flags: Angle mode (—17, —18)
Remarks: The polar angle 8 is equal to:

m arc tan y/z forz > 0

m arc tan y/z + 7 sign y for z < 0, Radians mode
m arc tan y/z + 180 sign y for z < 0, Degrees mode
m arc tan y/z + 200 sign y for z < 0, Grads mode

A real argument z is treated as the complex argument <z, 0.

ARRY —

Array to Stack Command: Takes an array and returns its elements
as separate real or complex numbers. Also returns a list of the
dimensions of the array.

Level 1 — Levelnm+1 ... Level 2 Level 1
[vector] — Zy .o Zn { Netement }
[[matrix]] — Zy1 - Zam { frow Mg, }

Command Reference 3-19

ARRY—

Keyboard Access: None. Must be typed in.
Affected by Flags: None

Remarks: The command OBJ— includes this functionality. ARRY—
is included for compatibility with the HP 285. ARRY— is not in a
menu.

If the argument is an n-element vector, the first element is returned to
level n + 1 (not level nm + 1), and the nth element to level 2.

Related Commands: —ARRY, DTAG, EQ—, LIST—, OBJ—,
STR—

—ARRY

Stack to Array Command: Returns a vector of n real or complex
elements or a matrix of n X m real or complex elements.

Level nm+1 ... Level 2 Level 1 — Level 1
Zy ... Zy Nglement — [vector]
Zi1 -+ Znm { Mrow Mg} — [[matrix]

Keyboard Access: TVFE
Affected by Flags: None

Remarks: The elements of the result array should be entered into the
stack in row order, with z1; (or z1) in level nm + 1 (or n 4+ 1), and
Znm (Or z) in level 2. If one or more of the elements is a complex
number, the result array will be complex.

Related Commands: ARRY—, LIST—, —LIST, OBJ—, STR—,
—TAG, —-UNIT

3-20 Command Reference

ASIN

ASIN

Arc Sine Analytic Function: Returns the value of the angle having
the given sine.

{1}
Level 1 — Level 1
z — arc sin z
'symb' — 'ASIN(symb)'

Keyboard Access: (¥)(AsSIN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument 2 in the domain —1 < z < 1, the
result ranges from —90 to +90 degrees (—7/2 to 4+ /2 radians; —100
to +100 grads).

A real argument outside of this domain is converted to a complex
argument z = z + 0z, and the result is complex.

The inverse of SIN is a relation, not a function, since SIN sends more
than one argument to the same result. The inverse relation for SIN is
expressed by ISOL as the general solution

The function ASIN is the inverse of a part of SIN, a part defined by
restricting the domain of SIN such that 1) each argument is sent to
a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of SIN are called the principal values of the
inverse relation. ASIN in its entirety is called the principal branch of
the inverse relation, and the points sent by ASIN to the boundary of
the restricted domain of SIN form the branch cuts of ASIN.

The principal branch used by the HP 48 for ASIN was chosen because
it is analytic in the regions where the arguments of the real-valued
inverse function are defined. The branch cut for the complex-valued
arc sine function occurs where the corresponding real-valued function

Command Reference 3-21

ASIN

is undefined. The principal branch also preserves most of the
important symmetries.

The graphs below show the domain and range of ASIN. The graph of
the domain shows where the branch cuts occur: the heavy solid line
marks one side of a cut, while the feathered lines mark the other side
of a cut. The graph of the range shows where each side of each cut is
mapped under the function.

These graphs show the inverse relation *#: Py
for the case n1=0. For other values of n1, the vertlcal band in the
lower graph is translated to the right (for n] positive) or to the left
(for nl negative). Taken together, the bands cover the whole complex
plane, which is the domain of SIN.

View these graphs with domain and range reversed to see how the
domain of SIN is restricted to make an inverse function possible.
Consider the vertical band in the lower graph as the restricted domain

Z = izy yr. SIN sends this domaln onto the whole complex plane in
the range i = Tuy v = % y» in the upper graph.

Related Commands: ACOS, ATAN, ISOL, SIN

Domain: Z = (x,y)

Y ¥

. INNNNNNRY)
Tr777rrrirr 0

e v

Range: W = (u,v) = ASIN(x,y)

yre10iieiieisd

rola

111111111117

o
nola

Branch Cuts for ASIN(Z)

3-22 Command Reference

ASINH

ASINH

Arc Hyperbolic Sine Analytic Function: Returns the inverse
hyperbolic sine of the argument.

{1}
Level 1 - Level 1
z — asinh z
'symb' — 'ASINH(symb)'

Keyboard Access: HiY P A
Affected by Flags: Principal Solution (—1), Numerical Results (—3)

IHH

Remarks: The inverse of SINH is a relation, not a function, since
SINH sends more than one argument to the same result. The inverse
relation for SINH is expressed by ISOL as the general solution

RS RN RS E

The function ASINH is the inverse of a part of SINH, a part defined
by restricting the domain of SINH such that 1) each argument is sent
to a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of SINH are called the principal values of the
inverse relation. ASINH in its entirety is called the principal branch of
the inverse relation, and the points sent by ASINH to the boundary of
the restricted domain of SINH form the branch cuts of ASINH.

The principal branch used by the HP 48 for ASINH was chosen
because it is analytic in the regions where the arguments of

the real-valued function are defined. The branch cut for the
complex-valued ASINH function occurs where the corresponding
real-valued function is undefined. The principal branch also preserves
most of the important symmetries.

The graph for ASINH can be found from the graph for ASIN (see
ASIN) and the relationship asinh 2 = —¢ asin iz.

Related Commands: ACOSH, ATANH, ISOL, SINH

Command Reference 3-23

ASN
Assign Command: Defines a single key on the user keyboard by
assigning the given object to the key zyey, which is specified as rc.p.

{1}
Level 2 Level 1 — Level 1
obj Xkey —
'SKEY' Xcey -

Keyboard Access: (¢)(MODES) KEYS FAEH
Affected by Flags: User-Mode Lock (—61) and User Mode (—62)
affect the status of the user keyboard

Remarks: The argument zyey is a real number rc.p specifying the
key by its row number r, column number ¢, and plane (shift) p. The
legal values for p are as follows:

Plane, p Shift
Oorl unshifted
2 (€) left-shifted

() right-shifted

4 (a) alpha-shifted
5 (o) (\q) alpha left-shifted
6 (@) () alpha right-shifted

Once ASN has been executed, pressing a given key in User or 1-User
mode executes the user-assigned object. The user key assignment
remains in effect until the assignment is altered by ASN, STOKEYS,
or DELKEYS. Keys without user assignments maintain their standard
definitions.

If the argument obj is the name ' then the specified key 1s
restored to its standard key assignment on the user keyboard. This

3-24 Command Reference

ASR

is meaningful only when all standard key assignments had been
suppressed (for the user keyboard) by the command *&* DEL
(see DELKEYS).

To make multiple key assignments simultaneously, use STOKEYS. To
delete key assignments, use DELKEYS.

Be careful not to reassign or suppress the keys necessary to cancel

User mode. If this happens, exit User mode by doing a system halt
(“warm start”): press and hold and the C key simultaneously,
releasing the C key first. This cancels User mode.

Example: Executing ASN with GETI 55, 3 1n level
1 assigns GETI to () ("_7) on the user keyboard. (@) (") has a

location of 85.3 because it is eight rows down, five columns across, and
right-shifted.) When the calculator is in User mode, pressing () (")
now executes GETI (instead of executing (" 7).

Related Commands: DELKEYS, RCLKEYS, STOKEYS

ASR

Arithmetic Shift Right Command: Shifts a binary integer one bit to
the right, except for the most significant bit, which is maintained.

{1

Level 1 - Level 1

#ny — #n,

Keyboard Access: (MTH) E NXT) EILT

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: The most significant bit is preserved while the remaining
(wordsize—1) bits are shifted right one bit. The second-most
significant bit is replaced with a zero. The least significant bit is
shifted out and lost.

Command Reference 3-25

ASR

An arithmetic shift is useful for preserving the sign bit of a binary
integer that will be shifted. Although the HP 48 makes no special
provision for signed binary integers, you can still interpret a number
as a signed quantity.

Related Commands: SL, SLB, SR, SRB

ATAN

Arc Tangent Analytic Function: Returns the value of the angle
having the given tangent.

{}
Level 1 — Level 1
z — arc tan z
'symb' — 'ATAN(symb)'

Keyboard Access: (e)(ATAN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument, the result ranges from —90 to 490
degrees (—7/2 to +m/2 radians; —100 to +100 grads).

The inverse of TAN is a relation, not a function, since TAN sends

TAN 1is expressed by ISOL as the general solution

The function ATAN is the inverse of a part of TAN, a part defined by
restricting the domain of TAN such that 1) each argument is sent to a
distinct result, and 2) each possible result is achieved. The points in
this restricted domain of TAN are called the principal values of the
inverse relation. ATAN in its entirety is called the principal branch of
the inverse relation, and the points sent by ATAN to the boundary of
the restricted domain of TAN form the branch cuts of ATAN.

3-26 Command Reference

ATAN

The principal branch used by the HP 48 for ATAN was chosen because
it is analytic in the regions where the arguments of the real-valued
inverse function are defined. The branch cuts for the complex-valued
arc tangent function occur where the corresponding real-valued
function is undefined. The principal branch also preserves most of the
important symmetries.

The graphs below show the domain and range of ATAN. The graph of
the domain shows where the branch cuts occur: the heavy solid line
marks one side of a cut, while the feathered lines mark the other side
of a cut. The graph of the range shows where each side of each cut is
mapped under the function.

These graphs show the inverse relation ‘ATAH{Z »+mw#rl* for the
case nl=0. For other values of n1, the vertical band in the lower
graph is translated to the right (for nl positive) or to the left (for n1
negative). Taken together, the bands cover the whole complex plane,
which is the domain of TAN.

View these graphs with domain and range reversed to see how the
domain of TAN is restricted to make an inverse function possible.
Consider the vertical band in the lower graph as the restricted domain
Z = try yi. TAN sends this domain onto the whole complex plane in
the range W = Ju, v = THAM{z. y2 in the upper graph.

Related Commands: ACOS, ASIN, ISOL, TAN

Command Reference 3-27

ATAN

Domain: Z = (x,y)

 JJLALLLL
7

LRI
0
(b

TN T

Range: W = (u,v) = ATAN(x.y)

PALLLAAALNAAY
I

rola

- - - -

AYSRAAARTARNY

Branch Cuts for ATAN(Z)

ATANH

Arc Hyperbolic Tangent Analytic Function: Returns the inverse
hyperbolic tangent of the argument.

{}
Level 1 — Level 1
z — atanh z
'symb' — 'ATANH(symb)'

Keyboard Access: (MTH) HYF

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Infinite Result Exception (—22)

3-28 Command Reference

ATANH

Remarks: For real arguments |z| > 1, ATANH returns the complex
result obtalned for the argument (z, 0). For a real argument z==1,
an Infinite Resuli exception occurs. If flag —22 is set (no error),
the sign of the result (MAXR) matches that of the argument.

The inverse of TANH is a relation, not a function, since TANH sends
more than one argument to the same result. The inverse relation for
TANH is expressed by ISOL as the general solution

TRTHMHOZ pemsisnl

The function ATANH is the inverse of a part of TANH, a part defined
by restricting the domain of TANH such that 1) each argument is sent
to a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of TANH are called the principal values of
the inverse relation. ATANH in 1ts entirety is called the principal
branch of the inverse relation, and the points sent by ATANH to the
boundary of the restricted domain of TANH form the branch cuts of
ATANH.

The principal branch used by the HP 48 for ATANH was chosen
because it is analytic in the regions where the arguments of

the real-valued function are defined. The branch cut for the
complex-valued ATANH function occurs where the corresponding
real-valued function is undefined. The principal branch also preserves
most of the important symmetries.

The graph for ATANH can be found from the graph for ATAN (see
ATAN) and the relationship atanh z = —7 atan i2.

Related Commands: ACOSH, ASINH, ISOL, TANH

Command Reference 3-29

ATICK

Axes Tick-Mark Command: Sets the axes tick-mark annotation in
the reserved variable PPAR.

Level 1 = Level 1
X —
#n —
{xy} —
{ #n #m } —

Keyboard Access: («)(PLOT) F
Affected by Flags: None

Remarks: Given z, ATICK sets the tick-mark annotation to z units
on both the z- and the y-axis. For example, 2 would place tick-marks
every 2 units on both axes.

Given #n, ATICK sets the tick-mark annotation to #n pixels on both
the z- and the y-axis. For example, #5 would place tick-marks every
5 pixels on both axes.

Given { z y }, ATICK sets the tick-mark unit annotation for each axis
individually. For example, { 10 3 } would mark the z-axis at every
multiple of 10 units, and the y-axis at every multiple of 3 units.

Given { #n #m } ATICK sets the tick-mark pixel annotation for each
axis individually. For example, { 6 2 } would mark the z-axis every 6
pixels, and the y-axis every 2 pixels.

Related Commands: AXES, DRAX

3-30 Command Reference

ATTACH

ATTACH

Attach Library Command: Attaches the library with the specified
number to the current directory. Each library has a unique number. If
a port number is specified, it is ignored.

{}
Level 1 - Level 1
Mibrary -
Noort “Mivrary -

Keyboard Access: (+)(LIBRARY) ATTRED
Affected by Flags: None

Remarks: To use a library object, it must be in a port and it must
be attached. A library object from an application card (ROM) is
automatically in a port (1-33), but a library object copied into RAM
(such as through the PC Link) must be stored into a port using STO.

Many libraries are attached automatically when an application card is
installed. Others require you to ATTACH them, as do many libraries
copied into RAM. (The owner’s manual for the application card or
library will tell you which of its library objects must be attached
manually.) You can also ascertain whether a library is attached to the
current directory by executing LIBS.

A library that has been copied into RAM and then stored (with STO)
into a port can be attached only afier the calculator has been turned off
and then on again following the STO command. This action (off/on)
creates a system halt, which makes the library object “attachable.”
Note that it also clears the stack, local variables, and the LAST stack,
and 1t dlsplays the MATH menu. (To save the stack first, execute
DEFTH +LIST ‘name’ STO)

The number of libraries that can be attached to the HOME directory
is limited only by the available memory. However, only one library

at a time can be attached to any other directory. If you attempt to
attach a second library to a non-HOME directory, the new library will
overwrite the old one.

Command Reference 3-31

ATTACH

Related Commands: DETACH, LIBS

AUTO

Autoscale Command: Calculates a y-axis display range, or an z-
and y-axis display range.

Keyboard Access: («)(PLOT) (NXT) FLIT
Affected by Flags: None

Remarks: The action of AUTO depends on the plot type as follows:

Plot Type Scaling Action
FUNCTION |Samples the equation in F@Q at 40 values of the
independent variable, equally spaced through the
z-axis plotting range, discards points that return
400, then sets the y-axis display range to include
the maximum, minimum, and origin.
CONIC Sets the y-axis scale equal to the z-axis scale.
POLAR Samples the equation in £Q at 40 values of the
independent variable; equally spaced through
plotting range, discards points that return oo,
then sets both the z- and y-axis display ranges in
the same manner as for plot type FUNCTION.
PARAMETRIC | Same as POLAR.
TRUTH No action.
BAR Sets the z-axis display range from 0 to the number

of elements in Y DAT, plus 1. Sets the y-range to
the minimum and maximum of the elements. The
z-axis is always included.

3-32 Command Reference

AXES

Plot Type Scaling Action

HISTOGRAM |Sets the z-axis display range to the minimum and
maximum of the elements in Y DAT. Sets the
y-axis display range from 0 to the number of rows
in YDAT.

SCATTER Sets the z-axis display range to the minimum and
maximum of the independent variable column
(XCOL) in Y DAT. Sets the y-axis display range to
the minimum and maximum of the dependent

variable column (YCOL).

AUTO does not affect 3D plots.

AUTO actually calculates a y-axis display range and then expands
that range so that the menu labels do not obscure the resultant plot.

AUTO does not draw a plot—execute DRAW to do so.

Example: The program 3 DREAR DREAK # sets the
plot type to FUNCTION, autoscales the y-axis, plots the equatlon in
EQ, and adds axes to the plot.

Related Commands: DRAW, «H, SCALE, SCLXY, *W, XRNG,
YRNG

AXES

Axes Command: Specifies the intersection coordinates of the z- and
y-axes, tick-mark annotation, and the labels for the z- and y-axes.
This information is stored in the reserved variable PPAR.

Level 1 — Level 1

x, ¥ —
{ (x, y) atick “x-axis label" "y-axis label" } —

Command Reference 3-33

AXES

Keyboard Access: ()(PLOT) Fi
Affected by Flags: None

Remarks: The argument for AXES (a complex number or list) is
stored as the fifth parameter in the reserved variable PPAR. How the
argument is used depends on the type of object it is:

m If the argument is a complex number, it replaces the current entry

in PPAR.

m If the argument is a list containing any or all of the above variables,
only variables that are specified are affected.

atick has the same format as the argument for the ATICK command.
This is the variable that is affected by the ATICK command.

The default value for AXES is 1

Axes labels are not displayed in PICT until subsequent execution of
LABEL.

Example: The command sequence

LR 5 g
... h L}

specifies an axes intersection at i 33, tick-mark annotation every 2
units, and puts the labels % and 1 in PICT. The labels are positioned
to identify the horizontal and veltlcal axes respectively.

Related Commands: ATICK, DRAW, DRAX, LABEL

BAR

Bar Plot Type Command: Sets the plot type to BAR.

Keyboard Access: («)(PLOT) (NXT)
Affected by Flags: None

Remarks: When the plot type is BAR, the DRAW command plots a
bar chart using data from one column of the current statistics matrix
(reserved variable ¥ DAT). The column to be plotted is specified

by the XCOL command, and is stored in the first parameter of the
reserved variable X PAR. The plotting parameters are specified in the
reserved variable PPAR, which has the following form:

3-34 Command Reference

BAR

STt Ymind Tmar: Ymar: indep res azes ptype depend
For plot type BAR, the elements of PPAR are used as follows:

B {Zmin, Ymin . 18 a complex number specifying the lower left corner of
PICT (the lower left corner of the display range). The default value

IERET P T

B {Zmax, Ymax . 15 a complex number specifying the upper right corner
of PICT (the upper right corner of the display range). The default

value Is 08, 5, 2, 2.

m indep is either a name specifying a label for the horizontal axis, or a
list containing such a name and two numbers, with the smaller of
the numbers specifying the horizontal location of the first bar. The
default value of indep 1s X.

m res is a real number specifying the bar width in user-unit
coordinates, or a binary integer specifying the bar width in pixels.
The default value is £, which specifies a bar width of 1 in user-unit
coordinates.

m azes is a list containing one or more of the following, in the order
listed: a complex number specifying the user-unit coordinates of
the plot origin, a list specifying the tick-mark annotation, and two
strings specifying labels for the horizontal and vertical axes. The
default value is :

m piype is a command name specifying the plot type. Executing the
command BAR places the command name BAR in PPAR.

m depend is a name specifying a label for the vertical axis. The default
value 1s Y.

A bar is drawn for each element of the column in ¥ DAT'. Its width

is specified by res and its height is the value of the element. The
location of the first bar can be specified by indep; otherwise, the value
N % Zmin, Ymin * 18 used.

Related Commands: CONIC, DIFFEQ, FUNCTION, GRIDMAP,
HISTOGRAM, PARAMETRIC, PARSURFACE, PCONTOUR,
POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,
YSLICE

Command Reference 3-35

BARPLOT

Draw Bar Plot Command: Plots a bar chart of the specified column
of the current statistics matrix (reserved variable ¥ DAT).

Keyboard Access: ()(STAT) FLIUT EF
Affected by Flags: None

Remarks: The data column to be plotted is specified by XCOL

and is stored as the first parameter in reserved variable ¥ PAR. The
default column is 1. Data can be positive or negative, resulting in bars
above or below the axis. The y-axis is autoscaled, and the plot type is

set to BAR.

When BARPLOT is executed from a program, the resulting plot does
not persist unless PICTURE, PVIEW (with an empty list argument),
or FREEZE is subsequently executed.

Related Commands: FREEZE, HISTPLOT, PICTURE, PVIEW,
SCATRPLOT, XCOL

BAUD
Baud Rate Command: Specifies bit-transfer rate.
{1}
Level 1 — Level 1
Mpbaudrate -

Keyboard Access: ()(1/0) 1P FF
Affected by Flags: None
Remarks: Legal baud rates are 1200, 2400, 4800, and 9600 (default).

For more information, refer also to the reserved variable JOPAR (I/0
parameters) in appendix D, “Reserved Variables.”

Related Commands: CKSM, PARITY, TRANSIO

3-36 Command Reference

BESTFIT

BEEP

Beep Command: Sounds a tone at n hertz for z seconds.

{}
Level 2 Level 1 — Level 1
nfrequency Xduration -
Keyboard Access: GUT (NXT) E

Affected by Flags: Error Beep (—56)

Remarks: The frequency of the tone is subject to the resolution of
the built-in tone generator. The maximum frequency is approximately
4400 Hz; the maximum duration is 1048.575 seconds. Arguments
greater than these maximum values default to the maxima.

Related Commands: HALT, INPUT, PROMPT, WAIT

BESTFIT

Best-Fitting Model Command: FExecutes LR with each of the
four curve fitting models, and selects the model yielding the largest
correlation coefficient.

Keyboard Access: (¢)(STAT)
Affected by Flags: None

Remarks: The selected model is stored as the fifth parameter in the
reserved variable X' PAR, and the associated regression coeflicients,
intercept and slope, are stored as the third and fourth parameters,
respectively. For a description of Y PAR, see appendix D, “Reserved
Variables.”

Related Commands: EXPFIT, LINFIT, LOGFIT, LR, PWRFIT

Command Reference 3-37

BIN

Binary Mode Command: Selects binary base for binary integer
operations. (The default base is decimal.)

Keyboard Access: (MTH)

Affected by Flags: Binary Integer Wordsize (=5 through —10),
Binary Integer Base (—11, —12)

Remarks: Binary integers require the prefix #. Binary integers
entered and returned in binary base automatically show the suffix .
If the current base is not binary, binary numbers can still be entered
by using the suffix & (the numbers are displayed in the current base,
however).

The current base does not affect the internal representation of binary
integers as unsigned binary numbers.

Related Commands: DEC, HEX, OCT, STWS, RCWS

BINS

Sort Into Frequency Bins Command: Sorts the elements of the
independent column (XCOL) of the current statistics matrix (the
reserved variable Y DAT) into (nuins + 2) bins, where the left edge of
bin 1 starts at value zn,;, and each bin has width ziqep.

{1

Level 3 Level2 Level1 — Level 2 Level 1

Xmin Xwidth Myins = [l nging -+ Moing 11 [Ppinc ST

Keyboard Access: (9)(STAT)
Affected by Flags: None

Remarks: BINS returns a matrix containing the frequency of
occurrences in each bin, and a 2-element array containing the
frequency of occurrences falling below or above the defined range of
z-values. The array can be stored into the reserved variable X DAT

3-38 Command Reference

BLANK

and used to plot a bar histogram of the bin data (for example, by
executing BARPLOT).

For each element z in YDAT, the nth bin count n¢req pin n 18
incremented, where:
T — Ty
Nfregbinn = IpP {ﬂ}
Lwidth

for 2min < ¢ < Tmax, where 2max = Zmin + (pins (Twidtn)-
Example: If the independent column of Y DAT contains the following
data:

The data has been sorted into 5 bins of width 2, starting at z-value 1
and ending at z-value 11. The first element of the matrix shows that 5
z-values (# 1 1 1 #) fell in bin 1, where bin 1 ranges from z-value 1
through 2.99999999999. The vector shows that one z-value was less
than z,;, (&), and one was greater than zmax (1%).

Related Commands: BARPLOT, XCOL

BLANK

Blank Graphics Object Command: Creates a blank graphics object
of the specified width and height.

{1}

Level 2 Level 1 — Level 1

F Ny g n FMyaignt - 9roby 4k J

Keyboard Access: GROE
Affected by Flags: None
Related Commands: —GROB, LCD—

Command Reference 3-39

BOX

Box Command: Draws in PICT a box whose opposite corners are
defined by the specified pixel or user-unit coordinates.

Level 2 Level 1 - Level 1

{ #ny #my } { #n, #m, } —
(X, ¥1) (X3, ¥3) —

Keyboard Access: (PRG

Affected by Flags: None
Related Commands: ARC, LINE, TLINE

BUFLEN

Buffer Length Command: Returns the number of characters in the
HP 48’s serial input buffer and a single digit indicating whether an
error occurred during data reception.

Level 1 — Level 2 Level 1

Menars 0/1

Keyboard Access: («)(1/0) B
Affected by Flags: None

Remarks: The digit returned to level 1 is i if no framing, UART
overrun, or input-buffer overflow errors occurred during reception,
or £ if one of these errors did occur. (The input buffer holds up to
255 bytes.) When a framing or overrun error occurs, data reception
ceases until the error is cleared (which BUFLEN does); therefore, n
represents the data received before the error.

3-40 Command Reference

BYTES

Use ERRM to see which error has occurred when BUFLEN returns &
to level 1.

Related Commands: CLOSEIO, OPENIO, SBRK, SRECV, STIME,
XMIT

BYTES

Byte Size Command: Returns the number of bytes and the
checksum for the given object.

0
[Level 1 ~ Level 2 Level 1 \

obj - #nchecksum Xsize ‘

Keyboard Access: (9) BYTES
Affected by Flags: None

Remarks: If the argument is a built-in object, then the size is 2.5
bytes and the checksum is # £.

If the argument is a global name, then the size represents the name
and its contents, while the checksum represents the contents only. The
size of the name alone is (3.5 + 2 x n), where n is the number of
characters in the name.

Example: Objects that decompile identically can have different byte
sizes and checksums. For instance,

and

both produce lists containing the number 1. However, the first list
contains the built-in object 1 (for a size of 7.5 bytes), while the second
list contains a RAM copy of 1 (for a size of 15.5 bytes).

Related Commands: MEM

Command Reference 3-41

B—R

Binary to Real Command: Converts a binary integer to its
floating-point equivalent.

{1

‘ Level 1 - Level 1

’ # n — n

Keyboard Access: BASE B2R

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: If & n > & (base 10), only the 12 most
significant decimal digits are preserved in the resulting mantissa.

Related Commands: R—B

CASE

CASE Conditional Structure Command: Starts CASE ... END

conditional structure.

Level 1 . Level 1
CASE N
THEN T/F —
END N
END N

Keyboard Access: =
Affected by Flags: None

3-42 Command Reference

CASE

Remarks: The CASE ... END structure executes a series of cases
(tests). The first test that returns a true result causes execution of
the corresponding true-clause, ending the CASE ... END structure.
A default clause can also be included: this clause executes if all tests
evaluate to false.

The CASE ... END structure has this syntax:

test-clause; THEHM true-clause; EMD
test-clauses THEHM true-clauseq EMD

test-clause, "+ true-clause, EHD
default-clause (optional)

When CASE executes, test-clause; is evaluated. If the test is true,
true-clause; executes, then execution skips to END. If test-clause; is
false, test-clause, executes. Execution within the CASE structure
continues until a true clause is executed, or until all the test clauses
evaluate to false. If the default clause is included, it executes if all test
clauses evaluate to false.

Example: The following program takes a numeric argument from the
stack:

m if the argument is negative, it is added to itself
m if the argument is positive, it is negated
m if the argument is zero, the program aborts

Command Reference 3-43

CASE

Related Commands: END, IF, IFERR, THEN

CEIL

Ceiling Function: Returns the smallest integer greater than or equal
to the argument.

Level 1 — Level 1
X — n
X_unit — n_unit
'symb' — '"CEIL(symb)'

Keyboard Access: (NXT) (NXT) EELL
Affected by Flags: Numerical Results (—3)

Examples:

returns #; L. returns ~3.

Related Commands: FLOOR, IP, RND, TRNC

CENTR

Center Command Adjusts the first two parameters in the reserved
variable PPAR, <20, Ymin* and £Zmax, Ymax , 50 that the point
represented by the argument <z, y 3 is the plot center.

3-44 Command Reference

CF

{}
Level 1 — Level 1
x, ¥ —
X —

Keyboard Access: («)(PLOT) F
Affected by Flags: None

Remarks: The center pixel is in row 32, column 65 when PICT is its
default size (131 x 64).

If the argument is a real number z, CENTR makes the pomt <z, &3
the plot center.

Related Commands: SCALE

CF

Clear Flag Command: Clears the specified user or system flag.

Level 1 — Level 1

s

nﬂagnumber

Keyboard Access:

PRG
Affected by Flags: None

Remarks: User flags are numbered 1 through 64. System flags are
numbered —1 through —64. See appendix C, “System Flags,” for a
listing of HP 48 system flags and their flag numbers.

Related Commands: FC?, FC?C, FS?, FS7C, SF

Command Reference 3-45

CHOOSE

Create User-Defined Choose Box Command: Creates a

user-defined choose box.

Level 3 Level 2 Level 1 — Level 2 Level 1
" prompt" {c ...} Npos — obj or result A
" prompt"’ {c ...} Npos — o

Keyboard Access: IH o o

Affected by Flags: None

Remarks: CHOOSE creates a standard single-choice choose box
based on the following specifications.

Variable

Function

“prompt”

{C1 Cn}

Npos

A message that appears at the top of chooqe

box. If “prompt” is an empty string (“”), no
message is displayed.

Definitions that appear within the choose
box. A choice definition (¢;) can have two
formats.

m obj, any object.

u { Objdisplay 0bjresuls }a the object to be
displayed followed by the result returned to
the stack if that object is selected.

The position number of an item definition.
This item is highlighted when the choose box
appears. If np,,=0, no item is highlighted,
and the choose box can be used to view items
only.

If you choose an item from the choose box and press [if
CHOOSE returns the result (or the object itself if no result is

3-46 Command Reference

%CH

returns &. Also, if n,,,=0, CHOOSE returns &.
Example: CHOOSE with the following three lines on the display.

e Funot ion® #

Related Commands: INFORM, NOVAL

%CH

Percent Change Function: Returns the percent change from z (level
2) to y (level 1) as a percentage of z.

{}
Level 2 Level 1 — Level 1
X y — 100(y—x)/x
X 'symb' — '%CH(x,symb)'
'symb' X — '%CH(symb,x)"
'symb, 'symb, — '%CH(symb, ,symb,)"
x_unit y_unit — 100(y_unit—x_unit) /x_unit
X_unit 'symb' — "%CH(x_unit,symb)"
'symb' Xx_unit — "% CH(symb,x_unit)'

Command Reference 3-47

%CH

Keyboard Access: (MTH) F
Affected by Flags: Numerical Results (=3)

%OH

Remarks: If both arguments are unit objects, the units must be
consistent with each other. The dimensions of a unit object are
dropped from the result, but units are part of the calculation.

For more information on using temperature units with arithmetic
functions, refer to the keyword entry for 4.

Examples: i

= s0H returns

Related Commands: %, %T

CHR

Character Command: Returns a string representing the HP 48
character corresponding to the character code n.

Level 1 - Level 1 T

n — " string” ’

Keyboard Access:
(R)(CHARS) CHE
- (NXT) ¢

Affected by Flags: None

PRG

Remarks: The character codes are an extension of ISO 8859/1.
Codes 128 through 159 are unique to the HP 48. See the entry for
NUM for a complete list of characters and character codes.

The default character = is supplied for all character codes that are not
part of the normal HP 48 display character set.

3-48 Command Reference

CKSM

Character code 0 is used for the special purpose of marking the end
of the command line. Attempting to edit a string containing this
character causes the error Carm 't Edit CHECES.

You can use the CHARS application to find the character code for any
character used by the HP 48. See “Keying in Special Characters” in
chapter 2 of the HP 48 User’s Guide.

Related Commands: NUM, POS, REPL, SIZE, SUB

CKSM

Checksum Command: Specifies the error-detection scheme.

{}

Level 1 - Level 1

n

checksum

Keyboard Access: ()(1/0) IIFHE
Affected by Flags: None
Remarks: Legal values for ncpecksum are as follows:

m 1: 1-digit arithmetic checksum.
m 2: 2-digit arithmetic checksum.
m 3: 3-digit cyclic redundancy check (default).

The CKSM specified is the error-detection scheme that will be
requested by KGET, PKT, or SEND. If the sender and receiver
disagree about the request, however, then a 1-digit arithmetic
checksum will be used.

IR transmission should use checksum type 3.

Related Commands: BAUD, PARITY, TRANSIO

Command Reference 3-49

CLEAR

Clear Command: Removes all objects from the stack.

Leveln ... Level 1 - Leveln ... Level 1
objn ... obj; — J

Keyboard Access: (¢)(CLEAR)
Affected by Flags: None

Remarks: To recover a cleared stack, press () (UNDO) before
executing any other operation. There is no programmable command
to recover the stack.

Related Commands: CLVAR, PURGE

CLKADJ

Adjust System Clock Command: Adjusts the system time by z
clock ticks, where 8192 clock ticks equal 1 second.

{}

Level 1 - Level 1

X —

Keyboard Access: («)(TIME) (NXT) (NXT) @
Affected by Flags: None

Remarks: If z is positive, z clock ticks are added to the system time.
If z is negative, z clock ticks are subtracted from the system time.

Example: Alxt decrements the system time by 2.5

seconds.

3-50 Command Reference

CLOSEIO

Related Commands: —TIME

CLLCD

Clear LCD Command: Clears (blanks) the stack display.
Keyboard Access: oHT CELER
Affected by Flags: None

Remarks: The menu labels continue to be displayed after execution
of CLLCD.

When executed from a program, the blank display persists only until
the keyboard is ready for input. To cause the blank display to persist
until a key is pressed, execute FREEZE after executing CLLCD.
(When executed from the keyboard, CLLCD automatically freezes the
display.)

Example: Evaluating « CLLCR ¥ FREEZE blanks the display
(except the menu labels), then freezes the entire display.

Related Commands: DISP, FREEZE

CLOSEIO

Close 1/0 Port Command: Closes the serial port and the IR port,
and clears the input buffer and any error messages for KERRM.

Keyboard Access: (#)(1/0) CLOSE
Affected by Flags: None

Remarks: When the HP 48 turns off, it automatically closes the
serial and IR ports, but does not clear KERRM. Therefore, CLOSEIO
is not needed to close the ports, but can conserve power without
turning off the calculator.

Executing HP 48 Kermit protocol commands automatically clears
the input buffer; however, executing non-Kermit commands (such as

SRECV and XMIT) does not.

Command Reference 3-51

CLOSEIO

CLOSEIO also clears error messages from KERRM. This can be useful
when debugging.

Related Commands: BUFLEN, OPENIO

CLz

Clear Sigma Command: Purges the current statistics matrix
(reserved variable Y DAT).

Keyboard Access: ()(STAT) @if
Affected by Flags: None
Related Commands: RCLY, STOX, ©+, ©—

CLTEACH

Clear Teaching Examples Command: Removes the EXAMPLES
subdirectory and its contents from the HOME directory.

Keyboard Access: None. Must be typed in.
Affected by Flags: None
Related Commands: TEACH

CLUSR

Clear Variables Command: Provided for compatibility with the HP
28. CLUSR is the same as CLVAR. See CLVAR.

3-52 Command Reference

CNRM

CLVAR

Clear Variables Command: Purges all variables and empty
subdirectories in the current directory.

Keyboard Access: None. Must be typed in.
Affected by Flags: None
Related Commands: CLUSR, PGDIR, PURGE

CNRM

Column Norm Command: Returns the column norm (one-norm) of
the array argument.

{}

Level 1 . Level 1

[array] - Xcolumnnorm

Keyboard Access: i
Affected by Flags: None

Remarks: The column norm of a matrix is the maximum (over all
columns) of the sum of the absolute values of all elements in each
column. For a vector, the column norm is the sum of the absolute
values of the vector elements. For complex arrays, the absolute value

of a given element (z, y) is \/m

Related Commands: CROSS, D<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>