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What Is This Book?

This book is to help you use the HP 48G or HP 48GX calculator to improve your

understanding and increase your enjoyment of the collection of mathematical

topics usually grouped under the names ofAlgebra and Pre-Calculus. You may

be a student currently enrolled in a Pre-Calculus course, a student in a Calculus

course (which builds upon Pre-Calculus topics), or a student oflifelong learning

who has an opportunity to learn (or re-learn) something new and useful.

This book organizes the material much as a standard text does. Chapters are divid-

ed into topics. Topics are divided into examples, each ofwhich demonstrates how

to use the HP 48 to solve and illuminate a problem of the kind you are typically

asked to solve in a Pre-Calculus course. Occasionally, the examples make use of

programs that extend the capabilities of the HP48. The full listings for these pro-

grams are included (in alphabetical order) in the Appendix.

If you are currently a student in a Pre-Calculus course, please note that this book

isn’t meant to replace your textbook. In general, this book makes no attemptto

rigorously justify the techniques and concepts used in problem-solving as does a

standard text. Also, there may be topics treated in greater depth in your textbook

than in this book (or vice versa).

What Do You Need to Know Before Using This Book?

You should have a basic working knowledge of your HP 48, including:

» Performing basic arithmetic calculations

» Navigating menus

 Entering alphabetic characters

» Storing, recalling, and using variables

 Entering and using lists, algebraic expressions, and programs

(If you need a quick review, stop here now and work through the Quick Start

Guide orthe first 3 chapters ofAn Easy Course in Programming theHP48G/GX.)

The only other things you need are a basic understanding of algebra, access to an

HP 48G/GX calculator, and a willingness to explore Pre-Calculus mathematics.
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Linear Functions

Mathematically, afunction is a process that accepts certain inputs and generates

corresponding outputs—exactly one output for each input. A simple kind offunc-

tion is the linear function, so-named because its graphis aline. Its slope- intercept

form is f(x)=mx+ b; mis the line’s slope, and b is the y-intercept.

Example:

1.

Plot the linear function, f(x)=mx+b.

The HP 48 can plot a function when the only undefined variable is

the independent variable (that’s x in this case). So you must give m

and b numerical values before attempting to plot the function. Use

m =2 and b = 1.4: From the stack, press (2)(')(eJ<q M)(STO)and
(11-J4)(")(«Jq)B)(STO) to store the values for the coefficients.

Press (©PLOT)to begin the PLOT application. Then press (DEL)(Y)

ENTER] to reset the various plot parameters to their default values.

. To change the content of a field in an input screen, you move the

highlightto that field (using (a),(v),(»), and («)), then enterthe infor-
mation. Some items you can type; others you select via [§;|1{1kq or

FINTH. Now change the plot type to F1Iri=t. 110, if necessary.

. Movethehighlightto theE:field; enter the expression ' fi#x+b ' :

(NeJaMX)(@a)X)#)(el)B)(ENTER). Note that onlythe right-
side of the function need be entered. Set the IMIEP: field to (lower-

case) * (note thatno ' ' are needed here): (@&X)(ENTER).

Asfor the part ofthe plot to be displayed, the defaults for H=YIE}-

and Y¥-YIEk! are adequate.

Press[dLBaRLLICE.

 

!
eI[PTSTT[T   
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Example: Repeat the previous example with m = 2, but vary b with the values

—2,-.5,1,and 5. Plot each graph without erasing the previous ones.

1. Use (CANCEL] to return to the PLOT input screen, then CHLC
to use the stack from within the application.

2. Press to go to your VAR menu,then type the first de31red value
ofb,(2]+/-), andpress (¢ Kl38l (or, equivalently, JEEE 1888

3. Press (¢CONT)E'[Z88 (to get back to the PLOT input screen), then

(NXT)HTTEE (don't use [(IJTELT; you wantto see the plots together).

4. Repeatsteps 1 through 3 for the other values ofb (.5, 1,and 5). The

figure below shows allfive lines plotted on the same graph.

 

   

 

 

 

  
I_."'. & a4

s
ETTAGGRT
 

Example: Repeatthe previousexample, with b fixed at— 1, butthen vary m (use

—2,-0.5, 1, and 5). And try using the FaMily PLoT (FMFLT) pro-

gram (ifyou have previously entered it—see page 281). Here’show:

1. Exit the PLOT application with (CANCEL). Then, from the stack dis-

play, type (¢]e]FIMPIL)(T)(ENTER).
 

RALY FLUTW@%
Ef: :
INDEP: 3 YARY:
YALS:
HMIM: =5, 5 HMAE: 5.5

EMTEE THE FUMCTIOM
=700 RREREN]EERENNEENENN(TS
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2. To store -1 in b, the procedure is the same as in the built-in PLOT

screen: [THl (vAR)+/=)I,thenJconT)I

3. Thefunctiondisplayed in the E¥:: field is correct. Enter the indepen-

dent variable, <, in the IMOEPR: field and the variable whose effects

you wish to study over the several simultaneous plots (1) into YHF":

field: (»)(af&q)X)(ENTER) (2]MIENTER).

4. Enter alist of its desired values into WAL =:: (&)}2)+/=JsPCc)(-]

(+/=)(sPC]1)SPC)(5] (ENTER.

5. Leave the H=MIM: and H=FH: as they are and press 34lThe
function is plotted four times, once for each value ofm (which you'll

see displayed as each line is drawn):

 

 

'M=5   

 

 

   
AN .
e | e

SelR ETEEB ET AT   
Example: Before you plot, it helps to know the range of a function. To easily

find the range of, say, f(¢) = %t — % with ¢ € {-3,-2,-1,0,1,2,3}:

1. (Use(CANCEL]CANCEL)to exitFIMFLT) Put the right side of the func-

tion on the stack: ((]EQUATION) 2]=])]T=)5=)3)[ENTER).

2. Enterthe domain list: ()T})(3)+/=)(SPC)(2)(+/=)(SPC).. .etc., (ENTER),

And store the domainin 't ': ("[o]&)T)(STO).

3. Nowjust evaluate the function: (EVAL). And rationalize the decimals

in the result: (1)0)(«)a)(F)1)X)([ENTER))SYMBOLIC)(NXT)EEEA1N

Result: A list of range values corresponding to the domain values:

EO-(113)0 -3 (3 -(5e3) -
1 | 15: | 1 1 1._5: 1 ::
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Quadratic Functions

Quadratic functions are functions of the form f(x)=ax* +bx+c.

Example: Practice more now with the FI'IFLT program, by exploring the effect

of varying each coefficient (a, b, ¢) of a general quadratic. Remem-

berto store values in the two coefficients not being varied:

 

  ————y~ $ q__i }

200ik[TRACE]FCN EDIT

Varyinga a=1 -5 -1 2 7 1,b=4c=-1)

   
 

   
 

  SsT=
BeGRT-

,   
Varyinge (a=3,b=5c=1 -8 -1 1% &7 b
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The discriminant of a quadratic is given by d = b*> — 4ac. What doesthesign (+

or zero) ofthe discriminant, d, indicate about the function’s graph?

Example:

. By rearranging the discriminant equation, b =

. Store the list of values for dinto 'd"':

Graph cases where d =-4,d =0, and d = 12.

1. Arbitrarily leta = ¢ = 1: (1)2A)ET0)(1)G[C)E0).
Vd4ac+d =~4+d.

Enter that equation for b: (a)o]S]T[DJENTER)&)JEQUATION)(X&)

(@)@mTH) ETERSBT(<)<(D) [ENTER).*

GIU)(4I+-)(SPC)(0)sPg)

 

([eJalD)ETo)
. Press [EVAL] to compute the resulting list of values for b.

5. Press (']aJ<q)B)(STO) to store thatlist into 'br" .

. UseFIMPLT to plot functions witha=1,b={0,2,4},and c=1:
(then or asneeded) tostart the program. Then

enter the quadratic function (' ¥~2+b#¥x+Z " ) into the Ef:

field,if it isn't already displayed from the previous example. Make

sure that the IMDEP: variable is  and the WAEY: variable isbr. With

theWAL =: field highlight, press
to enter the list of values to be tested. Confirm that the x-range is

(6.5 to 6.5) and draw the plots with [-8ll. Here’s the result:

 

‘E=Y ] ,,"'.

.x__.-- 1 __,.-"'

. I ,af:f-ff
—xH-__\_\_\_H_ 4 _

EIE[E]EII

-

.
J
.
-
‘ 1 1

 
    
 

*Since you're going to evaluate a list of values, you must use theAD function, not+. The + function concatenates

lists (and appends or prepends objects to lists); the ADD function adds corresponding elements of lists—in a

manner analogous to (=, (X), and ().
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Sometimes a function appearsin a less recognizable form, so that you need to do

a little rearranging before it looks familiar.

(3-y)
X

1. Use(=)sYmBoLiC)v)v)v)B[lto get the ISOLATE A YAKIRELE
screen. Note that this feature works only when the variable you want

to isolate appears exactly once in the equation (so, for example, you

could not use it to solve for x here).

2. Enter the equation into the EXPFE: field:

B1a=Ia)0EI=Ja]Y)(=)(@Ja)X) [ENTER).

3. Enterd (lower-case) into the ¥AF: field: (v)(aJ&)Y)(ENTER.

4. Make sure the KEZULT will be Sumbia] 1< (if necessary, press

to toggle between Humetr1< and Zdmbia] 12). Press

BTo 1t the application do the isolation for you.

Result: '4=3—[Z*#u+0]!

5. Finally, press ()SYMBOLIC)Tl[TH#{ to tidy up the result:

'y=g-Eent-G!

 Example: Symbolically rearrange 2x+5= so that y is isolated.

Now that the function is in a slightly more conventional form, you can analyze it

in several different ways....
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Example: Use three different methods to solve the result from the previous

example for x: Graphic, numeric, and symbolic.

The Graphic Method:

1. Press to begin the PLOT application.

2. WiththeE#?: field highlighted, press o, |8 8l then make sure the

target equation is on stack level 1 (you may need to press (DROP)) and

pressBTo copy the equation into the Ef*: field.

3. Make sure that TYPE: contains Fiuri=t. 10, that IMDEP: con-

tains (lowercase) =, that H=WIEl: is set to default values (—Eo

to B w 1), and that AUTOACALE is checked.

4. Press HTiEATto draw the plot.

—|—|—|—-|-=I$--|_\__-H '

-~ T "

 

 

 
ETTAGRTTR

5. First, use the arrow keys ((a), (), etc.) to move the cursor to the para-

bola’s apex. Then re-center the graph: Press EJTE] NvxT)I

   
 

o 4 Bt
-~ -
- L .,

el ToPsTT
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6. Tozoom the graph at the region ofinterest (here it’s where the graph

crosses the x-axis), first move the cursor to the upper-left corner of

the desired display area. Then pressmm-1lthen move the

cursor so that the zoom-box is drawn over the region of interest;

pressENI1T§E. The shape and location ofyourplot may differ slightly

from the one shown below because the exact size and location of

your zoom-box may differ slightly from the one used below.

 

__,__,._,__\_h-‘ +

]T ..

eet iw—t

.f’! 1 ™
o '-1.

7 + ",

e]OST TS

 

    

 

7. Press [FFE®I. You can now use(«€)and (»)to trace along the
graph! Trace to the points where it meets the x-axis. Notice the

cursor coordinates there. (Again, the coordinates you see may differ

from the ones shown below because of differences in the zoom-

boxes used.)

 

 

 

--__——___--.-

_,.-""-.- I-"\-,_

ffj- — .

4: -3.00E0 v: 0R15195366   
8. With the cursor near a solution point, press (if the menu is hid-

den) lH BREI'E®. Doing this for each root shows that the exact

solutions are indeed -3 and 0.5.
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The Numeric Approach

1. Return to the stack ((CANCELJCANCEL)) then press (=)SoLvE)Al
to begin the Z0LYE E:UATIOM application.

. If you just entered the equation in the PLOT application, you will

probably see it displayed in the E*: field. If not, enter it manually.

3. EnteraH value for'f: (the “solution” is the value ofx wheny is zero).

Enter a positive guess (say, 5) forii:. Then move the highlight back

to the i1+ field and press EjtI&dY. Result: #: .5

. Try anegative guess (say, -5) forw:. Then, againmove the highlight

back to the ii: field and press E{1IIRYY. Result: #: -3

The Symbolic Approach

1. Return to the stack (CANCEL)), then press ()SYMBOLIC)(a|T:EE
to begin the *OLYE UADKATIC application

2. Entertheexpression (' S—=%x"2—2% ' )intothe EXPR: field:

-mumaennum
3. Enter the variable for which you’re solving (i) in the Y¥HF: field.

WithREZULT: showing=dmbna 1 1= andPEIMCIPAL unchecked,

press Bl [Tl The general solutionresults: '#={2+s]#7)—4"

 

. The =1 in the solution is a placeholder variable inserted by the HP

48 thatmeans “t.” Thus, the single resultis actually two results: the

value when =1 = 1 and the value when =1 =-1. To further evaluate

the two results,pressmm.<SS
(STO)(EVALJ(SWAP)(1])(+/=)(VAR)
 

 

 

Results: 'w=—3"
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A rational function is the quotient of two polynomial functions: f(x)=

Rational Functions

p(x)
q(x)

Wherever g(x) is zero, the function is undefined; there exists a discontinuity. For

example, the function f(x) = 2_x5’ has a discontinuity at x = —5. On the HP 48,
X+

whether (and how) such a discontinuity is displayed in a function plot depends on

several factors:

The resolution of the plot. The PLOT application plots only a sample of

points along the function,so it simply may not sample the point of discon-

tinuity. This may make it appear as if there is no discontinuity.

The status of flag —31. When it is set, only the sampled points are plotted

—no connecting line segments. Discontinuities can masquerade as unsam-

pled points. When flag 31 is clear, COMMELT mode is enabled and the

sampled points on either side of a discontinuity may be connected by a line

segment—for many rational functions, a “vertical line” at the asymptote.

Example:

18

1.

2.

. Press E

—3x

x> +3x+2

Press and make sure the TYPE is Funct 1om.

Enter the function in the E: field: ((§]EQUATION)(+/=)3)(aJIX)(=)

(H)(2)ENTER).
Set the IMDER: variable to (lowercase) = and set the H=YI1E} range

to—E & and the ¥=WIEK range to —= 2.

Plot the rational function f(x)=

. Bring up the PLOT OPTIOME screen (f!zE3) and make sure that

_ORBMECT ischecked on (toggle the check-mark with either[Faio

or (+/5)). Next, at the =TEP: field, reset it to [*f 11. (default) value

by pressing (DELJENTER). Then move the highlight to the bottom of

the screen and enter 1 in the H=TICE:: and ¥~TICE: fields and turn

off the check-mark in the PIiEL= field on the bottom line. This will

place a tick-mark for each one unit along the horizontal and vertical

axes —no matter what your display settings are.

813k30l to draw the plot.
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2
v

RTsT
    

Note the vertical lines representing asymptotes near x =-2 and x

= -1. The undefined points at the asymptotes lie between two

plotted pixels, which were connected (inZOMMELCT mode) by an

apparently vertical line segment.

Example: Plot this rational function:

—3x

x*=3x+2

1. Press to return to the PLOT input form and reset the plot

parameters: YJENTER).

2. Highlight the EV: field, press f3U§Hll, change the first + in the de-

nominator of the function to a — (eleven (»)’s, (@), then (—JENTER)).

3. Change IMDEP: back to  and the values in ¥=WIEF to —=2'2 and

301, Press [TEF0TH:1%0 to draw the plot.

f(x)=

 

 

 
i i j__'

+ Il'f

| I
) i

Rl ToPsT   
Note that no “vertical”” asymptote lines appear because the function

is undefined for the exact value of one of the pixels.
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Exponential and Logarithmic Functions

Exponentialfunctions have the form f(x) =a”*,wherea# 1. The variable is con-

tained in the exponent part of the expression.

Logarithmic functions are inverse functions of exponential functions. They have

the form f(x)=1og, x.

Example: UseF['IPLT to explore the effect ofvarying the a parameter in an ex-

ponential function.

1. From the stack, typeFIIFLT and press orselect g|from
the menu.

2. Enter the exponential formula (' &') into the EiX: field and

into the IMDOER: field (if it isn't already there).

3. Enter the parameter that you are varying (&) into the YHEY": field.

4. Enter the list of values you want to use for 4 in the WHL*: field. Try

 

TS 9d4ae 1

5. Enter the horizontal range you want displayed in #iF-1lM and niF1H:.

Use—1 to.

6. Press[liEN.

'A=h" ] !

 

 

il   
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Example: Now use FIFLT to explore the effect of varying the a parameter in

a logarithmic function.

Note that the HP 48 can use logarithms directly with only two bases

—10 and e. However, a simple transformation makes the use ofany

logarithmic base possible:

1. Press to return to the FAMILY PLOT input form.

2. Into the EL: field, enter the transformed logarithmic formula,

"LOGLG0!

3. Leave the remaining entries as they were in the previous example

and pressBT

 

lH:EI

 

 

   e .r II

LT[LTTTT
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Compositions of Functions

If f and g are two functions, then the composition of g with f is the function

(gof)(x)= g(f(x)). Compositions use the output of one function as the input

of the other. Not surprisingly, this makes the HP 48 very well-suited for perform-

ing compositions.

Example:

1

2.

3

Example:

1.

2.

3.

4.

22

Find the composition g o f for

f(x):i and g(x)=+4—x"
x+1

. Entertheffunction (' £« 3x+11");storeitas ' ' : ("oF)(STO)

Enter the g expression, using T as its variable (' [ {4-F™£1").

. Press (o]@]CJF)(ENTER) to be sure that you obtain symbolic
results, then (EVAL: ' JL4=CE(u+1 11720 If you wantto look
at the result in the EquationWriter, press (¥). Then (CANCEL]CANCEL

to return to the stack when you’ve finished viewing it.

Find the composition f o g for the functions in the previous ex-

ample, using the LIFI)Sprogram (see page 277).

Enterf: EQUATION)(2])(=)(el()(1) ENTER)

Enter g: ((9]EQUATION)(x)(4)(=)(JalX)(]ENTER).
Enter the name ofthe variable in f: [aJ&X)(ENTER.

Type LMFUS and press or press E8pilgl!li from the menu.

Result: 'L04—2)+]10!
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Inverses of Functions

Two functions,f(x) and g(x), are inverses ofeach otherif f o g=xand go f = x.

For example, 2x and 3 x are inverse functions of each other because both com-

positions yield x: 2(1x)=x and £(2x)=x.

3x-1
S

1. Enter the function as an equation, substituting y for f(x):

Example: Find f~' (x), the inverse of f(x)= 

=lB107!
2. Solve for x by entering '*' on the stack and pressing (€9)SYMBOLIC

.Theresultis ' #=[9*Z+1 13" Notethat ISlworks on-

ly when the solution variable (‘="' in this case) exists exactly once

in the expression.

 

3. If you mentally exchange the positions of the x and y variables and

substitute f~' (x) for y, you'll get the inverse function:

2x+1

3
 ()=

Example: The short programF IM\/(see page 281) makes it easier than that. To

repeat the above example:

1. First, enterthe function: (&q]EQUATION[&])]3]oX]=]1]»]+]2]

ENTER]J.

2. Then enter the variable of the function: (']a]¢&q]X](ENTER).

3. Type in F IMV and press or press HALin the menu.

Note: Just like the built-in I5L, the F IMY program requiresthat

the solution variable appears only once in the original expression.

Result: '[uwsZ+11-3"

Composites and Inverses of Functions 23



User-Defined Functions

The HP 48 allows you to create short programs that work for the most part like

the built-in mathematical functions. These programs, called user-definedfunc-

tions (UDFs) all have the following structure:

% * local names defining procedure *

There should be one local name for each variable in the function you are defining.

The defining procedure may either be a program (i.e. in postfix syntax) or an

algebraic object.

The following examples illustrate a variety of user-defined functions.

Example: Create a UDF for computing the volume of a cone from the radius

of its base and its height: V = g—rzh.

. Type# + + h 'r™Z#he3%1" # (ifyou prefer to use the algebraic
syntax in the defining procedure); or

type# * t b # r Sl h * 23 2w % # % (if you prefer
the postfix syntax).

Note that in either case, the 7T term comes last so that the remaining

factors will be fully evaluated.

. Enter the name for the UDF: (']o]o]V]CJOJIN]E](ENTER).

3. Store the function: (STO).

24

Test the function. Put aradius of4 and a height of 11 onto the stack;

execute the function WCIIME : hoae1]8.

Result: '5H.BLEEEEEEL#T' (if Flags -2 and -3 are clear)

154, 286IH1 1 (if either Flag -2 or -3 is set).

 

Reminder: Flag -2 controls whether symbolic constants such as tare

kept symbolic (clear) or forced to be numeric (set). Flag -3 controls

whether algebraic results are allowed to remain symbolic (clear) or

are forced to be converted to numeric form (set).
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Example: Create a user-defined function for the distance between two points

in space:

 

DIST(X,, 31521, %0 ¥502) = (%5 =%,+ (3 = %) +(2, —2,)’

Assume that the function will find the six coordinates on the stack

in the order shown next to DIST in the above definition.

. Enter the equation, including the name,I5T, and thelist of varia-
bles it uses (in the order they go on the stack) on the left-hand side:

(JEquaTioN)(o]ST«D)X(Ja]Y)

OEHBOEEESOHNaEEENBQrEa0
POQY2HIGVDMHEI0[alz]2)
BQZHPIEENTER)

. To store the expression on the right-hand side ofthe equal sign in the

nameon the left-hand side, you simply define the equation: DEF).

. Testit by finding the distance between the two points (3,-4,6) and

(1,8,-3). Enterthe six coordinates in order and execute [II5T:

(3)(ENTER)(4]+/=)[ENTER](6)[ENTER)(1)[ENTER](8)[ENTER)(3+/—)[ENTER]

VARHTERE.

  

Result: 15. 13&74595H4
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Can a UDF be plotted? Usually not without modification; most UDF’s remove

objects from the stack (which wreaks havoc with the PLOT application). How-

ever, the modifications necessary to make them “plot-ready” are often quite easy,

as the following example illustrates.

Example: Use the VLIME function to plot the variation ofa cone’s volume with

the radius of its base (assuming the height remains constant).

. Open the PLOT application and highlight the E¥*: field.

. Move to the stack: (NXT)gsf;|5.

. Recall WLTME back to the stack and edit it so that r and 4 are given
the values 't' and 1, respectively: (VAR)(=ETH!IEH ()(>)()(e)

(JR)(»)(SPC)(1)(ENTER).

Return the modified version to the E*:field: T87).

5. Putt™ into IMDEP: and set H=WIEK: —. 0 & and Y-VIEK: =5

26

Press {1##3l to go to the PLOT OPTIOMX screen. On the top line

you will see settings for the plotting range for the independent vari-

able. Much of the time,the plotting range is the same as the hori-

zontal display range (H='1El{)—indeed, this is the default setting.

However, there are occasions when you may wish toplot a different

set of values than those indicated in your choice of display range.

Set the plotting range toLO: B HI: 1. Then press to save
your settings and return to the main PLOT screen.

. Plot the function: [TEF[TA:1%1:

 

   200k c8.[TRRCE]FCN EOIT
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You may prefer to use a friendlier kind of user interface with your UDF’s. Jim

Donnelly’s program, LILIFLII , included in his book The HP 48 Handbook (and in-

cluded here with his permission), takes the name of a UDF that you have already

created and providesit the kind of friendly user-interface similar to many built-

in applications on the G-Series machines.

Example: (This example assumesthat you have already keyed in the LILIFLIT

program, listed on page 317, and that it is stored in the current di-

rectory path). Use the LIIFLII program to get a specialinterface for

the UDF in the example on page 25 (UI=T).

1. Enter the name ofthe UDF onto the stack: ('Jo]a)D]1JS]T)[ENTER.

2. Execute the IIFLIT program: (o)U)D)FJU)1)(ENTER).*

 

B?#:mTSe

 

:-x-@:-@-:-:-n-:-:-n-:-c-:-c-c-:-:-o-: SeL

H1: ¥1:
21: HE:
Ve 7a:
DIET:

EDT]]

 

  
 

3. To test the new interface, calculate the distance between the points

(4,-1,-2) and (-5,3,0). Move the highlight to the 11l field and enter

the various coordinates: (4)(ENTER)(1)+/=)(ENTER](2]+/=)(ENTER)

(5)+/=)(ENTER)(3)(ENTER)(0)(ENTER); press ' |4 , then (a)I THE:

  

  
 HESIORNACEIEMNOEIEINST Iy 1= T WSSO0N00!

    

SRRRR SRRR

Wl: Y1: —1
21: -2 Ha: =5

Yg: = z2: M

DIZT: 5l

  
 

*If you havetrouble here, be sure that [ I'5T must be in the current directory path in order for lIOFUI to find it.
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The Trigonometric Relationships

Trigonometry is the use of “triangle measurements” to describe angles. Every

angle 6 has an associated a set of right triangles that can be constructed around

it to demonstrate various relationships:

 
 

 
 

........... P(x’y)

b r C
Yy

0l = |

1 a:' 1

: X c
sinf =2 cos@ == tanf =2 =5

r r X r
r b r a x d

csch=—=— secO@=—=— cotf==2==
y r X r y r

The six trigonometric relationships—ratios, actually—are derived directly from

the basic geometric rules of similar triangles. And notice that if you let the radius

r =1 (i.e. use a unit circle), then the ratios show up even more directly:

 
 

cot 6
edece)

(cos 6, sin 0)
ese

9

..°«-

sin 6 @0

O|
CcOS 9

l

|

1
 
 

sec9

Besides showing the trigonometric ratios directly, the unitcircle also helps to de-

fine trigonometric functions. These functions describe how the trigonometric

ratios (sine, tangent, etc.) change as the angle 8 changes (e.g. as the radius, 7,

“sweeps” around the circle). The trigonometric ratios encountered as the radius

sweeps around the circle repeat themselves; i.e., the trig functions are periodic.
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Radians and Degrees: Units ofAngle

When measuring angles as a part of triangles, it is most common to use degrees,

minutes and seconds. But whenever you wantto use angle measure as the inde-

pendent variable in a function—for example, when plotting or solving—you

should use units of radians. Aradian is the amount of angle you sweep out as you

move along the arc of a circle for a distance equalto the radius of that circle. One

radian is exactly %degrees (approximately 57.3°).

Example: Convert 214° to radians.

1. Enter 214 onto the stack: 1]4)(ENTER).

2. Press(MTH) A=18NTINXT)it5.

Result: 3. 730HE4599EY radians

   

Example: Add 23°34'18"to 15° 42' 07" and convert the result to radians.

1. Enter 23.3418 onto the stack: (2]3]-[3]4]1)8)(ENTER).

2. Enter 15.4207 and press (HM=+ does degree
andtime addition, hence the acronym: “Hours, Minutes, Seconds”).

3. Convert the result to decimal degrees: [TElEa.

RERL  4. Convertdecimal degrees toradians:(MTH)

Result: .ot30E2HZY

| NxTINXDETETH.

/4 : :
Example: Convert 23 radians to degrees, minutes and seconds.

1. Enter 'm<23" onto the stack: J&q)m)(=)(2)]8)([ENTER).

115152. First, convert this angle measure to decimal degrees:

(then if necessary).
3. Now convert from decimal degrees to degrees, minutes, and sec-

onds: [q)TIMENXT)ELIRED.

Result: 'b.232007 1453 " | which means 6° 25' 428"
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Example:

1.

D
R
W

Plot the function, sin(X), in radians, then in degrees.

Begin the PLOT application ()PLOT)) and makesure that the TYPE
is Furi=t 1om and that & is Fad.

Reset the plot parameters to their defaults: (DEL)(V)(ENTER).

With the highlight on the Ei* field, type ('JSIN[«)X)(ENTER).

Draw the plot: [iE3[TTTHE.

When the plot is drawn, press (CANCEL]to return to the FLOT screen,

and change i to ['=q (press (G]RAD)).

Draw the plot again on top of the previous one: 'DEA

 

 LD
TATRTTR

    
Those two plots are not nearly the same, are they? This illustrates

the importance ofmatching the display ranges to the angle measure:

To achieve the same plot in degrees, you would need to change the

H-YIEHKto run from -720 to 720 before drawing.
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The TRIGX Program

TR IGH is a program that computes a number of differentratios and values for a

given angle. After entering the program (see page 314 in the Appendix), you start

it running either by typing TRI# and pressing or selecting from
the menu.

 

SEHEEEE TRIGOMOMETRY EXPLOREF 5358

DM - & 'wod!
RADILS: siM: P[22
ARC: '4 'ons: N[2e2
ARER: 'wo8' Tam: ]

ANGLE IM DD.HMSE
T IBNRN(71,78T  
 

To use TRI:#, you simply enter any known values into their appropriate fields

and then press [l |.The program will compute values for the remaining fields.

Here’s how it works:

 

o If the angle measure and radius are given, |F.I[3#basesits computations

on them.

» If more than one angle measure is given (i.e. degrees and radians), then the

computations are based on the currently set mode; the otheris re-computed

to match.

e Ifthere is no angle measure or radius given, they are computed from those

values that are given,if at all possible. Only principal angles (matching the

given inputs) will be returned.

e Ifitis not possible to compute an angle measure or a radius, default values

of 45° and 1 are used and the computations adjusted.
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Example: Given: 60° angle and a radius of3.

1. Begin the program and enter the values in the appropriate fields.

 

 

 

  
 

2. PressiE=

STRIGOMDMETRY EXPLORERS350
Lipr4zon: [Callll o ']3!

RADILE: 32 M, BERH,.,
REC: 't cos: Vo
ARER: '2-2%,., TaM: 1,732,

AMGLE IM DD.MMSE
ENT|||[tAMiL|OK

40
Example: Given: cos 0=-0.5, tan 0 = +/3, and arc length =

1. Clear the data from the previous example: (v)(ENTER).

2. Enter values in the appropriate fields. Note that you can use tick-

marks to enter a value “symbolically” (i.e. ' 4E-"3%7"), ifyou wish:

(WI¥) ()4)o) (=) (3) (X) (aJm) (ENTER)1(ENTER) ()(S

 

 

 

ENTER|.

3. Pressig

STRIGONOMETRY EXPLORER SE8EHE
Zeppzon: pEdsic o 'dqoS!
RabluE: 16 M - E:E-E-...

ARC:  '4@-3,, cos: '—01,
RRER: 'Z2HAA,, TAM: 1, ?E:E
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Verifying Identities

There are a number of special interrelationships between the trigonometric

functions that are always true no matter the size of the angle or angles involved.

These interrelationships are called identities.

Here is a core list of important trigonometric identities:

e Pythagorean Identities. These are evident if you apply the Pythagorean

theorem for right triangles to the diagram at the bottom of page 29.

sin? @+cos*@=1 (thus 1—sin’? O =cos® @ and 1 - cos® 8 =sin’ 0)

1+tan* @ =sec’ O (thus sec’ @ —tan’ @ =1 and sec’ @ —1=tan’ 9)

1+cot?@=csc* @ (thus csc’@—cot>@=1 and csc* 0 —1=cot” )

* Difference and Sum Identities.

cos(at fB)=cosocosf Fsinasinf

sin(a £) =sinoccosf + cos arsinB

tan o  tan3

1 ¥ tan ' tan3
tan(o £)

* Double Angle Identities.

sin26 =2sinfcos O

cos26 =cos’0—sin’ 6

=1-2sin’ 0

=2cos’0—-1

2tan 6
tan265——————7—

1-tan“ 60
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* Half-Angle Identities.

.o l-cosa Q l+cosa a 1—
sin—==%,—— COS—Ei\/—— tan—zi\/Tsa

2 2 2 2 2 1+coso

e  Sum and Product Identities.

 

  

  

  

sina+sin[)’=25ina+’Bcosa—;—fl—

sina—sinfl=2003a+fisina_fi
2 2

COS(X+COSfi=2COSa+flCOSa_fl
2 2

cosa—cosfi=—2sina;fisina;fi

These core identities, the proofs for which are usually included in standard math

textbooks, are themselves used in two important ways:

e To establish new identities that are useful in particular problem-solving

situations.

e To aid in obtaining exact numerical solutions to problems involving trig-

onometric solutions.

Look at each of these uses, one at a time....
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To use the HP 48 to help establish new trigonometric identities, you need to use

its symbolic manipulation tools.

When doing symbolic manipulations, you must be sure that flag —3 is clear (press

A8 and verify that flag 13 is unchecked), so that results remain
symbolic.

Example: Verify that L= cosx - X - is indeed an identity.
sin x 1+ cosx

Although it is often faster and more convenient to do this kind of

algebraic manipulation manually, the HP 48 is capable of perform-

ing symbolic verifications.

1. Type the expression in the EquationWriter, &5]EQUATION)(a)(1)(=)

(Cos)(ela)X)TSN(JGIX)=N()X
(COs)(aJ&)X), and press to put it onto the stack.

2. Multiply both sides of the equation by sin x:

X).

3. Simplify the result by collecting like terms: (¢5)SymBoLIC)[ETH={

4. Multiply both sides of the equation by 1 + cos x and simplify the re-

sults: ("1]+]Cos]eJeq)X)(ENTER) (x) [[HEhi.
5. Use the pattern matching application to replace ' SIM:1™" with

itsequivalent, ' 1-CIS080™E . First, press 0K
wliL™ to display the FMATCH EXPRE=Z10M screen.

 

 

SRRMATCH EXPREZSIOM 2350EES
EXPF: JEERSNSEEEEREEIRARRERNARNANED

PATTERM:

REPLACEMEMT:

_ =UEE®PE FIRZT COMD:

EMTER EXPREZSION
ECIT JeHoos]][CRMCL]OF
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Next, with the EiiPF: field highlighted, retrieve the expression:

Press o888 (and () if the target expression isn’t already on

level 1), then [Hl1]4.

Now highlight the FRTTEFEM field, and enter the pattern to be re-

placed, substituting each occurrence of ! with the wildcard name

&1: ()SIN)(eJ ENTER) (1)]Y2) ENTER). (Notice that the special

wildcard character, x, can be typed with (aJ&9]ENTER).)

Type in the replacement pattern, using the wildcard name instead of

the variable: (o])ENTER[ (™) (¥¥)(2)(ENTER). Press
ENTER)(ENTER] to return the modified expression to the stack. Press

 

|

EXPA

|

ERPA

|

EXPA[COLCT

Result: ' 1-COS50u)™2=1-COS0™!

The verification is complete.
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Example: Verify that sin* x +1=2sin” x + cos* x.

This time use a graphical approach. Notice thatifyou subtract sin* x

from both sides of the target equation, you will have an expression

equal to 1, so it should (if the original equation is true) produce a

horizontalline plot.

. Enter the expression onto level 1 of the stack:

PRINCa)=2RING2+00500

Subtract sin* x from both sides of the equation:

("

JSIN)(]X)(»)

3(4)EnTER)(keB,
3. Press (]PLOT]) to prepare to plot the equation.

Reset the plot parametersto their defaults: (DEL]Y JENTER).

5. Make sure that TYPE is Furct 1om and & is Fad. Then, with the

Ei* field highlighted, press o4ol (@), if necessary, to bring
the target equation to level 1) («&5)EDIT) (>DELJDEL) (ENTER)A8

(NXT). This puts the right-hand side expression into Ei2.

Enter 3 (lower-case) in IMDEP and press [k3[T100:

 

 

 

 
ETAGT   

7. Press i193 i198 and then move along the plot with (<) and (»)
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to convince yourself that the expression equals 1 for all values of.
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8. Although this seems to confirm the identity, it isn't proof. Try one

more thing before you acceptthe verdict for good. Press to

return to PLOT screen, check AUTOZCALE and press filii15§ to su-

perimpose the autoscaled plot on top of the original:

 

 

             

 

  
What’s happening?!? Why did the seemingly constant graph sud-

denly become very “non-constant?”

To find out, press and inspect the ¥=WEF parameters that

were automatically computed by the machine (highlight them and

press @3UEER).... You will discoverthat the variation you are view-

ing 1s occurring in a vertical range of 0.000000000016. Thus, you

can conclude that the identity is true: the “huge” visual variation you

see is actually negligible—caused only by the 12-digit limitation on

numerical precision in the HP 48.

 

So although it can't provide rigorous proof, the graphical approach

to identity verification is a good check against your symbolic deriv-

ations (whether performed by hand or on the HP48). However, keep

in mind that autoscaling tends to show you any variation it finds, and

thus it can fall prey to the machine’s numerical limitations (round-

off), as in this case.
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The next example illustrates the computational use of identities.

Example:
. : . 17r . 11w .

Solve this equation for x: sin———sin—— = xsin—
12 12 4

You want an exact answer, not merely a 12-digit numerical approxi-

mation, so be sure that flag —3 is clear before trying to work sym-

bolically.

. Notice that the left-hand side ofthe equation matches the form ofone

of the Sum and Product Identities (see page 35). So, make a pattern

substitution:

First, from the stack, press (a)S Ea. Then
enter the equation in the EXPF field:

HOREEHENDISREEPSXISNG)
(m)(=[4)ENTER).
Next, enter the pattern to be matched in PHTTEEM:

'SINCRELI-SIMCEED!

And enter the new pattern in REPLACEFMEMT :

'EECOSORIHRE)RRS INC IR122020 !

Press (ENTERJENTER]ENTER] to make the replacement and return to the

stack.

Solve for %: (MeX)) svmeoLic) Mo TN

 

 

3. Change the decimals to fractions. Note that whenever you do this,

40

STL display format sometimes yields odd results do to rounded pre-

cision in the last decimal place (thus a change to FIformat): (9)

POee(F)XENTER(X)X,
Collect terms again and convert the decimals in the resulting equa-

tion to fractions once again: (&)PREV) 11N} BE2r.

Result: 'w=*C050~b*r)!
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Varying Coefficients in Trig Functions

The sine and cosine functions can be described generically as follows:

f(x)=Asin®*(Bx+C)+D  or  f(x)=Acos*(Bx+C)+D

Several characteristics of these plots of this function can be determined byits co-

efficients:

The amplitude of the function—the height (or depth) of each “wave”—is

equal to |A|.

: .. 21
The period of the function is equaltoH

The horizontal (or phase) shift of the function is —'—;;'.

The vertical shift of the function is D.

The shape of the curve is affected by E. Higher values of E yield steeper,

more jagged curves.

You can investigate all of these characteristics more thoroughly by using the

FIPLT program and the generic function shown above. Here are some sample
results, shown in the next few figures....
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Different Amplitudes

H={ ]. E 3 "} }_l B=].:| I:=E|5| D=1_! E=1

 

  

 

 

Different Periods

A=1, B=7 .5 1 2 I (=8, D=1, E=1
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Horizontal Shifting

A=1, B=1, C={ '-m~3' 'weq4' '3xp2' 3 D=1, E=l

 

 

  s L . L )
Ezmnm&:fifim

Vertical Shifting

A=1, B=1, =B, D=C -1 A 1 2 1 E=I

 

 

  

 

  
Different Curve Shape

A=1. B=1, C=B, D=1, E={ 1 & 3 1}
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Solving Triangles

One of the most important uses for trigonometry is the computation of distances

or angles that cannot be measured directly. Here’s the general approach for these

kinds of problems:

e “Create” atriangle involving the unknown measurementas one ofits sides

or angles. This is sometimes called triangulation.

* Measure two or more accessible elements (sides and angles) ofthe triangle.

» Usethe principals and theorems oftrigonometry to compute the unknown,

remote element.

The process of computing the missing elements of a triangle from a few givens

is referred to as solving the triangle. The figure below shows the elements of the

triangle as they are conventionally labeled:

¢ b Area = K

B A
c
 

Note that a is the shortest side, ¢ the longest. AngleA is opposite side a, angle B

opposite side b, and angle C opposite side c.

Triangle solutions use of a series of trigonometric laws, each of which requires

that a particular set of triangle elements be known:

* Sum ofthe angles: The sum ofthe interior angles in a triangle equals 180°.

Required knowns: Any two angles (AA).

a b C
 * Law of Sines: —— == —
sinA sinB sinC

Required knowns: Two angles and any side (AAS, ASA); or two sides and

a non-included angle (SSA).

e Law of Cosines: a* =b* +c* —2bccosA

b* =a* +c* —2accosB

c*=a*+b*—-2abcosC

Required knowns: Two sides and the included angle (SAS); or all three

sides (SSYS).
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 Heron's Formula: K =./s(s—a)(s—b)(s—c), where s =
 a+b+c

Required knowns: All sides (SSS); or the area and any two sides (KSS).

e Area Formula: K= -l—ab sinC = lazc sin B = lbc sin A
2 2 2

Required knowns: Two sides and the included angle (SAS); or the area and

any two sides (KSS); or the area, an angle, and an adjacent side (KSA).

e Area Formula (2-angle form): K=—
1 2 sin Bsin C

B+C2 n
Requiredknowns: Two angles and the included31gie (ASZ\) or the area and

any two angles (KAA); or the area, an angle, and an adjacent side (KSA).

Example:

.

Solve a triangle (including its area), given: A =25°, b=6, c¢=3*

Consider which laws you can apply to obtain the missing elements.

The known values here are two sides and the included angle (SAS).

Solve for a by using the Law of Cosines: SetIE: mode, then press

fil1] 888 to begin the Solver. Highlight the Eifield, then:

(TJalAY2al=)ealBlYI)HealcY=X
EIX)(a)c)X)Ccos)(«A)([@)(2)(6)ENTER). (The degree mark
helps denote angle names.) Enter values in the H®, E and [ fields,

then highlight # andB3 Result: #: 2.51731&12174

Use the Law of Sines to compute B: Move the highlight to Ef* and

enter the equation: ' &5 IMCHY 1=b-SINCE" 7', Known values
remain from before, so highlight the E® field, enter a guess of 100

(1)o)oJENTER)),** and(«E. Result: EB: 122, 2872rorzed

Subtract the sum ofA® and E® from 180° to find Z®: Press
2]5)B)(1)8)0)&SWAP)(=). Result: 1. 17H20a4

Finally, compute K =1 bcsinA: Press (2]5]SIN)(6[X)(3)X)(2)+).

Result: . l:lEE!EE-"rE!SSE-EI

  

*This is unconventional notation (since b>c), which you'll often encounter. But since youdon'tknow all the sides,

you don't know the conventional labelling, anyway. No matter: The trig laws apply to any labelling scheme.

**[n searching for B =ASIMCSIMIR® 1#ba), SOLVE will find an acute angle—the principal value—if you
give it a guess less than 90° (or no guess at all —i.e. a “guess” of 0°). But here you (correctly) suspect an obtuse

angle for B, so you give a guess greater than 90° to guide the search properly.

Solving Triangles 45



Example: Solve a triangle (including its area), given: A= 15°, a=4,b=38.

This time, use the program 30L= (for the program listing, see page

308 in the Appendix) to automate the process of solving for multiple

missing variables.

1. e S0L= and press (ENTER); or select E[)[H=Y from the menu.p p

 

ERSEARRREE COLVE TRIAMGLE SE55aaasss

o[ ¢
s RO:

 

  
 

ED: o

HRER:

EMTEE *IDE H

EnT] ||JiAML]OE

2. Enter the known values into their appropriate fields:

(ENTER)(»)J(ENTER).
3. PressB30 After amoment, you will get amessage indicating that

the program has found Ire of Lwo =olut ions.

This indicates that there are actually two different triangles that can

haveA °=15°, a=4,and b =8. Press and one of them will

be returned to the ZOLYE TERIAMIGLE screen:

 

  
n: b3
11,1498,15
E: Z3l1.17. = 133.8..
ARER: 11,.542127363

EMTER ZIDE A
Eor]|JiAMil]O  
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4.

Example:

Solving Triangles

The two solutions use different supplementary values for B°, which

was the "missing" member of the two "couples"—a and A°, b and

B°—in the original problem. So, find the supplement ofB°, using the

stack, then delete the values for ¢, C°and the area, and compute the

othersolution: (v]¥) RTHsl8](ENTER)(swAP)(—)T
() DELJENTER])»)(DELJENTER))(DELJENTER)TEHR.

 

 

 

gSOLVE TRIHHGLE%W&
: EN B B 7. 99999,
¢ 4, 3B500,, Am: 13
E: 148.8. ¢ 16.17.,
ARER: &, 42687213696

ENTER ZIDE A
EnT]1]JeAMil]DOk

 

  
 

Solve a triangle given: K =25, A =38°, C = 86°

. Press (DEL)(V)(ENTER}to reset the values in the *OLYE TEIAMGLE

screen.

Enter the known values into the appropriate fields: (¥]»)3]8 ENTER

(»)(8)6)(ENTER]2]5] (ENTER).

 

 

 

 

RIS SILVE TRIANGLESER
A: fl B2 2.21543..,
A= 88546... Re: 33
B 56 e 86
ARER: 25

EMTER ZIDE W
H=T550 EREREEI IRERRE] ERRERNCTTTYTN  
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Solving Trigonometric Equations

Recall that an equation that is true for all values of the independent variable is

called an identity. However, many useful problems and real-world situations can

be modeled using conditional equations—which are only true for a small subset

of values of the independent variable.

For example, the equation sin 8 = 3 is a conditional equation because it is true for

only some values of 8. To determine these particular values, the equation must

be solved. There are three different approaches:

Use the built-in root-finder, with either the Solver or the Function Plot

Analysis tools.

Compute solutions directly from the keyboard using the inverse trigono-

metric functions.

Use the I 5[] command to symbolically isolate (“solve for”) a particular

variable.

Example:

48

3.

Root-Finder. Use the built-in root-finder in the SOLVE application

to solve the equation sin 8 = 1.

. Make sure that you’re in Degree mode, press () SOLVE )il '] ;48 and

 

enter the equation (' SIMCH 2=,72") in the Efield (note that

(Jo)F)types aBl).
. Then press !B with the B field highlighted. The root-finder

returns a solution, 2K, butit isn’t the only solution.

Enter£HH into the # field as a guess, re-highlightthatfield, and press

SI[HIT3. Result: 158, Ortry using a guess of“HHH. Result: 1958,

Remember: Trigonometric functions are periodic functions; they

repeat the same values over and over as the independent variable

increases or decreases.
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Example: Function Plot Analysis. Plot the expression ' ZIMCHI—. 5
using (JPLOT)and solve for B from the plot.

. While viewing the PLOT screen, enter the expression into the EL?

field. ChangelMDEP toH and setthe H=WIEK to—ZBEE ZEEE and

W-PIEK to—2 1.

Use the PLOT OPTIOM= screen (press [l
1E3; press ETCEHE.

 

) to set the ZTEP: to

. Finally, make sure that & is set to =g and press [A3RE.

 

 

ETRNR   
4. Each point where the plot crosses the horizontal axis is a solution.

To find one, move the cursor out toward the right side of the screen

 

 

ROOT: 1300001   
As with the ZOLYE application, you may repeat this with any of the

possible solutions.
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Example:

Example:

Keyboardfunctions. Find the sin @ =  directly from the keyboard.

. Enter . 2 onto the stack.

. Press ((9JASIN). Result: 3H

The inverse trigonometric functions located on the keyboard (H= I M,

HC[S, and HTHM) always return the principal value solution. For

H=IM andATAM,the principal value solution is that located between

—90° and 90°. ForHLI]5,the principal value solution is that located
between 0° and 180°.

The I50L command. Use the [50L command to find the general
solution for the equation sin 8 = ;.

. Make sure that flag —1 is clear. The ISOLcommand (among others)

will return the general solution if flag —1 is clear and the principal

solution if flag —1 is set. Press A8[cHl, and be sure that
N1l Gerneral =olutions is unchecked (if necessary, press

iH). Press when finished.

Enter the equation onto the stack.

3. Enter the name of the variable for which you are solving ('H").

50

  Press ik1]B

Result: 'B=30*(-1)"nl1+188*n]"

Then] variable stands for any whole number. If you store a whole

number in M1 and then evaluate the general solution (after purging

the solution variable, H) you’ll get a particular solution. If you store

0 innl and evaluate, you’ll get the principal solution.

For example: )o])F)€EJPURG), then

ENTER) (D)(e(STO)[EVAD yields 'H=37H" .
(DRGP)ENTER) (8)())&([STO) EVAL yields 'B=57H".

()NDETO)EVAD yields 'H=-27H".

2. TRIGONOMETRY



Problem Solving with Trigonometry

This section works through a set oftypical problem situations where trigonometry

is useful. For most of these examples, you will probably wantto set the display

mode to something suitable for real-world situations: (2])(a]aJF]|[X)(ENTER).

Prob. 1: You are considering buying a piece ofland for which the asking price

is $75,000. It is triangular plot of land has two sides which have

length 400 feet and 600 feet. The angle between these sides is 46°20'.

If comparable land is selling for $1.15 per square foot, should you

pay the asking price?

. To compute the area of the triangular plot, use the area formula

(K =+absin C) directly (make sure that you’re in DEG mode):

Enter the sides: (4)0)0) UNTs) {8J5IcH 31888o i = .
Multiply the two side lengths together and then halve the product:

(X[“)J5)X). Next, enter the angle in DD.MMSS form (4£. £) and
convert it to decimal degrees: 5]TIMENXT)[[LalEEd. Now find the
sine and multiply it by the previous product to compute the area of

the plot:

   

Result: 565G, 2617

. Compute the marketvalueof the plot of land: (1)-J1)5)
  DAONS)] AEEA|FT2 [ENE6]
Result: 995324, 92_#
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Prob. 2:

52

Two rangerstations located 10 km apart receive a distress call from

a camper. Electronic equipment allows them to determine that the

camper is at an angle of 71° from the first station and 100° from the

second, each angle having as one side the line between the stations.

Which station is closer to the camper? How far away is it?

. This problem of “triangulation”is one involving two angles and the

included side (ASA). However, simply drawing a fairly accurate

picture will give you an answerto the first question:

S
X

  
Obviously, the camper is closer to the station B, at the 100° angle.

. To determine the distance,first find the third angle, using the law of

the sum of the interior angles: 180° — (100° + 71°) = 9°.

10 km xkm

sin9° sin71°

Press (1)0]uns) [T fclulill (DSNXI(©EN(=)
Result: BH, 44_km

Now use the Law of Sines:  
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Prob. 3: Two tracking stations, located 1115 miles apart, simultaneously spot

a UFO. One station measures the angle of elevation to be 28°, and

the other 67° (relative to the same direction). How far abovethe sur-

face of the earth is the UFO? How far away is it from the closest

tracking station?

. Draw a diagram of the problem:

28° 67°

1115miles 1 x
 

h
. Note from the diagram that tan28°=——— and tan67°= —}5

X1115+ x

Thus, A= (1115+ x)tan28°= xtan 67°.

. Be sure that you’re in DE¥a mode, then input the equation and solve

for x: (JEQUATION) (G]0) (111)8) () (J&alX) ()2](»)
Salx)TaN7)ENTER) ()eJa)X] &)(SYMBoLIC)[ETLTE.

Result: '#=oco.H]!
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Prob. 4:

54

. From the diagram, d =

Scientists at two astronomical observatories, located on the equator,

observe the sun at the same time in order to determine its distance

from earth. The observer at Observatory A, located at 135° 28' 13"

West Longitude, views the sun exactly overhead. Meanwhile, her

colleague at Observatory B, located at 45° 28' 22" West Longitude,

simultaneously sees the sun centered on the horizon. If you assume

that the earth’s radius is 4000 miles, how far away is the sun?

. Begin with a diagram. Use a view of the earth and sun from above

the North Pole (not drawn to scale):

B (45° 28' 22" W) /

 

Sun

 . The earth’s radius, r, is 4000 miles,
cos O

and the angle 0 is the difference between the longitude ofthe two ob-

servatories. So, compute that angle: (o)aJS]TJDJENTER)(1)3)5]]

(2]8]1)3)(ENTER)(4)5)-2]8]2]2] HHME-1}
Result: 89°59'51"

 

 

. Now compute the distance d (and note that you must convert the

angle to decimal form before finding the cosine): [i|gk¥rd
(4)0)0)0)(=¥x). Result: 1674. 25 (miles)
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Problem Solving with Trigonometry

Notes
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The Parametric Perspective

The standard representation of a function, such as f(x) = x?, implies that the

function’s output value depends upon the input value. To plot a point on the graph

of a standard function you need only two things: the input value and the function

expression. The horizontal coordinate (x-value) is known; only the vertical coord-

inate (y-value) need be computed.

Such “dependence” can be misleading, however, so functions may instead be

representedparametrically. The parametric representation of a function requires

that both the horizontal and vertical coordinates be computed via a third value—

a parameter. The two most common parameters used are time (¢) and angle (0).

Obviously, the added complexity of parametric description must yield important

additional value or no one would bother with it. For example, this function de-

scribes the curve a rock takes asit is thrown horizontally off a cliff at 32 ft/sec.:

y =—x*/64 Thatis, when the rock is a horizontal x feet from the cliff, it is y

feet below its starting point. While that covers the raw facts of the observed

motion, it doesn’t help explain why the motion or make predictions aboutit, so

it’s hard to answer common questions: How long will it take the rock to land?

Does throwing it faster forward make it hit the ground sooner? Where willit hit?

However, the parametric representation of this motion gives more information:

x =32t
y=—16¢ where ¢ is the time (in seconds) after the throw.

Now you can see that the horizontal motion is unchanged from the initial throw,

but that all of the acceleration is vertically downward due to gravity. And the

inclusion of time into the function adds to the predictions you can then make.

Parametric representations are thus essential in separating and predicting the vari-

ous components of complex motion. Parametric representations are compatible

with the time-saving vector and matrix techniques of calculus and can, with no

more complexity, be extended to any number ofdimensions. Parametric methods

are far easier to use in computer algorithms of all kinds—from the design of

video-game images to the analysis of exploding particles in advanced physics.
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Polar Coordinates

Apointin aplane can be described in two distinct ways. Rectangularcoordinates

identify a point, P, by giving its horizontal and vertical position on a rectangular

grid—(x,y). Polar coordinates identify that point, P, by giving its distance from

the origin (or pole) and its direction with respect to the polar axis—(7,0).

P

Pole

Polar axis 

Functions using rectangular coordinates use the horizontal coordinate (usually x)

as the independent variable. Functions using polar coordinates use the polar angle

(usually 0) as the independent variable.

The relationship between rectangular and polar coordinates is best described as

a special kind of parametric relationship—where the coordinates in one system

are the parameters in the other:

2 2
r=q/x*+

x=rcos@ Y

y= rsin 6 ot 6= tan"l (_y_)

X

The HP 48 always treats the rectangular coordinate system as standard;it uses that

representation internally when doing computations. However, it can display co-

ordinates in either polar or rectangular mode, and you may enter coordinates in

either form at any time. This means that you need to be careful! Itis easy to con-

fuse yourself and generate incorrect answers.

Look at some examples....
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Example:

Example:

Example:

Example 4:

In Degree mode and with the rectangular coordinate L3 4} on the

stack, change the display to Polar mode by pressing (one
of the polar annunciators is displayed).

Result: [y £03, 12HIHZ3342)

The coordinates are displayed in polar form even though they are

still stored internally in rectangular.

While still in polar mode, enter the rectangular coordinate [ 3y %1:

&O)3JSPC]4)(ENTER].

Result: L7, <23, 12H1HZ254)

Although the coordinate displays in the command line as rectangu-

lar it’s displayed in the current mode (polar) on the stack.

Change the mode back to rectangular: (—JPOLAR). Now enter the

polar coordinate, r=5 and 8=60°: (]())5) (ENTER).

Result: (.5, 4. 331EPH1IESE)

Note that you must use the angle key to indicate that the second co-

ordinate is an angle (i.e. that the entry is polar). And once again, the

form displayed on the stack is that determined by the current setting

(rectangular).

Enter the polar coordinate (5,m/3). Watch out! In polar mode, you

must also pay attention to the angle mode (radians or degrees). Also,

note that you cannotdirectly enter T into the coordinate. Press
ENTER] 3]=J&qJ>NUM) to compute 1/3. Then (&5]RAD)(=>[POLAR)(Y)

]OJDELLS[2J<) ENTER).

Result: [0, 1,847 1970512)
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Polar Representations and Complex Numbers

Complex numbers, such as x + yi, are comprised of two parts (real and imagi-

nary). And they, too, have both rectangular and polar representations. Just as real

numbers are plotted on a line, complex numbers are plotted on the complex

plane—and thus are directly analogous to the coordinates of points in any plane.

y-axis Imaginary axis

  

7Poujts 7Cor?plex Numbers

. / ‘ | / B

t Ve X-axis ’ = eal axis

The x-y Plane The Complex Plane

On the HP 48, complex numbers are typically represented by ordered pairs—just

like the coordinates of points. Computationally, therefore, coordinate pairs are

treated by the HP48 exactly like complex numbers. This will be very convenient

when working with analytic geometry, as you’ll see in Chapter 6.

The polar representation of complex numbers is computed by using the same

: : : : x=rcos0 :
parametric transformation as with coordinates: y=rsin@ " Algebraically, then,

a polar complex number, z, looks like this:

z=r(cosO+isinb) or z=rcis@ , for short
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Plotting Polar Functions

One of the fifteen kinds of plots built into the HP 48 is designed for plotting

functions in polar coordinates. To use it, you need the following information:

e A function, f(6), expressed in polar form

* The range of 0 that you wish to plot

» The horizontal and vertical ranges of the area of the plot you wantto view.

» The interval angle between two plotted points—the resolution of the plot

(higher resolution requires more plotting time).

Example: Plot the polar function, f(6)= .6 im 6 cos 39 , and find its period.
sin” @ +cos” @

1. Begin the plot application, (=JPLOT), and select F'1 &t~ as the plot

type.

2. Reset the plot: Press(DEL]Y]ENTER).

3. Highlight the Ei*: field, press (&5]EQUATION] and type in the right-

hand side ofthe equation above. Press when finished to insert
the function into the E¥: field.

4. Change the IMDEP: variable to .

5. Notice the angle mode (in the & field). If it’s set to [*&5, then you

will want to probably wantto use the plotting range 0 to 360, (unless

you have a clearidea ofthe period ofthe function). Ifit’s set tol&id,

then use the plotting range 0 to 6.2832 (approximately 2m). Press

OPTZ[ fl, if necessary) and enterthe plotting range

for the independent variable given the current angle mode.
  

6. How often should a point be plotted (the =TEP value)? The default

setting is one point every two degrees (/90 radians). Twice this res-

olution (one point every degree or every ©t/180 radians) often gives

a very pleasing plot—althoughit takes a bit longer to plot. Use the

default for now.
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7. Press Bl[0F3001181to plotthe function:

 

 

 

 

|
"

TPTI T   
Note how the negatively sloped line on the left side of the plot ap-

peared almost instantaneously, whereas the other points were plot-

ted individually. This indicates the probable presence of an asymp-

tote. The curve is called the Folium ofDescartes. It has the curious

property that the area enclosed in the loop is exactly equal to the non-

enclosed area between the curve and its asymptote!

8. Confirm the presence of an asymptote by replotting the curve with

the COMMELT feature off (unchecked): Press (CANCEL)iEH(V)

 

 

  

;| SR

____ '-\.__:

LTFTSIT(T
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9. Now find the period: Press to preparethe cursor to
trace along the function while the display indicates the values of #

and the function (1'). Press (») to move the cursor “forward” along

the curve. The(«4key moves the cursor “backward” along the curve.

Asyoucan see by playing a bit with the cursor, “forward” and “back-

ward”are interpreted as “increasing” and “decreasing” the value of

the independent variable (#). To find the period, press the cursor for-

ward until it begins to retrace the curve. At this point, you can see

that the period is 180°, or & radians.

 

a: 180 W   
10. Try one more thing: Observe what happens if you move “back-

wards” along the curve so that # shows a negative value.... It dis-

plays the value ofthe function even for points outside ofthe plotting

range—and, you will notice, outside of the display range.
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Example:

64

. Press igl

 

Plot the polar equation, 2cos36 = 2cos’ (g)

Whenever you plot an equation that includes the independent vari-

able on both sides, you’ll get a plot of the left-side expression super-

imposed upon the plot of the right-side expression. The point(s) of

intersection of the two plots represents solution(s) to the equation.

. Return to the PLOT screen: (CANCEL) if you’re viewing the display

of the plot; or (=PLOT) if you’re viewing the stack.

. Highlight the Ei: field and enter the equation:

BlepIBGl=)ER)s(2PHRIY2)ENTER).
. Makesure that the IMDEP variable isH and that the H=WIE}] and ¥~

WIEF ranges are the defaults.

 

and turn onCOMMELT mode and=IFMLLT aneous plot-

ting mode (not required, just more interesting).

g8 [3 015188 to draw the plot of the equation (or,

rather, the plots of the two expressions).

 

 

 

  ELTTPTR
 

 

Press i#] and explore the two expressions. To make the

cursor “jump” between the two plots, use the (a)and (¥)keys. Notice

that the points of intersection occur at 8 = 0° + 360°n, but that the

period ofthe left-hand side is 180° while that of the right-hand side

is 360°.
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Example: Find all the points where the two cardioids, r = 2(1—cos6) and
r =2(1+cos®), intersect. The HP 48’s function analysis menu
(BSHel)—with its handy [EIIsd, TS, F35dH, and BTITH
commands—is available only for plots ofrectangular functions. So,

to find the intersection of two polar functions, you must observe the

functions as they are plotted together, then manually explore the

regions of intersection.

   

. Return to the FLOT screen and highlight the EL:: field.

Enter alist containing the two expressions: (QJ{}]'[2)XO]1))

>1>2]XIGOI1+]cos) Bl(ENTER).  
. Leave the rest of the plot parameters as they were for the previous

example; press [TiEISITHIRE. Watch the plot as it’s drawn.

 

" -

[TTTReTRT   
Although there are three points where the plots of the two expres-

sions intersect, only two represent true intersections (‘“‘collisions”)

where one value for the independent variable (#) gives the identical

value for both expressions. Thus, although each plot contains the

origin (0,0), they don’t “collide” there.

Use the trace feature to find the points of intersection. Press

LEe, then move forward along one of the cardioids (press and

hold (»)) until the cursoris on the upper point of intersection. The

display indicates that#: i1 and ¥ 2. To confirm this as a point of

intersection, press (a) to jump to the other cardioid.... Voild! The

identical coordinates are displayed. Repeating this procedure shows

that®: /0 and': =2 are the coordinates of the other point ofinter-

section.
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Plotting Parametric Functions

Two-dimensional functions described parametrically have their own plot type on

the HP 48. To use it, you need the following information:

» A function thatis described parametrically—i.e. described as a set offunc-

tions, x(¢) and y(¢), where the horizontal and vertical coordinates are ex-

pressed separately as a function of some parameter ¢.

» The range of the parameter,¢, that you wish to plot.

e The horizontal and vertical ranges within which you want to view the plot.

» The interval step between two successive plotted values of the parameter

t. This determines the resolution of the plot.

The Fat~amet. 1~ 1< plot type can be confusing at first, because ofits relation-

ship to complex numbers. On the HP 48, functions of real numbers are plotted

using the FLIMCT 10m plot type, but functions ofcomplex numbers are plotted

using the F'air~amet. 1~ 1plot type (see also pages 72-75), because a complex

number is composed oftwo parts—Ilike the two coordinates in a parametric repre-

sentation. But this association of parametric functions with complex numbers

means that you must enterparametricfunctions as complex numbers—either in

coordinate form ,' [0t 1, 94t 12" or algebraic form, w2t 149t %’ *

Example: Plot the Folium of Descartes using its parametric description:

x(1)= 1+t3 o)—1+t
1. Open the PLOT application and change the plot type to Fat~a—

meti-1c.

  

2. With the Ef2: field highlighted, enter the parametric functions to-

gether as a single complex number: ((§]EQUATION)(&JO)a)(6)(@)&)

>JHISTIYT3))@leDI
H)ETZY3E).

*Note that no matter which form you choose to enterit, the complex-valued function will be displayed in the form

determined by the currentstate of flag -27. If flag -27 is clear (default), it will be displayed in coordinate form.

If flag -27 is set, it will be displayed in algebraic form.
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0

1447 14470

Press (ENTER] to return the expression to the Ei: field.

3. Now highlight the IMDEP: field and enter the name of the parameter

(t.), which is the independent variable.

4. Openthe PLOT OPTIOM: screen. The most difficult aspect of plot-

ting a parametric function is pre-determining the appropriate range

and step-size ofthe parameter, but fortunately, the graphing technol-

ogy of the HP48 makesit easy to refine your choices. To begin, just

use the default step-size (you may need to reset it: highlight the

ZTEP: field and press (DELJENTER)). Since the parameter, 1. , is often
regarded as “time” when working with real-world applications,try

a plotting range of LO: Kl toHl: 1K, asin O to 10 seconds.

5. Press BlE (3,43[Tto draw the plot.

   

 

 

—.
#f)

f

n"'{.:::;

/

 

Z00M[k[TRRCE] EDIT   
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6. You know from the previous section that the graph of the Folium of

Descartes includes two asymptotic wings in addition to the loop cap-

tured in the plot above. Why didn’t they show up in the parametric

plot? Explore the plot using theTRACE feature to see ifyou can find

why the wings are “hiding.” Press and then (») re-

peatedly to move the cursor “forward” along the curve. Notice that,

while the cursor moves rapidlyatfirst, it slows to a crawl on the left-

side of the loop. Move the cursor beyond T: 1{i—points need not

be plotted for their coordinatesto be displayed. It appears that as .

gets larger, the curve approaches the origin asymptotically—butit

never sprouts the missing wings. Positive t. serves only to define the

loop. What aboutnegative 1. ?

7. Press (4) and move the cursorso that it first retraces the loop back-

wards, then moves into a region where 1 is negative.... Aha! Like

a ghost, there are the hidden wings of the Folium of Descartes.

8. Now that you know some key information about the plot, return to

thePLOT OPTIOM: screen (CANCEL)lNEER) and enter abetter plot-
ting range, say — 1 K to 1 &1, so thatall ofthe key features ofthe plot

are drawn. Press [ [T T30TIwhen readyto redraw.

.
—""--r'"'.

S

x\.i
ot

T LTSI T

 

 

  

   

 

 

Note how important the kind of parameter is when you try to set a good plotting

range: The parameter used in the previous example was linear; it needed the en-

tire set of real numbers, —eo to + oo, to fully describe the graphjustonce. By con-

trast, the Polar plot-type parameter is an angle, which repeats itself as it travels

around. Thus, an entire plotis described in just one cycle; extra cycles simply re-

peat it. But a Parametric plot type also can use an angle as its parameter....
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Example: Plot the function defined by the following:

9cos B —3cos96 9sin @ —3sin90
X=—mm y=—-——

5 5

1. Return to the PLOT screen and highlight the Ei*: field.

2. Enter the parametric functions as a complex number: (¢5]EQUATION

SNEESEREOEEESHERGEE0EHAE0
(WEISN(R[F))EEISN 2TF)(>(5)ENTER).

3. Change the independent variable to the parameter, H .

4. Change the H=WIErange to— 1=to 1= and the ¥=MEHrange to

—1E to 1B, (Lucky guesses? Nope—trial and error.)

5. Because the parameter is an angle, you must change the plotting

range and step interval. Press !liand change the plotting range

to 1 to ZEHE (if in Deg mode) or & to & w 222 (if in Rad mode)

and change the step interval to 1 (ifin Degmode) or « K11 ¥42232

(if in Rad mode).

6. Press BCh(3019001128 to draw the plot:

  

 

  Z00M]ik- v[TRACE]| EDIT
 

Sure enough, one cycle through the possible angles is sufficient to

draw the complete curve. This particular curve is called a prolate

epicycloid and is part of a family of curves generated by a point a

given distance from the center of a small circle rolling around the

outside ofalarger circle. See the section on page 76 formore inform-

ation about these and other interesting curves.
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Another advantage to parametric representation is that the vertical and horizontal

components of the function can be more easily analyzed separately.

Example: Consider motion that is constrained to a straight line even though the

forces controlling the movement are not linear, such as the conver-

sion of a circular flywheel motion into the linear motion of a piston:

Suppose the motion of a particle moving only along the line y = 2,

is subjected to nonlinear forces such that the x-coordinate motion is:

x(t)=2t> —14¢* +22¢t — 9, where t is time in seconds.

1. Return to the PLOT screen and highlight the Ef: field.

N
k
W

70

Enter the parametric function as a complex number: (¢5]EQUATION

GOJSTYE=4ofaT2H2a)T)
(—]9J&]]2)[ENTER]. Notice that the y-componentis a constant, 2.

Change the IMDEPR: variable to 1. .

Set the H=WIEk to —=E to ZEl and the ¥=WIEF to—Z to 1 H

Set the plotrange (inPLOT OPTIOME) tokl to= and=TEP: to « E15.

i TTEESITTTED and watch asitplots:
og
ee

 

Draw the plot

 

-

     Z00H JTid
 

The plot is a straight-line, of course, because the y-componentis

constrained to be a constant. But did you notice how it was created?
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7. Use the Trace feature to explore the function. Press {1183 L4¥,

Example:

and then (»]repeatedly to increase the value ofthe parameterin steps

of .05 seconds. The cursor moves to the right then seems to pause

and return back to the left, then pauses again and moves back to the

right—in apparent retrograde motion.

Add a second parametric function to that in the previous example—

identical except for the y-component, which should be y(¢) =¢.

1. Return to the PLOT screen and highlight the EL*: field.

You wantto add a second parametric function to the one already in

place. Use the Calc feature to get accessto the stack, where you can

copy the current function, edit the copy, and combine the original

and modified versions togetherinto a list: 1|88 (ENTER)()

EDD(™))CED()ENTER) (2) PRe)LETHIE
  

3. Enterthe list into the EV: field: («3)CONT)k.

Redraw the plot: JHEEIOTTE.. .

 

 

':-.:___ +

=
LT[FETTRR =T

  
   

Now you can see the “hidden” function controlling the movement of

the x-component because the function has been spread out by allow-

ing y to vary with time. Press [{dil89 and use the arrow keysto ex-

plore the relationship visually.
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Plotting Functions of Complex Numbers

As mentioned earlier, the Parametric plot type on the HP 48 is actually a general

purpose complex function plot type. This is why parametric functions are entered

as complex numbers—or complex-valued functions, to be precise.

A complex-valued function, f(x+iy)=(u+iv) takes a complex number (x,y)

and mapsit to the complex number (u,v). In orderto plot the function of the com-

plex number, you mustfirst determine u and v.

Example: Forthe function f(z) =z, where z is the complex number (x+iy),

compute the complex number (u,v).

1. Make sure flag -27 is clear (press (]C]o]F)(ENTER)) and
enter the symbolic complex number ' [4] ' onto the stack.

2. Square it: (2]Y¥.

3. Symbolically expand and collect the result: SYMBOLIC){1

S[i[Hd] Result: '[—y™F+u™E, Fxuy)!

 

Therefore, your complex-valued functionis u=x>—-y* v=2xy.

Notice that you cannot simply plot this result—the complex-valued function

LytEwsge ] ' ysing the Parametric plot type, because you have two

“independent” variables (x and y) instead of one (usually # or ). However, you

may plot this function if either x or y is given a value....
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Example: Plot f(z)=z?, where z is the complex number (x+3i).

1. Open the PLOT screen and make sure that the plot type is still set to

Far-amet1. Highlight the EG: field.

2. Press o188 to move to the stack. Now enter the complex

number onto the stack: ('J&]O)oJe)X<|3)([ENTER).

3. Square the complex number, then expand and collect the result as in

the previous example: (2)Y)(¢)SYMBOLIC)R=k ol 1 Bl=of ;18 [l 5oy§

Result: ' Lu™E—",b

4. Return the result to the Ef*: field: glol (NxT).

5. Change the IMDEP: variable to .

6. Switch to the PLOT OPTIOM=: screen (BtgEMl), and change the

plotting range to —1 K to 1 1 and the 5TEP to « 1. Press [l

7. Change H-WIEH to— 1= to 3K and check AUTOSCALE.

8. Draw the plot: [1iE3{TATRE.

 

  

     

 

  

 

-
Q@
 

 e

200R e84[TRRCE]] EDIT.   
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The Parametric plot type allows you only to partially plot a complex function, but

the HP 48 also has a plot type, 3t~ 1dma, capable of plotting the complete

mapping. Basically, a gridmap plots a series of parametric curves, allowing y,

then x, to vary through a series ofsteps,as if superimposing a series ofparametric

plots where, say, y=3,theny=2,theny=1, etc; thenx=3,x=2,x =1, etc.

Example:

74

Plot a grid representation of the complex plane, where f(z)=z.

This mapping is analogous to the real number function f(x)=x (a

straight line), except thatit results in a rectilinear plane instead of

line. The Gridmap plot type represents this plane as a grid—plotting

only a few ofthe infinite number of lines of the plane and allowing

those lines to stand for the plane as a whole.

. At the PLOT screen, highlight the TYPE: field and change it to

a1 dmap: (Gridmapis the only plot type starting with G).

Move the highlight to the EL¥: field and enter the symbolic complex

number ' Lxa'd3 ' . (If flag -27 is set, you will see the complex
number displayed as ' x+4¥1 ).

. Make sure that the IMOEP: contains < andEPKD: contains'd (note

the lower-case). In this case, * is the independent variable not

because it is any more “independent” than 'd, but because it is to be

plotted on the horizontal axis.

Use 1 A 2TEP: forand= TEPZ for'd. This meansthat 10 values

for » and 8 values for ' will be used, so 80 points will be plotted.

. Draw the plot: [TEIIMTT100(-).
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Example:

Example:

. Modify the expression so thatitis ' Lxs 432"

Plot the complex-valued mapping, f(z)=z’, using the Gridmap

plot type. What were previously straight lines within the complex

plane are now transformed by the function into curves—again,

analogous to what happens to a straight-line in the real numberplane

when it is transformed by a function.

. Return to the PLOT screen, and highlight the EL*: field.

  

(W2
. Draw the plot: [F{iEFIITRE(—).

 

 

   

   
Repeat the previous example using f(z) = z’as the transformation.

Result:
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A Garden of Curves

Polar andparametric plotting allow you to view some very interesting curves. The

examples in this chapter just barely hint at some of the exploratory (and artistic)

possibilities these curves offer.

This section gives you additional fodder for your curiosity. Each entry includes

some information about the curve or curve family and an example plotted on the

HP 48, along with the plotting parameters used to create the example.

Note: If a parameter isn’t referred to, then the default settings are assumed. Also,

“Cartesian” refers to a curve’s description in a rectangular coordinate system.

Cassinian Curves

A Cassinian curveis the locus of points, P, the product of whose distances from

two fixed points, F, and F,, is constant. That is, PF*PF,= k.

Ovals of Cassini. Here are the forms of the function:

* Cartesian: (x* + yz)2 —2¢*(x* -y*)=a* - ¢*
  

e Polar: r=\/d2 cosZGi\/d4cosz29+(a4—d4)

There are four different shapes for Cassinian ovals. The shape depends on

relationship of a (the square root of the constant k) and e (half of the distance be-

tween the two fixed points):

When a < e, the result is two oval islands.

When a = e, the result is Lemniscate of Bernoulli (see below).

When e < a < e+/2, the result is oval with concave sides.

When a > e+/2, the result is oval with convex sides.
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Example: Ei: L' JCd™2005020 2+g™G0502% 22

+aG=gNOdT20050 2%l -

JOd™=005 C2%8 v2+a™d—d™a0 '

TYPE: Folar & [eg IWDOEP: H
H-VIEH: —2 = W-NEF: —1.1 1.1
LO: H HI: ZEE ZTEP: 1

 

 

  200M x4TRACE] EDIT [CAMIL
 

 

Example: a=1.1;d=1

 - _./—'_"—. ._Iq—h— __(-"

BRGGTAT  
 

 

Example: a= 1.5; d=1 %“—H——O—H—o—%—

- T .-"j

e[T} PPNTR TRi [TTH
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Lemniscate of Bernoulli. The Lemniscate of Bernoulli is a special case of a

Cassinian oval, where a = d. The area of one of the loops is a’.

e Cartesian: (x* + yz)2 =2a’(x* - y*)

e Polar: r* =2a*cos26

at\/z(l + tz)
=2T

141
e  Parametric:

at\2(1-1*)
y=—n

1+¢*

Example: E: 'JOZ¥a™2*C0SC2%0 00"

TVPE: Folar ar Deg IMDEP: H
H-WIEK: =2 2 W-RIEK: 1.2 1.5
LO: B HI: =6 ZTER: 1

 

S f”.'_.h".‘}.=1.5 i

¢ I'\___.-"'-\““ A-

B1]l TRACE]| EDIT [(AMIL   
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Cissoids and Conchoids

A cissoid is the locus of points P that are the same distance from a fixed point, F,

as the distance between points, Q and R, on two curves such that F,P,Q,andR

are collinear. Ordinary cissoids employ a circle and a line as the two curves.

A conchoid is the locus of points, P, and P,, that are equidistant from a point Q

on a given curve and a fixed point F, along a line containing both Q and F, . If you

draw a line from F, through Q, then P, will be a distance k farther from F, than Q

and P, will be a distance k closer to F, than Q along the drawn line. Conchoids

are cousins of cissoids, a fact which becomes clearer when you considerthat the

ConchoidofNicomedes (discussed below) is both an ordinary cissoid and the con-

choid of a line with respect to a fixed point not on the line.

Cissoid of Diocles. The Cissoid ofDiocles is an ordinary cissoid with the origin

as the fixed point, the point (R,0) as the center of the circle (radius = R), and the

line x = 2R as the line. The curve is asymptotic to the line x = 2R; and the area

between curve and asymptote is 3R7.

3

 

  

e Cartesian: yr=—2
2R—x

: 2Rt? 2Rt
e Parametric: X = =~ Y= >

1+¢ 1+¢

e Polar: r =2Rsin Otan 6

Example: E: 'Z¥RE*SIMCBI=THHCE 2

 

 

TYPE: Folar g [heg IMOEP: H
H-YIEK: —5.5 &.5 W-EK: —2.1 2.2
LO: & HI: 256 STEP: 1

f'll

!-'"

R=3 =t
‘-.x_

A
BTNTeNAT    
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Folium ofDescartes. The Folium ofDescartes is a cissoid of the ellipse defined

by x* —xy+y* —a(x+y)=0, and the straight line y=—x—a. The curve is
asymptotic to the line y = —x — a; the vertex of loop is at (3a/2, 3a/2); the area of

2. 3a : :
loop is- as is also the area between curve and its asymptote.

e Cartesian: x*+y —3axy=0

3asin Bcos B
¢ Polar: r= 3..

sin” @ + cos” @

. 3at Jat?
e  Parametric: X = =  

1+ 2T 1+P

Example: Ef: ' (S#a¥SIMCE#C0SCA Y -CSIMER -3
+C0O5CA ™S

TYPE: Folar g [ IMDEP: H
H-MEK: =14 14 W=-RIEK: =V 7

Lo: | HI: 1283 ZTEP: 2

 

 

Y

1
AR TER STR[T   
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Conchoid ofNicomedes. The Conchoid ofNicomedes is an ordinary cissoid with

the fixed point being the center of the circle. The curve has an asymptote at x =

a, which lies between the y-axis and cissoid’s second “curve,” the line x=a + b.

The shape depends upon the relation of a and b.

e (Cartesian:

e Polar:

e Parametric:

Example: Ei: 'Ca+b*C05S0CH 3, a¥THHOE 2 +E*5IMoR 2 2!

TYPE: Parametric

H-WIEK: —E.0 E. o

LO: &

a=3;b=2

Example: a=2;b=3

A Garden of Curves

 

(x2 +yz)(x—at)2 —-b*x* =0

b
cosO

x=a+bcos@
y=atan @+ bsin 0

g [y

u-YIEM: —3.1 2.2
HI: 2EE

IMDEP: H

STEP: 1

 

   
 

 O[TTRLTII T[T   
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Strofoid. Astrofoidis acissoid ofa circle (radius = a) and a line through its center

with respectto a fixed point on the circle. The vertex of the loop is at (a,0); the

loop area is a” (1 - %), the area between curve and asymptote is a’ (1 + %)

 

 

 

e Cartesian: yr=x22"%
a+x

e Polar: r=a c0s26
cos 6

1—1? at(1—1¢*
e Parametric: X = a_(_z_) y= —(—22

1+1¢ 1+1¢

Example: E: '¥FCOSC2¥R 2 -C0SCH !

TYPE: Folar &: [veg IMDEP: H
H-UIEK: —5.0 E.5 W-UIEH: —Z.1 2.2

Lo: HI: 268 =TEP: 1

a=4  

 

  r
¢

eTN RNLTINSN TR [T
 

Pascal’s Snails. Pascal’s snails, or limacons, are conchoids ofa circle where the

fixed point is on the circle—i.e. the locus ofpoints P, and P, a distance b from each

point on a circle of diameter a, as measured along a line containing a fixed point

on the circle. Limagons come in four typical shapes, depending on the relation
2

of ato b. When b 2 a, the area enclosed by the curve is n(bz + %)

e Cartesian: x? +y? —ax? -—b2(x2 +y2)—_-()

e Polar: r=acos@xb

x=acos’ 0 +bcosb
*  Parametric: y=acos0sin@ + bsin 0
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Example:

Example:

Example:

Example:

Eq: ' Ca*C0ScA"2+bxC0SA D,

S¥CISCR 1¥5IHl Ha+bssIHCca 2 2!

TYPE: Paramstric g Fs-:I IMDEP: H
H-YIEH: =15 15 W-EL: =7 .2 V.d
Lo: 4 Hi: .2 =TEP: . B5

a=4,b=5 (a<b<2a)

a=2,b=5(b>2a)

a=b=5(a=>b)

a=5,b=2(a>Db)

A Garden of Curves

 

   
 

   
 

   
 

 Byl TEACE]| EDNT [(AMCL   
83



Cycloidal Curves

Cycloidal curves are an interesting family of curves. They represent the motion

of a point on, “beyond” or “within” a circle as it rolls along another curve. The

cycloid itself represents the motion of a point on a circle as it rolls along a straight

line. The epicycloid represents the motion of a point on a circle as it rolls along

the outside of a second circle. The hypocycloid represents the motion of a point

on a circle as it rolls along the inside of a second circle. Then, for each of those

three branches of the family, there are the trochoid versions, where the point on

the circle isn’t precisely on the circle but “beyond” the radius of the circle

(prolate) or “within” the radius of the circle (curtate).

The learning toy, Spirograph™, makes extensive use of the cycloidal family of

curves, with circles of differing radii rolled around or within one another to form

beautiful patterns. In particular, Spirograph utilizes the key feature ofthe cycloid

curves—the ratio of the radii (as expressed by the number of “teeth”) on two

circles. The program, SFI, on page 312, takes the number ofteeth ofthe fixed

circle from level 3, the number of teeth of the rolling circle from level 2, and a

number indicating whether it rolls inside (-1) or outside (1) the fixed circle.

SPIRL always drawsa prolate curve. *

Ordinary Cycloid. The ordinary cycloid is generatedby a fixed point Pon a circle

of radius a which rolls without slipping along the x-axis. The period of curveis

2ma; the length of curve between two cusps is 8a; the area between one full arch

of the curve and x-axis is 3na’.

e (Cartesian: x=acos? LY_ \y(2a-y)
a

. - x=a(6-sinB)
Parametric: y=a(1 — cos 6)

Example: Ef: 'CaxiH-—SIHCRA D )y 50 1-COSCAY 2!

TYPE: Parametiric & Fad  IWMDEP: H
H-WIEK: —ZH ZH W-WIE: —2.5 15

Lo: —18 HI: 14 ZTEP: . S

*Short programslike5P I () may be written to provide easy control ofparameters for other curve families as well).
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a=3 T T TN,

YVY
(Z00F 05,00 ]TRACE]. EDIT JLAMCL  

 

 

Trochoid. The trochoid curve is generated by a fixed point Pat a distance Aa from

the center of a circle of radius a which rolls without slipping along the x-axis. If

A <1, curveis curtate cycloid. The “base”is the horizontal line above x-axis. If

A >1, curve is prolate cycloid. The “base”is the horizontal line below x-axis. If

A =1, curve is ordinary cycloid.

»  Parametric: x=a(6-Asin0) y=a(l-Acosb)

Example: Ei: '(a®¥ciH-b*xSIMNCRII53%0]1—-
LSCH!

TYPE: Farametric & Fad  IWMDEP: H

H-VIEK: —2H =H N=-YIEL: =3 12

Lo: —18& HI: 1K ZTEP: . HS

 

 

a=3;1=0.5 _‘*HJ"_““\L’_ v
+ ¥ + $ $ ¥ 1 ¥ et + ¥ $

EISST  
 

 

Example: a=3;1=1.5

 

  20001[k ¢[TRACE]] EDIT [CAMCL
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Ordinary Epicycloid. The ordinary epicycloid is generated by a fixed point P on

a circle of radius b, which rolls without slipping on the outside of a fixed circle

of radius a. If a/b=N is an integer, then: the curve has N equal branches; the arc

length of each branchis %(a + b); the area of one sectoris [—)E(a +b)(a+2b).
a

a+b
 x=(a+b)cosB—bcos 0

e  Parametric:

a+b
 y=(a+b)sin 6 — bsin 6

Example: Ei: 'CCa+bhr*COSCAM-b*C0SCCa+bi-b*A 0,
LatbhrESIMOE -bESINC Cathi-bEg 2 2!

 

 

TYPE: Farametric & Fad _ IMDEF: H
H-VIEK: =15 15 W-PIE: =7V .2 Vad

Lo: | HI: &.32 “TEP: . H5

-"l"—-"h

A \
a=5;b=1 $ 4 $ I"J 4 4 + :".I: 4

(integral ratio) '\ i "I

T
BTN Te=0T  

 

 

Example: Eix: 'Ca+bi*C0SCR —b*C0SCCa+bhi-b*a 2,
LatbSIMNCE A -bESIMC CatbasbER 2 D

 

 

TVPE: Farametric & Fad IWOEP: H
H-'.'IEI--I= -=23 24 N-BIEK: —12 12

Lo: K HI: 19 STER: KD

Reducethe ratio a/b, if possible; and plot one cycle (27) for each b.

f‘—::"‘n-.

Ya= 5, b=3 .f"fl 1

(non-integralratio) \...( | /g
:I

00 i,[TRACE][EDIT[CAMCL   
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Nephroid. The nephroid is the 2-cusped epicycloid (a = 2b).

Example: Ei: ' 0 Ca+baxC0508 2 —b*=C05C Cat+bhi-bh*l 0,

CathSINCA A -EESINC CatbabR!

TYPE: Faramstric g Fad IMOEP: H
H-MEK: =15 15 W-PIEK: =7V .2 F.d

Ln: I':I HI: E'IE: ..'-'TEF: lE'Ei

 

Na=2:b=1 :::::I, ..I::::-r

  200k k.0 [TRACE]© EDIT JCAMCL
 

Cardioid. The cardioid is an ordinary epicycloid where two circles are the same

size (a = b), which simplifies the epicycloid equation. The length of the curve is

16a; the area enclosed by the curve is Ta’r.

° Cartesian: (x2 +y2 —a2)2 = 4a2 [(x—a)2 +y2]

* Polar: r=2a(l—cos6)

x=a(2cosB —cos20)*  Parametric: y=a(2sin 6 —sin20)

Example: Eir: 'Z#g¥(1-COZCHI D!

TYPE: Folar & Rad IMDEP: H
H-VIEK: =2 =0 W-RIEH: =13 13
Lo: & HI: £2 STEP: . B

 

Y f. /

TRN TIT[T   
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Epitrochoid. The epitrochoid is generatedby a fixed point Pat a distance bA from

the center of a circle of radius b, which rolls without slipping on the outside of a

fixed circle of radius a. If A <1, curve is a curtate epicycloid. If A > 1, curve is

a prolate epicycloid. If A =1, curve is a normal cycloid. If a/b=N is an integer,

the curve consists ofN equal branches. IfN is a fraction, the branches intersect.

a+b
x=(a+b)cos6—bA cos 0 

e  Parametric:
a+b

y=(a+b)sin 0 — bAsin 0 

Example: E: ' Coa+ba*C0508-t22050 Ca+ho s

Bl 2, Ca+bhr#SIMCR D -bEnSIHC Ca+b-

 

 

e2!

TYPE: Faramstric & Fad IMDEP: H
H-MEK: —280 ZH W-RIEK: =15 15

LO: A HI: 5.2 +TEP: . 5

—_ & =19 — e :";l -}a=5b=1;1=05 x\_}l 4

BTRTNTT   
 

Example: a=5;b=1; A=2

 

  BNGR ES T
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fh*‘fi#zgj
Example: a=5;b=3;A=2 "‘_'—'_H:'T}" - .

P a '-.!'-4'—#]'!-] A

o s
) L

2000v[TRACE] EDIT [CAMEL
    

Ordinary Hypocycloid. The ordinary hypocycloid is generated by a fixed point

P on a circle of radius b which rolls withoutslipping on the inside of a fixed circle

ofradius a. Ifa/b=Nis aninteger, the curve hasNequal branches;ifNis a fraction,

the branches cross one another. IfN=2, the hypocycloid reduces to a straight line.

Thearc lengthofeachbranchis%(a — b);theareaofasectoris b—n(a —b)(a—12b).
a

 

 

 

xz(a—b)cos@+bcosa— 6

e Parametric:
i . a—-b

y=(a—-b)sin 0 —bsin 0

Example: Ei:: "CCg—ha¥C0S0" a+bECOSC Ca—-ha

Bl 2, Ca-br¥SIHCA2 -b*SICa—-bh -
bR 2!

TYPE: Farametric a: Fa IMDEP: H
H-WMEK: =12 12 W-JIEL: —5 &
Lo: | Hi: &. 23 *TEP: . HS

a=5;b=1

 

200k |82 JTRACE]| EDIT [CAMCL   
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Astroid. The astroid is a hypocycloid with 4 cusps (a = 4b)—a simpler equation

than the general hypocycloid. The length of the curve is 6a; the area between the

. .5 .3
curve and the fixed circle is gazn'; the area enclosed by the curve is gazfl.

e C(Cartesian: x4 y% =a’

e  Parametric: x=acos’ 0 y=asin’ @

Example: Ef: ' Ca¥C0SCH 23 SIHCR 3!

TVPE: F'.ar'.ar-'uet.r'i-_ & Fad IMDEP: H
H-VIEK: =12 12 W-JIEL: & &

LO: & HI: B, 3 ZTEP: . K5

 

 

(TEEENTOT[T   
Deltoid. A deltoid is a 3-cusped hypocycloid (a = 3b)—a simpler equation:

e Parametricc x=b(2cos@+cos20) y=>b(2sinB—sin26)

Example: E2: ' Ch®C2xC0SCA Y +COSCE20 00,
B2S5IHCH=STHCE%B 300!

TYPE: Farametric : Fad IMDEP: H
H-VIEK: —12 12 e"|E|--| o= =

LO: @ HI: 5.2 ZTEP: . S

 

=2

 

L’

200k fou.va [TRACE]] EDIT [CAMIL   
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Hypotrochoid. The hypotrochoid is generated by a fixed point P at a distance bA

from the center ofa circle of radius b which rolls without slipping on the inside

ofafixed circle ofradiusa. If A <1, curveisa curtate hypocycloid. If A > 1,curve

isaprolate hypocycloid. If A =1, curveisanormal cycloid. Ifa/b=Nis aninteger,

the curve consists ofN equal branches;ifN is a fraction, the branches intersect.

a—>b
x=(a-b)cos@+bAcos 0 

e Parametric:
a—>b

y=(a—>b)sin 6 — bA sin 0 

Example: Ef: 'Ca—bi*C0SCA 2 +bsn%005 Ca—bo-
Bl 2y Ca-baxsINCB ) —b¥sx5 INCCa-ba -

 

 

bl !

TYPE: Farametric & Fad IMDEP: H
H-WIEH: =12 12 W-DIEH: —& &
Ln: E:' HI: E'IE: .-:TEF: -l:_:.:l-_cl

N
a=5b=1;1=0.5 bt k} +

L.L,f

   
 

Example: a=5;b=1;1=2

 

  1

200k{83 JTRACE](] EDNT [CAMCL
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Example: H-VIEH: =38 S N-ER: =43 45
LO: B HI: 13

 

a=40;b=3;1=3       A

m—3111
 

Example: H-WIEW: —3H FH W-RIEK: —43 45
LO: & HI: 22

 

a=36;b=15;1=0.6 :
%

ATPNTIT
    

Example: H-VIEK: —1H& 185 W=-EL: =53 53

LO: A HI: 25

 

a=49;b=15;A=14    
-T   
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Roses. A rose is a hypotrochoid in which A = a—;b—, which makes for a simple

polar form. Note that roses can be either curtate or prolate hypocycloids.

e Polar: r=2(a—b)cos a 6
ba_

Example: Eif: 'Z*Ca—br*C050a-Ca—2*%hr*Q 1!

TVYPE: Folar & Rad IMDEP: H
H-VIEH: =12 1 W-WIEL: —& &
LO: B HI: .2 STEP: . HD

 

 

   

 

a=5b=2

T(NTSIil(DT

Example: H-WIEH: —2 2 u-giEk: -1 1
LO: & Hi: 22

a=4,b=3.5
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Spirals

Spirals all share certain common traits: the polar radius gets larger as the polar

angle increases; and the function is not periodic.

Spiral ofArchimedes. The polar radius is proportional to the polar angle. The

arc length ofthe curveis %(6\/ 6> +1+sinh™ 6), which, for large 6, is approxi-

2

mately = 0; the area ofthe sector bounded by two radian anglesis g—( 6, - 6,’).
2 6

e Polar: r=a6

Example: EC: 'Z¥H'
TYPE: F-_lar & Fad IMDER: H
H-WIEK: —1358 15K N=RIER: =72 7o
LO: K HI: 22 ZTEP: . ED

 

 

   f’f
-0K   

Hyperbolic Spiral. The hyperbolic spiral is the inverse of the Spiral of Archi-

medes, with an asymptote at y = a. It represents the path of a particle under a

central force that varies as the cube of the distance of the particle from the central
2

force. The area of sector bounded by two radian angles is —Ci—(i - L)
6, 6,)

e Polar: r=2.
6

Example: El' 50 "

F'-'-1=|r' & Fad  IWMDEP:
Hl.'IEI--I- —Ea Bat N=-WIEL: —2. 1 E:.'..-:_'
LO: B HI: 12 ZTEP: . HSD
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  BTATRe EET
 

Logarithmic Spiral. The logarithmic spiral, also known as the equiangular

spiral, is the spiral form often seen in nature—in the Nautilus shell, in the arrange-

ment of sunflower seeds, and in the formation of pine cones. Itis “equiangular:”

the angle 8 formed between the tangent to any point P on the spiral and the polar

radius (the segment connecting P to the pole) is constant.

Other interesting properties: The length of an arc from the pole along the spiral

 toris ; and lengths of r drawn at equal angular intervals to each other form
CcOS

a geometric progression; also,ifyou roll the spiral along a line, the path ofthe pole

is also a line.

e Polar: r = ae?"P

Example: E: 'g¥e™(H-THHIEX '

TYPE: Polar & FHad IMDEP: H
H-YEL: =325 =25 W-EL: =17V .5 P

Lo: | HI: =H “TEP: . H5

 

a=0.1;=13

 

-~

e[TEESLT-S W70i [T   
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Parabolic Spiral. Theparabolic spiralis so named because of its analogy to the

equation for a parabola: y*> =a’x

e Polar: r’ =a’0

Example: Ef: 'Jiz™Z*Q3!

 

PE: Folar o Rad IMDEP: H
H-VIEK: =13 12 W=WEL: =3 S
LO: @ HI: 4B “TEP: . HS

"f-"'.f'-:-":::
Il"l.l 1 I" o    
|| fE" lr"E

a=2
'.".. "-._. 1

I'l"-."'-.x.fl““-;'Y

eo DRT CAMCL   
Lituus Spiral. The Lituus spiral is the inverse with respect to the pole of the

parabolic spiral—it has the x-axis as an asymptote. This is the spiral often used

in the whorls sitting atop columns in classical (Roman) architecture.

, a
e Polar: ro=—

6

Example: E: 'Jim™=<0

TYPE: Folar & Fad IMDEP: H

H_IIIIEl'"l: _EI -=_| E'- 5 ""IEI"I _EI E:l:; ::—::l EE

LO: & HI: 2 ZTEP: . BS

 

 

  200k {083 JTRACE]| EDIT [CAMCL
 

96 3. POLAR AND PARAMETRIC EQUATIONS



Sinusoidal Spirals. A particle acted upon by a central force that is inversely

proportionalto the (2n+3) power ofits distance from the force (where n is a ra-

tional number) moves along a sinusoidal spiral. Some special cases:

 

n=-2 rectangular hyperbola n=2 lemniscate
n=-1 line n=1 circle
n=-1/2 parabola n=1/2 cardioid

e Polar: r"=a"cos(nf) or r"=a"sin(no)

Example: Et ' (a3r#SIMOrsa 2 3™1) :
TVPE: Folar & Fad IWDEP: H
H-YIEL: —38 JE W=WIEH: =23 15
LO: & HI: 2 STEP: . ED

a=2;n=-1/3
\

I

S+

200k {83 JTRACE]| EDIT [CAMIL

Example: H-WIEK: =2 3 W=REL: —2.0 2.5

   
LO: B HI: ZE STEP: . KD

 

  

   

a=2;n=3/4

 

   
 

-s.}__,_#'

- -

LTIPNTiTLT

Example: H-YE}: -k ZH Y=VIEk: =18 1M
LO: K HI: =2 ~TEP:

a=2,n=-7/5  
- S
X T

200M[kTRACE]|EDIT [CAMCL   
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Other Curves

Lissajous. The parametric description for the standard sine curve is: x=6,

y=asin(b6+c); only the y-component undergoes the sine function. But in the

lissajous, both components undergo their own independent sine functions.

x = asin(m6 + ¢)
y =bsin(n6 +d)

Example: Ef: 'Ca¥SIMomEH+C,beSIMOn*a+da 2!

e  Parametric:

 

 

TYPE: Farametric a: Fad IKDEP: H
H-VIEH: —5.5 5.5 W-JIEK: —2.1 2.2

Lo: e HIi: 5. 2 ZTEP: . HS

a=4

b=3
c=0.5

d =0.8
m=2 v

n=>5 —lfim   
Tractrix. The tractrix is the curve of points P such that the distance from P to

the x-axis along the tangent at P is constant. It is the track of the back wheel of a

bicycle as the front wheel makes a 90° turn.

x =aln(sec 0+ tan 8) — asin 6
y=acosf

Example: Ef: 'Ca¥LMHC1-COSCR2+THHOR 32—
a¥SIMCB 2y a*005 2!

e Parametric:

 

TYPE: F'.ar"ruw’rr1 & Fad IMDEP: H

H-MEK: —11.5 11.5 w-wEW: -1 12

LO: H HI: 5.3 “TEP: . HS

— —
'\._5"._‘_,-"

a=4
T,

_—'-'-FF-. H-h-‘"\-—_

ENT CFE TeST[T   
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Witch ofAgnesi. The Witch ofAgnesi, whose name comes from a mistranslation

of the Italian versoria (“free to move in any direction”) as versiera (“witch”, or

“devil’s wife”), is a curve that is asymptotic to x-axis, with the area between curve

and asymptote equal to 4R* 7. It is an unusual curve, whose definition is some-

what complicated. Here’s how to construct the graph manually:

1. From a fixed point F, on a circle of radius R, construct the tangents to the

circle at F, and at F,, the point on the circle diametrically opposite F,.

. Then at an angle 6 from the diameter connecting F, and F,, draw a secant

from F, to point T, on the opposite tangent line. The secant intersects the

circle at Q.

Finally a draw a line through Q that is parallel to the tangents and a line

through T, parallel to the diameter connecting F, and F,. The point P is the

intersection of these two lines.

The Witch is the locus of points P generated as 0 is allowed to vary.

_ 8K’
Y x* +4R’

x=2Rcotf
y=R(1-cos26)

Cartesian:

Parametric:

Example: Ei: 'C2¥R-THAMCH I E¥C1-COSCZ%0 200

TYPE: FParametric g Fad IMOEP: H
H-WEL: =18 1M W=-EL]: —E:_ v

LO: H Hi: 2. 1415 2TEP: . B5

x*#’%fixfiu
R=2 —'_____——"' '“-\q_______

 

O[]RNLTISR TR (T   

A Garden of Curves 99



4. POLYNOMIALS



Polynomials and their Characteristics

The termpolynomial has a more limited meaning on the HP 48 than in math text-

books. Expressions such as 4xy’ —7x*y —3y, with two or more variables, are

also polynomials. But the HP 48 (and this chapter, too) limits its definition of

polynomial to “polynomials in a single variable.” (It can handle expressions with

two or more variables, but it doesn’t treat them as polynomials.) So apolynomial

here is a function of the form P(x) = a,x" +a,x""' + - +a,x+a,, wheren s

a positive integer. The real numbers, a,a,a.-..,a,a,are the coefficients

of the polynomial. If a, # 0, the polynomial is said to have degree n.

Note that there are two important aspectsto this definition. First, a polynomial

is afunction, which means it will pass the vertical line test. Second, because it has

a single variable, polynomials differ from one another only in their set of coeffi-

cients, which allows the HP 48 to compute with a polynomial more rapidly than

with many other functions by using a vector of its coefficients. For example,

2x> =3x*+x’ +6x*> —18x+11 wouldbecome [ & -3 1 & =18 11 1.

and 2x° +x* +11wouldbe[ & H 1 H H 11 1.

Note here that coefficients for missing terms are included as zeroes, to distinguish

between,say, 2x° +x” +11 and 2x* + x+11. Note,too, that although compu-

tations with polynomials are faster in vector form, you must still use their standard

algebraic form to plot them—>but you can use the polynomial solving application

to help you convert from vector to symbolic form before plotting.

Example: Usingthe=alute polu, o . application, enter the polynomial

[ =2 =2 2 2 B 1 1 andconvertit to its symbolic form.

1. From the stack, open the =2 1w pold. .. application:

(2JSOLVE)(Y][ENTER).
2. Withthe COEFFICIEMTS [ AM . AL A1 field highlighted, enter

the polynomial: (&J{)(5)+/-)(SPC)(3)(+/=) (SPC)(3)(SPC)(2)(SPC)(0)

(SPC)(1)(ENTER)
3. Re-highlight the COEFFICIEMTfield ((a)), and then press EXdgl3

to see the symbolic form on stack level 1:
_l|:”l"'uIl__l+:_||'"||_'|_+Iq_‘'l"'uI+|_+::l"'ll__'_ll
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Graphs of Polynomials

The graph ofapolynomial tells alot about it. You can find the number ofreal roots,

estimate the degree and also points of local maxima and minima.

Example:

1.

Plot the polynomial created in the previous example.

Open the PLOT application (=]PLOT)) and change the plot type to

Furnct 1on (a)(@)F)).

. Highlight the E¥¥: field and grab the polynomial from stack level 1:

@l
level 1)

18] (@), if necessary, to put the target polynomial in

 

3. SetH-WIEH to—Z Z and ¥-WIEK to—Z. 2 <. 7.

Set IMDEP: to /4 and the plotting range and step size (in the PLOT

OPTIOME screen)to their defaults (3231l each field,if necessary).

. Plotthe function (il 881 3 B3ARG D).

 

‘a
h
——

i
l

|
EDIT   

Observe the plot to see what you can determine from it.

* The plot of a polynomial will cross the x-axis once for each real root. This

polynomial appears to have only one real root.

e The plot ofapolynomial will have one fewer “bend” than its degree. How-

ever, the number of “bends” is not always immediately obvious. This plot

appears to have two bends—Ilike a third-degree polynomial—but you

know from its equation that it is in fact a fifth-degree polynomial. A plot’s

extra bends may be “hiding” within one of the visible bends that doesn’t

curve very sharply, but which is rather flat and broad.
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Look again at the plot and notice that the left-most bend looks like it might be a

suspect for such hidden bends. Test your suspicion by using the Box-zoom to

magnify the flat region: Move the cursor to the upper-left corner ofthe region you

want to magnify and press [TllF'FFH. Then press the () and (¥) keys until
the zoom-box encloses the flat region that you’re investigating:

‘n
‘==

 

 

    
 

   
|T1JciwiL|ZooOH

Press [E[I[I[&l to draw the magnified region:

b, _r_,.f"..

————— F

HIZIFENITER    
As you can see, the “flat” bend is actually composed of three bends; the poly-

nomial has four bends altogether (whichis, after all, what you would expect of

a fifth-degree polynomial).
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Actually, each “bend” in a polynomial represents spot where the slope of the

polynomial “levels out”—to zero. Ifyou plot the slope of the polynomial (known

as thefirst derivative of the polynomial) instead of the polynomial itself, you can

count the number oftimesthis plot crosses the x-axis(i.e. the number oftimes that

the slope is zero) to determine the number of “bends” in the original polynomial.

Example: Plotthe previous polynomial again using the original display coord-

inates. Then plot the first derivative of the polynomial.

Press to return to the PLOT screen.

Reset H=MIEF to—= Z andW=-WMEKM to —2Z. 7 3.3,

Redraw the polynomial: [I3iE13 [THi1%1.

Draw thefirst derivative of the polynomial: [ 8y Bl (NXT)shEG.

Both the polynomial and its derivative will be drawn:

i
l

 

 

    .’
1

=1y  EDIT
 

Clearly, the graph of the first derivative (slope) crosses the x-axis

(i.e. becomes zero) in four spots—four real roots—so the original

polynomialis a fifth-degree polynomial.

The plot of the first derivative can also be used to determine more precisely the

location of the bends—which are local maximums and minimums (extrema, to

your HP 48). The x-coordinate of the extremum is the same as the x-coordinate

at the corresponding zero of the first derivative.
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Example: Find the coordinates ofthe left-most extremum ofthe polynomial by

finding the corresponding zero ofits first derivative.

. While viewing the plot of the polynomial and its first derivative,

move the cursor so that it’s close to the left-most zero of the deriva-

tive function. Remember: whenever there are two or more func-

tions plotted, only one of them is the current function. The deriva-

tive function is the current function at the moment.

Press [fig8.B A111B88. Note that the cursor moves to the actual spot
of the root being solved. Make sure that it is the one you intended—

this is a good check to be sure you’ve communicated properly with

your HP 48. Result: KOOT: -0.65/"38,/549433

. The x-coordinate of the left-most extremum is -0.66. To find the y-

coordinate, switch the current function to the polynomial (NXT)(NXT)
FE), and then compute the value of the polynomial at x = -0.66

(NXT)EsEE). Result: FLyl: 1085649887649

Thus, the coordinate ofthe left-most extremum is about (-0.66,1.07).

 

The HP 48, of course, can find the coordinates of an extremum more directly if

it is easily distinguished from others. The method of the previous example is usu-

ally better when extrema (“bends”) are hidden or very close together, but another

method is quicker when the extremum is easy to “point out.”

Example: Find the coordinates of the right-most extremum directly from the

plot of the polynomial itself.

. Assuming that the original polynomialis still the current function,

move the cursor right to a point near the right-most extremum.

Press (to redisplay the menu) S48l to compute the

nearest extremum. Result (to 2 places): EwTER: [0.59.1.59])

The previous two examples may suggest that every polynomial has exactly one

less “bend” (extremum) than its degree. But that’s not true, particularly in poly-

nomials with some coefficients equal to zero. The next example shows how you

can determine the degree from the plot of these exceptional polynomials.
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Example: Plotthepolynomial, [ —2 B 2 2 B 1 1 anditsfirstderivative.

Demonstrate graphically the degree of the polynomial.

1. Return to the stack ((CANCELCANCEL)) and move to the ‘=ix ] Ly

P1tapplication ()SOLVE]Y]YIENTER).
2. Enter the polynomial into the COEFFICIEMWT= field: (]}]

(sPc)(o]sPc)(3])sPC)(2]sPc)(0])SPC)(1)SPC)(ENTER).

3. Create the symbolic version: (a)f&dml=a(CANCEL).

4. OpenthePLOT application, enter the symbolic polynomial, and, us-

ing the same settings as with the previous polynomlal (they should

still be there), plot the polynomial: (=)PLOTNXT) Ly 858l 1| 288

(xT) [FTEELG
5. Add thefirst derivative to the plot: [fis

  

  

 

\
AANH

  ELTTRTTTT
 

Notice that original polynomial appears to have two bends (i.e. is third-degree).

And the first derivative plot seems to concur: it has two zeroes, exactly the num-

berexpected for a third-degree polynomial. Butlook at the shape ofthe first deriv-

ative: it appears to have three bends. A first derivative cannot have more bends

than its original polynomial. In fact, the first derivative of a third-degree poly-

nomial can have no more than one bend. This is a powerful clue that the original

polynomial is actually fifth-degree, at least.

For polynomials ofhigh degree that lack most lower-degree terms, you may have

to find the derivative of the derivative (the second derivative), or the derivative

ofthat (the third derivative), etc., until the necessary clues appear. If at any stage,

the result is a straight-line, then the degree of the polynomial is one higher than

the number of derivatives it took to generate the straight line.

106 4. POLYNOMIALS



Example:

Graphs ofPolynomials

Continue plotting higher derivatives for the polynomialin the pre-

vious example until the result is a straight-line.

. Assuming that the plot of the polynomial and its first derivative is

  still displayed, press il 58;[ il siglilll to add theplot of the sec-

ond derivative to the display:
  

 

 

Y K

. 'f-"’ . "l

Enzml'fl:l

Sure enough, the second derivative still has two bends (one of them

occurring abruptly atahidden point ofinflection in the original poly-

nomial’s broad left-most bend).

    
Repeat step 1 and generate the third derivative. Because the plots are

getting steeper and narrower, perform some zooming to adjust the

viewing scale. Pressmmtobe sure that the zoom-factor

is set to the default, 4. Press [t} (Vertical Zoom

OUT),then interrupt the drawing (CANCEL)) and press gl(NxT)
FEIH (Horizontal Zoom IN). Interrupt again, move the cursor to

the origin, and pressEE[H 18,B. All zooms are reflected

in the set of plots finally drawn:

  

 

 
 
 
 

* o S

..l.xfi. 'Ill.'. .‘ 1.l'

eTe
! '. N   ] 1 |

ELTT(RsIT
 

This appears to be a parabola with one bend.
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3. Repeat step 1 again and generate the fourth derivative:

 

 
] I

B EDIT    
The fourth derivative appears to be a nearly vertical line. Zoom out

to confirm that it isn’t merely an illusion caused by the current dis-

play settings. Press EEE[EIFEITRE. Press [l3EHl (NXT), then

press andhold downBlIIRH. This displays the symbolic expression
of the current function (the fourth derivative).

   

 

'(SRSGECDEC2EXD

 

'
™y

llf .%l

BTOGTRT   
The fourth derivative is a line—a first-degree polynomial—which

demonstrates that the original polynomial was a fifth-degree poly-

nomial.
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Polynomial Arithmetic

The easiest way to do arithmetic with polynomials—add, subtract, multiply, div-

ide, and raise to a power—is to use the vector form of polynomials.

Addition and Subtraction

The addition and subtraction of polynomials is most easily accomplished by

adding or subtracting corresponding coefficients in the two polynomials. For ex-

ample, adding x* +3x> —7x* = 5x+17 and —5x’ + 3x — 4 is simply a matter of
adding the coefficients of like terms:

X+ 33 - TIxr - 5x + 17

+ -5x3 +3x - 4

xt—2x3 — Tx2 - 2x + 13

 

On the HP 48, you can perform polynomial addition and subtraction in either of

two ways—symbolically, using the built-in algebraic abilities or “numerically”

using the vector form of the polynomial and the program PHOL! (see page 289 for

listing).

Example: Add x* +3x®>-7x* —5x+17 and -5x° + 3x — 4, using the built-in
symbolic tools of the HP 48.

1. From the stack, enter the first polynomial in its symbolic form: (&)

[EQUATION)(¢J&]X]Y¥(4)0H()(JGIXPIE)H@(@)X
PIR)EHEEISXIHOITIENTER)

2. Enter the second polynomial in symbolic form:

(JQXXIE)HE)QX))(4JENTER).
3. Add the polynomials; collectlike terms: (+)(¢€5)SYMBOLIC) (o[Heg.

Result: ' 1 3-7¥t=etGentd—ten|

It’s all there, even ifit is a bit out of order.
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Example:

Example:

110

1.

. Convert the result to a symbolic expression: ( ']XJ[ENTER

Add those same two polynomials, x* +3x> —7x> —5x+17 and
—5x° +3x —4, using their vector forms and the program FHLLI
(assuming that you have previously entered and stored the program

—see page 289—and that it is available in the current directory).
 

. Enterthe first polynomial: (&)13)(1)(SPC)(3)(sPC)(7)+/-)(sPC)(5)

(+/2)(sPC)(1[7) ENTER)
Enter the second polynomial: (]1)(5]+/=)(SPC)(0)(SPC)(3)(SPC)(4)

[ENTER).

 

. Run the program PAOL: (o)P)A)D]D)ENTER).

Result: [ 1 ¥ -7 -& 13 1]

Optional. Now enter a variable name and use the program F+5"T"

(see page 296) to convert the polynomial from its vector to its

symbolic form: (']a]X]ENTER)(a)o)(PI2)=)S]YJM)(ENTER).
1 L0y SLT T L™ Tl L) =11

Result: 'H™d—E#n™d-en™E—r'en+13

Subtract x* +3x> = 7x* =S5x+17 from x> —=2x* +12.

Enter the two polynomials in the same order as you would enter two

real numbers that you are subtracting: (][1)(1)(SPC)(0)(SPC)(0)(SPC)

(2J+/5)(sPA)(0)(sPA)(1N2)ENTERAIL)()(SPC)(3)(SPS)(7+/-)(SPC)
[ENTER).

 

 

. Perform the subtraction. You may either press (+/=), then execute
FAOL, or you may execute FSILIE (see page 296) directly.

Result: [ 1 -1 -3 5 3 -5 1]

P   hall.
LIS Ly eLT LTL

Result: "-0 _-:=""'|:"| -:=+-..|'E':'|:"| craEs—
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Multiplication

The real virtues of using the vector form of polynomial are evident when you

multiply two polynomials. While symbolic multiplication is technically feasible

with the HP 48, it will often cost you a lot oftime and patience to obtain a “legible”

ansSwer.

The program FI1IULT (see page 295) performs the multiplication of two polyno-

mials in vector form.

Example: Find the product of x> —2x* +12 and 3x* —4x*> +8x-9.

1. Enter the two polynomialsin vector form (in either order): (][1(1)
 

(spc)(o](sPc)(o](sPc)(2]+/-)(sPc)(0)(SPC)(1]2)ENTER)&1)(3)(SPC]
(4)+/=)(sPc)(8)(SPC)(9]+/=)(ENTER.
 

2. Execute PIMLT: (PIMJUJL)(T)ENTER). You will need to view
the result (press (¥)) in the Matrix Writerto see it all.

Result: [ 2 -+ & -1 8 ZH -2H 9% -188 ]

3. Convert the result to a symbolic polynomial in x: (CANCEL

 

ENTER)|

VetE-daeYRRte-] BentDtgPl

A=aHAPR-THE

Result:
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Division

Division of polynomials does not always result in a polynomial. The resultis a

quotient (a polynomial) and a remainder—a rationalfraction that can’t be further

simplified. If the remainderis zero, then the result is a polynomial. If the remain-

derisn’t zero, then it is the ratio oftwo polynomials, the denominator polynomial

being of the same or higher degree than the numerator polynomial.

The program PLINIDE (see page 291) takes two polynomials in vector form as

inputs—in the same orderas division oftwo real numbers. It returns four objects:

e the quotient polynomial (level 4);

e the numerator polynomial of the remainder (level 3);

e the denominator polynomial of the remainder (level 2);

» acomplete and exact algebraic result of the division—including the

remainder as a rational fraction (level 1).

Example:

1.

2.

3
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Divide 16x* +26x> —61x> +16x + 3 by 2x —1.

Enter the numerator in the division:@

(1)+/-)(sPc)(1)6)(SPC)(3)(ENTER).

Enter the denominator: (]I3)(2)(SPC)(1]+/=)(ENTER.
 

 

. Execute FOINIOE: ()fo)P)D)1)V)1)]D)E)[ENTER).

Result: %= [ 8 1Y -22 -3 1]

3 [ H ]

2t [ & -1 1]
13 TEEetS+] Pent-Ee-0]

In this case, the result is a polynomial with no remainder:

8x’ +17x* —22x-3
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Example: Divide the polynomial x* —2x* +12 by 2x —1.

1. Enter the numerator polynomial: (&)13)(1])(SPC)(0)(sPc)(0)(sPC)(2)

(0)(SPC)(1)2)ENTER).
2. Enter the denominator polynomial: (&]I1)(2])(SPC)(1)+/=)(ENTER).

3. Execute FOIMIDE: (@fe)PD)1V)1)DIE)[ENTER).

Result: 4+ [ .2 &3 .13 -.9370 -, 46870 ]
[ 11.53125 1

[ & -1 ]
gtLototLoden-10016
st (=0151B1+1E)[en—10

 

 

—
[
0

Here is how to interpret the result:

e The polynomial part of the quotient is returned to level 4. In this case it

1 , 1 5 1, 15 15
represents —x" +—x" +—x" ——x——.

2 4 8 16 32

* The numerator of the remainder is on level 3; the denominator is on level

11.53125 369
— o ———/.
2x—1 32(2x-1)

» The algebraic on level 1 is the exact result of the division and—asin this

case—may not be a polynomial. Note how the algebraic incorporates the

remainder into the polynomial part of the quotient. (Of course, if the re-

mainder’s numerator on level 3is [ H 1, the algebraic will simply be the

level-4 quotientin its symbolic form—as in the previous example.)

2; so the remainder here is

FOIVIDE offers one approach to polynomial division. Synthetic division, dis-

cussed on pages 115-123, is another approach often used in finding the roots of

polynomials.
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Finding Positive Integral Powers ofa Polynomial

The program FFIILEE(see page 296) makesit a lot easier and quickerto find ex-

pansions of polynomials than by repeatedly multiplying their symbolic expres-

sions and expanding and collecting. FFIIMEF: considers only the positive integral

powers of polynomials, so that the result is an ordinary polynomial (explicitly

computing the 1/3 power or the -2 power of a polynomial usually complicates the

expression a great deal without adding much new information).

Example: Find the fifth powerofthe polynomial x> + 6x — 10 using FFLMEF,

(assuming that it has been previously entered and is available in the

current directory).

. Put the polynomial on the stack in vector form: (]l]] (6)

(SPO)(1J (+/-) ENTER)
. Put a vector containing the power on the stack: (]I1)(5)(ENTER).

3. Execute FFLILER: (NXT)or()PREV)as needed) [dE. View
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the results by pressing (¥) and then (») as needed.

Result: [ 1 3 210 988 -337H -17424 337EH

SEHEE -31AEEE ZEEEHE - 1HEERE ]

Optional. Convert the result to a symbolic expression: (CANCEL]if

necessary to exit the MatrixWriter, then ("[aJ&X (and

or (qJPREV) as needed), then |g4,

Result: '™1E+3H="03]Ma+000e- 558H0
1etDAREHEReS

 

1AREB=2+2ARERRS— 1 HERAR !
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Finding Roots of Polynomials

The roots of a polynomial P(x) are those values of x that satisfy the equation

P(x) =0 (hence the other common names for roots, zeroes). There are several

ways to find the roots of polynomials using the HP 48:

e Use synthetic division, guided by information obtained from a set of poly-

nomial theorems, to manually search for roots.

* Use the Solver.

* Find roots graphically.

e Use root-finding algorithms customized for polynomials.

The traditional “manual” means offinding roots of polynomials required lots of

trial-and-error computations involving polynomial division. To streamline these

computations, the notational shortcut known as synthetic division was developed.

Further, various theorems were used to help one narrow the search and reduce the

number of computations. Look at each of these shortcuts.

Synthetic Division

Synthetic division reduces a polynomialto its coefficients (much like the vector

form that you’ve seen earlier in this chapter). The factor being tested is also re-

duced to a single number. The division problem thus resembles regular long

division. For example, dividing x° +4x* +3x —2 by x — 3 goes like this:

3)1 4 3 -2

3)1 4 3 -2

1

Bring down the first coefficient:

Multiply the resulting coefficient (1) by the factor (3) and add the productto the

3)1 4 3 -2

next lower coefficient in the original polynomial (4): 3

1 7
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3)1 4 3 -2
Continue likewise through all coefficients in the polynomial: 3 21 72

1 7 24 70

Read the answer from the bottom line: The correct quotient is x> + 7x — 24 the

final value (70) is the remainder. This shortcut works because,in fact, you arejust

 

 

X2 +Tx+24
x—3)x3 +4x* +3x-2

x> —3x?

) . 7x* +3x
doing long division:

g 8 7x* —21x

24x -2

24x =72

70

Ofcourse, such synthetic division is suitable for manual computation, but you can

shorten its work by automating the process using your HP48. The next two exam-

ples illustrate two different approaches.

Example: Use the 501" program (see page 303) to do the synthetic division

of the polynomial 3x> +2x* —7x’ +3x —9 by the factor -3.

1. Enter the vector form of the polynomial:

(+/-)(sPC)(0)(SPC)(3)(sPC)(8]+/-)(ENTER)
2. Enterthe factor: ENTER).

3. Execute 5lIY: (@)@)S)D)1)V)[ENTER) or (VAR) (NXT) or §&9]PREV)as

needed) [11 E'EH.

Result: ¢: [ 3 -7 14 -4 129 ]
11 —29

  
 

 

 

T

The quotient, in vector form, is returned to level 2, the remainder to

level 1. The original polynomial and factor are returned to levels 4

and 3, respectively, in case you want to use 5L [! repeatedly with the

same polynomial (which you often will).
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Example: Repeat the previous example using the program S7ML (see page

 

 

 

 

313).

1. Execute the 5'"MLl program: (o)S)Y)N)D)[ENTER) or (VAR) (NXT) or
(JPREV] as needed) :

3 32 SYMTHETIC DIVISIOM SEEEEEEEE

roLvmoriaL: [
FRACTOR:

DUOTIEMT:

REMAIMDER:

ENMTER POLYHOMIAL R: VECTOR

E0IT] ||JiRMiL|OK  
 

2. Enter the polynomial in the POLYHOMIAL field:
(sPC)(7]+/-)(sPc)(0](SPC)(3)(sPC)(9])+/-)(ENTER).

3. Enterthe factor in the FACTOF field: (3]+/=)(ENTER.

4. Press|il!| #Efl to perform the synthetic division.

 

 

SENEREEE SYMTHETIC DIVLSIONS
=G - ]     POLYMOMIAL:

FACTOR: =3
RUOTIENT: [ 2 -7 14 —-.
REMAINDER: =T

EMTER POLYMOHMIAL A5 VECTOR
Eor)10JeAMCL]O  
 

5. TheMLl program is designed for repeated use of synthetic divi-

sion, allowing you to search for roots without affecting the stack.

Press (CANCEL) when you want to exit the program.
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Polynomial Theorems

Wise use of synthetic division involves narrowing the numberoffactors that you

must try in your search for roots. And there are a number of theorems which can

help you do just that. With their proofs omitted, they are:

L.
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Fundamental Theorem of Algebra: Every polynomial equation with

degree greater than zero has at least one root in the set ofcomplex numbers.

Corollary to Fundamental Theorem: A polynomial equation ofdegree

n has exactly nroots in the set ofcomplexnumbers, where two ormore roots

with the same value are treated as distinct.

A fifth-degree polynomial, for example, has five complex roots, some of

which may also be real, some of which may be identical to each other.

Complex Conjugates Theorem: Ifa and b are real numbers with b # 0

and the complex number a + bi is a root ofapolynomial equation, then its

conjugate, a — bi, is also a root of the polynomial.

Thus, polynomials can have only an even number of non-real complex

roots. So, polynomials of odd degree must have at least one real root.

Remainder Theorem: Ifa polynomial P(x) is divided by (x — a), then the

remainder is a constant, P(a).

. Factor Theorem: Ifa polynomial P(x) is divided by (x — a), and the re-

mainder, P(a), is zero, then a is a root ofP(x).

Rational Root Theorem: Ifa polynomial has rational roots of theform

p/q, wherep/q is in simplestform, thenp is afactor ofthe constant term and

q is afactor of the coefficient of the highest-degree term.

Forexample, ifthe polynomial 6x* — 3x* + x + 7 has rational roots (p/g), then

p is a factor of the constant term, 7 (i.e. either1 or 7) and q is a factor of

the coefficient of the highest-degree term, 6 (i.e. either +1, 2, £3, or £6).

Thus, the only possible rational roots of this polynomial are:

2o, 2o 4d 47 4 +
2”738 76 A
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7. Descartes’ Rule of Signs: If P(x) is a polynomial whose terms are ar-

ranged in descending powers ofthe variable, then the number ofpositive

real roots ofP(x) is the same as the numberofchanges in sign ofthe coeffic-

ients ofthe terms, or is less than this number by an even multiple; and the

number ofnegative real roots ofP(x) is the same as the number ofchanges

in the sign ofP(—x), oris less than this number by an even multiple.

For example,for the polynomial 2x* — x” + 5x* + 3x — 9, the signs of the
coefficients indescending order are { + —++— }. Reading from left toright,

there are three changes in sign. Therefore, there are either 3 or 1 positive

real roots ofP(x). Next, evaluate P(—x) and apply the rule of signs to assess

the number of negative real roots. P(—x)=2x* + x> + 5x> —3x — 9 and the
signs are { + + +—— }. There’s only one change and thus there is exactly

one negative real root.

8. Upper Bound Theorem: Ifc is positive and P(x) is divided by x — ¢ and

the resulting quotient and remainder have no changein sign, then P(x) has

no real roots greater than c. Thus c is an upper bound ofthe roots ofP(x).

For example, to test whether 4 is an upper bound of the roots of the poly-

nomial, x* —3x’ —2x* +3x — 5, divide the polynomial by x— 4. All coef-
ficients in the quotient (x* + x* +2x +11) and remainder (39) have the

same sign, so all real roots of the polynomial must be less than 4.

9. Lower Bound Theorem: Ifc is a nonpositive number and P(x) is divided

by (x —c) and the quotient and remainder have alternating signs, then P(x)

has no real roots less than c. Thus, c is a lower bound ofthe roots ofP(x).

To test whether -2 is a lower bound of the polynomial x* —2x* + 6, for
example, divide the polynomial by x + 2. The coefficients in the quotient

(x> — 4+ 8) alternate in sign, and the remainder(-10) is opposite in sign

from the constant term in the quotient, thus confirming that all real roots of

the polynomial must greater than -2.
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Searching for Roots with Synthetic Division

Now that you have been introduced to the essential tools, try a few examples.

Example:

1.
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Find the roots of P(x)=5x" —16x* —7x’ +52x* —=70x +12.

Use HFILY(see page 276) to apply Descartes’ Rule of Signs and to
find an integral lower bound and an integral upper bound forthe set

of real roots of the polynomial. Enter the polynomial in vector form

onto the stack and then type (]a]A[PJOJL)(Y)(ENTER).

Results: a3 Signs: L 0% 1 3

s Fange: + -3 4
1: [ 5 -1 =¥ & =74 12 1]

. Use the Rational Roots Theorem to compile a set ofpossible rational

roots within the range determined in step 1 (note that -3 and 4 cannot

be roots because they represent bounds; roots are found between

them). Since p = { 1, £2, £3, +4, +6,+12 } and g = { *1, 15 },

possible p/q's within the range are:

-2a-ta-tdlittt
5 5 5 5 5 55555 5 5

Since you know there is one negative real root, begin using synthetic

division with the most negative of the possible rational roots, -12/5.

The polynomial should still be on level 1 after the execution of

HFLY . Key in the factor, (1)2)(#/=)[ENTER)(5)(=), then

? ’ 2 2

 

"
.
"
|

._
|.Resultt 2¢ [ 5 -28 68,7 -92.43 151,952 I

1: —oo, BEdE

Note that the quotient and remainder have alternating signs, which

means that the factor is a lower bound.

Press («]«]4«) and repeat step 3 using -2 as the factor.

Result: &2 [ o -Z& 45 -28 & ]
1=

Aha! You’ve found the negative real root—indicated by the zero

remainder.

=
1
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5. You can now use the quotient from step 4 when you found an exact

root. It is sometimes referred to as the depressedpolynomial. Press

(«) and begin your hunt for positive roots with the most positive of

the possible set of rational roots, 3: g LL.

Result: &3 [ = -11 12 -2

 

™
e
l

e

You’re on aroll—you’ve found another root. Now that you have one

positive real root, you know from Descartes’ Rule ofSigns that there

must be either one or three more positive real roots. If you can find

one more, you can use the quadratic equation to find the other two.

6. Repeat the search using other possible positive rational roots. You

can either continue to test roots in descending order, or you can test

a sampling and watch for remainders changing signs. Try the latter

method. Press (@) and repeat the S[I% process on the latest de-
pressed polynomial ([ 5 -11 12 -2 ]) using factors of 2, 1, and 0.

Results: (2) [ 5 -1 1A ]

(1)

(0) [ 5 -11 12 ]
=—

t
[
=
T
—
0

Because the remainder changes signs between 1 and 0, you know

that at least one real rootlies between 0 and 1 (possibly closer to 0).

7. Review thelist of possible rational root values for those between 0

and 1. Repeat the search starting with the value nearest zero, 1/5.

Result: i_ [ 5 =18 18 1]

!

Voila! There’s the third root. Now you can use the quadratic formula

to force the remaining two roots into the open.

8. Press (), then execute LLSILY (see page 297), which applies the

quadratic formula to a vector of coefficients of a quadratic equation.

Result: + 'l1+i' '1-i' 3

Mission accomplished. The five roots of the polynomial are -2, 0.2,

3, 1+i, and 1-i.
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Example:

122

1.

Find the roots of the polynomial 2x* —3x*> +4x—9.

Enter the polynomial in vector form: (&]1)(2)(SPC)(3)+/-)(SPC)(4)

(SPC)(9)+/=)(ENTER). Your goalis simplyto find one root—the other

two can be obtained directly from the quadratic equation

Execute AFLLY to analyze the polynom1al (VAR) ITR,

 

 

Result; E“ Signs:L 3 |_*:1;
c F‘jryaeA2z
1: [ &2 -2 4 -9 ]

There are either 3 or 1 positive real roots, and no negative real roots

—a fact confirmed by zero being the integral lower bound.

. List the possible rational roots in the range. Withp = { £1, 3,19 }

and g = { £1, £2 }, this list of candidates is short: { %, 1, % }

Begin the ="'MLl program; put the polynomial in the POL YWOFIAL:
field: k3.[ ll; then CALC| OK|

 

. Enter the most positive candidate factor into the FRCTIF: field and

perform the synthetic division: ENTER) TEE.

 

 

RSYNTHETIC mwsluum
POLYNOMIAL: =
FACTOR: 1.5
RUOTIEMT: [ 28 4 1]
REMAINDER:  —3

EMTEE POLYMOMIAL A3 VECTOR
BTNNNNNEEEENTVB   

The remainder is negative, unlike the positive remainder at the upper

bound (3). Conclusion: There exists a real root between 1.5 and 3.

. Before seeking the real, non-rational root between 1.5 and 3, you

mighttry the other two rational root candidates in the list. (If the list

were longer, it may not be worth it to do this.). Enter the factors 1 and

then .5 and run the synthetic division. Note the remainders.

Results: For 1: KEMHAIMDEFR: -&; for.5: REMAIMDEER: -7.5
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Not only are the remainders still negative (i.e. there has been no

change from 1.5), they are getting more so. Furthermore, the quo-

tient and remainder are alternating signs, suggesting that these are

lower bounds. Conclusion: There are no more positive real roots

other than the one between 1.5 and 3 that you isolated in step 5.

7. Narrow down the range where the root lives by using the bisection

method. In this method, you choose as your next factor the approx-

imate midpoint of the range where you know the root to be located,

and keep repeating this choice as you narrow the range. Begin with

2.25 as the factor. Here are your results:

(2.25) REHMAILDER: #.5937°5 (Positive; rootis smaller)

(1.88) REMAILDER: 1.20&5144Y (Positive; rootis smaller)

(1.69) REMHMAILDER: -1.1546H2 (Negative;rootis larger)

(1.785) REHAIKIDER: -.0Y43dH51:75 (Negative; root is larger)

(1.833) KEMAIKDER: .5696B610:"4 (Positive; rootis smaller)

(1.809) KEMAIMDER: .25H39325H (Positive; rootis smaller)

(1.797) KEMHHAIMDER: 105150145 (Positive; rootis smaller)

(1.791) KEMHAIMDER: .030B342 (Positive; rootis smaller)

(1.788) REFMAIMDER: -.0na5a0258 (Negative; rootis larger)

(1.789) KEMHAIMDER: .00590113H (Positive; rootis smaller)

(1.7885) KEMHAIKDER: -.03d1491 (Negative; rootis larger)

You could continue this to the 12-digit limit of the HP 48, but 3 or

4 digits is usually enough. The approximate real root is 1.7885.

8. UselILSULY to compute the other two roots (also approximate, be-

cause the real root is approximate). Assuming you have just com-

puted the synthetic division for 1.7885, highlight the (XUOTIEMT:

field and press (NxT)[Eel;o8(ENTER)BA to move a copy

of the computed quotient—a quadratic—to the stack. Then execute

LIO=OLY: (var)e

Results (displayed to 4 places): © '—H.1443+]1. 57961

'-HL 1210709 =1 g

Thus, the three roots of the polynomial (approximate to 4 decimal

places) are: 1.7885  -0.1443+1.5796i  -0.1443-1.5796i
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Using the Solver to Find Roots

As you can see, the process of “zooming” in manually on approximate real roots

can be quite tedious. The built-in Solver of the HP 48 can speed up this process

considerably. The next two examples use the same two polynomials as the pre-

vious two examples, but this time, the built-in Solver is used.

Example:

1.

2

3.

4.
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Find the roots of P(x)=5x" —16x* —7x*> +52x*> = 70x +12.

Enter the polynomial in vector form onto the stack and make an extra

copy: (QJLI(5)(SPC)(1)6J+/-)SPC)7)+/-)(sPC)(s] (7]o)+/-]
ENTER](ENTER).

 

. Use HFIL'Yto apply Descartes’ Rule of Signs and find an integral

lower bound and an integral upper bound for the set of real roots of

the polynomial. Enter the polynomial in vector form onto the stack

and then type (o]@JAJPJOJL)(Y)(ENTER].
Result: 3¢ Signs: L 4 1

2 Fange: L -204 )
1: [ 5 -ll-- -7 e -8 1F ]

As before, this gives you some idea about the distribution of roots.

Convert the vectorformofthe polynomial to the symbolic: ('[a[<q]X]

EERVAR I
RCSlllt : :q..'M:_'1b "-}'--r_"-1'3-'.~:"""::!+F"|E-I'Z-'.~:"""E—F'l- ¥

Store the equation as the current equation (in the Varlable El1) and

begin the Solver: (&5)SOLVE) BTHE

s 'SExTD-16%xTd-TE L,

   
 

m =

 

L
o

 

[ 5 -16 -7 52 -7H ..
o Signs: L 4 1 ¢
]: ange: L -3 4 X
a1 ]
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5. Tosearch forthe negative real root, enter, as a list, the range ofvalues

that bracket it; put the list in x: (&)J)(3)+/=[SPC)(0)ENTER)L_#_|.

6. Launch the root-finder. It will start with the range youspemfied and

stop when it comesto a root: (§_#] Result: -

 

7. It found the negative real root. Enter the range for the positive real

roots andstart the root-finder again: (5]{})(0)(SPC)(4)ENTER)L i |

(L1 Result: «: . F

8. Ithas found one positive real root, but Descartes’ Rule of Signs says

there must also be another. To find it, just specify a different starting

search range than that ofthe root you just found. You already found

a root in the first half of the range, so try the second half, { 2 4 }:

SQD)2)EPO@)ENTER)[5 1 Result: 5 3

9. Now that you’ve found the three real roots, you need to return to the

vector approach to polynomials; the Solver cannot find complex or

imaginary solutions.

 

  

 

Press (w) repeatedly until the vector form of the original polynomial

is on level 1. Then use 5Lto “depress” the polynomial to a quad-

ratic by “removing” the roots you just found: e

()2)BT()(3) BT().

10.  Use HIOSULY to find the remaining roots: f

Result: ©+ '1+i' "1-i' 1
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Example:

126

L.

. Press i

Find the roots of the polynomial 2x* —3x* +4x-9.

Enter the polynomial in vector form: (G]{ })(2)(SPC)(3)+/=)(SPC)(4)

(SPC)(9]+/=)(ENTER]. Note that your goal is simply to find one root;

the other two you can obtain directly from the quadratic equation.

 

 

 

. Execute HFIILYto analyze the polynom1al (vaR) [TTHH.

Result: = Dians:l 3 OH
c F":IFIEIE'_L 4 3
1 [ £ -2 4 -9 1]

. This time, for illustration purposes, use the other Solver (you can

then use either one you wish for you own work). Press (—]SOLVE

to begin the *OLYE ECLATIOM application. The equation
from the previous example will be highlighted in the Ef: field.

 

Wfifififim SOLYE EQUATIONe
.-_'|__.-.'|:.-.a-"-|

 

ENMTEE FUMCTIOM TO =0OLYVE

EOT[cHOOs] [waks| |ERPE=    
Use the [i{H;| 45§ feature to bring a copy of the symbolic polynomial

into the Ei: field: CALC[QENE@OES
PV[Ok|

  

 

. Move the highlight to the i field and enter the range for locating a

positive real root: (]{})(0)(SPC)(3)[ENTER). Then move the highlight

to the #: field again and begin the root-finder: (v)ENTHY3.

Result: #: 1. 72352688 1EE. Quick, isn’t it?

. Press(CANCEL). On the stack you see the remaining copy of the poly-

nomial vector (level 2) and the (tagged) root youjust found (level 1).

=O @E]mto find (approximations for) the other
roots. Result: { =eIFHEEE+], 579eEEE1] 1"'1

- 144ZEIAAASI-1 "-’.T'—IF..:{'l’.l 11#1!
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Finding Roots ofPolynomials Graphically

Plotting a polynomial before trying to find its roots will give you a reasonably

good idea about the location ofreal roots. Furthermore,thea8l menu, avail-
able while you are viewing the plot gives you access to the same root-finder used

by the Solver—it’s the best of both worlds. Look at an example.

Example: Find the real roots of P(x) = x’ —6x* —7x* +12x*> —10x + 24, us-
ing a graphical method.

. Begin the PLOT application and make sure that the T¥'PE: field con-

tains Fizt 1 om: (3)PLoT)(a)(@)F)

Highlight the E¥*: field and enter the polynomial: (€9)(EQUATION)(c)

EIXXE))EH(EJSQX@)EHD(HSXIE
(2]JaX)Xafa)X)(+H)(2)4)ENTER).

3. Enter = (lower-case) into IHIEP:.

SetH=WIEK to—18 1 and¥-WIEK to=7 .

5. Pressfi!|#EM and be sure that the plotting range (HI: and LO:) and

= TEP: intervals are set to the default values.

  
 

 

     

Press [888 |37k3 D0

BTAGRTRAT  
 

A real root exists at each intersection ofthe graph with the x-axis. In

this view, you see three very clear spots where the graph crosses the

x-axis, which is very helpful for finding roots even if it gives you a

poor view of the overall polynomial.
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7.

9.

10.
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Movethe cursor (press (€) several times) so that it is to the left of the

most negative root. Then use the root-finderto find that nearby root:

ATH# Result: ROOT: -2.13024B94272.

Move the cursor nearto the middle root and press (—) fit{1h#l again.

Result: ROOT: 1.3448/026015

Move the cursorto the right of the most positive root and press (=)

fi'EEl. Result: ROOT: B.7/9120116627.

You’ve found three real roots, but are there more? Zoom out to ex-

pand your view of the polynomial: (=)(NxT) s [s gl =111
WZOUT| 200[CXas]V20uTh

 

 

: J'f\‘mi 
  $

200M [ed.[TRRCE]FCWEDIT[CAMIL

Although youstill can’t see all of the polynomial, you can now see

enough to convince yourself that you’ve found all ofthe real roots.

The “wiggle”in the graph suggests a pair of complex roots to bring

the total to the required five.
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Using the Built-In Polynomial Root-Finder

By far the quickest and easiest method of finding the roots of a polynomial on the

HP48 is to use its built-inpolynomial root-finder. It uses a more specialized algo-

rithm than the general root-finder used by the Solver.

Example: Use the built-in polynomial root-finder to find all roots of

P(x)=x>—6x"-7x>+12x*> -10x +24

1. From the stack, FIX the display to 4, then open the _'I]L"EF[IL

HIOMIAL application: (4]MODES )il ol sl il B8l 3 FA88 SOLVE))

[ENTER):

 

 

HEEEE COLVE AM-BoMW++AL-H+A0 SEEEE
-uEFwaEHTfrtVHHM",fll.fin'r"“”’

 

ROOT:=:

EMTEFK LI]EFFII.IEI'-IT'- Ok PRE:Z SI]L'-'E
EMT|]

2. Enter the polynomial in vector form into the field labeled COEFFI-

CIEMTE [ Al 0 AL AN 1: (G)0)(1)(SPC)(6]+/=)(SPC)(7]+/=)(SPC)

(1X2)(sPc)(10J+/-)(SPC)(2)4] [ENTER).
3. PresspliEd.

  

 

 

  

 

SRSSOLVE AM-RM++AL-H+A0 SE5EEE
COEFFICIENTS [ AW w0 AL AD I:

[ 1 -& =¥ 12 -18 =24..
ROOT::
     =22112415847ARE-..

EMTEFE F.I:Il]T Ok FRE'C" “OLVE

I
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4. The result is a complex vector containing five roots expressed as

complex numbers. Press [/}l to view the vector in the Matrix-

Writer. Then press (») as needed to bring each element(i.e. root) in

the result vector into the command line at the bottom of the screen.

The five roots, to four places,are:

(-8, BE29, -1, 1186)

1. 3449, B, BEEE)
(-2, 1236, B, BBEE )
B, P91, BHEEE )

The three roots whose imaginary coefficients are zero are, ofcourse,

real roots, but because the result vector contains some complex ele-

ments, the rules ofHP 48 vectors require that all elements in the vec-

tor be expressed as complex numbers.

Example: Find all roots of P(x) = x® +3x° —4x* +10x* — 34x + 42, butthis

130

time try the program FREIITS (see page 301), which makes use of

the polynomial root-finder but provides more convenient output—

a list showing real rootsfirst.

1. Returntothe stack (use asneeded) and enter the polynomial

in vector form (be careful to note the missing third-degree term):

(II(JsPA(3)(sPO)(4)+/-)(sPC)(0)(sPC)(1)o)(SPC)(3)4)+/-)(SPC)
(4)2)(ENTER).

2. Execute FRELOTS: Type or press

(then or as needed) ['THd. Result (to 4 places):

 

 

L —3.63H0 -2.48450 O, 2904, -H. 54450
C1.2984, B, 24400 (H.2271, -1.5496)
(H.2271, 1,2493
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Converting to Polynomials

There are many waysto find a set of roots of a given polynomial. But how would

you find a polynomial that corresponds to a given set of roots? The HP 48 has a

built-in function, FLOEF, that makesit easy to do justthat.

Example: Find the polynomial that has the following set of roots:

{ -127 4+3i, 4-3i }
2" 8 3’

1. Open the *OLYE POLYRMOMIAL screen: (—)SOLVE)(Y]Y)(ENTER.

. Highlight the KOOT=: field and enter the roots as a vector. Note that

because two of the roots are complex, all roots must be entered as

complex numbers; the real roots must use a zero as their imaginary

part (and for this reason it is generally easier to enter each root onto

the stack and assemble the vector at the end): CALC(@

(4lJ3)ENTERS)(O)+/-)ENTER)[+/-)ENTER)(2)
ENEROBHEEBSBERSTVPE*AREGE0K|

 

. Press (a)(NxT)El1/ET3. This computes the polynomial’s coefficients
and returns it to the COEFFICIEMTfield and places a copy of it on

the stack. Press &g4. This transforms the polynomial in vector

form to its symbolic form and placesit on the stack. Press

to view the results:

Result: '™1H, 3HEE*-"4+43, H2065"3
~£2. IEEPERAZ—4, B33TH+ 19, $444

. Since you have some rational coefficients, press (¢5]SYMBOLIC

 

Result: 'HAG-Z1-2HMHE1 1165003
~IPAN -EIB175!1 |_.I_.
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The result of the previous example is just one of the possible polynomials that

have the given roots—the one whose highest-degree coefficient is 1. But if you

multiply all coefficients by the least common multiple ofall the rational denom-

inators (18 here), you will get a polynomial with integral coefficients:

18x° —189x* +811x> —1119x*> — 87x + 350

Happily, there’s a program that will save you even this step....

Example: Repeat the previous example, but this time use FLOEF (see page

298), a program which will, given a list of roots, return a symbolic

polynomial with integral coefficients.

1. Enter the roots in a list: (S01+/==2)>)"2]=3)»)("7]

FHEIEOEEB0EE)E]H/)ENTER.
2. Execute RCOEF: mmfl@ ENTER) or (VAR] (then (NXT) or (&)

PREV) as needed)[

Resut: ' 1B#RAS-1B34R4B123
~1119=R72-71+350
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Another kind of conversion problem occurs when you have a function of one

variable that must be converted to a polynomial before you can find its roots. The

FCONY program (see page 290) is designed to perform such conversions.

Example:

1.

2

Find all roots of 4(x +2)° — (x__+11)_ +5x—T(x—4)+15.
X

Enter the function in its symbolic form: (4]4]0))

(JSXH2))IEEHAE0ISX=D@2
eXNHedaNoaUeaN@R
(ENTER).

UsePNVto convert the symbolic function to a polynomial, ifpos-

sible: (@]a]PJCIOIN]V] or (then or as
needed) Faioi]8.

Result: & [ 4 &8 69 123 74 ]
1: [ 1 1]

The level-2 polynomial is the numerator; the level-1 polynomial is

the denominatorfor the converted expression (so if the denominator

is[ 1 1, then the conversion resultis a true polynomial). Save a

copy: i

  

. Inany case, the roots ofthe original function are the same as the roots

ofthe converted numerator, so press («)(VAR[d111§ to compute the

Ioots.

Result (to 4 places): + —%4.47H -H. 9256 

Optional. Drop the previous result and compute the actual symbolic

version of the converted expression: () [gtii'14].

Result: %: [ 4 24 45 73 ]

[ -4 1
[ 111

DbtoGRD
+[a4)])

 

—
0
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Characterizing Systems

Systems oflinear equations (and inequalities) are a powerful means of modeling

real-world problems and solutions. Such systems are classified according to two

characteristics:

» The relationship of the individual equations to each other.

» The ratio of independent variables to independent equations.

Any two linear equations within a system—representing lines—may either inter-

sect, not intersect, or coincide. When they intersect, the equations are considered

to be consistent and independent. When they don’t intersect, they are inconsis-

tent. When they coincide, they are consistent and dependent. When working with

a system of linear equations, your goalis to include only equations that are consis-

tent and independent with all of the others in the system, because only those

equations will contribute information useful in determining a solution.

However, many kinds of real-world problems present two (or more) equations

that don’t precisely coincide, but are close enough to each othertopractically co-

incide. Equations which coincide—exactly or practically—are called degener-

ate, which,if they are a part of a linear system that you’re solving, can lead to un-

trustworthy solutions.

The other important characteristic of a linear system is the ratio of independent

variables to independent equations. Their true independence s critical. Variables

can appear independent—for example, test performance and shoe size—when

there is actually some dependency relationship between them—age. Thus equa-

tions can appear independent (i.e. “intersecting’”’) but be actually quite degener-

ate. Moral: Before deciding on the ratio of variables to equations, be sure that

everything you count meets the test of independency.

Ifthe true independence ratio is exactly 1, then the linear system has asingle, exact

solution. If the ratioisless than 1 (fewer variables than equations), then the linear

system is over-determined, and you probably must settle for a best solution rather

than an exact one. If the ratio is greater than 1 (more variables than equations),

then the linear system is under-determined, and has either no solutions or an in-

finite number of them—thus requiring you to decide which is the best solution.
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There are several ways to test the nature of a linear system: You can plot the

equations together and visually check for near-coincidal lines; you can enter the

system as a matrix of coefficients and find the condition number ofthe matrix; or,

you can compute the rank of the matrix of coefficients. Look at each technique.

Example:

136

Plot the following system of linear equations and look for one or

18x+24y =154
more near-coincidal lines: 27x+36y=80

Sx-8y=-7

. Because the PLOT application works best if there is no equal sign in

the expressions, mentally convert each of the equations into expres-

sions equal to zero (i.e. 18x + 24y = 54 becomes 18x + 24y —54).

OpenthePLOT application, make sure thatTPE: field saysFLri=—

1. 100, and then reset the plot: (DEL|Y]ENTER).

. Highlight the Ef¥: field, then enter the lines in a list: (&]{}]

XJoJSIXIH2]4IX)(ela)YI=[54))2D)XelX+]3]6)
XJaJaV=18o)sXafalX=)@X«JalYJHT)ENTER).

Because ' is on the same side of the equal sign as the independent

variable %, you must be sure that some value is stored in - before

attempting a Function plot. The value you choose will affect the loc-

ation of the plots, but not the positions of each with respect to the

others. Store 1 inY: AL[@@OENEE0K[To)

. Enter(lower-case) in IMDEP:, set H-WIEF to—1H 18 and set

N=WIEK to—< . Then press [LiEINTHR.

 

  

BTesT   
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6. The two lines on the right are suspiciously close. Press j#dil#3 to

begin trace mode. Then press (»)until the cursoris visible along one

of the suspect lines. With the cursor on one of the lines (press (4] as

needed to switch lines) press (&), then press and hold down(¥). You

will see the equation ofthe current line displayed above the plot until

you release (¥). Repeat the procedure with the other suspectline.

Ofcourse, visually inspecting the plots of system of linear equations is not pos-

sible for systems involving more than two independent variables.

Example: Find the condition numberfor the square (4 x 4) matrix representing

18x+24y+6z—54
27x+36y+9z-80
Sx—-8y+4z+7
—3x+6y—-9z+12

this linear system:

. Press (CANCEL|CANCEL]to return to the stack. Then enter the matrix

of coefficients for this system:

v
(0]+/=)(ENTER) (ENTER](8+/=) (ENTER]4) (ENTER] (ENTER) (3]+/-)

[ENTER)(8) (ENTER)(9]+/=) ENTER) [ENTER).
Make a copy of the matrix for later and find the condition number:

Enter)mTH)ATRT, Result: 1443, 72464255
The larger the condition number of a matrix, the more likelyit is to

be ill-conditioned—contain dependent equations. But how large is

too large? That depends upon how many digits in your answer you

want to trust.

    

  

Do a small computation to give arough idea ofhow many digits you

can trust in a solution computed using this matrix. Enter 15 (you’d

use 12 if the coefficients in the matrix were themselves the result of

HP 48 computations). Then press (SWAP)(=JLOG)(—).

Result: 11.34H5]120H3

Following this rule-of-thumb, you can trust up to 12 digits ofany sol-

ution computed using this matrix. Thus, although they are close, the

first two equations in the system are indeed independent.
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However, the condition number can be found only for square matrices. To char-

acterize non-square matrices, you must find their rank.

Example:

1

2.

3

138

Find the rank of the matrix representing the following system of

linear equations, and use it to determine whether all its equations are

independent:

18x+24y+6z—54
27x+36y+9z-80
Sx—-8y+4z+7

. You should still have a copy ofthe previous matrix onlevel 2. If you

don’t, enter the matrix above directly. If you do, edit it by removing

the last (i.e. fourth) row: («)(4)(MTH)Lgil8158 81|el ().

Make another copy ofthe revised matrix and then compute the rank:

EnTer)(TR REHALTTAZIXDEERTE. Result: 3

The result indicates that all three equations are independent—the

matrix is offull rank.

  

. Press (@)(v)(v)(>>1]+/=)([ENTER])(ENTER] to edit the matrix by
changing the constant in the second equation from -80 to -81. Find

the rank ofthe edited matrix:e8. Result: &

The §dilelll computation is indicating that the second equation is

now linearly dependent upon the first, so now there are only two

truly independent equations.
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Introduction to Matrix Arithmetic

Solving systems oflinear equations of more than two equations in two variables

requires the use of matrices. The HP 48 handles all manner of matrix math with

ease. The following few examples illustrate some of the basic matrix operations.

Matrix Addition

Two matrices may be summed only if they have exactly the same dimensions.

Matrix addition simply sums corresponding elements of the two matrices and is

therefore commutative: ifA and B have identical dimensions, A+ B=B+ A.

-1 -6 0O 5 2

1. EnterA onto the stack: (-MATRIX)2]+/=JENTER]4[ENTER]2ENTER)
(v)(5)(ENTER](1]+/=) (ENTER)(6[+/=) (ENTER](ENTER.

2. Enter B onto the stack: (=|MATRIX](3)(ENTER](4)+/-)(ENTER)(8])+/-)

(ENTER)(Y)(0)(ENTER)(5 (ENTER](2)(ENTERJENTER).

3. Press(+). Result: [[ 1 H -& 1]
[ 54 -% 1]

-2 4 2 3 4 -8
Example: Add A =[ 5 } and B = [ }

 

 

 

 

 

 

Scalar Multiplication

Scalar multiplication is the multiplication of a matrix and a number (known as a

scalar in this context). Each element of the matrix is multiplied by the scalar, re-

sulting in the scalarproduct. Scalar multiplicationis commutative: n-A = A -n.

-2 4 2
Example: Find the scalar product of 5 and A = [ 5 | -6 }

1. EnterA on the stack: (=MATRIX](2]+/=)([ENTER)(4)(ENTER)(2]ENTER)

(w)(5)(ENTER](1)+/=)(ENTER)(6

]

+/=)(ENTER) (ENTER.

2. Enter the scalar: (5]ENTER).

3. Press(X). Result: [[ -1H YA 1H 1]

]s 5 _TOf
Ca = —al
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Matrix Subtraction

Matrix subtraction is analogousto the subtraction ofreal numbers. Therefore, on

the HP 48, you can do matrix subtraction (A-B) in any one of three ways:

1. Enter A,enter B, press (—).

2. Enter B, press (+/-), enter A,press (+).

3. Enter B, enter -1, press (X), enter A, press (+).

Matrix Multiplication

Matrix multiplication (A - B) is defined only for two matrices that are dimension-

ally compatible in the given order: The number of columns in the first matrix (A)

must equal the number of rows in the second matrix (B). The result of matrix

multiplication will have the same number of rows as A and the same number of

columns as B.

Thistable illustrates the rules for dimensional compatibility with a few examples

(note that the dimensions are alwayslisted as rows x columns):

A B A-B

G-es B3]
B—comrere)B2 not defined

x|<o)_BJx[2] (2)x2]

(Oxfl-o1| (O]
x4 @x4]

Matrix multiplication combines each row ofAwith each column ofB, in a process

known as the innerproduct or dot product, which multiplies corresponding ele-

ments (i.e. the first element ofthe row by the first element ofthe column,etc.), then

sums all the products.

140 5. SYSTEMS oF LINEAR EQUATIONS



Thus each row/column combination results in a single element in the result

matrix. The following figure demonstrates this process for the multiplication of

a 2 x 3 matrix (A) with a 3 x 2 matrix (B):

X vy z b xa+yb+zc xd+ye+zf
o =

¢ ra+sb+tc rd+se+tf

-3 5
. . -2 4 2

Example: Find ABif A ={ 5 | } and B=| -1 4 |.

7 -2

  

1. EnterA: (®JMATRIX)(2)+/=)(ENTER)(4)(ENTER)(2JENTER)(Y)(5)[ENTER)

(1]+/=)(ENTER](6+/=)(ENTER](ENTER).

2. Enter B: (>MATRIX](3]+/=)(ENTER)(5)(ENTER)(Y)(1[+/=)(ENTER)(4)
(ENTER)(7)(ENTER)(2]+/=)(ENTER) (ENTER).

3. Press(X). Result: [[ 16 & 1]

 

  

Matrix Transposition

Transposing a matrix converts its rows into columns and its columns into rows—

an important operation in many different matrix applications.

-2 4 2
Example: Transpose the matrix A = { 5 i 6 ]

1. EnterA: (®|MATRIX].+/—ENTEB[ENTER]ENTER]@

(1)+/=)(ENTER)(6+/=)(ENTER)(ENTER).

2. Transposeit: (MTH)[RE[RITHABT
Result: [[ -¥ 5 1]

[ 4 -1 1
[ : _El ]:I
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Finding the Determinant ofa Square Matrix

The determinant of a matrix is a number computed from the elements of a square

matrix. Itisn’t defined for non-square matrices. The determinant plays akey role

in determining whether a matrix has an inverse—which,in turn,is the key oper-

ation in solving a system of equations.

3 4 1

Example: Find the determinant of the matrix A=|2 6 0

4 -1 =2

  

1. EnterA: (©]MATRIX](3)([ENTER)(4]+/=)([ENTER)(1)(ENTER)(Y)(2)[ENTER)
(6)(ENTER](0)(ENTER)(4)(ENTER])(1])+/=)(ENTER] (2]+/=)(ENTER)(ENTER).

2. Compute the determinant: (MTH)[ELEL TaRd(NxT) BTREH.

Result: —'t
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Matrix Inversion

There is no matrix “division”—only multiplication ofone matrix with the inverse

of another. And not all matrices have inverses; matrix inversion is defined only

for some (not all) square matrices. The inverse of a square matrixA is the matrix

Alsuch that A-A™ =A™ - A =1, where I is the identity matrix with the same
dimensions as A. An identity matrix is a square matrix whose diagonal elements

1 00

are 1 and all others are 0. For example, the 3 x 3 identity matrixis [0 1 O

0 0 1

3 4 1

Example: InvertthematrixA=|2 6 0 |andcompute A - A" to check.

4 -1 2

 

1. EnterA: (©|MATRIX)(3)[ENTER.+/—J(ENTER(1)ENTER)(Y)(2)[ENTER)
(6)(ENTER)(0)(ENTER)(4](ENTER)(1)+/=)([ENTER)(2]+/=) (ENTER](ENTER).

2. Make a copy of A and computeits inverse: (ENTER)(¥/x). Results

(shown to 5 places): [[ H.1%38%3 H. 11533 H.HR9E ]

[ rHEICH H. 12381 -8, 85564 ]

  

 

_____ H. 16667 -H.33333 1]L -
—
l
-
l

3. Optional. Make a copy ofthe inverse and use the program A+[! (see

page 277) to convert the array elements to fractions to see if you can

obtain an exact answer: (ENTER)(a]aJA][>]=]Q)(ENTER.

Results: © © 't«13! :SeRtot1elat b
=(Feg TEL39 T390t

o3t lent 0Lzt oS

Note that the result is a list oflists representing rows of the matrix.

This notation is standard for representing symbolic arrays on the HP

48 (actual arrays don’t allow algebraic objects).*

4. Check the results by multiplying A by its computed inverse (if you

performed step 3, first press (@)): (X].

*Converting an array of decimal approximations to a symbolic array of fractional equivalents will not be useful

ifthe array is the result ofan inversion (or other computation) ofanother array with approximate decimal elements.
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Solving a Linear System

There are several approaches to solving a linear system of equations. The HP 48

can assist you with any of them.

Gaussian Elimination. This approach uses elementary row operations of

matrices to transform the matrix representing a linear system into one from

which the solution can be easily computed. This is the most commonly

used approach for manual solving.

Cramer’s Rule. Cramer’s Rule is a theorem that allows you to compute

the solution of a linear system by dividing its matrix into a set of smaller

ones and then using ratios of the determinants of these smaller matrices to

compute the solution.

Matrix Inversion. While technically both of the preceding methods im-

plicitly use matrix inversion, there are other methods better suited to elec-

tronic computation that will efficiently generate a solution directly from

the matrix representing the linear system.

These methods are described in each of the next three sections.
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Solving by Gaussian Elimination

The process of Gaussian elimination is a common approach to solving systems

of linear equations when doing them manually. It transforms the augmented

matrix representing the linear system into an equivalent row echelon or reduced

row echelon matrix, from which the solution can be easily computed.*

To understand the goal more clearly, look at examples ofaugmented, row echelon

and reduced row echelon matrices:

Augmented: Row Echelon: Reduced Row Echelon:

XN Z1!k1 1 a, a13ik1 10 Oix

X, Y, %, 1k, 0 1 aylk, 01 0!y

X, Y, 21k 0 0 11k 00 11z

The matrix ofcoefficients is partially transformed to the identity matrix in the row

echelon form and fully transformed in the reduced row echelon form.

Each step of the Gaussian elimination process uses one of three elementary row

operations for matrices:

1. Swapping two rows.

2. Multiplying one row by a nonzero constant.

3. Multiplying one row by a nonzero constant and adding it to another row.

Not surprisingly, the HP48 has a command corresponding to each of these oper-

ations. Take alook at an extended example ofusing Gaussian elimination and the

HP 48 to solve a linear system.

*Technically, the method of reducing the augmented matrix to a row echelon matrix is called Gaussian elim-

ination, and the method that reduces the augmented matrix “all the way” to a reduced row echelon matrix is called

Gauss-Jordan reduction. Both methods are referred to interchangeably as Gaussian elimination in this book.
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Example:

146

3.

Solve this system of linear equations using Gaussian elimination:

x+2y+3z=6
2x—4y+2z=16
3x+y—z=-2

. Enter the augmented matrix onto the stack. The augmented matrix

includes an extra column containing the constants that appear on the

1 2 3,6

right-hand side of the equations: |2 -4 2 i 16
I

3 1 -11-=2
 

So, press (™MATRIX)(1])(ENTER)(2)(ENTER)(3)(ENTER)(6)([ENTER)(Y)(2)

(ENTER)(4]+/=)(ENTER)(2)(ENTER)(1])([ENTER)(3)(ENTER)(1)(ENTER)(1]

(+/=)(ENTER)(2]+/=)(ENTER](ENTER).

   

 

 

The upper left element ofthe matrix does not need to be transformed,

so begin with element (2,1)—the first element of the second row. It

must be transformed to 0. To do this, multiply row 1 by2 and add

it row2 (2]+/=)(ENTER) (1) ENTERJ.[ENTERAlMATR]RO
EEFE Resu: [[ 1 2 36 ]

[ B -8 -4 4 ]
[ 21 -1 -2 1]

Reduce element (3,1) to 0: Multiply row 1 by -3; add it to row 3.

(3)+/=)(ENTER)(1)(ENTER)(3 E51.

Result: [[ 1 .: 3 En

 

 

 

 

 

. Reduce element (2,2) to 1: Swap rows 2 and 3, then multiplyrow

2 by1/5(toaV01d fractional elements).m.m
C2)F/=ENTER2)NXT) BHANEE. Result: [[ 1 ¥ 3 & 1]

 

[ H1 2 4 ]
[ & -8 -4 4 1]

. Reduce element (2,3) to 0: Multiply row 2 by 8 and add it to row 3.

(8)ENTER)2)ENTER)(3)MAEEM. Result: [[ 1 & 2 & ]

[ B 12 4]
[ B H 12 36 1]
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6. Reduce element (3,3) to 1: Multiply row 3 by 1/12. (1)(ENTER]1]2)

 

88 Result: [[ 1 ¢ 3 & 1
[ H1 Y 4 ]
[ BH 13 1]

This produces the row echelon form, which, when translated it back

x+2y+3z=6
into a set of equations is y+2z=4

z=3

7. Ofcourse, you could now solve this system by substituting z= 3 into

the second equation, solving there for y, then substituting for y and

z in the first equation, and solving there for x. But for the purposes

of this example, continue the elimination process until you produce

the completely reduced row echelon form.

Reduce element (1,2) to 0: Multiply row 2 by -2; add it to row 1.

(2)+/=JENTER](2)(ENTER)(1EoAI8

Result: [[ 1 H "1s ]
[ H

 

   
 

9. Finally, reduce element (1,3

row 1: lmnm
Result: [[

The solution is now directly obvious if you translate this reduced

row echelon form into a system of equations:
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As the previous example makes clear, Gaussian elimination will get you to a so-

lution soonerorlater, but it may take more than a few steps. The HP48 has a com-

mand to accelerate the process. FFEEF takes you directly from the augmented mat-

rix to the reduced row echelon form; in essence,it automatically executes all of

the elementary row operations necessary to complete the process.

Example: Use the FFEF command to solve the following system:

x+2y+3z=6
2x—4y+2z=16
3x+y—z=-2

1. Enterthe augmented matrix representing the system:
(ENTER)(2)(ENTER)(3)(ENTER)(6)(ENTER](Y)(2)(ENTER)(4+/=)(ENTER)

(ENTER)(1])[ENTER)(3)[ENTER)(1)(ENTER)(1[+/=)([ENTER](2+/—)(ENTER)

(ENTER).
2. Transform the augmented matrix directly to its reduced row echelon

form: (MTH)LaGIdHTRIS

Result: [[ 1 H H 1 ]

  

  

 

3. As in the previous example, you can simply read the solution from

the right-most column: x=1;y=-2,z=3.
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The Gaussian elimination process can be used on any augmented matrix—even

one that has been augmented with more than one column.

For example, to invert a square matrix, you can augmentit with an identity matrix

of the same dimensions and then reduce the augmented matrix to its reduced row

echelon form. The inverse is returned to the right-hand section,just as the solution

is returned to the right-hand section in the examples above.

1 2 3

Example: Use Gaussian eliminationtoinvert|{1 1 2|.

0 1 2

 

1. Enter the matrix: (JMATRIX])(1](ENTER.(ENTER)(3)(ENTER)(Y)(1]
(ENTER](1](ENTER)(2)(ENTER)(0)(ENTER)(1)(ENTER)(2) (ENTER)(ENTER).

2. Create a 3 x 3 identity matrix: MLRBT,

3. Augment the original matrix by inserting the identity matrix on the

rightside (i.e. begmmngin column 4) ofthe ongmal matrix: (4)(MTH)

 
 

  

MATR]© Result: [[ 123188 ]
[ 11 &6 18]
[ B 1 &R/ B 1 1]

4. Transform the augmented matrix to its reduced row echelon form:

i L3110 i3 i (L1 BRBEA1-11]
[ B 1R E-E -11]
[BHT1-1111]

Notice that the left half of the augmented matrix has been converted

to a 3 x 3 identity matrix and the right half is the inverse ofthe orig-

inal matrix.

5. Eliminate the first three columnsleavmg only the inverse: (1)(MTH)
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Solving with Determinants: Cramer’s Rule

Determinants can be used to solve a system of linear equations provided that the

following three conditions are met:

* The number of independent variables equals the number of independent

equations in the system.

e The determinant of the matrix of coefficients is non-zero.

» At least one of the constants to the right of the equal signs is non-zero.

Cramer’s Rule requires that you create a set of specially augmented matrices from

the matrix of coefficients. For example, to use Cramer’s Rule to solve the linear

 

  

x+2y+3z=6
system 2x—4y+2z=16, you first must create four matrices:

3x+y—z=-2

1 2 3

e The matrix of coefficientsitself: A=|2 4 2

3 1 -1

6 2 3]

* A with its first column replaced by the constants: A =|16 —4

-2 1 -1

1 6 3]

* A withits second column replaced by the constants: A, ={2 16 2

3 -2 -1

1 2 6

* A with its third column replaced by the constants: A, =|2 -4 16

3 1 -2

The unique solution of the given system is: x = !—" y= lA—y‘ z= 'AZ ‘ ,
A Al A  

where | | indicates the determinant of the respective matrix.
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Example: Solve the following system oflinear equations using Cramer’s Rule:

x+2y— z=-1
2x+3y+2z=-3
x—2y-2z= 3

1. Enter the augmented matrix,just as with Gaussian elimination: ()

(MATRIX]1JENTER]2JENTER]1]+/=JENTER](7[+/=JENTER)(V)(2)[ENTER)

(3)(ENTER)(2)(ENTER)(3)(+/=)(ENTER)(1)(ENTER)(2)(+/=)([ENTER)(2)(+/-)

(ENTER](3)(ENTER)(ENTER).

 
 

  

 

 

2. Copy the augmented matrix, then modify the copy by removing the

 

column of constants: m.mM| HMATE] COL | cOL-[
Result: [[ 1 ¥ -

[ £ 3 ¢ ] The matrix of coefficients (A)

[ 1 ¢ - 1]

3. Findthedeterminant ofA: 'l'fi"'l'I‘I;'I'Fifife[lEi'I'ii .Result: 17

4. Bring the copy ofthe augmented matrix to level 1 and make another

copy (SWAP)(ENTER)). Then create A_ by swapping column4 and
column 1 and then deleting column 4: .m@|E

BTl(9Sl («). Result: [[ -7 & -1 1]
[ -3 232 1]
[ 2 -& -2 1]

5. The determinant ofA: Hwl;lliif "%DET?'“ Result: 17

6. Repeat steps 4 and 5 to find the determinant ofA . This tlme swap

columns 2 and 4: (SWAP)([ENTER)(2)ENTER)@Efiflh
COL-@Efilfllm. Result: —_.1

7. Likewise,find the determinant ofA. This time swap columns 3 and

4: (SWAP]m-mu@TT2T@D

   

 

   

Gl . Result: 3¢

8. Collect the last three determinants in a list: LIST|*LIZTA

Result: &* 17

1= {17 -51 24 =

9. To compute the three solutions, swap levels and divide: (SWAP)(<).

Result: + 1 -3 & % Thus, x=1;y=-3;z=2.
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Of course, this method of solving a system of linear equations by Cramer’s Rule

is a good candidate for automation. The program LEHIMEF (see page 279) does
just that.

Example:

152

Use LEAIEE to solve the following linear system:

a+b+c+d+ f =340
a+b =90
a+ c =110

d+ f =180
c+ f=170

. Enter the augmented matrix representing the system: (—>|MATRIX
  
(ENTER)(1)(ENTER)(1)(ENTER](1)(ENTER)(1)(ENTER)(3)4]0)ENTER)(Y)(1]

(0] (ENTER) (0) (ENTER) (0] (ENTER) (9)(0)
(1JENTER) (0)ENTER] (1JENTER) (0JENTER) (0]
(0)ENTER] (0)ENTER) (0)ENTER) (1)ENTER) (1)ENTER)
(0)ENTER] (0)ENTER) (1)ENTER) (0JENTER) (1)ENTER)

[ENTER).
Enter a list of the variables, in the order presented in the matrix: (&)

[ENTER).

 

 

 

 

. ExecuteCEAMER: (o))C)RIAM|E)R)[ENTER) or (VAR) (then (NXT)or

(]PREV) as needed) Lo;]ul.

Result: % © -1 -4H -5H -/

15 L =3 4 =b: 5 :z: VB :d:
Ao

Thelist on level 2 contains the determinants for the matrix of coeffi-

cients and each of the “Cramer”’-augmented matrices. Level 1 con-

tains a list of the solutions tagged with the names of the variables.

5. SYSTEMS OF LINEAR EQUATIONS



Solving by Matrix Inversion

While the preceding methods are robust (and could be adapted to symbolic—as

opposed to numeric—solutions) they are not the most efficient means of solving

a system of linear equations when using a computational device like the HP 48.

The fastest methods usually employ algorithms to invert a matrix.

The crucial role that matrix inversion plays in the solution of a system of linear

equations is obvious when you view a linear system as a single matrix equation:

x+2y—- z=-T7 L2 -1 =7
2x+3y+2z=-3 isequivalentto |2 3 2 |-|y|=|-3
x—2y—2z= 3 1 -2 2 Z 3

If you recall the rules of matrix multiplication, you will see that this relationship

is exactly correct. The matrix equation can be simplified to A - x = B, where A

is the matrix of coefficients, x is the vector of variables and B is the matrix of

constants.

To solve the matrix equation, you must multiply both sides of the equation by the

inverse ofA, as follows: A™-A-x=A"7-B=I-x=x=A".B. Thusthe solu-

tion can be computed by multiplying the inverse ofA by the vector of constants.

You’ve already seen two methods of computing the inverse: using the key

and using Gaussian elimination (the routine used by the HP 48 when you press

to inverse a matrix makes use of advanced matrix decomposition algorithms

that are beyond the scope ofthis book to explain). Butthere is a third method for

inverting a matrix that you should know about: the cofactor matrix. The cofactor

matrix of a given square matrix is the square matrix in which each elementis

replaced by its respective cofactor.

So... what’s a cofactor?

To put it as simply as possible: Each element in a matrix belongs to a particular

row i and a particular columnj. That element’s cofactor is (—1)"" timesthe de-

terminant of the matrix that remains if you remove row i and columnj.
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For example, given A = , the cofactor of the element in row 2,

 

 

1
column 3,is (1) ) ‘ = 4. Andlikewise,ifyou find the cofactorsfor every

-2 6 -7

element in A, you’ll have its complete cofactor matrix: A= 6 -1 4

7 -4 -1

As it turns out, the inverse of a matrix A is the transpose of its cofactor matrix,

divided by the determinant of A. Thus, for the example matrix:

 

20 2 6 7
10T T o

A“={AC} =74 Sj e 14
N 17 17 17 17

7 4 1
17 17 17

Comparethis to the result when you use to compute the inverse and useA*Q
to rationalize the elements:

:: :: I""LE"],?:II IEI"].-IT” I?"l?' ::

ORI =011 =041

{O=0PATY A1 (11T 33

The program LUFHCTE(see page 278) computes the cofactor matrix for a given
square matrix. Try an example using it to solve a linear system....
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Example:

X+2y+z—-6t=12
2x+3y—-2z+t=10
—3x—-4y+3z+5t=3
4x-3y—z+t=6

Use LOFACTE to help solve

   

. The augmented matrix: (=)(MATRIX](1)(SPC)(2)(sPC)(1)(SPC)(6]+/-)
 

@.SPC)(3)sPC)(2)+/-)(SPC)(1)(SPC)(1)0)ENTER]
(3)+/=JsPc)(4](+/=)(sPC)(3JSPC)(5)SPC) (3] (ENTER)(4)(SPC)(3]+/-)
(sPC)(1]+/=)(SPC)(1)(SPC)(6)(ENTER)(ENTER).

   

  

  

. Extract the column ofconstants from the matrix (column 5): (5)(MTH)

 

. The column ofconstants will be used later; swap ittolevel 2: (SWAP).

Then with the matrix ofcoefficients on level 1, make a copy and exe-

cute the CLIFACTE program to create the cofactor matrix: (ENTER)(@)
(o)(cJOJFJAJICIT)R)(ENTER) or (VAR) (NXT) or as needed)

EiEEE. Result: [[ 59 39 116 -3 ]
[ 3 85 93 5 1

[ 46 35 118 29 1
[ 21 -&6 12 & 1]

 

. Transpose the cofactor matrix: MATE|MAKE| TEN|

. Grab the matrix of coefficients now sitting on level 2 and find its de-

 

terminant: (SWAPMTH) IRLERALlN7BT, Result: &7'1

. Divide the transposed cofactor matrix by the determinant, make a

copy and rationalize the result: (=)(ENTER(VAR)HiEa*Hl. Result:
:'-' :: Il:'q.-l"."'.'ll Il—ll;I_l I ._'I_hI:"' I Iql_|1I ::

:: l-||_|_|1I I::Eil:'l'l I |_:l:'.|.;Tl 1 I_|_h.-L:'I'J].']l }

L '11|-.ff' ':lE-"" "1lE-271" "13-E0L d
L=02-22700 Tae-Edlt TaReEdY TEeEYt o

This 1s the inverse matrix of A.

. Drop the rationalized version, then multiply the inverse matrix by

the matrix of constants extracted in step 2. You must swapfirst to put

the matricesin the proper order (A~ - B = x): («)(SWAP)(X).

Result: [ E.9%446 4.6/23 1H. 1684 F. 46096 ]

S0, x=6.9446; y =4.6753; 7 = 10.1624; and ¢t = 2.4096.
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Finally, here are some examples to illustrate the built-in routine for solving linear

systems, which uses matrix inversion to solve the matrix equation: A-x=B.

X+2y+z—-6t=12
2x+3y—-2z+t=10
—3x—-4y+3z+5t=3
4x-3y—z+t=6

1. Enterthe array of constants (B): (&)11)(1]2)(sPC)(1)0)(SPC)(3)(SPC)

(6)(ENTER).
2. Enter the matrix ofcoefficients (A): (=JMATRIX)(1)ENTER)(2)(ENTER]

(ENTER)(6])+/=) (ENTER] (¥) (ENTER] (ENTER] (2]+/=) (ENTER)

(ENTER)(3])+/—)(ENTER) (4]+/=)(ENTER)(3] (ENTER](5 (ENTER) (ENTER)

(3)+/=)(ENTER)(1]+/=)(ENTER](1)(ENTER](ENTER).

3. Divide the two arrays: (=). This performs the I M\erse operation (as

in (1/x)) on the level 1 matrix and multiplies the result by the level 2
array. Result: [ E.9446 4.6723 16, 1624 24036 ]

Example: Solve this linear system using the stack:

 

   

   

 

Example: UsetheOLYE Z4¥=TER application to compute the solution to the

same system as in the previous example.

1. Open the ZOLYE ZY=TEM application: SOLVE)(A]A](ENTER).

2. Enterthe coefficients matrix in the H: field (same as step 2 above).

3. Enter the constants array in the E: field (same as step 1 above).

4. Highlight the H: field, and EDE3.

 

 

EMTEE *OLUTIOM: OF PREX: SOLVE

EOT JCHOOS)||[=OLYE

5. Press (13Ul then (») as needed to clarify the results. Use

   

 

CANCEL] to see the stack and the result array, labeledSlUt ions:
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Symbolic Solutions of Linear Systems

All of the built-in matrix operations, solving commands, and programs discussed

so far in this chapter require that you use numeric arrays; algebraic objects are not

allowed in such solutions on the HP 48.

However, you can extend the principles of the matrix operations and commands

to “symbolic” matrices by devising a method to represent symbolic matrices on

the HP 48. One common method for doing this is the “list-of-lists” notation.

ax+by+c=d
For example, the linear system ex+ fy+gz=h

jx+ky+lz=m

i
L 1

h
M

Using the same underlying mathematical principles as the numeric procedures,

a set of programs has been designed to work with the “list of lists” form of sym-

bolic matrices, performing essential matrix operations discussed in this chapter:

matrix arithmetic, transposition, inversion, finding determinants, and solving

systems of linear equations.* Like the other programs referred to in this book,

these programs arelisted in alphabetically order in the appendix at the end ofthe

book.

can be represented (in augmented form) as:

e

b
;

| i
-

.
I

o—
n

1

*Someof the programsin this set—oD0ET, SMMULT, STRM, SM+, +5M, SC0F, SMADD, SMSMULT, and SMSUB—

were adapted from the set of programs developed by Bill Wickesin his book, HP 48 Insights, Part I: Principles

and Programming and are used here with his permission.
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Here is a summary of the symbolic matrix programs* and how they work (along

with the page numbers where they are listed in the Appendix):

 

Symbolic Matrix Arithmetic

SIMACD Sums two symbolic matrices of equal dimensions (page 305).

SIM5LE Subtracts one symbolic matrix from another (page 307).

SMSMULT Multiplies a scalar (which may also be symbolic) by a symbolic

matrix (page 306).

SMMULT Multiples two symbolic matrices provided that they are dimen-
sionally compatible (page 305).

Symbolic Matrix Operations

it

=+l

STEN

SOET

SCOF

SRSMWP

SRCI

Disassembles a symbolic matrix onto the stack, with each

element occupying its own stack level. The number of columns

in the matrix is returned to level 2, and the number of rows is

returned to level 1. This program is analogous to the built-in

UB:|+ command for numeric arrays (page 304).

Assembles a symbolic matrix from its elements on the stack.

Level 2 should have the numberofcolumns in the new matrix and

level 1 should have the number of rows. This is analogous to the

built-in *HEEY command for numeric arrays (page 305).

Transposes a symbolic matrix (page 313).

Finds the determinant of a square symbolic matrix (page 302).

Finds the cofactor for an element in row r (level 2), column ¢

(level 1) of a square symbolic matrix (level 3) (page 301).

Swaps two rows of a symbolic matrix (page 312).

Multiplies a row of a symbolic matrix by a constant (which may

be symbolic). Analogous to ELI for numeric matrices (page
312).

*Note that you may enter a numeric matrix as a symbolic matrix ifyou want to perform operations in combination

with a truly symbolic matrix.
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SEIL

SeROL

SMECIL

SCSWP

SHCOL

SHCOL

Multiplies a row of a symbolic matrix by a constant (which may

also be symbolic) and adds the product to a second row. Analo-

gous to EC Ifor numeric matrices (page 312).

Extracts a designated row from a symbolic matrix, leaving it on

leaving it on level and the diminished matrix on level 2. Analo-

gousto FLIll- for numeric matrices (page 313).

Inserts a row list or symbolic matrix into a symbolic matrix be-

ginning in the designated position. Analogous to Flb+ for nu-
meric matrices (page 307).

Swaps two columns of a symbolic matrix (page 302).

Extracts a designated column from a symbolic matrix, leaving it

as a row list on level 1, and the diminished matrix on level 2.

Analogous to CI]L— for numeric matrices (page 313).

Inserts a row list representing a column ofelements or a symbolic

matrix into a symbolic matrix beginning in the designated pos-

ition. Analogous to L[JL+ for numeric matrices (page 307).

Symbolic Linear Solutions

SCRAMER

SCFRCTR

SMINY

SPSOLY

Given an augmented symbolic matrix representing a linear sys-

tem, returns a list of solutions computed using Cramer’s Rule.

Analogous to CEAMEF, for numeric matrices. Uses SOET, SCOF,

and SlM5MULT (page 302).

Computes the symbolic cofactor matrix for a square symbolic

matrix. Analogous to LUFHCTE for numeric matrices. Uses
SOET and SCOF (page 301).

Findsthe inverse of a square symbolic matrix, using the cofactor

matrix algorithm. Uses 3LFHCTE (page 305).

Solves a linear system represented by an augmented symbolic

matrix, using the cofactor matrix algorithm. Uses SIMINV and

SMMULT (page 306).
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Over- and Under-Determined Systems

All of the examples and techniques shown so far in the chapter have used exactly-

determined systems of linear equations—systems with equal numbers of inde-

pendent equations and independent variables. But you may run across systems

where this is not the case.

The HP 48 provides a special command for handling situations, where attempts

fail to recast the linear system as exactly determined. The command L5l! finds
the closest solution—the one which results in the smallest least-squares error. Or,

if LSQ finds more than one equivalent solution,it returns that with the smallest

Euclidean norm (the array’s “absolute value”). Look at two cases—one over-

determined system and one under-determined system (these examples apply only

to numeric matrices; there is no symbolic equivalent provided in this book):

x+2y-3z=34
-3x+y+5z=21
4x—-y+2z=20
-x—4y+7z=15

1. Enter the vector of constants: (][1)(3]4)(SPC)(2]1)(sPC)(2)0)(SPC)

[ENTER).
2. Enter the matrix of coefficients: (JMATRIX](1)(ENTER)(2)([ENTER)(3)

ENTER|¥)(3]+/=)(ENTER)(1) (ENTER] (ENTER) (4JENTER) (1)+/-)

(ENTER)(2)(ENTER)(1)+/=)(ENTER)(4)+/=)(ENTER)(7) (ENTER](ENTER).

3. Solve the over-determined system: [to00 SB

Result (to 4 places): [ 2.4725 9.1617 B HISH ]

Example: Find the best solution to this system:

 

 

  

  

 

x+2y-3z=34
—3x+y+5z=21

1. Enter the vector of constants: (&]i1)(3]4) [ENTER).

2. Enter the matrix of coefficients: (JMATRIX)(1](ENTER)(2)(ENTER)(3)

(+/=)(ENTER)(¥)(3]+/=)(ENTER)(1 (ENTER)(5 (ENTER)(ENTER).

3. Solve the under-determined system: (MTH) L[iH3 B8,

Result: [ —%4.2F8 16,6839 -1.65H1 ]

Example: Find the best solution for this linear system:
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Systems of Linear Inequalities

Systems of linear inequalities differ from systems of linear equations primarily

in the nature of their solution sets. Exactly-determined systems resultin a unique

solution—in essence, apoint. But a system of inequalities gives a solution space

—an infinite number of points, where every pointsatisfies all ofthe inequalities

in the system. Such systems are not said to be either over- or under-determined;

the ratio of equations to variables is unimportant.

For systems in two variables, plotting is a good means ofdetermining the solution

space. The program, IMFLOT (see page 284), by Jim Donnelly, doesthis.*

Y>2X-1
Y<-2X-2
Y<3X+2
Y>-2

1. Open the PLOT application; set the TYPE: field to Furct 1o,

2. Highlight the Ei: field; enter the inequalities in a list: ]{(")(e]Y)

(I3XX(a3RFX)(XI=]2)>)
C)eMJal3)EXX2V(@2I3)2IF/)ENTER).

3. Set the plot parameters—MIEP: to /4, H=WIEF to —= = and Y-

WIEI to—2 Z. Savethe settings and exit to the stack: (NXT)[Cl.

4. Plot the system using the IMFLIT program: (LIN]PJL)O]T)
or (then or ()PREV) as needed) 1|lB1.**

Example: Plot this set of linear inequalities:

 

 

    
 

2000Ce'td[TRHCE]FCHEDIT[LAMIL

*Note that IMNPLOT requires that you use # and " (uppercase) as the independent and dependentvariables.

**Plotting a system ofinequalities is relatively slow because each column of pixels must be tested against the

values ofthe each ofthe functions. The line of pixels along the top shows you the progress of the plotting.
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Linear Programming

How do you solve a system of linear inequalities involving more than two

independent variables, whenit isn’t possible to plot the solution?

To be sure, there is no easy approach. However, most of the real-world applica-

tions for solving such systems of linear inequalities are found in the context of

finding the optimum solution within a possible solution space. In these cases, you

are not interested in the entire solution space (or even in defining it), but in deter-

mining the one solution within the universe of possible solutions that optimizes

a particular function. Such problems are the realm of linear programming.

A linear programming problem consists of:

* Anobjectivefunction that must be optimized—maximized or minimized.

* A set of constraints—Ilinear inequalities that define the possible solution

space for the problem.

Solving a linear programming problem requires that you find a means to “graph”

the set of constraints. If there are only two independent variables in the system,

the “graph”is a two-dimensional polygon and can be actually drawn on a piece

of paper or on the HP 48 screen. If there are three independent variables, the

“graph”is a three-dimensional polyhedron and might be sculpted as a model or

be represented in 3D-rendering on a flat surface. However, the “graph” of a sys-

tem containing four or more variables cannotbe created in any physical way with-

in the three dimensions of our existence. So how can you solve a linear program-

ming problem with four or more variables?

Problems in four ormore dimensions can’t be represented physically, only mathe-

matically, via matrices. If a linear programming problem can be represented in

terms of matrices, then there is a good chance thatit can be solved—even if there

are 5, 10, or morevariables.

What does the “graph” ofthe solution space of a system with, say, 7 independent

variables “look” like? The solution space of a 3-variable solution is a 3-dimen-

sional polyhedron, but the mathematical term for a higher-dimensional analogue

of a polyhedron is simplex. Thus, the solution space of a 7-variable system is a 7-

dimensional simplex.
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Recall that to graph any inequality, you must actually graph the corresponding

equality (aline) and then decide on which “side”ofthe line the solution space lies.

Similarly, the “edges” of any solution space for a system of linear inequalities—

be it a polygon, polyhedron, or simplex—are the inequalities of the linear system

after they are converted into equalities. These solution spaces all have vertices,

which are the intersection points of two or more “edges” (i.e. inequalities con-

verted into equations).

Now, one of central theorems of linear programming is that the optimal solution,

if it exists, will always occurs at a vertex of the solution space that represents the

set of constraints for the problem. Therefore, the process of “solving” a linear

programming problem is simply the testing of the vertices of a simplex to see

which of them—when its coordinates are substituted into the objective function

—yields the optimum value (maximum or minimum, depending on the problem).

However, to solve a linear programming problem before the end of the millen-

nium, you must test the vertices in an efficient way;it takes far too long to test

every vertex, so you need to test only those vertices that might yield the optimum

and ignore those that don’t stand a chance. (And obviously, this need for effici-

ency increases rapidly as the number of variables—the number of dimensions in

the simplex—increases).

The Simplex Method is a matrix-based algorithm that explores the vertices of the

solution simplex in an very efficient way. It starts with any vertex and then finds

another vertex that improves the objective function, and repeats the procedure

until there are no more improvements. It almost always finds the optimal vertex

afterjust a few iterations—no more than the number ofinequalities or the number

of independent variables, whicheveris larger.
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The HP 48 can be programmed to use the Simplex method. The examples which

follow use a collection of four programs:

o LIMPEL (see page 286) is the master controlling program, collecting a

description of the linear programming problem, converting it to the

array form—the tableau—needed by the 2-phase Simplex algorithm,

calling FHASE1 and SIMPLE® as needed to solve the problem, and
finally reporting the results.

o PHASE] (see page 292) adjusts the given tableau so thatit is in canonical

maximum form,suitable for the main'a IFMIFLEalgorithm to search for

an optimum solution.

o SIMFLER(see page 303) applies the Simplex algorithm to the given tab-

leau, using a specified objective function.

o PINMOT (see page 294), called by both FHHSE1 and SIIMFLE, performs
a single pivot operation on the given tableau using a specifiedpivot row

and pivot column.

Although PHASEL, SIMPLEX, and FIMOT are primarily designed for use with

L IMPFL, you may also use them independently if you want to examine the pro-

cess more closely.*

Look at some examples using LIMFEG. Be sure that all four programs are
correctly entered in your current path before trying these examples.

*3IMPLEX takes as inputs: the number of constraints (level 6), the number of decision variables (level 5), a list

of the indexes for the variables in the current solution—basis variables (level 4), a list of the indexes for the var-

iables not in the current solution—non-basis variables (level 3), an array representing the current Tucker tableau

(level 2), and either the value 2,if the tableau is non-canonical, or 1 if canonical (level 1). Note that the order of

the index lists on levels 2 and 3 must correspond to the ordering of elements in the Tucker tableau and that the

index, B, is used for anyartificial variables in the tableau. PHASE] takes the same inputs and in the same order

as SIMPLEX with the exception ofthe final input (level 1 for SIMPLEX). PIVOT takes the same five inputs as
PHASE, in the same order, moving them to levels 7 through 3, and additionally takesthe pivot row (level 2) and
the pivot column (level 1). SIMPLE® and PIMOT return the numberofconstraints to level 5, the numberofdec-

ision variables to level 4, arevised list of the indexes for the basis variables to level 3, arevised list of the indexes

for the non-basis variablesto level 2, and a revised Tucker tableau to level 1. PHHSE] does not return anything
tothe stack, but (as 3 IMPLE® andPIV(T do as well) returns the revisedlist ofbasis indexes to the variablebuars,

the revised list of non-basis indexes to the variable M.}at"3, and the revised Tucker tableau to the variable 3.

164 5. SYSTEMS OF LINEAR EQUATIONS



Example: An investment manager wants to invest $20,000 each month for a

client in the bond market. He has three kinds of bonds (i.e. three

different risk categories) that he may consider. The return on each

kind varies from month to month, but this month he can get 7% on

the safest kind of bond, 8.5% on the riskiest kind of bond he’s

allowed to consider, and 8% on the moderately risky kind. He need

not invest the entire fund, but he can invest no more than 40% of the

amount invested in any one type of bond. Further, he must invest at

least $4000 in the safest kind ofbond. To maximize the return on his

investment, how should he allocate the investment this month?

. Define the variables. The variables here are the amount invested in

each type of bond. Thus, there are three variables: b, b,, and b..

Find the objective function. This is the function that computes the

return on the investment: 0.07b, +0.08b, +0.085b,

. Findthe set ofconstraints. Inmostreal-worldLP problems, the most

common constraintis that all variables must be nonnegative (b, 20,

b,>0,and b,>0). Andin fact, the 3IMIFLE# program assumes that

all variables are nonnegative. The other constraints here are:

b, +b, + b, <20,000

b, <0.4(b, +b, +b,)
b, <0.4(b, + b, +b,)
b, <0.4(b, +b, +b,)
b, > 4000

However, before you can use the L INFFG program, you must ex-

press each of the constraints so that all the variable terms are on the

left side ofthe inequality and the constant is on the right side (the first

and last constraints are already in proper form). Rearrange the

constraints as necessary to the form needed by L IMFEL:

b, + b, + b, <20,000
0.6b, —0.4b, —0.4b, <0
—0.4b, +0.6b, —0.4b, <0
—0.4b, - 0.4b, +0.6b, <0
b, 24000
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4. Begin LIMFEG by typing (o)D)NPIR]G or pressing

 

(then or as needed) [§1:15,

 

SLINEARPROGRAMMINGSRR
DEJECTIVE: '
COMSTRAINTS:
WARS:
MAY OF MIN?  "MAX"

ENTER OEJECTIVE FUMCTION
Emrg{1JeAML]

 

    
 

5. Enter the objective function into the DEJECTIVE field:

0.07b, +0.08b, +0.085b, =0

Press (']-[0X(oJ(&)B)DBJo)8)Xa]a)B]2)
X]aJa]B]3)(E)(=)(0)([ENTER). Note that the objective function

must have a right-hand constant,just like the constraints. If there is

no constant in the expression, use zero.

6. Enterthe set ofconstraints as a list: (]J("JoJaB]1)(+H)(«)&)(B)

RIH(Ja)BL3)(@la)3)2]ofofof o))JeBl(]
(Jalx)ela)B)2))Jalx](eJa)B3)eJel3)o))Ja[+/]
XJalBIHJalBl2)HJ4X)(alB)3)(ela)3)
@)XaBINEHDXelHT8X
(Ja)B]3)(ela)3)()Tela(e[=)3)(4o)o)(ENTER).

7. Enter the list of variables, in the same order as they are in the con-

straints and in the objective function: (]{})(aJ&)B]1)(SPC)(a]e)

(2]]B)3)(ENTER).
8. Since you do wish to maximize the objective function, you need not

 

change the entry in the last field. Simply press [

the solution. After a bit, you will see a message box:

Solution found. Press|B

il to compute
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Result: =% © 2 3 ¥ & 1 ]
[0 B 1 .4 4686, ARREEE

[ 1 B .4 SHEA, BEEEEE ]
[ -1 1 .6 #999,999993 ]
[ 1 -1 -.2 .B80EE4 ]
[ B -1 B 4668 ]
[ —.BBD - Bl - H3F -1599,99999562 ]
[ BB AA ]]

13 € :hl: 94886 :bZ: 7999,9999958 :h3:
oHEE, HEEEEE

A list of tagged values for each of the decision variables—the solu-

tion—is returned to level 1. Note that small round-off errors will

show up in computed values. Choosing to fix the display to an ap-

propriate degree of precision for the solution you're determing (eg.

to two places for problems dealing with money)is usually a good

idea. Thus, the manager would invest $4000 in bond type 1, $8000

in bond type 2, and $8000 in bond type 3 in order to maximize the

return during the month in question.

The objects on levels 2 and 3 are there to help you evaluate the

quality of the solution, if you so choose, and can be dropped if you

do not so choose. The final tableau is returned to level 2. The list on

level 3 contains, in order, the indexes of the variables used in the so-

lution—the basis variables. Because there are three decision vari-

ables in this problem—=b» b,, and b—the smallest three non-zero

indexes (1, £, and 3) refer to them: All three figure in the solution

in this case. Indexes higher than the number of decision variables

or zero reflect slack and artificial variables created in the process of

solving the problem and are not a part of the solution, even if they

end up in the basis list.*

Try another example....

*Slack variables are useful sometimes in sensitivity analysis—the process of determining how sensitive the

solution you computed is to small changes in the original constraints or objective function. However,thisis

beyond the scope ofthis book.
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Example:

168

A herd oflivestock requires weekly at least 450 pounds of protein,

400 pounds of carbohydrates, and 1050 pounds of roughage. Abale

of hay has 10 pounds of protein, 10 pounds of carbohydrates, 60

pounds of roughage, and costs $3.80. A sack of oats has 15 pounds

of protein, 10 pounds of protein, 25 pounds of roughage, and costs

$5.00. A sack ofpellets has 10 pounds ofprotein, 5 pounds of carbo-

hydrates, 55 pounds of roughage, and costs $3.50. A sack of sweet

feed has 25 pounds ofprotein, 20 pounds ofcarbohydrate, 35 pounds

of roughage, and costs $8.00. How would you adequately feed the

herd at minimum cost?

. Define the variables. The variables here are the amounts of each

food source: bales of hay (%), sacks of oats (0), sacks of pellets (p),

and sacks of sweet feed (s).

. Find the objective function. The sum of costs of the food:

3.80h+5.000+3.50p +8.00s

. Find the set of constraints. The set of constraints incorporate the

minimum weekly requirements for the three categories of nutrients:

protein, carbohydrates, and roughage:

10h+150+10p + 255 2450
10h+100+5p+20s 2400

60k +250+55p+ 355 21050

Enter the LPproblem into the LINFE: and compute the solution, if
one exists. Begin L IMFEL by typing(@21NPIR]G) or

pressing (then or (()PREV) as needed) [HIETH .

. Enter the objective function in the DEJECTIVE field, including the

right-hand constant (0 here): 3.802+5.000+3.50p +8.00s=0

Press (")3]-J8[X[JGH)(+HEX[lo)H15X)(@)&)(P)
(HIX)(Jals)&)()ENTER].
Enter the set ofconstraints (a list):

)OI(HHHTJa)o)HEIX)(@Ia)P)H(2]
XeJa)s)J2)3)(4)oJo))Jeo)XJaH(HRISX&)
OHEJaPIHEIEXeJals))=)3)1o)JOJENTER)
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7. Enterthe list of variables, in the same order as they are in the con-

straints and in the objective function: (&]{}

(sPC)(a]a)P)(SPC)(«J&aS)(ENTER).

8. Since you wish to minimize the objective function, type " [1IH"

into the final field: ()]""a)oJM]1]N)(ENTER).

9. Press [l ;8 to compute the solution. After a bit, you will see a

message box solut ion found. Press B i

  

Result (to one decimal place)°

2 1 1.8 4.8 A8
2= [[ -1.H —1.5 -H.0 B.4 ZH.8 ]

[ 1.8 1.0 H.2 -H.2 188 ]
[ %R0 -118.8 -Z3.8 17.8 2BH.B ]
[ -A.8 -1.2 -A.3 -B.1 156.8 ]
[ H.B B.H -1.8 -1.8 B.A ]

13 © :hs ZH.H o H.B :p: B.H i3 1H.H D

Thus, the minimum cost solution is to buy 20 bales of hay and 10

sacks of sweet feed weekly. (Note, however, that the herd will be

eating 500 surplus pounds of roughage a week with this solution—

so be prepared for the consequences!)

Try one more example....
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Example: Find positive values for the variables x, y, and z that satisfy

x+2y+z<16
4x+y+3z<30
x+4y+5z<40

and for which the least of the three values, x, y and z, is as large as

possible.

This kind of problem, called a MaxMin problem, requires a small

trick—adding a variable some inequalities to the problem. Note that

the minimum ofthe variables x, y, and z is the largest value ofthe ob-

jective value,f, for whichf<x,f<y, andf< z. Thus, you must rewrite

the set of constraints to include f as a variable and the three new

constraints involvingf (see step 3 below).

1. Define the variables. The variables here are x, y, z, andf.

170

Find the objective function. The objective function is simplyf.

. Find the set ofconstraints. The set of constraints, after making the

MaxMin additions is:

x+2y+z <16
4x+y+3z <30
x+4y+5z <40
-X +<0

-y +<0
-z+<0

Enter the LPproblem into the L IMPEand compute the solution, if

one exists. Begin L INFEL by typing21N]P)R]G) or

pressing (then or (§]PREV] as needed) [H]15.

. Enter the objective function in the DEJECTIVE field, including all

variables and the right-hand constant (O here): Ox+0y+0z+ f =0

Press ('Jo]X[eJaX[+oX[JaIY)HX@)@H(Ua)F)
l=)QJENTER.
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6. Enter the set of constraints as alist: (G){[eJaIX[+H)(2]X)(a)q)

MHHDda)3))axX)(«HaXHaVHEX)
) (]

GIZ)(Jal3)(4))IJAXBJalFal3))))
eJalY)HJa)F)(Jal3)p)DFIdJalzHeIalF)
(oJ&a)3)(0)([ENTER).

7. Enterthelistofvariables: (]3@]IX])SPC)(eJq)Y)SPC)()]

SPC)(aJ&]F)(ENTER).

8. Since you wish to maximize the objective function, leave " [M1H:

in the final field and press [iij!| &l to compute the solution. Aftera

bit, you will see a message box: =1t 1om fourd. Now

  

pressi once again.

Result (to three decimal places):

dr 0 LLERH ZUEBE CLOEBE 4 BEE DLHEE 2 BEE S
2 [0 BL1ES B.2V0 -B.5HE B 125D 2,758 ]

[ H.1E85 -H.625 B.0HE B, 125 2,708 ]
[ F.75H 1,250 -4 8688 -1.250 2. 56HH ]
[ H.1ES H.2375 BL5EE B 18D 40756 ]
[ 1.5HH -H.5HE -1.@688 -H.568H 1.8HH ]
[ -H.870 B3¢0 B.oEE B, 185 2,708 ]
[ -H. 125 -B.37% -B.0688 -3, 185 -3.708 ]
[ -1.B8H -1.668H H.B80 B.BHE B BHE 1]

18 L oswr Z,V0H =g 3,70 :z: Z,70H
:f: Z.70H G

It isn't unusual for a solution to a MaxMin problem to yield results

in which the solution variable values are identical to one another.

The value 3.75 represents the largest possible minimum value for x,

y, and z such that the inequalities are satisfied.

Generally, MaxMin formulations are useful when you want to be sure that every

decision variable have as large a value as possible, and that the smallest of the

values is as large as possible. Their counterpart, MinMax formulations, are useful

when you wish to be sure that every decision variable have as small a value as pos-

sible, and that the largest of the values is as small as possible.
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Introduction to Vectors

Analytic geometry is a marriage of algebra and geometry. Geometric concepts

such as points,lines, planes,circles and angles are given algebraic descriptions

and can thus be analyzed without necessarily portraying them graphically.

Central to this description method is the vector. In geometric terms, a vector is

adirected line segment. Since itis a segment,it has a finite length or magnitude—

also called its absolute value. And the direction of a vectoris denoted byits two

endpoints, the initial endpointfirst and the terminal endpoint second. For exam-

ple, the vector from point A to point B might be referred to as AB (whereas the

vector from point B to pointAis denoted as §A). Or, ifyou assume implicitly that

the initial point is always the origin (0,0,0), then vectors are especially useful to

describe points: Every point can be described as a vector ofits coordinates.

To illustrate this, use point (-3,7,2). There is a directed line segment—a vector—

connecting it to the origin (0,0,0). Its coordinates form a set of instructions about

how to getto it starting from the origin: “Move three unitsin the negative direc-

tion along the x-axis, then seven units in the positive direction of the y-axis and

parallel to it, and finally two units in the positive direction ofthe z-axis and parallel

toit.” The coordinates provide a more algebraic (and analytic) description of the

direction of the vector than does the geometric description, AB. Thus, you can

describe the point as a vector: [ -37 2 ].

The notation used for vectors is not accidental. They behave algebraically like

matrices with one of its dimensions equal to one, so square brackets are used—

just as with matrices. Indeed, it is the fact that vectors can make use of the

powerful analytic capabilities of matrices that renders them so central to analytic

geometry. Algebraically, a matrix is nothing more than a vector of vectors, and

each row or each column ofa matrix is itself a vector. Accordingly, the HP48 uses

the same delimiters for both matrices and vectors (together called arrays).

Also, note that any vector in three-dimensional space can be treated as the sum

of three basis vectors, each running from the origin along one of the coordinate

axes. The length of each basis vectoris a component of the vector, shown in the

vector notation explicitly: The vector [4 9 -1 ], for example, has an x-component

of 4, a y-component of 9 and a z-component of —1.
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Vector Operations

The basic vector operations—addition, subtraction, and scalar multiplication—

work just like their equivalent matrix operations....

Example: Add the two vectors[49-1]and[3-12].

1. Enter the two vectors onto the stack: (&)L1)(4)(SPC)(9)(sPc)(1)(+/-)

[ENTER)(&)LI)(8)(SPC) (1) (+/-)(SPC) (2) (ENTER).
2. Add: (). Result: [ ¢ & 1 1

 

 
  

Example: Subtract the vector [ 3 -1 2 ] from the vector [4 9 -1 ].

1. Enter the vector [4 9 -1 ]: (&)L1)(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).

2. Enter the vector [ 3-12 ]: (&J13)(3)(SPC)(1)(+/=)(SPC)(2)(ENTER).

3. Subtract: (=) Result: [ 1 18 -3 ]

 

 

Example: Multiply the vector [ 4 9 -1 ] by the scalar 5.3.

1. Enter the vector [4 9 -1 ]: (&)11)(4)(SPC)(9)(SPC)(1])(+/-)(ENTER).

2. Type in 5.3 and multiply: (5]]3)(X).

Result: [ Z£1.2 4¢.7 -92.3 1

 

“Multiplying” two vectors is not analogousto arithmetic. There are actually two

kinds of vector products. The dotproduct of two vectors is defined when the two

vectors have the same number of elements, n. Given two vectorsr=[r, rr, ]

ands=[s, s, S, ], the dot product, r- s, is defined as rs_+ rS,t TS, The HP 48

has a built-in command to compute the dot product.

Example: Find the dot productof [49-1]and[5-32].

1. Enter the first vector: (q)11)(4)(SPC)(9)(SPC)(1])(+/=)(ENTER.

2. Enter the second vector: (]1)(5)(SPC)(3)(+/=)(SPC)(2)(ENTER.

3. Compute the dot product: NECTE]DOTR
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Note how similar the dot product is to what you do when computing a single

element in matrix multiplication: the first vectoris treated as a “row,” the second

as a “column”—and the result is a single number.

By contrast, the crossproduct oftwo vectorsis a third vector—one perpendicular

to both ofthe other vectors (assuming all three vectors originate at the same point:

Given two vectors, r=[r,_ 7, r] and s=[s_ S, s], their cross product, r X s, is the

vector [ rs,—rs, rS.—rS, IS -—IS ].

Example: Find the cross productof [49-1]and[5-32].

1. Enterthe first vector: (]t1)(4)(SPC)(9)(SPC)(1]+/=)(ENTER).

2. Enter the second vector: (][1)(5)(SPC)(3]+/=)(SPC)(2)(ENTER).

3. Compute the cross product: [#i{1k5.

Result: [ 13 -13 -5¢ ]

 

 

Like matrix multiplication, the order in which you perform the cross product is

important. Look at this diagram:

r Z

The pointis this: When taking the cross product r X s, you will get the z_ vector;

when taking the other cross product, s X r, you will get the z_vector.

Example: Find the cross productof [5-32]with[49-1].

1. Enter the first vector: (&)11)(5)(SPC)(3)+/-)(SPC)(2)(ENTER).

2. Enter the second vector: (]1)(4)(SPC)(9)(SPC)(1]+/-)(ENTER.

3. Compute the cross product: TES.

Result: [ -12 13 o7 ]

Note that the result is the negative of the previous result.
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FindingAngle and Magnitude of Vectors

A vector has both magnitude (length) and direction. It should therefore be pos-

sible to find these parameters easily for a vector entered in standard form.

Example: Find the length of the vector [4 9 -1 ].

1. Enter the vector onto the stack: (€]1[4)(SPC)(9)(SPC)(1]+/=)[ENTER).

2. Find its length: ISGBI, Result: 9. 39949493661

  

  

Finding the “direction” of a vector is more complicated. To determine an angle

or direction, you mustfirst decide the reference direction against which you are

measuring the angle. For a vector in three dimensions, you use the three coord-

inate axes as your three reference directions; the vector forms a different angle

with respect to each axis. The three direction angles for a vector can be computed

from the vectors com-ponents and its length:

-1 v)’0, =cos™ = 6, =cos™ =~ 6, =cos™ %
vl 14 14

where v, v, and vare the vector components of the vector V.

Example: Find the direction angles of the vector [ 49 -1 ].

1. Assuming that you’re in Degree mode (press (65]RAD), if necessary)

and that the result of the previous example isstill sitting on level1,

make two copies of the vector’s magnitude: (ENTER)(ENTER).

2. Compute the x-direction angle: (4)(ENTER[SWAP)(/](&JACOS).

Result: B&. 1677HHISE

3. Rotate another copy of the magnitude into level 1 and compute the

y-direction angle: (&]STACK)LEll(9)(ENTER)(SWAP)(/)(&)(ACOS).
—|.-:.—|

Result: ¢4.61329765

4. Repeatstep 3 using the z-component ENTER)(SWAP

eacos, Resslt: 95, 7376363795
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The computation of the direction angles for a vector can be easily automated with

a short program, which is what W[ IF does (see page 317 forlisting).

Use MOIFEto find the direction anglesfor the vector [-5 3 2 ].

1. Put the vector onto the stack: (]1)(5)(+/=)(SPC)(3)(SPC)(2)(ENTER).

2. Execute/[IIF: ()]VD]1)R)ENTER)or(VAR)(then(NXT)or(¢5]PREV

as needed) GN1.

Result: © 144, 284480585 6H. 5734319297

71 HEE1YER]I9E T (in Deg mode).

Example:
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Overview of Analytical Geometry Examples

This part of this chapter organizes topics and examples in analytical geometry

according to the information you have. For instance, the section titled “Given:

Two Points” shows examples ofcomputations you (and your HP48) can perform

if you already know the coordinates of two points. And so on. The examples in

this part are organized as follows:

Given: Two Points

Find the distance between them.

Find the equation of the line they determine.

Find the midpoint of the line segment they determine.

Find the coordinate of the point on that line segment that dividesit into a

given ratio.

Find the equation of the perpendicular bisector of that line segment.

Given: Three Points

Determine if they are collinear.

Find the equations of the lines they determine.

Find the equation of the plane they determine.

Find the equation of the perpendicular containing one point to the line

containing the other two points.

Find the distance ofone point from the line containing the other two points.

Find the area of the triangle they determine.

Find the coordinates of the centroid of the triangle they determine.

Given: A Line or Point-and-Slope
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Find the desired alternative equation (general, intercept, or parametric) for

a line.
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Given: A Point and a Line

e Determine if the point is collinear with the line.

* Find the equation of the line perpendicular through a point on the line.

* Find the equation of the line perpendicular through a point not on the line.

* Find equation of the line parallel through a point not on the line.

* Find the distance from the point to the line.

* Find the equation of the plane they determine.

* Find the equation of the plane from a normal and a point in the plane.

Given: Two Lines

e Determine if they are parallel, skew, concurrent, collinear, perpendicular.

* Determine the point of intersection.

» Find the distance between two parallel lines.

e Find the angle formed by their intersection.

* Find the plane they determine.

* Find the plane from its traces (three lines).

* Find the line perpendicular to plane they determine (cross product).

Given: A Point and a Plane

» Find the distance of the point to the plane.

* Find the equation ofthe plane from a parallel plane and a point in the plane.

* Find the equation ofthe plane from a perpendicular plane and a point in the

plane.

Given: One or Two Planes

e Find the equation of the line of intersection.

* Find the angle between the planes.

* Find the traces of a plane.
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Given: Two Points

Distance Between Points

The distance between two points,[x,y, z, ] and [x, y, z, ], is given by the following
 

formula: d = \/(x2 —x) +(y, =) +(z,-2)".

While you can compute the distance by using this formula, note that simply sub-

tracting the vector form of one point from another gives the vector connecting

them. Then you only need to find the length (absolute value) of this difference

vector to compute the distance between points.

Example: Find the distance between the two points, [ 24 -6 Jand [-1-2 3 ].

1. Enter the second point (as a vector): (G]T1)(1]+/=)(SPC)(2]+/=)(SPC)

ENTER).

2. Enterthe first point likewise: (&)11)(2)(SPC)(4)(SPC)(6]+/=)(ENTER).

3. Compute the distance between the points: (—)(MTH) kifi 1|33

Result: 11.27497216H3
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Midpoints

The coordinates of the midpoint are simply the “average” of the two points. In

vector terms, this means you must add the points together and divide by two.

Example: Find the midpoint of the line segment between the points [ 2 4 -6 ]

 

 

and[-1-23].

1. Enterthe second point(as a vector): (&)L3)(1]+/=)(SPC)(2)+/-)(SPC)

(3)(ENTER).
 

2. Enter thefirst point likewise: ()13)(2)(SPC)(4)(SPC)(6]+/=)(ENTER).

3. Compute the midpoint: (+)(2)=). Result: [ .2 1 -1.5 ]

 

The coordinates of a point P, which divides a segmentinto a given ratio m.n can

be individually computed as follows:

_ nx, +mx, _hy, +my, 7 = nz, + mz,
X3 3 3 =

m+n m+n m+n

This is a kind ofweighted average of the coordinates of the endpoints. Ofcourse,

using vectors, you can compute all of the coordinates simultaneously, as the next

example demonstrates.

Example: Find the coordinates of the point on the line segment between the

points[24-6]and [ -1 -2 3 ] that divides the segment into a 3:2 ratio.

1. Enterthe first point: (&)11)(2)(SPC)(4)(SPC)(6])+/=)(ENTER).

2. Multiply it by the fractional weighting for the first point, n/(m+n):

EIENTERI(8)(HX)
3. Enter the second point: (]1)(1]+/=)(SPC)(2]+/=)(SPC)(3)(ENTER).

4. Multiply that by the fractional weighting for the second point, m/

(m+n): (3)ENTER)(S)(=)(X)
5. Add the two weighted vectors to find the coordinates of the desired

point: (+). Result: [ .2 .4 -.6 1]
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Lines

You may also find the equations ofparticular lines associated with the two points:

» Theline containing both points. (Note that there are several different forms

of equations for a line. See pages 193-195 for examples of converting be-

tween different forms.)

» The perpendicular bisector of the line segment linking the two points.

The next few examples illustrate each of these computations.

Example: Find the equation of the line in the xy-plane containing the points

[24]and[-13].

1. Enter the first point: (]1)(2)(SPC)(4)(ENTER).

2.

3.

4.

 

Enter the second point: (]3)(1]+/=)(SPC)(3)(ENTER).

Compute the slope ofthe line: ()STACK)NIEA(=)Prc)ENEH
([WEH («)(SWAP)(=). Result: . 3333333323323 (or 1/3).

Compute the y-intercept of the line: 1S (@) (SWAP) (&)
(sTACK) BITHE (X)(+/9)(1). Result: 3.3333323323333 (or 10/3).

10
Thus the equation ofthe line is y = %x +3

Of course, the procedure in the previous example can be easily automated. The

program, P2+, listed on page 297, takes the two points in vector form from the

stack and returns the slope-intercept form of the equation for the line.

Example:

1.

2.

3.
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Repeat the previous example using the F2+L program.

Enter the first point: (&)L1)(2)(SPC)(4)(ENTER).

Enter the second point: (&)1 1)(1]+/=)(SPC)(3)(ENTER).

Execute F&+L: (a)a]P)2]=]=]L) (ENTER) or (then or

(G |PREV) as needed) [FEIMl. Result: '4=1-3*w+1H-3'
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Sofar,all the lines you have seen have been limited to thexy-plane; the points used

to determine them have hadjust two coordinates (i.e. the z-coordinate was zero).

But lines exist in three-dimensional space. How do you express their equations?

The best method is parametric description—describing in three short equations

how each of the three components change with an independent parameter. For

example, the following set of equations describes a line in space, parametrically:

x=t+2, y=2t-3, z=2t+4

You can tell that this set of equations represen’sa line because all three are linear

in the parameter, —i.e. each coordinate changes in a straight line as ¢ changes.

You can find the parametric form for the equation of a line in space from two

points, [ x, ¥, z, ] and [ x, y, z, ], as follows:

1. Find the vector [ A B C ] of the line segment connecting the two points.

2. Create the parametric equations x=At+x,, y=Bt+y, z=Ct+z

Example: Find the set of parametric equations for the line determined by the

points[24-6]and [ -1-23].

1. Enterthefirst point onto the stack and make an extra copy: (L
(2)(sPc)(4)(sPC)(6J+/=)(ENTERJENTER).

2. Enter the second point: (]3)(1]+/=)(SPC)(2]+/-)(SPC)(3](ENTER).

3. Find the vector connecting the points: (=). Result: [ 3 & -3 ]

 

  

4. Create the parametric equations. You can either assemble equations

manually, using the first point and the computed vector; or you can

use the program FLI#F(see page 291), which takes a point (in vector

form) from level 2 and a vector representing the line from level 1 and

assembles the proper parametric equations for the line:

(=2)=)(P)(ENTER] or (then or as needed) {3 tirdsl

Result: ©+ 'w=gst+2! Tysgxt+d! 'z=—0(9=t)-5' &
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Anotherline that is determined by two points is the perpendicular bisector of the

line segment that joins the two points. Becauseit is perpendicular,it will have a

slope that is the negative reciprocal of the slope of the line segment. Becauseit

is the bisector, it contains the midpoint of the line segment. Thus, if the slope of

the line segment is m and the coordinates of the midpoint is [ a b ], then the

equation of the perpendicular bisector is y =A(i + b).
m \m

Example: Findthe perpendicular bisector for the segment whose endpoints are

[24]and[-13].

1. Enter the first point: (]I1)(2)(SPC)(4)(ENTER).

2. Enter the second point: (&)13)(1]+/=)(SPC)(3)(ENTER.

3. Make copies of these points and find the slope of the perpendicular

bisector: (()STACK)(NxT)HITE(SwaP|

=)

(Pre) MRl N[TES («)

(SWAP)(=]¥/x)(+/=). Result: ==

4. Compute the coordinates ofthe midpoint:

H@)=). Result: [ .5 3.5 1

5. Now find the y-intercept ofthe perpendicularbisector: LIST

ITER («)(SWAP)[STACKB(X)(/D) (+).
Result: -

Thus the equation of the perpendicular bisector is y = -3x + 5.

 

The short program, F'+FE (see listing on page 297), automates the process of
determining the equation of the perpendicular bisector....

Example: Repeatthe previous example using the FZ+FE program.

1. Enter the first point: (]1)(2)(SPC)(4)(ENTER.

2. Enter the second point: (&]T1)(1]+/=)(SPC)(3)(ENTER).

3. Execute FE+*FE: (@)a]P]2)=)=PB)[ENTER) or (VAR (then (NXT) or

(JPREV) as needed) [EE4dll. Result: 'y=—(3*u]1+5"
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Finally, here’s how you compute the perpendicular bisector for a line in space.

Example: Find the perpendicular bisector of the line segment connecting the

points[24-6]and [ -1-23].

1. Enterthe two points: (]I1)(2)(SPC)(4)(SPC)(6J+/=)([ENTER)(&)LJ)(1]
(+/-)(SPC)(2]+/-)(SPC](3)(ENTER).

2. Make copies ofthe two points, compute the vector connecting them,

and find its negative: DUPE[CEA!

Result: [ -2 -6 9 ]

  

  

 

This is the direction vector for the perpendicular bisector.

3. Find the coordinates of the midpoint: (SWAPNXT)B(+)(2)(=).

Result: [ .2 1 -1.5 1

This is a point on the perpendicular bisector.

4. Assemble the set of parametric equations representing the perpen-

dicular bisector: (SWAP PD=P

Result: + ‘'w=—r2xt)+]oF7' 'y=—(G6xt )41
| el T | T=9t-3-7"

 

Remember, too, that you can always use this approach to find the parametric equa-

tions for points in the xy-plane, simply by including a zero as the z-component.
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Given: Three Points

Whenever you have three distinct points, you need to know whether they are

collinear(i.e. all contained in a single line). If they are noncollinear, then they

determine a plane, a triangle, and three distinct intersecting lines. If they are col-

linear, the three points determine only a single line.

Example: Determine if the points [42-6],[5-32],[-12 3] are collinear.

1. Calculate vectors representing the line segments between any two

pairs of points: (]I1)(4)(SPC)(2)(SPC)(6J+/=)(ENTER)(]II)(5)(SPC)

BRIT -1 3 -3 1);and (GITI(4)SPS)(2)(SPO)(6)
QOOFAEIRI®DIE 2 B -3 D,

2. Make copies of those vectors: €5)STACK)(NxT)U=

3. Next, multiply theirmagnitudes: (MTH)Ld181 18
(X). Result: 37,B9307ES

4. Compare that to the absolute value oftheir dot product:
ATHE (o venu) BTl BETEE. Result: &Y

The two results differ, so the three points are noncollinear.

  

 

  

The program CILIM™ (see page 278) makesit easierto test for collinearity (and

is useful in other programs). It tests whether a point (in vector form) on level 1

is collinear with the vector on level 2. If so,it returns a 1 ; if not, it returns a H.

Example: Repeatthe previous example, using COLIMNT.

1. Enterthe first two points as a line (in array form): (=MATRIX](4)

(sPC)(2)(sPC)(6J+/=)([ENTER)(Y)(5)(SPC)(3]+/=)(SPC)(2)([ENTERJENTER).

2. Enterthe third point: (&)t1)(1]+/-)(SPC)(2)(SPC)(3)(ENTER).

3. Execute the COLINT test: (a)aClo0)1NG)« or

(then or (]PREV) as needed) |518], 1.

Result: H Noncollinear
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Lines and Planes

If three points are noncollinear, they determine three lines. You may find these

three lines easily by using the 2+ program for each combination of points.

Example: Find the equations ofthe three lines determined by the noncollinear

points[46],[-21]and[5-2].

1. Enterthefirst two points andexecuteF._"L()174)(SPC)(6)[ENTER)

())(2)+/=)(sPCS)(1)(ENTER)(VAR) e &,

Result: '4=o-b¥wu+E-3!

2. Enter the second and third points and execute F&+L :E@

ENTERJ )L1)(5)(SPC).+/—ENTER)(VAR) f izlB.

Result: 'y=—[3<7#ul+]-7"

3. Enterthefirst and third points and execute F2+L: )13)(4)(SPc)(6)
[ENTER|E1)(5)(SPC)(2)*+/=)(ENTER)(VAR) ai=icad Hi.

Result: 'g=—{S%w]1+35"

 

 

 

 

 

Of course, three noncollinear points also determine a unique plane. The general

form of the equation for a plane is Ax + By + Cz+ D =0.

It turns out that the coefficients A, B, and C determine the “orientation” of the

plane and are equal to components of the vector perpendicular (or normal ) to the

plane. The D coefficient identifies the particular plane (from the infinitely large

set of parallel planes with the given orientation) determined by the three points.

Thus, to compute the equation of the plane, you must find a line perpendicular to

at least two of the lines determined by the points. This is easily accomplished by

finding the cross product of two of the vectors representing the line segments de-

termined by the points. Once you have the orientation ofthe plane, you need only

to substitute the coordinates of any one of the points to determine the D coef-

ficient. This substitution is efficient accomplished using the dot product of the

normal vector and the point. The next example illustrates the full procedure....
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Example: Find the equation ofthe plane determined by the three noncollinear

points, [42-6],[5-32],[-123].

. Enter the first two points and compute the vector ofthe line segment
  

connecting them: (&]11)(4)(SPC)(2)(sPC)(6]+/=)(ENTER)

(SPC)(3)+/=)(SPC)(2)(ENTER)(—).

Enterthe first and third points and compute the vector ofthe line seg-

ment connecting them: (]1)(4)(SPC)(2)(SPC)(6]+/=)[ENTER)(E]

(1)+/=)(sPC)(2)(SPC)(3)(ENTER)(=).

  

  

 

. Compute the cross product of the two line segment vectors:

NAEGAETER. Resul: [ -43 —49 -23 ]

The components of this normal vectorare the coefficients A, B, and

C respectively in the equation for the plane.

 

Enterthe first point again and compute the negative of the dot pro-

duct ofthe normal vector and the first point (you should get the same

result using any of the points): (4]1)(4)(SPC)(2)(SPC)(6])+/—)([ENTER)

|(+/5). Result: 1¥3. Thisis the coefficient D in the equation
of the plane, so the equation is -45x — 49y — 25z + 128 = 0.

  

 

A related task is to find the equation of the line containing one of the points that

is perpendicular to the line determined by the remaining two points.

Example:
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Find the equation of a line containing the point [ 4 6 ] perpendicular

to the line determined by the points [-1 5]and [ 3 -5 ].
 

. Enter the two points of the line: (&t1)(1]+/=)(SPC)(5)(ENTER) (L]
 

(3)(sPC)(5)+/-)(ENTER).

Find the slope ofthe perpendicular: (SWAP)(—)(PRG)

(@(E)*F/=). Result: .4 (or 2/5)

Enter the point on the perpendicular: (&)11]4)(SPC)(6)(ENTER).

Find the perpendicular’s y-intercept: [zES (@)(SWAP)(&]STACK]

Rl<)(+/9) (). Result: 4.4, Thus the equation of the perpen-

dicular through[4 6 ]is y = %x +%

  LIST |OEJ*>
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|Ar + Bs + C|

Example: Find the distance from the point [ 4 6 ] to the line determined by the

points[-15]and [3-5].

1. Enterthe two points ofthe line: (][1)(1]+/=)(SPC)(5)[ENTER)()L

(3)(sPC)(5]+/=)(ENTER).

2. Find the general equation of the line. The quickest method uses the

programs F¥+L and [+GEM (see page 284): PoxL| 1>

Result: ' -#.5 -1 2.5 1][
12 '3rd=-arden—y

The distance between point [ s ] and line Ax + By + C =0, is d =

 

 

 

3. Drop the symbolic form ofthe line, make an extra copy and remove

the last element from the vector: o0 :

4. Appendal asthe third elementofthe vector ofthe distant point and

enter the result ([ 4 6 1 ]): ()11)(4)(SPC)(6)(SPC)(1)(ENTER).

BvTH ASAR

 

    

 

  
The short program [t oL (see page 280) takes a point in vector form on level 2

and an array on level 1. The array is a matrix containing the two points that deter-

mine a line. The program returns the distance from the point to the line.

Example: Repeat the previous example using the (.ol program.

1. Enterthe distant point ([ 4 6 ]): (&)L1)(4)(SPC)(6)(ENTER).

2. Enter a matrix with the points representing a line: (>[MATRIX

(+/=)(ENTER](5)(ENTER](¥)(3)(ENTER)(5J+/=) (ENTER](ENTER).

3. Execute [tol: (o]a)D)G[T)G[0]L) or (then or

as needed) [TTH].
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Triangles

The other geometric form defined by three points is the triangle. These examples

show how to find the perimeter, area, median length and centroid of the triangle.

Example: Find the perimeter of the triangle formed by the three points [4 6 ],

[-15],and [3-5].

1. Enter the first two points and find the length of the segment con-

necting them: (&)11)(4)(SPC)(6)ENTER)(&)L(1J+/-)(SPC)(5)(ENTER]
OmmRETEE.

2. Enterthe first and third points and find the length ofthe segmentcon-

necting them: (&)1(4)(SPC)(6)([ENTER)(&JL)(3)(SPC)(5[+/-)([ENTER)
&)REZ|

3. Enter the second and third points and find the length of the segment

connecting them: (&)11)(1]+/=)(SPC)(5](ENTER)(]1
@A)HE: }

4. Compute the perimeter: (+]+). Result: £6.91471H1451

 

 

 

 

The area of a triangle determined by three points can be found by using the length

of cross product of two of the vectors determined by the three points. If r, s, and

t are the three vectors, then the area of the triangle is given by

Area=l|r><s|=l|r><t|:l|s><t|
2 2 2

Note that the direction (or sign) ofthe cross product doesn’t matter for computing

the area of the determined triangle because you are only interested its length.

Example: Find the area ofthis triangle: [46-2],[-153],[3-51].

1. Compute a vector formed by the first and second points:

(SPC](8)(SPC)(2]+/-)([ENTER)I[+/=)(SPC)(5)(SPC)(3)(ENTER|).

2. Compute a vector formed by the first and third points: (&)11)(4)(SPC)

(8)(SPC)(2)+/-)(ENTER]( )L1)3)(SPC)(5)(+/=JSPC)(1JENTER)(=).
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A median of a triangle is a line segment connecting a vertex with the midpoint of

the opposite side.

Example: Find the length of the median of a triangle from the vertex [ 4 6 ] to

the midpoint of the segment with endpoints [-1 5 Jand [ 3-5].

1. Find the midpoint ofthe side opposite the vertex [4 6 ]: ()L1)(1)

(+/3)(sPA)(8)ENTER()L(3)(SPO)(SJ+/-) ENTER(B (2) (=)
2. Enter the vertex endpoint of the median: (&)11)(4)(SPC)(6)(ENTER).

3. Compute the length of the median: (—)gil:38H.

Result: B. FHEZHZ9325

  

  

The centroid of a triangle is the point where the three medians intersect. It divides

each median so that the distance from the centroid to the vertex is twice the dis-

tance from the centroid to the midpoint of the opposite side. The coordinates of

the centroid are the average of the coordinates of the three sides.

Example: Findthe coordinates ofthe centroid ofthe triangle determined by the

points [46],[-15],and[3-51].

1. Enter the points on the stack: (5]1)(4)(SPC)(6)[ENTER)ELJ(1]+/-)

(Y(E)(SPO)(8)+/-)(ENTER).
2. Compute the coordinates of the centroid: (+]+)(3)(<).

Result: [ & & 1]
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Given: A Line or Point-and-Slope

As you know, with two points, you may determine the equation of the line that

contains them. But you can also find the equation of the line if you know just a

single point on the line and line’s slope: Given the point [ r s ] in the xy-plane and

a slope m, the equation of the line (in slope-intercept form) is y = mx + (s — mr).

Example: Find the equation of a line of slope 4, containing the point [ 3 -8 ].

1. Compute the y-intercept, s — mr: (8]+/=)(ENTER)(4JENTER)(3)(X])(=).

Result: —#'H. So the equation in slope-intercept form is y = 4x — 20.

 

For lines in space, the concept of “slope” becomes “direction vector.” Thus, to

find the equation ofa line in space, you need to know only a point on the line and

its direction vector. The program FLI#F (see page 291) does exactly this—takes
a point (in vector form) from level 2 and a direction vector from level 1 and com-

putes the set of parametric equations describing the line determined.

Example: Find the equation of a line in space containing the point [ 3 -8 2 ]

whose direction vectoris [ 2 -1 -2 ].

1. Enter the point: (&])13)(3)(SPC)(8]+/-)(SPC)(2)(ENTER).

2. Thenthe direction vector: (]I1)(2)(SPC)(1)+/=)(SPC)(2]+/=)[ENTER).

3. Execute P[I+F": PD+PA

Result: 1 'w=rst+3!
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There are five important forms of linear equations. Two of them apply only to

lines in the xy-plane; three apply to any line, including lines in space:

Slope-Interceptform (also known as direction form): y=mx + b, where

m is the slope and b is the y-intercept. This form only applies to lines in

the xy-plane (there is no z-component).

Generalform: Ax + By + C =0 where, if C=-AB, thenAis the y-intercept

and B is the x-intercept. This form only applies to lines in the xy-plane

(there is no z-component).

Position-Directionform: [ x,y,z,], [ ab c]where [ x,y, z, ] is the position

vector representing a point on the line and [ a b ¢ ] is a direction vector for

the line. This form is a vector version of the slope-intercept form and can

apply to any line.

Parametricform: x=pt+x, y=qt+y, z=rt+z, where [ x,y,z,]1is

a point on the line and [ p g r ] is a direction vector for the line. This form

applies to all lines. For lines in the xy-plane, the third equation reduces to

z=0. Note that [ x+p y+q z,+r ] is a second point on the line.

XN 4
Arrayform: { } where [ x,y,z,]and [ x,y, z, ] are points on the

X2 Vo 4

line. This form applies to all lines. For lines in the xy-plane, the array only

has two columns(there is no z-column). The array form can be generalized

to represent any arbitrary collection of points—yvery useful for performing

transformations (as you will see later in this chapter).

Depending on circumstances, one of these forms will be more convenientto find

than the others. However, you may find instances when you need to convert from

one form to another. Some small programs make these conversions easier:

Given

FHF=+I (see page 290) converts a set ofparametric equations to an equation

in slope-intercept form (but only possible for lines in the xy-plane).

F+FD (see page 295) converts a set of parametric equationsto a point (in

vector form) and a direction vector (position-direction form).

[5+H (see page 282) converts an equation in general form to an array.

[+GEM (see page 284) converts an equation in slope-intercept form to an

equation in general form.
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Example:

1.

Example:

Example:
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Convert these to slope-intercept form: x=3t-4, y=-2t+5

Enter the set of parametric equationsas a list: (QJU})("JeJaIX)E&)

EEXaDEEMNOJaEEEFEIXPaDEHE)
(ENTER). Note that the parameter must always be ¢ (lower-case), and

the other variables x and y.

. Execute PHR=I: MOrm(thenMOr@

Result 'y=plegtg

 

as needed) FHFH-I{

Convert the line, 3x — 2y + 5 = 0, to a set of parametric equations.

. Enterthe line (which is in general form): ('J3]X]aJqIX])(=)(2]X)

(JalY)(H(EIa)=)(0)([ENTER).
[EEq;H. Result: L[

[ ™3

 

Convert it to an array:

M
2
—

N o
,

1]

: Now disassemble the array into its two pointvectors: (MTH) &

 

4. Make a copy ofone of the points and compute the vector for the line:

 

5. Convert the point and vector on the stack to a set ofparametric equa-

  IIETH. Result: © 'w=t+1' 'y=3-F=t+4! Gtions:

Convert the following set of parametric equations to a line in array

form: x=3t-4,y=-2t+5,z=1t+3.

. Enterthe equations: (G]{})("[o«JaX)EG[=EX[JqlT)=)4)0)

(elaYa[=)RFAXeaDHEJalZal=)la)
ODHEIENTER).

 

. Convert it to a point and a direction vector: P*P0§

3. Make a copy of the point and add it to the vector to form a second

 

point: (&)STACK] [tk=il (+).

Now assemble the two points into a matrix: (2)MTH) &

Result: [[ -4 5 3 ]
[ -1 E "} 1]
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Example:

Example:

2.

Convert the following set of parametric equations to the general

form: x=-5t+2,y=3¢t+1.

. Enter the parametric equations: (SJ{})("JeJa]X)&)[=)5]+/-)X)

(JeDHEREaVEaEE)X@a]DHEENTER.
Convert to the slope-intercept form: PHE*I

Result: '94=11-0—3%'

. Convert to the general form: [{idc154.

Result: #: [ -.6 -1 2.7

1= '11-3-2-3%u—g=H

—4 3
Convert the array

1 -2
} to a line in general form.

 

. Enter the array: (JMATRIX](4]+/-)(ENTER)(3](ENTER)(Y)(1)(ENTER)

(2)+/-)(ENTER)ENTER).
Now disassemble the array into its componentpoints: MATR
BTBT().

3. Compute the slope-intercept form: eB8,

4.

Example:

1.

Convert the slope-intercept form to general form: Hirdc]1=§.

Result: &= [ -1 -1 -1 1

1: '1--g=h

Convert the line, y = 4x -6, to array form.

Enter the line (in slope-intercept form): ("JoJ&q]Y)(E&G)=)(4)(X)(e)

(IX)(=)(e JENTER).
Convert the line to general form: 1E4E15(SWAP) ().

Convert to an array: ficlcd:@. Result: [[ 1 -& 1]
[ 2 & 1]
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Given: A Point and a Line

The procedures for using a point and a line are very similar to those for using three

points. After all, once you find the line determined by two ofthe three points, the

conditions for the two situations are identical. However, there are some practical

differencesthat arise, depending on the form which the linear equation takes. The

examples below illustrate this.

Example: Is the point [ 4 -1 ] collinear with the line -2x + y — 4 = 0?

1. Enter the equation oftheline: (279X@aXBEEMNE
(4Ja)(=)(0)ENTER).

2. Next, convert that equation to a direction vector: (VAR]ff

GATR ETITR («)—). Result: [ -1 -2 ]

3. Enter the point: (&)11)(4)(SPC)(1)+/-)(ENTER).

4. Execute the test for collinearity, COLTM" COLIMS

Result: H. The point and line are noncollinear.

 

  
 

Example: Find the equation of the plane (in general form) determined by the

196

point[4-12]andthelinex=3t-2,y=-2t+5,z=1t-3.

1. Enter the list of parametric equations: (]}JeJa]X)E)=)(3)X)

(DReaVa=X[EaDHERY
2&)=)(D))(B)ENTER).

2. Find the direction vectorfor the line: ekolU.

3. Compute the set ofcoefficients [A B C ] for the equation ofthe plane:

()sTACK)T()(MTH) RR (T.
Result: [ -1 - -11 1]

4. Enterthe point and compute theD coefficient: (&)11)(4)(SPC)(1)+/-)

(SpC)(2)ENTER)ETEEE (+/-). Result: 19

Thus the equation for the plane is —x -7y — 11z + 19 = 0.
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Example: Find the set of parametric equations of the perpendicularto the line

x=3t-2,y=-2t+5, z=1t- 3, that contains the point [ 4 -1 2 ].

1. Enterthe list of parametric equations: (&)U}Jofe)X))=)(3]X)

(JQDR)Jaaly) &)=DX([alTH (6 )
(JeJal2Ea=)(JalDEE)ENTER)

2. Convert to a point and direction vector for the line: P*P0 }

3. Find the direction vector for the perpendicular: ()STACK)T
SRRES Result: [ -1 -7 -11 1

4. Enter the point and find the set of parametric equations for the per-

pendicular: (]I1)(4)[SPC)(1]+/=)(SPC)(2)[ENTER)SWAP)( VARItcd =l

Result: 1 ‘'w=—t+%' 'y=-0(Fet1-1" 'z=—011#t)+E"' 3

  

 

Two parallel lines, given in point-direction vector form, will have equal direction

vectors but different sets of points; the points of one of the lines are noncollinear

with the points of the other. If they were collinear, the two lines would then be

concurrent—essentially the same line. Itis relatively easy to find the equation of

a line parallel to a given line, through a given point not on that line.

Example: Find the equation of the line parallel to the line x =3¢t -2,y =-2¢ +

5, z =1t - 3, that contains the point [ 4 -1 2 ].

1. Enterthelist of parametric equations: (&)U[aeJqIX)&E)=)(3]X)

(Jea) @B E) ) (eJaly]) &)=DX([alD ® ()6
(JGlZ)&a=)(JalDEE)ENTER).

2. Convert to point-direction vector form: .

3. Replace the point vector for the given line with the given point:

(SWAP) (#)&a 1(4)(SPC)(1)+/=)(SPC)(2)(ENTER)(SWAP).
4. Compute the set of parametric equations for the parallel line:

GIEGH. Result: © 'w=3#t+4! 'u=—(Zxt)-1" 'z=t+2' }
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Finding the distance between a point in space and a line is a bit tricky, because it

would seem that you must compute the point of intersection between the given

line and the perpendicular containing the given point. However, recall that the

given point and any two points on the given line form a triangle.

The area ofthe triangle is A = %bh where b is the length of the base and 4 is the

length of the height. If you choose the base of the triangle to run along the given

line, then the height is the distance between the given point and the given line.

Thus, since you can use the cross product to find the area of a triangle in space,

and you can choose any base points and compute the distance between them, you

can find the height without computing any coordinates of intersection points.

Example: Find the distance from the point [ -5 2 1 ] to the line defined by

x=3t-2,y=-2t+5,z=1t-3.

1. Enter the list of parametric equations: (]'eX))=)(3)X)

(DRealYal=XeDHE))
&=D))ENTER.

2. Convert to a point and direction vector for the line, then make an

extra copy of the direction vector: Ul (ENTER).

3. Rotate the pointinto level 1, enter the given point (the one not on the

givenline), and compute the vector between these two points:

Bl(<)1)(5]+/-)(SPC)(2)(SPC)(1)(ENTER) (=)

Result: [ 3 2 —-% ]

4. Find the area ofthe triangle: NECTR|CEDZE]REZ[BE)

5. Find the height of the triangle, and thus the distance from the given

point to the given line: (2)(X)(SWAP)ilil:38(=).

Result: . BEHE2720HY
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The program, [t. oL, first discussed on page 189, can be used to automate the pro-

cedure of finding the distance between a point and a line. The following shows

how the previous example should be modified in order to use [It. L.

Example:

1.

2.

Repeat the previous example using the program, [l.

Enter the point in space: (]t1)(5]+/=)(SPC)(2)(SPC)(1])(ENTER).

Enter the list ofparametric equations: (G]{J("[X)E)=)(3)X]

(DReaEaERMAEXDBE)
(Jalza=[alDEE)ENTER)

 

3. Convert to a point and direction vector for the line: P+PD|

Example:

1.

2.

3. Convert the line to array form: |

Find the array for the line: STACK)lEITA() (2)MTH) Lalilis
RO

 

. Find the distance from the point to the line with [It. clL_: DTOLA
T

Result: 0. BrdE472511

Find the distance from the origin to the line -2x + y -4 =0.

Enter the point of the origin [ 0 0 ]: (]1)(0](SPC)(0)(ENTER).

Enter the equation ofthe line: ("2[+/=XoJqX)(+H)(eJa)Y)(=)(4)

(GI=)(0)ENTER)

 

Execute Ot.oL: EITHE. Result: 1. 73E85430E
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Given: Two Lines

Two lines,ifrestricted to thexy-plane, are either concurrent(i.e. they are the same

line), parallel, or intersecting with respect to one another. If the two lines are not

restricted in space, they may also be skew with respect to one another—thatis,

they neither intersect nor are parallel.

Before working with a pairof lines,it is important to establish their relationship

with one another. The program L IMZ™ (see page 288) takes equations of the two
lines, in array form, and returns an object indicating their relationship on level

2 and a test result on level 1: H if the lines don’t intersect and 1 if they do. If the

lines intersect, then the object returned on level 2 is a vector containing the coord-

inates of the point of intersection. If the lines do notintersect, then the object on

level 2 is a string indicating the relationship (parallel, skew, or concurrent).

Example: Determine the relationship of the following two lines, 4x -3y + 1 =

Oand -2x+ 5y +2=0.

1. Enterthe first line and convert to an array: [4]X)(eJ&X)(=)(3)X]

(elB&)=)(0)(ENTER) (VAR Ekdi.
2. Enterthe second line and convert to an array: ('J2]+/=X]

HEXeIalY)(H(2)&)=)(0)ENTER)(VAR) ikdil
3. Execute IME": (@)«D)1N)2)2)ENTER) or (VAR) (then (NXT) or (&)

as needed) [H[c.

Result: &3 [ -./32714 -.7142686 ]
11=

  

The lines intersect at the point (— -3:, —%) (As you’ve seen earlier,

you can compute the fractions using the program H+[l.)
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Example: Determine the relationship of the following two lines, which are

given here parametrically: { x=3t+6,y=-2t-1,z=¢t-5} and

{x=-t+3,y=3t-1,z=-4t+3 }.

. Enterthe first set of parametric equations: (G]{J(')(eJX)E)=)

BHEOEWGE0BOENEARZENEE0E00
Q2=E)ENTER).

. Convert the set to array form: P+PDh[RSRTI]0VEE[@B8
AMATR]RO [ROR]

 

. Enter the second set of parametric equations: (]}JeJIX)E)

EEAHEDHEMO([PHaY)GEE)X(GalDEme)
(NeJalza=EHX(alDHEIENTER)
Convert the set to array form: P3P0 [RSSYOVEE(BB
(vSTTT,

Execute L INE™'" HTEEN Result: &f  "Skew"
1: H

 

Iftwo lines are parallel, the distance between them is constant, so you can find the

distance by identifying a point on one ofthe lines and using the [It. il program....

Example:

1.

3.

Find the distance between 4x — 8y +3=0and 2x -4y - 6 =0.

Enterthe first line: (*J4)X){eJaIX)D8)X)(JalH3)&I=)0]
[ENTER).
Convert that to an array, then reduceit to one point on the line:
T8(v BCR TlETTT («)(«). Result: [ 1 .875 ]

Enterthe other line; convert to an array: ('[2]X]oX)(=)(4)X)(«])

EVEEEE)0)ENTER)(VARHEETM. Result: [[ 1 -1 1]
[ & -.0 ]

Find the distance from the point to the line (also the distance between

the parallel lines): [IEITH]. Result: 1.E¢7HOHIEI]E
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The angle () formed by two intersecting lines can be computed from the defin-

ition of the dot product:

6 =cos™

Example:

202

where A and B are direction vectors for the two lines. 
Ae

AB|’ 

Compute the angle (in degrees) between the two intersecting lines

4x+2y-1=0 and S5x-y+3=0.

. Set degree mode (if necessary) by pressing to turn off the
angle annunciator.

. Enterthe first line and then find its direction vector: ('J4)(X)(aJ&)

 

vETE

 

..lifl@.m_vmVAR
ETH(«)(=). Result: -1 &£

. Enterthe second line and compute its direction vector: [5)(X)(a)

 

)XO[](HE) ENTER) (VAR HEEE (vTh)R
EX1(«)(=). Result: [ -1 -5

 

. Compute the angle between the two lines: (€)STACK)(NxT)(=]

  (vSTBT(3)TAcK)[Nven)BTSwap

Result: 14Z. 127 (in degrees,to three decimal places)

 

Note thatthis procedure finds the angle between two vectors sharing

initial endpoints and there is only one angle between them, but it is

a stand-in for the angle between intersecting lines, which form two

angles. Thus the supplementary angle (=37.875°) is also formed by

the intersection of the two lines.
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Two lines that either intersect or are parallel determine aunique plane. The easiest

approach to finding the equation ofthe plane given two linesis to find three points

—two from one line and one from the other (but not the point of intersection)—

and use the procedure described on page 186 when given three non-collinear

points. (The following two examples assume that you already know that the two

lines either intersect or are parallel.)

Example:

. Compute the D coefficient:

Find the equation of the plane determined by the lines { x = 37— 2,

y=-2t+5,z=t-3 }and { x=—t+14,y=4t-19,z=5t-19 }.

. Enterthe first set of parametric equations: ({3}JeJqIX)E)=)

X9DEEMJaGERIADX(eDHER)
(JelalZ)a)=)(JaT(E)(B)ENTER.
Find a position vector (point) for the line; make a copy: P*P0

(«)ENTER)

 

. Enter the other set of parametric equations; convert it to position-

direction form: (G@GNERFAEEDEIDRM
FEPEREREEDINEEaDERER@
QDOe.
Compute the set ofcoefficients [A B C] for the equation ofthe plane:

)(O(vSo.
Result: [ -56 -B4 4H ]

(+/5). Result: 328

Thus an equation for the plane is —56x — 64y + 40z — 328 = 0. Note

that this can be reduced by dividing through by 8:

~Ix—-8y +5z+41=0
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A plane has three traces. A trace is the line of intersection of the plane with one

of the three coordinate planes (the xy-plane, the yz-plane, and the xz-plane). The

following example illustrates how to compute the equation ofthe plane from its

three traces.

Example: Find the equation of the plane that has the following three traces:

xy-trace: 2x-3y+12=0

yz-trace: -3y—-6z+12=0
xz-trace: 2x—-6z+12=0

1. Write down the xy-trace.

2. Inspect the yz-trace and find the z-term.

3. Insert the z-term into the xy-trace:

Result: 2x—-3y-6z+12=0

The inverse process, finding the traces of a plane given the equation ofthe plane,

is almost as easy.

Example: Find the three traces of the plane 4x -5y +z+1=0.

1. Write down the equation of the plane 4x - S5y +z+ 1 =0.

2. To find the xy-trace, eliminate the z-term (equivalent to letting z=0):

4x-5y+1=0

3. To find the yz-trace, eliminate the x-term (equivalent to letting x=0):

—Sy+z+1=0

4. To find the xz-trace, eliminate the y-term (equivalent to letting y=0):

4x+z+1=0
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Given: Two Planes

The general equation ofaplaneisAx+ By + Cz+D =0, often expressed as a vector

of its coefficients, [A B CD ]. The vector represented by [ A B C ] is the normal

vector for the plane—the direction vectorfor a line perpendicularto the plane.

Thus, a unique plane is defined by a point in the plane and its normal vector.

Two planes are either parallel or concurrentif the normal vector of one planeis

a constant multiple of the normal vector ofthe other. If the ratio of the D coeffi-

cients1s equalto this same constant multiple, the planes are concurrent;if the D-

ratio is different than the constant multiple, the planes are parallel.

If two planes are not parallel, they intersect in a line which has a direction vector

perpendicular to the normal vectors for the two planes. To determine the equation

of the line:

1. Determine a point on the line of intersection;

2. Find the cross product of the normal vectors;

3. Convert this to a set of parametric equations for a line.

Example: Find the line of intersection,if any, of these two planes:

4x -S5y+z-2=0andx+2y+2z=0

1. Find a point on the line of intersection. Assume that this point has a

z-coordinate of 0 and solve the two plane equations simultaneously

to find the x- and y-coordinates: Enter a vector of the negatives of

the two constant terms:12)(SPC)(0])(ENTER]). Enter a matrix of

the x- and y-coefficients: (MATRIX)(4)ENTER)(5)(+/=)[ENTER)(Y)(1)

(ENTER)(2)(ENTERJ(ENTER). Solve the linear system, (=), then append a

H to theresult asthe z-coefficient you assumed: (0)(ENTER](3)(MTH])

; R HRTRResult: [ .2HMES -.15385 H ]

2. Find the cross product of the normals:
m-.SPC)(2)(SPC)(2)(ENTER)(MTH) kilit1 Lo i1b=y
Result: [ -1¢ -7 13 1

3. Convert the point and vector to a set of parametric equations:

[ledal. Result: © "w=—(1et 144130 Ty=—07=t 1-E-13"
'z=ldst !t G
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The following example uses the programFLE+L (see page 294), whichfirst deter-

mines whether or not two planes (entered as vectors of coefficients) are parallel,

and if not,the set of parametric equations for the line of intersection.

Example: Repeat the previous example using FLE+L.

1. Enter the two planes in vector form: (&)1)(4)(SPC)(5]+/-)(SPC)(1)

(SPC)(2)+/=)(ENTER); (LI)(1)(SPC)(2)(SPC)(2)(SPC)(0)(ENTER).
2. Execute PLE+L: (VAR

Result: © 'w=—[1#t1+4-13" "y=—(7st -215"
tz=laEt g

 

 

The angle formed by the intersection of two planesis easily determined by com-

puting the angle between their normal vectors:

AeB

AlB
1 6 =cos” , Where A and B are normal vectors for the two planes.

 

Example: Find the angle (in degrees) between the two planes, x — 2y — 2z +3

=0and 6x +3y+2z-1=0.

1. Set degree mode (if necessary) by pressing to turn off the
angle annunciator.

2. Enter the normal vectors of the two planes:
(SPC)(2)+/-)(ENTER); ()11]6)(SPC)(3)(SPC)(2)(ENTER).

3. Compute the angle between the two lines: STACK)(NXT)a1

YECTR|DOT ROLLD i1
i(X)()&)acos). Result: 1HH, 951 (in degrees, to 3 places)

Note that this procedure finds the angle between two vectors sharing initial

endpoints and there is only one angle between them, but it is a stand-in for the

angle between intersecting planes, which form two angles. Thus the supplemen-

tary angle (=79.019°) is also formed by the intersection of the two planes.
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Given: A Point and a Plane

Your most common calculation when given a point and a planeis to determine the

distance between them, which is given by

|Aa+ Bb+ Cc + D|

VA% + B* + C?

whereA, B, C,andD arethe coefficients ofthe plane in general form, and a, b, and

c are the components of the given point [ a b ¢ ]. If you let N be the normal vector

for the plane and P the position vector for the point, then the distance equa-tion

becomes

distance = 

INeP+ D|

NI
distance =

Example: Calculate the distance between the point [ 4 -1 -3 ] and the plane

2x+3y-2z+6=0.

1. Enter the normal vectorfor the plane and make an extra copy: (]
(2]+/-)(sPC)(3)(SPC)(2]+/=)(ENTERJENTER).

2. Enter the D-constant for the plane and swap it with the copy of the

normal vector: (6)(ENTER)(SWAP

3. Enter the point: (]1)(4)(SPC)(1)+/-)(SPC)(3]+/-)(ENTER]

4. Now compute the distance: (MTH) =585 L168
IRl ). Result: . 240306E0HG

 

 

  

Note: If the resulting distance is zero, then the pointlies in the plane.
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The next two examplesillustrate how to find the equation of a plane given a point

in that plane and the equation of a second plane.

Example: Find the equation of the plane parallel to x— 3y + 2z -5 =0 that con-

tains the point [ 4 2 -3 ].

. Enter the normal vector of the given plane (the same as the normal
  

vector of the parallel plane): (][1)(1])(SPC)(3]+/-)(SPC)(2)(ENTER).
 

. Enter the given point: (]1)(4)(SPC)(2)(SPC)(3]+/-)(ENTER).

 

Find the D-constant for the parallel plane: YECTE}]DOT
(+/5). Result: &
So the equation of the parallel plane is x — 3y + 2z + 8§ = 0.

 

While there is only one plane containing a given point parallel to a given plane,

there are an infinite number ofplanes containing a given point that are perpendicu-

lartoa givenplane. The cross productis the easiest method offinding one ofthose

perpendicular planes, as the next example illustrates.

Example:

1

2.

3

4.

208

Find the equation of a plane perpendicular to x— 3y + 2z—5 =0 that

contains the point [4 2 -3 ].

. Enter the given point and make an extra copy: (&)11)(4)

(3]#/-)[ENTER)(ENTER).
Enter the normal vector ofthe given plane: (&)L 1)(1)(SPC)(3]+/-)

(SPC)(2)(ENTER).
. Compute the cross product (giving a vector perpendicularto the nor-

mal vector: MTH)MISI[EAEE. Result: [ -5 -11 -1% 1]

Compute the D-constant for the perpendicular plane: [t 1l gl (+/—).

Result: H. This is to be expected because the computed normalis

perpendicular to the position vector of the point as well as to the

given plane. (The dot product of perpendicular vectors is 0.)

       i

So the equation of the perpendicular plane is: -5x — 11y —14z=0
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Given: A Line and a Plane

Aline and a plane are parallel if the dot product of their direction vector and nor-

mal vector is zero and a point on the line does not lie on the plane. If the dot pro-

ductis zero and a point on the line does lie on the plane,the line is contained in

the plane; if the dot product is not zero, then the plane and line intersect in a point.

Example: Find the number of points shared by the line { x=¢+3,y=¢-1, 2

=—t+ 1 }, and the plane, 3x -2y + z -4 =0.

. Enter the normal vector for the plane and make an extra copy: (]I
 

(3)(sPC)(2]+/-)(SPC)(1)(ENTER](ENTER).

. Enter the line and convert it to position-direction form: (&J{3)(")(e)

X&EEEQDHEeaTEEM)
(NeJalz)al=)-aalDHIENTER) (VAR Laedsl'R.
Find the dot productofthe direction vector ofthe line and the normal

vector of the plane: VECTR| DOT|

Result: H. Theline is either parallelto, oris contained in,the plane.

Determine whether the point on the line lies on the plane by finding

the negative ofthe dot product of the point and the normal vector for

the plane: («)H[TH#l(+/-). Result: —1&

If the point were on the plane, this result would be equal to the D-

constant in the equation of the plane. That’s not the case here, so the

line is parallel to the plane; they share no points.
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If the dot product of the direction vector of a line and the normal vector of a plane

is not zero, then they intersect at a point. To find the point, substitute the paramet-

ric equationsof the line into the equation for the plane and solve for z. Then sub-

stitute the computed value of¢ back into the parametric equations to find the x-,

y- , and z-coordinates of the point ofintersection. In vector terms,

t:—D—(NOP)

(NeD)

where D is the D-constant in the equation of the plane, N is the normal vector of

the plane, P is the position vector of the line and D is the direction vector of the

line. The following example illustrates how to use this equation to compute the

coordinates of the intersection point.

Example: Find the point of intersection of the line, { x=3t+ 1, y=-t-1,z=

-t + 1 }, and the plane, 3x -2y +z—-4 =0.

1. Enter the parametric equationsofthe line; make an extra copy: (&)

OJaX)&)=XeDHWM(@alY)&)=
(JaDEOEJalzZIa)=)FHI)eDHEENTERENTER)

2. Enter the negative of the D-constant and swap it with the copy ofthe

equation ofthe line: (4)(ENTER)(SWAP).

3. Convert the parametric form to point direction form:

Result: * [ 1 -111

1= [ 3 -1 -1 1

4. Enter the normal vector of the plane and make an extra copy: (]L])

(3)(sPC)(2]+/=)(SPC)(1)(ENTER)(ENTER).

5. Computet: FHEVTR(TS :
OLLD il (—) (SwAP)(=). Result: —. &

6. Storetheresultinfandevaluate the parametric equations: ('oJ¢&5]T]

(STO)(1)(ENTER)(&q)« »)(EVAL)(ENTER)(PRG)

  PxP0

  

  
  

 
 

 

 

  
Result: + 'w=.4' 'y=—.3' 'z=1.2' }

7. Optional. Convert this to fractions: (¢€5]SYMBOLIC)(NXT)Eific4.

Result: © 'w=g-2' 'g=-(4-00" 'z=g-3' )
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The program LFL+F(see page 288) takesa line in position-direction form and a
plane in vector form and,after checking to see if they are parallel, computes the
coordinates for the point of intersection. The next example illustratesits use.

Example:

Example:

 

Use LFL+Fto find the point of intersection,if any, ofthe line { x =

2t+1,y=-t-1,z=73¢t} and the plane 3x + 2y —z - 5 =0.

. Enter the set of parametric equations for the line: (&]{}['[oJ&q]X]

=)XSTHD ([elalY] JalT=[D)
JalzZlal=3]x]eJa]T)ENTER)

. Convert the line to position-direction form: eol LB,

. Enter the plane in vector form: (&1)(3)(SPC)(2)(sPc)(1]+/-)(SPC)
 

 

ENTER).

. Execute LFL+F: ENTER) or (VAR) (then or

(GIPREV) as needed) [HBEal. Result: [ 9 -5 12 1

If you wish, you can rationalize the results using H*[J.

Find the equation of the plane that contains the line { x=2¢+ 1,y =

—t—1, z=3t } and is perpendicular to the plane 3x + 2y —z—-5=0.

. Enter the normal vector for the plane and make an extra copy: (][]
 

(3)(sPc)(2)(sPC)(1)+/=)(ENTER](ENTER).

. Enter the equation of the line: (U}JoeJa[X)E)=)(2)X](«)E)

OOJa=AUealz)kl=)
BIX(JSITENTER)

3. Convert the line to position-direction form: P*PD}

. Compute the vector of coefficients for the target plane: (¢5)STACK

   ROT[OREVECTR|CROZSEENEY
(/=4)MTH) LLA
So the equation of the perpendicular plane containing the given line

is-5x+11y+7z-1=0.

ROLLDMEW DOT

SRR Result: [ -5 11e)      
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Introduction to Transformations

So far in this chapter, you’ve seen how to deal analytically with various com-

binations of geometric objects. You have used the array object type—vectors and

matrices—extensively in the process. In thislast part ofthe chapter, you will learn

how to efficiently transform groupsofpoints using array methods. Such methods

are the foundation ofthe moving graphics embedded in video games and all kinds

of computer modeling.

A transformation is a kind of function that maps an input array—representing a

geometric object—into a output array. If the transformation is part of a computer

graphics program, the program redraws the object, based on the output array; the

viewer sees the object undergoing a transformation on the screen.

There are several kinds of transformations possible:

* Translation—moving an object a given distance along a given line.

* Rotation—rotating an object through a given angle around a given axis.

» Reflection—finding the mirror image of an object with respect to a given

plane.

» Scaling—changing the size of the object proportionally by a given factor.

» Shearing—changing the size of the object disproportionately.

e Combinations of any or all of the above.

Also, because most visual representations ofobjects occur in two dimensions (on

a display screen or on paper) there are some important transformations toproject

three-dimensional locations into locations that can be plotted in two dimensions:

* Perspective Projection—transformation from three-dimensional space

onto a hemispherical surface, where no two lines are parallel, followed by

a projection from the hemisphere onto a plane.

e Dimetric Projection—projection which preserves the perpendicularity of

the coordinate axes, while equally foreshortening two of the three axes.

» Isometric Projection—projection which preserves the perpendicularity of

the coordinate axes, while equally foreshortening all three axes.
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For the purposes of mathematical transformation, geometric objects are pre-
sented as arrays of points (i.e. arrays of the position vectors of points) with one

important addition. An extraelement, 1, is appended to the position vector, yield-

ing what is known as the homogeneous coordinate representation.

Thus, depending on whether the objectis in the xy-plane or in three-dimensional

space, each position vector will have either 3 or 4 elements. For example,the line

segment connecting the point (4,-1,3) to the point (3,2,-1) is represented as

4 -1 3 1

{3 2 -1 1

matrix (four points, three elements each); and a cube is represented by an 8x4

matrix (eight points, four elements each).

} likewise, a square in the xy-plane is represented by a 4x3

The other important componentin a transformation is the transformation matrix.

It is a square matrix with the same number of columns as the object array: There

is a 3x3 general transformation matrix for points limited to two dimensions and

an analogous 4x4 transformation matrix for points in space:

a b e|p
a blp |

| c d glgq
c dlgq S—————& fohojir
I mis|  |=———--=--

I m nis

Every general transformation matrix can be divided into four sections, each of

which “controls” aspects of the transformation:

* a,b,cd,e,f, gh,and j control the local-scaling, shearing, and rotation

aspects;

e [, m and n control the translation aspects;

* p, q and r control the projection aspects;

» s controls the overall scale of the transformation.

The remainder of this chapter illustrates how to use these “controls” to achieve

a wide variety of transformations.
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Scaling

To isolate the effect of each component of the transformation matrix, you must

make sure that all other components have no effect on the transformation. The

3x3 and 4x4 identity matrices,

representthe “no effect” matrices. They show the “neutral” values ofeach of the

“controls”—values to use if want them to have no effect on the transformation.

The scaling controls fall along the diagonal of the matrix:

* a controls the scale of the x-component.

 d controls the scale of the y-component.

 jcontrols the scale of the z-component (if any).

» s controls the scale of all components simultaneously.

For example, to triple the scale of the horizontal component only (for an object

in space), you would use the following transformation matrix:

0 0'0
1 010

Visually, you would see the object “stretching” horizontally.

The examplesin the rest of this chapter use the program T%IEll (see page 317),

which draws a simple object, given an array ofits points, thus allowing you to

view the results of your transformations on that object.
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Example:

Scaling

Plot a simple unit square, then “stretch”it horizontally by a factor of

three and view the results.

. Enterthe array ofpoints for a unit square (in thexy-plane):
 
 

(0](ENTER] (0] (ENTER)(1)(ENTER)Y) (ENTER) (0) (ENTER) (ENTER)

(ENTERJ(1](ENTER)(1)(ENTER)(0)(ENTER)(1)(ENTER)(1)(ENTER)(ENTER).

Result: [[ B H 1 ]

   

[
[
[ 0

l
—

—
_
e
t 1 1]

1 1]
1 1]

. Plot the square with TWIEl: (o))TV)1EJW)ENTER) or (VAR) (then

 

or as needed) REMIAE].

 

 

  

    
 

. At the stack,enter the transformation matrix: (CANCEL)(—>MATRIX]   
(ENTER)(0)(ENTER] (0] (ENTER)()(0)(ENTER)(1) (ENTER)(0) (ENTER)(0)

(ENTER)(0)(ENTER)(1)(ENTER)(ENTER). Result: [[ 3 H B ]
[ H 1B ]
[ 1 11

Multiply the object array by the transformation: Rl

 

 

-
1

[- !
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Of course, the y-component can be scaled as well by changing the value of the d

element in the transformation matrix.

Example: Stretch the rectangular result of the previous example vertically by

a factor of 2 and display the results.

1. Returnto the stack and enter the appropriate 3x3 transformation ma-

trix: (CANCEL)(=>JMATRIX](1]JENTER)(0)(ENTER]0)(ENTER]¥)(0)(ENTER]
(2)(ENTER](0](ENTER)(0)(ENTER)(0)(ENTER)(1]ENTER) (ENTER).

  

  

Result: [[ 1 H H ]

[ B Y H ]
[ B H 1 1]

2. Multiply the object array by the transformation matrix, and view the

results with THIEN: LETTEH.

 

 

 

  

    
Notice that you could have performed both of the previous transformations at

once, by using a transformation matrix that is the combination of the two local-

scaling steps:

3 0041 0 O 3 00

0O 1 00 2 Of=(0 2 O

0 0 1J0 0 1 0 0 1

This is a characteristic of combination transformations—they are the product of

the individual component transformations.
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The lowerright-hand element ofthe transformation matrix (the s element) con-

trols the overall scaling of the object. It works differently than the local scaling

factors. Itis located in the last column, which should be all 1 ’s unless a projection

is intended. To restore the expected state of the last column, all elements of the

matrix are divided by the s-factor, thus effectively making the lower-right-hand

element a 1 again.

Example: Explore the effects oftransforming the current object using a global-

scaling factor of 2.

1. Return to the stack and enter the appropriate 3x3 transformation ma-

trix: (CANCEL)(=>JMATRIX)(1JENTER)(0)(ENTER]0)(ENTER]¥)(0)(ENTER)
(1)(ENTER)(0)(ENTER)(0) (ENTER](0)(ENTER](2ENTER](ENTER).

Result: [[ 1 B A ]

[ H1H ]
[ B HE ]]

2. Multiply the object array by the transformation matrix, and view the

results with TTEN: (<) LETIEHI.

   

  

 

 

  

    
Note that, because ofthe division process involved, a global-scaling

factor greater than one shrinks the object; and a global scaling factor

less than one enlarges the object.
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Shearing

The pure scaling you’ve seen already—using the diagonal elements ofthe trans-

formation matrix—represent the “self-effects” of scaling of individual coordi-

nates only: independent scaling.

By contrast, shearing is the effect that the scaling of one coordinate has on the

value of other coordinates. Shearing is dependent scaling, using the off-diagonal

elements b, ¢,e, f, g, and h in the transformation matrix:

b represents the effect of x-scaling on the y-coordinate.

c represents the effect of y-scaling on the x-coordinate.

e represents the effect of x-scaling on the z-coordinate (if any).

frepresents the effect ofz-scaling (ifany z-coordinate) on thex-coordinate.

g represents the effect of y-scaling on the z-coordinate (if any).

hrepresents the effect ofz-scaling (ifany z-coordinate) on they-coordinate.

Example: Shear the y-coordinates ofthe current object by a factor of 1.2 of the

218

x-coordinates.
 

1. At the stack, enter the transformation matrix: (CANCEL)(=]MATRIX]

(1(ENTER)(1]J2JENTER]0)ENTER](0)(ENTER)(1) (ENTER)(0(ENTER)
(0)ENTER)(0)(ENTER)(1)ENTER)ENTER). Result: [[ 1 1.2 H 1]

[ ]
[ ]
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2. Multiply the object array by the transformation matrix, and view the

results with TV IEW: LETTEH].

 

»
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Example: Shear the x-coordinates of the current object by a factor of 0.75 of

the y-coordinates.
 

1. At the stack, enter the transformation matrix: (CANCEL)(>]MATRIX)
(1)(ENTER](0)(ENTER)(0](ENTER)Y)(7)(5)([ENTER)(1)(ENTER)(0)(ENTER)

(0)(ENTER](0](ENTER](1ENTER)(ENTER).

Result: [[ 1 H

 

  

  

2. Multiply the object array by the transformation matrix, and view the

results with TW IEN: LETTEH].
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Translation

Translation is a transformation that moves a point along a line. It changes the

coordinate system in which the object exists without changing any of the dimen-

sions or relative positions of the points of the object. For example, translating an

objectto the point (4,5) in the xy-plane means that the origin (0,0) is now at the

point (4,5) and all points in the object that had been situated with respect to the

origin are now analogously situated with respect to the point (4,5).

In the transformation matrix, the /-, m-, and n-elements control the x-, y-, and z-

axistranslations, respectively. For the above example—atranslation to the point

(4,5) in the xy-plane—the transformation matrix would be:
B

O
=

wn
h
=

O 0

0

1

Example: Translate the current object to a coordinate system centered at the

point (2,-1).

1. At the stack, enter the transformation matrix: (CANCEL)(>|MATRIX)

ENTER) (0] (ENTER)(0]) (ENTER|Y) (0] (ENTER) (1) (ENTER)(0) (ENTR].
(ENTER)(1)+/=)(ENTER)(1)ENTER)[ENTER). Result: [[ 1 H

 

 

  

2. Multiply the object array by the transformation matrix, and view the

results with TWIEM: LETTEE].

 

f_.ff
4 -"-."J 4

&
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Rotation

A rotation is a combination of scaling and shearing that leaves the final dimen-

sions of the object unchanged. Each rotation occurs around an axis of rotation.

In two dimensions, it appearsthat the rotation is around a point—often the origin

—but actually, it is occurring around the z-axis, which extends “upward” from the

flat xy-plane. If Ois the angle through which you wish to rotate the object counter-

clockwise around the origin, the appropriate 3x3 transformation matrix is

cos@ sinf O

—sinf cosf@ 0

0 0 1

Example: Rotate the current object 130° counterclockwise around the origin

(z-ax1s).

1. Atthe stack, set degree mode, then enter the transformation matrix:

(ifneeded)
(130JSINJ+/-JENTER

(0)(ENTER)(0)(ENTER](0](ENTER](1JENTER) (ENTER).

Result: [[ .E¢ ...'H.FEEE 1:1 ]

   

   

2. Multiply the object array by the transformation matrix, and view the

results with TWIEDW: LETTH].
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When performing a rotation in the xy-plane around an arbitrary vertical axis

(which appears to be a point), the rotation is a three-step procedure:

e Translate from the given “point” of rotation back to the origin;

* Rotate the given number of degrees about the origin;

* Translate back to the coordinate system of the given point.

Thus,ifthe “point” ofrotation is (/,m) and the angle ofrotation is 0, the three trans-

formation matrices, in order, are:

1 0 Of cos@ sin@ 0|1 0 O

0 I O} -sin@ cos@ 00 1 O], which,after multiplication,

-l -m 1 0 0 1l m 1

cos 6 sin 6 0

simplify to —sin 6 cos 6 0.

—I(cos@—1)+msin@ —Isin@—m(cos@—-1) 1

A program, FITZ[ (see page 299),createsthe proper 3x3 transformation matrix,

given the point (in vector form) on level 2 and the angle ofrotation on level 1.

Example: Rotate the current object around the point, (-1,-1) by 50°.

1. At the stack, enter the point ofrotation in vector form: (CANCEL)&)

IJ+/=)(sPC)(1]+/=)(ENTER).

2. In degree mode, enter the angle: (¢5)RAD)(if needed) (5] 0)(ENTER).

3. Use ROTEL: AhEd: ([ a4y LPeelt B ]
[ -.7BEEt 6457 B ]
[ -1.12386 48853 1 1]

4. Multiply and view the results: (X)iid13%].
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The rotation of objects in three dimensions presents even more complications. A

rotation in three dimensions implies that rotations may occur around any of the

three coordinate axes—in the most general case, around any line in space.

In a rotation about any one of the coordinate axes, the coordinates of the object

with respectto that axis do not change (thus, in a rotation about the z-axis in the

xy-plane, where z = 0, the implied z-coordinate remains at zero before and after

the rotation). Therefore, the rotation matrices for rotating about each ofthe coord-

inate axes individually are:

X — axis: y — axis: Z — axis:

1 0 0O O] [cos¢p O —sing O cosy siny 0 O

0 cos@ sinf6 O 0 1 0 O |[-siny cosy 0 O

0 —sin@ cos@ O sing 0 cos¢ O 0 0 1 0O

0 0 0 1 0O O 0 1 0 0 0 1

Soif you need to rotate about more than one axis—6 about the x-axis, ¢ about the

y-axis, and y about the z-axis, for example—you simply multiply the necessary

transformation matrices together. But note that the order in which you do the suc-

cessive rotations definitely matters: remember that matrix multiplication is non-

commutative.
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For example, compare two transformations:

Case 1. Rotate about the x-axis, then by an equal angle about the y-axis (¢ = 0):

1 0 O Ofcos¢p 0 —sing O

0O cos@ sinO Off O 1 0 0

0 —sin@ cos@ Ofsing O cos¢ O

0 0 0O 1) 0 O 0 1

cos 6 0 —sin @

cos@sin@® -sin® cos’ @

0

sin’ 6 cos@® cosfsinf® 0

0

0 0 0 1

Case 2. Rotate about the y-axis, then by an equal angle aboutthe x-axis (0= ¢):

cosp 0 —sing O] 1 0 0 O

0 1 0 OO0 cos@ sin6 O

sing 0 cos¢p OO0 —sin@ cos@ O

0O O 0 10 0 0 1

cos O sin’ 0 —cosfsinf 0

| 0 cos @ sin 6 0

|sin@ -cosOsinf  cos’6 0
0 0 0 1

Note that these overall transformation matrices are not equivalent. Remember

this when performing rotations around more than one axis.
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The two-dimensional general rotation matrix is a bit complicated; the three-di-

mensional case is definitely so: For an axis (line) ofrotation with a direction vec-

tor [ x y z ] and a position vector [/ m n ], and an angle of rotation @in the counter-

clockwise direction, the 4x4 general rotation transformation matrix is:

x*+(1-x")cos®  xy(1-cosB)+zsin® xz(1-cosB)—ysinf 0

xy(1-cos@)—zsin®  y*+(1-y*)cos®  yz(1-cos@)+xsin® 0

xz(1-cosB)+ysin@ yz(1-cosB)—xsin®  z>+(1—-z*)cos®@ 0

L M N 1

where
L=

[ - l[x2 +(1-x*)cos 0] —m[xy(1- cos 0) — zsin 6] — n[xz(1 - cos ) + ysin 6]

M =

m—I[xy(1—cos0)+ zsin t9]—m[y2 +(1-y*)cos 9]—n[yz(1—cos ) — xsin 0]

N =

n—I[xz(1— cos 0) — ysin 8] — m[yz(1 - cos 6) + xsin 9]—n[22 +(1-2")cos 6]

Clearly a program is called for: RT3(see page 300) takes the position and
direction vectors of the axis of rotation from levels 3 and 2, and the angle of ro-

tation from level 1.

Example: Find the proper transformation matrix to rotate an object around the

line givenby { x=2t+1,y=-t-1,z=73t } by 74°.

1. Atthe stack, enter the line in parametric form: (CANCEL)(&J{(")(®)

&= Q =18
EE0OEDEEEX(AITENTER).

2. Convert the line to position-direction form:.

2. Indegree mode, enter the angle: (6&5]RAD)(if necessary) (7]4)[ENTER).

3. Use RUT3M to find the transformation matrix: [HRETY.

Result: [[ 2.173H9 1.435%H6 2.2744 H ]
[ —4.33F531 1 - FoHSe B ]
[ 328491 —"r H9561 B.7949H H ]
[ -6.5056A -1.43596 -5.55088 1 1
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Reflection

Arotation moves an object with respect to a line. A reflection, on the other hand,

moves an object with respect to aplane. A reflection may appear to be with res-

pectto aline within thexy-plane, but this is because the line is the trace ofthe plane

ofreflection—the only part ofthe reflection plane within thexy-plane. Thus, what

appearsto be a reflection with respectto, say, the x-axis (i.e. the line y = 0) is act-

ually a reflection with respect to the plane y=0 (0x + y + 0z + 0 = 0).

The transformation matrices for reflection across each of the coordinate axes (or

the planes with which they are associated) are fairly straightforward:

across x - axis: across y-axis: across z - axis:
1 0 0 O -1 0 0 O 1 0 0 O

0 -1 00 0 1 0O 01 0 O

0 0 1 0 0 010 0 0 -1 0

0O 0 0 1 0 0 0 1 0 0 0 1

(The 3x3 transformation matrices are the same as those for the x-axis and y-axis

shown above, except they have the third row and column removed.)

Example: Reflect the current object across both the x- and y-axes.

1. Enter the 3x3 transformation matrix for reflecting across the x-axis:

(IDROP) the 3D-rotation matrix from the previous example,ifneces-

sary) (=JMATRIX)(1]ENTER)(0JENTER])(0](ENTER)(V)(0)(ENTER)(1)+/-)

(ENTER](0](ENTER)(0)(ENTER)(0) (ENTER)(1]ENTER) (ENTER).

2. Enter the 3x3 transformation matrix for reflecting across the y-axis:

(=2IMATRIX)(1)+/=)([ENTER)(0JENTER](0)[ENTER](¥]JENTER)(1)([ENTER)

(0] (ENTER)0)(ENTER](0)(ENTER)(1)(ENTER) (ENTER).

3. Because thisisjusttwo consecutive reflections, you can multiply the

two transformation matrices together before applying it to the object

matrix: (X). Result: [[ -1 H H ]

[ B8 -1H]
[ B H 1 1]
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4. Multiply and view the results: (X)iiH13%1.

 

 

    
This example was simple, but to reflect across an arbitrary plane (or, in two di-

mensions, an arbitrary line) the computation is complicated. You must rotate the

given plane ofreflection to match one ofthe coordinate planes, perform the reflec-

tion and rotate the result back. A better approach uses geometric relationships:

The plane of reflection is a perpendicular bisector of a line segment from a point

to its reflection. The program FFLLT (see page 299) usesthis to compute the re-
flection directly. It takes the object array from level 2 and a vector of the general

form of the plane (or, in two dimensions, the line) of reflection from level 1.

Example: Reflect the current object across the line, x — 2y + 1 = 0.

1. Return to the stack (where the current object array should be shown

inlevel 1) and enter the vector form ofthe line of reflection: (CANCEL

()3(1)JsPc)(2]+/-)(sPC)(1)(ENTER).

2. Use the EFLCT program: (a)aR)FJL)(CJT)ENTER) or (then
or as needed) [54,

3. View the results with T%IEW: {EHTIHI.
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Projection

So far, you have not seen any examples that plot points in three dimensions.

Before you can do so, you be able to project them into points in two dimensions,

so that they may be displayed on the HP 48’s two dimensional screen. The kinds

of transformations you have seen thus far in this chapter have been affine trans-

formations, where thep-, g-, and r-elements in the general 4x4 transformation ma-

trix are zero. But when one or more of these elements is nonzero, then the trans-

formation becomes a projection.

Projections depend on two things: the viewingplane onto which you’re projecting

and the center of the projection or eyepoint. When you view the HP 48 display,

you are viewing the xy-plane (the plane, z = 0). Parallel lines stay parallel on the

display—they don’t meet together in a point. The eyepoint is infinitely far from

the viewing plane. Projections that maintain the eyepoint at infinity are called

axonometric projections, because they keep the coordinate axes at right angles to

each other. There are three types of axonometric projections:

* Orthographic. These produce the views commonly used in mechanical

drawing—Top View, Side View, Front View. They are projections onto one

of the three coordinate zero planes (x =0, y =0, or z=0).

* Dimetric. These foreshorten two of the three coordinate axes by the same

factor, while leaving the axes at right angles (orthographic) to each other.

A dimetric projection consists of two successive rotations (once around

each of the axes being foreshortened) using angles computed to maintain

the orthography of the axes.

» [Isometric. These foreshorten all three axes by the same factor while main-

taining their orthography. Anisometric projection is similar to the dimetric

projection except that the computed angles ofrotation are constant no mat-

ter the degree of foreshortening.
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The transformation matrix for an orthographic projection onto the xy-plane is:

1 0 0 O

0100

0 00O

0 0 01

Note that column corresponding to the projection plane (z) are filled with zeroes,

since, in the xy plane, z=0. The analogous approach can be used to construct the

matrices for projections onto the x = 0 and y = 0 planes—Ileaving the column cor-

responding to the projection plane filled with zeroes.

Example: Enter this set ofpoints and view it in an orthographic projection onto

the xy-plane:
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1. Enter the array of points: (=]MATRIX] (0)(SPC)(0](sPc)(0)(sPc)(1)  
   

(ENTER)(¥)(0)(SPC)(0)(sPc)(2)(SPC)(1)(ENTER](2)(sPC)(0)(SPC)(2)(SPC)
(1)(ENTER)(2)(SPC)(0)(sPC)(0])(SPC)(1)(ENTER)(2)(SPC)(2)(sPC)(o](

(1)(ENTER)(2)(SPC)(2)(sPC)(2)(SPC)(1)(ENTER](0)(SPC)(2)(SPC)(2)(SPC
ENTER](0)(sPc)(2)(sPc)(0)(sPC)(1)(ENTER)(0)(SPC)(0)(SPC)(0)(SPC

(2 J J(2)(sPc)
) ) )

) ]

   

   

   

   

   

w
n
0 O (»
)
o O
L
IG

(1)(ENTER](2)(sPC)(0)(sPC)(0)(SPC)(1)(ENTER)(2)(SPC
.[ENTER]@[SPcJ.sPc)(0]SPcJ.FENTER(0)(sPC)(2)(sPC)(2)(sPC

(1)(ENTER](0)(sPC](0)(sPC)(2)(sPC)(1)(ENTER)(2)(SPC)(0)(SPC)(2)(SPC)

(1)(ENTER)(2)(SPC)(2)(SPC)(2)(SPC)(1)(ENTER](ENTER).

   

   

. Execute TWIEl. It performs an orthographic projection onto the xy-

plane simply by ignoring the z-element ofeach point: R1S5

/]
The object is a cube two units on a side with one of its major diagon-

als drawn, shown here “flattened out” into the xy-plane.

 

    
Related to the orthographic projections are those onto planes parallel to the coord-

inate planes, such as x =/, y=m, and z = n. The transformation matrices for these

projections are:

230

1 000 1 0 0O 1 0 0O

0 00O 0 1 0O 01 00

0 010 0 0 0O 0 0 0O

I 0 0 1 0 m 0 1 0 0 n 1
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The preceding projections share the disadvantage that they lose the z-coordinate

information during the projection (although T%IE}| avoids this by returning the

object array before projection while displaying the results after projection). A

better approach is to use the z-axis information during the projection so that the

results give some visual clue about the “depth” of the object.

The dimetric projection is of a rotation about the y-axis by an angle ¢, followed

by a rotation about the x-axis by an angle 6. The angles ¢ and 8 are computed so

that the x- and y- axes are foreshortened by an equalfactor,f, while maintaining

the orthography ofthe coordinate axes and projecting the results into thexy-plane.

Obviously, the key is choosing the correct angles. They must satisfy these two

equations:

cos’ ¢ +sin® ¢sin® @ = cos” O
sin® ¢ + cos” ¢sin® @ = f>

Once you have computed these angles for a given factorf, you can compute the

transformation matrix for the dimetric projection, which is nothing more than the

combined matrix from the two rotations about the axes:

cos¢ sin@sin@ —sin¢cosf O

0 cos @ sin 0 0

sing —cos@sin@ cos¢pcosf O

0 0 0 1
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The program [MTEL (see page 280) computes the appropriate transformation
matrix, given the factor,f( 0 <f< 1) by which you wish to foreshorten the axes.

Example:

1

2.

3.

4.

232

Project the current object using a dimetric projection with a factor

of 0.5.

. Return to the stack, make an extra copy of the object array, and store

it as CLIBE : (CANCEL)(ENTER) "@)@CU)B)E)(ENTER)(STO).

Enter the projection factor: ENTER).

Find the transformation matrix for the dimetric projection:

(M[T]R]C)[ENTER)or (then(NXT)or(&qJPREV])as needed) il# .

Result: [[ .9¥58¢ .13363 -.35355 H ]
[ B .93541 .35355 B ]
[ 37796 -.32733 .B6eHE2 A ]
[ B8 A A1 1]

Multiply the object array by the transformation matrix, and display

the results using T% I[EW: (X)LETIH]
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The isometric projection is similar to the dimetric projection exceptthatit needs

no factor: there is only one set of angles, 0 and ¢, that will equally foreshorten

all three axes without disturbing coordinate orthogonality. The required values

are 0=135.26439° and ¢ = 45°.

The program I SITEL(see page 285) takes nothing from the stack and returns the

proper transformation matrix for an isometric projection.

Example:

Projection

Project the CLIEE using an isometric projection.

1. Returntothe stack, drop the previous result array, and putCLIBE onto

the stack as the object array: (CANCEL)(«)(VAR)Ed!]=5 .

 

2. Compute the transformation matrix for the isometric projection: (o)

mn...fl.ENTER] or (VAR (then or(q]PREV) as needed)

 

SAHEZS -.50730 B

" (
|

[ PH -

[ . B165H ':?'F'o B ]
[ .7PEFL] - 48825 57735 8 1]
[ HHH1 1]

3. Multiply the object array by the transformation matrix, and display

the results using TWIEW: () LETIE].
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Thefinal set of projections to illustrate are the perspective projections. Perspec-

tive projections are combinations of a perspective transformation with a projec-

tion into a plane. Widely used to present data in visually useful ways, perspective

projections are often combined with other transformations—rotations, transla-

tions, or scaling—before the perspective transformation (and sometimes after).

The simplest perspective projection projects onto the xy-plane from an eyepoint

at [ 0 0 -k ] where k is a finite number. (By contrast, the theoretical eyepoint for

the previous axonometric projections was [ 0 0 -e= ].) In this projection, lines that

were originally parallel to the z-axis will now appear to pass through the vanishing

point [00 k ].

This projection, known as a single-point perspective transformation, is accom-

plished using the following transformation matrix:

1 0 0 0
0100
00 0 &
000 1

Note the two differences between this matrix and the 4x4 identity matrix: the r-

element has a nonzero value, and the third column is all H’s (for projection onto

the z = 0 plane).

However, any non-zero valuesin the final column (except for the final row) ofthe

transformation give an undesirable scaling effect, producing values other than 1

in the fourth column ofthe transformed object array. To counteract that effect, the

result ofa perspective transformation mustbe normalizedby dividing the x- y- and

z-coordinates of each point by the value of the fourth elementin its row.

The short program MEMLZ (see page 289) performs this normalizing procedure

on the array in level 1. The resulting array will have its final column filled with

ones.
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Example: Project the current object onto the xy-plane using a single-point per-

spective projection. Let k = 10.

1. Returnto the stack, drop the previous result array, andputCLIEE onto

the stack as the object array: (CANCEL)(«)(VAR)E8!1:15] .

2. Enter the transformation matrix: (=)(MATRIX)(1)(ENTER)(0)([ENTER)(0)

@@E.@@m@m@
(ENTER) (0] (ENTER) (0] (ENTER) 1) (ENTER) (0] (ENTER) (0] (ENTER) (0]

]
]
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4. Display the results using T4 IEN: FETTIH].
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The single-point perspective projection is the one mostcommonly used by artists,

but they effectively translate the object so that the eye-point and the vanishing

point are centered on the object. Without such a centering translation, the vanish-

ing point is along the z-axis (i.e. at the origin), no matter where the objectis.

Example: Repeat the previous example, but “center” the eyepoint on the object

before performing the projection. That is, move the object so that the

origin is at its center in the xy-plane—a (-1,-1,0) translation.

. Return to the stack, drop the previous result array, and put_LIEE onto
the stack as the object array: (CANCEL)(«)(VAR)Ea1]:{3.

. Prepare the single-point projection, including the translation ele-
  

ments in the last row: (=]MATRIX](1)(ENTER)(0)(ENTER)(0)(ENTER)(0)

(0] (ENTER) (ENTER) (0] (ENTER) (0] (ENTER] (0) (ENTER) (0)

(ENTER](0)ENTER]1)(ENTER)(1)+/-)[ENTER)(1J+/—)[ENTER)(0)ENTER]

  
  

 

()EER)ENTER)  Result L[ 1 B A B ]
[ B 1 B8]
[ BB A .1 ]
[ -1 -1 81 1]

3. Multiply by the object array and normalize: (X)[[IgIH.

Result: [[ -1 -1 E1__1 ]

[ .63 -.53 A 1 ]
[ .93 -.83 A 1 ]
[ 1 -1 811
[ 1181 ]
[ .83 .82 H 1 ]
[ -.83 .82 8 1 ]
[ -1 1811
[ -1 -1811
[ 1 -181]1
[ 1 18 1]
[ -1 1811
[ -.82 .83 8 1 ]
[ -.83 -.83 B 1 ]
[ .82 -.82 B 1 ]
[ .83 .83 8 1 1]
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4. Displaythe results using 1% IEW: FETIHI.

 

 

 

 

    
 

    
The single-point perspective is equivalent to viewing an object with only one eye.

But with both eyes open, you gain the depth perception ofa two-point perspective

—the difference between the two perspectives being the result of a slight rotation

around the vertical axis (the y-axis on the HP48). Or, if you combine the rotation

around the y-axis with the rotation around the x-axis, you can get a three-point,

or oblique, perspective.

In terms of transformation matrices, the two-point and three-point perspectives

are nothing more than the combination (multiplication) of one or two rotation

matrices with the single-point perspective transformation matrix. The resulting

combined transformation matrices (with 8the angle of rotation around the y-axis

and ¢ the angle of rotation around the x-axis) are:

 

cos@ 0 ( =sné cos@ sinBOsing (O Smdose

0 10 0 0 0o
2-Pt1 . 3'pt: . o ¢ cos Bkcossin@ 0 0 < sin@ —cos@Osing 0 <<=

0 0 0 1 0 0 0 1
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Ofcourse, a program makes perspective projections much easier: FERSF (see
page 292) takes an object array from level 3, the desired translation vector from

level 2, and the desired eyepoint from level 1. It returns the object array ready for

TYIEL.

The translation vector allows you to move the entire object with respect to the ori-

gin. This lets you treat the eyepoint value as relative to the object (as well as to

the origin), which makes it much easier to anticipate the perspective you obtain.

Whether you get a one-, two-, or three-point perspective depends on your choice

of eyepoint. If only the z-coordinate is non-zero, the perspective is single-point;

if the y-coordinate is also non-zero, the perspective is two-point; if all three co-

ordinates are non-zero, the perspective is three-point. Be sure to use a negative

number for the eyepoint’s z-coordinate so as not to view the object from inside it.

Try the next few examples to get a feel for perspective projections.

Example: Project the CLIEE using no translation ([ 0 0 0 ]) and an eyepoint of
[ 2 0-10 ]. This produces a two-point perspective.

1. Return to the stack, drop the previous result array, and put LLIEE onto
the stack as the object array: (CANCEL)(«)(VAR)EH!|==.

2. Enter the translation vector: (&)1)(0](SPC)(0)(SPC)(0)(ENTER).

3. Enter the eyepoint vector: (&)L1)(2)sPC)(0)(SPC)(1]o]+/=)(ENTER.

4. Find the perspective projection (with the normalization: (o)a]PJE]

(R)S|P)(ENTER)or (then or (§)PREV) as needed) [H3iE14.

5. Display the results using TIEL: LEITIH].
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Example: Project the LLIBE using the same eyepointas the previous example,
but this time translate the cube to[4 54 ].

. Return to the stack, drop the previous result array, and put CLIEE onto

 

the stack as the object array: (CANCEL)(«](VAR) [sit]=58.
 

. Enterthe translation vector: (4]1)(4)(SPC)(5)(SPC)(4)(ENTER).

3. Enter the eyepoint vector: (]I1)(2)SPC)(0)(SPC)(1)0]+/=)(ENTER).

Projection

. Find the perspective projection (with the normalization):
(R]SJP)(ENTER]or (VAR)(then or as needed) [d3i#33.

Display the results using T4 IEl: FETIH].

Ej]

Note that the perspective in this case looks at the cube from below

it and to the left, visually skewing it accordingly. This is the effect

of the relationship of the eyepoint to the center of the object.
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Example: ProjectCLIEE usinga[-1-10]translation vectoranda[66-5]eye-

point. This produces a three-point perspective.

1. Return to the stack, drop the previous result array, and putLLIEE onto
the stack as the object array: (CANCEL)(«)(VAR]fial|:138.

2. The translation vector: (&9)13)(1]+/=)(SPC)(1]+/=)(SPC)(0)(ENTER).

3. Enter the eyepoint vector: (&)1 1)(6]JSPC)(6](SPC)(5J+/=)(ENTER.

4. Find the perspective projection (with the normalization):

(R]S]P)(ENTER) or (then or (§JPREV) as needed) |d3i#14.

5. Display theresults using T%IEW: FEFTIHI.
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As a curiosity and illustration of how deceptive a view it can be,try one final ex-

ample where the eyepoint is located inside the object.

Example: Project the CLIBE using a [ -1 -1 0] translation vectorand [0 0 1 ]

as the eyepoint. This gives an insider’s perspective!

1. Return to the stack, drop the previous result array, andputLLIEE onto

the stack as the object array: (CANCEL](«)(VAR) o 1]:15{.

2. The translation vector: (&)11)(1]+/=)(SPC)(1]+/=)(SPC)(0)(ENTER).

3. Enter the eyepoint vector: ()11)(0JSPC)(0])(SPC)(1)(ENTER).

4. Find the perspective projection (with the normalization): (o]a]P]E]

or (then or (§]PREV]) as needed) [ikd.

5. Display the results using T%IEN: FETTIHI.
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Introduction to Conic Sections

A conic section is a widely used form ofplane curve that is defined in any ofthree

equivalent (and interchangeable) ways:

» Itis formed by the set of all points in a plane whose distances from a fixed

point (focus ) divided by their distances from a fixed line (or directrix) is

a constantratio, € (or eccentricity).

e Itis the result of the general second-degree algebraic curve:

Ax*+Bxy+Cy*+Dx+Ey+F=0

» Itisformed from the intersection ofa plane and a right circular double cone

—a “cross-section of a cone” (hence the name). There are four general

shapes of conic sections, depending on: the angle (o) made by the inter-

secting plane with respect to the bases ofthe cones; and the angle () made

by the cone itself with respect to its base.

</

Circle Ellipse Parabola Hyperbola

— If the intersecting plane is parallel to the bases (that is, o. = 0), the

cross section is acircle (unless the intersection is at the cone’s vertex

only, in which case the cross section reduces to a single point).

— If 0 <a <[, the cross section is an ellipse (unless the intersection is

at the cone’s vertex only, in which case it reducesto a single point).

— If o= B, the cross section is a parabola (unless the plane contains

the cone’s vertex, in which case the cross section is a straight line).

— If o> B, the cross section is a hyperbola (unless the plane contains

the cone’s vertex, in which case the cross section is a pair of inter-

secting lines).
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Plotting Conics

This chapter illustrates how the three different descriptions fit together for each

kind of conic section. You will see how to rotate and translate the conics, how to

compute various analytical quantities, and how to convert between descriptions.

But before looking at each ofthe four conic types, look at the HP48’s specialized

plot type,=M 1 1=, This plot type will plot any implicit function oftwo real vari-

ables which is of no more than second orderin either variable. So, infact, it will

plot many implicitfunctions that don’tproduce conic sections. Some examples:

]ir'u"'f'u"'l..""'n.a'fi"u"_ __'“"u"""'a_.-'"'-.-“u"'.l".“u"

 

 

sinx®* —cosy—1=0:

 MAAALA
zooMfono]]EDIT  
 

 

 

 

x—ylogx®> —xy=0:

 

 
(FPN] ERRRRERRMmaa 5l-1  
 

 

 

 

4xy* —y> —x=0:
 

  zooMfono][EDT   
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There are good uses for such generality,* but nevertheless you will use the

21 plot type primarily to plot conic sections—and hence the name.

Technically, most conic sections are notfunctions (because each input can yield

more than exactly one output). So, essentially, theoM 1= plot type breaks the

second-degree equation into two equivalent true functions and plots each with the

Fiirizt 1.0m plot type—showing you both plots simultaneously.

Example: UseM1to plot this circle: (x—1)> +y> =4

1. OpenthePLOT application, highlight the TY¥PE: field and change the

plot type tooMLz,

2. Reset the plot parameters: (DELJYJENTER.

3. Inthe Ei2: field, enter the circle’s equation: (¥)(€)(EQUATION)()O)]

(SXEHHEIEMH@EMZIR)E]=)4)ENTER)
4. ChangethelMDEP: variable to(lower-case) and the DEPMII: vari-

able to'd (lower-case). You will find the lEPMD: setting inthePLOT

OPTIOME screen (press @[#H from the main PLOT screen).

5. Leaveall otherplot optionsattheir default settings and draw the plot,

returning first to the main plot screen (BT, if needed):

ITHTE0. Note how the plot is drawn in two pieces simultaneously,

just as if you were plotting two functions simultaneously.

 

—..

L\‘L/"f
zooMfesva][ JENT

 

   
*Actually, Cor 1 C will plot any implicit function oftwo real variables, regardless oforder,as long asit can com-

pute a second-order Taylor’s approximation ofthe function. SoZoM1 € plots oftwo-variable polynomials with

an order higher than two in either variable will be approximations but are often adequate for plotting purposes.
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Sometimes you will need to adjust the step size to see the entire conic clearly.

Example: Plot the following conic, using default settings: x° +3y° =6

1. Return to the PLOT screen: (CANCEL).

2. Highlight the E¥: field and enter the conic:

PRHEX(PQRE)=)(6)ENTER)
3. Draw the plot: [FHiE9 [T,

 

 

   

_ I-

.~ ,
15_%__“__;_#.

zooM|l1[ENIT
 

Parts ofthe ellipse are not fully drawn. Correct this by decreasing the step size....

Example: Repeat the above example with a step size of 0.02.

1. Return to the PLOT OPTIOM= screen: iLl.

2. Highlight the *TEP: field and enter .02: (¥)¥)(- J0J2)(ENTER).

3. Redraw the plot: [BBVI [3[T

  

 

 

 

 

—— | EDIT |tAMIL   
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The other concern aboutplotting conic sections involves the display range: Ifyou

allow the scale of the two axes to vary from one another, the image may be dis-

torted in a misleading way.

Example: Plot the circle x* + y*> = 4, using a square viewing area.

1. Return to the PLOT screen and highlight the EL*: field.

2. Enterthe equation forthe circle: (6qJEQUATION[oIX)¥(2)»)+)

(P))&[=)(2)ENTER)
3. Make sure that the IMDEP: variable is . (lower-case) and that the

DEPKD: variable is 4 (lower-case).

4. Make the display ranges for H=YIEl and ¥-YIEF{ identical. Set

both to—= .

5. Plot the circle: [T:Ra0TT:151

N
T[EERRENW=l(T-

 

    
The plot looks more like an ellipse than a circle, because the display range doesn’t

match the shape of the display itself—the circle has been stretched to accommo-

date the square coordinates you requested. That is, the horizontal and vertical

ranges are identical and yet there are roughly twice the number of pixels hori-

zontally as vertically, so each pixel on the horizontal axis represents about 0.05

units, while each pixel on the vertical axis represents about 0.1 units.

Moral of the Story: With a display width roughly twice that of its height, when

plotting conic sections—particularly circles and ellipses—you should set the hor-

izontal display range to roughly twice that of the vertical range in order to get a

plot that isn’t visually distorted.
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The program COMFLT (see page 278) streamlines the plotting of conic sections

so that they appear well-centered and undistorted. COMFLT takesa list of the six

coefficients of the conic section in general form from level 1 and plots the conic,

returning nothing to the stack. Thus, given the general form of a conic,

Ax*> +Bxy+Cy* +Dx+Ey+F=0

COMPLT takes as its only inputa list of the coefficients in the order shown above:
{AB CDEF }. Note that you must enter a zero as the coefficient for any missing

term—that is, the input list must have exactly six entries.

The following two examplesillustrate the use of COMFLT.

Example: Use LOMFLT to plot the conic 4x? +3xy—5y* —2x+y—-25=0

1. Enterthelistofcoefficients forthe conic ontothe stack: Gl

(4)(sPC)(3)(SPC)(8+/-)(SPC)(2)+/-)(SPC)(1])(SPC)5](ENTER).
2. Plot the conic using LUMFLT: (a)a)CJoNPL)(T)ENTER) or

(then or as needed) £l5.

. | /

  

 

   
/ 4 "

I ",
.I o -\&.

][FPENRN =TT
 

This conic is a hyperbola that is somewhatrotated with respect to the

coordinate axes.
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Example: Use COMFLT to plot the conic (x —4)* +(y +2)* = 25.

1. Because the conic isn’t in general form, you mustfirst expand the

left-hand side,collect terms and move all terms to the left-hand side.

Result: x* +y> -8x+4y-5=0

2. Enterthe list of coefficients for the conic onto the stack: (&]{}]

(spc)(o0)(sPc)(1)(sPc)(8]+/=)(SPC)(4)(SPC)(5)+/=)(ENTER).

3. Plot the conic using LOMFLT: (a)«)c)o)NJP)L)(T)ENTER) or
(then or (G]PREV) as needed) Lot138

L hn

a .

  
 

 

 =yA’

ookt]EDITJiANIL]   
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Circles

The general conic equation becomes that of a circle when A = C and B = 0:

Ax* + Ay’ +Dx+Ey+F=0

Defined geometrically, a circle is the set of coplanar points equidistant from a

given fixed point (the center). Viewed as such,the circle has two defining para-

meters: its center, (4,k); and its radius, r, related by (x —h)* +(y —k)* = r?

The two programs - I F+#: andG+C IF (see pages 277 and 282, respectively) con-
vert between the center-radius form of the equation and the general form of the

equation ofacircle. The center-radius form is given by acomplex numberon level

2 (representing the coordinates of the center) and a real number on level 1 (repre-

senting the radius). The general form is given as a list of the six coefficients of
the general conic equation, which, for a circle willbe { AOAD E F }.

Example:

L.

Example:

1.

250

The general equation of a circle centered at (2, -3), with radius 7, is?

Enter the center of the circle as a complex number: (&5]()]

ENTER).

Enter the radius: (7)(ENTER).

. Find the general equation via LI F*0: (@]a)c)1R[=)~)G)ENTER

 

or (then or (§]PREV] as needed) [8]dE].

Result: 1 1 H 1 '-4' & '-3&" 1

So the general equation is x> + y> —4x+6y—36=0.

Find the center and radius of the circle 4x> +4y* —x+5y—-3=0

Enter the general equation as a list of coefficients: (&]{})(4)(SPC)(0)
(SPC)(4)(SPC)(1J+/-)(sPC)(5)(sPC)(3)+/=)(ENTER).

Compute the center and radius using 5+IF: (@]a]6)=)=)c]1]R)

or (then or as needed) [EEdH[4.

Result: * L. 125, - 6ED)
1: 1. H5E9HES333

  

So the center of the circle is (%,—%) , and the radius i1s =1.075.
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There are several important relationships involving circles that you may remem-

ber from a geometry class. Here’s a brief review:

Circles

A

.
FE

Three noncollinear points in plane determine a unique circle.

The measure ofan inscribed angle is one-halfthe measure ofits intercepted

arc. For example, in the above diagram: mZBGD = %arc(BD).

If two chords intersect in the interior of a circle, the measure of the angle

formed is the average of the measures of the arcs intercepted by the angle

and its opposite or vertical angle. For example, in the above diagram:

mZBOC = mZAOG = %(arc(BC) +arc(AG))

If two secants intersect in the exterior ofa circle, the measure of the angle

formed is one half the difference of the measures of the intercepted arcs.

For example, in the above diagram: mZAPF = %(arc(AF)—arc(CE))

If two chords intersect inside a circle, then the products of the lengths of

the segments of each chord are equal. For example, in the above diagram:

(BO)(OG)=(A0)(0OC)

If two secant segments are drawn to a circle from the same exterior point,

the product of the lengths of one secant segment and its external segment

equals the product of the lengths of the other secant segment and its exter-

nal segment. For example, in the above diagram: (AP)(CP) = (FP)(EP)
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Using the first of these relationships suggests that you should be able to compute

the equation of a circle, given three noncollinear points. You can.

e Method 1: Find the center of the circle by finding the intersection of the

perpendicular bisectors of the segments connecting the points; compute

the radius by finding the distance from the center to any one of the points.

» Method 2: Replace the x and y variables in the general form of the circle

equation with each of the three points (and letA = 1), to get a linear system.

The following two examples illustrate each of these methods:

Example:

252

. Swap and find the equation:mm(NXT)orW)(PREV)) 8] ifrdc].

Find the equation ofthe circle through the three points R(1,0), S(0,1)

and 7(2,2) using the perpendicular bisector method.

. Enter points R and S onto the stack in vector form: (]t1)(1)(SPC)(0)

[ENTER)()L(0)(SPC) (1) (ENTER)
. Compute the perpendicular bisector ofthe segmentRS using the pro-

gramF¥+FB(introduced on page 184 in Chapter 6): (then
or (§)PREV] as needed) §a=lrdsl

 

. Convert the perpendicular bisector to array form (via the programs

[+:EM and [5#H from Chapter 6): Press (NXT)or as need-

ed) M=(SwaP) («) H=ETHL

. Using points S and T, repeatsteps 1 - 3: ()11)(0)(SPC)(1)(ENTER)(&)

  ()(2[5P0) @)EnTer)Gl HESEE Gwar) (@ EETH.
. Find the intersection point of the two perpendicular bisectors, using

LIME™ (see page 200): Press (NXT)or (€5)(PREV) as needed) [HIaF=d
(@. Result: [ 1.166EY 1.1BEE: 1 (to S decimal places).

 

. Copy the result, enter one point and find the radius: (ENTER)(&)L1)(1)
 

. Result: 1.17351

 

(5PC)(0) ENTER))(MTH)NBT

. Swap the center point into level 1 andconvertitto a complex num-

  G|LIET|OEJ>

 

ber: (SwAP)PRO)E (@)e(o)e .

 

Result: r 1 81 "-({s300 =20 a0

Thus the equation ofthecircle is x* + y* — zx - zy + s =0.
3 3 3
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Example:

Circles

Find the equation ofthe circle through the three points, A(2,3), B (3,-

1) and C(-2,1) using the linear systems method.

. Create the system ofthree equations in three unknowns by substitut-

ing each of the given points into the general equation for a circle:

2D+3E+ F=-13

3D-E+F=-10

2D+ E+F=-5

OpentheT1 w42 1 1m=9:=.., application; enter the matrix ofco-

efficients: (—)SOLVE)(a]a])(ENTER)(|MATRIX)(2](ENTER)(3)(ENTER)
ENTER) (v) (ENTER] (1)+/—) (ENTER) (ENTER) (2]+/=) (ENTER]1)

(ENTER)(1)(ENTER)(ENTER).

 

 

 

 

. Highlight the E: field and enter the vector of constants: (¥)(&]L])
 

(13)(#/-)(sPS)(1)0)+/-)(SPC)(5)+/-) ENTER).

Solvethe linear system: E{[II3.

Result: [ -1.944444 -1.11111 -

Optional. Although you have already computed the three missing

coefficients, you can put them into proper general form by convert-

ing the resulting vectorto rational values using A+[:! and prepending

the first three coefficients, { 101 }: (CANCEL)(EVAL)(VAR)(then

or (&) as needed) (sPc)(0)(sPC)(1) (ENTER)

(SWAP)(+).
Result: © 1 H 1 '-(13-20" '-(1R-9)!

'-lRlo b

Optional. Make the coefficients integral by multiplying through by

9 and collecting: WiEmg

Result: © 9 H 9 -13 -9,99999999993 -f]1

=171
reera ]T 

 

 

 

e

As in this case, you may see a round-offerror when creating integral

coefficients. So the circle is 9x* +9y* —13x—-10y—-61=0.
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Points and Circles

Given a circle with center at (4, k) and a radius r, and a point (x,y), there is an easy

way to determine whether or not the point lies on the interior ofthe circle, exterior

of the circle, or on the circle itself:

e If (x—h)*>+(y—k)* <r’, then the pointlies on the interior of the circle.

o If (x—h)*>+(y—k)* =r?, then the point lies on thecircle itself.

e If (x—h)*+(y—k)*>r?, then the pointlies on the exterior ofthe circle.

Example: Doesthe point (-1, 2) lie in the exterior of, in the interior of, or on

the circle 3x*> +3y* —4x+6y—-10=0?

. Enter the circle in general form (as a list of coefficients): (&]{}]
   

(SPC)(0)(SPC)3)(SPC)(4)+/-)(SPC)(8)(SPC)0)+/-)(ENTER).
. Convert it to center-radius form: crdeld

3. Square the radius: (&]X3.

254

Swap the center into level 1, enter the point as a complex number,

and subtract from the center. Note thatthis is essentially the same

as finding the vector between the center and the point:
(1]+/=)(SPC)(2)(ENTER]=).
 

. Find the square of the absolute value of the previous result:

 

CHPL|REZ[GRESETN YPy

Compare this result with the previous one (on level 2). Level 1 is

larger, indicating that the point lies outside ofthe circle.
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Ellipses

An ellipse is the set of pointsin a plane whose distances from two fixed points in

the plane have a constant sum. An ellipse is a more general version of a circle in

thatit has two axes ofdifferent lengths—the major and minor axes, the major axis

being the longer of the two—rather than a single radius.

The ellipse has four parameters:

e The center (h,k)located at the midpointjoining the two fixed points, orfoci,

defining the ellipse.

e The semimajor (a)—half of the length of the major axis.

e Either the semiminor (b)—half of the length of the minor axis—or the

eccentricity (e), a ratio of the distance from the center to either foci com-

pared with the semimajor. Either ofthese parameters will do, because they

are related to each other by the following: b* = a*>(1-e?)

* The angle oforientation (6) between the major axis and the x-axis.

The standard equation for an ellipse assumes that the angle of orientation is zero:

(x_h)2+(y__k)2—1

2 2 -
a b
 

However, the general equation for an ellipse makes no assumption about the angle

of orientation and is used whenever there is some rotation of the ellipse:

Ax*+Bxy+Cy*+Dx+Ey+F=0

where neither A nor C is zero, A # C, and AC > 0. The angle of orientation is:

1 B6=Lan- (____)
2 A-C

Note that whenever the B-coefficientis zero, the angle of orientation is zero, and

so the standard equation can be used as well.

The programs [a*ELF and ELF+05 (see pages 283 and 281, respectively) convert

between the general equation of an ellipse and the set of four parameters: center,

semimajor, semiminor, and angle of orientation. Here are some examples....
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Example:

Example:

256

. Plot the ellipse:( or as needed) L8],158.

Find and plot the general equation of an ellipse centered at (-2,3),

with semiaxes of 5 and 3 and an angle of orientation is 30°.

. Make sure that you’re in degree mode (¢5JRAD), if necessary), and
 

enter the center ofthe ellipse: (6&5)())(2)+/=)(SPC)(3)(ENTER).
 

. Enter the list of parameters: (G]{}] (ENTER).

3. Find the coefficients of the equation: (o]o)(EJL)PI=>[=]G)

 

or (VAR) (then or as needed) {38zd. Result:
L 6190 - 6598 1 S.H5eH -5,2E885 1.7143 o

t

 

 

  
zooefedaT EOIT JthMIL

 

Find the center, semimajor, and eccentricity ofthe following ellipse:

25x° +9y* —100x + 54y —44=0

. Enterthe ellipse as a list of coefficients: (CANCEL)(&G]{}

(0J@sPc)(e] (sPo)(1) o)oJ*+/-)(SPC)(8)4)(SPC)(4 )]4]+/-) ENTER).
. Find the ellipse parameters: mm.m...NTER or (VAR

(NXT) or (§)PREV) as needed) EEE438. Result: f [, —3)
1: :5: H H 3

The center ofthe ellipse is (2,-3) and the semimajor is 5—the larger

of the first two elements in the level 1 list.

. Compute the eccentricity. Itis the square root of 1 minus the square

  iof the ratio of semiminor to semimajor:

BEIMD). Result: . &
IXT|OB(A0
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In the introduction to this chapter (page 243), the first definition of conic sections

given wasthat of a planar curve formed by the set of all points such that, for each

point,its distance from a fixed point (thefocus) dividedby its distance from a fixed

line (the directrix) is a constant € (the eccentricity).

The ellipse actually has two foci and two directrixes, as the diagram shows below:

 

    
The foci, F, and F,, are each a distance equalto the product of the semimajor, q,

and the eccentricity, €. The directrixes, D, and D,, are parallel to the minor axis

and are a distance equal to the quotient of the semimajor and the eccentricity.

Example:

Ellipses

Find the coordinates of the vertices and foci of the ellipse in the

previous example: 25x> +9y*> —100x +54y—44=0

. Find the basic parameters for the ellipse. From the previous exam-

ple, you know that the center is located at (2,-3), the semimajor is 5,

the eccentricity is 0.8, and the major axis runs vertically (i.e. paral-

lel to the y-axis).

. The vertices are located along the major axis at a distance of 5 on

either side of the center. Thus, vary the y-coordinate by +5: The

vertices are (2, 2) and (2,-8).

. The foci are also on the major axis at a distance equal to the product

of the semimajor and the eccentricity. Thus the y-coordinate must

be adjusted by (5)(0.8) or +4: The foci are (2,1) and (2,-7).
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Example:

Example:
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1.

Find the equation ofan ellipse with an eccentricity of2/3 and the line

x =9 1s one directrix with its corresponding focus at (4,0).

. Analyze the given information. The directrix is a verticalline, so the

major axis is horizontal. The focusis located on the x-axis, so the

major axis is the x-axis. If the vertex is a distance a from the center

(h,0), then the distance from the directrix to the center is a/e or 1.5a

and the distance from the focus to the centeris ae or .67a.

. This leads to two equations in two variables: 1.5a = 9-h

(2/3)a=4—-h

Set both equations equalto 4 and solve for a ,then backsolve for A.

Result: a=6;h=0

3. Enter the coordinates of the center: (¢&5]()]0] (0)(ENTER).

. Enter a, make a copy, and enter the eccentricity: (6 [ENTER|ENTER

ENTER)(3]=)
. Compute the semiminor, b: ().
Result: 4. 471235955

Enter O as the angle of orientation and assemble the parameters into

a list: (0)(ENTER LIET|=>LIET)

Find the coefficients ofthe ellipse: (INXT) or (4] PREV) as need-

ed) [dHzEa. Result: © .000000006 H 1 H B -28 1

Multiplying through by 9 to make the coefficients all integers gives

the ellipse 5x*> +9y* —180=0

  

2 2

Find the eccentricity and directrixes of the ellipse x7 + i)—6 =1

Analyze the ellipse. The centeris the origin and the major axisis the

y-axis (because b2, 16, is greater than a2, 7).

Enter the eccentricity: HEm.
Result: . i

. The directrixes are y = + b/e. So, compute b/e: (1]6)(x)(SWAP)(=).

Result: 7. 323, Thusthe directrixes are y = +—13é

7. CoNIC SECTIONS



Parabolas

A parabola is the set of points in a plane that are equidistant from a given fixed

point (focus) and fixed line (directrix) in the plane. The eccentricity of a parabola

is always 1. The vertex is the point of the parabola closest to the directrix.

Parabolas are controlled by three parameters:

* The location of the vertex (h,k);

» The signed distance between the focus and the vertex (p).;

e The angle oforientation (6)—the angle between the axis of symmetry and

the appropriate reference axis (either the y- or x-axis).

The standard form ofthe equation of a parabola with an axis of symmetry parallel

to the y-axis and with its vertex at (h,k) is (x —h)*> = 4p(y— k). If the parabola
has an axis ofsymmetry parallel to the x-axis, the equationis (y — k)* = 4p(x — h).

The absence of the second-degree term in either x or y (but not both) is a charac-

teristic ofthe parabola. Indeed, any second-degree polynomial ofone variable de-

fines a parabola.

A conic given in general form, Ax> + Bxy + Cy*> + Dx + Ey+ F =0, isaparabola
if B> —4AC =0. The general form is used whenever the angle of orientation is

nonzero.
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The programs G*PEL and PEL+((see pages 283 and 290, respectively) convert
between the general equation and the set of three parameters. L+PEL takes the

list ofcoefficients representing a general conic from level 1 and returns the coord-

inates ofthe vertex to level 2 and a list containing the p parameter and the angle
of orientation to level 1. The FEL*[3 takes a complex number representing the

vertex from level 2 and a two-elementlist containing thep parameter and the an-

gle of orientation (in degrees) from level 1 and returns the list of general conic co-

efficients to level 1.

Example: Find the focus of the parabola 2x> —3x+5y+4=0

1. Enter the parabola in general form: (&]{})(2)(sPc)(0)(SPC)(0](SPC)
(3+/-)(spe)(s)(sPe)(4) EnTER)

2. Find the parameters: (o]o]GJ]>[~JPJIBJL)(ENTER]or (VAR] ((NXT]or

as needed) [EEddd. Result:  * Ty=)
J
I

13 L -.6Z5 H &

 

 

 

 

3. The parabola has an axis parallel to the y-axis, and because the p

parameteris negative, it opens downward. Thus the y-coordinate of

the focus differs byp (it will be more negative) from that of the ver-

tex. Thus the focus is (.75,-1.2).

Example: Find the general equation of the parabola with the vertex at (-2,-2)

and the line y = -3 as its directrix.

1. Enter the vertex: ()0O)(2]+/=)(SPC)(2)(+/=)([ENTER).

2. Thedirectrix is horizontal and below the vertex: the parabola opens

upwards;p=-2—-3=1. The parameterlist: (&31)(SPC)(0)[ENTER).

3. Forthe general equation: (o]a]P)BJL)~G)ENTER)or(VAR) (NXT)

or (§)PREV) as needed) [d%a. Result: T H H 1 -4 4 -4 }

 

 

Note that, by default, the FEL*[5 program assumesthat the parabolic axis is paral-

lel to the x-axis(i.e. that it’s second-degree in y). To convert it to the parabola with

the axis parallelto the y-axis, swap the A- and C-coefficients with each other and

the D- and E-coefficients with each other, making itt1884 -4 -9 1}

Thus the equation for the parabola is x*> +4x—4y—4=0
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Hyperbolas

A hyperbola is the set of points in a plane whose distances from two fixed points

in the plane have a constant difference. A hyperbola has two foci, located a dis-

tance c on either side ofthe center, along the main axis of the hyperbola. Associ-

ated with each focus is a vertex, located at a distance a on either side ofthe center.

The hyperbola has four parameters:

» Thecenter (h,k)located at the midpointjoining the two fixed points, orfoci,

defining the hyperbola.

» The distance between center and each vertex (a).

* Any one of the following:

— The distance between center and eachfocus (c).

— The parameter (b), computed as b = —a?.
2

— The eccentricity (e), equalto the ratio € and to w/1 + b—2
aa

» The angle of orientation (6) between the main axis and the x-axis.

The standard hyperbola equation assumes that the angle of orientation is zero:

(x_h)2 _(y_k)2 =1

a’ b’
 

However, the general equation for a hyperbola makes no assumption about the

angle of orientation and is used whenever there is some rotation ofthe hyperbola:

Ax*+Bxy+Cy*+Dx+Ey+F=0

A-C

Note that whenever the B-coefficient is zero, the angle of orientation is zero and

then the standard equation can be used as well.

where B> —4AC > 0. The angle oforientation is 6 = —;id—tan‘1 (—-fi—)

The programs [3*HYF and H/F+[5 (see pages 283 and 284, respectively) convert

between the general equation of a hyperbola and the set of 4 parameters: center,

the a parameter, b parameter, and orientation angle. Here are some examples.
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H'/F+[; takes a complex number representing the center, and a list containing the

a parameter, the b parameter and orientation angle (in degrees), and converts it

to a list of the six coefficients of the general equation. -*H''F' does the reverse.

Example:

Example:

262

 

. Find the eccentricity: (EVAL)(DROP)(&)STACK)I

Find and plot the general equation of a hyperbola centered at (-2,3),

with an a of 5, a b of 3, and angle of orientation of 30°.
 

. Enter the center: (&]0)(2)+/-)(SPC)(3)(ENTER).

. Enterthe list of parameters: (&]{}] ENTER).

. The general equation: (o)aJH]Y]P]>J=)G)ENTER)or (VAR) {1k H sl

 

Result (to 3 places): + .HIH 1, ?HE -1 -E.656
=904 25A9 &

The hyperbola: 0.03x> +1.78xy — y* —2.66x +8.96y —25.09 =0

  
e1TRSRRERERad BTN

Find the center and eccentricity of the following hyperbola:

25x> —9y* —100x +54y—44=0
 

. Enterthe coefficients: (G]{ JJ(2]5)(sPC)(0)(SPC)(9]+/=)(SPC)(1)0]0)

(+/-)(sPC)(5]4)(SPC)(4)4)+/-)(ENTER].

 

. Find the parameters (a)o]G]>[=H]Y]P)mor (VAR REled1 Bdl.
RCSUlt |_ |_q l]

1= L 1.587 Z.646 |:1 +
 

 

 

)WA, Result: 1,544
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In the introduction to this chapter (page 243), the first definition of conic sections

given was that of a planar curve formed by the set ofall points such that, for each

point, its distance from a fixed point (thefocus) divided by its distance from a fixed

line (the directrix) is a constant € (the eccentricity).

Like the ellipse, the hyperbola has two foci and two directrixes. Unlike the ellipse,

the hyperbola has two discontinuous branches constrained by two asymptotes.

For a hyperbola in standard orientation (i.e. 8 = 0),* the directrix equations are

x=ht fi’ and the equations of the asymptotes are bx * ay —(bht ak)=0.
e

Example: Find the asymptotes and foci of the hyperbola

25x* —9y* —100x +54y—44=0

1. Enter the hyperbola as a list of coefficients and compute its param-

eters: (q]1J)(2)5)(SP)(0)(SPC)(9)+/-)(sPA)(1)0o]+/-)(sPC)(5)4)
G3HY|

Result: o Lty o)
1= £ 1.587 Z.646 B 2

2. Find the eccentricity: [EVAL)DROP)(&)STACK)I

H

()X (SWAP

XHE)EWAP)=). Result: 1. 344 [ewa]

3. Find the directrixes: (1]-]5)8])7]=)(/x)(ENTER]2]ENTER[SWAP)(—)

SWAP)(2]+). Result: * 1.183
1: 2,817

Thus the directrixes are x =1.183 and x =2.817.

4. Since a=1.587,b=2.646, h=2, and k= 3, the asymptotes (to three

places) are: 2.646x + 1.587y + 10.054=0 and

2.646x — 1.587y + 0.529 = 0.

 

 

 

*It is conventionalto denote Owith respect to the x-axis, but note thatthe programs HYP#( and G*H'P can handle

orientation with respectto the y-axis. Specifically, for the purposes of these programs: The values for a and b

will be negative if the y-axis is being used as the reference axis for a rotation (or if the foci are on the y-axis). A

hyperbola oriented with reference to the y-axis would be of the form (y- k)2 ~ (x— h)2 1

a’ b?
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Example:

264

. Enter the coordinates ofcenter (4,0): (MTH)

Find the equation of a hyperbola with an eccentricity of 1.3, the line

x =9 as one directrix, and the corresponding focus at (4,0).

. Analyze the given information. Because the directrix is a vertical

line, you know that the major axis is horizontal. Because the focus

is located on the x-axis, you know that the major axisis the x-axis.

If the vertex 1s a distance a from the center (4,0), then the distance

from the directrix to the centeris a/e or .769a and the distance from

the focus to the center is ae or 1.3a. The directrix (x =9) is between

the center (#,0) and focus (4,0) in a hyperbola, so 4 <9 < h.

. These facts lead to two equations in two variables:

769a=h-9 or h—.769a =9

1.3a=h-4 or h-13a=4

Solve the set of equations simultaneously: (511)(9)(SPC)(4)(ENTER)

(EIMATRIX)((ENTER)(1)-[3)+/) (V)[ENTER) (W)((ENTER) (1-I3)
(+/-)([ENTER)[ENTER) ().

Result: [ 16.296358 9.42H79 ]

Thus & = 16.25 and a = 9.42.

  AR VECTER
|

 

TEHH 5var))

 

(MTH)(VX)L ) el
. Swap a into level one, make two copies and enter the eccentricity:
 

(SWAP)(ENTER)(ENTER)- 3)(ENTER).

. Compute the parameter b: SWAP) (X2X])(SWAPIGX3 (-)

(X). Result: . BE5HE

. EnterH as the angle of rotation, and assemble the parameters into a

 

GEa9]LIZT|*LIST

 

list: (0)(ENTER)(3)(PRGJE
. Compute the coeffic1ents of the hyperbola: (VAR) (then (NXT) or (&9)

 

as needed) {hdsicfl.

Result: + B3 B -1 -&.42 B 128,89 3

Then multiplying through by 100 to make the coefficients all inte-

gers gives the hyperbola 69x*> —100y* — 2242x +12089 = 0.
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Lines and Conics

Points ofIntersection

A line and a conic that share the same plane have one of three possible rela-

tionships:

» The line intersects the conic in two points.

» The line is tangent to the conic—intersecting it in one point.

e The line doesn’t intersect the conic at all.

TheprogramLM (see page 285) determines the point(s) ofintersection,ifany,

ofaconicandaline. Ittakes the conic as alist ofits general-form coefficients from

level 2 and the line in slope-intercept form from level 1 and returns a list to level

1. The resultlist will have two, one, or zero points (expressed as complex num-

bers), depending upon the relationship of line and conic.

The following examplesillustrate the use of LLUM™ with a variety of conics:

Example: Find the points,if any, where the line y = 4x — 2 intersects the circle

x> +y*-25=0.

1. Enter the circle in general form (as a list of coefficients): [&]{}

(sPA)(0)(sPA)(1)(sPC)(](sPC)(0)(SPC)5+/-)ENTER).

2. Enterthe line: (o)Y]a)(=4X[aJa)X)(=)(2)[ENTER).
3. Find the points of intersection,if they exist, by usingLM

(L)(CJOJN)?)(ENTER) or (VAR) (NXT) or as needed) {51.

Result: 1 (-, /36369678158, 4. 9424787 12630
Cl.ef7el487o, 4. A1H1E4050) &

The line is a secant—intersecting the circle at the two points whose

coordinates are listed on level 1.
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Example: Find the points of intersection, if any, of the line y = x — 4 and the

ellipse 16x* —4xy+9y*> —64x +54y-26=0.

1. Enter the conic as alist of coefficients: (&]{3)(1)6)(SPC)(4)+/=)(SPC)

(9)(sPC] [ENTER).
2. Enter the line: (")oJ&)Y)a)=)(eJa)X]—)4)(ENTER).

3. Execute LCOMT: (then or (§]PREV) as needed) 1|§.

(4, 242760, 2420680 &

Example: Find the points of intersection, if any, of the line y = x — 4 and the

parabola 9y* —64x +54y—-26=0.

1. Enterthe conic asalist ofcoefficients: (]JJ(0)(SPC)(0])(SPC)(9)(SPC]

[ENTER).

2. Enterthe line: (JoJq)Y)&G)=)(eJa)X)(=)(4)ENTER].
3. Execute LCOMT: (then or (§]PREV) as needed) {HH1]|. §.

Result: © ©-1.,HE956, -5.HE956)

 

 

(16, 15665, 6. 10HGE) &

Example: Find the points of intersection, if any, of the line y = x — 4 and the

hyperbola 16x> —4xy—9y> —64x+54y—-26=0.

1. Enter the conic as alist of coefficients: (]})(1]6)(SPC)(4]+/=)(SPC)

(aJ#/-)(sPC)(e)a)+/-)(sPc)(5] 4)(sPC)(2) J+/-)ENTER).

2. Enterthe line: ('JoJq)Y)&G]=)(Ja)X)(=)(4)ENTER).
3. Execute LLTNT: (then or as needed) [Hu1| .

Result: © [-3H,Z23H19, -3¢, Z03019)
(4.203019, (2338190 &
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Tangents and Normals

Often itis useful to compute the equation ofthe line thatis tangent to a given conic

ata given point. Or perhaps itis the equation of the normal—the line perpendicu-

lar to the tangent—at the given point that you require. The relationship between

tangent and normalis illustrated here with a circle:

tangent

normal

The program, TMCUM (see page 314) computes the equations of the normal and

tangentlines at a given point on a given conic. MM accepts any conic in co-

ordinate list form from level 2 and a point on the conic (as a complex number)

from level 1 and returns labelled equations for the tangent and normal. Note that

THCIM does not check to be sure that the given point actually lies on the conic and

will give unreliable results if it doesn’t.

The following examples involve tangents and normals of conics. Many, but not

all, illustrate the use of THZLIM,

Example: On the circle 4x* +4y*> —=3x—-6y—17 =0, find equation of the

tangent line through the point (-1,-1).

1. Enterthe circle as alist of coefficients: (]{3)(4)SPC)(0JSPC)(4]SPC)

BIFA)EPA(8)(FSPIIDFENTER) .
2. Enter the point on the circle: (&]O)(1]+/=)(SPC)(1]+/-)([ENTER).

3. Execute THLLIM: (then or as needed) R,19'H.

Result: & Mormal: ‘o=, 27873+1. 878%!

1: Tangent: 'y=-1.78571-A, 78571%'

25 11
Applying *Q to the tangent equation gives y =vsz.
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Conversely, you may also find the equation of a circle if you know the location

of its center and a tangent. The only missing piece of information is the radius—

which is nothing more than the distance from the center pointto the tangent line.

Example:

Example:

268

 

Find equation ofcircle centered at (-1, 1) that is tangent to the line,

x+2y-4=0.

. Enter the center, make a copy, and convert it to a vector: G
 

 

 

+/—][SPC][ENTER](ENTERJ[MTH][NXT}|3[MAEVECTE]
ll. (Caution: If flag -19 is set, *Y/Z gives a complex number)

. Enterthe line; convert to array form:.-E]

(4)&&)=)(0)(ENTER)(VAR) (then (NXT) or (5JPREV) as needed) ATl
. Findthe distance to the line, using [t oL (see page 189 in Chapter

6): (NXT)or(€5)PREV)as needed) lMH{TTH. Result: 1.24164HEE

. Convert to a general equation for the circle—and clear any fractional

coeffi01ents—V1a multiplication (use or (]PREV) as needed):

WWWEEPRG)EAEIE
ancCResult: £ B 5 18 -18 3}_

l
"
l

Find equation of the normal to the circle with a center at (2,-1) at the

point (-1,3). Then find the equation ofthe circle itself.

. Foracircle, note that the normal ofany pointis a line containing both

the point and the center ofthe circle. This fact allows you to compute

the slope of the normal, whichis the slope of the line containing the

points given: (&]O)(1)+/)[fl].(ENTER] ©I0)(2)(sPg)
ENTEROETERMTH)(XD mal

a7

 

 

,,,,,,,,,,,,,, _ 4 5
Result: 1.ERBEEREEERE. Thus the normal is y = ——x +3

. Compute the radius ofthe circle by finding the absolute value of the

difference between the position vectors ofthe center ofthe circle and

the given point. Swap the copy of the difference vector into level 1

find its length: ISETE. Result: o
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Example:

Example:

. Via thecircle center, find its equatlon '.I(2)(sPc l.l+/—|[ ENTER)
(swaP)(VAR) [HIFEEH. Result: 1 H -4t 2 -ERY G
Thus, the equation of the 01rcleis x° y2 —-4x+2y-20=0.

 

Compute the equations ofthe lines normal and tangentto the ellipse

16x> —4xy+9y® —64x + 54y —26 = 0, atthe point wherex= 1 and
y 1s positive.

. Enter the symbolic ellipse: ('1]6X])(aJ[X]Y¥)(2)(=)(4)X)(eJ&e)

XXJalBEIXeaYZH)eaXJalX)HE4)x)
(JalY)(=)2)6) ENTER]

. Store 1 into %' and solve for '4"': (D))oX)STO)(o]F)Y)
 

ENTER)(10)) SovEANRMRS, Result: 1. 21449871627

. Convert the previous result into a complex number representing the
 

 

CHPL]k()

 

point of tangency: (1)(ENTER)(SWAP)(MTH)(NXT) 

. Enter the ellipse as a list of coefficients: (&]{}

(sPC)(e)(sPc)(e)4)+/-)(sPC)(514)(SPC)(2) 8J+/-)(ENTER)
. Compute the tangent and normal to the ellipse at the given point:

 

(then or as needed) [,b5E.

Result (4 places): &% Mormal: '-l='_= 11,99!
1: Tangent = "g=H, YHIE+HE, 5129

Find the equations of the lines normal and tangent to the parabola

9y* —64x + 54y —26 =0, at the point where x= 1 and y is positive.

. Computethe y-coordinate of the point of tangency: J9]X)(aJ&]

(VY2)E4GIXH)4X(Jalv) (=) (2]ENTER) (1)
(JJaIX)ETO)CeY)ENTER)(1(6JSOLVE it hi i|hes.

Result: 1. 235859394354

  

. Convert the previous result into a complex number representmg the
 

 

point of tangency: (1])(ENTER](SWAP)(MTH)(NXT) .5

s

| =f 5f i
 

. Enter the parabola as a list of coefficients: “@mm@

(sPc)(e]4)+/-)(SPC)(5]4)(SPC)(2) 6)+/-)(ENTER).
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4. Compute the tangent and normalto the parabola at the given point:

Example:

270

 

(then or as needed) fill,[H4].

Result (4 places): £ Mormal: 'y=g,2040-1.FE59=.

1: Tangent: 'o=H. 543240, 3157

Find the equations of the lines normal and tangent to the hyperbola

16x* —9y* —64x + 54y —26 =0, at the point where x =2 and y is

positive.

. Compute the y-coordinate of the point of tangency: ]1]6)(X)(a]

X2EHEXa2DEXJaIX)HEX
(M)L)ENTER(2)JJAIXIETO)(o)Y)ENTER)(1)0)

. Convert the previous result into a complex number representing the
 

CHMPL| R¥C}  point of tangency: (2)(ENTER](SWAP)(MTH](NXT) 

. Enter the hyperbola as a list of coefficients: (&]{}]

(8J#/-)(sP)(6)4)+/-)(SPC)(5]4)(SPC)(2) 6J+/—)(ENTER)
. Compute the tangent and normal to the hyperbola at the given point:

(then or as needed) @IH1H.

Result (to 3 places):

i Mormal:  'u=1.BEBESEE-1. BEHESHE:
13 Tangent: 3 !

Note that the tangentis a horizontal line, so the normal is a vertical

line (i.e. with an equation such as x = constant). The line reported

by the TMCOM program here is one method the HP 48 usesto report

a vertical line as the result of a computation.
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Translating and Rotating Conics

There are occasions where you may wish to rotate or translate a conic. The three

programs, ROTCOM, C+5T0 and TEMCOM, makeit easy to do this.

FITCOM (see page 299) takes a conic as a list of general-form coefficients from
level 2 and an angle ofrotation from level 1. Be sure to match the angle on level

1 with the current angle mode. EUTLUMreturnsa list ofcoefficients for the trans-
formed conic.

Example: Rotate the conic 9x* +4y* +36x — 8y +4 = 0 through an angle of

50°, and plot the result.
 

. Enterthe conic as alist of coefficients: (&]{}]9)(SPC)(0)(SPC)(4)(SPC)  
(3]6)(SPC)(8]*+/=)(SPC)(4)(ENTER.

Make sure that you’re in degree mode (press (69JRAD), if necessary)

and then enter the angle: ENTER).

. Execute ROTCLIN: (then or ((§)PREV) as needed) [tA!].

Result (to 6 places): + .&74/ar .r1H117 1 4. 226363
3.237193 .376e5838 )

Plotthe rotated conic: (NXT) or (§)PREV) as needed) fot], |58

   zoorfenva][EDITJiRMiL
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Example: Using the program L+5TD (see page 280 for the listing), rotate the

conic 9x> —6xy—4y> +36x —8y+4 =0 to standard orientation,

and plot the result.

1. Enter the conic asa list of coefficients: (GJ3()(spPc)(s)
(+/5)(SPC)(4)(+/=)(sPc)(3])6)(SPC)(8)(+/-)(SPC)(4JENTER).

2. Convert the conic to standard orientation: (INXT) or (&) PREV

as needed) Loz.

Result: + 9.6539 B —-4.6589 26,5701 -6969 4 &

3. Plotthe rotated conic: (VARJ((NXT) or (&o]PREV) as needed) L4!|. I3§.

L, ..II".;

v|II .-ll

r—t

 
 

 

 

 
zooh o]|  
 

TEMCOM (see page 316) takes a conic asa list of general-form coefficients from

level 2 and a two-dimensional translation vector from level 1, returning a list of

coefficients for the translated conic.

Example: Translate the conic x> —2y+8x +10 = 0 along the vector [3 -4 ].

1. Enter the conic as a list of coefficients: GJ13(1)(sPc)(o)

(sPA)(0)(sPc)(8)(sPA)(2)+/-)(SPC)JENTER).
2. Enter the translation vector: (&4]11)(3])(SPC)(4]+/-)(ENTER).

3. Translate the conic: (VAR)(then(NXT)or(€&]PREV)as needed) ilLsf.

Result: 11 H H & -2 -13 1

4. Plotthe translated conic: (NXT)or ifneeded) (M||58
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Example:

 

  
zooMfiRwa|JENT   

Translate the conic 3x*> +3y* +6x —1=0 so thatit is centered on

the origin.

. Enter the conic as a list of coefficients and then make an extra copy:
 

(CANCEL)T3)(SPC)(0)(SPC)(3)(SPC)(6)(SPC)(0)(SPC)(1 J+/=)(ENTER)
ENTER).
Note that the conic is a circle (A = C). Find the center: (NXT)
or ((§)PREV) as needed) [CEAMI («). Result: L—1, H]

Take the negative ofthe center and makeit a translation vector:

 

(v(xr)e i (v7H)[T

 

.Result: [ 1 H ]

(Caution: If flag -19 is set, *W& gives a complex number.)

Translate the conic: (then or(6q]PREV]as needed) fil. Lo.

Result: . 4 H 3

. Plotthe translated conic: (NXT)or ifneeded) g8¢5.
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P. PROGRAM LISTINGS

Before You Key In or Use These Programs

This Appendix contains a listing of all ofthe programs referred to throughout this

book, sorted alphabetically by name (numerals after letters and special symbols

ignored), with text page references noted opposite the name. To use a program

by invoking its name, you must have it properly stored—in that name—within the

current directory path. (Note: If you have an HP 48G, you won’t be able to fit

all ofthese programs into the 32K storage at once; you’ll need to pick and choose.)

As with all HP48 variables, you mustbe careful to avoid name conflicts with other

variables in the current directory path. One suggestion: Put the programs into a

subdirectory, then create a work space below that, with custom menus to help you

organize and access the programs (for more about custom menus, see your user’s

manual or Grapevine Publications’ Easy Course in Using and Programming the

HP 48G/GX). Thislets you work efficiently without corrupting your programs:

{ HOHE @E

1 HOME ALG 1EEE!
(store all the programs here) \

L HOME ALG WEE RTeS
(create your custom menus and
do all of your calculating here)

  

  

If you have a bit of programming aptitude, the programs can be modified to suit

your tastes and/or needs. Most of them have not been rigorously groomed for

error-trapping, speed, or memory efficiency; they are designed simply to work
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well with the examples in this course and with related work. Also, you may wish

to modify the input or output ofthe programs. For example, geometric points may

be expressed as either complex numbersor as two-element vectors, depending on

the context in which you’re working.

Whether you use these programsas is or otherwise, above all you shouldpractice

using them before needing them in an important situation. You must understand

how they work, how fast are they, how to interpret their outputs, and the nature

of their limitations (special cases of functions or flag settings).

Of course, each program is designed to work flawlessly, but bugs (and typos) are,

unfortunately, facts of life with software and other creative works. If you have

a problem with a program, you may contact the publisher, but first, check again:

* Have you correctly entered the program(s)? Some items to check:

The program size (bytes) and checksum must match those shown. For

example, the program HFIL", shown on the next page, must have exactly

SHH bytes, with a checksum of#"HEZH. To calculate these test numbers,

enter and name (i.e. store) the program. Then put its name (within '

marks) onto the stack and press (¢€5]MEMORY

If your byte-count/checksum results are different than those prescribed,

you have a typo somewhere in your program. Common errors include:

 

— Using uppercase vs. lowercase letters (yes, this is significant);

— Miskeying special characters (use the tool);
— STOvs. ST, 1 vs. 1, 0 vs. H, ort ¥ vs. L) vs. [ 1. Be careful!

— Using ' ' vs.". Quotes (") are on the (=)=) key—don’t use (").

— Putting spaces (or carriage returns) where they should notbe. Space

characters within " " are significant—count *em if necessary (the

uniform spacing of the program font makes this easy); all other in-

dents, line breaks,etc., represent single spaces. These program list-

ings are shown with indents and line breaks for your eyes only; the

calculator does not use them. To it, a program is simply a series of

objects, separated by single spaces, all on one long line; even the

indents and line breaks in the HP 48 display when you edit are just

*All checksums are binary integers. Those given in this book are all in HEX notation with a 64-bit wordsize. It
is very convenient, therefore, to adjust your machine to thatsetting: Press TETTENT)4 ELNE.
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for your benefit. So ignore indents, and where you see line breaks,

just treat those as single spaces.

Some programs use (‘“‘call”’) other programs; the called programs

must also be properly keyed in and named. Such instances appear

here in Boldface Italics. For example, the program HFIL', shown

below,callsthe program FEOOTS, so you must also key in FREOOTS

before AFOLY will run.

* Are you correctly using the program? Double-check the types and order

of your inputs and the types and ranges of your graph settings. Note that

each program listing shows the required order and types of inputs (if any)

HPOLY

276

 

 

Analyze a Polynomial

988 bytes #7AE3h

3: 3:  numberof sign changes for p and —p
2: 2: endpoints of range of real roots
1: polynomial ====> 1: polynomial
 

 

« [UP SIZE 1 GET @ REOT OUP
*n s P A
& 1 n

FOR i 9 DUP j GET -1 n j - * # j SWAP PUT 'g' STO
MERT p 9 2 =LIST 1
« [0BJ» 1 GET »LIST SICGM

£ +ab

« JF ab+H8==2a8# AND
THEM = 1 + 's' 5T0
END
IF b
THEN b
ELSE a
END

» STREAM OROP s B 's' 5T0
#  DOLIST "Signs" +TAG p RROOTS 1
« IF OUP TYPE

THEN DROP
END

»  DOLIST
IF DUP SIZE 2 <
THEM DUP 1 GET +
EMD
DUP = MIM = STREAM FLOOR 1 - SWAP = MAX =
STREAM CEIL 1 + 2 +LIST "Range" =THG p

(120)
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H"’U Rationalize an Array (143)

211 bytes #30DE2h

1: array ====> L::  symbolic array with rational elements

# RCLF -3 CF SWAP OBJ+ 0OBJ+
IF ==

THEM 1 SWAP
END 9 FIX
+ row col
% 1 row

FOR k
1 col START 8 FIX =0 5T0 col ROLLD

HE%?EHT col »LIST col row k - % k + ROLLD

IF row 1 >
THEN row =LIST
END SWAP STOF

Py

  

  

  

 

L I F’:'}I.:I Convert Circle Parameters to General Form (250)

97 bytes #4B7Eh

2: (hk) :
1: radius == 1: {ABCDEF}

o -+ — F

« 1 B c -2+ [+ c C+R 50 SWAP 50 + » SO0 - 6 +LIST 5
FIK =00 5T

I_:HF'L":; Composite of Two Functions (22)

7l butes #FADDHh

3: f 3:
2: g 2:
1: variable name ====> I: fog

% F I 3 Ia |

« -3 CF g v 5T0 £ EVAL w PURGE

B
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I:DFHI:.TF: Find Cofactor Matrix (154)

284 buytes #7330h
 

1: square matrix ====> 1: cofactor matrix

« OUP DUP SIZE 0OBJ+ DROP
+cof mroC
« 1 r

FOR i 1 «
FOR i m i j 3 ROLLD ROW- DROP SWAP COL- DROP DET

—1 i jg+ ™= 1+ARRY cof i j 2 »LIST ROT REPL

  

 
 

'cof ' 5TO0
MEXT

MEXT cof
*

%

COLINY Test for Collinearity of Point and Line (186)

187 bytes #AZ2Boh

2: direction vector of line :

1: point (in vector form) ====> 1: 1 if collinear; O if not

« 3 ROW+
IF DUP SIZE 2 GET 2 ==
THEN [ B A B8 1 3 COL+
END +R0OW DROP

pl pZ p3
« pl p2 - DUP ABS

pl p3 - DUP ABS ROT =
3 ROLLD DOT ABS

o

k2
3

  

 
 

COMFLT Plot Conic From General Form (248)

1828 butes #3AEGh

1: {ABCDEF} ====> 1:

« -3 CF { PICT PPAR 3 PURGE DUP 0BJ+» DROP
+conabocdef
« [F b

THEN b a © - « ATAN 2 -~
ELSE B
END
+ o
« o CO5 S a # oo CO5 o SIN b * = + t:l:SIN:-ll]l‘??+

o 5IM S0 a ¢ o S5IN @ COS b # * - I:tIII c ¥+
oo CO5 d = o 5IN e = + o CO5 & * INd*-
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i* ap P dp ep
& '3P

THEN dp MNEG ap 2 % ~
ELSE ep S0 4 cp £ # = - 4 cp dp # * ~ dp NEG

* +4 cp o 2 28
END
IF cp
THEM ep MEG cp 2 * -

4 ap # < FH % +

END
IF ap cp ®OR
THEN -22 SF ep ap -~ ABS dp cp < ABS -22 CF MIN

5 =

ELSE £ MEG dp 5}3 ap 4 v 4+ ep S0 cp 4o s+
* ABS .

 
 

ar < HB
EMD
+ hk "
€ con L 'wt2 eyt 'R og 13 ox ELIST STER

COMIC 'w' IMDEP 'o' DEPMD h r 3.6 = - DUP
foe  # + WRHG L r 1.8 = - DUP 3.6 r = +
YEMG DRA- ORAW PICTURE

LF:HHEF: Apply Cramer's Rule (152)

249 bytes #608Bh

2: augmented matrix 2: list of Cramer determinants
1: list of variables ====> 1: list of solutions
 
 

« 5WAP DI_II:IID SI§E 2 GET DUP ROT SWAP COL- SWAP DUP DET
=+ o g3 |

« [F d ABS .BABBEEEEAL <
THEM "I1l-conditioned Matriw" OOERR
ELSE 1 - 1 -

FOR k a k COL- DROP b k COL+ DET
EHDHEHT c 1 - =LIST OUP 4 » w +TAG d ROT + SWAP

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 279



C+5TO Rotate Conic to Standard Orientation (272)

371 bytes #ESASH

I: {ABCDEF} ====> I:. {AOCDEF}

 
 

 

 

 
 

+ B
« a B CO5S 50 =b B C05SA S5IN =+ + -8 5IN SR+ +
HaB SINS0 = b A SINACOS = = - o B CO5 500«
+d B C05S #= e B S5IN*=+ 28 C05 +=dB8 5IN+-f
6 =+LIST
1 « IF DUP 3 RND 8 == THEN DROP B END = DOLIST

*

*

*

DNTF:L- Create Dimetric Projection (232)

326.9 bytes # EESh

1: factor (betweenOand 1) ====> 1:  4x4 matrix
 

 

> f
« DEG_'TANCBI*2+SINCAI"2-TANCR)*2*SIN(BI"2=F2' 'B' 28

ROOT
> th
« th SIN S0 OUP 1 SUAP - ~ 1 RSIN

-+ Fl

# ph CO5 th SIN ph SIN += ph 5IN th CO5 * MEG B
B th CO5 th SIN B ph 5IN ph CO5 th SIN * MEG
ph COS th CO5 = A @B A1 {44 + +ARRY

[hl.- l:ll_ Find Distance from Point to a Line (189)

83 bytes #C733h
 
 

2: point (vector form)
1: line (array form) ====> 1: distance
 

 

« =»R0OW DROP OVER -
*qpd

9 p - d CROS5 ABS d ABS ~&

>
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EI_F"':"I.:i Convert Ellipse Parameters to General Form (255)

193 bytes #3141h
 

2: (h, k) 2:
1: {abH} === 1: {ABCDEF)

 

# SWAP C+R REOT 0BJ+ DROP
* hkabt
# b SOH a3 hbSA+Z + MHEGL ai5R = 2 ¢ NEG R S
bSO+ k S0 s SB + + 53 S0 b SA o+ - 5 +LIST B ROTCON

-
-

 
 

 
 

 
 

 
 

FINY Function Inverse (23)

168.3 bytes #FCEER

2:  function 2:
1: variable name ====> 1: modified array

«  RCLF
+ F u flags

« =3 OF v PGALL T4 PGALL £ 'tL' = u ISOL u ‘14
210 EVAL OBJ+ DREOPZ SWAP OROP o PURGE 'T1' PURGE

~ flags STOF

FMFLT Family Plot (10)
1183.3 butes #300Fh

1: ====> I:

« RCLF » flas
« {-3 -20 } CF FUMCTION .1 RES RAOD

IFEERE RCED
THEN £ NOVAL 3
END PPAR DUF 3 GET
IF_DUP TYPE 5 ==
THEN 1 GET _ _ _
END ¢ NOYAL MOWAL } + ROT SWAP + SWAP DUP 1 GET RE
SWAP 2 GET RE 2 +LIST +
+ flds
% MHILE "FHNILH’ PLOT" © { "EM=" YEMTER THE FUMNCTION"

B9 L ord "IHDEF‘ " "SPECIFY IMOEPEMDEMT
“HF‘IHE‘LE” B 3 L "WARY: " WEPECTFY THE 'YARIABLE TO
CHAMGE" & 3 { "WALS:" "SPECIFY THE YALUES TO
SE" 53+ 0 3 & "sMIM:" “ENTEE MINIMUM HORIZOMTAL
YALIE" B+ & '_'"HH” " YENTER MASIMUM HORIZOMTAL
YALUE" B + ¥ L 2 4 + flds DUP
IMFORM

REFEAT DUP 'flds' ST0 REMLIST OBJ+ DROF DOUP STEQ
& ROLLD IMDER OVER SIZE MAE =MUM DUP MEG © 2
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4+ j wmax ¥min wvals var lines 4min 4max 3
£ wmin wmax XRNG wals 1 = =NUM = DOLIST SORT

OUP SIZE 1 + 2 ~ SWAP DUP 3 PICK FLOOR
GET SWAP ROT CEIL GET + 2 -~ 1.5 * war 570
AUTO PPAR DUP 1 GET IM ymin MIN SWAP 2 GET
INlumaH MAX YRNG CLLCD ERASE ORAR # 1h # 1h

ines
FOR line

BLAMK PICT ¢ # 1h # 1h } ROT REPL
war OUP wals line GET OUP 3 ROLLD
SWAP 5TO PPAR 3 GET
IF DUP TYPE 5 ==
THEN 1 GET
END
PGALL RCERD EVAL 9 SWAP + 'g' STD = PICT
Lt # 1h # 1h ¥ ROT 1 »GROB DUP SIZE
5 ROLLD 5 ROLLD REPL DRAW

NERT
q STER PICTURE DROPZ j STER

&

END
&

flas 5TOF
*

 
 

 

 

[*+H Convert Line from General to Array Form (193)

184 bytes #D26%h

1: line (general form) ====> I: line (array form)

« { -3 -19 3 CF
g
« { wy } 1« PGALL » DOLIST
12 Y0P 1« 'w'" 5T0 g 'y' @ ROOT = DOLIST
2 0BJ» ROW+ { = 9 } PURGE

 
 

 

 

GJ-"L: I F: Find Circle Parameters from General Form (250)

213 bytes #9E65h

2: 2: (hk)
1: {ABCDEF) ==—=> 1: radius

« [BJ+ DROP
+ abcocde
« [F ac == == AND

THEM d MEG a 2 * «~ & NEG a 2 = ~ R»C d 50 & 50 +
4 3 fF % -4 3850 % - [

ELSE "MNot a circle" DOERR
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|_J":"EL|:I Find Ellipse Parameters from General Form (255)

 
 

 

 

 
 

 

 

 
 

217 bytes #7856h

2: 2: (hk)
1: {ABCDEF) ====> 1: {abB)})

= [Pgv*STD0BJ+ DROP
.}

fijaZ*f’NEG 2 % <« NEGRC d50 a4+ e 50c
4 % 2+ f -DUP 3 <« [ SWAP - ~« [ 4 ROLL 0BJ+ 4 DROPN
ROT SWAP - « ATAN 2 ~ 3 =LIST

>

»

= . 1Ll
|_:|'="H I F' Find Hyperbola Parameters from General Form (261)

386 bytes #C901h

2: 2: (hk)
1: {ABCDEF) ====> 1: {abB)}

« [UP C=S70 0BJ+» DROP
+conabcocdef
« jE3*’HEEEC*~"|"4E|3F='.'*El:l:|5|-3*- g o] * +

"r3:F***—4a|:**-"DUPDLIF'E:-"HB I SWAP
c AB5 [
IFRDT B <
EHEN NEDG ablHP NEG

DEG con 2 GET con 1 GET con 3 GET - « ATAM 2 ~ 3
+LIST

|_i'5*F'E:L Find Parabola Parameters from General Form (260)

433 bytes #6136h

2: 2: (h,K)
1: {ABCDEF) ====> 1: {pB)}
 

 

« [UP C=STD 0BJ» DROP
+conabcocde
« [F a

THEMN
IF =
THEM "Mot a parabola"
ELSE d 2 a*= -~ NG ASD 4 af =% -4 3e % % »

B+C & 4 a # » MNEG con 2 GET con 1 GET con 3
GET - ~ ATAN 2 -~ 2 -LIST

END
ELSE

IF ¢
THEN e S50 4 c f * * -4 cd *= * » & 2 - % - NEG
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R+C d 4 - # ~ NEG con 2 GET con 1 GET con 3
GET - ~ ATAN 2 -~ 2 =LIST

ELSE "Mot a parabola"

 
 

 

 

END
END

*

LI -
H I F"-"I.:l Convert Hyperbola Parameters from General Equation (261)

341 bytes #1234h

2: (hk) 2:
1: {abB} ===> 1: {ABCDEF)

%« SWAP r‘->F' ROT OBJ+ DROP DEG
+*hkabf
« [F a B <

THEHES A b S0 MEG -2 h a 50 = = 2 kbfl**b
|]|-’3|J*3JD|'1.~*"‘-35Q|3'3Q MEG

ELEbS0B a 50 MEG 2hbSQ**NEEZkaSQ**
h::Db:.L*a:ul'lI»S0 0+ - 3 50 b S5A % -

EMD
b =LIST B ROTCON

o

I'E"EEH Convert Line from Slope-Intercept to General Form (189)

281 bytes #4BASh

: 2: vector of coefficients
1: line (slope-intercept form) ====> 1: line (general form)

 

 

# 2 -3 3 CF
1

(82131«8104y 8 RUOT » DOLIST OB
OROP - -1 ROT 3 »LIST DUP { w y 1 } = OBJ DROP + +
COLCT A = SWAP DBJ+ +ARRYIJIHP8 FIX =00 5TD { % 9
PURGE

IMFLOT Plot System of Inequalities (161)

728 bytes #0331h

1: ====> 1:
 

 

 

—3 I"FPEEl’lJOUP SIZE

THENDF?EIP?‘ 213 DOERR
END { 3 { 3 PPAR 1 GET C+R PPAR 2 GET C+R OVER 3 PICK -
PICT SIZE DROP B=R ~
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END
+ scon sol 5 a

T DD sol 'w' s ROOT sal 'w' & ROOT
IF DUP? ==
THEN DROPZ 5 18 - 's' STD a 18 + 'a’ STO 1 + 1

i~

2

IF OUPZ - ABS .ABAL £
THEN + 2 - 1 =+LIST
ELSE 2 »LIS
END
1 « OUP line SWAP 'w' S5TO 'q' B ROOT ReC =
DOLIST 1 CF

END
EH%IL OUP TYPE 5 == DVER 3 == DR

IF scon EVAL 4 RND
THEN DROP £ 2
ELSE

IF 1 F57C
THEN +« 1 =LIST
END

END SWAP OROP £ = 9 I PURGE

 
 

#

o . .
L INFEG Linear Programming (164)

2889 butes #13CFh

3: 3: list of basic variables
2: 2: final tableau
1: ====> 1: list of tagged solutions or message string
 

 

« B 'MARKER' S5TO DEPTH 'depth' 5TO RCLF 'flags' 5T0 -3 CF
"LINEAR PROGRAMMING" { { "DBJECTIVE:" "EMTER OBJECTIVE
FUNCTION" 2 3 { "COMSTRAIWTS:" “ENTER LIST OF ALG.
CONSTRAINTS" 5 3 € "WARS:" “ENTER LIST OF INMDEP.
VARIABLES® 3 3 « "MAx OR MIN?' “COMPUTE TRA OR MIN OF
OBJECTIVEY" 2 + ¥ € 1 2 3 { NOVAL MOVAL MOVAL “MAR"
L NOVAL MOVAL HDUHL "MAR"
INFORM
IF
THEM CLLCD "Solwing . . ." 3 DISP 5 CF 0BJ» DROP

IF "NIN" SAME
THEN 5F
END DUP SIZE ROT DUP SIZE <  DUP DUP DUP 'last' STO
"muars' bTD "buars! bTD
+ of wvars n constr m eqns
« 1 n

FOR 1 nwars 1 + 'nwars' 570
MERT 1 m
FOR k burs k n+ + 'bpars' STO0 constr k GET 0BJ»

=e > ¥ SWAP POS
IF DIP £ 45 3 SHAP POS
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|_ I H:_'!" Determine Relationship of 2 Lines (200)

 
 

963 bytes #1EEBh

2: line 1 (array form) 2: pt. of intersection or "relationship"
1: line 2 (array form) ====> 1: 1 ifintersect; 0 if not
 

 

% RCLF 3 ROLLD 1 CF 3 ROW+
IF DUP SIZE 2 GET 2 ==
THEN 1 SF L 8 8 A A 13 COL+
END =+ROW DROP OUPZ SWAP - 5 ROLL 5 ROLL DUPZ SWAP -
+ p2l p22 dz pll pl2 dl
« IF

dl pll p21 - DUP 3 ROLLD CROSS d2 ROT CROSS DUP?
ABS SWAP ABS * 3 ROLLD DOT ABS ==

HEN
IF d1 42 CRDSS [ A A B ] ==
THEMN

IF pll pl2 2 ROW+ p21 COLIN?
THEM "Concurrent" B
ELSE "Parallel" A
END

ELSE
p?l pll - dl d2 NEG 2 COL»
LS 1 GET dl = pll +
IF 1 F57C
THEM 3 COL- DOROP
END 1

END
ELSE "Skew" B
END ROT STOF

&

 
 

 

 

LPL+P . . . .
Find Intersection Point of Line and Plane (211)

198.3 bytes #786Bh

3: position vector of line 3:
2: direction vector of line 2:
1: vector of plane's coefficients ====> 1: pt. of intersection or "relationship"

« 4 COL-
+ pdn nd
« IF ndDOT B ==

THEN
IF p n DOT MEG nd ==
THEN "Coplanar"
ELSE "Parallel"
END

ELSE nd NEG n p DOT - n d DOT ~» d *= p +
EMD

#
%
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I_TF': I H Trim Zeroes from Left of Array

135.5 bytes #2668Ah
 
 

1: array ====> 1: trimmed array
 

 

« DUP RNRM
IF .BBER1 <
THEN OROP B 1 -+ARRY
ELSE OBJ+ 1 GET 1 +

WHILE ODUP ROLL DOUP ABS .H@@EA1 <
REPEAT OROP 1 -

ENDEND OVER ROLLD 1 - =+ARRY

HF‘:ITILE Normalize Object Array after Transformation

119.5 bytes #4D6Dh
 
 

1: object array ====> 1: normalized object array
 

 

« [UP SIZE OBJ+ DROP

 
 

 

 

Famn

& M

FOR i a DUP € i n ¥ GET INY i RCI 'a' 5TO
NEXT a

%

F'HDD Polynomial Addition

172.3 bytes #64CBh

2: polynomial 1 2:
1: polynomial 2 ====> 1I: P1+P2

« RCLF 3 ROLLD -53 CF
IFERR +
THEN OVER SIZE 1 GET OVER SIZE 1 GET -

IF OUP B <
THEN ABS ROT SWAP
END
+ ad

« 14
oTART H
NEXT a OBJ» 1 GET d + =+ARRY +

&

EMND
LTRIM SWAP 35TOF

*** Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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F'HF‘""I Convert Line (2D) from Parametric to Slope-Intercept Form (193)

167 bytes #35F5h
 

1: list of parametric eqns of line (2D) ====> 1: line (slope-intercept form)
 

 

« RCLF -3 CF SWAP
IF OUP 5IZE 2 #
THEM DROP 515 DOERR ELSE 9 FIX 1

« 't' IS0L COLCT OBJ+ DROPZ SWAP DROP ExPAM ExPAN
COLCT

*

DOLIST OBJ+ DROP = ‘'y' IS0L EXPAM ExPAN COLCT -0
END SWAP STOF

*

 
 

 

 

 
 

FIE:L_:"I.:I Convert Parabola Parameters to General Form (260)

134 bytes #07BSh

2: (hk) 2:
1: {pB} ====> 1: {ABCDEF)

« SWAP C+R ROT 0BJ+ DROP
+*hkpB8
« BB 1p4*NEGKLZ=*NEGER S0 4ph # %+ b oLI5T

B ROTCON
>

F'L:DHI'.'I Convert to Polynomial Form (133)

B682.5 butes #2706h

2: array 2:
1: program ====> 1: modified array
 

 

« -3 CF {j[ Ba1C01713{OND 3> S5TOCOLCT RPN DUP SIZE
£ F Mo

% h!D.:J E[‘rILDILT D n PMULT 'OP" EVAL 'N' S5TO D d PMULT
2

n «pdiv

k 'p' k GET
IF_OUP TYPE
THEN

IF OUP TYPE € & 7 } SWAP _POS
THEM DROP [ 1 B 1 1 =LIST
ELS{EF {DUTD - * “ NEG DEC > 5SWAP P05

THEN { PAOD PSUB PMULT PPOWER PSUB
« EVAL OUP DROP = } SWAP GET 1 =LIST

ELSE DROP p k 1 + GET { + - } SWAP POS

LY

& ';?F'

€« 1 n
FOR
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PAOD PSUB + SWAP GET 'OP' STO
«pdiv DEC 2e

END
END

ELSE 1 +ARRY 1 =LI5
EMD p k ROT REPL 'p' 5TO

NEXT ¢ EVAL D PMULT N PAROD D ¢ OP N D 3 PURGE
&

 
 

mTl e
F DI W IDE Polynomial Division (112)

331 bytes #6981h

4: 4: quotient array
3: 3: numerator of remainder
2: polynomial 1 2: denominator of remainder
1: polynomial 2 m===) 1: symbolic result
 

 

« LTRIM DUP 0BJ+ 0BJ+ DROP -»LIST ROT LTRIM OBJ» 0BJ+ DROP
+LIST SWAP DUPZ SIZE SWAP SIZE
%EEDUEE - 0UP 8 <

M
3 DROPM [ B8 1 3 ROLLD DBJ+ +ARRY SWAP 0OBJ» -+ARRY SWAP

ELSE SWAP ROT DUP 1 GET
+n pet

« £ 3 3 ROLLD 8 SWAP
qufifiqDyP 1 GET t ~ ROT OVER + 3 ROLLD 1 n

OYER d GET p2 d GET 3 PICK * - ROT d
ROT PUT ShAP

NExT OROP 2 OVER 5IZE MIN 1E499 3UB

&

SWAP OBJ+ +ARRY SWAP OBJ+ +ARRY ROT
END REMNOR

F'D':"F' Convert Line from Position-Direction to Parametric Form (192)

184.5 bytes # 26%h
 

2: position vector of line :
1: direction vector of line ====> 1: list of parametric eqns ofline
 

 

-3 CF OUP SIZE 1 GET#

* P UDN

« [Fne2¢ >
THEN © % 9 z 1}
ELSE € = 9 3
END v DBJ» 1 GET »LIST 1 n
START 't
MEWT n =LIST = p OBJ+ 1 GET »LIST AOD = 9 FIx G 5TD

-,
-

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 291



F'EF:E;F' Create Perspective Projection (238)

433 bytes #4FBOh

3: object array 3:
2: translation vector :
1: eyepoint vector =—==> 1: transformed object array

 

 

 

 

« [DUP ABS
atcd
c 1 GET d ~ ASIN c 2 GET NEG d -~ ASIM = 3 GET MEG 1
0BJ+ DOROP
+ B fklm
« a3 B CO5 8 5IN FSIN *
S B £ SIN k ~ B SIN
Cos k < B EDS 1 =8

f 5IN
+

#
4
0

n

% B P05 o %> S
+BO0SH *+k <1

F

FLHLL Purge Variable in Path (281)
92 bytes ¥65E4h
 
 

1: variable name ====> 1:
 

 

« PATH
+ name path

« [0 name name PURGE EVAL UPDIR
UNTIL TYPE & ==
END path EVAL

&

F'HHE;EI Perform Phase 1 Adjustments on LP Tableau (164)

1313 bytes #3F86h

number of constraints

number of decision variables

list of indexes of basic variables

list of indexes of non-basic variables

tableau ==>

 
 

—
h
w
a
s
W
w

m
h
w
h
R
W
n

 

 

% a TD 'mears' S5TO 'buwars' ST0

HHILE buars B8 PDS DUP
REPERT DUP 'r' STO a SWAP ROW- SWAP DROP 0OBJ+ 1 GET

+LI5T 1 nuars SIZE SUB DUP
IF = MAY = STREAM DUP ABS .BAB1 >
THEM POS 's' STO

!

>

=
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ELSE DROP
IF_OUF « MIN = STREAM DUP ABS .@8A1 >
THEN POS 's' 5T0
ELSE DROP
END

END m n bvars nwars a r s PIVYOT 5 OROPN
END DROP a OUP SIZE 2 GET COL- SWAP OROP OBJ+ 1 GET
sLIST DUP SIGN
+ bl signs
# [F signs 1 bwars SIZE SUB -1 POS

THEM 1 m
FOR_k sians k GET

IF 8 =
THEN sians k @ PUT 'sians' STO
END

MEXT a sians nwars S5IZE 1 + 's' 5T0 bvars S5IZE
1 + byars 5IZE 2 +
FOR k k € B 3 REPL
TEHT OBJ+ DUP a SIZE 1 GET

%

THEN SWAP DROP 1 -
END »ARRY s COL+ 'a' STO rnwars B + 'nears' 5T0
bl DOBJ»
IF DUP m -
THEMN RDT DPDPSWAP DROP 2 -
ELSE SWAP DROP 1 -
END =LIST DUP MIN » STREAM POS 'r' 5T0 m n
buars nwars a r s FUUUT 5 OROPN 1 a S5IZE 2 GET
FOR j A
MEXT a SIZE 2 GET -»ARRY
*Z
& ;

IF DUP SIZE 1 GET m 2 + ==
THEM m 2 + 1 2 =LIST z REPL
ELSE z m 2 + ROW+
END 'a' S5T0 1 m
FOR i

a i rwars S5IZE 2 »LIST GET 5IGN -1 ==
THEM a i ROW- z + SWAP DROP 'z' 5T0 a m 2

+ 1 2 »+LIST =z REPL 'a' 5T0

MEXT m n buars rwars a 2 SIMPLEX
IF 1 FC? a DUP SIZE GET B < ANMD
THEN PHRSE1
ELSE 1 SF 5 DROPM
EMD

EMND

8

u

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 293



FIMOT

 

 

 

 

Pivot LP Tableau on Given Element (164)

695.5 bytes #139Ch

7: number of constraints 7

6: number of decision variables 6:

5: list of indexes of basic variables 5: number of constraints

4: list of indexes of non-basic variables 4: number of decision variables

3: tableau 3: list of indexes of basic variables

2: pivot row 2: list of indexes of non-basic variables
1: pivot column ===> [: tableau

# 5 ROLLD 5 ROLLD 'a' 570 'mwars' 5T0 'buwars' 5T0
* mnr s
£ 3 Q-F‘s 2 »LIST DUP 3 ROLLD GET INY DUP 4 ROLLD PUT

s COL- HFIF' ROT r RCI r' ROW- EOT + ROW-
* 3P rp = ars

% ap S EE 1 GET

FLE=L

FIIIP. k ap k ROW- rp sp k GET # - k ROW+ 'ap' STO
MEXT sp ars NEG # 'sp' STD ap rp v BOW+ sp ars v
ROM+ s COL+ DBJ+ DUP 0OBJ+ DROP # SWAP OVER 2 +
ROLLD »LIST 9 BEND 0OBJ+ 1 + ROLL »ARRY 'a' STO bwars
miars s GET'ars buars r GET s SWAP PUT 'nuars'
STO r SWAP PUT 'buars' STO
WHILE rwars OUP B8 POS DUP
REPEAT DUP & SWAP COL- DROP 'as' STO SWAP OBJ+ OUP 2

+ ROLL OVER 2 + SWAP - ROLL DOROP 1 - =LIS
'mpars' 5T0

EMD DOROPZ m n bwars nwars a

 
 

 

 

Find Intersection of Two Planes (206)

142.5 bytes #33EBh

2: plane 1 (vector form) 2:
1: plane 2 (vector form) ====> 1: line of intersection (parametric form)

« [UPZ 2 ROW=
P34
« a 4 COL- MEG !HHP DUP +ROW DF‘EIP CROSS SWAP 3 COL-

OROP ROT SWAP « 0OBJ+ DROP @ 3 +LIST 18 END 0OBJ+ =ARRY
SWAP  PO-F

u$

as
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FMULT Polynomial Multiplication (111)
282.5 bytes #44DDh
 

2: polynomial 1 2:
1: polynomial 2 ====> 1I: P1*P2
 

 

« DUP SIZE 1 GET
¥ ana

« [OUP DUP B CON DUP SIZE 1 GET DUP ma + 1 - 1 =LIS
+ b cnb nab

1 ¥nb + RDM 1 nb
START a 0BJ» DROP - 0OBJ+ DROP
NERT

nb OROPN nb nab + +ARRY * nab ROM
&

~
=X

23

F"E"F'D Convert Line from Parametric to Position-Direction Form (193)

378.90 bytes #688h
 

: 2: position vector forline
1: list of parametric eqns of line ====> 1: direction vector for line
 

 

€ { -3 -19 } OF 1
+ C

« C 5IZE 'm" 5TO cc 2 c 't' POS DUP
IF DUP 1 + c SWAP GET ¢ MEG 1 GET ==
THEN 1 + -1
ELSE 1
EMD 't"' 5TO 's' STO SUB
IF DUP SIZE 2 <
THEN 1 GET
ELSE TWLIST
EMD EMAL € B Y ROT s 1 +n 1 - 5B
IF OUP 1 GET TYPE 18 ==
THEM TRIL
EMD + EVAL 2 -+LIS

&

DOLIST
IF OBJ+ 2 >
THEN =43
ELSE V2
END OBJ+ DROP SWAP © s n t 3 PURGE

3
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F'F'L"-'IEF: Raise a Polynomial to a Power

173 bytes #8CFAh

2: polynomial :
1: power (array) ====> 1: modified power

« 1 GET
+ P N

« 1 OUP +ARRY
WHILE n B >
REPERT

IF n 2 MID
THEN p PPULT
END n 2 ~ FLOOR 'n' 5TO
IF n
THEM p DUP PMULT 'p' 5TO
END

  

EMD
*

F'EZ;UE: Polynomial Subtraction

28.9 bytes #DADSh

2: polynomial 1 2:
1: polynomial 2 ====> 1: P1-P2

 
 

« MEG PAOD »

  

 
 

. L1
F+55T1 Polynomial to Symbolic

113 bytes #38BEh

2: polynomial (array) 2:
1: polynomial variable ====> 1: polynomial (symbolic)

« -3 [F
=+ 1)

« 0BJ+ 0BJ» DROP B SWAP 1
FOR n
nl+ROLLwnl-"=*+ -]

STEP 18 FIx =0 5TD
&
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F':.__""L Find Line Containing Two Points

 
 

 
 

138 bytes #B45Ch

2: point 1 (2D-vector) 2:
1: point 2 (2D-vector) ====> 1: slope-intercept equation of line

« -3 [CF
+ pl pe
# 'y' pZ pl - 0BJ* OROP SWAP ~ OUP 's' = SWAP pl OBJ»

DROF SWAP ROT # MEG + + = 8 FIX =0 5TD
&

 
 

 
 

 
 

 
 

&

F':i"'i".F'E: Find Perpendicular Bisector from Two Points

287 bytes #ARE4h

2: point1 (2D-vector) 2:
1: point 2 (2D-vector) ====> 1: equation of perp. bisector

« -3 CF
+ pl p2
« 'y' p? pl - 0BJ* DROP SWAP - MEG

IF OUP
THEN INY DUP 'w' = SWAP pl p2 + 2 -~ 0OBJ+ DOROP SWAP

ROT + MEG + +
ELSE DROPZ 's' pl p2 + 2 ~ 1 GET

~ END = 3 FIx -@ 370

|.:-![|o |_”._|'.'l Solve Quadratic

398 bytes #3130h

1: quadratic (array) ====> 1: list of solutions

“ {71 -3 3 CF 0BJ> DROF
* a3 Z
« b5l 4acsx-a2¢=
+de
« IFda <

THEN
IFd DUP IP ==
THEN d ABS

IF [ DUP IP #
THEN d RBS 1 »LIST 'sqrt' APPLY i =
ELSE d ABS [ i +
END

ELSE d ABS T 1 *
_END

IFdIOp P #

*** Be sure to read the instructions on pages 274-275 before keying in these programs. ***

(182)

(184)
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THEN d 1 »LIST 'sqrt' APPLY
ELSE d [
END ]

END & - DUP b MEG = - DUP ROT + 3 ROLLD SWAP - 2
sLIST -27 SF COLCT

&

F:EDEF Compute Symbolic Polynomial from Roots (132)

239.3 butes #9E93h

1: list of roots ====> 1: symbolic polynomial

 

 

 

 

-3 CF 1 « EVAL = DOLIST OBJ+ =+ARRY PCOEF
DUP DBJ+ 1 GET »LIST 1
« JF DUP TYPE

THEN DOROP
ELSE FP ABS

IF_OuP
THEM ¢ FIX =0 5TD 0BJ+ DROPZ SWAP DOROP
ELSE DROP 1
END

END
» DOLIS
«  DOUPZ

WHILE DUP
REPERT SWAP OVER MOD
END DROP -~ = EVAL

»  STREAM = 'w' P25YM

#

 
 

 

 

EEMMOE Compute Symbolic Remainder (291)

276 butes #EE73h

3: quotient array 3:
2: numerator array 2:
1: denominator array ====> 1: symbolic remainder

« -3 CF
qn d

[ .
THEN ? EBJ+ 1 GET

B k ARRY t 1 ARRY d PMULT n PAOD 'x' PsSYM
' PRSYM o SWAP 'w' PeSYM SWAP +

&

ELSE 9 '=' P25VM
END 9 n d 4 ROLL

2
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F-:FI_L:T Create Reflection Transformation (227)

  

 
 

2¢3.9 bytes #CAP4h

2: object array :
1: plane ofreflection (vector form) ====> 1: reflected object array

® F 3y

« [F w SIZE 1 GET 3 ==
THEN «» DUP 3 GET SWAP 3 8 PUT
ELSE «» DUP 4 GET SWAP 4 COL- OROP
END
+ dn
« 1 a SIZE 1 GET

FOR i d MEG n & i ROW- SWAP 4 ROLLD DOT - n n DOT
s n % 2 % 3 i ROW- SWAP DROP + i ROW+ 'a' STO

  

NEXT a
&

:3. o

REOTCON Rotate Conic (271)

357 butes #BDS9h

2. {ABCDEF} 2:
1: angle of rotation === 1. {A'B'C'D'E'F}
 
 

« MEG SWAP 0BJ* DROP
+ Babcdef

  

aBCO5 50 +=bACO5S A SIN++= + c B8 5IN5S0 =+ b B
COS 50 8 5IM SR - = 2 ca-+= B 5INBLCOS =+ 38
SIN S8 = b B SINBCOS = = - c B CO5 50 =+ 48 COS
# g2 B5IN =+ 2 B8LC05 *d8 5IN+-f 6 »LI5T OUP
DUP 1 GET ABS SWAP 3 GET ABS MAW ~

F-:UT:L"D Create 2D-Rotation Transformation Matrix (222)

174.5 bytes #C635h

2: point at center of rotation (vector) 2:
1: angle of rotation ====> 1: transformation matrix
 
 

L 5NHP}QBJ+ OROP
* oy i
# w C05 w SIN B « SIN MEG « C05S B 1 NEG 2 CO5 1 - = m

w SIM = + 1 NEG « SIN =+ m 2w CO5 1 - % -1 4 3 3 1%
+HRRY

&

£

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 299



FTZL

RPN

300

 
 

 

 

 
 

 

 

&

Create 3D-Rotation Transformation Matrix (225)

367.3 butes #AF7Bh

3: position vector for axis of rotation 3:

2: direction vector for axis of rotation 2:

1: angle of rotation ====> 1: transformation matrix

£ 4 I0OM
+ pdwi
« 4 A 4 COL+ 4 0BJ» DROP
+*nabc
« 1 3

FOR k non k GET =
MEKT [ BB B 1 14 ROW+ 1« CO5 - = 1 » CO5 # +
AcbMGACMEAaBbaNGBBABAR {4
4 3 SARRY w SIN = +
+ r

« 1041 3pNEGREPL r #=i{413pREPL =

Convert Algebraic to RPN List (290)

189.5 bytes #6FBeh

1: algebraic ====> 1: list

& DBLI'E"

IF OVER
THEN + n f

% 1 n
FOR i

IF OUP TYPE 9 SAME
THEN RPN
END n ROLLD

MERT
IF OUP TYPE 5 #
THEN 1 =LIS
EMD
IFnil23>
THEM 2 n

START +
MEAT

_ EMDF o+
ELSE 1' +LIST SWAP OROP
EMD

P. PrROGRAM LISTINGS



F: -:E":'TE; Find Real Roots of Polynomial (130)

141 bytes #34ECh

I: polynomial (array) ====> 1: list of real roots
 

PROOT DOUP SIZE 1 GET
*ron

«{ 1 1mn
FOR k

r k GET IM
IF
THEN r k GET +
ELSE r k GET RE SWAP +
END

NERT

1

&

EH:FHETF: Find Symbolic Cofactor Matrix (159)

234.3 butes #30FCh

1: square symbolic matrix ====> 1: symbolic cofactor matrix
 

« -3 CF DUP DUP 1 GET SIZE SWAP DUP SIZE
+of cm
« 1 r

FOR i 1 ¢
FOR i m i j 3 ROLLD SXROW DROP SWAP SXCOL DROP

g+ ™ = cof DUP i GET j 4 ROLL PUT iSOET -
SWAP PUT 'cUF' 510

 
 

MERT
. MEKT cof

3 o

SCOF Find Symbolic Cofactor (158)
291.3 bytes #EREBH

3: symbolic matrix
2: row 2:

1: column ====> 1: cofactor
 
 

« -3 CF 3 PICk DUP SIZE SWAP 1 GET SIZE DROP
IF 1
THEMN 3DRDPN 1
ELSE =+ r ¢

« [0BJ» OVER SIZE OVER 1 -
T monN

« r -1 + ROLL DROP 1 n
STH%E n TDLL

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 301



THEN OUP 1 1 - SUB SWAP c 1 + m 5SUB +
ELSE 2 m 5SUB

 
 

END
MERT n =LIST

#

» SOET
END

SCEAMER Apply Cramer's Rule to Symbolic Matrix (159)

214.3 bytes #BAGSH

2: symbolic matrix 2: list of Cramer determinants
1: list of variables ====> 1: list of solutions
 

 

« =3 CF SWAP DUP 1 GET SIZE DUP ROT SWAP SNCOL
SWAP DUP SCOET
Y C bl ad

FOR k a k SXCOL DROP b k SNCOL SCDET
MEXT = 1 - =LIST DUP d -~ COLCT =0 w »TAG d4 ROT +
COLCT »0 SWAP

 
 

 

 

#
#

E;EE;I-'-":I Swap Columns in Symbolic Array (159)

?7.3 bytes #3B31h

3: symbolic array
2: column 1 :
I: column 2 ====> 1: modified array

® 0+ 31 ]
® 5 STRN i J SRSWP STRN

3‘ -~

fj['ET Symbolic Determinant (158)

136.3 bytes #3730h
 
 

1: symbolic matrix ====> 1: determinant
 

 

« =3 CF DUP DUP SIZE SWAP 1 GET SIZE DROP
+ an
« B 1n

FOR i a i GET 1 GET a i 1 SCOF * -1 i 1 + * % +
MERT

&
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WHILE a m t + ROW- SWAP DROF 0OBJ»
-1
oSIZE 5B DUP 2

(g 1] e e s .
-_l[I I W Synthetic Division (stack version) (116)

174.5 bytes #484Zh

2: array 2:
1: program ====> 1: modified array

« +p f .

« pp S5IZE 1 GET @
*n 3

« 1 n
FOR k ]

p k GET s + DUP £ + 's' 570
MERT
*r

£ n 1 - *ARRY £ SWAP r
*

's' PURGE
*

[y 1 Ll . .
SIMFLEA Apply Simplex Algorithm to LP Tableau (164)

1166 bytes #C97°Fh

6: number of constraints 6:

5: number of decision variables 5: number of constraints

4: list of indexes of basic variables 4: number of decision variables

3: list of indexes of non-basic variables 3: list of indexes of basic variables

2: tableau 2: list of indexes of non-basic variables

1: 1 if Phase 2, or 2 if Phase 1 ===> 1: tableau

« 4 ROLLD 'a' 570 'mwars' 5T0 'bwars' 5T0
+ mnt )
« {346 3 CF

1 GET =LIST 1 rwars
T0 SIGN 1 POS 4 F5YC OR

REPEAT a DUP 5IZE 2 GET COL- SWAP DROP 0BJ+ 1 GET
-
> 2+LIST 1 buwar

IF A
IZE

THEN rwars Lk
IF OUP
THEW +
ELSE DROP
END

END
NEXT
IF OUP {
THEM DROP { 1

**%* Be sure to read the instructions on pages 274-275 before keying in these programs. ***

SUB DUP 'b' STO

GET

3 SAME
q. }SF
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ELSE
IF OUP SIZE 1 ==
THEN 1 GET
ELSE « MIM = STREAM
[FHD nvars SWAP POS 's' 5T0

EN
ELSE - DUP = MAX = STREAM POS 's' 5T0
END £ X 1 m
FOR i

IF a i 5 2 =LIST GET .@BAa1 >
THEM buwars i GET +
END

MEXT 'scol' ST0
IF scol € 3 SAME
THEN € 1 4 3 5
ELSE

IF 6 F57C
THEN scol

IF DUP SIZE 1 ==
THEN 1 GET
ELSE =+ MIN = STREAM
END buwars SWAP PDS 'vr' 5TO

ELSE 1 scol SIZE
FOR jb

IF a buyars scol j GET POS s 2 =LIST GET
OUP .BE[1 >

EHEH b buwars scol j GET POS GET SWAP -~

MEXT scol SIZE +LIST DUP
IF DUP SIZE 1 ==
THEN 1 GET
ELSE = MIM = STREAM

EHEIEND POS scol SWAP GET bwars SWAP POS 'v' STO

END m n buars rwars a r s PIVOT 5 OROPN
Dmn buars nvars a

 
 

#
#

-I'I'l_:|. . .
1~ Disassemble Symbolic Array (158)

124 bytes #46AAh

mn + 2: mn + 2:
. elements

3: 3:
2: 2: #of rows
1: symbolic array ====> 1: # of columns
 

 

« [BJ» OVER SIZE
+ row col
« 1 row

FOR i i 1 - col # row + i - 1 + ROLL 0OBJ+» DROP
MEXT row col

&
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5[ Assemble Symbolic Array (158)

 
 

 
 

186.5 bytes #EBAh

mn + 2: mn + 2:

... elements

3: 3:

2: #of rows 2: #ofrows

1: # of columns ====> 1: # of columns

€+ row col
£ 1 row

FOR i col »LIST col row i - % i + ROLLD
MEXT row =LIST

o

 
 

%

SMAOC Symbolic Matrix Addition (158)
163 bytes #46EER

2: symbolic matrix 1 2:
1: symbolic matrix 2 ====> I: SM1 + SM2
 
 

« =3 CF SWAP OUP DUP SIZE SWAP 1 GET SIZE
+ a2 al nom
£ 1 n

FOR i 1 m
FOR_J al i GET j GET a2 i GET j GET + COLCT
NERT m =LIST

MERT n =LIST
*

E;ITI I H'-.-' Invert Symbolic Square Matrix (159)

63 bytes #668Bzh

1: square symbolic matrix ====3 1: inverse of matrix
 

 

« [DUP SCFACTR STRN SWAF SODET INY SMSMULT =

 
 

!:RNHULT Symbolic Matrix Multiplication (158)

216 bytes #B837¢h

2: symbolic matrix 1 2:
1: symbolic matrix 2 ====> I: SM1*SM2
 
 

« =3 CF DUPZ OUP SIZE SWAP 1 GET SIZE ROT
OUP SIZE SWAP 1 GET SIZE
+ al a2 nZ2 m2 nl ml

*¥* Be sure to read the instructions on pages 274-275 before keying in these programs. *** 305



« 1 nl
FOR i 1 md

FOR i B 1 ml
FOR k al i GET k GET a2 k GET j GET = +
MEXT

MERT mZ LIS
MEST nl =LIST

w3

SMSMULT Symbolic Scalar Multiplication (158)

167 bytes #C44Eh
 
 

2: symbolic array or scalar :
1: scalar or symbolic array ====> I: s*SM
 

 

-3 CF
IF DUP TYPE 5 ==
THEM SlAP

#

 
 

EMD

% DUP SIZE OVER 1 GET SIZE
*anm

£ 1 n
FOR i 1 m

FOR i a i GET j GET =z =
MERT m =LIaT

ONEKT o aLIST

T:if'Tf:iLlL'-.-' Symbolic System Solution (159)

73.J bytes #795Ah

3: symbolic coefficients array 3:
2: symbolic constants array ====> 2:
1: list of variables 1: list of solutions
 

 

2 * a3b u

voa SMINY b SMMULT -+TAG

W

o
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SMSUE

 

 

 

 

 

 

 

 

Symbolic Matrix Subtraction (158)

163 bytes #AE23h

2: symbolic array 1 :
1: symbolic array 2 ====> 1:

« -3 CF SWAP DUP DUP SIZE SWAP 1 GET SIZE
a2 al nom
£ 1 n

FOR i 1 m
FOR i al i GET j GET a2 i GET j GET - COLCT
MEST m =LIST

MEXT n =LIST
#

SHCOL Insert Column in Symbolic Array (159)

77.3 bytes #BC65h

3: symbolic array 3:
2: symbolic column (list) 2:
I: column number ====> 1: modified array

€ * 5N

« 5 STRN v n SNROW STRN
*

SHECL Insert Row in Symbolic Array (159)

76.3 butes #674h
 
 

3: symbolic array 3:
2: symbolic row (list) 2:
1: row number ====> 1: modified array
 

 

€ * 35 U

« 5 0BJ> v OVER 3 + n - ROLLD 1 + =LIST

W

w3
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SOe Solve Triangle (46)

6737 bytes #975Ah
 
 

1: ====> 1: {abcA°B°C°area}
 

 

2

308

o~
o

¥
R

oo
R
A
W

g
W
&

s
o

1
o
W

-5 R
« IF R DUP SIN RSIN # B SIN 1 == OR

THEN
IF r s >
THEM + s R <p2 =NUM
ELSE 1 5
END

ELSE
IF rs=>
THEN r 5 B <«p2 =+NUM
ELSE

IF R 5IN s # r - DUP ABS 1E-6 <
THEM DROP r s R <p2 =MUM
ELSE

IF 8 >
THEN 1 5F 8
ELSE r s R «p2 =NUM 3 5SF
END

5 TCOS = - [ » »
B -2s %1t = NEG ~ RCOS =»i

0
w

+
~
—
0
2
3
3

R
o

R

w
=

Y M
a

*
%

188 R 5+ -5IN2 % at #=RS5INSSIN+ -~ [

L L SIN = 2~ 'a4' 570 » »
L 14 21 29 33 43 46 51 53 99 Bl K2 85 93 94 99
187 118 1 17 123 125 126 } £ 23 26 27 41 44
43 98 3 25 6@ 89 98 185 1@3 183 114 116 113

42 49 92 186 113 3 ¢ 11 13 19 22 37
38 ¥ L7 15 23 31 47 55 63 71 79 87 95 183 119 127 3
L 67 69 /B 70 77 /383 86 91 181 182  { 74 76 81 84
97 98 » 1 88 184 112 128 }

1 = "a" SWAP + 0OBJ» » DOLIST SWAP 1 « "d" SWAP + 0OBJ+
# DOLIST SWAP + DUP fields S5T0 <new SWAP STO

IF DEPTH DUP ROT +MUM DEPTH 1 - ROT ==
THEN { WOVAL 3 1 GET
END SWAP DROP

1 3
FOR j

n -

'
:
'
U

r
J

o
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IF #angles j GET B == <sides j GET B # AND
THEM <angles j 3 PUT <sides j 3 PUT '¢sides' 5T0

'¢angles' ST0
END

MERT
IF #angles 3 POS A ==
THEMN *angl5 OUP 8 POS DUP 3 ROLLD 3 PUT <sides ROT

3 PUT 'esides' 5T0 '+angle' 570
END 1 3
FOR j

IF #angles j GET 3 #
THEM j
END

MERXT OUP <angles SWAP 2 PUT esides ROT 2 PUT 3 PICK 1
PUT 3 ROLLD 3WAP 1 PUT4 4 PUT “Prep EVAL dl d2 a3
«p4 +NUM DUP 'd3' STO d1 a3 «pl »NUM IF 3 F57C THEN
MEG 188 + END DUP 'al' 5T0 a3 <p6 »NUM 'a2' 570 d1 d2
a3 +pld EVAL

+sides OUP B PO5S OUP 3 ROLLD 1 PUT <angles ROT 1 PUT
DUP @ PO5 OUP 3 ROLLD 2 PUT 3 ROLLOD 2 PUT OUP 14 POS
DUP 2 ROLLD 3 PUT 3 ROLLD 3 PUT 4 4 PUT <prep EVMAL al
a2 «pb 2NUM DUP 'a3' 5T0 dl al a2 «p3 »NUM DUP 'd2°
ST d1 ROT <p4 =»NUM DUP 'd3' STO dZ2 al <plB EVAL

1 3
FOR j

IF ¢sides j GET B == +<angles j GET B # AND
THEM ¢sides j 3 PUT <amgles j 3 PUT '+angles' 5T0

'esides' 5T0
END

MERT
IF ¢sides 3 P05 B ==
THEN <sides DUP @ POS DUP 3 ROLLD 3 PUT <anales ROT 3

PUT '#angles' ST0 '¢sides' STO
END 1 3
FOR j

IF €angles j GET 3 #
THEM j
END

MEXT DUP +:1dP' SWAP 2PUT «arngles ROT 2 PUT 3 PICK 1
PUT 3 ROLLD SWAP 1 PUTSWAP 4 4 PUT ¢prep EVAL d3 al
ac <ph *NUM DUP 'a3' STO al «p3 =NUM DOUP 'dl' STO 43
az «p4 »NUM 'd2' S5T0 41 42 a3 «plA EVAL

«angles REVLIST TRIL REVWLIST B PO5 <angles SWAP DUP 3
ROLLD 1 PUT +:1des ROT 1 PUT DUP @ PO5S DUP 3 ROLLD 2
PUT 3 ROLLD 2 PUT DUP 14 POS DUP 3 ROLLD 3 PUT 3
Eghkfl 3 PUT ¢HHP 4 4 PUT «prep EYAL dl d2 al <pl

IF DUP
THEM DUP 'a2! 5TD al «pb =NUM DUP 'a3' 570 dl 42 ROT
HD+P4 »NUM OUP 'd3" 5T0 dl a2 <pld EVAL

2
48

#
#

f
o
w

¢5ides 1 {1 2 3 % REPL #angles 1 { 1 2 3 4 X REPL
«prep EVAL dl d2 d3 «p3 »NUM DUP ‘'al’ 5T0 dl d2 ROT
«pl #NOM IF 3 FSPC THEN MEG 138 + END DUP ‘a2 5TO al
«p6 +NUM OUP 'a3' 5T0 d1 d2
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335 €333 553 €555 +¢kss ¢ksa <kaa } SWAP GET
EVAL EYAL fields 1 <nw DOLIST fields STO
IF 1 F57C
THEHT;HD solution ewxists" MSGBOX <new fields

ST
ELSE 1 7
FOR

IF ¢new j GET € NOVAL > 1 GET #
THEN

IF fields j GET »NUM <new j GET -
AB5s 1E-6 >

THEN 2 5F

THEfi "Wo solution ewists" MSGBOX <new
fields 5TO

END
END
IF 3 F57C
EHEN "One of two solutions" MSGBOX

ELSEI;NDt enough information" MSGBOR <new fields

END
&

END
fields 1 <m DOLIST flags STOF { fields case a b
c A B* C" K dl 42 43 al a2 a3 a4 I PURGE

*

£

E;F' I F-:D Spirograph™ Simulation (84)

441 bytes #35A8h
 
 

 
 

3:  number of teeth in fixed wheel 3:

2: number of teeth in rolling wheel 2:
1: -1 ifinside roll; 1 if outside roll ====> 1:

« L -2 -3 )} CF DUPZ += 4 PICK +
+absn
« '8 PURGE n B COS * b 1.5 *nb ~ 8 * COS5 * ¥ - n

SB5IN*bl1.5#*nb~B % 5IN=* -1 %+ 5TEC
PARAMETRIC RAD 'B' @ 2 FIX a b ~ »0 STD
IF DUP DUP IP #
EHEN 0BJ» DROPZ SWAP DROP

et x NI 3 SLIST INDEP .85 RES

THEN a ABS b ABS 3 = +
ELSE a ABS b ABS 1.5 # +
EMD
DUP MEG SWAP DUPZ YRMG 2 + SWAP 2 + SWAP HRMG
ERASE DRAW PICTURE

&>

**% Be sure to read the instructions on pages 274-275 before keying in these programs. *** 311



= -_-Il"'t- Square Root UDF (297)

3.9 butes #9732h
 
 

1: real number ====> 1: square root
 

 

# o 0w o2 ow [ o5 o3

 
 

 

 

 
 

 

 

 
 

 

 

SELT RCI for Symbolic Matrix (158)
79 bytes #6086h

3: symbolic array 3
2: multiplicative factor 2:
I: row ====> 1: modified array

« -3 CF
+ 3 fn
# 5 OUP n GET £ + n SWAP PUT

SR RCIJ for Symbolic Matrix (159)
98.3 bytes #2A32h

4: symbolic array 4:
3: multiplicative factor 3:
2: rowi 2:
I: row j ====> 1: modified array

« -3 [CF
* 5 f 1]
#« 5 1 GET £ = s j GET AOD s j ROT PUT

5:;I::-:!:;l'-":' Swap Rows in Symbolic Matrix (158)

8¢7.3 butes #7BFEh

3: symbolic array 3:
2: rowl :
1: row?2 ====> 1: modified array

£ 0+ 51 ]
% =5 DUP i GET SWAP j GET s i ROT PUT 4§ ROT PUT
#
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EITF:H Transpose Symbolic Matrix (158)

124 bytes #8A0Sh
 

 

1: symbolic matrix ====> 1: transposed symbolic matrix
 

 

nm
1l m
FOR i 1 n

FOR i a i GET j GET
MERT

MEAT m n
= 5

« [DUP DUP SIZE SWAP 1 GET SIZE
* 3

Sal0L Extract Column from Symbolic Matrix (159)

3.9 bytes #4786h
 
 

2: symbolic array 2: reduced array
1: column number ====> 1: extracted column (list)
 

 

5 s n
s STRN n S5ROW SWAP STRN SWAP

¥
oo
4

 
 

 

 

-

=i -:l_"-'-l Extract Row from Symbolic Matrix (159)

88 butes #A2F7h

2: symbolic array 2: reduced array
1: row number ====> 1: extracted row (list)

5N
% EHHDE.J* OUP 2 + n - ROLL OYER 1 + ROLLD 1 - =LIST

P

s

B4

 
 

 

 

-.I"l 8 - . .. .

o ”D Synthetic Division (input form) (117)

939.3 bytes #FDDDh

2: array 2:
1: program ====> 1: modified array

x « [F DEPTH OUP ROT -»NUM DEPTH 1 - ROT ==
THEM £ NOVAL + 1 GET
END SWAP DROP
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THCOM

TRILx

314

#
f
o
b

W

"SYNTHETIC DIYISION"
{ "POLYMOMIAL:" "ENTER POLYMOMIAL RS VECTOR" 3 4 1}
"FACTOR:=" "ENTER FACTOR TO BE TESTED" A 1 1}
"UOTIEMT:" “DISPLAYS COMPUTED QUOTIENT" 3
"REMAINDER:" "DISPLAYS COMPUTED REMAIMDER" I 3
{ ¥ fields 1 enw DOLIST INFORM

THEM OBJ+ 3 DROPM
-+ P f

EHD{ p f SOIY 4 »LIST 'fields' 5T0 «synr EVAL »

e
e
e

—
l

n

£ MOVAL NOYAL MNOVAL NOVAL } 'fields' ST0
L ":'5':"'"'

«synr EVAL » 'fields' PURGE

Find Tangent and Normal at Point on Conic (267)

385 bytes #486Ah
 
 

2. {ABCDEF} 2: Normal: 'y=mx+b'
I (xy) ====> 1: Tangent: 'y=nx+d'
 

 

23
4

#
o
D + A

con %1 4l
RCLF -3 CF -22 SF
con 0BJ» DROPZ ROT 2 + gl * + 3 PICK =1 * + NEG
4 ROLLD SWAP 41 =+ + SWAP 2 * w1 * + SWAP
IF OUP NOT
THEN DROP MINR
END -
+ fpu
« 'g' fpw DUP INV NEG 2 =LIST DUP 'w' # SWAP w1 * -

gyl ADD COLCT = 0BJ+ DROP "Normal" +TAG SWAP
"Tangent" »THG ROT STOF

Z

Trigonometry Explorer (32)

2438.9 bytes #6860h
 
 

1: ====> 1:
 

 

2 23 "TRIGUNDMETPY E%PLDRER"o4 "<CDMS® )" “ANGLE IN
O0.MMs5" B 3 £ "g: "HHGLE IN RADIANS" B 9 } {
"RADIUS:" "RADIUS OF CIRCLE" B 9 } { "SIN:" "SINE OF
AMGLE" B 9 3 € "ARC:" "LENGTH OF ARC INMNSCRIBED BY
ANGLE" B 9 3 { "CO5:" "COSINE OF ANGLE" B8 9 } {
"AREAR:" "AREA OF CIRCULAR SECTOR" A 9  { "TAN:"
"TAMGEMT OF ANGLE" B 9 } ¥ £ 2 2 } { } ansd anar
tradi sine arc cosine area tang 8 =LIST INFORM

P. PrROGRAM LISTINGS



+ +infm
# RCOLF € -2 -3 X CF { 45 'we4' 1 'J2/2' 'med' 'J2A2

‘et 1 3 OURP 'old' STO ¢ angd angr radi sine arc
cosine area tang ¥ DUP 'fields' STO STD
MHILE <«infm EYAL
REPERT DUP fields STO

+ Mel
« { } 'ipputs' STO 1 8

FOR n
IF new n GET DUP £ NOVAL > 1 GET # SWAP old

n GET # AND
THEN fields n GET 'inputs' STO+
END

MEXT
IF inputs € } SAME
THEH net HBJ+ OROP
ELZE 1 1 2

FOR i
IF inputs € anad angr 3 DUP j GET DUP 4

ROLL SWAP POS
THEM PDS +
ELSE DROPZ
END

MEXT
Lcs 114

FOR j
IF inputs { sine cosine B tang 3 DUP

J GET DUP 4 ROLL SWAP POS
THEM PO5 +
ELSE DROPZ
END

NE%T FAD old i GET
sine ASIN »
l‘l:lSl I'u-' HFDao®
Yangr' DUP DUP SIN sine - SWAP COS
cosine - = SWAP 'w-4' =NUM ROOT =
tana HTHH *
‘angr' OUP DUP SIN sine - SWAP TAN
tang - = SWAP ‘'m-4!

IF sine SIGN tang SIGN #
THEN 'n' +
END =+NUM ROOT =

« langr' DUP DUP CO5 cosine - SWAP TAN

R
oA

R

tang - = SWAP 'n-4!
IF cosine SIGN tana SIGN #
THEN ‘'n' +
END =NUM ROOT =

OUP 5 »LIST SWAP GET EVAL OUP 'angr!
ST0 +HUM R+0 +HMS ‘'angd' STO

angd =MUM HMS+ D+R 'angr' S5T0 =
?EsrlngjR+0 +HMS 'angd' 5TO =

THEN anar +MUM B0 +HMS 'angd' 5T0
EhEE angd =MUM HMS+ 0+R ‘angr' S5T0

f
o
f

o
W
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SWAP GET EVAL
114
FOR j

IF inputs ¢ radi arc B area } DUP j
GET DUP 4 ROLL SWAP POS

THEN PD5 +
ELSE DROPZ
END

MERT
£ radi % arc angr < *» radi % area 2 * angr

< ABS [ » radi = arc angr -~ * radi
¥ old 3 GET SWAP + SWAP GET EVYAL RAD ansd
angr ROT OVER SIM 3 PICK 3 PICK =+ 4 PICK COS
5 PICK 5 PICK 5@ = 2 -~ ABS & PICK TAM

END 8 =LIST 1
« 3NUM 18 FIX -»0n

IF OUP TYPE
THEM -RFN

IF DUP £ - 3 1 GET PDOS B #
THEN

IF DUP 2 GET 188 <
THEM EVAL -0On
ELSE EVAL -MNUM
END

ELSE EVAL
END

END STD
» DOLIST OUP fields 5TO 'old' 5T0

&

END STOF ¢ anad angr radi sine arc cosine area tang
fields inputs old I PURGE

&

TEMNCOM Translate Conic (272)

249.35 bytes # SFBh
 
 

2: {ABCDEF) 2:
I: [xy] ====> 1: {ABCDEF)}
 

 

« [BJ+ DRDPbRDTjDBJ% OROP
* { A C de

« abcbd+Z2ha#**-ebh=#*-2kc=#*=*-a3ah
S0+ bhk %+ ck S50+ dh*-ek*-f+58
+LIST

Py
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TI'.'I I EI-'J View Transformed Array of Points (214)

378 butes #134hh
  

1: object array of points ====> 1: object array of points
 

 

FICT PPAR > PURGE ERASE DUFP SIZE OBJ+ DEOP (B, H)
*amn s

g OUP € mon 3 GET~ 'a' STO 1 m
FOR k a k ROW- 1 2 SUB W+ R+C DUP s + 's' 5T0 SWAP

OROP
MERT m +LIST 'p' 570 5 m ~ OUP (6,33 - SWAP (6,30 +
POIM 1 m
FOR i p 3 GET P m MID 1 + GET LIME
MEST 'p' PURGE { * 1 ATICK DRAS PYIEW a

  

 
 

UDFU I Apply User Interface to a UDF (27)

339 butes #3C2Ah

1: name of UDF ====> 1:

l‘ lilame infdat
name RCL +5TR 4 OMER SIZE SUB "'«<% + 1 OMER "'" PO3 3
PICK =" P03 MIM 2 - 5B "0 SWAP + OBJ+ "" name +
SWAP mame + 1« ":% 4+ o OOLIST DUP SIZE 4 - CEIL OYER
1 =« OROP +« MOMAL > HEARD = OOLIST OUP 5 ROLLOD 4 =LIST
Yinfdat ' STO
WHILE infdat 0BJ+ DROP S REOLL IMFORM
REFEAT OUP OBJ+ DROFZ name EVAL DUP 3 PICK 3SWAP name
EHD*THG 4 ROLLD SIZE SWAP PUT

I'.'lD I F': Find Vector Direction Angles (177)

181.3 bytes #14F8h
  

1: vector ====> 1: list of direction angles
 
 

« [UP SIZE 1 GET SWAP DUP ABS
Fnouom

# 1 n

FOR i w i GET m « ACOS
MEST n +LIST

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 317
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Examples Index

1. Exploring Functions

Adding a special user-interface to UDF 27
Finding composition of two functions 22

Finding range of a function 11

Finding the inverse of a function 23

Modifying UDF so that it can be plotted 26

Plotting a linear function 9

Plotting a rational function 18-19

Plotting family of lines, varying intercept 10
Plotting family oflines, varying slope 10

Plotting family of quadratics 12

Solving a quadratic graphically 15
Solving a quadratic numerically 17

Solving a quadratic symbolically 17

Symbolically isolating a variable 14

Using UDF to compute distance between points in space 25

Using UDF to compute volume of a cone 24

Varying base in logarithmic function 21

Varying exponent in exponential function 20

2. Trigonometry

Arithmetic using HMS degrees format 30

Computing trigonometric ratios 33

Converting degrees to radians 30

Converting radians to HMS format 30

Plotting using different angle modes 31

Solving a triangle (KAA) using SOLA 47

Solving a triangle (SAS) 45

Solving a triangle (SSA) using SOLA 46

Solving trigonometric equations from the keyboard 50

Solving trigonometric equations graphically 49
Solving trigonometric equations using SOLVE 48

Triangulating on UFO 53
Triangulating to a distress call 52

Triangulating to compute distance to sun 54

Using trigonometric identities to solve equations 40
Using trigonometry to appraise a plot of land 51

Verifying a trigonometric identity 36
Verifying a trigonometric identity graphically 38
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3. Polar and Parametric Equations

Astroid plot 90

Cardioid plot 87
Changing coordinate display mode 59

Cissoid of Diocles plot 79
Computing a complex function 72

Conchoid of Nicomedes—a<b 81

Conchoid of Nicomedes—a>b 81

Curtate epitrochoid plot 88

Curtate hypotrochoid plot—integralratio of radii 91

Curtate hypotrochoid plot—non-integral ratio of radii 92

Curtate trochoid plot 85

Deltoid plot 90

Effect of coordinate mode on entry 59

Entering polar coordinates 59

Epicycloid plot—integral ratio of radii 86

Epicycloid plot—non-integral ratio of radii 86
Finding intersection points of two polar functions 65

Finding the period of a polar function 61

Folium of Descartes plot 80

Hyperbolic spiral plot 94

Hypocycloid plot 89
Lemniscate of Bernoulli plot 78

Limagon plot—a<b<2a 83

Limacgon plot—a=b 83
Limagon plot—a>b 83

Limagon plot—b>2a 83

Lissajous plot 98

Lituus spiral plot 96
Logarithmic spiral plot 95

Modeling circular-to-linear transfer parametrically 70

Nephroid plot 87
Ordinary cycloid plot 84

Oval of Cassini plot—a<e 77
Oval of Cassini plot—a>eN2 77
Ovals of Cassini plot—e<a<eN2 77

Parabolic spiral plot 96
Plotting the Folium of Descartes parametrically 66

Plotting a complex function using Parametric plot type 73
Plotting a complex mapping using Gridmap plot type 75
Plotting a function described parametrically 69
Plotting a polar equation 64

Plotting a polar function 61

Plotting the complex plane using Gridmap plot type 74
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Plotting two parametric equations simultaneously 71

Prolate epitrochoid plot 88

Prolate epitrochoid plot—non-integerratio of radii 89
Prolate hypotrochoid plot—integral ratio of radii 91

Prolate hypotrochoid plot—non-integralratio of radii 92

Prolate trochoid plot 85

Rose plot—a>2b 93

Rose plot—b<a<2b 93
Sinusoidal spiral plot—n=3/4 97

Sinusoidal spiral plot—n=-1/3 97

Sinusoidal spiral plot—n=-7/5 97

Spiral of Archimedes plot 94

Strofoid plot 82

Tractrix plot 98

Witch of Agnesi plot 99

4. Polynomials

Adding two matrices 139

Adding two polynomials from the stack 109

Adding two polynomials using FRHOD 110

Converting polynomials from vector to symbolic for 101

Converting roots to polynomials using FCOEF 131

Converting roots to polynomials using ECOEF 132

Dividing one polynomial by another 112

Find the product of two polynomials 111

Finding real roots of a polynomial graphically 127

Finding real roots of a polynomial using RROOTS 130

Finding roots of a polynomial using SOLVR application 124

Finding roots of a polynomial using Solve Equation... application 126

Finding roots of polynomial with SOTY 120
Finding roots ofsingle-variable function via PCOMY 133

Finding the positive integral power of a polynomial 114

Finding the roots of a polynomial using SN0l 122
Graphically determining degree of a polynomial 106
Graphically finding an extremum 105

Plotting a polynomial 102

Plotting polynomial and first derivative 104
Polynomial division with a remainder 113

Straightening a polynomial by plotting successive derivatives 107
Subtracting one polynomial from another 110

Synthetic division using SOIY 116
Synthetic division using 57M0 117
Using the Solve Poly... application 129
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5. Systems of Linear Equations

Finding the condition number for a square matrix 137

Finding the determinant of a matrix 142

Finding the rank of a matrix 138

Graphically characterizing a linear system 136
Inverting a matrix using Gaussian elimination 149

Inverting a matrix with 1/x 143

Multiplying matrices 141

Plotting a system of inequalities 161

Solve a linear system using COFACTRE 155

Solving a linear system using CRAMER 152

Solving a linear system using Solve Lin Sys... application 156

Solving a linear system using the stack 156

Solving a linear system with Cramer’s Rule 151

Solving a linear system with Gaussian elimination 146

Solving a linear system with BREF 148

Solving a maximum linear program 165

Solving a MaxMin linear program 170

Solving a minimum linear program 168

Solving an over-determined linear system 160

Solving an under-determined linear system 160

Transposing matrices 141

6. Analytic Geometry

Adding two vectors 174

Centering a projection using a translation 236

Compute the transformation matrix needed to rotate an object around a line in
space 225

Converting a line from array to general form 195
Converting a line from general to parametric form 194

Converting a line from parametric to array form 194

Converting a line from parametric to general form 195
Converting a line from parametric to slope-intercept form 194

Converting a line from slope-intercept to array form 195

Creating a “3D-object” and viewing it with an orthographic projection 229
Determine the number of points in common between a line and a plane 209

Determining collinearity of a point and a line 196
Determining collinearity of three points 186

Determining collinearity of three points using COLIMNT 186
Determining the relationship of two lines in space 201

Finding the angle of intersection of two lines 202
Finding the angle ofintersection of two planes 206

Finding the area ofa triangle using the cross product 190
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Finding the centroid ofa triangle 191

Finding the cross product of two vectors 175

Finding the direction angles of a vector 176

Finding the direction angles of a vector using YIIIE 177
Finding the distance between parallel lines 201

Finding the distance between two points 180

Finding the distance from a point to a line 189

Finding the distance from a point to a line in space 198

Finding the distance from a point to a line in space using Otol 199

Finding the distance from a pointto a line using lt.ol 189

Finding the distance from a point to a plane 207

Finding the distance from the origin to line 199

Finding the dot product of two vectors 174

Finding the length of a median of a triangle 191

Finding the length of a vector 176

Finding the line containing two points 182

Finding the line containing two points in space 183
Finding the line containing two points using F£+L 182

Finding the line given its slope and a point on the line 192

Finding the line in space with a given direction vector 192

Finding the line of intersection of two planes 205

Finding the line of intersection of two planes using FLE+*L 206

Finding the line parallel to a given line through a given point 197

Finding the line perpendicular to a given line containing a given point 197

Finding the line perpendicular to the line determined by two given points that contains a

third point 188

Finding the lines determined by three noncollinear points 187

Finding the midpoint of a line segment 181

Finding the perimeter of a triangle determined by three noncollinear points 190
Finding the perpendicular bisector for a line in space 185

Finding the perpendicular bisector of a line segment 184

Finding the perpendicular bisector of a line segment using P2PB 184

Finding the plane given a line and a point not on the line 196

Finding the plane given a line in the plane and a perpendicular plane 211
Finding the plane given a point on the plane and a parallel plane 208

Finding the plane given a point on the plane and a perpendicular plane 208

Finding the plane givenits three traces 204
Finding the plane given three noncollinear points in the plane 188

Finding the plane given two lines in the plane 203
Finding the point of intersection of a line and a plane 210

Finding the point of intersection of a line and a plane 211
Finding the point of intersection of two lines 200

Finding the point that divides a line segment into a given ratio 181
Finding the traces of a given plane 204
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INlustration of the non-commutativity of the cross product 175

Multiplying a vector and a scalar 174

Performing a projection from within an object 241

Performing a single-point perspective projection 235

Performing a three-point perspective projection with translation 240

Performing a two-point perspective projection 238

Performing a two-point perspective projection with translation 239

Projecting a 3D-object using a dimetric projection 232

Projecting a cube isometrically 233

Reflecting an object across an arbitrary line in space 227

Reflecting an object across both coordinate axes 226

Rotating a 2D-object around an arbitrary point 222
Rotating a 2D-object around the origin 221

Scaling an object using global scaling 217

Scaling the horizontal component of an object 215

Scaling the vertical component of an object 216

Shearing an object horizontally 219

Shearing an object vertically 218

Subtracting one vector from another 174

Translating an object 220

7. Conic Sections

Determining whether a pointlies inside, outside, or on a given circle 254

Finding the asymptotes and foci of a hyperbola 263

Finding the center and eccentricity of a given hyperbola 262
Finding the center and radius of a circle 250

Finding the center, semimajor, and eccentricity of an ellipse 256
Finding the circle given its center and a tangent 268

Finding the circle given its center and radius 250
Finding the circle through three points using the linear systems method 253
Finding the circle through three points using the perpendicular bisector method 252

Finding the eccentricity and directrixes of an ellipse 258
Finding the ellipse givenits center, semiaxes, and angle of orientation 256

Finding the ellipse given its eccentricity and a directrix and corresponding focus 258
Finding the focus of a parabola 260

Finding the hyperbola given its center, a and b parameters, and the angle of orienta-

tion 262
Finding the hyperbola given its eccentricity and a directrix and corresponding fo-
cus 264

Finding the normal through a given point on a circle with a given center 268
Finding the parabola givenits vertex and directrix 260
Finding the points of intersection of a circle and a line 265
Finding the points of intersection of an ellipse and a line 266
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Finding the points of intersection of a hyperbola and a line 266

Finding the points of intersection of a parabola and a line 266

Finding the tangent and normal to an ellipse at a point on the ellipse 269

Finding the tangent and normal to a hyperbola at a point on the hyperbola 270

Finding the tangent and normal to a parabola at a point on the parabola 269
Finding the tangentto a circle at a point on the circle 267

Finding the vertices and foci of an ellipse 257

Plotting a circle in a square viewing area 247

Plotting a circle with Conic plot type 245

Plotting a circle with CONPLT 249
Plotting a conic using the default resolution 246

Plotting a conic with enhanced resolution 246

Plotting a hyperbola with CUMPLT 248

Rotating a conic by a specified angle 271

Rotating a conic into standard orientation 272

Translating a conic along a given vector 272

Translating a conic to the origin 273
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APOLY
A=

CIR=G
CHMPOS
COFACTR
COLIN?
COMPLT
CRAMER
C+5TD

DMTRC
Ot.oL

ELP+0

FIMY
FMPLT

5+A
G+CIR
G+ELP
G+HYP

G+PBL

HYP=G

[+GEN
INPLOT
[SMTRC

LCOMW?
LINPRG
LINZ?
LPL=P
LTRIM

NRMLZ

PROD
PAR=1I
PEL=0
PCONY
PDIYIDE
PD=P
PERS
PGALL
PHASE 1
PIMOT
PLZ»L
PHMULT
P+PD
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Programs Index

Analyze a Polynomial

Rationalize an Array

Convert Circle Parameters to General Form

Composite of Two Functions

Find Cofactor Matrix

Test for Collinearity of Point and Line

Plot Conic from General Form

Apply Cramer’s Rule

Rotate Conic to Standard Orientation

Create Dimetric Projection

Find Distance from Point to a Line

Convert Ellipse Parameters to General Form

Function Inverse

Plot Family of Curves

Convert Line from General to Array Form

Find Circle Parameters from General Form

Find Ellipse Parameters from General Form

Find Hyperbola Parameters from General Form

Find Parabola Parameters from General Form

Convert Hyperbola Parameters to General Form

Convert Line from Slope-Int. to General Form

Plot System of Inequalities

Create Isometric Projection

Find Intersection of Line and Conic

Linear Programming

Determine Relationship of Two Lines

Find Intersection Point of Line and Plane

Trim Zeroes from Left of Array

Normalize Object Array after Transformation

Polynomial Addition

120, 122, 124,126, 276

143, 154-155, 200, 211, 253, 277

250, 252, 268-269, 277

22,277

154, 159, 278

186, 196, 278-279, 288

248-249, 256, 262, 271-273, 278

152, 279

271-272, 280, 283-284, 286

232,280

189, 199, 201, 268, 280

255-256, 258, 281

23,281

10, 12-13, 20-21, 41-43, 281-282

193-195, 199-202, 252, 268, 282

250, 254, 273, 282-283, 286

255-256, 283, 286

261-263, 283, 286

260, 283-284, 286

261-262, 264, 284

189, 193, 195, 252, 284

161, 284-285

233,285

265-266, 285-286

164-166, 168, 170, 286-288

200-201, 252, 288

211, 288-289

289, 290, 292

234-236, 289, 293

109-110, 289, 297, 299

Convert Line from Parametric to Slope-Int. Form193-195, 290

Convert Parabola Parameters to General Form

Convert to Polynomial Form

Polynomial Division

Convert Line from PD to Parametric Form

Create Perspective Projection

Purge Variable in Path

Convert Tableau to Canonical Form

Pivot Tableau on Given Element

Find Intersection of Two Planes

Polynomial Multiplication

Convert Line from Parametric to PD Form

260, 290

133, 290-291

112-113, 291

183, 185, 192, 194, 197, 205, 291, 296

238-241, 292

281-282, 286, 292, 311, 315

164, 287, 292-293

164, 294, 305

206, 294

111, 291, 295, 299

193-194,196-199, 201, 203, 209-211, 225, 295
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FPOWER
SUE

P+5YM
P2+l
PZ+PE

LosaLY

RCOEF
REMMOR
RFLCT
ROTCOM
ROTZ0
ROT20
+EPM
RROOTS

SCFACTR
SCOF
SCRAMER
SCSLP
SDET
S I '...l

SIMPLER
S+
+5
SMADD
SMIMY
SHMMULT
SMSMULT
SMsaLY
SMSUB
SNCOL
SNREOL
S0l
SPIRO
St
SRCI
LRI

SRSLP
STEM
SwCOL
SR
SYMO

THCOM
TRIGH
TRMCOM
TWIEL

LOFUI

YOIR

Raise a Polynomial to a Natural Power

Polynomial Subtraction

Polynomial to Symbolic

Find Line Containing Two Points

Find Perpendicular Bisector from Two Points

Solve Quadratic

Compute Symbolic Polynomial from Roots

Compute Symbolic Remainder

Create Reflection Transformation

Rotate Conic

Create 2D-Rotation Transformation

Create 3D-Rotation Transformation

Converts Algebraic to RPN List

Find Roots of Polynomial

Find Symbolic Cofactor Matrix

Find Symbolic Cofactor

Apply Cramer’s Rule to Symbolic Matrix

Swap Columns in Symbolic Array

Symbolic Determinant

Synthetic Division (stack version)

Applies Simplex Algorithm to Tableau

Disassembles Symbolic Matrix

Assemble Symbolic Array

Symbolic Matrix Addition

Invert Symbolic Square Matrix

Symbolic Matrix Multiplication

Symbolic Scalar Multiplication

Solve Symbolic System of Linear Equations

Symbolic Matrix Subtraction

Insert Column in Symbolic Array

Insert Row in Symbolic Array

Solve Triangle

Spirograph Simulation

Square Root UDF

RCI for Symbolic Matrix

RCIJ for Symbolic Matrix

Swaps Rows in Symbolic Matrix

Transpose Symbolic Matrix

Extract Column from Symbolic Matrix

Extract Row from Symbolic Matrix

Synthetic Division (input form version)

Find Tangent and Normal at Point on Conic

Trigonometry Explorer

Translate Conic

View Transformed Array of Points

Apply User Interface to a UDF

Find Vector Direction Angles

Programs Index

114, 291, 296

110, 291, 296

110-111, 114, 124, 126, 296, 299

182, 187, 189, 195, 297

184, 252, 297

121, 123, 125, 127, 297-298

132,298

292,298

227,299

271, 281, 284, 291, 299

222,299

225, 300

291, 296, 300, 317

130, 133, 276, 301

159, 301, 306

157-159, 301-302

159, 302

159, 302

157-159, 302, 306

116, 120-121, 125, 127, 303, 315

164-165, 287, 295, 303-304

157-158, 304

157-158, 305,314

157- 158, 305

159, 305

157-159, 305-306

157-159, 306

159, 306

157-158, 307

159, 303, 307

159, 307

46-47, 308-311

84, 311

298, 312

158, 312

159, 312

158, 303, 312

157-158, 303, 306, 308, 313

159, 302-303, 313

302, 313

117, 313-314

267, 269-270, 314

32-33, 314-316

271-273, 316

214-222,227, 230-233, 235, 237-241, 316-317

27, 317

177, 317
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Subject Index

+ term in algebraics 17

Absolute value 173, 180

ADD function 13

Affine transformations 228

Amplitude of a trigonometric function 41-43

Analytic geometry 172-241

Angle
determined by a cone with its base 243

determined by intersecting lines 179, 202

determined by intersecting planes 179, 206

inscribed 251

of rotation 212, 221-222, 224-225, 228, 231,

233,237,271

orientation 255, 258-259, 261

polar 94

Angle key (polar entry) 59

Angle mode

and parametric plotting 69

effect on polar entry 59
Angles

general 50

HMS format 30, 51, 54

of triangle 29-30, 44

principal 32, 50

supplements of 47, 202, 206

units of measure 30-31

vertical 251

Arc

intercepted 251

length 33, 94-95

Area

of a triangle 45, 51, 178, 198

of circular sector 33

Arithmetic
with matrices 139-143

with polynomials 109-114

with symbolic matrices 158

with vectors 174-175

Arrays

of points 213-214, 216, 218-241

symbolic 143

transformations with 212
vectors 173

Astroild 90

Asymptotes 18-19, 62, 68, 79-82, 96, 99, 263

Augmented matrices 145-146, 148-152, 157-159

Autoscaling a plot 39
Axis

of rotation 212, 221-225

parabolic 260

Axonometric projections 228, 234

328

Bisection approximation method 123

Cardioid 87

Cardioids 65

Cassinian curves 7678

Center of projection 228

Centering plot on cursor position 107

Centroid ofa triangle 178, 190-191
Check-mark 18

Checksum of a program 275

Chords 251

Circle 243, 247, 250-255, 267, 269, 273

and cycloidal curves 84

and radians 30

arc 30
center 250, 252, 254, 268, 273

cissoid of 82

conchoid of 82

radius 29, 84, 250, 252, 254, 268

unit 29

Cissoid of Diocles 79

Cissoids 79-83

Coefficients of functions 41-43

Coefficients of general equation of a conic 248,

250, 254, 260, 262-67, 269, 271-273

Coefficients of general equation of a plane 187-188,

196, 203, 205, 207

Cofactor 153-154, 158

Cofactor matrix 153-155, 159

COLCT command 14, 109

Collecting like terms 36, 109

Collinear lines 179, 197

Collinear points 178-179, 186, 196

Complex Conjugates Theorem 118

Complex numbers 60

algebraic vs. coordinate forms 66

and coordinate points 60, 250
and parametric functions 66, 72, 72-75

and the Solver 125

conjugates of 118

polar representation 60

Complex roots 125-126, 129-131

Compositions of functions 22-23

Conchoid of Nicomedes 79, 81

Conchoids 79-83

Condition number of a matrix 136-138
Conic plot type 244-245

Conic sections 242-273

plotting 244-249, 256, 271-273

translating and rotating 271-273

CONNECT mode 18-19, 62

Constants—symbolic 24

Constraints (linear program) 162-166, 168, 170-171
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Converting decimals to fractions 40

Converting one-variable function to polynomial 133

Converting one linear equation form to another

193-195

Coordinate system 220

Coordinates

display of 58-59

homogeneous 213

of graphics cursor 16

Coplanar 201, 209, 250

Cosecant 29

Cosine 29
Cotangent 29

Cramer’s Rule 144, 150-152, 159

Cross product 174-175, 187- 188, 190, 196-198,

203, 205, 208, 211

Curtate curves 84-85, 88, 91-93

Curves

Cassinian 76-78

cissoids and conchoids

cycloidal 84-93

spirals  94-97

Cycloid 84

Cycloidal curves

79-83

84-93

Defining procedure in user-defined functions 24

Degrees 30-31, 51

Deltoid 90

Depressed polynomial 121

Derivatives 104-107

Descartes’ Rule of Signs 119-121, 124-125

Determinant 142, 144, 150-155, 158

Diagonal elements of a matrix 143, 214

Dimensions of a matrix 139-141

Dimetric projection 212, 228, 231-232

Direction angles of a vector 176-177

Direction vectors of lines 185, 192, 196-197, 202,

205, 209-210, 225

Directory 27, 275

Directrix 243, 257, 259, 263

Discontinuities 18

Discriminant of a quadratic 13

Display range 26, 31, 39-40, 61, 247

Distance
between center and focus 261

between focus and vertex 259
between parallel lines 179, 201

between two points 178, 180

from a point to a line  178-179, 189, 198-199

from a point to a plane 179, 207

Division
of matrices 143

of polynomials 112-113
synthetic 115-124

Domain of a function 11

Dot product 140, 174-175, 187-188, 202, 208-211

Subject Index

Eccentricity 243, 255, 257, 259, 261, 263- 264

Ellipse 243, 246, 255-258, 269, 271

angle of orientation 255-256, 258

center of 255-256, 258

directrixes 257-258

eccentricity  255-258

foci 255, 257-258

semimajor 255-258

semiminor 255-256, 258

vertices 257-258

Epicycloid 69, 84, 86-87

Epitrochoid 88-89
EQ variable 124

Equation of a circle 250, 252-253, 268-269

Equation of a hyperbola 261-264

Equation of a line

array form 189, 193-195, 199-201

determined by three points 178

determined by two points 178, 182

general form 178, 189, 193-195, 199-201

intersection of two planes 179

parametric form 178, 183, 185, 192-201, 203,

205-206, 210-211, 225

perpendicularto a line 197

perpendicular to two other lines 179, 188

position-direction (PD) form 193-195, 197-199,

201, 203, 209-211, 225

slope-intercept form 178, 182, 192-195, 265

Equation of a parabola 259-260

Equation of a plane

determined by a point and a line 179, 196

determined by a point and plane 179, 208

determined by its normal and a point 179

determined byits traces 179, 204

determined by three points 178, 187-188

determined by two noncollinear lines 179, 203

general form 187, 205, 207

vector form 206, 211

Equation of an ellipse 255, 258

Equation of general conic 243, 248, 250, 259

Equation of the normalto a plane 179

Equations

consistent vs. inconsistent 135
degenerate 135

independent 135, 137

EquationWriter 36
Equiangular spiral 95

Euclidean norm 160

EXPAN command 14
Expansion of a polynomial 114

Exponential functions 20-21

Extracting rows or columns of a matrix 159

Extrema 104-105
Eyepoint 228, 234, 236, 238-241

329



Factor of a synthetic division 115-118, 120-123

Factor Theorem 118

Flags

controlling principal vs. general values (-1) 50

controlling symbolic constants (-2) 24

controlling symbolic results (-3) 24, 36, 40

Focus 243, 255, 257, 259, 263

Folium of Descartes 62, 66, 80

Foreshortening of axes 228, 231-233

Fractions 40, 143, 154-155, 200, 211, 253

Function plot type 136, 245

Functions

and geometric transformations 212

complex-valued 72

composites of 22-23

exponential 20-21

finding range of 11

implicit 244-245

inverse 20, 23, 50

linear 9-11

logarithmic 20-21

non-periodic 94

objective 162

parametric 57-58
periodic 29, 48
plotting 9

polar form 61

polynomials 101

quadratic 12-18

rational 18-19

solving graphically 15

solving numerically 17

solving symbolically 17

tracing 16

trigonometric 29

user-defined 24-27

Fundamental Theorem of Algebra 118

Gauss-Jordan reduction 145

Gaussian elimination 144-149

General value of angles 50
Geometric objects 213

Gridmap plot type 74

Guesses when solving an equation 17, 125

Hemisphere 212

Heron’s Formula 45

HMS angle format 30, 51, 54

Homogeneous coordinate representation 213
Horizontal shift of a trigonometric function 41-43

Hyperbola 243, 248, 261-264, 270, 272
angle of orientation 261-262, 264

asymptotes 263-264
b parameter 261-262, 264
center 261-262, 264

directrixes 263-264

330

distance between center and foci 261

eccentricity 261

foci 261, 263-264

semimajor 262

vertices 261, 264

Hyperbolic spiral 94

Hypocycloid 84, 89-90

Hypotrochoid 91-93

Identities 48

double-angle 34

half-angle 35

Pythagorean 34
sum and difference 34

sum and product 35, 40

verifying 3440

Identity matrix 143, 145, 149, 214, 234

Inequalities 161

Inflection point 107

Inner product 140, 174

Inscribed angle 251

Inserting rows or columns into a matrix 159

Intercept of aline 182, 184, 188, 192-193, 268

Intersection
of chords 251

of line and a plane 210, 211

of lines and conics 265-273

of perpendicular bisectors of chords 252

of secants 251

of two lines 179, 200,202

of two planes 179, 204, 206

plane and a right circular cone 243

true vs apparent 65

Intersection point 179, 198, 210-211

Inverse functions 20, 23

trigonometric 48, 50

Inverse of a matrix 142-144, 149, 153-156, 159

ISOL command 14, 23, 48, 50

Isolating a variable 14, 48

Isometric projections 212, 228, 233

Law of Cosines 44-45

Law of Sines 44-45, 52

Least common multiple 132

Least-squares solution 160

Lemniscate of Bernoulli 76, 78

Limacgons 82

Line

equation of 178, 182-183, 185, 188-189, 192-195
intersection of two planes 179, 205

parallelto it through a given point 179
perpendicular through a given point 178-179,

197

vertical 270
Line segment 173

dividing into a given ratio 178, 181
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length 190

midpoint of 178, 181, 184-185

perpendicular bisector of 178, 184-185, 227, 252

Linear equations 134

as a matrix equation 153

solving 145-156, 205

symbolic solutions 157-159

Linear inequalities 161-171

Linear programming 162-171

Lines 135

collinear 179

concurrent 135, 179, 200

direction vectors of 185, 192, 197, 205

in space 183, 185, 192-193, 198-199, 223

intersecting 135, 200, 202-203

parallel 179, 200-203, 212

perpendicular 179

skew 179, 200-201

slope-intercept form 9, 192-193

Lissajous 98

Lists 13

Lituus spiral 96

Local names in user-defined functions 24

Logarithmic functions 20-21

Logarithmic spiral 95

Logarithms 21

Long division 115, 116

Lower bound ofthe roots of a polynomial 119-120,

122-124

Lower Bound Theorem 119

Matrices
addition of 139, 158, 174

and vectors 173

arithmetic with 139-143, 158

assembling 158

augmented 145, 148-150, 152, 157, 159
characterizing 135

cofactor 153-155, 159

condition number of 136-138

determinant of 142, 150-152, 154-155, 158

dimensions of 139

disassembling 158

editing 138
extracting rows or columns 159

identity 143, 145, 149, 214, 234

ill-conditioned 137

inserting rows or columns 159
inverse of 142-144, 149, 153-156, 159

multiplication 140-141, 153, 158, 175, 216,

222-223, 226, 231

rank of 136, 138
reduced row echelon 145, 147-149

representing linear programs 162
row echelon 145, 147

row operations 159

Subject Index

row operations on  144-145, 148, 158

scalar multiplication 139, 158

subtraction 140, 158, 174

symbolic 143, 157-159

transformation 213-241

transposing 141, 154-155, 158

Matrix equations 153

Maxima 102, 104

MaxMin problem 170-171

Median of a triangle 190-191

Midpoint of a line segment 178, 181, 184-185, 191,

261

Minima 102, 104

MinMax problem 171

Multiplication

matrices 140-141, 153, 158, 175, 216, 222-223,

226, 231

scalars and matrices 139, 158, 174

nl variable 50

Names 24

Nephroid 87

Normal to a conic 267-273

Normal to a plane 179, 187- 188, 205-210

Normalization of a transformation 234-236

Numerical precision 39-40, 167

Objective function in a linear program 162-166,

168, 170-171

Optimization 162-171

Orthographic projections 228-230

Ovals of Cassini 76

Parabola 243, 259-260, 269, 272

angle of orientation 259-260

directrix 259-260

eccentricity 259

focus 259

p parameter 260

vertex 259-260

Parabolic axis 260

Parabolic spiral 96

Parallel lines 179, 197, 200-201, 212, 228
Parallel planes 187, 205-206, 208, 230

Parameters 57, 68

angle 57

of a vector 176

time 57,67,70
Parametric functions 57-58

plotting 66-71

Parametric plot type 72-75

and complex numbers 66
Pascal’s Snails 82

Path 27,275
Pattern matching 36, 40

Perimeter ofa triangle 190

331



Period

of a polar function 63

of a trigonometric function 41-43

Periodic functions 29, 48

Perpendicular 179

to aconic 267

toaline 178-179, 188, 197

to aplane 187,205, 211

vectors 175

Perpendicular bisector 178, 184-185, 227, 252

Perpendicularity of the coordinate axes 212

Perspective projections 212, 234, 236-241
Phase shift of a trigonometric function 41-43

Piin a complex number 59

Pivot operation 164

Plane

complex 60, 74-75

equation of 178-179, 187-188, 196, 203-204, 208

of reflection 212, 226-227

projection 229

traces of 204, 226

viewing 228-229

Plotting

3-D objects  231-233, 235, 237, 239-241
and Connect mode (flag -31) 18

angle mode 30-31

complex functions 72-75

conic sections 244-249, 256, 262, 271273

curves 76-99

discontinuities in 18

functions 9-10, 12

implicit functions 244, 245

inequalities 161

object arrays  214-220, 222, 227, 230, 232-233,

235, 237, 239-241

parametric functions 6671

polar functions 61-65

polynomials 101-108
range 26,61, 67-68

rational functions 18

resolution of 18, 61, 67, 246

simultaneously 64, 245

with autoscaling 39

Points

and coordinates/complex numbers 60

and vectors 173

collinear 178-179, 186, 196

coplanar 250

homogeneous coordinate representation 213
inflection 107

intersection 179
noncollinear 187, 203, 251-252
vanishing 234-236

Polar angle 94

Polar coordinates 58-60

Polar functions 61-65

332

Polar mode 59

Polar radius 94

Polynomials 100-133

arithmetic with 101, 109-114

coefficients 101, 109

converting from vector to symbolic 110, 132

converting to from single-variable functions 133

definition 101

degree of 101-102, 104-106, 108, 112, 118

depressed 121

expansion 114

finding roots of 102, 104, 115

plotting 101-108

theorems 115, 118-124

Principal value of angles 50

Programs 275-319, 327-328

Projections 212-213, 217, 228-241

axonometric 228, 234

dimetric 212, 228, 231-232

isometric 212, 228, 233

orthographic 228-230

perspective 212, 234, 236-241

Prolate curves 84-85, 88-89, 91-93
Pythagorean theorem 34

Quadratic formula 121

Quadratic functions 12-18

Quotient of a polynomial division 112-113,116-123

Radians 30-32

Range

and autoscaling 39

of a conic plot 247

of a function 11, 61, 68

of solution search 125

Rank of a matrix 136, 138

Rational functions 18-19
Rational Root Theorem 118, 120

Rational roots (polynomial) 118, 120-122

Real roots (polynomial) 102, 104, 118-125, 127-

128, 131

Rearrangements (symbolic) 14

Rectangular coordinates 58

Reflection 212, 226-227

Remainder (polynomial div.)

Remainder Theorem 118

Resolution 61, 74, 246

Root-finding

in PICTURE mode 17, 49, 105, 127-129
in SOLVEapplication 48, 124-127
of polynomials 115-131

Rose 93
Rotation 212- 213, 221-227, 234, 237, 271273

in three dimensions 223, 225

multiple 223-224, 228, 231

Round-off error  39-40, 167

112-113, 116-123
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sl variable 17

Scalar multiplication 139, 158, 174

Scaling 212-218, 221, 234

Search and replace 36

Secant 29, 251, 265

Sector 33

Segment of aline 173

Semimajor of an ellipse 255, 257

Semiminor of an ellipse 255, 257-258

Sensitivity analysis 167

Shearing 212- 213, 218-219, 221

Sides oftriangles 44
Simplex Method 162-163

Simultaneous plotting 64

Sinusoidal spirals 97

Skew lines 179, 200-201

Slope 9, 104, 182, 184, 188, 192-193, 268

Solution space 161-163

SOLVE application 45, 48, 124-127, 131

Solve Lin Sys... application 156, 253

Solve Poly... application 101

Solving linear system 144, 153-156, 205, 253, 264

Solving equations using trigonometric identities 40

Solving triangles 4447

Solving trigonometric equations

Spiral of Archimedes 94

Spirals 94-97

Standard orientation 272

STEP field 67

Strofoid 82

Supplement of an angle 47, 202, 206

Swapping rows or columns in a matrix 159

Symbolic

constants 24

inputs 33

isolating a variable 14, 48

matrices 157-159, 158

pattern matching 36, 40

rearrangements 14

results 22, 24,36

simplification and verification 36

solutions of equations 17, 40, 50

solutions of linear systems 157-159
Syntax 24
Synthetic division 115-124

Systems of linear equations 134-138, 253

as matrix of coefficients 136, 153, 205
over-determined 135, 160-161

under-determined 135, 160-161

48-50

Tableau 164, 167

Tangents 29, 265, 267-273

Taylor’s approximations 245

Tick-marks 18

TRACE operation
Traces of a plane

16, 63-64, 68
179, 204, 226

Subject Index

Tractrix 98

Transformation matrix 213-241
Transformations 193, 212-241, 271-273

Translation 212-213, 220, 222, 234-241, 271-273

Transposing matrices 141, 154-155, 158

Triangles 29, 34, 190, 198

area of 178, 190, 198

centroids of 178, 190-191

medians of 190-191

solving 4447

Triangulation 44, 52-54

Trigonometric identities 34—40

Trigonometric functions 29, 32-33

Trigonometric laws 44-45, 51-52

Trigonometry 29-54

Trochoids 84-85

Unit square 215

Units in computations  51-52

Upper bound of roots of a polynomial 119-122, 124

Upper Bound Theorem 119

User interface 27

User-defined functions 24-27

Vanishing point 234, 236

Variables 275

artificial 164, 167

basis 164, 167

decision 164, 167,171

independent 57, 72, 74, 135

slack 167

Vectors 173-177

arithmetic 174-175

magnitude of 173, 176-180

translation 238, 239, 240, 241, 272, 273

components of 173, 176, 183, 185, 214

direction 185, 192-197, 202, 205, 210, 225
direction angles of 173, 176-180

normal 187-188,205-208, 210

perpendicular 175

position 193, 203, 207-208, 213, 225

products of 174
weighted 181

Verifications 36, 38

Vertex 163, 191, 243, 257, 259
Vertical lines 270

Vertical shift of a trigonometric function 41-43

Viewing an object array 214

Viewing range 61

Weighted average 181

Wildcard 37

Witch of Agnesi 99

Zeroes of a polynomial 115
Zooming 15-16, 103, 107, 128
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If you liked this book, there are others that you will certainly enjoy also:

An Easy Course in Using and Programming the HP 48G/GX

Here is an Easy Course in true Grapevine style: Examples,illustrations, and clear, simple

explanations give you arealfeel for the machine and how its many features work together. First

you get lessons on using the Stack, the keyboard, and on how to build, combine and store the

many kinds of data objects. Then you learn about programming—looping, branching,testing,

etc.—and you learn how to customize your directories and menus for convenient “automated”

use. Andthe final chapter shows example programs—all documented with comments and tips.

Calculus on the HP 48G/GX

Get ready now for your college math! Plot

and solve problems with this terrific collec-

tion of lessons, examples and program tricks

from an experienced classroom math teacher:

Limits, series, sums, vectors and gradients,

differentiation (formal, stepwise, implicit, par-

tial), integration (definite, indefinite, improper,

by parts, with vectors), rates, curve shapes,

function averages, constraints, growth & de-

cay, force, velocity, acceleration, arcs, sur-

Graphics on the HP 48G/GX

Here’s a must-have ifyou want to use the full

potential of that big display. Written by HP

engineer Ray Depew, this book shows you

how to build graphics objects (“grobs”) and

use them to customize displays with dia-

grams, pictures, 3D plots—even animation.

First the book offers a great in-depth review

of the built-in graphics tools. Then you learn

how to build your own grobs and use them in

programs—with very impressive results!

faces of revolution, solids, and more.

The HP 48G/GX Pocket Guide

You get some 90 pages of quick-reference tables, diagrams, and handy examples—all in a con-

venientlittle booklet thatfits in the case withyourHP48G/GX! There is acomplete command

reference, along with system flags, menus, application summaries, troubleshooting, and com-

mon Q’s & A’s. Nothing is more succinct and helpful than this little memory-jogger!

For more details on these books or any of our titles, check with your local

bookseller or calculator/computer dealer. Or, for a full Grapevine catalog, write,

call or fax:

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Phone: 1-800-338-4331 or 541-754-0583

Fax: 541-754-6508
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0-931011-37-X An Easy Course in Using WordPerfect 19.95
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Reader Comments

We here at Grapevine like to hear feedback about our books.

It helps us produce books tailored to your needs. If you have

any specific comments or advice for our authors after reading

this book, we’d appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State:

How long have you had your calculator?
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Algebra and Pre-Calculus

on the HP 48G/GX

Grab your calculator, grab this book and get ready for math

class! You’ll get lots oflessons, examples and advice on graphing

and problem-solving—plenty of practice with the HP 48 G/GX

Plotter, Solver, EquationWriter and MatrixEditor.

The book begins with a chapter on exploring functions in

general—how toidentify and plot them. Then it’s trigonometry,

itsidentities and functions, and its manyusesin solving triangles

and real-world problems. Chapter 3is all about polar andpara-

metric equations,includingthe various forms and even complex

numbers (and don’t miss the Garden ofCurves). Then you enter

the world ofpolynomials, their graphs and their roots (“zeroes”).

Chapter 5 covers linear systems—matrix arithmetic, simul-

taneous equations, determinants, inequalities, even linear pro-

gramming! Then you learn all about various methods for solving

problems in analytic geometry (equations oflines and planes),

including transformations (rotations, reflections, etc.). Finally

there’s a chapter on conic sections (circles, parabolas, ellipses,

hyperbolas) and how they behave and graph.

You get all this—from an experienced classroom math teacher,

—plus over 90 programs to automate a lot oftedious keystroking.

Don’t miss this valuable aid for your math courses!

ISBN 0-931011-43-Y4
51995

Grapevine Publications, Inc.
626 N.W. 4th St. P.O. Box 2449

Coruvallis, OR 97339 U.S.A. 977809317011436   
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