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What Is This Book?

This book is to help you use the HP 48G or HP 48GX calculator to improve your
understanding and increase your enjoyment of the collection of mathematical
topics usually grouped under the names of Algebra and Pre-Calculus. You may
be a student currently enrolled in a Pre-Calculus course, a student in a Calculus
course (which builds upon Pre-Calculus topics), or a student of lifelong learning
who has an opportunity to learn (or re-learn) something new and useful.

This book organizes the material much as a standard text does. Chapters are divid-
edinto topics. Topics are divided into examples, each of which demonstrates how
to use the HP 48 to solve and illuminate a problem of the kind you are typically
asked to solve in a Pre-Calculus course. Occasionally, the examples make use of
programs that extend the capabilities of the HP48. The full listings for these pro-
grams are included (in alphabetical order) in the Appendix.

If you are currently a student in a Pre-Calculus course, please note that this book
isn’t meant to replace your textbook. In general, this book makes no attempt to
rigorously justify the techniques and concepts used in problem-solving as does a
standard text. Also, there may be topics treated in greater depth in your textbook
than in this book (or vice versa).

What Do You Need to Know Before Using This Book?

You should have a basic working knowledge of your HP 48, including:

* Performing basic arithmetic calculations

 Navigating menus

* Entering alphabetic characters

* Storing, recalling, and using variables

* Entering and using lists, algebraic expressions, and programs
(If you need a quick review, stop here now and work through the Quick Start
Guide or the first 3 chapters of An Easy Course in Programming the HP 48G/GX.)

The only other things you need are a basic understanding of algebra, access to an
HP 48G/GX calculator, and a willingness to explore Pre-Calculus mathematics.
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Linear Functions

Mathematically, a function is a process that accepts certain inputs and generates
corresponding outputs—exactly one output for each input. A simple kind of func-
tionis the linear function, so-named because its graphis aline. Its slope- intercept
form is f(x)=mx+ b; m is the line’s slope, and b is the y-intercept.

Example:

1.

Plot the linear function, f(x)=mx+b.

The HP 48 can plot a function when the only undefined variable is
the independent variable (that’s x in this case). So you must give m
and b numerical values before attempting to plot the function. Use

m =2 and b = 1.4: From the stack, press (2)(')(aJq]M) and
(1) J4)(")(«Je)B)(STO] to store the values for the coefficients.

Press (™JPLOT]to begin the PLOT application. Then press (DEL)(V)

ENTER] to reset the various plot parameters to their default values.

To change the content of a field in an input screen, you move the
highlight to that field (using (a}, (¥}, (»), and («)), then enter the infor-
mation. Some items you can type; others you select via or
FEINTH. Now change the plot type to FiIrn=t. 131, if necessary.

Move the highlight to the EiZ: field; enter the expression ' ri¥z+b '
(TJaM) [ENTER). Note that only the right-

side of the function need be entered. Set the IMOEP: field to (lower-

case) * (note thatno ' ' are needed here): ()< X)([ENTER).

As for the part of the plot to be displayed, the defaults for H="IE}
and Y=YIEW are adequate.

YN ERAZE| DRAL

¢

s
2000 | 8.0 [TRRCE] FCM [ EDIT JCAMIL)
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Example:

Example:

10

Repeat the previous example with m = 2, but vary b with the values
-2,-.5,1,and 5. Plot each graph without erasing the previous ones.

. Use (CANCEL) to return to the PLOT input screen, then

to use the stack from within the application.

. Press(VAR]to go to your VAR menu, then type the first desued value

of b,(2)+/=), and press (< il 3l (or, equivalently,

. Press (&) [CONT) B3 (to get back to the PLOT input screen), then

(NXTHTTTRE (don't use [FiEIT; you want to see the plots together).

. Repeat steps 1 through 3 for the other values of b (—.5, 1,and 5). The

figure below shows all five lines plotted on the same graph.

g f
2r | s TERREE] FC [EDIT LANCE

Repeat the previous example, with b fixed at— 1, but then vary m (use
-2,-0.5, 1, and 5). And try using the FaMily PLoT (FI1FLT) pro-
gram (if you have previously entered it—see page 281). Here’s how:

. Exit the PLOT application with (CANCEL). Then, from the stack dis-

play, type (] o FIM[PJL)(T)(ENTER).

IMDEP: ¢ VYARY:
YALZ:
¥MIN: -5, 5 YMAK: 5.5

EMTER THE FUNCTION
ET] 1 JcAMOL] OK
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2. To store -1 in b, the procedure is the same as in the built-in PLOT
screen: (NXT) T (VAR)1+/=)c BEEE, then (& (CoNT AN

3. Thefunctiondisplayed in the Ef!: field is correct. Enter the indepen-
dent variable, I, in the IMDEP: field and the variable whose effects
you wish to study over the several simultaneous plots (1) into ¥AR '

field: (»)(Jeq)X)(ENTER)(¢JéqJMIENTER).

4. Enter a list of its desired values into WAL =:: (G]{3)]2]+/=SPC)
(+/=)(SPC] 1JSPC)(5) (ENTER).

5. Leave the #=IIM: and H=FHA}: as they are and press [l [Tl. The
function is plotted four times, once for each value of m (which you'll
see displayed as each line is drawn):

'M=5"

Example: Before you plot, it helps to know the range of a function. To easily

find the range of, say, f(¢) = %t - % with r € {-3,-2,-1,0,1,2,3}:

1. (Use (CANCELJCANCEL)to exitFITFLT) Put the right side of the func-

tion on the stack: (69 JEQUATION) 2] =] 3)»)(a ][ T=)5 =] 3)[ENTER).

2. Enter the domain list: (&]{})(3]+/=)(SPC)(2)(+/=)(SPC).. .etc., (ENTER),
And store the domain in 't ": ()aJ&q)T)(STO).

3. Now just evaluate the function: (EVAL). And rationalize the decimals
in the result: (1)0)()e)(FJ 1 X)ENTER)« SYMBOLIC) (NXT) I 1.
Result: A list of range values corresponding to the domain values:

R e ) e R ) R DA

'-rlez0t 13t g

Linear Functions 11



Quadratic Functions

Quadratic functions are functions of the form f(x)=ax*> +bx+c.

Example: Practice more now with the FIIPLT program, by exploring the effect

12

of varying each coefficient (a, b, ¢) of a general quadratic. Remem-
ber to store values in the two coefficients not being varied:

IH=|-,1| ‘|l| {l,'
), 'l,' /
oo i
™y I -~
-"-.“. [
'.\ i
(2000 [ i va [TRACE] FCM | EDIT [ERMEL]
Varyinge @=1 -3 -1 2 7 I,b=%4c=-1)

-
.'hn .1-:.-"‘-

T e

200 ]|«

-

A0 JTRRCE] FIN | EDIT

Varyinge @=3,b=5oc={ -8 -1 12 i
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The discriminant of a quadratic is given by d = b> — 4ac. What does the sign (+
or zero) of the discriminant, d, indicate about the function’s graph?

Example:

1.
2.

Graph cases where d =-4,d =0, and d = 12.
Arbitrarily let a = ¢ = 1: (1] JoJ&)A)[STO)(1 )" JaJ)C)(STO).

By rearranging the discriminant equation, b =+/4ac+d =4 +d.

Enter that equation for b: (o] o) S]T)DJENTER)(«JEQUATION)(iX <)
@D LI=T | Al [OEBENES

Store the list of values for d into 'd": ()3 (4)+/=)(SPC)(0)SPC)
()eJ&)D)(STO).

Press (EVAL] to compute the resulting list of values for b.

5. Press (' ]aJ&]B] to store that list into 'b" .

UseFIMPLT to plot functions witha=1,b={0,2,4},and c=1:
(then(NXT)or (€&5)PREV)as needed) to start the program. Then
enter the quadratic function (' &% ™2+b#*:x+C " ) into the E:
field, if it isn't already displayed from the previous example. Make
sure that the IMDIEP: variable is % and the WARY: variable iskr. With
the WAL Z: field highlight, press
to enter the list of values to be tested. Confirm that the x-range is
(-6.5 to 6.5) and draw the plots with ENTEE. Here'’s the result:

*Since you're going to evaluate a list of values, you must use the ADD function, not+. The + function concatenates
lists (and appends or prepends objects to lists); the ADD function adds corresponding elements of lists—in a
manner analogous to (=), (X), and ().

Quadratic Functions 13



Sometimes a function appears in a less recognizable form, so that you need to do
a little rearranging before it looks familiar.

(3-v)

Example: Symbolically rearrange 2x+5= so that y is isolated.

1. Use(=>)symeoLic)v) v v) B M to get the IOLATE A YARIAELE

screen. Note that this feature works only when the variable you want
to isolate appears exactly once in the equation (so, for example, you
could not use it to solve for x here).

2. Enter the equation into the EXPF: field: ((q)EQUATION)(2)(aJ& ) X)(+)
(Ja=1a]0BR[Ha V)M H(GIX) ENTER).

3. Enterd (lower-case) into the ¥AR: field: (v)(eJ&]Y])(ENTER).

4. Make sure the KEZULT will be Sdmbial 1= (if necessary, press
to toggle between MuimEr 1= and Sumbiol 1C). Press
BT to let the application do the isolation for you.

Result: 'y=3-[Z*¥u+5) %'
5. Finally, press (&)SYmeoLIC) NI B [ TH#] to tidy up the result:

'y=g-PEet -0

Now that the function is in a slightly more conventional form, you can analyze it
in several different ways....

14 1. ExpLORING FUNCTIONS



Example: Use three different methods to solve the result from the previous
example for x: Graphic, numeric, and symbolic.

The Graphic Method:

1. Press to begin the PLOT application.

2. WiththeEf?: field highlighted, press o194 then make sure the
target equation is on stack level 1 (you may need to press (DROP)) and
press [ ']:38 to copy the equation into the Ef: field.

3. Make sure that TYPE: contains Fidrun=t. 1 om, that IMDEP: con-
tains (lowercase) %, that H=YIEk{: is set to default values (—E . o
to FBra 0), and that AUTOFCALE is checked.

4. Press [ITEIITTIRN to draw the plot.

f-'-
-~
I_,.-"
[200H | TRACE[ FCM | EDIT [EAMEL]

5. First, use the arrow keys ((4),(V), etc.) to move the cursor to the para-

bola’s apex. Then re-center the graph: Press &1 CHTE !

-~ 1 s
-~ L -,
200 [ c8. % [TRRCE] FCW | EDIT
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6. Tozoom the graph at the region of interest (here it’s where the graph
crosses the x-axis), first move the cursor to the upper-left corner of
the desired display area. Then press[E gl fATIF4, then move the
cursor so that the zoom-box is drawn over the region of interest;
press[E[TgH. The shape and location of your plot may differ slightly
from the one shown below because the exact size and location of
your zoom-box may differ slightly from the one used below.

+ ",
200K [ 4.4 [TRHCE|] FEW | EDIT

7. Press I8 JEHEERA. You can now use(€)and (»)to trace along the
graph! Trace to the points where it meets the x-axis. Notice the
cursor coordinates there. (Again, the coordinates you see may differ
from the ones shown below because of differences in the zoom-
boxes used.)

n: =3.00ED ¥:.02151852686

8. With the cursor near a solution point, press (if the menu is hid-
den) [kl Doing this for each root shows that the exact
solutions are indeed -3 and 0.5.

1. ExPLORING FUNCTIONS



The Numeric Approach

1.

Return to the stack (CANCEL[CANCEL)) then press (=)SoLVE) Ml -l
to begin the =OLYE Ef:UATIOM application.

If you just entered the equation in the PLOT application, you will
probably see it displayed in the Ei¥: field. If not, enter it manually.

3. EnteraH value for'f: (the “solution” is the value of x when yis zero).

Enter a positive guess (say, 5) fori:. Then move the highlight back
to the ii: field and press p{!/§§3. Result: u: .5

Try anegative guess (say, -5) fors:. Then, again, move the highlight
back to the ii: field and press /&Y. Result: #: -3

The Symbolic Approach

1.

2.

Return to the stack (CANCEL)), then press (=]SYMBOLIC)(a[a ) B A

to begin the *OLYE QUADRATIC application.

Enterthe expression (' Z—Z ¥ ™ 2—2% " ) into the EXPF: field:

()EQUATION)(3]—[2]Ja X (9 (2) M) () (8) (S X) [ENTER).

3. Enter the variable for which you’re solving (%) in the YHFE: field.

WithKEZULT: showing Zdmbna ] 12 and PRIMCIPAL unchecked,
press BN The general solution results: 'w=(0+s1%7)-—4",

The =1 in the solution is a placeholder variable inserted by the HP
48 that means “+.” Thus, the single resultis actually two results: the
value when =1 = 1 and the value when =1 =-1. To further evaluate

the two results, press (' | aJ&q ) X]) ((JPURGE)(ENTER)(1)(" JoJ&e) S 1)
(STO)(EVAL)(SWAP)(1)(+/=)(VAR) (< JEEH Tl EVAL).

Results: '#=—3" and he=5!

Quadratic Functions 17



A rational function is the quotient of two polynomial functions: f(x)=

Rational Functions

p(x)
q(x)

Wherever g(x) is zero, the function is undefined; there exists a discontinuity. For

example, the function f(x) = 2—xs, has a discontinuity at x = —5. On the HP 48,
x+

whether (and how) such a discontinuity is displayed in a function plot depends on
several factors:

* The resolution of the plot. The PLOT application plots only a sample of
points along the function, so it simply may not sample the point of discon-
tinuity. This may make it appear as if there is no discontinuity.

* The status of flag —31. When it is set, only the sampled points are plotted
—no connecting line segments. Discontinuities can masquerade as unsam-
pled points. When flag —31 is clear, COMMELT mode is enabled and the
sampled points on either side of a discontinuity may be connected by a line
segment—for many rational functions, a “vertical line” at the asymptote.

Example:

—3x

Plot the rational function f(x)=———.
x“+3x+2

1. Press (©]PLOT) and make sure the TYPE is Fuuruizt 1om.

18

Enter the function in the Ef: field: ((§)EQUATION)(+/=)3)(aJ& ) X)(=)
[ENTER).

Set the IMDEP: variable to (lowercase) = and set the H=YIE}-{ range

to —E& & and the ¥=YIEK range to —= 2.

Bring up the PLOT OPTIOM = screen () and make sure that
COMMELT ischecked on (toggle the check-mark with either (a1
or (+/9)). Next, at the TEP: field, reset it to [*f 11 (default) value
by pressing (DELJENTER]. Then move the highlight to the bottom of
the screen and enter 1 in the H=TICE: and ¥=TICE: fields and turn
off the check-mark in the FIHEL % field on the bottom line. This will
place a tick-mark for each one unit along the horizontal and vertical
axes —no matter what your display settings are.

Press FTEINTTTR to draw the plot.

1. ExPLORING FUNCTIONS



-f-J.
— '5

[Z00H o84 [TRACE] FCM | EDIT JCANIL |

Note the vertical lines representing asymptotes near x =-2 and x
= -1. The undefined points at the asymptotes lie between two
plotted pixels, which were connected (in ZDMMELT mode) by an
apparently vertical line segment.

Example: Plot this rational function:
-3x

x?—3x+2

1. Press to return to the PLOT input form and reset the plot
parameters: (DEL] Y]ENTER).

2. Highlight the Ei: field, press {3111, change the first + in the de-
nominator of the function to a = (eleven (»’s, (#), then (=[ENTER)).

3. Change IMDEP: back to  and the values in ¥=YIEl to == and
20, Press [TTE LTI to draw the plot.

fx)=

i
z00r [cx. v [TRACE] FCW | EDIT

Note that no “vertical” asymptote lines appear because the function
is undefined for the exact value of one of the pixels.

Rational Functions 19



Exponential and Logarithmic Functions

Exponential functions have the form f(x) = a*, where a# 1. The variable is con-
tained in the exponent part of the expression.

Logarithmic functions are inverse functions of exponential functions. They have
the form f(x)=1og, x.

Example:

Use FMPLT to explore the effect of varying the a parameter in an ex-
ponential function.

. From the stack, type FIIPLT and press or select {5l x 8 from

the menu.

Enter the exponential formula (' &7 " ) into the E: field and
into the IMDEP: field (if it isn't already there).

3. Enter the parameter that you are varying (&) into the YHEY: field.

20

Enter the list of values you want to use for & in the YHL *: field. Try
{22456 3

Enter the horizontal range you want displayed in #FMIM and A .
Use—1 to .

Press B EER.

o /

1. ExpLORING FUNCTIONS



Example: Now use FIIFLT to explore the effect of varying the a parameter in
a logarithmic function.

Note that the HP 48 can use logarithms directly with only two bases
—10and e. However, a simple transformation makes the use of any
logarithmic base possible:

1. Press to return to the FAMILY PLOT input form.
2. Into the EL#: field, enter the transformed logarithmic formula,
"LOG LG g0

3. Leave the remaining entries as they were in the previous example

and press | OK |

lﬁ:El

.

[
o .Il .l
2000 [ 8.4 [TRRCE] FEW | EDIT
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Compositions of Functions

If f and g are two functions, then the composition of g with f is the function
(go f)(x)=g(f(x)). Compositions use the output of one function as the input
of the other. Not surprisingly, this makes the HP 48 very well-suited for perform-
ing compositions.

Example:
1
2.
3.

Example:
1.
2.
3.
4.

22

Find the composition g o f for

f(x)= 2 and g(x)=+4 - x>

x+1

. Enterthe ffunction (' £+ [x+11"); storeitas ' ' : (") aJ&q)F)(STO).

Enter the g expression, using f as its variable (' [ {4—f"E1").
Press (] @] CJF)(ENTER) to be sure that you obtain symbolic
results, then (EVAL): 'J04-(E<Tu+111"2)" If you want to look
at the result in the EquationWriter, press (¥). Then (CANCEL]CANCEL)
to return to the stack when you’ve finished viewing it.

Find the composition f o g for the functions in the previous ex-
ample, using the LIPS program (see page 277).

Enter f: (9]EQUATION(2)(+)(eJa)X)() (1) (ENTER).

Enter g: (JEQUATION)()(4)(5) (el X) 2] [ENTER).

Enter the name of the variable in f; ('] oJ&q)X](ENTER).

Type LIMPU and press or press @Il from the menu.

Result: ' LT (=2 0+10"

1. ExPLORING FUNCTIONS



Inverses of Functions

Two functions, f(x) and g(x), are inverses of each otherif f o g =xand go f = x.
For example, 2x and 4 x are inverse functions of each other because both com-
positions yield x: 2(1x)=x and $(2x) = x.

Example:

1.

Example:

3x—-1
5
Enter the function as an equation, substituting y for f(x):

Find f~'(x), the inverse of f(x)=

'Y= 3ee-102"
Solve for x by entering ' %' on the stack and pressing
T8l The resultis ':={9*Z+1 13" Note that 50l works on-

ly when the solution variable (' %' in this case) exists exactly once
in the expression.

If you mentally exchange the positions of the x and y variables and
substitute f~'(x) for y, you'll get the inverse function:

2x+1

)= 3

The short program F M (see page 281) makes it easier than that. To
repeat the above example:

. First, enter the function: (]EQUATIONJ& O] 3] o X[=] 11> ]=] 2]

[ENTER).
Then enter the variable of the function: ('] oJ¢q]X)(ENTER).

3. Type inF IMY and press or press (AWM in the menu.

Note: Just like the built-in [S[L, the F IMY program requires that
the solution variable appears only once in the original expression.

Result: 'Lw#d+] 13!
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User-Defined Functions

The HP 48 allows you to create short programs that work for the most part like
the built-in mathematical functions. These programs, called user-defined func-
tions (UDFs) all have the following structure:

%+ local names defining procedure *

There should be one local name for each variable in the function you are defining.
The defining procedure may either be a program (i.e. in postfix syntax) or an
algebraic object.

The following examples illustrate a variety of user-defined functions.

Example:

Create a UDF for computing the volume of a cone from the radius

of its base and its height: V = grzh.

. Type# * r h 'r™Z#h-3%1" * (if you prefer to use the algebraic

syntax in the defining procedure); or

type * r b« ¢ Sl h ® 3 1 % ® % (if you prefer
the postfix syntax).

Note that in either case, the T term comes last so that the remaining

factors will be fully evaluated.

Enter the name for the UDF: (' JoJo]V]CJOJN]JE)(ENTER.

3. Store the function: (STO).

24

Test the function. Put a radius of 4 and a height of 11 onto the stack;

execute the function MCIME : NCOM A

Result: 'G5, BELELELEE#T' (if Flags -2 and -3 are clear)
184, ZBEYEIHL 1 (if either Flag -2 or -3 is set).

Reminder: Flag -2 controls whether symbolic constants such as tare

kept symbolic (clear) or forced to be numeric (set). Flag -3 controls

whether algebraic results are allowed to remain symbolic (clear) or
are forced to be converted to numeric form (set).
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Example:

Create a user-defined function for the distance between two points
in space:

DIST(xl’YPZl’xz,yz’Zz):\/(xz _x1)2 +()’2 ")’1)2 +(Zz _Z1)2

Assume that the function will find the six coordinates on the stack
in the order shown next to DIST in the above definition.

. Enter the equation, including the name, I 5T, and the list of varia-

bles it uses (in the order they go on the stack) on the left-hand side:

JEQuATION) (o] o) D ST (@O (elaIX G ) (ela]Y)
OEHA0E0EHEEOOERNAEOENO 0SB0
GEOOENEECOENDOFEa0GEWEEHEE
BIZIPIRIENTER)

To store the expression on the right-hand side of the equal sign in the
name on the left-hand side, you simply define the equation: (65 )DEF).

Test it by finding the distance between the two points (3,-4,6) and
(1,8,-3). Enter the six coordinates in order and execute OIST:

(3)(ENTER)(4]+/=)(ENTER)(6 )[ENTER](1)[ENTER)(8 JENTER](3 ) +/=)[ENTER)
(VAR TERE

Result: 13.1327/459564
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Can a UDF be plotted? Usually not without modification; most UDF’s remove
objects from the stack (which wreaks havoc with the PLOT application). How-
ever, the modifications necessary to make them “plot-ready” are often quite easy,
as the following example illustrates.

Example:

Use the WIME function to plot the variation of a cone’s volume with
the radius of its base (assuming the height remains constant).

. Open the PLOT application and highlight the E: field.
. Move to the stack: CALC §

. Recall WCIME back to the stack and edit it so that r and & are given

the values 't' and 1, respectively: (VAR)(=>ETH:E (v)(>)() (o)
((R)(>)(SPCI(T)(ENTER).

Return the modified version to the Ef: field: (€)CONT) Bl AN XT).

5. Putt” into IMDEP: and set H=MEK: —. S 5 and Y-VIEK: =5

26

Press to go to the PLOT OPTIOMZ screen. On the top line
you will see settings for the plotting range for the independent vari-
able. Much of the time,the plotting range is the same as the hori-
zontal display range (H=YIE}{)—indeed, this is the default setting.
However, there are occasions when you may wish to plot a different
set of values than those indicated in your choice of display range.
Set the plotting range toLD: 1 HI: 3. Then press [lli[:8ll to save
your settings and return to the main PLOT screen.

. Plot the function: [3diE13001i1%0:

2000 [ 8. v [TERCE] FCW | EDIT
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You may prefer to use a friendlier kind of user interface with your UDF’s. Jim
Donnelly’s program, |ILIFLIT, included in his book The HP 48 Handbook (and in-
cluded here with his permission), takes the name of a UDF that you have already
created and provides it the kind of friendly user-interface similar to many built-
in applications on the G-Series machines.

Example: (This example assumes that you have already keyed in the LILFLII
program, listed on page 317, and that it is stored in the current di-
rectory path). Use the | ILIFLII program to get a special interface for
the UDF in the example on page 25 [11=T).

1. Enter the name of the UDF onto the stack: (' o] o]D) 1 )S)T)ENTER).
2. Execute the UOFLIT program: (o)a]UJD)F)U)1)([ENTER).*

DI T S

¥1:

ne:
Ye: za:
DIET:

3. To test the new interface, calculate the distance between the points
(4,-1,-2) and (-5,3,0). Move the highlight to the i1: field and enter
the various coordinates: (4)(ENTER](1]+/=)(ENTER)(2]+/=)(ENTER)
(5)+/=)(ENTER)(3)(ENTER)(0)(ENTER); press 15 , then (a) I THE:

R 0T

Wl: o "1: —1
21 =2 wa: =5
Ya: 3 28 K
DIET:

18, B495736:211

*If you have trouble here, be sure that 15T must be in the current directory path in order for JOFII to find it.
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The Trigonometric Relationships

Trigonometry is the use of “triangle measurements” to describe angles. Every

angle 6 has an associated a set of right triangles that can be constructed around
it to demonstrate various relationships:

........... P(x,y)
b r, “‘%'". C
y
O X
f a7 i
sinezz cosO:ﬁ tanez—}—)-:g
r r x r
cs09=-r—=é secO:L:—q cotezfzi
y r x r y r

The six trigonometric relationships—ratios, actually—are derived directly from
the basic geometric rules of similar triangles. And notice that if you let the radius
r =1 (i.e. use a unit circle), then the ratios show up even more directly:

cot O
.............. (cos 6, sin 6)
csc O
sin 9 & o
O . COS 0 I
I 1

Besides showing the trigonometric ratios directly, the unit circle also helps to de-
fine trigonometric functions. These functions describe how the trigonometric
ratios (sine, tangent, etc.) change as the angle 8 changes (e.g. as the radius, r,
“sweeps” around the circle). The trigonometric ratios encountered as the radius
sweeps around the circle repeat themselves; i.e., the trig functions are periodic.
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Radians and Degrees: Units of Angle

When measuring angles as a part of triangles, it is most common to use degrees,
minutes and seconds. But whenever you want to use angle measure as the inde-
pendent variable in a function—for example, when plotting or solving—you
should use units of radians. Aradian isthe amount of angle you sweep out as you
move along the arc of a circle for a distance equal to the radius of thatcircle. One
radian is exactly 2degrees (approximately 57.3°).

Example:

1.
2.

Example:

Convert 214° to radians.

Enter 214 onto the stack: (2) 1)4)(ENTER).
Press (MTH) T8 (Nx TN T BT

Result: . r=2o@E4599: radians

Add 23° 34' 18" to 15° 42' 07" and convert the result to radians.

1. Enter 23.3418 onto the stack: (2] 3] - 3] 4] 1] 8)(ENTER).

Enter 15.4207 and press (HM5+ does degree

andtime addition, hence the acronym: “Hours, Minutes, Seconds”).

3. Convert the result to decimal degrees: HHME* )

Example:

Convertdecimal degrees toradians: (MTH) m EEAL (Cei(0as O*F |

Result: . BE545 38526

T ) )
Convert 2_8 radians to degrees, minutes and seconds.

1. Enter 'm-Z8" onto the stack: (" J&x)m)(=)(2)8)([ENTER).

30

First, convert this angle measure to decimal degrees: RERAL
(then (&]>NUM) if necessary).

Now convert from decimal degrees to degrees, minutes, and sec-

onds: |)TIMEINXT)EdiTmkEd.

| e

Result: '6. 2242857 148" | which means 6° 25' 425"
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Example:

1.

@nokh »

Plot the function, sin(X), in radians, then in degrees.

Begin the PLOT application (5)PLOT)) and make sure that the T¥PE
is Furizt. 1om and that & is Fad.

Reset the plot parameters to their defaults: (DEL)(V)(ENTER).

With the highlight on the Ei* field, type (" JSIN] @] X)(ENTER).

Draw the plot: [T1iE3ITT:0.

When the plot is drawn, press (CANCEL]to return to the PLOT screen,
and change . to [v=g (press (G)RAD)).

Draw the plot again on top of the previous one: [UFiIRN.. ..

. T
SN R

200K [ oi. v [TRACE] FCH | EDIT JOAMEL

Those two plots are not nearly the same, are they? This illustrates
the importance of matching the display ranges to the angle measure:
To achieve the same plot in degrees, you would need to change the
H=YIE} to run from -720 to 720 before drawing.
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The TRIGK Program

TRIGH is a program that computes a number of different ratios and values for a
given angle. After entering the program (see page 314 in the Appendix), you start
it running either by typing TR I and pressing or selecting from
the menu.

B TRIGOMOMETRY EXPLORER $EE
LLDMERD: - & 'mod!
RADILS: SN ' 220
ARC: n.fq 'oops: ' 2420
ARER: 'mo8' TAM: ]

ANGLE IM DD.MM$S
EnT ] [ JiRMeL] 0K

To use TR I, you simply enter any known values into their appropriate fields

and then press [ll'[ 3l The program will compute values for the remaining fields.
Here’s how it works:

« If the angle measure and radius are given, | F. I3 bases its computations
on them.

* If more than one angle measure is given (i.e. degrees and radians), then the
computations are based on the currently set mode; the other is re-computed
to match.

» Ifthere is no angle measure or radius given, they are computed from those
values that are given, if atall possible. Only principal angles (matching the
given inputs) will be returned.

» Ifitis not possible to compute an angle measure or a radius, default values
of 45° and 1 are used and the computations adjusted.
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Example:

1. Begin the program and enter the values in the appropriate fields.

Given: 60° angle and a radius of 3.

2. Pressfés
WAL TRIGOMOMETRY EXPLOREFR S355E
SiomMzoy: (el o '] SSEm!
RADILE: 3 M, BE6H,,
ARLC: T’ cos: Vo2
REER: 'Z2%,, TaM: 1,732,
AMGLE IN DO.FFM3S
E0T | ] | JiAMIL] DK

40

Example: Given: cos 8=-0.5, tan0 = /3, and arc length = —

1. Clear the data from the previous example: (v](ENTER).

2. Enter values in the appropriate fields. Note that you can use tick-
marks to enter a value “symbolically” (i.e. ' +H<2#1 "), if you wish:

(W) ((4)0) (=) (8) (x] (o] (ENTER) (- 5 )+ (ENTER) () (&3]

(ENTER).
3. Press 8] &8

AR TRIGOMOMETRY EXPLOREF S53%8%
SiOpzen: i < 'q 3!
RapILs: 18 IM: -, 8656,
RRC: '4H-3,, cos '=01.,
RREH: EEE#’... TaM: 1.7 32.
AMGLE IM DDO.MMSE

“EDIT
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Verifying Identities

There are a number of special interrelationships between the trigonometric
functions that are always true no matter the size of the angle or angles involved.
These interrelationships are called identities.

Here is a core list of important trigonometric identities:

* Pythagorean Identities. These are evident if you apply the Pythagorean
theorem for right triangles to the diagram at the bottom of page 29.

sin? @+cos’@=1 (thus 1—sin® @ =cos® @ and 1— cos* @ =sin* )
1+tan’ @=sec’ @ (thus sec’* @—tan’ @ =1 and sec’ 8 —1=tan> 9)

1+cot?@=csc’ 0 (thus csc’ @—cot>@=1 and csc’ 0 —1=cot’ )

» Difference and Sum Identities.
cos(a = ) =coscxcos B Fsin arsin 8
sin(a £ ) =sinocosf * cosasin

tan @ + tan 3
lFtanatan 8

tan(a £ )

* Double Angle Identities.
sin260 =2sin@cos O

c0s260 =cos’>0—sin’ 0
=1-2sin’ 6
=2cos’0-1

2tan 0

tanZGE—2
1-tan” @
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* Half-Angle Identities.

.o 1—coso o /1+cosa o 1—-cos
sm—=%,—— cos—==+,|—— tan— ==+ _Tcosa
2 2 2 2 2 1+ cosa

¢ Sum and Product Identities.

. . . + -
sma+s1nﬁ=251na ﬂcosazﬁ
+B . oa-
& ﬁsma B

sin —sin§ =2 cos 5

a+BCOSa—,B
2 2

cos +cosf3 =2cos

a+f . a-
ﬂsma ﬂ

cosa —cosf3 =—2sin 5

These core identities, the proofs for which are usually included in standard math
textbooks, are themselves used in two important ways:

* To establish new identities that are useful in particular problem-solving
situations.

* To aid in obtaining exact numerical solutions to problems involving trig-
onometric solutions.

Look at each of these uses, one at a time....
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To use the HP 48 to help establish new trigonometric identities, you need to use
its symbolic manipulation tools.

When doing symbolic manipulations, you must be sure that flag -3 is clear (press
A8 [cH and verify that flag 13 is unchecked), so that results remain

symbolic.

Example:

I-cosx  sinx

Verify that is indeed an identity.

sin x 1+cosx
Although it is often faster and more convenient to do this kind of
algebraic manipulation manually, the HP 48 is capable of perform-
ing symbolic verifications.

1. Type the expression in the EquationWriter, (65]EQUATION)(a)(1])(=)

(Cos)(eJa)X)>ISIN (e )X )= SN (e fa X))
(cos)(aJ&e)x), and press to put it onto the stack.

2. Multiply both sides of the equation by sin x:

%)

3. Simplify the result by collecting like terms: (€5)SYMBOLIC)[TH=h{

36

Multiply both sides of the equation by 1+ cos x and simplify the re-
sults: (A JH(Cos[af)X) COLCTS
Use the pattern matching application to replace ' SIMI: 1™E " with

itsequivalent, ' 1-C0S0:1™E " : First, press (=)SYMBOLIC | a BRI [000
;i to display the FIRTCH EXPREZZI0M screen.

S MATCH EXPRESSION SEESME
exer: |

PATTEEM:
REPLACEMEMT:
— =UEERPE FIR:ZT COMD:

ENTER EHPRE:SSIOM
ECIT fcHoos] ] JeAMiL] Ok |
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Next, with the EXPF: field highlighted, retrieve the expression:
Press o148} (and («) if the target expression isn’t already on
level 1), then BV

Now highlight the PHTTEFM field, and enter the pattern to be re-
placed, substituting each occurrence of ! with the wildcard name

%:1: () SIN(@]) ENTER)(1)»]Y¥2)[ENTER). (Notice that the special
wildcard character, #, can be typed with (aJ&]ENTER).)

Type in the replacement pattern, using the wildcard name instead of

the variable: (aJ& ) ENTER[1)(») ENTER). Press
ENTERJ(ENTER] to return the modified expression to the stack. Press

EXPA | EXPA | EXPA [COLCT
Result: ' 1-COSC)"2=1-CO50: "2

The verification is complete.
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Example:

Verify that sin* x +1=2sin® x + cos” x.

This time use a graphical approach. Notice that if you subtract sin* x
from both sides of the target equation, you will have an expression
equal to 1, so it should (if the original equation is true) produce a
horizontal line plot.

. Enter the expression onto level 1 of the stack:

PSINCs a4+ 1= S IN G 0 2+ 05 0 ) ™

Subtract sin* x from both sides of the equation: (" JSIN)(eJ&)X)(»)
0% O ENED(EI COLLTS

3. Press (JPLOT] to prepare to plot the equation.

Reset the plot parameters to their defaults: (DEL] Y]ENTER).

5. Make sure that TYPE is Furnict iom and & is Ead. Then, with the

Ef* field highlighted, press 0,148 (@), if necessary, to bring
the target equation to level 1) ()EDIT)(»)DEL(DEL) (ENTER) T
(NXT). This puts the right-hand side expression into Ef.

Enter  (lower-case) in IMDEP and press [31E3 [TTTHH:

200 JTRACE] FCH [ EDIT JURMIL

7. Press lidil43E5 ¥l and then move along the plot with («) and (»)

38

to convince yourself that the expression equals 1 for all values of .
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8. Although this seems to confirm the identity, it isn't proof. Try one
more thing before you accept the verdict for good. Press to
return to PLOT screen, check HUTOZCHLE and press (158 to su-

perimpose the autoscaled plot on top of the original:

1]
ML T

[200M]CBAY [TRACE

What’s happening?!? Why did the seemingly constant graph sud-
denly become very “non-constant?”

To find out, press and inspect the ¥=-YIEF] parameters that

ing is occurring in a vertical range of 0.000000000016. Thus, you
canconclude that the identity is true: the “huge” visual variation you
see is actually negligible—caused only by the 12-digit limitation on
numerical precision in the HP 48.

So although it can't provide rigorous proof, the graphical approach
to identity verification is a good check against your symbolic deriv-
ations (whether performed by hand or on the HP48). However, keep
in mind that autoscaling tends to show you any variation it finds, and
thus it can fall prey to the machine’s numerical limitations (round-
off), as in this case.
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The next example illustrates the computational use of identities.

Example:

. . .17 . 1z . T
Solve this equation for x: sin—— —sin—— = xsin—
12 12 4
You want an exact answer, not merely a 12-digit numerical approxi-
mation, so be sure that flag -3 is clear before trying to work sym-

bolically.

. Notice that the left-hand side of the equation matches the form of one

of the Sum and Product Identities (see page 35). So, make a pattern
substitution:

First, from the stack, press (o) BT [ECEE. Then
enter the equation in the EXPF field:
HORE SNSRI G eaXISNG)
(m(=J4)ENTER).

Next, enter the pattern to be matched in PHTTERM:
'SIMCELI-SINCEZD !
And enter the new pattern in KEPLACEMEMT :
"EECOSCCRL+HRE DA DS INC O -2 20!

Press (ENTERJENTER]ENTER] to make the replacement and return to the
stack.

Solve for x: (JJqIX) COLCT

3. Change the decimals to fractions. Note that whenever you do this,

40

=T display format sometimes yields odd results do to rounded pre-
cision in the last decimal place (thus a change to F I format): (9)

(sPe) o) o) EX)ENTER) (XD T,
Collect terms again and convert the decimals in the resulting equa-

tion to fractions once again: («JPREV)[MTHE] (NxT) EETIH.

Result: 'w=Z#L0507- B
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Varying Coefficients in Trig Functions
The sine and cosine functions can be described generically as follows:
f(x)=Asin®(Bx+C)+D  or  f(x)=Acos®(Bx+C)+D

Several characteristics of these plots of this function can be determined by its co-
efficients:

* The amplitude of the function—the height (or depth) of each “wave”—is
equal to |A|.

* The period of the function is equal to 2n

Bl

» The horizontal (or phase) shift of the function is —%.

» The vertical shift of the function is D.

» The shape of the curve is affected by E. Higher values of E yield steeper,
more jagged curves.

You can investigate all of these characteristics more thoroughly by using the
FMPLT program and the generic function shown above. Here are some sample
results, shown in the next few figures....
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Different Amplitudes
A=C 1 2 3 4 } B=l, C=B, D=1, E=Il

00

Different Periods
H=15 B=[ .5 1 2 },! E=B_l| D=1_| E=1
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Horizontal Shifting
A=1, B=1, C={ '-w-3' 'msq4' 'Jxws2' 3 D=1, E=Il

Vertical Shifting
A=1, B=1, C=B, D= -1 B 1 2 % E=1

\,;a
N
(00| (%77 [TRACE] FIH ]

Different Curve Shape
A=1, B=l, C=B, D=1, E={ 1 2 3 1}
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Solving Triangles

One of the most important uses for trigonometry is the computation of distances
or angles that cannot be measured directly. Here’s the general approach for these
kinds of problems:

* “Create” atriangle involving the unknown measurement as one of its sides
or angles. This is sometimes called triangulation.

* Measure two or more accessible elements (sides and angles) of the triangle.

» Usethe principals and theorems of trigonometry to compute the unknown,
remote element.

The process of computing the missing elements of a triangle from a few givens
is referred to as solving the triangle. The figure below shows the elements of the
triangle as they are conventionally labeled:

< b Area = K

B A
c

Note that a is the shortest side, c¢ the longest. Angle A is opposite side a, angle B
opposite side b, and angle C opposite side c.

Triangle solutions use of a series of trigonometric laws, each of which requires
that a particular set of triangle elements be known:

* Sum of the angles: The sum of the interior angles in a triangle equals 180°.
Required knowns: Any two angles (AA).

a b c

* Law of Sines: — = = —
sinA sinB sinC

Required knowns: Two angles and any side (AAS, ASA); or two sides and
a non-included angle (SSA).

* Law of Cosines: a®* =b*>+c* —2bccos A
b* =a* +c¢* —2accos B
c* =a® +b*-2abcosC
Required knowns: Two sides and the included angle (SAS); or all three
sides (SSS).
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« Heron's Formula: K =-/s(s—a)(s—b)(s—c), where s =

at+b+c

Required knowns: All sides (SSS); or the area and any two sides (KSS).

¢ Area Formula: K= lab sinC = lac sin B = lbc sin A

2 2 2
Required knowns: Two sides and the included angle (SAS); or the area and
any two sides (KSS); or the area, an angle, and an adjacent side (KSA).

* Area Formula (2-angle form): K=—

1 7 sin Bsin C

2 B+C
Required knowns: Two angles and the included 51516 (AS?A) or the areaand
any two angles (KAA); or the area, an angle, and an adjacent side (KSA).

Example:

1.

Solve a triangle (including its area), given: A =25°, b=6, ¢ =3*

Consider which laws you can apply to obtain the missing elements.
The known values here are two sides and the included angle (SAS).

Solve for a by using the Law of Cosines: Set[Ea mode, then press
11888 to begin the Solver. Highlight the E* field, then:
(TJaAYIEaE[alBYYHealcr 2EERXI
)E)X(elalc)X)cos)(@lA)(@)()(6)ENTER). (The degree mark

helps denote angle names.) Enter values in the H®, E and L fields,
then highlight i and ElI[BY{3. Result: A: 2.51731&12174

Use the Law of Sines to compute B: Move the highlight to E¥* and
enter the equation: ' a5 IMCH® 1=b-"5IMCE" 1" Known values
remain from before, so highlight the E® field, enter a guess of 100

(1) o) oJENTER)),** and (<t {8} . Result: EB: 123, 872757264

Subtract the sum of H® and E® from 180° to find C®: Press (CANCEL
(2)5)#)(1)8) o)« SWAP)(=). Result: &1, 17 &3 :E-.'fl':'
Finally, compute K =1bcsinA: Press [SIN)(6 [X)(3)X)(2]=).

Result: =. SH35E435565

*This is unconventional notation (since b>c), which you'll often encounter. But since you don't know all the sides,
you don't know the conventional labelling, anyway. No matter: The trig laws apply to any labelling scheme.

#*]n searching for B” =ASIMCSIMCA® 1#b 32, SOLVE will find an acute angle—the principal value—if you
give it a guess less than 90° (or no guess at all —i.e. a “guess” of 0°). But here you (correctly) suspect an obtuse
angle for B, so you give a guess greater than 90° to guide the search properly.
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Example:

46

Solve a triangle (including its area), given: A =15° a=4,b=38.

This time, use the program SL= (for the program listing, see page
308 in the Appendix) to automate the process of solving for multiple
missing variables.

1. Type =L and press (ENTER); or select EJi[H&Y from the menu.

I°I_IB=

B" l_ﬂ.

ARERA:

ENMTEE £IDE H

EDIT | ] | [iAMiL] OK

2. Enter the known values into their appropriate fields: (4 JENTER
ENTER)(»)(1)5)(ENTER).

3. Press [l[1[8l. Afteramoment, youwill geta message indicating that
the program has found Ome of two=olut ions.

This indicates that there are actually two different triangles that can
have A °=15°, a=4,and b = 8. Press and one of them will
be returned to the *OLYE TRIAMGLE screen:

: B: =
11,1498, e 15

Be:  31.17. = 133.8..
REER: 11,.542127863

ENTER ZIDE A
Eor ] 1 [ [cHMeL] OK
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Example:

1.

Solving Triangles

The two solutions use different supplementary values for B°, which
was the "missing" member of the two "couples"—a and A°, b and
B°—inthe original problem. So, find the supplement of B°, using the
stack, then delete the values for c, C°and the area, and compute the
other solution: (v)¥) (NxT) EE[iTHe (1) 8] 0)(ENTER) SWAP) (=) LA
(a)(DELJENTER Y »)(DELJENTER| V) (DELJENTER) B TTHEH.

RIS COLYE TRIAMGLE
a: BN 7.a9949,.
o4, 305688, 15
Ee: 148,38, == 16.17.
RRER: 4, 45687213696

ENTER ZIDE A
BTl 1§ JeRMEL] OK

Solve a triangle given: K =25,A =38°, C=286°

Press (v)(ENTER}to reset the values in the *OLYE TRIAMGLE
screen.

Enter the known values into the appropriate fields: (v]»] 3] 8 ENTER
(»)(8)6)(ENTER[2)5)(ENTER).

Press B ol

R COLVE TRIAMGLE 3
R: [RRE]EEET E: 8.._1543...
;o 3,88546,, A= 33

E9: 26 % 86

ARER: 25

ENTER £IDE h

EmTf ] 1 JrAML] DK

47



Solving Trigonometric Equations

Recall that an equation that is true for all values of the independent variable is
called an identity. However, many useful problems and real-world situations can
be modeled using conditional equations—which are only true for a small subset
of values of the independent variable.

For example, the equation sin 8 = 1 is a conditional equation because it is true for
only some values of 0. To determine these particular values, the equation must
be solved. There are three different approaches:

Use the built-in root-finder, with either the Solver or the Function Plot
Analysis tools.

Compute solutions directly from the keyboard using the inverse trigono-
metric functions.

Use the I5[L command to symbolically isolate (“solve for) a particular
variable.

Example:

48

3.

Root-Finder. Use the built-in root-finder in the SOLVE application
to solve the equation sin 6 = 1.

. Make sure that you’re in Degree mode, press (—)SOLVE) il /[l and

enter the equation ("' SIMCH »=.5") in the ER field (note that
typesaH).

Then press with the # field highlighted. The root-finder
returns a solution, ZE, but it isn’t the only solution.

Enter ZHH into the # field as a guess, re-highlight that field, and press
ST, Result: 158, Ortry using a guess of ZHHH. Result: 1956,

Remember: Trigonometric functions are periodic functions; they
repeat the same values over and over as the independent variable
increases or decreases.
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Example: Function Plot Analysis. Plot the expression ' ZIMCB =, 5"
using and solve for B from the plot.

1. While viewing the PLOT screen, enter the expression into the Ei*

U-YIEK to—-2 1.

2. Usethe PLOT OPTIOM S screen (press @) to set the =TEP: to
18; press [T,

3. Finally, make sure that & is set to [*& and press [T1:E99 I 100

I I|,|

200K o843 [TRACE] FCH | EDIT JUAMIL |

4. Each point where the plot crosses the horizontal axis is a solution.
To find one, move the cursor out toward the right side of the screen

and press EOOT |

ROOT: 1E30.0001)

As with the =OLYE application, you may repeat this with any of the
possible solutions.
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Example:

Example:

Keyboard functions. Find the sin 8 = § directly from the keyboard.

. Enter . 5 onto the stack.

. Press (G]ASIN). Result: 3H

The inverse trigonometric functions located on the keyboard (HS I M,
HCOS, and HTHM) always return the principal value solution. For
HSIMN andATHM, the principal value solution is that located between
—90° and 90°. For A5, the principal value solution is that located
between 0° and 180°.

The I50L command. Use the IS0l command to find the general
solution for the equation sin 6 = 1.

. Make sure that flag —1 is clear. The ISOL command (among others)

will return the general solution if flag —1 is clear and the principal

solution if flag —1 is set. Press §8;1cH, and be sure that

0l Genetal =olut ions is unchecked (if necessary, press
a8 ). Press when finished.

Enter the equation onto the stack.

3. Enter the name of the variable for which you are solving ('B").

50

Press 1F0L A
Result: 'A=2@*(-1)1"nl+]188*n]"

The 1 variable stands for any whole number. If you store a whole
number in1 and then evaluate the general solution (after purging
the solution variable, B) you’ll get a particular solution. If you store
0innl and evaluate, you’ll get the principal solution.

For example: ('Ja])F)&JPURG), then
ENTER)(2) (e N 1) EVALyields 'B=390",
DROP)(ENTER)(5) (o)) N[1) EVADyields 'B=87H".
DROP (oS N[1) EVADyields 'B=-574".
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Problem Solving with Trigonometry

This section works through a set of typical problem situations where trigonometry
is useful. For most of these examples, you will probably want to set the display

mode to something suitable for real-world situations: (2](aJaJF] I ]X](ENTER).

Prob. 1:

You are considering buying a piece of land for which the asking price
is $75,000. It is triangular plot of land has two sides which have
length 400 feet and 600 feet. The angle between these sides is 46°20'.
If comparable land is selling for $1.15 per square foot, should you
pay the asking price?

. To compute the area of the triangular plot, use the area formula

(K =+absin C) directly (make sure that you’re in DEG mode):

Enter the sides: LENG| FT B0 FT |

Multiply the two side lengths together and then halve the product:
(X[~ J5)X). Next, enter the angle in DD.MMSS form (4£. £) and

convert it to decimal degrees: (5)TIMEINXT)[IEIEkd. Now find the

sine and multiply it by the previous product to compute the area of
the plot:

Result: SE8HT, 25177

. Compute the market value of the plot of land: (1) ]1]5)

@ANEWIS] AkEA | FT2 [EEDS)

Result: 99574, 92 _F
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Prob. 2:

52

Two ranger stations located 10 km apart receive a distress call from
a camper. Electronic equipment allows them to determine that the
camper is at an angle of 71° from the first station and 100° from the
second, each angle having as one side the line between the stations.
Which station is closer to the camper? How far away is it?

. This problem of “triangulation” is one involving two angles and the

included side (ASA). However, simply drawing a fairly accurate
picture will give you an answer to the first question:

g

X

Obviously, the camper is closer to the station B, at the 100° angle.

. To determine the distance, first find the third angle, using the law of

the sum of the interior angles: 180° — (100° + 71°) = 9°.

10 km xkm

sin9° sin71°

Press (10> ons) B TETH (v BEEE D ENX(©ENE.
Result: BH. "'}‘4_|-! [

Now use the Law of Sines:
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Prob. 3:

Two tracking stations, located 1115 miles apart, simultaneously spot
a UFO. One station measures the angle of elevation to be 28°, and
the other 67° (relative to the same direction). How far above the sur-
face of the earth is the UFO? How far away is it from the closest
tracking station?

. Draw a diagram of the problem:

h
28° 67°
L 1115miles — | «x
. h h
. Note from the diagram that tan28°= ———— and tan67°=—.
1115+ x x

Thus, 7 =(1115+ x)tan28°= xtan 67°.

. Be sure that you’re in DEfa mode, then input the equation and solve

for x: (JEQUATION) (4] O) (TS () () X) () (TAN 2] &) ()
=) (ealX)(TAN6)7)(ENTER) (o)X )(SYvBOLIC) EEITETTE.

Result: '#=aco,. A1
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Prob. 4:

54

. From the diagram, d =

Scientists at two astronomical observatories, located on the equator,
observe the sun at the same time in order to determine its distance
from earth. The observer at Observatory A, located at 135° 28' 13"
West Longitude, views the sun exactly overhead. Meanwhile, her
colleague at Observatory B, located at 45° 28' 22" West Longitude,
simultaneously sees the sun centered on the horizon. If you assume
that the earth’s radius is 4000 miles, how far away is the sun?

. Begin with a diagram. Use a view of the earth and sun from above

the North Pole (not drawn to scale):

B (45° 28' 22" W) /

Sun

4 . The earth’s radius, r, is 4000 miles,

cos 6
and the angle 0 is the difference between the longitude of the two ob-

servatories. So, compute that angle: (o] o[S]T]DJENTER)(1]3)5] )
(281 3) ENTER) (45 )+ 21 8)2) 2) =) TiME) (NxT) T
Result: 89°59'51"

. Now compute the distance d (and note that you must convert the

angle to decimal form before finding the cosine):
(4)0J0)0)(=¥/x). Result: 167347 . 25 (miles)
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Problem Solving with Trigonometry

Notes
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The Parametric Perspective

The standard representation of a function, such as f(x) = x2, implies that the
function’s output value depends upon the input value. To plot a point on the graph
of a standard function you need only two things: the input value and the function
expression. The horizontal coordinate (x-value) is known; only the vertical coord-
inate (y-value) need be computed.

Such “dependence” can be misleading, however, so functions may instead be
represented parametrically. The parametric representation of a function requires
that both the horizontal and vertical coordinates be computed via a third value—
a parameter. The two most common parameters used are time (f) and angle (0).

Obviously, the added complexity of parametric description must yield important
additional value or no one would bother with it. For example, this function de-
scribes the curve a rock takes as it is thrown horizontally off a cliff at 32 ft/sec.:

y=-x?/64 That is, when the rock is a horizontal x feet from the cliff, it is y
feet below its starting point. While that covers the raw facts of the observed
motion, it doesn’t help explain why the motion or make predictions about it, so
it’s hard to answer common questions: How long will it take the rock to land?
Does throwing it faster forward make it hit the ground sooner? Where will it hit?

However, the parametric representation of this motion gives more information:

x =232t
y=-16¢> where ¢ is the time (in seconds) after the throw.

Now you can see that the horizontal motion is unchanged from the initial throw,
but that all of the acceleration is vertically downward due to gravity. And the
inclusion of time into the function adds to the predictions you can then make.

Parametric representations are thus essential in separating and predicting the vari-
ous components of complex motion. Parametric representations are compatible
with the time-saving vector and matrix techniques of calculus and can, with no
more complexity, be extended to any number of dimensions. Parametric methods
are far easier to use in computer algorithms of all kinds—from the design of
video-game images to the analysis of exploding particles in advanced physics.
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Polar Coordinates

A pointinaplane canbe described in two distinct ways. Rectangular coordinates
identify a point, P, by giving its horizontal and vertical position on a rectangular
grid—(x,y). Polar coordinates identify that point, P, by giving its distance from
the origin (or pole) and its direction with respect to the polar axis—(7,0).

P

Pole
Polar axis

Functions using rectangular coordinates use the horizontal coordinate (usually x)
as the independent variable. Functions using polar coordinates use the polar angle
(usually 6) as the independent variable.

The relationship between rectangular and polar coordinates is best described as
a special kind of parametric relationship—where the coordinates in one system
are the parameters in the other:

2 2
r=+/x"+
x=rcosf Y

y= rsin @ or 0= tan_l (l)
X

The HP 48 always treats the rectangular coordinate system as standard,; it uses that
representation internally when doing computations. However, it can display co-
ordinates in either polar or rectangular mode, and you may enter coordinates in
either form at any time. This means that you need to be careful! Itis easy to con-
fuse yourself and generate incorrect answers.

Look at some examples....
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Example:

Example:

Example:

Example 4:

In Degree mode and with the rectangular coordinate |2y 41 on the
stack, change the display to Polar mode by pressing (one
of the polar annunciators is displayed).

Result: [0y <03, [3HIHESHED

The coordinates are displayed in polar form even though they are
still stored internally in rectangular.

While still in polar mode, enter the rectangular coordinate [ 3, 4

(] O 3)SPC)4)(ENTER).
Result: 7, £33, 13H1HZ3542)

Although the coordinate displays in the command line as rectangu-
lar it’s displayed in the current mode (polar) on the stack.

Change the mode back to rectangular: (—]POLAR). Now enter the
polar coordinate, r="5 and 8=60°: (] O)5)SPC)([=)«)(6] 0)(ENTER).

Result: &2, 0, 4, 3301E7H1IE9E)

Note that you must use the angle key to indicate that the second co-
ordinate is an angle (i.e. that the entry is polar). And once again, the
form displayed on the stack is that determined by the current setting
(rectangular).

Enter the polar coordinate (5,7t/3). Watch out! In polar mode, you
must also pay attention to the angle mode (radians or degrees). Also,
note that you cannot directly enter 7 into the coordinate. Press

(ENTER] 3] =J&qJ=NUM] to compute 7t/3. Then (&5JRAD)(=]POLAR)(Y)
(I OJRELI s Ja ) ] <) ENTER).

Result: L7, <1, 84719735120
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Polar Representations and Complex Numbers

Complex numbers, such as x + yi, are comprised of two parts (real and imagi-
nary). And they, too, have both rectangular and polar representations. Just as real
numbers are plotted on a line, complex numbers are plotted on the complex
plane—and thus are directly analogous to the coordinates of points in any plane.

y-axis . Imaginary axis
1
7 Points 7 Cor}lp ex Numbers
| :
L] ° .
x-axis Real axis
B K
The x-y Plane The Complex Plane

On the HP 48, complex numbers are typically represented by ordered pairs—just
like the coordinates of points. Computationally, therefore, coordinate pairs are
treated by the HP 48 exactly like complex numbers. This will be very convenient
when working with analytic geometry, as you’ll see in Chapter 6.

The polar representation of complex numbers is computed by using the same

: : . . =rcos0 .
parametric transformation as with coordinates: ; _ rr*sin 9" Algebraically, then,
a polar complex number, z, looks like this:

z=r(cos6 +isin6) or z=r cis@ , for short
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Plotting Polar Functions

One of the fifteen kinds of plots built into the HP 48 is designed for plotting
functions in polar coordinates. To use it, you need the following information:

* A function, f(6), expressed in polar form

* The range of 6 that you wish to plot

* The horizontal and vertical ranges of the area of the plot you want to view.

* The interval angle between two plotted points—the resolution of the plot
(higher resolution requires more plotting time).

Example:

1.

6sin@cos 6
‘0

Plot the polar function, f(0)= , and find its period.

sin® 0 + cos

Begin the plot application, (=PLOT), and select F'1 1 &t~ as the plot
type.

Reset the plot: Press(DEL]Y]ENTER).

3. Highlight the Ei: field, press and type in the right-

hand side of the equation above. Press(ENTER)when finished to insert
the function into the Ei¥: field.

Change the IMDEP: variable to H.

5. Notice the angle mode (in the - field). If it’s set to [r=g, then you

will want to probably want to use the plotting range 0 to 360, (unless
youhavea clearidea of the period of the function). Ifit’s setto .,
then use the plotting range 0 to 6.2832 (approximately 2m). Press
(or NxT)lVEEE, if necessary) and enter the plotting range

for the independent variable given the current angle mode.

How often should a point be plotted (the *TEP value)? The default
setting is one point every two degrees (11/90 radians). Twice this res-
olution (one point every degree or every 7t/180 radians) often gives
a very pleasing plot—although it takes a bit longer to plot. Use the
default for now.
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7. Press ST T to plot the function:

™\

200K

A JTRACE] ] EDIT

Note how the negatively sloped line on the left side of the plot ap-
peared almost instantaneously, whereas the other points were plot-
ted individually. This indicates the probable presence of an asymp-
tote. The curve is called the Folium of Descartes. 1t has the curious
property that the area enclosed in the loop is exactly equal to the non-
enclosed area between the curve and its asymptote!

8. Confirm the presence of an asymptote by replotting the curve with
the COMMELT feature off (unchecked): Press OPT= [§2
w CHE EERZE| DRA A

_____ 3
Z00R e840 [TRACE] | EDIT
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9. Now find the period: Press to prepare the cursor to
trace along the function while the display indicates the values of #
and the function (¥'). Press (»)to move the cursor “forward” along
the curve. The(«Jkey moves the cursor “backward” along the curve.
Asyoucan see by playing a bit with the cursor, “forward” and “back-
ward” are interpreted as “increasing” and “decreasing” the value of
the independent variable (#). To find the period, press the cursor for-
ward until it begins to retrace the curve. At this point, you can see
that the period is 180°, or & radians.

@: 180 Wi

10. Try one more thing: Observe what happens if you move “back-
wards” along the curve so that B shows a negative value.... It dis-
plays the value of the function even for points outside of the plotting
range—and, you will notice, outside of the display range.
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Example:

64

Plot the polar equation, 2 cos36 = 2 cos’ (g)

Whenever you plot an equation that includes the independent vari-
able on both sides, you’ll get a plot of the left-side expression super-
imposed upon the plot of the right-side expression. The point(s) of
intersection of the two plots represents solution(s) to the equation.

. Return to the PLOT screen: if you’re viewing the display

of the plot; or (=JPLOT) if you’re viewing the stack.

. Highlight the E*: field and enter the equation: (69JEQUATION)(2)COS)

BJPIF)E&)=)(2)cos) (TP @)Y 2) ENTER).
Make sure that the IMOEP variable isH and that the H=YIE}] and Y-
YIEK ranges are the defaults.

Press [ gl and turn on COKWKELCT mode and *IFLL T aneous plot-
ting mode (not required, just more interesting).

. Press B [T:T3153 DT to draw the plot of the equation (or,

rather, the plots of the two expressions).

'i

LS
’
[zooM]ck.va JTRAcE] | E0IT

Press and explore the two expressions. To make the
cursor “jump” between the two plots, use the (a)and (¥)keys. Notice
that the points of intersection occur at @ = 0° + 360°n, but that the
period of the left-hand side is 180° while that of the right-hand side
is 360°.
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Example:

4.

Find all the points where the two cardioids, r =2(1—cos 6) and
r =2(1+cos @), intersect. The HP 48’s function analysis menu
(EEEE)—with its handy [EIH, IETTHH, EFAAA, and I
commands —is available only for plots of rectangular functions. So,
to find the intersection of two polar functions, you must observe the
functions as they are plotted together, then manually explore the
regions of intersection.

. Return to the PLOT screen and highlight the EL!: field.

Enteralist containing the two expressions: (S J{ 3" [2) X&) O 1)
I - > > 22X O ) cos) BT ENTER).

. Leave the rest of the plot parameters as they were for the previous

example; press [T [T 8. Watch the plot as it’s drawn.

I"x: | (I,J'

~ o
= M
2000 [ 8.4 [TRRE -:HH-:L

Although there are three points where the plots of the two expres-
sions intersect, only two represent true intersections (‘‘collisions”)
where one value for the independent variable (#) gives the identical
value for both expressions. Thus, although each plot contains the
origin (0,0), they don’t “collide” there.

Use the trace feature to find the points of intersection. Press
EEEER, then move forward along one of the cardioids (press and
hold (»)) until the cursor is on the upper point of intersection. The
display indicates that®: 301 and': 2. To confirm this as a point of
intersection, press (4) to jump to the other cardioid.... Voild! The
identical coordinates are displayed. Repeating this procedure shows
that®: 271 andY: -2 are the coordinates of the other point of inter-
section.
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Plotting Parametric Functions

Two-dimensional functions described parametrically have their own plot type on
the HP 48. To use it, you need the following information:

* Afunction thatis described parametrically—i.e. described as a set of func-
tions, x(¢) and y(t), where the horizontal and vertical coordinates are ex-
pressed separately as a function of some parameter .

* The range of the parameter, ¢, that you wish to plot.
* The horizontal and vertical ranges within which you want to view the plot.

» The interval step between two successive plotted values of the parameter
t. This determines the resolution of the plot.

The Fat~ame1. t~ 11 plot type can be confusing at first, because of its relation-
ship to complex numbers. On the HP 48, functions of real numbers are plotted
using the F LMz, 10 plot type, but functions of complex numbers are plotted
using the Fat~ame1. 1~ 1= plot type (see also pages 72-75), because a complex
number is composed of two parts—Ilike the two coordinates in a parametric repre-
sentation. But this association of parametric functions with complex numbers
means that you must enter parametric functions as complex numbers—either in
coordinate form ,' (%t 1, 4t 12" or algebraic form, '« (1 1+t d#i! *

Example: Plot the Folium of Descartes using its parametric description:

6t 6t
t)= t)=
*(1) 1+t3y<) 1+7
1. Open the PLOT application and change the plot type to F'at~a—

metric.

2. With the Ei: field highlighted, enter the parametric functions to-

gether as a single complex number: EONOOE
(D HIJS DI M) A e[ D I )0
BHETX3).

*Note that no matter which form you choose to enter it, the complex-valued function will be displayed in the form
determined by the current state of flag -27. If flag -27 is clear (default), it will be displayed in coordinate form.
If flag -27 is set, it will be displayed in algebraic form.
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64 Gt
1+t7 14

Press (ENTER] to return the expression to the Ei2: field.

3. Now highlight the IMDEP: field and enter the name of the parameter
(t.), which is the independent variable.

4. Open the PLOT OPTIOM: screen. The most difficult aspect of plot-
ting a parametric function is pre-determining the appropriate range
and step-size of the parameter, but fortunately, the graphing technol-
ogy of the HP 48 makes it easy to refine your choices. To begin, just
use the default step-size (you may need to reset it: highlight the
ZTEP: field and press (DEL[ENTER)). Since the parameter, 1. , is often
regarded as “time” when working with real-world applications, try
a plotting range of LO: Kl toHI: 1H, as in 0 to 10 seconds.

5. Press Bl [ [T EHI0TTIH to draw the plot.

-

.

o

i

200k [k TRACE] | EDIT
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6. You know from the previous section that the graph of the Folium of
Descartes includes two asymptotic wings in addition to the loop cap-
tured in the plot above. Why didn’t they show up in the parametric
plot? Explore the plot using the TRACE feature to see if you can find
why the wings are “hiding.” Press and then (») re-
peatedly to move the cursor “forward” along the curve. Notice that,
while the cursor moves rapidly at first, it slows to a crawl on the left-
side of the loop. Move the cursor beyond T: 1{1—points need not
be plotted for their coordinates to be displayed. It appears that as 1.
gets larger, the curve approaches the origin asymptotically—but it
never sprouts the missing wings. Positive . serves only to define the
loop. What about negative 1. ?

7. Press (4) and move the cursor so that it first retraces the loop back-
wards, then moves into a region where 1. is negative.... Aha! Like
a ghost, there are the hidden wings of the Folium of Descartes.

8. Now that you know some key information about the plot, return to
thePLOT OPTIOM: screen (CANCEL) |5 #8) and enter a better plot-
ting range, say — 1 € to 1 &, so that all of the key features of the plot

are drawn. Press T ITTTRE when ready to redraw.

200M iR [TRRCE] | ENT

Note how important the kind of parameter is when you try to set a good plotting
range: The parameter used in the previous example was linear; it needed the en-
tire set of real numbers, —oo to + oo, to fully describe the graph just once. By con-
trast, the Polar plot-type parameter is an angle, which repeats itself as it travels
around. Thus, an entire plot is described in just one cycle; extra cycles simply re-
peat it. But a Parametric plot type also can use an angle as its parameter....
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Example:

Plot the function defined by the following:

9cosf—3cos96 9sin @ —3sin96

1. Return to the PLOT screen and highlight the Ei: field.

Enter the parametric functions as a complex number: (¢5]EQUATION

S ONEENERGE0EEESEORE00B0E0
@SN RIF)EEIEN ) RIF)(5)ENTER).

3. Change the independent variable to the parameter, H .

Change the H=WIE} range to— 12 to 112 and the ¥ =WIEH range to
=18 to 18, (Lucky guesses? Nope—trial and error.)

. Because the parameter is an angle, you must change the plotting

range and step interval. Press [{![gll % and change the plotting range
to H to Z5H (if in Deg mode) or Bl to &« 2232 (if in Rad mode)
and change the step interval to 1 (if in Deg mode) or « 11 V2232

(if in Rad mode).
Press AT EIITT TR to draw the plot:

200M k.4 [TRACE] | EDIT

Sure enough, one cycle through the possible angles is sufficient to
draw the complete curve. This particular curve is called a prolate
epicycloid and is part of a family of curves generated by a point a
given distance from the center of a small circle rolling around the
outside of alarger circle. See the section on page 76 for more inform-
ation about these and other interesting curves.
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Another advantage to parametric representation is that the vertical and horizontal
components of the function can be more easily analyzed separately.

Example:

Consider motion that is constrained to a straight line even though the
forces controlling the movement are not linear, such as the conver-
sion of a circular flywheel motion into the linear motion of a piston:

Suppose the motion of a particle moving only along the line y = 2,
is subjected to nonlinear forces such that the x-coordinate motion is:
x(t) =21 —14¢* +22¢ -9, where t is time in seconds.

1. Return to the PLOT screen and highlight the E&: field.

A

70

Enter the parametric function as a complex number: (65]EQUATION
SO JA T B4 DY 2B 2l
(=]9J&) * J2)([ENTER). Notice that the y-component is a constant, 2.

Change the IMDEP: variable to 1. .

Set the H=WIEl to —=El to T and the ¥=WIEH to—2 to 1 H . &.
Setthe plotrange (inPLOT OPTIOMS) toH to5 and ZTEP: to « 5.
Draw the plot @R T TEESOTTTED and watch as it plots:

+

[zooM]ck. v JTRACE] | EDIT

The plot is a straight-line, of course, because the y-component is
constrained to be a constant. But did you notice how it was created?
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7. Use the Trace feature to explore the function. Press i[85 £

Example:

and then (»)repeatedly to increase the value of the parameter in steps
of .05 seconds. The cursor moves to the right then seems to pause
and return back to the left, then pauses again and moves back to the
right—in apparent retrograde motion.

Add a second parametric function to that in the previous example —
identical except for the y-component, which should be y(¢) =¢.

. Return to the PLOT screen and highlight the Ei3: field.

You want to add a second parametric function to the one already in
place. Use the Calc feature to get access to the stack, where you can
copy the current function, edit the copy, and combine the original

and modified versions together into a list: o | M (ENTER) ()
EHUO00EOEBENEE]EES] LIT |+LIETE

3. Enter the list into the Ei¥: field: («9)CONT) BT

. Redraw the plot: [ERAZE| DEA L W

] +

Now you can see the “hidden” function controlling the movement of
the x-component because the function has been spread out by allow-
ing y to vary with time. Press [lJil83 and use the arrow keys to ex-
plore the relationship visually.
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Plotting Functions of Complex Numbers

As mentioned earlier, the Parametric plot type on the HP 48 is actually a general
purpose complex function plot type. This is why parametric functions are entered
as complex numbers—or complex-valued functions, to be precise.

A complex-valued function, f(x+iy)=(u+iv) takes a complex number (x,y)
and maps it to the complex number (u,v). In order to plot the function of the com-
plex number, you must first determine u and v.

Example: For the function f(z) =z, where z is the complex number (x+iy),
compute the complex number (x,v).

1. Make sure flag -27 is clear (press (@] C)@JF)(ENTER)) and
enter the symbolic complex number ' L3 41" onto the stack.
2. Square it: (2]YX.

3. Symbolically expand and collect the result: ()SYMBOLIC) {1
IFTTHETES] Result: ' (-u™Z+uty, Exuney)!

Therefore, your complex-valued functionis u=x>—-y> v=2xy.

Notice that you cannot simply plot this result—the complex-valued function
Lt -yt Ry ] ' using the Parametric plot type, because you have two
“independent” variables (x and y) instead of one (usually ¢ or 8). However, you

may plot this function if either x or y is given a value....
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Example: Plot f(z)=z?, where z is the complex number (x+3i).
1. Openthe PLOT screen and make sure that the plot type is still set to
Faramat r1c. Highlight the ER: field.
2. Press 19; 158 to move to the stack. Now enter the complex
number onto the stack: (' J&]O) o) X]< ) ) 3)[ENTER).

3. Square the complex number, then expand and collect the result as in
the previous example: (2)Y¥«)SYmBoLIC) M BEFH Il THsh{
Result: '[w™Z—3, GEn)!
4. Return the result to the Ei: field: (&) CoNT) B TEHE (NXT).
5. Change the IMDEP: variable to .

6. Switch to the PLOT OPTIOM: screen (fUgEd), and change the
plotting range to — 1 &1 to 1 &1 and the ZTEP to « 2. Press B0

7. Change H-WIEW to —1 2 to 2K and check AUTOZCALE.
8. Draw the plot: [T1iE3 (TN

.-r"-;:—......
Y
—_

o ——

200M [ iH o [TERCE] | ENNT
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The Parametric plot type allows you only to partially plot a complex function, but
the HP 48 also has a plot type, Iat™ 1idmaF, capable of plotting the complete
mapping. Basically, a gridmap plots a series of parametric curves, allowing y,
then x, to vary through a series of steps, as if superimposing a series of parametric
plots where, say, y=3,theny=2,theny =1, etc; thenx=3,x=2, x =1, etc.

Example:

74

Plot a grid representation of the complex plane, where f(z)=z.
This mapping is analogous to the real number function f(x) = x (a
straight line), except that it results in a rectilinear plane instead of
line. The Gridmap plot type represents this plane as a grid—plotting
only a few of the infinite number of lines of the plane and allowing
those lines to stand for the plane as a whole.

. At the PLOT screen, highlight the T¥PE: field and change it to

S idmap: (Gridmap is the only plot type starting with G).
Move the highlight to the E¥: field and enter the symbolic complex
number ' Lxadd ' (If flag -27 is set, you will see the complex
number displayed as ' x+4¥1 '),

Make sure that the IMOEP: contains = and NEPMI': contains'd (note
the lower-case). In this case, . is the independent variable not
because it is any more “independent” than 'd, but because it is to be
plotted on the horizontal axis.

Use 1 HZTEPZ forx and'= STEPZ ford. This means that 10 values
for . and 8 values for 4 will be used, so 80 points will be plotted.

Draw the plot: [4iikd {15 (—).
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Example:

Example:

Plot the complex-valued mapping, f(z) =z, using the Gridmap
plot type. What were previously straight lines within the complex
plane are now transformed by the function into curves—again,
analogous to what happens to a straight-line in the real number plane
when it is transformed by a function.

1. Return to the PLOT screen, and highlight the Ei3*: field.

. Modify the expression so thatitis ' L2 ™Z " . EIIIEE)

(&2 L

. Draw the plot: [TTTEILTTH .

™ —"
P me——

Repeat the previous example using f(z) = z’as the transformation.

Result:
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A Garden of Curves

Polar and parametric plotting allow you to view some very interesting curves. The
examples in this chapter just barely hint at some of the exploratory (and artistic)
possibilities these curves offer.

This section gives you additional fodder for your curiosity. Each entry includes
some information about the curve or curve family and an example plotted on the
HP 48, along with the plotting parameters used to create the example.

Note: If a parameter isn’t referred to, then the default settings are assumed. Also,
“Cartesian” refers to a curve’s description in a rectangular coordinate system.

Cassinian Curves

A Cassinian curve is the locus of points, P, the product of whose distances from
two fixed points, F, and F,, is constant. That is, PF *PF,= k.

Ovals of Cassini. Here are the forms of the function:

e Cartesian: (x*+)’ )2 -2¢*(x* -y’ )=a' -¢*

e Polar: r=\/d2 cos29i\/d“ cos226+(a4—d4)

There are four different shapes for Cassinian ovals. The shape depends on
relationship of a (the square root of the constant k) and e (half of the distance be-
tween the two fixed points):

When a < e, the result is two oval islands.

When a = e, the result is Lemniscate of Bernoulli (see below).

When e < a < e+/2, the result is oval with concave sides.

When a > e+/2, the result is oval with convex sides.
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Example: Ei: ©'Jod™2#C0502%0 v+l Cd™ 0050 220 22

JOd™GECO5C 28 22+ a3 d—-d g a0
TYPE: FPolar & g IMDEP: H

H-WIEH: —2 2 W-giER: —1.1 1.1
LO: & HI: SEH ZTEP: 1

. T
a=.9d=1 —o—u—(&—a—%—o——ﬁéo——t—}—e—t—
W -

(zo0r [ o8¢ [TRRCE] | EDIT [CAMEL

raa —t
Examp]e: a=1'1;d=1 . f . - \

., 4
"-'-\___v—f_'— -_'_‘—\_____4-"-‘.r

200r4 [ 08¢0 [TRACE] ] EDIT [CANCL

f I
. I Yy
20004 ] k. [TRACE] ] EDIT [CAMCL]

Example: a=15;d=1

A Garden of Curves



Lemniscate of Bernoulli. The Lemniscate of Bernoulli is a special case of a
Cassinian oval, where a = d. The area of one of the loops is a’.

¢ Cartesian: (x* +y? )2 =2a*(x* - y*)
e Polar: r’ =2a*cos26
at\2(1+1%)
Xx=——1—=
1+¢*
e  Parametric:
atV2(1-1%)
y=———Q7
1+1¢

Example: Ei: 'JOZ®m™Z2:C05C2€000!

TYPE: Folar g [eg IMDEP: H
H-VIEK: =2 = U-EL: —1.5 .
Lo: A HIi: 256 ZTEP: 1

a=15 : /};__J}

200K |8 [ TRACE] | EOIT JCAMCL
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Cissoids and Conchoids

A cissoid is the locus of points P that are the same distance from a fixed point, F,
as the distance between points, Q and R, on two curves such that F , P, Q, and R
are collinear. Ordinary cissoids employ a circle and a line as the two curves.

A conchoid is the locus of points, P, and P,, that are equidistant from a point Q
on a given curve and a fixed point F, along a line containing both Q and F,. If you
draw a line from F, through Q, then P, will be a distance k farther from F, than Q
and P, will be a distance k closer to F, than Q along the drawn line. Conchoids
are cousins of cissoids, a fact which becomes clearer when you consider that the
Conchoid of Nicomedes (discussed below) is both an ordinary cissoid and the con-
choid of a line with respect to a fixed point not on the line.

Cissoid of Diocles. The Cissoid of Diocles is an ordinary cissoid with the origin
as the fixed point, the point (R,0) as the center of the circle (radius = R), and the
line x = 2R as the line. The curve is asymptotic to the line x = 2R; and the area
between curve and asymptote is 3R’ 7.

3

e Cartesian: y: = a
2R—x
) 2Rt? 2Rt
e  Parametric: xX= D 5
1+¢ 1+¢
e Polar: r=2Rsin Otan 0

Example: Eix: 'Z#®RE*SIMCH#THMHCR 2!

TYPE: Folar o [eg IWDEP: H
H-YIEK: —E.5 E. 5 P-EK: ==, 1 2.2
LO: B HE: SEG ZTEP: 1
] f.!'
.".l'r
R=3 ‘:}f +
\_xx'.
(2000 | Lt 03 [TRACE] | EDIT UANLL]
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Folium of Descartes. The Folium of Descartes is a cissoid of the ellipse defined
by x* —xy+y* —a(x+y)=0, and the straight line y=—x—a. The curve is

asymptotic to the line y = —x — a; the vertex of loop is at (3a/2, 3a/2); the area of
2

. 3a . :
loop is > as is also the area between curve and its asymptote.

e Cartesian: x*+y =3axy=0
3asin Bcos B
e Polar: r=—— 3
sin” @ + cos” @
) 3at 3at?®
e Parametric: X= =

1+ T 1er

Example: EQ: ' CZ¥3¥SIMOB 22C0SCR 2 205 IHOR 22

TYPE: Folar & Deg IMDEP: H
H-VIEK: =14 14 U=PEK: =7 7
Lo: & HI: 128 =TEP: 2
K\% ’fj
Q::-\-"r_ H"'fj-r
a=4 e e 7
™ "'._
Eﬂﬂﬂx-[ﬂﬂ:
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Conchoid of Nicomedes. The Conchoid of Nicomedes is an ordinary cissoid with
the fixed point being the center of the circle. The curve has an asymptote at x =
a, which lies between the y-axis and cissoid’s second “curve,” the line x = a + b.
The shape depends upon the relation of a and b.

+ Cartesian: (x> +y*)(x—a)’ -b’x* =0
e Polar: r= a +b
cos O

x=a+bcosO

*  Parametric: y=atan 6+ bsin 0

Example: Ef: ' (a+bC0S0R D, ¥ THMOE 2+bxS IR 2 2!

TYPE: Farametric g [eg IMDEP: H
H-IlllEl'"I: _E'I 5 E'l E-' Ill—lllIEl'"l: —E:I 1 E:l ;'-_I
Lo: HI: 25E +TEP: 1
a —_ 3; b - 2 2 " . g . 3 Z: : : H

[200r [ ¢H. w0 [TRACE[ ] EDIT [CANEL ]

.Ill- \
/
S

| {
200 e [TRACEL | EDIT [CAMEL

Example: a=2;b=3 bttt
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Strofoid. Astrofoidisacissoid of a circle (radius = a) and aline through its center
with respect to a fixed point on the circle. The vertex of the loop is at (a,0); the

loop area is a*| 1— r ; the area between curve and asymptote is a*| 1+ r .
P 4 4

e (Cartesian: y o =x
a+x
e Polar: rzacos:ZB
cos @
1-1¢? t(1-¢2
e Parametric: X = f-(—z) y= f_(_z)
1+1¢ 1+¢
Example: Ef: '3*C0S0C2%R 2 00500 !
TYPE: Folar &: (e IMDEP: B
H-YEH: —5.5 5.5 V-glEL: =3, 1 3.2
Lo: A HI: 258 =TEP: 1
\
Y
!
a=4
‘_.J'
2000 [ R0 [TRACE] ] EDIT [CAMEL]

Pascal’s Snails. Pascal’s snails, or limagcons, are conchoids of a circle where the
fixed point is on the circle—i.e. the locus of points P, and P, adistance b from each
point on a circle of diameter a, as measured along a line containing a fixed point
on the circle. Limagons come in four typical shapes, depending on the relation

2
of ato b. When b 2 a, the area enclosed by the curve is 7r(b2 + %)
e Cartesian: x*+y’ —ax’ b (x> +y*)=0
e Polar: r=acos@xb

x=acos*0+bcos0

e Parametric: y=acos@sinO +bsin O
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Example:

Example:

Example:

Example:

Ec: ' Ca¥COScR " 2+bEC0SCa 1,

SO0 =S IMCE y+hxSIHCR 2 !

TYPE: Farametric
H-YEH: =15 15

LOo: |

a=4,b=5 (a<b<2a)

a=2,b=5(b>2a)

a=b=5(a=b)

a=5b=2(a>b)

A Garden of Curves

a: Fa

IMDER: H

W-BIEL: —F. 2 T

HI: l:'l ::

{4
(

X,
200M { LK | TRACE

rd

ST DT ANIL)

—

AT
L1
\ A

oy
200k TEACE

T
[ ] EDIT [tAMiL

i\

'|l-

/

(.

200r | LR | TRACE

rd
3 -
[ ] EDIT [(AMIL

[
200r4 ekt [TRACE] | EDIT JCAMEL
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Cycloidal Curves

Cycloidal curves are an interesting family of curves. They represent the motion
of a point on, “beyond” or “within” a circle as it rolls along another curve. The
cycloid itself represents the motion of a point on a circle as it rolls along a straight
line. The epicycloid represents the motion of a point on a circle as it rolls along
the outside of a second circle. The hypocycloid represents the motion of a point
on a circle as it rolls along the inside of a second circle. Then, for each of those
three branches of the family, there are the trochoid versions, where the point on
the circle isn’t precisely on the circle but “beyond” the radius of the circle
(prolate) or “within” the radius of the circle (curtate).

The learning toy, Spirograph™, makes extensive use of the cycloidal family of
curves, with circles of differing radii rolled around or within one another to form
beautiful patterns. In particular, Spirograph utilizes the key feature of the cycloid
curves—the ratio of the radii (as expressed by the number of “teeth”) on two
circles. The program, 5P IELJ, on page 312, takes the number of teeth of the fixed
circle from level 3, the number of teeth of the rolling circle from level 2, and a
number indicating whether it rolls inside (-1) or outside (1) the fixed circle.
5P IR0 always draws a prolate curve. *

Ordinary Cycloid. The ordinary cycloid is generated by a fixed point Pon acircle
of radius a which rolls without slipping along the x-axis. The period of curve is
2ma; the length of curve between two cusps is 8a; the area between one full arch
of the curve and x-axis is 3ma’.

¢ Cartesian: x=acos? L2 _ [y(2a-y)
a
. . x=a(0 —sinB)
Parametric: v=a ( 1= cos 9)
Example: Ef: 'Ca¥(H—SIHCA I 5% C1-COSCA 2!
TYPE: Farametric &: Fad  IWMDEP: H
H-VIEK: =20 2@ U-WIEH: —2.5 15
Lo: —19 HI: 18 ZTEP: . B5

*Short programs like SP IR0 may be written to provide easy control of parameters for other curve families as well).
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a=3 ﬂm\fﬁ ff""“\_vf"“

(Z00M ] (5.7 [TRACE] | EDIT JCANCL

Trochoid. The trochoid curve is generated by a fixed point Pat a distance Aa from
the center of a circle of radius a which rolls without slipping along the x-axis. If
A <1, curve is curtate cycloid. The “base” is the horizontal line above x-axis. If
A >1, curve is prolate cycloid. The “base” is the horizontal line below x-axis. If
A =1, curve is ordinary cycloid.

Parametric: x=a(6—Asin0) y=a(l-Acos6)

Example: ER: 'Ca¥(H-h*¥SIMCB I 2, 53%0]1-

LECOSCH I !
TYPE: Farametric o Fad IWMDEP: H
H-VIEK: —2E0 23 U-EK: =5 12
Lo: —14 HI: 18 “TEP: . B5

a=3;A=0.5 _‘“x\_f’_-“\l;’_“xff_
+ + + + + + 1 + + +

[200F [t 0o TRRCE] | EDIT JEAMIL

Ty fﬁx ~
Example: a=3;1=1.5 '\J{ ! Eli.-"r

200H TRACE[ | EDIT [CAMCL
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Ordinary Epicycloid. The ordinary epicycloid is generated by a fixed point Pon
a circle of radius b, which rolls without slipping on the outside of a fixed circle
of radius a. If a/b=N is an integer, then: the curve has N equal branches; the arc

length of each branch is %(a + b); the area of one sector is b—n(a +b)(a+2b).
a

a+b

x=(a+b)cos6—bcos 0

e  Parametric:
a+b

y=(a+b)sin 6 — bsin 0

Example: Eix: 'Cia+br*C0SCA —b*xCOSC Catbhi-b¥Aa,
CatbaESIMoR  -bESIMC Catba-bEa 2 !

TYPE: Farametric & Fad IMDEP: H
H-YIEK: =15 15 W=-PIEL: 7.2 7o
Lo: & HI: 5.3 *TEP: . B5

-FH.-W.-"_-\-\.

i1
a=5b=1 N A | —
(integral ratio) '\ 1 H|
to
200R [ i [TRECE[ [ EDIT [CAMEL]

Example: Ef: 'CCa+br#C0OSCA-b*C0OSC Catbhir b*aa,
CatbaESIMCA I -bESINC Catho bR 2 !

TYPE: Farametric & Rad IWDEP: H
H-VIEK: —24 24 W-MEH: —12 12
LO: & HE: 12 ZTEP: . HS
Reduce the ratio a/b, if possible; and plot one cycle (2r) for each b.

f‘—j:h"w--

%)
a=5;b=3 VR LS
(non-integral ratio) TR 14

g ‘--[ ! ;,:f
[200M [k [TRACE] ] EDIT [cAmcL ]

86 3. POLAR AND PARAMETRIC EQUATIONS



Nephroid. The nephroid is the 2-cusped epicycloid (a = 2b).

Example: E: ' Coa+hr*C0OSCA M —bxC0SE Ca+bhir b o,
Catbo S IO A -bESIHC Catbi bl 2 2!

TYPE: Farametric o Fad IMDEP: H
H-VIEH: =15 15 W=HIER: =7V .2 FTad
Lo: | Hi: 5.3 “TEP: . H5

iy
qp

l‘u

a=2;b=1

el

200M cH. ¥ [TRACE] | EDIT [(AMCL

Cardioid. The cardioid is an ordinary epicycloid where two circles are the same
size (a = b), which simplifies the epicycloid equation. The length of the curve is
16a; the area enclosed by the curve is 7a’7.

* Cartesian: (x*+y*' -a’ )2 = 44> [(x —a) + y2]
e Polar: r=2a(l-cos6)

x=a(2cos 0 —cos20)

»  Parametric: y = a(2sin 6 —sin26)

Example: ER: 'Z¥3¥C1-COSCR2 !

TVYPE: Folar o Fad IMDEP: H
H-WIEL: =33 25 U-RIEK: —15 15
Lo: & HE: G 3 STER: . B5
P
!
i s
kN /
[Z00M [ 5. ¢) [TRACE] | | EDIT [CANCL]
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Epitrochoid. The epitrochoid is generated by a fixed point Pat a distance bA from
the center of a circle of radius b, which rolls without slipping on the outside of a
fixed circle of radius a. If A <1, curve is a curtate epicycloid. If A > 1, curve is
a prolate epicycloid. If A =1, curve is a normal cycloid. If a/b=N is an integer,
the curve consists of N equal branches. If N is a fraction, the branches intersect.

a+b

x=(a+b)cosO —bAcos 0

e  Parametric:

a+b

y=(a+b)sin 6 —bAsin 0

Example: Ei: 'C0a+br#COS5CA  —b* 005 Ca+ba -
bl 2, Ca+br*SINCA i —bst S IHC Ca+bhi-

bR 2!
TYPE: Faramstric o Fad IMDEP: H
H-VIEK: =28 2@ U-REH: =15 15
LO: | Hi: 5.2 ZTEP: . HS
.»’Jh
a=5b=1;1=05 SRS W I
i TRACE] [ EDIT [CAMCL]

Example: a=5;b=1; A=2 7

[zoor e v [TRACE] ] EDIT [CAMIL
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Example: a=5;b=3;A=2

L~ _l":a-'

)
[200M [ck i [TRACE] | ENIT

Ordinary Hypocycloid. The ordinary hypocycloid is generated by a fixed point
P on a circle of radius » which rolls without slipping on the inside of a fixed circle
of radius a. If a/b=Nis aninteger, the curve has N equal branches; if Nis a fraction,
the branches cross one another. If N=2, the hypocycloid reduces to a straight line.

Thearc lengthofeachbranchis%(a — b);theareaofasectoris —Z?E(a —b)(a-2b).
a

a—>b

0

x=(a-Db)cosB+bcos

e  Parametric:
a—>b

0

y=(a—>b)sin 6 - bsin

Example: E: ' Ca—basC0o0d a+hxC050Ca—-bo -
Bl 2y Ca—-baesIMoR d—bxSIMC Ca-ba -

bR 2!
TYPE: Faramstric o Fad IMDEP: H
H-YIEH: =12 12 W-UIEH: —& &
Lﬂ: '::l HI' I-:IIE: :E:TEF: IBE;
I'-4'1

—1 \
a=5;b=1 — :-I=: :_,."'.“-

J!I_—\_,_- 'f

(2000 | Lt '1) |TRRCE] - ] EDIT |CAWLL]
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Astroid. The astroid is a hypocycloid with 4 cusps (a = 4b)—a simpler equation
than the general hypocycloid. The length of the curve is 6a; the area between the

curve and the fixed circle is %azﬂ:; the area enclosed by the curve is %azn.

e (Cartesian: X y%za%
Parametric: x=acos’ 0 y=asin’
Example: Ef: ' Ca*C00oCl ™3, 3¥SIMca 220!
TVYPE: Farametric & Fad IMDEP: H
H-WIEK: —12 12 "-"IEI--I -5 &
LO: i ITER: . BS

< K

200M L4 |T - EDIT JCAMCL

Deltoid. A deltoid is a 3-cusped hypocycloid (a = 3b)—a simpler equation:
* Parametric: =~ x=b(2cosO+cos20) y=>b(2sinO-sin26)

Example: Ef: ' Ch#C2#C0OSCR 2 +C0SC220 20,
b 2%SIHCR  —SIMCEER I 3 !

TYPE: Farametiic : Rad IMDEP: H
H-WIEW: —12 12 W-WIEM: —E &
LO: B HE: o 2 STEP: . G5
"‘-.\\
b=2 || gy
(20001 | (273 [TRACE] | EDIT [LANIL
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Hypotrochoid. The hypotrochoid is generated by a fixed point P at a distance bA
from the center of a circle of radius b which rolls without slipping on the inside
of afixed circle of radiusa. If A <1, curveisacurtate hypocycloid. If A > 1, curve
isaprolate hypocycloid. If A =1, curveisanormal cycloid. Ifa/b=Nis aninteger,
the curve consists of N equal branches; if N is a fraction, the branches intersect.

a—-b

x=(a—-b)cosO+bAcos 0

¢  Parametric:
a->b

y=(a—b)sin@—bAsin 0

Example: Ei: '©¢a—bi#C0SCA 2+ 005 (a—hbh
bl iy Ca-bir*SINCA  —b¥s¥S5IHC Ca-hba -

bxg 2!
TYPE: Farametric & Fad IWMDER: H
H-WIEW: —12 12 N-JIEL: —F &
LO: & HE: £ 3 STER: . G5

i a

TN
f,-’

a=5b=1;1=0.5 ——— L
wy

[zoor s a [TRACE] | EDIT JCAMIL

.

4

Example: a=5;b=1;A=2 —
-

+
N
"'I;-.Fc—:-.
;
4 -\

1
200k |8 [TRACE] | EDIT [tamMiL
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Example: H-VIEM: —38 90 N-JIEL: =45 45
LO: & HE: 19

a=40;b=3;A=3
Example: H-WIEH: —3E A N=PIEH: =32 45
LO: HI: 22

a=36;b=15;1=0.6

Example: H-VIEK: —1H& 186 N-WIEL: =52 53
Lo: & HI: 95

a=49;b=15;1=14

200k [kt [TRACE] | EDIT JCAMCL
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Roses. A rose is a hypotrochoid in which A = ab;b’ which makes for a simple

polar form. Note that roses can be either curtate or prolate hypocycloids.

e Polar: r=2(a—b)cos a

0
a-2b
]

SECa—-br*C0SC s g-2%bh el 2!

Example: E:

TYPE: Folar g Fad IMDEP: H
H-MEK: —-12 12 W-YIE: -5 &
Lo: | HI: &. 2 ZTEP: . H5

a=5b=2
—
Example: H-VIEW: —2 = W-yiEL: -1 1
LO: @ HI: 22
a=4,b=3.5

h
200M [ cR w3 [TRACE] | EDIT [CAMCL
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Spirals

Spirals all share certain common traits: the polar radius gets larger as the polar
angle increases; and the function is not periodic.

Spiral of Archimedes. The polar radius is proportional to the polar angle. The

arc length of the curve is %(6\/ 6> +1 +sinh™ 0), which, for large 6, is approxi-

2
mately < 0% the area of the sector bounded by two radian angles is a_( 6,’-6).
2 6

* Polar: r=a6
Example: El"' =
TYPE: Fl: lar & Fad IMDEP: H
H-VIEK: —15@ 154 V-JIEK: —=7V3 Vo
LO: H HI: 32 *TEP: . B

! "_f_,-""_._""-:-::\ "'I

o E E

a=3 [ # ]
oy

Jf}-’f‘_{fl

'k‘-.. \.M""-' 4
200 o | TRACE] | EDIT

Hyperbolic Spiral. The hyperbolic spiral is the inverse of the Spiral of Archi-
medes, with an asymptote at y = a. It represents the path of a particle under a
central force that varies as the cube of the distance of the particle from the central

2
force. The area of sector bounded by two radian angles is _a_[L ~ i]

6, 6, )
e Polar: r=—a~.
0
Example: Ef: '3-0'
TYPE: Folar a: Fad  IMDEP: H
H_IIIIEI'"I: _E'l 5 E’- 5 III-lIIIE"'J: _E:l 1 E:- 3
LOo: | HI: 165 “TEP: . HS
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2000 |k [TRACE[ ] EDIT [CAMCL

Logarithmic Spiral. The logarithmic spiral, also known as the equiangular
spiral, is the spiral form often seen in nature—in the Nautilus shell, in the arrange-
ment of sunflower seeds, and in the formation of pine cones. It is “equiangular:”
the angle 8 formed between the tangent to any point P on the spiral and the polar
radius (the segment connecting P to the pole) is constant.

Other interesting properties: The length of an arc from the pole along the spiral

toris ; and lengths of r drawn at equal angular intervals to each other form
cos

a geometric progression; also, if you roll the spiral along a line, the path of the pole
is also a line.

« Polar: r=ae’™F
Example: Ex: 's¥e™(H-THHCE '
TYPE: Folar & Fad IWDEP: H
H-VIEK: —35 35 w-WEH: —17.5 17.5
LO: | HI: ZE STEP: . KD
a=0.1; =13

-~

e
(zoor [es v [TRACE] ] EDIT [CAMiL
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Parabolic Spiral. The parabolic spiral is so named because of its analogy to the
equation for a parabola: y* = a’x

e Polar: r*=a’0
Example: E: 'JoCa™Z%0)!
TVYPE: Polar & Fad __ IMDEP: H
H-WIEH: =12 12 V-WIEL: =4 3
Lo: & HI: <& STEP: . HD

CHMCL

Lituus Spiral. The Lituus spiral is the inverse with respect to the pole of the
parabolic spiral—it has the x-axis as an asymptote. This is the spiral often used
in the whorls sitting atop columns in classical (Roman) architecture.

2
e Polar: 2=
7]

Example: Ef: 'JJoz™Z-02!

: Polar & Rad IH[lEF H
H "IEH —Z2.0 BaD W=RIEK: —2. 20 2.25
LO: | HI: 2E ZTEP: . @5
.-""::F__\-h"—\-__ﬂ_
=2 + F‘i\: — —
a= &‘%Jx
(200M |1, V) [TRACE] | EDIT JCANCL
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Sinusoidal Spirals. A particle acted upon by a central force that is inversely
proportional to the (2n+3) power of its distance from the force (where n is a ra-

tional number) moves along a sinusoidal spiral. Some special cases:

n=-2 rectangular hyperbola n=2 lemniscate
n=-1 line n=1 circle
n=-1/2 parabola n=1/2 cardioid
* Polar: r"=a"cos(nf) or r"=a"sin(nb)
Example: Eit ' (a3 r#SIMOra 2 0" (1n) ! _
TYPE: Folar & Rad IMDEP: H
H-WIEK: —38 Ji N-RIEK: =23 15
LO: H HI: = ZTEP: . BS
a=2n=-1/3 [\IJ
|

X
200K [ci. 00 [TRACE[ ] EDIT [CAMEL

Example: H-'.'IEI---I= -5 5 '.'—'.'I_EE--li i _
LO: K HI: =K ZTEP: . HS
a=2;n=3/4

200M [0H. ¥ [TRACE] | EDIT [CAMIL

Example: H-YEK: -2 ZH Y-YIEL: -168 18 _
Lo: & HI: 32 £TEP: . B3
Ry A 'nl I|' A T
-H-“-\. " 11} -I-"::‘__,-P'""
a=2,n=-7/5 4 _Lqif:‘=!=n==
T
200r [ v TRACE] [ EDIT [CANCL
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Other Curves

Lissajous. The parametric description for the standard sine curve is: x=60,
y=asin(b6+c); only the y-component undergoes the sine function. But in the
lissajous, both components undergo their own independent sine functions.

x=asin(m6 +c)
y =bsin(nb +d)
Example: E: 'Ca¥SIMom*ER+C0, I:l"'- SIMCmeR+da !

e Parametric:

TYPE: Faramet r'1- : F3 -:1 II-I[-EF: H
H-VIEM: —6.5 £.5 - -WEW: —5.1 2.2

LD: & HE: 6.3 STER: . @5
a=4

b=3

c=0.5 ‘I(

d=0.8 *

iy

n=>5 mzm-ﬁm

Tractrix. The tractrix is the curve of points P such that the distance from P to
the x-axis along the tangent at P is constant. It is the track of the back wheel of a
bicycle as the front wheel makes a 90° turn.

: x =aln(sec 0+ tan 6) —asin 6
*  Parametric:

y=acos@
Example: E: ' Ca¥lLMHC1-COSCR2+THHCR 22—
a¥SIMCE by axC0Sca
TYPE: FParametric o Rad IMDEP: H
H-WIEK: —=11.5 11.5 w-yEl: -1 12
Lo: | HI: &.3 ZTEP: . B5
-, -F'_‘-F-—F—
"'\__\ :_,-"’
a=4 T
b
_'—""-FFH# h-‘-\-‘-‘-—_
i [TRACE] ] EOIT [CAMCL |
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Witch of Agnesi. The Witch of Agnesi, whose name comes from a mistranslation
of the Italian versoria (“free to move in any direction”) as versiera (“witch”, or
“devil’s wife”), is a curve that is asymptotic to x-axis, with the area between curve
and asymptote equal to 4 R*7. It is an unusual curve, whose definition is some-
what complicated. Here’s how to construct the graph manually:

1. From a fixed point F, on a circle of radius R, construct the tangents to the
circle at F, and at F,, the point on the circle diametrically opposite F,.

2. Then at an angle 6 from the diameter connecting F, and F,, draw a secant
from F, to point T, on the opposite tangent line. The secant intersects the
circle at Q.

3. Finally a draw a line through Q that is parallel to the tangents and a line
through T, parallel to the diameter connecting F, and F,. The point P is the
intersection of these two lines.

4. The Witch is the locus of points P generated as 0 is allowed to vary.

e Cartesian: = L
) Y x> +4R?
x=2Rcot8

e  Parametric: y=R(1-cos26)

Example: E: 'CEER-TAMCR 2 BEEC1-COSC2¥3 220!
TYPE: Faramstric o Fad IMDEP: H
H-VIEH: —18 18 U-YiEk: =2 7
Lo: | Hi: Z. 1416 ZTEP: . B5
J__,d'j-..q-'-\_
R=? | xh_q__
_
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Polynomials and their Characteristics

The term polynomial has a more limited meaning on the HP 48 than in math text-
books. Expressions such as 4xy’ —7x*y — 3y, with two or more variables, are
also polynomials. But the HP 48 (and this chapter, too) limits its definition of
polynomial to “polynomials in a single variable.” (It can handle expressions with
two or more variables, but it doesn’t treat them as polynomials.) So a polynomial
here is a function of the form P(x) = a,x" +a, x""' + --- +a,x+a,, wherenis
a positive integer. The real numbers,a, a _, a ,, ..., a, a, are the coefficients
of the polynomial. If a, # 0, the polynomial is said to have degree n.

Note that there are two important aspects to this definition. First, a polynomial
is afunction, which means it will pass the vertical line test. Second, because it has
a single variable, polynomials differ from one another only in their set of coeffi-
cients, which allows the HP 48 to compute with a polynomial more rapidly than
with many other functions by using a vector of its coefficients. For example,
2x° =3x*+x’ +6x* —18x+11 wouldbecome [ & -3 1 & =18 11 1,
and 2x°+x*+11wouldbe[ ¥ H 1 B B 11 1.

Note here that coefficients for missing terms are included as zeroes, to distinguish
between, say, 2x” +x” +11 and 2x* + x +11. Note, too, that although compu-
tations with polynomials are faster in vector form, you must still use their standard
algebraic form to plot them—but you can use the polynomial solving application
to help you convert from vector to symbolic form before plotting.

Example: Usingthe = lute Pl o o« application, enter the polynomial
L -5 =2 2 2 B 1 1 andconvertit to its symbolic form.

1. From the stack, open the =i 1tte piold. . . application:
(©)SOLVE)(Y]v)(ENTER).

2. Withthe COEFFICIEMTE: [ AM 1 A1 AN 1 field highlighted, enter
the polynomial: (&) })(5]+/-)(SPC)(3)(+/=) (SPC)(3)(SPC)(2)(SPC)(0)
(SPCJ(V)ENTER).

3. Re-highlight the COEFFICIEMTZ field ((a)), and then press ERT @[3
to see the symbolic form on stack level 1:

R B T R T S
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Graphs of Polynomials

The graph of a polynomial tells alot aboutit. You can find the number of real roots,
estimate the degree and also points of local maxima and minima.

Example: Plot the polynomial created in the previous example.

1. Open the PLOT application (=]PLOT)) and change the plot type to
Furnct ion @@F).
2. Highlight the E¥: field and grab the polynomial from stack level 1:

(v)(NxT) ;155 (@), if necessary, to put the target polynomial in
level 1) [ERVTEEER.

3. SetH-WIEH to—= = andW-WIEM to—2. 2 .7,

4. SetIMIEP: to # and the plotting range and step size (in the FLOT
OPTIOME screen) to their defaults (T3&F1d each field, if necessary).

5. Plotthe function (B FERIT RS TTATRE).

‘n

'

oS, T
4k

2000 | C. ¥ [TRRCE] FCH | EDIT [KAMKL]

Observe the plot to see what you can determine from it.

* The plot of a polynomial will cross the x-axis once for each real root. This
polynomial appears to have only one real root.

* The plotof a polynomial will have one fewer “bend” than its degree. How-
ever, the number of “bends” is not always immediately obvious. This plot
appears to have two bends—Ilike a third-degree polynomial—but you
know from its equation that it is in fact a fifth-degree polynomial. A plot’s
extra bends may be “hiding” within one of the visible bends that doesn’t
curve very sharply, but which is rather flat and broad.
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Look again at the plot and notice that the left-most bend looks like it might be a
suspect for such hidden bends. Test your suspicion by using the Box-zoom to
magnify the flat region: Move the cursor to the upper-left corner of the region you

want to magnify and press EIE[E]EE Then press the (») and (¥) keys until
the zoom-box encloses the flat region that you’re investigating:

\

11 T TeamWiL[ZnoM

===

Press [EI[E] to draw the magnified region:

ZO00M [ 8.4 [TRRCE] FCN

As you can see, the “flat” bend is actually composed of three bends; the poly-
nomial has four bends altogether (which is, after all, what you would expect of
a fifth-degree polynomial).
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Actually, each “bend” in a polynomial represents spot where the slope of the
polynomial “levels out”—to zero. If you plot the slope of the polynomial (known
as the first derivative of the polynomial) instead of the polynomial itself, you can
count the number of times this plot crosses the x-axis (i.e. the number of times that
the slope is zero) to determine the number of “bends” in the original polynomial.

Example: Plotthe previous polynomial again using the original display coord-
inates. Then plot the first derivative of the polynomial.

Press to return to the PLOT screen.

Reset H=WIEK to—Z T and¥-WIEH to —2. 7 .
Redraw the polynomial: ERRZE|DRAM !

Draw the first derivative of the polynomial: sl (NxT) HEEE.

Both the polynomial and its derivative will be drawn:

\

+ .l:.lll-: 4
o 0 N I g:l EDIT

Clearly, the graph of the first derivative (slope) crosses the x-axis
(i.e. becomes zero) in four spots—four real roots—so the original
polynomial is a fifth-degree polynomial.

in

Ll .

-’I el

The plot of the first derivative can also be used to determine more precisely the
location of the bends—which are local maximums and minimums (extrema, to
your HP 48). The x-coordinate of the extremum is the same as the x-coordinate
at the corresponding zero of the first derivative.
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Example:

Find the coordinates of the left-most extremum of the polynomial by
finding the corresponding zero of its first derivative.

. While viewing the plot of the polynomial and its first derivative,

move the cursor so that it’s close to the left-most zero of the deriva-
tive function. Remember: whenever there are two or more func-
tions plotted, only one of them is the current function. The deriva-
tive function is the current function at the moment.

Press [A'BE. Note that the cursor moves to the actual spot
of the root being solved. Make sure that it is the one you intended—

this is a good check to be sure you’ve communicated properly with
your HP 48. Result: ROOT: -0.65738/5499433

. The x-coordinate of the left-most extremum is -0.66. To find the y-

coordinate, switch the current function to the polynomial (NXT)(NXT)
[EEIEEY), and then compute the value of the polynomial at x = -0.66
(NxT) ). Result: Fika: 106564988769

Thus, the coordinate of the left-most extremum is about (-0.66,1.07).

The HP 48, of course, can find the coordinates of an extremum more directly if
itis easily distinguished from others. The method of the previous example is usu-
ally better when extrema (“bends”) are hidden or very close together, but another
method is quicker when the extremum is easy to “point out.”

Example:

Find the coordinates of the right-most extremum directly from the
plot of the polynomial itself.

. Assuming that the original polynomial is still the current function,

move the cursor right to a point near the right-most extremum.

Press (to redisplay the menu) SR to compute the

nearest extremum. Result (to 2 places): EWTFR: ©0.59.1.591

The previous two examples may suggest that every polynomial has exactly one
less “bend” (extremum) than its degree. But that’s not true, particularly in poly-
nomials with some coefficients equal to zero. The next example shows how you
can determine the degree from the plot of these exceptional polynomials.
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Example: Plotthepolynomial, [ =2 B 2 2 B 1 1, anditsfirstderivative.
Demonstrate graphically the degree of the polynomial.

1. Return to the stack ((CANCEL]CANCEL)) and move to the =i ] tae
F0 14, application () SOLVE( Y] Y)ENTER)).

2. Enter the polynomial into the COEFFICIEMTZ field: (&){}
(SPC)(0JSPC)(3)SPC)(2]sPC)(0)SPC)(1JSPC)(ENTER).
3. Create the symbolic version: (a)fEgl3|(CANCEL).

4. OpenthePLOT application, enter the symbolic polynomial, and, us-
ing the same settings as with the previous polynomial (they should

still be there), plot the polynomial: CALC Q] OE |
ERAZE| DR ]

5. Add the first derivative to the plot: Haa i NxT) S

Vo]

200 [ et A0 [TRACE] PN | EDIT JiANGL|

Notice that original polynomial appears to have two bends (i.e. is third-degree).
And the first derivative plot seems to concur: it has two zeroes, exactly the num-
ber expected for a third-degree polynomial. Butlook at the shape of the firstderiv-
ative: it appears to have three bends. A first derivative cannot have more bends
than its original polynomial. In fact, the first derivative of a third-degree poly-
nomial can have no more than one bend. This is a powerful clue that the original
polynomial is actually fifth-degree, at least.

For polynomials of high degree that lack most lower-degree terms, you may have
to find the derivative of the derivative (the second derivative), or the derivative
of that (the third derivative), etc., until the necessary clues appear. If at any stage,
the result is a straight-line, then the degree of the polynomial is one higher than
the number of derivatives it took to generate the straight line.
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Example: Continue plotting higher derivatives for the polynomial in the pre-
vious example until the result is a straight-line.

1. Assuming that the plot of the polynomial and its first derivative is
still displayed, press il s s 1§ BRI co add the plot of the sec-
ond derivative to the display:

"'. It |

Y A

A
Ill-r

200 [ c4. ¥ [TRACE|] FCH | EDIT [LAMIL |

Sure enough, the second derivative still has two bends (one of them
occurring abruptly atahidden point of inflection in the original poly-
nomial’s broad left-most bend).

2. Repeatstep 1 and generate the third derivative. Because the plots are
getting steeper and narrower, perform some zooming to adjust the
viewing scale. Press L Tl FElaT to be sure that the zoom-factor
is set to the default, 4. Press [HiHH (Vertical Zoom
OUT), then interrupt the drawing (CANCEL)) and press gl (NxT)
IR (Horizontal Zoom IN). Interrupt again, move the cursor to

the origin, and press E{ Tl (NxT) [XEEE. All zooms are reflected

in the set of plots finally drawn:

I.- l,.I '|.'.

., R e e

S S S0 SR SR
e 'r | '.__.-
! '. ,

] T L
[200M [ Ci ) [TRRCE] FCH | EDIT

This appears to be a parabola with one bend.
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3. Repeat step 1 again and generate the fourth derivative:

"\ T '-._ﬁ
&1% .l"" I_ 'i..l'
'*»._R__ L T
e '|r —
/ '.
2000 | (8.4 [TRACE]

|
EDIT JiAMEL |

The fourth derivative appears to be a nearly vertical line. Zoom out
to confirm that it isn’t merely an illusion caused by the current dis-

play settings. Press [ Twl(NxT) FELITHE. Press Bl

(NXT), then

press and hold down ETTE™H. This displays the symbolic expression

of the current function (the fourth derivative).

'O CDECECTRCIERDD

4 L "
200K [ i [TRACE] FCH | EDIT JCAMEL

The fourth derivative is a line—a first-degree polynomial—which
demonstrates that the original polynomial was a fifth-degree poly-

nomial.
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Polynomial Arithmetic

The easiest way to do arithmetic with polynomials—add, subtract, multiply, div-
ide, and raise to a power—is to use the vector form of polynomials.

Addition and Subtraction

The addition and subtraction of polynomials is most easily accomplished by
adding or subtracting corresponding coefficients in the two polynomials. For ex-
ample, adding x* + 3x> —7x* —5x +17 and —5x° + 3x — 4 is simply a matter of
adding the coefficients of like terms:

X+ 3x - Tx2 - 5x + 17
+ -5x3 +3x - 4

Xt =23 — Ix* - 2x + 13

On the HP 48, you can perform polynomial addition and subtraction in either of
two ways—symbolically, using the built-in algebraic abilities or “numerically”
using the vector form of the polynomial and the program PALD (see page 289 for
listing).

Example: Add x* +3x’ —7x* —5x+17 and -5x> + 3x — 4, using the built-in
symbolic tools of the HP 48.

1. From the stack, enter the first polynomial in its symbolic form: (&)

EquATION(¢J5IXPH(@))HE)IaXIEME@REX
PIREE&EXHTIENTER)

2. Enter the second polynomial in symbolic form: &5]EQUATIONJ(—]5]
> SEENTER).

3. Add the polynomials; collect like terms: COLCTH

Result: ' 13-/ E-Zen Gt g—Zen |

It’s all there, even if it is a bit out of order.
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Example:

Example:

110

1.

Add those same two polynomials, x* +3x* —7x*> —5x+17 and
—5x% +3x —4, using their vector forms and the program FHLD
(assuming that you have previously entered and stored the program
—see page 289—and that it is available in the current directory).

. Enter the first polynomial: (&]t1)(1)(SPc)(3)(sPC)(7]+/-)(sPC)(5)

(+/-)(SPCJ(1]7)ENTER).
Enter the second polynomial: (&) 1)(5)*+/=)(SPC)(0](SPC)(3)(SPC)(4)
(+/-)ENTER)
Run the program PALD: (o)a)P AJD)D)(ENTER).

Result: [ 1 - -¢ -¥ 12 1]
Optional. Now enter a variable name and use the program F+5'1
(see page 296) to convert the polynomial from its vector to its

symbolic form: (*JoJX)ENTER) (@) (P> SIYIM)ENTER).

Result: 'HA-Z#"3-PHin2-2eiie 13!

Subtract x* +3x> = 7x% = Sx +17 from x° —2x? +12.

Enter the two polynomials in the same order as you would enter two
real numbers that you are subtracting: (] 3)(1)(SPC)(0)(sPC)(0)(sPC)
(2)+/)sPo)(0)(sPO)()2)ENTER) QL I (1)(SPC)(3)(SPS)(7+/=)(SPO)
(5]+/-)(sPC) (ENTER).

Perform the subtraction. You may either press (+/-), then execute
FALD, or you may execute FSLE (see page 296) directly.

Result: [ 1 -1 -3 5 5 -5 ]
Convert the result to a symbolic expression: (' ] o] X)(ENTER) | srach'sl.

Result: 'HAG-H =340 G452+ GxH-5!
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Multiplication

The real virtues of using the vector form of polynomial are evident when you
multiply two polynomials. While symbolic multiplication is technically feasible
with the HP 48, it will often cost you a lot of time and patience to obtain a “legible”
answer.

The program FIILT (see page 295) performs the multiplication of two polyno-
mials in vector form.

Example: Find the product of x> —2x* +12 and 3x®> —4x*> +8x-9.
1. Enter the two polynomials in vector form (in either order): (&)L 1)(1)

(SPC)(0)(SPC)(0)(SPC)(2)+/=)(5PC)(0)(SPC)(1 ) 2) ENTERI)T1)(3)(SPC)
(4)+/9)(SPC)(8)(SPC)(9)+/-) (ENTER).

2. Execute FTULT: (o))(PIM[UJD(T)ENTER). You will need to view

the result (press (¥)) in the Matrix Writer to see it all.
Result: [ 2 -4 3 -15 3 P8 -30 96 -163 ]
3. Convert the result to a symbolic polynomial in x:
CXE

Result: ' 2% ""'""'—‘Jr"" A PHEE - 1 Dt DR E P
' .-l"-_l__ll_.l_-,_ el +|_"_I_-'_ _IH, 1l
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Division

Division of polynomials does not always result in a polynomial. The result is a
quotient (a polynomial) and a remainder—a rational fraction that can’t be further
simplified. If the remainder is zero, then the resultis a polynomial. If the remain-
derisn’t zero, then it is the ratio of two polynomials, the denominator polynomial
being of the same or higher degree than the numerator polynomial.

The program POIVIDE (see page 291) takes two polynomials in vector form as
inputs—in the same order as division of two real numbers. It returns four objects:
* the quotient polynomial (level 4);
 the numerator polynomial of the remainder (level 3);
* the denominator polynomial of the remainder (level 2);

* acomplete and exact algebraic result of the division—including the
remainder as a rational fraction (level 1).

Example: Divide 16x* +26x> —61x*> +16x+3 by 2x—1.

1. Enter the numerator in the division: (&)L 1)(1]6)(SPC)(2]6)(SPC)(6)
(1)+/-)(sPc)(1)6)(SPC)(3)(ENTER).

2. Enter the denominator: (&1 3)(2)(SPC)(1)+/=)(ENTER).
3. Execute FOINVIDE: (o) o P D1 VI 1) DJE)[ENTER).

Result: 4: [ 817 -22 -3 1
3= [ B ]
o [ 2 -1 1
I e Y o N e B

In this case, the result is a polynomial with no remainder:
8x® +17x* —22x-3
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Example: Divide the polynomial x* —2x* +12 by 2x —1.

1. Enter the numerator polynomial ()L I(1)(sPc)(o)(sPc)(0)(sPC)(2)
(+/-)(sPC)(0)(SPC)(1)2) (ENTER).

2. Enter the denominator polynomial: (]I 1)(2)(SPC)(1]+/=)(ENTER).
3. Execute FIIYIDE: ()P D)1 V) 1)]DJE)ENTER).

Result: 4: [ .5 %5 185 -.927%5 —.46875 ]
EH [ 11.5-'1:.'3 ]
23 [ & -1 1
s A fera i ~p 15165

st =015 1% 1+ ]2 ”"'#_I]I

Here is how to interpret the result:

* The polynomial part of the quotient is returned to level 4. In this case it

1 , 15 1, 15 15
represents —x +—x" +—x" ——x—
2 4 8 16~ 32

e The numerator of the remainder is on level 3; the denominator is on level
11.53125 369
or .
2x-1 32(2x-1)

* The algebraic on level 1 is the exact result of the division and—as in this
case—may not be a polynomial. Note how the algebraic incorporates the
remainder into the polynomial part of the quotient. (Of course, if the re-
mainder’s numerator on level 3is [ H 1, the algebraic will simply be the
level-4 quotient in its symbolic form—as in the previous example.)

2; so the remainder here is

FOIVIDE offers one approach to polynomial division. Synthetic division, dis-
cussed on pages 115-123, is another approach often used in finding the roots of
polynomials.
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Finding Positive Integral Powers of a Polynomial

The program FFLEF (see page 296) makes it a lot easier and quicker to find ex-
pansions of polynomials than by repeatedly multiplying their symbolic expres-
sions and expanding and collecting. FFUMEF considers only the positive integral
powers of polynomials, so that the result is an ordinary polynomial (explicitly
computing the 1/3 power or the -2 power of a polynomial usually complicates the
expression a great deal without adding much new information).

Example:

Find the fifth power of the polynomial x> + 6x — 10 using FFIMEF:
(assuming that it has been previously entered and is available in the
current directory).

. Put the polynomial on the stack in vector form: (&)1 1)(1)(SPC)(6)

SPA)(AI0)(*+/-)ENTER)
Put a vector containing the power on the stack: (€91 1)(5])(ENTER).

3. ExecutePFOLER: (NXT)or((9)PREV)as needed) [HAIRE. View
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the results by pressing (v) and then (») as needed.

Optional. Convert the result to a symbolic expression: (CANCEL)if

necessary to exit the Matrix Writer, then (' | @J¢5] XJ([ENTER (and
or (q)JPREV] as needed), then § grach el

Result: 'w™1H+3H%w 9+ 3] e B+900%0 - 200 Hx w0
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Finding Roots of Polynomials

The roots of a polynomial P(x) are those values of x that satisfy the equation

P(x) =0 (hence the other common names for roots, zeroes). There are several
ways to find the roots of polynomials using the HP 48:

» Use synthetic division, guided by information obtained from a set of poly-
nomial theorems, to manually search for roots.

* Use the Solver.

* Find roots graphically.

* Use root-finding algorithms customized for polynomials.
The traditional “manual” means of finding roots of polynomials required lots of
trial-and-error computations involving polynomial division. To streamline these
computations, the notational shortcut known as synthetic division was developed.

Further, various theorems were used to help one narrow the search and reduce the
number of computations. Look at each of these shortcuts.

Synthetic Division

Synthetic division reduces a polynomial to its coefficients (much like the vector
form that you’ve seen earlier in this chapter). The factor being tested is also re-
duced to a single number. The division problem thus resembles regular long
division. For example, dividing x° +4x> +3x —2 by x —3 goes like this:

3)1 4 3 -2

3)1 4 3 -2
Bring down the first coefficient:
1

Multiply the resulting coefficient (1) by the factor (3) and add the product to the
3)1 4 3 -2

next lower coefficient in the original polynomial (4): 3
1 7
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3) 14 3 -2
Continue likewise through all coefficients in the polynomial: 3 21 72
1 7 24 70

Read the answer from the bottom line: The correct quotient is x> + 7x — 24 ; the
final value (70) is the remainder. This shortcut works because, in fact, you are just

x2+7x+24
x—3)x3 +4x*+3x-2
x> —3x?
) . 7x* +3x
doing long division:
e fong Tx* —21x
24x -2
24x -T2
70

Of course, such synthetic division is suitable for manual computation, but you can
shorten its work by automating the process using your HP48. The next two exam-
ples illustrate two different approaches.

Example: Use the S[IY program (see page 303) to do the synthetic division
of the polynomial 3x” +2x* —7x* +3x —9 by the factor -3.

1. Enter the vector form of the polynomial:
(+/=)(SPc)(0)(sPC)(3)(sPC)(9)+/=)(ENTER).

2. Enter the factor: (3]+/=)(ENTER).
3. Execute 50 IY: ()]s D] 1 V)[ENTER) or (VAR) (NXT) or ()PREV) as

needed) Bkt LS.
Result: &% [ 3 -7 14 -4 129 1
l: =395

The quotient, in vector form, is returned to level 2, the remainder to
level 1. The original polynomial and factor are returned to levels 4
and 3, respectively, in case you want to use 5L IV repeatedly with the
same polynomial (which you often will).
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Example: Repeat the previous example using the program =Ml (see page
313).

1. Execute the 3TN program: (o) ]SV N)D)ENTER) or (VAR (NXT) or
as needed) [EFTIT.

HESESSRMRE CYNTHETIC DIVISION i
roLvnotiaL: [
FACTOR:

RUOTIEMT:

REMAIMDER:

ENTER POLYMOMIAL RE VECTOR

(EnT ] ] | JiAMIL] OK

2. Enter the polynomial in the POLYMOMIAL field:
(SPC)(7)+/-)(sPC)(0](SPC)(3)(SPC)(9]+/=)(ENTER).

3. Enter the factor in the FACTOF field: (3)+/-)(ENTER).
4. Press.I[E to perform the synthetic division.

RSN CYNTHETIC DIVISION SESEEEE
POLYMOMIAL: B -
FACTOR: —3

RUOTIENT: [ 2 -7 14 -..
REMAINDER:  —2'95

EMTER POLYMOMIAL A3 VECTOR

CEDIT || ] [iAMIL] DK |

5. The =MD program is designed for repeated use of synthetic divi-
sion, allowing you to search for roots without affecting the stack.
Press (CANCEL) when you want to exit the program.
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Polynomial Theorems

Wise use of synthetic division involves narrowing the number of factors that you
must try in your search for roots. And there are a number of theorems which can
help you do just that. With their proofs omitted, they are:

1.
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Fundamental Theorem of Algebra: Every polynomial equation with
degree greater than zero has at least one root in the set of complex numbers.

Corollary to Fundamental Theorem: A polynomial equation of degree
n has exactly nroots in the set of complex numbers, where two or more roots
with the same value are treated as distinct.

A fifth-degree polynomial, for example, has five complex roots, some of
which may also be real, some of which may be identical to each other.

Complex Conjugates Theorem: If a and b are real numbers with b # 0
and the complex number a + bi is a root of a polynomial equation, then its
conjugate, a — bi, is also a root of the polynomial.

Thus, polynomials can have only an even number of non-real complex
roots. So, polynomials of odd degree must have at least one real root.

Remainder Theorem: If a polynomial P(x) is divided by (x — a), then the
remainder is a constant, P(a).

Factor Theorem: If a polynomial P(x) is divided by (x — a), and the re-
mainder, P(a), is zero, then a is a root of P(x).

Rational Root Theorem: If a polynomial has rational roots of the form
DP/q, where p/q is in simplest form, then p is a factor of the constant term and
q is a factor of the coefficient of the highest-degree term.

Forexample, if the polynomial 6x* — 3x> + x + 7 has rational roots (p/gq), then
p is a factor of the constant term, 7 (i.e. either +1 or £7) and g is a factor of
the coefficient of the highest-degree term, 6 (i.e. either £1, £2, £3, or £6).
Thus, the only possible rational roots of this polynomial are:

1 1

1,1 7 0,7 7
273

1, + ~, +, -
2”73 76

il, 7,
6
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7. Descartes’ Rule of Signs: If P(x) is a polynomial whose terms are ar-
ranged in descending powers of the variable, then the number of positive
real roots of P(x) is the same as the number of changes in sign of the coeffic-
ients of the terms, or is less than this number by an even multiple; and the
number of negative real roots of P(x) is the same as the number of changes
in the sign of P(—x), or is less than this number by an even multiple.

For example, for the polynomial 2x* — x* + 5x + 3x — 9, the signs of the
coefficients in descending orderare { +—++— }. Reading from left toright,
there are three changes in sign. Therefore, there are either 3 or 1 positive
real roots of P(x). Next, evaluate P(—x) and apply the rule of signs to assess
the number of negative real roots. P(—x)=2x"* + x> + 5x* —3x — 9 and the
signs are { + + + —— }. There’s only one change and thus there is exactly
one negative real root.

8. Upper Bound Theorem: If c is positive and P(x) is divided by x — ¢ and
the resulting quotient and remainder have no change in sign, then P(x) has
no real roots greater than c. Thus c is an upper bound of the roots of P(x).

For example, to test whether 4 is an upper bound of the roots of the poly-
nomial, x* —3x’ —2x* + 3x — 5, divide the polynomial by x— 4. All coef-
ficients in the quotient (x* +x* +2x +11) and remainder (39) have the
same sign, so all real roots of the polynomial must be less than 4.

9. Lower Bound Theorem: If ¢ is a nonpositive number and P(x) is divided
by (x—c) and the quotient and remainder have alternating signs, then P(x)
has no real roots less than c. Thus, c is a lower bound of the roots of P(x).

To test whether -2 is a lower bound of the polynomial x* —2x?* + 6, for
example, divide the polynomial by x + 2. The coefficients in the quotient
(x* — 4x + 8) alternate in sign, and the remainder (-10) is opposite in sign
from the constant term in the quotient, thus confirming that all real roots of
the polynomial must greater than -2.

Finding Roots of Polynomials 119



Searching for Roots with Synthetic Division

Now that you have been introduced to the essential tools, try a few examples.

Example:

1.
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Find the roots of P(x)=5x" —16x* —=7x’ +52x* = 70x +12.

Use HFOL"Y (see page 276) to apply Descartes’ Rule of Signs and to
find an integral lower bound and an integral upper bound for the set
of real roots of the polynomial. Enter the polynomial in vector form

onto the stack and then type (oo A[PJOJL)(Y)(ENTER).

Results: 2 Signs: 4 1 3
i Range: { -3 4 1
1: [ 5 -16 =¥ 232 -/8 12 1]

Use the Rational Roots Theorem to compile a set of possible rational
roots within the range determined in step 1 (note that -3 and 4 cannot
be roots because they represent bounds; roots are found between
them). Since p ={ £1, 2, £3,+4, +6,+12 } and g = { 1, £5 },
possible p/g's within the range are:

(2o 822 11234,6,12

5 5 5 5 5 55555 5 °5

Since you know there is one negative real root, begin using synthetic
division with the most negative of the possible rational roots, -12/5.
The polynomial should still be on level 1 after the execution of

HFOLY . Key in the factor, (1)2)(*/=)[ENTER)(5)(=), then

Result: &% [ 3 -28 BH.Z -9Z.48 1':1 Fo2
1 : _.:l._h_. I:II_I"1'E:
Note that the quotient and remainder have alternating signs, which
means that the factor is a lower bound.

Press («[«]«) and repeat step 3 using -2 as the factor.
Result: % [ o -¥£ 42 -283 6 ]
1:
Aha! You’ve found the negative real root—indicated by the zero
remainder.

ot
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5. You can now use the quotient from step 4 when you found an exact
root. It is sometimes referred to as the depressed polynomial. Press
(«) and begin your hunt for positive roots with the most positive of
the possible set of rational roots, 3: i L.

Result: % [ 5 -11 12 -Z

1

-
e

You’re on aroll—you’ve found another root. Now that you have one
positive real root, you know from Descartes’ Rule of Signs that there
must be either one or three more positive real roots. If you can find
one more, you can use the quadratic equation to find the other two.

6. Repeat the search using other possible positive rational roots. You
can either continue to test roots in descending order, or you can test
a sampling and watch for remainders changing signs. Try the latter
method. Press () and repeat the S[IIY process on the latest de-
pressed polynomial ([ 5 -11 12 -2 ]) using factors of 2, 1, and 0.

Results: (2) .i [ 5 -1 1E11_]
1 7 [ 5 -6 6 ]

1: %

(0) .I [ 5 -11 12 ]

Because the remainder changes signs between 1 and 0, you know
that at least one real root lies between 0 and 1 (possibly closer to 0).

7. Review the list of possible rational root values for those between 0
and 1. Repeat the search starting with the value nearest zero, 1/5.
Result: & [ 5 -18 18 ]
1: H

Voila! There’s the third root. Now you can use the quadratic formula
to force the remaining two roots into the open.

8. Press (#), then execute LISULY (see page 297), which applies the
quadratic formula to a vector of coefficients of a quadratic equation.

Result: + 'l1+i' '1-i' %

Mission accomplished. The five roots of the polynomial are -2, 0.2,
3, 1+i, and 1-i.
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Example:
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1.

Find the roots of the polynomial 2x* —3x> +4x—9.

Enter the polynomial in vector form: ()T 1)(2)(SPC)(3]+/-)(sPC)(4)
(SPC)(9]+/=)(ENTER). Your goal is simply to find one root—the other
two can be obtained directly from the quadratic equation.

Execute HF0L"Y to analyze the polynomial: APOLY §

Result: 3¢ Signs:i 3 A I
C Range:{ H 3 I

1: [ &2 -3 4 -91
There are either 3 or 1 positive real roots, and no negative real roots
—a fact confirmed by zero being the integral lower bound.

List the possible rational roots in the range. Withp = { +1,£3,19 }

and g = { £1, £2 }, this list of candidates is short: { %, 1, % }
Begin the 5'"M0 program; put the polynomial in the POL ¥ MOMIAL:
field: YD RSN CALC | Ok

Enter the most positive candidate factor into the FHCTOFR: field and

perform the synthetic division: ENTER) B T,

peentnr SYMTHETIC DIVISIOM Shassesss
POLYMOMIAL:

FRCTOR: 1.5

UOTIEMT: L 283 4 1]
REMRAIMDER: -

EMTER POLYMWOMIAL A: YECTOR

(EDT | | |  IAMIL]| DK |

The remainder is negative, unlike the positive remainder at the upper
bound (3). Conclusion: There exists a real root between 1.5 and 3.

. Before seeking the real, non-rational root between 1.5 and 3, you

might try the other two rational root candidates in the list. (If the list
were longer, it may not be worth it to do this.). Enter the factors 1 and
then .5 and run the synthetic division. Note the remainders.

Results: For 1: KEMAIMDER: -8; for.5: KEMAIMDER: -7.5
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Not only are the remainders still negative (i.e. there has been no
change from 1.5), they are getting more so. Furthermore, the quo-
tient and remainder are alternating signs, suggesting that these are
lower bounds. Conclusion: There are no more positive real roots
other than the one between 1.5 and 3 that you isolated in step 5.

7. Narrow down the range where the root lives by using the bisection
method. In this method, you choose as your next factor the approx-
imate midpoint of the range where you know the root to be located,
and keep repeating this choice as you narrow the range. Begin with
2.25 as the factor. Here are your results:

(2.25) KEMAIMDER: ~.5937°5 (Positive; rootis smaller)
(1.88) KREMHAIMDER: 1.20614Y (Positive; rootis smaller)
(1.69) KEMHAILDER: -1.1545H2 (Negative;root is larger)

(1.785) KErAIMDER: - 143H5175 (Negative; root is larger)
(1.833) KEMAIKWDER: .5696HE0:Y (Positive; rootis smaller)
(1.809) KErAIKDER: .25839325H (Positive; rootis smaller)
(1.797) KEMAIWDER: .10a1510146 (Positive; rootis smaller)
(1.791) KEMHAIWDER: 030342 (Positive; rootis smaller)
(1.788) REFHIMDER: -.iaSe0258 (Negative; rootis larger)
(1.789) KErAIMWDER: 035501130 (Positive; rootis smaller)
(1.7885) KEMAIMDER: -.000331491 (Negative; root is larger)

You could continue this to the 12-digit limit of the HP 48, but 3 or
4 digits is usually enough. The approximate real root is 1.7885.

8. UseHIDSOLY to compute the other two roots (also approximate, be-
cause the real root is approximate). Assuming you have just com-
puted the synthetic division for 1.7885, highlight the BUOTIEMT:
field and press (NXT)[E# 1 B2 GOk to move a copy
of the computed quotient—a quadratic—to the stack. Then execute
LOSOLY: (vaR) EETGEH.

Results (displayed to 4 places): © '—H.1443+1.5/ME#i"
B, 1443-1.5796 #1' 3
Thus, the three roots of the polynomial (approximate to 4 decimal
places) are: 1.7885  -0.1443+1.5796i  -0.1443-1.5796i
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Using the Solver to Find Roots

As you can see, the process of “zooming” in manually on approximate real roots
can be quite tedious. The built-in Solver of the HP 48 can speed up this process
considerably. The next two examples use the same two polynomials as the pre-
vious two examples, but this time, the built-in Solver is used.

Example:
L.
2.
3.
4.
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Find the roots of P(x)=5x" —16x* —7x’ +52x* —70x +12.

Enter the polynomial in vector form onto the stack and make an extra
copy: ()L I(s)SPC)1)6)+/)(sPc)(7I+/=)(sPO)(s ) 2)(sPC) (7 o)+/-)
ENTER)(ENTER).

Use HPOL'Y to apply Descartes’ Rule of Signs and find an integral
lower bound and an integral upper bound for the set of real roots of
the polynomial. Enter the polynomial in vector form onto the stack

and then type (o] o] A]P)OJL)(Y)(ENTER).
.

Result: 3 Signs: L 04 1 3

o F:irl"' L -2

4
1: [ 5 -16 -7 22 =78 12 1]
As before, this gives you some idea about the distribution of roots.

Convertthe vector form of the polynomial to the symbolic: (' ] oJ&q]X]
[ENTER)(VAR) s

Result: ' ¥ ""':—IF. P W PO T e T e PYVES Ll

Store the equation as the current equation (in the variable EI!) and

begin the Solver: ROOT [G] EC [SOLVE]

EQ: 'S¥x"5-16%x"d-V¥ .,
¢ i

3= [ 5 -16 -7 52 -7H ..
2 Signs: { 4 1
1: Ranqe- d 3 4
T [EPF = 1
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5. Tosearch for the negative real root, enter, as a list, the range of values

that bracket it; put the list in x: ()t })(3)+/=JSPC)(0)ENTER)L_1_|.

6. Launch the root-finder. It will start with the range you spec1ﬁed and
stop when it comes to a root: (91 ]. Result: —

7. It found the negative real root. Enter the range for the positive real
roots and start the root-finder again: (&) )(0)(SPC)(4)ENTERJL it |

EI %] Result: %% ¢

8. Ithas found one positive real root, but Descartes’ Rule of Signs says
there must also be another. To find it, just specify a different starting
search range than that of the root you just found. You already found
a root in the first half of the range, so try the second half, { 2 4 }:

Q)2)sPS)(@)ENTER) [ 151 Result: «2 3
9. Now that you’ve found the three real roots, you need to return to the

vector approach to polynomials; the Solver cannot find complex or
imaginary solutions.

Press («) repeatedly until the vector form of the original polynomial
is onlevel 1. Then use =0 I to “depress” the polynomial to a quad-
ratic by “removing” the roots you just found: i
(@) 2 BT () (3) TR (@)

10.  UseLDSHLY to find the remaining roots: [EIT
Result: © 'l1+i' '1-i' }
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Example:
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1.

Find the roots of the polynomial 2x* —3x> +4x—9.

Enter the polynomial in vector form: (&]{ })(2)(sPc)(3]+/=)(sPC)(4)

(SPC)(9)+/-)(ENTER). Note that your goal is simply to find one root;

the other two you can obtain directly from the quadratic equation.
Execute AFL"Y to analyze the polynomial: APOLY !

Result: 3 Sians:L 3 _E1 ¥

I: [ Z-34 -9

This time, for illustration purposes, use the other Solver (you can

then use either one you wish for you own work). Press (—[SOLVE

to begin the *OLYE ERUATIOM application. The equation
from the previous example will be highlighted in the Ef2: field.

S <N VE EQUATION SEESSE

ENTER FUNCTION TO SOLVE
EDIT JcHoos]  fwaks|  JERPER=]

Use the f{#8;] 48§ feature to bring a copy of the symbolic polynomial

into the EX: field: 819l (&) (ENTER) (" o)X
3 ( [Con .

Move the highlight to the ii: field and enter the range for locating a

positive real root: (] })(0)(SPC)(3)[ENTER). Then move the highlight
to the : field again and begin the root-finder: (v)Eit|E}3.

el T ] =]

Result: #: 1. V233328580 1EE. Quick, isn’t it?

Press(CANCEL]). On the stack you see the remaining copy of the poly-
nomial vector (level 2) and the (tagged) root you just found (level 1).

Press ] T8 («) BRI to find (approximations for) the other
roots. Result: 1 '—.1H4Z633HHAG3+]. 57962021111
- 1EEI3EES -1, SPIeZE31 1 1 +1 ' T
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Finding Roots of Polynomials Graphically

Plotting a polynomial before trying to find its roots will give you a reasonably
good idea about the location of real roots. Furthermore, the EE:I menu, avail-
able while you are viewing the plot gives you access to the same root-finder used
by the Solver—it’s the best of both worlds. Look at an example.

Example: Find the real roots of P(x)=x’ —6x* —7x> +12x> —10x + 24, us-
ing a graphical method.

1. Beginthe PLOT application and make sure that the TYPE: field con-
tains FUNZL 1om: (SPLoT)@)(«)F)

2. Highlight the Ef: field and enter the polynomial: (€5)(EQUATION)(®)
ESX(EEH IS EEDHSXIEE
(2]JaX) 032G ) aX) () (2]4)(ENTER).

3. Enter * (lower-case) into IMOEP:.

4. SetH=WIEK to—18 18 and W-WIEK to—2 .

5. Pressf!g# and be sure that the plotting range (HI: and LO:) and
ZTEP: intervals are set to the default values.

(LN 0K |ERAZE|DRAKE

[Z00r ] ci 0 JTRACE] FCH | EDIT [CRMIL |

A real root exists at each intersection of the graph with the x-axis. In
this view, you see three very clear spots where the graph crosses the
x-axis, which is very helpful for finding roots even if it gives you a
poor view of the overall polynomial.
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7. Move the cursor (press («)several times) so that it is to the left of the
most negative root. Then use the root-finder to find that nearby root:

ATHEH Result: KOOT: -2.13024894272.
8. Move the cursor near to the middle root and press (—) fidtthll again.
Result: KOOT: 1.344B8/ 026015

9. Move the cursor to the right of the most positive root and press (=)
[[{A11h8. Result: KOOT: 6.7/9120116627.

10.  You’ve found three real roots, but are there more? Zoom out to ex-

pand your view of the polynomial: (—)(NXT) a1 il f=41[1[ ]

UZOUT] Z00M [(as]v20uTH
4 “ﬁ' + + $ + +
1
200k [ . [TRACE] FCW | EDIT [rAMIL)

Although you still can’t see all of the polynomial, you can now see
enough to convince yourself that you’ve found all of the real roots.
The “wiggle” in the graph suggests a pair of complex roots to bring
the total to the required five.
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Using the Built-In Polynomial Root-Finder

By far the quickest and easiest method of finding the roots of a polynomial on the
HP48 is to use its built-in polynomial root-finder. It uses a more specialized algo-
rithm than the general root-finder used by the Solver.

Example: Use the built-in polynomial root-finder to find all roots of
P(x)=x"—6x*-7x>+12x* =10x + 24
1. From the stack, FIX the display to 4, then open the =0OLYVE FI]L
HOMIAL application: (4 )¢ MODES )il &l st #1581 & bl (> [SOLVE)(v ) v)

ENTER):

SRR SOLVE AN-N M. +AL-Her0 SEE0E
COEFFICIENTS [ AN . AL A0 J:

EMTER COEFFICIEMTS OF FF:E".-? SI]L'.'E
EnTl 4] EYME[EOLVE

2. Enter the polynomial in vector form into the field labeled COEFFI-
l‘IEhIT" [ HH Hl A ] ) (1)(sPc)(6 J+/=)SPC)(7)+/=)(sPC)
(sPc)(1)0)+/-)(sPC)(2] 4)(ENTER).

3. PresspqtHdg.

R SOLVE AN-HN"N+,.+AL-H+Ai S0
COEFFICIENTS [ AM w0 AL AD I:
[ 1 -& -V 12 -18 24..,
ROOTS:
[o=2.2911241347H3E-..

EMTEE KOOT: OF PRE:: SOLVE
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4. The result is a complex vector containing five roots expressed as
complex numbers. Press to view the vector in the Matrix-
Writer. Then press (») as needed to bring each element (i.e. root) in
the result vector into the command line at the bottom of the screen.
The five roots, to four places, are:

(-A,BEZT, -1, 1186)
(-H,BEED, 1. 1186

The three roots whose imaginary coefficients are zero are, of course,
real roots, but because the result vector contains some complex ele-
ments, the rules of HP 48 vectors require that all elements in the vec-
tor be expressed as complex numbers.

Example: Find all roots of P(x)= x°® +3x” —4x* +10x* — 34x + 42, but this

130

time try the program EEOOTS (see page 301), which makes use of
the polynomial root-finder but provides more convenient output—
a list showing real roots first.

1. Returnto the stack (use asneeded) and enter the polynomial
in vector form (be careful to note the missing third-degree term):
(S D(SPC)(3)(sPC)(4)+/-)(SPC)(0)(SPC)(1)0)(SPC)(3) 4] +/-)(SPC)
(4)2) ENTER)

2. Execute RREOOTS: Type (@)«]R]RJ0[O)T]S) or press
(then or (9]PREV) as needed) [[{{11}l§. Result (to 4 places):

L -3.6303 -Z.4845 (1.29084, -4, 34450
01,2984, 4. 24500 (B.2271, -1.2496)
(H.2271,  1.24%6) &
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Converting to Polynomials

There are many ways to find a set of roots of a given polynomial. But how would
you find a polynomial that corresponds to a given set of roots? The HP 48 has a
built-in function, FLIEF, that makes it easy to do just that.

Example: Find the polynomial that has the following set of roots:

(-1 27 43 4-3iy
238 3

1. Open the *OLYE POLYMOMIAL screen: (—)SOLVE)(Y]Y)(ENTER).

2. Highlight the KOOT=: field and enter the roots as a vector. Note that
because two of the roots are complex, all roots must be entered as
complex numbers; the real roots must use a zero as their imaginary
part (and for this reason it is generally easier to enter each root onto

the stack and assemble the vector at the end): CHLC @

(4)&a) " J3)ENTER)S)(O) ) &) J(3 ) +/-)ENTER)(- J 5 J+/=)(ENTER](2)
(ENTER[3) =) 7IENTER)3 )= 5 [PRG R AT RET T il [CoNT I M.

3. Press (a)(NxT)EIUEN3. This computes the polynomial’s coefficients
and returns it to the COEFFICIERTZ field and places a copy of it on
the stack. Press flidmlsdl. This transforms the polynomial in vector
form to its symbolic form and places it on the stack. Press
to view the results:

ReSllltZ H T |ﬁ5_1|"'| I:'"-_‘"-'I-i-: :""I-'l--{—l-'l-: UCE"-I &= I'ﬁ'._l

—BZ, IREPERE -4, 83331+ 19, 4444

4. Since you have some rational coefficients, press (65]SYMBOLIC
ErR

Result: '#™o—E1-2#p™ 0] 118"
__l','ll |"| Il.ﬁ.‘____| |_I+II+1—I|: ,_||

e e
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The result of the previous example is just one of the possible polynomials that
have the given roots—the one whose highest-degree coefficient is 1. But if you
multiply all coefficients by the least common multiple of all the rational denom-
inators (18 here), you will get a polynomial with integral coefficients:

18x> —189x* +811x* —1119x> — 87x + 350

Happily, there’s a program that will save you even this step....

Example: Repeat the previous example, but this time use FCUEF (see page
298), a program which will, given a list of roots, return a symbolic
polynomial with integral coefficients.

1. Enter the roots in a list: (SO A) /= =2)0) ) 2]=3)(»)
ERMEOEECEME0 @Gl (B ENTER.
2. Execute RCIEF: or (VAR (then =
as needed) [J
Result: '18 *'>'“=. 1'-"-|+'~'f~4+- 1 kA
~1119pmF-a7+H+350

L j
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Another kind of conversion problem occurs when you have a function of one
variable that must be converted to a polynomial before you can find its roots. The
FCOMY program (see page 290) is designed to perform such conversions.

Example:

1.

Find all roots of 4(x +2)° — (x +11) +5x—7(x—4)+15.
X

Enter the function in its symbolic form: (4Jq]0)
(JEXHEPIEMEH A= D))
(JSIXH P HEJQUXEH QO aXEH @) FETE)

ENTER].

Use PLCOMY to convert the symbolic function to a polynomial, if pos-

sible: (¢]]PJCJOINIV)(ENTER) or (VAR] (then or (GJPREV]) as
needed) i& PCOM
Result: &¢ [ 4 28 69 123 74 ]
1: [ 111
The level-2 polynomial is the numerator; the level-1 polynomial is

the denominator for the converted expression (so if the denominator
is[ 1 1, then the conversion result is a true polynomial). Save a

copy: | [IPE |

In any case, the roots of the original function are the same as the roots
of the converted numerator, so press («)(VAR)Li1 1118 to compute the
roots.

Result (to 4 places): © —4.474H -H,925 l:-
i—H, 8882, -1,9563)

—H.BHE, 1. _':uh'ﬂ h

Optional. Drop the previous result and compute the actual symbolic
version of the converted expression: () POV

Result: 4: [ 4 24 45 V3 ]

3: [ -4 1]
£ [ 1 1]
ER e LV T L

+PEE ) ]!
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Characterizing Systems

Systems of linear equations (and inequalities) are a powerful means of modeling
real-world problems and solutions. Such systems are classified according to two
characteristics:

* The relationship of the individual equations to each other.

* The ratio of independent variables to independent equations.

Any two linear equations within a system—representing lines—may either inter-
sect, not intersect, or coincide. When they intersect, the equations are considered
to be consistent and independent. When they don’t intersect, they are inconsis-
tent. When they coincide, they are consistent and dependent. When working with
asystem of linear equations, your goal is to include only equations that are consis-
tent and independent with all of the others in the system, because only those
equations will contribute information useful in determining a solution.

However, many kinds of real-world problems present two (or more) equations
that don’t precisely coincide, but are close enough to each other to practically co-
incide. Equations which coincide—exactly or practically—are called degener-
ate, which, if they are a part of a linear system that you’re solving, can lead to un-
trustworthy solutions.

The other important characteristic of a linear system is the ratio of independent
variables to independent equations. Their true independenceis critical. Variables
can appear independent—for example, test performance and shoe size—when
there is actually some dependency relationship between them—age. Thus equa-
tions can appear independent (i.e. “intersecting”) but be actually quite degener-
ate. Moral: Before deciding on the ratio of variables to equations, be sure that
everything you count meets the test of independency.

Ifthe true independenceratio is exactly 1, then the linear system has a single, exact
solution. Iftheratioisless than 1 (fewer variables than equations), then the linear
system is over-determined, and you probably must settle for a best solution rather
than an exact one. If the ratio is greater than 1 (more variables than equations),
then the linear system is under-determined, and has either no solutions or an in-
finite number of them—thus requiring you to decide which is the best solution.
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There are several ways to test the nature of a linear system: You can plot the
equations together and visually check for near-coincidal lines; you can enter the
system as a matrix of coefficients and find the condition number of the matrix; or,
you can compute the rank of the matrix of coefficients. Look at each technique.

Example:

136

Plot the following system of linear equations and look for one or

18x+24y =54
more near-coincidal lines: 27x+36y=280
Sx-8y=-7

. Because the PLOT application works best if there is no equal sign in

the expressions, mentally convert each of the equations into expres-
sions equal to zero (i.e. 18x + 24y =54 becomes 18x + 24y —54).

Openthe PLOT application, make sure that T%PE: field saysF 1LIri=—
1. 1M, and then reset the plot: (DEL|YJENTER).

Highlight the E: field, then enter the lines in a list: (&]{})
X eJa X[+ 2] 41X (el Y =I5 4] DX eI X+ 3] )
X eJaY =[]0 s X [Ja X=X (@a) Y H(7)ENTER].

Because 'd is on the same side of the equal sign as the independent
variable *, you must be sure that some value is stored in 4 before
attempting a Function plot. The value you choose will affect the loc-
ation of the plots, but not the positions of each with respect to the

others. Store 1 in'd: (NxT) R THHE () () () V) STO) M T (NXT).

. Enter# (lower-case) in IMDEP:, set H-WIEk to— 18 1H; and set

N=WIEl to—3 &. Then press [d:ka9 DL

a’

f

200M] ik v [TRACE] FCN | EDIT [CAMEL |
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6. The two lines on the right are suspiciously close. Press jiiil®3 to

begin trace mode. Then press (»)until the cursor is visible along one
of the suspect lines. With the cursor on one of the lines (press () as
needed to switch lines) press (), then press and hold down (¥). You
will see the equation of the current line displayed above the plot until
you release (¥). Repeat the procedure with the other suspect line.

Of course, visually inspecting the plots of system of linear equations is not pos-
sible for systems involving more than two independent variables.

Example:

Find the condition number for the square (4 x 4) matrix representing

18x+24y+6z—54
27x+36y+9z-80
Sx—-8y+4z+7
-3x+6y—-9z+12

this linear system:

. Press (CANCEL]CANCEL] to return to the stack. Then enter the matrix

of coefficients for this system: (=JMATRIX)(1)8])([ENTER ENTER)
(W)(2)7JENTER) (3] 6 JENTER) (9 JENTER)
(0)+/=)(ENTER)(5 ) (ENTER) (8] +/=) (ENTER) 4] (ENTER)(7) (ENTER) (3] +/-)
(ENTER)(6)(ENTER)(9])+/=)(ENTER) (ENTER)(ENTER).

Make a copy of the matrix for later and find the condition number:
[ECIGI CTTAEI . Result: 1443, 734A4255

The larger the condition number of a matrix, the more likely it is to
be ill-conditioned—contain dependent equations. But how large is

too large? That depends upon how many digits in your answer you
want to trust.

Do a small computation to give a rough idea of how many digits you
can trust in a solution computed using this matrix. Enter 15 (you’d
use 12 if the coefficients in the matrix were themselves the result of

HP 48 computations). Then press (SWAP)(—]LOG)(—).

Result: 11, 34H3125H3
Following this rule-of-thumb, you can trustup to 12 digits of any sol-
ution computed using this matrix. Thus, although they are close, the
first two equations in the system are indeed independent.
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However, the condition number can be found only for square matrices. To char-
acterize non-square matrices, you must find their rank.

Example:
1
2.
3.
138

Find the rank of the matrix representing the following system of
linear equations, and use it to determine whether all its equations are
independent:

18x+24y+67—54
27x+36y+9z-80
Sx—-8y+4z+7

. Youshouldstill have a copy of the previous matrix onlevel 2. If you

don’t, enter the matrix above directly. If you do, edit it by removing

the last (i.e. fourth) row: («)(4)MTH) Ll I}EII"}E}H@

Make another copy of the revised matrix and then compute the rank:
MATF [MOFH (5] EANE B

The result indicates that all three equations are independent—the
matrix is of full rank.

Press («)(v)(v)(»)»J») (8] 1)+/=)([ENTERJ(ENTER) to edit the matrix by

changing the constant in the second equation from -80 to -81. Find
the rank of the edited matrix: [ilal@. Result:

The [TiT:IH computation is indicating that the second equation is
now linearly dependent upon the first, so now there are only two
truly independent equations.
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Introduction to Matrix Arithmetic

Solving systems of linear equations of more than two equations in two variables
requires the use of matrices. The HP 48 handles all manner of matrix math with
ease. The following few examples illustrate some of the basic matrix operations.

Matrix Addition

Two matrices may be summed only if they have exactly the same dimensions.
Matrix addition simply sums corresponding elements of the two matrices and is
therefore commutative: if A and B have identical dimensions, A+ B=B+ A.

-2 4 2 3 4 -8
Example: Add A = and B = .
5 -1 -6 0O 5 2

1. Enter A onto the stack: (=]MATRIX) 2)+/=]ENTER] 4 [ENTER] 2 JENTER)
(v)(5)(ENTER)(1)+/=)(ENTER)(6 | +/=) (ENTER](ENTER).

2. Enter B onto the stack: (=MATRIX](3)(ENTER)(4]J+/=)(ENTER)(8]+/-)
(ENTER)()(0](ENTER)(5 ) (ENTER)(2)(ENTERJENTER).

3. Press(+). Result: [[ 1 B -& 1]
[ 4 -% 1]

Scalar Multiplication

Scalar multiplication is the multiplication of a matrix and a number (known as a
scalar in this context). Each element of the matrix is multiplied by the scalar, re-
sulting in the scalar product. Scalar multiplication is commutative: n-A = A - n.

-2 4 2
Example: Find the scalar product of 5 and A = [ 5 1 6 }

1. Enter A on the stack: (=]MATRIX)(2)+/=)([ENTER)(4)(ENTER)(2ENTER)
(w)(5)(ENTER](1)+/=) (ENTER)(6 [+/=) (ENTER](ENTER).

2. Enter the scalar: (5]ENTER).

3. Press(X). Result: [[ -1H ¥H 1H

[ 25 -3 -3H

]
1]
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Matrix Subtraction

Matrix subtraction is analogous to the subtraction of real numbers. Therefore, on
the HP 48, you can do matrix subtraction (A-B) in any one of three ways:

1. Enter A, enter B, press (—).

2. Enter B, press (+/-), enter A, press (+).
3. Enter B, enter -1, press (X), enter A, press (+).

Matrix Multiplication

Matrix multiplication (A - B) is defined only for two matrices that are dimension-
ally compatible in the given order: The number of columns in the first matrix (A)
must equal the number of rows in the second matrix (B). The result of matrix
multiplication will have the same number of rows as A and the same number of
columns as B.

This table illustrates the rules for dimensional compatibility with a few examples
(note that the dimensions are always listed as rows x columns):

A B A-B

G-~ 5| O
@XE— —compare (#) _ —Ex not defined
2xf)- —omere ) _BJx[2] 2)x2]
(Ol 1| (Ox1]
@xf- e Y4 (@4

Matrix multiplication combines each row of A with each column of B, in a process
known as the inner product or dot product, which multiplies corresponding ele-
ments (i.e. the first element of the row by the first element of the column, etc.), then
sums all the products.
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Thus each row/column combination results in a single element in the result
matrix. The following figure demonstrates this process for the multiplication of
a 2 x 3 matrix (A) with a 3 x 2 matrix (B):

Xy z ) xa+yb+zc xd+ye+zf
[ ] =
¢ ra+sb+tc rd+se+tf

-3 5
‘ ) -2 4 2
Example: Find ABif A =[ 5 { 6 } and B=| -1 4 |
7 2

1. EnterA: (©]MATRIX)(2]+/=)[ENTER)(4)([ENTER)(2JENTER)(¥)(5)(ENTER)
(1)+/=)(ENTER](6 J+/=) (ENTER)(ENTER).

2. Enter B: (2MATRIX)(3]+/-) ENTERJ. (ENTER)(Y)(1)+/=) (ENTER)(4)
ENTER)(7)(ENTER)(2]+/=)(ENTER)(ENTER).

3. Press(X). Result: [[ 16 & 1

Matrix Transposition

Transposing a matrix converts its rows into columns and its columns into rows—
an important operation in many different matrix applications.

5 -1 -6
1. EnterA: (©JMATRIX)(2)+/=)[ENTER)(4)(ENTER)(2JENTER)(¥)(5)([ENTER)

(1]+/=)(ENTER](6][+/—)(ENTER) (ENTER).

-2 4 2
Example: Transpose the matrix A =

2. Transpose it: HMATE|MAKE] TEM ]
Result: [[ -& 5 1
[ 4 -1 1
[ & -5 1]
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Finding the Determinant of a Square Matrix

The determinant of a matrix is a number computed from the elements of a square
matrix. Itisn’t defined for non-square matrices. The determinant plays a key role
in determining whether a matrix has an inverse—which, in turn, is the key oper-
ation in solving a system of equations.

3 4 1
Example: Find the determinant of the matrix A={2 6 0
4 -1 =2

1. EnterA: (®JMATRIX](3)(ENTER)(4]+/=)([ENTER)(1)[ENTER](Y)(2)[ENTER)
(6)(ENTER](0)(ENTER)(4)(ENTER)(1)+/=)(ENTER)(2]+/=) (ENTER)(ENTER).

2. Compute the determinant: MATK |NOEH [(S8] DET |

Result: —7'H
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Matrix Inversion

There is no matrix “division”—only multiplication of one matrix with the inverse
of another. And not all matrices have inverses; matrix inversion is defined only
for some (not all) square matrices. The inverse of a square matrix A is the matrix
Alsuch that A-A™ =A™ -A =1, where I is the identity matrix with the same
dimensions as A. An identity matrix is a square matrix whose diagonal elements

1 00
are 1 and all others are 0. For example, the 3 x 3 identity matrixis |0 1 0
0 0 1
3 4 1
Example: InvertthematrixA={2 6 0 |andcompute A - A tocheck.
4 -1 =2

1. EnterA: (©JMATRIX)(3)[ENTER)(4)+/=)[ENTER)1)[ENTER)(Y)(2)[ENTER)

(6)(ENTER)(0](ENTER](4)(ENTER)(1[+/=)(ENTER](2]+/=)(ENTER](ENTER).

2. Make a copy of A and compute its inverse: (ENTER)(1/x). Results
(shown to 5 places): [[ H.1538% H.115238 H.BMESE ]

-H.B0128 B 12821 -, HEDET ]

[ H,33332 @A, 16667 -H,33233 1]

| |

3. Optional. Make a copy of the inverse and use the program A+L! (see
page 277) to convert the array elements to fractions to see if you can

obtain an exact answer: ([ENTER)(e]a]A]=]=]Q)(ENTER.
Results: © + 'E<13' '2eFERD 10130 3

—(@s290 090 Y0139t

1 1_} o 1 ! B |-_'[- 1_’_.::‘-:| | .:_' --';- K

Pt T e B e

Note that the result is a list of lists representing rows of the matrix.
This notation is standard for representing symbolic arrays on the HP
48 (actual arrays don’t allow algebraic objects).*

4. Check the results by multiplying A by its computed inverse (if you
performed step 3, first press («)): (X).

*Converting an array of decimal approximations to a symbolic array of fractional equivalents will not be useful
if the array is the result of an inversion (or other computation) of another array with approximate decimal elements.
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Solving a Linear System

There are several approaches to solving a linear system of equations. The HP 48
can assist you with any of them.

Gaussian Elimination. This approach uses elementary row operations of
matrices to transform the matrix representing a linear system into one from
which the solution can be easily computed. This is the most commonly
used approach for manual solving.

Cramer’s Rule. Cramer’s Rule is a theorem that allows you to compute
the solution of a linear system by dividing its matrix into a set of smaller
ones and then using ratios of the determinants of these smaller matrices to
compute the solution.

Matrix Inversion. While technically both of the preceding methods im-
plicitly use matrix inversion, there are other methods better suited to elec-
tronic computation that will efficiently generate a solution directly from
the matrix representing the linear system.

These methods are described in each of the next three sections.

144
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Solving by Gaussian Elimination

The process of Gaussian elimination is a common approach to solving systems
of linear equations when doing them manually. It transforms the augmented
matrix representing the linear system into an equivalent row echelon or reduced
row echelon matrix, from which the solution can be easily computed.*

To understand the goal more clearly, look at examples of augmented, row echelon
and reduced row echelon matrices:

Augmented: Row Echelon: Reduced Row Echelon:
X N ok 1 a, a,|k 1 0 0}«x
[ | |
X, Y Lk 0 1 ayik 0 1.0y
X, ¥ 7k 0 0 11k 00 1ig

The matrix of coefficients is partially transformed to the identity matrix in the row
echelon form and fully transformed in the reduced row echelon form.

Each step of the Gaussian elimination process uses one of three elementary row
operations for matrices:

1. Swapping two rows.

2. Multiplying one row by a nonzero constant.

3. Multiplying one row by a nonzero constant and adding it to another row.
Not surprisingly, the HP 48 has a command corresponding to each of these oper-

ations. Take alook at an extended example of using Gaussian elimination and the
HP 48 to solve a linear system.

*Technically, the method of reducing the augmented matrix to a row echelon matrix is called Gaussian elim-
ination, and the method that reduces the augmented matrix “all the way” to areduced row echelon matrix is called
Gauss-Jordan reduction. Both methods are referred to interchangeably as Gaussian elimination in this book.
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Example:

146

3.

Solve this system of linear equations using Gaussian elimination:

x+2y+3z=6
2x—-4y+2z=16
3x+y—z=-2

Enter the augmented matrix onto the stack. The augmented matrix

includes an extra column containing the constants that appear on the

1 2 3, 6

right-hand side of the equations: |2 -4 2 i 16
|

3 1 -11-2

So, press (2MATRIX)(1])(ENTER)(2)(ENTER)(3)(ENTER)(6)(ENTER)(Y)(2)
(ENTER)(4]+/=)(ENTER])(2)(ENTER)( 1) 6 )(ENTER)(3)(ENTER)(1])(ENTER)(1)

(+/-)(ENTER)(2]+/=)(ENTER) (ENTER).

The upper left element of the matrix does not need to be transformed,
so begin with element (2,1)—the first element of the second row. It
must be transformed to 0. To do this, multiply row 1 by -2 and add

it row 2: (2J+/9) ENTER][ENTER] =[] MATR] RO
ETHPE Result: [[ 1 & 3 & 1
[ B -8 -4 4 ]

41 -1 =% 1]
Reduce element (3,1) to O: Multiply row 1 by -3; add it to row 3.
(3)+/=)(ENTER)(1)ENTER)(3) LI

Result: [[ 1 .i 3 6 ]

Reduce element (2,2) to 1: Swap rows 2 and 3, then multiply row

2 by —1/5 (to avoid fractional elements). EZlP
C12)*=enTeR 2)NxT) B IH. Result: [[ 1 & Ei B ]

[H1 2 4]

[ 8- 441
Reduce element (2,3) to 0: Multiply row 2 by 8 an d add it to row 3.
(8)ENTER) Q) ENTER) 3 )T E. Result: [[ 1 & 2 & 1]

[B1E 4]

[ BA IZ 26 1]
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6. Reduce element (3,3) to 1: Multiply row 3 by 1/12. (1)[ENTER
EE)EITE Result: [[ 1 ¥ 23 & ]
[ B 1 % 4 ]
[ BH 1 3 1]
This produces the row echelon form, which, when translated it back
x+2y+3z=6
into a set of equations is y+2z=4
z=3

7. Of course, you could now solve this system by substituting z=3 into
the second equation, solving there for y, then substituting for y and
z in the first equation, and solving there for x. But for the purposes
of this example, continue the elimination process until you produce
the completely reduced row echelon form.

Reduce element (1,2) to 0: Multiply row 2 by -2; add it to row 1.
(2)+/=JENTER)(2) ENTER)(1 I FIE.
Result: [[ 1 B -1 =& ]
[HT1E4]
[ BB 1 a2 1]

8. Reduce element (2,3) to 0: Multiply row 3 by -2; add it to row 2.
(2)+/=)JENTER)(3)(ENTER)(2) LI M IH.

Result: [[ 1 B -1 -% 1
[B1H8-E]1]
[ BB 13 I1]

9. Finally, reduce element (1,3) to M ultiply row 3 by 1 and add it to

row 1: (1)JENTER)(3)(ENTER .
Result: [[ 1 H H 1 ]
[ B18 -E1
[ B A1 3 1]

The solution is now directly obvious if you translate this reduced
row echelon form into a system of equations:
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As the previous example makes clear, Gaussian elimination will get you to a so-
lution sooner or later, but it may take more than a few steps. The HP48 has a com-
mand to accelerate the process. FFEF takes you directly from the augmented mat-
rix to the reduced row echelon form; in essence, it automatically executes all of
the elementary row operations necessary to complete the process.

Example: Use the FEEF command to solve the following system:

x+2y+3z=6
2x—-4y+2z=16
3x+y—z=-2

1. Enterthe augmented matrix representing the system: (=JMATRIX
(ENTER)(2)(ENTER](3)(ENTER)(6)(ENTER)(Y)(2)(ENTER)(4+/=)[ENTER)(2)
(ENTER](1) 6 )[ENTER)(3)([ENTER](1)(ENTER)(1[+/=)[ENTER)(2]+/—)[ENTER)
ENTER).

2. Transform the augmented matrix directly to its reduced row echelon

form: MATER |FACTE] EREF |

Result: [[ 1 A H 1 ]
[LB1 A -F]
[LaB 12 1]

3. Asin the previous example, you can simply read the solution from
the right-most column: x=1;y=-2,z=3.
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The Gaussian elimination process can be used on any augmented matrix—even
one that has been augmented with more than one column.

For example, to invert a square matrix, you can augment it with an identity matrix
of the same dimensions and then reduce the augmented matrix to its reduced row
echelonform. The inverse is returned to the right-hand section, just as the solution
is returned to the right-hand section in the examples above.

1
Example: Use Gaussian elimination to invert | 1
0

—_— = N
NN W

1. Enter the matrix: (=JMATRIX](1)(ENTER)(2)(ENTER)(3)(ENTER)(V)(1)
(ENTER)(1](ENTERJ(2)(ENTER])(0) (ENTER)(1) (ENTER)(2) (ENTER)(ENTER).

2. Create a 3 x 3 identity matrix: MATE]MAKE] 10N |

3. Augment the original matrix by inserting the identity matrix on the
r1ght 51de (i.e.beginning in column 4) of the original matrix: (4)MTH)

ECCAE TS, Resul: ([ 1 2 2 1 88 ]
[11&2R1A]

[HTE2RA1]]

4. Transform the augmented matrix to its reduced row echelon form
el TS Result: [[ 1 B H A1 -1 1

[LH1RBE-Z-1]1

[LEE1-1111]

Notice that the left half of the augmented matrix has been converted

to a 3 x 3 identity matrix and the right half is the inverse of the orig-
inal matrix.

5. Eliminate the first three columns, leaving only the i 1nverse (1)MTH)
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Solving with Determinants: Cramer’s Rule

Determinants can be used to solve a system of linear equations provided that the
following three conditions are met:

* The number of independent variables equals the number of independent
equations in the system.

* The determinant of the matrix of coefficients is non-zero.

* At least one of the constants to the right of the equal signs is non-zero.

Cramer’s Rule requires that you create a set of specially augmented matrices from
the matrix of coefficients. For example, to use Cramer’s Rule to solve the linear

x+2y+3z=6
system 2x—4y+2z=16, you first must create four matrices:
3x+y—z=-2
1 2 3
e The matrix of coefficients itself: A={2 —4 2
31 -1
6 2 3]
* A with its first column replaced by the constants: A =| 16 —4
-2 1 -1]
1 6 3]
* A withits second column replaced by the constants: A =|2 16
3 2 -1]
1 2 6
* A with its third column replaced by the constants: A, =2 -4 16
3 1 2
A Al _IAl
The unique solution of the given system is: x = I—" y=—-2 7=,
Al Al Al

where | | indicates the determinant of the respective matrix.
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Example:

Solve the following system of linear equations using Cramer’s Rule:

x+2y— z=-7
2x+3y+2z=-3
x—-2y-2z=3

. Enter the augmented matrix, just as with Gaussian elimination: ()

(MATRIX] 1]ENTER] 2 JENTER] 1] +/=JENTER)(7 | +/=JENTER)(¥)(2)[ENTER)
(3)(ENTER)(2)(ENTER)(3)(+/=)(ENTER)(1)(ENTER)(2)(+/=)(ENTER)(2)(+/-)
(ENTER)(3)(ENTER](ENTER).

. Copy the augmented matrix, then modify the copy by removing the

column of constants: m.m@
Result: [[ 1 ._' -

[ £ 3¢ ] The matrix of coefficients (A)

[ 1 -2 -2 11

3. Findthe determinantofA: [RGHTALTTARANXT) B8, Result: 17

. Bring the copy of the augmented matrix to level 1 and make another

copy ((SWAP)(ENTER)). Then create A_ by swapping column 4 and

column 1 and then deleting column 4: (1) .m.
EERE (O («). Result: [[ -7 -1 1]
[

i | l-l
-0 'l

[3-2-2 1]

R l"-

. The determinant of A : {ulillliflle]li1wl(NXT) NxT)EIT3. Result: 17

. Repeat steps 4 and 5 to find the determinant of A . This tlme swap

columns 2 and 4: (SWAP)ENTER)(2) ENTER]@miﬂH
@] cOL- Q] HATE [MORM [(E6] DET R:ENE ‘51

. L1kew1se find the determinant of A . This time swap columns 3 and

RO ENE)A MATE] COL [CS1-P (@) cOL- [ MATE
EEE]M. Result: 34

. Collect the last three determinants in a list: *LI5T

Result: = 17
l: L 17 =51 294 &

. To compute the three solutions, swap levels and divide: (SWAP)(=).

Result: = 1 -3 & X Thus, x=1;y=-3;z=2.
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Of course, this method of solving a system of linear equations by Cramer’s Rule
is a good candidate for automation. The program CEAMEE (see page 279) does
just that.

Example: Use CEAMEFR to solve the following linear system:

a+b+c+d+ f=340

a+b =90
a+ c =110
d+ =180

c+ f=170

1. Enterthe augmented matrix representing the system (2IMATRIX)(1)
(ENTER)(1)(ENTER](1)(ENTER)(1)(ENTER)(1)(ENTER)(3] 4 0)(ENTER)(V)(1)
(ENTER) (1) (ENTER) (0] (ENTER) (0] (ENTER) (0) (ENTER] (9)(0) (ENTER)
(1)ENTER) (0)JENTER) (1JENTER) (0)ENTER] (0) (ENTER)
(0)ENTER) (0)ENTER) (0)ENTER) (1)ENTER) (1)ENTER)
(o)ENTER) (0)ENTER) (1)ENTER) (0)ENTER) (1)ENTER)
[ENTER).

2. Enter alist of the variables, in the order presented in the matrix: (&)

ENTER|.
3. Execute CEAMER: (o)) C)RIAIM(E(R)(ENTER)or(VAR) (then (NXT)or
()PREV) as needed) [ii1gl.
Result: &% © -1 -4d -58 - -390 -1HH &
l: £ =a: 48 :hs ! El =|:'-' TH :d: 2R :f:
13

The list on level 2 contains the determinants for the matrix of coeffi-
cients and each of the “Cramer”’-augmented matrices. Level 1 con-
tains a list of the solutions tagged with the names of the variables.
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Solving by Matrix Inversion

While the preceding methods are robust (and could be adapted to symbolic—as
opposed to numeric—solutions) they are not the most efficient means of solving
a system of linear equations when using a computational device like the HP 48.
The fastest methods usually employ algorithms to invert a matrix.

The crucial role that matrix inversion plays in the solution of a system of linear
equations is obvious when you view a linear system as a single matrix equation:

x+2y— z=-1 12 -1} =7
2x+3y+2z=-3 isequivalentto |2 3 2 |-|y|=|-3
x—2y—2z= 3 1 =2 2 z 3

If you recall the rules of matrix multiplication, you will see that this relationship
is exactly correct. The matrix equation can be simplified to A - x = B, where A
is the matrix of coefficients, x is the vector of variables and B is the matrix of
constants.

To solve the matrix equation, you must multiply both sides of the equation by the
inverse of A, as follows: A7 -A-x=A"-B=I-x=x=A"-B. Thus the solu-
tion can be computed by multiplying the inverse of A by the vector of constants.

You’ve already seen two methods of computing the inverse: using the key
and using Gaussian elimination (the routine used by the HP 48 when you press
to inverse a matrix makes use of advanced matrix decomposition algorithms
that are beyond the scope of this book to explain). But there is a third method for
inverting a matrix that you should know about: the cofactor matrix. The cofactor
matrix of a given square matrix is the square matrix in which each element is
replaced by its respective cofactor.

So... what’s a cofactor?

To put it as simply as possible: Each element in a matrix belongs to a particular
row iand a particular column j. That element’s cofactor is (—1)"" times the de-
terminant of the matrix that remains if you remove row i and column j.
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1 2
For example, given A =|2

, the cofactor of the element in row 2,

column 3, is (-1)**?

5 ‘ = 4. Andlikewise, if you find the cofactors for every

-2 6 -7
element in A, you’ll have its complete cofactor matrix: A“=| 6 -1 4
7 -4 -1

As it turns out, the inverse of a matrix A is the transpose of its cofactor matrix,
divided by the determinant of A. Thus, for the example matrix:

-2 6 7 -, 6 o

6 -1 4| |-=— =X =

- 17 17 17
A—I_{A } — —7 4 —1 — i __1_ _i
Al 17 17 17 17
74 1
L 17 17 17

Compare this to the result when you use to compute the inverse and use A*Q
to rationalize the elements:

P 0 [ - R ) Rl
IR -2 T P I R I 2 I B
_']
.

L
N e T I S T S T N

~

The program CIIFACTE (see page 278) computes the cofactor matrix for a given
square matrix. Try an example using it to solve a linear system....
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X+2y+z-6t=12

2x+3y-2z+t=10

—3x—-4y+3z+5t=3

4x-3y—z+t=6

1. The augmented matrix: (2)(MATRIX)(1)(SPC)(2)(SPC)(1)(sPC) (6)+/-)
(SPC)(1)2)[ENTER)(Y)(2)(SPC)(3)SPC)(2)+/=)(SPC)(1)(SPC)(1) 0)[ENTER)
. +/-JSPC)(4])(+/-)(SPC)(3)SPC)(5JSPC)(3) (ENTER)(4)(SPC) (3] +/=)

(SPC)(1)+/-)(SPC)(1])(SPC)(6)(ENTER](ENTER).
2. Extractthe column of constants from the matrix (column 5): (5)MTH)

MATE] coL | coL- 1}

3. The column of constants will be used later; swap it to level 2: (SWAP).
Then with the matrix of coefficients on level 1, make a copy and exe-
cute the COFACTE program to create the cofactor matrix: (ENTER)(c)
(@)(CJOJFJAICITIR)(ENTER] or (VAR) (NXT) or (§)PREV] as needed)
il d8. Resul: [[ 59 39 116 -3 ]

[ /2 &2 923 26 ]
[ 45 35 118 3
[ 51 -&6 12 & 11

4. Transpose the cofactor matrix: (MTH)[ELIEA EETAS BT

5. Grab the matrix of coefficients now sitting on level 2 and find its de-
terminant; MATE [NOEM [(55] DET R:EMiaraa

6. Divide the transposed cofactor matrix by the determinant, make a
copy and rationalize the result: (=)ENTER(VAR i EAtH. Result:

Example: Use LOFACTE to help solve

(R M= R I R R (=R =) Bt B
:: |"Il:' -l'l_ll | II_IIE I'—ll I I |q 'J_| I l__ '._' .-l'Zl"Jl'] I }
d 'llh il "5':' el '11" F R = P
(R 8= RN T R = = R I R

This is the inverse matrix of A.

7. Drop the rationalized version, then multiply the inverse matrix by
the matrix of constants extracted in step 2. You must swap first to put

the matrices in the proper order (A™ - B = x): (w)(SWAP)(X).
Result: [ EB.9446 4.6/53 18,1624 2,469 ]

So, x = 6.9446; y = 4.6753; z = 10.1624; and ¢ = 2.4096.
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Finally, here are some examples to illustrate the built-in routine for solving linear
systems, which uses matrix inversion to solve the matrix equation: A-x=B.
x+2y+z-6t=12
2x+3y-2z+t=10
—3x—-4y+3z+5t=3
4x-3y—z+t=6
1. Enter the array of constants (B): SPC SPC)(3](SPC
(6)ENTER).

2. Enter the matrix of coefficients (A): (=>MATRIX)(1)[ENTER)(2)[ENTER)

(ENTER) (6)+/=) (ENTER) (¥) (2] (ENTER) (3) (ENTER) (2] +/=) (ENTER)
(ENTER)(3]+/=)(ENTER)(4)+/-)(ENTER](3)(ENTER)(5 ) (ENTER] (4] (ENTER)
(3)+/=)(ENTER](1)+/=)(ENTER)(1)(ENTER] (ENTER).

Example: Solve this linear system using the stack:

3. Divide the two arrays: (=). This performs the IM\erse operation (as
in (¥/x)) on the level 1 matrix and multiplies the result by the level 2
array. Result: [ B.9446 4.6723 1H. 1684 F.469% ]

Example: Usethe=0OLYE *4:TEM application to compute the solution to the
same system as in the previous example.

1. Open the *OLYE ZY=TEM application: (=) SOLVE)(a)A](ENTER).

2. Enter the coefficients matrix in the H: field (same as step 2 above).

3. Enter the constants array in the E: field (same as step 1 above).
4. Highlight the : field, and B

HENSMENE COLVE SYSTEM A-Rob SNSSENE

[l 121 -51 [ 2.
e[ 12 18 2 & ]
u: [ E,_'E,I-.‘I.-.‘I.l'-_'.q-‘:.l-:'l--'l-l-':'-l-';-' 4- i

ENTER SOLUTIONS OF PRESS SOLYE
EONT feHons] ] ] [SOLYE

5. Press [{i3URHl, then (») as needed to clarify the results. Use
to see the stack and the result array, labeled =1t ions: .
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Symbolic Solutions of Linear Systems

All of the built-in matrix operations, solving commands, and programs discussed

so far in this chapter require that you use numeric arrays; algebraic objects are not
allowed in such solutions on the HP 48.

However, you can extend the principles of the matrix operations and commands
to “symbolic” matrices by devising a method to represent symbolic matrices on
the HP 48. One common method for doing this is the “list-of-lists” notation.

ax+by+c=d

For example, the linear system ex+ fy+gz=h
jx+ky+lz=m

d d

|_

can be represented (in augmented form) as:

b
F
l

Pt B i} =
o
—n 11
e -

1

Using the same underlying mathematical principles as the numeric procedures,
a set of programs has been designed to work with the “list of lists” form of sym-
bolic matrices, performing essential matrix operations discussed in this chapter:
matrix arithmetic, transposition, inversion, finding determinants, and solving
systems of linear equations.* Like the other programs referred to in this book,

these programs are listed in alphabetically order in the appendix at the end of the
book.

M

*Some of the programs in this set—30ET, SMMULT, STRM, 5M-+, +35M, SCOF, SMAOD, SMSMULT, and SMSUB—
were adapted from the set of programs developed by Bill Wickes in his book, HP 48 Insights, Part I: Principles
and Programming and are used here with his permission.
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Here is a summary of the symbolic matrix programs* and how they work (along
with the page numbers where they are listed in the Appendix):

Symbolic Matrix Arithmetic

=lMAOD Sums two symbolic matrices of equal dimensions (page 305).

SIMsUE Subtracts one symbolic matrix from another (page 307).

SMSMULT Multiplies a scalar (which may also be symbolic) by a symbolic
matrix (page 306).

SMMLULT Multiples two symbolic matrices provided that they are dimen-

sionally compatible (page 305).

Symbolic Matrix Operations

it

+5

STEN
SDET
SCOF

RSP
SRCT

Disassembles a symbolic matrix onto the stack, with each
element occupying its own stack level. The number of columns
in the matrix is returned to level 2, and the number of rows is
returned to level 1. This program is analogous to the built-in
B+ command for numeric arrays (page 304).

Assembles a symbolic matrix from its elements on the stack.
Level 2 should have the number of columns in the new matrix and
level 1 should have the number of rows. This is analogous to the
built-in *ARREY command for numeric arrays (page 305).

Transposes a symbolic matrix (page 313).
Finds the determinant of a square symbolic matrix (page 302).

Finds the cofactor for an element in row r (level 2), column ¢
(level 1) of a square symbolic matrix (level 3) (page 301).

Swaps two rows of a symbolic matrix (page 312).

Multiplies a row of a symbolic matrix by a constant (which may
be symbolic). Analogous to FCI for numeric matrices (page
312).

*Note that you may enter a numeric matrix as a symbolic matrix if you want to perform operations in combination
with a truly symbolic matrix.
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SRIU

SeR0kW

MR

SCSLP
it

SMCOL

Multiplies a row of a symbolic matrix by a constant (which may
also be symbolic) and adds the product to a second row. Analo-
gous to LI for numeric matrices (page 312).

Extracts a designated row from a symbolic matrix, leaving it on
leaving it on level and the diminished matrix on level 2. Analo-
gous to R~ for numeric matrices (page 313).

Inserts a row list or symbolic matrix into a symbolic matrix be-
ginning in the designated position. Analogous to FJl+ for nu-
meric matrices (page 307).

Swaps two columns of a symbolic matrix (page 302).

Extracts a designated column from a symbolic matrix, leaving it
as a row list on level 1, and the diminished matrix on level 2.
Analogous to LIIL— for numeric matrices (page 313).

Inserts a row list representing a column of elements or a symbolic
matrix into a symbolic matrix beginning in the designated pos-
ition. Analogous to LUL+ for numeric matrices (page 307).

Symbolic Linear Solutions

SLREAMER

SCFACTE

SMINY

SMsoLy

Given an augmented symbolic matrix representing a linear sys-
tem, returns a list of solutions computed using Cramer’s Rule.
Analogous to LEAMEF for numeric matrices. Uses SOET, SCOF,
and SMSMLLT (page 302).

Computes the symbolic cofactor matrix for a square symbolic
matrix. Analogous to COFACTE for numeric matrices. Uses
SOET and SCOF (page 301).

Finds the inverse of a square symbolic matrix, using the cofactor
matrix algorithm. Uses SCFHCTE (page 305).

Solves a linear system represented by an augmented symbolic
matrix, using the cofactor matrix algorithm. Uses SIMIMNY and

SMMLT (page 306).
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Over- and Under-Determined Systems

All of the examples and techniques shown so far in the chapter have used exactly-
determined systems of linear equations—systems with equal numbers of inde-
pendent equations and independent variables. But you may run across systems
where this is not the case.

The HP 48 provides a special command for handling situations, where attempts
fail to recast the linear system as exactly determined. The command L=l finds
the closest solution—the one which results in the smallest least-squares error. Or,
if LSQ finds more than one equivalent solution, it returns that with the smallest
Euclidean norm (the array’s “absolute value”). Look at two cases—one over-
determined system and one under-determined system (these examples apply only
to numeric matrices; there is no symbolic equivalent provided in this book):

x+2y-3z=34
- . : ) —3x+y+5z=21
Example: Find the best solution to this system: 4x —y+27=20
-x—4y+7z=15
1. Enter the vector of constants: (&) 1)(3)4)(SPC)(2) 1)(SPC)(2)0)(SPC)

(T5)ENTER)

2. Enter the matrix of coefficients: (=(MATRIX](1)(ENTER)(2)(ENTER)(3)

(+/=)(ENTER] ) (3] +/=) (ENTER) (1) (ENTER] (5 ) (ENTER) (4 [ENTER) (1] +/—)
(ENTER)(2)(ENTER](1)+/=)(ENTER)(4)+/—) [ENTER][ENTER] (ENTER).

3. Solve the over-determined system: (MTH)[EL1070 BP0
Result (to 4 places): [ 2.47En 9, lhl i E-. El_ ]

x+2y-3z=34

Example: Find the best solution for this linear system: 3x4y+5z=21

1. Enter the vector of constants: (&5)13)(3]4)(SPC)(2)1](ENTER).

2. Enter the matrix of coefficients: (=MATRIX](1)(ENTER)(2)(ENTER)(3)
(+/=)(ENTER)()(3]+/=)(ENTER](1)(ENTER)(5 ) (ENTER [ENTER].

3. Solve the under-determined system: (MTH) IS B BRI,
Result: [ —%4.2272 16,6539 -1 I:Fqu ]
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Systems of Linear Inequalities

Systems of linear inequalities differ from systems of linear equations primarily
in the nature of their solution sets. Exactly-determined systems result in a unique
solution—in essence, a point. But a system of inequalities gives a solution space
—an infinite number of points, where every point satisfies all of the inequalities
in the system. Such systems are not said to be either over- or under-determined;
the ratio of equations to variables is unimportant.

For systems in two variables, plotting is a good means of determining the solution
space. The program, IMFLIIT (see page 284), by Jim Donnelly, does this.*
Y>2X-1

Y<-2X-2

Y<3X+2

Y>-2

1. Open the PLOT application; set the TY'PE: field to Fur=t 1.

2. Highlight the E: field; enter the inequalities in a list: (] 3)(*)(e]Y)
(Je23) XXM V(elal3)F X @XI=]2))
@-a@-amm.

3. Set the plot parameters—lH[IEF to s, H=WIEK to—2 & and ¥~
WIEK to—3 =. Savethe settings and exit to the stack: (NXT) m

4. Plot the system using the IMFLOT program: (ONIPIDO]T)
or (then (NXT) or (§]PREV) as needed) [Ig]I M. **

Example: Plot this set of linear inequalities:

=
2000 | 3.4 [TERCE] FCM | EDIT

*Note that IMPLOT requires that you use # and ' (uppercase) as the independent and dependent variables.
**Plotting a system of inequalities is relatively slow because each column of pixels must be tested against the
values of the each of the functions. The line of pixels along the top shows you the progress of the plotting.
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Linear Programming

How do you solve a system of linear inequalities involving more than two
independent variables, when it isn’t possible to plot the solution?

To be sure, there is no easy approach. However, most of the real-world applica-
tions for solving such systems of linear inequalities are found in the context of
finding the optimum solution within a possible solution space. In these cases, you
are not interested in the entire solution space (or even in defining it), but in deter-
mining the one solution within the universe of possible solutions that optimizes
a particular function. Such problems are the realm of linear programming.

A linear programming problem consists of:
* An objective function that must be optimized—maximized or minimized.

* A set of constraints—Ilinear inequalities that define the possible solution
space for the problem.

Solving a linear programming problem requires that you find a means to “graph”
the set of constraints. If there are only two independent variables in the system,
the “graph” is a two-dimensional polygon and can be actually drawn on a piece
of paper or on the HP 48 screen. If there are three independent variables, the
“graph” is a three-dimensional polyhedron and might be sculpted as a model or
be represented in 3D-rendering on a flat surface. However, the “graph” of a sys-
tem containing four or more variables cannot be created in any physical way with-
in the three dimensions of our existence. So how can you solve a linear program-
ming problem with four or more variables?

Problems in four or more dimensions can’t be represented physically, only mathe-
matically, via matrices. If a linear programming problem can be represented in
terms of matrices, then there is a good chance that it can be solved—even if there
are 5, 10, or morevariables.

What does the “graph” of the solution space of a system with, say, 7 independent
variables “look™ like? The solution space of a 3-variable solution is a 3-dimen-
sional polyhedron, but the mathematical term for a higher-dimensional analogue
of a polyhedron is simplex. Thus, the solution space of a 7-variable system is a 7-
dimensional simplex.
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Recall that to graph any inequality, you must actually graph the corresponding
equality (aline) and then decide on which “side” of the line the solution space lies.
Similarly, the “edges” of any solution space for a system of linear inequalities—
be it a polygon, polyhedron, or simplex—are the inequalities of the linear system
after they are converted into equalities. These solution spaces all have vertices,
which are the intersection points of two or more “edges” (i.e. inequalities con-
verted into equations).

Now, one of central theorems of linear programming is that the optimal solution,
if it exists, will always occurs at a vertex of the solution space that represents the
set of constraints for the problem. Therefore, the process of “solving” a linear
programming problem is simply the testing of the vertices of a simplex to see
which of them—when its coordinates are substituted into the objective function
—yields the optimum value (maximum or minimum, depending on the problem).

However, to solve a linear programming problem before the end of the millen-
nium, you must test the vertices in an efficient way; it takes far too long to test
every vertex, so you need to test only those vertices that might yield the optimum
and ignore those that don’t stand a chance. (And obviously, this need for effici-
ency increases rapidly as the number of variables—the number of dimensions in
the simplex—increases).

The Simplex Method is a matrix-based algorithm that explores the vertices of the
solution simplex in an very efficient way. It starts with any vertex and then finds
another vertex that improves the objective function, and repeats the procedure
until there are no more improvements. It almost always finds the optimal vertex
after just a few iterations—no more than the number of inequalities or the number
of independent variables, whichever is larger.
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The HP 48 can be programmed to use the Simplex method. The examples which
follow use a collection of four programs:

o LIMFPREL (see page 286) is the master controlling program, collecting a
description of the linear programming problem, converting it to the
array form—the rableau—needed by the 2-phase Simplex algorithm,
calling FHASE] and SIMPLE® as needed to solve the problem, and
finally reporting the results.

« PHASE1 (see page 292) adjusts the given tableau so that it is in canonical
maximum form, suitable for the main'= IMIFLEX algorithm to search for
an optimum solution.

o SIMPLEX (see page 303) applies the Simplex algorithm to the given tab-
leau, using a specified objective function.

-

o PIMOT (see page 294), called by both FHHSE1 and SIMFLE, performs
a single pivot operation on the given tableau using a specified pivot row
and pivot column.

Although PHASE1, STMPLE, and FIMOT are primarily designed for use with
L IMPEL, you may also use them independently if you want to examine the pro-
cess more closely.*

Look at some examples using L IMFF[:. Be sure that all four programs are
correctly entered in your current path before trying these examples.

*3TMPLEX takes as inputs: the number of constraints (level 6), the number of decision variables (level 5), a list
of the indexes for the variables in the current solution—basis variables (level 4), a list of the indexes for the var-
iables not in the current solution—non-basis variables (level 3), an array representing the current Tucker tableau
(level 2), and either the value 2, if the tableau is non-canonical, or 1 if canonical (level 1). Note that the order of
the index lists on levels 2 and 3 must correspond to the ordering of elements in the Tucker tableau and that the
index, B, is used for any artificial variables in the tableau. PHASE1 takes the same inputs and in the same order
as SIMPLER with the exception of the final input (level 1 for SIMPLEX). PIVOT takes the same five inputs as
PHASE1 , in the same order, moving them to levels 7 through 3, and additionally takes the pivot row (level 2) and
the pivot column (level 1). SIMPLEX and PIY0T return the number of constraints to level 5, the number of dec-
ision variables to level 4, arevised list of the indexes for the basis variables to level 3, arevised list of the indexes
for the non-basis variables to level 2, and a revised Tucker tableau to level 1. PHASE] does not return anything
tothe stack, but (as S IMPLE¥ and PIWOT do as well) returns the revised list of basis indexes to the variablebutars,
the revised list of non-basis indexes to the variable Nat"3, and the revised Tucker tableau to the variable 3.
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Example:

An investment manager wants to invest $20,000 each month for a
client in the bond market. He has three kinds of bonds (i.e. three
different risk categories) that he may consider. The return on each
kind varies from month to month, but this month he can get 7% on
the safest kind of bond, 8.5% on the riskiest kind of bond he’s
allowed to consider, and 8% on the moderately risky kind. He need
not invest the entire fund, but he can invest no more than 40% of the
amount invested in any one type of bond. Further, he must invest at
least $4000 in the safest kind of bond. To maximize the return on his
investment, how should he allocate the investment this month?

. Define the variables. The variables here are the amount invested in

each type of bond. Thus, there are three variables: b, b,, and b,.

Find the objective function. This is the function that computes the
return on the investment: 0.07b, +0.08b, +0.085b,

Findthe set of constraints. In most real-world LP problems, the most
common constraint is that all variables must be nonnegative (b, 20,
b,20,and b,20). And in fact, the SIMPLEX program assumes that
all variables are nonnegative. The other constraints here are:

b, +b, + b, <20,000
b, <0.4(b, +b, +b,)
b, <0.4(b, +b, +b,)
b, <0.4(b, + b, +b,)
b, > 4000

However, before you can use the L INFEL program, you must ex-
press each of the constraints so that all the variable terms are on the
left side of the inequality and the constant is on the right side (the first
and last constraints are already in proper form). Rearrange the
constraints as necessary to the form needed by L IMFEL:

b, + b, + b, < 20,000

0.6b, —0.4b, —0.4b, <0
~0.4b, +0.6b, —0.4b, <0
~0.4b, —0.4b, +0.6b, <0
b, > 4000
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4. Begin LINFREG by typing (@)L N]PIR)G) or pressing

(then or (]PREV) as needed) [ |5li.

BRI | IMEAR PROGRAMMING SEEEEEE
nesecTive: [
COMSTRAIMTS:

YARS:

Ma% OF MIN? A"

EMTER OEJECTIVE FUMCTION

EDT] | ] JiAMIL| OK |

5. Enter the objective function into the DEJECTIYE field:

0.07b, +0.08b, +0.085b, =0

Press (' - [o] )X &)BIH (Lo e)x[ela)B]2]
(5)(X) o] B)3)&)(=)(0])(ENTER). Note that the objective function

must have a right-hand constant, just like the constraints. If there is
no constant in the expression, use zero.

6. Enter the set of constraints as a list: (G]{ 3)(" JeJ< B 1) +H)(«)&)(B)

B (eJalBl3)(@fals)(2]oTofo o)) - Je X)) B U
(JaX)(ealBl 2D JaIx(Ja)BIs) a3 ) o)) - Ja)+/~)
XN JaBDH e XelalBl2) D J4aX)(«a)B ) (Ja)3)
@)L TN EaBEIXSIBR)HT8X)
(IalBlE)( a0 eta)BlT)(@[=L3)(4 o) o)) ENTER].

7. Enter the list of variables, in the same order as they are in the con-

straints and in the objective function: (&](})(eJ&)B)1)(SPC)(a)&)
(JJBI3)ENTER].

8. Since you do wish to maximize the objective function, you need not

change the entry in the last field. Simply press [il!] 8l to compute
the solution. After a bit, you will see a message box:

Solution Ffound. Pressil

jill again.
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Result:

)
™

— N

1 -.B82 -1599,99999563 ]

1= L l::l :oqEHE sbE: P999,999998 :h3:
SEEH, HERBES 3

A list of tagged values for each of the decision variables—the solu-
tion—is returned to level 1. Note that small round-off errors will
show up in computed values. Choosing to fix the display to an ap-
propriate degree of precision for the solution you're determing (eg.
to two places for problems dealing with money) is usually a good
idea. Thus, the manager would invest $4000 in bond type 1, $8000
in bond type 2, and $8000 in bond type 3 in order to maximize the
return during the month in question.

The objects on levels 2 and 3 are there to help you evaluate the
quality of the solution, if you so choose, and can be dropped if you
do not so choose. The final tableau is returned to level 2. The list on
level 3 contains, in order, the indexes of the variables used in the so-
lution—the basis variables. Because there are three decision vari-

ables in this problem b,, b,, and b —the smallest three non-zero
indexes (1, and 3) refer to them: All three figure in the solution
in this case. Indexes higher than the number of decision variables
or zero reflect slack and artificial variables created in the process of
solving the problem and are not a part of the solution, even if they
end up in the basis list.*

Try another example....

*Slack variables are useful sometimes in sensitivity analysis—the process of determining how sensitive the
solution you computed is to small changes in the original constraints or objective function. However, this is
beyond the scope of this book.
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Example:
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A herd of livestock requires weekly at least 450 pounds of protein,
400 pounds of carbohydrates, and 1050 pounds of roughage. Abale
of hay has 10 pounds of protein, 10 pounds of carbohydrates, 60
pounds of roughage, and costs $3.80. A sack of oats has 15 pounds
of protein, 10 pounds of protein, 25 pounds of roughage, and costs
$5.00. A sack of pellets has 10 pounds of protein, 5 pounds of carbo-
hydrates, 55 pounds of roughage, and costs $3.50. A sack of sweet
feed has 25 pounds of protein, 20 pounds of carbohydrate, 35 pounds
of roughage, and costs $8.00. How would you adequately feed the
herd at minimum cost?

. Define the variables. The variables here are the amounts of each

food source: bales of hay (4), sacks of oats (0), sacks of pellets (p),
and sacks of sweet feed (s).

Find the objective function. The sum of costs of the food:
3.80h+5.000+3.50p +8.00s

Find the set of constraints. The set of constraints incorporate the
minimum weekly requirements for the three categories of nutrients:
protein, carbohydrates, and roughage:

10h+150+10p + 255 > 450
107 +100+5p +20s > 400
60h +250 + 55p + 355 21050

Enter the LP problem into the L INFEl: and compute the solution, if

one exists. Begin L IMFFL by typing ()] D(1 N]P(RJG) or
pressing (then or (§JPREV) as needed) [HIZI.

Enter the objective function in the DEJECTIYE field, including the
right-hand constant (0 here): 3.804+5.000+3.50p +8.00s =0
Press (]3] - J8)X[aJa [HHEX[¢lalo)HE s X (@)&)(F)
HEX(Ials)al=)0)ENTER.

Enter the set of constraints (alist): (&){ ' 1) o X[ aJa) H)H)(1)(5E)
MOEX(eHHE X Ja]oHEIX)(alP)H(2]0)
XeJa)s)e]=I3)@ o) o)) Je o)X eIaIHH R B X(W&)
OHEEXJalPIHEE X Tals I3]0 5 Jo)ENTER).
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7. Enter the list of variables, in the same order as they are in the con-

straints and in the objective function: (&]{}
SPA(Ja)P)(SPO)(JaSS) ENTER)

8. Since you wish to minimize the objective function, type " [1IH"

into the final field: ()""[o] oM 1[N)(ENTER).

9. Press B[4l to compute the solution. After a bit, you will see a
message box: o lut iom foumd. Press again.

Result (to one decimal place):
= { 1.8 4.8 Y.B8 1}

2 [[ -1.8 -1.5 -A.5 8.4 28.8 ]
[ 1.8 1.8 A.2 -B8.2 18.8 ]
[ -5H.8 -118.8 -Z23.8 17.6 S86.8 ]
[ -H.8 -1.2 -A.3 -A.1 156.68 1]
[ A.8 B.8 -1.8 -1.8 A.8 1]
1 £ th: PA.8 :cf B.B p: B.B :s: 16.8 3

Thus, the minimum cost solution is to buy 20 bales of hay and 10
sacks of sweet feed weekly. (Note, however, that the herd will be
eating 500 surplus pounds of roughage a week with this solution—
so be prepared for the consequences!)

Try one more example....
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Example:
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Find positive values for the variables x, y, and z that satisfy

x+2y+z<16
4x+y+3z<30
x+4y+5z<40

and for which the least of the three values, x, y and z, is as large as
possible.

This kind of problem, called a MaxMin problem, requires a small
trick—adding a variable some inequalities to the problem. Note that
the minimum of the variables x, y, and z is the largest value of the ob-
jective value, f, for which f<x, f<y, and f< z. Thus, you must rewrite
the set of constraints to include f as a variable and the three new
constraints involving f (see step 3 below).

. Define the variables. The variables here are x, y, z, and f.

Find the objective function. The objective function is simply f.

Find the set of constraints. The set of constraints, after making the
MaxMin additions is:

xX+2y+z <16
4x+y+3z <30
x+4y+5z <40
-X +f<0
-y +f<0
-z+f<0

Enter the LP problem into the L INPE and compute the solution, if

one exists. Begin L INFEl by typing (@)« D1 JN)PJR)G)([ENTER) or
pressing (then or ()PREV) as needed) Rl 1l

. Enter the objective function in the DEJECTIYE field, including all

variables and the right-hand constant (O here): Ox+0y+0z+ f =0

Press () o[ X[eJa X H o)X« e[V )HOX (@G DB (ElF)
(&)=)(0)(ENTER).
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6. Enter the set of constraints as a list: (]{})(" JeJa X[+ (2]X)(e)a)
MHHDal3)0 s 4x) e XHEaHEIX)
(Jalz)eal3)(EB9P) HEX aV)HEX) (]
EAOEEB00EZAOENGOEEEERBO0W
Za0EIN6OEEEOE8N0BAOEREGOEE

(oJ&a)3)(0)(ENTER)
7. Enterthelistofvariables: (G]{ })(eJ X)SPC)(eJq)Y)SPC)(e]a])Z)
(2] ] F)ENTER)

8. Since you wish to maximize the objective function, leave " FMH#
in the final field and press [i!] 88 to compute the solution. After a
bit, you will see a message box: ‘=21t iom found. Now
press [ 11488 once again.

Result (to three decimal places):

= L P O 1 e 1 R O 7 T 1 O 1

2: [[ B.125 B.375 -6.598 B.125 3.758 ]
[ B.125 -8.625 B.588 8.125 3.758 ]
[ 2.758 1.758 -4.808 -1.259 2.598 ]
[ B.125 B.375 6.598 B.125 3.750 ]
[ 1.59 -6.508 -1.608 -A.508 1.968 ]
[ -8.575 8.375 B.580 8,125 3.798 ]
[ -A.125 -8.375 -6.508 -8.125 -3.758 ]
[ -1.88% -1.589 A.608 §.B6R .69 1]
15 { s 37590 ur 3,750 :zi 3,790
f: 3,750 )

It isn't unusual for a solution to a MaxMin problem to yield results
in which the solution variable values are identical to one another.
The value 3.75 represents the largest possible minimum value for x,
y, and z such that the inequalities are satisfied.

Generally, MaxMin formulations are useful when you want to be sure that every
decision variable have as large a value as possible, and that the smallest of the
valuesis as large as possible. Their counterpart, MinMax formulations, are useful
when you wish to be sure that every decision variable have as small a value as pos-
sible, and that the largest of the values is as small as possible.
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Introduction to Vectors

Analytic geometry is a marriage of algebra and geometry. Geometric concepts
such as points, lines, planes, circles and angles are given algebraic descriptions
and can thus be analyzed without necessarily portraying them graphically.

Central to this description method is the vector. In geometric terms, a vector is
adirected line segment. Sinceitisasegment, ithas a finite length or magnitude—
also called its absolute value. And the direction of a vector is denoted by its two
endpoints, the initial endpoint first and the terminal endpoint second. For exam-
ple, the vector from point A to point B might be referred to as AB (whereas the
vector from point B to point A is denoted as ﬁA). Or, if you assume implicitly that
the initial point is always the origin (0,0,0), then vectors are especially useful to
describe points: Every point can be described as a vector of its coordinates.

To illustrate this, use point (-3,7,2). There is a directed line segment—a vector—
connecting it to the origin (0,0,0). Its coordinates form a set of instructions about
how to get to it starting from the origin: “Move three units in the negative direc-
tion along the x-axis, then seven units in the positive direction of the y-axis and
parallel toit, and finally two units in the positive direction of the z-axis and parallel
toit.” The coordinates provide a more algebraic (and analytic) description of the
direction of the vector than does the geometric description, AB. Thus, you can
describe the point as a vector: [-37 2 ].

The notation used for vectors is not accidental. They behave algebraically like
matrices with one of its dimensions equal to one, so square brackets are used—
just as with matrices. Indeed, it is the fact that vectors can make use of the
powerful analytic capabilities of matrices that renders them so central to analytic
geometry. Algebraically, a matrix is nothing more than a vector of vectors, and
each row or each column of a matrix is itself a vector. Accordingly, the HP48 uses
the same delimiters for both matrices and vectors (together called arrays).

Also, note that any vector in three-dimensional space can be treated as the sum
of three basis vectors, each running from the origin along one of the coordinate
axes. The length of each basis vector is a component of the vector, shown in the
vector notation explicitly: The vector [ 49 -1 ], for example, has an x-component
of 4, a y-component of 9 and a z-component of —1.
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Vector Operations

The basic vector operations—addition, subtraction, and scalar multiplication—
work just like their equivalent matrix operations....

Example: Add the two vectors [49-1]and[3-12].

1. Enter the two vectors onto the stack: (&1 3)(4)(SPc)(9)(sPC)(1)(+/-)
(ENTER) (&)1 1)(3)(SPO)(1)(+/-)(SPC)(2) (ENTER).
2. Add: (+). Result: [ ¢ 8 1 ]

Example: Subtract the vector [ 3 -1 2 ] from the vector [4 9 -1 ].

1. Enter the vector [ 4 9 -1 ]: (&)L 1)(4)(SPC)(9])(SPC)(1)(+/=)(ENTER).
2. Enter the vector [ 3 -12 ]: (&)L 1)(3)(SPC)(1])(+/=)(SPC)(2)(ENTER).
3. Subtract: (=) Result: [ 1 1H -3 1]

Example: Multiply the vector [ 4 9 -1 ] by the scalar 5.3.
1. Enter the vector [4 9 -1 ]: (&)L 1)(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).
2. Type in 5.3 and multiply: (5] ]3])(X).

Result: [ 21.2 4¢7.7 -0.:

]

“Multiplying” two vectors is not analogous to arithmetic. There are actually two
kinds of vector products. The dot product of two vectors is defined when the two
vectors have the same number of elements, n. Given two vectorsr=[r, rr, ]
ands=| 5, S, S, ], the dot product, r - s, is defined as r s _+ rS,FTS, The HP 48
has a built-in command to compute the dot product.

Example: Find the dot productof [49-1]and[5-32].
1. Enter the first vector: (&) 1)(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).
2. Enter the second vector: (&5]11)(5)(SPC)(3)(+/=)(SPC)(2)(ENTER).
3. Compute the dot product: (MTH)MIMIETHH Result: -5
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Note how similar the dot product is to what you do when computing a single
element in matrix multiplication: the first vector is treated as a “row,” the second
as a “column”—and the result is a single number.

By contrast, the cross product of two vectors is a third vector—one perpendicular
to both of the other vectors (assuming all three vectors originate at the same point:
Given two vectors, r=[rx r, rz] and s=[s_ S, sz], their cross product, r X s, is the
vector [ rs,—rs, TrS.-TSs. IS -—IS ].

Example: Find the cross productof [49-1]and[5-32].

1. Enter the first vector: (&q])I 1)(4)(SPC)(9)(SPC)(1)+/=)(ENTER).

2. Enter the second vector: SPC)(3)+/-)(SPC)(2)(ENTER).
3. Compute the cross product: [8i{1k3q.

Result: [ 15 -13 -5¢ 1

Like matrix multiplication, the order in which you perform the cross product is
important. Look at this diagram:

r z

The point is this: When taking the cross product r X s, you will get the z_ vector;
when taking the other cross product, s X r, you will get the z_ vector.

Example: Find the cross productof [ 5-32]with[49-1].
1. Enter the first vector: (&)1 1)(5)(SPC)(3]+/=)(SPC)(2)(ENTER).
2. Enter the second vector: (&)1 1)(4)(SPC)(9)(sPC)(1]+/=)(ENTER).
3. Compute the cross product: [E1EH.
Result: [ -15 13 oF ]

Note that the result is the negative of the previous result.
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Finding Angle and Magnitude of Vectors

A vector has both magnitude (length) and direction. It should therefore be pos-
sible to find these parameters easily for a vector entered in standard form.

Example: Find the length of the vector [4 9 -1 ].

1. Enter the vector onto the stack: (5] 1]4)(SPC)(9)(SPC)(1)]+/=)[ENTER).
2. Find its length: (MTH) TSI BT, Result: 9. 59949493661

Finding the “direction” of a vector is more complicated. To determine an angle
or direction, you must first decide the reference direction against which you are
measuring the angle. For a vector in three dimensions, you use the three coord-
inate axes as your three reference directions; the vector forms a different angle
with respect to each axis. The three direction angles for a vector can be computed
from the vectors com-ponents and its length:

-1 Yy a Yy aV
=cos =+ 0 =cos” =+ 0 =cos™ =%
’ VI ’ V] ’ VI

where v , vy, and v, are the vector components of the vector V.

Example: Find the direction angles of the vector [4 9 -1 ].

1. Assuming that you’re in Degree mode (press ((]RAD), if necessary)
and that the result of the previous example is still sitting on level 1,

make two copies of the vector’s magnitude: (ENTER)(ENTER).
2. Compute the x-direction angle: (4)(ENTER[SWAP)(/])(&)ACOS).
Result: BE, 16/ HHIZE]
3. Rotate another copy of the magnitude into level 1 and compute the
y-direction angle: (€)STACK) BATLEl(3)ENTER)(SWAP)(/)(&)(ACOS)
Result: &%, 613597653,
4. Repeat step 3 using the z-component: [Tl (1)+/=)ENTER)SWAP)
(/)&)[BCcos). Result: 35, PHFEILIETD
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The computation of the direction angles for a vector can be easily automated with
a short program, which is what Y[IIF. does (see page 317 for listing).

Example: UseYDIF to find the direction angles for the vector [-53 2 ].
1. Put the vector onto the stack: (&9]1 1)(5)(+/=)(SPC)(3)(SPC)(2)(ENTER).
2. ExecuteWDIE: (o) V]D) T R)ENTER) or(VAR)(then(NXT)or (€5 ]PREV)

as needed) [T
Result: © 144, ZB424HB55 6H. 5734319297
F1.BHER17PEE19E I (in Deg mode).
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Overview of Analytical Geometry Examples

This part of this chapter organizes topics and examples in analytical geometry
according to the information you have. For instance, the section titled “Given:
Two Points” shows examples of computations you (and your HP48) can perform
if you already know the coordinates of two points. And so on. The examples in
this part are organized as follows:

Given: Two Points

Find the distance between them.
Find the equation of the line they determine.
Find the midpoint of the line segment they determine.

Find the coordinate of the point on that line segment that divides it into a
given ratio.

Find the equation of the perpendicular bisector of that line segment.

Given: Three Points

Determine if they are collinear.
Find the equations of the lines they determine.
Find the equation of the plane they determine.

Find the equation of the perpendicular containing one point to the line
containing the other two points.

Find the distance of one point from the line containing the other two points.
Find the area of the triangle they determine.

Find the coordinates of the centroid of the triangle they determine.

Given: A Line or Point-and-Slope
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Find the desired alternative equation (general, intercept, or parametric) for
a line.
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Given: A Point and a Line

Determine if the point is collinear with the line.

Find the equation of the line perpendicular through a point on the line.
Find the equation of the line perpendicular through a point not on the line.
Find equation of the line parallel through a point not on the line.

Find the distance from the point to the line.

Find the equation of the plane they determine.

Find the equation of the plane from a normal and a point in the plane.

Given: Two Lines

[ )

Determine if they are parallel, skew, concurrent, collinear, perpendicular.
Determine the point of intersection.

Find the distance between two parallel lines.

Find the angle formed by their intersection.

Find the plane they determine.

Find the plane from its traces (three lines).

Find the line perpendicular to plane they determine (cross product).

Given: A Point and a Plane

Find the distance of the point to the plane.
Find the equation of the plane from a parallel plane and a point in the plane.

Find the equation of the plane from a perpendicular plane and a point in the
plane.

Given: One or Two Planes

Find the equation of the line of intersection.
Find the angle between the planes.

Find the traces of a plane.
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Given: Two Points

Distance Between Points

The distance between two points, [x,y,z,]and [x, y, z, ], is given by the following

formula: d = \/(x2 —x1)2 +(y2 - )2 +(Zz _21)2 .

While you can compute the distance by using this formula, note that simply sub-
tracting the vector form of one point from another gives the vector connecting
them. Then you only need to find the length (absolute value) of this difference
vector to compute the distance between points.

Example: Find the distance between the two points, [ 24 -6 ] and [-1 -2 3 ].

1. Enter the second point (as a vector): (] 3)(1]+/-)(SPC)(2]+/=)(SPC)
ENTER).

2. Enter the first point likewise: ()1 1)(2)(SPC)(4)(SPC)(6]+/=)(ENTER).

3. Compute the distance between the points: (=)MTH)F} 350 T8,
Result: 11.22497E16H3
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Midpoints

The coordinates of the midpoint are simply the “average” of the two points. In
vector terms, this means you must add the points together and divide by two.

Example: Find the midpoint of the line segment between the points [ 2 4 -6 ]

and[-1-23].
1. Enter the second point (as a vector): ()1 3)(1]+/=)(sPC)(2]+/=)(SPC)
(ENTER).

2. Enter the first point likewise: ()T 1)(2)(SPC)(4)(SPC)(6])+/=)(ENTER).
3. Compute the midpoint: (+)(2)=). Result: [ .2 1 -1.5 1]

The coordinates of a point P, which divides a segment into a given ratio m.n can
be individually computed as follows:

X3 3

nx, +mx, ny, + my, nz, + mz,
= < == ‘< Z,=—=
m+n m+n > m+n

This is akind of weighted average of the coordinates of the endpoints. Of course,
using vectors, you can compute all of the coordinates simultaneously, as the next
example demonstrates.

Example: Find the coordinates of the point on the line segment between the
points[24-6]and[-1-2 3] thatdivides the segment into a 3:2 ratio.

1. Enter the first point: (&) 1)(2)(SPC)(4)(SPC)(6)+/—)(ENTER).

2. Multiply it by the fractional weighting for the first point, n/(m+n):
EIENTERE) (=X

3. Enter the second point: (&)t 1)(1]+/-)(SPC)(2)+/=)(SPC)(3)(ENTER).

4. Multiply that by the fractional weighting for the second point, m/
(m+n): B)ENTER)(B)(=)(X)

5. Add the two weighted vectors to find the coordinates of the desired
point: (+). Result: [ .¥ .4 -.&6 1]
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Lines

You may also find the equations of particular lines associated with the two points:

* Theline containing both points. (Note that there are several different forms
of equations for a line. See pages 193-195 for examples of converting be-
tween different forms.)

* The perpendicular bisector of the line segment linking the two points.

The next few examples illustrate each of these computations.

Example: Find the equation of the line in the xy-plane containing the points
[24]and[-13].

1. Enter the first point: (&][3)(2)(SPC)(4)(ENTER).
2. Enter the second point: (&)1 1)(1)+/=)(SPC)(3)(ENTER).

3. Compute the slope of the line: (&)STAcK) NI (=) Pre) INEH
([WER («)SWAP)(=). Result: . 3333323333333 (or 1/3).

4. Compute the y-intercept of the line: 1]l (&) (SWAP) (&)
(sTACK) BEITHE (X)(+/9)(+). Result: 3.3233323332332323 (or 10/3).

Thus the equation of the line is y = %x + &

3

Of course, the procedure in the previous example can be easily automated. The
program, F'2+L, listed on page 297, takes the two points in vector form from the
stack and returns the slope-intercept form of the equation for the line.

Example: Repeat the previous example using the FE+L program.
1. Enter the first point: (&4)13)(2)(SPC)(4)(ENTER).
2. Enter the second point: (&)L 1)(1]+/=)(SPC)(3)(ENTER).

3. Execute FE*L: (o]a]P)2]=)=)L) (ENTER) or (VAR) (then or
(&JPREV) as needed) GEIEAMl. Result: '4=1-3#u+]1H-3"
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Sofar, all the lines you have seen have been limited to the xy-plane; the points used
to determine them have had just two coordinates (i.e. the z-coordinate was zero).
But lines exist in three-dimensional space. How do you express their equations?

The best method is parametric description—describing in three short equations
how each of the three components change with an independent parameter. For
example, the following set of equations describes a line in space, parametrically:

x=t+2, y=2t-3, z=2t+4
You can tell that this set of equations represen's a line because all three are linear
in the parameter, +—i.e. each coordinate changes in a straight line as ¢ changes.
You can find the parametric form for the equation of a line in space from two
points, [ x, y, z, ] and [ x, y, z, ], as follows:
1. Find the vector [ A B C] of the line segment connecting the two points.

2. Create the parametric equations x=Ar+x,, y=Bt+y, z=Ct+z

Example: Find the set of parametric equations for the line determined by the
points [24-6]and[-1-23].

1. Enter the first point onto the stack and make an extra copy: (&)L ])
(2)(sPc)(4)(sPC)(6 J+/=)(ENTERJENTER).

2. Enter the second point: (]I J)(1]+/=)(SPC)(2)+/-)(SPC)(3)(ENTER).

3. Find the vector connecting the points: (=). Result: [ 2 & -3 ]

4. Create the parametric equations. You can either assemble equations
manually, using the first point and the computed vector; or you can
use the program FLI*F (see page 291), which takes a point (in vector
form) from level 2 and a vector representing the line from level 1 and
assembles the proper parametric equations for the line:
(=)=)(P)[ENTER) or (VAR) (then (NXT) or (5)PREV) as needed) [ e mll.

Result: { 'w=2#t+2' 'uehrt+d! 'z=—(3xt)-6' )
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Another line that is determined by two points is the perpendicular bisector of the
line segment that joins the two points. Because it is perpendicular, it will have a
slope that is the negative reciprocal of the slope of the line segment. Because it
is the bisector, it contains the midpoint of the line segment. Thus, if the slope of
the line segment is m and the coordinates of the midpoint is [ a b ], then the

equation of the perpendicular bisector is y = E (ﬁ + b).
m \m

Example: Find the perpendicular bisector for the segment whose endpoints are
[24]and[-13].

1. Enter the first point: (&) 1)(2)(SPC)(4)(ENTER).

2. Enter the second point: (&) 3)(1)+/=)(SPC)(3)(ENTER).
3. Make copies of these points and find the slope of the perpendicular

bisector: (5JSTACK)NxT) T (SwAP—)(PRG) M ER M NTES («)
(SWAP)(H/x)(+/5). Result: =3

4. Compute the coordinates of the midpoint: (SWAP)(¢)STACK)
HE@)®. Result: [ .5 2.5 1

5. Now find the y-intercept of the perpendicular bisector: LIZT
I («)(SWAP) () STACK) BT Ll ()

Result: o

Thus the equation of the perpendicular bisector is y = -3x + 5.

The short program, FZ+FE (see listing on page 297), automates the process of
determining the equation of the perpendicular bisector....

Example: Repeat the previous example using the F£+FB program.

1. Enter the first point: (][ ]) ENTER).
2. Enter the second point: (&)t 1)(1]+/=)(SPC)(3)(ENTER).

3. Execute FZ+FE: (o)«]P)2)=)=)P)IB)[ENTER) or (then or
as needed) [FEEAl. Result: 'y=—(3#u]1+3'
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Finally, here’s how you compute the perpendicular bisector for a line in space.

Example: Find the perpendicular bisector of the line segment connecting the
points [24-6]and[-1-23].

1. Enter the two points: (] 1)(2)(sPC)(4)(sPC)(6]+/=)ENTER)(JL (1)
(+/5)(sPC)(2]+/=)(SPC)(3)(ENTER).

2. Make copies of the two points, compute the vector connecting them,
and find its negative: (&[STACK)(NxT) () (+/)

Result: [ -3 -6 9 1]

This is the direction vector for the perpendicular bisector.

3. Find the coordinates of the midpoint: (SWAPNXT)EILEl(H)(2)=).
Result: [ .2 1 -1.% 1
This is a point on the perpendicular bisector.

4. Assemble the set of parametric equations representing the perpen-
dicular bisector: (SWAP) mm

Result: + =1 3%t '+1 E "y=—i bt )+]"

| Q- __l_"-l a,
== .._H'.'. P L 4

Remember, too, that you can always use this approach to find the parametric equa-
tions for points in the xy-plane, simply by including a zero as the z-component.
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Given: Three Points

Whenever you have three distinct points, you need to know whether they are
collinear (i.e. all contained in a single line). If they are noncollinear, then they
determine a plane, a triangle, and three distinct intersecting lines. If they are col-
linear, the three points determine only a single line.

Example: Determine if the points[42-6],[5-321],[-12 3] are collinear.

1. Calculate vectors representing the line segments between any two

pairs of points: (&)1 1)(4)(SPC .[SPCJ@H— ENTER) ()L 1)(5)(SPC)
BEAEPIRD( -1 3 -8 1); and (SITI(@)SPI(2)(SPO)(E)
FAENTER Q0EFAEPIREPIEEE 5 B -9 D).

2. Make copies of those vectors: (€9)STACK)(NXT) MU=

3. Next, multiply theirmagnitudes: (MTH ) 18 §;
. Result: 3¢, 67E9EI5/6H

4. Compare that to the absolute value of their dot product:
ROLLO(@MEN] [OT | HES BESEET

The two results differ, so the three points are noncollinear.

The program COLINT (see page 278) makes it easier to test for collinearity (and
is useful in other programs). It tests whether a point (in vector form) on level 1
is collinear with the vector on level 2. If so, it returns a 1; if not, it returns a H.

Example: Repeat the previous example, using CULTMT.

1. Enter the first two points as a line (in array form):
(sPc)(2)(sPC)(6]+/=)(ENTER)(Y)(5)(SPC)(3]+/=)(SPC)(2)[ENTER[ENTER).

2. Enter the third point: (&) 1)(1]+/=)(SPC)(2)(SPC)(3)(ENTER.

3. Execute the COLINT test: (o)) clo) D)1 N)<9)«)([ENTER) or
(then or ()PREV) as needed) [ [§] ..

Result: H Noncollinear
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Lines and Planes

If three points are noncollinear, they determine three lines. You may find these
three lines easily by using the P&+ program for each combination of points.

Example: Find the equations of the three lines determined by the noncollinear
points [46],[-21]and[5-2].

1. Enter the firsttwo points and execute FE+L: ()1 14)SPC)(6)[ENTER)
(S (2)+/5)(SPC)(D) (ENTER) (VAR) EETH.
Result: 'y=0-B#u+8-3!
2. Enter the second and third points and execute F£+L: (S)(1)(2)+/~)
(JENTER[GJLT)(5)(SPC) (2] +/-) [ENTER) (VAR) Ec Bl
Result: '4=-[3<7#ul+]"
3. Enter the first and third points and execute F£+L: &)1 7(4)(SPC)(6)
(ENTERIEJT 3)(5)(SPC)(2)+/=) (ENTER)(VAR) La=icd B

Result: 'y=—(B%w)+35"

Of course, three noncollinear points also determine a unique plane. The general
form of the equation for a plane is Ax+ By + Cz+ D =0.

It turns out that the coefficients A, B, and C determine the “orientation’ of the
plane and are equal to components of the vector perpendicular (or normal ) to the
plane. The D coefficient identifies the particular plane (from the infinitely large
set of parallel planes with the given orientation) determined by the three points.

Thus, to compute the equation of the plane, you must find a line perpendicular to
at least two of the lines determined by the points. This is easily accomplished by
finding the cross product of two of the vectors representing the line segments de-
termined by the points. Once you have the orientation of the plane, you need only
to substitute the coordinates of any one of the points to determine the D coef-
ficient. This substitution is efficient accomplished using the dot product of the
normal vector and the point. The next example illustrates the full procedure....
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Example:

Find the equation of the plane determined by the three noncollinear
points, [42-6],[5-32],[-123].

. Enter the first two points and compute the vector of the line segment

connecting them: (&)1 1)(4)(SPC)(2)(SPC)(6)+/=)(ENTER) ()1 I)(5)
(SPC)(3]+/=)(SPC)(2)(ENTER)(—).

Enter the first and third points and compute the vector of the line seg-

ment connecting them: (]I 1)(4)(SPC)(2)(sPC)(6]+/-)[ENTER)EJL )
(1J+/9)(sPC)(2)(SPC)(3) (ENTER)(=).

. Compute the cross product of the two line segment vectors:

NISTAMTER. Result: [ 43 -43 25 1]

The components of this normal vector are the coefficients A, B, and
C respectively in the equation for the plane.

Enter the first point again and compute the negative of the dot pro-
duct of the normal vector and the first point (you should get the same
result using any of the points): (][ 1)(4)(SPC)(2)(SPC)(6 [+/=)[ENTER
(#/5). Result: 1¥2. This is the coefficient D in the equation
of the plane, so the equation is -45x — 49y — 25z + 128 = 0.

A related task is to find the equation of the line containing one of the points that
is perpendicular to the line determined by the remaining two points.

Example:
1
2
3.
4.
188

Find the equation of a line containing the point [ 4 6 ] perpendicular
to the line determined by the points [-1 5]and [ 3-5].

. Enter the two points of the line: (9] J)(1]+/=)(SPC)(5)(ENTER) ()L J)

(3)SPS)(5)J*/=)(ENTER).

. Find the slope of the perpendicular: (SWAP)(—)(PRG)EH kR gl | :AE3

®®EA). Result: .4 (or 2/5)

Enter the point on the perpendicular: (&)1 1[4])(SPC)(6](ENTER).
Find the perpendicular’s y-intercept: [1[:lc8 («)(SWAP)(&JSTACK)

BIEE8l <) +/2)(®). Result: 4. 3. Thus the equation of the perpen-

dicular through[4 6 ]is y = %x + —2-52—
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The distance between point [ r s ] and line Ax + By + C=0, is d =

Example:

|Ar + Bs + C|

Find the distance from the point [ 4 6 ] to the line determined by the
points [-1 5]and [3-5].

. Enter the two points of the line: (<]t 1)(1)+/=)(SPC)(5)ENTER) ()1 ])

(3)(sPC)(5)+/=)(ENTER).
Find the general equation of the line. The quickest method uses the
programs FZ+L and [ +EM (see page 284): (VAR) [Elea ol LT .
Result: 3 [ .'__'. a-1 B9 ]
1= .
e

13 '5/2-5 2sy-g=A'

Drop the symbolic form of the line, make an extra copy and remove

the last element from the vector: (@ENTERMTH) IRLii:4 B0 (3)

Appendal as the third element of the vector of the distant point and

enter the result ([ 4 6 1]): (&)13)(4)(SPC)(6) SPC][ENTER]
Now compute the dlstance mm

The short program [l (see page 280) takes a point in vector form on level 2
and an array on level 1. The array is a matrix containing the two points that deter-
mine a line. The program returns the distance from the point to the line.

Example:

1.
2.

Repeat the previous example using the [t ol program.

Enter the distant point ([ 4 6 ]): (&)L 1)(4)(SPC)(6)(ENTER).
Enter a matrix with the points representing a line: ([MATRIX]
(+/=)(ENTER)(5 ) (ENTER)(Y)(3)(ENTER)(5 [ +/-) ENTER}[ENTER]

Execute [t.ol.: (2])DJa T 0D ENTER) or (VAR) (then (NXT) or
as needed) [ HTH.

Result: 5. H127 7413

H '

I:I_l
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Triangles

The other geometric form defined by three points is the triangle. These examples
show how to find the perimeter, area, median length and centroid of the triangle.

Example: Find the perimeter of the triangle formed by the three points [ 4 6 ],
[-15],and[3-5].

1. Enter the first two points and find the length of the segment con-

necting them: (&)L )(4)(SPC)(6)ENTER)(& )T )1 )+/)(SPC)(5)(ENTER)
@[ vECTE] RES |

2. Enter the firstand third points and find the length of the segment con-

necting them: (4] J(4)(SPC)(6)ENTER)(&)T I(3)(SPS)(5[+/)ENTER)
&) AE= |

3. Enter the second and third points and find the length of the segment

connecting them: (1)+/-)(sPC] (5) (ENTER) (o)L 1)
SEER

4. Compute the perimeter: (+)4). Result: £6.9147' 181451

The area of a triangle determined by three points can be found by using the length
of cross product of two of the vectors determined by the three points. If r, s, and
t are the three vectors, then the area of the triangle is given by

Area=l|r><s|=l|r><t|=l|sxt|
2 2 2

Note that the direction (or sign) of the cross product doesn’t matter for computing
the area of the determined triangle because you are only interested its length.

Example: Find the area of this triangle: [46-2],[-153],[3-511].

1. Compute a vector formed by the first and second points:
(SPC)(6)(sPC)(2)+/=)([ENTER) (&) 11 J+/=)(SPC)(5)(SPC)(3)(ENTER[—).

2. Compute a vector formed by the first and third points: (] 1)(4)(SPC)
(8)(SPC)(2)+/=)(ENTER)(E)L 1] 3)(SPC) (5 ) (+/=JSPC)(1 JENTER)(=).

3. Computethearea: [T EMTM(2)~). Result: 37, 8153460564
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A median of a triangle is a line segment connecting a vertex with the midpoint of
the opposite side.

Example: Find the length of the median of a triangle from the vertex [ 4 6 ] to
the midpoint of the segment with endpoints [ -1 5]and [3-5].

1. Find the midpoint of the side opposite the vertex [ 4 6 ]: ()L 1)(1)
(+/3)(sPA)(5)ENTER) ()T I (3)(SPO) (5 ]+ ENTER () (2) (=)

2. Enter the vertex endpoint of the median: (&)1 1)(4)(SPC)(6)(ENTER).
3. Compute the length of the median: (=)

Result: £, PHBZAI9325

The centroid of a triangle is the point where the three medians intersect. It divides
each median so that the distance from the centroid to the vertex is twice the dis-
tance from the centroid to the midpoint of the opposite side. The coordinates of
the centroid are the average of the coordinates of the three sides.

Example: Findthe coordinates of the centroid of the triangle determined by the
points[46],[-15],and[3-5].

1. Enter the points on the stack: (] 1)(4)(SPC)(6)[ENTER)(& )L I)(1 [+/-)
(SPC)(8)(ENTER) ()L I (3)(SPC) (5 J+/-) (ENTER).

2. Compute the coordinates of the centroid: (+)]+)(3)(=).
Result: [ & & ]
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Given: A Line or Point-and-Slope

As you know, with two points, you may determine the equation of the line that
contains them. But you can also find the equation of the line if you know just a
single point on the line and line’s slope: Given the point [ s ] in the xy-plane and
a slope m, the equation of the line (in slope-intercept form) is y = mx + (s — mr).

Example: Find the equation of a line of slope 4, containing the point [ 3 -8 ].

1. Compute the y-intercept, s — mr: (8)+/=)(ENTER])(4]ENTER)(3])(X)(=).

Result: —ZH. So the equation in slope-intercept form is y = 4x — 20.

For lines in space, the concept of “slope” becomes “direction vector.” Thus, to
find the equation of a line in space, you need to know only a point on the line and
its direction vector. The program PLI#F (see page 291) does exactly this—takes
a point (in vector form) from level 2 and a direction vector from level 1 and com-
putes the set of parametric equations describing the line determined.

Example: Find the equation of a line in space containing the point [ 3 -8 2 ]
whose direction vectoris [ 2 -1 -2 ].

1. Enter the point: (] 3)(3)(SPC)(8)+/=)(SPC)(2)(ENTER).
2. Then the direction vector: (]I 1)(2)(SPC)(1]+/=)(SPC)(2]+/=)([ENTER).
3. Execute P[I+F: PD*P A

Result: © 'w=g#t+3' 'y=—t-8' 'z=-(Zxt )42 3
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There are five important forms of linear equations. Two of them apply only to
lines in the xy-plane; three apply to any line, including lines in space:

Slope-Intercept form (also known as direction form): y=mx + b, where
m is the slope and b is the y-intercept. This form only applies to lines in
the xy-plane (there is no z-component).

Generalform: Ax + By + C = 0 where, if C=-AB, thenAis the y-intercept
and B is the x-intercept. This form only applies to lines in the xy-plane
(there is no z-component).

Position-Direction form: [ x,y,z,1, [ abc]where [ x,y, z,]is the position
vector representing a point on the line and [ a b ¢ ] is a direction vector for
the line. This form is a vector version of the slope-intercept form and can
apply to any line.

Parametric form: x=pt+x;, y=qt+Yy, z=rt+z, where[x,y,z,]is
a point on the line and [ p g r ] is a direction vector for the line. This form
applies to all lines. For lines in the xy-plane, the third equation reduces to
z=0. Note that [ x+p y +q z,+r]is a second point on the line.

x K4
Array form: [ A } where [ x,y, z,]and [ x,y,z, ] are points on the
X, Yo &

line. This form applies to all lines. For lines in the xy-plane, the array only
has two columns (there is no z-column). The array form can be generalized
to represent any arbitrary collection of points—very useful for performing
transformations (as you will see later in this chapter).

Depending on circumstances, one of these forms will be more convenient to find
than the others. However, you may find instances when you need to convert from
one form to another. Some small programs make these conversions easier:

Given

FHFE+T (see page 290) converts a set of parametric equations to an equation
in slope-intercept form (but only possible for lines in the xy-plane).

F+PD (see page 295) converts a set of parametric equations to a point (in
vector form) and a direction vector (position-direction form).

[5+H (see page 282) converts an equation in general form to an array.

[+:EM (see page 284) converts an equation in slope-intercept form to an
equation in general form.
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Example:

1.

Example:

3.

Convert these to slope-intercept form: x=3t-4, y=-2t+5

Enter the set of parametric equations as a list: (GJ{ (" JeJq[X)E)
HENEEDEERNENaEEEXEENEE
(ENTER). Note that the parameter must always be ¢ (lower-case), and
the other variables x and y.

Execute PHR=*1: (a]a)P)A)R)=)1)[ENTER)or (then(NXT)or (&)
PREV) as needed) [dilikall. Result: 'y=¢+3-F 3%’

Convert the line, 3x — 2y + 5 = 0, to a set of parametric equations.

. Enter the line (which is in general form): ('] 3]X] &) X)(=)(2]X)

(JaYHEI(=))ENTER)
Convert it to an array: (VAR)HEES:M. Result: [[ 1 4 ]

[ & 5.5 1]
Now disassemble the array into its two point vectors: MATR
BT HETT ™ ().

4. Make a copy of one of the points and compute the vector for the line:

5.

Example:

194

IsTACK NEEF =)

Convert the point and vector on the stack to a set of parametric equa-

tions: A0edall. Result: € ‘'w=t+]' 'u=3-Zxt4+4! G

Convert the following set of parametric equations to a line in array
form: x=3t-4,y=-2t+5,z=t+3.

. Enter the equations: ()" JeJa X)) =)EIX[alT)=)4))

(JaVaEEFIXEaDHER S ZaE )
ODHE)ENTER).

Convert it to a point and a direction vector: P*Ph §

3. Make a copy of the point and add it to the vector to form a second

point: (CISTACK A

Now assemble the two points into a matrix: (2)MTH [ELIL R E
ROk >} Result: [[ -4 5 3

[—153}11
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Example:

Example:

2.

Convert the following set of parametric equations to the general
form: x=-5t+2,y=3t+1.

. Enter the parametric equations: (){J)("' JeJaIX)E)=)E+=-)X)

JaDHEMNOJaYEEEX e DEHENTER).
Convert to the slope-intercept form: (VAR] m

Result: 'g=11-0-2<0%u!
Convert to the general form: .

Result: £: [ -.GB —1 2. ]
1+ '11-5-35%w-y=H'

4 3

Convert the array
1 -2

} to a line in general form.

. Enter the array: (©JMATRIX)(4)+/=)([ENTER)(3)(ENTER](V)(1)(ENTER)

(2]+/=)(ENTER](ENTER).

Now disassemble the array into its component points: HMATE
| KOW [+EOK )

3. Compute the slope-intercept form: Pl |

4.

Example:

1.

Convert the slope-intercept form to general form: FEdc]13.
Result: &: [ -1 -1 -1 1
1: '-w-y=H'

Convert the line, y = 4x -6, to array form.

Enter the line (in slope-intercept form): (' JoJq]Y)&)=)(4)(X)(@)
(X)) (JENTER).

Convert the line to general form: 451 (SWAP) (@),

Convert to an array: Bickail. Result: ([ 1 -2 1
[ & & 1]
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Given: A Point and a Line

The procedures for using a point and a line are very similar to those for using three
points. After all, once you find the line determined by two of the three points, the
conditions for the two situations are identical. However, there are some practical
differences that arise, depending on the form which the linear equation takes. The
examples below illustrate this.

Example:

Is the point [ 4 -1 ] collinear with the line -2x + y — 4 = 0?

1. Enter the equation of the line: (" )2]+/=)(X)(eJ) X)) (] Y)(=)

2. Next, convert that equation to a direction vector:

(“Ia)(=)()ENTER)

LA BT THE ™ (@O, Result: [ -1 -7 1

3. Enter the point: (& 3)(4)(SPC)(1)+/=)(ENTER).
4. Execute the test for collinearity, COLIM: COLIMY

Example:

Result: H. The point and line are noncollinear.

Find the equation of the plane (in general form) determined by the
point [ 4 -1 2] and the linex=3t-2,y=-2t+5,z=1¢-3.

. Enter the list of parametric equations: (&)U} o] X )=)(8)X)

WeDHREaYEEEFXUGDHER
CDEEGDEE)ENTER)

Find the direction vector for the line: P3P0 §

3. Compute the set of coefficients [A B C] for the equation of the plane:

196

GEeS| 0VEE [GMAmYECTR|CRO=E]
Result: [ -1 -7 -11 1

Enter the point and compute the D coefficient: (&)t 1)(4)(SPC)(1]+/-)
(#/5). Result: 14

Thus the equation for the plane is —x — 7y — 11z + 19 = 0.
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Example: Find the set of parametric equations of the perpendicular to the line
x=3t-2,y=-2t+5, z=1t- 3, that contains the point [ 4 -1 2 ].

1. Enter the list of parametric equations: (&)U [eJaIX)E)=)(3]X)
(D E ) ey &= A X e ®H E) )
(NeJa[Z&S) el (E)ENTER)

2. Convert to a point and direction vector for the line: P*PD §

3. Find the direction vector for the perpendicular: ()STACK) T
MIETARTES Result: [ -1 -7 -11 1]

4. Enter the point and find the set of parametric equations for the per-
pendicular: (G 1)(4)SPC)(1)+/=)(SPC)(2)ENTER)SWAP) VAR IHEd .

Result: 1 ‘'w=—t+4' 'y=—(f#t)-1" Tz=—-(11+t2+2" &

Two parallel lines, given in point-direction vector form, will have equal direction
vectors but different sets of points; the points of one of the lines are noncollinear
with the points of the other. If they were collinear, the two lines would then be
concurrent—essentially the same line. Itis relatively easy to find the equation of
a line parallel to a given line, through a given point not on that line.

Example: Find the equation of the line parallel to the line x =3¢ -2,y =-2¢ +
5, z =1t -3, that contains the point [ 4 -1 2 ].

1. Enter the list of parametric equations: (]} JeJq X)) =)(3]X)
(e @OEHE M) ey &= A X ([LalmH 60
(Tela[ZaSH e (E)ENTER)

2. Convert to point-direction vector form: P*PD B
3. Replace the point vector for the given line with the given point:

(SWAP) ()] 14])(SPC)(1)+/-)(SPC)(2) (ENTER)(SWAP) .

4. Compute the set of parametric equations for the parallel line:
[IETl. Result: © 'w=3#t+4' 'y=—(Zxt)-1" 'z=t+2"
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Finding the distance between a point in space and a line is a bit tricky, because it
would seem that you must compute the point of intersection between the given
line and the perpendicular containing the given point. However, recall that the
given point and any two points on the given line form a triangle.

The area of the triangle is A = %bh where b is the length of the base and 4 is the

length of the height. If you choose the base of the triangle to run along the given
line, then the height is the distance between the given point and the given line.
Thus, since you can use the cross product to find the area of a triangle in space,
and you can choose any base points and compute the distance between them, you
can find the height without computing any coordinates of intersection points.

Example: Find the distance from the point [ -5 2 1 ] to the line defined by
x=3t-2,y=-2t+5,z=1t-3.

1. Enter the list of parametric equations: ({3} JoJq)X)[=)(3)X)
YQ@DEHEEaa=EFXaDHERC )
C2@=aITEE)ENTER.

2. Convert to a point and direction vector for the line, then make an

extra copy of the direction vector: il ENTER).

3. Rotate the point into level 1, enter the given point (the one not on the
given line), and compute the vector between these two points:

18 (<)) (5)+/5)(sPS)(2)(SPC) (D) ENTER) (5.
Result: [ 3 3 —% 1
4. Find the area of the triangle: VECTE|CEDZE] AEE [BE)

5. Find the height of the triangle, and thus the distance from the given
point to the given line: CHEZ (G

[ Lyl g L]

Result: o, Br4E2 37200

198 6. ANALYTIC GEOMETRY



The program, [t oL, first discussed on page 189, can be used to automate the pro-
cedure of finding the distance between a point and a line. The following shows
how the previous example should be modified in order to use [t ol

Example:

1.
2.

Repeat the previous example using the program, [it.al.
Enter the point in space: (] 1)(5]+/-)(sPC)(2)(sPC)(1)(ENTER).

Enter the list of parametric equations: () (" JoJqIX)E) =)B)X)
EDHERMOJIaYEERAEXEaDHE M)
(JalZ&EaDEEENER)

3. Convert to a point and direction vector for the line: P>P0 §

Example:

Find the array for the line: &)JSTACK) T () (2)MTH) LalTHi3
| ROk [ROR ]

Find the distance from the point to the line with [It. cil_: OTOL

[ Lyl e L]

Result | I ll_"1'| :I_. ul) |_':|]. 1

Find the distance from the origin to the line -2x + y -4 = 0.

. Enter the point of the origin [ 0 0 ]: (&)L 1)(0)(SPC)(0](ENTER).

Enter the equation of the line: (" | 2)+/= X aJqX)(+)(«Ja)Y)=)(4)
G=)(Q)ENTER)

3. Convert the line to array form: (VAR)EcEd:ll

Execute [t ol : [EEHTH]. Result: 1. T'lzlEiE!'i‘JrJU.'_'
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Given: Two Lines

Two lines, if restricted to the xy-plane, are either concurrent (i.e. they are the same
line), parallel, or intersecting with respect to one another. If the two lines are not
restricted in space, they may also be skew with respect to one another—that is,
they neither intersect nor are parallel.

Before working with a pair of lines, it is important to establish their relationship
with one another. The program L IMZ™ (see page 288) takes equations of the two
lines, in array form, and returns an object indicating their relationship on level
2 and a test result on level 1: H if the lines don’t intersect and 1 if they do. If the
lines intersect, then the object returned on level 2 is a vector containing the coord-
inates of the point of intersection. If the lines do not intersect, then the object on
level 2 is a string indicating the relationship (parallel, skew, or concurrent).

Example: Determine the relationship of the following two lines, 4x -3y + 1 =
Oand -2x+5y+2=0.

1. Enter the first line and convert to an array: (' J4JX)(eJq[X)(=)(3)X)
(aMBHDEEEENTER (VAR HETE.

2. Enter the second line and convert to an array: ('] 2]+/=X]
«l=)) | G*A K

3. Execute L IME™: (o)) D1 NJ2)2)ENTER) or (VAR (then (NXT) or (&5)

as needed) [§l 1=
Result: & [ -.783714 -.7145886 ]
1: 1
The lines intersect at the point (— %, —%) (As you’ve seen earlier,

you can compute the fractions using the program H+Ll.)
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Example:

Determine the relationship of the following two lines, which are
given here parametrically: { x=3t+6,y=-2t-1,z=¢t-5} and
{x==t+3,y=3t-1,z=-4t+3 }.

. Enter the first set of parametric equations: (GJ{})(")(eJa)X)E)]=)

BROEUGO0EOENE0aANEEUEEH0
OEIZEEESDEEENTER.

Convert the set to array form: | 0VER (@38
MATE] EOM (RO

Enter the second set of parametric equations: ()} JoJqIX)E)
B PaDHEMHOPEVEEEXEaDE0M)
(NeagE@=EFEX(Ua D (B)ENTER).

Convert the set to array form: PP [GSRCY 0VEE (B8]
MATE] ROW [EO3

Execute LINZT: (vAR)MIFEES. Result: &:  "Skew"
1 H

If two lines are parallel, the distance between them is constant, so you can find the
distance by identifying a point on one of the lines and using the [t. oL program....

Example:

1.

2.

Find the distance between 4x — 8y + 3=0and 2x -4y -6 =0.

Enter the first line: (' J4)X)(Ja XD X (elalYH &L=
[ENTER).

Convert that to an array, then reduce it to one point on the line:

ST TR ETT T (@) («). Result: [ 1 875 1]

Enter the other line; convert to an array: (' J 2] X] &) X)(=)(4)(X)(@)

ENEEEEO)ENTER) (VAR METN. Result: [[ 1 -1 ]
[ 2 -.5 ]

Find the distance from the point to the line (also the distance between
the parallel lines): EUHITH. Result: 1.6/ 7HOHIEI1E
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The angle () formed by two intersecting lines can be computed from the defin-
ition of the dot product:

0=

Example:

202

i where A and B are direction vectors for the two lines.

Compute the angle (in degrees) between the two intersecting lines
4x +2y-1=0 and 5Sx-y+3=0.

. Set degree mode (if necessary) by pressing to turn off the

angle annunciator.

. Enter the first line and then find its direction vector: (']4)(X])(aJ&)

....‘B.mmmﬁﬂﬂ
EXI[M(«)(=. Result: [ -1 ¥

. Enter the second line and compute its direction vector: (']5)(X)(e)

E].E]-mmmmmﬂﬂﬂ}]
EXl[®l(«)=). Result: [ -1 -5

. Compute the angle between the two lines: €5)STACK  DUPZ|

(MTH)EH HT ROLLD
ETEEX)(=)e)Acos)

Result: 142, 125 (in degrees, to three decimal places)

Note that this procedure finds the angle between two vectors sharing
initial endpoints and there is only one angle between them, but it is
a stand-in for the angle between intersecting lines, which form two
angles. Thus the supplementary angle (=37.875°) is also formed by
the intersection of the two lines.
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Two lines that either intersect or are parallel determine a unique plane. The easiest
approach to finding the equation of the plane given two lines is to find three points
—two from one line and one from the other (but not the point of intersection)—
and use the procedure described on page 186 when given three non-collinear
points. (The following two examples assume that you already know that the two
lines either intersect or are parallel.)

Example:

Find the equation of the plane determined by the lines { x = 3¢ -2,
y=-2t+5,z=t-3}and { x=—t+14,y=4t-19,z=5t-19 }.

. Enter the first set of parametric equations: ()" [eJqX)E)=)

BXEOEHEFNOJaNEEEFEXEEDHER)
(TeJalz2)al=)alDEE)ENTER).

Find a position vector (point) for the line; make a copy: P3PD
(#)(ENTER).

Enter the other set of parametric equations; convert it to position-

direction form: (1Y JQ)X)a)=)FI(a)@DEHAD
(laMEEHEXLaMETMHIRDEEEX @
OO ENTER T

Compute the set of coefficients [ A B C] for the equation of the plane:
ROLLO[@IMEEVECTE |[CRO3)
Result: [ -5& -&4 4H ]

. Compute the D coefficient: HI'H#ll(+/-). Result: 323

Thus an equation for the plane is —-56x — 64y + 40z — 328 = 0. Note
that this can be reduced by dividing through by 8:

~Tx-8y +5z+41=0
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A plane has three traces. A trace is the line of intersection of the plane with one
of the three coordinate planes (the xy-plane, the yz-plane, and the xz-plane). The
following example illustrates how to compute the equation of the plane from its
three traces.

Example: Find the equation of the plane that has the following three traces:

xy-trace: 2x-3y+12=0
yz-trace: -3y—6z+12=0
xz-trace: 2x-6z+12=0

1. Write down the xy-trace.
2. Inspect the yz-trace and find the z-term.
3. Insert the z-term into the xy-trace:
Result: 2x-3y—-6z+12=0

The inverse process, finding the traces of a plane given the equation of the plane,
is almost as easy.

Example: Find the three traces of the plane 4x — Sy +z+1=0.
1. Write down the equation of the plane 4x — S5y +z+ 1 =0.

2. To find the xy-trace, eliminate the z-term (equivalent to letting z=0):

4x-5y+1=0
3. Tofind the yz-trace, eliminate the x-term (equivalent to letting x=0):
Sy+z+1=0

4. To find the xz-trace, eliminate the y-term (equivalent to letting y=0):
4x+z+1=0
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Given: Two Planes

The general equation of aplane isAx + By + Cz+ D =0, often expressed as a vector
of its coefficients, [A B C D ]. The vector represented by [ A B C ] is the normal
vector for the plane—the direction vector for a line perpendicular to the plane.
Thus, a unique plane is defined by a point in the plane and its normal vector.

Two planes are either parallel or concurrent if the normal vector of one plane is
a constant multiple of the normal vector of the other. If the ratio of the D coeffi-
cients is equal to this same constant multiple, the planes are concurrent; if the D-
ratio is different than the constant multiple, the planes are parallel.

If two planes are not parallel, they intersect in a line which has a direction vector
perpendicular to the normal vectors for the two planes. To determine the equation
of the line:

1. Determine a point on the line of intersection;

2. Find the cross product of the normal vectors;

3. Convert this to a set of parametric equations for a line.

Example: Find the line of intersection, if any, of these two planes:
4x-S5y+z-2=0andx+2y+2z=0

1. Find a point on the line of intersection. Assume that this point has a
z-coordinate of 0 and solve the two plane equations simultaneously
to find the x- and y-coordinates: Enter a vector of the negatives of
the two constant terms: (&) 1]2)(SPC)(0](ENTER). Enter a matrix of
the x- and y-coefficients: (—MATRIX)(4)[ENTER)(5)(+/=)(ENTER)(Y)(1)
(ENTER)(2)(ENTER)(ENTER). Solve the linear system, (+), then append a
H to the result as the z-coefficient you assumed: (0)(ENTER)(3)MTH)

G B THE T, Resule: [ . 38RS -.15385 B ]
2. Find the cross product of the normals: (&) 1)(4)(SPC)(5 J+/=)(SPC)(1)

m-.[spc (2)(sPC)(2)(ENTER)(MTH) ki et i1 [ iq 1 b=y
Result: [ -1& -7 13 1

3. Convert the point and vector to a set of parametric equations: (VAR)
Uil Result: © 'w=—01F#t 14413 'y=—07#t 1-E-13"
lo=]Jxt ! )
= aFT, Ki
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The following example uses the program FLE+L (see page 294), which first deter-
mines whether or not two planes (entered as vectors of coefficients) are parallel,
and if not, the set of parametric equations for the line of intersection.

Example: Repeat the previous example using FLE=L.

1. Enter the two planes in vector form: (]I 3)(4)(SPC)(5)+/-)(SPC)(1)
(SPC)(2)+/=)(ENTER}; ()1 3)(1)(SPC)(2)(SPC)(2)(SPC)(0)(ENTER).

2. Execute PLEZ+L: PLE*

Result: { 'w=—(12%4)+4-13' 'g=—(P#t)-2-13"

'z=13#t ' &

The angle formed by the intersection of two planes is easily determined by com-
puting the angle between their normal vectors:

AeB

AB|”

1

0 =cos” where A and B are normal vectors for the two planes.

Example: Find the angle (in degrees) between the two planes, x — 2y — 2z +3
=0and 6x+3y+2z-1=0.

1. Set degree mode (if necessary) by pressing to turn off the
angle annunciator.

2. Enter the normal vectors of the two planes: (&)1 1]1)
(SPC)(2]+/=)(ENTER); ()1 1] 6)(SPC)(3)(SPC)(2)(ENTER).

3. Compute the angle between the two lines: ()JSTACK)(NXT) =
NECTF: ROLLD
BT (< ()« Jacos). Result: 1HH, 931 (in degrees, to 3 places)

Note that this procedure finds the angle between two vectors sharing initial
endpoints and there is only one angle between them, but it is a stand-in for the
angle between intersecting planes, which form two angles. Thus the supplemen-
tary angle (=79.019°) is also formed by the intersection of the two planes.
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Given: A Point and a Plane

Your most common calculation when given a point and a plane is to determine the
distance between them, which is given by

|Aa + Bb+ Cc + D|

VA? + B> + C?
where A, B, C,and D are the coefficients of the plane in general form, and a, b, and
c are the components of the given point [ a b ¢ ]. If you let N be the normal vector

for the plane and P the position vector for the point, then the distance equa-tion
becomes

distance =

distance = w
IN|

Example: Calculate the distance between the point [ 4 -1 -3 ] and the plane
2x+3y-2z+6=0.

1. Enter the normal vector for the plane and make an extra copy:
(2)+/=)(sPC)(3)(SPC)(2]+/=)(ENTER|ENTER).

2. Enter the D-constant for the plane and swap it with the copy of the

normal vector: (6)
3. Enter the point: ()1 1)(4)(SPC)(1]+/-)(SPC)(3]+/=)(ENTER)

4. Now compute the distance: WECTE
ETEE ). Result: . 2420306E0H26

Note: If the resulting distance is zero, then the point lies in the plane.
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The next two examples illustrate how to find the equation of a plane given a point
in that plane and the equation of a second plane.

Example:

Find the equation of the plane parallel to x— 3y + 2z—5 =0 that con-
tains the point [ 4 2 -3 ].

. Enter the normal vector of the given plane (the same as the normal

vector of the parallel plane): SPC)(3]+/=)(SPC)(2)(ENTER).
Enter the given point: (&9)[3)(4)(SPC)(2)(SPC)(3)+/-)(ENTER).

3. Find the D-constant for the parallel plane: YECTR

(#/=). Result: 3

So the equation of the parallel plane is x — 3y + 2z + 8 = 0.

While there is only one plane containing a given point parallel to a given plane,
there are an infinite number of planes containing a given point that are perpendicu-
larto a given plane. The cross product is the easiest method of finding one of those
perpendicular planes, as the next example illustrates.

Example:
1
2.
3.
4.
208

Find the equation of a plane perpendicular to x — 3y + 2z — 5 =0 that
contains the point [ 4 2 -3 ].

. Enter the given point and make an extra copy: (][ 1)(4)

(3)+/-)(ENTER](ENTER).

Enter the normal vector of the given plane: (&) 1)(1)(SPC)(3)+/—)
(SPC)(2)ENTER).

Compute the cross product (giving a vector perpendicular to the nor-

mal vector: MTHMIMAEIER. Result: [ -2 -11 -14 ]

Compute the D-constant for the perpendicular plane: (+/=).
Result: H. This is to be expected because the computed normal is
perpendicular to the position vector of the point as well as to the
given plane. (The dot product of perpendicular vectors is 0.)

So the equation of the perpendicular plane is: —5x — 11y —14z=0
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Given: A Line and a Plane

Aline and a plane are parallel if the dot product of their direction vector and nor-
mal vector is zero and a point on the line does not lie on the plane. If the dot pro-
duct is zero and a point on the line does lie on the plane, the line is contained in
the plane; if the dot product is not zero, then the plane and line intersect in a point.

Example:

Find the number of points shared by the line { x=¢t+3,y=¢t-1,z
=—t+ 1 }, and the plane, 3x -2y +z -4 =0.

. Enter the normal vector for the plane and make an extra copy: (][ J)

(3)(sPC)(2]+/-)(SPC)(1)(ENTER)(ENTER).

Enter the line and convert it to position-direction form: (G){3)(")()

X EEaDHEM e EaEEamnEEe]
(JalZal=) I ealDH0)ENTER) (VAR [E.

Find the dot product of the direction vector of the line and the normal

vector of the plane: VECTE| DOT §

Result: H. The line is either parallel to, or is contained in, the plane.

Determine whether the point on the line lies on the plane by finding
the negative of the dot product of the point and the normal vector for

the plane: («) B[ i#ll (/). Result: —1Z

If the point were on the plane, this result would be equal to the D-
constant in the equation of the plane. That’s not the case here, so the
line is parallel to the plane; they share no points.
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If the dot product of the direction vector of a line and the normal vector of a plane
is not zero, then they intersect at a point. To find the point, substitute the paramet-
ric equations of the line into the equation for the plane and solve for z. Then sub-
stitute the computed value of  back into the parametric equations to find the x-,
y- , and z-coordinates of the point of intersection. In vector terms,

_—-D—-(NeP)
~ (NeD)

where D is the D-constant in the equation of the plane, N is the normal vector of
the plane, P is the position vector of the line and D is the direction vector of the
line. The following example illustrates how to use this equation to compute the
coordinates of the intersection point.

Example: Find the point of intersection of the line, { x=3t+ 1,y=-t-1,z=
-t + 1 }, and the plane, 3x -2y + z -4 =0.

1. Enter the parametric equations of the line; make an extra copy: (&)
O X EEEXEeTDHEMNO S &S]
(JATEORC JaZal =) e THENTER(ENTER).

2. Enter the negative of the D-constant and swap it with the copy of the

equation of the line: (4](ENTER)(SWAP).

3. Convert the parametric form to point direction form: P>*PD §
Result: #: [ 1 -1 11
1: [ 3 -1-11
4. Enter the normal vector of the plane and make an extra copy: (][ J)
(3)(SPC)(2)+/-)(SPC)(1)(ENTER)(ENTER).

5. Compute : (3] .mﬁﬂmm
ROLLD(EMEY DOT [SEVRE! Result

6. Storetheresultinand evaluate the parametric equations: nmm.
(STO)(1)(ENTER) ()« »)(EVAL)(ENTER)(PRG!) i o F=h i ff ol 11 I

i :

Result: T 'w=.4' 'y=-,8' 'z=1.2' 1
7. Optional. Convert this to fractions: (&)SYMBOLIC)(NXT) EEEIFI.
Result: © 'w=Z-0' 'y=—-(4s50" 'z=£-5' 3
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The program LFL+F (see page 288) takes a line in position-direction form and a
plane in vector form and, after checking to see if they are parallel, computes the
coordinates for the point of intersection. The next example illustrates its use.

Example:

Example:

Use LFL+F to find the point of intersection, if any, of the line { x =
2t+1,y=—-t-1,z=3¢t} and the plane 3x + 2y -z - 5=0.

. Enter the set of parametric equations for the line: (G]{ J' [aJq]X)

Q=) RIX e THD M) (JelalY) (JSIT=TI)
[ elalzla) =3 X e T ENTER.

Convert the line to position-direction form: P3P0 §

Enter the plane in vector form: (]I 1)(3)(SPc)(2)(sPC)(1)+/-)(SPC)
ENTER).

Execute LFL+F" or (VAR) (then (NXT) or
(G)PREV) as needed) [HBEdl. Result: [ 9 -5 12 1]

If you wish, you can rationalize the results using H*+[1.

Find the equation of the plane that contains the line { x=2¢t+1,y=
—t—1, z=3t } and is perpendicular to the plane 3x+2y-z-5=0.

. Enter the normal vector for the plane and make an extra copy: (&q]L J]

(3)(SPC)(2)(SPC)(1)+/=) (ENTER)(ENTER).

Enter the equation of the line: (U JoJaX)E)[=)(2)X) (&)
HEH0E0ENEeZEOEUESH0EnEREE
BIX(Ja[TIENTER).

3. Convert the line to position-direction form: PP §

Compute the vector of coefficients for the target plane: (¢5]STACK]
| ROT [OAEYECTR|CROES ROLLD
R TR, Resule: [ -5 11 7 -1 1]

So the equation of the perpendicular plane containing the given line
is-5x+11ly+7z-1=0.
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Introduction to Transformations

So far in this chapter, you’ve seen how to deal analytically with various com-
binations of geometric objects. You have used the array object type—vectors and
matrices—extensively in the process. In this last part of the chapter, you will learn
how to efficiently transform groups of points using array methods. Such methods
are the foundation of the moving graphics embedded in video games and all kinds
of computer modeling.

A transformation is a kind of function that maps an input array—representing a
geometric object—into a output array. If the transformation is part of a computer
graphics program, the program redraws the object, based on the output array; the
viewer sees the object undergoing a transformation on the screen.
There are several kinds of transformations possible:

* Translation—moving an object a given distance along a given line.

* Rotation—rotating an object through a given angle around a given axis.

* Reflection—finding the mirror image of an object with respect to a given
plane.

* Scaling—changing the size of the object proportionally by a given factor.
» Shearing—changing the size of the object disproportionately.
e Combinations of any or all of the above.

Also, because most visual representations of objects occur in two dimensions (on

a display screen or on paper) there are some important transformations to project
three-dimensional locations into locations that can be plotted in two dimensions:

* Perspective Projection—transformation from three-dimensional space
onto a hemispherical surface, where no two lines are parallel, followed by
a projection from the hemisphere onto a plane.

* Dimetric Projection—projection which preserves the perpendicularity of
the coordinate axes, while equally foreshortening two of the three axes.

* Isometric Projection—projection which preserves the perpendicularity of
the coordinate axes, while equally foreshortening all three axes.
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For the purposes of mathematical transformation, geometric objects are pre-
sented as arrays of points (i.e. arrays of the position vectors of points) with one
important addition. Anextraelement, 1, is appended to the position vector, yield-
ing what is known as the homogeneous coordinate representation.

Thus, depending on whether the object is in the xy-plane or in three-dimensional
space, each position vector will have either 3 or 4 elements. For example, the line
segment connecting the point (4,-1,3) to the point (3,2,-1) is represented as

3 2 -1
matrix (four points, three elements each); and a cube is represented by an 8x4
matrix (eight points, four elements each).

4 -1 3 1
[ ) }; likewise, a square in the xy-plane is represented by a 4x3

The other important component in a transformation is the transformation matrix.
It is a square matrix with the same number of columns as the object array: There
is a 3x3 general transformation matrix for points limited to two dimensions and
an analogous 4x4 transformation matrix for points in space:

a bip a b eip
di ¢ 4 giq

T s |
' I m nis

Every general transformation matrix can be divided into four sections, each of
which “controls” aspects of the transformation:

* a,b,c,d,e,f, g, h,and j control the local-scaling, shearing, and rotation
aspects;

e [, mand n control the translation aspects;
* p, g and r control the projection aspects;
e s controls the overall scale of the transformation.

The remainder of this chapter illustrates how to use these “controls” to achieve
a wide variety of transformations.
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Scaling

To isolate the effect of each component of the transformation matrix, you must
make sure that all other components have no effect on the transformation. The
3x3 and 4x4 identity matrices,

1 0'0 Lo 050
0 li() and 01 OEO
o ol 0.2 L2

! 0 0 01l

represent the “no effect” matrices. They show the “neutral” values of each of the
“controls”—values to use if want them to have no effect on the transformation.
The scaling controls fall along the diagonal of the matrix:

* a controls the scale of the x-component.

* d controls the scale of the y-component.

 j controls the scale of the z-component (if any).

» s controls the scale of all components simultaneously.

For example, to triple the scale of the horizontal component only (for an object
in space), you would use the following transformation matrix:

30 0!0
01010
00 110
————— o L_.
00 0il

Visually, you would see the object “stretching” horizontally.

The examples in the rest of this chapter use the program TWIEl (see page 317),
which draws a simple object, given an array of its points, thus allowing you to
view the results of your transformations on that object.
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Example: Plotasimple unit square, then “stretch” it horizontally by a factor of
three and view the results.

1. Enterthe array of points for aunit square (in the xy-plane): ([MATRIX)

(0)(ENTER) (0] (ENTER) (1) (ENTER)Y) (1) (ENTER) (0) (ENTER) (1) (ENTER) (1)
(ENTER])(1)(ENTER)(1)(ENTER)(0) (ENTER)(1) (ENTER) (1) (ENTER) (ENTER).

Result: [[ H H 1 1]

m

0t
— —

1 1]

[ 1 ]

[ 1 1]

2. Plot the square with TWIE: (&)« T V)1 EJW)ENTER) or (then
or as needed) LEMISE].

3. At the stack, enter the transformation matrix: (CANCEL)(JMATRIX)

(3)(ENTER)(0) ENTER] () (ENTER) (W) (0] (ENTER) (1) (ENTER] (0] (ENTER) (0]
(ENTER)(0)(ENTER)(1)(ENTER)(ENTER). Result: [[ 2 B H ]

[ H ]
[ B A 1]
4. Multiply the object array by the transformation: (X) LERIFEI.

s’
ol bt
— =0

]
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Of course, the y-component can be scaled as well by changing the value of the d
element in the transformation matrix.

Example: Stretch the rectangular result of the previous example vertically by
a factor of 2 and display the results.

1. Returnto the stack and enter the appropriate 3x3 transformation ma-

trix: (CANCEL)(=]MATRIX)(1)]ENTER)(0)(ENTERJ 0)(ENTER)Y)(0)(ENTER)
(2)(ENTER)(0](ENTER)(0)(ENTER)(0)(ENTER)(1 JENTER](ENTER).

Result: [[ 1 H H
[ B H 1 1]
2. Multiply the object array by the transformation matrix, and view the

results with TWIEN: ()R],

]
]
]

Notice that you could have performed both of the previous transformations at

once, by using a transformation matrix that is the combination of the two local-
scaling steps:

3001 0O 300
01 0|0 2 O0(=|0 2 O
0 0 1JJO0 0 1 0 0 1

This is a characteristic of combination transformations—they are the product of
the individual component transformations.
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The lower right-hand element of the transformation matrix (the s element) con-
trols the overall scaling of the object. It works differently than the local scaling
factors. Itis located in the last column, which should be all 1 s unless a projection
is intended. To restore the expected state of the last column, all elements of the
matrix are divided by the s-factor, thus effectively making the lower-right-hand
element a 1 again.

Example:

Scaling

Explore the effects of transforming the current object using a global-
scaling factor of 2.

. Return to the stack and enter the appropriate 3x3 transformation ma-

trix: (CANCEL)(>JMATRIX)(1)ENTER)(0)(ENTER) 0)(ENTER|¥)(0)(ENTER
(1)(ENTER) (0] (ENTER) (0] (ENTER) (0] (ENTER)(2[ENTER](ENTER).

Result: [[ 1 H H 1
[ B1A]
[ BAZ 1]

Multiply the object array by the transformation matrix, and view the

results with TWIEW: () LEITEH.

Note that, because of the division process involved, a global-scaling
factor greater than one shrinks the object; and a global scaling factor
less than one enlarges the object.
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Shearing

The pure scaling you’ve seen already—using the diagonal elements of the trans-
formation matrix—represent the “self-effects” of scaling of individual coordi-
nates only: independent scaling.

By contrast, shearing is the effect that the scaling of one coordinate has on the
value of other coordinates. Shearing is dependent scaling, using the off-diagonal
elements b, ¢, e, f, g, and & in the transformation matrix:

* b represents the effect of x-scaling on the y-coordinate.

» crepresents the effect of y-scaling on the x-coordinate.

» e represents the effect of x-scaling on the z-coordinate (if any).

» frepresents the effect of z-scaling (if any z-coordinate) on the x-coordinate.
» g represents the effect of y-scaling on the z-coordinate (if any).

* hrepresents the effect of z-scaling (if any z-coordinate) on the y-coordinate.

Example: Shear the y-coordinates of the current object by a factor of 1.2 of the
x-coordinates.

1. At the stack, enter the transformation matrix: (CANCEL)(>MATRIX]

(1)(ENTER)(1) - J2)ENTER] 0)(ENTER)¥)(0)(ENTER)(1)(ENTER)(0)(ENTER)
(0)(ENTER)(0)(ENTER)(1)ENTER)(ENTER). Result: [[ 1 1.7 @ ]
[ B18A]
[ BAE 1 ]I]

2. Multiply the object array by the transformation matrix, and view the

results with TWIEDN: (X)LEITEH].

/
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Example: Shear the x-coordinates of the current object by a factor of 0.75 of
the y-coordinates.

1. At the stack, enter the transformation matrix: (CANCEL)(>MATRIX)

(1)(ENTER](0)(ENTER)(0)(ENTER]Y)( J 7)5)(ENTER)(1)(ENTER)(0)(ENTER)
(0)(ENTER)(0](ENTER)( 1 ENTER](ENTER).

Result: [[ 1 H H

2. Multiply the object array by the transformation matrix, and view the

results with TWIEN: ()RR,
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Translation

Translation is a transformation that moves a point along a line. It changes the
coordinate system in which the object exists without changing any of the dimen-
sions or relative positions of the points of the object. For example, translating an
object to the point (4,5) in the xy-plane means that the origin (0,0) is now at the
point (4,5) and all points in the object that had been situated with respect to the
origin are now analogously situated with respect to the point (4,5).

In the transformation matrix, the I-, m-, and n-elements control the x-, y-, and z-
axis translations, respectively. For the above example—a translation to the point
(4,5) in the xy-plane—the transformation matrix would be:

A O =

00
1 0
51

Example: Translate the current object to a coordinate system centered at the
point (2,-1).

1. At the stack, enter the transformation matrix: (CANCEL)(—>JMATRIX]
(ENTER)(0)(ENTER) (0] (ENTER)¥)(0) (ENTER)(1) (ENTER)(0) (ENTER)
(ENTER)(1)+/=)ENTER) (1 JENTER)(ENTER). Result: [[ 1 B H ]

N I A
[ £ -111]

2. Multiply the object array by the transformation matrix, and view the

results with T IEN: () REITEH].
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Rotation

A rotation is a combination of scaling and shearing that leaves the final dimen-
sions of the object unchanged. Each rotation occurs around an axis of rotation.
In two dimensions, it appears that the rotation is around a point—often the origin
—butactually, itis occurring around the z-axis, which extends “upward” from the
flat xy-plane. If Ois the angle through which you wish to rotate the object counter-
clockwise around the origin, the appropriate 3x3 transformation matrix is

cos@ sinf@ 0
—sin@ cos@ O
0 0 1

Example: Rotate the current object 130° counterclockwise around the origin
(z-axis).

1. Atthe stack, set degree mode, then enter the transformation matrix:
(CANCEL)J&&JRAD) (if needed) (2 JMATRIX](1) 3] 0)(COS)ENTER)(1]3) 0]
ENTER) (0 JENTER] ) (1) 3] 0JSIN[+/-JENTER)
(0] (ENTER)(0](ENTER](0)(ENTER)(1 JENTER)(ENTER).

Result: [[ 6423 .7eeH H ]
I S v
1]

2. Multiply the object array by the transformation matrix, and view the

results with TWIED: (X)L,

| B |
=0 |
=]
ke
a—
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When performing a rotation in the xy-plane around an arbitrary vertical axis
(which appears to be a point), the rotation is a three-step procedure:

* Translate from the given “point” of rotation back to the origin;
* Rotate the given number of degrees about the origin;

* Translate back to the coordinate system of the given point.

Thus, if the “point” of rotation is (/,m) and the angle of rotation is 6, the three trans-
formation matrices, in order, are:

1 0 Of cos@ sin@ Of1 0 O
0 I O0f-sin@ cos@ 0|0 1 O], which, after multiplication,
-l -m 1 0 0 1{{! m 1

cos@ sin 0 0
simplify to —sin 6 cos 6 0.
—I(cos@—1)+msin@ —Isin@—m(cosf—1) 1

A program, ROTZ[ (see page 299), creates the proper 3x3 transformation matrix,
given the point (in vector form) on level 2 and the angle of rotation on level 1.

Example: Rotate the current object around the point, (-1,-1) by 50°.

1. At the stack, enter the point of rotation in vector form: (CANCEL)(&)
LI )+/=)(SPC)(1)+/=)(ENTER).
2. In degree mode, enter the angle: (if needed) (5 ) 0](ENTER).
3. Use ROTED: AOED: [0 .ed427 JVecBt B ]
[ -.7/BEBt E4E73 B ]

[ -1.12356 46833 1 1]
4. Multiply and view the results: (X)LEIIIE].
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The rotation of objects in three dimensions presents even more complications. A
rotation in three dimensions implies that rotations may occur around any of the
three coordinate axes—in the most general case, around any line in space.

In a rotation about any one of the coordinate axes, the coordinates of the object
with respect to that axis do not change (thus, in a rotation about the z-axis in the
xy-plane, where z = 0, the implied z-coordinate remains at zero before and after
the rotation). Therefore, the rotation matrices for rotating about each of the coord-
inate axes individually are:

X — axis: y — axis: Z — axis:
1 0 0 O] [cos¢p O —sing O cosy siny 0 O
0 cos@ sinf O 0 1 0 Of [-siny cosy O O
0 —sin@ cosf O sing 0 cos¢ O 0 0 1 0
0 0 0 1 0 O 0 1 0 0 01

Soif you need to rotate about more than one axis—6 about the x-axis, ¢ about the
y-axis, and  about the z-axis, for example—you simply multiply the necessary
transformation matrices together. But note that the order in which you do the suc-
cessive rotations definitely matters: remember that matrix multiplication is non-
commutative.
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For example, compare two transformations:

Case 1. Rotate about the x-axis, then by an equal angle about the y-axis (¢ = 6):

1 0 0 Offcos¢ 0O —sing O

0 cos@ sinf Off 0 1 0 0

0 —sin@ cos® Ofsing O cos¢p O

0 0 0O 1 0 O 0 1
cos@ 0 —sin @

cos@sin® —sin@® cos’ @

0
sin’ 0 cos@ cos@sinf 0
0

0 0 0 1

Case 2. Rotate about the y-axis, then by an equal angle about the x-axis (6= ¢):

cosp 0 —sing O] 1 0 0 O
0 1 0 00 cos@ sin@ O
sing 0 cos¢p 0|0 —sin@ cos@ O
0 0 0 1]0 0 0 1

0 cosO sin 0 0
sin@ —cos@sin@ cos’ 0 0
1

cos @ sin® 0 —cosBsinf 0
0 0 0

Note that these overall transformation matrices are not equivalent. Remember
this when performing rotations around more than one axis.
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The two-dimensional general rotation matrix is a bit complicated; the three-di-
mensional case is definitely so: For an axis (line) of rotation with a direction vec-
tor [ x y z] and a position vector [/ m n ], and an angle of rotation @in the counter-
clockwise direction, the 4x4 general rotation transformation matrix is:

x*+(1-x*)cos®  xy(l1-cos@)+zsin@ xz(1-cosB)—ysinf O
xy(1-cos@)—zsin€®  y*+(1-y*)cos®  yz(1—cos@)+ xsin® 0O
xz(1-cos @)+ ysin@ yz(l1-cos@)—xsin@ z>+(1-z")cos® 0

L M N 1

where

L=

l—l[x2 +(1-x*)cos 9]—m[xy(l—cos 6) — zsin 6] — n[xz(1 - cos 6) + ysin 6]
M=

m — [ xy(1— cos ) + zsin 6]—m[y2 +(1—y2)cos(9]—n[yz(1—cos 6)— xsin 6]
N=

n—I[xz(1—cos 8) — ysin 8] — m[ yz(1 - cos ) + xsin 6] - [z +(1-22 cose]

Clearly a program is called for: FIT3[ (see page 300) takes the position and
direction vectors of the axis of rotation from levels 3 and 2, and the angle of ro-
tation from level 1.

Example: Find the proper transformation matrix to rotate an object around the
line givenby { x=2t+1,y=-t-1,z=3t } by 74°.
1. Atthe stack, enter the line in parametric form: (CANCEL)(&J{3)(")(e)
=) 0 =)
SE0w =) [ENTER)
2. Convert the line to position-direction form: (VAR) [ZEda'M .

2. Indegree mode, enter the angle: (€5 ]RAD)(if necessary) ENTER).

3. Use FT3D to find the transformation matrix: [LEI].
Result: [[ 3.1726H9 1. "1r__||:1l:- 5.268744 A ]
[ -4.33551 1 -.759856 A 1
[ 2.38491 -4, H':l'iEl B.79490 B ]
1

[ _h.FIHEIh'l _1 ':I'::Eiﬁl:i _Fi l-:'llala

1]
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Reflection

A rotation moves an object with respect to aline. A reflection, on the other hand,
moves an object with respect to a plane. A reflection may appear to be with res-
pect to aline within the xy-plane, but this is because the line is the trace of the plane
of reflection—the only part of the reflection plane within the xy-plane. Thus, what
appears to be a reflection with respect to, say, the x-axis (i.e. the line y = 0) is act-
ually a reflection with respect to the plane y =0 (0x + y + 0z + 0 = 0).

The transformation matrices for reflection across each of the coordinate axes (or
the planes with which they are associated) are fairly straightforward:

across x - axis: across y-axis: across z - axis:

1 0 0O -1 0 0O 1 0 0 O
0 -1 00 0 1 0O 01 0 O
0 0 10 0 010 0 0 -10
0 0 01 0 0 01 0 0 0 1

(The 3x3 transformation matrices are the same as those for the x-axis and y-axis
shown above, except they have the third row and column removed.)

Example: Reflect the current object across both the x- and y-axes.

1. Enter the 3x3 transformation matrix for reflecting across the x-axis:
((DROP) the 3D-rotation matrix from the previous example, if neces-

sary) (=]MATRIX])(1JENTER)(0 JENTER)(0)(ENTER)(Y)(0) ENTER)(1)[+/-)

(ENTER)(0)(ENTER)(0) (ENTER)(0) (ENTER](1JENTER) (ENTER).

2. Enter the 3x3 transformation matrix for reflecting across the y-axis:

(©IMATRIX](1)+/=)(ENTER)(0 JENTER)(0)(ENTER)(Y) 0 ENTER)(1)[ENTER)
(0)(ENTER)0)(ENTER](0)(ENTER](1) (ENTER](ENTER).

3. Because thisis just two consecutive reflections, you can multiply the
two transformation matrices together before applying it to the object
matrix: (X). Result: [[ -1 B B ]

[ #-18]1]
[ AR 1 1]
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4. Multiply and view the results: (X)iLidI3%1.

This example was simple, but to reflect across an arbitrary plane (or, in two di-
mensions, an arbitrary line) the computation is complicated. You must rotate the
given plane of reflection to match one of the coordinate planes, perform the reflec-
tion and rotate the result back. A better approach uses geometric relationships:
The plane of reflection is a perpendicular bisector of a line segment from a point
to its reflection. The program EFLLT (see page 299) uses this to compute the re-
flection directly. It takes the object array from level 2 and a vector of the general
form of the plane (or, in two dimensions, the line) of reflection from level 1.

Example: Reflect the current object across the line, x — 2y + 1 = 0.

1. Return to the stack (where the current object array should be shown
inlevel 1) and enter the vector form of the line of reflection: (CANCEL

)1 3(1)sPc)(2]+/=)(sPC)(1)(ENTER).

2. Use the FFLLCT program: (a)e)RIF)L)C)T)(ENTER) or (VAR (then
or (§)PREV) as needed) [z H=1d.

3. View the results with T IEL: FEETEM.
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Projection

So far, you have not seen any examples that plot points in three dimensions.
Before you can do so, you be able to project them into points in two dimensions,
so that they may be displayed on the HP 48’s two dimensional screen. The kinds
of transformations you have seen thus far in this chapter have been affine trans-
formations, where the p-, g-, and r-elements in the general 4x4 transformation ma-
trix are zero. But when one or more of these elements is nonzero, then the trans-
formation becomes a projection.

Projections depend on two things: the viewing plane onto which you’re projecting
and the center of the projection or eyepoint. When you view the HP 48 display,
you are viewing the xy-plane (the plane, z = 0). Parallel lines stay parallel on the
display—they don’t meet together in a point. The eyepoint is infinitely far from
the viewing plane. Projections that maintain the eyepoint at infinity are called
axonometric projections, because they keep the coordinate axes at right angles to
each other. There are three types of axonometric projections:

* Orthographic. These produce the views commonly used in mechanical
drawing—Top View, Side View, Front View. They are projections onto one
of the three coordinate zero planes (x =0, y =0, or z=0).

* Dimetric. These foreshorten two of the three coordinate axes by the same
factor, while leaving the axes at right angles (orthographic) to each other.
A dimetric projection consists of two successive rotations (once around
each of the axes being foreshortened) using angles computed to maintain
the orthography of the axes.

» Isometric. These foreshorten all three axes by the same factor while main-
taining their orthography. Anisometric projection is similar to the dimetric
projection except that the computed angles of rotation are constant no mat-
ter the degree of foreshortening.
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The transformation matrix for an orthographic projection onto the xy-plane is:

0
0
0
1

S O O =
S O —= O
o O o O

Note that column corresponding to the projection plane (z) are filled with zeroes,
since, in the xy plane, z=0. The analogous approach can be used to construct the
matrices for projections onto the x = 0 and y = 0 planes—leaving the column cor-
responding to the projection plane filled with zeroes.

Example: Enter this set of points and view it in an orthographic projection onto
the xy-plane:

NN O O O N NN O O O b bbb O O
N O O N DN DN O O NP Db O O O O
NN DN O O O O O bbb o O Do
T T e S e e e
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1. Enter the array of points: EIMATRIX]@[SP c)(0)(spc)(o)(sPc)(1)

(ENTER)(Y)(0)(SPC)(0)(sPC)(2) spc]. ENTER (spc ]@[SP . SPC
(1)(ENTER)(2)(SPC)(0)
(1)(ENTER)(2)(SPC)(2)(SPC)

(DENTER)(0)(SPC)(2)(SPC)(0) ]

(1)(ENTER)(2]( Pc]@[spc]@[spc . ENTER SPC)(2)(sPC) @ SPC
(1)(ENTER])(0)(SPC)(2)(SPC)(0) )
(1)(ENTER](0)(SPC)(0)(SPC)(2)(SPC) [ENTER . (SPC)
(1)(ENTER)(2)(SPC)(2)(SPC)(2)(SPC)(1)(ENTER)(ENTER).

. Execute TW/IEl. It performs an orthographic projection onto the xy-

plane simply by ignoring the z-element of each point: TYIEKA

/]

The object is a cube two units on a side with one of its major diagon-
als drawn, shown here “flattened out” into the xy-plane.

Related to the orthographic projections are those onto planes parallel to the coord-
inate planes, such as x =, y =m, and z = n. The transformation matrices for these
projections are:

230

1 000 1 0 0O 1 00O
0 00O 01 0O 0100
0010 0 0 0O 0 00O
I 0 01 0 m 0 1 0 0 n 1
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The preceding projections share the disadvantage that they lose the z-coordinate
information during the projection (although T IEl avoids this by returning the
object array before projection while displaying the results after projection). A
better approach is to use the z-axis information during the projection so that the
results give some visual clue about the “depth” of the object.

The dimetric projection is of a rotation about the y-axis by an angle ¢, followed
by a rotation about the x-axis by an angle 6. The angles ¢ and 8 are computed so
that the x- and y- axes are foreshortened by an equal factor, f, while maintaining
the orthography of the coordinate axes and projecting the results into the xy-plane.

Obviously, the key is choosing the correct angles. They must satisfy these two
equations:

cos® ¢ +sin® ¢sin® @ = cos’ O
sin” ¢ + cos” ¢sin® = f*
Once you have computed these angles for a given factor f, you can compute the

transformation matrix for the dimetric projection, which is nothing more than the
combined matrix from the two rotations about the axes:

cos¢ sin@sin@ —singcosf O
0 cos O sin 0
sing —cos@sin@ cos¢cosf@ O
0 0 0 1
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The program LMTEC (see page 280) computes the appropriate transformation
matrix, given the factor, f( 0 <f< 1) by which you wish to foreshorten the axes.

Example:

Project the current object using a dimetric projection with a factor
of 0.5.

. Return to the stack, make an extra copy of the object array, and store

it as CLBE: (CANCEL)(ENTER] " (@) @) CJU)B)E)(ENTER)(STO).

. Enter the projection factor: (-] 5)(ENTER).

3. Find the transformation matrix for the dimetric projection:

232

(M]T)JR)C)ENTER)or (VAR) (then(NXT)or(67JPREV)as needed) { ] lLi .

Result: [[ 92587 .13262 -.25355 H ]

[ B .925341 .33355 @ 1]
[ 27796 -.32733 J866H2 B ]
I = I A M

Multiply the object array by the transformation matrix, and display
the results using TWIEN: (x)LEEY]
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The isometric projection is similar to the dimetric projection except that it needs
no factor: there is only one set of angles, 8 and ¢, that will equally foreshorten
all three axes without disturbing coordinate orthogonality. The required values
are 6 =35.26439° and ¢ = 45°.

The program I SMTEL (see page 285) takes nothing from the stack and returns the
proper transformation matrix for an isometric projection.

Example:

1.

2.

Projection

Project the CLIBE using an isometric projection.

Return to the stack, drop the previous result array, and put CLIEE onto
the stack as the object array: (CANCEL)(«)(VAR)Es!]:{5§ .

Compute the transformation matrix for the isometric projection: (o)

(@] 1] S M]T)R)C)(ENTER) or (then or (]PREV) as needed)
IZHTEN

Result: [[ .7H/11 485 -.57735 B ]
[ B .B81658 57735 A 1
[ .7EA1D —48e5 577235 A ]
O T I A M

Multiply the object array by the transformation matrix, and display

the results using 1% IEW: <) RETEH.
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The final set of projections to illustrate are the perspective projections. Perspec-
tive projections are combinations of a perspective transformation with a projec-
tion into a plane. Widely used to present data in visually useful ways, perspective
projections are often combined with other transformations—rotations, transla-
tions, or scaling—before the perspective transformation (and sometimes after).

The simplest perspective projection projects onto the xy-plane from an eyepoint
at [ 0 0 -k ] where k is a finite number. (By contrast, the theoretical eyepoint for
the previous axonometric projections was [ 0 0 -e< ].) In this projection, lines that
were originally parallel to the z-axis will now appear to pass through the vanishing
point [00 k.

This projection, known as a single-point perspective transformation, is accom-
plished using the following transformation matrix:

1000
0100
000 L
0001

Note the two differences between this matrix and the 4x4 identity matrix: the r-
element has a nonzero value, and the third column is all FI’s (for projection onto
the z = 0 plane).

However, any non-zero values in the final column (except for the final row) of the
transformation give an undesirable scaling effect, producing values other than 1
in the fourth column of the transformed object array. To counteract that effect, the
result of a perspective transformation must be normalized by dividing the x- y- and
z-coordinates of each point by the value of the fourth element in its row.

The short program MREILZ (see page 289) performs this normalizing procedure
on the array in level 1. The resulting array will have its final column filled with
ones.
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Example: Project the current object onto the xy-plane using a single-point per-
spective projection. Let k= 10.

1. Return tothe stack, drop the previous result array, and put CLIBE onto
the stack as the object array: (CANCEL)(«)(VAR)EoT]={38 .

2. Enter the transformation matrix: (=)(MATRIX])(1)ENTER)(0)(ENTER)(0)
(ENTER) (0] (ENTER)Y) (0] (ENTER) (1) (ENTER) (0) (ENTER) (0] (ENTER] (0)
(ENTER) (0] (ENTER) (0) (ENTER) (ENTER) (0] (ENTER) (0] (ENTER) (0)
(ENTER)())[ENTER)ENTER). Result: [[ 1 B A B ]

H ]

.1

L
[
[

—_

3. Multiply; normalize: (X)ETI&M.... [

=
o= -
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4. Display the results using TV IEW: LETTTH].
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The single-point perspective projection is the one most commonly used by artists,
but they effectively translate the object so that the eye-point and the vanishing
point are centered on the object. Without such a centering translation, the vanish-
ing point is along the z-axis (i.e. at the origin), no matter where the object is.

Example: Repeatthe previousexample, but “center” the eyepoint on the object
before performing the projection. That is, move the object so that the
origin is at its center in the xy-plane—a (-1,-1,0) translation.

1. Returntothe stack, drop the previous result array, and put ZLIBE onto
the stack as the object array: (CANCEL)(«)(VAR) o111

2. Prepare the single-point projection, including the translation ele-

ments in the last row: ([JMATRIX](1)(ENTER](0](ENTER](0)(ENTER)(0)
(o) (ENTER) (1) (ENTER] (0] (ENTER) (0] (ENTER) (0] (ENTER) (0)
(ENTER)(0)(ENTER] - J 1)(ENTER)(1)+/=)[ENTER)(1 ] +/=)(ENTER](0)[ENTER)
(1)ENTER)ENTER.  Result: ([ 188 A ]

[ 1 B 8A 1]

N T I = R A

[ -1 -181 1]

3. Multiply by the object array and normalize: (X][{uliisl5.

Result: [[ -1 -1 A 1 1
[ 74 -.83 B 1 1
= 1= I I

=
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4. Display the results using TWIED: FEITTHI.

The single-point perspective is equivalent to viewing an object with only one eye.
But with both eyes open, you gain the depth perception of a two-point perspective
—the difference between the two perspectives being the result of a slight rotation
around the vertical axis (the y-axis on the HP48). Or, if you combine the rotation
around the y-axis with the rotation around the x-axis, you can get a three-point,
or oblique, perspective.

In terms of transformation matrices, the two-point and three-point perspectives
are nothing more than the combination (multiplication) of one or two rotation
matrices with the single-point perspective transformation matrix. The resulting
combined transformation matrices (with @the angle of rotation around the y-axis
and ¢ the angle of rotation around the x-axis) are:

cos@ 0 ( =sinf cos® sin@sing 0 ndos
0 10 O 0 0o %
2-pt: . 3-pt: . o8 ¢ cos chos [}
sinf 0 0 <xf sin@ -—cosfsing 0 =22
0O 0 0 1 0 0 0 1
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Of course, a program makes perspective projections much easier: FERSF (see
page 292) takes an object array from level 3, the desired translation vector from
level 2, and the desired eyepoint from level 1. It returns the object array ready for

TYIEMW.

The translation vector allows you to move the entire object with respect to the ori-
gin. This lets you treat the eyepoint value as relative to the object (as well as to
the origin), which makes it much easier to anticipate the perspective you obtain.

Whether you get a one-, two-, or three-point perspective depends on your choice
of eyepoint. If only the z-coordinate is non-zero, the perspective is single-point;
if the y-coordinate is also non-zero, the perspective is two-point; if all three co-
ordinates are non-zero, the perspective is three-point. Be sure to use a negative
number for the eyepoint’s z-coordinate so as not to view the object from inside it.

Try the next few examples to get a feel for perspective projections.
Example: Project the CLIEE using no translation ([ 0 0 0 ]) and an eyepoint of

[ 2 0-10 ]. This produces a two-point perspective.

1. Return tothe stack, drop the previous result array, and put ZLIEE onto
the stack as the object array: (CANCEL)(«](VAR)8{1]:15].

2. Enter the translation vector: (&) 1)(0)(SPC)(0](SPC)(0](ENTER).

3. Enter the eyepoint vector: (&)1 1)(2]SPC)(0)(SPC)(1]0]+/=)(ENTER).

4. Find the perspective projection (with the normalization: (a]aJPJE)
(RYSIP)(ENTER) or (VAR) (then (NXT) or as needed) [{3HH.

5. Display the results using ' IEW: EEITTHI.
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Example: Project the CLIEE using the same eyepoint as the previous example,
but this time translate the cube to [4 54 ].

1. Returnto the stack, drop the previous result array, and put UBE onto
the stack as the object array: (CANCEL)(«)(VAR)EH1]:1f.

2. Enter the translation vector: (&9]T 1)(4)(SPC)(5)(SPC)(4)(ENTER).

3. Enter the eyepoint vector: (]I 3)(2)SPC)(0)(SPC](1)0)+/-)([ENTER).

4. Find the perspective projection (with the normalization): (@] o]P)(E)
or (then or as needed) [d3:44.

5. Display the results using TWIEN: EEFTEH].

A

Note that the perspective in this case looks at the cube from below
it and to the left, visually skewing it accordingly. This is the effect
of the relationship of the eyepoint to the center of the object.
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Example: Project CLBE usinga[-1-10]translation vectoranda[66-5 ] eye-
point. This produces a three-point perspective.

1. Return to the stack, drop the previous result array, and put CLIEE onto
the stack as the object array: (CANCEL)(«)(VAR)f=T]=30.

2. The translation vector: ()0 1)(1]+/=)(SPC)(1)+/=)(SPC)(0)(ENTER).

3. Enter the eyepoint vector: (][ 1)(6)SPC)(6)(SPC)(5]+/-)(ENTER).

4. Find the perspective projection (with the normalization):
(RISIP)(ENTER) or (VAR] (then (NXT) or as needed) [d3i¥14.

5. Display the results using TWIEN: FEJTIHI.
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As a curiosity and illustration of how deceptive a view it can be, try one final ex-
ample where the eyepoint is located inside the object.

Example: Project the CUBE using a [ -1 -1 0] translation vectorand [0 0 1 ]
as the eyepoint. This gives an insider’s perspective!

1. Return to the stack, drop the previous result array, and put CLIEE onto
the stack as the object array: (CANCEL)(«)(VAR)E81]:{5].

2. The translation vector: (]I )(1]+/=)(SPC)(1)+/-)(SPC)(0)(ENTER).

3. Enter the eyepoint vector: (&) 1)(0)JSPC)(0)(SPC)(1)(ENTER).

4. Find the perspective projection (with the normalization): (] o]PJE]
(R]S]P)(ENTER] or (then or (§]PREV] as needed) [d3i#14.

5. Display the results using TWIEW: [ETIH].

T+

T\Q—I
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Introduction to Conic Sections

A conic section is a widely used form of plane curve thatis defined in any of three
equivalent (and interchangeable) ways:

» Itis formed by the set of all points in a plane whose distances from a fixed
point (focus ) divided by their distances from a fixed line (or directrix) is
a constant ratio, € (or eccentricity).

It is the result of the general second-degree algebraic curve:
Ax* +Bxy+Cy* +Dx+Ey+F=0

 Itisformed from the intersection of a plane and a right circular double cone
—a “cross-section of a cone” (hence the name). There are four general
shapes of conic sections, depending on: the angle (o) made by the inter-
secting plane with respect to the bases of the cones; and the angle () made
by the cone itself with respect to its base.

7

Circle Ellipse Parabola Hyperbola

— If the intersecting plane is parallel to the bases (that is, o = 0), the
cross section s acircle (unless the intersection is at the cone’s vertex
only, in which case the cross section reduces to a single point).

— If0< o<, the cross section is an ellipse (unless the intersection is
at the cone’s vertex only, in which case it reduces to a single point).

— If a = B, the cross section is a parabola (unless the plane contains
the cone’s vertex, in which case the cross section is a straight line).

— If a> B, the cross section is a hyperbola (unless the plane contains
the cone’s vertex, in which case the cross section is a pair of inter-
secting lines).
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Plotting Conics

This chapter illustrates how the three different descriptions fit together for each
kind of conic section. You will see how to rotate and translate the conics, how to
compute various analytical quantities, and how to convert between descriptions.
But before looking at each of the four conic types, look at the HP 48’s specialized
plot type, oM 1=, This plot type will plot any implicit function of two real vari-
ables which is of no more than second order in either variable. So, in fact, it will
plot many implicit functions that don 't produce conic sections. Some examples:

WA AT

sinx®> —cosy—1=0:

MM AN

ZooM [l | EDIT

o
— I

x—ylogx® — xy=0: —t—t—t—t :\,I:

zoomfonva] ] TEDIT

4xy* -y’ —x=0:

ZooM [t ] ]| EDIT [EHNIL]
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There are good uses for such generality,* but nevertheless you will use the
221 plot type primarily to plot conic sections—and hence the name.

Technically, most conic sections are not functions (because each input can yield
more than exactly one output). So, essentially, the ZiM 1 1= plot type breaks the
second-degree equation into two equivalent true functions and plots each with the
Furnct 10om plot type—showing you both plots simultaneously.

Example: Use M1z to plot this circle: (x—1)? + y* =4
1. OpenthePLOT application, highlight the TYPE: field and change the
plot type to Loriic,
2. Reset the plot parameters: (DEL]Y)ENTER).

3. Inthe Ef: field, enter the circle’s equation: (¥)(&)(EQUATION)(&] )
(JEXEHOEIRMBEEY)ZIRIM)EE(4ENTER.

4. ChangethelMDEFP: variableto: (lower-case)and the NEPMD: vari-
ableto'd (lower-case). You will find the NEPMD: setting inthe PLOT
OPTIOMZE screen (press i@ #cl from the main PLOT screen).

5. Leaveall other plot options at their default settings and draw the plot,
returning first to the main plot screen @, if needed):
[T, Note how the plot is drawn in two pieces simultaneously,
just as if you were plotting two functions simultaneously.

- et
4 'r ot e

L‘“i J
zoomfea] [ [ EOIT JEANIL

*Actually, Cior 1 will plot any implicit function of two real variables, regardless of order, as long as it can com-
pute a second-order Taylor’s approximation of the function. SolZQIM 1 € plots of two-variable polynomials with
an order higher than two in either variable will be approximations but are often adequate for plotting purposes.
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Sometimes you will need to adjust the step size to see the entire conic clearly.

Example:

1.

Plot the following conic, using default settings: x> +3y> =6

Return to the PLOT screen: (CANCEL).

2. Highlight the Ei¥: field and enter the conic:

3.

IR HEX LI E(=)6)ENTER.
Draw the plot: [IH;E45 [T 100

200k fedAa ] ] EDIT JiAMEL

Parts of the ellipse are not fully drawn. Correct this by decreasing the step size....

Example:

L.
2.
3. Redraw the plot: f§

246

Repeat the above example with a step size of 0.02.
Return to the PLOT OPTIOME screen: OPTS N

Highlight the *TEP: field and enter .02: (v)¥)(-]J0]2)(ENTER).
K |ERASE] DRAL]

>

[zooMjes ] T EDIT
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The other concern about plotting conic sections involves the display range: If you
allow the scale of the two axes to vary from one another, the image may be dis-
torted in a misleading way.

Example: Plot the circle x> + y* = 4, using a square viewing area.

1. Return to the PLOT screen and highlight the Ei*: field.

2. Enter the equation for the circle: (€9JEQUATION[aJX)¥(2)(»)(+)
(2)>)&)=)(4JENTER).

3. Make sure that the IMOEP: variable is * (lower-case) and that the
DEPMD: variable is 'd (lower-case).

4. Make the display ranges for H=WEl and Y-"IEK{ identical. Set
bothto—2 .

5. Plot the circle: [N

N

zoorfova] ] ] ENIT JuhMil

The plotlooks more like an ellipse than a circle, because the display range doesn’t
match the shape of the display itself—the circle has been stretched to accommo-
date the square coordinates you requested. That is, the horizontal and vertical
ranges are identical and yet there are roughly twice the number of pixels hori-
zontally as vertically, so each pixel on the horizontal axis represents about 0.05
units, while each pixel on the vertical axis represents about 0.1 units.

Moral of the Story: With a display width roughly twice that of its height, when
plotting conic sections—particularly circles and ellipses—you should set the hor-
izontal display range to roughly twice that of the vertical range in order to get a
plot that isn’t visually distorted.
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The program COMFLT (see page 278) streamlines the plotting of conic sections
so that they appear well-centered and undistorted. COMFLT takes a list of the six
coefficients of the conic section in general form from level 1 and plots the conic,
returning nothing to the stack. Thus, given the general form of a conic,

Ax* +Bxy+Cy* + Dx+Ey+F=0

COMPLT takes as its only input a list of the coefficients in the order shown above:
{ ABCDEF }. Note that you must enter a zero as the coefficient for any missing
term—that is, the input list must have exactly six entries.

The following two examples illustrate the use of CIMFLT.

Example: Use COMFLT to plot the conic 4x +3xy—5y* —2x+y—-25=0

1. Enterthelistof coefficients for the conic onto the stack: (&)
(4)(SPA)(3)(SPO)(5)+/5)(SPC)(2)+/=)(SPS) (1) (SPC) (ENTER).

2. Plot the conic using CIOMFLT: (o)) CJo NP L)(T)ENTER) or
(then or ()PREV) as needed) L8] 158.

oo ] | T EDIT [eAMiL]

This conic is ahyperbola that is somewhat rotated with respect to the
coordinate axes.
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Example:

1.

Plotting Conics

Use LOMPLT to plot the conic (x —4)? +(y+2)? = 25.

Because the conic isn’t in general form, you must first expand the
left-hand side, collect terms and move all terms to the left-hand side.
Result: x> +y> —8x+4y—-5=0

Enter the list of coefficients for the conic onto the stack: (&]{ }
(SPc)(0)(sPC)(1)(sPc)(8)+/-)(SPC)(4)(SPC)(5 [+/=) (ENTER).

. Plot the conic using COMFLT: (o)) C o NP L)(T)ENTER) or

(then (NXT) or ((§]PREV) as needed) o 1| 1:H.

1{\;;

zoopfer ] 1 [ EDIT [oAKIL]
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Circles

The general conic equation becomes that of a circle when A = C and B = 0:

Ax* +Ay* +Dx+Ey+F=0

Defined geometrically, a circle is the set of coplanar points equidistant from a
given fixed point (the center). Viewed as such, the circle has two defining para-
meters: its center, (h,k); and its radius, r, related by (x —h)> +(y—k)* =r*

The two programs - IF+[3 and 3+ IF (see pages 277 and 282, respectively) con-
vert between the center-radius form of the equation and the general form of the
equation of a circle. The center-radius form is given by acomplex number on level
2 (representing the coordinates of the center) and a real number on level 1 (repre-
senting the radius). The general form is given as a list of the six coefficients of
the general conic equation, which, for a circle willbe { AOAD EF }.

Example: The general equation of a circle centered at (2, -3), with radius 7, is?

1. Enter the center of the circle as a complex number: (¢5]())
ENTER).

2. Enter the radius: (7)(ENTER).

3. Find the general equation via L IF+[: ()] C 1 R[=>)~JG)[ENTER)
or (VAR] (then (NXT) or ((§)PREV) as needed) [8]idedc].

Result: + 1 B 1 '-4' & '-3&' 2

So the general equation is x> + y* —4x+6y—36=0.
Example: Find the center and radius of the circle 4x*> +4y> — x+5y—-3=0

1. Enter the general equation as a list of coefficients: (&9]{ }J(4)(SPC)(0)
(spc)(4)(sPC)(1)+/=)(SPC)(5)(SPC)(3]+/=)(ENTER).

2. Compute the center and radius using G*CIF: (e]o)6=) =/c1)R)
or (VAR) (then (NXT) or as needed) [cEdH[3.

Result: &* L. 125, - 620)

12 1.H/329865533

So the center of the circle is (%,—%), and the radius is =1.075.
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There are several important relationships involving circles that you may remem-
ber from a geometry class. Here’s a brief review:

Circles

A

S

FE

Three noncollinear points in plane determine a unique circle.

The measure of an inscribed angle is one-half the measure of its intercepted
arc. For example, in the above diagram: mZBGD = %arc(BD).

If two chords intersect in the interior of a circle, the measure of the angle
formed is the average of the measures of the arcs intercepted by the angle
and its opposite or vertical angle. For example, in the above diagram:

mZBOC = mZAOG = %(arc(BC) +arc(AG))

If two secants intersect in the exterior of a circle, the measure of the angle
formed is one half the difference of the measures of the intercepted arcs.

For example, in the above diagram: mZAPF = %(arc(AF )—arc(CE))

If two chords intersect inside a circle, then the products of the lengths of
the segments of each chord are equal. For example, in the above diagram:
(BO)(0OG)=(A0)(OC)

If two secant segments are drawn to a circle from the same exterior point,
the product of the lengths of one secant segment and its external segment
equals the product of the lengths of the other secant segment and its exter-
nal segment. For example, in the above diagram: (AP)(CP) = (FP)(EP)

251



Using the first of these relationships suggests that you should be able to compute
the equation of a circle, given three noncollinear points. You can.

* Method 1: Find the center of the circle by finding the intersection of the
perpendicular bisectors of the segments connecting the points; compute
the radius by finding the distance from the center to any one of the points.

* Method 2: Replace the x and y variables in the general form of the circle
equation with each of the three points (and let A = 1), to get a linear system.

The following two examples illustrate each of these methods:

Example:

252

Find the equation of the circle through the three points R(1,0), S(0,1)
and 7(2,2) using the perpendicular bisector method.

. Enter points R and S onto the stack in vector form: (<]t 1)(1)(sPc)(0)

ENTER) (& JLI)(0)(SPO) (W) ENTER).

Compute the perpendicular bisector of the segment RS using the pro-
gramF'+FE (introduced on page 184 in Chapter 6): (VAR)(then (NXT)
or (q)PREV] as needed) [a=lrd sl
Convert the perpendicular bisector to array form (via the programs
[+LEM and G+H from Chapter 6): Press (NXT) or (€5)PREV) as need-
ed) HEIE S (Swap) (@ HESH

Using points S and 7T, repeat steps 1 - 3: (][ 3)(0)(SPC)(1)ENTER)(&)
@ASB]ENER] PP | 1+GE [STRIQ)] G#A |

Find the intersection point of the two perpendicular bisectors, using

LIME™ (see page 200): Press (NXT) or (€5)(PREV) as needed) [HIEFEY

(@. Result: [ 1.166E7 1.1EEEF ] (to 5 decimal places).

Copy the result, enter one point and find the radius: (ENTER)(& )L I)(1)
P 0)ENTER) O (MTH) ITEA BT, Result: 1. 17851

Swap the center point into level 1 and convert it to a complex num-

ber: CLIZT | DEJ> [QVam{tees] cHPL | kL )
Swap and find the equation: (SWAP)(VAR)((NXT)or (4] PREV)) [ 34,
Result: © 1 H 1 '=iy«20" '=07-300 '4-.3' 1}

. . P | 7 4
Thus the equation of the circle is x™ + y~ — §x - gy + 3 =0.
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Example:

Circles

3.

Find the equation of the circle through the three points, A(2,3), B (3,-
1) and C(-2,1) using the linear systems method.

. Create the system of three equations in three unknowns by substitut-

ing each of the given points into the general equation for a circle:

2D+3E+F=-13
3D-E+F=-10
—-2D+E+F=-5

Openthe'=io 1142 1 1 m=us.., application; enter the matrix of co-
efficients: ()SOLVE)(a]a)(ENTER)(>IMATRIX](2)(ENTER)(3)(ENTER)
(v)(3) (ENTER) (1)+/=) (ENTER) (1) (ENTER) (2] +/=) (ENTER) 1)
(ENTER)(1)(ENTER](ENTER).

Highlight the E: field and enter the vector of constants: (V)(&]L])
(1B8)F/)(SPC) (1) 0J+/-)(SPC) (B +/-) (ENTER).

Solve the linear system: pqi&\{3.

Result: [ -1.44444 -1.11111 -6.77778 ]
Optional. Although you have already computed the three missing
coefficients, you can put them into proper general form by convert-
ing the resulting vector to rational values using A+ and prepending
the first three coefficients, { 1 0 1 }: (CANCEL)(EVAL)(VAR](then (NXT)
or (&) as needed) ) (1)(SPS)(0)(SPC) (1) (ENTER)
(SWAP)(#).

Result: { 1 @ 1 '-(13-9)' '-(18-9)"
'—(61-9)" 3

Optional. Make the coefficients integral by multiplying through by

9 and collecting: COLCTH
Result: ©+ 9 B 9 -13 -9,99939999999 -]

As in this case, you may see a round-off error when creating integral
coefficients. So the circle is 9x> +9y* —13x —10y—61=0.
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Points and Circles

Given a circle with center at (h, k) and aradius r, and a point (x,y), there is an easy
way to determine whether or not the point lies on the interior of the circle, exterior
of the circle, or on the circle itself:

e If(x-
e If(x-
e If(x-

Example:

h)* +(y—k)* < r?, then the point lies on the interior of the circle.
h)* +(y—k)* = r*, then the point lies on the circle itself.

h)* +(y—k)* > r?, then the point lies on the exterior of the circle.

Does the point (-1, 2) lie in the exterior of, in the interior of, or on
the circle 3x* +3y* —4x+6y—-10=0?

. Enter the circle in general form (as a list of coefficients): (&5]{})

(sPc)(0)(sPc](3)(sPC)(4)+/-)(sPC)(8)(SPC)(1] 0 J+/=)(ENTER).
Convert it to center-radius form: G+LCIR}

3. Square the radius: (&]X?).

254

Swap the center into level 1, enter the point as a complex number,
and subtract from the center. Note that this is essentially the same
as finding the vector between the center and the point: (SWAP)(&] )

(1)+/=)(sPC)(2)(ENTER[=).
Find the square of the absolute value of the previous result:

(vx) KT BT ()52, Result: 11.777778

Compare this result with the previous one (on level 2). Level 1 is
larger, indicating that the point lies outside of the circle.
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Ellipses

An ellipse is the set of points in a plane whose distances from two fixed points in
the plane have a constant sum. An ellipse is a more general version of a circle in
thatithas two axes of different lengths—the major and minor axes, the major axis
being the longer of the two—rather than a single radius.

The ellipse has four parameters:

* The center (h.k)located at the midpoint joining the two fixed points, or foci,
defining the ellipse.

* The semimajor (a)—half of the length of the major axis.

* Either the semiminor (b)—half of the length of the minor axis—or the
eccentricity (e), a ratio of the distance from the center to either foci com-
pared with the semimajor. Either of these parameters will do, because they
are related to each other by the following: b* = a*(1-e¢?)

» The angle of orientation (6) between the major axis and the x-axis.

The standard equation for an ellipse assumes that the angle of orientation is zero:

(x=h)’  (y=k) _,
2 2 -
a b

However, the general equation for an ellipse makes no assumption about the angle
of orientation and is used whenever there is some rotation of the ellipse:

Ax* +Bxy+Cy*+Dx+Ey+F=0

where neither A nor C is zero, A # C, and AC > 0. The angle of orientation is:

1 B
6=Lian (___)
2 A-C
Note that whenever the B-coefficient is zero, the angle of orientation is zero, and
so the standard equation can be used as well.

The programs G*ELF and ELF+[: (see pages 283 and 281, respectively) convert
between the general equation of an ellipse and the set of four parameters: center,
semimajor, semiminor, and angle of orientation. Here are some examples....
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Example:

Example:

256

Find and plot the general equation of an ellipse centered at (-2,3),
with semiaxes of 5 and 3 and an angle of orientation is 30°.

. Make sure that you’re in degree mode (¢5]RAD), if necessary), and

enter the center of the ellipse: (&5)0)(2)+/=)(SPC)(3)(ENTER).

. Enter the list of parameters: (&9)]{})(5)(SPC)(3)(SPC)(3)0](ENTER).
3. Find the coefficients of the equation: (a)o)(E[L)(P))~+)G)

or (then or as needed) {4834 Result:
£ .6198 -.6593 1 5,56 -5.2282 1.7142

. Plot the ellipse: ( or as needed) 8], |58,

200k s | | ENT JEAMIL

Find the center, semimajor, and eccentricity of the following ellipse:

25x* +9y* —100x +54y—-44=0

. Enter the ellipse as a list of coefficients: &l

(©JsPS)(9) (sPS) (1 o) o) +/-)(sPC)(5J4)(SPC) (4] 4T+/=) (ENTER).

. Find the ellipse parameters: @m.ﬂ.ﬂ [E][ENTER ) or (VAR)

(NXT) or (9)PREV) as needed) . Result: #: [ L'q -3

l: £ 3582
The center of the ellipse is (2,-3) and the semimajor is 5—the larger
of the first two elements in the level 1 list.

. Compute the eccentricity. Itis the square root of 1 minus the square

of the ratio of semiminor to semimajor: LIZT |DEJ* [0
B (H/X). Result: .o
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In the introduction to this chapter (page 243), the first definition of conic sections
given was that of a planar curve formed by the set of all points such that, for each
point, its distance from a fixed point (the focus) divided by its distance from a fixed
line (the directrix) is a constant € (the eccentricity).

The ellipse actually has two foci and two directrixes, as the diagram shows below:

The foci, F, and F,, are each a distance equal to the product of the semimajor, a,
and the eccentricity, €. The directrixes, D, and D,, are parallel to the minor axis
and are a distance equal to the quotient of the semimajor and the eccentricity.

Example:

Ellipses

Find the coordinates of the vertices and foci of the ellipse in the
previous example: 25x> +9y> —100x +54y—44=0

. Find the basic parameters for the ellipse. From the previous exam-

ple, you know that the center is located at (2,-3), the semimajor is 5,
the eccentricity is 0.8, and the major axis runs vertically (i.e. paral-
lel to the y-axis).

The vertices are located along the major axis at a distance of 5 on
either side of the center. Thus, vary the y-coordinate by +5: The
vertices are (2, 2) and (2,-8).

The foci are also on the major axis at a distance equal to the product
of the semimajor and the eccentricity. Thus the y-coordinate must
be adjusted by (5)(0.8) or +4: The foci are (2,1) and (2,-7).
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Example:

Example:
1.
2.
3.
258

Find the equation of an ellipse with an eccentricity of 2/3 and the line
x =9 is one directrix with its corresponding focus at (4,0).

. Analyze the giveninformation. The directrix is a vertical line, so the

major axis is horizontal. The focus is located on the x-axis, so the
major axis is the x-axis. If the vertex is a distance a from the center
(h,0), then the distance from the directrix to the center is a/e or 1.5a
and the distance from the focus to the center is ae or .67a.

This leads to two equations in two variables: 1.5a = 9-h
(23)a=4-h

Set both equations equal to / and solve for a ,then backsolve for A.
Result: a=6;h=0

3. Enter the coordinates of the center: (¢5)())0)(SPC])(0)(ENTER).

Enter a, make a copy, and enter the eccentricity: (6 JENTER[ENTER
ENTER)(3]+).

. Compute the semiminor, b: (]X3)(1]=)(+/=)(SWAP) (& )X?)(X) ().

Result: 4. 47135955

ed) [HEH Result: | 555555551:- H1H#8H -'ﬁ +.

Multiplying through by 9 to make the coefficients all integers gives
the ellipse 5x*> +9y* —180=0

2 2

Find the eccentricity and directrixes of the ellipse R .

16

Analyze the ellipse. The center is the origin and the major axis is the
y-axis (because b?, 16, is greater than a2, 7).

Enter the eccentrlclty (1]ENTER](7)(ENTER) (1] 6) (ENTER) (=) (=) ().

Result: .o

The directrixes are y =+ b/e. So, compute b/e: (1)6)(x)(SWAP)(=.

Result: 7. 333, Thus the directrixes are y = il—f—.
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Parabolas

A parabola is the set of points in a plane that are equidistant from a given fixed
point (focus) and fixed line (directrix) in the plane. The eccentricity of a parabola
is always 1. The vertex is the point of the parabola closest to the directrix.

Parabolas are controlled by three parameters:

* The location of the vertex (h,k);

» The signed distance between the focus and the vertex (p).;

» The angle of orientation (6)—the angle between the axis of symmetry and
the appropriate reference axis (either the y- or x-axis).

The standard form of the equation of a parabola with an axis of symmetry parallel
to the y-axis and with its vertex at (h,k) is (x — h)*> = 4p(y — k). If the parabola
has an axis of symmetry parallel to the x-axis, the equationis (y — k)> = 4 p(x — h).
The absence of the second-degree term in either x or y (but not both) is a charac-
teristic of the parabola. Indeed, any second-degree polynomial of one variable de-
fines a parabola.

A conic given in general form, Ax* + Bxy + Cy*> + Dx + Ey+ F = 0, isaparabola
if B> —4AC = 0. The general form is used whenever the angle of orientation is
nonzero.
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The programs 3*FEL and FEL+G (see pages 283 and 290, respectively) convert
between the general equation and the set of three parameters. L+FEL takes the
list of coefficients representing a general conic from level 1 and returns the coord-
inates of the vertex to level 2 and a list containing the p parameter and the angle
of orientation to level 1. The FBL*[: takes a complex number representing the
vertex from level 2 and a two-element list containing the p parameter and the an-
gle of orientation (in degrees) from level 1 and returns the list of general conic co-
efficients to level 1.

Example: Find the focus of the parabola 2x* —3x+5y+4=0

1. Enter the parabola in general form: (&){3)(2)(SPC)(0)(SPC)(0](SPC)
(3)+/5)(sPC)(5)(SPC)(4)(ENTER).

2. Find the parameters: (@] o]G]>]=]PJBJLJ(ENTER)or (VAR ((NXT)or
()PREV) as needed) [EEAIA. Result: ¢ L.y =.573)
1 L -.625 B

3. The parabola has an axis parallel to the y-axis, and because the p
parameter is negative, it opens downward. Thus the y-coordinate of
the focus differs by p (it will be more negative) from that of the ver-
tex. Thus the focus is (.75,-1.2).

Example: Find the general equation of the parabola with the vertex at (-2,-2)
and the line y = -3 as its directrix.

1. Enter the vertex: (&]))(2]+/-)(SPC)(2)(+/=)(ENTER).
2. The directrix is horizontal and below the vertex: the parabola opens

upwards; p=-2—-3=1. The parameterlist: ((]{ 3] 1)(SPC)(0)([ENTER).

3. Forthe general equation: (o] o] P)B)L)(=>]=]G)ENTER)or (VAR) (NXT)
or (G)PREV) as needed) [dI%d. Result: T H B 1 -4 4 -4

Note that, by default, the PEL+[: program assumes that the parabolic axis is paral-
lel to the x-axis (i.e. thatit’s second-degree in y). To convert it to the parabola with
the axis parallel to the y-axis, swap the A- and C-coefficients with each other and
the D- and E-coefficients with each other, makingitt 1 H H 4 -4 -4 1.
Thus the equation for the parabola is x*> +4x—4y—4=0
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Hyperbolas

A hyperbola is the set of points in a plane whose distances from two fixed points
in the plane have a constant difference. A hyperbola has two foci, located a dis-
tance c on either side of the center, along the main axis of the hyperbola. Associ-
ated with each focus is a vertex, located at a distance a on either side of the center.
The hyperbola has four parameters:

» The center (h,k)located at the midpoint joining the two fixed points, or foci,
defining the hyperbola.

* The distance between center and each vertex (a).
* Any one of the following:

— The distance between center and each focus (c).

— The parameter (b), computed as b=+/c> —a*.
2
— The eccentricity (e), equal to the ratio < and to 4/1+ —l%
\ a

a
* The angle of orientation (6) between the main axis and the x-axis.

The standard hyperbola equation assumes that the angle of orientation is zero:

(x-'h)2 _(y_k)2 =1
a’ b’

However, the general equation for a hyperbola makes no assumption about the
angle of orientation and is used whenever there is some rotation of the hyperbola:

Ax* +Bxy+Cy* +Dx+Ey+F=0

where B> —4AC > 0. The angle of orientation is 8 = %tan‘1 (Z—B;C—)

Note that whenever the B-coefficient is zero, the angle of orientation is zero and
then the standard equation can be used as well.

The programs G*H''F and HYF+(3 (see pages 283 and 284, respectively) convert
between the general equation of a hyperbola and the set of 4 parameters: center,
the a parameter, b parameter, and orientation angle. Here are some examples.
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H'F+[3 takes a complex number representing the center, and a list containing the
a parameter, the b parameter and orientation angle (in degrees), and converts it
to a list of the six coefficients of the general equation. 3*H''F' does the reverse.

Example:

Find and plot the general equation of a hyperbola centered at (-2,3),
with an a of 5, a b of 3, and angle of orientation of 30°.

1. Enter the center: (&9)0)(2)+/=)(SPC)(3](ENTER).

Enter the list of parameters: (&]{} [SPC][SPC)[ENTER].

3. The general equation: («)]H] Y P )= G)ENTER)or (VAR) [LkH skl

Example:
1
2.
3.
262

Lo

Result (to 3 places): + .HIH 1.7E5 -1 -E. I-Fn:.
S 964 25,891 1

The hyperbola: 0.03x> +1.78xy — y* —2.66x +8.96y —25.09 =0
Plot the conic: (use or as needed) 1] ;T

A
T

zooMfetn] [ [EDIT

Find the center and eccentricity of the following hyperbola:

25x> —9y* —100x +54y—-44=0

. Enterthe coefﬁcients: [SPC]@[SPC]@H—][SPC]

(+/-)(sPS)(s4)(sPC)(4)4)+/-) ENTER).
Find the parameters: (] a]G][~JH]Y]P) m or (VARJ|

ReSUlt I_ : |__q -I

1 £ 1,587 Z.646 B

Find the eccentricity: ([EVAL)(DROP)&)STACK) Il (€4 )?) (SWAP)
QXY H)(SWAP)(=). Result: 1.944

7. CoNnIC SECTIONS



In the introduction to this chapter (page 243), the first definition of conic sections
given was that of a planar curve formed by the set of all points such that, for each
point, its distance from a fixed point (the focus) divided by its distance from a fixed
line (the directrix) is a constant € (the eccentricity).

Like the ellipse, the hyperbola has two foci and two directrixes. Unlike the ellipse,
the hyperbola has two discontinuous branches constrained by two asymptotes.
For a hyperbola in standard orientation (i.e. 8= 0),* the directrix equations are

x=ht ﬁ, and the equations of the asymptotes are bx + ay — (bh + ak) = 0.
e

Example: Find the asymptotes and foci of the hyperbola
25x> —9y* —100x +54y—44=0

1. Enter the hyperbola as a list of coefficients and compute its param-

eters: (JD(2]5)(sPC)(0)(SPA)(]+/)(SPS)(1) o) o] +/-)(sPA)(5]4)
(SPC)(4)4)+/=)(ENTER) (VAR EEkEa 1kl

Result: oo L
1= 1 1.587 .66 B &
2. Find the eccentricity: (EVAL)DROP))STACK) I (X3 (SWAP)
X +HX)(SWAP)(=). Result: 1.3

3. Find the directrixes: (1) -)5)8)7)=)(/x)(ENTER] 2 JENTER[SWAP)(—)
(SWAP)(2]+). Result: «'* 1.133
1: 2817
Thus the directrixes are x =1.183 and x = 2.817.

4. Sincea=1.587,b=2.646, h=2, and k = 3, the asymptotes (to three
places) are: 2.646x + 1.587y + 10.054 =0 and
2.646x — 1.587y + 0.529 = 0.

*It is conventional to denote @with respect to the x-axis, but note that the programs HP+{z and G*HYP can handle
orientation with respect to the y-axis. Specifically, for the purposes of these programs: The values for a and b
will be negative if the y-axis is being used as the reference axis for a rotation (or if the foci are on the y-axis). A
hyperbola oriented with reference to the y-axis would be of the form (y- k)2 (x— h)2 .

a? b?
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Example:
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Find the equation of a hyperbola with an eccentricity of 1.3, the line
x =9 as one directrix, and the corresponding focus at (4,0).

. Analyze the given information. Because the directrix is a vertical

line, you know that the major axis is horizontal. Because the focus
is located on the x-axis, you know that the major axis is the x-axis.
If the vertex is a distance a from the center (4,0), then the distance
from the directrix to the center is a/e or .769a and the distance from
the focus to the center is ae or 1.3a. The directrix (x =9) is between
the center (4,0) and focus (4,0) in a hyperbola, so 4 <9 < h.

These facts lead to two equations in two variables:

769a=h—-9 or h—.769a=9
13a=h-4 or h-13a=4

Solve the set of equations simultaneously: (<]t 1)(9)(SPC)(4)(ENTER)
([2MATRIX)(1)(ENTER) (1) - [3)*+/=) (/) ENTER) (W) (D ENTER) (1) - 3

(+/=)(ENTER)(ENTER)(=).
Result: [ 16,246358 9, 42059 ]
Thus h = 16.25 and a = 9.42.

Enter the coordinates of center (h,0): VECTR|
‘

Swap a into level one, make two copies and enter the eccentricity:

(SWAP)(ENTER)(ENTER] 1 ] - J 3) ENTER).

Compute the parameter b: SWAP) (X2 x)(SWAPJX3)(—)
(). Result: . 35H3

Enter H as the angle of rotation, and assemble the parameters into a
list: (0)ENTER)(3)(PRe) N ELH ETHE.

Compute the coefficients of the hyperbola: (then or (&)
as needed) (IR ra.

Result: © .69 B -1 -Z2. 42 B 12R.89 3
Then multiplying through by 100 to make the coefficients all inte-
gers gives the hyperbola 69x> —100y* —2242x +12089 = 0.

iSwAP)(0)

i

7. CoNnIc SECTIONS



Lines and Conics

Points of Intersection

A line and a conic that share the same plane have one of three possible rela-
tionships:

e The line intersects the conic in two points.

* The line is tangent to the conic—intersecting it in one point.

* The line doesn’t intersect the conic at all.
The program LCUM™ (see page 285) determines the point(s) of intersection, if any,
ofaconic andaline. Ittakes the conic as alist of its general-form coefficients from
level 2 and the line in slope-intercept form from level 1 and returns a list to level

1. The result list will have two, one, or zero points (expressed as complex num-
bers), depending upon the relationship of line and conic.

The following examples illustrate the use of LCUM™ with a variety of conics:

Example: Find the points, if any, where the line y = 4x — 2 intersects the circle
x*+y?-25=0.

1. Enter the circle in general form (as a list of coefficients): (G]{3})(1)
(SPC)(0)(SP)(D)(SPA)(@)(SPCS)(0)(SPC) (2] 5 )+/-) (ENTER).

2. Enter the line: ([ oJa)Y]a = 4X[x)a)X)5)(2) ENTER).
3. Find the points of intersection, if they exist, by using LCINT:
(L)(CJOJN)?)(ENTER) or (VAR] (NXT) or ((§]PREV) as needed) [HH1]: .
Result: + G-.7363696/31508, -4, 9424787 1263)
C1LE7 724614870, 4. 711843900}
The line is a secant—intersecting the circle at the two points whose
coordinates are listed on level 1.
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Example:

Find the points of intersection, if any, of the line y = x — 4 and the
ellipse 16x*> —4xy +9y> —64x+54y—26=0.

. Enter the conic as alist of coefficients: ((J{ 3)(1)6)(SPC)(4]+/=)(SPC)

(9)(sPc)(8]4)+/-)(sPC)(5) 4)(SPC)(2] 6 ) +/-)[ENTER).
Enter the line: (*)eJa]Y)ea)=)(@)a)X[=[4)[ENTER).

3. Execute LCINT: (VAR) (then (NXT) or (§)PREV) as needed) [HHI[TH.

Example:

Result: £ (-1.H999143, -3, B9991H)
(4. 242768, (2427680 ¥

Find the points of intersection, if any, of the line y = x — 4 and the
parabola 9y® —64x + 54y —26=0.

. Enterthe conic as alist of coefficients: ((]{ 3)(0)(SPC)(0)(SPC)(9)(SPC)

(6J4I+/-)(sPc)(s)4)(sPC) (2] 6 I+/-) ENTER)
Enter the line: (JeJa)V)&[=)(JaXEH@)ENTER)

3. Execute LCOMNT: (VAR) (then (NXT) or (§)PREV) as needed) [HHi[TH.

Example:

Result: { [-1.HE%956, -5, BE956)

(16, 18668, 6. 1868650 &

Find the points of intersection, if any, of the line y = x — 4 and the
hyperbola 16x> —4xy—9y* —64x +54y—-26=0.

. Enter the conic as alist of coefficients: (&]{ 3)(1]6)(SPC)(4]+/=)(SPC)

(9)*/9)(5PS)(6)2)+/=)(SPC)(5)2)(SPC) (2] 6*/=) ENTER).
Enter the line: (] oJq)Y)&)=)(@Ja)X)(5)(4)[ENTER).

3. Execute LCINT: (VAR) (then (NXT) or as needed) [Hi[7H.
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Result: £ (-2H,Z52A19, -34. 25368193)
(4. 233019, . 2530190 &

7. CoNnIC SECTIONS



Tangents and Normals

Often itis useful to compute the equation of the line that is tangent to a given conic
ata given point. Or perhaps it is the equation of the normal—the line perpendicu-
lar to the tangent—at the given point that you require. The relationship between
tangent and normal is illustrated here with a circle:

tangent

normal

The program, THZOM (see page 314) computes the equations of the normal and
tangent lines at a given point on a given conic. TMZM accepts any conic in co-
ordinate list form from level 2 and a point on the conic (as a complex number)
from level 1 and returns labelled equations for the tangent and normal. Note that
THEOM does not check to be sure that the given point actually lies on the conic and
will give unreliable results if it doesn’t.

The following examples involve tangents and normals of conics. Many, but not
all, illustrate the use of THCIM.

Example: On the circle 4x*> +4y* —3x-6y—17=0, find equation of the
tangent line through the point (-1,-1).
1. Enter the circle as alist of coefficients: (&]{ })(4]SPC)(0]sPC)(4)SPC)
BI*EPA ()PP F/IENTER).
2. Enter the point on the circle: (&]())(1)+/=)(SPC)(1)+/=)(ENTER).
3. Execute THCIIN: (then or as needed) [ITTEH.

Lo o e By |

Result: ¢f Mormal: ‘'g=H,Z7 73+, 8787 dew!
1: Tamgent: 'g=-1.78571-H, 7857 1%'
25 11

Applying *Q to the tangent equation gives y = i ﬁx.

Lines and Conics 267



Conversely, you may also find the equation of a circle if you know the location
of its center and a tangent. The only missing piece of information is the radius—
which is nothing more than the distance from the center point to the tangent line.

Example:

Example:

268

Find equation of circle centered at (-1, 1) that is tangent to the line,
x+2y-4=0.

. Enter the center, make a copy, and convert it to a vector: (¢5]())

(#/9)(SPC)(1)ENTER)ENTER)MTH)(NXT) LA R H VECTR
EXTE. (Caution: Ifflag-19is set, *M gives a complex number.)

. Enter the line; convert to array form: (' o & X)(+H)(2)X)(«Jq) Y]

(9)&=)(0)ENTER)(VAR) (then (NXT) or (9 PREV) as needed) BN,

. Find the distance to the line, using [t oL (see page 189 in Chapter

6): (NXT)or (9)PREV) as needed) HEITH. Result: 1.34164H"36

. Convertto a general equation for the circle—and clear any fractional

coefficients—via multiplication (use (NXT) or ((§)PREV) as needed):

8|41 (5) () (1) (ENTER) (9]« ) (& )>NUM)(ENTER)(PRG) E M =1
AT ITHE. Result: € = H 5 18 -1H 1

Find equation of the normal to the circle with a center at (2,-1) at the
point (-1,3). Then find the equation of the circle itself.

. Foracircle, note that the normal of any point is aline containing both

the point and the center of the circle. This factallows you to compute
the slope of the normal, which is the slope of the line containing the

points given: - . +/—] (sPC) . [ENTER) - . (sPc)

';U
(9]
72]
C-'
—
Q-F
[a—
L ]

(]
I

[m
q'_T"h
n '.
T
T

Qululululululula Thus the normal isy=—%x+§.

. Compute the radius of the circle by finding the absolute value of the

difference between the position vectors of the center of the circle and
the given point. Swap the copy of the difference vector into level 1

find its length: I3 Result: o
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Example:

Example:

Via the circle center, find its equation: (()0)(2)(SPC)(1)(+/=)[ENTER)
W4 Result: © 1 H 1 '—4' 2 '-Z@' 3

Thus, the equation of the circle is x> + y* —4x+2y-20=0.

Compute the equations of the lines normal and tangent to the ellipse
16x* —4xy+9y*> —64x + 54y —26 = 0, at the point where x= 1 and
y is positive.

. Enter the symbolic ellipse: (' ] 1] 6 [X)(«J)X)YY(2)(=)(4)X)(e)e)

MXPaVHEX LGP EEIUXaXHE4IX)
(Ja V) (=2)6)ENTER)

Store 1 into %' and solve for '4": (1) ] X)STO)( Jo ) Y)
EnTER)(D0) ) SOVEMETTEIETTRM. Result: 1. 21943571627
Convert the previous result into a complex number representing the
point of tangency: (1)(ENTER)(SWAP)(MTH)(NXT) L] | B Bl i el
Enter the ellipse as a list of coefficients: (&]{})
(SPC)(9)(sPo)(6)4)+/-)(sPC)(5 ) 4)(SPC)(2) 6 J+/-) ENTER).
Compute the tangent and normal to the ellipse at the given point:
(then or (9JPREV) as needed) [l 15§
Result (4 places): & Mormal: 'u=3. 1642-1, 99497
1: Tangent s 'g=H. MHIE+H, D129

Find the equations of the lines normal and tangent to the parabola
9y* —64x + 54y —26 =0, at the point where x= 1 and y is positive.

. Compute the y-coordinate of the point of tangency: (' J9)X)(eJ&)

Y2 HE XX HE DX ea]Y)(E)(2]6) ENTER) (1)
(JaXETO( e V) ENTer) (o) sowe) Tl TR,
Result: 1. 35H3989425¢
Convert the previous result into a complex number representing the

point of tangency: (1)(ENTER)(SWAP)MTH)(NXT) Lol s T8 B .

. Enter the parabola as a list of coefficients: (<]t H(0)(SPc)0](SPC)(9)

(spc)(6)4)+/=)(SPC)(5] 4)(sPC)(2) 6)+/=)(ENTER).
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4. Compute the tangent and normal to the parabola at the given point:

Example:

270

(then or as needed) Qi 191}
Result (4 places): 2% Mormals 'y=2.5848-1. 2255
15 Tangent: 'g=H, 2432+0, 8157

Find the equations of the lines normal and tangent to the hyperbola
16x> —9y® —64x + 54y —26 =0, at the point where x =2 and y is
positive.

. Compute the y-coordinate of the point of tangency: ('] 1]6)(X)(e)

XX BDEX (ST EE AX X (HE 4 X)
PO BTE R TaE ey BT
) CoVvE I TEMETTHE. Result: 2. HHHRBHEAHAR]

Convert the previous result into a complex number representing the

point of tangency: (2)ENTER)(SWAP)MTH)(NXT) L Sl Bl BT sl

. Enter the hyperbola as a list of coefficients: (&]{ })

(eJ+/=)(sPC)(6)4)*+/-)(SPC)(5 1 4)(SPC) (2] 6)+/-)(ENTER).
Compute the tangent and normal to the hyperbola at the given point:

(then (NXT) or (§)PREV) as needed) g Lo}
Result (to 3 places):

22 Mormals  'y=1.HEEESEE-1, BHEESEE.. !
1: Tangent: 'y=2.0EH"

Note that the tangent is a horizontal line, so the normal is a vertical
line (i.e. with an equation such as x = constant). The line reported
by the TMCUM program here is one method the HP 48 uses to report
a vertical line as the result of a computation.
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Translating and Rotating Conics

There are occasions where you may wish to rotate or translate a conic. The three
programs, RITCOM, C+5TD and TRMCON, make it easy to do this.

ROTCOM (see page 299) takes a conic as a list of general-form coefficients from
level 2 and an angle of rotation from level 1. Be sure to match the angle on level
1 with the current angle mode. FJTCUM returns a list of coefficients for the trans-
formed conic.

Example:

Rotate the conic 9x* +4y* +36x — 8y +4 = 0 through an angle of
50°, and plot the result.

. Enterthe conic as alist of coefficients: (&4 ){ }[9)(SPC)(0)(SPC)(4)(SPC)

(3)6)(SPS)(8)+/=)(SPC)(a) [ENTER).

. Make sure that you’re in degree mode (press (€9JRAD), if necessary)

and then enter the angle: ENTER).

. Execute BOTCOM: (VAR) (then [NXT or (9)PREV) as needed) [TEH1].

Pl T= Tl 120 B W W i 2

I
I
3.235993 576858 )

Result (to 6 places): ©

. Plot the rotated conic: (VAR (NXT) or (§)PREV) as needed) L8], [.

[zootfoia] [ [EWT
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Example:

1.

Using the program C+5T0 (see page 280 for the listing), rotate the
conic 9x*> —6xy—4y* +36x—8y+4 =0 to standard orientation,
and plot the result.

Enter the conic as a list of coefficients: (G)3(9)(sPc)(6)
(+/9)(SPC)(4)(#/9)(SPC)(3) 6)(SPC)(8)(+/=)(SPC)(4 JENTER).

Convert the conic to standard orientation: (INXT) or (qJPREV
as needed) [®

Result: © 9 |:F.' 49 B -4.6089 26,8781 - €969 4 &

. Plot the rotated conic: ( or ()PREV] as needed) o1l 138

v 7

dpr—t

TREMCOM (see page 316) takes a conic as a list of general-form coefficients from
level 2 and a two-dimensional translation vector from level 1, returning a list of
coefficients for the translated conic.

Example:
1.
2.
3.
4.
272

Translate the conic x*> —2y+8x +10 = 0 along the vector [3 -4 ].

Enter the conic as a list of coefficients: (<IT)(1)(sPC)(0)
(spc)(0)(sPc)(8)(SPC)(2]+/=)(SPC)(1] 0 JENTER).

Enter the translation vector: (] 1)(3)(SPC)(4)+/—)(ENTER).

Translate the conic: (VAR)(then(NXT)or (65 ]PREV)as needed) i [=.
Result: {1 B B & - -13 }

Plot the translated conic: (NXT)or ifneeded) [Tl
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Example:

zootfora] [ [ ENT

Translate the conic 3x* +3y® +6x —1=0 so that it is centered on
the origin.

. Enter the conic as alist of coefficients and then make an extra copy:

(CANCEL)& ]I 3)(sPC)(0)(SPC)(3)(SPC)(6)(SPC)(0)(SPC)(1)+/-)[ENTER)
(ENTER).

Note that the conic is a circle (A = C). Find the center: (NXT)
or (§)PREV) as needed) [FEJHI («). Result: (-1, H)

Take the negative of the center and make it a translation vector:

(v () R T (v (TS BT, Resute: [ 1 B ]

(Caution: If flag -19 is set, *\/¥ gives a complex number.)

. Translate the conic: (VAR)(then (NXT) or (] PREV) as needed) R I

Resul: © 3 H 3 H B -4 1

. Plotthe translated conic: (NxT)or ifneeded) 1], 1.

zoOt o) ] EDIT
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P. PROGRAM LISTINGS

Before You Key In or Use These Programs

This Appendix contains a listing of all of the programs referred to throughout this
book, sorted alphabetically by name (numerals after letters and special symbols
ignored), with text page references noted opposite the name. To use a program
by invoking its name, you must have it properly stored—in that name—within the
current directory path. (Note: If you have an HP 48G, you won’t be able to fit
all of these programs into the 32K storage at once; you’ll need to pick and choose.)

As with all HP 48 variables, you must be careful to avoid name conflicts with other
variables in the current directory path. One suggestion: Put the programs into a
subdirectory, then create a work space below that, with custom menus to help you
organize and access the programs (for more about custom menus, see your user’s
manual or Grapevine Publications’ Easy Course in Using and Programming the
HP 48G/GX). This lets you work efficiently without corrupting your programs:

{ HOME }mllnm_n
{ HOME ALG } ﬂn

(store all the programs here)

{ HOME ALG KEE }[ﬂﬂ[ﬁﬁlﬁlﬂm

(create your custom menus and
do all of your calculating here)

If you have a bit of programming aptitude, the programs can be modified to suit
your tastes and/or needs. Most of them have not been rigorously groomed for
error-trapping, speed, or memory efficiency; they are designed simply to work
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well with the examples in this course and with related work. Also, you may wish
to modify the input or output of the programs. For example, geometric points may
be expressed as either complex numbers or as two-element vectors, depending on
the context in which you’re working.

Whether you use these programs as is or otherwise, above all you should practice
using them before needing them in an important situation. You must understand
how they work, how fast are they, how to interpret their outputs, and the nature
of their limitations (special cases of functions or flag settings).

Of course, each program is designed to work flawlessly, but bugs (and typos) are,
unfortunately, facts of life with software and other creative works. If you have
a problem with a program, you may contact the publisher, but first, check again:

* Have you correctly entered the program(s)? Some items to check:

The program size (bytes) and checksum must match those shown. For
example, the program AFUL"Y, shown on the next page, must have exactly
55 bytes, with a checksum of #"HE=h. To calculate these test numbers,
enter and name (i.e. store) the program. Then put its name (within ' '

marks) onto the stack and press (€9 MEMORY) [ I3

If your byte-count/checksum results are different than those prescribed,
you have a typo somewhere in your program. Common errors include:

Using uppercase vs. lowercase letters (yes, this is significant);
Miskeying special characters (use the tool);

— STOvs. 5T 1 vs. 1,0 vs. B, or L ¥ vs. L2 vs. []. Be careful!

— Using ' ' vs.". Quotes (") are on the (=)=) key—don’t use (" ).

— Putting spaces (or carriage returns) where they should notbe. Space
characters within " " are significant—count ’em if necessary (the
uniform spacing of the program font makes this easy); all other in-
dents, line breaks, etc., represent single spaces. These program list-
ings are shown with indents and line breaks for your eyes only; the
calculator does not use them. To it, a program is simply a series of
objects, separated by single spaces, all on one long line; even the
indents and line breaks in the HP 48 display when you edit are just

*All checksums are binary integers. Those given in this book are all in HEX notation with a 64-bit wordsize. It

is very convenient, therefore, to adjust your machine to that setting: Press ERZE | HEX (ToR@ =TH:)
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for your benefit. So ignore indents, and where you see line breaks,

just treat those as single spaces.

Some programs use (‘“call”’) other programs; the called programs
must also be properly keyed in and named. Such instances appear
here in Boldface Italics. For example, the program AFIILY, shown
below, calls the program EEITS, so you must also key in EEOOTS

before APOLY will run.

* Are you correctly using the program? Double-check the types and order
of your inputs and the types and ranges of your graph settings. Note that
each program listing shows the required order and types of inputs (if any)

AFOLY

276

(120)

Analyze a Polynomial
288 bytes #7RE3h
3: 3:  number of sign changes for p and —p
2: 2: endpoints of range of real roots
1: polynomial ====> 1:  polynomial

« [UP SIZE
*nNnsp
%

1 GET 8 ROT DUP
9

3

ln
FOR i 9 DUP j GET -1 n j - " = j SWAP PUT 'g' STN

MERT p g9 2 »LIST 1
« 0BJ+ 1 GET =+LIST SIGH
# <+ abh
« JFab+8==2aB# AN

THEM s 1 + 's' 5T0
END
IF b
THEN b
ELSE a
END

&
» STREAM DROP s A 's' 5T0
»  DOLIST "Sians" +TRG p RROOTS 1
« IF OUP TYPE
THEM DROP
END
»  DOLIST
IF DUP SIZE 2 <
THEM OUP 1 GET +
END
OUP = MIM = STREAM FLOOR 1 - SWAP « MAR
STREAM CEIL 1 + 2 »LIST "Range" »THG p

*
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H':"E! Rationalize an Array (143)
211 bytes #30E2h

1: array ====> 1: symbolic array with rational elements

% IPI.:ELF -3 CF SWAP 0BJ+ 0BJ=
THEM 1 SWAP
END 9 FIX
+ oW col
% 1 row
FOR k
1 col START 3 FIX =@ 5TD col ROLLD
MEWT ol =LIST ol row k - % k + ROLLD
HEXT
IF row 1 >
THEN row =LIST
EMD SWAP STOF

w

I I F:':"L'l Convert Circle Parameters to General Form (250)
97 bytes #4B7ER
2: (hk) 2:
1: radius ====> 1:. {ABCDEF}
-
« 1 B 1 c -2 % C+R cC+R SO SWAP S0 + r S - 6 +LIST 5
FIk =R 5TD
3’ -~
LHF":":; Composite of Two Functions (22)
7l bytes #FADDh
3 f 3:
2. g :
1: variable name ====> 1: fog
% + f gy
« -3 CF g w 570 f EVAL v PURGE
*

]

*** Be sure to read the instructions on pages 274-275 before keying in these programs. *** 277



|:-|:|FF":.TF: Find Cofactor Matrix (154)
284 bytes #7330h

1: square matrix ====> 1: cofactor matrix

& []LIP DUP SIZE OBJ+ DROP

+cof mroc
« 1 r
FOR i 1 c
FOR j m i j 3 ROLLD ROW- DROP SWAP COL- DROP DET
1 ij+ ™= 1 ARRY cof i j 2 =LIST ROT REPL
'cof ' 5D
NERT
MERT cof
»
»
LDL I H!J Test for Collinearity of Point and Line (186)
187 bytes #A2Bch
2: direction vector of line :
1: point (in vector form) ====> 1: 1 if collinear; O if not
« 3 ROW+

IF DUP SIZE 2 GET 2 ==
THEN [ B8 B B 1 3 COL+
END +ROW DROP
rl PZ P3
« pl pe2 - DUP BBS
pl p3 - DUP ABS ROT =
3 ROLLD DOT ABS

W

&

I..:UHF'LT Plot Conic From General Form (248)
1828 bytes #3AEEh
1: {ABCDEF} ====> 1:
« -3 CF { PICT PPAR } PURGE DUP DBJ+ DROP
+conabocdef
« IF b
THEN b a ATAN 2 -
ELSE B
END
o
« o CO5 50 a # oo COS o SIND # % + o SIN SO c = +
oo SIN S0 & # o SIN o COS b # + - o COS SQ C * +
oo COS d # a0 SIN e * + o CO5 & * o SIN J * -
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* ap cp de oep

c

F ap

THEN dp MEG ap 2 + ~

ELSE ep S0 4 cp £ * 2= - 4 cp dp * =~ dp NEG
4 cp o s 20 % 4+

EHO

IF ZF

THEN ep N
ELSE dp 50
END

IF ap cp B0R

THEN -22 SF ep ap < ABS dp cp ~ FBS -22 CF MIN

5 %
ELSE £ MEG dp SF ap v < +ep S0 cp 4o oo+
© RS

-4 ap ep # ¥ ~ gp NEG

1]
o

ar ~ AB
EMD
*hkr
€ con © "wED lweg' g2 owoy 1} o+ ELIST STEQ
COWIC 'w' IMDEP 'o' DEPMD h r 3.6 *= - DUP
P2k ® + WBNG ko 1.8 % - DUP 3.6 r % +
YRMG ORAX DRAWM PICTURE
:$. -
%
|_F:HHEF: Apply Cramer's Rule
249 bytes #608Bh
2: augmented matrix 2: list of Cramer determinants
1: list of variables ====> 1: list of solutions

3
A

¥

SWAP DUP SIZE 2 GET DUP ROT SWAP COL- SWAP DUP DET

+urchb

K4
e

o

3 d

IF d ABS .BABEEEEAAL <

THEN "Ill-conditioned Matrix" DOOERR

ELSE 1 = 1 -
FOR k a k COL- DROP b k COL+ DET
MEXT = 1 - =LIST DUP 4 ~ w +TAG d ROT + SWAP

EMD

*¥% Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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C+5TO

371 butes

Rotate Conic to Standard Orientation

(272)
#E8RSH

1: {ABCDEF} ====> 1:

{A'OC'D'E'F'}

+« [BJ+ DROP
+ abecdef
«# hac-
IF DuUP
THEN -~ ATAN 2 -~
ELSE DROPZ A
EMD

OMTEC

326.5 bytes

Create Dimetric Projection

IZB:)IN Q**’
* B 005
JS*E’B:IN*‘F

== THEN DROP @ END = DOLIST

S0 =

(232)
# EESh

1: factor (between 0 and 1) ====> 1:  4x4 matrix

%3
« DEG_'TANCBI*Z+5INCBI*Z-TANCRIZ2=SIN(RI~2=f"2'
ROOT
+ th
% th SIhI"I 52 DUP 1 SkAP - - I ASIN
-+

P
« ph COS th SIN ph SIN = ph SIN th CO35

8 th COS th SIN B ph SIN ph COS th
ph CO5S th COS

Ot ol

83 bytes

Find Distance from Point to a Line

28

# NEG B
SIN = MEG
+ @A AAA1LC44 > *ARRY

(189)
#C733h

2: point (vector form)

1: line (array form) ====> 1: distance

« -»ROW DROP OVER -
+qp d
q p - d CROS5 ABS d ABS ~

&
*

280

P. PROGRAM LISTINGS



ELF"':*U Convert Ellipse Parameters to General Form (255)
195 bytes #3141h

2: (hk) 2:
1: {abB} === I: {ABCDEF)

«  SWAP C+R F‘.EITF| OB+ OROP

+ hk a A
# b S A 350 hb SE 2 % NEGE a S0 = 2 = NEG R SR
b S+ |k 50 3 50 «+ 353 b S0+ -6 =LIST B ROTCON

FIMY Function Inverse (23)
168.9 bytes #FCBEh
2: function 2:
1: variable name ====> 1: modified array
«  RCLF
+ f u flags
« -3 CF w PGALL 'T4' PGALL £ 't4' = w ISOL w 'TL'
STO EVAL 0BJ+ DROPZ SWAP OROP w PURGE 'T1' PURGE
flags STOF
&
FMFLT Family Plot (10)
1183.3 bytes #300Fh
1: ====> 1:

(-3 -55 3 CF FUNCTION .1 RES RAD

IFERR RCER

THEN ¢ MOVAL 3

END PPAR OUF 3 GET

IF DUP TYPE 5 ==

THEN 1 GET

END ¢ MOVAL NOMAL 3 + ROT SWAP + SWAP DUP 1 GET RE

Slip 2 GET RE 2 SLIST +

« WHILE "FAMILY FLOT" € { "EQ:" “ENTER THE FUMCTION"
59 3L 3 { "INDEP:" "SPECIFY INDEPEMDENT

YARIABLE" & + { "WARY:" "SPECIFY THE YARIABLE TO
CHAMGE" & X & "WALS:" "SPECIFY THE WALUES TN
WSE" 5 3 0 3 & "HMIM:" “ENTER MIMIMUM HORIZONTAL
YALLE" B 3 £ "sMAx:" "ENTER MAXIMUM HORIZOMTAL
VALIE" B ¥ » L 2 4 I flds OUP

THFORM

REPEAT DUP 'flds' S5TO REYLIST OBJ+ DROP OUP STED
& ROLLD IMDEP OMER SIZE MARE =MUM DUP MEG £ 2
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+ j wmax wmin vals war lines ymin 4maw
% wmin wmaw KRNG wals 1 = =NUM = DDLI:T SORT
OUP SIZE 1 + 2 ~ SWAP DUP 3 PICE FLOOR
GET SWAP ROT CEIL GET + 2 « 1.5 # war 570
AUTO PPAR DUP 1 GET IM ymin MIM SWAP 2 GET
Imlumax MAX YRWG CLLCD ERASE DRAR # 1h # 1h
ines
FOR line
BLAMK PICT { # 1h # 1h } ROT REPL
war OUP wals line GET DUP 3 ROLLD
SWAP 5TD PPAR 3 GET
IF OUP TYPE 5 ==
THEM 1 GET
END
FGALL RCER EVAL g SWAP + 'g' 5T0 = PICT
 # 1h # 1h » ROT 1 =GROB DUP SIZE
9 ROLLD 5 ROLLD EEPL DRAL

NEXT
q STER PICTURE DROPZ j STER
kg

END
*
flas STOF

b4

I_'I-:"H Convert Line from General to Array Form (193)
184 bytes #D264h

1: line (general form) ====> 1: line (array form)

« {-3-19 }CF
3>

g
« { wy Y1« PGALL » DOLIST
t 12 »DUP 1 = ' 5STD g 'y' @ ROOT = DOLIST
42 0BJ+ ROW» { x g 3} PURGE
k3
*
G':"L: I F: Find Circle Parameters from General Form (250)
215 bytes #9E6%h
2: 2: (hk)
1: {ABCDEF} ====> 1: radius
« [BJ+ DROP
* abcdef
« [F ac==Db8 == AN
THEM d MEG a 2 = ~ & NEG a 2 = ~ RsC d 50 & 50 +
4af*=+*-4350=«-7
ELSE "Mot L' cle v DOERR
END

282 P. PROGRAM LISTINGS



|:1":"E|..FI Find Ellipse Parameters from General Form (255)
217 bytes #7836h

2: 2: (hk)
1: {ABCDEF} ====> 1: {abB}

:Ia.Z*fNEGF- c 2 % o~ NEGR+C d S0 a4+ e 50c
4+ f-DP a~ ] SWAP c~ I 4 ROLL OBJ+ 4 DROPN
ROT SWAP - - HTFIN 2 « 3 aLIST
*
k-
= . 1IL
|_1'-"H I'I F' Find Hyperbola Parameters from General Form (261)
386 bytes #C901h
2: 2: (hk)
1: {ABCDEF} ====> 1: {abB)

« [0UP C2S8T0 0BJ* DROP

+conabeocdef

= dZ2a* HNGe 2 c# ~ NEGRL o d 50 ¥ 3e 50 % +
4acf=*==**-4943c*=%0UPDUP a~ ABS I SWAP
c < ABS [
IF ROT B £

EHEN MEG SWAP MEG
DEG con 2 GET con 1 GET con 3 GET - ~ ATAN 2 ~ 3

sLIST
k-
2
|_1-'5"F'E:L Find Parabola Parameters from General Form (260)
433 bytes #6136h
2: 2: (hk)
1: {ABCDEF} ====> 1: {pB)

« DUP C=5T0 0BJ» DROP
+oconabocdef

« IF a
THEN
IF ¢
THEN “Nnt a parabola"
ELSE d 2 a=* ~NEG S0 4 af*=*-4943ex % -~
R*E e 4 a=* - MEG con 2 GET con 1 GET con 3
GET - « ATAM 2 ~ 2 »LIST
END
ELSE
IF

THEN e 5004 c f =+ -4 cd=*=* e 2 c* s NEG
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R+C d 4 - # » MEG con 2 GET con 1 GET con 3
GET - -~ ATAN 2 ~ 2 =LIST
ELSE "Mot a parabola®
END
EMD

&

Ll ™
H | FI'}L] Convert Hyperbola Parameters from General Equation (261)

341 bytes #123th
2: (hk) 2:
1: {abB} ====> 1: {ABCDEF}
« 5SMAP C+R ROT 0BJ+ DROP DEG
+hkabt
« JF a B ¢
THEM a 50 A b 50 MEG -2 h a 50 = * 2 k b 50 = = b
S0k S0+ 3 50 h 50 % - 3 50 b 50 % - MEG
ELSE b 50 B a S0 MEG 2 h b 50 = = NEG 2 k a 50 = =
ENDhSQbSQ*aSQkSII!*—aSE!bSEI*—
6 +LIST B ROTCON
*
>
I':"I_'iEH Convert Line from Slope-Intercept to General Form (189)
281 bytes #4BASh
2: 2:  vector of coefficients
1: line (slope-intercept form) ====> 1: line (general form)
« { -2 -3 }CF
¥ i
« £ A2 1 31 « 'w STO i 'y 8 ROOT » DOLIST OBJ»

DROP - -1 ROT 3 =»LIST DUP £ = 9 1 } * DBJ» DROP + +
EHEEE A = SWAP 0BJ+ »ARRY SWAP 8 FIX »0 570 { = g

I HF'LDT Plot System of Inequalities (161)
738 bytes #0331h

1: ====> 1:

« -3 CF RCER DUP SIZE

IF OUP 2 <

THEM DRDPZ 513 DOERR

END { > { > PPAR 1 GET C+R PPAR 2 GET C+R OVER 5 PICK -
PICT SIZE DROP B=R ~
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+ gldeqns numeans newsans pts wmin 4min WM ME step
# pldeqns 1 = 0BJ» DROPZ = » DOLIST DUP 'newsqns' 5T0
STERN ERASE € # Bh # Bh 3 PYIEW DRAX DRAW oldeqns DUP
STER 1 = DBJ» DROPZ SWAP DROP = DOLIST ‘meweqns' ST0
WMin wmaw
FOR = w umax B=C DUP PIX? DOUPZ = PIROFF » « PINOM =
IFTE = '®' 5T0 Hmln uymax ¢ *LIST neweqns 1 = +NUM
#= OOLIST + SORT 'pts' STO 1 numeqns 1+
FOR ?]Pt* nnil+ wUB 0BJ+ OROP DUPZ + 2 »~ 'Y!
STI
IF 1 1 rumeqns
FOR m oldeqns m GET =NUM AND
MERT
THEW w SWAP R+C =« ROT R=C LIME
ELSE DROPZ
ENO
MERT = PIROFF = = PIXOM = IFTE step
STEP PICTURE

IE;I-'-ITF-“: Create Isometric Projection (233)
287.9 bytes #3C30h
1: ====> 1:
« 1 3« [T RASIN 12 - [ ASIM
* th Fh
# Fh FDS th SIM ph SIM + ph SIM th CO5 # NEG B B th

CoS th SIM B ph SIM ph COS th SIM # MEG ph COS th
COs =B BABA1T 44 > +ARRY

I_l_:l_“"'l.!J Find Intersection of Line and Conic (265)
887 butes #4C68h
2. {ABCDEF} 2:
I: 'y=mx+b' ====> 1: { (intersection points) }
® % Con line
# { wog 31 = PGALL » DOLIST wcon € 'wtE' lweg' 'yhZ2!
woy 13 o* "LI 5T DUP -3 CF line DEFIME EVAL
IF comn DUP 2 GET 500 4 con 1 GET con 3 GET =+ = - DUP
THEN
IF 8 <
THEM

IF con C*S70 DUP 1 GET SWAP 3 GE
THEW G=CIR
ELSE G=ELP 1 GET

EMD
ELSE G»HYP DUP 1 GET 500 SMAP 2 GET 50 + [ 18 #
EMD DUP ROT C+E DROP DOUP ROT - 3 ROLLOD +
ELSE OROF G»PBL DROP C»R DROP DUP 18 - SWAP 18 +
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END
-

con sol 5 a

=1
« B
00 sol 's' s ROOT sal 'x' a ROOT
IF DUP? ==
THEN DROP2 5 18 = 's' ST & 18+ 'a' STO 1 + |
pu
ELSE

IF DUPZ - ABS .@EA1 <

THEN + 2 - 1 =LIST

ELSE 2 -LIST

END

1 « OUP line SWAP 'w=' S5TO 'y' @ ROOT RaC =
DOLIST 1 CF

END
EHEIL DUP TYPE 5 == OVER 3 == OR
IF scon EVAL 4 RMD
THEW DROP {
ELSE

IF 1 F57C
THEM = 1 =LI3T

END
END SWAP DROP { = 4 } PURGE

#
»
#
L INFREG - |
413 Linear Programming (164)
2089 butes #13CFh
3: 3: list of basic variables
2: 2: final tableau
1: ====> 1: list of tagged solutions or message string

« B 'MARKER' STO DEPTH 'depth' 5T0 RCLF 'flags' 570 -3 CF
"LINEAR PROGRAMMING" { { "OBJECTIVE:" "ENTER DBJECTIVE
FUNCTION" 9 3 { "CONSTRAINTS:" “EWTER LIST OF ALG.
CONSTRAINTS" 5 3 { "WARS:" "ENTER LIST OF IMDEP.
YARIABLES" 5 3 { "MAX OR MIN?" "COMPUTE MAX DR MIM OF
OBJECTIVE?" 2 3 ¥ £ 1 2 3 { NOVAL NOVAL MNOVYAL "MAR" X
ENH%%?L NOVAL MOVAL “MAK" 3

IF
THEW CLLCD "Solwing . . ." 3 DISP 5 CF 0OBJ+ DROP
IF "MIM" SAME
THEN 5 SF
END DUP SIZE ROT DUP SIZE « } DUP DUP DUP 'last' STO
'myars' S5T0 'buwars' S5T0
+ of vars n constr m eqns
« 1n
FOR i nwars i + 'nwars' 5T0

MERT 1 m
FOR k buwars k n + + 'buwars' 5T0 constr k GET 0BJ»
o< = » } SWAP POS

IFO0P £ 47573 SUAP POS

286 P. PrOGRAM LISTINGS



THEM OROPZ = -1 # eqns SWAP + 'eqns' 5STO
ELSE
IF £ 1 2 ¥ SWAP POS
THEM DROF
ELSE OROP buwars k B PUT 'buars' STO
EMD = e=ans SWAP + 'egns' STO
END
HEX T eqns of
IF 5 F57
THEH -1 *
ENO + 'egns' STO 1 n
FOE k A wars k GET STO
MEWT e=ans 0OBJ+ 1 SWAP
START m 1 + ROLL =+MUM
NEﬁI m 1 + =ARRY MEG

& 1 n
FOR k1 wars k GET 5T0 eqns 0OBJ+= 1 SWAP
FOR i m 1 + REOLL =MUM b j GET +
MERT A wars k GET 5TQ
HERT ?Dm 1 + & =LIST »HARRY TRM b n 1 + COL+
lal IS
D0 m n buars rvars a PHASE] m n buars nvars a |
sII'lPLESs'
ONTIL a DUP SIZE 2 GET COL- SWAP DROP DBJ= 1
GET 4LI-T 1 buwars SIZE SUB SIGM -1 POS A ==
1 F57 OR
EMD
IF 1 F‘?F
THEM S OROPM buwars a "Moo feasible solution
Eis t s" DUP MSGEOR
ELSE
IFaml+ RDH— SWAP OROP 0BJ= 1 GET =LIST 1
riars SIZE SUB B POS
THEM 5 ROLLD 4 OROPM Buars SMAP "Solution is
IanulJI'ldn-'d OUP MSGEDR
ELSE 5 OROPH a rwars SIZE 1 + COL- SWAP DROP
'solps' 5TO 1 wars SIZE
FOR |
IF rwars kB GET OUP wars SIFE £ SWAP A
> AMD
THEM B wars rears k GET GET 5T0

EMD
MEXT 1 bwars SIZE
FOR L
IF buars k GET DUP wars SIZE £ SWAP A
> AMD

THE@ solns k GET wars bwars k GET GET
510
EMD
MERT DEPTH depth - DROPM buars a wars DUP
EUHETH +LIST SWAP +TAG "Solution found"
RO

EMD flags STOF YARS DUP 'MARKER' POS 1 SWAP SUB PURGE

»
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LIMET Determine Relationship of 2 Lines (200)

963 bytes #1EEBh
2: line 1 (array form) 2: pt. of intersection or "relationship”
1: line 2 (array form) ====> 1: 1 ifintersect; O if not

% RCLF 3 ROLLD 1 CF 3 ROW+
IF DUP SIZE 2 GET 2 ==
THEN 1 SF L B B B A 13 COL+
END +ROW DROP DUPZ SWAP - 5 ROLL 5 ROLL DUPZ SWAP -
+ p2l p22 d2 pll plZ dl

« IF
dl pl1 p21 - DUP 3 ROLLD CROSS d2 ROT CROSS DUPZ
ABS SHAP ABS * 3 ROLLD DOT RABS ==

HEN
IF dl d2 CROSS [ BB A ] ==
THEN
IF pll pl2 2 ROW+ p21 COLIN?
THEN "Concurrent" B
ELSE "Parallel" @
END
ELSE
p?l pll - dl d2 MEG 2 COL=
LS50 1 GET dl + pll +
IF 1 F57
THEM 3 C
EMD 1
END
ELSE "Skew" B
END ROT STOF

*

(N
OL- DROP

I_F'L':"F' Find Intersection Point of Line and Plane (211)
198.5 bytes #788Bh

3: position vector of line 3:
2: direction vector of line 2:
1 1:

vector of plane's coefficients ====> pt. of intersection or "relationship"

CoL-

pdnnd
IF ndDOT B ==
THEN
IF p n DOT NEG nd ==
THEN "Coplanar"
ELSE "Parallel"
END

ELSE nd MEG n p DOT - n d DOT ~ d * p +
END

#
+ B

%
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LTF: I ITI Trim Zeroes from Left of Array

135.5 bytes #2686Rh
1: array ====> 1: trimmed array
% DUP ENRNM
IF .@8Ea1 <
THEN DROP B 1 -+ARRY
ELSE OBJ+ 1 GET 1 +
WHILE OUP ROLL OUP ABS .@@eal <
REPEAT DROP 1 -
END OVER ROLLD 1 - =ARRY
END
"
HF:HL.';'. Normalize Object Array after Transformation
119.5 bytes #4060h
1: object array ====> 1: normalized object array
« DUP SIZE 0BJ+ DROP
Famn
£ 1 m
FOR i a OUP { i n ¥ GET INY i RCI 'a' 570
MERT a
ks
FROC! P ial Additi
olynomial Addition
172.5 bytes #64CBh
2: polynomial 1 2:
1: polynomial 2 ====> 1: P1+P2
« RCLF 3 ROLLD -55 CF
IFERR +
THEN OYER 5IZE 1 GET OVER SIZE 1 GET -
IF OUP 8 <
THEN ABS ROT SWAP
END
*ad
« 14
START B

MEXT a 0BJ» 1 GET d + =+ARRY +

3

END
LTRIM SWAP STOF

*%* Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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F'HF:"I Convert Line (2D) from Parametric to Slope-Iintercept Form (193)
167 bytes #35F5h

1: list of parametric eqns of line (2D) ====> 1: line (slope-intercept form)

« RCLF -3 CF SWAP
IF DUP SIZE 2 #
THEM DROP 515 DOERR ELSE 9 FIX 1

% ! I%[IIL ITSDL COLCT 0BJ» DROPZ SWAP DROP EXPAN EXPAM
C

*
DOLIST 0BJ+ DROP = 'y' ISOL EXPAN EXPAM COLCT -0
END SWAP STOF

&

FlE:I_'}I_'; Convert Parabola Parameters to General Form (260)
134 bytes #07B%h
2: (h,k) 2:
1: {pB) ====> 1: {ABCDEF}
« SWAP C+R ROT 0BJ+ DROP
+hkp8
« BB 1p4*NGEKZ = MNEGK SR 4p h # %+ 5 2LIST
8 ROTCON
k-
g
F'I;DH'a-' Convert to Polynomial Form (133)
682.5 bytes #2706h
2: array :
1: program ====> 1: modified array

« 3 CFC0B1C0113%{ND?2STOCOLCT RPN DUP SIZE

€« +nd

« M d PMULT D n PMULT 'OP' EVAL 'N' STO D d PMULT

‘D' 570

*
-1) n <pdiv
FOR k 'p' k GET
IF DUP TYPE
THEN

IF DUP TYPE { &6 7 } SWAP_POS
THEN OROP [ 1 8 1 1 =LIST
ELS%EF {DUTD - % * NEG DEC 3} SWAP P03
THEN { PAOD PSUB PMULT PPOWER FPSUB
« EVAL DUP DROP = % SWAP GET 1 +LIST
ELSE DROP p k 1 + GET { + - 3} SWAP POS

» 3 p
& n
0R
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{ PAOD PSUB Y SWAP GET 'OP' STO
{ «pdiv DEC 1}
END
END
ELSE 1 =+ARRY 1 =LIS
END p k ROT REPL 'p' S5TO
NEXT P EUHL D PMULT M PADD D € OP N D 3 PURGE

e

nTll PR
F D I o I DE Polynomial Division (112)
391 bytes #6981h
4: 4: quotient array
3: 3: numerator of remainder
2: polynomial 1 2: denominator of remainder
1: polynomial 2 ====> 1: symbolic result

« LTRIM DUP_0BJ+ 0BJ+ DROP -LIST ROT LTRIM 0BJ» 0BJ+ DROP
+LIST SWAP DUPZ SIZE SWAP SIZE
%EEDUER - OUP 8 <

M
3 DROPM [ @ 1 3 ROLLD 0BJ+ =+ARRY SWAP 0BJ+ -+ARRY SWAP
ELSE SWAP ROT DUP 1 GET
+npet
« { 3 3 ROLLD A SWAP
STWQLQDEP 1 GET + ~ ROT OMER + 3 ROLLD 1 n

DQER d GET pZ2 d GET 3 PICK = - ROT d
ROT PUT 3HHP
NEXT DROP 2 OYER SIZE MIM 1E499 SUB

&
SWAP 0OBJ+ +ARRY SWAP 0OBJ+ +ARRY ROT
END REPMNOR

F'D'}F' Convert Line from Position-Direction to Parametric Form (192)

184.5 bytes # 26%h
2: position vector of line :
1: direction vector of line =~ ====> 1: list of parametric eqns of line

« -3 CF DUP SIZE 1 GET
-}Plvln

= IFn2 >
THEN T wyz
ELSE £ = 9 3}
END v 0OBJ+» 1 GET =LIST 1 n
START 't'

MEXT n =LIST # p 0BJ* 1 GET =LIST ADD = 9 FIK »Q 5TD

&
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F'E :E;F' Create Perspective Projection (238)

453 butes #4FBDh
3: object array 3:
2: translation vector :
1: eyepoint vector ====> 1: transformed object array
« [UP ABS
+atcd
« - 1 GET d « ASIN c & GET MEG d ~ RASIN c 3 GET MEG t
0B.J» DROP
+ B fklmnn
« 3 B COS A S5INf£5IN =808 5INfCO5 =Lk ~ HEGA
COS 8 fSIMNk » 8 S5INABCOS £ S5IMN = NEGA B CO5 f
s =k -~BCOS 1 *=BSINMR*+ f£C05m= A8 5IN
1 #=BC05Sn=*=-Ff5IN=+8¢Ff5INm=85IN1=
+BC0Snm*+k <1+ {443 +ARRY = NRMLS
>
*
%
FLALL Purge Variable in Path (281)
92 butes #68E4h
1: variable name ====> 1:
« PATH
+ name path
« [0 name name PURGE EVAL UPDIR
UNTIL TYPE 6 ==
EMD path EVAL
>
*
F'HH::IE]. Perform Phase 1 Adjustments on LP Tableau (164)
1315 butes #3F8ch
5:  number of constraints 5:
4: number of decision variables 4:
3: list of indexes of basic variables 3:
2: list of indexes of non-basic variables 2:
1: tableau ===> 1:

« 'a' 5T0 '‘mears' S5TO ‘buwars' ST0
* MmN
« WHILE buwars B PO5 DUP
REPERT DUP 'vr' 5TO a SWAP ROW- SWAP DROP 0BJ+ 1 GET
+LIST 1 mwars SIZE SUB DUP
IF = MAY » STREAM DUP ABS .BABL >
THEN PDS 's' 570
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ELSE DROP
IF_OUP « MIN = STREAM DUP ABS .@@a1 >
THEW PO5 's' 5TO
ELSE DOROP
END
END m n bvars nvars a r s PIYOT 5 DROPN
END DROP a DUP SIZE 2 GET COL- SWAP DROP 0OBJ+ 1 GET
sLIST OUP SIGN
+ bl signs
« IF signs 1 bwars 5IZE SUB -1 P05
THEW 1 m
FOR_ k sians k GET
IF 8 2

THEN signs k @ PUT 'sians' ST0
END

MEXT a sians nwars 5IZE 1 + 's' 5T0 bwars 5IZE
1 + bvars S5IZE 2 +
FOR k k £ 8 ¥ REPL
TEHT NeJ+ OUP a SIZE 1 GET
]

THEM SWAP DPDP 1 -

END *HRRY COL+ ‘'a' 5TO rwars B + 'nuars' 5T0

bl 0OBJ+

IF DUP m 1 -

THEN RDT DPDP SWAP DROP 2 -

ELSE SWAP DOROP 1 -

END »LIST DUP = MIN = STREAM POS 'r' 570 m n

Eﬁsrs Efars ar s PIVOT 5 DROPMN 1 a SIZE 2 GET
b

MEXT a SIZE 2 GET -+ARRY

*z

IF DUP SIZE 1 GET m 2 + ==
THEW m 2 + 1 2 »LIST z REPL
ELSE z m 2 + ROW+

END 'a' 5T0 1 m

FOR i
vars SIZE 2 »LIST GET SIGN -1 ==

kS

IF ain
THEM a i ROW- z + SWAP DROP 'z' STO a m ¢
EHD+ 1 2 =LI5T =z REPL 'a' 5T0

MERT m n buars nwars a ¢ SIMPLEX
IF 1 FC? a OUP SIZE GET 8 < AMD
THEM PHRSEI

ELSE 1 5F 5 DROPN

EMD
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F' I I'.'ILIT Pivot LP Tableau on Given Element (164)

693.5 bytes #139Ch
7: number of constraints 7
6: number of decision variables 6:
5: list of indexes of basic variables 5: number of constraints
4: list of indexes of non-basic variables 4: number of decision variables
3: tableau 3: list of indexes of basic variables
2: pivot row 2: list of indexes of non-basic variables
1: pivot column ===> 1:tableau

« 5 ROLLD 5 ROLLD 'a' 570 'mwars' ST0 'buars' 5T0

mnrs
« g DUP r s ¢ =LIST DUP 3 ROLLD GET IMWY DUP 4 ROLLD PUT
s COL- SWAP ROT r RCI v ROW- ROT r ROW-
+ ap rp 3Ip ars
« 1 ap S5IZE 1 GET
FOR k ap k ROW- rp sp k GET * - k ROW+ 'ap' S5TO
MEKT sp ars MNEG # 'sp' 5T0 ap rp r RO+ sp ars v
Rok+ = COL+ 0BJ+ DUP OBJ» DROP = SWAP OMER 2 +
ROLLD »LIST 9 RWD 0OBJ+ 1 + ROLL =ARRY 'a' ST0 buars
nvars 5 GET rwars buars v GET s SWAP PUT 'nuwars'
STO + SWAP PUT 'buars' ST0
WHILE rwars DUP B8 POS DUP
REPEAT DIP & SWAP COL- DROP 'a' STO SWAP OBJ+ DUP 2
+ ROLL OVER 2 + SWAP - ROLL DROP 1 - =LIS
'muars' 5T0
END DROPZ m n bwars nvars a
il .
F L'-"L Find Intersection of Two Planes (206)
142.5 butes #33EBh
2: plane 1 (vector form) 2:
1: plane 2 (vector form) ====> 1: line of intersection (parametric form)

P9 3
a 4 EDL— MEG SWAP DUP -+ROW DROP CROSS SWAP 3 COL-
DROP ROT SWAP ~ OBJ+ DROP A 3 +LIST 1A RMD OBJ+ -+ARRY
SWAP - PO-P

« DUPZ 2 ROl
<>

¥
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FHULT

282.5 bytes

Polynomial Multiplication (111)

#4400h

2: polynomial 1 2:

1: polynomial 2 ====> 1: P1*P2

« [UP SIZE 1 GET

+ a na
« [UP DUP @ COM DUP SIZE 1 GET OUP na + 1 - 1 =LIST
+ b cnb nab
« {1 Ynb+ROM 1 nb
START a 0BJ+ DROP < 0BJ+ DROP

NEXT
nb DOROPM nb nab + +ARRY * nab ROM

&

4w

£

F+F0

378.5 bytes

Convert Line from Parametric to Position-Direction Form
#A638h

2: position vector for line
====> 1: direction vector for line

(193)

1: list of parametric eqns of line

S

« { -3 -19 ¥ CF 1
RPN

EY

« ¢ S5IZE 'm' 570 c c 2 c 't' POS DUP

IF DUP 1 + c SWAP GET € MEG } 1 GET ==
THEN 1 + -1
ELSE 1

END 't' 570 's'
IF DUP SIZE 2 <
THEN 1 GET

ELSE TLIST

END EVAL € B X ROT s 1 +n 1 - 5B
IF DUP 1 GET TYPE 18 ==

THEM TRIL

END + EVAL 2 +LIST

570 5UB

&

S

DOLIST

IF 0BJs 2 >

THEN +V3

ELSE +\2

END 0BJ* DROP SWAP ¢ s n t 3 PURGE
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F'F'D'-'-IEF: Raise a Polynomial to a Power (114)
175 bytes #3CFAh

2: polynomial :
1: power (array) ====> 1: modified power

« 1 DUP =+ARRY
WHILE n 8 >
REPEAT
IF n 2 MID
THEN p PMULT
END n 2 ~ FLOOR 'n' 3T0

IF n
THEN p DUP PMULT 'p' STO
END

END
N 3
F'E;I_I E: Polynomial Subtraction (110)
28.9 butes #DADSHh
2: polynomial 1 2:
1: polynomial 2 ====> 1: P1-P2

« NEG PROD »

-.Illl
F=5411 Polynomial to Symbolic (110)
115 bytes #38BEh
2: polynomial (array) 2:
1: polynomial variable ====> 1: polynomial (symbolic)
« -3 CF
>
« [0BJ+ 0BJ> DROP A SWAP 1
FOR n

nl+ROULwvwvnl-"*=%+ -1
STEP 18 FIX »Q 5TD

3
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FisL Find Line Containing Two Points (182)

138 bytes #B45Ch
2: point1 (2D-vector) 2:
1: point 2 (2D-vector) ====> 1: slope-intercept equation of line

« -3 CF
*+ pl pZ

£ 'yg' pZ pl - 0BJ+ OROP SWAP ~ DUP 'w' = SWAP pl OBJ=
DROP SWAP ROT = MEG + + = 3 FIX =0 5TD

&

F l::;":"F'E: Find Perpendicular Bisector from Two Points (184)
287 bytes #ARE<h

2: point1 (2D-vector) 2:
1: point 2 (2D-vector) ====> 1: equation of perp. bisector

« -3 CF

+ pl p2

« 'y' pZ pl - 0BJ+ OROP SWAP - MNEG
IF OUP
THEN INV DUP 'w' = SWAP pl p2 + 2 - (OBJ» DROP SWAP

ROT = MEG + +

ELSE OROPZ 'w' pl P2 + 2 ~ 1 GET
END = 3 FIX =0 5TO

¥

I:!DE;DLI'.'I Solve Quadratic (121)
398 bytes #9150h

1: quadratic (array) ====> 1: list of solutions

t -1 -3 ¥ CF 0BJ+ DROP
*abc
« bS5 4acs==*x-32¢=
+de
« [FdB =
THEN
IFd DUP IP ==
THEM d RBS
IF [ DUP IP #
THEN d AB5 1 =»LIST 'se-t' APPLY 1 +=
ELSE 4 ABS T i =

END
ELSE d ABS [ i =
END
ELSE
IF 4 0UP IP #
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THEN d 1 =LIST 'sgrt' APPLY

ELSE d [

END
END & -~ OUP b MEG e ~ DUP ROT + 3 ROLLD SWAP - 2
»LIST -27 SF COLCT

&

F‘:EDEF Compute Symbolic Polynomial from Roots (132)
239.5 bytes #9E93h

1: list of roots ====> 1: symbolic polynomial

« -3 CF 1 « EVAL » DOLIST OBJ+ =+ARRY PCOEF
DUP DOBJ+ 1 GET +LIST 1
« [F DUP TYPE
THEW DOROP
ELSE FP ABS
IF_DUP
THEN 7 FIX =0 5TD OBJ+ DROPZ SWAP DROP
ELSE DOROP 1
END
END
» DOLIST
ouP2
WHILE DUP
REPEAT SWAP OVER MOD
END DROP - = EVAL
» STREAM * 'H' P5YM

3

F:EHHDF: Compute Symbolic Remainder (291)
276 butes #EE?3h
3: quotient array 3:
2: numerator array :
1: denominator array ====> 1: symbolic remainder
« -3 CF
*qnd
« IFnlB1¢#
THEM ? EBJ+ 1 GET
-) L)
« B I;' +ARRY t 1 +ARRY d PMULT n PROD 'x' P25YM

d 'w' P2SYM - SWAP 'w' P2SYM SWAP +
*

ELSE 9 'w' PsSYN
END q nd 4 RILL
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F:FLL-T Create Reflection Transformation (227)

273.5 bytes #CA?4h
2: object array :
1: plane of reflection (vector form) ====> 1: reflected object array

€ * 3 u

« JF v 5IZE 1 GET 3 ==
THEN w DUP 3 GET SWAP 3 8 PUT
ELSE v DUP 4 GET SWAP 4 COL- DROP

EMD
dn
« 1 a 5IZE 1 GET
FOR i d MEG n a i ROW- SWAP 4 ROLLD DOT - n n DOT
#n * 2% a i ROW- SWAP DROP + i ROW+ 'a' 5T0
MERT a
®
» -
F:UTL:UH Rotate Conic (271)
397 bytes #B05%h
2. {ABCDEF} 2:
1: angle of rotation ====> 1: {A'B'C'D'EF}
« MNEG SWAP 0BJ+ DROP
*Babcdef
% aBII'“'“ﬂ*bE]I"D“B IN**+| B SIN S = + b B
COS S0 B SIM SO -+ 2 ca-+B 5INBCOS*=++a38
SIN S0 * b B SINACOS # = - c A COSSO % +dA C0S
# 2 B 5SIN + + 28 CO5 =48 5IMN+= - f 6 +LIST OUP
DUP 1 GET ABS SWAP 3 GET ABS MAX -
#
#
FI| |T D Create 2D-Rotation Transformation Matrix (222)
174.5 bytes #C635h
2: point at center of rotation (vector) 2:
1: angle of rotation ====> 1: transformation matrix

% SWAP IDB._H OROP
A
% w C05 = SIN B = SIN MEG « COS A 1 MEG = COS 1 - * m
w SIN #= + 1 MEG « SIN # m w CO5 1 - = - 14 33 1}
+ARRY

*
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ROT0

+RFM

300

Create 3D-Rotation Transformation Matrix (225)
367.3 bytes #AF7Bh
3:  position vector for axis of rotation 3:
2: direction vector for axis of rotation 2:
1: angle of rotation ====> 1: transformation matrix
« 4 ION
+ pdwi
« d A 4 COL+ 4 0OBJ+ DROP
*nabc
« 13
FOR k non k GET =
MERT [ B A B 1 14 ROMs 1 w CO5 - % i w CO5 % +
HcbMEGB cMEGCHB aBbaMGRBBAABAA L4
4 3 »ARRY w SIN = +
+r
« i {41 3pHMEGREPL v # i {413 p REPL #
:z) -
Convert Algebraic to RPN List (290)

189.5 bytes #6FBch
1: algebraic ====> 1: list
« (B
IF OVER
THEM =+ n f
« 1n
FOR i
IF DUP TYPE 9 SAME
THEM +RPH
EMD n ROLLD
HEXT
IF DUP TYPE 5 #
THEM 1 =LIS
EMD
IFnl?>
THEN Z n
START +
HEXT
EMD f +
ELSE 1 »LIST SWAP DROP
EMD
kS

P. ProGRAM LISTINGS



F:F:E":'TS Find Real Roots of Polynomial
141 bytes #34ECh

1: polynomial (array) ====> 1: list of real roots

« PROOT DUP SIZE 1 GET

*ron
t31ln
FOR k
r k GET IM
IF

THEN r k GET +
ELSE r k GET RE SWAP +
END

NERT

&

k3

SCFACTE Find Symbolic Cofactor Matrix

234.3 butes #30FCh

1:  square symbolic matrix ====> 1:  symbolic cofactor matrix

« -3 CF DUP DUP 1 GET SIZE SWAP DUP SIZE
+cof cmr
= 1 r
FOR i 1 ¢
FOR i m i j 3 ROLLD SXROW DROP SWAP SXCOL DROP

SOET -1 i j + = * cof DUP i GET j 4 ROLL PUT i

SMAP PUT ‘'cof' STO

HEXT
. MEKT cof
» -
!:;L:UF Find Symbolic Cofactor

234.5 bytes #EREBHh
3: symbolic matrix
2: row 2:
1: column ====> 1: cofactor

« -3 CF 3 PICK DUP SIZE SWAP 1 GET SIZE DROP

IF 1 ==
THEN 3 DROPNM 1
ELSE =+ r
« [0BJ+ OYER SIZE DVER 1 -
*mon
« r -1+ ROLL DROP 1 n
STH%E mn ?DLL

*** Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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THEN DUP 1 c 1 - SUB SWAP ¢ 1 + m 3SUB +

ELSE 2 m 5SUB

END
MEXT n =LIST
*
» SOET

EMD

%
':-[F:HHEF: Apply Cramer's Rule to Symbolic Matrix (159)

214.5 bytes #BAGSh

2: symbolic matrix 2: list of Cramer determinants

1: list of variables ====> 1: list of solutions

« -3 CF SWAP DUP 1 GET SIZE DUP ROT SWAP SXCOL
SWAP DUP SDET
+ychbad
« 1 cl -

FOR k a k SXCOL DRDP b k SNCOL SDET

MEXT o 1 - =»LIST DUP d ~ COLCT =@ v »TAG d ROT +

COLCT =2 SWAP

4
*

':'IL':IHF' Swap Columns in Symbolic Array (159)
77.9 bytes #9B31h
3:  symbolic array
2: column 1 :
1: column 2 ====> 1: modified array
® 3+ 51
% 35 STRN i j SRSWP STRN
#
#
!:;DET Symbolic Determinant (158)
136.5 bytes #5730h
1: symbolic matrix ====> 1: determinant
« -3 CF DUP DUP SIZE SWAP 1 GET SIZE DROP
*an
« B 1n
x4+

FOR i a i GET 1 GET a i 1 SCOF # -1 i 1 +
NERT

>

302
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SOT

Synthetic Division (stack version) (116)
174.5 bytes #484zh
2: array :
1: program ====> 1: modified array
%+ p f
« pp S5[ZE 1 GET A
*n s
% 1
FDP k
pk GET s + DUP £ = 's' 5T
NEWT
*r
«n 1 - *fRRY £ SWAP r
*
>
's' PURGE
>

i ]

SIMPL Apply Simplex Algorithm to LP Tableau (164)
1166 bytes #C97Fh
6: number of constraints 6:

5:  number of decision variables 5: number of constraints
4: list of indexes of basic variables 4: number of decision variables
3. list of indexes of non-basic variables 3: list of indexes of basic variables
2: tableau 2: list of indexes of non-basic variables
1: 1if Phase 2, or 2 if Phase 1 ===> 1: tableau
« 4 ROLLD 'a' 5TO0 'mwars' 5TO0 'buars' 5T0
+ mnt
« {346 }CF
WHILE a m t + ROW- SWAP DROP 0OBJ+ 1 GET =+LIST 1 nwars
SIZE SUB DUP 'c' STO SIGN 1 POS 4 F5TC OR
REPEAT a OUP SIZE 2 GET COL- SWAP DROP OBJ+ 1 GET
*LIbT 1 buars SIZE 5SUB DUP 'b' STO
IF 8 P05
THEN & 5F
END
IF 5 F57
THEW { } 1 rwars 5IZE
FOR k
IF ¢ k GET .B@8R1 >
THEM nuars k GET
IF DUP
THEN +
ELSE DROP
END
END

NEXT
IF DUP £ } SAME

THEM OROP € 1 4 2 5

*** Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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ELSE
IF DUP 5IZE 1 ==
THEN 1 GET
ELSE = MIN » STREAM
EMD nwars SWAP POS 's' 5TO0

EMD
ELSE - DUP = MAX = STREAM POS 's' 5TO
END { 3 I m
FOR i

IF a i s 2 »LIST GET .B@81 >

THEM buars 1 GET +

END
MERT 'scol' STNO
IF scal € 3 SHME
THEM £ 1 4 } 5F
ELSE
IF 6 F57C
THEH scol
IF DUP SIZE 1 ==
THEM 1 GET
ELSE = MIM = STREAM
EMD buwars SWAP PO5S 'vr' STO
ELSE 1 scol SIZE
FOR j

2
IF a bwars scal j GET POS s 2 =LIST GET
OuP .@eAal >
EHEH b buars scol j GET POS GET SWAP -
MEXT scol SIZE +LIST DUP
IF OUP SIZE 1 ==
THEM 1 GET
ELSE « MIN = STREAM
ENEFHD POS scol SWAP GET bwars SWAP POS 'v' 5TO
EMD m n buars rwars a r s PIVOT 5 DROPN
END m n buwars rwars a

#
*
Sl Disassemble Symbolic Array (158)
124 butes #46RAh
mn + 2: mn + 2:
. elements
3: 3:
: 2: #ofrows
1: symbolic array ====> 1: # of columns

« 0DBJ+ OVER SIZE
+ oy col
% 1 row
FOR i i 1 - col * row + i - 1 + ROLL 0OBJ+ DROP
MEKT row col

2
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':"!:;N Assemble Symbolic Array

186.5 bytes #EBA?Hh
mn + 2: mn + 2:
... elements
3: 3:
2. #ofrows 2: #ofrows
1:  # of columns ====> 1: # of columns

% 3 row col
1 row
FOR i ool =+LIST col row i - * 1 + ROLLD
MEXT row +LIST

&

!:;HHDD Symbolic Matrix Addition
163 bytes #46EERh
2: symbolic matrix 1 2:
1: symbolic matrix 2 ====> 1: SM1 + SM2

« =3 CF SWAP DUP DUP SIZE SWAP 1 GET SIZE
+ a2 al nm
« 1n
FOR i 1 m
FOR j al i GET j GET a2 i GET j GET + COLCT
MERT m =LIST
MERT n +LIST

g

SH I |'~|'-.-' Invert Symbolic Square Matrix
63 bytes #68B2h

1: square symbolic matrix ====> 1: inverse of matrix

2

DUP SCFACTR STRN SWAP SOET INY SMSMULT =

SPMULT Symbolic Matrix Multiplication
216 butes #8372h

2: symbolic matrix 1 2:
1: symbolic matrix 2 ====> 1: SMI1*SM2

« -3 CF DUPZ DUP SIZE SWAP 1 GET SIZE ROT
DUP SIZE SWAP 1 GET SIZE
+ al a2 nZ m2 nl ml

*** Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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&

1 nl
FOR i 1 m¢
FOR i A 1 ml
FOR k al i GET k GET a2 k GET j GET =+ +
HERT

MEXT m2 SIS
MEXT nl +LIST

&

o

5['15['."_“_-[ Symbolic Scalar Multiplication (158)
167 bytes #C44ER

2: symbolic array or scalar :
1: scalar or symbolic array ====> I: s*SM

& -3 F
IF OUP TYPE 5 ==
THEN SWAP
END
*Z

k4

[ZE OVER 1 GET SIZE

P
anm

= W

F I e |

1n

FOR i 1 m
FOR j a i GET j GET =z +
MEWXT m =LIST

MEWT n +LIST

chfery Ll . .
._:”._:LIL W Symbolic System Solution (159)
79.9 bytes #795Ah
3: symbolic coefficients array 3:
2: symbolic constants array ====> 2:
1: list of variables 1: list of solutions
& abw

® &b

woa SMINY b SMMULT +TAG

306 P. PrROGRAM LISTINGS



E;HSUE: Symbolic Matrix Subtraction (158)
163 bytes #AE2Sh

2:  symbolic array 1 :
1: symbolic array 2 ====> 1:

% =3 CF SWAP DUP DUP SIZE SWAP 1 GET SIZE
+ a2 alnm
« 1n
FOR i 1 m
FOR j al i GET j GET a2 i GET j GET - COLCT
MERT m =LIST
MERT n =LIST

#
' 1
.:-I"-lL.I:IL Insert Column in Symbolic Array (159)
?7.9 butes #BC65h
3: symbolic array 3:
2: symbolic column (list) 2:
1: column number ====> 1: modified array
« -

+ 50N
& 5 STRN v n SNROW STRN

#
SHECL Insert Row in Symbolic Array (159)
76.9 bytes #C674h
3: symbolic array 3:
2: symbolic row (list) :
1: row number ====> 1:  modified array
£ 5 yun
% 5 0BJ* v OVER 3 + n - ROLLD 1 + =LIST
#
#
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0L

Solve Triangle (46)
6rar bytes #975Ah
1: ====> 1: {abcA°B°C°area}
« +r 35 R
« JF R DUP SIN ASIN # R SIN 1 == OR
THEN _
IFrs>
THEN s R «p2 =NUM
ELSE 1 5F
EMD
EL5SE
IFrsa=z
THEN + 5 R «p2 +NUM
ELSE

308

FaR W R R R ARY R AR A RY

R

£

W

E

IF R 5IN s # r - DUP ABS 1E-6 <
THEN OROP r s R <p2 +NUM

ELSE

IF 8 >

THEN 1 SF B

ELSE r s R «p2 =NUM 3 SF

END

END
END
END

*
+r sR«RS5INs#*r ~ A5IN »»
+rR5«55INr #RSIN - » »
+rsT«r S0 sS0+2rs**TC05*=-J]3»3
+rsterS@s50-150-2s5%1 « MEG -~ ACOS =»
+ RS« IBBR S+ - 3» »
+rs<«at?*r s % 2 A5IN » »
+rS5*at 2% r 55N~ %=
+ RS « 18RS+ -5INZ2 * at =RSINSSIN* -~ [
+ 5t R «st *RSIN=*=2 - 'a4" 5T0 » »
{14 21 29 38 35 39 43 46 51 53 59 61 62 85 93 94 99
187 118 111 115 117 123 125 126 } £ 25 26 27 41 $
45 58 52 5% 57 58 68 89 98 185 183 189 114 116 118

121 124 > © 23 42 49 92 186 113 ¥ { 11 13 19 22 37

38

€ 7 1523 31 47 55 63 71 79 87 95 183 119 127 }

{67 69 70 75 77 73 83 86 91 181 182 } { 74 76 81 84

37 98

34 83 184 112 128 }

1 & "a" SWAP + 0BJ» » DOLIST SWAP 1 = "d" SWAP + OBJ»
» DOLIST SWAP + DUP fields STO ¢new SWAP STO

IF_DEPTH DUP ROT =NUM DEPTH 1 - ROT ==
THEN { WOYAL > 1 GET
END SWAP DROP

1 3
FOR

P. PROGRAM LISTINGS



IF ¢angles j
THEN <angles
"tangles'
END
HEXT
IF #«angles 3 POS B ==
THEM <angles OUP A POS DUP 3 ROLLD 3 PUT <sides ROT
3 PUT 'esides' 5T0 '€angles' 5TO0
EMD 1 3
FOR j
IF ¢angles j GET 3 #
THEN j
END
MERT OUP +«angles SWAP 2 PUT «sides ROT 2 PUT 3 PICK 1
PUT 3 ROLLD SWAP 1 PUT 4 4 PUT <prep EVAL dl 42 a3
«pd SNOM DUP 'd3' STO d1 a3 <pl =HUM IF 3 FS?C THEM
MEG 138 + EMD DUP 'al' STO a3 «pb =MUM ‘'aZ' S5T0 d1 42
a3 «plB EVAL

¢sides OUP 8 POS DUP 3 ROLLD 1 PUT «anales ROT 1 PUT
DUP B POS DUP 3 ROLLD 2 PUT 3 ROLLD 2 PUT DUP 14 POS
DUP 3 ROLLD 3 PUT 3 ROLLD 3 PUT 4 4 PUT <prep EVAL al
a2 <P SNUM DUP 'a3' 5TO dI al a2 ¢p3 NUM DUP 'd2"
STO dl ROT <p4 »NUM DOP 'd3' STO d2 al «plB EVAL

GET B == ¢sides j GET B # AND
i 3 PUT ¢sides j 3 PUT '¢sides' 5T0
5

F R

« 1 3
FOR j
IF ¢sides j GET B == <angles j GET A # AND
THEN #3ides j 3 PUT <anales j 3 PUT ‘'€angles' 5T0
'esides' 5TO
END
MERT

IF <sides 3 POS A ==
THEN <sides DUP B POS DOUP 3 ROLLD 3 PUT <angles ROT 3
PUT3'+an91e5‘ S5T0 ‘'esides' 5TO

F «angles j GET 3 #

THEN j

EMD
MERT DUP +:1dE' SWAP 2 PUT «angles ROT 2 PUT 3 PICK 1
PUT 3 ROLLD SWAP 1 PUT SWAP 4 4 PUT <prep EVAL d3 al
az <ph +NUM DUP 'a3! 570 al «p3 »NUM DUP 'dl' S5TO d3
az +pd NUM 'dZ2' S5TO d1 42 a3 «pl18 EVAL

«angles REVLIST TAIL REVLIST @ POS <€angles SWAP OUP 3
ROLLD 1 PUT <sides ROT 1 PUT DUP @ POS DUP 3 ROLLD 2
FUT 3 ROLLD 2 PUT OUP 14 POS DUP 3 ROLLD 3 PUT 3
Eghhﬂ 3 PUT SWAP 4 4 PUT <prep EVAL dl d2 al <pl
IF_DUP

THEM DUP ‘a2' STQ al <ph +NUM DUP 'a3' 5TO 41 42 ROT
ND+P4 »NUM OUP 'd3' 5TO dl a2 <pl8 EVYAL

W

E

# ¢sides 1 0 1 2 3 } REPL #amgles 1 € 1 2 3 4 } REPL
“Prep EUHL dl dZ d3 ¢S oNUW OUP 'al' ST0 dl d2 ROT
«pl »NUM IF 3 F57C_THEM NEG 188 + END OUP ‘'a2' 5T0 al
«ph +HUM OUP 'a3' 5TO 41 42

*%% Be sure to read the instructions on pages 274-275 before keying in these programs. *** 309



ROT «p18 EVAL

1 2

FOR j ¢sides DUP B POS DUP 3 ROLLD j PUT <angles ROT
J PUT 'sangles' 5T0 '¢sides' 570

MERT ¢sides OUP 14 POS DUP 3 ROLLD 3 PUT €angles ROT

3 PUT 4 4 PUT <¢prep EYAL dl d2 <p? =NUM DUP 'a3' 5T0

dl d2 ROT «p4 »MUM DUP 'd3' 5T0 dl 42 ROT «p5 +MUM

DUP 'al' 5T0 a3 «pb +MUM 'a2' 5TD

« ¢sides DUP A POS DUP 3 ROLLD 1 PUT +anglE: ROT 1 PUT
DUP @ POS DUP 3 ROLLD 2 PUT 3 ROLLOD 2 PUT DUP 14 POS
DUP 3 ROLLD 3 PUT 3 ROLLD 3 PUT 4 4 PUT «prep EVAL dl
a2 «p3 »NUM DUP 'd3' 5T0 d1 a2 <p4 »NUM DUP 'd2' 5T0
dl d3 ROT «p3 -+MUM DUP 'al' 5T0 a2 <p6 »NUM 'a3' 5T0

*

= 12
FOR j *angl#s OJF B POS DUP 3 ROLLD j PUT «sides ROT

j PUT ‘'#sides' 5T0 's+angles' STO

MEXT ¢sides OUP 14 POS DUP 3 ROLLD 3 PUT <angles ROT
3 PUT 4 4 PUT <prep EVAL al a2 «pb »NUM DUP 'a3' STO
al a? «p9 =NUM DUP 'd3' STO SWAP a2 «p3 »NUM DUP 'd2'
ST0 d3 al <p4 =MUM 'd1' STO

= MSOLVE TRIANGLE" { {"a:" "EMTER SIDE A" @ 3 ) { "h:"
"ENTER SIDE B" B 9 } { "c:=" "ENTER SIDE C" B 9 3L
"R%:" "EMTER ANGLE A IN DEGREES" B 9 } { "B":" "ENTEP
AMGLE B IM DEGREES" B 9 3 { "C°:" "EMTER_AMGLE C INM
DEGREES" @ 9 } « "AREA:" "EMTER AREA OF TRIAMGLE" @& 9
yOy L0221 Y fields 1 enw DOLIST IMFORM

3>

RCLF

+ «pl «p? +p3 “pd «p5 «ph €p7 «p3 P €plH €cases
£Prep N0 $535 €3as €asa €553 €355 ¢kss ¢ksa <kaa
«infm flags

« DEGSTD £ 123 3YCF{abc H“ B C* K > DUP 1
« PGALL # DOLIST 'fields' bTD MOVYAL * DUP DUP + DUP
OUP + + + fields 5T0
WHILE «infm EVAL
REPEAT CLLCD ““olu1n9 trlanglc Lot DISP

« [IF OUP TYPE 9
THEM =+MUM

EMD
QBEIST OUP 1 = TYPE = DOLIST DUP 1 3 SUB SWAP 4
pul
new ¢3ides <angles
A17?
FOR j
IF ¢new j GET TYPE B ==
THEM j 1 - 2 SWAP * +

EMD
MERT 'case' S5T0 +cases 1
« JF rcase POS
THEN 1
ELSE A
END
» DOLIST 1 POS
IF DUP
THEW ¢ dl d2 d3 al a2 a3 a4 3} PURGE { <¢sas

£

£

£

£

fod I W
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€335 €353 +53a3 €355 +kss <¢ksa <¢kaa } SWAP GET
EVAL EWAL fields 1 <nw DOLIST fields STO

IF 1 F57C
THENTSND solution exists" MSGBOX «new fields
5
ELSE 1 7
FOR j
IF <new j GET £ MOVAL > 1 GET #
THEN
IF fields j GET +NUM <¢new j GET -
AB5 1E-6 >
THEN 2 5F
END
END
MERT
IF 2 F5TC
THEN "Mo solution ewists" MSGBOR <new
fields 5TO
EMD
END
IF 3 F57C
EHEN "One of two solutions" MSGBOR
ELSEﬂ$NUt enoush  information" MSGBOK <new fields

END

e

END

fields 1 ¢m DOLIST flass PTDF { fields case a b
c RA* B® C° K dl d2 d3 al a? a3 at } PURGE

£33

&

SPIRD

Spirograph™ Simulation (84)
441 bytes #35A8h
3: number of teeth in fixed wheel 3:
2: number of teeth in rolling wheel :
1: -1 ifinside roll; 1 if outside roll ====> 1:
« { -2 -3} CF OUPZ = 4 PICK +
+ El] =3

E

b
A' PURGE n B CO5 + b 1.5 # nb ~ B * (05 s+ -n
B 5IN #*b 1.5 nb~ B * 5IN# * + STE0
PHPHNETRIF RAD 'B' B 3 FIk a b ~ *Q STD
IF DUP DUP IP #

EHEN OBJ» DROPZ SWAP DROP

i;*n' ¥ *NUM 3 =LIST IMDEP .@5 RES

THEN a ABS b ABS 3 =
ELSE a ABS b ABS 1.5 = +

END
DUP MNEG SWAP DUPZ YRNG 2 + SWAP 2 = SWAP KRNG
ERASE DRAK PICTURE

>
>
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= Square Root UDF (207)
37.5 butes ¥9732h

1: real number ====> 1: square root

f:;F:"_:I RCI for Symbolic Matrix (158)
79 bytes #6086h
3:  symbolic array 3:
2: multiplicative factor 2:
1: row ====> 1: modified array
« -3 CF
+ 5 fn
« 5 0UP n GET £ = n SWAP PUT
SRI RCIJ for Symbolic Matrix (159)
98.9 butes #5A32h
4: symbolic array 4:
3: multiplicative factor 3:
2: rowi 2:
I: row j ====> 1: modified array
x -3 CF
+ 5 f 1]
« 5 1 GET £ = 5 j GET AOD s j ROT PUT
:2 o
SESWF Swap Rows in Symbolic Matrix (158)
87.9 bytes #7BFEh
3:  symbolic array 3:
2: rowl :
1: row?2 ====> 1: modified array
o+ 31 ]
« 5 0OUP i GET SWAP j GET s i ROT PUT j ROT PUT
#
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STEM Transpose Symbolic Matrix (158)

124 bytes #8A0SHh
1: symbolic matrix ====> 1: transposed symbolic matrix
« [DUP DUP SIZE SMAP 1 GET SIZE
rannm
2 1 m
FOR_j 1 n
FOR i a i GET j GET
MERT
MERT m n
L
=1
el 0L Extract Column from Symbolic Matrix (159)
73.9 bytes #4r86h
2: symbolic array 2: reduced array
1: column number ====> 1: extracted column (list)
% % 3N
#« 5 STRN n SXROW 3SWAP STRN SWAP
=1L
f:lr"nF-:L"-'-l Extract Row from Symbolic Matrix (159)
88 butes #A2F7h
2: symbolic array 2: reduced array
1: row number ====> 1: extracted row (list)
%+ 35
« SNDPB._I-} DUP 2 + n - ROLL OMER 1 + ROLLD 1 - =LIST
3
LR, s s
b ”D Synthetic Division (input form) (117)
933.5 bytes #FDODh
2: array 2:
1: program ====> 1: modified array
« « [F DEPTH OUP ROT -=NUM DEPTH 1 - ROT ==

THEM { NOVAL > 1 GET
END SWAP DROP
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& "SYNTHETIC DIMISION"
£ 0 "POLYMOMIAL:" "ENTER POLYNOMIAL RS VECTOR" 3 4 3
+ "FACTOR:" "ENTER FACTOR TO BE TESTED" A 1 }
€ "GUOTIENT:" “DISPLAYS COMPUTED QUOTIENT" X
{ "REMAINDER:=" "DISPLAYS COMPUTED REMAIMDER" 3} 3
1 © } fields 1 ¢nv DOLIST IMFORM

IF
THEM 0BJ» 3 DROPM

EY

pf
NDK P f SOIY 4 +LIST 'fields' 5T0 «synr EVAL »

£ MOVAL MNOVAL MOVAL MOVAL 3 'fields' 5T0
'('nlvl (—Sldnr'
«s9nr EYAL » 'fields' PURGE

I

£

THCCIM Find Tangent and Normal at Point on Conic (267)
385 bytes #486hh
2. {ABCDEF} 2: Normal: 'y=mx+b'
I (xy) ====> 1: Tangent: 'y=nx+d'
« [R
+ con 2l 4l
« RCLF -3 CF -22 SF

con OBJ* DROPZ ROT 2 * yl #= + 3 PICK w1 * + NEG
4 ROLLD SKAP 91 + + SWAP 2 + w1 # + SWAP
[F_DUP_NOT

THEM OROP MINR

END -~

+ fpu

« 'g' fpw DUP INV NEG 2 +LIST DUP 'w' = SWAP %=1 * -
gyl ADD COLCT = OBJ+ DROP "Normal" +TAG SWAP
"Tangent" +TAG ROT STOF

g

TRIGH Trigonometry Explorer (32)
2438.5 bytes #6860h

1: ====> 1:

« & "TRIGOWOMETRY EXPLORER" { { "<(DMS"):" "ANGLE IN
oo MMS5" B 3 £ "«:" "ANGLE IN RADIANS" B 9 ) {
"RADIUS:" "RADIUS OF CIRCLE" B 9 } { "SIN:" "SINE OF
ANGLE" B 9 3 { "ARC:" "LENGTH OF ARC INSCRIBED BY
ANGLE"™ A& 9 > { "COS:" "COSIMNE OF ANGLE" B 9 3 {
"AREA:" "AREA OF CIRCULAR SECTOR" B 9 3 { "TAN:"
"TAMGEMT OF AMGLE" B8 3 > >} { 2 2 X} { } ansd anor
radi sine arc cosine area tang 8 =»LIST INFORM
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+ +infm
« RCOLF ¢ -2 -3 Y CF € 45 'nd4' 1 'J2-2' 'grgt ' [242
‘o8t 1 3 OUP 'old' STO ¢ ansd angr radi sine arc
cosine area tang ¥ DUP 'fields' S5T0 570
WHILE <infm EVAL
REFEART DUFP fields STO
+ et
# 1 Y 'ipputs' 5TO 1 8
FOR n
IF mew n GET DUP { NOVAL ¥ 1 GET # SWAP old
n GET # AMD
THEM fields n GET 'ipmputs' STO+
EMD
HERT
IF inputs © I SAME
THEW mew 0BJ+ DROP
ELSE 11 2
FOR j )
IF inputJ 1 angd angr 3 DUP j GET DUP 4
ROLL UHP POs
THEM P05
ELSE DRDPE
EMD
HERT
1= 11+
FOR j
IF inputs { sine cosine B tang 3 DUP
J GET DUP 4 ROLL SWAP POS
THEN PO5 +
ELSE DROPZ

EMD
NEHT RAD aold 2 GET
sine ASIN =
cosine ACOS »
"angr' DUP DUP SIN sime - SWAP COS
cosine - = SWAP ‘we4' NUM ROOT =
tang ATAN =
'angr' DUP DUP SIN sine - SWAP TAN
tang - = SWAP 'n-4!

IF sine SIGN tang SIGN #

THEM 'p' +

EMD =MUM EDOT =
'angr' OUP OUP EDS cosine - SWAP TAM
tang - = SWAP ‘n-4!

IF LD:lHP SIGN tang SIGH #

THEN 'n' +

END =NUM ROOT =
OUP 8 =LIST SWAP GET EVAL DUP 'angr'
STO »NUM R=0 +HMS ‘'angd' S5TO

arngd #MUM HMS+ D+R 'angr' S5T0 =
angr »MUM P*D +HMS 'angd' S5T0 =

IF -17 F57

THEM angr- +MUM E=D +HMS 'ansl 510
EhaE angd #MUM HMS+ D+R ‘angr' STO

FIIE

foR

2

f R R W

et

*** Be sure to read the instructions on pages 274-275 before keying in these programs. ***
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SWAP GET EVAL
114

FOR j
IF inputs { radi arc B area ¥ DUP j
GET DUP 4 ROLL SWAP POS
THEW PO5 +
ELSE DROPZ
END
MERT
radi € arc anar < * radi € area 2 * angr
< ABS [ » radi ¢ arc angr < » radi
} old 3 GET SWAP + SWAP GET EVYAL RAD anad
anar ROT OMER SIN 3 PICK 3 PICK * 4 PICK C0S
5 PICK 5 PICK 50 =+ 2 -~ ABS 6 PICK TAM
END 8 »LIST 1
+ »NUM 18 FIR =0n
IF DUP TYPE
THEN RPN
IF DUP £ »~ 1 GET PD5 B #
THEN
IF DUP 2 GET 188 =2
THEM EUHL [
ELSE EYAL -=NUM

END
ELSE EVAL
END
END 5TD
» DOLIST DUP fields STO 'old' 5T0

r
L

EMD STOF £ ansd angr radi sinme arc cosine area tang
fields inputs old } PURGE

&

TEMCOM Translate Conic (272)
249.3 bytes # 8FBh
2: (ABCDEF} 2:
1. [xy] ====> I: {ABCDEF}

0B+ OROP ROT 0BJ+ DROP

*+hkabcdef

« abcbd+2has*=*-
S0 = b hk =+ +ck 50
L IST

&

Ik

e bh
* + d

I ra
[y O el
=M

*

)
+
T

*—
h #

o

E=3
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TI'.'! I El-'-l View Transformed Array of Points (214)
378 butes #184Ah

1:  object array of points ====> 1: object array of points

B

{ PICT PPAR 3 PURGE ERRSE OUP SIZE 0BJ» OROP B, @)
*amnn s
¢ 2 DUP fmn 3 GET ~ 'al STO 1 m
FOR k 3k RO T2 SUE W2 RoC DIP 5 + s’ 510 SUAP
2l
MEKT m LIST 'p' STO 5 m » DUP (6,30 - SWAP (6,3) +
POIM 1 m
FOR i p 4 GET p 4 m MOD 1 + GET LINE
MEWT 'p' PURGE ¢ 3 1 RTICK DRAX PYIEW a

UDFUI Apply User Interface to a UDF (27)
339 butes #C2Ah
1: name of UDF ====> 1:
) ; name  infdat
« name RCL +STR 4 OVER SIZE SUB “"'=" + 1 OVER "'" POS 3

PICE "=" POS MIM 2 - SUB "{" SWAP + 0OBJ* """ name +
SMAP name + 1 o« ": o+ » OOLIST DUP SIZE 4 - CEIL OVER
1 = OROFP « MOMAL > HEAD = DOLIST OUP 5 ROLLD 4 =LIST
"infdat' STO

WHILE infdat 0BJ+ DROP S ROLL IMFORM

REFERT OUP OBJ+ DROPZ name EMAL DUP 3 PICK SWAP name
E”D'-‘THE 4 ROLLD SIZE SWAP PUT

Y

I'.'ID I F: Find Vector Direction Angles (177)
181.5 bytes #14F8h

1:  vector ====> 1: list of direction angles

« DUP SIZE 1 GET ZWAP DUP ABS
*nouom
£ 1 n
FOR i w i GET m - ACOS
MERT n +LIST

3

s

**% Be sure to read the instructions on pages 274-275 before keying in these programs. *** 317
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Examples Index

1. Exploring Functions

Adding a special user-interface to UDF 27
Finding composition of two functions 22
Finding range of a function 11

Finding the inverse of a function 23
Modifying UDF so that it can be plotted 26
Plotting a linear function 9

Plotting a rational function 18-19

Plotting family of lines, varying intercept 10
Plotting family of lines, varying slope 10
Plotting family of quadratics 12

Solving a quadratic graphically 15

Solving a quadratic numerically 17

Solving a quadratic symbolically 17
Symbolically isolating a variable 14

Using UDF to compute distance between points in space 25
Using UDF to compute volume of a cone 24
Varying base in logarithmic function 21
Varying exponent in exponential function 20

2. Trigonometry

Arithmetic using HMS degrees format 30
Computing trigonometric ratios 33

Converting degrees to radians 30

Converting radians to HMS format 30

Plotting using different angle modes 31

Solving a triangle (KAA) using SOLA 47

Solving a triangle (SAS) 45

Solving a triangle (SSA) using SOLA 46

Solving trigonometric equations from the keyboard 50
Solving trigonometric equations graphically 49
Solving trigonometric equations using SOLVE 48
Triangulating on UFO 53

Triangulating to a distress call 52

Triangulating to compute distance to sun 54

Using trigonometric identities to solve equations 40
Using trigonometry to appraise a plot of land 51
Verifying a trigonometric identity 36

Verifying a trigonometric identity graphically 38
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3. Polar and Parametric Equations

Astroid plot 90

Cardioid plot 87

Changing coordinate display mode 59

Cissoid of Diocles plot 79

Computing a complex function 72

Conchoid of Nicomedes—a<b 81

Conchoid of Nicomedes—a>b 81

Curtate epitrochoid plot 88

Curtate hypotrochoid plot—integral ratio of radii 91
Curtate hypotrochoid plot—non-integral ratio of radii 92
Curtate trochoid plot 85

Deltoid plot 90

Effect of coordinate mode on entry 59

Entering polar coordinates 59

Epicycloid plot—integral ratio of radii 86

Epicycloid plot—non-integral ratio of radii 86
Finding intersection points of two polar functions 65
Finding the period of a polar function 61

Folium of Descartes plot 80

Hyperbolic spiral plot 94

Hypocycloid plot 89

Lemniscate of Bernoulli plot 78

Limagon plot—a<b<2a 83

Limagon plot—a=b 83

Limagon plot—a>b 83

Limagon plot—b>2a 83

Lissajous plot 98

Lituus spiral plot 96

Logarithmic spiral plot 95

Modeling circular-to-linear transfer parametrically 70
Nephroid plot 87

Ordinary cycloid plot 84

Oval of Cassini plot—a<e 77

Oval of Cassini plot—a>eV2 77

Ovals of Cassini plot—e<a<e\/2 77

Parabolic spiral plot 96

Plotting the Folium of Descartes parametrically 66
Plotting a complex function using Parametric plot type 73
Plotting a complex mapping using Gridmap plot type 75
Plotting a function described parametrically 69
Plotting a polar equation 64

Plotting a polar function 61

Plotting the complex plane using Gridmap plot type 74
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Plotting two parametric equations simultaneously 71
Prolate epitrochoid plot 88

Prolate epitrochoid plot—non-integer ratio of radii 89
Prolate hypotrochoid plot—integral ratio of radii 91
Prolate hypotrochoid plot—non-integral ratio of radii 92
Prolate trochoid plot 85

Rose plot—a>2b 93

Rose plot—b<a<2b 93

Sinusoidal spiral plot—n=3/4 97

Sinusoidal spiral plot—n=-1/3 97

Sinusoidal spiral plot—n=-7/5 97

Spiral of Archimedes plot 94

Strofoid plot 82

Tractrix plot 98

Witch of Agnesi plot 99

4. Polynomials

Adding two matrices 139

Adding two polynomials from the stack 109

Adding two polynomials using FAO0 110

Converting polynomials from vector to symbolic for 101
Converting roots to polynomials using FCOEF 131
Converting roots to polynomials using RCOEF 132

Dividing one polynomial by another 112

Find the product of two polynomials 111

Finding real roots of a polynomial graphically 127

Finding real roots of a polynomial using RRO0TS 130
Finding roots of a polynomial using SOLVR application 124
Finding roots of a polynomial using Solve Equation... application 126
Finding roots of polynomial with SOIY 120

Finding roots of single-variable function via PCOMY 133
Finding the positive integral power of a polynomial 114
Finding the roots of a polynomial using SN0 122
Graphically determining degree of a polynomial 106
Graphically finding an extremum 105

Plotting a polynomial 102

Plotting polynomial and first derivative 104

Polynomial division with a remainder 113

Straightening a polynomial by plotting successive derivatives 107
Subtracting one polynomial from another 110

Synthetic division using S0IY 116

Synthetic division using S7YMO 117

Using the Solve Poly... application 129
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5. Systems of Linear Equations

Finding the condition number for a square matrix 137
Finding the determinant of a matrix 142

Finding the rank of a matrix 138

Graphically characterizing a linear system 136
Inverting a matrix using Gaussian elimination 149
Inverting a matrix with 1/x 143

Multiplying matrices 141

Plotting a system of inequalities 161

Solve a linear system using COFACTE 155

Solving a linear system using CRAMER 152

Solving a linear system using Solve Lin Sys... application 156
Solving a linear system using the stack 156

Solving a linear system with Cramer’s Rule 151
Solving a linear system with Gaussian elimination 146
Solving a linear system with RREF 148

Solving a maximum linear program 165

Solving a MaxMin linear program 170

Solving a minimum linear program 168

Solving an over-determined linear system 160
Solving an under-determined linear system 160
Transposing matrices 141

6. Analytic Geometry

Adding two vectors 174

Centering a projection using a translation 236

Compute the transformation matrix needed to rotate an object around a line in
space 225

Converting a line from array to general form 195

Converting a line from general to parametric form 194

Converting a line from parametric to array form 194

Converting a line from parametric to general form 195

Converting a line from parametric to slope-intercept form 194

Converting a line from slope-intercept to array form 195

Creating a “3D-object” and viewing it with an orthographic projection 229

Determine the number of points in common between a line and a plane 209

Determining collinearity of a point and a line 196

Determining collinearity of three points 186

Determining collinearity of three points using COLINT 186

Determining the relationship of two lines in space 201

Finding the angle of intersection of two lines 202

Finding the angle of intersection of two planes 206

Finding the area of a triangle using the cross product 190
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Finding the centroid of a triangle 191

Finding the cross product of two vectors 175

Finding the direction angles of a vector 176

Finding the direction angles of a vector using ¥YIIIE 177

Finding the distance between parallel lines 201

Finding the distance between two points 180

Finding the distance from a point to a line 189

Finding the distance from a point to a line in space 198

Finding the distance from a point to a line in space using It ol 199

Finding the distance from a point to a line using [tol 189

Finding the distance from a point to a plane 207

Finding the distance from the origin to line 199

Finding the dot product of two vectors 174

Finding the length of a median of a triangle 191

Finding the length of a vector 176

Finding the line containing two points 182

Finding the line containing two points in space 183

Finding the line containing two points using FPE+L 182

Finding the line given its slope and a point on the line 192

Finding the line in space with a given direction vector 192

Finding the line of intersection of two planes 205

Finding the line of intersection of two planes using FLE*L 206

Finding the line parallel to a given line through a given point 197

Finding the line perpendicular to a given line containing a given point 197

Finding the line perpendicular to the line determined by two given points that contains a
third point 188

Finding the lines determined by three noncollinear points 187

Finding the midpoint of a line segment 181

Finding the perimeter of a triangle determined by three noncollinear points 190

Finding the perpendicular bisector for a line in space 185

Finding the perpendicular bisector of a line segment 184

Finding the perpendicular bisector of a line segment using P2PB 184

Finding the plane given a line and a point not on the line 196

Finding the plane given a line in the plane and a perpendicular plane 211

Finding the plane given a point on the plane and a parallel plane 208

Finding the plane given a point on the plane and a perpendicular plane 208

Finding the plane given its three traces 204

Finding the plane given three noncollinear points in the plane 188

Finding the plane given two lines in the plane 203

Finding the point of intersection of a line and a plane 210

Finding the point of intersection of a line and a plane 211

Finding the point of intersection of two lines 200

Finding the point that divides a line segment into a given ratio 181

Finding the traces of a given plane 204
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Ilustration of the non-commutativity of the cross product 175
Multiplying a vector and a scalar 174

Performing a projection from within an object 241

Performing a single-point perspective projection 235

Performing a three-point perspective projection with translation 240
Performing a two-point perspective projection 238

Performing a two-point perspective projection with translation 239
Projecting a 3D-object using a dimetric projection 232

Projecting a cube isometrically 233

Reflecting an object across an arbitrary line in space 227
Reflecting an object across both coordinate axes 226

Rotating a 2D-object around an arbitrary point 222

Rotating a 2D-object around the origin 221

Scaling an object using global scaling 217

Scaling the horizontal component of an object 215

Scaling the vertical component of an object 216

Shearing an object horizontally 219

Shearing an object vertically 218

Subtracting one vector from another 174

Translating an object 220

7. Conic Sections

Determining whether a point lies inside, outside, or on a given circle 254

Finding the asymptotes and foci of a hyperbola 263

Finding the center and eccentricity of a given hyperbola 262

Finding the center and radius of a circle 250

Finding the center, semimajor, and eccentricity of an ellipse 256

Finding the circle given its center and a tangent 268

Finding the circle given its center and radius 250

Finding the circle through three points using the linear systems method 253

Finding the circle through three points using the perpendicular bisector method 252

Finding the eccentricity and directrixes of an ellipse 258

Finding the ellipse given its center, semiaxes, and angle of orientation 256

Finding the ellipse given its eccentricity and a directrix and corresponding focus 258

Finding the focus of a parabola 260

Finding the hyperbola given its center, a and b parameters, and the angle of orienta-
tion 262

Finding the hyperbola given its eccentricity and a directrix and corresponding fo-
cus 264

Finding the normal through a given point on a circle with a given center 268

Finding the parabola given its vertex and directrix 260

Finding the points of intersection of a circle and a line 265

Finding the points of intersection of an ellipse and a line 266
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Finding the points of intersection of a hyperbola and a line 266

Finding the points of intersection of a parabola and a line 266

Finding the tangent and normal to an ellipse at a point on the ellipse 269
Finding the tangent and normal to a hyperbola at a point on the hyperbola 270
Finding the tangent and normal to a parabola at a point on the parabola 269
Finding the tangent to a circle at a point on the circle 267

Finding the vertices and foci of an ellipse 257

Plotting a circle in a square viewing area 247

Plotting a circle with Conic plot type 245

Plotting a circle with CONPLT 249

Plotting a conic using the default resolution 246

Plotting a conic with enhanced resolution 246

Plotting a hyperbola with COMPLT 248

Rotating a conic by a specified angle 271

Rotating a conic into standard orientation 272

Translating a conic along a given vector 272

Translating a conic to the origin 273
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APOLY
A=t

CIR=G
CMPOS
COFACTR
COLIN?
COMPLT
CRAMER
C+5T0

DMTRC
Dtol

ELP=G

FINY
FMPLT

G+A

G+CIR
G+ELP
G+HYP
G+PBL

HYP=+G

[+GEN
INPLOT
[SMTRC

LCOW?
LINPRG
LINZ?
LPL+P
LTRIM

NRMLZ

PROD
PAR-+1
PEL=G
PCONY
PDIVIDE
FD+P
PERS
PGALL
PHASE1
PIVOT
PLZ+L
PMULT
P+PD
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Programs Index

Analyze a Polynomial
Rationalize an Array

Convert Circle Parameters to General Form
Composite of Two Functions

Find Cofactor Matrix

Test for Collinearity of Point and Line

Plot Conic from General Form

Apply Cramer’s Rule

Rotate Conic to Standard Orientation

Create Dimetric Projection
Find Distance from Point to a Line

Convert Ellipse Parameters to General Form

Function Inverse
Plot Family of Curves

Convert Line from General to Array Form
Find Circle Parameters from General Form
Find Ellipse Parameters from General Form
Find Hyperbola Parameters from General Form
Find Parabola Parameters from General Form

Convert Hyperbola Parameters to General Form

Convert Line from Slope-Int. to General Form
Plot System of Inequalities
Create Isometric Projection

Find Intersection of Line and Conic
Linear Programming

Determine Relationship of Two Lines
Find Intersection Point of Line and Plane
Trim Zeroes from Left of Array

Normalize Object Array after Transformation

Polynomial Addition

120, 122, 124,126, 276
143, 154-155, 200, 211, 253, 277

250, 252, 268-269, 277

22,277

154, 159, 278

186, 196, 278-279, 288
248-249, 256, 262, 271-273, 278
152,279

271-272, 280, 283-284, 286

232,280
189, 199, 201, 268, 280

255-256, 258, 281

23,281
10, 12-13, 20-21, 4143, 281-282

193-195, 199-202, 252, 268, 282
250, 254,273, 282-283, 286
255-256, 283, 286

261-263, 283, 286

260, 283-284, 286

261-262, 264, 284

189, 193, 195, 252, 284
161, 284-285
233,285

265-266, 285-286

164-166, 168, 170, 286-288
200-201, 252, 288

211, 288-289

289, 290, 292

234-236, 289, 293
109-110, 289, 297, 299

Convert Line from Parametric to Slope-Int. Form193-195, 290

Convert Parabola Parameters to General Form
Convert to Polynomial Form

Polynomial Division

Convert Line from PD to Parametric Form
Create Perspective Projection

Purge Variable in Path

Convert Tableau to Canonical Form

Pivot Tableau on Given Element

Find Intersection of Two Planes
Polynomial Multiplication

Convert Line from Parametric to PD Form

260, 290

133, 290-291

112-113, 291

183, 185, 192, 194, 197, 205, 291, 296
238-241, 292

281-282, 286, 292, 311, 315

164, 287, 292-293

164, 294, 305

206, 294

111, 291, 295, 299

193-194,196-199, 201, 203, 209-211, 225, 295
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FPOMER
PSUE
P+5M
Pe+L
PZ+FE

aosaLYy

RCOEF
REMMOR
RFLCT
ROTCOM
ROTZD
ROT30
+EPN
REOOTS

SCFACTR
SCOF
SCRAMER
SCSLP
SDET
SOIY
SIMPLEX
S+

>S5
SMADD
SHIMY
SHMULT
SMSMULT
SMSOLY
SMSUE
SHCOL
SHROL
S0l
SPIRD
sqrt
SRCI
SRI
SRSWP
STEN
SwCoL
SEROM
SYMD

THCOM
TRIGH
TRHCON
TVIEN

DFUT
YOIR

Raise a Polynomial to a Natural Power
Polynomial Subtraction

Polynomial to Symbolic

Find Line Containing Two Points

Find Perpendicular Bisector from Two Points

Solve Quadratic

Compute Symbolic Polynomial from Roots
Compute Symbolic Remainder

Create Reflection Transformation

Rotate Conic

Create 2D-Rotation Transformation

Create 3D-Rotation Transformation
Converts Algebraic to RPN List

Find Roots of Polynomial

Find Symbolic Cofactor Matrix

Find Symbolic Cofactor

Apply Cramer’s Rule to Symbolic Matrix
Swap Columns in Symbolic Array
Symbolic Determinant

Synthetic Division (stack version)
Applies Simplex Algorithm to Tableau
Disassembles Symbolic Matrix
Assemble Symbolic Array

Symbolic Matrix Addition

Invert Symbolic Square Matrix
Symbolic Matrix Multiplication
Symbolic Scalar Multiplication

Solve Symbolic System of Linear Equations
Symbolic Matrix Subtraction

Insert Column in Symbolic Array
Insert Row in Symbolic Array

Solve Triangle

Spirograph Simulation

Square Root UDF

RCI for Symbolic Matrix

RCIJ for Symbolic Matrix

Swaps Rows in Symbolic Matrix
Transpose Symbolic Matrix

Extract Column from Symbolic Matrix
Extract Row from Symbolic Matrix
Synthetic Division (input form version)

Find Tangent and Normal at Point on Conic
Trigonometry Explorer

Translate Conic

View Transformed Array of Points

Apply User Interface to a UDF

Find Vector Direction Angles

Programs Index

114, 291, 296

110, 291, 296

110-111, 114, 124, 126, 296, 299
182, 187, 189, 195, 297

184, 252,297

121, 123, 125, 127, 297-298

132,298

292, 298

227,299

271, 281, 284, 291, 299
222,299

225,300

291, 296, 300, 317
130, 133, 276, 301

159, 301, 306

157-159, 301-302

159, 302

159, 302

157-159, 302, 306

116, 120-121, 125, 127, 303, 315
164-165, 287, 295, 303-304
157-158, 304

157-158, 305, 314

157- 158, 305

159, 305

157-159, 305-306

157-159, 306

159, 306

157-158, 307

159, 303, 307

159, 307

46-47, 308-311

84,311

298, 312

158, 312

159, 312

158, 303, 312

157-158, 303, 306, 308, 313
159, 302-303, 313

302, 313

117, 313-314

267, 269-270, 314
32-33, 314-316
271-273, 316

214-222, 227, 230-233, 235, 237-241, 316-317

27, 317
177, 317
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Subject Index

+ term in algebraics 17 Bisection approximation method 123
Absolute value 173, 180 Cardioid 87
ADD function 13 Cardioids 65
Affine transformations 228 Cassinian curves 76-78
Amplitude of a trigonometric function 41-43 Center of projection 228
Analytic geometry 172-241 Centering plot on cursor position 107
Angle Centroid of a triangle 178, 190-191
determined by a cone with its base 243 Check-mark 18
determined by intersecting lines 179, 202 Checksum of a program 275
determined by intersecting planes 179, 206 Chords 251
inscribed 251 Circle 243,247, 250-255, 267, 269, 273
of rotation 212, 221-222, 224-225, 228, 231, and cycloidal curves 84
233, 237, 271 and radians 30
orientation 255, 258-259, 261 arc 30
polar 94 center 250, 252, 254, 268, 273
Angle key (polar entry) 59 cissoid of 82
Angle mode conchoid of 82
and parametric plotting 69 radius 29, 84, 250, 252, 254, 268
effect on polar entry 59 unit 29
Angles Cissoid of Diocles 79
general 50 Cissoids 79-83
HMS format 30, 51, 54 Coefficients of functions 41-43
of triangle 29-30, 44 Coefficients of general equation of a conic 248,
principal 32, 50 250, 254, 260, 262-67, 269, 271-273
supplements of 47, 202, 206 Coefficients of general equation of a plane 187-188,
units of measure 30-31 196, 203, 205, 207
vertical 251 Cofactor 153-154, 158
Arc Cofactor matrix  153-155, 159
intercepted 251 COLCT command 14, 109
length 33, 94-95 Collecting like terms 36, 109
Area Collinear lines 179, 197
of a triangle 45, 51, 178, 198 Collinear points  178-179, 186, 196
of circular sector 33 Complex Conjugates Theorem 118
Arithmetic Complex numbers 60
with matrices 139-143 algebraic vs. coordinate forms 66
with polynomials 109-114 and coordinate points 60, 250
with symbolic matrices 158 and parametric functions 66, 72, 72-75
with vectors  174-175 and the Solver 125
Arrays conjugates of 118
of points  213-214, 216, 218-241 polar representation 60
symbolic 143 Complex roots  125-126, 129-131
transformations with 212 Compositions of functions 22-23
vectors 173 Conchoid of Nicomedes 79, 81
Astroid 90 Conchoids  79-83
Asymptotes  18-19, 62, 68, 79-82, 96, 99, 263 Condition number of a matrix 136-138
Augmented matrices 145-146, 148-152, 157-159 Conic plot type 244-245
Autoscaling a plot 39 Conic sections 242-273
Axis plotting  244-249, 256, 271-273
of rotation 212, 221-225 translating and rotating 271-273
parabolic 260 CONNECT mode 18-19, 62
Axonometric projections 228, 234 Constants—symbolic 24

Constraints (linear program) 162-166, 168, 170-171
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Converting decimals to fractions 40
Converting one-variable function to polynomial 133
Converting one linear equation form to another
193-195
Coordinate system 220
Coordinates
display of 58-59
homogeneous 213
of graphics cursor 16
Coplanar 201, 209, 250
Cosecant 29
Cosine 29
Cotangent 29
Cramer’s Rule 144, 150-152, 159
Cross product 174-175, 187- 188, 190, 196-198,
203, 205, 208, 211
Curtate curves  84-85, 88, 91-93
Curves
Cassinian  76-78
cissoids and conchoids
cycloidal 84-93
spirals 94-97
Cycloid 84
Cycloidal curves

79-83

84-93

Defining procedure in user-defined functions 24
Degrees 30-31, 51
Deltoid 90
Depressed polynomial 121
Derivatives 104-107
Descartes’ Rule of Signs  119-121, 124-125
Determinant 142, 144, 150-155, 158
Diagonal elements of a matrix 143, 214
Dimensions of a matrix 139-141
Dimetric projection 212, 228, 231-232
Direction angles of a vector 176-177
Direction vectors of lines 185, 192, 196-197, 202,
205, 209-210, 225

Directory 27,275
Directrix 243, 257, 259, 263
Discontinuities 18
Discriminant of a quadratic 13
Display range 26, 31, 39-40, 61, 247
Distance

between center and focus 261

between focus and vertex 259

between parallel lines 179, 201
between two points 178, 180
from a point to a line  178-179, 189, 198-199
from a point to a plane 179, 207
Division
of matrices 143
of polynomials 112-113
synthetic 115-124

Domain of a function 11
Dot product 140, 174-175, 187-188, 202, 208-211

Subject Index

Eccentricity 243, 255, 257, 259, 261, 263- 264
Ellipse 243, 246, 255-258, 269, 271
angle of orientation 255-256, 258
center of 255-256, 258
directrixes 257-258
eccentricity 255-258
foci 255, 257-258
semimajor 255-258
semiminor 255-256, 258
vertices 257-258
Epicycloid 69, 84, 86-87
Epitrochoid 88-89
EQ variable 124
Equation of a circle 250, 252-253, 268-269
Equation of a hyperbola 261-264
Equation of a line
array form 189, 193-195, 199-201
determined by three points 178
determined by two points 178, 182
general form 178, 189, 193-195, 199-201
intersection of two planes 179
parametric form 178, 183, 185, 192-201, 203,
205-206, 210-211, 225
perpendicular to a line 197
perpendicular to two other lines 179, 188
position-direction (PD) form  193-195, 197-199,
201, 203, 209-211, 225
slope-intercept form 178, 182, 192-195, 265
Equation of a parabola 259-260
Equation of a plane
determined by a point and a line 179, 196
determined by a point and plane 179, 208
determined by its normal and a point 179
determined by its traces 179, 204
determined by three points 178, 187-188
determined by two noncollinear lines 179, 203
general form 187, 205, 207
vector form 206, 211
Equation of an ellipse 255, 258
Equation of general conic 243, 248, 250, 259
Equation of the normal to a plane 179
Equations
consistent vs. inconsistent 135
degenerate 135
independent 135, 137
EquationWriter 36
Equiangular spiral 95
Euclidean norm 160
EXPAN command 14
Expansion of a polynomial 114
Exponential functions 20-21
Extracting rows or columns of a matrix 159
Extrema 104-105
Eyepoint 228, 234, 236, 238-241
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Factor of a synthetic division 115-118, 120-123
Factor Theorem 118
Flags

controlling principal vs. general values (-1) 50

controlling symbolic constants (-2) 24

controlling symbolic results (-3) 24, 36, 40
Focus 243, 255, 257, 259, 263
Folium of Descartes 62, 66, 80
Foreshortening of axes 228, 231-233
Fractions 40, 143, 154-155, 200, 211, 253
Function plot type 136, 245
Functions

and geometric transformations 212

complex-valued 72

composites of 22-23

exponential 20-21

finding range of 11

implicit 244-245

inverse 20, 23, 50

linear 9-11

logarithmic  20-21

non-periodic 94

objective 162

parametric 57-58

periodic 29, 48

plotting 9

polar form 61

polynomials 101

quadratic  12-18

rational 18-19

solving graphically 15

solving numerically 17

solving symbolically 17

tracing 16

trigonometric 29

user-defined 24-27
Fundamental Theorem of Algebra 118

Gauss-Jordan reduction 145

Gaussian elimination 144-149

General value of angles 50

Geometric objects 213

Gridmap plot type 74

Guesses when solving an equation 17, 125

Hemisphere 212
Heron’s Formula 45
HMS angle format 30, 51, 54
Homogeneous coordinate representation 213
Horizontal shift of a trigonometric function 41-43
Hyperbola 243, 248, 261-264, 270, 272
angle of orientation 261-262, 264
asymptotes 263-264
b parameter 261-262, 264
center 261-262, 264
directrixes 263-264
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distance between center and foci 261
eccentricity 261

foci 261, 263-264

semimajor 262

vertices 261, 264

Hyperbolic spiral 94

Hypocycloid 84, 89-90
Hypotrochoid 91-93

Identities 48
double-angle 34
half-angle 35
Pythagorean 34
sum and difference 34
sum and product 35, 40
verifying 34-40
Identity matrix 143, 145, 149, 214, 234
Inequalities 161
Inflection point 107
Inner product 140, 174
Inscribed angle 251
Inserting rows or columns into a matrix 159
Intercept of aline 182, 184, 188, 192-193, 268
Intersection
of chords 251
of line and a plane 210, 211
of lines and conics 265-273
of perpendicular bisectors of chords 252
of secants 251
of two lines 179, 200,202
of two planes 179, 204, 206
plane and a right circular cone 243
true vs apparent 65
Intersection point 179, 198, 210-211
Inverse functions 20, 23
trigonometric 48, 50
Inverse of a matrix  142-144, 149, 153-156, 159
ISOL command 14, 23, 48, 50
Isolating a variable 14, 48
Isometric projections 212, 228, 233

Law of Cosines 44-45

Law of Sines  44-45, 52

Least common multiple 132

Least-squares solution 160

Lemniscate of Bernoulli 76, 78

Limagons 82

Line
equation of 178, 182-183, 185, 188-189, 192-195
intersection of two planes 179, 205
parallel to it through a given point 179
perpendicular through a given point 178-179,

197

vertical 270

Line segment 173
dividing into a given ratio 178, 181
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length 190

midpoint of 178, 181, 184-185

perpendicular bisector of 178, 184-185, 227, 252
Linear equations 134

as a matrix equation 153

solving 145-156, 205

symbolic solutions 157-159
Linear inequalities 161-171
Linear programming 162-171
Lines 135

collinear 179

concurrent 135, 179, 200

direction vectors of 185, 192, 197, 205
in space 183, 185, 192-193, 198-199, 223
intersecting 135, 200, 202-203
parallel 179, 200-203, 212
perpendicular 179
skew 179, 200-201
slope-intercept form 9, 192-193
Lissajous 98
Lists 13
Lituus spiral 96
Local names in user-defined functions 24
Logarithmic functions 20-21
Logarithmic spiral 95
Logarithms 21
Long division 115, 116
Lower bound of the roots of a polynomial 119-120,
122-124
Lower Bound Theorem 119

Matrices

addition of 139, 158, 174

and vectors 173

arithmetic with

assembling 158

augmented 145, 148-150, 152, 157, 159

characterizing 135

cofactor 153-155, 159

condition number of 136-138

determinant of 142, 150-152, 154-155, 158

dimensions of 139

disassembling 158

editing 138

extracting rows or columns 159

identity 143, 145, 149, 214, 234

ill-conditioned 137

inserting rows or columns 159

inverse of 142-144, 149, 153-156, 159

multiplication 140-141, 153, 158, 175, 216,
222-223,226, 231

rank of 136, 138

reduced row echelon 145, 147-149

representing linear programs 162

row echelon 145, 147

row operations 159

139-143, 158

Subject Index

row operations on 144-145, 148, 158
scalar multiplication 139, 158
subtraction 140, 158, 174
symbolic 143, 157-159
transformation 213-241
transposing 141, 154-155, 158
Matrix equations 153
Maxima 102, 104
MaxMin problem 170-171
Median of a triangle 190-191
Midpoint of a line segment 178, 181, 184-185, 191,
261
Minima 102, 104
MinMax problem 171
Multiplication
matrices 140-141, 153, 158, 175, 216, 222-223,
226, 231
scalars and matrices 139, 158, 174
nl variable 50
Names 24
Nephroid 87
Normal to a conic 267-273
Normal to a plane 179, 187- 188, 205-210
Normalization of a transformation 234-236
Numerical precision 39-40, 167

Objective function in a linear program
168, 170-171

Optimization 162-171

Orthographic projections 228-230

Ovals of Cassini 76

162-166,

Parabola 243, 259-260, 269, 272
angle of orientation 259-260
directrix  259-260
eccentricity 259
focus 259
p parameter 260
vertex 259-260

Parabolic axis 260

Parabolic spiral 96

Parallel lines 179, 197, 200-201, 212, 228

Parallel planes 187, 205-206, 208, 230

Parameters 57, 68
angle 57
of a vector 176
time 57, 67,70

Parametric functions 57-58
plotting 66-71

Parametric plot type 72-75
and complex numbers 66

Pascal’s Snails 82

Path 27,275

Pattern matching 36, 40

Perimeter of a triangle 190
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Period
of a polar function 63
of a trigonometric function 41-43
Periodic functions 29, 48
Perpendicular 179
to aconic 267
toaline 178-179, 188, 197
to aplane 187,205,211
vectors 175
Perpendicular bisector 178, 184-185, 227, 252
Perpendicularity of the coordinate axes 212
Perspective projections 212, 234, 236-241
Phase shift of a trigonometric function 41-43
Pi in a complex number 59
Pivot operation 164
Plane
complex 60, 74-75
equation of 178-179, 187-188, 196, 203-204, 208
of reflection 212, 226-227
projection 229
traces of 204, 226
viewing 228-229
Plotting
3-D objects 231-233, 235, 237, 239-241
and Connect mode (flag -31) 18
angle mode 30-31
complex functions 72-75
conic sections  244-249, 256, 262, 271-273

curves 76-99
discontinuities in 18
functions 9-10, 12

implicit functions
inequalities 161
object arrays 214-220, 222, 227, 230, 232-233,
235, 237, 239-241
parametric functions 66-71
polar functions 61-65
polynomials 101-108
range 26, 61, 67-68
rational functions 18
resolution of 18, 61, 67, 246
simultaneously 64, 245
with autoscaling 39
Points
and coordinates/complex numbers 60
and vectors 173
collinear 178-179, 186, 196
coplanar 250
homogeneous coordinate representation 213
inflection 107
intersection 179
noncollinear 187, 203, 251-252
vanishing 234-236
Polar angle 94
Polar coordinates 58-60
Polar functions 61-65

244, 245
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Polar mode 59
Polar radius 94
Polynomials 100-133
arithmetic with 101, 109-114
coefficients 101, 109
converting from vector to symbolic 110, 132
converting to from single-variable functions 133
definition 101
degree of 101-102, 104-106, 108, 112, 118
depressed 121
expansion 114
finding roots of 102, 104, 115
plotting 101-108
theorems 115, 118-124
Principal value of angles 50
Programs 275-319, 327-328
Projections 212-213, 217, 228-241
axonometric 228, 234
dimetric 212, 228, 231-232
isometric 212, 228, 233
orthographic  228-230
perspective 212, 234, 236-241
Prolate curves  84-85, 88-89, 91-93
Pythagorean theorem 34

Quadratic formula 121
Quadratic functions 12-18
Quotient of a polynomial division 112-113,116-123
Radians 30-32
Range
and autoscaling 39
of a conic plot 247
of a function 11, 61, 68
of solution search 125
Rank of a matrix 136, 138
Rational functions 18-19
Rational Root Theorem 118, 120
Rational roots (polynomial) 118, 120-122
Real roots (polynomial) 102, 104, 118-125, 127-
128, 131
Rearrangements (symbolic) 14
Rectangular coordinates 58
Reflection 212, 226-227
Remainder (polynomial div.)
Remainder Theorem 118
Resolution 61, 74, 246
Root-finding
in PICTURE mode 17, 49, 105, 127-129
in SOLVE application 48, 124-127
of polynomials 115-131
Rose 93
Rotation 212- 213, 221-227, 234, 237, 271-273
in three dimensions 223, 225
multiple 223-224, 228, 231
Round-off error  39-40, 167

112-113, 116-123
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sl variable 17
Scalar multiplication 139, 158, 174
Scaling 212-218, 221, 234
Search and replace 36
Secant 29, 251, 265
Sector 33
Segment of aline 173
Semimajor of an ellipse 255, 257
Semiminor of an ellipse 255, 257-258
Sensitivity analysis 167
Shearing 212- 213, 218-219, 221
Sides of triangles 44
Simplex Method 162-163
Simultaneous plotting 64
Sinusoidal spirals 97
Skew lines 179, 200-201
Slope 9, 104, 182, 184, 188, 192-193, 268
Solution space  161-163
SOLVE application 45, 48, 124-127, 131
Solve Lin Sys... application 156, 253
Solve Poly... application 101
Solving linear system 144, 153-156, 205, 253, 264
Solving equations using trigonometric identities 40
Solving triangles 44-47
Solving trigonometric equations
Spiral of Archimedes 94
Spirals  94-97
Standard orientation 272
STEP field 67
Strofoid 82
Supplement of an angle 47, 202, 206
Swapping rows or columns in a matrix 159
Symbolic
constants 24
inputs 33
isolating a variable 14, 48
matrices 157-159, 158
pattern matching 36, 40
rearrangements 14
results 22, 24, 36
simplification and verification 36
solutions of equations 17, 40, 50
solutions of linear systems 157-159
Syntax 24
Synthetic division 115-124
Systems of linear equations 134-138, 253
as matrix of coefficients 136, 153, 205
over-determined 135, 160-161
under-determined 135, 160-161

48-50

Tableau 164, 167
Tangents 29, 265, 267-273
Taylor’s approximations 245
Tick-marks 18
TRACE operation
Traces of a plane

16, 63-64, 68
179, 204, 226

Subject Index

Tractrix 98
Transformation matrix 213-241
Transformations 193, 212-241, 271-273
Translation 212-213, 220, 222, 234-241, 271-273
Transposing matrices 141, 154-155, 158
Triangles 29, 34, 190, 198

area of 178, 190, 198

centroids of 178, 190-191

medians of 190-191

solving 44-47
Triangulation 44, 52-54
Trigonometric identities 3440
Trigonometric functions 29, 32-33
Trigonometric laws 44-45, 51-52
Trigonometry 29-54
Trochoids 84-85

Unit square 215

Units in computations 51-52

Upper bound of roots of a polynomial 119-122, 124
Upper Bound Theorem 119

User interface 27

User-defined functions 24-27

Vanishing point 234, 236
Variables 275
artificial 164, 167
basis 164, 167
decision 164, 167, 171
independent 57, 72, 74, 135
slack 167
Vectors 173-177
arithmetic  174-175
magnitude of 173, 176-180
translation 238, 239, 240, 241, 272, 273
components of 173, 176, 183, 185, 214
direction 185, 192-197, 202, 205, 210, 225
direction angles of 173, 176-180
normal 187-188, 205-208, 210
perpendicular 175
position 193, 203, 207-208, 213, 225
products of 174
weighted 181
Verifications 36, 38
Vertex 163, 191, 243, 257, 259
Vertical lines 270
Vertical shift of a trigonometric function 41-43
Viewing an object array 214
Viewing range 61

Weighted average 181
Wildcard 37
Witch of Agnesi 99

Zeroes of a polynomial 115
Zooming 15-16, 103, 107, 128
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If you liked this book, there are others that you will certainly enjoy also:

An Easy Course in Using and Programming the HP 48G/GX

Here is an Easy Course in true Grapevine style: Examples, illustrations, and clear, simple
explanations give you areal feel for the machine and how its many features work together. First
you get lessons on using the Stack, the keyboard, and on how to build, combine and store the
many kinds of data objects. Then you learn about programming—Ilooping, branching, testing,
etc.—and you learn how to customize your directories and menus for convenient “automated”
use. And the final chapter shows example programs—all documented with comments and tips.

Calculus on the HP 48G/GX

Get ready now for your college math! Plot
and solve problems with this terrific collec-
tion of lessons, examples and program tricks
from an experienced classroom math teacher:

Limits, series, sums, vectors and gradients,
differentiation (formal, stepwise, implicit, par-
tial), integration (definite, indefinite, improper,
by parts, with vectors), rates, curve shapes,
function averages, constraints, growth & de-
cay, force, velocity, acceleration, arcs, sur-

Graphics on the HP 48G/GX

Here’s a must-have if you want to use the full
potential of that big display. Written by HP
engineer Ray Depew, this book shows you
how to build graphics objects (“grobs”) and
use them to customize displays with dia-
grams, pictures, 3D plots—even animation.

First the book offers a great in-depth review
of the built-in graphics tools. Then you learn
how to build your own grobs and use them in
programs—with very impressive results!

faces of revolution, solids, and more.

The HP 48G/GX Pocket Guide

You get some 90 pages of quick-reference tables, diagrams, and handy examples—all in a con-
venient little booklet thatfits in the case with your HP 48G/GX! There is acomplete command
reference, along with system flags, menus, application summaries, troubleshooting, and com-
mon Q’s & A’s. Nothing is more succinct and helpful than this little memory-jogger!

For more details on these books or any of our titles, check with your local
bookseller or calculator/computer dealer. Or, for a full Grapevine catalog, write,
call or fax:

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.
Phone: 1-800-338-4331 or 541-754-0583
Fax: 541-754-6508
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It helps us produce books tailored to your needs. If you have
any specific comments or advice for our authors after reading
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Algebra and Pre-Calculus
on the HP 48G/GX

Grab your calculator, grab this book and get ready for math
class! You'll get lots of lessons, examples and advice on graphing
and problem-solving—plenty of practice with the HP 48 G/GX
Plotter, Solver, EquationWriter and MatrixEditor.

The book begins with a chapter on exploring functions in
general—how toidentify and plot them. Then it’s trigonometry,
itsidentities and functions, and its many usesin solving triangles
and real-world problems. Chapter 3is all about polar and para-
metric equations,including the various forms and even complex
numbers (and don’t miss the Garden of Curves). Then you enter
the world of polynomials, their graphs and their roots (“zeroes”).

Chapter 5 covers linear systems—matrix arithmetic, simul-
taneous equations, determinants, inequalities, even linear pro-
gramming! Then you learn all about various methods for solving
problems in analytic geometry (equations of lines and planes),
including transformations (rotations, reflections, etc.). Finally
there’s a chapter on conic sections (circles, parabolas, ellipses,
hyperbolas) and how they behave and graph.

You get all this—from an experienced classroom math teacher,
—plus over 90 programs to automate a lot of tedious keystroking.
Don’t miss this valuable aid for your math courses!

ISBN 0-931011-43-4

51995
Grapevine Publications, Inc.
626 N.W. 4th St. P.O. Box 2449 o

Coruallis, OR 97339 U.S.A

J




	Cover
	Contents
	0. Start Here
	What Is This Book?

	1. Exploring Functions
	Linear Functions
	Quadratic Functions
	Rational Functions
	Exponential and Logarithmic Functions
	Composites of Functions
	Inverses of Functions
	User-Defined Functions

	2. Trigonometry
	The Trigonometric Relationships
	Radians and Degrees: Units of Angle
	The TRIGX Program
	Verifying Identities
	Varying Coefficients in Trig Functions
	Solving Triangles
	Solving Trigonometric Equations
	Problem Solving with Trigonometry

	3. Polar and Parametric Equations
	The Parametric Perspective
	Polar Coordinates
	Polar Representations and Complex Numbers
	Plotting Polar Functions
	Plotting Parametric Functions
	Plotting Functions of Complex Numbers
	A Garden of Curves

	4. Polynomials
	Polynomials and Their Characteristics
	Graphs of Polynomials
	Polynomial Arithmetic
	Finding Roots of Polynomials
	Converting to Polynomials

	5. Systems of Linear Equations
	Characterizing Systems
	Introduction to Matrix Arithmetic
	Solving a Linear System
	Solving by Gaussian Elimination
	Solving with Determinants: Cramer’s Rule
	Solving by Matrix Inversion
	Symbolic Solutions of Linear Systems
	Over- and Under-Determined Systems
	Systems of Linear Inequalities
	Linear Programming

	6. Analytic Geometry
	Introduction To Vectors
	Overview of Analytic Geometry Examples
	Given: Two Points
	Given: Three Points
	Given: A Line or Point-and-Slope
	Given: A Point and a Line
	Given: Two Lines
	Given: Two Planes
	Given: A Point and a Plane
	Given: A Line and a Plane
	Introduction to Transformations
	Scaling
	Shearing
	Translation
	Rotation
	Reflection
	Projection

	7. Conic Sections
	Introduction to Conic Sections
	Plotting Conics
	Circles
	Ellipses
	Parabolas
	Hyperbolas
	Lines and Conics
	Translating and Rotating Conics

	P. Program Listings
	I. Indexes

