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PREFACE

It has been over three years since the Hewlett-Packard HP-48S series calculators

were introduced (March, 1990) to the North American scientific community. Assessment

of their impact leaves little doubt that the affect upon collegiate undergraduate

science, engineering and mathematics has been both significant and substantial. With

features such as 32K of expandable memory, two-way infrared communication, serial

link to personal computers, a sophisticated operating system and a structured

programming language that supports extensive symbolic manipulation capabilities,

these original HP-48 units were accurately termed supercalculators. The HP-48G series

units offer even more: a new, easy-to-use input forms environment for beginners, built-in

128K RAM with two memory expansion ports (in the HP-48GX), enhanced graphics

that include the first calculator-based 3D capabilities (and hence the G designation),

professional code for differential equations and for matrix operations, and a host of

other innovative features. The G series units will most certainly achieve a widespread

acceptance in undergraduate education because of the potential for their creative use, on

a personal level, by faculty and students alike to enhance teaching and learning.

This volume is one of a growing number of publications that are appearing in

support of the use of the high level calculators in undergraduate mathematics. But,

unlike most others, this volume is not dedicated to a comprehensive, in-depth

discussion of how the HP-48G/GX units can be effectively used in any one particular

course of instruction. Rather,it is a collection of six independent chapters, each devoted

to a particular course and authored by faculty who are experienced in the use of the HP-

48 in the material of that course. The chapter titles reflect the courses: Single-

variable Calculus, Multivariable Calculus, Differential Equations,
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Linear Algebra, Advanced Engineering Mathematics, and Probability and Statistics.

Five of the six authors are faculty at Clemson University, which requires all students in

the calculus sequence for science and engineering to have their own

HP-48's. We are extremely pleased to have join us as author of the chapter on

Advanced Engineering Mathematics, Dr. Donald L. Kreider, Professor of Mathematics

and Computer Science at Dartmouth College. Don is well-known for his textbooks in

that area.

Each of the six chapters is self-contained, and written in the spirit of showing the

potential for using the HP-48G series calculators in a mainstream mathematics course.

We have tried to avoid "teaching the mathematics", and have instead written "about

teaching the mathematics". Most of the chapters survey the main topics of a course,

and each chapter includes many activities, exercises, explorations and projects that can

be engaged by students in a calculator-enhanced treatment of the material. For the first

four chapters, Single-variable Calculus through Differential Equations and Linear

Algebra, supporting student-oriented material will be available in 1994 from the

publisher, Saunders College Publishing, by the same authors. Chapter 6, Probability

and Statistics, is new material; only a small portion of Iris Fetta's work in this area

appears outside the present volume. Chapter 5, Advanced Engineering Mathematics,is

also new material, having no existing counterpart published elsewhere. It addresses

the use of the HP-48G/GX in an important and significant area of undergraduate

mathematics, especially for students in analysis, sciences or engineering.

It has been a joy for me to serve as Consulting Editor for this volume. In a

deliberate attempt to foster the creativity of each of the authors, I have refrained from

imposing editorial restrictions in terms of format, structure and style. You will thus

notice a wide variation in these features from chapter to chapter, and I hope you will

find this to be somewhat refreshing.
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Although the chapters in this volume are self-contained, the authors have

assumed that readers will have a basic familiarity with the HP-48G/GX and its

operation, at least to the extent of being able to do elementary numerical calculations

and to enter algebraic expressions. For those inexperienced with HP-calculators, this

basic familiarity can best be acquired by a hands-on study of Chapters 1, 2 and the

first five pages of chapter 3 of The HP48G Series Users' Guide. For convenience, we

briefly review the basics here, and include as an appendix some material on program

housekeeping.

Stack Display Screen

When you first turn on a factory fresh HP-48G series calculator, you will be

looking at the stack display screen. To remove any objects from the screen that may

remain from previous use, press the key three times then the key (on

the same row of keys as ENTER (). Above the horizontal line near the top of the

screen you will see (HOME}, indicating that you are in your HOME directory.

Immediately below are levels 1-4 of the stack. Like lines on a piece of paper, the

stack is a sequence of temporary storage locations for numbers and the other kinds of

objects used by the calculator such as algebraic expressions, arrays, equations, and

programs.

Just below level 1 are six blank menu boxes. Normally, these menu boxes will

have labels in them that reflect the operation of the six white menu keys beneath

them. If you press the key near the top left of the keyboard, the labels will

show that the first page of the MTH menu contains the six submenus VECTR, MATR,

LIST, HYP, REAL , and BASE; the key will turn you to the second page of
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the MTH menu and another will cycle you back to the beginning. The small

horizontal tabs above the labels in the MTH menu indicate that each of the boxes

contains a submenu (a file, or subdirectory in HP parlance). Open the HYP submenu

by pressing the white menu key beneath it to access the various commands for

working with hyperbolic functions. Press to return to the MTH menu at any

time.

Similarly, the key opens the PRG (= Program) menu where you may use

the white menu keys to access the various submenus of commands for use in writing

programs. An extremely important key is the key. It opens the VAR

( = Variables) menu, which is where you look to find the objects that you have

created and stored into the memory of the machine.

Display Settings

It is best to keep the calculator's angle mode set to radians in order to work

with trigonometric functions. Press (purple) to toggle between radian

mode and degree mode. When radian mode is set, the message RAD appears at the

top left of the stack display screen.

To display numbers in standard form, set your unit to STD display mode (the default

setting) by pressing ,opening the FMT (= Format) menu and checking

to see that the left-most menu box reads STD[] |. The small box next to STD

indicates that STD mode is active. If the menu simply reads press the

associated white menu key to activate STD mode. For routine calculations on

the stack, it does not matter which menu labels are active. Simply press to

 

   

make them all blank.
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Keyboard

The keyboard of an HP-48G series calculator may at first appear to be

somewhat intimidating. But, like the control panel of any high-performance device,

it enables you to control and to monitor a vast array of operations. The number entry

keys are bordered on the right by , E] , , and ; and on the left by

, , ,and E] The right-shift key and the left-shift key are

color coded to many of the keyboard labels, and the E] key is used to obtain

alphabetical characters.

Adjacent to is for changing signs, then for entering

exponents, for deleting characters (and clearing the stack), and E for

backspace-and-delete (and dropping objects from level 1). The@ , ,

, and| Vx keys are just above, as are| YX (for obtaining powers) and.

Above the trig function keys are EI (tick), for entering algebraic expressions, and

and EVAL for storing and evaluating objects. The four cursor keys I:g ,

E , E and E control the movement of the cursor when it is active.

 

 

      

Applications and Command Menus

You will notice that some keys have both left-and right-shifted labels printed

above them, but many have only one of the two.

The keys that have only green labels above them represent applications, e.g.,

1/0, PLOT, SOLVE, TIME, UNITS. The right-shifted version of an application key

invokes a specially designed user-interface that lets you interact directly with the

named application, often through the use of input forms, which are the HP
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equivalent of the familiar computer "dialogue boxes". Alternatively, the left-

shifted version of an application key gives you access to the various commands on

the command menu that is associated with the particular application. The

commands may be included in programs or executed directly from the keyboard while

viewing the stack display screen.

Numerical Calculations

Simple numerical calculations are done on the stack. The idea is this: put

inputs on the stack and then execute commands that use the inputs. To enter -12.34,

begin by pressing the appropriate number keys and the decimal point key (bottom

row, center), then use to change the sign. Notice that the typing starts at the

bottom left of the display screen, below level 1 of the stack, on the command line.

Press ENTER to put -12.34 on level 1. Now enter 56.789; notice that ENTER

inserts it onto level 1, bumping -12.34 up to level 2. Press to compute the sum.

To recapture the stack before you added, press (the right-shifted

EVAL key). Now subtract 56.789 from -12.34 with -|, then use and swap

positions with (the right cursor key EI; no need to press now). Now

subtract again to get 69.129. Take the square root with Vx |, then cube the result

 

   
 

  with 3 YX |. You should have 574.765129278.

To edit this result, use (the purple key), use the right cursor

key to move the cursor over the 9 , delete the 9 with and press 3

. Nowuse (the right-shifted key) to obtain the natural

logarithm. To multiply by =, press @ (r is obtained with the left-shift

key) then x]. Notice the symbolic result '6.35396147609 » ' on level1,
enclosed in tick marks. To convert this to a numerical result, use (the

left-shift key). Now drop the 19.9615586945 from level 1 with [&3 ]. The

E key drops objects from level 1; the adjacent key (labeled CLEAR in purple)
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clears the entire stack. Normally, you need not left-shift these keys; shifting is

required only when the command line is active.

Algebraic Expressions

Algebraic expression must be typed in beginning with a ' (tick) mark using the D

key. Alphabetical characters are obtained by first pressing IE and then the

desired key. Note that alphabetical characters appear in white letters to the lower

right of the keys on the top four rows. To produce, say 'S', press D followed by EI

@. Lower case characters are obtained by the sequence E] E’

then the character key. For example, D E @ E‘)] puts 'd’

on level 1. (ThusE left-shift will give lower case).

To enter the algebraic expression 'SIN(X)', press EI @l IE

ENTER [. Notice the location of the cursor after each keystroke; after the

cursor is still inside the right parenthesis. To move it outside, use the right cursor

key @ But, pressing ENTER does it all for you. As a more complicated

example, try 'COS(Xa2)/(2+XA3)". The keystroke sequence is:

E’ ICOS] LaJ |1/x] YX| 2 [D] l+|[+| 2

[x] [a] [1/x] Y*| 3 [ENTER].

Yes,it is necessary to insert the » in 2+XA3; if you forget, when you press ENTER |,

an Invalid Syntax message will appear and you can then correct your typing. If

things are not going well on the command line, remember that the El key will

 

  

   
 

   

backspace and delete. Finally, if you get desperate, press (sometimes, more

than once) to cancel what is taking place and then start over.



HP-48G/GX Calculator Enhancement

for

Single-Variable Calculus

Donald R. LaTorre, John W. Kenelly, James H. Nicholson

Calculus of a single variable has proven to be the mathematical common

denominator for students in practically every scientific field. Exceedingly rich in terms

of concepts and ideas, calculus was for almost three centuries linked to every major

development in mathematics, science and technology. Its applications are diverse and

widespread and today a study of elementary calculus forms the basic mathematical

foundation for careers in mathematics, science and engineering.

But the teaching of calculus has not kept pace with the times. All too often our

courses have catered mainly to traditional analytic presentations and largely ignored

the strong graphical and numerical aspects that have always been present but which

are now readily accessible with microcomputer or calculator technology.

This chapteris an introduction to how the HP-48G/GX supercalculator can be used

to effectively enhance the teaching and learning of the graphical and numerical

aspects of single-variable calculus. Our presentation is, of necessity, somewhat brief

and makes no claim to being comprehensive. It is intended only to point the way for

teachers to use the high-level Hewlett Packard units by showing some of their power

and versatility, as well as some examples of where and how they can make a

difference. Reference [1] is an expansion suitable for classroom use by students.
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The chapter is divided into four sections. Section 1 is concerned with

representing functions numerically and graphically. We begin by representing

mathematical functions on the HP-48 as user-defined functions, and then show how

the SOLVE application can also be used to evaluate functions. The HP-48's PLOT

application lets you represent functions as plots in the PICTURE environment and we

discuss plotting via the main plot screen (which uses input forms and choose boxes) as

well as with the commands on the plot menu.

Section 2 discusses derivatives: from the simple evaluation of difference

quotients and their susceptibility to cancellation errors to the calculator's ability to

perform symbolic differentiation. Root finding and the analysis of the graphical

behavior of functions in terms of local extrema and inflection points are also

examined.

Section 3 considers integration. We provide a calculator directory of short

routines that produce various kinds of Reimann sum approximations to definite

integrals - left and right rectangle, trapezoidal, midpoint, and Simpson's

approximations - and then discuss the HP-48's built-in numerical integration routine.

This section concludes with a calculator-based activity designed to reinforce students'

understanding of Part 1 of the Fundamental Theorem of Calculus.

Section 4 focuses on Taylor polynomials and infinite series, illustrating the

ability of the HP-48G/GX to contribute graphically and numerically to the teaching

of these important topics. Programs are included that show the calculation of

partial sums dynamically.

Along the way, we have included a number of sets of EXERCISES. Although not

inclusive, they are fairly representative of the types of activities that students can

be called upon to conduct with the HP-48 as they become active participants in the

construction of their own personal understandings of the material.
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1. FUNCTIONS

Beginning calculus is a study of the behavior of functions: their variation, rates

of change, end behaviors. We thus begin with a brief look at how mathematical

functions can be represented, evaluated and graphed on the HP-48G/GX.

Representation and Evaluation

A convenient way to represent many mathematical functions on the HP-48 is through

the creation of user-defined functions. In HP-48parlance, a user-defined function is a

short program that captures the essence of the formal way that we define a function

by an equation like F(x) = 2 sin x + sin 4x. Here, F is the name of the function, x is

the input variable, and the expression to the right of the = sign is an algebraic

description of the desired output for a given input x.

The user-defined function that represents this mathematical function is the program

« > X '2*SIN(X) + SIN(4*X)' » stored in the global variable F. The DEFINE

command lets you create a user-defined function directly from an equation. For the

example at hand, simply enter the equation 'F(X) = 2*SIN(X) + SIN(4*X)' onto level

1 of the stack and press . If you access the VAR menu with the

key, you will see the label appearing above a white menu key; this identifies F

as the name of the user-defined function. To verify that the variable named F

actually contains the above program, you can recall the contents of variable F by

pressing (the right-shift key will recall); press when you've

finished viewing the program.

To evaluate this function, enter the desired input and press the menu key .

For example, put 'TA2' on level 1 and press to see '2*SIN(T*2) + SIN(4*T*2)".
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Likewise, press 4 to see 2 sin 4 + sin(4*4) evaluated as -1.80150830728. You may

enter the equation 'F(X) = expression in X' directly or by first entering 'F(X)', then

the 'expression in X' and pressing E} In either case the key

automatically creates the user-defined function from the equation.

User-defined functions of two or more variables are constructed in the same way.

For instance, to represent G(x,h) = SL(XM enter 'G(X,H) = (SIN(X+H) -

SIN(X))/H'and press.

Piecewise-defined functions often occur in applications and are introduced early

in calculus to illustrate the ideas of one-sided limits and points of discontinuity.

The best way to represent them on the HP-48 is to use the IFTE command, found on

the third page of the PRG BRCH menu . The IFTE command is an abbreviation for

the "if ... then ... else ... end" construction and executes one of two procedures that you

specify, according as a "test clause” is true or false. The IFTE command takes three

arguments: a test argument and two procedural arguments, as in IFTE (test, procedure

1, procedure 2). You should interpret this as "If test clause is true, then execute

procedure 1 else execute procedure 2".

2
x -2x x<0

To represent p(x) = { 9 , the desired command is 'IFTE(X<0, X2
1-x 0 <x

- 22X, 1 = X*2) 'on stack level 1. Begin with ', then go to the second page of the

PRG BRCH menu and press , followed by the three required arguments

separated by commas, then. The inequality relations are on the first page

of the PRG TEST menu. This expression can now be treated like any other function

and evaluated, graphed, differentiated or integrated. For instance, with ‘'IFTE(X<O0,

Xr2 — 2+X, 1 — X*2)'displayed on stack level 1, enter 'P(X); then press, E'

and finally to create a user-defined function. Try evaluating p(x) using values
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to the left and right of 0 to discover whether the function has a limit as x

approaches 0.

The general construction for a piecewise-defined function with two pieces like

fi1(x) x<aj

fx) = {fz(x) a; < x

is IFTE( x < a1, f1(x), fa(x) ).

For three or more pieces, you can nest the IFTE commands:

f1(x) x<ajg

for f(x) = falx) aj<x<az,

f3(x) az<x

use IFTE(X < aj, f1(X), IFTE(X < a3, f2(X), f3(X))).

Although you can evaluate functions by representing them as user-defined

functions, you may also use the SOLVR . The SOLVR is designed to solve equations,

but the format of its menu makes it convenient for evaluating functions. With the

function on level 1, press then load the function on level 1

into EQ by pressing. Now press [SOLVR|. To evaluate the function

stored in EQ at a number (or variable), simply key in the number (or variable), press

then |[EXP R =|. For example, to investigate the behavior of the function f(x) =

X+2
masx—-)O:

Put'(X +2) / (2*X +1)' on level 1 and press then

. To find F(.01), press 2 then @

to see 1.97058823529.

To find F(.0001), press 4 then[Zl to see 1.99970005999.
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  To find F(.000001), press [EEX | 6 [+ | then [X] to see 1.99999700001.

To find F(.00000001), press 8|+ then [X] to see 1.99999997.

What is the limit of f(x) as x = 0* ? Now evaluate f for values of x — 0-.

  

When using the SOLVR, if you store an equation, say 'expression 1 =

expression 2', in EQ instead of a single expression, pressing |EXPR=| for a given X

will return two values, one for the left side of the equation and one for the right

side. This provides a convenient way to compare the values of two functions at

various values of X.

You should be aware that whenever you use the calculator's SOLVE application,

the last value for x is stored under the variable name 'X' in user memory. You need

not make explicit use of the Solvr for this to occur: pressing |ROOT| on the FCN

submenu automatically activates the SOLVR (as do the commands ISECT, EXTR and

F' which appear as menu keys on this submenu). You can see this variable by

pressing to go to the VAR menu, where you will see the menu key . Press

to recall the value stored for X. Our recommendation is that before going on to

the next application you immediately purge this variable to avoid trouble later on.

Purge by pressing ["] [PURGE |.

EXERCISES 1.1

1. Create a user-defined function for f(x) = xInx and evaluate it for x = 102, 104, ...,

104 (Suggestion: press 2 to input 102, etc.) What does the limit of

xInx, as x—0* appear to be? 1'Hospital's rule will determine the limit

analytically.
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2. Investigate, numerically, the following limit:

lim [x+ ! 1—\]x+1 |

x—0
ll—\]x+1|

3. Evaluate f(x) = (1 + 1/x)* for x = 102, 104, ..., 10'° and 10'!. Then make a

conjecture for

limX—yoo 1+ 1/x)*.

Now evaluate f(x) for x = 10'2 and watch what happens. Can you explain this?

x2 x<0
4. Use the IFTE command to represent the function f(x) % . Evaluate for

cos x 0=<x

a sequence of values approaching 0 from the left; then use a sequence of values

approaching 0 from the right. Do any of the limits, xl_‘)“d- f(x), x_l_')r6‘+ f(x), and

,1(2)“0 f(x), exist?

ical i At lim Sinx5. Conduct a numerical investigation of ,_o —— .

Graphing

The single most important application of the HP-48G/GX to a study of calculus

is to create visual images of the wide variety of functions under study. More than

anything else, the ability to graph quickly and easily adds a powerful new

dimension to the traditional analytic approach to calculus. Many of the important

aspects of functional behavior - maximum and minimum values, rates of change,etc. -

can be effectively displayed by the graph of the function. With the calculator,

graphical representations can be used extensively from the beginning of the course.
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To get informative representations of graphs on the HP-48 you must set the

viewing window to display the part of the graph that you want to see. The default

settings of the plotting ranges for points (x,y) are -6.5 < x < 6.5 and -3.1 <y < 3.2,

with a common unit scaling of each axis. Since there are 131 columns and 64 rows of

pixels, these settings produce square pixels of size .1 and your visual intuition of

slope and area is preserved on the screen. The default settings also work nicely for

trigonometric functions of amplitude 3 or less. You can, of course, change the settings

in a variety of ways , some of which will be illustrated in the examples. To

accomodate trigonometric graphs, make sure your calculator is set to radians mode.

The key will toggle between degrees and radians; when radian mode is

set, the message RAD will appear in the top left corner of the screen.

Functions are represented graphically as plots in the PICTURE environment.

The general procedure to produce a plot of a function of a single independent variable

is as follows:

o Access the PLOT application;

o Enter the expression that defines the function;

e Set the plotting parameters, e.g., the independent variable, horizontal and

vertical plotting ranges, etc.;

o ERASE ( if desired) any previous plots;

Execute the DRAW command.

The HP48G/GX allows you to access the PLOT application in two different ways to

enter a function's expression and to set the plotting parameters: with to

interact directly with the main PLOT screen, or with to use the various

commands on the PLOT menu. We will illustrate both approaches in our first two

examples.
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EXAMPLE 1. Graph y = 2 sin x + sin 4 x with the default plotting parameters.

Using the PLOT screen: From the stack environment, go to the PLOT

application with PLOT|. The main PLOT screen will show the current plot

type, current angle mode, current expression in EQ (if any), the independent variable

(X, by default), and the current horizontal and vertical display ranges. If the

current plot type does not show Function press m CHOOS |, highlight Function

and press. If necessary, use @ and a similar procedure to set the angle

mode to Rad. Now highlight the field EQ: and type '2*SIN(X) + SIN(4*X3nd

press . If the default plotting parameters are current, the independent

variable will appear as INDEP: X, the horizontal display range as H-VIEW: -6.5

6.5, and the vertical display range as V-VIEW: -3.1 3.2. If any of these settings

appear otherwise, go to the next page of the PLOT menu with, press |RESET

and activate Reset Plot with . Once the default plotting parameters are set,

return to the previous page with and press ERASE to erase any previous

plot and [DRAW/|. You should see a graph like this:

Aot
Press@ twice to return to the stack environment.

 

Using the PLOT menu: Enter '2SIN(X) +SIN(4*X)' on level 1, and press

then , to store this expression into EQ . If you do not now read

"Ptype: FUNCTION " at the top of your screen press [PTYPE| and then
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FUNC |. Now press |PP A R| to see the plotting parameters. If you do not now

read

Indep: ‘X'

Depnd: 'Y’

Xrng: -65 6.5

Yrng: -3.1 3.2

Res: 0

on your screen, press [RES[ET to return your screen to the default settings. Now

press to turn back a page and open the PLOT menu with |PLOT|. Press

to erase any graph previously drawn, then and. You

should see a graph like this:

M,Ty &V

When you have finished viewing the graph, return to the stack by pressing @

 

twice; you can always bring back the graph by using the E key.

Often, you can see more of a graph if you compress or expand the viewing screen

vertically or horizontally by using the |ZOOM key, as in the next example.

EXAMPLE 2. Graphy = x3 -3x2 -5x + 1.

Using the PLOT screen: Open the PLOT application with . Since

the default settings are current from our previous example, we need only enter the
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new function. With the EQ field highlighted, type 'X*3 - 3*X*2 - 5*'% 1'and

press. Press and to produce this graph.

To see more of the lower right part of the graph we will zoom out on the

vertical-axis but leave the x-axis unchanged. Open the |ZOOM menu, then the

ZFACT| menu. Toggle down to the V-FACTOR with E, change it to 5 with 5

,then press. Move to the next page with and zoom out on the

vertical axis with ([WZOUT|. You will get the graph:

To verify that we have expanded the height of the graphing screen by a factor

of 5 activate the coordinate read-out with the menu key, and use the

[g key to move the cursor up to the first tick mark on the y-axis. Notice that

this tick mark records the zoom factor. The zoom factor 5 was determined by trial

and error; a smaller factor failed to show the low point of the graph. Press @

twice when you've finished.

Using the PLOT menu: Begin with 'XA3 - 3*XA2 - 5*X + 1' on level 1 of the

stack and press . Since we wish to plot first

with the default settings use [RESET| to set the plotting parameters to their



SINGLE V ARIABLECALCULUS 17

default settings. Return to the previous page and open [PLOT|, then use

ERAS E], ID RAXI and to produce this graph:

A
o

Now we can zoom out as before to see more of the local behavior.

 

The above two examples convey the major differences in using PLOT| and

to access the PLOT application. The lets you interact with

the main PLOT screen, and the PLOT| provides direct access to the various

commands on the PLOT menu. While beginners may prefer to interact with the PLOT

screen, more experienced users tend to prefer the menu commands. From here on, we

leave the choice to the reader.

Here are two examples of graphs requiring adjustment on the range of x values:

EXAMPLE 3. Graph y = sin(10nx) on the default viewing screen. You will see:

..... |
|

Where are the points? In the default mode, the HP-48 calculates values of y for

each of the 131 values of x, .1 unit apart from x = -6.5 to x = 6.5. Since 10n times

each of these numbers is an integer multiple of =, the sine function is 0 at each of

these values of x. To get a better picture of the graph we can compress the viewing
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window in the x direction. Zoom in on the horizontal axis by a factor of 10 (set the

H-FACTOR, then use |HZIN to see:

EXAMPLE 4. Graphy = x V 5-x2 with the default settings to see:

/N
Vi

From the function, y is 0 when x =+ \'5, but these points do not show on the graph.

Correct to four places, \'5 = 2.2361. With the default viewing screen, the HP-48 will

plot a point for x = 2.2, but for 2.3 < x, y is a complex number so no points will be

plotted. If we zoominon x by a factor of 2.2361 we see

 

The viewing window was reset so that 5 units on the x axis is approximately V5.

To superimpose the graphs of two or more functions you can graph them

individually without erasing. A better procedure is to build alist ({F G H ...
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etc.} of the functions to be graphed, and store it into EQ. When [DRAW| is

activated, the functions in the list are drawn sequentially, left-to-right.

EXAMPLE 5. Graph sin x, 2 sin x and sin 2x on the same set of coordinate axes with

the default parameters. Put 'SIN(X)', '2*SIN(X)' and 'SIN(2*X)' on the stack and

execute 3 (on the PRG LIST menu). You will see the list { 'SIN(X)

'2*SIN(X)' 'SIN(2*X)'}). Now store this list into EQ and then press ,

DRAX| and |DRAW| to see the graphs. Observe how the graphs are drawn

sequentially from the list.

To draw the grpahs in the list simulatneously instead of sequentially, go to the

second page of the menu, open the FLAG submenu and toggle on .

To compare the graph of y = x3 with that of its inverse y = \7;, you may begin

by graphing the list { 'X*3' 'XA(1/3)}. Using the default settings you will see

which fails to show the left branch of y = \7; the reason is that for each negative

value of X, X*(1/3) is calculated as the principal cube root of x ... a complex number.

Thus, no pixel is activated. Although you may at first find this a bit disquieting,

the ability of the HP-48 to return complex values for odd roots and for natural
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logarithms of negative numbers is but one of the many features that makes the unit

so appropriate for post-calculus mathematics.

To obtain real odd roots of negative numbers, use the XROOT command, given by

the Yy key (the (Vx| key). For instance, with -8 on level 2 and .333333333333 on
level 1, the [E key will return the principal cube root of -8: (1, 1.73205080757). But

 

   

 

  with -8 on level 2 and 3 on level 1, the W key will return the real cube root of -8 :
 

-2. To see both branches of the graph of y = 3;, graph the expression 'XROOT(3,X).
 

  To enter this, put ‘X', then 3 on the stack and press W . When the list { 'XA3'

'XROOT(3,X)'}is ilaphed with the default screen, then enlarged by a factor of 2

 

with the |ZOOM menu, we see

Notice that this function and its inverse meet on the line y = x and that the

graphs are reflections across this line. Here is a program which, when given a

function f whose graph is displayed on the graphing screen and an interval a <x<b

contained in the current x range, will graph the line y = x and then the graph of the

inverse relation for f with x restricted to a<x <b. If f is a one-to-one function on the

given interval, then the inverse relation will be the inverse function of f restricted

toa<x<b.



SINGLE V ARIABLECALCULUS 21

 

 

INV.F

Input: level 2: a, a real number

level 1: b, a real number > a

As a stored variable EQ: a function f.

Effect: Draws, over the graph off, the graph of y = x and

the graph of the inverse relation of f, with x

restricted to the interval [a,b].

« 5 A B « RCEQ —» EQ1 « CLLCD 'X' STEQ DRAW EQ1 STEQ A

B FOR I I 'X' STO X RCEQ EVAL SWAP R—C PIXON .1 STEP X'

PURGE PICTURE » » »   
EXAMPLE 6. Graph y = (x + 1® with the default viewing window. To see its

inverse, clear the graphing screen with @ and go to the VAR menu with .

Enter the "screen domain" of the plotted graph: -3, 1 and press |IN V. F| to see

 

Since the graph of the inverse function is plotted point-by-point, it will appear dotty

as in this example.

The ZOOM menu of the HP-48G/CX calculators contains assorted commands for

zooming on a graph and the BOXZ applicaiton is especially helpful for zooming in
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on a particular region of a graph. The basic idea is to capture the region of interst

within a samll "box", then zoom in on the box. Here's an example.

EXAMPLE 7. Begin by graphing x sin % on the default screen. To better see what's

happening near the origin, begin by opening the ZOOM menu. Now move the cursor 5

pixels to the left of (0,0), then down 3 pixels and open. Now move the

cursor 5 pixels to the right of (0,0), then 3 pixels above (0,0). Notice that the cursor

"drags" a small box that has the origin as its center. Now press |Z O O M| to zoom

in on the box.

Now repeat this zooming-in process with BOXZ by moving to a corner of a box 5

pixels to the left and 3 pixels below the origin, then moving to the diagonally

opposite corner 5 pixels to the right and 3 pixels above the origin and pressing

ZO OM]|. Are you ready to give an answer to

lim 1,

Piecewise-defined functions are graphed by storing the defining IFTE expression

into EQ and proceeding as usual. To get the graph shown in the next example, use

the default viewing screen and the disconnected graphing mode; in the connected

mode the calculator will connect the pixels on opposite sides of the two

discontinuities and give you an inaccurate representation. To set the HP-48G/GX to

graph in disconnected mode, go to the second page of the PLOT menu and open
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the FLAG submenu. Press the second white menu key so that| CNCT| appears in the   

second menu box.

bx+45 x< -2.5

EXAMPLE 8. To graph f(x) =4 2+sinx -2.5 <x<2.5 , use the expression
-COS 2x 2.5<x

'IFTE (X < -2.5, .6*X + 4.5, IFTE ( X < 2.5, 2 + SIN(X), -COS(2*X))'. This gives the

graph:

When you have finished, reset to graph in connected mode.

EXERCISES 1.2

1. (a) Graph the list { 'SIN(4+X)" '-2+SIN(X)'} using the default graphing screen.

(b) ERASE and graph the sum of the two functions in the list.

(c) Overdraw your graph in (b) with the graph of y = -2 sin x.

(d) ERASE and graph the product of the two functions in the list.

(e) Overdraw your graph in (d) with the graph of y = -2 sin x.

2. Graph y = cos(10rx) on the default graphing screen. Why does the

representation of the graph look this way? Adjust the screen to make the

representation look more like a cosine curve.

3. Set your calculator to degree mode and then graph y = sin(x°) using the default

screen. Without changing back to radian mode, how should you zoom on X to
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10.

11.

CHAPTER 1

make this graph look like sin x, x in radians? (When you're done, set to radian

mode.)

Graphy = X’ - 1.3+ .32x — .02 using the default screen. Clarify the behavior

of this function near the origin by using BOXZ several times.

To appreciate how "steep” are the graphs of simple polynomial functions, begin

by graphing y = 34x3 - 91x2 - 117x + 54 in the default screen. Now zoom out

along the y-axis as necessary until you can see all local extreme points.

Graph y = cos (cos'x) using the default screen. The result is what you expected,

isn't it? Now, ERASE and graph cos(cos x). Can you explain what you see?

Investigate, graphically, the following limit:

lim [x+ | 1-Vx+1 |
x—0 | 1-vx+11

(See Exercise 2 in EXERCISE 1.1)

Graphically investigate the behavior of f(x) = sin (;1(-) near x = 0. Begin by

graphing in the default screen, then use BOXZ . What is your conclusion?

-X x<0

Graphy =4 sinx 0<x<m , using the default screen.

X-T TWSX

Graphy = x\ 3 - 52 Adjust the viewing screen to make the graph touch the x

axis at the end points of the domain.

Graph y = x3 — 9x2 + 2x + 48 with the default screen, then zoom out on y by a

factor of 16 to see the local maximum. Now move the cursor to (4,0), open the

ZOOM menu and press the menu key |CN T R on the second page to relocate the

center of the viewing window. You may wish to press EI to remove the menu

key labels.
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13.

14.

15.
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4
(a) Graphy = x2 +on the default screen, then zoom out on y by a factor of 4.

 

x3 -1
on the default screen, then relocate the center of the(b) Graphy="7—7

viewing rectangle at (0,2) to see the "hole".

(a) Use the default screen to graph f(x) = 2x — 3, then use the INV.F program to

graph f1.

(b) Write an equation for f1.

(c) ERASE, then graph g(x) = -.6x + 1 and its inverse. When you've finished,

write an equation for g1

(d) What is your observation about the slopes of non-parallel lines that are

symmetric to the line y = x? Proveit.

(e) Is the converse to your observation true?

Let u(x) = x2 + x + 1 and v(x) = sin x.

(a) Graph the composite function f(x) = u[v(x)] and compare with the graph of

v(x).

(b) Graph the composite function g(x) = v[u(x)] and compare with the graph of

u(x).

 —4: Use the defaultUse the XROOT command to graph y = 2 (x + 2% + —5 .

6
screen, then zoom outon xy by 75 -

2. DERIVATIVES

The derivative f of a function f is defined by f(x) = hl_'_% f_(g(__t_l_\}_;)_-_f(x_) . The

difference quotient on the right-hand side is the average rate of change of f, with
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respect to x, over the interval [x, x+h] and is also the slope of the secant line joining

the points (x,f(x)) and (x + h, f(x + h)) on the graph of f. For a given x, we may
f(x + h) - f(x)

h
approximate f'(x) numerically by evaluating for suitably small

values of h.

A simple way to do this on the HP-48 is to evaluate a user-defined function for

the difference quotient:

DOOCH) = F(X + [:1) - F(X)

This procedure requires that we also build a user-defined function F for the given

function f. (See pages 3-4 to refresh on user-defined functions)

To illustrate, let f(x) = (x2 + 5)3. We create a user-defined function F for f: « —

X ' (XA2+5)*3 ' »; and another, DQ, for the difference quotient: « - X H ' (F(X+H) -

F(X))/H ' ». To approximate f(2), we simply evaluate DQ using input values (2,H).

H: 001 .0001 .00001 .000001

DQ(2,H): 972.67528 972.0675 972.0067 972

H: -.001 -.0001 -.00001 -.000001

DQ(2,H): 971.32528 971.9325 971.9933 972

However, you must exercise caution because the numerical computation of

difference quotients is susceptible to serious cancellation error with finite precision

arithmetic. For example, consider the function

\? 1 + cos?x
f(x) = 3
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If you build a user-defined function for f and then evaluate DQ for input values

(1,H) you will obtain

H: 104 105 10¢ 107

DQ(1,H): -3.5221718 -3.522835 -3.52291 -3.523

The correct value is f'(1) = -3.5229074056, so you can see that we are losing digits

with each successive evaluation of the difference quotient.

It is important that students learn the basic mechanics of finding derivatives

without their calculators. However, there are times when it is perfectly natural to

take derivatives with the calculator. For example, when we want to graph a

function, its first two derivatives, and then find their roots. Since the graphing and

root-finding will be done on the calculator, we may as well carry out the

differentiation process there also.

The HP-48 uses the E’ key (the @] for differentiation and requires

two inputs: the function to be differentiated (in symbolic mode between ' ') on level

2, and the variable of differentiation on level 1:

2: 'an expression in X'

1: X'

When the EI key is pressed, the derivative will appear on level 1.

EXAMPLE 9. To graph f(x) = 2sin3x and its derivative f', we may proceed as

follows:

Put two copies of '2*SIN(X) A 3' on the stack (press l@, to duplicate level 1),

then enter 'X' and press @ to see
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2. '2*SIN(X)A3

1. '2+(COS(X)*3*SIN(X)A2)'

To graph f first, execute |SWAP| and then graph with the default viewing screen:

AN
7

Now draw the graph of f over this without erasing;:

Notice that the graph of f has a maximum or minimum point at those values of

x where the graph of f' crosses the x axis. There are also three points where the

graph of f has a horizontal tangent but no extreme value. At the x coordinates of

these points, f has value 0 but its graph does not cross the x axis. Finally, at the

values of x where f' has an extreme value, f has an inflection point.

EXAMPLE 10. If you put your calculator in degree mode and take the derivative of

f(x) = sin x, you will see 'COS(X)*(n/180). Why? There are several explanations,

each addressing the question from a different aspect.

: , , d . d .
Analytically, we know that, for x in radians, £ (sin x) = cos x. So, 3 [sin(x)] =

£ [sinGg 201 = coseg ) e (50 = oSNg
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Graphically, with the calculator still in degree mode, if you draw the graph of

sin x with the default parameters you will see

B
|

For -2.8° < x < 2.8°, sin x = 0 to the nearest tenth of a unit, which is the difference in

y coordinates between adjacent rows of pixels for the default viewing screen. Note

that f'(5) = cos(5°)(-1%6), which is approximately .017. Certainly, this value seems

reasonable for the slope of the tangent line to the above graph at the point where x

= 5.

For a more basic explanation, you can return to the original derivation of dx (sin

x). The derivation often uses the result that, for h in radians, }}P-PO 51: h = 1. This 

limit is customarily proved using an inequality involving the areas of two triangles

and the area of a certain sector of the unit circle. When h is in radians this sector

has area h/2, but if h is in degrees, this sector has area th/360.

Although the XROOT function is built into the HP48G/GX, its derivative is

not. You can, however, differentiate XROOT if you have the following program

 stored in your HOME directclJ_r-él (Note: to obtain lowercase alphabetical characters,

use[a][§]| D], [a] [€]  etc.)
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derXROOT

Input: 'XROOT(N,F(X)) on level 1

Effect: puts%( N\l F(X) ) on level 1

« >N WY Z INVIN*XROOT(N,W)A(1 - N)*Z'»

 

EXAMPLE 11. Find the derivative of f(x) = 3 5 sin x and graph both f and f'. With

the program derXROOT in the HOME directory of your 48, put two copies of

'XROOT (3, 5*SIN(X))' on the stack, enter 'X' on 1 and press EI to see the derivative

".333333333333*XROO0T (3, 5*SIN(X))A-2#(5*COS(X))'. Now press |SWAP to put f on

level 1 and graph it on the default screen to see

o
Now graph f' without erasing to see

Here, f' has no extreme values, but f has inflection points at those values of x for

which f' is not defined.

Although the HP-48 will not completely symbolically differentiate a function

defined with the IFTE command, it will correctly graph the derivative.
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-X x<0

EXAMPLE 12. Find the derivative of f(x) = {sinx 0<x<m® and then graph both
X-T RWSX

f and the derivative.

Put two copies of 'IFTE(X < 0, -X, IFTE(X < =, sin(X), X — x)) on the stack and

graph in disconnected mode with the default parameters to see

 

 

For greater clarity, particularly after we overdraw f', move the cursor to a point

on the x axis approximately under the high point of the graph and press |CNTR|.

The graph will be redrawn with the point you chose as center. Now ZOOM in on

both axes by .67 to see

Press ON to return to the stack, put 'X' on level 1 and press @ to differentiate.

This gives 'IFTE(X < 0, 9X(-X), aX(IFTE(X < =, SIN(X), X — x)))Use of does

not change the expression. However, if we graph f' without erasing we see the

 

   

graph of the derivative superimposed on the graph off:

9

1

4

 

N~
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Notice that the minimum values of f occur at values of x where f'(x) does not

exist, and that f has no inflection points.

Newton's Method

The technique known as Newton's method has almost become a classic topic for

inclusion in calculus. It is important because it not only invokes the notion of the

derivative to produce a simple geometric procedure for finding roots of many

functions, but also because it effectively introduces students to several important

ideas: algorithms, recursion, iteration. And it is especially easy to implement on

the HP-48.

EXAMPLE 13. To use Newton's method to find the roots of f(x) = 3x — 4 sin x; we

first graph f to see how many roots there are and to supply first guesses. The graph

below is the result of graphing with the default parameters and then zooming in by

~_ )
/

f
We will now create a user-defined function for NM(x) = x - ;-(()% . An easy way

a factor of .333 on both x and y:

to do this is to put 'NM(X)', ‘X', and two copies of '3*X — 4*SIN(X)' on the stack,

then take the derivative, divide, subtract and equate. The result is 'NM(X) = X -

(3*X - 4*SIN(X))/(3 - 4*COS(X))'. Now press to create the function NM an

the VAR menu.

From the graph, 1.4 appears to be a good first guess, so put 1.4 on the stack and

pressm to see 1.28871273546 as the next approximation. Press to make
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a duplicate copy to keep. Now press again for a second approximation and

then to keep a copy. If you repeat this for three more iterations of

Newton's method, you will have:

5: 1.28871273546

1.27587035767

1.27569814018

1.27569810928

1.27569810928T
N

e
-

Five iterations have given us successive approximations agreeing to 11 decimal

places.

The above procedure for building a user-defined function to implement Newton's

method for a given function f can be automated with a short program. Program

NEWTON , given below, takes an expression for f(x) from level 1 of the stack and

constructs the desired user-defined function as NM.
 

NEWTON

Input: level 1: an expression for f(x)

Effect: constructs the user-defined function NM to implement

Newton's method.

« 'NM(X)' 'X' ROT DUP 'X'9d / — = DEFINE 'X' PURGE »

 

If, for instance, you put '3*X — 4*SIN(X)' on level 1 and press |NEW T|, you can

execute Newton's method from the menu key as above.
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Roots

Students of calculus often need to find the real roots of a function. But, without

ready access to numerical root-finding procedures, they have traditionally been

constrained to work with polynomials that factor easily and with simple

exponential, logarithmic and trigonometric functions. The HP-48 Solve application

provides an advanced level of root-finding capability that enables students to

expand their investigations to almost any function that they may encounter.

The Solve application is accessible through the SOLVE menu and requires an

initial estimate of the root in question. Often, the best way to get such an estimate

is from a graph of the function.

To illustrate, consider the problem of finding all roots of the equation sin x — 2

cos 3 x that lie in the interval [0, 2r]. Begin by graphing the function f(x) = sin x — 2

cos 3 x using the XRNG : 0 6.28 and the default YRNG : -3.1 3.2 . After storing the

function in EQ, open| PPAR |, press 0 SPC 6.28 XRNG to set this x range.

N\N A
/U N

To get an initial estimate of the left-most root, move the cursor to the apparent

crossing of the graph of y = f(x) with the x-axis and press. @ will now

exit you from the picture environment and you will see the pixel coordinates of the

estimate on level 1 of the stack. Now enter the Solve application with

|SOLVE |, then press the |ROOT| and [SOLVR menu keys. Since 'SIN(X) — 2+

COS(3*X)" was stored into the reserved variable EQ in order to produce the graph,

   

         

 

   

the contents of EQ will appear at the top of the screen. Two menu labels appear at

the bottom left: and [EXPR=|. Press to enter the initial estimate; a
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message reflecting the result of that action will appear at the top of the screen.

Now press to activate the SOLVR's root-finding routine; notice the

temporary message "Solving for X" near the top. When the root-finder is finished,

the message "Sign Reversal" will appear near the top and the decimal

approximation to the root will appear on level 1 as X: .450451159135. To evaluate

the expression stored in EQ at this value of X, press and see Expr:

-.000000000002. The message "Sign Reversal”: indicates that the HP Solve

application was unable to find a point where the value of the expression in EQ is 0

to within the calculator's 12-digit precision; it found two points where the value of

the expression has opposite signs, but could not find a point between them where the

value is 0.

For convenience, most of the above procedure has been programmed into the

command ROOT on the PICTURE FCN menu. Thus to quickly find the other roots,

press E to view the graph, move the cursor to the apparent root that is second

from the left, and press and [ROOT|. You will see ROOT: 1.74250596672

displayed at the bottom of the screen. If you exit to the stack with two presses of

the ENTER key, you will see this last root displayed on the stack as a "tagged"

object. You can now find the other four roots in this way. When you're finished,

purge X from your user memory.

To avoid confusion, you should know that there is another ROOT command on

the HP48G/GX. It appears on the ROOT submenu of the SOLVE menu and is useful

in programs. It solves an expression (on level 3) for an unknown (on level 2) using a

first guess (on level 1). You may want to try it out now for the example at hand.
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EXERCISES 2.1

1. For f(x) = (x2 + 5)3, estimate f'(.6) by setting up user-defined functions to

evaluate the difference quotient.

2. For the following functions f, use the HP-48G/GX to obtain the derivative f.

Graph f and f' in the same viewing window and examine the graphs. By

noting roots of f' or points where f' fails to exist, estimate local extreme values

of f. By noting where f' has horizontal tangents, estimate inflection points off.

(a) fx)=x4-23 +3x-2 (e) f(x) =\31—x2

4 1+x2 x<0
(b) f(x) = ol (f) f(x) =qcosx 0<x<m

T—X <X

© =% 8 ) =15 tan12x

(d) f(x) = cos 2x — sin x (h) f(x) = 3ex2A

3. Use Newton's method to find all roots of

(a) f(x) =x3-3x2-5x+15

(b) the equation 2% = x!° (how many roots are there?)

() f(x) = x-2 . Suggestion: Start with x = 2 and explain what happens.

Then begin with xg = 2.1 and explain (geometrically) what happens.
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4. Use the Solver and a graphical estimate to obtain the roots of

(a) ex*!=cos1(x+2)

4
(b) 3ex2A =50

1
(c) x=ln;

5. It is well-known that the centroid of the St. Louis arch is in the shape of an

inverted catenary (hyperbolic cosine). The oustide surface is much thicker at

the base than at the top and thus is not a true catenary. Nevertheless, we

shall model the outside surface as a catenary having both its height and base

equal to 630 ft. Since a catenary hanging above the origin with lowest point at
. X ... .

(0,2) has an equation y = a cosh 7,it is easy to see that an equation for the St.

Louis arch is

y =630+a(1—cosh§)

for some positive parameter a. To help determine this parameter, we may use

the fact that the point (315,0) lies on the arch. Use the Solver to determine the

parameter a and then write an equation for the St. Louis arch that is free of

unknown parameters. Remember, the Solver only needs an initial guess. The

cosh command resides on the MTH HYP menu.

Analyzing Functions

The graphical representation of a function produced on a calculator's screen often

provides valuable information about the function's behavior. When graphical

techniques are effectively combined with an understanding of the derivative as a
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rate of change, we have a powerful tool for analyzing a function's behavior in

considerable detail.

After the DRAW command is executed and the HP-48G/GX draws a graph, the

calculator enters the PICTURE environment and displays the PICTURE menu. In

addition to the zooming operations accessible through the ZOOM submenu and the

BOXZ key, the FCN submenu contains commands appropriate for analyzing a

function's behavior with calculus without leaving the PICTURE environment.

We begin with an example that would not be appropriate without technology.

EXAMPLE 1. Graph f(x) = sin(2x) + cos(x + 2), find the x intercepts and the

coordinates of its local extreme points and inflection points. Since this is a periodic

function with period 2r, it is sufficient to find the desired points on the interval

[0,2r). Graphing f with the x range set to - .1 < x < 6.29 and the y range set to - 2.5 <

y £2.5, we see:

Find the roots using the ROOT command on the FCN submenu. You should get:

4: Root: 429203673203

3: Root: 904129660127

2: Root: 2.99852476252

1: Root: 5.09291986492

To find the coordinates of the local extrema: To simplify the display, FIX the

display mode at 2 places; full 12 digit accuracy is retained in memory and can be



SINGLE V ARIABLECALCULUS 39

recalled at any time. Return the picture with E, activate the trace cursor with

TRACE]|, then use E to move the cursor to the first apparent high point of the

graph. Open the FCN submenu and press [EXTR|. The message EXTRM:

(0.67,0.08) appears below the graph. Now move the cursor to the next apparent

extremum, a low point, and press [EXT R| to see EXTRM: (2.14,-1.45) displayed.

Find the last two extrema in the same way to see EXTRM: {4.00,1.95) and EXTRM:

(5.76,-0.77). Now return to the stack display with @ @, and you will see that

these four points have been entered on the stack, each labeled "Extrm".

To find the inflection points. There is no key on the FCN menu to do this so we

must use our knowledge of the relation between the function and its derivatives.

Since an inflection point of f has the same x coordinate as an extreme point of f, we

will find the extreme points of f' and calculate the value of f at each of their x

coordinates to get the coordinates of the corresponding inflection points of f. The

first part can be accomplished within the PICTURE environment.

With the graph of f displayed, go to the second page of the FCN menu and

execute. This will plot the derivative f' and then replot f. The high point of

f is offscreen, so we zoom out on y with a factor of 1.5 to see

When you execute, EQ becomesa list {f f} containing f' and f in order. The

function analysis operations ROOT, EXTR, etc., apply only to the first function in the

list, which is now f. Move the cursor to the apparent high point of f' near the

origin and press [EXTR|. You will see EXTRM: (0.06,1.10)displayed at the
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bottom of the screen and on stack level 1. The x coordinate is the x coordinate of the

corresponding inflection point off.

The following program automates the procedure for obtaining the coordinates of

the inflection point. The program assumes that EQ is the list {f' f} and that the

coordinates of an extreme point of f' are displayed on stack level 1. With this input,

it returns the corresponding inflection point of f with the tag "Infl". The 1 in the

name "INFL1" simply indicates that the first derivative is used in the process.

 

 

INFL1 ( Inflection point of f)

Input: level 1: the coordinates (xg,yo) of an extreme point off

Asa stored variable EQ : the list {f' f} consisting of f'

and f

Effect: returns to level 1 the point (xp, f(xy)) tagged as 'Infl’

«RE EQ 2 GET OVER ' X' STO EVAL R—C 'Infl 2TAG X' PURGE »
 

With this program in your calculator and the above extreme point of f'

displayed on stack level 1, press [INFL1| to see 1: Infl: (0.06, -0.35) displayed.

Return the graph to the screen by pressing PICTURE |. Now move the cursor to

each of the remaining three extreme points of the graph of f and press [EXTR| on

the FCN menu at each point. Return to the stack display with @ and convert

each of the three extreme points of f' to inflection points of f with the use of INFL1.

You must do some stack manipulation to move the extrema of f' to level 1 for use

with the program. If you want to keep the inflection points in their order on the

graph, here's an easy way: with the three extreme points of f on the stack, press
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the @ key to activate the interactive stack, use the same E key to position the

pointer on level 3 and then press |ROLL . This rolls the first three levels of the

stack upward pushing the extreme point on level 3 down to level 1. Press to

leave the interactive stack, then press [INFL1 to convert the extreme point now on

level 1. Now repeat this entire process twice more until all the extreme points are

converted. We display again the graph of f and the points that we have found:

AN
I

12: Root: 043

11: Root: 0.90

10: Root: 3.00

9: Root: 5.09

8: Extrm: (0.67,0.08)

7: Extrm: (2.14,-1.45)

6: Extrm: (4.00, 1.95)

5: Extrm: (5.76,-0.77)

4: Infl: (0.06,-0.35)

3: Infl: (1.45, -0.71)

2: Infl: (3.09,0.28)

1: Infl: (4.82,0.64)

EXAMPLE 2. Plot the graph of f(x) = 1.7 e*/2 sin(3x) for 0 < x. Since we are

interested in the graph only for non-negative x, we set the x range as -.1 < x < 6.4 and

the y range as -1.55 < y < 1.6. This halving of both ranges retains equal unit

distances (number of pixels per coordinate unit) on both axes and produces the graph:
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This function (which represents damped harmonic motion) is not periodic and

has infinitely many roots, extrema and inflection points for 0 < x. We could find any

of these we desired by using the techniques described earlier. But in this example,

we will use the HP-48G/GX to analyze another aspect of the function's behavior.

Since -1 < sin(3x) < 1, the graph of f lies between the graphs of u(x) = 1.7 e"x/2

and v(x) = - 1.7 e'X/2, coinciding with the graph of u when sin(3x) = 1 and

coinciding with the graph of v when sin(3x) = - 1. We can illustrate this by

graphing the list { f u v } with the same plotting parameters we used for f. Exit the

PICTURE environment with @, recall f to the stack with , and use

to put a second copy on the stack. Edit the copy on level 1 to read

'1.7*EXP(-X/2)', make a second copy of the newly edited expression with

and then press to change sign. Go to the PRG LIST menu and press 3

to build the list { f u v}. Now store the list into EQ and graph it to see:

The roots of f occur where sin(3x) = 0, that is, at the roots of sin(3x). Question:

do the extrema of f occur at the extrema of sin(3x), that is, at the points of coincidence of f

withuorv?
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We investigate this question both analytically and graphically. Move the

cursor to the first maximum point to the right of the y axis and press on the

FCN menu to see EXTRM: (.468549216461, 1.32664626947) at the bottom of the

graphing screen. If this were the point where sin(3x) = 1, then its first coordinate

should be n/6. But n/6 = .523598775598, so the extreme points of f do not coincide

with those of sin(3x). We illustrate this graphically by using BOXZ to zoom in on

the region of the graph around the first maximum point to the right of the y axis:

The maximum point of f is clearly seen to be to the left of the point where the

graph of f intersects the graph of u. With some analysis of f, you can show that

successive extrema of f occur every n/3 units along the x axis, as do successive points

of coincidence of f with u or v. So the spacing shown between an extreme point and

the corresponding point of intersection with one of the bounding graphs is constant for

0<x< oo,

Caution

When you execute the EXTR command on the PICTURE FCN menu, the HP-

48G/GX takes the derivative of the expression stored in EQ and then finds the x

value closest to the cursor that causes the derivative to evaluate to 0. Thus, if the x

coordinate of the extreme point you are finding is a root of the derivative, you are

using the EXTR command in the way in which it was designed to be used. But,if the

extreme value of f does not occur at a root of f, you should not use this command.
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EXAMPLE 3. Find the roots, extrema and inflection points of f(x) = 2(x + 2)*/3 +

,‘:(!—T‘i'i . Put '2*XROO0T(3, (X + 2)*2) + (X - 4)/(X*2 + 1)’ on level 1 and graph f with

N\ Y
the default parameters to see:

We can find the two roots in the usual way, by moving the cursor to each of them

and pressing |ROOT on the PICTURE FCN menu. We can find the local maximum

point near x = -1 and the local minimum near x = -.3 by moving the cursor near these

points and pressing. However, if we move the cursor to the minimum point

where x = -2 and press , we get EXTRM: (7.52928344591E 213,

7.68302819356E 142) which is nonsense. From the graph, f clearly has a minimum at

x=-2and f(-2) =0 + -5§= -g- . The problem is that f has no derivative at x = -2. If

we press El on the PICTURE FCN menu to graph both f and f' we see:

 

 

A\=2
Notice that f' does not exist when x = -2. Since the inflection points of f occur at

values of x where f has extrema, we move the cursor near the local minimum of f

to the left of the origin and press EXTR to obtain (-.661278286618, -1.07868129833).

Now return to the stack, open the VAR menu and use INFL1 to build the inflection

point as

Infl: (-.661278286618, -.81375384108).
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Similarly, we find the inflection point to the right of the origin to be

Infl: (.464327883331, .74032208835).

EXERCISES 2.2

For each of the functions given below, plot the graph and find all local extreme

values and inflection points.

1. f(x) = x + 3 sin x, on the interval [0,2x]. 2. f(x)=x3-x+2.

3. f(x) =sin x + 2 cos(3x) on [0,x] 4. f(x) =x3 «(1.3)x2 + (.32)x - .02

5. fx)=x5+3x4-x3-3x2-x+3 6. f(x) = sin(3x) — cos(2x), 0 < x < 2x

7. fx)=x" 8. fx)=x""0sx<2n

9. f(x) = cos(4 cos1 x).

3. INTEGRATION

The HP48G/GX calculator can be effectively used to enhance the study of the

definite integral. To illustrate the basic limiting process that defines the definite

integral, short programs can be used to facilitate the rapid calculation of various

kinds of Riemann sums to produce numerical approximations: the left rectangle, right

rectangle, trapezoidal, mid-point, and Simpson's approximations.

Create a directory named INTG by keying in 'INTG' and pressing

(this key is on the DIR submenu of the menu) . Now press on

the VAR menu and enter the following programs (originally provided by Tom Tucker

and John Kenelly):



46 CHAPTER1

 

 

FABSTO

Input: Level 3: the integrand, 'f(x)'.

Level 2: the lower limit of integration, a.

Level 1: the upper limit of integration, b.

Effect: stores f, a and b.

« 'B' STO 'A' STO STEQ »
 

 

 

NSTO

Input: level 1: a positive integer, n

Effect: sets n, the number of subintervals and stores (b —a)/n as h

« N STO B A - N/ 'H STO »
 

 

LRECT

Input: none

Effect: uses SUM to compute the Riemann sum for the f,a, band n

already stored, with f evaluated at the left end point of each

subinterval

« A SUM »  
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RRECT

Input: none

Effect: uses SUM to compute the Riemann sum for the f, a, band n

already stored, with f evaluated at the right end point of

each subinterval

« AH+ SUM »

 

 

TRAP

Input: none

Effect: uses SUM to compute the trapezoidal rule approximation for

the f, a, b, and n already stored.

«ASUMBFAF-2/H®"*+ 'X PURGE »

 

 

 
MID

Input: none

Effect: uses SUM to compute the Riemann sum for the f, a, band n

already stored, with f evaluated at the midpoint of each

subinterval

« AH2/ + SUM »
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SIMP

Input: none

Effect: uses MID and TRAP to compute the Simpson's rule

approximation for the f, a, b and n already stored

« MID 2 * TRAP + 3 / »

 

 

Input: none

Effect: a utility program used by other programs to evaluate f at a

specified number

« X' STO EQ EVAL »
 

 

 
SUM

Input: none

Effect: a utility program used for computation by each of the

Riemann sum programs and by TRAP and SIMP. It takes the

initial value of x from the other program, a for LRECT, a + h

for RRECT and a + h/2 for MID.

« 5 X «01NSTART X F + X H +'X' STO NEXT H *» 'X'

PURGE »
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We shall use the programs in INTG to obtain some approximations to the
4

N 1 . . ? 1integral J 123 dx.  Begin with '1/(1+X”3) on level 1 and press 0 (_?__PC_—] 4

FABST|). This stores the function and the lower and upper limits of integration.

Now enter a value for n with NSTO. We start with n = 10 and use LRECT. Press 10

NSTO| then |LRECT to see the result 1.37470502665 on level 1. This is the left

1
rectangle Riemann sum approximation for the function f(x) = 1+ o0 the interval

[0,4], when the interval is partitioned into ten subintervals of equal length. Since

-lig is a decreasing function for all positive x, this sum will be larger than the

actual integral. Press |RRECT to see the result .9808588728. This is like the

LRECT approximation except that the evaluation point in each subinterval is

chosen to be the right end point. Since the function is decreasing, this sum will be

less than the actual integral. Keying in 40 LRECTI gives

122736347304 and gives 1.12890193457 when the interval [14] is
partitioned into 40 subintervals. Repeating with 100 [NSTOI ILRECTI gives

1.19783377435 and gives 1.15844915896 for 100 subintervals. Thus

 

 

 

4

1.15844915896 < J fi dx < 1.19783377435. Using larger values of n will, of

course, narrow the gap still further.

For an increasing or decreasing function, evaluating the function at the left and

right end points of each subinterval has the advantage of bracketing the answer.

This suggests that a better approximation may be obtained by using a simple average

of these two approximations — the trapezoidal rule - or by evaluating the function at

the midpoint of each subinterval - the midpoint rule.
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4

To approximatej fig dx with the trapezoidal rule TRAP with with n = 10,

40 and 100, we have

10 gives 1.17778194973,

40 [NSTO| |[TRAP)| gives 1.17813270381, and

100 gives 1.7814146666.

Using the midpoint rule MID with n = 10, 40 and 100, we have

10 gives 117840171046,

40 [NSTO| [TRAP| gives 1.178148463398, and

100 gives 1.17814377875.

Notice that the midpoint approximations all agree to three decimal places, and

 

 

 

 

the last two to five places.

Although the trapezoidal approximation is geometrically appealing, it can be

shown with techniques that we shall not discuss here that the error in the

approximation provided by the midpoint rule is roughly half the size of the error

produced by the trapezoidal approximation. This suggests that a weighted average

which assigns twice as much weight to the midpoint approximation as to the

trapezoidal approximation would take advantage of the errors "cancelling" each

other. This procedure is incorporated into the widely used formula known as

Simpson's rule, and program SIMP does this.

4

To approximate J 1—_:)(-5 dx using Simpson's rule with n = 10, 40 and 100:
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10 gives 1.18040998105,

40 gives 1.17814632836, and

100 gives 1.17814308787.

You may want to compare these with the values found earlier.

For this example, the approximations provided by Simpson's rule appear to be

in close agreement and, indeed, Simpson's rule is the "best" of these techniques. As a

rule of thumb, the error with the left or right-end point Riemann sum approximation

 

b-a
is proportional to h = and the error with the midpoint Riemann sum or the

trapezoidal approximation is proportional to h?. But the error with the

approximation provided by Simpson's rule is proportional to h.

The Numerical Integration Routine on the HP-48

In the application of calculus to fields such as engineering, physics, probability

and statistics there is often a need to obtain fairly accurate estimates of definite

integrals. The integrands in question may be simple in appearance, but usually lack

elementary, closed-form antiderivatives so that Part II of the fundamental theorem

of calculus cannot be applied. Simple examples are

z

(1) the standard normal integral J ‘/.% ex22 dx from probability theory;
T

a

, y .
(2) the period T = j 2v2d of a simple pendulum released from an

Vcosy-cos a

initial angle o ; and



52 CHAPTER1

(3) the electrostatic potential V at a point P(x,y) due to a variable charge

density A(s) applied along a straight wire over [-a, a]:

_ A(s)ds

V(x-s? + y?
\'

The HP-48 has a built-in numerical integration routine that uses a Romberg

numerical integration technique. The routine is iterative, producing increasingly

accurate estimates derived from values of the integrand at sampled points within

the interval of integration until three successive estimates agree to within an error

tolerance specified by the user. The error tolerance E is specified by setting the

numeric display mode as follows:

e n FIX specifies an error tolerance of E = 10

e  STD specifies an error tolerance of E = 101

For example, setting the numeric display to 5 FIX will specify an error tolerance of

.00001. In general, the smaller the error tolerance, the longer the calculation time.

When the calculation is finished, the uncertainty of the result is expressed in a

variable IERR, where

IERR <E [ |f(x) |dx.

After specifying the tolerance, you enter the symbolic expression

‘[ (lower, upper, integrand, variable)'
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where lower and upper are the limits of integration, and variable specifies the

variable of integration, e.g.,

‘[ (0, 4, 1/(1+x73), %)’

If desired, you can use the Equation Writer to key in the integral; when you press

ENTER, it will be placed on level 1 in the above algebraic syntax. The calculation

is activated by pressing. With a tolerance of 105, the integral )‘ 1—:;3dx

is calculated to be 1.17814. Enter the VAR menu and press |[[ER R to see 10° as the

uncertainty in this result.

sinx2-1) x<1
As another example, we graph the function f(x) ={ sin(/x) 1<x with the

2
default parameters and evaluateJ f(x) dx with error tolerance 10-5. Enter the

function as 'IFTE(X < 1, SIN(XA2 - 1), SIN(r/X))'. Graphing with the default

parameters, we see:

To evaluate the integral, enter 0 and 2 onto the stack, recall the function to level 1

from EQ, enter 'X' and press the [ key to obtain the symbolic integral. Now press

to evaluate the integral as .15511 with uncertainty 10-5.



54 CHAPTER1

The Fundamental Theorem of Calculus

Chief among the significant contributions of Newton and Leibniz to the

"invention" of calculus in the 17th century was their clarification of the inverse

relationship between differentiation and integration. This relationship, which is

the intended focus of the Fundamental Theorem of Calculus, is often obscured when

students fail to focus on Part 1 of that theorem, which asserts that continuous

functions have antiderivatives:

d X

Ix If(t)dt = f(x);
a

and focus instead on Part 2, which says that integration "undoes” differentiation - up

to a constant:

[F(dt = F(x) - Fla).
a

Indeed, it is because of a concentration on Part 2 that many students come to view

integration as simply a search for antiderivatives rather than as a limiting process.

In retrospect, this has been a somewhat natural occurrence because, in the

pedagogical process, teachers tend to seek out activities that students can do to help

reinforce their understanding of the theory. And without computing power, what

activity can they possibly do to reinforce Part 1?

But certainly, the HP-48 provides enough personal computing power for students

to engage in activities that support Part 1 of the Fundamental Theorem (FTC).

Equipped with the mid-point rule for approximating integrals, students can use it to
X

construct a symbolic expression F(x) that approximates the antiderivative [ f(x)dt,
a
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X
i.e., F(x) = [ f()dt. They can then graphically represent this approximation and its

a

derivative F' and observe to what extent F approximates f. Not only does such an

activity bring to the fore the mathematical content of Part 1 of the FTC, but it also

reinforces the desired goal of understanding the integral as a limit of approximating

sums.

The algebraic formulation of the mid-point approximation using n subintervals

of equal length is

3 f[a + (2i-1) ("2:’) (";a) :
i=1

  f fodt =

When f is stored in memory as a user-defined function F, program FTC.1, given

below, takes a and n as inputs and returns the algebraic expression for the mid-

point approximation. FTC.1 calls upon subroutine SUMF , also given below, to

construct the actual expression following the summation symbol.

 

FTC.1

Input: level 2: the lower limit of integration, a

level 1: the number of rectangles, n

As a user-defined function F: an algebraic expression for f(x).

Effect: Returns the algebraic expression zn', f[a + (2i-1) ();‘a)] (><+a)
i=1

 

« 'N' STO 'A' STO 01 N FOR I I SUMF + NEXT COLCT { AN}

PURGE »
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SUMF

Inputs:  none

Effect: a utility program used by FTC.1 to construct the desired

algebraic summand.

« > 1" FA+X-A)*(2*-1)/2/N)*(X-A)/N"' »  
 

628
As an example, we shall use J sin x2 dx, which has no elementary antiderivative.

Begin by building a user-defined function F for sin x2 and then graphing sin x? using

XRNG : 0 6.28 and YRNG : -2.5 2.5, to see

Now execute program FCT.1 with inputs 0 and 5, for a and n respectively. With

only 5 approximating rectangles we do not expect a good approximation. When an

algebraic expression appears, take its derivative with 'X' E], then

overdraw the graph of sin x2 with this derivative to see:

Not surprisingly, the 5 rectangle approximation becomes increasingly worse as the

oscillations in sin x2 increase.
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Now,redraw sin x2 and run FTC.1 with inputs 0 and 13, forn = 13

rectangles. Overdraw the graph of sin x2 with the graph of the derivative of the

expression to see a much improved approximation:

(Be patient: the derivative and its graph unfold slowly.) Note that although we

are using only 13 rectangles, the approximation is dramatically improved.

Although we did not draw the graph of the approximation to the antiderivative

(simply to keep from having a too-cluttered screen), students should overdraw the

graph of sin x2 with the approximating antiderivative for n = 13. As with the

previous graph, they will be viewing a scene that has been denied to students of

calculus for centuries:

EXERCISES3.1

1

1. Evaluate JT&I dx by hand. Now approximate this integral as follows:

(a) using LRECT and RRECT with n = 50, 100 and 200.

(b) using TRAPwith n =50, 100 and 200
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(c) using MID with n =50, 100 and 200,

(d) using SIMP with n = 50, 100 and 200

(e) using the built-in numerical integration routine in STD mode.

2. Repeat parts (a) through (e) of Exercise 1 forf ex* dx. For part (e) use an error

tolerance of .000001.

3. Approximate the arc length of y = cos x from x = 0 to x = 2.

(a) using Simpson's rule with n = 100

(b) using the built-in numerical integration program with error tolerance .000001.

4. Graph FLOOR( X) with the default x range, the y range set as -.1 <y < 6.2 and

the disconnected mode (FLOOR is on the MTH REAL menu). Approximate
4
J FLOOR( X) dx with the LRECT, RRECT and MID programs for n = 10, 50 and

100. Evaluate this integral with the built-in numerical integration program.

Now evaluate this integral using only geometry. At the right hand end point,

x = 4, the function jumps in value; why does this not affect the integral?

cos(mx2/2) x<15. Forf()=1.,_3.2 1<x

3
evaluate Jf(x) dx with the built-in numerical integration program.

6. (a) Graph the function y = xcos x in disconnected mode using XRNG : 0 6.28 and

YRNG : -6.3 1.
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X

(b) Overdraw the approximation to the antiderivativedf tcos t dt obtained by

using the mid-point rule with n= 5 rectangles.

(c) Change to connected mode and overdraw the derivative of the function

graphed in (b). How closely does it approximate xcos x ?

(d) Use integration by parts to obtain an elementary antiderivative for

y = xcos x; choose an initial condition so that your antiderivative will pass

through the origin. Now overdraw the above graphs with this

antiderivative. How closely does the approximation in (b) match this

antiderivative?

4. INFINITE SERIES

The approximation of functions by polynomials is an important topic in

elementary calculus. From the simple notion of linear approximations by tangent

lines to the subtleties of higher-order approximations by polynomials whose

derivatives mimic the function's behavior, students are ultimately led to consider

power series representations. With the HP-48 they can effectively exploit the

graphical representation of the partial sums of these series as Taylor polynomials,

and witness the dynamics of numerical convergence at the end points of the interval

of convergence.

Taylor Polynomials

The approximation of functions by series representations parallels the

approximation of numbers by decimal representations. For example, in a non-symbolic

setting, we must approximate % to an appropriate number of decimal places,i.e., 3.14,

3.14159, 3.14159265, etc. A selection is made on the level of accuracy, but this

selection is balanced with the computational complications that we are willing to
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tolerate. In ancient times, mathematicians failed to realize that an infinite sequence

of finite approximations could converge to a finite number and thus the inadequacy of

their mathematics yielded the famous Zeno paradox. They could not understand

that 1/2+1/4+1/8 +1/16 + ... + 1/2" + ... represented 1 and discussed at length

how an arrow could never arrive "because it had to first get half-way there, then

half-way again, then half-way again...., etc. Their mathematics generated a

contradiction with what was clearly reality, which showed a need for further

improvement in their mathematics. This eventually led to an understanding of

infinite decimal representations of numbers and finite approximations to their

values. That is exactly what we now do with functions, except that the "decimal”

entries are polynomials of higher and higher degrees. Just as before, we take the

approximations to the heights that we need, balanced with the computational

complications. And again, just as we did with %, we look at a function in its symbolic

form, e.g., sin x, and when need be, look at its polynomial approximations: 1-x, 1 -

x +x3/3!,etc.

The HP-48G/GX will find Taylor polynomials about x = 0 for any function that

it can differentiate, and it is easy to write a short program that extends this

capability to the more general case of polynomials about x = a. The command

, located on the first page of the SYMBOLIC menu, requires a

threefold input: on level 3, the function f whose Taylor polynomial is desired, on

level 2, the independent variable and, on level 1, the degree of the desired

polynomial. This command produces Taylor polynomials about x = 0.

For instance, to efficiently graph y = sin x and its Taylor polynomials P3, P; and

Pq; of degrees 3, 7 and 11, begin with 'SIN(X)' on level 1 and press three

times to make three additional copies. Build the list {'SIN(X)} by pressing the ‘Z]

followed by [»L 1S T| [ENTER |. SWAP levels 1 and 2, enter 'X' and 3, then
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press TAYL [ to build P3(x): 'X - 1/3!* XA3'. Insert this as the second element of

the list with . Now SWAP levels 1 and 2 and proceed as before to build P;(x) and

P;1(x), adding them to the list as they become available. You can then store the

final list into EQ and graph it with the default viewing screen to see

Although displaying graphs is a dramatic way of showing how a function can

be approximated by its Taylor polynomials, you should remember that, with the

default plotting parameters, two graphs will coincide for a value of x if their y

coordinates are the same when rounded to one decimal point; ordinarily, this is not

good enough for serious numerical approximation.

To find Taylor polynomials centered about a point x = ¢, you can use the next

program. Make sure the independent variableis set to X before using the program.

 

 

TAY.C

Input: Level 3: an algebraic expression for a function f,

in terms of 'X'.

Level 2: the order n of the desired Taylor polynomial.

Level 1: the new center point, c.

Effect: Returns the Taylor polynomial of order n for function f,

centered about x = c.

« 2 N C « 'Y C +'X STO EVAL 'Y' N TAYLR 'X' PURGE X'

C - 'Y' STO EVAL 'Y' PURGE » »   
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For example,to find the fourth order Taylor polynomial for sin x, centered about x =

2, put 'SIN(X)' on the stack, then enter 4 and 2 and press |TAY.C| to see the

calculator's version of 0.909297 — 0.416147(x — 2) — .454649(x — 2)2 + 0.069358(x - 2)3 +

0.037887(x — 2)4 on level 1. (We set the display to show 6 decimal places.) Graph

the list containing sin x and this polynomial with the default parameters to see:

Notice that the graphs coincide from about x = -.5 to near x = 3.5, that is, on an

interval centered about x = 2.

Although TAY.C does the obvious by making a change of variables X =Y + C to

translate the center of the Taylor series expansion from the origin to x = ¢, you

should note that the symbolic computations involved in calculating higher order

Taylor polynomials centered away form the origin are substantial. Thus, as a

symbolic processor, you may sometimes find the HP-48 not quite up to the task of

finding the Taylor polynomials that you desire if you use TAY.C. For example, the

HP-48G runs out of memory (32K RAM) before it can produce the Taylor polynomial

of order 7 for f(x) = x'! centered about x = 2 and the HP48GX (with 128K RAM)

requires about 25 minutes to produce this polynomial. The solution is to be a bit

more clever in how we approach the symbolics. Program TAYLAT ("Taylor at") is

due to Charlie Patton of Hewlett Packard and uses the JMATCH and | commandsto

rearrange the symbolic computations. With it, you can produce the Taylor

polynomial of order 7 for f(x) = x'1 centered about x = 2 in 18 seconds.
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TAYLAT

Input: Level 4: an expression for a function f.

Level 3: the independent variable.

Level 2: the order n of the desired Taylor polynomial

Level 1: the new center point c.

Effect: Returns the Taylor polynomial of order n for function f,

centered about x = c.

« =5 XP VA ORD PT « XP VA VA PT + 2 -LIST JMATCH DROP

VA ORD TAYLR VA VA PT - 2 SLIST | » »

 

Sequences and Series

The analysis of numerical series requires a clear understanding of the size of

very large and very small numbers, and the HP-48G/GX is an ideal instrument to

help expand this understanding. The next two programs, FSHO and HGFSHO, can

be used for exploratory work with numerical sequences.
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FSHO

Input: Level 3: an expression for ag, in terms of the variable K

Level 2: a starting value for K

Level 1: an ending value for K

Effect: dynamically displays the successive terms of the sequence

{ag} from the starting value to the ending value beneath the

index K.

« > FBN«BNFOR]J]J 'K STO F EVAL DUP CLLCD K 1

DISP 3 DISP 1 WAIT NEXT » 'K' PURGE »  
 

5
For example, to see the first 25 terms of the sequence { % }, enter 'KA5/KY!,

then 1, 25 and press [FSHO |. The index K appears on line 1 of the display screen
5

and the terms of -II% on line 3.
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HGFSHO

Input: Level 5: an expression for hg, in terms of the variable K

Level 4: an expression for gk, in terms of the variable K

Level 3: an expression for fk, in terms of the variable K

Level 2: a starting value for K

Level 1: an ending value for K

Effect: dynamically displays the successive terms of the three

sequences, {hy}, {gy) and {fy} from the starting value to the

ending value, beneath the index K.

« >HGFBN «BN FOR J]J 'K STO CLLCD K DUP 1 DISP H

EVAL DUP 3 DISP G EVAL DUP 5 DISP F EVAL DUP 7 DISP 1

WAIT NEXT » 'K' PURGE »

  
To experience, for example, the differences in the growth rates of the sequences

(K5} , {(K'} and {KX} we may examine the corresponding terms between K = 1 and

K = 20. Thus, enter 'KA5', 'K!, 'KAK', 1, 20 and press |[HGFSHO . Watch

carefully! Notice the subtantial growth that KX has over K!.

Another very effective exploration involving very large numbers uses the units

feature of the HP-48G/GX and can be turned into an interesting class competition to

see who can generate the largest number with a verbal description. For example,

adding one cubic light year in stack level 2 to one teaspoon in stack level 1 will give

the result in teaspoons,i.e., the number of teaspoons in a cubic light year -- a very

large number! This is easily accomplished by opening the UNITS Catalogue menu,

then the LENGTH submenu, entering one light year , 1_lyr, three times on the stack
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and multiplying to get a cubic light year, 1_lyr*3. Now return to the UNITS Catalog

menu, open the VOL submenu, enter the other volume measure, one teaspoon 1_tsp, and

add to get 1.71788573061E53 tsp, the number of teaspoons in a cubic light year. This

exercise can be extended to estimating the answer in terms of factorials, and a quick

search will locate the above number between 43! and 44!. In many successive calculus

classes, students have been unable to generate with words any number that is larger

than 100!. This gives them real insight into the study of series that have factorials

in the denominators of the terms. They really begin to sense the awesome nature of

n! and the effects that it will have on the terms of the series.

For a numerical series which is known to converge, you can often use program

P.SUM to calculate a twelve-digit approximation to the sum by evaluating partial

sums of the series for increasing values of n until agreement is reached for two

successive values of n. Program INFSUM, given later, carries out these calculations

automatically and returns the sum of the series, accurate to the twelve-digit display,

along with the value of n at which agreement of successive partial sums was

reached. Before beginning either of these procedures, you should already have determined

that the series in question converges by applying one of the standard convergence tests.
 

P.SUM

Input: level 3: an expression for ak, in terms of the variable K

level 2: a starting value for K, 0 or 1

level 1: an ending value for K

n
Effect: returns the partial sum 3 akx on level 2 and the expression

K=start

for ak on level 1. Also, dynamically shows the summation.

« > FBN«0BN FOR J]J 'K STO F EVAL + DUP 3 DISP

NEXT F » 'K' PURGE »
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For example, the infinite series k21(1/k%) is known to converge by the integraltest.

Put '1/K”4' on level 1 and press 1 [SE 100 . After dynamically

showing the summation process, the program will show 1.08232290538 on level 2 and

'1/K”4' on level 1. To calculate the 250th partial sum, simply press 1 @ 250

P.SUM|. You will see 1.08232321257 returned to level 2. Finally, to obtain the

500th partial sum, press 1 @ 500 |P.SUM and see 1.08232323119. Since these

last two sums agree to 7 decimal places, the sum of this series is 1.0823232 to 7

decimal places.

The series Y, (-1)%*1(1/k®) converges by the alternating series test. Since it is an

alternating series, we know that the error made in using any partial sum Sy as the

sum of the series is less than the absolute value of the term to be added to get the

next partial sum Si.q. For twelve place accuracy, we must take n large enough so

that 1/(n + 1)¢ <5x103. Using the HP-48 for the calculation, we find that 1/1136 is

approximately 4.8x1013. Thus, calculating the 112th partial sum with P.SUM we

obtain .985551091299 as our estimate of the sum, to 12 decimal places. (You may

calculate the 113th partial sum to see if you get agreement.)

Program INFSUM , given below, also shows the convergence of the series

dynamically, by showing the partial sums as a single number with the last digits

changing as more terms are added. The program sums series with initial index k = 1,

so you will have to make adjustments for series that do not start there. As before,

the program should only be used with series that are known to converge.
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INFSUM

Input: the summand, 'f(k)', for the infinite series ), f(k)

n
Effect: calculates partial sums kle’(k) until two successive sums

agree, displays the last partial sum and the value of n at

which agreement was reached.

« 'F STO 1 '’K' STO F EVAL 2 'K' STO DO DUP F EVAL + DUP 3

DISP 1 'K' STO+ SWAP UNTIL OVER == END K1 - {F K}

PURGE »

 

As an example, we know that the series ) 10x/k! converges by the ratio test. Put

'10°K/K"" on level 1 and press to see 22025.4657948 on level 2 and 39 on

level 1. Although the partial sums are large in value, agreement to 12 figures is

reached quickly, at n = 39. The number 22025.4657948 is the sum of the series starting

atk = 1, so we must add %’; = 1 to get the sum starting at k = 0. Thus k2010“/k! =

22026.4657948, correct to 12 figures.

EXERCISES 4.1

1. Find the Taylor polynomials P(x) and P(x) for f(x) = * about a = 0, and graph

f and the two polynomials on the same axes. Make a table of values for all

three functions using x = .1, .2, .6, 1 and 1.5.
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Use program TAY.Ato find the Taylor polynomials P;(x) and Py(x) for f(x) =

sin 2x — 2sin x about a = 2 and graph f and the two polynomials on the same set

of axes. Use XRNG : -2 6 and YRNG : -3.1 3.2.

Find the Taylor polynomials P(x) and Pxo(X) for f(x) = e™ at a = 0 and graph

these two polynomials and f on the same axes.

(a) Verify, analytically, that each of the following sequences has a limit and

@(@
(b) Investigate, numerically, the limits of these sequences with FSHO. Let

K go from 10° to 10° + 10, 108 to 108+ 10,..., 10" to 10! + 10.

(c) What happens if you let K go from 10’2 to 10'2 + 10?2 Why?

Prove that the infinite series 3 (k + 1)/k!? converges. Then use program

P.SUM to find the partial sums for n = 10, 50 and 100. What is the sum ofthis

series to 12 places?

Prove that the infinite series Y (-1)*!(k!) converges. Then, find a value of n

for which S, will approximate the sum, correct to 12 places. Use P.SUM to

calculate this S;.

Show that each of the following series converges and find the sums using

program INFSUM .

a. kzll /K3. (slow convergence) b. kzol /k!. (rapid convergence)

. T (1k1k2 /2K, d. Y100 / k!
k=1 k=1
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8. (a) What will happen if you use INFSUM onkzlllk ? Try it and see for

yourself. (You may interrupt the program at any time by pressing @;

when the program is interrupted, it leaves B and E on your VAR menu.)

N !
(b) Prove that g 1%2), converges. Now apply program INFSUM and

watch what happens. Explain what is taking place here.
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HP-48G/GX Calculator Enhancement

for

Multivariable Calculus

James A. Reneke

The chapter is divided into three sections. The first treats applications of the

HP-48G/GX to curves and surfaces. The material exploits the plotting utilities for conic

sections and parametric curves. The second section considers maximum/minimum

problems, with an emphasis on the role of level curves, and multiple integrals. The

geometry of constrained optimization problems is explored with examples. The final

section discusses line integrals and makes extensive use of the symbolic manipulation

capability of the calculator. Thus the graphical, numerical and symbolic capabilities

of the HP-48G/GX are all exercised in the context of multivariable calculus.

SECTION 1. CURVES AND SURFACES

1.1 Curves, Surfaces and Functions

In one dimensional calculus we apply the methods of calculus to problems

associated with functions. For instance, we study maximum/minimum problems for

functions and the problem of computing the average value of a function. We usually do

not distinguish between a function and its graph nor elaborate upon the application of

calculus to implicitly defined curves, for instance to the conic sections. Thatis, implicit

differentiation is introduced as a natural extension of

71
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differentiation of functions even though the relationship of an equation to an

implicitly defined curve is fundamentally different from the relationship of a

function and its graph. A consequence of this blurring of distinctions is a heightened

emphasis on functions as opposed to geometric curves.

In multidimensional calculus the more fundamental objects of our study are

geometric curves and surfaces. Many of the concepts to be introduced are inherently

geometric and functions can be used in several different ways for the study of these

concepts, although some particular way will likely be most useful in any given

discussion. Thus the task now is to shift our attention from functions to curves and

surfaces, solving some of the same problems considered in one dimensional calculus.

However, we also take up problems in multidimensional calculus that do not

have a one dimensional counterpart. Functions of several variables have more than

one kind of derivative, for instance, directional derivatives. And line and surface

integrals are not just multidimensional versions of the Riemann integral. Obviously,

in thinking about curves and surfaces we are not going to abandon what we know of

differentiating and integrating functions. So, how can we use functions to describe

curves and surfaces in higher dimensional spaces? How is calculus applied to

functions to study the curves and surfaces they describe? Using the HP-48G/GX

effectively for multivariable calculus requires clear answers to these questions.

Geometry in spaces of dimension higher than three uses the language of three

dimensions. Since we have no way to visualize geometric objects in higher

dimensions, spending time to understand three dimensions is important for building

intuition for higher dimensions. The HP-48G/GX graphics calculator provides useful

tools for exploring curves and surfaces in 3-space. We will begin with the

WIREFRAME plot type which produces pictures of the graphs of functions of two

variables. This will give us some concrete examples to use in a more abstract

discussion ofthe relation of functions and geometric curves and surfaces.
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The surface S = {(x, y, 2) | z = x2 - y2} is the graph of z = f(x, y) = x2 - y2. Two

views of S are shown below.

 

Exercises. Use the WIREFRAME Plot Screen to do the following exercises.

1)

2)

3)

Reproduce the pictures given above. Open the Main Plot Screen with

PLOT, choose WIREFRAME plot type and enter 'XA2 - YA2' as the current

equation. Choose 'X' and 'Y' as the independent and dependent variables,

respectively. Choose -2 and 2 for X-left and X-right, -2 and 2 for Y-near

and Y-far, -2 and 2 for Z-low and Z-high so that the View Volume

surrounds the origin. Choose 3, -6, 1 for Xe, Ye, and Ze to give a distant

oblique view of the graph. Choose 6, -6, 1 to give an alternate view.

Crucial to producing a recognizable picture for the surface in the previous

exercise is the choice of View Volume and View Point. Enter 'XA2 - YA2 +

4*X + 4*Y' as the current equation. Without changing the View Volume or

View Point from the previous exercise draw the figure. Of course, the

critical point (-2, 2) is not centered in the View Volume so we are not

looking where the action is. Choose -4 and 0 for X-left and X-right, 0 and

4 for Y-near and Y-far, -2 and 2 for Z-low and Z-high so that the View

Volume surrounds the critical point. The View Point has to be chosen

relative to the new View Volume. Try 4, -6, 1 for Xe, Ye, and Ze.

Enter 'X*Y - 2*X + 2*Y - 4' as the current equation. The critical point is

(-2, 2). Try the previous View Volume and View Point. What happened?

Try producing the following picture.
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The lesson here is about choosing the View Point; in trying various

possiblities one gets a real sense of the surface.

Basic definitions with examples. A function is best understood as a collection

of ordered pairs no two of which have the same first term. In the one dimensional

calculus, functions are ordered pairs of real numbers that can be displayed

graphically as subsets of the Cartesian plane. This graphical representation of the

function is called the graph of the function. For real valued functions of more than one

variable, the first members of the ordered pairs (elements of the domain of the

function) will themselves be n-tuples. In the case of real valued functions of two

variables, the first members will be 2-tuples or ordered pairs, and the graphical

representation of such functions will be in 3-space. A surface S is said to be given

explicitly by a function f, usually from R to R, provided S is the graph off.

a) From the one-dimensional calculus consider the function f(x) = x2 + x + 1.

The curve C = {(x, y) | y = x2 + x +1), the graph off, is said to be given

explicitly by f.

b) The surface S ={(x,y,2z) | z= x2 - y2) is given explicitly by the function

f(x, y) = x2 - y2.

Exercises.

1) Produce the surface z = sin(x + y) using the View Volume [0, 6.28] by [0, 3.14]

by [-2, 2]. Start with 6, -6, 4 for Xe, Ye, and Ze. Is there another choice for

Xe, Ye, and Ze that improves the picture?
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2) Try some of the other explicit quadratic surfaces from your calculus text.

Among the conic sections, the ellipses and hyperbolas are usually defined

implicitly by equations. For example, the unit circle is given by the equation x2 + y2

= 1. Note that the graph of a circle cannot be the graph of a function, because there

are vertical lines that intersect a circle in more than one point. A surface S is said to

be given implicitly by a function f, usually from R" into R, provided S is a level set of

f, i. e., there is a number k such that S = { x | f(x) = k}. Note that S is a subset of

the domain of f.

a) The unit circle C given by x2 + y2 = 1 is a level set of the function f(x, y) =

x2+y2,ie,C=(x7y) | f(x,y) =x2 +y2 =1).

b) A portion of the implicitly defined surface S = {(x, y, 2) | x2 + y2 + 22 = 1}

is given below.

This picture was produced with the WIREFRAME Plot Screen by solving x2 + y2 + z2

= 1 explicitly for z. Of course, each point (x, y) produces two values of z and we used

only the nonnegative values of z. Thus we can use software for producing explicit

surfaces to represent portions of implicitly defined surfaces.

Exercise. Use the WIREFRAME Plot Screen to produce a portion of some of the

implicitly defined quadratic surfaces in your calculus text, for instance, x2 + y2 + 422

= 1.

Implicitly defined curves can also be used to study explicitly defined surfaces.

Given an explicit surface z = f(x, y) we produce the implicitly defined level curves

k = f(x, y). In this case, the level curves of a surface are a two dimensional
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representation of a three dimensional surface. Consider the level curve

representation of the surface z = x2 - y2 given below.

Later, we will use the conic graphing ability of the HP-48G/GX to produce level

curves for quadratic surfaces like the one shown above.

A curve C (sometimes a surface) is said to be given parametrically by a function

£, usually from some subset U of R to R, provided C is the image of U under f, i.e., C

= f(U). Note that C is a subset of the range of f.

a) The straight line through P(x,, y,, z,) and Q(x;, y,, z;) is given

x =X, + t(x; - x;)

parametrically by the set of functions y =y, + t(y, -y,) , or in vector

z=2,+tz, -z,)

form by x = (xy, Yo, Zg) + t(xg - X1, Yo - Y1, Z9 - 2)-

b) The plane consisting of all linear combinations of two linearly independent

vectors u and v is given parametrically by f(a, b) = au + bv, (a,b) in Rx R.

Some standard representations

a) Lines (explicit: y = mx + b; implicit: Ax + By + C = 0; parametric: r(t) =

u + tv, t a real number)

b) Conic sections
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Implicit:

2 2 2 2
EXT*%Z‘I and Ez—fi--l

Parametric:

a -
X =acos0 x=acosht=?(et+et)

b si ,0£0<2rx and ,=0 <t<oo

y=bsin8 y=bsinht=%(et_e't)

Shifting the representation

Many times, problems come with some "natural” representation of the curve or

surface. In most applications, including the HP-48G/GX, a certain representation is

required; for instance, the WIREFRAME Plot Type requires an explicit representation

of the surface. The first step in these problems becomes that of shifting the given

representation of the curve or surface to the representation appropriate to the

application.

a) A curve C given explicitly by y = f(x), x in D, can be described implicitly

by C = {(x,y) | y - f(x) = 0} or parametrically by

X =X

y = f(x), x in D

b) A curve C given implicitly by f(x, y) = 0 might not have have an explicit

representation; for instance, the circle x2 + y2 = 1. Even so, we can

frequently give a branch of the curve an explicit representation; for

example, as the upper semicircley = V1-x2,-1<x<1.
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c¢) Sometimes a curve C originally given parametrically can also be

represented implicitly by "eliminating the parameter”. See the conic

sections above.

Exercises.

1) Find both parametric and explicit representations of the line segment

between P =(1,1) and Q = ( 2, -3).

2) Find both implicit and parametric representations of the ellipse with

vertices (-1, 0), (1, 0), (0, -2) and (0, 2).

3) Find both explicit and implicit representations of the plane that contain

(1,0,0), (0, 1, 0) and (0, 0, 1).

1.2 Three Dimensional Parametric Curves

We want to use the 2D parametric plot capability of the HP-48G/GX to

produce some 3D plots. We will be working with the Stack Interface, i.e., from the

PLOT menu. Our approach to plotting 3D parametric curves will be to create a

general function in terms of X, Y and Z, called PARA3D. We can obtain the plot of

any 3D parametric curve by plotting PARA3D after specifying X, Y and Z. To

accomplish this enter

'X - Xe) /(Y - Ye) +i+(Z - Ze) / (Y - Ye)

'PARA3D' STO

Note that we are not writing a program, merely plotting a "generic" parametric

curve that will be completely specified only when 'X', 'Y' and 'Z' are specified. To

make PARA3D the current equation enter 'PARA3D' 'EQ' STO.
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Examples. Store 0, -2, and 25 as 'Xe', 'Ye', and 'Ze', respectively.

1) A spiral wrapped around a cylinder: r = (cos t, sin t, t), 0 < t < 5x. Enter

'COS(T)y 'X' STO 'SIN(T) 'Y' STO 'T" 'Z' STO. Change PYTPE to

PARAMETRIC, open PPAR and change INDEP to (T 0 15.71}. Then

AUTO ERASE DRAW produces the following.

T~

——
We can change the x scale with ZOOM. Open ZOOM and set the H-factor

as 2 and the V-factor as 1 in ZFACT. Then press ZOUT to produce

The unwanted axis was eliminated with ERASE DRAW.

2) A spiral wrapped around a cone: r = ((1 - t/6x) cos t, (1 - t/6r) sin t, t),

O<t<ér.

Exercises. Plot the following 3D parametric curves:

1) r=(1-¢t2t+1,t+1),-3 <t<3. Hint: If you wish to speed up the

plotting, change the resolution with 1 RES.
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2) r=(t0,t2),0<t<2 Try .1 RES.

3) r=(cost sint, cos? t- sin2 t), 0 < t < 2x. Hint: Use AUTO and then

rescale with ZOUT assuming H-factor is 2 and V-factor is 1. Try to

understand the 3D figure by plotting it with different choices of the

viewing point.

1.3 Level Curves of Quadratic Surfaces

Continuing to use the Stack Interface, begin by going to the HP-48G/GX's PLOT

menu, open PPAR and press RESET. Do PLOT again, open the PTYPE submenu

and press the menu key CONIC.

Example. Sketch 4y? - 8x - x2 + 40y + 85 = 0.

Enter

'4+YAN2 -8+X -X2A2 + 40+Y + 85 'EQ STO

ERASE DRAX DRAW

 

The resulting sketch isn't very satisfying. How can we improve it? Completing

squares, our equation becomes (x + 4)2 - 4(y + 5)2 = 1, so the figure must be a hyperbola

with center (4, -5). Set the center in PPAR and redraw as follows:



MULTIVARIABLECALCULUS 81

(4, -5) CENT ERASE DRAX DRAW

>
Example. Graph x2 + xy + y2 - 1= 0 using the default graphing parameters. 'X A 2

+ X*Y + YA2 - 1' 'EQ STO ERASE DRAX DRAW results in a graph like

the following.

—
P
—

The picture can be improved with ZOOM. Set the H-factor as 2 and V-factor as 2 in

ZFACT, then press ZIN.

|-
~

p p

€

Note. ON takes us out of the PICTURE environment and the PICTURE key returns

us to it.

Example. 'Y — X' 'EQ STO DRAW overdraws the last graph with a line:

R
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A better way to produce this graph is with {X*2 + X*Y + YA2 - 1' X - Y]

'EQ' STO ERASE DRAX DRAW.

Example. The upper region bounded by the curves can be regraphed with

(-14, -1) PMIN (1, 14) PMAX ERASE DRAX DRAW

The commands PMIN and PMAX must be typed in; they capture the coordinates of

the lower left and upper right corners of the plotting screen.

This method of choosing the graphing window captures the region of interest but can

distort the picture. A better way is illustrated by the following example.

Example. To return to the original parameters press RESET DRAX DRAW. Then

to enlarge the upper bounded region, move the cursor to the approximate center of the

region of interest press ENTER (to place the coordinates of the cursor on the stack)

and then CENT. Now use ZIN with H-factor 3 and V-factor 3 to produce something

like the following:

\ -
\/]l \

Examples. Two of the standard figures are graphed below. Try to improve the

pictures by moving the center and using ZIN or ZOUT.
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1) x2+y2-2x=0

2) x2-xy+y2-1=0

b
\1/

1) Redo some of the other standard figures: x +y +1=0,y2 +x-1=0,x2 +y2-1=0

and2x? -y2 -2=0.

Exercises

2) Produce a graph containing both x + y -1 =0and y = 2 - x2 on the same axis.

All second degree polynomials Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (allowing for

degenerate figures) define conic sections.

Examples. Use the default settings to produce the following graphs. Notice the

center is not always at (0, 0).

1) x2+y2-2x-2y=0
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2) -y2+2x+2y-1=0

3) 2+2xy+y2-1=0

N
N\

.....y
A

The level curves of explicitly defined quadratic surfaces of the form z = Ax2 +

4) x2-2xy+y2-1=0

Bxy + Cy? + Dx + Ey + F are conic sections.

Exercises. Match the following surfaces with the sets of level curves given below:

1) z=2x2+xy-y2 2) z=y2-x 3) z=xy

4) z =16x2 + 24xy +60x - 80y -100

5) z =29x2 - 24xy + 36y + 118x -24y - 55

C) A)
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1.4 Pseudolevel Curves of Explicitly Defined 3D Surfaces

Strictly speaking, finding the level curves of a general, explicitly defined, 3D

surface z = f(x, y) with the HP-48G/GX requires material from differential equations.

Example. Go to the Screen Interface with E PLOT and choose Ps-Contour. Store

'XA2 + YA2' as the current equation in EQ. Open OPTS and set 4, 4 for X-left and

X-right and -2, 2 for Y-near and Y-far. Use ten steps for both the independent

variable X and 'dependent’ variable Y. then ERASE DRAW produces the

following:

[ /) / L=\ \

117723V 40

O
\\\QQ;;III

WNIX==22 7
We can explore the relationship of this graph to the level curves of the quadratic

surface z = x2 + y2 by proceeding as follows. Move the cursor away from the origin

and enter the coordinates of the cursor onto the stack with ENTER. Now press ON

twice to return to the stack. Produce the z value with OB]J» x2 SWAP x2 + 'Z

STO. Now overlay the level curve produced with CONIC as follows. Using the
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Stack Interface choose CONIC. Open PPAR and set Xrng and Yrng to agree with X-

left, etc. Change EQto'’X2A2 + YA 2 - Z' and press DRAW. Drawing the conic

sections for a couple of different values for Z produces

 

Notice that the level curves do not cross any of the line segments.

Exercise 1. Work the last example with the explicitly defined surface z = x2 - y2.

Exercise 2. A useful example to explore is z = szz-y; . Start by storing

*X*Y / (XA2 + YA2)in EQ. Repeat the steps using Ps-Contour outlined in the

example. In order to use CONIC store ' Z * (X2 + YA2) - 2*X*Y"' in EQ. See

if you can produce something like the following. Save the z values on the stack.

 

What's happening at the origin?

Of course, Ps-Contour works for surfaces more general than the quadratic

surfaces. The problem is that the user has to construct mentally the actual level

curves using the picture produced by Ps-Contour.

Example. Store 'SIN( X ) * SIN( Y )' as the current equation. Choose 0, 3.14 for X-

left and X-right and 0, 3.14 for Y-near and Y-far. The Ps-Contour Plot type produces
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Can you visualize the level curves of this surface?

1.5 Explicitly Defined 3D Surfaces

Before returning to WIREFRAME we will make use of the Pr-Surface plot

type to explore further the interaction of View Point with the pictures produced. Go

to the Screen Interface with PLOT and choose Pr-Surface as the plot type.

Enter the current equationas {U V 0}, U for INDEP, V for DEPND, and use 2 for

STEPS in both U and V. Open OPTS and set the View Volume to -1, 2; -1, 2; and -2,

2. To set the ranges of U and V you must use the Stack Interface. Set INDEP as (U

0 1) and DEPN as {V 0 1}. Return to the Screen Interface and try various choices

for the View Point. We are looking at a square in the xy-plane with vertices (0, 0,

0) and (1, 1, 0) from various view points.

—— = =
 

Xe: -1, Ye: -2, Ze: 1 Xe: 0.5, Ye: -2, Ze: 1 Xe: 2, Ye: -2, Ze: 1

—
——

Xe: 0.5, Ye: -2, Ze: -1 Xe: 0.5, Ye: -2, Ze: 0 Xe: 2, Ye: -2, Ze: 2
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Exercise. Try the same thing with { U 0 V } as the current equation. In this

exercise you are viewing the square in the xz-plane with vertices (0, 0, 0) and (1, 0,

1).

To use WIREFRAME effectively requires some knowledge of the surface. The

View Volume should contain one or more critical points, that is, where the action is.

We will work with the surface z = xy and see how choices of the View Volume,

View Point and number of Steps interact to improve the visualization of the surface

in a region containing (0, 0, 0). Using the Screen Interface, choose WIREFRAME as a

PTYPE and enter ' X * Y ' as the current equation. Set the independent variable to X

and use 10 steps for X. Set the dependent variable to be Y and use 8 steps for Y.

Since (0, 0, 0) is a critical point, choose the View Volume as -2, 2; -2, 2; and -2, 2.

Thinking about the symmetry of the figure we can try 3, -3, 3 for the View Point.

These choices result in the following:

We are expecting a hyperbolic paraboloid, so what happened? The picture

does not capture the essential behavior of the surface at (0, 0, 0), namely, that (0, 0,

0) is a saddlepoint. The problem is that the figure is "too symmetric" in X and Y.

Earlier we saw that an oblique view helps our eye orient the figure in three space.

Try -5, 5; -1, 1; and -4, 4, for the View Volume. To have an oblique view we must

change the View Point. Since in the previous picture we were viewing from too high

a vantage point, try 6, -3, 2:
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The picture captures the saddlepoint at the origin, but if you look away and then

look back there is some confusion about which part of the surface is in front. One

way to improvethis is to choose Steps unequally. Try 4 steps for X and 12 steps for

Y:

 

 

1.6 Intersections of Surfaces

Slices of explicitly defined 3D surfaces. The intersection of a cylinder with a

vertical generator and an explicitly defined surface is a curve in three dimensions. If

the cylinder is a plane then the intersection is said to be a slice (or section). We want

to use our representations of 3D parametric curves to plot various standard slices.

Producing really good 3—dimensional pictures requires patience and judgment.

In the examples we will concentrate on two surfaces that should be familiar, the

paraboloid z = x2 + y2 and the hyperbolic paraboloid z = x2 - y2. Depending on the

reader's intuition, this should provide an opportunity to show that reasonable

choices can lead to unexpected results which require interpretation.

We begin with the intersection of a vertical plane Ax + By = C with a surface

z = f(x, y). There are two ways to parameterize the curve:

1) x=t y=ax+Db;z=f(x,y)orr=(tat + b, f(t, at + b)) and
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2)x=ay +b;y =t z=f(x,y) orr=(at +b, t, f(at + b,t)).

We need both ways. If the plane is perpendicular to the y-axis then we use 1) with

a = 0. Similarly, if the plane is perpendicular to the x-axis then we use 2) with a =

0.

Example. Slice the surface z = x2 + y2 with various vertical planes perpendicular to

the y-axis, say y = 0. Store 'T' in 'X', 'XA2 + YA2' in 'Z' and 0 in 'Y'. Store 0

into 'Xe', -1.5 into 'Ye', and 0 into 'Ze'. Reset PPAR to the default settings and then

change INDEP to {T -1 1}. Set EQ as 'PARA3D'. Use AUTO to autoscale, then

ERASE and DRAW. Use ZOUT with H-FACTOR 2 and V-FACTOR 1. since ZOUT

inserts axes, remove them with ERASE DRAW. This produces something like the

following:

Be careful in examining the picture to realize that the curve is in a plane

perpendicular to the y-axis.

Of course, we may choose another plane, say y = x/2. Simply store '0.5 * X'

in 'Y' and enter ERASE DRAW. This produces something like the following:

Comparing this graph with the one above, we see there are only subtle

differences in the pictures even though the two curves come from different slices.
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Moving the View Point a bit, say to -3 -2 0, produces the following graph for the

first curve:

The second curve looks like this:

Certainly, no one would confuse the two curves. This suggests that frequently we will

want to view 3D objects from more than one perspective.

Exercise. Repeat the last example using the surface z = x2 - y2.

Example. Critical points of a surface z = f(x, y), i.e., points (xg, yo) where

Vz(xg, yo) = 0, are places where important things happen. Slices through critical

points can be revealing. For example, slicing z = x2 + y2 through (0, 0) along y = x

produces the following;:
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Slicing along y = -x produces

In fact, any slice through (0, 0) will yield a parabola with vertex at the origin.

Thus, one can easily believe that z = x2 + y2 has a local minimum at (0, 0).

Exercise. Repeat the above example for z = x2 - y2. Slice the surface with the

planesx + y = 0.

Intersections of cylinders with explicitly defined 3D surfaces. We can use

PARA3D for the intersection of a cylinder generated by any parametric curve in the

plane and a 3D surface. For instance, the curve C: x = u(t), y = v(t), ast<b, or

r = (u(t), v(t), f(u(t), v(t))), a St < b. Of special interest are the circles C: x = a cos

tty=asint, 0<t<2r.

Example. With some care the following piece of the paraboloid z = x2 + y2 can be

produced with PARA3D.

For the circular sections we chose a = \/5/2anda=1.

Exercise. Try to reproduce the picture above.

Suppose [Pi]: is a sequence of points in the plane and C, for 1 <i < n,is the curve from
n

P_,toPdefined by Cir=(i-t)P+(t-i+1)P,i-1<t<i. ThecurveC =121 C,is called
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a polygonal curve from Pg to Ph. The polygonal curves in the plane form another

important family of curves generating 3D cylinders. We will construct polygonal

curves using the following two programs VERTS and POLIG.

level n + 1 . . level 2 level 1 level 1

(xll Y‘[) (xn, yn) n = list

VERTS:

<< —>LIST 'Vrts' STO >> I Stores the vertices as a list named

I'Vrts'.

POLIG:

<< Vrts T CEIL DUP 0 ==

<<1 + >> IFT GETI | Gets the first vertex.

DUP2 DROP 1 - T - * | Multiplies that vertex by

I(1 - T) and stores the result in 'p'.

'‘p' STO SWAP DUP2 DROP | Gets the next vertex.

GET SWAP T SWAP 2 - - * | Multiplies by (T - 1).

p + 'P' PURGE | Adds the result to the vertex in 'p'.

| Clears 'p'.

>>

Example. A reasonable case can be made for studying surfaces using the analogy of

walking along paths in the mountains. Consider the surface z = sin(x)sin(y) which
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looks like a rumpled (but more regular) blanket. For the analogy, think of z as a

deviation from some reference altitude. Maybe the units are 1000 ft. We are

interested in following paths, say from (0, 0, 0) to (2x, 2x, 0). Enter

0,00 2 'r' * 5NUM DUP R-C 2 VERTS

<< POLIG OBJ- DROP >> 'X' STO

<< POLIG OBJ—» SWAP DROP >> 'Y' STO

'SIN(X )*SIN(Y)" 'Z' STO

Now graph PARA3D in the parametric mode with the independent variable set as

{T 0 1},i.e., T ranges from 0 to one less than the number of vertices. This produces

Suppose you object to the up/down nature of the path. Can you find a path

from (0, 0, 0) to (2x, 2x, 0) with less climbing? Perhaps a path that is level for its

entire length?

Suggestion: You may find it easier to store << POLIG OBJ— DROP >> in plgX and

<< POLIG OBJ- SWAP DROP >> in plgY. Then before graphing PARA3D to

produce the curve on the surface, store 'plgX' in 'X' and 'plgY' in 'Y'.

We want to follow the intersection of the surface with the vertical cylinder

whose intersection with the xy-plane is parameterized by the polygonal curve C

from (0, 0) to (=, 0) to (x, %) to (2, %) to (2x, 2x). On the surface the previous path

and the new path look like the following:
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0, 0, 0) to (2=, 2x, 0) (0, 0) to (xx, 0) to (w, &) to (2%, &) to (2x, 2x)

Plotted Together

Since z = 0 on the new path, the new path never leaves the xy-plane in moving from

O, 0, 0) to 2=, 2mx, 0).

Suppose at some point, say (x/2, 0, 0), you want to climb to the top of the

"hill" at (xr/2,®/2, 1). Two ways of visualizing the hill, slicing the surface, are as

TN
Two paths lead to the top. Both are intersections of the surface with vertical

follows.

 

cylinders whose intersections with the xy-plane are parameterized by polygonal

curves. The first, C1, goes from (n /2, 0) to (r /2, ®/2). The second, C2, goes from (n /2,

0)to (3n/4,7/2) to (x/2,2rn/3)to (3x /8,%/2) to (x /2,x/2). On the surface the curves

look like the following:
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Which would be the easier walk?

Exercise 1. Graph paths from (0, 0, 0) to (2, 2, 0) on the surface z = x2 - y2 that are

intersections of the surface with vertical cylinders whose intersections with the xy-

plane are parameterized by polygonal curves C; and C,. The first, C1, goes from

(0, 0) to (2, 2). The second, C,, goes from (0, 0) to (2, 0) to (2, 2. Which would be the

easier walk?

Exercise 2. Produce the pseudolevel curves of z = x2 - y2 using Ps-Contour. Overlay

with the curves C; and C;. How can you distinguish between C; and C, in terms of

the level curves?

3D surfaces. We can graph surfaces by graphing one or more judiciously chosen

slices. Three general rules apply. Fewer, more widely separated slices usually look

better. You may need to try several viewing perspectives before something

satisfactory emerges. A piece of the surface might be sufficient to tell the whole

story. This picture of a hyperbolic paraboloid looks reasonable if you already know

what the surface looks like.

The following program was designed to convey a sense of a surface by

animating several different views of a slice to give an illusion of motion. PICS can

be slow to run, so animation is of limited utility. The ideas work best for
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intersections of cylinders generated with simple figures, straight lines, circles and

rectangles parameterized with the reserved variable K.

PICS:

<<1 5 FOR i IGenerates five

i 'K' STO ERASE | different views of a slice of

DRAW PICT RCL | the surface.

1 STEP 5 —-LIST DUP | Arranges the views on the

REVLIST + OBj- | stack for ANIMATE.

>>

Example. We want to animate the intersection of the surface z = sin(x)sin(y) with

the vertical plane y = Kn /6. Set PTYPE to PARAMETRIC, Xe to 0, Ye to -1 and Ze to

2. Enter

'SIN(X) * SIN(Y)' 'Z' STO 'K*3.14 /6 'Y' STO RESET

{X 0 3.14) INDEP .1 RES 1+/- 2 XRNG 15 +/- 0 YRNG

PICS ANIMATE

Exercise. Redo the example using Y-SLICE. Using the Screen Interface set TYPE to

Y-SLICE and EQ to 'SIN(X) * SIN(Y)'. Set X-LEFT to 0, X-RIGHT to 3.14, Y-NEAR to

0, Y-FAR to 3.14, Z-LOW to 0 and Z-HIGH to 2. How do the two animations differ?

For some figures you might want to generate different views by moving the

View Point. Try something like Xe = a + (b - a)K/5.
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Exercise. Consider the intersection of the surface z = y2 + x2 with y = x/2. Let Xe =

4 +4K/5, Ye = -2 and Ze = 0.

Intersections of planes with quadratic surfaces. The intersection of two

surfaces in 3-space will usually be a curve. To treat general surfaces would be too

difficult at this time. Instead, we will look at the problem of describing regions

bounded by a quadratic surface and a plane.

Example. Describe the region D of R3 between the quadratic surface z2 = 2x2 + 3y2 + 1

and the planex +y + z = 2.

These two surfaces intersect in a 3-dimensional curve. We begin by looking at

the cylinder set parallel to the z-axis that contains this intersection. The equation

of the cylinder set is found by eliminating z from the equations; i.e., solve the

equation of the plane for z and then substitute the result into the equation for the

elliptic paraboloid of two sheets. We want to look at the xy-section of the cylinder

set to see that we have a bounded region. Begin with the default plotting

parameters

X' PURGE 'Y’ PURGE

X +Y+Z-2 'Z ISOL DEF

2*XA2 + 3*YA2 - ZA2 + 1' EVAL PLOT

CONIC ERASE DRAX DRAW
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The resulting picture is difficult to analyze. Step back by reducing the resolution,

i.e., in ZFACT set H-factor and V-factor to 5 and then ZOUT.

 

 
The region appears to be an ellipse, and we can confirm this by shifting the axis.

Move the crusor to the center of the figure and press ENTER to record the coordinates

of the cursor on the stack. Press ON, open PPAR and press CENT (on the second

page) to relocate the center of the screen to the coordinates location. Then execute

ERASE DRAX DRAW. The resulting picture is convincing, i.e., the cylinder set

intersects the xy-plane in a bounded elliptic region D,.q 
The surface z2 = 2x2 + 3y? + 1 is an elliptic paraboloid. For x = 0, y = 0 we

have z2 = 1. The corresponding point on the plane x + y + z = 2 is (0, 0, 2), i.e., the

plane intersects the upper sheet of the elliptic paraboloid. Hence for (x, y) in the

bounded region D;, whose boundary is the ellipse obtained using the calculator, we

must have

(2x2 +3y2 + NV/2<2-x-y.

In order to complete the description of D;, we must obtain a description of the

region D, in set builder notation. Recall whatis stored in EQ and execute

'Y' 2 TAYLR 'Y' QUAD DEF

Y 1 +/- 'sl' STO EVAL
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Now execute EXPA and COLCT several times to get a simplified version, maybe

something like -1 - 0.25*V (40 - 4* X A 2-48*X) + 0.50 * X. Proceed in the

same manner with 'sl' having the value 1. Thus for (x, y) in D1 we have

1+ (x-V10-12x x2)/2<y <-1+ (x + V10-12x -x2)/2.

Call this interval of y values Ix. To find the interval of x values proceed as follows.

The x-coordinates of the vertices of the ellipse will occur when the radical is zero.

Why? Use the editor to obtain just the radical.

EDIT V(@40-4*XA2-48*x)

x2 'X' QUAD

We find the x-interval with

ENTER -1 's1' STO EVAL

SWAP 1 's1' STO EVAL

The stack is 0.7823 ... , -12.7823 ... . We obtain the right order with SWAP.

Thus D; = {(x, y)| -12.7823 < x < 0.7823 and y in I,}. Finally, D = {(x, y)|

-12.7828 < x < 0.7828, y in I, and (2x2 + 3y? + 1)1/2<z2<2 - x - y}.

SECTION 2. OPTIMIZATION AND INTEGRATION

2.1 Classification of Critical Points for Functions of Two Variables

Taylor series for functions of two variables. The Taylor series expansion of f(x)

about x, is given by
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The sum of the first n + 1 terms, i.e, for p =0, 1, ..., n, is called the nth degree

Taylor polynomial P(x). Of course, P1(x) is the line tangent to the graph of f(x) at

(xg, f(x5)). Similarly, each of the polynomials approximates the function.

We look for critical points of y = f(x) by finding values for which the graph of

P1(x) is a horizontal line. A critical point x, of y = f(x) is classified as a local

minimum if the second degree Taylor polynomial P,(x) for f(x) is a parabola that
f"

opens up. Notice that P,(x) = f(x;) + f(xg) (x - %) +—(2x°—)(x - X¢)2, which opens up

provided f'(xy) > 0. Similarly, x, is classified as a local maximum if P,(x) opens

down.

Example 2. TAYLR always computes the polynomial expansions about zero, i.e., the

MacLaurin expansions. In order to find an expansion about some other point we must

introduce a change of variables. Suppose we want the expansion of 1/x about 1.

Notice there is no expansion about0.

Enter the following commands:

X' 1/x 'Y +1' 'X' STO EVAL

'Y' 3 TAYLR

X' PURGE 'X-1"'Y' STO EVAL

Exercise. Try expanding sec x about x.

For z = f(x, y) we proceed as follows: let w(t, x, y) = f(xo+ t(x - xg), yo +

t(y - yo)), a section of z = f(x, y) in the direction of (x, y). The second degree Taylor

polynomial at 0 for w(t, x, y) (holding (x, y) fixed) is

Pa(t, x, y) = f(xg, yo) + [fx(x0, yoXx - x9) + fy(XOI Yoy - yo)lt +

(1/2)[flx0, Yo)x - x0)2+ 2,(xo, Yo )X - X0 Xy - yo) +

f(X0, Yo Xy - yo)?1t?
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which reduces to

Pa(t, x, y) = f(xg, yo) + (1/2)[f(o, Yo)(x - X0)? +

2f, (x0,Yo)X - X)Xy - o) + £,(X0, Yoy - yo)2]®

when (x,, y,) is a critical point.

Example. Find the second degree Taylor polynomial for w(t, x, y) given z =

(sin x)(sin y) and (%/ 2, t/2 is a critical point . Enter the following:

'SIN(U) * SIN(V) 'Z' STO

't/2' 5NUM DUP +/- X' + 'T' x + 'U' STO

U EDIT (change X to Y) ENTER 'V' STO

Z EVAL 'T" 2 TAYLR

Classifying critical points. In order to classify (x/2, ®/ 2 ) as either a local

maximum, local minimum or a saddlepoint, we must determine if P,(t, x, y) is a

parabola opening down (or up) for all (x, y) or opening down for some (x, y) and up

for others. We can decide by sketching the level curves of

P,(1, x, y). Proceed as follows:

1 'T" STO EVAL

'K' PURGE 'K' + NEW T2 ENTER CONIC

05 +/- 'K' STO DRAW

0 'K' STO DRAW

1 'K' STO DRAW

Clearly, we have produced the level curves of an elliptic paraboloid, i.e., the

coefficient of t2 in P,(t) must always be either positive or negative. Therefore

(x/ 2, ®/2 ) must be a local extremum. Furthermore, since the paraboloid looks down

(x/2, ®/2 ) must be a local maximum.
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N

The example illustrates this general result: if f(xp, yo)(x - xp)? +

2f,, (X0, Yo)(x - Xo Xy - yo) + fy,(X0, Yo)(y - yo »2 is an ellipse then (xp, yp) is an extremum.

In this case, (xg, yo) is a maximum if f_(xp, yp) is negative and a minimum if f_(xq,

Yo) is positive. If f,,(xo, yo)(x - xo)? + 2f,,(xo, yo)x - xo)(y - yo) + £,(0, Yo )y - y0)? is a

hyperbola then (xq, yo) is a saddlepoint. This can be developed as an efficiently

applied criterion as follows: Let A = (f,, (xo, Y0))? - fi(X0, Yo)f,y(xo, Yo)-

1) If A > 0, then (xg, yo) is an extremum, a maximum if f_(xo, yo) < 0 and a

minimum if fy,(xo, yo) > 0.

2) If A >0, then (xq, yp) is a saddlepoint.

3) If A = 0 then the test fails.

Exercise. Use the method outlined above to classify the critical points (-1, 11/6)

and (1, 1/2) of z = x® + y2 + 2xy 4x -3y + 5 as either local extrema or saddlepoints.

2.2 Polya's Problems!

Example. If the sum of two numbers is 6, what is the maximum of their product?

Let the numbers be x and y. We are given that x + y = 6 and we wish to

maximize the function f(x, y) = xy subject to that constraint. We produce a graph

containing both x + y = 6 and xy = 1, i.e., the constraint and an arbitrary level curve

of f(x, y).

 

1 George Polya, Mathematics and Plausible Reasoning, Vol. 1, Princeton University
Press, Princeton, NJ, 1954.
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'PPAR' PURGE CONIC

X + Y - 6 'CONSTR' STO

'K' PURGE 'X*Y - K' 'FUNCL' STO

{ 'CONSTR' 'FUNCL'} 'EQ" STO

1 'K' STO DRAW

=* - !x

Of course, xy = 1 is not tangent to the constraint x + y = 6 at any point. We can

 

choose a more appropriate level curve of f(x, y) = xy by moving the cursor to a point

on the constraint x + y = 6 where we think some level curve is tangent. Capture that

point with the menu key (x,y) and then continue. (Our guess resulted in (3.1, 2.9). )

ON OBJ- x 'K' STO ERASE DRAW

This will produce something like the following:

 

 e 1 - ‘* -

The picture strongly suggests that (3.1, 2.9) is either a point of tangency or near

such a point. To check this, we can zoom in by setting the center at (3.1, 2.9) and

repeating the process from the top.

Exercise. Find the minimum of x2 + y2 on the curve x =y2 + 1.

Example. Find the distance from the point (1, 2) to the curve y = x3 - 3x2 + 2x. It is

sufficient to find the point that minimizes the square of the distance. This latter

problem can be stated as:



MULTIVARIABLECALCULUS 105

Minimize: f(x,y) = (x - 1) + (y - 2)?

Subject to: g(x,y) =y -x>+3x2-2x=0

The method of Lagrange multipliers leads to a system of polynomial equations with

no rational solution. Let us try the graphical method outlined above.

'PPAR' PURGE -6.8 68 XRNG -1 2.1 YRNG

X*X - 1D*(X - 2) - Y 'CONSTR' STO

'K' PURGE 'X-1) x2 (Y-2) x2 + 'K-

'FUNCL' STO

{ 'CONSTR' 'FUNCL'} 'EQ STO

1 'K' STO DRAW

This produces something like the following:

b
Use the cursor to estimate the point on the curve nearest (1, 2), for us (2.4, 1.8). We

use CENTER ZOOM to move in on the region of the graph of most interest. We

further update the graph as follows:

OBJ- 2 5ARRY 1 2 2 5ARRY - DUP DOT 'K' STO

ERASE DRAW

This produces the following:
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The current estimate of the minimum seems pretty good, but we can improve our

estimate by repeating the process with a better guess. Our current estimate of the

distance is the square root of K, i.e., 1.50.

Exercise. Find the distance from the point (1, 2) to the curve y = In x.

Example. We want to find a graphical solution to a more difficult version of the

milkmaid problem. Suppose a house is located at P(0, 1), a barn at Q(-2, 1) and a

river bank is given by y = sin x. If each morning the milkmaid walks in a straight

line from the house P to a point R on the riverbank to fill her pail and then in a

straight line to the barn Q, the total distance she must travel is d(P, R) + d(R, Q).

The problem is to choose the point R on the riverbank that minimizes the total

distance she must travel.

The problem can be stated as follows:

Minimize: f(x,y) = ((x + 22 + (y - D)2+ (x2 + (y - 1)2)1/2

Subject to: g(x,y)=y-sinx=0

The method of Lagrange Multipliers leads to some difficult equations. However, the

graphical method outlined above works reasonably well.

The level curves of the distance the milkmaid walks are ellipses. Recall from
- h)2 - k)2

the derivation of the general form (—%7!14- ()'_lei = 1 of an ellipse with major axis

horizontal that for this problem (h, k) = (-1, 1), 2a is the distance the milkmaid

walks, 2c = 2 is the distance between the house and barn (the foci), and b2 = a2 - 1.

The calculator analysis proceeds as follows:
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'PPAR' PURGE FUNC 'SIN(X)' 'CONSTR' STO

'K PURGE X' 1 + x2 K' x2 + 'Y'1 - x2 'K x2

1-+ +1-"Y2 TAYLR 'Y QUAD (Edit the

result to eliminate Y =.) 'FUNCL' STO

{ 'CONSTR' 'FUNCL'} 'EQ' STO

1 's1' STO 1.5 '’K' STO ERASE DRAW

The graph looks something like.

/ \

Use the cursor to capture a guess for the point that minimizes the distance and then

BOXZ to bracket the region of interest. Our guess is (.2, .3). To compute the updated

K proceed as follows:

OBJ— 2 —ARRY DUP 0 1 2 -»ARRY - DUP DOT vx

SWAP 2 +/- 1 2 5ARRY - DUP DOT vx + 2 + 'K' STO

ERASE DRAW

The graph looks something like this.

 

 

Of course, the estimate can be improved by repeating the above process.

Exercise. Find a graphical solution to the milkmaid problem, given that the house

is at (0,1), the barn at (0, 2) and the river bank is given by y =In x.
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2.3 Integration

There are two approaches to numerical integration on the HP-48: using the

stack or the Equation Writer. Both require setting the numerical mode (Enter -3 SF)

and specifying an accuracy factor. The latter is specified by setting the display

mode to n FIX , where n is number of decimal digits to be displayed. In the

examples and exercises, we suggest n = 3 to avoid lengthy calculation times.

Integration on the stack requires the following arguments.

Integral

level 4 level 3 level 2 level 1 level 1

a b f(x) 'x' = integral

Examples

2r
1) Use [ to evaluate V2 o" V1-cos dt

3 FIX 2 Vx

02'nt 5NUM x '1 - COS(T) Yx 'T

-3 SF|] -3 CF

Notice that we wanted the symbolic mode (-3 CF) in order to construct the integrand

using the symbol capabilities of the machine. We will assume from this point that

the accuracy factor has been set.

The following program is convenient.

Integral

level 4 level 3 level 2 level 1 level 1

a b f(x) 'x' = integral
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| Evaluates the nested

| functions down to the

| variable of integration.

| Evaluates the integral

Inumerically. If an error

| occurs reset the symbolic

I mode.

2) Compute the circumference of the ellipse given parametrically by x =

02'r >NUM x '4 * SQGSIN(T) + SQICOS(T) vx 'T' IGL

IGL:

<< DUP PURGE SWAP

EVAL EVAL SWAP

-3 SF| -3 CF

>>

2cost,y=sint, 0st<2n.

Exercises

1) Compute the circumference of the unit circle using the standard

parameterization.

2) Compute the length of the parabola y = x2 from ((1, 1) to ( 3, 9).

3) Compute the surface area of the figure generated by revolving about the x-

axis thecurvey =Inx, 1 S x <2

4) Compute the surface area of the figure generated by revolving about the x-

axis the curve parameterized by x =2,y =t3,0<t< 1.

Example 3. Compute the length of the curve y = '1_+1_x7 from (0, 1) to (3, 0.1). Enter

the following:

03"1+SQX) 1/x X' PURGE 'X' @ x2 1 + Yx X' IGL
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In the second approach to numerical integration use the Equation Writer to produce

f\/1+5oLy ax

Press ENTER toput 'J(0,3,V (1+SQ(aX(1/(1+SQ(X))))), X) on stack

level 1. To evaluate the integral enter -3 SF -NUM -3 CF. Again the following

 

 

program is convenient.

IGLEW:

<< -3 SF -NUM -3 CF | If an error occurs reset

>> | the symbolic mode.

Exercises

5) Compute the surface area of the figure generated by revolving about the

x-axis the curve discussed in the example above using the Equation Writer.

6) Redo the previous set of exercises using the Equation Writer.

7) Compute the circumference of the circle given in polar coordinates by

r = sin 6. Which approach is easier to use?

1/x
Example 4. Evaluate j I Vx+y dydx. The Equation Writer produces

0 x

(0,1, (X, VXV (X+Y)Y)X)

Notice that, after executing IGLEW, the calculator takes a while to return the

answer of 0.152, about 12 seconds. Iterated integrals are harder to obtain numerically

than definite integrals for functions of a single variable. Also, since the stack is

complicated you should DUP the argument on the stack before executing IGLEW.

The argument can also be edited.



MULTIVARIABLECALCULUS 111

Exercises

8) Find the volume of the figure bounded by the planes x + y + z=1, x = 0,

y=0andz=0.

9) Find the volume ofthe figure bounded by z =0, x2 + y2 =1 and z = x2 + y2.

10) Compute the mass of a flat plate, the quarter disk x2 + y2 <1, x 2 0 and

y 2 0, with density p(x, y) = xy.

SECTION 3. VECTOR FIELDS AND LINE INTEGRALS

3.1 Vector Fields

A vector valued function defined on a subset of R, n > 1, is called a vector field.

Similarly, a scalar valued function is called a scalar field. We will use a standard

notation, namely, f(x, y) = P(x, y)i + Q(x, y)j. Of course, f is a vector field with

component functions P and Q, which are scalarfields.

If a constant force ¢ (constant in both direction and magnitude) is applied is

applied in moving a particle along a straight line (the x-axis) from a to b (a < b)

then the work W done is c(b - a). Notice that if c is positive then W is positive and

the physical interpretation is that we have done work on the system. If c is

negative then the system does work on us.

Any problem where motion is in a straight line and the force acts in a direction

parallel to the direction of motion can be recoordinatized to fit our standard

formulation.

Suppose the particle is to be moved from P = (a, b) to Q = (c, d) along the

straight line connecting P and Q, but the force f no longer is assumed to act in a

direction parallel to u =[c - a, b - d]l. The component of the force in the direction u is
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given by (f-u)/|lu |l. The distance traveled in moving from P to Q is |lull. Hence the

work done is ((f-u)/|[u]Dljull = fu.

Example 1. Compute the work required to move a particle in the force field

illustrated below from the point P to the point Q.

 4

|Vl

2ziziz|z
P

 

 

 

 

 

 

           
0 Q 4

The force field is constant, say f = (1/4)i + (1/4)j. The path the particle must travel

can be split up into two parts, from P = (0, 3) to (3, 3) and from (3, 3) to Q = (3, 0).

The total work W is the sum of the work on each part. Let u = 3iand v = -3j. The

force to be exerted in moving the particle must balance the force exerted by the field,

i.e., the force exerted in moving the particle must be -f. Thus W = -fu - f-v = -(3/4) +

(3/4) =0.

Example 2. The picture below represents the force field f = (1/(1 + x))j. Compute

the work done in moving a particle around the path PQRSP.

Of course, in moving from P to Q and from R to S, no work is done. Again, a

force which balances the field must be exerted on the particle, but work is the
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component of the force exerted in the direction of motion. On those two segments of

the path the force is orthogonal to the direction of motion so no work is done.

Assume that P =(1/2,1),Q=(17/2,1),R =(17/2,6) and S = (1/2, 6). Let u = 5j and

v = -u = -5j. Since the field on the path from Q to Ris £f( 17/2, y) = (2/19)j and from

Sto Pis £(1/2, y) = (2/3)j, we have W = -£f(17/2, y)u - £(1/2, y)-v = <(10/19) + (10/3) =

160/57. Note that in moving from Q to R the system does work on us. From S to P we

do work on the system. Since the total work is positive, we do work in traversing

the path PQRSP. If we move in the opposite direction PSRQP then the system does

 

 

      

net work on us.
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Exercise 1. Show that W = 0 if the particle is moved in a straight line from P to Q.

Exercise 2. Which path, PQR or PSR, requires the most work to move a particle

from P to R?

Of course, in order to construct a vector field f(x, y) = P(x, y)i + Q(x, y)j one

only has to specify P and Q. An interesting way to do this is to start with a function
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z=g(x,y) and let f = Vg = [g,, g] = g,i + g,j. A vector field defined this way is

called a gradient field. Consider the surface below, given explicitly by z = x2 - y2.

 

The surface with attached gradient field appears below. All vectors have been

normalized to simplify the picture.

 



MULTIVARIABLECALCULUS 115

Exercise 3. Use the fact that a gradient vector at a point is normal to the level

curve through the point to add normalized vectors to the level curves of z = x2 - y2

given below and recapture the previous picture. Remember which direction is up

hill.

Exercise 4.  Produce the gradientfields for z = y2 and z = x2 + y2.

3.2 Line Integrals

We use the numerical integration program IGL to compute the various line

integrals in the next three examples. Notice that the calculator performs the task of

constructing the integrand symbolically from the pieces, i.e., P(x, y), Q(x, y),

x = x(t) and y = y(t). In fact, the keystrokes for computing much more complex line

integrals differs very little from these simple examples.

Example 1. (!xzy ds;C: x=cost,y=sint, 0<t<=n/2

XA2*Y P STO

'COS(T) X STO

'SIN(T) 'Y STO

'T" PURGE

0O'n'2 + P

X' ‘T 9 x2

Y T 3 x2 + X x

'T" IGL
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Example 2. J (x2y dx + xy dy); C: x2 +y2 =1 from (1,0) to (0, 1).

C:y=\/-1_-7,05xsl

XA2*Y 'P' STO

X*Y 'Q STO

(1 - XA2)A5 'Y STO

10

P 'Q" 'X' PURGE

Y 'X' 9 x +

'X' IGL

C: x=cost,y=sint, 0<st<m/2

XA2*Y 'P' STO

X*Y 'Q STO

'‘COS(T) 'X' STO

'SINCT) 'Y STO

0O'r' 2 +

'T" PURGE P

X' 'T" 9 X

Q'Y T 9 x +

'T" IGL
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Example 3. éF-dr; Fx,y)=(x+2y)i + 2x+y)j,C: r(t) =ti + 2§,0<st < 1.

X + 2*Y 'P' STO
2*X +Y 'Q STO
T 'X' STO
TA2 'Y STO
01
‘T PURGE
P X T 9 x
Q'Y 'T d X +

T IGL

Exercises

1) Computeé F-drgiven F(x,y) = (x + 2y)i + 2x + y)j, C: x = V2, y= V2

sin t, 0 < t < n/4. Compare with Example 3.

2) Computet[ F - dr given F(x, y) = x2yi + xy],C=C, +C), C;: x =1 +

(V2-2)t/2,y=V2t /2,and C,:x=V2(1- 1) /2,y =V2(1-t) /2 + t.

Compare with Example 2. What happens as C is approximated with shorter

straight line segments?

Example 4. Compute (.{ F - dr, where F(x, y) = xyi + (x - y)j, and C is given in polar

coordinates by r = cos .

Here, ourfirst task is to obtain a parametric representation of C in rectangular

coordinates. This is easily done since x(6) = r(8)cos 6 = cos?(8) and y = r(6)sin 6 =

cos 0 sin 0.
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'X*Y 'P' STO

X-Y 'Q STO

'SQUCOS(T)) X' STO

'‘COS(T)*SIN(T) 'Y STO

0'n’

'T PURGE

P X T 9 X

QY T 9 x +

'T" IGL

3.3 Green's Theorem

Green's Theorem may be stated as follows: Suppose F(x, y) is a vector field,

i.e., F(x, y) = P(x, y)i + Q(x, y)j where P(x, y) and Q(x, y) are scalar functions

(fields). Assume that Py(x, y) and Qx(x, y) are continuous in a bounded region R

with a piecewise smooth boundary C that is oriented positively. (C is given

parametrically by M = x(Di + yt)j, a < t < b, and x(t) and y(t) are piecewise

smooth. Furthermore, as t varies from a to b, r(t) traces out C keeping R on the left.)

Then J Fedr = j’P(x, y) dx + Q(x, y) dy = | 1{ [Q(x, y) - P, (x, y)] dxdy.

Example 1. Use Green's Theorem to compute the area of the unit disc R. Since the

area is given by | 1! dxdy, we can apply Green's Theorem provided P(x, y) and

Q(x, y) can be found so that Qx(x, y) - Py(x, y) = 1. Of course, this can be done in

many ways. Why not P(x, y) = 0 and Q(x,y) = x? The boundary of the unit disc R is

the unit circle C, which can be parameterized with r(t) = (cos t)i + (sin t)j, 0<t<

2x. Hence the area is

 

2x ; 2x2
J xdy=of (cos t)2 dt=G~ +su; t) g=1t
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Example 2. Find the area inside the loop of Tschirnhausen's cubic C parameterized

by r(t) = (2 - 3)i + (8/3 - 1)j, -3 < t < 3. The curve C looks something like

We need to restrict the range of t to the values that give the boundary of just the

loop, call it C;. This can be done by solving x(t) = y(t) = 0. Clearly, t = V3, i.e,

werestrict the parameter to the interval -V3 < t < V3. Check to see that the loop

(the boundary of the region inside) has a positive orientation. The area is then

given by

¥ 5t® sin 4t
.’.[ xdy=_£;(t2-3)(t2-1) dt=(g+ 3 +4t)_}5=1t 

Example 3. Find the area of the four loops in the hypotrochoid C given

parametrically by r(t) = (6cos t + 5cos 3t)i + (6sin t - 5sin 3t)j, 0 <t <2x. The figure

looks something like

The loops are all equal. The boundary of each loop is negatively oriented. Only the

boundary of the little region in the center of the figure is positively oriented. Let's

work with the top loop. The first step is to restrict the range of the parameter and

call the resulting boundary C1. We need to solve the equation x(t) = 6cos t + 5cos 3t =

0. Using the calculator, proceed as follows:
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'6* COS(T)+5+COS(3+*T) 'EQ STO

'PPAR' PURGE DRAW

The resulting picture isn't much help, but you can improve it by changing the

plotting parameters. Use the cursor and the (x,y) menu key to capture the bottom of

the y-axis. It should be approximately (0, —3.1). Store the result in PPAR by hitting

PMIN. Redraw the graph. Again you probably want to change PPAR. This time

move the cursor to the top of a vertical line just to the right of the first two zeros,

say (2, 3.2). Capture this point with the (x,y) key and store in PPAR with PMAX.

Now we can estimate the first two zeros of x(t), i.e., the beginning and end of the top

vertical loop of the hypotrochoid.

We use ROOT to estimate the two zeros more accurately. My answer comes

back as 0.83548. Repeating this process for the zero on the right (remember to

capture your best guess of the zero first) I got 1.5708. Of course, the true answer is

/2. The area is

15708
| xdy = | (6cos t+ 5 cos 3t) (6cos t - 15cos 3t) dt

83548

which can be evaluated as follows: (assuming that the two zeros we found are still

on the stack)

'6*»COS(T) + 5+COS(3*T) '6*+SIN(T) - 5+SIN(3+T)

'T" PURGE 'T" @ x 'T" IGL

The answer returned is -15.831. We're trying to find an area and we've ended up

with a negative number. What's wrong? As noted earlier, C1 has a negative

orientation, so the area is 15.831. The area of the region bounded by the four loops is

63.324.
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Exercises.

2 2
1) Compute the area of the region R bounded by the ellipse ’59- + % =1. Our

standard parameterization of the boundary C of R is given by r(t) =

(3cos t)i + (2sin t)j, 0 <t <2x;.

2) Find the area bounded by one arch of the cycloid generated with a circle

of radius one and the x-axis. The portion of the cycloid of interest, call it

C,, is parameterized by x(t) = (t - sin t)i + (1 - cos t)j, 0 St < 2r. For the

relevant portion of the x-axis C; use R(t) = ti, 0 < t < 2x. The boundary of

the region C with positive orientation then becomes C = C; - C1.

Sometimes one side of the equation in Green's Theorem is easier to evaluate

than the other. This usually comes about because the integral on one side or the

other is easier to set up.

Example 4. Evaluate | l{ y - x dxdy, where R is the region bounded by the curve C

given in polar coordinates by r(6) = 2 - cos?(30). The region looks something like

S
Clearly, the 'snowflake' region R would be difficult to describe in rectangular

 

coordinates. We proceed as follows:
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'X*Y' ENTER 'Q" STO 'P' STO

2 - COS(3+T)A2

ENTER 'COS(T) x 'X' STO

'SIN(T) x 'Y STO

'T" PURGE 0 6.3

P X 'T 9 x

'Q 'Y T 0 X +

'T" IGL

After a wait of some time the answer 0.000 returns.

Exercises.

3) Integrate y - x over the region bounded by the loop of Tschirmhausen's cubic

parameterized by r(t) = (2 - 3)i + (/3 -1)j, -3 <t< 3. (Use the boundary

C; developed in Example 2 above.)

4) Calculate J x dy, where C is the polygonal path from (0, 0) to (1, 0) to

(1, 1) to (0, 1) to (0, 0).
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HP-48G/GX Calculator Enhancement

for

Differential Equations

T. Gilmer Proctor

How can a graphics calculator be used effectively in an elementary differential

equations course ? We will only give a partial answer here: hopefully you can add to

our comments after some experimention with the exercises that are provided in this

chapter. Students learn early in such a course that important mathematical models for

scientific problems often contain differential equations and that particular solutions of

these equations describe the behavior of the model. The problem solver often has some

intuition concerning how the system should behave and the graphical properties of a

single solution or a family of solutions are an important clue to the correctness of the

model and provide qualitative properties of the solution. Even if analytical

expressions can be obtained for the solutions, their graphs may reveal behavior a

scientist may not discover from these expressions.

The HP-48G/GX calculator is a great graphics and computational tool in this

course. It can be can be used in class to illustrate concepts. It can be used for homework in

the study areas that students use: libraries and dormitory rooms. The graphs and

computations that are created on the calculator by the students can be stored or

recreated on a microcomputer. This chapter contains only some of the possible uses of

this tool and illustrates the material which my students have been given in every

differential equations class for the past five years. Some of the material is taken from

[1], but most of the exercises and presentations are new. Our

123
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presentation does not require that the reader be a good HP 48 programmer since

nearly all of the programs are explained within this chapter.

Distinctive features of the HP-48G/GX include built-in programs for calculating

and displaying in the same graph approximate solutions to one or more initial value

problems containing differential equations. To emphasize the statement given above,

the capability to easily display solutions of several problems allows the student to

study how the solutions depend on various parameters and to focus on geometrical

characteristics of a system.

The first section of this chapter describes programs that have been provided for

obtaining approximate solutions of initial value problems. The next section describes

elementary algorithms (the Euler and improved Euler algorithms) for obtaining

approximate solutions and gives elementary calculator programs to compute and plot

these solutions. This material is included so that the user will become accustomed to

programming. We do not give programs using higher order numerical methods for

differential equations such as the Runge-Kutta algorithms. The third section

contains examples and exercises to illustrate graphical study of the characteristics of

solutions obtained in the portion of the course dealing with first order differential

equations.

The fourth section of the chapter concerns the solution of two first order

differential equations with initial conditions. Exercises are provided to aid in the

study of the solutions of the second order differential equations encountered in linear

and nonlinear models of mechanical springs and electrical circuits.

The fifth section contains programs that construct solutions of linear vector

systems of differential equations of the form dy/dt = A y + f(t). Finally the
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appendix contains a set of programs that can be used to sketch the direction field for

a pair of differential equations.

 

 

Y. =38 s
> 72} I % Assorted Direction Fields

83z 40 with Solution Overlays
.5\ N N = 7

+ ’P- x=0

 

Many topics associated with an introductory course in differential equations are

not included. Among these are: discrete dynamical systems, delay differential

equations, parameter estimation using observations of the solution, and control

problems. Problems in these particular areas are presented in [1].

We suggest that the reader create a subdirectory for the programs contained in

the next section and a miscellaneous subdirectory which includes the programs in the

second section.
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1. Introduction to the Plot Feature for Differential Equations

Suppose we wish to plot an approximate solution of an initial value problem

dy _
dt = (t' Y)' Y(to) = yo

for some interval tp <t < tf, where tf may not be predetermined. What inputs to a

calculator are required ?

 

e A program which gives the value of F when t and y are

specified.

e The initial quantities tpg, yo and criteria for completion

(e. g. the final value of tf).

e The plot window must be specified and the plot screen may

have to be erased.

e It may also be necessary to specify an appropriate algorithm

for computing the approximate solution and any necessary

inputs to the algorithm such as a global error tolerance and a

starting value of the step size.

e The command to draw.    
There are two methods on the HP-48G/GX to provide these inputs and obtain

the graph of an approximate solution. The built-in method prompts the user for the

necessary information with input forms and choose boxes. Alternatively, we can

construct a set of programs that take or generate some of the required inputs from the

stack and then call the basic algorithm in a plotting program. This alternative

method is particularly useful when only one or two of the inputs must be modified or
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when the stopping criterion is nonstandard. We will illustrate each of these

methods with exercises. The user must make a decision on the appropriate method

for the other exercises. We begin with the built-in method.

Open the PLOT application with PLOT. The cursor keys can then be used to

move around the screen and highlight the desired fields. Highlight the TYPE

field, press CHOOS, highlight Diff Eq and press OK. If the STIFF field is checked,

highlight it and press CHK to remove the check. This will cause the Runge-Kutta

Feldberg algorithm to be used for the initial value problem.

 

o Highlight the F field, type in the desired function F(T,Y) and

press OK.

o Set the INDEP variable to T and specify its initial and final

values. Set the SOLN field to Y and specify its initial value.

e Press OPTS,set the H-VAR (by pressing CHOOS, highlight

the desired field and OK) and the V-Var variables in a

similar manner, set the limits of H-VIEW and V-VIEW

e  Press ERASE and DRAW.    
Exercise 1.1: Construct a graph of the solutionof y' + 3y =cos t, y(0) = 3 for0 <t <

6.283 using the calculator's differential equation plot feature. Enter COS(T) - 3*Y in

the F field of the input form. (Note that the calculator automatically places this

function within ' marks.) Make sure T is the INDEP variable, the H-VIEW is set to 0

6.283 and the V-VIEW is set to -.5 .5, then ERASE and DRAW.

To get some confidence in the calculator solution, we can plot the exact solution

y = .3 cos(t) + .1 sin(t). Press ON to return to the PLOT application, change the

TYPE to Function, and enter .3*"COS(T) + .1*SIN(T) as EQ. (Again the calculator



128 CHAPTER3

places ' marks around the function.) In this case we want to overlay the new graph

on the old one so do not ERASE. Press DRAW. Note the good agreement between the

approximate solution and the exact solution.

Exercise 1.2: Construct a solution of y ' = sin (ty), y(0) = 2 for 0 < t < 6. Choose the

program 'SIN(T*Y)' (or << 'SIN(T*Y)' EVAL >>) and V-VIEW as 0 8. Now

overlay the solution of the same differential equation which satisfies the initial

condition y(0) = 4, then overlay a third solution of the same differential equation

which satisfies the condition y(0) = 6. (Note: We do not know a formula for the

exact solutions of this differential equation and this overlay process will be used

frequently in this chapter to indicate the sensitivity of a problem to its inputs.)

Exercise 1.3: Construct a graph of the solution of y" + .5y' +y =0, y(0) =0, y'(0) =

1, for 0 < t <6.283. We convert this problem to a first order format using the

variables y and y' as components of a vector w = [y, y'l. Then w ' = [w(2), -(.5 w(2) +

w(1))] and w(0) = [0 1]. Our procedure calls for an appropriate F function which in

this case will be a 2-vector. Then we provide the program << 'W(2)' EVAL

"“5'W(2)+W(1)' EVAL NEG 2 —ARRY >> for F together with the INDEP variable

name W and the INIT vector [0 1] for SOLN. If we want a graph of W(1) versus X

we choose INDEP for the H-VAR and SOLN(1) for the V-VAR on the OPTS page.

V-VIEW should be set at -.8 .8. (If we want a W(1) versus W(2) graph we choose

SOLN(1) for H-VAR and SOLN(2) for V-VAR on the OPTS page.)
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x" + 49x = 12 cos (5¢), x(0) = x'(0) =0

Exercise 1.4: The figure shown above is a graph of the solution of the indicated

problem for 0 < t < x. What function F in the variables T and Y (vector with 2

components) is appropriate for the calculator input form ?

Hewlett Packard has also provided several "smaller" programs that perform

either indivdual or multiple steps in either of two basic algorithms for

approximating the solution to a differential equation. These programs can be

embedded in user programs to produce variations of the basic program described

above. The advantages gained by this process include some speedup when most

parameters are already set and any modifications of the basic problem not treated

easily by the first method. For example, the final time tf may be "when some

condition is satisfied" rather than a simple number which is known beforehand.

The user can construct programs that ask the user for part of the total

information required for a solution plot. For example, the first program IN.FN asks

the user to write a program for the function F(T,Y) (in variables T Y) which is then

stored in FN.



130 CHAPTER3

 

Program Name: IN.FN

Purpose: The user supplies a program which is stored in FN

Stored Quantities: none

No input is required. The appropriate response is a program.

<< "ENTER PRG FOR FNIN T Y " "

INPUT OBJ—> 'FN' STO »>>    
Example repsonses might be << '-T*Y' EVAL »>> ( or the reverse Polish notation

program << T Y *NEG »>>) for the function F(T,Y) = - T*Y or

<< 'Y(2)' EVAL 'Y(1)' EVAL NEG 2 —ARRY »>>

for the function F(T,Y) = column [Y(2), -Y(1)].

The next program asks the user to set the viewing window for the plot.

 

Program Name: INPP  (plot parameters)

Purpose: The user supplies XRNG and YRNG

Stored Quantities: none

No input stack is required. The appropriate response for the first

query is a pair of numbers, H-min and H-max. The response for the

second query is a pair of numbers V-min and V-max.

Output: New values for XRNG, YRNG. PICT has been erased.

<< " KEY IN XBRNG" " " INPUT OBJ—> XRBNG

" KEY IN YRNG" " " INPUT OBJ— YRNG ERASE >>    
Note: The reader has probably correctly inferred that the commands XRNG and

YRNG set the H-VIEW and V-VIEW variable ranges.
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We wish to present a program to give a composite graph in the (T, Y) plane for a

differential equation with one or more initial conditions such as indicated in the

figure shown below.

 
Solutions of Y' = SIN(T"2-Y *2)
withY(-2) = -3a0d Y(-2) =-1.5

The following program contains the basic ingredients of a user plotting program. The

number 1 in the name indicates that the program is for a scaler differential equation.

The TY desination indicates that the plot is a (T, Y) plot.
 

Program Name: G1.TY

Purpose: Generate a T Y graph of the solution to Tg¢

Stored Quantities: XRNG YRNG FN TOL HS

Input level 3 level 2 level 1

To Yo Ty

The output stack is empty, the variables T Y contain updated values.

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO'T STO

- TF << {TYFN} TOL HS T Y R-C 4 ROLLD DO

RKFSTEP T Y R—-C DUP 6 ROLLD 5§ ROLL LINE DUP T +

TF UNTIL > END TF T - RKFSTEP T Y R—C DUP 6 ROLLD

5 ROLL LINEDROP TF T - RKFSTEP T Y R—-C 5 ROLL

LINE 3 DROPN >> PICTURE >>    
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Notes: Typical numbers for HS and TOL are .005 and .00005 and are to be stored

before execution of this program. If the user wants other names for the variables

other than T Y FN, such changes can be made by substituting for { T Y FN)}, T,

and Y, the desired alternate notation. The command RKFSTEP invokes the built-in

Runge-Kutta-Feldberg program for one step.

Exercise 1.1a: Construct a graph of the solutionof y' + 3y =cost, y(0) = 3 for0 <t

< 6.283 using the programs described above. Execute IN.FN, respond by typing

<< 'COS(T*Y) - 3'Y' EVAL >> and press ENTER. Execute IN.PP, respond by

typing 0 6.283 and ENTER, respond by typing -5 .5 and press ENTER. Put0 .3

6.283 on the stack and execute G1.TY. As in exercise 1, plot the exact solution y =

3 cos(t) + .1 sin(t). Press EPLOT, change the TYPE to Function, and enter

3*COS(T) + .1*SIN(T) as EQ. In this case we want to overlay the new graph on the

old one so do not ERASE. Now press DRAW. Note the good agreement between the

approximate solution and the exact solution.

Exercise 1.2a: Construct and graph solutions of y ' = sin (t!-2yR), y(0) = 2 for 0 s t <

8 when R has the values .75, .5 and .33, in the same picture as follows: Execute

IN.FN, respond by typing << 'SIN(TA1.5*YAR)' EVAL >> and press ENTER.

Execute IN.PP, respond by typing 0 8 and ENTER,respond by typing 0 4 and press

ENTER. Put .75 on the stack and press 'R' STO, then put 0 2 8 on the stack and

execute G1.TY. Now put .5 on the stack, press ‘R' STO then put 0 2 8 on the stack

and execute G1.TY. Finally put .33 on the stack, press 'R' STO, put0 2 8 on the

stack and execute G1.TY. Notes: Here we are observing the solution for three values

of a parameter. The process of storing a value for R and placing appropriate input on

the stack for the graph program can be abbreviated in various ways. For example,
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store the program << 'R' STO 0 2 8 >> under a name, say P.1. Then put one of

the values of R on the stack, execute P.1, then execute G1.TY, etc.

Suppose that the user wants to plot (T, Y(1)) for a vector system, say with

vectors Y and FN. We will call the program G.01 where the 0 represents the T

variable and the 1 represents the Y(1) variable. The modification consists of changes

made to G1.TY in four locations in which the Y number in G1.TY is changed to

'Y(1)' EVAL . The user can avoid retyping the whole program by pressing ‘G1.TY'

RCL, EDIT, typing the corrections, pressing ENTER, then 'G.01' STO.

 

Program Name: G.01

Purpose: Generate a T Y(1) graph of the solution

to Ts

Stored Quantities: XRNG YRNG FN TOL HS

Input level 3 level 2 level 1

To vector Yo Ty

The outputstack is empty, the variables T and Y contain updated values.

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T

STO - TF << {T Y FN } TOL HS T 'Y(1) EVAL R-C 4

ROLLD DO RKFSTEP T 'Y(1)) EVAL R—»C DUP 6 ROLLD §

ROLL LINE DUP T + TF UNTIL > END DROP TF T -

RKFSTEP T 'Y(1)' EVAL R—»C DUP 6 ROLLD 5 ROLL LINE

DROP TF T - RKFSTEP T 'Y(1)) EVAL R-C 5 ROLL

LINE 3 DROPN >> PICTURE >>    
Exercise 1.3a: Construct a composite graph of the solutions of x" + R x' + x = 0, x(0)

=0, x'(0) = 1, for 0 < t £6.283 when R = .5, when R= 2 and when R = 2.5. We convert

this problem to a first order format using the variables y and y' as components of a
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vector y = [x, xX']. Theny ' = [y(2), (R y(2) + y(1))] and y(0) = [0 1]. Our procedure

calls for an appropriate F function which in this case will be a 2-vector. Then we

provide the program << 'Y(2)' EVAL 'R*'Y(2)+Y(1)' EVAL NEG 2 —ARRY »>> as

a response to the query in the IN.FN program and the responses to set 0 6.283 for

XRNG and -8 .8 for YRNG in IN.PP. We store the value .5 in the variable R and

place the objects 0, [0 1], and 6.283 on the stack and execute G.01. We change R to

each of the numbers 2 and 2.5 and place input quantities 0, [1 0], 6.283 on the stack

and execute G.01 twice more to overlay graphs of the other two solutions.

A similar change to G.01 gives the plot program G.12 in which the component

Y(1) of the solution is plotted against the component Y(2). The change is made in

four places and commands T °'Y(1)' EVAL are changed to 'Y(1)' EVAL 'Y(2)

EVAL.
 

Program Name: G.12

Purpose: Generate a (Y(1), Y(2)) graph of the solution

from T, to T¢

Stored Quantities: XRNG YRNG FN TOL HS

Input: level 3 level 2 level 1

Ty vector Yo Ty

The outputstack is empty, the variables T and Y contain updated values.

<< { #0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T

STO - TF << {T Y FN } TOL HS 'Y(1)' EVAL 'Y(2)

EVAL R—>C 4 ROLLD DO RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL

R—C DUP 6 ROLLD 5 ROLL LINE DUP T + TF UNTILL >

END TF T - RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL R-C DUP

6 ROLLD 5 ROLL LINEDROP TF T - RKFSTEP 'Y(1)' EVAL

'Y(2)' EVAL R-5C 5 ROLL LINE 3 DROPN >> PICTURE »>>    
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For consistency, from this point we will use notation as follows: for first order

differential equations, Y will be the dependent variable and T will be the

independent variable. For higher order differential equations, x will be the

dependent variable, t will be the independent variable and we will reserve Y as a

vector with components which may be constructed from the x, x/, etc. variables.

Exercise 1.5: Construct an x vs x' graph of the solution of x" + .5 x' + x = 0, x(0) = 0,

x'(0) = 1, for 0 < t <6.283. As before, for vector y = [x, x'] we have

y ' =[y(2), -(5 y(2) + y(1)], y(0) = [0 1].

An appropriate F function is given by the program << 'Y(2)' EVAL °'.5*Y(2)+Y(1)’

EVAL NEG 2 -5ARRY >> with the INDEP variable name Y and the INIT vector [0

1] for SOLN. We choose SOLN(1) for H-VAR and SOLN(2) for V-VAR on the OPTS

page. HVIEW should be set at -1 1 and V-VIEW should be set at -.8 .8. ERASE and

DRAW. This approximate solution of the differential equation can be compared to

the exact solution by overlaying the parametric curve

e~25t 1,0328 (sin(.9862t)+i*(.9862 cos(.9862t) - .25sin(.98621))).

on the same picture. (Use Parametric type in the PLOT environment.) The user

should notice that the graph of the approximate solution consists of a set of points

{(y1(t)) , y2t)) ): 1=1,2, ..}

connected with straight lines. The parametric plot also has this form; however, the

points are spaced much closer.

We recommend that the user create a subdirectory for the programs in this

section. A possible subdirectory name is DE.1. This subdirectory should contain the

programs G.12, G.01, G.TY, IN.FN, IN.PP, T, Y, FN, TOL, HS, EQ, and PPAR in

this order. The subdirectory can be created by placing the name 'DE.1' on the stack,

then pressing MEMORY, pressing DIR, then CRDIR. To obtain the desired
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order, press { and enter the program names in order, press ENTER, then ORDER

(located in the same MEMORY DIR menu).

2. Elementary User Programs

We present several user programs that are useful in a differential equations

course. The students should have some experience with algorithms used to calculate

approximate solutions to initial value problems containing differential equations and

with programs to implement these algorithms. The simplicity of the programs

presented here should help the reader whenever more complicated programs are

required for other purposes.

The Euler algorithm for the solution of an initial value problem results from

assuming the slope of the solution of a differential equation dy/dt = F(t,y) is well

approximated by the constant F(t,, y,) in the interval t, <t < t, + h and the

algorithm is given by t,,, = t, + h, y,,; =y, + hF(t,, y,) . (Here y, is the

approximation of y(t,) and it is assumed that initial values t, and y, and the step

size h are given so the algorithm may be initiated.) Our program is called EULER

and takes t, y from the stack and returns the results of a single step using Euler's

algorithm. It will use the step size H, which is stored, and a stored program F.N

that takes t,y from the stack and returns F(t,y).
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Program Name: EULER

Purpose: Generate new values of x and y resulting from

one step in the Euler algorithm.

Stored Quantities: H F.N

Input Output

level 2 level 1 level 2 level 1

tn Yn trH-1 Yn+1

<< DUP2 FN H* + SWAPH + SWAP >>    
Notice that the structure of F.N is different from the FN program given in the first

section of this chapter. F.N requires input from the stack, whereas the programs for

FN in section 1 require stored values for t and y.

The reader should test this program using the F.N program << — T Y 'Y’ >> for

the step size .1 stored in H and initial conditions y(0) = 1. (Put0 1 on the stack and

execute EULER EULER EULER, etc.) Note: Here we are solving y' =y, y(0) = 1,

using steps H = .1 and obtain the following results:

t y t y t y

1 1.1 4 1.46 7 1.95

2 1.21 S 1.61 8 2.14

3 1.33 .6 1.77 9 2.36

and y at t = 1.0 is 2.59, a crude approximation of 2.718....

Exercise 2.1: To obtain approximate values of the solution of y' = sin(ty), y(0) = 3,

enter the program F.N givenby << = T Y 'SIN(T*'Y)" >>, put initial values 0 3

on the stack and execute EULER, EULER, etc. You should get .1 3, then .2 3.03, then

3 3.09, etc. (Make sure the calculator is in RAD mode.)
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Suppose we want to execute EULER, say, N times and observe the output only at

t=t, + NH. The following program, called RPT (for repeat), requires that N be

stored, requires initial values of t and y as input, and outputs the final values of t

andy: <<1 N START EULER NEXT >>.

The Improved Euler algorithm is another method for approximating the

solution of an initial value problem. The method results from assuming the slope of

the solution is well approximated by the average of f(t,, y,) and a guess at

f(te,1s Yk,¢) in the interval t, <t <t, + h. The algorithm is given by

ter = b+ N,y=y + DI, y) + £, y+hi(t, y,0)1/2.

(Again y, is the approximation of y(t,) and t,, y, and h are given so the algorithm

may be initiated.) This program is named IULER and takes t y from the stack and

gives (t+h) (y+h*[f(t,y)+f(t+h,y+h*f(t,y)]/2). Note EULER is part of this program.

 

Program Name: IULER

Purpose: Generate new values of x and y resulting from

one step in Improved Euler algorithm.

Stored Quantities: H F.N EULER

Input Output

level 2 level 1 level 2 level 1

t, Yn the Yn+1

Instruction Resulting stack

<<DUP2 DUP2 EULER t y ty tth y+hf(ty)

F.N 3 ROLLD t y f(t+h, y+hf(ty)) t y

FN + 2/ t y (f(t+h, y+hf(t,y))+f(ty)) /2

H*+ SWAP H + SWAP [y+h*{ f(t+h,y+h*f(t,y)+f(t,;y)}/2] t+h  >
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Just as in the EULER program we require that the program F.N and the step size

H be stored before execution. A multiple step program can be obtained by substituting

IULER for EULER in the program RPT given just after exercise 2.1.

Try IULER using the F.N program <<= T Y 'Y’ »>, H =.1 and initial data

0 1. Execute 9 times. You should get 1 2.7140808-— . (Euler gives about 2.593742--,

not nearly so good an approximation of e = 2.71828—.) In general, the improved Euler

method can be shown to be a better approximation when h is small.

How is an appropriate value of h chosen? If it is decided to use a constant step

size throughout the interval of interest [t,, x;], one common way to select h is to try a

nominal size of h, say (t; - t;)/50, and calculate the solution approximate y; at t;.

Then reduce h by half and recalculate the approximate at t;.. If the values agree to

your satisfaction (for example, to three decimal places), use the last set of values

obtained; if not, reduce h by half and try again.

This is a good time to check on the accuracy of the built-in differential equation

algorithm used by the calculator. Press SOLVE, use the m arrow key to

select Solve Diff eq..., press OK, enter the F function Y, set the range of the

independant variable to 0 1 and set the initial value of the solution to 1. Move the

cursor to FINAL and press SOLVE. Press the ON key and you should see the value

2.718... on the stack. Put 1 on the stack, press the eX key and subtract to see the

apparent error -.000019... This error was achieved with the default tolerance .0001.

The performance of the differential equation algorithm depends on the problem and

is not always this good.

A comment on the built-in algorithm for solving differential equations is in order

at this point. There is a default program based on the well known Runge-Kutta
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Feldberg algorithm which automatically selects step size to keep the perceived error

below the specified tolerance. There is also a second built-in calculator program for

solving stiff differential equations that we will discuss briefly later.

Exercise 2.2: Try EULER on the problem y' = (y2 + y)/t, y(1) = 1 with h = .2,

Execute 5 times, then reduce h to .1 and execute 10 times. Next execute from the

initial value 20 times with H = .05. What is being indicated ? Hint: this problem

can be solved exactly and has an asymptote at t = 2. Here F.N could be given by

<< T Y '(YrA2:Y)T' >

Exercise 2.3: Try the calculator's Solve diff eq... algorithm for the F function and

initial condition given in exercise 2.2 for the value of the solution at t = 2. Change

the tolerance TOL to .1 and try to SOLVE for FINAL. The calculator will take over

10 seconds and returns a value of 1743.5... If you change the value of TOL to .05 and

resolve for FINAL, the calculator will take over 20 seconds and returns a value of

2187.8... The long execution time tells us that the calculator is struggling to achieve

good results and in this case can not achieve accuracy for good reason.

Programs to obtain graphical output are easy on the HP-48. The following

program, which we will call GRAF, requires t,y, from the stack and uses IULER (or

EULER) to advance N steps of size H. (N is also stored.) The user should pre-enter

the numbers tmin tmax as XRNG and numbers Ymin Ymax as YRNG for the graph.
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Program Name: GRAF

Purpose: Graph N values of (x,y) obtained using

Euler algorithm

Stored quantities: N, H, F.N, IULER XRNG YRNG

Input Output

level 2 level 1 level 2 level 1

to Yo tN YN

and graph with cursor

<<{# 0d # 0d } PVIEW DRAX 1 N START IULER DUP2 R—C

PIXON NEXT PICTURE >>    
GRAF contains a loop in which N new points (t,y) are calculated and plotted.

You may want to ERASE the graphics screen before executing the program. The

program EULER may be inserted in place of IULER so that GRAF uses whichever

algorithm is desired. Notice also that the last values of t and y remain on the stack

after GRAFis executed. To restore the stack screen, press ON.

As a footnote to this section, the following program can be used to remind the

user for the ingredients required for GRAF. As written, the user must enter an

expression for f(T, Y) (e. g. 'SIN(T*Y)') which will be stored by the program as

<< = T Y 'SIN(T'Y)" >> in the variable F.N. The program will also prompt for

initial conditions, step size, number of steps, etc.
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Program Name: INITH

Initialization Program to set required ingredients for GRAF

<< "ENTER F.NIN T,Y" " " INPUT OBJ— °‘FN(T,Y) SWAP =

DEFINE "KEY IN # OF STEPS" " " INPUT OBJ- ‘N’ STO

"KEY IN STEP SIZE" " " INPUT OBJ—» 'H' STO "KEY IN

XBNG" " " INPUT OBJ—» XRBNG "KEY IN YRNG" ""

INPUT OBJ— YRNG "KEYININITIALT" "" INPUT OBJ-

"KEY IN INITIAL Y """ INPUT OBJ— ERASE >>    
As we indicated in section 1, it is often desirable to plot solutions of several

initial value problems on the same graph. Of course, graphs can be combined simply

by not erasing the previous result.

Exercise 2.4: Consider the following differential equation together with several

initial conditions and plot the solutions on the same graph.

dy/dt = y(1-y), y(0) = .2, 4, 6,15

where the solutions are plotted for 0 <t < 5 and step size h = .05 is used. Try

FN: << X Y 'Y¥1-Y) >>.

Put 0 and .2 on the stack, then execute GRAF. (Remember H = .05 and N = 100 are

stored before execution.) Place another initial condition on the stack and add the

second solution graph. Notice the solution y = 1 is an attracting solution,i. e., nearby

solutions collapse to y = 1 as time increases.



DIFFERENTIAL EQUATIONS 143

 

  
23 3

Five solutions of dy/dt =y (1-y)

3. First Order Differential Equations

Now that we have introduced the reader to the differential equation features on

the HP-48G series calculators and to the construction of some simple programs,it is

time to suggest exercises and activities that use graphical and numerical

computations to enhance the study of differential equations.

We will often be interested in constructing graphs of several solutions of an

initial value problem. The figure constructed above for the differential equation

y ' = y(1-y) is an example. It is often the case that there are solutions y(t) that

remain constant as time increases. Such solutions are called equilibrium solutions. In

the case just mentioned, the constant solutions are y(t) = 0 and y(t) = 1. Clearly the

solutions y(t) = ye of dy/dt = F(t,y), which are constant, satisfy F(t, ye) = 0. In fact,

any solution of this equation is an equilibrium solution. If we wish to understand

how solutions of a differential equation change as the initial condition y(0) is

varied, one of the first tasks is to find the equilibrium solutions. Moreover, if the

function F(t, y) is continuous and has continuous derivatives then solutions y1(t) and
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y2(t) which satisfy different initial conditions do not intersect; consequently, constant

solutions restrict where nearby solutions can proceed.

Exercise 3.1: Graph the solutions ofthe three initial value problems dy/dt = y2 (1 -

y2), that satisfy either y(0) = -1, y(0) = 0, and y(0) = 1 for 0 < t < 5 all in the same

picture. Then add the graphs of the solutions of the same differential equation that

satisfy y(0) = -.25 and y(0) = .25.

Exercise 3.2: Graph the solutions of the two initial value problems dy/dt = y(1-y),

y(0) = .25 and dy/dt = y2 (1 - y2), y(0) = .25 (graphic screen parameters 0 < "t" < 5

and 0 < y < 1.2) on the same plot. In this case, we notice that the solutions are

similar. In which case is a change of concavity apparent ?

 

 

’ y ;/

a—/’
3-//""t

-7

dyldt= 2 sin (t-y) dy/dt= cos (5ty)

The solutions of the two differential equations pictured above show interesting

structure. The straight lines y = t + a are solutions of dy/dt = 2 sin(t - y) for a =

3.665, a = -.524, a = - 2.618, or a = -6.81. (Make the transformation t - y = w to see

why.) Solutions starting near t = 0, y = - .524 collapse to the straight line solution y

= t - .524, while solutions starting near t = 0, y = - 2.618 are repelled away for the

straight line solution y = t - 2.618, etc. And even though the functions

y = 2n+D)n/t (n=0,%1,12,...) are not solutions of dy/dx = cos (.5ty), when t is

large such a function y has small derivative and we can see these approximate

solutions emerge for large t.
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Exercise 3.3: Plot the solutions starting from y(0) = -7.85, y(0) = -1.57, y(0) = 4.71,

y(0) = -19, y(0) = -2.5, y(0) = 2.5 and y(0) = 4.3 that satisfy the differential

equation dy/dt = sin (t-y) for 0 < t <8. Use vertical dimension to show - 8 <y < 8.

Hint: the transformation w = t - y gives a differential equation with equilibrium

solutions we = /2, 5n/2, -31/2, etc.

Exercise 3.4: Plot the graph of the differential equation dy/dt = sin (ty) with

initial condition y(0) = 3 with plot parameters to show 0 <t <6, 0 <y <5. Select a

new starting point y(0) and add the new trajectory. (If we choose y(0) = 1.5, get the

new combination graph, then choose y(0) = 1 and get another combination graph, we

see the bottom two trajectories approach each other.)

The graphical study of solutions of dy/dt = sin(ty) led to an journal article that

gives mathematical proofs for some of the interesting behavior observed in the

graphs. See Mills, B. Weisfeiler and A. Krall, "Discovering Theorems with a

Computer"”, The American Mathematical Monthly, volume 86 (1979), pages 733-739.

Exercise 3.5: Graph the solutions of the two initial value problems dy/dt = y(1-y),

y(0) = .25 and dy/dt = -y Iny, y(0) = .25 (graphic screen parameters 0 < "t" <5 and

0 <y < 1.2) on the same plot. Notice that the solutions are similar.

Exercises 2.4, 3.1 and 3.5 give initial value problems that model population

growth in a food limited environment. Which model is appropriate? Some input

from biologists or some observation data could be used to answer this question.

Suppose that from experimental data, we can determine the limiting value of the

population and that we can also estimate at what fraction of the limiting value of y

an inflection point occurs. In exercise 3.5, the inflection points occur at 36.8% (for the
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logarithm model) and 50% (for the quadratic model) of the limiting value of vy,

which in both cases is y = 1. We will further explore this question below.

Suppose we are given the assignment of explaining how the population of a

species evolves in time and we note that the environment will only support a finite

number of the population. Two much studied models ofthis type are:

e The logistic model:
d 2 apoP
qt-ap-bp, PO =p,: p=—x
dt 0 bp0+(a-bp0)e at

e The Gompertz model:

dp A/B Py exp(-Bt)
GT:p(A-Blnp), PO =p,: p=e [ A/B]

e

 

The parameters have different meanings: equating the carrying capacity of the

model (i. e., the value of the population that is reached in infinite time) gives eA/B

in the Gompertz model and a/b in the logistic model. Which of these models is

better ? Or should we look for another model ?

These are not easy questions in general. Probably the first step is to pick a

model, use data to determine what the model parameters should be (e. g. the

constants a, b or A, B) and graph the solution. Then change the model, use data to

determine that model's parameters and graph the solution again, etc. See [1] for HP-

485/SX calculator programs that can be used to determine parameter values to data

points containing more than three points by the least squares method.

Exercise 3.6. Suppose pp is known and two other population data points, say (t;, pj)

and (tx px). How can the constants a and b in the logistic model be determined from
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this information? From the formula for p, we solve for bpp, then evaluate the

expression at the point tj and tx and set them equal to get

-at P - at -at P - at
(1-e k)(Fo-e h=(@1-e i)(-p—o--e k)

i k

This expression in the unknown a can be solved by graphing both sides and using the

ISECT key. Find the value of a when pg = 1, (t;,pi) = (1, 1.46) and (tk, px) = (2, 1.5),

then find b from the expression for bpg.

Exercise 3.7. Suppose again that pg , (tj, pi) and (tx pk). are known. Determine the

constants A and B in the Gompertz model. (Hint: put s = A/B and solve for eBt in

the expression for the solution, then for B. Then evaluate the expression at each

time and set them equal.) Find the value of A and B for pp =1, (t;,pi) = (1, 1.46) and

(tk, px) = 2, 1.5).

How might other models be constructed ? Here is a suggestion if data {(t1, p1),

(t2, p2), . .. (tn, pn) } is given and a graph of the data indicates the location of an

inflection point and the carrying capacity K. Population models may have the form

dp/dt = f(p) with f(0) = 0, f(K) = 0 for K > 0, and f(p) > 0 for 0 < p < K. Notice that

inflection points come at those points p with f '(p)f(p) = 0. Since f(p) > 0, we get

inflection points when f '(p) = 0. In the logistic model this occurs when p = .5 a/b

and in the Gompertz model whenlnp= A/B 1.

To get a model, say with inflection at p = .6 K, we could try p' = f(p) = (.6K)2 -

(p - .6K)2 for 0 < p < .6K, and p' = f(p) = 2.25 ( (4K)2 - (p - .6K)?) for .6K < p < K.

Exercise 3.8. Use your calculator to obtain a graph of the solution of this model for

K=1,p0) =.2 H-VIEW=2 5 V-VIEW = -1 1.1. We will suggest a method to

enter an appropriate F function using the HP input form format. Press PLOT,
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CHOOS, Diff Eq, press OK, then position the highligted field to F. Press NXT,

press CALC, and place the following on the stack: ‘IFTE(Y<.6, .36 - (Y-.6)A2,

2.25*(.16-(Y-.6)72)))’ Note: The command IFTE can be located by pressing PRG

BRCH NXT. The < command is located by pressing PRG TEST. When this step is

complete, press the ON (CONT) key, then you should see the desired stack entry and

the ON key. Press ON. The student should complete the exercise from this point. If

you wish to invoke the user program, an appropriate FN program might be <<

'IFTE(Y<.6, .36 - (Y-.6)72, 2.25*(.16-(Y-.6)A2)))' EVAL »>>.

Exercise 3.9. Suppose we have the following (time, population) data point

measurements { (0, .2), (.5, .37), (1, .61), (1.5, .88), (2, .98), (2.5, 1), (3, 1)} . Use your

calculator to plot the data and estimate the location of the inflection point. Then

construct a model that will give an inflection point at this value and overlay the

solution of the model with the data for comparison. Hint: to plot data first, store

the data list in a variable in D.LST, set the XRNG and YRNG parameters, ERASE,

and then EVAL the program

<< D.LST OBJ— 1 SWAP START PIXON NEXT DRAX PICTURE >>.

quadratic

     
Model Functions £(y) Resulting Solutions

Logistic, Gompertz and CustomModels (exexcise 3.8)
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Exercise 3.10: Set plot parameters to show -5 <t £ 12,56, -5 < y < 3. Graph the

solutions of y' = .Sy(exp(sin t) - y) with y(0) = 1, and y(0) = 3. What initial

condition gives periodicity ? (This differential equation is a potential model for an

environment where the birth rate is periodic in time.)

Exercise 3.11: Mathematical models for the velocity of a particle falling from rest

under gravity with air resistance have the form

¥_g- 1), VO =0,

where the force exerted on the particle by the resistive medium, f(v), is determined

by experimental means. We will assume that f is an increasing function with f(0) =

0. The velocity will increase toward a terminal value which is given by f- 1(g). For

simplicity we take physical units so that g = 2. We want to compare the

trajectories from different models in which the f(v) functions are given by:

@) f(v) = v ®) f(v) =.5v2 (c) f(v)=IFTE(v<1, (159 v, (25 v - 1):9)

(d) f(v) =IFTE(v<1,.75v13,125v-5 (o) f(v) =21T v,

Notice that these models have been chosen so that all have terminal velocity 2.

Use the calculator's function DRAW program to plot each f(v) function for 0 € v < 2.

Use H-VIEW =-1 2 and V-VIEW = -1 2.1. Accumulate these graphs on the same

picture and label the graphs. Then use a differential equation plotting program to

graph the solution of the initial value problem given above for each f(v) function for

0 £t <5. Accumulate them in the same picture for comparison. Again label the

solutions. Use the V-VIEW as above and H-VIEW -2 5.

A particle falls or is projected from a great height and observations are made on

v for, say, n values of time. Two well-known models for such a problem are:
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e linear air resistance model: dv/dt = g - kv, v(0) = vg . The solution is

v(t) = vp ekt + v, (1-eK), v, =g/k.

e quadratic air resistance model: dv/dt=g - kv, v(0) = vg. The solution is

ot . 0o+ V
v(t)=v.,‘,M£—1 M=~ 0,v,,=‘\’§-,0=2\1gk.

MeSt+1 Veo = V0
 

Suppose that veo can be accurately determined from data, say {(t1, v1), (t2,

v2),...(t2, v2)}. In the case of the linear model k = g/ve and we note that the

graph of
z(t) =1In (Voo - V(1)) = In (veo - vQ) - kt

is a straight line with slope -g/ve . Furthermore in the case of the quadratic model,

k = g/(Ve)?> and the graph of

Z(t) = In (Voo - V(1)) = In (2Veo/M) - (2g/Voo It

is a straight line with slope -2g/ve . This is twice the slope of the linear model.

Suppose that (time, velocity) data is available. What model is

appropriate? Maybe if we plot tj vs In(ve - vj) a straight line will appear for

large t and we can choose a model with the appropriate slope.

Exercise 3.12. The data to be used for model selection is:

{©, 0, , 1.44), (2,1.87), (3, 1.97), (4, 1.99), (5, 2) }.

Consider models of the form dv/dt = 2 - a vF, v(0) = 0, where r is a positive number

and a is chosen so that veo = 2. (In our units g = 2.) Plot the points (tj, In(2 - vj)).

Determine the slope of a line which "fits" the plot for the latter data points and

choose an appropriate value of r. Then plot the data points (no logarithms) and use

a differential equation calculator graphing program to draw the trajectory of the
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model you have chosen as an overlay of the data point graph. Conclusions ? (It is

instructive to experiment with models of the form dv/dt = g - a vf and G.TY can be

modified to plot the log (V.. - v(t)) by inserting the commands V.. - ABS LN after

the Y instructions.)

Suppose a tank contains V volume units of a mixture of water and a chemical

substance receives f(t) units (weight) of the chemical in solution per minute. The

chemical is vigorously mixed in the tank and the mixture drains from the tank in

such a way that constant volume in the tank is maintained. If y(t) is the weight of

chemical in the tank at time t, a balance equation gives dy/dt as the rate that the

chemical enters the tank - rate that the chemical exits from the tank. This

application gives one example of an important problem, namely, to determine a

particular solution of

dy
-CE + ry = f(t).

Here we assume r is a positive constant. Commonly, the function f(t) is called input

to the problem and the solution y(t) is called the output. Other examples of this

problem occurin electrical flow problems. The initial value problem solution is

-r (t-s)
t

yO =y® e '+ ]e f(s) ds.
0

If the function f(t) is periodic with period P, then we can choose y(0) so that the

output is periodic. This is done by choosing y(0) so that y(0) = y(P), which gives

P

y@ =—1= ] "9 gs) ds.
1-e 0

The input function f is transformed to the output function y = Tf. Notice T(af + bg) =
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aTf + bTg when a and b are constants and f, g are input functions. This superposition

property of the "operation” T shows the transformation T to be a linear operator.

Here we are interested in comparing the graphs of the input functions f to the

graphs of output functions y = Tf. An important example, f(t) = sin at, gives

y(t) = sin (at-0)/R? with R? = (a2+12) and cos 0 = r/R, sin 6 = a/R.

There is an obvious similarity between the graphs of the input and output

functions. If a signal f(t) = sin t is input into a device and produces output as

described above and it is desired to produce a "delayed" version of the signal, say

sin (t-n/4), after the second term dies out, what value of r will give this delayed

signal? What distortion of the signal sin 3t will be produced by this same device?

If the input signals are not sine or cosine in form, it may be difficult or impossible

to find an analytical form of the output; however, a graph of the output may be

found by using our differential equation graphing programs after using the calculator

to evaluate the integral in y(0).

Exercise 3.13: Letr =1, and set the plot parameters so 0 St <3.14,0 <y <12. Use

the calculator to draw the following input functions with the Function DRAW

program and the resulting output functions with a differential equation plotting

program.

(a) f(t) =1 - sin? (3t), (b) f(t) = 1 - sin10 (3t),

(c) f(t) = Max (sin 6t, 0).

If f(t) is stored in EQ and P = 1.047 = /3.) The following program can be used to

calculate y(0):
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<< 3 FIX 'T" PURGE 0 1.047 EQ 'EXP(T) * 'T' 3 NEG

SFJ] 3 NEG CF 1 1.047 EXP SWAP - / STD »>

The input signals in (a) and (b) are periodic, spike-like disturbances of a constant

input and the input in (c) is a half-wave rectified sine function.

An observant student may notice that if we start with incorrect initial conditions

then the solution approaches the periodic output after some time. This leads one to

suspect that the starting condition y(0) = 0 is being forgotten and the resulting motion

will become periodic. This is a result of the theorem that any solution of the non-

homogeneous problem is the sum of a particular solution and a solution of the

homogeneous problem.

The function f(t) = 2*CEIL(SIN(t*x)) - 1 has values given by: for0 <t <1,

ft) =2-1=1,forl<t<2,f(t)=-1,for 2<t<3,f(t)=2-1=1,etc. This is called

a square wave. The calculator numerical integration "key" and graphing program can

handle such a function even though it is not defined at t = 1, t = 2, etc. The periodic

input function and its periodic output are shown for 0 < t < 4.

Input
l

et
Output

 
 

 

     
dY/dt + Y= f(t)
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The student can also construct the input function shown above as IFTE(T MOD 2 <

1,1, -1). In the same way, the switch function ua(t) = 0 when t < a and 1 otherwise

can be given by an IFTE function or by u,(t) = .5[1 + (t-a)/ It-al] = 0 when t < a and

ua(t) = 1 when t > a. This could be called a switch-on function. Other interesting

functions can be obtained using the MOD function on the calculator. For example, f(x)

= '2*X MOD 1’ will produce repeated ramps of height 2. Finally, functions defined

by different formulae in different intervals can be produced by the IFTE command:

for example, f(x) = 2x for 0 < x < .5, f(x) = 1 - sin (x-.5) for 5 < x < .5 + 1.571, x2 for x

>.5 + 1.571 is produced by 'IFTE(X < .5, 2*X, IFTE(X <.5+1.571, SIN(X-.5), X"2))".

4. Initial Value Problems: Two Differential Equations

As the reader may have guessed from section 1 of this chapter, it is easy to

program the calculator to treat a vector differential equation. In this section we

consider the case where the vectors have two components, y = [ y1, y2]; that is,

initial value problems consisting of two first order differential equations and the

initial values of the two dependent variables:

dyl dy2

It =F1(t, Yy )'2), i =F2(L Yo )'2)

where Yy (to) and yz(to) are given.
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(The student should note that a second order initial value problem

2
d x dx . dx .
;1?— = g(t, x, -d_t-)’ with x(t,), a—t'(to) given

can be reduced to a first order system of differential equations

dy, dy,
Yo i =g(t,y1 ,y2)

and initial values of y1 and y2 by using the identification y1 =x,y2 = x '.) We will

graph trajectories and study the solution characteristics of such systems. Of course,

in this case we can graph y;1 versus t, y2 versus t or graph y1 versus y2 as the

parameter t varies.

As in the case of a single differential equation, the reader may decide to use the

built-in plotting form, the user programs as created in section 1 of this chapter, or to

incorporate the Euler or modified Euler algorithms in graphing programs. The

EULER and IULER programs also work for the vector case when the F.N program has

the proper form and when the initial y input is a vector. Consider

dy, dy,
-—d—t- =y2, W =COSt'yl, )’1(0)=Y2(0)=0’

over the interval 0 <t < 2n. An appropriate F.N program is

<< DUP -5 Y 'Y(2)) > T Y 'COS(T)-Y(1)) 2 -ARRY »>> .

(The first stack item, namely Y, is duplicated and is used as local variable to create

the first component of the output and the input pair T Y is used as local variables

to create the second component of the output.) After a value for H is stored, the stack
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input 0 [0 O] to either of the programs EULER or IULER will produce the values at

T = H. We can modify the GRAF program to the following form:

 

Program Name: GR.01

Purpose: Graph N values of (T,Y(1)) resulting from the

improved Euler algorithm which creates a

sequence of N values of t, y1 and y2.

Stored Quantities: N H F.N EULER IULER XRNG YRNG

Input Output

level 2 level 1 level 2 level 1

to [ylo y20 ] tn [yln y2n ] & graph

<<{ # 0d # 0d } PVIEW DRAX 1 N START IULER DUP2

OBJ—» DROP2 R-C PIXON NEXT PICTURE >>    
Consider the problem of graphing the vector solution of dy;/dt = yj,

dyz2/dt=-y1,y1(0) = 1, y2(0) = 0 on the interval 0 < t <2x. We execute the program

IN.FN and respond with

<< 'Y(2)' EVAL 'Y(1)' EVAL NEG 2 —5ARRY >>

which will be stored in FN. We execute IN.PP, respond to set H-VIEW with -1.2

1.2, and respond with set V-View to -1.2 1.2. Then we enter 0 [1 0] 6.283 on the

stack and execute G.12. The solution is y1(t) = cos t, y2(t) = - sin t and the y; versus

y2 graph should be a "circle". The actual figure is a set of points connected by

straight lines. Exit to the stack and press T and Y in the VAR menu to get

(approximately) 6.283 [1 0]. This will be more accurate that the result as drawn by

GR.12, say with H = .0628 and N = 100.
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We now consider constructing the solution of a non-homogeneous second order

differential equation with constant coefficients. The problem is treated in many

textbooks for special types of forcing, usually sine or cosine forcing functions. A model

for an elastic spring with damping and with external forcing f(t) or a model for a

simple electrical circuit loop with external voltage is:

2

M+ 2r£+ m2 x = f(t), x(0) =g-z(-(0) =0, m2 >r2 .
dt2 dt dt

The solution is given by

t

xg(®) = F1eTsinueof9r ds, p=o? - 2.
0

As indicated before, this problem is equivalent to the pair of differential

equations dyj /dt = yp, dyz/dt = f(t) - 2ry; - @2 y1 y1(0) = y2(0) = 0.

Example: Take w2 = .41,r =.5 (so p2 = .16) and f(t) = sin2(1.5t). Set FN as

<< 'Y(2)' EVAL 'SIN(1.5'T)*2 - Y(2) - .41*Y(1)' EVAL 2 —ARRY >> and the

plotting parameters to show 0<t<9.42,0<y<2. Put0 [0 0] 9.42 on the stack and

execute G.01. Next overlay a graph for the input function. The forcing function

(input) and solution (output) resulting from this program are shown below.

 

Exercise 4.1: Find the output graph for f(t) = 1 - sin#(3.14*t) forp =1,and r = 5.

Choose plot parameters to show -4 < t <6, -4 <y1 < 1.2. Add the input function

graph as an overlay. Comment: The output function for this input function can be
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obtained from a table of integrals after several substitutions using the method of

undetermined coefficients and a lot of work. But, an output function for an input

function such as f(x) = 1/(2 - sin(3.14*t)) could not be found this way.

Suppose the forcing function f(t) is periodic with period length P for the

differential equation. If we can change the initial conditions so that x(P) = x(0) and

x'(P) = x'(0), then the resulting solution is periodic. Moreover, if the damping

coefficient r > 0, then all solutions will eventually be close approximations to the

periodic solution when viewed over one period. We may want to view such a

solution without waiting for asymptotic behavior to emerge. Suppose we determine

solutions x1 (t) and x3(t) of the associated homogeneous system so that x1(0)= x'2(0) =

1 and x'1(0) = x2(0) = 0; then a general solution is x(t) = a x1(t) + b x2(t) + xq(t)

where xq(t) is the solution constructed above for 0 initial conditions for x and x'.

Expressions for x1(t) and x2(t) are x1(t) = e™ [cos pt + (r/p) sin pt] and xo(t) = (1/p)

eTtgin pt. We can use the calculator to compute the integrals in xq(P) and x'q(P)

numerically, then we can use the calculator to solve the periodicity condition for a

and b:

1- xl(l’) - xz(P) xq(P)

X(P) 1-x,(P) [b]= X(P)

The periodic response can be obtained by using G.01 with input 0 [a b] P on the

stack.

Output for f(t) = (sin 3t)8 , r = 25 and p = 1 with the initial conditions x(0) =

dx/dt(0) = 0 is shown below. This input is periodic with period n/3. The periodic

response is also shown over two periods. The average value for this forcing f(t) is

nt/6 and f(t) = [f(t) - ©/6] + /6, so a portion of the periodic response is the constant
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function with value n/(6w2) = .493. This seems to be the constant part of the

periodic solution as shown.

 
 

 

1(t) x(t)
1

AL,s
' .5 . ' a5 9

Input: £(t) = (sin(3t))*8 Output

T 8(b)

—o—r—v—q—o—o—o—c—t—t—t—o—: t
-3 n/3 25/3 

Periodic Response

Exercise 4.2 : Find and graph the periodic output response for f(x) = 1 - sin#(3.14t)

forn=1,and r =.5. Then add the graph of the input forcing function.

The friction/resistance term in the spring/circuit model that we have been

considering is given by 2rdx/dt and the restoring force term is @2x. These terms are

usually approximations for nonlinear phenomena. What happens to the periodic

response in the mathematical model driven by periodic input when the terms are

replaced by nonlinear functions ? The method of calculating the correct initial

conditions no longer applies; however, in some cases the solution to the differential

equation with a variety of initial conditions will settle toward a periodic steady

state solution as time increases.
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Exercise 4.3 : Find a periodic solution to nonlinear problems of the form

2
d x

2
+R(g—x)+K(x)=2cost.

dt t

Set H-VIEW (i. e, XRNG) =-.2 6.283, H-VIEW (i. e,, YRNG) = -2.1 2.1. Let

R1(dx/dt) = 2*IFTE(dx/dt < -1, dx/dt + .5, IFTE(dx/dt < 1, .5*dx/dt, dx/dt - 1)).

(a) Take R = R1(dx/dt) and K(x) = x. Use initial condition t = 0, x = 0, x' = 1.56.

(b) Take R(dx/dt) = dx/dt and K(x) = x. Use initial condition t = 0, x = 0, dx/dt = 2.

(c) Take R(dx/dt) = dx/dt and K(x) = sin x.

(d) Take R(dx/dt) = R1(dx/dt) and K(x) = sin x.

Note: In each case, if the solution you get is not periodic then use the values of x

and dx/dt at t = 6.283 as initial conditions and generate another solution. Which

nonlinearities caused a phase shift from the linear case (b)?

It is easy to use the calculator to illustrate the idea of locating a solution for t =

any multiple of a given time period. For example, the differential equation

d2

—TX +m2x=.5cost, w1,
dt

together with the initial condition x(0) = &, dx/dt(0) = 0 has solution

x(t)=[§+—1—2—]cosmt-——7 cost
2(1 - ®°) 2(1 - o)

fl(t)=-<n)[£‘,+ 3 ] sin wt + 2 sin t
dt 2(1 - 09 21 - 0
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What are the properties of such a solution ? For t = 2rn we have

1
x(2rn) + ———— dx
( 21 - w?) a42™n) .

1 = COS 21w, 1 = - sin 2xno.

S+ [E+———-]
2(1 - @) 2(1 - ©)

By squaring both sides, we see that the points x(27n), x'(2%n) lie on an ellipse.

Exercise 4.4: Plot the points x(2zn), x'(2nn) for & = 0 and n = 1, 2, ... (several values

of n) for ® = 1/5qrt(5) and for ® = 1/3. Note that the points cycle around the

ellispe. If on = an integer m for some integer n, then you can see the solution is

periodic, but what happens when o is irrational ?

A topic occuring early in many differential equation textbooks is that of

determining trajectories that are orthogonal to the members of a one-parameter

family of curves, say W(y1, y2,p) = 0. The usual technique is to first find the

differential equation satisfied by the members of the given curve family, say

dy2/dy1 = m(y1, y2); then curves which are orthogonal satisfy the differential

equation dy2 /dxy1= -1/m(y1, y2). If the original family is given in the form

dy1/dt = f(y1, y2), dy2/dt = g(y1, y2), trajectories for orthogonal curves satisfy

dy1/dt =-g(y1, y2), dy2/dt = f(y1, y2). This latter form is
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  f‘.AjAAAAAA=AA,y1
2 4

Orthogonal Trajectories dyj/dt= -)z/yl, Wdt=3i/72

preferred if the curves in either family must be specified in terms of a parametert.

Clearly, the program G.12 can be used to sketch members of both the given family of

curves and the orthogonal trajectories. This is our first example of what is called an

autonomous system. A specific example is shown above.

Exercise 4.5: Set the plot parameters to show both H-VIEW and V-VIEW as

-5 3.5 and enter the following FN:

<< 'Y(1)*(Y(1)22-Y(2)A2)' EVAL 'Y(2)*(3*Y(1)72-Y(2)72)' EVAL 2 -5ARRY >>.

Create a composite graph in the y1-y2 plane consisting of the following inputs to the

G.12 program.

to 0 0 0 0 0

yo [5.1] [.75 .1] [1 .1] 1 4] [15 .5]

tf 4 4 2 2 2
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These are five solution trajectories (ovals) for the system

dy1/dt=y1(y12-y22), dyz/dt=yz(3y12-y22).

Now overlay the solution trajectories of the orthogonal system corresponding to the

following inputs to the G.12 program:

to 0 0 0 0 0

yo [0 34] [0 2.5] [0 1.5] 2 .0] 34 0]

tf 1.2 8 8 8 8

Graphs in the y1-y2 plane of solutions (y1(t), y2(t)) of differential equations

y1'=F1(y1,y2), y2' = F2(y1, y2) are called phase plane graphs. If F1(y1, y2), and

F2( y1, y2), have continuous partial derivatives, solutions to initial value problems

are unique and it is elementary to show that under such circumstances solution

trajectories arising from different initial points either coincide or do not intersect. If

fact, it is easy to see that if (yj(t), y2(t)) is a solution of an equation of this form

and a is any constant, then (y1(t+a), y2(t+a)) is also a solution. Closed trajectories in

the phase plane indicate periodic solutions. Constant solutions, that is, points

(y1, y2) such that F1(y1,y2) = F2(y1, y2),= 0 are called critical point solutions (also

equilibrium solutions). Other trajectories of particular interest are those nearby to a

critical point.

® If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) leave the vicinity of (y1¢, y2¢) ast — o, (y1¢, y20) is

called a repelling solution, i. e, unstable.
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® If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) approach (y1¢, y2¢) ast = oo, (y1¢, y2¢) is called an

attracting solution, i. e., asymptotically stable.

Some well-studied examples of autonomous are presented below. Note the

asymptotic behavior of the solution trajectories as indicated by the graphs.

Exercise 4.6: Systems called Lotka-Voltera systems may be scaled to the form

dy1/dt=y1(3-y2), dy2/dt=ya(y1 -3).

Such systems arise in the study of populations of two species, one of which feeds on

the other. Trajectories that initiate in the first quadrant are periodic. Plot the

solution that starts at 0 [2 2], for 0 < t < 2.25, after setting the plot parameters to

show H-VIEW 0 6,and V-VIEW 0 6, by using the plot program G.12.

Example. The differential equations

xX'+cex'+sinx=0 or y1'=y2, y2'=-sinyj -cy2

arise in the study of the displacements of damped (or undamped) pendulums. The

critical points are (0,0) and (nx, 0). For ¢ > 0, (0, 0) is an attracting solution. We use

G.12,c = .3, and FN given by

<< 'Y(2)' EVAL 'sin(Y(1))+.3'Y(2)' EVAL NEG 2 —ARRY >>

to obtain the following graph. (For ¢ = 0, there is a family of periodic solutions.)
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-

 
Damped Pendulum Motion (¢ =.3)

Example. The system

dy; /dt =-2y2 +y1(1-r2)/r, dyz/dt = 2xy; + y2(1-12)/r:

where (2 = y12 + y22) has an isolated periodic solution r = 1. Here ,nearby solutions

spiral towards the circle r = 1. To obtain graphs use G.12 and the function FN given

by

<< -2°Y(2)+Y(1)*(1-Y(1)A2-Y(2)A2)/(Y(1)A2+Y(2)A2)A.5' EVAL

'2°Y(1)+Y(2)*(1-Y(1)A2-Y(2)A2)/(Y(1)A2+Y(2)A2)A.5' EVAL 2 —ARRY »>>.

Another problem which has an isolated attracting periodic solution is the Van

der Pol differential equation. This equation was studied in connection with its

application to an electronic component. This example in usually studied as a

function of a parameter p contained in the "damping" term. Our figure shows
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dyyfdt=yy, drfdt=-[y;+ 36521y

typical graph: here p = .3. Note the motion is counterclockwise and the solution was

started at (x, y) = (2, 2). The solution quickly moves close to its asymptotic shape

and is periodic. Solutions starting inside the closed curve (except from (0, 0)) also

move out to the periodic solution. Variation of the parameter p causes dramatic

changes in the shape and period of the solution.

Exercise 4.7: In this exercise we will examine the cycle time of periodic solutions of

several special differential equations. The equations under consideration have

solutions that resemble the trajectorics graphed in the figure below.

Fx]
p

F@)}
P~ —

1)

' 
 Construction for Trajectories

(Sec xegionbetween F[z] & F[x])

 

Trajectories
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Here we suppose that y(t) satisfies the initial value problem

2
dx - =, 9% _2 +f(x)=0, x(0) =gz, aL =
dt

0,

where the essential feature of f(x) is that it changes sign from negative to positive

as y increases thru zero. We multiply by dx/dt and integrate from 0 to t to obtain

X

’t‘ =+ [F(z) - F(x), where F(x)=2 ({ f(s) ds.

If we denote by P/2 the time for the trajectory to proceed from the starting point to

the state x(P/2) = z1, dx/dt(P/2) = 0, then

o
,

Q
.

P/2 z dx

P=2 [ di=2 | —=2—.
0 z JF@- Fx)

We list the value y1 for several examples:

(a) f(x)=x, F(x)=x2, z1 =-2

(b) f(x) = sin x, F(x) =2[1-cosx], z1 =-z

() f(x)=x+x2, F(x) = x2 +2x3/3, z1 = largest negative root of

%x2+[1+%]x+[z+—§-z2]=0.

(d) f(x)=x+xcosdx+.25sind4x  F(x) = x2 + 5x sin4x, 21 = -z

Notice that in (a), (b) and (d), the function F is even in x, but in (c) is not. Calculate

and plot the values of P for one of the examples (a), (b), or (c) listed above for

several values of z. Use the numerical integration key (program) on your calculator

with a tolerance of 0.005. The following values of P are for part (d) above:
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z values .25 S 75 1 1.25 1.5 1.75 2 2.25

P values 394 529 1274 2154 829 574 504 545 8.37.

Note that dx/dt = 0 and x = ©/4 and dx/dt = 0, x = 3n/4 are equilibrium points.

Linear autonomous systems can be solved analytically. These systems have the

form:

dy1/dt = aj1y1 + a12y2, dy2/dt=ajz1y1 + a2y2

We will consider the case det (A) # 0, which means that the origin (0,0) is the only

critical point. Special solutions have the form w = column [ y1, y2]1 =e A v where A

is a solution of the equation det (A- A) = 0 and v will be given below. Such a

number A is called an eigenvalue of the system. The equation det (A- AI) = 0 is

called the characteristic equation or the eigenvalue equation for the system. If A is an

eigenvalue for the system then the column vector v = [c, d] is a non-zero solution of

(A- ADv = 0. Other solutions of our system are linear combinations of these special

solutions (in most cases).

The solution graphs of such systems near the origin (0,0) are particularly

interesting. Examples fall into the following cases: closed trajectories (indicating a

family of periodic solutions), spiraling trajectories (inward or outward spirals) and

curved spoke-like trajectories (again traveling toward or away from the origin). The

cases correspond to the type of eigenvalues for the system, viz. purely imaginary

values, complex numbers with non-zero real parts and real eigenvalues.
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Example: Consider the system

dyj/dt=y1 -4y2, dy2/dt=-y1+2y2.

The associated matrix A has eigenvalues A = .5(3+ 17-3) and corresponding

eigenvectors ¢ = column [ 4, 1.56] and ¢ = column [4, 2.56]. When a solution starts on a

multiple of the first eigenvector, it proceeds toward the origin exponentially. When

a solution starts on a multiple of the second eigenvector it travels away from the

origin exponentially. Other solutions are a linear combination of these two solutions

and eventually proceed away from the origin. Typical trajectories are shown in the

figure below. The procedure was to start on the eigenvector solution and trace that

trajectory. Other solutions starting very near these special solutions were followed

for short periods.

tnv;\‘rvay_T

n

Ltravel to origin Tt 1
ravel away

Trajectories neax Saddle Point

Exercise 4.8. For the case A is complex and has negative real part the origin, (0,0)

is called a spiral point critical point (so we have an attracting critical point). Use

G.12 to study

dyi /dt=-5y1 +4y2 , dy2/dt=-4y;1 - .5y2
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Start at (t, y) = ( 0, [0, 1]) after setting the plot parameters to show H-VIEW -2 2

and V-VIEW -1 1and plotfor0<t<3.

Exercise 4.9. Use G.12 to graph the trajectories initiating at (t, [y1,y2]1 ) = (0, [0, 1])

and at (0, [-1, 0]) for the system

dy1 dy2

=@YY)g=Y,

What are the eigenvectors for this system associated with the [0, 0] critical point ?

Can you see them on the graphs ? The graph should show that the origin (0,0) is

neither an attracting or repelling critical point solution for the system.

Solution graphs of nonlinear autonomous systems near a critical point solution

can be studied using a linear approximation. Let the vector y = column [y1,y2] and

suppose we have the system dy/dt = F(y) for F(y) = column [F1(y1 , y2), F2(y1 , y2)l,

and F1(y1c, y2c) = Fa(y1c , y2¢) = 0. Solution behavior near the critical point y. =

(y1c » y2¢) can be determined by studying the linear variational matrix J(yc) = Fy(yc)

defined below. If all eigenvalues of this matrix have negative real parts, the

solution y = y¢ is an attracting solution. If one of the eigenvalues has a positive real

part, some solutions leave immediate neighborhoods of the critical point. The

matrix J(yc) has i-j element

oF;
3yi (yc)

Example: Consider the system dy; /dt = 2y;2 + y22 -9, dyz/dt= y12 +y22 -5,

which has critical point solutions (2,1), (-2,1), (2,-1), (-2,-1). The variational matrix
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for the last critical point has eigenvalue equation A2 + 16\ + 8 = 0. The roots of this

equation clearly are negative so that (-2,-1) is an attracting critical point.

The calculator can be used to find the matrix ] associated with any equilibrium

point y. by using the sequence of programs given below. Because such information is

also useful for a vector system dy/dt = F(y) where y and F(y) are vectors with m

components, we present the programs for the vector case. We further will present the

programs in a form where the labelling of the independant variables can be specified

by the user. For example, instead of y1, y2, etc. the user might prefer u, v, .. The

user's preference will be entered into a stored list as shown. After the matrx J is

determined then the calculator can be used to find the eigenvalues as explained in

the next section of this chapter.

Here is an outline of the procedure assuming that we know the point y.. We

store the value of m in M and store the names of the m components in a list called

PL. For example, PL = {U V }. Make sure each of the variables in PL have been

purged. Store the components of the F function in a list FL. For instance, in the

example given above FL = { '2*UA2+VA2-9' 'UA2 + VA2 - §' } where U replaces y; and

V replaces y2. Then execute the program DER below:

 

Subprogram Name: DER

Purpose: Creates list JL puts the FL functions on the

stack and executes DERA M times.

<< {}'JL' STO FL OBJ—»> 1 SWAP START DERA NEXT>>    
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Program DER calls the subprograms DERA and DERB.

 

Subprogram Name: DERA

Purpose: Creates M -1 more copies of the first element

on the stack for use in the next subprogram.

<<1M1 - START DUP NEXT DERB >>

 

 

Subprogram Name: DERB

Purpose: Takes M copies of a function in FL, creates the

derivatives with respect to each parameter in

PL and stores them in JL.

<<1 M FORIPLIGETd M 1 + | - ROLLD NEXT

M 5LIST JL + 'JL ' STO>>.   
 

At this point, for m =2, JL= {F1y (u,v) Fiy (u, v) Fay (u, v) Fay (u, v)}. Now store

the values of the variables in PL at Y. (e. g. U =-2, V = -1) and create matrix JMAT

with a program called JEV given by

<< JL OBJ—> 1 SWAP START -NUM M SQ ROLLD NEXT

{M M} -ARRY ‘'JMAT' STO >>

For m = 2, the eigenvalues are the roots of the quadratic polynomial

A2 -UJMAT[1,1}+JMATI[2,2D)A + JMATI1,1]*JMATI[2,2] - JMAT[1,2]*JMAT[2,1)).

Finding critical points is not always easy. Newton's method for solving

simultaneous nonlinear equations may be used to find critical points of a system if an
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approximate location yo = column [ug Vo] of the critical point is known. Then better

approximations of the critical point may result from one or more applications of the

following algorithm:

Yo=Yy -1GFOQ. Y Yy

The same programs listed above can be used to create the JL list for the

components of the J] matrix. We need additional programs to calculate the F(yp)

vector. The program FEV that will be used to create the vector FVEC is given by

<<FL OBJ- 1 SWAP START —»NUM M ROLLD NEXT
{M} —ARRY 'FVEC' STO >>.

Put an approximation of the critical point [U V ] on the stack and execute the

program NWTN given by

<< DUP OBJ— DROP 'V' STO ‘U’ STO JEV FEV FVEC JMAT / >>.

At this point you have an incremental vector [U - Up, V - Vp] on the first level of the

stack and the old vector [U, V] on the second level. If the incremental vector is

sufficiently small, create the new vector [Up, Vnl, by the command - (a minus

command). If not, execute -, then NWTN again, etc.

Exercise 4.10: Find a critical point of the system

du/dt=sinu+cosv-u, dv/dt=cosu-sinv-v

near u = 1.9 and v = .2, and determine the eigenvalues of the variational matrix.

(Answer u = 1.9235, v = -.17315, A = -1.66 £ i .244)



174 CHAPTER 3

Exercise 4.12: Find a critical point of the system

du/dt=u-sinu*cosh v, dv/dt=v-cosu*sinhv

near u = 7 and v = 2.5, and determine the eigenvalues of the variational matrix.

(Answer u = 7.49768, v = 2.76868, A = -1.79 + i 7.4)

How does one find starting values for such a procedure ? If the equilibrium is

attracting, then for a variety of initial conditions the output of G.12 will indicate

an approximate location. If the equilibrium is repelling, then running the system

backwards in time will yield the approximate location for many initial conditions.

If the equilibrium is neither attracting or repelling, then the same procedure will

work if care is used in choosing the initial conditions.

Recall that the Runge-Kutta Feldberg algorithm attempts to set a step size for

which the perceived error is below a tolerance level. There are cases for which this

algorithm is not efficient: the step selected is too small and too much time is

required to proceed from the initial time to a desirable termination. We have

previously discussed systems of the form

dy1/dt=a11y1 +a12y2, dy2/dt=az1y1 +azy.

The failure of the default algorithm occurs for such systems when the eigenvalues

M1, A2 of the matrix A made from the coefficients are both negative and Aj/A; is a

large number. This inducates that there are two solutions of the differential equation

that approach zero as time increases at widely differing rates. Such a system of

differential equations is called stiff and Hewlett Packard has provided a second

algorithm to handle such cases. Nonlinear systems can also be stiff. For example, a

system dy/dt = F(y) which has an equilibrium y. for which the matrix J(yc)
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discussed above has eigenvalues with A1/A3 large is stiff in the neighborhood of y. .

An algorithm for a stiff system is somewhat less efficient than the default

algorithm when operating on a nonstiff case. Consequently Hewlett Packard's

alternate differential equation program attempts to use the default algorithm

whenever possible and switches to a stiff algorithm when stiffness is ‘detected’.

To execute the alternate differential equation program, the user must provide a

program F for the function F(y), a program for J(y) and a program for oF/dt. We will

illustrate for the problem

y1' =y2, y2' =-1000 y; - 1001 y>.

The matrix J here does not depend on y: a program for] is

<< 0 1 -1000 -1001 {22} —ARRY >>.

A program for 0F/dtis << 0 0 2 -ARRY >>. We store these programs under the

names FNY and FNT respectively. The following adaption of G.01 is constructed for

this problem. The reader should recall G.01 and edit. Note that the stack

command {T Y FN FNY FNT} replaces {T Y FN} in the default algorithm and

that the stack input to RSBSTEP consist of four elements. The last element is an

indicator variable (in this case 2) which determines the method to be used.
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Program Name: GS.01

Purpose: Generate a T Y(1) graph of the solution

to Tt.

Stored Quantities: XRNG YRNG FN FNY FNT TOL HS

Input level 3 level 2 level 1

To vector Yo Ty

The output stack is empty, the variables T and Y contain updated values

<< { #0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T

STO > TF << {T Y FN FNY FNT } TOL HS 2 T 'Y(1)

EVAL R—»C 5 ROLLD DO RSBSTEP DROP 2 T 'Y(1)' EVAL

R—-C DUP 7 ROLLD 6 ROLL LINE SWAP DUP T + TF

UNTIL > END DROP TF T - RKFSTEP T 'Y(1)' EVAL R-C

DUP 6 ROLLD 5 ROLL LINEDROP TF T - RKFSTEP T 'Y(1)

EVAL R—»C 5 ROLL LINE 3 DROPN >> PICTURE »>>   
 

Exercise 4.13: Use IN.FN to store an appropriate function FN. Store FNY and FNT

as given above. Use IN.PP to set XRNG to 0 1 and YRNG to 0 1. Put the entries 0

[1 -1]1 on the stack and execute GS.01. The exact solution is y1 = et ,yy = et Use

the Function mode to overlay the solution as an accuracy check.

5. Linear Autonomous Systems of Differential Equations

In this section we consider linear systems of differential equations of the form

y ' = Ay + f(t) where y and f(t) are vectors with, say, n components and A is an n by

n matrix. Solutions can be constructed from the eigenvalues and eigenvectors of A.

There are built-in programs in the calculator for these eigenvalues and eigenvectors.

However, a differential equations student may wish to know just how these



DIFFERENTIAL EQUATIONS 177

quantities could be calculated. Consequently, we will present several special

programs to illustrate steps involved in obtaining eigenvalues and eigenvectors. We

recommend that beginning students use these special programs at first to become

comfortable with the mathematical concepts then use the built-in programs that are

constructed to avoid the computational pitfalls which are sometimes encountered.

Considerfirst the vector problem dy/dt = Ay. Here we want to find all solutions

of the differential equation. It is readily shown that if n independent vector

functions satisfing the differential equation can be determined and placed in the

columns of a matrix Y(t), then all solutions have the form Y(t)c where c is a vector

with n components. The "educated guess" y(t) = ey (here y(t) and v are vectors)

leads to the nth order polynomial equation det(A-AI) = 0 which is called the

eigenvalue or characteristic equation, and to the problem of determining nontrivial

solution vectors v to the problem (A-AI)v = 0 (where A is a solution to the eigenvalue

equation). Thus the problem breaks into several parts: (1) find the eigenvalue

equation, (2) find the solutions of the eigenvalue equation, (3) for each solution A,

find a corresponding eigenvector v, and (4) assemble the matrix Y(t). We will

illustrate the solution process first for n= 2 and then for n = 3 component systems.

Then we will outline a procedure that uses the calculator's built-in routine for

eigenvalues and eigenvectors for all n 2 2. Examples/exercises will be given.

A calculator program to display the eigenvalue equation for a 2 by 2 matrix is:

 

Program Name: EIG2

Purpose: Display the eigenvalue equation.

Stored Quantities: 2 by 2 matrix A

<< 'A' PURGE A DET 8 RND — 81 <<'Ar2 + (A(1,1) +

A(2,2))*A - 8§1' EVAL >> >>    
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Note: The Greek letters can be entered in your program by pressing CHAR,using

the cursor to highlight the appropriate character, pressing ECHO and then the ON

key.

Exercise 5.1: Find the eigenvalue (or characteristic) equation for the matrices

Bl e]

A calculator program to display the eigenvalue equation in the 3 by 3 case is:

 

Program Name: EIG3

Purpose: Display the eigenvalue equation

Stored Quantities: 3 by 3 matrix A

<< 'A' PURGE A DET 8 RND — 31 <<'AA3-(A(1,1) + A(2,2) +

A(3,3))*'Ar2 + (A(1,1)"A(2,2) - A(1,2)*A(2,1) + A(1,1)*A(3,3) -

A(1,3)*A(3,1) + A(2,2)*A(3,3) - A(3,2)*A(2,3))*A - 81" EVAL >>

>   
The program will display the eigenvalue equation as a cubic in A.

Exercise 5.2: Find the characteristic equation for the matrices

121 16 3 5 -8 -12
A=|101]|, A=|383|, A=|-6-10-10 |,

445 6 12 4 6 10 13

(The first matrix has the eigenvalue equation A"3 - 6A*2 + 11A - 6.)
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We can find the roots of the eigenvalue equation graphically by isolating one or

more roots, by storing the equation (STEQ), and using the DRAW and SOLVR

programs. You may have to try several settings of the plot parameters XRNG,

YRNG.

Exercise 5.3: Find the eigenvalues of the matrices given in exercise 5.2. (Eigenvalues

for the first matrix are 1, 2, 3.)

010

0 01]|.
110

The eigenvalue equation in the variable x is x*3 - x - 1. A zero of this equation

Consider the matrix

obtained by ROOT after drawing the curve from -2 to 2 or by the SOLVE routine is x

= 1.3247—--. If we divide x - 1.3247--- into x*3 - x - 1 we obtain the quotient x*2 +

1.3247---x +(1.3247--72-1). Zeros of this quadratic are complex eigenvalues. At this

point the x has a value stored in it. To avoid confused notation we take an extra

step: bring the value in x to the stack and store it in R. Now place 'x*2 + r*x +(rA2-

1)' on the stack, and key in the command 'X' PURGE. You now have the desired

quadratic on the stack, enter 'X' and execute QUAD (on the SYMBOLIC menu).

Follow the usual procedure for the QUAD program to obtain the roots -.662 t i .563.

An alternative method is to press SOLVE, move to Solve poly... and press OK.

Enter the vector of coefficients [1 0 -1 -1] and press OK and SOLVE to get all roots.

(You may want to go to EDIT MODES 3 FIX to see all the roots.)
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Exercise 5.4: Determine the eigenvalues for each of the matrices

010 010 -11 -8 -12

A=[00 1| A=({001], A= 2 1 4

4 30 130 6 4 5

When an eigenvalue A is determined, the matrix (A-Al) is singular and the linear

system solver is not appropriate to solve the equation (A-AI)v = 0. Place (A-AI) on

the stack and use the programs named PIV and ROKL to obtain the Gauss-Jordon

echelon form to determine the row space of (A-AI) and nontrivial solution vectors v.

 

Program Name: PIV (Adapted from D. R. LaTorre)

Purpose: Gauss pivot on element K L

Input: Matrix A, integers K L Output: Altered matrix A

<< 5 A K L <<IF 'A(K,L)' EVAL 0 == THEN "PIVOT ENTRY IS

0" ELSE A SIZE 1 GET -5 M << M IDN 'A(1,1)' EVAL TYPE

IF THENDUP 0 CON R—-C END 1 M FOR | 'A(l,L) EVAL {

| K} SWAP PUT NEXT INV A * >> 8 RND END >> >>

 

 

Program Name: ROKL (Adapted from D. R. LaTorre)

Purpose: Interchange rows K and L

Input: Matrix A, integers K L Output: Altered matrix A

<<« » AKL << A SIZE2 GET 5 N<< A1 NFOR I

'A(K,I)) EVAL { L 1 } SWAP PUT NEXT 1 N FOR J 'A(L,J)

EVAL { K J } SWAP PUT NEXT >> >> >»   
Notice that the programs PIV and ROKL given above are valid for any size

square matrix.
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Example: The first matrix in the exercise 5.2 has eigenvalues 1, 2, and 3.

For A = 1 the equation for v is

02 -1

111 [y=0
44 4

If this matrix is placed on the stack and the command 1, 2 ROKLis given we get

1-11

02-1],

4 4 4

now give the command 1,1 PIV to get

now 2,2 PIV gives

105
0 1-5]|
00 0

The solution relations v] = -.5¢3, v2 =.5 v3 result: i. e, v =[-1, 1, 2] or any nonzero

multiple of this vector. For A = 2, we find that any multiple of v = [-2, 1, 4] isa

corresponding eigenvector; for A = 3, we find that any multiple of v = [-1, 1, 4] is a

corresponding eigenvector.



182 CHAPTER3

Example: The matrix

6 7 8
A=| 2 0-2

466

has eigenvalues A = -2 and 1 + i. The procedure shown above gives the eigenvector

v = column [1, 0, -1] corresponding to A = -2. For A =1 +i, the matrix A-A I is

G- 7 8
A<l 2 @1 2

‘4 '6 ('7/-1)

When weuse1l 1 PIV, then2 2 PIV we obtain

1o 00 Q-5

00 0 (5.5

0 0 0

This leads to the eigenvector v = column [(-1,.5), ((-5,-5), 1]. Recall that for the

conjugate eigenvalue, there is a eigenvector conjugate to this vector v.

The next step is to assemble a fundamental matrix of solutions Y(t) that has as

its columns the vector solutions determined above. For the first matrix in exercise 5.2

we determined eigenvalues and corresponding eigenvectors in the example just after

the ROKL program. Thus

et 2e2t 3t

Y(t) = et e2t e3t

2et 4e2t 4e3t

.

’
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Exercise 5.5: Give the solution of y' = Ay, with conditions: y(0) = [1 3 -5]t.

For the matrix example given just above the preceding paragraph (one real and a

pair of complex eigenvalue) we proceed as follows. If a matrix A has eigenvalues

A =a + Bi and corresponding eigenvectors ¢ = a * ib, then by adding the exponential

solutions obtained it is known that the quantities

e™ (cos Bt a - sin Bt b) and e®t (sin Bt a + cos Bt b)

are real valued solutions of the differential equation y' = Ay. Consequently, for this

example we get the fundamental matrix of solutions

-et (cost + .5sint) et (-sint + .5 cos t) e'2t

Y(t) = .5et (-cos t + sin t) -5¢t (sint + cos t) 0

el cos t el sin t -e'2t

Exercise 5.6: Find a fundamental matrix of solutions of dy/dt = Ay for

4 4 -5 010

A='1'1'1,A=001.

4 4 5 4 30

When there is a eigenvalue A of multiplicity two, either there are two

independent eigenvectors ¢ such that (A - Al)c = 0 or there is a solution of the form

y(t) = et (vt + d). Here, v will be an eigenvector and (A - A)2d = 0. For

311
A=| 13-

4 21

A = -2 is a eigenvalue of multiplicity 2 and A = -1 is a simple eigenvalue. The

eigenvectors corresponding to A = -2 are multiples of v = column [1, -1, 2] and the
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eigenvectors corresponding to A = -1 are multiples of v = column [1, -1, 3]. The

equation (A+21)2 d = 0 has a solution d = column [0, 1, 0]. (Such a vectoris easily

obtained on the calculator, first by calculating (A+2I)2 , then using PIV to obtain d.)

For this matrix A we have a fundamental matrix of solutions

t -2t -2t
e e te
_e-t -2t (l-t)e-Zt

YO =| -2t -2t

The matrix eigenvalues for

5 -2 -3

A= 03 0

2 2 0

are A = -3 (multiplicity 2) and A = -2. The eigenvectors corresponding to A = -3 are

linear combinations of ¢ = column [1, -1, 0] and ¢ = column [ -3, 0, 2]. The eigenvectors

corresponding to A = -2 are multiples of ¢ = column [1, 0, -1]. A fundamental matrix of

solutionsis

e e -3e

Yoo 0 < o
= - 3t |

-e 2t 0 2e

Exercise 5.7: Find a fundamental matrix of solutions for the system y' = Ay for each

of the following matrices:

| ——
O

_
—
O
-

O
e
t
b
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We noted earlier that Hewlett Packard has provided professional programs to

calculate the eigenvalues and eigenvectors of n by n matrices (n 2 2). These programs

are located by pressing the MTH MATR NXT keys.

Example: Place the matrix

3 4 6 4
1 1 1 1

A=l ¢ 8 7 8
-11 -12 -15 -14

on the stack and execute EGV. You should receive output [ (-1,2) (-1,-2) (-1,0) (-2,0) ]

for the eigenvalues and output for corresponding eigenvectors

-5.5 (5,-5 (1,00 (0,0

©,0 (0,00 (250 @1,0

(-5,-5) (-5,5) (-50) (0,0

(1,0 1,00 (50 (1,0

The first two eigenvalues are complex -1 +i2 and have congugate eigenvectors which

are the first two columns of the matrix. The procedure given above for 3 by 3

matrices extends to n by n matrices and therefore a fundamental matrix of solutions is

-t
4e 0 etcos2t etsin 2t

et e 0 0

-t -t . -t
Y(t) =] -2e 0 -e sin2t e cos2t

- et (sin2t- cos2t) -e'(cos2t+sin2t)
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Exercise 5.8: Find a fundamental matrix of solutions for y' = Ay when

25 25 -35 -5
1 2 2 1

A=l 5 4 6 6
45 85 -55 -75

To obtain solutions of the nonhomogeneous equation y' = Ay + f(t), suppose that a

fundamental matrix Y(t) of solutions for the associated homogeneous equation is

known ( so Y'(t) = AY(t)). It is easy to see that

t
yO=Y® c+ [ Y(-s) Y 1(0) f(s) ds

0

is a solution for any vector c. In the general case a program that uses the numerical

integration capability of the calculator can produce values at various times t for the

components of the integral listed above. If the functions in f(t) are elementary, we

can use the method of undetermined coefficients to construct a particular solution. The

computation of the coefficients will require the solution of linear algebraic equations.

References
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Appendix to Chapter 3. Direction Fields

The following is a set of programs that will construct a direction field for

4, %,
@ S0pY). g=0

We assume that FN is a stored program of the type discussed in section 1 of this

chapter. These programs are provided to allow the user to use the built-in

differential equation solver to overlay particular solutions with minimal additional

 

instructions.

Program Name: DIRF

Purpose: Generate a direction field in the region

prescribed by XRNG, YRNG.

Stored Quantities: FNA GNA

Input: none Output: direction field

<< [00] 'Y" STO ERASE{ #0d # 0d } DRAX PVIEW PPAR 2

GET PPAR 1 GET DUP 3 ROLLD - OBJ— 9 / 3 ROLLD DUP

40 / 4 ROLLD 11 / SWAP OBJ— DF.1 PICTURE >>

 

 

Subprogram Name:  DF.1

<< —> R DY2 DY1 YiL Y2L << YiL 1 10 START DY1 +

DUP 1 12 FOR J DUP Y2L DY2 J * + R 3 ROLLD DF.2

NEXT DROP NEXT DROP >> >>   
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Subprogram Name: DF.2

<< DUP2 'Y(2)' STO 'Y(1)' STO FN OBJ-» DROP SWAP

DUP2 IFO0 == THEN DF.3 ELSE DF.4 END >>   

 

Subprogram Name: DF.3

<<0 IF == THEN DROP2 R—-C PIXON DROP

ELSE DROP2 3 ROLL 3 DUPN DUP2 - R—»C 4 ROLLD + RC

LINE END >>   
 

Subprogram Name: DF.4

<< DROP / ATAN DUP COS 3 ROLLD SIN 5§ ROLL DUP 4

ROLLD * DUP2 - 6 ROLLD + 4 ROLLD * DUP2 - 5§ ROLLD +

SWAP R-C 3 ROLLD R-C LINE >>   
Note that you can overlay a solution trajectory of the system using G.12 as

described in section 1 of this chapter after the inputs tg , yo, tf are placed on the

stack. The user may want to place these programs in the directory containing the

programs from section 1, placing DIRF early in the menu order and the subprograms

late in the order.
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Example: Consider the system

M M
dt Y2 dt Nt Y

The equilibrium points are yp =0, y; =€. Lete = 1 and draw the direction field for

-2<y; £2, -1.5<y3 < 1.5. Overlay the trajectory which begins, t = 0 at y; =0,

y2 = 1.5 and and ends when t = 2. Notice from the direction field that solution

which initiates at y; = .5, y2 = 1.5 has significantly different behavior for t > 0.

Overlay such a solution. Now see the first figure in this chapter.



HP-48G/GX Calculator Enhancement

for

Linear Algebra

Donald R. LaTorre

Linear Algebra has long been an established staple in the undergraduate

mathematics curriculum. But, as the pervasive growth of computers has stimulated the

widespread applicability of matrices, students in a variety of disciplines now need an

understanding of linear algebra. Since most students will take only one course in the

subject, it is important that the course address not only fundamental concepts but also be

responsive to the needs of the client disciplines it serves. Thus, there is a considerable

and growing impetus for introductory courses to be matrix oriented [1].

This chapteris intended to show how the HP-48G and 48GX super calculators may

be used in such a matrix-oriented course. We do not intend the material to be definitive;

only that it show some of the possibilities for the effective use of the calculator. A

more extensive treatment can be found in [2].

After a brief preliminary section on calculator issues, section 2 is concerned with

procedures for entering, editing and manipulating matrices and vectors. In addition to

routine matrix arithmetic, we also consider the computation of determinants and

inverses.

190
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Section 3 is devoted to systems of linear equations, and considers Gaussian

elimination with partial pivoting and back substitution, its interpretation as an LU-

factorization, and Gauss-Jordan reduction.

Section 4 addresses the important concept of orthogonality, including the Gram-

Schmidt orthonormalization process, its interpretation as a QR-factorization, and

applications to over determined systems arising from polynomial curve fitting.

Section 5 considers eigenvalues and eigenvectors, and ends with the question of

diagonalization.

At the end of each section we have included some ACTIVITIES. These are short

collections of HP-48G/GX based explorations, investigations and projects that students

can engage to help reinforce and extend their understanding of the basic material.

1. PRELIMINARIES

To help you recognize calculator keystrokes and commands, we shall adopt certain

notational conventions.

e With the exception of the six white keys on the top row, keys will be represented

by helvetica characters in a box: | ENTER |, l EVAL|, ISTOI, etc.
 

 

¢ Shifted keys on the 48G/GX may occasionally have the key name in a box

preceded by the appropriate shift as in SOLVE]|. But ordinarily, we will

not show the shift.

e Menu keys for commands on various menus will show the key name in outline form

in a box, as in
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key location

MTHMATR MAKE menu

MTH MATR FACTR menu

e Menus generally have more labels than can be shown above the six white menu

keys, and the NEXT| key will display the next row (page) of labels. Return to

the previous page with PREV |. We will not show these two keys.

e The four white arrow keys will be indicated by I_T_l, E, E and E .

e Calculator operations and commands that appear in programs or in the text

material will be in helvetica characters, e.g., DUP SWAP INV.

Data Entry. When keying a sequence of real numbers into the commandline, say 1.1,

2.2 and 3.3, you must separate the numbers with spaces or commas for proper recognition,

asin 1.1 2.2 3.3 or 1.1,2.2,3.3. We recommend that you use spaces for ease of use. For

consistency we will show commas, but you should always interpret them as spaces. You

need not insert commas or spaces between a real number and a complex number (an

ordered pair), or between two complex numbers, because the calculators recognize

parentheses as object delimiters. Unless we specify otherwise, the examples and exercises

assume the calculator is set to STD display mode.

Programming. Unless you obtain our programs by calculator-to-calculator infrared

transmission, from a RAM card or by computer-to-calculator serial transmission, you

will need to copy and enter them into your calculator. In doing so, you must be careful

and copy the programs exactly as we show them. Special attention should be given to

correct spacing because the calculators recognize commands that are separated by

spaces. Instead of spelling out commands from the alphabet keyboard, we recommend

that you use the keystroke commands that appear either as shifted keys (c.g., SWAP,
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DROP, PURGE ) or as labels on the various menus; keystroke commands will

automatically insert spaces around each command.

The Matrix Commands. The HP-48G series calculators contain an impressive

variety of commands for working with matrices. Many of these commands execute

professional level code constructed from the new LAPACK Fortran library of matrix

routines.

The MTH MATR menu is the place to look. In addition to the commands LSQ (for

obtaining least squares solutions) and EGV (for finding eigenvalues and associated

eigenvectors), this menu includes five submenus, each containing commands that are

thematically linked.

The MAKE submenu, whose commands are useful for making special kinds of

matrices and for manipulating matrix entries.

The NORM submenu, whose commands produce various matrix norms, the

spectral radius, an estimate of the condition number, the rank, determinant

and trace.

The FACTR submenu, containing commands for the RREF, LU-, LQ-, QR-, and

Schurfactorizations, as well as the singular value decomposition.

The ROW submenu, with commands for executing various operations with rows

of a matrix.

The COL submenu, with commands for executing various operations with

columns of a matrix.

Because this is a brief chapter directed towards the teaching of introductory

courses in linear algebra, we shall not have occasion to use all of the built-in commands.
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But we call them to your attention in the spirit of showing some of the possibilities for

the effective use of the HP-48G/GX in both introductory and more advanced studies.

2. ARRAYS

On the HP-48 units, rectangular arrangements of real or complex numbersare called

arrays. Arrays can be one-dimensional (vectors) or two-dimensional (matrices) and are

considered to be single objects. Consequently, they can be manipulated with many of the

same basic commands used in ordinary arithmetic. We shall begin by examining some of

the ways of entering, editing, and manipulating arrays.

Entering Arrays

A one-dimensional array (vector) is represented on the calculator by enclosing a

sequence of real or complex numbers in square brackets, as in [ 1 2 3 ] or

[(1,2) 34) (5,6)]. A two-dimensional array (matrix) is distinguished by an initial

square bracket [ , followed by each row vector, and ends with a closing square

bracket ] . For example, in standard display mode the 2x3 real matrix[ 1 g g] will

[123] 1+ 1+2i
ix 2+ 2421 wiappearas 14 g g1 and the 3x2 complex matrix 30 3401 will appear as

[[(1,1),(1,2) ]

[(2,1), (2,2) ] .

[(3.1),(3.2)]]

Using the command line. The vector [ 12 3] is entered with keystrokes (E 1,

2, 3 |[ENTERY|. Be sure to insert spaces between the 1, 2, 3 with the key. To enter

a matrix, start with [ [ by pressing the @ key twice, enter the first row and press

@, then continue entering the remaining entries in row order and press ENTER]|.
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EXAMPLE: Keystrokes

[(1][(1]1,2,3 [>] 4,5.6,7,8,9[ENTER]

[[1 2 3]

will produce the matrix [4 5 6] .
[7 8 9]]

The E] key simply defines the number of columns. Now press DROP| to drop this

matrix from the stack. (When no command line is present you need not press the to

DROP.)

The numbers may be any mixture of real or complex numbers (ordered pairs), butif

any one entry is complex then the entire array will be complex.

Using the MatrixWriter. Enter the MatrixWriter application by pressing

MATRIX|. This activates a spreadsheet-type display, with a dark cursor resting in

the 1-1 position. Check to see that the @O=> [1| commandis active by noting a small
 

   

white box within this menu label (if the box is not present, simply press the white key

beneath the label to activate it.) Key in the numbers of the first row of the

matrix in row order separated by spaces and then press ENTER|. When you are ready

to go to the second row press E This will define the number of columns and position

the cursor at the 2-1 entry. Now key in the remaining entries of the matrix in row order

(separated by spaces) and press |[ENTER|. A final ENTER| will put the matrix onto

the stack.

EXAMPLE. The keystrokes 1,2,3 [v] 4.5.678,9

will produce this matrix on the stack:

[[12 3]
[456].
[7 8 9]]



196 CHAPTER4

Clearly, for entering simple matrices (say, with integer entries) the command line

is faster and easier to use than the MatrixWriter application. But the MatrixWriter

has the advantage that for more complicated matrices, an entry can be calculated (using

RPN syntax) on the command line within the MatrixWriter environment before it is

entered into its position. As an example, construct the matrix

[[{17 In3]
[ e m2])

Although the term MatrixWriter suggests that it can be used only for matrices,it is

actually an extremely versatile environment for entering, reviewing and editing both

vectors and matrices. To enter a vector using the MatrixWriter, say vector

[1 2 3 4], start with an empty stack and enter the MatrixWriter environment with

MATRIX|. Note that the menu key |VEC[]| appears. If you press 1, 2, 3, 4

ENTER| |[ENTER|, vector[1 2 3 4] will show on the stack. The presence of the

white box in |V EC [ indicates that vector entry is active. If you toggle off this key

to see without the box,the keystrokes 1, 2, 3, 4 [ENTER] [ENTER] will return

the matrix[[1 2 3 4]].

 

   

 

   

Whenever you enter the MatrixWriter with , the vector entry mode

VEC | is active by default. But if you enter the MatrixWriter with E to review

an array on level 1, the status of reflects the nature of the array: |VEC[]

for a vector and for a matrix. Finally, note that you can quickly convert the

 

   
 

   

vector [1 2 3 4] to thematrix [[1 2 3 4]] and vice-versa by starting with either

one on level 1, pressing E] to enter the MatrixWriter, then changing the status of

and pressing enter.

A final note about entering arrays using the MatrixWriter application. Array

entries may be real or complex numbers, but when you use the MatrixWriter to initially

enter a matrix into the calculator, the array object type (real or complex) is determined
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by the 1-1 entry. Thus, if the 1-1 entry is real, you cannot enter a subsequent entry as a

complex number. But, if the 1-1 entry is a complex number (an ordered pair), any

subsequent entry of a real number x will be accepted and written as the complex number

(x, 0).

Note: As a matter of convenience, any n-vector x = [x; x, ...x,] may be premultiplied

by any mxn matrix A to obtain Ax. Thus,in this context, x is treated asif it were an nx1

matrix. But you should note that this treatment of x is peculiar to this context: in all

other applications, x is a vector ... not a matrix. You can not, e.g., perform a multiplication

like xA, nor can you transpose x or take the determinant of a 1-vector [x].

Changing Entries. There are two waysto change entries in an array.

(i)  You can copy the array from level 1 to the command line with EDIT|, where

the white arrow keys then let you move to any desired entry and changeit.

You may use the key to delete characters, then simply key in the new

characters. Return the edited matrix to level 1 with [ENTER|.

(ii) You may copy the array into the MatrixWriter with E, position the

cursor over the entry to be changed, key the new entry into the command line

and press ENTER| to insert it at the cursor location. Return to the stack

with another |ENTER|. This method is especially useful because you can

calculate the new entry on the command line in RPN before entering it.

Separating into Rows or Columns. It is often desirable to separate a matrix

into its row or column vectors, and the appropriate commands are -ROW,located on

the MTH MATR ROW menu, and -»COL, located on the MTH MATR COL menu. For

example, with
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[[0 2 4 -6]

[6§ -1 8 3]

[-7 9 -4 2]

[6 -3 5 8]]

on stack level 1, press to separate the matrix into its four row vectors. Notice

that stack level 1 contains the number of rows. Press IE five times to see the first row

vector on level 5, then press to return to the normal stack environment.

The inverse commands to -»ROW and -COL are ROW—- and COL—, located next

to the 5ROW and -COL commands on the appropriate menus. With four vectors on

levels 1 through 4, simply press 4 to build the matrix having the four vectors

as columns:

4: [0 2 4 -6] [[0 5 -7 6]
3: [5-1 8 3] [2 -1 9 -3]

2 [7 9 -4 2] 4[COL2]retums [4 8 -4 5]
1: [6-3 5 8] [-6 3 2 8]]

Deleting and Inserting Rows or Columns. The commands ROW- and ROW+,

located on the MTH MATR ROW menu, can be used to delete and to insert rows.

Analogous commands for column deletion and insertion, COL~ and COL+, appear on the

MTH MATR COL menu. For example with

([ 9-7 5 0]
[ 3 1 3 6]
[-3 5 -6 -9]
[ 4 -1 -3 5]
[-8 0 2 7]]
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on stack level 1, press 2 to delete row two. Notice that the diminished matrix

[[ 9-7 5 0]

[-3 5 -6 -9]

[ 4 -1 -3 5]

[-8 0 2 7]]

appears on level 2 and the deleted row [3 1 3 6] appears on level 1. Then,to insert

this deleted row as the third column of the diminished matrix, press 3:

[[9 -7 3 5 0]

[-3 5§ 1 -6 -9]

[4 -1 3 -3 5]

[-8 0 6 2 7]]

More generally, the ROW+ and COL+ commands can be used to insert all of the

rows, or columns, of one matrix into another matrix at a specified position. With
[[1 2 3] [[11 12]

A= [ 4 5 6] onlevel2andB= [ 13 14 ] onlevel 1,pressZ to insert

[ 7 8 9]] [15 16]]

the columns of B into matrix A, starting at the column 2 position:

[[1 11 12 2 3]
[4 13 14 5 6] .
[7 15 16 8 9]]

ROW+ works similarly.

Matrix Arithmetic

Addition and subtraction of matrices proceedsjust as for real numbers. To calculate

A+B simply key in matrix A and press ENTER|, then key in B and press . Pressing E]

instead of calculates A-B. Note that the commands and E] add or subtract the
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object on level 1 to or from the one on level 2. In case A and B are stored in user memory,

press to add.

To multiply a matrix by a scalar ¢, key in the matrix and press ENTER|, then key

in scalar ¢ and press [+]. Multiplying by -1 can be done with a single keystroke by

pressing the |+/_‘ key. 

To calculate a matrix product AB, proceed as in forming A+B but press L"'__J instead

of . Note that in calculating AB, matrix A must be on level 2 and matrix B on level 1.

Thatis, the number of columns of the matrix on level 2 must equal the number of rows of

the matrix on level 1.

Unlike the case for real or complex numbers, you cannot use the I_T_l key to calculate

powers of a square matrix A. You can, however, obtain A2 by using the @ key or by

typing and entering the command SQ. For more general powers of A, say Ak where k =1,

2,3,...,you can use the following program.

 

A.KTH (K™ power of a matrix)

Inputs: level 2: a square matrix A

level 1: an integer K

Effect: returns AKX, the K" power of A

«—> AK « A SIZE 1 GET IDN 1 K FOR | A * NEXT » »   
0-1]

-1 0] . , .
EXAMPLE. To calculate BS for B = 0 , begin by entering the matrix onto

1
1]

0]]
[[0 16 0 -16 ]
[16 0 -16 O ]

level 1. Now press5 A.KTH to see [0 -16 0 16]

[-16 0 16 0]

0 1

10

0 -1

10
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More generally, given a square matrix A and an arbitrary polynomial

p(x) = a;x™ + a,_;x™1 + ... + a;x + a5, you may wantto find p(A) = A® +a__,A™1 + .. +

a;A +a.l. The following program, P.OFA, does just that.

 

P.OFA (Polynomial evaluation at A)

Inputs: level2: avector[a, a,, ..a, a, ]of coefficients

level 1: a square matrix A

Effect: returns p(A) = a,A" + a,_,A™"' + ... + a,A + a]

« > LA« ASIZE1 GET » K«L 1 GET 2 L SIZE

OBJ— DROP FOR N A * L N GET K IDN * +

NEXT » » »  
 

EXAMPLE. Find p(A) for p(x) = 1.3x5 — 4x4 + 2.Ix2 + 5x + 6.2 and
[[1 2 3 4]

A= [5 6 .7 8] . Enter the coefficients as a vector [1.3 -4 0 21 5 6.2].
[9 8 .7 6]

[5 4 3 2]]

Next enter matrix A. Set 3 FIX display mode and press P.OFA to see

[[12.455 6.677 7.099 7.521]
_ [16.975 23.597 17.819 18.241]
" [20.545 20.123 25901 19.279] °

[ 9825 9.403 8981 14.759]]

p(A)

With a matrix on level 1, the menu key, located on the MTH MATR

MAKE menu,returns the conjugate transpose (i.e., the conjugate of the transpose). Thus,

if the matrix on level 1 is real, | TRN | returns its ordinary transpose. To obtain the

ordinary transpose of a complex matrix, press then CONJ |. The
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CONdJ command, on the MTH CMPL menu, returns the complex conjugate of its input

argument.

Determinants and Inverses

With a square matrix A on stack level 1, pressing on the MTH MATR

NORM menu (second page) will return the determinant of A, and pressing to

execute the INV command will return A1 in the event that detA # 0.

[[ -4 4 8 8]

[-16 12 16 16]
EXAMPLE. Key in matrix A = [-8 4 12 8] and press ENTER| three times

[ 8 -4 -8 -4]]

to put three copies of A on the stack. Now press to show detA = 256. Asin this

example, the HP-48G and 48GX will always return an integer for the determinant of a

matrix having only integer entries. Use , then to show Al=

[[ .75 -25 -5 -5]

[ 1 -26 -1 -1]

[ 5 -256 -25 -5]

[ -5 26 5 .75]]

. Finally, press E' to check that AA'1=1.

However, some care must be exercised with these commands in order to obtain

[[1 1 1]

results that are mathematically correct. To make the point, enter [ 3 6 4] and

[ 3 6 4]]

[[ .101031 .101031 .101031]

multiply it by .101031 to obtain matrix B = [ .303093 .606186 .404124] . Use

[ 303093 .606186 .404124]]

ENTER| to put two more copies of B on the stack then execute the DET command to

obtain detB = 6.1E-17. Drop the determinant, then use to get
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[ [ 19.7959042274 3.33333333333E14 -3.33333333333E14 |
,_ [-9.89795211371 1.66666666667E14 -1.66666666667E14 | .

[ 0 -5.E14 5.E14 1]
B.

Look suspicious? Confirm your doubt by pressing SWAP|, then [Z] to show

[[ 2 2 2]

BB = [-1 -1 -1] .

[ 00 0]]

Matrix B,like A, has two identical rows. Thus, detB = 0, so B has no inverse. One thing

is clear: using the calculator to calculate determinants and matrix inverses may yield

incorrect results. As in this example, the calculator may return a non-0 value (the result of

round-of error) for the determinant of a singular matrix and then a ridiculous candidate

for an inverse. The numerical calculation of matrix determinants and inverses is

extremely sensitive to round-off error, scaling, and choice of numerical algorithm in a

floating point environment. Thus, our advice is to proceed with caution in a calculator

environment and, whenever possible, avoid calculating determinants and inverses.

To clean up round-off error, we recommend that you round your answerto a desired

number N of decimal digits, 1 < N < 11. For example, to round the matrix

[[1 O -.000000000001 ]

[0 1 .000000000001 ] to 11 decimal places. Simply enter 11 RND to obtain

[0 0O .999999999999 ]]

[[1 0 O]
[0 1 0].
[0 0 1]]



204 CHAPTER4

ACTIVITIES I

1. Consider the following matrix

(7 2 4 6]
Ao 6 -1 -4 -4]

4 4 5 -2]
[- 16 -12 -14 -3]]

(a) Find A%4-8A3+22A2-40A + 251

(b) Use yourresult from (a) to find a polynomial in A that gives Al

(c) Calculate A-! from your answer in (b).

(d) Check your result from (c).

[[1 -3 4] [[7 0 -1]

EnterandstoreA= [ 2 5 0] andB= [ 5§ 3 2].

[ 6 -3 4]] [9 -6 0]

(a) Use the ROW+ and COL+ commands to build the partitioned matrices

[A B] and [Q]

A O A B
(b) Build the partitioned matrices [ 0 B] and [I O] (hint: the command 3

IDN, on the MTH MATR MAKE menu, will build the identity matrix of order

3).
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For an input list {m n}, where m and n are positive integers, the RANM command

(located on the MTH MATR MAKE menu) will generate a random mxn matrix with

entries from the set Z;, = {0, 1, £2, .. ., 9}.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

Generate a random 3x4 matrix A over Z,, and calculate AAT; carefully

observe your result.

Repeat part (a) using random 4x5 and 5x6 matrices.

Formulate a conjecture based upon your observations.

Prove your conjecture.

Seed your calculator's random number generator with 1 by entering 1 RDZ,

then generate two random 4 x 4 matrices A and B with the RANM command

(see activity 3, above).

Combine A and B into the complex matrix A + iB by executing the command R

— C, found on the MTH CMPL menu; transpose A + iB.

Separate your answerin (b) into its real and imaginary parts with the

command C — R (also on the MTH CMPL menu), SWAP levels 1 and 2 and

then recombine the two matrices into a complex matrix with R - C. Now

extract column 4.
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3. SYSTEMS OF LINEAR EQUATIONS

The standard methods for dealing with linear systems in introductory linear

algebra courses are the elimination methods, consisting of several variants of Gaussian

elimination with back substitution.

Gaussian elimination

In its traditional from, the Gaussian elimination algorithm for a square linear

system Ax = b adds suitable multiples of one equation to the others with the goal of

obtaining an equivalent upper triangular system Ux = b'. It may be necessary to

interchange equations at various times for the elimination process to continue. Back

substitution then solves Ux = b' systematically by solving the last equation forits single

unknown, then putting this value into the next-to-last equation and solving for the next-

to-last unknown, and so on until all values for the unknowns have been determined. All

this is usually carried out without reference to the unknowns by working with the

augmented matrices [ Alb]and [ Ulb' ]. Computationally, the only source of erroris

round-off, induced by the computational device itself.

The HP-48G and 48GX units include built-in commands on the MTH MATR ROW

menu to efficiently perform the row operations that transform [ Alb ] into [ U|b']. With

a matrix A on level 1, the RClJ command is used to multiply row I of matrix A by scalar

c and then add the result to row ], and the RSWP command is used to interchange rowsI

and J. The RCI commandis used to rescale row I by multiplying it by scalar c.



LINEAR ALGEBRA 207

To solve this linear system

2x; +3x; + 2x3 - x4 = 4

4x; -6x73 + X3 + 2x4 = -1

4x; +8xp + 7x3 + 2x4 = -3

2x; +4xp + X3 - 4x4 = 2

using these commands, begin with the augmented matrix [ A|b] on level 1:

[ 3 2 -1 4]

1 2 -1]

7 2 -3]

1 -4 2]]

To add 2 timesrow 1 torow 2, press 2,1,2 |RCIJ |:

[
[ -

[

[ N
A
A
N

&
~

0
O
O

[[ 2 3 2-1 4]
[0 0 5 0 7]
[ 4 8 7 2 -3]
[ 2 4 1 -4 2]]

Thendo-2,1,3|RCIJ followed by -1,1,4 |RCIJ to finish the elimination in the

first column:

Now interchange rows 2 and 3 with 2,3 |[RSWP |, then complete the elimination in the

second column with-5,2,4,|RCIJ |:
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[([2 3 2 -1 4]
[0 2 3 4 -11]
[0 0 5 0 7]
[0 0 -25 -5 35]]

A final .5, 3, 4 |RC1J| producesthe desired triangular system [ Ul b' ]:

[[2 3 2 -1 4]
[0 2 3 4-11]
[0 0 5 0 7]
[0 0 0-5 7]]

Back substitution by hand shows the solution vectortobe[7.1 4.8 14 -14]. To

assist with the back substitution process, we use the following program BACK.

 

BACK

Inputs:

Effect:

 

(Back substitution)

level 2: an nxn upper triangular matrix U

level 1: an n-vector b

Solves the linear system Ux=b by back substitution.

Solves for x,, and halts until you press

,then backsolves for x,_, and halts, etc.

After x,, X,.,, --., X, are on the stack, a final

returns x = [ X4, X5, ..., X,].

« > Ab « ASIZE1 GET - N « {N} 0 CON 'A(1,1)' EVAL TYPE

IF THEN DUP R—»C END — X « N 1 FOR J 'b(J)’ EVAL 1 N FOR

K 'A(J,K)' EVAL NEXT N —ARRY X DOT - 'A(J,J)’ EVAL / HALT

DUP X {J} ROT PUT 'X' STO -1 STEP N DROPN X » » » »
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To apply |BACK]| to the above system, we start with the upper triangular system

[Ulb'], above, on level 1. Press 5 to split off the rightmost column, then press

BACK to see the last component of the solution vector, -1.4. Each press of

CONT] will return the next component. When all four components are on the stack, a

final CONT| shows the solution vector tobe [ 7.1 -4.8 1.4 -1.4], as before.

To speed up the elimination phase without losing control over the process, we

encourage our beginning students to use the following program ELIM. Program ELIM

pivots on a specified entry - the pivot - to produce zeros below that entry. It is written

to handle both real and complex matrices and can be used, more generally, to convert a

matrix to row-echelon form. Notice that the program will abort and print the error

message "PIVOT ENTRY IS 0" in case the intended pivotis zero. In this event, simply

press UNDO| to recapture the matrix before the last application of ELIM.

 

ELIM (Gaussian elimination)

Inputs: level 3: a matrix

level 2: an integer K

level 1: aninteger L

Effect: pivots on the (K,L)-entry of the matrix to produce

zeros below the pivot.

« -5 A KL « IF 'AK, L) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET > M « K 1 + M FOR | A 'A(l,L) EVAL NEG

'A(K,L)’ EVAL / K | RCIJ 'A" STO NEXT A 10 RND » END » »    
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EXAMPLE . To use ELIM and BACKto solve the linear system

5x,

-5%,

10x,

-5%,

9x,

9x,

9x,

9x,

+

+

16x, + 6x, = 48
16x, - 8x, = -45 ,
24x,4 8xy = 72

8xy + 8xy = 3

+

begin with the augmented matrix [A | b]

[[ 5-9 16 6 48]

[-(5 9 -16 -8 -45]
[10-9 24 8 72]
[-5-9 8 8 31]]

on level 1. The sequence of commands 1,1| ELIM ;2,3 RSWP |;2,2| ELIM |;3,4

RSWP returns the equivalent upper triangular system [U|b]

[[65-9 16 6 48]

[0

[0

[0

9 -8-4-24]
O 8 6 3]°
0 0-2 3]]

Press 5, to split off the last column. Then, BACK| followed by four
applications of [CONT| shows[3 -2 1.5 -1.5] as the solution.

Later, we shall give a calculator routine for the variant of Gaussian elimination

known as Gauss-Jordan reduction, the effect of which is to do both elimination and

back substitution in one routine.

We have already seen that row interchanges may be needed in order for Gaussian

elimination to proceed to its natural conclusion. In so doing we are simply avoiding zero

pivots. To solve many of the linear systems that arise in science and engineering, it is

just as important to avoid using pivots that are extremely small, because division by

small numbers in floating point arithmetic may induce considerable error. Thus, a
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common pivoting strategy is to choose as the pivot any element in the pivot column

whose absolute value is maximum. The need for this so-called partial pivoting strategy

is difficult to illustrate on the calculator because of its use of 12 digit mantissas.

Nevertheless, we require that our students adopt partial pivoting by using the RSWP

command to reinforce their understanding ofthis technique.

LU-factorizations

In addition to recognizing Gaussian elimination as an orderly process for converting

a square matrix to upper triangular form, it is important to understand it as a

factorization process. This understanding is not only interesting from an algebraic

viewpoint; it also lies at the heart of many computer codes used to handle linear

systems.

When the matrix A in a linear system Ax = b can be brought to upper triangular

form U by Gaussian elimination without row interchanges, then A = LU where L is

lower triangular with 1's along its diagonal and the entries below the diagonal are the

negatives of the multipliers used in the elimination process. For example,if 3 times row

1 is added to row 2 to produce a zero in the (2, 1)-entry of U, then the (2, 1)-entry of L is

-3. When row interchanges are needed to avoid zero pivots, then A = LU is no longer

valid;it is replaced by a factorization of the form PA = LU where P is a permutation

matrix that accounts for the various row interchanges, and the multipliers in the lower

triangle of L are rearranged accordingly.

Program L.U, given below, is but a slight modification of ELIM. In addition to

performing the basic elimination step L.U stores the negatives of the multipliers below

the diagonal in a matrix L which initially is the identity matrix. Program —LP

creates the initial L and a matrix P, also the identity matrix. If row interchanges are

needed, the proper use of RSWP must be made with both L and U in order to continue,

and program L.SWP will effect the necessary interchanges of the multipliers in L. At
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the end, the calculator shows U on the stack, and L and P as stored variables. As before,

complex matrices are allowed.

 

LU (Used to get LU-factorizations)

Inputs: As stored variables: variables L and P, obtained

from program —LP(below), each containing

an identity matrix.

level 3: a square matrix A

level 2: an integer K

level 1: the integer K

Effect: Pivots on the (K, K)-entry to return a row-

equivalent matrix with zeros below the pivot; also

puts the negatives of the multipliers into column K

of L below the diagonal. Press to view

L. Used iteratively to obtain an LU-factorization.

« 5 A KK « IF 'A(KK) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET-> M « K 1 + M FOR | A 'A(l,K) EVAL NEG

'A(K,K)' EVAL / DUP NEG 10 RND 'L(l,K)' STO K | RClJ 'A' STO

NEXT A 10 RND » END » »    
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L by

- LP (Make L and P)

Input:  level 1: a square matrix A

Effect: Creates variables L and P, each containing an

identity matrix the same size as A. Used as the

initial start-up to obtain an LU-factorization.

« DUP IDN DUP 'L' STO 'P' STO »

L.SWP (Interchange multipliers in L)

Input:  level 1: a square matrix

level 2: an integer|

level 3: anintegerdJ > |

Effect: Interchanges the parts of rows | and J that lie

to the left of the (l,1)-entry; used to update

interchanging multipliers.

« > AlJ « ASIZE 2 GET >N « A1 11 - FOR K 'A(l,K) EVAL

{J K} SWAP PUT NEXT 1 1 1 - FOR M 'A(JM)" EVAL {I M} SWAP

PUT NEXT » » »

 

Step 1: Enter A onto level 1, and press to create appropriate starting

matrices L and P. Interchangerows1and 2in A with1,2| RSWP |, recall

EXAMPLE . Get an LU-factorization of A =

[[2 3-1 2]
[-4-6 2 1]
[2 4-4 1]
[4 8 2 7]

; use partial pivoting.
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Step 2:

Step 3:

Step 4:

P to the stack and make the same row interchange, then store the result in P

with. Now press 1, 1 to see

[[4-6 2 1]
[0 0 0 25]
[0 1-3 15]
[0 2 4 8]]

Since the (2, 2)-entry of this last matrix is 0, we must interchange row 2

with row 4. Thus press 2, 4| RSWP to effect the interchange, then bring

P to level 1, make the same row interchange with RSW[P and store the

result in P. Now bring L to level 1 with , interchange multipliers

with 2, 4| L.SWP and store the resultin L.

[[-4 -6 2 1 ]

0 2 4 8
Now execute 2, 2 to see [ ] . Store this as U.

[0 0 -5-25]

[0 0 0 25]]

(100 0]
-1 100]Getl= ' "o ¢ 4 o) with L], then do [U] [*] to see

[-5 00 1]]
[[-4-6 2 1]
[4 82 7]LU = .[2 4-4 1]
[2 3-1 2]]

Since P is a permutation matrix, we know that P-1 = PT. Thus P-'LU =

PTLU = A. Recall P to level 1 and get PT, SWAP levels with LU and then use

[* JtoseePTLU= A.
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Once we have A = LU we can solve Ax = b for different b's by first using forward

substitution to solve Ly = b for y, then back substitution to solve Ux =y for x. (In the case

of PA = LU, we solve Ly = Pb in the first step.) Indeed, this is often the preferred

method built into computer codes for solving linear systems. Why? Assume that A is

nxn and that both A! and the factors L and U are available. Using A-! to obtain x = A-b

requires n2 multiplications. Solving Ly = b for y by forward substitution and then

solving Ux = y for x by back substitution also requires n2 multiplications. But the

difference is seen in comparing the number of multiplications required to obtain A-! to
n3

the number of multiplications required to obtain the factors L and U: n3 verses 3 For

large n, the savings in using L and U is substantial.

To apply forward substitution to Ly = Pb on the calculator, use the following

program FWD.

 

FWD (Forward substitution)

Inputs: level 2. an nxn lower triangular matrix L

level 1: an n-vector b

Effect: Solves the linear system Lx = b by forward

substitution. Solves for x, and halts until you press

, then solves for x, and halts,etc.

After x,, x,, ..., X, are on the stack, a final [CONT

returns x = [ x,, X,, ..., X,].

« > Ab « ASIZE1 GET -5 N « {N} 0 CON 'A(1,1)' EVAL TYPE

IF THEN DUP R»C END - Y « 1 N FOR J 'b(J)’ EVAL 1 N FOR

K 'A(J,K) EVAL NEXT N —-ARRY Y DOT -'A(J,J)'’ EVAL / HALT DUP

Y {J} ROT PUT 'Y' STO NEXT N DROPN Y » » »»    
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EXAMPLE. To solve 2x; + 3xy = x5 + 2x, = 1

-4x, — 6%, + 2X3 + X4 = 2

2x; + 4%y, - 4x3 + x4 = 3

4x, + 8xy, + 2x53 + 7x, = 4

by using an LU-factorization, we first obtain a PA = LU factorization of the coefficient

matrix

[[2 3 -1 2]

[-4 -6 2 1]

A= 12 4-4 1] -
[4 8 2 7]]

Since A is the matrix of our last example, we shall use the P, L and U obtained there:

[[0100] [[1 00 0] [[-4-6 2 1]
[000 1] [-1 1 0 0] [0 2 4 8]

P=1001 0] L= 1.5 5 10]" U= 10 0-5-25]
[1 00 0]] [-5 0 0 1]] [0 0 0 25]]

Letb=[1 2 3 4]. To solve Ly = Pb for y by forward substitution, calculate

Pb=[2 4 3 1]). Then, with L on level 2 and Pb on level 1, and four

applications of [CONT show y tobe[2 6 1 2]. Then with U on level 2 and

[2 6 1 2]onlevell, BACK and four applications of CONT show the solution x

of Ax=btobe[-21 1 -6 8]

The HP-48G and 48GX calculators include a command LU that produces an LU-

factorization PA = LU which differs from the one we have just described in that U has

1's along the diagonal and the pivots appear on the diagonal of L. The method used to

obtain this factorization is known as the Crout algorithm, employs partial pivoting
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throughout, and is particularly well-suited to calculator use. For example, with our

previous matrix

[[2 3 -1 2]

A= [-4 -6 2 1]

[2 4 -4 1]

[4 8 2 7]]

on level 1 of thestack , pressing on the MTH MATR FACTR menu will return

[[0O 1 0 0]

= [00 01 to level 1100 1 0] 2"
[1 0 0 0]]

[[ 1 1.5 -.5 -.25]

U= [0 1 2 4 ]tolevel 2, and
[ O 0 1 5]

[ O 0 O 1]

[[-4 0 0 0]

L= [4 20 0] to level 3.
[ 2 1 -5 0]

[ 2 0 0 25]]

You will recognize this U as a rescaled version of the one we obtained earlier: row i of

ourearlier U has been rescaled by multiplying by u jj. Likewise, L is just a rescaled

version of the one we obtained earlier: column j of our earlier L has been rescaled by

multiplying by uj;.

Unlike our ELIM and L.U programs, which round-off intermediate computations to

10-digit precision to clean up round off errors, the built-in matrix routines on the HP-48G

and 48GX, such as the LU routine, perform all intermediate computations to 15-digit

precision and then pack the computed results to the displayed 12-digits.
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Finally, although our discussion has concentrated on developing an understanding

of Gaussian elimination and its interpretation as an LU-factorization, you should note

that the HP-48G and 48GX units enable you to solve any non-singular linear system by

applying an LU-factorization with a single keystroke. With an invertible matrix A or

order n on stack level 1 and a matrix B having n rows on level 2, the command /, executed

from the keyboard by pressing the key, will effectively solve the linear system(s)

Ax = B by the method cited earlier: obtain an LU-factorization PA=LU, then solve LY =

PB for Y by forward substitution, then solve UX =Y for X by back substitution. Try it

with the last example.

Gauss-Jordan Reduction

Although Gaussian elimination with back substitution is more efficient than

Gauss-Jordan reduction for dealing with linear systems in general, and is certainly the

preferred method in professional computer libraries, students have traditionally used

Gauss-Jordan reduction for the small-scale problems employed to learn the basic

concepts. This was done to minimize the rational number arithmetic involved when

Gaussian elimination is performed by hand on matrices with integer entries.

Gauss-Jordan reduction differs from Gaussian elimination in two ways:

(i) all pivots are converted to 1.

(ii) the basic pivot process is used to produce zero's both below and above the

pivot element.

Gauss-Jordan reduction, when applied to a non-zero matrix A, produces what is

popularly called the reduced row echelon form (RREF) of A:

(a) any zero rowslie at the bottom;
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(b) the first non-zero entry in any non-zero row (the pivot) is a 1, and lies to the

right of the pivot in any preceding row;

(c) the pivot is the only non-zero entry in its column.

The reduced row echelon form of A is important because it represents the ultimate

we can get from A by applying elementary row operations. As such, it is uniquely

associated with A; that is, each non-zero matrix A has one and only one RREF.

When Gauss-Jordan reduction is applied to the augmented matrix [ Alb ] of an

arbitrary linear system Ax = b we obtain an equivalent linear system Ux = b' whose

augmented matrix [ Ulb' ] is the RREF of [ Alb ] and whose solutions are practically

obvious. Specifically, any variable (unknown) associated with a pivot is called a pivot

variable while the other variables, if any, are called free variables. If the last non-zero

row of [ Ulb' ] looks like [0 O ... 0 1], the system has no solution. In any other case

there is at least one solution: a unique solution if there are no free variables, and

infinitely many when free variables are present. The pivot variables are usually

expressed in terms of the free variables, and values for the free variables may be

arbitrarily (i.e., freely) chosen. Although impractical for large linear systems, Gauss-

Jordan reduction is in popular use as a device to solve small systems. And it is easy to

devise a calculator program for students to use to step through the reduction process.

The following program, PIVOT, pivots on a specified entry to convert the pivot to 1

and to produce zeros above and below the pivot. Students can use it in conjunction with

the command RSWP to produce the RREF matrix. The program is written to

accommodate both real and complex matrices.
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PIVOT

Inputs:

Effect:

 
« 5 AKL « IF 'AK, L)) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET - M « M IDN 'A(1, 1)’ EVAL TYPE IF THEN

DUP 0 CON R—»C END 1 M FOR 1| 'A(l, L)’ EVAL {I K} SWAP PUT

NEXT INV A # » 8 RND END » »

(Gauss-Jordan Pivot)

level 3: a matrix

level 2: an integer K

level 1: aninteger L

converts the (K, L)-entry to 1 and then pivots on

that entry to produce zeros above and below the

pivot.

  
EXAMPLE . Solve the linear system

2)(1

'2X1

6X1

-2)(]

-3x3 + x3 - 3x4 + 2x5 = 6

+3x, - X3 + 4x4 + x5 = -5

-9%, + 7x3 — 7x4 + 5x5 = 20

+3x + 3x3 + 3x4 - 95 = -6

by applying Gauss-Jordan reduction with partial pivoting to the augmented matrix.

The sequence of commands 1, 3 RSWP |; 1,1 |PIVOT |; 2,4 RSWP I ;2,3

PIVOT |;34| RSWP |;3,4 PIVOT returns the following matrix as the reduced
 

 

row-echelon form:

[[ 1 -15
[ 0
[0
[ 0

 

0 0 6375 45]
0 1 0 175 0]
0 0 1 3 1]
0 0 0 0 01]]
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Thus x; and x5 are free variables and all solutions are given by

X= [ 45 + 1.5X2 - 6.375X5, X2, 1.75X5, 1-3xs, Xs] .

Although the reduced row-echelon form of a matrix is not in use at the professional

level to solve linear systems, it can be an effective pedagogical tool in helping students

understand the role of pivot point variables versus free variables and such vector space

concepts as spanning, independence, bases and eigenspaces. The HP-48G and 48GX

calculators provide access to this form by means of the RREF command, located on

the MTH MATR FACTR menu. With a matrix A on level 1 of the stack, simply press

the key (or type and enter the command RREF) to obtain the reduced row-

echelon form. After some initial experiences in producing this form with program

PIVOT and the command RSWP, students should be encouraged to call upon the RREF

command thereafter. The underlying code uses partial pivoting throughout.

ACTIVITIES 11

1. Consider the linear system

X1 + X2 + X3 - 2x4 =-1

il w3X1 -3X2 - 6x3 +12X4

2x7 +4xp + x3 + 2x4 = 3

-5)(1 + Xz +17X3 —24)(4 =-20

(a) Use Gaussian elimination with partial pivoting and back substitution to solve

the system.

(b) Solve the system by finding and applying an LU-factorization with partial

pivoting; do this in three ways:

(i) Use program L.U to construct an LU-factorization;

(ii) Use the built-in command LU to obtain an LU-factorization;
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(iii) Use the / command.

(c) Use Gauss-Jordan reduction to solve the system.

2. Find bases for the row space, column space and null space of the following matrix

[[1 2 3 4 5]
Ao [-1-2-3-6-11]

[2 4 8 5 11]
[-1 -2 2 -6 -6]]

3. Consider the two sets B = { u;, u,, u;} and B' = { v, v,, v, } in R%, where

u,=[1020]Lu,=[204 -3]%,u;=[1221]Tand

v;=[214-11T,v,=[1224],v,;=[020 1]

(a) Show that both B and B' are independent sets of vectors and that Span B =

Span B'.

(b) Let W =_Span B =SpanB'. Show thatw=[1 2 2 -2]isin W.

(c) Find the change-of-basis matrix P from the B-basis to the B' basis for W.

Then use P to express w in terms of the B'-basis.

4. ORTHOGONALITY CONCEPTS

Orthogonality concepts lie at the very heart of modern linear algebra. Orthogonal

vectors, projections, bases, subspaces and matrices all combine to produce not only a rich

and elegant theory, but also powerful numerical techniques that are widely used in the

more serious applications of matrix-oriented linear algebra. We shall begin with

projections and the Gram-Schmidt process.

The following program PROJ may be used to calculate the projection vector Px of

vector x onto vectory.
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PROJ (Projection vector)

Inputs: level 2. a vector x

level 1: a vector y

Effect: Returns the projection vector Px to level 1

« 5> XY « XYDOTY * YYDOT/ » »    
EXAMPLE. Forx=[5 15 5]"andy=[3 4 5] find Pyx and verify that x-Px is

orthogonal to y.

Put two copies vector x on the stack, followed by two copies of vector y. The

command 4 ROLLD will rearrange the stack to

level 4:

3: x

2: x

1. y

Press PROJ| to see P,x, then = to see x-P,x, then (on the MTH VECTR

menu) to verify that ye(x-Pyx) = 0.

The Gram-Schmidt Process

The Gram-Schmidt process builds an orthonormal basis q;, q,, ..., q from a given

basis Xy, Xy, ..., X, for a subspace W. Here's how it works in R".

X1

x|l

constructed orthonormal vectors gy, ..., q;, we construct g,as follows:

 Let q, be the normalized version of x, : q; = . Then, inductively, having
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(*)  gj,q = X;,1 — (the sum of the projections of x;,, onto q;, g, ..., q;), normalized.

Thus, before normalization, g, = x;,; — (the projection of x;,, onto the subspace spanned

by qy, -, qy-

Let's look at several steps:

Step 1: q, = x,, normalized

Step2: q,=x- (x,°q,)q,, normalized
—_—
projection of x,onto g,

Step 3: q,=x;-(x;0q,)q, - (x3°q,)q, , normalized
L J
 

projections of xzonto q, and 9

etc.

This is the standard Gram-Schmidt process (there are variations). You should recall

that, at each stage, Span [ x,,. . ., X; ]=Spanlqy,... q ], so when we're done, W = Span

[x4,...%] =Span[q,,... q;] and we have an orthonormal basis for W.

To use the HP-48G or 48GX, we begin with the basis vectors stored as variables X1,

X1, ..., XK in user memory and execute a simple one-line program to carry out the

construction at each step.

Step1: « X1 X1 ABS / EI Q1 (calculates q, and

stores it as Q1)

Step2: « X2 X2 Q1 PROJ — DUP ABS / [] @2

(calculates q, and storesit as Q2)
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Step 3: « X3 X3 Q1 PROJ - X3 Q2 PROJ - DUP ABS / |ENTER| |EVAL

E] Q3 (calculates g5 and stores it as Q3)

. and soon.

EXAMPLE. Apply the above construction to the vectorsx, =[2 1 0],x,=[0 1 1],and

x3=[2 0 2]inR3,

You may not recognize the entries, but the Q1, Q2 and Q3 you constructed are actually
1

the calculator's approximations to q, =r/-_§ [21 O],q2=31% [-2 4 5],andq3=-;- [2 4

4]. Once you have Q1, Q2, Q3 as stored variables, you should check to see how close

they are to being orthonormal by putting Q1, Q2, Q3 on the stack (in that order),

|

pressing 3 COL—> to create a matrix Q = Q1 Qz % , then

|1

SWAP E, to see QTQ. Clean up round-off error with 11 RND and you should see I,.

 

   

The Gram-Schmidt process, as presented above, is numerically unstable in floating

point arithmetic. Round-off errors may conspire to produce vectors that are not,

numerically, orthogonal. Although there is a variation of the Gram-Schmidt process

that is more stable, it is not so geometrically obvious. In practice other methods are

used: Householderreflections or Givens rotations. These are orthogonal matrices that

can be used very effectively to obtain QR-factorizations.

QR-Factorizations

Just as Guassian elimination on a matrix A amounts to an LU-factorization A = LU,

the Gram-Schmidt process applied to a matrix A having independent columns amounts
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to a QR-factorization A = QR where Q has orthonormal columns and R is invertible

upper (or right) triangular.

To see this, look back at the Gram-Schmidt process, and in each step solve for the

x-vector:

Step 1: x, is a scalar multiple of q,, say x; = r;q,

Step 2: x,isa linear combination of q; and q,, say x, = r;,q; + I'»nq,

Step 3: x,is a linear combination of q;, q, and qj, say X3 = ry3q; + I'sq, + I'33q;

Step j: X is a linear combination of q,, q,, ..., qj, say X = Iyqy + Ipqy + -+ T;q;.

Let A have x,, x,, ..., X, as its columns, left-to-right, and let Q have q,, q,, .., q, as

its columns, also left-to-right. Let R be the right triangular matrix

n Tn T'n T

In terms of the matrices A, Q and R the above steps show that
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collof A = Q(col1ofR)

col2of A = Q(col2of R)

col30f A = Q(col 3 of R)

coljof A = Q(coljofR)

A=QR.

Moreover,since q, q,, .., G, are orthonormal, we know that QTQ =T and the ith

coefficient in

X; = Ty+ Typ + oo + TG

is r;; = q;ox; . Also, ry;# 0 because ry; = ||x|, rp, # 0 because ry, = [ix, - (x,*q;)q, I, etc., and

so R is invertible. Finally, from QTQ =1and A = QR we have QTA =QTQR =R.

Thus, when the Gram-Schmidt process is applied to the columns of an mxn matrix

A whose columns are independent we get a factorization A = QR, where Q is the same

size as A and has orthonormal columns, and R = QTA is the nxn invertible right

triangular matrix whose non-zero entries are given by r;; = q;*x;.

To obtain A = QR on the HP-48G or 48GX:

(1) Start with A and its columns X1, X2, ..., XN stored in user memory.

(2) Construct Q1, Q2,..., Qy from X1, X2, ..., XN by the Gram-Schmidt process.

(3) Construct and store matrix Q:

Q1 Q2 .. aN N [coL-]| [] a [sTO)

(4) Construct and store matrix R: R = QTA.

You can verify that A = QR as follows:
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Press to put A on level 2 and Q*R on level 1, then

use the command RNDas necessary to clean-up round-off error in Q* R. Now press

[ SAM El. ([ SAM E] is located on the second page of the PRG TEST menu; a 1
 

 

indicates A = QR, and a 0 indicates A # QR. If you forget to clean up QR, you

probably won't get A = QR.)

Continuing with the vectors from our last example, construct A as

[[2 0 2]
A= [110] .

[0 12]]

After constructing Q you should see

[ [ .894427191 -.298142397 333333333334 ]

Q= [.4472135955 .596284794 -.666666666665 ] -

[ 0 .7453559925  .666666666665 ] ]

After constructing R you should see

[[ 22360679775 .4472135955 1.788854382 |
R= [ 0 1.3416407865  .894427191 |

[ .000000000003 0 2 1]

Verify that A = QR:

[;_—| 11 RND returns 1. Now purge R, Q, A,

Q3, Q2, Q1, X3, X2, X1 from user memory.

The factorization A = QR of a matrix A with independent columns produced by the

Gram-Schmidt process is, typically, the only type of QR-factorization encountered by

students in introductory linear algebra. But QR-factorizations of more general matrices,

obtained by more sophisticated numerical methods, are in widespread use by the

professional matrix codes used in science and engineering. The HP-48G and 48GX
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calculators incorporate such professional level code for a variety of applications,

including producing least squares solutions to under-determined and over-determined

linear systems, and for the calculation of eigenvalues and eigenvectors. Although a

detailed discussion of these ideas is beyond the scope of this brief chapter, a few

comments on the QR-factorization made accessible to users of the HP-48G series

calculators is in order.

The command QR, located on the MTH MATR FACTR menu, will return a QR-

factorization of any mxn matrix on level 1: AP = QR. Here, Q is an mxm orthogonal

matrix, R is an mxn upper trapezoidal matrix, and P is an nxn permutation matrix.

Matrix P appears on level 1, R on level 2, and Q on level 3 of the stack. Likewise, the

adjacent command LQ will return an LQ-factorization of matrix A (the QR-

factorization of AT). Here, A is factored as PA = LQ where P is an mxm permutation

matrix, L is an mxn lower trapezoidal matrix, and Q is an nxn orthogonal matrix.

For example, with the matrix

[[-5 -2 2 0]
A= [ 1 3 -5 7]

[-9 2 5 0]]

on level 1, pressing the key will return the permutation matrix

[[1 0 0 O]

[0 0 1 O]
P= 10 0 0 1]

[0 1 0 0]]

to level 1, the upper trapezoidal matrix

[ [ 10.3440804328 -.676715542332 -.483368244523 -5.80041893427|
R= | 0 6.96721293451  -3.06106659926 4.46014305107 ]

[ 0 0 -.27196004146  -.67990010365 ] ]
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to level 2, and the orthogonal matrix

[ [ -.483368244523 -4.69488742217E2  .874157276122 ]

Q- [ 9.66736489046E2  -.995316133501 -8.E16 ]
[ -8.70062840141 -8.45079735991E2 -.485642931179 ] |

to level 3. A quick calculation (using 10 RND to clean up round-off error) shows that

QR = AP.

Least Squares Solutions

An important application of QR- and LQ-factorizations is to obtain least squares

solutions to linear systems.

Sometimes we seek to solve a linear system Ax = b for which either no solution

exists, or else there are infinitely many solutions from which to choose. In either case,

we may seek a vector x for which ||Ax - b||; is as small as possible. Here, || |l denotes

the 2-norm of the included vector and such an x is called a least squares solution. It can

be shown that the least squares solutions to Ax = b are precisely the solutions to the

associated system ATAx = ATb,the so-called normal equations. Moreover,if A has full

column rank than ATA is invertible and there is a unique least squares solution. Since, in

general, there may be more than one least squares solution, we desire one having

minimum norm; that is, a least squares solution x for which ||x|l is minimal among all

such solutions.

More generally, with an array B on level 2 and a matrix A on level 1 of the stack,

the command LSQ, located on the MTH MATR menu, will return a minimum norm least

squares solution of the generalized system AX = B. If B is a vector then the solution X

has the minimum norm IIX]l2 over all vectors X that minimize

IAX - bll,. If B is a matrix, then each column X; of X is a minimum norm least squares

solution of AX; = B;. The LSQ command constructs the solution X by computing a
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complete orthogonal factorization of the coefficient matrix A using either, or both, of

the QR- and LQ-factorizations of A.

For example, to obtain a minimum norm least squares solution to the linear system

we encountered earlier,

2x; — 3x9 + X3 - 3x4 + 2x5 = 6

2x; + 3xp - X3 + 4x4 + x5 = -5

6x; — 9% + 7x3 - 7x4 + 5x5 = 20 ,

2x7 + 3%y + 3x3 + 3x4 - 95 = -6

enter vector[ 6 -5 20 -6]onto level 2, then the coefficient matrix

[[2 -3 1 -3 2]
[-2 3 -1 4 1]
[ 6 -9 7 -7 5]
[-2 3 3 3-9]]

onto level 1 and press. The desired solution is

X =[.47724708537 -.715870628056 .809514855209 -.38779751786 .462579917262 ].

Fitting Curves to Data

Suppose we have n data points (x, yy), (X, ¥), ..., (x, y,) where all the x/s are

distinct. Consider the problem of finding a polynomial P(t) = ¢; + ¢;t + ... + ¢t™ of

degree < m that passes through these data points,i.e. fits the data. We shall require

n>m+1. Thus our requirements are P(x) =y, fori=1, .., nor

C + CX; + ... + X' =Yy,

Cp + CXp + .. + X =Y,

Co + CXy + ... + X =Yy,
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This linear system has n equations and (m+1)-unknowns (the coefficients of P(t)).

In terms of matrices, the system is Ac =y, where

X, X% .. xX® c1 X1 0 Y11 1
y

*) A=| 1 xz"%"' X5 , C= .Cl andy = .2

lxn;cf‘...xfi‘ Cm ).'n

Since there are at least as many equations as unknowns, the system will, in general,

be over determined and we naturally seck a least squares solution. However, A has

independent columns, for if Ac = 0 had a non-0 solution, this would mean that there

exists a non-0 polynomial P(t) of degree < m having m+1 roots. Since A has independent

columns, there is a unique least squares solution, given by the unique solution to the

normal equations

(ATA)c = ATy.

It is tempting to obtain the least squares solution by calculating x = (ATA)1ATy or by

applying Gaussian elimination via the / command. But the coefficient matrix ATA is

likely to be ill-conditioned, so that solutions to (ATA)x = ATy are somewhat sensitive to

perturbations caused by round-off errors. This is especially the case with large data

sets where the x-values are equally spaced. Thus, good computational practice suggests

that the above two approaches to solving the normal equations be abandoned in favor of

the more sophisticated one provided by the LSQ command. We shall return to this

conditioning question in the Activities.

The following program, P.FIT, creates the coefficient matrix A.
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P.FIT (Polynomial Fit Matrix)

Input:  level 2: an integer M

level 1: a list {x,, X,, ..., Xy}

Effect: Returns the matrix

1 X xf
M

x1

1 x. X
2 M

2 2 x2
- >

N

o

NxN z
Z

« DUP SIZE - MIst N « 1 NFOR JIst J GET » x « 1 1 M

FOR | x | A NEXT » NEXT NM 1 + 2 - LIST - ARRY » »  
 

EXAMPLE. Find the least squares cubic polynomial that fits the data: (1, .6),

(2,1.2), 3, 2), 4,2.8), (5,4.1).

Key in the number 3, then the list {1 2 3 4 5} of the x-coordinates of the data and

press P.FIT tosee

[[1
[1

A= [1
[1
[1

Now puty=[.6 1.2 2 2.8 4.1] on the stack and press SWAP|, then to see

c=1[-16 .85 -.125 .025 ]. Thus the least squares cubic polynomial fit is

P4(t) = -.16 + .85t — .125¢2 + .025¢3.

1 1]
4 8]
9 27]
16 64]
25 125]]A

b
O

=
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ACTIVITIES III

1. (a) Generate a random 5x4 matrix over Z,, whose columns will be called x;,, x,,

x3 and x,.

(b) Construct an orthonormal basis {q,, q,,q3} for W=Span[x; x, x,].

(c) Find the projection vector Py,x, of x5 onto W: Pyx3 = proqux3 + projq2x3 +

projq3x3 .

(d) Verify that x5 — Pyx, is orthogonal to W by checking that it is orthogonal

to x,, X, and x, .

(a) Fill-in the following table of values for f(x) = (x+2)%e™ (round to 3 decimal

places).

x |22l a |l s |is]| s

el ||
(b) Plot the 5 data points.

 

(c) Find the least squares cubic polynomial P5(x) for this data; overlay your

data plot with the graph of P,(x).

(d) Find the least squares polynomial P,(x) of degree 4 for this data; overlay

your data plot with the graph of P,(x).

Augment the data in our last example with a sixth data point, so that the data

becomes (1, .6), (2, 1.2), (3, 2), (4, 2.8), (5, 4.1), (6, 5.8) and consider the problem of

fitting a cubic polynomial to this data.

(a) Build the coefficient matrix ATA of the system of normal equations and

obtain an approximation to its condition number with the command
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COND on the MTH MATR NORM menu. This large condition number (=

3 x 10°) indicates that ATA is ill-conditioned so that using Gaussian

elimination or matrix inversion to solve the normal equations may

produce inaccurate results.

(b) Find the least squares cubic polynomial by using the LSQ command, then

with the / command; note that the two solutions agree to 12 decimal

places.

(c) Now find the least squares cubic polynomial by applying the RREF

command to the augmented matrix, then by inverting the coefficient

matrix. Compare the accuracy of the two solutions with those obtained

abovein (b).

5. EIGENVALUES AND EIGENVECTORS

Eigenvalue-eigenvector considerations are of paramount importance in many real

applications of linear algebra to science and engineering, especially in those involving

systems of linear differential equations. The HP-48G/GX calculators can help students

develop conceptual understanding by removing the computational burden associated

with hand calculation of characteristic polynomials, eigenvalues and associated

eigenvectors, and the construction of diagonalizing matrices. We have already seen

how to use the calculators to solve linear systems (useful for finding eigenvectors) and to

construct orthonormal bases. What remainsis to see how they might be reasonably used

in eigenvalue-eigenvector investigations.
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The Characteristic Polynomial

Given a square, nxn matrix A, any real or complex number A for which there is a

non-zero vector x such that Ax = Ax is called an eigenvalue of A, and the vector x is an

associated eigenvector. To find such pairs ( A, x ) we consider the equation Ax = Ax,

which is clearly equivalent to (A — A)x = 0. 1 Thus A is an eigenvalue, and x an

eigenvector, iff x is a non-zero solution to the homogeneous linear system with

coefficient matrix A — Al. Such a solution exists iff A — Al is singular, which happens

precisely when det(A — AI) = 0. The left-hand side, det(A — AI), is a polynomial of

degree n in A, often called the characteristic polynomial of matrix A. Some authors

prefer to use det(Al — A) instead, but the difference is minor since these two polynomials

differ only by a factor of (-1)*. What really counts is that the eigenvalues of A are the

roots ofeither of these polynomials, and for any such root A the associated eigenvectors

are the non-zero solutions to the linear system (A - A)x = 0.

Although the aboveis rather elegant from a purely algebraic viewpoint, it can be

a computational nightmare. In the first place, the defining equation for the

characteristic polynomial, det(A - Al), is computationally impractical for all but

modest sized, or highly-specialized matrices. And secondly, it is no easy task to

determine the roots of a polynomial.

Given an nxn matrix A, the following calculator program, CHAR, calculates the

coefficients of det(Al - A) =A™ + ¢,_;A™! + ... + ¢;A + ¢, which is the characteristic

polynomial of A, or (-1)" times the characteristic polynomial of A, depending upon your

point of view. The program implements the SOURIAU-FRAME method, which uses

traces of the first n powers of A.
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CHAR (Characteristic polynomial)

Input:  level 1: an nxn matrix A

Effect: returns avector[1 ¢,, ... ¢, C,]of

coefficients of det(Al = A) =A" +¢c_A" + ... +

C,A +Cy

« DUP SIZE 1 GET (1) » Mtx N Poly « Mtx 1 N FOR J 0 1 N

FOR K OVER {K K} GET + NEXT J NEG / 'Poly' OVER STO+ Mtx

DUP ROT * SWAP ROT * + NEXT DROP Poly OBJ—» —ARRY » »    
[[ 4 -8 2 5]

[0 1 -6 -2]
EXAMPLE. Enter [(9 0 7 1]° Press CHAR)| to see the coefficients vector

[7 3 -8 9]]

[1 -21 144 -421 4623 ]. Thus det(Al - A) = A% - 21A3 + 14422 — 421\ - 4623. Retrieve the

matrix with |UNDO| and then execute the TRACE command (on the MTH MATR NORM

menu) to see 21 for the trace.

Eigenvalue Calculations

Although low order matrices having integer entries are not typical of the matrices

encountered in scientific and engineering applications, they serve us well in the learning

process. But even with such matrices, finding the eigenvalues by hand as the roots of

the characteristic polynomial is a difficult, if not impossible, task unless the matrices

are highly contrived. To avoid such contrivance, we may use the polynomial root-

finding routine PROOT on the HP-48G/GX calculators. PROOT will find all roots of an
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arbitrary real or complex polynomial a,x" + an_1x™1 +...a;x + ag. It requires as input

the vector [ a, a,_;...a;ag ] of coefficients.

EXAMPLE. Put two copies of the following matrix on the stack:

[[ 7 2 4 6]
_[6 -1 -4 -4]
[ 4 4 5 -2]°

[-16 -12 -14 -3]]

A

returns [ 1 -8 22 -40 25], so the characteristic polynomial is p(A) = A4- 8A3 +

2222 - 401 + 25. Go to the SOLVE menu with SOLVE and open the POLY

subdirectory. Press to return the vector [ (1, 0) (1, 2) (1, -2) (5, 0) ]

containing the roots. Thus the eigenvalues of A are A =1, 5 and 1+2i. To find the

eigenspace associated with A = 1-2i we proceed as follows. With A on level 2, extract

(1, -2) from the vector on level 1 with the command 3 GET and build A -(1, -2)I with the

commands 4 E EI Use EDIT to view the last column. After cleaning up

round off error with 11 RND, we see that[-1+i 1 -i 1] spans the eigenspace.

Cofactor expansions tell us that the characteristic polynomial of a matrix A

having only integer entries will have only integer coefficients. Since CHAR uses traces

of powers of A,it is thus reasonably effective in returning these coefficients. But finding

eigenvalues as the roots of the characteristic polynomial is seldom done in

computational practice because even sophisticated polynomial root finding routines are

often limited in their ability to obtain multiple roots with a high degree of accuracy.

For example, the roots of x4 - 8\3 + 10A2 + 48A - 99 areA=33and 1 243. Although

PROOT returns decimal approximations to 1+ 2V3 that are accurate to twelve places, it

returns 2.99999907027 and 3.00000092973 for the other two values.

The numerical computation of eigenvalues is much more complicated than, say, the

numerical solution of linear systems and any discussion of the appropriate proceduresis

well beyond the scope of this brief chapter. But the HP-48G and 48GX calculators
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include code for finding eigenvalues and eigenvectors based upon advanced numerical

techniques that use the Schur factorization of a matrix. (You can obtain a 12-digit

version of the Schur factorization via the command SCHUR.)

[[-14 -16 -26 -9]
[ 16 19 28 12]
[ 7 -8 -11 -7]
[ 13 14 24 14]]

IENTER|. | @[H]AIF’R| returns[1 -8 10 48 -99 ], and we have seen that PROOT returns

EXAMPLE. We use as our matrix A. Make another copy with

only two of the four eigenvalues with 12-digit accuracy. With A on level 2, the

command EGVL (on the MTH MATR menu) returns the vector [ 4.46410161514

-2.46410161514 3 3] of eigenvalues accurate to 12-digits.

Diagonalization

Given an nxn matrix A, how many independent eigenvectors can A have?

Certainly no more than n because eigenvectorslie in R", which has dimension n. And the

case where A has n independent eigenvectors, say x,, x,, ..., X, is especially nice. For

A
thenP'AP =D =[ 1., J where A, is the eigenvalue associated with x; and P is the

A
n

matrix having x,, X,, ..., X, as its columns: P = [ xll >:2 )l<n:| .

I I

The equation P-1AP = D is equivalent to saying that A has n independent

eigenvectors. This equation is a rearrangement of AP = PD which, when read column-by-

column, simply says Ax; = A;x;. The x;'s are independent because they are the columns of

the invertible matrix P. We are thus led to focus on the case where the nxn matrix A

has n independent eigenvectors as the desirable one, and in this event call A

diagonalizable. Any nxn matrix A having fewer than n independent eigenvectors is

called defective.
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Of fundamental help in determining if A is diagonalizable is the result that

eigenvectors associated with distinct eigenvalues are independent. Consequently, if A has

n distinct eigenvalues, then A has n independent eigenvectors and is diagonalizable.

Butit is also possible for A to be diagonalizable even when it has fewer than n distinct

eigenvalues. There are two keys to understanding how this may happen:

(1) For any eigenvalue A of A, dim NS(A - Al), i.e., the dimension of the

eigenspace associated with A, does not exceed the multiplicity of A as a root of

the characteristic polynomial;

(2) If A, Ay, ..., A are the distinct eigenvalues of A and B,, B,, ..., B, are bases for

the associated eigenspaces then the union of these bases is an independent set

of eigenvectors of A.

Think about the characteristic polynomial of A in factored form:

detM - A) = A -A)MA-A)2..(A-A)K

where A, .., A, are the distinct eigenvalues and m,, .., m,_ are their respective

multiplicities. Since det(AI — A) is a polynomial of degree n, we haven=m; + m, + ... +

m,. According to (1), we have dim NS(A - kiI) <m, for each j=1, .., k. Thus, in the case

where equality holds for every j, the bases in (2) will contain exactly m; vectors and

their union will produce n independent eigenvectors for A. But in the case where we

have dim NS(A - Al) < m, for even one j, the union of the bases in (2) will fail to produce

n independent eigenvectors and A will be defective.

A is defective iff for some eigenvalue A there are not enough

independent eigenvectors associated with A.
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EXAMPLE. Program CHAR| returns[1 6 9 0 0] for matrix

[[-9 2 -6 0]
[ 515 7]
A‘[60311'

[ 3-2 3-1]]

Thus the characteristic polynomial is A4 + 6A3 + 9A2 = A2(A2 + 6\ + 9) = A2(A+ 3)2 and the

distinct eigenvalues are 0 and -3, each having multiplicity 2. A quick application of

RREF to A — 0I and A + 3I shows that NS(A - 0I) and NS(A + 3I) each have

dimension 1, so A is (doubly) defective.

[[0 3-2 0 -4]
[-4 5 -4 0 -4]

-3 6 0 4] . The command EGVL returns 1, 2, 2, 3, 4
4 3 5]

3-6 0-2]]

EXAMPLE. Consider A =

as eigenvalues. Since A = 2 is the only repeated root, to settle the question whether A

is diagonalizable or defective we must determine dim NS[A - 2I]. shows two

free variables, so dim NS[A - 2I] = 2, the multiplicity of 2 as a root. Thus A is

diagonalizable. You can use the RREF command to see that a basis for the eigenspace

associated with A = 2 consists of the vectors [ -1 0 1 0 0 ] and

[0 1.3 0 -1 1], and that the eigenspaces associated with A = 1, 3 and 4 have

[11-1-11],[00010]and[-1 0 0 1 1]as bases, respectively. Put these five basis

vectors on the stack and press 5 to build the diagonalizing matrix

[[-1 0 1 0 -1]
[013 1 0 0]

P=[1 0 1 0 0] .
[0 -1 1 1 1]
[001 1 0 1]]
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Verify that P-TAP =D = 1 3 (clean up round off error with 10 RND).

It is important that students understand how to construct a diagonalizing matrix P

for a diagonalizable matrix A by finding bases for the different eigenspaces of A. But

you should also note that the HP-48G/GX calculators will produce such a P with a

single keystroke. With a square matrix A on level 1, the command EGV will return to

level 1 a vector containing the eigenvalues, and to level 2 a matrix P whose columns are

corresponding eigenvectors. In case A is diagonalizable, the columns of P are

independent so that P-1AP is diagonal. You should try this with the matrix A of our

last example. EGVreturns[3 2 1 4 2] as the vector of eigenvalues and you will notice

that columns 1, 3, and 4 of the matrix P that is returned to level 2 are precisely the

vectors we constructed in the example. If you extract columns 2 and 5 and assemble them

as the columns in a new matrix, the RREF command will show them to be independent.

ACTIVITIES IV

1. Adding a multiple of a row to another row will not change the determinant of a

square matrix A. Will this change the eigenvalues? The characteristic

polynomial? Use your calculator to investigate these questions by experimenting

with random 3x3 and 4x4 matrices over Z,j.

2. (a) Generate two random 3x3 matrices A and B over Z,, and calculate the

characteristic polynomials of AB and BA. What do you observe?

(b) Repeat (a) for random 4x4 and 5x5 matrices over Z,.

(c) Repeat (a) - (b) for random 3x3, 4x4 and 5x5 complex matrices over Z,,.
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(d) Formulate a conjecture based upon your observations. Discuss your conjecture

and its implications with your instructor.

Determine whether the following matrices A are diagonalizable or defective. For

each one that is diagonalizable, find an invertible P and a diagonal D for which P-

1AP =D.

(538 05 [[1030 -3 3]
([0 12 0] ‘ [1 2 2 -1-2 3]
[2 3 -4 0] [9-4120 9] [000 2 2 2]

@ 10010 @ [8350581 (D 15506 40 0]
[1-10-1]] {27: P 8";’}] 2 23 15 2]

[00-1 -1 1 4]]
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HP-48G/GX Calculator Enhancement

for

Advanced Engineering Mathematics

Donald L. Kreider, Dartmouth College

Introduction.

Applications of the HP-48G/GX Scientific Calculator to problems in elementary

mathematics, calculus, probability, linear algebra, and differential equations were the

subject of earlier chapters. Examples were chosen to demonstrate the power of

computational methods for deducing useful information from mathematical models and

for reinforcing mathematical concepts.

This chapter pursues further examples often associated with a course in advanced

calculus or “advanced engineering mathematics”. Typical examples include numerical

methods for solving differential equations, use of infinite series and integrals to study

non-elementary functions, boundary-value problems, and problems from vector field

theory. When studentsfirst encounter such problems they often underestimate the power

of the mathematical methods involved. The apparent resistance of the problems to pencil

and paper techniques can lead them to conclude that the tools at hand lack real practical

utility. It is in this setting that a few well-selected computational algorithms, and

knowledge of how to implement them on the HP-48G series calculator, can contribute

enormously to the student’s confidence. The marriage of mathematical theory and

computational methods gives students power to solve the kind of scientific and

engineering problemsthat arise in real world situations.

244
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Examplesin the chapterillustrate the power of the HP-48G/GX calculator—both its

built-in functions and its programming potential. No attempt was made to include all

possible topics from a typical engineering mathematics course. But the author hopes that

the examples hold intrinsic interest and are of sufficient variety to stimulate further

mathematical explorations.

Section 1. Solution of Differential Equations.

Differential equations are commonly used to model the dynamic behavior of

physical systems. Beginning courses in the subject classify such equations according to

their order and whether they are linear or nonlinear. Students learn to solve a variety of

simple cases that apply to problems in physics, engineering, chemistry and biology. But

they also soon learn that, more likely than not, differential equations encountered in real

applications do not yield easily to simple techniques, and indeed they frequently do not

possess solutions expressible in a finite closed form in terms of elementary functions

familiar to the student. This is disquieting when first learning the subject. One can easily

have concern that around every corner there lurk inaccessible problems. Fortunately,

numerical methods can be applied in many such cases. And, combined with a few

mathematical theorems concerning the existence and global behavior of solutions,

numerical techniques restore the student’s ability to extract information from

mathematical models.

Even simple numerical methods are useful. For example the Euler and Improved

Euler methods, introduced in Chapter 3, enable one to generate numerical solutions for

quite general initial-value problems. And the built-in functions of the HP-48G for solving

and plotting differential equations provide sophisticated and powerful tools. Our

examples will compare both elementary methods, such as the second-order Runge-Kutta
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algorithm that has useful teaching value, and the more powerful Runge-Kutta-Fehlberg

algorithm that is built-in.

Example 1.1.

Considerthe following initial-value problem

y'+x’y=0, y(0)=1,(0)=0. (1D

It occurs in problems of bending beams and in optics. It does not have a closed form

solution expressible in elementary functions.! Nevertheless the graph of y(x) can be

generated using a Runge-Kutta method. And important features, such as the location of

its zeros, can be determined (approximately). The HP-48G program below is a simple

implementation of a second-order Runge-Kutta algorithm. It solves an initial-value

problem for a system of two first-order differential equations.

Program 1.1. A Runge-Kutta method.

The program generates a numerical solution of the initial-value problem

@
dx

dz

dx
Y (x) =Y,

Z'(x,) = 2,

= f,(x,y,2)

= f,(x,y,2) (1.2)

 

1 Later in the section we will see thatits solutions can be expressed in terms of Bessel

functions.
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on the interval x, < x < xmax with stepsize h . It takes as inputs the functions f, and

f,, programmed as user-defined functions, and the initial conditions and graph

parameters, as shown in the following table.

 

 

    

Inputs Outputs

4: «- Xy z'fl(x,y,z)'»

3: «- Xy z'f2(x,y,z)'» Draws graph of solution

2: {x0 y0 z0 h} of (1.2)

1: {xmin xmax ymin ymax}

« 4 DUPN OBJ— DROP e Unpack inputlists,
YRNG DUP 3 ROLLD set x and y range,
XRNG SWAP OBJ— DROP 0 0O and load inputs
—->flf2bxyzhpgq into variables.

«XyR-C
CLLCD {(0,0) {1 1}} AXES ERASE DRAX LABEL e Initialize graph

WHILE x b < * Loop to generate the
REPEAT points on the

'y+h*f1(x,y,z)' - NUM 'p' STO curve.

'z+h*f2(x,y,z)' - NUM 'q' STO e Generate the next

x h +'x' STO point on the
'"(y+p)/2+.5*h*f1(x,p,q)' -NUM 'y' STO curve, using the

"(z+q)/2+.5*h*f2(x,p,q)' -NUM 'z' STO Runge-Kutta

method.

Xy R—-C DUP 3 ROLLD LINE e Draw line to next

""x""y"" +++ + 2 DISP point, and display
END it.

» DROP PICTURE
»
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The graph that follows was generated by this program on the interval 0 < x <6,

using the value h=0.1. The given second-order initial-value problem was first

converted to an equivalent system of two first-order differential equations:

dy _,
dx (1.3)

dz 2
—--xI y

y(0)=1, 2(0)=0,

and the program was provided with initial data by placing the four objects

«Xxyz'zh «>xyz'-x"2*%'» {010.1} {06-11)

! Graph of the solution of the
/\ /\ W initial-value problem (1.1), or

0 \/ U U (1.3), drawn by the HP-48G
using program 1.1.

on the stack.

 Figure 1.1

The oscillatory nature of the solution is easily observed in the graph, as is the

damping of the oscillations and the increase in their frequency as X increases. Such

behavior is predicted by the Sturm Comparison Theorem which implies that the zeros of

the solution separate, on any interval on which x >k, the zeros of any solution of

y"+k®y = 0. In particular they separate the zeros of sinkx. The damping in Figure 1.1

is implied by the Sonin-Polya theorem 2.

 

2 For the Sturm Comparison Theorem, see [Kreider,et al.]. A special case of the Sonin-

Polya theorem covering our exampleis also included there. A more general proof can be

found in Birkhoff and Rota, Ordinary Differential Equations, Ginn, Boston, 1962.
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The zeros of the solution shown in Figure 1.1 can be found approximately using the

(X,Y) key in the HP-48G’s PICTURE environment. They are found at 2.0, 3.2, 4.1, ...,

approximately. We shall determine them more accurately later.

As appealing as the example and graph, above, appear, we will discover that things

are not so simple as we might hope. When the solution is graphed on a larger interval

something clearly goes wrong.

| Graph of the solution of (1.1),

A A n A n A drawn on the interval

VVVUU\ 0<x<10 by the same
program.

Figure 1.2

 

- s

     
Exercise 1.1.

Enter Program 1.1 into your HP-48G and reproduce the graphs shown above. Then

generate the graph of the solution of (1.1) on the interval 0 < x <15. How much

confidence do you now have in the zcros estimated using the HP-48G'’s (X,Y) key? What

explanation would you give as to why matters have deteriorated so badly? What

happens if a smaller value of h is used? Try using h = 0.01. What disadvantage does

this entail?

Exercise 1.2,

To regain your confidence slightly, apply Program 1.1 to graphing on the interval

0 < x <15 the solution ofthe initial-value problem

y'+y=0, y(0)=1y(0)=0,
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again using the value A =0.1. How accurate is the fifth zero 27t/ 9? (In this case we

know that the solution is COSX.)

In Section 3 we will see that the difficulties we met in applying the simple Runge-

Kutta algorithm disappear when the requirement of constant step size & is abandoned.

Indeed, the built-in differential equation functions of the HP-48G implement a variable

step size algorithm, and we will see in Section 3 how effectively this solves the problem.

Nevertheless the simple Runge-Kutta algorithm is useful for many situations when

accuracy is not the principal concern, and it remains a valuable teaching tool.

The foregoing examples are typical of differential equations that arise in practice.

When the equations are nonlinear, or when they are linear but do not have constant

coefficients, it is a rare accident if their solutions can be expressed in closed form in terms

of elementary functions. In such cases, however, we abandon our demand for neatlittle

formulas for solutions. After all, a differential equation itself completely determines the

solution to the given initial-value problem. A number of mathematical theorems stand

ready to predict the solution’s global behavior. And numerical methods are available,

finally, to obtain useful local values and behavior.

Nevertheless we often seek explicit representations of solutions in more general

forms—infinite series or integral representations being commonly employed. For

example we mighttry to find solutions y(x) that can be expressed in the form of Taylor

series

)’(k)( )
y(x)——zo)(x = x,)" —Zak(x x,)~. (1.4)

k=0

Under suitable conditions a solution is represented by such a series within its interval of

convergence. And the coefficients can be determined in a straightforward way—by
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determining the values of y(")(xo )directly from the differential equation, or by using a

recurrence relation for a,. Several examples will illustrate the method.

Example 1.2.

Find a Taylor series solution

 

w (k)

y=Y, Y kEO) (x —x,)" (1.5)
k=0 .

thatsatisfies the initial-value problem y"+x%*y =0, y(0)=1,y (0)=0,o0f Example 1.1.

We compute the derivatives of y(x) successively. The differential equation yields

immediately y"(0) =0 when we set x =0. In the same way, successive derivatives of

the equation give

yvvo+x2y|+2xy=0: yno(O):O,

2 "¥+x2y"+xy +2y = 0: y®(0)=-2, (1.6)

and in general

YD 4+ 2y+2y 4+ n(n—- 1)y=0
(1.7)

Y"(0) =~(n-2)(n-3)y""*(0).

From equations (1.6) and (1.7) we then obtain

0=y"(0)=y“0)=y"0)= ...,

0=y"(0)=y"0)=y"0)= ...,
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and the remaining derivatives depend on either y(0) or y'(0). Thus we can find two

linearly independent solutions y,(x) and y,(x), corresponding to the two sets ofinitial

conditions: y(0)=1, y'(0)=0 or y(0) =0, y (0)=1. In the first case we obtain

y“U8(0) = —(4k = 2)(4k = 3)y“(0), k=1, 2, 3, ...,.

and we then quickly calculate as many of the non-zero derivatives as we wish. The

desired solution is then

 

 

_ - Y(4”(0) 4kyo(x)—1+§—@—x , (1.8)

and the function y,(x) can be computed by a simple program on the HP-48G.

Program 1.2. Series solution of an initial-value problem.

The program computes values of the solution y,(x) (Equation (1.8)).

Inputs Outputs

1: x| 1 y(x)     

Store the program in the variable Y0. Since the program was written in the form of

a user-defined function, i.e. with the syntax « — x «...»», it can be executed either by

placing its argument X on the stack and pressing the user menu key Y0, or by evaluating

the algebraic expression 'YO(X)'. Thus the PLOT and SOLVE environments of the HP-48G

are available to plot the graph of y,(x) or to find its zeros. (Sinceits definition is in the

form of a program rather than an expression, operations involving differentiation, such as

finding relative maximum and minimum points, are excluded.)
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« = X e Make it a user-

defined function

«0111-KkYTS ¢ Initial values

« DO e Add terms until

'k+4' EVAL 'k' STO they are small

YK2-k3-*NEG*'Y STO
Yk!/ xkA*'T"STO
TS +'S'STO
UNTIL T ABS 1E-12 <
END
S e Put the final sum on

» the stack

»

»

Exercise 1.3.

Enter Program 1.2 into your HP-48G and experiment with computing various

values of Y, (x). Plot the function on the interval 0 £ x £ 5. Find the zeros near 2.0, 3.2,

and 4.1 more exactly using the SOLVE application or the function ROOT

(SOLVE:ROOT:ROOT).

Exercise 1..4.

If the initial conditions y(0) =0, y'(0)=1 are used with the same differential

equation, a second linearly independent solution

. y(4k+l)(0)x4k+1=x+
WO =X+ 2D

is obtained. Exactly the same recurrence relation (1.7) determines all the derivatives,

hence only the initial conditions need to be changed in Program 1.2. (In fact only the

initial values of k and S need to be changed. The initial value of T is not used.

Initializing T serves only to create T as a local variable.) Change the initial values of k
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and S to 1 and x, respectively, and have the HP-48G draw the graph of y,(x) on the

interval 0 € x £5. Find its smallest zeros.

One source of inaccuracy in Program 1.2 arises from the way terms ofthe series are

computed. Each of the quantities y*’(0), and k! becomes very large as k increases,

although their quotient becomes vanishingly small. Avoiding large intermediate results in

computations is generally helpful in achieving accuracy. In this case we observe that the

coefficients @, = y*(0) / k! in (1.4) satisfy the recurrence relation

Ay_s
=—— 1.9a, kk—1) (1.9)

This leads to an alternative program (below) for computing the solutions y,(x)and y, (x).

Program 1.3. Series solution of an initial-value problem.

The program defines a user-defined function to compute two linearly independent

solutions y,(x), n =1, 2, for the differential equation y"+x%y=0.

 

 

    

Inputs Outputs

2:

1: x| 1: Y, (x)

«— NnX e Make it a user-

defined function

«n IF n THEN x ELSE 1 END DUP ¢ Initializek, Tand S

kTS

(continued)
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(continued)

« DO e Add terms until

'k+4' EVAL 'k' STO they are small

Tkkl-*/NEGx4AN*'TSTO

TS +'S'STO

UNTIL T ABS 1E-12 <

END
S e Put the final sum on

» the stack

»

»

Example 1.3.

Store Program 1.3 in the variable Y. Then use it to graph the functions y,(x) and

y,(x) on the intervals 0 < x <35 (Fig 1.3) and 0 < x <8 (Fig 1.4). They can be graphed

simultaneously by entering the list

{'Y(0,X) 'Y(1,X)"}

into the EQ field of the HP-48G’s PLOT application.

 

 

  Figure 1.3 Figure 1.4

Again, on a sufficiently small interval the program apparently behaves well, but for

larger values of x something is still going wrong. We have avoided the problem caused

by the large values of y**(0) and k!, but when x is large, the terms @,x*of the series

initially grow very large before eventually settling down and approaching zero. We thus

have a situation in which an alternating series of very large terms is adding up to a very
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small final value. The HP-48G represents real numbers to about 15 significant digits of

accuracy, thus when x is large enough that the magnitude of intermediate terms in the

computation of the sum of the series are themselves 15-digit numbers,all accuracy in the

final sum is lost!

Exercise 1.5.

Enter Program 1.3 into your HP-48G and verify the results in Figures 1.3 and 14.

Modify the program so that each partial sum S is displayed as the program runs. (Insert S

1DISP immediately before the UNTIL statement.) For what value of X do the partial sums

grow to 12 digits (= 10'?). How isthis related to Figure 1.4? How accurate would you

expect the computed values of y,(x) and y,(x) to be when x =5?

The method of Taylor series for solving differential equations is quite general. Most

texts on the subject show, for example,that the linear differential equation

a,(x)y"” +a,_ (x)y"" +...+a(x)y +a,(x)y = h(x) (1.10)

has two linearly independent Taylor series solutions about any point X, at which the

coefficients and A(x) themselves possess such expansions and the leading coefficient

a,(x,) #0. The radius of convergence of the series solutions can be shown to be the

distance from X, (in the complex plane) to the nearest point at which such regularity

conditions fail. Such a point X, is called a regular point of equation (1.10), and we can

develop programs for the Taylor series solutions in the same manner as was done in the

examples above. Note, by the way, that the origin is a regular point for the differential

equation in Example 1.2 and that there are no points in the complex plane where the

regularity conditions fail. Thus the radius of convergence of the series expansions of

Yo(x) and y,(x) is infinity . This would seem to settle the question completely of finding
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solutions on the interval —oo < x < oo, As the examples show, however, numerical issues

often become the limiting factor rather than the issue of mathematical convergence.

We conclude with one final example to show that the series methodis still useful

when the recurrence relation is substantially more complicated—when each coefficient of

the series can depend on several preceding coefficients, not just one as in Equation (1.9).

Example 1.4

We propose to solve the initial-value problem

y'+e'y=0, y(0)=y(0)=1 (1.11)

The origin is a regular point of the differential equation, thus two linearly independent

Taylor series solutions exist. They converge forall values ofx..

Since we seek solutions of the form y(x) = 2;0akx" we substitute into (1.11):

zk(k—l)akx"2+zZakx =0.
k0 o _

Multiplying the two series and collecting terms we obtain

Z[(k+2)(k+1)am+z—,):]E=(
k=0 1—0

This leads, finally, to a recurrence relation from which each coefficient @, can be

computed from the values of coefficients with smaller index:

k

k=0. (1.12)
Z(k-J)'
 

P2 Ty 2)(k 1)<
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The initial conditions determine @, =a, =1, and the recurrence relation (1.12) then

permits us to calculate as many of the remaining coefficients as we need:

a 1

“=TyTy
_G ta __l

6 3’

a-__l_(ffa+ +a)-_-1_
TR R TATE 12°

The initial terms of the desired solution are, therefore,

x2 X Xt
)=l+x———-——- —+....

yx) 2 3 12

The following program provides a user-defined function for y(x):

Program 1.4. Handling a many-term recurrence relation.

The program defines a user-defined function to compute the solution y(x) of the

initial-value problem (1.11).

 

Inputs Outputs

1: x| 1: y(x)
 

    

The program stores the coefficients a,, a,, ..., a, used in the computation in the

variable COEFFS.



«— X

«1xx1+0

— k T S nextA

« {1 1} 'COEFFS' STO

DO
'k+1' EVAL 'k’ STO

O 'nextA' STO

Ok2-FORj

COEFFSj 1 + GET

'(k-2-j)!" EVAL /

nextA + 'nextA' STO

NEXT

nextA k k 1-*/ NEG 'nextA' STO

COEFFS nextA + 'COEFFS' STO

nextA x k A *'T' STO

TS +'S'STO

UNTIL T ABS 1E-6 <

END

S
»

»

»
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e Make it a user-

defined function

e Initializek, Tand S

and nextA

* Initialize COEFFS
* Start adding series
* Update k

e Next coefficient is

nextA. Itisa sum.

The FOR loop
evaluates the sum.

* Finish computation
of nextA

e Update Tand S

¢ Put the final sum on

the stack

We store the program in the variable YMT and, in the HP-48G’s PLOT application,

enter 'YMT(X)' as the current equation. On the interval 0 < x <3 the following graph is

drawn. (We note, by examining the variable COEFFS that the program uses 52 terms of

the series to achieve the desired accuracy when x = 3. Since each coefficient in the series

is itself a sum, the computation is of considerable size! (It is useful to increase the stepsize

in the PLOT application to reduce the time needed for generating the graph.) Using the

HP-48G’s SOLVE application, thefirst zero of the solution is found at x =1.58656.
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! Graph of the solution of the
/x initial-value problem (1.11),

o ‘ ” E) drawn by the HP48G using
' \/ program 1.4.

Figure 1.5

Exercise 1.6.

Enter Program 1.4 into your HP-48G, and verify the example above. Find the

second zero of the solution lying in the interval 0 < x <3. Add to the program at an

appropriate place the commands S 3 DISP, and then monitor the size of the partial sums

during the course of the computation. What can you say about the accuracy achieved in

the computation of y(3)?

Exercise 1.7.

Find a recurrence relation for Taylor series solutions about the origin of the

differential equation y"—3xy'+y = (0. Write a program for the solution satisfying the

initial conditions y(0) = 0, y' (0) = 1. Use your HP-48G to plot this solution on a suitable

interval, and find any zeros thatlie in the interval.

Exercise 1.8.

Find a recurrence relation for the Taylor series solution about the origin of the

initial-value problem

3yn| _xyv +x2y — ez,

y0)=y(0)=0, y'(0)= %.

Write a program for the HP-48G that defines this function as a user-defined function (as

in the examples above). Explore the solution graphically.
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Section 2. Bessel functions.

Bessel’s equation of order p is

2

28LD(2 =Py =0, @1
il i

Its solutions are encountered in problems involving temperature distributions over

regions with cylindrical symmetry, in determining fundamental buckling modes of

columns with non-uniform cross section, and in many other problems involving damped

oscillatory motion with non-uniform frequency.

Bessel’s equation differs mathematically from those explored in Section 1 in that the

origin is a singular point of the equation. Thus we cannot in general expect it to possess

power series solutions about the origin. On the other hand the singularity of Bessel’s

equation is a modest one—it is a regular singular point in the sense of the following

definition.

Definition. A point X, is said to be a regular singular point of a second-order linear

differential equation if the equation can be written in the form

(x = x0)"y"+(x = xp)a, (X)y' +a, (x)y = h(x),

where @,(x), a,(x) and h(x) have power series expansions about X, .

Although there may be no power series solution about a regular singular point,

there is always at least one solution of the form

y=x=x) Ya,(x—x,), 2.2)
k=0

where ¢ is a constant. Both ¢ and the coefficients @, can be determined by the method of

undetermined coefficients , i.e. by substituting (2.2) into the differential equation and
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determining the coefficients from the requirement that the equation be satisfied. We

illustrate this in the case of Bessel’s equation.

Example 2.1.

Substituting (2.2) into Bessel’s equation we obtain

xzi(k+c)k+c—Dax**2%+ xi(k +co)axe + (x? - pz)i ax"* =0,
k=0 k=0 k=0

and, after simplifying and collecting terms,

(c*-pHa,+(2p+1+c* - p*)a, + i[(k +¢)? = p*laxt*e + iak_zx““ = 0.
k=0 k=2

For a, to remain arbitrary we must have ¢’-p*=0, or c=%p. The quadratic

equation is called the indicial equation for Bessel’s equation and the roots ¢ the indices .

The positive root determines a solution, with

a, arbitrary,

a, =0, and (2.3)

4, =——t2. k22
k(2p +k)

We could stop at this point, using the recurrence relations (2.3), in the manner of the

foregoing examples, to develop an infinite series for the solution. But further

simplification is possible. From (2.3) we obtain

 

a=a=a;=...=0, and

@y = (-1)" Ex =2:4.6---(2k)-2p+2)2p+4)---(2p +2k)

__("l)k Gy
 

T2(p+D)(p+2)--(p+k)
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A final simplification will result from expressing the product in the denominator as

I'(p+k+1)/T'(p+1), where T is the celebrated gamma function defined by

I'x)= Je"’t’"1 dt, x>0.
0

It is easily verified that I'(1) = 0 and (integrating by parts) that I'(x +1) = xI'(x). Thus

if n is a non-negative integer it follows that I'(n+1)=n(n—-1)(n—-2)---2-1=n!,

earning the gamma function the distinction of generalizing the factorial function to a

continuous function of x for x > 0.3 Finally, choosing @, =277 /T'(p+1), we are led

to the solution

J,(x)= Z—(—-)——(f) , (2.4)
im0 k! (k+ p)'\2

usually called the Bessel function of order p of the first kind . In equation (2.4) we have

followed the usual convention of abbreviating I'(k + p+1) as (k + p)!. Indeed, the HP-

48G includes the gamma function as a built-in function x! under the menu

[MTH][PROB]. Try it out, verifying that for integer arguments it returns the usual

factorial values, but for non-integer arguments X it also returns a value (I'(x +1)).

Equation (2.4) gives one solution of Bessel’s equation. It can be shown that the

method of undetermined coefficients will always thus determine one solution y,(x) of

the form (2,2) about a regular singular point of a second-order differential equation,

corresponding to the larger root ¢, of the indicial equation . It can also be shown that a

second linearly independent solution y,(x) of the same form is determined by the
 

3 Under suitable conditions of regularity, namely a continuous, positive second

derivative (i.e. very smooth and concave-up), the gamma function can be shown to be the

unique such generalization of the factorial function to the positive real numbers.
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remaining rootc, of the indicial equation whenever ¢, — ¢, is not an integer. Finally, if

C, — C, is an integer there is always a second solution of the form

Y.() =[xYbx* + Cy, (x)In|x], 2.5)
k=0

where C is a constant. The method of undetermined coefficients can be applied in any of

these cases to determine the constants. This effectively gives us a method for developing

two linearly independentseries solutions about any regular singular point. Details of this

method are found in most of the textbookslisted at the end of the chapter.

Program 2.1. Bessel functions of the first kind.

The program computes J, (x), when p is not a negative integer. (In general when

x is negative and p is not an integer we must replace x~? by |x|".)

The program monitors the size of the intermediate partial sums and estimates the

accuracy of the final result. It sets the display mode to the approximate numberof digits

of accuracy achieved, and issues a warning if all accuracy is lost.

Store the program in the variable JS. Since the form of the program is that of a user-

defined function, it can be executed by placing its two arguments on the stack and

pressing the user menu key JS or by evaluating the expression 'JS(P,X)’. The HP-48G’s

PLOT and SOLVE applications are also available. (Its definition as a program instead of

an expression , however, excludes operations that involve the derivative (e.g. SLOPE).)

 

Inputs Outputs
 

   1: x| 1: J,(x)
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«- pX e Make it a user-
defined function

«10x2/pAp!/DUP e Initialize maxT, k, T,

- maxT kTS and S

« WHILE T ABS 1E-12 > * Start adding series
REPEAT
Tx2/DUP**
'K'INCR 7/ kp + / NEG 'T" STO e Updatek, T,and S
TS +'S' STO

IF T ABS maxT > e Update maxT to
THEN T ABS 'maxT' STO monitor size of

END intermediate sums

END

10 maxT LOG 1 + IP - DUP
IFO>
THEN FIX S ¢ Estimate accuracy of
ELSE CLLCD the value returned
STD" ALL ACCURACY LOST"
1600 .5 BEEP
3 DISP 7 FREEZE

END
»

»

»

Example 2.2,

Plot the functions J,,(x), J;(x) and J,(x) on the interval 0 < x <10. We do this

in the HP-48G’s PLOT application, entering the list

{7S(0,X)" 'JS(1,X)' 'JS(2,X)')

as the current equation. The graphs are shown in Figure 2.1, below.

Note, in the graph, that J,,(x) has zeros at 2.4, 5.5, and 8.7, approximatcly. Indeed,

using the HP-48G’s SOLVE application, we can find these zeros more accurately as
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2.404825558, 5.52007811, and 8.6537279. Even more difficult computations can be carried

out easily. For example, the point of intersection of the graphs of J,(x) and J,(x) can be

found at the point (1.434695651, 0.547946450), using the [PICTURE][FCNI][ISECT]

function.

Graph of J,(x), J,(x), and

J,(x), drawn by the HP-48G
using program 2.1.

 

Figure 2.1

Exercise 2.1

Enter Program 2.1 into your HP-48G and verify the results of Example 2.2. Find the

zeros of J,(x) and J,(x) visible in the above graph. Find the second point of

intersection of J,(x) and J,(x). Find the first point of intersection of J,(x) and J,(x).

(Hint: The HP-48G finds the nearest intersection ofthe first two functions in the current

equation list. Thusit is necessary to change the order ofthe list.)

Example 2.3.

Plot the functions J,(x) and J_,(x) on the interval 0.001 < x <10. (Why this
4 4

interval?) In the HP-48G’s PLOT application, enter the list

{JS(-.25,X) ']S(.25,X)')

as the current equation. The graphs are shown in Figure 2.2.
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Graph of J*(x) and J_*(x),

drawn by the HP-48G using
program 2.1.

 

Figure 2.2

The function J,(x) is one solution of Bessel’s equation, and when p is not an

integer the function J_,(x)is a second linearly independentsolution. In other words,the

general solution is y = ¢,J,(x) + ¢,J_,(x). When p is an integer, a second solution can

be found in the form of equation (2.5), containing a logarithmic term. Equation (2.6),

below, gives a common form of this solution, called Weber’s form of the Bessel function of

order n of the second kind . It is described in most of the textbookslisted at the end of the

chapter, and it is fully described and tabulated in [Abramowitz and Stegun].

n—-1 2k-nT
1 kH +H 2k+n

z(b k'(n+k)'()k—O

(2.6)

The general solution of Bessel’s equation is then y = ¢,J,(x)+¢,Y,(x) when p=n is

an integer. An HP-48G program that defines Y,(x) follows. The function H, that

appears in (2.6) is the partial sum of the harmonic series H, =1+1+%+...4, H, =0.

The constant ¥ is Euler’s constant Y = ’11_12(H,-In m) = (0.577215664902.
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Program 2.2,

The program computes Y, (x) when n is a nonnegative integer and x > 0. It calls

a subprogram to compute the function H, . Store this subprogram in the variable H:

«->n«lFn0==

THEN O
ELSEO 1 n
FORk1k/ +
NEXT
END

»

»

The program monitors the size of the individual terms that are generated and

estimates the accuracy of the final result. It sets the display mode to the approximate

number of digits of accuracy achieved, and issues a warning if all accuracyislost.

The program itself should be stored in the variable YS. Since the form of the

program is that of a user-defined function, it can be executed by placing its two

arguments on the stack and pressing the user menu key YS or by evaluating the

expression 'YS(N,X)'. The HP-48G’s PLOT and SOLVE applicationsare also available. (Its

definition as a program instead of an expression, however, excludes operations that

involve the derivative (e.g. SLOPE).)

 

Inputs Outputs
 

1; x| 1: Y,(x)    



«->Nnx

«10- maxTS$S

«'J(n,x)' EVAL
x 2/ LN .577215664902 + *'S' STO

1-T

«IFn0>

THENOnNn1-
FOR k
'(n-k-1)*(x/2)A(2*k-n)/k!/2'
EVAL NEG
'T' STO
TS+ 'S STO
NEXT
END

»

01-kT

« WHILE T ABS 1E-12 >

k2 <OR

REPEAT

'(-DA(k+1)*(H(k)+H(n+k))

*(x/2)N(2*k+n)/k!/(n+Kk)!/2

EVAL 'T" STO

TS +'S'STO

'k' INCR DROP

IF T ABS maxT >

THEN T ABS 'maxT' STO

END

END

»

(continued)
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e Make it a user-

defined function

e Initialize maxT and S

¢ First term of (2.6)

¢ Second term of (2.6)
is a finite sum.
Add it to S next.
Skip it if n=0.
(Don't monitor

size of these terms
—they are all of
the samesign.)

¢ Third term of (2.6) is
an infinite series.

The WHILE loop
addsittoS.
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(continued)

10 maxT LOG 1 + IP - DUP e Finally, estimate the
IFO> accuracy achieved
THEN and set the
FIX 'S*2/n' -NUM display mode.

ELSE
STD CLLCD
" ALL ACCURACY LOST"
1600 .5 BEEP 3 DISP 7 FREEZE

END
»

»

»

Example 2.4.

Plot the functions J,(x) and Y,(x) together on the interval 0 < x <10. Also plot

Ji(x) and Y, (x) together on 0 < x <10. For the first, make the current equation thelist

{5(0,X) YS(0,X)}. For the second, makeit the list {JS(1,X) YS(1,X)}.

1Figure 2.3    Figure 2.4

The programs that define J,(x) and Y, (x), although having the form of user-

defined functions, are not of the kind for which the HP48G can calculate derivatives.

Thus built-in functions that use derivatives, such as SLOPE, cannot be used. We could, of

course, obtain the derivative functions by differentiating the defining series, but that

would only defer the obvious need to study Bessel functions more closely. Are there, for

example, simple differentiation formulas for Bessel functions? What relationships exist
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between Bessel functions for different values of p? Are there other ways of representing

Bessel functions (and perhaps of computing them) besides infinite series? The student is

invited to think about other important classes of functions, for example the trigonometric

functions, and whatit is important to know besides numerical methods for computing

their values. In the case of trigonometric functionsit is their differentiation formulas and

the many identities relating them that render the class of functions so useful in myriad

applications. Bessel functions, also, are widely studied, and many of their properties can

be found in the textbooks listed at the end of the chapter as well as in reference works like

[Abramowitz and Stegun]. We refer the studentto these references but include here a few

properties of Bessel functions that help us in our numerical calculations.

Selected properties of Bessel functions.

1. Behavior for small values of x:

  

2P

J (x)~ x? J_ (x)~ x7P,
P 27 p! p —p)!

P | =p) @7
Y(x)~—2BDo (), Yo(x)~;2t-lnx.

T

2. Behaviorfor large values of x:

Jp(x)~wf%cos(x——}—p7?), Y,(x)~1/-j—xsin(x—%—%1—t-). (2.8)

3. Differentiation formulas:

d—,0==1,,(x)+§Jp(x),
d (2.9)

n
—Y =— x)+-=Y (x).™ (%) ne1(X) . A (X)
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4. Recurrence relations:

a0+0=221,),
on (2.10)

Y_(x)+Y,,,(x)= —x-Y, (x).

5. Integral representations:

(‘%x)p x . 2 1
J (x) =—==—"——| cos(xcost)sin“’tdt (p>-3),

SRRh e 2.11)
Y,(x)= -1-rsin(x sint — nt)dt — -l-j"[e"‘ + €™ cosnmle™d.

7T 70 TTJ0

The asymptotic behaviors for small and large values of x, given in (2.7) and (2.8),

are useful in limit calculations and in interpreting the graphs of Bessel functions. The

differentiation formulas in (2.9) are representative of a larger number of such formulas

found in the references. The recurrence relations (2.10) are useful for rewriting Bessel

functions in terms of others of higher or lower orders, often to achieve more satisfactory

convergence properties of the series or integral representations. The integral forms of

representation (2.11) provide an alternative way to compute values of Bessel functions,

and as we will show in examples are often essential for this purpose. All of these

properties can be proved by direct consideration of the differential equation or of the

series definitions of the functions. Details are in the references cited at the end of the

chapter.

Example 2.5.

Plot J__*(x) with its derivative, and find the coordinates of its first relative

minimum point. The differentiation formula (2.9) gives
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LI,@) ==1=51

Thus we can enter the list

{'-JS(2/3,X)-1/(3*x)*JS(-1/3,X)" 'JS(-1/3,X)"}

as the current equation in the HP-48G’s PLOT application, draw its graph on a suitable

interval, and use the function [PICTURE][FCN][ROOT] (or the SOLVE application) to

find the first zero of the derivative. The first relative minimum is thus found at

(3.27468213, -0.43476438), and the graph, drawn by the HP-48G is shown in Figure 2.5.

Y \
Graph of J_, (x)plotted with

dy/dx -1

Io ‘ =X its derivative.

l
Example 2.6.

Figure 2.5

Examine the behavior of J,(x) on the larger interval 0 <x <35, and find its

largest zero in this interval. The plot of the function in this interval, Figure 2.6 below,

exhibits the expected failure of the series for large values of x. (For this example the

monitoring of the size of termsin the series was turned off.) The smearing effect, caused

by large terms early in the series, obscures the final value which is close to zero. Less

apparentis the loss of accuracy for intermediate values ofx. The zero near x =20 is

reported by the HP-48G, using Program 2.1, as 21.21, accurate to only 2 decimal places!

The zero near x =24 is given as 24.0 (24.35 is better). Near x =35 the values are

worthless.
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J,(x) plotted on 0 < x <35,
X showing the disastrous effect

0 § of smearing in the
computation of the series

Figure 2.6 defining J,(x).

In this situation consider using the integral formula (2.11) for computing J,(x).

Programs 2.3 and 2.4, below, implement the integral representations for J,(x) and

Y, (x). They are slower than their series counterparts, however they retain full accuracy

in their computations! The same zeros of J,(x) reported above using the series

definition are given by the integral representation as 21.2116366299 and 24.352471531.

The zeros in the vicinity of x =30 are found successfully to be 27.4934791320,

30.6346064684 and 33.7758202136. The author enjoyed lunch and a short nap while the

HP-48G worked to find these zeros. Butall digitsin the results obtained are accurate!4

Programs 2.3 and 2.4.

The two programs below calculate values of J,(x) and Y, (x) using the integral

representations (2.11).

Store the programs in the variables JI and YI, respectively. The syntax of the

programs permits them to be executed either from the stack or in algebraic mode. Note

that the infinite integral in the equation for Y(x) is replaced by the finite limits 0 and 10.

The integrand of this improper integral can be shown to be negligible for ¢ > 10(cf

Exercise 2.3, below).

 

4 As tabulated in [Abramowitz and Stegun)].
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Inputs for ]I Outputs

: pl 2:

1: x| 1: J,(x)

Inputs for YI Outputs

2: n| 2:

1: x| 1: Y, (x)

«-> pX . User-defined
«RAD function for the
"(x/2)Ap/NT/(p-.5)!* first equation
J(0,7%,COS(X*COS(t))*SIN(t)A(2*p),t)" (2.11)
—->NUM

»»

«> nx o User-defined
«RAD10-5 U function for the
«'[ (0,7,SIN(X*SIN(t)-n*t),t)' - NUM second equation

'f(0,U,(EXP(n*t)+EXP(-n*t)*COS(n*r)) (2.11)
*EXP(-x*SINH(t)),t)' - NUM

-t / -NUM

»»N»

When using the integral forms, above, for drawing graphs, extreme accuracy is not

needed,so it is best to limit the accuracy of the integral calculations by setting the display

formatto only a few decimal places. When an approximate value of a zero of the solution

function is determined from the graph, the SOLVE application can then be used to find

the zero to full accuracy.
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Exercise 2.2.

Enter the programs given above into your HP-48G and experiment with their use in

computing values, drawing graphs, finding zeros, and finding maximum and minimum

points. In particular compare the series and integral programs with regard to speed,

accuracy, and range. Can you find the 20th zero of J,(x)? (Answer: 62.0484691902. Hint:

equation (2.8) can suggest approximate values of the zeros.)

Exercise 2.3.

Define the integrand of the infinite integral in equation (2.11) as a function in your

HP-48G. Demonstrate thatit is very small when ¢ > 10, for all values of n and x of

interest.

Example 2.7.

Many differential equations can be solved in terms of Bessel functions. The

textbooks and references each list a variety of such equations. For example [Abramowitz

and Stegun] note that the differential equation

d’y -
Zx—? + szP 2)’ =0

has the solutiony =+/xZ,1p(2Ax"2| p), where Z denotes J, or Y, as

appropriate to the value of 1/p. This enables us to give an explicit solution of the

differential equation ¥"+x”y =0 studied in Examples 1.1 and 1.2. Setting A =1 and

p = 4 we see that the general solution of y"+x%y =0 is

y=¢w/;J*(J;xZ) + czxffl_* (3x?).
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To satisfy the initial conditions y(0) =1, y'(0) = 0 of Example 1.1, therefore, we deduce

from the formulas (2.7) that ¢, =0 and ¢, =T'(3)/+/2. Hence the solution y,(x)

obtained earlier, both by the Runge-Kutta method and by Taylor series methods, is

__1"(_%—)’\/—- 1.2
Yo(x)= 7 xJ_y (3x%). (2.12)

We tried earlier, but failed, to draw the graph ofthis function on the interval 0 < x <10.

The simple Runge-Kutta method was unable to “track” the rapid oscillations of the

function. And the series solution was unable to avoid catastrophic smearing effects. Can

we do it now? We have several ways of computing values of J_3 (x). Since for X in the

interval 0 < x <10 the argument of J_% in (2.12) will range from 0 to 50, we cannot

expect to use the series program JS. So we turn to the integral representation,

implemented through the program JI. With high expectations we enter, in the HP-48G's

PLOT application, the current equation

'"(-1/4)/N(X/2)*]1(-1/4XA2/2)"

The calculation proceeds apace, exceeding the duration of any lunch and nap time that a

reasonable person might entertain. This prompts a closer look at the integral formula, and

we soon notice the trouble—the integral is improper when p is negative. It converges

mathematically, but that is small comfort. At this point we recall the recurrence relations.

From Equation (2.10) we can write

3

Thus we enter as the current equation the somewhat more complicated expression

'(-1/4)*V(X/2)*((3/x12)*]1(3/4,XA2/2)-JI(7/4,XA2/2))"
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This time we succeed! Figure 2.7 shows the graph of the function y,(x) on the interval

6 < x <10 that was problematical in Example 1.3. And we are able to compute the zeros

in this interval with full precision! For example, the last zero in the interval was

determined by the HP-48G’s SOLVE application to be 9.90851094691.

Graph of the solution of the
X initial-value problem (1.1) on

6 6<x<10.

Figure 2.7

Section 3. Postscript on Numerical Solution of Differential Equations.

In Section 1 we employed a rather naive numerical method in the cause of solving

an initial-value problem. Ourfirst effort , which we called a second-order Runge-Kutta

algorithm , was rewarded nicely, and Figure 1.1 gave reason for optimism. The algorithm

used had the merit of great simplicity and intuitive appeal. It behaved well in relatively

simple cases, such as in Exercise 1.2, where the solution function changed uniformly over

the intervalof interest. Butit failed, finally, when pushed too hard—when we asked it to

plot the solution of the initial-value problem (1.1) whose solution oscillates with ever

increasing frequency as X — oo.

In general we wish to solve initial-value problems of the form

ay
—=Ft,Y), Y0)=Y, 3.1
dt

in which Y(t) is a vector function. We may think of such a system of equations as

determining a curve beginning at the point Y, and having a tangent vector given by (3.1)

at each point Y(f) on the curve. Most numerical differential equation solvers, then,
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generate an approximate solution by taking small steps along the curve, each step using

the tangent vectorsgiven by (3.1) to guideits direction. The only thing in question is the

size of the step and the particular way the tangent vectors are used.

In Chapter 3 a number of examples were given using Euler’s method and Improved

Euler’s method. Euler's method is the simplest of all, using the tangent vector given by

(3.1) directly and taking steps of constant size A (in the independent variable t). The

second-order Runge-Kutta method of Section 1 uses a weighted average of two tangent

vectors to improve accuracy. It also maintains constant step size. Further improvementis

possible by increasing the mathematical sophistication of the algorithm for taking one

step, and we include below as an example the fourth order Runge-Kutta method. Such

improvements help. But our benchmark example, the initial-value problem (1.1), shows

that any algorithm that insists on taking steps of constant size will eventually fail to track

the oscillations. A rather full treatment of Runge-Kutta methods is given in [Numerical

Recipes], where the second-order and fourth-order versions are described in detail. But the

authors of that reference assert that any good integrator for ordinary differential

equations should exert some adaptive control over its own progress, frequently changing

its stepsize to match the current behavior of the solution. The built-in differential

equation solver of the HP-48G does this, implementing an adaptive fourth-order algorithm

known as the Runge-Kutta-Fehlberg method (RKF). Our examples, below, compare the

simple non-adaptive methods with the built-in RKF algorithm. The power, flexibility and

speed of the HP-48G’s built-in functions will be apparent.

For the sake of completeness (and for use with the HP-48S that does not have built-

in differential equation functions) we have included programs in the Appendix that

implement an adaptive fourth-order Runge-Kutta algorithm as well as the simpler non-

adaptive versions. Each such differential equation solver provides an algorithm for
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taking a single step along the solution curve, from a point (¢, Y(f)) to the next point

(t+h,Y(t+ h)). And it also provides an integrator—a program that manages taking

multiple steps to generate the solution curve to a specified stopping point. The built-in

solver of the HP-48G, for example, provides the function RKFSTEP to take a single step

and the function RKF to take multiple steps to a specified value of the independent

variable. The HP-48G also provides user interfaces in the form of SOLVE and PLOT

applications, simplifying the task of using the built-in functions. Many will find the

applications sufficient for all of their purposes and will never use the functions RKFSTEP

and RKF directly. We will see, however,thatit is often very useful to do so.

The programs in the appendix, mainly of interest to users of the HP-48S, provide

algorithms RK2, RK4 and RK4A for taking a single step along a solution curve. They also

provide an integrator SOLV that generates and graphs a solution curve using any one of

the single-step algorithms. And a SETUP procedure makes it convenient to apply the

programs to an arbitrary system of n first-order differential equations. The Appendix

contains instructions for entering and using the programs given there.

The graphs below, drawn by the HP-48G, compare the second-order and fourth-

order Runge-Kutta algorithms with the built-in RKF algorithm, as applied to our

benchmark initial-value problem (1.1). The zeros of the solution lying in the interval

0 < x <10 are also obtained for the purpose of comparing accuracy ofthe algorithms.

The improved stability of the built-in RKF algorithm is evident.
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Graph of the solution of the
initial-value problem (1.3) on

0 0 < x <10 drawn by the HP-
48G using the second-order

Figure3.1 Runge-Kutta method.

Graph of the solution of the
initial-value problem (1.3)

0 0 < x <10 drawn by the HP-
48G using the fourth-order
Runge-Kutta method. 

Figure 3.2

Graph of the solution of the
initial-value problem (1.3)

0 ] 0 < x <10 using the built-in
RKEF algorithm.

Figure 3.3

Graph of the solution of the
X initial-value problem (1.3) on

0 30 the interval 0 < x <30using
the fourth-order Runge-Kutta

Figure 3.4 method.

Graph of the solution of the
initial-value problem (1.3) on

0 the intervalQ < x < 30Qusing
the built-in RKF algorithm. Figure 3.5

Figures 3.1, 3.2 and 3.4 were drawn by the programs in the Appendix, following the

instructions given there. The special program SETUP prompts for the functions on the
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right hand side of the system (1.3) as well as for the initial conditions. Figures 3.3 and 3.5

were drawn by the HP-48G’s PLOT application. In this case it was necessary to provide a

program to evaluate the function F(¢,Y) in (3.1). For a single first-order equation this

usually takes the form of an expression 'F(t,y)', entered in the PLOT application’s EQ field.

When a system of more than one equation is given, however, Y is a vector, and the entry

into the EQ field more typically takes the form of a program. For the system offirst-order

equations in (1.3), for example, with T as independent variable and the vector Y as

dependent variable, the program

«'Y(2)' EVAL -T*2*Y(1)' EVAL 2 -ARRY »

is the appropriate entry. And the initial value s of T and Y are provided as 0 and [1, 0],

respectively.

Note how badly Figure 3.4 represents the solution! The constant stepsize

algorithms do not handle this example at all well except for very limited domains.

Another measure of the problem, presented in the following table, is the achievable

accuracy in computing zeros of the solution in the interval 0 < x <10 . For the 2nd and

4th order Runge-Kutta methods the zeros were generated by the programs in the

Appendix. For the built-in RKF algorithm we used the HP-48G’s SOLVER application in a

very appealing way that we now describe.

First, it is useful to know how the HP-48G’s RKF function works. It takes three

arguments from the stack as shown in the table:

 

 

Inputs Outputs

3: {TYF}

2: accuracy desired {TY F}

1: final value of T accuracy desired    
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The list in level three contains the names of the independent variable, the dependent

variable, and the variable containing the program (or expression) that was entered,

above, in the EQ field of the PLOT application. The number in level two is the desired

accuracy to be maintained as the solution is generated. The number in level one is the

desired final value of the independent variable. RKF starts with initial conditions stored

in T and Y, generates the solution asfar as the given final value of T, and terminates with

T and Y holding the final point on the curve. For convenience in generating further

extensions of the solution, it leaves the first two of its arguments on the stack.

We can now define a user-defined function SOL(T1) that represents the solution of

the initial-value problem. Merely save the following program in the variable SOL.

« = T1 « {T'Y F} .00000005 T1 RKF CLEAR 'Y(1)' EVAL »

If we initialize T and Y to any point on the solution curve, for example to the given initial

values, then SOL(T1) will return the value of the solution at any other point T1. Behind

the scenes RKF is wielding its magic, invisibly generating the solution curve between the

two points, stepping along the curve with steps adapted to the local nature of the solution

so as to maintain the specified accuracy. Finally, the user-defined function clears from the

stack the argumentsleft there by RKF and leaves the value of Y(1), instead. (Note that any

of the other components of the solution vector Y could have been returned instead. If we

were to return Y(2) instead of Y(1) in this example, the function SOL(T1) would define the

derivative of the solution function.)

Since this solution SOL(T1) has the form of a user-defined function, it has all the

privileges of such functions. In particular the algebraic expression ‘SOL(T1)' can be entered

directly in the EQ field of the SOLVEapplication to find zeros or other characteristics of

the solution. This is how the last column of the table of zeros, below, was generated.
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Such direct use of the HP-48G'’s function RKF illustrates the great flexibility and

power of its differential equation solver. Indeed, although the PLOT application is very

useful for graphing the solution of a single differential equation (or system of first-order

differential equations), the direct use of the RKF functions in programs is, perhaps, their

more important use. In the application at hand, the finding of zeros of the solution

function, the accuracy specified for the RKF algorithm was 5E-8. The 16th zero thatit

found is, indeed, accurate to 1 part in 100,000,000!

Zeros of the initial-value problem (1.1)

 

2nd Order 4th Order built-in RKF

2.00203644891 2.00313594472 2.00314729270
3.19492413783 3.2009154135 3.20095692562
4.05128652588 4.06405777033 4.06397614690
4,75358445731 4.77440169509 4.77419471552
5.36231454325 5.39209207961 5.39190129467
5.90668117367 5.94602222796 5.94588151508
6.40268633618 6.45310927629 6.45252653428
6.86131541392 6.92251066537 6.92221834643
7.28957420209 7.36299391049 7.36202330847
7.69178778272 7.77815861927 7.77700811227
8.07357868843 8.17170813129 8.17095208315
8.43599505705 8.54848304089 8.54676317595
8.78272725853 8.90884476027 8.90673565134
9.11562873391 9.25522004356 9.25271736799
9.43417449644 9.58850392663 9.58622265412
9.74356252066 9.91106744133 9.90851094399
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Exercise 3.1.

Enter the programs of the Appendix into your HP-48G (or HP-48S). Use them to

plot the solution of these initial-value problems:

y'+y=0, y(0)=0,y(0)=1,

y"+%y' +y=0, y(.00001)=1,y'(.00001)=0,

y'+e'y=0, y(0)=0,y'(0)=1,
3ynv_xy|+x2y=ex, y(O)-:y'(O):O, yu(o):%.

In each case, also use the built-in differential equation solver and compare results.

Examine the list of the zeros of the solution accumulated by the programs (or obtained as

shown above using the HP-48G’s SOLVE application.) How well do the zeros found by

the different algorithms agree with your expectations? The second of the above equations

is Bessel’s equation of order zero. The solution in that case is started slightly to the right

of the point (0, 1). Why? How well does the solution agree with J,(x) ? How well do the

zeros agree with those of J,(x)?

Boundary-value Problems.

Initial-value problems arise naturally in studying physical systems whose behavior

is determined by a differential equation and a complete description of the initial state of

the system. In contrast to these, many problems in engineering and science lead instead to

boundary-value problems where initial conditions give way to conditions imposed at

several different points. A rotating shaft, for example, is modeled by a fourth-order

differential equation that embodies the elasticity properties of the shaft, together with

conditions imposed at each end of the shaft specifying how the shaft is constrained.
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Examples frequently studied involve a linear differential equation accompanied by

boundary conditions of the form

a,y(a) + e,y(b) + oy(a) + o,y (b) = 7,

B.y(a)+ B,y(b) + B,y (a) + B,y (b) = 7,,

where @;, B;, and ¥,are constants. A simple example would be the following boundary-

value problem on the interval 0 < x < L:

y'+Ay =0,
y(0)=0, (3.2)
hy(L)+y' (L) =0,

where h is a constant. As is typical of such problems, we seek non-trivial solutions of the

differential equation that satisfy the two end point conditions—solutions that pass

through the point (0, 0)and that satisfy the relation specified between the ordinate and

slope at the other end of the interval. In general such solutions exist only for discrete

values ofA, called eigenvalues or critical values of the boundary-value problem. The

corresponding solutions are called eigenfunctions or characteristic modes of the problem.

Sometimes, as in the case of Equation (3.2), the boundary-value problem can be

solved explicitly. For in this very simple case, we can find the general solution of the

differential equation and apply the two boundary conditions directly. We obtain:

y=C cosVAx+ C, sinvVAx,

C,-1+C,-0=0,

h(C,cosVAL +C,sinAL) +A(~C, sinVAL +C,cosVAL) =0

(Note that when A is zero or negative the general solution takes a different form. These

cases must be considered also if one wants to find all eigenvalues of the problem. We

leave it as an exercise to show that there are no non-trivial solutions in these cases, i.e. no
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eigenvalues A <0.) The equations above imply immediately that C,=0 and

C,(hsinVAL ++/Acosv/AL) = 0. Hence,there can be non-trivial solutions only if A

is chosen so that

hsinA/AL +4/2cos\/AL=0.

Withy = ~/ALwe thus seek solutions of the equationtan4 = (—1/hL)lL. As expected

the eigenvalues form a discrete set—corresponding to the points of intersection

Hys Koy 1y, ... Of the curves as shown in the graph below (drawn by the HP-48G). The

eigenvalues are then A, = #12 /L%, i=1,23,.... The first few values are easily

computed, using the HP-48G’s SOLVE function.

P/ p2 u3  /pd
- 2

]
In many physical problems it may be only the first few eigenvalues that have

Figure

physicalsignificance, and in simple cases these might be computed analytically, as above.

When the differential equation itself yields only to numerical methods of solution,

however, we turn to numerical algorithms for finding the smaller eigenvalues. Of the two

commonly used methods—shooting methods and relaxation methods —we illustrate only

the former.5 Consider, for example, the boundary-value problem

y'+Axy =0, ¥(0)=y(2)=0. (3.3)

The shooting method seeks to find the first few positive eigenvalues by choosing an

additionalinitial condition at x =0 and determining A by trial-and-error so that the

 

S5Both methods are discussed in [Numerical Recipes].
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(unique) solution of the initial-value problem satisfies the other boundary condition at

x =2 as well. (The analogy with shooting a rifle bullet at a 45 degree angle,

experimenting with the muzzle velocity that will cause the bullet to land at a prescribed

point, comes to mind.) Which second initial condition is chosen is immaterial (so long as

it does not lead to trivial solutions) since the eigenfunction corresponding to a given

eigenvalue is determined only up to an arbitrary constant. Thus we will determine

solutions of the initial-value problem y"+Axy=0, y(0)=0, y(0)=1for various

values of A, experimenting until the conditiony(2) = Ois satisfied. The plots below,

drawn by the HP-48G using the built-in differential equation PLOT application,illustrate

the method. Figures 3.7 to 3.10 show thesolutions for A =1, 2, 3, 4, while Figures 3.11 to

3.14 show solutions forA =8,9,10, 11. Notice that whenAis 1 or 2 the solution

overshoots the target point (2, 0), whereas when A is 3 or 4 it undershoots the target. The

first eigenvalue is thus seen to be between 2 and 3. And it would not be difficult (only a

bit time consuming) to narrow in on the eigenvalue with further trials. We will show,

below, that the HP-48G’s SOLVE application can be used to find the eigenvalue more

efficiently. The second group of four figures show, by similar reasoning, that the second

eigenvalue lies between 9 and 11. This is the essence of the shooting method.

G

 Figure 3.7 Figure 3.8
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/

  ° R TN
Figure 3.9 ' Figure 3.10

    

Figure 3.

    
     l'

To find the eigenvalues more exactly we will define a user-defined function for the

lo

Figure 3.13 Figure 3.14

HP-48G that takes A as input and returns y(2), the value of the solution at x = 2:

«—> Al

«A1'X'STOO0 X' STO[01]'Y STO

{X Y F} .00000005 2 RKF

CLEAR 'Y(1)' EVAL

» »

Save this program in a variable EV. The program assumes that variables X, Y, and F

exist and that F contains the function that defines the differential equation. The roots of
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the function EV(A)are the desired eigenvalues of the boundary-value problem, thus we

can use the SOLVE application with EQ set to 'EV(A1)' to find the roots. With the display

mode set to 6 digits, the initial guess 2.5 yields the value 2.369533 for the smallest

eigenvalue. The guess 9.5 yields 10.235823 as the second eigenvalue. (In exercise 3.2 we

will see that these values are, indeed, correct to all digits shown.)

Exercise 3.2.

Use the program, above, to verify on your HP-48G calculator that the first two

eigenvalues of the boundary-value problem (3.3) are the values stated. Can you find the

third eigenvalue?

Exercise 3.3.

Use Example 2.7 to show that the general solution of the differential equation is

y=x(CJ,GVAxh + C,JGVAx)

From equations (2.7) deduce that the boundary condition y(0) = Oimplies C, = 0. Thus

the second boundary condition implies that C, remains arbitrary only if

J,GV22h=o.

Find the first several eigenvalues accurately by using your HP-48G and the program JS

for computing J\ (x). How do these values compare with those obtained by the shooting

method?

The eigenvalues A4,, A,, 4,,... of the boundary-value problem (3.3) have been

“found” in the sense that, at least in principle, they can be calculated numerically. The

corresponding eigenfunctions @, @,, @,, ... have also been “found”—they are exactly

the solutions arrived at, above, by the shooting method. Exercise 3.2 also showed, in fact,
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that the eigenvalues are given by A, =9u,%/32,n=1,2,3,..., where My Koy ls, ...

are the positive roots of Ji (x) = 0; and the eigenfunctions are

@.(x)= \/;J%(%\/Zx*), n=12,3,... (3.4)

It is clear that there is great merit in expressing the solution of the boundary-value

problem in terms of known functions. A little mathematics goes a long way! But the point

of the example is to show that we are not helpless in the face of a problem that just

happens to elude the class of functions in our current repertoire.

Section 4. Fourier Serles

Treatments of boundary-value problems lead naturally to the study of orthogonal

sequences of functions. Two functionsf(x)and g(x)are defined to be orthogonal (on the

interval a < x < b, with respect to the weightingfunction p(x)) if

b

[Pf)g(x)dx =0. @1

Most of the boundary-value problems that arise in applications belong to the class of

Sturm-Liouville Problems, whose determining characteristic is that the eigenfunctions form

an orthogonal sequence. Sturm-Liouville problems involve a second-order differential

equation of the form -i:-(p(x)%) +[q(x)+ Ar(x)]ly =0, together with boundary

conditions that ensure that Equation (4.1) holds.6

 

6In the various textbook referenceslisted it is shown that admissible boundary conditions

include the common formsy(a) =0, y'(a) =0, and a,y(a)+ &,y (a)=0.
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Our sample problem (3.3) is a Sturm-Liouville problem with p(x) =1, thus the

sequence (3.3) of its eigenfunctions is orthogonal. It is this property that enables us to

expand quite general functions f(x) in a series

fx)= ian(p,(x)= ian\/'fl*(%\/Zx%), 4.2)
n=1 n=1

where the coefficients are given by

_[we.wax _[fenx(33,54
" ferwa  [w(aAad)a

Note, again, that we can, in principle, calculate the coefficients @, numerically, using the

 

built-in integration function of the HP-48G. As might be expected, however, the

integrations can often be handled by use of general formulas available in comprehensive

works such as [Abramowitz and Stegun].

Exercise 4.1.

Use the values of 4, 4,, A,,... that you determined in Exercise 3.2 to determine

the first few termsofthe series (4.2). Use the built-in integration function of your HP-48G

and the user-defined function JS (or JI) given by Program 2.1.
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Example 4.1.

The common (trigonometric) Fourier series

fx)= 229- + Z(ak coskx +b, sinkx),
k=1

a, = 1 jf(x)coskxdx, (4.3)
T -x

b =1 [F(x)sinkxd,
T -n

arises from the Sturm-Liouville problem y"+4y = 0, y(-7) = y(%), y' (-%t) = ¥' (%). The

series effects the analysis of the function f(x) into its fundamental vibrational modes, and

all of the popular textbooks in the subject include many applications. We include one

example here to demonstrate the capacity of the HP-48G to handle Fourierseries.

Consider the step function

-1 —-t<x<0

1 O0O<x<m.
f(x)={

Equations (4.3) in this case lead to

b=+ [feoysinkredx = stinkxdx
n-—n T 0

2
(1-coskr)

, k=13,5,...,4
kn
0, k=2,4,6,...
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Hence the Fourierseries expansion off(x) is

Flr)= _Zsm(2kx

  

Tt 2k-1

4[ i sin3x sinSx ]
=—|SInXx+ + +...
T 5

We define a user-defined function FS for the HP-48G by entering the following program

and storing it in the variable FS:

« = NX «'4/n*Z(K=1,N,SIN((2*K-1)*X)/(2*K-1))' - NUM »»

Then the nth partial sum of the series for a given value of x can be calculated either by

entering 7 and X into the stack and pressing the user menu key FS, or by evaluating the

algebraic expression 'FS(N,X)'. More conveniently, the algebraic expression can be made

the current equation in the HP-48G’s SOLVE or PLOT applications.

Graphs of the first several, and the 50th partial sums, drawn by the HP-48G, are

shown below. Note that the pointwise convergence of the series to f(x) is nicely

demonstrated. The non-uniformity of the convergence is also visible, the Gibb’s

phenomenon showing up clearly. The student should repeat the steps leading to these

graphs and generate additional partial sums. Further examples of Fourier series can also

be found in the textbooks, and they can be explored graphically in the same manner.
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Figure 4.1 shows the first three

o - partial sums, Figure 4.2 the 6th

% fl partial sum, and Figure 4.3 the

Figure 4.1 50th partial sum.

wFigure 4.2

Exercise 4.2.

 

  

   Figure 4.3

Save the graphs of the 1st, 2nd, 3rd, ..., nth partial sums on the stack as individual

pictures, (graphic objects) and then “animate the convergence” of the series. (As each

graph is drawn you can save it to the stack by pressing [PICTURE] [EDIT] [NEXT]

[NEXT] [PICT-]. Then enter the number of pictures on the stack and execute the

ANIMATE command by pressing [PROG] [GROB] [NEXT] [ANIM].) Note: The number

of graphic objects that you will be able to save on the stack depends on the amount of

memory that your calculator has. With 32K of memory you may be limited to a dozen or

so pictures. With 128K of memory you can save many more.
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Section 5. Legendre Polynomials, Gaussian Quadrature.

Important among sequences of orthogonal functions are a number of sequences of

orthogonal polynomials. Legendre polynomials appear, for example, as the eigenfunctions

Py(x), P,(x), P,(x), ... of the Sturm-Liouville problem

(1-x3)y"-2xy' +n(n+1)y =0,
(5.1)

y(-1) and y(1) finite.

The textbooks derive from the differential equation many of the important properties of

these polynomials, important ones for our immediate purposes being

P_(x) is a polynomial of degree n,

P_(x) has n distinct zeros in the interval —1<x <1,

P,(x) is an odd or even function according as n is odd or even,

P,(1)=1,and P,(-1)=(-1)",

 

 

_ 5.2)
P(x)=L P(x)=xand P.(x)=22=2p_(0)-2"1p(x),

n

( 2[Pu0)P(x)dx=0 if nem, = if n=m.
% 2n+1

The last of these equations states the orthogonality of the Legendre polynomials. We can

thus expect to represent functionsf(x)in Fourier-Legendre series

f(x)= iakpk(x)a

2k+1
 jf(P, (x)dbx.
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To develop programs for computing Legendre polynomials efficiently, we turn to the

recurrence relation (5.2). Starting with Py(x)=1 and P,(x)=x, we can compute

successively as many of the polynomials as desired. Program 5.1 carries out this plan.

Program 5.1. Generation of Legendre Polynomials.

Program to generate the first # Legendre polynomials, store them in a subdirectory

GRAF, and plot P, (x).

 

Inputs Outputs

1: n| The subdirectory GRAF contains the
first n Legendre polynomials.

 

    
The program assumes that the subdirectory GRAF is created before running. It also

calls three subprograms SETPP, EXCO. and MULTIL. The program SETPP sets the

graphing parameters and is included below. The programs EXCO and MULTI completely

expand an expression algebraically. They are included with Program 6.2 later in this

chapter.

« GRAF CLVAR 1 'PO' STO 'X' 'P1' STO e Initialize the stack.

1 'X' ROT 2 SWAP

FOR n e Use the recurrence
DUP ROT SWAP 'X' * '(2*n-1)/n' EVAL relation to gener-

* SWAP '(n-1)/n' EVAL * - ate and store n
EXCO Legendre polyno-
CLLCDDUP"P"n +DUP" " SWAP mials.

" stored" + + 3 DISP OBJ—» STO
NEXT

(continued)
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(continued)

DUP STEQSETPP e Store P,(x) in the

ERASE DRAX LABEL DRAW 7 FREEZE current plotting

CLEAR UPDIR equation and
» draw it.

«-11 XRNG -1 1 YRNG {X -1 1} INDEP » ¢ SETPP

Program to set the
plot parameters

Exercise 5.1.

Enter the first of the Programs 5.1 and save it in a variable LGN. Also enter the

programs SETPP, EXCO and MULTI and create a subdirectory named GRAF.

Experiment! In particular run LGN with input 16 to generate the first sixteen Legendre

polynomials. The subdirectory now contains the polynomial expressions.

Example 5.1.

Using the expression for the sixteenth Legendre polynomial from the subdirectory

GRAF, we enter the following program into the HP-48G that defines a user-defined

function PP.

«— X"'196380615234-

26.7077636719*XA2+

592.022094728*X"\4-

4972.9855957*X"6+

20424.7622681*XN8-

45388.3605956*X710+

55703.8970947*XA12-

35503.5827636*XN14+

9171.7588806*X716' »
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Store it in the variable PP. Now we can evaluate P,;(x)by either putting its

argument on the stack and pressing the user menu key PP or by evaluating the algebraic

expression 'PP(X)'. Using the HP-48G SOLVE application, we can find the roots ofP(x),

only the positive roots being listed since the polynomial is an even function. The values

returned are:

0.095012509838
0.281603550774
0.458016777679
0.617876243864
0.755404411444
0.865631200614
0.944575030377
0.989400931244

Comparing these roots with valueslisted in [Abramowitz and Stegun] we find that the

last one is accurate to only 8 significant digits. The purpose of this example is to

demonstrate the loss of accuracy that ensues from evaluating a polynomial naively, i.e.

from its standard form. We have seen, earlier, the smearing effect that reduces accuracy

when computing a sum—the result of adding large intermediate terms of opposite sign

that contribute to a final result that is small. In the calculation carried out by the above

program, we would expect to lose aboutfive or six digits of precision since the largest

terms can be about that large and the final answeris less than 1 in magnitude. Except for

polynomials of quite small degree, one avoids computing them in the straightforward

way. Example 5.2 shows a correct way.

Example 5.2.

Again we use the recurrence relation (5.1), this time avoiding the symbolic

expressions for the Legendre polynomials. The program uses the recurrence relation for

each value of x individually.
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Program 5.2. Evaluation of Legendre Polynomials.

User-defined function to compute the value of P_(x).
 

 

   
 

Inputs Outputs

2: n

1: x| 1: P, (x)
«—> Nnx e Uses the recurrence

«1x2n relations (5.1) for

FOR k each value ofx

DUP ROTSWAPx*2k*1-k/* rather than

SWAPk1-k/*- symbolically.
NEXT
SWAP DROP

»

»

The expression 'P(16,X)' can now be entered as the current equation in the SOLVE or

PLOT application. Again we find the 8 positive zeros of the function. But this time they

are accurate to the full precision of the calculator. We will list the values obtained for

these zeros, below, when we use them in an important application—Gaussian 16 point

quadrature.

Graph of P,¢(x) drawn on the

interval -1<x <1.

 

Figure 5.1

Applications of Legendre polynomials are nearly always related to their

orthogonality properties. They arise, for example, in solving partial differential equations

using the method of separation of variables. It is their origin as eigenfunctions of the

Sturm-Liouville problem (5.1) that explains their appearance. Another example is their
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use in Gaussian quadrature , an important technique for numerical integration. It nicely

complements the built-in integration function of the HP-48G, as we will show in the final

examples in the chapter.

A continuous function f(x) can be approximated by a unique interpolating

polynomial p(x)of degree n that agrees with f(x) at n+1 points x,, X;, ..., X,. The

existence of such a polynomial is proved mosteasily by exhibiting it explicitly:

f(x)= if(x,)L,(x), where
k=0

(5.3)
L(x)= (x—xo)(x—xl)...(x—xk_l)(x—xkfl)...(x_xu)

(0 = X)X =%)+ (6, = Xy)X = X)) -+ (X — X,)

L, (x) is a product of exactly n factors, thus it is a polynomial of degree n.Moreover, it

is clear that it has the following properties:

L(x,)=1 and

L, (x)=0 i#k.

The approximation for f(x) in (5.3) follows from these facts. It is the famous Lagrange

interpolation formula for f(x).

Many numerical integration formulas are derived by integrating the interpolating

polynomial approximation (5.3) for f(x). This yields

b . b

[fomar=Yfx)|L(x)dx
a k=0 a) (5.4)

=Ywf(x,).
k=0

In other words the approximation to the integral of f(x) is obtained as a weighted sum

of n+1 values of f(x). The weights w, do not involve the function f(x) at all. Thus,
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once the weights are determined, equation (5.4) provides a scheme for numerically

integrating any continuous function f(x). The student will recognize in (5.4) many of the

common integration routines such as the trapezoid rule, Simpson's rule, and others. The

weights do depend, of course, on the interpolating points Xx,, X;,..., X, chosen. The

point of departure for Gaussian quadrature is to ask the question “For a given number n,

whatis the best way to choose the interpolating points?”

Let us take as interpolating points the sixteen zeros of P,((x)in —1 < x <1. This

might seem strange at first, since so many common integration methods begin with

equally spaced interpolation points. But we will see that it pays off handsomely. We arrive

at an integration method from (5.4), known as 16 point Gaussian Quadrature . It is only

necessary that we know the weights w,. As one might expect, they can be found in

[Abramowitz and Stegun]. But we can also compute them ourselves on the HP-48G, and

it is importantto realize how simply this can be done. For in some future application we

may find it necessary to use a sequence of orthogonal polynomials different from the

Legendre polynomials in order to meet the requirements of the application. The set of

Programs 5.3, below, accomplish the computation of the required weights. And Program

5.4 implements the Gaussian quadrature integration method.

Program 5.3. Calculation of weights for 16 point Gaussian quadrature.

The program takes no arguments from the stack and returns none. It generates the

eight weights corresponding to the eight positive zeros of P4(x) (from symmetry, we

know that the zeros *¢ of P,4(x) have the same weight) and stores the weights as a list

in the variable W. It assumes that the 16 zeros of P,4(x) are stored in the variable P16R

before the program runs. Computing the weights also requires a user-defined function to

compute L,(x). Enter this program first, and and store it in the variable L.
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«—= kx ¢ User-defined
«lov function
«116 FOR i e Compute the
IFik= product that

THEN defines L,(x)
P16R i GET DUP x - SWAP
P16R k GET -/ * 'v' STO
END
NEXT v

»

»

»

Finally, store the following program in the variable BLDW:

«{}"W'STO e Initialize list W

916 FOR i e Calculate weights
'f(-1,1,L(i,X),X)' > NUM for the 8 positive
DUP W SWAP + 'W' STO roots
i 1 DISP
NEXT

»

Program 5.4. Gaussian quadrature (two versions).

b
The two programs given here evaluate I f(x)dx . Their use differs only in the

form of the inputs required. The first expects the function f(x) in the form of an

algebraic expression, for example 'SIN(X)'. The second expects a program for the function

f(x) that takes one input from the stack and returns one value to the stack. The second is

more useful in further programming applications, for example in computing double

integrals (below). Store the programs in the variables GIN and PGIN.
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Inputs for GIN (version 1) Outputs

3 'f(x)'
2: a b. W BE [fx)dx

Inputs for PGIN (version 2) Outputs

3: « program for f(x) »
2: a by ol [fxdx

GIN: «->fab o User-defined
«0 «a b DUP2 SWAP - 2 / 4 ROLL function

*3ROLLD + 2/ +» * u changes coord-
- sumu inates from [-1, 1]
«1 8 FOR k to [a, b]
Z k GET DUP NEG e Compute sum (5.4)
u -»NUM X' STO f -NUM SWAP ¢ Get next zero
u -»NUM X' STO f -NUM +
W k GET * sum + 'sum' STO * Multiply by weight
NEXT
sumba-2/* 5NUM» ¢ Finish coordinate
» 'X' PURGE » transformation



PGIN:
«— fab

«0 «abDUP2 SWAP - 2 / 4 ROLL
*3ROLLD +2/ + »

-S> sumu

«1 8 FOR k

Z k GET u -NUM f EVAL

W Kk GET * sum + 'sum' STO

Z k GET NEG u -NUM f EVAL

W k GET * sum + 'sum' STO

NEXT

sumba-2/*5NUM

»

»

»

Exercise 5.2.
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e User-defined
function

* u changes coord-
inates from [-1, 1]
to [a, b]

e Compute sum (5.4)
* Next zero &

and its weight
* Next zero—Q

and its weight

¢ Finish coordinate

transformation

Enter the programs GIN and PGIN, above, into your HP-48G, and use them to

evaluate several integrals, including the following. In each case compare the result with

the value given by the HP-48G’s built-in integration function. How do the computing

times compare?

(a) jsinxdx,
0

L =1 meter
3

(b) 4\/§£V#fsin%" where g = 9.80665 7/

k=sinE
4

The second integral is an example of an elliptic integral of the first kind . With the values of

L, g, and k given,it represents the period of a simple pendulum of length 1 meter
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swinging with a maximum amplitude of Tt/ 2. It is a non-elementary integral. Note that

our 16 point Gaussian integration routine gives the correct result to 12 digits of precision!

In fact, it is shown in numerical analysis texts that 16 point Gaussian quadrature gives

exactly correct results for polynomials of degree < 33! Simpson's rule, by way of contrast,

gives exact results only for polynomials of degree < 3.

Exercise 5.3.

The function F(k,x) defined by the integral, below,is called the elliptic integral of

the first kind .

1 do

Flbn)=|ey
Write a program for your HP-48G that makes it a user-defined function that can be

evaluated either from the stack or in algebraic form. Then study it by generating graphs,

for various values of k¥ with independent variable x (have the HP-48G draw a family of

curves), and for various values of x with independent variable k. Find the reference

work by Abramowitz and Stegun (cf. bibliography) and compare your results with the

ones it catalogs.

Section 6. Some applications to Vector Calculus.

The HP-48G handles matrices and vectors well, and has built-in functions for

handling the common operations on two and three dimensional vectors. Some of these

wereillustrated in earlier chapters, and further applications should suggest themselves to

the student.
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Example 6.1.

As an example, the problem offinding the distance between two skew lines L, and

L, in 3-space involves evaluating the vector expression

(P,-P,)-(V,xV,)

[V, xV,|
 

dist = ’

where P, and P, are pointson L, and L,, and V, and V, are vectors parallel to L,

and L,, respectively. On the HP-48G wecan store in the variable DIST the program

«— P1 P2 V1 V2 «V1 V2 CROSS DUP P1 P2 - DOT SWAP ABS / »»

creating a user-defined function for evaluating the distance.

Exercise 6.1.

Enter the program above into your HP-48G, and find the distance between the lines

determined by the vectors P,= (1 2 3], P,= (-2 3 -5], V,= [1 0 2], and

V,=[-358]. (You should obtain the value 1.33955 for the distance.)
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Example 6.2.

Let y(t) =[acost,asint,bt] be a curve in 3-space. The curve is a helix spiraling

around the z-axis. We can study the geometry ofthis curve by computing the following

quantities that characterize its shape and orientation:

V = velocity vector = %Z—,

v =speed =||V|,

: V
U = unit tangent vector = —,

I\
du .
== vkN, N = unit normal vector, k = curvature, (6.1)

B = U x N = unit binormal vector,

dB ,
—=-ytN, T =torsion.
dt

The various textbooks discuss these quantities and their relation to the curve ¥(t). The

vectors U and N determine the osculating plane of the curve ¥(¢) at a point P. The

constant 1/ K is the radius of curvature of the curve at P. The vector B is perpendicular

to the osculating plane, and its rate of change measures the rate at which the curve tends

to twist out ofits osculating plane (hence the term torsion ).

To compute these quantities for a given space curve Y(t) =[x(t), y(¢), z(¢)], using

the HP-48G, we assume that the three coordinate functions x(t), y(¢) and z(t) are

defined as user-defined functions. Thus, for example, the three variables X, Y and Z

might contain programs
« - t'A1*COS(t)' »

«— t'AI*SIN(t)' » (6.2)

«= y 'Bl*t'»
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and the variables A1 and B1 contain constants. The essential feature of these programs in

only that they take one argument from the stack and return their value to the stack. We

could write them in many different ways, for example the first, which is written in (6.2) as

a user-defined function, could be written « COS A1*» instead. The following programs

then compute the various quantities that describe the space curve.

Program 6.1. Analysis of a space curve.

The programs below compute the various elements of a space curve defined in

Equation (6.1). A numerical differentiation routine is used in place of the HP-48G’sbuilt-

in symbolic differentiation, which is not readily used with the vector functions. All of the

programs take a single input ¢ from the stack and return their result to the stack, with the

exception of the numerical differential function DER.It takes two arguments from the

stack—the quoted name of a vector function and a value of t. It returns to the stack the

vector derivative of the named vector function, evaluated at ¢.

Each program is labeled with the variable name in which it should be stored. To

use the programs, store definitions of the three coordinate functions x(#), y(t) and z(¢)

in the variables X, Y and Z.
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P:
«—=t

«"X(t)' - NUM

'Y(t)' >NUM

'Z(t)' -NUM

3 -ARRY

» »

DER:

«.0001 - vth

«th+vEVALth-vEVAL-

2h*/

» »

V:

«—=t

«'P' t DER

» »

e Return the vector

P(t) to the stack

¢ Numerical different-

ation

° V = -d—-P—

dt
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U: VvV
«—>t

=

«'V(t)' - NUM DUP ABS /

» »

N:

«—>t

«'U' t DER DUP ABS /

» »

 

B:

«—ot —

«'U(t)' - NUM 'N(t)' -NUM CROSS * B=UxN
» »

SPD:

«>t *V= "V"

«'V(t)' - NUM ABS

» »

CURV: 1dU
o K=———

«—>t v dt

«'U' t DER ABS 'SPD(t)' - NUM /

» »

TORS: 1 dBlI
«—t o T=

« 'B' t DER ABS NEG 'SPD(t)' - NUM/ vil dt
» »
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Exercise 6.2.

Enter the programs 6.1 into your HP48G, and use them to compute the velocity

vector, speed, unit normal vector, curvature, etc. for various values of f. The helix is a

very simple curve for which the curvature and torsion are constants. Verify that the

vectors U, N,and B are indeed perpendicular. What accuracy is obtained by the

programs?

Exercise 6.3.

Study the space curve Y(t)=[t,1+¢,¢°=3t+1], 0<t<1. What are its
1

curvature and torsion when 7 = 4? Whatis the length of the curve? (Hint: L = Io v(t)dt.

Since SPD is a user-defined function the HP-48G is able to evaluate the expression

'J0,1,SPD(T),T). )

Example 6.3.

Line integrals of the form

LP&+Q@+R&,

where 7 is a curve in 3-space and P, Q andR are functions of x, ¥ and z, occur often

in applications of vector calculus. In particular,if

F(x,y,z) =[P(x,y,2), Q(x,y,2), R(x,y,2)]

is a vector field that represents a force exerted on a particle at the point (x,y, z), then the

line integral

[ Pdx+Qdy+Rdz=| F-dy
Y 7

expresses the work done by the force field on the particle as it moves along ¥ .
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As a specific example, let us compute the line integral LF -dy where Y is the

curve Y(t)=[t, 1+ 2,12 =3t +1], 0 <t <1 of Exercise 6.3, and the force field is given

by F(x,y,2) =[-x,y, xy + z%]. Then the work done by the force field as the particle

moves along the curve is

b

W= F-dy=[[P(r.y.2% (0+Q(xy.2)y )+ R(x,y,2)7(1))t

It is tempting to try performing this calculation symbolically on the HP-48G. We do this

by defining the functions x(z), y(¢), z(f) and P(x,y,z), Q(x,y,2), R(x,y,z) as user-

defined functions:

'X(T)=T' [DEF]
"Y(T)=1+TA2' [DEF]
'Z(T)=TA3-3*T+1 [DEF]
'P(X,Y,Z)=-X' [DEF]

'QX,Y,Z)=Y"' [DEF]

'R(X,Y,Z)=X*T+Z/2' [DEF]

Wealso store the limits of integration in variables:

0 'A’ STO
"2*g' 'B' STO

The variables A BXY Z P QR now appear on the user menu, and they are user-defined

functions. (They can therefore be evaluated from algebraic notation and can be

differentiated by the HP-48G. ) We now enter the integrand of the line integral as an

expression, and storeit in a variable L3IN (so we never have to type it in again):

"P(X(T),Y(T),Z(T))*aT(X(T))+QX(T),Y(T),Z(T))*aT(Y(T))

+R(X(T),Y(T),Z(T))*aT(Z(T))'

Finally, we enter the following programs:
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Program 6.2 Computation of a Line Integral in 3-space.

The program LLL evaluates the integrand L3IN of the line integral repeatedly,

carrying out the indicated differentiations and substitutions. It then computes the integral

of the resulting function of .

Each program is labeled with the variable name in which it should be stored. They

assume that you have defined the variables A BXY ZPQR as described above.

LLL:

« L3IN EVCO A B 3 ROLL 'T' | -5NUM »
e Simplify and

integrate.

EVCO: ® EVCO evaluates the
« « EVAL » MULTI » expression repeat-

edly.

EXCO: * See the HP-48G
« « EXPAN » MULTI Owner's Manual,

« COLCT » MULTI » Volume II (p 569)
for EXCO and
MULTI.  They

MULTIL: accomplish the
«=p complete alge-
« DO braic expansion
DUP p EVAL DUP ROT and collection of

UNTIL SAME terms.
END

»

»
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Exercise 6.4.

Enter the programs 6.2 and evaluate the line integral in Example 6.3 over various

intervals. Also evaluate the following line integrals.

F(x,y,z)=[x,-yz, e']and
J‘F-dy where ,

’ @) =[f, -t 11,0<1<1

nyzz dz where y(t) =[%, 1, 2¢*].

It is instructive to evaluate the integrals, above, “manually” rather than using the

program LLL. Press L3IN to put the integrand on the stack. Then press EVCO to

completely evaluate the expression (doing all differentiations and substitutions). Finally

press EXCO to expand algebraically and collect terms.

Note: Try integrating the integrand L3IN withoutfirst completely evaluating it. The

integration routine is confused by the extra variables and gives erroneous answers. The

use of the evaluation routine EVCO is essential in the program LLL.

Exercise 6.5.

Construct a version of Program 6.2 for computing a line integral in two dimensions.

The modifications are minor. Store the modified version in the variable LL. We will use it

in the next section. (Note that the 3-dimensional version LLL can be used to compute line

integrals in the plane. Simply set Z(t)=0 and R(x,y,z)=0. It is nevertheless

convenient to have a version dedicated to two-dimensional problems.)
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Example 6.4.

Green’s Theorem in the plane states that, under suitable conditions of continuity

and smoothness, an important relationship holds between a line integral

F-dy=¢ Pdx+§ F-dy=¢Pdx+Qdy

around a simple closed curve 7 in the plane, and a double integral over the region D of

the plane enclosed by the curve:

§7F-dy=jjo(%—?—£)dxdy.

This relationship is one of several forms that the fundamental theorem of calculus takes

in higher dimensions. It, along with its higher dimensional cousins (Stokes theorem), has

important applications and interpretations for fluid flow and conservative force fields.

Note indeed that it gives immediately a sufficient condition that a force field be

90 o
conservative, namely that ——g= 0 hold throughout the region D.

ox

We will verify Green’s theorem by calculating the integrals in a number of

examples. We already know how to evaluate the line integral, of course. So we now

consider the calculation of the double integral. This is often done by expressing the

multiple integral as an iterated integral

[[fxyrdxdy= jaf}u,y) dy dx

a:(x) d(x)

=[x [f@x,y)dy
a c(x)
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or a sum of several such integrals, depending on the shape of the region D. The latter can

then be evaluated by entering the expression

'[(ABJ(C(X),D(X),F(X,V),Y),X)'
into the HP-48G and executing -NUM. The key, of course, is to define the variables A, B

and the user-defined functions C, D, and F before evaluating the integral expression. The

following program is arranged to make this convenient.

Program 6.3. Evaluation of a Double Integral.

The program takes six arguments from the stack, as shown below, and returns the

value ofthe iterated integral. It creates the user-defined functions needed.

 

 

    

Inputs Outputs

6: 'F(X,Y)'
5: 'C(X)'
4: 'D(X)’
3: A b d(x)
2: B| 1: [ax [feydy
1: <number of decimal places> s c(x)

DBL:« 6 DUPN FIX e Copy arguments,
'B' SWAP = DEFINE set output mode
'A' SWAP = DEFINE * Define the functions
'D(X)' SWAP = DEFINE from expressions

'C(X)' SWAP = DEFINE on the stack

'F(X,Y)' SWAP = DEFINE
'f(A,B,J(C(X),D(X),F(X,Y),Y),X)' - NUM » Evaluate the integral

{F C D A B} PURGE ¢ Clean up the mess

»
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Example 6.5.

Find the volume underthe paraboloid z=1+ 2x* +3y” and lying over the region

of the xy-plane bounded by the x-axis and the curve y = sin(x). We enter the following

inputs into the HP-48G:

'14+2*XA2+3*YA2'
0
'SIN(X)'
0
't

6

The program returns the value 15.072542. The computation timeis lengthy.

Example 6.6.

The area in the xy-plane lying below the parabola y = 4— x* and above the

hyperbolic cosine curve y =coshx can be found by evaluating a double integral with

f(x,y) =1. The points of intersection of the two curves can first be found with the HP-

48G’s SOLVE application. The value 1.37617667019 is returned, and we store this in a

variable RT. We finally enter the inputs

1
'COSH(X)'
'4-xN2'
I_RT!

'RT
5

and after a few moments the result 5.56470 is returned. An enormous amount of

computation is done easily!
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Example 6.7.

Use Green’s Theorem to evaluate the line integral j F-dy around the curve ¥
Y

consisting of pieces of the Xx-axis and of the parabola y =4 — x? (the student should

draw a sketch of these curves), the curve being traversed in a counter-clockwise direction.

Let the vector function be

F(x,y)= [2y3e’, 3x*- 4y2].

We must evaluate the double integral

HD(%S‘ - %P)dxdy =HD (6x — 6y’e*)dx dy.

With the inputs to the program DBL:

'0*X-6*YA2*EXP(X)'
0
'4-XN2'
-2
2
5

we obtain -291.04903. Using Program 6.2 we also evaluate the line integral around the

boundary, breaking the computation into 2 parts corresponding to the piece of the x-axis

and the parabolic part. The line integral along the Xx-axis is zero (verify this). For the

parabolic piece we use the parameterization y(t)=[—t,4— t?], —2<t<2. Program

6.2 gives exactly the same answer as did the double integral, above, in confirmation of

Green’s Theorem.

We conclude this survey of examples of the use of the HP-48G by returning to the

Gaussian integration routine, Program 5.4, of Section 5. We are motivated by the very

long computing times for double integrals experienced when using the built-in
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integration function of the HP-4G8. A second difficulty in computing such integralsarises

in cases where the functions ¢(x) and d(x) have some irregularity such as an infinite

derivative at points of the interval @ < x <b. In such cases the computing time of the

program DBL can be prohibitive. In Program 6.4 we evaluate iterated integrals, using

Gaussian quadrature for both the inside and outside integral. In doing this we use the

second version of Gaussian integration that requires programs as inputs rather than

expressions .

Program 6.4. Evaluation of a Double Integral using Gaussian quadrature.

The program takes five arguments from the stack, as shown below, and returns the

value of the iterated integral. It creates the variables used in the Gaussian quadrature

routine by defining them as user-defined function.
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Inputs Outputs

5: 'F(X,Y)'
4. 'C(X)’
3: 'D(X)’ b d(x)

2: Al 1L: jdx If(x,y)dy
1: B a c(x)

DINT:
« 5 DUPN ¢ Copy the arguments

'B' SWAP = DEFINE

:g ,f‘?’Q&ZPDE%I;;NE * Define the functions

' ( ). ~ from expressions
C(X)' SWAP = DEFINE on the stack

'F(X,Y)' SWAP = DEFINE

«G» e Do the outside
,3G—I>NNUM B -NUM integration.

{F C D A B} PURGE
»

* Clean up the mess

G «—> X ¢ Inside integration.
« 1 16 START x NEXT * F(x, y) is called 16
«F» times by PGIN
x C ->NUM x D -NUM
PGIN

» »
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Example 6.8.

Let us compare the programs DBL and DINT by computing the double integral

x

jsin(x + y)dydx.
1©

S
y

—

We place the inputs 'SIN(X+Y)' 1 'EXP(X)' 0 1 11 on the stack and execute DBL. After 45

minutes (!) of computing we obtain the value 0.49242316000. We then place the first five

of these inputs on the stack and execute DINT. In 47 seconds we obtain the result

0.492423159996!

Exercise 6.6.

Find problems involving Green’s Theorem in your textbook and use Programs 6.2

to 6.4 to evaluate the line integrals and double integrals. Compare Programs 6.3 and 6.4.

Exercise 6.7.

Find the volume of a sphere of radius 1 by writing the volume as the iterated

integral

1 V1-x2

volume = f dydx.
-1_1-2

The infinite derivatives of ¢(x) and d(x) at the end points of the interval —1<x <1

are troublesome for most numerical integration methods. How well does the HP48G do?

How well does Gaussian quadrature do?
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11.

12.
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Appendix. Programs for the Adaptive 4th Order Runge-Kutta Method.

The programs here are based on algorithms presented in Numerical Recipes, Press,

Flannery et al. Three algorithms are included—the 2nd order Runge-Kutta method, the

4th order Runge-Kutta method, and a 4th order Runge-Kutta method with adaptive

stepsize. A single driver program SOLV is provided in which the call to take a single step

by way of one of these algorithms can be any of STP2, STP4 or STP4A.

The driver program plots the solution as it progresses, and it accumulates a list of

all zero-crossings encountered. The zeros are determined by linear interpolation between

pairs of points for which a sign change occurred.It is relatively easy to modify the driver

so that it also stores lists of zeros of the derivatives.

In practice the 2nd order Runge-Kutta algorithm is useful for drawing simple

graphs quickly when a high degree of accuracy is not required. It works quite well for

solution functions that are relatively smooth and that have bounded rate of change. The

4th order Runge-Kutta algorithm often performs more satisfactorily, its larger admissible

stepsize more than making up for the greater computing cost for each step.
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Program. Adaptive 4th Order Runge-Kutta Algorithm.

A package of programsis given for solving an initial-value problem involving a

system of first-order differential equations:

dy
th=f2(t’ Yis Y2s+++3 Yn)

dy,
eef030Y2
y1(to)=y1', y2(10)=)’2', coey y,,(to)=y,'

The user will normally use three programs — SETUP, INIT, and SOLYV,in that

order — by pressing the user menu keys bearing those names. SETUP prompts for the

inputs defining the system of equations and puts them on the stack in appropriate form.

INIT initializes all global variables. And SOLV does the rest. The comments below are

merely explanatory with regard to the other programs in the package.

The programs RK2, RK4 and RK4A, perform one step by the second-order , fourth-

order or adaptive fourth-order Runge-Kutta algorithms, respectively. RK2 and RK4 each

take four arguments from the stack — the current value of t, a vector [Y1,Y2,..,Yn] giving

the current values of the dependent variables, a vector [Y1',Y2,...,Yn'] giving the current

values of the derivatives of the dependent variables, and the current value of the stepsize

H. RK4Atakes only the first three of these arguments. They all return the new values of t

and [Y1,Y2,...,Yn] to the stack. In addition, RK4A modifies the global variable H.

The driver program SOLV orchestrates the setting up of the graph, taking repetitive

steps, and doing the necessary bookkeeping. Choose the desired step algorithm RK2, RK4
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or RK4A by editing the first line of SOLV. It assumes that global variables H, N, and F are

available — N containing the number of equations in the system, H containing the

current stepsize, and F containing a list of programs for the right-hand sides of the

differential equations.

The programs SETUP and INIT take care of all the details of setting up the

variables called for above. SETUP prompts the user for the functions f,, f,,..., f, in the

form of algebraic expressions (SETUP converts them to program form), the initial

conditions in the form of a list {#, y, ¥, ... y,} and the graph parameters in the form of a

list {X_.. X_0s Yoin Yooax Penax} - The value of h_,. is used by RK2 and RK4 asthestepsize

h. 1t is used by RK4A as an upper bound on the stepsize. (RK4A decides what size steps

to take, butit is often usefulto limit the maximum stepsize according to the requirements

of plotting; for example the stepsize might be limited to 1 pixel.) The program SETUP

merely puts the appropriate inputs on the stack. INIT actually sets up the global variables

used by all the other routines.

The programs REVW (review) and SVST (save stack) makeit convenient to save the

list of inputs and to recall them to the stack. SVST is executed automatically by the other

routines. Thus REVW can be used at any time to restore the list of inputs originally

constructed by SETUP.In situations where the user is solving many related initial-value

problems, for example changing only the initial conditions,it is easier to use REVW to

restore the inputs, edit them directly, and then use INIT and SOLV again.

REVW:
« STK OBJ— DROP » e Recall previous

inputs



INIT:
« SVST

OBJ- DROP DUP 'HMAX' STO 'H' STO
YRNG XRNG ERASE DRAX LABEL
OBJ- 1 -'N'STO N -ARRY
N 2 + ROLLD N 2 + ROLLD
N >LIST 'F' STO »

SOLV:« «STP2 » —» stepAlg
« ERASE DRAX LABEL {#0 #0} PVIEW

{ } 'RTLS' STO
DO
DUP2 stepAlg EVAL
4 PICK 4 PICK 1 GET R-C
3 PICK 3 PICK 1 GET R-— C LINE
IF3PICK1GET2PICK1GET*0a
THEN INTRP RTLS SWAP + 'RTLS' STO
END
4 ROLL 4 ROLL DROP2

UNTIL
OVER PPAR 2 GET RE >
END

» »

STP2:
« DUP2 DYDX H RK2 »

STP4:
« DUP2 DYDX H RK4 »

STP4A:
« DUP2 DYDX RK4A »
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* Put starting point on
the stack and init-
ialize the graph

ee CHANGE ME

to STP4 or STP4A

* Main program loop.
Generate points
until the graph is
finished.

 Take one step of RK2

* Take one step of RK4

e Take one step of
RK4A
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RK2:
«—= XYDYh

«DYh*2/Y+

x h 2 /7 + SWAP DYDX

h*Y + xh + SWAP

»

»

RK4:

«00- xYDYhh2x2

«xh2/+'2'STO

DYh*DUP2/Y+

x2 SWAPDYDXh*DUP2/Y +

x2 SWAPDYDX h* DUP Y +

X h + SWAP DYDX h * SWAP

2*+SWAP2*++6/Y+

x h + SWAP

»

»

® RK2 step

* RK4 step



RK4A:

«0 00 - xYDY scale err done
«1 N FOR k

'1+ABS(Y(k))+H*ABS(DY(k))' EVAL
NEXT N —-ARRY 'scale' STO

DO

xYDYH 2 / RK4
DUP2 DYDX H 2 / RK4 DUP
IF 3 PICK x ==
THEN
DROP 880 .5 BEEP HALT

ELSE

x Y DY H RK4

SWAP DROP - OBJ— DROP 0O 'err' STO

N 1FOR k

ABS scale k GET / DUP

IF err >

THEN 'err' STO

ELSE DROP

END -1

STEP

err EPS / 'err' STO

IFerrla

THEN

err-.2N.9*H*'H' STO

1 'done' STO

ELSE

err -.25 A .9 * H * HMAX MIN

'"H' STO DROP2

END

END

UNTIL done ==

END

»

»
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® RK4A step

* Set up scaling

* Loop until the right
stepsize is found

e Take 2 halfsize RK4
steps

¢ Abort of no progress
is being made

e Take a full RK4 step
and estimate the
error by com-
paring it with the
2 halfsize steps

e If error is small,

reduce stepsize
and proceed

¢ Otherwise decrease
stepsize and try
again
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SETUP:
« STD "How many equations?"

":N: " INPUT OBJ- 'N'STO
1 NFORIi
CASE
N1-==

THEN
"(( - Tx" l'f‘l i + "(T’X)" +

END
N2-==
THEN
"«-» TXY""f"i+"(T,X,Y)" +
END
N ==

THEN
"«-» TXYZ""f"i+"(T,XY,2)" +
END

"(( - ’1"" "f' i + "("I‘" +

1 NFORj
"Y'j++ SWAP" Y"j+ + SWAP

NEXT
") ?" +

END
{""" 2 ALGV} INPUT
"»" + + OBJ-

NEXT

CLLCD " Initial conditions?"

3 DISP .5 WAIT

CASE

N 1 == THEN "{T X} ?" END

N 2 == THEN "{T X Y} ?" END

N 3 == THEN "{T X Y Z} ?" END

"{"l""

1 NFOR j
" Y" +j +

NEXT "} " +

END

{"{}" 2V} INPUT OBJ-

(continued)

e SETUP routine

* Prompt user for the
input equations,
and put the
appropriate form
of definition on
the stack (user-
defined function)

e Prompt user for

initial conditions

and package them
into a list



(continued)

CLLCD " Graph parameters ?"
3 DISP .5 WAIT
"{X1 X2 Y1 Y2 H} ™
{"{}" 2V} INPUT OBJ-

»

DYDX:

«1 N FOR k
DUP2 OBJ— DROP F k GET EVAL3 ROLLD

NEXT
DROP2 N —-ARRY

»

INTRP:
«4 PICK 4 PICK 1 GET
4 PICK 4 PICK 1 GET
DUP 4 PICK - 5 ROLLD
4 ROLL * 3 ROLLD * - SWAP /

»

SVST:
«{}'STK' STO STK
1 N 2 + START
SWAP 1 - LIST SWAP +

NEXT
'STK' STO REVW

»

REVW:
« STK OBJ—- DROP
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e Prompt user for the
graph parameters
and for the value
of h

e Calculate the next

direction vector

* Interpolate between
the last two points
generated

e Save the input
arguments for
review or editing

e Recall inputs to the
stack for editing



HP48G/GX Calculator Enhancement

for

Probability and Statistics

Iris Brann Fetta

The subject ofstatistics deals with collecting, organizing, analyzing, displaying and

interpreting information and the formulation of conclusions concerning the source ofthat

information. Open today's newspaper, watch the television, listen to any sports report

or look at any magazine. The chances are that you will see a graph or table presenting

you with data or a conclusion that has been made as a result of the collection of data.

Important decisions are made each day using the results of statistical surveys. Since

any decision that is made should have an associated measure of the reliability of that

decision, an understanding of the theory of probability is therefore necessary.

This chapter discusses the use of the HP48G's built-in statistics applications and

also provides programs designed to enhance the capabilities of the calculator to explore

many of the topics in an introductory course in probability and statistics. It is not the

aim of this chapter to teach these topics. Likewise, the programs are not intended to

give quick solutions, but are designed to help you think about the mathematics in a way

that should provide insight into the underlying concepts. It is hoped that the material

will stimulate you to explore and experiment beyond the specific applications

presented here. We suggest that as you read through the chapter, you use your HP48G

to follow the discussion and explorations.

The HP48G series (48G/48GX) offers a choice of two methods of accessing

calculator applications: screen interface or stack interface. The screen interface, available

for use when the green right-shift key is pressed before an application, provides

332
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access through dialog boxes on the screen. The stack interface uses the standard HP48

softkeys and the stack to easily approach all commands related to a particular topic

when the application key is preceded by the purple left-shift key. When

applicable, instructions using both interfaces will be given through-out this chapter.
 

  Screen interface methods will be marked with the symbol ra and stack interface
 

 

  methods will be denoted by the symbol fl . We suggest you explore both operational
 

methods and choose the one you prefer.

It will be helpful to create a statistics directory to hold the programs and data sets

given here. Although this directory can be given any name, we suggest ISTAT. Before

creating your directory, press and enter El ISTAT on the stack.

e Note that whenever you are typing alphabetic characters, you will find it

convenient to hold down the @ key with one hand and continue holding it while

you key in the letters with your other hand. When you finish typing, release the

@ key.

R’} Press [MEMORYI [N E Vfl andE Enter the directory name, press

and . Press and you should see the name of the new

directory in your variables() menu.

 

 

   

(If you are exploring both the screen and stack interface methods, you need to call the

directory created by your second method a different name, say MSTAT. )

Pl| Press . Enter the directory name and press.

Press to see the name of the new directory in your variables menu.

 

   

(If you have created two directories ISTAT and MSTAT, delete MSTAT with the

keystrokes [ [MSTAT][§][MEMORY] [DIR] [P@DIR].)
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Bl NUMERICAL DESCRIPTIVE MEASURES

When you describe a set of data with numbers that summarize its major features,

you are using numerical descriptive measures. The statistics application of the

HP48G/GX contains commands for calculating sample and population numerical

descriptive measures. However, before any of these commands can be used, data must be

entered into the calculator.

[ ENTERING AND EDITING ONE-VARIABLE DATA

One-variable data can be entered in the HP48G/GX as an array or as a list. Lists

are more flexible than arrays, but the built-in statistics applications always use for

calculations the data stored in a specific array (matrix) called ZDAT. The statistical

data matrix you create will reside in the active subdirectory of the VAR menu. Because

ZDAT is a variable, different ZDAT matrices may exist in various directories in user

memory. Any changes made to ZDAT in the statistics application will update the

ZDAT matrix in the current directory but will not affect ZDAT matrices stored in other

directories. If you have changed directories, you should always recall ZDATto the

stack by pressing to be sure you are working with the correct data. If you wish

to use data other than the current statistical matrix, you can choose another matrix by

entering new data, editing the current data or selecting another matrix. If you select a

matrix with a name other than ZDAT when using the stack interface, it must be

designated the current statistical matrix by renaming it ZDAT.

Let's explore the various methods of data entry. First, press ISTAT| to

enter yourstatistics directory. Using either of the methods on the previous page, create

a subdirectory called DATA to hold your data sets. Press to enter this

subdirectory.

The following table shows the lengths of term (in years) for the fifteen previous

Chief Justices of the Supreme Court of the United States [4]):



PROBABILITY AND STATISTICS 335

 

Name Appointed From Term Length of Term

John Jay New York 1789-1795 5
John Rutledge South Carolina 1795 0
Oliver Ellsworth Connecticut 1796-1800 4
John Marshall Virginia 1801-1835 34
Roger B. Taney Maryland 1836-1864 28
Salmon P. Chase Ohio 1864-1873 8
Morrison R. Waite Ohio 1874-1888 14
Melville W. Fuller Illinois 1888-1910 21
Edward D. White Louisiana 1910-1921 10
William H. Taft Connecticut 1921-1930 8
Charles E. Hughes New York 1930-1941 11
Harlan F. Stone New York 1941-1946 4
Fredrick M. Vinson Kentucky 1946-1953 7
Earl Warren California 1953-1969 15
Warren E. Burger Virginia 1969-1986 17
William H. Rehnquist Arizona 1986-

Let's enter the 15 lengths of term for the former Chief Justices in the form of a list.

TO ENTER ONE-VARIABLE STATISTICAL DATA IN THE HP48G/GX AS A LIST:

e Press [j__fl to begin the list.

e Key in the first data value and press.

e Key in the next data value, press,and continue in this manner until all

values are entered.

o Press |ENTER]| to place the list on the stack. Name and store this data list

with the keystrokes D CJST.

Lists of the same length can be added, subtracted, multiplied, divided, and

operated on with functions. Additional information concerning lists can be found in your

HP48G Series User’s Manual. Onelist manipulation you will find beneficial is sorting.

You may find this procedure helpful if you need to find the mode for a set of data or

construct a stem-and-leaf plot. To sort the elements of a list in ascending order, place

the list on level 1 of the stack by pressing the softkey corresponding to its name, and
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press [MTH] [LIST| [SORT/|. Sort the CJST list to obtain (0 4 4 5 7 8 8 10 11 14 15
 

17 21 28 34 ). Sorting is a temporary action; the sorted list is not saved in your DATA

directory unless you store it to the same name or to another name.

The table below gives data on serious football injuries (neck injuries) and deaths

directly attributable to football (neck or head injury during game or practice).

Year ious Football Injuri Deaths Directly Attributable to Football

1981 6 5
1982 7 7
1983 11 4
1984 5 4
1985 6 4
1986 3 10
1987 9 4
1988 10 7
1989 12 4
1990 11 0
1991 1 3

 

USA Weekend magazine, October 23-25, 1992

Enter the first column data (the 11 serious injury values) directly into ZDAT using

the screen interface by following the instructions below.

 

 I?} TO ENTER ONE-VARIABLE STATISTICAL DATA USING SCREEN INTERFACE:  

e DPress and to choose Single-variable. If there is data already in

IDAT (i.e., the highlighted space to the right of ZDAT: is not empty), press

o Press |[EDIT| to enter the MatrixWriter application. (You may first need to

press to find the menu page containing |EDIT]|.)
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¢ Key in the first data value, press ENTER|, and then pressE to move to the

second row.

¢ Key in the remaining data values, pressing ENTER| after each. (There is no

need to pressE] after the first row is entered.)

o Press ENTER| to temporarily store the data into the ZDAT matrix.

e Press to make the entered data the current ZDAT matrix.

For future reference and use, let's save these data to the name INJ.

 

E’; TO STORE IDAT TO A DIFFERENT NAME USING THE SCREEN INTERFACE:

e Press STAT . You should see the current ZDAT matrix partially

displayed in the highlighted box.

e Press to place ZDAT on the stack.

e Enter El followed by your choice of name for the data and press .

e Press to return to the current statistics dialog box or press CANCL

CANCL| to return to the stack.

1(;| TO STORE ZDAT TO A DIFFERENT NAME USING THE STACK INTERFACE:

e Press EDAT| ENTER]| to place the current ZDAT on the stack.

e Enter E] followed by your choice of name for the data and press .

You should now see the softkey in your menu. Notice that |[EPAR| has

also appeared there. This variable is used in conjunction with ZDAT for statistical

plots. If you do not wish ZPAR in your menu, press E' .
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Let's explore the stack interface data entry using the second column data (the 11

deaths directly attributable to football). After you input the data, name the matrix

DEATHS using either of the two methods previously discussed.

 

 l(fl TO ENTER ONE-VARIABLE STATISTICAL DATA USING STACK INTERFACE:

e DPress and to bring up the statistics data entry menu.

e Press before beginning data entry or entered values will be appended to

  

the current ZDAT matrix.

e Key in the first data value and press.

e Key in the remaining data values, pressing after each to complete entry of

data into ZDAT.

If you make a mistake while keying in the data when using any of the data entry

methods, you can correct the mistake before you enter the number by pressing@ and

entering the correct value. To verify that the correct data values have been entered or

to correct an incorrect value that has already been entered, use either of the two

methods given below:

 

 rC’i TO EDIT STATISTICAL DATA USING SCREEN INTERFACE ACCESS:

« Press[?][STAT] K] [EDIT].

e Use the Eand mcursor keys to scroll through the data and edit as

necessary. Press ENTER]| to store the edited value.

e DPress |[ENTER| and to store the edited ZDAT matrix.

  



 

|   
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TO EDIT STATISTICAL DATA USING STACK INTERFACE ACCESS:

+ e [VAR) [50AT [}
e Use the Eand mcursor keys to scroll through the data and edit as

necessary. Press ENTER| to store the edited value.

e DPress to return to the stack and E' to store the edited

IDAT matrix.

Finding numerical descriptive measures is easy once data have been entered.

Recall that the built-in statistics applications always use for calculations the data

stored in ZDAT. Therefore, if you wish to use previously entered data in calculations,

you must designate that data as the current statistical matrix.

 

I   

 

|    

TO DESIGNATE THE CURRENT ZDAT MATRIX USING SCREEN INTERFACE:

e DPress . (Actually, any of the four choices may be used.)

e If there is already data in ZDAT, press .

o Press |[CHOOS| and highlight the matrix you wish to make the current

statistics matrix.

e Press to temporarily store the matrix in ZDAT for use in calculations from

this interface. Pressing again replaces the ZDAT in your variables menu

with your chosen matrix; pressing (CAN CL| cancels the ZDAT change.

TO DESIGNATE THE CURRENT ZDAT MATRIX USING STACK INTERFACE:

e Press (and if necessary |DATA|) to access your stored data.

¢ Enter the matrix you wish to make the current statistical matrix onto the stack

by pressing the menu key corresponding to its name.
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° EnterEI .

Now that you know about entering, editing, and manipulating one-variable data

on the HP48G,let's use the data to find some numerical descriptive measures. Make the

serious football injury data() the current ZDAT and follow the instructions below

to find the mean, standard deviation, variance, total, maximum, and/or minimum of

the injury data using screen interface access.

 

I   

 

Pl   

TO FIND NUMERICAL DESCRIPTIVE MEASURES USING SCREEN INTERFACE:

e Press to choose Single-variable. Note that you can at this point

choose the data set you wish to work with if you have not previously done so.

e Choose either Sample or Population in the second field with [+/—].

e Use|Y m E, and/orE to move around the display pressing either

I\/ CHK|or to toggle on or off the measures you want calculated. 

e DPress and the tagged values appear on the stack. Pressingm allows you

to scroll through the stack values for viewing.

TO FIND NUMERICAL DESCRIPTIVE MEASURES USING STACK INTERFACE:

o Press STAT| |1VAR| to display the statistics numerical descriptive

measures menu. You must have previously designated the current ZDAT matrix.

o Press the softkey on the menu corresponding to the measure you desire, and the

calculated value will appear on the stack. scrolls you through the menu

pages and |STAT/| returns you to the main statistics menu.

e [SDEV| and calculate sample standard deviation and variance

respectively; |[PSDEV| and |PVAR| calculate population standard deviation

and variance.
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Did you find X = 7.364, s = 3.557, s2 = 12.655, x = 81, a maximum value of 12 and a

minimum value of 1? If not, check the entry of your data. Note that Total = £x provides

a quick check on your entry of the data.

[J ENTERING AND EDITING MULTI-VARIABLE DATA
The ZDAT matrix contains a row for each data point and a column for each variable

measured at that point. Thus, each column of the matrix represents the values for a

different variable in your data. The number of rows that are entered equals the number

of data points. For instance, if you were entering the year, number ofinjuries and number

of deaths in the football data as multi-variable data, the ZDAT matrix would consist

of 11 rows and 3 columns.

We consider another example. The following data relates gas mileage and weight

of automobiles in a random sample of 15 automobiles:

Weight(in thousands of pounds) Fuel Efficiency (in miles per gallon)

2.67 28.4
4.36 16.9
3.14 17.0
3.62 18.6
2.23 30.8
2.67 27.4
3.83 18.2
2.19 30.5

3.96 16.5
3.84 17.4
3.61 19.2
2.80 21.6
2.20 34.1
1.98 34.2

4.06 15.5

Using either of the two methods described below, enter these 15 data points, each

consisting of the two variables weight and fuel efficiency, as multi-variable data.
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Procedures for editing a statistical data matrix having more than one column are

the same as those for one-variable data.

 

5   

 

Pl   

TO ENTER MULTI-VARIABLE STATISTICAL DATA USING SCREEN INTERFACE:

e Press[?][STAT] and to choose Single-variable. If there is data alreadyin
ZIDAT (i.e., the highlighted space to the right of ZDAT:is not empty), press

e Press |[EDIT| to enter the MatrixWriter application.

o Key in the first data value, press , key in the next data value, press

, etc. until you have entered all data in the first row of the matrix on the

command line. Press ENTER| and then pressm to moveto the second row.

¢ Key in the remaining data values, separating those in each row with,

and press ENTER| after keying in the values for each individual row. (There is no

need to pnessm after the first row is entered.)

o Press ENTER| to temporarily store the data into the ZDAT matrix.

e Press to make the entered data the current ZDAT matrix.

TO ENTER MULTI-VARIABLE STATISTICAL DATA USING STACK INTERFACE:

e DPress and to bring up the statistics data entry menu.

e DPress before beginning data entry or entered values will be appended to

the current ZDAT matrix.

o Press [Efl to let the HP48 know you are entering multi-variable data.

e Key in the first data value, press, key in the next data value, press

,etc. until you have entered inside the brackets on the command line all

data in the first row of the matrix. Press .
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e Key in the remaining data values, separating those in each row with ,

and press after keying in the values for each individual row. (There is no

need to use the brackets after the first row is entered.)

e Press ZDAT]| at any time during data entry to view the matrix.

For future reference and use, save these data to the name CARS. (When working

with multi-variable data, storing ZDAT to a different name and designating a matrix

as the current ZDAT matrix is the same as when working with one-variable data.)

Press and notice that both ZDAT and CARS reside in your current user directory.

Let's find some numerical descriptive information for the CARS data.

 

  I?';' To find numerical descriptive measures for multi-variable data using the screen
 

interface, follow the same instructions that are given for one-variable data. The only

difference for multi-variable data is that after you enter the input screen, you must

choose the column for which you wish the numerical measures calculated. Do this by

usingIE to highlight the field to the right of COL:, type in the number of the desired

column, and press.

Did you find a TOTAL of 47.16 for the weight (column 1) and a TOTAL of 346.3 for the

fuel efficiency (column 2)? If not, check the entry of your data.

 

P1| To find numerical descriptive measures for multi-variable data using the stack   

interface, follow the same instructions that are given for one-variable data. (Be

certain that the data matrix you use is designated as the current EDAT matrix.) The

only difference for multi-variable data is that numerical descriptive measures will be

given for all columns when you press the proper keys in the STAT 1VAR menu. These

will be given in the form of a vector with the individual statistics in the order of the

columns.
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For example, to find the mean fuel efficiency for the cars in the sample, press

M E AN| and observe the two-element vector of means. Since mpg is represented by the

second column of ZDAT, look in the second position of the means vectorto find 23.0867.

Whatis the variance in the weight of the sampled automobiles? Pressing

gives the two-element vector of variances of this sample data as [.639 48.287]. The

first column in the data is the weight, so the variance in the weight is the first of these

numbers, .639.

Another numerical descriptive measure of a set of data is the median. Unlike the

mean, which can be associated with the center of mass of a data distribution, the

median measures the geometric center. Therefore, the median divides the data into two

equal portions, the bottom 50% and the top 50%. The median is also known as the 50th

percentile. In describing the position of a particular data value in relation to the other

measurements in a data set, you are using a numerical descriptive measure called a

percentile. When your data set is arranged in order from smallest to largest, the pth

percentile is a number (which may or may not be one of the data values) that divides

the bottom p% from the top (1 - p)% of the data.

There are two "hidden" programs, MEDIAN and %TILE, in your HP48G/GX that

will calculate the median and other percentiles of a one-column set of data. Even

though the medianis the 50th percentile and could be calculated using program %TILE,

the input forms of these two programs are different. Sometimes it is more convenient to

use one program than the other when calculating the median, so we will consider both.

Program MEDIAN calls program %TILE, so both must be in the same directory.

To access these programs,first return to your home directory with HOME|. Hold

down @, and while holding it, type the word TEACH. Press ENTER| and you should

now notice |EXAM| in your home directory. The program to calculate the percentiles,

,is in the EXAM subdirectory. Press and you should see the

program to calculate the median,  MEDIA|. However, to use these programs, they
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must be in the same directory as the current ZDAT. Use the instructions below to copy

programs MEDIAN and %TILE to the DATA directory.l

TO COPY OR MOVE VARIABLES USING THE VARIABLE BROWSER:

o Enter the directory that contains the variable (in this case, the program) you

want to copy or move.

. Press MEMORY| and a list of the variables in the current directory will

appear.
 

e With the program name highlighted, press [COPYl (or IMOVEI if you wish
 

to move rather than copy the variable.)

¢ Enter in the highlighted COPY TO: field the name of the directory in which

you wish the variable to appear. (In this example, press to obtain a

list of the directories and their subdirectories. You should see DATA under ISTAT.

Usingm and/orm highlight DATA and press) .

e Press to copy or move the variable and return to the stack.

e Press and enter the directory or subdirectory to which you moved the

variable to verify that it now appears where you placed it.

The CARS data should be your current EDAT. If not, designate it as such. Press

MEDIA| and the HP48G will return the vector [ 3.14 19.2 ] indicating that the me-

dian weight is 3.14 thousands of pounds and the median fuel efficiency is 19.2 mpg.

 

1 You may need to correct program MEDIAN if you have an early version HP-48G/GX.

Press[?][MEDIA| and see if STOY appears in thethird line of the program between
TRN and 1. [f not, pressm and edit the program by inserting STOY immediately

following TRN. Press [ENTER] [€][MED1A] to store the corrected version of the
program.
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Now designate DEATHS as the current ZDAT. Press MEDIA| and you will find the

median number of deaths due to football is 4. Notice that when using this program, the

data does not need to be sorted; that is done within the program.

Program %TILE allows you to calculate percentiles other than the median.

However, in order to use this program, data must be in the form of a list on the stack, not

a matrix stored as ZDAT. The list data is automatically sorted by program %TILE.

Press |CJST| to place the Chief Justice list data on the stack. Enter the percentile you

wish to calculate, say 25, on the stack and press |%TILE| to obtain 5 years as the 25th

percentile for this data. Repeat the procedure for other percentiles, each time placing

the list in level 2 of the stack and the desired percentile in level one before activating

the program.

Suppose your data is not in the form of a list and you want a percentile other than

the median or you wish to sort the data. You do not have to reenter the data as a list if

you use one of the following two programs that will temporarily convert a specified

column of a matrix to a list. Both programs should be placed in your DATA subdirectory.

To store each program afterit is entered on the stack, press E] program name .

Program SVTL ("single-variable to list" - converts a one-column matrix to a list)

<< OBJ—»> OBJ-—> DROP DROP SLIST »>>

e Before using program SVTL, place a one-column data matrix on the stack.

Program MVTL ("multi-variable to list" - converts a specified column of a matrix of

more than one column to a list)

<< COL~ OBJ-» OBJ—» DROP —LIST »>>

e Before using program MVTL, place a matrix of more than one column in level 2 of

the stack and the column number you want extracted in level one of the stack.
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EXPLORATION EXERCISES

1. Compare the serious football injuries and the deaths directly attributable to
football by calculating the following numerical descriptive measures for each.
Give a written paragraph stating your conclusions.

a)

b)

)

a)

b)

mean, median, mode

range and standard deviation

25th50th, and 75th percentiles

Would you choose the Sample or the Population setting in the screen interface
method if calculating the mean and variance for the Chief Justice data?
Support your answer.

Recall that CJST is data in the form of a list. The statistics application
uses data in ZDAT, a matrix. Enter the following program which allows
you to convert list data to a one-column matrix and store it as the current

IDAT. (To type a lower case letter, press @ before the letter key.)

Program LTSVM ("list to single-variable matrix" - converts a list to current ZDAT)

3.

<< CLY REVLIST OBJ-> —-n
<<« 1 n FOR k Z+ NEXT >>
IDAT »>>

Before using program LTSVM,place a list on the stack.

¢) Find the mean and variance for the Chief Justice data.

In 1990 every person in the U.S.A. produced an average of 3.5 pounds ofsolid
waste per day. The problem of solid waste disposal worsens each year as the
population and per-capita consumption continues to grow larger: [4]

Garbage in the United States

a)

b)

Year 1960 1970 1980 1990

Solid Waste 79.4 109.3 129.4 160

(in millions of metric tons)

Enter these data as a 4 by 2 matrix named TRSH.

Find the mean amountof trash produced between 1960 and 1990. Give units
with your answer.
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¢) Find the median amount of trash produced between 1960 and 1990. Give units
with your answer.

d) i) Extract the solid waste column and convert it to a list. Leave this list on

level 1 of the stack.

ii) Using the conversion 1 metric ton = 1.102 tons (U.S.), change the solid

waste data units to tons by entering 1.102 on the stack and pressing.

iii) Convert thislist to the current ZDAT matrix using program LTSVM.
Name the converted data matrix TRTN.

e) Find the mean and median amountoftrash produced between 1960 and 1990
in tons. Compare these values with your answers to b) and c) above.

4. Fifteen measurements taken at regular intervals of time of the level of asbestos
fiber present in the air at an industrial plant gave the following data:

6 58 10 9 8 7 8 11 13 14 15 12 12 10

a) Enter this data in your calculator and save it as ASB.

b) What is the mean level of asbestos fiber in the air at the plant?

c¢) What is the median level of asbestos fiber in the air at the plant?

d) Whatis the variance of the level of asbestos fiber in the air at the plant?

e) What effect would changing the reading of 15 to 20 have on the mean? the
median?

5. A mechanical engineeris studying the performance of an industrial process for
manufacturing cement blocks. The following data is recorded:

Temperature (°C) Concentration (%) Response Yield (%)
70 21 784
60 25 79.5
90 21 78.3
110 22 78.9
120 21 78.1
70 25 79.3
90 23 78.9
110 25 80.3
90 25 79.8
60 22 78.0

a) Enter this data as a 10x3 matrix and name it CEMB.



PROBABILITY AND STATISTICS 349

b) Find the mean concentration and the mean response yield.

c) Find the median concentration.

d) Find the 25th, 75th and 90th percentiles for the concentration data.

e) Find the 25th, 75th and 90th percentiles for the response yield.

B STATISTICAL GRAPHS

Bar charts, histograms and scatter plots are statistical graphs you can easily

obtain from your HP48G/GX. The DRAW command takes the data for the statistical

graph from the variable ZDAT rather than from EQ that is used when plotting

functions. You can also select and draw the graph of any of four regression models:

linear, logarithmic, exponential or power. Other statistical graphs such as pie charts,

box plots, and probability distribution graphs are readily obtained from user-entered

programs.

[J BAR PLOTS
A bar plot drawn on the HP48 represents the data values with vertical bars of

lengths proportional to the individual values. Let's explore this type of graph with

the Chief Justice data. Before constructing the bar plot, the data you are using must be

designated as the current ZDAT. Use program LTSVM to convert the CJST list data to

the current ZDAT matrix.

o If the data is multi-variable, designate ZDAT and the column of the matrix for

which you wish the bar plot drawn by first pressing STAT . At this

point, select ZDAT and the appropriate column. Press to return to the stack

and continue as if the data were single-variable.
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Next, press | STAT| |PLOTI |BARPL| to draw the bar plot using the HP48G

auto-scaling. Notice that a single bar is plotted for each data point in ZDAT from left

to right in the order in which the data appears in the matrix.

Press to return to the stack, and then pressE Notice the graph reappears.

 

   

Until you erase this graph or draw another, you can recall the graph at any time by

pressingE Let's explore this bar plot. Press [(X,Y)| and you will see that the menu

is replaced by the current location of the cursor. If you cannot see the cursor (+), it is

because the cursor default setting is dark and it is on one of the dark bars of the graph.

Press and the cursor changes so that it appears dark against a light background

and light against a dark background. Use the cursor keys(mEE and E) to

move around the screen. To quickly move the cursor to the upper-left hand corner of the

screen, pressEE], to quickly move it to the lower right-hand corner of the

screen, pressEE, etc. Notice that auto-scaling the bar plot has set the x-

range from 0 to n, where n is the number of points in ZDAT. The y-range is set so that

room is left for the menu at the bottom of the screen with the top of the tallest bar just

reaching the top of the display screen. Pressing any of the white keys directly under

the display returns the menu to the bottom of the graphics screen.

[0 HISTOGRAMS

A histogram is a statistical graph used to depict one-variable statistical data that

has been grouped into classes. The classes appear on the horizontal axis and the

frequencies or relative frequencies of the classes appear on the vertical axis. The HP48

can be used to construct a frequency histogram consisting of classes of equal width using
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data in the current ZDAT matrix. The classes into which the data are grouped are

called bins with the number of data falling in each bin (that is, the frequency) depicted

by a vertical bar.

There are several methods you can use to construct a histogram on your calculator.

The first method we will discuss uses the PLOT menu, and the second method uses the

STATmenu.

TO CONSTRUCT A HISTOGRAM USING THE PLOT MENU:

o Press,usem to move the the TYPE: field, and use to

select Histogram. Press.

e Press [i]and use to select the desired data matrix. Press.

o If the data matrix consists of more than one column, press E and enter the

column number containing the data for which you are constructing the histogram.

(Column 1 is the default value.) Press.

¢ In the WID: field, enter the width of each class. Dflt sets the width of each

class of the histogram to one unit. Most statistics texts instruct to determine the

equal class width by rounding up the value given by the formula

max2, — min},
width of class =of”

e In the H-VIEW: field, enter the horizontal display range (determined by the

data values) and in the V-VIEW: field, enter the vertical display range (deter-

mined by the frequencies), or

Check AUTOSCALE and press [ERASE||[DRAW]|to draw the histogram.
 

 

The autoscale setting on the HP48G causes the display screen horizontal view to be

between the smallest and largest entries in the chosen column of ZDAT. The vertical

view is then automatically chosen so that the setting for the top of the display screen
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equals the numberof entries in ZDAT with the bottom of the screen being .15 times the

top setting. This will usually make the bars appear fairly short.

Let's explore this histogram construction method with the CARS data. To draw a

histogram of the fuelefficiency (mpg) values, choose as the current ZDAT and

2 as the column number. Choose Dflt in the width field and check AUTOSCALE to

obtain
 

.   
Notice that even though you only see 7 bars in this histogram, there are actually

13 intervals (bins) on the horizontal axis. Press and you will see that the

horizontal view is 15.5 to 34.2 and the vertical view is “2.25 to 15. Since there are 13

intervals and the width of the screen is 34.2 - 15.5 = 18.7, the width of each rectangleis

approximately 18.7/13 (notice that a blank column of pixels is left between adjacent

rectangles). Look now at the sorted mpg data:

155 16.5 169 17 174 18.2 18.6 19.2 21.6 274 28.4 30.5 30.8 34.1 34.2

Since three of the data values are between 15.5 and 15.5 + 18.7/13 = 16.94, namely 15.5,

16.5 and 16.9, the height or frequency of the first bar (rectangle) is 3. Return the

histogram to the graphics screen with El.

Notice that when the histogram is on the screen you can estimate the heights of

the rectangles with the graphic cursor. Realize, however, that the coordinates

appearing at the bottom of the screen are pixel screen coordinates, not points on the

graph you have drawn. Movethe cursor to the top of the first bar, and press to

display the cursor coordinates. The y-value will be a decimal number close to 3, and you

should round this to the nearest whole number for the actual frequency. The second

class, 16.94 to 16.94 + 18.7/13 = 18.39, contains the next three values in the sorted data
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list. Therefore, the height of the second bar is 3. The data values have been grouped

into classes (intervals) with the height of each rectangle being the number of data

values in the particular interval. You should now verify that the frequencies shown by

the 13 rectangles are 3, 3,2,0,1,0,0,0, 2, 0, 2, 0, and 2. The sum of the frequencies is 15,

and there are 15 data values in ZDAT.

Suppose you wish the histogram to consist of 5 classes instead of 13. Determine the

class width by the formula given in the histogram construction using the PLOT menu

method to be (34.2 - 15.5)/5 = 3.74. There are several ways this value can be rounded up,

but let's round up to the nearest integer, 4. Enter 4 in the width field and press ERASE

[BRAW]5
 

.———-

Why do you not see all of the last rectangle? The frequency distribution you are

   

graphing is mpg frequency

155-19.5 8
19.5 - 235 1
235-275 1
27.5-315 3
31.5-35.5 2

Since the horizontal view is set as 15.5 to 34.2, you are not seeing all of the last bar.

Change the highest horizontal value to 15.5 + 5(4) = 35.5 and redraw the graph with

the keystrokes |[ERAS EI [D RAWI to obtain

=
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Let's now explore using the STAT menu to construct a histogram. This method

allows you to see the frequencies of the classes before the graph is drawn.

TO CONSTRUCT A HISTOGRAM USING THE STAT MENU:

e Press STAT]| to access the statistics screen interface and pressE to select

Frequencies. Press.

e Use|CHOOS| to select the desired data matrix. Press to store this

matrix as ZDAT.

e Repeat the first step to access Frequencies. If the data matrix consists of more

than one column, press E’ and enter the column number containing the data for

which you are constructing the histogram. Press.

e In the X-MIN: field, enter the smallest data value in the chosen £DAT column

and press. Note that at any point during the construction of the histogram

you can press C AL C| to temporarily return to the stack environment and use

STAT| to access information about the data.

e Enter the number of classes (bins) you wish in the histogram in the BIN

COUNT: field and press.

« Enter the widthofeach classin the BIN WIDTH: field and press K.

e DPress. You will now be returned to the stack with the following output:

Level 2: A "bins" matrix containing the frequencies of the classes.

Level 1: An "excess" vector containing two numbers. The first numberis the

number of data values less than the minimum x-value you specified and the

second number is the number of data values greater than the maximum x-value.

This vector in level 1 should be [ 0 0 ] if you wish all data values included in

your histogram.
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Masking of values less than the minimum x-value or greater than the

maximum x-value is accomplished by choosing an appropriate X-MIN value and

class width and verified by observing the excess vector.

e To draw the histogram,

1. Drop the excess vector from level 1 of the stack with EI

2. Make the bins vector the new ZDAT with EI .

3. Press[§][STAT] |PLOT|[BARPL|.

Let's practice this method by reproducing the five-class histogram of the fuel

 

efficiency data. After choosing Frequencies in the statistics screen interface, verify

that the CARS data is the selected ZDAT and that column 2 is the chosen column. Press

to move to the X-MIN: field and then find the minimum value in the data to be

15.5 with (cALC| [€][STAT] [1VAR| [MINE|. Press to return to the

screen interface and enter the value 15.5. Since we are using 5 rectangles, enter 5 in the

BIN COUNT field. Enter 4 as the BIN WIDTH (as we previously determined) and press

. The excess vector is [ 0 0 ], indicating that all data values will be considered in

  

the histogram. The vector [8 1 1 3 2] gives the frequencies of the distribution.

Drop the excess vector and make the frequency vector the new ZDAT. Draw the

histogram with [STAT] [PLOT| [BARPL]. (f you get an Invalid ZPAR error

message, press E’ and redraw the histogram with

BARPL.

I..._--

Use the graphics cursor to note that the horizontal settings and cursor coordinates

 

   

are now in terms of the number of bins, not the original data. Note that the graph is
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essentially the same as was obtained using the PLOT menu method. The only visual

difference in the graphs is that the BARPLOT command sets the height of the screen to

be the height of the tallest rectangle.

[ APPLICATIONS OF THE STANDARD DEVIATION

It is often useful to compute the percentage of data values falling within one, two

and three standard deviations of the mean of a set of data. You could use the graphic

cursor to approximately locate the intervals X+ s, X+ 2s and X * 3s, and then roughly

estimate of the number of data values falling in each of these intervals. You can, of

course, look at the data and tally the number of values falling in each of these intervals

to obtain the exact percentages. Why not have the HP48G do this?

Program DADSP sets a horizontal view from X — 3s to X + 3s with a class width

equal to the standard deviation s and draws a histogram whose classes give the

intervals Xxts,xt2sandX 3s. The histogram constructed by this program will always

consist of six intervals, (x—3s, X~ 2s), (x—2s,Xx—58), (Xx-5,X), X, X+8), X+s5s,X+ 28),

and (x + 2s, X + 3s), since it counts three standard deviations on either side of the mean.

The height of each bar can be found using the graphics cursor and represents the number

(frequency) of data values falling in each of the indicated intervals.
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<< STOZ SDEV DUP MEAN SWAP 3 * DUP2 - 3

ROLLD + XBNG NI .8 * DUP -.2 * SWAP

YRNG RES HISTOGRAM ERASE DRAW 0 RES

FUNCTION PICTURE »>>

Program DADSP requires an nx1 ZDAT matrix on level 1 of the stack as input.

Suppose you wish to determine the number of data values falling within one, two and

three standard deviations of the mean of the fuel efficiency values in the CARS data.

Place the CARS matrix on level 1 of the stack, enter 2 to extract the mpg data, and press

MVTL| |LTSV|. Then execute program DADSP to obtain the graph

The mean of this data is 23.09 and the standard deviation is 6.95. Thus, the interval x

 

 

   
3s is (2.24, 43.93). Notice from the graph on your calculator screen that there are no

data values within two and three standard deviations on either side of the mean.

Verify that the frequencies of the six intervals are, from left to right, 0, 1, 8, 2, 4, and 0.

Thus, there are 8+2 = 10 data values in the interval X+ s, 1+8+2+4 = 15 values in the

interval X * 2s and 0+1+8+2+4+0 = 15 values in the interval x * 3s.

The Empirical Rule tells us that for mound (bell) shaped data, approximately 68%

of the measurements fall within one standard deviation of the mean, approximately

95% of the data falls within two standard deviations of the mean, and approximately

99.7% of the data falls within three standard deviations of the mean. The percentage

of data in these respective intervals for the fuel efficiency CARS data are 67%, 100%
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and 100%. We therefore see, as is indicated in the histogram, that this data is not

really mound-shaped but slightly skewed.

[0 SCATTER PLOTS
One of the best graphical displays of two-variable data is obtained with a scatter

plot or scatter diagram that plots a point at each x-y coordinate pair. Information about

the data set is obtained by looking at the scatter plot for a pattern and obvious

deviations from that pattern. To constructa scatter plot on your HP48G/GX,

e Press[?][PLOT], use[A] to movethe the TYPE: field, and use to
select Scatter. Press.

e Press D]and use CHOOS] to select the desired data matrix. Press .

o If the data matrix consists of more than two columns, pressE and enter the

column numbers containing the data for which you are constructing the scatter plot.

(Column 1 and 2 are the default values.) Press.
 

e Check AUTOSCALE and draw the plot with [ERASE||[DRAW|.
 

Let's see if we can observe a pattern in the weight of the automobiles and the fuel

efficiency in the CARS data. Draw the scatter plot as instructed above. Notice that

the autoscaling has placed points on the boundaries of the screen. If you wish a better

view, uncheck AUTOSCALE and reset the horizontal and vertical views in the PLOT

screen interface to values such as 1.5 to 5 and 12 to 36, respectively. Press ERASE|and

DRAW,]| to redraw the scatter plot.
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It certainly appears that as the weight of the car increases, the fuel efficiency

decreases. We will return to further discuss this relationship later in this chapter.

EXPLORATION EXERCISES

1. The autoscaled barplot command BARPL on the HP48G is uniquein thatit plots
bars of both positive and negative heights. Let's have the calculator construct
a matrix consisting of both negative and positive values and construct the barplot

to illustrate this type of graph. Press | MTHI I MATHI I MA IKEI. Enter on the

stack the dimensions of the matrix you wish to construct, say ten rows and one

column, as the list { 10 1 }. Press |RAN M| and use the methods ofthis section

to construct the barplot.

Recall the cement block data CEMB and store it as the current ZDAT matrix.

a) Construct a scatter diagram of concentration versus response yield. What
pattern do you observe? (Be certain that you set a range that allows you to
clearly see all data points.)

b) Construct a scatter diagram of temperature versus response yield. Does the
temperature seem to have any effect on the response yield forthis set of
data?

c) What are the mean and standard deviation for the response yield?

d) Find the percentage of response yields falling within one, two and three
standard deviations of the mean. How do these percentages compare with
those given by the Empirical Rule for normally distributed data?

An agricultural scientist is studying the effect of diet on egg production. Twelve
hens are fed with the current diet, Supergrow, and the egg production is mea-
sured. The same hens are then fed with a new diet, Growmore, for the same

period of time. The results are
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a)

b)

c)

d)

e)

f)

g)

h)

  

Egg Production
Hen SupergrowDiet Growmore Diet

1 140 138
2 155 160
3 132 135
4 138 145
5 150 152
6 125 125
7 141 135
8 173 189
9 160 165
10 150 156
11 148 154
12 163 178

Enter this data as a two-dimensional matrix and name it EGGS.

What is the total egg production for the hens when on the Supergrow diet?
on the Growmore Diet?

Find the minimum and maximum value for the total egg production of hens on
either diet.

Construct a histogram consisting of 5 classes  of equal integer width for the
Supergrow diet egg production data. Use a horizontal view of 125 to 190 and

a vertical view of -2 to 12.

Use the same horizontal and vertical views as in d) and construct a histogram
consisting offive classes of equal integer width for the Growmore diet egg
production data.

Compare the two histograms. What information is visually obtained about
the egg production from hens on these two diets?

Compare the means, medians, and variances for the two diets. Comments?

What other questions could be asked about the egg production data? Choose
what you consider to be the mostinteresting question and try to determine
how to use your calculator to obtain a solution.

4. The following are the numbers of private aircraft which landed at a large
metropolitan airport on fifteen consecutive days:

8 74 67 87 71 89 82 125 73 84 77 82 70 90 38
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If you were an engineer hired to design a new runway, how might the information
obtained from the following be helpful?

a) histogram

b) mean, median, mode, standard deviation

c¢) smallest x-value, 25th percentile, 50th percentile, 75t percentile and
maximum x-value

d) values more than 2 standard deviation away from the mean

B PROBABILITY

Probability may be regarded as a numerical measure of the chance that a certain

outcome (event) of an experiment will occur. The probability of an event E is denoted by

P(E) and isa real number between 0 and 1 indicating the likelihood that E will happen.

The closer the probability is to 1, the more likely the event is to happen, and the closer

the probability is to 0, the less likely the event is to occur.

[ SIMULATION TECHNIQUES
The frequency of an outcome is the number of times it occurs in repetitions of an

experiment. When you divide the frequency by the number of repetitions, you obtain a

fraction called the relative frequency of the outcome. Probability gives the relative

frequency with which an event is expected to occur. The Law of Large Numbers states that

if an experiment is repeated again and again under identical conditions, the relative

frequency of an event will approach the theoretical probability of that event.

However, many replications of the experiment under identical conditions may be

difficult or impossible to perform.

Simulation is the process of representing an experiment with a model. The

simulation technique has the advantage over the actual experiment in that many

identical repetitions can be performed quite efficiently with the aid of a computer or in
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this case, your calculator. Once simulations are performed, you can compare the

outcomes of a large number of trials to the "theoretical” results. Simulation techniques

usually involve random numbers - numbers chosen in such a way that each one is

equally likely to be the one selected. Most statistics texts include a table of random

numbers.

The HP48G has its own built-in program for generating pseudo-random numbers on

the interval [0,1). A "true" random number generator on the interval [0,1) would select

each real number in that interval with equal probability. Since it is impossible to

simulate with the precision of real numbers, random number generators in calculators

and computers generate pseudo-random numbers - that is, random numbers that are

obtained to a fixed number of decimal places. These random outcomes look and behave

for the most part like theoretical random numbers. There are 1012 - 1 pseudo-random

numbers on the interval [0,1) which may be obtained with the HP48G's random number

generating function RAND. Access this function with | MTHI | NXT I | P ROBl IRA N Dl.

Press RAND)| several times and you will see some calculator-generated random

numbers between 0 and 1.

 

The first random number that is generated is dependent on the value stored in the

calculator memory. You may "seed" the random number generator (simulate randomly

choosing a position in a table of random numbers) by entering any nonnegative number

and pressing. You can repeat a particular series of random numbers by executing

RDZ with the same argument.

To simulate the experiment of tossing one fair coin, let the outcome "tails" be

represented by 0 and the outcome "heads" be denoted by the number 1. Since RAND

yields a random number x such that 0 < x <1, we have 0 < 2x < 2. Notice also that

whenever 0 < x < 0.5, we have 0 <2x < 1 and that whenever 0.5 < x < 1,it is true that 1

<2x < 2. A command you will use with the random number generator is IP which is

found on the second page of the MATH REAL menu. IP returns the integer portion of a
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number, and entering RAND 2 * IP on the stack will return either a 0 or a 1

representing an outcomefor the experiment oftossing of a fair coin.

Let's now look at a program that will allow the calculator to simulate tossing a

coin. Return to your HOME directory and create a new directory called SIMU

(simulation) to store the programs in this section. Store this program in SIMU with the

name COINTOSS.

<< 1 RES ERASE 0 - n

<< {n} MENU HALT CLX n 8 * DUP -.2 *

SWAP YRNG 0 2 XRNG 1 n FOR n RAND
2 * |P £+ HISTOGRAM DRAW NEXT >>

PICTURE 0 RES FUNCTION 2 MENU { IPAR

PPAR CST } PURGE >>

e  When this program is executed, you will see a menu containing the letter N. It

is important to note that the number of tosses, n, must be entered in the program as

a local variable (that is, using a lowercase letter obtained with EI N) A

local variable appears in the program menu as a capital letter.

e To run this program, enter the value of n, the number of times you wish to toss

the coin, and press to store the value as n. Notice the HALT message at the

top of the display screen. Whenever HALT appears in this position, you should

press CONT| after the proper input to continue a program.

Use program COINTOSS to flip your calculator coin 10 times, 25 times, and then 50

times. For each experiment, record the number of heads (1's - the rightmost bar) and

determine the relative frequency of the event {heads}. What value do the relative

frequencies approach as the value of n increases?

Let's consider another simulation which this author calls the "histogram horse

races”. Enter the following two programs:
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COINRACE DIERACE

<< 1 RES ERASE 0 > n << 1 RES ERASE 0 - n

<< { n} MENU HALT << { n} MENU HALT

CLZ n .8 * DUP CLX n .6 * DUP

-2 * SWAP YRNG -2 * SWAP YRNG

06 XBRNG 1 n FOR k 1 7 XBNG 1 n

RAND 2 * IP RAND FOR k RAND 6 *

2 *IP RAND 2 * |IP 1 + IP I+

RAND 2 * IP RAND HISTOGRAM DRAW

2* IP + + + + X+ NEXT >>

HISTOGRAM DRAW PICTURE 0 RES

NEXT >> FUNCTION 2 MENU

PICTURE 0 RES >>

FUNCTION 2 MENU »>> >>

When you execute each of these programs, you will see a histogram of 6 rectangles

drawn one vertical block at a time. Think of each rectangle in the histogram as the

moves for one horse on the race track. Thus, you are watching a race for 6 horses. Think

of each block in the rectangles as a horse moving one unit. The total number of units

moved by all the horses is N.

To execute either of the above programs, press the menu key in whose name you

have stored the program. Load the value of N by entering the numerical value on the

stack and pressing . Press to continue the program and run the 6

horse race. Good luck on picking the winner!
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[0 PERMUTATIONS AND COMBINATIONS

The method of sampling, that is, how the elements of a sample are chosen,

influences the number of outcomes for an experiment. If you sample with replacement, you

return the element chosen to the population before you select the next element. If you

sample without replacement, you do not return the element chosen to the population

before choosing the next one. When the order in which the elements are chosen is

important, the order in which the elements are selected must be considered.

A permutation is an ordered arrangement without repetition of elements of a set of

distinct objects. The formula for the number of permutations of n different objects chosen

ratatimeis nPr=n!/(n-r)! For the set {a, b, c}, the permutations are ab, ba, ac,ca, bc,

and cb with 3P2 = 6. The permutation formula is in your HP48G in the MATH PROB

menu. To use your calculator to find the number of permutations of n objects chosen r ata

time, enter n, then rand then press.Verify that you obtain 3P2 = 6.

A combination is a selection of the distinct objects of a set without regard to order.

As with permutations, repetitions of elements are not allowed. The essential difference

between permutations and combinations is that combinations ignore the order in which

the objects are chosen. The formula for the number of combinations of n different

objections chosen r at a time is nCr = For the set {a, b, ¢}, the combinations
r'r(n-n)!’

are ab, ac, and bc with 3C2 = 3. The combination formula is also in the MATH PROB

menu. To use your calculator to find the number of combinations of n objects chosen r at a

time, enter n, then rand then press |CO M B|. Verify that you obtain 3C2 = 3.
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EXPLORATION EXERCISES

1. Refer to programs COINRACE and DIERACE.

a) How many coins are being tossed in the COINRACE program?

b) If x is a random variable representing the number of heads obtained in the
toss of these coins, what are the possible values for x?

¢) How many dice are being rolled in the DIERACE program?

d) Ify is the random variable representing the number of dots appearing on the
upturned face of a die, what are the possible values for y?

e) What is the relationship of x to y?

f) Run each of these two programs using N = 10, 25, 40, and 55. Note for each
the shape of the histogram as the value of N increases. Repeat if necessary.
If you do not see a definite pattern emerging as the value of N gets larger,
run the programs for N = 75 and N = 100. (This may take a while!)

g) What theorem in statistics explains the different shapes of the histograms
obtained from these two programs?

In order to determine whether a process producing bolts is stable, a quality
control engineerselects a random sample of 15 bolts from a production lot
consisting of 100 bolts.

a) If the order in which the bolts are chosen is unimportant and each boltis not
replaced after examination, how many samples are possible?

b) If the order in which the bolts are chosen matters and each bolt is not
replaced after examination, how many samples are possible?

Suppose you want to simulate the birth of three children N times to estimate the
probability of of obtaining two boys and 1 girl. Assume the birth of either sex is
equally likely. Consider the variable ofinterest, x, to be the number of boys
born. (For instance, if x = 2, that means two boys are born and the other child

must be a girl.) Since the birth ofeither sex is equally likely, this simulation
would be the sameas tossing three coins and counting, say, the number of heads.
Therefore, the simulation is accomplished with IP (2RAND) + IP (2RAND) +
IP (2RAND).



a)

b)

c)

d)

e)
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Enter the following program and store it as BIRTH:

<< > N <<CLX 1 n FOR k RAND 2 * IP RAND

2* IPRAND 2 *IP + + X+ NEXT >> >>

To simulate the birth of three children N times, enter the value of N on
level 1 of the stack and execute program BIRTH. Firstlet N = 10 and view
the matrix ZDAT containing the number of boys obtained in each of the three
births. (For instance, you could consider the data in ZDAT to be the results

of a random survey of 10 families, each having three children. Each of the
ten values in the matrix would then represent the number of boys in the
family.) What are the possible values for x, the number of boys born?

Construct a histogram for the data using a class width of 1, a horizontal
view from 0 to 4 and a vertical view from approximately 0 to .5N. Locate
the rectangle corresponding to the event {the family has 2 boys}, and find
the relative frequency of the event by dividing the frequency by N. Record
this value.

Repeat parts b) and c) for N = 25, N = 50, and N = 75. What value do you
find the relative frequency ofthe event {the family has 2 boys}
approaching as N increases?

Would this experiment change if you let x be the number of defective items
in a group of 3 items where each item is just aslikely to be defective as good
instead of being the number of boys in a family consisting of three children?

4. There is a game called MINEHUNT in your HP48G that is fun as well as

educational. Press| EQ LIB| l uTl LS| | MIN E| to begin the game. The object of the

game is to move from the upper left hand corner starting position to the lower right
corner finish without being blown up. There are 20 mines randomly placed throughout
the 8 by 16 grid. Your score increases by 1 each time you move to a "safe" light-colored
block. Moves are made horizontally and vertically using the cursor keys. You can also
move diagonally by pressing the 1, 3, 7, and 9 keys. The message at the upperleft of the
display screen tells you how many mines are possible in the squares to which it is
possible to move. Play the game several times to become familiar with the possible
moves.

a) If the 20 mines are randomly placed in the grid (there is never a mine in the
starting or finishing position), use the combinations formula to determine the
number of different ways the mines can be positioned in MINEHUNT.
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b) If the 20 mines are randomly placed so that 5 must fall in the first row, 4 in the
second row, 0 in the third row, 2 in the fourth row, 4 in the fifth row, 1 in the sixth
row, 2 in the seventh row, and 2 in the eighth row, determine the number of

different ways the mines can be positioned.

c) Suppose we number the squares according to the row and column in which they
fall. For instance, in Figure 1 below, square A would be numbered 42, square B would
be numbered 25 and square C would be numbered 44. When you start a new game, you
are at the position of the darkened square in Figure 1. If you are told you are near 1
mine when you begin the game, whatis the probability it is in square 21? (Assume
the mines are randomly placed in the squares and that you do not know how many
mines fall in any one row or column.)

d) Consider the game situation in Figure 2. You have already safely moved to
each shaded square and given the information contained in that square. For
instance, when you were in square 23, you were informed that you are near 3 mines.
If the squares containing x's indicate the known location of mines,

i) which of the blank squares are safe to move into?

ii) which of the blank squares do you know contain mines?

e) Suppose, in Figure 2, you safely move to square 34 and are given the information
that you are near 0 mines. What can you say about the blank squares in the fifth
column?

 

 

 

 

 

      

 

Figure 2
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l DISCRETE PROBABILITY DISTRIBUTIONS

Graphs of discrete probability distributions such as the binomial, Poisson and

hypergeometric are readily obtained by programming the algebraic equation of the

probability function. The probabilities for the distribution can be generated by a

program and stored in the statistical matrix ZDAT. This matrix may be renamed and

stored for future reference if desired.

Because there are several programs used in this section, it will be helpful to create

a directory to contain them. Return to the home directory, enter your statistics directory

by pressing ISTAT|, and create a subdirectory called DSCR. Press to enter

the discrete graphs directory before entering the programsin this section.

[J BINOMIAL PROBABILITY DISTRIBUTION

The defining equation for the binomial probability distribution can be entered as

an algebraic expression onto stack level 1 or can be entered into the HP48 Equation

Writer. Access the EquationWriter with EQUATION| and enter the binomial

probability formula:

COMB(n k) p* (1-p)""
Press and the equation is copied to the stack, ready for insertion into a

program. Refer to your HP48G Series User’s Guide if you are not familiar with the

EquationWriter application.

Program BIDG, binomial distribution graph, will graph the binomial distribution

probability histogram for the number of successes, x, between 0 and n. Notice thatit

also gives you a convenient way of calculating all the binomial probabilities p(x) for x =

0,1,2,...,n. The program stores in the matrix ZDAT the probabilities that are

calculated. After the graph is drawn, press ZDAT and you will see the matrix of

probabilities which contains P(x = i) in row i+1 of the matrix.
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Program BIDG should be entered in the DSCR directory and then stored with the

keystrokes D BIDG :

<< 0 DUP - n p

<< {n p} MENU HALT CLEZ 0 n FOR k

'COMB (n ,k)* p *k*(1-p)

A(n - k)" EVAL I+ NEXT >>

BARPLOT PICTURE 2 MENU { ZPAR PPAR CST}

PURGE »>>

The program requires no user input before pressing |BID G| .

To find the sum of several binomial probabilities, use program CUMPROB.

Program CUMPROB will accumulate probabilities between a first value (F) and a last

value (L) according to the value of x, not the position of p(x), in the ZDAT matrix.
L

Program CUMPROB (finds ¥ p(x) from the ZDAT matrix of probabilities)
x=F

<< 1 + SWAP 1 + SWAP IDAT —»> b e s

<< s TRN STOX Z- b e FOR i DUP i

GET SWAP NEXT DROP e b - 1 SWAP

FOR k + NEXT s STOZX >>
>>

¢ Input for program CUMPROB is F,the first value in the sum, on level 2 and L,

the last value in the sum, on level 1 of the stack.

Let's consider an example. Suppose you are taking a true-false test consisting of 20

questions. Whatis the probability distribution for the number of correct answersif you

have not studied and only guess the answer to each question? Execute program BIDG for

N =20 and P =.5 and observe the graph. The mean number of correct answers is p = 10.

(That's a score of 50% on the test.) Notice also that this distribution is symmetric about
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its mean that occurs at the x value corresponding to the highest bar. What is the

probability of scoring of at least 80%? To score 80% or better, you need 16, 17, 18, 19, or

20 correct answers. Run program CUMPROB with F = 16 and L = 20 to obtain 0.0059.

Your chances aren't too good! Suppose that you have studied for the test and have a

probability of 0.8 of obtaining the correct answer to any question. How does this affect

the distribution of possible scores on the test? Execute program BIDG for N =20and P =

0.8. Notice that the graph has moved to the right, indicating that larger values of x

are now more probable. The mean is p =16. To find the probability that you obtain 16

or more correct answers, use program CUMPROB with F =16 and L = 20 to obtain 0.6296.

That's a better than even chance!

e The mean and standard deviation of the probabilities can be found using the

screen interface or by pressing MEAN| and |[SDEV| with the stack interface.

These, however, are not the mean and standard deviation of the probability

distribution because the values of x have not been considered. You may modify the

 

programs in this section to store the x-values as well as the binomial probabilities

in a two-dimensional matrix ZDAT or adapt techniques discussed in your text for

the calculator.

[0 POISSON PROBABILITY DISTRIBUTION
The defining equation of the Poisson probability distribution may be entered in the

EquationWriter application and copied into the following program or can be keyed in

directly from the keyboard. The program below will graph the Poisson probability

distribution histogram for the number of successes, x, between 0 and 10A. Notice that,

as in the case of the binomial distribution, the program gives you a convenient way of

calculating the Poisson probabilities p(x) for x=0,1, 2, ..., 10A.

The following program, Poisson distribution graph, should be entered in the DSCR

directory and then stored with the keystrokes EI PODG .
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<< 0 DUP - A Kk

<< { A} MENU HALT CLX 0 '"10* A'

FOR k 'A » k* EXP(-A)/ kI

EVAL Z+ NEXT >>

BARPLOT PICTURE 2 MENU { IPAR CST }

PURGE
>>

Special characters such as A are obtained by pressing CHARS|. To execute

this program, press P O D G|, enter the value of A, the expected number of successes, and

press. Press CONT] to calculate the matrix ZDAT containing the Poisson

probabilities and draw the probability histogram. Program CUMPROB may be used to

find cumulative Poisson probabilities.

[0 NORMAL DISTRIBUTION OVERLAY

The normal distribution can in many cases be used to approximate probabilities for

discrete random variables. Most statistics texts provide "rules-of-thumb" as to when

such approximations are valid. Geometrically, whenever one considers an

approximation by the normal distribution, the bell-shaped curve of the normal

probability distribution should "fit" nicely over the graph of the distribution it is

approximating. The following program, NDST, overlays a graph of the normal

distribution on a probability histogram. The normal random variable should, of course,

have the same mean and standard deviation as the discrete random variable for which

you have drawn the histogram.
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Enter the normal distribution graph program in the DSCR directory and storeit

with the keystrokes | ND S T [STO.

<< 0 DUP 5 u o

<< { u 6} MENU HALT 'EXP(-(X-(p + .5))

A2/ (2*67r2))/ (c*V(2*x))' STEQ

2 MENU PPAR DUP 2 GET SWAP 1 GET

C—»R ROT C—R SWAP 3 ROLLD YRNG

XRNG FUNCTION DRAW PICTURE >>

{ X EQ PPAR CST} PURGE »>>

This program requires no user input before pressing. When the program is

executed with, you will see a menu containing the symbols p and 6. Input the

mean and standard deviation of the approximating normal distribution and continue

the program to draw the graph. If you execute program NDST before erasing the

contents of the graphics screen, the normal distribution graph will be drawn on top of

the graph of the discrete probability distribution. You may pressE to retrieve the

probability distribution graph with its normal overlay at any time before another

graph is drawn.

As an example, we draw the graph of the binomial distribution forn =12 and p =

45 using the program BIDG with the keystrokes 12 45 [E]

.After viewing the graph, pressM IN DSTI 12 [ENTER| .45 @ @

12 [ENTER] .45 [X] 1 [ENTER] .45 [1] [X] [o] [G][CONT]. When the
graph of the binomial distribution reappears on your screen, watch the overlay of the

 

normal distribution whose mean and variance you have specified to be the same as that

of the binomial distribution.
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If you look closely at the equation of the normal density function in the program

NDST, you will notice that the graph has been shifted to the right 0.5 units. This

is a standard procedure whenever you are graphing both a discrete probability

distribution and continuous probability distribution on the same set of axes, and is

called the continuity correction.

EXPLORATION EXERCISES

1. a)

b)

a)

b)

a)

Use program BIDG to construct graphs for the binomial distributions with
n=10 and p=0.10, n=10and p=0.35, n=10and p =0.60,and n =10
and p =0.90 . How is the shape of the graph changing as p increases?

Use the program BIDG to construct graphs for the binomial distributions
withn=5 and p =0.30, with n=15 and p =0.30and withn =25 and

p = .30. How is the shape of the graph changing as the value of n increases?

Use the program PODG to construct graphs for the Poisson distributions with
A=175, A=5and A=10. How is the shape of the graph changing as A
increases?

Use the program PODG to construct graphs for the Poisson distributions with

A = 2.63 and A = 8. In each case, enter theESTATmenuand press |1 VAR

which will give you the sum of the probabilities. Do they sum to 1 as

they should? Why or why not?

Use the program BIDG to construct graphs for the binomial distributions
withn=5and p =0.20 and withn=15 and p =0.56. In each case, overlay
the graph of the normal distribution with the program NDST. Which bell-
shaped curve bestfits (in terms of the areas under the two being nearly the
same) the underlying binomial distribution?
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b) Use the program PODG to construct graphs for the Poisson distributions with
A =2.63 and A = 8. In each case, overlay the graph of the normal distribu-
tion with the program NDST. Which bell-shaped curve best fits (in terms of
the areas under the two being nearly the same) the underlying Poisson
distribution?

4. The probability that a certain type of aircraft engine fails during thefirst 10
years of operation is p = .05. Observe 20 of this type of engine and let x be the
number that fail during the first 10 years of operation. Assume the status of one
engine doesn't depend on the status of any other engine. Then, x has a binomial
distribution with N = 20 and p = .05.

a) Give the binomial probability distribution of x in tabular form. (Use BIDG.)

b) LetA = np and give the Poisson probability distribution of x in tabular form.

¢) Would the Poisson distribution give a "good" approximation to the binomial
distribution in this problem?

5. The numberof daily plant shutdowns due to union problems follows a Poisson
distribution with A = 2. If the company loses $5000 for each shutdown, calculate

the company's expected daily loss.

B INFERENTIAL STATISTICS

Systematic methods which allow conclusions to be drawn from data while giving

an associated measure of the reliability of those conclusions are the subject of statistical

inference. The process of gathering data from an experiment with chance outcomesis

called sampling. If all possible samples of a certain size were chosen from a given

population and if, for each of those samples, a certain numerical value called the test

statistic were computed, the value of this statistic would vary from sample to sample.

The sampling distribution of the statistic is the probability distribution for all possible

values of that statistic. The two major areas of inferential statistics are estimation and

hypothesis testing. Conclusions drawn in both of these areas are based on the sampling

variability of the test statistic.
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[ THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

Many sets of data are approximately described by normal distributions, and many

test statistics have sampling distributions that are close to a normal distribution. In

particular, the sampling distribution of the sample mean X will approach a normal

distribution as the sample size increases regardless of the shape of the population

distribution. This result, perhaps the most important in all of statistical inference, is

known as the Central Limit Theorem.

We can explore the Central Limit Theorem with a program that generates S

random samples, each of size N, from a population having an exponential, standard

normal, uniform, or Poisson distribution. The program draws a histogram of each

sample, computes the mean of the sample, and then draws a histogram of the sample

means computed from the S samples. The subroutines which generate the random

values from the appropriate population are listed first. (You may wish to create a

special directory to hold these programs.)

EXPRN (generates random values from an exponential distribution with mean A and

sets the range for the histograms of the samples)

<< 5N << CLZ 1 n FOR k RAND LN NEG

L* Z+4 NEXT >> 0 5 L* XRNG 0 N 2

/ YRNG L 2/ RES >>

NMLRN (generates random values [5] from the standard normal distribution and sets

the range for the histograms of the samples)

<< >N << CLZ 1 n FOR k RAND LN -2 *

v RAND 2 * = -NUM * RAD COS * =+

NEXT >> -35 35 XBRNG 0 NI 2 / YRNG

1 RES {L} PURGE >>
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UFMRN (generates random values from a uniform distribution and sets the range for

the histograms of the samples)

<< >N << CLZ 1 n FOR k RAND X+ NEXT

>> 0 1 XRNG 0 NX 3 / YRNG -1 RES >»>

POSRN (generates random values [5] from a Poisson distribution with mean A and sets

the range for the histograms of the samples)

<< >N << CLZ 1 n FOR k L NEG EXP -1

1 DO SWAP 1 + SWAP RAND * UNTIL DUP

4 PICK < END DROP SWAP DROP Z+ NEXT

>> 0 L 4 * XBNG 0 NI .75 * YRNG L

2 /| RES >>

LBD (subroutine that prompts for A value when exponential or Poisson populations are

used)

<< 05 A

<< {A} MENU HALT A L STO 0 MENU >>

Program CLT (generates and graphs random samples from normal, exponential, uniform

or Poisson populations and displays the graph of the sample means)

e Whenever you encounter the symbol « in a program, you should begin a new line

with the keystrokes D

e ==is found in the PRG TEST menu , and the symbol X is accessed with the

keystrokes .
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< < CLLCD "ENTER CHOICE AT PROMPT « 1 FOR NORMAL, 2

FOR EXPONENTIAL, « 3 FOR UNIFORM, & 4 FOR POISSON " o

3DISP 3 WAIT "CHOICE" "" INPUT OBJ—» DUP {NMLRN

EXPRN UFMRN POSRN} SWAP GET SWAP 2 / FP 0 IF

== THEN LBD END "# OF SAMPLES" "" INPUT OBJ- 'S’

STO "SAMPLE SIZE" "" INPUT OBJ- 'N' STO 1 S FOR

k DUP N SWAP EVAL HISTOGRAM ERASE DRAW MEAN

SWAP NEXT DROP CLX 1 S FOR i Z+ NEXT RCLX DUP

MEAN TEXT "MEAN OF x's=" CLLCD 1 DISP 2 DISP 0

WAIT DROP « " PRESS ENTER FOR THE SAMPLING DISTRIBUTION

OF THE SAMPLE MEAN" CLLCD 1 DISP 0 WAIT DROP

DADSP CLLCD {XPAR N S PPAR L CST} PURGE DROP

>>

e Program DADSP is a subroutine of this program and should be copied to the

directory in which you place program CLT.

Since the sampling distribution of the sample mean is a probability distribution of

all the possible means of the samples of size N chosen from a population, note that the

graph of the sample means given by program CLT only approximates the actual sampling

distribution of the sample mean and will vary with the values input for N and S. As

the number of samples increases, the graph of the sample means given by the program

will closer approximate the sampling distribution of the sample mean for samples of

size N chosen from the specified population.

Consider what program CLT can tell you about the sampling distribution of the

sample mean for samples chosen randomly from an population with an exponential

distribution with mean A. Execute program CLT, choosing 2 for the exponential

population, input A =2 and let N =5 and S = 10. Carefully observe the histograms of
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the five values in each of the ten samples. Do you notice the rightward skewness of the

data? Record the value of the mean of the distribution of the X's and press to

observe the graph of the distribution of the means of the ten samples. Does the graph

of the distribution of the means appear normally distributed? Probably not, because N

= 5 is a small sample size. Repeat the experiment for N =15,S = 10 and A = 2. You will

find the rightward skewness of the samples more pronounced, but again, the

distribution of the sample means will not generally appear to be that of a mound-

shaped normal distribution. Repeat the experiment once more, this time choosing N =

30,S =10and A = 2. (You will get more consistent results using more samples, but the

program takes longer to execute with larger values of N and S.) If you repeat this

simulation several times, you will probably find that the distribution of the sample

means for N = 30 will appear approximately mound-shaped most of the time.

Look at the values of the mean of the distribution of the X's each time you execute

the program. Notice that most of them are close to A, the mean of the exponential

population. Repeat the entire experiment for the exponential population with A = 10.

You should obtain similar results with the exception that the mean of the distribution

of the X's each time you execute CLT should now be close to 10. One possible histogram

for a sample with N =30and A = 10 is

 

  
A graph that could be obtained for the distribution of the sample means when N = 30,

S=15and A = 10 with mean of dist of x 's =9.622 is
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4.64155858687 14.6015615476    
Program CLT sets the same range as program DADSP when showing the graph of

the distribution of the sample means at the end of the program. Recall that by the

Empirical Rule, the percentage of sample means falling in the intervals x +s, x * 2s,

and X * 3s should be close to 68%, 95% and 99.7%, respectively, provided N is large.

Compare the percentages of sample means falling in each of these intervals for your

last execution of the program to the Empirical Rule percentages. (Remember that you

are performing a simulation with random values, and ten or fifteen samples is not

infinitely many samples!)

Now perform the same experiment using the uniform distribution. The probability

distribution resulting from the roll of a single die is an example of a discrete uniform

distribution. The uniform distribution used in program UFMRN to generate random

values for program CLT is an example of a continuous uniform distribution, where each

number in the interval [0,1) has an equal chance of being selected for inclusion in the

sample. The mean of this uniform population is 0.5. Observe the values for the mean of

the distribution of the X's each time you execute program CLT for samplesof size N = 5,

15 and 30 drawn from this uniform population. It is suggested that you again use 10

samples. Notice that the means of the distribution of the X's are close to 0.5 no matter

what sample size you use. Repeated execution of this simulation for larger values of N

and S should show the "level" or uniform nature of the graphs of the samples and, for

large N, a mound- shape for the graph ofthe distribution of the sample means.

Consider now samples chosen randomly from a normal population. Subroutine

NMLRN generates random values from the standard normal distribution with p = 0.

What value would you expect for the mean of the distribution of the x's when you
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execute program CLT for this population? Execute program CLT for samples of size

N =5, 15 and 30 drawn from the standard normal population. (We suggest that you

again use 10 samples so that the program will not take too long to execute.) Carefully

observe the shape of the samples and the shape of the sampling distribution of the X's

for the small sample sizes N = 5 and 15. You should find an approximate mound shape

for most of the histograms for the samples and for the distribution of the sample means,

even when the sample size is small.

Finally, we explore the Poisson distribution with program CLT. Since the mean of

the Poisson population is A, the mean of the sampling distribution of the sample means

should be close to A. Execute program CLT, choosing the Poisson option with A =2, for

N = 10 and N = 30. Again, choose S = 10. Repeat the experiment for A = 15. Do you

notice any difference in the shape of the graphs of the samples?

The above explorations with program CLT where intended to aid in understanding

the following statistical theorems:

¢ The mean of the sampling distribution of the sample mean X equals the mean pn

of the population from which the random samples are chosen.

e Regardless of the size of the sample, the sampling distribution of the sample

mean is normal when the random samples are chosen from a normal population.

o Regardless of the distribution of the population, the sampling distribution of the

sample mean approaches that of a normal distribution as the sample size

increases. (The Central Limit Theorem)

[ CONFIDENCE INTERVALS AND HYPOTHESIS TESTS

While statistical inference is the process of reaching conclusions about population

values from evidence gathered in a sample, formalstatistical reasoning is based upon a

consideration of what would happen in many repetitions of an experiment that gathers

evidence. Both interval estimation and tests of hypotheses use measures of reliability
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that state what would happen if the decision were made many times under identical

conditions. However, when the methods of inferential statistics are used to arrive at a

conclusion, the results are based on a single sample, not the results of many repetitions of

an experiment. We must therefore ask if the conclusions drawn from the single sample

are convincing or are merely due to chance. The answer to this question involves the

confidence that we have in the result, and the confidence is determined by the laws of

probability and the sampling distribution of the appropriate test statistic. We need to

understand the Central Limit Theorem in order to choose the proper test statistic and

the appropriate formula. Because the HP48G/GX has built-in upper tail probabilities

for the normal distribution, the t-distribution, the F-distribution and the chi-square

distribution, it can be effectively used to construct confidence interval estimates and test

statistics. The advanced equation solving capabilities of the SOLVE application make

the HP48G especially useful in this regard. You may again find it helpful to create

directories by application area to contain the programs that we shall use.

The following programs, NPRB and NVAL, call upon the calculator's built-in upper

tail probabilities for the normal distribution to address hypothesis testing, confidence

intervals and p-values (observed significance level).

Program NPRB (returns P(x > a) where x has a normal distribution with mean p and

variance 62)

<< << p 6SQ X UTPN >> STEQ 30 MENU

HALT 0 MENU { X p oSQ EQ } PURGE >>

The program will place you in the SOLVE application and place the variables for

the mean and variance of the normal distribution and the value of X to be used in the

SOLVE menu. Execute the program and enter the values of the variables.
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e Some input menus will contain dark letters on a white background (ordinary

solver menu keys) and some will contain white letters on a dark background (local

variables within lists that are active only within the program). To enter a value

for a variable listed on a key with a white background, enter the value on the stack

and press the menu key.

e To enter a value for a variable listed on a key with a dark background, enter

the value on the stack, press and then the menu key of the variable.

Whenever HALT appears at the top of the display screen you can continue program

execution with .

After you have entered the values of the variables, press | EXPR=l and the HP48G

will return the upper-tail normal probability for the entered value of X. For instance,

to find P(z > 1) where z is the standard normal variable, enter . = 0,6SQ =1and X = 1.

Press and you will see Expr: 0.158655253931. returns you to

the VAR menu and purges the values used in the calculation.

Program NVAL (returns the value of a such that P(x > a) = P where x has a normal

distribution with mean p and variance a?)

<< << P p 6SQ X UTPN - >> STEQ 30 MENU

HALT 0 MENU { X p ¢SQ P EQ } PURGE >>

This program will place you in the SOLVE application and place the variables

for the mean and variance of the normal distribution and the values of X and P to be

used. This program is designed so that P equals the probability that the normal

variable is greater than or equal to X; that is, the upper-tail probability. Execute the

program and enter the values of the variables P, 4, and 6SQ. Press to solve for

X. For instance, to find the value of z, say 4, such that P(z > a) = 0.025, enter u = 0,
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6SQ =1and P = .025. Press[§][X] and you will see X: 1.95996398454. Again,
CONT/| returns you to the VAR menu and purges the values used in the calculation.

A confidence-interval estimate of a parameter (population value) consists of an

interval of numbers which is predicted to include the parameter and a probability that

specifies how confident you are that the parameter lies in that interval. When the

probability is expressed as a percentage,it is called the confidence level.

To find a confidence interval for the mean u of a population where it is

appropriate to use the z test statistic, program NVAL will give you the lower and upper

endpoints of the confidence interval without you having to use formulas or tables from a

textbook. Consider the problem: "A random sample of 80 observations from a

population yielded a sample mean of 14.1 and a standard deviation of 2.6. Find a 95%
confidence interval for the mean of this population." Recall that the mean, K, of the

sampling distribution of the sample mean equals the population mean u and that the

standard deviation, ¢ = of the sampling distribution of the sample mean equals S/fi .

Use program NVAL and enter 14.1 2.6 80 E @

975 E’] Press Iz‘ to solve for X and you will see the lower limit of the

confidence interval as X: 13.5302603486. Key in .025 [P| and press to

solve for X and you will see the upper limit of the confidence interval as X:

14.6697396514.

Confidence intervals are easily calculated using program Zciu from raw data that

has been entered in an nx1 ZDAT matrix. The program makes use of the built-in upper

tail normal probabilities of the HP48G to give a large sample confidence interval. Raw

data should be entered in the ZDAT matrix in the statistics application. Before STATis

accessed to enter the data, be certain you are in the same directory in which program

Zcip resides. If not, you will have to store the ZDAT matrix in that directory before you

can execute this program. Input from the stack on level 1is (1-a/2) to determine the
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lower confidence limit and then the program is executed again with a/2 on level 1 of

the stack to determine the upper confidence limit for a (1-a)(100%) confidence interval.

Program Zcip << 'P' STO MEAN 'M' STO SDEV SQ 'V' STO

<< PMVX UTPN - >> 'X' M ROOT

{ X PV M} PURGE 2 MENU >>

Confidence intervals using the t-distribution for one-sample tests are programmed

and used in a similar manner except that the number of degrees of freedom must be used

in the program, and UTPT is used instead of UTPN. The following program, TVAL,is

similar to program NVAL except that the Student-t distribution is used instead of the

normal distribution.

Program TVAL << << P f X UTPT - >> STEQ 30 MENU HALT 2

MENU { X f P EQ} PURGE >>

This program will also place you in the SOLVE application and put the variables

for the degrees of freedom (f) and the values of X and P on the menu. This program is

designed so that P is the probability that the t variable is greater than or equal to X.

Execute the program and enter the values of the variables P and f. Press IZI to

solve for X. For instance, to find the value of ¢, say ¢, such that P(t > t;) = 0.025 for 8

degrees of freedom, enter P = .025 and f = 8. Press E and you will see

X: 2.3060041352. Press CONT]| to continue the program.

It is important to note that the command UTPT requires that the variable X is

standardized. Thus, if you wish to use program TVAL to determine upper and lower

small sample confidence limits, you must first standardize the variable. The following

program, TCiy,is used in such cases.
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Program Tcip << 'P' STO {x s n} MENU HALT n 1 - 'F' STO

<< P F X UTPT - >> 'X' 2 ROOT DUP IF 0 <

THEN NEG END 'R' STO x s n ¥ / R *

DUP2 - 3 ROLLD + {X PF R x n s CST}

PURGE 2 MENU >>
>>

e Input from the stack is a./2 to yield both the upper and lower confidence limits

for a (1-a)(100%) confidence interval.

When an interval estimate of the proportion p of successes in a binomial population

is desired, program ZCIP can be used to obtain a (1-100)a% confidence interval for p

whenever the normal approximation to the binomial distribution is appropriate.

Program ZCIP << 'P' STO {x n} MENU HALT

<< P 01 X UPN - >>

'X' 2 ROOT DUP IF 0 < THEN NEG END

'R'" STO x n / DUP DUP 1 SWAP - * n

/ Y R * DUP2 - 3 ROLLD + {P x R n

X CST} PURGE 2 MENU >>

e Input from the stack is 0./2 to yield both the upper and lower confidence limits

for a (1-a)(100%) confidence interval. The values of x, the number of successes in

the sample and n, the sample size, are input from the menu called up by the

program.

For confidence intervals involving two samples, you may find it easier to program

the standard deviation of the test statistic as a separate quantity to avoid lengthy

stack calculations. Of course, if you wish, the formulas may be programmed as

algebraic expressions and solved using the SOLVE application. Several different
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approaches to programming have been presented in this section. Refer to these when

you are writing your own routines for evaluating the other confidence interval formulas

found in elementary textbooks.

The second most common type of statistical inference is a test of significance,

usually called a hypothesis test, which assesses the evidence provided by the data in

regard to a claim or statement about a population parameter. Because this type of

inference is based on sampling, there is always a chance that an error will be made in

the decision. A type I error is made if the decision is to reject the null hypothesis when

it is actually true. The probability of a type I error is denoted by a and is called the

level of significance of the test. The value of o is usually predetermined by the

experimenter before any sample results are obtained and represents the area under the

sampling distribution of the test statistic corresponding to the set of values of the test

statistic that lead to rejection of the null hypothesis. This region of values is called

the rejection region, and the critical value(s) is the value(s) of the test statistic that

separates the rejection region from the "do not reject” region.

A type II error is made if the decision is to accept the null hypothesis whenit is

actually false. The probability of type II error is denoted by B. Consult any of the

standard textbooks for more information on hypothesis testing, the conditions under

which each test statistic should be used, and the errors that are involved.

The probability of obtaining an outcome at least as far from whatis expected if Ho

were true is called the p-value. The smaller the p-value, the stronger is the evidence

against Ho that is provided by the data. Therefore, the null hypothesis will be

rejected for any choice a of that is greater than the p-value.

The following programs calculate the value of the appropriate test statistic for a

hypothesis test of one population mean or proportion. Programs ZHTp and tHT place

you in the SOLVE application where you should input the quantities listed on the menu

and press EXPR=| to determine the value of the test statistic.
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Program ZHTu (computes the z test statistic for a large sample hypothesis test

concerning the mean of a population - u is the hypothesized value of the population

mean)

<< '(X-p)* VN /o' STEQ 30 MENU HALT 0

MENU { X 0 N ¢ EQ} PURGE >>

Program tHTu (computes the t test statistic for a small sample hypothesis test

concerning the mean of a population - u is the hypothesized value of the population

mean)

<< '(X-p) * ¥ n/ s' STEQ 30 MENU HALT 0

MENU { X o0 n s EQ} PURGE >>

Program ZHTp (computes the z test statistic for a hypothesis test concerning p, the

proportion of successes in a binomial population - Po is the hypothesized value of the

population proportion)

<< 000 - xnPo <<{x nPo} MENU

HALT x n / Po — n v * Po DUP 1 SWAP

- * N/ 0 MENU {CST} PURGE >> >>

Let's consider an example. For the hypothesis test Hp: p = 12 versus the alterna-

tive Ha: p > 12, suppose we are given that the mean of a random sample of size 45

chosen from the population of interest is 12.92 and that the sample standard deviation

is 5.95. Execute program ZHTu and input x = 12.92, p=12, ¢ = 5.95 (use s to

approximate ¢ due to the large sample) and n = 45. You will find EXPR =z = 1.0372.

This value can be compared to the critical value for z based on a given value of a =

P(Type I error) and the appropriate conclusion reached.

To determine the observed significance level (p-value) for a hypothesis test, you

can use the programs NPRB and NVAL (for z tests) or TVAL (for ¢ tests). We shall find
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the p-value for the hypothesis test conducted above: P(z > 1.0372) equals the p-value

which can be obtained by either of two methods:

1) Using program NPRB, substitute, for the standard normal (z) distribution,

p=0,06SQ=1, X =1.0372 and solve for the probability with. You will

obtain an answer of 0.1498 = P(z > 1.0372). Thus, the null hypothesis will be rejected for

any value of o > .1498.

2) Using program NVAL, substitute p = 12, 6SQ = (5.95 / ¥45)2, X = 12.92 and

solve for the probability with . You will obtain P(X > 12.92) = 0.1498. Thus, the

null hypothesis will be rejected for any value of a > .1498.

One of the conditions necessary to use the ¢ test statistic is that the population from

which the sample is drawn be approximately normally distributed. One way to assess

the adequacy of the normal model is to construct a normal quantile plot, also called a

normal probability plot. The general idea of this graph is to compare the sampled

population distribution to the normal distribution by plotting their percentiles against

one another. If the distributions are nearly the same, the data values will fall close to

a straight line. If the distribution is negatively (leftward) skewed, the smallest

observations fall distinctly to the left of a line drawn through the main body of the

points. Positive (rightward) skewness or high outliers will cause the largest

observations to fall distinctly to the right of a line drawn through the smaller data

values. [2] A plot that bends down on the left and up on the right means that the data

has longertails than the normal distribution.

The construction of a normal quantile plot is usually done with computer soft-ware,

but you can use program NQPLT and your HP48G to produce the plot. Programs SVTL

and LTSVM in your DATA directory are subroutines of this program and must be copied

to the directory in which you store program NQPLT and its subroutine ZVAL.

Program ZVAL (subroutine of program NQPLT)

<< << P 01 X UTPN - >> 'X' 2 ROOT >>
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Program NQPLT (constructs normal quantile plot for assessing normality)

<< IDAT 'S' STO SVTL SORT LTSVM STOX MINZ

1 - MAXZ 1 + XBNG -3 3 YRNG Nf 'N’

STO EDAT TRN {2 N} RDM TRN DUP

STOE 1 N FOR k k .375 - N .25 4+ /

'P* STO P IF .5 < THEN 2ZVAL NEG ELSE

1 P - ZVAL NEG SWAP DROP END { k 2}

SWAP PUTI DROP NEXT STOX SCATTER

ERASE DRAW PICTURE S STOX {X P N S

PAR PPAR} PURGE »>>

e Stack level 1 input for program NQPLT is a single-column ZDAT matrix. If you

are working with a multi-variable ZDAT, first use program MVTL to extract the

desired column of data and then use program LTSVM to form the required nx1 ZDAT

input for program NQPLT.

Let's now consider a paired difference test. A common situation calling for a paired

comparison experiment is a before-and-after study on the same subjects. A random

sample is chosen from the population of pairs, and each pair is assigned a single value

equal to the difference in the sampled pairs. The condition under which the result of

this test is valid is that the population of paired differences is approximately

normally distributed. Consider the following example.

Ten students are randomly selected from a large freshman engineering course at the

beginning of the term and given a calculator test on evaluation of expressions. The same

ten students are given a similar test one week after having received instruction in the

use of the calculator. (A questionnaire administered with the test indicated that some
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students were already familiar with the particular brand of calculator used on the

test.) The results are as follows:

 

Student Score Before Instruction Score After Instruction

1 56 55
2 59 64
3 57 61

4 58 56
5 50 51
6 59 63

7 58 60
8 54 60
9 50 53
10 55 58

Using a level of significance of o = .01 and the data above, can you conclude that the

week of instruction in the use of the calculator significantly improves the test score?

Let's call the mean of the population of test scores before receiving instruction p1 and

the mean of the population of test scores after receiving the instruction pp. To see if the

week of instruction significantly improves performance on the test, we test the

hypothesis Hp: 1 — pp = 0 versus the alternative hypothesis Ha: p1 — pp < 0.

To perform the test, we need the differences in the data. Rather than risk making

an arithmetic mistake in taking these differences, let's have the HP48 do the

subtraction. There are several ways of accomplishing this task, but we will explore the

method by which the data is first entered as a 10x2 matrix. After entering the data,

name your matrix BFAFT.

Rather than just routinely performing computations, let's view the data points in

relation to the line y = x. Why? If the points appear close to the line, you would

probably believe that x = y (11 — 2 = 0). If most of the data points are above the line,

you would suspect that x < y (11 — p2 < 0), and if the majority of the data points are

below the line, you would suspect that x > y (11 — p2 > 0). Construct a scatter plot with

the before scores (x) as column 1 and the after scores (y) as column 2 using the
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AUTOSCALE feature. To obtain a slightly better view of all the points, reset the

horizontal view to values like 48 to 61 and the vertical view to values such as 45 to 66.

Redraw the scatter plot. To overlay the line y = x, press PLOT| and choose TYPE:

Function. In the EQ: field, enter X. Leave the other settings as determined for the

scatter plot and press DRAW)|. Press E-I to eliminate the menu from the bottom of the

screen for the best view.

 

 

   
Notice that most of the data points are above the line indicating that "test score before

instruction” — "test score after instruction” is negative most of the time.

To perform the hypothesis test, first find the data of differences by extracting

each column with program MVTL, subtracting the resulting lists, and converting the list

of differences to the 10x1 matrix DIFF with the keystrokes: 1 MVTLI

[BFAFT] 2 [MVTL] 4 [ o1FF [STO). Sine
we are equivalently testing Ho: p = 0 versus Ha: 1 < 0 where p is the mean of the

 
 

population of differences, we will use program tHTQ. This program puts you in the

SOLVE mode and requests input of the sample mean difference, sample standard

deviation, and common sample size. Store the matrix of differences, DIFF, as the

current ZDAT and use either the screen or stack interface method to find x = 2.5 and s =

2.55. Enter n = 10 and y, the hypothesized value of the mean, as 0. Press to

obtain t = “3.1. Now execute program TVAL by entering f =9, X = “3.1, and solving for P

with to obtain P = .994. Recall that program TVAL is designed so that P is the

probability that the t variable is greater than or equal to X. We can therefore state that

P(t 2 ~3.1) = .994 which is equivalent to saying that the p-value for this test is
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P(t<3.1)=1- .994 = .006. Since the p-value of .006 is less than o = .01, we reject the

null hypothesis and conclude that the calculator instruction significantly increases the

score on the test.

Are the conditions of this test met; that is, can we consider the population of

differences to be normally distributed? Press |BFAFT| to place the sample difference

data on level 1 of the stack, and press [NQPLT]| to construct the normal quantile plot.

(The program takes a short time to execute.)

 

   
Do you feel you can consider the difference data approximately normally distributed

based on this graph?

Many statistical applications concern comparing the means of two or more

populations. The procedure for comparing these means involves analyzing the

variation in the sample data. When comparing two population means, the sources of

variability are the difference between the sample means and the variability within

the two samples chosen from those populations. In analysis of variance procedures for

comparing the means of three or more populations, variability is measured and

allocated among its sources. The process of planning the experiment to collect the data,

the experimental design, determines the proper analysis of variance, or ANOVA,

procedure.

The hypotheses that are tested in the one-way ANOVA procedure for a

completely randomized design are of the form Hg: f1 = Hy = 3 = -=y versus Hy: Not

all the means are equal (i.e. at least two of the means are unequal) where p; is the

mean ofthe ith population and k is the number of populations. In one-way ANOVA,

the variation between the sample means is measured by a weighted average of the
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squared deviations about the mean of the combined sample data, SSTR/(k-1). The

measure of variation within the samples is the pooled estimate of the assumed common

population variance and is denoted by SSE/(n-k) where n is the total number of data

values from all the samples. An F test statistic equal to SSTR/(k-1) + SSE/(n-k) and its

p-value are used to determine if the alternative hypothesis is statistically significant.

If the null hypothesis is true, the numerator and denominator of the F statistic should

be approximately the same. Therefore, large values of F indicate the null hypothesis

of equal population means should be rejected.

The ANOVA procedure is based on the assumptions that the randomly selected

samples are independent of one another, each of the populations is normally

distributed, and that the variances of the populations are equal. As long as the number

of values in each sample is not too small, program NQPLT can be used for each sample to

see if the data look reasonably normal.

The following program performs the lengthy computations of the one-way

ANOVA procedure. Subroutine FVAL calculates areas associated with the F

probability distribution using the built-in upper-tail F probabilities in the HP48G.

ProgramFVAL << << P N D X UTPF - >> 'X' 2 ROOT >>

Program ANOVA (tests the hypothesis of equal population means for three or more

populations)
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<< 0000 >TABE

<< " Number of samples? " "" INPUT OBJ-> 'K’

STO "ENTER INFO FOR EACH SAMPLE AT BEEP"

CLLCD 1 DISP 1 WAIT 1 K FOR i 340 .3 BEEP

{n X s} MENU HALT n DUP DUP2 T + 'T"'

STO x * A + 'A' STO X SQ * B + 'B' STO

1-s SQ * E + "E' STO NEXT K DUP 1 -

SWAP T SWAP - B A SQ T/ - * SWAP E

*/ DUP 'F' STO "F" 5TAG K 1 - T K- F

UTPF "pvalue" -TAG {F s x n CST K} PURGE

2 MENU >> >>

To execute this program, press and input the number of samples (treatments)

at the displayed prompt. Press and when the HP48G beeps, input the size,

mean and standard deviation of the sample chosen from the population with mean ;.

Press and when the calculator again beeps, input the size, mean and

standard deviation of the sample chosen from the population with mean p3. Continue

this process until all sample information has been entered. The program will output

the F statistic and p-value for the test. Whenever F is greater than the p-value, the

null hypothesis of equal population means should be rejected.

EXPLORATION EXERCISES

1. The quality control engineer in a plant producing cans of cola wishes to estimate
the mean amount of soft drink in 12 oz. cans filled by a machine in the plant.

a) A random sample of 50 cans yields the results X = 11.95 0z. and s =0.2 0z.
Find a 95% confidence interval for the true mean (1) amount of cola in all
cans filled by this machine.
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b) What interval would you obtain if you used program Tciu? Explain why the
intervals are nearly identical.

c) Suppose the samplesize in this problem had been 15 instead of 50. Use the
same sample results and both programs to obtain a 95% confidence intcrval
estimate of 4. Why is the interval obtained using the ¢-distribution wider
(including more values) than the corresponding z interval? Which is the
proper program to use to obtain the interval when n =15?

The interpretation of the numerical value of the confidence in an interval estimate
is often misunderstood. The population parameter p is constant and does not have a
sampling variability. The probability that p falls in the generated confidence
interval is either 0 or 1 depending on whether or not the actual value is between the
two endpoints of the interval. Let's experiment to explore this very important
idea. Suppose we could generate many interval estimates from a population with a
known mean. We could then examine the intervals and determine the proportion
(relative frequency) of those intervals that actually contain the population mean.
Let's do it! Any simulation which generates random values from a distribution
with a known mean could be used, so use subroutine UFMRN to generate N=30
random values from the uniform population with mean p = 0.5. Use program Zcip to
determine a 90% confidence interval for the mean of the population and record
whether or not the value p = .5 falls within the interval. Repeat the procedure to
obtain 10 confidence intervals. Divide the number of intervals which contain p by
10 to obtain the simulated value of the confidence that p will fall in the interval.
You may not obtain 90%, but the more times you repeat this procedure, the closer
you will find the simulated confidence approaching 90%.

We consider a paired difference test. Recall that whenever the elements of two
populations are matched or paired by design, outcomes are compared within each
matched pair. A common situation calling for a paired comparison experiment is a
before-and-after study on the same subjects. To each pairis assigned a single value,
the difference in the two individual values, a random sample is chosen from the
population of pairs, and a t-test is used with the data consisting of the differences
in the sampled pairs.

Return to the EGGS data used to study egg production with diets Supergrow
and Growmore. Use matrix methods to compute the matrix of difference data with
entry x; = x(Growmore) — x(Supergrow). To test the null hypothesis that there is no
difference in the diets versus the alternative that the Growmore diet produces
significantly more eggs than the Supergrow diet, the population of paired
differences should be approximately normally distributed. What conclusion do you
reach using program NQPLT? If appropriate, conduct the hypothesis test using a
level of significance .05.
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4. An environmental systems engineer is interested in making an estimate of the
proportion of small streams with a pollution level higher than 10 ppm. He
randomly samples 91 small streams and finds that 15 of them have pollution levels
exceeding 10 ppm.

a) Give a 90% confidence interval estimate for the proportion of all small
streams with a pollution level higher than 10 ppm.

b) Would a 98% confidence interval be wider or narrower than the 90%

interval? Explain.

5. Tensile strengths of synthetic fiber used to make cloth for automobile upholstery
is of interest to manufacturers. It is suspected that the strength is affected by
the percentage of cotton in the fiber. Using the data given below (5 samples, one
for each % cotton) collected from 20 experiments run in random order and program
ANOVA,do youfeel that there are differences in the strength due to the
percentage of cotton used?

% n Tensile Strength (1 in

20 8 15 11 9

25 17 12 14 18

30 15 10 17 18

35 19 18 11 16

40 15 17 19 14

B REGRESSION

Many statistical problems are concerned with the relation, if indeed a relation

exists, between two or more variables. We usually wish to know if the variables of

interest are related, and if so, what is the nature of the relationship? If an appropriate

mathematical model can be found, how can information about one of the variables be

used to predict another?

It is sometimes the case that a possible relationship between two variables can be

visually identified by looking at a scatter diagram of the data points. When a scatter

plot suggests that the dependence of the response variable y on the explanatory variable x
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can be summarized by a straight line, the linear regression model is appropriate. The

equation y = a + bx with y-intercept a and slope b is the equation of the regression line

determined using the least squares criterion which minimizes the sum of the squares of

the vertical deviations (residuals) of the data points from the fitted line.

To calculate the linear regression coefficients a and b (or the coefficients of other

regression models) using the HP48G and a ZDAT matrix of at least two columns, access

the statistics screen interface)and select Fit data. Choose the data matrix

and enter the column number for the explanatory variable in the X-COL: field. Enter

the column number for the response variable in the Y-COL: field. (The default values

are column 1 for x and column 2 for y.) At this point, choose a model and press.

The equation of the regression model is returned to level 3 of the stack, the correlation

coefficient is given in level 2 and the covariance appears in level 1. These quantities

can also be obtained from the stack interface ) folder after the

regression model has been chosen. If you are dealing with population and not sample

data, you should use P C O V| for the covariance.

We shall explore these ideas with the CARS data. After designating CARS as

the current ZDAT matrix, select Linear Fit in the MODEL: field. Press and see

that the calculated regression line for fuel efficiency on weight appears in level 3 of

the stack as y = 48.609 — 8.118x. (Pressm D] [E or E E] to see the

entire expression.)

We next view the regression line on a scatter diagram of the data. Use the PLOT

menu to draw the scatter diagram and then press [STATL| to observe
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How good is this model? There are several conditions concerning the residuals which

must be checked before you can give a complete answer to this question, and you should

consult any standard statistics textbook on this issue. You can, however, obtain an

indication of the fit of the model by simply viewing the line on the scatter plot. The

correlation of ~.933 and graph for the CARS data does not rule out the possibility of a

linear fit.

You can obtain one of three other regression models on the HP48G. These are

accessed by choosing the model in the MODEL: field of the Fit data screen interface.

They are Logarithmic Fit (y = a In x + b), Exponential Fit (y = be&X), and PowerFit (y =

bx2). The logarithmic, exponential and power regressions are calculated by applying

logarithms to the data to transform the model to a linear one, performing a linear

regression on the transformed data, and then inverse-transforming the computed

parameters to the original model form [6].

The correlation coefficient, as well as the other regression menu keys, apply to the

model you have chosen. You could consider each of the available models, compute the

correlation coefficient for each, and then select the one for which the correlation has

the largest absolute value as the "best-fitting" available model. The HP48G will do

this for you if you select Best Fit. The chosen model appears in the third line of the

stack and can also be accessed with l STAT| I IFITI |ZL IN El. Verify that the power

model with equation y = 71.395x-1-05 and correlation coefficient ~.952 is what Best Fit

returnsfor the cars regression. Redraw the scatter diagram and use [STATL| to observe

the graph of the power model on the scatter plot.
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Once the appropriate conditions have been checked and a "best-fitting" model

found, predicted values for the independent and response variables may be determined

with the menu commands PREDX and PREDY. For instance, to

predict the fuel efficiency for an automobile weighing 3000 pounds, enter 3 on the stack

(remember the x-data is in thousands of pounds) and press |[PREDY]| to obtain y =

22,516 mpg. To find the predicted weight of an automobile whose fuelefficiency is y =

25, enter 25 on the stack and press PRE D X| to obtain x = 2715 pounds. Predicted values

can also be obtained from the statistics screen interface. After choosing a modecl, press

PRED|. If you wish to find the predicted weight of an automobile whose fuel

efficiency is y = 30, enter 30 in the Y: field, move to the X: field and press [PRED)|.

To find a predicted y-value based on a given x-value, follow the same directions, but

enter the known value in the proper location.

At this point, a word of warning is necessary. When you predict y-values for x-

values that are within the range of data in your scatter plot, you are using a process

called interpolation. Predicting y-values for x-values that are well beyond the range of

the data is called extrapolation. Since you do not know how the data will behave

outside the range you have plotted, extrapolation will very often lead to incorrect

predictions.

EXPLORATION EXERCISES
 

1. Use the data on garbage in the United States (TRSH) to find a linear regression
model. Is this the best fit for the data? If not, find the best fitting available
model.

b) Use the best-fitting model to predict the amount of garbage in the United
States in the year 2000. Give units with your answer. Do you feelthis prediction is
realistic? Explain why or why not.

2. The National Center for Health Statistics lists years of life expected at birth as
follows. [7]
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White White Black and Other

Year Males Females Males Females

1920 54.4 55.6 45.5 45.2
1930 59.7 63.5 47.3 49.2
1940 62.1 66.6 51.5 54.9
1950 66.5 72.2 59.1 62.9
1960 67.4 74.1 61.1 66.3

1965 67.6 74.7 61.1 67.4
1970 68.0 75.6 61.3 69.4
1971 68.3 75.8 61.6 69.8
1972 68.3 75.9 61.5 70.1
1973 68.5 76.1 62.0 70.3
1974 69.0 76.7 62.9 71.3
1975 69.5 77.3 63.7 72.4
1976 69.9 77.5 64.2 72.7
1977 70.2 77.9 64.7 73.2

1979 70.8 78.4 65.4 74.1
1980 70.7 78.1 65.3 73.6
1981 71.1 78.4 66.1 74.4
1982 71.5 78.7 66.8 75.0
1983 71.7 78.7 67.2 74.3
1984 71.8 78.7 67.4 75.0
1985 71.9 78.7 67.2 75.0
1986 72.0 78.8 67.2 75.1
1987 72.2 78.9 67.3 75.2

1988 72.1 78.9 67.4 75.5
1989 72.6 79.1 67.5 75.7

If you are a male:

a) Construct a scatter plot for the year versus white male life expectancy at birth.
The year in which the data was recorded should be the explanatory variable.
Store the graph. What information does the graph for the white male life
expectancy reveal? Discuss any pattern or deviations from a pattern you observe.

b) Look now at the scatter plot for the year in which the data was recorded versus
black and other male life expectancy. Store the graph. What information does the
graph for the black and other male life expectancy reveal? Discuss any pattern or
deviations from a pattern you observe.

c) What historical events might account for any deviations from a general
straight line pattern for these two data sets?
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d) Recall the scatter diagram for white male life expectancy so that it is
overdrawn on the scatter diagram for black and other male life expectancy. Do you
see any pattern relating white male life expectancy to black and other male life
expectancy? If so, are there any significant deviations from that pattern?
Comments?

If you are a female:

Answerparts a), b) and d) ofthis exercise with the word female substituted for male.

c) Recently there has been very little increase in female life expectancy. Discuss
possible reasons for this behavior of the data.

For both sexes:

e) Find the best-fitting regression model your calculator has to offer for the data
for your sex and race. Predict the life expectancy in the year 1993. Predict the life
expectancy in the year 2005. Do the estimates seem reasonable? Discuss why or
why not.

3. Consider the following data [4] reported by the Bureau of the Census and the
Bureau of Labor Statistics on women in the labor force.

% of female population aged 16

 

Year and over in the labor force

1900 18.8

1910 215

1920 21.4

1930 22.0

1940 25.4

1950 33.9

1960 37.8

1970 434

1980 51.6

1988 56.6

1989 57.5

1990 57.5

Find the best-fitting available model and construct a graph of the model on a
scatter plot of the data. Determine and interpret the correlation coefficient.
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APPENDIX

PROGRAM HOUSEKEEPING

The term user memory refers to that part of the 48-G/GX's memory that we use to

store the various types of objects recognized by the calculator, e.g., real or complex

numbers, arrays, programs, lists, etc. These objects are stored as global variables (in

calculator terminology) and you are provided access to them by pressing the key

to open the VAR ( = variables) menu. Here we are concerned with the basic

"housekeeping" procedures used to enter, name, store, run, edit and purge programs.

WHAT IS AN HP-48G/GX PROGRAM? A program is a sequence of data objects,

procedures, commands and program structures - the program body - enclosed between

program delimiters « »:

« program body » .

ENTERING PROGRAMS. Programs are keyed into the command line and entered

onto the stack (level 1) with [ENTER|. You need not key in the necessary closing

program delimiters because pressing ENTER| will automatically insert them for you.

NAMING AND STORING PROGRAMS. To name and store a program that has been

entered onto level 1 of the stack, press D to activate algebraic entry mode (suitable for

entering names and expressions), then key in the desired name and press . The

program will be stored in user memory under its name, and pressing

will show a menu key with an abbreviated name (up to 5 characters).

TO RUN A PROGRAM. To run a program, simply press the white menu key beneath

the program's abbreviated name. Of course, if the program requires input data for its

proper execution then you must first provide that data in an appropriate

404
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way, either on the stack or as stored variables that are named in the program body.

EXAMPLE. The program « DUP SQ SWAP INV +V INV » takes a number "a"
from level 1 as input data and returns the calculated value of —1——-—\/___to level 1. Key

a2+ 1/a

in the program byfirst pressing ,the other indicated commands. Press

to add the closing program delimiters and copy the program to the stack.

Press III PGM1 to name this program PGM1 and store it in user memory

underthis label. Press to see the menu key P@M 1.

Now, run the program using as input data the number 2: key in 2 and press

P@M1|. The answer, .471404520791, will be displayed on level 1. Notice that you

did not have to enter the data onto the stack before pressing P@M1|. This is typical;

pressing the menu key PG M 1| automatically entered the data for you. Run the

program with some other inputs.

SYNTAX ERRORS. When keying a program into the command line, if an object is

accidentally entered in an invalid form, then pressing |ENTER| will cause the

calculator to refuse to copy the program onto the stack and display a message indicating

a syntax error. To remove the message from the screen so you can correct the syntax,

simply press, which cancels the message.

EXAMPLE. Keyin: « - ARRY and press| ENTER| . Notice what happens. Now

remove the message, delete the space after the - with ,and press ENTER|.

EDITING PROGRAMS. To make any change in the body of an existing program you

mustedit the program.
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o If the program is on stack level 1, the EDIT]| key will copy it to the command line

where you can then make the required changes. Press ENTER| to return the

corrected version to level 1.

o If the program is not on stack level 1, but stored in user memory under, say, 'NAME'

the keystrokes B NAME will recall the program to level 1 and you

can then proceed as above.

EXAMPLE. Start this example with the program « PROGRAM MODI » stored in

user memoryas| TRY 1.

(i)  Recall it to stack level 1 with B .

(ii) Copy it to the command line with EDIT|, and change MODI to BODI.

(iii) Copy back to level 1 with ENTER|, then replace the old version with the

newonebypressingE] .

(iv) Now recall this new version to the stack, copy it to the command line, change

BODI to BODY, and then replace the previous version with this newer one.

(v)  Finally, check your last work by recalling to level 1, examine the result, then

drop it from the stack with DROP|.

SHORTCUTS.

¢ You can recall to level 1 the contents of any stored variable, say TRY1, by pressing

TRY1|. Thus, right shift will recall.

e Likewise, you can store (or load) an object on level 1 into any stored variable, by

pr&ssing , then the variable's menu key. Thus, left shift will load. Try this by

loading « + SQ COS » into TR Y 1|; now recall the contents.



PROGRAMHOUSEKEEPING 407

DELETING. Imagine that you have stored an object under variable PGM1 in your user

memory. The object may be any one of the variety of objects recognized by the

calculator: a real number, an array, a program, etc. You can delete this object from user

memory by purging variable PGM1. Purging a single variable is usually done with the

keystrokes D I PG 11] |PURGE]|. The label disappears from the VAR menu and its
 

contents are removed from user memory. To purge several variables at the same time

press I:{:H, then the menu key for each variable you wish to purge, and then ENTER|.

Now press to purge the variables in the list.

EXAMPLE. Start by storing the numbers 1, 2 and 3 in variables ‘X' 'Y' and 'Z' in user

memory. With your VAR menu active, purge ‘X' by pressing D PURGE|; watch

disappear. Now purge the two remaining variables at the same time by building a

list { Y Z} and pressing.

ACTIVITY. The following program takes numbers X, y from the stack and returns

(x+y)2Vx+y.

« + DUP SQ SWAP ¥ #* »

(a) Key in this program and store it under variable "EX.1".

(b) Run the program with inputs 9, 16.

(c) Change the program body by replacing the * with / and adding NEG at the end

(in algebraic entry mode press to see NEG.

(d) Run the new program with 9, 16.

(e) Intermsof x and y, what does the new program calculate?

(f) Purge this program.

(g) Purge programs TRY1 and PGM1 simultaneously.



PROGRAM INDEX

SINGLE-VARIABLE CALCULUS

(Alphabetical, by Topic Area)

Graphing

INV.F..ieee,Inverse Function Grapher.............uiieiiieiinnnnin, 21

Differentiation

derXROOT ........cccevevinnrriinnnennns Derivative of XROOT......cccccveviiinininiiininnnnnen 30

INFLT...reee,Inflection Point Routine.........cccccceeeiiiiininnnnnnnnin. 40

NEWTON......ccoevrirrnrrnnee To Study Newton's Method ...........ccccereeunnnnnnnnnnnee. 33

Integration

Fo,Utility Program............uueeeeeeveenenevneneneneennnen. 48

FABSTO.....ccoieeiiecrececeereeenesStores F, Aand B.......ccceeeeuiuirrirerenrecrnrennenne. 46

FTC1..ovrriiinnnen,Part 1: First Fundamental Theorem of Calculus.................... 55

LRECT.......ovvvrrrriiiiinnnnnen, Left Rectangle Approximation ............ccccceeuununnnneee. 46

MID....oorieeeee,Mid-point Approximation...........cccceveeeeerinnnnnnnenee. 47

NSTO...eStores value for N..........eeuueeeeveeineeeeneneneeeeennee 46

RRECT......cccvvvriirinnen,Right Rectangle Approximation.........c.cccoeeeeiennnnnnnnn. 47

SIMP ......oooovvvvirnnnnnnnnen, Simpson's Approximation .........ccceeeeeiiiiiiiiiiiinnnnn. 48

SUM.....ooviiiiiiiienccneeeeeUtility Program.........ccccceeevvnneniiiinnnnciennnne 48

SUMF ......coooiiiniiiiininncceccncnnens1041114748 {0) iNO56

TRAP...,Trapezoidal Approximation .........ccccccceeveceiinnnnnnen. 47

Sequences and Series

FSHO....reee,Shows Terms of a Sequence ...........ccceveeevrneenennnnnee. 64

HGFSHO..........cccevvriivnnnnene.Shows Terms of Three Sequences .............ccceuennnnneeee. 65

INFSUM.....cccoovvrinrinnirininnenn, Dynamic Sum Routine...........ccceeveriinnnnnnnncnnnnnn 68

PSUM.......ccoivirrttntntninennenccccen,Partial Sum Routine.........cccccceeviiviiiiiiniiiiiiinnnnn. 66

TAY.C....rniaddTaylor Polynomial about x = C......ccooeeviiiiiiiiininnnnnnn. 61

TAYLAT.......cceeeerveereeenenencneeneeeesTaylor Polynomial at............ccuueeeeiiiiinnnnnnnnnnn, 63

408
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MULTIVARIABLE CALCULUS

(Alphabetical Listing)

IGL..ccoetEvaluates integral ...........ccccceevivvnnnniiinnnnnee.109

IGLEW.............. Evaluates integral produced with EQUATION WRITER............110

PICS.......cccceveirnnns Produces different views of 3-dimensional graph................... 97

POLIG.........ooireProduces polygonal curve........cccoeeeeeiniiiiiiininnnannne. 93

VERTS......rrrreen,Enters vertices in a list ............coooeviiiiiiinnnnnnnnnin. 93

DIFFERENTIAL EQUATIONS

(Alphabetical Listing)

DERet al. .................Programs for parameter identification problem............ 171-172

DIRF et al........cccueeernrinnnrnnnnnen, Direction field program ...................u......... 187-188

EIG2........ccccevvvvrrinnenesEigenvalue equation for 2 by 2 matrices .............cccccc....177

EIG3......coovvviiineerinnncnnesEigenvalue equation for 3 by 3 matrices ...........ccccceeeennne.178

EULER, IULER..................... Euler, improved Euler algorithm....................... 137,138

FEV..irrrctiecnereenne,Utility for NWTN .....cccceiiviiiiiiiiiniiee,173

G.01...covrrrreinnrcnnee,Generates a T-Y(1) graph (vector case) ............cccceeennes133

G.12....civririeee,Generates a (Y(1), Y(2)) graph (vector case)......................134

G1.TYi,Generates a T-Y graph (non-vector).............ccuuuuueeeen.131

GR.OT..oVersion of G.01 that uses IJULER ..............................156

GRAF.......ccvvrirrirrinnenne Graphics program (uses JULER) .................ccccouuu.....141

GS.01.......couvvvvirrinrnrnneneneeeVersion of G.01 for Stiff equations............c.ccceecuennnne.176

IN-FN..o,Prompts user to write program for F(T,Y) ........................130

INPP..isPrompts user to set plot parameters...............c.ccoeeeeenen130

INITTeInitialization program for GRAF .............................142

NWTN ............... Program for Newton's method: simultaneous equations............. 173

PIVe,Pivot routine for n by n matrices..........ccccoeeviinnnnnnn.180

ROKL.......ccoovvviiininrreeereennnnnsInterchangerows Kand L ............ccccoovnnnnnnnnnneee.180
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LINEAR ALGEBRA

(Alphabetical, by Topic Area)

Matrix Editing Routines

A.KTH.....ccvirrnninnninnninnnecsnecnsKt Power of @ MatrixX .....cccovvnreereerencsscnsnnennenes200

P.OFA......rrrreninrnnannnaePolynomial Evaluation at A ..........ccceevveeiiinnnnnnnad201

Linear Systems

BACK ......ciiiiiinirnrnricicineeeneneesBack Substitution ........cccceeeueviiiinirinnnniiiinnnne 208

ELIM......orrrirrriiinrnrniiceneneansGaussian Elimination.........cccccceeeeennnnieenenncennn. 209

(2||Forward Substitution .........cccceeveereenenennnnnnnnnen215

L.SWAP.......reeetreenecicnnee Swap Multipliers in L.........cccceeeiiiiinnnnnnnnnnee.213

IInteractive LU-Factorization .........ccccccoeeeuuuenneeene.212

PIVOT ....cccovivnriinnnieccnnneennnnne Gauss-Jordan Pivoting........ccccevuueeriivnnnnennnnnnnns220

DLPuneMake L and P Subroutine............ccceueeeeeeeineeeennecesd213

Orthogonality

GRAM-SCHMIDT..............ceeueeeGram-Schmidt Procedure ...........cccceeeieiiiieniiinnnnns224

PFIT.ireeeeeencnnneee,Polynomial Fit Matrix ......ccccceeeeeiiiiiinnnnnnnnneen. 233

o5{0NProjection Vector........ccccceeeiinnnneeiciicnnnceninnns 223

Eigenvalues and Eigenvectors

CHAR.........ccoovvrrerrrernnenneeCharacteristic Polynomial...........ccccceeevueeninnnnnns 237

ADVANCED ENGINEERING MATHEMATICS

(Alphabetical, by Topic Area)

Differential Equations

.......................................Two equation Runge-Kutta with graph .................. 246-247

SOL(T1)..ccovuerinrrnnnnnnen.Utility for the built-in RKF algorithm......................... 283

Y crcvreeinnneennnennns Example: y" + x2y, solutions from 1-term recurrence......... 254-255

YMT...ooovvrinnnene Example: y" + x2y, solutions from many-term recurrence...... 258-259

YO.renrnneneneenenanense Example: y" + x?y, series solution ...........c..c....... 252-253
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Adaptive 4th Order Runge-Kutta Method

1,1[Initalize Variables for Runge-Kutta Routines ................... 327

RK2.........vvviiviinnnenns Second Order Runge-Kutta, vector problem ..................... 328

RKA4..........ceeaansFourth Order Runge-Kutta, vector problem ..................... 328

RK4A................... Adaptive Fourth Order Runge-Kutta, vector problem.............. 329

SETUP.....ccovvvrreernnnne. Set-up Equations for Runge-Kutta Routines .....................330

SOLV.....cvvvrrrrenrrnnnnsDriver program for Runge-Kutta Routines ..........c.....cc....327

Orthogonal Functions

.........................................Evaluation of Legendre Polynomials............................300

BLDW.......ccccevvnnrrnnnnee.Weights for 16 point Gaussian Quadrature...................... 303

[=Fourier Series, n'* partial sum..........ccccceouercuerncnne 294

GIN...oorrrrrrreecnnenddGaussian Quadrature, algebraic input......................... 304

LGNetal.........ccecuuueeenne. Generate first n Legendre Polynomials................... 297-298

PGIN.......cooueerenireencrnnnennen Gaussian Quadrature, program input...........cccoceueeeeen.305

Bessel Functions

JlerrinieeeeieenesBessel Functions of the first kind: integral representation .......... 275

USe,Bessel Functions of the first kind ............cccceerunnneeeee.264

YlBessel Functions of the second kind: integral representation.........275

YStBessel Functions of the second kind ..............ccuuueeee.268

Vector Calculus

.................................................Analysis of a space curve..............c..ccvvueee.... 309-311

DBL.....coovrrrrreicnentecnnnenneEvaluation of Double Integrals .............ccccueeenn...e. 317

DINT....ooevvmmnnrnrnnnnnnen Double Integrals via Gaussian Quadrature................ 320-321

IRComputation of Line Integrals in 3-space..........cccceeennnee314
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PROBABILITY AND STATISTICS

(Alphabetical, by Topic Area)

Numerical Descriptive Measures

WTILE..oCalculates percentiles of a set of data..........................344

LTSVM..........cuuuu. Converts a list to a one-column statistical matrix..................347

MEDIAN.........ccccvvnnnnnnnn. Calculates the median of a set of data..........................344

MVTL.......... Converts a specified column of a multi-variable matrix to a list.......346

SVTL.cciirrriririnninnininnneneeedConverts a one-column matrix to a list ..............ceeuueeeee.346

Statistical Graphs

DADSP .....ccccvcivrrivicnnnnen, Draws histogram showing dispersion
of data about its mean........c.ccccceeueurennennnns356-357

Probability

COINTOSS............... Simulates toss of a coin and draws histogram.....................363

COINRACE.............rrrrrrnnenCoin toss simulation ............eeeeeeeiieeiieeiiieiennnnn.364

DIERACE ...........cooovvvnirrririnnns Die roll simulation............eeeeeeeeeeeeeieiiieninnnn.364

Discrete Probability Distributions

BIDG........ccovvmmeeriicnneneedGraphs binomial probability distribution.......................370

CUMPROB..............ccuveeeeeAccumulates discrete probabilities ............................370

PODG.........cccccmmemrrinnnnnes Graphs Poisson probability distribution ...................... 371

NDST............cc.......eOverlays normal distribution graph on histogram.................373

Inferential Statistics

EXPRN.............Generates random values from an exponential population............376

NMLRN ........Generates random values from a normal population.................376

UFMRN.................Generates random values from a uniform population................377

POSRN.................Generates random values from an Poisson population................377

LBD............... Prompts for value of A when used with EXPRN or POSRN. ...........377
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CLT .oGenerates and graphs random samples from normal,
exponential, uniform or Poisson populations and displays

the graph of the sample means...............cccceuuunnunee.377

NPRB............................Calculates upper-tail normal probability .......................382

NVAL.....cccvrirmrernennneeee Calculates value of x for input of P(Xny 2 X)...ceuvvevvenennennnnes383

Zely ........ceeeeee Large sample confidence interval for the population mean ...........385

TVAL.....rirndCalculates value of x for input of P(X¢ 2 ) .........cccuuuueeeee.385

TCIR...Small sample confidence interval for the population mean...........386

ZCIP........ccuuen.Confidence interval for the binomial proportion of success ...........386

ZHTU .cccovvviiniinnnneeeesLarge sample hypothesis test of population mean .................388

tHTHe,Small sample hypothesis test of population mean.................388

ZHTP..........eeeuueeee Large sample hypothesis test of binomial proportion...............388

ZVAL ......cccevvnvviiieiinneenns Subroutine of program NQPLT..............cccouureennnee.389

NQPLT ............ Sonstructs normal quantile plot for assessing normality .............390

FVAL.............Calculates critical value for input of upper-tail F probability........394

ANOVA............ccccevueeeee.One-way analysis of variance procedure....................... 394
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Analysis of variance 381-82

Antiderivative 54

Approximations

Mid-point 49-50

Simpson's 50-51

Trapezoidal 49-50

Arc length 58

Attracting solutions 164

Autonomous 162,176

Autoscale 399, 347

Back-substitution 208

Bar plots 377-388

Basis 222

Bessel functions 261

of the first kind 263-264

of the second kind 267-68

Weber's form 267

Binomial distribution 357

Bins 340, 342

Boundary-value problems 285

BOXZ 21

Central limit theorem 363

Change of basis 222

Characteristic

equation 168

polynomial 236-237

Chi-square 370

Column space 222

Combination 352

Directory
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INDEX

Condition number 234

Confidence interval 369

Continuity correction 361

Correlation coefficient 370

Covariance 386

Critical point 100

Cumulative probability 358

Curvature 308

Curvefitting 231

Curves

length 312

parametric 76

Damped harmonic motion 164

Data

CARS 331

Chief Justice 323

editing 322-327

EGGS 348

entry 322-326

masking 343

multi-variable 329

one-variable 322

Defective 239

Derivatives 25

Determinant 202

Diagonalizable matrix 239

Difference quotient 25-26

Differentiation 27

Direction fields 187

create 321



Dot product 223

Double integral 110, 316, 317

Echelon matrix 209

Eigenfunctions 286, 296

Eigenspace 241

Eigenvalue 168, 236

Eigenvector 236

Elliptic integral 305

Empirical Rule 345

Error

typel 375

type II 375

Euler

algorithm 136

improved algorithm 138

Euler's constant 267

Extrapolation 388

Extreme values 38, 102

F distribution 370

Falling body problem 149

Forward Substitution 215

Fourier series 291-295

Fourier-Legendre series 296

Free variable 219

Frequency
relative 338, 349

Functions

composite 25

evaluating 8, 10

inverse 20

piecewise-defined 10

storing 8

user-defined 8
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Fundamental theorem of calculus 54

Gamma function 263

Gauss-Jordan reduction 218

Gaussian

elimination 206

quadrature 301,320

sixteen point 302

Gompertz model 146

Gradient fields 114

Gram-Schmidt process 223

Green's Theorem 118, 316, 319

Helix 308

Histogram 338-344

Hypothesis test 369

Hypotrochoid 119

IFTE 9, 30

ll-conditioned 232

Implicit surfaces 75

Independence 222

Infinite series 59

Inflection point 39

Integral

double 110, 316, 317

elliptic 305

iterated 110, 316

line 115, 312

Integration 45, 108

numerical, on the HP48 51

Interactive stack 41

Interpolating polynomial 301

Interpolation 388

Invertible matrix 202

Lagrange Multipliers 105
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Law of Large Numbers 349

Least squares 230, 386

Left rectangle approximation 49

Legendre polynomials 296-300

Level curves 80

Line integral 115,312, 314

Linear

autonomous system 176

regression 386

Lists 323

Local extrema 38

Logistic model 146

Lotka-Volterra model 164

Lower triangular matrix 211

LU-factorization 211

Matrix

change of basis 222

defective 239

diagonalizable 239

echelon 209, 218

ill-conditioned 232

lower triangular 211

permutation 211

upper triangular 211

MatrixWriter 195

Mean 328

Median 332

Mid-point approximation 49-50

MINEHUNT 355

Newton's method 32,172

Nonlinear autonomous systems 170

Normal

distribution 360

equations 230

probability plot 361

Nt roots 13

Nullspace 222

Orthogonal

functions 291

trajectories 161

vectors 222

Orthonormal basis 223

P-value 375

Paired difference test 378

Partial pivoting 211

Pendulum 164

Percentile 332

Permutation 352

matrix 211

Phase plane 163

PICTURE 13

Pivot 209

variable 219

Poisson distribution 359

Polya's problems 103

Polynomialfit 231

Population growth equations 146

Probability 349

cumulative 358

Projection 223

Pr-Surface 87

Pseudolevel curves 85

Ps-CONTOUR 85

QR-factorization 225, 229

Quadratic surfaces 98
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Random number 350

Recurrence relation

many-term 258, 259

one-term 257

Reduced row echelon matrix 218

Regression 385

best 387

exponential 387

linear 386

logarithmic 387

power 387

Regular point 256

Regular singular point 261

Repelling solutions 163

Residual 386

Riemann sums 45

Right rectangle approximation 49

RKF 279, 282-284

ROOT 10

Row echelon 209

Row space 222

RREF 218

Runge-Kutta

adaptive fourth order 279, 324

algorithm 139, 174

fourth-order 279

naive 2order, with graph 247

Sampling 363

distribution 363

Scatter plot 346

ZDAT 322

Sequences 63
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Series solutions 250-260

Shooting methods 287-291

Simpson's approximation 50-51

Simulation 349

Skewness 367

Smearing 273-274, 299

SOLVR 10

Sonin-Polya Theorem 248

Sort 323, 324

Souriau-Frame method 236

Space curve 309

Spiral 79

Spring motion 157

Square wave 153

St. Louis Arch 37

Standard deviation 329, 345

Stiff system 174

Sturm-Liouville problems 291

Sturm Comparison Theorem 248

Surface area 109-110

Switch function 154

t-distribution 370

Taylor polynomials

single variable 59

two variable 100

Taylor series 250

TEACH 332

Three dimensional

parametric curves 78

Tschirnhausen's cubic 119

Torsion 308

Trapezoidal approximations 49-50

Undetermined coefficients 261
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Uniform distribution 368

Upper triangular 211

Upper-tail probability 370

User-defined function 8

Van der Pol 165

Variance 329

Variational matrix 170

Vector fields 111, 312

Volume 322

Weighting function 291

WIREFRAME 73

Work 106, 312

XROOT 20
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