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PREFACE

It has been over three years since the Hewlett-Packard HP-48S series calculators
were introduced (March, 1990) to the North American scientific community. Assessment
of their impact leaves little doubt that the affect upon collegiate undergraduate
science, engineering and mathematics has been both significant and substantial. With
features such as 32K of expandable memory, two-way infrared communication, serial
link to personal computers, a sophisticated operating system and a structured
programming language that supports extensive symbolic manipulation capabilities,
these original HP-48 units were accurately termed supercalculators. The HP-48G series
units offer even more: a new, easy-to-use input forms environment for beginners, built-in
128K RAM with two memory expansion ports (in the HP-48GX), enhanced graphics
that include the first calculator-based 3D capabilities (and hence the G designation),
professional code for differential equations and for matrix operations, and a host of
other innovative features. The G series units will most certainly achieve a widespread
acceptance in undergraduate education because of the potential for their creative use, on

a personal level, by faculty and students alike to enhance teaching and learning.

This volume is one of a growing number of publications that are appearing in
support of the use of the high level calculators in undergraduate mathematics. But,
unlike most others, this volume is not dedicated to a comprehensive, in-depth
discussion of how the HP-48G/GX units can be effectively used in any one particular
course of instruction. Rather, it is a collection of six independent chapters, each devoted
to a particular course and authored by faculty who are experienced in the use of the HP-
48 in the material of that course. The chapter titles reflect the courses: Single-

variable Calculus, Multivariable Calculus, Differential Equations,
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Linear Algebra, Advanced Engineering Mathematics, and Probability and Statistics.
Five of the six authors are faculty at Clemson University, which requires all students in
the calculus sequence for science and engineering to have their own
HP-48's. We are extremely pleased to have join us as author of the chapter on
Advanced Engineering Mathematics, Dr. Donald L. Kreider, Professor of Mathematics
and Computer Science at Dartmouth College. Don is well-known for his textbooks in

that area.

Each of the six chapters is self-contained, and written in the spirit of showing the
potential for using the HP-48G series calculators in a mainstream mathematics course.
We have tried to avoid "teaching the mathematics", and have instead written "about
teaching the mathematics". Most of the chapters survey the main topics of a course,
and each chapter includes many activities, exercises, explorations and projects that can
be engaged by students in a calculator-enhanced treatment of the material. For the first
four chapters, Single-variable Calculus through Differential Equations and Linear
Algebra, supporting student-oriented material will be available in 1994 from the
publisher, Saunders College Publishing, by the same authors. Chapter 6, Probability
and Statistics, is new material; only a small portion of Iris Fetta's work in this area
appears outside the present volume. Chapter 5, Advanced Engineering Mathematics, is
also new material, having no existing counterpart published elsewhere. It addresses
the use of the HP-48G/GX in an important and significant area of undergraduate
mathematics, especially for students in analysis, sciences or engineering.

It has been a joy for me to serve as Consulting Editor for this volume. In a
deliberate attempt to foster the creativity of each of the authors, I have refrained from
imposing editorial restrictions in terms of format, structure and style. You will thus
notice a wide variation in these features from chapter to chapter, and I hope you will

find this to be somewhat refreshing.
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I especially wish to express my appreciation to Bill Wickes of Hewlett-Packard,
who served as head of the original design and development team for the HP-48. His

wisdom and genius have been a source of inspiration for us all.

The timely appearance of this volume could not have taken place without the
splendid support and coorporation that the authors received from Hewlett-Packard
and Saunders. Hewlett-Packard provided prototypes of the HP-48G series units and
members of the software development team helped us sort through many of the new
routines. I wish to recognize Diana Byrne, Charlie Patton, and Paul McLellan of that
team for all their help. Our editor, Jay Ricci of Saunders, was especially supportive of
our efforts from the very beginning to bring forth this new material. And finally, I
express special thanks to Mrs. April K. Haynes who, with great skill and patience,
word-processed several chapters in this volume, as well as all the many revisions,

corrections and peripheral material to be found here.

Clemson University Don LaTorre
June, 1993



CALCULATOR PRELIMINARIES

Although the chapters in this volume are self-contained, the authors have
assumed that readers will have a basic familiarity with the HP-48G/GX and its
operation, at least to the extent of being able to do elementary numerical calculations
and to enter algebraic expressions. For those inexperienced with HP-calculators, this
basic familiarity can best be acquired by a hands-on study of Chapters 1, 2 and the
first five pages of chapter 3 of The HP-48G Series Users' Guide. For convenience, we
briefly review the basics here, and include as an appendix some material on program

housekeeping.
Stack Display Screen

When you first turn on a factory fresh HP-48G series calculator, you will be

looking at the stack display screen. To remove any objects from the screen that may
remain from previous use, press the key three times then the key (on

the same row of keys as | ENTER |). Above the horizontal line near the top of the
screen you will see {HOME]}, indicating that you are in your HOME directory.

Immediately below are levels 1-4 of the stack. Like lines on a piece of paper, the
stack is a sequence of temporary storage locations for numbers and the other kinds of
objects used by the calculator such as algebraic expressions, arrays, equations, and

programs.

Just below level 1 are six blank menu boxes. Normally, these menu boxes will
have labels in them that reflect the operation of the six white menu keys beneath
them. If you press the key near the top left of the keyboard, the labels will

show that the first page of the MTH menu contains the six submenus VECTR, MATR,
LIST, HYP, REAL , and BASE; the key will turn you to the second page of
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the MTH menu and another will cycle you back to the beginning. The small

horizontal tabs above the labels in the MTH menu indicate that each of the boxes
contains a submenu (a file, or subdirectory in HP parlance). Open the HYP submenu

by pressing the white menu key beneath it to access the various commands for
working with hyperbolic functions. Press to return to the MTH menu at any

time.

Similarly, the key opens the PRG (= Program) menu where you may use

the white menu keys to access the various submenus of commands for use in writing
programs. An extremely important key is the key. It opens the VAR

( = Variables) menu, which is where you look to find the objects that you have
created and stored into the memory of the machine.
Display Settings

It is best to keep the calculator's angle mode set to radians in order to work

with trigonometric functions. Press (purple) to toggle between radian

mode and degree mode. When radian mode is set, the message RAD appears at the

top left of the stack display screen.

To display numbers in standard form, set your unit to STD display mode (the default

setting) by pressing , opening the FMT (= Format) menu and checking

to see that the left-most menu box reads | STD[J |. The small box next to STD
indicates that STD mode is active. If the menu simply reads press the

associated white menu key to activate STD mode. For routine calculations on
the stack, it does not matter which menu labels are active. Simply press to

make them all blank.
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Keyboard

The keyboard of an HP-48G series calculator may at first appear to be
somewhat intimidating. But, like the control panel of any high-performance device,

it enables you to control and to monitor a vast array of operations. The number entry

keys are bordered on the right by , EI , , and ; and on the left by
, , ,and IZ' The right-shift key and the left-shift key are

color coded to many of the keyboard labels, and the [a | key is used to obtain

alphabetical characters.

Adjacent to Iﬁ;ﬂ is |+_/—| for changing signs, then for entering
exponents, for deleting characters (and clearing the stack), and @ for
backspace-and-delete (and dropping objects from level 1). The LSIN ] , I CO?],

, and| Vx keys are just above, as are| YX | (for obtaining powers) and .

Above the trig function keys are EI (tick), for entering algebraic expressions, and

and | EVAL | for storing and evaluating objects. The four cursor keys E ,
E] , E and E control the movement of the cursor when it is active.

Applications and Command Menus

You will notice that some keys have both left-and right-shifted labels printed
above them, but many have only one of the two.

The keys that have only green labels above them represent applications, e.g.,
I/0, PLOT, SOLVE, TIME, UNITS. The right-shifted version of an application key
invokes a specially designed user-interface that lets you interact directly with the

named application, often through the use of input forms, which are the HP
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equivalent of the familiar computer "dialogue boxes". Alternatively, the left-
shifted version of an application key gives you access to the various commands on
the command menu that is associated with the particular application. The
commands may be included in programs or executed directly from the keyboard while

viewing the stack display screen.

Numerical Calculations

Simple numerical calculations are done on the stack. The idea is this: put
inputs on the stack and then execute commands that use the inputs. To enter -12.34,
begin by pressing the appropriate number keys and the decimal point key (bottom
row, center), then use to change the sign. Notice that the typing starts at the

bottom left of the display screen, below level 1 of the stack, on the command line.

Press | ENTER | to put -12.34 on level 1. Now enter 56.789; notice that | ENTER

inserts it onto level 1, bumping -12.34 up to level 2. Press to compute the sum.

To recapture the stack before you added, press UNDO | (the right-shifted
EVAL key). Now subtract 56.789 from -12.34 with [ = |, then use and swap

positions with (the right cursor key I—EI; no need to press now). Now

subtract again to get 69.129. Take the square root with Vx |, then cube the result

with 3 | YX|. You should have 574.765129278.

To edit this result, use (the purple key), use the right cursor

key to move the cursor over the 9 , delete the 9 with and press 3

. Now use (the right-shifted key) to obtain the natural

logarithm. To multiply by =, press IE] (r is obtained with the left-shift
key) then E Notice the symbolic result '6.35396147609 * =’ on level 1,
enclosed in tick marks. To convert this to a numerical result, use (the
left-shift key). Now drop the 19.9615586945 from level 1 with [¢ . The

E key drops objects from level 1; the adjacent key (labeled CLEAR in purple)
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clears the entire stack. Normally, you need not left-shift these keys; shifting is
required only when the command line is active.
Algebraic Expressions

Algebraic expression must be typed in beginning with a ' (tick) mark using the El
key. Alphabetical characters are obtained by first pressing E] and then the

desired key. Note that alphabetical characters appear in white letters to the lower
right of the keys on the top four rows. To produce, say 'S', press [II followed by E]

’ SIN I [ ENTERJ. Lower case characters are obtained by the sequence E] @

then the character key. For example, D E E LDJ [ ENTER] puts 'd’

on level 1. (Thus [ a | left-shift will give lower case).

To enter the algebraic expression 'SIN(X)’, press D @ [E,
ENTER |. Notice the location of the cursor after each keystroke; after the

cursor is still inside the right parenthesis. To move it outside, use the right cursor
key El But, pressing | ENTER | does it all for you. As a more complicated

example, try 'COS(Xa2)/(2+XA3)". The keystroke sequence is:
[] [cos] [a] [1x] [¥v*] 2 [B] [+][&][+] 2
[x] [a] [1/x] | ¥*| 3 [ENTER].
Yes, it is necessary to insert the + in 2+XA3; if you forget, when you press ,

an Invalid Syntax message will appear and you can then correct your typing. If
things are not going well on the command line, remember that the El key will

backspace and delete. Finally, if you get desperate, press (sometimes, more

than once) to cancel what is taking place and then start over.



HP-48G/GX Calculator Enhancement
for
Single-Variable Calculus

Donald R. LaTorre, John W. Kenelly, James H. Nicholson

Calculus of a single variable has proven to be the mathematical common
denominator for students in practically every scientific field. Exceedingly rich in terms
of concepts and ideas, calculus was for almost three centuries linked to every major
development in mathematics, science and technology. Its applications are diverse and
widespread and today a study of elementary calculus forms the basic mathematical

foundation for careers in mathematics, science and engineering.

But the teaching of calculus has not kept pace with the times. All too often our
courses have catered mainly to traditional analytic presentations and largely ignored
the strong graphical and numerical aspects that have always been present but which

are now readily accessible with microcomputer or calculator technology.

This chapter is an introduction to how the HP-48G/GX supercalculator can be used
to effectively enhance the teaching and learning of the graphical and numerical
aspects of single-variable calculus. Our presentation is, of necessity, somewhat brief
and makes no claim to being comprehensive. It is intended only to point the way for
teachers to use the high-level Hewlett Packard units by showing some of their power
and versatility, as well as some examples of where and how they can make a

difference. Reference [1] is an expansion suitable for classroom use by students.
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The chapter is divided into four sections. Section 1 is concerned with
representing functions numerically and graphically. We begin by representing
mathematical functions on the HP-48 as user-defined functions, and then show how
the SOLVE application can also be used to evaluate functions. The HP-48's PLOT
application lets you represent functions as plots in the PICTURE environment and we
discuss plotting via the main plot screen (which uses input forms and choose boxes) as

well as with the commands on the plot menu.

Section 2 discusses derivatives: from the simple evaluation of difference
quotients and their susceptibility to cancellation errors to the calculator's ability to
perform symbolic differentiation. Root finding and the analysis of the graphical
behavior of functions in terms of local extrema and inflection points are also

examined.

Section 3 considers integration. We provide a calculator directory of short
routines that produce various kinds of Reimann sum approximations to definite
integrals - left and right rectangle, trapezoidal, midpoint, and Simpson's
approximations - and then discuss the HP-48's built-in numerical integration routine.
This section concludes with a calculator-based activity designed to reinforce students'

understanding of Part 1 of the Fundamental Theorem of Calculus.

Section 4 focuses on Taylor polynomials and infinite series, illustrating the
ability of the HP-48G/GX to contribute graphically and numerically to the teaching
of these important topics. Programs are included that show the calculation of

partial sums dynamically.

Along the way, we have included a number of sets of EXERCISES. Although not
inclusive, they are fairly representative of the types of activities that students can
be called upon to conduct with the HP-48 as they become active participants in the

construction of their own personal understandings of the material.



8 CHAPTER]

1. FUNCTIONS

Beginning calculus is a study of the behavior of functions: their variation, rates
of change, end behaviors. We thus begin with a brief look at how mathematical
functions can be represented, evaluated and graphed on the HP-48G/GX.

Representation and Evaluation

A convenient way to represent many mathematical functions on the HP-48 is through
the creation of user-defined functions. In HP-48 parlance, a user-defined function is a
short program that captures the essence of the formal way that we define a function
by an equation like F(x) = 2 sin x + sin 4x. Here, F is the name of the function, x is
the input variable, and the expression to the right of the = sign is an algebraic

description of the desired output for a given input x.

The user-defined function that represents this mathematical function is the program
« = X '2*SIN(X) + SIN(4*X)' » stored in the global variable F. The DEFINE
command lets you create a user-defined function directly from an equation. For the

example at hand, simply enter the equation 'F(X) = 2*SIN(X) + SIN(4*X)' onto level

1 of the stack and press . If you access the VAR menu with the

key, you will see the label appearing above a white menu key; this identifies F

as the name of the user-defined function. To verify that the variable named F

actually contains the above program, you can recall the contents of variable F by

pressing (the right-shift key will recall); press when you've

finished viewing the program.

To evaluate this function, enter the desired input and press the menu key .
For example, put 'TA2' on level 1 and press to see "2SIN(T*2) + SIN(4*T*2)'.
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Likewise, press 4 to see 2 sin 4 + sin(4*4) evaluated as -1.80150830728. You may

enter the equation 'F(X) = expression in X' directly or by first entering 'F(X)', then
the ‘expression in X' and pressing El In either case the key

automatically creates the user-defined function from the equation.

User-defined functions of two or more variables are constructed in the same way.

For instance, to represent G(x,h) = sm(x+h1)1— SoX enter 'G(X,H) = (SIN(X+H) -

SIN(X))/H'and press [§] [DEF ].

Piecewise-defined functions often occur in applications and are introduced early
in calculus to illustrate the ideas of one-sided limits and points of discontinuity.
The best way to represent them on the HP-48 is to use the IFTE command, found on
the third page of the PRG BRCH menu . The IFTE command is an abbreviation for
the "if ... then ... else ... end" construction and executes one of two procedures that you
specify, according as a "test clause” is true or false. The IFTE command takes three
arguments: a test argument and two procedural arguments, as in IFTE (test, procedure
1, procedure 2). You should interpret this as "If test clause is true, then execute
procedure 1 else execute procedure 2" .

2
To represent p(x) = {x - 3’( x<0 , the desired command is 'IFTE(X<0, X*2
1-x 0 <x
- 22X, 1 = X*2) 'on stack level 1. Begin with ', then go to the second page of the
PRG BRCH menu and press , followed by the three required arguments
separated by commas, then . The inequality relations are on the first page
of the PRG TEST menu. This expression can now be treated like any other function
and evaluated, graphed, differentiated or integrated. For instance, with ‘IFTE(X<0,
X*2 - 2#X, 1 — X*2)'displayed on stack level 1, enter 'P(X); then press , E'
and finally to create a user-defined function. Try evaluating p(x) using values
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to the left and right of 0 to discover whether the function has a limit as x

approaches 0.

The general construction for a piecewise-defined function with two pieces like

fi(x) x<aj

fx) = {fz(x) ag < x

is IFTE( x < aj, f1(x), fa(x) ).

For three or more pieces, you can nest the IFTE commands:

fi(x) x<ag
for f(x) = { fa(x) aj<x<az,
f3(x) az<x

use IFTE(X < a1, f1(X), IFTE(X < a3, f2(X), f3(X))),
Although you can evaluate functions by representing them as user-defined
functions, you may also use the SOLVR . The SOLVR is designed to solve equations,

but the format of its menu makes it convenient for evaluating functions. With the
function on level 1, press E] |SOLVE | IIF‘\i@@Tl‘l then load the function on level 1

into EQ by pressing . Now press [SOLVR|. To evaluate the function

stored in EQ at a number (or variable), simply key in the number (or variable), press

then [EXP R =|. For example, to investigate the behavior of the function f(x) =

X+2
masx—)O:

Put'(X +2) / (2*X + 1) on level 1 and press ISOLVE | |PJ©©T| , then

[€][Ee] [SOLVR]. Tofind FO, press [E] 2 [+/7] then [X]

to see 1.97058823529.

To find F(.0001), press [EEX | 4 [+/-] then[X] to see 1.99970005999.
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To find F(.000001), press [EEX | 6 [+ 4| then [X] to see 1.99999700001.

To find F(.00000001), press [EEX | 8[+ +] then [X] to see 1.99999997.

What is the limit of f(x) as x = 0* ? Now evaluate f for values of x — 0-.

When using the SOLVR, if you store an equation, say 'expression 1 =
expression 2', in EQ instead of a single expression, pressing |EXPR=| for a given X
will return two values, one for the left side of the equation and one for the right
side. This provides a convenient way to compare the values of two functions at

various values of X.

You should be aware that whenever you use the calculator's SOLVE application,

the last value for x is stored under the variable name 'X' in user memory. You need
not make explicit use of the Solvr for this to occur: pressing [ROOT| on the FCN

submenu automatically activates the SOLVR (as do the commands ISECT, EXTR and

F' which appear as menu keys on this submenu). You can see this variable by
pressing to go to the VAR menu, where you will see the menu key . Press

to recall the value stored for X. Our recommendation is that before going on to

the next application you immediately purge this variable to avoid trouble later on.

Purge by pressing [] [X | [PURGE |.
EXERCISES 1.1

1. Create a user-defined function for f(x) = xInx and evaluate it for x = 102, 104, ...,
104 (Suggestion: press 2 to input 102, etc.) What does the limit of
xInx, as x—»0* appear to be? I'Hospital's rule will determine the limit

analytically.
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2. Investigate, numerically, the following limit:

lim [x+ | 1—\lx+1 |
=01 1 -l

3. Evaluate f(x) = (1 + 1/x)* for x = 102, 104, ..., 10'° and 10''. Then make a
conjecture for

li x
o (14 1/x)%.

Now evaluate f(x) for x = 10'2 and watch what happens. Can you explain this?

x2 x<0

4. Use the IFTE command to represent the function f(x) % . Evaluate for
cos x 0<x

a sequence of values approaching 0 from the left; then use a sequence of values

approaching 0 from the right. Do any of the limits, xl_i)“(}- f(x), x_l_i)'6‘+ f(x), and
Jim fx), exist?

sin x

5. Conduct a numerical investigation of )!‘_'R) X

Graphing

The single most important application of the HP-48G/GX to a study of calculus
is to create visual images of the wide variety of functions under study. More than
anything else, the ability to graph quickly and easily adds a powerful new
dimension to the traditional analytic approach to calculus. Many of the important
aspects of functional behavior - maximum and minimum values, rates of change, etc. -
can be effectively displayed by the graph of the function. With the calculator,

graphical representations can be used extensively from the beginning of the course.
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To get informative representations of graphs on the HP-48 you must set the
viewing window to display the part of the graph that you want to see. The default
settings of the plotting ranges for points (x,y) are -6.5 < x £ 6.5 and -3.1 <y < 3.2,
with a common unit scaling of each axis. Since there are 131 columns and 64 rows of
pixels, these settings produce square pixels of size .1 and your visual intuition of
slope and area is preserved on the screen. The default settings also work nicely for
trigonometric functions of amplitude 3 or less. You can, of course, change the settings
in a variety of ways , some of which will be illustrated in the examples. To
accomodate trigonometric graphs, make sure your calculator is set to radians mode.
The E key will toggle between degrees and radians; when radian mode is

set, the message RAD will appear in the top left corner of the screen.

Functions are represented graphically as plots in the PICTURE environment.
The general procedure to produce a plot of a function of a single independent variable

is as follows:
e Access the PLOT application;
o Enter the expression that defines the function;

e Set the plotting parameters, e.g., the independent variable, horizontal and

vertical plotting ranges, etc.;
e ERASE ( if desired) any previous plots;

e Execute the DRAW command.

The HP-48G/GX allows you to access the PLOT application in two different ways to
enter a function's expression and to set the plotting parameters: with to
interact directly with the main PLOT screen, or with to use the various
commands on the PLOT menu. We will illustrate both approaches in our first two

examples.
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EXAMPLE 1. Graph y = 2 sin x + sin 4 x with the default plotting parameters.

Using the PLOT screen: From the stack environment, go to the PLOT
application with PLOT|. The main PLOT screen will show the current plot

type, current angle mode, current expression in EQ (if any), the independent variable
(X, by default), and the current horizontal and vertical display ranges. If the
current plot type does not show Function, press | A | |CHOOS l, highlight Function

and press . If necessary, use E and a similar procedure to set the angle

mode to Rad. Now highlight the field EQ: and type '2*SIN(X) + SIN(4*X3nd

press . If the default plotting parameters are current, the independent
variable will appear as INDEP: X, the horizontal display range as H-VIEW: -6.5

6.5, and the vertical display range as V-VIEW: -3.1 3.2. If any of these settings

appear otherwise, go to the next page of the PLOT menu with , press [RESET

and activate Reset Plot with . Once the default plotting parameters are set,
return to the previous page with and press [ ERASE | to erase any previous
plot and |DRAW/|. You should see a graph like this:

Press @ twice to return to the stack environment.

Using the PLOT menu: Enter '2SIN(X) +SIN(4*X)' on level 1, and press

then , to store this expression into EQ. If you do not now read
"Ptype: FUNCTION " at the top of your screen press [PTYPE| and then
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FUNC |. Now press [P P AR| to see the plotting parameters. If you do not now

read
Indep: 'X'
Depnd: 'Y’
Xrng: -65 6.5
Yrng: -3.1 3.2
Res: 0

on your screen, press [RESET| to return your screen to the default settings. Now

press to turn back a page and open the PLOT menu with [PLOT|. Press

ERASE | to erase any graph previously drawn, then LD RAXl and EDRAW]. You
should see a graph like this:

When you have finished viewing the graph, return to the stack by pressing @
twice; you can always bring back the graph by using the E key.

Often, you can see more of a graph if you compress or expand the viewing screen
vertically or horizontally by using the [ZOOM | key, as in the next example.

EXAMPLE 2. Graphy =x3-3x2 -5x + 1.

Using the PLOT screen: Open the PLOT application with [PLOT|. Since

the default settings are current from our previous example, we need only enter the
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new function. With the EQ field highlighted, type 'X*3 - 3*X*2 - 5*% 1'and

press . Press and to produce this graph.

|
1

To see more of the lower right part of the graph we will zoom out on the
vertical-axis but leave the x-axis unchanged. Open the (ZOOM | menu, then the

ZFACT| menu. Toggle down to the V-FACTOR with E, change it to 5 with 5
, then press . Move to the next page with and zoom out on the
vertical axis with |[VZOUT |. You will get the graph:

1]
[N

To verify that we have expanded the height of the graphing screen by a factor

of 5 activate the coordinate read-out with the menu key , and use the
@ key to move the cursor up to the first tick mark on the y-axis. Notice that

this tick mark records the zoom factor. The zoom factor 5 was determined by trial
and error; a smaller factor failed to show the low point of the graph. Press @

twice when you've finished.

Using the PLOT menu: Begin with 'XA3 - 3*XA2 - 5*X + 1' on level 1 of the

stack and press [E@ ] |l?® PA IF’&J . Since we wish to plot first

with the default settings use [RESET| to set the plotting parameters to their
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default settings. Return to the previous page and open |PLOT|, then use
ERASE] [ID) RAXI and DHAW to produce this graph:

f

Now we can zoom out as before to see more of the local behavior.

The above two examples convey the major differences in using PLOT| and

to access the PLOT application. The lets you interact with
the main PLOT screen, and the PLOT| provides direct access to the various

commands on the PLOT menu. While beginners may prefer to interact with the PLOT
screen, more experienced users tend to prefer the menu commands. From here on, we

leave the choice to the reader.

Here are two examples of graphs requiring adjustment on the range of x values:

EXAMPLE 3. Graph y = sin(10nx) on the default viewing screen. You will see:

|
|

Where are the points? In the default mode, the HP-48 calculates values of y for

each of the 131 values of x, .1 unit apart from x = -6.5 to x = 6.5. Since 10r times
each of these numbers is an integer multiple of &, the sine function is 0 at each of

these values of x. To get a better picture of the graph we can compress the viewing
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window in the x direction. Zoom in on the horizontal axis by a factor of 10 (set the
H-FACTOR, thenuse |HZIN | to see:

EXAMPLE 4. Graphy =x V 5-x2 with the default settings to see:

A
Vi

From the function, y is 0 when x = = \ 5, but these points do not show on the graph.
Correct to four places, \/_5— = 2.2361. With the default viewing screen, the HP-48 will

plot a point for x = 2.2, but for 2.3 < x, y is a complex number so no points will be

plotted. If we zoominon x by a factor of 2.2361 we see

The viewing window was reset so that 5 units on the x axis is approximately V5.

To superimpose the graphs of two or more functions you can graph them

individually without erasing. A better procedure is to build alist {F G H ..
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etc.) of the functions to be graphed, and store it into EQ. When |DRAW)| is

activated, the functions in the list are drawn sequentially, left-to-right.

EXAMPLE 5. Graph sin x, 2 sin x and sin 2x on the same set of coordinate axes with
the default parameters. Put 'SIN(X)’, '2*SIN(X)' and 'SIN(2*X)' on the stack and
execute 3 (on the PRG LIST menu). You will see the list { 'SIN(X)
"2*SIN(X)'  'SIN(2*X)'}). Now store this list into EQ and then press ,
llFM\X and [@F’M\Wl to see the graphs. Observe how the graphs are drawn

sequentially from the list.

To draw the grpahs in the list simulatneously instead of sequentially, go to the

second page of the menu, open the FLAG submenu and toggle on .

To compare the graph of y = x3 with that of its inverse y = \7;, you may begin
by graphing the list { ’X*3' 'XA(1/3)}. Using the default settings you will see

J
/1

which fails to show the left branch of y = \7; the reason is that for each negative

value of X, X*(1/3) is calculated as the principal cube root of x ... a complex number.
Thus, no pixel is activated. Although you may at first find this a bit disquieting,

the ability of the HP-48 to return complex values for odd roots and for natural
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logarithms of negative numbers is but one of the many features that makes the unit

so appropriate for post-calculus mathematics.

To obtain real odd roots of negative numbers, use the XROOT command, given by
the Yy key (the [?] Vx| key). For instance, with -8 on level 2 and .333333333333 on
level 1, the [B key will return the principal cube root of -8: (1, 1.73205080757). But

with -8 on level 2 and 3 on level 1, the :/; key will return the real cube root of -8 :

-2. To see both branches of the graph of y = \7;, graph the expression 'XROOT(3,X).

To enter this, put 'X', then 3 on the stack and press W . When the list { 'XA3'

'XROOT(3,X)'}is graphed with the default screen, then enlarged by a factor of 2
with the |ZOOM | menu, we see

W
A

Notice that this function and its inverse meet on the line y = x and that the

graphs are reflections across this line. Here is a program which, when given a
function f whose graph is displayed on the graphing screen and an intervala <x<b
contained in the current x range, will graph the line y = x and then the graph of the
inverse relation for f with x restricted to a < x<b. If f is a one-to-one function on the
given interval, then the inverse relation will be the inverse function of f restricted

toas<x<bh.
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INV.F

Input: level 2: a, a real number
level 1: b, a real number > a
As a stored variable EQ: a function f.

Effect: Draws, over the graph of f, the graph of y = x and
the graph of the inverse relation of f, with x
restricted to the interval [a,b].

« = A B « RCEQ —» EQ1 « CLLCD 'X' STEQ DRAW EQ1 STEQ A
B FOR I I 'X' STO X RCEQ EVAL SWAP R—C PIXON .1 STEP X
PURGE PICTURE » » »

EXAMPLE 6. Graphy = (x + 1 with the default viewing window. To see its
inverse, clear the graphing screen with @ and go to the VAR menu with .
Enter the "screen domain" of the plotted graph: -3, 1 and press |[INV.F| to see

Since the graph of the inverse function is plotted point-by-point, it will appear dotty

as in this example.

The ZOOM menu of the HP-48G/GX calculators contains assorted commands for
zooming on a graph and the BOXZ applicaiton is especially helpful for zooming in



22 CHAPTER1

on a particular region of a graph. The basic idea is to capture the region of interst

within a samll "box", then zoom in on the box. Here's an example.

. . 1 '
EXAMPLE 7. Begin by graphing x sin J on the default screen. To better see what's

happening near the origin, begin by opening the ZOOM menu. Now move the cursor 5
pixels to the left of (0,0), then down 3 pixels and open . Now move the

cursor 5 pixels to the right of (0,0), then 3 pixels above (0,0). Notice that the cursor
"drags” a small box that has the origin as its center. Now press |Z O O M| to zoom

in on the box.

Now repeat this zooming-in process with BOXZ by moving to a corner of a box 5
pixels to the left and 3 pixels below the origin, then moving to the diagonally

opposite corner 5 pixels to the right and 3 pixels above the origin and pressing

ZO OM]|. Are you ready to give an answer to

lim

1
x_)0XSlnx-.

Piecewise-defined functions are graphed by storing the defining IFTE expression
into EQ and proceeding as usual. To get the graph shown in the next example, use
the default viewing screen and the disconnected graphing mode; in the connected
mode the calculator will connect the pixels on opposite sides of the two
discontinuities and give you an inaccurate representation. To set the HP-48G/GX to
graph in disconnected mode, go to the second page of the PLOT menu and open
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the FLAG submenu. Press the second white menu key so that|CNCT| appears in the

second menu box.

6x+45 x< -25

EXAMPLE 8. To graph f(x) =y 2+sinx -2.5 <x<2.5 , use the expression
-Cos 2x 25<x

'IFTE (X < -2.5, .6*X + 4.5, IFTE ( X < 2.5, 2 + SIN(X), -COS(2*X))'. This gives the

graph:
i .‘v" ..\.

When you have finished, reset to graph in connected mode.

EXERCISES 1.2
1. (a) Graph the list { 'SIN(4*X)" '-2+SIN(X)'} using the default graphing screen.
(b) ERASE and graph the sum of the two functions in the list.
(c) Overdraw your graph in (b) with the graph of y = -2 sin x.
(d) ERASE and graph the product of the two functions in the list.
(e) Overdraw your graph in (d) with the graph of y = -2 sin x.

2. Graph y = cos(10nx) on the default graphing screen. Why does the
representation of the graph look this way? Adjust the screen to make the

representation look more like a cosine curve.

3. Set your calculator to degree mode and then graph y = sin(x°) using the default

screen. Without changing back to radian mode, how should you zoom on X to
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10.

11.
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make this graph look like sin x, x in radians? (When you're done, set to radian
mode.)

Graphy = X -1.3¢ + 32x - .02 using the default screen. Clarify the behavior

of this function near the origin by using BOXZ several times.

To appreciate how "steep” are the graphs of simple polynomial functions, begin
by graphing y = 34x3 - 91x2 - 117x + 54 in the default screen. Now zoom out

along the y-axis as necessary until you can see all local extreme points.

Graph y = cos (cos'x) using the default screen. The result is what you expected,

isn't it? Now, ERASE and graph cos™(cos x). Can you explain what you see?

Investigate, graphically, the following limit:

lim (x+ | 1-+x+1 |)

x>0\ |11l

(See Exercise 2 in EXERCISE 1.1)
Graphically investigate the behavior of f(x) = sin (%) near x = 0. Begin by

graphing in the default screen, then use BOXZ . What is your conclusion?
-X x<0

Graphy =4 sinx 0<x<mx , using the default screen.
X-T MW<X

Graphy = XV 3- %% Adjust the viewing screen to make the graph touch the x

axis at the end points of the domain.

Graph y = x3 - 9x2 + 2x + 48 with the default screen, then zoom out on y by a

factor of 16 to see the local maximum. Now move the cursor to (4,0), open the
ZOOM menu and press the menu key |GCN T R| on the second page to relocate the

center of the viewing window. You may wish to press E to remove the menu

key labels.
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13.

14.

15.
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(a) Graphy=x2 +§ on the default screen, then zoom out on y by a factor of 4.

3 _
x-1 on the default screen, then relocate the center of the

(b) Graphy =77

viewing rectangle at (0,2) to see the "hole".

(a) Use the default screen to graph f(x) = 2x - 3, then use the INV.F program to
graph f1.

(b) Write an equation for f1.

(c) ERASE, then graph g(x) = -.6x + 1 and its inverse. When you've finished,
write an equation for g1

(d) What is your observation about the slopes of non-parallel lines that are
symmetric to the line y = x? Prove it.

(e) Is the converse to your observation true?

Let u(x) = x2 + x + 1 and v(x) = sin x.

(a) Graph the composite function f(x) = u[v(x)] and compare with the graph of

v(x).

(b) Graph the composite function g(x) = v[u(x)] and compare with the graph of

u(x).

x-4
x2+1°

Use the XROOT command to graph y = 2 (x + 2)?/3 + Use the default

6
screen, then zoom outon xy by 15 -

2. DERIVATIVES

The derivative f of a function f is defined by f(x) = hl'_% “"Lh)-f(ﬁ . The

difference quotient on the right-hand side is the average rate of change of f, with
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respect to x, over the interval [x, x+h] and is also the slope of the secant line joining
the points (x,f(x)) and (x + h, f(x + h)) on the graph of f. For a given x, we may

f(x + h) - f(x)
h

approximate f'(x) numerically by evaluating for suitably small

values of h.

A simple way to do this on the HP-48 is to evaluate a user-defined function for

the difference quotient:

DQOCH) = F(X + I:I) - F(X)

This procedure requires that we also build a user-defined function F for the given

function f. (See pages 3-4 to refresh on user-defined functions)

To illustrate, let f(x) = (x2 + 5)3. We create a user-defined function F for f: « —
X ' (XA2+5)"3 ' »; and another, DQ, for the difference quotient: « - X H ' (F(X+H) -
F(X))/H ' ». To approximate f'(2), we simply evaluate DQ using input values (2,H).

H: .001 .0001 .00001 .000001
DQ(2,H): 972.67528 972.0675 972.0067 972

H: -001 -.0001 -.00001 -.000001
DQ(2,H): 971.32528 971.9325 971.9933 972

However, you must exercise caution because the numerical computation of
difference quotients is susceptible to serious cancellation error with finite precision

arithmetic. For example, consider the function

\71 + cos2x

f(x) = )
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If you build a user-defined function for f and then evaluate DQ for input values
(1,H) you will obtain

H: 10+ 105 106 107
DQ(1,H): -3.5221718 -3.522835 -3.52291 -3.523

The correct value is f'(1) = -3.5229074056, so you can see that we are losing digits

with each successive evaluation of the difference quotient.

It is important that students learn the basic mechanics of finding derivatives
without their calculators. However, there are times when it is perfectly natural to
take derivatives with the calculator. For example, when we want to graph a
function, its first two derivatives, and then find their roots. Since the graphing and
root-finding will be done on the calculator, we may as well carry out the

differentiation process there also.

The HP-48 uses the EI key (the @ for differentiation and requires
two inputs: the function to be differentiated (in symbolic mode between ' ') on level

2, and the variable of differentiation on level 1:
2: ‘an expression in X'

1: X'

When the EI key is pressed, the derivative will appear on level 1.

EXAMPLE 9. To graph f(x) = 2sin®x and its derivative f', we may proceed as

follows:

Put two copies of '2*SIN(X) A 3' on the stack (press @’ to duplicate level 1),
then enter 'X' and press @ to see
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2. "2*SIN(X)*3

1. '24(COS(X)*3*SIN(X)A2)'

To graph f first, execute and then graph with the default viewing screen:

JANER7AN
ViV

Now draw the graph of f' over this without erasing:

Notice that the graph of f has a maximum or minimum point at those values of
x where the graph of f' crosses the x axis. There are also three points where the
graph of f has a horizontal tangent but no extreme value. At the x coordinates of
these points, f has value 0 but its graph does not cross the x axis. Finally, at the

values of x where f' has an extreme value, f has an inflection point.

EXAMPLE 10. If you put your calculator in degree mode and take the derivative of
f(x) = sin x, you will see 'COS(X)*(n/180)'. Why? There are several explanations,
each addressing the question from a different aspect.
. . . d . d .
Analytically, we know that, for x in radians, x (sin x) = cos x. So, ax [sin(x°)] =
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Graphically, with the calculator still in degree mode, if you draw the graph of

sin x with the default parameters you will see

|
|

For -2.8° < x < 2.8°, sin x = 0 to the nearest tenth of a unit, which is the difference in

y coordinates between adjacent rows of pixels for the default viewing screen. Note

that f(5) = cos(5°)(i%6), which is approximately .017. Certainly, this value seems

reasonable for the slope of the tangent line to the above graph at the point where x
=5.

For a more basic explanation, you can return to the original derivation of 7~ (sin

x). The derivation often uses the result that, for h in radians, th)nO sn;\‘ h = 1. This

limit is customarily proved using an inequality involving the areas of two triangles
and the area of a certain sector of the unit circle. When h is in radians this sector

has area h/2, but if h is in degrees, this sector has area wh/360.

Although the XROOT function is built into the HP-48G/GX, its derivative is
not. You can, however, differentiate XROOT if you have the following program

stored in your HOME direml%l (Note: to obtain lowercase alphabetical characters,

use[o][][ D}, [o][€]

etc.)
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derXROOT

Input: 'XROOT(N,F(X)) on level 1
Effect: puts%( N‘J F(X) ) on level 1

« > N WY Z 'INV(IN*XROOT(N,W)A(1 — N*Z'»

EXAMPLE 11. Find the derivative of f(x) = \7 5 sin x and graph both f and f'. With

the program derXROOT in the HOME directory of your 48, put two copies of
'XROOT (3, 5*SIN(X))' on the stack, enter X' on 1 and press E] to see the derivative

' 333333333333*XROOT (3, 5*SIN(X))A-2+(5*COS(X))'. Now press to put f on

level 1 and graph it on the default screen to see
/G l(\ /
’ K_/I N

Now graph f' without erasing to see

Here, f' has no extreme values, but f has inflection points at those values of x for
which f' is not defined.

Although the HP-48 will not completely symbolically differentiate a function
defined with the IFTE command, it will correctly graph the derivative.
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-X x<0

EXAMPLE 12. Find the derivative of f(x) = {sinx 0<x <% and then graph both
X—-T% WX

f and the derivative.

Put two copies of 'IFTE(X < 0, -X, IFTE(X < =, sin(X), X - 7)) on the stack and

graph in disconnected mode with the default parameters to see

For greater clarity, particularly after we overdraw f', move the cursor to a point
on the x axis approximately under the high point of the graph and press |CNTR|.
The graph will be redrawn with the point you chose as center. Now ZOOM in on
both axes by .67 to see

Press | ON | to return to the stack, put X' on level 1 and press @ to differentiate.
This gives 'IFTE(X < 0, aX(-X), aX(IFTE(X < =, SIN(X), X — =)))Use of | EVAL | does

not change the expression. However, if we graph f' without erasing we see the

graph of the derivative superimposed on the graph of f:

N
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Notice that the minimum values of f occur at values of x where f'(x) does not

exist, and that f has no inflection points.
Newton's Method

The technique known as Newton's method has almost become a classic topic for
inclusion in calculus. It is important because it not only invokes the notion of the
derivative to produce a simple geometric procedure for finding roots of many
functions, but also because it effectively introduces students to several important
ideas: algorithms, recursion, iteration. And it is especially easy to implement on
the HP-48.

EXAMPLE 13. To use Newton's method to find the roots of f(x) = 3x — 4 sin x; we
first graph f to see how many roots there are and to supply first guesses. The graph
below is the result of graphing with the default parameters and then zooming in by

/
/

We will now create a user-defined function for NM(x) = x — Ffs(% . An easy way

a factor of .333 on both x and y:

to do this is to put 'NM(X)', 'X', and two copies of '3*X — 4*SIN(X)' on the stack,

then take the derivative, divide, subtract and equate. The result is 'NM(X) = X -
(3*X - 4*SIN(X))/(3 — 4*COS(X))'. Now press to create the function NM on

the VAR menu.

From the graph, 1.4 appears to be a good first guess, so put 1.4 on the stack and
press to see 1.28871273546 as the next approximation. Press to make
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a duplicate copy to keep. Now press again for a second approximation and
then to keep a copy. If you repeat this for three more iterations of

Newton's method, you will have:
5: 1.28871273546
1.27587035767
1.27569814018
1.27569810928
1.27569810928

=N e R

Five iterations have given us successive approximations agreeing to 11 decimal

places.

The above procedure for building a user-defined function to implement Newton's
method for a given function f can be automated with a short program. Program
NEWTON , given below, takes an expression for f(x) from level 1 of the stack and
constructs the desired user-defined function as NM.

NEWTON
Input: level 1: an expression for f(x)

Effect: constructs the user-defined function NM to implement
Newton's method.

« 'NM(X)' 'X' ROT DUP 'X'd / — = DEFINE 'X' PURGE »

If, for instance, you put '3*X — 4*SIN(X)' on level 1 and press [NEW T|, you can
execute Newton's method from the menu key as above.
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Roots

Students of calculus often need to find the real roots of a function. But, without
ready access to numerical root-finding procedures, they have traditionally been
constrained to work with polynomials that factor easily and with simple
exponential, logarithmic and trigonometric functions. The HP-48 Solve application
provides an advanced level of root-finding capability that enables students to

expand their investigations to almost any function that they may encounter.

The Solve application is accessible through the SOLVE menu and requires an
initial estimate of the root in question. Often, the best way to get such an estimate

is from a graph of the function.

To illustrate, consider the problem of finding all roots of the equation sin x — 2
cos 3 x that lie in the interval [0, 2n]. Begin by graphing the function f(x) = sin x — 2
cos 3 x using the XRNG : 0 6.28 and the default YRNG : -3.1 3.2. After storing the
function in EQ, open| PPAR |, press 0 | SPC | 6.28 | XRNG | to set this x range.

TAANIN
AV

To get an initial estimate of the left-most root, move the cursor to the apparent

crossing of the graph of y = f(x) with the x-axis and press [ENTER |. [ON | will now

exit you from the picture environment and you will see the pixel coordinates of the
estimate on level 1 of the stack. Now enter the Solve application with

[SOLVE |, then press the [ROOT| and |S©[L.VIF’\?| menu keys. Since 'SIN(X) - 2*

COS(3*X)" was stored into the reserved variable EQ in order to produce the graph,

the contents of EQ will appear at the top of the screen. Two menu labels appear at

the bottom left: and |[EXPR<=|. Press to enter the initial estimate; a
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message reflecting the result of that action will appear at the top of the screen.
Now press to activate the SOLVR's root-finding routine; notice the
temporary message "Solving for X" near the top. When the root-finder is finished,
the message "Sign Reversal" will appear near the top and the decimal
approximation to the root will appear on level 1 as X: .450451159135. To evaluate
the expression stored in EQ at this value of X, press and see Expr:
-.000000000002. The message "Sign Reversal™: indicates that the HP Solve
application was unable to find a point where the value of the expression in EQ is 0
to within the calculator's 12-digit precision; it found two points where the value of
the expression has opposite signs, but could not find a point between them where the

value is 0.

For convenience, most of the above procedure has been programmed into the
command ROOT on the PICTURE FCN menu. Thus to quickly find the other roots,
press E to view the graph, move the cursor to the apparent root that is second

from the left, and press [FGN | and [ROOT|. You will see ROOT: 1.74250596672

displayed at the bottom of the screen. If you exit to the stack with two presses of
the ENTER key, you will see this last root displayed on the stack as a "tagged"
object. You can now find the other four roots in this way. When you're finished,

purge X from your user memory.

To avoid confusion, you should know that there is another ROOT command on
the HP-48G/GX. It appears on the ROOT submenu of the SOLVE menu and is useful
in programs. It solves an expression (on level 3) for an unknown (on level 2) using a

first guess (on level 1). You may want to try it out now for the example at hand.
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EXERCISES 2.1

1.

For f(x) = (x2 + 5)3, estimate f'(.6) by setting up user-defined functions to

evaluate the difference quotient.

For the following functions f, use the HP-48G/GX to obtain the derivative f.
Graph f and f in the same viewing window and examine the graphs. By
noting roots of f' or points where f' fails to exist, estimate local extreme values

of f. By noting where f' has horizontal tangents, estimate inflection points of f.

(a) f(x)=x4-2x3 +3x-2 (e) f(x) =31—x2
4 1+x2  x<0
(b) f(x) = 0l (f) f(x) =qcosx 0O<x<rm
n—X <X
() f(x) = ;24_—5 (g) f(x) =15 tan'12x
(d) f(x) = cos 2x - sin x (h) f(x) = 3ex2A

Use Newton's method to find all roots of
(a) f(x) =x3-3x2-5x+15
(b) the equation 2% = x!° (how many roots are there?)

(c) f(x) = ¥ x-2 . Suggestion: Start with xo = 2 and explain what happens.
Then begin with xp = 2.1 and explain (geometrically) what happens.



SINGLE V ARIABLECALCULUS 37

4. Use the Solver and a graphical estimate to obtain the roots of
(a) e*!=cosl(x+2)

4
(b) 3ex2a =50l

1
(c) x=ln;

5. It is well-known that the centroid of the St. Louis arch is in the shape of an
inverted catenary (hyperbolic cosine). The oustide surface is much thicker at
the base than at the top and thus is not a true catenary. Nevertheless, we
shall model the outside surface as a catenary having both its height and base
equal to 630 ft. Since a catenary hanging above the origin with lowest point at

X
(0,a) has an equation y = a cosh 7, it is easy to see that an equation for the St.

Louis arch is

y =630+a(1—cosh’ai)

for some positive parameter a. To help determine this parameter, we may use
the fact that the point (315,0) lies on the arch. Use the Solver to determine the
parameter a and then write an equation for the St. Louis arch that is free of
unknown parameters. Remember, the Solver only needs an initial guess. The

cosh command resides on the MTH HYP menu.
Analyzing Functions

The graphical representation of a function produced on a calculator's screen often
provides valuable information about the function's behavior. When graphical

techniques are effectively combined with an understanding of the derivative as a
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rate of change, we have a powerful tool for analyzing a function's behavior in

considerable detail.

After the DRAW command is executed and the HP-48G/GX draws a graph, the
calculator enters the PICTURE environment and displays the PICTURE menu. In
addition to the zooming operations accessible through the ZOOM submenu and the
BOXZ key, the FCN submenu contains commands appropriate for analyzing a

function's behavior with calculus without leaving the PICTURE environment.

We begin with an example that would not be appropriate without technology.

EXAMPLE 1. Graph f(x) = sin(2x) + cos(x + 2), find the x intercepts and the
coordinates of its local extreme points and inflection points. Since this is a periodic
function with period 2=, it is sufficient to find the desired points on the interval

[0,2r). Graphing f with the x range set to - .1 < x < 6.29 and the y range set to - 2.5 <

SAN
|

y £2.5, we see:

D

Find the roots using the ROOT command on the FCN submenu. You should get:

4: Root: 429203673203
3: Root: 904129660127
2: Root: 2.99852476252
1: Root: 5.09291986492

To find the coordinates of the local extrema: To simplify the display, FIX the

display mode at 2 places; full 12 digit accuracy is retained in memory and can be
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recalled at any time. Return the picture with E], activate the trace cursor with

TRACE|, then use E to move the cursor to the first apparent high point of the
graph. Open the FCN submenu and press [EXTR|. The message EXTRM:

(0.67,0.08) appears below the graph. Now move the cursor to the next apparent
extremum, a low point, and press |EXTR| to see EXTRM: (2.14,-1.45) displayed.

Find the last two extrema in the same way to see EXTRM: {4.00,1.95) and EXTRM:
(5.76,-0.77). Now return to the stack display with @ @, and you will see that

these four points have been entered on the stack, each labeled "Extrm".

To find the inflection points. There is no key on the FCN menu to do this so we
must use our knowledge of the relation between the function and its derivatives.
Since an inflection point of f has the same x coordinate as an extreme point of f, we
will find the extreme points of f' and calculate the value of f at each of their x
coordinates to get the coordinates of the corresponding inflection points of f. The

first part can be accomplished within the PICTURE environment.

With the graph of f displayed, go to the second page of the FCN menuand
execute . This will plot the derivative f' and then replot f. The high point of

f is offscreen, so we zoom out on y with a factor of 1.5 to see

When you execute , EQ becomes a list {f' f} containing f' and f in order. The
function analysis operations ROOT, EXTR, etc., apply only to the first function in the

list, which is now f. Move the cursor to the apparent high point of f' near the
origin and press [EXTR|. You will see EXTRM: (0.06,1.10)displayed at the
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bottom of the screen and on stack level 1. The x coordinate is the x coordinate of the

corresponding inflection point of f.

The following program automates the procedure for obtaining the coordinates of
the inflection point. The program assumes that EQ is the list {f' f} and that the
coordinates of an extreme point of f' are displayed on stack level 1. With this input,
it returns the corresponding inflection point of f with the tag "Infl". The 1 in the

name "INFL1" simply indicates that the first derivative is used in the process.

INFL1 ( Inflection point of f)
Input: level 1: the coordinates (xg,yo) of an extreme point of f
As a stored variable EQ : the list {f' f} consisting of f'
and f
Effect: returns to level 1 the point (xp, f(xy)) tagged as 'Infl'

«RE EQ 2 GET OVER ' X' STO EVAL R—C 'Infl 2TAG X' PURGE »

With this program in your calculator and the above extreme point of f'
displayed on stack level 1, press |INFL1| to see 1: Infl: (0.06, -0.35) displayed.

Return the graph to the screen by pressing | PICTURE |. Now move the cursor to
each of the remaining three extreme points of the graph of f and press |EXTR| on
the FCN menu at each point. Return to the stack display with @ and convert

each of the three extreme points of f' to inflection points of f with the use of INFL1.
You must do some stack manipulation to move the extrema of f' to level 1 for use
with the program. If you want to keep the inflection points in their order on the

graph, here's an easy way: with the three extreme points of f on the stack, press
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the E key to activate the interactive stack, use the same @ key to position the
pointer on level 3 and then press |[ROLL |. This rolls the first three levels of the

stack upward pushing the extreme point on level 3 down to level 1. Press to
leave the interactive stack, then press |INFL1 | to convert the extreme point now on

level 1. Now repeat this entire process twice more until all the extreme points are

converted. We display again the graph of f and the points that we have found:

TAN
I

12: Root: 0.43
11: Root: 0.90
10: Root: 3.00
9: Root: 5.09
8: Extrm: (0.67,0.08)
7:  Extrm: (2.14,-1.45)
6: Extrm: (4.00, 1.95)
5: Extrm: (5.76,-0.77)
4: Infl: (0.06,-0.35)
3: Infl: (1.45, -0.71)
2: Infl: (3.09,0.28)
1: Infl: (4.82,0.64)

EXAMPLE 2. Plot the graph of f(x) = 1.7 e*/2 sin(3x) for 0 < x. Since we are
interested in the graph only for non-negative x, we set the x range as -.1 < x < 6.4 and
the y range as -1.55 < y < 1.6. This halving of both ranges retains equal unit
distances (number of pixels per coordinate unit) on both axes and produces the graph:
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This function (which represents damped harmonic motion) is not periodic and
has infinitely many roots, extrema and inflection points for 0 < x. We could find any
of these we desired by using the techniques described earlier. But in this example,

we will use the HP-48G/GX to analyze another aspect of the function's behavior.

Since -1 < sin(3x) < 1, the graph of f lies between the graphs of u(x) = 1.7 ex/2
and v(x) = - 1.7 eX/2, coinciding with the graph of u when sin(3x) = 1 and
coinciding with the graph of v when sin(3x) = - 1. We can illustrate this by
graphing the list { f u v } with the same plotting parameters we used for f. Exit the

PICTURE environment with @, recall f to the stack with , and use

to put a second copy on the stack. Edit the copy on level 1 to read
'1.7*EXP(-X/2)', make a second copy of the newly edited expression with

and then press to change sign. Go to the PRG LIST menu and press 3 |2 LIST
to build the list { f u v }. Now store the list into EQ and graph it to see:

The roots of f occur where sin(3x) = 0, that is, at the roots of sin(3x). Question:
do the extrema of f occur at the extrema of sin(3x), that is, at the points of coincidence of f

withuorv?
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We investigate this question both analytically and graphically. Move the
cursor to the first maximum point to the right of the y axis and press on the
FCN menu to see EXTRM: (.468549216461, 1.32664626947) at the bottom of the
graphing screen. If this were the point where sin(3x) = 1, then its first coordinate
should be n/6. But n/6 = .523598775598, so the extreme points of f do not coincide
with those of sin(3x). We illustrate this graphically by using BOXZ to zoom in on
the region of the graph around the first maximum point to the right of the y axis:

The maximum point of f is clearly seen to be to the left of the point where the
graph of f intersects the graph of u. With some analysis of f, you can show that
successive extrema of f occur every ©t/3 units along the x axis, as do successive points
of coincidence of f with u or v. So the spacing shown between an extreme point and
the corresponding point of intersection with one of the bounding graphs is constant for

0<x< oo,
Caution

When you execute the EXTR command on the PICTURE FCN menu, the HP-
48G/GX takes the derivative of the expression stored in EQ and then finds the x
value closest to the cursor that causes the derivative to evaluate to 0. Thus, if the x
coordinate of the extreme point you are finding is a root of the derivative, you are
using the EXTR command in the way in which it was designed to be used. But, if the

extreme value of f does not occur at a root of f, you should not use this command.
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EXAMPLE 3. Find the roots, extrema and inflection points of f(x) = 2(x + 2)%/3 +

‘:!_.,._41- Put '2*XROOT(3, (X + 2)A2) + (X - 4)/(X"2 + 1)’ on level 1 and graph f with

\

We can find the two roots in the usual way, by moving the cursor to each of them
and pressing |ROOT | on the PICTURE FCN menu. We can find the local maximum

the default parameters to see:

point near x = -1 and the local minimum near x = -.3 by moving the cursor near these
points and pressing [EXTR|. However, if we move the cursor to the minimum point

where x = -2 and press [EXTR|, we get EXTRM: (-7.52928344591E 213,

7.68302819356E 142) which is nonsense. From the graph, f clearly has a minimum at
x=-2and f(-:2) =0 + -5§= -g . The problem is that f has no derivative at x = -2. If

we press E on the PICTURE FCN menu to graph both f and f we see:

A\
=

Notice that f' does not exist when x = -2. Since the inflection points of f occur at

values of x where f' has extrema, we move the cursor near the local minimum of f'
to the left of the origin and press EXTR to obtain (-.661278286618, -1.07868129833).
Now return to the stack, open the VAR menu and use INFL1 to build the inflection
point as

Infl: (-.661278286618, -.81375384108).
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Similarly, we find the inflection point to the right of the origin to be
Infl: (464327883331, .74032208835).
EXERCISES 2.2

For each of the functions given below, plot the graph and find all local extreme

values and inflection points.

1. f(x) = x + 3 sin x, on the interval [0,2r]. 2. f(x)=x3-x+2.

3. f(x) = sin x + 2 cos(3x) on [0,x] 4. f(x) =x3 «(1.3)x2 + (.32)x - .02

5. f(x)=x5+3x4-x®-3x2-x+3 6. f(x) = sin(3x) - cos(2x), 0 < x < 2n
7. fx)=x" 8. fx)=x""0sxs2n

9. f(x) = cos(4 cos1 x).
3. INTEGRATION

The HP-48G/GX calculator can be effectively used to enhance the study of the
definite integral. To illustrate the basic limiting process that defines the definite
integral, short programs can be used to facilitate the rapid calculation of various
kinds of Riemann sums to produce numerical approximations: the left rectangle, right

rectangle, trapezoidal, mid-point, and Simpson's approximations.

Create a directory named INTG by keying in 'INTG' and pressing
(this key is on the DIR submenu of the menu). Now press on
the VAR menu and enter the following programs (originally provided by Tom Tucker
and John Kenelly):
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FABSTO
Input: Level 3: the integrand, 'f(x)'.
Level 2: the lower limit of integration, a.
Level 1: the upper limit of integration, b.

Effect: stores f, a and b.

« 'B" STO 'A' STO STEQ »

NSTO
Input: level 1: a positive integer, n
Effect: sets n, the number of subintervals and stores (b —a)/n as h

«'N'STOBA—N/'H'STO»

LRECT
Input: none

Effect: uses SUM to compute the Riemann sum for the f,a, band n
already stored, with f evaluated at the left end point of each

subinterval

« A SUM »
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RRECT
Input: none
Effect: uses SUM to compute the Riemann sum for the f, a, band n

already stored, with f evaluated at the right end point of

each subinterval

« A H+ SUM »

TRAP
Input: none
Effect: uses SUM to compute the trapezoidal rule approximation for

the f, a, b, and n already stored.

«ASUMBFAF-2/H®"*+ 'X PURGE »

MID
Input: none
Effect: uses SUM to compute the Riemann sum for the f,a, band n

already stored, with f evaluated at the midpoint of each

subinterval

«AH2/ + SUM »
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SIMP
Input: none

Effect: uses MID and TRAP to compute the Simpson's rule

approximation for the f, a, b and n already stored

« MID 2 * TRAP + 3 / »

Input: none

Effect: a utility program used by other programs to evaluate f at a
specified number

« 'X' STO EQ EVAL »

SUM
Input: none

Effect: a utility program used for computation by each of the
Riemann sum programs and by TRAP and SIMP. It takes the
initial value of x from the other program, a for LRECT, a + h
for RRECT and a + h/2 for MID.

« 5> X «01NSTART X F + X H +'X' STO NEXT H *» X
PURGE »
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We shall use the programs in INTG to obtain some approximations to the
4

1
integral J 1+ dx.  Begin with '1/(1+4X”*3)' on level 1 and press 0 @ 4

FABST]. This stores the function and the lower and upper limits of integration.

Now enter a value for n with NSTO. We start with n = 10 and use LRECT. Press 10
INSTO| then [LRECT | to see the result 137470502665 on level 1. This is the left

1
rectangle Riemann sum approximation for the function f(x) = -3 °n the interval

[0,4], when the interval is partitioned into ten subintervals of equal length. Since

-“;x; is a decreasing function for all positive x, this sum will be larger than the

actual integral. Press to see the result .9808588728. This is like the
LRECT approximation except that the evaluation point in each subinterval is
chosen to be the right end point. Since the function is decreasing, this sum will be
less than the actual integral. Keying in 40 INSTOI LRECTI gives
122736347304 and gives 112890193457 when the interval [1,4] is
partitioned into 40 subintervals. Repeating with 100 [NSTOI ILRECTI gives

1.19783377435 and |RRECT | gives 1.15844915896 for 100 subintervals. Thus
4

1.15844915896 < J ig dx < 1.19783377435. Using larger values of n will, of

course, narrow the gap still further.

For an increasing or decreasing function, evaluating the function at the left and
right end points of each subinterval has the advantage of bracketing the answer.
This suggests that a better approximation may be obtained by using a simple average
of these two approximations — the trapezoidal rule - or by evaluating the function at

the midpoint of each subinterval - the midpoint rule.
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4
To approximateuf T:_xs dx with the trapezoidal rule TRAP with with n = 10,

40 and 100, we have

10 [NSTO| [TRAP| gives 1.17778194973,

40 [NSTO| (TRAP| gives 1.17813270381, and

100 [NSTO| |[TRAP| gives 1.7814146666.

Using the midpoint rule MID with n = 10, 40 and 100, we have

10 [NSTO| [TRAP| gives 1.17840171046,

40 [NSTO| (TRAP| gives 1.178148463398, and

100 [NSTO| [TRAP| gives 1.17814377875.

Notice that the midpoint approximations all agree to three decimal places, and

the last two to five places.

Although the trapezoidal approximation is geometrically appealing, it can be
shown with techniques that we shall not discuss here that the error in the
approximation provided by the midpoint rule is roughly half the size of the error
produced by the trapezoidal approximation. This suggests that a weighted average
which assigns twice as much weight to the midpoint approximation as to the
trapezoidal approximation would take advantage of the errors "cancelling” each
other. This procedure is incorporated into the widely used formula known as

Simpson's rule, and program SIMP does this.
4

To approximate J 1—_:’(3 dx using Simpson's rule with n = 10, 40 and 100:
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10 (NSTO| [SIMP| gives 118040998105,

40 [NSTO| [SIMP| gives 1.17814632836, and

100 [NSTO| [SIMP| gives 1.17814308787.

You may want to compare these with the values found earlier.

For this example, the approximations provided by Simpson's rule appear to be
in close agreement and, indeed, Simpson's rule is the "best" of these techniques. As a
rule of thumb, the error with the left or right-end point Riemann sum approximation

-a . e .
and the error with the midpoint Riemann sum or the

is proportional to h = b

trapezoidal approximation is proportional to h?2. But the error with the

approximation provided by Simpson's rule is proportional to h#.
The Numerical Integration Routine on the HP-48

In the application of calculus to fields such as engineering, physics, probability
and statistics there is often a need to obtain fairly accurate estimates of definite
integrals. The integrands in question may be simple in appearance, but usually lack
elementary, closed-form antiderivatives so that Part II of the fundamental theorem

of calculus cannot be applied. Simple examples are

z
(1) the standard normal integral J # ex?2 dx from probability theory;
n

23
(2) the period T = ’[ 2V2d of a simple pendulum released from an
y-cosa

\l Cos

initial angle a; and
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(3) the electrostatic potential V at a point P(x,y) due to a variable charge
density A(s) applied along a straight wire over [-a, a]:

A(s)ds

V —_—
VocoR + 32

The HP-48 has a built-in numerical integration routine that uses a Romberg
numerical integration technique. The routine is iterative, producing increasingly
accurate estimates derived from values of the integrand at sampled points within
the interval of integration until three successive estimates agree to within an error
tolerance specified by the user. The error tolerance E is specified by setting the

numeric display mode as follows:
e n FIX specifies an error tolerance of E = 10™
e  STD specifies an error tolerance of E = 10-1!

For example, setting the numeric display to 5 FIX will specify an error tolerance of
.00001. In general, the smaller the error tolerance, the longer the calculation time.
When the calculation is finished, the uncertainty of the result is expressed in a

variable IERR, where

IERR <E [ |f(x) ldx.

After specifying the tolerance, you enter the symbolic expression

'| (lower, upper, integrand, variable)



SINGLE V ARIABLECALCULUS 53

where lower and upper are the limits of integration, and variable specifies the

variable of integration, e.g.,

‘[ (0, 4, 1/(14xA3), %)’

If desired, you can use the Equation Writer to key in the integral; when you press
ENTER, it will be placed on level 1 in the above algebraic syntax. The calculation

is activated by pressing . With a tolerance of 105, the integral dr 1—+l—x3dx

is calculated to be 1.17814. Enter the VAR menu and press [I[ERR| to see 105 as the

uncertainty in this result.

sin(x2 -1 x<1

As another example, we graph the function f(x) ={ sin(/x) 1<x with the

2
default parameters and evaluatedf f(x) dx with error tolerance 10-5. Enter the

function as 'IFTE(X < 1, SIN(XA2 - 1), SIN(x/X))'. Graphing with the default

parameters, we see:

To evaluate the integral, enter 0 and 2 onto the stack, recall the function to level 1
from EQ , enter 'X' and press the [ key to obtain the symbolic integral. Now press

to evaluate the integral as .15511 with uncertainty 10-5.
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The Fundamental Theorem of Calculus

Chief among the significant contributions of Newton and Leibniz to the
"invention” of calculus in the 17th century was their clarification of the inverse
relationship between differentiation and integration. This relationship, which is
the intended focus of the Fundamental Theorem of Calculus, is often obscured when
students fail to focus on Part 1 of that theorem, which asserts that continuous

functions have antiderivatives:
d X
ax If(t)dt = f(x);
a

and focus instead on Part 2, which says that integration "undoes” differentiation - up

to a constant:

[ Fbdt = FG) - Fla).
a

Indeed, it is because of a concentration on Part 2 that many students come to view
integration as simply a search for antiderivatives rather than as a limiting process.
In retrospect, this has been a somewhat natural occurrence because, in the
pedagogical process, teachers tend to seek out activities that students can do to help
reinforce their understanding of the theory. And without computing power, what

activity can they possibly do to reinforce Part 1?

But certainly, the HP-48 provides enough personal computing power for students
to engage in activities that support Part 1 of the Fundamental Theorem (FTC).

Equipped with the mid-point rule for approximating integrals, students can use it to
X

construct a symbolic expression F(x) that approximates the antiderivative [ f(x)dt,
a
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X
ie, F(x) = [ f(t)dt. They can then graphically represent this approximation and its
a

derivative F' and observe to what extent F approximates f. Not only does such an
activity bring to the fore the mathematical content of Part 1 of the FTC, but it also
reinforces the desired goal of understanding the integral as a limit of approximating

sums.
The algebraic formulation of the mid-point approximation using n subintervals
of equal length is

(x a)](x-a)
n

ftowdt= 3 d[araion &2
i=1
When f is stored in memory as a user-defined function F, program FTC.1, given
below, takes a and n as inputs and returns the algebraic expression for the mid-
point approximation. FTC.1 calls upon subroutine SUMF , also given below, to

construct the actual expression following the summation symbol.

FTC.1
Input: level 2: the lower limit of integration, a
level 1: the number of rectangles, n
As a user-defined function F: an algebraic expression for f(x).
Effect: Returns the algebraic expression z f [a + (2i-1) = — (x 2) (x;a)

i=1

« 'N' STO 'A' STO 01 N FOR I I SUMF + NEXT COLCT {AN}
PURGE »
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SUMF
Inputs:  none

Effect: a utility program used by FTC.1 to construct the desired

algebraic summand.

« 5> 1" FAA+X-A)»*»2*1-1)/2/N)*(X-A)/N"' »

628
As an example, we shall use J sin x2dx, which has no elementary antiderivative.

Begin by building a user-defined function F for sin x2 and then graphing sin x? using
XRNG : 0 6.28 and YRNG : -2.5 2.5, to see

Now execute program FCT.1 with inputs 0 and 5, for a and n respectively. With
only 5 approximating rectangles we do not expect a good approximation. When an
algebraic expression appears, take its derivative with 'X' E], then

overdraw the graph of sin x2 with this derivative to see:

Not surprisingly, the 5 rectangle approximation becomes increasingly worse as the

oscillations in sin x2 increase.
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Now , redraw sin x2 and run FTC.1 with inputs 0 and 13, forn = 13
rectangles. Overdraw the graph of sin x2 with the graph of the derivative of the

expression to see a much improved approximation:

(Be patient: the derivative and its graph unfold slowly.) Note that although we

are using only 13 rectangles, the approximation is dramatically improved.

Although we did not draw the graph of the approximation to the antiderivative
(simply to keep from having a too-cluttered screen), students should overdraw the
graph of sin x2 with the approximating antiderivative for n = 13. As with the
previous graph, they will be viewing a scene that has been denied to students of

calculus for centuries:

EXERCISES 3.1
1
1. Evaluate Ji—f;z dx by hand. Now approximate this integral as follows:

(a) using LRECT and RRECT with n = 50, 100 and 200.

(b) using TRAPwith n = 50, 100 and 200
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(c) using MID with n =50, 100 and 200,
(d) using SIMP with n = 50, 100 and 200

(e) using the built-in numerical integration routine in STD mode.

2. Repeat parts (a) through (e) of Exercise 1 forf ex* dx. For part (e) use an error

tolerance of .000001.

3. Approximate the arc length of y = cos x from x = 0 to x = 2.
(a) using Simpson's rule with n = 100
(b) using the built-in numerical integration program with error tolerance .000001.

4. Graph FLOOR( X) with the default x range, the y range set as -.1 <y < 6.2 and
the disconnected mode (FLOOR is on the MTH REAL menu). Approximate

4
J FLOOR( X) dx with the LRECT, RRECT and MID programs for n = 10, 50 and

100. Evaluate this integral with the built-in numerical integration program.
Now evaluate this integral using only geometry. At the right hand end point,

x = 4, the function jumps in value; why does this not affect the integral?

cos(mx2/2) x<1
5. For f(x) = x2-3x+2 1<x

3
evaluate Jf(x) dx with the built-in numerical integration program.

6. (a) Graph the function y = xcos x in disconnected mode using XRNG : 0 6.28 and
YRNG : 6.3 1.
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X
(b) Overdraw the approximation to the antiderivativedf tcos t dt obtained by
using the mid-point rule with n= 5 rectangles.

(c) Change to connected mode and overdraw the derivative of the function

graphed in (b). How closely does it approximate xcos x ?

(d) Use integration by parts to obtain an elementary antiderivative for
y = xcos x; choose an initial condition so that your antiderivative will pass
through the origin. Now overdraw the above graphs with this
antiderivative. How closely does the approximation in (b) match this

antiderivative?

4. INFINITE SERIES

The approximation of functions by polynomials is an important topic in
elementary calculus. From the simple notion of linear approximations by tangent
lines to the subtleties of higher-order approximations by polynomials whose
derivatives mimic the function's behavior, students are ultimately led to consider
power series representations. With the HP-48 they can effectively exploit the
graphical representation of the partial sums of these series as Taylor polynomials,
and witness the dynamics of numerical convergence at the end points of the interval

of convergence.

Taylor Polynomials

The approximation of functions by series representations parallels the
approximation of numbers by decimal representations. For example, in a non-symbolic
setting, we must approximate n to an appropriate number of decimal places, i.e., 3.14,
3.14159, 3.14159265, etc. A selection is made on the level of accuracy, but this

selection is balanced with the computational complications that we are willing to



60 CHAPTER1

tolerate. In ancient times, mathematicians failed to realize that an infinite sequence
of finite approximations could converge to a finite number and thus the inadequacy of
their mathematics yielded the famous Zeno paradox. They could not understand
that 1/2+1/4+1/8 +1/16 + ... + 1/2" + ... represented 1 and discussed at length
how an arrow could never arrive "because it had to first get half-way there, then
half-way again, then half-way again...., etc. Their mathematics generated a
contradiction with what was clearly reality, which showed a need for further
improvement in their mathematics. This eventually led to an understanding of
infinite decimal representations of numbers and finite approximations to their
values. That is exactly what we now do with functions, except that the "decimal”
entries are polynomials of higher and higher degrees. Just as before, we take the
approximations to the heights that we need, balanced with the computational
complications. And again, just as we did with &, we look at a function in its symbolic
form, e.g., sin x, and when need be, look at its polynomial approximations: 1-x, 1 -
x +x3/3!, etc.

The HP-48G/GX will find Taylor polynomials about x = 0 for any function that
it can differentiate, and it is easy to write a short program that extends this
capability to the more general case of polynomials about x = a. The command
, located on the first page of the SYMBOLIC menu, requires a
threefold input: on level 3, the function f whose Taylor polynomial is desired, on
level 2, the independent variable and, on level 1, the degree of the desired

polynomial. This command produces Taylor polynomials about x = 0.

For instance, to efficiently graph y = sin x and its Taylor polynomials P;, P; and
P;1 of degrees 3, 7 and 11, begin with 'SIN(X)' on level 1 and press I@ three

times to make three additional copies. Build the list {'SIN(X)'} by pressing the @
followed by |—>ILI]STI1 | ENTER 1 SWAP levels 1 and 2, enter X' and 3, then
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press |[TAY LR to build P3(x): 'X - 1/3!* XA3'. Insert this as the second element of
the list with . Now SWAP levels 1 and 2 and proceed as before to build P;(x) and

P;1(x), adding them to the list as they become available. You can then store the
final list into EQ and graph it with the default viewing screen to see

S\ \/}/\\W{

Although displaying graphs is a dramatic way of showing how a function can

be approximated by its Taylor polynomials, you should remember that, with the
default plotting parameters, two graphs will coincide for a value of x if their y
coordinates are the same when rounded to one decimal point; ordinarily, this is not

good enough for serious numerical approximation.

To find Taylor polynomials centered about a point x = ¢, you can use the next

program. Make sure the independent variable is set to X before using the program.

TAY.C
Input: Level 3: an algebraic expression for a function f,
in terms of 'X'.
Level 2: the order n of the desired Taylor polynomial.
Level 1: the new center point, c.
Effect: Returns the Taylor polynomial of order n for function f,

centered about x = c.

« » N C « 'Y C +'X STO EVAL 'Y' N TAYLR X' PURGE X
C - 'Y' STO EVAL 'Y' PURGE » »
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For example, to find the fourth order Taylor polynomial for sin x, centered about x =
2, put 'SIN(X)' on the stack, then enter 4 and 2 and press [TAY.C| to see the
calculator's version of 0.909297 - 0.416147(x — 2) - .454649(x — 2)2 + 0.069358(x - 2)3 +
0.037887(x — 2)4 on level 1. (We set the display to show 6 decimal places.) Graph

the list containing sin x and this polynomial with the default parameters to see:

Notice that the graphs coincide from about x = -.5 to near x = 3.5, that is, on an

interval centered about x = 2.

Although TAY.C does the obvious by making a change of variables X =Y + C to
translate the center of the Taylor series expansion from the origin to x = ¢, you
should note that the symbolic computations involved in calculating higher order
Taylor polynomials centered away form the origin are substantial. Thus, as a
symbolic processor, you may sometimes find the HP-48 not quite up to the task of
finding the Taylor polynomials that you desire if you use TAY.C. For example, the
HP-48G runs out of memory (32K RAM) before it can produce the Taylor polynomial
of order 7 for f(x) = x'! centered about x = 2 and the HP48GX (with 128K RAM)
requires about 25 minutes to produce this polynomial. The solution is to be a bit
more clever in how we approach the symbolics. Program TAYLAT ("Taylor at") is
due to Charlie Patton of Hewlett Packard and uses the {MATCH and | commands to
rearrange the symbolic computations. With it, you can produce the Taylor

polynomial of order 7 for f(x) = x'1 centered about x =2 in 18 seconds.
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TAYLAT
Input: Level 4: an expression for a function f.
Level 3: the independent variable.
Level 2: the order n of the desired Taylor polynomial
Level 1: the new center point c.
Effect: Returns the Taylor polynomial of order n for function f,
centered about x = c.

« = XP VA ORD PT « XP VA VA PT + 2 5LIST {MATCH DROP
VA ORD TAYLR VA VA PT - 2 5LIST | » »

Sequences and Series

The analysis of numerical series requires a clear understanding of the size of
very large and very small numbers, and the HP-48G/GX is an ideal instrument to
help expand this understanding. The next two programs, FSHO and HGFSHO, can

be used for exploratory work with numerical sequences.
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FSHO
Input: Level 3: an expression for ak, in terms of the variable K
Level 2: a starting value for K
Level 1: an ending value for K

Effect: dynamically displays the successive terms of the sequence
{ag) from the starting value to the ending value beneath the

index K.

« > FBN «BN FOR J]J 'K STO F EVAL DUP CLLCD K 1
DISP 3 DISP 1 WAIT NEXT » 'K' PURGE »

5

For example, to see the first 25 terms of the sequence { % }, enter 'KA5/K!,

then 1, 25 and press |[FSHO |. The index K appears on line 1 of the display screen
5

and the terms of % on line 3.
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HGFSHO
Input: Level 5: an expression for hg, in terms of the variable K
Level 4: an expression for gk, in terms of the variable K
Level 3: an expression for f, in terms of the variable K
Level 2: a starting value for K
Level 1: an ending value for K

Effect: dynamically displays the successive terms of the three
sequences, {hy}, (g} and {fy} from the starting value to the

ending value, beneath the index K.

«>HGFBN «BN FOR JJ 'K STO CLLCD K DUP 1 DISP H
EVAL DUP 3 DISP G EVAL DUP 5 DISP F EVAL DUP 7 DISP 1
WAIT NEXT » 'K' PURGE »

To experience, for example, the differences in the growth rates of the sequences
{K5) , (K!) and {KX} we may examine the corresponding terms between K = 1 and

K = 20. Thus, enter '’KA5', 'K!, '’KAK', 1, 20 and press |[HGFSHO |. Watch

carefully! Notice the subtantial growth that KX has over K!.

Another very effective exploration involving very large numbers uses the units
feature of the HP-48G/GX and can be turned into an interesting class competition to
see who can generate the largest number with a verbal description. For example,
adding one cubic light year in stack level 2 to one teaspoon in stack level 1 will give
the result in teaspoons, i.e., the number of teaspoons in a cubic light year -- a very
large number! This is easily accomplished by opening the UNITS Catalogue menu,
then the LENGTH submenu, entering one light year , 1_lyr, three times on the stack
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and multiplying to get a cubic light year, 1_lyr*3. Now return to the UNITS Catalog
menu, open the VOL submenu, enter the other volume measure, one teaspoon 1_tsp, and
add to get 1.71788573061E53 tsp, the number of teaspoons in a cubic light year. This
exercise can be extended to estimating the answer in terms of factorials, and a quick
search will locate the above number between 43! and 44!. In many successive calculus
classes, students have been unable to generate with words any number that is larger
than 100!. This gives them real insight into the study of series that have factorials
in the denominators of the terms. They really begin to sense the awesome nature of

n! and the effects that it will have on the terms of the series.

For a numerical series which is known to converge, you can often use program
P.SUM to calculate a twelve-digit approximation to the sum by evaluating partial
sums of the series for increasing values of n until agreement is reached for two
successive values of n. Program INFSUM, given later, carries out these calculations
automatically and returns the sum of the series, accurate to the twelve-digit display,
along with the value of n at which agreement of successive partial sums was
reached. Before beginning either of these procedures, you should already have determined

that the series in question converges by applying one of the standard convergence tests.

P.SUM
Input: level 3: an expression for ak, in terms of the variable K
level 2: a starting value for K, 0 or 1
level 1: an ending value for K
n
Effect: returns the partial sum 3 ax on level 2 and the expression

K=start
for ak on level 1. Also, dynamically shows the summation.
« > FBN«0BN FOR JJ 'K STO F EVAL + DUP 3 DISP
NEXT F » 'K' PURGE »
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For example, the infinite series kZl(l /k%) is known to converge by the integral test.

Put '1/K”4' on level 1 and press 1 @ 100 . After dynamically

showing the summation process, the program will show 1.08232290538 on level 2 and
'1/K*4' on level 1. To calculate the 250th partial sum, simply press 1 @ 250

[P-SUM]. You will see 1.08232321257 returned to level 2. Finally, to obtain the
500th partial sum, press 1 ISPC I 500 |P.SUM I and see 1.08232323119. Since these

last two sums agree to 7 decimal places, the sum of this series is 1.0823232 to 7

decimal places.

(- -]
The series Y, (-1)x*1(1/k®) converges by the alternating series test. Since it is an

alternating series, we know that the error made in using any partial sum Sy as the
sum of the series is less than the absolute value of the term to be added to get the
next partial sum Sy,;. For twelve place accuracy, we must take n large enough so
that 1/(n + 1) <5x103. Using the HP-48 for the calculation, we find that 1/113¢ is
approximately 4.8x103. Thus, calculating the 112th partial sum with P.SUM we
obtain .985551091299 as our estimate of the sum, to 12 decimal places. (You may

calculate the 113th partial sum to see if you get agreement.)

Program INFSUM , given below, also shows the convergence of the series
dynamically, by showing the partial sums as a single number with the last digits
changing as more terms are added. The program sums series with initial index k = 1,
so you will have to make adjustments for series that do not start there. As before,

the program should only be used with series that are known to converge.
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INFSUM
Input: the summand, 'f(k)', for the infinite series Y f(k)
n
Effect: calculates partial sums 1‘2’,1f(k) until two successive sums

agree, displays the last partial sum and the value of n at

which agreement was reached.

« 'F STO 1 'K' STO F EVAL 2 'K' STO DO DUP F EVAL + DUP 3
DISP 1 'K' STO+ SWAP UNTIL OVER == END K 1 - {F K}
PURGE »

As an example, we know that the series Y, 10%/k! converges by the ratio test. Put
=0

10°K/K" on level 1 and press to see 22025.4657948 on level 2 and 39 on

level 1. Although the partial sums are large in value, agreement to 12 figures is
reached quickly, at n = 39. The number 22025.4657948 is the sum of the series starting

atk = 1, so we must add 101:) =1 to get the sum starting at k = 0. Thus k}:010“/k! =
22026.4657948, correct to 12 figures.

EXERCISES 4.1

1. Find the Taylor polynomials P,(x) and P, (x) for f(x) = " about a = 0, and graph

f and the two polynomials on the same axes. Make a table of values for all

three functions using x = .1, .2, .6, 1 and 1.5.
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Use program TAY.Ato find the Taylor polynomials P,(x) and Py(x) for f(x) =

sin 2x — 2sin x about a = 2 and graph f and the two polynomials on the same set
of axes. Use XRNG : -2 6 and YRNG : -3.1 3.2.

Find the Taylor polynomials P (x) and Pw(x) for f(x) = ™ at a = 0 and graph
these two polynomials and f on the same axes.

(a) Verify, analytically, that each of the following sequences has a limit and

T ) )

(b) Investigate, numerically, the limits of these sequences with FSHO. Let
K go from 10° to 10 + 10, 10 to 108+ 10, ..., 10! to 10! + 10.

(c) What happens if you let K go from 10" to 10'2 + 10?2 Why?

Prove that the infinite series 3 (k + 1)/k® converges. Then use program

P.SUM to find the partial sums for n = 10, 50 and 100. What is the sum of this

series to 12 places?

Prove that the infinite series Y, (-1)*1(k!) converges. Then, find a value of n

for which S, will approximate the sum, correct to 12 places. Use P.SUM to

calculate this S,,.

Show that each of the following series converges and find the sums using

program INFSUM .
a. kle/lé’. (slow convergence) b. kzol /k!. (rapid convergence)

c. E(-l)k+1 K2 /2%, d. Y100 / kt
K=1 K=1
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8. (a) What will happen if you use INFSUM onkzll/k ? Try it and see for

yourself. (You may interrupt the program at any time by pressing @;
when the program is interrupted, it leaves B and E(] on your VAR menu.)

X !
(b) Prove that Z‘ (El-:_—z-;; converges. Now apply program INFSUM and

watch what happens. Explain what is taking place here.
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HP-48G/GX Calculator Enhancement
for

Multivariable Calculus

James A. Reneke

The chapter is divided into three sections. The first treats applications of the
HP-48G/GX to curves and surfaces. The material exploits the plotting utilities for conic
sections and parametric curves. The second section considers maximum/minimum
problems, with an emphasis on the role of level curves, and multiple integrals. The
geometry of constrained optimization problems is explored with examples. The final
section discusses line integrals and makes extensive use of the symbolic manipulation
capability of the calculator. Thus the graphical, numerical and symbolic capabilities

of the HP-48G/GX are all exercised in the context of multivariable calculus.

SECTION 1. CURVES AND SURFACES
1.1 Curves, Surfaces and Functions

In one dimensional calculus we apply the methods of calculus to problems
associated with functions. For instance, we study maximum/minimum problems for
functions and the problem of computing the average value of a function. We usually do
not distinguish between a function and its graph nor elaborate upon the application of
calculus to implicitly defined curves, for instance to the conic sections. That is, implicit

differentiation is introduced as a natural extension of

71
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differentiation of functions even though the relationship of an equation to an
implicitly defined curve is fundamentally different from the relationship of a
function and its graph. A consequence of this blurring of distinctions is a heightened

emphasis on functions as opposed to geometric curves.

In multidimensional calculus the more fundamental objects of our study are
geometric curves and surfaces. Many of the concepts to be introduced are inherently
geometric and functions can be used in several different ways for the study of these
concepts, although some particular way will likely be most useful in any given
discussion. Thus the task now is to shift our attention from functions to curves and
surfaces, solving some of the same problems considered in one dimensional calculus.

However, we also take up problems in multidimensional calculus that do not
have a one dimensional counterpart. Functions of several variables have more than
one kind of derivative, for instance, directional derivatives. And line and surface
integrals are not just multidimensional versions of the Riemann integral. Obviously,
in thinking about curves and surfaces we are not going to abandon what we know of
differentiating and integrating functions. So, how can we use functions to describe
curves and surfaces in higher dimensional spaces? How is calculus applied to
functions to study the curves and surfaces they describe? Using the HP-48G/GX

effectively for multivariable calculus requires clear answers to these questions.

Geometry in spaces of dimension higher than three uses the language of three
dimensions. Since we have no way to visualize geometric objects in higher
dimensions, spending time to understand three dimensions is important for building
intuition for higher dimensions. The HP-48G/GX graphics calculator provides useful
tools for exploring curves and surfaces in 3-space. We will begin with the
WIREFRAME plot type which produces pictures of the graphs of functions of two
variables. This will give us some concrete examples to use in a more abstract

discussion of the relation of functions and geometric curves and surfaces.
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The surface S = {(x, y, 2) | z =x2 - y2)} is the graph of z = f(x, y) = x2 - y2. Two

views of S are shown below.

Exercises. Use the WIREFRAME Plot Screen to do the following exercises.

1)

2)

3)

Reproduce the pictures given above. Open the Main Plot Screen with
PLOT, choose WIREFRAME plot type and enter 'XA2 - YA2' as the current
equation. Choose 'X' and 'Y' as the independent and dependent variables,
respectively. Choose -2 and 2 for X-left and X-right, -2 and 2 for Y-near
and Y-far, -2 and 2 for Z-low and Z-high so that the View Volume
surrounds the origin. Choose 3, -6, 1 for Xe, Ye, and Ze to give a distant

oblique view of the graph. Choose 6, -6, 1 to give an alternate view.

Crucial to producing a recognizable picture for the surface in the previous
exercise is the choice of View Volume and View Point. Enter 'XA2 - YA2 +
4*X + 4*Y' as the current equation. Without changing the View Volume or
View Point from the previous exercise draw the figure. Of course, the
critical point (-2, 2) is not centered in the View Volume so we are not
looking where the action is. Choose -4 and 0 for X-left and X-right, 0 and
4 for Y-near and Y-far, -2 and 2 for Z-low and Z-high so that the View
Volume surrounds the critical point. The View Point has to be chosen

relative to the new View Volume. Try 4, -6, 1 for Xe, Ye, and Ze.
Enter 'X*Y - 2*X + 2*Y - 4’ as the current equation. The critical point is

(-2, 2). Try the previous View Volume and View Point. What happened?
Try producing the following picture.
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The lesson here is about choosing the View Point; in trying various

possiblities one gets a real sense of the surface.

Basic definitions with examples. A function is best understood as a collection
of ordered pairs no two of which have the same first term. In the one dimensional
calculus, functions are ordered pairs of real numbers that can be displayed
graphically as subsets of the Cartesian plane. This graphical representation of the
function is called the graph of the function. For real valued functions of more than one
variable, the first members of the ordered pairs (elements of the domain of the
function) will themselves be n-tuples. In the case of real valued functions of two
variables, the first members will be 2-tuples or ordered pairs, and the graphical
representation of such functions will be in 3-space. A surface S is said to be given

explicitly by a function f, usually from R™ to R, provided S is the graph of f.

a) From the one-dimensional calculus consider the function f(x) = x2 + x + 1.
The curve C = {(x,y) | y = x2 + x +1), the graph of f, is said to be given
explicitly by f.

b) The surface S = ((x, y, ) | z = x2 - y2} is given explicitly by the function
f(x, y) = x2 - y2.
Exercises.

1) Produce the surface z = sin(x + y) using the View Volume [0, 6.28] by [0, 3.14]
by [-2, 2]. Start with 6, -6, 4 for Xe, Ye, and Ze. Is there another choice for
Xe, Ye, and Ze that improves the picture?
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2) Try some of the other explicit quadratic surfaces from your calculus text.

Among the conic sections, the ellipses and hyperbolas are usually defined
implicitly by equations. For example, the unit circle is given by the equation x2 + y2
= 1. Note that the graph of a circle cannot be the graph of a function, because there
are vertical lines that intersect a circle in more than one point. A surface S is said to
be given implicitly by a function f, usually from R® into R, provided S is a level set of
f, i. e, there is a number k such that S = { x | f(x) = k}. Note that S is a subset of

the domain of f.

a) The unit circle C given by x2 +y2 = 1 is a level set of the function f(x, y) =
x2 + yz’ i.e., C= [(X, y) | f(x’ y) =x2 + y2 = 1}.

b) A portion of the implicitly defined surface S = {(x,y, 2) | x2 + y2 + 22 = 1}

is given below.

This picture was produced with the WIREFRAME Plot Screen by solving x2 + y2 + 22
= 1 explicitly for z. Of course, each point (x, y) produces two values of z and we used
only the nonnegative values of z. Thus we can use software for producing explicit

surfaces to represent portions of implicitly defined surfaces.

Exercise. Use the WIREFRAME Plot Screen to produce a portion of some of the
implicitly defined quadratic surfaces in your calculus text, for instance, x2 + y2 + 4z2
=1

Implicitly defined curves can also be used to study explicitly defined surfaces.
Given an explicit surface z = f(x, y) we produce the implicitly defined level curves

k = f(x, y). In this case, the level curves of a surface are a two dimensional



76 CHAPTER2

representation of a three dimensional surface. Consider the level curve

representation of the surface z = x2 - y? given below.

A7/
A\

Later, we will use the conic graphing ability of the HP-48G/GX to produce level

curves for quadratic surfaces like the one shown above.

A curve C (sometimes a surface) is said to be given parametrically by a function
£, usually from some subset U of R to R, provided C is the image of U under f, i.e.,, C
= f(U). Note that C is a subset of the range of f.

a) The straight line through P(x,, y,, z;) and Q(x,, y;, z;) is given
X=X, + t(x1 -xo)
parametrically by the set of functions ¢ y =y, + t(y; -y,) , or in vector
z=1z;+t(z, -z;)
form by x = (xy, Yo, 29) + t0¢ - X1, Yo - Y1, 20 - Z)-

b) The plane consisting of all linear combinations of two linearly independent

vectors u and v is given parametrically by f(a, b) = au + bv, (a, b) in Rx R.
Some standard representations

a) Lines (explicit: y = mx + b; implicit: Ax + By + C = 0; parametric: r(t) =

u + tv, t a real number)

b) Conic sections
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Implicit:
2 2 2 2
;xz-+§-1 and ﬁ-—%-l
Parametric:
a -
X =acos x=ac°3ht=§'(et+et)
b si ,0£0<2x and ,0<t<oo
y =bsin 6 y=bsinht=%(e*_e°t)

Shifting the representation

Many times, problems come with some "natural” representation of the curve or
surface. In most applications, including the HP-48G/GX, a certain representation is
required; for instance, the WIREFRAME Plot Type requires an explicit representation
of the surface. The first step in these problems becomes that of shifting the given
representation of the curve or surface to the representation appropriate to the

application.

a) A curve C given explicitly by y = f(x), x in D, can be described implicitly
by C = {(x,y) | y-f(x) =0} or parametrically by

X =X
y = f(x), x in D

b) A curve C given implicitly by f(x, y) = 0 might not have have an explicit
representation; for instance, the circle x2 + y> = 1. Even so, we can
frequently give a branch of the curve an explicit representation; for

example, as the upper semicircley = V1-x2,-1<x<1.
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c¢) Sometimes a curve C originally given parametrically can also be
represented implicitly by "eliminating the parameter”. See the conic

sections above.
Exercises.

1) Find both parametric and explicit representations of the line segment
between P =(1,1)and Q = ( 2, -3).

2) Find both implicit and parametric representations of the ellipse with
vertices (-1, 0), (1, 0), (0, -2) and (0, 2).

3) Find both explicit and implicit representations of the plane that contain
(1,0, 0), (0, 1, 0) and (0, 0, 1).

1.2 Three Dimensional Parametric Curves

We want to use the 2D parametric plot capability of the HP-48G/GX to
produce some 3D plots. We will be working with the Stack Interface, i.e., from the
PLOT menu. Our approach to plotting 3D parametric curves will be to create a
general function in terms of X, Y and Z, called PARA3D. We can obtain the plot of
any 3D parametric curve by plotting PARA3D after specifying X, Y and Z. To

accomplish this enter
'X -Xe)/ (Y - Ye) +i*(Z - Ze) / (Y - Ye)
'PARA3D' STO

Note that we are not writing a program, merely plotting a "generic" parametric
curve that will be completely specified only when 'X’, 'Y' and 'Z' are specified. To
make PARA3D the current equation enter 'PARA3D' 'EQ' STO.
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Examples. Store 0, -2, and 25 as 'Xe', 'Ye', and 'Ze', respectively.

1) A spiral wrapped around a cylinder: r = (cos t, sin t, t), 0 < t < 5x. Enter
'COS(T) 'X' STO 'SIN(T) 'Y' STO 'T" 'Z' STO. Change PYTPE to
PARAMETRIC, open PPAR and change INDEP to {T 0 15.71}. Then
AUTO ERASE DRAW produces the following.

e“‘“\
~—

We can change the x scale with ZOOM. Open ZOOM and set the H-factor
as 2 and the V-factor as 1 in ZFACT. Then press ZOUT to produce

The unwanted axis was eliminated with ERASE DRAW.

2) A spiral wrapped around a cone: r = ((1 - t/6z) cos t, (1 - t/6m) sin t, t),
Ost<én.

Exercises. Plot the following 3D parametric curves:

1) r=(1-¢t2t+1,t+1),-3 <t<3. Hint If you wish to speed up the
plotting, change the resolution with 1 RES.
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2) r=(t0,t2),0<st<2 Try .1 RES.

3) r=(cost sint, cos? t - sin t), 0 <t < 2x. Hint: Use AUTO and then
rescale with ZOUT assuming H-factor is 2 and V-factor is 1. Try to
understand the 3D figure by plotting it with different choices of the
viewing point.

1.3 Level Curves of Quadratic Surfaces

Continuing to use the Stack Interface, begin by going to the HP-48G/GX's PLOT
menu, open PPAR and press RESET. Do PLOT again, open the PTYPE submenu

and press the menu key CONIC.
Example. Sketch 4y?2 - 8x - x2 + 40y + 85 = 0.
Enter
'4+YAN2 -8+X -XA2 + 40+Y + 85 'EQ STO

ERASE DRAX DRAW

L
t/

The resulting sketch isn't very satisfying. How can we improve it? Completing

squares, our equation becomes (x + 4) - 4(y + 5)2 = 1, so the figure must be a hyperbola
with center (4, -5). Set the center in PPAR and redraw as follows:
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(4, -5) CENT ERASE DRAX DRAW

>

Example. Graph x2 + xy + y2 - 1= 0 using the default graphing parameters. 'X A 2
+ X*Y + YA2 - 1' 'EQ STO ERASE DRAX DRAW results in a graph like

The picture can be improved with ZOOM. Set the H-factor as 2 and V-factor as 2 in

ZFACT, then press ZIN.

Note. ON takes us out of the PICTURE environment and the PICTURE key returns

the following.

| —

-

us to it.

Example. 'Y — X' 'EQ STO DRAW overdraws the last graph with a line:

S5
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A better way to produce this graphis with {(X*2 + X*Y + YA2 - 1' X - Y]
'EQ' STO ERASE DRAX DRAW.
Example. The upper region bounded by the curves can be regraphed with

(-14,-1) PMIN (1, 14) PMAX ERASE DRAX DRAW

The commands PMIN and PMAX must be typed in; they capture the coordinates of

the lower left and upper right corners of the plotting screen.

C <
S

This method of choosing the graphing window captures the region of interest but can

distort the picture. A better way is illustrated by the following example.

Example. To return to the original parameters press RESET DRAX DRAW. Then
to enlarge the upper bounded region, move the cursor to the approximate center of the
region of interest press ENTER (to place the coordinates of the cursor on the stack)
and then CENT. Now use ZIN with H-factor 3 and V-factor 3 to produce something
like the following:

\

Examples. Two of the standard figures are graphed below. Try to improve the
pictures by moving the center and using ZIN or ZOUT.
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1) x2+y2-2x=0

()

2) X2-xy+y2-1=0

CIN
N

Exercises

1) Redo some of the other standard figures: x +y +1=0,y2 +x-1=0,x2+y2-1=0
and2x?-y2-2=0.

2) Produce a graph containing both x + y-1=0and y = 2 - x2 on the same axis.

All second degree polynomials Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (allowing for

degenerate figures) define conic sections.

Examples. Use the default settings to produce the following graphs. Notice the

center is not always at (0, 0).

1) +y?-2x-2y=0
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2) -y2+2x+2y-1=0

/N

AN
N\

)4
///

The level curves of explicitly defined quadratic surfaces of the form z = Ax2 +

3) 2+2xy+y2-1=0

4) x2-2xy+y2-1=0

Bxy + Cy? + Dx + Ey + F are conic sections.
Exercises. Match the following surfaces with the sets of level curves given below:
1) z=2x2+xy-y2 2) z=y2-x 3) z=xy
4) z =16x2 + 24xy +60x - 80y -100

5) z =29x2 - 24xy + 36y? + 118x -24y - 55

R
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B) 453 D)
&
[/

1.4 Pseudolevel Curves of Explicitly Defined 3D Surfaces

Strictly speaking, finding the level curves of a general, explicitly defined, 3D
surface z = f(x, y) with the HP-48G/GX requires material from differential equations.

Example. Go to the Screen Interface with PLOT and choose Ps-Contour. Store
'XA2 + YA2' as the current equation in EQ. Open OPTS and set 4, 4 for X-left and
X-right and -2, 2 for Y-near and Y-far. Use ten steps for both the independent
variable X and 'dependent’ variable Y. then ERASE DRAW produces the

following:
VAW AV AV & ot \ I\ IR\
117723V 0 )
O
\\\t:jﬂlll
NIX==Z2 277

We can explore the relationship of this graph to the level curves of the quadratic
surface z = x2 + y? by proceeding as follows. Move the cursor away from the origin
and enter the coordinates of the cursor onto the stack with  ENTER. Now press ON
twice to return to the stack. Produce the z value with OB]J—» x2 SWAP x2 + 'Z'
STO. Now overlay the level curve produced with CONIC as follows. Using the
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Stack Interface choose CONIC. Open PPAR and set Xrng and Yrng to agree with X-
left, etc. Change EQto'XA2 + Y A2 - Z' and press DRAW. Drawing the conic

sections for a couple of different values for Z produces

Notice that the level curves do not cross any of the line segments.
Exercise 1. Work the last example with the explicitly defined surface z = x2 - y2.

Exercise 2. A useful example to explore is z = xz_z')’(‘xy; . Start by storing
2*X*Y / (XA2 + YA2)' in EQ. Repeat the steps using Ps-Contour outlined in the
example. In order to use CONIC store ' Z * (X2 + YA2) - 2*X*Y' in EQ. See

if you can produce something like the following. Save the z values on the stack.

What's happening at the origin?

Of course, Ps-Contour works for surfaces more general than the quadratic
surfaces. The problem is that the user has to construct mentally the actual level
curves using the picture produced by Ps-Contour.

Example. Store 'SIN( X ) * SIN( Y )' as the current equation. Choose 0, 3.14 for X-
left and X-right and 0, 3.14 for Y-near and Y-far. The Ps-Contour Plot type produces
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o i
(772253 Y
@)

Can you visualize the level curves of this surface?

1.5 Explicitly Defined 3D Surfaces

Before returning to WIREFRAME we will make use of the Pr-Surface plot
type to explore further the interaction of View Point with the pictures produced. Go
to the Screen Interface with PLOT and choose Pr-Surface as the plot type.
Enter the current equation as {U V 0]}, U for INDEP, V for DEPND, and use 2 for
STEPS in both U and V. Open OPTS and set the View Volume to -1, 2; -1, 2; and -2,
2. To set the ranges of U and V you must use the Stack Interface. Set INDEP as (U
0 1} and DEPN as {V 0 1}. Return to the Screen Interface and try various choices
for the View Point. We are looking at a square in the xy-plane with vertices (0, 0,

0) and (1, 1, 0) from various view points.

[~ =N =

Xe: -1, Ye: -2, Ze: 1 Xe: 0.5, Ye: -2, Ze: 1 Xe: 2, Ye: -2, Ze: 1

7

Co~~—~——__

Xe: 0.5, Ye: -2, Ze: -1 Xe: 0.5, Ye: -2, Ze: 0 Xe: 2, Ye: -2, Ze: 2
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Exercise. Try the same thing with { U 0 V } as the current equation. In this
exercise you are viewing the square in the xz-plane with vertices (0, 0, 0) and (1, 0,
1).

To use WIREFRAME effectively requires some knowledge of the surface. The
View Volume should contain one or more critical points, that is, where the action is.
We will work with the surface z = xy and see how choices of the View Volume,
View Point and number of Steps interact to improve the visualization of the surface
in a region containing (0, 0, 0). Using the Screen Interface, choose WIREFRAME as a
PTYPE and enter ' X * Y ' as the current equation. Set the independent variable to X
and use 10 steps for X. Set the dependent variable to be Y and use 8 steps for Y.
Since (0, 0, 0) is a critical point, choose the View Volume as -2, 2; -2, 2; and -2, 2.
Thinking about the symmetry of the figure we can try 3, -3, 3 for the View Point.

These choices result in the following:

We are expecting a hyperbolic paraboloid, so what happened? The picture
does not capture the essential behavior of the surface at (0, 0, 0), namely, that (0, 0,
0) is a saddlepoint. The problem is that the figure is "too symmetric” in X and Y.
Earlier we saw that an oblique view helps our eye orient the figure in three space.
Try -5, 5; -1, 1; and -4, 4, for the View Volume. To have an oblique view we must
change the View Point. Since in the previous picture we were viewing from too high

a vantage point, try 6, -3, 2:
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The picture captures the saddlepoint at the origin, but if you look away and then
look back there is some confusion about which part of the surface is in front. One
way to improve this is to choose Steps unequally. Try 4 steps for X and 12 steps for
Y:

1.6 Intersections of Surfaces

Slices of explicitly defined 3D surfaces. The intersection of a cylinder with a
vertical generator and an explicitly defined surface is a curve in three dimensions. If
the cylinder is a plane then the intersection is said to be a slice (or section). We want

to use our representations of 3D parametric curves to plot various standard slices.

Producing really good 3—dimensional pictures requires patience and judgment.
In the examples we will concentrate on two surfaces that should be familiar, the
paraboloid z = x2 + y2 and the hyperbolic paraboloid z = x2 - y2. Depending on the
reader's intuition, this should provide an opportunity to show that reasonable

choices can lead to unexpected results which require interpretation.

We begin with the intersection of a vertical plane Ax + By = C with a surface

z = f(x, y). There are two ways to parameterize the curve:

1)x=t y=ax+b;z=1(x,y) orr=(t at + b, f(t, at + b)) and
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2)x=ay+b;y=tz=1f(x,y)orr=(at + b, t, f(at + b,t)).

We need both ways. If the plane is perpendicular to the y-axis then we use 1) with
a = 0. Similarly, if the plane is perpendicular to the x-axis then we use 2) with a =
0.

Example. Slice the surface z = x2 + y2 with various vertical planes perpendicular to
the y-axis, say y = 0. Store 'T" in ‘X', ’XA2 + YA2' in 'Z' and 0 in 'Y'. Store 0
into 'Xe', -1.5 into 'Ye', and 0 into 'Ze'. Reset PPAR to the default settings and then
change INDEP to (T -1 1}. Set EQ as 'PARA3D'. Use AUTO to autoscale, then
ERASE and DRAW. Use ZOUT with H-FACTOR 2 and V-FACTOR 1. since ZOUT
inserts axes, remove them with ERASE DRAW. This produces something like the

following;:

Be careful in examining the picture to realize that the curve is in a plane

perpendicular to the y-axis.

Of course, we may choose another plane, say y = x/2. Simply store '0.5 * X'
in 'Y' and enter ERASE DRAW. This produces something like the following:

Comparing this graph with the one above, we see there are only subtle

differences in the pictures even though the two curves come from different slices.



MULTIVARIABLECALCULUS 91

Moving the View Point a bit, say to -3 -2 0, produces the following graph for the

first curve:

The second curve looks like this:

Certainly, no one would confuse the two curves. This suggests that frequently we will

want to view 3D objects from more than one perspective.
Exercise. Repeat the last example using the surface z = x2 - y2.

Example. Critical points of a surface z = f(x, y), i.e., points (xg, yo) where
Vz(xp, yo) = 0, are places where important things happen. Slices through critical
points can be revealing. For example, slicing z = x2 + y2 through (0, 0) along y = x

produces the following:
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Slicing along y = -x produces

In fact, any slice through (0, 0) will yield a parabola with vertex at the origin.

Thus, one can easily believe that z = x2 + y2 has a local minimum at (0, 0).

Exercise. Repeat the above example for z = x2 - y2. Slice the surface with the

planesx + y = 0.

Intersections of cylinders with explicitly defined 3D surfaces. We can use
PARA3D for the intersection of a cylinder generated by any parametric curve in the
plane and a 3D surface. For instance, the curve C: x = u(t), y = v(t), as t<b, or
r = (u(t), v(t), f(u(t), v(t))), a S t S b. Of special interest are the circles C: x = a cos
t,ty=asint, 0st<2x.

Example. With some care the following piece of the paraboloid z = x2 + y2 can be
produced with PARA3D.

For the circular sections we chose a = V2/2and a = 1.

Exercise. Try to reproduce the picture above.
Suppose [I’i]:,l is a sequence of points in the plane and C, for 1 <i < n, is the curve from

n
P _,toP definedby C:r=(>-t)P, +(t-i+1)P,i-1<t<i. ThecurveC =i21 C, is called
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a polygonal curve from P to Pn. The polygonal curves in the plane form another
important family of curves generating 3D cylinders. We will construct polygonal
curves using the following two programs VERTS and POLIG.

leveln + 1 .. level 2 level 1 level 1
(x1, y1) (Xn, Yn) n = list
VERTS:
<< —LIST 'Vrts' STO >> |Stores the vertices as a list named
1'Vrts'.
POLIG:

<< Vrts T CEIL DUP 0 ==
<<1 + >> IFT GETI IGets the first vertex.
DUP2 DROP 1 - T - * | Multiplies that vertex by
I(1 - T) and stores the result in 'p'.
'‘p' STO SWAP DUP2 DROP | Gets the next vertex.
GET SWAP T SWAP 2 - - * | Multiplies by (T - 1).

p + 'p' PURGE | Adds the result to the vertex in 'p".
IClears 'p'.

>>

Example. A reasonable case can be made for studying surfaces using the analogy of

walking along paths in the mountains. Consider the surface z = sin(x)sin(y) which
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looks like a rumpled (but more regular) blanket. For the analogy, think of z as a
deviation from some reference altitude. Maybe the units are 1000 ft. We are
interested in following paths, say from (0, 0, 0) to (2%, 2x, 0). Enter

0,00 2 '=' * 5NUM DUP R-C 2 VERTS
<< POLIG OBJ- DROP >> 'X' STO

<< POLIG OBJ—» SWAP DROP >> 'Y’ STO
'SIN(X )*SIN(Y)" 'Z' STO

Now graph PARA3D in the parametric mode with the independent variable set as

(T 0 1), ie., T ranges from 0 to one less than the number of vertices. This produces

Suppose you object to the up/down nature of the path. Can you find a path
from (0, 0, 0) to (2x, 2z, 0) with less climbing? Perhaps a path that is level for its
entire length?

Suggestion: You may find it easier to store << POLIG OBJ— DROP >> in plgX and
<< POLIG OBJ—» SWAP DROP >> in plgY. Then before graphing PARA3D to
produce the curve on the surface, store 'plgX' in X' and 'plgY’ in 'Y

We want to follow the intersection of the surface with the vertical cylinder
whose intersection with the xy-plane is parameterized by the polygonal curve C
from (0, 0) to (x, 0) to (n, =) to (2=, %) to (2x, 2x). On the surface the previous path
and the new path look like the following:
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(0, 0, 0) to (2x, 2x, 0) (0, 0) to (r, 0) to (%, =) to (2x, &) to (2x, 2n)

Plotted Together

Since z = 0 on the new path, the new path never leaves the xy-plane in moving from

0, 0, 0) to (2x, 2, 0).

Suppose at some point, say (x/2, 0, 0), you want to climb to the top of the

"hill" at (n/2,7/2, 1). Two ways of visualizing the hill, slicing the surface, are as

ANNSEN

Two paths lead to the top. Both are intersections of the surface with vertical

follows.

cylinders whose intersections with the xy-plane are parameterized by polygonal
curves. The first, C1, goes from (n/2, 0) to (x /2, 1/2). The second, C2, goes from (r /2,
0)to (3x/4,%/2)to (n/2,2n/3)to (3n /8, /2) to (x /2,m/2). On the surface the curves
look like the following:
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Which would be the easier walk?

Exercise 1. Graph paths from (0, 0, 0) to (2, 2, 0) on the surface z = x2 - y2 that are
intersections of the surface with vertical cylinders whose intersections with the xy-
plane are parameterized by polygonal curves C; and C;. The first, C1, goes from
(0, 0) to (2, 2). The second, C;, goes from (0, 0) to (2, 0) to (2, 2. Which would be the

easier walk?

Exercise 2. Produce the pseudolevel curves of z = x2 - y2 using Ps-Contour. Overlay
with the curves C; and C;. How can you distinguish between C; and C; in terms of

the level curves?

3D surfaces. We can graph surfaces by graphing one or more judiciously chosen
slices. Three general rules apply. Fewer, more widely separated slices usually look
better. You may need to try several viewing perspectives before something
satisfactory emerges. A piece of the surface might be sufficient to tell the whole
story. This picture of a hyperbolic paraboloid looks reasonable if you already know

what the surface looks like.

The following program was designed to convey a sense of a surface by
animating several different views of a slice to give an illusion of motion. PICS can

be slow to run, so animation is of limited utility. The ideas work best for
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intersections of cylinders generated with simple figures, straight lines, circles and

rectangles parameterized with the reserved variable K.

PICS:
<<15 FOR i |Generates five
i 'K' STO ERASE | different views of a slice of
DRAW PICT RCL | the surface.
1 STEP 5 —-LIST DUP | Arranges the views on the
REVLIST + OBJ-» | stack for ANIMATE.
>>

Example. We want to animate the intersection of the surface z = sin(x)sin(y) with
the vertical plane y = Krn /6. Set PTYPE to PARAMETRIC, Xe to 0, Ye to -1 and Ze to
2. Enter

'SIN(X) * SIN(Y)' 'Z' STO 'K*3.14 / 6 'Y' STO RESET
{X 0 3.14) INDEP .1 RES 1+/- 2 XRNG 1.5 +/- 0 YRNG
PICS ANIMATE

Exercise. Redo the example using Y-SLICE. Using the Screen Interface set TYPE to
Y-SLICE and EQ to 'SIN(X) * SIN(Y)'. Set X-LEFT to 0, X-RIGHT to 3.14, Y-NEAR to
0, Y-FAR to 3.14, Z-LOW to 0 and Z-HIGH to 2. How do the two animations differ?

For some figures you might want to generate different views by moving the

View Point. Try something like Xe = a + (b - a)K/5.
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Exercise. Consider the intersection of the surface z = y2 + x2 with y = x/2. Let Xe =
4 +4K/5,Ye=-2and Ze = 0.

Intersections of planes with quadratic surfaces. The intersection of two
surfaces in 3-space will usually be a curve. To treat general surfaces would be too
difficult at this time. Instead, we will look at the problem of describing regions

bounded by a quadratic surface and a plane.

Example. Describe the region D of R3 between the quadratic surface z2 = 2x2 + 3y2 + 1

and the plane x +y + z = 2.

These two surfaces intersect in a 3-dimensional curve. We begin by looking at
the cylinder set parallel to the z-axis that contains this intersection. The equation
of the cylinder set is found by eliminating z from the equations; i.e., solve the
equation of the plane for z and then substitute the result into the equation for the
elliptic paraboloid of two sheets. We want to look at the xy-section of the cylinder
set to see that we have a bounded region. Begin with the default plotting

parameters
X' PURGE 'Y' PURGE
'X+Y+Z-2 'Z ISOL DEF
2*XA2 + 3*YA2 - ZA2 + T' EVAL [§] PLOT

CONIC ERASE DRAX DRAW
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The resulting picture is difficult to analyze. Step back by reducing the resolution,
i.e., in ZFACT set H-factor and V-factor to 5 and then ZOUT.

]
z

The region appears to be an ellipse, and we can confirm this by shifting the axis.

Move the crusor to the center of the figure and press ENTER to record the coordinates
of the cursor on the stack. Press ON, open PPAR and press CENT (on the second
page) to relocate the center of the screen to the coordinates location. Then execute
ERASE DRAX DRAW. The resulting picture is convincing, i.e., the cylinder set
intersects the xy-plane in a bounded elliptic region D,.

o

The surface z2 = 2x2 + 3y? + 1 is an elliptic paraboloid. For x = 0, y = 0 we

have z2 = 1. The corresponding point on the plane x + y + z = 2 is (0, 0, 2), i.e., the
plane intersects the upper sheet of the elliptic paraboloid. Hence for (x, y) in the
bounded region D;, whose boundary is the ellipse obtained using the calculator, we

must have
(2x2 +3y2 + N1/2<2-x-y.

In order to complete the description of D;, we must obtain a description of the
region D, in set builder notation. Recall what is stored in EQ and execute

'Y' 2 TAYLR 'Y' QUAD DEF

Y 1 +/- 's1' STO EVAL



100 CHAPTER 2

Now execute EXPA and COLCT several times to get a simplified version, maybe
something like -1 - 025*V (40 - 4*X A 2-48*X) + 050 * X'. Proceed in the
same manner with 's1' having the value 1. Thus for (x, y) in D1 we have

-1+ (x-v10-12x -x2 )/2<y<-1 +(x +vY10-12x -x2)/2.

Call this interval of y values Ix. To find the interval of x values proceed as follows.
The x-coordinates of the vertices of the ellipse will occur when the radical is zero.
Why? Use the editor to obtain just the radical.

EDIT 'V (40-4*XA2-48*x)
x2 'X' QUAD

We find the x-interval with

ENTER -1 's1' STO EVAL
SWAP 1 's1' STO EVAL

The stack is 0.7823 ..., -12.7823 ... . We obtain the right order with SWAP.

Thus D; = {(x, y)| -12.7823 < x < 0.7823 and y in I,}. Finally, D = {(x, y)|
-12.7828 < x < 0.7828, y in I, and (2x2 + 3y + 1)V/2<z<2-x-y}.

SECTION 2. OPTIMIZATION AND INTEGRATION
2.1 Classification of Critical Points for Functions of Two Variables

Taylor series for functions of two variables. The Taylor series expansion of f(x)
about x, is given by

) (x-xp) .

o f(P)( )
f(x) = EO _"o_p-
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The sum of the first n + 1 terms, i.e, for p =0, 1, ..., n, is called the nth degree
Taylor polynomial P (x). Of course, P1(x) is the line tangent to the graph of f(x) at

(xg, f(xg)). Similarly, each of the polynomials approximates the function.

We look for critical points of y = f(x) by finding values for which the graph of
P1(x) is a horizontal line. A critical point x, of y = f(x) is classified as a local

minimum if the second degree Taylor polynomial P,(x) for f(x) is a parabola that
f"

opens up. Notice that P,(x) = f(xy) + f(xg) (x - xg) +——(§x£2(x - X9)2, which opens up

provided f'(xy) > 0. Similarly, x, is classified as a local maximum if P,(x) opens

down.

Example 2. TAYLR always computes the polynomial expansions about zero, i.e., the
MacLaurin expansions. In order to find an expansion about some other point we must
introduce a change of variables. Suppose we want the expansion of 1/x about 1.

Notice there is no expansion about 0.
Enter the following commands:

X' 1/x 'Y +1' 'X' STO EVAL
'Y' 3 TAYLR
X' PURGE 'X-1 "Y' STO EVAL

Exercise. Try expanding sec x about .

For z = f(x, y) we proceed as follows: let w(t, x, y) = f(xo+ t(x - x0), yo +
t(y - yo)), a section of z = f(x, y) in the direction of (x, y). The second degree Taylor
polynomial at 0 for w(t, x, y) (holding (x, y) fixed) is

Pa(t, x, y) = f(xo, yo) + [fx(xo, Yo )(x - X0) + fy(x0, yo)y - yo)It +

(1/2)[f5(x0, Yo)(x - X0+ 2£,, (X0, Yo )X - X Xy - yo) +
£, (%0, YoXy - Yo)2IP
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which reduces to

Py(t, x, y) = f(xo, yo) + (1/2)[f, (%o, yo)x - xo)? +
2£,, (x0, YoXx - X)(y - Yo) + (X0, Yoy - yoR]&

when (x,, y,) is a critical point.

Example. Find the second degree Taylor polynomial for w(t, x, y) given z =
(sin x)(sin y) and (n/ 2, /2 ) is a critical point . Enter the following:

'SIN(U) * SIN(V) 'Z' STO

'®/2° 5NUM DUP +/- X' + 'T' x + 'U STO
U EDIT (change X to Y) ENTER 'V' STO

Z EVAL 'T" 2 TAYLR

Classifying critical points. In order to classify (x /2, n/ 2 ) as either a local
maximum, local minimum or a saddlepoint, we must determine if P,(t, x, y) is a
parabola opening down (or up) for all (x, y) or opening down for some (x, y) and up

for others. We can decide by sketching the level curves of
Py(1, x, y). Proceed as follows:

1 'T STO EVAL

'K' PURGE 'K' + NEW T2 ENTER CONIC
05 +/- 'K' STO DRAW

0 'K' STO DRAW

1 '’K' STO DRAW

Clearly, we have produced the level curves of an elliptic paraboloid, i.e., the
coefficient of t2 in P,(t) must always be either positive or negative. Therefore
(n/ 2, ®/2 ) must be a local extremum. Furthermore, since the paraboloid looks down

(n/2, ®/2 ) must be a local maximum.
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@)
=/

The example illustrates this general result: if f  (xp, yo)(x - xp)? +

2f,, (x0, Yo)(x - X0y - yo) + f,,(x0, yo)y - yo »2 is an ellipse then (xg, yo) is an extremum.
In this case, (xp, yo) is a maximum if f_(xo, yo) is negative and a minimum if f_(xo,
yo) is positive. If £ (xo, yo)(x - x9)? + 2f,, (X0, Yo X(x - X0 )y - o) + fy, (X0, Yo )y - yo)? is a
hyperbola then (xq, yo) is a saddlepoint. This can be developed as an efficiently
applied criterion as follows: Let A = (f,, (xo, yo »N? - £ (X0, Yo Ay (o, yo)-

1) If A > 0, then (xg, yp) is an extremum, a maximum if f (X, yo) < 0 and a

minimum if fy,(xg, yo) > 0.
2) If A >0, then (xg, yp) is a saddlepoint.
3) If A = 0 then the test fails.

Exercise. Use the method outlined above to classify the critical points (-1, 11/6)
and (1, 1/2) of z = x3 + y2 + 2xy 4x -3y + 5 as either local extrema or saddlepoints.

2.2 Polya's Problems!
Example. If the sum of two numbers is 6, what is the maximum of their product?

Let the numbers be x and y. We are given that x + y = 6 and we wish to
maximize the function f(x, y) = xy subject to that constraint. We produce a graph

containing both x + y = 6 and xy = 1, i.e., the constraint and an arbitrary level curve

of f(x, y).

1 George Polya, Mathematics and Plausible Reasoning, Vol. 1, Princeton University
Press, Princeton, NJ, 1954.
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'PPAR' PURGE CONIC

X + Y - 6 'CONSTR' STO

'K' PURGE 'X*Y - K' 'FUNCL' STO
{ 'CONSTR' 'FUNCL'} 'EQ" STO

1 'K' STO DRAW
= !¥

Of course, xy = 1 is not tangent to the constraint x + y = 6 at any point. We can

choose a more appropriate level curve of f(x, y) = xy by moving the cursor to a point
on the constraint x + y = 6 where we think some level curve is tangent. Capture that

point with the menu key (x,y) and then continue. (Our guess resulted in (3.1, 2.9). )
ON OBJ- x 'K' STO ERASE DRAW

This will produce something like the following:

I N

The picture strongly suggests that (3.1, 2.9) is either a point of tangency or near
such a point. To check this, we can zoom in by setting the center at (3.1, 2.9) and

repeating the process from the top.
Exercise. Find the minimum of x2 + y2 on the curve x =y2 + 1.

Example. Find the distance from the point (1, 2) to the curve y = x3 - 3x2 + 2x. It is
sufficient to find the point that minimizes the square of the distance. This latter

problem can be stated as:
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Minimize: f(x,y) = (x - 1) + (y - 2)2
Subject to: g(x,y) =y-x3+3x2-2x=0

The method of Lagrange multipliers leads to a system of polynomial equations with
no rational solution. Let us try the graphical method outlined above.

'PPAR' PURGE -6.8 68 XRNG -1 2.1 YRNG
X*X - D*(X - 2) - Y 'CONSTR' STO
'K' PURGE '(X-1) x2 (Y-2) x2 + K -
'FUNCL' STO

{ 'CONSTR' 'FUNCL'} 'EQ STO

1 'K' STO DRAW

This produces something like the following:

N

Use the cursor to estimate the point on the curve nearest (1, 2), for us (2.4, 1.8). We
use CENTER ZOOM to move in on the region of the graph of most interest. We

further update the graph as follows:

OBJ- 2 -5ARRY 1 2 2 5ARRY - DUP DOT 'K' STO
ERASE DRAW

This produces the following:
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The current estimate of the minimum seems pretty good, but we can improve our
estimate by repeating the process with a better guess. Our current estimate of the

distance is the square root of K, i.e., 1.50.
Exercise. Find the distance from the point (1, 2) to the curve y = In x.

Example. We want to find a graphical solution to a more difficult version of the
milkmaid problem. Suppose a house is located at P(0, 1), a barn at Q(-2, 1) and a
river bank is given by y = sin x. If each morning the milkmaid walks in a straight
line from the house P to a point R on the riverbank to fill her pail and then in a
straight line to the barn Q, the total distance she must travel is d(P, R) + d(R, Q).
The problem is to choose the point R on the riverbank that minimizes the total

distance she must travel.
The problem can be stated as follows:

Minimize: f(x,y) = ((x + 22 + (y - D?)V2 4+ (x2 + (y - 1)2)1/2
Subject to: g(x,y)=y-sinx=0

The method of Lagrange Multipliers leads to some difficult equations. However, the
graphical method outlined above works reasonably well.
The level curves of the distance the milkmaid walks are ellipses. Recall from

(x-h)2 (y-k)?
al tT

the derivation of the general form = 1 of an ellipse with major axis

horizontal that for this problem (h, k) = (-1, 1), 2a is the distance the milkmaid
walks, 2¢c = 2 is the distance between the house and barn (the foci), and b? = a2 - 1.

The calculator analysis proceeds as follows:
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'PPAR' PURGE FUNC 'SIN(X)' 'CONSTR' STO
'K PURGE X' 1 + x2 'K' x2 + Y1 -x2 'K x2
1-+ +1-"'Y 2 TAYLR 'Y QUAD (Edit the
result to eliminate Y =) 'FUNCL' STO

{ 'CONSTR' 'FUNCL'} 'EQ' STO

1 's' STO 1.5 'K' STO ERASE DRAW

The graph looks something like.
/ \

Use the cursor to capture a guess for the point that minimizes the distance and then
BOXZ to bracket the region of interest. Our guess is (.2, .3). To compute the updated
K proceed as follows:

OBJ— 2 —ARRY DUP 0 1 2 -ARRY - DUP DOT vx
SWAP 2 +/- 1 2 -ARRY - DUP DOT vx + 2 + 'K' STO
ERASE DRAW

The graph looks something like this.

Of course, the estimate can be improved by repeating the above process.

Exercise. Find a graphical solution to the milkmaid problem, given that the house

is at (0,1), the barn at (0, 2) and the river bank is given by y =In x.
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2.3 Integration

There are two approaches to numerical integration on the HP-48: using the
stack or the Equation Writer. Both require setting the numerical mode (Enter -3 SF)
and specifying an accuracy factor. The latter is specified by setting the display
mode to n FIX , where n is number of decimal digits to be displayed. In the

examples and exercises, we suggest n = 3 to avoid lengthy calculation times.

Integration on the stack requires the following arguments.

Integral
level 4 level 3 level 2 level 1 level 1
a b f(x) 'x' = integral

Examples

2r
1) Use [ to evaluate V2 o" V1-cos dt.

3 FIX 2 Vx
02't -NUM x "1 - COS(T) Yx 'T
-3SF| -3 CF

Notice that we wanted the symbolic mode (-3 CF) in order to construct the integrand
using the symbol capabilities of the machine. We will assume from this point that

the accuracy factor has been set.
The following program is convenient.

Integral
level 4 level 3 level 2 level 1 level 1

a b f(x) 'x' = integral
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IGL:
<< DUP PURGE SWAP | Evaluates the nested
EVAL EVAL SWAP | functions down to the
I variable of integration.
-3 SF | -3 CF | Evaluates the integral
>> Inumerically. If an error
| occurs reset the symbolic
Imode.
2) Compute the circumference of the ellipse given parametrically by x =
2cost,y=sint 0<t<2nm
02'w 5NUM x '4 * SQGSIN(T) + SQICOS(T Vx 'T' IGL
Exercises

1) Compute the circumference of the unit circle using the standard

parameterization.
2) Compute the length of the parabola y = x2 from ((1, 1) to ( 3, 9).

3) Compute the surface area of the figure generated by revolving about the x-

axis thecurvey =Inx, 1 s x 2.

4) Compute the surface area of the figure generated by revolving about the x-
axis the curve parameterized by x =2,y =83,0<t< 1.

Example 3. Compute the length of the curvey = —%5 from (0, 1) to (3, 0.1). Enter
the following:

03'1+SQX) 1/x 'X' PURGE 'X' @ x2 1 + VYx 'X' IGL
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In the second approach to numerical integration use the Equation Writer to produce

J \/ 1+ SQ(ax — SQ(X)» dx.

Press ENTER to put '[(0,3,V (1+SQ(3X(1/(1+SQ(X))))), X) on stack
level 1. To evaluate the integral enter -3 SF - NUM -3 CF. Again the following

program is convenient.

IGLEW:
<< -3 SF -NUM -3 CF I If an error occurs reset

>> | the symbolic mode.
Exercises

5) Compute the surface area of the figure generated by revolving about the

x-axis the curve discussed in the example above using the Equation Writer.
6) Redo the previous set of exercises using the Equation Writer.

7) Compute the circumference of the circle given in polar coordinates by

r = sin 6. Which approach is easier to use?

1/x
Example 4. Evaluate j f \/x+y dydx. The Equation Writer produces
0 x

TCO, 1, J(X VXV (X+Y)Y)X)

Notice that, after executing IGLEW, the calculator takes a while to return the
answer of 0.152, about 12 seconds. Iterated integrals are harder to obtain numerically
than definite integrals for functions of a single variable. Also, since the stack is
complicated you should DUP the argument on the stack before executing IGLEW.
The argument can also be edited.
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Exercises

8) Find the volume of the figure bounded by the planesx + y +z=1, x = 0,
y=0and z=0.

9) Find the volume of the figure bounded by z=0,x2 + y2 =1and z = x2 + y2.

10) Compute the mass of a flat plate, the quarter disk x2 + y2< 1, x 2 0 and
y 2 0, with density p(x, y) = xy.

SECTION 3. VECTOR FIELDS AND LINE INTEGRALS
3.1 Vector Fields

A vector valued function defined on a subset of R®, n > 1, is called a vector field.
Similarly, a scalar valued function is called a scalar field. We will use a standard
notation, namely, f(x, y) = P(x, y)i + Q(x, y)j. Of course, f is a vector field with

component functions P and Q, which are scalar fields.

If a constant force c (constant in both direction and magnitude) is applied is
applied in moving a particle along a straight line (the x-axis) from a to b (a < b)
then the work W done is c(b - a). Notice that if c is positive then W is positive and
the physical interpretation is that we have done work on the system. If c is

negative then the system does work on us.

Any problem where motion is in a straight line and the force acts in a direction
parallel to the direction of motion can be recoordinatized to fit our standard

formulation.

Suppose the particle is to be moved from P = (a, b) to Q = (c, d) along the
straight line connecting P and Q, but the force f no longer is assumed to act in a

direction parallel to u =[c - a, b - d]. The component of the force in the direction u is
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given by (f-u)/|lu|l. The distance traveled in moving from P to Q is |lull. Hence the
work done is ((f-u)/lulDllull = f-u.

Example 1. Compute the work required to move a particle in the force field

illustrated below from the point P to the point Q.

| %l
AREAnE
7

BaE
{' %l

Vi

4

NS
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0 BV VRV - )
The force field is constant, say f = (1/4)i + (1/4)j. The path the particle must travel
can be split up into two parts, from P = (0, 3) to (3, 3) and from (3, 3) to Q = (3, 0).
The total work W is the sum of the work on each part. Let u =3iand v = -3j. The
force to be exerted in moving the particle must balance the force exerted by the field,
i.e., the force exerted in moving the particle must be -f. Thus W = -fu - f-v = (3/4) +
(3/4) =0.

Example 2. The picture below represents the force field f = (1/(1 + x))j. Compute
the work done in moving a particle around the path PQRSP.

Of course, in moving from P to Q and from R to S, no work is done. Again, a

force which balances the field must be exerted on the particle, but work is the
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component of the force exerted in the direction of motion. On those two segments of
the path the force is orthogonal to the direction of motion so no work is done.
Assume that P = (1/2,1),Q=(17/2,1),R=(17/2,6) and S = (1/2, 6). Let u =5j and
v = -u = -5j. Since the field on the path from Q to R is £f( 17/2, y) = (2/19)j and from
Sto P is £(1/2, y) = (2/3)j, we have W = £(17/2, y)-u - £(1/2, y)-v = (10/19) + (10/3) =
160/57. Note that in moving from Q to R the system does work on us. From S to P we
do work on the system. Since the total work is positive, we do work in traversing

the path PQRSP. If we move in the opposite direction PSRQP then the system does

net work on us.
N
BTTTt?ttfu
N
sT T * ¢+ t 1 + R
N
T T 1 v v v o o]
N
T 1t v o o e o]
N
T 2t v v v ]
N
Tt ¢t v v v v 2]
N
T v v v 0 v |
N
PT * ¢ 1t ¢+ t 1+ 1Q
0 10

Exercise 1. Show that W = 0 if the particle is moved in a straight line from P to Q.

Exercise 2. Which path, PQR or PSR, requires the most work to move a particle
from P to R?

Of course, in order to construct a vector field f(x, y) = P(x, y)i + Q(x, y)j one
only has to specify P and Q. An interesting way to do this is to start with a function
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z=g(x, y) and let f = Vg = [g,, g,]1 = g,i + g,j. A vector field defined this way is
called a gradient field. Consider the surface below, given explicitly by z = x2 - y2.

The surface with attached gradient field appears below. All vectors have been

normalized to simplify the picture.
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Exercise 3. Use the fact that a gradient vector at a point is normal to the level
curve through the point to add normalized vectors to the level curves of z = x2 - y2

given below and recapture the previous picture. Remember which direction is up

N7/
2K

Exercise 4.  Produce the gradient fields for z = y? and z = x2 + y2.

3.2 Line Integrals

We use the numerical integration program IGL to compute the various line
integrals in the next three examples. Notice that the calculator performs the task of
constructing the integrand symbolically from the pieces, i.e., P(x, y), Q(x, y),
x = x(t) and y = y(t). In fact, the keystrokes for computing much more complex line
integrals differs very little from these simple examples.

Example 1. szy ds;C: x=cost, y=sint, 0st<z/2

'XA2*Y 'P' STO
'COS(T) 'X' STO
'SIN(T) 'Y’ STO
'T" PURGE
0'x'2+ P

X T 9 x2

Y T 9 x2 * X x
'T IGL
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Example 2. LI (x2y dx + xy dy); C: x2 +y2 =1 from (1,0) to (0, 1).

C:y=V1-x2,0sx<1
XA2*Y 'P' STO
'X*Y 'Q STO

(1 -XA2)A5 'Y STO

10

P' 'Q 'X' PURGE
Y 'X' 9 x +

'X' IGL

C: x=cost,y=sint,0<st<m/2
XA2*Y' 'P' STO

X*Y 'Q STO

'‘COS(T) X' STO

'SIN(T) 'Y STO

0'n' 2 +

'T" PURGE P
X' 'T" 9 x
QY T 9 x +
'T" IGL
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Example 3. JF-dr;F(x,y)-(x+2y)l+(2x+y)],C: ri)=ti+2j,0<t<1.

X + 2*Y 'P' STO
2*X +Y 'Q STO
T 'X' STO

TAZ 'Y STO

01

T PURGE

P X T 3 x
QY T 3 x +
T IGL

Exercises

1) Computeé F-drgiven F(x, y) = (x + 2p)i + 2x + y)j, C: x=V2t, y =2
sint, 0 < t < n/4. Compare with Example 3.

2) Computet[ F - dr given F(x, y) = x2yi + xy],C=C, +C,, C;: x =1 +
(V2-2t/2,y=V2t/2,and C,;: x=V2(1-0 /2,y =V2(1-1) /2 + t.

Compare with Example 2. What happens as C is approximated with shorter
straight line segments?
Example 4. Compute‘:[ F - dr, where F(x, y) = xyi + (x - y)j, and C is given in polar

coordinates by r = cos 6.

Here, our first task is to obtain a parametric representation of C in rectangular
coordinates. This is easily done since x(8) = r(8)cos 6 = cos?(6) and y = r(6)sin 6 =

cos 0 sin 0.
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'X*Y P STO

X-Y 'Q STO
SQUCOS(T)) 'X' STO
'COS(T)*SIN(T) 'Y STO
0'n'

'T" PURGE

PX T 9 x

QY T 9 x +

'T" IGL

3.3 Green's Theorem

Green's Theorem may be stated as follows: Suppose F(x, y) is a vector field,
ie., F(x, y) = P(x, yi + Q(x, y)j where P(x, y) and Q(x, y) are scalar functions
(fields). Assume that Py(x, y) and Qx(x, y) are continuous in a bounded region R
with a piecewise smooth boundary C that is oriented positively. (C is given
parametrically by r(t) = x(t)i + yt)j, a < t < b, and x(t) and y(t) are piecewise
smooth. Furthermore, as t varies from a to b, r(t) traces out C keeping R on the left.)
Then J Fedr = 'j", P(x, y) dx + Q(x, y) dy = | J [Qx, y) - Py (x, y)] dxdy.

Example 1. Use Green's Theorem to compute the area of the unit disc R. Since the

area is given by | ]{ dxdy, we can apply Green's Theorem provided P(x, y) and

Q(x, y) can be found so that Qx(x, y) - Py(x, y) = 1. Of course, this can be done in
many ways. Why not P(x, y) = 0 and Q(x,y) = x? The boundary of the unit disc R is
the unit circle C, which can be parameterized with r(t) = (cos t)i + (sin t)j, 0<t<

2x. Hence the area is

2 . 2
2
J xdy=of (cos t)?2 dt=(t§ +s“l t) (|’=1|:
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Example 2. Find the area inside the loop of Tschirnhausen's cubic C parameterized
by r(t) = (2 - 3)i + (2/3 - 1)j, -3 <t < 3. The curve C looks something like

We need to restrict the range of t to the values that give the boundary of just the
loop, call it C;. This can be done by solving x(t) = y(t) = 0. Clearly, t = 43, ie.,
we restrict the parameter to the interval V3 < t < V3. Check to see that the loop
(the boundary of the region inside) has a positive orientation. The area is then
given by

% "
t5  sin4t
| xdy=_:|/;.(t2-3)(t2-1) at=(5+ T3 e at) L=

Example 3. Find the area of the four loops in the hypotrochoid C given
parametrically by r(t) = (6cos t + 5cos 3t)i + (6sin t - 5sin 3t)j, 0 <t <2r. The figure

looks something like

The loops are all equal. The boundary of each loop is negatively oriented. Only the
boundary of the little region in the center of the figure is positively oriented. Let's
work with the top loop. The first step is to restrict the range of the parameter and
call the resulting boundary C1. We need to solve the equation x(t) = 6cos t + 5cos 3t =

0. Using the calculator, proceed as follows:
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'6* COS(T)+5+COS(3+T) 'EQ STO
'PPAR' PURGE DRAW

The resulting picture isn't much help, but you can improve it by changing the
plotting parameters. Use the cursor and the (x,y) menu key to capture the bottom of
the y-axis. It should be approximately (0, —3.1). Store the result in PPAR by hitting
PMIN. Redraw the graph. Again you probably want to change PPAR. This time
move the cursor to the top of a vertical line just to the right of the first two zeros,
say (2, 3.2). Capture this point with the (x,y) key and store in PPAR with PMAX.
Now we can estimate the first two zeros of x(t), i.e., the beginning and end of the top

vertical loop of the hypotrochoid.

We use ROOT to estimate the two zeros more accurately. My answer comes
back as 0.83548. Repeating this process for the zero on the right (remember to
capture your best guess of the zero first) I got 1.5708. Of course, the true answer is
n/2. The area is

15708
I xdy = I (6cos t + 5 cos 3t) (6cos t - 15cos 3t) dt
83548

which can be evaluated as follows: (assuming that the two zeros we found are still
on the stack)

'6*COS(T) + 5+COS(3+T) '6*SIN(T) - 5+SIN(3*T)
'T" PURGE 'T" @ x 'T" IGL

The answer returned is -15.831. We're trying to find an area and we've ended up
with a negative number. What's wrong? As noted earlier, C1 has a negative

orientation, so the area is 15.831. The area of the region bounded by the four loops is
63.324.
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Exercises.

2 g2
1) Compute the area of the region R bounded by the ellipse % + % =1. Our

standard parameterization of the boundary C of R is given by r(t) =
(3cos t)i + (2sin t)j, 0<st<2x;.

2) Find the area bounded by one arch of the cycloid generated with a circle
of radius one and the x-axis. The portion of the cycloid of interest, call it
C,, is parameterized by r(t) = (t - sin t)i + (1 - cos t)j, 0 <t < 2x. For the
relevant portion of the x-axis C; use R(t) = ti, 0 < t < 2x. The boundary of
the region C with positive orientation then becomes C = C; - Cj.

Sometimes one side of the equation in Green's Theorem is easier to evaluate
than the other. This usually comes about because the integral on one side or the
other is easier to set up.

Example 4. Evaluate | l{ y - x dxdy, where R is the region bounded by the curve C

given in polar coordinates by r(8) = 2 - cos?(36). The region looks something like

S ko
S

Clearly, the 'snowflake' region R would be difficult to describe in rectangular

coordinates. We proceed as follows:
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X#*Y' ENTER 'Q STO 'P' STO
2 - COS(3+T)A2

ENTER 'COS(T) x 'X' STO
SIN(T) x 'Y' STO

'T" PURGE 0 6.3

P X T 9 x

Q'Y T 9 x +

'T" IGL

After a wait of some time the answer 0.000 returns.
Exercises.

3) Integrate y - x over the region bounded by the loop of Tschimhausen's cubic
parameterized by r(t) = (£ - 3)i + (/3 - t)j, -3 <t < 3. (Use the boundary
C; developed in Example 2 above.)

4) Calculate J x dy, where C is the polygonal path from (0, 0) to (1, 0) to

(1, 1) to (0, 1) to (0, 0).
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HP-48G/GX Calculator Enhancement
for

Differential Equations

T. Gilmer Proctor

How can a graphics calculator be used effectively in an elementary differential
equations course ? We will only give a partial answer here: hopefully you can add to
our comments after some experimention with the exercises that are provided in this
chapter. Students learn early in such a course that important mathematical models for
scientific problems often contain differential equations and that particular solutions of
these equations describe the behavior of the model. The problem solver often has some
intuition concerning how the system should behave and the graphical properties of a
single solution or a family of solutions are an important clue to the correctness of the
model and provide qualitative properties of the solution. Even if analytical
expressions can be obtained for the solutions, their graphs may reveal behavior a

scientist may not discover from these expressions.

The HP-48G/GX calculator is a great graphics and computational tool in this
course. It can be can be used in class to illustrate concepts. It can be used for homework in
the study areas that students use: libraries and dormitory rooms. The graphs and
computations that are created on the calculator by the students can be stored or
recreated on a microcomputer. This chapter contains only some of the possible uses of
this tool and illustrates the material which my students have been given in every
differential equations class for the past five years. Some of the material is taken from

[1], but most of the exercises and presentations are new. Our

123
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presentation does not require that the reader be a good HP 48 programmer since
nearly all of the programs are explained within this chapter.

Distinctive features of the HP-48G/GX include built-in programs for calculating
and displaying in the same graph approximate solutions to one or more initial value
problems containing differential equations. To emphasize the statement given above,
the capability to easily display solutions of several problems allows the student to
study how the solutions depend on various parameters and to focus on geometrical

characteristics of a system.

The first section of this chapter describes programs that have been provided for
obtaining approximate solutions of initial value problems. The next section describes
elementary algorithms (the Euler and improved Euler algorithms) for obtaining
approximate solutions and gives elementary calculator programs to compute and plot
these solutions. This material is included so that the user will become accustomed to
programming. We do not give programs using higher order numerical methods for
differential equations such as the Runge-Kutta algorithms. The third section
contains examples and exercises to illustrate graphical study of the characteristics of
solutions obtained in the portion of the course dealing with first order differential

equations.

The fourth section of the chapter concerns the solution of two first order
differential equations with initial conditions. Exercises are provided to aid in the
study of the solutions of the second order differential equations encountered in linear

and nonlinear models of mechanical springs and electrical circuits.

The fifth section contains programs that construct solutions of linear vector

systems of differential equations of the form dy/dt = A y + f(t). Finally the
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appendix contains a set of programs that can be used to sketch the direction field for
a pair of differential equations.

SiAY -~ G
- N wlw -~y )
: \~~ﬁ~§§
¢ NN FEY- N E. Assorted Direction Fields
132388 @: Z E 2 with Solution Overlays
NI NI
X'+ 4xX +8.x=0

Many topics associated with an introductory course in differential equations are
not included. Among these are: discrete dynamical systems, delay differential
equations, parameter estimation using observations of the solution, and control

problems. Problems in these particular areas are presented in [1].

We suggest that the reader create a subdirectory for the programs contained in
the next section and a miscellaneous subdirectory which includes the programs in the

second section.
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1. Introduction to the Plot Feature for Differential Equations

Suppose we wish to plot an approximate solution of an initial value problem

& R
ac “F&y). yt)=y,
for some interval tg < t < t, where tf may not be predetermined. What inputs to a

calculator are required ?

e A program which gives the value of F when t and y are
specified.

¢ The initial quantities tg, yo and criteria for completion
(e. g. the final value of tg).

e The plot window must be specified and the plot screen may
have to be erased.

e It may also be necessary to specify an appropriate algorithm
for computing the approximate solution and any necessary
inputs to the algorithm such as a global error tolerance and a
starting value of the step size.

e The command to draw.

There are two methods on the HP-48G/GX to provide these inputs and obtain
the graph of an approximate solution. The built-in method prompts the user for the
necessary information with input forms and choose boxes. Alternatively, we can
construct a set of programs that take or generate some of the required inputs from the
stack and then call the basic algorithm in a plotting program. This alternative

method is particularly useful when only one or two of the inputs must be modified or
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when the stopping criterion is nonstandard. We will illustrate each of these
methods with exercises. The user must make a decision on the appropriate method

for the other exercises. We begin with the built-in method.

Open the PLOT application with PLOT. The cursor keys can then be used to
move around the screen and highlight the desired fields. Highlight the TYPE
field, press CHOOS, highlight DIff EQ and press OK. If the STIFF field is checked,
highlight it and press CHK to remove the check. This will cause the Runge-Kutta
Feldberg algorithm to be used for the initial value problem.

e Highlight the F field, type in the desired function F(T,Y) and
press OK.

e Set the INDEP variable to T and specify its initial and final
values. Set the SOLN field to Y and specify its initial value.

e Press OPTS, set the H-VAR (by pressing CHOOS, highlight
the desired field and OK) and the V-Var variables in a
similar manner, set the limits of H-VIEW and V-VIEW

e  Press ERASE and DRAW.

Exercise 1.1: Construct a graph of the solutionof y' + 3y =cos t, y(0) = 3 for0<t<
6.283 using the calculator's differential equation plot feature. Enter COS(T) - 3*Y in
the F field of the input form. (Note that the calculator automatically places this
function within ' marks.) Make sure T is the INDEP variable, the H-VIEW is set to 0
6.283 and the V-VIEW is set to -.5 .5, then ERASE and DRAW.

To get some confidence in the calculator solution, we can plot the exact solution
y = .3 cos(t) + .1 sin(t). Press ON to return to the PLOT application, change the
TYPE to Function, and enter .3*COS(T) + .1*SIN(T) as EQ. (Again the calculator
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places ' marks around the function.) In this case we want to overlay the new graph
on the old one so do not ERASE. Press DRAW. Note the good agreement between the

approximate solution and the exact solution.

Exercise 1.2: Construct a solution of y ' = sin (ty), y(0) = 2 for 0 < t < 6. Choose the
program 'SIN(T*Y)' (or << 'SIN(T*Y)' EVAL >>) and V-VIEW as 0 8. Now
overlay the solution of the same differential equation which satisfies the initial
condition y(0) = 4, then overlay a third solution of the same differential equation
which satisfies the condition y(0) = 6. (Note: We do not know a formula for the
exact solutions of this differential equation and this overlay process will be used

frequently in this chapter to indicate the sensitivity of a problem to its inputs.)

Exercise 1.3: Construct a graph of the solution of y" + 5y' +y =0, y(0) = 0, y'(0) =
1, for 0 < t <6.283. We convert this problem to a first order format using the
variables y and y' as components of a vector w = [y, y'l. Then w ' = [w(2), -(.5 w(2) +
w(1))] and w(0) = [0 1]. Our procedure calls for an appropriate F function which in
this case will be a 2-vector. Then we provide the program << 'W(2)' EVAL
'.5'W(2)+W(1)' EVAL NEG 2 —ARRY »>> for F together with the INDEP variable
name W and the INIT vector [0 1] for SOLN. If we want a graph of W(1) versus X
we choose INDEP for the H-VAR and SOLN(1) for the V-VAR on the OPTS page.
V-VIEW should be set at -.8 .8. (If we want a W(1) versus W(2) graph we choose
SOLN(1) for H-VAR and SOLN(2) for V-VAR on the OPTS page.)
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X" + 49x = 12 cos (5¢), x(0) =x'(0) =0

Exercise 1.4: The figure shown above is a graph of the solution of the indicated
problem for 0 < t < . What function F in the variables T and Y (vector with 2

components) is appropriate for the calculator input form ?

Hewlett Packard has also provided several "smaller” programs that perform
either indivdual or multiple steps in either of two basic algorithms for
approximating the solution to a differential equation. These programs can be
embedded in user programs to produce variations of the basic program described
above. The advantages gained by this process include some speedup when most
parameters are already set and any modifications of the basic problem not treated
easily by the first method. For example, the final time tf may be "when some

condition is satisfied" rather than a simple number which is known beforehand.

The user can construct programs that ask the user for part of the total
information required for a solution plot. For example, the first program IN.FN asks
the user to write a program for the function F(T,Y) (in variables T Y) which is then
stored in FN.
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Program Name: IN.FN
Purpose: The user supplies a program which is stored in FN
Stored Quantities: none

No input is required. The appropriate response is a program.
<< (1] ENTER PRG FOR FN lN T Y" " "
INPUT OBJ— 'FN' STO »>>

Example repsonses might be << '-T*Y' EVAL >> ( or the reverse Polish notation
program << T Y *NEG »>>) for the function F(T,Y) = - T*Y or

<< 'Y(2)' EVAL 'Y(1)’ EVAL NEG 2 —ARRY >>
for the function F(T,Y) = column [Y(2), -Y(1)].

The next program asks the user to set the viewing window for the plot.

Program Name: INPP  (plot parameters)
Purpose: The user supplies XRNG and YRNG
Stored Quantities: none

No input stack is required. The appropriate response for the first
query is a pair of numbers, H-min and H-max. The response for the
second query is a pair of numbers V-min and V-max.
Output: New values for XRNG, YRNG. PICT has been erased.
<< " KEY IN XRNG" " " INPUT OBJ— XRNG
" KEY IN YRNG" " " INPUT OBJ— YRNG ERASE >>

Note: The reader has probably correctly inferred that the commands XRNG and
YRNG set the H-VIEW and V-VIEW variable ranges.
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We wish to present a program to give a composite graph in the (T, Y) plane for a

differential equation with one or more initial conditions such as indicated in the

figure shown below.

} /\2_/'r

Solutions of Y' = SIN(T"*2-Y*2)
withY(-2)=-3and Y(-2) =-1.5

The following program contains the basic ingredients of a user plotting program. The

number 1 in the name indicates that the program is for a scaler differential equation.

The TY desination indicates that the plot is a (T, Y) plot.

Program Name: G1.TY
Purpose: Generatea T Y graph of the solution to Ty
Stored Quantities: XRNG YRNG FN TOL HS
Input level 3 level 2 level 1
To Yo Ty

The output stack is empty, the variables T Y contain updated values.
<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO'T STO
- TF << {T YFN } TOL HS T Y R-C 4 ROLLD DO
RKFSTEP T Y R—C DUP 6 ROLLD 5 ROLL LINE DUP T +
TF UNTIL > END TF T - RKFSTEP T Y R—-C DUP 6 ROLLD
5 ROLL LINEDROP TF T - RKFSTEP T Y R—-C 5 ROLL
LINE 3 DROPN >> PICTURE >>
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Notes: Typical numbers for HS and TOL are .005 and .00005 and are to be stored
before execution of this program. If the user wants other names for the variables
other than T Y FN, such changes can be made by substituting for { T Y FN}, T,
and Y, the desired alternate notation. The command RKFSTEP invokes the built-in
Runge-Kutta-Feldberg program for one step.

Exercise 1.1a: Construct a graph of the solutionof y ' + 3y =cos t, y(0) = .3 for0 < t
< 6.283 using the programs described above. Execute IN.FN, respond by typing
<< 'COS(T*Y) - 3'Y' EVAL >> and press ENTER. Execute IN.PP, respond by
typing 0 6.283 and ENTER, respond by typing -5 .5 and press ENTER. Put0 .3
6.283 on the stack and execute G1.TY. As in exercise 1, plot the exact solution y =
3 cos(t) + .1 sin(t). Press EPLOT, change the TYPE to Function, and enter
3*COS(T) + .1*SIN(T) as EQ. In this case we want to overlay the new graph on the
old one so do not ERASE. Now press DRAW. Note the good agreement between the
approximate solution and the exact solution.

Exercise 1.2a: Construct and graph solutions of y ' = sin (t!3yR), y(0) = 2 for 0 < t <
8 when R has the values .75, .5 and .33, in the same picture as follows: Execute
IN.FN, respond by typing << 'SIN(TA1.5*'YAR)’ EVAL >> and press ENTER.
Execute IN.PP, respond by typing0 8 and ENTER, respond by typing 0 4 and press
ENTER. Put .75 on the stack and press 'R’ STO, then put 0 2 8 on the stack and
execute G1.TY. Now put .5 on the stack, press ‘R' STO then put 0 2 8 on the stack
and execute G1.TY. Finally put .33 on the stack, press 'R' STO, put0 2 8 on the
stack and execute G1.TY. Notes: Here we are observing the solution for three values
of a parameter. The process of storing a value for R and placing appropriate input on

the stack for the graph program can be abbreviated in various ways. For example,
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store the program << ‘R' STO 0 2 8 >> under a name, say P.1. Then put one of
the values of R on the stack, execute P.1, then execute G1.TY, etc.

Suppose that the user wants to plot (T, Y(1)) for a vector system, say with
vectors Y and FN. We will call the program G.01 where the 0 represents the T
variable and the 1 represents the Y(1) variable. The modification consists of changes
made to G1.TY in four locations in which the Y number in G1.TY is changed to
'Y(1)' EVAL . The user can avoid retyping the whole program by pressing 'G1.TY'
RCL, EDIT, typing the corrections, pressing ENTER, then 'G.01' STO.

Program Name: G.01
Purpose: Generate a T Y(1) graph of the solution
to T
Stored Quantities: XRNG YRNG FN TOL HS
Input level 3 level 2 level 1
To vector Yo Ty

The output stack is empty, the variables T and Y contain updated values.
<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T
STO - TF <<« {T Y FN } TOL HS T 'Y(1)) EVAL R-C 4
ROLLD DO RKFSTEP T 'Y(1)) EVAL R—»C DUP 6 ROLLD §
ROLL LINE DUP T + TF UNTIL > END DROP TF T -
RKFSTEP T 'Y(1)' EVAL R—»C DUP 6 ROLLD 5 ROLL LINE
DROP TF T - RKFSTEP T 'Y(1)) EVAL R-»C 5 ROLL
LINE 3 DROPN >> PICTURE >>

Exercise 1.3a: Construct a composite graph of the solutions of x" + R x' + x = 0, x(0)
=0, x'(0) = 1, for 0 < t <6.283 when R = .5, when R= 2 and when R =2.5. We convert

this problem to a first order format using the variables y and y' as components of a
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vector y = [x, x']. Theny ' = [y(2), (R y(2) + y(1))] and y(0) = [0 1]. Our procedure
calls for an appropriate F function which in this case will be a 2-vector. Then we
provide the program << 'Y(2)' EVAL °'R'Y(2)+Y(1)' EVAL NEG 2 —ARRY >> as
a response to the query in the IN.FN program and the responses to set 0 6.283 for
XRNG and -.8 .8 for YRNG in IN.PP. We store the value .5 in the variable R and
place the objects 0, [0 1], and 6.283 on the stack and execute G.01. We change R to
each of the numbers 2 and 2.5 and place input quantities 0, [1 0], 6.283 on the stack

and execute G.01 twice more to overlay graphs of the other two solutions.

A similar change to G.01 gives the plot program G.12 in which the component
Y(1) of the solution is plotted against the component Y(2). The change is made in
four places and commands T 'Y(1)’ EVAL are changed to 'Y(1)’ EVAL 'Y(2)'
EVAL.

Program Name: G.12
Purpose: Generate a (Y(1), Y(2)) graph of the solution
from T, to T¢
Stored Quantities: XRNG YRNG FN TOL HS
Input: level 3 level 2 level 1
Ty vector Yo T,

The output stack is empty, the variables T and Y contain updated values.
<< { #0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T
STO - TF << {T Y FN } TOL HS °'Y(1)' EVAL 'Y(2)
EVAL R—5C 4 ROLLD DO RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL
R—C DUP 6 ROLLD 5 ROLL LINE DUP T + TF UNTIL >
END TF T - RKFSTEP 'Y(1)' EVAL 'Y(2)) EVAL R-C DUP
6 ROLLD 5 ROLL LINEDROP TF T - RKFSTEP 'Y(1)' EVAL
'Y(2)' EVAL R—»C 5 ROLL LINE 3 DROPN >> PICTURE >>
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For consistency, from this point we will use notation as follows: for first order
differential equations, Y will be the dependent variable and T will be the
independent variable. For higher order differential equations, x will be the
dependent variable, t will be the independent variable and we will reserve Y as a

vector with components which may be constructed from the x, x', etc. variables.

Exercise 1.5: Construct an x vs x' graph of the solution of x" + .5 x' + x = 0, x(0) = 0,
x'(0) = 1, for 0 <t <6.283. As before, for vector y = [x, x'] we have
y ' = [y, -(5y@2 +y1)], y) =[01].
An appropriate F function is given by the program << 'Y(2)' EVAL '.5*Y(2)+Y(1)’
EVAL NEG 2 -5 ARRY >> with the INDEP variable name Y and the INIT vector [0
1] for SOLN. We choose SOLN(1) for H-VAR and SOLN(2) for V-VAR on the OPTS
page. HVIEW should be set at -1 1 and V-VIEW should be set at -.8 .8. ERASE and
DRAW. This approximate solution of the differential equation can be compared to
the exact solution by overlaying the parametric curve
e~25t 10328 (sin(.9862t)+i*(.9862 cos(.9862t) - .25sin(.9862t))).
on the same picture. (Use Parametric type in the PLOT environment.) The user
should notice that the graph of the approximate solution consists of a set of points
((y1(t)) , y2t) ):1=1,2, ..}
connected with straight lines. The parametric plot also has this form; however, the

points are spaced much closer.

We recommend that the user create a subdirectory for the programs in this
section. A possible subdirectory name is DE.1. This subdirectory should contain the
programs G.12, G.01, G.TY, IN.FN, IN.PP, T, Y, FN, TOL, HS, EQ, and PPAR in
this order. The subdirectory can be created by placing the name 'DE.1' on the stack,
then pressing MEMORY, pressing DIR, then CRDIR. To obtain the desired
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order, press { and enter the program names in order, press ENTER, then ORDER
(located in the same MEMORY DIR menu).

2. Elementary User Programs

We present several user programs that are useful in a differential equations
course. The students should have some experience with algorithms used to calculate
approximate solutions to initial value problems containing differential equations and
with programs to implement these algorithms. The simplicity of the programs
presented here should help the reader whenever more complicated programs are

required for other purposes.

The Euler algorithm for the solution of an initial value problem results from
assuming the slope of the solution of a differential equation dy/dt = F(t,y) is well
approximated by the constant F(t,, y,) in the interval t, <t < t, + h and the
algorithm is given by t,,, =t, + h, y,,; =y, + hF(t,, y,) . (Here y, is the
approximation of y(t,) and it is assumed that initial values t, and y, and the step
size h are given so the algorithm may be initiated.) Our program is called EULER
and takes t, y from the stack and returns the results of a single step using Euler's
algorithm. It will use the step size H, which is stored, and a stored program F.N

that takes t,y from the stack and returns F(t,y).
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Program Name: EULER

Purpose: Generate new values of x and y resulting from
one step in the Euler algorithm.

Stored Quantities: H F.N

Input Output
level 2 level 1 level 2 level 1
tn yn tn+1 yn+1

<< DUP2 FN H * + SWAPH + SWAP >>

Notice that the structure of F.N is different from the FN program given in the first
section of this chapter. F.N requires input from the stack, whereas the programs for

FN in section 1 require stored values for t and y.

The reader should test this program using the F.N program << — T Y 'Y’ >> for
the step size .1 stored in H and initial conditions y(0) = 1. (Put 0 1 on the stack and
execute EULER EULER EULER, etc.) Note: Here we are solving y' =y, y(0) = 1,

using steps H = .1 and obtain the following results:

t y t y t y

1 1.1 4 146 7 195
2 1.21 5 1.61 8 2.14
3 1.33 6 1.77 9 2.36

and y at t = 1.0 is 2.59, a crude approximation of 2.718....

Exercise 2.1: To obtain approximate values of the solution of y' = sin(ty), y(0) = 3,
enter the program F.N givenby << = T Y 'SIN(T*Y)" >>, put initial values 0 3
on the stack and execute EULER, EULER, etc. You should get .1 3, then .2 3.03, then
3 3.09, etc. (Make sure the calculator is in RAD mode.)
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Suppose we want to execute EULER, say, N times and observe the output only at
t =ty + NH. The following program, called RPT (for repeat), requires that N be
stored, requires initial values of t and y as input, and outputs the final values of t
andy: <<1 N START EULER NEXT >>.

The Improved Euler algorithm is another method for approximating the
solution of an initial value problem. The method results from assuming the slope of
the solution is well approximated by the average of f(t,, y,) and a guess at

f(ty,1, Yk,q) in the interval t, <t <t, + h. The algorithm is given by
teer = b+ Yigy = yic + D, yi) + fte,y, yicrhiCt, yi0)1/2.

(Again y, is the approximation of y(t,) and t,, y, and h are given so the algorithm
may be initiated.) This program is named IULER and takes t y from the stack and
gives (t+h)  (y+h*[f(t,y)+f(t+h,y+h*f(t,y)]/2). Note EULER is part of this program.

Program Name: IULER

Purpose: Generate new values of x and y resulting from
one step in Improved Euler algorithm.

Stored Quantities: H F.N EULER

Input Output
level 2 level 1 level 2 level 1
t, Yn tha Yn+1
Instruction Resulting stack
<<DUP2 DUP2 EULER t y ty tth y+hf(ty)
F.N 3 ROLLD t y f(t+h, y+hf(ty)) t y
FN + 2/ t y (f(t+h, y+hf(t,y))+f(ty)) /2

H*+ SWAP H + SWAP [y+h*{ f(t+h,y+h*f(t,y))+f(t,y)}/2] t+h

b ed




DIFFERENTIAL E QUATIONS 139

Just as in the EULER program we require that the program F.N and the step size
H be stored before execution. A multiple step program can be obtained by substituting
IULER for EULER in the program RPT given just after exercise 2.1.

Try IULER using the F.N program << — T Y 'Y’ >>, H =.1 and initial data
0 1. Execute 9 times. You should get 1 2.7140808— . (Euler gives about 2.593742--,
not nearly so good an approximation of e = 2.71828—.) In general, the improved Euler

method can be shown to be a better approximation when h is small.

How is an appropriate value of h chosen? If it is decided to use a constant step
size throughout the interval of interest [t,, x;], one common way to select h is to try a
nominal size of h, say (t - t5)/50, and calculate the solution approximate y; at t;.
Then reduce h by half and recalculate the approximate at t,. If the values agree to
your satisfaction (for example, to three decimal places), use the last set of values

obtained; if not, reduce h by half and try again.

This is a good time to check on the accuracy of the built-in differential equation
algorithm used by the calculator. Press SOLVE, use the E arrow key to

select Solve DIff eq..., press OK, enter the F function Y, set the range of the
independant variable to 0 1 and set the initial value of the solution to 1. Move the
cursor to FINAL and press SOLVE. Press the ON key and you should see the value
2.718... on the stack. Put 1 on the stack, press the eX key and subtract to see the
apparent error -.000019... This error was achieved with the default tolerance .0001.
The performance of the differential equation algorithm depends on the problem and

is not always this good.

A comment on the built-in algorithm for solving differential equations is in order

at this point. There is a default program based on the well known Runge-Kutta
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Feldberg algorithm which automatically selects step size to keep the perceived error
below the specified tolerance. There is also a second built-in calculator program for
solving stiff differential equations that we will discuss briefly later.

Exercise 2.2: Try EULER on the problem y' = (y2 + y)/t, y(1) = 1 with h = .2,
Execute 5 times, then reduce h to .1 and execute 10 times. Next execute from the
initial value 20 times with H = .05. What is being indicated ? Hint: this problem
can be solved exactly and has an asymptote at t = 2. Here F.N could be given by

<<= T Y "(YA2+Y)T' >

Exercise 2.3: Try the calculator's Solve diff eq... algorithm for the F function and
initial condition given in exercise 2.2 for the value of the solution at t = 2. Change
the tolerance TOL to .1 and try to SOLVE for FINAL. The calculator will take over
10 seconds and returns a value of 1743.5... If you change the value of TOL to .05 and
resolve for FINAL, the calculator will take over 20 seconds and returns a value of
2187.8... The long execution time tells us that the calculator is struggling to achieve
good results and in this case can not achieve accuracy for good reason.

Programs to obtain graphical output are easy on the HP-48. The following
program, which we will call GRAF, requires t, y, from the stack and uses IULER (or

EULER) to advance N steps of size H. (N is also stored.) The user should pre-enter
the numbers tmin tmax as XRNG and numbers ymin yYmax as YRNG for the graph.



DIFFERENTIAL EQUATIONS 141

Program Name: GRAF

Purpose: Graph N values of (x,y) obtained using
Euler algorithm

Stored quantities: N, H, F.N, IULER XRNG YRNG

Input Output
level 2 level 1 level 2 level 1
Y Yo N YN
and graph with cursor

<<{# 0d # 0d } PVIEW DRAX 1 N START IULER DUP2 R—C
PIXON NEXT PICTURE >>

GRAF contains a loop in which N new points (t,y) are calculated and plotted.
You may want to ERASE the graphics screen before executing the program. The
program EULER may be inserted in place of IULER so that GRAF uses whichever
algorithm is desired. Notice also that the last values of t and y remain on the stack

after GRAF is executed. To restore the stack screen, press ON.

As a footnote to this section, the following program can be used to remind the
user for the ingredients required for GRAF. As written, the user must enter an
expression for f(T, Y) (e. g. 'SIN(T*Y)) which will be stored by the program as
<< = T Y 'SIN(T*Y)" >> in the variable F.N. The program will also prompt for

initial conditions, step size, number of steps, etc.
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Program Name: INIT1
Initialization Program to set required ingredients for GRAF

<< "ENTERF.NINT,Y" " " INPUT OBJ— ‘FN(T,Y)' SWAP =
DEFINE "KEY IN # OF STEPS” " " INPUT OBJ- 'N' STO
"KEY IN STEP SIZE" " " INPUT OBJ— °‘H' STO "KEY IN
XRNG"” " " INPUT OBJ-> XRNG "KEY IN YRNG" ""
INPUT OBJ— YRNG "KEYININITIALT" "" INPUT OBJ-
"KEY IN INITIAL Y" """ INPUT OBJ— ERASE »>>

As we indicated in section 1, it is often desirable to plot solutions of several
initial value problems on the same graph. Of course, graphs can be combined simply

by not erasing the previous result.

Exercise 2.4: Consider the following differential equation together with several

initial conditions and plot the solutions on the same graph.

dy/dt = y(1-y), y(0) = .2, 4, .6,15
where the solutions are plotted for 0 < t < 5 and step size h = .05 is used. Try

FN: <<> X Y 'Y*(1-Y) >>.

Put 0 and .2 on the stack, then execute GRAF. (Remember H = .05 and N = 100 are
stored before execution.) Place another initial condition on the stack and add the
second solution graph. Notice the solution y = 1 is an attracting solution, i. e., nearby

solutions collapse to y = 1 as time increases.
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235 S

Five solutions of dy/dt=y (1-y)

3. First Order Differential Equations

Now that we have introduced the reader to the differential equation features on
the HP-48G series calculators and to the construction of some simple programs, it is
time to suggest exercises and activities that use graphical and numerical

computations to enhance the study of differential equations.

We will often be interested in constructing graphs of several solutions of an
initial value problem. The figure constructed above for the differential equation
y ' = y(l-y) is an example. It is often the case that there are solutions y(t) that
remain constant as time increases. Such solutions are called equilibrium solutions. In
the case just mentioned, the constant solutions are y(t) = 0 and y(t) = 1. Clearly the
solutions y(t) = ye of dy/dt = F(t,y), which are constant, satisfy F(t, ye) = 0. In fact,
any solution of this equation is an equilibrium solution. If we wish to understand
how solutions of a differential equation change as the initial condition y(0) is
varied, one of the first tasks is to find the equilibrium solutions. Moreover, if the
function F(t, y) is continuous and has continuous derivatives then solutions y1(t) and
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y2(t) which satisfy different initial conditions do not intersect; consequently, constant

solutions restrict where nearby solutions can proceed.

Exercise 3.1: Graph the solutions of the three initial value problems dy/dt = y2 (1 -
y2), that satisfy either y(0) = -1, y(0) = 0, and y(0) = 1 for 0 < t < 5 all in the same
picture. Then add the graphs of the solutions of the same differential equation that
satisfy y(0) = -.25 and y(0) = .25.

Exercise 3.2: Graph the solutions of the two initial value problems dy/dt = y(1-y),
y(0) = .25 and dy/dt = y2 (1 - y2), y(0) = .25 (graphic screen parameters 0 < "t" < 5
and 0 £ y < 1.2) on the same plot. In this case, we notice that the solutions are

similar. In which case is a change of concavity apparent ?

dy/dt=2sin(t-y) dy/dt = cos (.5ty)

The solutions of the two differential equations pictured above show interesting
structure. The straight lines y = t + a are solutions of dy/dt = 2 sin(t - y) for a =
3.665, a = -.524, a = - 2.618, or a = -6.81. (Make the transformation t - y = w to see
why.) Solutions starting near t = 0, y = - .524 collapse to the straight line solution y
= t - .524, while solutions starting near t = 0, y = - 2.618 are repelled away for the
straight line solution y = t - 2.618, etc. And even though the functions
y = (2n+D)x/t (n=0,%1,12,...) are not solutions of dy/dx = cos (.5ty), when t is
large such a function y has small derivative and we can see these approximate

solutions emerge for large t.
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Exercise 3.3: Plot the solutions starting from y(0) = -7.85, y(0) = -1.57, y(0) = 4.71,
y(0) = -1.9, y(0) = -2.5, y(0) = 2.5 and y(0) = 4.3 that satisfy the differential
equation dy/dt = sin (t-y) for 0 < t <8. Use vertical dimension to show - 8 <y < 8.
Hint: the transformation w = t - y gives a differential equation with equilibrium
solutions we = /2, 51/2, -3n/2, etc.

Exercise 3.4: Plot the graph of the differential equation dy/dt = sin (ty) with
initial condition y(0) = 3 with plot parameters to show 0 <t<6, 0 <y <5. Selecta
new starting point y(0) and add the new trajectory. (If we choose y(0) = 1.5, get the
new combination graph, then choose y(0) = 1 and get another combination graph, we

see the bottom two trajectories approach each other.)

The graphical study of solutions of dy/dt = sin(ty) led to an journal article that
gives mathematical proofs for some of the interesting behavior observed in the
graphs. See Mills, B. Weisfeiler and A. Krall, "Discovering Theorems with a
Computer”, The American Mathematical Monthly, volume 86 (1979), pages 733-739.

Exercise 3.5: Graph the solutions of the two initial value problems dy/dt = y(1-y),
y(0) = .25 and dy/dt = -y Iny, y(0) = .25 (graphic screen parameters 0 < "t" < 5 and

0 S y £ 1.2) on the same plot. Notice that the solutions are similar.

Exercises 2.4, 3.1 and 3.5 give initial value problems that model population
growth in a food limited environment. Which model is appropriate? Some input
from biologists or some observation data could be used to answer this question.
Suppose that from experimental data, we can determine the limiting value of the
population and that we can also estimate at what fraction of the limiting value of y

an inflection point occurs. In exercise 3.5, the inflection points occur at 36.8% (for the
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logarithm model) and 50% (for the quadratic model) of the limiting value of y,

which in both cases is y = 1. We will further explore this question below.

Suppose we are given the assignment of explaining how the population of a
species evolves in time and we note that the environment will only support a finite

number of the population. Two much studied models of this type are:

e The logistic model:

d

P 2 4Py
E:ap-bp » PO =p,: p=

bp, + (a-bp,) e
e The Gompertz model:

dp A/B. Py exp(-Bt
F:p(A-Blnp), PO =p,: p=e [ A/B]
(]

The parameters have different meanings: equating the carrying capacity of the
model (i. e., the value of the population that is reached in infinite time) gives eA/B
in the Gompertz model and a/b in the logistic model. Which of these models is

better ? Or should we look for another model ?

These are not easy questions in general. Probably the first step is to pick a
model, use data to determine what the model parameters should be (e. g. the
constants a, b or A, B) and graph the solution. Then change the model, use data to
determine that model's parameters and graph the solution again, etc. See [1] for HP-
48S/SX calculator programs that can be used to determine parameter values to data

points containing more than three points by the least squares method.

Exercise 3.6. Suppose pg is known and two other population data points, say (tj, p;)
and (tx px). How can the constants a and b in the logistic model be determined from
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this information? From the formula for p, we solve for bpg, then evaluate the

expression at the point tj and tx and set them equal to get

-at. Py -at -at Py -at
(1-e “)(;‘Le h=(1-e ‘)(p—°-e ky
i k

This expression in the unknown a can be solved by graphing both sides and using the
ISECT key. Find the value of a when pg =1, (tj,pi) = (1, 1.46) and (tx, pk) = (2, 1.5),
then find b from the expression for bpg.

Exercise 3.7. Suppose again that pg , (tj, pi) and (tx pk). are known. Determine the
constants A and B in the Gompertz model. (Hint: put s = A/B and solve for e"Bt in
the expression for the solution, then for B. Then evaluate the expression at each

time and set them equal.) Find the value of A and B for pg = 1, (t;,pi) = (1, 1.46) and
(tx, px) = (2, 1.5).

How might other models be constructed ? Here is a suggestion if data {(t1, p1),
(t2, p2), . . . (tn, pn) } is given and a graph of the data indicates the location of an
inflection point and the carrying capacity K. Population models may have the form
dp/dt = f(p) with £f(0) = 0, f(K) = 0 for K > 0, and f(p) > 0 for 0 < p < K. Notice that
inflection points come at those points p with f '(p)f(p) = 0. Since f(p) > 0, we get
inflection points when f '(p) = 0. In the logistic model this occurs when p = .5 a/b
and in the Gompertz model whenln p= A/B - 1.

To get a model, say with inflection at p = .6 K, we could try p' = f(p) = (.6K)2 -
(p - .6K)2 for 0 < p < .6K, and p' = f(p) = 2.25 ( (4K)2 - (p - .6K)?) for .6K < p < K.

Exercise 3.8. Use your calculator to obtain a graph of the solution of this model for
K=1,p0) =.2, H-VIEW =2 5, V-VIEW = -1 1.1. We will suggest a method to

enter an appropriate F function using the HP input form format. Press PLOT,
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CHOOS, Diff Eq, press OK, then position the highligted field to F. Press NXT,
press CALC, and place the following on the stack: ‘IFTE(Y<.6, .36 - (Y-.6)A2,
2.25*(.16-(Y-.6)A2)))' Note: The command IFTE can be located by pressing PRG
BRCH NXT. The < command is located by pressing PRG TEST. When this step is
complete, press the ON (CONT) key, then you should see the desired stack entry and
the ON key. Press ON. The student should complete the exercise from this point. If
you wish to invoke the user program, an appropriate FN program might be <<
'IFTE(Y<.6, .36 - (Y-.6)*2, 2.25"(.16-(Y-.6)*2)))' EVAL >>.

Exercise 3.9. Suppose we have the following (time, population) data point
measurements { (0, .2), (.5, .37), (1, .61), (1.5, .88), (2, .98), (2.5, 1), (3, 1)} . Use your
calculator to plot the data and estimate the location of the inflection point. Then
construct a model that will give an inflection point at this value and overlay the
solution of the model with the data for comparison. Hint: to plot data first, store
the data list in a variable in D.LST, set the XRNG and YRNG parameters, ERASE,
and then EVAL the program
<< D.LST OBJ— 1 SWAP START PIXON NEXT DRAX PICTURE >>.

quadratic

Model Functions £(y) Resulting Solutions
Logistic, Gompextz and Custom Models (exexcise 3.8)
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Exercise 3.10: Set plot parameters to show -.5 < t £ 12.56, -.5 < y < 3. Graph the
solutions of y' = .Sy(exp(sin t) - y) with y(0) = 1, and y(0) = 3. What initial
condition gives periodicity ? (This differential equation is a potential model for an

environment where the birth rate is periodic in time.)

Exercise 3.11: Mathematical models for the velocity of a particle falling from rest

under gravity with air resistance have the form

L g, vO =0,

where the force exerted on the particle by the resistive medium, f(v), is determined
by experimental means. We will assume that f is an increasing function with f(0) =
0. The velocity will increase toward a terminal value which is given by f- 1(g). For
simplicity we take physical units so that g = 2. We want to compare the

trajectories from different models in which the f(v) functions are given by:
(@) f(v) = v ®) f(v) = .5v2 () f(v)=IFTE(v<1, (159 v, 25 v - 1)9)
d) f(v) =IFTE(v<1,.75v15,125v-5) (o) f(v) =21 T,

Notice that these models have been chosen so that all have terminal velocity 2.
Use the calculator's function DRAW program to plot each f(v) function for 0 < v 2.
Use H-VIEW =-1 2 and V-VIEW = -1 2.1. Accumulate these graphs on the same
picture and label the graphs. Then use a differential equation plotting program to
graph the solution of the initial value problem given above for each f(v) function for
0 <t <5. Accumulate them in the same picture for comparison. Again label the
solutions. Use the V-VIEW as above and H-VIEW -2 5.

A particle falls or is projected from a great height and observations are made on

v for, say, n values of time. Two well-known models for such a problem are:
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¢ linear air resistance model: dv/dt = g - kv, v(0) = vg . The solution is
vi) =vg ekt + v, (1-ek), v =g/k.
e quadratic air resistance model: dv/dt=g - kv2, v(0) = v0. The solution is
vit) = v, M. M_Y."_‘:_Xg V. _1’8. o._zﬂlgk
T MeSt+1 Ve-vp ' T k’ |
Suppose that veo can be accurately determined from data, say {(t1, v1), (t2,
v2),...(t2, v2)}. In the case of the linear model k = g/v and we note that the

aph of
& Z(t) =1In (Voo - V(1)) = In (Voo - V() - kt

is a straight line with slope -g/ve . Furthermore in the case of the quadratic model,
k = g/(Veo)? and the graph of

z(t) = In (Voo - V(1)) = In (2vea/M) - (2g/ Voo It
is a straight line with slope -2g/ve . This is twice the slope of the linear model.

Suppose that (time, velocity) data is available. What model is

appropriate? Maybe if we plot tj vs In(ve - vj) a straight line will appear for

large t and we can choose a model with the appropriate slope.

Exercise 3.12. The data to be used for model selection is:
{ (0, 0), (1, 1.44), (2,1.87), (3, 1.97), (4, 1.99), 5, 2) }.

Consider models of the form dv/dt = 2 - a vF, v(0) = 0, where r is a positive number
and a is chosen so that veo = 2. (In our units g = 2.) Plot the points (tj, In(2 - vj)).
Determine the slope of a line which "fits" the plot for the latter data points and
choose an appropriate value of r. Then plot the data points (no logarithms) and use

a differential equation calculator graphing program to draw the trajectory of the
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model you have chosen as an overlay of the data point graph. Conclusions ? (It is
instructive to experiment with models of the form dv/dt = g - a vf and G.TY can be
modified to plot the log (ve. - v(t)) by inserting the commands V.. - ABS LN after

the Y instructions.)

Suppose a tank contains V volume units of a mixture of water and a chemical
substance receives f(t) units (weight) of the chemical in solution per minute. The
chemical is vigorously mixed in the tank and the mixture drains from the tank in
such a way that constant volume in the tank is maintained. If y(t) is the weight of
chemical in the tank at time t, a balance equation gives dy/dt as the rate that the
chemical enters the tank - rate that the chemical exits from the tank. This
application gives one example of an important problem, namely, to determine a
particular solution of
:—;, + ry = f(t).

Here we assume r is a positive constant. Commonly, the function f(t) is called input
to the problem and the solution y(t) is called the output. Other examples of this

problem occur in electrical flow problems. The initial value problem solution is

-r (t-s)

t
y =y e " ‘i e f(s) ds.
0

If the function f(t) is periodic with period P, then we can choose y(0) so that the

output is periodic. This is done by choosing y(0) so that y(0) = y(P), which gives

P
s+ (P-
y@ =—=[ """¥ fs) ds.

1-e "0
The input function f is transformed to the output function y = Tf. Notice T(af + bg) =
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aTf + bTg when a and b are constants and f, g are input functions. This superposition
property of the "operation” T shows the transformation T to be a linear operator.

Here we are interested in comparing the graphs of the input functions f to the
graphs of output functions y = Tf. An important example, f(t) = sin at, gives
y(t) = sin (at-0)/R? with R? = (02+12) and cos 6 = r/R, sin 6 = a/R.

There is an obvious similarity between the graphs of the input and output
functions. If a signal f(t) = sin t is input into a device and produces output as
described above and it is desired to produce a "delayed" version of the signal, say
sin (t-n/4), after the second term dies out, what value of r will give this delayed

signal? What distortion of the signal sin 3t will be produced by this same device?

If the input signals are not sine or cosine in form, it may be difficult or impossible
to find an analytical form of the output; however, a graph of the output may be
found by using our differential equation graphing programs after using the calculator
to evaluate the integral in y(0).

Exercise 3.13: Letr =1, and set the plot parameters so 0 <t <3.14,0 <y <1.2. Use
the calculator to draw the following input functions with the Function DRAW
program and the resulting output functions with a differential equation plotting

program.
(a) f(t) =1 -sin® (3t), (b) f(t) = 1 - sin10 (3t),
(c) f(t) = Max (sin 6t, 0).

If f(t) is stored in EQ and P = 1.047 ~ nt/3.) The following program can be used to
calculate y(0):
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<< 3 FIX 'T" PURGE 0 1.047 EQ 'EXP(T)’ * 'T' 3 NEG
SFJ/ 3 NEG CF 1 1.047 EXP SWAP - / STD »>>

The input signals in (a) and (b) are periodic, spike-like disturbances of a constant
input and the input in (c) is a half-wave rectified sine function.

An observant student may notice that if we start with incorrect initial conditions
then the solution approaches the periodic output after some time. This leads one to
suspect that the starting condition y(0) = 0 is being forgotten and the resulting motion
will become periodic. This is a result of the theorem that any solution of the non-
homogeneous problem is the sum of a particular solution and a solution of the

homogeneous problem.

The function f(t) = 2*CEIL(SIN(t*x)) - 1 has values given by: for0 <t <1,
f)=2-1=1,forl1<t<2,ft)=-1,for 2<t<3,f(t)=2-1=1, etc. This is called
a square wave. The calculator numerical integration "key” and graphing program can
handle such a function even though it is not defined at t = 1, t = 2, etc. The periodic
input function and its periodic output are shown for0 < t < 4.

Input

|

N~ T~

Output

dy/dt +y = £(t)
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The student can also construct the input function shown above as IFTE(T MOD 2 <
1,1,-1). In the same way, the switch function ua(t) = 0 when t < a and 1 otherwise
can be given by an IFTE function or by u,(t) = .5[1 + (t-a)/ |t-al] = 0 when t < a and
ua(t) = 1 when t > a. This could be called a switch-on function. Other interesting
functions can be obtained using the MOD function on the calculator. For example, f(x)
= '2*X MOD 1’ will produce repeated ramps of height 2. Finally, functions defined
by different formulae in different intervals can be produced by the IFTE command:
for example, f(x) = 2x for 0 < x < .5, f(x) = 1 - sin (x-.5) for 5<x < .5 + 1.571, x2 for x
> .5 + 1.571 is produced by 'IFTE(X < .5, 2*X, IFTE(X <.5+1.571, SIN(X-.5), X"2))".

4. Initial Value Problems: Two Differential Equations

As the reader may have guessed from section 1 of this chapter, it is easy to
program the calculator to treat a vector differential equation. In this section we
consider the case where the vectors have two components, y = [ y1, y2]; that is,
initial value problems consisting of two first order differential equations and the
initial values of the two dependent variables:

dy, dy,
Ry Y g =Ry Y,)

where y_ (t)) and y,(t)) are given.
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(The student should note that a second order initial value problem

d .
;25=g(, ,dt) with x(t)), 'T(to) given

can be reduced to a first order system of differential equations

dyl dy,
T —&-=g(t,y1.y2)

and initial values of y1 and y2 by using the identification y1 =x,y2 = x ') We will
graph trajectories and study the solution characteristics of such systems. Of course,
in this case we can graph yi versus t, y2 versus t or graph y1 versus yp as the

parameter t varies.

As in the case of a single differential equation, the reader may decide to use the
built-in plotting form, the user programs as created in section 1 of this chapter, or to
incorporate the Euler or modified Euler algorithms in graphing programs. The
EULER and IULER programs also work for the vector case when the F.N program has
the proper form and when the initial y input is a vector. Consider

dy dy2
dt =Yy» gL =cost-yy, y(0) y2(0) =0,

over the interval 0 <t < 2n. An appropriate F.N program is
<< DUP 5 Y 'Y(2)) - T Y 'COS(T)-Y(1)) 2 -5ARRY »>> .

(The first stack item, namely Y, is duplicated and is used as local variable to create
the first component of the output and the input pair T Y is used as local variables

to create the second component of the output.) After a value for H is stored, the stack
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input 0 [0 0] to either of the programs EULER or IULER will produce the values at
T =H. We can modify the GRAF program to the following form:

Program Name: GR.01

Purpose: Graph N values of (T,Y(1)) resulting from the
improved Euler algorithm which creates a
sequence of N values of t, y1 and y2.

Stored Quantities: N H F.N EULER IULER XRNG YRNG

Input Output
level 2 level 1 level 2 level 1
to ylo y2o ] tn [yln y2n ] & graph

<<{ # 0d # 0d } PVIEW DRAX 1 N START IULER DUP2
OBJ— DROP2 R—C PIXON NEXT PICTURE >>

Consider the problem of graphing the vector solution of dy;/dt = y3,
dy2/dt=-y1,y1(0) = 1, y2(0) = 0 on the interval 0 < t < 2x. We execute the program
IN.FN and respond with

<< 'Y(2)' EVAL 'Y(1)) EVAL NEG 2 —5ARRY »>>

which will be stored in FN. We execute IN.PP, respond to set H-VIEW with -1.2
1.2, and respond with set V-View to -1.2 1.2. Then we enter 0 [1 0] 6.283 on the
stack and execute G.12. The solution is y1(t) = cos t, y2(t) = - sin t and the y; versus
y2 graph should be a "circle". The actual figure is a set of points connected by
straight lines. Exit to the stack and press T and Y in the VAR menu to get
(approximately) 6.283 [1 0]. This will be more accurate that the result as drawn by
GR.12, say with H = .0628 and N = 100.
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We now consider constructing the solution of a non-homogeneous second order
differential equation with constant coefficients. The problem is treated in many
textbooks for special types of forcing, usually sine or cosine forcing functions. A model
for an elastic spring with damping and with external forcing f(t) or a model for a

simple electrical circuit loop with external voltage is:

2
9-2&+ Zr%)-t(w m2 x = f(t), x(0) =%(0)=0, (o2 >r2.
dt

The solution is given by

t
xq(t) = -:; I e’ (t-s) sin p(t-s) f(s)ds , p= \/mz -r2.
0

As indicated before, this problem is equivalent to the pair of differential
equations dyj /dt = yp, dy2/dt = f(t) - 2ry7 - @2 y1 y1(0) = y2(0) = 0.

Example: Take w2 = .41,r =.5 (so u? = .16) and f(t) = sin2(1.5t). Set FN as

<< 'Y(2)' EVAL 'SIN(1.5'T)A2 - Y(2) - .41*Y(1)’ EVAL 2 —ARRY >> and the
plotting parameters to show 0<t<9.42,0<y<2. Put0 [0 0] 9.42 on the stack and
execute G.01. Next overlay a graph for the input function. The forcing function

(input) and solution (output) resulting from this program are shown below.
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Exercise 4.1: Find the output graph for f(t) =1 - sin(3.14*t) forp =1,and r = .5.
Choose plot parameters to show -4 <t <6, -4 <y; < 1.2. Add the input function

graph as an overlay. Comment: The output function for this input function can be
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obtained from a table of integrals after several substitutions using the method of
undetermined coefficients and a lot of work. But, an output function for an input

function such as f(x) = 1/(2 - sin#(3.14*t)) could not be found this way.

Suppose the forcing function f(t) is periodic with period length P for the
differential equation. If we can change the initial conditions so that x(P) = x(0) and
x'(P) = x'(0), then the resulting solution is periodic. Moreover, if the damping
coefficient r > 0, then all solutions will eventually be close approximations to the
periodic solution when viewed over one period. We may want to view such a
solution without waiting for asymptotic behavior to emerge. Suppose we determine
solutions x1 (t) and x2(t) of the associated homogeneous system so that x1(0)= x'2(0) =
1 and x'1(0) = x2(0) = 0; then a general solution is x(t) = a x1(t) + b x2(t) + xq(t)
where xq(t) is the solution constructed above for 0 initial conditions for x and x'.
Expressions for x1(t) and x2(t) are x1(t) = e™ [cos pt + (x/p) sin pt] and xo(t) = (1/p)
eTt gin pt. We can use the calculator to compute the integrals in xq(P) and x'q(P)
numerically, then we can use the calculator to solve the periodicity condition for a
and b:

1- xl(P) - x2(P) xq(P)

X, (P) 1-x(P) [b]= x,(P)

The periodic response can be obtained by using G.01 with input 0 [a b] P on the

stack.

Output for f(t) = (sin 3t)8 , r = .25 and p = 1 with the initial conditions x(0) =
dx/dt(0) = 0 is shown below. This input is periodic with period n/3. The periodic
response is also shown over two periods. The average value for this forcing f(t) is
n/6 and f(t) = [f(t) - ©/6] + ©/6, so a portion of the periodic response is the constant
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function with value n/(6w2) = .493. This seems to be the constant part of the

periodic solution as shown.

1(t) (1)
1
AR, |
' .5 ; ' a5 9
Input: £(t) = (sin(3t))*8 Output
7 x(t)
-3 n/3 253
Periodic Response

Exercise 4.2 : Find and graph the periodic output response for f(x) = 1 - sin#(3.14t)
forp=1,and r =.5. Then add the graph of the input forcing function.

The friction/resistance term in the spring/circuit model that we have been
considering is given by 2rdx/dt and the restoring force term is @2x. These terms are
usually approximations for nonlinear phenomena. What happens to the periodic
response in the mathematical model driven by periodic input when the terms are
replaced by nonlinear functions ? The method of calculating the correct initial
conditions no longer applies; however, in some cases the solution to the differential
equation with a variety of initial conditions will settle toward a periodic steady

state solution as time increases.
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Exercise 4.3 : Find a periodic solution to nonlinear problems of the form

2
-d—zl +R(—gl‘-)+l<(x)=2cost.
dt t

Set H-VIEW (. e, XRNG) =-.2 6.283, H-VIEW (i. e., YRNG) = -2.1 2.1. Let
R1(dx/dt) = 2*IFTE(dx/dt < -1, dx/dt + .5, IFTE(dx/dt < 1, .5*dx/dt, dx/dt - 1)).

(a) Take R = Rj(dx/dt) and K(x) = x. Use initial condition t = 0, x = 0, x' = 1.56.
(b) Take R(dx/dt) = dx/dt and K(x) = x. Use initial condition t = 0, x = 0, dx/dt = 2.
(c) Take R(dx/dt) = dx/dt and K(x) = sin x.

(d) Take R(dx/dt) = R1(dx/dt) and K(x) = sin x.

Note: In each case, if the solution you get is not periodic then use the values of x
and dx/dt at t = 6.283 as initial conditions and generate another solution. Which

nonlinearities caused a phase shift from the linear case (b)?

It is easy to use the calculator to illustrate the idea of locating a solution for t =

any multiple of a given time period. For example, the differential equation
d—; +(o2x=.5cost, w=#l,
dt

together with the initial condition x(0) = §, dx/dt(0) = 0 has solution

x(t)=[E,+—21°°S<°"+"°St
21 - @) 21 - 02

94X = o +—L5—Tsinwt+ sint
dt 21 - ®%) 2(1 - a)z)
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What are the properties of such a solution ? For t = 2rn we have

1
x(2nn) + m %(21‘:“)
1 = CcOS 27N, 1 = - sin 27tnW.
+— o[E+—]
: 21 - wd) : 21 - o)

By squaring both sides, we see that the points x(2rn), x'(2%n) lie on an ellipse.

Exercise 4.4: Plot the points x(2xn), x'(2nn) for § = 0 and n = 1, 2, ... (several values
of n) for ® = 1/5qrt(5) and for ® = 1/3. Note that the points cycle around the
ellispe. If ®n = an integer m for some integer n, then you can see the solution is

periodic, but what happens when w is irrational ?

A topic occuring early in many differential equation textbooks is that of
determining trajectories that are orthogonal to the members of a one-parameter
family of curves, say W(y1, y2,p) = 0. The usual technique is to first find the
differential equation satisfied by the members of the given curve family, say
dy2/dy1 = m(y1, y2); then curves which are orthogonal satisfy the differential
equation dyz /dxy1= -1/m(y1, y2). If the original family is given in the form
dy1/dt = f(y1, y2), dy2/dt = g(y1, y2), trajectories for orthogonal curves satisfy
dy1/dt =-g(y1, y2), dy2/dt = f(y1, y2). This latter form is
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Oxthogonal Trajectories dyj/dt=-R,, d&/dt=)i/y2

preferred if the curves in either family must be specified in terms of a parameter t.
Clearly, the program G.12 can be used to sketch members of both the given family of
curves and the orthogonal trajectories. This is our first example of what is called an

autonomous system. A specific example is shown above.

Exercise 4.5: Set the plot parameters to show both H-VIEW and V-VIEW as
-5 3.5 and enter the following FN:

<< "Y(1)*(Y(1)22-Y(2)A2)' EVAL 'Y(2)*(3*Y(1)72-Y(2)72)' EVAL 2 —5ARRY >>.

Create a composite graph in the y1-y2 plane consisting of the following inputs to the

G.12 program.
to 0 0 0 0 0
yo [5.1] [.75 1] 1 1] 1 4] 15 5]

tf 4 4 2 2 2
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These are five solution trajectories (ovals) for the system
dy1/dt=y1(y12-y22), dyz2/dt=yy(3y12-y2?).

Now overlay the solution trajectories of the orthogonal system corresponding to the

following inputs to the G.12 program:

to 0 0 0 0 0
yo [0 34] [0 25] [0 15] [2 .0] 34 0]
tf 1.2 8 8 8 8

Graphs in the y1-y2 plane of solutions (y1(t), y2(t)) of differential equations
y1'=F1(y1,y2), y2' = F2(y1, y2) are called phase plane graphs. If F1( y1, y2), and
F2( y1, y2), have continuous partial derivatives, solutions to initial value problems
are unique and it is elementary to show that under such circumstances solution
trajectories arising from different initial points either coincide or do not intersect. If
fact, it is easy to see that if (y1(t), y2(t)) is a solution of an equation of this form
and a is any constant, then (y1(t+a), y2(t+a)) is also a solution. Closed trajectories in
the phase plane indicate periodic solutions. Constant solutions, that is, points
(y1, y2) such that F1(y1, y2) = F2( y1, y2),= 0 are called critical point solutions (also
equilibrium solutions). Other trajectories of particular interest are those nearby to a

critical point.
¢ If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) leave the vicinity of (y1¢, y2¢) ast = o, (y1¢, y20) is

called a repelling solution, i. e., unstable.
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® If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) approach (y1¢, y2¢) as t = o, (y1¢, y2¢) is called an

attracting solution, i. e., asymptotically stable.

Some well-studied examples of autonomous are presented below. Note the

asymptotic behavior of the solution trajectories as indicated by the graphs.
Exercise 4.6: Systems called Lotka-Voltera systems may be scaled to the form
dy1/dt=y1(3-y), dyz/dt=ya(y1 -3).

Such systems arise in the study of populations of two species, one of which feeds on
the other. Trajectories that initiate in the first quadrant are periodic. Plot the
solution that starts at 0 [2 2], for 0 <t < 2.25, after setting the plot parameters to
show H-VIEW 0 6,and V-VIEW 0 6, by using the plot program G.12.

Example. The differential equations
xX"+cx'+sinx=0 or y1'=y2, y2'=-siny] -cy2

arise in the study of the displacements of damped (or undamped) pendulums. The
critical points are (0,0) and (nz, 0). For c > 0, (0, 0) is an attracting solution. We use
G.12, c = .3, and FN given by

<<'Y(2)' EVAL 'sin(Y(1))+.3*Y(2)’ EVAL NEG 2 —ARRY >>

to obtain the following graph. (For ¢ = 0, there is a family of periodic solutions.)
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Damped Pendulum Motion (¢ =.3)
Example. The system
dy; /dt =-2y7 +y1(1-12)/r, dy2/dt = 2xy1+ y2(1-r2)/r:

where (12 = y12 + y22) has an isolated periodic solution r = 1. Here ,nearby solutions

spiral towards the circle r = 1. To obtain graphs use G.12 and the function FN given

by

<< -2*Y(2)+Y(1)*(1-Y(1)A2-Y(2)A2)/(Y(1)A2+Y(2)A2)A.5' EVAL
"20Y(1)+Y(2)*(1-Y(1)A2-Y(2)A2)/(Y(1)A2+Y(2)A2)A.5' EVAL 2 —ARRY >>.

Another problem which has an isolated attracting periodic solution is the Van
der Pol differential equation. This equation was studied in connection with its
application to an electronic component. This example in usually studied as a

function of a parameter p contained in the "damping” term. Our figure shows
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dyyfde=y,, dypfdt=- [y + -3°i2° )

typical graph: here p = .3. Note the motion is counterclockwise and the solution was
started at (x, y) = (2, 2). The solution quickly moves close to its asymptotic shape
and is periodic. Solutions starting inside the closed curve (except from (0, 0)) also

move out to the periodic solution. Variation of the parameter p causes dramatic

changes in the shape and period of the solution.

Exercise 4.7: In this exercise we will examine the cycle time of periodic solutions of

several special differential equations.

The equations under consideration have

solutions that resemble the trajectorics graphed in the figure below.

Flx]

F(2)3
\

Construction for Trajectories
(See xegionbetween F[z] & F[x])

Trajectories
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Here we suppose that y(t) satisfies the initial value problem

2
dx - =, 4x _
2 +f(x)=0, x(0)=¢z, T

de

0,

where the essential feature of f(x) is that it changes sign from negative to positive

as y increases thru zero. We multiply by dx/dt and integrate from 0 to t to obtain

X
%—’E‘- =+ JF@) - Fx), where F(x)=2 (I) £(s) ds.

If we denote by P/2 the time for the trajectory to proceed from the starting point to
the state x(P/2) = z1, dx/dt(P/2) = 0, then

P/2 2 dx

P=2) dt=2 | ——.
({ { JF@ - F

We list the value y1 for several examples:

(a) f(x) =x, Fx)=x2, z1 =-z

(b) f(x) = sin x, F(x)=2[1-cosx], z1 =-2

(©) f(x)=x+x2, F(x) = x2 +2x3/3, z1 = largest negative root of
%xz-o-[l +%]x+[z+%z2]=0.

(d) f(x)=x+xcosdx +.25sind4x  F(x) = x2 + 5xsin4x, z] = -z

Notice that in (a), (b) and (d), the function F is even in x, but in (c) is not. Calculate
and plot the values of P for one of the examples (a), (b), or (c) listed above for
several values of z. Use the numerical integration key (program) on your calculator

with a tolerance of 0.005. The following values of P are for part (d) above:
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z values .25 5 .75 1 1.25 1.5 1.75 2 2.25
P values 394 529 1274 2154 829 574 504 545 8.37.

Note that dx/dt = 0 and x = /4 and dx/dt = 0, x = 3n/4 are equilibrium points.

Linear autonomous systems can be solved analytically. These systems have the

form:
dy;/dt = aj1y1 +ajzy2, dy2/dt=az1y1 +ay2

We will consider the case det (A) # 0, which means that the origin (0,0) is the only
critical point. Special solutions have the form w = column [ y1, y2] =e * v where A
is a solution of the equation det (A- AI) = 0 and v will be given below. Such a
number A is called an eigenvalue of the system. The equation det (A- AI) = 0 is
called the characteristic equation or the eigenvalue equation for the system. If A is an
eigenvalue for the system then the column vector v = [c, d] is a non-zero solution of
(A- AD)v = 0. Other solutions of our system are linear combinations of these special

solutions (in most cases).

The solution graphs of such systems near the origin (0,0) are particularly
interesting. Examples fall into the following cases: closed trajectories (indicating a
family of periodic solutions), spiraling trajectories (inward or outward spirals) and
curved spoke-like trajectories (again traveling toward or away from the origin). The
cases correspond to the type of eigenvalues for the system, viz. purely imaginary

values, complex numbers with non-zero real parts and real eigenvalues.
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Example: Consider the system
dy1/dt=y1 -4y2, dy2/dt=-y1+2ys.

The associated matrix A has eigenvalues A = .5(3+ 17-°) and corresponding
eigenvectors ¢ = column [ 4, 1.56] and ¢ = column [-4, 2.56]. When a solution starts on a
multiple of the first eigenvector, it proceeds toward the origin exponentially. When
a solution starts on a multiple of the second eigenvector it travels away from the
origin exponentially. Other solutions are a linear combination of these two solutions
and eventually proceed away from the origin. Typical trajectories are shown in the
figure below. The procedure was to start on the eigenvector solution and trace that
trajectory. Other solutions starting very near these special solutions were followed

for short periods.

t!“:w}vay _T

!

Ltravel to oxigin L )
1avel away

Trajectories neax Saddle Point

Exercise 4.8. For the case A is complex and has negative real part the origin, (0,0)
is called a spiral point critical point (so we have an attracting critical point). Use
G.12 to study

dy1/dt=-5y1 +4y2 , dy2/dt=-4y] - .5y2
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Start at (t, y) = ( 0, [0, 1]) after setting the plot parameters to show H-VIEW -2 2
and V-VIEW -1 1 and plot for0 <t<3.

Exercise 4.9. Use G.12 to graph the trajectories initiating at (t, [y1,y2] ) = (0, [0, 1])
and at (0, [-1, 0]) for the system

dy1 dy2
Ty =-Q2y, +Y,) Ty =-y,*2y,

What are the eigenvectors for this system associated with the [0, 0] critical point ?
Can you see them on the graphs ? The graph should show that the origin (0,0) is

neither an attracting or repelling critical point solution for the system.

Solution graphs of nonlinear autonomous systems near a critical point solution
can be studied using a linear approximation. Let the vector y = column [y1,y2] and
suppose we have the system dy/dt = F(y) for F(y) = column [F1(y1 , y2), F2(y1 , y2)1,
and F1(y1c, y2¢) = F2(y1c , y2¢) = 0. Solution behavior near the critical point y. =
(Y1c » y2¢) can be determined by studying the linear variational matrix J(yc) = Fy(yc)
defined below. If all eigenvalues of this matrix have negative real parts, the
solution y = y¢ is an attracting solution. If one of the eigenvalues has a positive real
part, some solutions leave immediate neighborhoods of the critical point. The
matrix J(yc) has i-j element

g—g (yc)

Example: Consider the system dy; /dt = 2y12 + y22 - 9, dyz2/dt=y12 +y22 -5,
which has critical point solutions (2,1), (-2,1), (2,-1), (-2,-1). The variational matrix
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for the last critical point has eigenvalue equation A2 + 16\ + 8 = 0. The roots of this

equation clearly are negative so that (-2,-1) is an attracting critical point.

The calculator can be used to find the matrix ] associated with any equilibrium
point y. by using the sequence of programs given below. Because such information is
also useful for a vector system dy/dt = F(y) where y and F(y) are vectors with m
components, we present the programs for the vector case. We further will present the
programs in a form where the labelling of the independant variables can be specified
by the user. For example, instead of y1, y2, etc. the user might prefer u, v, .. The
user's preference will be entered into a stored list as shown. After the matrx J is
determined then the calculator can be used to find the eigenvalues as explained in

the next section of this chapter.

Here is an outline of the procedure assuming that we know the point y.. We
store the value of m in M and store the names of the m components in a list called
PL. For example, PL = {U V}. Make sure each of the variables in PL have been
purged. Store the components of the F function in a list FL. For instance, in the
example given above FL = { '2*UA2+VA2-9' 'UA2 + VA2 - §' } where U replaces y; and
V replaces y2. Then execute the program DER below:

Subprogram Name:  DER
Purpose: Creates list JL puts the FL functions on the
stack and executes DERA M times.

<< {}'JL' STO FL OBJ—> 1 SWAP START DERA NEXT>>
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Program DER calls the subprograms DERA and DERB.

Subprogram Name: =~ DERA
Purpose: Creates M -1 more copies of the first element

on the stack for use in the next subprogram.

<<1M1 - START DUP NEXT DERB >>

Subprogram Name: =~ DERB
Purpose: Takes M copies of a function in FL, creates the
derivatives with respect to each parameter in

PL and stores them in JL.

<<1 M FORIPLIGETd M 1 + | - ROLLD NEXT
M SLIST JL + 'JL ' STO>>.

At this point, for m =2, JL= {F1y (u,v) F1y (u, v) Fy (u, v) Fay (u, v)}. Now store
the values of the variables in PL at Y. (e. g. U =-2, V = -1) and create matrix JMAT

with a program called JEV given by

<< JL OBJ-> 1 SWAP START -NUM M SQ ROLLD NEXT
{M M} -5ARRY ‘'JMAT' STO >>

For m = 2, the eigenvalues are the roots of the quadratic polynomial
A2 - UMAT[1,1}+JMATI2,2DA + (JMAT[1,1]*JMAT[2,2] - IMAT[1,2]*JMAT[2,1)).

Finding critical points is not always easy. Newton's method for solving

simultaneous nonlinear equations may be used to find critical points of a system if an
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approximate location yo = column [ug Vo] of the critical point is known. Then better
approximations of the critical point may result from one or more applications of the
following algorithm:
Yo=Yy -1 G FGQ: Yo =Y,-
The same programs listed above can be used to create the JL list for the
components of the J matrix. We need additional programs to calculate the F(yg)
vector. The program FEV that will be used to create the vector FVEC is given by

<<FL OBJ- 1 SWAP START —-NUM M ROLLD NEXT
{M} —ARRY 'FVEC' STO >>.

Put an approximation of the critical point [U V ] on the stack and execute the

program NWTN given by
<< DUP OBJ— DROP 'V' STO 'U’' STO JEV FEV FVEC JMAT/ >>.

At this point you have an incremental vector [U - Up, V - V] on the first level of the
stack and the old vector [U, V] on the second level. If the incremental vector is
sufficiently small, create the new vector [Up, Vpl, by the command - (a minus

command). If not, execute -, then NWTN again, etc.

Exercise 4.10: Find a critical point of the system
du/dt=sinu+cosv-u, dv/dt=cosu-sinv-v

near u = 1.9 and v = .2, and determine the eigenvalues of the variational matrix.

(Answer u = 1.9235, v = -.17315, A = -1.66 + i .244)
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Exercise 4.12: Find a critical point of the system
du/dt=u-sinu*coshv, dv/dt=v-cosu®*sinhv

near u = 7 and v = 2.5, and determine the eigenvalues of the variational matrix.
(Answer u = 7.49768, v = 2.76868, A = -1.79 + i 7.4)

How does one find starting values for such a procedure ? If the equilibrium is
attracting, then for a variety of initial conditions the output of G.12 will indicate
an approximate location. If the equilibrium is repelling, then running the system
backwards in time will yield the approximate location for many initial conditions.
If the equilibrium is neither attracting or repelling, then the same procedure will

work if care is used in choosing the initial conditions.

Recall that the Runge-Kutta Feldberg algorithm attempts to set a step size for
which the perceived error is below a tolerance level. There are cases for which this
algorithm is not efficient: the step selected is too small and too much time is
required to proceed from the initial time to a desirable termination. We have

previously discussed systems of the form
dy1/dt=a11y1 +a12y2, dy2/dt=azy1 +ay?2 .

The failure of the default algorithm occurs for such systems when the eigenvalues
A1, A2 of the matrix A made from the coefficients are both negative and A1/A3 is a
large number. This inducates that there are two solutions of the differential equation
that approach zero as time increases at widely differing rates. Such a system of
differential equations is called stiff and Hewlett Packard has provided a second
algorithm to handle such cases. Nonlinear systems can also be stiff. For example, a
system dy/dt = F(y) which has an equilibrium y. for which the matrix J(yc)
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discussed above has eigenvalues with A1/A3 large is stiff in the neighborhood of y. .
An algorithm for a stiff system is somewhat less efficient than the default
algorithm when operating on a nonstiff case. Consequently Hewlett Packard's
alternate differential equation program attempts to use the default algorithm
whenever possible and switches to a stiff algorithm when stiffness is 'detected’.

To execute the alternate differential equation program, the user must provide a
program F for the function F(y), a program for J(y) and a program for dF/dt. We will
illustrate for the problem

y1' =y2, y2'=-1000y1 - 1001 y2.

The matrix ] here does not depend on y: a program for J is
<< 0 1 -1000 -1001 {2 2} —5ARRY >>.

A program for dF/dtis << 0 0 2 -ARRY >>. We store these programs under the
names FNY and FNT respectively. The following adaption of G.01 is constructed for
this problem. The reader should recall G.01 and edit. Note that the stack
command {T Y FN FNY FNT} replaces {T Y FN} in the default algorithm and
that the stack input to RSBSTEP consist of four elements. The last element is an

indicator variable (in this case 2) which determines the method to be used.
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Program Name: GS.01
Purpose: Generate a T Y(1) graph of the solution
to T¢.
Stored Quantities: XRNG YRNG FN FNY FNT TOL HS
Input level 3 level 2 level 1
To vector Yo Ty

The output stack is empty, the variables T and Y contain updated values
<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T
STO -5 TF << {T Y FN FNY FNT } TOL HS 2 T 'Y(1)
EVAL R—»C 5 ROLLD DO RSBSTEP DROP 2 T 'Y(1)' EVAL
R—C DUP 7 ROLLD 6 ROLL LINE SWAP DUP T + TF
UNTIL > END DROP TF T - RKFSTEP T 'Y(1)' EVAL R-C
DUP 6 ROLLD 5 ROLL LINEDROP TF T - RKFSTEP T 'Y(1)
EVAL R—»C 5 ROLL LINE 3 DROPN >> PICTURE >>

Exercise 4.13: Use IN.FN to store an appropriate function FN. Store FNY and FNT
as given above. Use IN.PP to set XRNG to 0 1 and YRNG to 0 1. Put the entries 0
[1 -1]1 on the stack and execute GS.01. The exact solution is y; =e®,yy = -t Use

the Function mode to overlay the solution as an accuracy check.

5. Linear Autonomous Systems of Differential Equations

In this section we consider linear systems of differential equations of the form
y ' = Ay + f(t) where y and f(t) are vectors with, say, n components and A is an n by
n matrix. Solutions can be constructed from the eigenvalues and eigenvectors of A.
There are built-in programs in the calculator for these eigenvalues and eigenvectors.

However, a differential equations student may wish to know just how these
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quantities could be calculated. Consequently, we will present several special
programs to illustrate steps involved in obtaining eigenvalues and eigenvectors. We
recommend that beginning students use these special programs at first to become
comfortable with the mathematical concepts then use the built-in programs that are
constructed to avoid the computational pitfalls which are sometimes encountered.
Consider first the vector problem dy/dt = Ay. Here we want to find all solutions
of the differential equation. It is readily shown that if n independent vector
functions satisfing the differential equation can be determined and placed in the
columns of a matrix Y(t), then all solutions have the form Y(t)c where c is a vector
with n components. The "educated guess" y(t) = eMy (here y(t) and v are vectors)
leads to the nth order polynomial equation det(A-AI) = 0 which is called the
eigenvalue or characteristic equation, and to the problem of determining nontrivial
solution vectors v to the problem (A-ADv = 0 (where A is a solution to the eigenvalue
equation). Thus the problem breaks into several parts: (1) find the eigenvalue
equation, (2) find the solutions of the eigenvalue equation, (3) for each solution A,
find a corresponding eigenvector v, and (4) assemble the matrix Y(t). We will
illustrate the solution process first for n= 2 and then for n = 3 component systems.
Then we will outline a procedure that uses the calculator's built-in routine for

eigenvalues and eigenvectors for all n 2 2. Examples/exercises will be given.

A calculator program to display the eigenvalue equation for a 2 by 2 matrix is:

Program Name: EIG2
Purpose: Display the eigenvalue equation.
Stored Quantities: 2 by 2 matrix A
<< 'A' PURGE A DET 8 RND — 81 <<'A72 +(A(1,1) +
A(2,2))*A - 81' EVAL >> >>
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Note: The Greek letters can be entered in your program by pressing CHAR, using
the cursor to highlight the appropriate character, pressing ECHO and then the ON
key.

Exercise 5.1: Find the eigenvalue (or characteristic) equation for the matrices

3 e e

A calculator program to display the eigenvalue equation in the 3 by 3 case is:

Program Name: EIG3
Purpose: Display the eigenvalue equation
Stored Quantities: 3 by 3 matrix A
<< 'A' PURGE A DET 8 RND — 31 <<'AA3 - (A(1,1) + A(2,2) +
A(3,3))*AA2 + (A(1,1)*A(2,2) - A(1,2)*A(2,1) + A(1,1)*A(3,3) -
A(1,3)*A(3,1) + A(2,2)*A(3,3) - A(3,2)*A(2,3))*A - 81" EVAL >>

b 4

The program will display the eigenvalue equation as a cubic in A.

Exercise 5.2: Find the characteristic equation for the matrices

12-1 16 3 5 8 -12
A=|101|, A=|38 3|, A=|-6-10-10],
445 6 12 4 6 10 13

(The first matrix has the eigenvalue equation A”3 - 6AA2 + 11A - 6.)
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We can find the roots of the eigenvalue equation graphically by isolating one or
more roots, by storing the equation (STEQ), and using the DRAW and SOLVR
programs. You may have to try several settings of the plot parameters XRNG,
YRNG.

Exercise 5.3: Find the eigenvalues of the matrices given in exercise 5.2. (Eigenvalues

010
001].
110

The eigenvalue equation in the variable x is x*3 - x - 1. A zero of this equation

for the first matrix are 1, 2, 3.)

Consider the matrix

obtained by ROOT after drawing the curve from -2 to 2 or by the SOLVE routine is x
= 1.3247—--. If we divide x - 1.3247—- into x"3 - x - 1 we obtain the quotient x*2 +
1.3247---x +(1.3247--"2-1). Zeros of this quadratic are complex eigenvalues. At this
point the x has a value stored in it. To avoid confused notation we take an extra
step: bring the value in x to the stack and store it in R. Now place 'x*2 + r*x +(rA2-
1)' on the stack, and key in the command 'X' PURGE. You now have the desired
quadratic on the stack, enter 'X' and execute QUAD (on the SYMBOLIC menu).
Follow the usual procedure for the QUAD program to obtain the roots -.662 * i .563.
An alternative method is to press SOLVE, move to Solve poly... and press OK.
Enter the vector of coefficients [1 0 -1 -1] and press OK and SOLVE to get all roots.
(You may want to go to EDIT MODES 3 FIX to see all the roots.)
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Exercise 5.4: Determine the eigenvalues for each of the matrices

010 010 -11 -8 -12
4 30 130 6 4 5

When an eigenvalue A is determined, the matrix (A-Al) is singular and the linear
system solver is not appropriate to solve the equation (A-AI)v = 0. Place (A-AI) on
the stack and use the programs named PIV and ROKL to obtain the Gauss-Jordon

echelon form to determine the row space of (A-AI) and nontrivial solution vectors v.

Program Name: PIV (Adapted from D. R. LaTorre)
Purpose: Gauss pivot on element K L
Input: Matrix A, integers K L Output: Altered matrix A

<< 5 A K L <<IF 'A(K,L) EVAL 0 == THEN "PIVOT ENTRY IS

0" ELSE A SIZE 1 GET -5 M << M IDN °'A(1,1)' EVAL TYPE

IF THENDUP 0 CON R—»C END 1 M FOR | 'A(l,L) EVAL {
| K} SWAP PUT NEXT INV A * >> 8 RND END >> >>

Program Name: ROKL (Adapted from D. R. LaTorre)
Purpose: Interchange rows K and L
Input: Matrix A, integers K L Output: Altered matrix A

<< 5 AKL << ASIZE2 GET - N<< A 1NFOR I
'A(K,I)) EVAL { L | } SWAP PUT NEXT 1 N FOR J 'A(LJ)
EVAL { K J } SWAP PUT NEXT >> >> >>»

Notice that the programs PIV and ROKL given above are valid for any size

square matrix.
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Example: The first matrix in the exercise 5.2 has eigenvalues 1, 2, and 3.

For A = 1 the equation for v is

02 -1

111 |y=0
444

If this matrix is placed on the stack and the command 1, 2 ROKL is given we get

1-11
02-1],
4 4 4

now give the command 1,1 PIV to get

1-11
12|,
000
10 5
[01-.5].
00 0

The solution relations v1 = -5 c3, v2 =.5 v3 result: i.e., v =[-1, 1, 2] or any nonzero

now 2,2 PIV gives

multiple of this vector. For A = 2, we find that any multiple of v = [-2, 1, 4] isa
corresponding eigenvector; for A = 3, we find that any multiple of v =[-1, 1, 4] is a

corresponding eigenvector.
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Example: The matrix

6 7 8
A=| 2 0-2
466

has eigenvalues A = -2 and 1 + i. The procedure shown above gives the eigenvector

v = column [1, 0, -1] corresponding to A = -2. For A =1 +i, the matrix A-A I is

61 7 8
A= -2 ('1 1'1 ) -2
4 6 (7-D

When weuse1 1 PIV, then2 2 PIV we obtain

(1,0) (0,0) (11"-5)
00 a0 (5.5
0 0 0

This leads to the eigenvector v = column [(-1,.5), ((-5,-.5), 1]. Recall that for the

conjugate eigenvalue, there is a eigenvector conjugate to this vector v.

The next step is to assemble a fundamental matrix of solutions Y(t) that has as
its columns the vector solutions determined above. For the first matrix in exercise 5.2
we determined eigenvalues and corresponding eigenvectors in the example just after
the ROKL program. Thus

b2t 3t

.e

2et 4e2t 4e3t
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Exercise 5.5: Give the solution of y' = Ay, with conditions: y(0) = [1 3 -5]t.

For the matrix example given just above the preceding paragraph (one real and a
pair of complex eigenvalue) we proceed as follows. If a matrix A has eigenvalues
A = o+ Bi and corresponding eigenvectors ¢ = a * ib, then by adding the exponential

solutions obtained it is known that the quantities

e™ (cos Bt a - sin Bt b) and e®t (sin Bt a + cos Bt b)

are real valued solutions of the differential equation y' = Ay. Consequently, for this

example we get the fundamental matrix of solutions

< (cost+.5sint) e (-sint+.5cost) e2t
Y(t) = Set (-cos t + sin t) -5et (sin t + cos t) 0
e cos t el sin t -e'2t

Exercise 5.6: Find a fundamental matrix of solutions of dy/dt = Ay for

4 4 5 010
A= -1 -1 -1 , A= 0 0 1 .
4 4 5 4 30

When there is a eigenvalue A of multiplicity two, either there are two
independent eigenvectors c such that (A - Al)c = 0 or there is a solution of the form

y(t) = eM (vt + d). Here, v will be an eigenvector and (A - A)2d = 0. For

311
A=| 131
4 21

A = -2 is a eigenvalue of multiplicity 2 and A = -1 is a simple eigenvalue. The

eigenvectors corresponding to A = -2 are multiples of v = column [1, -1, 2] and the
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eigenvectors corresponding to A = -1 are multiples of v = column [1, -1, 3]. The
equation (A+21)2 d = 0 has a solution d = column [0, 1, 0]. (Such a vector is easily
obtained on the calculator, first by calculating (A+2I)2 , then using PIV to obtain d.)

For this matrix A we have a fundamental matrix of solutions

t -2t -2t
e te
e* -2 (l-t)e'2t
Yt = t 2t 2t

The matrix eigenvalues for

5 -2 3
A=| 0 -3 0
2 20

are A = -3 (multiplicity 2) and A = -2. The eigenvectors corresponding to A = -3 are
linear combinations of ¢ = column [1, -1, 0] and ¢ = column [ -3, 0, 2]. The eigenvectors

corresponding to A = -2 are multiples of ¢ = column [1, 0, -1]. A fundamental matrix of

solutions is
. - -3t
e 2t 3t 3e
yo=| ° <0
= - 3t |°
-e 2t 0 2e

Exercise 5.7: Find a fundamental matrix of solutions for the system y' = Ay for each

of the following matrices:
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We noted earlier that Hewlett Packard has provided professional programs to

calculate the eigenvalues and eigenvectors of n by n matrices (n > 2). These programs
are located by pressing the MTH MATR NXT keys.

Example: Place the matrix

3 4 6 4
1 1 1 1
A=| 6 8 7 8

-1 -12 -15 -14

on the stack and execute EGV. You should receive output [ (-1,2) (-1,-2) (-1,0) (-2,0) ]

for the eigenvalues and output for corresponding eigenvectors

(-5,.5) (-5,-5) (1,00 (0,0
©,0 (0,0 (250 (1,0
(-5,-5) (-5,.5) (50 (0,0
1,0) 1,00 (-50 (1,0

The first two eigenvalues are complex -1 +i2 and have congugate eigenvectors which
are the first two columns of the matrix. The procedure given above for 3 by 3

matrices extends to n by n matrices and therefore a fundamental matrix of solutions is
[ -t

4e 0 etcos2t etsin2t
et 2 0 0
-t -t . -t
Y(t) = | -2e 0 -e sin2t e cos2t
-t -2t -t , . -t .
-2¢ -e e (sin2t- cos2t) -e (cos2t+sin2t)
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Exercise 5.8: Find a fundamental matrix of solutions for y' = Ay when

25 25 -35 -5
1 2 2 1
5 4 6 6
45 85 -55 -75

A=

To obtain solutions of the nonhomogeneous equation y' = Ay + f(t), suppose that a
fundamental matrix Y(t) of solutions for the associated homogeneous equation is

known ( so Y'(t) = AY(t)). It is easy to see that

t
YO =Y®c+ [ Y(t-s) Y 1(0) f(s) ds
0

is a solution for any vector c. In the general case a program that uses the numerical
integration capability of the calculator can produce values at various times t for the
components of the integral listed above. If the functions in f(t) are elementary, we
can use the method of undetermined coefficients to construct a particular solution. The

computation of the coefficients will require the solution of linear algebraic equations.
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Appendix to Chapter 3. Direction Fields

The following is a set of programs that will construct a direction field for
dy, dy,
o SN0y g =PN0 YY)
We assume that FN is a stored program of the type discussed in section 1 of this
chapter. These programs are provided to allow the user to use the built-in

differential equation solver to overlay particular solutions with minimal additional

instructions.
Program Name: DIRF
Purpose: Generate a direction field in the region

prescribed by XRNG, YRNG.
Stored Quantities: FNA GNA
Input: none Output: direction field
<< [00] 'Y' STO ERASE{ #0d # 0d } DRAX PVIEW PPAR 2
GET PPAR 1 GET DUP 3 ROLLD - OBJ— 9 / 3 ROLLD DUP
40 / 4 ROLLD 11 / SWAP OBJ— DF.1 PICTURE >>

Subprogram Name:  DF.1

<< —> R DY2 DY1 Y1L Y2L << YiL 1 10 START DY1 +
DUP 1 12 FOR J DUP Y2L DY2 J * + R 3 ROLLD DF.2
NEXT DROP NEX<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>