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PREFACE

It has been over three years since the Hewlett-Packard HP-48S series calculators
were introduced (March, 1990) to the North American scientific community. Assessment
of their impact leaves little doubt that the affect upon collegiate undergraduate
science, engineering and mathematics has been both significant and substantial. With
features such as 32K of expandable memory, two-way infrared communication, serial
link to personal computers, a sophisticated operating system and a structured
programming language that supports extensive symbolic manipulation capabilities,
these original HP-48 units were accurately termed supercalculators. The HP-48G series
units offer even more: a new, easy-to-use input forms environment for beginners, built-in
128K RAM with two memory expansion ports (in the HP-48GX), enhanced graphics
that include the first calculator-based 3D capabilities (and hence the G designation),
professional code for differential equations and for matrix operations, and a host of
other innovative features. The G series units will most certainly achieve a widespread
acceptance in undergraduate education because of the potential for their creative use, on

a personal level, by faculty and students alike to enhance teaching and learning.

This volume is one of a growing number of publications that are appearing in
support of the use of the high level calculators in undergraduate mathematics. But,
unlike most others, this volume is not dedicated to a comprehensive, in-depth
discussion of how the HP-48G/GX units can be effectively used in any one particular
course of instruction. Rather, it is a collection of six independent chapters, each devoted
to a particular course and authored by faculty who are experienced in the use of the HP-
48 in the material of that course. The chapter titles reflect the courses: Single-

variable Calculus, Multivariable Calculus, Differential Equations,
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Linear Algebra, Advanced Engineering Mathematics, and Probability and Statistics.
Five of the six authors are faculty at Clemson University, which requires all students in
the calculus sequence for science and engineering to have their own
HP-48's. We are extremely pleased to have join us as author of the chapter on
Advanced Engineering Mathematics, Dr. Donald L. Kreider, Professor of Mathematics
and Computer Science at Dartmouth College. Don is well-known for his textbooks in

that area.

Each of the six chapters is self-contained, and written in the spirit of showing the
potential for using the HP-48G series calculators in a mainstream mathematics course.
We have tried to avoid "teaching the mathematics", and have instead written "about
teaching the mathematics". Most of the chapters survey the main topics of a course,
and each chapter includes many activities, exercises, explorations and projects that can
be engaged by students in a calculator-enhanced treatment of the material. For the first
four chapters, Single-variable Calculus through Differential Equations and Linear
Algebra, supporting student-oriented material will be available in 1994 from the
publisher, Saunders College Publishing, by the same authors. Chapter 6, Probability
and Statistics, is new material; only a small portion of Iris Fetta's work in this area
appears outside the present volume. Chapter 5, Advanced Engineering Mathematics, is
also new material, having no existing counterpart published elsewhere. It addresses
the use of the HP-48G/GX in an important and significant area of undergraduate
mathematics, especially for students in analysis, sciences or engineering.

It has been a joy for me to serve as Consulting Editor for this volume. In a
deliberate attempt to foster the creativity of each of the authors, I have refrained from
imposing editorial restrictions in terms of format, structure and style. You will thus
notice a wide variation in these features from chapter to chapter, and I hope you will

find this to be somewhat refreshing.
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I especially wish to express my appreciation to Bill Wickes of Hewlett-Packard,
who served as head of the original design and development team for the HP-48. His

wisdom and genius have been a source of inspiration for us all.

The timely appearance of this volume could not have taken place without the
splendid support and coorporation that the authors received from Hewlett-Packard
and Saunders. Hewlett-Packard provided prototypes of the HP-48G series units and
members of the software development team helped us sort through many of the new
routines. I wish to recognize Diana Byrne, Charlie Patton, and Paul McLellan of that
team for all their help. Our editor, Jay Ricci of Saunders, was especially supportive of
our efforts from the very beginning to bring forth this new material. And finally, I
express special thanks to Mrs. April K. Haynes who, with great skill and patience,
word-processed several chapters in this volume, as well as all the many revisions,

corrections and peripheral material to be found here.

Clemson University Don LaTorre
June, 1993



CALCULATOR PRELIMINARIES

Although the chapters in this volume are self-contained, the authors have
assumed that readers will have a basic familiarity with the HP-48G/GX and its
operation, at least to the extent of being able to do elementary numerical calculations
and to enter algebraic expressions. For those inexperienced with HP-calculators, this
basic familiarity can best be acquired by a hands-on study of Chapters 1, 2 and the
first five pages of chapter 3 of The HP-48G Series Users' Guide. For convenience, we
briefly review the basics here, and include as an appendix some material on program

housekeeping.
Stack Display Screen

When you first turn on a factory fresh HP-48G series calculator, you will be

looking at the stack display screen. To remove any objects from the screen that may
remain from previous use, press the key three times then the key (on

the same row of keys as | ENTER |). Above the horizontal line near the top of the
screen you will see {HOME]}, indicating that you are in your HOME directory.

Immediately below are levels 1-4 of the stack. Like lines on a piece of paper, the
stack is a sequence of temporary storage locations for numbers and the other kinds of
objects used by the calculator such as algebraic expressions, arrays, equations, and

programs.

Just below level 1 are six blank menu boxes. Normally, these menu boxes will
have labels in them that reflect the operation of the six white menu keys beneath
them. If you press the key near the top left of the keyboard, the labels will

show that the first page of the MTH menu contains the six submenus VECTR, MATR,
LIST, HYP, REAL , and BASE; the key will turn you to the second page of
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the MTH menu and another will cycle you back to the beginning. The small

horizontal tabs above the labels in the MTH menu indicate that each of the boxes
contains a submenu (a file, or subdirectory in HP parlance). Open the HYP submenu

by pressing the white menu key beneath it to access the various commands for
working with hyperbolic functions. Press to return to the MTH menu at any

time.

Similarly, the key opens the PRG (= Program) menu where you may use

the white menu keys to access the various submenus of commands for use in writing
programs. An extremely important key is the key. It opens the VAR

( = Variables) menu, which is where you look to find the objects that you have
created and stored into the memory of the machine.
Display Settings

It is best to keep the calculator's angle mode set to radians in order to work

with trigonometric functions. Press (purple) to toggle between radian

mode and degree mode. When radian mode is set, the message RAD appears at the

top left of the stack display screen.

To display numbers in standard form, set your unit to STD display mode (the default

setting) by pressing , opening the FMT (= Format) menu and checking

to see that the left-most menu box reads | STD[J |. The small box next to STD
indicates that STD mode is active. If the menu simply reads press the

associated white menu key to activate STD mode. For routine calculations on
the stack, it does not matter which menu labels are active. Simply press to

make them all blank.
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Keyboard

The keyboard of an HP-48G series calculator may at first appear to be
somewhat intimidating. But, like the control panel of any high-performance device,

it enables you to control and to monitor a vast array of operations. The number entry

keys are bordered on the right by , EI , , and ; and on the left by
, , ,and IZ' The right-shift key and the left-shift key are

color coded to many of the keyboard labels, and the [a | key is used to obtain

alphabetical characters.

Adjacent to Iﬁ;ﬂ is |+_/—| for changing signs, then for entering
exponents, for deleting characters (and clearing the stack), and @ for
backspace-and-delete (and dropping objects from level 1). The LSIN ] , I CO?],

, and| Vx keys are just above, as are| YX | (for obtaining powers) and .

Above the trig function keys are EI (tick), for entering algebraic expressions, and

and | EVAL | for storing and evaluating objects. The four cursor keys E ,
E] , E and E control the movement of the cursor when it is active.

Applications and Command Menus

You will notice that some keys have both left-and right-shifted labels printed
above them, but many have only one of the two.

The keys that have only green labels above them represent applications, e.g.,
I/0, PLOT, SOLVE, TIME, UNITS. The right-shifted version of an application key
invokes a specially designed user-interface that lets you interact directly with the

named application, often through the use of input forms, which are the HP
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equivalent of the familiar computer "dialogue boxes". Alternatively, the left-
shifted version of an application key gives you access to the various commands on
the command menu that is associated with the particular application. The
commands may be included in programs or executed directly from the keyboard while

viewing the stack display screen.

Numerical Calculations

Simple numerical calculations are done on the stack. The idea is this: put
inputs on the stack and then execute commands that use the inputs. To enter -12.34,
begin by pressing the appropriate number keys and the decimal point key (bottom
row, center), then use to change the sign. Notice that the typing starts at the

bottom left of the display screen, below level 1 of the stack, on the command line.

Press | ENTER | to put -12.34 on level 1. Now enter 56.789; notice that | ENTER

inserts it onto level 1, bumping -12.34 up to level 2. Press to compute the sum.

To recapture the stack before you added, press UNDO | (the right-shifted
EVAL key). Now subtract 56.789 from -12.34 with [ = |, then use and swap

positions with (the right cursor key I—EI; no need to press now). Now

subtract again to get 69.129. Take the square root with Vx |, then cube the result

with 3 | YX|. You should have 574.765129278.

To edit this result, use (the purple key), use the right cursor

key to move the cursor over the 9 , delete the 9 with and press 3

. Now use (the right-shifted key) to obtain the natural

logarithm. To multiply by =, press IE] (r is obtained with the left-shift
key) then E Notice the symbolic result '6.35396147609 * =’ on level 1,
enclosed in tick marks. To convert this to a numerical result, use (the
left-shift key). Now drop the 19.9615586945 from level 1 with [¢ . The

E key drops objects from level 1; the adjacent key (labeled CLEAR in purple)
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clears the entire stack. Normally, you need not left-shift these keys; shifting is
required only when the command line is active.
Algebraic Expressions

Algebraic expression must be typed in beginning with a ' (tick) mark using the El
key. Alphabetical characters are obtained by first pressing E] and then the

desired key. Note that alphabetical characters appear in white letters to the lower
right of the keys on the top four rows. To produce, say 'S', press [II followed by E]

’ SIN I [ ENTERJ. Lower case characters are obtained by the sequence E] @

then the character key. For example, D E E LDJ [ ENTER] puts 'd’

on level 1. (Thus [ a | left-shift will give lower case).

To enter the algebraic expression 'SIN(X)’, press D @ [E,
ENTER |. Notice the location of the cursor after each keystroke; after the

cursor is still inside the right parenthesis. To move it outside, use the right cursor
key El But, pressing | ENTER | does it all for you. As a more complicated

example, try 'COS(Xa2)/(2+XA3)". The keystroke sequence is:
[] [cos] [a] [1x] [¥v*] 2 [B] [+][&][+] 2
[x] [a] [1/x] | ¥*| 3 [ENTER].
Yes, it is necessary to insert the + in 2+XA3; if you forget, when you press ,

an Invalid Syntax message will appear and you can then correct your typing. If
things are not going well on the command line, remember that the El key will

backspace and delete. Finally, if you get desperate, press (sometimes, more

than once) to cancel what is taking place and then start over.



HP-48G/GX Calculator Enhancement
for
Single-Variable Calculus

Donald R. LaTorre, John W. Kenelly, James H. Nicholson

Calculus of a single variable has proven to be the mathematical common
denominator for students in practically every scientific field. Exceedingly rich in terms
of concepts and ideas, calculus was for almost three centuries linked to every major
development in mathematics, science and technology. Its applications are diverse and
widespread and today a study of elementary calculus forms the basic mathematical

foundation for careers in mathematics, science and engineering.

But the teaching of calculus has not kept pace with the times. All too often our
courses have catered mainly to traditional analytic presentations and largely ignored
the strong graphical and numerical aspects that have always been present but which

are now readily accessible with microcomputer or calculator technology.

This chapter is an introduction to how the HP-48G/GX supercalculator can be used
to effectively enhance the teaching and learning of the graphical and numerical
aspects of single-variable calculus. Our presentation is, of necessity, somewhat brief
and makes no claim to being comprehensive. It is intended only to point the way for
teachers to use the high-level Hewlett Packard units by showing some of their power
and versatility, as well as some examples of where and how they can make a

difference. Reference [1] is an expansion suitable for classroom use by students.
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The chapter is divided into four sections. Section 1 is concerned with
representing functions numerically and graphically. We begin by representing
mathematical functions on the HP-48 as user-defined functions, and then show how
the SOLVE application can also be used to evaluate functions. The HP-48's PLOT
application lets you represent functions as plots in the PICTURE environment and we
discuss plotting via the main plot screen (which uses input forms and choose boxes) as

well as with the commands on the plot menu.

Section 2 discusses derivatives: from the simple evaluation of difference
quotients and their susceptibility to cancellation errors to the calculator's ability to
perform symbolic differentiation. Root finding and the analysis of the graphical
behavior of functions in terms of local extrema and inflection points are also

examined.

Section 3 considers integration. We provide a calculator directory of short
routines that produce various kinds of Reimann sum approximations to definite
integrals - left and right rectangle, trapezoidal, midpoint, and Simpson's
approximations - and then discuss the HP-48's built-in numerical integration routine.
This section concludes with a calculator-based activity designed to reinforce students'

understanding of Part 1 of the Fundamental Theorem of Calculus.

Section 4 focuses on Taylor polynomials and infinite series, illustrating the
ability of the HP-48G/GX to contribute graphically and numerically to the teaching
of these important topics. Programs are included that show the calculation of

partial sums dynamically.

Along the way, we have included a number of sets of EXERCISES. Although not
inclusive, they are fairly representative of the types of activities that students can
be called upon to conduct with the HP-48 as they become active participants in the

construction of their own personal understandings of the material.
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1. FUNCTIONS

Beginning calculus is a study of the behavior of functions: their variation, rates
of change, end behaviors. We thus begin with a brief look at how mathematical
functions can be represented, evaluated and graphed on the HP-48G/GX.

Representation and Evaluation

A convenient way to represent many mathematical functions on the HP-48 is through
the creation of user-defined functions. In HP-48 parlance, a user-defined function is a
short program that captures the essence of the formal way that we define a function
by an equation like F(x) = 2 sin x + sin 4x. Here, F is the name of the function, x is
the input variable, and the expression to the right of the = sign is an algebraic

description of the desired output for a given input x.

The user-defined function that represents this mathematical function is the program
« = X '2*SIN(X) + SIN(4*X)' » stored in the global variable F. The DEFINE
command lets you create a user-defined function directly from an equation. For the

example at hand, simply enter the equation 'F(X) = 2*SIN(X) + SIN(4*X)' onto level

1 of the stack and press . If you access the VAR menu with the

key, you will see the label appearing above a white menu key; this identifies F

as the name of the user-defined function. To verify that the variable named F

actually contains the above program, you can recall the contents of variable F by

pressing (the right-shift key will recall); press when you've

finished viewing the program.

To evaluate this function, enter the desired input and press the menu key .
For example, put 'TA2' on level 1 and press to see "2SIN(T*2) + SIN(4*T*2)'.
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Likewise, press 4 to see 2 sin 4 + sin(4*4) evaluated as -1.80150830728. You may

enter the equation 'F(X) = expression in X' directly or by first entering 'F(X)', then
the ‘expression in X' and pressing El In either case the key

automatically creates the user-defined function from the equation.

User-defined functions of two or more variables are constructed in the same way.

For instance, to represent G(x,h) = sm(x+h1)1— SoX enter 'G(X,H) = (SIN(X+H) -

SIN(X))/H'and press [§] [DEF ].

Piecewise-defined functions often occur in applications and are introduced early
in calculus to illustrate the ideas of one-sided limits and points of discontinuity.
The best way to represent them on the HP-48 is to use the IFTE command, found on
the third page of the PRG BRCH menu . The IFTE command is an abbreviation for
the "if ... then ... else ... end" construction and executes one of two procedures that you
specify, according as a "test clause” is true or false. The IFTE command takes three
arguments: a test argument and two procedural arguments, as in IFTE (test, procedure
1, procedure 2). You should interpret this as "If test clause is true, then execute
procedure 1 else execute procedure 2" .

2
To represent p(x) = {x - 3’( x<0 , the desired command is 'IFTE(X<0, X*2
1-x 0 <x
- 22X, 1 = X*2) 'on stack level 1. Begin with ', then go to the second page of the
PRG BRCH menu and press , followed by the three required arguments
separated by commas, then . The inequality relations are on the first page
of the PRG TEST menu. This expression can now be treated like any other function
and evaluated, graphed, differentiated or integrated. For instance, with ‘IFTE(X<0,
X*2 - 2#X, 1 — X*2)'displayed on stack level 1, enter 'P(X); then press , E'
and finally to create a user-defined function. Try evaluating p(x) using values



10 CHAPTER1

to the left and right of 0 to discover whether the function has a limit as x

approaches 0.

The general construction for a piecewise-defined function with two pieces like

fi(x) x<aj

fx) = {fz(x) ag < x

is IFTE( x < aj, f1(x), fa(x) ).

For three or more pieces, you can nest the IFTE commands:

fi(x) x<ag
for f(x) = { fa(x) aj<x<az,
f3(x) az<x

use IFTE(X < a1, f1(X), IFTE(X < a3, f2(X), f3(X))),
Although you can evaluate functions by representing them as user-defined
functions, you may also use the SOLVR . The SOLVR is designed to solve equations,

but the format of its menu makes it convenient for evaluating functions. With the
function on level 1, press E] |SOLVE | IIF‘\i@@Tl‘l then load the function on level 1

into EQ by pressing . Now press [SOLVR|. To evaluate the function

stored in EQ at a number (or variable), simply key in the number (or variable), press

then [EXP R =|. For example, to investigate the behavior of the function f(x) =

X+2
masx—)O:

Put'(X +2) / (2*X + 1) on level 1 and press ISOLVE | |PJ©©T| , then

[€][Ee] [SOLVR]. Tofind FO, press [E] 2 [+/7] then [X]

to see 1.97058823529.

To find F(.0001), press [EEX | 4 [+/-] then[X] to see 1.99970005999.
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To find F(.000001), press [EEX | 6 [+ 4| then [X] to see 1.99999700001.

To find F(.00000001), press [EEX | 8[+ +] then [X] to see 1.99999997.

What is the limit of f(x) as x = 0* ? Now evaluate f for values of x — 0-.

When using the SOLVR, if you store an equation, say 'expression 1 =
expression 2', in EQ instead of a single expression, pressing |EXPR=| for a given X
will return two values, one for the left side of the equation and one for the right
side. This provides a convenient way to compare the values of two functions at

various values of X.

You should be aware that whenever you use the calculator's SOLVE application,

the last value for x is stored under the variable name 'X' in user memory. You need
not make explicit use of the Solvr for this to occur: pressing [ROOT| on the FCN

submenu automatically activates the SOLVR (as do the commands ISECT, EXTR and

F' which appear as menu keys on this submenu). You can see this variable by
pressing to go to the VAR menu, where you will see the menu key . Press

to recall the value stored for X. Our recommendation is that before going on to

the next application you immediately purge this variable to avoid trouble later on.

Purge by pressing [] [X | [PURGE |.
EXERCISES 1.1

1. Create a user-defined function for f(x) = xInx and evaluate it for x = 102, 104, ...,
104 (Suggestion: press 2 to input 102, etc.) What does the limit of
xInx, as x—»0* appear to be? I'Hospital's rule will determine the limit

analytically.
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2. Investigate, numerically, the following limit:

lim [x+ | 1—\lx+1 |
=01 1 -l

3. Evaluate f(x) = (1 + 1/x)* for x = 102, 104, ..., 10'° and 10''. Then make a
conjecture for

li x
o (14 1/x)%.

Now evaluate f(x) for x = 10'2 and watch what happens. Can you explain this?

x2 x<0

4. Use the IFTE command to represent the function f(x) % . Evaluate for
cos x 0<x

a sequence of values approaching 0 from the left; then use a sequence of values

approaching 0 from the right. Do any of the limits, xl_i)“(}- f(x), x_l_i)'6‘+ f(x), and
Jim fx), exist?

sin x

5. Conduct a numerical investigation of )!‘_'R) X

Graphing

The single most important application of the HP-48G/GX to a study of calculus
is to create visual images of the wide variety of functions under study. More than
anything else, the ability to graph quickly and easily adds a powerful new
dimension to the traditional analytic approach to calculus. Many of the important
aspects of functional behavior - maximum and minimum values, rates of change, etc. -
can be effectively displayed by the graph of the function. With the calculator,

graphical representations can be used extensively from the beginning of the course.
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To get informative representations of graphs on the HP-48 you must set the
viewing window to display the part of the graph that you want to see. The default
settings of the plotting ranges for points (x,y) are -6.5 < x £ 6.5 and -3.1 <y < 3.2,
with a common unit scaling of each axis. Since there are 131 columns and 64 rows of
pixels, these settings produce square pixels of size .1 and your visual intuition of
slope and area is preserved on the screen. The default settings also work nicely for
trigonometric functions of amplitude 3 or less. You can, of course, change the settings
in a variety of ways , some of which will be illustrated in the examples. To
accomodate trigonometric graphs, make sure your calculator is set to radians mode.
The E key will toggle between degrees and radians; when radian mode is

set, the message RAD will appear in the top left corner of the screen.

Functions are represented graphically as plots in the PICTURE environment.
The general procedure to produce a plot of a function of a single independent variable

is as follows:
e Access the PLOT application;
o Enter the expression that defines the function;

e Set the plotting parameters, e.g., the independent variable, horizontal and

vertical plotting ranges, etc.;
e ERASE ( if desired) any previous plots;

e Execute the DRAW command.

The HP-48G/GX allows you to access the PLOT application in two different ways to
enter a function's expression and to set the plotting parameters: with to
interact directly with the main PLOT screen, or with to use the various
commands on the PLOT menu. We will illustrate both approaches in our first two

examples.
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EXAMPLE 1. Graph y = 2 sin x + sin 4 x with the default plotting parameters.

Using the PLOT screen: From the stack environment, go to the PLOT
application with PLOT|. The main PLOT screen will show the current plot

type, current angle mode, current expression in EQ (if any), the independent variable
(X, by default), and the current horizontal and vertical display ranges. If the
current plot type does not show Function, press | A | |CHOOS l, highlight Function

and press . If necessary, use E and a similar procedure to set the angle

mode to Rad. Now highlight the field EQ: and type '2*SIN(X) + SIN(4*X3nd

press . If the default plotting parameters are current, the independent
variable will appear as INDEP: X, the horizontal display range as H-VIEW: -6.5

6.5, and the vertical display range as V-VIEW: -3.1 3.2. If any of these settings

appear otherwise, go to the next page of the PLOT menu with , press [RESET

and activate Reset Plot with . Once the default plotting parameters are set,
return to the previous page with and press [ ERASE | to erase any previous
plot and |DRAW/|. You should see a graph like this:

Press @ twice to return to the stack environment.

Using the PLOT menu: Enter '2SIN(X) +SIN(4*X)' on level 1, and press

then , to store this expression into EQ. If you do not now read
"Ptype: FUNCTION " at the top of your screen press [PTYPE| and then
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FUNC |. Now press [P P AR| to see the plotting parameters. If you do not now

read
Indep: 'X'
Depnd: 'Y’
Xrng: -65 6.5
Yrng: -3.1 3.2
Res: 0

on your screen, press [RESET| to return your screen to the default settings. Now

press to turn back a page and open the PLOT menu with [PLOT|. Press

ERASE | to erase any graph previously drawn, then LD RAXl and EDRAW]. You
should see a graph like this:

When you have finished viewing the graph, return to the stack by pressing @
twice; you can always bring back the graph by using the E key.

Often, you can see more of a graph if you compress or expand the viewing screen
vertically or horizontally by using the [ZOOM | key, as in the next example.

EXAMPLE 2. Graphy =x3-3x2 -5x + 1.

Using the PLOT screen: Open the PLOT application with [PLOT|. Since

the default settings are current from our previous example, we need only enter the
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new function. With the EQ field highlighted, type 'X*3 - 3*X*2 - 5*% 1'and

press . Press and to produce this graph.

|
1

To see more of the lower right part of the graph we will zoom out on the
vertical-axis but leave the x-axis unchanged. Open the (ZOOM | menu, then the

ZFACT| menu. Toggle down to the V-FACTOR with E, change it to 5 with 5
, then press . Move to the next page with and zoom out on the
vertical axis with |[VZOUT |. You will get the graph:

1]
[N

To verify that we have expanded the height of the graphing screen by a factor

of 5 activate the coordinate read-out with the menu key , and use the
@ key to move the cursor up to the first tick mark on the y-axis. Notice that

this tick mark records the zoom factor. The zoom factor 5 was determined by trial
and error; a smaller factor failed to show the low point of the graph. Press @

twice when you've finished.

Using the PLOT menu: Begin with 'XA3 - 3*XA2 - 5*X + 1' on level 1 of the

stack and press [E@ ] |l?® PA IF’&J . Since we wish to plot first

with the default settings use [RESET| to set the plotting parameters to their
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default settings. Return to the previous page and open |PLOT|, then use
ERASE] [ID) RAXI and DHAW to produce this graph:

f

Now we can zoom out as before to see more of the local behavior.

The above two examples convey the major differences in using PLOT| and

to access the PLOT application. The lets you interact with
the main PLOT screen, and the PLOT| provides direct access to the various

commands on the PLOT menu. While beginners may prefer to interact with the PLOT
screen, more experienced users tend to prefer the menu commands. From here on, we

leave the choice to the reader.

Here are two examples of graphs requiring adjustment on the range of x values:

EXAMPLE 3. Graph y = sin(10nx) on the default viewing screen. You will see:

|
|

Where are the points? In the default mode, the HP-48 calculates values of y for

each of the 131 values of x, .1 unit apart from x = -6.5 to x = 6.5. Since 10r times
each of these numbers is an integer multiple of &, the sine function is 0 at each of

these values of x. To get a better picture of the graph we can compress the viewing
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window in the x direction. Zoom in on the horizontal axis by a factor of 10 (set the
H-FACTOR, thenuse |HZIN | to see:

EXAMPLE 4. Graphy =x V 5-x2 with the default settings to see:

A
Vi

From the function, y is 0 when x = = \ 5, but these points do not show on the graph.
Correct to four places, \/_5— = 2.2361. With the default viewing screen, the HP-48 will

plot a point for x = 2.2, but for 2.3 < x, y is a complex number so no points will be

plotted. If we zoominon x by a factor of 2.2361 we see

The viewing window was reset so that 5 units on the x axis is approximately V5.

To superimpose the graphs of two or more functions you can graph them

individually without erasing. A better procedure is to build alist {F G H ..
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etc.) of the functions to be graphed, and store it into EQ. When |DRAW)| is

activated, the functions in the list are drawn sequentially, left-to-right.

EXAMPLE 5. Graph sin x, 2 sin x and sin 2x on the same set of coordinate axes with
the default parameters. Put 'SIN(X)’, '2*SIN(X)' and 'SIN(2*X)' on the stack and
execute 3 (on the PRG LIST menu). You will see the list { 'SIN(X)
"2*SIN(X)'  'SIN(2*X)'}). Now store this list into EQ and then press ,
llFM\X and [@F’M\Wl to see the graphs. Observe how the graphs are drawn

sequentially from the list.

To draw the grpahs in the list simulatneously instead of sequentially, go to the

second page of the menu, open the FLAG submenu and toggle on .

To compare the graph of y = x3 with that of its inverse y = \7;, you may begin
by graphing the list { ’X*3' 'XA(1/3)}. Using the default settings you will see

J
/1

which fails to show the left branch of y = \7; the reason is that for each negative

value of X, X*(1/3) is calculated as the principal cube root of x ... a complex number.
Thus, no pixel is activated. Although you may at first find this a bit disquieting,

the ability of the HP-48 to return complex values for odd roots and for natural
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logarithms of negative numbers is but one of the many features that makes the unit

so appropriate for post-calculus mathematics.

To obtain real odd roots of negative numbers, use the XROOT command, given by
the Yy key (the [?] Vx| key). For instance, with -8 on level 2 and .333333333333 on
level 1, the [B key will return the principal cube root of -8: (1, 1.73205080757). But

with -8 on level 2 and 3 on level 1, the :/; key will return the real cube root of -8 :

-2. To see both branches of the graph of y = \7;, graph the expression 'XROOT(3,X).

To enter this, put 'X', then 3 on the stack and press W . When the list { 'XA3'

'XROOT(3,X)'}is graphed with the default screen, then enlarged by a factor of 2
with the |ZOOM | menu, we see

W
A

Notice that this function and its inverse meet on the line y = x and that the

graphs are reflections across this line. Here is a program which, when given a
function f whose graph is displayed on the graphing screen and an intervala <x<b
contained in the current x range, will graph the line y = x and then the graph of the
inverse relation for f with x restricted to a < x<b. If f is a one-to-one function on the
given interval, then the inverse relation will be the inverse function of f restricted

toas<x<bh.
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INV.F

Input: level 2: a, a real number
level 1: b, a real number > a
As a stored variable EQ: a function f.

Effect: Draws, over the graph of f, the graph of y = x and
the graph of the inverse relation of f, with x
restricted to the interval [a,b].

« = A B « RCEQ —» EQ1 « CLLCD 'X' STEQ DRAW EQ1 STEQ A
B FOR I I 'X' STO X RCEQ EVAL SWAP R—C PIXON .1 STEP X
PURGE PICTURE » » »

EXAMPLE 6. Graphy = (x + 1 with the default viewing window. To see its
inverse, clear the graphing screen with @ and go to the VAR menu with .
Enter the "screen domain" of the plotted graph: -3, 1 and press |[INV.F| to see

Since the graph of the inverse function is plotted point-by-point, it will appear dotty

as in this example.

The ZOOM menu of the HP-48G/GX calculators contains assorted commands for
zooming on a graph and the BOXZ applicaiton is especially helpful for zooming in
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on a particular region of a graph. The basic idea is to capture the region of interst

within a samll "box", then zoom in on the box. Here's an example.

. . 1 '
EXAMPLE 7. Begin by graphing x sin J on the default screen. To better see what's

happening near the origin, begin by opening the ZOOM menu. Now move the cursor 5
pixels to the left of (0,0), then down 3 pixels and open . Now move the

cursor 5 pixels to the right of (0,0), then 3 pixels above (0,0). Notice that the cursor
"drags” a small box that has the origin as its center. Now press |Z O O M| to zoom

in on the box.

Now repeat this zooming-in process with BOXZ by moving to a corner of a box 5
pixels to the left and 3 pixels below the origin, then moving to the diagonally

opposite corner 5 pixels to the right and 3 pixels above the origin and pressing

ZO OM]|. Are you ready to give an answer to

lim

1
x_)0XSlnx-.

Piecewise-defined functions are graphed by storing the defining IFTE expression
into EQ and proceeding as usual. To get the graph shown in the next example, use
the default viewing screen and the disconnected graphing mode; in the connected
mode the calculator will connect the pixels on opposite sides of the two
discontinuities and give you an inaccurate representation. To set the HP-48G/GX to
graph in disconnected mode, go to the second page of the PLOT menu and open
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the FLAG submenu. Press the second white menu key so that|CNCT| appears in the

second menu box.

6x+45 x< -25

EXAMPLE 8. To graph f(x) =y 2+sinx -2.5 <x<2.5 , use the expression
-Cos 2x 25<x

'IFTE (X < -2.5, .6*X + 4.5, IFTE ( X < 2.5, 2 + SIN(X), -COS(2*X))'. This gives the

graph:
i .‘v" ..\.

When you have finished, reset to graph in connected mode.

EXERCISES 1.2
1. (a) Graph the list { 'SIN(4*X)" '-2+SIN(X)'} using the default graphing screen.
(b) ERASE and graph the sum of the two functions in the list.
(c) Overdraw your graph in (b) with the graph of y = -2 sin x.
(d) ERASE and graph the product of the two functions in the list.
(e) Overdraw your graph in (d) with the graph of y = -2 sin x.

2. Graph y = cos(10nx) on the default graphing screen. Why does the
representation of the graph look this way? Adjust the screen to make the

representation look more like a cosine curve.

3. Set your calculator to degree mode and then graph y = sin(x°) using the default

screen. Without changing back to radian mode, how should you zoom on X to
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10.

11.
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make this graph look like sin x, x in radians? (When you're done, set to radian
mode.)

Graphy = X -1.3¢ + 32x - .02 using the default screen. Clarify the behavior

of this function near the origin by using BOXZ several times.

To appreciate how "steep” are the graphs of simple polynomial functions, begin
by graphing y = 34x3 - 91x2 - 117x + 54 in the default screen. Now zoom out

along the y-axis as necessary until you can see all local extreme points.

Graph y = cos (cos'x) using the default screen. The result is what you expected,

isn't it? Now, ERASE and graph cos™(cos x). Can you explain what you see?

Investigate, graphically, the following limit:

lim (x+ | 1-+x+1 |)

x>0\ |11l

(See Exercise 2 in EXERCISE 1.1)
Graphically investigate the behavior of f(x) = sin (%) near x = 0. Begin by

graphing in the default screen, then use BOXZ . What is your conclusion?
-X x<0

Graphy =4 sinx 0<x<mx , using the default screen.
X-T MW<X

Graphy = XV 3- %% Adjust the viewing screen to make the graph touch the x

axis at the end points of the domain.

Graph y = x3 - 9x2 + 2x + 48 with the default screen, then zoom out on y by a

factor of 16 to see the local maximum. Now move the cursor to (4,0), open the
ZOOM menu and press the menu key |GCN T R| on the second page to relocate the

center of the viewing window. You may wish to press E to remove the menu

key labels.
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13.

14.

15.
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(a) Graphy=x2 +§ on the default screen, then zoom out on y by a factor of 4.

3 _
x-1 on the default screen, then relocate the center of the

(b) Graphy =77

viewing rectangle at (0,2) to see the "hole".

(a) Use the default screen to graph f(x) = 2x - 3, then use the INV.F program to
graph f1.

(b) Write an equation for f1.

(c) ERASE, then graph g(x) = -.6x + 1 and its inverse. When you've finished,
write an equation for g1

(d) What is your observation about the slopes of non-parallel lines that are
symmetric to the line y = x? Prove it.

(e) Is the converse to your observation true?

Let u(x) = x2 + x + 1 and v(x) = sin x.

(a) Graph the composite function f(x) = u[v(x)] and compare with the graph of

v(x).

(b) Graph the composite function g(x) = v[u(x)] and compare with the graph of

u(x).

x-4
x2+1°

Use the XROOT command to graph y = 2 (x + 2)?/3 + Use the default

6
screen, then zoom outon xy by 15 -

2. DERIVATIVES

The derivative f of a function f is defined by f(x) = hl'_% “"Lh)-f(ﬁ . The

difference quotient on the right-hand side is the average rate of change of f, with
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respect to x, over the interval [x, x+h] and is also the slope of the secant line joining
the points (x,f(x)) and (x + h, f(x + h)) on the graph of f. For a given x, we may

f(x + h) - f(x)
h

approximate f'(x) numerically by evaluating for suitably small

values of h.

A simple way to do this on the HP-48 is to evaluate a user-defined function for

the difference quotient:

DQOCH) = F(X + I:I) - F(X)

This procedure requires that we also build a user-defined function F for the given

function f. (See pages 3-4 to refresh on user-defined functions)

To illustrate, let f(x) = (x2 + 5)3. We create a user-defined function F for f: « —
X ' (XA2+5)"3 ' »; and another, DQ, for the difference quotient: « - X H ' (F(X+H) -
F(X))/H ' ». To approximate f'(2), we simply evaluate DQ using input values (2,H).

H: .001 .0001 .00001 .000001
DQ(2,H): 972.67528 972.0675 972.0067 972

H: -001 -.0001 -.00001 -.000001
DQ(2,H): 971.32528 971.9325 971.9933 972

However, you must exercise caution because the numerical computation of
difference quotients is susceptible to serious cancellation error with finite precision

arithmetic. For example, consider the function

\71 + cos2x

f(x) = )
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If you build a user-defined function for f and then evaluate DQ for input values
(1,H) you will obtain

H: 10+ 105 106 107
DQ(1,H): -3.5221718 -3.522835 -3.52291 -3.523

The correct value is f'(1) = -3.5229074056, so you can see that we are losing digits

with each successive evaluation of the difference quotient.

It is important that students learn the basic mechanics of finding derivatives
without their calculators. However, there are times when it is perfectly natural to
take derivatives with the calculator. For example, when we want to graph a
function, its first two derivatives, and then find their roots. Since the graphing and
root-finding will be done on the calculator, we may as well carry out the

differentiation process there also.

The HP-48 uses the EI key (the @ for differentiation and requires
two inputs: the function to be differentiated (in symbolic mode between ' ') on level

2, and the variable of differentiation on level 1:
2: ‘an expression in X'

1: X'

When the EI key is pressed, the derivative will appear on level 1.

EXAMPLE 9. To graph f(x) = 2sin®x and its derivative f', we may proceed as

follows:

Put two copies of '2*SIN(X) A 3' on the stack (press @’ to duplicate level 1),
then enter 'X' and press @ to see
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2. "2*SIN(X)*3

1. '24(COS(X)*3*SIN(X)A2)'

To graph f first, execute and then graph with the default viewing screen:

JANER7AN
ViV

Now draw the graph of f' over this without erasing:

Notice that the graph of f has a maximum or minimum point at those values of
x where the graph of f' crosses the x axis. There are also three points where the
graph of f has a horizontal tangent but no extreme value. At the x coordinates of
these points, f has value 0 but its graph does not cross the x axis. Finally, at the

values of x where f' has an extreme value, f has an inflection point.

EXAMPLE 10. If you put your calculator in degree mode and take the derivative of
f(x) = sin x, you will see 'COS(X)*(n/180)'. Why? There are several explanations,
each addressing the question from a different aspect.
. . . d . d .
Analytically, we know that, for x in radians, x (sin x) = cos x. So, ax [sin(x°)] =
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Graphically, with the calculator still in degree mode, if you draw the graph of

sin x with the default parameters you will see

|
|

For -2.8° < x < 2.8°, sin x = 0 to the nearest tenth of a unit, which is the difference in

y coordinates between adjacent rows of pixels for the default viewing screen. Note

that f(5) = cos(5°)(i%6), which is approximately .017. Certainly, this value seems

reasonable for the slope of the tangent line to the above graph at the point where x
=5.

For a more basic explanation, you can return to the original derivation of 7~ (sin

x). The derivation often uses the result that, for h in radians, th)nO sn;\‘ h = 1. This

limit is customarily proved using an inequality involving the areas of two triangles
and the area of a certain sector of the unit circle. When h is in radians this sector

has area h/2, but if h is in degrees, this sector has area wh/360.

Although the XROOT function is built into the HP-48G/GX, its derivative is
not. You can, however, differentiate XROOT if you have the following program

stored in your HOME direml%l (Note: to obtain lowercase alphabetical characters,

use[o][][ D}, [o][€]

etc.)
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derXROOT

Input: 'XROOT(N,F(X)) on level 1
Effect: puts%( N‘J F(X) ) on level 1

« > N WY Z 'INV(IN*XROOT(N,W)A(1 — N*Z'»

EXAMPLE 11. Find the derivative of f(x) = \7 5 sin x and graph both f and f'. With

the program derXROOT in the HOME directory of your 48, put two copies of
'XROOT (3, 5*SIN(X))' on the stack, enter X' on 1 and press E] to see the derivative

' 333333333333*XROOT (3, 5*SIN(X))A-2+(5*COS(X))'. Now press to put f on

level 1 and graph it on the default screen to see
/G l(\ /
’ K_/I N

Now graph f' without erasing to see

Here, f' has no extreme values, but f has inflection points at those values of x for
which f' is not defined.

Although the HP-48 will not completely symbolically differentiate a function
defined with the IFTE command, it will correctly graph the derivative.
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-X x<0

EXAMPLE 12. Find the derivative of f(x) = {sinx 0<x <% and then graph both
X—-T% WX

f and the derivative.

Put two copies of 'IFTE(X < 0, -X, IFTE(X < =, sin(X), X - 7)) on the stack and

graph in disconnected mode with the default parameters to see

For greater clarity, particularly after we overdraw f', move the cursor to a point
on the x axis approximately under the high point of the graph and press |CNTR|.
The graph will be redrawn with the point you chose as center. Now ZOOM in on
both axes by .67 to see

Press | ON | to return to the stack, put X' on level 1 and press @ to differentiate.
This gives 'IFTE(X < 0, aX(-X), aX(IFTE(X < =, SIN(X), X — =)))Use of | EVAL | does

not change the expression. However, if we graph f' without erasing we see the

graph of the derivative superimposed on the graph of f:

N




32 CHAPTER1

Notice that the minimum values of f occur at values of x where f'(x) does not

exist, and that f has no inflection points.
Newton's Method

The technique known as Newton's method has almost become a classic topic for
inclusion in calculus. It is important because it not only invokes the notion of the
derivative to produce a simple geometric procedure for finding roots of many
functions, but also because it effectively introduces students to several important
ideas: algorithms, recursion, iteration. And it is especially easy to implement on
the HP-48.

EXAMPLE 13. To use Newton's method to find the roots of f(x) = 3x — 4 sin x; we
first graph f to see how many roots there are and to supply first guesses. The graph
below is the result of graphing with the default parameters and then zooming in by

/
/

We will now create a user-defined function for NM(x) = x — Ffs(% . An easy way

a factor of .333 on both x and y:

to do this is to put 'NM(X)', 'X', and two copies of '3*X — 4*SIN(X)' on the stack,

then take the derivative, divide, subtract and equate. The result is 'NM(X) = X -
(3*X - 4*SIN(X))/(3 — 4*COS(X))'. Now press to create the function NM on

the VAR menu.

From the graph, 1.4 appears to be a good first guess, so put 1.4 on the stack and
press to see 1.28871273546 as the next approximation. Press to make
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a duplicate copy to keep. Now press again for a second approximation and
then to keep a copy. If you repeat this for three more iterations of

Newton's method, you will have:
5: 1.28871273546
1.27587035767
1.27569814018
1.27569810928
1.27569810928

=N e R

Five iterations have given us successive approximations agreeing to 11 decimal

places.

The above procedure for building a user-defined function to implement Newton's
method for a given function f can be automated with a short program. Program
NEWTON , given below, takes an expression for f(x) from level 1 of the stack and
constructs the desired user-defined function as NM.

NEWTON
Input: level 1: an expression for f(x)

Effect: constructs the user-defined function NM to implement
Newton's method.

« 'NM(X)' 'X' ROT DUP 'X'd / — = DEFINE 'X' PURGE »

If, for instance, you put '3*X — 4*SIN(X)' on level 1 and press [NEW T|, you can
execute Newton's method from the menu key as above.
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Roots

Students of calculus often need to find the real roots of a function. But, without
ready access to numerical root-finding procedures, they have traditionally been
constrained to work with polynomials that factor easily and with simple
exponential, logarithmic and trigonometric functions. The HP-48 Solve application
provides an advanced level of root-finding capability that enables students to

expand their investigations to almost any function that they may encounter.

The Solve application is accessible through the SOLVE menu and requires an
initial estimate of the root in question. Often, the best way to get such an estimate

is from a graph of the function.

To illustrate, consider the problem of finding all roots of the equation sin x — 2
cos 3 x that lie in the interval [0, 2n]. Begin by graphing the function f(x) = sin x — 2
cos 3 x using the XRNG : 0 6.28 and the default YRNG : -3.1 3.2. After storing the
function in EQ, open| PPAR |, press 0 | SPC | 6.28 | XRNG | to set this x range.

TAANIN
AV

To get an initial estimate of the left-most root, move the cursor to the apparent

crossing of the graph of y = f(x) with the x-axis and press [ENTER |. [ON | will now

exit you from the picture environment and you will see the pixel coordinates of the
estimate on level 1 of the stack. Now enter the Solve application with

[SOLVE |, then press the [ROOT| and |S©[L.VIF’\?| menu keys. Since 'SIN(X) - 2*

COS(3*X)" was stored into the reserved variable EQ in order to produce the graph,

the contents of EQ will appear at the top of the screen. Two menu labels appear at

the bottom left: and |[EXPR<=|. Press to enter the initial estimate; a
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message reflecting the result of that action will appear at the top of the screen.
Now press to activate the SOLVR's root-finding routine; notice the
temporary message "Solving for X" near the top. When the root-finder is finished,
the message "Sign Reversal" will appear near the top and the decimal
approximation to the root will appear on level 1 as X: .450451159135. To evaluate
the expression stored in EQ at this value of X, press and see Expr:
-.000000000002. The message "Sign Reversal™: indicates that the HP Solve
application was unable to find a point where the value of the expression in EQ is 0
to within the calculator's 12-digit precision; it found two points where the value of
the expression has opposite signs, but could not find a point between them where the

value is 0.

For convenience, most of the above procedure has been programmed into the
command ROOT on the PICTURE FCN menu. Thus to quickly find the other roots,
press E to view the graph, move the cursor to the apparent root that is second

from the left, and press [FGN | and [ROOT|. You will see ROOT: 1.74250596672

displayed at the bottom of the screen. If you exit to the stack with two presses of
the ENTER key, you will see this last root displayed on the stack as a "tagged"
object. You can now find the other four roots in this way. When you're finished,

purge X from your user memory.

To avoid confusion, you should know that there is another ROOT command on
the HP-48G/GX. It appears on the ROOT submenu of the SOLVE menu and is useful
in programs. It solves an expression (on level 3) for an unknown (on level 2) using a

first guess (on level 1). You may want to try it out now for the example at hand.
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EXERCISES 2.1

1.

For f(x) = (x2 + 5)3, estimate f'(.6) by setting up user-defined functions to

evaluate the difference quotient.

For the following functions f, use the HP-48G/GX to obtain the derivative f.
Graph f and f in the same viewing window and examine the graphs. By
noting roots of f' or points where f' fails to exist, estimate local extreme values

of f. By noting where f' has horizontal tangents, estimate inflection points of f.

(a) f(x)=x4-2x3 +3x-2 (e) f(x) =31—x2
4 1+x2  x<0
(b) f(x) = 0l (f) f(x) =qcosx 0O<x<rm
n—X <X
() f(x) = ;24_—5 (g) f(x) =15 tan'12x
(d) f(x) = cos 2x - sin x (h) f(x) = 3ex2A

Use Newton's method to find all roots of
(a) f(x) =x3-3x2-5x+15
(b) the equation 2% = x!° (how many roots are there?)

(c) f(x) = ¥ x-2 . Suggestion: Start with xo = 2 and explain what happens.
Then begin with xp = 2.1 and explain (geometrically) what happens.
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4. Use the Solver and a graphical estimate to obtain the roots of
(a) e*!=cosl(x+2)

4
(b) 3ex2a =50l

1
(c) x=ln;

5. It is well-known that the centroid of the St. Louis arch is in the shape of an
inverted catenary (hyperbolic cosine). The oustide surface is much thicker at
the base than at the top and thus is not a true catenary. Nevertheless, we
shall model the outside surface as a catenary having both its height and base
equal to 630 ft. Since a catenary hanging above the origin with lowest point at

X
(0,a) has an equation y = a cosh 7, it is easy to see that an equation for the St.

Louis arch is

y =630+a(1—cosh’ai)

for some positive parameter a. To help determine this parameter, we may use
the fact that the point (315,0) lies on the arch. Use the Solver to determine the
parameter a and then write an equation for the St. Louis arch that is free of
unknown parameters. Remember, the Solver only needs an initial guess. The

cosh command resides on the MTH HYP menu.
Analyzing Functions

The graphical representation of a function produced on a calculator's screen often
provides valuable information about the function's behavior. When graphical

techniques are effectively combined with an understanding of the derivative as a
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rate of change, we have a powerful tool for analyzing a function's behavior in

considerable detail.

After the DRAW command is executed and the HP-48G/GX draws a graph, the
calculator enters the PICTURE environment and displays the PICTURE menu. In
addition to the zooming operations accessible through the ZOOM submenu and the
BOXZ key, the FCN submenu contains commands appropriate for analyzing a

function's behavior with calculus without leaving the PICTURE environment.

We begin with an example that would not be appropriate without technology.

EXAMPLE 1. Graph f(x) = sin(2x) + cos(x + 2), find the x intercepts and the
coordinates of its local extreme points and inflection points. Since this is a periodic
function with period 2=, it is sufficient to find the desired points on the interval

[0,2r). Graphing f with the x range set to - .1 < x < 6.29 and the y range set to - 2.5 <

SAN
|

y £2.5, we see:

D

Find the roots using the ROOT command on the FCN submenu. You should get:

4: Root: 429203673203
3: Root: 904129660127
2: Root: 2.99852476252
1: Root: 5.09291986492

To find the coordinates of the local extrema: To simplify the display, FIX the

display mode at 2 places; full 12 digit accuracy is retained in memory and can be
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recalled at any time. Return the picture with E], activate the trace cursor with

TRACE|, then use E to move the cursor to the first apparent high point of the
graph. Open the FCN submenu and press [EXTR|. The message EXTRM:

(0.67,0.08) appears below the graph. Now move the cursor to the next apparent
extremum, a low point, and press |EXTR| to see EXTRM: (2.14,-1.45) displayed.

Find the last two extrema in the same way to see EXTRM: {4.00,1.95) and EXTRM:
(5.76,-0.77). Now return to the stack display with @ @, and you will see that

these four points have been entered on the stack, each labeled "Extrm".

To find the inflection points. There is no key on the FCN menu to do this so we
must use our knowledge of the relation between the function and its derivatives.
Since an inflection point of f has the same x coordinate as an extreme point of f, we
will find the extreme points of f' and calculate the value of f at each of their x
coordinates to get the coordinates of the corresponding inflection points of f. The

first part can be accomplished within the PICTURE environment.

With the graph of f displayed, go to the second page of the FCN menuand
execute . This will plot the derivative f' and then replot f. The high point of

f is offscreen, so we zoom out on y with a factor of 1.5 to see

When you execute , EQ becomes a list {f' f} containing f' and f in order. The
function analysis operations ROOT, EXTR, etc., apply only to the first function in the

list, which is now f. Move the cursor to the apparent high point of f' near the
origin and press [EXTR|. You will see EXTRM: (0.06,1.10)displayed at the
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bottom of the screen and on stack level 1. The x coordinate is the x coordinate of the

corresponding inflection point of f.

The following program automates the procedure for obtaining the coordinates of
the inflection point. The program assumes that EQ is the list {f' f} and that the
coordinates of an extreme point of f' are displayed on stack level 1. With this input,
it returns the corresponding inflection point of f with the tag "Infl". The 1 in the

name "INFL1" simply indicates that the first derivative is used in the process.

INFL1 ( Inflection point of f)
Input: level 1: the coordinates (xg,yo) of an extreme point of f
As a stored variable EQ : the list {f' f} consisting of f'
and f
Effect: returns to level 1 the point (xp, f(xy)) tagged as 'Infl'

«RE EQ 2 GET OVER ' X' STO EVAL R—C 'Infl 2TAG X' PURGE »

With this program in your calculator and the above extreme point of f'
displayed on stack level 1, press |INFL1| to see 1: Infl: (0.06, -0.35) displayed.

Return the graph to the screen by pressing | PICTURE |. Now move the cursor to
each of the remaining three extreme points of the graph of f and press |EXTR| on
the FCN menu at each point. Return to the stack display with @ and convert

each of the three extreme points of f' to inflection points of f with the use of INFL1.
You must do some stack manipulation to move the extrema of f' to level 1 for use
with the program. If you want to keep the inflection points in their order on the

graph, here's an easy way: with the three extreme points of f on the stack, press
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the E key to activate the interactive stack, use the same @ key to position the
pointer on level 3 and then press |[ROLL |. This rolls the first three levels of the

stack upward pushing the extreme point on level 3 down to level 1. Press to
leave the interactive stack, then press |INFL1 | to convert the extreme point now on

level 1. Now repeat this entire process twice more until all the extreme points are

converted. We display again the graph of f and the points that we have found:

TAN
I

12: Root: 0.43
11: Root: 0.90
10: Root: 3.00
9: Root: 5.09
8: Extrm: (0.67,0.08)
7:  Extrm: (2.14,-1.45)
6: Extrm: (4.00, 1.95)
5: Extrm: (5.76,-0.77)
4: Infl: (0.06,-0.35)
3: Infl: (1.45, -0.71)
2: Infl: (3.09,0.28)
1: Infl: (4.82,0.64)

EXAMPLE 2. Plot the graph of f(x) = 1.7 e*/2 sin(3x) for 0 < x. Since we are
interested in the graph only for non-negative x, we set the x range as -.1 < x < 6.4 and
the y range as -1.55 < y < 1.6. This halving of both ranges retains equal unit
distances (number of pixels per coordinate unit) on both axes and produces the graph:
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This function (which represents damped harmonic motion) is not periodic and
has infinitely many roots, extrema and inflection points for 0 < x. We could find any
of these we desired by using the techniques described earlier. But in this example,

we will use the HP-48G/GX to analyze another aspect of the function's behavior.

Since -1 < sin(3x) < 1, the graph of f lies between the graphs of u(x) = 1.7 ex/2
and v(x) = - 1.7 eX/2, coinciding with the graph of u when sin(3x) = 1 and
coinciding with the graph of v when sin(3x) = - 1. We can illustrate this by
graphing the list { f u v } with the same plotting parameters we used for f. Exit the

PICTURE environment with @, recall f to the stack with , and use

to put a second copy on the stack. Edit the copy on level 1 to read
'1.7*EXP(-X/2)', make a second copy of the newly edited expression with

and then press to change sign. Go to the PRG LIST menu and press 3 |2 LIST
to build the list { f u v }. Now store the list into EQ and graph it to see:

The roots of f occur where sin(3x) = 0, that is, at the roots of sin(3x). Question:
do the extrema of f occur at the extrema of sin(3x), that is, at the points of coincidence of f

withuorv?
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We investigate this question both analytically and graphically. Move the
cursor to the first maximum point to the right of the y axis and press on the
FCN menu to see EXTRM: (.468549216461, 1.32664626947) at the bottom of the
graphing screen. If this were the point where sin(3x) = 1, then its first coordinate
should be n/6. But n/6 = .523598775598, so the extreme points of f do not coincide
with those of sin(3x). We illustrate this graphically by using BOXZ to zoom in on
the region of the graph around the first maximum point to the right of the y axis:

The maximum point of f is clearly seen to be to the left of the point where the
graph of f intersects the graph of u. With some analysis of f, you can show that
successive extrema of f occur every ©t/3 units along the x axis, as do successive points
of coincidence of f with u or v. So the spacing shown between an extreme point and
the corresponding point of intersection with one of the bounding graphs is constant for

0<x< oo,
Caution

When you execute the EXTR command on the PICTURE FCN menu, the HP-
48G/GX takes the derivative of the expression stored in EQ and then finds the x
value closest to the cursor that causes the derivative to evaluate to 0. Thus, if the x
coordinate of the extreme point you are finding is a root of the derivative, you are
using the EXTR command in the way in which it was designed to be used. But, if the

extreme value of f does not occur at a root of f, you should not use this command.
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EXAMPLE 3. Find the roots, extrema and inflection points of f(x) = 2(x + 2)%/3 +

‘:!_.,._41- Put '2*XROOT(3, (X + 2)A2) + (X - 4)/(X"2 + 1)’ on level 1 and graph f with

\

We can find the two roots in the usual way, by moving the cursor to each of them
and pressing |ROOT | on the PICTURE FCN menu. We can find the local maximum

the default parameters to see:

point near x = -1 and the local minimum near x = -.3 by moving the cursor near these
points and pressing [EXTR|. However, if we move the cursor to the minimum point

where x = -2 and press [EXTR|, we get EXTRM: (-7.52928344591E 213,

7.68302819356E 142) which is nonsense. From the graph, f clearly has a minimum at
x=-2and f(-:2) =0 + -5§= -g . The problem is that f has no derivative at x = -2. If

we press E on the PICTURE FCN menu to graph both f and f we see:

A\
=

Notice that f' does not exist when x = -2. Since the inflection points of f occur at

values of x where f' has extrema, we move the cursor near the local minimum of f'
to the left of the origin and press EXTR to obtain (-.661278286618, -1.07868129833).
Now return to the stack, open the VAR menu and use INFL1 to build the inflection
point as

Infl: (-.661278286618, -.81375384108).
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Similarly, we find the inflection point to the right of the origin to be
Infl: (464327883331, .74032208835).
EXERCISES 2.2

For each of the functions given below, plot the graph and find all local extreme

values and inflection points.

1. f(x) = x + 3 sin x, on the interval [0,2r]. 2. f(x)=x3-x+2.

3. f(x) = sin x + 2 cos(3x) on [0,x] 4. f(x) =x3 «(1.3)x2 + (.32)x - .02

5. f(x)=x5+3x4-x®-3x2-x+3 6. f(x) = sin(3x) - cos(2x), 0 < x < 2n
7. fx)=x" 8. fx)=x""0sxs2n

9. f(x) = cos(4 cos1 x).
3. INTEGRATION

The HP-48G/GX calculator can be effectively used to enhance the study of the
definite integral. To illustrate the basic limiting process that defines the definite
integral, short programs can be used to facilitate the rapid calculation of various
kinds of Riemann sums to produce numerical approximations: the left rectangle, right

rectangle, trapezoidal, mid-point, and Simpson's approximations.

Create a directory named INTG by keying in 'INTG' and pressing
(this key is on the DIR submenu of the menu). Now press on
the VAR menu and enter the following programs (originally provided by Tom Tucker
and John Kenelly):
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FABSTO
Input: Level 3: the integrand, 'f(x)'.
Level 2: the lower limit of integration, a.
Level 1: the upper limit of integration, b.

Effect: stores f, a and b.

« 'B" STO 'A' STO STEQ »

NSTO
Input: level 1: a positive integer, n
Effect: sets n, the number of subintervals and stores (b —a)/n as h

«'N'STOBA—N/'H'STO»

LRECT
Input: none

Effect: uses SUM to compute the Riemann sum for the f,a, band n
already stored, with f evaluated at the left end point of each

subinterval

« A SUM »
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RRECT
Input: none
Effect: uses SUM to compute the Riemann sum for the f, a, band n

already stored, with f evaluated at the right end point of

each subinterval

« A H+ SUM »

TRAP
Input: none
Effect: uses SUM to compute the trapezoidal rule approximation for

the f, a, b, and n already stored.

«ASUMBFAF-2/H®"*+ 'X PURGE »

MID
Input: none
Effect: uses SUM to compute the Riemann sum for the f,a, band n

already stored, with f evaluated at the midpoint of each

subinterval

«AH2/ + SUM »
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SIMP
Input: none

Effect: uses MID and TRAP to compute the Simpson's rule

approximation for the f, a, b and n already stored

« MID 2 * TRAP + 3 / »

Input: none

Effect: a utility program used by other programs to evaluate f at a
specified number

« 'X' STO EQ EVAL »

SUM
Input: none

Effect: a utility program used for computation by each of the
Riemann sum programs and by TRAP and SIMP. It takes the
initial value of x from the other program, a for LRECT, a + h
for RRECT and a + h/2 for MID.

« 5> X «01NSTART X F + X H +'X' STO NEXT H *» X
PURGE »
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We shall use the programs in INTG to obtain some approximations to the
4

1
integral J 1+ dx.  Begin with '1/(1+4X”*3)' on level 1 and press 0 @ 4

FABST]. This stores the function and the lower and upper limits of integration.

Now enter a value for n with NSTO. We start with n = 10 and use LRECT. Press 10
INSTO| then [LRECT | to see the result 137470502665 on level 1. This is the left

1
rectangle Riemann sum approximation for the function f(x) = -3 °n the interval

[0,4], when the interval is partitioned into ten subintervals of equal length. Since

-“;x; is a decreasing function for all positive x, this sum will be larger than the

actual integral. Press to see the result .9808588728. This is like the
LRECT approximation except that the evaluation point in each subinterval is
chosen to be the right end point. Since the function is decreasing, this sum will be
less than the actual integral. Keying in 40 INSTOI LRECTI gives
122736347304 and gives 112890193457 when the interval [1,4] is
partitioned into 40 subintervals. Repeating with 100 [NSTOI ILRECTI gives

1.19783377435 and |RRECT | gives 1.15844915896 for 100 subintervals. Thus
4

1.15844915896 < J ig dx < 1.19783377435. Using larger values of n will, of

course, narrow the gap still further.

For an increasing or decreasing function, evaluating the function at the left and
right end points of each subinterval has the advantage of bracketing the answer.
This suggests that a better approximation may be obtained by using a simple average
of these two approximations — the trapezoidal rule - or by evaluating the function at

the midpoint of each subinterval - the midpoint rule.
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4
To approximateuf T:_xs dx with the trapezoidal rule TRAP with with n = 10,

40 and 100, we have

10 [NSTO| [TRAP| gives 1.17778194973,

40 [NSTO| (TRAP| gives 1.17813270381, and

100 [NSTO| |[TRAP| gives 1.7814146666.

Using the midpoint rule MID with n = 10, 40 and 100, we have

10 [NSTO| [TRAP| gives 1.17840171046,

40 [NSTO| (TRAP| gives 1.178148463398, and

100 [NSTO| [TRAP| gives 1.17814377875.

Notice that the midpoint approximations all agree to three decimal places, and

the last two to five places.

Although the trapezoidal approximation is geometrically appealing, it can be
shown with techniques that we shall not discuss here that the error in the
approximation provided by the midpoint rule is roughly half the size of the error
produced by the trapezoidal approximation. This suggests that a weighted average
which assigns twice as much weight to the midpoint approximation as to the
trapezoidal approximation would take advantage of the errors "cancelling” each
other. This procedure is incorporated into the widely used formula known as

Simpson's rule, and program SIMP does this.
4

To approximate J 1—_:’(3 dx using Simpson's rule with n = 10, 40 and 100:
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10 (NSTO| [SIMP| gives 118040998105,

40 [NSTO| [SIMP| gives 1.17814632836, and

100 [NSTO| [SIMP| gives 1.17814308787.

You may want to compare these with the values found earlier.

For this example, the approximations provided by Simpson's rule appear to be
in close agreement and, indeed, Simpson's rule is the "best" of these techniques. As a
rule of thumb, the error with the left or right-end point Riemann sum approximation

-a . e .
and the error with the midpoint Riemann sum or the

is proportional to h = b

trapezoidal approximation is proportional to h?2. But the error with the

approximation provided by Simpson's rule is proportional to h#.
The Numerical Integration Routine on the HP-48

In the application of calculus to fields such as engineering, physics, probability
and statistics there is often a need to obtain fairly accurate estimates of definite
integrals. The integrands in question may be simple in appearance, but usually lack
elementary, closed-form antiderivatives so that Part II of the fundamental theorem

of calculus cannot be applied. Simple examples are

z
(1) the standard normal integral J # ex?2 dx from probability theory;
n

23
(2) the period T = ’[ 2V2d of a simple pendulum released from an
y-cosa

\l Cos

initial angle a; and
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(3) the electrostatic potential V at a point P(x,y) due to a variable charge
density A(s) applied along a straight wire over [-a, a]:

A(s)ds

V —_—
VocoR + 32

The HP-48 has a built-in numerical integration routine that uses a Romberg
numerical integration technique. The routine is iterative, producing increasingly
accurate estimates derived from values of the integrand at sampled points within
the interval of integration until three successive estimates agree to within an error
tolerance specified by the user. The error tolerance E is specified by setting the

numeric display mode as follows:
e n FIX specifies an error tolerance of E = 10™
e  STD specifies an error tolerance of E = 10-1!

For example, setting the numeric display to 5 FIX will specify an error tolerance of
.00001. In general, the smaller the error tolerance, the longer the calculation time.
When the calculation is finished, the uncertainty of the result is expressed in a

variable IERR, where

IERR <E [ |f(x) ldx.

After specifying the tolerance, you enter the symbolic expression

'| (lower, upper, integrand, variable)
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where lower and upper are the limits of integration, and variable specifies the

variable of integration, e.g.,

‘[ (0, 4, 1/(14xA3), %)’

If desired, you can use the Equation Writer to key in the integral; when you press
ENTER, it will be placed on level 1 in the above algebraic syntax. The calculation

is activated by pressing . With a tolerance of 105, the integral dr 1—+l—x3dx

is calculated to be 1.17814. Enter the VAR menu and press [I[ERR| to see 105 as the

uncertainty in this result.

sin(x2 -1 x<1

As another example, we graph the function f(x) ={ sin(/x) 1<x with the

2
default parameters and evaluatedf f(x) dx with error tolerance 10-5. Enter the

function as 'IFTE(X < 1, SIN(XA2 - 1), SIN(x/X))'. Graphing with the default

parameters, we see:

To evaluate the integral, enter 0 and 2 onto the stack, recall the function to level 1
from EQ , enter 'X' and press the [ key to obtain the symbolic integral. Now press

to evaluate the integral as .15511 with uncertainty 10-5.
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The Fundamental Theorem of Calculus

Chief among the significant contributions of Newton and Leibniz to the
"invention” of calculus in the 17th century was their clarification of the inverse
relationship between differentiation and integration. This relationship, which is
the intended focus of the Fundamental Theorem of Calculus, is often obscured when
students fail to focus on Part 1 of that theorem, which asserts that continuous

functions have antiderivatives:
d X
ax If(t)dt = f(x);
a

and focus instead on Part 2, which says that integration "undoes” differentiation - up

to a constant:

[ Fbdt = FG) - Fla).
a

Indeed, it is because of a concentration on Part 2 that many students come to view
integration as simply a search for antiderivatives rather than as a limiting process.
In retrospect, this has been a somewhat natural occurrence because, in the
pedagogical process, teachers tend to seek out activities that students can do to help
reinforce their understanding of the theory. And without computing power, what

activity can they possibly do to reinforce Part 1?

But certainly, the HP-48 provides enough personal computing power for students
to engage in activities that support Part 1 of the Fundamental Theorem (FTC).

Equipped with the mid-point rule for approximating integrals, students can use it to
X

construct a symbolic expression F(x) that approximates the antiderivative [ f(x)dt,
a



SINGLE V ARIABLECALCULUS 55

X
ie, F(x) = [ f(t)dt. They can then graphically represent this approximation and its
a

derivative F' and observe to what extent F approximates f. Not only does such an
activity bring to the fore the mathematical content of Part 1 of the FTC, but it also
reinforces the desired goal of understanding the integral as a limit of approximating

sums.
The algebraic formulation of the mid-point approximation using n subintervals
of equal length is

(x a)](x-a)
n

ftowdt= 3 d[araion &2
i=1
When f is stored in memory as a user-defined function F, program FTC.1, given
below, takes a and n as inputs and returns the algebraic expression for the mid-
point approximation. FTC.1 calls upon subroutine SUMF , also given below, to

construct the actual expression following the summation symbol.

FTC.1
Input: level 2: the lower limit of integration, a
level 1: the number of rectangles, n
As a user-defined function F: an algebraic expression for f(x).
Effect: Returns the algebraic expression z f [a + (2i-1) = — (x 2) (x;a)

i=1

« 'N' STO 'A' STO 01 N FOR I I SUMF + NEXT COLCT {AN}
PURGE »
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SUMF
Inputs:  none

Effect: a utility program used by FTC.1 to construct the desired

algebraic summand.

« 5> 1" FAA+X-A)»*»2*1-1)/2/N)*(X-A)/N"' »

628
As an example, we shall use J sin x2dx, which has no elementary antiderivative.

Begin by building a user-defined function F for sin x2 and then graphing sin x? using
XRNG : 0 6.28 and YRNG : -2.5 2.5, to see

Now execute program FCT.1 with inputs 0 and 5, for a and n respectively. With
only 5 approximating rectangles we do not expect a good approximation. When an
algebraic expression appears, take its derivative with 'X' E], then

overdraw the graph of sin x2 with this derivative to see:

Not surprisingly, the 5 rectangle approximation becomes increasingly worse as the

oscillations in sin x2 increase.
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Now , redraw sin x2 and run FTC.1 with inputs 0 and 13, forn = 13
rectangles. Overdraw the graph of sin x2 with the graph of the derivative of the

expression to see a much improved approximation:

(Be patient: the derivative and its graph unfold slowly.) Note that although we

are using only 13 rectangles, the approximation is dramatically improved.

Although we did not draw the graph of the approximation to the antiderivative
(simply to keep from having a too-cluttered screen), students should overdraw the
graph of sin x2 with the approximating antiderivative for n = 13. As with the
previous graph, they will be viewing a scene that has been denied to students of

calculus for centuries:

EXERCISES 3.1
1
1. Evaluate Ji—f;z dx by hand. Now approximate this integral as follows:

(a) using LRECT and RRECT with n = 50, 100 and 200.

(b) using TRAPwith n = 50, 100 and 200
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(c) using MID with n =50, 100 and 200,
(d) using SIMP with n = 50, 100 and 200

(e) using the built-in numerical integration routine in STD mode.

2. Repeat parts (a) through (e) of Exercise 1 forf ex* dx. For part (e) use an error

tolerance of .000001.

3. Approximate the arc length of y = cos x from x = 0 to x = 2.
(a) using Simpson's rule with n = 100
(b) using the built-in numerical integration program with error tolerance .000001.

4. Graph FLOOR( X) with the default x range, the y range set as -.1 <y < 6.2 and
the disconnected mode (FLOOR is on the MTH REAL menu). Approximate

4
J FLOOR( X) dx with the LRECT, RRECT and MID programs for n = 10, 50 and

100. Evaluate this integral with the built-in numerical integration program.
Now evaluate this integral using only geometry. At the right hand end point,

x = 4, the function jumps in value; why does this not affect the integral?

cos(mx2/2) x<1
5. For f(x) = x2-3x+2 1<x

3
evaluate Jf(x) dx with the built-in numerical integration program.

6. (a) Graph the function y = xcos x in disconnected mode using XRNG : 0 6.28 and
YRNG : 6.3 1.
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X
(b) Overdraw the approximation to the antiderivativedf tcos t dt obtained by
using the mid-point rule with n= 5 rectangles.

(c) Change to connected mode and overdraw the derivative of the function

graphed in (b). How closely does it approximate xcos x ?

(d) Use integration by parts to obtain an elementary antiderivative for
y = xcos x; choose an initial condition so that your antiderivative will pass
through the origin. Now overdraw the above graphs with this
antiderivative. How closely does the approximation in (b) match this

antiderivative?

4. INFINITE SERIES

The approximation of functions by polynomials is an important topic in
elementary calculus. From the simple notion of linear approximations by tangent
lines to the subtleties of higher-order approximations by polynomials whose
derivatives mimic the function's behavior, students are ultimately led to consider
power series representations. With the HP-48 they can effectively exploit the
graphical representation of the partial sums of these series as Taylor polynomials,
and witness the dynamics of numerical convergence at the end points of the interval

of convergence.

Taylor Polynomials

The approximation of functions by series representations parallels the
approximation of numbers by decimal representations. For example, in a non-symbolic
setting, we must approximate n to an appropriate number of decimal places, i.e., 3.14,
3.14159, 3.14159265, etc. A selection is made on the level of accuracy, but this

selection is balanced with the computational complications that we are willing to
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tolerate. In ancient times, mathematicians failed to realize that an infinite sequence
of finite approximations could converge to a finite number and thus the inadequacy of
their mathematics yielded the famous Zeno paradox. They could not understand
that 1/2+1/4+1/8 +1/16 + ... + 1/2" + ... represented 1 and discussed at length
how an arrow could never arrive "because it had to first get half-way there, then
half-way again, then half-way again...., etc. Their mathematics generated a
contradiction with what was clearly reality, which showed a need for further
improvement in their mathematics. This eventually led to an understanding of
infinite decimal representations of numbers and finite approximations to their
values. That is exactly what we now do with functions, except that the "decimal”
entries are polynomials of higher and higher degrees. Just as before, we take the
approximations to the heights that we need, balanced with the computational
complications. And again, just as we did with &, we look at a function in its symbolic
form, e.g., sin x, and when need be, look at its polynomial approximations: 1-x, 1 -
x +x3/3!, etc.

The HP-48G/GX will find Taylor polynomials about x = 0 for any function that
it can differentiate, and it is easy to write a short program that extends this
capability to the more general case of polynomials about x = a. The command
, located on the first page of the SYMBOLIC menu, requires a
threefold input: on level 3, the function f whose Taylor polynomial is desired, on
level 2, the independent variable and, on level 1, the degree of the desired

polynomial. This command produces Taylor polynomials about x = 0.

For instance, to efficiently graph y = sin x and its Taylor polynomials P;, P; and
P;1 of degrees 3, 7 and 11, begin with 'SIN(X)' on level 1 and press I@ three

times to make three additional copies. Build the list {'SIN(X)'} by pressing the @
followed by |—>ILI]STI1 | ENTER 1 SWAP levels 1 and 2, enter X' and 3, then
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press |[TAY LR to build P3(x): 'X - 1/3!* XA3'. Insert this as the second element of
the list with . Now SWAP levels 1 and 2 and proceed as before to build P;(x) and

P;1(x), adding them to the list as they become available. You can then store the
final list into EQ and graph it with the default viewing screen to see

S\ \/}/\\W{

Although displaying graphs is a dramatic way of showing how a function can

be approximated by its Taylor polynomials, you should remember that, with the
default plotting parameters, two graphs will coincide for a value of x if their y
coordinates are the same when rounded to one decimal point; ordinarily, this is not

good enough for serious numerical approximation.

To find Taylor polynomials centered about a point x = ¢, you can use the next

program. Make sure the independent variable is set to X before using the program.

TAY.C
Input: Level 3: an algebraic expression for a function f,
in terms of 'X'.
Level 2: the order n of the desired Taylor polynomial.
Level 1: the new center point, c.
Effect: Returns the Taylor polynomial of order n for function f,

centered about x = c.

« » N C « 'Y C +'X STO EVAL 'Y' N TAYLR X' PURGE X
C - 'Y' STO EVAL 'Y' PURGE » »
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For example, to find the fourth order Taylor polynomial for sin x, centered about x =
2, put 'SIN(X)' on the stack, then enter 4 and 2 and press [TAY.C| to see the
calculator's version of 0.909297 - 0.416147(x — 2) - .454649(x — 2)2 + 0.069358(x - 2)3 +
0.037887(x — 2)4 on level 1. (We set the display to show 6 decimal places.) Graph

the list containing sin x and this polynomial with the default parameters to see:

Notice that the graphs coincide from about x = -.5 to near x = 3.5, that is, on an

interval centered about x = 2.

Although TAY.C does the obvious by making a change of variables X =Y + C to
translate the center of the Taylor series expansion from the origin to x = ¢, you
should note that the symbolic computations involved in calculating higher order
Taylor polynomials centered away form the origin are substantial. Thus, as a
symbolic processor, you may sometimes find the HP-48 not quite up to the task of
finding the Taylor polynomials that you desire if you use TAY.C. For example, the
HP-48G runs out of memory (32K RAM) before it can produce the Taylor polynomial
of order 7 for f(x) = x'! centered about x = 2 and the HP48GX (with 128K RAM)
requires about 25 minutes to produce this polynomial. The solution is to be a bit
more clever in how we approach the symbolics. Program TAYLAT ("Taylor at") is
due to Charlie Patton of Hewlett Packard and uses the {MATCH and | commands to
rearrange the symbolic computations. With it, you can produce the Taylor

polynomial of order 7 for f(x) = x'1 centered about x =2 in 18 seconds.
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TAYLAT
Input: Level 4: an expression for a function f.
Level 3: the independent variable.
Level 2: the order n of the desired Taylor polynomial
Level 1: the new center point c.
Effect: Returns the Taylor polynomial of order n for function f,
centered about x = c.

« = XP VA ORD PT « XP VA VA PT + 2 5LIST {MATCH DROP
VA ORD TAYLR VA VA PT - 2 5LIST | » »

Sequences and Series

The analysis of numerical series requires a clear understanding of the size of
very large and very small numbers, and the HP-48G/GX is an ideal instrument to
help expand this understanding. The next two programs, FSHO and HGFSHO, can

be used for exploratory work with numerical sequences.
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