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What Is This Book?

This book is to help you use the HP 48G/GX to improve your understanding of

the mathematicaltopics usually found in a course in first-year calculus. Calculus

is the mathematics ofchange—such as motion, growth, or acceleration. It gener-

alizes methods of algebra and geometry to allow useful computations of continu-

ously changing systems without assumptions about ideal shapes, staticfunctions

or average values. Specifically, calculus has two complementary uses:

» Itprovides a means to “freeze” the moment—to analyze the rate a system

is changing at a particular instant in time.

e It provides a means to extrapolate from knowledge about how a system is

changing from moment to moment to how will have changed overall.

The first of these contributionsis the domain of differential calculus; the second

is that of integral calculus. These two domains are linked by the ability to math-

ematically cope with infinity—infinitely tiny intervals oftime and infinitely long

sums—using the concept of a limit.

Calculus on the HP48G/GXis organized much like a standard text. Chapters are

divided into topics; topics are divided into examples. The examples demonstrate

how to use the HP 48 to solve problems in a typical Calculus course—and they

sometimes use programs (listed in the Appendix) to allow easy repetition.

However, this book isn’t meantto replace your textbook. It does nottry to rigor-

ously justify the techniques and concepts used in problem-solving. Also, there

may be topics treated in greater depth in your textbook than in this book, or vice

versa. (Indeed, you may also wish to read Grapevine’sAlgebra andPre-Calculus

on the HP 48G/GX to get additional tools and instruction on related topics.)

Before using this book, you should be able to do these things on the HP 48G/GX:

e Perform basic arithmetic and navigate the various menus;

» Enter, name, and use variables,lists, algebraic expressions, and programs.

If these concepts are still “fuzzy” for you, stop here and work through either the

Quick Start Guide (which came with the calculator) orthe first three chapters of

Grapevine’s Easy Course book on the HP 48G/GX.

What Is This Book? 7
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Introduction to Sequences and Series

A sequence is an infinitely long, ordered list of numbers. Each number is a term

of the sequence, and its position within the listis its index. Usually a sequence

has a definingfunction for which the index is the input and the term the output.

Associated with every sequence is a series—a single value—the sum ofthe terms

of the sequence. Computing a series can be tricky because is an infinite sum—

the sum of an infinite number of terms.

In a sense, therefore, a series is never computed in its entirety; after computing

anypartial sumthere are always additional terms to be added. So, mathematically

speaking,a seriesis the limit of the partial sums of the terms of a sequence. That

is why a collective term, “series,” is used for a singular value—a sum: a series

implies the sequence (the collection) of partial sums of whichit is the limit.

Series come in two flavors. Those with finite value are called convergent; those

with infinite value are known as divergent. If the terms of the sequence approach

zero as their indices increase, then it is possible that the series is convergent—a

finite numberas the limit of an infinite sum. However,if the terms of a sequence

don’t approach zero as their indices increase, then the series has an infinite value

—it is divergent.

One of the important uses of convergentseries is to approximate measurements

and values that otherwise are difficult (even impossible) to compute otherwise.

You'’ll see each of these ideas developed in greater detail in this chapter, along

with demonstrations on the relevant uses of the HP 48.

Introduction to Sequences and Series 9



Sequences

Although any list of numbers might be a sequence, the important sequences are

those lists of numbers that have defining rules to generate each term. There are

two kinds of defining rules that create sequences in two different ways:

Closed-form sequences are formed by defining rules that are functions ofthe in-

dex: you input the index number and compute the value of the term. For exam-

ple, the sequence { 0, 1, 3,7, 15, 24, 35, 48, ... } has a closed-form defining rule:

a, =n* —1, where a_ is the term and n is its index.

Closed-form sequences are generally represented as {f(n)}fp}.,

wheref(n) is the defining function, n is the index,j is the starting index value, and

k is the ending index value. There are several important closed-form sequences:

* Theterms ofthe harmonic sequence are reciprocals ofthe positive integers:

e An arithmetic sequenceis a closed-form sequence where the difference of

any two consecutive terms is constant.

* A geometric sequence is aclosed-form sequence where the ratio ofany two

consecutive terms is constant.

Recursive sequences are formed by defining rules that are functions of the prev-

ious term. These rules define the first term of the sequence and use a recursion

formula to compute the other terms of the sequence: input one or more previous

terms and compute the value of the next term. Recursive sequences require that

you know previous terms before you can compute a new term.

For example, the sequence { 0, 3,9,21,45,93, 189,... } has arecursive definition:

a =0
a,=2a, +3

10 1. SERIES, SEQUENCES, AND LIMITS



On the HP 48, sequences are most naturally represented by lists of terms. But the

machine is finite, so any such list will be, also. To representinfinite, closed-form

sequences, therefore, you must use the symbolic capabilities of the HP 48.

Example: Create the closed-form sequence: {2" - 1}:’=1 on the HP 48.

1. Enterthe expressioninsymbolic form:]2)¥)(aJ&q]N)(=)(1JENTER).

Enter the index variable (n, in this case): ('[oJé&q]N](ENTER).

3. Combine these two objects into a list: LIZT [B]+LI=T ]

Example:

1.

2.

Example:

I Sy I
Result: ©+ '&*n-1' nm 3

Compute the 15th term of the sequence in the previous example.

Makeacopy ofthe sequence, then disassembleit: IAES ().

Enter the desired index value and storeit in the index variable:

[ENTER](SWAP)(STO).
Evaluate the closed-form function: (EVAL). Result: 3¢767

Find the first seven terms of the sequence in the previous example.

Forclosed-end sequences, you can use the built-in SEL! command to

generate a finite list of terms.

. With the sequence already on the stack from the previous example

(or after re-enteringit, if necessary),first disassemble the list: ((«),

if necessary) (PRGNERE IAk d(«).

. Enter the starting and ending indexes: (1]JENTER](7)(ENTER).

3. Enter the step interval. In this case you want each term without skip-

Sequences

ping any, so the step interval is one: (1)(ENTER.

Generate the list by using the SE[} command: [dTI(NxT)EEIIF.
=1 7l

Result: + 1 2 7 15 31 83 127

11



Using a recursive sequence on the HP 48 is more involved. The program +=EL!

(see page 322) takes the defining function for the sequence from level 3, a list of

values ofone ormore initial terms from level 2, and an index number, n, from level

1. Ifnisnonnegative, *SEL! returns the term ofthe sequence with the given index.
If nis negative,it will return a list ofvalues of all terms from a,through a. +=El!
assumes the variables named 'al ', -3:_' ' lad! et represent previous terms:
-11 : : : | .
al' is the earliest previous term; ' &' is the next previous term, etc.

The following examples assume that the program +=EL! is stored in the current

directory path. (This assumption goes for all programs in this book—that they

already correctly keyed in and stored in the current directory path prior to use.)

. , a =0
Example: Compute the 27th term in the sequence a =2a_+3

1. Enter the defining rule, using the 'al', 'az', ... convention as
described above: (aJq)A1) ENTER).

2. Enter the values of the initial terms (there’s only one in this case) in

the form ofa list: (&5]{})(0](ENTER).

3. Enter the index for the term you wish to compute—as a positive

number because you only want the term, not a list: ENTER).

4. Execute *SEL!: (@)a))=)S]E]Q)[ENTER) or (VAR) (then or()
as needed) EFIFH. Result: “H1IZ62EY.

Example: Find the first eight terms of the sequence described above.

1. Enter the defining rule: (aJq)AL1)(+)(3)(ENTER).

2. Enter the values of the initial terms as a list: (&q]{})(0](ENTER).

3. Enter the number of terms you wish to compute—as anegative

number because you wantthe full list of terms: [ENTER).

4. Execute*3El: (aa[=)=]S[E[Q)ENTER)or(VAR)[NXT]orm)
erll. Result: H 3 9 F1 45 93 189 2581 &

 

 

As you can tell from the speed of computation, recursive rules are less efficient

than closed-form defining rules for computing terms.
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The Fibonacci sequence appears often in nature and has fascinating properties.

Each term is the sum of the preceding two—obvious from its recursive form but

not from its closed-end form. However,the closed form offers easier calculating.

_ n a =1
Closed: a, 1+5) —l——fi Recursive: a, =152 1 e ba,an - an—l

 

Example: Create the closed-form of the sequence and store it as ' F IBM' .

1. Enterthe closed-form function ofthe Fibonacci: JEQUATION)(1)(<]

(=15)eGIOGIOAWEHE]S)B2)T(e()
= BB (ENTER).

2. Enter the index variable: aJ&]N)(ENTER).

3. Now combine these intoa list andname it F IBN:

Example: ComputeF _,the 18th term, using the closed-form ofthe sequence.
18°

1. Enter the Fibonacci sequence, stored in F I EM: TR

2. Disassemble the sequencelist; enter the index value: 193]

1kl («)(1)8)(ENTER).
3. Compute the value of the term: (SWAP)(STO)(EVAL). Result: £054

Example: Create a list of the terms ofthe Fibonacci sequence from F,, to F,.

Enter the Fibonacci sequence, stored in F IBN: FIEM|

Disassemble the sequence list: LIZT OEJ* [CQF

. Enterthe starting andending index values: ENTER ENTER).

. Enterthe step interval value: (1)(ENTER).

Execute the SE[! command and then eliminate any round-offerrors:

118()T()()<>0TH T(VDBTl(ENTER)
LIZT PEOC|DOLIES

Result: { ZBE5SY 46368 YoM

al7ell 214229 832

T
N

1393 196418
13

2 12
B4E 1346269 &

Sequences 13



Plotting Sequences

One very good way to gain some insight into a sequence is to plotit.

Plotting a sequence with a closed-form definition is very similar to plotting its

defining function. In fact, the only difference is that the sequence consists ofdis-

crete points, whereas the function is continuous. Thus, when plotting sequences,

make sure that COBBECT mode (in the PLOT OPTIOM: screen) is off (i.e. un-

checked).

Example:

14

Plot the sequence formed as the ratio oftwo consecutive terms ofthe

Fibonacci sequence: F__/F. This works out as:

(14—’\/—5‘)”“_(1—'\/5\)’”1

4 = 2 2

" (1+«/§)”_(1—«/§)"
2 2

 

 

 

. Open the PLOT application and make sure that the T¥PE: field is set

to Furizt 1om:

. Next, highlight the Ei: field and enter the defining function: (v)(&)

EquaTioN(a]5]0) &)(IHEE)(B12)Y(e([H ()
0&SNEEEH00000FEEN6600
ONEGEEH00800FMOEN0EEMNDEES
BRI(eENTER)

. Change the IMOEP variable to the index variable for the sequence,

M: (Yo&N)[ENTER].
. ChangeH-WIEF to—1 T, The maximum horizontal coordinate

is chosen to match the maximum index value you want to plot; 50

seems a good place to start for this sequence. The -1 minimum co-

ordinate allows you to see the y-axis.

. Change¥-WIEkto—. ' 2. You can estimate the required vertical

range by evaluating the defining function at the beginning and end-

ing coordinates (n = 1 and n = 50 in this case). The -.5 minimum

coordinate allows you to see the x-axis.

1. SERIES, SEQUENCES, AND LiMITS



6. Move to the PLOT OPTIOM: screen and set the plotting range to

match the sequence beginning and ending points (-1 and 50). Then

make sure that the COMMELCT mode is unchecked, and set the = TEP

interval to 1: [N1)+/-)ENTER)]ENTER))(useP,
if necessary), then (¥)(1)(ENTER).

7. Optional. Change the tick-marks to show every 10 units along the

horizontal axis and every 1 unit along the vertical axis: (v)(<)(1)0]
(then to uncheck PIHEL %, if necessary).

8. Draw the plot: TTEIMTEE

 

    ET[TTTTR
 

The plot shows clearly that the sequence is nearly constant as the

value of the index variable increases. Indeed, the value of terms in

the sequence approaches the golden ratio as you increase the index:

1++/5
~1.61803398875 

Plotting Sequences 15



Plotting a recursively-defined sequenceis trickier, because it involves plotting a

program. The program FSE[! (see page 316), however, simplifies the task. It

takes a symbolic object representing the recursive defining function from level 4,

a list of the required initial values for the sequence from level 3, the LO: value of

the plotting range from level 2, and the HI: value of the plotting range from level

1. (Note that the objects taken from levels 3 and 4 by F'SEL! are the same as those
used by *5EL! on levels 3 and 2—recall page 12).

Example: Plot the first 25 terms of the following recursive sequence:

a =0
a, =1
a, =2

a +a,+aa = 1 2 3
n

a, +a3

1. First, return to the stack and enter the symbolic form ofthe recursive

defining function: (CANCEL)(CANCEL)(«~)([EQUATION)(a)(a]AT1]
elalAl2)BJalA3)(¢a)A)2)H(GALS)ENTER).

2. Enter the list of initial values: (q]{3)(0)(SPC)(1)(SPC)(2)(ENTER).

3. Enter the plotting range: (1)(ENTER](2]5)(ENTER.

4. Plot the sequence using FSEL!: ()a)P)SIE]Q) or (then
or (§JPREV) as needed) {2y .

 

 

 

 TAATTT   
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Limits

When looking at a sequence, you will often need to know ask: Are its terms get-

ting ever larger (or smaller) as the index increases, or are they getting ever closer

to some fixed value, or limit? If such a limit exists for a sequence, then it is useful

to help compute the “ultimate” value of a sequence.

But sequences are essentially functions of the index variable, and it is an easy

jump to see that the concept ofthe limit can be applied to general functions as well

—in the absence of any context of a sequence. Indeed, limits are fundamental to

the consideration ofone ofthe most important geometric concepts in calculus: the

instant—the infinitely precise point.

The idea that a limit is a prediction based upon a pattern of behavior is crucial

when looking at the limit of a function. Consider the function plot below:
Yy

R

a/b?%e ;/V#' N x

If you were to predict the value of the function at x = a based upon the x-values

more negative than a (i.e. approaching a from the left), you would conclude that

the value would be V. Ifyou were to predict the value ofthe function atx =abased

upon x-values more positive than a (i.e. approaching a from the right), you would

draw the same conclusion. When both predictions—from the left and the right—

agree, then you can say that “the limit ofthe function as x approaches ais V.” Thus,

in the case ofx = a, where the function is defined—you may simply substitute a

into the function and compute that Vis the value, without referring to limits at all.

But what about at points where the function is undefined? Well, if you were to

predict the value of the function at x = ¢, approaching both from the left and the

right, you would still conclude in both cases that the value of the function at x =

cis R. Thus R is the limit of the function as x approaches c. However, if you were

to predict the value of the function at x = b, approaching from the left, you’d say

the value is S. If you were to predict the value from the right you’d say 7. In this

case, because the two predictions don’t agree, the function has no limit at x = b.

This is true even though the function has the value T at x = b.
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In mathematical notation, the limit of a function, f(x), at a given point,a, is:

lim f(x)

To express the limit of the function, approached from only one side (left or right),

a plus (right) or minus (left) is added to the notation:

lim f(x) lim f(x)
x—a

Continuity and Limits

A function, such as the onejustillustrated, is continuous at apoint when the value

of the function at that point equals the value ofthe limit at that point. That is, the

following three requirements must be met for a functionf(x) to be continuous at

a point a:

1. The limit off{x) as x approaches a must exist.

2. fla) must be defined.

3. The limit at a must equalf(a).

Thus the function illustrated in the previous plot is:

* continuous at a, because the limit at a (V) equals its value at a (V).

» discontinuous at b, because although defined at b (7), it has no limit at b.

» discontinuous at c, because although it has a limit at ¢ (R), it is undefined

at c. Note thatthis kind of discontinuity can be removed if you can add to

the function definition a value for c.

Just as limits can be separated into single-sided forms (“limit from the left” or

“limit from the right”), so can continuity at a point. For example, in the plotted

function shown earlier, the function is continuous at b from the right because the

limit from the right (7) does match the value of the function at b. It is still dis-

continuous from the left, however.
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Finding Limits Graphically

Of course, to use the HP 48 to find limits visually (graphically), you use the

zooming features to magnify the area around the limit point of a function.

sin x
 Example: Find the following limit graphically: lin(}

x—> x

1. Open the PLOT application, highlight the TYPE: field and set it to

Fuurnct 10m. Then reset the plot parameters to their defaults:

(CANCEL)(>JPLOT)(a)(JF)(DELI [ENTER).
2. AtER:, enter the function: (v)(" JSIN)(@J&[X]»)(=)(«]&< [X)([ENTER).

3. Change the IMDIEP variable to * (lower-case): X]ENTER).

4. Inradians mode (69)RAD), if needed), plot: [IATEIINTTRN.

 

JI

e_mEa _H“'N—.._._——

INeIIT

5. Use Box-Zoom to draw a small box around the part of the function

nearx =0: Movethe cursor (via(a)and («)) to a pointjust above and

left of the point where the function appears to cross the y-axis. Press

IR NP,then draw the box via(¥)and (), and press[&N

 

   
 

 

 

  HIZRRETET
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6. The region around the point x = 0 appears to be flat at high magni-

fication. Find the value ofthe function at this point with the TRACE

feature: (»)ild:iEHI%E]. Result: #: 1.584E-3 ': 1.00EN

The y-coordinate is 1.00 for the line shown, so the limit for the func-

tion when x approaches zero appears to be 1.

Optional. Note what the display saysifyou place the cursor directly

on x = 0: Press (. Result: w: 1 '

The function is undefined at x = 0 (although you can’t see the “hole”

in the plot, because it coincides with the axis).

Finding limits graphically in this way works well for many functions. But there

is one important caveat: Beware the limitations of the machine’s precision!

Twelve digits is a lot of precision, but it is nowhere near infinity. Some functions

are more subject to rounding error irregularities around the 12th digit than are

others—irregularities that make for peculiar plots during zooming.

Example:

1.

2

3

20

1

Find the following limit graphically: lin(}(l + X)x.

ReturntothePLOT screen and rest the plot parameters: (CANCEL

(v)(ENTER).

. Highlight the Ef*: field and enter the function: (a)("J&]O1]+]

(IaXP)POB&IXENTER.
. Enter the IMOEP variable, be sure the COMMELT option is checked,

 

and plot: OPTZ(2] »'CHE ERAZE| DERAL

 

‘-‘-\___—‘—_

 

LTAETTR   
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4. Tokeep track ofthe amount ofzooming this time, use the ZFACTor:

PressRNELT8 (1)0)0)0)0)0)0)ENTER)ENTER) to changethe
horizontal zoom factor to 10°, so that for each horizontal zoom-in

(HZIN), the horizontal scale will shrink by a factor of 1,000,000.

5. Now zoom-in horizontally by a factor of 1,000,000: (NxT)EFHIZH.

 

 

 

  TATITTR0
 

6. The graph appears to be constant except nearx=0. UseTRACE and

(X,Y) to determine the value ofthe constant value: (»[»>»i[85

Y. Result: #: 0000y Y: 2./18281284H

The apparent value of the limit here seems to be very close to e, the

natural logarithm base, whose value, to 12 digits, is 2.71828182846.

 

7. However, suppose that you zoom in much closer to zero. Repeat the

horizontal zoom-in: EEEII]'IE]:]

AT |
 

 

   BT RGT TT

What you see now is round-off error. Because you have zoomed by

a total factor of 10'2, the magnitude of the x’s being plotted is near

the maximum 12-digit precision ofthe HP48. The sawtooth appear-

ance reflects the rounding effect, not the behavior of the function.
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8. Notice also that as the plot crosses the y-axis, it seems constant, a

sign that it may be productive to zoom one more time. Perform one

more horizontal zoom-in: G} HZIM|

 

 

 

   TeeT

9. Determine its value using the TRACE feature: (»);183

Result: n: 1.E-1hb 71

Ifyou were to happen upon this constant graph, you would conclude

that the limit of the function is 1.

 

 

So which is the correct limit of this function: e or 1? Trust the limit computed

without the effects of round-off error: e. You’ll see more of this function later.

Although the previous example showed a particularly tricky function for deter-

mining a limit, there are some functions for which zooming doesn’t work at all—

because they have no predictable pattern when approaching the limit point (i.e.

they have no limit). You’ll recognize these functions as you begin zooming in on

the limit point.

Example: Find the following limit graphically: lin(} sin(l).
X—> x

1. Return to the PLOT screen and reset the plot parameters: (CANCEL
(DEL]Y]ENTER).

2. Enter the function into the Ei=: field and enter the correct IMOEP

variable: JSIN)(1]+](aJ&q[ENTER)(¢J&a(ENTER).
3. Plot the function: [T EIa0L 151

22 1. SERIES, SEQUENCES, AND LIMITS



 

_l_h__q_-_-_\-\-‘:-ll. T t ¥ T * *

Z00H TEACE]FCHEDIT[UANIL

4. Change the horizontal zoom factor to 10 and magnify the area

aroundthey-axis: [ENT TRIET8I 0)ENTER)ENTERXL.

 

   
 

  

 

1 [TRACE]FENEDITJUAMIL
 

Instead of smoothing the curve, zooming has the effect of magnify-

ing the oscillating behavior in the neighborhood of the limit point.

5. Zoom in horizontally again to confirm this: EEE]].IEI:I

 

 

1 [TRRCE]FNEDITJiRMIL

Yes, the situation is deteriorating—this function probably has no

limit. After all, whatkind ofreliable prediction can you make when

the pattern gets increasingly wild as you approach the limit point?
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Finding Limits Numerically

Plotting functions to graphically examine theirbehaviors around a candidate limit

point can be a useful for identifying potential troublemakers—if you are careful

not to introduce round-off error. Finding limits numerically on the HP48 presents

similar problems—round-off effect and oscillating behavior.

This book represents a limit expression on the HP 48 as a two-elementlist. For

example, the expression, lim f(x),isrepresentedas®t 'fix1' 'w=a' I To
x—=a

indicate a limit of positive or negative infinity, use the ' i' constant. Thus you

mightuse ' #=i', 'm=—1i', etc., as the second element in a limit expression list.

The program L II' (see page 300) computes the limit of a function and displays

the “moving”results of approaching the limit point. L I['l takesthe list represent-

ing the limit expression (see above) from level 3, a starting magnitude for the

search onlevel 2, and an ending magnitude for the search onlevel 1. These magni-

tudes tell the HP 48 the range of values of the function variable to use in deter-

mining the function’s limit behavior at the given point. The values you input are

the “orders of magnitude” for how close you wish to approach the limit point.

For example,ifthe limit point is infinity, a range of 1 to 11 would have the HP 48

search values of the function variable from roughly 10' to 10''—spending equal

time with each intervening order of magnitude. Remember that above 10'%,

round-off error begins to affect the computations for all functions (and many

functions are affected by round-off error at much smaller orders of magnitude).

For limits that approach a finite number, a range of 1 to 11 would have the HP 48

search values ofthe function variable from within 10! to 10-"" ofthe finite number.

To compute the left-hand limit, use a negative number as the starting value; for

the right-hand limit, use a positive number. In both cases, the absolute values of

the starting and ending values are used to set the search range.

The program displays the search progressin the top part ofthe screen, then returns

a list of approximations for the limit. These values are representative and are

spread evenly throughoutthe search range, unless the search found a value for the

limit which didn’t change anymore, in which case the repetitions aren’t included.
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The examplesthat follow illustrate not only how to find limits numerically using

L IM, but also how to recognize when round-offis clouding the picture, when the

function has no limit, and when to change the region of the search.

1

Example: Usel II'to compute liné(l + x)x . Compare the results using search

ranges of 1-3, and 6-16.

1. Enter the limit list and make a copy: (GJU(")(&G]O)

OJAIX)eIa]X))]=)(0)ENTER) ENTER).
2. Enter the search range (orders of magnitude): (1)([ENTER)(3)(ENTER).

3. Search for the limit: o]JM)(ENTER) or (VAR] (NXT) or (§PREV]

as needed) 8gbl

Result: .

 

 

L4hU1 7, 6IT2A42AR5
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The approximations are beginning to move towards a value slightly

less than 2.72, but perhaps you should expand the search magnitude.

4. Drop the previous result, enter the new search range and begin the

expanded search (@)(8)(ENTER)(1)6) ENTER)E

Result: © &.718FER4E922 &718ED1B2
£.718ER1R148Y B, V182818V
. 1BER1REEaE FLY1EER1EEEdS 1 3

The approximation gets much better as the search goes from 10-%to

10", but then what happens? Just as the graphical approach en-

counters round-off error too closeto the limit point, so L II'l suffers

ifyou search magnitudes beyond the machine’s precision. The max-

imum magnitude is 11; for many functions, the trustworthy magni-

tude is less. (Butif you use a range of 1 - 11 to begin with,it gives

you a good overall picture ofthe function at the given point. Usually

you can tell where the round-off error begins in the returned list.)

Conclusion: Limit = 2.71828182845 (note: e = 2.71828182846).
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Example:

_ 2

Use LIM to compute lim1 lx :
-1 ]1=x

 

1. Enter the limit expression list: (&J{()&O)()E))=(@JalX)

PIEEHQOOEEQX)()X=TENTER)
Enter the search range: (1)(ENTER])(1) 1])(ENTER).

3. Search for the limit: ENTER] or (then or

Example:

(GJPREV) as needed) HHTEH.

Result: + -1.73553719608 -1,97

-1.997ER2995 =l

 

Unlike the previous example, when the search settled on a fixed

value, it was an extension of the trend developed by the previous

values in the search and not a break from it.

Conclusion: Limit = -2.

sin x
Use LIto compute lin(} :

x—> x

 

. Enter the limit expression list: (&]J{J(")([SIN)(eJ)X] (»)(=)(efe)X]

D(JaXIa=)o) [ENTER).
Enter the search range: (1)(ENTER)(1)1)(ENTER).

3. Search for the limit: (@)L)(1]M)(ENTER) or (then or

26

as needed) BTG
Result: { .99833416A468 99998333417

999999333333 999999995333

Conclusion: The limitis 1.
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For some functions you may need to examine the right-hand and left-hand limits

to be sure that they match before deciding if the given point has a general limit.

Example: Compute and compare lim *x—2 im =2
x—2” Ix — 2| x—2% IX — 2|

  

1. Enter the limit expression list and make an extra copy: (]t })(")

«ClOleJa)x)=]2) VELTE|AE:(QI@EEINGEE
)(eXIa=)2)[ENTER) ENTER).

2. Enter the search range using a positive value for the starting point:

(DENTERI(1J(ENTER)
3. Search for the right-hand limit (+): fETE8. Result: © 1 I

The right-hand limit—1—was found very quickly and conclusively.

  

4. Drop the previous result, enter the search range using a negative

value fora starting point, and repeat the search: (@] ENTER

ENTER)BH]gl Result: © -1 I

The left-hand limit (-1) was found quickly but it doesn’t match the

right-hand limit. Thus the function has no overall limit at x = 2.

 

Example: Compute the following limit: limM)___
x—o0 (3 — x)(z _ x)

1. Enterthelimitlist(notehow ' 1' indicatesinfinity): (G0O)

BIX[eJa)x) (&) HSI0GI0) BaJa)x) ()
SOJGX))D(JaIXIa)=) (@)&)(DENTER).

2. Enter the search range: (1)(ENTER ENTER).

3. Search for the limit: (o)o]L)(1]M)(ENTER] or (then or
(]PREV] as needed) 4|K.

Result: + 14 9.341883233200 9,H3311537°62

 

9,A115632 9, AAE32AAT 1S

IAOeT12
9 FRAREREZS 9. AREREEREZ= 9, BEERREEEDS

The limit being approached is clearly 9.
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There are several types ofsituations where apointdoesn’thave alimit: (i) vertical

asymptotes; (ii)jump discontinuities;(iii) holes; and (iv) chaotic oscillation. The

next few examples show how to recognize these situations with theLIM program.

Example:

Example:

1.

2

3.

28

1.

1+l
 2Use LIM to compute linll

X —_— x

Enter the limit expression list: (&)U ()&]0)

MEHAQOOEMEXI@Da)Xal=D ENTER).
Enter the search range: (1)(ENTER)(1)1])(ENTER).

3. Search for the limit: (NxT) or (9)PREV)) HUTEHE. Result:
{ -9.A9A9A9A3A9 -99.AH99EATT -999. BARTI

~3993, AEA] -99999. ABARA] -999999.5

-9999999999,5 999999993999, 5 1
Whenever you see the list of values increasing (or decreasing) in

magnitude by a factor of 10 with each entry, you can conclude that

there is no limit for the function at the given point.

.. (1
Use LIM to compute lm(} sm(—) .

X—> x

Enter the limit expression as a list: (€]'JSIN1=e[X»]']

(aJqX]eq)=]0 JENTER).

. Enter the search range: (1)(ENTER ENTER).
 

Search for the limit: o]M)(ENTER) or (VAR) (NXT) or ((§]PREV)

as needed) [lHIEH.

Result: © —.244671118839 -, 5HE36564111
LOZEEMIDdR53Y -, SHDE 14305203

i
.04
97

SP4E797372 -, 349993562171
A5477I3191 93163962711
SB43449449 - 4875AEAZ5AAE
8693666497 )

There is no trend showing in the list at all—just a set of numbers

between 1 and -1. Conclusion: There is no limit.

O
0
0
N
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Series

A series is the sum of all the terms in a sequence. In a sequence with infinitely

many terms,its seriesis the limit ofthe partial sums ofthe terms in the sequence.

j

In mathematical notation, a series is a summation: E a,, where a_is the nth

term of a sequence whose first term is a. and whose last term is a. Ifjis T infinity,

N

then the series becomes the limit of a summation: lim a,
N—>oo

n=1

where the sequence for which you are computing the limit is a sequence of sums:

1 2 3 N

E a, E a, E a, E a,

n=1 n=1 n=1 n=1

One of the most important qualities of a series is whether it converges to a

particular, finite, value, or whether it diverges to tinfinity. Or, to put it another

way, does the limit of the sums exist?

Ofcourse, you can use a program similar toL Il to compute a running total as the

index increases and watch its progress to see if it converges (indeed, such a pro-

gram is presented below). But there is no efficient way to compute all sums; some

converge very slowly and there is no way to “jump”to the end to find the result.

Moreover, you cannot assume that because the terms of a sequence converge to

a limit (i.e. they stop getting larger) that the sum ofthe terms converges to a limit

(i.e. stops getting larger). In fact, in order for a series to even possibly converge,

its associated sequence must converge to zero. But just because a sequence con-

verges to zero, doesn’t mean it does so “fast” enough for the associated series to

converge.

For example, consider E % After summing the first 78 terms, the total stops
n

n=1

changing within the precision of the HP 48; it appears to converge.
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oo

You would expect ZLS to converge—if at all—more slowly than E _16'
n n

n=1 n=1

Indeed it does. This table illustrates the apparent convergent values for the series

E Lp where p=1,2,3,4,5,6,and 7. (Remember: the terms being added
n

n=1

approach zero—so convergence is possible but not guaranteed.)

Series HP 48 Computed Limit Terms

Y- 24.53221A5226 20,000,000,000
n=1 "

1 1. 64493215489 447,215
n=1 "

. 1. 2H2ASEET144 5,850
n=1 "

D- 188232323371 670
n

n=1

Y 1. BI6IZPP5496 184
n=1 "

Y- 1.B1724386194 78
n=1 "

L 1. BABI4927740 43
n

The HP 48 shows that all of these series converge, but do they really—or is the

appearance a side-effect of the limited precision of the machine?
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The first series, 2—1— (the harmonic series ), actually diverges. The terms in its

n=1 "

sequence simply don’t shrink fast enough for the sum to converge. The moral

here: You can’t completely trust a machine to tell you whether a series converges.

However, there are a group of tests you can apply to a series to assist in deter-

mining whether it converges. If you can conclude that it does, then the machine

is useful in finding an approximation for the series. The tests, which you will find

discussed and derived in any first-year calculus text, are summarized below:

Nth Term test: Ifthe limit ofthe terms ofthe sequence # zero, the series diverges.

Root test: If limx/ |an| is less than one, the series converges;if greater than one,
n—oo

the series diverges;if equal to one, the test is inconclusive.

an+1

a
n

the series diverges; if equal to one, the test is inconclusive.

Ratio test: If lim
n—oo

is less than one,the series converges;if greater than one,

 

 

Comparison: Ifyou can find a convergent series whose termsare all greater than

or equalto the corresponding termsin the series you’re testing, then the test series

converges. If you can find a divergent series whose termsare all less than or equal

to the corresponding terms in the test series, then the test series diverges.

A few additional tests are valid if the series you’re testing meets certain criteria:

Limit Comparison: Every term, a, of the test series must be greater than zero.

Find a different seriesall of whose terms,b, are greater than zero and compute

the limit, L, of a/b. If 0 < L < « and the comparison series converges, then the

test series converges. If 0 < L and the comparison series diverges, then the test

series diverges.

Integral: The defining function,f(x), for the series must be continuous, positive

and decreasing for this test to be valid. If the improper integral j f(x)dx
1

converges, the series also converges. If it diverges, so does the series.
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While the HP 48 can’t directly prove that a given series converges or diverges,it

can help you indirectly—by performing some ofthe aforementioned tests. Three

programs, SERM]L, SERRE, and SEFRZ, are provided to help determine whether

or not a series converges.

The program SEF#1 (page 323) performs the Roottest on the given series. It
takes the symbolic defining function for the series from level 2, and the index

variable from level 1 and returns one of the following messages:

"Diverges" "Conwverges", or " Inconclusive”,

SERRE (page 324) performs the Limit Comparisontest given two series with pos-

itive terms. It takes the symbolic defining function ofthe series being tested from

level 3, the symbolic defining function of the comparison series from level 2, and

the index variable (which should be the same for both series) from level 1 and

computes the limit of the quotient of these series. The list returned to level 1 con-

tains representative values of the limit as the index uses higher and higher values

—similar to the list LIreturns (page 24). You can then judge convergence or

divergence on the basis of the trend you see in the list. Note that SEFmakes
no attempt to confirm that the series you are using are valid for use with the Limit

Comparison test.

SERX3 (page 324) performs the Integral test on the given series (as long asit is
continuous, positive and decreasing). It takes the symbolic defining function of

the series from level 2 and the index variable from level 1 and computes the value

of the definite integral using a selected set of increasing intervals. It returns a list

containing representative valuesas the intervalis increased—analogous to those

returned by LIl and SEF®E. Note that SEF3 may take awhile for certain

functions. If an unusually large delay occurs, you may be better off solving the

integral by hand if you can and using L II'l to test for convergence or divergence.

When using these programs to determine whether a series converges or not,it is

best to use them in “numerical” order, because of the speed with which each

operates. The root test (SEF1) is fastest, and the integral test (GEFR#3) is usually

the slowest.
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Example:

o0

: E : 27" :
Doesthe series - converge or diverge?

n=1

 

1. Enter the defining function: (&5)(EQUATION)(2)[9(3)()q)(N)(>)(=)

(DN(J&)(N)(ENTER).
Enter the index variable:

(']

aJ&qN)(ENTER).

3. Perform the Root test (:EF#1): (S]EJR)X]1)(ENTER) or (VAR)

Example:

Series

(then or as needed) E{31.

Result: "OqnE'-ElE'E'"

oo

: 2 : 1 :
Does the series — converge or diverge?

n
n=1

. Enter the definingfunction and the index variable: (')(1)(=)(®)E)

(NJENTER)JeJeaN)ENTER)
Perform the Root test (GEF1): (VAR E

Result: " Inconclusive”

Because the Root test in inconclusive, your next choice would be the

Limit Comparison test (SERHL) if you can find an appropriate

series to use as a comparison. In this particular case, a good com-

parison series does not readily leap to mind. Thus the next option is

to use the Integral test (SER“3).

. Enterthe defining function andindex variable again: ('1]+]aJ&[N]

(eN)ENTER).
Perform the Integral test: (a)aJSJEJR]X]3]J(ENTER)or (then

or (§)PREV] as needed) EFTEL

Result: © .2 946.1 184.2 468,52

Because there is no sign ofconvergence in the list, you can conclude

that the series diverges.
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Example:
: 2 : 1 :

Does the series — converge or diverge?
n

n=1

. Enter the defining function and the index variable: ('1]+]aJ&qN]

ENTER)("&)N)(ENTER).

Make an extra copies of the defining function and index variable

(just in case the Roottestis inconclusive): (€9)]STACK ITEEL

. Perform the Root test (SEF1): o5g

Result: " Inconclusive

Because the Root test in inconclusive, use the Limit Comparison

: : 1 .. :
test. Since you just demonstrated that — diverges, perhapsit

n
n=1

would make a good comparison series.

Drop the previous result, enter the comparison function, swap it to

level 2, and perform the Limit Comparison test (SER#E): («)()(7)
(]2J&N)(ENTER)(SWAP) I3 ihiH.

Result: + .1 .H1 B8] .HHEA] ,HHEEA] | BEFEE]
CHEEEEAE]T | BEEERRF] | HEEEEREE]

. HEBEREEEART

Clearly, the limit is zero—which means the test is inconclusive.

Because the comparison series is a divergent one, a positive limit

would have meant the test series is divergent, but a zero limit means

that the test is inconclusive. So, on to the Integraltest.

5. Enterthe function and its index again: ('1]+]aJ&N) ENTER

OGNENTER)
6. Perform the Integral test (:EFH3): o3

34

Result: £ H.9 1.0 1.0 1.0 :

The series converges according to the Integral test.
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Example:

1.

Example:

Series

oo

Does the series E ;1
2n- —1

n=1

 converge or diverge?

Enter the defining function and the index variable and make a set of

copies: () (eJaNHEGI0) ()X (€JalN 0™ () (=) () ENTER)
()&N) ENTER)()STACK)(NxT)T

Perform the Roottest (SEFr1): T

Result: "Inconclusive”

 

 

. Drop the previous result and enter a function with which to compare

limits (1/n seems a good choice): @@mmm.

Perform the Limit Comparison test (GEF#E): (VAR B

Result(to 3 places): 1 .oH3 . SHH IHH . SHA |"
1'

|
|"

F|

Since the Limit Comparison test returns a positive limit (0.5) with

a comparison series that diverges, the test series must also diverge.

00

Does the series 2 21
4n” +9

n=1

 converge or diverge?

. Enter the defining function and the index variable and make an extra

set of copies: SO (AX[aJalN) (9]
()aJ&&N) ENTER)()STACK)(NXT)I.

Perform the Root test (EF#1): (VAR E

Result: "Inconclusive"

 

Drop the previous result and enter a series with which to compare

limits (1/n?looksto be a good choice here): (@))(1)(=)(aJ<N

(2)(ENTER)(SWAP).
Perform the Limit Comparison test (GEF#E):

Result (to 3 places): 1 .ot . ':EIH 'L-.'IB.ok E":IEl

Because the limitis positive and finite (0.25) and the comparison

series converges, then the test series converges.
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Computing Series

Once you have assured yourself that a particular series converges, the HP 48 can

help you approximate the infinite sum.

The program SERIES (see page 323) takes the defining function for a series from

level 4, the index variable from level 3, the beginning index value from level 2,

and the number of decimal places to which you want to approximate the series

from level 1. It returns the approximate value of the series to level 2 and the final

index value used to compute the approximation to level 1. The larger the number

of decimal places given in level 1 (i.e. the more precision you require) the longer

it will take to compute the approximation.

Look at some examples. . .

Example: Approximate the following infinite sum to three decimal places:

o0 k

2ais)
k=1

1. Enter the defining function: SOJaJalK)(=) (2]«

LKEHDI(SIK)ENTER)
2. Enter the index variable: (']oJé&q]K)(ENTER).

3. Enter the beginning index value: (1])(ENTER).

4. Enter the number of decimal places you want in the approximation:

 

(3)ENTER).
5. ExecuteSERIES: (@)SEIR]1)E)S)ENTER)or (VAR) (then (NXT)or

as needed) EIAIH
Result: ' E B5H

1: <. HEH
The approximate value of the 1nfin1tesum is H. B63H which was

arrived at after summing the first 22 terms.

36 1. SERIES, SEQUENCES, AND LIMITS



Example: Approximate the following infinite sum to two decimal places:

22“%
B +Ak

k=1

. Enter the defining function: (€5)(EQUATION)(A)(2)(aJ]K](+])(x)(c)

)IalKPIE)HE)(JaIK)ENTER)
Enter the index variable: (')(a)&]K)(ENTER).

3. Enter the beginning index value: ENTER).

Example:

Enter the number of decimal places you want in the approximation:

(2)ENTER)
. Execute SERIES: SERIE]

Result: = 3.

1: cHGo, HH
The infinite sum, approximated to two decimal places is 3.00

Approximate the following infinite sum to five decimal places:

— 2k j1
d5
k=1

 

: Enterthe defining function: ()TlK)IX)()K)MTH)NXT)

 

‘ @-nnmm
. Enter the index variable: [ENTER).

3. Enter the beginning index value: |ENTER).

Enter the number of decimal places you want in the approximation:

(S)(ENTER].

Execute =ERIES:
|

R@_S_l_lll:
E: ll_ '..|..‘|.l||_||:

1: Co HEAEE
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Using Series to Approximate Functions

The easiest functions for calculators to compute and manipulate are polynomials.

They’re composed only of additions and multiplications. But non-polynomial

functions such as trigonometric, exponential, and logarithmic functions are a dif-

ferent matter. In fact, most calculator routines for computing non-polynomial

functions actually use polynomial approximations of those functions.

Example: Find a polynomial approximation for the functionf{x) = sin x.

x3 xS 2k+1

Result: sinx=x———-+———— E (—1)f——
315t 7! (2k+1)!

Example: Find a polynomial approximation for the functionf(x) = e*.

2 3 4 — K
X X

Resultt e =l+x+-+2+2X 4+ ... = A
2! 3! 4! k!

k=0

Example: Find a polynomial approximation for the functionf(x) = In (1 + x).

2 3
X

Result: In(1+x)= x_."_+___+
2 3

    
k+1

Each of these polynomial approximationsis apower series—a polynomial with

an infinite number of terms. More precisely, a powerseries is the limit of a se-

quence ofpolynomials: zc,x" =lim p, (x), wherep(x)isapolynomial ofde-

n=0 T

gree n, and ¢is acoefficient of a term in the polynomial. To obtain an approxima-

tion using a powerseries at a particular real value, x,, simply substitute x, into the

powerseries for x and find the limit of the series to whatever number of decimal

places you desire.
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Example: Approximate the value of sin(2) to four decimal places, using the

power series shown in the example above.

. Enter the defining function for the power series that approximates

the sine function, remembering to substitute 2 for x in the definition:

(JEQUATION(GIOI+-1))FH(G()(a)2)73(2)(@fa)K]
(HDe)OR[JGIKH) (@SDELENTER).
Enter the index variable for the series: (']oJé&q]K](ENTER).

3. Enter the beginning index value and the desired number of decimal

Example:

placesin the approximation: (0] (4)(ENTER).

. Execute SERIESto compute the approximation: B

 

Result: = M, 9495

1: 5. HEEA

After 8 terms, the approximation of sin(2) is 0.9093.

. Now check the approximation using the SIN function on the HP 48.

Make sure that your in Rad mode first: (&§)RAD), if necessary)
(SIN). Result: H.9H93 — a match!

Find In(3) to four places, using the powerseries for In(1+x) as des-

cribed above(i.e. replace x in the defining function with 2).

. Enter the defining function for the powerseries that approximates

the In(1+x) function, remembering to substitute 2 for x in the defin-

ition: EQUATION(&]O+~)0(JalKM)a)2)Y (Ja)
KED)(eIa]K)(H] ENTER).
Enter the index variable for the series: (']oJ&)K)(ENTER).

3. Enter the beginning index value and the desired number of decimal

placesin the approximation: (0](ENTER)(4](ENTER.

Execute SERIES to compute the approximation: ZEEIE]

“Wait a second! What’s happening?”

You are working with a divergentseries, and SER IE'= assumes that

the series you’re using is convergent. Press(ENTER)(or any key other

than (CANCEL)) to end the search, then («]«]@]to clean up.
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This example illustrates an important aspect about power series—they must

converge for the value of x you’re using in order to work as an approximation.

Some powerseries are only valid as approximations for values within a particular

interval. To see this, repeat the previous example using x = 0.5 instead of x = 2.

Example: Approximate In(1.5) to four decimal places using the power series

for In(1+x) described above. Thatis, replace x in the defining func-

tion with 0.5.

1. Enter the defining function for the power series that approximates

the In (1+x) function, remembering to substitute 0.5 for x in the de-

finition: (GJEQUATION(&&OI+/-[1))FI(J&]K) )(A)(-]8I
(JQIKHDEL)(JGIKH([) ENTER)

2. Enter the index variable for the series: ('JoJ¢<q)K](ENTER).

3. Enter the beginning index value and the desired number of decimal

places in the approximation: (0)(ENTER)(4)(ENTER).

4. Execute SERIES to compute the approximation: 1314,

Result: = 4, 4455

This time the power series converges after 20 terms.

5. Check the approximation using the LN function on the HP 48:

G-5)E)N).  Result: H.4H55 — a match! 

How does one find out the interval of validity for a given approximation?

One reasonably good method is to plot the original function and a partial sum of

the powerseries (i.e. the first few terms of the series) together and visually note

the interval where they coincide.

For example,to find the interval ofvalidity of the powerseries for In (1 + x), you

wouldplot the function, In (1 +x), and the polynomial representing the partial sum

2 x3 x4 xS

ofthe powerseries that includes the first, say,five terms: x —> +3a+3

The next example illustrates what you can find.. .
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Example: Plot the function,In (1 +x), and the first five terms ofits power series,

x2 x3 x4 xS

x._._ — —— ———

2 3 4 5

to visually determine the interval of validity.

. Open the PLOT application and make sure that the TY'PE: field is set

to Furizt 1om: (o)PLoT)(a)(e)F)

Highlight the Ei¥: field and enter a list containing both functions:()

QU2NGHXOUSIXGeaXY
IHUSXIEHEEaXXY4B@BUa)X)@N(E)
(=)(8)ENTER).
Set IMOEP: to = (lower-case), H=WEk to—= =, and ¥-YIEkto

=5 1. Move the PLOT OPTIOME screen and setH=TICK to 1,4~
TICE to 1, and uncheck the PISELZ field on the last line. This will

display tick-marks every unit (instead ofevery 10 pixels) on both the

horizontal and vertical axes.

. Press BG[T 151TA58 to draw the plot.

 

 

!
A 1

LTPT {018   
Note that the two graphs coincide roughly betweenx=-1and x =1,

which indicates that these roughly represent the boundaries for the

interval ofvalidity. Outside ofthese boundaries, the powerseries di-

verges and is useless as an approximation.
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Taylor Series

Although the examples so far have used well-known functionsto illustrate the use

ofpower series to approximate function values, the technique is more commonly

used to approximate otherwise unknown functions.

The powerseries you have seen so far are referred to collectively as Taylor series.

The partial sum of a Taylor series is called a Taylorpolynomial. For example, the

 

— k+1

series (-1)* o1 is a Taylor series, and the partial sum used in the previous
+

k=0

2 3 4 5

example, x —5 +31+% is a fifth-degree Taylor polynomial.

oo

(k)
The general form of a Taylor seriesis: Zf—k—f—a—)(x — a)" where a is a known

k=0 .

point on the function which the Taylor series is approximating. All of the exam-

ples so far have used a = 0 as the known point.*

The expressionf¥(a) requires some more explanation. The superscript k indicates
which derivative ofthefunction is being referred to. Derivatives will be discussed

and developed in detail in Chapter 2, but for now think of them as a property

belonging to a single point of a function. At each point of the function, the slope

of the function is changing in a particular way. Thefirst derivative,f(a), is the

slope of a function at a given point. The second derivative,f?(a), is the slope of

the slope—thatis, the change ofthe slope—at a given point. The third derivative,

f®(a), is the change of the change ofthe slope at a given point, etc. You can see

that the more derivatives you can compute at a given point, the more details you

can learn about whatis happening to the function near the given point. Each level

of derivative at a given pointis a clue about the “hidden” function nearby.

The Taylor series approach to approximating functions is specifically designed

for situations where you know a lot about a single point and wish to extrapolate

or approximate what the rest of the function islike.

*Taylor series with a = 0 are known collectively as Maclaurin series.
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Of course, functions—particularly those describing real-world phenomena—

come in many flavors, some better suited to Taylor series approximation than

others. Some are not “infinitely differentiable”; they may have, say, first and

second derivatives, but no third derivative. For these functions, you may only use

a Taylor polynomial whose degree is less than or equal to the number of deriva-

tives available. Some functions, although infinitely differentiable, are such that

the derivatives at particular points are very poor clues about the rest of the func-

tion. The only absolute guarantee about Taylor series approximations is that they

approximate the value of the function accurately at the given point. Some Taylor

series approximate values well for all points, others only for a few points, and a

fair number that manage to be accurate for the given point alone.

Moral: Use Taylor series approximation carefully—choosing the point at which

you compute all the derivatives wisely and applying it only to functions that have

sufficient derivatives so that you have a reasonable interval of validity for your

approximation.

Although you haven’t yet computed derivatives in this book, you can still

compute Taylor polynomials. The HP 48 has a built-in function, TAYLR,that

computes aTaylorpolynomial (atx=0) fora given function. Ineffect, it computes

all the necessary derivatives ofthe function (atx=0) and compiles the polynomial

to whatever degree you specify.

Example: Compute the 6th degree Taylor polynomial for 1 + sin? x using the

built-in TAYLR command. Use it to approximate 1 + sin?(1.65).

1. Enter the function: ("J1]+JSINJaJeX)(»)(¥)(2)(ENTER).

2. Enter the variable to be used in the Taylor polynomial (also the

independent variable in the function): ('](oJ&]X](ENTER).

3. Enter the desired degree of the Taylor polynomial: (6]ENTER).

4. Compute the Taylor polynomial: TRYLR}

Result: ' 1+=84 | #4430-0 1 2wg!

 

5. Make a copy ofthe polynomial and then approximate 1 + sin*(1.65):

(-J6)s) ("eJaIX)(STOJEVAL).
Result: . 1456E4HHEED. (actual value: 1.99373988496)
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Why is the approximation so bad? Recall on page 41 where the In(1+x) function

wasplotted againstits fifth-degree Taylor polynomial. Bad approximations occur

when the point being evaluated lies outside the interval ofvalidity for the approxi-

mation. And the interval of validity is always centered upon the point used to

compute the Taylor polynomial coefficients. For the built-in TAYLR command,

the interval ofvalidity is always centered onx=0, and the farther from zero a value

is, the greater the likelihood that its approximation will be bad.

Example: Use the Taylor polynomial calculated in the previous example to ap-

proximate 1 + sin?(0.65).

1. Drop the last result, to bring the Taylor polynomialto level 1: ().

2. Store 0.65in '%' and evaluate the Taylor polynomial: (-)6)5)(")

(0J&a)X)(STO)[EVAL.
Result: 1.36634986736  (Actual value: 1.36625058569)

Because 0.65 is much closer to zero than is 1.65, its approximation—which is

“centered” at zero—is much better. Sohow do you get an accurate approximation

of 1 + sin?(1.65), using a Taylor polynomial? Move the “center” of the approx-

imation closer to 1.65.

Although the built-in TAYLR command doesn’t allow you to do this,it is rela-

tively simple with a program. T'7LF.a (see page 331) computes the Taylor poly-
nomial for a given function centered around an arbitrary point a ofyour choosing.

It takes the function being approximated from level 4, the independent variable

fromlevel 3, the order ofthe Taylor polynomial desired from level 2, and the point

around which you wantto center the approximation from level 1, and returns the

Taylor polynomialto level 1.

Example: Find the sixth-degree Taylor polynomial centered at x = 1.5 for the

function 1 + sin®x.

1. Enter the function to be approximated: ("1]+SIN)(aJ]X)(»)¥

(2)(ENTER.
2. Enter the independent variable: oJ&]X](ENTER).

3. Enter the order of the polynomial desired: (6)(ENTER).
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4. Enterthe point around which the approximation is centered:
ENTER|.

5. Compute the Taylorpolynomial usingT1LF:a: (o)TYUR]<A)

 

or (then or as needed) g8;1.

Result (4 places): '1.995H+, 1411#0x—1.5]
=M, 99HH= Cwe=1 S0-B9=0we-1 L, 50

+, J3EE=1StH1EEE(w—1, 50
-,B34=-1,. 507G

n

Computing the approximation around 1.5 instead of 0 should have the effect of

shifting the interval of validity to the left (i.e. in the positive direction). To view

the approximation and the function being approximated, and the interval ofvalid-

ity, you can use a procedure similar to the example on page 46 or you can use the

FTHYL program (see page 317). FTHY'L takes the Taylor polynomial from level
5, the function from level 4, the independent variable from level 3, the value

around which the approximation is centered from level 2, and the value of the

point being approximated from level 1. If there is no point being approximated,

use same value you used in level 2 on level 1.

Example:

Taylor Series

Use FTHY'L to visually depictthe interval of validity for a sixth-de-

gree Taylor polynomial approximation of the function, 1 + sin? x,

centered around x = 1.5.

. If the Taylor polynomial computed in the previous example is still

on level 1, then move on to step 2. If it isn’t, execute the previous

example to compute it, and then return to step 2 of this example.

. Enter the function: ("]1]+JSIN)(eJ&)X)(»)(¥)(2)(ENTER).

3. Enter the independent variable: (']oJéq)X](ENTER).

Enter the value around which the approximation is centered:
ENTER|.

. Because you aren’t interested in this example in estimating any one

particular value, just enter a copy of previous value: (ENTER).
 

. ExecuteFTHYL: (&PTIAYL)(ENTER)or(VAR(NXT)or (5PREV)
as needed) [Hl;EaH.
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7.

 

e
: EEIIAIE

Press and trace along the function with («Jand (») to

a region where the two graphs begin to separate. Then, jumping

between the two graphs using (a)and (¥), watch the value ofthe ¥:-

coordinate. Where it begins to differ significantly, you are leaving

the interval ofvalidity—to two decimal places, roughly 0.5 <x<2.5.

Within that interval the polynomial approximates the function to

two decimal places. (Of course, the decimal places necessary to

validate an approximation may be more or less than two.)

 

   

Two other programs automate approximations, AFFE[l# and FAFE(see pages
286 and 306). They each take five inputs: the function approximated on level 5,

the independent variable on level 4, the order of the Taylor polynomial desired on

level 3, the “centering” value on level 2, and the value to be estimated on level1.

HPROX returns the Taylor polynomial used to level 3, the computed approxima-

tion on level 2, and estimate of the maximum error of the approximation to level

1. PAPRDX first plots the function andits Taylor polynomial within a reasonable

viewing range and then returns the same objects as does AFF.

Example:

b
=

46

Use HPRLto approximate the value of 1 +sin2x atx=1.65 at using
a fourth-degree Taylor polynomial of (x — 1.5).

Enter the function: ("1]+JSIN)(&X))(2)([ENTER).
Enter the independentvariable: (']aJ&)X)(ENTER).

Enter the degree of the Taylor polynomial: (4)(ENTER).

Enter the value of the independent variable around which the ap-

proximation is centered: ENTER).
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5. Enter the value you wish to approximate: (1]-6J5)(ENTER).

6. Execute APELA: (aa]A[PR]0[X) or (then or

(—JPREV] as needed) [ilgithi. Result (to 3 places):

35 N1L99eTw01, 30 -B9=LD0E-
=1,D073+, 23R(-1, 207

C 1,994
1: 9. E04E-7

The approximate value is 1.994, accurate to within less than 10,

Example: Use PHFELto approximate for x =0.5 using a fifth-degree
x2+1

Taylor approximation centered at x = 0.

Enter the function: (*]2]+[&]0)(Ja)X)0(2)(H(1) ENTER).
Enter the independent variable: (']aJ&]X)(ENTER).

Enter the degree of the Taylor polynomial desired: (5]ENTER).

Nowthe point aroundwhich the approximationis centered: JENTER).

Enter the value you wish to compute: ]5)(ENTER).

Use PAPEL: («]aPA[P)R)0O)X)(ENTER) or (VAR) (NXT)) [iladl.
 

A
W

 

 

200H¢4[TRACE]FIWEDIT[CANIL   
The plot confirms that the target value (0.5) is within the interval of

validity for the approximation.

7. Press (CANCEL]to return to the stack and see the approximation.

Result: o* Pg|

o 1.6:5
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While PAPEallows you to view a given Taylor approximation alongside the
function it’s approximating so that you can get a visual estimate ofthe interval of

validity, it would be nice to be able to find the set of values for which any power

series converges. This interval of convergence for a given powerseries,

oo

)clx-ay,
n=0

might be any one of three cases:

1. The power series converges within a radius of convergence (R) of x = a.

That is, it converges for a — R < x < a + R, but diverges for other values of

x. Note that the endpoints of the interval (x =a — R and x = a + R) may or

may not also be included in the interval and should be tested individually.

2. The powerseries converges only for the point around which the approxi-

mation is computed, x = a—nowhere else. The radius of convergenceis 0.

3. The powerseries converges for all values of x. The radius of convergence

iS oo,

The standard method of finding the interval of convergence for a power series

involves applying the Roottest to the series of coefficients, ¢, ofthe power series.

Thatis, for the power series E ¢,(x—a)", youmust find lim4/|c,|. If the limit

n=0

(L) is finite and nonzero, then the radius of convergence is 1/L (Case 1). If the

limit is infinite, then the radius of convergence is 0 (Case 2). If the limitis zero,

then the radius of convergence is o (Case 3).

The program LY IMT (page 289) computes the radius of convergence for a given

power series.It takes an expression representing the ¢ portion ofthe powerseries

from level 3, the independent variable from level 2, and the point a about which

the powerseries is centeredfrom level1. Itreturns a string describing the approxi-

mate interval of convergence. Note that because LV IMT computes limits as it

determines the interval of convergence, the endpoints of the computed interval

may be only approximate; you may need to apply common sense when testing the

computed endpoints for inclusion or exclusion in the interval.
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The following examples illustrate the proper use of LY INT.

Example:

e

Taylor Series

oo

k

Find the interval of convergence for the series Zék—(x —2)~.

k=0

Enterthe ¢, expression: (*]5)(oJaJK)(=)(@JaIK)ENTER).
Enter the index variable: (')oJé&)K)(ENTER).

Now the point around which the powerseries is centered: )[ENTER).

Compute the interval ofconvergence using LY INT: (o)@)[)V1N

or (VAR) (then (NXT) or as needed) [T,
Result: "1, 8E2"

The resulting interval is always open on both ends. You must test the

endpoints separately by substitute each endpoint value forx and per-
ll'-

forming the set of convergence tests (SEFR1, SERHE, SEERT).

Substitute 1.8 for x into the original power series and perform the

integral test (AEF#3) to determine convergence: (1)5]Y¥a])K)

(IXIOL2+ ()73 (Ja)K) ENTER) () (eJa)K]
[ENTER[VARJEIFihE].

Result: © H.H H,

The integral test shows that the power series converges at x = 1.8.

Repeat step 5 using 2.2 for x: ('[5]7¥]K) (=)(elK)XIS]O)

2DJakETERTKENTER ekl
Result: © £.o H.H H.H H.H }

The integral test shows that the power series diverges at x = 2.2.

(Because the integral test will normally show only increasing

values—within reasonable precision—the decrease back to zero in

this result list must be due to exceeding the limits of precision and

thus can safely be ignored).

= | " e
l

=
0

=
a,
d

Conclusion: The interval of convergence for the powerseriesis:

1.8<x<2.2
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oo

Example: Find the interval of convergence for 2k(k+1)(x—1)*.

50

1.

k=0

Enter the ¢expression. Beware though, because the x-term is raised

to the 2k power instead of the customary k power. To obtain a valid

¢expression,find the square root ofthe given ¢, portion: (")(eJ&]K]

al0) (=)
Enter the index variable: ('JaJ&]K)(ENTER).

3. Now the point around which the powerseries is centered: )[ENTER).

Compute the interval ofconvergence usingLMINT: (CIV]IIN[T]
ENTER) or (then or (q]PREV) as needed) [|BE.

Result: "H<uds"

You can test the endpoints this time by inspection. Note that because

the x-term is raised to the 2k power, both x =0 and x =2 will yield

1 as the value of the x-term, thus rendering the series equivalent to

oo

Zk(k +1) for both endpoints. This equivalent series clearly di-

k=0

verges. If you prefer, you can confirm this using either the limit

comparison test (SEFHE) or the integral test (3EF#3); the root test
is inconclusive.

Conclusion: The interval of convergence for the powerseriesis:

O<x<?2
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Example:

oo

!
Find the interval ofconvergence forthe powerseries: E %(x +1)~.

k=0

1. Enter the ¢expression: ('JoJ&]K]a)e]DEL (+)(2)(ENTER).

Enter the index variable: (']oJé&q]K)(ENTER).

3. Enter the point around which the power series is centered:

Example:

Taylor Series

[ENTER).
Compute the interval ofconvergence usingMINT: (e)o)(C]VIN)

or (then or (§)PREV) as needed) [[1.

Result: "w=—1"

Conclusion: The power series converges nowhere but at x = -1.

o0

Find the interval of convergence for Z%"T(x —2)*.

k=0

1. Enterthe ¢ expression: (')1)(=)(2)@®(eJ&a)K))DEL)ENTER).

2. Enter the index variable: aJ&]K)(ENTER).

3.

4. Computethe interval ofconvergence usingWIMT:

Now the point around which the powerseries is centered: ENTER).

or (then or (§JPREV) as needed) [N I B1.

Result: "AI1 "

Conclusion: The powerseries converges for all x.
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Estimating the Error ofApproximation

Occasionally in the real-world application of powerseries, you will know a great

deal about a specific point on a function without knowing the function itself.

Indeed,this is a common use for power series approximations—as stand-ins for

functions you cannot ascertain directly.

But how can you estimate how good your powerseries is as an approximation if

you can’t compare it with an actual function?

Taylor’s Theorem, derived in most introductory calculus texts, provides a means

for such an estimation of the error ifyou can estimate the magnitude ofthe next

higher order derivative than the order of the power series approximation. For

example, ifyou are using a fourth-degree Taylor approximation, you must be able

to estimate the size ofthe fifth-derivative of the unknown function near the point

around which you build the approximation.

Specifically, Taylor’s Theorem implies that the error of a polynomial approxima-

tion (around point a) of order » for the value of a point b for a functionfis:

f(n+1)()()n+1

+1)!

wheref**1)(c) represents the maximum estlmated value of the next higher order

derivative (in the interval between a and b on the unknown function) than the

order of the polynomial approximation.

If(B)-p,(b)|<
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The program |'LEERF(see page 331) assists you in estimating the error of ap-

proximation. As arguments,it takes the maximum estimated value of the next

derivative (f**!(c)) from level 4, the degree of the approximation (n) from level

3, the point (a) around which the approximation was computed from level 2, and

the point being approximated (b) from level 1. It then returns the maximum esti-

mated error to level 1.

Example:

N
k

For a given function approximated with a fourth-order Taylor series

about x = 1, you estimate that the maximum value ofthe fifth deriv-

ative between x = 1 and x= 3 is 0.01. Find the maximum error using

this approximation to compute the value of the function at x = 3.

Enter your estimate for the maximum value of the fifth derivative:

ENTER).

Enter the degree of the polynomial approximation: (4]ENTER).

Enter point around which the approximation was made: (1)([ENTER).

Enter the point being approximated: ENTER).

Compute the error approximation: (a]aJT]Y]LJRJEJR]JR)ENTER]or

(then or (§]PREV) as needed) IEENHT .

Result: &.EBEEELEEEEEE-3

The maximum error using the fourth-order approximation to esti-

mate the value of the unknown function at x=3 is =0.00267.
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The Derivative and Differentiation: An Introduction

The derivative of a functionf(x) is itself a function that describes how fastf(x) is

changing at each point x. Itis derived in the sense that it can’t stand on its own—

there mustbe an original functionf(x) to which itrefers. Differentiation is the pro-

cess ofcomputing the derivative—either as a general expression or at a particular

numerical point x. The name, differentiation, correctly implies that finding the

derivative is based upon finding differences.

The rate at which a function changes is measured by its slope. As you recall from

pre-calculus math courses, the slope of a function is measured by comparing the

coordinates of two points on the function. The slope is the ratio of the difference

of the vertical coordinates of the two points (Ay) and the difference of the hori-

zontal coordinates of the two points (Ax).

Of course, the measurement Ay/Ax can be interpreted only as the average slope

of the function over the interval between the two points. But as you shrink this

interval, the average slope describes an ever more precise region of the function.

Finally, using the concept oflimits,ifyou let the size ofthe interval approach zero,

the average slope becomes the “slope-at-a -point”’—instantaneous slope.

Thus the derivative is a function, f(x), that describes the instantaneous slope of

each point in the domain of its referent functionf{x). Since the derivative uses the

concept of limits, it requires that the referent function be continuous (at least in

the interval being examined). So a functionf(x) is said to be differentiable at a

point, x,, provided that x, is in the domain off{x) and that this limit exists:

llm f(x)_f(xo)

X=X X=X,

Or, because the quantity (x — x) is more compactly written as Ax, the derivative

function is commonly written as:

(e Y= fir oKo +AX) = f(x)
f(xo)—g?o Ax

Roughly translated, this means that the derivative of a point is difference between

the value ofthe function at the point and its value a “smidge” away from the point

divided by the “smidge” as the size of the “smidge” approaches zero.
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Derivatives on the HP 48

The HP 48 is programmed with the derivatives for all of its analytical functions

and with the basic rules of differentiation (summarized below). Therefore it can

find the derivative of any function composed entirely of those analytical func-

tions—quite a large variety of functions, actually.

Here is a summary of what the HP 48 “knows” about derivatives. First and

foremost,it is programmed with these derivative definitions:

 

 

 

 

 

 

 

 

 

 

Function Derivative Function Derivative

X" rx1

a* (a>0, a#1) a‘lna log, x (a>0, a#1)
xlna

: . 1
sin x COSX sin” x -

1—x

i iy 1
COSX —sinx cos™ x — -

1-x

2 -1 1
tan x —— (or sec” x) tan~ x >

COS” X 1+x

i .y 1
sinh x cosh x sinh™ x =

V1+ x

i 0 1
cosh x sinh x cosh™ x

2
x-—1

1 _ 1
tanh x - tanh™ x >

cosh” x 1—-x
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The HP 48 is also programmed with certain general rules for computing deriva-

tives. Iffand g are differentiable functions, k is a constant, andx,is a specific input

in the domains of bothfand g, then the following rules hold:

Linearity Properties: (f+ g)’ (x,)=f"(x,)+g"(x;)

(f—g)'(x0)=f'(x0)—g'(x0)

()(x0) =c- f(x,)

Product Rule: (fg), (x0) = f"(x,)8(x,) + f(x)8"(x,)

Quotient Rule: [i) (xo) = f,(xo)g(XOZ_f(xO)g,(xo)

Chain Rule: (fog) (x)= f’(g(x0 ))-&’(x,)

Power Rule: (f" )’ (x0)=nf""(x,)" f"(xo)

Furthermore, the HP 48 can apply the derivative rules in several distinct ways,

depending on the context in which you wish to see it. It can graph the derivative

function along with the main function, compute the numeric derivative ata given

point, or symbolically derive the derivative expression from the main function

expression—either one step at a time (“step-wise” differentiation) or all at once.

Look at some examples of each of these approaches in action...
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Graphically Displaying Derivatives

Functions that can be differentiated are “locally linear,” a fact that can be ascer-

tained best by graphing the function and zooming in on a region in question.

Example:

1.

2.

3.

4.
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 Is f(x)= sin( 2x ) differentiable at x = 0?
x°+2

Open the PLOT application, set the TYPE: toFIUmi=t. 12, and re-

set the plot parameters: (—)PLOT)(a)(o]F) (DEL)(V)(ENTER).

Highlight the Ei: field and enter the function expression: (¥)('JSIN]

X(JalX)HEI0) [ENTER).
Set the IMDEP to x (lower-case) and press ERASE|DRAK]

 

 

 i _,.-:':..-:

   ETTAIRT

It appears smooth (i.e. continuous) and completely differentiable.

But to test for differentiability at a point, zoom in tightly around the

point and lookforlinearity: (a)<)ETR>(vETIEL.

 

 

 

 

 -’J—-

" +

200k 8.0[TERCE]FEW EDIT   
The function is “locally linear”—thus differentiable—around x = 0.
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Example:  2 ) differentiable at x = -27?
x+2

Is f(x)= sin(

. Return to the PLOT screen, and reset the plot parameters: (CANCEL

[PEL)(W)(ENTER].
. Highlight theE: field, and enter the function expression: (a)("JSIN)

LIHEODSIX)H(2)ENTER).
Set the IMDEP to * (lower-case) and press [TkMU0.

ETTAARTT

There appears to be some rapid oscillations in the neighborhood of

the target point, x = -2, that needs investigation in more detail.

 

 

   
Move the cursor just above and to the left of the oscillations and

press FETRIHTFFE. Then draw the zoom-boxto the right andjust
below the oscillations (using (») and (¥) ) and then press&N

 

      ETTT
The oscillations are not straightening out as you zoom-in; instead,

their chaotic behavioris increasing. You can confirm this by zoom-

ing-in on a box tightly constructed around the target point.
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5. Draw the zoom-box so that it is about six pixels wide surrounding

the middle of the oscillations and including the x-axis. Then zoom:

flTl LIS

A vision of an undifferentiable function! At least, it’s not differen-

tiable in the vicinity of x = -2.

 

  

                      
Once you can determine the differentiability of a function, you may then plot both

the function and its derivative easily.

Example: Plotthe function, f(x) = x”* betweenx=-1and x =5, and then add

the graph ofits derivative. Use the default Y=Y1El- parameters.
 

1. Atthe PLOT screen, reset the parameters: (CANCEL)(DEL)(Y)(ENTER).

2. Highlight the Ei: field and enter the function: (a)('

)

oJ&]X]

GO (ENTER).

3. Setthe IMDEP to x (lower-case) and change H=WEF to—1 and.

4. Press [ITTRE.

JI x

 

 

 
TRTI=T  
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5. Add the derivative ofthe function to the plot: o<l(NxT)B.

 

 

 

 

  W TEERTT

6. Optional. To view the expression for thederivative plotted, press (&)
k|

and then hold down (V) (VIEW): ' . Fo¥x™— . 25

7. You can continue and plot the second derivative—the derivative of

the derivative—by repeating step 5. (Note that, although this func-

tion has a second derivative, not all functions do: the first derivative

mustitself be differentiable.) Press IZR(NxT)B,

_—'__—_F-

 

 

    
 

  R]RST
 

8. to return to the PLOT screen, and §11§ the Ef¥: field. It
now lists three functions, the second and first derivatives and the

original function: © .7o¥—L.Z0¥xT=1.200"
VoS— 250 VeiSedntn -t -

The first expression in the E¥:: list is the current function for features

suchas TRACE, (X,Y), and FCN. ButlIHEE]rotates

the order of the expressions, thus changing the current function.*

*The current equation can also be changed temporarily by pressing (a)or (¥)while in TRACE mode. Upon leaving

the Picture mode, the original orderis reestablished in EQ.
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This approach to plotting higher-order derivatives of a function results in all

intermediate derivatives being plotted as well—a potentially confusing collec-

tion of curves in the display.

The program PLTLER (see page 313) plotsjust the derivative of a specified order
—either with or without the current plot. It takes the function from level 4, the

name of the independent variable from level 3, the order of the derivative from

level 2, and a number indicating whether to erase the previous plot first (0 for

“don’t erase;” 1 for “erase”) from level 1.

Example:

1.

hn
os
W
D

62

Using FLTOER, plot the third derivative of 4sin® x —3cos? x.

Return to the stack and enter the function:

SN(X(R)EEXCos)(@)&)X(2)ENTER).
Enter the independent variable: (']oJéq]X)(ENTER).

Enter the order of derivative desired: (3)(ENTER).

Enter 1 to erase the screen before plotting the derivative: (1)[ENTER).

Open the PLOT application and reset the plot parameters to their de-

faults, then return to the stack: (—)PLOT)(DEL]Y)(ENTER)(ENTER).

Plot the specified derivative: (o]a]P]L)(T]DJE]R] or
(then or (§JPREV) as needed) |81

2
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Numerically Computing Derivatives

The slope of a function at a particular point is the function’s derivative at that

point. The HP48 accomplishes this computation by first computing the symbolic

derivative and then—if indicated—substituting the value of the point as the

independent variable in the derived formula. To indicate a symbolic or numeric

result when executing the “differentiate” command()3)), here are the options:

1. Ifflag-3is clear and numeric values are stored for all variables in the func-

tion, then executing the command in stack syntax will return a numeric re-

sult. Stack syntax means entering the function on level 2, the variable of

differentiation on level 1 and pressing (=)).

2. If flag -3 is clear and numeric values are stored for all variables in the

function, then executing the command in algebraic syntax will return a

symbolic result reflecting a single invocation—one “step”’—of the chain

rule for differentiation. Algebraic syntax means entering a single algebraic

expression that includes the derivative function (eg. ' &l 3#H™*E+901 ")
and pressing (EVAL). Each time you press you invoke the chain rule
one more time and values may be substituted for some variables. Eventu-

ally a single number will be obtained—the same number you would have

obtained immediately if you had used the stack syntax described above in

option 1. This systematic approach to differentiation—step-wise differen-

tiation—allows you to examine in detail each application ofthe chain rule.

3. Ifflag-3isclear and atleast one variable in the function has no value stored

for it in the current path, then the HP 48 will return a symbolic result. This

result will either reflect one invocation of the chain rule (if you used alge-

braic syntax) or the complete differentiation (if you used the stack syntax).

4. If flag -3 is set, then the HP 48 will find a numeric result if at all possible

no matter how you execute the differentiate command and will indicate an

errorif it fails in its efforts.

5. Using the input screen of the Differentiate command (via (—>[SYMBOLIC] ¥

ENTERJ), you can explicitly request either the numeric or the complete

symbolic result regardless of the current flag settings.

6. You can also use the input screen of the Differentiate command to perform

a step-wise differentiation.
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The following examples illustrate each of these options.

Example: Option 1. Find the numeric value of the derivative of 5xa + 3xa’

atx=28. Leta=4.

Make sure flag -3 is clear and store the appropriate values for x and

a: (3[+/=JeJc)eSF)(sPcS8JeJalX]IsTol4]JalaAlSTO)
Enter the function: ("5|X]o[X[Y¥[2)X)(eJa)

A

H()X)(¢]a)

XX(aA)I(2)EnTER)
. Enter the variable of differentiation: (']oJé&q]X)(ENTER).

4. Compute the derivative: (=)3). Result: 2G5

Example:

64

Option 2. Find the derivative of the function 5x*a+3xa* atx =8,

using step-wise differentiation. Let a =4.

. Make sure flag -3 is clear and store the appropriate values for x and

a: (3[+/-JeJcJeSF)(sPc)8) JeJalX]IsTol4][alaAlSTO)
. Create an algebraic expression for the derivative: (')=3)(eJq]X]

SOXJGIXYH)X(eAHE)X(@aX)X)(@la)A)
()ENTER)

. Evaluate the derivative: (EVAL).

Result: 'SFeg ) +an [ Jeusg™s) !

Thefirst application of the chain rule simply distributes the deriva-

tive function across the summation.

. Evaluate again to see the next step in the differentiation: (EVAL).

Result: 'lSn™F1g+D™Dei(g)+ (iD1gy
+3EuEm(g™)!

. Continue evaluating the result until you arrive at a number. In this

case, it requires three more “steps:” (EVALJEVALJEVAL).

Result: 3658—just as in the previous example.
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Example: Option 3. Compute the symbolic derivative of 5x*a + 3xa’ , where
x and a remain variables.

. Make sure flag -3 is clear and purgex anda to be sure that they remain

symbolic in the result:* (3]+/=]o]C]o]F)[ENTER[CJ{oJX

(0]A)[ENTER]&q |PURG).

. Enterthe function: ('J5]X[eJaIX[Y¥2)X(«Ja]A[HEX(@lE)
XX)(eafA)()ENTER)

3. Enter the variable of differentiation: (']aJé&q]X](ENTER).

Example:

Compute the derivative: (=]3).

Result: 'S#[F¥w)xa+dxa™y

Option 4. Compute the numeric derivative of 5x°a +3xa’ by re-

peating the previous example with flag -3 set.

1. Setflag -3: (3[+/-Jofs]oJF)([ENTER).

. Enter the function: ("5)X[eJXY2)XA)HE)X)(e]a)
XX(Ja)A)YN(2)([ENTER.
Enter the variable of differentiation: (')oJé&q)X](ENTER).

4. Compute the derivative: (=]3).

Result: EFtor: Undef ined Hame

This error message appears because a variable (or, as in this case,

more than one variable) in the function is undefined, and yet the flag

setting requires the HP 48 to find a numerical result.

*Remember that PURGing a variable removes it from the current directory only. To guarantee that a variable is

symbolic, it must be purged from all directories in the currentpath. Ifthe current directory isHOME as the example

assumes, then PURGE is all you need. Butif you’re in a subdirectory, you may need to use the PGALL program

(see page 313) to purge the variable throughout the current path.
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Example: Option 5. Use the input screen to find the symbolic derivative of

5x%a+3xa® at x = 3, where a remains undefined.

 

1. Open the MIFFERKEMTIATE input screen: (—)]SYMBOLIC]Y]ENTER).
 

 

  

BESEEEEEEE VIFFERENTIRTE SEEEEEEEEEeeaINITTNASININIESR

YAR:
RESULT: Humeric
YALLE:

EMTEE EXPRESSIOM

 

   
Note that the KEZULT: field shows up as MiImEr 112 because the

current setting of flag -3 is set (Numeric Results) from the previous

example. Also, the EiiPF: field may contain a function if you have

used it previously in this or a related screen.

. Enter the function into the EXPF: field: ("[5X[aJIX[Y¥(2)(X)(¢]

CAHEX(PJaXX)(a)A)I(2)ENTER).
. Enter the variable of differentiation: (']oJé&q]X)(ENTER).

. Because you wish to find a symbolic result, change the RE=LLT:

field to =mbna ] 1. Note thatthis change is a temporary one: it

overrides the setting of flag -3 only in this one instance. After this

computation, flag -3 will still be in its Numeric state (i.e. set): (+/=).

. Store 3inthe variable*:: (A[NXT)i8

]6. Compute the derivative: BB/Result: 'ZH#a+3e3™:

N
W

W
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Example: Option 6. Use the HIFFEREMTIATE input screen to perform a step-

wise differentiation of 5x*a + 3xa* at x = 3, with a undefined.
 

1. Open the DIFFERKEMTIATE input screen: ()SYMBOLIC]Y]ENTER). 

The function should already show in the EniPF: field from the
previous example,so enter the variable of differentiation: (v)(")(c)

GJX](ENTER).
Change the KEZULT: field to sumbiol 1o #9),

The proper values are already stored in the variables from the prev-
ious example, so just compute the first “step” in the differentiation:

BFTTdl Result: oSeu™Edeg )+an [ Deweg™P !

. Press (EVALJto find the next step.

Result: Error: Undef ined Hame

What’s this?!? Rememberthat your choice of=2l 11 inthe
REZULT: field is temporary—good only for one operation. When

you executed the second step of the differentiation, the flag -3 had

returned to its set position (Numeric) and because a is undefined, the

HP 48 returned an error.

Moral: It is generally more convenient to leave flag -3 clear andjust

temporarily compute numeric results as needed, using MiImer1

in the input screen or (&]-NUM) from the stack.

Clear flag -3 and repeat this example. Now you will be able to eval-

uate the derivative to its completion.
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Formal Derivatives

Finding a symbolic, orformal, derivative requires that the variable of differentia-

tion be undefined. This is a problem if you don’t want to purge the variable of

differentiation—either you need to save the value, or it is simply too inconvenient

to purge all such names in the current path.

One solution is to substitute a different (undefined) variable of differentiation,

differentiate, then re-substitute the original variable into the result. This may

seem as cumbersome as the original PURGing procedure, but it is more conve-

nient as a program. The program, FLIEF, written by Bill Wickesin his book, HP
48 Insights, Part I1: Problem-Solving Resources (included here with his permis-

sion—see page 294) doesthis. FLIEF!takes the function from level 2 and the vari-
able of differentiation from level 1 and returns the formal derivative to level 1.

Example: UseF[IEF. to getthe formal derivative (w/respecttox) ofSx*a + 3xa®.

1. Enterthe function: ("5[X]&)XY2)X)(eJa

A

(H(3)X)(¢]e)

HMX(IaA)I(2)ENTER).
2. Enter the variable of differentiation: (']aJ¢&q]X]ENTER).

3. ExecuteFUEF: (a]«F|D]E[R)ENTER)Or (then or(&GPREV
asneeded) (@03 Result: ' T#[F*%1#a3+3%3™F " Note thatthis

result is obtained even if x is defined and/or flag -3 is set.

Above, a was undefined and sojust carried along in the differentiation. Naturally,

if a is defined with a real number or an expression containing non-differentiation

variables, then its value is substituted in the result. But if a should contain an ex-

pression with the differentiation variable, that will also affect the differentiation.

Example: Repeat the previous example after first storing ' SIM(%) " in g

1. Store sin x in a: ('[SIN]aJ&q]X](ENTER] 'JaJ&q]A)(STO).

2. Enter the function: ("

]

5)Xo]XX2)X)(«Ja)A)H(B)X)(e]a)

XX(JaJA)XY(2)(ENTER).
3. Enter the variable of differentiation: (']oJéq]X]ENTER).

68 2. DIFFERENTIATION AND THE DERIVATIVE



 

4. UseFLER:(a)a]F)DJE[RIENTER)or(VAR)(NXT)or)PREV))ITITA.

Result: ' 0¥(¥125TNy )+5%Pe050u)+(35TN)
etdEE(LS50=25IN(w) 0!

Now a has a big impact on the differentiation.

Moral: Pay close attention to your non-differentiation variables,

even when using FOEF.

Angle Mode and Derivatives

One of the sneakier things that can affect your derivative computations for trig-

onometric functions is your angle mode.

Example: Purgexand compute the derivative ofsinx firstin Radian mode, then

in Degree mode.

1. Purge x from the current path using FZHLL (page 313): ('JaJ&]X)

(]o]P]] [ENTER).
2. Press (&q]RAD), if necessary, to change to Radian mode.

3. Enterthe function and the variable of differentiation: ('JSIN)(aJ&)
ENTER)('JoJ&q]X])(ENTER).

4. Compute the derivative in Radian mode: (=)3). Result: ' CO5(:)"

5. Compute the derivative in Degree mode:
(JeJaIX)ENTER[2)@). Result: 'COSCx)#C-18H)

The results differ by a factor of ©/180. Why? The sine function is

defined primarily for radians, so a Degree-mode argument must first

be converted to radians. Thus,5 IM(5) becomes SIMNL 18H*1w-1)

before the differentiation. Essentially, a trigonometric function in

Degree mode is a different function from its Radian-mode equiva-

lent and thus differentiates differently.

Moral: Use Radian mode when differentiating (and integrating)

with trigonometric functions.
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Units and Derivatives

Many real-world problems using derivatives require physical units. However,

when differentiating, physical units can be quite troublesome.

Example: Findthe derivative withrespectto Vof V>h — gh® when the variables

contain the following values: h=5 N, g =25 cm.

1. Store the values with their units in the variables: (5]—)_]«]N]

G[HISTO) (25[elclaaM((eJa)a)(sTo)

2. Enterthe function and differentiation variable: (*])(o]V)[¥(2)(X)(e)

HE)6X(eaHE(2)ENTERLV)(ENTER).
3. )3Result: + Error: Inconsistent Units

What happened? Repeat the differentiation, but step-wise this time.

4. Enter the derivative expression: o]VVIZX(2)(X)(]

GHBE)X(eH(2)ENTER).
5. Begin evaluating: [EVAL). Result: "&bW™ek1-al(geq™E D!

6. Then(EVALJEVAL). Result: ' &b(W I#&el™(E-1 05N-(H_N™
+HOED_omlElalRssh™ i E-1200!

The unit values are being inserted, and with the next evaluation, the

HP 48 will apparently add Newtons to centimeters—not possible.

7. Confirm your suspicions: (EVAL).... Sure enough, that was the error.

The program IIIEF (see page 332) can find derivatives involving unit values.

LIDER has the same syntax as the standard stack version of the derivative.

Example: Findthederivative withrespectto Vof V>h — gh® when the variables

contain the following values: A=35 N, g =25 cm.

1. Enter the function and differentiation variable: ('Jo]V]Y*[2]

(oJqH)B(Jale)X)(eHIY

X

2)[ENTER)(*[«V](ENTER).

2. Differentiate using UDEF: (a))(U)DJEJR)[ENTER) or (VAR)((NXT)or

(GJPREV) as needed) HMMUTA. Result: ' C1H_Ma=\!!
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User-Defined Derivatives

Most of the HP 48’s built-in functions that are continuous and differentiable

(called analytical functions) have derivatives built in, too. That is, the HP 48

knows how to differentiate any expression composed exclusively of these built-

in functions (i.e. most of the functions you commonly use). But you can include

user-defined functions (or as-yet-undefined function names) in your work, too.

A quick review of user-defined functions. You define a user-defined function

(UDF) by appending a parenthetical list of its arguments to its base name. For

example, the %T(percentoftotal) functionwouldbe defined: ' &1 (&, b)=1HH#h

a'.Thename of the UDFis '#%[La, b)' with the parentheses being used in the
manner of standard function notation, such as f{x) or g(x,y,z).*

Because the HP 48 knows no derivative with respect tox for ' %1 L3y 4" when

you requestits derivative,it returns aplaceholdername: ' det5T(2 4y 1, HY '

The 'det..." prefix is reserved for use with these user-defined derivatives. Note
that the derivative of a function must have exactly twice the number ofarguments

as the function itself—so that the derivative definition works with the chain-rule.

These placeholder names are indeedjust names; as the user, you must define them

as you would any UDFE. For example, you might define the derivative of %T as:

'"dersTCa, by da, db)=0db<a-b-w*d#dal)*1HH' = (Notice how all four
arguments figure in the definition.) Now, when the HP 48 is asked to find the

derivative withrespecttoxof ' %l (4 41" it will evaluate the user-defined deriv-

ative and return: ' —{d-uEETHED

The use of UDF’s as placeholding variable names (remember: 'det~..." vari-

ables are UDF’s) can be quite awkward and visually confusing. So this book uses

a different naming convention for placeholding names of derivatives. Instead of

"deraTlse da 1. H) ' for example (see above), this book would use Yaal.w!,

d%T
 This more closely resembles standard book format, (which the HP 48

cannot use becauseit involves a division symbol where no division is intended).

*Note the critical difference between ' %1 (a3, b) "' and '%T#(a. b)': the latter isn’t a name at all, but ratherthe
multiplication of the variable '%T"' by the complex number {3, b). The reverse problem—turning a multipli-
cation into a UDF by accidentally omitting the * in front of the parenthesesis an all-too-common error, also.
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Implicit Differentiation

One of the common uses for placeholder derivatives is implicit differentiation.

For example, if you were to differentiate the function, (3x3 - 4)y—2x+1, with

respect to x, using the standard method of differentiation, you would need to first

 solve explicitly fory: y = 3 — 14 . Then, once the independent (x) and dependent
X

(y) variables have been separated on distinct sides of the equal sign, you would

3042
find the derivative normally: dy_ _12x-9x"+8

dx (3x3 —4)2

This procedure breaks down, however, when it is inconvenient (or impossible) to

separate the independent and dependent variables (look at 4x> +2xy — xy’, for

example). This is where you can use implicit differentiation.

Standard differentiation treats variables other than the independent variable as

constants. Thus, if you leave the dependent variables on the same side of the
equation as the independent variable, standard differentiation will “mistreat”

them—ignoring their status as variables altogether.

Implicit differentiation treats the dependent variablesasfunctions ofthe indepen-

dent variable, thus requiring that they be dealt with as variables during differen-

tiation. Implicit differentiation (so named because it implicitly defines one or

more dependent variables as functions of the independent variable) invokes the

chain rule for differentiating functions imbedded within functions.

On the HP 48, there is a built-in means of distinguishing between a dependent

variable to be treated as a constant during differentiation and one to be treated as

a function of the independent variable. To make a variable act like a function,

simply write it as such—a user-defined function. Thatis, instead of using '4'

as the dependentvariable, use '405] " .

Thus, differentiating 4x” + 2xy — xy’ with respectto x treats y as constant, yield-

ing 8x + 2y — y*. But differentiating 4x* + 2xy(x) — x(y(x))’ with respect to x

invokes the chain rule: 8x + (2xfl + 2y) — (Sxy2 & + y3)
dx dx
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Implicit differentiation is widely used in real-world computations because it

easily handles relations—curves such as ellipses and spirals that don’t obey the

vertical line test for true functions. Relations have variables that mutually affect

each other; no one variable can claim to be “independent” of the others.

Example:

1.

Plot x*> —3xy® + y* —1, thenfind the slope of the curve at (2,-1).

Open the PLOT application and change the TYPE: field too1

(Note that L0 1 1= may also be used to plotrelations of two vari-

ables other than conic sections): (=PLOT)(a)(a]C).

Highlight the Ei: field, reset parameters, and enter therelation:(v)

CEUWENTER)[SIXHE)EHBX)(JaXX(a2
HSNMPIEBMENTER)

. Change the independent variable to . and the dependent variable to

  I (o)X)ENTER) RLsES () (>)(Ja(ENTER) (ENTER).
SetH=WEto—E &; plot: (6)+/=)ENTER)(6)ENTER) [TT0.
 

 

 

 

 

S -
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zooMfena][ENT   
The relation clearly fails the vertical-line test; it is not a function.

Return to the stack,recall the relation (now in EE1) to level 1, and be

sure that ‘%' and '4' are purged in the current path:

i I 4[8R.
To differentiate implicitly, you must replace each 'd in the relation

with ' %3 2. The LMATCH command allows you to substitute one

symbolic expression for another. Enter a list on level 1 with the ex-

pressiontobereplaced (' 4')as the first element and its replacement
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("qlx]1")as the second, then perform the substitution:

ENTEREISYMBOLICINXT]
Result: &3 'w®3-twwsglun)yl)o3-1"

1: 1
7. The revised relation is on level 2 and a ]—a flag indicating a suc-

cessful substitution—is onlevel 1. Drop the flag, enter the vari-able

of differentiation, and differentiate(OROP)(JG)X)ENTER)()3)
Result: ' J#u™F-{ 3oyl1B+35w(dery iy, 1)

#7+ulJJW+dHrHI.11+'*ul1“;'

 

8. The 'detyl, 11" is a user-defined derivative (see page 71), a

placeholder variable representing ? (the slope of the relation),
X

created by the HP 48 because ''40%) "' is not defined. To find the

slope at the given point, just solve for the ' der4i:4, 11" and sub-
stitute values for x and y. Normally you would use QUADto alge-

braically solve for an unknown variable, but not when undefined

functions are present—and 'dEr4iiy 13" and "9lare both
undefined. So first substitute (using+1HTH again) with actual var-

iable names. You can use any allowable name, but this book names

derivatives with a “3” (@]=)D)) followed by the name of the func-
tion, thenaperlod (“.”), thenthe differentiation variable. Therefore

"detryley 11" becomes '&4.3' (and '40) " becomes '4'):

IOeJalb]JalE]dJalRl«JalYa)OeaXa)0)
@@@@@
(VGOlla)X) )ala))EnTeR)EET#0RoP)

Result: '.-*=ARtDR[By,]+'-|]]+u.-|.:-a=::.e
J*HAgl

9. Find the general slope by solving for ' 5-'—!!ViaQUAD—now that

the expression contains no UDF’s: @IEJ.
EnTER))PREV)ETII. Result: ' &4, "'-*oC-aEyE)

|—||++|+q]]+'+qfih]]'

10.Now substitute the coordinates of the given point for ! and 4 to get

anumerical value: (2)(*JoJ&[X]STO)(1 [+/-)(*JoJ&Y)(STO)EVALL
Result: '&4.%=—_.F"'. The slope of the relation at (2,-1) is -0.6.
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The program I[IF'& (see page 295) automates the involved process of implicit

differentiation. II1F4 takes the implicit relation from level 2 and a list of the

variables in the relation from level 1. The first variable in the level 1 list must be

the variable of differentiation.

Example: Find the implicit derivative (with respect to x) of x> — 3xy? + y* — 1,

using M.

1. Enter the relation: (")(oJaX)@(E)(EEXXX(@a]Y)
>9E)EGENTER)

2. Enter the list of variables, placing the variable of differentiation,x,

first: (Gl («falX] (&Y](ENTER).

3. Compute the formal implicit derivative using II1Fa: (a1(M[P)

(=) D)(ENTER) or (then [N_T;‘[] or (G]PREV) as needed) @1g|z3.

Result: 'Z#u™F-[3y+3eus [y, wslsy) J+iy, we
dEgt

 

IIMF% also makesit easy to implicitly differentiate a relation with respectto a

variable that doesn’t obviously figure in the relation. This is commonly the case

when working with related rates problems, discussed in greater detail beginning

on page 112. Look at an example:

Example: If V and n are functions of time, ¢, differentiate V? = kn? — 3n with

respectto ¢.

1. Enterthe relation: ()(JVJOX(3)a)=)(alKX)(&aINEGI(E)
BEX(JaN)ENTER).

2. Enterthe list of variables, adding the variable of differentiation, z, as

the first element: (&G]U)(aJa)T)(SPC)(efV)(SPC)(J&G)N)(ENTER).
3. Compute the formal implicit derivative using I[1F'&: (a1M[P)

(CID)ENTER) or

(VAR)

(then

(\<T)

o as needed) IETEL

 

Or,in standard notation: 3V?> av _ 2knd—n -3an
dt dt dt
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Derivatives of Polynomials

For the purposes here, apolynomialis a function ofa single variable of the form,

P(x)=ax"+a,_x""+ --- +a,x+a, where n is a positive integer. The real

numbersa,a_,a, ..., a, a,are the coefficients, and if a#0, the polynomialis
said to have degree n. The ratio of two polynomials is a rationalfraction.

Because polynomials have a single variable, they differ from one another only in

their coefficients, allowing the HP 48 to compute with a polynomial more rapidly
that with many other functions, using a vector of its coefficients. For example,

2x° =3x* +x*+6x* —18x+11 wouldbe [ & -3 1 & -13 11 1;and
2x° + x> +11wouldbe[£ B 1 H B 11 1. Thereisasetofprograms designed
to simplify operations on polynomials, named here with their page numbers:*

FALLC(page 305): Add two polynomials.
FSIE (page 317): Subtract two polynomials.
FMULT (page 313): Multiply two polynomials.

FPOWER (page 315): Raise a polynomial to a positive integral power

FOTY (page 308): Divide (Euclidean) of two polynomials, Mand N, resulting in

Q (quotient) andR (remainder) polynomials such that M = NQ + R.

Note that polynomial division doesn’t always yield a polynomial.

FOIVE (page 308): Divide two polynomials after eliminating common factors.
FCONY (page 307): Convert symbolic expression (1 variable) to polynomial.
F+5Y1 (page 317): Convert a polynomial in vector form to symbolic form.

FF+5 (page 320): Convert a rational fraction to symbolic form.

5+REF (page 328): Convert symbolic expression (1 variable) to rational fraction.

FOEF (page 307): Computes the derivative of a polynomial.

FF (page 309): Computes the partial fraction expansion of a rational fraction.

FFACT (page 310): Convert polynomial into factors with integral coefficients.
FFROLD (page 315): Finds the derivative of the product of a list of polynomials.

PLILOT (page 316): Find derivative of rational fraction via quotient rule.

FPREDLICE (page 316): Reduce polynomial coefficients to lowest integral values.

FEMNOR (page 319): Convert results of FIIIM or FOIYE to symbolic result.

*Many were written for the bookAlgebra andPre-Calculus on the HP48G/GXand are treated in more detail there.
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As an example of the efficiency of these programs, compare using the built-in

derivative with FUEFto find the derivative of a polynomial.

Example: Find the derivative of x° +4x> —3x” +8x> —15. Use the built-in
derivativefirst, then FLIEF.

la. Enter the symbolic polynomial: J&X)¥)(6)(+)(4)X)(e]Ja)X)

NE)EEXeIaXIYBBXXY5)ENTER.
1b.Enterthe variable of differentiation and make an extra copy: (')(c]

(€2) (X)(ENTERJ(ENTER)
1c.Purge the variable of differentiation from the current directory and

then differentiate: (¢&5]PURG]]3).

Result 1: 'E%w™0+d=(Gxe™d )=S3%1+0%(P) !

2a.Enter the polynomial as a vector of its coefficients. Don’t forget to

include zeroes for the “missing” x* and x' terms: (G]11)(1])(SPC)(4)

(sPC)(0)(sP)(3)+/-)(sPC)(8)(SPC)(0)(SPC) ()5[+/—[ENTER).
2b.Compute the derivative using FLIEF:: (a)o]P)D)E)R)([ENTER) or(VAR)

(then or as needed) &3l

Result2: [ & #H H -9 16 H 1 or6x5+20x*— 922 + 16x

2c.Optional. Convert the polynomial result back to a symbolic using

the F+5%T program: ()ofeq)X) (@)P)=)SYM)[ENTER).

Result: 'E#u™O+RHe=S|R!

 

 

Notice that the vector form for polynomials is not only faster to enter but faster

to compute with, as well. The other advantage it offers is evident when you’re

working with polynomials in situations where you can apply the product or

quotient rules....
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Example: Find the derivative of (x2 + 5)3 (x+1)(2x—9), first using the built-

in derivative, then using the FFREUL program.

. Enter the symbolic expression: ()]O)(eJe)X)Y*2)+][5)(»)

GO(JAXHDXGO21XX=]2)ENTER).
. Enter the variable of differentiation: (']oJ&]X](ENTER).

. Differentiate: (]3).

Result: ' [ FeueeDo

e

B1%Dok| 14+n™P451T1% [e

H]+l>“"+]“'+|+1J¢L

. Create a list of the polynomial factors. You’ll probably want to use

FFWERto compute the cube of the polynomial [ 105 ] (i.e. x2+5)

()11 (1) (sPc) (0] (sPC) (5) (ENTER](4]I3) (ENTER] (] (P)P]OIW)
 

 

 

  

 

 ENTER[JLY) (1) (SPC) (1) ENTERIG

)T

1) (2)sPC) (9) (+/-) (ENTER]
NEE GENE.

 

. Differentiate using FFFL: (a)a)P)P)R]0]D) or (then
(NXT) or ()PREV] as needed) [ddidti1l.

Result: [ 16 —49 1&6 -5F5 BH -157% -E5H i
y-

I ]

. Optional. Convert the polynomial result back to a symbolic using

the F+5YT program: (o)XENTER) G

Result: ' 1E#w™=4950+ ]PR""':n—""n._™SeT—
]IE'II_EI_;,_.l"'n_.”EI"'F"_Hl_l'_"l

The result comes more quickly in the latter case, and it’s in a simpler form. The

HP 48 multiplies (or divides) two factors, then multiplies (or divides) the result

by the third factor,etc., thereby creating an expression with nested parentheses

before being differentiated. Because of this nesting, the built-in command often

yields complicated (nay, ugly) results. However, notice that the built-in result

retains evidence ofthe product rule at work (it’s built into the command), whereas

the FFRLL result does not. This may be importantto you in a particular context.
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To see the nesting problem in its full glory, look at the quotient rule.

Example: Use the differentiation command to compute the derivative of

(x*+1)'(2x-5)’

(x2 + 5)2 .

1. Enterthe function (using the EquationWriter): (€5]EQUATION)(A)(&]

OXY2))HOTE)EI0)RSIXEER0
)Ia]O)alXIY2B()Y2)ENTER).

2. Enterthe variable of differentiation: (')(o)(&)(X)(ENTER).

3. Differentiate: ()3).

Result: ' (#2364] 1MFeu-00"+0u™E+] 173=
(eCEen=00 10DEHD1ME-(™2] 13(P
DIEF(DL2))D2)2

I;l

L

There are two reasonable alternativesto the standard method, which you may find

helpful in returning equivalent—but more readable—results:

1. Using polynomial shortcuts, you can fully expand the numerator and de-

nominator factors, so that you have no exponents applied to groups of

terms, only to individual terms. Then, using a single application of the

quotient rule—via the program FLILIT—compute the result.

2. Use logarithmic differentiation. Find the natural logarithm of the original

function, differentiate the result, and then multiply by the original function.

This result is a series of additive terms. (Logarithmic differentiation, dis-

cussed next, isn’t limited to polynomial functions and rational fractions.)

Look at the first method, because it applies to polynomials and rational fractions.

It makes use of two programs, Z*FF and FLILIOT.

Because expanding polynomials in their symbolic form is notoriously slow on the

HP 48, the program5*FF (see page 328) converts the symbolic expression (level

1) composed of only polynomials in both numerator and denominator to an ex-

panded numerator polynomial, given as an array of its coefficients (level 2) and

an expanded denominator polynomial (level 1), also given as an array.
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PLLIOT (see page 316) uses the quotientrule for differentiating a rational fraction

whose numerator (level 2) and denominator (level 1) are arrays of coefficients.

Example:
(x2 + 1)3 (2x-5)

Find the derivative of 5
(x2 + 5)

1. Enter the function: (&9JEQUATION)(A)(G)O)(eJ)XX2)(»)H)(1)

NE)E0REaXEHEEPIRIERISIO) (ea)X]
2HEY2)ENTER)

2. Expand the expression to a simple rational fraction:-

 

(R]F)(ENTER) or (VAR (then (NXT) or ((§]PREV) as needed) 4z

B_@MZ E": [ "1' —f'_H E:-r-" _|ZI|“_'| |:l|' —|:||:1 ?'.‘l _|:.|"_'| :r:-l ]

1: [ 1 B 18 B 25 1  This represents:

4x* —20x7 +37x° —60x° +87x* —60x> +79x> —20x +25

x* +10x* +25
 

3. Find the derivative of the rational fraction using the quotient rule:
 

 

()o]PJQJUJO]T)(ENTER]or (VAR(NXT) or (JPREV]) Haied111f.

Result: =5 [ 16 -8H 234 -7/cd 11160 -1448 1587

240 590 -1 ]

1: [T 1 8 138 73 8 123 1 This represents:

16x° —60x® +234x" —760x® +1110x°> —1440x* +1582x> —840x% +690x — 100
 

80

x4 +15x* +75x% +125

4. Optional. You can also factor the numerator and denominator, using

FFACT (see page 310). Swap the numeratorinto level 1 and factor

it; swap again and factor the denominator:

(ENTER) or (VAR) (NXT) orJPREV) as needed) [;18§ (SWAP) [11.

Result: E-’-{[E][E—fi][lHl]

[ 1 1 1] ‘
1: ¢ [ 1 H5]

So the simplified derivative is

2(2x - 5)(x? +1)" (4x* = 5x° +38x* - 65x +10)
2 3 '(x + 5)

 

 

- [
|
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Logarithmic Differentiation

Logarithmic differentiation is often a good method for differentiating a compli-

hy (x)h, (x)---h, (x)
Ji (x)jz (x)o (x)

tions ofx on the numerator and denominator, respectively. Logarithmic differen-

tiation requires that you find the natural logarithm of both sides of the equation

before differentiating. Thus, finding the natural log yields:

Inlg() = I, () (1n], () + Inlj, (1) Inlj,()
Then differentiating and solving for the derivative function yields:

K(x)K)o+h,:(x>_[j;(x>+j;(x>+ +J_<_)fl

 cated product of the form g(x)= , where i _andjare func-

                    

 g’(x)=g(x) ’11() h() h(x) \j(x) j,(x) j, (x)

The program LM(see page 301) implements logarithmic differentiation for you.

It takes a list of the symbolic numerator factors (4, h,, ..., h) from level 3, a list

of the symbolic denominator factors (jiyfrom level 2, and the variable

ofdifferentiation from level 1._Mreturns tolevel 1 a symbolic expression repre-

senting g'(x) in the form shown above.

Example: Use logarithmic differentiation to find the derivative of

(x* + 1)3 (2x—=5)°

(x2 + 5)2

1. Enter a list of the numeratorfactors:

HEHEXI3))IORIX[JQIXEE)@2)ENTER)
2. Enteralistofthe denominator factors:

HETI()ENTER)
3. Enter the variable of differentiation: aJ&[X)(ENTER).

4. Perform the logarithmic differentiation using LMa:

orm (then or as needed) [{1§.EH.

Result: ' [T 1+u™E1ds[=Dtsn=G[D™y1)

[=5t1]4™1Me [St-0
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Derivatives of Polar and Parametric Functions

The standard representation of a function, such as y=4x2 + sin 2x, implies that the

function’s output value, y, depends upon the input value, x. Such “dependence”

can be misleading, however, whenever the function describes a situation where

the variables involved are actually independent of one another.

For example, the function y = —x*/64 adequately describes the curve a rock takes

as it is thrown horizontally off a cliff at 32 ft/sec. When the rockis horizontally

x feet from the cliff,it is y feet below its starting point. However, despite the

appearance that y depends on x, the horizontal and vertical motions are actually

independent of each other.

Theparametric representation ofthe function emphasizes the true independence

of the two variables by making each dependent on a third value—a parameter.

Thus, parametrically, the function becomes x=32¢; y=-16#, where ¢is the time

(in seconds) after the throw.

Many real-world situations are best represented parametrically, but the paramet-

: : d : :
ric form makes computing the slope, d—y, of a curve a bit more difficult than for

X
curves in standard form.*

The strategy for parametrically-described curvesis to compute the derivatives of
each of the parameter definitions with respect to the parameter ¢, then solve for

dy dyldt
fl. That is, because of the chain rule, — = .
dx dx dx/dt

*In Chapter6, the program YOER (see page 332 forthe program listing) performsa related task for a vector-valued

function. Vector representation and parametric representations are closely linked.
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The HP 48’s built-in differentiation tools work with functions in standard form

only. However,the program FHEHA (see page 306) computesthe slope of a func-

tion described parametrically at a given value of the parameter, . It takes a list

of parameter definitions—i.e. functions of ~—from level 2 and a value of ¢ from

level 1 and returns the list of symbolic derivatives (with respect to f) of each of

the parameter definitions to level 3, the symbolic expression for the slope in terms

of t on level 2, and the numeric slope at the given value of ¢ to level 1. Note that

FAFEHS requires that youuse 't ' (lowercase) as the parameter.

Example: Find the slope of the curve described by x =32t y=-16¢

when ¢ = 3.5 seconds.

1. Enterthelist of parameter definitions: (G]{)(")(3)2]X)(eJa]T)»)

(ENTER).
2. Enter the value for the parameter: ENTER).

3. Compute the slope using FAFHS: (PJAIRIAI>)D) or
(then or (&JPREV) as needed) [Hildikd.

 

Result: == L3¢ '=iarstat %
I:: 1 "t- 1

1: -3.5

The slope at £ = 3.5 is -3.5 and the symbolic slope expression is —.
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One special form of parametric representation is the expression of a function in

thepolar coordinate system. A functionf{(x) in the rectangular coordinate system

can be parametrized as a function in the polar coordinate system, r(8) where the

polar angle, 6, is the parameter, and x and y depend upon 8 as follows:

x =r(0)cos0; y=r(60)sin0

where r(6) is the polar function. Thatis, a polar function is equivalent to a rectan-

gular function expressed parametrically via the relationship shown above.

Example: To express the polar function (6) = 2 sin(60) as a parametric form of

a rectangular function, replace 2 sin(6) for r(0) in the parameter

definitions above:  x =2sin 6cos0; y=2sin’ 0

Finding the slope of a polar function can be achieved using the same chain-rule

approach as for parametric functions shown above:

dr .
dy dy/ do %sm6+r(9)0089

dx dx/do ggame-ranmne
 

The program, FIIL% (see page 314), computes the symbolic and numerical slope
of a polar function for a given value of the function. It takes the function expres-

sion using ' H' from level 2 and the given value ofH from level 1 and returns the

expression for the slope (level 2) and the numerical slope at the value (level 1).

Example: Find the slope of the polar function, »r =1+ 2sin 0, at = r

1. Enter the polar function: (']1)(+)(2)(X)(SIN)(e]>)F)(ENTER).

2. Enter the value of the polar angle: J&))(=)(3)(ENTER.

3. In Rad mode,find the slope using FlIL4: (&q)RAD), if necessary) ()

()(P)(O)(L) ()(D)(ENTER) or (VAR) (NXT) or JPREV)) Hal|HH.

Result: &= '[C1+2#5INCAI=COSCHI+SINCRY*0F*
COSCAYICCOSCRAI=(2=COSCAY- 1+
SINCRD 1=5THCRY )

1: -1. 1961584FeS
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Notes
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This chapter contains many examples of the use of derivatives in solving many

important types of problems, including:

* Computing the rate of change “at the margin” of a function.

e Determining a function’s critical points.

e Determining the maximum or minimum ofa function over a given interval.

* Finding the line tangent to a curve at a particular point.

* Finding the angle between two curves at their point of intersection.

e Computing the rate of change of one quantity from the rate of change of a

physically related quantity.

Marginal Analysis

The term marginal is often heard in financial analyses: marginal rate of return,

marginal profit, marginaltax rate, increasing marginal costs, etc. “Margin”is an-

other term for the slope ofa function, so the phrase “marginal profit,” for example,

refers to the slope of the profit function (i.e. profit as a function of production

quantity) at any given point (i.e. level of production). “What,” asks the

manufacturer, “would be the effect on my profit of producing one more unit than

I’m now producing? That is, what is the effect of producing the next unit, the unit

that’s on the /nargin of my current production?”

For example, suppose a stereo manufacturer determines that its cost per stereo is

C(x)=3000 + 20x. This would reflect $3000 offixed overhead plus $20 per stereo

produced. Further, the manufacturer computes that its average revenue per stereo

is R(x) = 1000x — x2. The stereo manufacturer currently manufactures and sells

500 stereos. Would an expansion of production to 501 stereos be profitable? In

other words, whatis the marginal profit of the 501st stereo?

Profit is simply revenues minus costs, so the profit curve is:

P(x)= R(x)-C(x)=1000x — x> — (3000 +20x) = —x> + 980x — 3000

The manager’s question can be answered by determining the slope of the profit

curve at x = 500, a perfect application for the derivative....
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Example: Find the marginalprofit at x = 500 of a process with this profit curve:

P(x)=-x"+980x—3000

. Enterthe profit function: ("J*/=]oJa[XIYX[2)8)o)XeJa]X
(=)(3)0J0JoJ(ENTER].

. Enter the independent variable: (']oJ¢5]X)(ENTER).

3. Store 5001in ' : (5)0)0)ENTER)STACKEEIFA5T0)

Example:

L.

Compute the marginal profit by computing the derivative: ()3).

Result: —#H

The marginal profit is negative! This means that manufacturing the

next additional unit (the 501st) actually subtracts $20 from profit.

Repeat the previous example for x = 450.

Enterthe profit function: ('[+/-JoJa[XIYX[2)+(e)8X](@]a)X]
(=))o)o) (ENTER).
Enter the independent variable: ('oJ¢5]X](ENTER).

3. Store 450 in '%': (4)5)0)ENTER)T(STO).

Compute the marginal profit by computing the derivative: (=)3).

Result: 3k

This time, manufacturing the next additional unit (the 451st) adds

$30 to the profit.

Thus, although the profit function itself doesn’t change, marginal analysis shows

that the profit value of increased production depends on the current level of

production. Thus a savvy manager would increase production if the current level

were at 450 units, but not if the current level were at 500 units.
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Finding Critical Points

Marginal analysis raises an important point: Is there an efficient way to find the

optimum point in a function? In the previous examples, for instance, the idea

would be to find the level of production (x)—the number of units—that produces

the maximum profit (y). Youknow thatat a production level of450 units, the mar-

ginalprofit is $80, but at 500 units the marginal profit is -$20. So it seems likely

that somewhere between 450 and 500 units, there is a level of production where

the marginal profit is $0.

Such a level would be a candidate for the optimum production level, because at

that point, manufacturing either one more unit or one fewer unit yields less profit.

That s, ifx units is optimum, then x-1 units would have a positive marginal profit,

indicating that you can improve by adding one unit, bringing the total back to x.

On the other hand, if you manufacture x+1 units, you’d have a negative marginal

profit, indicating that you can improve by subtracting one unit, bringing the total

back to x. The maximum profit occurs at the point in the profit curve where the

slope changes from positive to negative—i.e. where the slope is zero.

The HP 48 can quickly compute the critical points of a function, f{x), which in-

clude its roots (points where the f(x) = 0), its local maxima and minima (points

wheref '(x) = 0), and its points of inflection (points wheref "(x) = 0).

Example: Plotthe profit function, P(x) = —x* + 980x — 3000, and thenfind its

maximum.

1. Open the PLOT application, set the T¥PE: to Furizt. 1.ori, and

reset the plot parameters: (—PLOT)(a)(a)F)(¥)(DEL]¥)(ENTER).

2. Enter the profit function into the E: field: (")(+/=)(oJX[2]

(e8](X)(Ja)X)(=)(3)00o) ENTER].
3. SetIHWDEP: to x (lower-case) and H-WIEK to5 S15 soasto

focus on the range of x where we are seeking to find the maximum:

(JaX)ENTER)(45ENTER)(515)[ENTER).
4. CheckHUTO=CHLE toletthe HP48 determine the appropriate verti-

cal scale, and then plot the function: [Faiaild [Tdd (U1R1.

 

Finding Critical Points 89



 

o
A

BTAeI  
 

5. The area of the maximum is clearly visible in the plot. To have the

HP 48 compute the maximum, move the cursor near the apparent

maximum and select EXTRM (Extremum) from the FCN menu:

GMEEA Result: EXTRM: (4T0.237100)

So the maximum profit is $237,100, earned by building 490 stereos.

The profit function you just plotted had only a maximum. But there are functions

that have both maxima and minima(i.e. both “humps” and “valleys”). Because

the slope for both maxima and minima is zero, you don’t necessarily know if the

extremum found by the HP 48 corresponds to a maximum or a minimum, unless

you do one of two things:

1. Narrow the search to an interval that contains the point of interest.

2. Compute the second derivative (i.e. the “slope of the slope”) at the ex-

tremum. If the result is negative, the slope is decreasing (going from posi-

tive to negative), so the extremum is a maximum,;if the result is positive,

the slope is increasing (going from negative to positive), so the extremum

is a minimum.
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Example: Plot x° —4x* —6x> +20x> —3x + 9. Then narrow the search inter-

val and use the FCN menu to find all maxima and minima.

1. Cancelthe currentplot, returning to thePLOT setup screen: (CANCEL).

Highlight the Ei2: field and enter the function: (a]a)(")(aJ&X)X

BPNJXY4EEXe3(H2X(@la)X]
IREEXEQXHE)ENTER).

. ResetH=WIEHto defaults and setN'=MIEl to— 1B 1A
 

(ENTER) (») (OELIENTER]Y] (1)0]0)+/=) (ENTER)0]ENTER).
. Plot the function: [TE30T T80

 

 4 lll: :I-h-h.-_ i — i 4

| Lby |'I
| T L )

ETT[AT E
    

. This plot shows two local maxima (“humps”’) and two local minima

(“valleys”). Press illi{il8 to trace the cursor along the plot. Then

move the cursorto a spot nearto the left-most maximum, and press

Sas, B A0 Result (to 3 places): EnTRE: (=1.718.53.787)

 

. Press to restore the menu, move the cursor to the right until it’s

 

over the next extremum (this time, a minimum) and press §=H8i#.

Result (to 3 places): EnTEM: (0.0"8..H.BB5)

Repeat step 6 twice more to find the other maximum and minimum.

Results (to 3 places): EWTERM: (1.248.-.18.068H1 (maximum)

ExTEM: 13.585.-H9.723) (minimum)
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Perhaps a more unambiguous approach to determining maximums and mini-

mums is to plot the first derivative function. Every root ofthe derivative function

—i.e. a value where the first derivative is zero—corresponds to a maximum or

minimum value in the original function.

Example: Plot the derivative over the function (currently displayed from the

previous example) and find the roots of the derivative function.

1. Press to redisplay the menu, then i

the derivative function to the current function.

 

il to add the plot of

 

 

| “ ¥
SRsBTRTN   

2. Move the cursor out nearthe left-most root ofthe derivative function

and press fig8, B M['HE@. Result (to 3 places): ROOT: -1.719

3. Move the cursorto the next root of the derivative function and press

IRE. Result (to 3 places): KOOT: 0.07H

4. Repeat step 3 for the other two roots:

Results (to 3 places): KOOT: 1.24b

KOOT: 3.585

 

Note that the roots ofthe derivative function have the same independent variable

value as the extrema of the original function. Furthermore, wherever the root

occurs when the derivative function has a negative slope corresponds to a

maximum in the original function and wherever the root occurs when the

derivative function has a positive slope correspond to a minimum in the original

function.
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Notice that the derivative plot also has “humps” and “valleys”—local maxima

and minima. These represent points ofinflection—points where the slope of the

original function switches from increasing to decreasing or vice versa. Although

there is no direct computation of points of inflection on the HP 48, you can do it

easily by finding the maxima and minima of the derivative of the function.

Example: Use the plot ofthe first derivative to find the inflection points of the

original function.

1. Move the cursor near the left-most minimum on the plot of the de-

rivative and press EXTE]

Result (to 3 places): EnTERM: {~1.063.-40.25:)

2. Move the cursor nearto the local maximum ofthe derivative plot and

press

Result (to 3 places): EviTRF: (0.8/5.11.9161

3. Move the cursor near the right-most minimum ofthe derivative plot

and press (NxT)I

Result (to 3 places): EnTEM: (d./HH..~/G.035]

  

Thusthe original function, x* —4x* —6x* +20x* —3x +9, has local maxima at

x=-1.719 and x = 1.249, local minima at x = 0.078 and x =3.595, and points of

inflection at x =-1.063, x = 0.675, and x = 2.788.

To sum up what you know aboutfinding critical points using the FCN menu in the

Picture mode on the HP 48:

Roots: Move the cursor near the desired root in the main function plot

and press fi1t]1hH.

Extrema: Either move the cursor near the desired extremum in the main

function plot and press §3dillill; or move the cursor near the

desired root of the first derivative plot and press §:1]1§8.

 

Inflection Points: Either move the cursor near the desired extremum in the first

derivative plot and press [3lld]; or move the cursor nearthe

desired root of the second derivative plot and press fi{t|1}Ef.
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Solving Optimization Problems

The examplesin this section illustrate the use of critical points in solving real-

world problems that require you to find an optimum value. You’ve already seen

one such problem when you computed the optimum production level of stereos

to produce the maximum profit. Here are other problems for further practice.

Thebasic strategy for solving all ofthese problems can be summarized as follows:

. Identify the dependent variable—the quantity you are trying to maximize

or minimize.

. Identify the constraints—the boundaries (i.e. intervals) or restrictions on

the process described by the function. For example, for situations involv-

ing physical objects, a constraintis that the number of objects be nonnega-

tive, even though mathematically a negative number may yield an opti-

mum result.

. Express the dependent variable as a function of a single independent vari-

able—just as profit was expressed as a function of the number of stereos

produced in the earlier example.

. Plot the function for the range of all acceptable values of the independent

variable.

. Find the values of the function that represent the absolute maximum and/

or minimum within the range of acceptable values.

. Use the results to answer the particular questions posed by the problem.

To illustrate this strategy, here’s a good starting problem.

Problem 1: A special cylindrical packing container with closed bottom and top

94

is to be made from two kinds of material. The material used to make

the bottom and top costs $.011 per square inch; the material for the

curved outer surface of the container costs $.006 per square inch.

Thetotal cost of the special container is $31.00. If  is its radius and

h is its height, find the value of r that maximizes the volume.
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1. Identify the dependent variable—the variable to be maximized. In

this case,it 1s the volume, V.

2. Identify the constraints. Obviously all variables must be nonnega-

tive since you can’t have a negative radius, negative height, or nega-

tive volume. The other constraint is the total cost of the container

materials. The top and bottom comprise 21tr? square inches of sur-

face area, and the curved sides ofthe container comprise 21trh square

inches. Thus the total cost of the containeris:

.011(27r)+.006(27trh) = 31

3. Express the volume as a function of the radius (r). The volume of

a cylinder is V = nrh, but this formula involves both radius and

height. To convertit to a function ofjust the radius, you must express

the height as a function of the radius and substitute this expression

for A in the volume formula. The constraints usually determine that

expression; the constraint expressed in step 2 above relates the vari-

ables of r and A, although you muststill solve the expression for A:

31000 — 2272

 

h
127r

Use this expression for 4 in the volume formula and simplify:

V= 31000 r—22mr’
12

4. Plot the function for the range of acceptable values of r. Note that r

must be greater than zero but can’t be so large that V< 0. Just by esti-

mating you can see that when r =10, V< 0. So a range of 0 to 10

should include the maximum volume.

a. Open the PLOT application, and make sure that the TYPE: is

Furzt 10m. Then reset the plot: (=)PLOT)(DEL[Y)ENTER).

b. Enterthe volume expression (the right-side only):

HURXeQREEEXEMX(Ia]R)H(3)(ENTER)
c. Entert™ for thelMDEP variable andkl 1 forH=WIEH:

© [ENTER).
d. CheckHUTO=CHLE and draw the plot: |

 

 

 

ERASE| DRA|
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 EHTF§5. Now find the maximum of the volume function:

Result (to 3 places): ExTREM: (3.530. a08.005]

6. Finally, answer the question and interpret the results. The maximum

volume = 6,079 cubic inches and occurs when the radius is = 3.53

inches. At that volume, the height ofthe containeris = 155.29 inches.

This special container (for glass rods) is nearly 13 feet long and only

7 inches wide!

That’s the general approach to optimizing. Try a second example.

Problem 2: A manufacturing company uses a particular chemical ata steady rate

of 1200 gallons per year. Any number of gallons can be ordered at

a time, but there is a fixed handling charge of $100 per order, no

matter the size. Storing the chemical costs the company about $1 per

gallon per year, but it must be reordered whenever the stock on hand

gets down to 200 gallons. How many gallons ofthe chemical should

be ordered each time to minimize the handling and storage charges?

1. Identify the dependent variable. You are trying to minimize the total

handling and storage charges, C.

2. Identify the constraints. If n is the number of orders per year and g

is the number of gallons per order, then ng = 1200 is one constraint.

3. Express C as a function of g, the amount ordered each time. The

easiest expression for Cis: 100n + s, where s is the average number

of gallons in storage. However, you need C to be expressed as a
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function of g, not of n and s. Using the constraint, you can express

n as a function of g: n = 1200/g. The average amountin storage,s,

throughout the year is the minimum 200 gallons plus half of one

order’s worth. Note that the actual amount in storage at any one

point is likely to be either more or less than this, but the average

amount, s, is g/2 + 200 gallons. Substituting the expressions for n

120000

8

4. Plot the C function between g = 0 and g =1000 (because 1000 gal-

lons is the largest possible order if the constraint is to be met).

a. Open the PLOT application, check to be sure that the TYPE: is

Furizt 1.0, and reset the plot: ()PLOT)(DEL[Y)ENTER).

b. Enter the expression for the volume (right-side only): (']1]2]0]

(oDH(AlH(eH(E)(HoENTER).
c. EnterS forlMDEP and& 1 BB forH-WIEH: (o)<)(G)[ENTER)

(0)(EnTER)(1)0)0]0] (ENTER).
d. CheckAUTO=CAHLE and draw the plot: (RlT[TEIJNTATR1.

 ands into the original expression for C'yields C = + % +200.

 

 

 

  
+

200 |(te'rs[TRACE]FTH |EDITJLAMIL    
5. Compute the minimum of the function: AL

Result (to 3 places): EnTEM: (4HHY9.B9H.6589.89H)

6. So the best order amountis 490 gallons, which will result in storage

and handling charges of $689.90 per year.

Solving Optimization Problems 97



Ifyou have a good idea ofthe shape offunction you’re optimizing and the interval

containing the optimum value, you may wish to use the program ['H#I1IM (see

page 302) instead of using the PLOT application, since it will obtain the answer

more quickly.

[HI I Mtakes from level 4 the function expression you would normally plot, the

independent variable from level 3, a number from level 2 indicating if you’re

seeking the minimum (use a negative number) or maximum (use nonnegative

number), and a list containing the search interval endpoints from level 1. To

restrict your search to integer values (eg. stereos produced, units sold), use —1 (for

minimization) or 1 (for maximization) on level 2.

Example:

L.
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Use [H=IMIM to solve the previous problem.

The first three steps of the solving process are identical whether you

use [1H#MIM or the plotting method.Press untilthe stackis
displayed.

Enter the expression: (1)(1)2)0)0J0)o)())&
(2)H)(2]o)(ENTER).

. Enter the independent variable: (']aJé&q]G)(ENTER).

Enter a -1 to search for a minimum of the function: ENTER).

. Enteralist ofthe search interval endpoints: (]{}J(0) (1]0)0]0)

[ENTER).
Use 'MH=MIM to find the minimum value of g:

or (then or as needed) [ALETE]
Result: ¢ 45

Flal: BE9,597353154

3. APPLICATIONS OF THE DERIVATIVE



Problem 3: A stereo manufacturing plant has a production capacity of25 stereos

per week. Experience has shown that n articles per week can be sold

at a price ofp dollars each, where p = 110 — 2n, and the cost of pro-

ducing n articles is n* + 10n + 600 dollars. How manyarticles should

be made each week to give the largest profit?

1. The dependent variable is the profit, Q.

. The constraints are that n < 25.

3. The profit is the revenue minus the cost of producing n articles per

Problem 4:

week. Revenue of n articles is np, or n(110 — 2n). Cost of n articles

is n? + 10n + 600. Therefore, the profit as a function of » is:

110n-2n" = (n* +10n +600) = —3n> + 1001 — 600

Using MH#MIM, enter the profit function (right-hand side) and the

independent variable: J+/-)(3)X)(JaNJO(2)Ho))X](]
(=I&Jo]0) (JeJaN)(ENTER].

Enter a 1 to signal that you want to find the integral value of n that

maximizes the profit function: (1]ENTER).

Enterthe endpoints of the search interval and use MAXMIN: &0

(0)(sPO)(25)EnTER)[REFTR
Result: n: 17

Find: 233

Maximum profit ($233) is achieved by making 17 stereos per week.

The cost of erecting an office building is $1,000,000 for the first

floor, $1,100,000 for the second, $1,200,000 for the third, and so on.

Other expenses in the project (lot, basement, etc.) are $5,000,000.

Assuming that the completed building will generate a net annual

income of $200,000 per floor. How many floors will provide the

greatest rate of return on investment? (Note: the rate of return is the

revenues generated per unit of investment).

1. The dependent variable is the rate of return, I.

There are no special constraints other than the number offloors must

be one or greater.
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3. Express the rate of return, 7, in terms of the number of floors built,

n. At first pass, the rate of return is

Revenue 2000007
 I = =

Fixed Costs + Cost per Floor 5000000 + (10000007 + f(n))

Thef(n) term reflects the extra incremental cost of each floor above

the first. The increment is $100,000 for the second floor and an

additional $100,000 for each floor after that. Looking at the incre-

ment as a cumulative sequence, beginning with the 1st floor,it is:

{ 0, 100000, 300000, 600000, 1000000, 1500000,... }.
2

n —n
 Express this sequence as a function of n: 100000

(Note that the sum ofthe first n positive integers is the average of n

and n—1 or n(n—1)/2.) Substitute this function into the rate of return

function and simplify:

= 200000~

50000n> +9500007 + 5000000
 

. Using["IH&IMIM, enterthe rate ofreturn function and the independent

variable: (*)(2]0oJoJoJoJo)X)(eJaN50l0]o]o)(X)(x)
&N 880000 (5)0JoJoJoJoJo]
[ENTER) ("2Ja) (ENTER).

. Enter a 1 to search for the integral value of n that maximizes the net

rate ofreturn and alist ofendpointsfor the search interval: [1)[ENTER

& ENTER).

. Execute [1H=[IM to compute the solution: Fisl.

Result: ot n: 1M

1= fimo: L 1HESE41HESES

The best rate of return (=10.26%) results from building 10 floors.
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Tangents and Normals

The derivative of a function at a point is the instantaneous slope of the curve at

that point. The line with the same slope that contains that point on the function is

the tangent ofthe curve at thepoint. (And the line perpendicular to the tangent line

there is the normal ofthe curve at the point.)

Example: Plot f(x)= %, then compute and plot its tangent line at x = 1.4,
X

1. Open the PLOT application, check that TYPE: is Fiirizt 1o
and then reset the plot parameters: (—)PLOT)(DEL]Y]ENTER).

2. InEf¥:, enter the curve’s expression: (')(2]=)(eJX)¥(3)[ENTER).

3. Entertheindependent variable;plot: JTEEITTT.

+ I

t |

v

 

 

 

 
BTALTRT

4. Press i1 L41M, then press (») until #: 1.4 is displayed.

5. Find and draw the tangentat that point: ;119

kY

   
 

™

”| ,
TAMLIME: "Y=-1.561B49229Y49%++2.9154   
 

6. (CANCELJCANCEL] to the stack. The tangent equation is on level 1.
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There is no built-in means ofeither computing orplotting the normal to the curve.

However, rememberthat the slope of the normal is the negative reciprocal of the

slope of the tangent (and the point of tangencyis on both lines). So, with a slope

m and a point (r,s) you can compute the line: y =m(x —r) + 5.

The program THFLM (page 330) computes both the line tangent and theline nor-

mal to a given function at a given point. It doesn’t require you to plot the function

first, nor doesit plot anything itself. THFLM takes the function from level 3, the
independent variable from level 2, and the value of the independent variable for

the point oftangency from level 1 and returns the equation of the normalto level

2 and the equation of the tangent to level 1.

Example:

Example:
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Use TMFLMto find the normal and tangent to f(x) = % at x = 2.
x

1. Enter the function: (']2]=+]aJ&q)X]Y*]3)(ENTER).

. Enter the independent variable and then the value ofthe independent
 

variable at the point of tangency: ('JoJ&X ENTER)(2]+/=JENTER).

. Use TMFLNto compute the tangent and normallinesto the curve at

that point: (o]o]TN]JFJC]NJENTER)or (then or (]PREV
as needed) gl|s=.

Result (to 3 places): & Morm: 'y=E,hl‘u !'5

Tang:  "g=—1, 375

 

l
—
‘

|
:
|

Find the normal and tangent to f{x) = cos x at x = 0.

. Enter the function: (']COS)(aJ&q]X](ENTER).

. Enter the independent variable and then the value ofthe independent

variable at the point of tangency: ('JaJéqX]ENTER](0JENTER).

. Use TMFCM to compute the tangent and normallinesto the curve at
 

the given point: (o]o]TJNJFJCJNJENTER]or (VAR] (NXT]or (<4]PREV]

as needed) fil, sLo.

Result: 21 Morm:  'uwe=A'
1! Tang: 'y=1'

Here the tangentis a horizontal line and the normalis a vertical line.
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Finding the Angle Between Two Curves at a Point

The angle two curves make when they intersect is the angle between their tangents

at the point of intersection.If the slopes of the two curves are m, and m,, then the

m,—m,angle of intersection is: 6 = tan"( ) The angle computed by this form-
1+mm,

ula is the angle from the first tangent to the second in the clockwise direction.*

If you’re given two curves, you must do the following to find the angle they form

at their intersection:

1. Determine the coordinates of the point of intersection.

2. Determine the slopes of the each of the curves at the point of intersection.

3. Compute the angle using the formula above.

Most of the difficulty comes in determining the point of intersection.

Example: Find the angle between y = x> and y = 1/x where they intersect.

1. For two curves that are both functions (i.e. they both meet the verti-

cal line test), you can find their intersection(s) by plotting them.

OpenPLOT, check thatTYPE: issettoFunct 10m, and reset the

plot parameters: (—)PLOT)(DEL)(V)ENTER).
2. IntheE®: field enter alist of the equations of the two curves: (€4]{}]

(D(eJalX)2X2) ()C=]Ja)X) ENTER).

3. Set the independent variable to * and plot the curves: ('JaJ&]X)

ATEETR

\ | lllf

os=
=|

l.--

elRSR E

 

 

 

    
*Ofcourse, the two curves form a second angle when they intersect—the supplement of the one you computed.
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4. Find the point of intersection: IZECT

Result: I-%ECT: [1.11

5. Return to the stack and store the coordinates of the point of inter-

section in x and y respectively: (CANCEL)(CANCELJ(MTH)(NXT)8g|5l &

Lsicdil ('(o]YISTO) ('JeJ&qX]STO).

6. Compute the slope of the first function at (1,1): ('JoJe[X]Y>]2]

ENTER)([JQIX)(ENTER[]9). Result: &
7. Compute the slope of the second function at (1,1): ('[1]+]aJ&]X]

(NX)ENTER)()3). Result: ~1
8. Using the two slopes, find the angle of intersection (in Deg mode):

(&9)RAD), if needed to change to Deg mode) (—)(1)(ENTER)2)(ENTER)

(HJATANMTH RSN §

 

 

  

Result (to 3 places): ' 1.2ED

The previous example is a very simple one because it involves only curves with

explicitly separated independent and dependent variables whose points ofinter-

section are easy to determine. The next few examplesillustrate how to deal with

other, more complicated sets of curves.

If one or more of the curves are expressed so that you cannot easily separate

independent and dependent variables, you must use implicit differentiation to

compute the slope of its tangent. Furthermore, you’ll need to use either the Conic

plot type (for curves of second degree or less) or the SULYFLT program (for
curves of third degree and higher—see page 325) to view their intersections. But

then that brings up an additional problem: how can you determine the point or

points of intersection? The Conic plot type doesn’t have the FCN menu com-

mands (such as ISECT) available to it.

If you can separate the independent and dependent variables in one of the curves

then you can find the points of intersection by substitution. The following

example shows you an illustration ofthis.
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Example: Plot the following curves and then find the angle between them at

their points of intersection: x*>+ xy + y>=7; y = 2x.

1. Open PLOT, change the TYPE: to =3I11, and resetthe plot para-

meters: (JPLOT)(a)(e]C)(V)(DELIYJENTER].
2. InEQ:, enter the curves as a list: (G[X)X(2)(H)(a)eq)

XX(JaHERVIEEEEROEamEaE=RX
(JaIX)ENTER)

3. Change IMDEP: to = (lower-case) and DEPMD: to'd, then draw the

plot using the default viewing ranges: OPT:(@0

(JaVENTERENTERHTHILTITER.
 

 

:.'...:

1
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1

!
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As you can see, there are two intersection points.

4. Although the Conic plot type has no FCN menu to compute ISECT,

you can move the cursor near the points ofintersection and view the

approximate coordinates using [F#l. You see that the points of
intersection are approximately (-1,-2) and (1,2). Cancel the plot and

redisplay the stack: (CANCEL[CANCEL).

5. Now compute the exact intersection of the curves. Because the

second curve (actually, it’s a line) is essentially a definition of y in

terms of x, you can substitute the definition for y in the first curve.

To do this, make sure that x is a formal variable, then store ' %'

in the variable 4, and enterthe first equation: ('oJ&q)]X)(ENTER)(&)

([XJGIXENTER) (![]Y](sTO)( JaJ&aX
(SXX(JaY)H(JaY)N(2)&a)=) (ZIENTER).

6. Substitute the expression for y by evaluating the expression for the

firstcurve: [EVALJ<5)SYMBOLICTBTH#§ Result: ' #w™e=¢"
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7. Solve the resulting equation for x. In this case you can see that the

equation resolves to x?>=1 so that x = 1. (You can use the Solve

application to solve for x in more complicated cases.) Atx=1,y=

2 and at x=-1, y=-2, as you can see by using the second curve equa-

tion. Thus the points of intersection were exactly (-1,-2) and (1,2)

not merely the estimate you obtained from the plot in step 4!

8. Now compute the slopes for the two curves at their points of

intersection. The slope for the second curve is constant: 2. To find

the slope forthe first curve, use implicit differentiation (see page 72).

Purge 4 again,enter thefirst curve, then use the program I[MF&: ()

(VAR) (then or as needed) Bl|z

Result: ' &%+{g+usiy, w)+hy, wxlsy=H'

 

9. The '&4.%' term means “derivative of y with respect to x”"—i.e.,

the slope. Now, solve forthe slope at two intersection points with the

Solve application. Open the Solve application ((]SOLVEJENTER))

and install the implicit derivative expression on level 1 of the stack

as the current equation in Ef¥: 1.5, |55l (DROP) if necessary to
bring the derivative to level 1)!l.

10.Enter the set of values forr and i corresponding to the first point of

intersection and solve for %¥.4: (v)(1)(ENTER)(2) (ENTER)| 3.

Result: ='.im: —a

 

  

11.Enter the set ofvalues for  and ' corresponding to the second point

of intersection and solve for #¥.W: (a]a)(1]+/=) (ENTER) (2]+/-)
ENTER)EIHENS. Result: =4Y.H: —a

The sameresult as before: the tangent lines at the two points ofinter-

section are parallel.

12.Findthe angle ofintersection atboth points ofintersection: (CANCEL

(=) () ENTER) (8)+/2) (BNTER) (2)X) (H) (5 () (ATAN) (o]2]AB(S
ENTER). Result: 'r'. FH5

Note that you need to makejust one computation because the slopes

of the two curves are identical at both points.
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The program L 1HLE (see page 287) automates the computation ofthe angle once
you know the point or points of intersection. It takes a list of curves from level

3, a list of the variables from level 2, and the point(s) of intersection as a list of

order pairs of coordinates from level 1. The coordinates in level 1 should be in

the same order within the ordered pair as their corresponding variable names are

listed on level 2. The angle of intersection—displayed according to the current

angle mode—is returned to level 1.

Example: Repeat the previous example using C1HCE. Assume that you al-

ready know the points of intersection.

. Enter alist ofthe curves. Remember: both expressions should have

two variables: (Q[U)(eJaXNRHWGXIXPGNMH
VY2eIaYEERIX(eIX)ENTER).

. Enter a list of the variables: (&]{})(a]J&]X) (a]&q]Y)(ENTER).

3. Entera list of the points of intersection, each point expressed as an

ordered pair ofcoordinates: (G]{)GOe[2)>O)

<) (ENTER).
. Compute the angles between the two curves at the points ofintersec-

tion using L 1HCE: (a)a)c1)=)FIC)2) or (then

or as needed) [E:18].

Result (to 3 places): L ofRCl, 20 7. 9H5

tHC-1, 20 VY. 9HG

Note that this result assumes Deg mode like the previous example.

If you were in Rad mode, the answer would be 1.360 radians.

-
I a "

t
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Now for the final complication.... The points of intersection of the previous set

of curves were easy to find because it was possible to make a substitution of one

variable with another. Howdo you find the point ofintersection in situations when

it isn’t easy to perform such a substitution?

Two special tools need to be added to those that come built into your HP 48.

SOLMPLT is a program that will plot any two-variable relation or set of two-

variable relations, by combining the Solver and Function plotting capabilities of

the HP 48.ML5""5solves a system of non-linear equationsstarting from aninitial

estimate of the solution. Since non-linear systems may have more than one solu-

tion, M55can find different solutions depending upon theinitial estimate you
give it—much as the built-in Solve application does when solving for a missing

variable. SUL'YFLT is useful for determining the number of points of intersection
and for giving an estimate oftheir coordinates, whileML5= can take the estimate
coordinates and compute the exact (within limits ofmachine precision) solutions.

SOLVPLT (see page 325) takes a list of the curves from level 5, a list of inde-
pendent and dependent variables (independent listed first) from level 4, a list

containing the low and high endpoints ofthe plotting range from level 3, a list of

starting estimates of the dependent variable for each curve from level 2, and a

positive integer representing the resolution of the plot from level 1. Larger level

1 integers lead to fast-and-rough plots, while smaller level 1 integers give slower-

but-more-precise plots. The list of starting estimates on level 2 should have one

entry for each curve. However, an “entry” canitselfbe alist oftwo or more values,

if its corresponding curve is one with more than one branch—such as a conic. This

allows S[JL'FLT to draw all branches of complicated curves if you choose start-

ing estimates wisely.

MLSY'S (see page 304) takes alist ofcurves from level 3, alist ofthe variables from

level 2, and a set of starting guesses for each of the variables—either as a list or

as a complex number (ordered pair)—on level 1. All of the lists must contain the

same number of elements. The curves listed on level 3 must each be expressions

equal to zero. For example, the polynomial x*+4x>-3x+5 should be expressed as

x3+4x>-3x+5-y, reflecting that the polynomial is equal to y by implication. There

should always be a minimum oftwo curves and two variables when usingML=,
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The following example illustrates the use of both SULYFLT and ML5YS:

Example: Find the angle between x*+x?y—xy?+6y*= 2 and x2+y?= 4 where they

intersect.

1. Enterthesetofcurvesas expressions equal to zero: ((]{}['o]X]

BBJAXZIEIX(V)GPaXX)(e2)H
X(JaVOIEEHEMCJaXYIEHUYIEE
(4)(ENTER).

2. Enterthe set of variables: (&]{})(a]&]X] (aJ&q]Y)(ENTER).

3. Find the curves’ points of intersection. Because ML=Y"S requires
you to enter a reasonable guess to seed the search for points of

intersection,it behooves youto plot the curves—usingS0LWFLT—
to deter-mine the number and approximate location of all intersec-

tion points.

a. Enterthe list of curves and the list of variables—which you can

do simply by making a copy ofthe first two stack levels. Make

a second set of copies for later: (€5)STACK TEEITTER.

b. Enterthe plotting range. The second curve is a circle of radius 2,

so a range of -2 to 2 is reasonable: (J{}[2]+/=[SPC]2)(ENTER)

c. Enteralistof starting estimates fory for each ofthe curves. Since

the first value ofx is -2 for the given plotting range, estimate the

value ofy when x = -2 for each of the curves. For the first curve,

an estimate ofabout 1 seems close. For the second curve, acircle,

you need a list of starting points, so that both “halves” of the

circle are drawn (use -.001 and .001 for example). Enter the

estimatesasalist, U 1 { —.BH]l .BH]l } X (OY[)(SPO
SIOYoJoJ1+/-)(SPA)(-Loo1) (ENTER).

d. Enter 4 to set the plot speed/resolution: ENTER).

e. UseSOLMPLT to plot the curves: (@)a)SJOL)(V)P)L)(TJENTER)
or (then or (§JPREV) as needed) 118NY. ...
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f. There appear to be two points of intersection. Move the cursor

near each point of intersection and press (ENTER] to copy the co-

ordinates to the stack,to be used as the estimates ML'5'1"5. Press

CANCEL) when you’ve finished.

Result (to 3 places): 2t (—1.785, H.857)

1: [1.5846, —H.6HZ)

g. Gather the estimates into a list, then make copies of the curves

and variables and gather each into a two-elementlist:

LIST

(=)(STACK)[THH]
h. UseML5YS(inlist processing style) to computethe actual points

ofintersection: (3JENTERJa[«)]oJNJL)(STYJS)ENTER)PRG)

  

  
 

g1Llo1).

Result (to 3 places): ©T L =xf -1.8H¢ iy H.35/

Lo aee iy -HOESH oG

4. Rearrange the previousresultsothatit’s in the proper form andcom-

pute the anglesat the given points using -1B

M8 LIZT| FROC DOLIS
(then or as needed) [4:18],

Result (to 3 places and in Deg mode):

L osR0-1.8687, B.857): 81,573
sHC1.89%, -H eY9BEE 3

The two angles are =81.6° and =79.0°.
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One last point needs to be mentioned.

You may have noticed that SLMFLT takes some time to do its work (and that’s
plotting only one of each four pixels!). The Conic plot type will plot the second-

degree Taylor’s polynomial of any third-degree (or higher) relation of two

variables and can also be used to determine starting estimates. For many cases,

it may plot faster, although the visual results are deceiving.

For example, using the built-in Conic plot type to plot the two curves in the

previous example, using the same plotting and viewing ranges, and default

resolution yields:

 

 

 
LT3NNNI T

There appearto be four points of intersection—even though the “true” plot shows

only two points ofintersection. The good news, however,is that ifyou were to use

four estimates based on this plot withML='"=, you would get the two actual points

of intersection just as before—you would simply get multiple copies of one or

both of them. If you’re aware of the potential deception of Conic plot, it can be

a speedieralternative to using SLMPLT for higher-orderrelations.
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Related Rates of Change

Probably the most commonuse for derivatives is to analyze processes that change

with time—situations in which time ¢ is the independent variable. In many com-

mon real-world contexts, processes that change with time involve several related

quantities that all simultaneously change with time.

For example, as a balloon is inflated, there are a large number of geometric and

physical attributes—volume, surface area, radius, diameter, circumference, weight,

internal pressure, and temperature—all changing simultaneously. Since many of

these variables are related to each other by mathematical formulas and physical

laws,it should be possible to determine the rate of change of one attribute if you

know the rate of change of a related attribute—and if you can describe that

relationship mathematically.

This kind of question is often referred to as a related rates problem. Here’s how

to attack related rates problems:

1. Determine which quantities are changing (variables) and which are con-

stant in a given problem. This may involve drawing a diagram of the prob-

lem to visualize the process involved.

2. Express a mathematical relationship between the variables. Keep it gen-

eral—don’t substitute measured values for any of the variables yet.

3. Differentiate the expression with respect to time. This usually requires an

implicit differentiation because you must treat all variables as functions of

time, the variable of differentiation. The result will be an expression relat-

ing the rates ofchange of the various quantities.

4. Substitute allknown variable and rate values for the instant in time in which

you’re interested. Check to make sure that you’re using compatible units.

For example,ifadistance is measured in inches but arate is given in ft/sec.,

you may need to divide the distance by 12 before solving the expression.

5. Solve for the quantity or rate that you require. Be careful in this final step,

too, to use compatible units.
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Example: A spherical balloon of radius 3 cm is being heated. Ifits radius is

increasing at 5 mm per minute, how fast is the volume increasing?

1. Determine the variables and the constants. The radius r and the vol-

ume V are the variables in this problem.

2. Express a mathematical relationship between the variables. The

: : : : 4
volume of a sphere is defined in terms ofits radius as V = —nr°.

Enter the expression onto the stack: ('Jo[V]&]=)(4)=)(3)X))

(ENTER).
3. Implicitly differentiate the expression with respect to time. Enter a

list of variables, with the time , t., first: (&)}
(SPC)(aJ&q)R)(ENTER). Then use the implicit differentiation program,
IIMP&: (then or ((9JPREV) as needed) HIETEA.

Result: '&Y.t=1.333#y#&, t=3#"E) !

Rememberthat, by convention, YAV s (fl_‘t/ and 'ar.t'is%

4. Substitute all known values. The two known values are the rate of

change of the radius (4t". 1), 5 mm/min; and the radius (), 3 cm.

At this point, you must choose: If you include units, you must give

the correct units for all variables in the expression, even the values.

So in this problem, you’d store a valid unit for8. t., such as 0 cm?/

min, besides the known values. If you don’t include units, you must

manually adjust values so as not to omit unit conversion factors:

either change the radius rate to 0.5 cm/min or the radius to 30 mm.

This time, store the values with units: (5)(=JuNTS)INIsI WETSN

TIME[[@] HiH [@OERIOEHREOEU
VMENU) IRl (1)<)o)R) (5TO) (o) UNTS) BTT
TR ()HETEE(o2(0)@VeT)([STo).

5. Solvefor the quantity or rate desired. Open the 2OLWE ECUATIOM

application and retrieve the differentiated expression from the stack

using the CALC feature: o|9(DROP), if

necessary to bring the expressiontolevel 1)B3lThen make sure

the +W.T: field is highlighted (it should be) and press k11| §'{3.

Result (to 3 places): #W.T: 2. 233_cm™3mir
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Example:

114

Two boats are racing at constant speed toward a finish marker, boat

A from the south at 13 mph and boat B from the east. When equi-

distant from the marker, the boats are 16 miles apart and the distance

between them is decreasing at 17 mph. Which boat will win?

. Determine the variables and constants. A diagram is best:

b
’0.00. B>

 

Here a is the distance between boatA and the finish marker; b is the

distance between boat B and the finish marker; and d is the distance

between the bows of the two boats. All distances change with time.

Express amathematical relationship between the variables. Clearly,

it’s the Pythagorean theorem: a?+ b*>= d?. Enterthe expression: (')

(@ABQB([@a)=)eD)) (2) ENTER).
. Implicitly differentiate the expression with respect to time. Enter a

list of the variables, with # as the first in the list, and execute I['lF&:

SOJGIT)sPO)af)A)[SPC) (@[B)[SPC)(e¢7)D)ENTER|VAR]
ITETEE. Result: '3a.t*2ea+ib, tsEsh=5d, 1 #0%d"

Open the =OLYE EC:UATIOR application and retrieve the expres-

sion to the E: field: CALC i

Substitute known values for the appropriate variables and rates.

&a.1 = -13 mph (negative since a is decreasing); d = 16 miles;

ad.t =-17 mph. That leaves two variables (3 and k) and onerate

(b 1) unknown—a situation impossible to solve. Buta =k at the

moment in question, so 2a> =2b?=16%. Solving for a (and thus also

for b) yields=11.3137. Store the values in the appropriate variables.

Because the units are consistent throughout (miles and mph), you

need not include them: 0808080806

)GBTENTER)()(/=) ENTER)(16](ENTER).

  

. Solvefor the desired quantity. The missing value is the speed ofboat

B (4. 1) at the moment of decision. If it’s faster than boat A (13

mph) B will win; otherwise, boat A will win. Highlight +-E.T: and

FIHT3. Result (to 1 place): #E.T: —11.H Boat A wins! 
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The RELRT Program

The programFELET (see page 318) assists you in solving related rates problems.

It helps manage the change ofvariable names necessary for proper differentiation

and keeps track of all the variables involved in such problems.

To begin FELET, put the relationship function (orlist of functions) on level 3 of

the stack. Put alist ofthe variables in the problem on level 2. Iftime is an explicit

variable in any of the relationship functions, use 't ' as its name and make sure

it comes first in the level 2 list of variables. On level 1, enter the name (or list of

names) ofthe variables you’re solving for. Ifyou want to solve for a rate ofchange

of a variable (i.e. its derivative with respect to time), use the convention first

described on page 71. For example, to solve for the rate of change of volume, V,

you would enter 'S1" (read “derivative of V with respect to £’) on level 1 of

the stack. The & characteris (@]=)D).

After you’ve loaded the three stack levels properly, launch EELET. It will com-

pute a few things and then prompt you to enter the values of the known variables.

By convention, a zero following a variable name (eg. Y'H) means the value ofthe

quantity at time = 0. A1 following a variable name (eg. 't ) means the value of

the quantity at the moment in time being examined.

As you enter values for the various variables, you must choose: do you include

units? FELET can perform unit conversions, but if you include units, you must

input a unit for every variable and every rate in the problem (for values for which

you have no information, you must enter a zero with the valid unit attached). The

exceptions are the initial values—those names such as YH, ending in H.* If you

choose not to include units, be sure to perform manually any unit conversions of

the values necessary to make them consistent with one another and enter values

just for the variables you know something about, leaving the unknowns blank.

Once you’ve entered values (with or without units attached) for the variables,

press and the variable(s) you included on level 1 originally will be solved

for and the answer returned to level 1 of the stack.

*Notall problems require or involve status of variables at time = 0. For these kinds ofproblems, the initial values

can be (and must be) left blank, even when using units.
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Example: An empty underground storage tank has the shape of a cone (vertex

down) 20 feet deep and 40 feet in diameter. If water is pumped into

it at a constant rate of 100 gallons per minute, how fast is the water

depth in the tank changing 10 minutes after the start of pumping?

1. Determine the variables. A cone’s volume is V = %nrzh, which

represents the volume of water in the tank at any given point, where

V is the volume of water, r the radius of the surface of the water and

h the depth of the water. All three of these vary with time.

2. Expressthe relationship between the variables. You already have an

expression, but it can be simplified further. Notice the relationship

between r and A: If the diameter of the tank is 40 feet, then its radius

r is 20 feet—equal to its depth A. Thus, you can conclude that r = A,

and because you are asked to solve for a rate involving the depth A,

the expression for the volume is reduced to V = —;-nh3 :

Enter the expression: (o]V)(=)(1=8XmX)(alH>>(3)
ENTER).

3. Begin the FELET program. Enter a list of the variables in the ex-

116

pression: (J{} (a]&q]H)[ENTER). Enter the variable or rate

for which you are solving. In this case,it is the rate of change of the

depth A, or 'ah. 1" (YoD))aHo))T)ENTER.
Finally, execute FELET: ()R]ELRIT)(ENTER) or (VAR) (NXT) or

(GJPREV)) [3Hil. After a few moments you’ll see this display:

 

 

PSSRELATED RATES SEEREE0N0EN
TIMELTY:

W WT: M. T:
Hn: HT: +H.T:

EMTER TIME WITH OF WITHOUT UNITS
EnT ) ]]JvAMOL]DK    
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4. Store values with units in the known variables and rates and store a

zero value with the appropriate unit in the unknown variables and

rates. Known values are: t = 10 min; V¢ = 100 gal/min. Units for

unknownsare: V, =0 gal; h= 0 ft; 6h.t = 0 ft/min. Leave V, and i,

blank because they aren’t used in this problem (the situation at ¢ =

0 isn’t relevant here).

Store the values and units:

ENTER>)2efa)clefa]A)efa)L)ENTERI(1)0]]
IEJalAdalU=eaMalDefaNENTERP))
(2 2l

[ENTER).
5. Solvefor the specified variable. Inspect the values you’ve entered

in the previous step and when you’re satisfied they’re correct, press

BTYou'll see the message Solwing o - ., and after

a bit, the solution will be returned to the stack.

Result (to 3 places): &h.t: H.168_ft<min

After 10 minutes of pumping, the water level is rising at about two

inches per minute.
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A weather balloon is tethered so that it stays at a constant height of

300 meters. The wind blowsit horizontally at a rate of 8 m/second

fromits original position. Ifthe line is spooled out so that the altitude

remains constant, how fast must the line be let out when the balloon

lies over a point on the ground 500 meters from the spool?

. Determine the variables. Let L be the length of the unspooled line,

h be the altitude of the balloon, and x be the horizontal displacement

of the balloon from its original position. However, only L and x are

variables; A is a constant (300 m).

Express the relationship between the variables. A righttriangle is

formed, with L being the hypotenuse and x and 4 the legs. Thus,

x*+ h?= [? or, substituting for 4, x*+ 300? = L2. Enter the expression:

(eJalX)@(2)HEFIRIELI(2)ENTER)
Begin the FELET program. Enter a list of the variablesin the ex-

pression: (ENTER). Enter the variable or rate
for which you are solving. In this case, it’s the rate of change of the

unspooled line length L, or '&L.1 ":
(ENTER). Now execute RELET: or
(then or (§)(PREV) as needed) [TIHHi{.
Store values without units in the known variables and rates. Since

your expression includes the value of 4 without units, you must be

consistent now and not use units. The known values are: x = 500;

Ox.t = 8. Store just those knowns: (¥]»)(5]0J0)(ENTER]8)(ENTER).

Solvefor the specified variable. Inspect the values you’ve entered

in the previous step and when you’re satisfied they’re correct, press

[T You’ll see the message =i1001mS . « W, and after

a bit, the solution will be returned to the stack.

Result (to 3 places): &L.t: f,HEH

Because the units are not included, you must add them yourself: the

line is unspooling at nearly 7 meters per second in order to maintain

constant altitude in the very brisk wind.
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Example: In the special theory of relativity, the mass of a particle moving at

2
velocity v is m(l - v—zj , Wwhere m is the mass at rest and c is the

c

speed of light. At whatrate is the mass changing when the particle’s

velocity is 0.5¢ and the rate of change of the velocity is 0.01¢ per
second? What is the mass of a particle traveling at 0.5¢ whose rest
mass is one unit? The speed of light, c,is 3.00E8 m/s.

. Determine the variables and the constants. The variables are the

mass m and the velocity v. The speed oflight, c, is a constant. In the

previous example, you replaced the value of the constant directly in

the main expression. This time, instead of replacing ¢ with its value

in the expression,just store its value now: ( 3JEEX]8'J&J&4]C)(STO).

. Express the relationship between variables. If the rest mass is 1 unit,

1

the massat velocity vis m = (1 ——) . Enterit: JoJ(qIM)&E)=)
c

SOJAVIYH2]Ty2][y-[5]+/-)[ENTER).

. BegintheFELETprogram. Enter alist ofthe variables: (G}aJ&M)

(a]&q]V)[ENTER]. You’re solving for 2 variables here: the change

in mass at time # (' &Mm.1 '); and the mass at time ¢ ('mt. '). Enter

those two variables inalist: (&)[{]2[D)(@JM-()&TISPC)

()&M)TIENTER). NowuseRELRT: EIEIIB
or (VAR) (NXT] or ((9]PREV) as needed)[i

. Store values without units in the known variables and rates. Known

valuesare: v=.5c; dv.t=.01c. Store the known values: (v]¥]»)("']

(2]ENTER)-LolX@)(C) (ENTER).
. Solvefor the specified variables. Inspect the values youjust entered.

Whensatisfied, press Bli[4. You'll see=olwimg .

then the solution (to 4 places): it am.t: H.HH?Y

1: mtes 1.1547

Its rest mass was 1 unit, so the particle is gaining mass at 0.77%/sec

asittravels athalfthe speed oflight; and ithas amass of 1.1547 units,

having gained more than 15% ofits rest mass.
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Tworoads intersect atright angles. Car 1 leaves a gas station located

2 miles south of the intersection, traveling north at 30 mph. At the

same time, Car 2 leaves a restaurant parking lot located 3 miles east

the intersection, traveling east at 40 mph. How fastis the distance

between them changing 45 minutes later?

. Determine the variables and the constants. Let d be the distance be-

tween the two cars, x be the distance of car 1 north ofthe intersection

and y the distance of car 2 east of the intersection:

Car 1
restaurant

gasstation ~fi_—:] Car 2

Express the relationship between the variables. The relationship be-

tween x, y and d is the Pythagorean theorem: x?+ y?>=d°. Enterthis:

(eJaX2IH(e2k)=)(Ja)R)ENTER).

 

. BegintheFELETprogram. Enteralist ofthe variables: (&)U}e)<3)X]

(a]&q]Y) ENTER). Enter the solution variable, the

rate ofchange ofthe distance dbetween the cars (2d. 1. ): ()(@]=)D)

(@)D)JeJT)[ENTER). Finally, execute RELET: (VAR)[H

Store values without units in the known variables and rates. This

problem uses starting positions H and 4H. Note that the starting

position of car 1 is minus 2 miles because it starts south ofthe inter-

section. Thus, known values are: t=0.75;x,=-2;y,=3; ox.t=30;

dy.t=40. Store the known values: ]7]5)(ENTER)(2]+/=)[ENTER)(»)

0)(ENTER)JENTER)()(4]ENTER).

 

 

. Solvefor the specified variables. Inspect the values you’ve entered

inthe previous step and when you’re satisfied they’re correct, press

Bl You'llsee=olwima . . ., then the solution.

Result (to 3 places): &d.t: 43, 5HE

So, after 45 minutes, the distance between the carsis increasing at

nearly 50 mph.
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Notes
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4. INTEGRATION AND THE INTEGRAL



The Integral: Number, Function, Family of Functions

The term integral is used for three distinct purposes:

1. The definite integral is the (signed) area bounded by a function y =f{x) and

the x-axis andby vertical lines through the twox-value limits ofintegration.

2. The general indefinite integralis the family of functions whose derivative

is equal to a given function.

3. The specific indefinite integral is the one function whose derivative is a

given function that includes a specific point.

So, an integral of a function can be either a single number, a single function, or

a family of functions, depending on the current context.

Actually, the process of determining the area “under” a curve is best described as

integration while the process of finding the indefinite integral (either general or

specific) is best described as antidifferentiation—i.e. “undoing” the process of

differentiation. Forthis reason you may see the term antiderivative used inter-

changeably with indefinite integral. Perhaps integration and integral should be

used when the context is area measurement and description, while antidiffer-

entiation and antiderivative should be used when the context is finding a function

or family of functions equal to a given derivative. However, this book will not

be that picky and will use the two terms interchangeably.

Now, the HP 48 comes with the built-in capability to integrate functions using

numeric, graphic, and symbolic techniques. Specifically:

» It can compute a numerical estimate of the definite integral of any function if

it is given two finite numeric limits and if its integrand contains no undefined

variables other than the variable of integration.

e It can graphically estimate the area under a plotted function between two

values of the independent variable.

e It can symbolically integrate (i.e. find the antiderivative of) any polynomial

function. It can also use symbolic variables in either of the limits.

e It can symbolically integrate certain other functions that are in a form that

matches the set of patterns built into its memory.

The Integral: Number, Function, Family ofFunctions 123



Numeric Integration

The integration function on the HP 48, located on the keyboard (=)]) computes

a definite integral—a number. Thus,it requires four inputs:

1. Integrand: the function being integrated.

2. Variable of integration: the independent variable of the function.

3. Lower limit: the value of the independent variable representing the lower

boundary of the integrable region.

4. Upper limit: the value of the independent variable representing the upper

boundary of the integrable region.

5. Accuracy factor. A definite integral is computed using an iterative algo-

rithm that can be driven to any finite degree of accuracy. The HP 48 can

offer accuracy up to its 12-digit limitation. The integration function deter-

mines the accuracy factor from the current display format. For example,

a5T[setting mandates the search to the 12-digit limitation ofthe machine,

while & FIsets an accuracy factor of 0.01 or 1% (i.e. the search stops

when the HP 48 finds a value ofthe integral to within 1% uncertainty); and

a2 FIsetting indicates a 0.00001 accuracy factor (0.001%).*

To use these five inputs to compute a definite integral on the HP48, simply adjust

the display setting to the appropriate accuracy, then do any one of the following:

1. Enter the other four inputs in the correct order (lower limit, upper limit,

integrand, integration variable) onto the first four levels of the stack and

press (217GJ=NuM.
2. Press(']to begin an algebraic expression, press to enter the integral

function, enter the four inputs in the correct order (lower limit, upper limit,

integrand, integration variable) separated by commas, and enter the

expression onto the stack. Press (EVAL){&5J+-NUM) to evaluate the integral.

*Note that the integration algorithm doubles the number of points sampled—and hence the amount of time—for

each successive iteration,so it’s important to keep the number of iterations to the minimum necessary: don’t use

5TD unless you really must, but don’t use just Z F Iif you truly need accuracy to within .001%. After any

integration, the HP 48 computes the uncertainty of the integration result it reports and storesit in the reserved

variable, IERR. Thus,after performing an integration, look in the menu forI3and pressit if you want
to know the uncertainty of the result.
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3. Press [¢&9]JEQUATION] to begin the Equation Writer, then type in each of the

four inputs in its appropriate spot, pressing (») to jump forward between

inputs. Enter the finished expression onto the first level of the stack and

press (EVAL)(&]=NUM) to evaluate the integral.

4. Press (> SYMBOLIC[ENTER] to display the IMTEGKATE input form. Enter

each of the four inputsinto its appropriate field—the integrand in EXPF:,

the integration variable in YAFE:, the lower limit in L0, and the upper limit

in HI:. Change the REZULT: field to MiimEt 112, if necessary, and press
il48 to compute the definite integral returning the result to the stack.*   

The following examples illustrate the use of each of these methods and give you

some practice computing definite integrals in the process.

Example: Compute the following integral using the direct stack method (#1):

2

X
ToV4x® +8

1. Enter the limits, lower limit first: (0]ENTER] JENTER).

2. Enter the integrand and variable of integration: (')(aJ&[X)(=)(X)

OEX(JQXIYIR)HE)ENTER)(D(JGIX)ENTER).
3. Fixthedisplay to4 places (i.e. .01% accuracy) and then compute the

definite integral: (4)(SMODES)51El LHl(—))=NUM.

Result: H.o17E

 

*Note thatthis fourth method explicitly reminds you about the fifth input by displaying a MUMEEFE FORMAT:

field to allow you to change the number format—and thus the accuracy factor—before computing the integral.

None of the other three methods offer such a reminder.
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Example: Compute this integral using the normal algebraic method (#2):

l4n
15

COS X
——dx

. 1+2sinx
15

1. Enterthe algebraic integral expression: (")))=m)(=)(1)5)

GaXan=6E)) MEHEIO]
CIXESN(JSIXI)Ia))(@Ja)X)[ENTER).

2. Because the integrand include trigonometric functions, make sure

that you’re in FHD' mode, then compute the integral (to 4 decimal

places): (if necessary) (EVAL)(&GJ=NUM.
Result: H. 94476

Example: Compute this integral using the EquationWriter method (#3):

4 2
xe8x

—adx
e +1

1. Enter the algebraic integral expression using the EquationWriter:

(JEQUATIONIA1)(4](SX))(e[IX)YX(2)>)
>Halee) (eaX)IEH)(GIX)ENTER)

2. Integrate (to 4 places): (EVAL)(&J=NUM..

Result: H. 1HKY
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Example: Compute the following integral using the input form method (#4):

3\/8+x

, V8—x

1. Open the IMTEGKATE input form: (—]SYMBOLIC)(ENTER):

dx 

 

 

RESULT: Symbol 1c

ENTER EXPRE:ZZION
[Tl TVINTNI   

2. Enter the integrand in the EXPF: field: (')(x)(&JO)

PHEEI0)())(«Ja)X)[ENTER).

3. Enterthe variable of integration and then the two limits:
(ENTER)(2)(ENTER)(3)(ENTER).

4. Change the RESZULT: field to Muimet~112: (+/5). Notice that an
additionalfield then appears:

 

 

 

EXPR: ' JCB+wAl8=
YAR: LO: 2 Hi: 3
RESULT: (Bmh l =il
MUMEER FORMAT:Fix 4

CHOOSE RESULT TVPE
LJewooz]]JeAML]O

5. Change MUMEEF FORMAT: toF1&, thereby changing the

accuracy level of the computation: (v)»)(6)(ENTER).

6. Compute the numeric definite integral: ES'[CE8.

Result: 1. 3020HE
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Graphical Integration

Since integration computes the signed area* bounded by a curve, the x-axis, and

two vertical lines, it’s reasonable that the HP 48 offers a means of computing a

definite integral while viewing the plot ofa curve.

Example: Plot the curve y =2x3—5x + 9, and then compute the signed area be-

tween the curve and the x-axis and between x = -3 and x = 2.4:

. Open the PLOT application, set TYPE: to Fiuri=t10and reset

the plot parameters: (=JPLOT)(4)(eJF)(DEL)(V)ENTER)
Highlight the Ef: field and enterthe curve: (v)(")(2]X)(eJ)X))

= (9)(ENTER).

. SetIMDEP: to:: (lower-case), H=WIEk to—3 3, W-YIEl to—15

13, and leave the remaining plot parametersat their defaults. Then

draw the plot: (oJ&q]X)([ENTER)(3)(+/=)([ENTER)(3)ENTER)(™)(1]5)(+/-)

TN

  

 

  200Ke84JTRACE]FCNEDIT[UANIL   
Press i193 i1#] and move the cursor (using («)) to w:=3.0l

at the left-hand side of the plot. Then acknowledge that point as the

lower limit of an area computation: EEI

. Press(NXTR =Lo SRR 010930438# and move the cursor (using(»)) to

the upper limit (atsi: 2.401311). Then finish the area computation by

pressing (NxT)STagain. Result: AREA: 32.7BEH 

*Remember that “signed” area meansthat the area where the curve is “below”the x-axisis treated as a negative

number and the area where the curve is “above”the x-axis is treated as a positive number.
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One important point about all integration procedures: Integration is defined only

forintervals over which the givenfunction is continuous. If a discontinuity exists

in the function between the limits given for a definite integral, the HP 48 will

either generate an error message or return an incorrect result. Plotting a function

before integrating is a good way to avoid this problem.

Example:

1.

 Plot f(x)=4x" - 5 > 7 to see if it is integrable over -1 <x <1
X+

Return to the PLOT input screen and enter the function in the EL::

field: (CANCELJ(V)(J4[X)(elaXR)EHEHEI0E@X)
XHENTER).
SetH=WEK to—1 1 and¥-WIEk to—2E TE and plot the func-

tion: (»)(1)+/-)(ENTER)(1)(ENTER) () 0J+/-)(ENTER](5](ENTER)
EEAZE| DRAM|

 

 

 

etb—————
..-

ll -

ET[STT
     

Notice the discontinuity at x = -0.5. The function is not continuous

between -1 and 1 and is therefore not integrable over that interval.

Try an integration anyway—to see what happens. Move the cursor

to the left-hand edge of the plot (i: =1.000100) and press

. Movethe cursorto the right-hand edge (#: 1.0001}) and

press Eil9il again. Result: AREA: ©=-0.0799..75400

In this case, because the integration algorithm never selected the

exact discontinuity as a sample point, it didn’t error, but instead gave

a complex number value for the area—obviously incorrect. But be

forewarned! It might just as easily have returned an incorrect real

number.
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The Area Function

If you establish a fixed lower limit, say, x = a, and allow the upper limit to vary,

the definite integral becomes a function where the independent variable is the

upper limit and the dependent variable is the area of the defined region. This

function is usually referred to as the Area function: A(x)= J f(t)dt. Because

it is a function, you can plotit, find its derivative, or use the Solve feature to solve

the Area function for the value of the upper limit that generates a specific area.

X

Example: PlottheAreafunction, A(x) = J‘%dt for 1 <x<3,thenitsderivative.

1

1. Return to the PLOT screen and enter the Area function (a symbolic

definite integral) in the Ef2: field: (CANCEL)(V)()(=2lr 1)&)7)(w)

Q1ealD&)(Ja)T)ENTER).
2. SetH-WEk tol = and¥-"MEK to—. 2 =: (»)1)]ENTER|3JENTER)

(»)(- J5)(+/-)(ENTER)(2)(ENTER).

3. Plotting the Area function requires that an integral is computed for

every sample point—and thus a very long time to plot the Area func-

tion. Minimize the delay bysetting the number display formatto &

FIand the step-size to 4 pixels (i.e. only one of every fourpixels

will be a sample point): (V) ee
LGHE(vv)()BT

4. Draw the plot: BT[F1:E3ITA21,

 

 

 

_—_'_—

_—I—"l_d__f_
—

—
TARTTT
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5. Now plot the derivative of the Area function:E

 

  200K(8.4JTRACE]FCHEDITJUANIL

Hmm! The plot of the derivative looks familiar. Indeed, it’s the same as the plot

for 1/x. The derivative of the area function is the integrand of the area function!

This illustrates how you might plot an antiderivative of a given function. Simply

plot the area function using the given function as the integrand!

 

. cost :
Example: Plot the antiderivative ofo over the interval -7t to .

" cost . -
1. Return to the PLOT screen, enter J Tdt into Ei*:, set H-YIE}

-7

to—=. 14 =. 14 and¥-VIEK to—i= 4 (CANCEL"[(T)+/5
TGlaXialJcosdalTHRYNGDE)C)
(o) (&) (M ENTER) ) (3] (-] (1] (&) (/) (ENTER) (3]-1)4] (ENTER]»)
(8]+/=)(ENTER)(4)(ENTER).

2. Since the number format and step-size adjustmentsare still in place

from the previous example, draw the plot: [Tk ITHi121.

 

 

"..: + 4 e}

"
'-.‘__.

."H. _—_'-F

LTRTR
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Symbolic Integration: Pattern Matching

Finding the symbolic integral or antiderivative ofa function on the HP48 presents

two kinds of problems. First, the integration command always requires that you

specify lower and upper limits—which seems unnecessarily cumbersome if you

simply want a formal indefinite integral. You can overcome this problem fairly

easily with a simple program such as IMOEF (see page 296) that uses dummy

limits and then ignores the lower limit in the result (see page 173 for more details).

Secondly, there is no computer algorithm capable of finding the antiderivative of

any general function comprised solely ofthe analytical functions set in the HP 48.

Some can handle a reasonably large subset of such functions, but they require

computing resources far beyond those ofthe HP48. Thus, as a necessary compro-

mise, the HP 48 limits its symbolic integration capabilities to a small range of all

possible functions: polynomials, for which a simple antiderivative algorithm is

available; and functions that match alist ofpatterns built into the HP48’s memory.

The table below lists all of the patterns that the HP 48 can match. Note that for

each pattern listed,fis the variable of integration or a linearfunction ofthe vari-

able of integration.

The HP 48 is quite picky about the form a function must have before it can be

 

matched. Thus, given the pattern, _;, the HP 48 can find —1———-—— ,
sin f cos f sSIn x COS X

1 1 1
X,and — , but not—— (because the
sin(2x)cos(2x) sin(2x +3)cos(2x + 3) cos xsin x

1
denominator terms are reversed), or —W(becausefisn’t linear in x),

r—1—(becausefisdefinedtwo distinct ways,x and 2x), or —
sin(x)cos(2x) 2sinxcosx

(because of the coefficient in the denominator). Note, however,in this last case,

1]
that rewriting it as —( ) does allow the pattern to be matched after all.

2\sinxcosx

Here are the built-in patterns:
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Pattern (Function)

SECED

If
1-[F
INVCIF)
1(25(£))
TNC2%T(F))
£z (where Z is symbolic)

f*n (where I is real, #0,-1)

£
FA-1
1-f
INVCED

COSCED
SINCED
TANCE)

ACOSCE)D
ASINCE)
ATANCE)D
COSHCFD
SINHCE)
THHHCED

ExPCf)
ExPMCE)
LMCF)
LOGCE)
ALOGCE)

SIGNCE)D

TANCEI
1-TAMCE)
INVCTAMCE 2D

TAMCF 2 ~COSCF)

1-CSINCEIZ)
INV(SINCFI™2)

1#CCOSCFI=SINCED)
INVCCOSCFI=5INCF) )
1#(SINCFI=COSCED)
INVCSINCFa#COSCE))

Symbolic Integration: Pattern Matching

Replacement (Antiderivative)

f*3-3

Z¥f*1,3-3
cE[f
cE[f
2l(F)*.3
cx[(fl*.5

IFTECz==-1, LNCf 2, f*(z+1)-(z+12)
fAin+l ) (n+ld
.F

LNCF )
LNCED
LNCF)

SINCF)
-COSCF)D
~LNCCOSCE))

F=ACOSCFI-TC1-F42)
F=ASINCFI+(1-F2)
F=ATANCF I -LNC1+F*2)-2
SINHCE)
COSHCF)D
LNCCOSHCF D)

ExPCF)
ExPCFI-f
FeLNCFI-f
434294481984F=LN(F)-f
- 434294481 984=ALOGCF)

AESCF)

THMCFI-f
LMCSINCF D)
LMCSIMCFD)

INVCCOSCFD )

—INVCTANCE)
—IMNVCTANCE D)

LMCTAMCE)
LMCTAMCE)
LMCTAMCE)
LMCTAMCE)
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Pattern (Function) Replacement (Antiderivative)

1/(SINCF)*TANCF)) ~IMJ(SINCF D)
INV(SINCF)*TANCE)) ~INJCSINCF))
1-CTANCF)*SINCF)) -INVCSINCE))
INVCTANCF)#SINCF) ) ~INY(SINCE))
TANHCF ) COSHCF) TNVCCOSHCF))
1/TANHCF) LNCSINHCF))
INVCTANHCF) LNCSINHCF))
1-(COSH(F)A2) TANHCF)
INV(COSHOF)A2) TANHCF)
1(SINHOF)A2) ~IMJCTANHCF) )
INV(SINHCF)A2) ~INYCTANHCF)
1-(COSHCF)*STNHCF)) LNCTANHCF))
TNV(COSHCF ) =S INHCF)) LNCTANHCF))
1-(SINHCF)*COSHCF)) LNCTANHCF))
INV(SINHCF)=COSHOF)) LNCTANHCF))
1-(SINHCF)+TANHCF)) ~IMJ(SINHCF))
TNVCSTNHCF )=TANHCF) ~INJ(SINHCF))
1/ CTANHCF)*SINHCF) ~IMJ(SINHCF))
TNVCTANHCF ) =STNHCF D) ~INVCSINHCF))
1/(1-F42) ATANHCF)
INV(1-F~2) ATANHCF)
1(1+F*2) ATANCF)
INV(1+£42) ATANCF)
1/ (FA2+1) ATANCF)
INV(FA2+1) ATANCF)
1ACTCF-1)2T(F+1)) ACOSHCF)
INVCTCR-1)%(F+1)) ACOSHCF)
1T(1-F~2) ASINCF)
INVCTC1-F42)) ASINCF)
1/T(1+§42) ASINHCF)
INVCTC1+F%2)) ASINHCF)
1/T(FA2+1) ASTNHCF)
TNVCTCFA2+10) ASTNHCF)
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Try the following examples to see how symbolic pattern-matching works:

b

Example: Evaluate Jx +cosx dx.
a

1. Entertheintegral: CANCEDCANCELRN@AGDB
Q)@DoS(R) [XENTER

2. Purgethe variables a and bto assure a symbolic result, then eval-

uate: (GJ{o]A)(SPC]o))BJENTER[<JPURG]|EVALJEVAL).

Result: 'SIMCEI+E*F-F-(SINCa)+a™c-2) !

 

Note that the integrand is divided into its additive terms before searching for a

match. Thatis, the HP48 treats the integral in this example as Jxdx+ Jcosx dx.

It computesthe first integral using its polynomial rules and the second by match-
ing a built-in pattern. Since all terms can be evaluated, the symbolic integration

is successful. If any one ofthe terms in the integral can’t be matched, then the HP

48 returns that part of the integral expression unevaluated.

The next example illustrates that the pattern-matching finds linear functions ofthe

integration variable.

b b

Example: Evaluate jx +cos(2x—5) dx and Jx +cosx” dx.
a a

1. Thefirst integral: ()2)(JqlAl[)(eIa)B)G])(@a)X]
mn@amM-
Result SINCEb—-50-2+2=SIN( Z2a-59) <F+g™0<20 !

2. Thesecondintegral: NSNEGAGHNEEBENEEX
)Eo8)@)XTR)@)XENTER) EVALIEVAL.

Result: 'b™F=F—a™r<F+ICa, by COSC™E ), w0!

Notice how the HP 48 evaluates as much of the integrand asit can,

butleaves the part for which it finds no match as an unevaluated inte-

gral expression.
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The HP 48 approach to symbolic integration is also flexible with respect to con-

stants that can be removed from the integral expression. (Remember that inte-

gration treats all variables other than the integration variable as constants.)

Example:

1.

2

3

4.

136

b b

Evaluate the following integrals: Jpcosx dx and Jx cosx dx
a a

Enter the first integral: (2D[Aa )aBlal )ea)
PIX)Cos)(JAX)(XENTER)

. Evaluate it: (EVAL]EVAL].

Result: 'F*SIMCBI-p=5IMCa) "

The HP 48 removes the constant p from the integrand before at-

tempting to match the remainder—and is successful.

. Enter the second integral: (")(=2)3)(eJqA&)(eJa))(«)

EXX)(Cos)(JalX)™))(@Ja)X)[ENTER).
Evaluate it: (EVALJEVAL).

Result: '[(a, by wxC05050, 2!

This time, the factorx is treated (quite properly) not as a constant but

as the variable of integration. The HP 48 cannot find a match for the

integrand and therefore returns the unevaluated integral expression.
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Enhancing the Built-In Integration Tools

As you’ve seen, the integration tools built into the HP 48 are quite useful but not

adaptableto all of your needs. Fortunately, you can add many useful extensions

and enhancements via programs. The remaining sections ofthis chapter demon-

strate the programmed integration enhancements included with this book:

Numeric

Approximating definite integrals using methods different than the built-in

algorithm (Riemann sums, Simpson’s Rule, etc.).

Approximating the definite integral from a set of data for which the under-

lying function is unknown.

Improving computational speed and/or accuracy by segmenting a definite

integral.

Accurately computing definite integrals with one or more infinite limits.

Accurately computing definite integrals whose integrand cannot be evalu-

ated at one of the limits.

Accurately computing the definite integral over a range containing one or

more discontinuities.

Graphical

Plotting the specific antiderivative of a given function with known initial

conditions.

Symbolic

Simplifying the computing of an indefinite integral.

Adding to the patterns that can be matched using symbolic integration.

Simplifying the integrand using segmentation.

Simplifying the integrand using the method of substitution.

Simplifying the integrand using integration by parts.

Simplifying the integrand using partial fraction expansion.
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Approximating the Definite Integral of a Given Function

All methods of approximating a function’s definite integral are based on comput-

ing the limiting value for an infinite sequence of approximations, each of which

can be computed exactly. Specifically, the definite integral—the area under a

given curve between two limits—is approximated by summing the areas of a se-

quence of rectangles whose height matches that ofthe curve at some point within

the width of each rectangle.

Look at the three most common rectangular approximations:

M. /I
Left Rectangular Right Rectangular

Mid Rectangular

The Left Rectangular approximation uses rectangles whose height matches the

value of the function at the left edge of the each rectangle; the Right Rectangular

approximation uses rectangles whose height matches the value of the function at

the right edge of the each rectangle; the Mid Rectangular approximation uses

rectangles whose height matches the value of the function at the value midway

between the right and left edges of each rectangle.

All ofthe approximations have irregular wedge-shaped “errors”—some ofwhich

overstate the area under the curve and some of which understate the area under

the curve. But notice that using more rectangles—by decreasing their widths—

reducesthe errors; the approximations become more accurate. And the smaller

the width, the closer these approximations are to each other—as well as to the

actual area under the curve.
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Thus, the definite integralis the limit of the sum ofthe areas of these rectangles

as their widths approach zero. In practice, of course, you can’t compute using an

infinite number of rectangles of zero width, so approximating a definite integral

means deciding how precise you want to get and then deciding what number of

rectangles (and thus their widths) you need to achieve that precision.

The sum of a set of rectangular areas used to approximate a definite integral is

known as a Riemann sum. Riemann sums differ from one another in two ways:

the width of each rectangle (also known as partition size) and the rule used to

determine the height of each rectangle. You’ve already seen three rules for

Riemann sum rectangle heights: Left Rectangular, Right Rectangular, and Mid

Rectangular. But there are two other important rules: use the smallest value of

the function over each subinterval (Lower Riemann); and use the largest value of

the function over each subinterval (Upper Riemann):

 

   /
Lower Rieihann Upper Riemann
 

Notice that the Lower Riemann sum is less than the actual definite integral (since

all of the “error wedges” represent underestimations of the function); and like-

wise, the Upper Riemann sum is greater than the actual definite integral(as those

“error wedges” represent overestimations of the function).

Also, notice that for intervals over which a function always increases, the Lower

Riemann sum is the same as the Left Rectangular sum (lowest value of function

is at left edge) and the Upper Riemann sum is the same as the Right Rectangular

sum (highest value of function is at right edge).
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The Lower and UpperRiemann sums are primarily ofuse as theoretical lower and

upper bounds of the definite integral. They are not used actually to compute an

estimate because of the extra computational time it would take to find the maxi-

mum and minimum values of the function within each subinterval. Instead, the

Left, Right, and Mid Rectangular sums are used because they are easier to com-

pute. Usually (though notalways) the Mid Rectangular sum is the best ofthe three

approximations.

However, there are two other commonly used rules for Riemann sum approxi-

mations that are weighted averages of the three basic Riemann sums:

» Trapezoidal = 1/2 of Left + 1/2 of Right (i.e. the average of the Left and

Right Rectangular sums).

o Simpson's = 1/6 of Left + 2/3 of Mid + 1/6 of Right.

Simpson’s rule is derived from the observation that, while the Mid Rectangular

sum and Trapezoidal each have their strengths and weaknesses as estimates, on

average the actual definite integral lies between the two, but twice as close to the

Mid Rectangular estimate than to the Trapezoidal estimate. Simpson’s rule is thus

the most refined approximation ofthe five mentioned thus far for a given number

of rectangles.

The five Riemann sum estimates mentioned above can be computedbyhand ifthe

number of rectangles used isn’t very large. But of course, it’s a useful task for a

program as well. EFINT (see page 292) takes an algebraic expression of a def-

inite integral from level 2 and the number of rectangles from level 1 and returns

a list of labeled estimates for the definite integral to level 1. The returned list

contains the five Riemann sums followed by the estimate using the built-in inte-

gration routine (which is a refinement of Simpson’s rule, known as Romberg’s

method—moreefficient for machine computation). The estimates are rounded to

the number of digits that reflects their precision given the number of rectangles

you used (keep in mind, as always, that larger numbers of rectangles require

increasing time to compute).
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Example: Use 40 rectangles to find the Left, Right, and Mid Rectangular esti-

1

mates of J‘tan'1 x dx.
1
2

1. Enter the algebraic integral expression: (')25)(+/=-15)&))1)

)&)ATAN)(ela)X))](@) X)ENTER).
2. Enter the number of approximating rectangles: (4]0)(ENTER.

3. Execute the [IEF INT program to compute the approximations: ()
(FDNITENTER) or (VAR) (NXT) or JPREV)) [IFHL].

Result { :left: .29512 :mid: 31859 :righi:
390 strap: (31804 fsimp: L 31EDY7
simtge: J31ESS O

The Left Rectangular estimate is 0.29512; the Right Rectangular

estimate is 0.34196; the Mid Rectangular estimate is 0.31859;etc.

 

Example: Use 25 rectangles to calculate the Trapezoidal and Simpson’s esti-

9
2

mates of jsin x> dx.
1
2

1. Enterthe algebraic integral expression: (")J(=[2)(-[5)&-

EIEN(X))(@)XENTER)
2. Enter the number of approximating rectangles: (2]5)(ENTER).

3. Execute DEF IMT to compute the approximations: [J3gIz].

Result: + :left: 909 imid: -,1Z74
iright: BB :trap: 5973
isimp: LE143 finto: 4473 G

Notice that the estimates are all over the place. Periodic functions,

such as this one, usually require many more rectangles that non-

periodic functions to achieve the same level of accuracy.

4. Repeat the computation using 100 rectangles: (—JUNDO)(«)(1]0]0)

EnTERIEEL]
Result: © :left: .44H1BHS mid: 45226

fright: . 4353% trap: . 458
ssimps L4408 sintor L4343
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Approximating the Definite Integral of a Data Set

In many real-world situations, you may be faced with a set of data whose under-

lyingfunction is unknown, but whose definite integral you need to estimate. How

can you estimate a definite integral (“the area under the curve”) if you don't know

thefunction you're integrating, just a set of data that (presumably) representsit?

This requires that you make some assumptions about the underlying function—

even though you may know little about it. There are two approaches to this—

interpolation and regression. Interpolation methods create functions that actually

contain every data point. Regression methods create functions that minimize the

accumulated distances between themselves and their data points.

Regression assumes that there is some measurement errorin the data set and that

you wantto find an underlying function that best approximates the fundamental

relationship of the variables while largely ignoring fluctuations due to measure-

ment error. Interpolation, on the other hand, assumes that there’s no measurement

error in the data set, that the points are exact and that all variation is due to the

underlying function and none ofit due to error.

This section describes four particular methods of approximating a definite inte-

gral from a set of data, each of which has its own program:

1. ZIMT1 basesits estimate on an interpolation called linearpiecewise, con-

structed by connecting each data point to its nearest neighbor with a line

segment (i.e. drawing “dot-to-dot””). The area under this “curve”is then

divided into a series oftrapezoids whose areas are computed and summed.

2. &IMTE constructs a single polynomial that exactly containsall of the data

points (i.e. an interpolation) and then integrates this function.

3. &IMT3 uses a cubic spline interpolation, whereby each pair ofneighboring

data points are connected by a smooth portion ofa third-degree polynomial

(whose function may be different for each pair), to create a function whose

definite integral is then estimated using Simpson’s rule.
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4. EINT# allows you to input a modelfor a regression curve that you believe
represents the underlying function that your data is manifesting. The pro-

gram then computes the specific coefficients that minimizes the sum of

squares of the distances between each data point and the specified regres-

sion curve (1.e. a least-squares estimate). The regression curve and the data

(shown including their measurement errors) are plotted so that you can

view the “goodness-of-fit.” If the fit isn’t very good, you may try another

iteration ofthe same model oreven try anew model. Whenyou are satisfied

with your regression curve, it is used to estimate the definite integral.

The methods of each of these programs have their strengths and weaknesses.

None can be guaranteed to give you good estimates in all cases. Look at each in

turn as you work through the following examples.

=INT1: Piecewise Linear Interpolation

=IMT1 (see page 296) is by far the speediest ofthe programs, and its accuracy de-
pends more on the number of data points you have than on the shape ofthe under-

lying curve. Ifyou have alarge data set, this will usually give you a good estimate

in a relatively short time. Other methods may improve accuracy but take much

longer to do so.

=IMT1 assumes that the lower and upperlimits of the definite integral coincide

with two of your data points. Level 3 should contain a data matrix containing at

least two columns (one for the independent variable and one for the dependent

variable). The program treats the smallest value in the independent variable

column as the lower limit for the integral and the largest value in the column as

the upper limit for the integral. Level 2 should contain the column numberfor the

independent variable and level 1 should contain the column number for the de-

pendent variable. The definite integral estimate is returned to level 1.

Try an example of ZIMNT1....
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Example: Use a piecewise linear interpolation to estimate the definite integral

for the underlying function (between 0 and 6) represented by the

following data:

x  flx) x  flx) x  fix)
00 1944 2.1 5.45 4.2 22.86

0.3 2392 24 -0.32 4.5 22091

0.6 20.09 2.7 3.93 4.8 22.02

09 18.51 30 5.76 5.1 21.86

1.2 16.73 3.3 7.02 54 13.35

1.5 9.12 3.6 13.81 57 1222

1.8 8.78 39 19.33 6.0 8.07

. Enter the data as a two-column matrix with the x-values in column

1 and the f(x)-values in column 2 and store a copy as [I=1:

(2IMATRIX]

(0)(sPS)o)4)ENTER) (W) J3)(SPC)(2)-(ENTER]

(21J4)(sPC)(-3)2J+/-JENTER)-J7)(SPC)LoENTER]
(3)(sPS)(5) J7)6)ENTERI3]-[3)SPC)(7)J(ENTER]

(6)(sPC)(8]JENTER)(ENTER)(ENTER)

(D(D)s]1)(ENTER)(STO]
Enter the column number for the independent variable: ENTER).

 

3. Enter the column number for the dependent variable: (2]JENTER).

144

Estimate the definite integral for this data set using piecewise linear

interpolation (ZIMT1): (then or as needed)

FEEY. Result: 94,3315
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=INTZ: Single Polynomial Interpolation

When the underlying relationship may be polynomial in nature and you have only

a small number of data points (i.e. less than 10), single polynomial interpolation

will provide a reasonable estimate. But if the relationship isn’t polynomial, this

approach can give wildly inaccurate estimates (“let’s be careful out there”)!

=IMTY (see page 297) takes a data matrix from level 4 that contains at least two

columns (one for the independent variable and one for the dependent variable),

the column number of the independent variable from level 3, the column number

of the de-pendent variable from level 2, and a list containing, in order, the lower

and upper limitsfor the definite integral. The program returns the estimate of the

definite integral to level 1. ZIMTZ uses Joseph Horn’s FF I T routine (see page
311), included here with his permission, to compute the interpolating polynomial.

Example: Use single-polynomial interpolation to estimate the definite integral

(between 5 and 50) of the underlying function represented by:

x  fix) x fix) x  flx)
5 34.8 10 134.7 14 1593

18 1569 24 1322 30 1174

35 1325 41  186.6 50 3422

1. Enter the data as a 2-column matrix (the x-values in column 1 and

fix)-values in column 2), and store a copy as IS¢

(sPS)(314)- J8)ENTER) (W))(SPC)4)J7)ENTER)(1)4)(SPC)

4)2)-J2)(ENTER)(ENTER) (ENTER)()DI[ENTER)(STO).
2. Enter the column numbers for the independent and dependent vari-

ables: (2JENTER).
3. Enterthe limits of integration: (&J{})(5)(SPC)(5]J0)(ENTER).

4. Estimate the definite integral using single polynomial interpolation

@INTY): (then or (§JPREV) as needed) B3|BE.

Result: 144,838 133H3
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&INT3: Cubic Spline Interpolation

Cubic spline interpolation is a piecewise interpolation like that of #IMT1, with

two differences: Adjacentpoints are connected by segments ofthird-degree poly-

nomials instead of line segments; and the curve created by cubic spline interpola-

tionis continuous at each datapoint (because the “ending’ slope ofeach polynom-

ial segment matches the “starting” slope of the next one), while linear interpo-

lation is discontinuous. Cubic spline interpolation performs well for most data

sets, generally better than linear piecewise for smaller sets and worse for larger—

a good choice for a small set whose underlying shape is unknown or questionable.

The program & IMT3 (page 297) uses SFLIME (page 326) and SFLEYAL (page
326) to create and evaluate, respectively, the cubic spline interpolation. It com-

putes the definite integral by iterating Simpson’s rule estimations with increasing

numbers of points until the result is obtained with at least four significant digits.

= IMT3takes a data matrix from level 3 containing at least two columns (indepen-
dent and dependent variables), the column numbers of the independent and de-

pendent variables from levels 2 and 1, respectively. The smallest and largest

values in the independent variable column become the lower and upper limits of

integration, respectively. The estimate is returned to level 1.

Example: Using cubic spline interpolation, estimate the definite integral (be-

tween -5 and 5) of the underlying function for the following data:

x  fx) x  flx) x  ftx)
-5 1255 -4 7.24 -3 2.42

-2 0.14 -1 -1.64 0 -2.88

1 -1.75 2 -0.28 3 2.59

4 7.35 5 1255
 

1. Enter the data and store as[153: (5MATRIX)(5J+/=)(SPC)... (etc.)...

(1)2)-J5)(5)(ENTER)(ENTER] (ENTER)() (2JDISI3)[ENTER)(STO).
2. Enter the column number for the independent variable: ENTER).

3. Enter the column number for the dependent variable: (2]ENTER).

4. Estimate the integral via cubic spline interpolation (& IMT3):
(then(NXT)or(€5)PREV)as needed) FIERE]. Result: #5. #Fa7HA5HS
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=INT4: Least-Squares Fit

Afitted curve does not “connect” the data points; rather, it represents a curve

(whose general shape you determine) that approximates the data points—thereby

assuming that the actual data points contain some amount of measurement error

that accounts for the distance ofthe actual data from the fitted curve. The “good-

ness-of-fit” of a particular curve can be measured by totaling the squares of the

“error” distances between the actual data points and the fitted curve. Fitting (as

opposed to interpolating) a curve to a set of data is probably the best choice when-

ever you have strong analytic evidence about what the underlying model should

be for a set of data, or when you have a lot of data points but are confident that the

underlying function has a much smaller number of terms.

The program OHTFIT (see page 291), which is used by ZIMT4, computes the

fitted curve whose goodness-of-fit sum is smallest—the least-squaresfit—for the

particular general model being used. To fit a curve to a particular data set using

OHTFIT, you will need: the data set, the general model of curve you wish to fit,

and an estimate of the measurement errors for each of the data points. OATFIT

takes the data matrix containing at least two columns (one for the independent

variable and one for the dependent variable) from level 4, the column number of

the independent variable from level 3, the column number of the dependent

variable from level 2, and an estimate ofthe measurement errors from level 1. The

level 1 entry may either be a single real number reflecting equal measurement

errors for all data points or a vector of measurement errors arranged in the same

order as the data, one per point.

OHTFIT will then display an input screen, prompting for 3 items: (i) a general
model using only variable names for the coefficients and '' as the independent

variable; (ii) alist ofthe coefficients in the model whose least-squaresfitted values

you seek; and (iii) an initial estimate of the coefficient values to begin the search

procedure. Note that, for some non-linear models, good beginning esti-mates are

necessary to assure that the best fit is found.

Finally, after you supply the requested inputs, IHTF I T computesa fitted curve

using your model and plots the curve along with the original data points—shown

with their error bars (vertical lines whose length represents the size of the errors

for the points) to allow you to visually inspect the goodness-of-fit for your model.
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After pressing (CANCEL] to leave the plot, you have three options:

1. Press to acceptthe fitted curve. You will return to the stack to

find the covariance matrix for the fit on level 3, the fitted curve

expression on level 2, and a list of labeled coefficient values with their

estimated standard deviations on level 1.

2. Press [l 888 to refine the fit. The current estimates for the fitted coef-

ficients are used as initial values and the fit is recomputed, then re-

plotted against the data points. You may thus refine a particular fit as

many times as you wish, although you will soon find that additional

refinements make increasingly tiny differences and that such tiny dif-

ferences aren’t worth the time needed for the computations.

 

3. Enteradifferent model, list ofcoefficient names, and starting estimates,

then press !#iffl. This option is available to you in case yourfirst esti-

mate model was not very good and you wish to start over.

 

These three options are available each time you leave the plot of the fitted curve

and the data points with their error bars. When you’re satisfied with the fit, use

option 1 to exit IHTFIT.

The program & IMT4 (see page 298) requires the same four inputs as IHTFIT,

plus an additional input on level 1. The data matrix is taken from level 5, the

column number for the independent variable from level 4, the column number for

the dependent variable from level 3, the measurement error estimate from level

2, and a list of the lower and upper limits of integration from level 1. ZIMT% then

executes IHTF I T and, after exiting IHTF I T, returns the estimate for the definite

integral to level 1.

The three following examplesillustrate the use ofI(HTF I T and Z IMT* using the

three data sets you’ve already used for the three previous examples. The

examples below assume that you have stored eachin its appropriate name—I1=1

[5E, or[l523—as you worked the previous examples. Ifyou don’thave these data

sets stored, you’ll need to enter them as new matrices instead.
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Example: Using U=, compute a least-squares fitted curve using a fourth-
degree polynomialas the fit model. Assume the measurement error

for all data points is 0.85. Then use the fitted curve to estimate the

definite integral for the data between 5 and 50.

1. Recall the 5% data matrix to level 1: (a]a)D)S]2)ENTER).

2. Enter the column numbers for the independent and dependentvari-

ables,respectively: (1)(ENTER](2])(ENTER.

3. Enterthe estimated measurement error (a single real number, in this

case): (-J8]5)ENTER).
4. Enter the limits of integration: (&9){3)(5)(SPC)(5)0)(ENTER).

5. Begin&INT4: (NXT) or (§)PREV)) HIZRE]. Soon you’ll see:

 

B|ERST-SQUARES FITE
MODEL:
PARAM:
NALLES:
sTD.DEY: | 325

EMTER GEMERAL MODEL OF FIT
EnT]]JrAML]OH

 

   
6. In the MODEL: field, enter the general form of the model you’re

using to fit the data—a 4th-degree polynomial (Ax* + Bx* + Cx?+ Dx

+E), in this case:
BHEESXHGXPEHRX)(a)X)()(@E)ENTER).

7. In the PAFRHK: field, enter the list of parameter names used in the

general model: (GJ{}[e]A)sPc]o]B)SPc]ec]sPc]]D)([SPC)(@)(E)
ENTER).

8. Inthe YHLUEZ: field, enter a list of initial guesses as to the values of

the corresponding parameters. Use zeroes here (although for non-

linear models its often necessary to use thoughtful initial estimates

for parameters): (]3)(0])(SPc)(0])(sPC)(0)(sPC)(0)(SPC)(0)(ENTER).

9. Compute the first-iteration values for the parameters and plot the

resulting model against the data points: [
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Thefitted curve looks to match the data so well thatitoverlays nearly

all of the data bars!

10.Press(CANCEL]toreturnto theLER=T=2UARE: FIT screen. You’ll
see that the initial parameter values you entered have been replaced

with the computed values, and the standard deviation for the fitted

model has been recomputed.

11. Although you could compute and plot another iteration, ifnecessary,

it’s obviously not necessary herejudging by the plot and the fact that

the computed standard deviation is less than the original measure-

ment error. Instead, accept the current model and use it to compute

the integral: (CANCEL). Result: r 159, H1EH"5%

This value agrees within 1% with the value determined by single

polynomial interpolation on page 145—probably because a polyno-

mial model seems to be an appropriate one for this data set.
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Example: Using [151, compute a least-squaresfitted curve using a model of
your choosing, modifying it if necessary. Assume the measurement

error for all data pointsis 1.75. After finding a good fitting curve, use

it to estimate the definite integral for the data between 0 and 6.

1. Recall the [I31 data matrix to level 1: (a]o)D)S]1)(ENTER).
N

N
n
A
W
w

Enter the column numbers for the independent and dependent vari-

ables, respectively: (1)(ENTER](2)(ENTER.

Enter the estimated measurement error: (1]-]7]5)(ENTER).

Enterthe limits of integration: (&J{})(0) (6)(ENTER).

Begin & IMT4: (then or (§]PREV] as needed) |zik,

In MODEL:, enter a model. The data suggests that a third-degree

polynomial (Ax® + Bx? + Cx + D) or a sine curve (Asin(Bx + C) + D)

may be useful. Try the polynomial: (')o](A)X](e))X)(3)(+)

[ENTER).
In the PARAK: field, enter the list of parameter names used in the

general model: (J(}(eJA)J(SPC)(2]B)(SPC)(@]C)(SPC)(]D)(ENTER].
In the YHLUEZ: field, enter a list of zeroes as initial guesses: (&4]{}

(0](SPC)(0)(sPC)(0)(SPC)(0](ENTER).

Compute and plot the first-iteration:

A

 

 

    2 2 2 . 1. 2 2 2 2 » 2 .

2000 c4.[TERCE]FIW EDIT
 

This time the fitdoesn’t seem very good: the curve touchesjust one-

third of the error-bars and, at least on the left-hand side, seems to be

concave where the data pattern appears convex.
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10.Press (CANCEL) to return to the LER:T=22UARE® FIT screen. Note

that the computed standard deviation is three times the measurement

error—further evidence that you need a betterfit.

At this point, you have three choices: (i) iterate the model a second

time using the first iteration values as a starting point; (ii) input dif-

ferent starting values and recompute a first iteration using the same

model; or (iii) start over with a different model. Experience will be

your best teacher in these cases. This time, choice 3 beckons.

Highlight the MODEL: field and input the general sine curve:

(AX)EN)(@[B)X)(efalX)(H(]c)»)(#)(@[D)[ENTER.
11.Enter zeroes for the values in theYHLUE=: field and compute the first

iteration: (¥)(&J{3)(0)(SPCc)(0](sPC)(0)(SPC)0] (ENTER)il|cHEH.

|

|||T |

EIEII]I.'HEII|

 

 

 

     
Hmmm... a straight line! Perhaps using zeroes as starting values

wasn’t a very good idea. Press and move the cursor around

to get an estimated feel for the amplitude (A), period (21t/B), phase

shift (-C/B), and vertical shift (D). Normally, the sine curve oscil-

lates around the x-axis (y = 0). The sine curve formed by the data

error-bars seem to oscillate around y = 12.5 so D = 12.5. The ampli-

tude (half the distance between trough and peak) = 10. The period

= 4.1 so B = 6.3/4.1 = 1.5. The phase shift = -.6, so C = 0.9.

12.Return to LEA=T-%UAKE® FIT and enter the new set of initial

guesses in WALUEZ: and recompute thefirst iteration: (CANCEL)(¥]

CJ0)J(sPO)1)- JS)(SPC)(- J9)(SPC)[3)(ENTER) B LIS . .
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Now you’re in business! The fit looks to be pretty good, although

there are a couple of data bars that don’t touch the curve.

13.Press to return to the set-up screen and notice that the stan-
dard deviation for the curve is nearly the same as the original meas-

urementerror, further indicating that the model and the fit are good.

You can safely try another iteration using the current values asstart-

ing values, hoping to improve the fit a bit more. PressB

14.The resulting graph doesn’t look much different than the previous

iteration. Press to see that the second one has improved the

standard deviation only slightly. Unless you need very high preci-

sion values for the coefficients ofthe fitting model to achieve high

precision in the integral, you probably have an adequate model with

which to compute the integral and need no furtheriterations. Accept

the model and compute the integral by pressing (CANCEL).

Result: 3%, 3569702539

This differs from the speedy piecewise linear interpolation by less

than 1/20 of a percent!
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Example: Using [I53, compute a least-squares fitted curve using a quadratic
polynomial. Assume the measurementerrorsfor the data points are

as follows: [ 0.2 0.3 0.3 0.4 0.4 0.4 0.3 0.30.20.20.1] (as the

independent variable moves from -5 to 5). Use the best-fitting curve

to estimate the definite integral for the data between -5 and 5.

1. Recall the =3 data matrix to level 1: (o)D)S)3)(ENTER).

Enter the column numbers for the independent and dependent vari-

ables, respectively: (1)(ENTER)(2)(ENTER.

. Enter the estimated measurement errors (as a vector ofindividualer-

rors): (GJTI(-J2)(SPS)(-J3)(EPA)(- J3)(SPC)(- J4)(SPC) J4)(SPC]
[ENTER).

Enter the limits of integration: (&q){3)(5]+/=)(SPC)(5)(ENTER).

Begin & IMT4: (then or (§]PREV) as needed) k]s

 

 

6. InrODEL:, enter the form of the second-degree polynomial (Ax? +

Bx+C): (oAoJaX[Y2])]JaX))CJENTER).
. In the PARAM: field, enter the list of parameter names used in the

general model: (G]{})(]A)(SPC)(eJB)(SPC)(2]C)(ENTER).
 

8. InWALUEZ::, enter zeroes: (&]f3)(0)(SPC)(0])(SPC)(0)(ENTER).

. Compute the first-iteration values for the parameters and plot the
resulting model against the data points:

 

 

-.h.-.- ¥ .{__'x

e ——trt

—

— —
S

el TTTTSTT
    

10.Thefit looks very good. Press to see that the standard devi-

154

ation (.30095) is within the range of the initial measurement errors

(.1to .4). Accept the current model and useit to integrate: (CANCEL).

Result: &%, 3393625484 (3% different than cubic spline, p. 146.)
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Plotting and Solving with Definite Integrals

Although the HP 48 can compute numeric definite integrals in fairly reasonable

amounts of time (assuming that the integrand is continuous over the integration

interval), processes such as plotting and solving that require repeated computa-

tions of the definite integral are very, very slow, even if you set the numerical

precision low (e.g. & FIrord FI®).

For example, plotting the equation, J Lcost dt = x> —4x -2, at default plot

-3

parameters and 3 FIrequires nearly five minutes because the definite integral
must be computed 131 times (once for each horizontal pixel). Similarly, finding
the greatest positive solution to the equation (by moving the cursor near the right-

most intersection and using3[E38) takes another half minute. ISECT,

after all, uses the built-in root finder that must compute the definite integral on

each iteration. If you need more precision than three places, then the time to com-

pute the result increases dramatically.

A speedier alternative to using a definite integral directly in a plotting or solving

context is to compute a Taylor’s polynomial approximation (see page 42) of the

integrand, evaluate the integral symbolically using the approximation instead of

the original integrand, and substitute the result for the integral expression in the

original equation. For this approach to work, the Taylor’s approximation must

converge with the original integrand in the region of the solution.

Example: Plot the equation J —t—cost dt=x>—4x-2, using a 9th-order
LT
2

Taylor’s polynomial to approximate the integrand and evaluating

the modified integral before plotting. Then find the greatest positive

solution to the equation.

1. Entertheintegrand (using anumeric value for 1) and its independent

variable: (1) =2
ENTERI(X)(J(2]T)ENTER).

2. Enter the order and compute the Taylor’s approximation and make

an extra copy ofthe result: (9)(ENTER)JSYMBOLICLE:RdMAENTER).. ..
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Result (to 2 places): 'H. ':":"-"'t "EL el koABPkee’
—2. 237LtBReet

3. Now compute the integral using the Taylor’s polynomialas the inte-

grand: ()][-NUM2]=]SWAP]'[aJ&JXJENTERISWAP)(* Jo)&)
(DENTER(2LEVAL.
Result (to 2 places): ' . HIE—E#™1H-1HI-4, 4FE-4=

I}“HB1+H, Al *#(BB)-H, 16

Cae™berd D4+H,eD™Eer 1=K, 15

4. Enter the right-side of the original equation,setit equalto the prev-

ious result, and store the whole equationin 'EL!" :..

H@X(ealX)E)R)ENTERk)&)PLoT)@E
5. Open the PLOT application, set TYPE: to Fiiri=t. 10and reset

the plot parameters: (4] (v)(ENTER).

6. The equation should already be showing in the E&: field, so simply

adjust the IWDEP: variable and draw the plot: (v]¥)(oJ&q]X)(ENTER)]
EEAZE|DAL]

   

 

 

 

   
7. Thetwo polynomials intersect each other three times. Move the cur-

sor near and to the right of the positive most intersection point and

press k13wl. Result (to 5 places): n: 2.2012B3 
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The accuracy of the result obtained using a Taylor’s polynomial depends on how

well the polynomial approximates the integrand near the solution. As you remem-

ber from Chapter 1 (page 45), you can view the interval of validity for a Taylor’s

approximation using the program FTHYL.

Example: Use FTHYL to determine whether the solution you found in the

previous example falls within the interval ofvalidity for the Taylor’s

approximation you used.

1. Return to the stack, and drop the result of the previous I'5ELCT com-

mand so that the copy of the Taylor’s approximation is on level 1 of

the stack: (CANCEL]CANCEL @

2. Enter the original integrand and independent variable: (']JaJ<&]T]

ENTERJ&) (="JCOS]eJqTIENTER)(X) ("oo)T (ENTER).
3. Enter O (the point around which the approximation was centered)

and 2.20283 (the point being approximated) and launch FTAYL : (0)

ENTER)(2]-2]0)2]8]3)(ENTER)(VAR])(NXT) or ((9JPREV) as needed)

PTRYL}

 

 

TAiITT   
Thus, the result should be quite accurate. Indeed, althoughit takes 10 minutes of

plotting and/or solving to determine, the most positive solution to the equation

when solved directly using the integral expression is x = 2.20282—very good

agreement indeed with the Taylor’s polynomial approximation approach.
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Numerically Estimating Difficult Integrals

Although the HP48 can numerically integrate any definite integral—thatis,it will

eventually arrive at an answer—there are certain kinds of definite integrals that

it finds difficult to compute either quickly or accurately (or both):

* Anintegral whose integrand contains a cusp (or “elbow point”) within the

interval of integration.

* An integral of finite value whose interval of integration is nevertheless

unbounded (i.e. one or both limits are infinite).

e An integral with finite limits whose integrand is undefined at one of those

limits.

* An integral with finite limits whose integrand contains a discontinuity

within the integration interval.

The next few sections describe how to cope with these special kinds of definite

integrals, and they provide a set of programmed tools to use for each situation.
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Segmenting a Definite Integral

Integrands with cusps in the interval ofintegration often require many more sam-

ple points to achieve a given level of accuracy than do other integrands. The best

way to improve the HP 48’s built-in numerical integration routine in such cases

is to segmentthe integral—divideit into two (or more) integrals at the cusp(s).

Example:

. Change IMDEP: to

Plot f(x)= , then use the AREA command in the FCN

menu to compute the definite integral off{x) between the limits —0.8

and 1.6, to six decimal places.

      

. Return to the stack (pressing (CANCEL) a few times), set the display

tobr F I, openthe PLOT application and reset the plot parameters:

(6] (o]@]F]1JX)(ENTER]2JPLOT)(DEL)()(ENTER).
 

. IntheE2: field enter the function: (")MTH)Ed3MN

@IE)H(LaIX)(=)(2)[ENTER).
¢ (lower-case), H=WIEK to—= &, W=YIEW to

—2 16, and draw the plot: (¢J&q)X)ENTER)(2)+/—)[ENTER)(2)[ENTER)

B+/-)ENTERI(1o)EnTER)ARLTTTEE.

  

  

 

     

%,
"u'% +

",o] /
5%.___%_ 1 r

——— .-"'r
— e

Eflflflmfl EDIT

,move the cursor toi: =iBythen

 

i tobegln the area computation. Press (NXT) Rl5}

move to#: 1500000, and (NxT)BTETIT to finish thecom-
putation. Result: HRER: H.240HNL

 

Note that it takes nearly two minutes to compute the definite integral

via the built-in integration routine (used byAREAas well as (=]S)).
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Now, suppose you break the intervalof integration into two subintervals by div-

iding it at the cusp point. Thus,

1.6 1 1.6

|x3+x—2 dx becomes ‘x3+x—2|dx+ |x3+x—2 dx.
-0.8 -0.8 1

Example: Compute the definite integral off{x) between -0.8 and 1.6 using the

segmented version of the integral expression.

1. Return to the stack, enter the integrand (by recalling EL!), and make

an extra copy expression:(CANCELJCANCEL](a]o)EJQ)[ENTERJ(ENTER).

2. Computethe first segment of the integral:

m--
Result: 3. &'24HH

3. Compute the second segmentofthe integral: (SWAPJ1)(ENTER)(SWAP)

(JoJaIX)ENTER)(2] 1)e)=NuM)
Result: H, J654HH

4. Add the segments together: (+). Result: %. &HEHHA

This time it required less than five seconds ofcomputation to get the

same answer returned in the previous example after two minutes!

Furthermore, the segmented result is more accurate—the exact

 

 

 integral is 5303 or 4.2408.

The programs SEGIMT (see page 322) and MSEGIMT (see page 304), written by

William C. Wickes and first published in his book, HP 48 Insights, Part II:

Problem-Solving Resources (and included here with his permission), automate

the process of segmenting a troublesome integral. Both programs take the sym-

bolic, unsegmented integral expression from level 2 and the value of the inde-

pendent variable at which to segmentthe integrand from level 1. SELGIMT returns

the symbolic, segmented integral expression, while M=ELGIMT returns the nu-

meric estimate of the segmented integral.
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If you desire a numerical estimate, M=EGINT will be quicker but using SEGINT
and then pressing allows you to check that the segmentation occurred
as you expected before using it to estimate the integral.

Example: Use both SEGIMT and MSEGINT to segmentthe integral at x = -1,
3

then estimate its value to five places: j |x3 + 1|

-3

1. Set the display mode to = FIi: (5)(a)e]F)1)X)ENTER)

. Now enter the unsegmented integral expression: (€9JEQUATION)()
OFAEFEEEMITEHEEEESXYEEH0)
(>)>))(IX)ENTER)
Enter the point of segmentation:

Make a copyofthe first two stack levels so that you avoid reentering

the arguments: T

. UseSEGINT to symbolically segmentthe integral: (o)(e)(SJE)(G)(1)
or (then or as needed) E13E1l.].

Result: '[i-3, -1, TABSCx"2+10, 20+
JU=1, 2y THES™2+1 0, 220!

6. Evaluate the segmented integral: ((9]~NUM. Result: 13.2329H3

7. Drop the previous result and repeat the computation in a single step
 

usingMSEGTMT: (@)@NS)EG1N)T)[ENTER) or (VAR) (NXT)or

(G)PREV) as needed) FEAH]. Result: 13.239H3
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Improper Integrals: Unbounded Intervals

Normally, definite integrals are defined over a closed and bounded interval—

boundedbecause both limits are finite and closedbecause the integrand is defined

at both limits. An improperintegralis a finite integral over either an unbounded

or open interval. That is, an improper integral has a finite value even when it uses

an infinite number ofapproximating rectangles or an infinitely “tall” approximat-

ing rectangle. In all cases,the first thing to determine when confronted with an

improper integral is whether it converges to a finite value or whetherit diverges

to an infinite value. Only those that converge merit further attention.

You may need to use a variety of analytic techniques to discover whether or not

an improperintegral convergesor diverges. The programs SEFi1, SEFHE, and
SER¥3, described in Chapter 1 (see page 32), may help—butpay attention to the

underlying requirements for the viable use of each test! Remember, too, that the

use of these programs alone may not be sufficient to determine convergence.

Example: Determine whether the following improper integral converges:

J L - dx
A+ x

1. Entertheintegrand andmake acopy: ('1]+[<O]4)+)(eJaXY

ENTER](ENTER).

2. Enterthe independent variable and do a root test: (')(a]éqX)(ENTER

(]SE[R[X]1)JENTER). Result: "Inconclusive"

3. Theroottest is inconclusive, so drop the result string, make another

copy of the integrand, and enter a convergent comparison function,

1/x2, a logical choice: (w)(ENTER)("|1])(=)(oJ)X)(¥(2)(ENTER).

4. Enter the independent variable and apply the limit comparison test

using SERRE: eleIX)ENTER)EJRIXI2)ENTER).
Result (to 5 places): + 617t B,999:H 1 1 1 1 1 2

The comparison function converges and the limit comparison test

converges to a number greater than zero, so you can conclude that

the improper integral converges.
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oo

 Example: Determine whether J. dx converges.
e
xlnx

1. This integrand is difficult to evaluate for convergence. None ofthe

three tests prove conclusive (check, if you wish), so the next most

straightforward trickis to solve the integral symbolically and allow

the independent variable approaches zero. The substitution u =1In x

In oo

(and thus du = dx/x) transforms the integral into J—l— du.
U

Ineo Inoco o0

2. Evaluating it symbolically yields J— du=1q u] = In(In x)]
1 u 1 e

3. Clearly, as x approachesinfinity, the value ofthe integral approaches

infinity—although very slowly. Therefore the improper integral

diverges and is thus actually an impossible integral.

Another option for determining the convergence of an improperintegral is to use

the programLIMT (see page 287). Although CLIIMT shares the inevitable prob-
lem of all programs that approximate infinite limiting behavior using finite nu-

merical algorithms—it fails for some situations—it can give you a fairly reliable

judgement about the convergence of a particular integral. Unlike SEFX3 (the

integraltest), it doesn’t constrain the nature of the integral being tested to those

that are continuous, positive, and decreasing.

COINT takes an integral expression from level 4 that contains a variable name

instead of the problematic limit(i.e. infinite values for unbounded intervals or a-

symptotic values for open intervals, as you’ll see in the next section). It takes the

name of the substitute variable from level 3, the problematic value of the limit

from level 2, and either -1 or 1 from level 1 to indicate whether the limit is being

approached from below (-1) or above (1). Note that you may use the infinity

character, ® (@])1)), to represent infinite limits. LOIMT will return either
"Diverges", "Conuergesx.xxx" (where x.xxx is an approximation of the

value),or "Limit# ssss" (where ssss may be either a numberor an expression

that you can evaluate to see if it converges or diverges at the problematic limit).
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oo

 > dx.Example: Use COIMT to determine the convergence of J 1
x ——

2

1. Enter the integral expression, using a variable name(say, a) instead

of the problematic limit (%in this case): []5)(2)&))(@fa)A)

GEHEOHIaXPIREEHMG)(@JGIX)ENTER).
Enter the name of the substitute variable: ('][aJé&q]A)(ENTER].

Enter the value of the problematic limit: ('o]| )(ENTER).

Enter -1 (the limit is approached from below): ENTER).

Determine convergence using L0 IMNT: (o)o]C)D)1N]T) or

(NxT)or (9JPREV)) [ATEEd. Result: "Corwerges~H, 243"

S
R
W
D

A couple of notes: The value returned by LLIIMT when the integral convergesis

approximate—don’t use it blindly as the value ofthe integral itself. In this partic-

ular case, the integral reduces analytically to 0.5(In 3) = 0.549306144335 and

COINT agrees with it to six places—an unusually good agreement. LLIMT may
take a long time to determine the convergence ofsome integrals. Use it carefully,

as one of your tools—not the only tool—for determining convergence.

Once you have confirmed that a particular integral with infinite limits converges

to a finite value, you can accurately estimate that value by mapping the infinite

interval to a finite interval via a change ofthe variable ofintegration. Suppose,

for example, that J f(x) dx converges. Then, by defining a variable u=tan'(x)

(or x =tan u), you can rewrite the improper integral as f(tan)(d(tanu) ) du.
tan! q du

Notice that the new limits are now finite: tan' a and n/2. This particular change

of variables maps the entire real x-axis onto the finite interval -t/2 < u < /2.

Estimating the definite integral using this transformed version should be quicker

and more accurate and isn’t going to be subject to as much round-off error.
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Two programs are provided to assist you in making the change of variables and

using the transformed integralto estimate the numerical integral.

Thefirst, CHYHR (page 288), based on the program of the same name written by
William C. Wickes in his HP 48 Insights, Vol. II: Problem-Solving Resources,

takes an integral expression from level 2 and an equation defining the new vari-

able from level 1 and returns the transformed expression. The defining equation

should be of the form ' var,= g(var,d)' , Where var_ is the new variable of

integration, vars the old variable of integration, and g the function that relates

them.*

The second, LIEIMT (page 332), uses CHWAE and the u = tan"! (x) transformation

to compute the numerical integral for an integral expression with an unbounded

interval—providing that the integral converges to afinite limit. |JBINT takes the

integral expression from level 1 and returns the estimate to level 1. Note that you

may either use the built-in constant, ' [TH=FE"' (9.9999999999E499)as a stand-in

for infinity or the '' (&)1)) character.

The following examples illustrate the use of CHWHF and UEINT.

1

Example: UselH'AFto transform J 2x(x2 - 1)4 dx to a simpler one, by using

0

the transformation u = x2 - 1.

1. Enter the integral expression: (')(=)7)(0))D&)(2)X)(«)

EXXEO)(LJSXI2EDRYI4l(eX)ENTER).
2. Enter the transformation equation: ('oU)G=)(«])X)T¥(2)

E)ENTER)
3. Perform the change-of-variables transformation: (a]a]CJHJV]AJR]

ENTER) or (then or (& ]PREV) as needed) (#;k:1H.

Result: 'J{—1, 8y 04, 12!

*Note that CH'YAR can be used for any change-of-variable situation—not merely for resolving improper integrals.

Improper Integrals: Unbounded Intervals 165



Example: UselJEINT to estimate the value of the following unbounded inte-
gral (which you’ve already shown to be convergent):

J- L —dx
Atx

1. Enterthe integral expression:

('

[=]5)(0Jq"Lo2D)1=

GO@H(XAJGIX)ENTER).
2. Set the display to STD format and compute the improper integral:

(@]o)S]T)D)(ENTER) ()U)B)1N)T)(ENTER) or (VAR] (NXT) or (&)
(PREV)) MAEHd. Result: . oo29E163292

This compares well with the analytical result: ©t/4=.785398163398.

 

 

Remember that LIEIMT should not be used on improper integrals for which you

haven’t yet determined convergence.

00

 Example: Use IBIMT to estimate the value of J dx (which you have
e
xlnx

already shown to be divergent).

1. Enterthe integral expression: ("[)«Jq]EIa )[o=2D)E)”)

LEHEOXXERINX)G)(@fa)X)ENTER).
2. Compute the improper integral using IEIMNT: [Tk

Result (to 3 places): .o (after a long wait)

Furthermore, the result is misleading since the integral diverges.

Remember to check for convergencefirst before using UEIMT.
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Improper Integrals: Open Intervals

Integrals that have unbounded intervals are improper because they require an

infinite number of approximating rectangles. But integrals whose intervals con-

tain a vertical asymptote are also “improper’ because they require an approximat-

ing rectangle of infinite “height.”

For this second kind of improper integral, you must again first determine whether

or not it converges to a finite value before attempting to estimate that value.

2

Example: Determine whether J-(x - 2)_’25 dx converges.
1

1. Enter the integral expression with the problematic limit (2) replaced

byavariable (say, b): ()GlJelalBla]JGIO[Ja]X]
ROT2G)(@a)X) ENTER).

2. Enter the limit variable and its value: ('|a]¢&q]B](ENTER)(2)(ENTER).

3. Enter-1 (approach limit from below) and use CLITMT:
(@)@)CJD)1NJT)[ENTER). Result: Limit# 3 Itconverges near 3. 

The program UF IMT (page 305) estimates the value of an integral that has a verti-

cal asymptote at one ofits endpoints—i.e. an open interval. Ituses amodified ver-

sion of the built-in integration algorithm designed so that the precise endpoints

are not used in the estimation process. [JF IMT takes the improper integral expres-

sion from level 1 and returns a numerical estimate to level 1.

2

Example: Estimate J(x - 2)_% dx (which you previously found convergent).
1

1. Enter the integral expression: G]0)(v)

CXBEROF-2]=3)a2 )(JGIX)ENTER).
2. Compute the improper integral: (o]o]OJP]1JNJTJ(ENTER)or

(then or (JPREV) as needed) []cHE.

Result: 3  The limit found by LOIMT was exact!

Improper Integrals: Open Intervals 167



When the asymptote falls within the interval of integration (i.e. not on either

endpoint), a potential problem arises. The interval of integration is actually two

open intervals—one “below” the asymptote and one “above” it. For the overall

integral to converge, both subintervals must converge. Usually—but not always

—botheither diverge or converge. When both subintervals converge, JF ITMT will

usually provide an accurate estimate of the overall integral without requiring you

to segmentit first. However,it can fail if it should happen to pick the asymptote

exactly as a test point during its algorithm. To avoid this, segment the integral at

the asymptote and then use [IF IMT to estimate each segment.

Clearly, the safest approach is to segment the integral at the asymptote and treat

each subinterval separately—testing it for convergence, then using LIF IMT to

estimate its value—and, as the last step, total the two estimates. The following

examplesillustrate both the safe and unsafe (though speedy) approaches.

Example: Estimate the following improper integral by plotting the integrand

to determine the location of any asymptotes, segmenting it at the

asymptote, making sure that both segments converge, and then

 

3

1
dx

V3x -1

1. Open the PLOT application, set T¥PE: to FLIri=t. 120, and reset

the plot parameters: (=JPLOT)(a)(e]F)(DEL)(Y)(ENTER).
2. Enter the integrand into the E: field: (v)(")=X*@)(83)E)")

BIX(IaIX)EEENTER)
3. SetlMDEP: to: and draw the plot: (a9XENTER)KISo

using [JF INT to find the value of each segment: J
0

 

 

—_—

  ETTTGT   
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Pressing {#:1;183 EH#%'l and moving across the asymptote shows

that the asymptote is between 0.3 and 0.4. A quick inspection of the

integrand suggests that x = 1/3 (0.333333) is the asymptote.

. Return to the stack and enter the integral expression. Note that for

best accuracy, use the exponential form for roots:

C2D0E)EaDG0)E)XeaXE0MXIEI0)
el [ENTER).

UseSEGIMT to segment the integral at 1/3:

(T)(ENTER).
Separate the two segments and make an extra copy of each:

[EFES STACKNIEETTER.
Determine the convergence ofthe first segment: (SWAP)(&]EDIT)(»)

14354 )B)(&)ENTER)(o](ENTER) (3] (/)
[ENTER).

Result: "Limit: -.493999955"

Determine the convergence of the second segment: ()& ]EDIT)(»)

1) =8
[ENTER).

Result: "Limit: 1.999999995"

   

 

10.Since both segments converge, compute the value of each segment

Example:

with JF IMT and sum the total: («)(a])0)PN)T)ENTER

(o)OJPJIINJT)(ENTER)(+).

Result: 1.7 The exact analytical result, as well.

Estimate dx directly using OF IMT.

3

1

_[)3\/3x—1

. Enter the integral expression, using the exponential form ofthe root

toimproveaccuracy: (J2JS)0Ja[ BIGJGI0EXelalX)
APEOFEERG(@JaIX)ENTER).
Find the integral via IF IMT: (a)a)0)P)1N)T)(ENTER).

Result: 1.5
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Plotting Antiderivatives

In the previous sections, you’ve seen how the HP 48 handlessituations where the

desired result is a real number—representative of the finite area under a specific

curve between two given limits. But the object of an integration may instead be

a specific function or family of functions. This requires the symbolic capabilities

of the HP 48. Considerthis:

Treating the integral of a function (f(x)) as a function itself (g(x)), yields

g(x)= Jf(x)dx and thus, g’(x) = f(x).

Thatis, g is the integral (or antiderivative) offandfis the derivative of g. Notice

that g represents a family of functions because there are any number of functions,

g(x), whose derivative isf{x). For example, iff{x) = 3x* + 2, then any ofthe fol-

lowing are possible antiderivatives:

g(x)=x>+2x-1

g(x)=x’+2x+4

g(x)=x>+2x-9

g(x)=x>+2x+17

Indeed, the general antiderivative here—also known as the indefinite integral—

is x> + 2x + C, where C is any real number.

Believe it or not, the HP 48 can simulate a plot of the indefinite integral! The

Slopefield plot type plots the equation, g'(x) =f(x), by using a set ofx-values and

computing the slope ofthe antiderivative g at each point. It then draws a short line

segment with the computed slope at a given set ofpoints on the y-axis. The Slope-

field plot allows you to visualize from short slope segments the actual set of

functions (i.e. the indefinite integral) for whichf(x) is a derivative.

Example: Draw aslopefield forfix) =3x*+ 2 = g'(x). Use 16 x-values and plot

the computed slope at 12 different spots along the vertical axis.

1. OpenthePLOT application and set the TYPE: tom 1 opet 121d:

()s)
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2. Enterthe function in Ef2:: (w)("[3)(X)(eJX)(¥(2)(+)(2) (ENTER).

3. SetIMOEP: to  (lowercase),S=TEPZ: (INDEP) to 1 &, and=TEPZ:

(DEPND)to 12 (o)X)(ENTER) (1) (6) ENTER) ()(1)ENTER).
4. NowsetW-LEFT to—<, ¥=FIGHT to, then¥-MEAF to— 15, and

¢=FAFto 17: BiEER4)+/)ENTER)(4)ENTER)(1)5[/ENTER)(1)

(5)(ENTER](ENTER).
5. Draw the slopefield plot: [1iE3ITI180.
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You can see the general shape of a cubic polynomial antiderivative

swept out by the slope segments in this plot.

The indefinite integral is a family of functions, as the slopefield plot illustrates.

To specify which particular member of the family solves a given problem,

remember that the family of functions each differ from one another by the value

of the constant, C. If you can specify C, you can specify the function you need.

You can find Cif you know the value of the antiderivative function at at least one

point. This point is usually referred to as the initial condition because it requires

(i.e. “conditions”) the function to pass through it.

Returning to the equation in the previous example (g'(x)=3x* + 2), suppose you

also knew an initial condition, say that g(0) = 3. You can now specify C and thus

g(x)=x+2x+C

= 3
—

a specific antiderivative: %(2)3 (0)"+2(0)+C=3

g(x)=x"+2x+3

Thus, the function x* + 2x + 3 passes through the point (0,3), the initial condition.
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The program AMT I (see page 286) plots the specific antiderivative function

given initial conditions on a general slopefield plot. It uses the function,f(x), on

level 6, a list of the independent and dependent variables on level 5, the plotting

range (as a list) on level 4, the horizontal display range (as a list) on level 3, the

vertical display range (as a list) on level 2, and the initial condition point(s) (as

a complex number—orlist ofcomplex numbers to find more than one antideriva-

tive) on level 1. AMT L& uses EULFLT (page 293), which finds antiderivatives
from initial conditions using the quick (but low-precision*) Euler algorithm.

Example: UseHMT Ito plot the slopefield of the equation g'(x) = 3x* + 2 and

the specific antiderivative corresponding to the initial condition:

g(0)=3. Useaplotting range of -3 <x <3, ahorizontal display range

of -4 < x <4, and a vertical display range of -15 <y < 15.

1. The function: (CANCELJCANCEL] ']3]X]aJ&X]Y*2]+]2)(ENTER).

2. The list of independent and dependent variables: (]})(a]&<)(X)

(@]]Y)(ENTER].

The plotting range (as a list): (&J{3)(3]+/=)(SPC)(3)(ENTER).

The horizontal display range (as alist): (]3]4)+/=)(SPC)(4)[ENTER).

Enter the vertical display range: (&)31]5)+/=)(SPC)(1]5)(ENTER).

Theinitial condition (as a complex no.): (]0)(0)&)(7)(3)(ENTER).

Plot the slopefield and the specific antiderivative using HHT [ &: (@)
(o) (A)J(INJTJ2)DJENTER) or (VAR) (NXT) or ((5]PREV)) [ile HEEY.

 

 

N
v

W

 

 

 

 

  
*For mostsituations, the Euler algorithm generates an adequate plot, but shouldn’t be relied upon for computed

solutions. Instead, use the built -in differential equation solvers, RKF and RRK,that are based upon the fourth-

order Runge-Kutta-Fehlberg method. These are not discussed in this book.
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Indefinite Integrals: Symbolic Antiderivatives

Finding the indefinite integral—the general antiderivative— of a function is a

common task inintegral calculus. Although you can numerically approximate the

integral for a specified interval or use plotting techniques to give you a visual ap-

proximation of either the general or specific antiderivative, sometimes what you

need most is the general antiderivative in symbolic form.

As mentioned on page 132, the HP 48’s built-in capabilities for finding symbolic

antiderivatives are limited to matching patterns from abuilt-inlist (see pages 133-

134). As long as the integral in question can be dealt with using the built-in list,

it’s quite easy to use the integration command—which requires upper and lower

limits—to actually perform an indefinite integration.

Example: Use the built-in integration command to find j(3x2 + p)dx, where

p is an unspecified constant.

1. Atthe stack, purge the independent variable and formal constant, p:

GO(JalX] ENTER) (€)PURG).
2. Enter the integral expression, using any number for the lower limit

and the independent variable name for the upper limit: ('||/

HEXEXEaXPYRDHAPa)X)
3. Evaluatethe integral: (EVAL. The HP 48 finds a match for the inte-

gral and returns the evaluated integral before substituting the limits.

4. Drop the lower limit part of the resulting expression and finish eval-

uating the integral: CLIZET|=0Ed[QQQEN

Result: 'p¥ut+as(w™Eo3) !

 

The program IMUEF (see page 296) helps automate the steps required to compute

an indefinite integral. It doesn’t require that the variable of integration be purged

first. IMLEF can use either of two sets of arguments. The first option takes the

integrand expression from level 2, and the variable of integration from level 1.

The second option takes only an integral expression from level 1. If successful at

finding a complete antiderivative, IMIEF returnsittolevel2 andal tolevel 1,
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indicating success. If IMDEF can’t find a complete antiderivative,it returns either

an unevaluated integral expression or a partial antiderivative to level 2 (using

dummy limits) and a H to level 1, indicating failure. IMLEF is used by several

other programsin this book.

Example: Use IMOEF to find j(3x2 + p)dx.

1. Enter the integrand: J3)(X)(J&aX)X (2)(H)(J)P)ENTER).
Enter the variable of integration: (']aJ¢5]X](ENTER).

3. Now computethe indefinite integral with IMOEF : ()o)1NJDJE)F)

Example:

ENTER) or (then or (G)PREV) as needed) [[F1133.

Result: & 'p¥u+dx(w™a-3)!

1: 1 —a successful match.

dx. 

4+ x*
Use IMOEF to find j

1. Enterthe integrand: (]1)&&GI0@H(efa)X)@H(2)(ENTER)
2.

Example:

174

1.

Enter the variable ofintegration and compute the indefinite integral:

("JoJeX)(ENTER] (@]o]1JNJDJEJF)(ENTER).

Result: & 'JC1, 51-04+2E0, w0t
1: £

IMOEF fails and returns an unevaluated integral expression instead.

dx. 

4+ x*
Use INCEF to find sz .

Enter the integral expression, using arbitrary limits, and compute the

indefinite integral: (*Jo[]o)a(D)(eXN(2)H0)
HEOE@HEEXPIECla)aX)ENTER)[LITER

Result: &F 'se™3o3+01, w21020, 0!

1: H

IMNOEF finds part of the antiderivative and returns the mixed result.
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Expanding the Pattern-Matching Capability

It won’t take you long to find integrands for which the HP48 can’t find a pattern-

match in its built-in list. But you can add other patterns by creating an additional

list that the HP 48 will searchif it fails to find a match in the built-in list.

The approach used in this book to building a supplemental list of integration

patterns is borrowed from William C. Wickes and his book HP 48 Insights, Part

II: Problem-Solving Resources. His 3 programs, ¢ IMT,L IMEAR™ and FLINOF™,

are included here with his permission (thoughL IMEART™ isnamedLIMINT here).

“»IMT (see page 334) is a replacementfor the built-in integration command. It

searches a supplementlist of patterns, named IPHTS,if the built-in command

fails to find a match. LIMIM™ (page 300) and FLIMIFT (page 294) are user-

defined functions that augment the flexibility of the patterns included in IFATS

just as the patterns in the built-in list have been. They are used behind the scene

by AODOPAT as it buildsentries for IPATS.

The program ADDPAT (see page 285) has been added to Wickes’s capable col-
lection to provide a more user-friendly means of adding patterns to IFATS. It

takes nothing from the stack and returns nothing. Instead, it uses an input screen

to prompt for information about the pattern you’re adding, then processes the

information and adds an entry to IFHATSin the proper syntax. Note that IPATS

doesn’t have to exist before using HLIOFAT.

Example: UseHDOPHT to add the following antiderivative patterns to IFATS:

J L dx:ltan"£+C 

a’ + x? a a

Jxexdx =(x—-1)e" +C

1. Begin AOOFAT: (a)o)ADIDIPIA]T) or (then or

as needed) GG..

Expanding the Pattern-Matching Capability 175



 

BADD INTEGRAL PATTERN SRR

EXPE. YAR: =  INMT. YAR:

COMETAMTE:

ENTER INTEGRAMD TO EE MATCHED
BTl11JiRMOL]0K

2. Enter the integrand pattern in the REPLACE: field: ("]1)(5)(&)O)

(AP(DXTI(2)ENTER)
3. Enter the antiderivative pattern to be substituted for the integrand

pattern: J1)(=)(ela)A)X)(ATAN[2JGX)(H)(JGTENTER)
4. The variable used in the patterns and the variable ofintegration is the

   

same—:+, the default. Skip over the third line and enter the list of

constants used in the KEPLHLE: pattern in the COM=THMT:: field:

¥&ao) ENTER).
5. PressB3to add the pattern to IPATS.

6. Repeat steps 2 through 5 for the second pattern. Note that the list of

constants is empty: [eJqIX)(X)&a)eX(Ja)X)ENTER)()]0
(JaXEDEXeJaXETER@OENTER)BT,

7. Return to the stack and inspect IFATS:
(ENTER). The two newest entries begin the list:

L0 "RI=ERPCELY' "CR1-10=EsPrR10!
'LININTCQUOTECEL ), QUOTECTLD D! }

ULA+ LR=HTHNCELR PNOT
FUMNOFPCRLIOTECRZD, TLD H|"-||:| LIMIMTCL||IOTECEL D,
QUOTECTLDDY ¥ 3
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Notice the inclusion of LIMIM™ and FUMOF™ tests in the IFATS list. The
L IMIMNT test allows & IMT to find a pattern that uses a linear function ofthe inde-

pendentvariable instead ofjust the variable itself. FLIMIFT assures that the con-
stants are truly constant and not functions ofthe independent variable—thatis, for

example, that the constant b in an expression doesn’t evaluate to, say, 2x* + 7.

Example: UseHUDMHT to add the following antiderivative patterns to IFHTS:

;dx=cln( = )+C
x(x+d) x+d

cos2ax

4a

 

 sinaxcosaxdx = — +C

o
-

b

xInax
 dx =bln|lnax|+ C o

1. Begin HODOFAT again and add thefirst pattern: ()e]A[DJD)P)A]T)

ENTER(D)(Ja[HEO(eXXGO(a)X)H(«)a]D)
ENTER)(JGIOX(2N(e)XHaO(efa)X) (H(@)D
[ENTER) (W)(&)L(JeaC)(SPC)(oD) (ENTER) i1 o8

2. Addthe second pattern: ('JSINJoJ&oJA)XJGIX)>Ix]cos)a)e)
(AX(JaIX)ENTER) (J+/-JCos) () (X[eJaX)(e)(=)

 

   SO)(@)X)(@)A)ENTER]Y)[JU)(e)eaENTERIHEH.

3. Addthe third pattern: (*)(oJ&o[B)=OJAIXIX2ILN)]
(A) (X (eJa)X] ENTER) (1) (¢]a]B) (X) (2JLN) (MTH) K38 1338
-—.-WEJ--@-
ENTER

4. Return to the stack: (CANCEL).

  

 

Caveat: Before you make a large IFATSlist and useit routinely, bear in mind
that IPAT'S uses available memory and that the speed with which integrals are

evaluated is noticeably lowered if large IFHT=lists must be searched.
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Use 4 INT wherever you would normally usethe built-in (=]F). #IMT takes the
same four arguments,in the same order, as .[: the lower limit from level 4, the

upper limit from level 3, the integrand from level 2, and the variable ofintegration

from level 1. If% IMT finds a match,it returns the partially evaluated integral;if

it fails to find a match,it returns the unevaluated integral expression.

b

dx 
2

Example: Use »IMT to evaluate J
a
4+ x

1. Enterthe limits ofintegration: ('JaJé&q] A)(ENTER)( '[oJ¢<5)BJENTER).

2. Enterthe integrand and variable of integration: ('|1)(=)&]0)

(JeJalX)ENTER).
3. Evaluate the integral with /4 IMT: (o)oXTN]T) or

(NxT) or (&)PREV)) EEIIEEA. Result: '[Jla, by 10+, w0 !

#IMT failed to find a match—even though IFATS contains the relevant pattern

(the first one you entered). Why? Because the pattern-matching is looking for

a™Z and doesn’t recognize 4 as 2. To get 4 IMT to do this integral, you must

L eLan4
a+ x> \a Ja
 use £t or add a modified pattern to IFATS: J

Example: Addthe new patternto IFATSandthen repeatthe previous example.

1. Enter the new pattern: (ooA]DJDJPJAIT)(ENTER)(")(1)(=)(&)O)

(JAAHAIXONRIENTERIC)DEHE)(a)(A)X))ATAN)
(JaXHEJGA)ENTERY)(I(o))[ENTER) B].

2. Return to the stack and enter the limits of integration:

()A)ENTER)()(2J&a B)ENTER).
3. Enterthe integrand and variable of integration: [1)(<)(&]O)(4)(+)

(X(2)ENTER)([TENTER).
4. Evaluate:X]N)T)ENTER) or(VAR)(NXT)or[PREV))EEII:H.

Result: ' 1-T4=ATANCTL-T40 [ CTL=b2-C1-T4=HTANCT
I4210Tl=a)’

5. Now IMT finds a match. Press to complete the evaluation

of the integral. Result: '.2#HTHAMCb-- S*HTHNCa-E0 "
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Example:

b

Use i IMT to evaluate J——z—dx.
a(3x —1)(3x+7)

. Analyze the situation. This integral doesn’t obviously match any of

the integration patterns you added to IPHT'S. However, notice that

the second factor in the denominator can be re-expressed as (3x-

1+8). If you use that form with i IMT, it should match the third pat-

tern you entered—with x represented by its linear function 3x — 1.

. Enter the limits ofintegration: ('JaJé&q]A)[ENTER]('JoJ¢5)BJENTER).

3. Enterthe modified integrand and integration variable: (€9)[EQUATION

Example:

BEI0EEEEEQS®E
("JoJaX](ENTER).
Evaluate the integral with & IMT: (o)o] x TN]T) (EVAL).

Result: 'Z#[MNCC3eb-10-(32b-1+30)-F=NC(3%a-1)~
(3#a-1+8)"

b

Use 1 INT to evaluate Jsin(x +2)cos(x+2)dx.
a

1. Enterthe limits ofintegration: ('JaJ&q]A)ENTER)( 'JoJ¢<5)BJENTER).

Enter the integrand and variable ofintegration: ('JSIN]aJ&X

)X(Cos)(JaIX)(H)(2)ENTER) (JooX) (ENTER).
. Evaluate the integral with #IMNT: (o)o]X]1N)]T)(ENTER).

Result: 'Jia, by SIMO+020050040y 520!

# IMT fails because the relevant pattern contains &%*:¢ while this inte-

gral has only an implied 1 for a. Either explicitly include a 1 in the

integrand—o T MC 1(a20 D=0050 ] # (k2 ) )—or add a pattern
to IFHTYSthat expresses the pattern without a:

COos2x
 Jsinxcosxdxz— +C
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Example: Use #IMT to evaluate J'b 3 dx
(4x+3)In[5(4x+3)]

1. Enterthe limits ofintegration: ('oJ¢&5]A)ENTER]('JaJé)BJENTER).

2. Enterthe integrand and variable ofintegration:[3)(=)JO)&]0)

X¥ED@WX(JaXHE)
("JeJa)X)ENTER).

3. Evaluate the integral with /A IMT: (o)o)X)1)N)T)(ENTER)(EVAL.

Result: '3MCABSCLMCS=04=0+200 01—+

LMCABSCLNCS*=(4#a+3200 0!

Because /4 IMT is an exact replacement for the built-in integral command @),it

can be substituted for[ in any program to extend the program’s pattern-matching

capabilities to the supplemental IFHTSlist. Theprogram: IMLEF (see page 333)

is included here as an example. It differs from IMOEF only in that the | command

has been replaced by #IMNT and INOEF by HIMOEF .

Example: Use #IMOEF to compute Jsin3xcos3xdx.

1. Enterthe integrand: JSINJ(3)(X)(Ja)X]()(x)(cos)(3)X)(eJ&)X]
[ENTER).

2. Enter the variable of integration: (']oJ&]X)(ENTER).

3. Compute the indefinite integral using# IMLIEF : (o)o)XTN]D)JEJF)
or (then or as needed) HIEIT.

Result: ¢ 'COSEEE<12

1: 1

You can continue this process ofextending the symbolic capabilities to other pro-

grams,replacing IMOEF with ¥ IMOEF in programs such as JFIMT, UEINT,

LCOINT, or IPARETS;these programs will then search IFHTSas well as the built-

in list for matches for integrands. Keep in mind, of course, that extending the

search may also slow down the performance of the programs.
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Modifying the Function being Integrated

As you were trying to produce integrands that the steadfast-but-not-too-bright

pattern-matcher used by the HP 48 could recognize, no doubtit occurred to you

one of the most important tricks to successful symbolic integration is modifying

the integrand so that it’s easier to use.

There are several kinds of modifications that are quite useful:

» Change ofVariables: Making an easier integrand by substituting one vari-

able for another.

» Integration by Parts: Simplifying an integrand by dividing it into more

convenient parts.

» Partial Fractions: Converting a complicated rational fraction integrand

into a series of simpler rational fractions that are easily integrated.

The next three sections illustrate these methods of simplifying integrands.

Substitution: Change of Variables

Finding the antiderivative ofa function is a matter ofrecognizing that the function

is aderivative of some other function. Ofcourse, derivatives are often formed via

the chain rule—asthe result of a composition of functions. The method ofsubsti-

tution (also known as the change-of-variables method) is a technique that allows

you to recognize derivatives produced by the chain rule and thus to find their

antiderivatives. It is a kind of “chain-rule for integration”that asks that you look

at an integrand as potentially containing a composition of two functions.

Notice that the derivative ofa composite function yields an expression containing

both the “inside” function (g) and its derivative (g"): di f(g(x))=r"(g(x))g’(x).
x

Thus, whenever you spot an “inside” function—such as one raised to a power, one

in the denominator of arational fraction, or one used as an argument of a transcen-

dental function—you have a potential candidate for the method of substitution.
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The method of substitution works as follows:

1. Choose a candidate for the “inside” function and set it equal to a new vari-

able, i.e. let u = g(x).

2. Compute the derivative of the “inside” function, i.e. find du = g'(x) dx.

du
’

3. Substitute u for g(x) and for dx in the original integrand.

4. Algebraically rearrange the integrand so that the original variable (x or dx)

doesn’t appear, only the new variable (u or du). Note that you may be able

to replace remaining appearances ofx with their equivalents in terms of u,

using the original relationship from step 1. If you are unable to do this, go

back to the beginning and try a different candidate function for u.

5. Integrate the new integrand using u as the variable of integration.

6. Substitute g(x) for u in the evaluated integral and simplify, if necessary.

7. Check the solution by differentiating it and comparing it to the original

integrand.

The easiest way to use the method of substitution to find a symbolic antiderivative

on your HP 48 is to use CH''AF and IMNOEF, described in earlier sections (pages

165 and 132, respectively). CHVAEcreates the modified integral; IMOEF findsits

antiderivative. Of course, in order to be successful, the modified integral must

match oneof the built-in integral patterns(or,if you use /4 IMIEF instead, one of

the integral patternsstored in the IFHTlist).

2

dx. 
3

Example: Use the method of substitution to find j s
X

1. Entertheintegral expression, using dummy limits:

G(JaB)G)(JaXY2EHEI0
>)&al] (Ja)X)ENTER).

2. Choose a transformation equation. The denominator factor, x> + 5,

seems a good candidate because its derivative is the same order as

the remaining factors. Enterthe transformation equation: 'aJ¢&]

DIQXPIE)H(E)ENTER).
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Example:

. Perform the substitution using CHWHE: (@)@CRV]A[R)([ENTER).

Result: ' J{o+a™2, S+b™2, L 2222323333330, ) !

The integrand has been greatly simplified. At this point, you can

either use IMOEF (for symbolic integrations) or (§)=NUM) (for nu-

meric integrations). Since you require symbolic results in this case,

execute IMLUEF : (@)«T\N(DJE)F)(ENTER)(«).

Result: '. 3333233333232Ny

: Resubstltutetheongmalexpression:--E

 

This 81mp11fies to the original integrand, thusconfirmingthe result.

Use the method of substitution to find Jx\/ a’ +b*x? dx.

. Enterthe integral with dummy limits:[)(eJa)C)e)7)(e¢]a)

(D&))JaXXEG0(ea]AYIRHB
(JQXOIR(JaX)ENTER).
Choose a transformation equation: u=a?+ b*?. Enterit: (*)(a)(&)

VaEalAXYRHABIXGIX)O(2)ENTER).
. Perform the substitution using CHYHE: (o)CH)V]A[R)(ENTER).

Result: ' [ILE™E#-™E+a™, bsd™+a™,

oluER™-, 0!

. Execute IMOEF: (oo1)N]D)JEJF)ENTER)(«).

5. Re-substitute: (]U)(efa)U)(EPC)(J(ela]A)Y2]+JeBIY)

  

(2]X[]X)Y*2]ENTER)(&)(SYMBOLIC)(NXT) kil kis 0B (#).

Result: '.S#(F#0g™+h™a2Slsp™-2t

Check nma. ENTER mm.m.m ENTER@SYMBOLIC

L REEtER™E1™ S%w ' The original integrand.
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Example:

L.

Example:

Use the method of substitution to find Jx cos(x?)dx.

Enter the integral with dummylimits: ('J2)(J)(eJa[A)e)(@)—)

BIa(&JaXX)Cos) (@alX)@(G(ea)X]ENTER).
. Choose atransformation equation: u=x2. Enterit: (")(a)&)U)q]=)

(Ja]X] ENTER).

Perform the substitution using CHYAR: (o))CH)V]AIR)(ENTER).

Result: 'J{a™s, b, W 2#C05 000, u)!

Use INUEF: (oo1INJDJEJF)ENTER)(®). Result: ' .5IMiL)!
 

. Substitute: (]aJGUISPC]'oX]Y2 JENTER]&)(SYMBOLIC)

aiwliil(«). Result: '.IESIMCw™E0
 

. Check that: ("]aJ&X)(ENTER)(o]@)FJDJEJR]ENTER)(&)(SYMBOLIC)

Wi[We] Result: 'COSCw™F )1+ The original integrand.

dx. Use the method of substitution to find J‘ 1
X

. Enterthe integral, with dummy limits:|Jqa7)(«Jq)

BIaaXHEODEaXB0ME](JS)XIENTER)
. Choose a transformation equation: u=x+ 1. Enter the equation: (')

(JalYa)=)(aX)HOENTER)
. Perform the substitution using CHYHE: (][RV]A[R)[ENTER).

Result: 'JC1+a, 1+b, C=1+d-1, )

4. Execute IMIEF: (o)1N)DJE)F)ENTER)(®). Result: '—LM{ul+y'

184

 
 

Substitute: ()}aJaUJSPC]'[aJeX)(+)(1)ENTER)&)(SYMBOLIC)

fHulil(«). Result: '—LMCu+11+0u+10"

Check: JoJ&X)(ENTER)(«) FJD)JE)JRJENTER)(€4)SYMBOLIC)
(7. ' 1-INVO+

That may not look like the original integrand, but a little algebra will

show the equivalence:

1(DA+x)-1A) 1+x-1_ «x

1+x I+x o l+x x+1

 

1-  
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Integration by Parts

The method of substitution helps to integrate derivatives produced by the chain

rule. By contrast, integration byparts helps with derivatives producedby the pro-

duct rule. This method should be considered wheneverthe integrand is the pro-

duct of two functions where at least one of them is easy to integrate:*

jf(X)g(x)dx

The integration by parts method requires that you make two substitutions: First,

let the more difficult-to-integrate function be u =f(x). Then you let the easy-to-

integrate function be the derivative of v: dv = g(x) dx. After those substitutions,

the integralis ju dv, so you can use the “by-parts” formula Judv=uv— j vdu

The integration by parts method works as follows:

1. Define u and dv by making the appropriate substitutions described above.

2. Compute the derivative of u: du =f(x) dx

3. Compute v: v= Jg(x)dx

4. Compute uy — J vdu, using the expressions for u, v, and du you’ve defined

and computed. Ifthe integral in this expression is no easier to compute than

the original, go back to step 1 and separate the original differently.

5. Check your answer by differentiating the result and comparing it with the

original integrand.

*Actually, the method of integration by parts can be used for any integrand,f(x), by assuming that it’s multiplied

by a function, g(x) = 1, although this trick won’t be helpful in all cases.
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The program IFARTS (see page 299) automatesthe integration by parts method
by managing the substitutions and computations. It takes the u-expression from

level 3, the dv-expression (without the dx-term, which is always implied) from

level 2, and the variable of integration from level 1. It returns either a fully eval-

uated expression containing the constant ''; a partially evaluated expression

where v was computed but Jv du was not; or a completely unevaluated expres-

sion where not even v was computable. In this last case, repeating the procedure

using a different u and dv may help. In the partially evaluated case, you may be

able to further the computation by using IFHETS (or other methods) with the
unevaluated integral portion ofthe result. The examples below illustrate each of

the possible results.

Example: Use integration by parts to evaluate Jxex dx.

1. Define u and dv. Whenever¢* is a likely option as one of the parts,

it’s good to define it (with dx, of course) as dv because it is its own

integral. So, in this case, let u = x and dv = e*dx.

Enter u: (']aJ&X)(ENTER).

Enter dv (the dx-term is implied): (aJ&]X)(ENTER).

Enter the variable of integration: (']aJ¢5]X)(ENTER).

Compute the integral via integration by parts: (o]o]|JPJAJR]TJS]

([ENTER) or (VAR) (NXT) or ((5]PREV] as needed) {1d;1:H.

Result: 'ErFL)#m-EnF)+

o
A

»
D

 

 

Example: Just out of curiosity, repeat the previous example, but swap the de-

finitions of u and dv: This time let u = e*and dv = x dx.

1. Enter u and dv: J&)eX)(oJGIX)ENTER); [JJGIX)ENTER).
2. Enter the variable of integration: (ENTER).

3. Go: 1JPJAIR]T)S)ENTER) or(VAR)(NXT)or[PREV))[TlH.

Result: ' D#ERF()™E=T01, vy L 2¥ERF)™,) !

This result is more complicated than what you started with! Clearly,

it is extremely important that you define u and dv properly.
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Example: Use integration by parts to evaluate Jln(—x) dx.

1. Define uanddv. Inthisintegrand there appears to be only one factor.

Ofcourse, you can always assume a 1 as the second factor. If you

use the “one-trick,” always assign it to dv. Thus, let u =1n (-x) and

dv =1dx.

Enter u: ('|o|LN (a)&]X])(ENTER).

Enter dv (without the dx-term, which is implied): (1](ENTER].

Enter the variable of integration: (']aJ¢5]X)(ENTER).

Compute the integral via integration by parts: (o]|JPJA]R]T]S]

ENTER) or (then or (§JPREV) as needed) flailiR

Result: 'LMC—u)#-+l

N
k

»
w
n

Example: Use integration by parts to evaluate JxSedx

1. Define u and dv. In this integrand the natural break appears to be

Xbetweenx’and e™, bute™ isn’tan easy-to-integrate function like

e* (at least, for the HP 48). So let u = ¢™and dv = x*dx.

Enter u: JpJeX)(+/-)(oJa)X)(>I(3)(ENTER)
Enter dv (the dx-term is implied): JoJ&)X)*)(5)(ENTER).

Enter the variable of integration: JoJ&q)X](ENTER).

Computethe integral using integration by parts:
(ENTER) or (VAR) (NXT) or («5)PREV)) Il1l

Result: '. lBBEEEEEEAESERFC—w™2)€™0—

T 1, sy =0 SHEHEEHEEE] <ERP T-320™30, w2 !

L
A
W

 

The method failed to compute the integral; there is still an unevaluated integral

expression in the result. If only it were e* instead of e...
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Example: Repeatthe previous example, transforming the integral using w=-x>

before applying the integration-by-parts technique.

. Entertheintegral expression, using dummy limits: ('[]S(@&A

G)eaBa)[JaXIEX[+(Lalx)@HE)
P&J(ea]X]ENTER)

. Enterthe transformation equation: (")(aJ&)=)+/=)(eJa]X)

(I(3)(ENTER)
. Transform the integral, using CHYAR: (a)o]C)HV]A[R)ENTER).

Result (to2 places): ' J{—a™d, —b™3, —(H,23— *1, Hi=
EesP il Dy

Now define u and dv. Let u = w/3 (a simplification of —(%(—w)1 ))

and dv = e¥dw.

5. Enter u and dv: ("o]W)(=)(3)[ENTER) (")) eX)(a)&W)(ENTER).

6. Enter the variable of integration: ('JaJ¢q]WJENTER).

7. Apply integration by parts: (o]o)(1]PJAJRITJS])(ENTER.

Result: 'H, 33xERPCu)=-8, 223%EAF Q)+!

Substitute for the transformation variable: (G]{})(aJ&JW)(SPC)(")
(+/9)()X)) (3)(ENTER)(&7SYMBOLIC)(NXT) Bsl il § ().

Result: 'H. 33%EsF-30=3-H, 30sEsF(-3)+

Checkthe resultby differentiation: ('JoJ&qX (a]o]F]DJE]R]

(ENTER)(&o)(SYMBOLICLH 1| Huj§.

Result: '1.HB*ERPT—2"*30%2*5"  The original integrand!

 

The previous example illustrates how much more useful the separate techniques

of integration can be when used in combination with one another. But everything

still depends on you, though,to sniff out the best options.
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If the HP48 can’t find an exact antiderivative for an integrand,it resorts to numer-

ical approximation, but then the exact symbolic result may get “lost” due to the

machine’s limited precision. Integration by parts helps find an “exact” answer.

1

Example: Compute the value of sze‘ dx, first using the built-in numerical
0

integration routine, then using IFARTS.

1. Enteritin=TLdisplay mode: (o]STD)ENTER)([=2(0)&))

HaeaXYYXaledalX)a)(eJa)X)ENTER).
2. Estimate its numeric value: §5)>NUM). Result: . r IH¥31825459

3. Defineandenter u and dv. Letu=x?and dv=e*dx. Note that, because
™yyou want the exact answer, use ' ™'not 'ExF'L] : (De)q)X)

(2ENTER)))(@JeaX)[ENTER).
4. Enterthe variable of integration and execute IFARTS: (o)X

[ENTER)[PYAIRIT)S)ENTER)
Result: ' IMWCLMCE ) Jentea™s

=T 0L, wEoLMedenga, v !

5. Once you realize that the term In(e) = 1, the integral expression

remaining in the previous result looks to be a good candidate for an-

other integration by parts. Separate the evaluated from the uneval-

uated in the previous result: CLIST|DEJ*[QQETAS!

6. For the unevaluated part, define and enter u and dv. Letu=2x and

dv = e* dx: (J(2]x]oJa)X] ENTER)o)E)(o)X)ENTER)
7. Enter the variable of integration and execute [FARTS: (D)X

(]PYATRITIS)E
Result: '&<LME ) #ueatu—rLH'elEle™eLMle ) )+

8. Subtract this result from the evaluated portion ofthe previous result,

replace In(e) with 1, make an extra copy of the result, and find the

integral by substituting the limits for x: (=)&1[LN)(«J<)(E)

(>)>)(1)(ENTER)&)(SYMBOLICINXT ka1 B8l (#) ENTER)(1)T(X)
(STOJEVAL)(SWAP)(0])(*JoJ&a)X]([STO)EVAL)()&a)(SYmBOLIC)oB55§
Result: '—+&' —the exact result!
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Partial Fractions

A third method for resolving symbolic integrals pertains to any integrand that is,

or can be re-expressed as, a rationalfraction—the quotient of two polynomials.

The technique ofpartialfractions converts the rational fraction integrand into a

Bx+C
k o 2

(x+7) (x +sx+t)

quantity x?+ sx + ¢ cannot be factored into linear terms with real coefficients. Here

are some examples to illustrate the results ofpartialfraction expansion:

 polynomial plus a series of terms such as =, where the

 

 

   

111
x*—4 4x-8 4x+8

3x*+ x> +20x* +3x+31 _ 2 X 1

(x+l)(x2+4)2 x+1 x*+4 (x2+4)2

+2 1 3
—— =X +x- +

x°—1 2x+2 2x-2

The practical details of using the method of partial fractions to compute the

integral of a rational fraction, f(x)/g(x), can be divided into four stages:

1. Make sure that the degree off(x) is less than the degree ofg(x). If not, then

divide g(x) intof{x) first, keep track of the quotient, but use the remainder

ofthis division as yourstarting rational fraction for purposes of expansion.

2. Factor the denominator (g(x)) into real, irreduciblepolynomials ofdegree

2 or smaller. Any polynomial with real coefficients can be expressed as a

product of real linear and quadratic factors (though it would be difficult to

perform the factorization in practice).

3. Compute the partialfraction expansion. This includes using the factoriza-

tion ofstep 2 to determine the denominators of the terms of the expansion

and the calculation of the coefficients in the numerators.

4. Findtheintegral ofthepartialfraction expansion. Each term ofthe expan-

sion series will fit one of these four types with their symbolic integration

patterns:
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A
 dx =Aln|x-r|+C

 

Jx-r
o 1-k

A=ACTD6 fork#0,1
J (x=r) 1-k

—2Ax+Bdxzé(ln|x2+sx+t')+——2B_As tan'l(———2x+sj+C
J x*+sx+t 2 4t — s* Va4t —s?

) 1-k
Ax+ B A(x +sx+t)

_—_— x_—_—._.__.__.—

. (x2+sx+t)k 2-2k

 

2%-3 g _
+2%2(2B - As)(41 - §° )O'S—k cos  Osin6 + 2k =3 cos’*"* 0do

2k—2 2k—-2

where k #0,1 and 0 =tan™(fl)
N4t — s*

Note that the last of these four types has a multiple quadratic in the denominator,

which uses a reduction formula in its symbolic result, so you must repeatedly

evaluate the remaining integral term until it is Jcoso 6d0, which is 6 +C.

Using the HP48 for the method ofpartial fractions requires a set ofprograms. The

program FFEAL (page 311) takes the symbolic rational fraction from level 1 and

returns its symbolic partial fraction expansion to level 1. FFEHLC converts the

symbolic numerator and denominators to single polynomials, which it then fac-

tors via FFHCT. Next, it computes the numerator coefficients and finally returns
a list of the symbolic expanded terms.

FFFAL endsits work at the end ofstage 3, allowing you then to choose your fav-

orite approach to integration to complete the project. FFFEHLrelies on a number

of other polynomial programs (see page 76 for a brief description of these). In

addition, FFEHLrelies on the program 5+FF to convert a symbolic rationalfrac-

tion to a polynomial numerator and denominator. You can use any of these com-

ponent programs independently, of course (see the program listings in the appen-

dix for syntax details).
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Example:

Example:

 

5

Find J x > T ? dx , using the method of partial fractions.
x —

. Enterthe integrand, a rational fraction, symbolically: (€5)(EQUATION

@JGXPIEEHREX2EOENTER.
Compute the partial fraction expansion using FFFHL:

or (then or as needed) [N,
Result: © 'w*Sw’ 120800-100" 1=l02%0t10000 &

. Because each of the factors in the list is one offirst two kinds, they

should be able to be matched by the built-in pattern-matching inte-

grationroutine. Combine the three factors into a single symbolic ex-

pression—the expanded integrand: (EVAL)(+]+).

Enter the variable ofintegration, make a copy and purge it, and com-

pute the integral using IMUEF: ("))&5)X)(ENTER)ENTER)«JPURG)

(oo]TINJDJE)F)(ENTER) («) (&)SYMBOLIC) [tHsj .

Result: ' 1. 5%CLMC=1+w)= SlNC 1+)+, Dew™E+ 20%ng !

 

2

Find sz—-'_s;dx, using the methodofpartial fractions.
x(x-1)

. Enter the integrand in its symbolic form: (¢&5]EQUATION)(a)(2])(a)(&)

XMHE0HaXXGOlaX OW3(@)
[ENTER).

. Computethe partial fraction expansion, using FFFAL:

ENTER)or (then or (§JPREV) as needed) |da;18

Result: © 'SoCw=1022" "=01-0w=120" "ot 3

. Combine the three factors into the expanded integrand: (EVAL)(+]+).

4. Enter the variable of integration and find the integral using IMLIEF:

192

UalalX (@]o1[NJDJEIF)(ENTER)(#).
Result: 'F#LMIw)—LNCw—10+0%- TN(w10
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Example:  
4 3 2

Find J 3x +x” +20x +3x+31 dx, using partial fractions.
(x +1)(x* +4)

. Entertheintegrand inits symbolic form: (&5 JEQUATION)(A)(3]@])X]

)HJeQXPHE)P)HER)PFSXYIEHECE)
VGOESXHEHMEOEaXIRHE

PIRIENTER).
Compute the partial fraction expansion using FFFEHL:

ENTER)
Result: L '/(1)1 =102+00201 T(0™Z2440 1 3

Though there are some quadratic terms (types 3 and 4) that the built-

in routine may not be able to match, proceed as before—combining

the factors into the expanded integrand: (EVAL)(+]+).

Enterthe variable ofintegration and find the integral via IMOEF: (1)

())(XIENTER) (@[]INJDIEJF)(ENTER)(«).
Result: 'Z*LMCs+11+101, sy sU™2)=(G402)2, 2 !

IMNOEF returns a partially evaluated solution. To complete the solu-
tion, you must either use the formulas given on page 191, use some

combination ofother integration techniques (substitution or integra-

tion by parts) or includethe relevant patterns in IFATS viaHOOPAT
(see page 175 for details), using 1 IMOEF instead of IMOEF for the

ensuing integration.

. Using the appropriate formula for the first of the two problematic

terms (type 3),letA=1,B=0,5s=0,and t = 4:

 J 2):_4dx=—;—ln|x2 +4/+C
x

6. Using the appropriate formula for the second of the two problematic

J
7. All together: 2In|x +1|+ —;—lnlx2 + 4‘3

Partial Fractions

(x2+4) 8 16 8(x*+4)16

terms (type 4),letA=0,B=1,5s=0,t=4,and k= 2.

1 1 1 X 1
dx =—cosOsin@+—0+C= (tan™' %)+ C

x 1 x
——tan" =+ C

(x*+4) 16 2
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Measuring with Integrals

In many situations, a quantity can be expressed as a constant multiplied by the

length of an interval. A rectangular area is its constant height multiplied by its

length; the work applied to an object is a constant force times the distance the

object moved; the distance an object travels at constant velocity is that constant

velocity times the length of time it travelled. But in any of these cases, if the

“constant” is not constant, but instead varies as a continuous function over the

interval, then the definite integral is the appropriate computational tool. It allows

you to “multiply” a functional variable by a fixed interval.

Thus, definite integrals provide a means of measuring the net effect of functional

quantity over a given interval. Sometimes, this net effect is an area (the base

definition of the definite integral); sometimes it is a volume, or length of a curve,

or an average value of a function within a given interval, a probability, or some

other physical measurement such as work, distance, or fluid pressure. Each ofthe

sections in this chapter covers one of these applications.

Area Between Two Curves

The integralis used to find the area of the region delineated by an interval and

bounded by two functions. Often one ofthe functions isf{x) = 0—thex-axis—and

the integral becomes the area of the region “under the curve”as discussed earlier.

In general,to find the area between two non-zero functions that don’t intersect

within the interval, you can simply subtract the integral of the “smaller” function

from that ofthe “larger.” Ofcourse, you should plot the two functionsfirst so that

you know how they interact.

Example: Find the area bounded by the graphs ofy = x* and y = x*between the

limits of 0 and 1.

1. Openthe PLOT application,set the T¥PE: toFr=t. 1.0, and re-

set the plot parameters: (—PLOT)(a)(o]F)(DEL)(V)(ENTER).

2. Entera list containing the two functions in the E: field: (v)&J{3

(JelalXIYE))eI(4)(ENTER).
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. With the cursor near the widest portion ofthe crescent, press {11183

3. SetIMOEP: to = (lower-case), H=-WIEK: to—« 3 1, and ¥-WIEH
 

to—« = 1: ()X)ENTER)(-J3)+/-)ENTERENTER(-[2)(*/-)
[ENTER) (1) ENTER).

. Draw the plot: 110THTRE.

 

 

g   TRIFERETEER EEE
 

 

] VEEW]to see which curve is which. Result: The upper curve is x°.

. Return to the PLOT screen and enter x*— x* into Ef:: (CANCEL)(v)(")

(XYHX4ENTER)
. Check HUTO=CHLE, but leave the other plot parameters as they are

and redraw the plot: (v)<)(+/=)IEATIEE.

 

 

L 2 rma™l 2 2 2 2 . . 1

—
.I.I. .

ETAATS
    

. Compute the area underthis curve (it’s the same area as between the

two original curve). Move the cursor to x = 0 (the y-axis) and press

ISATto mark the lower limit ofthe computation. Movethe

cursor to x = 1 (the right-most column of the display), then press

to mark the upper limit and initiate the integration.

Result: HREHR: .05
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Often, before computing the area of a region bounded by two functions,fand g,

you may need to compute the intersection points, which represent the interval lim-

its, a and b, ofthe integration. Also,if the functions intersect within the integra-

b

tion interval, the area can be computed by the integral J |f(x)—g(x)|dx.

Example:

1.

Area Between Two Curves

Find the area bounded by the graphs of y =e and y=x>—x+1.

Return to the PLOT application and enter a list containing the two

functions in the Ei¥: field: (CANCEL)(A) (&JU})

ROeaXPIE)EXBOENTER.
SetH-WEM: —1. 2 1.3 and¥-WIEH—. 52.
(1=J3)+/-)(eNTER)-[ENTER) ()[5)(+/=) (ENTER] (2] (ENTER).
Draw the plot: [IiE3 [THiTR1.

 

 

 

 1 i i } } i I i } i } $ }

ET ][TTT[T  
 

Note that the bounded area falls into two regions delineated by the

three points of intersection of the two curves. Determine the three

points of intersection. Move the cursor near the left-hand intersec-

tion point and press il d.8 § IE38l. Then move the cursor near the

middle intersection point and press [E1. Finally move the

cursornear the right-hand intersection point and pressEI1.

After each ISELT, the computed point is displayed (as a complex
number) in the lower left portion ofthe plot. Press

to return to the stack to see the three intersection points.

 

Result (to 6 places): 2% [-=ect: (-1.F766E3E, . 195968)

o [-zect: (H, 1)
13 I-sect: (676228, .63306R)
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6. Create the integral expression for the area computation using sym-

bolic limits: (*aJ&A)ENTER)()(e&B)ENTER)(«f@]EJQ)(ENTER]
EvAal(5) VECTR|RES(@EOERENER0)

Result: 'JCa, by ABSCESP=21=t=e100, w0 !

  

7. Store the x-value of the left-most intersection pointin ' @' and that

  ofthe right-mostintersection pointin' bi' : (SWAP CHPL

   T(@)(a)E) BTVENU) BEETT(«)
(JaJa)A)(sTO)

8. Enter the x-value of the middle intersection point as the segmenta-

tion point and use MSEGIMT to compute the area: (0)ENTER)(a)

<)

(NISTEIGIINIT)(ENTER) Result: . 5901 9EHETETS

If the curve(s) you’re trying to integrate are vertically oriented, such as x =f(y),

then you must integrate with respect to the y-axis, using a vertical interval.

Example:

198

Find the area bounded by the graphs of x = y* and x = 2y* + y*> — 2y.

y =2y +y* -2y
. Compute theintersectionpoints: 0=y’ + y* =2y =y(y—1)(y +2)

y=1{-2,0,1}

Enter the integral expression (with respect to y) using the smallest

and largest intersection point y-values as the lower and upper limits

respectively: ()(7)F=2)Q)D&mTHHSEBT

(JANEEHEOEXSTHISQN2=
XG>l(@lY)ENTER).

. Using y-value of the middle intersection point as the segmentation

point, compute the area viaM=EINT: (0)[ENTER)(a)) (1)

(ENTER). Result: 3. H3FZ3453404

Ifyou rationalize thisresult (using & F I+[! orthe program *[IC),

you’ll see that the resultis ' 3¢1" .
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Area Bounded by Polar Functions

Functions presented in polar coordinates are integrated just as rectangular func-

tions, but instead of using rectangles as approximations, polar integration uses

circular sectors (i.e. “‘pie slices”). A given polar function, r(8), is integrated by

b

computing %J r*(0)d. However, integrating polar functions presents a chal-

lenge not found with rectangular functions. Polar functions areperiodic and thus

“sweep” outthe same arearepeatedly. So you mustkeep a sharp eye on your limits

of integration to be sure that you’re computing only one period and no more.

Example: Find the total area enclosed by r = 7(cos 6 —1).

1. Plotthe function to determineits periodicity. OpenPLOT, set TYPE:
toF'21 1 31~ andreset the parameters: (=]PLOT)(a)(+/=)(DEL]Y|ENTER).

2. ThefunctioninE: (W)J&[mX[&)OJcose=]FI»=]1)ENTER).

3. SetIMDEP: toHH-VIEto—1H 18, and¥=YIEK to -3 3. In
PLOT OPTIOMS, setLO: toE andHI: to= . 25 (21), then plot: (o)
(=]FJENTER]1)0J+/=]ENTER]1)JENTER]™)(5[+/—)([ENTER](5JENTER)

1]l(>(o) (ENTER] (8]-2]8] FTEAMTTTEL

 

 

  

 

  

 

 

   
s

PAST
4. Atthe stack, enter the appropriate integral: (CANCELJCANCEL] ']-5]

XelJbDRIXEMEEI0EMXEI0)Cos)(¢)
EPEEEEHEMIEIGLIIR(F)ENTER).

5. Evaluate: ((§)>NUM). Result: 46.5H94156HZEHS A
.. . : . T

This is numerically approximate to the analytical answer,-
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Just as with rectangular curves, you can find the areaboundedby two polar curves

b

(r,and r,) and two values of 6, a and b, by this formula: %J |,.12 (0)-r (9)’619

Example: Find the area of the region bounded by r = ¢®and r = @between 6=

0 and 6= r. Plot the two curves first to visualize the problem.

1. Open the PLOT application and reset the plot parameters: (—JPLOT)

[CEL)(W)(ENTER)
2. Enter the two curves as a list in the Ef#: field: (GJ{"))e¥(«]>)

E)IDIF)ENTER)
3. SetIMDOEP: to B, H=MEK to—=2 2, "=MEk to—2 1K, and

inthe PLOT OPTIOME screen, LO: E andHI: = 175 (=m). Thenre-
turn to the main PLOT screen and draw the plot:

(5)(/-)(ENTER](SENTER)(>)(5+/=)(ENTER)( 1|ENTER)st= (>)(0)
ENTER) (3]J1)(5)EnTER) ENTER)[EEEITATER.

 

 

 

 

 

 L]EETRRN W   
4. Return to the stack ((CANCELJCANCEL)) to compute the area of the

“beaked” region between the curves. Note that the curve r = e%is al-

ways greater than r = 6, so you needn’t use the absolute value when

entering the integral: (]IREDLEDEHEDEE
FARERPNFHOEHFEEDRDETER.

5. Evaluate: ([EVALJEVAL)....(The HP 48 matchesthis integral!)

Result: '.S#(—(p*330+ERP(E#n-0
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Volume

Just as the area under a curve is approximated by summing a sequence of vertical

“strips” of very small width, so the volume of a region in space is approximated

by summing a sequence ofcross-sectionalslices ofvery small depth. Ineach case,

the integral is the limit of the summation as the width of the strip or the depth of

the slice approaches zero. Thus, ifA(7) expresses the area ofa cross-section taken

from a region at x = ¢, then the integral to compute the volume of the region be-

b

tweenx=aandx=>b1s JA(t)dt.

Example:

Volume

a

Find the volume of a sphere of radius R by integrating its cross-

sectional area.

. Determine the function describing the cross-sectional area of a

sphere. The cross-section of a sphere is a circle. The radius of the

circle depends on how far (x) the cross-section is from the center:

 

The area of the cross-sectional circle is thus A(x) = T(R? — x?).

. Enter the integral expression using A(x) as the integrand and -R and

R as the limits (i.e. the cross-sections run from x=-Rtox=R): (')

DEJ)BEM)REHEMXE0(RIPIERE
(JAXIR(@Ia)X]ENTER).

. Evaluate and simplify the results using EALl (a program from HP’s

Advanced User'sReference—see page 294 in theAppendix here for

a listing): [EIXICIOJ(ENTER).
Result'1 33333333323+R3+

This is the familiar formula for the volume of the sphere, V = %nr3.
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Solids of Revolution

Many solid objects can be modelled well by imagining that they are formed when

a2-D areaisrevolved around an axis, thereby sweeping out a 3-D region. For ex-

ample, revolving a rectangle around the line shared by one ofits sides yields a

cylinder. Objects formed in this manner are called solids of revolution.

When finding the volumes for solids ofrevolution, you must pay attention to three

things: The first ofthese requirementsis an obvious one, but the others are equally

vital.

1. The description of the planar region being revolved.

2. The orientation of the axis of revolution—horizontal or vertical. The

nature of the integration will be different depending upon the orientation

of the axis with respect to the direction of the integration interval:

If the revolution is around a horizontal axis, each cross-section in the inte-

gration is perpendicular to the axis of revolution.

If the revolution is around a vertical axis, each cross-section is parallel to

the axis of revolution.

3. The location of the axis of revolution in relation to the planar region being

revolved:

Wherever the axis of rotation exactly coincides with the boundary of the

planar region, the cross-section of the revolved object will be a disk—a

filled circle.

Wherever the axis of rotation lies at a distance from the planar region then

there will be a hollow space within the cross-section of the solid of

revolution that must be deducted when computing the volume. This cross-

section will be a “washer.”

Whereverthe axis of rotation lies within the planar region then there will

be some overlapping within the cross-section that must be ignored when

computing the volume. This cross-section will be a disk, but one with a

smaller radius than if the axis were to intersect the region at its boundary.
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Slices Perpendicular to the Axis of Revolution

Example:

Example:

2.

Find the volume ofthe solid obtained by revolving around thex-axis

the region “under” y = x3, between x =1 and x = 2.

. Find A(x). The area being rotated here shares a side with the axis of

rotation; the cross-section is a disk of “maximum” radius; in this

. . 2 2

case, r(x) = x*. Soits areais A(x) =n(r(x))" =n(x*)" = nx®.

Enter the appropriate integral expression: [2[5)(1)&G)7)(2)E)

@X(JalXIZY)l )(@lalX)ENTER)
Setthe display tofx F I, evaluate, and rationalize: (6)(J&q)F)1)X)

(ENTER)(=-NUM))SYMBOLIC)NXT)EESFM. Result: ' 1277+
 

Find the volume of the solid obtained by revolving, around the line

y = -1, the region “under” y = x*, between x =1 and x = 2.

. Determine A(x). The axis of revolution is outside the area being re-

volved; the cross-section is a washer ofouter radius R(x) =x>+ 1, and

inner radius is r(x) = 1. Thus the area of the washeris:

A(x)=n[R(x)’ - r(x)’] = n[(x3 +1) - (1)2] = n(x® +2x°)

Enter the expression: (NPNDEDEEDEDRED
ENFEHEREERNFDPEDEERETE.
 

. Evaluate and rationalize: 5]=NUM)«)SYMBOLIC)(NXT) EEZFhid. 

Result: 'ao9-14y

If the axis of revolution intersects both the interior and exterior of the revolved

area, you need to break the problem into a series of “pure” segments—where, for

each segment, the relationship between the axis of revolution and the revolved

area is the same. The program SFEVH (see page 327) manages these segment

complications so that finding the integral of a solid of revolution (around a axis

ofrevolution perpendicular to the cross-sections) is straightforward. SREVH uses

alistonlevel 5, containing (inorder): the lower limit, the intersection points (least

to greatest), if any, in the interval, the upper limit; on levels 4 and 3, it uses the
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functions describing the boundaries ofthe revolved area (either order); level 2, the

integration variable; and a real number k, where y = k is the axis of revolution. *

Example:

2.

Find the volume obtained by revolving around the x-axis the region

between y = sin x and y = cos x, between x = —1t/4 and x = S/4.

. Plot the two functions and use ISECT: ()(PLOT)a)(a](F)(DEL)(V)

ENTER(WSOSN[&)X))CI(Cos)(JaIXIENTER)(&)
(X)ENTER)(@)54)(+/)ENTER)(3)(-)(9)(2)(Z)ENTER)M)-

sl(a)()(3)(9)(2) (T (ENTER)5
(ENTER) (+/=) ENTER)EFTEE DTETEE, thenBHE DS,

  

 

-
e—"

I-5ECT: (./B5398163387..70"106/81181
    

The interior point of intersection is at x = /4 = .785398163398.

At the stack, enterthe list of critical x-values: (CANCEL]CANCEL)(&)

OFHEmE@amE@ME@XIm)(ENTER)
. Enter the two functions representing the other boundaries ofthe re-

volved region: ENTER](") (a]&q)X](ENTER).

In=TL mode,enter the integration variable and they-value ofthe ax-

is ofrevolution: (@)(@)(S)(T)(D)ENTER)(*J(J.x)(X)(ENTER](0JENTER).
. Estimate the volume ofthe solid: ()(a)(S]RJEJV]H)[ENTER) or

(NXT) or as needed) Eld3NI. Result: 1H, YE9EE51:1,

2

which matches the analytical answer,M

*Note that, although SEEWH will work for any solid of revolution whose slices are perpendicular to its axis of

revolution,it’s designed to be efficient for those situations where the cross-section function, A(x), changesat dis-

tinct points within the integration interval. Thus, SEEYH may seem to be unnecessarily slow if you useit for sim-
pler situations where A(x) is the same function throughout the integration interval.
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Slices Parallel to the Axis of Revolution

Ifyourevolve a cross-sectional slice which is parallel to the axis ofrevolution you

getacylindrical shell. Integrating a series of such parallel cross-sections approx-

imates the volume ofthe solid ofrevolution by summing an infinitely series ofthin

shells, each of which has a slightly different radius.

Since the formula for the area of a cylinder is 2ntrh, the volume of a solid of revo-

b

lution created by integrating cylindrical shells is J'an(x)h(x) dx, where r(x)

describes the distance ofthe shell from the axis ofrevolution (i.e. the radius ofthe

shell) and A(x) describes the vertical height of the shell.

Example: Find the volume of the solid of revolution obtained by revolving the

region “under” y = x> between x =1 and x = 2 around the y-axis.

1. Analyze the problem. Each vertical slice of the revolved region

traces out a cylinder whose height is x* and whose radius is x.

2. Enter the appropriate integral expression: (')(=]5)(1)&)7)(2)E)

(JAXEHXEEX(@l(@E)(X)ENTER)
3. The volume: [EVALJEVALJ)SYmBoLIC)[MTH®]. Result: ' 1Z. 4*1'
 

  

Not all rotations around the y-axis require the use of parallel cross-sections...
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Example:

206

Find the volumeofthe solid of revolution obtained by revolving the

region bounded by x =8 — y? and x = 2 — y around the y-axis.

. Analyze the problem. The revolved region is “vertically-oriented”

(i.e. x is a function ofy), and the axis of revolution is the y-axis. You

can, of course, pretend that the revolved region is “horizontally ori-

ented” and revolved around the horizontal (x-) axis, but the slices are

perpendicularto the axis in either case. (Conclusion: This problem

belongs in the previous section.) So, change the boundaries to y =

8 —x2andy =2 —x, compute the limits ofintegration and use SFE'YH.

Plot the revised boundary functions and find the limits ofintegration

and any othercritical points: (—=]PLOT]a)(o]F)DEL)(Y)[ENTER)(V)(&)

O]JXPI20)TeIX)ENTER)&IX)ENTER)
(3]+/=)(ENTER)(3)([ENTER)(»)(4+/=)(ENTER)(8ENTER)|AiA A 1131|
  

 

 

 

  R]ATTT
 

. Find the x-values of the points of intersection of the curves. Note

that they intersect only at the two limits. Press (<) until the cursor

is near the lowerintersection point, then ig8.Bl1%8. The lower

limit: =2. Move the cursor (using (»)) near the upper intersection

point, then press {18 Upper limit: 3.

Return to the stack and enter the two limits as alist: {CANCEL)|CANCEL

S0(2]+/5)(SPC)(3)(ENTER).

  

 

. Enter the two boundary functions (you can use EI! from the plot): ()

()(EJQJENTER)EVAL)
. Enter the integration variable and the axis ofrevolution (now y =0):

(JJSIX)ENTER)(0)ENTER).
. The volume: (@)a)S)RJE[V]H)ENTER). Result: 24, 911346163 

5. APPLICATIONS OF THE INTEGRAL



Arc Length

To measure the length of a “curve” composed exclusively of straight-line seg-

ments, you simply add up the lengths ofthe individual segments. Integration al-

lows the extension of this approach to general curves by imagining that the length

of the individual segments approaches zero (and consequently the number of ap-

proximating segments approaches infinity). Using integration to compute arc

length requires that the length of an approximating line segment be expressed as

a function ofx. With the Pythagorean theorem it’s easy to show that the arc length

b

offlx)is J«/l + f’(x)* dx, wheref(x) is the derivative off{x) (i.e. the slope of the

infinitely tiny line segment).

Example: Find the arc length of the curve y = x* between x = -1 and x = 4.

1. Enter the lower and upperlimits: (1]+/=)(ENTER)(4)(ENTER).

2. Enterthe curve andfind its derivative via FOER: (Me]q)X

ENTER] "&X ENTER) @)@F|DJE[RJENTER). Result: ' F3#w™:"

3. Withthisresult, complete the arc length integrand: (&5]X3)(1]+)(x).

4. Enter the variable of integration, set the display to 5 FIA, andinte-

grate: (*JoJq]X] (@[FX)ENTER)(2])=NuM)
Result: BE. 71954

 

 

One of the most important uses of arc length is as a substitute for the straight-line

interval of integration. Many real-world integrations are most easily handled by

integrating a function with respectto its arc length rather than with respect to its

distance from the origin along the x-axis (which is the more conventional mean-

ing of the “interval of integration”).

For example, the surface area of a surface of revolution created by revolving a

curve around an axis can be best approximated using arc length. The surface area

of each approximating band is 27 r(x) As where r(x) is the distance of the curve

from the axis of revolution and where As is the width of the band (also the length

of the approximating segment). Thus, integrating so that As approaches zero, the
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b

surface area of a surface of revolution is Jan(x)ds. However, since the arc
a

length of each segment, ds, can be expressed in terms ofx: ds = +/1+ f’(x)* dx,

b

the surface area integral is therefore Jan(x)w/l + f(x)* dx.

Finally, note that (x) = |f{x) | whenever the axis ofrevolution is the x-axis. In any

case r(x) is often a straight-forward modification off(x).

Example: Find the area of the surface formed by revolving the curve y = sin x

between x = 0 and x = 21 around the x-axis.

1. Analyze: Because the axis of revolution is the x-axis, r(x) = sin xI.

2. Enter the upper and lowerlimits: (0)(ENTER)(" [2)(X)(&))(ENTER).

3. Create and enterthe integrand: (")(SIN)(a){&5)(X)([ENTER](ENTER])(')()

(IXIENTER)()LDE)RIENTERI)(X2(D(H)(X(SWAP)MTH)
v5oI B3R <)(2(X)()(%)

4. Enter the variable of integration and compute the surface area: (')

(WEXENTER)()(D)NuM.
Result: ro. 54726

 

Example: Find the area of the surface formed by revolving the curve y = sin x

between x = 0 and x = 21 around the line y = 0.5x.

1. Analyze the situation. This time, r(x) = Isin x — 0.5l.

2. Enter the upper and lower limits: (0)(ENTER ENTER).

3. Enter the integrand and the integration variable, and compute the

surface area: ('JSIN]o&5 |XJENTER[ENTER]'[J&o [X)ENTER)( o]o] F)
(DYE)R)ENTERIAX2HX)SWAP) (-5IMTH)RdeT3

([JSXENTER(@)(D)ENuM.
Result: ==, 34H54
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Averages

The term average is normally applied to a discrete,finite set ofnumbers: the arith-

metic average for such a set of numbers is their sum divided by the size ofthe set.

But how would you find the average ofan infinitely large set ofnumbers? Integral

calculus to the rescue once again! The problem is often recast as finding the aver-

age value ofafunction over a given interval. Since such an interval contains an

infinite number of points, techniques of calculus are required.

The arithmetic average value of a function, f{(x) over an interval x =a to x = b is:

b

———1—J.f(x)dx
~a)

This is simply the total area under the curve dividing by the size of the interval.

Now, the Mean Value Theorem for Integrals requires that there exists at least one

pointx, within the interval whose function valuef(x) exactly matches the average

value for the interval as a whole. To compute this value you only need to solve

b

the following equation for x: bi—aj f(x)dx=f(xo)

Example: Find the average value of sin 2x + 0.5cos x for x =0 <x <7m/4. Then

find the value of x where this average value is achieved.

1. Enter the expression for the average value: (&JEQUATION)(1])(=)(&)

@WEEE)D)@EN)(efalX>H()
(5)cos)(eJalX)())()X)[ENTER).

2. Evaluate: (ENTERJ<7J=NUM). Result: 1 . HEGS —the average value.

3. Enterthe function, equate it with the average, and solve forx: ('JSIN]

)X(a5XICos) (@GXENTER)]=)(J(@)G]X)
mu@mmSavi3l kOOt

. Result: H.32H45 —the x-value wheref(x) = average.

 

There are two useful ways to modify the plain arithmetic average....
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The weighted average gives different “weights”to different portions ofan interval

(whereas the standard arithmetic average gives equal “weights”to all portions of

an interval). The weighted average is useful whenever you’re trying to find the

average ofsome quantity that’s a function oflocation but which varies throughout

the interval. Examples ofsuch quantities might be mass, temperature, density and

so forth. If m(x) describes the variation of the quantity in question, the weighted

b

xm(x)dx

average is found by a ratio of integrals: ~%;

m(x)dx
a

Example: Find the center of mass of a uniform, flat plate whose shape is the

region bounded by y = x> and y = x*, between x = 0 and x = 2.

1. Analyze the task. The center of mass in this context represents the

x-value of the balance point for the flat plate. Imagine the flat plate

positioned vertically. You are seeking the fulcrum point along its

lower surface that would exactly balance the plate. In essence, you

are trying to find the weighted average of all the vertical cross-

sections for the plate. The cross-section function is m(x) = Ix* — x°I.

2. Enter the numerator integral expression and make an extra copy: (']

PEDEaNIaX WECTE]HES|
2@(@)X)ENTER)ENTER).

3. Because of the absolute value in the integrand, evaluate the integral

after segmenting it at the point within the interval where the absolute

value term equals zero (at x = 1 here); use M=ELGIMT:
EENDETER. Result: .5

4. Swap the other copy of the integral expression into level 1 and edit

it to remove the factor x from the integrand: (SWAP)(&JEDIT)(»>[»)(»>)

(>)(>>)(»)(DEL)(DEL) [ENTER)
5. Evaluate the denominator integral with M=ELTMT:

(SYEJGILLINJT)(ENTER). Result: 1.5

6. Divide to complete the computation: (<)«)SYMBOLIC )

Result: '5+3' Place the fulcrum at x = 5/3 to balance the plate.

  

210 5. APPLICATIONS OF THE INTEGRAL



The moving average “smooths out” functions that have a lot of short-term ups and

downs. It replaces the actual value of a function with the average value of the

function over some fixed previous period. IfA is the size of the fixed previous

period and the original function isf{x), then the moving average is computed by:

%jxfffld%

Ifyou graph the original function and its moving average together, you’ll see that

the moving average reduces variability and exposes underlying trends.

Example: Find the moving average off(x) = 3 sin (2x + 0.5) over a period of

2 and plot it simultaneously with f(x).

1. Enter the moving average integral expression: (']1)(=)(2)X)(2]s)

(JaXEG(@aXEaDEXENX@IaD®
CIBE)(@Ja)T)(ENTER).

2. Purge ., evaluate the integral, and tidy up the results. Note that the

moving average is a symbolic integration, so it requires that the inte-

grand be symbolically evaluable by the HP 48: ('JoJ&X]

(EvaAD) (EVAD)(&)(SYmBoLIC) [elTi I=FT:TH (olT§ =FITTN [TH
Result: ' . /o#C0a0- SrE#s)—, Poel050, 3+E%) !

3. Enter the original integrand, combine it into a list with the moving

average you just computed, enterthe list into E[!, and then plot the

two functions together: (*)(3)(X)(SIN)(2)(X)(eJ&e)X)()(-]5)([ENTER]

(2)Pre)INENENHI)Pon<)lEEEo)Pron(a)(@PR
(WIENTER)(W)(Jea(ENTER)[ETE[TTTE]
 

       I \ L
AlRETE   
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Probability

As with averages in the previous section, probability computations come in two

varieties—discrete and continuous. Discrete probability is useful whenever you

can compute a finite number of successful outcomes and a finite number oftotal

outcomes—say, 200 “heads” in 256 total coin-flips. However, many probabilities

are best modeled using area: the computation reduces to finding the number of

points within a particular region and comparing it to the number of points in the

total area. Since both of these quantities are infinite, you must turn to integral

calculus to correctly compute such a ratio.

Note, however, that there is a non-calculus means of approximating continuous

probabilities—modelling a continuous computation as a discrete computation.

The Monte Carlo method randomly chooses a point from within the total area and

determines whether or not it lies within a given region of interest. Repeating this

number of points within the region
 many times offers an estimate ofthe probability as

total number of points sampled

Using the Monte Carlo method on the HP 48 would, in fact, be a relatively easy

way to solve continuous probability problems—except that it takes a very large

number of points (and thus a large amount of time) to estimate the probability to

a sufficient degree of accuracy. The Monte Carlo method is thus reserved in prac-

tice for situations where no other means are available.

Turning, therefore, to the calculus-based analytical solution,if it’s area you’re

trying to compute, then integration is your weapon. The estimate of a continuous

. : f the regi
probability, modeled in terms of area, would clearly beg

total area

Example: A point (x,y) is randomly chosen from the square represented by -1

<x<1and-1<y<1. Whatis the probability that x> <y < x??

1. Plotthe two functions within the given square: S)]

ST2>JGXY3ENTER JéqX [ENTER)1]+/-)ENTER]
)(1)+=)EnTeR) EnTeR) ELEFML
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2. Back at the stack, find the area of the small region by computing the

area between the two curves (i.e. x> — x*) within the total square.

Enterthe integral expression and evaluate:

(eHEOE@EXNEEMaXG)
(S=NUM.

Result: . BEELEEEAEEEY  The area of the region is 2/3.

3. Compute the total area—the area ofthe square. The square is 2 units

by 2 units or 4. Enter the area: (4)(ENTER

4. Divide to find the probability: (=) Result: . ]l EEGEEEEEEEE

The probability is 1/6.

Now suppose that, in the previous example, you want to describe the probability

that, given a particular value ofx, arandomly chosen value ofy would lie between

the two curves. Some values of x (near x = -1, for example) yield a high prob-

ability, while others (near x = 0, for example) yield a low probability.

In fact, if you create a new function, p(x), that returns the probability of a success-

ful outcome for a given value ofx—scaling it properly so that its integral over all

allowed values of x equals 1—thisis a probability densityfunction. It describes

the distribution of probabilities with respect to the value of x.

Once you have a probability density function, computing a particular probability

involves only a simple integration: probability is the area under the probability

density function. The fotal area under the density function must, of course, equal

1, since the particular probability—the area under the function between two spec-

ific limits—can never exceed 1; you can never be more than 100% certain.
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Many real world probabilities can be effectively modeled using a handful of very

useful probability density functions. Perhaps the most commonis the normal ,

or Gaussian, density function—the “bell curve:”

1 (x_/'l)

- 2
620

 
 

p(x)= o2

where U is the mean and o is the standard deviation of the set of points or data

being examined.

Example: Whatis the probability that arandomly chosen variable that’s norm-

ally distributed with a mean of -2 and a standard deviation of 3 lies

between 0 and 5?

1. Enter the lower and upper limits: (0)(ENTER)(5)(ENTER).

2. Enter the integrand, the normal density function (0=3 and u=-2):

QNINaEEa0EaX
HEPPEEE&R

3. Enterthe variable ofintegration and evaluate the integral: '&J&q]X]

ENTER (G)>NUM). Result: .&dcBrreHE91Y

There’s a little less than a 25% chance that arandomly chosen value

with the given distribution lies between 0 and 5.

The HP 48 has four probability density functions built-in that you can access

using commands (there’s one command for each density function). Each of these

commands computes the probability that, given certain distribution parameters,

a random variable is greater than a given value. That is, they compute the area

underthe probability density function between the given value and positive infin-

ity (an improper integral)}—an area known as the upper-tail of the function. The

area between two finite values is equal to the area between the upper-tail above

the lower value minus the upper-tail above the higher value.

Thus the previous example can be solved more quickly and easily using the LITFM

command (the LIpper-T ail F'robability—Mormal distribution command). Try it.
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Example: Repeat the previous example using the UITFMN command.

1. Enter the mean and variance (varianceis the square of the standard

deviation) of the distribution: (2]+/=)(ENTER](9)(ENTER).

2. Enterthe lower limit and use [ITFN: (0)ENTER)MTH) (NxT) RT3
NxT)IR Result: . o2d9253054

3. Repeatsteps 1 and 2 using the upper limit instead: ENTER)(9)
ENTER)(5)(ENTER)ITHIEE. Result: 9. 215328973653

4. Subtract: (=). Result: . £4267FEHEF1R

 

 

The other probability density functions built into the HP 48 are:*

n+1 ot

( 2 1)! ( x? j“fl1+
(11-—1)! nm
2

n

where 7 is the degrees of freedom (a positive integer) for the distribution;

x<0 1

 

o Student's t-distribution (LITFT):  p(x)=

n XZq =

e Chi-Square distribution (LITFL) :  p(x)={,>0 __"lxl

22 (fi - 1) !
2

where n is the degrees of freedom (a positive integer) for the distribution;

 Snedecor's F-distribution (LITF'F) :

x<0 1

n _mtny tn|2—2(n1 +n2 _1)'

p(x)= x>0 (fl]z[l_,_M) ’ 2 ,

062 2

where n, and n, are the degrees offreedom (a positive integer) for the num-

erator and denominator distributions.

 
  

 

*Note the fifth command, M0 I'5T. Instead of computing the area underthe function above a given value (like the

four upper-tail commands), MOI5T evaluates the function at the value. Thus, use UTPM to compute a probability

and NO 13T to compute a probability density.
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Other Physical Measurements

This section discusses the application of integration to a variety ofphysical meas-

urements—distance, work, and fluid pressure. The role the integral plays in each

of these measurements is evident when you look at their definitions:

b

e Net distance= jv(t) dt, where v(¢) is the object’s velocity at time ¢.
a

b

» Total distance = J [v(#)|dt, where v() is the object’s velocity at time ¢.

b

 Work= jF(x)dx where F(x) is the force exerted on an object in moving

it from x = a to x = b. If this motion stretches or compresses a spring, then

b

F(x)=kx (where ks the spring constant), so Work= kj x dx. Ifthis motion

lifts against gravity, then F(x) = w(x)x where w(x) is the weight of the ob-

ject, and x is the vertical distance between the object and its final height, so

b
Work =jw(x)xdx.

b

* Fluid Pressure = wjd(h)l(h)dh, where w is the fluid’s weight-density,

d(h) the fluid’s depth at a distance 4 from the intersection ofits surface and

the container wall, and /(h) is the width of the container wall at .

The following examples illustrate these concepts and also serve as models for

integration with unit objects on the HP48.* With numerical integration, the units

of the lower limit are used during integration, so they must be dimensionally

consistent with those ofboth the integrand the upper limit. The units of the result

are the product of the units of the integrand and the units of the lower limit.

*Symbolic integration with unit objects isn’t recommended because the evaluation process for some integrands

requires dimensionless values.
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Example:

Example:

An object moves horizontally according to the velocity function (in

feet), v(t) =—8¢* + 32. Find the net and total distance traveled by the

object during the interval 1 <¢ < 3.

. Enter the integral expression for the net distance and make an extra

copy: (D)W)B)GT8X([JaDXIRIHE2)
()(@]T)ENTER)ENTER).
Compute the net distance: (EVALJ(EVAL).

Result: =51, 24333244553

. Drop the result and edit the copy to include the absolute value func-

tion in the integrand: («)(&)EDIT)(»)(»)(»)>)(»)(>)(»>)MTH) K38

_REZ[CEREOO000000EMQENE!
Compute the total distance: [&5]+-NUM).

Result: o¢

 

Find the work required to move a particle horizontally from x = 3

meters to x = 8 meters,if the force exerted on the particle at x is x°

— x + 3 Newtons.

. Enterthe integral expression for Work, using unit objects: ('J>[J]

BelbdaMal)E)LleaMElk]0)a)X)T
BEXHEM PlJIN&)XENTER).
Evaluatethe integral: (EVALJEVAL).

Result: — EFror: Inconsistent Units

This is a good example of a very simple-looking integral that never-

theless fails with unit objects.

. Drop the results of the error and repeat steps 1 and 2 without using

unit objects: («[«](J(2[)E)[JBIGI(HQXIE)EHY
EXHEG(@)X]ENTER] EVALIEVAL)

Result: 991. 5. With the proper units: 991.25 Nem.
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Example:

Example:

218

Ifone hangs a spring (k= 10 1bs./ft) vertically (i.e. subject to gravity)

and attaches a 10 Ib. weight to the spring, how much work is done

in raising the weight 6 inches from where it hangs naturally?

. Analyze the task: The total work done is that oflifting the weight

against gravity, plus that of compressing the spring 6 inches from its

d

natural position: W, =W __+W__ =wd+ ijdx, where w is thegrav comp

0

weight being lifted, and d the distance the weight moves (in ft).

Here, w =10 1b, d = 0.5 ft, and thus W is in ft-1bs.

Create the expression withunits: (')=)(0))«Ja]F)a)a]T)

G)HERLPEFDXSPEIX)

+

. Evaluate the expression: (EVALJEVALJ.

Result: B.#0_ 1b*ft. Sometimes, using unit objects works!

Oil of density 50 lbs/ft? is 3 feet deep in a hemispherical (bowl-

shaped) reservoir of radius 4 feet. You wish to pump out oil down

to a depth of 1 foot. How much work will it take to pump that much

oil to a point 2 feet vertically above the top of the reservoir?

. Analyze the task. You must find w(x) the weight of a layer of oil

that’s d feet below the top of the tank (or x = d+ 2 below the high-

point for the pumping process). Each layer has a circular surface of

radius r, where d* + r> =4. Therefore, each layer has a cross-sectional

area of mr’= m(16 — x?). Finally, the weight of each layer, whose

depth is dx is multiplied by the oil density, yielding:

w(x) = 507(16 — d* )dx = 507(16 — (x —2)* )dx

. Enter the integral expression, in terms ofx. Remember that the lim-

its are measured from the point 2 feet above the tank: (')(2)(s])(3)

LEELEIXNGMXSIOsHaODEaXEE)
>)IEPXXG(JGIX)ENTER)

. Evaluate: ((§)>NUM. Result: 1441, 5366963 ft-1bs. 
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Example:

3.

The face of a dam spanning a 100 m riveris a rectangle 26 m high

and inclined at an angle of 10° from vertical. Find the force (in

Newtons) due to water pressure on the dam when the river is 24 feet

deep. Use 9818 N/m? as the weight-density of water.

Analyze the task. Draw a brief diagram of the situation:

If h is the distance along the dam below the surface of the river, then

the depth of the river at that point is d(h) = h sin 80°. The width of

the dam face is constant, so /(h) = 100 m. The limits of integration

h =0 to h =24/ sin 80°.

Enter the limits, making sure that you’re in Deg modefirst:

(if necessary), (0J([ENTER)(2) ENTER)(8]0)SIN)(=)
Enter the integrand and the limits of integration: ('JoJ&q]H]

(JoJaH)ENTER).
Compute the integral: (=)7)[EVAL. Result: =F244. 2064ED

This is the volume of water (in m?) impinging on the dam face.

Multiply by the weight-density of water: (9]8]1]8](X).

Result: ¢A7 120484, H9E  Newtons—over 30,000 tons.
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Scalars and Vectors and Multi-Variable Functions

So far in this book, you’ve seen functions of only a single variable, but functions

oftwo and three variables are also useful and common in real-world applications.

This chapter explores the application of calculus—both differential and integral

—to multi-variable functions of two types: scalar-valued and vector-valued.

A scalar is a single number; a scalar-valued function is a function whose output

is a single number. Regular Cartesian functions, such as z = x*y — y?, are scalar-

valued functions. By contrast, a vector is a set of numbers (or components); a

vector-valued function’s output is a vector. Vector-valued functions are usually

expressed in parametric form, e.g, r(u,v) = [x(u,v), y(u,v), z(u,v)], where the

components are all themselves multi-variable functions.

The techniques of calculus—differentiation and integration—apply to multivari-

able functions just as well as to single-variable functions, but it’s much harderto

visualize multi-variable functions using two dimensions. The HP48G/GXcomes

with some tools to help you to visualize functions of two variables (as you’ll see

below), but not for functions of three or more variables.*

After introducing some basic tools for working with vectors and their functions,

this chapter explores the HP 48’s tools for visualizing functions of two variables.

The rest of the chapter examines differential and integral calculus with multi-

variable functions—both scalar functions and vector functions.

*Indeed, there are no good methods for visualizing functions of three or more variables anywhere because such

atask requires a four-dimensional representation! Fortunately, the vector form for functions makes iteasy to work

with functions of three or more variables even when it’s impossible to construct visual models of them.
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Vector Basics

In geometric terms, a vectoris a directed line segment, with a finite length or

magnitude (also called its absolute value). The direction of a vector is denoted

by its two endpoints, the initial and the terminal endpoints, respec_Eively. For

example, the vector from point A to point B mightEe referred to as AB (whereas

the vector from point B to point A is denoted as BA).

If you assume that the initial point is always the origin (0,0,0), then vectors are

especially useful to describe points. The point (-3,7,2), for example, can be de-

scribed as a line segment—a vector—directed from the origin (0,0,0) to (-3,7,2).

And since its coordinates form a set of instructions on how to reach it from the

origin,* the notation [ -3 7 2 ] offers a more algebraic (and therefore analytic) de-

scription of the vector than does the geometric description, AB.

The notation used for vectors is purposely like that of matrices, because they be-

have algebraically like 1 X # (or n X 1) matrices, a trait that makes vectors power-

ful for both analytic geometry and multi-variable calculus. A matrix can be treat-

ed as a vector of vectors; each row or each column of a matrix is itself a vector,

so the HP 48 uses [ ] for both matrices and vectors (together called arrays).

Symbolic Vectors

The HP48 requires that all vectors (collections within square-bracket delimiters)

be purely numbers—no algebraic expressions, text, or other object types. This

limits the utility of its vector data type with calculus because so many ofthe tasks

require symbolic processing. So list braces, 1. ¥, are used instead to designate a

symbolic vector—which contains symbolic expressions.

The creation of symbolic vectors also requires that a set of symbolic vector tools

be created to perform the kinds of vector operations that the HP 48 provides for

purely numeric vectors. Thus, as each vector operation is introduced, its parallel

symbolic vector operation will be demonstrated.

*Any vectorin three-dimensional space can be treated as the sum ofthree basis vectors, each running from the

origin along one ofthe coordinate axes. The length of each basis vector is a componentof the vector: The vector

[-372], for example, has an x-component of -3, a y-component of 7 and a z-component of 2.
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Vector Operations

The basic vector operations—addition, subtraction, and scalar multiplication—

work just like their equivalent matrix operations....

Example: Add the two vectors[49-1]and[3-12].

1. Enter the two vectors onto the stack: ()11)(4)(SPC)(9)(sPC)(1)(+/-)

ENTER)(JTI(3)(SPS) (1)3/(SPC) (2) ENTER).
2. Add: (). Result: [ ¢ 3 1 1]

 

 

  

Example: Add the two symbolic vectors { abc } and { xy z }.

1. Enter the two vectors to the stack:

[ENTER)
2. Add: NIl Result: © 'at+we' bty 'c+z! G

The element-wise list addition (remember that symbolic vectors are

lists) requires that you use the ALl command—not (+), which would

have caused the two lists to concatenate, instead.

  

Example: Subtract the vector [ 3 -1 2 ] from the vector [ 4 9 -1 ].

1. Enter the vector [ 49 -1 ]: (&]1)(4)(SPc)(9)(sPC)(1)(+/=)(ENTER).

2. Enter the vector [ 3 -1 2 ]: (]1)(3)(SPC)(1)(+/=)(SPC)(2)(ENTER).

3. Subtract: (). Result: [ 1 1H -3 ]

 

  

Example: Subtract the symbolic vector { x y z } from the vector [ 4 9 -1 ].

1. Enter the vector [4 9 -1 ] as asymbolic vector: (]})(4)([SPC)(9)(SPC)

(DE-JENTER)
2. Enter the symbolic vector { x y z}: (]}

(SPC)(eJa)Z) ENTER)
3. Subtract: (=). Result: ©+ '#=u' "H-y' '-1-z' I

Note that numeric vectors can be combined with symbolic vectors

as long as both are expressed as symbolic vectors.
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Example:

1.

Multiply the vector [ 4 9 -1 ] by the scalar 5.3.

Enter the vector [ 4 9 -1 ]: (&]r1)(4)(SPC)(9)(sPC)(1)(+/=)(ENTER).
 

 

2. Multiply by 5.3: (5]-]3)(X). Result: [ #1.2 47,7 -5.2 ]

Example:

1.

Multiply the vector [ 4 9 -1 ] by the symbelic scalar a.

Enter the vector [ 4 9 -1 ] in symbolic form: (&){3)(4)(SPC)(9)(SPC)

(J(#/-)(ENTER).
2. Enter the symbolic scalar and multiply: aJ&]A)(ENTER)(X).

Result: © '4*a' '9x3' '-3' I

“Multiplying” two vectors is not analogous to arithmetic. There are two kinds of

vector products: The vector dotproductis defined for any two vectors having the

same number of elements. Given two vectors r=[r, 7, r] and s=[s_ S, s_], the dot

product,r-s,isrs+ rS,+rs, The HP 48 has a built-in command forthis.

Example: Find the dot productof [49 -1 ]Jand [5-3 2 ].
 

1. Enter the first vector: (&]L 1(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).
 

Enter the second vector: (]1)(5)(SPC)(3)(+/=)(SPC)(2])(ENTER).
 

3. Compute the dot product: NIAET8 Result: -7

Example: Find the symbolic dot productof { 49 -1 }and {x y z }.
  

1. Enter the first vector: (J{})(4)(SPC)(9)(SPC)(1](+/=)(ENTER).

3.

Enter the second vector: (G]{J«J&]X] EE0 (Ja]Z]
ENTER)|.

Compute the dot product using the program, 00T (see page 322):

(SDJOJT)(ENTER). Result: 'F#ut+Fsy—z'

(Note how similar the dot product process is to that of computing each element

in a matrix multiplication: the first vector is treated as a “row,” the second as a

“column”—and the result is a single number.)
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By contrast, the crossproduct oftwo vectorsis another vector—perpendicular to

both of the other vectors (assuming all three vectors originate at the same point):

Given two vectors, r=[r, 7, r] and s=[s S, s], their cross product, r X s, is the

vector [ rs,—rs, IS.—TS, TS —TIS ].

Example: Find the cross productof [49-1]and[5-32].

1. Enter the first vector: (]1)(4)(SPC)(9)(sPC)(1]+/=)(ENTER).

2. Enter the second vector: (]I1)(5)(SPC)(3)+/=)(SPC)(2)(ENTER).

3. Find the cross product: [Result: [ 12 -13 -57 1]

 

  

Example: Find the symbolic cross productof { 49-1 }and { x y z }.

1. The first vector: (]t})(4)(SPC)(9)(SPC)(1]+/=)(ENTER).

2. Thesecondvector: ()0}J&)X]SPC]YISPC)¢J&qZ)[ENTER).
3. Compute the symbolic cross product, using the program SLFE[I=5

(see page 321): (]aJS]CJR[OJS]SJ(ENTER].

Result: ©+ 'y+Hxz! 'e—dxr! ' -(Qxu)edeyt ]

  

Like matrix multiplication, the cross product is not commutative. When taking

the cross productr X s, you will get the z,_ vector; when taking the other cross pro-

duct, s X r, you will get the z_vector:

Example: Find the cross productof [ 5-32]with[49-1].

1. Enter the first vector: (&)1 )(5)(SPC)(3]+/=)(SPC)(2)(ENTER).

2. Enter the second vector: (&)1 1)(4)(SPC)(9)(SPC)(1)+/=)(ENTER).

3. Find the cross product: [ff/Ea. Result: [ -12 13 3¢ 1]
This is the negative of the earlier result.
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Vector Angles and Magnitudes

A vector has both magnitude (length) and direction. It should therefore be pos-

sible to find these parameters easily for a vector entered in standard form.

Example: Find the length of the vectors [49-1]and { 3x 9 7z }.

1. First try the numeric vector: (€)13)(4)(SPC)(9)(SPC)(1)(+/-)(ENTER).

2. Find its length:.Result: 9. 39943493661

3. Now do the symbolic vector: ()13[3]X[aJa)X)) (9)(SPC)(a]

()(Z]ENTER).
4. Find its length with the programYHE>(see page 332):

(S)ENTER). Result: '[LCa#w1*E+E]1+z")!

 

 

 

Finding the “direction” of a vector is more complicated. You mustfirst decide the

reference directions against which to measure the angle. In three dimensions, you

use the three coordinate axes as your reference directions. The direction angles

for a vector V are computed from its components (v,, v, and v) and its length:

aV gV v
6, =cos™ = 0, =cos™ -+ 0, =cos™ =~

14 ’ V] 14

Example: Find the direction angles of the vectors [49-1]and { x y z }.

1. In DEG mode (use (6&5]RAD), if necessary), (SWAP) the previous nu-

meric resulttolevel 1 and copy that magnitude twice: (ENTER)[ENTER).

2. Findthex-, y-, and z- direction angles, respectively:

(&) (Bcos) (Result: Ef. 167PHHAIE]); &) (STACK)BT(o)
(ENTER)(SWAP) (=) (&) (ACOS) (Result: 4. E13597603);
(+/=)(ENTER)(SWAP)(-))(ACOS). Result: T, FH7EIEIETD.

3. The other vector: (]{}]o]XJSPC)(@]&q]YJSPC]aJ<q)Z) (ENTER).

4. Execute YIIR: (@]e]V)ID)1)R) [ENTER) or (VAR) (NXT) or (5)PREV))
A Result: © 'ACOSCwsJCw™Z+y™d+z200 !

'HCOS(g(™Byt+z™E0 0!
ACOS(2T(2+gt2ez21) 3
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Visualizing Two-Variable Scalar Functions

In general, the graph of a two-variable function is a surface in space. If it is

generated by a true function, z =f(x,y), the surface passes the vertical line test—

any vertical line only intersects the surface once. But how can you display a sur-

face in space (a three-dimensional object) in two dimensions—such as on yourHP

48’s display or on a piece of paper? Either you must project the three dimensions

onto a flat surface or hold one of the dimensions constant while plotting the other

two. Neither choice is ideal because the true shape of the function will be either

be distorted or partial when displayed in two dimensions. However, given these

limitations,it’s usually better to see something rather than nothing.

The HP 48 offers three approaches to visualizing two-variable scalar functions:

* AWireframe plot uses a perspective projection to map a designated portion

ofthe three-dimensional surface—expressed by a Cartesian function—on-

to a two-dimensional display.

» AY-Slice plot freezes one ofthe independent variables and takes a two- di-

mensional snapshot of the resulting “slice” ofthe surface. Y-Slice actually

takes a series of “snapshots,” changing the value of the frozen variable

between “shots,” then playing back the series as amovie when it’s finished.

* A Pseudo-Contour plot computes the derivative of the given function and

then plotsits slopefield—a grid of line segments whose orientation match-

es the slope of the function at each point in the grid. This plot is a kind of

visual approximation of a contour plot where a series of level curves,f(x,y)

= k, where the constant k is different in each curve. A contour plot (like a

contour map) is a two-dimensional representation of a three-dimensional

surface (such as a mountainous terrain).

All of the plots above use a grid of points—or sampling grid—as inputs for the

function, using the coordinates of each point as the values of the two independent

variables.* They differinhow they use the inputs andhow they display the output.

*The two independent variables are those listed in the INDEP and DEPMD fields in the plot set-up screens. The

dependent variable is simply implied as the value of the function. Don’t be mislead by the potentially confusing

designation of one of the independent variables as DEPMD.
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Wireframe Plots

The Wireframe plot takes the points in the sampling grid, uses the given (Carte-

sian) function to compute the third coordinate, then converts all 3-D result points

within the view volume into 2-D points via a perspective projection centered on

the eyepoint. Finally, each point is connected to its neighbors with a line segment

to display the surface as a “wire-mesh.” Here is a top view ofwhat happens during

 

 

   

 

 

  

a wireframe plot: Top View

yfar —_—

View Volume

( %— } Plot Display Screen

Eyepoint (x,y,z,)j (parallel to xz-plane)

Note several important points about this diagram and the relationshipsit depicts:

228

The plot display screen and eyepoint are “frozen’ together; when you move

one, you move the other. The eyepoint is always centered in the display

screen, 1 y-unit farther from the view volume than the plot display screen.

The z-axis (for the dependent variable) is displayed on the vertical axis; the

x-axis (for the IMDER variable) is displayed on the horizontal axis; and the

y-axis (for the EPMI' variable) is the depth axis running fromytoyr

The plot display screen does not rotate in space, but remains parallel to the

xz-plane and perpendicular to the y-axis, so you cannot get a top view of

a function (looking down on the xy-plane) simply by moving the eyepoint/

plot display screen. Instead you must transform the function so that the

original dependent variable becomes one ofthe two independent variables.

If it becomes the DEPMD variable, you will be looking at the xy-plane;if

it becomes the IMDEP variable, you will be looking at the yz-plane.

The display screen can’t be within the view volume. The y_coordinate

must be at least 1 unit larger than y_(the y-coordinate of the eyepoint).

To visually center the plot in the display, make sure that x_ is set midway

between Xiep and Xieh and that z_ is set midway between z,and Zyion
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Example:

Wireframe Plots

. Now plot: [IAiEFITHIHE.. ..

cavcal

. Change 2E: to = and redraw:

10.Enter the new name in DEPK[:

Plot the function z = x* + y*, using a Wireframe plot with default set-

tings for the view volume and eyepoint. Then repeat the plot, but

change the eyepoint to a “high” vantage point—(0,-3, 5)—by

adjust-ing the £E: coordinate. Repeat again, restoring the default

eyepoint, but viewing the xy-plane instead of the xz-plane.

. Purge YFHE, open the PLOT application, and put 1=+ 1~ame
 

in TYPE:: (")aJa)]V]PJAR)(ENTERIJPURG)(PLOTa[W]. 

. Putthe functioninE®: (v]'Ja]|XYX3]+o))Y]Y3)[ENTER.

3. Put the two independent variable
 

names into IHDEP: and DEPKD:

(]IXJENTER]> |@J&q )YJENTER).

 

   

 

 

 

 

   

 

 

TTEIMETTE....
 

  

 

   
. To convert to an xy-view, you must solve the original function equa-

tion for y and use the result as the function, replacing y with z in

DEPMD. Solving for y yields y =4/x> —z.

. AtthePLOT OPTIOMSscreen,restore 2E: tok (which isits default):

 

[l(9(0) EnTER)
. Return to the main FLI]Tscreen and enter the revised function in

Er: @R[o)EaeaXT6O@SENER.
 

il  
and then draw the plot:

(¥)(eJ&a)ZIENTER]
AT
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Y-Slice Plots

The Y-Slice plot draws a series ofcross-sections ofthe three-dimensional surface,

each perpendicularto the y-axis—one plot for each row in the sampling grid (un-

less you don’t have enough unused memory left, in which case it draws as many

of the rows as it can). Onceit has finished drawing the “slices,” it runs an anima-

tion loop ofthe slices until you press (CANCEL). The animation allows you to visu-

alize the surface by moving through it along the y-axis slice by slice.

If you wish to examine any of individualslices in greater detail after the original

animation, you can check ZHYE HMIMATIOM in the PLOT OPTIOME screen.

Once you’ve finished viewing the animation and return to the stack you will find

the slices stored as s-aphiic 131 % &% on the stack with the number ofslices

stored on level 1. At this point, you may either rerun the animation by pressing

(PRG)ETNT)ETIEH or view any one ofthe slices by storing it as the current

FICTure (pressing £l o1 Ly 681 8 oLsL 8 (STO)wiith the desired graphic on level 1)
and viewing it with (PICTURE).

  

Example: Do a Y-Slice study of the function z = x* + y>.

1. Returntothe PLOT screen, set TYPE: to T—= 1 122, reset the plot

parameters, and enter the function in the E&!: field: (CANCEL|»]o]Y]

CELYENTERV(D(JaXIBB(VY(3)ENTER).
2. Enter the two independent variables and draw the Y-Slice plots: (o]

EXENTER)(I )V)(ENTER) HTEAMITTE]. You will see each
two-dimensional slice drawn, one after the other, until either the

machine’s memory gets low or one has been drawn for each row in

the sampling grid (the number matches the value in =TEP%: next to

DEPMD in the PLOT screen). The eight individual plots are:

A /—~ ]—
/ /

/‘——//__L,_—f/ +_~4-// + /
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While the animated view of the “moving” slice through a surface may be pre-

ferable in some situations, you may want to see a composite picture of the slices

instead in others.

The programTUMF (see page 335) creates a single composite picture of a set of

slices, labelling each slice as it’s drawn. It takes the function from level 6, the list

ofindependent variables from level 5, the x-view range (as a list) from level 4, the

y-view range (as a list) from level 3, the z-view range (as a list) from level 2, and

the number of slices to be drawn from level 1.

Example: Draw a composite Y-Slice plot of z = x* + y3 using TLIIMF. Use the
default view volume and 8 slices; -1 <x<1;-1<y<1;-1<z<1.

1. Returnto the stack and enter the function: (CANCELJCANCEL)(')(o)(&q)

(ENTER).

2. Enterthe list of independentvariables: (&)3)(o)&)(X)(SPC)(¢)(E&)

 

 

ENTER).

3. Enter the view volume ranges: (&5]{3]1)(+/=JSPC]1)(ENTER)(ENTER)

ENTER|.

4. Enter the numberof slices: ENTER).

5. Now draw the composite using iLIIIF: (o)@)Y)CJOM)P)[ENTER) or

(then or (§)PREV) as needed) faHul.

 

v={-131% L
-"" - a2

_..d———f’,;;;sz
/e
#“f "

~ =" ~

g    
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Contour Plots

The built-in Pseudo-Contour plot (Ps-Contour) transforms each point in the sam-

pling grid into a short line segment that represents the slope of a contour of the

function. Essentially, it first finds the implicit derivative ofthe given function and

then plotsits slopefield. The Ps-Contour plot then requires that you visually infer

the actual contour curves from the lattice of tangent lines—a faster way to depict

the contour curves than is plotting the contour lines themselves.

Example: Draw aPs-Contour plot ofthe function x*+ y*, using default settings.

1. Return to the stack, open the PLOT application, set the TYPE: field

to F=—Comto, and reset the plot parameters: (CANCEL) (=)
(PLOT)(a)[4:1111[] (a]a)a)A)(ENTER](DEL)(Y)(ENTER).

2. Enter the function into the E: field (if it’s not already there): (v)(')

(L&EXPIEHGYPIE)ENTER)
3. Enter the independent variables and draw the plot:

 

 

>(aV)ENTER ETHE[T

eeeeeee

Ma, "‘-\.__.“—\__—____—_'\—q_"'-\._fl

   
It is possible to plot true contour curves on the HP 48 as well, using a program.

CONTOLR (see page 288) takes a two-variable function from level 4, a list of the

independent variables from level 3, a list containing the range of contour values

to be plotted from level 2, and the numberofsteps within the contour range from

level 1, and plotsa series of contour curves (one more than the level 1 input). If

the number in level 1 is positive, COMTIUR erases the previous picture before

plotting;if the numberis negative it plots on top of the previous plot. It uses the
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current settings for i=LEFT, i=KIGHT, ¥~MEHAFE, and ¥=FHFto determine the

display ranges (you may need to check orset these before using CUMTOLUE). 1t
also uses the program SULYFLT (see page 325).

Example: Use LIINTULEto plot contour curves for z=x* + y* and compare the

result with the Ps-Contour plot you drew in the previous example.

. At the stack, enter the function (it’s in 'E[!'): (CANCEL)(CANCEL

(o)o)(EJQJ(ENTER].
The independent variableslist: (G]{3)(«J&X)(SPC)(e]J&)Y)([ENTER).

3. Enter the range of z-values to use for drawing contour lines. While

Contour Plots

this choice is often a matter ofthinking, experience, and trial and er-

ror, use a range of { —0.5 0.5 }: (qJUY(-5]+/—) ENTER).

Enter the number of contour intervals to use (the positive numberto

indicates that the previous plot be erased first): ENTER).

Draw the contour plot: (o]a]CJOJN]TJOJU]JR])([ENTER]or (then

or as needed) |51, REl.

 

 

 

 

  
Note that COMTULUEplots curvesthat are evenly-spaced with respect

to the dependent variable (z, in this case), while Ps-Contour plots are

evenly-spaced with respectto the independent variables (in the sam-

pling grid). Thus Ps-Contour gives an adequate idea of the shape of

the contour curves, but it doesn’t represent the steepness of the sur-

face undulations very well.
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Visualizing Two-Variable Vector Functions

To better understand how to visualize a two-variable (three-dimensional) vector

function, recall how a single-variable (two-dimensional) vector function is repre-

sented by the HP 48: curves plotted with the Parametric plot type. This requires

that you define two parametric functions—x(#) and y(#)—combining them into a

single complex function: f{r) = x(¢) + y(?)i.

Unfortunately, complex numbers and complex functions can’t handle more than

two dimensions. So the Parametric Surface plot (Pr-Surface) uses a symbolic vec-

tor (list) ofthree parametric functions oftwo variables—x(u,v), y(u,v), and z(u,v).

If you let y(u,v) = 0 and allow x(u,v) and z(u,v) be functions of only one variable

(either u or v, but not both) then the Parametric Surface plot simulates a two-di-

mensional Parametric plot as if it were viewed from a distant eyepoint.

The Parametric Surface plot uses points from the sampling grid—defined by the

nn- and Y'Y - ranges—as inputs for the symbolic vector function. The resulting

points are then plotted, and those within the view volume are then displayed from

the perspective of the given eyepoint. The wiri-range (iri=LEFT to rivi=FIGHT)

and the ¥-range ("'f~BEHRF to VY~FHF) determine the plotting range for the

Parametric Surface plot; the i -, ¥ -, and £ - ranges determine the display range for

the plot. Of course, the final plot displayed is the display range as transformed

by a perspective projection from the eyepoint.

Example: Plot the surface described by r(u,v)={u+v u-v v—-u}

for-1<u<1and-1<v<1,asviewed from the default eyepoint.

1. Analyze the task. The parametrized surface and its plotting domain

are given. To determine the display range (i.e. view volume), com-

pute the minimum and maximum output values for each of the com-

ponent functions. Theyare { { -22 } {-22}{-22}}.

2. Open the PLOT screen, set TYPE: to FIm—=t~f 222, and reset

parameters: (CANCEL)(—]PLOT)(a)[#111} (a)(ENTER](DEL]¥)(ENTER).

3. Enter the parametrization as a symbolic vector in the Ef¥: field: (v)

>JGVEHSMEEE)
VE(Ia]U)ENTER).
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4. Enterthe independentvariables: (o<U)ENTER)(>)(J&q)V)([ENTER).

5. Enter plotting and display range (view volume): [i!]gBFFiRE}

(+/=)JENTER)(1[ENTER](1)(+/=)[ENTER](1)[ENTER)[ENTER);(2)(+/=)[ENTER)

(2)(ENTER](2)(+/=)(ENTER)(2)(ENTER](2)(+/=)(ENTER]2)(ENTER)(ENTER).

6. Draw the plot: [IHiEd (TR0

  
   

   

 

  
 

Sometimesit helps to transform a scalar-valued function to a vector-valued one—

a process known asparametrization—so that you can work with the function us-

ing vector-based tools, such as the Parametric Surface plot. Given a scalar func-

tion, z =f(x,y), the easiest way to parametrize is to transfer the two independent

variables into the symbolic vector unchanged and allow the third componentto

equal the function value. Thus, z =f(x,y) becomes r(x,y)={x y f(x,y) }.

To visualize a parametrized surface using the HP 48, you must also consider the

order of the components in the symbolic vector. The first component in the list

is plotted on the horizontal axis, with adisplay range ofri=LEFT towi=FRIGHT . The

second component is plotted along the implied axis of depth, with a range of ' =

MEHFtoY=FHFE. The third componentis displayed along the vertical axis, with

a range of 2=LOk to 2=HIaH. Note the pattern: { horizontal depth vertical }

For example, to parametrize x = z>y? and then plotit in conventional orientation

(x horizontal and y vertical), set x as the dependent variable, y as IMOER, z as

DEPMI, and use the parametrization { z2y* z y }. By contrast, to view the surface

with the z-axis horizontal and x-axis vertical, use the same variables designations

but a different parametrization: { z y z?y? }. Thus, the orientation of a Pr-Surface

plot depends on the order ofthe components in the symbolic vectorlist, not on the

order of the variable designations (unlike the other plot types).
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The other important thing to do is to determine the appropriate plotting and dis-

play ranges. The most important item is the domain (i.e. plotting range) ofthe two

independent variables. Once these are known, you can find reasonable display

ranges for all three axes. Unless otherwise necessary, use an eyepoint whose hori-

zontal and vertical coordinates (RE and £E, respectively) are the midpoints of the

horizontal and vertical display ranges (i1-range and & -range, respectively).

Following the previous example, suppose that for the function, x = z2y?, you let

0<z<1and0<y<1 be the plotting ranges (the #ii-range is the plotting range

forIMDEP and the V'-range is the plotting range for DEFBIL). It’s then easy to see

that 0 <x <1 as well. Thus, in this case all three display ranges should be set to

a low of 0 and a high of 1. The eyepoint can be set to (.5,-3, .5).

Example: Parametrize and plot x> + y+ 23 =10, where 0 <x<2,0<z<2.

1. Analyze. The function is linear in y, so it’s a good choice to be the

dependent variable. Solving for y: y = 10 —x? — z3. Parametrizing

so that x is horizontal and y is vertical requires this symbolic vector:

{x z 10-x*-2z*}. Computing display ranges yields the following:

{{02}{02}{-210} }. Thus the eyepoint should be (1, -1, 4).

2. Enterthe parametrization inEf: (CANCEL)(Y]US()

>)OQEEAXEIQD)2(E)(ENTER).
3. Entertheindependent variables: (aJ&q]X)[ENTER)>)(@J&q)Z)[ENTER).

4. Enter plotting and display ranges and eyepoint, then draw:

bRl (0)(ENTER)(2)(ENTER)(0)(ENTER](2)(ENTER)(ENTER); (0JENTER)2]
(ENTER]0) (ENTER) (ENTER) (+/=) (ENTER)1) (ENTER);
(A)+/=)(ENTER)(4) ENTER) (ENTER); [TEALTI...
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The final problem you may encounter when plotting parametrized surfaces is a

domain that isn’t rectangular—at least in the coordinate system you’re using.

Example: Parametrize and plot the upper unit hemisphere of z = +/1 — x> — y?,

where x2 + y? < 1.

1. Analyze the task. The parametrizationis { x y 4/1— x> —y* }. The

plottingranges are -1 <x<1and-1<y<1. Note that although these

ranges include possible points, such as (0.9, 0.7), that aren’t in the

function’s domain, the points (1,0) and (0,-1) are in the domain. The

display ranges are { {-1 1} {-11} {01} } and the eyepoint should

be (0, -2, .5).

2. Returnto the PLOT screen, and enter the parametrization in the EL::

field: (CANCELJW]Y]]JJa)X))elaV))X)GIO
DEHEXIREEENIRIENTER).

3. Enter independent variables and plotting range: (v]aJ&]Y)

i[lB (+/=) (ENTER) (ENTER) (+/=) (ENTER) (ENTER)

[ENTER).
4. Enter the display range and eyepoint; draw the plot:

(1)(ENTER])(1]+/=)(ENTER](1](ENTER)(0)(ENTER]1)(ENTER)0)(ENTER)(2)

(+/=-)(EenTeR)J5)EnTER) ENTERITTEA ITTTER.

 

 

   

 

 

    
The plot of the hemisphereis distorted because Pr-Surface requires a rectangular

plotting range (i.e. sampling grid), while the true domain in this case is circular.

Thus, you are plotting points not in the true domain and thereby causing distor-

tions in the output.
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The solution is to use a parametrization that has a rectangular domain. This is

where the polar coordinate systems—cylindrical and spherical—become useful.

For example, converting the function in the previous example to polar cylindrical

coordinates will yield z =V1—r> , x=r cos0, y=rsin®, and a parametrization of

{rcos® rsin® V1-r" }. Note that the domain of the new parametrization is

now rectangular: 0<r<1and0<0<2mx.

Example:

1.

238

Repeat the previous example using a cylindrical parametrization.

Analyze the task. The parametrization and plotting ranges are given

above. The display ranges and eyepoint are the same as before.

. Returnto the PLOT screen, and enter the parametrization in the EL::

field and set & to F.ad: (CANCEL)(Y) (+/5), if necessary) (V))}

BO&EENESEERGEI00EOEEANENEEEI00
EEOOEIR(2)ENTER).

. Enter the independentvariables: ENTER)(») (o]>)F)[ENTER).
 

The plotting range: §'|ail i3 bl (0)(ENTER)(1)(ENTER)(0)(ENTER]

(6]-(2]8)([ENTER)(ENTER).
. Draw the plot: FTEELT
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Of course, the hemisphere of the previous two examples can also be expressed in

spherical coordinates which, not surprisingly, are perfectly suited to this function.

Indeed, using spherical coordinates you not only have a rectangular domain, but

you can plot the entire sphere because you no longer depend upon a square root.

Example:

1.

Plot a sphere using a spherical parametrization.

The spherical parametrization is { sin¢ cosO sin¢sin® cos¢ }. The

plotting ranges are 0 <0 < 2w and 0 < ¢ < &. The display ranges are

{{-11}{-11} {-.5.5} }, and the eyepoint should be (0, -2, 0).

. Return to the PLOT screen, and enter the parametrization in the E*:

field: (CANCELJY[QJI(IsIN(elo)o=]9) (M)(X](Cos)(])(F)
)JsN) (@0l)9) (I[PCos)(¢]o)(¢)
2)(8)ENTER)
Enter independent variables, plotting and display ranges, and eye-

point: (oJ(0)(eJ(=>)()(ENTER) ALl it (0)ENTER)(3)(-J(1)(4)
WWEJ@W@.WE]@@W
Draw the plot: '] a0 1:} Al
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Derivatives of Scalar Functions

The derivative of a single-variable function computes the local slope of the graph

of the function. It also allows detection of extrema and determines the best linear

approximation, the tangent, ofthe function at a given point. All ofthese properties

can be extended to multivariable functions, but there are multiple derivatives.

Partial Derivatives

Partial derivatives are taken with respect to one ofthe multiple variables; the other

variables are treated as constants. Partial derivatives compute the rate of change

along one ofthe axes at a given point in the function. The built-in differentiation

command in the HP48 is designed to compute partial derivatives. To use the built-

in command, you should purge the variablesfirst. If you use the program FLIEF:

(see page 294), you need not purge the variables; they will retain their values.

Example: Find the slope along the z-axis of f(x,y,z)= <
X+

 at (1,2,3).
y

1. The point: (1)JeJa[X]STO[2]JaJaY)STO)3)(@)&)Z)STo).

2. Thefunction: ("JoJa[Z)[HE(O) (aIX)H(@GlY)ENTER).
3. The differentiation variable: (']aJ&]Z])(ENTER).

4 . The partial derivative: (]3). Result: . JJziii332200

Example: Find all of the symbolic partial derivatives of2.

1. Enterthe function and make two copies: (aJqIX)X)(e]e)
(a]6q]Z)(ENTER)(ENTER)(ENTER).

2. Gatherthe three copies into a list: Re

3. Enterthe independentvariables in a list, make a copy and purge: (&)

D)(&)X)(SPO)()E)(Y)(SPC)(@)(Z) ENTER)ENTER)()(PURG).
4. Apply the derivative element-wise to the two lists: (=]3).

Result: © ‘'y¥z#bEsFlusgsz)! lwszsbsP(usgez)!
LurgsEPluEgez) b Thisis { 9f0x offdy 9f0z }.
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Total Derivatives—Gradients

The total derivative is usually a compilation of partial derivatives—used to

measure rates of change, detect relative extrema, and compute tangent planes to

the whole function at a point. The most common version of the total derivative

is the gradient, avector ofthe partial derivatives ofa function. Gathering together

the partials into a symbolic vectorlist gives you the gradient, or total derivative.

The program GEALI (see page 295) automates this. It takes the function from

level 2 and a list of the independent variables from level 1.

Example:

1.

3.

Use 3RHDI to find the gradient off(x,y,z) = x sin’ z — y sin" z.

Enterthe function: ("JoJ&IX)X)&G]AsN)(ala]Z)>)(=)(JalY)X)
(GJASIN)(eJ[Z)ENTER).
Now the independent variables: (&]{})(o]J&]X] (a]&]Y)

(0]Z)(ENTER).

Compute the gradient with GRAOI: (o)(@)(G)(R)(A)(D)(1)(ENTER) or

T Result: € 'ASIMCz)' "-HSINCzZ)!
b[Cl-22y[U120 G

Gradients are also used numerically, of course, to find the total rate of change at

specific points on the function. In these cases, you will need to store the coord-

inates ofthe specific point in the correct variable names and evaluate the gradient.

Example:

1.

Find the value of the gradient off{x,y,z) = x*y*z° at (1,-2,-1).

Enter the function: (")(o)(&)X)¥(3)X)(«)E&)(Y)¥(4)(X)(«)E&)

Z)O(5)(ENTER).
. Enter the list ofindependent variables: (&]{}

(@]&7)Z)(ENTER).

Enter the point as a list ofcoordinates; store in appropriate variables:

SOMEPO(R)+/3)POFA)EnTER) )STACKIR (STO).
Find the gradient: (o)(o)(6)(R)(A)D)(DENTER)(1)(&)(«»)(&)=NuM)
(EnTER)(PRG) HERE BTT [TTHE]. Result: ¥ —42 2F BH
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Finding the Plane Tangent to a Surface at a Point

Just as the tangent line is the best linear approximation to the curve of a single-

variable function at a given point,so too is a tangentplane the best linear approxi-

mation to a surface represented by a two-variable function at a given point.

The equation of the tangentline or planeis thefirst-order Taylor approximation

of the function at that point:

The tangentline to curve fix), at x =a, is f(x)= f(a)+ f'(a)(x—a)

x—a
the tangent plane to surfacef(x,y), at (a,b), is f(x,y) = f(a,b)+gradf * [ b}'

y —_—

Note the analogies between the formulas: Instead of the single-variable deriva-

tive for the tangent line, the tangent plane uses the gradient vector. Instead of

multiplying the derivative by the difference factor, the tangent plane uses the dot

product of the gradient and a vector of difference factors—one for each variable.

And the use of vectors like this is easily extended to functions of any number of

Xy —aq

. x, —a,
variables: f(x,,x,,...,x,)= f(a,,a,,...,a,)+gradf *

xn—an
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The program TFLAM (see page 331) computes the equation of the plane tangent

to a scalar function at a given point. It takes the function from level 3, the list of

variables from level 2, and the given point (as a list of coordinates) from level 1.

Example:

Example:

Find the plane tangent to f{x,y) = x> + 5xy — y? at the point (-2,3).

. Enterthe function: (") (o]X)Y¥(2)+)(5)X))XIX)(]Y-

(P&EOI(E) ENTER).
. Enter the variables as a list: (&]{ (o])X (a]J&q]Y)(ENTER).

3. Enter the pointas alist of coordinates: (]{})(2)+/=)(SPC)(3)(ENTER).

. Find the tangent plane viaTFLHN: (o]TPL)(AN)ENTER)or

 

 

 

(NXT) or (5JPREV)) LTI1.

Result: 'BH+]1%w—-27*y!

Find the equation ofthe plane tangent tof(x,y,z) = In(x* + y* + z%) at

the point (-2,1,5).

. Enterthe function: (J2]N(¢[qX)Z¥)HEE)H
(eJa[Z)>(2)(ENTER).

. Enter the variables and the pointaslists: (&){(2])X (e]e)
 

(VP(@J&)ZENTERIAL) (2]+/-)(SPO).(SPC)(5)(ENTER).
. Compute the tangent plane: ()o]T)P]L] [ENTER) or (VAR) (then

 

501 o

5

IPRED) aseRN51000oTN
Result: ' 11ZEEA-BEIEI-Z 1DtDeg+]Dxz !
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Directional Derivatives

A function’s partial derivatives find its rate of change in the directions of the co-

ordinate axes. But you can move in an infinite number ofdirections, notjust along

an axis. The directional derivative is a generalization ofthe partial derivative that

expresses the function’s rate of change in any specified direction—found by tak-

ing the dot product ofthe gradient and the unit vector in the desired direction. (As

an example of a unit vector: If the given direction vectoris [ 2-3 5 ], then its unit

[2 -3 5] [2 -3 5]
[2 -3 5] 6.1644
 vectoris ” ~[.32444 -.48666 5.81111].)

Example: Find the derivative off(x,y) = x?y + 2xy — y* parallel to [ 3 4 ].

1. The function: [JeJa)X]J0X(2)X)JaV)HRXIaXXI
CYEGEIENTER)

2. Enter the variables, make a copy and purge: (]tJ(aJ)X)(SPC)(e)

() (Y)(ENTER]ENTER)(&JPURG).

3. Compute the gradient: (o]a]GJRJAJDJI ){ENTER).

4. Enter the direction vector and find its unit vector, using symbolic

vectors: (&)3)(3)(SPC)(4)(ENTER)(ENTER)(«)()(V)(A)(B)(S)ENTER)(=).

5. The dot product, simplified: («]a]S]D)O]TJENTER]o]a]E]X]C)(O)

ENTER). Result: ' . B3+] , Feweg—, dag®e+ ] bt]ey

 

 

You can generalize the concept ofthe directional derivative even further: Instead

of limiting the direction to a straight-line vector, you can find the derivative of a

function with respectto a specified curved path. Expressing the curve as a one-

variable vector function, r(f) = { x(f) y(f) z(¢)}, and the function as a scalar

function ofthree variables,f(x,y,z), you can then express the directional derivative

grad f(r(t))*r’()

r'(t)|

the rate of change off along the path r at time 7. Different parametrizations for

r affect the rate of change differently. That is, although the path is the same for

all parametrizations, the speed of its traversal is not. Thus, the denominator, the

speed along r, serves to eliminate the effect of the choice of parameterization.

offalong the path, r, as . The numerator ofthis expression is
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The program [ 1F3 (see page 293) computes the directional derivative of a scalar

function along a parametrized curved path at a given point. It takes the function

from level 4, the parametrized curve (a symbolic vector) from level 3, the list of

function variables from level 2, and an equation defining the parameter variable

and its given value (e.g' 1=t") from level 1. I IE& then returns the symbolic
directional derivative (level 2) and its numeric value at the given point (level 1).

Example: Find the directional derivative and rate of change at ¢ = 2 for the

function, fx,y,z) = x*y*z> with respect to the pathr(t) = { ¢t £# £ }.

1. The function: (1)(oJEa)XXXa)MXI@X)(@EDT
(5)ENTER)

2. The path,r: (5))D(«a[DD@EDFIEFOQET
>I(E)ENTER)

3. The variables list: (U)(JaIX)([sPC)eJaY)(sPC)(«Ja)Z)ENTER)
4. The equation of parameter-and-value: ('JoJ&]T)&)=)(2)(ENTER.

5. The directional derivative: (o]a]D]|J[R]>]DJ(ENTER)or (VAR) (NXT)

or (§)PREV) as needed) lILEM. Result: B3¢/55957 ., Z9H3

Thus, at t = 2, the function is increasing by nearly 69 million units

for each unit travelled along r.

 

Ofcourse, you can use L IF4 to compute directional derivatives with respect to
linear direction vectors, too, by expressing the linear direction parametrically....

Example: Use IRto find the directional derivative and rate of change for

f(x,y) = x*y + Sxy — y*in the direction of [ 3 4 ] at the point ( -2 3).

1. Enterthe function: ('[oJ&X]

= [ENTER)
2. For the path, r, convert the point and direction to a single-variable

vector function representing a line: Enter the direction vector (sym-

bolically), the parameter variable, then multiply; enter the point (as

a list) and AOD. Thus:

XEDEFS)EPO)()EnTer)(vTHNEEBT,
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3. Enterthe list of variables: (&]{} (ENTER).

4. Enter the equation defining the parameter and its value (setit to zero

so that the desired pointis selected): ('[aJ&]T)(&)=])(0])(ENTER).

5. Compute the directional derivative: (a)a]D]|)R]~]D] or

 

(then or ((9JPREV) as needed) BResult: —=%. &

Thus, as you move from (-2,3) in the direction of [ 3 4 ] the function

is decreasing at the rate of 24.6 units per unit travelled.

The rate of increase in a given function is fastest in the direction of the gradient;

and the rate of decrease is fastest in the direction opposite the gradient.

Example:

246

A500°K heat source radiates heat outward in a sphere. The tempera-

: : 500
ture at a point (x,y,z)1s I'(x,y,2)=————.

P (63.2) (*..2) 1+ x> +y* +7°

What is the unit vector in the direction of fastest temperature in-

crease at the point (1,2,3)? What rate oftemperature increase is this?

. Enter the function: ('|50]o))[0H(XYY)e
MIRHSIZIRIENTER).

. The variableslist: (U«X)SPC)]G]Y)SPC)ef&]Z)ENTER).
3. Store the point’s coordinates in the appropriate variables: (&)})(1)
  

(SPC)(2)(sPC)(3)(ENTER)&5STACK)TI(sTO).

. Compute the numerical gradient: (o]a]GJRJ]AJD]1])(ENTER

ENow)EeRlpre)ISIR[T,

 

. Itsmagnitude: (ENTER] @]VA[B]SENTER). Result: 15, G555 

This is (to 7 figures) the fastest rate of increase in temperature.

TThTT T CodTmme. The unit vector: (=). Result: + —.Zb72ZR1E - 5345FE5

- odllEas b

This direction of fastest increase makes sense:it is the same direc-

tion as { -1 -2 -3 } (which you can confirm by dividing the above

result through by its first element)—and this is directly back to the

heat-source origin from the point in question, (1,2,3).
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Finding Critical and Stationary Points

Anypoint on a continuous, two-variable function, z=f{(x,y), whose gradient at that

point is a zero vectoris a stationary critical point. The ‘“stationary” in the name

stems fromthe function’s behaviorthere: it’s notchanging in any direction. There

is a horizontal plane tangent to the surface at a stationary critical point, whose

equation is z=k, where k is the value ofthe function at the stationary critical point.

Example: Find the stationary critical points of the functionf{x,y) = x* + S5xy —

y* and the equations of the tangent planes at these points.

. Enter the function: (')(o))X)9(2)(+)(5)X)(»)E)X)X)()E)

HEEE0 ENTER).
Enterthe list ofvariables, make two extra copies, moving one up the

stack forlater use and the other to purge: (&9){(@])X)(SPC)(e]&)
(ENTER)(ENTERJENTER)(4)(STACK) i1 |4 &1} (4)PURG).
 

. Compute the gradient: (o]o[GJRJA]D]1)(ENTER.

Result: © 'F#w+Dey' 'Gew-TJegtel 3

Swap the variablelist into level 1 (SWAP))and estimate the values of

x and y that will make each component of the gradient equal to zero.

Obviously the point (0,0) works and is one critical point. But keep

searching for others. The first component suggests three things:

a. There is only one other critical point, since x and y are both

linear in the first equation.

b. x and y have opposite signs

c. The x:y ratio in magnitude is approximately 5:2 .

Looking at the second component suggests that while (5, -2) doesn’t

work very well (10, -4) gets fairly close. Thus, enter an initial guess

of x=10and y = -4: (&]{3)(1)0](SPC)(4]+/=)(ENTER).

Solvethe two equations simultaneously viaML5%"= (page 304) and

rationalize: (a]oNL)(S]Y]S) &
(SYMBOLIC)(NXT)el @]o[STYD)(ENTER).

Result: ©+ '123-12' '-(Z3-62' )

 

  

Thus, the function has two critical points: (0,0) and (1&,—2).
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A stationary critical point can be any one ofthree things: alocal minimum, alocal

maximum, or a saddlepoint. You can determine which situation applies by using

a computation involving the second-order partial derivatives of the function:

Arrange the second-order partial derivatives in a matrix, such as this one for atwo-

  

 

G
: : ox>  Oxdy : :

variable function, 2f  9f | and compute the determinant of the matrix. If

dyox oy’

it is less than zero, then the pointis a saddle point. If it is greater than zero, then

2

look at the value of d ]: . If that second-order partial is greater than zero, then the
X

point is a local minimum,;if less than zero, then the point is a local maximum. If

the determinant of the matrix is zero, then the testfails to specify the nature of the

stationary point.

The program [ZT=T (see page 290) automatesthis second-order partial deriva-
tives test. It takes a function from level 3, the list of variables from level 2, and

a list ofstationary critical points (complex numbers) from level 1. It returns the

list ofpoints labeled with "Saddle," "Maximum," "Minimum," or "Inconclusive."

Example: Usethe second-order derivative testto classify each ofthe stationary

critical points you found in the previous example. Are they saddle

points, local maxima, or local minima?

1. Enter the function: (']aJ&]X)

S(eJa)YY) (3ENTER).
2. Enter the list of variables: (&]{})(a]&]X] (a]J&S]Y)(ENTER).

3. Enter the list ofstationary critical points (use decimal equivalents

for the fractions): ([&JONo)&I))®)&IOXo)
(6)@&l6]7)(+/-JENTER)

4. Run the second-order partial derivatives test on the list of points:

or (then or as needed).

Result: + :Saddle: CH,HY :Minimums
(1M, 4166E6666Y, —4. 16EEEEEEEES) &
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The Method of Lagrange Multipliers

Often the problem of finding function extrema of a function is complicated by

additional constraints on the function inputs. However, the method ofLagrange

Multipliers notes that, if an extremum exists for a differentiable function, f,

subject to a constraint, g, then the gradient offis a non-zero multiple of the grad-

ient of g. Thatis, gradf = A grad g, where A is a nonzero scalar, the Lagrange

multiplier. Then, because the gradient is a vector, there is an equation for each

element. For example, iff and g are functions of x, y, and z, then the Lagrange

o .0dg o .0dg o ,0g
=A== =A== =A—=. Withth -

ox o0x dy dy o0z oz tth the orig

inal constraint, that’s 4 equations in 4 unknowns (x, y, z, A), a solvable system.

method gives the equations,

Example: On the plane x — y + 2z = 5, find the point closest to the origin.

1. The function minimizedis the distance to the origin, +/x* + y* + z*,

sof(x,y,2) = x*+ y* + z%. The constraint g is the plane, x —y + 2z - 5.

2. Enterthe functionfand its (purged) variables, then find its gradient:

JaX)NHST2)H(alZ)0H(2)ENTER)GID)
(aJ&a)X)(sPC) (e]Ja)Y)(sPC)-(Z) [ENTER) (ENTER) (¢[PURG]
(GJRJAJDJD(ENTER). Result: 'Z#: 'eyl Pzt )

3. Give constraint and variables; find its gradient: Jo)&)(X)(=)(e)E&)

MHERXalzZI-JseDfalX)sPaa)Y)sPd)
(J&)Z)ENTER) (@]@]G)RIAID))(ENTER). Result: 1o A

4. Multiply by A and subtract from the prev1ous one: m
.E] Result: Vo=t TPy el4— 1

5. Enter the constraint function and append it to the list: nm@()

(JaY)H2X(Ja[2S(E)ENTER)()
6. Enter the variables and initial guesses ({ 1 -1 12} seems OK). Use

MLS'%"5to solve, then rationalize: (€){)

@E{J.E@@.LENTER[S))SPS)(D(#/)SPS)(1)(SPC)(2)
[ENTER)(@[N]L] ENTER|]ooFIT]X ENTER)(64JSYMBOLIC]
mRItee ResultI~ 1 El_ I __I|"I-I 'I 1 I :ioI | I Ei'_l 1 -|,

The solution point is (2,—2,3). (Just discard A, the 4th element.)
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Derivatives of Vector Functions

Before looking at multivariable vector functions, consider single-variable vector

functions. Expressing a function parametrically, say, r(¢) = { x(#) y(®) z(?) },

transforms a single function into a /ist offunctions. Finding the derivative of such

a list is nothing more than finding the derivative of each element of the list (i.e.

: or [(ox 9y az}
each component of the symbolic vector): r'(f)=—=3— — —

P Y ) ) ot {at Jdt ot

The program YIEF (see page 332) computes the derivative of vector function

with respect to one variable. It takes the symbolic vector from level 2 and the dif-

ferentiation variable from level 1, returning the derivative vector function.

Example: Find the derivativeof r(t)={ ¢t # £ }.

1. Enter the vector function: ((){})(eJeoST)F2)>)("o)

S)([T(3)(ENTER).
2. Enter the differentiation variable: ('][oJ&q]T)(ENTER).

3. Compute the derivative using /[IEF: (o)V]D)JE]R)[ENTER)or

(then or (§)PREV) as needed) fHUA.

Result (in STD mode): © 1 'E#t' 'Zxt~FE! &

To find higher-order derivatives of vector functions, you need only to use W[IEF!

more than once.

Example: Findthe secondderivativeofr(f)={t #* ¢* }. Use the previousresult

as a starting point.

1. Using the previous result as the vector function, enter the differentia-

tion variable: (']oJ&]T)(ENTER).

2. Compute the derivative using WIIEF: (o)V]D)EJR)[ENTER) or

(then or ((§)PREV) as needed) EIT].

Result: + H & 'e&*t' X
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One good application of the vector-valued functions is computing the curvature

—the rate of change ofthe direction of the tangent— of a curve at a point on the

curve. Without going into the derivation of the formula, the curvature of a curve

e(2) x 2’(2)|
’ 3 ’r'(2)|

The radius ofcurvature—the radius of the circle whose curvature matchesthat of

the curve—is the reciprocal of the curvature. Thatis, if the curvature is 0.2, then

the radius is 5.

defined parametrically at given point ¢ is K =

  

The program LIIEY (see page 289) takes the symbolic vector form of the curve
from level 3, the parameter variable from level 2, and the value of the parameter

at the desired point from level 1 and returns the numeric curvature to level 1.

Example: Find the curvature and radius of curvature for the curve defined by

r)={1-t £+1 2£/3+1},att=1.

1. Enterthe vector function: (G0=[oJa]T)»)(J(Ja]T

EHOEUDX(aDIEHEHENTER.
2. Enter the parameter variable and its value: JoJ&]T)(ENTER)(-]5)

ENTER/.

3. Compute the curvature using CLIEY, then rationalize the result: (o)

(]CJUJR]V](ENTER) or (VAR] ((NXT) or (§]PREV) as needed) oI

ilA",
1

Result: '&-9'

 

 

Of course, the concepts of single-variable vector derivatives can be extended (to

a substantial degree) to derivatives of multivariable vector functions....

Derivatives of Vector Functions 251



Partial Derivatives

Just as the built-int command can take partial derivatives for multivariable scalar

functions, so[IEF can take partial derivatives for multivariable vector functions.

(Scalar functions have scalar partials; vector functions have vector partials.)

Example: Compute (_;_r_ for r(x,y,z) = { X%y xyz> y*2* }.
y

1. Enterr: (o]0)(JJGXXXlDelaX)X)ela)
.."fll@fl.fl-fl.m

2. Spe01fy y, then dlfferentlate via WOER: m@@.

DJE(R)ENTER). Result:

©

'w™g' luwszti! Tlegwzsglo )

Total Derivative—Jacobian

The total derivative for a scalar function is the gradient—a vector. The total deriv-

ative for a vector function is the Jacobian—a matrix. Each row of the Jacobian

matrix is a gradient of one of the vector function’s components.

The program /HCIIE(page 299) takes a symbolic vector function from level 2 of

the stack and a list of the variables from level 1 and returns the Jacobian matrix

to the stack. Remember to purge the variables before using IHCIIE.

Example: Find the total derivative, F', at (3, 2, -3), if F(x,y,z) = {3x*4y* 57* }

1. Enter the symbolic vector: (]t)"[3[XoIX)X2)»)(" [4)(X]

(eYXEIEX)(@Ja)Z)@9(2)ENTER).
2. Enterthe list of variables, make an extra copy and purge: (&)({ })(e)

()(X)(SPC)(efa Y)(SPC)(@)[ENTER] (ENTER)(9JPURG).
3. Compute the Jacobian matrix: (o]J]JAJCJOJB)(ENTER] or

(then or (§)|PREV) as needed) HL1a13.

Result: + + 'Zx(Zsw)' H
I |
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Example:

Store the point’s coordinates in the appropriate variables and com-

pute the Jacobian matrix: (&]{})(3)(SPC)(2)(SPC)(3]+/=)([ENTER)()

O)(JSIX)(SPS)(Ja)Y)(SPC)(aJex)ZJENTER) (STO)(1)»)(1)(« »)
SMISAES] LIZT | PROC|DOLIZ [€] DOLIE [ENED

Result: S I1
B 16 @ 2
HEH -28 + &

 

 

e

Find the symbolic total derivative (P’') if

2Pix,y2)={x+y+z x+y*+z22 xX*-y*-z}.

. Enter the symbolic vector: (]'oX)(+H]Y]+a]a)Z]

>O)JaXHPIAYTI)HPIAZTIEIXD
BBe(@Ja)Z)ENTER).
Enter the list of variables, make an extra copy and purge: (&){3})(e)

& (J&a(SPC)(eJéaENTER) (ENTER) (&5[PURG).
 

. Compute the Jacobian matrix: (o]a]JJAJCJOJBJ(ENTER).

Result: ©+ ©+ 1 1 1 X

L1 'zegt 322 3
[ '3em2' =(Prg)' -1 3}

The determinant of the Jacobian of a three-component vector function of three

variablesis the triple scalar product of the gradients of its components.

Thatis, for f(x,y,2) = { P(x,5,2) Q(x,5,2) R(x,,2) },

9P 9P OP
ox dy 0z

£'(x,y.z)|=12 £ P =gradPe+(gradQxgradR).
9R JR  OR
ox dy 9z

 

As an arbitrarily-sized “box-element”is transformed by a vector function,its vol-

ume will increase by a scale factor equalto the absolute value of the determinant

of the Jacobian. This scale factor plays a role during a change of variables when

integrating, as you’ll see later in this chapter (see pages 262 and 266).
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Divergence, Curl, and Laplacian

In addition to the Jacobian, vector functions have three special kinds of “total”

derivatives, each of which tells you something different about the function. The

three types are:

» The divergence of a vector function is a scalar value representing the rate

of expansion or compression of the function. If you choose a point from

a given surface and let it be the center ofa tiny cube, the divergence at that

point is the rate of change of the volume of the cube. Divergence can be

computed from the Jacobian matrix—it is the trace (the sum of its diagonal

elements) of the Jacobian. The vector function is said to be incompressible

at a point if the divergence is zero.

* The curl of a vector function is a vector representing the direction of the

axis of maximum rotational change for the vector function. If you choose

a point from a given surface and let it be the center of a tiny cube, the curl

at that pointis the axis ofrotation ofthat cube and the magnitude ofthe curl

is exactly twice the angular velocity of the cube. A vector function is said

to be irrotational at a pointif the curl is the zero vector.

e The laplacian is a measure of the difference between the average value of

a function near a given point and the actual value of the function at the

point. It roughly describes a rate of change for the average value of a

function in the neighborhood ofa given point. The laplacian is defined both

for scalar and for vector functions. For scalar functions, the laplacian is a

scalar—the divergence ofthe gradient. For vector functions, the laplacian

is vector in which each componentis the divergence of the gradient ofits

corresponding component in the original function.

Each of these three types of derivative has its own program—0 I(page 333),

CUEL (page 289), and LAFLL(page 299). All three programstake the same set
ofinputs—the symbolic vector function from level 2 and the list ofvariables from

level 1. There should be the same number of variables in the level-1 list as there

are components in the level-2 vector. If you want the symbolic result, you must

purge the variables in the level-1 list before using a program. If you want the

numeric result, store values in the level-1 variables before using a program.
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Look at some examples:

Example:

Example:

Example:

1.

Find the symbolic divergence of F(x,y,z) = {3x? 4y* 5z% }. Is the

function expanding or compressing at the point (3,2,-3)?

. Enter the symbolic vector: (S031XeX)X2)0)[4)(X)

(JQZIRIMEX(eIalz))(2)ENTER).
Enterthe list of variables, make an extra copy and purge: (&)({})(«]

) (ENTER)(ENTER)(9[PURG).
Compute the divergence: (o]a]V]D]1]V] or (then
or as needed) fIE. Result: 'B*u+3*y+]1H*z'

Store the point coordinates in appropriate variables and evaluate the

divergence: (G]{1)(3)(sPc)(2)(sPC)(3]+/=)(ENTER) (]}

(SPC)(@)<q)Y)(SPC)(a)é7)Z)ENTER) (STO)&)=>NUM). Result: %

A positive divergence indicates expansion at (3,2,-3).

 

  

 

Find the curl of F(x,y,z) = { 3x24y? 572 }.

. Enter the symbolic vector: (S0[3XoJaIX)¥2)>)(J4)(X)

(JEVEIRMOEX(JelZ)@I(2)ENTER).
Enterthe list of variables, make an extra copy and purge: (&)({})(e)

I(X)(sPA)(@fa)Y)(sPC)(@)[ENTER) [ENTER)koJPURG).
Find the curl: ()(a)(c)(U)(R)(L)(ENTER] or (VAR] (NXT) or (&9)(PREV))

I8 Result: © H B H . The function is irrotational.

 

 

 

Find the laplacian ofthe function, F(x,y,z) = {3x? 4y* 5z* }.

Enter the symbolic vector: ()"[3[XoX)@*2)>)("[4)(X)

(VIREX(JalZ))(2)ENTER)
Enter the list of variables, make an extra copy and purge: (&)({})()

<) (SPC)(@J&o)ENTER) (ENTER)(9JPURG).
 

. Compute the laplacian: (o]o]L)J(A]PJL)(CJENTER)or (then

or (§JPREV) as needed) [li]dHH. Result: © & & 1H
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Tangent Planes to Parametrized Surfaces

To find the equation ofthe plane tangent to a parametrized surface ata given point,

you mustfirst compute thefundamental vectorproduct (FVP)—the cross product

of the two partial derivatives of the surface. If r(u,v) = { x(u,v) y(u,v) z(u,v) }

Jr or
is a parametrized surface, then FVPr(u,v)=—Xx—

ou’ v

Note that dr/du and dr/dv both lie in the plane tangent to the surface at a given

point. Thus their cross product is normalto the tangent plane and can thereby be

used to determine the plane’s equation. (Recall that if you know a particular point

in a plane (x,,y,,z,) and a vector { A B C} normal to the plane, then the equation

of the plane is: A(x-x) +B(y-y,) + C(z—-z)=0.)

The programF4F(page 294) automates the computation of the fundamental vec-

tor productat a given point on a given parametrized surface. F4F takes the sym-

bolic vector function from level 3, a list of the two independent variables from

level 2, and a list containing the two coordinates for the independent variables at

the given point. It returns the numeric fundamental vector product as a symbolic

vector (i.e. in a list) to level 1.

Example: Find an equation of the plane tangentto S(u,v)={ u v u** } atthe

point (-1,2,4).
1. Enterthe vector function for the parametrized surface: (G]{})(o)(&)

(JoJaly¥()X(eJa)2)ENTER).
2. Enter the list of the variable names and a list of their values: (&]{}]

QIO([F/-)(SPC)(2)([ENTER).
3. Compute the fundamental vector product: (o]a]F]V]P) or

(then or as needed)BT

4. Assemble an equation for the plane and then simplify: (&]{}JoJ&]

(X)sPo)@)a)V)sPe)(@))Z)ENTERI)L)((*/-)(SPC)(2)(sPC)(4)
[ENTER) (D) (X)MTH]E FIHE (o)oEYXIC)OJ(ENTER).

Result: ' 1&+E#u—gxg+z!
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Double Integration with Scalar Functions

The definite integral of a function of one variable, geometrically interpreted,is

related to area—the sum ofa series of “strips” that have height but whose width

approaches zero. By extension, the definite integral ofa function oftwo variables,

geometrically interpreted,is related to volume—the sum ofa series offlat “plates”

that have height and width but whose thickness approaches zero.

The definite integral of a function of two variables, f(x,y), is called a double

integral, and represents the net volume between f(x,y) and the xy-plane, over a

defined regionR in the xy-plane. The volumeis net volumein that volume: above

the xy-plane is counted as positive and volume below the xy-plane as negative.

The general form ofthe double integralis J-J‘ f(x,y)dA. The dA refersto a sum-

R

ming element that is two-dimensional (area). The HP48, however, cannot use the

general form of the double integral. It can use only single definite integrals with

specified upper and lowerlimits,so it requires that you transform the general form

into a iterated form—a single integral whose integrand is itself an integral

b d

expression, such as j [J f(x,y) dy] dx. For each x between a and b, a vertical

cross-section of R runs fromy=ctoy=d.

To better visualize a double integral, think of the volume it computes as that of

a book sitting upright on a shelf, with its binding facing you. Now modify your

image so that the area of the book’s contact with the shelf isn’t necessarily a rect-

angle. The top of the book isn’t necessarily flat, either.

The pages of the book represent slices of the volume between two limits (the

covers of the book). The double integral (volume ofthe book) represents the sum

of the areas of the slices (pages) between the lower limit (back cover) and the

upper limit (front cover); the inner integral in a double integral computes the area

of a slice—an area that may be constant (all pages the same size) or may instead

be a function of its position within the volume (book). In either case, the outer

integraltotals the areas of the slices (pages) into a volume (book).
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Using the iterated form of the double integral requires that you define the region

R so asto establish values for the four limits a, b, ¢, and d. Now, each slice (page)

intersects R in a line segment. If the line segments for the slices have varying

lengths, then ¢ and d are probably functions ofx: ¢ =g(x) and d = h(x). The limits

of a and b are then the minimum and maximum x-values (front and back cover

max R, h(x)

positions), respectively, in R. The iterated form becomes J [ f(x,y) dy} dx.
min R, g(x)

Of course, you could also find the volume of a object by slicing it horizontally

instead of vertically,if it would be more convenient to do so—such as if the book

in the foregoing analogy were sitting on the shelf with its front cover showing.

maxR, @h(y)

Then the iterated form becomes J ( f(x, y)dx}dy.
min Ry g(y)

Using the book analogy, the front cover is now the minimumy-value ofR, the back

cover the maximum y-value of R, and the area of the pages (slices) now depend

on their y-position in the book.

It’s important to execute the double integral correctly on your HP48, or the com-

putation will take seemingly forever. Here are some do’s and don’t’s:

Don't:  Create a symbolic nested double integral expression and then press

[*NUM). The HP 48 will take too long to evaluate it (unless perhaps

the display/precision is set to 2 or 3 places).

Do: Compute the inner integralfirst, evaluating and symbolically sim-

plifying as much as possible, then use the result as the integrand of

the outer integral which can then be finished with (=NUM).

Maybe: Create asymbolic nested integral expression and usel'lLTIMT (page

303) to evaluate it efficiently (starting from the inside-out).

Remember: Itis always better to evaluate the inner integral symbolically, if at all

possible. Note that if the inner integrand cannot be evaluated symbolically by the

HP 48, then you may either have to work it manually before using the HP 48 for

the outer integral or resort to numerical double integration (i.e. the long “Wrong”

way) using a small display/precision setting. Look at some examples:
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Example: Find the volume between the graph ofz = x?y* and the xy-plane, over

a rectangular region with vertices (-1,1), (-1, 4), (3,4), and (3,1).

4 @3

. Since -1<x<3and 1<y<4,the double integral is j J'x2y3 dxdy.
1

The polynomial integrand should readily evaluate symbolically.

Enter the “outer” limits, then the “inner” limits: (1)[ENTER)(4)ENTER);
(1)+/=)([ENTER)(3) (ENTER).
 

 

. Enter the integrand and “inner” variable of integration: (*)(oJ&]X]

IRX(JQYZIE)ENTER)()()XENTER)
4. Integrate: (=)7)EVAL). Result: ''F#y™3+, 333333333333#y™3 !

Example:

Enter the “outer” vanableof integration; do the outer integration to

find the volume: (&YETERDIDEVAD. Result: 595

Find the volume between the graph ofz=x?+xy—y? and the xy-plane

over a region bounded by the graph of y = x? , the x-axis (y =0), the

y-axis, and the line x=1.

. This time the region of integration isn’t rectangular. Since 0 <x <

1 and 0 < y < x%, the doubleintegralis J J‘x2 +xy—y>dydx.
0¥0

Enter the “outer” limits, then the “inner” limits: (0)ENTER)(1)(ENTER};

© (T(2)ENTER)
. Theintegrand and “inner” variable ofintegration: (' )(oeJ&]X)>¥)(2)

EJ[D-
Evaluate the “inner” integral: (=)7)EVAL(&JSymsoLc)[EiTH=].

Result: '. G#utPAsytytd—, 3303333303305]!

 

 

Enter the “outer” variable ofintegration; integrate to get the volume:

(o]X)([ENTER (G>NUM). Result: &30/ 142835714

Converting to a fraction via *! or *[IZ yields '33<14H"
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Example:

1.

Example:

260

L.

2.

3.

Repeat the previous example using ILTIMT.

Enter the symbolic nested double integral: =]5)(0)&)2)(1)E)

@@E@E@
X[eJaY[aaY[alJalelX)IENTER
Evaluate the doubleintegral: @@...@..morm
(NXT) or (&)PREV)) HETHIHE. Result: . &2or 1426071

2

Compute J
0

Enter the “outer” limits: (0) (ENTER).

Enter the “inner” limits: (1]+/=)(ENTER)(3)(ENTER).

Enter the integrand and “inner” variable of integration: (')(aJé&q)X)

PEREHAOH(eI(2)ENTER)(eYENTER].
Integrate: ()J7)(EVAL. Result: '[JT—1, 3w{d+g™2, gl

Hmm... this integral didn’t evaluate symbolically. Your options:

 

      

 

 

a. Symbolically evaluate this inner integral manually, then pro-

ceed with the computation using the HP 48.

b. Symbolically evaluate this inner integral by using# IMT , hop-

ing that IPHTS has the relevant matching pattern; or by using

a combination of the other symbolic integration strategies

discussed in chapter 4. Then do the outer integral as usual.

c. With low precision for quicker computation, numerically es-

timate the complete double integral, using either or

FILTIMT (which offers atleast a four-place numerical approxi-

mation).

. If you chose options a or b, the inner integral expression will have

beenreplaced with its antiderivative. Ifyou chose option c, the inner

integral expression remains unevaluated. Enter the “outer” variable

of integration and integrate: (']oJ&XJENTER)(2)JS)-

If you chose options a or b, then evaluate the integral (either (EVAL

EVAL)or (6q]=NUM)). If you chose option c, then evaluate the integral

numerlcally to four decimal places usmgf'|_T IMT ())MIL)T) 1)

(N)T)(ENTER)). Result (to 4 places): 1.3=5 
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Segmenting Double Integrals

Some regions of integration you’ll encounter have vertices other than at the outer

integral’s limits. When this occurs, you must subdivide (or segment) the double

integral into two or more double integrals. The limits for both inner and outer

integrals are usually affected by segmentation.

Example:

 

Let R be the triangular region with vertices at (0,0), (1,3), and (2,2).

Find Jje""y dy dx by using segmentation.

R

. First, study R. The x-range is 0 < x < 2, and in that range (at x = 1)

lies a vertex. Before the vertex, the upper limit for y is the line

connecting (0,0) and (1,3), ory=3x. After the vertex, the upper limit

foryis the line connecting (1,3) and (2,2) ory=4 —x. Thus,it makes

sense to split the double integral around x =1. The first subregionis

0<x<landx<y<3x;theotheris] <x<2andx<y<4-x.

. Enter the segmented integral, JIdydx+JJ*dydx,

onto the stack: Press (&]EQUATION)(=]5)(o)(»)(1™))(«]qlX)

Q Q = >]>)
(XB200()]a)X)) (4) () @ax) ()
le(JalX)DealV)eI)(@fa)Y)SPO)(@fa)X)ENTER)

. Numerically compute the segmented integralusing MILTIMNT:
. Result: 1. 1333332552

This matches the analytical result (1 + e?) to full precision.
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Double Integrals with Polar Coordinates

It’s often more convenient to use polar functions (of two variables, r and 0) to

perform adouble integration, particularly ifthe regionR is more simply described

by polar functions. If the problem is already given entirely in polar form, then

computing the double integral is no different than for rectangular functions.

L g

Example: Compute J jr3 cos’ drd) .
z Jo

1. Enterthe “outer” limits: J&])(=)(4)ENTER)("J&q))(=]2)[ENTER).

3. Enter the “inner” limits: (0])(ENTER)(1)(ENTER).

4. Enter the integrand and “inner”variable of integration: ('])(aJ&]R)

E)X)Cos)(@I)(2)ENTER) ()JaR)ENTER)
5. Evaluate the “inner” integral: (—)J)(EVAL).

Result: ', Zo#C0S0RIE!

6. Enter the “outer” variable of integration and, in Rad mode, evaluate

the outerintegralto find the volume: ('o>JF] =
(RAD), if necessary) €(5)=NUM). Result: 2. 2b¢47PB4aE-E.

However,ifthe function is given in rectangular form, but the region ofintegration

R is given in polar form, then you’ll first need to convert the rectangular function

to a polar function using the following variable substitutions:

x=rcos0 y=rsin0® dxdy=rdrdd

(The r term in the latter equation is the Jacobian determinant scale factor for the

transformation to cylindrical coordinates.)
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f

Example: Find JJ(I +x* +y*) dydx, with R the interior of the unit circle.

R

1. Analyze. In polar coordinates, the interior of the unit circle is de-

scribed by 0 <r <1 and 0 <0 < 2r. After making the substitutions

2n pl

and simplifying (e.g. x> + y*> = r?), you have j J(l + r2) trdr do.
0 0

2. Enter the “outer” limits: (0)(ENTER)("2)X]J&q)w)(ENTER.

3. Enter the “inner” limits: (0](ENTER)(1)(ENTER).

4. Enter the integrand and inner integration variable: ()]0

(IaRISXalRENTER(eR)ENTER)
5. Evaluate the “inner” integral: (©]J).

Result: 'J0H, 1, C1+"20 ] D, 1!

Note that the inner integral failed to evaluate in its current form.

6. Choose option b (see page 260) and use CHYAE to convert the inte-

gral, withu =1 + r: (JoJalUEI=)HH(@GIRIOY(2)ENTER
(@)a)C[H[V]A[R)[ENTER). Result: '[C1, & . 5®0™1.5, u)!

7. Evaluate the revised inner integral and substitute the original ex-

pression for u, if needed: (EVALJEVAL. Result: . 93137HE499

Note that the evaluated inner integral contains no u (or other variable

for that matter) and thus requires no resubstitution for u.

8. Enter the “outer” variable of integration and evaluate the outer inte-
gral to find the volume: (']o]>]F)(ENTER (G=NUM..

Result: . 20197563963
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Triple Integrals of Scalar Functions

The triple integral logically extends the concepts of single and double integration.

The general form of a triple integralis IJJ f(x,y,z)dV, where dV is a volume

element whose form depends on the order of the three integrals.

You can visualize the triple integral as computing an aggregate property (density,

mass, temperature, etc.) of a solid, where that property varies locally throughout.

Or,the triple integral is another way to compute a volume. Because volume—a

“property” of every arbitrarily tiny particle of a solid—is a constant, triple-

integratingf(x,y,z) = 1 yields the volume of the region. That is, given a region R

bounded by two surfaces z, =f(x,y) and z, = g(x,y), over an areaA defined by A(y)

<x<h/(y)andc, <y<c2,thevolumeofR1sJ-ledvJJJla’zdxdy

hy(y)

Example: Find the volume of the region bounded between z = x*> + y*> and z =

-2xy over the area defined by 0 < x<y?’and 0 <y < 1.

1. Outermost limits; middle limits: (0)(ENTERJ1)(ENTERJ; (0)(ENTER]( ")

(JE&EY)O2)[ENTER)
2. Innermost limits (x? + y* > —2xy since x and y are > 0):

mamanmmmm
3. Theintegrand; the innermost integration variable; then integrate

ENTER(JZ)ENTER)(>T)EVAL. Result: ' f=-=f""3+'4""'Ty
4. The middle integrationvariable; thenintegrate NTER

@mResult +||_|.fi.l-.fi.:.:_:I+I"|+I-l+|_||_+|_| l | 1

5. The outer integration variable; then integrate to get the volume:E]

(GV) ENTERI) E)=NUM. Result: . 1453714256

Rationalizing this result (via *[.! or #EI7)yields ' &97H"

 

 

     

 

There are other waysto find the volume ofan object, but a triple integral is the only

way to find the total effect of a property that varies throughout the object.
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Look, for example at density. If an object is a collection of arbitrarily small parti-

cles, and if each infinitesimal volume is the same, then any variation in its density

is due to variation in its mass. And to find the mass ofthe total object, you need

only sum the masses ofits many infinitesimally particles—rvia triple integration.

Example:

o
A
e

One vertex of a tetrahedron is at the origin (0,0,0). Its other vertices

areat(0,0,1),(0,1,0),and (1,0,0). Ifthe densityp at each point (x,y,z)

ofthe tetrahedronisp(x,y,z) = xy, whatis the mass ofthe tetrahedron?

. The tetrahedron is bounded between four planes—the xy-plane, the

xz-plane, the yz-plane, and the plane x + y + z = 1:

Z

X

The edges of the inclined face are lines: y=1-x; z=1-y; x=1-z.

Your integral can use the variables in any order (since the region is

symmetrical), but for this case, let x be “outer,” y “middle,” and z

“inner:” 0<x<1 O0<y<l-x 0<z<1l-x-y

The outermost limits: (0)(ENTER) 1)(ENTER).

The middle limits: (0)(ENTER)(" [1])(=JeJ&)X)(ENTER).

The innermost limits: (0JENTER] '1]—]oJ&X]—=]aJ&q]Y JENTER).

Enter the integrand and the innermost variable of integration, and

evaluate the inner integral: ('oJ&qX)X)(@J&Y)ENTER)("[of&Z]

ENTER EVAL). Result: 'w#g#i]-w—yl!

. Enter the middle integration variable; evaluate the middle integral:
 

 

Y JENTER|[] S JEVAL|<q]SYMBOLIC k1| & f EVAL])(EVAL).

Result: '—Lw#(0]1—w21™3-30 0=50])ea™y
+, 5]e)t!

. Enterthe outerintegration variable; integrate to get the volume: ()

@)XENTERSDENM. Result: 5. 3333333333663,

Rationalizing the decimalresult (with #[! or +[}iZ) yields ' 1+ 17H" .
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Triple Integrals in Polar Coordinates

Aswithdouble integration, it may be convenient to use polar functions to describe

the object or the area of integration. Cylindrical coordinates (r, 0, z) produce

volume elements that are tiny cylindrical wedges of volume, dV=rdrd0dz.* To

compute a triple integral using cylindrical coordinates, you must use this version

ofdVand express all limits and the integrand in cylindrical coordinates. Use these

conversions, as needed: x=rcos® y=rsin® z=z dxdydz=rdrdbdz.

Example: A cylindrical shell whose inner surface is x* + y* =1, outer surfaceis

x* + y* =4 and which lies between the horizontal planes z = 0 and

z=21s composed of a material whose density is p(x,y,z) = x’z + y*z.

Find the total mass of the cylindrical shell.

1. Incylindrical coordinates, the inner surface is r=1; the outer surface

is r=2 (because x> + y*=r?). Similarly, the density function becomes

2 @2n @2

Z(x* + y?) = zr*. Thus, you must solve J' J er3 drd0dz.
0 &0 1

2. The limits—outerto inner: (0](ENTERJ2)(ENTER}; (0J(ENTER)("J2]X]

(&))(ENTER); (1)(ENTER)(2)(ENTER).

3. The integrand and inner variable;integrate: ('[aJ&)Z)

ENTER)("(o4|R)ENTER EVAL). Result: '#*¥4—z*. 75"

4. The middle variable; then integrate: (']o]—>FJENTER]]JS JEVAL

() (symBoLiCli[®sd. Result: '/ o#z*m!

5. Theoutervariable;integrate to find the mass: ('[aJ<5]Z)ENTER]>]S]

[EVAL). Result: '15#7'

  

Spherical coordinates (r, 6, ¢) produce volume elements that are tiny spherical

wedges, dV=r*sin ¢drdOd¢. ** To compute atriple integral in cylindrical coord-

inates, you must use this version ofdV and express all limits and the integrand in

cylindrical coordinates. Use these conversions, as needed: x =r cos 6 sin ¢

y=rsin 6 cos ¢ Z=7rcos ¢ dx dy dz = r* sin ¢ dr dO do

*The r term is the Jacobian determinant scale factor for the transformation to cylindrical coordinates.

**The r* sin¢ term is the Jacobian determinant scale factor for the transformation to spherical coordinates.
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Example:

S
k
L

Find the mass of a solid ball of radius 1 if the density at each point

: | :
d units from the centeriso Note that for a unit sphere, 0 < r

+

<1,0<0<2m, and0< Q<.

. Inspherical coordinates, the distance from the centeris r; the density

  sinpdrdodp .

T @2n el 9

S : -. Thus, you must solve ! >
1+r odo Jo 1T

Enter the outermost limits: (0)(ENTER) 'J&q))(ENTER.

Enter the middle limits: (0)(ENTER](" [2]X](&]) (ENTER.

Enter the innermost limits: (0])(ENTER)(1] (ENTER).

Enter the integrand and the innermost variable of integration and

evaluate the inner integral: aJ&[R)(Y¥(2)ENTER)ENTER)(1)(+H)(%)

[EVAL).
Result: 'JTH, 1, P2p®E+]1 15INCED, 0!

Because the inner integral failed to evaluate symbolically, try modi-

fying it and re-evaluating. Note that5 IMIH ) is a constantin this in-

tegral and can be removed from the integrand (to be multiplied back

after you evaluate). Then substituting u =7*+ 1 (using CHYHE) con-

verts the remaining integrand to an evaluable one. Make the changes

and evaluate: EDIT)DEL]DEL]DEL]DEL]DELJDELJDELJENTER)

HYeVaJaRYUETER@)HMA)R)
(ENTER)[EVAL). Result: 'J01, & 5%0=1+0)-1, ul!

The integralstill won’t evaluate. But since there are no variables in

the integrand or the limits other than the variable of integration, you

can use numeric evaluation (then restore the SIMLE) factor you

removed: (G]=NUM)("J(SIN[¢[0)(e=)9)(ENTER)(X).
Result: '.214eH]1B26EHI=5IMIE!

Enter the middle variable, then integrate: ('o]>|F)
[EVAL. Result: '.&14EHIHIREHZ=SIMNOE(e) !

The outer variable; integrate to get the maSS' nmmmmgNTER

()7 JEVALIG SymBoLIC [ THEl. Result: ' . B5EH346412!
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Using Triple Integrals to Find Averages

Another use fortriple integrals is to compute the average value of a property that

varies within a region. For example, the average density of an object of density

p =fx,y,z) is: Average density = _

Example:

. Analyze the task. The problem reduces to

Jjjp(x, y,z)dxdydz

—_— R
.

Total Volume J’J-J L dx dy dz

R

Total mass
  

Find the average density for an object described by 0<x<y,0<y

<z, and 0 < z < 1 whose density function is p(x,y,z) = xy*2°.

1 z y

JJ J‘xyzz3dxdydz
0 ¥v0 ¥0

1 Z y :

J J‘ Jldxdydz
0 ¢0 ¥0

Enter the iterated triple integral of the numerator; make a copy: (']

UGGazalelD0E)
CldaadaXXeaYNYI@XEaldB)E)
DJaXME)YGl)(@fa]Z) ENTER)ENTER).

 

. UsellLTINT to find the numerator integral:

(ENTER). Result: 1.11111111111E-E

Swap the copy into level 1; edit the integrand to match the denomi-

nator, then evaluate the denominatortriple integral using ['ILTIMT:

(SWAP)(«JEDIT)(v)(DEL)DEL)DEL)|DEL)DEL)DELJDEL)DELJDEL)(1)(ENTER)

QMODNETER). Result: . 16EEEEREEREE.

 

  

. Divide and rationalize (using *[}iZ)to finish the computation: (=)(c)

(@2JGICIENTER). Result: '1-13" 

The centroid of a object (X,,7) is the average location ofall of its particles. If

the object has a geometric center, then the centroid and the center are identical.

The center ofmass of an object (fo> Yarsg ) is the “balance point” ofthe object.
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Thatis, if you were to support an object on a fulcrum placed exactly under the

center ofmass, the object would balance perfectly. Ifthe object has constant dens-

ity, then the center of mass is also the centroid;if the density varies, the center of

mass will be distinct from the centroid. Both the centroid and center of mass are

averages, so 1t isn’t surprising that they are computed via triple integrals:

e]][
Pooo

Total Position Mass
Center of mass = or

Total Mass

([l[[
Le[i

Example: Find the centroid and center ofmass of a solid bounded by the cylin-

drical surface x* + z = 4, the plane x + z = 2, and by the planes y =0

and y = 3, and whose density varies according to p(x,y,z) = xyz.

Centroid =  

 

 

1. The intervals for y and z are easy: 0<y<3and2-x <z<4-—x2

To find the x-interval, find the points of intersection of the surface

and the plane by solving a system of two equations: 2 —x =4 — x?

or x> —x — 2 = 0. Thus, for the integral, -1 <x < 2.

2. Enter the denominator integral for the centroid; make three copies:

BlERIENRIS
(JaXGJ@EHaXZYEE0E(@)20
=0 >alr) (ENTER](ENTER](ENTER) (ENTER).

3. UsellLTIMT to evaluate the denominatortriple integral:
(TINJT)ENTER). Result: 13,7
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4. Make two additional copies of the result, combine the three copies

intoalistandroll the list up tolevel 4 ofthe stack for later use:

Even)(3)Pro)TE ENE T,
5. Edit the integrand of each of the copies of the triple integral so that

each matches one of the numerator triple integrals in the centroid,

and then combine the three numerators into a list: (&)EDIT)(v)(»>)(»)

00000ENEENENERIT[NEWUOE0000
(») (») (OEL) ()&Y] (ENTER) i1RER (GTEDT] (V)[>-J>
PED(J)Z)ENTER) (3) (Pra)KN IETHE.

6. To find the centroid, use a short routine andL I 5T (2)ENTER) (&)

fl@@...@.-@@m@@@@u@@.
enter)AEIEME. Result: '1-2" '3ET '1E-9Y G

So the centroid of the given ob]ectis the point (£,2,12).

  

  

   

7. Enter the denominator integral for the center of mass; make three

copies: (IO)2I0+-alRIEE)
DRG]DXeeaXXE)
MX(Ja2a)EEZMEOEEXMPEEEM
(ENTER)(ENTER)(ENTER](ENTER).

8. UselLTINT to evaluate the denominatortriple integral:
(T1N]T)ENTER). Result: 15. 1875HEHERS

9. Make two additional copies of the result, combine the three copies

into alistand roll the listup to level 4 ofthe stack for later use: (ENTER

Enter)(3) (Pro)NBTNE .
10.Edit the integrand of each of the copies ofthe triple integral so that

each matches one of the numeratortriple integrals in the center of

mass, and then combine the three numerators into a list: JEDIT)(V])

>)))1>()Y(2)[ENTER) BRIS TEDIT)(Y) ()() (>)(>)
>))e>1>1))(2)ENTER) EiL(S JEDD(V)(2(YW@
D0CARBENERBEXS]LIT|*LIST

11.Find the center ofmass using a short routine andIL I=T (2]ENTER)

SeISDR
ErEEEINE. Result: ¢ '52-35 21" 19
So the center of mass of the given objectis the point (32,2,%).
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Path Integrals

So farin this course, the interval ofintegration has been measured along a straight

line, usually one of the coordinate axes. But that’s not always the case. The inter-

val of integration is the path along which an object moves as it is subjected to a

scalar or vector function. When the path is a straight line, the integral is a definite

integral, measured in units ofone the variables. When this path is curved,the inte-

gral is a path integral (or, misleadingly, a line integral) and the interval is meas-

ured in units ofarclength. In that case, you must convert linear interval elements,

such as dt, dx, dy, or dz, to arclength interval elements, usually notated as ds.

If you use a vector function of a single linear variable to describe a continuous

curved path, r(r) = { x(¥) y(¥) z(¢) }, then the arclengths between two points on

b

 

 
thecurveis s = I r’(t)|| dt. The arclength formula can be expressed as a function,

s(?), that gives the arclength along r between a fixed start point # = a and an arbi-

t

  
trary endpoint u =t s(t) = j r’(u)|du. Then, taking the derivative of the arc-

length function with respect to ¢ and solving for the arclength interval element,ds,

  
you get ds = |r’(¢)| dt,which gives the conversion needed to define the path inte-

gral for scalar and vector functions: The path integral for a scalar functionfalong

  

b

a parametrized curve, r(t), is §fds= J f(x(2))|r’(2)| dt;; the path integral for a
C a

b

vector function F along aparametrized curve r(f) is § F-ds= J F(r(r)) -r'(¢)dt.*
C a

The circle on the integral symbol and the small C indicate a path integral without

specifying endpoints (and the interval elementis ds). The C stands for “Curve,”

which allows you to speak generally of the path without necessarily having to

specify a particular parametrization r of that path.

*You will sometimessee the path integral for a vector function expressed as § Pdx + Qdy + Rdz,where P, Q,

and R are the component functions of the vector function.
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Path (a.k.a. line) integrals are useful whenever the function in question acts on an

objectas it traces out a non-linear path, or when the physical quantity being meas-

ured depends on the length of a non-linear path. Some common examples:

e The mass of a wire with a density functionf, traversing a curve C: § fds

The length of a wire traversing a curve C: ilds

The work performed on an object over a curve C by a force F: §F ds

The circulation along a curve C of a fluid moving according to F: §F ds

C

c

c

C

Compute some path integrals:

Example: Find the mass of a wire whose density function is d(x,y,z) =x+y +

z that traverses the path, r(f) = { ¢t # £ } where 0 << 1.

1. Enter the limits of the parameter variable: (0JENTER] 1JENTER).

Enterthe function: ("JoJa)X)(H(a]V)(H(@la)Z)(ENTER)
3. Enter the path and make an extra copy: (S0}T)()(@)&)(T)

272

9Na)T) ENTER)(ENTER).

Enter the list of function variables and store the path components in

them: (GIU[eJa)X](SPC)(eJa)Y)(SPC)()]ENTER)(STO)
 

. Find the derivative ofthe path: (']oJ&)T ENTER[ENTER]&)(PURG)

(o]o]V]DJE]R](ENTER).

. Assemble the integrand for the path integral: (o]a]V]A]B]S)

SWAP)(EVALJ(X).

. Enter the variable ofintegration, set the display mode to 2 FIA, and

integrate: ('JoJ&T)ENTER)(So]oFLX)ENTER)|]J=NUM.
Result: &.r14
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Example: Find the work done on an object by a force F(x,y,z)={y 2x y } as

it moves along the path, r(f)={ ¢ # £ } where 0 <r< 1.

1. Enter the limits of the parameter variable: (0JENTER] 1JENTER).

Enterthe function: (&]{o)Y]'2]X]eX]»o]]Y [ENTER).

3. Enter the path and make an extra copy: ([t)T)(")(«)&)(T)

9]T(3)[ENTER) ENTER)
. Enterthe list of function variables and store the path components in

them: (GJ1)(Ja)X)(SPC)(eJa)Y)(SPC)(oJ&a)Z) ENTER)(STO).
Compute the derivative of the path: ('JaJ&]T)

(5IPURG) (e]VIDIEJR)(ENTER).
Assemblethe integrand for the path integral: (SWAP)(1]« >)(EVAL[Y)

(Pra)ELEA TRT THEENTeR)SWAP)(@)(@)(S)D)(©)(T)ENTER)
()symeoLic)eH.

 

 

  

. Enter the integration variable and then integrate: ('JaJ¢5]T)[ENTER

(2JI)EVAL)
Result: . cBET, which converts to ' 33-12" via +.

The program FHTHIMT (page 306) allows you to compute a path integral with a

minimum of “calculator overhead.” It takes the function (either scalar or vector)

from level 5, the parametrized curve (as a symbolic vector) from level 4, the list

of independent variables in the function from level 3, the parameter variable for

the curve from level 2, and a list containing the starting and ending values of the

parameter variable from level 1. FHTHIMT returns the computed path integral to

level 1 at the accuracy level set by the current display mode.

Example: Use PHTHINT to find § fds, where f{x,y,z) = x + cos? z, and the
C

curve Cis parametrized by r(f) = { sint cost t} where 0 <¢<2m.

1. First, enter the function itself: ('Jo&)X](+)(Cos)(eJq)Z)(>)(2)
ENTER.

2. Next, enter the parametrized curve: (G){JSIN)(a]1>)(1)

Path Integrals

(Cos)(@)D)()(&TIENTER).
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Example:
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. Enterthe list offunction variables: (&}¢J&X]SPc]aJ&]Y]
(06|Z)(ENTER).

4. Enter the parameter variable: (']aJ¢<5]T)(ENTER).

. Enter the range of the parameter variable as a list: (&]{})(0)

('[2)X]&)] (ENTER).
. Set the display mode to STD and compute the path integral:

(T(D)ENTER), thenEl@lillor(VAR] (then
or as needed)|3

Result: 4.*’r‘}._l:i!:l.:':'2l

This matches the analytic answer, ©~/2, to full precision.

Find §F -ds where F(x,y,z) = { y°z*> cos(x*+y?) In(xyz) } and the
C

curve C is parameterized by r(#) = { /3 > 4t } where 1 <t <2,

. Enter the vector function: (&){})("[Y] (a]q)Z]YY

1Icos)JGIXPHRIHAVFIEEMCRN(JaX)
X(JaVX)(ela]Z)ENTER).

. Enterthe parametrized curve: (G0JoJaIT)OE])E)»)((@)

TRDX(TSTIENTER).
. Enter the list of function variables: (&){})(«)(&)(X)(sPC)(o)&)(Y)

SPC])&Z)(ENTER].
4. Enter the parameter variable: (']aJ&]T)(ENTER).

. Enterthe range of the parameter variable as a list: (&]{}]
ENTER).

. Compute the path integral: (o]|PJA]T]H]1IN]T)(ENTER) or

(NxT) or JPREV)) [HiRH]
Result: '-|1 23HE59241
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Potentials

The gradient of a scalar function, f, is a vector function, d. But how about the

reverse operation? Can you find a scalar function that has df as its gradient?

If such a scalar function exists, it’s called a potential of df Potentials are

antiderivatives for vector functions. Just as scalar functions have an infinite

number of anti-derivatives (as long as they have at least one), vector functions

have an infinite number of potentials (provided that they have at least one). For

a potential to exist, antiderivatives must exist for each of the vector function’s

component functions.

The program FILITEM (page 314) takes the vector function from level 2 and the list

of variables from level 1 and returns the scalar potential to level 1. FUTEM uses

IMOEF to look for antiderivatives and thus has the same limited pattern-match-

ing capabilities as the built-in commands. And you can enhance those abilities

by substituting % IMOEF for IMOEF in the FUTEM program and adding integration

patterns to [FATS using HUOFHT, if you wish (see page 175 for details).

Example: Use FUUTEM to find a potential for F(x,y,z) = { 3x2y x*+y* 2z }.

1. Enterthe vector function: (])"[3]XoX)¥(2)X)(eJa])Y)

)TJSXPE)H(aVPIE)C)X(@lENTER.
2. Enter the variables list: (]}aJq]X] (a]q]Z)

(ENTER).
3. Findapotential: (o]aJPJOJTJEJNJENTER] or(VARJ(INXT]or(¢&q]PREV]

as needed) B3,

Result: 'w™J#g+, Fhegd+z0!
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A vector function is said to be conservative if it has at least one potential. But

being a conservative vector function also means that its path integral equals zero

forevery closed curve C. This means that the path integral ofa conservative vector

function depends upon only the two endpoints, not on the particular path traveled.

Furthermore,ifyou start and end at the same point, the path integral of a conserv-

ative vector function always equals zero—no matter how long or intricate the

circular path.

So, ifyou can find a potential for a vector function F, you know it’s a conservative

function. And you can show that a vector function F has no potentialsif you can

show thatitisn’t conservative. Is there a quick and easy way to prove that a vector

function F isn’t conservative?

Yes. If the curl of F isn’t the zero vector, then F isn’t conservative. However, if

the curl ofF is the zero vector,it neither guarantees that F is conservative nor that

it has a potential (although it’s a good sign that it’s worth looking for one).

Example: Use the Curl test to determine if F(x,y,z) = { 3x*y x*+y* 2z } could

be conservative.

1. Enter the vector function: (G]U3)("[3Xo)X)F(2)X)(«]e)Y)

)JXB(FQVXIEC)2)X)(e Z)[ENTER).
2. Enter the variables list: ()})(o)&)(X)(SPC)(o)(E&)(Y)(SPC)(v)E)

(Z)ENTER).
3. Compute the curl: (o]o]CJUJR]L)(ENTER).

Result: 1 H H H

The zero vector result indicates that F mightbe conservative; the test

doesn’t prove that it is. It merely suggests what you already know

for a fact from the previous example—that F is indeed conservative

because it has a potential.

o
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Surface Integrals

A path integralis a single integration along a parametrized curve (a single-vari-

able vector function). Similarly, a surface integral is a double integration over a

parametrized surface (a multi-variable vector function).

Furthermore, just as path integrals require the transformation of straight-line,

variable-axis interval elements to curved arclength interval elements (ds), so do

surface integrals require the transformation of two-dimensional area elements to

three-dimensional surface area elements (dS).

When a flat rectangular (du by dv) element is parametrized into a surface area

element, it’s best approximated as a parallelogram whose sides are dullT|l and

avliT|, where lIT|l and lIT|l are the lengths of the two tangent vectorsfor the ele-

ment. The area ofthe parallelogram with sides oflengths a and b is ab sin 6. Now,

T, ||T, “sin 6. Putall

together, this means that the surface area element (dS) can be transformed from

T, (|T,|sinO@dudv=|T, XT,|dudv.

the length of the fundamental vector productis ||Tu xXT, ” =
      

    

 

   
its rectangular counterpart (du dv) by dS =

    

Thus, the surface area of a parametrized surface (analogous to the arclength of a

parametrized curve) is J:[ ds = J‘J‘HT" XT |dudy = J j T xT,

s R Yo T

Finally, the surface integrals for scalar and vector functions are defined as:

Scalar: -“‘de = J‘J-f(r(u,v))”Tu XT,

tion and r(u,v) is the parametrized surface.

dudv.
      

  
dudv, wherefis the scalar func-

Vector: J]F-dS = J-JF(r(u,v))-(Tu XT,)dudv, where F is the vector

S R

function and r(u,v) is the parametrized surface.
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Some common applications for surface integrals are:

e The area of a surface S: ledS

S

e The mass of a surface S whose densityisf(x,y,z): J.J fds

S

e The flux of a fluid of velocity F(x,y,z) across a surface S: J-J‘F -dS

S

Computing a surface integral requires the following steps:

1. Determine the parametrization of the surface and the ranges for its two

variables.

2. Compute the fundamental vector product (a vector function) of the para-

metrized surface.

3. For a scalarfunction: Computef(r(u,v)) and multiply it by the absolute

value of the fundamental vector product.

Foravectorfunction: Compute F(r(u,v)) and find the dot product of it and

the fundamental vector product.

4. Compute the double integral using the result of step 3 as the integrand and

the ranges of the parameter variables as the appropriate limits.

The program SRF IMT (page 330) handles the managementofthe surface integral

computations. It takes the function (either scalar or vector) from level 5, the para-

metrized surface (as a symbolic vector) from level 4, the list of function variables

from level 3, and two 3-elementlists on levels 2 and 1, declaring the names and

ranges of the parameter variables. Each of these last two lists begins with the

name of the parameter variable followed by the start and end points of its range.

SEF IMT then sets up the correct double integral and attempts to evaluate the inner

integral symbolically. If it fails to do so,it halts and displays the inner integral,

to allow you to manipulate or resolve it by hand before pressing to re-

sume the computation. This option to pause exists because SFEF IMT can take a-
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while (sometimes upwards of 20 minutes) to compute the surface integral— a

double integral—if it can’t symbolically evaluate the inner integral and has to

resort to numerical double integration at reduced precision.

Example: Find the total mass of a material surface whose density function is

f(x,y,2) =xyz and which is parametrized by r(4,v)={ u v uv } where

Of<u<landO0<v<l.

1. Enterthe function: ("JeJa]X)X)(¢fa)Y)X](¢]a)Z)ENTER).

Example:

Enter the parametrized surface: (&]{}(U))@))

™) (ENTER].
Enter the list of function variables: (GQ]{ }J(¢Ja]X]

(eJq]Z] :
Enter a list containing thefirst parameter and its range: (J{}J(eJ&]

(U)(SPC)(0](SPC)(1)(ENTER).
 

. Enter a list with the second parameter and its range: (&]{})(eJ&V)
 

(SPC)(0)(SPC)(1](ENTER).

Compute the surface integral: (o]a)SJRJFJIINJTJ(ENTER]or

(then or (§)|PREV) as needed) EFL.

Result: 'f0H, 1, JO1+HC— ) 2+(-0™2bdsu™Z, 0) !

. Because the integral doesn’t look too complicated (and you’re feel-

ing lucky), continue the computation without making any changes:

(€] CONT].

Result (to 4 places): H. 1647 (after about three minutes)

If afluid’s velocity is given by F(x,y,z) = {—g 0 -fl},find

the fluid’s outward flux across the parametrized surface describedby

r(u,v)={ucosv usinv v}, where 0<u<1land0<v<n/?2.

. Enterthe vector function: (&))"/=[x2)=)(2)>) (o))+/-)x)

E)H(R)ENTER).
Enter the parametrized surface: (GJ{J("JoJeU]

D)OEUXEN(elafa)VIENTER.
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. Enter the list of function variables: (G]{})(aJ&]X]

SPO)(eJa)Z)ENTER).
. Enteralist containing the first parameter and its range: (G})(@J&)
 

(U)(sPC)(0)(sPC)(1)(ENTER).

. Enter a list with the second parameter and its range: (&]{ }J(a]<]V]

sPA(0)(sPo)Jalm(=)(2) ENTER).
. Compute the surface integral: (o]aJS]RJFJIINJT](ENTER)or

(then or as needed) Bl

Result: —1. 262467 14546

Wheneverthe ranges for the parameter variables don’t describe a rectangularre-

gion, you may need to convert the parametrization to polar coordinates—just as

you did when plotting parametrized surfaces back on page 238.

Example:
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Find the outward flux of F(x,y,z) = { x y z } over the upper unit

hemisphere, S(u,v)={u v V1-u*—-v?>}, where 0<u?+12<1.

. Analyze the task. Note that the integration region is not rectangular,

but circular, so that transforming the problem to polar coordinatesis

in order. So letting u = r cos 6 and v = r sin 0 yields this para-

metrization: S(r,0) = { rcosO rsin@ V1-r*> } where0<r<1and

0<6<2m.

Enterthe vector function: (&]{J(eJ&G]X)(SPC)(aJ)Y)[SPC)()]

ENTER).

. Enter the parametrized surface: (G){J)("[eJq]R)

ARXEN2TEDUESOESRIYY
(R)ENTER)

. Enter the list of function variables: (&]{})(o]J&]X] (o]Y]

SPA(oIZ)ENTER).
. Enteralist containing the first parameter and its range: (&]{JJ(«J&)
 

(R)(SPC)(0)(SPC)(1)(ENTER).

Entera list with the second parameter and its range: (&]{})(e]>]F]

(0)(sPS) ("J2IX[(ENTER).
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7. Compute the surface integral: (o]a)S]R)F]IN]T)(ENTER]or (VAR

(then or (§)PREV) as needed) EIHALL.

Result: ' JTH, 13, JO1-F*21SINCRIS5+(1-21%
. |:||-"-+|.-+| I”'Hm._J-ll r_,.-., |+r"""Oy

I'.I'I!'-I.IFIZJ“'".Z-T2eo, )

8. This integral looks too complicated for quick evaluation. Try sim-

plifying the integrand:

9 r’ cos® 0
rsin® Ov1—r? +rcos? 61 —r? r sin”

Vl—r Vl—r
3

= (sin2 6 + cos’ G)r\/I —r* + (sin2 0 + cos® 9)( ! )
1-7r?

3 r(1-r)+r
=rVl—r* + ! =

V1-7? V1-r?

 

 

 

r
 

1-r°

Replace the complicated integrand with its simpler version: (¢5JEDIT]

))RTRTAT(<

R

HEEOHEHEQRPIMGJalRGIO)«)(ENTER)
9. Now, although you’ve got a simpler integrand, it’s one that appears

   

well-suited for a u-substitution using u =1 —r*. Enter the trans-

formation equation and execute CHYAR: (oJq([0)E[=)®)E)

V(IR R)ENTER) (@]<]CTHIVIATR)ENTER)
Result: I-.r ': 15 EI:I _].:l L :] :

10. Ahhh—much better! Press (6€5]CONT] to finish the computation.

Result: B, #HIATHZIH1S =25
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Before You Key In or Use These Programs

This Appendix contains a listing of all of the programs referred to throughout this

book, sorted alphabetically by name (numerals after letters and special symbols

ignored), with text page references noted opposite the name. To use a program

by invoking its name, you must have it properly stored—in that name—within the

current directory path. (Note: If you have an HP 48G, you won’t be able to fit

all ofthese programs into the 32K storage at once; you’ll need to pick and choose.)

As with all HP48 variables, you must be careful to avoid name conflicts with other

variables in the current directory path. One suggestion: Put the programs into a

subdirectory, then create a work space below that, with custom menus to help you

organize and access the programs (for more about custom menus, see your user’s

manual or Grapevine Publications’ Easy Course in Using and Programming the

HP 48G/GX). This lets you work efficiently without corrupting your programs:

 

1 HOKME ¥

 

\\

{ HOME caLc ¥ GETTGGl
(store all the programs here) N

N

{ HOME CALC WEE ¥ BESh ieee
(create your custom menus and
do all of your calculating here)

  

If you have a bit of programming aptitude, the programs can be modified to suit

your tastes and/or needs. Most of them have not been rigorously groomed for

error-trapping, speed, or memory efficiency; they are designed simply to work

well with the examples in this course and with related work. Also, you may wish

to modify the input or output ofthe programs. For example, geometric points may

be expressed as either complex numbers or as two-element vectors, depending on

the context in which you’re working.

Whether you use these programsas is or otherwise, above all you shouldpractice

using them before needing them in an important situation. You must understand

how they work, how fast are they, how to interpret their outputs, and the nature

of their limitations (special cases of functions or flag settings).

Of course, each program is designed to work flawlessly, but bugs (and typos) are,
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unfortunately, facts of life with software and other creative works. If you have

a problem with a program, you may contact the publisher,but first, check again:

* Have you correctly entered the program(s)? Some items to check:

The program size (bytes) and checksum must match those shown. For

example, the program HLIFHT, shown opposite, must have exactly 1H3E

bytes, with a checksum of#BZ59. To calculate thesetest numbers, first en-

ter and name(i.e. store) the program. Then put its name (within ' ' marks)

onto the stack and press (¢9]MEMORY)| =ks34*

If your byte-count/checksum results are different than those prescribed,

you have a typo somewhere in your program. Common errors include:

 

Using uppercase vs. lowercase letters (yes, this is significant);

Miskeying special characters (use the tool);
STO vs. STO, L vs. 1,0 vs. B, ort ¥ vs. L) vs. [ ]. Be careful!

Using ' ' vs.". Quotes (") are on the (=)= key—don’t use ("]").

Putting spaces (or carriage returns) where they should notbe. Space

characters within " " are significant—count *em if necessary (the

uniform spacing of the program font makesthis easy); all other in-

dents,line breaks,etc., represent single spaces. These program list-

ings are shown with indents and line breaks for your eyes only; the

calculator does not use them. To it, a program is simply a series of

objects, separated by single spaces, all on one long line; even the

indents and line breaks in the HP 48 display when you edit are just

for your benefit. So ignore indents, and where you see line breaks,

just treat those as single spaces.

Some programs use (‘“call”’) other programs; the called programs

must also be properly keyed in and named. Such instances appear

here in Boldface Italics. Forexample, the programAUOFAT, shown

opposite, calls FLUMOF™LININT and +FFM, so you must also key

in those three programs before ALOFHT will run.

* Are you correctly using the program? Double-check the types and order

of your inputs and the types and ranges of your graph settings. Note that

each program listing shows the required order and types of inputs (if any)

*All checksums are binary integers. Those given in this book are all in HEX notation with a 64-bit wordsize. It
is very convenient, therefore,to adjust your machine to that setting: Press TEANTTENXT STHE]
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HMT L& Plot an Antiderivative Slopefield (172)
224 butes #3552h

: Symbolic expression for slope
: List of variables: {indep depnd}
: Plotting range: {begin end}
: Horizontal display range: {left right}
: Vertical display range: {low high}
: Initial conditions: (x,y,) or list of such ordered pairs ====>

 
 

—
N
W
A
U

T
R
W
R
E
L
S

 

 

« + £ y prg w9 49rg init
ERASE w HEAD prg + IMDEP w9 EVAL DUPZ WRNG #WOL w 2
GET grg + DEPND wgrg EVAL YWOL 18 NUMH 3 NUMY
SLOPEFIELD f STEQ DRAM £ w pra init 131 EULPLT

f

 
 

 

 

#
#

HFELA Compute a Taylor Series Approximation (46)

115 bytes #BB3%h

S: function being approximated 5:
4: independent variable 4:
3: order of Taylorseries desired 3: Taylor series
2: point around which approx. is centered 2: Approximate value
1: point being approximated ====> 1: Estimated error

« 2 ROLLD 4 DUPN TYLRa
3 Vo ap

# b oy 5TO p OUP MM £ =HUM OVER - ABS o PURGE

H-+.! Rationalize Elements of an Array (309)

211 bytes #50E2h
 
 

1: array or symbolic array ====> 1: rationalized symbolic array
 

 

« RCLF -3 CF _5SWAP 0OBJ+ 0B.J»
%FF%%== THEN 1 SWAP EMD

3+ row col
#« 1 row

FOR k
1 col START 3 FIRX =0 STD col ROLLD MERT
col 2LIST col row k - % Lk + ROLLD

MERT _
IF row 1 > THEN row =LIST EMD
SWAP STOF
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L 1 HL: Compute the Angle Between Curves at Given Points (107)

 
 

 

 

323.3 bytes #FEBEh

3: List of curves 3:

2: List of variables 2:
1: List of points (given as ordered pairs) ====> 1: List of angles

= -3 CF
...}

o
7

P
lj 0 IMPS » DOLIST

1 ¢
FOR ]

d i GET 1 p SIZE

FOR |k ) . . ) ) .
OUF gk GET C=R & +LIST o S5TO "'A" o &

rET%ET + "%+ g 1 GET + 0OBJ» B ROOT SWAF

OROP g SIZE =LIST
MERT
2« OUP2 - 1 4 ROLL 4 ROLL * + < ATAN ABS =
OOLIST F 2 « "B" SWAP + TAG » DOLIST v PURGE

ED I HT Determine the Convergence of an Improper Integral (163)

1833.5 bytes #A59Ch
 
 

Symbolic integral
Name of limit variable
Value of problematic limit
-1/1 indicator for direction of limit ====> 1: string describing conclusion_—

N
W
A

B
W

 

 

PICE 0OBJ+ DOROPZ RCLF € -3 =55 » CF MAKE 'w' ST0
H A A A A
fulslathigx fl d39 8 nl dif vA
EFPURGE
I

£ ool 2 =LIST IMATCH DROP 0OBJ= ORDPZ DUP 2 ROLLD
INDEF

#
o
d

THEM
SRCONY DUP 4 ROLL 4 PICK S5T0 EVAL SWAR 4 EOLL 4

_ROLL STOCEMAL - COLCT "Limit" +THG

"4 DROPM 'la' 'th' ig w S 'f' STO CLLCD @
IF = 1 - THEM la ELSE Tb EMD
Wl STO
o0 _3 FIM_1 d = + DUP ALOG

IF 1 TYPE 1 «
THEW IHY 5 = 1 +
EhaE IF 1 =MUM SIGHM -1 == THEM MEG EMD

LHE

IF = 1 - THEN 'la' STO ELSE "th' STO EMO

*%** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 287



ANUM w 5TO £ EVAL =NUM o =HUM 'ul' 5TO OUP
?ED 'nl" 5T0 n@ + DUP 1 DISP 'mB' STO

nl D%E S5IGN dif 5IGM == nB 1 < OR 'q"' INCR

THEN '‘dif' 5T0
ELSE OROP 4 3 = - d .1 # 'd" 570
END

UNTIL
nl ABS .BRARARAAL < A HBU 188888 = R nA
ABS .BREAAL £ OR g 18 > OR

END
DROP
IF

nd HBaIBBBBB 3 18 > nl n@
IFERR -~ THEN DPHP MAXR + END
ABS .B 1 > AND OR

THEN "DlUquPS"
ELSE "Conwerges" "~" + n@ 3 FIA
END

END
v PURGE '«' PURGE f1 STOF

%

|_:H|'.'|F|F-: Change Variables in an Integral (165)

444 bytes # 876h
2: Symbolic integral 2:
1: Equation defining change of variables ====> 1. modified integral

  

 

 

« [QUP EQ» 4 ROLL DBJ+» DROPZ RCLF -3 CF
+ 4y g lowup f Fla-a-s.
« -1 5F w» ISOL EQ+ SWAP DOROP o = FDER

2+ giny |j|:| ]

« g % low 2 +LIST TMATCH DROP g « uwp 2 =+LIST THMATCH
OROP f dg -~ g g & =LIST TNHTFH OROP E}LUWoginy ¢
+LI5T TMATCH DPDP gy 4 L5T T1 APPLY A
"Tl':-gtlnx;_- lgtgg :z-."} l-.r'::ail,ql.)'l_l[gqn l{q'll l ”'":”IH DFIDP

flags STOF COLCT ¢ ‘'&1*e2*e3' ‘olfnh#3213 IMATCH
DROP COLCT

CONTOLUR Draw a Contour Plot of a Function (232)

313.5 butes #A33Ah
 

 

4: Function of two variables 4:
3: List of independent variables 3:
2: List of range of contours 2:
1: Number of steps (negative if no erase first) —====> 1
 

 

« [DUP SIGN SWAP ABS YPAR 1 4 SUB EVAL YRNG 2 -»LIS
+ fuzsne
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& p Eéi'HL ®»RNG z EVAL - ABS n ~
3>

« 1 nFORKkFz 1 GETdk1- %+ - NEXKT
n »LIST £ z 2 GET - + v p f p HEAD v HERD
STO v 2 GET B ROOT
1 n START DUP NEKT
n 1l + »LIST 4 s = SOLVPLT v PURGE

»
*

»

L-UF:L Compute the Curl of a Vector Function (254)

238 bytes #9B98h

2: Symbolic vector function 2:
1: List of variables ====> 1: Curl (as symbolic vector)
 
 

« -3 CF
IE GUP SIZE 2 == THEN 'T4' + SWAP B + SWAP END
JACOR EVAL
> PAar
& 'r(2)-q(3)' EVAL 'p(3)-r(1)' EVAL 'q(1)-p(2)' EVAL 3

=L IST
*

EUF:I'.'I Find the Curvature of a Parametrized Curve at a Point  (251)

 
 

 
 

129 bytes #5C0h

3: Parametrized curve (symbolic vector)  3:
2: Parameter name 2: Symbolic curvature
1: Value of parameter at point ====> 1: Numeric Curvature

x -3 CF
+)%
« f v VOER DUP DUP VABS - v VDER VABS SWAP VABS -~ w v

5T0 »NUM w PURGE
*

EI'.'I I HT Compute the Interval of Convergence for a Power Series (48)

 
 

763 bytes # 8lh

3: coefficients expression of power series 3:
2: index variable 2:
1: point about which series is computed ====> 1: "interval of convergence"
 
 

« -3 CF -22 5F DEPTH
3 vy ad
« f ABS v KROOT

+ fp

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 289



# 1 26 FOR j j ExP »NUM w 5T0 fp =HUM NEXT
I5T OUP

4 31 = vy 5T0 fp »NUM » DOLIST 0BJ+ DROP -

j A+t dL0:ABS 1 + CEIL - MAX ExP IP +
DUp- 3t 510w 5TO fp_=NUM DUP 1 DISP DUP

UHT?ET DUPZ OVER - ABS 5SWAP - 'd' 5T0

DUPz == 3 ROLLOD OYER 58 > 4 ROLLD DUP
'‘p! 5T0 - SIGHN DUP s NEG == j 18 = AND
aWAP s “TD OR KEY OR OR

END
OROFP p

-

EL=E SWAP DROP
END
v PURGE { p s I PURGE

-,

DEPTH 2 + d - DOROPN
IF DUPa8
THEW DROP i,=" g+
ELSE

IF DUP 1 FND B ==
THEN DROP "RI1 ="
ELSE

INV 2 END OUP a + a ROT - "<" DUP ‘'w=' + 5SWAP
+ + SWAP +

END
END

DT'IT Perform the Second-Order Derivative Test (248)

318.5 bytes #AGFFh
 
 

Scalar multivariable function 3:
: List of variables 2:
: List of points (each given as ordered pair) ====> 1: List of labeled points
 

 

2 +

—
<

P

+LIST v JACOB EVAL w JACOE 1 = COLCT = DOLIST DUP

d
1
CaR 2 =LIST o 5STO
IF 4 EVAL DUP
THEM _

IF 8 >

#

#
«
l
-
g
—
h
'
h

#
T

=2
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HEN
IF m HEAD HEAD B >
THEN "Minimum"
ELSE "Masimum"
END

ELSE "Saddle"
END

ELSE DROP "Inconclusive"
END

2

OOLIST p SWAP =»TAG v PURGE
%

 

 

[]HTF I T Find the Best-Fitting Curve for a Data Set (147)

2216 bytes #C6635h

4: Data matrix 4:
3: Column of indep. variable 3: Covariance matrix
2: Column of dep. variable 2: Best-fitting curve
1: Estimate of measurement errors ====> 1. List of labeled coefficients with std. dev’s
 

 

& -3 _CF B 'MARKER' 5T0 4 ROLLD 3 PICK SWAP COL- 0BJ» 1 GET
»LI5T 4 ROLLD DROP DUPZ COL- 0BJ+ 1 GET »LIST 4 ROLLD
DROPZ OVER S5IZE 3 PICK 3 PICK (B,1) + AOD
IF 6 PICK DUP_TYPE
EEEQ (B,1) = 0BJ» 1 GET -LIST

2

&

W
2

A&
V
@
Y

(B, 1) = 1 SWAP 4 PICK
1 SWAP 1 - S5TART DUP ROT 1 + SWAP NEXT
SWAP -LIST

D
"LEAST-SAUARES FIT" { { "MODEL:" "ENTER GENERAL MODEL
OF FIT" 9 3 {3 1 "PARAM:" “ENTER LIST OF PARAMETER NAMES"
9 3 + "WALUES:" "CURRENT YALUES OF PARAMETERS" 3 3 {
"5TO.DEV:" "CURRENT STD. DEVIATION FOR MODEL" 5 X I {
1 3 3 { 3 fields 1 ¢nv DOLIST INFORM

IF_DEPTH OUP ROT EVAL DEPTH 1 - ROT ==
THEN { NOVAL 3 1 GET
END
SWAP DROP

OUP DUP
Wyl %l dat n we we «infm «nv da cm sig
IF w TYPE MOT
THEN

1 dat 5IZE
1 GET_START w_5S0 INY NEKXT

_dat SIZE 1 GET -LIST
ELSE

IFEfiJ DUP TYPE 3 ==

IF DUP SIZE SIZE 1 #
THEN +DIAG DBJ» 1 GET -LIST
Eth 0BJ+ 1 GET LIST 1 « SQ INV » DOLIST

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 291
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OIRa

b fwvd

#

#
4
O
3 a

3
t
A1
FOR j

B 1 n
FOR k ak j+1 -1t %+ y 3T0f »NUM t = +
HEHT

~

STEP
y PURGE 3 PICK OVER + 2 -~ 3 PICK 2 * OVER +
3 -+ LOG ABS 1 + CEIL DUP 2 + 7 ROLLD FIX a b f
y [ NUM 6 =LIST SWAP RND STD { left mid right
trap simp intg } SWAP OVER -»TAG SWAP PURGE

Find the Derivative of a Function with Respect to a Path (245)

 

 

 

 

194 bytes #2036h

4: Scalar multivariable function 4:
3: Parametrized curve path (symbolic vector) 3:
2: List of variables 2: Symbolic derivative
1: Equation defining parameter and its value  ====> 1: Numeric derivative

« -3 CF Ei»
+ frutepe
« ut + PURGE £ w GRAOI r v STOD 1 « EVAL » DOLIST r t

ggEfiE DUP 3 ROLLD SOOT SWAP YABS -~ p t STO =»NUM v t +

>

EULF‘LT Plot Euler Estimate of a Differential Equation Solution (172)

432.35 bytes #1854h
 
 

: Symbolic expression of slope
: List of variables: {indep depnd}
: Plotting range: {begin end}
: Initial condition: (xy,) or list of ordered pairs
: Number of points for Euler estimate ====>—_

W
A

W

m
h
w
h
R
E
W
n

 

 

&« -3 CF 4 PICK 0BJ* OROP 5 PICK EVAL - ABS 4 ROLL ~
> VP 1xy d

« {F i OUP TYPE 5 # THEM 1 =LIST END

& BHP £ 3 SWAP C+R 4 S5TO % STO

w ANUM g =NUM R2C + g £ d = + 2NUM g 5TO
2 o+ ANUM w2 5TOD

UMTIL » p 2 GET >
END
SWAP C+R g 5T0 = 5T0 { 3
Do

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 293



wo MM g ANUM RB=C o+ g £ d = - =NUM g 5T0
wod = UM -TU

UNTIL « p 1 GET -
END
TRIL REVLIST SWAP + 2 « LIME = DOSUBS
v PURGE DORAA

DOLIST PICTURE
&

.
Er“:L-U Expand and Collect Completely (201)

83.9 bytes #BB3Sh
 
 

1: symbolic expression ====> [: revised expression
 

 

« & EXPAN » MULTI = COLCT » MULTI »

 
 

FDEF: Compute a Formal (Symbolic) Integral (68)

139 bytes #17Bzh

2: Function 2:
1: Variable of differentiation ====> 1: Formal derivative
 

 

® 73 I”FHIEILIF'

IF OUP THPE 3 ==THEH SHOW_END .

&

FUHDF!J Is an Expression a Function of a Particular Variable? (175)

6l bytes #DC16h

2: Expression 2:
1: Variable ====> 1: Flag 0/1

 

 

 

£ =+ £ o« £ o OUP 2 -LIST IMATCH SWAP DROP = =

Fl'.'IFI Fundamental Vector Product at Point on Parametrized Surface (256)

 
 

 

 

126 bytes #3FRSh

3: Parametrized surface (symbolic vector 3:
2: List of parameters 2:
1: List of parameter values at point ====> 1: F.V.P. (as a symbolic vector)

GO fup

f v HERD DER f w 2 GET YDER P w STO SCROSS#
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1 « »NUM » DOLIST
3

 

 

EII:I:I Find the Greatest Common Divisor of Two Numbers (300)

43 bytes #7CBSh

2: number 1 2:
1: number 2 ====> 1: greatest common divisor
 

 

« WHILE DUP REPEAT SWAP OYER MOD END
DROP ABS

%

 
 

GF:HD I Compute the Gradient of a Scalar Function (241)

88.5 bytes #C6CCh

2: Scalar function 2:
1: List of variables ====> 1: Gradient (as symbolic vector)
 

 

« -3 CF~» fuv<yl <« f SWAP FDER » DOLIST » »

 
 

g - < .
I NF L Compute the Implicit Derivative of a Relation (75)

497 bytes #FBAlh

2: Relation expression 2:
1: List of implicit variables, differentiation var.listed 1st ====> 1: Derivative
 

 

« -3 CF DUP 1 GET
> 5 U
« 5 1

« IF DUP v SAME
EEEE 'TL' 2 »LIST 'Iw' STO

a3

oup "'t* SWAP + DUP "CTti)'" + 0BJ» SWAP 0BJ»
"“"dert" 4 PICK + "CTl, 10" + 0OBJ» "'S&" 5 PICK +
"M+ oy o+ M+ 0BJe 5 sLIST

END
>

DOLIST 'ly' STO f 4w JMATCH DROP 1 Jfi‘iSIZE
FOR k 4y k GET 1 2 SUB IMATCH DROP
':_T-L' o 1 1y 5IZE
OR k

ly k GET DUP 2 3 SUB ROT SWAP JMATCH DROP SWAP 4
2 5SUB IMATCH DROP

NERXT
I REVLIST IMATCH DROP 1 1y SIZE
FOR k 4y k GET DUP 3 3 SUB SWAP 1 GET + JMATCH DROP
NEXT
{ dx Jy 3 PURGE

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 295



I HDEF Compute an Indefinite Integral (132)

 
 

 

 

 
 

668.3 bytes #2586h

2: Function 2: Indefinite integral
1: Variable of integration ====> 1: 1/0 (success or failure)

or

2: 2: Indefinite integral
1: Symbolic integral expression ====> 1: 1/0 (success or failure)
 

 

-3 CF
IF OUP TYPE 39 =
EHEH OBJ» DROPZ PDT DROP ROT DROP

DUP
>+ £ Tl
= IF £ TYPE NOT THEN 'B%2' £ + 'f' 5T0 END

1 b £ T4 5HOW "1 DUP S5TO OVER J
IF DUP OBJ» DUP { f 3 1 GET SAME
EEEE OROP DROPN A

-2

2 ROLL DROP
IF £ + 3 1 GET SAME
THEM

»LIST B SWAP 1
% %EEUP U WTGRL, 82, 83, 842" T ¥ JMATCH

DROP COLCT EVAL
IF_DUP & '[ikl, &2, 83, %" TL 3 LMATCH
EEEE OROP SWAP

DDRDP OBJ» 3 DROPM EVAL 'T1' w 2 »LIST
D¢NHTEH DROP SWAP .3 +

)

EN
ELSE

DEOP DBJ+ 3 DROPN EVAL 'TJ' w 2 =LIST
HD-LNHTI:H DROP SWAP .3 +

6OLIST OBJ+ 1 + ROLLD + SWAP
Eth DROPZ EVAL 'T4' w 2 =LIST IMATCH DROP 1

END
IF DUP .5 == THEN .5 - END

& I HT 1 Integral of Data Set (Piecewise Linear Interpolation) (143)

 
 

231.3 bytes # Bleh

3: Data matrix 3:
2: Column of indep. variable 2:
1: Column of dep. variable ====> 1: Definite integral
 

 

« 3 PICK SWAP COL- OBJ+ 1 GET »LIST 4 ROLLD DROP COL- 0BJ»

296 P. PROGRAM LISTINGS



1 GET ~»LIST 3 ROLLD DROP OVER SORT DUP SIZE 8
+ LY UsS NS
« 1nl -

FOR k
us k GETI 3 ROLLD GET SWAP 2 »LIST DUP 1 « v u
RDT F’% GET » DOLIST EVAL + 2 ~ SWAP EVAL - * s +

HEHT

& I HT: Integral of Data Set (Single Polynomial Interpolation) (145)

 
 

217 butes #BEBCh

4: Data matrix 4:
3: Column of indep. variable 3:
2: Column of dep. variable 2:
1: List with limits of integration ====> 1: Definite integral
 

 

« EVAL 5 ROLLD 5 ROLLD 3 PICK SWAP COL- 4 ROLLD DROP COL-
3 ROLLD DROP 2 COL+ PFIT DBJ» 1 GET
*n

1 n FOR k k ~ n ROLLD NEXT
B n 1 + »ARRY

2

'w! PaSYM DUP ROT 'wx' 5TO »NUM ROT ‘x' 3TO SWAP »NUM -
'w'! PURGE

#

 
 

& I HT::: Integral of Data Set (Cubic Spline Interpolation) (146)

943.5 butes #F218h

3: Data matrix 3:
2: Column of indep. variable 2:
1: Column of dep. variable ====> 1
 

 

« 3 PICK SWAP COL- 0OBJ» 1 GET +LIST 4 ROLLD DROP COL- OBJ»
1 GET »LIST 3 ROLLD DROP OVER SORT DUP SIZE .@e81 18
-1.E38 DUP A8 DUP DUPZ DUP
+ U W usneps jmax 05 ost j it s st del
« us 1 « y u ROT POS GET » DOLIST DUP DUP 1 GET SWAP n

GET us DUP 1 GET SWAP n GET us 6 ROLL n OVER 1 2 SUB
EVAL SWAP - us 1 2 SUB EVAL SWAP - -~ 3 PICK n DUP 1
- SWAP SUB EVYAL SWAP - us n DUP 1 - SWAP SUB EYAL
SWAP - ~ 2 »LIST SPLINE RDT OROP B DUP
+ ES fb a b us ys % sum
&

IF 'j' INCR 1 ==
THEN b a - fafb + %2 ~ 1
ELSE
ba-it ~ 'del' STO adel 2 ~ + 'w' STO
A 'sum' 5T0 1 it
START

us ws ys % SPLEVAL sum + 'sum' STO % del

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 297



+ 'w' 570
NERT
st ba-sum=* it ~+2 7 it 2 =

END
it' STO 'st' STO

INTIL ] .
Stfi‘} * IZIS’L;— 3 < DUP ‘st 5T0 os - ABS os
ABS eps * < j jmax == 0OR s 'os' 5T0 st 'ost!

o

E I HT'::} Integral of a Data Set (Using Fitted Curve) (148)

89.9 bytes #48411h

: Data matrix
: Column of indep. variable
: Column of dep. variable
: Estimate of measurement errors
: List of limits of integration ====> 1: Definite integral

 

 

N
W
h
H
W

—
N
W
A
W

 

 

« EVAL
+ Tla Tlb
« DATFIT DROP SWAP DOROP Tla Tlb ROT ‘= T +MNUM

o

IHTEI'."HL Evaluate Integrand before Evaluating Integral (298)

234.3 bytes #524Fh
 

 

1: symbolic integral ====> 1: Evaluated integral
 

 

« -3 CF DUP
+ fn fu
€« &« =+ f 1

fl1
%

%' 570
>

"fu! ! n
L'(:il,:&:?_’_. B3 A4 (1, &2, B3, QUOTECR4 D 3
LMATCH DROP EVAL

*
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I F'HF:TEI Integrate by Parts (186)

 
 

 

 

264 bytes #34FSh

3:u 3:
2: dv 2:
1: variable ofintegration (x) ====> 1: Symbolic expression

% 3 u du

& PUREE u % FOER dv = INDEF DROP B 'C' 570
E'v'FIL DUP u + COLCT 3 ROLLD + COLCT w INDEF
IF_'C' 4 ROLLD
THEN EVAL - SWAP +
ELSE

EVAL COLCT 0BJ» DROPZ2 ROT DROP_ROT DROP JINDEF
IF THEN EVYAL - SWAP + ELSE EVAL - SWAP DROP END

 
 

 

 

 
 

";' PURGE
#

#

IACOE i i iJHLL Compute the Jacobian Matrix of a Vector Function (252)

116 bytes # SA6h

2: symbolic vectorfield 2:
1: list of variables ====> 1: Symbolic Jacobian matrix

€« 3+ f w
x f 1

« 1 w 5IZE FOR k DUP % k GET FDER SWAP NEXT
DROP % SIZE -LIST

»
DOLIST

®
#

LHF'LL Compute the Laplacian of a Function (254)

213 bytes #10C7h

2: Function (scalar or vector) 2:
1: List of variables ====> 1: Laplacian
 

 

« JF SWAP DUP TYPE 5 # THEN 1 =LIST END
DUP SIZE
+ uy fn
« £ 1 =y GRADI » DOLIST 1 n

START w NEKXT ~
n *LIST 2 « 2 « FODER » DOLIST ZLIST COLCT = DOLIST
IF n1 == THEN EVAL EMD

>

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 299



liom Find the Least Common Multiple of Two Numbers (310)

34 bytes #CFBSh

2: number 1 2:
1: number 2 ====> [: least common multiple

 

 

« [UPZ gcd - * ABS =

 
 

1 . . .
L I ” Search for the Limit of an Expression (24)

399.9 bytes #FD46h

3: limit expression list 3:
2: starting index magnitude for search 2:
1: ending index magnitude for search ====> 1: list of sampled values toward limit
 

 

« ROT0BJ» OROP 0BJ> DROPZ 5 ROLL DUP SIGN SURP AES 0

« CLLCO B b+
FDR‘J )

J_ALOG
IF 1 TYPE 9 #
THEM INY s = 1] )
EhDE IF 1 -=NUM INSIGN -1 == THEN MEG END

;PUN w 570 £ =NUM OUP 1 DISP

118 % b b -/ OIP # SUAP OUP 4 PICK == ROT

THEN OROP ]
ELSE d 1 + 'd' 570
END
£ b - 188 -

STEPST
d »LIST SWAP OROP w PURGE

 
 

 

 

=

&

LININY Is Given Expression Linear in Given Variable? (175)

683 bytes #B395h

2: Expression 2:
1: Variable ====> 1:

£ pow
« BHA1AHA

+ args lin g0 non occ
« « 1 SWAP START lin EVAL MERT =

Yargs' ST0
# 3+ sibe

« [IF go
THEM

CASE sube TYPE 9 SHME
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THEN sube 0BJ+
CASE

OVER MOT THEM DROPZ END
L H_FHEEH+ - % ~ } SWAP POS DUP MWOT

OROP 1 » non = args EVAL =
END

OUP 4 < THEN DROP args EVAL END
“H$H550P 2 SAME

1 » non ¢ lin EVYAL =
lin EVAL

END
occ SWAP lin EMAL occ DUP ROT -
ROT lin EVYAL occ ROT -

DIF AND THEW B 'go' STO EMD

END
sube % SAME

THEN
1 'occ' STO+

HDIF non THEN B ‘'go' S5TO END

END
_END

:3‘ <

'lin' 5T0 & lin EVYAL 9o occ AMD
*

 
 

 

 

*

. . e .
LHr_- Perform Logarithmic Differentiation (81)

263.3 bytes #2031h

3: list of numerator factors 3:
2: list of denominator factors 2:
1: variable of differentiation ====> 1: Symbolic logarithmic derivative

£ 3 d w

& d 2 »LI5T 1
n
n
« IF DUP SIZE 1 > THEM TLIST ELSE 1 GET EMD
*

DOLIST EVAL ~ 1 < LN u FDER » DOLIST
d 1 « LN v FDER DOLIST 2 LIST 1
« IF DUP SIZE 1 > THEM ZELIST ELSE 1 GET END
*

DOLIST EVWAL - = COLCT

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 301



LTF: I H Trim Zero Elements from the Left End of a Polynomial (305)

 
 

 

 

135.5 bytes #260Ah

1: polynomial ====> 1: trimmed polynomial

« DUP RNRM
IF _.B@681 <
THEN OROP 8 1 -+ARRY
ELSE

0BJ+ 1 GET 1 +
WHILE DUP ROLL DUP ABS .BEEA1 <
REPEAT DROP 1 -
END

HDUUER ROLLD 1 - =ARRY

WFIHN I H Find the Maximum or Minimum within the Given Interval (98)

439 bytes #1F34h
 

: Function
: Independent variable
: Max/min and integer/decimal code
: { begin end } search interval ====> 1 Maximum or minimum-

N
W
A

T
N
W
A

 

 

v 5 ab
v FOER

F s TYPE B #
HEN

UP +RPN 1
« IF DUP TYPE 6 # THEN DROP END
*

DOLIST PURGE v GUAD
LSE

vy ab ROOT
5 ABS
N
DUP FLOOR SWAP CEIL 2 -»LIST DUP 1
« v510 f EVAL » DOLIST DUP
IF s B < THEN « MIN » ELSE « MAX =» END
STREHN PO5 GET

END
v »TAG £ EVAL EVAL
IF_DUP TYPE
THEN

*RPN
« IF DUP DUP TYPE 6 == SWAP { = } HEAD SAME OR

EHEH DROP

#

—
A
—
h
h

»

DOLIST EVAL -+NUM
HDEND O o o+ M+ »TAG v PURGE
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H I DF‘T Midpoint Estimate of Integral (Open Interval Romberg) (305)

432 bytes #0894h
 
 

Function
Variable
Lower limit
Upper limit
Number ofpartitions ====> 1 Estimated integralW

R
O

T
h
w
A
E
W

 

 

« + f uabn
#« JF nl==

THEN b a - a b + .2 = w 5T0 f EVAL + 1
ELSE
ba-3it -0 2+ 0VER .5+ a+8
+ ?eltddel 3 SUM

FOR F
w570 F EVAL sum + 'sum' 5TO w ddel +
Pyt PTfl wou 5TO F EVMAL sum + 'sum' S5TO w del

 

 

+ lI iTD

NEY )
r ba-sum* it »+ 3~ it 3=

END
it 570 vt 5TO

HLT I HT Find Numeric Multiple Integral (258)

288.3 bytes #1332h

1: Symbolic, nested, multiple integral expression ====>  1: numeric integral
 

 

# -3 CF RPN 1
IF DUP ¢ f3 1 GET SAIE

EHEH OROP '« & EVAL EVAL EXCO »

DOLIST EVAL
IFERR - o )

IF DUP +RPN DUP SIZE GET ¢ J 3 1 GET SAME
THEN

OBJ+ DROPZ OVER € 'Jokl, 2,83, 842" 3 3 PICK +
JMATCH

THEW DROP 4 FIH
ELSE DROP STD
EMD
I

ELSE STO
EMD
ML

THEM DROP
END

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 303



HULTI Repeat Given Function until Result is Same as Input (294)

  

  

96 bytes #868Ah

1: object ====> 1: revised object

« + p « D0 DUP p EVAL DUP ROT UNTIL SAME END » =

|"-|Ll'l'I- Solve a System of Non-Linear Equations (108)

#6306h971 bytes

3: List of equations
2: List of variables
1: List ofstarting guesses ====>

  

W list of solutions

« =22 5F
IF DUP TYPE 1 == THEN C»R 2 =LIST END
3 ROLLD DUPZ JACOR A
-

«

s fwin
IF £ SIZE DUP w SIZE == SWAP s SIZE == AND
THEN

'n'" INCR s DUP « STO OBJ+» »ARRY j 1
« 1 « »NUM » DOLIST » DOLIST SM» 2 »LIST
»ARRY INV £ 1 « »NUM » DOLIST OBJ+ -+ARRY * -

NTIL
5 0BJ+ »ARRY ABS OVER ABS - ABS .HBBHBBEEAGRGA]
< f 1 « »NUM » DOLIST 2LIST ABS .BPAARRRARRGAL <
OR SWAP OBJ> 1 GET +LIST 's' 570 SWAP 28 = OR

END
IF n 28 <
THEN s 1 « -18 RND » DOLIST % =»TAG
EhSE "No solution found" MSGBOX { I

% PURGE
ELSE # 5@1h DOERR
END

H!:IEG I NT Numerically Segment a Definite Integral (160)

163 butes #3482h

2:2: Integral expression
1: Value of indep. variable at pt. of segmentation ==> 1: numerically evaluated integral

€« 3+ Tl

& L IO, &2, &3, 840" TSR, T&3, &40+SCTLL 82, &3, 840 3
MATCH DROP -NUM

*
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OFINT Find an Improper Integral—Open Interval (167)

643 butes #2B9Ch

1: Improper integral expression ====> 1: Evaluated integral

 
 

 

 

% DB._I4 ORDOPZ 4 ROLL 4 ROLL .p@@AAAl1 14 5 € 1  OUP 1
f uabeps jmax k s h J

« IF £ w INDEF
THEM

-22 oF w PURGE _SRCOMY 'f' 5T0 b w 5TO £ EVAL a v
“ETD f EVAL - COLCT =+NUM » PURGE -22 CF

OROP @ B
i

?EDRElF'U a =NUM b =NUM 5 MIDPT
J kR =2

HEM
s 0BJ+ +ARRY 1 h 5IZE
FOR iw1

h i GET h SIZE 1 - @
FOR m DUP m ~ SWAP -1 STEP
DROP

NEXT
h SIZE DUP 2 LIST +ARRY SWAP DUPZ OVER
+ DUP 5 ROLLD RSD SWAP ~ B PEVAL SWAP @

|PEVALSP
2

 
 

E
E

UNTIL ]
OUP AB5 3 PICK AB5S eps * < jmax j == R s r
+ 's' 5T0 h DUP j GET 9 ~ + 'h' STO 'j' INCR
OROP

EMD
DROP

END
£ r it ¥ v + PURGE

-

FHOD Perform Polynomial Addition (76)
172.5 bytes #64CBh

2: [ polynomial 1] 2:
1: [ polynomial 2 ] ====> 1: [ polynomial 1 + polynomial 2]
 

 

« RCLF 3 ROLLD -55 CF
IFERR +
THEN

OVER SIZE 1 GET OVER SIZE 1 GET -
IF OUP @ < THEM RES ROT GWAP END
* ad

1 d START A _MExT
a 0BJ» 1 GET d + +ARRY +

R
u

EMD
LTRIM SWAP STOF

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 305



PHPHDH Compute Approximation after Plotting Taylor Series (46)

 

 

 

 

147 butes #295Eh

5: function being approximated 5:
4: independent variable 4:
3: order of Taylor series desired 3: Taylor series
2: point around which approx. is centered 2: Approximate value
1: point being approximated ====> |: Estimated error

« 5 ROLLD 4 DUPN TYLRa
* bfvoap
& P EUEGEB b PTRYL b v 5T0 p DUP =NUM f =NUM OVER - ABS

y

PHHHEJ Find Derivative of Function described Parametrically (83)

 
 

181 bytes #2ED1h

2: List of parametric definitions 2: Symbolic derivative
1: Value of t at which to compute slope ====> 1: Slope at given t
 

 

« 't' S70 1 « 't' FOER COLCT » DOLIST
DUP EVAL SWAP ~ COLCT DUP -»NUM 't' PURGE

*

PHTH I HT Compute a Path Integral (273)

216.3 bytes # 2h

: Function
: Parametrized curve (as symbolic vector)
: List of function variables
: Parameter variable
: List ofstarting and ending parameter values ====> 1: Path integral

 
 

N
D
W
h
H
W

-
W
A
W

 

 

« -3 CF EVAL 6 ROLLD & ROLLD
+ fcocxt
« ct VOER f

IF DUP TYPE 5 # THEN 1 »LIST END
c % STO 1 « EVAL COLCT =» DOLIST
IF DUP SIZE 1 >
THEN SDOT
Eth SWAP YABS * EVAL

COLCT t f »NUM %= PURGE
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Fll:l:IHI'.'I Convert an Expression to a Polynomial (76)

 
 

 

 

 
 

682.5 bytes #2706h

1: expression ====> 1: polynomial

« -3 CF {I:E B 10171 3{ND}STOCOLCT =RPN DUP SIZE
£ 3+ n

« N d PMULT D n PMULT 'OP' EVAL 'N' STO
. D d PMULT 'D" 5TO

- -~

j P N 'E'Pdilvl

ek GET
IF DUP TYPE

IF DUP TYPE ¢ & 7 } SWAP_POS
THEM DROP [ 1 8 1 1 =LIST
ELSE

{ + - % ~ NEG DEC 3 SWAP POs
IF _DIP
THEN

L PROD P!:»LIB PMULT PPONER PSUB
EL'“E EVYAL DUP DROP = 3 SWAP GET 1 =LIST

“OROP p k 1+ GET { 3 SWRP POS
F'HDD PSUB } :-HHP l"ET ‘0P 5T0
{ «pdiv DEC 2

END
END

ELSE 1 =ARRY 1 =LIST
EMD
p k ROT REPL 'p' 5STO

MERT
p EVAL D PMULT W PAOD D { OP M D } PURGE

»
*

F'DEF: Find the Derivative of a Polynomial (76)

112.5 bytes #10FFh

1: Polynomial ====> 1: Derivative of Polynomial
 

 

& DB-_I* 1 GET 1 -

% DRDP
IF n
HEN

1 nFOR k k * n ROLLD MEST
n

ELSE A 1
END
+ARRY

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 307



F'D I I'.'I Perform Polynomial Division (Euclidean) (76)

 

 

336 butes #1FDFh

3: 3: Quotient of P1/P2
2: Polynomial 1 2: Numerator of remainder
1: Polynomial 2 ====> 1: Denominator of remainder
 

 

« LJRIM DUP_0BJ» 0BJ» DROP -»LIST ROT LTRIM 0BJ» 0BJ» DROP
»LIST SWAP DUPZ SIZE SWAP SIZE
IF OVER - OUP B <
EEEH 3 DROPN [ B8 1 3 ROLLD OBJ» +ARRY SWAP 0OBJ+ -ARRY

SE
SWAP ROT DUP 1 GET
+ npZt
« { } 3 ROLLD B8 SWAP

START
EHE é GET t -~ ROT OVER + 3 ROLLD 1 n

OVER d GET p2 d GET 3 PICK % - ROT d ROT
PUT SWAP

NERT
EHPRDP 2 OVER SIZE MIN 1.E499 SUB

*»

NDSNHP OBJ» +ARRY SWAP 0BJ» +ARRY ROT

 

 

 

 

F'D I ".'I::?. Perform Division of a Reduced Polynomial (76)

189 bytes #6A52h

3: 3: Quotient of P1/P2
2: Polynomial1 2: Numerator of remainder
1: Polynomial 2 ====> 1: Denominator of remainder

€« * P9
« q_ PFACT

IF DUP SIZE 1 >
THE?

& p SWAP POIY SWAP
IF ABS NOT
THEN 9 SWAP POIY DROPZ 'q' STO 'p' STO
ELSE DROPZ
END

>

DOLIST
END
p 9 PDIY
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P
 
 

 

 

Compute Partial Fractions from a Rational Fraction (76)

1238 bytes #FB62h

2: Numerator polynomial 2:
1: Denominator polynomial ====> 1: List of partial fractions

%€+ p
« [ 1 1 p S5IZE SWAP

E?EPk Pk GETI 3 ROLLD GET 1 =+AREY PPOWER PMULT 2

FOIV ROT "' PaSYM { 3 + 3 ROLLD
+ 0 o+

« 1 p 5IEE
FOR k

Pk FEII 'w!' P2SYM 3 ROLLD GET DUP 1
FOR & HUEP + - PIFF i ™ SWAP -1 STEP
+LIST SWAF DROP F I GETI I FOLLO GET
Frm

# r m 1 +ARRY FTUWER «1 OVER POIY DROPZ
SWAP <n 1 CF PDLLD DUPZ SIZE SWAP SIZE
IF > 1 GET THEH 1 5F SWAP END
[ B ][h11 DUPL

% HHILEa b FDTU DROP DUP ABS & RND
PEPEHT

B 'a' 570 'b' ST u OUP 3 PICK
PPULT NEG w2 PAOD ‘i DTD w510y OUP

EHDPDT PMULT MEG FHUD gt 5TD 'yt 5T0

OROPE - b POIY DROP
IF HBES
EEEE OROP "Moo solution®

" OVER PMLLT w ROT PMULT
IF 1 F5?C THEM SWAP EMD

N EMD

DROP 1
START + POIY OROP SWAP MEST
DROP m +LIST 1
« [F DUP STZE 1 GET 1 ==

THEM [ 8 1 1 PMULT
~END
DOLIS
% AR

+ oy

I
FOR 3

IF g OUP g9 GET ABS .ABEAL <

*** Be sure to read the instructions on pages 283-284 before keying in these programs. ***

THEM 9 B PUT
EMO
IF 5 GET DUP TYPE
THEN RPN REWLIST TAIL

IF OUP SIZE 1 ==
THEN EYAL 2 5F 1
ELSE )

IF DUP SIZE 3 ==
THEN TRIL 2 5F

309



END EVAL SWAP
ND

ELSE 1
END

NEXT
SWAP_4 ROLL SWAP 2 =LIST 3 ROLLD 2
*LIaT DUP EVAL lcm DUP PDT< ROT =

x 1 3 % 2LIST SWAP =
IF2 FS?C THEN NEG END

*

»

DOLIST
*

+ 2
STEP
2LIST

F'FHET Factor a Polynomial (76)

737 bytes #4922h

1: polynomial ====> 1: list of polynomial factors
 

 

 

£
4+
@

ET +LIST « gcd » STREAM

+§RRY 1 »LIST

*-
v-
"H
.L
-_
)

r_k_GET
IF DUP TYPE DUP_1 + 't' 5T0
THEN r k_1 + GET 2 +ARRY
ELSE 1 -+ARRY
END
PCOEF P2Qc
IF_ OUP DUP ABS SWAP B RND ABS - ABS .BEEAL <
EEEE B RND fct SWAP + 'fct' STO

2

IFt1-
THEN ifct SWAP + 'ifct' STO
ELSE DROP
END

END
t

ifct j GETI 3 ROLLD GET PMULT P-Qc
IF DUP DUP AB5 SWAP B RND ABS - ABS .B@AAL <
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THEM B REMD fct SWAP + 'fct' S5TO
EIHSE OROP

NEXT
ELSE DROPZ
END _
fcb DUP £ [ 110113+« PMULT » STREAM p
SHAP PDIV DROP2
IFDUP [ 1 1 # THEN + ELSE DROP END

w3

 

 

PF I T Interpolate a Data Set with Single Polynomial (145)

285.5 bytes $AFS7h

1: Data matrix ====> 1: Interpolating polynomial (vector form)
 

 

2 DUP 5IZE 1 GET
+ a3

« ] s
FOR i a { i & 3 GET MERT
5 *ARRY 1 s
FOR j

at il TGET 51 -8
FOR_k DUP Lk =~ SWAP -1 STEP
OROP

NERT
{ s s } +AREY SWAP DUPZ OVER ~ DUP 5 ROLLD RSD
Pb

i

s

F'FF:HI: Compute Partial Fractions from a Symbolic Expression (191)

1389 bytes #B5ABH

1: Expression ====> 1: List ofpartial fractions

 
 

 

 

«  S*RF POIY BOT 'w=' P28YM { 3 + 3 ROLLD
+ o+ +d

« «1 PFACT B BMD © X
+ f
& f 1 ] )

« IF DUP = SWAP POS
THEW DROP
ELSE

B SWAP £ +
« IF DUPZ SAME

THEM ROT 1 + 3 ROLLD DROP
EIflEE OROP

STREAM SMAP OVER = + 'c' STO
ENG

**%* Be sure to read the instructions on pages 283-284 before keying in these programs. *** 3811
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*

DOLIST
*

+ 2
STEP
IF DUP HERD B SAME THEM TAIL END

*

F'EHLL Purge All Instances of a Variable in the Current Path (65)

92 bytes #68E4h

1: variable name ===> 1:

 
 

 

 

« PATH
+ name path

« D0 name name PURGE EVYAL UPDIR UNMTIL TYPE 6 == END
path EVAL

>

FLTOEE Plot a Higher-Order Derivative Directly (62)
172 bytes #0C7ER

4: Function

3. Variable of differentiation

2: Order of derivative
1: 0/1: don’t erase/erase ====>

 
 

e

 

 

3 CF
+ fu
& U GH[L

WHILE o B > REPEAT £ w a 'f' 510 o 1 - 'o' 5T0 END
f_STEQ FUNETIDN | IHDEP AUTO
éEs THEN ERASE END

Ax DRAW PICTURE
&

F'ITIULT Perform Polynomial Multiplication (76)

282.5 bytes #4400h

2: [ Polynomial 1] 2:
1: [ Polynomial 2 ] ====> 1: [P1xP2]

 
 

 

 

« [DUP SIZE 1 GET
+ ana
« [DUP DUP B CON DUP SIZE 1 GET DUP na + 1 - 1 =LIST

+ b cnb nab
« {1 Ynb + RDM 1 b

START a 0BJ+ DROP c DBJ» DROP MERT

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 313



nb OROPN rb nab + +ARRY # nab ROM
&

  

i = . - .
F|_||__.:| Find the Derivative of a Polar Function (84)

167.3 butes #20B5h

2: Polar function 2: Symbolic derivative
1: Value of 0 to use to compute slope ====> 1: Slope at given 0
 

 

X3 ‘g EIL:IIF‘ 4 ROLLD STO DUP ROT FODER COLCT
* rodr
« L 'CO5c82' 'SINCAY' 3 1 « DOUP dr + SWAP r = COLCT =

DOLIST EYAL 3 ROLLD + 3 ROLLD - -~ DUP =NUM

o8

23

  

 

 

I . . .
FUTEH Find a Potential of a Vector Function (275)

287.3 bytes #68C7h

2: Symbolic vector function 2:
1: List of variables ====> 1: Scalar potential (evaluated as far as possible)

% ]
+ fun
% F oy ¥

« INDEF DROP 1 'm' ST0
WHILE DBJ» DUP £ * - ¥ SWAP POS
REPEAT OROPZ 1 n + 'n® 5T0
END

_ SHAP DROP EVAL n LIST

bHLIST 1 « EVAL » DOLIST COLCT OUP 1 OVER SIZE
FOR L

OUP TRIL SWAP HERD
IF OVER SWAP POS DUP
THEM Lk + ROT SWAP B PUT SWAP
ELSE OROP
EMD

MEXT
OROFP ZLIST COLCT

o

314 P. PROGRAM LISTINGS



F'F'L"-'-IEF-: Take a Positive Integral Power of a Polynomial (76)

175 bytes #38CFAK

2: [ polynomial ] 2:

1: [ positive integral power] ====> 1: [ computed polynomial ]

 

 

 

GET
n

1 DUP +ARRY
WHILE n @ >
REPERT

[F n 2 100 THEN ¢ PULT END
n LOOR 5T04 F

ENDIF n THEN p DI_IP PMULT 'p* STO END

2

R

-

r
a

£3
3

F'F'F::UD Take the Derivative of the Product of a List of Polynomials (76)

7.9 bytes #8C2Ch
 

1: { list of [ polynomials] } ====> 1: derivative of product in polynomial form
 

 

« 0BJ+ 1 SWAP 1 - FOR k PMULT MNExT POER =

F":"I:!l: Convert the Simple Rational Coefficients in a Polynomial (310)

238.5 butes #FFCAK
 

1: polynomial array ====> 1: converted polynomial
 

 

DUP SIZE 1 GET
Pr|
# 1n

OR k
Pk GET DUP SIGM SWAP ABS
IF DUP DUP IP =
THEM

2

-
IF DUP TYPE 9 ==
THEN

0BJ+ DROPZ
IF DUP 18 £
THEM p * k ROT 4 ROLL = PUT 'p' STO
ELSE 2 DROPM
END i

ELSE DROPZ
END

ELSE OROPZ
END

MEXT
Fl

k3

¥

**% Be sure to read the instructions on pages 283-284 before keying in these programs. *** 315



F".-!L"JT Take the Derivative of the Quotient of Two Polynomials (76)

414.5 bytes #FBB5h
 

2: [numerator polynomial, p ] 2: [numerator polynomial of deriv. ]
1: [denominator polynomial,q] ====> 1: [denominator polynomial of deriv.]

 

2 3
o~
o FOER FMULT ¢ 3 FDER PMULT PSUE PFACT [ 1 1 + 3

]j PPOWER PFACT [ 1 1 +

o
r
o
m
o

#
0
™

ke
IF ndk GET POS OUP
THEN
nP[ 1) PUT 'n' STO d k [ 11 P

ELSE DR
NEJEHD
nd? sLIST 1« « PMULT » STREAM » DOLIST EWAL

F'F-:E["_":E Reduce the Coefficients of a Polynomial (76)

b6 bytes #03ZEh
 

1: [ polynomial ] ====> 1: [reduced polynomial ]

 

« [OUP 0OBJ» 1 GET =+LIST B REMD « gcd = STREAM - =

F'!:IEl.:-! Plot a Recursively-Defined Sequence (16)

263 bytes #4A0Sh
 

4: recursive sequence definition
3: list of initial values
2: beginning of plot range
1: end of plot range ====> W

A

 

 

b GET 2 + YRNG 'm' s 4 3 »LIST TMDEP 1 RES §
ATICK FUNCTION < seanc n GET » STED ERASE ORAX

f 35
f a _t EI.J -*HEU 'seqnc' STO -1 t HENG seqnc s GET 2 -

i'J
ORAW PICTURE + ER n seqnc  PURGE
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F'!:;UE: Perform Polynomial Subtraction (76)

 
 

28.9 bytes #DA0Sh

2: [ polynomial 1 ] 2:

1: [ polynomial 2 ] ====> 1: [poly 1 —poly 2]
 

 

= MEG PAROD *

 
 

 

 

Wil
F"-"!:l H Convert a Polynomial to Symbolic Form (76)

113 butes #38BEh

1: [ polynomial] ====> 1: symbolic function

« =3 CF

« (BJ+ OBJ+ OROP @ SWAP 1
FORnnl+PRILunil-=*=+-1STEP
18 FI¥ =+ 570

2,o

35

 
 

 

 

' — I- " - - -

FTH I L Plot a Taylor Series Approximation (45)

313 bytes #B29Ch

5: Taylor series approximation 5:
4: function being approximated 4:
3: independent variable 3:
2: point around which approx. is centered 2:
1: point being approximated ====> 1.

« -3 CF
+ pfuahb
# 4 PPAR PICT > PURGE £ p 2 =LIST STEQ FUNCTION RAD w

INDEP a OUP OUP 2 = b 2 + - ABS 6 MAX DUP_ROT SWAP -
IF OUP w STO F EVMAL TYPE B # THEM DROP B END
3 ROLLD + DUPz 2 »LIST 3 ROLLD ®RNG 1
« oy570 £ EVMAL IF OUP TYPE 1 == THEN DROP B END =»
EII%I:II!:.T DBJ+ DROP & + SWAP 6 - -.5 MIN SWAP YRNG a v

[
=
2 £ 1 1 ¥ ATICK ERASE DRAx DORAW PICTURE

-,
-

3

 
 

*.C Convert a Decimal to a Simple Fraction (If possible) (198)

417 bytes #679Bh

1: decimal ====> 1: simple fraction or decimal
 

 

o~
< o5 CF OUP SIGH OVERE ABS 18 ¢ } (1,8) (B, 1D

+ zsianxwnkr s
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SONLLST']Wvadodd°d8IE

o
.

843151700

+£1+h+H+uHHUHH41
'SLIMO-3MHGd3LN3,LSI0eT+wey+?

[sdenO3030EL&@woLINMLNOHLIMdU
HLIMJWILdHLHHuwPCHAWIL.3wS3LHY03173,

=
2id4T4dI

_31IHN
NAOHD-TFZIS4 SbaSUEVT&

+P+151700«WA=T3
151700==+104*=%,d0dd*PEU=[dflU

IWDD

aLsPyInd1044PJd0d0HILHWTdHHL
13894POISo4,ANd104A44d040HILHWT0710
didLSI7«&OTI0d#1511£<30+o}0+dHHr
II?Iu.l.Ud_D—I-]Dd'l-'_dlID4"'l'EU+_i'l'll+':IH”:'nin.LLIl:I

a0+yHo+dHMSwowdN0A000dlmS133430o=

SI700=«SdWI=2lrIT*
Les3M

OW3dHMS&3h0+TW3HL-1FdI
[H0d

O3ZISAJId£TT104dnd
OW3LSI0«TW3HL#§3dAldflfllaé

OW3_+ddiS%WIHL==HSudvhedNd4l
dndamiod£43OT55E—FoOLSd3HEE,Bo=
 

 

suonn[osJoISI[10UONN[OS(|<====SJ[qELIEAUOTIN]OSJO}SI|IOS[qELIBAUONN[OS:]
eSo[qeLIBAJOISITT
'€SUOIIE[a1JOISI[JOUONe[dY:¢
 

 

Yeds#S21RqQTHGIT

(s11)wa|qo.idSoleypale|oyeaA|0S..l.H_EH

=

an3
o__2240803573

#UBTS<G00+4HMS+wrw+108o0d¢d139W3HL

__gAl
S04TSans0d=OW3@3513TW3HL>GA°4=

200T4lc11+u
13K

40154,0ls4+=o4Q1SA,

OW3EEFIEEEEEEEEEEEEd040W3IHLANTd4341
-d3h0S8d&+0L1S4300o4400714Sad&

ldl_tlll%



DOLIST OBJs 3 + »LIST € 31 3 £ 3 € 3 INFORM
ELSE B
END

REPEART
+ yals
« CLLCD "Solwing . . ." 3 DISP

HE%EE vals DUP ¢ MOVAL > 1 GET POS DUP DUP
AT
IF DUP 3 MOD 2 ==
THEN

3 ~ CEIL DUP eqns SWAP GET 0BJ» DROPZ
g?fi* 3 DROPN = eqns 3 ROLLD PUT 'eqns'
-2

ELSE DOROP
END
B PUT 'wals' 5T0

ND
ODROP? wars 1 «0BJ» DROP » DOLIST 't
GUFP"+ DU uarx” ST0 STO eans STED MINIT
Jals

< TF DUP UYAL
THEN wals SWAP POS vark SWAP GET
ELSE DROP

>

DOLIST MUSER "“ALL“
IFERR MROOT
THEN

CLLCD
IF ERRN # AAlh ==
THEN "Incompatible or missing units
ELSE DROP ERRM
END

EL“ESGBDX "Try again . . ." 3 DISP 1 CF

DIF s DUP TYPE 5 # THEN 1 =LIST END
ENDI « DUP RCL SWAP +TAG » DOLIST EWAL 1 SF

%

END
*

YARS DUP 'MARKER' POS 1 SWAP SUB PURGE
*

EEMMORE  convert a Quotient and Remainderto Symbolic Form (76)

 
 

 

 

276 butes #EE73h

4: 4: [ Quotient ]

3: [Quotient] 3: [ Numerator of remainder ]
2: [ Numerator of remainder ] 2: [ Denominator of remainder ]
1: [Denominator of remainder ] ====> 1: 'Symbolic expression'

« -3 CF
+qnd
« [FnlB1]#

THEN
9 0BJ» 1 GET

**% Be sure to read the instructions on pages 283-284 before keying in these programs. *** 319



+ 1k
« Bk +ARRY t 1 *ARRY d PMULT n PAOD 'w' P25YM d

Pl PaSYM - SWAP 'w' PeSYM SWAP +

ELSE q 'w' P2SYM
EMD
q n d 4 ROLL

o,o

 
 

] I . . . :
F-.F'-*-:l Convert a Rational Fraction to a Symbolic Expression (76)

67 bytes #EBS1h

2: [Numerator polynomial ] 2:
1: [Denominator polynomial ] ====> 1: 'Symbolic expression'
 

 

€ 2 sLIST 1 « 'w' PsSYM » DOLIST EWAL ~ »

F:F-:E":'TE; Find the Real Roots of a Polynomial (310)

141 bytes #24ECh
 

1: polynomial (array) ====> 1: list of real roots
 

 

« PROOT DUP SIZE 1 GET
*ron
oN

0

T AOF Lk
r_k_GET IM

HE'*{%F THEM r k GET + ELSE r k GET RE SWAP + END

--

"'F:F'H Convert an Algebraic Object to an RPN List (285)

189.3 buytes #6FBbh
 
 

1: 'algebraic’ ====> 1: { list }
 

 

=  [BJ»
IF OVER
THEN
+n f
£ 1 n

FOR i
IF DUP TYPE 9 SAME THEM RPN END
n ROLLD

%E DUF TYPE 5 # THEM 1 =+LIST END
nl?>

THEH?
& on
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START + MEsT
40

  

F +

ELSE 1 SLIST SWAP DROP
EMD

E:;L:UF Find a Symbolic Cofactor (322)

2954.5 bytes #EREBH

3: symbolic matrix
2: row :

1: column ====> 1: cofactor

 
 

« -3 CF 3 PICK DUP SIZE SWAP 1 GET SIZE DROP
IF I ==
THEN 3 DROPN 1
ELSE
*r C
« [BJ» OVER SIZE OVER 1 -

*mon
% E - 1 + ROLL DROP

n
START

n ROLL
IF o1 - i
THEM DUP 1 = 1 - 5B SWAP - 1 + m 5B +
ELSE 2 m SUB
END

MERT
n =LIST

SOET

f:il_:F:l_lf:if:. Find the Cross Product of Two Symbolic Vectors (225)

  

 
 

2391 bytes #724Ah

2: Symbolic vector 1 2:
1: Symbolic vector 2 ====> 1: SV1X SV2

« =3 CF
oy

o 2 *LIST |
IF DUP SIZE 2 == THEN B + END

EDLIST fww 5T v ? 3 SUB w2 3 5UB REVLIST #
EVAL - v HEAD w 3 GET # w 3 GET w HEAD * - MEG w 1 2
SUB w 1 2 SUB REVLIST + EMAL - 3 »LIST COLCT

,
o~

#

u

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 321



!:;DET Find a Symbolic Determinant (290)

136.3 bytes #37°30h
 

1: symbolic matrix ====> 1: determinant
 

 

o
o 3 CF OUP DUP SIZE SWAP 1 GET SIZE DROP

 
 

*an

« H1n
FOR i a i GET 1 GET a i 1 SCOF = -1 1 1 + * = +

o ONEAT

i .
-:l["_|T Compute the Dot Product of Two Symbolic Vectors (224)

97 bytes #3BEBh

2: Symbolic vector 1 2:
1: Symbolic vector 2 ====> 1: SV1+SV2
 

 

# =3 CF »*mn«mn* ELIST » »

 
 

 

 

CEl .
-_IE|.J I HT Segment an Integral at a Given Value (160)

297.9 bytes #2F81h

2: Integral expression 2:
1: Value of point of segmentation ====> 1: Segmented integral

€+ limit

# O Iokl, &2, 53, &40 'Ffl'llJl:lTEf1' limit, GUOTECE:i'.-4'+F'11
rut QUOTECAZ ), QUOTECE3, &4 3 IMATCH DROP EMAL
VIORL A2, DUOTECR3), &0t '..I‘(!rl.u._.l"f'-.-dr" 1 lHHTIH 0RO

':"!:lEl.:-! Compute Sequence Terms from a Recursive Definition (12)

338 bytes #C220h
 
 

 

 

3: recursive sequence definition 3:
2: list of initial values 2:
1: index number ====> 1: list of sequence terms

« -3 CF '"tlsgnc' CROIR tTlsqnc B 'MARKER' STO SWAP OUP SIZE
+ fnar
# 3 r n HBS

FI]F?.li
-

FOR i a j GET "a" J_+flB-J-} ST0 MEW
fEVAL + DUP i DUP 2 r - SWAP 1 + SUB ‘s’

NE”;TD VYARS DUP 'HHF‘FEF" F‘I]'_- 1 - 1 SWAP SUB PURGE
&
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s

SERIE=

REYLIST TRIL REVLIST
IF n B = THEN REVLIST HERD END
'MARKER' PURGE UPDIRE 'Tlsgnc' PURGE

Find an Approximation of a Series to a Given Precision (36)

 
 

 

 

228 bytes #87A3h

4: defining function ofseries 4.
3: index variable 3:
2: beginning index value 2: computed approximation
1: number of decimal places desired ====> 1: last index value used

= -3 CF
+ fujPp

« 570 H

&

sERl

BHTHPP jow aT0 £ EMAL + 5 1 + 'j' 5T0 DUP 1 DISP

IF p 3 + MEG DUUP -11 = THEM RND ELSE DROP END
NDSMHP OYER == KEY OR

P

IF OUP 11 £ THEN MNEG END
3 - RMD p FIX j

 
 

 

 

Perform the Root Test for Convergence on a Series (32)

389.5 bytes #F6ASh

2: series expression 2:
1: index variable ====> 1: "Diverges", "Converges", or "Inconclusive"

% 3+ F oy

« f£ ABS v KROOT @ 1
+ fpid

g1+ 0P "' 5T0 ALOG =NUM o 35T0
fp =NUM DUP ROT

UMTIL
OUPZ == 3 ROLLD DUP 'p' 5TO OYER - ABS SWAP

EHD:! DUP 4 > SWAF 'd' STO OR

OROF 4 p w PURGE 'p' PURGE

IF SWAP ABS 9.99999993999E499 ==
THEN DROP "Inconciusive”
ELSE

18 EMOD
IF OUP 1 =
THEM

IF 1 == THEN "Inconclusive" ELSE "Diwverges" END

*** Be sure to read the instructions on pages 283-284 before keying in these programs. *** 323



SE

SEF

ELSE DROP "Conwerges"
END

 
 

 

 

 
 

 

 

S

324

 
 

 

 

-+

_END
- -~

L™

W Perform the Limit Comparison Test on a Series (32)

169.5 bytes #FoRBh

3: target series expression 3:
2: comparison series expression 2:
1: index variable ====> 1: list of values toward limit

« 3 ROLLD ~ A 1
U fid

Do
SWAP 3 1 + OUP 'i' STO ALOG +NUM o 5TO
f +HUN DUPZ 4 ROLL

UMTIL == 18 j == OR
EMD

_ SWAP j +LIST 3 ROLLD DROPZ w PURGE

LI

Wi Perform the Integral Test for Convergence on a Series  (32)

182.3 bytes #CBCBh

2: series expression 2:
1: index variable ====> 1: list of values toward limit

£+ fou
# 1 FIX € 1 20 88 288 I 1

% *HUH ALOG 'b' ST 1 b fF S
_ IFERR =HUM THEW FE EMD

DOLIST 'b' w 'IERR' 3 +LIST PURGE

Disassemble a Symbolic Array (304)

124 bytes #46AAh

mn + 2: mn + 2:
. elements

3: 3:
2: 2: #of rows
1: symbolic array ====> 1: # of columns

« 0BJ+ OVER SIZE
row col

P. PrROGRAM LISTINGS



€ ] row
FOR i i 1 - ol # row + 1 - 1 + ROLL OBJ» DROP MEXT

 
 

 

 

FoL Cio
»

%

":"!:;H Assemble a Symbolic Array (325)

186.5 bytes #EBA7h

mn + 2: mn + 2:

... elements

3: 3:

2: #of rows 2: #of rows

1: # of columns ====> 1: # of columns

€ * row col
« 1 row

FOR i col »LIST col row i - *# i + ROLLD MNEKT
row *LIST

&

f:;l_lLl'.'lF'LT Plot a Relation Using Solver to Compute One Variable (104)

293 bytes #688Eh
 

5: List ofrelationsto plot
4: List of variables: {indep depnd }
3: Plotting interval: {begin end }
2: List ofstarting guesses for depnd
1: Plot resolution/speed factor ====> m

h
w
a
e
w

 

 

« DIP SIGN 5SWAP AB5S R+*B RES RCLF £ -3 -31 -55 } CF
IFERR RCEDQ THEN 1 END
% % g9 dep

« [FERR « &9 dep DUP EVAL ROOT = STER DRAX DRAW
THEN 1
ELSE A
END
IF THEM <flags STOF ERRM DOERR EMD

B

>

+ f v rng vals s «flags old <plot
« FUNCTION

IF s 1 ==
THEN

ERASE v 1 GET rng + INDEP rng DUP 2 * EVYAL KRNG
EYAL YRNG

EhEE v OUP PURGE EVAL DEPMD INDEP

1 £ SIZE
FOR k

f k GET v 2 FET vals k GET
IF OUP TYPE 5 =
THEN

**% Be sure to read the instructions on pages 283-284 before keying in these programs. *** 325



o
-

DROP 1 wals SIZE ]
FOR_j DUPZ wals j GET w» 2 GET 570 <plot EVAL
MEXT DROPZ

EhaE v 2 GET 5T0 «plot EVAL

MERT
PICTURE «flass STOF
IF old DUP TYPE THEM STER ELSE DROP 'ER' PURGE EMD

 
 

 

 

(g I~
-ZIF LEI'.'IHL Evaluate the Cubic Spline at a Given Point (146)

912.3 bytes #B0D6h

4: List of independent coordinates 4:
3: List of dependent coordinates 3:
2: List ofspline coefficients 2:
1: Value of independent variable to interpolate ====> 1: Interpolated value

« [WER SIZE OUP 1 DUPZ
* us ws 93 =2 n hi lok h
« MWHILE hi lo - 1 >

REPERT
hi lo + 2 « 'k' 5T0
IF us k GET u >
THEN k 'hi' 5T0
ELSE k 'lo' 5T0
EMD

EMD
us hi GET ws lo GET - 'h' 5T0
IF h
THEM
s hitFET v - h # wus lo GET - h ~
5 =

SPLIME

326

o

¢ aus 10 GET * bus hi GET * + a3 3 * a - us la
S BET*b3cb-ushi GET *h2™s+67+

ELSE "Mot a function" ODERR
END

 
 

Compute Cubic Spline Coefficients for a Data Set (146)

8964 bytes #9BAER

: List of ind. variable data 4.

-
N
W
A

: List of dep. variable data
: Number of data points used

3 List of ind. variable data
2: List of dep. variable data

: List of range over which spline is computed ====> 1: List of spline coefficients
 

 

i EVAL + -.5 + DUP
-+

o~
o

s ws n 49pl 9pn 495 U
3 us 1 2 5B EVAL SWAP - DUP 3 ROLLD ~ ws
1 2 SUB EMAL SWAP - ROT » gypl - # o 1

P. PrROGRAM LISTINGS



ROT PUT 'u" STD 2 n 1 -
FOR i

us i GET us i 1 - GET DUP ws i 1 + GET SWAP -
OLLD - SWAP -~ DUP 4s i 1 - GET # 2 + DUPZ SWAP
SWAP < ys 3HHP + 'ys' STO 6 ws i 1 + GET ws

G

S
O
0' R

GET - wus i 1 + GET ws i GET s % ys i GET ws
i - GET - wus i GET ws i 1 - GET - » - us i 1 +
GET ws i 1 - GET - ~ ROT u i 1 - GET * - SWAP ~
1 SWAP + ‘o' 5TO

gys 3 us n OUP 1 - SWAP SUB EYAL SWAP - DUP 3
FOLLD » 9pm ws n OUP 1 - SWAP SUB EVAL SWAP - - ROT
<% Sunl -GET* - .59ysnl -0GCET # 1+ ~ +
'ys' ST0n 1 -1
FOR Lk

ys k GET 9s k 1 + GET * u k GET + ys k ROT PUT
'ys' 5T0 -1

STEP
s w3 43

—

s

2

!:;F-:El'.'l Compute the Volume of a Solid of Revolution (203)

799 bytes #2184h
 

: { lower ...otherintersection pts.... upper } 5:
: Boundary function 1 4:
: Boundary function 2 3:
: Variable of integration 2:
. k such that y = k is axis of revolution ====> 1: Volume of revolved solid—

_
N
W
A
W

 

 

# -3 =55 ¥ CF DUP DUP & ROLL OUP ROT - 3 ROLLD 3 ROLLD
ROLL DHP POT - PflT 3HHP OUPZ DUPz SIGM SWAP SIGHN == 3

ALLD ABS SWAP ABS DUP MOT
culrselslm

TABS(s51042' TARS(s HB(r1)*2' 'ABSCrl1)ne!
ABS(r]I~2-ABS5] 1A% }

#
o
D
T
S

3

}
_
u

b
=

2
—
h

+

s' 'r-lt 's-10 st o
Y3 b L +LI5T

ERR _ROOT THEN 9,9339333
UP DUP a > SWAP b <

EM DROP

a2

F
o
o
m

1

9999E499 END
AND MOT

M
—
r
—
=
r
—

E
I
fl
fi
'
l

=
D

DOLIST
IF DUP TYPE § ==
THEN )

SORT 1 = RCLF SWAP 3 FIX »0n SWAP STOF =
DDLI'T

ELSE € %
EMND
a SWAP + b+ 2 = 0UP2 + 2 -~ v STO £ m
DD'EUB* + 1 + sNUM GET v DUP PURGE SHOW w [ =»

SUBS
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IEUHUP SIZE 1 » THEW ELIST ELSE 1 GET EMD

DOSURS
IF OUP SIZE 1 > THEN SLIST ELSE 1 GET END

Ko
a3

o

-:;':"F:F Convert a One-Variable Algebraic to a Polynomial Ratio (76)

 
 

2884.3 bytes #C36Bh

2: 2: [numerator polynomial]
1: 'Algebraic’ ====> 1: [ denominator polynomial]
 

 

« -3 CF DEPTH_SWAP i
IF OUP OUP TYPE 9 == THEW -=RPN ELSE 1 +LIST END
DUP SIZE
%« * ab ) i

€« ab 2 +LI5T 1 2
FOR j )

IF OUP i GET TYPE 5 == THEM j ELZE B EMD
J SWAP PUT

MEH
zLIS
+ 1
« {11011 %1 dld2 ¥ 70

IF t
THEN

IF t 1 == i i
THEM a € nl dl } 5T0 b 'm&' 370
ELSE )
IFtg= i
THEM b € n2 d2 } STO a 'nl' STO
ELSE 2 € nl dl 3 5TO b € n2 d2 3 5T0
EMD

EMD i o
ELSE a 'ml' 5TO B 'm2' STO
EMD
1

# IF DUPZ +#case EVAL
THEN i i _

DE?E% nl d2 PMULT n2 dl PMULT PAROD 41 d2 PMULT 2
sLI5

ELSE PROD
EMD

« IF DUPZ ¢case EVAL
THEN

UROPE nl 2 PLLT rZ di FMLT PSLB di 42 PNLT Z
+ .

ELSE PSUB
END
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« [F DUPZ <case EVAL
THEN OROPZ nl nZ PMULT d1 d2 PMULT 2 -=LIST
EhBE PMULT

IF DUP TYPE 53 ==
THEN OUP 1 GET MEG 1 SWAP PUT
EhEE MNEL

IF «case EVAL DUP
THEN

IF 2
THEN

nl ng 1 GET AB5S 1 =+ARRY DUP 3 ROLLD PPOWER d1
EOT PPOWER ~
IF nZ 1 GET SIGMN 1 + NOT THEN SWAP END
2 #LIST

ELSE
DEPTH 1 + «d - DROPN «f © nl nZ2 dl 42 } PURGE
"Won-integer ewponent" DOERR

o
M

.

E
ELSE

DROP
IF nZ 1 GET DUP A <
THEN [ 1 1 nl ROT ABS 1 =ARRY PPOWER 2 -»LIST
ELSE OROP nl nZ PPONER
END

END

[F DUPZ <case EVAL
THEW DROPZ nl d2 PMULT dl nZ2 PMULT 2 »LIST
EhEE 2 +LIST

;d «f «p n *case <plus <minus <mult €neg €pow <diu
n

FOR Lk
«p k GET
IF DUP TYPE
HEN

IF OUP TYPE © & 7 3 SWAP_POS
THEM OROP [ 1 B8 1 1 =LIST
ELSE

L + - % *~ NEG -~ } SWAP POS
IF DUP
THEM

£ % «plus EVAL » <« ¢minus EVAL » <
«mylt EVAL » « <pow EVAL » « €neg EVAL =»

EL‘E «div EVAL = 3 SWAP GET 1 =LIST
2

OEPTH 1 + «d - DROPN «f { nl nZ2 dl d2 }
EHDPURGE "Mon—alaebraic function" DOERR

END )
ELSE 1 #ARRY 1 »LIST
END
<P k ROT REPL '<p' STO
Al

«p EVAL EVAL
IF DUPZ POIYV DROP [ A 1 SAME

s
f
o
d

W
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THEN 3 ROLLD OROPZ [ 1 1
ELSE DROP
END ]
fn2 nl d2 dl 3 PURGE

 

 

 

 

 
 

 

 

SEFIMT Find a Surface Integral (278)

338.3 bytes #7A8Ch

5: Multivariable function 5:
4: Parametrized surface (symbolic vector) 4:
3: List of function variables 3:
2: List with first parameter and its range 2:
1: List with second parameter and its range ====> 1: Surface integral

& =3 1I:F DUPZ HERD PURGE HEARD PURGE
* S %o

« y TAIL EYAL wu THIL EVAL = u HERD VDER = « HEAD VDER
SCROSS COLCT 5 ST0
IF £ DUP T'fF'E ':' ==
THEW EVAL COLCT SWAP {'HE»'S COLCT = COLCT
ElflDE I « EVAL COLCT » DOLIST SOOT COLCT

u HERD J EVMAL COLCT
IF_ OUP TYPE
THEN o ]

IF 0BJ+ DUP ¢ f ¥ SWAP POS
THEN

SWAP OROP EWAL HALT EVAL COLCT
IF_OUP TYPE
HEN
IF_OBJ+ DUP L I 3 SWAP POS
THEM SkAP DF‘DF‘ EYAL v HERD I MLTINT
EIHSE SWAP DROP EVAL w HEAD I =HUM

ElflaE v HERD | +MUM

EhDESWAP OROP EVAL w HERD J =MUM

ELSE v HERD [ -=MUIM
END

oo PURGE STO

THFL:H Find the Tangent and Normal to a Function at a Point (102)

237.9 bytes #6R33h

3: function 3:
2: independent variable 2: Normalline
1: Value of indep. at pt. of tangency  ====> 1: Tangent line

2 0+ F ouyow

£ = oo 570 f v oa OUP
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IF DUP B ==
THEN DROPZ '9' f EVAL = v x =
ELSE

INV NEG 2 +LIST 1
« 'y' SWAP DUP w = £ »NUM ROT % # - + =
» DOLIST EVAL

END
"Morm" »TAG SWAP "Tang" »TAG w PURGE

 

 

 
 

#
»

TF'LHH Find a Plane Tangent to a Surface at a Point (243)

148.5 bytes #D81Fh

3: Function 3:
2: List of variables 2:
1: List of coordinates of point ====> 1: Equation of tangent plane

€« =+ f P

«  OUP PURGE p - COLCT f DUP v GRADI p v 510
1 « »NUM » DOLIST SWAP EVAL SWAP ROT v PURGE

  

 
 

S0OT + EXCO
%

%

1 .lLFl - .
(0 Y Compute a Taylor Series About x = a (44)

143.5 bytes #7416h

4: function being approximated 4:
3: independent variable 3:
2: order of Taylor series desired 2:
1: point about which series is computed ====> 1: Taylorseries

x -3 CF
+ fyoa
« o PGALL v 'a' + v S5T0 £ EVAL v o TAYLR v DUP PURGE

'a' - » 5TO EVAL « PURGE EVYAL
>

TYLEEEE Estimate the Error in a Taylor Approximation (53)

94.5 butes #78C6h
  

4: estimated max. for next derivative

3: order of approximation
2
1 —
h
w
h

: point about which approx. is centered
: point being approximated ====> estimated error
 
 

< + L (
] ab
« dol+ 1 ~ba-ol+ "% AB5
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I.IE: I HT Find an Improper Integral Over an Unbounded Interval  (165)

216.3 bytes #7897h

1: Integral expression (including infinity) ====> 1: Evaluated integral

 

 

 

 

« [A=R '=' 570 0OUP 0BJ+ DROPZ
IF_OUPZ  INDEF
THEM

DUP 5 PICK 4 PICK 5TO EVAL SWAP & PICK 4 PICK 5TO
.~E|"'|HL - COLCT =MUM SWAP PURGE 5 ROLLD 4 DROPM

L5
OROP 4 ROLLD 3 DROPM
+ int v = int ‘o' w ATAN = CHYAR =»HUM v PURGE =

EMD
‘w' PURGE

 
 

UDEF: Find a Derivative Using Unit Objects (70)

94 bytes #BESEh

2: Function 2:

1: Variable of differentiation ====> 1: Derivative
 

 

« PATH 3 ROLLD HOME ‘447' CRDIR FOER UPDIR "44T' PLDIR SWAP
EVAL EVAL
IF DUP TYPE 9 == THEN COLCT EMD

 
 

 

 

l'.'IHEH:; Find the Absolute Value of a Symbolic Vector (226)

78.3 bytes #4530h

1: Symbolic vector ====> 1: Symbolic absolute value of vector

« =3 CF
+

#« B 1 v 5IZE
I;DR kow k GET 2 * + NERT

8

 
 

 

 

l'.'lDEF: Find the Partial Derivative of a Symbolic Vector (82)

7.9 bytes #386Ch

2: Symbolic vector 2:
1: Variable of differentiation ====> 1: Partial derivative of vector

Oy

# w1« FOER COLCT = DOLIST
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VOIE Compute the Direction Angles of a Symbolic Vector (226)

 
 

 

 

139 bytes #8A73h

1: Vector (symbolic or numeric) ====> 1: List of direction angles

& -3 CF 0BJ»
EF DUP TYPE 5 == THEN 1 GET END
+LIST DUP SIZE SWAP DUP YRBS

 
 

 

 

*nym

FOR i w i GET m - ACOS MEKT
N +LIST

I'.'ID I l'.'I Find the Divergence of a Vector Function (254)

898 bytes #20E7°h

2: Symbolic vector function 2:
1: List of variables ====> 1: Divergence

%z + F u

© foui o« FOER = DOLIST ZLIST COLCT

k3

Ll
" I HDEF Find an Indefinite Integral with an Expanded Search (180)

 
 

 

 

 
 

 

 

bbb.d bytes #311Bh

2: Function 2: Indefinite integral
1: Variable of integration ====> 1: 1/0 (success or failure)

or

2: 2: Indefinite integral
1: Symbolic integral expression ====> 1: 1/0 (success orfailure)

& =3 |"

IF GUP TYPE 9 ==
THEN 08> GROPZ ROT DROP ROT OROP

iy
> £ Thow _
« [F £ TYPE NOT THEN ‘'B=x' £ + 'f' 5T0 END

1 te £ 1 SHOW "1t DUP STO OVER XINT
IF OUP 0BJ+= OUP L [ % 1 GET SAME
EEEE OROP DROPM @

2

o _ROLL OROP
]I_E L+ 1 1 GET SAME
M
+LI5T B SWAP 1
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€ [F P L ULEZIZED 1) UATCH
HEN

DROP COLCT EVAL _
IF DU £ 'feRl, 42,8380 T4 3 LMATCH
THEN DROP SWAP
ELSE

“OROP_0DBJ» 3 DROPN EVAL 'T4' w 2 =LIST
EHDLHHTEHDROF SWAP .3 +

DPHP OBJ+ 3 OROPM EVAL ‘1LY w 2 =LIS
EHDIHHTIH OROF SMAP .5 +

DOLIST OBJs 1 + ROLLD + SHAP
£LSE DROPZ EVAL 140 2 SLIST JHATCH DROP |

END
IF OUF .5 == THEN .5 - EMD

&

]
r I HT Perform an Integration with an Expanded Pattern Search (175)

 
 

48 bytes #1980h

4: lower bound 4:
3: upper bound 3:
2: integrand 2:
1: variable of integration ====> 1: Evaluated integral, if possible
 

 

# +  low op int u _ - -£« int w O TL ¥ + TMATCH DROP IPATS OUP SIZE A
+ pats n t
# [0 pats n GET )

EfiaIL IMATCH 't* 5T0 'm' DECE MOT t OR

IF t
THEMN i ]

OURup 2 =LIST 'f' APPLY =WAFP lnu &

+LIST 'f' APPLY - © 'Fodl, a0’ "S110T)=8E
_3 IMATCH DROP

ELSE DROP low we int w [
END

>,

f
o
d

W

F

l 0 1 L r :. 'rl"'l nli- n‘: 1._}||

VPR, 82, QUDTECR3), QUATECRS ) 3
IF IMATCH THEM EVAL EMD

E>
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lI

1l"-'-I Perform Alternative Version of YAX Command (335)

121 bytes #AC30h

2: Base 2:
1: Exponent ====> [: Base”Exponent

# +
2

Yo
IF « OUP IP =#
THEH

BS »*Qc 0BJ+» DROPZ 9 SWAP XROOT SWAP s« SIGN

 
 

 
 

ELSE o "
_ EMD

Il

'I|||' Convert a Symbolic Expression Containing nth-Roots (287)

% bytes #9340h

1: Symbolic expression ====> 1: Converted expression

« RPN_1
« IF OUP O =~ ¥ 1 GET SAME THEN DROP 'XPOW' END =
DOLIST EMAL

Ll I" |"| |'|'| FI . .
L Create a Composite Plot of Y-Slices (231)

299.5 bytes #1883h

 

: Function of two variables
. List of variables
: List of x-range
: List of y-range
List of z-range
Numberofslices ====> R

N

-K-}anrl-f

« f STEG o OUP PUF‘FE EVAL DEPMD IMDEP = EVAL ®RNG ur
EVAL YRMG FUMCTION ERASE z EVAL - ABS n 1 - ~
+ d
& 1 : -

FDF‘ k z HEAD d k * + MERT
g - ->LI'5T EVAL F'DT SWAP + + 1 « v 2 GET

DLIF' ROT SWAP '“TI] "y=" SWAP EVAL + 1 =GROB # 64h #
oh BLAMK PICT ¢ # 1h # 1h 3 ROT REPL PICT { # lh
# 1h ¥ ROT I"DF’ ORAKW = DOLIST # b4h # 5h BLHNK F'IET
i # 1h # 1h } ROT REPL "y=(" z E HL5TR 1"
SWAP " " + SWAP + + 1 sGROB PICT { # 1h # lh }
ROT GOR PICTURE w PURGE

3
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Examples Index

1. Series, Sequences, and Limits

Approximate value of a function at a point after viewing 47

Approximating an infinite series 36, 37

Approximating function with Taylor polynomial 46

Approximating log function with power series 39

Approximating trig function using power series 39

Computing nth term of a recursive sequence 12

Computing nth term of a sequence 11

Creating a closed-form sequence 11

Creating closed-form of Fibonacci sequence 13

Estimating maximum error of approximation 53

Evaluating a Taylor polynomial within the interval 44

Finding a set of terms of Fibonacci sequence 13

Finding a Taylor polynomial approximation 43

Finding a Taylor polynomial inx -a 44

Finding limits graphically 19

Finding nth term of Fibonacci sequence 13

Finding the first n terms of a closed-form sequence 11

Finding the first n terms of a recursive sequence 12

Finding the interval of convergence for a power series 49-51

Ilustrating absence of a limit graphically 22

lustrating interval of validity for power series 40-41

Illustrating round-off error graphically 20

Plotting closed-form sequence 14

Plotting recursive sequence 16

Recognizing absence of limit using LIM 28

Recognizing oscillating behavior using LI 28

Testing for convergence--Integral test 33-34

Testing for convergence--Limit Comparison test 33-35

Testing for convergence--Root test  33-35

Using LIM to compute single-sided limits 27

Using LIM to find limits 25-27

Visually depicting interval of validity for Taylor 45

Examples Index 337



2. Differentiation and the Derivative

Applying the product rule using PPEOD 78

Applying the quotient rule using FRUOT 80

Comparing derivative computations in different angle modes 69

Computing derivative with units--I0ER 70

Computing derivatives using units 70

Computing slope of parametric function 83

Computing slope of polar function 84

Determining differentiability graphically 58, 59

Finding derivative of a polynomial with POER 77

Finding derivative with FOER--hidden variables 68

Finding implicit derivative with IMPa 75

Finding implicit derivative with respect to a new variable 75

Finding numeric derivative using stack syntax 64

Finding numeric derivative using step-wise differentiation 64

Finding symbolic derivative 65

Finding symbolic derivative step-wise with input form 67

Finding symbolic derivative with FOER 68

Finding symbolic derivative with input form 66

Plotting a function and its derivative 60

Plotting a relation and finding its slope 73

Plotting higher order derivative directly 62

Using built-in differentiation forrational fraction 79

Using logarithmic differentiation 81

3. Applications of the Derivative

Computing tangent and normal to a curve 102

Finding angle between curves 103, 105

Finding angle between curves using C1HCEZ 107

Finding extrema of a function 91

Finding extrema using the roots of the derivative 92

Finding inflection points of a function 93

Finding marginal profit of a manufacturing pro 88

Finding maximum of a function 89

Finding point of intersection of two curves 109

Maximizing profit using MIAXMIN 99

Maximizing rate of return on investment 99

Maximizing volume of a cylinder 94
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Minimizing costs 96

Minimizing costs using [TH=IM 98

Plotting line tangent to a curve 101

Solving a related rates problem 113

Solving a related rates problem with EELET 116, 118-120

4. Integration and the Integral

Adding integration patterns to IPHTS 175, 177
Computing numeric integral using algebraic method 126

Computing numeric integral using EquationWriter 126

Computing numeric integral using input form 127

Computing numeric integral using stack 125

Computing segmented definite integral 160

Determining convergence of an improper integral with COIMT 164

Determining convergence of an open improper integral converges 167

Determining convergence of an unbounded improper integral 162-163

Estimating definite integral using piecewise linear interpolation 144

Estimating definite integral using polynomial regression 149

Estimating definite integral using quadratic regression 154

Estimating definite integral using sine regression 151

Estimating definite integral using single polynomial interpolation 145

Estimating improper integral over discontinuous interval 168-169

Estimating open improperintegral using JFIMT 167

Estimating unbounded improperintegral using UBIMT 166

Finding antiderivative of a rational fraction 192-193

Finding antiderivative using combined methods 188

Finding antiderivative using integration by par 186-187

Finding antiderivative using substitution 182-184

Finding indefinite integral using IMDEF—failure 174

Finding indefinite integral using IMOEF—partial success 174
Finding indefinite integral using IMDEF—success 174

Finding indefinite integral using the built-in 173

Finding Left, Mid, and Right Riemann sums 141

Finding signed area under plot of a curve 128

Finding exact symbolic definite integral using integration by parts 189

Finding Trapezoidal and Simpson’s Riemann sums 141

Ilustrating problem of discontinuities and integrals 129

Plotting antiderivative 131

Plotting equation involving a definite integral 155
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Plotting integrand containing a cusp 159

Plotting slopefield and antiderivative for initial 172

Plotting slopefield for a function 170

Plotting the area function and its derivative 130

Segmenting a definite integral with SEGIMT or MSEGINT 161

Symbolically integrating—constantsin integrand 136

Symbolically integrating—Ilinear function of integrand 135

Symbolically integrating—pattern-matching 135

Testing the validity of Taylor’s approximation using PTAYL 157
Transforming an integral using CHYAR 165

Using ®IMDEFto find an indefinite integral 180

Using BINT to compute indefinite integral 178-180

Using BNT—illustration of exactness of matching 178

Using #IMT—problem of implied factors 179

5. Applications of the Integral

Computing arc length of a curve 207

Computing fluid pressure on adam 219

Computing net and total distance travelled 217

Computing probability a point lies in a given area 212

Computing probability for normally distributed variable 214-215

Computing work done by lifting object on spring 218

Computing work of pumping fluid out of container 218

Deriving formula for volume of a sphere (by integration) 201

Finding and plotting the moving average 211

Finding area between two curves 195

Finding area between two vertically-oriented curves 198

Finding area bounded by a polar curve 199

Finding area bounded by two curves that intersect within the interval 197

Finding area bounded by two polar curves 200

Finding average value of a function 209

Finding center of mass 210

Finding surface area of surface of revolution 208

Finding volume ofsolid of revolution--disk 203

Finding volume of solid of revolution--shell 205-206

Finding volume ofsolid of revolution--using SREVH 204

Finding volume ofsolid of revolution--washer 203

Finding work to move an object horizontally 217
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6. Multivariate and Vector Calculus

Adding two symbolic vectors 223

Adding two vectors 223

Applying the partial derivatives (2nd order) test 248

Computing curvature and radius of curvature 251

Computing path integral of vector function using 274

Computing path integral using PHTHIMT 273

Computing path integral—mass of a wire 272

Computing path integral—work done on an object 273

Computing surface integral of scalar function 279

Computing surface integral of vector function 279

Computing surface integral using polar coordinates 280

Determining if potential exists using curl 276

Determining rate and direction offastest increase 246

Drawing a composite Y-Slice plot 231

Drawing a Parametric Surface plot 234

Drawing a Pseudo-Contour plot 232

Drawing a true contour plot 233

Drawing a wireframe plot 229

Drawing a Y-Slice plot 230

Finding average density using a triple integral 268

Finding centroid and center of mass using triple integration 269

Finding cross product of two vectors 225

Finding curl of a vector function 255

Finding derivative of vector function 250

Finding direction angles of a symbolic vector 226

Finding direction angles of a vector 226

Finding directional derivative 244

Finding directional derivative along curved path 245

Finding directional derivative using IIR& 245

Finding divergence of a vector function 255

Finding dot product of two vectors 224

Finding double integral of a function converted into polar coordinates 263

Finding double integral of polar function 262

Finding double integral over a general planar region 259

Finding double integral over a rectangular region 259

Finding double integral using FILTIMT 260
Finding double integral using segmentation 261

Finding double integral when inner integrand doesn’t evaluate easily 260

Finding equation of plane tangent to parametrized 256

Finding gradient of a function 241
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Finding Jacobian matrix of a vector function 252-253

Finding laplacian of a vector function 255

Finding length of a symbolic vector 226

Finding length of a vector 226

Finding mass of a solid using triple integral 265

Finding numerical gradient of a function 241

Finding partial derivative of scalar function 240

Finding partial derivative of vector function 252

Finding plane tangentto a surface at a given point 243

Finding potential for a vector function 275

Finding stationary critical points of multi-variable function 247

Finding symbolic cross product of two vectors 225

Finding symbolic dot product of two vectors 224

Finding triple integral using cylindrical coordinates 266

Finding triple integral using spherical coordinates 267

Finding volume using a triple integral 264

Ilustrating non-commutativity of the cross product 225

Multiplying a vector and a scalar 224

Multiplying a vector and a symbolic scalar 224

Parametrizing and plotting a scalar function 236

Plotting a hemisphere in cylindrical coordinates 238

Plotting a hemisphere in rectangular coordinates 237

Plotting a sphere in spherical coordinates 239

Subtracting one vector from another 223

Subtracting symbolic vector from another 223

Using the method of Lagrange multipliers 249
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ROOPAT
ANTILA
AFRO:A
AL
C1aCe
COIMT
CHYAR
COMTOUR
CURL
CLRY
CYINT
OETST
ORTFIT
OEFINT
DIRA
EULFLT
ExCO
FOER

FUMOF?
FUP
gcd
GRAOT

IMPA
IMOEF

zINT1
zINTE
ZINT3
=INT4
IMTENAL
IFARTS
JACOE
LAPLLC
lem
LIM
LINIM?

Programs Index

Add a Symbolic Integration Pattern 175, 178, 193, 275, 285

Plot an Antiderivative Slopefield 172, 286

Compute a Taylor Series Approximation 46-47, 286

Rationalize Elements of an Array 286, 309, 312

Compute the Angle Between Curves at Given Points 107, 110, 287

Determine Convergence of Improper Integral 163-164,167,169,180,287-288

Changes Variables in an Integral 165, 182-184, 188, 263, 267, 281, 288, 332

Draw a Contour Plot of a Function 232, 288-289

Compute the Curl of a Vector Function 254-255, 276, 289

Find the Curvature of a Parametrized Curve at a Point 251, 289

Compute the Interval of Convergence for a Power Series 48-51, 289-290

Perform the Second-Order Derivative Test 248, 290-291

Find the Best-Fitting Curve for a Data Set 147-154, 291-292, 298

Find Various Approximations of a Definite Integral 140-141, 292-293

Find the Derivative of a Function with Respect to a Path 245, 293

Plot Euler Estimate of a Differential Equation Solution 172, 286, 293-294

Expand and Collect Completely 201, 244, 256, 288, 294, 303, 331

Compute a Formal (Symbolic) Integral 68-69, 207-208, 240, 288, 292, 294-

295, 299, 301-302, 306, 314,

332-333

Is an Expression a Function of a Particular Variable? 175, 177, 285, 294

Fundamental Vector Product at Point on Parametrized Surface 256, 294

Find the Greatest Common Divisor of Two Numbers 295, 300, 310, 316

Compute the Gradient of a Scalar Function 241, 244, 246-247, 249, 293,

295, 299, 331

Compute Implicit Derivative of Relation 75, 106, 113-114, 287, 295, 318

Compute an Indefinite Integral 132, 173, 174, 180, 182-184, 192-193, 275,

287, 296, 299, 305, 314, 332

Integral of Data Set (Piecewise Linear Interpolation) 142-144, 146, 296-297

Integral of Data Set (Single Polynomial Interpolation) 142, 145, 297

Integral of Data Set (Cubic Spline Interpolation) 142, 146, 297-298

Integral of a Data Set (Using Fitted Curve) 143, 147-154, 298

Evaluate Integrand before Evaluating Integral 298

Integrate by Parts 180, 186-189, 299

Compute the Jacobian Matrix of a Vector Field 252-253, 289-290, 299, 304

Compute the Laplacian of a Function 254-255, 299

Find the Least Common Multiple of Two Numbers 300, 310, 312

Search for the Limit of an Expression 24-28, 32, 300

Is Given Expression Linear in Given Variable 175, 177, 285, 300-301

343



LMa
LTRIM
MARMIN
MIOPT
MLTIMT
MULTI
MLSYS
MSEGINT
OPINT
FROD
PAPRO:
PARAS
PATHINT
PCOMY
POER
POIY
POIVE
PF
PFACT
FFIT
PFRAC
PGALL
PLTOER
PMULT

POLA
FPOTEMN
FPOWER
FPROD
P=+(lc
PLUOT
FREDUCE
FSER
PSLUB
P+5YH

FTARY
[

RELRT
REMMOR
RF+5

344

Perform Logarithmic Differentiation 81, 301

Trim Zero Elements from the Left End of a Polynomial 302, 305, 308

Find the Maximum or Minimum within the Given Interval 98-100, 302

Midpoint Estimate of Integral (Open Interval Romberg) 303, 305

Find Numeric Multiple Integral 258, 260-261, 268-270, 303, 330

Repeat Given Function until Result is Same as Input 294, 304

Solve a System of Non-Linear Equations 108-111, 247, 249, 304

Numerically Segment a Definite Integral 160-161, 198, 210, 304

Find an Improper Integral—Open Interval 167-169, 180, 305

Perform Polynomial Addition 76, 305, 307, 309, 312, 317, 320, 328

Compute Approximation after Plotting Taylor Series 46-48, 306

Find Derivative of Function described Parametrically 83, 306

Compute a Path Integral 273-274, 306

Convert an Expression to a Polynomial 76, 307

Find the Derivative of a Polynomial 76-77, 307, 315-316

Perform Polynomial Division (Euclidean) 76, 308-309, 311-312, 329

Perform Division of a Reduced Polynomial 76, 308

Compute Partial Fractions from a Rational Fraction 76, 309-310

Factor a Polynomial 76, 80, 191, 308, 310-311, 316

Interpolate a Data Set with Single Polynomial 145, 297, 311

Compute Partial Fractions from a Symbolic Expression 191-193, 311-313

Purge All Instances of a Variable in Current Path 65, 69, 73, 292, 313, 331

Plot a Higher-Order Derivative Directly 62, 313

Perform Polynomial Multiplication 76, 307, 309-310, 312, 313-316, 320,

328-329

Find the Derivative of a Polar Function 84, 314

Find a Potential of a Vector Function 275, 314

Take a Natural Power of a Polynomial 76, 78, 307, 309, 312, 315-316, 329

Take the Derivative of the Product of a List of Polynomials 76, 78, 315

Convert the Simple Rational Coefficients in a Polynomial 310, 315

Take the Derivative of the Quotient of Two Polynomials 76, 79-80, 316

Reduce the Coefficients of a Polynomial 76, 316

Plot a Recursively-Defined Sequence 16, 316

Perform Polynomial Subtraction 76, 307, 316-317, 328

Convert a Polynomial to Symbolic Form 76-78, 297, 309, 311-312, 316-

317, 320

Plot a Taylor Series Approximation 45, 157, 306, 317

Convert a Decimal to a Simple Fraction 198, 259, 264-265, 268, 270, 315,

317-318

Solve a Related Rates Problem 115-120, 318-319

Convert a Quotient and Remainder to Symbolic Form 76, 319-320

Convert a Rational Fraction to a Symbolic Expression 76, 320
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RROOTS

+RPH

SCOF
SCROSS
SOET
SO0T

SEGINT
+5SER
SERIES
SERH
SERRE
SERK3

Sl
+51
SOLVPLT
SPLEVAL
SPLINE
SEEVH
S+RF
SEFINT
THFCH
TPLAM
TYLRa
YLRERRE

LEIMT
LIOER

VABS

'YOER

WOIE
YOI

“ IMOEF

e IMT

PO
ARCONY
YCOMP

Programs Index

Find the Real Roots of a Polynomial 310, 320

Convert an Algebraic Object to an RPN List 285, 302-303, 307, 309, 312,

320-321, 328, 335

Find a Symbolic Cofactor 321-322

Find the Cross Product of Two Symbolic Vectors

Find a Symbolic Determinant 290, 321-322

Compute the Dot Product of Two Symbolic Vectors

225,294, 321, 330

224,244, 273, 293,

306, 322, 330-331

Segment an Integral at a Given Value 160-161, 169, 322

Compute Sequence Terms from a Recursive Definition 12, 316, 322-323

Find an Approximation of a Series to a Given Precision 36-37, 39-40, 323

Perform the Root Test for Convergence on a Series 32-35, 49, 162, 323-324

Perform the Limit Comparison Test on a Series 32-35, 49-50, 162, 324

Perform the Integral Test on a Series 32-34, 49-50, 162-163, 324

Disassemble a Symbolic Array 304, 324-325

Assemble a Symbolic Array 325

Plot Relation In Combination with Solver 104, 108-111, 233, 289, 325-326

Evaluate the Cubic Spline at a Given Point 146, 297, 326

Compute Cubic Spline Coefficients for a Data Set 146, 297, 326-327

Compute the Volume of a Solid of Revolution 203-204, 206, 327-328

Convert Algebraic to a Polynomial Ratio 76, 79-80, 191, 311, 328-330

Find a Surface Integral 278-281, 330

Find the Tangent and Normal to a Function at a Point

Find a Plane Tangent to a Surface at a Point 243, 331

Compute a Taylor Series About x =a 44-45, 286, 306, 331

Estimate the Error in a Taylor Approximation 53, 331

Find an Improper Integral Over an Unbounded Interval

Find a Derivative Using Unit Objects 70, 332

Find the Absolute Value of a Symbolic Vector

102, 330-331

165-166, 180, 332

226, 244, 272, 289, 293, 306,

330, 332-333

82, 250, 252, 272-273, 289,

293-294, 306, 330, 332

Compute the Direction Angles of a Symbolic Vector 226, 333

Find the Divergence of a Vector Function 254-255, 333

Find an Indefinite Integral with Expanded Pattern Search

Find Partial Derivative of a Symbolic Vector

180, 182, 193,

275, 333-334

175, 178-180, 260,

333-334

Perform an Integration with an Expanded Pattern Search

Perform Alternative Version of YAX Command 335

Convert a Symbolic Expression Containing nth-Roots

Create a Composite Plot of Y-Slices 231, 335

287, 305, 335
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Subject Index

Absolute value 222

Accuracy factor for integration 124,-25,

155, 159, 164, 258, 260, 273

Addition with lists 223

Algebraic syntax 63

Amplitude 152

Angle mode 69, 107

Angles

between curves 103-111

of intersection 103-104

Angular velocity 254

AMIMATE command 230

Animation 230, 231

Antiderivative 123, 131-137, 170-193,

260, 275-276

Antidifferentiation 123, 170-172

Approximation

best linear 242

error 46, 52-53

Monte Carlo method 212

of definite integral 138-143

of functions 38-42

of limits 24-28

of series 31, 36-37

polynomial 38, 53, 155-157, 242

Arc length 195, 207-208, 271-272

as integration element 271, 277

Area 195

between two curves 195-198

bounded by polar functions 199-200

cross-sectional 201

of cylinder 205

parallelogram 277

probability as  212-215

signed 128

AREA command 128-129, 159, 196
Area function 130-131

Arithmetic with vectors 223-226

Arithmetic sequence 10

346

Arrays 222

Asymptotes 28, 167-169

Average 209-211

arithmetic 209

location 268

moving 211

weighted 210

Average value of a function 195, 209-

211, 254, 268-270

Axis of revolution  203-208

Axis of rotation 254

Center of mass 210, 268-270

Centroid 268-270

Chain rule for differentiation 57, 63-64,

71-72, 82, 84, 181

Chain rule for integration 181

Changing variable of integration 164-165,

181-184, 188

Chi-Square distribution 215

Circular sectors 199

Circulation of a fluid 272

Closed-form sequences 10-11, 14

Comparison test 31

Complex functions 234

Components 221, 235, 250

Composite view of Y-Slice plot 231

Compositions of functions 181

Conic plot type 73, 104, 111

CONNECT mode 14

Conservative vector function 276

Constant of integration 136, 171, 186

Constraints 94-97, 99, 249

Continuity 18, 58

integration and 129

interpolation and 146

single-sided 18

Contour curves 233
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Contour plot 227, 232-233

Convergence

interval 48-50, 162

of series 29-35, 40

testing for 31-35, 48,-49, 162-164, 166-

169

Convergent sequences 29

Convergent series 9

Costs 87, 94-97, 99, 100

Critical points 89-100, 204, 247-248

stationary 247-248

Cross product 224-225, 256

Cubic spline 142, 146, 154

Curl of a vector function 254-255, 276

Current directory path 12, 65, 68

Curvature 251

Curvefitting 147-154

Curves, length of 207-208

Cusp 158-160

Cylinder 202

Cylindrical coordinates 238, 262, 266

Cylindrical shell 205, 266

147, 149, 151-152

123-131, 137-143, 155-

Data model

Definite integral

169, 189, 271

Degree of a Taylor polynomial 43

Degrees of freedom 215

Density 210, 218, 264-268, 272, 278

DEPND variable 227-229, 235

der-. See User-defined derivatives

Derivative of a function 42-43, 55-84,

101, 123, 130-131, 170, 207, 227

Derivatives

and angle mode 69

and units 70

built-in  56-57

directional 244-246

extrema and 92, 93

graphical methods 58-62

higher order 52-53, 62, 250

Subject Index

Derivatives (cont.)

implicit  72-75, 232

marginal analysis and 88

multi-variable functions 240-248

multiple 240

notation 71, 74

numeric methods

of polynomials 76-80

parametric functions 82-84

partial 240, 244, 248, 252, 256

polar functions 82-84

symbolic (formal) methods

total 241, 252-254

user-defined 71, 74

vector functions 250-256

with respect to curved paths 244

Determinant 248, 253, 262, 266

Differential equations 172

Differentiation 55-84

complete 57, 63

implicit 72-75, 104, 106, 112-114

logarithmic 79, 81

step-wise 57, 63-64, 67, 70

Direction of a vector 222, 226

Direction angles of a vector 226

Directional derivatives 244-246

Directory 283

Discontinuities

Disks 202

Display formats 124

Display range 234, 236

Distance 195, 216-217

Divergence of a vector function 254-255

Divergent series 9, 31-32, 39

Domain

non-rectangular 237, 280

rectangular 238-239

Dot product 224, 242, 244

Double integration 257-263, 278-279

63-67

63, 68-69

28, 129, 137
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Equation of a plane 256

Equations, solving 106

EquationWriter 125, 126

Error measurement 142-143, 147, 151-154

Error bars 147, 150, 153

Error of approximation 46, 52-53

Euler algorithm 172

Exponential form 189

Extremum 90, 91

Eyepoint 228-229, 234, 236

F' command 61, 92, 131

F-distribution 215

Factor

implied 179

linear 190

quadratic 190

Factorial 37

Factoring polynomials 76, 80, 190, 191

Fibonacci sequence 13-14

Fitting curves to data 147-154

Flag -3 63-68

Fluid pressure 195, 216, 219

Flux of a fluid 278, 280

Force 195, 216-217, 219, 272-273

Functions

analytical 56, 71

approximating 38-41

area 130-131

complex 234

composites of 181

defining sequences with 10

incompressible 254

irrotational 254

limits of 17-18

multi-variable 220-281

parametric 82-84, 234

parametrized 84

periodic 141, 199

polar 82-84, 199-200

probability density 213-215
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Functions (cont.)

scalar 221, 227-233, 235, 240-246,

257-271, 275, 277

user-defined 71-72, 74

vector 82,221, 234-239, 250-256, 271-

281

visualizing 221, 227, 228-229, 230-

231, 232-233, 234-239

Fundamental vector product 256, 277-278

Gaussian probability density function 214

Geometric sequence 10

Golden ratio 15

Goodness-of-fit 147

Gradients 241-242, 244, 246-249, 252-

254, 275-276

Harmonic sequence 10

IERR variable 124
Implicit differentiation 72-75, 104, 106,

112-114, 232

Improper integral 31, 137, 162-169

Incompressible vector functions 254

Indefinite integral 123, 132-137, 170-193

INDEP variable 227-228, 235

Indexofaterm 9

Infinite sum 9, 29, 36-37

Infinity character 165

Inflection points 89, 93

Initial condition 171, 172

Inner product 224

Integral

definite 123-131, 137-143, 155-169,

189, 194-219, 271

improper 31, 137, 162-169

indefinite 123, 132-137, 170-193

iterated form 257-258

Integraltest of convergence 31-34, 49-50
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Integrand 124, 131, 135-137, 155, 181-193

integrating by parts 137, 181, 185-189

partial fractions in 137, 181, 190-193

segmenting 137, 159-161, 168-169,

198, 203, 210, 261

substituting for 163-165, 181-184, 188,

281

Integrate input form 125, 127

Integration

changing the variable of integration

164-165, 181-184, 188

constants and 136

continuity and 129, 137, 168

double 257-263, 278-279

graphical methods 128-131, 137, 170-

172

multi-variable functions 257-281

multiple 257-281

numerical methods 124-127, 138-

141, 155-169, 258, 278-279

of dataset 137, 142-143

pattern-matching 132-137, 173, 175-

180, 192, 275

polar functions 199-200

programmed enhancements 137-193

segmenting the integrand 137, 159-

161, 168-169, 198, 203, 210, 261

single-variable 122

symbolic methods 132-137, 155, 160,

163, 170, 173-193, 258, 260, 263, 267,

278-281

triple 264-270

vector functions 271-281

vertical orientation 198, 206

Integration by parts 137, 181, 185-189

Interpolation 142

cubic spline 142, 146, 154

linear piecewise 142-144, 153

single polynomial 142, 145, 150

Intersection of two curves 103-111

Intersection point 103-111, 197, 203-204,

206

Subject Index

Interval of convergence 40-41, 48-50, 155,

157

Interval of integration

along a curved path 271-274

discontinuities in 137, 158, 168

intersections within 195, 197

open 137, 158, 167-169

unbounded 137, 158, 162-166

with respect to arc length 207

Interval of validity 40-41, 43-48, 157

IPATS variable 175-180, 182, 193, 260,

275

Irrotational vector functions 254

ISECT command 104-105, 155-156, 197,

204, 206

Iterated form of multiple integral 257-258

Jacobian matrix 252-254

Jacobian scale factor 253, 262, 266

Lagrange multipliers 249

Laplacian 254-255

Least-squares estimate 143, 147-154

Level curves 227, 233

Limit and infinite sums 9, 29-30

Limit Comparison test 31-35, 50, 162

Limits 17-18, 24

and continuity 18

graphical methods 19-23

numerical methods 24-28, 167

of functions 17-18

of integration 123-124, 167, 174, 199,

257-258, 261

of machine precision 20-21, 24-25, 30,

49, 108, 124, 189

one-sided 18

single-sided 24, 27

Line integral 271-274, 276-277

Line segment 222

Linearity 57-58
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List addition 223

List processing 110

Local maximum 248

Local minimum 248

Logarithmic differentiation 79, 81

Maclaurin series 42

Marginal analysis 87-88, 89

Mass 210, 264, 265, 266, 272, 278

LMATCH command 73, 74

Matrices

addition of 223

and vectors 222

determinants of 248, 253

multiplication 224

subtraction 223

traces of 254

Maxima and minima 89-94, 96, 98-100,

140

Mean 214

Mean Value Theorem 209

Measurement error 142-143, 147, 151-154

Model for data set 147, 149, 151-152

Monte Carlo estimation 212

Moving average 211

MOIST command 215

Normal curve 214

Normal to a curve

Nth Term test 31

Numeric Results Flag (-3) 63-68

MAE[ command 61

101-102, 256

Operations on vectors 222

Optimization 89, 94-100, 249

Orientation of plot axes 235

Oscillating behavior 23-24, 28, 59-60

350

Parameters of a vector 226

Parametric functions 234

derivatives of 82-84

Parametric plot type 234

Parametric Surface plot type 234-239

Parametrization 84, 235-239, 245, 256,

271,277

Parametrizations 244

Parametrized surfaces 256, 277-280

Partial derivatives 240, 244, 248, 252, 256

Partial derivatives (2nd order) test 248

Partial fraction expansion 76

Partial fractions 137, 181, 190-193

Partial sum 9, 29

Partition size 139

Path, current 12, 65, 68, 283

Path integrals 271-274, 276-277

Pattern list (IPATS)  175-180, 182, 193,
260, 275

Pattern-matching 132-136, 173, 175-180,

192, 275

adding patterns 137, 175-180, 193

Period 152

Periodic functions 199

Perpendicular vectors 225

Perspective projection 227-228, 234

Phase shift 152

Placeholder names

Plot functions

adding derivative plot 61

rotating expressions within E[J list 61

viewing current expression 61

Plot resolution 108-109, 130

Plotting range 234, 236

71-72, 74

Plotting sequences 14-23

Points

critical 89-93, 94-100, 247-248

inflection 89, 93

intersection 103-111, 197, 203-206

of tangency 102

saddle 248

stationary critical 247-248
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Polar angle 84

Polar coordinates

267, 280

Polar functions

derivatives of 82-84

integration with  199-200, 262-263,

266-267, 280

Polynomial approximations

Polynomials 38, 76

arithmetic with 76

coefficients of 38, 76

converting from rational fraction 76, 191

converting from symbolic expression 76

converting to rational fraction 76

converting to symbolic expression 76, 78

degree of 38, 190

derivatives of 76-80

Euclidean division of 76

factoring 76, 80, 190-191

integrating 132

interpolating 145

Taylor 42-51, 111, 155-157

vector form 76-77

Potentials 275-276

Power rule for differentiation 57

Powerseries  38-52

Precision, limits on

108, 124, 189

Pressure 195, 219

Probability 195, 212-215

discrete vs. continuous 212

upper-tail 214

Probability density function 213-215

Product rule 57, 76, 78, 185

Profit 87-89, 94, 99

Programs

keying in

using 283

where to store

Projection 227

Pseudo-Contour plot type 227, 232-233

Purging variables 65

84,237, 262-263, 266-

38, 53

20-21, 24-25, 30, 49,

12, 283-284

12, 283-284

Subject Index

Pythagorean theorem 114, 120, 207

QUAD command 74

Quotient rule 57, 76, 79

Radius of convergence 48

Radius of curvature 251

Rate of return on investment

Ratio test of convergence 31

Rational fractions 76, 80

converting from symbolic expression 76

converting to polynomials 191

converting to symbolic expression 76

partial frac. expansion 76, 181, 190-193

Rectangular coordinates 84

Recursive sequences 10, 12-13, 16

Reduction formulas 191

99-100

Regression 142-143

Related rates of change 112-120

Relations 73-74, 111

Relativity 119

Resolution of a plot  108-109, 130

Revenue 87, 99-100

Revolution

axis of 202-208

solids of 202, 205-206

surface of 207-208

Riemann sums 137-141

Romberg’s method 140

Root of a function 92-93

Root test  31-35, 48, 50, 162

Round-off error 20-21, 24-25, 164

Rules of differentiation 57, 63

Runge-Kutta-Fehlberg method 172

Saddle point 248

Sampling grid 227-228, 230, 232, 234

Scalar multiplication 224

Scalars 221
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Segment of a line 222

Segmentation of an integrand 137, 159-

161, 168-169, 198, 203, 261

SEL) command 11, 13

Sequence

arithmetic 10

Fibonacci 13, 14

geometric 10

harmonic 10

Sequences 9-53, 10-13, 29, 100

closed-form 10-11, 14

defining functions of 10

plotting 14-23

recursive 10, 12, 13, 16

Series 9-53

approximating 36-37

as approximations of functions

convergent 29-31, 40

harmonic 31

power 38-52

Taylor 42-53

Shell 205

Simpson’s rule

Sine curve 152

Slope 42, 55, 63, 82, 84, 87-88, 92,

102-104, 106, 170

38-41

137, 139, 142, 146

average 55

instantaneous 55, 73, 101

zero 89-90

Slopefield plot type 170-172, 227, 232

Snedecor’s F-distribution 215

Solids of revolution 202-206

SOLVEapplication 130

Solving equations 106, 113-114

Solving systems of non-linear equations

108, 247, 249

Speed of light 119

Spherical coordinate system 238-239,

266-267

Spring constant

Stack syntax 63

Standard deviation

216, 218

148, 150-153, 214
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Student’s t-distribution 215

Substitution, method of 137, 163-165, 181-

184, 188, 281

Sums, infinite 9

Surface area 207-208, 278

as integration element 277

Surface in space 227

parametrized 235, 256, 277-281

Surface integral 277-281

Surface of revolution 207-208

Tangent plane 242-243, 247, 256

Tangent to a curve 101-104, 106, 242, 251

Tangent to a surface 242-243, 247, 256, 277

TAHML command 101

Taylor approximation 42-51, 242

Taylor series 42-51, 111

Taylor’s Theorem 52

TAYLR command 43, 44, 155
Temperature 210, 246, 264

Term of sequence 9

Tick-marks 15, 41

Trace of a matrix 254

Triple integration 264-270

Triple scalar product 253

Uncertainty of integration 124

Unit vector 244

Units

and derivatives 70, 112, 113-115,117-120

dimensionally consistent 216-217

integration and 216-218

Units in computations 216

Upper-tail probabilities 214

User-defined derivatives 71, 74

User-defined functions 71, 72, 74, 175

UTPC command 215

UTPF command 215

UTPM command 214, 215
UTPT command 215
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Variable

DEPHD 227, 228, 229, 235

[EER 124
IMDEP 227, 228, 235

IPATS  175-180, 182, 193, 260, 275
random 214

Variables

dependent 72, 82, 94, 104

independent 72, 82, 94, 104, 112

name conflicts 283

of differentiation 68, 72, 75, 77, 112

of integration 123-124, 132, 135, 164-

165,177, 181-184

purging 65

Variance 215

Vector

direction of 222

functions 82

magnitude of 222

unit 244

zero 247, 276

Vector derivatives

curl 254-255

divergence 254-255

Jacobian 252-254

laplacian 254-255

Vector operations 222

Vectors 221

arithmetic 223-281

basis 222

components of 221, 222, 226

direction angles 226

perpendicular 225

polynomials as  76-77

products of 224, 242

symbolic 222, 234-235, 241

Velocity 195, 216-217, 278

Vertical shift 152

View volume 228-229, 234

Visualizing functions 221, 227-239

Volume 94-96, 195, 201-206, 219,

264-265

Washers 202

Weight (as a force) 216, 218

Weight-density 216, 219

Weighted average 210

Wireframe plot type 227-229

Work 195, 216-218, 272-273

Y-Slice plot type 227, 230-231

Zero vector 247, 276

Zooming

Box-Zoom 19

Horizontal zoom-in (HZ H) 21

looking for local linearity 58-60

zoom factor @FACT) 21
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If you liked this book, there are others that you will certainly enjoy also:

An Easy Course in Using and Programming the HP 48G/GX

Here is an Easy Course in true Grapevine style: Examples,illustrations, and clear, simple

explanations give you arealfeel for the machine and how its many features work together. First

you get lessons on using the Stack, the keyboard, and on how to build, combine and store the

many kinds of data objects. Then you learn about programming—Ilooping, branching, testing,

etc.—and you learn how to customize your directories and menus for convenient “automated”

use. And the final chapter shows example programs—all documented with comments and tips.

Algebra and Pre-Calculus

on the HP 48G/GX

Get ready for math class! Plot and solve with

this great collection of lessons, examples and

programs from an experienced math teacher:

Functions; trigonometry (identities, triangle

solutions, other applications); polar and para-

metric equations, complex numbers; polyno-

mials (graphs and roots); linear systems (ma-

trix math, simultaneous equations, determi-

nants, inequalities, linear programming); ana-

lytic geometry (lines, planes, translations,

Graphics on the HP 48G/GX

Here’s a must-have ifyou want to use the full

potential of that big display. Written by HP

engineer Ray Depew, this book shows you

how to build graphics objects (“grobs”) and

use them to customize displays with dia-

grams, pictures, 3D plots—even animation.

First the book offers a great in-depth review

of the built-in graphics tools. Then you learn

how to build your own grobs and use them in

programs—with very impressive results!

rotations, reflections); conic sections (circles

parabolas, hyperbolas, ellipses).

The HP 48G/GX Pocket Guide

You get some 90 pages ofquick-reference tables, diagrams, and handy examples—all in a con-

venientlittle booklet thatfits in the case withyourHP48G/GX! There is acomplete command

reference, along with system flags, menus, application summaries, troubleshooting, and com-

mon Q’s & A’s. Nothing is more succinct and helpful than this little memory-jogger!

For more details on these books or any of ourtitles, check with your local book-

seller or calculator/computer dealer. Or,for a full Grapevine catalog, write, call

or fax:

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Phone: 1-800-338-4331 or 503-754-0583

Fax: 503-754-6508
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0-931011-28-0 Lotus Be Brief $9.95

0-931011-29-9 A Little DOS Will Do You 9.95

0-931011-32-9 Concise and WordPerfect 9.95

0-931011-37-X An Easy Course in Using WordPerfect 19.95

0-931011-38-8 An Easy Course in Using LOTUS 1-2-3 19.95

0-931011-40-X An Easy Course in Using DOS 19.95

Books forHewlett-Packard Scientific Calculators L

0-931011-18-3 An Easy Course in Using the HP-28S 9.95

0-931011-25-6 HP-28S Software Power Tools: Electrical Circuits 9.95

0-931011-26-4 An Easy Course in Using the HP-42S 19.95

0-931011-27-2 HP-28S Software Power Tools: Utilities 9.95

0-931011-33-7 HP 48S/SX Graphics 19.95

0-931011-XX-0| HP 48S/SX Machine Language 19.95
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Reader Comments

We here at Grapevine like to hear feedback about our books.

It helps us produce books tailored to your needs. If you have

any specific comments or advice for our authors after reading

this book, we’d appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State:

How long have you had your calculator?

 

 

Please send Grapevine catalogs to these persons:

Name

Address

City State Zip
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Address
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Calculus

on the HP 48G/GX

Grab your calculator and this book and get ready now for your

calculus class! You'll get lots of lessons, examples and advice on

graphingand problem-solvingthroughout a three-term sequence

of college-level calculus.

The book begins with a chapter on limits, sums and series,

including convergence tests. The next two chapters cover single-

variable differentiation and derivatives (including formal,

step-wise, and implicit methods), and their many applications

in real-world problems, such as related rates and optimization .

Chapter4isall about single-variable integration—numeric

and symbolic—including integration by parts, u-substitution

and improper integrals. Chapter 5 illustrates the use of inte-

gration in real-world problems, such as averages, surfaces

and volumes.

Finally there’s a chapter on multi-variate and vector cal-

culus,including partial derivatives, gradients, path and surface

integrals, and surfaces of revolution.

You get all this from an experienced classroom math teacher,

plus a huge collection ofprograms to automate much tedious key-

stroking. Don’t miss this valuable aid for your calculus courses!

ISBN 0-9310L1-u4y-2

51995

Grapevine Publications, Inc.
626 N.W. 4th St. P.O. Box 2449

s. 9 17009371M011441Coruallis, OR 97339 U.S.A.
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