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What Is This Book?

This book is to help you use the HP 48G/GX to improve your understanding of
the mathematical topics usually found in a course in first-year calculus. Calculus
is the mathematics of change—such as motion, growth, or acceleration. It gener-
alizes methods of algebra and geometry to allow useful computations of continu-
ously changing systems without assumptions about ideal shapes, static functions
or average values. Specifically, calculus has two complementary uses:

* [t provides a means to “freeze” the moment—to analyze the rate a system
is changing at a particular instant in time.

» It provides a means to extrapolate from knowledge about how a system is
changing from moment to moment to how will have changed overall.

The first of these contributions is the domain of differential calculus; the second
is that of integral calculus. These two domains are linked by the ability to math-
ematically cope with infinity—infinitely tiny intervals of time and infinitely long
sums—using the concept of a limit.

Calculus on the HP 48G/GX is organized much like a standard text. Chapters are
divided into topics; topics are divided into examples. The examples demonstrate
how to use the HP 48 to solve problems in a typical Calculus course—and they
sometimes use programs (listed in the Appendix) to allow easy repetition.

However, this book isn’t meant to replace your textbook. It does not try to rigor-
ously justify the techniques and concepts used in problem-solving. Also, there
may be topics treated in greater depth in your textbook than in this book, or vice
versa. (Indeed, you may also wish to read Grapevine’s Aigebra and Pre-Calculus
on the HP 48G/GX to get additional tools and instruction on related topics.)

Before using this book, you should be able to do these things on the HP 48G/GX:
* Perform basic arithmetic and navigate the various menus;

* Enter, name, and use variables, lists, algebraic expressions, and programs.

If these concepts are still “fuzzy” for you, stop here and work through either the
Quick Start Guide (which came with the calculator) or the first three chapters of
Grapevine’s Easy Course book on the HP 48G/GX.
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Introduction to Sequences and Series

A sequence is an infinitely long, ordered list of numbers. Each number is a term
of the sequence, and its position within the list is its index. Usually a sequence
has a defining function for which the index is the input and the term the output.

Associated with every sequence is a series—a single value—the sum of the terms
of the sequence. Computing a series can be tricky because is an infinite sum—
the sum of an infinite number of terms.

In a sense, therefore, a series is never computed in its entirety; after computing
any partial sumthere are always additional terms to be added. So, mathematically
speaking, a series is the limit of the partial sums of the terms of a sequence. That
is why a collective term, ‘“‘series,” is used for a singular value—a sum: a series
implies the sequence (the collection) of partial sums of which it is the limit.

Series come in two flavors. Those with finite value are called convergent; those
with infinite value are known as divergent. If the terms of the sequence approach
zero as their indices increase, then it is possible that the series is convergent—a
finite number as the limit of an infinite sum. However, if the terms of a sequence
don’t approach zero as their indices increase, then the series has an infinite value
—it is divergent.

One of the important uses of convergent series is to approximate measurements
and values that otherwise are difficult (even impossible) to compute otherwise.

You’ll see each of these ideas developed in greater detail in this chapter, along
with demonstrations on the relevant uses of the HP 48.

Introduction to Sequences and Series 9



Sequences

Although any list of numbers might be a sequence, the important sequences are
those lists of numbers that have defining rules to generate each term. There are
two kinds of defining rules that create sequences in two different ways:

Closed-form sequences are formed by defining rules that are functions of the in-
dex: you input the index number and compute the value of the term. For exam-
ple, the sequence { 0, 1, 3,7, 15, 24, 35, 48, ... } has a closed-form defining rule:

a, = n* —1, where a_ is the term and 7 is its index.

Closed-form sequences are generally represented as { f (n)}fpj,

where f(n) is the defining function, » is the index, j is the starting index value, and
k is the ending index value. There are several important closed-form sequences:

* Theterms of the harmonic sequence are reciprocals of the positive integers:

* An arithmetic sequence is a closed-form sequence where the difference of
any two consecutive terms is constant.

* A geometric sequence is a closed-form sequence where the ratio of any two
consecutive terms is constant.

Recursive sequences are formed by defining rules that are functions of the prev-
ious term. These rules define the first term of the sequence and use a recursion
formula to compute the other terms of the sequence: input one or more previous
terms and compute the value of the next term. Recursive sequences require that
you know previous terms before you can compute a new term.

For example, the sequence { 0, 3,9,21, 45,93, 189, ... } has arecursive definition:

a =0
a,=2a, +3

10 1. SERIES, SEQUENCES, AND LIMITS



On the HP 48, sequences are most naturally represented by lists of terms. But the
machine is finite, so any such list will be, also. To represent infinite, closed-form
sequences, therefore, you must use the symbolic capabilities of the HP 48.

Example:

Create the closed-form sequence: {2" - 1}:;1 on the HP 48.

1. Enterthe expressioninsymbolic form: (' ] 2)*)@ &) N)(=)(1JENTER).

Enter the index variable (7, in this case): (' JaJ¢q]N](ENTER).

3. Combine these two objects into a list: LIZT [@]*LI5T

Example:

Result: © '&*r~1' n 2

Compute the 15th term of the sequence in the previous example.

1. Make acopy of the sequence, then disassemble it: A ().

Example:

Enter the desired index value and store it in the index variable:
(ENTER)(SWAP)(STO).

Evaluate the closed-form function: [EVAL. Result: 32767

Find the first seven terms of the sequence in the previous example.

For closed-end sequences, you can use the built-in SE[! command to
generate a finite list of terms.

With the sequence already on the stack from the previous example
(or after re-entering it, if necessary), first disassemble the list: ((«),

if necessary) [THE(«)

Enter the starting and ending indexes: (1JENTER)(7)(ENTER).

3. Enter the step interval. In this case you want each term without skip-

Sequences

ping any, so the step interval is one: (1)(ENTER).
Generate the list by using the SE[! command: [ JTHl(NxT)EEIEH.
Result: T 1 3 7 15 31 62 1E7 1
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Using a recursive sequence on the HP 48 is more involved. The program +SE[]
(see page 322) takes the defining function for the sequence from level 3, a list of
values of one or more initial terms from level 2, and an index number, n, from level
1. Ifnis nonnegative, *=E[! returns the term of the sequence with the givenindex.
If n is negative, it will return a list of values of all terms from a,through a . +SE[!
assumes the variablesnamed 'al ', 'aZ', 'a3', etc., represent previous terms:

Poqt . . ,
al' is the earliest previous term; ' a2 ' is the next previous term, etc.

The following examples assume that the program *5El is stored in the current
directory path. (This assumption goes for all programs in this book—that they
already correctly keyed in and stored in the current directory path prior to use.)

. . a =0
Example: Compute the 27th term in the sequence a =2a_ +3

1. Enter the defining rule, using the 'al', 'af', ... convention as
described above: Y ANDEETER
2. Enter the values of the initial terms (there’s only one in this case) in

the form of a list: (&5){3)(0)(ENTER).

3. Enter the index for the term you wish to compute—as a positive
number because you only want the term, not a list: ENTER).

4. Execute *SEL!: (o))~ S)EJQ)ENTER) or m (then or(&)
as needed) EEII0l. Result: FH13FE5ET.

Example: Find the first eight terms of the sequence described above.
1. Enter the defining rule: (aJq) AL 1])(+)(3])(ENTER).
2. Enter the values of the initial terms as a list: (€9J{ JJ(0](ENTER).

3. Enter the number of terms you wish to compute—as a negative
number because you want the full list of terms: (ENTER).

4. Execute*5ELl: (@)a]=)=)S)E]Q)ENTER)or(VAR)(NXT orm)
FEIdrl. Result: + H 2 9 Z1 45 92 1'"—' a8l 2

As you can tell from the speed of computation, recursive rules are less efficient
than closed-form defining rules for computing terms.
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The Fibonacci sequence appears often in nature and has fascinating properties.
Each term is the sum of the preceding two—obvious from its recursive form but
not from its closed-end form. However, the closed form offers easier calculating.

n _ n a = 1
Closed: a, = —1‘{(1 + ﬁ) - (1 ﬁ) } Recursive: a, =1
V5 2 2 a,=a, +a,,

n

Example: Create the closed-form of the sequence and store it as ' FIEM ' .

1. Enter the closed-form function of the Fibonacci: (&G ]EQUATION)(1)(<)
EHEO0EOEONBREE00A00FEEEN0
SEON0EEE00B00 N0 MENE!

2. Enter the index variable: (' ] oJ&q]N)(ENTER).

3. Now combine these into a list and name it F IBN: LIZT
ed 4R (' @] F] 1 [B]NJ(ENTER]STO).

Example: ComputeF ,, the 18th term, using the closed-form of the sequence.
1. Enter the Fibonacci sequence, stored in F IEM: | FIEM |

2. Disassemble the sequence list; enter the index value:
1AE3 (@) (1)8)ENTER).

3. Compute the value of the term: (SWAP)(STO)(EVAL). Result: =54

Example: Create a list of the terms of the Fibonacci sequence from F, to F, .
1. Enter the Fibonacci sequence, stored in F IBN: | FIEM |
2. Disassemble the sequence list: (PRG)IRELEITNES(«).
3. Enterthe starting and ending index values: (2] 3)[ENTER)(3 ] 1)([ENTER).
4
5

. Enter the step interval value: (1)(ENTER).

. Execute the SE[] command and then eliminate any round-off errors:
PROC (4] ZE2 [@ERESEME REAL [T KNI [ENED
TE.
Result: { ZBE3Y 46368 /oBZD 121393 196418
217811 D14223 832848 1346269 1

Sequences 18



Plotting Sequences

One very good way to gain some insight into a sequence is to plot it.

Plotting a sequence with a closed-form definition is very similar to plotting its
defining function. In fact, the only difference is that the sequence consists of dis-
crete points, whereas the function is continuous. Thus, when plotting sequences,
make sure that COMMELT mode (in the PLOT OPTIOME: screen) is off (i.e. un-

checked).

Example:

14

Plot the sequence formed as the ratio of two consecutive terms of the
Fibonacci sequence: F__ /F . This works out as:

(14_\/5 n+1_(1_\/§jn+l
_ 2 2

o (1%)“_(145’)"
2 2

. Open the PLOT application and make sure that the TYPE: field is set

to Funct ion:
Next, highlight the Ef2: field and enter the defining function: (¥)(&)

[EQUATION) (4] )] ) (H X)) 2] Y (efa N () (1)
PHEOWHEDEEERREPISNHEDERE]
ONEGEE00800MAEOENAEE NS E
B800B00FEEE0ELED!

Change the IMDEP variable to the index variable for the sequence,

M: (WeJa N)ENTER).

Change H-YIEk to—1 SH. The maximum horizontal coordinate
is chosen to match the maximum index value you want to plot; 50
seems a good place to start for this sequence. The -1 minimum co-
ordinate allows you to see the y-axis.

Change¥-VIEk to—. 7 Z. You can estimate the required vertical
range by evaluating the defining function at the beginning and end-
ing coordinates (n = 1 and n = 50 in this case). The -.5 minimum
coordinate allows you to see the x-axis.

1. SERIES, SEQUENCES, AND LIMITS



6. Move to the PLOT OPTIOM= screen and set the plotting range to
match the sequence beginning and ending points (-1 and 50). Then
make sure that the COMMELCT mode is unchecked, and set the = TEP
interval to 1: [HE 5 DF2) ENTER) ) O) ENTER () (use PRI,
if necessary), then(v)(1)(ENTER).

7. Optional. Change the tick-marks to show every 10 units along the
horizontal axis and every 1 unit along the vertical axis: (v)(«)(1)0)
(ENTER](1)(ENTER) (then [S¥:1 to uncheck PIXELZ, if necessary).

8. Draw the plot: Il [T EFITHEL

+
200k ¢ JTERCE] FON | EDIT [UAMEL

The plot shows clearly that the sequence is nearly constant as the
value of the index variable increases. Indeed, the value of terms in
the sequence approaches the golden ratio as you increase the index:

1+4/5

=1.61803398875

Plotting Sequences 15



Plotting a recursively-defined sequence is trickier, because it involves plotting a
program. The program FSEL! (see page 316), however, simplifies the task. It
takes a symbolic object representing the recursive defining function from level 4,
a list of the required initial values for the sequence from level 3, the LO: value of
the plotting range from level 2, and the HI: value of the plotting range from level
1. (Note that the objects taken from levels 3 and 4 by F'SEL] are the same as those
used by *5EL! on levels 3 and 2—recall page 12).

Example: Plot the first 25 terms of the following recursive sequence:

a =0
a,=1
a, =2
a +a,+a
g =TT

n

a, +a,

1. First, return to the stack and enter the symbolic form of the recursive

defining function: (CANCEL)(CANCEL)(&4)(EQUATION)(a)(aJ )AL 1)
(Ja A2 B eIa]A3 ) (@) (A)(2)(H)(@Ja]Al3)[ENTER).

2. Enter the list of initial values: (&){3)(0)(SPC)(1)(SPC)(2)(ENTER).
3. Enter the plotting range: (1)(ENTER)(2)5)(ENTER).

4. Plot the sequence using FSE[: (@)o]P SIEQ) or (then
or (qJPREV] as needed) [ad3ey.

[z00M] ek v [TRACE] FCH | EDIT
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Limits

When looking at a sequence, you will often need to know ask: Are its terms get-
ting ever larger (or smaller) as the index increases, or are they getting ever closer
to some fixed value, or limit? If such a limit exists for a sequence, then it is useful
to help compute the “ultimate” value of a sequence.

But sequences are essentially functions of the index variable, and it is an easy
jump to see that the concept of the limit can be applied to general functions as well
—in the absence of any context of a sequence. Indeed, limits are fundamental to
the consideration of one of the most important geometric concepts in calculus: the
instant—the infinitely precise point.

The idea that a limit is a prediction based upon a pattern of behavior is crucial

when looking at the limit of a function. Consider the function plot below:

y
4R

a ﬁ) ¢

' P x
V_.

If you were to predict the value of the function at x = a based upon the x-values
more negative than a (i.e. approaching a from the left), you would conclude that
the value would be V. If you were to predict the value of the function at x =a based
upon x-values more positive than a (i.e. approaching a from the right), you would
draw the same conclusion. When both predictions—from the left and the right—
agree, then you can say that “the limit of the function as x approaches ais V.” Thus,
in the case of x = a, where the function is defined—you may simply substitute a
into the function and compute that Vis the value, without referring to limits at all.

But what about at points where the function is undefined? Well, if you were to
predict the value of the function at x = ¢, approaching both from the left and the
right, you would still conclude in both cases that the value of the function at x =
cis R. Thus R is the limit of the function as x approaches c. However, if you were
to predict the value of the function at x = b, approaching from the left, you’d say
the value is S. If you were to predict the value from the right you’d say 7. In this
case, because the two predictions don’t agree, the function has no limit at x = b.
This is true even though the function has the value T at x = b.

Limits 17



In mathematical notation, the limit of a function, f(x), at a given point, a, is:
lim f(x)

To express the limit of the function, approached from only one side (left or right),

a plus (right) or minus (left) is added to the notation:

lim f(x) lim f(x)

Continuity and Limits

A function, such as the one just illustrated, is continuous at a point when the value
of the function at that point equals the value of the limit at that point. That is, the
following three requirements must be met for a function f(x) to be continuous at
a point a:

1. The limit of f{x) as x approaches a must exist.

2. f(a) must be defined.

3. The limit at a must equal f(a).

Thus the function illustrated in the previous plot is:
* continuous at a, because the limit at a (V) equals its value at a (V).
* discontinuous at b, because although defined at b (7), it has no limit at b.

* discontinuous at c, because although it has a limit at ¢ (R), it is undefined
at c. Note that this kind of discontinuity can be removed if you can add to
the function definition a value for c.

Just as limits can be separated into single-sided forms (“limit from the left” or
“limit from the right”), so can continuity at a point. For example, in the plotted
function shown earlier, the function is continuous at b from the right because the
limit from the right (7) does match the value of the function at b. It is still dis-
continuous from the left, however.
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Finding Limits Graphically

Of course, to use the HP 48 to find limits visually (graphically), you use the
zooming features to magnify the area around the limit point of a function.

sin x

Example: Find the following limit graphically: lin(}
x> x

1. Open the PLOT application, highlight the T¥PE: field and set it to
Furzt 10m. Then reset the plot parameters to their defaults:

(CANCEL)(>]PLOT) (4] (o] F) CEL[Y) ENTER).

2. AtER:, enter the function: ()" JSIN)(a ) X[»)(=)(@J& ) X)([ENTER).
3. Change the IMDEP variable to * (lower-case): (¢ J&q)XJENTER).

4. In radians mode (&§)RAD), if needed), plot: [T [TTTHH.

-

[200H ot [TRACE] FCH | EDIT JOAMEL

5. Use Box-Zoom to draw a small box around the part of the function
near x =0: Move the cursor (via(a)and («)) to a point just above and
left of the point where the function appears to cross the y-axis. Press

BT, then draw the box via(¥)and (), and press FIITEI.
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6. The region around the point x = 0 appears to be flat at high magni-

fication. Find the value of the function at this point with the TRACE
feature: (»)IlTtAd CEE]. Result: #: L.GYE-3  ': L.00ED

The y-coordinate is 1.00 for the line shown, so the limit for the func-
tion when x approaches zero appears to be 1.

Optional. Note what the display says if you place the cursor directly
on x =0: Press (<. Result: #: 1 I

The function is undefined at x = 0 (although you can’t see the “hole”
in the plot, because it coincides with the axis).

Finding limits graphically in this way works well for many functions. But there
is one important caveat: Beware the limitations of the machine’s precision!
Twelve digits is a lot of precision, but it is nowhere near infinity. Some functions
are more subject to rounding error irregularities around the 12th digit than are
others—irregularities that make for peculiar plots during zooming.

Example:
1.
2.
3
20

1
Find the following limit graphically: ling(l +x)x.
Returnto thePLOT screen and rest the plot parameters:

(W(ENTER).

Highlight the Ei: field and enter the function: (a)(" J&JO(1)H
SIX OISO D) X)ENTER).

. Enter the IMDER variable, be sure the COMMELT option is checked,

and plot: OPT% (4 ' CHE G ERAZE| DRAK |

‘-'H-‘__—‘—_

[Z00M] ek v [TRACE] FCN | EDIT [CAMIL |
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4. Tokeep track of the amount of zooming this time, use the ZFACTor:

Press it w4 188( 1) 0] 0) 0) 0] 0] 0)([ENTER)[ENTER)to change the

horizontal zoom factor to 10°, so that for each horizontal zoom-in
(HZIN), the horizontal scale will shrink by a factor of 1,000,000.

5. Now zoom-in horizontally by a factor of 1,000,000: (NxT) [IFIZH.

Z00H [ ok v TRRCE] FCH ] EDIT JORMEL

6. The graph appears to be constant except nearx=0. Use TRACE and

(X,Y) todetermine the value of the constant value: (»]» [»]» il 183
Rl Result: Wt 0oy Y: 2.7182812848

The apparent value of the limit here seems to be very close to e, the
natural logarithm base, whose value, to 12 digits, is 2.71828182846.

7. However, suppose that you zoom in much closer to zero. Repeat the

horizontal zoom-in: (NxT) BT TRl (~xT) EHLE.
I+

1
[Z00r ¢ JTRRCE] FCN [ EDIT [UANEL

What you see now is round-off error. Because you have zoomed by
a total factor of 102, the magnitude of the x’s being plotted is near
the maximum 12-digit precision of the HP48. The sawtooth appear-
ance reflects the rounding effect, not the behavior of the function.
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8. Notice also that as the plot crosses the y-axis, it seems constant, a
sign that it may be productive to zoom one more time. Perform one

more horizontal zoom-in: [E1g} | HZIM |

(0 [TERCE] FCH [ EDIT

9. Determine its value using the TRACE feature: (»)Li:;183
Result: n: 1.E-lb Tl

If you were to happen upon this constant graph, you would conclude
that the limit of the function is 1.

So which is the correct limit of this function: e or 1? Trust the limit computed
without the effects of round-off error: e. You’ll see more of this function later.

Although the previous example showed a particularly tricky function for deter-
mining a limit, there are some functions for which zooming doesn’t work at all—
because they have no predictable pattern when approaching the limit point (i.e.
they have no limit). You’ll recognize these functions as you begin zooming in on
the limit point.

Example: Find the following limit graphically: ling sin(l).

- X
1. Return to the PLOT screen and reset the plot parameters: (CANCEL
[DEL) Y]ENTER).

2. Enter the function into the Ef: field and enter the correct IMOEP

variable: (' JSIN) (1) (J&q I X) (ENTER) (J&o [ X) (ENTER).
3. Plot the function: [ INLLIEE.
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NP

]

[Z00H [0k [TRACE] FCH | EDIT JiAMIL |

4. Change the horizontal zoom factor to 10 and magnify the area

around the y-axis: [T I 811 0)ENTER)ENTERNXT) T M.

P Ur:“?_:

[200H ¢ JTRACE] FCH [ EDIT [UANEL

Instead of smoothing the curve, zooming has the effect of magnify-
ing the oscillating behavior in the neighborhood of the limit point.

5. Zoom in horizontally again to confirm this: [T El(NxT) IEHEE.

SN ¢

200K TRACE] FCH | EDIT [CAMIL |

Yes, the situation is deteriorating—this function probably has no
limit. After all, what kind of reliable prediction can you make when
the pattern gets increasingly wild as you approach the limit point?
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Finding Limits Numerically

Plotting functions to graphically examine their behaviors around a candidate limit
point can be a useful for identifying potential troublemakers—if you are careful
not to introduce round-off error. Finding limits numerically on the HP 48 presents
similar problems—round-off effect and oscillating behavior.

This book represents a limit expression on the HP 48 as a two-element list. For
-1 7

example, the expression, lim f(x), is representedast. 'flx)' 'w=a' I To
x—a

indicate a limit of positive or negative infinity, use the ' i ' constant. Thus you
mightuse ':#=1', 'm=—1i', etc., as the second element in a limit expression list.

The program L I (see page 300) computes the limit of a function and displays
the “moving” results of approaching the limit point. L II'l takes the list represent-
ing the limit expression (see above) from level 3, a starting magnitude for the
searchonlevel 2, and an ending magnitude for the search onlevel 1. These magni-
tudes tell the HP 48 the range of values of the function variable to use in deter-
mining the function’s limit behavior at the given point. The values you input are
the “orders of magnitude” for how close you wish to approach the limit point.

For example, if the limit point is infinity, a range of 1 to 11 would have the HP 48
search values of the function variable from roughly 10! to 10''—spending equal
time with each intervening order of magnitude. Remember that above 10'2,
round-off error begins to affect the computations for all functions (and many
functions are affected by round-off error at much smaller orders of magnitude).
For limits that approach a finite number, a range of 1 to 11 would have the HP 48
search values of the function variable from within 10"'to 10" of the finite number.

To compute the left-hand limit, use a negative number as the starting value; for
the right-hand limit, use a positive number. In both cases, the absolute values of
the starting and ending values are used to set the search range.

The program displays the search progress in the top part of the screen, then returns
a list of approximations for the limit. These values are representative and are
spread evenly throughout the search range, unless the search found a value for the
limit which didn’t change anymore, in which case the repetitions aren’t included.
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The examples that follow illustrate not only how to find limits numerically using
L IM, but also how to recognize when round-off is clouding the picture, when the
function has no limit, and when to change the region of the search.

1
Example: Usel Itocompute ling(l + x)= . Compare the results using search

ranges of 1-3, and 6-16.

1. Enter the limit list and make a copy: (J0)(J)&]0)
OISR [ Ja]X) ] =)(0)ENTER)ENTER).

2. Enter the search range (orders of magnitude): (1)([ENTER)(3)(ENTER).

3. Search for the limit: (o) o] L)1 JM)ENTER]) or (VAR] (NXT) or (&9 ]PREV)

as needed)
Result: © . '5:| T "’rhldl & . BITERGEERES
2.66667579515 2.68490944975
&L B97H491 :_:’I 2. THR4E1 287947
s = P ":H’ R s |
:_". Fl4E7EeE12Y 2.7 1613035585
e

|_ I'].hl-ll_.-ll_' l|_|_

The approximations are beginning to move towards a value slightly
less than 2.72, but perhaps you should expand the search magnitude.

4. Drop the previous result, enter the new search range, and begin the

expanded search: @@ ENTER) ENiE)| LIM |

Result: + & ri;l—iﬂ‘}lﬂq_ﬁ: 2t I_!.:l-llF.':I' S
E.rl:':E:“: 81487 2.7162818271
2. 71E2B18EEEE 2.71828182540 1 )

The approximation gets much better as the search goes from 10-°to
107" | but then what happens? Just as the graphical approach en-
counters round-off error too close to the limit point, so LI suffers
if you search magnitudes beyond the machine’s precision. The max-
imum magnitude is 11; for many functions, the trustworthy magni-
tude is less. (Butif you use a range of 1 - 11 to begin with, it gives
you a good overall picture of the function at the given point. Usually
you can tell where the round-off error begins in the returned list.)
Conclusion: Limit = 2.71828182845 (note: e = 2.71828182846).
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Example:

_ 2
Use LI to compute lim 1-1/x .

x>l 1—x

. Enter the limit expression list: (&3 ()& O)(DE) 0= (@a)X)

03] 3163 G () 0] G 9 G 83 [ 0 €3 G 3 G 6 60 G =)
Enter the search range: (1)(ENTER)(1)1)(ENTER).

3. Search for the limit: (o)) L)(1) M) (ENTER) or (VAR] (then or

Example:

as needed) HHTEH.
Result { -1.73553719088 -1.97A395A593
~1.9978A3995 -1.99978R04 -1.99397
~1.9939% -2 3.

Unlike the previous example, when the search settled on a fixed
value, it was an extension of the trend developed by the previous
values in the search and not a break from it.

Conclusion: Limit = -2.
sin x

Use LI to compute lirr(} .
x> X

. Enter the limit expression list: ()T )("JSIN)(eJa)X] »)(=)(efalX)

(X =0 ENTER).
Enter the search range: (1)(ENTER ENTER).

3. Search for the limit: (ENTER) or (VAR] (then or

26

(JPREV) as needed) HETEE.
Result: + .99333416646E 999959333417
.999999333333 . 999999992333

.................... e’ e "o

LF99999999953 1

Conclusion: The limit is 1.
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For some functions you may need to examine the right-hand and left-hand limits
to be sure that they match before deciding if the given point has a general limit.

Example: Compute and compare lim 72 and lim x=2
x—2” |x— | =2t [ x — 2|

1. Enter the limit expression list and make an extra copy: (J{3)(")
SOEXE26E MHIEEREE SO «aXER)
) (JalX]e]=12)ENTER) ENTER)

2. Enter the search range using a positive value for the starting point:
(1)(ENTER)(1] 1) (ENTER).

3. Search for the right-hand limit (+): BEMEH. Result: © 1 I

The right-hand limit—1—was found very quickly and conclusively.

4. Drop the previous result, enter the search range using a negative
value for a starting point, and repeat the search: («)(1]+/=](ENTER)
(ODENTER BETEHE. Result: £ -1 I
The left-hand limit (-1) was found quickly but it doesn’t match the
right-hand limit. Thus the function has no overall limit at x = 2.

_(3x-2)
—»=(3-x)(2—x)
1. Enterthelimitlist(notehow ' i' indicates infinity): (&){3)(")& O)

(3X[eJa)X) () OS]0 (3]=[ala)lX) ()
O] JaX) )0 (JalX )= (@) (D ENTER).

2. Enter the search range: (1)(ENTER ENTER).
3. Search for the limit: (ENTER] or (VAR) (then or

Example: Compute the following limit: hm

(2)PREV) as needed) HETHH
Result: © 14 9 .“HHU'EIE'_EHH‘E 9.H331133762
9. BHZ3H1 153035 '.:l.BEIEI::BBII':
':l.HIdEB_:EﬂHEIll :__E1E1_':' 3. BEBEEERES

".
v

The limit being approached is clearly 9.
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There are several types of situations where a pointdoesn’thave alimit: (i) vertical
asymptotes; (ii) jump discontinuities; (iii) holes; and (iv) chaotic oscillation. The
next few examples show how to recognize these situations with theL LI program.

1+l
x-

Example: Use LIl to compute lim

1. Enter the limit expression list: ({3} (")(&]0)
PHAUO OB XTI (Fa)XAI=DENTER.

2. Enter the search range: (1)(ENTER ENTER).

3. Search for the limit: (VAR) (NXT) or (9)PREV)) IUTEM. Result:
{ -9.8969698989 -99, BEI9EE9T -999, HAE99

Whenever you see the list of values increasing (or decreasing) in
magnitude by a factor of 10 with each entry, you can conclude that
there is no limit for the function at the given point.

Example: Use LIl to compute lim sin(l).

x> X
1. Enter the limit expression as a list: (&]{}] " JSIN[ 1= eJe x> ")
(aJa X&) =] 0 JENTER).

2. Enter the search range: (1)(ENTER ENTER).

3. Search for the limit: (o)) L)(1[M)([ENTER]) or (VAR) (NXT) or (5 PREV)
as needed) HIEH.

Result: 1 -—.244H621118839 -. 58636564111
LOPRETS4R53Y -, FH5R14383553
LHISTHETIICE - 349993562171
LACESEYP93191 L 931635
LS45843449449 -, 4875HEHESHES
LIPEE9366H49Y 3

There is no trend showing in the list at all—just a set of numbers
between 1 and -1. Conclusion: There is no limit.
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Series

A series is the sum of all the terms in a sequence. In a sequence with infinitely
many terms, its series is the limit of the partial sums of the terms in the sequence.
j
In mathematical notation, a series is a summation: 2 a, , where a, is the nth
n=i
term of a sequence whose first term is a, and whose last term is a. Ifj is t infinity,

N

then the series becomes the limit of a summation: lim a,

N>
n=1

where the sequence for which you are computing the limit is a sequence of sums:

1 2 3 N
E a, E a, E a, E a,
n=1 n=1 n=1

n=1

One of the most important qualities of a series is whether it converges to a
particular, finite, value, or whether it diverges to *infinity. Or, to put it another
way, does the limit of the sums exist?

Of course, you can use a program similar to L Il to compute a running total as the
index increases and watch its progress to see if it converges (indeed, such a pro-
gram is presented below). Butthere is no efficient way to compute all sums; some
converge very slowly and there is no way to “jump” to the end to find the result.

Moreover, you cannot assume that because the terms of a sequence converge to
alimit (i.e. they stop getting larger) that the sum of the terms converges to a limit
(i.e. stops getting larger). In fact, in order for a series to even possibly converge,
its associated sequence must converge to zero. But just because a sequence con-
verges to zero, doesn’t mean it does so “fast” enough for the associated series to
converge.

For example, consider E i(s After summing the first 78 terms, the total stops
n

n=1

changing within the precision of the HP 48; it appears to converge.
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oo

You would expect Zis to converge—if at all—more slowly than 2%
n n

n=1 n=1

Indeed it does. This table illustrates the apparent convergent values for the series
E Lp wherep=1,2,3,4,5,6,and 7. (Remember: the terms being added
n

approach zero—so convergence is possible but not guaranteed.)

Series HP 48 Computed Limit # of Terms Used
Zl 745322188226 20,000,000,000
n=1 n
Ziz 1. 64493215463 447,215
n=1 "

L 1, 28285659144 5,850
n=1 "

2% 1.BEZ32323571 670

n
n=1

ZLS 1. B369277549% 184
n=1 "
ziﬁ 1. 81734306194 78
n=1 "

Z; 1. BRE4927 746 43

n

The HP 48 shows that all of these series converge, but do they really—or is the
appearance a side-effect of the limited precision of the machine?
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The first series, Zl (the harmonic series ), actually diverges. The terms in its
n=1 "

sequence simply don’t shrink fast enough for the sum to converge. The moral

here: You can’t completely trust a machine to tell you whether a series converges.

However, there are a group of tests you can apply to a series to assist in deter-
mining whether it converges. If you can conclude that it does, then the machine
is useful in finding an approximation for the series. The tests, which you will find
discussed and derived in any first-year calculus text, are summarized below:

Nth Term test: If the limit of the terms of the sequence # zero, the series diverges.

Root test: If lim4/|a, | is less than one, the series converges; if greater than one,

n—oco

the series diverges; if equal to one, the test is inconclusive.

an+1

a

n

Ratio test: If lim

n—oo

is less than one, the series converges; if greater than one,

the series diverges; if equal to one, the test is inconclusive.

Comparison: If you can find a convergent series whose terms are all greater than
or equal to the corresponding terms in the series you’re testing, then the test series
converges. If you can find a divergent series whose terms are all less than or equal
to the corresponding terms in the test series, then the test series diverges.

A few additional tests are valid if the series you’re testing meets certain criteria:

Limit Comparison: Every term, a , of the test series must be greater than zero.
Find a different series all of whose terms, b , are greater than zero and compute
the limit, L, of a /b,. 1f 0 < L < ~ and the comparison series converges, then the
test series converges. If 0 < L and the comparison series diverges, then the test
series diverges.

Integral: The defining function, f{x), for the series must be continuous, positive

and decreasing for this test to be valid. If the improper integral J f(x)dx
1

converges, the series also converges. If it diverges, so does the series.
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While the HP 48 can’t directly prove that a given series converges or diverges, it
can help you indirectly—by performing some of the aforementioned tests. Three
programs, SERH1, SER¥E, and SERK32, are provided to help determine whether
or not a series converges.

The program SEF1 (page 323) performs the Root test on the given series. It
takes the symbolic defining function for the series from level 2, and the index
variable from level 1 and returns one of the following messages:

"Diverges" "Comwerges", or " Inconclusive®.

SEFKE (page 324) performs the Limit Comparison test given two series with pos-
itive terms. It takes the symbolic defining function of the series being tested from
level 3, the symbolic defining function of the comparison series from level 2, and
the index variable (which should be the same for both series) from level 1 and
computes the limit of the quotient of these series. The list returned to level 1 con-
tains representative values of the limit as the index uses higher and higher values
—similar to the list LII' returns (page 24). You can then judge convergence or
divergence on the basis of the trend you see in the list. Note that SEFZ makes
no attempt to confirm that the series you are using are valid for use with the Limit
Comparison test.

SEFXZ (page 324) performs the Integral test on the given series (as long as it is
continuous, positive and decreasing). It takes the symbolic defining function of
the series from level 2 and the index variable from level 1 and computes the value
of the definite integral using a selected set of increasing intervals. It returns a list
containing representative values as the interval is increased—analogous to those
returned by LI and SERHE. Note that SEF¥3 may take awhile for certain
functions. If an unusually large delay occurs, you may be better off solving the

integral by hand if you can and using L I to test for convergence or divergence.

When using these programs to determine whether a series converges or not, it is
best to use them in “numerical” order, because of the speed with which each
operates. The root test (SEF¥1) is fastest, and the integral test (SEF#2) is usually
the slowest.
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Example:

oo

. E : 2% :
Does the series - converge or diverge?

n

n=1

. Enter the defining function: (&9)(EQUATION)(2)(Y3(3)(«)&)(N)>)(=)

D&M ENTER)

2. Enter the index variable: (' JoJéq N)(ENTER).

Example:

Series

Perform the Root test (SEF#1): (SJEJR]X] 1] or
(then (NXT) or ((9JPREV] as needed) kA3 il.

Result: "[iverges"

oo

: 2 : 1 .
Does the series — converge or diverge?
n

n=1

. Enter the defining function and the index variable: (*)(1)(+)(e)(&)

(NENTER) ()@ N) ENTER).
Perform the Root test (zEF1): ZERX1]

Result: "Irnconclusive"

Because the Root test in inconclusive, your next choice would be the
Limit Comparison test (SER®E) if you can find an appropriate
series to use as a comparison. In this particular case, a good com-
parison series does not readily leap to mind. Thus the next option is
to use the Integral test (SERH3).

Enter the defining function and index variable again: (' ] 1]=]aJ¢q]N]
ENTER) (@] [N) ENTER).

Perform the Integral test: (o] aJSJEJR[X]3)(ENTER]or (then
or (§|PREV) as needed) E[TTE]

Result: L £.3 46,1 184.2 4.5 2
Because there is no sign of convergence in the list, you can conclude
that the series diverges.
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Example:

. E : 1 .
Does the series — converge or diverge?
n
n=1

. Enter the defining function and the index variable: (' [ 1]+]oJ&q[N)

() ENTER)( JoJqIN) ENTER).

Make an extra copies of the defining function and index variable

(just in case the Root test is inconclusive): ()STACKINXT) [T,

Perform the Root test (SERH1): ZERH1N
Result: " Inconclusive”

Because the Root test in inconclusive, use the Limit Comparison

oo

test. Since you just demonstrated that — diverges, perhaps it
n
n=1

would make a good comparison series.

Drop the previous result, enter the comparison function, swap it to
level 2, and perform the Limit Comparison test (SER®Z): (@()(1)
HJQIN)ENTER) SwAP) EITETH.
Result: + .1 .H1 .HA]l .HEAL .BEEEL | BEHEE]
LAREEAR] | BEEBEEET | BEREEERE]
. ABBHERREE] 3
Clearly, the limit is zero—which means the test is inconclusive.
Because the comparison series is a divergent one, a positive limit
would have meant the test series is divergent, but a zero limit means
that the test is inconclusive. So, on to the Integral test.

5. Enter the function and its index again: (" | 1]+ aJ&N) ENTER

OQNETR).

6. Perform the Integral test (SEFHZ): ZERX3N

34

Result: © H.9 1.8 1.8 1.8 %

The series converges according to the Integral test.
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Example:

1.

Example:

Series

oo

Does the series Sy converge or diverge?
n —

n=1

Enter the defining function and the index variable and make a set of

copies: (J(ofJaIN(=HE]0) @)X (€JaIN @Y (2) (=) (1) ([ENTER)
() e N) ENTER) () STACK) (NxT) [T

Perform the Root test (SEF¥1): (VAR E
Result: "Inconclusive”

Drop the previous result and enter a function with which to compare

limits (1/n seems a good choice): (w)(*)(1]=)(@J&q N)([ENTER)(SWAP).
Perform the Limit Comparison test (zEFHE): (VAR) BT
Result (to 3 places): + .oH3 .5HH .SHH ,SHH ,S5HH

OB DHE G

Since the Limit Comparison test returns a positive limit (0.5) with
a comparison series that diverges, the test series must also diverge.

oo

: § : 1 .
Does the series > converge or diverge?
4n" +9

n=1

. Enter the defining function and the index variable and make an extra

set of copies: G0 AX[JaIN) (9]
()] N)([ENTER) ) STACK)(NXT) T .

Perform the Root test (<EF1): (VAR E
Result: "Inconclusive"

Drop the previous result and enter a series with which to compare

limits (1/n2looks to be a good choice here): («)(J)(D)(H(JSNT
(2)(ENTER)(SWAP).
Perform the Limit Comparison test (SEF#E): (VAR E T
Result (to 3 places): 1 .co4t FoH (EZ5H L2 E1 . E':l
I I = I e

"-\.I
|"_-',_'|

-..-r

Because the limit is positive and finite (0.25) and the comparison
series converges, then the test series converges.
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Computing Series

Once you have assured yourself that a particular series converges, the HP 48 can
help you approximate the infinite sum.

The program SEF.IE= (see page 323) takes the defining function for a series from
level 4, the index variable from level 3, the beginning index value from level 2,
and the number of decimal places to which you want to approximate the series
from level 1. It returns the approximate value of the series to level 2 and the final
index value used to compute the approximation to level 1. The larger the number
of decimal places given in level 1 (i.e. the more precision you require) the longer
it will take to compute the approximation.

Look at some examples . . .

Example: Approximate the following infinite sum to three decimal places:

o k

2 lain)

k=1

1. Enter the defining function: EOOEREBEE
QEKBEHI (a]KIENTER).

2. Enter the index variable: (' ]oJ&q]K)(ENTER).

3. Enter the beginning index value: ENTER).
4. Enter the number of decimal places you want in the approximation:

(3)ENTER).

5. Execute SERIE=: ()] S EJR] 1) E[S)[ENTER)or (VAR) (then (NXT) or
as needed) IS

Result: &% A, B5H
1: Pt 55|

The approximate value of the infinite sum is H. 628 which was
arrived at after summing the first 22 terms.
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Example:

Approximate the following infinite sum to two decimal places:

oo

22k+«/§
K ++k

k=1

. Enter the defining function: (¢9)[EQUATION)(A)(2])(aJ&)K](+H)(x) ()

K0 (eIa)KEFIE))H X (Ja]K)ENTER).
Enter the index variable: (')(c]&q]K)(ENTER).

3. Enter the beginning index value: ENTERJ.

Example:

Enter the number of decimal places you want in the approximation:

(2)ENTER].
Execute SERIES: *ERIE }

Result: &% 2. HE
1: ZH3. BH
The infinite sum, approximated to two decimal places is 3.00

Lt
oot

Approximate the following infinite sum to five decimal places:

oo

2 k!
2%

k=1

. Enter the defining function: (*)(2)®)(eJe)K)X)(@ ) K)IMTH(NXT)

FEOE | ! GOREEOREELE)
Enter the index variable: (' )aJ&)K](ENTER).

3. Enter the beginning index value: (1JENTER).

Enter the number of decimal places you want in the approximation:

(S)(ENTER].
Execute SERIES: VARETAE.

Result: &+ 12.94895
l: 53, BHAEE
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Using Series to Approximate Functions

The easiest functions for calculators to compute and manipulate are polynomials.
They’re composed only of additions and multiplications. But non-polynomial
functions such as trigonometric, exponential, and logarithmic functions are a dif-
ferent matter. In fact, most calculator routines for computing non-polynomial
functions actually use polynomial approximations of those functions.

Example: Find a polynomial approximation for the function f{x) = sin x.

x3 x5 2k+l
Result: sinx:x——+———— Z( 1) ———
31 51 7! (2k+1)!

Example: Find a polynomial approximation for the function f(x) = e*.

2 4 — K
3 X X

Result: e":1+x+x—+_—+_+ R r
2! 31 4! k!

k=0
Example: Find a polynomial approximation for the function f(x) = In (1 + x).

2 3
X

Result: In(1+x)= x—-x——+—-__+
2 3

k+1

Each of these polynomial approximations is a power series—a polynomial with
an infinite number of terms. More precisely, a power series is the limit of a se-

oo

quence of polynomials: z c,x" =lim p, (x), where p (x) is a polynomial of de-
— n—oo

green, and c, is a coefficient of a term in the polynomial. To obtain an approxima-

tion using a power series at a particular real value, x, simply substitute x, into the

power series for x and find the limit of the series to whatever number of decimal

places you desire.
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Example:

Approximate the value of sin(2) to four decimal places, using the
power series shown in the example above.

. Enter the defining function for the power series that approximates

the sine function, remembering to substitute 2 for x in the definition:

JEQUATION (ST )K] (0)(a)(2) 73 (&) (k)
HD GO 2]elalK)(H () (@l )DEL)ENTER).

Enter the index variable for the series: (' JaJ& K)(ENTER).

3. Enter the beginning index value and the desired number of decimal

Example:

places in the approximation: (0)(ENTER](4)(ENTER).
Execute SEEIES to compute the approximation: SERIE !
Result: & B, 9693
1: =, BEEG

After 8 terms, the approximation of sin(2) is 0.9093.

Now check the approximation using the SIN function on the HP 48.
Make sure that your in Rad mode first: (&4]RAD), if necessary)
(SIN). Result: H. 3833 — a match!

Find In(3) to four places, using the power series for In(1+x) as des-
cribed above (i.e. replace x in the defining function with 2).

. Enter the defining function for the power series that approximates

the In(1+x) function, remembering to substitute 2 for x in the defin-

ition: (JEQUATION(] O+ (eIa)KI )(A)2)Y Y ()]
KEHDEP)(LJSKH ) ENTER).

Enter the index variable for the series: (']aJéq]K)(ENTER).

3. Enter the beginning index value and the desired number of decimal

places in the approximation: (0)(ENTER)(4](ENTER).
Execute SERIE to compute the approximation: %ERIE }
“Wait a second! What’s happening?”

You are working with a divergent series, and SEF.IES assumes that
the series you’re using is convergent. Press(ENTER)(or any key other
than (CANCEL)) to end the search, then («]«]«]to clean up.
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This example illustrates an important aspect about power series—they must
converge for the value of x you’re using in order to work as an approximation.
Some power series are only valid as approximations for values within a particular
interval. To see this, repeat the previous example using x = (.5 instead of x = 2.

Example: Approximate In(1.5) to four decimal places using the power series
for In(1+x) described above. That is, replace x in the defining func-
tion with 0.5.

1. Enter the defining function for the power series that approximates
the In (1+x) function, remembering to substitute 0.5 for x in the de-

finition: (G)EQUATION)&JO)+/= 1)) I (e K) )@ )5
IEIKEHIER) (GJSKIH ) ENTER).

2. Enter the index variable for the series: (' JaJ&]K)(ENTER).

3. Enter the beginning index value and the desired number of decimal
places in the approximation: (0)(ENTER)(4)(ENTER).

4. Execute SERIES to compute the approximation: *ERIE}
Result: &* H, 4855
1: ZH. HHAA

This time the power series converges after 20 terms.
5. Check the approximation using the LN function on the HP 48:

GLIE)EIN.  Result: B.4H35 — a match!

How does one find out the interval of validity for a given approximation?

One reasonably good method is to plot the original function and a partial sum of
the power series (i.e. the first few terms of the series) together and visually note
the interval where they coincide.

For example, to find the interval of validity of the power series for In (1 + x), you
would plot the function, In (1 + x), and the polynomial representing the partial sum

2 x3 x4 xS

of the power series that includes the first, say, five terms: x —— + —3— - T + ?

The next example illustrates what you can find. . .
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Example:

Plot the function, In (1 + x), and the first five terms of its power series,
X 2 X 3 X 4 X 5

X - — —_——— _—

2 3 4 5
to visually determine the interval of validity.

. Open the PLOT application and make sure that the T'fPE: field is set

to Furmizt 1om: (o)PLoT)(a)(«)F)

Highlight the Ei: field and enter a list containing both functions: (V)
= JaXP ) aXEIaXT 2]
(2]H I XEEHEEREXVIIEEBEXEIE)
(H(E)ENTER)

. SetIMDEP: to  (lower-case), H=MEk to—3 =, and ¥-YIEK to

—5 5. Move the PLOT OPTIOMZE screen and setH-TICE to 1,4~
TICE to 1, and uncheck the PIXEL = field on the last line. This will
display tick-marks every unit (instead of every 10 pixels) on both the
horizontal and vertical axes.

B[ T3 0TI to draw the plot.

Press

g
i 1
TRACE] FCH | EDIT

Note that the two graphs coincide roughly betweenx=-1andx=1,
which indicates that these roughly represent the boundaries for the
interval of validity. Outside of these boundaries, the power series di-
verges and is useless as an approximation.
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Taylor Series

Although the examples so far have used well-known functions to illustrate the use
of power series to approximate function values, the technique is more commonly
used to approximate otherwise unknown functions.

The power series you have seen so far are referred to collectively as Taylor series.
The partial sum of a Taylor series is called a Taylor polynomial. For example, the

- k+1
series (—l)k is a Taylor series, and the partial sum used in the previous
k=0

k+1
2 x3 4 x5
example, x — > + 31 + Ik is a fifth-degree Taylor polynomial.

oo

(k)

The general form of a Taylor series is: Ei—k—fﬂ( x —a)" where a is a known
k=0 )

point on the function which the Taylor series is approximating. All of the exam-

ples so far have used a = 0 as the known point.*

The expression f¥(a) requires some more explanation. The superscript k indicates
which derivative of the function is being referred to. Derivatives will be discussed
and developed in detail in Chapter 2, but for now think of them as a property
belonging to a single point of a function. At each point of the function, the slope
of the function is changing in a particular way. The first derivative, f(a), is the
slope of a function at a given point. The second derivative, f?(a), is the slope of
the slope—that is, the change of the slope—at a given point. The third derivative,
f®(a), is the change of the change of the slope at a given point, etc. You can see
that the more derivatives you can compute at a given point, the more details you
can learn about what is happening to the function near the given point. Each level
of derivative at a given point is a clue about the “hidden” function nearby.

The Taylor series approach to approximating functions is specifically designed
for situations where you know a lot about a single point and wish to extrapolate
or approximate what the rest of the function is like.

*Taylor series with a = 0 are known collectively as Maclaurin series.
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Of course, functions—particularly those describing real-world phenomena—
come in many flavors, some better suited to Taylor series approximation than
others. Some are not “infinitely differentiable”; they may have, say, first and
second derivatives, but no third derivative. For these functions, you may only use
a Taylor polynomial whose degree is less than or equal to the number of deriva-
tives available. Some functions, although infinitely differentiable, are such that
the derivatives at particular points are very poor clues about the rest of the func-
tion. The only absolute guarantee about Taylor series approximations is that they
approximate the value of the function accurately at the given point. Some Taylor
series approximate values well for all points, others only for a few points, and a
fair number that manage to be accurate for the given point alone.

Moral: Use Taylor series approximation carefully—choosing the point at which
you compute all the derivatives wisely and applying it only to functions that have
sufficient derivatives so that you have a reasonable interval of validity for your
approximation.

Although you haven’t yet computed derivatives in this book, you can still
compute Taylor polynomials. The HP 48 has a built-in function, TAYLR, that
computes a Taylor polynomial (atx=0) for a given function. In effect, it computes
all the necessary derivatives of the function (at x=0) and compiles the polynomial
to whatever degree you specify.

Example: Compute the 6th degree Taylor polynomial for 1 + sin? x using the
built-in TAYLR command. Use it to approximate 1 + sin?(1.65).

1. Enter the function: (" J1]+[SIN o] X)(»)@*)(2)(ENTER).

2. Enter the variable to be used in the Taylor polynomial (also the
independent variable in the function): (')(aJ¢q)X](ENTER).

3. Enter the desired degree of the Taylor polynomial: (6)ENTER).

4. Compute the Taylor polynomial: TRYLK}

Result: ' 1+:°2--4 | 2 44326 16,

5. Make a copy of the polynomial and then approximate 1 + sin?(1.65):

(ENTER) (1) 6 )5)(" o Jea ) X])(STOJEVAL).
Result: . 14E6E34HHEEZS. (actual value: 1.99373988496)
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Why is the approximation so bad? Recall on page 41 where the In(1+x) function
was plotted against its fifth-degree Taylor polynomial. Bad approximations occur
when the point being evaluated lies outside the interval of validity for the approxi-
mation. And the interval of validity is always centered upon the point used to
compute the Taylor polynomial coefficients. For the built-in TAYLR command,
the interval of validity is always centered on x=0, and the farther from zero a value
is, the greater the likelihood that its approximation will be bad.

Example: Use the Taylor polynomial calculated in the previous example to ap-
proximate 1 + sin?(0.65).

1. Drop the last result, to bring the Taylor polynomial to level 1: («).

2. Store 0.65in '%' and evaluate the Taylor polynomial: (~]6)5)(")
(JQIX)(STOEVAL)
Result: 1.36634986736  (Actual value: 1.36625058569)

Because 0.65 is much closer to zero than is 1.65, its approximation—which is
“centered” at zero—is much better. Sohow do you get an accurate approximation
of 1 + sin?(1.65), using a Taylor polynomial? Move the “center” of the approx-
imation closer to 1.65.

Although the built-in TAYLR command doesn’t allow you to do this, it is rela-
tively simple with a program. 1'TLEa (see page 331) computes the Taylor poly-
nomial for a given function centered around an arbitrary point a of your choosing.
It takes the function being approximated from level 4, the independent variable
fromlevel 3, the order of the Taylor polynomial desired from level 2, and the point
around which you want to center the approximation from level 1, and returns the
Taylor polynomial to level 1.

Example: Find the sixth-degree Taylor polynomial centered at x = 1.5 for the
function 1 + sin’x.

1. Enter the function to be approximated: (" 1)+)SIN)(aJ X))
(2)ENTER).

2. Enter the independent variable: (' )oJ&]X)(ENTER).
3. Enter the order of the polynomial desired: (6)(ENTER).
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4. Enter the point around which the approximation is centered:

ENTER).

5. Compute the Taylor polynomialusing I 'LFa: (@] TYURIG[A)

(ENTER) or (VAR (then (NXT) or (€5)PREV) as needed) i Hidil.
Result (4 places): '1.9930+,1411+(x-1.5]
=M. A -1, 20 - B9 #0e-1, 5073
+, 3300 (-1, 517+, 1 (-1, 5075
F4h#0e-1.50" "

1L

T

Computing the approximation around 1.5 instead of O should have the effect of
shifting the interval of validity to the left (i.e. in the positive direction). To view
the approximation and the function being approximated, and the interval of valid-
ity, you can use a procedure similar to the example on page 46 or you can use the
FTHYL program (see page 317). FTHYL takes the Taylor polynomial from level
5, the function from level 4, the independent variable from level 3, the value
around which the approximation is centered from level 2, and the value of the
point being approximated from level 1. If there is no point being approximated,
use same value you used in level 2 on level 1.

Example:

Use PTHYL to visually depict the interval of validity for a sixth-de-
gree Taylor polynomial approximation of the function, 1 + sin® x,
centered around x = 1.5.

. If the Taylor polynomial computed in the previous example is still

on level 1, then move on to step 2. If it isn’t, execute the previous
example to compute it, and then return to step 2 of this example.

Enter the function: (" J1]+[SINJ(e & X)) ((2) ENTER).

3. Enter the independent variable: (' )oJ&q)X])(ENTER).

Taylor Series

Enter the value around which the approximation is centered:
ENTER].

Because you aren’t interested in this example in estimating any one
particular value, just enter a copy of previous value: (ENTER).

ExecuteFTHY'L : (@)« P T A Y L) ENTERJor (VAR) (NXT)or (€5 )PREV)
as needed) |l bdH.
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7.

: m:lém]

Press and trace along the function with («)and (») to
a region where the two graphs begin to separate. Then, jumping
between the two graphs using (a)and (¥), watch the value of the ¥":-
coordinate. Where it begins to differ significantly, you are leaving
the interval of validity—to two decimal places, roughly 0.5 <x<2.5.
Within that interval the polynomial approximates the function to
two decimal places. (Of course, the decimal places necessary to
validate an approximation may be more or less than two.)

Two other programs automate approximations, AFFEU# and FAPEL (see pages
286 and 306). They each take five inputs: the function approximated on level 5,
the independent variable on level 4, the order of the Taylor polynomial desired on
level 3, the “centering” value on level 2, and the value to be estimated on level 1.
HPEOH returns the Taylor polynomial used to level 3, the computed approxima-
tion on level 2, and estimate of the maximum error of the approximation to level
1. PAPRLD first plots the function and its Taylor polynomial within a reasonable
viewing range and then returns the same objects as does AFFLI.

Example:

46

Use HPE to approximate the value of 1 +sin?x atx=1.65 at using
a fourth-degree Taylor polynomial of (x — 1.5).

1. Enter the function: ) (ENTER).
2. Enter the independent variable: (']oJé&q]X)(ENTER).

3.
4

. Enter the value of the independent variable around which the ap-

Enter the degree of the Taylor polynomial: (4)(ENTER).

proximation is centered: ENTER).
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5. Enter the value you wish to approximate: (1] - [6]5])(ENTER).

6. Execute AFR: mmﬁmﬁ (ENTER] or (VAR) (then or
as needed) [i} . Result (to 3 places):

3 '1.995+, 1414:,—1 -, 99RE (-1, 5
(-1, 3“'+.__E+L“—1 544

23 1,994

1z 9, 254E-7

The approximate value is 1.994, accurate to within less than 10,

Example: Use PAFE to approximate for x =0.5 using a fifth-degree

2
Taylor approximation centere()ic a:_ x1 =0.
Enter the function: (') 2]=]&)O)(eJa)X)@¥)(2)(+)(1)(ENTER).
Enter the independent variable: (' )aJ&)X)(ENTER).
Enter the degree of the Taylor polynomial desired: (5 JENTER).

Now the point around which the approximationis centered: (0 JENTER).
Enter the value you wish to compute: (- ]5)(ENTER).
Use PAFEDE: (@)oP) AP RIO)X)ENTER) or (VAR) (NXT)) T

A e

[200M [ .0 [TRACE[ FCH | EDIT JEAMEL |

The plot confirms that the target value (0.5) is within the interval of
validity for the approximation.

7. Press (CANCEL] to return to the stack and see the approximation.

Result: i DR N T i |
e 1.625
It  HZ5
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While PHPEE allows you to view a given Taylor approximation alongside the
function it’s approximating so that you can get a visual estimate of the interval of
validity, it would be nice to be able to find the set of values for which any power
series converges. This interval of convergence for a given power series,

oo

) cx-ay,

n=0
might be any one of three cases:

1. The power series converges within a radius of convergence (R) of x = a.
That is, it converges for a— R < x < a + R, but diverges for other values of
x. Note that the endpoints of the interval (x =a - R and x = a + R) may or
may not also be included in the interval and should be tested individually.

2. The power series converges only for the point around which the approxi-
mation is computed, x = a—nowhere else. The radius of convergence is 0.

3. The power series converges for all values of x. The radius of convergence
1S oo,

The standard method of finding the interval of convergence for a power series
involves applying the Root test to the series of coefficients, ¢ , of the power series.

That is, for the power series E ¢,(x—a)", youmust find lim4]|c,|. If the limit
n=0

(L) is finite and nonzero, then the radius of convergence is 1/L (Case 1). If the
limit is infinite, then the radius of convergence is 0 (Case 2). If the limit is zero,
then the radius of convergence is o (Case 3).

The program CMIMT (page 289) computes the radius of convergence for a given
power series. It takes an expression representing the ¢ _portion of the power series
from level 3, the independent variable from level 2, and the point a about which
the power series is centered from level 1. It returns a string describing the approxi-
mate interval of convergence. Note that because TV IMT computes limits as it
determines the interval of convergence, the endpoints of the computed interval
may be only approximate; you may need to apply common sense when testing the
computed endpoints for inclusion or exclusion in the interval.
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The following examples illustrate the proper use of LW INT.

Example:

Sl s

Taylor Series

oo

k
Find the interval of convergence for the series Z—Sk—(x -2)k.

k=0

Enter the ¢, expression: ('J8)()(efa)K)(H(<JaIK)ENTER).
Enter the index variable: (" JaJ&q)K)([ENTER).

Now the point around which the power series is centered: (2)[ENTER).

Compute the interval of convergence using CVINT: (CIV]1]N]

ENTER) or (then or (&]PREV] as needed) [N I:HH.
Result: "1,8<udE, 2"

The resulting interval is always open on both ends. You must test the

endpoints separately by substitute each endpoint value for x and per-
forming the set of convergence tests (SER#1, SERRE | SERHT)

Substitute 1.8 for x into the original power series and perform the
integral test (GERR3I) to determine convergence: (' J5]Y*[(aJq]K)
) eIk X&GIO-T=2)+-) )@ («fa)K) ENTER) () (Ja)K)
SERX3

Result: © H.H H.H B.8 B.8 }

The integral test shows that the power series converges at x = 1.8.

Repeat step 5 using 2.2 for x: ﬂama BOERSREW
L2l ENTER (TS K ENTER EIihE]

Result: © .3 H.H H.B H.B8

The integral test shows that the power series diverges at x = 2.2.
(Because the integral test will normally show only increasing
values—within reasonable precision—the decrease back to zero in
this result list must be due to exceeding the limits of precision and
thus can safely be ignored).

Conclusion: The interval of convergence for the power series is:
1.8<x<2.2
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oo

Example: Find the interval of convergence for 2 k(k+1)(x—1)*.

50

1.

k=0
Enter the ¢ expression. Beware though, because the x-term is raised
to the 2k power instead of the customary k power. To obtain a valid
¢, expression, find the square root of the given c, portion: (* )(aJ&q]K)
(=)

Enter the index variable: ('] aJéq]K](ENTER).

3. Now the point around which the power series is centered: (1)[ENTER).
4. Computetheinterval of convergence using - IMT: (o o))V 1TIN]T)

ENTER) or (VAR) (then (NXT) or (9]PREV) as needed) (HHIHI.
Result: "H<x<2"

You can test the endpoints this time by inspection. Note that because
the x-term is raised to the 2k power, both x = 0 and x = 2 will yield
1 as the value of the x-term, thus rendering the series equivalent to

oo

z k(k +1) for both endpoints. This equivalent series clearly di-
k=0

verges. If you prefer, you can confirm this using either the limit
comparison test (SEFHE) or the integral test (SEFR#3); the root test
is inconclusive.

Conclusion: The interval of convergence for the power series is:

O<x<?2
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Example:

oo

!
Find the interval of convergence for the power series: 2 %—(x +1)~.

k=0
1. Enter the c expression: (' )JaJ&e]K) )& DEL] (+)(2)(ENTER).

Enter the index variable: (']oJ&q]K](ENTER).

3. Enter the point around which the power series is centered:

Example:

Taylor Series

ENTER).

Compute the interval of convergence using LW IMT: (CIVIIN)
ENTER) or (then or (&JPREV) as needed) [ 1. B}

Result: "w=—1"

Conclusion: The power series converges nowhere but at x = -1.

oo

Find the interval of convergence for Z%(x —2)k.

k=0
1. Enter the ¢, _expression: (] 1)(=J(2)(™(eJ&)K)(2J&)DEL) (ENTER).
2. Enter the index variable: (')oJ&)K](ENTER).
3.
4. Compute the interval of convergence using CY INT:

Now the point around which the power series is centered: (2 [ENTER).

or (then or as needed) [T3R1.
Result: "HI1 "

Conclusion: The power series converges for all x.
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Estimating the Error of Approximation

Occasionally in the real-world application of power series, you will know a great
deal about a specific point on a function without knowing the function itself.
Indeed, this is a common use for power series approximations—as stand-ins for
functions you cannot ascertain directly.

But how can you estimate how good your power series is as an approximation if
you can’t compare it with an actual function?

Taylor’s Theorem, derived in most introductory calculus texts, provides a means
for such an estimation of the error if you can estimate the magnitude of the next
higher order derivative than the order of the power series approximation. For
example, if you are using a fourth-degree Taylor approximation, you must be able
to estimate the size of the fifth-derivative of the unknown function near the point
around which you build the approximation.

Specifically, Taylor’s Theorem implies that the error of a polynomial approxima-
tion (around point a) of order n for the value of a point b for a function fis:

f(n+l)( )( )n+l
+1)!

where f"*1(c) represents the maximum est1mated value of the next higher order

derivative (in the interval between a and b on the unknown function) than the

order of the polynomial approximation.

|£(8)-p, (b)|<
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The program T''LEEFE (see page 331) assists you in estimating the error of ap-
proximation. As arguments, it takes the maximum estimated value of the next
derivative (f"*"(c)) from level 4, the degree of the approximation (n) from level
3, the point (a) around which the approximation was computed from level 2, and
the point being approximated (b) from level 1. It then returns the maximum esti-
mated error to level 1.

Example:

A e

For a given function approximated with a fourth-order Taylor series
about x = 1, you estimate that the maximum value of the fifth deriv-
ative between x =1 and x=3 is 0.01. Find the maximum error using
this approximation to compute the value of the function at x = 3.

Enter your estimate for the maximum value of the fifth derivative:
ENTER).
Enter the degree of the polynomial approximation: (4]ENTER).

Enter point around which the approximation was made: (1)([ENTER).
Enter the point being approximated: ENTER).

Compute the error approximation: (a] o] T Y)L)(RJEJR]JRJ[ENTER]or
(then or (§JPREV) as needed) LRI .

Result: &.BEEEEEEEEEE-3
The maximum error using the fourth-order approximation to esti-
mate the value of the unknown function at x=3 is =0.00267.
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The Derivative and Differentiation: An Introduction

The derivative of a function f(x) is itself a function that describes how fast f(x) is
changing at each point x. Itis derived in the sense that it can’t stand on its own—
there must be an original function f(x) to which itrefers. Differentiation is the pro-
cess of computing the derivative—either as a general expression or at a particular
numerical point x. The name, differentiation, correctly implies that finding the
derivative is based upon finding differences.

The rate at which a function changes is measured by its slope. As you recall from
pre-calculus math courses, the slope of a function is measured by comparing the
coordinates of two points on the function. The slope is the ratio of the difference
of the vertical coordinates of the two points (Ay) and the difference of the hori-
zontal coordinates of the two points (Ax).

Of course, the measurement Ay/Ax can be interpreted only as the average slope
of the function over the interval between the two points. But as you shrink this
interval, the average slope describes an ever more precise region of the function.
Finally, using the concept of limits, if you let the size of the interval approach zero,
the average slope becomes the “slope-at-a -point”—instantaneous slope.

Thus the derivative is a function, f(x), that describes the instantaneous slope of
each point in the domain of its referent function f{x). Since the derivative uses the
concept of limits, it requires that the referent function be continuous (at least in
the interval being examined). So a function f(x) is said to be differentiable at a
point, x, provided that x is in the domain of f{x) and that this limit exists:

lim f(x)_f(xo)
x—)xo x—xo

Or, because the quantity (x — x,) is more compactly written as Ax, the derivative
function is commonly written as:

e = fir Ko +AX) = (o)
f'(x)= lim Ax
Roughly translated, this means that the derivative of a point is difference between
the value of the function at the point and its value a “smidge” away from the point
divided by the “smidge” as the size of the “smidge” approaches zero.
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Derivatives on the HP 48

The HP 48 is programmed with the derivatives for all of its analytical functions
and with the basic rules of differentiation (summarized below). Therefore it can
find the derivative of any function composed entirely of those analytical func-
tions—quite a large variety of functions, actually.

Here is a summary of what the HP 48 “knows” about derivatives. First and
foremost, it is programmed with these derivative definitions:

Function Derivative Function Derivative
X rx1
. 1
a* (a>0, a#l) a*lna log, x (a>0, a#1)
xIna
) . 1
sin x COSXx sin” x -
1—x
) o 1
COS X —sinx Ccos™ x - =
1-x
2 -1 1
tan x -— (or sec” x) tan”™ x >
cos” x 1+x
) o 1
sinh x cosh x sinh™ x -
V1+x
) o 1
cosh x sinh x cosh™ x
2
x° =1
1 _ 1
tanh x - tanh™ x >
cosh” x 1—x
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The HP 48 is also programmed with certain general rules for computing deriva-
tives. Iffand g are differentiable functions, kis a constant, and x, is a specific input
in the domains of both fand g, then the following rules hold:

Linearity Properties:  (f+g) (x,)=f"(x,)+8&"(x,)

(f-8) (x)=f'(x,)—g"(x,)
(Cf)’(xo) =c f,(xo)

Product Rule: (fg)’ (x0) = f"(x,)8(xy) + f(xo )g'(xo)

Quotient Rule: (g—) (xo) = £"(%o)8 (% 2 — f(xo )g’(xo)

Chain Rule: (fog) (x,)= f’(g(xo )) -g'(x,)

Power Rule: (fr ),(xo) =nf""(xy) f'(%)

Furthermore, the HP 48 can apply the derivative rules in several distinct ways,
depending on the context in which you wish to see it. It can graph the derivative
function along with the main function, compute the numeric derivative ata given
point, or symbolically derive the derivative expression from the main function
expression—either one step at a time (“step-wise” differentiation) or all at once.

Look at some examples of each of these approaches in action ...
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Graphically Displaying Derivatives

Functions that can be differentiated are “locally linear,” a fact that can be ascer-
tained best by graphing the function and zooming in on a region in question.

Example: Is f(x)=sin( 2x

x*+2

) differentiable at x = 0?

1. Openthe PLOT application, setthe T¥PE: toF Limi=t. 1.2, and re-
set the plot parameters: (—)PLOT)(a)(«)F) (DEL)(Y)(ENTER).

2. Highlight the E: field and enter the function expression: (¥)(*JSIN]
EX(«JaXHE0) (aXPIRIH(R)IENTER).

3. Set the IMDEP to % (lower-case) and press [T B3 I 51

-

200 [ 8.4 [TRRCE] FCN | EDIT.

4. It appears smooth (i.e. continuous) and completely differentiable.
But to test for differentiability at a point, zoom in tightly around the

pointand look for linearity: (a<E T TR > W ELRI.

bt
.,-"-FF-
__,—'

-~ +
200 ¢k JTRRCE] FCM | EDIT [CAMEL

The function is “locally linear”—thus differentiable—around x = 0.
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Example:

2 j differentiable at x = -27?
x+2

Is f(x)= sin(

. Return to the PLOT screen, and reset the plot parameters: (CANCEL

(WENTER).

Highlight the Ei2: field, and enter the function expression: (a)(*JSIN)
Hao [ENTER).

Set the IMIOIEP to x (lower-case) and press [TiE ML 21

[200H it JTRACE] FCH | EDIT

There appears to be some rapid oscillations in the neighborhood of
the target point, x = -2, that needs investigation in more detail.

Move the cursor just above and to the left of the oscillations and
press ENTEINATEEA. Then draw the zoom-box to the right and just
below the oscillations (using (») and (¥) ) and then press [E[1[1[&l.

f.
J
200t i | TRACE]

The oscillations are not straightening out as you zoom-in; instead,
their chaotic behavior is increasing. You can confirm this by zoom-
ing-in on a box tightly constructed around the target point.
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5. Draw the zoom-box so that it is about six pixels wide surrounding
the middle of the oscillations and including the x-axis. Then zoom:

EDIT

A vision of an undifferentiable function! At least, it’s not differen-
tiable in the vicinity of x = -2.

Once you can determine the differentiability of a function, you may then plot both
the function and its derivative easily.

Example: Plot the function, f(x)= x”* betweenx=-1and x=5, and then add
the graph of its derivative. Use the default ¥'=El{ parameters.

1. Atthe PLOT screen, reset the parameters: (CANCEL)(DEL)(V)(ENTER).

2. Highlight the Ei: field and enter the function: (a)(*)of& X]
E® (ENTER).

3. Setthe IMDEP to > (lower-case) and change H=WIEk to—1 and 3.
4. Press [T EIMTTTRE.

+ —
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5. Add the derivative of the function to the plot: “

_-“'P_—d_‘_

200K i JTRERCE] FCM | EDIT [DANEL

6. Optional. To view the expression for the derivative plotted, press (&)
and then hold down (W) (VIEW): '« Fo¥x™— . 25"
7. You can continue and plot the second derivative—the derivative of

the derivative—by repeating step 5. (Note that, although this func-
tion has a second derivative, not all functions do: the first derivative

must itself be differentiable.) Press IiZReilNxT) B

[Z00H [ ok [TRACE] FCN | EDIT JEAMIL |

8. to return to the PLOT screen, and {iI§8ll the Ei: field. It
now lists three functions, the second and first derivatives and the

original function: + '.Vo¥—0,20%x"—=1,.250"
L TSERO-LES' wtiEeddt

The first expression in the EX!: list is the current function for features

suchas TRACE, (X,Y), and FCN. But i3y lNxT)TFIT%  rotates

the order of the expressions, thus changing the current function.*

*The current equation can also be changed temporarily by pressing (a)or (¥)while in TRACE mode. Upon leaving
the Picture mode, the original order is reestablished in Ef.
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This approach to plotting higher-order derivatives of a function results in all
intermediate derivatives being plotted as well—a potentially confusing collec-
tion of curves in the display.

The program FLTDEF (see page 313) plots just the derivative of a specified order
—either with or without the current plot. It takes the function from level 4, the
name of the independent variable from level 3, the order of the derivative from
level 2, and a number indicating whether to erase the previous plot first (0 for
“don’t erase;” 1 for “erase”) from level 1.

Example: Using FLTOEFE, plot the third derivative of 4sin® x —3cos? x.
1. Return to the stack and enter the function: (CANCEL)(CANCEL)(' J4)(X)

EN(eaX) )Y EIEEXICI) (X)X (2) ENTER.
Enter the independent variable: ('] aJ&q)X)(ENTER).

Enter the order of derivative desired: (3)(ENTER).

Enter 1 to erase the screen before plotting the derivative: (1)[ENTER).

Open the PLOT application and reset the plot parameters to their de-
faults, then return to the stack: (—JPLOT)(DEL]Y)(ENTER)(ENTER).

6. Plot the specified derivative: (afaJP]JL)T[DJEJR)(ENTER) or (VAR)
(then or as needed) [ 8113,

ok wN

)

)
énmlml EDIT
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Numerically Computing Derivatives

The slope of a function at a particular point is the function’s derivative at that
point. The HP 48 accomplishes this computation by first computing the symbolic
derivative and then—if indicated—substituting the value of the point as the
independent variable in the derived formula. To indicate a symbolic or numeric
result when executing the “differentiate” command () 3)), here are the options:

1. Ifflag-3is clear and numeric values are stored for all variables in the func-
tion, then executing the command in stack syntax will return a numeric re-
sult. Stack syntax means entering the function on level 2, the variable of
differentiation on level 1 and pressing (=) 3).

2. If flag -3 is clear and numeric values are stored for all variables in the
function, then executing the command in algebraic syntax will return a
symbolic result reflecting a single invocation—one “step”—of the chain
rule for differentiation. Algebraic syntax means entering a single algebraic
expression that includes the derivative function (eg. ' &l I3#HE+3) ")
and pressing (EVAL). Each time you press you invoke the chain rule
one more time and values may be substituted for some variables. Eventu-
ally a single number will be obtained—the same number you would have
obtained immediately if you had used the stack syntax described above in
option 1. This systematic approach to differentiation—step-wise differen-
tiation—allows you to examine in detail each application of the chain rule.

3. Ifflag-3isclear and atleast one variable in the function has no value stored
for it in the current path, then the HP 48 will return a symbolic result. This
result will either reflect one invocation of the chain rule (if you used alge-
braic syntax) or the complete differentiation (if you used the stack syntax).

4. If flag -3 is set, then the HP 48 will find a numeric result if at all possible
no matter how you execute the differentiate command and will indicate an
error if it fails in its efforts.

5. Using the input screen of the Differentiate command (via (=[SYMBOLIC|¥]
ENTERJ), you can explicitly request either the numeric or the complete

symbolic result regardless of the current flag settings.

6. You can also use the input screen of the Differentiate command to perform
a step-wise differentiation.

Numerically Computing Derivatives 63



The following examples illustrate each of these options.

Example:

Option 1. Find the numeric value of the derivative of 5x*a + 3xa®
atx=38. Leta=4.

Make sure flag -3 is clear and store the appropriate values for x and

a: (3J+/-JeJclofF)(sPcl 8] JeJa)X)sTol 4] [eJea  ALSTO)

Enter the function: (" 5 X )XY 2)X)eJa)A)[HE)X)(@<)
XX (GIAI(R)ENTER)

Enter the variable of differentiation: (' JoJ&q]X](ENTER).

4. Compute the derivative: (=)3). Result: Z&H

Example:

Option 2. Find the derivative of the function 5x’a+3xa® at x =8,
using step-wise differentiation. Leta =4.

. Make sure flag -3 is clear and store the appropriate values for x and

a: (3]+/=JaJc)eJF)(spc] 8] JeJa X]STOo[ 4] ' JaJ& AISTO)
Create an algebraic expression for the derivative: (")) 3)(aJq]X)
SO X[JGXY2) X (Ja)A) (@]a)X)
ENTER).

. Evaluate the derivative: (EVAL).

Result: 'l Den™Feg )+ [ Jueg™d) !
The first application of the chain rule simply distributes the deriva-
tive function across the summation.
Evaluate again to see the next step in the differentiation: (EVAL).
Result: 'l o#u™F e a+0eu™F e {a )+ o 3% ) #53™
s (a™2))!

5. Continue evaluating the result until you arrive at a number. In this
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case, it requires three more “steps:” (EVALJEVALJEVAL).

Result: 268 —just as in the previous example.
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Example:

Option 3. Compute the symbolic derivative of 5x’a +3xa” , where
x and a remain variables.

. Make sure flag -3 is clear and purge x and a to be sure that they remain

symbolic inthe result: * (3 ]+/-] o] C] o] F)JENTER[GJ{ Y o] X
(ENTERJ&JPURG).

. Enter the function: ([5]X[eJa)X ¥ 2)X(eaAHE X (@a)

HX(JSIAYI()ENTER)

3. Enter the variable of differentiation: (' JaJ&q]X](ENTER).

Example:

Compute the derivative: ()3).
Result: 'S#(F*w)#a+3%a"F

Option 4. Compute the numeric derivative of 5x°a +3xa’® by re-
peating the previous example with flag -3 set.

1. Set flag -3: (3[3/-Jos]aJF)(ENTER].

Enter the function: (" 5 X[ X[Y¥2) X)) A+ (B)X)(«)a)
XX (JalA) S (2)[ENTER).

Enter the variable of differentiation: (' JaJ&]X](ENTER).

4. Compute the derivative: (]3).

Result: EFror: Undef ined Hame

This error message appears because a variable (or, as in this case,
more than one variable) in the function is undefined, and yet the flag
setting requires the HP 48 to find a numerical result.

*Remember that PURGing a variable removes it from the current directory only. To guarantee that a variable is
symbolic, it must be purged fromall directories in the current path. Ifthe current directory isHOME as the example
assumes, then PURGE is all you need. But if you’re in a subdirectory, you may need to use the PGALL program
(see page 313) to purge the variable throughout the current path.
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Example:

66

1.

N

w

9]

Option 5. Use the input screen to find the symbolic derivative of
5x%*a+3xa® at x = 3, where a remains undefined.

Open the DIFFEREMWTIATE input screen: (—)SYMBOLIC]¥]ENTER).

mme.x«%% DIFFEREMTIATE #ﬁﬁﬁ*ﬁﬁﬁﬁﬁ
EXPF:

YAR:

RESULT: Humer1ic
VAL LE:

ENTER EHPREZSION
ECIT JoHoos] [ STEP JiAMcL] OF |

Note that the KEZLLT: field shows up as MMt~ 11 because the
current setting of flag -3 is set (Numeric Results) from the previous
example. Also, the EiPFE: field may contain a function if you have
used it previously in this or a related screen.

. Enter the function into the EXPF: field: (" )5 [X]aJ [ X[Y¥(2)(X)(e)

CAHEX(EXX) JalA) I (2)ENTER.
Enter the variable of differentiation: (')oJé&q)X](ENTER).

Because you wish to find a symbolic result, change the RE:ULT:
field to Zdmbno 1 12, Note that this change is a temporary one: it
overrides the setting of flag -3 only in this one instance. After this
computation, flag -3 will still be in its Numeric state (i.e. set): (+/=).

. Store 3 inthe variable < CALC (§ mm
. Compute the derivative: B/ 5. Result: -H*' ataEa™y!
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Example:

Option 6. Use the DIFFEREMTIATE input screen to perform a step-
wise differentiation of 5x’a +3xa’ at x = 3, with a undefined.

1. Open the DIFFEREMTIATE input screen: (—)SYMBOLIC] YJENTER).

The function should already show in the ExPF: field from the
previous example, so enter the variable of differentiation: (¥)(*)()

(GIX)ENTER).
Change the KEEZULT: field to =umbial 12: (+49),

4. The proper values are already stored in the variables from the prev-

ious example, so just compute the first “step” in the differentiation:
ST Result: e D¥utFeg )i (Ixusg™2) '

. Press (EVALJto find the next step.

Result: Error: Undef ined Hame

What’s this?!? Remember that your choice of Sz ] 1= inthe
KEZULT: field is temporary—good only for one operation. When
you executed the second step of the differentiation, the flag -3 had
returned to its set position (Numeric) and because a is undefined, the
HP 48 returned an error.

Moral: It is generally more convenient to leave flag -3 clear and just
temporarily compute numeric results as needed, using Mt 1.
in the input screen or (<5]-NUM) from the stack.

Clear flag -3 and repeat this example. Now you will be able to eval-
uate the derivative to its completion.
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Formal Derivatives

Finding a symbolic, or formal, derivative requires that the variable of differentia-
tion be undefined. This is a problem if you don’t want to purge the variable of
differentiation—either you need to save the value, or itis simply too inconvenient
to purge all such names in the current path.

One solution is to substitute a different (undefined) variable of differentiation,
differentiate, then re-substitute the original variable into the result. This may
seem as cumbersome as the original PURGing procedure, but it is more conve-
nient as a program. The program, FIIEF, written by Bill Wickes in his book, HP
48 Insights, Part II: Problem-Solving Resources (included here with his permis-
sion—see page 294) does this. FLEF takes the function from level 2 and the vari-
able of differentiation from level 1 and returns the formal derivative to level 1.

Example: UseFLEF to getthe formal derivative (w/respecttox) of 5x’a + 3xa’.
1. Enter the function: ('] 5 [X] o] XX 2)X)(eJa]A)+)(3)X)(«)q)
XX (JalA)@I(2)ENTER)
2. Enter the variable of differentiation: (' JaJ&q)X]ENTER).
3. ExecuteF[IEF: (@) F)D]E[R)ENTER)or(VAR) (then(NXT)or (€5 JPREV

asneeded) [[@ITA. Result: 'S* (%2 1#a3+3#3™F " Note that this
result is obtained even if x is defined and/or flag -3 is set.

Above, a was undefined and so just carried along in the differentiation. Naturally,
if a is defined with a real number or an expression containing non-differentiation
variables, then its value is substituted in the result. But if a should contain an ex-
pression with the differentiation variable, that will also affect the differentiation.

Example: Repeat the previous example after first storing ' SIM(%) " in a.

1. Store sin x in a: (' JSIN] oJ&q] X)(ENTER] ' JoJ&q] A)(STO).

2. Enter the function: ("5 X) o X[YX2)X)(e]Jq)A)+H(E)X)(«)a)
XX (Ja]A)TI(2)(ENTER)

3. Enter the variable of differentiation: (']aJ¢q]X]ENTER).
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4. UseFDER:(a)a)F)DJE[RJENTER)or(VAR)(NXT)or PREV) T3
Result: 'S# i F#u 15T )+ 08w E2 L0500 )+ (I 5TNC)
Ar+aEeE (D050 )2 5INC:) ) !

Now a has a big impact on the differentiation.

Moral: Pay close attention to your non-differentiation variables,
even when using FLEF.

Angle Mode and Derivatives

One of the sneakier things that can affect your derivative computations for trig-
onometric functions is your angle mode.

Example: Purge xand compute the derivative of sin x firstin Radian mode, then
in Degree mode.

1. Purge x from the current path using FGALL (page 313): (" JoJ&)X)
(2fo[P]a) [ENTER)

2. Press (]RAD), if necessary, to change to Radian mode.

3. Enter the function and the variable of differentiation: (' JSIN)(aJ&)
ENTER](" JoJ& | X)(ENTER).
4. Compute the derivative in Radian mode: (=) 3). Result: ' C0S(3) !

5. Compute the derivative in Degree mode:
(JeJa)X)[ENTER])3). Result: 'COSCu )+ (1860

The results differ by a factor of /180. Why? The sine function is
defined primarily for radians, so a Degree-mode argument must first
be converted to radians. Thus, 2 IM( %) becomes SIMC 18H*w 1)
before the differentiation. Essentially, a trigonometric function in
Degree mode is a different function from its Radian-mode equiva-
lent and thus differentiates differently.

Moral: Use Radian mode when differentiating (and integrating)
with trigonometric functions.
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Units and Derivatives

Many real-world problems using derivatives require physical units. However,
when differentiating, physical units can be quite troublesome.

Example: Findthe derivative with respectto Vof V>h — gh® when the variables
contain the following values: A =5 N, g =25 cm.

1. Store the values with their units in the variables: (5] _J [N
GIHISTO) (2] 5 I el clala M (D (e )6)(sTo).

2. Enter the function and differentiation variable: (*)(e]V)Y¥)(2)X)()
CHEGlE [ENTER).

3. ©)3) Result: + Error: Inconsistent Unit=s
What happened? Repeat the differentiation, but step-wise this time.

4. Enter the derivative expression: (')3) o] V]a[O e V)@Y(2)(X)()
GHE (2)ENTER)

5. Begin evaluating: (EVAL. Result: &b/ O™ Exh )—alCo#h™F) !

6. Then([EVALJEVAL) Result: ' B4 (M)#2#W~(2~1)%5_N-(A_N~2

+EZo_omd=la\ R =Zsh™ (21000

The unit values are being inserted, and with the next evaluation, the
HP 48 will apparently add Newtons to centimeters—not possible.

7. Confirm your suspicions: (EVAL).... Sure enough, that was the error.

The program UDER (see page 332) can find derivatives involving unit values.
|IDER has the same syntax as the standard stack version of the derivative.

Example: Findthe derivative withrespectto Vof V>h — gh” when the variables
contain the following values: =5 N, g =25 cm.

1. Enter the function and differentiation variable: (' ]JoJV]Y*2]
(Ja[HH (G X) (eJa HYX(2)[ENTER) (" [ V)([ENTER].

2. Differentiate using LIIEF: (o)o)(U)DJEJR)[ENTER) or (VAR)(NXT)or
(G)PREV) as needed) lTIIA. Result: ' C1H_MI=!!
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User-Defined Derivatives

Most of the HP 48’s built-in functions that are continuous and differentiable
(called analytical functions) have derivatives built in, too. That is, the HP 48
knows how to differentiate any expression composed exclusively of these built-
in functions (i.e. most of the functions you commonly use). But you can include
user-defined functions (or as-yet-undefined function names) in your work, too.

A quick review of user-defined functions. You define a user-defined function
(UDF) by appending a parenthetical list of its arguments to its base name. For
example, the %T (percent of total) function would be defined: ' %1 (&, b)=1Hk*h.
a'.Thename of the UDFis '%[(a, b)' with the parentheses being used in the
manner of standard function notation, such as f{x) or g(x,y,z).*

Because the HP 48 knows no derivative with respect to x for ' %[ (4 41" when
you request its derivative, it returns a placeholder name: ' der%l (a9 1, B '
The 'der..." prefix is reserved for use with these user-defined derivatives. Note
that the derivative of a function must have exactly twice the number of arguments
as the function itself—so that the derivative definition works with the chain-rule.

These placeholder names are indeed just names; as the user, you must define them
as you would any UDF. For example, you might define the derivative of %T as:
"der%T Cal by da, db)=0db-a-b-w"Z#da)*1HH'. (Notice how all four
arguments figure in the definition.) Now, when the HP 48 is asked to find the
derivative with respecttoxof ' %1 [ 4 ' it will evaluate the user-defined deriv-
ative and return: ' —LyutEE1HED "

The use of UDF’s as placeholding variable names (remember: 'det~..."' vari-

ables are UDF’s) can be quite awkward and visually confusing. So this book uses

a different naming convention for placeholding names of derivatives. Instead of

"der%T (x, 9 1, )" forexample (see above), thisbook would use ' &% T . 5" .

This more closely resembles standard book format, dZ—OT (which the HP 48
X

cannot use because it involves a division symbol where no division is intended).

*Note the critical difference between '% 13y b} ' and '%T*#(a, b)': thelatter isn’t a name at all, but rather the
multiplication of the variable '%T"' by the complex number (2, b). The reverse problem—turning a multipli-
cation into a UDF by accidentally omitting the * in front of the parentheses is an all-too-common error, also.
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Implicit Differentiation

One of the common uses for placeholder derivatives is implicit differentiation.
For example, if you were to differentiate the function, (3x3 — 4)y —2x+1, with
respect to x, using the standard method of differentiation, you would need to first

solve explicitly fory: y =

PYERE Then, once the independent (x) and dependent
x

(y) variables have been separated on distinct sides of the equal sign, you would

3 Q42
find the derivative normally: dy _ 12x —9x" +8

dx (3x3 —4)2

This procedure breaks down, however, when it is inconvenient (or impossible) to

separate the independent and dependent variables (look at 4x” +2xy — xy’, for
example). This is where you can use implicit differentiation.

Standard differentiation treats variables other than the independent variable as
constants. Thus, if you leave the dependent variables on the same side of the
equation as the independent variable, standard differentiation will “mistreat”
them—ignoring their status as variables altogether.

Implicit differentiation treats the dependent variables as functions of the indepen-
dent variable, thus requiring that they be dealt with as variables during differen-
tiation. Implicit differentiation (so named because it implicitly defines one or
more dependent variables as functions of the independent variable) invokes the
chain rule for differentiating functions imbedded within functions.

On the HP 48, there is a built-in means of distinguishing between a dependent
variable to be treated as a constant during differentiation and one to be treated as
a function of the independent variable. To make a variable act like a function,
simply write it as such—a user-defined function. That is, instead of using '4'

as the dependent variable, use '4() "

Thus, differentiating 4 x> + 2xy — xy’ with respect to x treats y as constant, yield-
ing 8x +2y— y*. But differentiating 4x + 2xy(x) — x(y(x))’ with respect to x

invokes the chain rule: 8x+ (2x% + Zy) - (3xy2 jy + y3)

X
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Implicit differentiation is widely used in real-world computations because it
easily handles relations—curves such as ellipses and spirals that don’t obey the
vertical line test for true functions. Relations have variables that mutually affect
each other; no one variable can claim to be “independent” of the others.

Example:

Plot x* —3xy® +y’ —1, then find the slope of the curve at (2,-1).

1. Openthe PLOT application and change the T¥PE: field to o=

(Note that oM 1= may also be used to plot relations of two vari-
ables other than conic sections): (=[PLOT)(a](«)C).
Highlight the E: field, reset parameters, and enter the relation: (v)

CEUMENTER Je oI X () HE XXX (@aV)O9(2)
HQNYPIBEOENTER.

Change the independent variable to . and the dependent variable to

' 1153183 (V) () (J o [ Y) ENTER] (ENTER).
SetH=WIEH to—E E; plot: (6)]+/=)ENTER)(6)ENTER [F i AT 0.

-FF-F 1| e,
-~ " e
zooMfesa ] ] [ EDIT JiAmMiL

The relation clearly fails the vertical-line test; it is not a function.

Return to the stack, recall the relation (now in E[!) to level 1, and be
sure that '%' and '4' are purged in the current path:
DOLIE ]

To differentiate implicitly, you must replace each 'd in the relation
with %2 2. The LMATCH command allows you to substitute one
symbolic expression for another. Enter a list on level 1 with the ex-
pressiontobereplaced (''4') as the first element and its replacement
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("9 ') asthe second, then perform the substitution:
P TelaYIa O e e XIENTERIG [SYMBOLICINX D RERTTE

Result: 2% '"w™3-3#usg(u)®Z+ylu)na-1"

1: 1
7. The revised relation is on level 2 and a ] —a flag indicating a suc-
cessful substitution—is onlevel 1. Drop the flag, enter the vari-able
of differentiation, and differentiate: (DROP)(* [ J& [X)(ENTER)() 3.

Result: ' F#u™F—( 3y )™+ Teus eyl 1)
FPEYU ) 1 1 4deryg U, 11505yl ) 2!

8. The 'derdis, 17" is a user-defined derivative (see page 71), a
placeholder variable representing % (the slope of the relation),
X

created by the HP 48 because '4(:]1" is not defined. To find the
slope at the given point, just solve for the ' der4(x4, 11" and sub-
stitute values for x and y. Normally you would use QUAD to alge-
braically solve for an unknown variable, but not when undefined
functions are present—and ' detys, 17" and '] are both
undefined. So first substitute (using - 1 NHTLH again) with actual var-
iable names. You can use any allowable name, but this book names
derivatives with a “&” (] )]D)) followed by the name of the func-
tion, thenaperlod (“4 ), then the differentiation variable. Therefore
"derylu 17" becomes '&4.:' (and '40:)' becomes 'Y'):
O JalblealE[dJalR «al)OdaXE)))
@@@@@
@@m

Result: ' S%w™@— 3%y @+ 3% [ by, ;+?'*'-|ll+ﬂ-'-|

9. Find the general slope by solving for ' &4. %' viaQUAD—now that
the expression contains no UDF’s: (" a]=2)D)(aJ) Y- )(e]Jq)(X)
(ENTER)JPREV)EITTE. Result: '&4., w=—1 [t E-Rag ™)

[=C3#ws ey ) 1408y 0!

10.Now substitute the coordinates of the given point for  and 4 to get

anumerical value: (2)(JeJaXJSTO)(1[+/-)( e Jq Y)(STO)EVALL

Result: '&4.%=—.6"'. The slope of the relation at (2,-1) is -0.6.
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The program I[P (see page 295) automates the involved process of implicit
differentiation. I[1F'4 takes the implicit relation from level 2 and a list of the
variables in the relation from level 1. The first variable in the level 1 list must be
the variable of differentiation.

Example: Find the implicit derivative (with respect to x) of x> — 3xy? + y* — 1,
using I[P,
1. Enter the relation: (1)(Ja[X)7E)EHE)X)(&JalXX)(aly)
PIBEEENTER)

2. Enter the list of variables, placing the variable of differentiation, x,

first: (0)(Ja)X)(SPC) (@S )Y ENTER).

3. Compute the formal implicit derivative using I[TF&: @mn.ﬁ
(=)D)(ENTER) or (VAR) (then (N (:1 as needed) [

Result: 'F#u™r—(3%g™@+Tsws by, wsdsy) 1+hy, ws
-L.'-I"I a2l

IMP5 also makes it easy to implicitly differentiate a relation with respect to a
variable that doesn’t obviously figure in the relation. This is commonly the case
when working with related rates problems, discussed in greater detail beginning
on page 112. Look at an example:

Example: If V and » are functions of time, ¢, differentiate V? = kn? — 3n with
respect to z.

1. Enter the relation: (*)(e]V)7¥(3)a)=) (e KX(«aNOY(E)
HEX(eJaNENTER).

2. Enterthelist of variables, adding the variable of differentiation, z, as

the first element: ()1 (eJa)T)(SPC)(¢]V)(SPC)(a]a[N)(ENTER).

3. Compute the formal implicit derivative using II'F&: (o)1 M[P)
(=]D)(ENTER) or (VAR] (then (NXT) or (69 )JPREV) as needed) HIglEH.

Result: 'ab, t#3WE=kslan, teZsn)-23%an. 1 '

Or, in standard notation: 3V? av_ =2kn an _ 3@
dt dt dt
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Derivatives of Polynomials

For the purposes here, a polynomial is a function of a single variable of the form,
P(x)=ax"+a, x""+ -+ +a,x+a,, where n is a positive integer. The real
numbersa,a ,a , ... a, a,are the coefficients, and if a #0, the polynomial is

n-I’ “n-

said to have degree n. The ratio of two polynomials is a rational fraction.

Because polynomials have a single variable, they differ from one another only in
their coefficients, allowing the HP 48 to compute with a polynomial more rapidly
that with many other functions, using a vector of its coefficients. For example,
2x° =3x* +x’ +6x* —18x+11 wouldbe [ £ -3 1 & -15 11 I;and
2x°+x*+11wouldbe[Z B 1 B B 11 1. Thereis asetof programs designed
to simplify operations on polynomials, named here with their page numbers:*

PAOD (page 305): Add two polynomials.

FSLE (page 317): Subtract two polynomials.

FMULT (page 313): Multiply two polynomials.

FPOLER (page 315): Raise a polynomial to a positive integral power

PDIV (page 308): Divide (Euclidean) of two polynomials, M and N, resulting in
0 (quotient) and R (remainder) polynomials such that M = NQ + R.
Note that polynomial division doesn’t always yield a polynomial.

FOIVE (page 308): Divide two polynomials after eliminating common factors.

FCOMY (page 307): Convert symbolic expression (1 variable) to polynomial.

F+5%1 (page 317): Convert a polynomial in vector form to symbolic form.

FF+5 (page 320): Convert a rational fraction to symbolic form.

=+RF (page 328): Convert symbolic expression (1 variable) to rational fraction.

FDEF (page 307): Computes the derivative of a polynomial.

PF (page 309): Computes the partial fraction expansion of a rational fraction.

FPFHCT (page 310): Convert polynomial into factors with integral coefficients.

FPROD (page 315): Finds the derivative of the product of a list of polynomials.

PULIOT (page 316): Find derivative of rational fraction via quotient rule.

PREDUCE (page 316): Reduce polynomial coefficients to lowest integral values.

REMMOR (page 319): Convert results of FOIN or POIVE to symbolic result.

*Many were written for the book Algebra and Pre-Calculus on the HP 48G/GX and are treated in more detail there.
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As an example of the efficiency of these programs, compare using the built-in
derivative with FLIEF! to find the derivative of a polynomial.

Example: Find the derivative of x° +4x° —3x’ +8x” —15. Use the built-in
derivative first, then FLEF.

1a. Enter the symbolic polynomial: (' JaJ) X)¥(6)(+)(4]X)(«)a)X)
PIEEEXUGXYI ) H X (@)X 2= 5)(ENTER).

1b.Enter the variable of differentiation and make an extra copy: (')(«)
G [ENTER).

lc. Purge the variable of differentiation from the current directory and

then differentiate: (&5]PURG|[>]3).
Result 1: 'EB#u™S+ds(Gee™d ) -3+ 3t r 1+0s (e !

2a.Enter the polynomial as a vector of its coefficients. Don’t forget to

include zeroes for the “missing” x* and x' terms: (] 1)(1)(SPC)(4)
(sPc)(0)(sPc)(3]+/=)(sPc)(8)(sPC)(0)(sPC)(1]) 5 J+/—|ENTER).

2b.Compute the derivative using FIEFR: (o] )P|D)E[R)[ENTER) or (VAR)
(then or (§]PREV) as needed) Ha3H.

Result2: [ & 20 B -9 1o H 1 or6x’+20x —9x2 + 16x

2c. Optional. Convert the polynomial result back to a symbolic using
the F+551 program: (Jele)X) @[ PID =SV M)ENTER.

Result: 'EB#™0+EH# -G P+ 1 Bx !

Notice that the vector form for polynomials is not only faster to enter but faster
to compute with, as well. The other advantage it offers is evident when you’re
working with polynomials in situations where you can apply the product or
quotient rules....
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Example:

Find the derivative of (x2 + 5)3 (x+1)(2x -9), first using the built-
in derivative, then using the FFROL program.

. Enter the symbolic expression: (")) Q) XY 2]+5)>)

GO(HFJGXHDX GO IX Ja)X[=T2) ENTER).

. Enter the variable of differentiation: (']oJ&q]X](ENTER).
. Differentiate: ()3).

Result: ' [F#u# 3 0P +5 1005 Dt ] 1+ 0™ E+50 230 % [ P
Q1+ :x:"*E+5J’“:'Hi....+1 I

. Create a list of the polynomial factors. You’ll probably want to use

FPOLER to compute the cube of the polynomial [ 10 5] (i.e. x2+5)

(I3 (1) (sPc) (0] (sPC) (5) ENTER) ()11 3) (ENTER) (] ) (P[P IOJW)
ENTERIJLY) (1) (SPO) (1) ENTERIG )T 1) (2)SPO) (9] (+/] [ENTEW
G| LIET [@]*LIET]

. Differentiate using FFFROL: mmﬂﬂﬂﬂm or (then

or as needed) [3

Result: [ 16 -49 126 -525 BH -1375 -B3E

|_"_|:|
i

-
M

]

. Optional. Convert the polynomial result back to a symbolic using

the F+5M program: (")oeq)X)(ENTER) [ZEatal.
Result: 'lEn*f-e::""F'—"rq"" e+ EEE D-DE DR B

1575w —050#.—075"

The result comes more quickly in the latter case, and it’s in a simpler form. The
HP 48 multiplies (or divides) two factors, then multiplies (or divides) the result
by the third factor, etc., thereby creating an expression with nested parentheses
before being differentiated. Because of this nesting, the built-in command often
yields complicated (nay, ugly) results. However, notice that the built-in result
retains evidence of the product rule at work (it’s built into the command), whereas
the FPROL result does not. This may be important to you in a particular context.
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To see the nesting problem in its full glory, look at the quotient rule.

Example: Use the differentiation command to compute the derivative of
(x> +1)’(2x-5)’
(x* + 5)2 .

1. Enter the function (using the EquationWriter): (&5]EQUATION)(a)&)
O&QXYN2)HEEE R E0RGSXEERY
RO aXYI ) HE I 2)ENTER).

2. Enter the variable of differentiation: (')(c])()(X)(ENTER).

3. Differentiate: (—)3).

Result: ' (P88 38 (041 1808 (Pye-G )N+ (041 )7 3%
(4502050 ) B EINR- (4] AT (Pt

P M LN e e o Pl Ve o) R

There are two reasonable alternatives to the standard method, which you may find
helpful in returning equivalent—but more readable—results:

1. Using polynomial shortcuts, you can fully expand the numerator and de-
nominator factors, so that you have no exponents applied to groups of
terms, only to individual terms. Then, using a single application of the
quotient rule—via the program FLIIUT—compute the result.

2. Use logarithmic differentiation. Find the natural logarithm of the original
function, differentiate the result, and then multiply by the original function.
This result is a series of additive terms. (Logarithmic differentiation, dis-
cussed next, isn’t limited to polynomial functions and rational fractions.)

Look at the first method, because it applies to polynomials and rational fractions.
It makes use of two programs, =*FF and FLILIOT.

Because expanding polynomials in their symbolic form is notoriously slow on the
HP 48, the program S*FF (see page 328) converts the symbolic expression (level
1) composed of only polynomials in both numerator and denominator to an ex-
panded numerator polynomial, given as an array of its coefficients (level 2) and
an expanded denominator polynomial (level 1), also given as an array.
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PELOT (see page 316) uses the quotient rule for differentiating a rational fraction
whose numerator (level 2) and denominator (level 1) are arrays of coefficients.

(x* + 1)3 (2x-5)°
(x? +5)2

1. Enter the function: (&)EQUATION)(A)&G]O)(eJaX[Y*2)(™)(H)(1)
N3))CQ0EEaXEEEFIERIERGIO) (efalX)
12 )HE Y 2)ENTER).

2. Expand the expression to a simple rational fraction:
or (then (NXT) or (5)PREV) as needed) [T,
B_e__s_l_l_ljt E: [ "1' _:E E:F _ElEl ! |? EIEI ?9 "EE‘ Er:-l

1: [ 1 B 18 B &5 1  This represents:
x*—20x7 +37x° -60x° +87x* —60x> +79x* —20x +25
x* +10x* +25

3. Find the derivative of the rational fraction using the quotient rule:
(@) PYQJUJO)T)(ENTER) or (VAR) (NXT) or ()PREV)) [LETII'H.
Result: ¢ [ 16 -6H £34 -7el 1118 -144d 158E

—-248 B30 -1R6 ]
1: T 1 B 138 V3 B 123 1 This represents:
16x° — 60x* +234x7 —760x° +1110x° — 1440x* +1582x" —840x2 +690x — 100
x® +15x* +75x* +125

4. Optional. You canalso factor the numerator and denominator, using
PFHCT (see page 310). Swap the numerator into level 1 and factor

it; swap again and factor the denominator: (PIF)A]C)
(ENTER) or (VAR) (NXT) or (9] PREV) as needed) [H 18l (SWAP)[H F: 181 1.

Result: E={[E][E-5][1H1]
L1B811L04- E'E:EEIE]}
1+ {01835 1T[01 1 B ° +
So the simplified derivative is
2(2x—5)(x* +1)° (4x* - 5x° +38x% —65x +10)
(x2+5)3 '

Example: Find the derivative of
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Logarithmic Differentiation

Logarithmic differentiation is often a good method for differentiating a compli-
hl (x)hz (x) : 'hn (x)
Ji(%) (%), (x)
tions of x on the numerator and denominator, respectively. Logarithmic differen-

tiation requires that you find the natural logarithm of both sides of the equation
before differentiating. Thus, finding the natural log yields:

1n|g(x)| = ln]h1 (x)| + ln]h2 (x) h, (x)| - (ln]jl (x)| + ln|j2 (x)|+- . -+1n|jm (x)|)

Then differentiating and solving for the derivative function yields:

RO N O AT AL)
g'0) =&l ){h()+h<>+ h,(x) (jl<x>+jz(x>+ *mﬂ

The program LM (see page 301) implements lo garithmic differentiation for you.
It takes a list of the symbolic numerator factors (4, h P hn) from level 3, a list
of the symbolic denominator factors (j pJy e ]m) from level 2, and the variable
of differentiation from level 1.M returns to level 1 a symbolic expression repre-
senting g'(x) in the form shown above.

cated product of the form g(x)= , where h andj are func-

Example: Use logarithmic differentiation to find the derivative of
(x> +1)’(2x-5)’
(x2 + 5)2
1. Enter a list of the numerator factors:

1B SO RIX[IJGIX)E)(E > O™(2)ENTER).
2. Enteralistof the denominator factors: (] J& O [aJa XY 2]
(+H)(5)(™)@I(2)([ENTER).
3. Enter the variable of differentiation: (')aJ&]X](ENTER).
4. Perform the logarithmic differentiation using LM&: (o)) (N[=)D)
ENTER) or (then (NXT) or (9)PREV) as needed) [ H s E4l.
Result: ' [Ee (1 +u™F T [ =Sk )= [ Db 100 ) 2
e M TN el R L e SV R
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Derivatives of Polar and Parametric Functions

The standard representation of a function, such as y=4x2 + sin 2x, implies that the
function’s output value, y, depends upon the input value, x. Such “dependence”
can be misleading, however, whenever the function describes a situation where
the variables involved are actually independent of one another.

For example, the function y = -x?/64 adequately describes the curve a rock takes
as it is thrown horizontally off a cliff at 32 ft/sec. When the rock is horizontally
x feet from the cliff, it is y feet below its starting point. However, despite the
appearance that y depends on x, the horizontal and vertical motions are actually
independent of each other.

The parametric representation of the function emphasizes the true independence
of the two variables by making each dependent on a third value—a parameter.
Thus, parametrically, the function becomes x=32¢; y=-16¢, where tis the time
(in seconds) after the throw.

Many real-world situations are best represented parametrically, but the paramet-
. . d . .
ric form makes computing the slope, d—y, of a curve a bit more difficult than for
x
curves in standard form.*

The strategy for parametrically-described curves is to compute the derivatives of

each of the parameter definitions with respect to the parameter ¢, then solve for
dy dyldt

ﬂ. That is, because of the chain rule, — = .
dx dx dx/dt

*In Chapter 6, the program YOER (see page 332 for the program listing) performs a related task for a vector-valued
function. Vector representation and parametric representations are closely linked.
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The HP 48’s built-in differentiation tools work with functions in standard form
only. However, the program PHFH (see page 306) computes the slope of a func-
tion described parametrically at a given value of the parameter, . It takes a list
of parameter definitions—i.e. functions of ~—from level 2 and a value of ¢ from
level 1 and returns the list of symbolic derivatives (with respect to ¢) of each of
the parameter definitions to level 3, the symbolic expression for the slope in terms
of ¢ on level 2, and the numeric slope at the given value of ¢ to level 1. Note that
FHEAS requires that you use 't.' (lowercase) as the parameter.

Example: Find the slope of the curve described by x =32t y=-16£
when ¢ = 3.5 seconds.

1. Enter the list of parameter definitions: (G]{3)(")(3]2)X)(eJ[T)(>)
[ENTER).

2. Enter the value for the parameter: ENTER).

3. Compute the slope using FARHS: (@)@)(PIA]R]AI=)D)([ENTER) or
(then (NXT) or ((]PREV) as needed) [ailiikd.

Result: 3¢ L322 '-0E3EsD
r I I

—

—_ [

(g
.

The slope at t = 3.5 is -3.5 and the symbolic slope expression is —.
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One special form of parametric representation is the expression of a function in
the polar coordinate system. A function f(x) in the rectangular coordinate system
can be parametrized as a function in the polar coordinate system, (6) where the
polar angle, 6, is the parameter, and x and y depend upon 8 as follows:

x =r(6)cos6; y=r(60)sinO

where r(6) is the polar function. That is, a polar function is equivalent to a rectan-
gular function expressed parametrically via the relationship shown above.

Example: To express the polar function (6) = 2 sin(0) as a parametric form of
a rectangular function, replace 2 sin(6) for r(6) in the parameter

definitions above:  x =2sinfcos8; y=2sin’ 6

Finding the slope of a polar function can be achieved using the same chain-rule
approach as for parametric functions shown above:

d dy 1 d6 —g-;—sin 0+ r(0)cos 6
dx dx/do %cos@—r(f))sme

The program, Pl (see page 314), computes the symbolic and numerical slope
of a polar function for a given value of the function. It takes the function expres-
sion using ' B' from level 2 and the given value of H from level 1 and returns the
expression for the slope (level 2) and the numerical slope at the value (level 1).

Example: Find the slope of the polar function, r =1+2sin 8, at 6 = r

1. Enter the polar function: ("] 1)(+)(2)(X)(SIN)(¢]>)F)(ENTER).

2. Enter the value of the polar angle: (' J&])(=)(3)(ENTER).
3. In Rad mode, find the slope using FUL&: ((G)RAD), if necessary) (@)
(o)(P)(0)(L) (=>)(D)(ENTER) or (VAR) (NXT) or ((JPREV)) HalT5H].

Result: £& 'CC1+2=5INCHD I=COSCHI+SIMNCR (2%

SESINCRD I=5INCAD ) !
1: -1, 196153242265
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Notes

Notes
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This chapter contains many examples of the use of derivatives in solving many
important types of problems, including:

* Computing the rate of change “at the margin” of a function.

* Determining a function’s critical points.

e Determining the maximum or minimum of a function over a given interval.
* Finding the line tangent to a curve at a particular point.

* Finding the angle between two curves at their point of intersection.

* Computing the rate of change of one quantity from the rate of change of a
physically related quantity.

Marginal Analysis

The term marginal is often heard in financial analyses: marginal rate of return,
marginal profit, marginal tax rate, increasing marginal costs, etc. “Margin” is an-
other term for the slope of a function, so the phrase “marginal profit,” for example,
refers to the slope of the profit function (i.e. profit as a function of production
quantity) at any given point (i.e. level of production). “What,” asks the
manufacturer, “would be the effect on my profit of producing one more unit than
I’m now producing? That is, what is the effect of producing the next unit, the unit
that’s on the /nargin of my current production?”

For example, suppose a stereo manufacturer determines that its cost per stereo is
C(x)=3000 + 20x. This would reflect $3000 of fixed overhead plus $20 per stereo
produced. Further, the manufacturer computes that its average revenue per stereo
is R(x) = 1000x — x2. The stereo manufacturer currently manufactures and sells
500 stereos. Would an expansion of production to 501 stereos be profitable? In
other words, what is the marginal profit of the 501st stereo?

Profit is simply revenues minus costs, so the profit curve is:

P(x) = R(x)— C(x) =1000x — x> — (3000 + 20x) = —x> + 980x — 3000

The manager’s question can be answered by determining the slope of the profit
curve at x = 500, a perfect application for the derivative....
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Example:

Find the marginal profit at x = 500 of a process with this profit curve:
P(x)=-x*+980x —3000

. Enter the profitfunction: (' [+/=[Ja]X[Y 2]+ e 8 o)X ela)X]
(5 ET0J oI 0)(ENTER)

Enter the independent variable: (' Jo[éq]X)(ENTER).

3. Store 500 in '": (5)0)0)ENTER) ) STACK) I (STO).

Example:

Compute the marginal profit by computing the derivative: (] 3).
Result: —£H

The marginal profit is negative! This means that manufacturing the
next additional unit (the 501st) actually subtracts $20 from profit.

Repeat the previous example for x = 450.

. Enter the profit function: (' J+/=[oJa]X[Y 2+ )8 o) X)eJa]X]

=)o) o] o)(ENTER].
Enter the independent variable: (' ] oJ&q] X](ENTER).

3. Store 450 in ':': (4)5)0o)EnTer) A STO).

Compute the marginal profit by computing the derivative: (=] 3).
Result: 5H

This time, manufacturing the next additional unit (the 451st) adds
$80 to the profit.

Thus, although the profit function itself doesn’t change, marginal analysis shows
that the profit value of increased production depends on the current level of
production. Thus a savvy manager would increase production if the current level
were at 450 units, but not if the current level were at 500 units.
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Finding Critical Points

Marginal analysis raises an important point: Is there an efficient way to find the
optimum point in a function? In the previous examples, for instance, the idea
would be to find the level of production (x)—the number of units—that produces
the maximum profit (y). You know that at a production level of 450 units, the mar-
ginal profit is $80, but at 500 units the marginal profit is -$20. So it seems likely
that somewhere between 450 and 500 units, there is a level of production where
the marginal profit is $0.

Such a level would be a candidate for the optimum production level, because at
that point, manufacturing either one more unit or one fewer unit yields less profit.
That s, if x units is optimum, then x-1 units would have a positive marginal profit,
indicating that you can improve by adding one unit, bringing the total back to x.
On the other hand, if you manufacture x+1 units, you’d have a negative marginal
profit, indicating that you can improve by subtracting one unit, bringing the total
back to x. The maximum profit occurs at the point in the profit curve where the
slope changes from positive to negative—i.e. where the slope is zero.

The HP 48 can quickly compute the critical points of a function, f(x), which in-
clude its roots (points where the f(x) = 0), its local maxima and minima (points
where f '(x) = 0), and its points of inflection (points where f "(x) = 0).

Example: Plotthe profit function, P(x) = —x* + 980x — 3000, and then find its
maximum.
1. Open the PLOT application, set the T¥PE: to Furi=t. 12, and
reset the plot parameters: (=)PLOT)(a])(«)F)(¥)([DEL]Y)(ENTER).
2. Enter the profit function into the Ef: field: (*)(+/=)(eJX7¥(2)(+)
(el o) X)(efalX)(=)( o o] o) ENTER)

3. SetIMWDEP: to x (lower-case) and H-WIEK to 45 515 soasto
focus on the range of x where we are seeking to find the maximum:

(ENTER).
4. CheckHAUTO>CHLE toletthe HP 48 determine the appropriate verti-
cal scale, and then plot the function: Flieild 319 [TT1R0.

Finding Critical Points 89



s
'200M | 02,43 [TRRCE] FCH | EDIT

5. The area of the maximum is clearly visible in the plot. To have the
HP 48 compute the maximum, move the cursor near the apparent
maximum and select EXTRM (Extremum) from the FCN menu:

GBI Result: EXTRM: 4302371000

So the maximum profit is $237,100, earned by building 490 stereos.

The profit function you just plotted had only a maximum. But there are functions
that have both maxima and minima (i.e. both “humps” and “valleys”). Because
the slope for both maxima and minima is zero, you don’t necessarily know if the
extremum found by the HP 48 corresponds to a maximum or a minimum, unless
you do one of two things:

1. Narrow the search to an interval that contains the point of interest.

2. Compute the second derivative (i.e. the “slope of the slope”) at the ex-
tremum. If the result is negative, the slope is decreasing (going from posi-
tive to negative), so the extremum is a maximum; if the result is positive,
the slope is increasing (going from negative to positive), so the extremum
is a minimum.
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Example:

Plot x° —4x* —6x> +20x* —3x +9. Then narrow the search inter-
val and use the FCN menu to find all maxima and minima.

1. Cancel the current plot, returning to the PLOT setup screen: (CANCEL).

Highlight the Ei: field and enter the function: (a]a)(")(aJ& X)X
B OXJaXYI =X JaXPIEHRDX eIalX)
EHEIX(IaX)H(@)ENTER)

. ResetH=NIEL to defaults and set ! =WIEK to— 1 K 1A (»)DED

[EnTER) () CEENTER] YW (1) 0] 0 +/] (1XoJo)ENTER].
Plot the function: [T k13 U140

LS
L .[\f‘k-—‘.-a .
R R
- .lllll-
200 [c6. 4 [TRREZE] FCH [ EDIT JRMEL |

This plot shows two local maxima (“humps’) and two local minima
(“valleys”). Press to trace the cursor along the plot. Then
move the cursor to a spot near to the left-most maximum, and press
. Result (to 3 places): ExTFRR: {-1.718.53.7971

. Press to restore the menu, move the cursor to the right until it’s

over the next extremum (this time, a minimum) and press =i i.
Result (to 3 places): EnTEM: (0.0;"8.H.BB5]
Repeat step 6 twice more to find the other maximum and minimum.

Results (to 3 places): ExTEM: (1.246.18.06H) (maximum)
EWTER: {3.585.-B9.7231 (minimum)
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Perhaps a more unambiguous approach to determining maximums and mini-
mums is to plot the first derivative function. Every root of the derivative function
—i.e. a value where the first derivative is zero—corresponds to a maximum or
minimum value in the original function.

Example: Plot the derivative over the function (currently displayed from the
previous example) and find the roots of the derivative function.

1. Press to redisplay the menu, then (NXT) il Sl to add the plot of
the derivative function to the current function.

|
W)
TRACE|] FW | EDIT |iAMGL|

2. Move the cursor out near the left-most root of the derivative function

and press [AtHl. Result (to 3 places): KOOT: -1.718
3. Move the cursor to the next root of the derivative function and press

[ !'HE. Result (to 3 places): KOOT: 0.07H
4. Repeat step 3 for the other two roots:

Results (to 3 places): EOOT: 1.24A
ROOT: 3.585

Note that the roots of the derivative function have the same independent variable
value as the extrema of the original function. Furthermore, wherever the root
occurs when the derivative function has a negative slope corresponds to a
maximum in the original function and wherever the root occurs when the
derivative function has a positive slope correspond to a minimum in the original
function.
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Notice that the derivative plot also has “humps” and “valleys”—Ilocal maxima
and minima. These represent points of inflection—points where the slope of the
original function switches from increasing to decreasing or vice versa. Although
there is no direct computation of points of inflection on the HP 48, you can do it
easily by finding the maxima and minima of the derivative of the function.

Example: Use the plot of the first derivative to find the inflection points of the
original function.

1. Move the cursor near the left-most minimum on the plot of the de-
rivative and press EXTE]
Result (to 3 places): ExTEM: [=1.0683.-40.25)
2. Move the cursor near to the local maximum of the derivative plotand
press ; |
Result (to 3 places): ExTEM: (0.6/5.11.9161
3. Move the cursor near the right-most minimum of the derivative plot
and press EXTR A
Result (to 3 places): EwTEM: (2./BH.--/6.035]1

Thus the original function, x° —4x* — 6x* +20x* —3x +9, has local maxima at
x=-1.719 and x = 1.249, local minima at x = 0.078 and x =3.595, and points of
inflection at x =-1.063, x = 0.675, and x = 2.788.

To sum up what you know about finding critical points using the FCN menu in the
Picture mode on the HP 48:

Roots: Move the cursor near the desired root in the main function plot
and press 1R
Extrema: Either move the cursor near the desired extremum in the main

function plot and press {3di#d]; or move the cursor near the
desired root of the first derivative plot and press §i![1}i§].

Inflection Points: Either move the cursor near the desired extremum in the first
derivative plot and press §3dlllill; or move the cursor near the
desired root of the second derivative plot and press §i{t|1§f.
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Solving Optimization Problems

The examples in this section illustrate the use of critical points in solving real-
world problems that require you to find an optimum value. You’ve already seen
one such problem when you computed the optimum production level of stereos
to produce the maximum profit. Here are other problems for further practice.

The basic strategy for solving all of these problems can be summarized as follows:

1.

Identify the dependent variable—the quantity you are trying to maximize
or minimize.

Identify the constraints—the boundaries (i.e. intervals) or restrictions on
the process described by the function. For example, for situations involv-
ing physical objects, a constraint is that the number of objects be nonnega-
tive, even though mathematically a negative number may yield an opti-
mum result.

. Express the dependent variable as a function of a single independent vari-

able—just as profit was expressed as a function of the number of stereos
produced in the earlier example.

Plot the function for the range of all acceptable values of the independent
variable.

. Find the values of the function that represent the absolute maximum and/

or minimum within the range of acceptable values.

Use the results to answer the particular questions posed by the problem.

To illustrate this strategy, here’s a good starting problem.

Problem 1: A special cylindrical packing container with closed bottom and top

94

is to be made from two kinds of material. The material used to make
the bottom and top costs $.011 per square inch; the material for the
curved outer surface of the container costs $.006 per square inch.

The total cost of the special container is $31.00. If r is its radius and
h is its height, find the value of r that maximizes the volume.

3. APPLICATIONS OF THE DERIVATIVE



1. Identify the dependent variable—the variable to be maximized. In
this case, it is the volume, V.

2. Identify the constraints. Obviously all variables must be nonnega-
tive since you can’t have a negative radius, negative height, or nega-
tive volume. The other constraint is the total cost of the container
materials. The top and bottom comprise 27tr? square inches of sur-
face area, and the curved sides of the container comprise 2ntri square
inches. Thus the total cost of the container is:

.011(27r? )+.006(2rh) = 31

3. Express the volume as a function of the radius (). The volume of
a cylinder is V = mr?h, but this formula involves both radius and
height. To convertit to a function of just the radius, you must express
the height as a function of the radius and substitute this expression
for A in the volume formula. The constraints usually determine that
expression; the constraint expressed in step 2 above relates the vari-
ables of r and A, although you must still solve the expression for A:

31000 — 22772

h
127tr
Use this expression for £ in the volume formula and simplify:
V= 31000 r—22mr’

12

4. Plot the function for the range of acceptable values of r. Note that r
must be greater than zero but can’t be so large that V< 0. Just by esti-
mating you can see that when r =10, V< 0. So a range of 0 to 10
should include the maximum volume.

a. Open the PLOT application, and make sure that the TYPE: is
Furnct 10m. Then reset the plot: ()PLOT)(DEL|Y)ENTER).

b. Enterthe volume expression (the right-side only): (' [3] 1] 0] 0] 0]
HOEXaREHERXEMX (IR I (B)ENTER.

c. Entert™ for theIMDEP variableand® 18 forH-WIEH:
[ENTER)(0) (ENTER)(1)0) ENTER).

d. CheckHUTOZCALE and draw the plot: Fie [ [F  EA ST 1100

Solving Optimization Problems 95



™,

- ,
'
[200H o8 [TRACE] FCH | EDIT

5. Now find the maximum of the volume function: EXTE |
Result (to 3 places): ExTEM: (3.530. 50790051

6. Finally, answer the question and interpret the results. The maximum
volume = 6,079 cubic inches and occurs when the radius is = 3.53
inches. Atthat volume, the height of the containeris = 155.29 inches.
This special container (for glass rods) is nearly 13 feetlong and only
7 inches wide!

That’s the general approach to optimizing. Try a second example.

Problem 2: A manufacturing company uses a particular chemical ata steady rate
of 1200 gallons per year. Any number of gallons can be ordered at
a time, but there is a fixed handling charge of $100 per order, no
matter the size. Storing the chemical costs the company about $1 per
gallon per year, but it must be reordered whenever the stock on hand
gets down to 200 gallons. How many gallons of the chemical should
be ordered each time to minimize the handling and storage charges?

1. Identify the dependent variable. You are trying to minimize the total
handling and storage charges, C.

2. Identify the constraints. If # is the number of orders per year and g
is the number of gallons per order, then ng = 1200 is one constraint.

3. Express C as a function of g, the amount ordered each time. The
easiest expression for Cis: 100n + s, where s is the average number
of gallons in storage. However, you need C to be expressed as a
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function of g, not of n and s. Using the constraint, you can express
n as a function of g: n = 1200/g. The average amount in storage, s,
throughout the year is the minimum 200 gallons plus half of one
order’s worth. Note that the actual amount in storage at any one
point is likely to be either more or less than this, but the average
amount, s, is g/2 + 200 gallons. Substituting the expressions for n

120000
8

4. Plot the C function between g = 0 and g =1000 (because 1000 gal-
lons is the largest possible order if the constraint is to be met).

and s into the original expression for Cyields C = + % +200.

a. Open the PLOT application, check to be sure that the TYPE: is
Furict 10, and reset the plot: (=)PLOT)(DEL[YJENTER).

b. Enter the expression for the volume (right-side only): ('] 1]2]0]
= alsB(Hale)H () H (210 o) ENTER).

c. Enterd forlMDEP and& 1 HEE forH-YIEH: (o)<)(G)[ENTER)
© (11 0) o) 0)(ENTER).

d. CheckHUTOZCALE and draw the plot: [l TA[T T N80

+
(Z00H | it:7) [TRACE] FTH | ECIT JLAMIL]

5. Compute the minimum of the function: EXTR §
Result (to 3 places): EXWTEM: (4YHY9.898.-689.8981)

6. So the best order amount is 490 gallons, which will result in storage
and handling charges of $689.90 per year.
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If you have a good idea of the shape of function you’re optimizing and the interval
containing the optimum value, you may wish to use the program MIHHMIM (see
page 302) instead of using the PLOT application, since it will obtain the answer
more quickly.

MHEMIN takes from level 4 the function expression you would normally plot, the
independent variable from level 3, a number from level 2 indicating if you’re
seeking the minimum (use a negative number) or maximum (use nonnegative
number), and a list containing the search interval endpoints from level 1. To
restrict your search to integer values (eg. stereos produced, units sold), use —1 (for
minimization) or 1 (for maximization) on level 2.

Example:

1.
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Use IMAEMIM to solve the previous problem.

The first three steps of the solving process are identical whether you
use [A#MIM or the plotting method. Press until the stack is
displayed.

Enter the expression: (J(1)2]oJoJoJoJ=H)(eJalaH(elala)=)
EIHEITENTER)

Enter the independent variable: ('] oJ<5]G](ENTER).
Enter a -1 to search for a minimum of the function: ENTER).

Enter alist of the search interval endpoints: (G]){ })(0) (1] 0) 0] o)
ENTER|.

Use [MH=IMIN to find the minimum value of g:
or (VAR) (then (NXT) or as needed) [EIiF1w].

Result: g8 49H

Flgi: BE9, 89795918
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Problem 3:

A stereo manufacturing plant has a production capacity of 25 stereos
per week. Experience has shown that n articles per week can be sold
at a price of p dollars each, where p = 110 — 2n, and the cost of pro-
ducing n articles is n*+ 10n + 600 dollars. How many articles should
be made each week to give the largest profit?

1. The dependent variable is the profit, Q.

The constraints are that n < 25.

3. The profit is the revenue minus the cost of producing » articles per

Problem 4:

week. Revenue of n articles is np, or n(110 — 2n). Cost of n articles
is n> + 10n + 600. Therefore, the profit as a function of » is:

110n—2n> = (n® +10n + 600) = —3n> +100n — 600

. Using [TH#MIN, enter the profit function (right-hand side) and the

independent variable: (370 REENFIRHNEDXE
ENCERDETER e N ETE.

Enter a 1 to signal that you want to find the integral value of n that

maximizes the profit function: (1]ENTER).

Enter the endpoints of the search interval and use MAHMIN: (Gt}
(0 AR

Result: ns 17
fin): 223

Maximum profit ($233) is achieved by making 17 stereos per week.

The cost of erecting an office building is $1,000,000 for the first
floor, $1,100,000 for the second, $1,200,000 for the third, and so on.
Other expenses in the project (lot, basement, etc.) are $5,000,000.
Assuming that the completed building will generate a net annual
income of $200,000 per floor. How many floors will provide the
greatest rate of return on investment? (Note: the rate of return is the
revenues generated per unit of investment).

1. The dependent variable is the rate of return, I.

There are no special constraints other than the number of floors must
be one or greater.
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3. Express the rate of return, /, in terms of the number of floors built,

n. At first pass, the rate of return is

Revenue 200000n

I — =
Fixed Costs + Cost per Floor 5000000 + (10000007 + f(n))

The f(n) term reflects the extra incremental cost of each floor above

the first. The increment is $100,000 for the second floor and an

additional $100,000 for each floor after that. Looking at the incre-

ment as a cumulative sequence, beginning with the 1st floor, it is:
{ 0, 100000, 300000, 600000, 1000000, 1500000, ... }.

nz—n

Express this sequence as a function of n: 100000

(Note that the sum of the first n positive integers is the average of n
and n—1 or n(n—1)/2.) Substitute this function into the rate of return
function and simplify:
7= 200000n
500007 + 9500007 + 5000000

. UsingMHXIMIM, enter the rate of return function and the independent

variable: (1J(2] 0] o) o) oJoJX)(JaN)H&IO)(s) o) o) o] 0J(x)(e]
&) 8680000 (5J0J0oJoJoJo] 0]
(JeJaIN)ENTER)

. Enter a 1 to search for the integral value of n that maximizes the net

rate of return and alist of endpoints for the searchinterval: (1)[ENTER
U ENTER).

. Execute [lH=MIM to compute the solution: [ETFIw.

Result: £t n: 16
15 fim): 182564182564
The best rate of return (=10.26%) results from building 10 floors.
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Tangents and Normals

The derivative of a function at a point is the instantaneous slope of the curve at
that point. The line with the same slope that contains that point on the function is
the tangent of the curve at the point. (And the line perpendicular to the tangent line

there is the normal of the curve at the point.)

Example:

Plot f(x)= %, then compute and plot its tangent line at x = 1.4.
x

1. Open the PLOT application, check that T¥PE: is Furnct ion

and then reset the plot parameters: (—JPLOT)(DEL] Y]ENTER).

2. InEf¥:, enter the curve’s expression: ('])(2]=)(@f)X)2*)(3)[ENTER).
3. Enterthe independent variable; plot: ERAZE|DEAL !

4. Press A9 E4FHEH , then press () until #: 1.4 is displayed.

bt P ———
‘ulll
(200 [ e840 [TRACE] FCH | EDIT [EAMIL]

5. Find and draw the tangent at that point: TAML §

et —+
|

TAMLIME: 'Y=-1.56184922949%:+2.9154

'|

6. (CANCELJCANCEL) to the stack. The tangent equation is on level 1.

Tangents and Normals
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There is no built-in means of either computing or plotting the normal to the curve.
However, remember that the slope of the normal is the negative reciprocal of the
slope of the tangent (and the point of tangency is on both lines). So, with a slope
m and a point (7,s) you can compute the line: y =m(x —r) +s.

The program THFLCM (page 330) computes both the line tangent and the line nor-
mal to a given function at a given point. It doesn’t require you to plot the function
first, nor does it plot anything itself. TMFLM takes the function from level 3, the
independent variable from level 2, and the value of the independent variable for
the point of tangency from level 1 and returns the equation of the normal to level
2 and the equation of the tangent to level 1.

Example:

Example:
2.
3.
102

Use THFCHM to find the normal and tangent to f(x) = % atx=-2.
x

1. Enter the function: ('] 2]=]aJ&]X][Y*]3)(ENTER.

1.

Enter the independent variable and then the value of the independent
variable at the point of tangency: ('] oJé&q) X ENTER)(2]+/—]ENTER).

. Use TMFLCM to compute the tangent and normal lines to the curve at

that point: (] o] TJNJFJC]NJENTER]or (VAR) (then (NXT) or (65)PREV]

as needed) fill. IS5
Result (to 3 places): & Morm: 'y= hhu 4+, B3
Targ: '—l—" AroEe)-1"

Find the normal and tangent to f{x) = cos x at x = 0.

Enter the function: (' JCOS)(aJ&q)X](ENTER.

Enter the independent variable and then the value of the independent
variable at the point of tangency: (' [aJ&q)X]ENTER)(0JENTER).

Use TMFLCM to compute the tangent and normal lines to the curve at

the given point: (oo TJNJFJCJNJENTER)or (VAR) (NXT)or (65 ]PREV)
as needed) fif,| =0

Result : 28 Morms Tu=E

12 Tang:

Here the tangent is a horizontal line and the normal is a vertical line.
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Finding the Angle Between Two Curves at a Point

The angle two curves make when they intersect is the angle between their tangents
at the point of intersection. If the slopes of the two curves are m, and m,, then the

m,—m,

]. The angle computed by this form-
1+mm,

angle of intersection is: 6 = tan“(

ula is the angle from the first tangent to the second in the clockwise direction.*
If you’re given two curves, you must do the following to find the angle they form
at their intersection:

1. Determine the coordinates of the point of intersection.
2. Determine the slopes of the each of the curves at the point of intersection.
3. Compute the angle using the formula above.

Most of the difficulty comes in determining the point of intersection.

Example: Find the angle between y = x> and y = 1/x where they intersect.

1. For two curves that are both functions (i.e. they both meet the verti-
cal line test), you can find their intersection(s) by plotting them.
Open PLOT, check that TYPE: is setto Funict i0om, and reset the
plot parameters: (—)PLOT)(DEL)(Y)ENTER).

2. IntheE®: field enter a list of the equations of the two curves: (&]{ }]

D JSIXIYH2) () (= e a) X) ENTER).
3. Set the independent variable to * and plot the curves: (' JaJ&]X]
ERAZE[DRAL |

Y
BT TRACE] FIW | EDIT [UANIL]

*Of course, the two curves form a second angle when they intersect—the supplement of the one you computed.
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4. Find the point of intersection: I%ECT
Result: |=%ECT: 1.1}

5. Return to the stack and store the coordinates of the point of inter-
section in x and y respectively: (CANCELJ(CANCEL)(MTH)(NXT )i u|od8

HEEE ()Y IsT0) () X)STO).
6. Compute the slope of the first function at (1,1): (* JaJ&e X]Y¥2)
ENTER) () X)ENTER[>]@). Result: &

7. Compute the slope of the second function at (1,1): (' J1][=[aJ&)X)
(JQXENTER([>)3). Result: —1

8. Using the two slopes, find the angle of intersection (in Deg mode):

(&JRAD), if needed to change to Deg mode) (=)(1)(ENTER] 2)(ENTER)
G ANCRE)] YVECTR | RES |

Result (to 3 places): '1.260

The previous example is a very simple one because it involves only curves with
explicitly separated independent and dependent variables whose points of inter-
section are easy to determine. The next few examples illustrate how to deal with
other, more complicated sets of curves.

If one or more of the curves are expressed so that you cannot easily separate
independent and dependent variables, you must use implicit differentiation to
compute the slope of its tangent. Furthermore, you’ll need to use either the Conic
plot type (for curves of second degree or less) or the SILMFPLT program (for
curves of third degree and higher—see page 325) to view their intersections. But
then that brings up an additional problem: how can you determine the point or
points of intersection? The Conic plot type doesn’t have the FCN menu com-
mands (such as ISECT) available to it.

If you can separate the independent and dependent variables in one of the curves
then you can find the points of intersection by substitution. The following
example shows you an illustration of this.
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Example: Plot the following curves and then find the angle between them at
their points of intersection: x>+ xy + y*=7; y = 2x.
1. Open PLOT, change the TYPE: to Cm 11Z, and reset the plot para-
meters: (2JPLOT)(4) (] C)(V)CELIVIENTER)

2. InEX:, enter the curves as a list: (U JoJq [X)¥(2)(H)(e)e)
XX (aVHUEWPIREEEROMaEERX
(@JIX](ENTER).

3. Change IMDEP: to = (lower-case) and DEPMI: to'd, then draw the

plot using the default viewing ranges: OPT: (20
ERAZE|DEAK §

ZO0R L ] EDIT JLARIL]

As you can see, there are two intersection points.

4. Although the Conic plot type has no FCN menu to compute ISECT,
you can move the cursor near the points of intersection and view the
approximate coordinates using [FJH#ll. You see that the points of
intersection are approximately (-1,-2) and (1,2). Cancel the plot and
redisplay the stack: (CANCELJCANCEL].

5. Now compute the exact intersection of the curves. Because the
second curve (actually, it’s a line) is essentially a definition of y in
terms of x, you can substitute the definition for y in the first curve.
To do this, make sure that x is a formal variable, then store ' &%

in the variable 4, and enter the first equation: (' JoJ&]X)(ENTER)(E)
)X eI X)ENTER) (" JaJ&a ] Y) (JeJa]X)
(LX) B(Ha)ZIR&ISEENTER).

6. Substitute the expression for y by evaluating the expression for the
firstcurve: (EVALJ¢ SYMBOLIC HFI B[ T Result: ' /#x™e=7"
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7. Solve the resulting equation for x. In this case you can see that the
equation resolves to x>=1 so that x = 1. (You can use the Solve
application to solve for x in more complicated cases.) Atx=1,y=
2 and atx=-1, y=-2, as you can see by using the second curve equa-
tion. Thus the points of intersection were exactly (-1,-2) and (1,2)
not merely the estimate you obtained from the plot in step 4!

8. Now compute the slopes for the two curves at their points of
intersection. The slope for the second curve is constant: 2. To find
the slope for the first curve, use implicit differentiation (see page 72).
Purge 4 again, enter the first curve, then use the program I[F'&: (7)
(then or (§)PREV) as needed) HTEIEH.

Result: ' &#u+[ytrusiy, wl+iy, wxlsy=H'

9. The '&4.%' term means “derivative of y with respect to x”—i.e.,
the slope. Now, solve for the slope at two intersection points with the

Solve application. Open the Solve application ((=]SOLVEJENTER))

and install the implicit derivative expression on level 1 of the stack

as the current equation in Ei2: Lo, |8 s (DROP), if necessary to
bring the derivative to level 1) BTl

10.Enter the set of values forr and ' corresponding to the first point of

intersection and solve for #%.1: (v)(1)(ENTER)(2)(ENTER) 1 &Y 3.

Result; =Y.H: —a =

11.Enter the set of values for 11 and corresponding to the second point
of intersection and solve for #'.i: (a]a)(1]+/=) (ENTER] (2]+/5)
ENTER)E1!I®NS. Result: &4.H: —a'
The same result as before: the tangent lines at the two points of inter-
section are parallel.

12.Find the angle of intersection at both points of intersection: (CANCEL

00 EER (870 BER) X @) ) ©) G (@ AE]S
(ENTER). Result: 7. FH5

Note that you need to make just one computation because the slopes
of the two curves are identical at both points.
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The program [ 1HCE (see page 287) automates the computation of the angle once
you know the point or points of intersection. It takes a list of curves from level
3, a list of the variables from level 2, and the point(s) of intersection as a list of
order pairs of coordinates from level 1. The coordinates in level 1 should be in
the same order within the ordered pair as their corresponding variable names are
listed on level 2. The angle of intersection—displayed according to the current
angle mode—is returned to level 1.

Example:

Repeat the previous example using C1BLE. Assume that you al-
ready know the points of intersection.

Enter alist of the curves. Remember: both expressions should have

two variables: (G0 Jo/aX)P¥@H@EQXXEMH
(Y YYREEH@D) e )EERX) (@) (X)ENTER.

Enter a list of the variables: (&]{ })(aJ&]X] (a]J&] Y)(ENTER).

3. Enter alist of the points of intersection, each point expressed as an

ordered pair of coordinates: (] ) O G [2)» IS O ]+/-)
)/ ENTER).
Compute the angles between the two curves at the points of intersec-
tion using C18LCY: (o)) c)1)(=)FJC)2)[ENTER) or (VAR) (then (NXT)
or (]PREV) as needed) (s ;18]

Result (to 3 places): f acl, 20 V7. 905

sQC-1,-2): F7L9HD D

Note that this result assumes Deg mode like the previous example.
If you were in Rad mode, the answer would be 1.360 radians.
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Now for the final complication.... The points of intersection of the previous set
of curves were easy to find because it was possible to make a substitution of one
variable with another. How do you find the point of intersection in situations when
it isn’t easy to perform such a substitution?

Two special tools need to be added to those that come built into your HP 48.
SOLYPLT is a program that will plot any two-variable relation or set of two-
variable relations, by combining the Solver and Function plotting capabilities of
the HP 48. ML5'"S solves a system of non-linear equations starting from an initial
estimate of the solution. Since non-linear systems may have more than one solu-
tion, ML'5""3 can find different solutions depending upon the initial estimate you
give it—much as the built-in Solve application does when solving for a missing
variable. SULYPLT is useful for determining the number of points of intersection
and for giving an estimate of their coordinates, whileML="1"= can take the estimate
coordinates and compute the exact (within limits of machine precision) solutions.

SOLMPLT (see page 325) takes a list of the curves from level 5, a list of inde-
pendent and dependent variables (independent listed first) from level 4, a list
containing the low and high endpoints of the plotting range from level 3, a list of
starting estimates of the dependent variable for each curve from level 2, and a
positive integer representing the resolution of the plot from level 1. Larger level
1 integers lead to fast-and-rough plots, while smaller level 1 integers give slower-
but-more-precise plots. The list of starting estimates on level 2 should have one
entry foreach curve. However, an “entry” canitself be alist of two or more values,
if its corresponding curve is one with more than one branch—such as a conic. This
allows SULYPLT to draw all branches of complicated curves if you choose start-
ing estimates wisely.

MLSY'S (see page 304) takes alist of curves from level 3, alist of the variables from
level 2, and a set of starting guesses for each of the variables—either as a list or
as a complex number (ordered pair)—on level 1. All of the lists must contain the
same number of elements. The curves listed on level 3 must each be expressions
equal to zero. For example, the polynomial x*+4x?>-3x+5 should be expressed as
x*+4x>-3x+5-y, reflecting that the polynomial is equal to y by implication. There
should always be a minimum of two curves and two variables when using ML 55,
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The following example illustrates the use of both SULWFLT and ML5Y'S:

Example:

Find the angle between x*+x?y-xy*+6y3= 2 and x>+y*= 4 where they
intersect.

. Enterthesetof curves as expressions equal to zero: (& J{ }] ' JoJ X)

0 69630 G 97 33 () Gy 2 G G 3 03 ) G A s 3 €3
R OENFEEEE0BOE NGB OEUEEE
(4)ENTER).

Enter the set of variables: (]{})(eJ&)X)(SPC)(aJé&q) Y)([ENTER).

3. Find the curves’ points of intersection. Because MLS%'S requires

you to enter a reasonable guess to seed the search for points of
intersection, it behooves you to plot the curves—using SOLYFLT—
to deter-mine the number and approximate location of all intersec-
tion points.

a. Enter the list of curves and the list of variables—which you can
do simply by making a copy of the first two stack levels. Make

a second set of copies for later: (¢9]STACK pupPz | oDUPe §
b. Enter the plotting range. The second curve is a circle of radius 2,

so a range of -2 to 2 is reasonable: (&J{}[2]+/=JSPC]2)(ENTER)

c. Enteralist of starting estimates for y for each of the curves. Since
the first value of x is -2 for the given plotting range, estimate the
value of y when x = -2 for each of the curves. For the first curve,
an estimate of about 1 seems close. For the second curve, acircle,
you need a list of starting points, so that both “halves” of the
circle are drawn (use -.001 and .001 for example). Enter the

estimatesasalist, L 1 € —.BB81 .BE]l } X QO)[)ESPO)
IO T o) )+/-)(SPC) (- Lo o )(ENTER).

d. Enter 4 to set the plot speed/resolution: ENTER).

e. Use30LVYPLT to plot the curves: (o) S)O L)(V)]P) L) T)ENTER)
or (VAR) (then (NXT) or ((§]PREV) as needed) kA1 BNY. ...
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[Z00H x4 [TRACE] FEM | ECIT [oancll

f. There appear to be two points of intersection. Move the cursor
near each point of intersection and press (ENTER) to copy the co-
ordinates to the stack, to be used as the estimates ML5Y'S. Press

when you’ve finished.
Result (to 3 places): g 1,785, B, 857,
1: (1.5846, -H.663)

.-"'-.-’-'_.
)éﬁ_':._ﬁﬂ;‘x,
4 4 4 ,lll..\‘.. 4 | 4 4

g. Gather the estimates into a list, then make copies of the curves
and Varlables and gather each into a two-element list:
| LIET [3LIET[OEYERASS|RILL N ENEB[ERS] LIZT |
-mmm
E]m.

h. UseML%"3 (in list processing style) to compute the actual points

of intersection: (3JENTERJxJ« »|(e[[NJL)(S]YJS)IENTER(PRG]
LIZT | PROC | DOLIE S

Result (to 3 places): 1 + =xf —1.8H7 iy:

-
r

[

. Rearrange the previous result so thatit’s in the proper form and com-

pute the angles at the given points using C1HCZ: (1)[ENTER)EGJ< »)
(EVALIMTHNXT) Lo g T8 LIZT | PEOC |DOLIZE
(then or (§]PREV] as needed) [ 18],

Result (to 3 places and in Deg mode):

L sEC-1.887, 8,857 '-'1 ar3
TH01,59, -H. 6500 P9,ERE

The two angles are =81.6° and =79.0°.
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One last point needs to be mentioned.

You may have noticed that S0LYFLT takes some time to do its work (and that’s
plotting only one of each four pixels!). The Conic plot type will plot the second-
degree Taylor’s polynomial of any third-degree (or higher) relation of two
variables and can also be used to determine starting estimates. For many cases,
it may plot faster, although the visual results are deceiving.

For example, using the built-in Conic plot type to plot the two curves in the
previous example, using the same plotting and viewing ranges, and default
resolution yields:

4 4 4 4 r 3

‘l,‘ l S 2

. 1S
2o00mfina] | | ENT

There appear to be four points of intersection—even though the “true” plot shows
only two points of intersection. The good news, however, is that if you were to use
four estimates based on this plot withML5'"S, you would get the two actual points
of intersection just as before—you would simply get multiple copies of one or
both of them. If you’re aware of the potential deception of Conic plot, it can be
a speedier alternative to using SIIL'YFLT for higher-order relations.
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Related Rates of Change

Probably the most common use for derivatives is to analyze processes that change
with time—situations in which time ¢ is the independent variable. In many com-
mon real-world contexts, processes that change with time involve several related
quantities that all simultaneously change with time.

For example, as a balloon is inflated, there are a large number of geometric and
physical attributes—volume, surface area, radius, diameter, circumference, weight,
internal pressure, and temperature—all changing simultaneously. Since many of
these variables are related to each other by mathematical formulas and physical
laws, it should be possible to determine the rate of change of one attribute if you
know the rate of change of a related attribute—and if you can describe that
relationship mathematically.

This kind of question is often referred to as a related rates problem. Here’s how
to attack related rates problems:

1. Determine which quantities are changing (variables) and which are con-
stant in a given problem. This may involve drawing a diagram of the prob-
lem to visualize the process involved.

2. Express a mathematical relationship between the variables. Keep it gen-
eral—don’t substitute measured values for any of the variables yet.

3. Differentiate the expression with respect to time. This usually requires an
implicit differentiation because you must treat all variables as functions of
time, the variable of differentiation. The result will be an expression relat-
ing the rates of change of the various quantities.

4. Substitute allknown variable and rate values for the instant in time in which
you’re interested. Check to make sure that you’re using compatible units.
For example, if a distance is measured in inches but arate is given in ft/sec.,
you may need to divide the distance by 12 before solving the expression.

5. Solve for the quantity or rate that you require. Be careful in this final step,
too, to use compatible units.
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Example: A spherical balloon of radius 3 cm is being heated. If its radius is
increasing at 5 mm per minute, how fast is the volume increasing?

1. Determine the variables and the constants. The radius r and the vol-
ume V are the variables in this problem.

2. Express a mathematical relationship between the variables. The

. : . . 4
volume of a sphere is defined in terms of its radius as V = Enr3.

Enter the expression onto the stack: ()] VI&][=)(4)=E)X)EJm)
9E)ENTER)

3. Implicitly differentiate the expression with respect to time. Enter a

list of variables, with the time , t., first: ()}
ENTER). Then use the implicit differentiation program,
IMP&: (then or (§)PREV) as needed) HTRER.
Result: '&W,t=1,333%m*(ar, L3520
. . dv . dr
Remember that, by convention, ' aW. 1 ' is a7 and '&r.t'is 7
t
4. Substitute all known values. The two known values are the rate of
change of the radius (3t".1), 5 mm/min; and the radius ("), 3 cm.
At this point, you must choose: If you include units, you must give
the correct units for all variables in the expression, even the values.
So in this problem, you’d store a valid unit for &4t , such as 0 cm?/
min, besides the known values. If you don’t include units, you must
manually adjust values so as not to omit unit conversion factors:
either change the radius rate to 0.5 cm/min or the radius to 30 mm.

This time, store the values with units: (5)(=(oNTS) R HEEE
NS TIHE [@] MM [@EREIOEEBOEG
) (venu) B (1)) )R) (ST0) (o) (o)uniTs) IR
RS TIHE (@] MM [@OREEN8EEUES!

5. Solve for the quantity or rate desired. Open the *OLYE ECUATIOM
application and retrieve the differentiated expression from the stack

using the CALC feature: (=)SOLVEJENTER)(NXT) ;14§ (DROP), if
necessary to bring the expression to level 1) [l{[3ll. Then make sure

the #.T: field is highlighted (it should be) and press k11| §45.
Result (to 3 places): #W.T: SE. 233 _cm™3-min
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Two boats are racing at constant speed toward a finish marker, boat
A from the south at 13 mph and boat B from the east. When equi-
distant from the marker, the boats are 16 miles apart and the distance
between them is decreasing at 17 mph. Which boat will win?

. Determine the variables and constants. A diagram is best:

b
,ooooo B>

Here a is the distance between boat A and the finish marker; b is the
distance between boat B and the finish marker; and d is the distance
between the bows of the two boats. All distances change with time.

Express amathematical relationship between the variables. Clearly,
it’s the Pythagorean theorem: a?+ b>=d?. Enter the expression: (')

WA EHESBYIE G SR (2)ENTER.

Implicitly differentiate the expression with respect to time. Enter a
list of the variables, with ¢ as the first in the list, and execute I[1F5:

UG TISPO)(afa]A)sPC)(oJa)B)SPC) e Ja D)ENTER)VAR)
TEIEH. Result: 'aa.txfxa+ib, t+2sh=5d, 1 x7xd’

Open the *OLYE ERUATIOM application and retrieve the expres-
sion to the EiXt: field: (—)]SOLVEJENTER)(NXT) E1 Bl (DRoP K 1 .

Substitute known values for the appropriate variables and rates.
&3.1 = -13 mph (negative since a is decreasing); d = 16 miles;
ad.t =-17 mph. That leaves two variables (3 and £r) and one rate
(3b. 1) unknown—a situation impossible to solve. Butd = b at the
moment in question, so 2a* =2b>=162. Solving for a (and thus also
for b) yields =11.3137. Store the values in the appropriate variables.
Because the units are consistent throughout (miles and mph), you
need not include them:
)G 3BT ENTER) (1 7) (/) [ENTER) (1] 6 ENTER).

Solve for the desired quantity. The missing value is the speed of boat
B (3b. 1) at the moment of decision. If it’s faster than boat A (13
mph) B will win; otherwise, boat A will win. Highlight %E.T: and
FI[HTS. Result (to 1 place): #E.T: —11.8 Boat A wins!
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The RELRT Program

The program FELET (see page 318) assists you in solving related rates problems.
Ithelps manage the change of variable names necessary for proper differentiation
and keeps track of all the variables involved in such problems.

To begin FELET, put the relationship function (or list of functions) on level 3 of
the stack. Put alist of the variables in the problem on level 2. If time is an explicit
variable in any of the relationship functions, use 't' as its name and make sure
it comes first in the level 2 list of variables. On level 1, enter the name (or list of
names) of the variables you’re solving for. If you want to solve for a rate of change
of a variable (i.e. its derivative with respect to time), use the convention first
described on page 71. For example, to solve for the rate of change of volume, V,
you would enter ' 3W.1 ' (read “derivative of V with respect to #) on level 1 of

the stack. The & character is ()—=)D).

After you’ve loaded the three stack levels properly, launch FELET. It will com-
pute a few things and then prompt you to enter the values of the known variables.
By convention, a zero following a variable name (eg. 'H) means the value of the
quantity at time = 0. At following a variable name (eg. ¥/t ) means the value of
the quantity at the moment in time being examined.

As you enter values for the various variables, you must choose: do you include
units? FELRT can perform unit conversions, but if you include units, you must
input a unit for every variable and every rate in the problem (for values for which
you have no information, you must enter a zero with the valid unit attached). The
exceptions are the initial values—those names such as W, ending in H.* If you
choose not to include units, be sure to perform manually any unit conversions of
the values necessary to make them consistent with one another and enter values
just for the variables you know something about, leaving the unknowns blank.

Once you’ve entered values (with or without units attached) for the variables,
press [0 and the variable(s) you included on level 1 originally will be solved
for and the answer returned to level 1 of the stack.

*Not all problems require or involve status of variables at time = 0. For these kinds of problems, the initial values
can be (and must be) left blank, even when using units.
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An empty underground storage tank has the shape of a cone (vertex
down) 20 feet deep and 40 feet in diameter. If water is pumped into
it at a constant rate of 100 gallons per minute, how fast is the water
depth in the tank changing 10 minutes after the start of pumping?

. . . 1 .
. Determine the variables. A cone’s volume is V =§nr2h, which

represents the volume of water in the tank at any given point, where
V is the volume of water, r the radius of the surface of the water and
h the depth of the water. All three of these vary with time.

Express the relationship between the variables. You already have an
expression, but it can be simplified further. Notice the relationship
between r and A: If the diameter of the tank is 40 feet, then its radius
r is 20 feet—equal to its depth A. Thus, you can conclude that r=h,
and because you are asked to solve for a rate involving the depth 4,

the expression for the volume is reduced to V = %nh3.

Enter the expression: (' Jo]V)(=JOI=3XGamMX(aHZIE)
[ENTER).

. Begin the FELET program. Enter a list of the variables in the ex-

pression: (]{ ENTER). Enter the variable or rate

for which you are solving. In this case, it is the rate of change of the

depth A, or '&h.t " (e =2 Do) R o)) T)[ENTER).

Finally, execute FELFT: (@))R)E]L)R)T)([ENTER) or (VAR) (NXT) or
()PREV)) [1dHld. After a few moments you’ll see this display:

LA RELATED RATES S
ritecr: [

yn: yUT: &W.T:
Ho: HT: LH.T:

EMTER TIME WITH OF WITHOUT UNITS
BT f 1 1 JvAML] OK |
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4. Store values with units in the known variables and rates and store a
zero value with the appropriate unit in the unknown variables and
rates. Known values are: t = 10 min; V.z = 100 gal/min. Units for
unknowns are: V. =0 gal; h =0 ft; 8h.t = 0 ft/min. Leave V, and h,
blank because they aren’t used in this problem (the situation at ¢ =
0 isn’t relevant here).

Store the values and units:
ENTER oo [Jale[Ja A el [LENTERI (1] o) o) o)
LlGdala ey e M ) e NENTERD0])
- 2
[ENTER].

5. Solve for the specified variable. Inspect the values you’ve entered
in the previous step and when you’re satisfied they’re correct, press
BEOTEE. You'll see the message S 1wime . . o, and after
a bit, the solution will be returned to the stack.

Result (to 3 places): &h.t: B, 168_ft-min

After 10 minutes of pumping, the water level is rising at about two
inches per minute.
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A weather balloon is tethered so that it stays at a constant height of
300 meters. The wind blows it horizontally at a rate of 8 m/second
fromits original position. If the line is spooled out so that the altitude
remains constant, how fast must the line be let out when the balloon
lies over a point on the ground 500 meters from the spool?

. Determine the variables. Let L be the length of the unspooled line,

h be the altitude of the balloon, and x be the horizontal displacement
of the balloon from its original position. However, only L and x are
variables; A is a constant (300 m).

Express the relationship between the variables. A right triangle is
formed, with L being the hypotenuse and x and 4 the legs. Thus,
x%+ h*=[?or, substituting for &, x+ 300? = L2. Enter the expression:

(JQXPIEDHEITIEDEU I (R)ENTER)

. Begin the FELET program. Enter a list of the variables in the ex-

pression: (ENTER). Enter the variable or rate
for which you are solving. In this case, it’s the rate of change of the
unspooled line length L, or '&L.t":
(ENTER). Now execute FELFT: (ENTER) or (VAR)
(then or ((§)(PREV) as needed) [TIHd.

Store values without units in the known variables and rates. Since
your expression includes the value of & without units, you must be
consistent now and not use units. The known values are: x = 500;

dx.t = 8. Store just those knowns: (¥]»](5)0)0](ENTER]8)(ENTER).

. Solve for the specified variable. Inspect the values you’ve entered

in the previous step and when you’re satisfied they’re correct, press
BT You'll see the message = 1t'imS « . o, and after
a bit, the solution will be returned to the stack.

Result (to 3 places): &L.t: B.36H

Because the units are not included, you must add them yourself: the
line is unspooling at nearly 7 meters per second in order to maintain
constant altitude in the very brisk wind.
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Example:

In the special theory of relativity, the mass of a particle moving at

2

velocity v is m[l - v—?_j , where m is the mass at rest and c is the
c

speed of light. At what rate is the mass changing when the particle’s

velocity is 0.5¢ and the rate of change of the velocity is 0.01¢ per

second? What is the mass of a particle traveling at 0.5¢ whose rest

mass is one unit? The speed of light, c,is 3.00E8 m/s.

. Determine the variables and the constants. The variables are the

mass m and the velocity v. The speed of light, c, is a constant. In the
previous example, you replaced the value of the constant directly in
the main expression. This time, instead of replacing ¢ with its value

in the expression, just store its value now: (3 JEEX] 8)(' JoJ& ) C)(STO).

Express the relationship between variables. If the rest mass is 1 unit,

1

c vi) 2 .
the mass at velocity vis m = (1 - ——2—) . Enterit: (" Jo)leME)=)
c

[ENTER).
BegintheFELET program. Enter alistof the variables: (&3 e M)
(SPC)(@J&q) V)[ENTER). You’re solving for 2 variables here: the change
in mass at time ¢ (' &m. 1 '); and the mass at time 7 ('mt ' ). Enter
those two variables inalist: ()} =2[D)(e)a M) - J (@)l TISPC)
(&M TIENTER). Now useFELRT: (RITJENTER]
or (NXT) or as needed) [IINA1.

Store values without units in the known variables and rates. Known
valuesare: v=.5c; dv.t=.01c. Store the known values: (v)v]»)(" ] -)

(ENTER).
Solve forthe specified variables. Inspect the values you justentered.
When satisfied, press Bl 0Hl. You'llsee = lwimg « « .,
then the solution (to 4 places):  &£* am.t: B.EHTY

1: mt: 1.154¢

Its rest mass was 1 unit, so the particle is gaining mass at 0.77%/sec
asittravels at half the speed of light; and ithas amass of 1.1547 units,
having gained more than 15% of its rest mass.
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Tworoads intersect atright angles. Car 1 leaves a gas station located
2 miles south of the intersection, traveling north at 30 mph. At the
same time, Car 2 leaves a restaurant parking lot located 3 miles east
the intersection, traveling east at 40 mph. How fast is the distance
between them changing 45 minutes later?

. Determine the variables and the constants. Let d be the distance be-

tween the two cars, x be the distance of car 1 north of the intersection
and y the distance of car 2 east of the intersection:

Car 1
restaurant
gas station —F Car 2

Express the relationship between the variables. The relationship be-
tween x, y and d is the Pythagorean theorem: x*+ y?=d°. Enter this:

(JSX DA PGS RENTER).

. BegintheFELET program. Enteralist of the variables: ((9]{}[@J&)X)

ENTER]. Enter the solution variable, the
rate of change of the distance d between the cars (2. 1): ()(@]=]D)

(@) D) - JoJ& T)ENTER). Finally, execute FELET: (var)IFHA.

Store values without units in the known variables and rates. This
problem uses starting positions *H and 4H. Note that the starting
position of car 1 is minus 2 miles because it starts south of the inter-
section. Thus, known values are: t=0.75; xX,==2;y,=3; ox.t=30;
8y.t=40. Store the known values: (-] 7])5](ENTER)(2]+/=)([ENTER)(»)
(3)0)(ENTER) (3JENTER]) (»)(4) 0] ENTER).

Solve for the specified variables. Inspect the values you’ve entered

in the previous step and when you’re satisfied they’re correct, press

; . You'llsee=alwima . . ., then the solution.
Result (to 3 places): &d.t: 49, 2H3

So, after 45 minutes, the distance between the cars is increasing at
nearly 50 mph.
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The Integral: Number, Function, Family of Functions

The term integral is used for three distinct purposes:

1. The definite integral is the (signed) area bounded by a function y=f{x) and
the x-axis and by vertical lines through the two x-value limits of integration.

2. The general indefinite integral is the family of functions whose derivative
is equal to a given function.

3. The specific indefinite integral is the one function whose derivative is a
given function that includes a specific point.

So, an integral of a function can be either a single number, a single function, or
a family of functions, depending on the current context.

Actually, the process of determining the area “under” a curve is best described as
integration while the process of finding the indefinite integral (either general or
specific) is best described as antidifferentiation—i.e. “undoing” the process of
differentiation. For this reason you may see the term antiderivative used inter-
changeably with indefinite integral. Perhaps integration and integral should be
used when the context is area measurement and description, while antidiffer-
entiation and antiderivative should be used when the context is finding a function
or family of functions equal to a given derivative. However, this book will not
be that picky and will use the two terms interchangeably.

Now, the HP 48 comes with the built-in capability to integrate functions using
numeric, graphic, and symbolic techniques. Specifically:

* It can compute a numerical estimate of the definite integral of any function if
it is given two finite numeric limits and if its integrand contains no undefined
variables other than the variable of integration.

» It can graphically estimate the area under a plotted function between two
values of the independent variable.

* It can symbolically integrate (i.e. find the antiderivative of) any polynomial
function. It can also use symbolic variables in either of the limits.

» It can symbolically integrate certain other functions that are in a form that
matches the set of patterns built into its memory.
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Numeric Integration

The integration function on the HP 48, located on the keyboard (=) )) computes
a definite integral—a number. Thus, it requires four inputs:

1. Integrand: the function being integrated.
2. Variable of integration: the independent variable of the function.

3. Lower limit: the value of the independent variable representing the lower
boundary of the integrable region.

4. Upper limit: the value of the independent variable representing the upper
boundary of the integrable region.

5. Accuracy factor. A definite integral is computed using an iterative algo-
rithm that can be driven to any finite degree of accuracy. The HP 48 can
offer accuracy up to its 12-digit limitation. The integration function deter-
mines the accuracy factor from the current display format. For example,
a5 T[ setting mandates the search to the 12-digit limitation of the machine,
while £ F I sets an accuracy factor of 0.01 or 1% (i.e. the search stops
when the HP 48 finds a value of the integral to within 1% uncertainty); and
aaFIn setting indicates a 0.00001 accuracy factor (0.001%).*

To use these five inputs to compute a definite integral on the HP 48, simply adjust
the display setting to the appropriate accuracy, then do any one of the following:

1. Enter the other four inputs in the correct order (lower limit, upper limit,
integrand, integration variable) onto the first four levels of the stack and

press (2] ) GI=NUM.

2. Press(']to begin an algebraic expression, press to enter the integral
function, enter the four inputs in the correct order (lower limit, upper limit,
integrand, integration variable) separated by commas, and enter the
expression onto the stack. Press (EVAL)(]+NUM ) to evaluate the integral.

*Note that the integration algorithm doubles the number of points sampled—and hence the amount of time—for
each successive iteration, so it’s important to keep the number of iterations to the minimum necessary: don’t use
STD unless you really must, but don’t use just £ F [ if you truly need accuracy to within .001%. After any
integration, the HP 48 computes the uncertainty of the integration result it reports and stores it in the reserved
variable, IERR. Thus, after performing an integration, look in the menu for [[[I M and press it if you want
to know the uncertainty of the result.
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3. Press to begin the Equation Writer, then type in each of the
four inputs in its appropriate spot, pressing (») to jump forward between
inputs. Enter the finished expression onto the first level of the stack and
press (EVAL)(G]=NUM to evaluate the integral.

4. Press (=) SYMBOLICJENTER) to display the IMTEGRATE input form. Enter
each of the four inputs into its appropriate field—the integrand in ExPF:,
the integration variable in W'HF:, the lower limit in L0, and the upper limit
in HI Change the REZLLT: field to Mumetr 1, if necessary, and press

il | 888 to compute the definite integral returning the result to the stack.*

The following examples illustrate the use of each of these methods and give you
some practice computing definite integrals in the process.

Example: Compute the following integral using the direct stack method (#1):

x
——dx
,[,\/ 4x* +8
1. Enter the limits, lower limit first: (0]ENTER)2]ENTER).

2. Enter the integrand and variable of integration: (')(aJ&]X)(=)(x)
O @X(JaXYI () (E)ENTER (D[] X)ENTER).

3. Fix thedisplay to4 places (i.e. .01 % accuracy) and then compute the
definite integral: (4)q mopes) i BETHE ))& ~Num.

Result: H.5176

*Note that this fourth method explicitly reminds you about the fifth input by displaying a MUMEEFR FORMAT:
field to allow you to change the number format—and thus the accuracy factor—before computing the integral.
None of the other three methods offer such a reminder.
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Example: Compute this integral using the normal algebraic method (#2):

_lI4T1r
cosx
—dx
. 1+2sinx
15

1. Enter the algebraic integral expression: (' )25 )+/=)&<)m)(=)(1)5)
&) >E
RIXISN (¢alX) @) eIalr)(@Ia X ENTER)

2. Because the integrand include trigonometric functions, make sure
that you’re in FHI' mode, then compute the integral (to 4 decimal
places): (if necessary) (EVAL)(&G]=NUM..

Result: H, +426

Example: Compute this integral using the EquationWriter method (#3):

4 2
xe8x
———dx

et +1

1. Enter the algebraic integral expression using the EquationWriter:

(JEQUATION (2] (ea X)X e ) talX) 7 2)p)
M Taled8)(aXPIERH D)) JGIX)ENTER).

2. Integrate (to 4 places): (EVAL)(&qJ=NUM).
Result: H. 18EH4
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Example: Compute the following integral using the input form method (#4):

V8+x

1. Open theIHTEGF.HTE input form: (—)SYMBOLIC)(ENTER):

RESLLT: ngbc-l 1C

ENTER EHPRESSION
ECIT JoHoos] f  JiRWeL] OF

2. Enter the integrand in the EXPFE: field: (')(x)(&)0)
MEHEEODE)E(JGIXIENTER).

3. Enter the variable of integration and then the two limits: (aJ&]X]
(ENTER)(2)(ENTER)(3)(ENTER).

4. Change the REZLLT: field to Mumer1C: (#/5). Notice that an
additional field then appears:

EHFF;- 'J"“8+:-f} fl'-’ .' ‘-'

VAR: LO: =
RESULT: [gIN (T m
MUMEER FORMAT:F 13 o

CHOOSE RESULT TYPE
| dchoos] ] fcAML] 0K |

5. Change MUMEEFR FORMAT: to F 1 &, thereby changing the
accuracy level of the computation: (v]»)(6])(ENTER).
6. Compute the numeric definite integral: [[HM.
Result: 1. 3E356HH

HlS
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Graphical Integration

Since integration computes the signed area* bounded by a curve, the x-axis, and
two vertical lines, it’s reasonable that the HP 48 offers a means of computing a
definite integral while viewing the plot of a curve.

Example:

Plot the curve y =2x3—5x + 9, and then compute the signed area be-
tween the curve and the x-axis and between x = -3 and x = 2.4:

. Open the PLOT application, set TYPE: to Fiuri=t 12 and reset

the plot parameters: (2PLOT)(a)(2[F)(DEL)(V)(ENTER).

Highlight the E¥: field and enter the curve: (v)(")(2]X)(eJa)X)¥
BEE X EIX(H()ENTER).

~

. SetIMDEP: to (lower-case), H=WIEk to—3 3 ¥-YIEK to—15

173, and leave the remaining plot parameters at their defaults. Then

draw the plot: (aJ&q]X)(ENTER)(3)(+/=)ENTER](3)ENTER)(™)(1)5)(+/-)
(ENTER)(1)5)(ENTER)[E i LT AT H.

¢

R

1
[200M ek v [TRRCE] FCM | EDIT JiANCL |

Press L1908 '# ] and move the cursor (using (<)) to #:=3.0000)
at the left-hand side of the plot. Then acknowledge that point as the
lower limit of an area computation: EEE]

. Press(NxT il ul Lo @RRE 1 18 P #E and move the cursor (using (»)) to

the upper limit (atsi: 2.40010). Then finish the area computation by

pressing (NxT) INZAT T again. Result: AKER: 32.7BBA

*Remember that “signed” area means that the area where the curve is “below” the x-axis is treated as a negative
number and the area where the curve is “above” the x-axis is treated as a positive number.
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One important point about all integration procedures: Integration is defined only

for intervals over which the given function is continuous. If a discontinuity exists
in the function between the limits given for a definite integral, the HP 48 will
either generate an error message or return an incorrect result. Plotting a function
before integrating is a good way to avoid this problem.

Example:

Plot f(x)=4x* - 5 > 7 to see if it is integrable over -1 <x <1
x+

1. Return to the PLOT input screen and enter the function in the Ei:

field: (CANCELW)(J4 XX EEHE0EX )
MBHOENTER)

SetH=WIEk to—1 1 and"-WIEk to—2E TE and plot the func-

tion: (»)(1)+/-)(ENTER)(1) ENTER) (] (5] 0J+/=) ENTER) (5] 0) (ENTER)
ERAZE] DEAL }

-

—

gl

200 [ [TRRCE] FCH | EDIT

Notice the discontinuity at x =-0.5. The function is not continuous
between -1 and 1 and is therefore not integrable over that interval.
Try an integration anyway—to see what happens. Move the cursor
to the left-hand edge of the plot (i: =1.00n1) and press
EGITT®. Move the cursor to the right-hand edge (4: 1.100i) and
press fil13:0 again. Result: HRER: {=0.0799.7 BS540}

In this case, because the integration algorithm never selected the
exactdiscontinuity as a sample point, it didn’terror, but instead gave
a complex number value for the area—obviously incorrect. But be
forewarned! It might just as easily have returned an incorrect real
number.
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The Area Function

If you establish a fixed lower limit, say, x = a, and allow the upper limit to vary,
the definite integral becomes a function where the independent variable is the
upper limit and the dependent variable is the area of the defined region. This

function is usually referred to as the Area function: A(x)= J f(t)dt. Because

itis a function, you can plot it, find its derivative, or use the Solve feature to solve
the Area function for the value of the upper limit that generates a specific area.

X

Example: Plotthe Areafunction, A(x) = j%dt for 1 <x<3,thenitsderivative.

1

1. Return to the PLOT screen and enter the Area function (a symbolic

definite integral) in the EX: field: (CANCEL)(Y)() L 1)) )(@)
e HaDE ) eI T(ENTER).

2. SetH=YIEH to1 = and¥-YIEK to—. 2 Z: () T)ENTER(3)ENTER)
(»)(-J5)(*/=)(ENTER)(2)(ENTER).

3. Plotting the Area function requires that an integral is computed for
every sample point—and thus a very long time to plot the Area func-
tion. Minimize the delay by setting the number display format to &
F I and the step-size to 4 pixels (i.e. only one of every four pixels

will be a sample point): (v)(NXT) E=i158] (2) (o) o] F) 1 ]X) (ENTER)
B (D L0 BENED + CHE]

4. Draw the plot: BT [T [T 100

_,—'—"l__'__'__f_'_,_,_

el

[z00M] kv [TRACE] FCH | EDIT
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5. Now plot the derivative of the Area function: ﬂ

""'—\—h _,___;———'—_‘_
T——
____——_—— —
-

200K ¢ JTRACE] FCN [ EDIT

Hmm! The plot of the derivative looks familiar. Indeed, it’s the same as the plot
for 1/x. The derivative of the area function is the integrand of the area function!
This illustrates how you might plot an antiderivative of a given function. Simply
plot the area function using the given function as the integrand!

e cost .
Example: Plot the antiderivative of T over the interval -7t to 7.

1. Return to the PLOT screen, enter J %?tdt into Ev2:, set H=-WIEK

to—3. 14 3. 14 and¥-VIEM to—= < (CANCEL [T +/5)
GInaelalXalJcos) e la) TS IS D))
(o) (&) (@ ENTER) () (3) (-] (1) (4) (/) (ENTER] (3]- 1 [ 4) (ENTER]>)
(8)+/=)(ENTER])(4)(ENTER).

2. Since the number format and step-size adjustments are still in place
from the previous example, draw the plot: [IiE43 [T 100

-..= s e R { e e m S
'\ j_/
x."'-._‘_‘_'_‘_,_—l—""

2000 | 8. v [TRRCE] FCH | EDIT
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Symbolic Integration: Pattern Matching

Finding the symbolic integral or antiderivative of a function on the HP 48 presents
two kinds of problems. First, the integration command always requires that you
specify lower and upper limits—which seems unnecessarily cumbersome if you
simply want a formal indefinite integral. You can overcome this problem fairly
easily with a simple program such as IMOEF (see page 296) that uses dummy
limits and then ignores the lower limit in the result (see page 173 for more details).

Secondly, there is no computer algorithm capable of finding the antiderivative of
any general function comprised solely of the analytical functions set in the HP 48.
Some can handle a reasonably large subset of such functions, but they require
computing resources far beyond those of the HP48. Thus, as a necessary compro-
mise, the HP 48 limits its symbolic integration capabilities to a small range of all
possible functions: polynomials, for which a simple antiderivative algorithm is
available; and functions that match a list of patterns built into the HP48’s memory.

The table below lists all of the patterns that the HP 48 can match. Note that for
each pattern listed, fis the variable of integration or a linear function of the vari-
able of integration.

The HP 48 is quite picky about the form a function must have before it can be

matched. Thus, given the pattern, ; the HP 48 can find —1—— ,
sin f cos f sin x cCos x

1 1 1
- , and — , but not ——— (because the
sin(2x)cos(2x) sin(2x + 3)cos(2x + 3) cosxsinx

1
sin(x*)cos(x?)

i r terms are reversed), or ecause fisn’t linear in x),
denominator t d b t]

or — ! (because fis defined two distinct ways, x and 2x), or —
sin(x)cos(2x) 2sin x cos x

(because of the coefficient in the denominator). Note, however, in this last case,

that rewriting it as l( ) does allow the pattern to be matched after all.

2\ sinxcosx
Here are the built-in patterns:
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Pattern (Function)

SECE)

If

17f
TNVCTF)
1(22[(F))
INVC2=T(F))

f*z (where Z is symbolic)
f*n (where N is real, #0,-1)
£

fr-1

1-f

INVCE)D

COSCED
SINCE)
TANCED

ACOSCE)
ASINCED
ATANCE)
COSHCFD
SINHCE)
TANHCED

ExPCF)
ExPMCE)
LNCED
LOGCFD
ALOGCFD

SIGNCED

TAMCF I
1-TAMCED
IMVCTANCE DD

TANCFI-COSCED

1-CSINCEI™2)
INYCSINCEI~2)

1-CCOSCFI=SINCED)D
INYCCOSCFI=SINCEDD
1#CSINCFI=COSCF))
INVCSINCEI=C0SCF)

Symbolic Integration: Pattern Matching

Replacement (Antiderivative)

3.3
2#f*1.5-3
2xf
cx[f
cxJ(f1#.5
e[ (F)*.5

IFTECz===1, LNCfJ, f*(z+1)-(z+1))

FAL+L ) ()
.F

LNCED
LNCED
LNCFD

SINCEY
-COSCFD
-LNCCOSCF

F=ACOSCFI-TC1-F72)
F#RASINCEI+IC1-F"2)
F=ATANCEI-LNCI+F" 20 -2
SINHCE)

COSHCF)

LNCCOSHCF )

ExP(F)

ExPCFI-f

FLNCFI-f
424294481989 =F +LNCF)-f
. 434294481 984=AL0GCF)

ABSCF)

TANCFI-f
LNCSINCEDD
LMCSIMCEDD

INVCCOSCFD )

-INYCTAMCE DD
-INVCTAMCE DD

LMCTANCE D
LMCTANCE D)
LMCTAMCEDD
LMCTAMCEDD
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Pattern (Function) Replacement (Antiderivative)

1-(SINCF=TANCF)) ~IMJCSING))
TNVCSINCF)*TANCF) ) ~IMJCSINGE))
1 CTANCF =S TNCE)) ~INVCSINGE))
INVCTANCF)*SINCF) ) ~INJCSINGF))
TANHCF)/COSHCF) INVCCOSHCF))
1/ TANHCF) LNCSINHCF))
TNVCTANHCF)) LNCSINHCF))
1-(COSHCF)*2) TANHCF)
INVCCOSHCF)#2) TANHCF)
1/(SINHCF)*2) ~IMJCTANHCF )
INVCSTNHCF)A2) ~IMJCTANHCF )
1/(COSHCF)*SINHCF)) LNCTANHCF) )
TNV(COSHCF) =S TNHCF ) ) LNCTANHCF))
1-(SINHCF )*COSHCF)) LNCTANHCF))
INVCSTNHCF)=COSHCF) ) LNCTANHCF))
1/(SINHCF ) *TANHCF)) ~IMJCSIMHCF )
INVCSINHCF )+ TANHCF ) ) ~INVCSTNHCF) )
1/ CTANHCF ) %5 INHCF)) ~IMJCSINHCF))
INVCTANHCF ) £STNHCF ) ) ~IMJCSINHCF )
1/(1-F42) ATANHCE)
INV(1-F*2) ATANHCF)
1/(1+£42) ATANCE)

TNV (1+F*2) ATANCF)
1/(FA2+1) ATANCE)

TNV CFA2+1) ATANCE)

AT (F-1)#T(F+1)) ACOSHCF)
INVCTCF=10#(F+1)) ACOSHCF)

11 (1-F*2) ASINCE)
INJCTC1-F42)) ASINCE)

1T (1+F*2) ASTNHCF)
INVCTC1+F22)) ASINHCF)

LT (FA2+1) ASTNHCF)
INJCT(FA2+1)) ASINHCF)
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Try the following examples to see how symbolic pattern-matching works:

b

Example: Evaluate jx + cosx dx.

1. Entertheintegral: (CANCEL)(CANCEL] ")) S ) A)e )7 J(eJa)B)
) eaIX)H Cos) alX) ) E ) (@ a)X)ENTER)

2. Purge the variables d and b to assure a symbolic result, then eval-

uate: (JU[eJaJA)(SPC) & BIENTERIGJPURGIEVALIEVAL).
Result: 'SINCE)+h~2 2~ (GINCa)+anE 2)

Note that the integrand is divided into its additive terms before searching for a

match. Thatis, the HP48 treats the integral in this example as j xdx+ j cosx dx.

It computes the first integral using its polynomial rules and the second by match-
ing a built-in pattern. Since all terms can be evaluated, the symbolic integration
is successful. If any one of the terms in the integral can’t be matched, then the HP
48 returns that part of the integral expression unevaluated.

The nextexample illustrates that the pattern-matching finds linear functions of the
integration variable.

b b
Example: Evaluate Jx +cos(2x—5) dx and Jx +cosx” dx.

a a

1. The first integral: EJEEJ@E]EIZ]@I@
(H(cos)(2) X[ Ja)X) (= 5 ) )2 ) ()& X) (ENTER) (EVALJEVAL]

Result: 'SIMCE#b-502+b o F-(SINCE#a-5)+a™ 220!
2. Thesecond 1ntegra1: @mEIDEIZ]
(B (cos)(JaIX) X2 ) ()X ENTER) (EVALIEVAL).
Result: 'I:l *—a""'E I Cay by COSC™E D, !
Notice how the HP 48 evaluates as much of the integrand as it can,

butleaves the part for which it finds no match as an unevaluated inte-
gral expression.
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The HP 48 approach to symbolic integration is also flexible with respect to con-
stants that can be removed from the integral expression. (Remember that inte-
gration treats all variables other than the integration variable as constants.)

Example:
1.
2.
3
4.
136

b b
Evaluate the following integrals: J pcosx dx and chosx dx

a a

Enter the firstintegral: D@ DEEAGEEBENEE)
PRCES RN DG aXETE

Evaluate it: (EVALJEVAL).

Result: 'p*SINCBI-p#5IMNCa)!
The HP 48 removes the constant p from the integrand before at-
tempting to match the remainder—and is successful.

. Enter the second integral: (")[=)7)(eJ)A)E))(eJa) )] )(e)

G XX)Cos)(aIX) ()G (aIX] [ENTER).
Evaluate it: (EVALJEVAL).
Result: ' JCa, by w0500, 20!

This time, the factor x is treated (quite properly) not as a constant but
as the variable of integration. The HP 48 cannot find a match for the
integrand and therefore returns the unevaluated integral expression.
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Enhancing the Built-In Integration Tools

As you’ve seen, the integration tools built into the HP 48 are quite useful but not
adaptable to all of your needs. Fortunately, you can add many useful extensions
and enhancements via programs. The remaining sections of this chapter demon-
strate the programmed integration enhancements included with this book:

Numeric

Approximating definite integrals using methods different than the built-in
algorithm (Riemann sums, Simpson’s Rule, etc.).

Approximating the definite integral from a set of data for which the under-
lying function is unknown.

Improving computational speed and/or accuracy by segmenting a definite
integral.

Accurately computing definite integrals with one or more infinite limits.

Accurately computing definite integrals whose integrand cannot be evalu-
ated at one of the limits.

Accurately computing the definite integral over a range containing one or
more discontinuities.

Graphical

Plotting the specific antiderivative of a given function with known initial
conditions.

Symbolic

Simplifying the computing of an indefinite integral.

Adding to the patterns that can be matched using symbolic integration.
Simplifying the integrand using segmentation.

Simplifying the integrand using the method of substitution.
Simplifying the integrand using integration by parts.

Simplifying the integrand using partial fraction expansion.
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Approximating the Definite Integral of a Given Function

All methods of approximating a function’s definite integral are based on comput-
ing the limiting value for an infinite sequence of approximations, each of which
can be computed exactly. Specifically, the definite integral—the area under a
given curve between two limits—is approximated by summing the areas of a se-
quence of rectangles whose height matches that of the curve at some point within
the width of each rectangle.

Look at the three most common rectangular approximations:

(M. Ay

Left Rectangular Right Rectangular

Mid Rectangular

The Left Rectangular approximation uses rectangles whose height matches the
value of the function at the left edge of the each rectangle; the Right Rectangular
approximation uses rectangles whose height matches the value of the function at
the right edge of the each rectangle; the Mid Rectangular approximation uses
rectangles whose height matches the value of the function at the value midway
between the right and left edges of each rectangle.

All of the approximations have irregular wedge-shaped “errors”—some of which
overstate the area under the curve and some of which understate the area under
the curve. But notice that using more rectangles—by decreasing their widths—
reduces the errors; the approximations become more accurate. And the smaller
the width, the closer these approximations are to each other—as well as to the
actual area under the curve.
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Thus, the definite integral is the limit of the sum of the areas of these rectangles
as their widths approach zero. In practice, of course, you can’t compute using an
infinite number of rectangles of zero width, so approximating a definite integral
means deciding how precise you want to get and then deciding what number of
rectangles (and thus their widths) you need to achieve that precision.

The sum of a set of rectangular areas used to approximate a definite integral is
known as a Riemann sum. Riemann sums differ from one another in two ways:
the width of each rectangle (also known as partition size) and the rule used to
determine the height of each rectangle. You’ve already seen three rules for
Riemann sum rectangle heights: Left Rectangular, Right Rectangular, and Mid
Rectangular. But there are two other important rules: use the smallest value of
the function over each subinterval (Lower Riemann); and use the largest value of
the function over each subinterval (Upper Riemann):

Lower Riemann Upper Riemann

Notice that the Lower Riemann sum is less than the actual definite integral (since
all of the “error wedges” represent underestimations of the function); and like-
wise, the Upper Riemann sum is greater than the actual definite integral (as those
“error wedges” represent overestimations of the function).

Also, notice that for intervals over which a function always increases, the Lower
Riemann sum is the same as the Left Rectangular sum (lowest value of function
is at left edge) and the Upper Riemann sum is the same as the Right Rectangular
sum (highest value of function is at right edge).
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The Lower and Upper Riemann sums are primarily of use as theoretical lower and
upper bounds of the definite integral. They are not used actually to compute an
estimate because of the extra computational time it would take to find the maxi-
mum and minimum values of the function within each subinterval. Instead, the
Left, Right, and Mid Rectangular sums are used because they are easier to com-
pute. Usually (though not always) the Mid Rectangular sum is the best of the three
approximations.

However, there are two other commonly used rules for Riemann sum approxi-
mations that are weighted averages of the three basic Riemann sums:

* Trapezoidal = 1/2 of Left + 1/2 of Right (i.e. the average of the Left and
Right Rectangular sums).

* Simpson's = 1/6 of Left + 2/3 of Mid + 1/6 of Right.

Simpson’s rule is derived from the observation that, while the Mid Rectangular
sum and Trapezoidal each have their strengths and weaknesses as estimates, on
average the actual definite integral lies between the two, but twice as close to the
Mid Rectangular estimate than to the Trapezoidal estimate. Simpson’s rule is thus
the most refined approximation of the five mentioned thus far for a given number
of rectangles.

The five Riemann sum estimates mentioned above can be computed by hand if the
number of rectangles used isn’t very large. But of course, it’s a useful task for a
program as well. [IEF INT (see page 292) takes an algebraic expression of a def-
inite integral from level 2 and the number of rectangles from level 1 and returns
a list of labeled estimates for the definite integral to level 1. The returned list
contains the five Riemann sums followed by the estimate using the built-in inte-
gration routine (which is a refinement of Simpson’s rule, known as Romberg’s
method—more efficient for machine computation). The estimates are rounded to
the number of digits that reflects their precision given the number of rectangles
you used (keep in mind, as always, that larger numbers of rectangles require
increasing time to compute).
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Example: Use 40 rectangles to find the Left, Right, and Mid Rectangular esti-

1
mates of J‘tan'1 xdx.

1

2

1. Enter the algebraic integral expression: (' )(=2)5)+/=- J5)&) 7 )(1)
) EIATAN) (efa)X) ) ) (@ a)X) ENTER).

2. Enter the number of approximating rectangles: (4] 0)(ENTER).
3. Execute the IEF IMT program to compute the approximations: ()
(FYTINT)ENTER) or (VAR) (NXT) or (]PREV)) [THHL].
Result: { #left: 29012 smid: 31833 =right:
<3196 trap: (31804 rsimpr 31807
siptgr (31857 1

The Left Rectangular estimate is 0.29512; the Right Rectangular
estimate is 0.34196; the Mid Rectangular estimate is 0.31859; etc.

Example: Use 25 rectangles to calculate the Trapezoidal and Simpson’s esti-

9

2
mates of Jsin x3 dx.
1

27

1. Enterthe algebraicintegral expression: (' =S ) [5)&) 7 )(4) - 5)
&LJEN YE)E] [ENTER].
2. Enter the number of approximating rectangles: (2] 5)(ENTER).
3. Execute [lEFIHT to compute the approximations: EE}]I]
Result: © =left: . RS mid: - 1:::?.
fright: 886 :trap: 8970
isimps L2143 fintgr L44Y3 G
Notice that the estimates are all over the place. Periodic functions,

such as this one, usually require many more rectangles that non-
periodic functions to achieve the same level of accuracy.

4. Repeat the computation using 100 rectangles: (—>UNDO)(«)(1]0]0)
EME DEFIHE
Result: © :left: 44188 imid: .455E6
iright: (43524 :trap: 435821
szimpr L44Y0R rinbor L44Y2E D
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Approximating the Definite Integral of a Data Set

In many real-world situations, you may be faced with a set of data whose under-
lying function is unknown, but whose definite integral you need to estimate. How
can you estimate a definite integral (“the area under the curve”) if you don't know
the function you're integrating, just a set of data that (presumably) represents it?

This requires that you make some assumptions about the underlying function—
even though you may know little about it. There are two approaches to this—
interpolation and regression. Interpolation methods create functions that actually
contain every data point. Regression methods create functions that minimize the
accumulated distances between themselves and their data points.

Regression assumes that there is some measurement error in the data set and that
you want to find an underlying function that best approximates the fundamental
relationship of the variables while largely ignoring fluctuations due to measure-
ment error. Interpolation, on the other hand, assumes that there’s no measurement
error in the data set, that the points are exact and that all variation is due to the
underlying function and none of it due to error.

This section describes four particular methods of approximating a definite inte-
gral from a set of data, each of which has its own program:

1. ZINT1 bases its estimate on an interpolation called linear piecewise, con-
structed by connecting each data point to its nearest neighbor with a line
segment (i.e. drawing “dot-to-dot”). The area under this “curve” is then
divided into a series of trapezoids whose areas are computed and summed.

2. ZIMTZ constructs a single polynomial that exactly contains all of the data
points (i.e. an interpolation) and then integrates this function.

3. ZIMT3 uses a cubic spline interpolation, whereby each pair of neighboring
data points are connected by a smooth portion of a third-degree polynomial
(whose function may be different for each pair), to create a function whose
definite integral is then estimated using Simpson’s rule.
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4. zINT+ allows you to input a model for a regression curve that you believe
represents the underlying function that your data is manifesting. The pro-
gram then computes the specific coefficients that minimizes the sum of
squares of the distances between each data point and the specified regres-
sion curve (i.e. aleast-squares estimate). The regression curve and the data
(shown including their measurement errors) are plotted so that you can
view the “goodness-of-fit.” If the fit isn’t very good, you may try another
iteration of the same model or even try anew model. When you are satisfied
with your regression curve, it is used to estimate the definite integral.

The methods of each of these programs have their strengths and weaknesses.
None can be guaranteed to give you good estimates in all cases. Look at each in
turn as you work through the following examples.

SINT1: Piecewise Linear Interpolation

=IMT1 (see page 296) is by far the speediest of the programs, and its accuracy de-
pends more on the number of data points you have than on the shape of the under-
lying curve. If you have alarge data set, this will usually give you a good estimate
in a relatively short time. Other methods may improve accuracy but take much
longer to do so.

ZIMT1 assumes that the lower and upper limits of the definite integral coincide
with two of your data points. Level 3 should contain a data matrix containing at
least two columns (one for the independent variable and one for the dependent
variable). The program treats the smallest value in the independent variable
column as the lower limit for the integral and the largest value in the column as
the upper limit for the integral. Level 2 should contain the column number for the
independent variable and level 1 should contain the column number for the de-
pendent variable. The definite integral estimate is returned to level 1.

Try an example of EIMT1....
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Example:

Use a piecewise linear interpolation to estimate the definite integral
for the underlying function (between 0 and 6) represented by the
following data:

x  fix) x  fix) xr flx)

00 1944 2.1 5.45 42 22.86
03 2392 24 -0.32 45 2291
0.6 20.09 2.7 3.93 48 22.02
09 1851 30 5.76 5.1 21.86
1.2 16.73 33 7.02 54 1335
1.5 9.12 3.6 13.81 57 1222
1.8 8.78 39 1933 6.0 8.07

. Enter the data as a two-column matrix with the x-values in column

1 and the f(x)-values in column 2 and store a copy as [I51:

[2IMATRIX]

(0)(sPc) ()9 ) - 4 4)(ENTER)(W)(- J3)(SPC)(2) 3] - ]9 ) 2) ENTER)
(- X&)(sPc)(2 o) JoI o) ENTER)(- J9)(SPO) (1] 8) - [5 [ 1)(ENTER]
(21-J4)(sPO)(- I3 2J+/-JENTER) (2] - J7)(SPC)(3) - o) 3) ENTER)
(3)(SPC)(5) - 7)) ENTER(3 I - 3ISPC)(7) - o) 2) ENTER]
(6)(sPc)(8) - Jo) 7 ENTER)(ENTER)(ENTER)

(el D) S (ENTER)(STO)

2. Enter the column number for the independent variable: ENTER).
3. Enter the column number for the dependent variable: (2]ENTER).

144

Estimate the definite integral for this data set using piecewise linear

interpolation (ZIMT1): (then or as needed)
FTEEY. Result: 54,3315
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=INTZ: Single Polynomial Interpolation

When the underlying relationship may be polynomial in nature and you have only
a small number of data points (i.e. less than 10), single polynomial interpolation
will provide a reasonable estimate. But if the relationship isn’t polynomial, this
approach can give wildly inaccurate estimates (“let’s be careful out there”)!

=IMTZ (see page 297) takes a data matrix from level 4 that contains at least two
columns (one for the independent variable and one for the dependent variable),
the column number of the independent variable from level 3, the column number
of the de-pendent variable from level 2, and a list containing, in order, the lower
and upper limits for the definite integral. The program returns the estimate of the
definite integral to level 1. ZIMTZ uses Joseph Horn’s FFIT routine (see page
311), included here with his permission, to compute the interpolating polynomial.

Example: Use single-polynomial interpolation to estimate the definite integral
(between S and 50) of the underlying function represented by:

x  flx) x fix) x fix)

5 34.8 10 1347 14 1593
18 1569 24 1322 30 1174
35 1325 41 186.6 50 3422

1. Enter the data as a 2-column matrix (the x-values in column 1 and

f(x)-values in column 2), and store a copy as [I52: (=MATRIX)(5)
(sPc)(3]4)-J &) ENTER) (W) (1) 0)(SPC) (1) 3] 4] - J7) ENTER) (1) 4)(SPC]
(3Y4)2)- J2) ENTER) ENTER) ENTER) () (2] DI S 2) (ENTER)(STO).

2. Enter the column numbers for the independent and dependent vari-

ables: (1)(ENTER)(2]ENTER).
3. Enter the limits of integration: (&9]{ })(5)(SPC)(5]0)(ENTER).

4. Estimate the definite integral using single polynomial interpolation

@ INTE): (VAR) (then (NXT) or as needed) HAl B
Result: r144.832133H3
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SINT3: Cubic Spline Interpolation

Cubic spline interpolation is a piecewise interpolation like that of ZIMT1, with
two differences: Adjacent points are connected by segments of third-degree poly-
nomials instead of line segments; and the curve created by cubic spline interpola-
tionis continuous ateach data point (because the “ending” slope of each polynom-
ial segment matches the “starting” slope of the next one), while linear interpo-
lation is discontinuous. Cubic spline interpolation performs well for most data
sets, generally better than linear piecewise for smaller sets and worse for larger—
a good choice for a small set whose underlying shape is unknown or questionable.

The program  IMT3 (page 297) uses SFLIME (page 326) and SFLEMAL (page
326) to create and evaluate, respectively, the cubic spline interpolation. It com-
putes the definite integral by iterating Simpson’s rule estimations with increasing
numbers of points until the result is obtained with at least four significant digits.
& INT3 takes a data matrix from level 3 containing at least two columns (indepen-
dent and dependent variables), the column numbers of the independent and de-
pendent variables from levels 2 and 1, respectively. The smallest and largest
values in the independent variable column become the lower and upper limits of
integration, respectively. The estimate is returned to level 1.

Example: Using cubic spline interpolation, estimate the definite integral (be-
tween -5 and 5) of the underlying function for the following data:

x f(x) X [x) X fx)

-5 1255 -4 7.24 -3 242
-2 0.14 -1 -1.64 0 -2.88
1 -1.75 2 -0.28 3 2.59
4 7.35 5 1255

1. Enter the data and store as[153: (5JMATRIX)(5]+/=)(SPC)... (etc.)...
(1)2) - [5)5)(ENTER)(ENTER)(ENTER) (") (@) ] D) S ) 3) (ENTER](STO).

2. Enter the column number for the independent variable: ENTER).

3. Enter the column number for the dependent variable: (2]ENTER).

4. Estimate the integral via cubic spline interpolation (£IMNT3):
(then(NXT)or(€q)PREV)as needed) HITRE]. Result: £, £&57HI5HS
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2INT4: Least-Squares Fit

A fitted curve does not “connect” the data points; rather, it represents a curve
(whose general shape you determine) that approximates the data points—thereby
assuming that the actual data points contain some amount of measurement error
that accounts for the distance of the actual data from the fitted curve. The “good-
ness-of-fit” of a particular curve can be measured by totaling the squares of the
“error” distances between the actual data points and the fitted curve. Fitting (as
opposed to interpolating) a curve to a set of data is probably the best choice when-
ever you have strong analytic evidence about what the underlying model should
be for a set of data, or when you have a lot of data points but are confident that the
underlying function has a much smaller number of terms.

The program UATFIT (see page 291), which is used by ZINT4, computes the
fitted curve whose goodness-of-fit sum is smallest—the least-squares fit—for the
particular general model being used. To fit a curve to a particular data set using
OATF IT, you will need: the data set, the general model of curve you wish to fit,
and an estimate of the measurement errors for each of the data points. OATFIT
takes the data matrix containing at least two columns (one for the independent
variable and one for the dependent variable) from level 4, the column number of
the independent variable from level 3, the column number of the dependent
variable from level 2, and an estimate of the measurement errors from level 1. The
level 1 entry may either be a single real number reflecting equal measurement
errors for all data points or a vector of measurement errors arranged in the same
order as the data, one per point.

OATFIT will then display an input screen, prompting for 3 items: (i) a general
model using only variable names for the coefficients and '' as the independent
variable; (ii) alist of the coefficients in the model whose least-squares fitted values
you seek; and (iii) an initial estimate of the coefficient values to begin the search
procedure. Note that, for some non-linear models, good beginning esti-mates are
necessary to assure that the best fit is found.

Finally, after you supply the requested inputs, ILHTF IT computes a fitted curve
using your model and plots the curve along with the original data points—shown
with their error bars (vertical lines whose length represents the size of the errors
for the points) to allow you to visually inspect the goodness-of-fit for your model.

SINT4: Least-Squares Fit 147



After pressing (CANCEL) to leave the plot, you have three options:

1. Press to accept the fitted curve. You will return to the stack to
find the covariance matrix for the fit on level 3, the fitted curve
expression on level 2, and a list of labeled coefficient values with their
estimated standard deviations on level 1.

2. Press to refine the fit. The current estimates for the fitted coef-
ficients are used as initial values and the fit is recomputed, then re-
plotted against the data points. You may thus refine a particular fit as
many times as you wish, although you will soon find that additional
refinements make increasingly tiny differences and that such tiny dif-
ferences aren’t worth the time needed for the computations.

3. Enteradifferent model, list of coefficient names, and starting estimates,
then press ENIEE. This optionis available to you in case your first esti-
mate model was not very good and you wish to start over.

These three options are available each time you leave the plot of the fitted curve
and the data points with their error bars. When you’re satisfied with the fit, use
option 1 to exit IATFIT.

The program & IMT% (see page 298) requires the same four inputs as IATFI T,
plus an additional input on level 1. The data matrix is taken from level 5, the
column number for the independent variable from level 4, the column number for
the dependent variable from level 3, the measurement error estimate from level
2, and a list of the lower and upper limits of integration from level 1. ZIMT% then
executes HATF I T and, after exiting IHTF I T, returns the estimate for the definite
integral to level 1.

The three following examples illustrate the use of IHTF I T and £IMT4 using the
three data sets you’ve already used for the three previous examples. The
examples below assume that you have stored each in its appropriate name—UI=1,
052, or[53—as you worked the previous examples. If you don’t have these data
sets stored, you’ll need to enter them as new matrices instead.
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Example: Using [, compute a least-squares fitted curve using a fourth-
degree polynomial as the fit model. Assume the measurement error
for all data points is 0.85. Then use the fitted curve to estimate the
definite integral for the data between 5 and 50.

1. Recall the [5Z data matrix to level 1: (o]@]D)S)2)ENTER).

2. Enter the column numbers for the independent and dependent vari-
ables, respectively: (1)(ENTER)(2)(ENTER).

3. Enter the estimated measurement error (a single real number, in this

case): (-] 8]5)(ENTER).
4. Enter the limits of integration: (&9]{3)(5)(SPC)(5)0)(ENTER).
5. BeginZIMNT4: or (&)PREV)) HIZEE]. Soon you’ll see:

HEELEEEEE | ERST-SCUARES FIT
MODEL:

PARAM:

YALLES:

STO.DEY: | 25

ENTER GEMERAL MODEL OF FIT
Eonr] 1 im0k

6. In the MODEL: field, enter the general form of the model you’re
using to fit the data—a 4th-degree polynomial (Ax* + Bx® + Cx2+ Dx
+E), in this case:
BHEEX(HFQXPIEH DX (X H(IE)ENTER)

7. In the PAFA: field, enter the list of parameter names used in the

general model: (G]{ ) «)A)SPc)a]B)SPC)a]c]sPC]a)D)SPC)(e)(E)

ENTER]).

8. Inthe WHLUEZ: field, enter a list of initial guesses as to the values of
the corresponding parameters. Use zeroes here (although for non-
linear models its often necessary to use thoughtful initial estimates

for parameters): (]{3})(0)(SPC)(0)(sPC)(0)(sPC)(0)(SPC)(0)(ENTER).

9. Compute the first-iteration values for the parameters and plot the
resulting model against the data points: | 0K .
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1
200K ¢ JTRACE] FCH [ EDIT

The fitted curve looks to match the data so well that it overlays nearly
all of the data bars!

10.Press(CANCEL)to return to the LERZT=2UARKE = FIT screen. You’ll
see that the initial parameter values you entered have been replaced
with the computed values, and the standard deviation for the fitted
model has been recomputed.

11. Although you could compute and plot another iteration, if necessary,
it’s obviously not necessary here judging by the plot and the fact that
the computed standard deviation is less than the original measure-
ment error. Instead, accept the current model and use it to compute
the integral: (CANCEL). ~ Result: 139, H123H"354
This value agrees within 1% with the value determined by single
polynomial interpolation on page 145—probably because a polyno-
mial model seems to be an appropriate one for this data set.
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Example:

Using [I51, compute a least-squares fitted curve using a model of
your choosing, modifying it if necessary. Assume the measurement
error for all data pointsis 1.75. After finding a good fitting curve, use
it to estimate the definite integral for the data between 0 and 6.

1. Recall the [151 data matrix to level 1: (o]oJD)S)1)(ENTER).

N

A

Enter the column numbers for the independent and dependent vari-
ables, respectively: (1)([ENTER)(2)(ENTER).

Enter the estimated measurement error: (1] -] 7)5)(ENTER).
Enter the limits of integration: (&q]{ })(0) (6)(ENTER).

Begin ZIMT%: (VAR) (then (NXT) or as needed) ] R

In MODEL:, enter a model. The data suggests that a third-degree
polynomial (Ax® + Bx? + Cx + D) or a sine curve (Asin(Bx + C) + D)

may be useful. Try the polynomial: (*]o)(A)(X)(e)E)X)@¥(3)(H)
[ENTER).

In the PAFA: field, enter the list of parameter names used in the
general model: (&]{})(e]A)(SPC)(e]B)(SPC)(«)C)(SPC)(«]D)(ENTER).
In the YALUEZ:: field, enter a list of zeroes as initial guesses: (]{ }
(0)(sPC)(0)(SPC)(0)(SPC)(0](ENTER.

Compute and plot the first-iteration: [l

)
[ | |
AY il

2 2 2 wle " 2 a 2 2 2 " 2
zO00M kv [TRACE] FCH | EOIT
This time the fitdoesn’t seem very good: the curve touches just one-

third of the error-bars and, at least on the left-hand side, seems to be
concave where the data pattern appears convex.
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10.Press (CANCEL] to return to the LERZT=%UAKE® FIT screen. Note
that the computed standard deviation is three times the measurement
error—further evidence that you need a better fit.

At this point, you have three choices: (i) iterate the model a second
time using the first iteration values as a starting point; (ii) input dif-
ferent starting values and recompute a first iteration using the same
model; or (iii) start over with a different model. Experience will be
your best teacher in these cases. This time, choice 3 beckons.

Highlight the MODEL: field and input the general sine curve:
(AXEN(e]B)X)(alX)H (@) ([D)ENTER)

11.Enter zeroes for the values in the WHLUE*: field and compute the first

iteration: (¥)&5J{3)(0)(SPC)(0)(SPC)(0)(SPC)0)(ENTER) il THE.

”'._l'.Ti K

(200K [0 JTERCE] FEN ] EDIT

Hmmm... a straight line! Perhaps using zeroes as starting values
wasn’t a very good idea. Press f§i#i#ll and move the cursor around
to get an estimated feel for the amplitude (A), period (2m/B), phase
shift (-C/B), and vertical shift (D). Normally, the sine curve oscil-
lates around the x-axis (y = 0). The sine curve formed by the data
error-bars seem to oscillate around y = 12.5 so D = 12.5. The ampli-
tude (half the distance between trough and peak) = 10. The period
=4.1 s0B =6.3/4.1 = 1.5. The phase shift = -.6, so C = 0.9.

12.Return to LER=T-%*UAKE: FIT and enter the new set of initial
guesses in YALLE*: and recompute the first iteration: (CANCEL)(¥]¥)
SOQEPIE-IE)EPI ) 9)EPS) (1 3) EnTeR) ETEE .
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}fH_H

fJT""\L
N“'—J kN

o 2 o P N N o o o N N o
200M [ (8. [TRRCE] FIN | EDIT

Now you’re in business! The fit looks to be pretty good, although
there are a couple of data bars that don’t touch the curve.

13.Press to return to the set-up screen and notice that the stan-
dard deviation for the curve is nearly the same as the original meas-
urement error, further indicating that the model and the fit are good.
You can safely try another iteration using the current values as start-
ing values, hoping to improve the fit a bit more. Press [l![Ll.

14.The resulting graph doesn’t look much different than the previous
iteration. Press to see that the second one has improved the
standard deviation only slightly. Unless you need very high preci-
sion values for the coefficients of the fitting model to achieve high
precision in the integral, you probably have an adequate model with
which to compute the integral and need no further iterations. Accept

the model and compute the integral by pressing (CANCEL).
Result: 34, 2069702039

This differs from the speedy piecewise linear interpolation by less
than 1/20 of a percent!
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Example:

154

Using [153, compute a least-squares fitted curve using a quadratic
polynomial. Assume the measurement errors for the data points are
as follows: [ 0.2 0.3 0.30.40.40.403030.20.20.1] (as the
independent variable moves from -5 to 5). Use the best-fitting curve
to estimate the definite integral for the data between -5 and 5.

1. Recall the [I=3 data matrix to level 1: (a)]D)S)3)(ENTER).

. Enter the column numbers for the independent and dependent vari-

ables, respectively: (1)([ENTER)(2)(ENTER).

. Enter the estimated measurement errors (as a vector of individual er-

rors):
(Ta)EPA(-J3)EPI(- N 3)(sPA) (- J2)(SPC)(- J2)(sPA) (- 1) (ENTER).

. Enter the limits of integration: (&qJ{ })(5]+/=)(SPC)(5)(ENTER).

Begin & IMT4: (then (NXT) or (§)PREV) as needed) falH].

6. InrODEL:, enter the form of the second-degree polynomial (Ax? +

Bx+C): (JoJAIXJGIXIY 2] H (] BIX)(Ja)X)H (@ C)ENTER).

. In the PHERK: field, enter the list of parameter names used in the

general model: (G]UY(2[A)(SPC)(e)B)(SPC)(e]C)ENTER).

8. InWALULEZX:, enter zeroes: (&9J{ 3)(0)(SPC)(0)(SPC)(0)(ENTER).

. Compute the first-iteration values for the parameters and plot the

resulting model against the data points:

200M ek [TRACE] FCN | EDIT

10.The fit looks very good. Press to see that the standard devi-

ation (.30095) is within the range of the initial measurement errors
(.1to .4). Accept the current model and use it to integrate:
Result: &%, 3993625484 (3% different than cubic spline, p. 146. )
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Plotting and Solving with Definite Integrals

Although the HP 48 can compute numeric definite integrals in fairly reasonable
amounts of time (assuming that the integrand is continuous over the integration
interval), processes such as plotting and solving that require repeated computa-
tions of the definite integral are very, very slow, even if you set the numerical
precision low (e.g. &£ FI¥ or3 FIK).

For example, plotting the equation, J Lcost dt= x> —4x -2, at default plot

_,’2‘_ TC

parameters and 2 F I requires nearly five minutes because the definite integral
must be computed 131 times (once for each horizontal pixel). Similarly, finding
the greatest positive solution to the equation (by moving the cursor near the right-
most intersection and using R M [EII®H) takes another half minute. ISECT,
after all, uses the built-in root finder that must compute the definite integral on
each iteration. If you need more precision than three places, then the time to com-
pute the result increases dramatically.

A speedier alternative to using a definite integral directly in a plotting or solving
context is to compute a Taylor’s polynomial approximation (see page 42) of the
integrand, evaluate the integral symbolically using the approximation instead of
the original integrand, and substitute the result for the integral expression in the
original equation. For this approach to work, the Taylor’s approximation must
converge with the original integrand in the region of the solution.

Example: Plot the equation j Lcost dt=x’ —4x-2, using a 9th-order
LT
)
Taylor’s polynomial to approximate the integrand and evaluating
the modified integral before plotting. Then find the greatest positive
solution to the equation.

1. Enterthe integrand (using a numeric value for 1) and its independent

variable: ('] 20
ENTER X (J(JSITENTER)

2. Enter the order and compute the Taylor’s approximation and make

anextracopy of the result: (9)[ENTER)«)SYMBOLIC)LIIRIMA(ENTER). ...
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Result (to 2 places): 'H.3E#t—H, 902t ~3+] 501 #475
P ERT R ATHE BET 5T

3. Now compute the integral using the Taylor’s polynomial as the inte-
grand: ()m&)=NUM| 2)=]SWAP] ' [ IX[ENTERISWAP)( Jo)()
ODETER(2ILEVAL.

Result (to 2 places): ' . 89—+ (™ 1B 101 -4, 4FE -4+
[x™B-00+H, Bl #0000 -0, 16+
L™ )40, 320220 -1, 18!

4. Enter the right-side of the original equation, set it equal to the prev-
ious result, and store the whole equationin 'EF!" :
BAX(eaXE(@ENTER) G =) PLoT) (3.

5. Open the PLOT application, set TYPE: to Fl_lrll:t- 1M and reset
the plot parameters: (JPLOT)(a)(e]F)DEL)(Y)(ENTER).

6. The equation should already be showing in the E¥:: field, so simply

adjust the IMDEP: variable and draw the plot: (v)¥)(aJ&q]X)(ENTER)
ERAZE| DEALK |

|

- e
— -
200r1 EDNT [CHMI]

7. Thetwo polynomials intersect each other three times. Move the cur-
sor near and to the right of the positive most intersection point and

press 138l Result (to 5 places): #: 2.202H3

156 4. INTEGRATION AND THE INTEGRAL



The accuracy of the result obtained using a Taylor’s polynomial depends on how
well the polynomial approximates the integrand near the solution. As you remem-
ber from Chapter 1 (page 45), you can view the interval of validity for a Taylor’s
approximation using the program FTHYL.

Example: Use PTHYL to determine whether the solution you found in the
previous example falls within the interval of validity for the Taylor’s
approximation you used.

1. Return to the stack, and drop the result of the previous ISECT com-
mand so that the copy of the Taylor’s approximation is on level 1 of
the stack: (CANCELJCANCEL)(4).

2. Enter the original integrand and independent variable: ('JaJ&|T)
(= JCos[JGITIENTER)(X] ([ Ja ] T)ENTER).

3. Enter O (the point around which the approximation was centered)
and 2.20283 (the point being approximated) and launch FTAYL: (0)

(2]-)2)0)2)8)3) ENTER)(VAR) (NXT) or as needed)
PTAYL]

(.40 [TRACE] FN | EDIT [URNIL]

Thus, the result should be quite accurate. Indeed, although it takes 10 minutes of
plotting and/or solving to determine, the most positive solution to the equation
when solved directly using the integral expression is x = 2.20282—very good
agreement indeed with the Taylor’s polynomial approximation approach.
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Numerically Estimating Difficult Integrals

Although the HP 48 can numerically integrate any definite integral—that s, it will
eventually arrive at an answer—there are certain kinds of definite integrals that
it finds difficult to compute either quickly or accurately (or both):

An integral whose integrand contains a cusp (or “elbow point”) within the
interval of integration.

An integral of finite value whose interval of integration is nevertheless
unbounded (i.e. one or both limits are infinite).

An integral with finite limits whose integrand is undefined at one of those
limits.

An integral with finite limits whose integrand contains a discontinuity
within the integration interval.

The next few sections describe how to cope with these special kinds of definite
integrals, and they provide a set of programmed tools to use for each situation.
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Segmenting a Definite Integral

Integrands with cusps in the interval of integration often require many more sam-
ple points to achieve a given level of accuracy than do other integrands. The best
way to improve the HP 48’s built-in numerical integration routine in such cases
is to segment the integral—divide it into two (or more) integrals at the cusp(s).

Example:

. Change IMDEP: to

. Press 3% @}, move the cursor to

Plot f(x)= , then use the AREA command in the FCN

menu to compute the definite integral of f{(x) between the limits —0.8
and 1.6, to six decimal places.

. Return to the stack (pressing (CANCEL) a few times), set the display

tob FIi, openthe PLOT application and reset the plot parameters:

(6] (o] F] 1 JX)(ENTER)>)PLOT)(DEL)(V)(ENTER).

. Inthe Ef¥: field enter the function: (" )MTH)E 3517

(JAXSE(2)ENTER).

(lower-case), H=-WIEK to—= =, W-WIEHK to
—2 18, and draw the plot: ()J&)X)ENTER)(2)+/=)ENTER)(2)[ENTER)
PEFA)ENTER (1) 0)EnTer) HTEF LT

l"kk 1 ,
'k___-‘. l /.f
'\-'h._-\-\-\_h-\_-:' -.fr.'-r
o L
2000 [ 4. %0 [TRRCE] FCH | EDIT JUANEL ]

: =0 BO0000, then
to begin the area computation. Press [ PICT [ 4.2
move tot: 1.G00000, and (NxT) BTG to finish the com-
putation. Result: HREH: H.240B101

Note that it takes nearly two minutes to compute the definite integral
via the built-in integration routine (used by AREA as well as (=] ).
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Now, suppose you break the interval of integration into two subintervals by div-
iding it at the cusp point. Thus,

Example:

. Add the segments together: (+). Result: 4. Z4HEHH

1 1.6
’x3+x—2 dx becomesj |x3+x—2|dx+J ‘x3+x—2 dx.
1

JI.G
-0.8

0.8

Compute the definite integral of f(x) between -0.8 and 1.6 using the
segmented version of the integral expression.

. Return to the stack, enter the integrand (by recalling EL!), and make

an extra copy expression: (CANCELJCANCEL](@] ] E]Q)[ENTER])(ENTER).
Compute the first segment of the integral: (-] 8)(+/=)([ENTER)(SWAP)
ENTER)(SWAP) (" JoJ&q)X) (ENTER) (=) ) (€ =NUM.

Result: 3. &7 46H
Compute the second segment of the integral:(SWAP] 1)(ENTER)(SWAP)
ENTER) (SWAP) ()& X) [ENTER) () D) (e )=NUM.

Result: H.J634HH

et

This time it required less than five seconds of computation to get the
same answer returned in the previous example after two minutes!
Furthermore, the segmented result is more accurate—the exact

integral is 5303 or 4.2408.

The programs SEGINT (see page 322) and MSEGIMT (see page 304), written by
William C. Wickes and first published in his book, HP 48 Insights, Part II:
Problem-Solving Resources (and included here with his permission), automate
the process of segmenting a troublesome integral. Both programs take the sym-
bolic, unsegmented integral expression from level 2 and the value of the inde-
pendent variable at which to segment the integrand from level 1. SEGIMT returns
the symbolic, segmented integral expression, while MSELIMT returns the nu-
meric estimate of the segmented integral.

160

4. INTEGRATION AND THE INTEGRAL



If you desire a numerical estimate, MSEGIMT will be quicker but using SEGINT
and then pressing allows you to check that the segmentation occurred
as you expected before using it to estimate the integral.

Example: Use both SEGIMT and MSEGINT to segment the integral at x =-1,
3

then estimate its value to five places: J |x3 + 1‘
-3

1. Set the display mode to & FI#: (5)(e) ) FJ 1) X)[ENTER)

2. Now enter the unsegmented integral expression: (€9]EQUATION)()
NABOBOEEIVECTE ik OERE0CB0
()0 ®)(eJa)X)(ENTER).

3. Enter the point of segmentation: ENTER

4. Make acopy of the first two stack levels so that you avoid reentering

the arguments: ()STACK)(NxT) .

5. UseSEGIMT to symbolically segment the integral: (o)(@)(SJE)G)(1)
(NJT)(ENTER) or (VAR) (then (NXT) or as needed) E31L]
Result: 'J(=3, =1, JABS(:x"2+1), )+
Ti-1, 3, JABS C™ 2+ 10, w0 !
6. Evaluate the segmented integral: €5J>NUM. Result: 13.239H3

7. Drop the previous result and repeat the computation in a single step

using MSEGINT: (@)@« N S E) G T N T)ENTER) or (VAR) (NXT)or
(&)PREV) as needed) [[EIIH]. Result: 13.539H3
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Improper Integrals: Unbounded Intervals

Normally, definite integrals are defined over a closed and bounded interval—
boundedbecause both limits are finite and closed because the integrand is defined
at both limits. An improper integral is a finite integral over either an unbounded
or open interval. Thatis, an improper integral has a finite value even when it uses
an infinite number of approximating rectangles or an infinitely “tall” approximat-
ing rectangle. In all cases, the first thing to determine when confronted with an
improper integral is whether it converges to a finite value or whether it diverges
to an infinite value. Only those that converge merit further attention.

You may need to use a variety of analytic techniques to discover whether or not
an improper integral converges or diverges. The programs SEFi1, SEFHE, and
SERX3, described in Chapter 1 (see page 32), may help—but pay attention to the
underlying requirements for the viable use of each test! Remember, too, that the

use of these programs alone may not be sufficient to determine convergence.

Example: Determine whether the following improper integral converges:

J I - dx
WA+x

1. Entertheintegrand and make acopy: (' [ 1]=J) O] 4)+)eJa) XY
(2)(ENTER)(ENTER).

2. Enter the independent variable and do aroot test: (' )(oJ¢5]X])([ENTER
() SJEJRIX)1)ENTER). Result: "Inconclusive"

3. Theroot testis inconclusive, so drop the result string, make another
copy of the integrand, and enter a convergent comparison function,

1/x%, a logical choice: («)(ENTER)(" [ 1)(=) (] X)¥¥)(2)(ENTER).
4. Enter the independent variable and apply the limit comparison test
using SERAE: (o)) X) ENTER) (@) STERIXI2)ENTER).
Result (to Splaces): © 96174 H.99%6Hd 1 1 1 1 1 %
The comparison function converges and the limit comparison test

converges to a number greater than zero, so you can conclude that
the improper integral converges.
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oo

Example: Determine whether J dx converges.

e

xIlnx

1. This integrand is difficult to evaluate for convergence. None of the
three tests prove conclusive (check, if you wish), so the next most
straightforward trick is to solve the integral symbolically and allow
the independent variable approaches zero. The substitution u =1n x

Ineo

(and thus du = dx/x) transforms the integral into Jl du.

U

Inoco Inco o0
2. Evaluating it symbolically yields J‘— du=1, u] = In(In x)]
1 u 1 e
3. Clearly, as x approaches infinity, the value of the integral approaches
infinity—although very slowly. Therefore the improper integral
diverges and is thus actually an impossible integral.

Another option for determining the convergence of an improper integral is to use
the program COIMT (see page 287). Although COIMT shares the inevitable prob-
lem of all programs that approximate infinite limiting behavior using finite nu-
merical algorithms—it fails for some situations—it can give you a fairly reliable
judgement about the convergence of a particular integral. Unlike SERX3 (the
integral test), it doesn’t constrain the nature of the integral being tested to those
that are continuous, positive, and decreasing.

COINT takes an integral expression from level 4 that contains a variable name
instead of the problematic limit (i.e. infinite values for unbounded intervals or a-
symptotic values for open intervals, as you’ll see in the next section). It takes the
name of the substitute variable from level 3, the problematic value of the limit
from level 2, and either -1 or 1 from level 1 to indicate whether the limit is being
approached from below (-1) or above (1). Note that you may use the infinity
character, # ((@]=)1)), to represent infinite limits. COIMT will return either
"Diverges", "Converaes~x.xx" (where x.xxx is an approximation of the
value),or "Limit® ssss" (where ssss may be either a number or an expression
that you can evaluate to see if it converges or diverges at the problematic limit).
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00

dx.

2

Example: Use COIMT to determine the convergence of J "
x p—

2

1. Enter the integral expression, using a variable name (say, a) instead
of the problematic limit (% in this case): (" [2)(I)(2) &) )(Ja)A)
CIHE0HaXIEE0RQ ) (@aIX)ENTER).

Enter the name of the substitute variable: ('] aJé&q]A)(ENTER).
Enter the value of the problematic limit: (' o) 1J([ENTER).
Enter -1 (the limit is approached from below): ENTER).

Determine convergence using COIMT: (oo YD) T N)T)([ENTER) or
(NxT) or (o )PREV)) [UIEH. Result: "Corwetges~H, 243"

AR

A couple of notes: The value returned by LIIIMT when the integral converges is
approximate—don’t use it blindly as the value of the integral itself. In this partic-
ular case, the integral reduces analytically to 0.5(In 3) = 0.549306144335 and
COIMT agrees with it to six places—an unusually good agreement. COINT may
take along time to determine the convergence of some integrals. Use it carefully,
as one of your tools—not the only tool—for determining convergence.

Once you have confirmed that a particular integral with infinite limits converges
to a finite value, you can accurately estimate that value by mapping the infinite
interval to a finite interval via a change of the variable of integration. Suppose,

for example, that J. f(x) dx converges. Then, by defining a variable u=tan"'(x)

(or x =tan u), you can rewrite the improper integral as f (tan )( d(tanu) ) du.
du

tan~' g

Notice that the new limits are now finite: tan™' a and ©/2. This particular change
of variables maps the entire real x-axis onto the finite interval —m/2 < u < /2.
Estimating the definite integral using this transformed version should be quicker
and more accurate and isn’t going to be subject to as much round-off error.
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Two programs are provided to assist you in making the change of variables and
using the transformed integral to estimate the numerical integral.

The first, CHYAR (page 288), based on the program of the same name written by
William C. Wickes in his HP 48 Insights, Vol. II: Problem-Solving Resources,
takes an integral expression from level 2 and an equation defining the new vari-
able from level 1 and returns the transformed expression. The defining equation
should be of the form ' var, = g(var, d)' , Where var, is the new variable of
integration, var,, is the old variable of integration, and g the function that relates
them.*

The second, LIEIMNT (page 332), uses CHYAF and the u = tan"! (x) transformation
to compute the numerical integral for an integral expression with an unbounded
interval—providing that the integral converges to a finite limit. IBINT takes the
integral expression from level 1 and returns the estimate to level 1. Note that you
may either use the built-in constant, 'FIH®E ' (9.9999999999E499) as a stand-in

for infinity or the ' ' (&)=)1)) character.
The following examples illustrate the use of CHYAF and LIEIMT.

1
Example: Use-HVAE to transform j2x(x2 — 1)4 dx to asimpler one, by using
0

the transformation u = x> — 1.

1. Enter the integral expression: (")(=]5)(0) &2 )(DE)7)(2)(X) ()
EXNGE0(QXYIEEHTI@ G ) X)ENTER).

2. Enter the transformation equation: (" [oJ& U)E) =) X)T¥(2)
B(ENTER).

3. Perform the change-of-variables transformation: (o] o] CJH]V]AJR]
or (then (NXT) or ((q)PREV) as needed) (9§15

Result: 'Ji—1, By ™4, 1)

*Note that CH'YAR can be used for any change-of-variable situation—not merely for resolving improper integrals.
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Example: Use UEINT to estimate the value of the following unbounded inte-
gral (which you’ve already shown to be convergent):

J I -~ dx
WAt+x

1. Enter the integral expression: ()]0 ] [ D)D)
QOB XN E A X ENTER).

2. Set the display to STD format and compute the improper integral:

(2] 2] S]T]D) (@] ] UIBY L INJT)(ENTER) or (VAR) (NXT) or (&)
PREV) MALE]. Result: . M35239E1623593
This compares well with the analytical result: ©t/4=.785398163398.

Remember that LIEIMT should not be used on improper integrals for which you
haven’t yet determined convergence.

oo

dx (which you have

Example: Use lJEINT to estimate the value of J 1
xlnx

e

already shown to be divergent).

1. Entertheintegral expression: (' [ ) eJq EIQ ) (a2 UG ))

DEHEO XX )N XA )(@fa)X)ENTER).
2. Compute the improper integral using lIEIMT: [TTHTEES
[ |

Result (to 3 places): £.333 (after a long wait)

Furthermore, the result is misleading since the integral diverges.
Remember to check for convergence first before using |IEIMT .
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Improper Integrals: Open Intervals

Integrals that have unbounded intervals are improper because they require an
infinite number of approximating rectangles. But integrals whose intervals con-
tain a vertical asymptote are also “improper” because they require an approximat-
ing rectangle of infinite “height.”

For this second kind of improper integral, you must again first determine whether
or not it converges to a finite value before attempting to estimate that value.

2
Example: Determine whether j(x - 2)_’25 dx converges.
1

1. Enter the integral expression with the problematic limit (2) replaced

byavariable (say, b): ()D& JJalBIa] I OleJalX]
BRI EIOD T3 A )(JGIX) ENTER).

2. Enter the limit variable and its value: (' JoJ&q]B)(ENTER)(2)(ENTER).

3. Enter-1 (approach limit from below) anduse COIIMT:
(@) C) D)1 N)T)[ENTER). Result: Limit® 3 It converges near 3.

The program [JF INT (page 305) estimates the value of an integral that has a verti-
cal asymptote at one of its endpoints—i.e. an open interval. Ituses amodified ver-
sion of the built-in integration algorithm designed so that the precise endpoints
are not used in the estimation process. [IF' IMT takes the improper integral expres-
sion from level 1 and returns a numerical estimate to level 1.

2
Example: Estimate J(x - 2)"% dx (which you previously found convergent).
1

1. Enter the integral expression: (<C)O)(o)
EXEEPIEOF12IHE) B @aIX) ENTER).

2. Compute the improper integral: (o]oJoJP] I ]N]T) or
(then (NXT) or ((§)PREV] as needed) [l kH.

Result: &  The limit found by COIMT was exact!
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When the asymptote falls within the interval of integration (i.e. not on either
endpoint), a potential problem arises. The interval of integration is actually two
open intervals—one “below” the asymptote and one “above” it. For the overall
integral to converge, both subintervals must converge. Usually—but not always
—both either diverge or converge. When both subintervals converge, IF IMT will
usually provide an accurate estimate of the overall integral without requiring you
to segment it first. However, it can fail if it should happen to pick the asymptote
exactly as a test point during its algorithm. To avoid this, segment the integral at
the asymptote and then use I IMT to estimate each segment.

Clearly, the safest approach is to segment the integral at the asymptote and treat
each subinterval separately—testing it for convergence, then using IF IMT to
estimate its value—and, as the last step, total the two estimates. The following
examples illustrate both the safe and unsafe (though speedy) approaches.

Example: Estimate the following improper integral by plotting the integrand
to determine the location of any asymptotes, segmenting it at the
asymptote, making sure that both segments converge, and then

3

. "1 1
using [JF IMT to find the value of each segment: J dx
JN3x—1

1. Open the PLOT application, set TYPE: to Fiuri=t 12, and reset
the plot parameters: (a)(eJF)(@EL (Y)(ENTER).

2. Enter the integrand into the Ex¥: field: (v)(" ) 1)) ¥)(3)E)7)
(B)ENTER).

3. SetIMOEP: to: and draw the plot: (o)< X ENTER) [k T2

—

200 [ ¢t JTRRCE] FCH | EDIT
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Pressing f#ii 183 B¢f 8l and moving across the asymptote shows
that the asymptote is between 0.3 and 0.4. A quick inspection of the
integrand suggests that x = 1/3 (0.333333) is the asymptote.

Return to the stack and enter the integral expression. Note that for
best accuracy, use the exponential form for roots: (CANCELJCANCEL)
DG )EaE0E)X@[aX¥E0ME0)
FAIEE)GI ) (@fa)X) ENTER).

Use SEGIMT to segment the integral at 1/3: (3)/x)(@) @ SJEJG1N)
(D(ENTER).

Separate the two segments and make an extra copy of each:

LIST [OE.J* [ S7ASe (el 0kOPE] DLUPE |

Determine the convergence of the first segment: (SWAP)¢]EDIT)(»>)
0000 LEL* [OEAGI0ENEI@OEE
(] 2] IR N[ T)(ENTER).

Result: "Limits -.439999995"

Determine the convergence of the second segment: («)¢&]EDIT)(»>)
> IEEA 068 @) @) QL ETER) (a8 EviEr
ENTER] (o] ] CJD) 1 JN)T)(ENTER).

Result: "Limits 1.999999995"

10.Since both segments converge, compute the value of each segment

Example:

with OF IMT and sum the total: («)(e)@)0)P) 1) NJT)[ENTER)([SWAP
(o] o PY I NJT)(ENTER)(+).

Result: 1.5 The exact analytical result, as well.

Estimate dx directly using OF IMT.

3
1
‘[)3\/3x—1

. Enter the integral expression, using the exponential form of the root

toimproveaccuracy: (]p[S)(0)a - Ba [ J&JOEIX(a]X]
HOPN@OFTIH MG (GIX)ENTER).

Find the integral via OF IMT: (a)«)]o P 1N T)ENTER).

Result: 1.5
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Plotting Antiderivatives

In the previous sections, you’ve seen how the HP 48 handles situations where the
desired result is a real number—representative of the finite area under a specific
curve between two given limits. But the object of an integration may instead be
a specific function or family of functions. This requires the symbolic capabilities
of the HP 48. Consider this:

Treating the integral of a function (f(x)) as a function itself (g(x)), yields

g(x)= Jf(x)dx and thus, g’(x) = f(x).

That is, g is the integral (or antiderivative) of fand fis the derivative of g. Notice
that g represents a family of functions because there are any number of functions,
g(x), whose derivative is f{x). For example, if f{x) = 3x? + 2, then any of the fol-
lowing are possible antiderivatives:

g(x)=x"+2x-1
gx)=x>+2x+4
g(x)=x’+2x-9
g(x)=x>+2x+17

Indeed, the general antiderivative here—also known as the indefinite integral—
is x* + 2x + C, where C is any real number.

Believe it or not, the HP 48 can simulate a plot of the indefinite integral! The
Slopefield plot type plots the equation, g'(x) = f(x), by using a set of x-values and
computing the slope of the antiderivative g at each point. It then draws a shortline
segment with the computed slope at a given set of points on the y-axis. The Slope-
field plot allows you to visualize from short slope segments the actual set of
functions (i.e. the indefinite integral) for which f(x) is a derivative.

Example: Draw aslopefield for fix) =3x? + 2 = g'(x). Use 16 x-values and plot
the computed slope at 12 different spots along the vertical axis.

1. OpenthePLOT applicationand setthe TYPE: to= 1 ot 121d:
(JS)(e]s).
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2. Enter the function in EZ*:: (v)(" 13)(X)(eJ)X)>9(2)(+)(2) (ENTER).
3. SetlMDEP: tox (lowercase), =TEP=: (INDEP) to 1 &, and 2 TEP=:
(DEPND) to 12: () X)ENTER) (1)(6)(ENTER) () (1) 2) ENTER)

4. Now seti=LEFT to— H=EIGHT to, then¥~MERF to— 15, and

Y=FnF to 15 [iEEH(4)+/—)ENTER)(4)ENTER)(1)5 [+/=)ENTER)(1)
ENTER](ENTER).
5. Draw the slopefield plot: [I31E3[TA:10.

iﬂﬁﬁﬁﬁijiﬂﬁﬁii
L ot ol B |
?1{{ﬂ{xxiﬁ{§??
D Il i el
5 it~ ol 5 5
S o~ - — A A 404
ll II .‘l S~ J"F--"-F.FF--'-. A Jl dd
S T R g e N
:: L O ali Y
I R . 1]
R | TRRCE EDIT

You can see the general shape of a cubic polynomial antiderivative
swept out by the slope segments in this plot.

The indefinite integral is a family of functions, as the slopefield plot illustrates.
To specify which particular member of the family solves a given problem,
remember that the family of functions each differ from one another by the value
of the constant, C. If you can specify C, you can specify the function you need.
You can find Cif you know the value of the antiderivative function at at least one
point. This point is usually referred to as the initial condition because it requires
(i.e. “conditions”) the function to pass through it.

Returning to the equation in the previous example (g'(x)=3x? + 2), suppose you
also knew an initial condition, say that g(0) = 3. You can now specify C and thus

gx)=x*+2x+C

—_ 3 _
a specific antiderivative: %(2)3_ (0)" +2(0)+C=3

g(x)=x"+2x+3

Thus, the function x* + 2x + 3 passes through the point (0,3), the initial condition.

Plotting Antiderivatives 171



The program AMTI& (see page 286) plots the specific antiderivative function
given initial conditions on a general slopefield plot. It uses the function, f(x), on
level 6, a list of the independent and dependent variables on level 5, the plotting
range (as a list) on level 4, the horizontal display range (as a list) on level 3, the
vertical display range (as a list) on level 2, and the initial condition point(s) (as
a complex number—or list of complex numbers to find more than one antideriva-
tive) on level 1. AMT I uses ELLFLT (page 293), which finds antiderivatives
from initial conditions using the quick (but low-precision*) Euler algorithm.

Example: UseAMT I to plot the slopefield of the equation g'(x) = 3x2 + 2 and
the specific antiderivative corresponding to the initial condition:
g(0)=3. Useaplotting range of -3 <x <3, ahorizontal display range
of -4 < x <4, and a vertical display range of -15 <y < 15.

1. The function: (CANCELJCANCEL] '] 3]X] & X[Y*[2]+)2])(ENTER).

2. The list of independent and dependent variables: (]{ })(aJ)(X)
(SPA)(@Ja] V) ENTER)

The plotting range (as a list): (]{ })(3]+/=)(SPC)(3)(ENTER).
The horizontal display range (as alist): (q){ }[4]+/=)(SPC)(4)([ENTER).
Enter the vertical display range: (&9){3]1)5)+/=)(SPC)(1)5)(ENTER).

The initial condition (as a complex no.): ((5]0)(0)&5)(*)(3)(ENTER.
Plot the slopefield and the specific antiderivative using HHT 1.3: (o)
(«)(A)J(NJTJ1 J2IDJENTER) or (VAR] (NXT) or ((9JPREV)) [ilchIEY.

N oV AW

.

4
o JTRACE] ] EDIT

*For most situations, the Euler algorithm generates an adequate plot, but shouldn’t be relied upon for computed
solutions. Instead, use the built -in differential equation solvers, RKF and RRK, that are based upon the fourth-
order Runge-Kutta-Fehlberg method. These are not discussed in this book.
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Indefinite Integrals: Symbolic Antiderivatives

Finding the indefinite integral—the general antiderivative— of a function is a
common task in integral calculus. Although you can numerically approximate the
integral for a specified interval or use plotting techniques to give you a visual ap-
proximation of either the general or specific antiderivative, sometimes what you
need most is the general antiderivative in symbolic form.

As mentioned on page 132, the HP 48’s built-in capabilities for finding symbolic
antiderivatives are limited to matching patterns from a built-inlist (see pages 133-
134). As long as the integral in question can be dealt with using the built-in list,
it’s quite easy to use the integration command—which requires upper and lower
limits—to actually perform an indefinite integration.

Example: Use the built-in integration command to find j( 3x* + p)dx, where

p is an unspecified constant.

1. Atthe stack, purge the independent variable and formal constant, p:
(CANCEL)(CANCEL (a1 (J )X (SPC) (e« P) (ENTER) (o [PURG).

2. Enter the integral expression, using any number for the lower limit
and the independent variable name for the upper limit: (' []JS)

(003 G 631036331 Y B9 P [ €313 G (5 62 €0 Y B9

3. Evaluate the integral: (EVAL). The HP 48 finds a match for the inte-
gral and returns the evaluated integral before substituting the limits.

4. Drop the lower limit part of the resulting expression and finish eval-

uating the integral: (PRG) {8 k3l frd!|:118 (e« «][EVAL).
#330

Result: '+

The program IMOEF (see page 296) helps automate the steps required to compute
an indefinite integral. It doesn’t require that the variable of integration be purged
first. IMOEF can use either of two sets of arguments. The first option takes the
integrand expression from level 2, and the variable of integration from level 1.
The second option takes only an integral expression from level 1. If successful at
finding a complete antiderivative, [MLEF returns it to level 2 and a1 to level 1,
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indicating success. If INDEF can’t find a complete antiderivative, it returns either
an unevaluated integral expression or a partial antiderivative to level 2 (using
dummy limits) and a B to level 1, indicating failure. IMIEF is used by several
other programs in this book.

Example: Use IMUEF to find J(3x2 + p)dx.

1.
2.

3. Now compute the indefinite integral with INOEF : (o)) T IN]D)EJF)

Example:

Enter the integrand: (*]3)(X)(Ja)X)3(2)(H) (@ [P)(ENTER).
Enter the variable of integration: (' JaJ&)X](ENTER).

(ENTER) or (VAR) (then or (§)PREV) as needed) [[Z[I33.
Result: &% 'p¥u+I*isn™3-3)!

l: 1 —a successful match.

dx.

Use INDEF to find j

4+ x*

1. Enter the integrand: ([ 1)(=)@I0@)H(eIalX)ZI(2)ENTER).

Example:

174

1.

Enter the variable of integration and compute the indefinite integral:

(e X)(ENTER] (@] @] | INJDJEJF)(ENTER).
Result: &f 'JO1, 5 1o0g+2™20, 00!

1 H

IMOEF fails and returns an unevaluated integral expression instead.

dx.

Use IMOEF to find sz +

4 + x*

Enter the integral expression, using arbitrary limits, and compute the

indefinite integral: (' Jol (o) &) (HE(&aX)Z3 (2B
HEOOBHEHEXEIE A (aX) ENTER [EITEE.

Result: &% '"w™3-3+101, w2 1704+™20, 0!

1: H
IMOEF finds part of the antiderivative and returns the mixed result.
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Expanding the Pattern-Matching Capability

It won’t take you long to find integrands for which the HP 48 can’t find a pattern-
match in its built-in list. But you can add other patterns by creating an additional
list that the HP 48 will search if it fails to find a match in the built-in list.

The approach used in this book to building a supplemental list of integration
patterns is borrowed from William C. Wickes and his book HP 48 Insights, Part
II: Problem-Solving Resources. His 3 programs, 4 INT,LIMEART, and FLIMOF ™|
are included here with his permission (though L IMEHRE™ is named L IMIMT here).

#IMT (see page 334) is a replacement for the built-in integration command. It
searches a supplement list of patterns, named IPATS, if the built-in command
fails to find a match. LIMIMY (page 300) and FUMOFT (page 294) are user-
defined functions that augment the flexibility of the patterns included in IPHTS
just as the patterns in the built-in list have been. They are used behind the scene
by HOOPAT as it builds entries for IPATS.

The program AUDPAT (see page 285) has been added to Wickes’s capable col-
lection to provide a more user-friendly means of adding patterns to IFAT=. It
takes nothing from the stack and returns nothing. Instead, it uses an input screen
to prompt for information about the pattern you’re adding, then processes the
information and adds an entry to IPHTY in the proper syntax. Note that IFATS
doesn’t have to exist before using ALIOFAT.

Example: UseAUDFAT to add the following antiderivative patterns to [PHT=:

J 1 dx-—-ltan‘1£+C

a2+x2 a a

Jxe"dx =(x—-1e*+C

1. Begin HOOPAT: (o a[D)D P ALT) or (then or
as needed) I ..
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o ﬂ[l[l INTEGRAL PATTERM $38EE

ExPE. VAR: ¥ IMT. VAR <
COMETAMTE::

ENTER INTEGRAND TO EE MATCHED
BTl 1 0 JiRMeL] 0K

2. Enter the integrand pattern in the KEPLALCE: field: ('] 1)(=)&]0)
(JQ[APIEBHEXTI(R)ENTER).
3. Enter the antiderivative pattern to be substituted for the integrand

pattern: (D) (el A)X)ATAN[2JQX) () (@fa]A) ENTER)

4. The variable used in the patterns and the variable of integration is the

same—:=, the default. Skip over the third line and enter the list of
constants used in the REFLHLCE: pattern in the COMETHMTZ: field:
W& (e )A)ENTER).

5. Press to add the pattern to IPHTS.
6. Repeat steps 2 through 5 for the second pattern. Note that the list of

constants is empty: (o) X)(X)&)eX) ()X ENTER)()G]O)
EXEDEXE (X ENTER W) )0 ENTeR) BT,

7. Return to the stack and inspect IFATS:
[ENTER). The two newest entries begin the list:
L0 "Rl=EwPCR10" "CRI-10=ExPrd1)!
'LIMINTCOUOTECR L), QUOTECT LD
UM 1oCREME+R 120 LR P=HTANCRL-RE) Y TNOT
FUMNOF 7 I.T.!I_IDTE('E-._.TI, T-L3 AND LININTCLUOTE R D,
GUOTECTLYD 3 %
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Notice the inclusion of LIMIMT and FIIMOF™ tests in the IFATS list. The
L IMIMT test allows #IMT to find a pattern that uses a linear function of the inde-
pendent variable instead of just the variable itself. FLIMIF T assures that the con-
stants are truly constant and not functions of the independent variable—that is, for
example, that the constant b in an expression doesn’t evaluate to, say, 2x* + 7.

Example: UseHUDPAT to add the following antiderivative patterns to [FATS:

;dxzcln( a )+c

J x(x+d) x+d
sinaxcosaxdx = — cos2ax +C
J 4q
[ b

dx =bln|lnax|+ C
xInax

o

1. Begin HODOPAT again and add the first pattern:
ENTER (D(JaldHED)(eaX X0 (eaX) H(@a]D)
ENTER (V) QD) () ©)(SPC) () O) ENTER) B .

2. Addthe second pattern: (*)(SIN)(e ) A)X](a ] [X)»[X)(Cos)(x))
[ENTER) (J*/-JCos) >
EOOXEBETERYEID) (a)A) ENTER NS

3. Addthe third pattern: (")(aJq)B)(=)E) O)(efa X)X (2 LN)(«)a)
()
@& (elalA)EPd
ENE) 0K |

4. Return to the stack: (CANCEL].

Caveat: Before you make a large IFHTY list and use it routinely, bear in mind
that [FATS uses available memory and that the speed with which integrals are
evaluated is noticeably lowered if large I[FHT'= lists must be searched.
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Use #IMT wherever you would normally use the built-in ()7). #INT takes the
same four arguments, in the same order, as I the lower limit from level 4, the
upper limit from level 3, the integrand from level 2, and the variable of integration
from level 1. If *IMT finds a match, it returns the partially evaluated integral; if
it fails to find a match, it returns the unevaluated integral expression.

Example: Use #IMT to evaluate J

1.

b

dx

4+x°

a

Enter the limits of integration: (' JaJ&q)A)ENTER)( ' JaJ&q BJENTER).

2. Enter the integrand and variable of integration: (' [ 1)(+)&]0)

3.

(Ia)X)O(2)ENTER) ST )X)ENTER).

Evaluate the integral with AIMT: (o) X 1TN]T) or
( or ) Bl Result: I-.r I:a.'l t':l 1 ': q"*'f:-:f“:":: ]1 w ] :

#IMT failed to find a match—even though IPHTS contains the relevant pattern
(the first one you entered). Why? Because the pattern-matching is looking for

-

a™2 and doesn’t recognize % as £™2. To get M IMT to do this integral, you must

use "¢ or add a modified pattern to IFATS: I

Example:

178

1.

2.

3.

1 a’x:Ltan'li+ C

a+ x* “a Ja

Add the new patternto IPHTS and then repeat the previous example.

Enter the new pattern: M1E)

(JalAHXIE)ENTER L DHEE) (@fa)(A)XEIATAN)

SE3InE0 | OK |

Return to the stack and enter the limits of integration:

CJ [ENTER).

Enter the integrand and variable of integration: (' [ 1)(=)(&]O)(4)+)

[ENTER).

Evaluate: (o)) X)1N)T)ENTER) or(VAR)(NXT)or (&5 PREV)) 1.
Result: ' 1-TH=ATANCTLT40 | CTL=b0-C1-T4=ATANCTL

[42 10T L=a)"

. Now #IMT finds a match. Press to complete the evaluation

of the integral. Result: '.2#HATHMCb- 21— SxHTHAMC 350
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Example:

b

Use 4 1MT to evaluate j 2 dx.
Bx-1)(3x+7)

a

. Analyze the situation. This integral doesn’t obviously match any of

the integration patterns you added to IPHTS. However, notice that
the second factor in the denominator can be re-expressed as (3x-
1+8). If you use that form with /1 IMT, it should match the third pat-
tern you entered—with x represented by its linear function 3x — 1.

Enter the limits of integration: (' | aJé&9JA)JENTER)(' JaJé&)BJENTER).

3. Enterthe modified integrand and integration variable: (€5)([EQUATION

Example:

EHQOE(HaXEOREI0E XD E)ENTER)
(] X)ENTER.

. Evaluate the integral with % IMT: (o)1 N]T)(ENTER)EVAL.

Result: ' Z#[ MUT3#h-10-(3%0-1+80 -2+ N (32a-1)~
(3#a—1+8)"

b

Use #IMT to evaluate Jsin(x +2)cos(x +2)dx.

a

1. Enterthe limits of integration: (' JaJ&] A)J(ENTER)(' JaJ&9)BJENTER).

Enter the integrand and variable of integration:
> [ENTER).
Evaluate the integral with /5 IMT: (ENTER).

Result: '[a, by STMCu+Z 22005 00+20, 20!
# IMT fails because the relevant pattern contains &% while this inte-
gral has only an implied 1 for a. Either explicitly include a 1 in the

integrand—o [MU 1# (ae+E ) 300G 1 # (0+E) ) —or add a pattern
to IPATS that expresses the pattern without a:

Ccos2x

jsinxcosxdxz— +C
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b

Example: Use #INT to evaluate 3 dx.
(4x+3)In[5(4x +3)]

1. Enterthe limits of integration: (' JaJ&q] AJ[ENTER)( ' JaJ&q ] BJENTER.

2. Enterthe integrand and variable of integration: (' ] 3)(=)&] O] 0)
XEO@X X HE]
[ENTER) (' ] X) ENTER)

3. Evaluate the integral with A IMT: (EVAL).

Result: '3* NCABSCLM (D=0 42b+20 )03+
LMCHBSCLMCS#(4#a+320 00

a

Because #1IMT is an exact replacement for the built-in integral command @), it
can be substituted for J in any program to extend the program’s pattern-matching
capabilities to the supplemental I FHT list. The program# IMOEF (see page 333)
isincluded here as an example. It differs from INOEF only in that the ] command
has been replaced by #IMT and IMOEF by = IMOEF.

Example: Use #IMOEF to compute J‘sin 3xcos3xdx.

1. Enter the integrand: (ENER@ERPRCH DR TS
ENTER].
2. Enter the variable of integration: (' JoJ&q]X)(ENTER).
3. Compute the indefinite integral using % I MOEF : (o)X T N]DJE)F)
or (then or (§]PREV) as needed) EIZI43.
Result: '—CCOSCE* ) 17!

1: 1

You can continue this process of extending the symbolic capabilities to other pro-
grams, replacing IMOEF with KIMDEF in programs such as OFIMT, LIEINT,
COINT, or IPARTS; these programs will then search IPHTS as well as the built-
in list for matches for integrands. Keep in mind, of course, that extending the
search may also slow down the performance of the programs.
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Modifying the Function being Integrated

As you were trying to produce integrands that the steadfast-but-not-too-bright
pattern-matcher used by the HP 48 could recognize, no doubt it occurred to you
one of the most important tricks to successful symbolic integration is modifying
the integrand so that it’s easier to use.

There are several kinds of modifications that are quite useful:
* Change of Variables: Making an easier integrand by substituting one vari-

able for another.
* Integration by Parts: Simplifying an integrand by dividing it into more
convenient parts.

» Partial Fractions: Converting a complicated rational fraction integrand
into a series of simpler rational fractions that are easily integrated.

The next three sections illustrate these methods of simplifying integrands.

Substitution: Change of Variables

Finding the antiderivative of a function is a matter of recognizing that the function
is aderivative of some other function. Of course, derivatives are often formed via
the chain rule—as the result of a composition of functions. The method of substi-
tution (also known as the change-of-variables method) is a technique that allows
you to recognize derivatives produced by the chain rule and thus to find their
antiderivatives. It is a kind of “chain-rule for integration” that asks that you look
at an integrand as potentially containing a composition of two functions.

Notice that the derivative of a composite function yields an expression containing

both the “inside” function (g) and its derivative (g"): dif(g(x)) = f'(g(x))g’(x).
x

Thus, whenever you spot an “inside” function—such as one raised to a power, one
in the denominator of a rational fraction, or one used as an argument of a transcen-
dental function—you have a potential candidate for the method of substitution.
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The method of substitution works as follows:
1. Choose a candidate for the “inside” function and set it equal to a new vari-
able, i.e. let u = g(x).

2. Compute the derivative of the “inside” function, i.e. find du = g'(x) dx.

du

’

3. Substitute u for g(x) and for dx in the original integrand.

4. Algebraically rearrange the integrand so that the original variable (x or dx)
doesn’t appear, only the new variable (u or du). Note that you may be able
to replace remaining appearances of x with their equivalents in terms of u,
using the original relationship from step 1. If you are unable to do this, go
back to the beginning and try a different candidate function for u.

5. Integrate the new integrand using u as the variable of integration.
6. Substitute g(x) for u in the evaluated integral and simplify, if necessary.

7. Check the solution by differentiating it and comparing it to the original
integrand.

The easiest way to use the method of substitution to find a symbolic antiderivative
on your HP 48 is to use CH'YAF and IMOEF, described in earlier sections (pages
165 and 132, respectively). CH'YAF creates the modified integral; IMDEF finds its
antiderivative. Of course, in order to be successful, the modified integral must
match one of the built-in integral patterns (or, if you use ¢ IMIIEF instead, one of
the integral patterns stored in the IFATY list).

2

dx.

3

Example: Use the method of substitution to find J 3
X

1. Enterthe integral expression, using dummy limits:
G )JaBa[JaXxXYI2EEI0
&) (JEIX)ENTER).

2. Choose a transformation equation. The denominator factor, x* + 5,
seems a good candidate because its derivative is the same order as
the remaining factors. Enter the transformation equation: (' [ aJ&] U]

EEJAXPIEHEETR
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Example:

Perform the substitution using ZHYAF: ()] c)H]V]A]R)([ENTER).
Result: '[T5+a™d, 5+b™3, L 3333333333331, u)!

The integrand has been greatly simplified. At this point, you can
either use IMIEF (for symbolic integrations) or (for nu-

meric integrations). Since you require symbolic results in this case,

execute IMLUEF : (o] o T N)D)E)F)(ENTER)(«).
Result: '.Za2223333033= Nog)!

Re-substitute the original expression: ([ })(¢J& U)SPC)( o Jq X)
((3)(+)(5)(ENTER) (&) SYMBOLIC)(NXT) Eisduilil («).

Result: '.3=3333333a35 MOw™3+5)!
Check by differentiating: (' JoJ&q] X)(ENTER)(oJ o] F]DJEJR]ENTER).
Result: '. 333333333333+ (2% (w3450

This simplifies to the original integrand, thus confirming the resulit.

Use the method of substitution to find Jx\/ a’ +b*x? dx.

. Enter the integral with dummy limits: (" [=)J)(eJa) )] )(efa)

DX XEG0(ESAYIEHEAEIRIX
(JSQXIRIE] (CaIX)ENTER)

Choose a transformation equation: u=a?+ b*2. Enterit: (')(a)&)

Va=aAIEHABERIXLGXT(R)ENTER)

. Perform the substitution using -HYAF: (@) CH)]V]A[R)(ENTER).

Result: ' [ib™E*c™E+a™2, b Exd™E+a™2,

CoE[uER -, ) !

Execute IMOEF: (o) o] T NJD)JEJF)(ENTER)(«).

5. Re-substitute: (G]U)(J&JU)SPC))(JGJA) 2] H e B]Y

(2)X] o] X)X 2]ENTER)(€9)(SYMBOLIC)(NXT) ki ki |1 L ().

e e o T i ',ﬁ.l:l oy [y : "n e ,l'l._l-_l 1
Result: '.S (@ g™ 2+b™ 2201, D2 xb™-2

Check: (') oJeq X)ENTER] @) o] F) D) EJR]ENTER[&]SYMBOLIC)
Wi[He] ... ' CEMEEetE+a™2 )™ D% The original integrand.
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Example:

Use the method of substitution to find J‘x cos(x?)dx.

. Enter the integral with dummy limits: (" ]S )(«Jq) A) G )(o)e)

BaEXXCos)(@aX RG] (@alX)ENTER)

. Choose a transformation equation: u=x2. Enterit: (' )(o)(q)U)&)=)

(aJalX) ENTER).
Perform the substitution using “HYAR: (a)«]c)H]V]AIR)([ENTER).
Result: ' ICa™y, b, 2=C0500), u)!

Use INOEF: (oo NJDJE(F)ENTER)(@). Result: ' Z#5IM LD

5. Substitute: ((J{ ) o] UISPC] " oJeq XY ¥ 2] ENTER]&)(S YMBOLIC)

Example:

(NxT) ERElE («). Result: '.Z#SIMNC™20!

Check that: (" JoJ&q)X)[ENTER) (o] F]DJERIENTER) (&) (SYMBOLIC)
H1|Esy Result: '|::|:|f:i [w™F %" The original integrand.

dx.

Use the method of substitution to find J 1
X

. Enter the integral, with dummy limits: (' ]S )(«Ja)A) G )(efaq)

BIaJaXEHE0EXHDME] (@G)XIENTER).
Choose a transformation equation: u=x+ 1. Enter the equation: (')

e VEELGXH0)ENTER)

. Perform the substitution using CHYAF: (o c]HV]AJR)([ENTER).

Result: 'JC1+a, 1+by (=1+), 0!

4. Execute INDEF : (o) o T N)D)JE)F)ENTER)(«). Result: '—LM{ul1+u'

184

Substitute: (4 J{ o] UsPC] ' [ ofe ) X)+)1)(ENTER))(SYMBOLIC)
Euwliil(«). Result: '—LMCu+]I+00+]0!

Check: (" JoJ&q)X](ENTER)(e) o) F D) E)R)ENTER) (€ )SYMBOLIC)
COLCT R I G R
That may notlook like the original integrand, but a little algebra will
show the equivalence:
1- 1 _ M1+ x)-(1)(1) _1+x-1_ x
1+x I+x I+x x+1
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Integration by Parts

The method of substitution helps to integrate derivatives produced by the chain
rule. By contrast, integration by parts helps with derivatives produced by the pro-
duct rule. This method should be considered whenever the integrand is the pro-
duct of two functions where at least one of them is easy to integrate:*

J F(X)g(x) d

The integration by parts method requires that you make two substitutions: First,
let the more difficult-to-integrate function be u = f{x). Then you let the easy-to-
integrate function be the derivative of v: dv = g(x) dx. After those substitutions,

the integral is Ju dv, so you can use the “by-parts” formula J‘u dv=uv— J vdu

The integration by parts method works as follows:
1. Define u and dv by making the appropriate substitutions described above.

2. Compute the derivative of u: du =f(x) dx

3. Compute v: v= J-g(x)dx

4. Compute uv — J vdu,using the expressions for u, v, and du you’ ve defined

and computed. If the integral in this expression is no easier to compute than
the original, go back to step 1 and separate the original differently.

5. Check your answer by differentiating the result and comparing it with the
original integrand.

*Actually, the method of integration by parts can be used for any integrand, f{x), by assuming that it’s multiplied
by a function, g(x) = 1, although this trick won’t be helpful in all cases.

Integration by Parts 185



The program IPHETS (see page 299) automates the integration by parts method
by managing the substitutions and computations. It takes the u-expression from
level 3, the dv-expression (without the dx-term, which is always implied) from
level 2, and the variable of integration from level 1. It returns either a fully eval-
uated expression containing the constant ' '; a partially evaluated expression

where v was computed but J-v du was not; or a completely unevaluated expres-

sion where not even v was computable. In this last case, repeating the procedure
using a different u and dv may help. In the partially evaluated case, you may be
able to further the computation by using IFARTS (or other methods) with the
unevaluated integral portion of the result. The examples below illustrate each of
the possible results.

Example: Use integration by parts to evaluate J.xe" dx.

1. Define u and dv. Whenever e* is a likely option as one of the parts,
it’s good to define it (with dx, of course) as dv because it is its own
integral. So, in this case, let u = x and dv = e*dx.

Enter u: (' ]aJ&]X])(ENTER).
Enter dv (the dx-term is implied): (aJ&]X)(ENTER).
Enter the variable of integration: (' ]aJéq)X](ENTER).

Compute the integral via integration by parts: (o]a] 1 JPJAIRITJS)
(ENTER) or (VAR] (NXT) or as needed) HI&; 8.

Result: 'ExF Ol #u-ErP ) +L!

ok wn

Example: Just out of curiosity, repeat the previous example, but swap the de-
finitions of u and dv: This time let u = e*and dv = x dx.

1. Enter u and dv: (' J&)e¥ (o] X)(ENTER); (' JoJ&)X])(ENTER).
2. Enter the variable of integration: (ENTER).

3. Go: (a)o] 1 JPJAIR]T)S)ENTER) or(VAR)(NXT)or (& JPREV)) HId: 1 .

Result: ' S¥ERP ) #u™P=1 01, vy o SRERP Cs 202, w0

This result is more complicated than what you started with! Clearly,
it is extremely important that you define u and dv properly.
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Example: Use integration by parts to evaluate Jln(—x)dx.

1. Define u and dv. Inthisintegrand there appears to be only one factor.
Of course, you can always assume a 1 as the second factor. If you
use the “one-trick,” always assign it to dv. Thus, let u = In (-x) and
dv =1dx.

Enter u: (' LN)(+/=)(oJ&[X](ENTER).
Enter dv (without the dx-term, which is implied): (1](ENTER).
Enter the variable of integration: (' ]aJ&q]X](ENTER).

Compute the integral via integration by parts: (e]a] I JPJA[RJT]S]
(ENTER) or (VAR] (then (NXT) or ((5]PREV) as needed) {ldili Al

Result: 'LHE—sdem—ut !

nokh v

Example: Use integration by parts to evaluate J‘x5e"‘3 dx

1. Define u and dv. In this integrand the natural break appears to be

X

between x’and e ™™, bute™™ isn’tan easy-to-integrate function like

e* (at least, for the HP 48). So let u = ¢ ™ and dv = x> dx.

Enter u: (Ja)X] ENTER)
Enter dv (the dx-term is implied): ('] aJ&)X] ENTER).
Enter the variable of integration: (' JaJ¢3)X)(ENTER).

Compute the integral using integration by parts: (] o | JPJA[RT]S)
(ENTER) or (VAR] (NXT) or (o ]PREV)) fldilHl.

Result: '.lBEEEGEEEEEMEAP (™3] % 0

ok wn

The method failed to compute the integral; there is still an unevaluated integral

13

expression in the result. If only it were e* instead of e™* ...
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Example:

Repeat the previous example, transforming the integral using w=-x*
before applying the integration-by-parts technique.

. Enterthe integral expression, using dummy limits: (' [ )(eJ&]A)

LB PSXTIENEI D [JAXPIE)
P& JSX)ENTER)

Enter the transformation equation: (')(eJe W) )=)+/=)(eJq)X)
(3)ENTER)

Transform the integral, using CHYAR: (a)(«CIH)V]A[R)[ENTER).
Result (to2 places): ' ['{—a*3, —b™3, —(H. 33010 *1, Bb=
B ) 2y w)!
Now define u and dv. Let u = w/3 (a simplification of —(%(—w)1 ))

and dv = e"dw.

5. Enter u and dv: (" JoJ& W)(=)(3)ENTER) (")) eX) (] JW)([ENTER).
6. Enter the variable of integration: (' JaJ&]WJENTER).
7. Apply integration by parts: (o]o](1) PJAJR]TJS])ENTER).

Result: 'H. 33=EHP ()#-6, 33ERF () +0!
Substitute for the transformation variable: (&]{ JJ(aJ&e W)(SPC)(1)
(+/9)(eJaIX) ¥ (3)(ENTER) () SYMBOLIC)(NXT) B sl ik § («).

Result: 'H. 353#ERP (-3 ) =00, 33#EnF (3040

Check the result by differentiation: (" JaJ&qX) (@] o] F]DJE]R]
(ENTER)(&)(SYmBoLIC ke[ {.

Result: '1.HE*ERP(-2*30%*5"  The original integrand!

The previous example illustrates how much more useful the separate techniques
of integration can be when used in combination with one another. Buteverything
still depends on you, though, to sniff out the best options.
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If the HP48 can’t find an exact antiderivative for an integrand, it resorts to numer-
ical approximation, but then the exact symbolic result may get “lost” due to the
machine’s limited precision. Integration by parts helps find an “exact” answer.

1

Example: Compute the value of J‘xze" dx, first using the built-in numerical
0

integration routine, then using IFHETS.

1. Enteritin'=T[ display mode: () STID)ENTER)( [=2)T)(0)&))
HaeaXY2XEled(JalXal)@a)X)ENTER).
2. Estimate its numeric value: §)=NUM). Result: . r 13515258459
3. Defineand enter uand dv. Let u=x?and dv=e*dx. Note that, because
you want the exactanswer, use ' &™% ' not 'ExF )" (D)X
IEENTER ) JGIE) I ()X ENTER).
4. Enter the variable of integration and execute IPHRETS: ()(e]q)lX)
Result: ' I”' 'LLH' B ) JEu Ry
=01, e, 2 L|"-|' B lEuEe™y, ]!

5. Once you realize that the term In(e) = 1, the integral expression
remaining in the previous result looks to be a good candidate for an-
other integration by parts. Separate the evaluated from the uneval-

uated in the previous result: CLIST (@) @] (SWAP).
6. For the unevaluated part, define and enter u and dv. Letu=2xand
dv = e* dx: (J)(2]X[eJa)X) ENTER)(JJGIE) O (eJaIX)ENTER).
7. Enter the variable of integration and execute IPARTS: ()(]q)X)
Result: 'Z- LH' B ) #usaty—p *L”' elele™ue L NCe ) )+0!

8. Subtract this result from the evaluated portion of the previous result,
replace In(e) with 1, make an extra copy of the result, and find the

integral by substituting the limits for x: (=) Q{3 S LN)(«¢J<)(E)
))DENTER)&)(S YMBOLICINXT) E AL («) ENTER) (1) JS)(X)
(sTO)(EVAL)(SWAP)(0)(* JeJex [ X](STO)EVAL) ()& ) (S YMBOLIC Lo TEe |

Result: '—&+&' —the exact result!
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Partial Fractions

A third method for resolving symbolic integrals pertains to any integrand that is,
or can be re-expressed as, a rational fraction—the quotient of two polynomials.
The technique of partial fractions converts the rational fraction integrand into a

Bx+C
(x+r) (x +sx+t)
quantity x>+ sx + t cannot be factored into linear terms with real coefficients. Here
are some examples to illustrate the results of partial fraction expansion:

polynomial plus a series of terms such as -, where the

N

x*—4 4x-8 4x+8

3x* + x> +20x% +3x+31 2 N 1
(x+1)(x* +4)° x+1 X +4 (x2+4)

©+2 1 3

—=x’+x- +

x“ -1 2x+2 2x-2

The practical details of using the method of partial fractions to compute the
integral of a rational fraction, f(x)/g(x), can be divided into four stages:

1. Make sure that the degree of f(x) is less than the degree of g(x). If not, then
divide g(x) into f(x) first, keep track of the quotient, but use the remainder
of this division as your starting rational fraction for purposes of expansion.

2. Factor the denominator (g(x)) into real, irreducible polynomials of degree
2 or smaller. Any polynomial with real coefficients can be expressed as a
product of real linear and quadratic factors (though it would be difficult to
perform the factorization in practice).

3. Compute the partial fraction expansion. This includes using the factoriza-
tion of step 2 to determine the denominators of the terms of the expansion
and the calculation of the coefficients in the numerators.

4. Findtheintegral of the partial fraction expansion. Each term of the expan-
sion series will fit one of these four types with their symbolic integration
patterns:
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A

dx =Alnjx-r|+C

Jx-r
. 1-k

( A)kdx=A(’; ;) +C fork#0,1
J(x-r -

—__2Ax+B a'xzé(lnlx2 +sx+t|)+——————23_As tan‘l(—2x+s )+C
J X +sx+t 2 4t —s* V4t —s*
Ax+ B A()c2 +sx + t)]_k

_ dx=
J (x2+sx+t)k 2-2k

2k-3 .
+2*%2(2B - As)(4t —s? )O‘H cos — Bsin6 + 2k=3 cos** 0do
2k-2 2k-2

where k #0,1 and 6 =tan™ (ﬂ)

V4t —s*

Note that the last of these four types has a multiple quadratic in the denominator,
which uses a reduction formula in its symbolic result, so you must repeatedly

evaluate the remaining integral term until it is Jcoso 0d0, which is 6 +C.

Using the HP 48 for the method of partial fractions requires a set of programs. The
program FFFEAL (page 311) takes the symbolic rational fraction from level 1 and
returns its symbolic partial fraction expansion to level 1. FFEAC converts the
symbolic numerator and denominators to single polynomials, which it then fac-
tors viaFFACT. Next, it computes the numerator coefficients and finally returns
a list of the symbolic expanded terms.

FFEHAL ends its work at the end of stage 3, allowing you then to choose your fav-
orite approach to integration to complete the project. FFFHL relies on a number
of other polynomial programs (see page 76 for a brief description of these). In
addition, FF AL relies on the program 5*+FF to convert a symbolic rational frac-
tion to a polynomial numerator and denominator. You can use any of these com-
ponent programs independently, of course (see the program listings in the appen-
dix for syntax details).
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Example:

Example:

192

5
Find J‘ X 5 * ? dx, using the method of partial fractions.

x—

. Enter the integrand, a rational fraction, symbolically: (&)(EQUATION

@aXPIEHEMEEXTI I EHHETER)

. Compute the partial fraction expansion using FFFAC:

(RJAJC)(ENTER)or (VAR) (then (NXT) or as needed) [3

Result: © "w™a+s! '302%(=100" =010} 4—|--+1]]]'

. Because each of the factors in the list is one of first two kinds, they

should be able to be matched by the built-in pattern-matching inte-
grationroutine. Combine the three factors into a single symbolic ex-

pression—the expanded integrand: (EVAL)(+][+).

. Enter the variable of integration, make a copy and purge it, and com-

pute the integral using INDEF: ("] oJ¢&5) X)([ENTER)([ENTER) 5 )PURG)
(@] o INJDIE)F)(ENTER)(«)()SYMBOLIC) 41| By,
Result: ' 1. 5% CLHC=1+0 - Sl NO1+u )+, Dt ot

FindJ- 2(" +) dx, using the method of partial fractions.
X\ X —

. Enter the integrand in its symbolic form: (&5]EQUATION)(a)(2)(a)(&)

X@IEHE M WaXXalOalx = @) 09 @

ENTER).

. Compute the partial fraction expansion, using FF AL

(AJC)(ENTER]or (VAR) (then (NXT) or ((]PREV) as needed) [ Fi1H.
Result: { 'D-0w=10"2" '=01-0Cw=102" '3 3

. Combine the three factors into the expanded integrand: (EVAL)(+)+).
4. Enter the variable of integration and find the integral using IMIEF:

1 eJalX] (] o[ ONJDIENF)ENTER)(«).
Result: 'Z#[ M) -LNCw—10+53%-TNV(2-10
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Example:

1.

4 3 2
Find j 3x +x +20x +3x+31 dx, using partial fractions.

(x +1)(x* +4)*

Enter the integrand inits symbolic form: (9] EQUATION)(a)(3]aJ&]X)
@)D aXYE)HRI)JaXXI P HE@E)
VO aXHOPEO(PSXZI2))H@)
> [ENTER).

Compute the partial fraction expansion using FFFAL:
e

Result: { '2/(x+1)" '=(1/ (244020 ' L (5n244) ' 3

Though there are some quadratic terms (types 3 and 4) that the built-
in routine may not be able to match, proceed as before—combining
the factors into the expanded integrand: (EVAL)(+]+).

Enter the variable of integration and find the integral via INLIEF : ()

(=)&) (X)(ENTER) (o] <] 1 INJDIEF) ENTER)(«).

Result: 'Z¥LNCut 11+ 01y 5y s (20— (4420 =2, ) !

IMOEF returns a partially evaluated solution. To complete the solu-
tion, you must either use the formulas given on page 191, use some
combination of other integration techniques (substitution or integra-
tion by parts) or include the relevant patterns in IPAT S via HOOPAT
(see page 175 for details), using 1 INLEF instead of IMDEF for the
ensuing integration.

Using the appropriate formula for the first of the two problematic
terms (type 3),letA=1,B=0,5=0, and ¢t = 4:

szi‘ldx:%lnlxz +4/+C

6. Using the appropriate formula for the second of the two problematic

terms (type 4),letA=0,B=1,5s=0,t=4,and k= 2.

—1——2dx=lcos9sin6+-—1—9+C=++i(tan"§)+c
(x* +4) 8 16 8(x*+4) 16
7. All together: 21n|x+1|+—ln|x +4| ————Ltan"‘£+C

Partial Fractions

8(x*+4) 16 2
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Measuring with Integrals

In many situations, a quantity can be expressed as a constant multiplied by the
length of an interval. A rectangular area is its constant height multiplied by its
length; the work applied to an object is a constant force times the distance the
object moved; the distance an object travels at constant velocity is that constant
velocity times the length of time it travelled. But in any of these cases, if the
“constant” is not constant, but instead varies as a continuous function over the
interval, then the definite integral is the appropriate computational tool. It allows
you to “multiply” a functional variable by a fixed interval.

Thus, definite integrals provide a means of measuring the net effect of functional
quantity over a given interval. Sometimes, this net effect is an area (the base
definition of the definite integral); sometimes it is a volume, or length of a curve,
or an average value of a function within a given interval, a probability, or some
other physical measurement such as work, distance, or fluid pressure. Each of the
sections in this chapter covers one of these applications.

Area Between Two Curves

The integral is used to find the area of the region delineated by an interval and
bounded by two functions. Often one of the functions is f{x) = 0—the x-axis—and
the integral becomes the area of the region “under the curve” as discussed earlier.
In general, to find the area between two non-zero functions that don’t intersect
within the interval, you can simply subtract the integral of the “smaller” function
from that of the “larger.” Of course, you should plot the two functions first so that
you know how they interact.

Example: Find the area bounded by the graphs of y = x> and y = x*between the
limits of 0 and 1.

1. OpenthePLOT application, set the T¥PE: toF urt. 12, and re-
set the plot parameters: (=)PLOT)(a)()F)(DEL)(Y)(ENTER).

2. Enter a list containing the two functions in the Ei: field: (v)(&){3)
(T JaXIE)C)(elalX)PI(@)ENTER).
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3. SetIMDEP: to x (lower-case), H=WIEk: to—« 2 1, and ¥-VIEH

to—w < 1:(aJq X)ENTER)(-3)+/=)ENTER)1)ENTER)™)(- [ 2)F/)
(ENTER)(1)(ENTER).

. Draw the plot: [TITEI T

A

+ i

o
-_._r..,

—— -

2000 ] Lite't) [TRACE] FCH ] EDIT.

. With the cursor near the widest portion of the crescent, press {1183

() VIEW]to see which curve is which. Result: The upper curve is x.

. Return to the PLOT screen and enter x*— x* into Ei2:: (CANCEL)(¥)(")

(IEXIEEH (X4 ENTER).

. Check HUTOXCHLE, but leave the other plot parameters as they are

and redraw the plot: (v)<)(+/=)[TiE 3 [TTTEE.

l-—_r_—_-l——l-—q'—l—-l—i—|—|—|—|—-l
o
P 1
200 |4 0 [TERCE] FCH | EDIT

. Compute the area under this curve (it’s the same area as between the

two original curve). Move the cursor to x = 0 (the y-axis) and press
EEETBETE o mark the lower limit of the computation. Move the
cursor to x = 1 (the right-most column of the display), then press
I35 to mark the upper limit and initiate the integration.

Result: HKER: .05
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Often, before computing the area of a region bounded by two functions, fand g,
youmay need to compute the intersection points, which represent the interval lim-
its, a and b, of the integration. Also, if the functions intersect within the integra-

tion interval, the area can be computed by the integral j [ f(x)—g(x)|dx.

Example: Find the area bounded by the graphs of y = e and y=x"—x+1.

1. Return to the PLOT application and enter a list containing the two

functions in the E: field: (CANCEL)(A) (&)1}
PREPOUEHaXPEEHaXNEHOENTER.

2. SetH=WIEH: —1.2 1.2 and¥-MEK —. 2 2
(O L3J+/-)(ENTER) () [ 3) ENTER) () (- J5) (+/-)(ENTER) (2) (ENTER).
3. Draw the plot: i3 [TT:100.

F————————————
Z00M [ (8.3 [TRERCE] FCH | EDIT [CAMIL

4. Note that the bounded area falls into two regions delineated by the
three points of intersection of the two curves. Determine the three
points of intersection. Move the cursor near the left-hand intersec-
tion point and press . Then move the cursor near the
middle intersection point and press [EI1. Finally move the
cursor near the right-hand intersection point and press ISECTH

5. After each ISELCT, the computed point is displayed (as a complex
number) in the lower left portion of the plot. Press (CANCEL]CANCEL)
to return to the stack to see the three intersection points.

Result (to 6 places): 3% [-zect: (-1.70E3H, . 1':1 296EE)
[-sect: (B, 1)

1 [-zect: (.G/BZEE, .F-I:II:IHFIEI)
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6. Create the integral expression for the area computation using sym-

bolic limits: (* JoJ&o [ A)JENTER)()(eJéo [B)(ENTER) (@] ¢  EJQ)(ENTER]

[EVAL)(=) (MTH) K S () (JaIX)ENTER) (2] ).
Result: 'JLa, by ABSCERP =™ 1= s =t 110, w20 !

(JaJ&a)A)sTo)

8. Enter the x-value of the middle intersection point as the segmenta-

tion point and use M=EGIMT to compute the area: (0)(ENTER
(N]S)EJGJ T N)T)(ENTER). Result: . B9H]9EHETE S

If the curve(s) you’re trying to integrate are vertically oriented, such as x = f(y),
then you must integrate with respect to the y-axis, using a vertical interval.

Example: Find the area bounded by the graphs of x = y* and x = 2y* + y> — 2y.

y =2y’ +y* -2y
1. Compute theintersectionpoints: 0 =y’ + y*> =2y =y(y—1)(y +2)
y=1{-2,0,1}

2. Enter the integral expression (with respect to y) using the smallest
and largest intersection point y-values as the lower and upper limits
respectively: (" () (*+/-12)( ) )(1)&) ) MTH RN el A BT 08
(JQZIEHEOREX @GP EHISY )2
XSG (A Y)ENTER.

3. Using y-value of the middle intersection point as the segmentation

point, compute the area viaM=EGINT: (0)ENTER)(@]«) (0

(NJT)ENTER). Result: 3. HE33332333
If you rationalize this result (using’? F I *[! orthe program +[Iz),
you’ll see that the result is '3 1%" .
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Area Bounded by Polar Functions

Functions presented in polar coordinates are integrated just as rectangular func-

tions, but instead of using rectangles as approximations, polar integration uses

circular sectors (i.e. “pie slices”). A given polar function, r(0), is integrated by
b

computing %j r*(0)d. However, integrating polar functions presents a chal-

lenge not found with rectangular functions. Polar functions are periodic and thus
“sweep” out the same arearepeatedly. So you mustkeep a sharp eye on your limits
of integration to be sure that you’re computing only one period and no more.

Example: Find the total area enclosed by r = w(cos 6 —1).

1. Plotthe function to determine its periodicity. OpenPLOT, set TYPE:
toF'2' 1 &1~ and reset the parameters: (—)PLOT)(a)(+/=)[DEL] YJENTER).

2. ThefunctioninER: (W) Jq X OICos[a>[FI» =] 1)ENTER).

3. SetIMDEP: toH, H-VIEl] to_—llEl 1E1,z_1nd_'.'-'.'IEI-J to—= . In
PLOT OPTIOMZ, setLD: toE andHI: to& . 212 (2m), then plot: (o)
(=) FJENTER] 1] 0 J+/=JENTER] 1) 0 JENTER[»)(5 J+/=)[ENTER)(5 JENTER)
[ () () ENTER) (6 ) - 2] &) (ENTER) ENTER) [ A NTTIEN.

EIEI]]-&II

4. Atthe stack, enter the appropriate integral: (CANCEL]CANCEL] '] - [5)

X¥eldvaHEXEnNGHEOEMX &0 Cos) (]
PEEOEIRIG TR E)ENTER).

5. Evaluate: (9>NUM). Result: 46, 2H34 158204 3

.. ) . . 1
This is numerically approximate to the analytical answer, —.
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Just as with rectangular curves, you can find the area bounded by two polar curves

b
(r,and r,) and two values of 6, a and b, by this formula: %j |,.12 (6)-r (6)’69

Example:

Find the area of the region bounded by r = ¢®and r = O between 0=
0 and 6= 7. Plot the two curves first to visualize the problem.

Open the PLOT application and reset the plot parameters: (—)PLOT)
(WENTER)

Enter the two curves as a list in the Ef2: field: (G )l e¥(«)D)
E)C)(@I2[F)ENTER)

Set IMDEP: to B, H-WIEK to —22 2, W=-WIEH to—2 18, and
inthe PLOT OPTIOM= screen,LO: E andHI: 3. 15 (=n). Thenre-
turn to the main PLOT screen and draw the plot:
B ENTERS)ENTER )5+ EnTer)1 o) ENTER I EIEI 0)
(ENTER) (31 J1)(5) (ENTER) (EnTER) HTTHE [TATEE.

—— T —
_,,-""--
- +
=
200 | e [TRRCE] [ EDIT

Return to the stack (CANCELJCANCEL)) to compute the area of the
“beaked” region between the curves. Note that the curve r = e?is al-
ways greater than r = 6, so you needn’t use the absolute value when
entering the integral: ('-J5) X2 @)GGlma])&]ed
EXEREERENE &) 2 F)ENTER)

5. Evaluate: (EVALJEVAL)....(The HP 48 matches this integral!)

200

Result: '.2#(-(p*3-30+ERP(E2#m)-2=, 30"

5. APPLICATIONS OF THE INTEGRAL



Volume

Just as the area under a curve is approximated by summing a sequence of vertical
“strips” of very small width, so the volume of a region in space is approximated
by summing a sequence of cross-sectional slices of very small depth. Ineach case,
the integral is the limit of the summation as the width of the strip or the depth of
the slice approaches zero. Thus, if A(f) expresses the area of a cross-section taken
from a region at x = ¢, then the integral to compute the volume of the region be-

b

tweenx=aand x=bis JA(t)dt.

Example:

Volume

a

Find the volume of a sphere of radius R by integrating its cross-
sectional area.

. Determine the function describing the cross-sectional area of a

sphere. The cross-section of a sphere is a circle. The radius of the
circle depends on how far (x) the cross-section is from the center:

The area of the cross-sectional circle is thus A(x) = T(R? — x2).

. Enter the integral expression using A(x) as the integrand and -R and

R as the limits (i.e. the cross-sections run from x =-Rtox=R): (')

D EREHBEHEMXE0RIFIRIE
(IXXIEM) G (X ENTER).

. Evaluate and simplify the results using E*C0 (a program from HP’s

Advanced User's Reference—see page 294 in the Appendix here for

a listing): [EIXJCIOJ(ENTER)

Result: '1.-.333333333*PAJ*

This is the familiar formula for the volume of the sphere, V = %nﬁ.
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Solids of Revolution

Many solid objects can be modelled well by imagining that they are formed when
a2-D areais revolved around an axis, thereby sweeping out a 3-D region. For ex-
ample, revolving a rectangle around the line shared by one of its sides yields a
cylinder. Objects formed in this manner are called solids of revolution.

When finding the volumes for solids of revolution, you must pay attention to three
things: The first of these requirements is an obvious one, but the others are equally
vital.

1. The description of the planar region being revolved.

2. The orientation of the axis of revolution—horizontal or vertical. The
nature of the integration will be different depending upon the orientation
of the axis with respect to the direction of the integration interval:

If the revolution is around a horizontal axis, each cross-section in the inte-
gration is perpendicular to the axis of revolution.

If the revolution is around a vertical axis, each cross-section is parallel to
the axis of revolution.

3. The location of the axis of revolution in relation to the planar region being
revolved:

Wherever the axis of rotation exactly coincides with the boundary of the

planar region, the cross-section of the revolved object will be a disk—a
filled circle.

Wherever the axis of rotation lies at a distance from the planar region then
there will be a hollow space within the cross-section of the solid of
revolution that must be deducted when computing the volume. This cross-
section will be a “washer.”

Wherever the axis of rotation lies within the planar region then there will
be some overlapping within the cross-section that must be ignored when
computing the volume. This cross-section will be a disk, but one with a
smaller radius than if the axis were to intersect the region at its boundary.

202 5. APPLICATIONS OF THE INTEGRAL



Slices Perpendicular to the Axis of Revolution

Example:

Example:

Find the volume of the solid obtained by revolving around the x-axis
the region “under” y = x*, between x =1 and x = 2.

. Find A(x). The area being rotated here shares a side with the axis of

rotation; the cross-section is a disk of “maximum” radius; in this

case, r(x) = x*. So its area is A(x) = n(r(x))’ = n(x3)2 = mux®.

Enter the appropriate integral expression: (' [2]J)(1)E))(2)E)
XX (E)E))(JaIX)ENTER).

Setthe display tofx F I, evaluate, and rationalize: (6)(«J&)F)1)X)
(ENTER)6)=NUM)()SYMBOLIC)NXT) EETEE. Result: ' 177 7#1'

Find the volume of the solid obtained by revolving, around the line
y = -1, the region “under” y = x3, between x =1 and x = 2.

. Determine A(x). The axis of revolution is outside the area being re-

volved; the cross-section is a washer of outer radius R(x)=x*+1, and
inner radius is r(x) = 1. Thus the area of the washer is:

A(x)= TE[R(x)2 —r(x)’ ] = n[(x3 + 1)2 - (1)2] = 1t(x6 + 2x3)

Enter the expression: (Jp[J)(& )G EMXGI0)(9
EXPIEHEX LXMW XENTER)

. Evaluate and rationalize: €5)=NUM)(&)SYMBOLIC)NXT) EET=hid.

Result: '309- 141’

If the axis of revolution intersects both the interior and exterior of the revolved
area, you need to break the problem into a series of “pure” segments—where, for
each segment, the relationship between the axis of revolution and the revolved
area is the same. The program SFEYH (see page 327) manages these segment
complications so that finding the integral of a solid of revolution (around a axis
of revolution perpendicular to the cross-sections) is straightforward. SREWH uses
alistonlevel 5, containing (in order): the lower limit, the intersection points (least
to greatest), if any, in the interval, the upper limit; on levels 4 and 3, it uses the
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functions describing the boundaries of the revolved area (either order); level 2, the
integration variable; and a real number k, where y = k is the axis of revolution.*

Example:

2.

Find the volume obtained by revolving around the x-axis the region
between y = sin x and y = cos x, between x = —1/4 and x = 57/4.

. Plot the two functions and use ISECT: ()(PLOT]a](«])(F)(DEL)(¥)

ENTER(W)OICISINI) &) X)) () D(Cos) (e Ja IX)ENTER) (@ )&)
(X)ENTER)(-)(7)(8) 5 4)+/=)(ENTER)(3)(-)(e)(2)(7)ENTER)(™ )1 - 5]
Rl (a) () (3)(9)(2)(7) (enTER) (- B)
EnTeR)(+/2) EnTer) AR LT, then B DE=HA.

T e
- T -"F -h-u -\--""\-
-~ " e
4—r $ $ "'--;_\_ e
-._F.r'.-.. 1 Hﬂ-. -'\"\.H
= -""\-\_ _ -_;,

I-%ECT: (.FBES53981633587 .70 106 B11B1

The interior point of intersection is at x = /4 = .785398163398.
At the stack, enter the list of critical x-values: (CANCELJCANCEL)(&)

O amEEamEEM0E) H@XImENTER.
Enter the two functions representing the other boundaries of the re-
volved region: (*JSIN)(eJeq)X]ENTER](1)(COS)(aJx [ X) [ENTER].

In=T0 mode, enter the integration variable and the y-value of the ax-

is of revolution: (o)(a)(S)(T)(D)ENTER)(")(e)&q)(X)(ENTER)(0 JENTER).

Estimate the volume of the solid: (o)(a)(S]RJE]V]H) or
(NXT) or as needed) B3], Result: 1H. "E9E85121,

3n’ +187

which matches the analytical answer,

*Note that, although SREWYH will work for any solid of revolution whose slices are perpendicular to its axis of
revolution, it’s designed to be efficient for those situations where the cross-section function, A(x), changes at dis-
tinct points within the integration interval. Thus, SFE'H may seem to be unnecessarily slow if you use it for sim-
pler situations where A(x) is the same function throughout the integration interval.

204
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Slices Parallel to the Axis of Revolution

If yourevolve a cross-sectional slice which is parallel to the axis of revolution you
getacylindrical shell. Integrating a series of such parallel cross-sections approx-
imates the volume of the solid of revolution by summing an infinitely series of thin
shells, each of which has a slightly different radius.

Since the formula for the area of a cylinder is 27ntrh, the volume of a solid of revo-
b

lution created by integrating cylindrical shells is J21tr(x)h(x)dx, where r(x)

describes the distance of the shell from the axis of revolution (i.e. the radius of the
shell) and A(x) describes the vertical height of the shell.

Example: Find the volume of the solid of revolution obtained by revolving the
region “under” y = x* between x =1 and x = 2 around the y-axis.

1. Analyze the problem. Each vertical slice of the revolved region
traces out a cylinder whose height is x* and whose radius is x.

2. Enter the appropriate integral expression: (')[2[S)()E7)(2)E)
EXEEX@EXPIE G (@& X)ENTER).

3. The volume: (EVALJEVAL)J&)SYMBOLIC)[M! M ]. Result: ' 12, 4+1'

Not all rotations around the y-axis require the use of parallel cross-sections...
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Example:

206

Find the volume of the solid of revolution obtained by revolving the
region bounded by x =8 — y? and x = 2 — y around the y-axis.

. Analyze the problem. The revolved region is “vertically-oriented”

(i.e. xis a function of y), and the axis of revolution is the y-axis. You
can, of course, pretend that the revolved region is “horizontally ori-
ented” and revolved around the horizontal (x-) axis, but the slices are
perpendicular to the axis in either case. (Conclusion: This problem
belongs in the previous section.) So, change the boundaries to y =
8 —x?and y =2 —x, compute the limits of integration and use SFE'YH.

Plot the revised boundary functions and find the limits of integration

and any other critical points: (=JPLOT]a)(a]F)(DEL)(Y)[ENTER)(V))
O e HaX 2R Ta)X)
(3)+/=)[ENTER)(3)ENTER)(»)(4)+/=)[ENTER)(8 ) ENTER I N T TR

l',.-f"'
i ",
P .‘\.\
l;"f
J'I" '
200r [ [TERCE] FCH | EDIT JEAMIL |

Find the x-values of the points of intersection of the curves. Note
that they intersect only at the two limits. Press (<) until the cursor
is near the lower intersection point, then . The lower
limit: =2. Move the cursor (using (»)) near the upper intersection

point, then press E13m @ Upper limit: 3.
Return to the stack and enter the two limits as a list: (CANCEL)(CANCEL)

(S0 (2J+/-)(SPC)(3)(ENTER).
Enter the two boundary functions (you can use EI! from the plot): ()
(] EvaL).

Enter the integration variable and the axis of revolution (now y = 0):

(" JoJe)X)(ENTER)(0)(ENTER).

. The volume: (@] a)S)R)E)V|H)[ENTER). Result: 7'+, 911346163
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Arc Length

To measure the length of a “curve” composed exclusively of straight-line seg-
ments, you simply add up the lengths of the individual segments. Integration al-
lows the extension of this approach to general curves by imagining that the length
of the individual segments approaches zero (and consequently the number of ap-
proximating segments approaches infinity). Using integration to compute arc
length requires that the length of an approximating line segment be expressed as
a function of x. With the Pythagorean theorem it’s easy to show that the arc length

b
of flx)is J‘wll + f’(x)* dx, where f((x) is the derivative of f{x) (i.e. the slope of the

infinitely tiny line segment).

Example: Find the arc length of the curve y = x* between x = -1 and x = 4.

1. Enter the lower and upper limits: (1]+/=)(ENTER)(4)(ENTER).

2. Enter the curve and find its derivative via FDER: (D(@)&q]X)
ENTER) ' oo X)ENTER @ o)F|DJEJR)JENTER). Result: 'F*#x™:"

3. With this result, complete the arc length integrand: (&9)X3)(1]+)(X).
4. Enter the variable of integration, set the display to F I, and inte-

grate: (JoJaX)ENTER) (5)(e] ] FIIIX)ENTER) (2]5) (G )=NUM.

Result: B6. 21934

One of the most important uses of arc length is as a substitute for the straight-line
interval of integration. Many real-world integrations are most easily handled by
integrating a function with respect to its arc length rather than with respect to its
distance from the origin along the x-axis (which is the more conventional mean-
ing of the “interval of integration”).

For example, the surface area of a surface of revolution created by revolving a
curve around an axis can be best approximated using arc length. The surface area
of each approximating band is 271 r(x) As where r(x) is the distance of the curve
from the axis of revolution and where As is the width of the band (also the length
of the approximating segment). Thus, integrating so that As approaches zero, the
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b
surface area of a surface of revolution is jZﬂ:r(x)ds. However, since the arc

a

length of each segment, ds, can be expressed in terms of x: ds =+/1+ f’(x)* dx,

b
the surface area integral is therefore jan(x)wll + f'(x)* dx.

Finally, note that r(x) = | f(x) | whenever the axis of revolution is the x-axis. Inany
case r(x) is often a straight-forward modification of f(x).

Example: Find the area of the surface formed by revolving the curve y =sin x
between x = 0 and x = 27 around the x-axis.

1. Analyze: Because the axis of revolution is the x-axis, r(x) = Isin xI.

2. Enter the upper and lower limits: (0)ENTER)(" J2)(X)(&))(ENTER).

3. Create and enter the integrand: (*)(SIN)()(¢5)(X)[ENTER)(ENTER)(" (@)
() X)ENTER)()()(F) D) (E)(R)ENTER)62) (X3 (1) (B () (SWAP) MTH]
VECTE| AES (S3[EE3GaL3(E3]

4. Enter the variable of integration and compute the surface area: (')

(X ENTER) () ()M,

Result: &0, 99472

ok’

Example: Find the area of the surface formed by revolving the curve y = sin x
between x = 0 and x = 27 around the line y = 0.5x.

1. Analyze the situation. This time, r(x) = Isin x — 0.5I.
2. Enter the upper and lower limits: (0)(ENTER)(' ] 2)(X)&))(ENTER).

3. Enter the integrand and the integration variable, and compute the

surface area: (1 JSINJ @& X ENTERJENTER) " @) [X)[ENTER ] alF)
OEREENTEREXIDHE)SWAP) - B)EMTH R S A TR
REREDROPENETR DD N,

Result: =3, 34HE9
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Averages

The term average is normally applied to a discrete, finite set of numbers: the arith-
metic average for such a set of numbers is their sum divided by the size of the set.
Buthow would you find the average of an infinitely large set of numbers? Integral
calculus to the rescue once again! The problem is often recast as finding the aver-
age value of a function over a given interval. Since such an interval contains an
infinite number of points, techniques of calculus are required.

The arithmetic average value of a function, f(x) over an interval x=a to x = b is:

b
1
mif(x)dx

This is simply the total area under the curve dividing by the size of the interval.

Now, the Mean Value Theorem for Integrals requires that there exists at least one
point x, within the interval whose function value f(x,)) exactly matches the average
value for the interval as a whole. To compute this value you only need to solve

b
the following equation for x: ﬁ?j f(x)dx=f (xo)

Example: Find the average value of sin 2x + 0.5cos x for x =0 <x < /4. Then
find the value of x where this average value is achieved.

1. Enter the expression for the average value: (&]EQUATION)(1)(=)(&)
@EH@EEDOM)ETHWEEN2)(JSIXPIH)
(5JCos)(JalX) () () (JGIX)ENTER).

2. Evaluate: (ENTER)6)=NUM). Result: 1. 362 —the average value.
3. Enter the function, equate it with the average, and solve for x:

)X (JeIXIH (- I5)X[cos)(JIXENTER (G =) (D (@aIX]
S0P (e m=2) EnTersove) T
[TTE#. Result: H. 32H45 —the x-value where f(x) = average.

There are two useful ways to modify the plain arithmetic average....
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The weighted average gives different “weights” to different portions of an interval
(whereas the standard arithmetic average gives equal “weights” to all portions of
an interval). The weighted average is useful whenever you’re trying to find the
average of some quantity that’s a function of location but which varies throughout
the interval. Examples of such quantities might be mass, temperature, density and
so forth. If m(x) describes the variation of the quantity in question, the weighted

b
xm(x)dx

average is found by a ratio of integrals: ~%;
m(x)dx

a

Example: Find the center of mass of a uniform, flat plate whose shape is the
region bounded by y = x? and y = x*, between x = 0 and x = 2.

1. Analyze the task. The center of mass in this context represents the
x-value of the balance point for the flat plate. Imagine the flat plate
positioned vertically. You are seeking the fulcrum point along its
lower surface that would exactly balance the plate. In essence, you
are trying to find the weighted average of all the vertical cross-
sections for the plate. The cross-section function is m(x) = Ix* — x°l.

2. Enter the numerator integral expression and make an extra copy: (')
D el Ja)X] WECTR] REE
2B QX ER) G (@)X ENTER) ENTER)

3. Because of the absolute value in the integrand, evaluate the integral
after segmenting it at the point within the interval where the absolute
value term equals zero (at x = 1 here); use MSEGIMT:
(EXG)TINJT)(ENTER). Result: &.5

4. Swap the other copy of the integral expression into level 1 and edit
it to remove the factor x from the integrand: (SWAP)(&)JEDIT)(»]»)(»)
(»)(»)»)(»)(DEL)(DEL) (ENTER).

5. Evaluate the denominator integral with MSELIMT:
(SIEJG NJT)([ENTER). Result: 1.7

6. Divide to complete the computation: (=)&) SYMBOLIC i L.

Result: '5+3" Place the fulcrum at x = 5/3 to balance the plate.
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The moving average “smooths out” functions that have a lot of short-term ups and
downs. It replaces the actual value of a function with the average value of the
function over some fixed previous period. If A is the size of the fixed previous
period and the original function is f{x), then the moving average is computed by:

% f(t)adt

x-A
If you graph the original function and its moving average together, you’ll see that
the moving average reduces variability and exposes underlying trends.

Example: Find the moving average of f(x) = 3 sin (2x + 0.5) over a period of
2 and plot it simultaneously with f(x).

1. Enter the moving average integral expression: (' [1)(=)(2)X)(=]s)
(JaXEOEBEaXEDEXEN X (el
L E)ealTENTER)

2. Purge ¥, evaluate the integral, and tidy up the results. Note that the
moving average is a symbolic integration, so it requires that the inte-

grand be symbolically evaluable by the HP 48: (' JaJ&]X]
BN ENENS| COLCT| EXPA [COLCT| EXPA

Result: '. /o#C050- 52w ) -, o050, S+ !

3. Enter the original integrand, combine it into a list with the moving
average you just computed, enter the list into E[!, and then plot the
two functions together: (*)(3)(X)(SIN)(2)(X)(eJe)X)(+)(- [5)([ENTER)
BEZY LIET [+LI:T (O EenE) Et [RESNEEEE
(WENTER (W) (S X) EnTeR) ETHE [T

L
200Kk JTRRCE] FCN
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Probability

As with averages in the previous section, probability computations come in two
varieties—discrete and continuous. Discrete probability is useful whenever you
can compute a finite number of successful outcomes and a finite number of total
outcomes—say, 200 “heads” in 256 total coin-flips. However, many probabilities
are best modeled using area: the computation reduces to finding the number of
points within a particular region and comparing it to the number of points in the
total area. Since both of these quantities are infinite, you must turn to integral
calculus to correctly compute such a ratio.

Note, however, that there is a non-calculus means of approximating continuous
probabilities—modelling a continuous computation as a discrete computation.
The Monte Carlo method randomly chooses a point from within the total area and
determines whether or not it lies within a given region of interest. Repeating this

. . .. number of points within the region
many times offers an estimate of the probability as P iy

total number of points sampled
Using the Monte Carlo method on the HP 48 would, in fact, be a relatively easy
way to solve continuous probability problems—except that it takes a very large
number of points (and thus a large amount of time) to estimate the probability to
asufficient degree of accuracy. The Monte Carlo method is thus reserved in prac-
tice for situations where no other means are available.

Turning, therefore, to the calculus-based analytical solution, if it’s area you’re
trying to compute, then integration is your weapon. The estimate of a continuous

ili i f th i
probability, modeled in terms of area, would clearly be area of the region

total area

Example: A point (x,y) is randomly chosen from the square represented by -1
<x<1land-1<y<1. Whatis the probability that x* < y < x??

1. Plotthe two functions within the given square: EEOO
(SIXIY 2> J G XY X3 JENTER] o J&q I XJENTER] 1] +/-)(ENTER]
CBA =B ENEIERASE] DEAL ]
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55.".‘ 4
ﬁ.x"-_ __’_’_,-""

.f"-
ETZI/ZII]IHEII EDIT

2. Back at the stack, find the area of the small region by computing the
area between the two curves (i.e. x*— x*) within the total square.
Enterthe integral expression and evaluate: (CANCEL)(CANCEL)(' [P>]S)
HED0E0@eXNEEEHEXIBE) G
(aJ&q)X)(ENTER) (& J=NUM).

rrrrrrr

Result: .EREEELEEEEET  The area of the region is 2/3.
3. Compute the total area—the area of the square. The square is 2 units
by 2 units or 4. Enter the area:

4. Divide to find the probability: (=) Result: . 1BBEEEEEEEET
The probability is 1/6.

Now suppose that, in the previous example, you want to describe the probability
that, given a particular value of x, arandomly chosen value of y would lie between
the two curves. Some values of x (near x = -1, for example) yield a high prob-
ability, while others (near x = 0, for example) yield a low probability.

In fact, if you create a new function, p(x), that returns the probability of a success-
ful outcome for a given value of x—scaling it properly so that its integral over all
allowed values of x equals 1—this is a probability density function. It describes
the distribution of probabilities with respect to the value of x.

Once you have a probability density function, computing a particular probability
involves only a simple integration: probability is the area under the probability
density function. The fotal area under the density function must, of course, equal
1, since the particular probability—the area under the function between two spec-
ific limits—can never exceed 1; you can never be more than 100% certain.

Probability 213



Many real world probabilities can be effectively modeled using a handful of very
useful probability density functions. Perhaps the most common is the normal ,
or Gaussian, density function—the “bell curve:”

(x-p)’

2
e 20

p(x)= oV2T

where L is the mean and o is the standard deviation of the set of points or data
being examined.

Example: Whatis the probability that arandomly chosen variable that’s norm-
ally distributed with a mean of -2 and a standard deviation of 3 lies
between 0 and 5?7

1. Enter the lower and upper limits: (0)(ENTER](5)(ENTER).

2. Enter the integrand, the normal density function (60=3 and y=-2):
BTN DS B ES AEm O 0 Cs A N 0 O =
BHEREZIREEENTER.

3. Enterthe variable of integration and evaluate the integral: (' JaJ&]X]
ENTER (G)>NUM). Result: .46 EHEA1S
There’s a little less than a 25% chance that a randomly chosen value
with the given distribution lies between 0 and 5.

The HP 48 has four probability density functions built-in that you can access
using commands (there’s one command for each density function). Each of these
commands computes the probability that, given certain distribution parameters,
a random variable is greater than a given value. That is, they compute the area
under the probability density function between the given value and positive infin-
ity (an improper integral)—an area known as the upper-tail of the function. The
area between two finite values is equal to the area between the upper-tail above
the lower value minus the upper-tail above the higher value.

Thus the previous example can be solved more quickly and easily using the ITFM
command (the lIpper-T ail Frobability—Mormal distribution command). Try it.
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Example: Repeat the previous example using the ITFN command.

1. Enter the mean and variance (variance is the square of the standard
deviation) of the distribution: (2]+/=)(ENTER](9)(ENTER.

2. Enter the lower limit and use LITFN: (0)(ENTER)(MTH) (NxT) BT
TRGER. Result: . E0249E02704Y

3. Repeatsteps 1 and 2 using the upper limit instead: (2)+/=)[ENTER)(9)
(ENTER)(5)(ENTER) . Result: 9. 8153739286563

4. Subtract: (=). Result: . 24767 EE 1591H

The other probability density functions built into the HP 48 are:*

n+1
(1) ey
e Student's t-distribution (LITFT):  p(x)= (—n——(l + —] ,
Z_ 1) n

n+l

where n is the degrees of freedom (a positive integer) for the distribution;

x<0 1

e Chi-Square distribution (LITFL) . p(x)={,>0 e

where n is the degrees of freedom (a positive integer) for the distribution;
 Snedecor's F-distribution (LITFF) :

x<0 1

m _mtn tnlz_z(nl +n, _1)'
P)=1120 H [Huj 2 2
n, n, (Il_l_l)v(n_Z_ )!
2 2 ]
where n and n, are the degrees of freedom (a positive integer) for the num-
erator and denominator distributions.

~~
-

*Note the fifth command, MOIST. Instead of computing the area under the function above a given value (like the
four upper-tail commands), MDI'ST evaluates the function at the value. Thus, use ITPH to compute a probability
and MDI5T to compute a probability density.
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Other Physical Measurements

This section discusses the application of integration to a variety of physical meas-
urements—distance, work, and fluid pressure. The role the integral plays in each
of these measurements is evident when you look at their definitions:

b
* Net distance= J-v(t)dt, where v(?) is the object’s velocity at time ¢.

a

b
» Total distance = j |v(#)|dt, where v(¢) is the object’s velocity at time ¢.

b
* Work= jF (x)dx where F(x) is the force exerted on an object in moving

a
it from x = a to x = b. If this motion stretches or compresses a spring, then
b

F(x) =kx (where k is the spring constant), so Work = kj x dx. If this motion

lifts against gravity, then F(x) = w(x)x where w(x) is the weight of the ob-
ject, and x is the vertical distance between the object and its final height, so

b

Work = jw(x)x dx.
b

* Fluid Pressure =wJ‘d(h)l(h)a'h, where w is the fluid’s weight-density,

d(h) the fluid’s depth at a distance & from the intersection of its surface and
the container wall, and [(k) is the width of the container wall at 4.

The following examples illustrate these concepts and also serve as models for
integration with unit objects on the HP48.* With numerical integration, the units
of the lower limit are used during integration, so they must be dimensionally
consistent with those of both the integrand the upper limit. The units of the result
are the product of the units of the integrand and the units of the lower limit.

*Symbolic integration with unit objects isn’t recommended because the evaluation process for some integrands
requires dimensionless values.
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Example:

Example:

An object moves horizontally according to the velocity function (in
feet), v(t) =—8#2 + 32. Find the net and total distance traveled by the
object during the interval 1 <¢< 3.

. Enter the integral expression for the net distance and make an extra

copy: (JRJDGIIE&FT8X QDI 2HE]E]
&) (IS TENTER)ENTER).

Compute the net distance: (EVAL)(EVAL).

Result: —o. 2233333233

. Drop the result and edit the copy to include the absolute value func-

tion in the integrand: («)(&)(EDIT)(>)(>)(>)>)(>)(>)(>)(MTH) k3= d 5
ELLEER CED > e )& O) («)ENTER).

Compute the total distance: (€5]-NUM).

Result: 3¢

Find the work required to move a particle horizontally from x = 3
meters to x = 8 meters, if the force exerted on the particle at x is x*
—x + 3 Newtons.

. Enter the integral expression for Work, using unit objects: (' J—=]J)

Blb@aMEa)E P aMEEOAXS
BEEEXBEM RIS INE)(EIX)ENTER).

Evaluate the integral: (EVALJEVAL).
Result: — Error: Inconsistent Units

This is a good example of a very simple-looking integral that never-
theless fails with unit objects.

Drop the results of the error and repeat steps 1 and 2 without using

unit objects: («[«)(D B )B)E)(@aX)@IE) (=
EXHE)EI)(@Ja)X)ENTER) EVALJEVALL

Result: 931, ¥5. With the proper units: 991.25 Nem.
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Example:

Example:

218

If one hangs a spring (k=10 1bs./ft) vertically (i.e. subject to gravity)
and attaches a 10 1b. weight to the spring, how much work is done
in raising the weight 6 inches from where it hangs naturally?

. Analyze the task: The total work done is that of lifting the weight

against gravity, plus that of compressing the spring 6 inches from its

d
natural position: W, =W __+W _ =wd+ kJ- xdx,where wis the

grav comp
0

weight being lifted, and d the distance the weight moves (in ft).
Here, w = 10 1b, d = 0.5 ft, and thus W is in ft-1bs.

Create the expression withunits: (' )25 )(0) 2 _)(eJa)F)e)a)T)
EE0EEREOEGEOELEBOENEBOEE
(ENTERI(1 o)L oJa) V) (e B) = el F) e TIENTER)(X)(1)0)
QeEREOEGE
X))

Evaluate the expression: (EVALJEVALJ.

Result: B.¥0_1b#Ft. Sometimes, using unit objects works!

Oil of density 50 Ibs/ft® is 3 feet deep in a hemispherical (bowl-
shaped) reservoir of radius 4 feet. You wish to pump out oil down
to a depth of 1 foot. How much work will it take to pump that much
oil to a point 2 feet vertically above the top of the reservoir?

. Analyze the task. You must find w(x) the weight of a layer of oil

that’s d feet below the top of the tank (or x = d+ 2 below the high-
point for the pumping process). Each layer has a circular surface of
radius r, where @+ r2=4. Therefore, each layer has a cross-sectional
area of mr*= m(16 — x?). Finally, the weight of each layer, whose
depth is dx is multiplied by the oil density, yielding:

w(x) = 507(16 — d°)dx = 50m(16 — (x - 2)* )dx

Enter the integral expression, in terms of x. Remember that the lim-
its are measured from the point 2 feet above the tank: (*)(2)()(3)

B @068 0ERELEREOBEEEHOEREE
PN EEXEEXE(ESIXIENTER)

Evaluate: &9)=NUM). Result: 14241, 3H66962 ft-lbs.
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Example:

The face of a dam spanning a 100 m river is a rectangle 26 m high
and inclined at an angle of 10° from vertical. Find the force (in
Newtons) due to water pressure on the dam when the river is 24 feet
deep. Use 9818 N/m? as the weight-density of water.

Analyze the task. Draw a brief diagram of the situation:

If h is the distance along the dam below the surface of the river, then
the depth of the river at that point is d(h) = h sin 80°. The width of
the dam face is constant, so /(h) = 100 m. The limits of integration
h =0 to h =24/ sin 80°.

Enter the limits, making sure that you’re in Deg mode first: (€5]RAD)
(if necessary), (0)(ENTER)(2) 4)(ENTER (=)

. Enter the integrand and the limits of integration: (' JoJ¢]H)(ENTER

(o) HENTER)
Compute the integral: (I)EVAL. Result: Z3244. 28020

This is the volume of water (in m?) impinging on the dam face.

Multiply by the weight-density of water: (9)8]1)8)(X).

L

Result: &3¢ 120404, H95  Newtons—over 30,000 tons.

Other Physical Measurements 219



6. MULTIVARIATE AND VECTOR CALCULUS



Scalars and Vectors and Multi-Variable Functions

So far in this book, you’ve seen functions of only a single variable, but functions
of two and three variables are also useful and common in real-world applications.
This chapter explores the application of calculus—both differential and integral
—to multi-variable functions of two types: scalar-valued and vector-valued.

A scalar is a single number; a scalar-valued function is a function whose output
is a single number. Regular Cartesian functions, such as z = x*y — y?, are scalar-
valued functions. By contrast, a vector is a set of numbers (or components); a
vector-valued function’s output is a vector. Vector-valued functions are usually
expressed in parametric form, e.g, r(u,v) = [x(u,v), y(u,v), z(u,v)], where the
components are all themselves multi-variable functions.

The techniques of calculus—differentiation and integration—apply to multivari-
able functions just as well as to single-variable functions, but it’s much harder to
visualize multi-variable functions using two dimensions. The HP48G/GX comes
with some tools to help you to visualize functions of two variables (as you’ll see
below), but not for functions of three or more variables.*

After introducing some basic tools for working with vectors and their functions,
this chapter explores the HP 48’s tools for visualizing functions of two variables.
The rest of the chapter examines differential and integral calculus with multi-
variable functions—both scalar functions and vector functions.

*Indeed, there are no good methods for visualizing functions of three or more variables anywhere because such
atask requires a four-dimensional representation! Fortunately, the vector form for functions makes iteasy to work
with functions of three or more variables even when it’s impossible to construct visual models of them.
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Vector Basics

In geometric terms, a vector is a directed line segment, with a finite length or
magnitude (also called its absolute value). The direction of a vector is denoted
by its two endpoints, the initial and the terminal endpoints, respec_Eively. For
example, the vector from point A to point B mi ghtBe referred to as AB (whereas
the vector from point B to point A is denoted as BA).

If you assume that the initial point is always the origin (0,0,0), then vectors are
especially useful to describe points. The point (-3,7,2), for example, can be de-
scribed as a line segment—a vector—directed from the origin (0,0,0) to (-3,7,2).
And since its coordinates form a set of instructions on how to reach it from the
origin,* the notation [ -3 7 2 ] offers a more algebraic (and therefore analytic) de-
scription of the vector than does the geometric description, AB.

The notation used for vectors is purposely like that of matrices, because they be-
have algebraically like 1 X n (or n X 1) matrices, a trait that makes vectors power-
ful for both analytic geometry and multi-variable calculus. A matrix can be treat-
ed as a vector of vectors; each row or each column of a matrix is itself a vector,
so the HP 48 uses [ ] for both matrices and vectors (together called arrays).

Symbolic Vectors

The HP 48 requires that all vectors (collections within square-bracket delimiters)
be purely numbers—no algebraic expressions, text, or other object types. This
limits the utility of its vector data type with calculus because so many of the tasks
require symbolic processing. So list braces, © }, are used instead to designate a
symbolic vector—which contains symbolic expressions.

The creation of symbolic vectors also requires that a set of symbolic vector tools
be created to perform the kinds of vector operations that the HP 48 provides for
purely numeric vectors. Thus, as each vector operation is introduced, its parallel
symbolic vector operation will be demonstrated.

*Any vector in three-dimensional space can be treated as the sum of three basis vectors, each running from the
origin along one of the coordinate axes. The length of each basis vector is a component of the vector: The vector
[-372], for example, has an x-component of -3, a y-component of 7 and a z-component of 2.
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Vector Operations

The basic vector operations—addition, subtraction, and scalar multiplication—
work just like their equivalent matrix operations....

Example:

1.

Example:

1.

Example:

1.
2.

Add the two vectors [49-1]and [3-12].

Enter the two vectors onto the stack: (] 1)(4)(SPC)(9)(sPC)(1)(+/=
[ENTER) (&)1 1)(3)(SPO) (1) (/=) (SPC)(2)(ENTER).

Add: (). Result: [ ¢ 8 1 1]

Add the two symbolic vectors { abc }and { xy z }.

Enter the two vectors to the stack: (&]{
GO (eIa)X)EPS) (@G Y)(SPO) (@ Z) ENTER)

Add: T Result:+ 'at+w' 'bry' 'c+z' G
The element-wise list addition (remember that symbolic vectors are

lists) requires that you use the AL command—not (+), which would
have caused the two lists to concatenate, instead.

Subtract the vector [ 3 -1 2 ] from the vector [ 4 9 -1 ].

Enter the vector [ 49 -1 ]: (&)L 1)(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).
Enter the vector [ 3 -1 2 ]: ()L 1)(3)(SPC)(1])(+/=)(SPC)(2)(ENTER).

3. Subtract: (). Result: [ 1 18 -2 1]

Example:

Subtract the symbolic vector { x y z } from the vector [4 9 -1 ].

1. Enter the vector[4 9 -1] as a symbolic vector: (&5){ })(4)(SPC)(9)(SPC)

DELENTER)

Enter the symbolic vector { x y z}: (G[1)(eJa]X)(SPC)(efa]Y)
(SPC)(eJa)Z) ENTER)

Subtract: (). Result: © '#-u' 'S—y' '-1-z' I

Note that numeric vectors can be combined with symbolic vectors
as long as both are expressed as symbolic vectors.
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Example: Multiply the vector [ 4 9 -1 ] by the scalar 5.3.
1. Enter the vector [ 49 -1 ]: (&)L 1)(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).

2. Multiply by 5.3: (5-[3)(X). Result: [ 1.2 47,7 -5.3 1]

Example: Multiply the vector [ 4 9 -1 ] by the symbelic scalar a.
1. Enter the vector [ 4 9 -1 ] in symbolic form: (&]{})(4)(SPC)(9)(SPC)

(DE/-)ENTER)
2. Enter the symbolic scalar and multiply: (' JoJ&]A)(ENTER)(X).
Result: ©+ '##a' 'S#z' '-3' 1

“Multiplying” two vectors is not analogous to arithmetic. There are two kinds of
vector products: The vector dot product is defined for any two vectors having the
same number of elements. Given two vectors r=[r, r, r.] and s=[s_ S, 5], the dot
product, r * s, is rS Hrs s, The HP 48 has a built-in command for this.

Example: Find the dot productof [49-1]and[5-32].
1. Enter the first vector: (][ 1)(4)(SPC)(9)(SPC)(1])(+/=)(ENTER).
2. Enter the second vector: ()1 3)(5)(SPC)(3)(+/=)(SPC)(2)(ENTER).
3. Compute the dot product: . Result: =

Example: Find the symbolic dot product of { 49 -1 } and {x y z }.
1. Enter the first vector: (G]{ })(4)(SPC)(9)(SPC)(1])(+/=)(ENTER).

2. Enter the second vector: (& ]{ o] X EE0 (¢]Jq]Z)

ENTER|.

3. Compute the dot product using the program, SL0T (see page 322):
(SID)JOJT)(ENTER). Result: 'F#u+Txy—z!

(Note how similar the dot product process is to that of computing each element
in a matrix multiplication: the first vector is treated as a “row,” the second as a
“column”—and the result is a single number.)
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By contrast, the cross product of two vectors is another vector—perpendicular to
both of the other vectors (assuming all three vectors originate at the same point):
Given two vectors, r=[r, r, r] and s=[s_ S, s ], their cross product, r Xs, is the
vector [ rS, =TS, IS.-TSs, IS -Ts ].

Example: Find the cross productof [49-1]and [5-32].

1. Enter the first vector: (&)1 1)(4)(SPC)(9)(SPC)(1]+/=)(ENTER).

2. Enter the second vector: (]I 1)(5])(SPC)(3)+/-)(SPC)(2)(ENTER).
3. Find the cross product: [1EE. Result: [ 15 -13 -5¢ ]

Example: Find the symbolic cross productof { 49-1 }and { x y z }.
1. The first vector: (&){3})(4)(SPC)(9)(SPC)(1]+/=)(ENTER.
2. Thesecond vector: (G){ o] X]SPC]aJe) Y SPC]aJ&q)]Z) ENTER).

3. Compute the symbolic cross product, using the program SCRISS
(see page 321): (of oJSJCIRIOIS]S)(ENTER).

Result: { 'utBsz'! '—w—dEz' '-(Geu)edey’ 3

Like matrix multiplication, the cross product is not commutative. When taking
the cross productr X s, you will get the z_ vector; when taking the other cross pro-
duct, s X r, you will get the z_vector:

Example: Find the cross productof [5-32 ] with[49-1].

1. Enter the first vector: ()113)(5)(SPC)(3)+/=)(SPC)(2)(ENTER).
2. Enter the second vector: (] 1)(4)(SPC)(9)(SPC)(1)+/=)(ENTER).

3. Find the cross product: [IEE. Result: [ —-15 12 37 1]
This is the negative of the earlier result.
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Vector Angles and Magnitudes

A vector has both magnitude (length) and direction. It should therefore be pos-
sible to find these parameters easily for a vector entered in standard form.

Example: Find the length of the vectors [49-1]and { 3x 9 z }.

1. First try the numeric vector: ()T 1)(4)(SPC)(9)(SPC)(1)(+/=)(ENTER).

2. Find its length: IS BTSN, Result: 9. 89949492661

3. Now do the symbolic vector: (] [3[X[eJ)X)(»] (9)(SPC)(c)
()(Z]ENTER).

4. Findits length with the program 'YABS (see page 332):
(S)ENTER). Result: '[((2#u)™*E+31+z") !

Finding the “direction” of a vector is more complicated. You must first decide the
reference directions against which to measure the angle. In three dimensions, you
use the three coordinate axes as your reference directions. The direction angles
for a vector V are computed from its components (v,, v, and v)) and its length:

aV aV av
6, =cos” = 6 =cos™ L 6, =cos™

14 ’ vi ‘ Vi

Example: Find the direction angles of the vectors [49-1]and { x y z }.

1. In DEG mode (use (&5]RAD), if necessary), (SWAP) the previous nu-
meric resulttolevel 1 and copy that magnitude twice: ([ENTER)(ENTER).

2. Findthex-,y-,and z- direction angles, respectively:
e (Result: B&. 16/7HETIE]); (&) (9)
(ENTER)(SWAP)(=)(€&)(ACOS) (Result: £%.E13597EL3);
(#/-)ENTER)(SWAP)(=)&)(&C0s). Result: 7. PIFE3IEIZT0.

3. The other vector: (G]{ }¢JGIX][SPC)(eJ&a) YISPCIaJ& ) Z) (ENTER).

4. Execute VDIR: (ENTER) or (VAR) (NXT) or (5)PREV))
BT Result: { 'ACOSCurJ (u™E+y™E+z2E0) !
"ACOS T (™ 2y E+z™2 ) !
'ACOS(z T O™ E+y™ 242200
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Visualizing Two-Variable Scalar Functions

In general, the graph of a two-variable function is a surface in space. If it is
generated by a true function, z =f(x,y), the surface passes the vertical line test—
any vertical line only intersects the surface once. But how can you display a sur-
face in space (a three-dimensional object) in two dimensions—such as on your HP
48’s display or on a piece of paper? Either you must project the three dimensions
onto a flat surface or hold one of the dimensions constant while plotting the other
two. Neither choice is ideal because the true shape of the function will be either
be distorted or partial when displayed in two dimensions. However, given these
limitations, it’s usually better to see something rather than nothing.

The HP 48 offers three approaches to visualizing two-variable scalar functions:

* A Wireframe plot uses a perspective projection to map a designated portion
of the three-dimensional surface—expressed by a Cartesian function—on-
to a two-dimensional display.

* AY-Slice plot freezes one of the independent variables and takes a two- di-
mensional snapshot of the resulting “slice” of the surface. Y-Slice actually
takes a series of “snapshots,” changing the value of the frozen variable
between “shots,” then playing back the series as amovie when it’s finished.

* A Pseudo-Contour plot computes the derivative of the given function and
then plots its slopefield—a grid of line segments whose orientation match-
es the slope of the function at each point in the grid. This plot is a kind of
visual approximation of a contour plot where a series of level curves, f{x,y)
= k, where the constant k is different in each curve. A contour plot (like a
contour map) is a two-dimensional representation of a three-dimensional
surface (such as a mountainous terrain).

All of the plots above use a grid of points—or sampling grid—as inputs for the
function, using the coordinates of each point as the values of the two independent
variables.* They differinhow they use the inputs and how they display the output.

*The two independent variables are those listed in the IMDEP and DEPMD fields in the plot set-up screens. The
dependent variable is simply implied as the value of the function. Don’t be mislead by the potentially confusing
designation of one of the independent variables as DEPMD.
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Wireframe Plots

The Wireframe plot takes the points in the sampling grid, uses the given (Carte-
sian) function to compute the third coordinate, then converts all 3-D result points
within the view volume into 2-D points via a perspective projection centered on
the eyepoint. Finally, each point is connected to its neighbors with a line segment
todisplay the surface as a “wire-mesh.” Hereis atop view of what happens during

a wireframe plot: Top View
y far T —_—
———View Volume
Vrcar —
1 4 = : Plot Display Screen
Eyepoint (x,y,z,) J (parallel to xz-plane)

Note several important points about this diagram and the relationships it depicts:
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The plotdisplay screen and eyepoint are “frozen” together; when you move
one, you move the other. The eyepoint is always centered in the display
screen, 1 y-unit farther from the view volume than the plot display screen.

The z-axis (for the dependent variable) is displayed on the vertical axis; the
x-axis (for the IMDER variable) is displayed on the horizontal axis; and the
y-axis (for the EPMID' variable) is the depth axis running fromy toy i

The plot display screen does not rotate in space, but remains parallel to the
xz-plane and perpendicular to the y-axis, so you cannot get a top view of
a function (looking down on the xy-plane) simply by moving the eyepoint/
plot display screen. Instead you must transform the function so that the
original dependent variable becomes one of the two independent variables.
If it becomes the DEPMD' variable, you will be looking at the xy-plane; if
it becomes the IMDEP variable, you will be looking at the yz-plane.

The display screen can’t be within the view volume. The y coordinate
must be at least 1 unit larger than y_(the y-coordinate of the eyepoint).

To visually center the plot in the display, make sure that x, is set midway

between Xpop and X e and that z_ is set midway between 7, and Zpih
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Example:

3. Put the two independent variable

10.Enter the new name in DEPKL:

Wireframe Plots

Plot the function z = x* + y*, using a Wireframe plot with default set-
tings for the view volume and eyepoint. Then repeat the plot, but
change the eyepoint to a “high” vantage point—(0,-3, 5)—by
adjust-ing the 2E: coordinate. Repeat again, restoring the default
eyepoint, but viewing the xy-plane instead of the xz-plane.

. Purge VFAE, open the PLOT application, and put M1t - ame

in TYPE:: (" JoJ o V)PJAR])([ENTER|<JPURG)(>PLOT [a) o[ W]).
Put the functioninE: (v] ' o & X[YX3]+]oJe ) Y [Y¥] 3)[ENTER).

names into IKOEP: and DEPKD:
(eJ & X ENTER]> | 2] ] Y JENTER).

Now plot: [TTEINTIIEE....

Next, return to the PLOT OPTIOM = screen:
(canceD IHER
T3
. Change 2E: to = and redraw: i fﬂ:}a
G@m i ,|| + 'II .‘-~;"'.,'l_l..-r'l""".,II
ERASE] DRI A 19
ATTILL

To convert to an xy-view, you must solve the original function equa-
tion for y and use the result as the function, replacing y with z in

DEPMD. Solving for y yields y=4/x’ —z.
AtthePLOT OPTIOMS screen, restore 2E: tok (which is its default):

cANCEL) i[53 («) (o) (ENTER).
Return to the main PLOT screen and enter the revised function in

Ei: ENTER oY) Gla JJalX@(E) H(eJalZ) ENTER)

OWati7 4
W

and then draw the plot:

(v)(@J& ) Z)ENTER)
ERAZE| DRA L B
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Y-Slice Plots

The Y-Slice plot draws a series of cross-sections of the three-dimensional surface,
each perpendicular to the y-axis—one plot for each row in the sampling grid (un-
less you don’t have enough unused memory left, in which case it draws as many
of the rows as it can). Once it has finished drawing the “slices,” it runs an anima-
tion loop of the slices until you press (CANCEL). The animation allows you to visu-
alize the surface by moving through it along the y-axis slice by slice.

If you wish to examine any of individual slices in greater detail after the original
animation, you can check HYE HMIFMATIOM in the PLOT OPTIOME: screen.
Once you’ve finished viewing the animation and return to the stack you will find
the slices stored asaraphiic 131 ¢ &% on the stack with the number of slices
stored on level 1. At this point, you may either rerun the animation by pressing
PRI (N ETHTEH or view any one of the slices by storing it as the current
FICT ure (pressing (PRG) M L=88 BT 8 (STO) with the desired graphic on level 1)
and viewing it with (PICTURE).

Example: Do a Y-Slice study of the function z = x* + y*.
1. Returntothe PLOT screen, set TYPE: to 1—"=1 122, reset the plot

parameters, and enter the function in the Ei2: field: (CANCEL» )] Y]
CEIENTER (Y (D (X I (B BV O (3)ENTER).

2. Enter the two independent variables and draw the Y-Slice plots: (o)

EXENTER) () (S ENTER) ITEILTTIRE You will see each

two-dimensional slice drawn, one after the other, until either the
machine’s memory gets low or one has been drawn for each row in
the sampling grid (the number matches the value in =TEP: next to
DEPMD in the PLOT screen). The eight individual plots are:

N
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While the animated view of the “moving” slice through a surface may be pre-
ferable in some situations, you may want to see a composite picture of the slices
instead in others.

The program '{_UMF (see page 335) creates a single composite picture of a set of
slices, labelling each slice as it’s drawn. It takes the function from level 6, the list
of independent variables from level 5, the x-view range (as alist) from level 4, the
y-view range (as a list) from level 3, the z-view range (as a list) from level 2, and
the number of slices to be drawn from level 1.

Example: Draw a composite Y-Slice plot of z = x* + y* using TLIIMF. Use the
default view volume and 8 slices; -1<x<1;-1<y<1;-1<z<1.

1. Return to the stack and enter the function: (CANCELJCANCEL)( " )()&)

BHCGMEI(E)ENTER)
2. Enter the list of independent variables: (&)({{ 3)(e)«)(X)(SPC)(x)&)

ENTER).
3. Enter the view volume ranges: (&J{ 3[1])(+/=[SPC) 1)(ENTER)(ENTER)
ENTER|.

4. Enter the number of slices: ENTER).

5. Now draw the composite using T ZOMF': (o)) Y] C)OJM)P)[ENTER) or
(then (NXT) or ((§)PREV) as needed) fisIul.

v={-131F T .
L

-
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Contour Plots

The built-in Pseudo-Contour plot (Ps-Contour) transforms each point in the sam-
pling grid into a short line segment that represents the slope of a contour of the
function. Essentially, it first finds the implicit derivative of the given function and
then plots its slopefield. The Ps-Contour plot then requires that you visually infer
the actual contour curves from the lattice of tangent lines—a faster way to depict
the contour curves than is plotting the contour lines themselves.

Example: Draw aPs-Contour plot of the function x*+ y?, using default settings.

1. Return to the stack, open the PLOT application, set the TYPE: field
to P=—Comt our, and reset the plot parameters: (CANCEL) (=)
(PLOT)(a) [Tt [1i] (a)a)a)a)(ENTER)(DEL)(V)(ENTER).

2. Enter the function into the Ef¥: field (if it’s not already there): (v)(*)
(@EXPIEH VI (E)ENTER).

3. Enter the independent variables and draw the plot:
OO ENEIERAZE| DEAH §

e — e
\.h"h -x"-.h'_\'—_____-\-_"a-\. \-\".
N e Yy
EREE=INEE
VA moeh——ln
._h___\_____.,__h"-\.\_\__. '\._h.
"\-\.H_."‘-\._h-ﬂ_,_ -_'-\-‘-H-\'-\.

It is possible to plot true contour curves on the HP 48 as well, using a program.
CONTOUR (see page 288) takes a two-variable function from level 4, a list of the
independent variables from level 3, a list containing the range of contour values
to be plotted from level 2, and the number of steps within the contour range from
level 1, and plots a series of contour curves (one more than the level 1 input). If
the number in level 1 is positive, COMTILUR erases the previous picture before
plotting; if the number is negative it plots on top of the previous plot. It uses the
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current settings for i=LEFT, ri=RIGHT, ¥~MEHRF, and ¥ ~FHF to determine the
display ranges (you may need to check or set these before using COMTOLIE). 1t
also uses the program SILYFLT (see page 325).

Example:

Use LOMTOLIR to plot contour curves for z=x* + y* and compare the
result with the Ps-Contour plot you drew in the previous example.

. At the stack, enter the function (it’s in 'El1'): (CANCEL)(CANCEL)

(eJoJ(EJQJ(ENTER)
The independent variables list: ((]{ )@ X)(SPC)(eJ<q) Y )[ENTER).

3. Enter the range of z-values to use for drawing contour lines. While

Contour Plots

this choice is often a matter of thinking, experience, and trial and er-
ror, use a range of { -0.5 0.5 }: (JUI (- I5]+/=)(SPC)(- [ 5)(ENTER).

Enter the number of contour intervals to use (the positive number to
indicates that the previous plot be erased first): ENTER).

Draw the contour plot: (o] a]C)JOJN]TJOJUJR]([ENTER]or (then
or (§)PREV] as needed) o] R El.

Note that COMTULE plots curves that are evenly-spaced with respect
to the dependent variable (z, in this case), while Ps-Contour plots are
evenly-spaced with respect to the independent variables (in the sam-
pling grid). Thus Ps-Contour gives an adequate idea of the shape of
the contour curves, but it doesn’t represent the steepness of the sur-
face undulations very well.
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Visualizing Two-Variable Vector Functions

To better understand how to visualize a two-variable (three-dimensional) vector
function, recall how a single-variable (two-dimensional) vector function is repre-
sented by the HP 48: curves plotted with the Parametric plot type. This requires
that you define two parametric functions—x(#) and y(f)—combining them into a
single complex function: f(r) = x(¢) + y(?)i.

Unfortunately, complex numbers and complex functions can’t handle more than
two dimensions. Sothe Parametric Surface plot (Pr-Surface) uses a symbolic vec-
tor (list) of three parametric functions of two variables—x(u,v), y(u,v), and z(u,v).
If you let y(u,v) = 0 and allow x(,v) and z(&,v) be functions of only one variable
(either u or v, but not both) then the Parametric Surface plot simulates a two-di-
mensional Parametric plot as if it were viewed from a distant eyepoint.

The Parametric Surface plot uses points from the sampling grid—defined by the
nn- and 'Y - ranges—as inputs for the symbolic vector function. The resulting
points are then plotted, and those within the view volume are then displayed from
the perspective of the given eyepoint. The iii-range (iii=LEFT to #ii=FKIGHT)
and the V¥ -range (Y=MERF to VY¥'-FHAF) determine the plotting range for the
Parametric Surface plot; the -, -, and £ - ranges determine the display range for
the plot. Of course, the final plot displayed is the display range as transformed

by a perspective projection from the eyepoint.

Example: Plot the surface described by r(u,v)={ u+v u—-v v-u}
for-1<u<1and-1<v<1,asviewed from the default eyepoint.

1. Analyze the task. The parametrized surface and its plotting domain
are given. To determine the display range (i.e. view volume), com-
pute the minimum and maximum output values for each of the com-
ponent functions. Theyare { { 22} {-22}{-22}}.

2. Open the PLOT screen, set TYPE: to F't~—"=1Ur{ 222, and reset
parameters: (CANCEL)(>)PLOT)(a)[®, 111153 (a)(ENTER) (DEL] ¥) (ENTER).

3. Enter the parametrization as a symbolic vector in the Ef¥: field: (¥)

G JGUEEEMEOEE)
VEESUETER)
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4. Enterthe independent variables: (&9 U)ENTER)(>)(aJ&q) V)ENTER).
5. Enter plotting and display range (view volume): [{!]3 =3 FFIRHH
(+/=JENTER](1)(ENTER)(1)(+/=)(ENTER])(1)[ENTER)[ENTER}; (2)(+/=)[ENTER)
(2)(ENTER)(2)(+/=)(ENTER)(2)(ENTER)(2)(+/=) (ENTER) 2) (ENTER)(ENTER).

6. Draw the plot: [IiE3[TT:150.

A
f{w"}:} :

ot a L
SR

Sometimes it helps to transform a scalar-valued function to a vector-valued one—
a process known as parametrization—so that you can work with the function us-
ing vector-based tools, such as the Parametric Surface plot. Given a scalar func-
tion, z = f(x,y), the easiest way to parametrize is to transfer the two independent
variables into the symbolic vector unchanged and allow the third component to
equal the function value. Thus, z =f(x,y) becomes r(x,y)={x y fixy) }.

To visualize a parametrized surface using the HP 48, you must also consider the
order of the components in the symbolic vector. The first component in the list
is plotted on the horizontal axis, with a display range of ii=LEFT to#i=FIaHT. The
second component is plotted along the implied axis of depth, with a range of '~
MEHRFE toVY=FHFE. The third component is displayed along the vertical axis, with
arange of 2=LOk to 2=HIGH. Note the pattern: { horizontal depth vertical }

For example, to parametrize x = z>y* and then plot it in conventional orientation
(x horizontal and y vertical), set x as the dependent variable, y as IMIEP, z as
DEPHKID, and use the parametrization { z>y* z y }. By contrast, to view the surface
with the z-axis horizontal and x-axis vertical, use the same variables designations
but a different parametrization: { z y z%y? }. Thus, the orientation of a Pr-Surface
plot depends on the order of the components in the symbolic vector list, not on the
order of the variable designations (unlike the other plot types).
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The other important thing to do is to determine the appropriate plotting and dis-
play ranges. The most importantitem is the domain (i.e. plotting range) of the two
independent variables. Once these are known, you can find reasonable display
ranges for all three axes. Unless otherwise necessary, use an eyepoint whose hori-
zontal and vertical coordinates (iE and 2E, respectively) are the midpoints of the
horizontal and vertical display ranges (i1-range and £ -range, respectively).

Following the previous example, suppose that for the function, x = z2y?, you let
0<z<1and0<y<1 be the plotting ranges (the riri-range is the plotting range
forIMDEP and the ' -range is the plotting range for DEFMD). It’s then easy to see
that 0 <x <1 as well. Thus, in this case all three display ranges should be set to
alow of 0 and a high of 1. The eyepoint can be set to (.5, -3, .5).

Example: Parametrize and plot x> + y+ 27> =10, where 0 <x<2,0<z<2.

1. Analyze. The function is linear in y, so it’s a good choice to be the
dependent variable. Solving for y: y =10 — x> — z3. Parametrizing
so that x is horizontal and y is vertical requires this symbolic vector:
{x z 10-x2-2z*}. Computing display ranges yields the following:
{{02} {02} {-210} }. Thus the eyepoint should be (1, -1, 4).

2. Enter the parametrization inE: (CANCEL)(Y] ) U Lo ) ) X) (»)
MOYEEXPI2EH ]I IE)ENTER.
3. Enterthe independent variables: (o]&q] X)[ENTER)>)(aJ&q ) Z)[ENTER).
4. Enter plotting and display ranges and eyepoint, then draw:
EEIEEH 0)(ENTER)(2)(ENTER)(0)([ENTER)(2)[ENTER)(ENTER); (0 JENTER] 2)

(ENTER] 0] (ENTER) (2] (ENTER) (2) (+/=) (ENTER] 1) 0] (ENTER}; (1) (ENTER)
(1)+/5)ENTER)(4) ENTER) ENTER); HTi R IGTETRE. ...
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The final problem you may encounter when plotting parametrized surfaces is a
domain that isn’t rectangular—at least in the coordinate system you’re using.

Example: Parametrize and plot the upper unit hemisphere of z = /1 — x* — y?,
where x> + y* < 1.

1. Analyze the task. The parametrizationis { x y 4/1—x* —y* }. The
plotting ranges are -1 <x<1and -1 <y<1. Note that although these
ranges include possible points, such as (0.9, 0.7), that aren’t in the
function’s domain, the points (1,0) and (0,-1) are in the domain. The
display ranges are { {-11} {-11} {0 1} } and the eyepoint should
be (0,-2,.5).

2. Return to the PLOT screen, and enter the parametrization in the Ei:

iCHETETUUGE B E0EROBOE00UE S0
DEEEXPIREEEQNIRENTER.

3. Enter independent variables and plotting range: (v)o[&]Y)
OPT% (#/2) [EnTER) (1) ENTER) (1) (+/=) ENTER) (1) ENTER)
(ENTER).

4. Enter the display range and eyepoint; draw the plot:

(1)(ENTER)(1[+/=)(ENTER](1) (ENTER](0) (ENTER) 1) (ENTER) 0 (ENTER)(2)
(+/=)ENTER)(- [ 5) ENTER) ENTER [T 11T [T E.

The plot of the hemisphere is distorted because Pr-Surface requires a rectangular
plotting range (i.e. sampling grid), while the true domain in this case is circular.
Thus, you are plotting points not in the true domain and thereby causing distor-
tions in the output.
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The solution is to use a parametrization that has a rectangular domain. This is
where the polar coordinate systems—cylindrical and spherical—become useful.

For example, converting the function in the previous example to polar cylindrical

coordinates will yield z =V1-r? , x=rcos@, y = r sinf, and a parametrization of

{rcos® rsin® v1—r* }. Note that the domain of the new parametrization is
now rectangular: 0<r<1and 0<6 <2m.

Example:

1.

238

Repeat the previous example using a cylindrical parametrization.

Analyze the task. The parametrization and plotting ranges are given
above. The display ranges and eyepoint are the same as before.

Return to the PLOT screen, and enter the parametrization in the Ei*:
field and set & to F.ad: (CANCEL)(W) (+/9), if necessary) (W)&)J)
)T RXEN(I2IF) ))
) DEaR) [ENTER).

Enter the independent variables: ENTER)(») (o] F)[ENTER).

. The plotting range: Kt EF NN (0)(ENTER)(1)(ENTER)(0)(ENTER)

(6] [2)(8)(ENTER) [ENTER).
Draw the plot: EEAZE| DRA A
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Of course, the hemisphere of the previous two examples can also be expressed in
spherical coordinates which, not surprisingly, are perfectly suited to this function.
Indeed, using spherical coordinates you not only have a rectangular domain, but
you can plot the entire sphere because you no longer depend upon a square root.

Example: Plot a sphere using a spherical parametrization.

1. The spherical parametrization is { sin¢ cos® sin¢sin® cos¢ }. The
plotting ranges are 0 <0 <2n and 0 < ¢ <. The display ranges are
{{-11} {-11}{-.5.5}}, and the eyepoint should be (0, -2, 0).

2. Returnto the PLOT screen, and enter the parametrization in the Ei:

field: (CANCELJ(W[ V)LD JSINI(@JoJe]=>]9) ()X](Cos) (J)(F)
0 0ESNEEEERBONENERGE00WESE
P2))ENTER).

3. Enter independent variables, plotting and display ranges, and eye-
point: (oJ(0)(e](=>)(9)(ENTER) R L=l bt P (o) ENTER)(3)(- ) (1)(4)
[ENTER)ENTER) (W) (W) (- J8) (+/=JENTER] (- (S ) ENTER) ) ) () ENTER) .

4. Draw the plot:
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Derivatives of Scalar Functions

The derivative of a single-variable function computes the local slope of the graph
of the function. Italso allows detection of extrema and determines the best linear
approximation, the tangent, of the function at a given point. All of these properties
can be extended to multivariable functions, but there are multiple derivatives.

Partial Derivatives

Partial derivatives are taken with respect to one of the multiple variables; the other
variables are treated as constants. Partial derivatives compute the rate of change
along one of the axes at a given point in the function. The built-in differentiation
command in the HP48 is designed to compute partial derivatives. To use the built-
in command, you should purge the variables first. If you use the program FLIEF.
(see page 294), you need not purge the variables; they will retain their values.

Example: Find the slope along the z-axis of f(x,y,z)= <
x+

at (1,2,3).
y

. The point: (1 JeJa)XJsTo 2] Je o Y)STOR)(«Je)Z)STO)
. The function: (Jo¢Ja]Z)HGI0)([alX)H(JalY)ENTER).

1
2
3. The differentiation variable: (' JaJ&)Z)(ENTER).
4. The partial derivative: (2)3). Result: . Jodzzddooood

Example: Find all of the symbolic partial derivatives of e?=.

1. Enter the function and make two copies: OERREOE
(0))Z)(ENTER)(ENTER) (ENTER).

2. Gather the three copies into a list: LIZT |*LI5T}
3. Enter the independent variables in a list, make a copy and purge: (&)

(& X(SPS) (@) &) (Y)(SPC)(@) ) (Z)[ENTER) ENTER) (5 ) (PURG).

4. Apply the derivative element-wise to the two lists: (=) 3).
Result: { 'u#z#ERPlusgez)! 'uszsprP(asgez)!

PusgeE P Cwegez ) ' ) Thisis { 9f0x 9fdy 90z }.
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Total Derivatives—Gradients

The total derivative is usually a compilation of partial derivatives—used to
measure rates of change, detect relative extrema, and compute tangent planes to
the whole function at a point. The most common version of the total derivative
is the gradient, a vector of the partial derivatives of a function. Gathering together
the partials into a symbolic vector list gives you the gradient, or total derivative.
The program GEADI (see page 295) automates this. It takes the function from
level 2 and a list of the independent variables from level 1.

Example: Use 3EAUI to find the gradient of f(x,,z) = x sin" z — y sin! z.
1. Enter the function: ("] oJa X)X JAsN( a2 (e VX

(ASN)(¢Ja)Z) ENTER).
2. Now the independent variables: (]{ }
(@J& ) Z)(ENTER).

3. Compute the gradient with GRADI : (o)(«)(@)([R)(a)(D)(1)ENTER) or
(VAR [Tl Result: £ 'H"’Il".lli,_‘.l' "-HSIMNCz)!
P N e BN iy f(l"’""jfl bod

Gradients are also used numerically, of course, to find the total rate of change at
specific points on the function. In these cases, you will need to store the coord-
inates of the specific point in the correct variable names and evaluate the gradient.

Example: Find the value of the gradient of fix,y,z) = x*y*Z® at (1,-2,-1).
1. Enter the function: ()(@)&)XYEIX(@EMXIEX(@E)

(S)ENTER).
2. Enterthelist of independent variables: (&]{}
[ENTER).

3. Enterthe point as alist of coordinates; store in appropriate variables:

EO)(D)ESPO)(2)+/)SPO) (1) (F=) ENTER) () sTACK) T (sTO).

4. Find the gradient: @@.@.@@@.@m@m
EMESERS] LIZT | PEOC . Result: © —-43 3¢ 84 1}
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Finding the Plane Tangent to a Surface at a Point

Just as the tangent line is the best linear approximation to the curve of a single-
variable function at a given point, so too is a tangent plane the best linear approxi-
mation to a surface represented by a two-variable function at a given point.

The equation of the tangent line or plane is the first-order Taylor approximation
of the function at that point:

The tangent line to curve f(x), at x=a, is f(x)= f(a)+ f’(a)(x —a)

x—a
the tangent plane to surface f(x,y), at (a,b), is f(x,y) = f(a,b)+grad f * |: b}'
y —

Note the analogies between the formulas: Instead of the single-variable deriva-
tive for the tangent line, the tangent plane uses the gradient vector. Instead of
multiplying the derivative by the difference factor, the tangent plane uses the dot
product of the gradient and a vector of difference factors—one for each variable.

And the use of vectors like this is easily extended to functions of any number of

X, —a,
. X, — 4

variables: f(x,,x,,....x,)= f(a,,a,,...,a,) +grad f *
xn_an
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The program TFLAM (see page 331) computes the equation of the plane tangent
to a scalar function at a given point. It takes the function from level 3, the list of
variables from level 2, and the given point (as a list of coordinates) from level 1.

Example:

1.

Find the plane tangent to f{x,y) = x> + Sxy — y* at the point (-2,3).

Enter the function: (*)(eJ& X[Y¥(2)HE X ela XX (e Y]
@&V ENTER).

Enter the variables as a list: (] })(¢J&]X] (¢J&] Y)(ENTER).

3. Enter the point as a list of coordinates: (&q]){ })(2)+/=)(SPC)(3)[ENTER).

Example:

3.

Find the tangent plane via TFLAM: (@)a]T PIU)(AIN)ENTER)or (VAR)
(NXT) or (§)PREV)) ELEAH:H.

Result: 'SE+11*%w—27%y!

Find the equation of the plane tangent to f{x,y,z) = In(x? + y* + %) at
the point (-2,1,5).

. Enter the function: (2N X@IHEEYTIRH

(Ia)2YI(2)ENTER).

Enter the variables and the point as lists: () )(eJ&)[X])([SPC)(e]&)
(DEPO(@ )@ ENTERIGIT(2]+/-)(SPC)(1)(SPC)(S) ENTER)

Compute the tangent plane: (o)) TJPJL)A]N)[ENTER) or (then
or ((JPREV) as needed) MM () SYMBOLIC)NXT) HETEM.
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Directional Derivatives

A function’s partial derivatives find its rate of change in the directions of the co-
ordinate axes. But you can move in an infinite number of directions, not just along
an axis. The directional derivative is a generalization of the partial derivative that
expresses the function’s rate of change in any specified direction—found by tak-
ing the dot product of the gradient and the unit vector in the desired direction. (As
an example of a unit vector: If the given direction vectoris [ 2 -3 5], then its unit

2 -3 5] [2 -3 5]
[2 3 5] 61644

vector is ” ~[.32444 —.48666 5.81111].)

Example: Find the derivative of f(x,y) = x>y + 2xy — y* parallel to [ 3 4 ].

1. The function: (JoJaXZHEIX(&aVHRX(XX)(@)
NGV (E)ENTER)

2. Enter the variables, make a copy and purge: (&]{})(eJ)X)(SPC)(«]
(&) (Y)(ENTER]ENTER) (€4 [PURG).

3. Compute the gradient: (o] a]G]RJA]DJ I](ENTER).
4. Enter the direction vector and find its unit vector, using symbolic

vectors: () 3)(3)(SPC)(4)(ENTER](ENTER]()()(V](A)(B)(S)[ENTER)(=).
5. The dot product, simplified: («)«]S]D]JOJTJENTER[a]aJE]X]C)(O)

ENTER). Result: ' . S¥u™E+] Peury—7, eg®™P+] | bewt] | Sy

You can generalize the concept of the directional derivative even further: Instead
of limiting the direction to a straight-line vector, you can find the derivative of a
function with respect to a specified curved path. Expressing the curve as a one-
variable vector function, r(f) = { x(f) y(t) z(t)}, and the function as a scalar
function of three variables, f(x,y,z), you can then express the directional derivative

grad f(r(z))er’()
(1)

the rate of change of f along the path r at time ¢. Different parametrizations for
r affect the rate of change differently. That is, although the path is the same for
all parametrizations, the speed of its traversal is not. Thus, the denominator, the
speed along r, serves to eliminate the effect of the choice of parameterization.

of falong the path, r, as

. The numerator of this expression is
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The program [ IE5 (see page 293) computes the directional derivative of a scalar
function along a parametrized curved path at a given point. It takes the function
from level 4, the parametrized curve (a symbolic vector) from level 3, the list of
function variables from level 2, and an equation defining the parameter variable
and its given value (e.g' 1=Z") from level 1. [lIF3 then returns the symbolic
directional derivative (level 2) and its numeric value at the given point (level 1).

Example:

Find the directional derivative and rate of change at ¢ = 2 for the
function, f(x,y,z) = x*y*z’ with respect to the path r(t) = { ¢t £ £ }.

1. The function: (J(@)a)XIEXEMNUXEEEZXS

(5)ENTER).

2. Thepath, r: (U I(GDOCUEODXIRMOEEM

IE)ENTER)

3. The variables list: (G]U)(@Ja)X)(SPC) (@] Y)(SPC)(@J [ Z)ENTER).

4,
5.

The equation of parameter-and-value: (' JoJ&)T)&)=)(2)(ENTER).

The directional derivative: mmﬂnmm (ENTER]or (VAR] (NXT)
or as needed) M. Result: 637055957, 2903

Thus, at ¢ = 2, the function is increasing by nearly 69 million units
for each unit travelled along r.

Of course, you can use [l IF& to compute directional derivatives with respect to
linear direction vectors, too, by expressing the linear direction parametrically....

Example:

Use LIFA to find the directional derivative and rate of change for
fx,y) = x*y + 5xy — y*in the direction of [ 3 4 ] at the point ( -2 3).

. Enter the function: (" Jo & X)XV )HEIX(JaXIX)

(JQVEENIEENTER)

For the path, r, convert the point and direction to a single-variable
vector function representing a line: Enter the direction vector (sym-
bolically), the parameter variable, then multiply; enter the point (as
a list) and ADL. Thus:
X Q0@ EPO)(3) Entes) (v N BT,
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3. Enter the list of variables: (&]{}) (ENTER).

4. Enter the equation defining the parameter and its value (set it to zero

so that the desired point is selected): (' JaJ)T)«)=)(0)([ENTER).

5. Compute the directional derivative: (a)a]D] | [R]>]DJ(ENTER)or

(then or (§)PREV) as needed) [T HM. Result: —'4. &
Thus, as you move from (-2,3) in the direction of [ 3 4 ] the function
is decreasing at the rate of 24.6 units per unit travelled.

The rate of increase in a given function is fastest in the direction of the gradient;
and the rate of decrease is fastest in the direction opposite the gradient.

Example:

246

A 500°K heat source radiates heat outward in a sphere. The tempera-
500

1+x*+y* +7*

What is the unit vector in the direction of fastest temperature in-

crease at the point (1,2,3)? What rate of temperature increase is this?

ture at a point (x,,z) is T(x,y,z) =

. Enter the function: (' 5o Jo)+Ja[O(HeaXIYI@)(HJa)

UXIEHEAZPI(R)ENTER).

2. Thevariableslist: (U J X)([SPC) @] Y)SPC)(¢fa]Z)ENTER)

3. Store the point’s coordinates in the appropriate variables: (&)({ )(1)

(SPC)(2)(sPC)(3)(ENTER) () STACK) T Tl (STO).

. Compute the numerical gradient: (o]o[GJR]A]DJ 1J(ENTER

NSV ENR e LIET | PROC [oOLiE]

. Itsmagnitude: (ENTER] ]« V]A[BJS|ENTER). Result: 15, B H5iEEs

This is (to 7 figures) the fastest rate of increase in temperature

. The unit vector: (). Result: + -.¥E/ZR1E -, 024585

- BE17EET }
This direction of fastest increase makes sense: it is the same direc-
tion as { -1 -2 -3 } (which you can confirm by dividing the above

result through by its first element)—and this is directly back to the
heat-source origin from the point in question, (1,2,3).
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Finding Critical and Stationary Points

Any point on a continuous, two-variable function, z=f{(x,y), whose gradient at that
point is a zero vector is a stationary critical point. The “stationary” in the name
stems from the function’s behavior there: it’s notchanginginany direction. There
is a horizontal plane tangent to the surface at a stationary critical point, whose
equation is z=k, where k is the value of the function at the stationary critical point.

Example: Find the stationary critical points of the function f(x,y) = x? + Sxy —
y* and the equations of the tangent planes at these points.

1. Enter the function: (")) )X)7¥2)HEX@QEXX) (@)
ME ISV (3IENTER).

2. Enter the list of variables, make two extra copies, moving one up the

stack for later use and the other to purge: (&) )(eJeIX)(SPC)(a)e)
(ENTER)(ENTERJENTER)(4)(STACK] [/ 1 §1] ()PURG).

3. Compute the gradient: (a]o[GJR]AJD]I](ENTER).

" L F TN =2V B [ PO TR B ]
Result: © 'Z¥uw+bxy o¥Ey—JEySE ]

4. Swap the variable listinto level 1 (SWAP))and estimate the values of
x and y that will make each component of the gradient equal to zero.
Obviously the point (0,0) works and is one critical point. But keep
searching for others. The first component suggests three things:

a. There is only one other critical point, since x and y are both
linear in the first equation.

b. x and y have opposite signs

c. The x:y ratio in magnitude is approximately 5:2 .

Looking at the second component suggests that while (5, -2) doesn’t
work very well (10, -4) gets fairly close. Thus, enter an initial guess

of x =10 and y = -4: (&)J{})(1)0)(SPC)(4)+/-)([ENTER).

5. Solve the two equations simultaneously viaML5"'S (page 304) and
p

rationalize: (a]aNJL)(S[¥]s) G
et Il @] o] S| TID)(ENTER).

Result: © '125-12" '=(Z5-6)' %

il B ]
Thus, the function has two critical points: (0,0) and (12,—%).
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A stationary critical point can be any one of three things: alocal minimum, alocal
maximum, or a saddle point. You can determine which situation applies by using
a computation involving the second-order partial derivatives of the function:
Arrange the second-order partial derivatives in a matrix, such as this one for atwo-

If Of
: : ox>  Oxdy . )
variable function, 3 f 7 | and compute the determinant of the matrix. If
dyox oy’
it is less than zero, then the point is a saddle point. If it is greater than zero, then
2
look at the value of o J: . If that second-order partial is greater than zero, then the

X
point is a local minimum; if less than zero, then the point is a local maximum. If
the determinant of the matrix is zero, then the test fails to specify the nature of the
stationary point.

The program [IZTST (see page 290) automates this second-order partial deriva-
tives test. It takes a function from level 3, the list of variables from level 2, and
a list of stationary critical points (complex numbers) from level 1. It returns the
list of points labeled with "Saddle," "Maximum," "Minimum," or "Inconclusive."

Example: Usethe second-order derivative testto classify each of the stationary
critical points you found in the previous example. Are they saddle
points, local maxima, or local minima?

1. Enter the function: (" JoJ&q)X)¥2)*)(5)X)(Ja)X)X)(«)a)Y)
BT (IENTER)

2. Enter the list of variables: (&]{})(eJ&)]X)(SPC)(eJeq)Y)([ENTER).

3. Enter the list of stationary critical points (use decimal equivalents

for the fractions): (GIUYGJOIo)) ))& o) - L1411 ]6]
@)@ T 6] 6] 6)7)(+/JENTER).
4. Run the second-order partial derivatives test on the list of points:
(o] D) 2) TS T)ENTER)or (VAR) (then (NXT)or (65 ]PREV) as needed).
Result: + :5addle: (B, B) :Minimuom:
1A, ':l'].EIEIFlEIFIEIEIF: -4, 1REEREREEEET Y
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The Method of Lagrange Multipliers

Often the problem of finding function extrema of a function is complicated by
additional constraints on the function inputs. However, the method of Lagrange
Multipliers notes that, if an extremum exists for a differentiable function, f,
subject to a constraint, g, then the gradient of fis a non-zero multiple of the grad-
ient of g. Thatis, grad f = A grad g, where A is a nonzero scalar, the Lagrange
multiplier. Then, because the gradient is a vector, there is an equation for each
element. For example, if fand g are functions of x, y, and z, then the Lagrange

o .08 I .08 O _,08
=A== =A== =A==
ox ox dy dy Oz oz

inal constraint, that’s 4 equations in 4 unknowns (x, y, z, A), a solvable system.

method gives the equations, . With the orig-

Example: On the plane x — y + 2z = 5, find the point closest to the origin.

1. The function minimized is the distance to the origin, /x> + y* + z°,
0 fix,y,z) = x*+ y* + 72. The constraint g is the plane, x —y + 2z — 5.

2. Enter the function fand its (purged) variables, then find its gradient:

(JaXNEHaVTIH Il Y R)ENER QD)
(J&a)X)(SPo) (e ) (SPO) — (ENTER) (ENTER) (]PURG)
GRIAIDIDENTER). Result: { 'g#w' 'Z#y' lzEz! b

3. Give constraintand variables; findits gradient: (' ] o)(&)(X)(=)(@)&)
MHRX(PUGIZI=s)ENTER GO JaIX)SPA(@)a)(Y)(SPY
(&SI 2)ENTER) (2] 2] &) R)AJD) (ENTER). Result: © 1 -l & i

4. Multiply by A and subtract from the previous one: m
X)) Result: © 'E¥u-n' Eegrn' ' Pezp-Fen ' +

5. Enter the constraint function and append it to the list: (' JoJ&]X)(—)
(Jal2=) ()

6. Enter the variables and initial guesses ({ 1 -1 12} seems OK). Use
ML'5"%" to solve, then rationalize: (5)()
@@.E@@.@@.'SPC}. +/-)sPC)(1)(sPc)(2)

m (ENTER] 8 [ FT 1 X[ENTER EISYMBouc
“: Result |' II:I FI _II:E"ll II:i.-_:I |I:i j-l|

The solution point is (2,—2,3). (Just discard A, the 4th element.)

The Method of Lagrange Multipliers 249



Derivatives of Vector Functions

Before looking at multivariable vector functions, consider single-variable vector
functions. Expressing a function parametrically, say, r(¢) = { x(t) y(©) z(?) },
transforms a single function into a /ist of functions. Finding the derivative of such
a list is nothing more than finding the derivative of each element of the list (i.e.

ar_{ax dy @_z_}

each component of the symbolic vector): r’(¢) = o Vot o o

The program W[IEF (see page 332) computes the derivative of vector function
with respect to one variable. It takes the symbolic vector from level 2 and the dif-
ferentiation variable from level 1, returning the derivative vector function.

Example: Find the derivative of r(r)={¢t £ £ }.

1. Enter the vector function: () )(eJ)T)( [ T)¥2)»)(" o)
E@DOIE)ENTER.

2. Enter the differentiation variable: (']a]&]T)(ENTER).

3. Compute the derivative using Y[EF: ()] V]DJEJR)ENTER)or (VAR)
(then (NXT) or (§]PREV) as needed) |NOEE )

Result (in STD mode): © 1 'E#t' 'Zxt™' }

To find higher-order derivatives of vector functions, you need only to use Y[IEF,
more than once.

Example: Findthe secondderivativeofr(f)={t 7 ¢* }. Use the previousresult
as a starting point.

1. Usingthe previousresultas the vector function, enter the differentia-

tion variable: ('] aJ&]T)(ENTER).

2. Compute the derivative using WIIEF:: (@) V)D)EJR)ENTER) or
(then or (§)PREV) as needed) EITT.

Result: ©+ H & 'bBxt' 2
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One good application of the vector-valued functions is computing the curvature
—the rate of change of the direction of the tangent— of a curve at a point on the
curve. Without going into the derivation of the formula, the curvature of a curve

[ (2)xx’(2)|
’ 3 :
r'(0)]
The radius of curvature—the radius of the circle whose curvature matches that of

the curve—is the reciprocal of the curvature. That is, if the curvature is 0.2, then
the radius is 5.

defined parametrically at given point ¢ is k =

The program LUEM (see page 289) takes the symbolic vector form of the curve
from level 3, the parameter variable from level 2, and the value of the parameter
at the desired point from level 1 and returns the numeric curvature to level 1.

Example: Find the curvature and radius of curvature for the curve defined by
r()={1-¢t £#+1 2£3+1}att=1.
1. Enter the vector function: ()" =[] [T T
EHOMNRXUEDIEHEHEHEENTER).
2. Enter the parameter variable and its value: ('] oJ&]T)(ENTER)(: [5)

ENTER].

3. Compute the curvature using CLEY, then rationalize the result: (o)

(o] CJU]JR]V])(ENTER) or (VAR) (NXT] or ((5]PREV) as needed) Eq!I1s
(& JSymeoLICINxT) TR

Result: gL

Of course, the concepts of single-variable vector derivatives can be extended (to
a substantial degree) to derivatives of multivariable vector functions....
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Partial Derivatives

Just as the built-in& command can take partial derivatives for multivariable scalar
functions, so Y[IEF: can take partial derivatives for multivariable vector functions.
(Scalar functions have scalar partials; vector functions have vector partials.)

Example: Compute %r_ forr(x,y,z) = { Xy xyz* y*2* }.
y

1. Enterr: (QJU)( J QX)X ea)X) X (ela)
.._ﬂ.@ﬂ..—ﬂ.m

2. Spemfy y, then differentiate via '[lEF' m@@.
(OJE(R)ENTER). Result: £ ‘'w™d! lusztE! Esgezedl g

Total Derivative—Jacobian

The total derivative for a scalar function is the gradient—a vector. The total deriv-
ative for a vector function is the Jacobian—a matrix. Each row of the Jacobian
matrix is a gradient of one of the vector function’s components.

The program JHCUE (page 299) takes a symbolic vector function from level 2 of
the stack and a list of the variables from level 1 and returns the Jacobian matrix
to the stack. Remember to purge the variables before using JHCUE.

Example: Find the total derivative, F', at (3, 2, -3), if F(x,y,2) = {3x24y? 5% }
1. Enter the symbolic vector: ()" 3 X e J X)O*2)»)( [4)(X)
(QVOIERIMOEX ()2 (2)ENTER).
2. Enter the list of variables, make an extra copy and purge: (&) })(o)
EIXIEPC)(efa) Y] (SPC)()é ) Z) [ENTER](ENTER) ¢ JPURG).
3. Compute the Jacobian matrix: (a]a]JJAJCJOJB](ENTER] or (VAR
(then (NXT) or (§]PREV) as needed) Blif#13.

Result: 'El-i'i-f:'_"" "l' F1 H
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Example:

Store the point’s coordinates in the appropriate variables and com-
pute the Jacobian matrix: (&]{})(3)(SPC)(2)(sPC)(3)+/=)(ENTER)(&)
O)efa)X)SPe)(eJa ) Y)(SPC) (e Ja ) ZIENTER) (STO) (1)K M1 »)
SYGES] LI=T | FROC [pOLIE Q] OLIE|ENED)

HHH
=

Result: . h
h
Hx

't N e B i

0 =0

=D
[ou

Find the symbolic total derivative (P’) if

. Enter the symbolic vector: ()" JeJ)X)([H S Y+ JalZ)

PO HUSVTHDHISZXHEORAXS
BEEEYYIRE A2 ENTER)

Enter the list of variables, make an extra copy and purge: (&)({ })(e)
IX)(EPA)(Ja)Y)(SPC)(efex] Z) [ENTER) ENTER) (G JPURG).

Compute the Jacobian matrix: (a]o[JJA]CJOJB)(ENTER.

Result: + £ 1 1 1 2
L1 'Eegt '3xt2 G
I e D Rl B

The determinant of the Jacobian of a three-component vector function of three
variables is the triple scalar product of the gradients of its components.

That is, for f(x,y,2) = { P(x,y,2) Q(x,y,2) R(x,y,2) },

X y 2
f'(x,y,2)|=|% £ P =gradP+(gradQxgradR).

R R R
ox dy 0z

As an arbitrarily-sized “box-element” is transformed by a vector function, its vol-
ume will increase by a scale factor equal to the absolute value of the determinant
of the Jacobian. This scale factor plays a role during a change of variables when
integrating, as you’ll see later in this chapter (see pages 262 and 266).
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Divergence, Curl, and Laplacian

In addition to the Jacobian, vector functions have three special kinds of “total”
derivatives, each of which tells you something different about the function. The
three types are:

The divergence of a vector function is a scalar value representing the rate
of expansion or compression of the function. If you choose a point from
a given surface and let it be the center of a tiny cube, the divergence at that
point is the rate of change of the volume of the cube. Divergence can be
computed from the Jacobian matrix—it is the trace (the sum of its diagonal
elements) of the Jacobian. The vector function is said to be incompressible
at a point if the divergence is zero.

The curl of a vector function is a vector representing the direction of the
axis of maximum rotational change for the vector function. If you choose
a point from a given surface and let it be the center of a tiny cube, the curl
at that point is the axis of rotation of that cube and the magnitude of the curl
is exactly twice the angular velocity of the cube. A vector function is said
to be irrotational at a point if the curl is the zero vector.

The laplacian is a measure of the difference between the average value of
a function near a given point and the actual value of the function at the
point. It roughly describes a rate of change for the average value of a
functionin the neighborhood of a given point. The laplacian is defined both
for scalar and for vector functions. For scalar functions, the laplacian is a
scalar—the divergence of the gradient. For vector functions, the laplacian
is vector in which each component is the divergence of the gradient of its
corresponding component in the original function.

Each of these three types of derivative has its own program—MXL T4 (page 333),
LLEL (page 289), and LAFLL (page 299). All three programs take the same set
of inputs—the symbolic vector function from level 2 and the list of variables from
level 1. There should be the same number of variables in the level-1 list as there
are components in the level-2 vector. If you want the symbolic result, you must
purge the variables in the level-1 list before using a program. If you want the
numeric result, store values in the level-1 variables before using a program.
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Look at some examples:

Example:

Example:

Example:

Find the symbolic divergence of F(x,y,z) = {3x* 4y*> 5z° }. Is the
function expanding or compressing at the point (3,2,-3)?

. Enter the symbolic vector: ({3 3 X Ja) X *2)>)(' J4)X)

LEMIRHOEXESIIPIR)ENTER)
Enter the list of variables, make an extra copy and purge: (&)({ (<)
Gy (eJa)¥)(SPC)(¢Jéx)Z) [ENTER) (ENTER) (9 JPURG).

Compute the divergence: (o]aJV]D] | [V]({ENTER)or (VAR](then (NXT)
or as needed) lTTIH. Result: 'E*u+bg+]bxz!
Store the point coordinates in appropriate variables and evaluate the

divergence: (](1)(3])(SPC)(2)(SPC)(3]+/-)(ENTER) (4]1J)
(SPC)(eJ&)Y)(SPC)(e)¢7)ZJENTER) (STO))=NUM). Result: 4

A positive divergence indicates expansion at (3,2,-3).

Find the curl of F(x,y,z) = { 3x*4y? 52% }.

. Enter the symbolic vector: (J{)(" 3 X o X)X 2)»)(' J4)(X)

(EYPIRIOEX a2 (2)ENTER).
Enter the list of variables, make an extra copy and purge: (&) })(c)
<) (SPC)(eJé) Z) (ENTER)(ENTER) (<5 JPURG).

Find the curl: (o)()(C)(U)(R)(L)(ENTER] or (VAR) (NXT) or (&9)(PREV))
WIT8]. Result: © H H H . The function is irrotational.

Find the laplacian of the function, F(x,y,z) = {3x? 4y* 57 }.

. Enter the symbolic vector: (L) [3[X[ o X)X 2)>)( J4)(X)

(VIR OEX(aIZ)TI(2)ENTER.
Enter the list of variables, make an extra copy and purge: (&9){3})(e)
(SX)(sP)(@fa)Y)(SPC)(eJ&a)Z) [ENTER) [ENTER) (G JPURG).

. Compute the laplacian: («)a)L)(A]P)L)(CJENTER)or (VAR)(then (NXT)

or (§)PREV) as needed) [[i]JdMA. Result: © & & 1H I
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Tangent Planes to Parametrized Surfaces

To find the equation of the plane tangent to a parametrized surface at a given point,
you must first compute the fundamental vector product (FVP )—the cross product
of the two partial derivatives of the surface. If r(u,v) = { x(u,v) y(u,v) z(u,v) }

is a parametrized surface, then FVPr(u,v) = oar X ﬂ

ou dv

Note that or/ou and dr/dv both lie in the plane tangent to the surface at a given
point. Thus their cross product is normal to the tangent plane and can thereby be
used to determine the plane’s equation. (Recall that if you know a particular point
in a plane (x,,,,z,) and a vector { A B C} normal to the plane, then the equation

of the plane is: A(x-x) + B(y -y, + C(z—z)=0.)

The program F\/F (page 294) automates the computation of the fundamental vec-
tor product at a given point on a given parametrized surface. F4F takes the sym-
bolic vector function from level 3, a list of the two independent variables from
level 2, and a list containing the two coordinates for the independent variables at
the given point. It returns the numeric fundamental vector product as a symbolic
vector (i.e. in a list) to level 1.

Example: Find an equation of the plane tangent to S(u,v)={ u v u®? } atthe

point (-1,2,4).

1. Enter the vector function for the parametrized surface: (]{ (o))
(TJQUX (@ X(JalV)2)ENTER).

2. Enter the list of the variable names and a list of their values: (&]{ }
SO F/-)(EPO)(2)([ENTER).

3. Compute the fundamental vector product: (o] a]F)V]P) or
(then or (& JPREV) as needed) il g lifl-

4. Assemble an equation for the plane and then simplify: (&]{ }[aJ&)
X)sPe)J&)(Y)(sPC) (@) ] Z) ENTER(S) DD (*/-)(SPC)(2)(sPc)(4)
(ENTER) (=) (X) (MTH) L & It i B2l B b4t ol () ¢ E ] X ] CJO) (ENTER).

Result: '1&+Esu—dsy+z!
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Double Integration with Scalar Functions

The definite integral of a function of one variable, geometrically interpreted, is
related to area—the sum of a series of “strips” that have height but whose width
approaches zero. By extension, the definite integral of a function of two variables,
geometrically interpreted, is related to volume—the sum of a series of flat “plates”
that have height and width but whose thickness approaches zero.

The definite integral of a function of two variables, f(x,y), is called a double
integral, and represents the net volume between f(x,y) and the xy-plane, over a
defined region R in the xy-plane. The volume is net volume in that volume: above
the xy-plane is counted as positive and volume below the xy-plane as negative.

The general form of the double integral is J J f(x,y)dA. The dA refers to a sum-
R

ming element that is two-dimensional (area). The HP 48, however, cannot use the
general form of the double integral. It can use only single definite integrals with
specified upper and lower limits, so itrequires that you transform the general form
into a iterated form—a single integral whose integrand is itself an integral

b d
expression, such as j [J f(x,y) dy] dx. For each x between a and b, a vertical

cross-section of R runs fromy=ctoy=d.

To better visualize a double integral, think of the volume it computes as that of
a book sitting upright on a shelf, with its binding facing you. Now modify your
image so that the area of the book’s contact with the shelf isn’t necessarily a rect-
angle. The top of the book isn’t necessarily flat, either.

The pages of the book represent slices of the volume between two limits (the
covers of the book). The double integral (volume of the book) represents the sum
of the areas of the slices (pages) between the lower limit (back cover) and the
upper limit (front cover); the inner integral in a double integral computes the area
of a slice—an area that may be constant (all pages the same size) or may instead
be a function of its position within the volume (book). In either case, the outer
integral totals the areas of the slices (pages) into a volume (book).
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Using the iterated form of the double integral requires that you define the region
R so as to establish values for the four limits a, b, ¢, and d. Now, each slice (page)
intersects R in a line segment. If the line segments for the slices have varying
lengths, then ¢ and d are probably functions of x: ¢ = g(x) and d = h(x). The limits
of a and b are then the minimum and maximum x-values (front and back cover

max R, h(x)
positions), respectively, in R. The iterated form becomes j { f(x,y) dy] dx.

min R, g(x)

Of course, you could also find the volume of a object by slicing it horizontally
instead of vertically, if it would be more convenient to do so—such as if the book
in the foregoing analogy were sitting on the shelf with its front cover showing.

max R, h(y)
Then the iterated form becomes J ( f(x, y)dx]dy.

minR, \ g0y

Using the book analogy, the front cover is now the minimum y-value of R, the back
cover the maximum y-value of R, and the area of the pages (slices) now depend
on their y-position in the book.

It’s important to execute the double integral correctly on your HP 48, or the com-
putation will take seemingly forever. Here are some do’s and don’t’s:

Don't:  Create a symbolic nested double integral expression and then press
(+NUM). The HP 48 will take too long to evaluate it (unless perhaps
the display/precision is set to 2 or 3 places).

Do: Compute the inner integral first, evaluating and symbolically sim-
plifying as much as possible, then use the result as the integrand of
the outer integral which can then be finished with (=NUM).

Maybe: Create asymbolic nested integral expression and usellLTIMT (page
303) to evaluate it efficiently (starting from the inside-out).

Remember: Itis always better to evaluate the inner integral symbolically, if at all
possible. Note that if the inner integrand cannot be evaluated symbolically by the
HP 48, then you may either have to work it manually before using the HP 48 for
the outer integral or resort to numerical double integration (i.e. the long “Wrong”
way) using a small display/precision setting. Look at some examples:
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Example:

Find the volume between the graph of z = x?y* and the xy-plane, over
a rectangular region with vertices (-1,1), (-1, 4), (3,4), and (3,1).

4 @3
. Since -1<x<3and 1 <y<4,thedoubleintegral is j Jx2y3 dxdy.
1 -1

The polynomial integrand should readily evaluate symbolically.
Enter the “outer” limits, then the “inner” limits: (1)[ENTER)(4)[ENTER);

(1)#/=)(ENTER)(3) (ENTER).

. Enter the integrand and “inner” variable of integration: (')(aJ&]X)

PIEXELSYIE)ETER (DX ENTER).

4. Integrate: (=)T)[EVAL. Result: ' F#y™3+, 33333333333 34~3"

Example:

Enter the “outer” variable of integration; do the outer integration to

find the volume: (" )oJ&Y)ENTER)([=)T)(EVAL. Result: 295

Find the volume between the graph of z=x? + xy — y* and the xy-plane
over a region bounded by the graph of y = x? , the x-axis (y =0), the
y-axis, and the line x=1.

. This time the region of integration isn’t rectangular. Since 0 <x <

1 px?
1 and 0 < y < x?, the double integral is j J.x2 +xy—y*dydx.
0 ¢¥0

Enter the “outer” limits, then the “inner” limits: (0)[ENTER)(1)(ENTER);

@ENTER) (X ZH () ENTER).

The integrand and “inner” variable of integration: (*)(eJ&[X)¥¥(2)
HeEXX([JaY)H (@aNEIE)ENTERC)(JG]Y)ENTER).

Evaluate the “inner” integral: (=)J)(EVAL)(&)SYMBOLIC) (o] Hsy.

Result: '.o¥w™2EEu+yp™d— 3033333222335

Enter the “outer” variable of integration; integrate to get the volume:
("] X)[ENTER (G)>NUM). Result: 39714735714

Converting to a fraction via *[! or *[I yields ' 323 146" .
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Example:

1.

Example:

Repeat the previous example using FLTIMT.

Enter the symbolic nested double integral: (' [=2] )0 )(D&)
@@EIZ]EID
XeJalY [ ea YT 2ladalea Ja X)ENTER)

Evaluate the double integral: @@.. .@@.m or m
(NXT) or (9)PREV)) HETHIME. Result: . 2307 1428571

2
Compute J
0

. Enter the “outer” limits: (0])(ENTER)(2)(ENTER).

Enter the “inner” limits: (1)+/-)(ENTER)(3)(ENTER).

3. Enter the integrand and “inner” variable of integration: (*](aJ&)X]

260

PIEEHQIOAH ((aVEFIR)ENTER () (ea)Y) ENTER)
Integrate: (=) 7)EVAL. Result: 'Ji—1, 2y w™Es(4+y™F 2, gl !
Hmm... this integral didn’t evaluate symbolically. Your options:

a. Symbolically evaluate this inner integral manually, then pro-
ceed with the computation using the HP 48.

b. Symbolically evaluate this inner integral by using# IMT , hop-
ing that IFAT has the relevant matching pattern; or by using
a combination of the other symbolic integration strategies
discussed in chapter 4. Then do the outer integral as usual.

c. With low precision for quicker computation, numerically es-
timate the complete double integral, using either or
FILTIMT (which offers at least a four-place numerical approxi-
mation).

If you chose options a or b, the inner integral expression will have
beenreplaced with its antiderivative. If you chose option c, the inner
integral expression remains unevaluated. Enter the “outer” variable

of integration and integrate: (' JaJ& X]ENTER)(2)J).
If you chose options a or b, then evaluate the integral (either (EVAL
Ljor ((q)=NuUM)). If you chose option c, then evaluate the integral

numerlcally to four decimal places using HLT INT (e oM
(NIT)(ENTER)). Result (to 4 places): 1.92E5
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Segmenting Double Integrals

Some regions of integration you’ll encounter have vertices other than at the outer
integral’s limits. When this occurs, you must subdivide (or segment) the double
integral into two or more double integrals. The limits for both inner and outer
integrals are usually affected by segmentation.

Example:

Let R be the triangular region with vertices at (0,0), (1,3), and (2,2).

Find Jje"y dy dx by using segmentation.

R

. First, study R. The x-range is 0 < x < 2, and in that range (at x = 1)

lies a vertex. Before the vertex, the upper limit for y is the line
connecting (0,0) and (1,3), ory=3x. After the vertex, the upper limit
for yis the line connecting (1,3) and (2,2) or y=4 —x. Thus, it makes
sense to split the double integral around x =1. The first subregion is
0<x<landx<y<3x;theotheris | <x<2andx<y<4-x.

. Enter the segmented integral, J J dy dx+J J Vdydx,

onto the stack: Press (&9]EQUATION)(=>J5)(0)>)(1 ) 2)H)(eJa)X)
) >) &) 1)
LIXEHELO R D) EL]) (@)X ) (@) (D) (ealX) ()
(I XEH Q) (e Y)EPC (@G X)ENTER).

. Numerically compute the segmented integral using FILT IMT:

G0 f# Result: 1.1333352532

This matches the analytical result (1 + ¢?) to full precision.
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Double Integrals with Polar Coordinates

It’s often more convenient to use polar functions (of two variables, r and 0) to
perform a double integration, particularly if the region R is more simply described
by polar functions. If the problem is already given entirely in polar form, then
computing the double integral is no different than for rectangular functions.

5l
Example: Compute J Jr3 cos’drd) .
z Jo

1. Enter the “outer” limits: (* Jo[m)(+)(4)ENTER)(" Ja (= J2)ENTER)

3. Enter the “inner” limits: (0)(ENTER)(1)(ENTER).

4. Enter the integrand and “inner” variable of integration: (' )(aJ&]R)
IEIX)Cos)(@I P (2)ENTER) () (@) lR)ENTER].
5. Evaluate the “inner” integral: (] )(EVAL).

6. Enter the “outer” variable of integration and, in Rad mode, evaluate

the outer integral to find the volume: (' JoJ>|F) («)
(RAD), if necessary) ((9)=NUM). Result: . 6" PB4 4aE-5 .

However, if the function is given in rectangular form, but the region of integration
R is given in polar form, then you’ll first need to convert the rectangular function
to a polar function using the following variable substitutions:

x=rcos0 y=rsin® dxdy=rdrd0

(The r term in the latter equation is the Jacobian determinant scale factor for the
transformation to cylindrical coordinates.)
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Example:

3

Find J‘J‘(l +x* +y*) dydx, with R the interior of the unit circle.
R

. Analyze. In polar coordinates, the interior of the unit circle is de-

scribed by 0 <r <1 and 0 <0 < 2r. After making the substitutions

2n @l
and simplifying (e.g. x> + y* = r?), you have j J.(l +7%) trdrde.
0 0

Enter the “outer” limits: (0)(ENTER])(" J2)XJ& 1) ([ENTER).

3. Enter the “inner” limits: (0)(ENTER)(1)(ENTER).

4.

Enter the integrand and inner integration variable: (')&]0)
(JGRPIRIELTEX) (ela)RIENTER)(D (e R)ENTER).

Evaluate the “inner” integral: (=)J].
Result: '[0H, 1, C1+*20%], Sy !
Note that the inner integral failed to evaluate in its current form.

Choose option b (see page 260) and use CHVAE to convert the inte-

gral, withu =1+ 7 (JoJa[UEaEDH @GR (2ENTER)
(@)a)CIH]V]A[R)ENTER). Result: 'JL1, &y . 2#0™1. 5, )"
Evaluate the revised inner integral and substitute the original ex-
pression for u, if needed: (EVALJEVAL). Result: .93137/Ha499

Note that the evaluated inner integral contains no u (or other variable
for that matter) and thus requires no resubstitution for .

Enter the “outer” variable of integration and evaluate the outer inte-

gral to find the volume: (') o]=]F)ENTER)(2]J )& J=NUM).

Result: 7. 331972363363
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Triple Integrals of Scalar Functions

The triple integral logically extends the concepts of single and double integration.

The general form of a triple integral is Jjj f(x,y,2)dV, where dV is a volume
N

element whose form depends on the order of the three integrals.

You can visualize the triple integral as computing an aggregate property (density,
mass, temperature, etc.) of a solid, where that property varies locally throughout.
Or, the triple integral is another way to compute a volume. Because volume—a
“property” of every arbitrarily tiny particle of a solid—is a constant, triple-
integrating f(x,y,z) = 1 yields the volume of the region. That is, given a region R
bounded by two surfaces z, =f(x,y) and z, = g(x,y), over an area A defined by £ (y)

ey eh(y) @z
<x<h(y)and ¢, <y<c, the volume of R is ‘“‘J'IdV = J J jldzdxdy.
o Yh(y) vz,
R

Example: Find the volume of the region bounded between z = x>+ y? and z =

-2xy over the area definedby 0 <x<y?’and 0 <y < 1.

1. Outermost limits; middle limits: (0)(ENTER[1)(ENTER); (0)(ENTER)(")
@&y ENTER).

2. Innermost limits (x? + y* > —2xy since x and y are > 0):
(XX Sl YENTER] ' [o S XIY 2]+ o [ Y]V 2JENTER).

3. Theintegrand; the innermost integration variable; then integrate:
ENTER)(" [ Z)ENTER EVAL). Result: ' 5™ EHy™F+i sy !

4. The middle integration variable; then integrate: ('] oJ<5]X](ENTER
(2)TJEVAL. Result: 'E#[y™EEsF gty ey ™yt 2t 33!

5. The outer integration variable; then integrate to get the volume: (')
()Y ENTER[D)T) € )=NUM). Result: . F14EE5 146

Rationalizing this result (via *! or *EI0) yields '&3<7H" .

There are other ways to find the volume of an object, but a triple integral is the only
way to find the total effect of a property that varies throughout the object.
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Look, for example at density. If an object is a collection of arbitrarily small parti-
cles, and if each infinitesimal volume is the same, then any variation in its density
is due to variation in its mass. And to find the mass of the total object, you need
only sum the masses of its many infinitesimally particles—via triple integration.

Example:

AR

One vertex of a tetrahedron is at the origin (0,0,0). Its other vertices
areat(0,0,1),(0,1,0),and (1,0,0). If the density p at each point (x,,z)
of the tetrahedronis p(x,y,z) = xy, whatis the mass of the tetrahedron?

. The tetrahedron is bounded between four planes—the xy-plane, the

xz-plane, the yz-plane, and the plane x + y + z = 1:
Z

X

The edges of the inclined face are lines: y=1-x; z=1-y; x=1-=.
Your integral can use the variables in any order (since the region is
symmetrical), but for this case, let x be “outer,” y “middle,” and z
“inner:” 0<x<1 0<y<l-x 0<z<1l-x-y

The outermost limits: (0])(ENTER) 1](ENTER).

The middle limits: (0])(ENTER)(" [ 1)(=) aJ&q X](ENTER).
The innermost limits: (0JENTER] ' | 1]—]oJ&q)X]—=) &) Y ENTER).

Enter the integrand and the innermost variable of integration, and

evaluate the innerintegral: (' JoJ& [ X)(X)(@J&e ) Y)ENTER)(' o] ) Z)
ENTER EVAL. Result: 'm#u#l]-—w—y)!

Enter the middle integration variable; evaluate the middle integral:

(" JoJ&) Y ENTER] 2] S JEVALJ& SYMBOLIC Lt EVALJ(EVAL).
Result: '=Cu# (01— ™330 00—, S0 ] - )t E ey
+, 00— 1

Enter the outer integration variable; integrate to get the volume: (')
(@)E)X)ENTER[2)T)E)=NUM. Result: 2. 323233333I6E-3.

Rationalizing the decimal result (with *[ or *[LIZ) yields ' 1< 120" .
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Triple Integrals in Polar Coordinates

As with double integration, it may be convenient to use polar functions to describe
the object or the area of integration. Cylindrical coordinates (r, 6, z) produce
volume elements that are tiny cylindrical wedges of volume, dV=rdrd6@dz.* To
compute a triple integral using cylindrical coordinates, you must use this version
of dV and express all limits and the integrand in cylindrical coordinates. Use these
conversions, as needed: x=rcos0® y=rsin® z=z dxdydz=rdrdddz.

Example: A cylindrical shell whose inner surface is x> + y? =1, outer surface is
x* +y* =4 and which lies between the horizontal planes z = 0 and
z=21is composed of a material whose density is p(x,y,z) = x’z + y*z.
Find the total mass of the cylindrical shell.

1. Incylindrical coordinates, the inner surface is r= 1; the outer surface
isr=2(because x>+ y*=r2). Similarly, the density function becomes

2 p2n @2
z(x*> + y*) = zr?. Thus, you must solve j J er3 drd0dz.
0 0 1

2. The limits—outer to inner: (0])(ENTER]2)(ENTERJ; (0)(ENTER)(" J2]X]
(& )7)(ENTER); (1)(ENTER](2)(ENTER).

3. The integrand and inner variable; integrate: (' oJ&)Z)
ENTER)( [ [R)ENTER > DEVAD). Result: 'z#4—z#. 23"

4. The middle variable; then integrate: (' Ja]—=]FJENTER]>]J JEVAL)
©)symBoLiICaiTHE]. Result: 'T. oz’

5. Theouter variable; integrate to find the mass: (' [aJ&q ] ZJENTER| ]S )
EVAL). Result: '15#7!

Spherical coordinates (r, 6, ¢) produce volume elements that are tiny spherical
wedges, dV=r?sin ¢drdBd¢. ** Tocompute atriple integral in cylindrical coord-
inates, you must use this version of dV and express all limits and the integrand in
cylindrical coordinates. Use these conversions, as needed: x = r cos 6sin ¢
y=rsin @cos ¢ Z=rcos ¢ dx dy dz =r?sin ¢ dr d6 dd

*The r term is the Jacobian determinant scale factor for the transformation to cylindrical coordinates.
**The r* sind term is the Jacobian determinant scale factor for the transformation to spherical coordinates.
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Example:

A B

Find the mass of a solid ball of radius 1 if the density at each point

d units from the center is

PR Note that for a unit sphere, 0 < r

<1,0<0<2x, and0<p <.

. Inspherical coordinates, the distance from the center is r; the density

is .
1+r? 1+7°

Enter the outermost limits: (0)(ENTER| ' J¢9))(ENTER).
Enter the middle limits: (0)(ENTER ENTER).

Enter the innermost limits: (0])(ENTER)(1] (ENTER).

n e2n @l 2
Thus, you must solve j J J " _sin Oodrddp .
0 ¢0 0

Enter the integrand and the innermost variable of integration and

evaluate the inner integral: (' [oJ&|R)Y*)(2)[ENTER)ENTER)(1)(+)(=)
[2IS)EVALL
Result: '[T0H, 1, rEs L™+ 1= 5INCED, ) !

Because the inner integral failed to evaluate symbolically, try modi-
fying it and re-evaluating. Note that 5 IMC 1 isa constant in this in-
tegral and can be removed from the integrand (to be multiplied back
after you evaluate). Then substituting u =72+ 1 (using CH'YAR) con-
verts the remaining integrand to an evaluable one. Make the changes
and evaluate: (64 )EDIT] v )« «]DEL)DELJDEL] DELDELDELJDELJENTER)
OEUEEEaRPIRDIHOETER(@CHMR)R)
[ENTER)EVAL). Result: '[01, &y 5=l (=1+0011, 1)

The integral still won’t evaluate. But since there are no variables in
the integrand or the limits other than the variable of integration, you
can use numeric evaluation (then restore the SIMCE ] factor you

removed: (oJ=NUM)("J(SIN(2JO}(e[=>]9)ENTER)(X).

Result: '.Z1HEH]1E3E6HZ5INCE) !

Enter the middle variable, then integrate: (' JaJ>|F)

[EVAL. Result: '.Z146H1EIGEHI=SIMOE = (Zey) !

The outer variable; integrate to get the mass: (' JoJ0J o] >]9)[ENTER)
(=T )EVAL[<  SYMBOLICHITEH]. Result: ' . Hoi34H 24641+ !
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Using Triple Integrals to Find Averages

Another use for triple integrals is to compute the average value of a property that
varies within a region. For example, the average density of an object of density
Total mass

[[[rraasare

— ) i : A d -t = -
p=flxyz)is: Average density Total Volume
ldxdydz

R

Example: Find the average density for an object describedby 0<x<y, 0<y
<z, and 0 < z < 1 whose density function is p(x,y,z) = xy*2’.

1 Z y
JJ. szz3 dxdydz
0 &0 ¥
1 @z @y .
J j J-ldxdydz
0 ¥ ¥0

2. Enter the iterated triple integral of the numerator; make a copy: (')

= 03] 05 0365 Y 13 3 Y B0 ) G d [ P 0] (3 [ G
Oea¥EaEaXXEaYIEXESI2YIEE)
DX AP Gl )(Ja)Z)ENTER)ENTER)

3. UselLTIMT to find the numerator integral:
(ENTER). Result: 1.11111111111E-¥

4. Swap the copy into level 1; edit the integrand to match the denomi-
nator, then evaluate the denominator triple integral using MILTINT:
(SWAP)(&JEDIT)(v)(DEL) DEL ) DEL)DEL)DEL)DEL | DEL)| DELJDEL)(1)(ENTER)
(e o M[L)(TI 1 JN]T)(ENTER). Result: . lBEREEEREEEE.

5. Divide and rationalize (using *LIZ) to finish the computation: (=)()

(@P)=[QE)C)ENTER). Result: '1-15"

1. Analyze the task. The problem reduces to

The centroid of a object (X,¥,Z7) is the average location of all of its particles. If
the object has a geometric center, then the centroid and the center are identical.

The center of mass of an object (X,,,y,,,Z,, ) is the “balance point” of the object.
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That is, if you were to support an object on a fulcrum placed exactly under the
center of mass, the object would balance perfectly. If the object has constant dens-
ity, then the center of mass is also the centroid,; if the density varies, the center of
mass will be distinct from the centroid. Both the centroid and center of mass are
averages, so it isn’t surprising that they are computed via triple integrals:

xdV ydV zdV
141 o J o o o o o o
Centroid = 'rll“oiall lz]oslltlon or (X,5,7) = | —&ts R —R
oral yotume 1dv 1dV 1dV
o J o o J o o o ¥
R R R
Total Position Mass
Center of mass = or
Total Mass

(% Fw2u) = Jjjp(x’y’z)dv ’ Jjjp(x,y,z)dv ’ ‘-‘.‘-p(x,y,Z)dV

Example:

3.

JJJXP(x’y’Z)dV Ijjyp(x’y’z)dV ‘.;.zp(x,y,Z)dv

R

Find the centroid and center of mass of a solid bounded by the cylin-
drical surface x* + z = 4, the plane x + z =2, and by the planes y =0
and y = 3, and whose density varies according to p(x,y,z) = xyz.

. The intervals for y and z are easy: 0 <y<3and2-x <z<4-—x%

To find the x-interval, find the points of intersection of the surface
and the plane by solving a system of two equations: 2 —x =4 — x?
or x> —x —2 =0. Thus, for the integral, -1 < x < 2.

Enter the denominator integral for the centroid; make three copies:
BE00E0aE0EN0AS0EEOEBRaE
((JaX&HEHEaXNREHHEEHEE@0)
G )(oeJe) X)) )7 ) (@) ) Y) (ENTER)(ENTER)(ENTER) (ENTER).
UselILTIMT to evaluate the denominator triple integral:
(ENTER). Result: 13.75
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4. Make two additional copies of the result, combine the three copies
intoalistandroll the listup tolevel 4 of the stack for later use: (ENTER

LIZT [*LIZT (GRS ROLLD

5. Edit the integrand of each of the copies of the triple integral so that
each matches one of the numerator triple integrals in the centroid,
and then combine the three numerators into a list: (&5)EDIT)(v)(»)(»)

e () X)ENTER BTLE () EDT(™) )
CloIEBIOENUIENE)] RIT [SEBU0000000
(DED) (@) 2) ENTER) (3) (Pra) B HELH ETHEL.

6. To find the centroid, use a short routine and UL I'2T: (2)([ENTER) (&)

m@@...@..@@m@@@@-@@.
Entern) IAEICTE. Result: © '1-2' '3-2° 2sa 3

So the centroid of the given object is the point (,3,12).

7. Enter the denominator integral for the center of mass; make three
copies: (]I 0)Q[DEIa 2D GDEEDE)
WREHaXG @B Al JaXX(«a)
NN EOEHEE B EOEEOEa0EE0E 0O

(ENTER](ENTER)(ENTER](ENTER).

8. UsellLTINT to evaluate the denominator triple integral:
(MO N(TMENTER). Result: 15. 157SHEEGEEY

9. Make two additional copies of the result, combine the three copies
into alistand roll the list up to level 4 of the stack for later use:

LIST [#LIET ROLLD

10.Edit the integrand of each of the copies of the triple integral so that
each matches one of the numerator triple integrals in the center of
mass, and then combine the three numerators into a list: (65)EDIT)(V)

BN E)ENTER BTl G EDD () ()
CO0C00FEAENE] FIT REnUmROKQRIEC
QRCFSEENENEES) LIST | *LIETS

11.Find the center of mass using a short routine andIUL IS T : (2)ENTER)

E] <] ML) .@..@@m_@@@@.@@.
R FROC _Result: © 'GEs35 'Ee1t '905 D

So the center of mass of the given object is the point ($2,2,%).
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Path Integrals

So far in this course, the interval of integration has been measured along a straight
line, usually one of the coordinate axes. But that’s not always the case. The inter-
val of integration is the path along which an object moves as it is subjected to a
scalar or vector function. When the path is a straight line, the integral is a definite
integral, measured in units of one the variables. When this path is curved, the inte-
gral is a path integral (or, misleadingly, a line integral) and the interval is meas-
ured in units of arclength. Inthat case, you must convert linear interval elements,
such as dt, dx, dy, or dz, to arclength interval elements, usually notated as ds.

If you use a vector function of a single linear variable to describe a continuous
curved path, r(f) = { x(t) y(¢) z(¢) }, then the arclengths between two points on
b

the curveis s = j r’(r)| dr. The arclength formula can be expressed as a function,

s(1), that gives the arclength along r between a fixed start point # = a and an arbi-
t
trary endpoint u = t: s(t) =

length function with respect to ¢ and solving for the arclength interval element, ds,

r’(u)||du. Then, taking the derivative of the arc-

you get ds =||r’(¢)| dt ,which gives the conversion needed to define the path inte-

gral for scalar and vector functions: The path integral for a scalar function falong

b
a parametrized curve, r(f), is § fds= J f(x(r))|x’(¢)| dt; the path integral for a
C a

b
vector function F along a parametrized curve r(¢) is § F-ds= J F(r(z)) r'(¢t)ds.*
C a

The circle on the integral symbol and the small C indicate a path integral without
specifying endpoints (and the interval element is ds). The C stands for “Curve,”
which allows you to speak generally of the path without necessarily having to
specify a particular parametrization r of that path.

*You will sometimes see the path integral for a vector function expressed as § Pdx + Qdy + Rdz,where P, Q,

and R are the component functions of the vector function.
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Path (a.k.a. line) integrals are useful whenever the function in question acts on an
object as it traces out a non-linear path, or when the physical quantity being meas-
ured depends on the length of a non-linear path. Some common examples:

The mass of a wire with a density function f, traversing a curve C: § fds
The length of a wire traversing a curve C: §1ds
The work performed on an object over a curve C by a force F: §F ds

The circulation along a curve C of a fluid moving according to F: §F ds

c

C

c

C

Compute some path integrals:

Example:

Find the mass of a wire whose density function is d(x,y,z) =x +y +
z that traverses the path, r(f) = { ¢ # > } where 0 << 1.

1. Enter the limits of the parameter variable: (0JENTER) 1)ENTER).

Enter the function: (JeJqIX)#H(ea)Y)H (J(ZENTER)

3. Enter the path and make an extra copy: (GJ{})(«Ja)T)(")(«)&)(T)
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3R Ja)T) ENTER)(ENTER).
Enter the list of function variables and store the path components in

them: (SJUIAGIX)(SPC)(AGIV(SPC)(¢)o]Z)(ENTER)(STO)

. Find the derivative of the path: (' )oJ&]TJENTER[ENTERJ&)(PURG)

(o] ] V]DJE]R](ENTER).

Assemble the integrand for the path integral: (a]a]V]A]B]S)[ENTER
SWAP)(EVALJ(X].

. Enter the variable of integration, set the display mode to™ F I, and

integrate: ('] aJe [ TENTER)(5 ] o] F L LIX)ENTER(2[ ) )=NUM.

Result: . 719478
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Example:

Find the work done on an object by a force F(x,y,z2)={y 2x y } as
it moves along the path, r(r)={ ¢t #* £ } where 0 <t < 1.

1. Enter the limits of the parameter variable: (0]ENTER) 1]ENTER).

Enter the function: (& ]{ Y aJ& ] Y] ' ]2 X]aJa [ X]» ] e ] Y JENTER).

3. Enter the path and make an extra copy: (J{ P(eJq]T)()(@)E&)(T)

¥R el ENTER) (ENTER).
Enter the list of function variables and store the path components in

them: (G0} (Ja)X)(SPC)(¢JG ) Y)(SPC) (@) Z) ENTER](STO).

Compute the derivative of the path: ('JaJ&]T) (ENTER) (ENTER
(«2JPURG) (] ] VIDJEJR)(ENTER).

Assemble the integrand for the path integral: (SWAP)( 1]« »)[EVAL]Y)

(Pra) EH ERE I [T HE ENTER) SwaP) () () (S D Q) DENTER
COLCTS

Enter the integration variable and then integrate: (' [aJ¢5)T)([ENTER
(2] JEVAL).

Result: . EBET, which converts to ' 34 15" via #[l.

The program FHTHIMT (page 306) allows you to compute a path integral with a
minimum of “calculator overhead.” It takes the function (either scalar or vector)
from level 5, the parametrized curve (as a symbolic vector) from level 4, the list
of independent variables in the function from level 3, the parameter variable for
the curve from level 2, and a list containing the starting and ending values of the
parameter variable from level 1. FHTHIMT returns the computed path integral to
level 1 at the accuracy level set by the current display mode.

Example:

Use PHTHIMT to find § fds, where f(x,y,z) = x + cos? z, and the
C

curve Cis parametrized by r(f) = { sint cost t} where 0 <t <2m.

1. First, enter the function itself: (" o] X](+)(cos)(efa)Z)>)T¥(2)

ENTER|.

2. Next, enter the parametrized curve: ()L JSINJ( ) T)>>)(")

Path Integrals

Cos)(J DI (I TIENTER).
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. Enter the list of function variables: (& ]{ }[ aJ&[X]SPC] o) ] Y)

(a]&q] Z)(ENTER).

4. Enter the parameter variable: ('JaJ¢&5]T)(ENTER).

Example:

. Enter the range of the parameter variable as a list: (&){ })(0](SPC)

(' 2]xJ& ) (ENTER).

. Set the display mode to STD and compute the path integral:

(T)(D)(ENTER), then (o] ] PJA) TJH) 1 NJT)(ENTER) or (then
or (qJPREV] as needed) [@ilif:l].

Result: 4. +255293515

This matches the analytic answer, ©T+/2, to full precision.

Find §F -ds where F(x,y,z) = { y’z* cos(x*+y?) In(xyz) } and the
C
curve C is parameterized by r(f) = { /3 * 4t} where 1 <¢<2.

. Enter the vector function: (4]} [eJa) Y )@¥(2)X) () [z

IHCos I GXTN R H G IRIN (X
MG (SIZENTER.

. Enter the parametrized curve: ([0 (o T)@X¥E=E)>)( (@)

DI X) ()T ENTER).

. Enter the list of function variables: (&)({ })(c)()(X)(SPC)()&)(Y)

[SPClaJa] Z)(ENTER).

4. Enter the parameter variable: (' [aJ&]T)(ENTER).
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. Enter the range of the parameter variable as a list: (&]{ })
ENTER/.

. Compute the path integral: (afaJPJA]TJH) I JN]T)(ENTER) or

(NXT) or (o 1PREV) IR
Result: 315, 534069341
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Potentials

The gradient of a scalar function, f, is a vector function, d » But how about the
reverse operation? Can you find a scalar function that has d_as its gradient?

If such a scalar function exists, it’s called a potential of df Potentials are
antiderivatives for vector functions. Just as scalar functions have an infinite
number of anti-derivatives (as long as they have at least one), vector functions
have an infinite number of potentials (provided that they have at least one). For
a potential to exist, antiderivatives must exist for each of the vector function’s
component functions.

The program FUTEM (page 314) takes the vector function from level 2 and the list
of variables from level 1 and returns the scalar potential to level 1. FUTEM uses
IMOEF to look for antiderivatives and thus has the same limited pattern-match-
ing capabilities as the built-in commands. And you can enhance those abilities
by substituting# IMOEF for IMOEF in the FUTEM program and adding integration
patterns to IPAHTS using HOOPAT, if you wish (see page 175 for details).

Example: Use FUTEM to find a potential for F(x,y,2) = { 3x*y x*+y* 2z }.

1. Enter the vector function: (&) (" 31X aJq)X)
I E)H (@ XIEC X (@a)Z)ENTER).

2. Enter the variables list: (]} X (] Y) (] 2Z)
(ENTER).

3. Findapotential: (a)a]P)O]T)JEJN)ENTER] or(VARJ(NXT)or (€5 ]PREV
as needed) M.

Result: 'u™3#u+, Foeytd+zai!
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A vector function is said to be conservative if it has at least one potential. But
being a conservative vector function also means that its path integral equals zero
forevery closed curve C. This means that the path integral of a conservative vector
function depends upon only the two endpoints, not on the particular path traveled.
Furthermore, if you start and end at the same point, the path integral of a conserv-
ative vector function always equals zero—no matter how long or intricate the
circular path.

So, if you can find a potential for a vector function F, you know it’s a conservative
function. And you can show that a vector function F has no potentials if you can
show thatitisn’tconservative. Is there a quick and easy way to prove thata vector
function F isn’t conservative?

Yes. If the curl of F isn’t the zero vector, then F isn’t conservative. However, if
the curl of F is the zero vector, it neither guarantees that F is conservative nor that
it has a potential (although it’s a good sign that it’s worth looking for one).

Example: Use the Curl test to determine if F(x,y,z) = { 3x%y x*+y* 2z } could
be conservative.

1. Enter the vector function: (&J{3)(" 31X aJq)[X)
P aXPNEH(aZIEC X (JalZ) ENTER).

2. Enter the variables list: (&)({ })(e)&)(X)(SPC)()E)(Y)(SPC)(@)&)
(Z)ENTER).

3. Compute the curl: (o]a]CJUJR]L](ENTER).
q3

Result: © H H H |

The zero vector result indicates that F might be conservative; the test
doesn’t prove that it is. It merely suggests what you already know
for a fact from the previous example—that F is indeed conservative
because it has a potential.

276 6. MULTIVARIATE AND VECTOR CALCULUS



Surface Integrals

A path integral is a single integration along a parametrized curve (a single-vari-
able vector function). Similarly, a surface integral is a double integration over a
parametrized surface (a multi-variable vector function).

Furthermore, just as path integrals require the transformation of straight-line,
variable-axis interval elements to curved arclength interval elements (ds), so do
surface integrals require the transformation of two-dimensional area elements to
three-dimensional surface area elements (dS).

When a flat rectangular (du by dv) element is parametrized into a surface area
element, it’s best approximated as a parallelogram whose sides are dullT |l and
avllT I, where lIT |l and IIT |l are the lengths of the two tangent vectors for the ele-
ment. The area of the parallelogram with sides of lengths a and b is ab sin 6. Now,
T,||T,|sin 6. Putall
together, this means that the surface area element (dS) can be transformed from

T |sin@dudv=|T, xT,|dudv.

the length of the fundamental vector product s |T, x T, | =

its rectangular counterpart (du dv) by dS =T, |

Thus, the surface area of a parametrized surface (analogous to the arclength of a

parametrized curve) is ‘”- ds = J ||7; xT |dudv= J' J. T xT,
s R Yo T

Finally, the surface integrals for scalar and vector functions are defined as:

Scalar: JdeS = jjf(r(uv))

tion and r(u,v) is the parametrized surface.

dudv.

T, xT,

dudv, where fis the scalar func-

Vector: JJF-dS = JJF(r(u,v))-(Tu X T,)dudv, where F is the vector
N R

function and r(u,v) is the parametrized surface.

Surface Integrals 277



Some common applications for surface integrals are:

¢ The area of a surface S: jjla’S

N

* The mass of a surface S whose density is f(x,y,2): J.J' fds
N

* The flux of a fluid of velocity F(x,y,z) across a surface S: JIF -dS

N
Computing a surface integral requires the following steps:

1. Determine the parametrization of the surface and the ranges for its two
variables.

2. Compute the fundamental vector product (a vector function) of the para-
metrized surface.

3. For a scalar function: Compute f(r(u,v)) and multiply it by the absolute
value of the fundamental vector product.

For avector function: Compute F(r(«,v)) and find the dot product of it and
the fundamental vector product.

4. Compute the double integral using the result of step 3 as the integrand and
the ranges of the parameter variables as the appropriate limits.

The program SEF IMT (page 330) handles the management of the surface integral
computations. It takes the function (either scalar or vector) from level 5, the para-
metrized surface (as a symbolic vector) from level 4, the list of function variables
from level 3, and two 3-element lists on levels 2 and 1, declaring the names and
ranges of the parameter variables. Each of these last two lists begins with the
name of the parameter variable followed by the start and end points of its range.

SRF IMT then sets up the correct double integral and attempts to evaluate the inner
integral symbolically. If it fails to do so, it halts and displays the inner integral,
to allow you to manipulate or resolve it by hand before pressing to re-
sume the computation. This option to pause exists because SFF IMT can take a-
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while (sometimes upwards of 20 minutes) to compute the surface integral— a
double integral—if it can’t symbolically evaluate the inner integral and has to
resort to numerical double integration at reduced precision.

Example:

Find the total mass of a material surface whose density function is
f(x,y,z) =xyz and which is parametrized by r(u,v)={ u v uv } where
0<u<landO0<v<I.

1. Enter the function: ("Joeq)X)(X)(eJa]Y)(X)(eJ&)Z) ENTER).

Example:

Enter the parametrized surface: ((){)(")(«fa) u) () (e V)»)
@) (ENTER].

Enter the list of function variables: (&]{}
(SPC)(aJa)Z)(ENTER).

. Enter alist containing the first parameter and its range: (){ )(aJ&)

(U)(SPC)(0)(SPC)(1)(ENTER).

. Enter a list with the second parameter and its range: (] })(@J&]V)

(SPC)(0)(SPC)(1)(ENTER).

Compute the surface integral: (oo S]R]FN]T) or
(then (NXT) or (§]PREV] as needed) Eldalell

Result: ' J0H, 1, JO1+ -0 12+ -0 Dey™Zeu™Z, ud |

Because the integral doesn’t look too complicated (and you’re feel-
ing lucky), continue the computation without making any changes:

2JCoNT).

Result (to 4 places): H. 14 (after about three minutes)

If a fluid’s velocity is given by F(x,y,z) = {— g 0 - %} , find
the fluid’s outward flux across the parametrized surface described by

r(u,v)={ucosv usinv v}, where 0<u<1land0<v<mn/2.

. Enter the vector function: (&))" (/=[x 2)=)2)>)(0)(J+/-)(x)

RIH(2ENTER).

Enter the parametrized surface: (&){})(" JoJ<JU)
P O(HFUVX EN(TQV ) C oG]V ENTER)
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. Enter the list of function variables: (&]{})

(2J&] Z)(ENTER).

Enter a list containing the first parameter and its range: (){ J(o]&)
(U)(sPc)(0)(sPC)(1)(ENTER).

Enter a list with the second parameter and its range: (&]{ })(eJ&] V]
0 ()(2)(ENTER).

Compute the surface integral: (o] o] S]R)FJ I NJT](ENTER]or
(then or (§)PREV] as needed) e 1Ll

Result: —1. 26746714346

Whenever the ranges for the parameter variables don’t describe a rectangular re-
gion, you may need to convert the parametrization to polar coordinates—just as
you did when plotting parametrized surfaces back on page 238.

Example:
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Find the outward flux of F(x,y,z) = { x y z } over the upper unit
hemisphere, S(u,v)={u v V1-u®>-v*}, where 0<u?+1?*<1.

. Analyze the task. Note that the integration region is not rectangular,

but circular, so that transforming the problem to polar coordinates is
in order. So letting u = r cos 0 and v = r sin 0 yields this para-

metrization: S(r,0) = { rcos@ rsinf V1-r> } where0<r<1and
0<6<2m.
Enter the vector function: (&]{}

ENTER).

Enter the parametrized surface: (G]{})(" JoJq]R)
e RXENCPRIFUESOHE AR
(2)(ENTER).

Enter the list of function variables: (&]{}
(eJe)Z] :

Enter a list containing the first parameter and its range: (]{ })(¢]&)
(R)(SPC)(0)(SPC)(1)(ENTER).

Enter a list with the second parameter and its range: (&5]{ })(¢]J)F)
(o) [ J2)XJ& ) (ENTER).
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7. Compute the surface integral: (o)) S)R)F]1]JN]JT)(ENTER)or
(then (NXT) or (9)PREV) as needed) Bl Il

Result: ' JCH, 11, JUL-r"2)5INCBI s+ (1 -r"2 )«

______

8. This integral looks too complicated for quick evaluation. Try sim-
plifying the integrand:

3 .2 3 2
0 r’cos° 0
rsin? OV1—r? +rcos? O1—r2 + 2L 27
\1=r? \1=r?

3
- (sin2 6 + cos’ G)rvl -+ (sin2 6 + cos’ 9)( 1r )
—r
=rVl-r* +

r

1-r

r(l—r2)+r3

r3
N1=r? - V1=r?

Replace the complicated integrand with its simpler version: (¢5]EDIT)
OO0COCOOO| HEL* |DEL* |DEL* |DEL* |DEL* OEE
ERQONEH MR GRG0 (@ENTER)

9. Now, although you’ve got a simpler integrand, it’s one that appears

well-suited for a u-substitution using u =+/1—r> . Enter the trans-
formation equation and execute CHYHE: ("ol u)E)=) &)
OOEaRYI(2)ENTER) (<2 CHVIAIR)ENTER).

Result: 'JT ].:l EI.H "]..'l Tk
10. Ahhh—much better! Press to finish the computation.
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Before You Key In or Use These Programs

This Appendix contains a listing of all of the programs referred to throughout this
book, sorted alphabetically by name (numerals after letters and special symbols
ignored), with text page references noted opposite the name. To use a program
by invoking its name, you must have it properly stored—in that name—within the
current directory path. (Note: If you have an HP 48G, you won’t be able to fit
all of these programs into the 32K storage atonce; you’ll need to pick and choose.)

Aswith all HP 48 variables, you must be careful to avoid name conflicts with other
variables in the current directory path. One suggestion: Put the programs into a
subdirectory, then create a work space below that, with custom menus to help you
organize and access the programs (for more about custom menus, see your user’s
manual or Grapevine Publications’ Easy Course in Using and Programming the
HP 48G/GX). This lets you work efficiently without corrupting your programs:

CALC mnm R R
SRR R S LiFE [ADLFRIANTI|APRO] ...

(store all the programs here) \

I HOME CALC KRE T 'iiEE-T;f!
(create your custom menus and
do all of your calculating here)

i HOME }

]

MEMLIMEME] % | ¥ | ..

If you have a bit of programming aptitude, the programs can be modified to suit
your tastes and/or needs. Most of them have not been rigorously groomed for
error-trapping, speed, or memory efficiency; they are designed simply to work
well with the examples in this course and with related work. Also, you may wish
to modify the input or output of the programs. For example, geometric points may
be expressed as either complex numbers or as two-element vectors, depending on
the context in which you’re working.

Whether you use these programs as is or otherwise, above all you should practice
using them before needing them in an important situation. You must understand
how they work, how fast are they, how to interpret their outputs, and the nature
of their limitations (special cases of functions or flag settings).

Of course, each program is designed to work flawlessly, but bugs (and typos) are,
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unfortunately, facts of life with software and other creative works. If you have
a problem with a program, you may contact the publisher, but first, check again:

* Have you correctly entered the program(s)? Some items to check:

The program size (bytes) and checksum must match those shown. For
example, the program HOOFAT, shown opposite, must have exactly 1H36
bytes, with a checksum of #E'59. To calculate these test numbers, first en-
ter and name (i.e. store) the program. Then put its name (within ' ' marks)

onto the stack and press (¢&5]MEMORY) i gl # 3. *

If your byte-count/checksum results are different than those prescribed,
you have a typo somewhere in your program. Common errors include:

Using uppercase vs. lowercase letters (yes, this is significant);
Miskeying special characters (use the tool);

STO vs. 5TO, 1 vs. 1,0 vs. B, ort ¥ vs. L) vs. [ 1. Be careful!
Using ' ' vs.". Quotes (") are on the (=)]=) key—don’t use (" ).

Putting spaces (or carriage returns) where they should not be. Space
characters within " " are significant—count ’em if necessary (the
uniform spacing of the program font makes this easy); all other in-
dents, line breaks, etc., represent single spaces. These program list-
ings are shown with indents and line breaks for your eyes only; the
calculator does not use them. To it, a program is simply a series of
objects, separated by single spaces, all on one long line; even the
indents and line breaks in the HP 48 display when you edit are just
for your benefit. So ignore indents, and where you see line breaks,
just treat those as single spaces.

Some programs use (“call”’) other programs; the called programs
must also be properly keyed in and named. Such instances appear
here in Boldface Italics. Forexample, the program HOOFAT, shown
opposite, calls FLIMOFY LIMIM™ and *FFM, so you must also key
in those three programs before AHLOFAT will run.

* Are you correctly using the program? Double-check the types and order
of your inputs and the types and ranges of your graph settings. Note that
each program listing shows the required order and types of inputs (if any)

*All checksums are binary integers. Those given in this book are all in HEX notation with a 64-bit wordsize. It

is very convenient, therefore, to adjust your machine to that setting: Press(MTH)IEEEREETIEM(NxT) (6 2 EYEL.
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H[]DF'HT Add a Symbolic Integration Pattern (175)
1841 bytes #3625h

1: ====> 1:

-3 CF

WHILE "ADD IMWTEGRAL PATTERM" ¢ { "REPLACE:" "EMTER
IMTEGRAMD TO BE MATCHED" 9 3 { X £ "MITH:" "EMTER
REPLACEMEMT PATTERM" 9 3 « ¥ { "EWPR. YAR:" "EMTER
YAR. FOR LIMEAR ERPRESSIOW" & ¥  "IMT. “AR:" "EMTER
VARIAELE OF IMTEGRATION" & } « “COMSTAMTS:" "EMTER LIST
OF COMSTAMTS" 5 3 € 3 3 0 2 & 3 € WOMAL MOVAL w2 w
MOVAL + DUP IMFORM )

REFEAT 0OBJ+ DOROP 5 ROLL 5 ROLL & =LIST
A T W

« IF c SIZE OUP
THEM
E}JP 1 SWAP

Rk
WORUNOFPCOUOTECS" b 1 + + "3, 100" + [BJs
”EUIF L 7 = THEN OR EMD
NAT SWAP
END ' LININ?COUOTECS ), DUDTECTL) ) SWAP
IF THEM AND EMD

F
% RPN 1 ) _
& IF DUP u SAME THEN DROP %1 END

IF DOF v SAME THEW DROP Tl END

IF DOP ¢ SWAF POS OUP

THEN "2" SWAP 1 + + OBJ+ SWAP DROP

ELSE DROP

BN )

IF DUP £ & 3 1 GET SAME )

THEN DRIP = s SHAP™+ ." + SUP + 0BJ> >

~DOLIST EWAL

DOLIST 'sTLesld 'ST4.81' STO 1 = 'TL' SHOM =
OOLIET

SUAP +

IF IPATS DUP TYPE & ==

THEM £ } SWAP ST0
ELZE OROP

EMD
HDl +LIST IPATS + 'IPATS' 570 ‘'atl.&k1' PURGE

**% Be sure to read the instructions on pages 283-284 before keying in these programs. *** 285



HHT I -':-'i Plot an Antiderivative Slopefield (172)
224 bytes #3552h

: Symbolic expression for slope

: List of variables: {indep depnd}

: Plotting range: {begin end}

: Horizontal display range: {left right}

: Vertical display range: {low high}

: Initial conditions: (x,y,) or list of such ordered pairs ====>

— WA o
i A

#
+
-+

U Prg g 9rg init

« ERASE v HEAD prg + IMNDEP wrg EVAL DUPZ WRMNG sNMOL w 2
GET yrg + DEPND gyrg EVAL YYOL 18 MUMs 5 HURMY

SLOPEFIELD £ STEQ DRAW £ w prg init 131 EULPLT

#
®
Inimiy . . .
HF F.U:"u Compute a Taylor Series Approximation (46)
115 bytes #B83sh
5: function being approximated S:
4: independent variable 4:
3: order of Taylor series desired 3: Taylor series
2: point around which approx. is centered 2: Approximate value
1: point being approximated ====> 1: Estimated error
& ROLLD 4 DUPN TYLRa

a
+ b fun
s

b ow 5T0 'P DUP +MUM £ =NUM OYER - ABS w PURGE

H-+ r Rationalize Elements of an Array (309)
211 bytes #30EZh

1: array or symbolic array ====> 1: rationalized symbolic array

« RCLF -3 CF SWAP 0BJ+ 0BJ=
IF 1 == THEN 1 SWAP END
9 FIR
+ row col
% 1 row
FOR k
1 col START 3 FIX =00 5TD col ROLLD HMEKT
col #LIST col row k - * k + ROLLD
MEXT
IF row 1 > THEN row =LIST END
SWAP STOF
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I 1 HL Compute the Angle Between Curves at Given Points (107)
329.9 bytes #FEBEh

3: List of curves 3:
2: List of variables 2:
1: List of points (given as ordered pairs) ====> 1: List of angles

o ouop
® ¢ 1 sy IS » DOLIST

d j GET 1 p SIZE

FOR_ L

DUP Pk GET CoR 2 LIST u 5T0 "'8" u 2
o ET T UL GET DB A ROOT P

”EUDEHP P SIZE 5LIST

2« DUPZ - 1 4 ROLL 4 ROLL * + - ATAN ABS »

OOLIST P 2 « "8" SWAP + TAG » DOLIST v PURGE

3
e

|:D I HT Determine the Convergence of an Improper Integral (163)
1833.9 bytes #A59Ch

: Symbolic integral

: Name of limit variable

. Value of problematic limit

: -1/1 indicator for direction of limit ====>

—_ N W A
e s

string describing conclusion

PICKE 0BJ» DROPZ RCLF £ -3 -55 F CF MAKE 'w' 5TO
BAEABAEA

fulslathigs fldardnl dif w8
?FPUREE

fou 1 2 »+LIST JMATCH DROP OBJ+ DROPZ DUP 2 ROLLD
INDEF

2

E R X

HEM

ARCONY DUP 4 RFOLL 4 PICK 5T0 EMAL SWAP 4 ROLL 4
_ROLL 5TOOEYAL - COLCT “Limit" +TAG

"3 DROPN 'la' 'tb' ig w0 [ 'F' STO CLLCO B

y:ﬂ? "l'TI'l_ THEM la ELSE thb EMD

oo
3 FIx_ 1 d = + DUP ALOG
IF 1 TYPE 1 <
THEM IMY 5 = 1 +
ElﬂE[E IF 1 »MUM SIGW -1 == THEW MEG EMD

1LIH
IF = 1 - THEN 'la' 5T0O ELSE 'th' STO EMD

*¥% Be sure to read the instructions on pages 283-284 before keying in these programs. *** 287



ANUM w STO_ £ EVAL =NUM w sNUM 'ul!
%ED ‘nl" 570 n@ + DUP 1 DISP 'n@'

nl D%ﬁ SIGN dif SIGN == @ 1 <

THEH 'dif" 5T0
EhﬁE DROP 4 3 = - d .1 = 'd" 570

E
UNTIL

s10 DuUP
=
OR 'q" INCR

nl ABS .AEAAAAL < n@ ABS 1AAARA = OR nd

ABS .BAGAAT < OR 9 18 » OR
END
OROP

IF
nd ABS 1PABAB =~ 9 18 > nl r@
IFERR ~ THEM OROP MAXR = EMD
ABS .AA / MD OR

THEN "Diverges"

ELSE "Conwerges" "~" + p@ 3 FIX +

END
END
v PURGE '=' PURGE f1 STOF
%
»
L-Hl'.'IHF: Change Variables in an Integral (165)
444 butes # 876h
2: Symbolic integral 2:
1: Equation defining change of variables =~ ====> 1: modified integral

« [0UP EQ» 4 ROLL 0OBJ» DROPZ RCLF -3 CF
+ yg lowup f Fl a9s
« -1 5F w I50L EQ+ SWAP DROP g +« FDER
+ giny dg
« g % low 2 =LIST TMATCH DROP g = up 2

»LIST TMATCH DROP 4 4 =LIST Tl HPPLf

+LI5T TMATCH
DROP f dg ~ g 3 2 +LIST TNHTFH DROP EXCO 2 ainw E

PTLCR L, B2y 83, 840 0 TIORLL &2, &3, 440 AMATCH DROP

flags STOF COLCT € 'BI™2*e3 "I“V&E*"q1‘ 3 MATCH
DROP COLCT
%
%
%
COMTOLE, Draw a Contour Plot of a Function (232)
313.5 bytes #A35Ah
4: Function of two variables 4:
3: List of independent variables 3:
2: List of range of contours 2:
1: Number of steps (negative if no erase first) ====> 1
« DUP SIGN SWAP ABS WPAR 1 4 SUB EVAL YRWG 2 -LIS
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& p E'dv'HL #RNG z EVAL - ABS n ~
_)
« 1 nFORKFfz1GETdkTI1-*+ - NEXT
n *LIST £ z 2 GET - + v p f p HEAD v HERD
STO v 2 GET B ROOT
1 n START DUP NEXT
n 1l + 2LIST 4 s = SOLVPLT v PURGE
b3
%
»
EUF‘:L Compute the Curl of a Vector Function (254)
238 bytes #9B898h
2: Symbolic vector function 2:
1: List of variables ====> 1: Curl (as symbolic vector)

«

-3 CF
IF DUP SIZE 2 == THEN 'ti' + SWAP B + SWAP END
JACOB EVAL

3>

Par
& 'r(2)-q9(3)" EVAL 'p(-r(1)' EVAL 'q(1)-p(2)' EVAL 3
sLIST

*

EUF:'-.'I Find the Curvature of a Parametrized Curve at a Point  (251)

129 bytes #F5C0h
3: Parametrized curve (symbolic vector)  3:
2: Parameter name 2: Symbolic curvature
1: Value of parameter at point ====> 1: Numeric Curvature
« -3 CF
+ fuy

R
« f u YOER DUP DUP YABS -~ v VDER VABS SWAP YABS ~ % w
STO »NUM v PURGE

»

El'.'l I HT Compute the Interval of Convergence for a Power Series (48)

769 butes # 8lh
3: coefficients expression of power series 3:
2: index variable 2:
1: point about which series is computed ====> 1: "interval of convergence"

« -3 CF -22 SF DEPTH

+ fyad
« f ABS v ®ROOT
fp

EY
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« 1 26 FOR j j EXP =MUM v STO fp NUM NEWT
26 =LIST DUP

IF
4 31 « v 5TO fp =NUM = DOLIST OBJ» OROP -

DUPZ PO5 ROT DROP DUP ExP DUP INWY

<> .j|

i@t dLl05ABs 1 + CEIL - MAX ExP IP +
OUP 'i' 5TO w 5TO fp =+NUM DUP 1 DISP DUP
HTRDT DUPZ OVER - ABS SWAP -~ 'd' 5T0

IL
DUPZ == 3 ROLLD OVER 58 > 4 ROLLD OUP
'p! STO - SIGN DUP s MEG == j 18 = AND
SWAP 's' 5T0 OR KEY OR OR

END

DROP p

&
ELSE SWAP DROP
END
v PURGE © p s } PURGE

&
DEPTH 2 + d - DROPM
IF DUP 58 >
THEM OROP "==" a +
ELSE
IF DUP 1 RMD B ==
THEW DROP "AL1 ="

ELSE
INY 2 BWD OUP a + a ROT - "<" DUP 'w=' + SWAP
+ + SWAP +
END
END
#
D:"_"T!:;T Perform the Second-Order Derivative Test (248)
318.5 bytes #R6FFh
3: Scalar multivariable function 3:
2: List of variables 2:
1: List of points (each given as ordered pair) =~ ====> 1: List of labeled points
%z + fup
« f 1 »LIST » JACOR EVAL v JACOB 1 « COLCT = DOLIST DUP
SIET
+ md
%= p 1
« R 2 =LIST w 5T0

C+
IF 4 EVAL DUP
THEN

IF 8 >
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HEN
IF m HEAD HERD B8 >
THEN "Minimum"
ELSE "Masximum"
END
ELSE "Saddle"
END
ELSE DROP "Inconclusive®
END
*»
DOLIST p SWAP »TAG v PURGE

%

DHTF I T Find the Best-Fitting Curve for a Data Set (147)
2216 bytes #£665h
4: Data matrix 4
3: Column of indep. variable 3: Covariance matrix
2: Column of dep. variable 2: Best-fitting curve
1: Estimate of measurement errors ====> 1: List of labeled coefficients with std. dev’s

-3 _CF B 'MARKER' 5T0 4 ROLLD 3 PICK SWAP COL- DBJ* 1 GET
»LIST 4 ROLLD DROP DUPZ COL- 0OBJ+ 1 GET »LIST 4 ROLLD
DROPZ OYER SIZE 3 PICK 5 PICK (B,1) = AOD

IF 6 PICK DUP_TYPE

THEN (B,1) = 0BJ» 1 GET =LIST

ELSE

X

E

R s K

(B, 1) = 1 SWAP 4 PICK
1 SWAP 1 - START DUP ROT 1 + SWAP NEXT
SWAP -LIST

D
B%EﬁﬁgfaQUHREa FIT" { { "MODEL:" "“ENTER GENERAL MODEL

3 3 { "PARAM:" “ENTER LIST OF PARAMETER MNAMES"
3 ¥ { "WALUES:" "CURRENT YALUES OF PARAMETERS" 5 3 {
"STO.DEV:" "CURRENT STD. DEVIATION FOR MODEL" 5 1} } {
133 {1} fields 1 env DOLIST INFORM

IF_DEPTH OUP ROT EVAL DEPTH 1 - ROT ==
THEM { NOVAL > 1 GET

END
SWAP DROP

DUP DUP

w Yyl =l dat n we we <€infm €ny da cm sis
IF w TYPE MNOT

THEN

1 dat 5IZE
1 GET_START w_ S0 INV NEXT
dat SIZE 1 GET =LIST

L5E
IFEﬁ DUP TYPE 3 ==
IF DUP SIZE SIZE 1 #

THEN »DIAG 0BJ» 1 GET -LIST
Eth 0BJ» 1 GET »LIST 1 « 5@ INV » DOLIST

*** Be sure to read the instructions on pages 283-284 before keying in these programs. ***
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END
EMD
'wl' 5T0 £ 1T L
'fields' 570 £
fields 5T0
WHILE <infm EVAL
REP!

EAT
EVAL DROP DUP SIZE
-+

M

« 3 +LIST € J1f Lte w3 510 Lty LTe STO 11p 1
« LTf SWAP FOER = DOLIST 'da' ST0 9l =l 2 = "u!
?TD VFOEVAL - » DOLIST 0DBJ+ 1 2 »LIST +ARRY

n

FOR i
wl 1 GET '=' 5T0

NE%% m FOR j da j GET EVAL MERT

£ nm Y »ARRY wl DUP SIZE SWAP 0OBJ+ =ARRY

SWAP DIAG*

IF wl ELIST MOT THEN 1 SF EMD

L

% owm TRM wm % wm % INY DUP wm TEM * wm * uym *
OUP m 1 =LIST EDM 3 RDLLD ym w=m ROT * - DUP
TRM SWAP *= 1 GET n
IF 1 F57C THEM SHHP JUEP * SWAP EMD
I ! PUPFE ROT DBJ* 1 GET »LIST ltv ADD
Lty 'TD LIts! TD DUP +0IAG 0OBJ+ 1 LET
+LI5T f 5ig' STO 'cm' STO LTu LT 570 LTf
STER £ #Eh #Bh b PUIEH ERASE FUHITIDN x]l %
MIN » STREAM ABS MEG 1.1 # =1 = MAY #_STREAM
ABS 1.1 # WRWG 'w' IMDEP 9l « MIM = STREAM
gl « MAX = STREAM DUPZ - ABS 1.2 + DUP .B5 =
ROT + ABS 3 ROLLD .15 = - ABS MEG SWAP YRNG
A RES DRAX ORAW 1 n
FOR i )

we i GET we i GET DUPZ - 3 ROLLD +
LIME

NEXT
PICTURE

OLIS

+0

F
END
IF w JTs SAME MOT
THEN

Ity Lte 5T0 '=' PURGE cm ITf EVAL e JTu sig 3
« "x" SWAP + + SWAP +TAG = DOLIST

END
VARS DUP 'MARKER' POS 1 SWAP SUB PURGE

DEF I HT Find Various Approximations of a Definite Integral (140)

363.5 bytes #DB3Eh
2: Integral expression 2:
1: Number of intervals in approximation ====> 1: list of approximations

« SWAP 0BJ+ DROPZ A
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E
# 40O
o

B1n
FOR k ak j+1 -1 %+ y 5T0 f »NUM t = +
HEXT
.ﬂp's
3PUREE3PICK OVER + 2 » 3 PICK 2 = DOVER +
3 -t LOGABS 1 + CEIL DUP 2 + 7 ROLLD FIX a b f

wo [ MM 6 =LIST SWAP RND STD { left mid risht
trap simp ints 3 SWAP OYER +TAG SWAP PURGE

D I F‘:-':'.'! Find the Derivative of a Function with Respect to a Path (245)

194 bytes #2036h
4: Scalar multivariable function 4:
3: Parametrized curve path (symbolic vector) 3:
2: List of variables 2: Symbolic derivative
1: Equation defining parameter and its value =~ ====> 1: Numeric derivative

x -3 CF EQ»
+ frutepe

& oyt o+ PURGE f u GRADI r v ST0 1 « EVAL » DOLIST r t
éﬁgﬁE DUP 3 ROLLD SDOT SWAP #ABS -~ p t STO »NUM v t +

EI_"_F'LT Plot Euler Estimate of a Differential Equation Solution (172)
432.5 bytes #1854h

5: Symbolic expression of slope

4: List of variables: {indep depnd}

3: Plotting range: {begin end}

2: Initial condition: (x,y,) or list of ordered pairs

1: Number of points for Euler estimate ====>

TRwhR WL

« -3 CF 4 PICK 0BJ» DROP 5 PICK EVAL - ABS 4 ROLL -~
+ fupiwyd
® {F i DUP TYPE 5 # THEN 1 »LIST END
% BHP £ 3 SWAP C»R 4y 5T0 % 5TO0
b ->HUF1 y 3NUM R+C + 4y £ d * + »NUM gy 5TO
wod + NUM w2 STO
UNTIL = p 2 GET >
END

SWAP C+R 4 STO = 5T0 { }
ili
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2o aNUM g sNUM R=C o+ g f d # - sNUM g 5TO
wod = +NUM -T

IJHTIL w p 1 GET -

EMND

TRIL REYLIST SWMAP + 2 « LIME = DOSUBS
v PURGE DRAAX

DOLIST PICTURE

E:
>
L}
E:"':L-U Expand and Collect Completely (201)
63.5 bytes #BB38h
1: symbolic expression ====> 1: revised expression
« ERPAM = MULTI = COLCT = MULTI =
FOER i
" Compute a Formal (Symbolic) Integral (68)
139 bytes #17BZh
2: Function 2:
1: Variable of differentiation ====> 1: Formal derivative
% —3 FFT?UP
« IF DIUP TYPE 9 THEM ¢ SHOW END , _
2 LOTL 3o+ 1HHTIH DF‘DP TLUDOP 5TOOTL 3w 't 5TO
) EVAL
:3 &

FUHDF." Is an Expression a Function of a Particular Variable? (175)
61 bytes #DC18h

2: Expression 2:
1: Variable ====> 1: Flag 0/1

« =+ £ o« £y 0UP 2 +LIST JMATCH SWAP DROP = =

FI'.'IF' Fundamental Vector Product at Point on Parametrized Surface (256)

126 bytes #38FASh
3: Parametrized surface (symbolic vector 3:
2: List of parameters 2:
1: List of parameter values at point ====> 1: F.V.P. (as a symbolic vector)
% + fup
« £ u HEAD VDER f w 2 GET VDER p w STO SCROSS
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1 « »NUM » DOLIST

%

'Ell:lj Find the Greatest Common Divisor of Two Numbers (300)
45 bytes #7CBSh
2: number 1 2:
1: number 2 ====> 1: greatest common divisor

« WHILE DUP REPEAT SWAP OVER MDD END
DROP ABS

»

GF:H[] I Compute the Gradient of a Scalar Function (241)
88.3 bytes #C6CCh
2: Scalar function 2:
1: List of variables ====> 1: Gradient (as symbolic vector)

« -3 CF» fuvys<«yl «f SWAP FOER » DOLIST » =»

15 . . A .
I NF o Compute the Implicit Derivative of a Relation (75)
497 bytes #FBAlh
2: Relation expression 2:
1: List of implicit variables, differentiation var. listed 1st ====> 1: Derivative

« -3 CF DUP 1 GET
> 5
® 351
« [F DUP v SAME
EIL!EIE "Tl' 2 »LIST 'Jx' STO
tul
pup “"'t" SWAP + DUP "Ct4)'" + 0BJ» SWAP 0BJ»
"'dert" 4 PICK + "(Tl,1)" + OBJ» "'&" 5 PICK +
B+ oy o+ MY o4 OBJ» 5 LIST
END
»
DOLIST ‘'ly' STO £ Jwx JMATCH DROP 1 JﬁJE SIZE
FOR k 1y k GET 1 2 SUB IMATCH DROP
I:'N' o 1 1y SIZE

OR k
gy k GET DUP 2 3 SUB ROT SWAP JMATCH DROP SWAP 4
2 SUB MATCH DROP

NEXT
4w REYLIST JMATCH DROP 1 Jy SIZE
FOR_k dy k GET DUP 3 3 SUB SWAP 1 GET + JMATCH DROP

NERT
€ dw 1y } PURGE
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I HDEF Compute an Indefinite Integral (132)
668.3 bytes #2586h

2: Function 2: Indefinite integral
1: Variable of integration ====> 1: 1/0 (success or failure)

or

2: 2: Indefinite integral
1: Symbolic integral expression ====> 1: 1/0 (success or failure)

« -3 CF
IF_OUP TYPE 9
EHEN 0BJ- DPDP7 PDT DROP ROT DROP

pup

+ £ Tlou

« IF £ TYPE WOT THEM 'B=x' £ + '£' STO END
1 T F£ 1) SHOW 't4' DUP STO OMER [
IF OUP 0OBJ» OUP ¢ 1 3} 1 GET SAME
EEEH OROP DROPH B

sE
2_ROLL DROP
IF £ + 3 1 GET SAME
THEN
*LI“T B SWAP 1
IEEEUP PICRL, &2, &3, 84 T 3 LMATCH

DROP COLCT EVAL
IF DUP £ 'fiR1, 82,83, 840" T 3 IMATCH
EEEE OROP SkAP

DDRUP 0BJ+ 3 DROPM EYAL 'T4' w 2 =LIST
DLNHTEH DROP SWAP .5 +

EN
ELSE

DROP _0BJ+ 3 OROPN EVAL 'T1' w 2 +LIST
HD-LNFITIZH OROP SkWAP .5 +

*
DOLIST 0OBJ+ 1 + ROLLD + SWAP
Eth DROPZ EVAL 'T4' w 2 »LIST IMATCH DROP 1

END
IF DUP .5 == THEM .5 - END

& I HT 1 Integral of Data Set (Piecewise Linear Interpolation) (143)
231.5 bytes # Bleh

3: Data matrix
2: Column of indep. variable
1: Column of dep. variable ====>

—hw

Definite integral

« 3 PICK SWAP COL- 0OBJ» 1 GET =LIST 4 ROLLD DROP COL- 0BJ»
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1 GET =LIST 3 ROLLD DROP OVYER SORT DUP SIZE B
+ Uy uUsSns
« 1nl-
FOR k
us k GETI 3 ROLLD GET SWAP 2 »LIST DUP 1 <« w u
BDT ﬁDS GET » DOLIST EVAL + 2 ~ SWAP EVAL - % s +

s' 570

NERT
5

»

E I HTE Integral of Data Set (Single Polynomial Interpolation) (145)
217 bytes #BEBCh

4: Data matrix 4:
3: Column of indep. variable 3:
2: Column of dep. variable 2:
1 1:

: List with limits of integration ====> Definite integral

Y ROLLD 5 ROLLD 3 PICK SWAP COL- 4 ROLLD DROP COL-

D DROP 2 COL» PFIT 0BJ+ 1 GET

1 n FOR k k ~ n ROLLD MEXT
8 n 1+ »ARRY

" P25YM DUP ROT 's' STO =NUM ROT 'w' STO SWAP »NUM -
" PURGE

—un

AL
ROL
n

£ 4 wm

- -

X
X

E I HT3 Integral of Data Set (Cubic Spline Interpolation) (146)
943.5 bytes #F216h

3: Data matrix 3:
2: Column of indep. variable 2:
1: Column of dep. variable ====> 1

« 3 PICK SWAP COL- DOBJ» 1 GET -»LIST 4 ROLLD DROP COL- OBJ+
1 GET »LIST 3 ROLLD DROP OVER SORT DUP SIZE .@@@1 18
-1.E38 DUP B DUP DUPZ DUP
+ U W Uusn eps jmax os ost j it 5 st del
« us 1 « vy u ROT POS GET = DOLIST DUP DUP 1 GET SWAP n

GET us DUP 1 GET SWAP n GET us 6 ROLL n OVER 1 2 SUB
EVAL SWAP - us 1 2 SUB EVAL SWAP - ~ 3 PICK n DUP 1
- SWAP SUB EVAL SWAP - us n DUP 1 - SWAP SUB EVAL
SWAP - -~ 2 =LIST SPLINE ROT DROP B DUP

+ fa fbabwus ys ¥ sum
+ 00

IF 'j' INCR 1 ==
THEN b a - fa fb + = 2 ~ 1
ELSE

ba-it ~ 'del' 5T0 a del 2 ~ + 'w' ST0
B 'sum' 570 1 it
START

us us ys w SPLEVAL sum + 'sum' STO x del
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+ 'w' 570
HERT
st bha-sum=* it »~+2 - it

END
"it' 5TO 'st' STO

IINTIL
st 4 %05t -3 - 00P 'S bTD 035 ABS s
ABS ep3s * < j jmax == 0R s 'os' bTD st 'ost!
570

EMD

3

ra
*

=INT4 Integral of a Data Set (Using Fitted Curve) (148)
89.5 bytes #4841h

: Data matrix

: Column of indep. variable

: Col<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>