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This is a manual of EXERCISES for a graphics calculator to supplement the

elementary differential equations course. You will learn early in such a course that

important mathematical models for scientific problems often contain differential

equations and that particular solutions of these equations describe the behavior of

the model. The problem solver often has some intuition concerning how the system

should behave and the graphical properties of a single solution or a family of

solutions are an important clue to the correctness of the model and provide

qualitative properties of the solution. Even if analytical expressions can be obtained

for the solutions, their graphs may reveal behavior a scientist may not discover from

these expressions.

The HP-48G/GX calculator is a great graphics and computational tool in this

course. It can be used in class to illustrate concepts. It can be used for homework in

your favorite study area, for example, a library or a dormitory room. The graphs

and computations that are created on the calculator can be stored or recreated on a

microcomputer. This manual contains only some of the possible uses of this tool and

illustrates the material which my students have helped develop in the past five

years. Some of the material is taken from [4], but many of the EXERCISES and

presentations are new. The presentation does not require that the reader be a good

HP 48 programmer since nearly all of the programs are explained within this

manual.



2 INTRODUCTION

One of the distinctive features of the HP-48G/GX is a built-in program for

calculating and displaying in the same graph approximate solutions to one or more

initial value problems containing differential equations. The HP-48S5/SX does not

have such a program but we will present user programs which will accomplish the

same purposes. To emphasize the statement given above, the capability to easily

display solutions of several problems allows us to study how the solutions depend on

various parameters and to focus on geometrical characteristics of a system.

The first part of Chapter 1 describes the programs that have been provided (in

the HP-48G/GX) for obtaining and plotting approximate solutions of initial value

problems. Then we show how to construct programs using elementary algorithms (the

Euler and improved Euler algorithms) for obtaining and plotting approximate

solutions.  These programs can be used on both the HP-485/SX and

HP-48G/GX. They can be adapted for various special purposes such as creating other

graphical displays or for use in higher order numerical methods for differential

equations such as the Runge-Kutta algorithms.

The second chapter contains examples and EXERCISES to illustrate graphical

study of the characteristics of solutions obtained in the portion of the course dealing

with first order differential equations. The third chapter concerns the solution of

two first order differential equations or a single second order equation with initial

conditions. Because the HP-48 processes vector and scalar quantities with many of

the same commands, it is possible to use some programs for scalar systems as vector

programs, including the algorithms for solving initial value problems (Euler,

improved Euler, Runge-Kutta, etc.). To solve and plot the solutions of a second order

differential equation with initial conditions, we borrow from problems involving

particle motion.  For displacement x(t) and velocity v(t), of the solution of the pair

of equations
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dx/dt =v, dv/dt = g(t, x, v), x(tgp) and v(tp) given,

the function x(t) satisfies the second order initial value problem

2

d_>2< =g(t, x, g—x), x(tO) and .fl—:-(to) given,

dt

and conversely, if we have a solution x(t) of the second order initial value problem,

the pair x(t), dx/dt(t) = v(t) satisfies the pair of first order differential equations.

Thus, to solve the second order initial value problem we make a vector

[Y1, Y2 ] = [x, v] and solve the vector system

dx . v

dt
,

dY
—(E = dv = F(t/ Y) =

=

dt gt x, v)| |8t YY)

with Y(tg) = column [x(tg), v(tg)] as given using the same algorithms as for a first

order scalar problem. In chapter three, EXERCISES are provided to study in

particular the solutions of the second order differential equations encountered in

linear and nonlinear models of mechanical springs and electrical circuits.

The fourth chapter contains programs that construct solutions of linear vector

systems of differential equations of the form dy/dt = A y + {(t). The fifth chapter

contains several problems that extend the earlier material and result in three or

more differential equations. Finally, Appendix 2 contains a set of programs that can

be used to sketch the direction field for a pair of differential equations, and

Appendix 4 contains a program that HP-48S owners my use when a more accurate

algorithm is needed for computing the solution of a differential equation. This

algorithm is already encoded into the HP-48G calculators.
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Many topics traditionally associated with an introductory course in differential

equations are not included; among these delay differential equations, and control

problems. Problems in these particular areas are presented in [1].

Many students use a graphics programmable calculator in more than one course.

It is important that you know where the appropriate programs are stored in memory.

It is easy to collect a set of programs that you use frequently in a particular course

into a directory. See your calculator Owners Manual or Appendix 1. We strongly

suggest that the reader create a subdirectory for the programs that use the built-in

algorithms for solving initial value problems contained in Chapter 1, and a

subdirectory that includes the elementary user programs also presented in Chapter 1.

We will make specific suggestions in appropriate locations within this manual.

This manual would not have been possible without the strong encouragement and

help from my editor D.R. LaTorre, without the support from the HP-48 development

team (Diana Byrne, Paul McClellan, Charlie Pattan, and William C. Wickes) and

without the patience and word-processing skill of Mrs. April Haynes. Thanks.
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EQUATIONS ON THE HP-48

 

Suppose we wish to plot an approximate solution of an initial value problem

Ykdt - (t9 y)’ y(to) - yO

for some interval tg <t < tf, where tf may not be predetermined. What inputs to a

calculator are required?

 

e A program that gives the value of F when t and y are

specified.

e The initial quantities tg, yo and criteria for completion

(e. g. the final value of tf).

o The plot window must be specified and the plot screen may

have to be erased.

e It may also be necessary to specify an appropriate algorithm

for computing the approximate solution and any necessary

inputs to the algorithm such as a global error tolerance and a

starting value of the step size.

e The command to draw.  
 

There are three methods on the HP-48G/GX to provide these inputs and obtain a

plot of an approximate solution. The built-in method prompts the user for the

necessary information with input forms and choose boxes. Alternatively, we can
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construct a set of programs that take or generate some of the required inputs from the

stack and then call the basic algorithm to calculate solutions in a plotting program.

This alternative method is particularly useful when only one or two of the inputs

must be modified or when the stopping criterion is nonstandard. The third method is

to construct programs that employ easy algorithms for computing and plotting

approximate solutions to initial value problems. This last method can be used on the

HP-48S/SX calculators. We will illustrate each of these methods with EXERCISES.

The user must make a decision on the appropriate method for the other EXERCISES.

In this section we begin with the built-in method, then pass on to the second

alternative. The third method will be featured in a separate section of this

chapter.

Open the PLOT application with PLOT. The cursor keys can then be used to

move around the screen and highlight the desired fields. Highlight the TYPE

field, press CHOOS, highlight Diff Eq and press OK. If the STIFF field is checked,

highlight it and press CHK to remove the check. This will cause the Runge-Kutta

Feldberg algorithm to be used for the initial value problem.

 

e Highlight the F field, type in the desired function F(T,Y) and

press OK.

e Set the INDEP variable to T and specify its initial and final

values. Set the SOLN field to Y and specify its initial value.

o Press OPTS, set the H-VAR (by pressing CHOOS, highlight

the desired field and OK) and the V-VAR variables in a

similar manner, set the limits of H-VIEW and V-VIEW.

Press ERASE and DRAW.  
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EXERCISE 1.1: Construct a plot of the solution of y ' + 3y = cos t, y(0) = .3 for 0 <

t < 6.283 using the calculator's differential equation plot feature. Enter COS(T) -

3*Y in the F field of the input form. (Note that the calculator automatically places

this function within ' marks.) Make sure T is the INDEP variable, the H-VIEW is set

to 0 6.283 and the V-VIEW is set to -.5 .5, then ERASE and DRAW.

After completing this EXERCISE, you should check to see that the program which

calculates the values of F(T,Y) is stored in the variable EQ. To get some confidence

in the calculator solution, we can plot the exact solution y = .3 cos(t) + .1 sin(t).

Press ON to return to the PLOT application, change the TYPE to Function, and

enter .3*COS(T) + .1*SIN(T) as EQ. (Again the calculator places ' marks around the

function.) In this case we want to overlay the new plot over the old one so do not

ERASE. Press DRAW. Note the good agreement between the approximate solution

and the exact solution.

EXERCISE 1.2: Construct a solution of y ' = sin (ty), y(0) = 2 for 0 <t < 6. Choose

the program 'SIN(T*Y)' (or << 'SIN(T*Y)" EVAL >>) and V-VIEW as 0 8. Now

overlay the solution of the same differential equation which satisfies the initial

condition y(0) = 4, then overlay a third solution of the same differential equation

which satisfies the condition y(0) = 6. (Note: We do not know a formula for the

exact solutions of this differential equation and this overlay process will be used

frequently in this chapter to indicate the sensitivity of a problem to its inputs.)

EXERCISE 1.3: Construct a graph of the solution of y" + 5y' +y =0, y(0) =0,

y'(0) = 1, for 0 < t <6.283. We convert this problem to a first order format using the

variables y and y' as components of a vector w = [y, y']l. Then

w ' = [w(2), -(.5 w(2) + w(1))] and w(0) = [0 1]. Our procedure calls for an appropriate

F function which in this case will be a 2-vector. Then we provide the program

<< 'W(2)' EVAL '.5*W(2)+W(1)' EVAL NEG 2 —»ARRY >> for F together with
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the INDEP variable name T, SOLN name W and the INIT vector [0 1] for SOLN. If

we want a graph of W(1) versus T we choose INDEP for the H-VAR and SOLN(1)

for the V-VAR on the OPTS page. V-VIEW should be set at -.8 .8. (If we want a

W(1) versus W(2) plot we choose SOLN(1) for H-VAR and SOLN(2) for V-VAR on

the OPTS page.)

 

 
X" + 49x = 12 cos (5¢), x(0) =x'(0) =0

EXERCISE 1.4: The figure shown above is a plot of the solution of the indicated

problem for 0 < t < =. What function F in the variables T and Y (vector with 2

components) is appropriate for the calculator input form ?

Hewlett Packard has also provided several "smaller" programs that perform

either individual or multiple steps in either of two basic algorithms for

approximating the solution to a differential equation. These programs can be

embedded in user programs to produce variations of the basic program described

above. The advantages gained by this process include some speedup when most

parameters are already set and any modifications of the basic problem not treated

easily by the first method. For example, the final time tf may be "when some

condition is satisfied" rather than a simple number which is known beforehand.

You can construct programs that ask for part of the total information required for

a solution plot. For example, the first program IN.FN asks you to write a program

for the function F(T,Y) (in variables T Y) which is then stored in FN.
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Program Name: IN.FN

Purpose: The user supplies program FN

Stored Quantities: none

No input is required. The appropriate response is a program.

<< "ENTER PRG FOR FN IN T Y" " "

INPUT OBJ- 'FN' STO >>  
 

Example responses might be << '-T*Y' EVAL >> ( or the reverse Polish notation

program << T Y * NEG >>) for the function F(T,Y) = - T*Y or

<< 'Y(2)' EVAL 'Y(1)' EVAL NEG 2 —>ARRY >>

for the function F(T,Y) = column [Y(2), -Y(1)].

The next program asks the user to set the viewing window for the plot.

 

Program Name: IN.PP  (plot parameters)

Purpose: The user supplies XRNG and YRNG

Stored Quantities: none

No input stack is required. The appropriate response for the first

query is a pair of numbers, H-min and H-max. The response for the

second query is a pair of numbers V-min and V-max.

Output: New values for XRNG, YRNG. PICT has been erased.

<< " KEY IN XBRNG" " " INPUT OBJ— XRNG

" KEY IN YRNG" " " INPUT OBJ— YRNG ERASE >>  
 

Note: The reader has probably correctly inferred that the commands XRNG and

YRNG set the H-VIEW and V-VIEW variable ranges.
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We wish to present a program to give a composite graph in the (T, Y) plane for a

differential equation with one or more initial conditions such as indicated in the

figure shown below.

 

 
———

//#_F -3

Solutions of Y' = SIN(T *2-Y "2)

with Y(-2) =-3and Y(-2) =-1.5

The following program contains the basic ingredients of a user plotting program. The

number 1 in the name indicates that the program is for a scalar differential equation.

The TY designation indicates that the plot is a (T, Y) plot.

 

Program Name: G1.TY

Purpose: Generate a T Y plot of the solution to Tf

Stored Quantities: XRNG YRNG FN TOL HS

Input level 3 level 2 level 1

To Yo Ty

The output stack is empty, the variables T Y contain updated values.

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO'T' STO

> TF << {TYFN} TOL HS T Y R—»C 4 ROLLD DO

RKFSTEP T Y R—»C DUP 6 ROLLD 5 ROLL LINE DUP T +

TF UNTIL > END DROP TF T - RKFSTEP T Y R—>C DUP 6

ROLLD 5 ROLL LINEDROP TF T - RKFSTEP T Y R—»C 5

ROLL LINE 3 DROPN >> PICTURE >>   
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Notes: Typical numbers for HS and TOL are .005 and .00005 and are to be stored

before execution of this program. If the user wants other names for the variables

other than T Y FN, such changes can be made by substituting for { T Y FN}, T,

and Y, the desired alternate notation. The command RKFSTEP invokes the built-in

Runge-Kutta-Feldberg program for one step.

EXERCISE 1.1a: Construct a plot of the solution of y ' + 3y = cos t, y(0) = .3 for

0 < t < 6.283 using the programs described above. Execute IN.FN, respond by typing

<< 'COS(T) - 3*'Y' EVAL >> and press ENTER. Execute IN.PP, respond by typing 0

6.283 and ENTER, respond by typing -5 .5 and press ENTER. Put 0 .3 6.283 on the

stack and execute G1.TY. As in EXERCISE 1.1, plot the exact solution

y = .3 cos(t) + .1 sin(t). Press PLOT, change the TYPE to Function, and enter

3*COS(T) + .1*SIN(T) as EQ. In this case we want to overlay the new plot on the

old one so do not ERASE. Now press DRAW. Note the good agreement between the

approximate solution and the exact solution.

EXERCISE 1.2a: Construct and plot solutions of y ' = sin (t!-5yR), y(0) = 2 for

0 £ t £ 8 when R has the values .75, .5 and .33, in the same picture as follows:

Execute IN.FN, respond by typing << 'SIN(TA1.5*Y~R)' EVAL >> and press

ENTER. Execute IN.PP, respond by typing 0 8 and ENTER, respond by typing 0 4

and press ENTER. Put .75 on the stack and press 'R' STO, then put 0 2 8 on the

stack and execute G1.TY. Now put .5 on the stack, press 'R' STO then put0 2 8 on

the stack and execute G1.TY. Finally put .33 on the stack, press ‘R' STO, put0 2 8

on the stack and execute G1.TY. Notes: Here we are observing the solution for three

values of a parameter. The process of storing a value for R and placing appropriate

input on the stack for the graph program can be abbreviated in various ways. For

example, store the program << 'R' STO 0 2 8 >> under a name, say P.1. Then put

one of the values of R on the stack, execute P.1, then execute G1.TY,etc.
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Suppose that the user wants to plot (T, Y(I)) for a vector system Y' = F(T,Y). We

will call the program G.0I where the 0 represents the T variable and the I

represents the Y(I) variable. The modification consists of changes made to G1.TY in

four locations in which the Y number in G1.TY is changed to 'Y(I)' EVAL and

adding the first << — I and the last >>. The user can avoid retyping the whole

program by pressing 'G1.TY' RCL, EDIT, typing the corrections and additions

pressing ENTER, then 'G.0I' STO.

 

Program Name: G.0I

Purpose: Generate a T Y(1) plot of the solution

to T¢

Stored Quantities: XRNG YRNG FN TOL HS

Input level 4 level 3 level 2 level 1

Ty vector Y T, I

The outputstack is empty,the variables T and Y contain updated values.

<< > I << { #0d # Od } PVIEW DRAX 3 ROLLD 'Y’

STO 'T' STO —» TF << {T Y FN } TOL HS T 'Y(I)) EVAL

R—>C 4 ROLLD DO RKFSTEP T 'Y(I) EVAL R—C DUP 6

ROLLD 5 ROLL LINE DUP T + TF UNTIL > END DROP TF T

- RKFSTEP T 'Y(I)) EVAL R—»C DUP 6 ROLLD 5 ROLL LINE

DROP TF T - RKFSTEP T 'Y(I)) EVAL R—»C 5 ROLL

LINE 3 DROPN >> PICTURE >> >>   
EXERCISE 1.3a: Construct a composite (t, x) plot of the solutions of

x"+Rx'+x=0,x(0)=0,x'(0) =1, for 0 <t <6.283 when R = .5, when R= 2 and

when R = 2.5. We convert this problem to a first order format using the variables y

and y' as components of a vector y = [x, x']. Then y' = [y(2), -(R y(2) + y(1))] and

y(0) = [0 1]. Our procedure calls for an appropriate F function which in this case will
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be a 2-vector. Then we provide the program << 'Y(2)' EVAL 'R*Y(2)+Y(1)' EVAL

NEG 2 -ARRY >> as a response to the query in the IN.FN program and the

responses to set 0 6.283 for XRNG and -.8 .8 for YRNG in IN.PP. We store the

value .5 in the variable R and place the objects 0, [0 1], 6.283 and 1 on the stack

and execute G.0I. We change R to each of the numbers 2 and 2.5 and place input

quantities 0, [1 0], 6.283 and 1 on the stack and execute G.0I twice more to overlay

plots of the other two solutions.

A similar change to G.0I gives the plot program G.12 in which the component

Y(1) of the solution is plotted against the component Y(2). The change is made in

four places and commands T 'Y(1)' EVAL are changed to 'Y(1)' EVAL 'Y(2)'

EVAL and by removing the first << — | and the last >>.
 

Program Name: G.12

Purpose: Generate a (Y(1), Y(2)) plot of the solution

from T, to Tf

Stored Quantities: XRNG YRNG FN TOL HS

Input: level 3 level 2 level 1

T, vector Yo T,

The output stack is empty, the variables T and Y contain updated values.

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T'

STO - TF << {T Y FN } TOL HS 'Y(1)' EVAL 'Y(2)'

EVAL R—-C 4 ROLLD DO RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL

R—C DUP 6 ROLLD 5 ROLL LINE DUP T + TF UNTIL >

END DROP TF T - RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL R-C

DUP 6 ROLLD 5 ROLL LINEDROP TF T - RKFSTEP 'Y(1)

EVAL 'Y(2)' EVAL R—»C 5 ROLL LINE 3 DROPN >>

PICTURE >>  
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For consistency, from this point we will use notation as follows: for first order

differential equations, Y will be the dependent variable and T will be the

independent variable. For higher order differential equations, x will be the

dependent variable, t will be the independent variable and we will reserve Y as a

vector with components which may be constructed from the x, x', etc. variables.

EXERCISE 1.5: Construct an x vs x' plot of the solution of x" + .5 x' + x = 0,

x(0) =0, x'(0) =1, for 0 <t <6.283. As before, for vector y = [x, x'] we have

y ' =[y@), -(5y@) +y1)l, y@) =I[01]

An appropriate F function is given by the program << 'Y(2)' EVAL '.5*Y(2)+Y(1)'

EVAL NEG 2 -ARRY >> with the INDEP variable name T, SOLN name Y and

the INIT vector [0 1] for SOLN. We choose SOLN(1) for H-VAR and SOLN(2) for V-

VAR on the OPTS page. HVIEW should be set at -1 1 and V-VIEW should be set at

-1 1. ERASE and DRAW. This approximate solution of the differential equation

can be compared to the exact solution by overlaying the parametric curve

e~25t 1.0328 (sin(.9862t)+i*(.9862 cos(.9862t) — .25sin(.9862t))).

on the same picture. (Use Parametric type in the PLOT environment.) The user

should notice that the plot of the approximate solution consists of a set of points

{yr(ti), y2(t)):i=1, 2, ..}

connected with straight lines. The parametric plot also has this form; however, the

points are spaced much closer.

We recommend that the user create a subdirectory for the programs in this

section. A possible subdirectory name is DE.1. This subdirectory should contain the

programs G.12, G.0I, G1.TY, ER.SE, IN.FN, IN.PP, T, Y, FN, TOL, HS, EQ, and
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PPAR in this order. The program ER.SE given by << ERASE >> is placed in this

directory for convenience. The subdirectory can be created by placing the name 'DE.1"

on the stack, then pressing MEMORY, pressing DIR, then CRDIR. To obtain the

desired order, press { and enter the program names in order, press ENTER, then

ORDER (located in the same MEMORY DIR menu).

Elementary User Programs

We present several user programs that are useful in a differential equations

course. The students should have some experience with algorithms used to calculate

approximate solutions to initial value problems containing differential equations and

with programs to implement these algorithms. The simplicity of the programs

presented here should help the reader whenever more complicated programs are

required for other purposes.

The Euler algorithm for the solution of an initial value problem results from

assuming the slope of the solution of a differential equation dy/dt = F(t,y) is well

approximated by the constant F(t,, y,) in the interval t, <t <t + h and the

algorithm is given by t, ., =t + h, y,.; =y, + hF(t, y,). (Here y, is the

approximation of y(t,) and it is assumed that initial values t, and y, and the step

size h are given so the algorithm may be initiated.) Our program is called EULER

and takes t, y from the stack and returns the results of a single step using Euler's

algorithm. It will use the step size H, which is stored, and a stored program F.N

that takes t,y from the stack and returns E(t,y).



16 CHAPTER1

 

Program Name: EULER

one step in the Euler algorithm.

<< DUP2 FN H * + SWAPH + SWAP >> 

Purpose: Generate new values of x and y resulting from

Stored Quantities: H F.N

Input Output

level 2 level 1 level 2 level 1

th Yn thei Yn+1   
Notice that the structure of F.N is different from the FN program given in the first

section of this chapter. F.N requires input from the stack, whereas the programs for

FN in section 1 require stored values for t and y.

The reader should test this program using the F.N program << —» T Y 'Y' >> for

the step size .1 stored in H and initial conditions y(0) = 1. (Put0 1 on the stack and

execute EULER EULER EULER, etc.) Note: Here we are solving y' =y, y(0) = 1,

using steps H = .1 and obtain the following results:

t y t y t

1 1.1 4 1.46 7

2 1.21 5 1.61

3 1.33 .6 1.77 9

and y at t = 1.0 is 2.59, a crude approximation of 2.718....

1.95

2.14

2.36

EXERCISE 1.6: To obtain approximate values of the solution of y' = sin(ty), y(0) = 3,

enter the program F.N givenby << —» T Y 'SIN(T*Y)' >>, putinitial values 0 3

on the stack and execute EULER, EULER, etc. You should get .1 3, then .2 3.03, then

3 3.09, etc. (Make sure the calculator is in RAD mode.)
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Suppose we want to execute EULER, say, N times and observe the output only at

t=t, + NH. The following program, called RPT (for repeat), requires that N be

stored, requires initial values of t and y as input, and outputs the final values of t

andy: <<1 N START EULER NEXT >>.

The Improved Euler algorithm is another method for approximating the

solution of an initial value problem. The method results from assuming the slope of

the solution is well approximated by the average of f(t,, y,) and a guess at

f(ty1, Yieq) In the interval t, <t <t, + h. The algorithm is given by

teer =t + B, Yoy =y + DI, yi) + (b, yicthE(te yi))1/2.

(Again y, is the approximation of y(t,) and t;, y, and h are given so the algorithm

may be initiated.) This program is named IULER and takes t y from the stack and

gives (t+h) (y+h*[f(t,y)+f(t+h,y+h*{(t,y)]/2). Note EULER is part of this program.

 

Program Name: IULER

Purpose: Generate new values of x and y resulting from

one step in Improved Euler algorithm.

Stored Quantities: H F.N EULER

Input Output

level 2 level 1 level 2 level 1

th Yn the Yn+1

Instruction Resulting

<<DUP2 DUP2 EULER t y ty tth y+hi(ty)

F.N 3 ROLLD t y f(t+h, y+hf(ty)) t y

FN + 2/ t y (f(t+h, y+hf(t,y))+f(t)y)) /2

H*+ SWAP H + SWAP [y+h*{ f(t+h,y+h*f(ty))+f(t,y)}/2] t+h  >
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Just as in the EULER program we require that the program F.N and the step size

H be stored before execution. A multiple step program can be obtained by substituting

IULER for EULER in the program RPT given just after EXERCISE 2.1.

Try IULER using the F.N program << — T Y 'Y' >>, H = .1 and initial data

0 1. Execute 9 times. You should get 1 2.7140808--- . (Euler gives about 2.593742---,

not nearly so good an approximation of e = 2.71828--- .) In general, the improved

Euler method can be shown to be a better approximation when h is small.

How is an appropriate value of h chosen? If it is decided to use a constant step

size throughout the interval of interest [t,, X;], one common way to select h is to try a

nominal size of h, say (t- t;)/50, and calculate the solution approximate y; at t;.

Then reduce h by half and recalculate the approximate at t;. If the values agree to

your satisfaction (for example, to three decimal places), use the last set of values

obtained; if not, reduce h by half and try again.

This is a good time to check on the accuracy of the built-in differential equation

algorithm used by the HP-48G calculator. Press SOLVE, use the EI arrow

key to select Solve Diff eq..., press OK, enter the F function Y, set the range of the

independent variable to 0 1 and set the initial value of the solution to 1. Move the

cursor to FINAL and press SOLVE. Press the ON key and you should see the value

2.718... on the stack. Put 1 on the stack, press the eX key and subtract to see the

apparent error -.000019... . This error was achieved with the default tolerance .0001.

The performance of the differential equation algorithm depends on the problem and

is not always this good.

A comment on the built-in algorithm on the HP-48G calculator for solving

differential equations is in order at this point. There is a default program based on

the well known Runge-Kutta Feldberg algorithm which automatically selects step
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size to keep the perceived error below the specified tolerance. There is also a second

built-in calculator program for solving stiff differential equations that we will

discuss briefly later.

EXERCISE 1.7: Try EULER on the problem y' = (y2 + y)/t, y(1) =1 with h = .2.

Execute 5 times, then reduce h to .1 and execute 10 times. Next execute from the

initial value 20 times with H = .05. What is being indicated? Hint: this problem

can be solved exactly and has an asymptote at t = 2. Here F.N could be given by

<<> T Y "(Yr2+Y)T ' >>

EXERCISE 1.7a: Try the HP-48G calculator's Solve diff eq... algorithm for the F

function and initial condition given in EXERCISE 1.7 for the value of the solution at

t = 2. Change the tolerance TOL to .1 and try to SOLVE for FINAL. The calculator

will take over 10 seconds and returns a value of 1743.5... . If you change the value of

TOL to .05 and resolve for FINAL, the calculator will take over 20 seconds and

returns a value of 2187.8... . The long execution time tells us that the calculator is

struggling to achieve good results and in this case can not achieve accuracy for good

reason.

Programs to obtain graphical output are easy on the HP-48. The following

program, which we will call GRAF, requires t, y, from the stack and uses IULER (or

EULER) to advance N steps of size H. (N is also stored.) The user should pre-enter

the numbers tmin tmax as XRNG and numbers ymin Ymax as YRNG for the graph.
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Program Name: GRAF for scalar equation

Purpose: Plot N values of (x,y) obtained using

Euler algorithm

Stored quantities: N, H, F.N, IULER XRNG YRNG

Input Output

level 2 level 1 level 2 level 1

to Yo tN YN

and graph with cursor

<<{# 0d # 0d } PVIEW DRAX DUP2 R—»C 3 ROLLD 1N

START IULER DUP2 R—>C DUP 5 ROLLD 4 ROLL LINE NEXT

PICTURE >>  
 

GRAF contains a loop in which N new points (t,y) are calculated and plotted.

You may want to ERASE the graphics screen before executing the program. The

program EULER may be inserted in place of IULER so that GRAF uses whichever

algorithm is desired. Notice also that the last values of t and y remain on the stack

after GRAF is executed. To restore the stack screen, press ON.

As a footnote to this section, the following program can be used to remind the

user for the ingredients required for GRAF. As written, the user must enter an

expression for f(T, Y) (e. g. 'SIN(T*Y)') which will be stored by the program as

<< = T Y 'SIN(T*Y)" >> in the variable F.N. The program will also prompt for

initial conditions, step size, number ofsteps, etc.
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Program Name: INIT1

Initialization Program to set required ingredients for GRAF

<< "ENTER F.NINT,Y" " " INPUT OBJ— 'F.N(T,Y)' SWAP =

DEFINE "KEY IN # OF STEPS" " " INPUT OBJ— 'N' STO

"KEY IN STEP SIZE" " " INPUT OBJ- 'H' STO "KEY IN

XRNG" " " INPUT OBJ—> XRNG "KEY IN YRNG" " "

INPUT OBJ- YRNG "KEYININITIALT" "" INPUT OBJ-

"KEY IN INITIALY" " " INPUT OBJ- ERASE >>  
 

As we have already indicated, it is often desirable to plot solutions of several

initial value problems on the same plot. Of course, plots can be combined simply by

not erasing the previous result.

EXERCISE 1.8: Consider the following differential equation together with several

initial conditions and plot the solutions on the same graph.

dy/dt = y(1-y), y(0) = .2, 4, 6,15

where the solutions are plotted for 0 < t <5 and step size h = .05 is used. Try

FN: <<-> TY '"Y'(1-Y) >>.

Put 0 and .2 on the stack, then execute GRAF. (Remember H = .05 and N = 100 are

stored before execution.) Place another initial condition on the stack and add the

second solution graph. Notice the solution y = 1 is an attracting solution, i. e., nearby

solutions collapse to y = 1 as time increases.
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The EULER and IULER programs also work for the vector case when the F.N

program has the proper form and when the initial y input is a vector. Here again

F.N requires input T Y. We can modify the GRAF program to the following form:

 

Program Name: G.TYI

Purpose: Plot N values of (T,Y(I)) resulting from the

improved Euler algorithm which creates a

sequence of N values of t, and Y.

Stored Quantities: N H F.N EULER IULER XRNG YRNG

Input Output

level 2 level 1 level 3 level 2 level 1

to initial vector Y I tn  final vector Y & graph

<<—> I << { #0d# 0d } PVIEW DRAX DUP2 I GET R—C 3

ROLLD 1 N START IULER DUP2 I GET R—»C DUP 5 ROLLD

4 ROLL LINE NEXT GRAPH >> >>   
Program INIT.I is to set the plotting parameters for G.TYI. Notice that the

construction of the F.N program is to be done later sinceit is felt that F.N could be a

complicated program.



PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 23

 

Program Name: INIT.I

Purpose: Set parameters for G.TYIL.

<< "KEY IN # OF STEPS" "" INPUT OBJ— 'N' STO

"KEY IN STEP SIZE" "" INPUT OBJ— 'H' STO

"KEY IN XRNG" "" INPUT OBJ— XRNG

"KEY IN YRNG" "" INPUT OBJ— YRNG

"KEY IN INITIAL T* "" INPUT OBJ—

"KEY IN INITIAL Y" "" INPUT OBJ—

"KEY I FOR Y(I) GRAPH" "" INPUT OBJ—

"PRESS ENTER, CONSTRUCT PROGRAM FN

EXECUTE G.TYI" ""INPUT OBJ-> >>   
The program G.TYl as given above works for vector initial value problems with two

or more components. For example consider the following

EXERCISE 1.9: Set E.N to be

<<—> T Y <<'-.00001*Y(1)*Y(2)' EVAL '.00001*Y(1)*Y(2) - Y(2)/14' EVAL

'Y(2)/14' EVAL 3 —ARRY >> >>

set initial T, Y to 0 [45400 2100 2400] with XRNG 0 25 YRNG 0 45400 and set

the number of steps to be N = 25 and step size to H =1. Obtain a T-Y(1) plot,

overlay a T-Y(2) plot, etc.

Students who use the Euler and improved Euler algorithm will also need a

program to compute the solution and plot the components yj(t) versus yp(t) as t

increases. Such a program, call G.Y12 is presented below. The initialization

program INIT.I also works for this program, except the input I is not needed and

should be deleted before execution of G.Y12.
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Program Name: G.Y12

Purpose: Plot N values of (Y(1),Y(2)) resulting from

the improved Euler algorithm which creates

a sequence of N values of Y(1) and Y(2).

Stored Quantities: N H F.N EULER IULER XRNG YRNG

Input Output

level 2 level 1 level 2 level 1

to initial vector Y tn last vector Y & graph

<<{ # 0d # 0d } PVIEW DRAX DUP DUP 1 GET SWAP 2

GET R—C 3 ROLLD 1 N START IULER DUP DUP 1 GET

SWAP 2 GET R—-C DUP 5 ROLLD 4 ROLL LINE NEXT

GRAPH >>  
 

We recommend that the user create a subdirectory for the programs in this

section. A possible subdirectory name is DE.2. This subdirectory should contain the

programs INIT1, GRAF, INIT.l, G.TYI, ER.SE, G.Y12, T, Y, F.N, EQ, and PPAR in

this order. The program ER.SE given by << ERASE >> is placed in this directory

for convenience. The subdirectory can be created by placing the name 'DE.2' on the

stack, then pressing MEMORY, pressing DIR, then CRDIR. To obtain the

desired order, press { and enter the program names in order, press ENTER, then

ORDER (located in the same MEMORY DIR menu).
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Now that we can construct approximate solutions of a differential equation we

can suggest EXERCISES and activities that use these graphical and numerical

computations to enhance the study of differential equations.

y

  
2.5 S

Five solutions of dy/dt =y (1 . y)

We will often be interested in constructing graphs of several solutions of a

differential equation. The figure shown above, constructed for the differential

equation y' = y(1-y) is an example. There may be solutions y(t) that remain constant

as time increases. Such solutions are called equilibrium solutions. In the case just

mentioned, the constant solutions are y(t) = 0 and y(t) = 1. Clearly the solutions

y(t) = ye of dy/dt = F(t, y), which are constant, satisfy

F(t, Ye) = O

If we wish to understand how solutions of a differential equation change as the

initial condition y(0) is varied, one of the first tasks is to find the equilibrium

solutions. If the function F(t, y) is continuous and has continuous derivatives then

25
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any solutions yj(t) and y7(t) which satisfy different initial conditions do not

intersect. Consequently, constant solutions restrict the region where nearby solutions

can proceed.

EXERCISE 2.1: Plot the solutions of the three initial value problems

dy/dt = y2 (1 - y2), that satisfy either y(0) = -1, y(0) = 0, and y(0) =1 for0<t<5

all in the same picture. Then overlay plots of the solutions of the same differential

equation that satisfy y(0) = -.25 and y(0) = .25.

EXERCISE 2.2: Consider the differential equation y' = y — y3. The equilibrium

solutions are 0, -1 and 1. For an initial condition y(0) not in the set {-1, 0, 1}, use the

separation of variables technique to obtain the result

2
yOI 1- yOI

2 _ 2y“ll-yl=I1+ylKe?, K= vy,

This equation defines the solution y implicitly as a function of t. For example, if

0 <yp < 1, then since y(t) will not leave the interval 0 < y < 1, we have a cubic

equation for y as a function of t. We can use one of our calculator programs to

construct a plot of an approximate solution of the problem with such an initial

condition or if we only want a crude idea of the solution graph, we can sketch in an

increasing function proceeding from y(0) up toward the asymptotic value y(e) = 1.

Why?



FIRST ORDER DIFFERENTIAL EQUATIONS 27

 -2 Tt

dy/dt=2sin(t-y) dy/dt = cos (.5ty)

The solutions of the two differential equations pictured above show interesting

structure. The straight lines y = t + a are solutions of dy/dt = 2 sin(t - y) for

a = 3.665, a = -.524, a = - 2.618, or a = -6.81. (Hint: make the transformation t -y = w

to get the differential equation w' = 1 — 2sin w. What are the equilibrium solutions

of the w differential equation ?) Solutions starting near t = 0, y = -.524 collapse to

the straight line solution y = t — .524, while solutions starting near t = 0, y = -2.618

are repelled away for the straight line solution y = t — 2.618, etc.

As for the second plot shown just above, even though the functions y = (2n+1)r/t

(n=0,%1,%2,. ..) are not solutions of dy/dx = cos (.5ty), when t is large such a

function y has small derivative and we can see these approximate solutions emerge

for large t. Moreover when the initial value y(0) is large, there are more values of t

on the graph when .5ty(t) = (4n+1)n/2 and the slope y' is zero.

EXERCISE 2.3: Plot the solutions starting from y(0) = -7.85, y(0) = -1.57, y(0) = 4.71,

y(0) = -1.9, y(0) = -2.5, y(0) = 2.5 and y(0) = 4.3 that satisfy the differential

equation dy/dt = sin (t-y) for 0 <t <8. Use vertical dimension to show -8 <y < 8.

Hint: the transformation w = t — y gives a differential equation with equilibrium

solutions we =1/2, 5n/2, -31/2, etc.
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EXERCISE 2.4: Plot the graph of the differential equation dy/dt = sin (ty) with

initial condition y(0) = 3 with plot parameters to show 0 <t<6, 0 <y <5. Select a

new starting point y(0) = 3.5 and add the new trajectory. Now choose y(0) = 1.5, get

the new combination graph, then choose y(0) = 1 and get another combination graph:

we see the bottom two trajectories approach each other.

The graphical study of solutions of dy/dt = sin(ty) led to an journal article that

gives mathematical proofs for some of the interesting behavior observed in the

graphs. See Mills, B. Weisfeiler and A. Krall, "Discovering Theorems with a

Computer", The American Mathematical Monthly, volume 86 (1979), pages 733-739.

EXERCISE 2.5: Consider the differential equation y' = y — .3t — (y — .3t)3. The

transformation w = y - .3t gives the new differential equation w' = w — w3 - .3,

What are the equilibrium solutions of the new differential equation ? Sketch

several solutions of the w differential equation including the equilibrium solutions, a

solution with w(0) above the largest equilibrium solution, one with w(0) below all of

the equilibrium solutions and one with w(0) near but not on the middle equilibrium

solution. Now make a sketch of the corresponding solutions of the y differential

equation.

EXERCISE 2.6: Repeat as much as possible of the previous EXERCISE for the

differential equation y' = y — .5t — (y - .5t)3.

We will wish to compare the graphs of solutions of different differential

equations. For example if we graph the solutions of the two initial value problems

dy/dt = y(1 - y), y(0) = .25 and dy/dt = y2(1 - y2), y(0) = .25 (graphic screen

parameters 0 < "t" < 5 and 0 < y < 1.2) on the same plot, we notice that the solutions

are structurally similar. In which case is a change of concavity apparent ?
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EXERCISE 2.7: Plot the solutions of the two initial value problems dy/dt = y(1 - y),

y(0) = .25 and dy/dt = -y In y, y(0) = .25 (plot screen parameters 0 < "t" < 5 and

0 <y < 1.2) on the same plot. In what ways are the solution graphs similar ? In

what way are they different ?

There are many problems in a differential equations course in which a number (or

numbers) satisfying a somewhat complicated equation is needed. In one type of

example we can use the graphing capability of the calculator to display the inverse

of a particular function and thus graph a desired solution. We will give an example

of this below. In a second type of problem we may simply use the equation solver

routine contained in the calculator. An example of this type of problem is also given

below.

Implicitly defined solutions may arise in the study of first order differential

equations, particularly in those problems in which variables are "separated and

integrated" or in exact equations.

EXAMPLE: Plot the solution of

dx/dt=1-x3/2, x(0)=1/2

for 0 < t £ 2.5. Clearly the solution x(t) will approach 1 as t increases. Using

separation of variables, we obtain

J /1 = x3/2 =t+C.

We make the substitution x = y2 and use a partial fraction decomposition for the

fraction to obtain the implicit equation F(x) = t where F(x) = f(x) — f(.5) and

Lsf(x)zln{l(tzji
x&)} -3 Arctan {1+J?_J—}
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We enter the formula for F(x) in the calculator and notice the range of F for

5<x<.99is [0, 2.79]. We specify plotting parameters so that XRNG and YRNG are

0 3 and restrict the values of x to be graphed by entering {X .5 .99} as INDEP and

draw a plot of F(x). A plot of the inverse function can be overdrawn by altering EQ to

'F(X) +i*X' and changing the plot type to PARAM. Finally the graph of y = x is

also shown as part of the construction of F-! from F.

y =F(x)

 
 

 

EXERCISE 2.8: Determine the solution of x' = 1 — x¥, x(0) = .5 using separation of

variables technique for r = 5/4 and for r = 5/2. Then use the inverse function to plot

x(t). Hint: (x2+.5(1-V5)x+1)(x2 +.5(1+V5)x+1) = (x43+x2+x+1).

Suppose we wish a number x so that an equation f(x) = g(x) is satisfied. Construct

a list which contains expressions for f(x) and for g(x). Then store this list in the

variable EQ. Set plot parameters so that when both sides of the equation are

drawn, a crossing is shown. Use the cursor to locate the approximate crossing

coordinates and the ISECT command to obtain the result.

MIXING PROBLEM: Initially a large tank holds 2000 gallons of pure water. An

stream of 5 gallons per minute with salt content of 2 #/gallon is input into the tank

and 4 gallons per minute of the well mixed solution is drained from the tank. When

is there Q, pounds present in tank ? The usual model dQ/dt = input rate - output rate

gives
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(2000’
Q=2| 2000 +t- ———

(2000 + t)

Putting Q(t) = Q, gives

% .2000-+t £ o0

2000 | 2000 + t

to solve for t. For Q, = 100, we get

4

1950 + t [__ZQ_Q_Q_.] .
2000 ’= 12000 + t

31

and if we use plotting parameters to show 0 < x <20, .9 <y <1, we get an intersection

at about 10 as shown:

Right side of equation

 

2 6 10 14 time

Mixtuxe Pxroblem
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EXERCISE 2.9: A tank initially contains 300 gallons of pure water. Brine containing

1.5# of salt per gallon enters the tank at 2 gallons/minute and the well mixed

solution leaves at 3 gallons per minute. When will the tank contain 21 # of salt?

(There may be more than one solution.)

Population Problems

EXERCISE 2.7 gives two initial value problems that model population growth in a

food limited environment. Which model is appropriate? Some input from biologists

or some observation data could be used to answer this question. Suppose that from

experimental data, we can determine the limiting value of the population and that

we can also estimate at what fraction of the limiting value of y an inflection point

occurs. In EXERCISE 2.7, the inflection points occur at 36.8% (for the logarithm

model) and 50% (for the quadratic model) of the limiting value of y, which in both

cases is y = 1. We will further explore this question below.

Suppose we are given the assignment of explaining how the population of a

species evolves in time and we note that the environment will only support a finite

number of the population. Two much studied models ofthis type are:

e The logistic model:

dp 2 ap,

—. =ap-bp pO)=p,: p=—"""—"
dt 0 bp0+(a—bp0)e at

e The Gompertz model:

 

i
P exp(-Bt)

P —p(A-Blnp), pO =po: p=eA/BLA/B] '

The parameters have different meanings: equating the carrying capacity of the

model (i. e., the value of the population that is reached in infinite time) gives eA/B
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in the Gompertz model and a/b in the logistic model. Which of these models is

better? Or should we look for another model?

These are not easy questions in general. Probably the first step is to pick a

model, use data to determine what the model parameters should be (e.g. the

constants a, b or A, B) and graph the solution. Then change the model, use data to

determine that model's parameters and graph the solution again, etc.

POPULATION PROBLEM: Suppose we use a logistic population model

dp/dt = ap - bp2 with parameters a, b and data taken from the following table:

Year

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

To determine the

p(50) = 17.07 we get

and if we also take p =

Population Year Population

3.93 1900 75.99

5.31 1910 91.97

7.24 1920 105.71

9.64 1930 122.78

12.87 1940 131.67

17.07 1950 151.33

23.19 1960 179.32

31.44 1970 203.21

39.83 1980 226.50

50.16 1990 248.71

62.95

parameters a and b: if we wuse p,

3.93 _ e-SOa)

17.07

bp, = 1 —o0a ;

75.99 at t = 110, we have

3.93 and
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[%‘efi] (1-e‘ma)=[%—e*ma] (1-e5) .

By setting x = 50a (which gives 110a = 2.2x) we obtain the equation

[e*x-.23023] (1 -e22x) =[e22x - .,05172] (1 —e).

For plotting parameters 1 < x < 2, -0.05 < y < .02, we observe a solution at x = 1.53,

which means that a = .031 and b = .00014. We show below the data and the solution

curve for these values of the parameters, and also the solution curve for the values of

a and b obtained byfitting to data at time t = 140 and t = 200 (a = .0279 and

b = .0000855).

population population

250 .® 250 /

 

 

. . . 200

Data and Logistic Curve for fit Data and Logistic Cuxve for fit

Wp(50)=17.07,p(110) = 75.99 to p(140)=122.78,p(200)=248.71

Note: A program D.GRF to produce a graph of data with "fat pixels" will be

suggested. A list of the data coordinate pairs is stored in a variable L1. After

XRNG and YRNG are set and the screen is erased the following program will plot

the data points:

PGM D.GRF << PPAR DUP 2 GET SWAP 1 GET - C-R

64 / SWAP 132 / MIN 1.2 * —» RADIUS

<< DRAX L1 OBJ—> 1 SWAP START RADIUS 0 6.28 ARC NEXT >> >>
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EXERCISE 2.10. Suppose again that pg , (tj, pi), and (tk, pk) are known. Determine

the constants A and B in the Gompertz model. (Hint: put s = A/B and solve for eBt

in the expression for the solution, then for B. Then evaluate the expression at each

time and set them equal.) Find the value of A and B for pg =1, (tj, pj) = (1, 1.46) and

(tk, Pk) = (2, 1.5).

How might other models be constructed ? Here is a suggestion if data {(t1, p1),

(t2,p2), - - - (tn, pn) } is given and a graph of the data indicates the location of an

inflection point and the carrying capacity K. Population models may have the form

dp/dt = f(p) with £(0) = 0, £(K) = 0 for K > 0, and f(p) > 0 for 0 < p < K. Notice that

inflection points come at those points p with f'(p)f(p) = 0. Since f(p) > 0, we get

inflection points when f '(p) = 0. In the logistic model this occurs when p = .5 a/b

and in the Gompertz model whenInp = A/B - 1.

To get a model with inflection at p = .6K, we could try

p' = f(p) = (.6K)2 - (p - 6K)2 for 0 < p < 6K, and also p' = f(p) =

2.25 ( (.4K)2 - (p - .6K)2) for .6K < p < K.

EXERCISE 2.11. Use your calculator to obtain a plot of the solution of this model for

K=1,p0)=.2, XBRNG =-2 5 YRNG =-1 11. We will suggest here a method to

enter an appropriate F function using the HP-48G input form format. Press PLOT,

CHOOS, Diff Eq, press OK, then position the highlighted field to F. Press NXT,

press CALC, and place the following on the stack: 'IFTE(Y<.6, .36 — (Y-.6)"2,

2.25*(.16— (Y-.6)*2)))' Note: The command IFTE can be located by pressing PRG

BRCH NXT. The < command is located by pressing PRG TEST. When this step is

complete, press the ON (CONT) key, then you should see the desired stack entry and

the ON key. Press ON. The student should complete the EXERCISE from this point.

If you wish to invoke the user program, an appropriate FN program might be

<< 'IFTE(Y<.6, .36 — (Y-.6)*2, 2.25*(.16— (Y-.6)*2))' EVAL >>.
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EXERCISE 2.12. Suppose we have the following (time, population) data point

measurements {(0, .2), (.5, .37), (1, .61), (1.5, .88), (2, .98), (2.5, 1), (3, 1)}. Use your

calculator to plot the data and estimate the location of the inflection point. Then

construct a model that will give an inflection point at this value and overlay the

solution of the model with the data for comparison.

quadratic

   
  

) 1
Model Functions £(y) Resulting Solutions

Logistic, Gompextz and Custom Models (exexcise 2.8)

EXERCISE 2.13: Set plot parameters to show -.5 < t < 12,56, -.5 < y < 4. Graph the

solutions of y' = .Sy(exp(sin t) — y) with y(0) = 1, and y(0) = 3. What initial

condition gives periodicity ? (This differential equation is a potential model for an

environment where the birth rate is periodic in time.)

Motion of a Particle in One Dimension

Mathematical models for the velocity of a particle falling from rest under

gravity with air resistance have the form

dv _ -3¢ = 8- f(v), v(0) =0,

where the force exerted on the particle by the resistive medium, f(v), is determined

by experimental means. We will assume that f is an increasing function with
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f(0) = 0. The velocity will increase toward a terminal value which is given by

£ 1(g).

EXERCISE 2.14: For simplicity we take physical units so that g = 2. We want to

compare the trajectories from different models in which the f(v) functions are given

by:

(@) f(v)=v

(b) f(v) = .5 v2

(c) f(v) = IFTE(v £ 1, (1.5)° v, (2.5 v - 1)-9)

(d) f(v) =IFTE(v<1,.75v15, 125 v - 5)

Notice that these models have been chosen so that all have terminal velocity 2.

Use the calculator's function DRAW program to plot each f(v) function for 0 < v <2.

Use XRNG =-1 2 and YRNG = -1 2.1. Accumulate these graphs on the same

picture and label the graphs. Then use a differential equation plotting program to

graph the solution of the initial value problem given above for each f(v) function for

0 £t <5 Accumulate them in the same picture for comparison. Again label the

solutions. Use the YRNG as above and XRNG -.2 5.

A particle falls or is projected from a great height and observations are made on

v for, say, n values of time. Two well-known models for such a problem are:

e linear air resistance model: dv/dt = g - kv, v(0) = vg. The solution is

v(t) = vg ekt + v, (1- e’Kt), v, = g/k.

e quadratic air resistance model: dv/dt =g - kv2, v(0) = vg. The solution is
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MeSt — 1 Voo + V() g

VO = Ve o310 M=oy e =\ B 0= 2k

Suppose that v, can be accurately determined from data, say {(t1, v1),

(t2,v2), ... (t2, v2)}. In the case of the linear model k = g/ve and we note that the

graph of
z(t) =In (Voo — v(t)) = In (Voo — v(Q) — kt

is a straight line with slope -g/ve. Furthermore, in the case of the quadratic model,

k=g/(Veo)? and the graph of

z(t) = In (Voo — V(t)) = In (2Veo /M) — (28/Veo )t

is a straight line with slope -2g/ve. This is twice the slope of the linear model.

Suppose that (time, velocity) data is available.  What model is

appropriate? Maybe if we plot tj vs In(ve — vj) a straight line will appear for

large t, and we can choose a model with the appropriate slope.

EXERCISE 2.15. The data to be used for model selection is:

{(0,0),(1, 1.44), (2,1.87), (3, 1.97), (4, 1.99), (5, 2) }.

Consider models of the form dv/dt = 2 — a v¥, v(0) = 0, where r is a positive number

and a is chosen so that vee = 2. (In our units g = 2.) Plot the points (tj, In(2 - vj)).

Determine the slope of a line which "fits" the plot for the latter data points and

choose an appropriate value of r. Then plot the data points (no logarithms) and use

a differential equation calculator graphing program to draw the trajectory of the

model you have chosen as an overlay of the data point graph. Conclusions? (It is

instructive to experiment with models of the form dv/dt = g —a vf and G1.TY can be

modified to plot the log (Ve — v(t)) by inserting the commands V., = ABS LN in 4

locations each following the command Y.)
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Consider the problem

M'(t)v + M(t)v' = T(t) - M(t)g - ov, v(0) =x(0) =0

where M(t) is the mass of a rocket and has equation

M(t) =m - at for 0<t<tgpand M(t) = mg + {m—-atg - mo}e'Y(t'to) fortg <t

with y= o/ (m-oatg — mQ) (so that M'(t) is continuous) and T(t) = -p dM(t)/dt.

As an example we takem =1, 0 =.19, mg=.2=.8m,t)=4,g=1,0 =.05and B =22 so

M) =1-.19tfor0<t<4, M(t)=.2 +.04e475(t4)) for4 <t and

T(t) = -22 dM(t)/dt.

The graphs are shown below.

 i ’ gy

Mass M(%) Thrust T(t)

  

We notice that for these values of the parameters, after the thrust dissipates from mass

burnoff, we have Mo = .2 and the terminal velocity will be vec = -4. Store the formulas for

M(t) and M'(t) in user defined functions MAS and MDOT, and set F(T,Y) to be

<< ' MAS(T) + (22+Y)*MDOT(T)+.05*Y' EVAL 'MAS(T)' EVAL / NEG >>.
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Setting XRNG to 0 25 and YRNG to -5 55 respectively, gives the velocity graph:

velocity

S5

25
time

The velocity rises to 53 begins to decrease at t = 4.25 but remains positive until about t = 15.

The velocity at t = 25 is v = -3.65. The graph of height versus time is shown below. Recall

that we have used specialized units (e.g., g = 1), so the actual height is not in a common

physical unit.

 

 

height

140

“““ time

25

Rocketheightvexsus time

EXERCISE 2.16 : We may wish to study the sensitivity of the results we have to the

parameter values used. Construct the velocity versus time graph shown above for

the parameters as given, then change the parameter values of a to o = .16,

to totp = 3.8 and B to B = 18. Overlay the new velocity time graph on the first

graph.
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Input Output Problems

Suppose a tank, which contains V volume units of a mixture of water and a

chemical substance, receives f(t) units (weight) of the chemical in solution per

minute. The chemical is vigorously mixed in the tank and the mixture drains from

the tank in such a way that constant volume in the tank is maintained. If y(t) is the

weight of chemical in the tank at time t, a balance equation gives dy/dt as the rate

that the chemical enters the tank minus the rate that the chemical exits from the

tank. This is one example of an important problem, namely, to determine a

particular solution of the equation

dy
dy + ry = (t).

Here we assume r is a positive constant. Commonly, the function f(t) is called input

to the problem and the solution y(t) is called the output. Other examples of this

problem occur in electrical flow problems. The initial value problem solution is

t

y() = y©0) e™ + [ &g6) ds.
0

If the function f(t) is periodic with period P, then we can choose y(0) so that the

output is periodic. This is done by choosing y(0) so that y(0) = y(P), which gives

 

IP TP-sy(0) = —— ) §(s) ds.
l1-e

The input function f is transformed to the output function y = Tf. Notice

T(af + bg) = aTf + bTg when a and b are constants and f, g are input functions. This

superposition property of the "operation” T shows the transformation T to be a linear

operator.
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Here we are interested in comparing the graphs of the input functions f to the

graphs of output functions y = Tf. An important example, f(t) = sin at, gives

y(t) = sin (xt-0)/R2 with R? = (02+r2) and cos 8 = r/R, sin 8 = o/R. In this example

there is an obvious similarity between the graphs of the input and output functions.

EXERCISE 2.17: If a signal f(t) = sin t is input into a device and produces output as

described above, what value of r will produce the "delayed" output version of the

signal, sin (t-n/4)? What distortion of the signal sin 3t will be produced by this

same device?

If the input signals are not sine or cosine in form, it may be difficult or impossible

to find an analytical form of the output; however, a graph of the output may be

found by using our differential equation graphing programs after using the calculator

to evaluate the integral in y(0).

EXERCISE 2.18: Let r = 1, and set the plot parameters so that 0 < t < 3.14 and

0 <y £ 12 Use the calculator to plot the following input functions with the

Function DRAW program and the resulting output functions with a differential

equation plotting program.

(a) f(t) =1 - sin* (3t), (c) f(t) = Max (sin 6t, 0).

(b) £(t) =1 - sinl0(3t),

If f(t) is stored in EQ and P = 1.047 = n/3, the following program can be used to

calculate y(0):

<< 3 FIX 'T" PURGE 0 1.047 EQ 'EXP(T)' * 'T' 3 NEG

SF ] 3 NEG CF 1 1.047 EXP SWAP - / STD >>
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The input signals in (a) and (b) are periodic, spike-like disturbances of a constant

input and the input in (c) is a half-wave rectified sine function.

An observant student may notice that if we start with incorrect initial conditions

then the solution approaches the periodic output after some time. This suggests that

the starting condition y(0) = 0 is ignored and that the resulting motion will become

periodic. This is a result of the theorem that any solution of the non-homogeneous

problem is the sum of a particular solution and a solution of the homogeneous

problem.

The function f£(t) = 2*CEIL(SIN(t*n)) — 1 has values given by: for 0 <t <1,

ft)=2-1=1,forl<t<2 f(t)=-1,for 2<t<3,f(t)=2-1=1, etc. This is called

a square wave. The calculator numerical integration "key" and graphing program can

handle such a function even though it is not defined at t = 1, t = 2, etc. The periodic

input function and its periodic output are shown for 0 <t < 4.

Input
|

Output

 

 

 

     
dY/dt +y= f(t)

The student can also construct the input function shown above as IFTE(T MOD

2<1,1,-1). In the same way, the switch function us(t) = 0 when t < a and 1

otherwise can be given by an IFTE function or by u,(t) = .5[1 + (t-a)/ |t-al] = 0 when

t <aand u,(t) = 1 when t > a. This could be called a switch-on function. Other

interesting functions can be obtained using the MOD function on the calculator. For
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example, f(x) = '2*X MOD 1' will produce repeated ramps of height 2. Finally,

functions defined by different formulae in different intervals can be produced by the

IFTE command: for example, f(x) = 2x for 0 < x < .5, f(x) = 1 - sin (x - .5) for

5<x<.5+1.571, x2forx>.5+1.571 is produced by 'IFTE(X < .5, 2*X,

IFTE(X <.5+1.571, SIN(X-.5), X"2))".

PROJECT EXERCISE: Travel time for a sliding bead as a function of trajectory

shape:

We want to specify the shape of a curved wire by a function y=f(x), which

connects the point A with coordinates (x,,y;) to the origin (0,0) (denoted as point B)

so that a bead of mass m will slide along the wire from A to B in a minimum amount

of time. The bead begins with initial velocity zero and slides with no friction under

the force of gravity g.

    

4
y initial point A

|t{mniml point X

—= = A 

B:(0,0) Sliding Bead
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The well-known formula for arclength ,

X df 2

s(x) = J‘\ / 1+( d(rr)] dr,

the principal of conservation of energy (this is a conservative system),

 

%mv2+mgy=mgy1,

and the expression for the travel time,

T ?0) T»
dt 1

T= J. dt = -d"; ds = v ds

leads to the equation

      2
    1+( dfi(:))
— dx,

28y, —f))

where we have explicitly noted that T depends on the curve y = f(x). (We have

used the technique of changing the variable of integration and the Fundamental

Theorem of Calculus.)

We further specialize the example by taking x; = 200, y, = 100 and g = 1. Later,

for this case we will find there is a curve such that the travel time T is

approximately 25.231. For these parameters the following curves connect the points

A and B:

(a) f(x) =x2/400
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(b) £(x) = exp(( x In 101)/200) - 1

(c) £(x)=100[1 - cos (nx/400)].

We will evaluate the travel time integrals for each of these curves using numerical

integration.

For f(x) = x2/400 the descent time integral becomes

 

Put x/200 = z, evaluate the integral to get T = 26.779 (attempted accuracy: 0.01).

Find T for the functions given in (b) and (c). (Note that so far, no differential

equation has arisen.)

The differential equation

dy _[K¥-(1-Y)
dx y1-y

can be shown to give the minimum time of descent. We have

dx=—X-—LVY1 dy

Vi2 - (y1 - y)

Use the change of variables

Y1‘Y=k25inzf'>_E

to get
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2
dx = - k2 sinzgd(p, x=C—k7 (¢ — sin @).

Ato=0,x=x1 and y =y] and at ¢ = @1 (to be determined), x =y = 0.

Thus the solution to the differential equation, along with the transformation y to

@, yields a parametric representation (x(¢),y(¢)) of the curve of minimum descent

time. There are two constants to be determined, k? and @1 ; then

k2 , k2
x=x -7 [@-singl, y=y- 5 [1-cosgl, 0< ¢ <o

The constraint x(¢1) = y(¢1) = 0 leads to the equation

e Y.y 2
Shg% l-cos@; @ —sing,

We solve

X
. 1

Gm»=¢—$n¢-§;(1—am¢)=0

for @ = @, with the calculator. Notice there is a positive solution. Now determine

k2. Using the differential equation in the expression for the descent time

nw=J

we obtain the expression
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Buty) -y= k2 [1 - cos ¢]/2, and dx = - k2 [1 - cos ¢]d¢ so that

1(2

Topd =/ 25 ®-

Use the values you get for ¢, and k? to evaluate T. You should find

T(yopy) = 25.231.

The reader may note that the slope of the optimal curve is infinite at the initial

point. This results in a quick start for the sliding bead. The optimal curve is called

a cycloid. Optimality is shown in the study of the calculus of variations. Notice

however, the exponential curve gives a travel time similar to the optimal curve.

PROJECT EXERCISE: Travel time up a hill versus initial energy

This project is also concerned with the shape of a unknown function f(x). Suppose

we give to a particle with initial position at the origin, energy E in the form of

initial velocity. The particle sliding on the shape function f(x) (we assume that f is

an increasing function) leaves the origin, travels up the "hill" f(x), reaches the limit

of its travel at which all its energy has been converted into potential energy and

then returns to the origin. We observe the time required to do this (as a function of

the initial energy). (This problem is also illustrated by the figure given for the

previous project.) The time between the particle's leaving and arriving back at the

origin is given by
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XE) \/1+ ol
T(E) = y2m |0 E — mgf(x)

X,

and x(E) = f 1(E/mg), that is E - mgf(x) = 0.

Suppose the shape of the hill (i. e. the curve f (x) ) is one of the functions given

in the previous project (i.e., a parabola, an exponential function, or a trigonometric

function). Graph T vs E for E = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (numerical

integration required).

Now read the first part of the article by Keller on Inverse Problems in the

American Mathematician Monthly, volume 83, 1976, pages 107-118, and describe what

is meant by the inverse problem.



SECOND ORDER DIFFERENTIAL

EQUATIONS

 

We saw in chapter 1 that it is easy to program the HP-48 to treat a vector

differential equation. Consider the case where the vectors have two components,

y =[y1,y2]; that is, initial value problems consisting of two first order differential

equations and the initial values of the two dependent variables:

dy, dy,

at SRy )k g =Ry y,)

where y1(tg) and yj(tp) are given. You should note that a second order initial

value problem

d? dx
az)—( =gltx %xt_)’ with x(tg) anda (to) given,

can be reduced to a first order system of differential equations

dy1 dy2
dt =Y2r 4t =8t y1,y2)

(with initial values of y; and y2) by using the identification y; = x and y2 = x". A

significant part of this chapter will be concerned with the study of solutions of

second order differential equations. We will obtain approximations of these

solutions using the calculator by studying the associated vector systems. This is a

common practice on all kinds of calculators and computer programs. We will plot

trajectories and study the solution characteristics of such systems. Of course, in this

case we can plot y1 versus t, y2 versus t, or plot y; versus y2 as the parameter

t varies.

50
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As in the case of a single differential equation, the user has three choices: use

the built-in plotting form, the user programs described in the first section of chapter

1, or the Euler or modified Euler algorithms in plotting programs as described in the

second section of chapter 1. If you want to use the EULER and IULER programs as

written for the vector case, make sure the F.N program will give a vector dY/dT

when the input is a number T and a vector Y. Consider

dy, d,
ar Yy g sest-yp ¥0=y,0=0,

over the interval 0 < t < 2n. An appropriate F.N program is

<< > TY << 'Y(2)) EVAL 'Y(1)) EVAL NEG 2 —ARRY >> >> .

(The first two stack items are used as local variables, and the inner program creates

the first and second components of the output and forms a vector from these

components.) After a value for H is stored, the stack input 0 [0 0] to either of the

programs EULER or IULER will produce the values at T = H.

Suppose we wish to plot the vector solution of dy;/dt = yp, dya/dt = -yq,

y1(0) =1, y2(0) = 0 using the built-in HP-48G algorithm on the interval 0 < t < 2m.

We can choose the input form Diff Eq under PLOT as indicated in chapter 1 or we can

use the user programs constructed in chapter 1 which eliminate some of the

inconveniences of the input form. In the latter case we execute the program IN.FN

and respond with

<< 'Y(2)' EVAL 'Y(1)) EVAL NEG 2 —ARRY »>>

which will be stored in FN. We execute IN.PP, respond to set H-VIEW with -1.2

1.2, and respond with set V-View to -1.2 1.2. Then we enter 0 [1 0] 6.283 on the

stack and execute G.12. The solution is y1 (t) = cos t, y2(t) = -sin t and the y; versus
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y2 plot should be a "circle". The actual figure is a set of points connected by straight

lines. Exit to the stack and press T and Y in the VAR menu to get (approximately)

6.283 [1 0]. This will be more accurate that the result as drawn by GR.12, say

with H = .0628 and N = 100. (The program GR.12 is obtained from GR.01 by

substituting DROP for DROP2 and inserting DROP after PIXON.)

Probably the first type of second order differential equation you will study is a

linear homogeneous equation with constant coefficients. Such an equation can be

solved by finding appropriate values of a constant r so that x = et is a solution of the

problem. The calculator can be used to determine unknown coefficients in constructing

general solutions. You should also use the calculator to become familiar with the

plots of solutions that occur in common problems. This type of EXERCISE will use the

function grapher in the calculator and we will not study these kinds of problems

here. But here is an associated problem. How are the coefficients in these

differential equations obtained?

Several mathematical models lead to second order ordinary differential

equations with constant coefficients. The coefficients are usually obtained from

measurements either directly on the physical system or on solutions of the system.

How could we deduce approximate values of these coefficients using measurements on

the solutions ? Consider the differential equation

2
d dY bY Loy

2 dt
dt

A common solution function has the form

y(t) = ae" Pt +be Y,
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where a, b, p, q are parameters. Suppose a set of values { (t, y) } is obtained by

making measurements. There is usually some experimental error in measurements so

the entire set { (t, y) } will be used to find the parameters. In this example the

measurements are:

{@©,1), (1,.30), (.2, -.20), (.3, -.60), (.4, -.88), (.5, -1), (.6, -1.2), (.7, -1.2), (.8, -1.3),

(.9, -1.3), (1, -1.2), (1.5, -1), (2, -.70), (2.5, -.50), (3, -.3), (3.5, -.17), (4, -.11)}

We want to deduce first approximate values of the parameters a, b, p, q, then use

these to determine the parameters B and C in the equation above.

We may be able to learn something from a plot of the data. A program for

producing such a plot is given below. We also recall that if y = Ae’kt then a graph

of Inly| versus t is a straight line with slope -k. So a graph of data {(t, Inly|)} may

reveal information. Suppose we construct a list of the data and store as L1.

  

 

In lyl

. t t
A

. . . . ¢ . . v N

*,. . . * . .

’0.... *

Graphs of Solution Observations

The graphs shown are generated with the HP-48 program

<< ERASE DRAX L1 LIST-»> 1 SWAP START PIXON NEXT GRAPH >>

<< ERASE DRAX L1 LIST-»> 1 SWAP START C—»R ABS LN

R—C PIXON NEXT GRAPH >>.
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after setting XRNG to 0 4 and YRNG in the first problem to -1.4 1.1 and in the

second program to -2.1 .28 (approximate values for In [-.11] and In 1.3).

To get approximations for a, b, p, and q we proceed as follows: suppose p > q,

then y(t) = e" 4 t(ae"(P-Dt + b). Since the first term becomes negligible as t increases,

b < 0 (we replace b with -Ibl) and a plot of (t, Inlyl) is a straight line for large t

with slope -q. From the second graph we get q = -.5 In (.11/.7) = .925 from the data

points (4, -.11) and (2, -.7). The first data point gives a = |b| + 1 (which is, of course,

an approximate equation), and dy/dt(.85) = 0 gives p(1+Ibl) e85P = 42Ib|. Finally

we use the approximate equation In -y(t) = Inlbl -925 t = 0 at t = 1.5 which gives

Ibl =4,a=5,pe85P = .336. This equation has two solutions p = .525 and p = 2.2.

Since we want p > q, we take p = 2.2. This yields the equation

y(t) =5 22t _ 4o--925t

You should now plot this equation together with the plot of the data for comparison.

These approximate values for a, b, p and q can be taken as starting values to an

iterative process to determine the parameter values by a least squares fit to data.

See Chapter 5. It is easy to use the values of p and q to determine the corresponding

values of B and C in the differential equation.

EXERCISE 3.1: Suppose the following data is collected on the solution of the second

order differential equation given above.

{ (0, 11.04), (.4, 12), (.8, 11.06), (1.2, 8.47), (1.6, 4.75), (2, .54), (2.4, -3.48), (2.8, -6.71),

(3.2, -8.7), (3.6, -9.22), (4, -8.29), (4.4, -6.15), (4.8, -3.2), (5.2, .05), (5.6, 3.09) }

Find approximate values of B and C in the differential equation.
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Second Order Input Output Problems

We now consider constructing the solution of a non-homogeneous second order

differential equation with constant coefficients. The problem is treated in many

textbooks for special types of forcing, usually sine or cosine forcing functions. A model

for an elastic spring with damping and with external forcing f(t) or a model for a

simple electrical circuit loop with external voltage is:
2

Q+2rg+coz x = f(t), x(0) =ix_(0) =0, m2 > r2.
dtz dt dt

The solution is given by

t

xq(t) = % [ e "%gin p(tes) f(s) ds , p=/0>—r2.
0

As indicated before, this problem is equivalent to the pair of differential

equations dy1 /dt = y2, dy2 /dt = {(t) - 2ry, - 2 y1,y1(0) = y2(0) = 0.

EXAMPLE: Take w2 = 41, r = .5 (so p2 = .16) and f(t) = sin?(1.5t). Set FN as

<< 'Y(2)' EVAL 'SIN(1.5*T)~2 - Y(2) - .41*Y(1)' EVAL 2 —ARRY >> and the

plotting parameters to show 0 <t<9.42,0<y <2. PutO [0 0] 9.42 on the stack and

execute G.01. Next overlay a plot of the input function. The forcing function (input)

and solution (output) resulting from this program are shown below.
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EXERCISE 3.2: Find the output graph for f(t) =1 - sin*(3.14t) for p =1, and r = .5.

Choose plot parameters to show 0 <t<6 and 0 <y; < 1. Add the input function
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graph as an overlay. Comment: The output function for this input can be obtained

from a table of integrals after several substitutions using the method of undetermined

coefficients. But, an output function for an input f(t) = 1/(2 - sin*(3.14t)) can not be

found this way.

Suppose the forcing function f(t) is periodic with period length P. If we can

change the initial conditions so that x(P) = x(0) and x'(P) = x'(0), then the resulting

solution is periodic. And if the damping coefficient r > 0, then all solutions will

eventually be close approximations to the periodic solution when viewed over one

period. We may want to view such a solution without waiting for asymptotic

behavior to emerge. Suppose we determine solutions xj (t) and x2(t) of the associated

homogeneous system so that x1 (0)= x'2(0) = 1 and x'1 (0) = x2(0) = 0; then a general

solution is x(t) = a x1(t) + b x2(t) + Xq(t) where xq(t) is the solution constructed above

for 0 initial conditions for x and x'. Expressions for x1 (t) and x2(t) are x1 (t) = e[cos

ut + (r/p) sin pt] and xz(t) = (U/p) eTt sin pt. We can use the calculator to compute

the integrals in xq(P) and x'q(P), then we can use the calculator to solve the

periodicity condition for a and b:

1- xl(P) - xz(P) [ a ] ] Xq(P)

-x -x' b] |x 'X 1(P) 1-x,(P) xq(P)

The periodic response can be obtained by using G.01 with input 0 [a b] P on the

stack.

Output for f(t) = (sin 3t)8,r = .25 and p = 1 with the initial conditions

x(0) = dx/dt(0) = 0 is shown below. This input has period /3. The periodic response

is also shown over two periods. The average value for this forcing f(t) is ©/6 and

f(t) = [f(t) - ~/6] + =/6, so a portion of the periodic response is the constant ©t/(602).
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Input: 1(t) = (sin(3t))*8 Output

7 I:(t)

I;;::::-‘;;;;Tt

-.3' n/3 2n/3

Periodic Response

EXERCISE 3.3 : Find and plot the periodic output response for f(t) = 1 — sin*(3.14t)

forp =1, and r = .5. Then overlay a plot of the input forcing function.

The friction/resistance term in the spring/circuit model that we have been

considering is given by 2rdx/dt and the restoring force term is ®2x. These terms are

usually approximations for nonlinear phenomena. What happens to the periodic

response in the mathematical model driven by periodic input when the terms are

replaced by nonlinear functions? The method of calculating the correct initial

conditions no longer applies; however, in some cases the solution to the differential

equation with a variety of initial conditions will settle toward a periodic steady

state solution as time increases.

EXERCISE 3.4 : Find a periodic solution to nonlinear problems of the form

2

dx +R(Q)+K(x)=2cost.
dt2 dt

Set H-VIEW (i. e, XRNG) =-.2 6.283, H-VIEW (i. e, YRNG) = -2.1 2.1. Let
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Ry (dx/dt) = 2*IFTE(dx/dt < -1, dx/dt + .5, IFTE(dx/dt < 1, 5*dx/dt, dx/dt - 1)).

(a) Take R = R1(dx/dt) and K(x) = x. Use initial condition t = 0, x = 0, x' = 1.56.

(b) Take R(dx/dt) = dx/dt and K(x) = x. Use initial condition t = 0, x = 0, dx/dt = 2.

(c) Take R(dx/dt) = dx/dt and K(x) = sin x.

(d) Take R(dx/dt) = R1(dx/dt) and K(x) = sin x.

Note: In each case, if the solution you get is not periodic then use the values of x

and dx/dt at t = 6.283 as initial conditions and generate another solution. Which

nonlinearities caused a phase shift from the linear case (b)?

Suppose that in the system dY/dt = F(t,Y), F is periodic in t. Since the system

has a periodic rhythm, perhaps the rhythm will also exist in the solutions. It is

easy to use the calculator to illustrate the idea of locating a solution for t = any

multiple of a given time period. For example, the differential equation

d2

—; +(o2x= Scost, m#1,

dt

together with the initial condition x(0) = &, dx/dt(0) = 0 has solution

x(t)=[§+——-—1—2]cosmt- cos t
1 - w?) 21 - %)

%(t):-m[§++2]sinmt+ 1 sin t
2(1 - ®°) 2(1 - wz)

What are the properties of such a solution? For t = 2nn we have

x(2rn) +—— dx

231 - 0°) 4t*™)
1 = COs 2N, —1— =-sin 27N,

€+ [+——]
21 - 02 21 - 02
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By squaring both sides, we see that the points x(2nn), x'(2nn) lie on an ellipse.

EXERCISE 3.5: Plot the points x(2rn), x'(2nn) for £ = 0 and n = 1, 2, ... (several values

of n) for ® = 1/Sqrt(5) and for ® = 1/3. Note that the points cycle around the

ellipse. If ®n is an integer m for some integer n, then you can see the solution is

periodic, but what happens when o is irrational?

The graph of { (x(nT), dx/dt(nT)) : n =0, 1, 2, ... } of the solution of a differential

equation dx/dt = f(x,y,t), dy/dt = g(x, y, t) when the function f and g have period T

in t is called a Poincare section. The following program collects 10 points for such a

graph on the stack:

<<{T YFN} TOL 1 10 FORN II N * 2 * 5NUM - TF

<< TF RKF 'Y(1)' EVAL 'Y(2)' EVAL RC 3 ROLLD >> NEXT >>

Executing this program for the FN function

<< 'Y(2)' EVAL '12*COS(T) - X - *('Y(1)*2-1)*Y(2)' EVAL 2 —ARRY >>

(periodically forced Van der Pol equations) for different values of € gives the data:

e =.05 e=.1 £=.15

initial value Y =[1,1] Y =11, 1] Y =1, 1]

first section point Y =[-2.1, 10.4] Y =[-2.24, 7.97] Y = [-2.21, 6.08]

second section point Y=-2.19, 10.28] Y= [-1.99, 8.28] Y = [-1.82, 6.65]

third section point Y =[-2.19, 10.28] Y =[-1.98, 8.29] Y =[1.79, 6.86]

There were no further changes in the section points coordinates (to 6 places). In each

case the solution with initial value Y = [1,1] collapsed to a periodic solution.

Warning: the program's execution is about 30 minutes.
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It is interesting to plot a solution starting at one of the section points over a

period of the system. The following figure is such a plot for one of the examples

above.

Forxced Vander Polwith ¢ = .1

Trajectories in the y1-y2 Plane

A topic occurring early in many differential equation textbooks is that of

determining trajectories that are orthogonal to the members of a one-parameter

family of curves, say W(y1, y2, p) = 0. The usual technique is to first find the

differential equation satisfied by the members of the given curve family, say

dy2/dy1 = m(y1, y2); then curves that are orthogonal satisfy the differential

equation dy2 /dy1=-1/m(y1, y2). If the original family is given in the form

dyi/dt = f(y1, y2), dy2/dt = g(y1, y2), trajectories for orthogonal curves satisfy

dy1/dt=-g(y1,y2), dy2/dt =£(y1, y2). This latter form is preferred if the curves

in either family must be specified in terms of a parameter t. Clearly, the program

G.12 can be used to plot members of both the given family of curves and the

orthogonal trajectories. This is our first example of what is called an autonomous

system. A specific example is shown.
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Orthogonal Trajectories dyy/dt=- yzlyl, dpydt = )ily2

EXERCISE 3.6: Set the plot parameters to show both H-VIEW and V-VIEW as

-5 3.5 and enter the following FN:

<< 'Y(1)*(Y(1)*2-Y(2)*2)' EVAL 'Y(2)*(3*Y(1)*2-Y(2)*2)' EVAL 2 —»ARRY >>.

Create a composite plot in the yj-y2 plane resulting from the inputs to the G.12:

to 0 0 0 0 0

Y0 [5 .1] [75 1] 1 .1] [1 .4] [1.5 .5]

tf 4 4 2 2 2

These are five solution trajectories (ovals) for the system

dy1/dt=y1(y12 -y22), dyz2/dt=yz(3y12-y22).
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Now overlay the solution trajectories of the orthogonal system corresponding to the

following inputs to the G.12 program:

to 0 0 0 0 0

y0 [0 3.4] [0 25] [0 1.5] [2 0] [34 0]

t¢ 1.2 8 8 8 8

Plots in the yj-y2 plane of solutions (yj(t), y2(t)) of differential equations

y1' = F1(y1, y2), y2' = Fa(y1, y2) are called phase plane plots. If F1(y1, y2), and

Fa(y1, y2), have continuous partial derivatives, solutions to initial value problems

are unique and it is elementary to show that under such circumstances solution

trajectories arising from different initial points either coincide or do not intersect. If

fact, it is easy to see that if (y1(t), y2(t)) is a solution of an equation of this form

and a is any constant, then (yj (t+a), y2(t+a)) is also a solution. Closed trajectories in

the phase plane indicate periodic solutions. Constant solutions, that is, points

(y1, y2) such that F1(y1,y2) = F2(y1, y2),= 0 are called critical point solutions (also

equilibrium solutions). Other trajectories of particular interest are those nearby to a

critical point.

® If trajectories arising at all points within some circle around a critical

point (y1¢, y2c) leave the vicinity of (y1¢, y2c) ast — e, then (y1cy2c)
is called a repelling solution, i.e., unstable.

® If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) approach (y1c, y2¢) ast = o, then (y1¢, y2¢) is called an

attracting solution, i.e., asymptotically stable.

Some well-studied examples of autonomous are presented below. Note the

asymptotic behavior of the solution trajectories as indicated by the graphs.
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EXERCISE 3.7 : Systems called Lotka-Voltera systems may be scaled to the form

dy1/dt=y1(3-y2), dyz2/dt=y2(y1 -3).

Such systems arise in the study of populations of two species, one of which feeds on

the other.  Trajectories that begin in the first quadrant are periodic. Plot the

solution that starts at 0 [2 2], for 0 <t < 2.25, after setting the plot parameters to

show H-VIEW 0 6,and V-VIEW 0 6, by using the plot program G.12.

EXAMPLE. The differential equations

X'+cx'+sinx=0 or y1'=yp2, y2' =-siny] —cy2

arise in the study of the displacements of damped (or undamped) pendulums. The

critical points are (0,0) and (nm, 0). For ¢ > 0, (0, 0) is an attracting solution. We use

G.12, c = .3, and FN given by

<< 'Y(2)' EVAL 'sin(Y(1))+.3*'Y(2)' EVAL NEG 2 —ARRY >>

to obtain the following graph. (For ¢ = 0, there is a family of periodic solutions.)

31y,
~——N

 
Damped Pendulum Motion (¢ =.3)

EXAMPLE. The system

dy/dt =-2y72 +y1 (1—r2)/ r, dyp/dt=2xy1+ y2(1—r2) /r:
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where (2 = y12 + y22) has an isolated periodic solution r = 1. Here ,nearby solutions

spiral towards the circle r = 1. To obtain graphs use G.12 and the function FN given

by
<< '-2*Y(2)+Y(1)*(1-Y(1)*2-Y(2)*2)/(Y(1)*2+Y(2)~2)*».5' EVAL

'2*'Y(1)+Y(2)*(1-Y(1)*2-Y(2)*2)/(Y(1)*2+Y(2)*2)».5' EVAL 2 —ARRY >>.

Another problem that has an isolated attracting periodic solution is the Van der

Pol differential equation. This equation was studied in connection with its

application to an electronic component. This example is usually studied as a function

of a parameter p contained in the "damping" term. Our figure shows a

 

3 3.2‘".

"-r ...‘. .

// Ay 3
- H—y

7L /J‘. !
_3 !“ /-

“-_\' -3

dyyfdt=y,, dyfdt=-[y;+ 3052 Ly, ]

typical graph: here p = .3. Notice that the motion is counterclockwise and that the

solution was started at (x, y) = (2, 2). The solution quickly moves close to its

asymptotic shape and is periodic. Solutions starting inside the closed curve (except

from (0, 0)) also move out to the periodic solution. Variation of the parameter p

causes dramatic changes in the shape and period of the solution.

EXERCISE 3.8: In this EXERCISE we will examine the cycle times of periodic

solutions of several special differential equations. The equations under consideration

have solutions that resemble the trajectories graphed in the figure below.
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Trajectories

Here we assuming that y(t) satisfies the initial value problem

2

94X L fx=0, x©0)=2z X =0,2 dt
dt

where the essential feature of f(x) is that it changes sign from negative to positive

as y increases through zero. We multiply by dx/dt and integrate from O to t to obtain

ix_ _ _ X

dt =t ,/ F(z) - F(x) , where F(x) =2 (j; f(s) ds.

If we denote by P/2 the time for the trajectory to proceed from the starting point to

the state x(P/2) = z1, dx/dt(P/2) = 0, then

P/2 z dx
P=2] di=2 | —=—.

0 z, ‘/E(Z)—F(X)
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We list the value y; for several examples:

(a) f(x) =x, F(x) = x2, z] =-z

(b) f£(x) = sin x, F(x)=2[1-cos x], z1 =-z

(c) f(x)=x+x2, F(x) =x% +2x3/3, z1 =largest negative root of

222 2 2.23x +[1+3]x+[z+3z]—0.

(d) f(x) =x+ x cos 4x + .25 sin 4x F(x) = x2 + 5x sin 4x, z] = -z

Notice that in (a), (b) and (d), the function F is even in x, but in (c) it is not.

Calculate and plot the values of P for one of the examples (a), (b), or (c) listed above

for several values of z. Use the numerical integration key (program) on your

calculator with a tolerance of 0.005. The following values of P are for part (d)

above:

z values .25 5 .75 1 1.25 1.5 1.75 2 2.25

P values 3.94 529 12.74 2154 8.29 5.74 5.04 5.45 8.37

Note that dx/dt =0 and x =n/4 and dx/dt =0, x = 3n/4 are equilibrium points.

Linear Variational Systems in the y1-y2 Plane

Linear autonomous systems can be solved analytically. These systems have the

form:

dy1/dt=a11y1 +a12y2, dyz/dt=az1y1 +azy2

We will consider the case det (A) # 0, which means that the origin (0,0) is the only

critical point. Special solutions have the form w = column [ y1, y2] =e M v where A

is a solution of the equation det (A- AI) = 0 and v will be given below. Such a

number A is called an eigenvalue of the system. The equation det (A — AI) =0 is

called the characteristic equation or the eigenvalue equation for the system. If A is an
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eigenvalue for the system then the column vector v = [c, d] is a non-zero solution of

(A - M)v = 0. Other solutions of our system are linear combinations of these special

solutions (in most cases).

The solution graphs of such systems near the origin (0,0) are particularly

interesting. Examples fall into the following cases: closed trajectories (indicating a

family of periodic solutions), spiraling trajectories (inward or outward spirals) and

curved spoke-like trajectories (again traveling toward or away from the origin). The

cases correspond to the type of eigenvalues for the system, viz. purely imaginary

values, complex numbers with non-zero real parts and real eigenvalues.

EXAMPLE: Consider the system

dyp/dt=y1 -4y2, dy2/dt= -y1+2y.

The associated matrix A has eigenvalues A = .5(3% 17-°) and corresponding

eigenvectors ¢ = column [4, 1.56] and ¢ = column [-4, 2.56]. When a solution starts on a

multiple of the first eigenvector, it proceeds toward the origin exponentially. When

a solution starts on a multiple of the second eigenvector it travels away from the

origin exponentially. Other solutions are a linear combination of these two solutions

and eventually proceed away from the origin. Typical trajectories are shown in the

figure below. The procedure was to start on the eigenvector solution and trace that

trajectory. Other solutions starting very near these special solutions were followed

for short periods.
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Trajectories near Saddle Point

EXERCISE 3.9 : For the case A is complex and has negative real part the origin, (0,0)

is called a spiral point critical point (so we have an attracting critical point). Use

G.12 to study

dy; /dt=-5y1 +4y2 , dy2/dt=-4y; - .5y2

Start at (t, y) = (0, [0, 1]) after setting the plot parameters to show H-VIEW -2 2

and V-VIEW -1 1 and plot for 0 <t <3.

EXERCISE 3.10 : Use G.12 to graph the trajectories initiating at (t, [y1,y2]) =

(O,[0, 1]) and at (0, [-1, -1]) for the system

dy, dy,
at@Y gTNYy

What are the eigenvectors for this system associated with the [0, 0] critical point?

Can you see them on the graphs ? The graph should show that the origin (0,0) is

neither an attracting or repelling critical point solution for the system.

EXERCISE 3.11 (a) Use the calculator to draw a graph of the solution of
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with initial conditions x(0) = -.5, y(0) = .5 for 0 < t £ 4. Use XRNG scale

-14 < x <14, and YRNG -1 <y £1. When the plotting program is completed, record

the final values of the solution x(4)/y(4). Consider the matrix of coefficients

A= {column[l, 1.5], column[-2.5, -3]} What is the characteristic equation

det (A-rI) = 0 ? What are the solutions ry, rp? Give nontrivial solutions of

(A-rI)v = 0 for r = rq and for ryp Calculate v /vy for each solution. Compare with

the answer you obtained for x(4)/y(4).c) Give the general solution of dw/dt = Aw.

Which term tends to vanish first as t increases ?

(b) Use the calculator to draw a plot of the solution of

d
—y=4x—-6.3ydx _=57x-10y,

dt

with initial conditions x(0) = .3, y(0) = -2 for 0 < t < 6. Use XRNG scale

-147< x £ 1.7, and YRNG -1 <y < 1. Consider the matrix of coefficients

A= {column[5.7, 4], column[-10, -6.3]}] What is the characteristic equation

det (A-rI) = 0 ? What are the solutions r1, rp ? Give nontrivial solutions of

(A-rI)v =0 for r = r] and for ry  Give the general solution of dw/dt = Aw.

Solution graphs of nonlinear autonomous systems near a critical point solution

can be studied using a linear approximation. Let the vector y = column [y1, y2] and

suppose we have the system dy/dt = F(y) for F(y) = column [F1(y1, y2), F2(y1, y2)l.

and F1(yY1c¢, ¥2¢) = F2(Y1c, ¥2¢) = 0. Solution behavior near the critical point

Ve = (Yic, Y2¢) can be determined by studying the linear variational matrix

J(yc) = Fy(yc) defined below. If all eigenvalues of this matrix have negative real

parts, the solution y = y. is an attracting solution. If one of the eigenvalues has a

positive real part, some solutions leave immediate neighborhoods of the critical

point. The matrix J(yc) has (i, j) element
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EXAMPLE: Consider the system dy; /dt = 2y12 + y22 - 9, dy2/dt = y12 + y22 - 5,

which has critical point solutions (2, 1), (-2, 1), (2, -1), (-2, -1). The variational

matrix for the last critical point has eigenvalue equation A2 + 16\ + 8 = 0. The roots

of this equation clearly are negative so that (-2,-1) is an attracting critical point.

The calculator can be used to find the matrix J associated with any equilibrium

point y. by using the sequence of programs given below. Because such information is

also useful for a vector system dy/dt = F(y) where y and F(y) are vectors with m

components, we present the programs for the vector case. We further will present the

programs in a form where the labeling of the independent variables can be specified

by the user. For example, instead of y1, y2, etc. the user might prefer u, v, ... . The

user's preference will be entered into a stored list as shown. After the matrix J is

determined then the calculator can be used to find the eigenvalues as explained in

the next section of this chapter.

Here is an outline of the procedure, assuming that we know the point y.. We

store the value of m in M and store the names of the m components in a list called

PL. For example, PL ={U V }. Make sure each of the variables in PL have been

purged. Store the components of the F function in a list FL. For instance, in the

example given above FL = { '2*UA2+V*2-9' 'U*2 + VA2 - §' } where U replaces y;

and V replaces y2. Then execute the program DER below:

 

Subprogram Name: DER

Purpose: Creates list JL puts the FL functions on the

stack and executes DERA M times.

<< {}'JL' STO FL OBJ— 1 SWAP START DERA NEXT>>   
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Program DER calls the subprograms DERA and DERB.

 

Subprogram Name: DERA

Purpose: Creates M -1 more copies of the first element

on the stack for use in the next subprogram.

<<1M1 - START DUP NEXT DERB >>

 

 

Subprogram Name: DERB

Purpose: Takes M copies of a function in FL, creates the

derivatives with respect to each parameter in

PL and stores them in JL.

<<1 M FORIPLIGETOd M 1 + | — ROLLD NEXT

M SLIST JL + 'JL ' STO>>.   
At this point, for m = 2, JL= {F1y (u,v) F1v (u, v) Fay (u, v) Fay (u, v)}. Now store

the values of the variables in PL at Y. (e. g. U =-2, V = -1) and create matrix JMAT

with a program called JEV given by

<< JL OBJ—> 1 SWAP START -NUM M SQ ROLLD NEXT

{M M} ->ARRY 'JMAT' STO >>

At this point we have constructed the matrix JMAT. There is a straight

forward procedure for finding the eigenvalues of JMAT. See the next chapter. For

m = 2, the eigenvalues are the roots of the quadratic polynomial

A2 — JMAT[1,1}+JMAT[2,2]))A + JMAT[1,1]*JMAT[2,2] - JMAT[1,2]*JMAT[2,1]).
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Finding critical points is not always easy. Newton's method for solving

simultaneous nonlinear equations may be used to find critical points of a system if an

approximate location y, = column [ug Vo] of the critical point is known. Then better

approximations of the critical point may result from one or more applications of the

following algorithm:
-1

Y=Yy~ OFYp: yp 2V,

The same programs listed above can be used to create the JL list for the

components of the J matrix. We need additional programs to calculate the F(yq)

vector. The program FEV that will be used to create the vector FVEC is given by

<<FL OBJ-> 1 SWAP START -NUM M ROLLD NEXT

{M} —>ARRY 'FVEC' STO >>.

Put an approximation of the critical point [ U V ] on the stack and execute the

program NWTN given by

<< DUP OBJ— DROP 'V' STO 'U' STO JEV FEV FVEC JMAT / >>.

At this point you have an incremental vector [U = Up, V = Vp] on the first level of

the stack and the old vector [U, V] on the second level. If the incremental vector is

sufficiently small, create the new vector [Up, Vp], by the command - (a minus

command). If not, execute —, then NWTN again, etc.

EXERCISE 3.12: Find a critical point of the system

du/dt=sinu+cosv-u, dv/dt=cosu-sinv-v

near u = 1.9 and v = .2, and determine the eigenvalues of the variational matrix.

(Answer u = 1.9235, v = -.17315, A = -1.66 + i .244)
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EXERCISE 3.13: Find a critical point of the system

du/dt=u-sinu*coshv, dv/dt=v-cosu*sinhv

near u = 7 and v = 2.5, and determine the eigenvalues of the variational matrix.

(Answer u = 7.49768, v = 2.76868, A = -1.79 £ i 7.4)

How does one find starting values for such a procedure? If the equilibrium is

attracting, then for a variety of initial conditions the output of G.12 will indicate

an approximate location. If the equilibrium is repelling, then running the system

backwards in time will yield the approximate location for many initial conditions.

If the equilibrium is neither attracting or repelling, then the same procedure will

work if care is used in choosing the initial conditions.

Recall that the Runge-Kutta Feldberg algorithm attempts to set a step size for

which the perceived error is below a tolerance level. There are cases for which this

algorithm is not efficient: the step selected is too small and too much time is

required to proceed from the initial time to a desirable termination. We have

previously discussed systems of the form

dy1/dt = a11y; +a12y2, dy2/dt=az1y1 +azy2.

The failure of the default algorithm occurs for such systems when the eigenvalues A

A of the matrix A made from the coefficients are both negative and Aj/A; is a large

number. This indicates that there are two solutions of the differential equation that

approach zero as time increases at widely differing rates. Such a system of

differential equations is called stiff and Hewlett Packard has provided a second

algorithm to handle such cases. Nonlinear systems can also be stiff. For example, a

system dy/dt = F(y) which has an equilibrium y. for which the matrix J(yc)

discussed above has eigenvalues with Aj/A; large is stiff in the neighborhood of y..
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An algorithm for a stiff system is somewhat less efficient than the default

algorithm when operating on a nonstiff case. Consequently Hewlett Packard's

alternate differential equation program attempts to use the default algorithm

whenever possible and switches to a stiff algorithm when stiffness is 'detected'.

To execute the alternate differential equation program, the user must provide a

program F for the function F(y), a program for J(y) and a program for dF/dt. We will

illustrate for the problem

y1'=y2, y2' =-1000 y1 - 1001 y>.

The matrix ] here does not depend on y: a program for Jis << 0 1 -1000 -1001

{22} —-ARRY >>. A program for dF/dtis<< 0 0 2 -ARRY >>. We store these

programs under the names FNY and FNT respectively. The following adaptation of

G.01 is constructed for this problem. The reader should recall G.01 and edit. Note

that the stack command {T Y FN FNY FNT} replaces {T Y FN} in the default

algorithm and that the stack input to RRKSTEP consist of four elements. The last

element is an indicator variable (in this case 2) which determines the method to be

used.

EXERCISE 3.14: Use IN.FN to store an appropriate function FN. Store FNY and FNT

as given above. Use IN.PP to set XRNG to 0 1 and YRNG to 0 1. Put the entries 0

[1 -1]1 on the stack and execute GS.01 (see next page). An alternative is to use the

form provided by HP for plotting the solution of a differential equation. To do this

enter the FN function as given above for F and check the STIFF box. Then enter the

FNY and FNT functions given above in the dFdY and dFdT boxes respectively. The

exact solution is y; = et, yp =-et- Use the Function mode to overlay the solution as

an accuracy check.
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Program Name: GS.01

Purpose: Generate a T Y(1) graph of the solution

to Tg.

Stored Quantities: XRNG YRNG FN FNY FNT TOL HS

Input level 3 level 2 level 1

Ty vector Yo T

The output stack is empty, the variables T and Y contain updated values

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T'

STO > TF << {T Y FN FNY FNT } TOL HS 0 T 'Y(1)'

EVAL R—»C 5 ROLLD DO RRKSTEP T 'Y(1)) EVAL R-C

DUP 7 ROLLD 6 ROLL LINE SWAP DUP 3 ROLLD T + TF

UNTIL > END SWAP DROP TF T — SWAP RRKSTEP T

'Y(1)' EVAL R—»C DUP 7 ROLLD 6 ROLL LINE SWAP DROP

TF T - SWAP RRKSTEP T 'Y(1)) EVAL R—»C 6 ROLL LINE

4 DROPN >> PICTURE >>   
EXERCISE 3.15: Use the calculator to graph several solutions in the x y plane of the

'non-stiff' system

3x—t=x(1 - X -Y), %Zt,_= y(5-.75x-.25y)

showing XRNG 0 <x <15, and YRNG 0<y <25. Forx(0) =.1, y(0) = .2, plot for 0

<t £ 25, for x(0) = .1, y(0) = .3 plot for 0 <t < 15, for x(0) = y(0) = 1.5 plot for 0 < t

<15, for x(0) = 1.5, y(0) = 1.0, plot for 0 < t < 20 and for x(0) = 1.5, y(0) = .8 plot for 0

< t £ 20. Here notice that (x, y) = (.5, .5), (x, y) = (0, 2) and (x, y) = (1, 0) are

equilibrium solutions.



LINEAR SYSTEMS OF DIFFERENTIAL

EQUATIONS WITH CONSTANT

COEFFICIENTS

 

In this chapter we consider linear systems of differential equations of the form

y' = Ay + f(t) where y and f(t) are vectors with, say, n components and A is an n by n

matrix. Solutions can be constructed from the eigenvalues and eigenvectors of A.

There are built-in programs in the HP-48G calculator for these eigenvalues and

eigenvectors. However, a differential equations student may wish to know just how

these quantities could be calculated. Consequently, we will present several special

programs to illustrate steps involved in obtaining eigenvalues and eigenvectors. We

recommend that beginning students use these special programs at first to become

comfortable with the mathematical concepts then use the built-in programs to avoid

the computational pitfalls that are sometimes encountered.

Homogeneous Systems

Considerfirst the vector problem dy/dt = Ay. Here we want to find all solutions

of the differential equation. It is readily shown that if n independent vector

functions satisfying the differential equation can be determined and a matrix Y(t) is

constructed with these columns, then all solutions have the form Y(t)c where c is a

vector with n components. The "educated guess" y(t) = eMty (here y(t) and v are

vectors) leads to the nth order polynomial equation det(A-AI) = 0 which is called

the eigenvalue or characteristic equation, and to the problem of determining

nontrivial solution vectors v to the problem (A-AI)v = 0 (where A is a solution to the

eigenvalue equation). Thus the problem breaks into several parts: (1) find the

eigenvalue equation, (2) find the solutions of the eigenvalue equation, (3) for each

76
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solution A, find a corresponding eigenvector v, and (4) assemble the matrix Y(t). We

will illustrate the solution process first for n = 2 and then for n = 3 component

systems. Then we will outline a procedure that uses the calculator's built-in routine

for eigenvalues and eigenvectors for all n > 2. EXAMPLES /EXERCISES are given.

A calculator program to display the eigenvalue equation for a 2 by 2 matrix is:

 

Program Name: EIG2

Purpose: Display the eigenvalue equation.

Stored Quantities: 2 by 2 matrix A

<< 'X' PURGE A DET 8 RND — D1 <<'X*2-(A(1,1) +

A(2,2))*X + D1' EVAL >> >>  
 

EXERCISE 4.1: Find the eigenvalue (or characteristic) equation for the matrices

B.

A calculator program to display the eigenvalue equation in the 3 by 3 case is:

 

Program Name: EIG3

Purpose: Display the eigenvalue equation

Stored Quantities: 3 by 3 matrix A

<< 'X' PURGE A DET 8 RND — D1 <<'X*3 - (A(1,1) + A(2,2)

+ A(3,3))*X*2 + (A(1,1)*A(2,2) - A(1,2)*A(2,1) + A(1,1)*A(3,3) -

A(1,3)*A(3,1) + A(2,2)*A(3,3) — A(3,2)*A(2,3))*'X - D1' EVAL >>

>  
 



78 CHAPTER 4

The program will display the eigenvalue equation as a cubic in X.

EXERCISE 4.2: Find the characteristic equation for the matrices

1 2-1 -1 -6 3 -5 -8 -12

A=|101| A=| 3 83|, A=| -6-10 -10

4 -4 5 6 12 -4 6 10 13

(The first matrix has the eigenvalue equation A3 — 6A2 + 11\ - 6.)

We can find the roots of the eigenvalue equation simply by executing the PROOT

program on the HP-48G calculator (left-shift SOLVE, then POLY) — see below — or

by storing the equation and using the DRAW and/or SOLVR programs. You may

have to try several settings of the plot parameters XRNG, YRNG.

EXERCISE 4.3: Find the eigenvalues of the matrices given in EXERCISE 4.2.

(Eigenvalues for the first matrix are 1, 2, 3.)

Consider the matrix

—-
o
o

—
_
O
e

o
~

o

The eigenvalue equation in the variable x is x3 — 3x — 1. A simple way to obtain the

roots on the HP-48G is to press SOLVE, move to Solve poly... and press OK.

Enter the vector of coefficients [1 0 -1 -1] and press OK and SOLVE to get all roots.

(You may want to go to EDIT MODES 3 FIX to see all the roots.) Another way to

obtain the roots is to use the ROOT command (under FCN on the graphics screen)

after plotting the ploynomial from -2 to 2. A root is x = 1.3247---. If we divide the

polynomial x3 - x — 1 by (x — 1.3247...) we obtain the quotient x2 + 1.3247---x +

(1.3247--A2-1). Zeros of this quadratic are complex eigenvalues. At this point the x

has a value stored in it. To avoid confused notation we take an extra step: bring the
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value in x to the stack and store it in R. Now place 'x*2 + r*x +(r"2-1)' on the stack,

and key in the command 'X' PURGE. You now have the desired quadratic on the

stack, enter 'X' and execute QUAD (on the SYMBOLIC menu). Follow the usual

procedure for the QUAD program to obtain the roots -.662 + i .563.

EXERCISE 4.4: Determine the eigenvalues for each of the matrices

010 010 -11 -8 -12
A=/00 1| A=[{001]|, A= 2 1 4|

4 30 130 6 4 5

When an eigenvalue A is determined, the matrix (A-AI) is singular and the

linear system solver is not appropriate to solve the equation (A-AI)v = 0. Place

(A-AI) on the stack and use the programs named PIV and ROKL given below to

obtain the Gauss-Jordon echelon form to determine the row space of (A-AI) and

nontrivial solution vectors v. Alternately you can use the program RREF on the HP-

48G (see below).

 

Program Name: PIV (Adapted from D. R. LaTorre)

Purpose: Gauss pivot on element K L

Input: Matrix A, integers K L Output: Altered matrix A

<< -5 A K L << IF 'A(K,L)' EVAL 0 == THEN "PIVOT ENTRY IS

0" ELSE A SIZE 1 GET » M << M IDN 'A(1,1)' EVAL TYPE

IF THENDUP 0 CON R—»C END 1 M FOR | 'A(l,L)' EVAL {

| K} SWAP PUT NEXT INV A * >> 8 RND END >> >>   
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Program Name: ROKL (Adapted from D. R. LaTorre)

Purpose: Interchange rows K and L

Input: Matrix A, integers K L Output: Altered matrix A

<< > AKL<< A SIZE2 GET - N<< A 1 NFOR |

'A(K,))) EVAL { L 1 } SWAP PUT NEXT 1 N FOR J 'A(LJ)

EVAL { K J } SWAP PUT NEXT >> >> >>   
Notice that the programs PIV and ROKL given above are valid for any size

square matrix.

EXAMPLE: The first matrix in the EXERCISE 4.2 has eigenvalues 1, 2, and 3.

For A = 1 an equation for v is

0 2 -1

1 -11

4 4 4

v =0.

If this matrix is placed on the stack and the command 1, 2 ROKL (to interchange

1-1
02-1|
444

Next give the command 1,1 PIV (creating 0's in the first column) to get

1 -1 1
0 2 -1].
0 0 O

rows) is given we get

—
_
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Now the commands 2,2 PIV gives

O
O
=

O
=
O

1

S
g
1

\
n

The solution relations v1 =-5v3, v2 =.5v3result: i. e, v=[-1,1, 2] or any nonzero

multiple of this vector. Alternately the command RREF (on the HP-48G) will

accomplish the same result as the ROKL and PIV commands. Similarly for A = 2, we

find that any multiple of v = [-2, 1, 4] is a corresponding eigenvector; for A = 3, we

find that any multiple of v = [-1, 1, 4] is a corresponding eigenvector.

EXAMPLE: The matrix

6 7 8

A=| 2 0-2

-4 -6 -6

has eigenvalues A = -2 and 1 +i. The procedure shown above gives the eigenvector

v = column [1, 0, -1] corresponding to A = -2. For A = 1 +i, the matrix A-A I is

6-1) 7 8
A=l 2 (11 -2

4 6 (71

When we use RREF (or1 1 PIV, then 2 2 PIV) we obtain

1,0 (00 (1-5
0,00 (1,00 (5,.5
0 0 0

This leads to an eigenvector v = column [(-1, .5), ((-.5, -.5), 1]. Recall that for the

conjugate eigenvalue, there is a eigenvector conjugate to this vector v.
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The next step is to assemble a fundamental matrix of solutions Y(t) that has as

its columns the vector solutions determined above. For the first matrix in EXERCISE

4.2 we determined eigenvalues and corresponding eigenvectors in the example just

after the ROKL program. Thus

o g2t o3t
Yo =| & &t ot

2t 462t 4ot

The solution of y' = Ay, y(0) = column[l 3 -5] is y(t) = Y(t)Y-1(0) column[1 3 5].

For the matrix example given just above the preceding paragraph (one real and a

pair of complex eigenvalue) we proceed as follows. If a matrix A has eigenvalues

A =at Bi and corresponding eigenvectors ¢ = a * ib, then by adding the exponential

solutions obtained it is known that the quantities e®*! (cos Bt a — sin Bt b) and

e®t (sin Bt a + cos Pt b) are real valued solutions of the differential equation y' = Ay.

Consequently, for this example we get the fundamental matrix of solutions

-e! (cos t + .5 sin t) et (-sin t + .5 cos t) e2t

Y(t) = Set (-cos t + sin t) -.5et (sin t + cos t) 0

e cos t el sin t et

EXERCISE 4.5: Find a fundamental matrix of solutions of dy/dt = Ay for

4 4 5 010
A=|-1-1 1], A=|001

4 45 430

When there is a eigenvalue A of multiplicity two, either there are two

independent eigenvectors c such that (A - Al)c = 0 or there is a solution of the form

y(t) = eM (vt + d). In the latter case, we derive the following requirements by
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substitution: (A -AI)v=0and (A-AI) d =v. To determine the vector d we can

augment the matrix (A — AI) with the additional column v and use Gauss elimination

to determine d. For

311

A=| 1-3-1

-4 21

A = -2 is a eigenvalue of multiplicity 2 and A = -1 is a simple eigenvalue. The

eigenvectors corresponding to A = -2 are multiples of v = column [1, -1, 2] and the

eigenvectors corresponding to A = -1 are multiples of v = column [1, -1, 3]. The

equation (A + 2I) d = column [1, -1, 2 ] has a solution d = column [0, 1, 0]. (Such a

solution vector is easily obtained on the calculator, first by calculating (A + 2I),

augmenting the matrix with the column [ 1, -1, 2 ] then using RREF on the HP-48G or

PIV as listed above to obtain d.) For this matrix A we have a fundamental matrix

of solutions

-t -2t -2t
e e te

Yo = e-t _e-2t (l—t)e'Zt

- -t -2t -2t

The matrix eigenvalues for

5 -2 -3
A=l 0 3 0

2 2 0

are A = -3 (multiplicity 2) and A = -2. The eigenvectors corresponding to A = -3 are

linear combinations of ¢ = column [1, -1, 0] and ¢ = column [-3, 0, 2]. The eigenvectors

corresponding to A = -2 are multiples of ¢ = column [1, 0, -1]. A fundamental matrix of

solutions is
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- - -3t
e 2t e 3t -3e

-3t
0o - 0YO=| 7

-e 0 2e

EXERCISE 4.6: Find a fundamental matrix of solutions for the system y' = Ay for

each of the following matrices:

011 310 -125 -5 75

101, [0 311 S -1 5

110 4 82 25 5 -1.75

We wish to present a program which accepts an n by n matrix as input and

generates its eigenvalue equation. There is a algorithm for the coefficients of this

equation which combines many subdeterminants to form the coefficients. Such an

algorithm seems cumbersome for the calculator; however another less well known

algorithm involves products and sums of n by n matrices and the computation of the

traces of some of these matrices, something this calculator does with little trouble.

The following algorithm is taken from Cullen, Linear Algebra with Applications, Scott

Foresman and Company, 1988: Let A be an n by n matrix, set By = I and then for

k=1,2,... nlet

Ax = ABk_1, ck = -(1/k) tr(Ak), Bx = Ax + ckl.

Then the characteristic polynomial is given by

AN+AlooAn2 4 4 cqo1A+Cp.

The following program will generate the coefficients in the eigenvalue equation:
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Program Name CHAR

Purpose Find the eigenvalue equation for a matrix in

level 1 on the stack

Input stack: square matrix Output stack: list of the

coefficients in characteristic equation

<<DUPSIZE 1 GET { 1} > mtx n poly <<mtx 1 n FOR j

01 n FOR k OVER { k k } GET + NEXT

j NEG / 'poly' OVER STO+ mtx DUP ROT * SWAP ROT *

+ NEXT DROP poly >> >>   
EXAMPLE: Place the matrix

3 4 6 4
1 1 1 1

A=l ¢ 8 7 8
-11 -12 -15 -14

on the stack and execute CHAR. You should receive output {1 5 13 19 10 },

meaning that the eigenvalue equation is A4 + 503 + 13 A2 + 190 + 10 = 0. This

equation has two real zeros, A = -1 and A = -2. Dividing A2 + 3A+ 2 into the

eigenvalue equation gives a factor A2 + 2L + 5s0 A = -1 + i are two remaining

eigenvalues. The procedure given above for 3 by 3 matrices extends to n by n matrices

and therefore a fundamental matrix of solutions is

-t -t -t .
4e 0 e cos2t e sin2t
-t -2t 0 0

— -t . .
Y(t) = -2e 0 -etsin2t etc052t

-2e -e e-t (sin 2t - cos 2 t) -e't (cos2t+sin 2t)
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Recall that an HP-48G calculator has a program to obtain solutions of a

polynomial equation. After obtaining the characteristic equation using CHAR, the

roots of the equation can be determined using the program PROOT located in the

POLY directory on the SOLVE menu. The output of CHAR is a list of the

coefficients. This list should be converted to an array by using the keystrokes PRG

TYPE OBJ— —ARRY before using PROOT.

EXERCISES 4.7: Find a fundamental matrix of solutions for y' = Ay when

-25 25 35 -5

1 2 2 1

5 4 6 6

-45 85 -55 -75

A=

We noted earlier that Hewlett Packard has provided professional programs to

calculate the eigenvalues and eigenvectors of n by n matrices (n 2 2). These programs

are located by pressing the MTH MATR NXT keys. EGV determines the eigenvalues

and eigenvectors of the matrix on level 1, EGVL determines only the eigenvalues.

EXAMPLE: Place the matrix

3 4 6 4
1 1 1 1

A=l ¢ 8 7 8
-11 -12 -15 -14

on the stack and execute EGV. You should receive output [(-1, 2) (-1, -2) (-1, 0) (-2, 0)]

for the eigenvalues and output for corresponding eigenvectors

-5,.5) (-5,-5) (1,0) (0,0)
0,00 (0,0) (2500 (1,0)

(-5,-5) (-5,.5 (-50) (0,0)
(1,0) (1,0) (-5,0) (1,0)
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The first two eigenvalues are complex -1 +2i and have conjugate eigenvectors which

are the first two columns of the matrix. The procedure given above for 3 by 3

matrices extends to n by n matrices and therefore a fundamental matrix of solutions is

4e 0 etcos2t etsin2t
-t -2t 0 0

— -t - -
Y(t) = -2e 0 -etsinZt etc052t

-t -2t -t . -t .
-2e -e e (sin2t — cos2t) -e (cos2t+sin2t)

EXERCISE 4.8: Find a fundamental matrix of solutions for y' = Ay when

-25 25 -35 -5

1 2 2 1

5 4 6 6

-45 85 -55 -75

A=

Remark on EXERCISE 4.8. Suppose you use EGV on the HP-48G to obtain eigenvectors

on stack level two and eigenvalues on level one. We note that the first eigenvalueis

approximately 5.964. If we want to find an eigenvector corresponding to A = 5.964

with fourth component equal to 1 we can proceed as follows: Bring the matrix of

eigenvectors to stack level one and create a copy by pressing ENTER. Press MTH

MATR and execute the command 1 COL-. You will now have the first column of the

eigenvector matrix on level one (and the eigenvector matrix without column 1 on

level two). Create a copy of this column by pressing ENTER. Then execute 4 GET

and / to bring the fourth element of the column to stack level one and to then divide

the eigenvector by its fourth component to get [6.049, -8.871, -21.106, 1] as an

eigenvector corresponding to the first eigenvalue.
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Non-homogeneous Systems

If the functions in a vector f(t) are elementary, we can use the method of

undetermined coefficients to construct a particular solution to y' = Ay + f(t). The

computation of the coefficients will require the solution of linear algebraic equations.

For more complicated functions f(t) to obtain solutions of the nonhomogeneous

equation suppose that a fundamental matrix Y(t) of solutions for the associated

homogeneous equation is known (so Y'(t) = AY(t)). It is easy to see that

t -

yO=Y®c+ ] Yt-5)Y 1(0) f(s) ds
0

is a solution of the nonhomogenous system for any vector c. In the general case a

program that uses the numerical integration capability of the calculator can produce

values at various times t for the components of the integral listed above.

EXAMPLE: Suppose A is the matrix given by

-85 .85 -2.05

A= .1 0 -9

S35 1.5 -25

(a) We calculate the eigenvalues (one real and a pair of complex conjugate

eigenvalues, viz. {-.786... , -.1568... + i 1.527...}) and corresponding eigenvectors

(v1 = column (1, -.3096... , -.159..., }, and a £ ib = column(1, .467... £i .1985..., -.144..+

i -.827...} for the matrix and determine 3 independent vector solutions u(t), v(t), w(t)

of the homogeneous system dy/dt = Ay. We take Y(t) = {e* tvq, e®t(cos Bt a — sin Bt

b), e*(sin Bt a + cos Bt b)}, so that Y(0) = [v1, a, b] . (To obtain this matrix put A on

the stack, execute EGV, SWAP and OBJ—, then use the OBJ— to put the real and

imaginary parts of the first two columns of the matrix of eigenvectors on the stack.
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Finally use the (up-arrow)STK and the ECHO commands in the matrix editor to

construct Y(0).)

(b) For simple forcing functions we can use the method of undetermined "coefficients"

to find a particular solution: for example we can choose vectors o, B so that y(t) = «

cos 2xnt + B sin 2=t is a particular solution of

2 sin 2wt

YA
ag - YT 0

-3 cos 2xtt

as follows: we split the nonhomogeneous term into a column vector {2, 0, 0} *sin 2nt +

a column vector *cos 2nt then by substituting the prescribed form for y into the

differential equation we get the equations

0 2

2nB=Aa+| 0|, 2na=AB+]|0|.

-3 0

If we use the first equation in the second equation we get

= - column { 485... , .08..., .026}, B = column { .0317..., - .002... , -.269}.

(c) For more complicated forcing functions we use the variation of parameters

method to find a particular solution. Suppose

f(t) = column [ 0, 0, w(t)]

where o(t) = IFTE(t < .34, 5t , IFTE(t < .68, 1.7 - 5(t-.34), 0)) for 0 < t < 1 and w(t) is

periodic with period 1. Then if we choose c so that y(0) = y(1) in the equation for

y(t) given above we will have a particular solution of dy/dt = A y + f(t) which is

periodic with period 1. This gives the following equation for ¢ (which forms part of

the appropriate initial condition)



90 CHAPTER4

1 ]
[YO) -Y(Dc=] Y(1-s)Y l(0) f(s) ds

0

where for example, we let Y(t) = column [ u(t), v(t), w(t) ] and u, v, w were obtained

in (a). A graph of the input function is shown below.

w

 

 

Thixd Component of Input Function

After obtaining the value of ¢, the initial condition Y(0) ¢ will produce a periodic

response over 0 <t <1.

To accomplish this computation we calculate numerically the integral values

1 A (1-s)
EW=]e! a(s)ds=.346,

0
1 -

SEW = | e®"sin p(1-s) w(s) ds = 430,
0

1

CEW = | e®"™)cos B(1-s) a(s) ds = .2738.
0

Then

0 -1.214..

-1.214 (SEW a + CEW b)

1 310..
| o(s) Y(1-s) [ -.310.. } ds = 310.EW v, - 310..(CEW a - SEW b)

which we label as RHS. The equation {Y(0) - Y(1)} ¢ = RHS gives

¢ = [.19735, -.45535, .19735] and the appropriate initial condition for the periodic

solution is Y(0) ¢ = [ -.258, .-313, -.129]. A graph of the resulting components is shown.
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'.35 YZ

Components of Periodic Solution

As noted above, the change in the third component is pronounced, whereas the other

components are influenced to a lesser extent to the change in w(t) at t = .34 and .68.

EXERCISE 4.9: Suppose that f(t) = ®(t) column { 0, 1, O} in the problem given

above. Obtain a graph of the resulting periodic solution.

EXERCISE 4.10. Use the method of undetermined coefficients to determine a

particular solution of

3 1 0 ) 1

y'=lo 3 1|y+e?|1

4 -8 2 0

Hint: Try a solution of the form y = e = 2t {t a + b} where vectors a and b are to be

determined. By substitution the requirements for vectors a and b are Aa = -2a and

ADb=-2b + a - column {1, 1, 0}. We choose a = column {1, 2, 4}, then

b = column{c, 0, 6} — column {1, 1, 0} for any 6. The reader might ponder the case

where the nonhomogeneous term has the form e~2t column {g1, g2, g3} in the case

4(g1-82)* 83-

EXERCISE 4.11: A linear model for the angular displacements in a double pendulum

(see reference in Chapter 5: The Differential Equation Problem Solver) for a system
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of two pendulums with lengths 17, I, a ratio of pendulum masses given by & =1 +

my/my is given by the differential equations

ml16;" = g{m3 62-(m7+m2) 61}

mo(11 61"+1262") = -m2g 6.

These equations may be recast as

116" = g{ma/my 62-3q1}

(1161"+1262") = -g 62

and by standard elimination techniques, we obtain

1112 6,(V) + g(11+12)5 61" + g250; =0

__}_{1_19" 59}
2=F1lght+oy

We note 8 > 1. Show that for 8] = eft the characteristic equation is quadratic in r2;

d
2 =§%fi{- (1+1:)i‘\’ (1+1)2 —%—T }

where 7 is defined by the equation Iy = 1 1. Test these values of r2 for values of T

Viz.

and § by putting 8 = 1.5 (i. e. m3 =.5m;) and graph the term in brackets for 7 in the

interval 0 < © < 1. These graphs show the roots for r2 are negative and thus there

are two pairs of conjugate purely imaginary roots for r. If we denote the roots of the

characteristic equation as r = £ i 4, r=%iv, show the solution 67 and 6, will

contain terms of the form

aj cos put + b] sin put + Gj cos vt + dj sin vt, j = 1,2.

with
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lluz] [ 11!»’-2]
= 8—_ = -aj [ z a1 by S ——g by

llvz] [ llvz]
Q-[S— g c1 dy =| & - 2 di

With appropriate initial conditions, we can find terms of the form cos pt — cos vt

which leads to the form sin {.5(u+v)t }sin{.5(u-v)t}.

Alternately we put y1 =01, y2 =01, y3 =02, y4 =02’ to derive the equation

y' = Ay where

0 1 0 0]
o o-1%, g(o-1) 0
1 1Azl 1 1
0 0 0 1
o o2 0 B

7l 7l  1 1

Forg=1,11 =.75, 1 = -1 = .10059.. , the matrix A has eigenvalues A =ztip,

A=%iv with p=4.53817..., v = 1.13454.. and corresponding eigenvectors

0 .0079001.. 0 - 82435.,
- 035852.. . 0 93526.. . 0

0 T 22035, |” o |7 - ssi4.
1 0 1 0

We denote the vectors listed above as a + i b, c + i d. There is a solution of y' = Ay

y(t) = 6 { sin pt a + cos ut b = b(1) (sin vt c + cos vt d)/d(1) },

and we note the first component has the form y1(t) = 6 b(1) {cos ut — cos vt}. Thus

the angular displacement of the first pendulum oscillates with a beats motion. It is
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interesting to plot the motion of the angular displacement of the second pendulum

which looks deceptively like a regular periodic motion of a sine wave.

Y3
7y

t
t

Motion ofpendulum 1 Motion ofpendulum 2
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This chapter contains a set of applied problems that are appropriate in the

study of differential equations. The arrangement of the problems is somewhat

random and many, if not most, of the problems can be studied as soon as the concept

of solving a vector initial value problem is discussed. The first two problems might

occur more naturally just after chapter three. We delayed the presentation of these

problems so that students could keep the time schedule used in many classes. Some

classes use a nonstandard order of topics. For example, a class may choose to study

discrete systems early in the course. This chapter includes a short discussion of such

systems, but covers only an introduction to the concept of chaos.

Consider the motion of a particle in two dimensions (x and y) in a gravitational

field. We assume that the height attained by the particle is relatively low so

that gravity is constant, and motion occurs in a plane. Put

dx 2 dy 2
vt =/ (GF) +(gp) -

The force on the projectile in the direction of the tangent to the trajectory is

F1 = T(t) — av! (thrust and air resistance). There are also horizontal and vertical

forces. The equations resulting from Newton's law of motion are:

2 2

mfl+¢£gx——FcosE)—m md—y+@d—y—Fsin6-—mG2 dtdt T CE dt de T 8

95
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Here o is a force in the horizontal direction such as wind or an artifically imposed

control on the trajectory as described below for rocket flight. Since

% = vcosb, %% = v sin 6, (5.1, 5.2)

dm
d2x 1 dt dx o
a2 = m (T(t) — av?) cos G_E df " m

= dv/dtcos 8- vsin®do/dt

) dm
d 1 . dt d
# = q (T() - av’) sin 6 -~ —%— g

= dv/dtsin 0 + v cos 6 dO/dt

Multiplying the right side of the x acceleration expression by cos 6 and the right

side of the y acceleration expression by sin 6 and adding gives

dm
dv 1 dt ) W3t = m(T()-avf)-—— v-gsin@-_ cos® (5.3)

If we differentiate the expression for 8 with respect to t we obtain

% = }‘;(%sine—gcose). (5.4)

Differential equations (1-2), (3) and (4), together with initial conditions

x(0)=y(0) = 0, and v(0) , 6(0) prescribed, will give the trajectory (x(t), y(t)). The

reader may note that when the initial velocity is low the initial values of 8 will be

quite sensitive to the v(0) value.

EXERCISE 5.1: (Artillary shell EXERCISE for the HP-48G) Take r = 2, m = 500 kg,

a = .04, ® = 0 and initial condition Y = [6, v, x, y] = [0, 200, 0, 0] for several values of



MISCELLANEOUS SYSTEMS 97

0, say between .5 and 1.2. At each elevation, determine the range and maximum

height of the shell.

EXERCISE 5.2: (Baseball trajectory EXERCISE for the HP-48G) Take r = 1.2, a = .035,

m = .25 kg, and v(0) = 50 meters /second. Determine the trajectories that start at

x = 0, y = 0 and terminate when the ball hits the ground for selected values of 8 and

o = 0, then for ® = 4 meters/second.

Rocket flight example for the HP-48G: We take r = 2, mg = 90,000 kg,

M() = mg - slope t for 0<t<120, =.1mg+ .OS*moe'Y(t‘lzo) for t > 120 where

slope = .85 mg/120 = 637.5 kg/sec, and .05mQy = 637.5 or y = .85/.05 * 1/120 = .14167

and a = .05. A reasonable model for thrust is T(t) proportional to dM(t)/dt, but some

easy experiments will convince the reader that unless some control is exerted on the

horizontal direction, say in the form of providing thrust in this direction, the rocket

will soon tilt into the ground with unburned fuel. To prevent this from happening we

take o = - B € dM(t)/dt cos 6 and T(t) = -B dM(t)/dt (1 — € cos 0). Further we assume

that special conditions are placed on the system so that the rocket lifts off and

achieves a velocity of 10 meters per second as it clears the liftoff tower. From this

point we assume the equations of motion given above apply. For € = .825 and initial

vector Y with components 6, v, x, y having values [1.5, 10,0,0] and XRNG 0

11,000, YRNG 0 350,000, we observe the following data:

t=120, 6=1555 v=3178, x=1,666, y=67.800

t=240, 0=1542, v=711, x=5,758, y=2316,279

t=300, 6=1302, v=67 x = 6,878, y = 338,756

t=306, 6=.3, v =13, x = 7,000, y = 338,960

t =654.7, 6 =-1569, v=1313, x=10416, y =150
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The graph of the rocket’s trajectory is shown below.

350,000   
X

11,000
Rocket trajectoxy

EXERCISE 5.3: Take € = .8, the initial Y to be [1.5, 10, 0, 0], and plot the trajectory.

Record the values of Y at times t = 120, 240, 300, 660. Then take € = .8125, initial

Y = [1.5, 10, 0, 0] and observe the values of Y for successive time steps to see whether

the control will give permit to a full trajectory, i.e.,, to a trajectory with flight

termination after fuel burnout (approximately 150 seconds). To do this place the

calculator in 2 FIX MODE, place {T Y FN} on stack level five, a tolerance .005 in

level four, starting step size, say .01 in level three, 0 on level two and [1.5 10 0 0]

on level one, and execute the program

<<'T" STO 'Y' STO RKFSTEP T Y >>.

Repeat execution of this program for several times to see that the first component of

Y shown on level one remains near 1.5 and the second component increases at each

execution.

EXERCISE 5.4 (Pursuit Problem): A rabbit starts at (0,1) and runs along y = 1 with

speed 1. At the same time a dog starts at (0, 0) and pursues the rabbit with speed

1.3. The dog attempts to point at the rabbit at all times but is constrained by his

momentum. That is, for the angle z between the dog's direction and the x axis, dz/dt

is restricted. What is the path of the dog? The equations of motion are:
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dx/dt =13 cosz, dy/dt=13sinz, dz/dt=-(z-6(txy))

x(0) =0, y() =0, z(0) = 2.2.

Here 6(t,x,y) is the angle between the dog-rabbit vector and the x axis. We take

H = .15, N = 60, plot parameters to show -1 < x <8, -5 <y < 2, repeatedly apply

IULER to the differential equation dw/dt = F(t,w) and watch the trajectory.

Suitable functions for Fi (t, x, y, z), Fa(t, x, y, z), and F3(t, x, y) (here F(t, w) = column

[F1, F2, F3]) are given by:

F.N1: <<-> T W '1.3* COS(W(3))' >>

FN2: << > T W '1.3* SIN(W(3))' >>

F.N3: <<— T W << 'W(3)' EVAL T 'W(1)' EVAL - DUP SQ 'W(2)' EVAL

1 - DUP SQ 3 ROLL + ¥ 3 ROLLD SWAP DUP 3 ROLLD THTA - NEG >>

THTA: <<0 IF > THEN THT1 ELSE THT2 END >>

THT1: << 0 IF < THEN SWAP / ACOS ELSE SWAP / ACOS NEG END >>

THT2: << 0 IF < THEN NEG SWAP / ACOS n —»NUM

SWAP - ELSE NEG SWAP / ACOS n —-NUM + END >>

F.N: << DUP2 DUP2 F.N1 5ROLLD F.N2 3 ROLLD F.N3 3 — ARRY >>

An easy modification of the GRAF program can be used to follow the action. The

program requires a starting stack of 0, [0, 0, 1.8] and the trajectories of both dog and

rabbit are shown dynamically as follows:

<<{ #0d # 0d } PVIEW 0 1 R->C 3 ROLLD DRAX 1 N START IULER

DUP OBJ—» DROP2 R—C PIXON 3 ROLL H 0 R—»C + DUP PIXON 3

ROLLD NEXT PICTURE >>
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A Nonlinear Problem: the Lorentz Equations

Consider the problem:

dx/dt = o(y-x), dy/dt= (r-z)x -y, dz/dt=xy -bz.

where o, r and b are parameters. This set of equations was proposed by E. Lorentz

(1963) in connection with convective heat transfer between the earth's surface and

the atmosphere. A point (x, y, z) represents convection velocities and temperature

profile, vertical and horizontal. An equilibrium, or periodic, solution to the system

represents predictable behavior. The graphs of particular solutions gave particularly

surprising results because most trajectories never seem to approach such

predictability. The paper has been one of the seminal studies in the area of chaos.

First the three critical points (that is, points (x, y, z) where the right sides of

the differential equations are zero) are (0, 0, 0) and (:t(b(r—l))°5, i(b(r—-l))-s, r-1).

0 o 0

The variational matrix at (0, 0, 0)is| r -1 0

0 0-1

, with system eigenvalues of -b and

S(-(o+1) v (cs—l)Z + 4071).

The variational matrices near the remaining critical points are

c o 0

1 -1 -8|:8=2Vb@1).

O & b

Here, the eigenvalues satisfy the equation

A3 + (o+b+1)).2 + b(r+0)A + 20b(r-1) = 0.

Forr>1,b >0, 0 > 0 one of the variational eigenvalues near (0, 0, 0) is positive, so

most trajectories starting near (0, 0, 0) leave that neighborhood. For r sufficiently
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near 1, the eigenvalues of the remaining variational matrices are negative and the

corresponding critical points are attracting solutions. When r is slightly larger, one

of the variation eigenvalues has a positive real part and the critical point is

repelling. It can be shown that solutions starting near the critical points stay

bounded and thus the trajectories have interesting behavior as t increases.

EXERCISE 5.5: Compute a solution for initial values x(0) =1, y(0) =1, z(0) =1 for

o =10, r = 28, and b = 8/3 using the built-in program for 0 < t < 15. Use viewing box

-15<x<0,-15<y <0, 20 <z <40 and position of the eye along the vector [1, 1, 5].

(See Appendix 5 for programs that give three dimensional plots.) Part of a typical

trajectory is shown below. A continuation of the trajectory reveals no asymptotic

pattern other than a continual looping in two of the x, y, z octants. The following

table shows partial results rounded to two decimals. At time t approximately .7, the

trajectory enters the viewing box, starts in a tight spiral that winds outward, finally

leaving the quadrant at about t = 14.4.

 

time X y z

608 -507 -8.06 26.44

3.90 -8.67 -1042 24.76

5.36 -987 -819 30.65

7.68 -8.80 -1143  23.55

9.45 524 -622 2138

11.48 -479 -682 18.16

13.12 -1316 -1840 26.71

13.81 -6.50 -12 8.40

1437 -1596 -25.44  26.07

14.55 -5.18 6.93 3546

14.68 3.76 6.90  25.36   
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x(t)

 

“time

  Xyz pexspective

Loxentz trajectoxy enters viewing window
neay center ofpicture winds outward to t= 14 X-tperspective

An extension to later times is shown below. Subsequently the trajectory winds in

the right hand portion of the picture making excursions into the left portion. The

trajectory never intersects inself so there is layering going on. Warning: the

development of this trajectory takes considerable time on the HP-48.

   
Lorentz System
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A Nonlinear Problem: Earth, Moon, Satellite Motion

Consider the model problem where the moon is circling the earth and a satellite

is in motion in the plane of the earth-moon orbit. The "restricted three body"

problem results when the satellite mass can be ignored when compared to the masses

of the moon and earth. (See Celestial Mechanics, Part II by S. Sternberg, W. A.

Benjamin Company, 1969.) If a rotating coordinate system is used so the coordinates

of the earth are (-u,0), the coordinates of the moon are (1-u,0), and the coordinates

of the satellite are denoted by (x(t), y(t)), then the equations of motion are

%:u, ((11—1: =2v+x-—(1;3u)(x+p)—-p(—x-t%:12 

 d dv 1-p)
a%=v, a=-2u+y— 3 y—ué

where

2=(x+n)?+y2, p2=(x+p-12+y2

The constant p is a ratio of the masses of the earth and moon

(=mp /(mp+mm) = 1/82.45). For the "earth-moon" system it has been discovered that

a solution with period approximately 6.1922 results from the initial conditions

x(0) = 1.2 u(0) =0, y(0) =0, v(0) = -1.04936... .

We take the vector w = [x, u, y, v] and create the subprogram

 

Subprogram Name RN

Stored Quantities none

input w: output: R1=r3 R2 =p3

<< OBJ—»> DROP2 SWAP DROP SQ SWAP 8245 INV + DUP2

SQ + 1523 ROLLD 1 -SQ + 15 * >>    
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The program F.N that takes w to F(w) can be as follows:

<< DUP RN 8245 INV - R1 R2 MU << OBJ—» DROP 3 ROLLD MU DUP

R2 / SWAP 1 - R1/ -1 - NEG * SWAP DUP 5 ROLLD 2 * - 3 ROLLD

SWAP DUP MU + 1 - R2 / MU * SWAP DUP 3 ROLLD MU + 1 MU -

R1/*+ - SWAP DUP 2 * 3 ROLL + 3 ROLLD SWAP 4 —-ARRY SWAP

DROP >> >>

Since this program is complex, we provide a stack status at various program

steps:

Instruction contents

DUP RN 82.45 INV t w Rl R2 MU

- R1 R2 MU t w

OBJ— DROP txuyyv

3 ROLLD MU DUP R2 / txvuypp/R2

SWAP 1 - R1/ txvuy p/R2 (u-1)/R1

-1 - NEG * t x v u y*-1)[p /R2-(n-1)/R1 -1]

SWAP DUP 5 ROLLD 2 * = t u x v {y*-1)[n /R2-(n -1)/R1 -1}-2u}

3 ROLLD SWAP t u last equation v x

DUP MU + 1 - R2/ MU * t u last equation v x p[x+p-1J/R2

SWAP DUP 3 ROLLD t u last equation v x p[x+p-1J/R2 x

MU + 1 MU - R1/ t u last equation v x p[x+p—-1/R2 x+u (1-p)/R1

* + — SWAP DUP t u last equation x-pu[x+pu—1J/R2+(x+u) (1-p)/R1 v v

2 * 3 ROLL + 3 ROLLD SWAP 4 —-ARRY SWAP DROP >>
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caxrth y

ZoomView from Origin Axea   

 

..--- -) .., . moon

.'-. . .(-'..

Satellite near Earth-Moon System

The graphs shown above require considerable execution time. The tolerance

parameter in the variable stepsize method was initially set to 0.01 and adjusted

when the satellite approaches the earth: later it was reduced back to 0.01, etc.

Another interesting periodic solution occurs for the approximate initial conditions

x(0) =0, u(0) = 1.58, y(0) = 1.2, v(0) = 0.

We note that equilibrium points for the restricted three body satisfy

u=v=0, y[1-(1-u)/r3-p/p31=0, x=(1-4)(x+u)/r3 +p(x-1+u)/p3.

PROJECT: Find the equilibrium solutions of this system and determine their

stability properties. Notice that for y = 0, we need only solve an equation of the

form g(x) = 0, but for other solutions, we need to find the solution of a pair of

nonlinear algebraic equations. We can use Newton's method as presented in Chapter

3 for finding such values of x and y if we can find a suitable starting point x,, yo.

(Two of the equilibrium points are located at x = .48787, y = + .86603.) To determine
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the stability, we need to find the eigenvalues of the 4 by 4 variational matrices

associated with each critical point solution.

Discrete Dynamical Systems

In some situations, the problem of interest is to determine information concerning

the asymptotic behavior (i.e., for large values of t) of solutions. This occurs often in

differential equations; however we will illustrate this type of problem by

introducing a new type of problem.

The sequence { y, }o™ where y, is given by a recursive function of the form

Yn+1 = F(y, ), is called a discrete dynamical system. Euler's method, the improved

Euler method, and Newton's method for finding roots may give such systems.

Concepts such as constant "solutions", attractive or repelling solutions taken from

differential equations, are also present in the study of such systems. Discrete

dynamical systems (in one dimension) have solutions with more complicated structure

than do differential equations. For example, y, = a constant (for all n) is called a

period one solution, y44 o=@ and yge, o =B is a period two solution,

Yam= % Yams1 = B’ Yams2 = X is a period three solution, etc. Consider

Yne1 T (1 + a) Yn—a (Yn)z and Yo = 1.

We want to regard a as a parameter and study the effect on the "solution sequence

{y, )" as ais varied. In particular we want to study a = 1.8, 2.3, 2.5 and 3 as well as

nearby values of a.

After several numerical experiments, we find that for a = 1.8 the terms of the

sequence approach 1, but for a = 2.3, the terms of the sequence approach 1.18 for even

n and .69 when n is odd, etc. This leads us to the following graphical program:
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Set the value of a. Calculate the first 50 terms, then plot the values of the next

100, then change the value of a and repeat. To get these cases on a single plot, we

plot the values of y, on the horizontal axis and the values of a on the vertical axis.

The following programs can be used: Store A = 1.8 and N = 100, set the plot

parameters so that -5 <x <15 and 1.6 <y < 3.2, then enter the programs.

 

Program Name DDS

Purpose Plot the asymptotic value of a discrete system

for several values of the parameter a

Stored Quantities FN1 DDS1 DDS2 A N XRNG YRNG

No input: Output is a graph

<<{# 0d # 0d } PVIEW .1 112 START DDS1 A .1 +'A

STO .1 NEXT PICTURE >>    
Subprograms are:

 

Subprogram Name FN1

Purpose Create the new value of y, given the previous

value

<<DUP SQA*SWAP A 1+*SWAP->>

 

 

Subprogram Name DDS1

Purpose Execute FN1 50 times, call DDS2

<< 1 50 START FN1 NEXT DDS2 >>    
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Subprogram Name DDS2

Purpose Repeat FN1 N times, plot points

<< 1 N START FN1 DUP A R—C PIXON NEXT >>    
(The 50 executions of FN1 without graphing allows the sequence to come to "steady

state" before the graphing begins.) Execute DDS.

§ TSII

  
Discxete Dynamical System

EXERCISE 5.6. Change FN1 to repeat the process for the system

Ynet1 = (1 +a)y, +2a(cosy,—1)and y, = .1.

An appropriate range of the parameter a begins at 2.0.

The objects in a discrete dynamical system may be vectors. One example was

discussed (without labeling it as a discrete dynamical system) in EXERCISE 3.5.

Particular attention has been given to the case when the yn are two-dimensional

vectors. In this case we can easily plot the vectors (yn1, yn2), n =1, 2, ... on a graph.

In addition to the cases of an attracting or repelling equilibrium solution, other types
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of interesting behavior may occur. The reader should consult [1] or [2] for more

details. We will present the example, called the Henon map, in which the point

(x, y) is "mapped"” to the point

2, .
=xcos0—(y—-x ) sin oX

— . 2
y=xsino + (y-x") cos o

Here o and the starting values (xg, yg) are parameters. For fixed o, the trajectory

(xn, yn), n =0, 1, 2, ... may have significantly different structure for different values

of the initial point. Usually trajectories arising from several initial points are

shown on the same plot. And different values of a may result in quite different plots.

In our example we take o = Cos'1 (.4 ). We modify the GRAF program from Chapter

1 to a program called GRF.H as follows:

<< {#6d #06d} PVIEW DRAX DUP2 R—»C PIXON 1 N START HMAP

DUP2 R—C PIXON NEXT PICTURE >>

where HMAP is given by

<< > X Y << 'X*COS(ALFA) - (Y - X*2)*SIN(ALFA)' EVAL

' X*SIN(ALFA) + (Y - X*2)* COS(ALFA)' EVAL >>

If we set XRNG and YRNG each to -.8 .8 and use N = 400, xp = .63, yo = .2 and

execute GRF.H we obtain a curious picture with six islands. Repeating the program

with xg = .55, yp = 0, then with xg = .75, yp = 0 give two "closed" curves. (The outer

curve seams to contain another island.) These three trajectories are shown on the

following plot:
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EXERCISE 5.7: Set o = Cos™1(-.05 ), take initial points (.32, .9), (.30, .9), (.28, .9), (.30,

0) and (.2, 0) with XRNG = YRNG = -1 1: execute GRF.H.

Next we consider here the case zp4+1 =f(zn,c), n=0,1, 2, ... for given zg, where

all the z elements are complex numbers (a two component vector with special

algebraic rules) and the complex parameter number c is given. The purpose is again

to focus attention on the asymptotic behavior of the dynamical system solution

sequence {zp}. In particular, we will study systems of the form zn4+1 = zn2 + ¢, Zo

given, where c will be fixed in each system. For each number ¢ depending on the

starting position zg, one of three things can happen: (1) lim lzy | = o, (2) lim lzp | =

some number, or (3) neither of the above. We show the dependence of the elements

of the system on the starting value zgp = o by using the notation z,(a) for the

elements. The "Julia" set for this sequence is the boundary of the set

A={a: lzg(a)l - o }. (Elements on the boundary of this set do not belong to the

set.) Many of the elements of the Julia set have a wandering property, that is, they

do not have a limit and so their behavior is called chaotic. (Iterates f(a), f(f(at)),

f(f(f(a))), . . . wander around the Julia set.)

The following program is to graph members of the Julia set. The procedure of

finding lots of members of this set may seem tricky at first because the requirement to

be in the set is quite delicate and any roundoff error may cause a sequence o, f(a),
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f(f(a)), f(f(f(a))), ... beginning with o in the Julia set to drift out of the set. The

algorithm to be given is based on the property that for any fixed c, the inverse

images of a repelling fixed point belong to the Julia set, that is, for w in the set, the

images flw), 1L(w)), £F1(EL(EL1(w))), ... also belong to the set. (Here f1(w) =

+V(w—=c).) It can be shown that the latter sequence is stable for this function f,

whereas the sequence of direct images is not stable to roundoff error.

Suppose the mapping z — f(z) = z2 + c has has a fixed point, that is z2 + ¢ = z.

There are two such values of z, namely

The student should obtain this number z or several values of the complex number c to

see how the HP-48 handles complex square roots and to verify that the absolute

value |f(one of these two values of z)| > 1. Such a value of z is called a repelling

fixed point of the mapping f. (Complex numbers w near such z have the property

that f(w), f(f(w)), f(f(f(w))), ... get further and further from w.)

We call the repelling fixed point located by z, compute and graph members of

the sequence f1(z), £1(fLl(z)), £1(F1(f1(2))), ... . It can be shown that all such

complex numbers satisfy |wl < (1+ V(1+41cl))/2. Fora complex number w since there

are two inverse images, viz. V(w-—c), the particular sequence of inverse iterates

chosen involves a random choice of #+.

Choose and store a complex number C1. To set the drawing screen and compute

the repelling fixed point z we execute the following subprogram, named PREP.

<<C1DUPABS4*1+V 1 + 2/ DUP NEG SWAP DUP2

XRNG YRNG 4 * 1 SWAP - Vv 1 + 2/ >
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The output is a fixed point of f. If the output has absolute value larger than .5 call

the number Z, if not put Z = 1 - the output. Store Z and execute the program BACK

given by

<<{ # 0d # 0d } PVIEW Z BCK1 >>.

Here BCK1 is

<< 1500 STARTC1 - ¥ ONE * DUP PIXON NEXT DROP PICTURE >>

and the subprogram ONE is given by

<< (1,0) IF RAND .5 < THEN NEG END >>.

For ¢ = (-.12256, .7449), the following "graph" results

> .L":-\v"

Douady's Rabbit: ¢ = (-.123, .745)

EXERCISE 5.8: Execute the program sequence given above for c = (-1,0), ¢ = (-.5, -.1).

Parameter Identification Problems Revisited

Suppose { (t, y) } data is given for the solution of an initial value problem and

we wish to determine appropriate values of a parameter vector w = [p, q, a, b, .] in a

function y = g(t, w) to fit the data, say in a least squares sense. That is, we want to

choose w to minimize the sum

N 2
'—21 [y, -8, wl .
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By taking partial derivatives with respect to the components of w and setting them

to 0 we obtain equations

N og

2BtWlg(4w =0 k=12M

We take the left sides of these equations as components of a vector F, and attempt to

solve the vector F(w) = 0. We will assume we have a starting values for the

parameter vector w and give an iterative process.

The reader should review the algorithm we developed in chapter three for

finding a solution of a vector equation F(w) = 0. In this case also we assume there

are m parameters and w will be the m vector of parameters and F will be the m

vector given above involving the partial derivatives. Just as before we assume the

components of the function F are smooth, and we have an approximate solution w, so

that Taylors theorem gives the approximate formula

F(w) = F(wp) + J(wp) (W = wy)

where the matrix ] has i, j element oF;/dw, If w is to be a good approximation of the

solution, the left side of this equation is zero and we get a "formula" for an improved

vector solution w in terms of the old approximate w,. Just as in chapter three we

will provide an algorithm to construct and evaluate the function F(w) and the

associated Hessian matrix.

Here is an outline the problem: First we create calculator programs for

0

[y-gtw)]l——(t w),k=1,2, .., M
awk

then we will use the program called DER created in chapter three for finding the

derivatives of these functions with respect to p = wq, q=w2, a = w3, b = wy, etc.



114 CHAPTERS

After execution, the derivatives can be used to create terms in the Hessian matrix ]

used in Newton's method.

Next we form the list { (t;,y4), (t,, Vo), - .., (t,, V) } by entering the number

pairs on the stack, then entering n and the command —LIST and store this as DTA1.

Finally we create programs called JACM, JEVP, FACM and FEVP to

accumulate the data sums in the Hessian matrix and the function F after assigning

values to p and q. (These programs will replace JEV and FEV in the chapter three

procedure.) Now we have the ingredients of the Newton formula:

Wnew = W = J(w)1 F(w)

and can find a new vector w.

Many engineering and science problems require the solution of several nonlinear

equations. Newton's method is one such algorithm. Most methods to accomplish this

can fail under a variety of conditions. Good starting guesses are essential.

HP-48 programs are listed below for Newton's method for this problem. Here we

assume there are m parameters and n data points

1. Store the value of m in M and and the names of the m parameters in a list

named PL, say { P Q } for 2 parameters or in the case of four parameters, say

PL={P Q A B}). Make sure each of the parameter "variables" in PL has been

purged.

2. Purge the variables T and Y and store the components for the m functions

F(T, Y, P, Q) in a list named FL. For example,
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{ '( Y = 3*EXP(-P*T) + EXP(-Q*T) )*3*T*EXP(-P*T)

‘(Y - 3*EXP(-P*T)+ EXP(-Q*T))*T*EXP(-Q*T)'}

would result from trying to fity =3 e-Pt—e 4t to data.

The program DER given in chapter three will use the calculator's ability to take

appropriate derivatives of the functions in FL.

Store the the N elements of data { (T, Y) } in a list DTA1.

Now create the programs (which assume values are assigned to P, Q)

 

Program Name JACM

Purpose Create matrix JMAT, gets a data point t,y

and calls the subprogram JEVP and does this for

each data point

<< {M M} 0 CON'JMAT'STO 1 N FOR | DTA1 | GET C-R

'Y' STO 'T' STO JEVP NEXT >>

 

 

Subprogram Name JEVP

Purpose Evaluates the elements in JMAT at the data

point and adds it to the value to the previous

sum in the JMAT element

<< JL OBJ—> 1 SWAP START -NUM M SQ ROLLD NEXT {M M}

—ARRY JMAT + 'JMAT' STO >>  
 

JMAT will be the Hessian matrix of derivatives.
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6. Now for FVEC (F vector). In the following P, Q values have been assigned.

 

Subprogram Name FACM

Purpose Create FVEC, get a data point t, y and call

FEV: do this for each data point

<<{M} 0 CON 'FVEC' STO 1 N FOR | DTA1 | GET C-R 'Y’

STO 'T' STO FEVP NEXT>>

 

 

Subprogram Name FEVP

Purpose Evaluate the functions in FL att,y, P, Q, ...

and add the value to the previous value stored in

FVEC

<< FL OBJ— 1 SWAP START -NUM M ROLLD NEXT {M}

—ARRY FVEC + 'FVEC' STO >>   
Procedure: Store PL, FL, N, M and execute DER to get JL (J list). Put a vector [p,q]

with initial values of P and Q on the stack and execute a program NST1 given by

<< DUP OBJ— DROP 'Q' STO 'P' STO JACM FACM FVEC JMAT / >>

The result is a copy of the old value of [P,Q] and the increment [AP, AQ]. Execute

the command - and repeat.

EXERCISE 5.9: Use starting values p = .25, q = 2 and the data to determine

appropriate values Of p and q in

y=3ePt-2¢e4qt:
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to fit data { (0, 1), (.4, 1.89), (.8, 2.01), (1.2, 1.9), (1.6,1.72), (2,1.53), (2.4, 1.34),

(2.8, 1.18), (3.2, 1.03), (3.6, .903), (4, .79), (5, .57) }

EXERCISE 5.10: Use starting data p = 2.2, q = .925, a = 5 and b = -4 to determine

appropriate parameter values in

y=aePt+beqt

to fit data {(0, 1), (.1, .3), (.2, -.2), (.3, -.6), (4, -.88), (.5, -1), (.6, -1.2), (.7, -1.2),

(.8, -1.3), (.9, -1.3), (1, -1.2), (1.5, -1), (2, -.7), (2.5, -.5), (3, -.3), (3.5, -1.7), (4, -.11)}

PROJECT EXERCISE: Data Fit in a Population Problem. Population data { p; } at

times { t; } (in ten year intervals between 1790 and 1990) was given in chapter two

just before problem 2.10. Suppose we use a model dp/dt = ap — bp? : the form of the

solution was also given in chapter two. We wish to minimize the payoff function

2

.. S 2P,
P(py ab)=2 p;- . .. at

bp,+(a-bp)e

 

i=0 i

Starting values for the equations obtained by setting the partial derivatives with

respect to p,, a, and b to zero can be obtained by using the data in the year t = 0

(1790) and the years when t = 50 and t = 100. We use Newton's iterative method.

We do not know the form of the solution for some of the population models given

in chapter 2. See EXERCISES 2.7, 2.9, 2.10 and 2.11. We have just discussed how to

choose problem parameters to achieve a fit to data observations when the functional

form of the solution g(t, p, q) is known. Consider the new problem of choosing p and q

so that the solution of

dy/dt=qy (1-yP), y(0)=.2
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best fits the (t, y) data (1, .4), (2, .5), (3, .75), and (4, .9).

Here we have an initial value problem, say for population growth, of the form

dy/dt = {(y, p, q), y(0) = yo and wish to choose the parameters p and q so that a

close fit to data is achieved. The solution must be obtained by using a numerical

method (improved Euler, Runge Kutta, etc.) and the functional form of the solution is

unknown. Even though we may attack a vector initial value problem of this type,

for simplicity we will assume y, p, and q are real numbers and for values of y, p, q in

the domain of {, f(y, p, q) is a real number. If we also assume f is a smooth function,

we can differentiate the differential equation with respect to p to obtain

du
it -ypQu+f, (y.p.q

where u = dy/dp and fy and f, denote the partial derivatives of f with respect to y

and p respectively. A similar equation holds for v = dy/dq. Consider the vector

initial value problem dw/dt = F(w) with w = w(0) at t = O for

fy. p, ) Y,

Fw)=|fyP Qu+f,0.P 9| wo)=|g I

<
g
<

t, (v, P, @ v+, (v, P, Q) 0

Our criterion for bestfit is to choose p, q to minimize the payoff function

N 2
I = -21 [yl - Y(til | q)] .

1=

Here the data observations are {(t1, y1), (t2,y2), ..., (tN, YN)}, and y(t, p, q) is the

solution of the original problem (and the first component of the solution of the vector

equation). If we set the derivatives of ] with respect to p and q to zero, we get

N N
.g,l [y, -y, p, Pl ut, p, 9 =0, ¥ [y-y(t, p, Pl v(t, p,q =0
i= i=1
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to determine p and q.

Ourfirst thought here may be to apply Newton's method to determine solutions

p, q of these two nonlinear equations. However, recall that Newton's method would

require partial derivatives of u and v with respect to p and q. This could be done by

differentiating the original differential equation more times, but then we would need

to solve an initial value problem containing 6 differential equations !

Alternately, suppose that we have a trial set of parameters p and q and wish to

choose better values p + Ap, q + Aq. If the incremental values are small then

dy dy
y(ty pAp, a+AQ) = y(t, p. @) + (P, 9 AP + 31, P, 9) Aq

Define a vector z with components y; - y(tj, p, q),i=1,2, ..., N and an N by 2

matrix A with components A(i, 1) = dy/dp(ti, p, qQ) and A(i, 2) = dy/9dq(ti, p, q), i = 1,

2, ..., N. The payoff at p + Ap, q + Aq is

N 2
J = igfi [y, - y(t, p+Ap, q+Aq)]

and we wish to choose Ap and Aq so that the new value of J is minimized. If we

substitute the approximate value of y(tj, p+Ap, q+Aq) into J, we need to choose the

vector 8 = column [Ap, Aq] so that the quantity | |A8 — zI |12 is minimized. Here

| 1A8-z112 is the sum of squares of the components of the vector A§ — z. This is

called a linear least squares problem. The solution is determined by solving

AtAS = At z where Al is A transpose. (There is a better numerical method to

determine 6 presented in standard linear algebra textbooks.) We change to the new

values of p and q and repeat the process several times until either this process

converges to good values of p and q or until it is clear the process is not converging. In

the latter case, we need new starting values of p and q.
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Thus our procedure is to take an initial guess for p and q and solve the initial

value problem for w and recording the values of y, u, v at the various t; measurement

points, forming the matrix A and vector z and solving for the incremental vector ,

correcting p and q and cycling thru this sequence of steps until a conclusion arises.

EXERCISE 5.11: Choose p and q so that the solution of

dy/dt=qy (1-yP), y(0) = .2

best fits the (t, y) data (1, .4), (2, .5), (3, .75), and (4, .9). Our criterion is to

minimize

P=[y1 -yl p, @1 +Iy2 -yp, 9+ [y3 - yG, p, Q? + [ys - y4p, Q)2

where y1 = 4,y2 =.5,y3 =.75, y4 = .9 and y(t, p, q) is the solution of the original

problem. Choose starting values of p and q near 1 and 1.
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USER MENU HOUSEKEEPING AND

ORGANIZATION

 

The term user memory refers to that part of the calculator's memory which is

accessible to a user through the VAR menu on the HP-48. User memory is where we

store the various types of objects recognized by the calculator, e.g., real or complex

numbers, arrays, programs, lists, etc. These objects are stored as global variables (in

calculator terminology) which you may regard as the name of the object. Here we

are concerned with the basic "housekeeping" procedures associated with programs.

By "housekeeping”, we mean the simple procedures used to enter, name and store, run,

edit and purge programs. The Owner's Manuals minimally address programming; but

anyone desiring to become really proficient in developing and using programs across a

broad spectrum of applications is strongly advised to study the books "HP-48

Insights" by William C. Wickes.

What is an HP-48 program?

A program is a sequence of data objects, procedures, commands and program

structures — the program body — enclosed between program delimiters:

« program body ».

Entering programs

Programs are keyed into the command line and entered onto the stack (level 1) with

[ENTER]
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Naming and storing programs

To name and store a program which has been entered onto level 1 of the stack,

press E] to signify algebraic entry mode (suitable for entering names and

expressions), then key in the desired name and press. The program will be

stored in user memory under its name, and pressing on the HP-48 will show a

user menu key with an abbreviated name (up to 5 characters).

To run a program

To run a program, simply press the white menu key beneath the program's

abbreviated name; alternatively, key the full name into the command line and press
 

| ENTER I I EVAL ] If the program happens to be on level 1, you may simply press

EVAL |. Of course, if the program requires input data for its proper execution then

 

you must first provide that data in an appropriate way, either on the stack or as

stored variables which are named in the program body.

EXAMPLE. The program « DUP 2 - NEG * » takes a number "y" from level 1 as

input data and returns the calculated value of y(2-y) to level 1. Key in the program

by first pressing @ on the 48, followed by the other indicated keys. Press

ENTER to add the closing program delimiters and copy the program to the stack.

Press D PGM1 to name this program PGM1 and store it in user memory

under this label. Press to see the menu keyM.

Now, run the program using as input data the number 4: key in 4 and press

M. The answer, -8, will be displayed on level 1. Notice that you did not

have to enter the data onto the stack before pressing M. This is typical;

pressing the menu keyM automatically entered the data for you. Run the

program with some more inputs.
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Syntax Errors

When keying a program into the command line, if an object is accidentally entered in

an invalid form, then pressing ENTER |will cause the calculator to refuse to copy

the program onto the stack and display a message indicating a syntax error. To

remove the message from the screen so you can correct the syntax, simply press

EXAMPLE. Keyin: « — ARRY ENTER |. Notice what happens. Now remove

the message, delete the space after the — and press ENTER |.

Editing programs

To make any change in the body of an existing program you must edit the

program.

o If the program is on stack level 1, the IEI key will copy it into the

command line where you can then make the required changes. Press

ENTER to return the corrected version to level 1.

e If the program is not on stack level 1, but stored in user memory under,

say, 'NAME' the keystrokes E] l NAME |M I RCL| will recall the
 

 

program to level 1 and you can proceed as above.

EXAMPLE. Start this example with the program « 1 N START EULER NEXT »

stored in user memory as M,

(i) Recall it to stack level 1 with DM.

(ii) Copyit to the command line with |—l_|, and change EULER to IULER.

(iii) Copy back to level 1 with ENTER |M, then replace the old version by

presing (1] [TAYTM 570
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(vi) Finally, check your last work by recalling to level 1, examining the result,

then dropping it from the stack with DROP |.

HP-48 Shortcuts

e You can recall to level 1 the contents of any stored variable, say TRY1,

by pressing TRY1 |M. Thus, rightshift will recall.

e Likewise, you can store (or load) an object on level 1 into any stored

variable, by pressing , then the variable's menu key. Thus,

leftshift will load. Try this by loading « + SQ COS » into TRY1; now

recall the contents.

Purging

The object may be any one of the variety of objects recognized by the calculator:

a real number, an array, a program, etc. To purge variable PGM1 is to remove it and

its contents entirely from user memory. Purging a single variable is usually done

with the keystrokes D [ PGM1 ]M I PURGE |. The label disappears from the
 

 

menu and its contents are removed from user memory. To purge several variables at

the same time press, then the menu key for each variable you wish to purge,

then ENTER | l PURGE l to purge the variables in this list.
 

 

EXAMPLE. Start by storing the numbers 1, 2 and 3 in variables 'X' 'Y' and 'Z' in

user memory. With your VAR menu active, purge 'X' by pressing 'X left shift

; watch EM disappear. Now purge the two remaining variables at the

same time by building a list { Y Z } and pressing. Watch these variables

disappear.

EXERCISE. The following program takes numbers X, y from the stack and returns

sin (xy).
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« * SIN »

(a) Key in this program and store it under variable "EX.1".

(b) Run the program with inputs .5, . You will get an expression instead of a

number. To get a numerical value use the —-NUM key.

(c) Change the program body by adding NEG at the end.

(d) Run the new program with .5, 1 -NUM. What does the new program

calculate?

(e) Purge programs TRY1, PGM1, and EX.1.

Just as a file cabinet organizes stored material in an office into convenient

groupings, HP-48 directories enable you to organize the variables and programs that

you store in memory. This memory is called VAR. The VAR memory is itself a

directory — the HOME directory, and you can always go to HOME. Moreover, in

much the same way that certain drawers in a file cabinet are further subdivided into

sections, you can create subdirectories within the directories. The basic idea is to

group together variables associated with a particular topic or subtopic.

A convenient directory structure for the material in this book is as follows:
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HOME: DE1 MTX

|

WKSP

level 2: G.12 G.Ol G1.TY ER.SE IN.FN IN.PP

level 2 T Y FN DIRF FNEQ| EQ
page 2

level 2
page 3 DF1 DF2 DF.3 DF.4 TOL HS

      
 

HOME contains various entries, one being the DE1 subdirectory — in which you

may group together all the stored quantities for differential equations. HOME is the

parent directory of subdirectory DE1.

Here's how to create our first subdirectory, subdirectory, DE1: press D

DE1M (note thatM appears on the MEMORY menu). A new

labelM appears in the original VAR menu. PressingM will send you

to this new DE1 subdirectory, which is now empty.

You should enter the programs in DE1: IN.FN, IN.PP, G1.TY, G.0l, G.12 ER.SE,

FN, T, Y, TOL, HS, PPAR, and EQ. The programs INIT1, GRAF, N, H, PPAR,

EULER, IULER, EQ, etc. (if used) should be entered into a separate directory, DE2.

To transfer a variable from HOME to DE1 first recall its contents to the stack with

,then recall its name to the stack, activate the DE1 subdirectory and press

STO, then purge it from HOME.
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You may want to arrange the programs in a particular order in say DE2. To do

this enter { } on the stack. If GRAF is to be first (i. e. on the left side of the menu),

press D GRAF ENTER + to create the list { GRAF }. If the next program is to

be INIT1, press [] INIT1 ENTER + to create { GRAF INIT1 }. Continue in this

way until you have an ordered list of the elements of DE2 that you care to order.

Then press ORDER on the MEMORY menu to rearrange the menu.

Subdirectory MTX should contain the PIV, ROKL, and CHAR programs from

Chapter 4. You may want an WKSP directory for odds and ends. The serious

differential equations student should create a subdirectory for the programs in

Appendix 4.



DIRECTION FIELDS

 

The following is a set of programs that will construct a direction field for

dy1 dy2

T =Fl(y1, yz), qt - Fz(yr y2).

We construct the programs so that a student may conveniently overlay a plot of one

or more solution trajectories on the direction field. This means that we should

present one set of programs for those students who will use the built-in algorithm for

constructing solutions and a second set of programs for those users who will use the

Euler or improved Euler method to produce the solutions.

To use the HP-48G built-in algorithm suppose that FN gives the values of the

vector [F1(Y), F2(Y)] (as illustrated in the first part of Chapter 1). That is FN

takes values of the variable Y from memory. Set appropriate values in XRNG and

YRNG (program IN.PP presented in Chapter 1 can be used for this task), enter

program FN (a method is to use IN.FN also from Chapter 1) and execute DIRF.
 

Program Name: DIRF

Purpose: Generate a direction field in the region

prescribed by XRNG, YRNG.

Stored Quantities: FN

Input: none Output: direction field

<<[0 0] 'Y' STO ERASE{#0d # Od} DRAX PVIEW PPAR 2

GET PPAR 1 GET DUP 3 ROLLD - OBJ— 9 / 3 ROLLD DUP

40 / 4 ROLLD 11 / SWAP OBJ— DF1 PICTURE >>   
128
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Subprogram Name: DF1

<< —> R DY2 DY1 YiL Y2L << YiL 1 10 START DY1 +

DUP 1 12 FOR J DUP Y2L DY2 J * + R 3 ROLLD DF2

NEXT DROP NEXT DROP >> >>

 

 

Subprogram Name: DF2

<< DUP2 'Y(2)' STO 'Y(1) STO FN OBJ— DROP SWAP

DUP2 IF0 == THEN DF.3 ELSE DF.4 END >>
 

 

Subprogram Name: DF.3

<< 0 IF == THEN DROP2 R—C PIXON DROP

ELSE DROP2 3 ROLL 3 DUPN DUP2 - R—»C 4 ROLLD + RC

LINE END >>
 

  Subprogram Name:  DF.4

<< DROP / ATAN DUP COS 3 ROLLD SIN 5 ROLL DUP 4

ROLLD * DUP2 - 6 ROLLD + 4 ROLLD * DUP2 - 5 ROLLD +

SWAP R—C 3 ROLLD R—C LINE >>  
 

appropriate program into EQ by excecuting FN.EQ given by

<< 'FN' RCL 'EQ' STO >>.

129

Note that you can overlay a solution trajectory of the system using G.12 as

described in Chapter 1 after the inputs tg , yo, tf are placed on the stack or one can

use the input forms and the choose boxes. In the latter case we need to load the



130 APPENDIX 2

The user may want to place these programs in the directory DE.1 containing the

programs from chapter 1, placing DIRF early in the menu order and the subprograms

late in the order.

For those users who wish to use the Euler or improved Euler algorithm given in

the second part of Chapter 1, the programs D.RF, DF.1 and DF.2 are alternatives to

DIRF, DF1 and DF2. To execute these programs we require a program F.N that takes

the number T and the vector Y from the stack and produces [F1(Y), F2(Y)].

 

Program Name: D.RF

Purpose: Generate a direction field in the region

prescribed by XRNG, YRNG.

Stored Quantities: F.N

Input: none Output: direction field

<< ERASE {#0d # Od} DRAX PVIEW PPAR 2 GET PPAR 1

GET DUP 3 ROLLD - OBJ—» 9/ 3 ROLLD DUP 40 / 4

ROLLD 11 / SWAP OBJ— DF.1 GRAPH >>
 

 

Subprogram Name: DF.1

<< — R DY2 DY1 Y1L Y2L << Yi1L 1 10 START DY1 +

DUP 1 12 FOR J DUP Y2L DY2 J * + R 3 ROLLD DF.2

NEXT DROP NEXT DROP >> >>
 

 

Subprogram Name: DF.2

<< DUP2 2 -ARRY 0 SWAP FN OBJ—»> DROP SWAP DUP2

IFO0 == THEN DF.3 ELSE DF.4 END >>   
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Note that you can overlay a solution trajectory of the system using G.Y12 as

described in Chapter 1 after the inputs tg , yo, tf are placed on the stack. The user

may want to place these programs in the directory DE.2 containing the programs

from the second part of Chapter 1, placing D.RF early in the menu order and the

subprograms late in the order.

EXAMPLE: Consider the system

dy, dy,
at Y2y Tat TY1TEYy

The equilibrium points are y2 =0, y; = €. Lete = 1 and draw the direction field for

-2<y1 £2, -1.5 <yz <£15. Overlay the trajectory which begins, t = 0 at y; = 0,

y2 = 1.5 and and ends when t = 2. Notice from the direction field that solution

which initiates at y; =.5, yo = 1.5 has significantly different behavior for t > 0.

Overlay such a solution. Now see the first figure in the introduction.

EXERCISE: Consider the system

The equilibrium points are y; =y2 =+ 1. Draw the direction field for -3<y; <3,

-3<y2 <£3.

EXERCISE: Consider the system

M2 Y
dt Y1 ™Y Tat TN Yy

The equilibrium points are y; =1, yp = 0. Draw the direction field for -2<y; <2,

-3<yp <3.
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EXERCISE: Consider the system

dy; Yy 5 o
& Y2 @ N7y

The equilibrium points are y2 =0, y1 =0and y2 =0, y1 = 1/3. Draw the direction

field for -4<y; £.6, -5<yy £.5 Overlay the four trajectories which begin

(t=0)aty; =.15 y2 =0 and ends when t = 7, begin at y; = -3, y2 = .3 and ends

when t = 3, begin at yl = -3, y2 = .4 and ends when t = 10, and begin at y; = .5,

y2 = 0 and ends when t = 3.6. (The last one satisfies y; =.5 sech?(t/2).)

Project Exercise in acoustical dynamics

The speed of sound traveling underwater depends on depth. We will use a ray

model for underwater acoustic propagation and let z(x) denote the depth of a sound

ray at position x, measured along the ocean surface. Snell's law can be written in the

form cos 6/C(z) is a constant where tan 0 is the slope dz/dx and C(z) denotes the

speed of sound transmission at depth z. Change the variable by y = C(z) dz/dx to

obtain
dz y dy
dx = C(zy dx - -C'(2).

Determine C(z) by a least squares fit of the form C(z) = a e- bz 4 c4+mz (ab,c and

m are constants to be determined) using the data
 

z 0 500 1000 1500 2000 2500 3000 3500 4000 5000

C(z) 5042 4995 4948 4887 4868 4863 4865 4869 4875 4875

z 6000 7000 8000 9000 10000 11000 12000

C(z) 4887 4905 4918 4933 4949 4973 4991  
Next, find a value of 6g for the initial conditions:

2(0) = 29, y(0) = C(zp) tan 6,
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so that for z(xf) = zf, a prescribed number. For this problem take zg = 2000,

xf = 24(5280), z¢ = 3000. Plot the ray trajectory.

The function C(z) can be approximated by a least squares fit to data to another

type of function (see Forsythe, George, Michael Malcolm and Cleve Moler, Computer

Methods for Mathematical Computations, Prentice Hall, 1977.) Such a fit is given by

C(z) = 4779 + 0.01668 x + 160,295/(x+600).

Re-scale the variables x, and z by t = x/104, X = z/1000: the equation become

dy/dt = - 10 f'(X), dX/dt = 100y/£(X)

where f(X) = C(1000X). Now we want to find y(0) = f(2) tan 8 and X(0) = 2 so that

X(12.672) = 3. Dividing the differential equations gives dy/dX = -f'(X) f(X)/(10y)

integration gives 10 y2 + f2(X) = a constant. Phase plane graphs are shown. (An

adaptive step method was used to obtain the graphs.)

It is interesting to compare the graph of the solution z(x) obtained by using the

C(z) given above with that obtained using the C(z) function given in the project

EXERCISE above. Any interpolation formula used for C(z) instead of a least squares

fit also gives an interesting comparison.
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DISTINGUISHED OSCILLATIONS OF A

FORCED HARMONIC OSCILLATOR

 

In Chapter Three we noted that if periodic forcing with period T is imposed on

the undamped oscillator, solutions may result which have a periodic behavior of a

period inherited from the natural frequency of the oscillator and T. (See EXERCISE

3.4.) To be specific, the solution for

 

2

94X, W =F costt, x(0) =2 (0)= 0
0 dt

dt

for y# o is

2F . O+y o O©-Y
x(t) = 2 2sm(—z—t)sm (Tt)'

0 -y

This special solution for a forced harmonic oscillator is quite unusual. The

homogeneous differential equation associated with this problem has periodic

solutions of period 2n/w, the forcing has period 2n/y. The presence of this, possibly

periodic solution with a different period, although surprising, comes from the

interaction of the forcing function with the solutions of the associated homogeneous

problem. Moreover the structure of this special solution is intriguing because it has

the form of a relatively slowing amplitude, sin((w-y)t/2) multiplying a factor

which varies at a faster rate.

136
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PROBLEM 1: (a) Store the functions

  

 

2 . o+y o 0O 2 .-y
2 2 sin ( 2 t) sin (—--—2 t), 2 2 sin (—---2 t) and

-2 . =Y
5 5 Sin (T t)

© -y

in the function grapher of your calculator. These function are, of course, x(t) as given

above, and two additional curves which are bounding curves for x(t). Plot each of the

functions for 0 < t < 4n/|y-w| for the cases: (i) ® =2, y=22/9, (ii) o =2,

vy =20/7. Keep a copy of these graphs for comparison with later work.

The case ® =2,y =22/9 is graphed below.

  
 

 

A

Beats Vidration

 

(b) Suppose .S5ly-wl| 1t =2r. Then .5(y+®) T = 2n (y+®)/ | y—w|. What is the

difference of the behavior of x(t) for t near t between the case when (y+®)/ | y-w! is

an even integer and the case when (y+®)/|y-w! is an odd integer? Try some

examples to discover the answer. For example graph the solution given above for

cases (i) and (ii) in the classroom problem given above and in the cases (iii) Y = 18/7

and o =2, (iv) Y= 8/3 and o = 2. Give a partial answer based on your result to the

question: does an input forcing of period T = 2n/y gives periodic output of least period

4n/|yv-owl .
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Many questions concerning the presence of a "special" solution to a forced

oscillator may occur to you. We mention several below.

The external forcing in the oscillator mentioned above is periodic (with least

period 2n/y) and has average value zero. Is it possible to replace Fg cos yt with

another function with these properties and discover a solution which resembles the

special solution studied above? As an example we consider the function

- T
f(t) =Fo X ()" 8(t-n7)

n=0 Y

consisting of a sum of Dirac delta functions (see, for example, [3]). You should show

the transform of the solution of y" + w2y = f(t), y(0) = y'(0) = 0 is

FO - (nT/y)s
> n e

Y(s) ==Z —_—

® 82 + 0)2

and the corresponding solution is

yt) = —Z (1)sin{o(t - nx/y)} u(t - nn/v).

For o = 2, y = 22/9, we obtain the graph shown below for 0 < t < 9n = 28.274. Note

the input function changes sign every 1.285 units so we must sum at least 25 terms to

graph this interval. We note that the graph has generally the same shape as that

arising from the forcing f(t) = cos yt; however there is some variation for positive t

near t = 0 where the slope of the graph is 2 rather than 0 as in the cosine case, near

t = 9n/2 with a flat spot and near t = 91 with a flat spot. The width of the flat

spot at 4.5n is approximately 1.1 units and the graphs of +1.4 sin (2t + .55) are good

enveloping curves for this "distorted beats vibration.
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(v

on

Response of Harmonic Oscillator to Periodic Impulses

If the graph is extended to 0 <t <18m, it is seen that the response apparently has

period 9. Next question: for a case in which (y+w)/|y — ®| is an odd integer, does

the resulting solution have least period 2m/|w — y] ? To get an indication of the

answer, try the case ® =2 and y = 20/7.

The reader is invited to find the response for a sawtooth wave input forcing

function of the type indicated below. This case gives a response which is very close

to the response from cosine forcing.

- 8(t)

N\/N
VoV

SawtoothInput Foxcing
 

We have just noticed that a harmonic oscillator forced with a function with

geometric properties similar to a cosine function may have a special solution

analogous to the special solution in the more familiar problem. What are other

examples of such a phenomena?
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We suggest the following type of problem. Suppose that a harmonic oscillator

y"' + (02y = {(t) is forced with a periodic function with geometric properties similar

to sin wt. Will there be a resonance solution? As an example find the solution of the

problem forced by the function

f)=t/aforO<t<a, =2-t/afora<t<3a, -4 +t/afor3a<t<Sa

=6-taforSa<t<7a, -8+ t/afor7a<t<9a,etc.

with graph as shown.

We suggest you study the solution with y(0)= y'(0) = 0. Another type of input

forcing could be patterned after the sum of impulse forces (Dirac delta functions).



RUNGE-KUTTA ADAPTIVE STEP SIZE

ALGORITHM

 

Elementary algorithms have been featured in this manual primarily for

pedagogical reasons; however they also permit quick execution times. There is a loss

of accuracy, but the simplicity of the programs will help students to learn valuable

programming skills. In this appendix, we present an adaptive step method for the

solution of initial value problems. The extension is a program for the popular Runge-

Kutta Feldberg 4/5 algorithm which calculates the new value of y using a result

which is accurate to fifth order in h whenever an estimated error test is passed.

When the test is successful the step size is increased and the next step is attempted.

If the test fails, then the step size is reduced and another attempt is made to find a

step size in t which gives at most an extremely small error in the new value of y. For

simplicity, in our programs no check is made to prevent extremely small steps. If the

user wants to prevent ridiculously small steps, appropriate program steps should be

incorporated. The algorithm is given by:

Ynew =Y +(16/135)ky +( 6656/12825)k3 + (28561/56430)kq — (9/50)ks +( 2/55)ke

and

esterr = (1/360)k; — (128/4275)k3 + -(2197/75240)kq + (1/50) ks + 2/55 kg

where

k1 = hf(ty), ko = hf(t+h/4, y+k1/4) k3 = hf(t+3h/8, y+3kj /32+9k3 /32)

kg = hf(t+12h/13, y+1932k; /2197-7200kp /2197+7296k3 /2197)

ks = hf(t+h, y+439k; /216 — 8ko+ 3680k3 /513 — 845ky /4104)

ke = hf(t+h/2, y - 8K; /27 + 2ky - 3544k3 /2565 + 1859k4 /4104 — 11ks /40)

140
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Given t, y, and h, the process of calculating the term ypew using these formulae is

coded into the following program. At the end of the program, the step size is

divided by 2 and stored.

 

Subprogram Name FBG

Stored Quantities FN H

Input Tand Y

Output T Y esterr (H has been reduced 50% &

DELY has been stored)

<< > TY

<< TYFNH"®* DUP DUP2 3 DUPN 4/Y + THA4/ +

SWAP FN H * DUP DUP2 9 *5 ROLL 3 * + 32 /Y + TH

3*8/+ SWAP FN H* DUP DUP DUP2729 * 6 ROLL

7200 * - 8 ROLL 1932 * + 2197 /Y + TH 12 * 13 / +

SWAP FN H * DUP DUP2 845 * 4104 / 5 ROLL 3680 * 513

/| SWAP - 8 ROLL 8 * - 9 ROLL 439 * 216 / + Y + T H +

SWAP FN H * DUP DUP 11 * 40 / 4 ROLL 1859 * 4104 /

SWAP - 6 ROLL 3544 * 2565 / - 8 ROLL 2 * + 8 ROLL 8 *

27/ -Y + TH2/ + SWAP FN H * DUP 2 * 55 / 3 ROLL

9 * 50/ -4 ROLL 28561 * 56430 / + 5 ROLL 6656 * 12825

/ + 6 ROLL 16 * 135 / + 'DELY' STO 2 * 55 / SWAP 50 /

+ SWAP 2197 * 75240 / - SWAP 128 * 4275 / - SWAP 360

/ + ABS TY ROT H 2/ 'H STO END >> >>  
 

The reader should notice that to calculate yhew and esterr, ki is needed 7 times

(once each for k2, k3, k4, k5, k6 ynew and esterr), ky is needed 4 times (once each for

k3, kg, k5, k¢ ), k3 is needed 5 times (once each for kg4, k5, k¢, Vnew, esterr), kg is
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needed 4 times (once each for ks, k¢, Ynew, esterr), k5 is needed 3 times (once each for

k6, Ynewesterr), and kg is needed 2 times (once for ynew, once for esterr). In the

program listing, each time the commands FN H * are executed, one of the k terms

has been calculated. The next commands create the appropriate number of copies of

these numbers.

The FBG program is used as a subprogram to the program RKFS program listed

below:

 

Subprogram Name RKFS

Stored Quantities FN H FBG

Input Tand Y

Output Thew Ynew H (H has been altered)

<< DO FBG UNTIL .00001 < END DELY + SWAP H 2 * +

SWAP H 4 * 'H' STO >>   
 

The tolerance used in the program (.00001) may require adjustment. This quantity

can easily be changed to a variable and used as input to the program listed below:

 

Program Name RKF

Stored Quantities FN H FBG RKFS

Input:  Tinitial Yinitial Tfinal Output: Stored List YV

<< - TF << { } 'YV' STO DO RKFS DUP2 OBJ—» DROP

2 —>ARRY YV + 'YV' STO 2 PICK H + UNTIL TF > 2

PICK TF SWAP - 'H' STO FBG DROP DELY + SWAP 2 H *

+ OBJ> DROP 2 —5ARRY YV + 'YV' STO >> >>   
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As written, the program will work for a vector system dy/dt = f(t,y) with y and

f as vectors with M components except the user should replace in two places in RKF

the sequence of commands OBJ— DROP 2 —ARRY with OBJ—» DROP (M+1)

—ARRY Here substitute the number M+1 into the command or use a variable named

M and put M 1 + in for (M+1). Of course, the program FN takes T and the vector

Y from the stack and returns the vector f (T,Y).



PROGRAMS FOR THREE DIMENSIONAL

TRAJECTORIES

 

The programs given below may be used to produce graphs of solution trajectories

in three dimensions. The user executes IN.P to input the high and low values of X,Y,

Z for the view box to be shown and the position of the eye XE, YE, ZE. The utility

program UTL1 defines an orthogonal set of vectors U.1, V.1 and W.1 and sets the

associated two dimensional plot parameters. Subprograms SCAL, UVW and PJ.1

are called by the other programs. The program G.Y3 is similar to other programs

given earlier to graph the solution trajectories.

 

Program Name G.Y3

Stored Quantities FN HS TOL PJ.1

Input To (initial time)

Yo (initial value as a three vector)

T¢ (final time)

Output: Solution graph of Y' = F(T, Y), Y(Tp) = Yo,

To<T<Ts

<< { # 0d # 0d } PVIEW 3 ROLLD 'Y' STO 'T' STO —» TF

<< {TYFN} TOL HS Y PJ1 R»C 4 ROLLD DO

RKFSTEP Y PJ.1 R->C DUP 6 ROLLD 5 ROLL LINE DUP T

+ TF UNTIL > END DROP TF T - RKFSTEP Y PJ.1 R—»C

DUP 6 ROLLD 5 ROLL LINE DROP TF T - RKFSTEP Y PJ.1

R—> C 5 ROLL LINE 3 DROPN >> PICTURE >>   
144
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Program Name IN.P

Stored Quantities none Input none

Output coordinates of the corners of the viewing box

and the position of the eye have been stored

 
 

 

<< "ENTER XL XU" "" INPUT OBJ— 'XU' STO 'XL' STO

"ENTER YL YU" " " INPUT OBJ—- 'YU' STO 'YL' STO

"ENTER ZL ZU" " " INPUT OBJ-— ‘ZU' STO 'ZL' STO

"ENTER XE" " " INPUT OBJ— "ENTER YE" " " INPUT OBJ—

"ENTER ZE" " " INPUT OBJ—» 3 —»ARRY '‘W.1 STO >>

Program Name UTLA1

Stored Quantities variables from IN.P and programs SCAL,

uvw

Input none

Output the parameters XRNG YRNG have been

set.

<< UVW SCAL SCATRPLOT 1.125 DUP *W *H

ERASE FUNCTION CLX >>  
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Subprogram Name SCAL

Stored Quantities: Output from IN.P and UVW Input: none

Output a matrix ZDAT has been defined containing

the projections of the corners of the viewing box.

<<CLZ XL YL DUP2 ZL —-»V3 PJ.1 5V2 Z+ ZU -V3 PJ.1

—-»V2 X+ XL YU DUP2 ZL -V3 PJ.1 V2 I+ ZU —-V3 PJ.1

—-V2 X+ XU YL DUP2 ZL —-V3 PJ1 H5V2 I+ ZU —-»V3 PJ.1

—-V2 X+ XU YU DUP2 ZL —-V3 PJ.1 HV2 =+ ZU —-V3 PJ.1

—V2 3+ >>
 

 
Subprogram Name uvw

Stored Quantities Output from IN.P and UVW

Input none

Output an orthogonal set of vectors U.1, V.1 and W.1

have been constructed.

<< W.1 DUP ABS / DUP DUP 'W.1' STO [0 0 1] DUP 3

ROLL DOT 3 ROLL * - DUP ABS / DUP 'V.1' STO W.1

CROSS 'U.1_STO >>
 

 
Subprogram Name PJ.1

Stored Quantities Output from UVW

Input any vector Z in R3

Output the coordinates of the projection of Z in R2.

<< DUP U.1 DOT SWAP V.1 DOT >>  
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EXAMPLE: For view box-2<x<2,-2<y<2,-5<2z<2,eye position [1, 1, .5],

differential equation Y' = AY, with A given below, Y(0) =[2,0,2] and 0 <t < 12.56

we obtain the following picture:

==
Xyx solution fox

Y'=AY, ¥(0)=2,0,2]

Here the first row of A is [-.1, 2, 0], the second row is [-2, -.1, 0], and the third row is

[0, O, -.2]. Here the solution is given by x(t) = 2 e1ltcost, y=2 e~1tsin t, and z(t) =2

-2te<t,

EXERCISE: Use the same view box and eye position as given above. Change A to

-1 0 O

A={0 -5 0

0O 0 -25

and plot the solutions of Y' = AY with initial conditions [2, 0, 2], [0, 2, 2] and [2, 2, 0]

for0<t<eé.

N1 2

Noxmal Mode Solutions

toY'=AY



 

ANSWERS TO SELECTED EXERCISES

 

 

 

  

  

1.7 StartingatT=1,Y=1 forH=2wegetY=14,Y=196Y =2788, Y = 4.110,

and Y =6.443 whenT=14,T=1.6,T =18, and T = 2 respectively.

Starting at T =1, Y =1 for H=.1 wegetY =144,Y = 2.097, Y = 3.169,

Y =5.168, and Y =9.839 when T =14, T=1.6, T = 1.8, and T = 2 respectively.

148
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Starting at T=1, Y =1 for H= .05 we get Y = 1467, Y = 2.196, Y = 3.484,

Y =6.280,and Y = 15.693 when T =14, T =16, T = 1.8, and T = 2 respectively.

 

 

 
 

 

  

   

See page 25. 1.9
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2.6 There is only one 'equilibrium' solution 2.7

APPENDIX 6

 

 

3
40
 

2.8 The substitution x = w? leadsto the equation I > 3 4. -ttt C

2.9

2.10

A
The integrand is 7 +

(1-0)(1+0+0 +0" +0 )

Bw+C . Dw+E

-® co2+ 5 (1+J—5) o+1 m2+.5 (I-J_g) o+1

for A= .8, B = 2.3677, C = 1.2944, D = -1.5677, E = -.4944. An antiderivative of

the left side is .5B In {02 + .5(1 + V5) @+ 1} + (C-.25B(1+V5))1.7 tan'l
200+1.618 2w-.618cWr’.5°° 2 -5 _ A5 -1 &2—0°°11755 5D In {0* + .5(1-V5) o + 1} +(E-.25D(1-V 5))1.0515 tan 11902

-A'In 11-w|. We replace ® by x-2° and use the initial condition x(0) = .5 to

evaluate the constant of integration. This analytical procedure is already

quite formidable and we must still invert the expression to graph x(t). What

if a parameter value in the equation changes? This adds further complication

to the analytical procedure. The case r = 5/2 is similar.

If Q(t) is the weight of salt in the tank at time t (in minutes), we have that

dQ Q
at - 215~ 3504

300-t
X =355- 1f we put Q =21, we get x solutions .04677 and .9758 which translate

 3,Q(0)=0. This equation has solution Q = 450x (1—x2) where

tot =7.262 and y = 286.

In(p(0)x) In(p(0)x)

Using the solver we solve this equation for x. This gives a value for

In (p(t,)x In(p(t, )x
Following the hint gives t, M{M} =tM{M} for x = eS.



2.12

 
2.14
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In(p(t, )x)
In(p(0)x)

= .665282 which gives B = 2.6391 and A = 1.07557. Plotting the resulting

solution gives the expected results.

A/B =-Inx. Bis given by -Bt; = ln{ } For the case at hand, we get

Clearly K = 1, so a quadratic model as constructed in Exercise 2.11 has the form

Y = o IFTE( Y < 6, 62 — (Y-6)2, (1?;) [(1-6)2 - Y-8)2) for some s > 0. The

following pictures were obtained by using 6 = .6 ,0 = 1.4 and 6 = .65, 0 = 1.25.
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In (2-v)
Y t 2 1V

© 4
2.15 o r=

o ot

S ° S

velocity 12t ¥ inl’.}“
35

2.16 2.18a
time

"t
tnjectory with new parameter values 3.14

peak at t = 5.6, v = 29, final velocity = -3.64.

1.2

2.18¢c

    
 

e,. 56 y=0att=522and2.10s0b=————=101..-.- 06 y=0att=5.22and 2.10so =G2210- 1

and 12 e” 4r =9 e -1(-4+n/b) 50 r = -b (In .75)/% = .092. Thus B = .184 and

C = (.092)2+(1.01)2 = 1.029.
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3.2 3.3    M
6 scale on output enlarged 3

  

The calculator gives xq(1)

x(0) = .488, x'(0)= .012.

5 |-R1
(Z)/34 A graph of Ry(z) vszis /l —

21tx  {157,157)

I/\ 6.28
3.4a I AR\/t Contrast (a) with (c) solution x = 2 sin t.

3.5 The program<< - W << WDUP 2 *1-NEG 2 *INV>C<<C2*

NEG 0 XRNG C W * DUP NEG SWAP YRNG ERASE { # 0d # 0d }

PVIEW 1 200 FOR NN 2 * P * W * -NUM DUP SIN SWAP COS 1

- C *SWAP W * C * NEG R—>C PIXON NEXT >> >> >> requires

input W and outputs the desired graph and leaves a copy of W on the stack.

Try for W = 19/20, W = 6/7, W = 1/7.

1973, xq'(1) = .3228 so initial conditions are

w
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Y2

VZ 1

3.6 Y, t 2
e ——

trajectories for first system trajectories for doth systems

672

Zz

3.7 Q 3.8b P(z):fi-— | o
0

vl .‘/3 JCOSX-COSZ 
 

P(n/4) = 6.5340 (takes HP about 9 minutes at 4 FIX to evaluate integral)

P(r/2) = 7.4158

V2

3.9 Yy

3.10 The system has eignevalues * V5 and eigenvectors proportional to [4.236, 1]

and [.2361, -1]. For initial conditions not proportional to the latter vector the

trajectory will quickly approach the first vector as t increases.
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3.11a —t it et

 

In 3.11a the final value of [x,y] was [-.333, -.198]. The ratio of y to x was 1.68.

We show in the figure both the trajectory and the line y = 1.67 x. The

eigenvalues of the matrix are -1.5 and -.5 with associated eigenvectors [1, 1]

and [1, .6].

2
A +.6A+4.09

3.11b X

[;(]-{0{[16]005 3t +[g]sm 3t]+ B[[;]Si" Bt-[.i]“s 3t)}

3.15

 

 

4.1a x2 +2x+5=0 41b x2 +1001x+1000=0 4.2a x3-6x2+11x-6=0

42b x3-3x2 +4=0 42c x3+2x2 -21x -6=0

43a 2,31 43b -1,2,2 43c -5.574.., -.279.., 3.853...

4.4a -1.0979... +i.785..., 2.1958... 44b -347.., 1.879..., -1.532...
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-e e -1

44c -1+2i -3 45 YO=| o s5&' 1

et P

[ .1776 cos Pt — .5195 sin Pt |

45b column 1 =e®|-.6027 cos Pt + .4309 sin Bt|,

cos Pt

[ .1776 sin Bt + .5195 cos Pt |

column 2 = e®t| —.6027 sin Bt — .4309 cos Pt

sin Pt  
with o = - 1.079, B = .785... and column 3 = e2-196t column [.2074, .4554, 1].

e & _0174et

46a YO=| 5" ¢ .og3e

5et e e’

4.6b The eigenvalues are -1 (repeated) and -2. Let a = column [1, 2, 4], an eigenvector

corresponding to the eigenvalue -1. We try y = et (at + b) as a solution to y' =

Ay and see this will be a solution if (A + I) b =a. We create the 3 by 4 matrix

[A, a] and reduce it by using the RREF command or a series of pivot operations

to get the solution b = column [0, 1, 4]. Finally an eigenvector corresponding to

the eigenvalue -2 is column [1, 1, 1]. Hence a fundamental matrix of solutionsis

e-t e-tt e-2t

YO =| 26" etewl) 2|

4’ eldud) o2



ANSWERS TO SELECTED EXERCISES 157

4.6c Again the eigenvalues are -1 (repeated) and -2, and there is only one

4.7

5.10 The list FL should be { '(Y

eigenvector corresponding to the eigenvalue -1, viz., a = column [-.5, 1, .5]. We

try as a second solution y = et(at + b) and proceed as in 4.3b.

The eigenvalues are 5.964, -1.529 and -3.218 % i 2.703 with corresponding

eigenvectors column [-.2866, .4203, 1, -.04738], column [1, -.0063, -.1994, -.5790] and

column [-.1846% (-.5511), .0255 + .0844, -.5882 + i.0899, 1].

A*EXP(-P*T)-B*EXP(-Q*T))*A*T*EXP(-P*T)'
‘(Y - A*EXP(-P*T)-B*EXP(-Q*T))*B*T*EXP(-Q*T)'

‘(Y - A*EXP(-P*T)-B*EXP(-Q*T))*EXP(-P*T)’

(Y - A*EXP(-P*T)-B*EXP(-Q*T))*EXP(-P*T)'},

the parameter list PL should be {P Q A B}, M = 4. The program NST1

should be modified to << DUP OBJ— DROP 'B' STO 'A' STO 'Q' STO

'‘P' STO JACM FACM FVEC JMAT / >>. After several iterations, we

obtain P = 2.07, Q = .93, A = 6.13, B = -5.13.

Lk .

Fit using starting parameters Fit using final parameters

 



 

Acoustical dynamics 132

Artillary shell 96

Asymptotic 26, 106

Attracting solutions 62, 68, 108

Autonomous 50, 69

Beats vibration 137

Characteristic equation 66

Characteristic equation algorithm 84

Critical point (see equilibrium point)

Data fit 33, 38, 52, 54, 112, 117

Direction fields 3, 128-34

Directory (subdirectory) 4, 14, 24, 125-6

Discrete dynamical system 108ff

Eigenvalues, eigenvectors 66, 76ff

Equilibrium solution 25-28, 62, 68, 72, 131-2

Euler algorithm 2, 15-17, 22, 51, 128

Fundamental solution matrix 82, 84-85, 87

Graphics screen 20

Harmonic oscillator 135

Henon map 109

Implicitly defined solution 29

Improved Euler alg. 2, 17, 18, 22, 51, 128

Inflection points 35

Initialization program 9, 21, 23

Input/output problems 41, 55

Input signal delay 42

Julia set 110

Linear autonomous system 66

Lorentz 100

Lotka-Volterra model 63

Mixing problem 30-31

158

Newton's method 72, 95, 114

Nonhomogeneous 88ff

Numerical integration

Orthogonal trajectories 60

Overlay 11, 13-14, 26

Parameters 11-12, 33, 53, 108

Particle motion 36-40, 44-49, 95, 103

Pendulum 63, 92

Periodic 56, 58, 62, 90, 105, 136

Phase plane 62

Poincare section 59

Population growth problems 31-36

Projectile motion 95

Pursuit problem 98

Repelling solutions 62, 68, 108, 111

Restricted three body problem 103

Rocket flight 97

Runge Kutta algorithm 2, 6, 73

Sawtooth wave 138

Second order IVP 2, 3, 7,50

Solution structure 27-28

Spiral point 68

Spring /circuit model 57

Square wave, Switch function 43

Step size selection 18

Stiff differential equation 73

Terminal velocity 37-38

Trajectories in three dimensions 144ff

Undetermined coefficients 91

Vander Pol 59, 64

Variational matrix 69
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DER et al.

D.GRF

DIRF et al

D.RF et al

EIG2

EIG3

EULER

IULER

FACM, FEVP

FEV

G.0l

G.12

G1.TY

G.TYI

G.Y3

GRAF

GS.01

G.Y12

IN.FN

IN.PP

INIT1

INIT.I

JACM, JEVP

JEV

NWTN

NSTP1

PIV

RKEFet al.

ROKL

PROGRAMS

Finds eigenvalue equation

Generates plot for example discrete dynamical system

Creates list JL of derivatives of vector F(T,Y)

Generates graph of T, Y data

Direction field programs using stored Y

Direction field programs using Y as a local variable

Eigenvalue equation for 2 by 2 matrices

Eigenvalue equation for 3 by 3 matrices

Euler algorithm

Improved Euler algorithm

Utility programs for NSTP1

Utility for NWTN

Generates a T, Y(I) plot for vector Y

Generates a Y(1), Y(2) plot

Generates a T, Y plot

Generates a T, Y(I) plot using Iuler algorithm

Generates solution plot in three dimensions

Graphics program for T, Y plot using IULER

Generates T, Y(1) graph in stiff differential equation

Generates Y(1), Y(2) plot using IULER

Prompts user to write program for F(T,Y)

Prompts user to set plot parameters

Prompt user to set parameters for GRAF

Prompts user to set parameters for G.TYI

Utility program for NSTP1

Creates matrix of derivatives of F(T,Y)

Newton step for vector solution of F(Y,Y) = 0

Newton step for parameter values

Gauss pivot on element KL

Runge Kutta Feldberg algortihm

Interchange rows K and L
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