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This is a manual of EXERCISES for a graphics calculator to supplement the
elementary differential equations course. You will learn early in such a course that
important mathematical models for scientific problems often contain differential
equations and that particular solutions of these equations describe the behavior of
the model. The problem solver often has some intuition concerning how the system
should behave and the graphical properties of a single solution or a family of
solutions are an important clue to the correctness of the model and provide
qualitative properties of the solution. Even if analytical expressions can be obtained
for the solutions, their graphs may reveal behavior a scientist may not discover from

these expressions.

The HP-48G/GX calculator is a great graphics and computational tool in this
course. It can be used in class to illustrate concepts. It can be used for homework in
your favorite study area, for example, a library or a dormitory room. The graphs
and computations that are created on the calculator can be stored or recreated on a
microcomputer. This manual contains only some of the possible uses of this tool and
illustrates the material which my students have helped develop in the past five
years. Some of the material is taken from [4], but many of the EXERCISES and
presentations are new. The presentation does not require that the reader be a good
HP 48 programmer since nearly all of the programs are explained within this

manual.



2 INTRODUCTION

One of the distinctive features of the HP-48G/GX is a built-in program for
calculating and displaying in the same graph approximate solutions to one or more
initial value problems containing differential equations. The HP-485/SX does not
have such a program but we will present user programs which will accomplish the
same purposes. To emphasize the statement given above, the capability to easily
display solutions of several problems allows us to study how the solutions depend on

various parameters and to focus on geometrical characteristics of a system.

The first part of Chapter 1 describes the programs that have been provided (in
the HP-48G/GX) for obtaining and plotting approximate solutions of initial value
problems. Then we show how to construct programs using elementary algorithms (the
Euler and improved Euler algorithms) for obtaining and plotting approximate
solutions. These programs can be used on both the HP-48S/SX and
HP-48G/GX. They can be adapted for various special purposes such as creating other
graphical displays or for use in higher order numerical methods for differential

equations such as the Runge-Kutta algorithms.

The second chapter contains examples and EXERCISES to illustrate graphical
study of the characteristics of solutions obtained in the portion of the course dealing
with first order differential equations.  The third chapter concerns the solution of
two first order differential equations or a single second order equation with initial
conditions. Because the HP-48 processes vector and scalar quantities with many of
the same commands, it is possible to use some programs for scalar systems as vector
programs, including the algorithms for solving initial value problems (Euler,
improved Euler, Runge-Kutta, etc.). To solve and plot the solutions of a second order
differential equation with initial conditions, we borrow from problems involving
particle motion.  For displacement x(t) and velocity v(t), of the solution of the pair

of equations
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dx/dt =v, dv/dt = g(t, x, v), x(tp) and v(tpg) given,

the function x(t) satisfies the second order initial value problem
2

d x dx d .

— =gt x E), x(tO) and ax-(to) given,

dt
and conversely, if we have a solution x(t) of the second order initial value problem,
the pair x(t), dx/dt(t) = v(t) satisfies the pair of first order differential equations.
Thus, to solve the second order initial value problem we make a vector

[Y1, Y2 ] =[x, v] and solve the vector system
dx

gy | dt v Y,
qE=| g |=FE YV = _
dt g(t, x, v) gt Y, Y,)

with Y(tg) = column [x(tp), v(tp)] as given using the same algorithms as for a first
order scalar problem. In chapter three, EXERCISES are provided to study in
particular the solutions of the second order differential equations encountered in

linear and nonlinear models of mechanical springs and electrical circuits.

The fourth chapter contains programs that construct solutions of linear vector
systems of differential equations of the form dy/dt = A y + f(t). The fifth chapter
contains several problems that extend the earlier material and result in three or
more differential equations. Finally, Appendix 2 contains a set of programs that can
be used to sketch the direction field for a pair of differential equations, and
Appendix 4 contains a program that HP-48S owners my use when a more accurate
algorithm is needed for computing the solution of a differential equation. This

algorithm is already encoded into the HP-48G calculators.
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Many topics traditionally associated with an introductory course in differential
equations are not included; among these delay differential equations, and control

problems. Problems in these particular areas are presented in [1].

Many students use a graphics programmable calculator in more than one course.
It is important that you know where the appropriate programs are stored in memory.
It is easy to collect a set of programs that you use frequently in a particular course
into a directory. See your calculator Owners Manual or Appendix 1. We strongly
suggest that the reader create a subdirectory for the programs that use the built-in
algorithms for solving initial value problems contained in Chapter 1, and a
subdirectory that includes the elementary user programs also presented in Chapter 1.

We will make specific suggestions in appropriate locations within this manual.

This manual would not have been possible without the strong encouragement and
help from my editor D.R. LaTorre, without the support from the HP-48 development
team (Diana Byrne, Paul McClellan, Charlie Pattan, and William C. Wickes) and
without the patience and word-processing skill of Mrs. April Haynes. Thanks.



PLOTTING SOLUTIONS FOR DIFFERENTIAL
EQUATIONS ON THE HP-48

Suppose we wish to plot an approximate solution of an initial value problem

dy F
dt - (t’ Y)’ Y(to) = yO
for some interval tg <t < tf, where tf may not be predetermined. What inputs to a

calculator are required?

e A program that gives the value of F when t and y are
specified.

e The initial quantities tg, yo and criteria for completion
(e. g. the final value of tf).

e The plot window must be specified and the plot screen may
have to be erased.

e It may also be necessary to specify an appropriate algorithm
for computing the approximate solution and any necessary
inputs to the algorithm such as a global error tolerance and a
starting value of the step size.

e The command to draw.

There are three methods on the HP-48G/GX to provide these inputs and obtain a
plot of an approximate solution. The built-in method prompts the user for the

necessary information with input forms and choose boxes. Alternatively, we can
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construct a set of programs that take or generate some of the required inputs from the
stack and then call the basic algorithm to calculate solutions in a plotting program.
This alternative method is particularly useful when only one or two of the inputs
must be modified or when the stopping criterion is nonstandard. The third method is
to construct programs that employ easy algorithms for computing and plotting
approximate solutions to initial value problems. This last method can be used on the
HP-48S/SX calculators. We will illustrate each of these methods with EXERCISES.
The user must make a decision on the appropriate method for the other EXERCISES.
In this section we begin with the built-in method, then pass on to the second
alternative. The third method will be featured in a separate section of this

chapter.

Open the PLOT application with PLOT. The cursor keys can then be used to
move around the screen and highlight the desired fields. Highlight the TYPE
field, press CHOOS, highlight Diff Eq and press OK. If the STIFF field is checked,
highlight it and press CHK to remove the check. This will cause the Runge-Kutta

Feldberg algorithm to be used for the initial value problem.

e Highlight the F field, type in the desired function F(T,Y) and
press OK.

e Set the INDEP variable to T and specify its initial and final
values. Set the SOLN field to Y and specify its initial value.

e Press OPTS, set the H-VAR (by pressing CHOOS, highlight

the desired field and OK) and the V-VAR variables in a

similar manner, set the limits of H-VIEW and V-VIEW.

Press ERASE and DRAW.
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EXERCISE 1.1: Construct a plot of the solution of y ' + 3y = cos t, y(0) = .3 for 0 <
t < 6.283 using the calculator's differential equation plot feature. Enter COS(T) -
3*Y in the F field of the input form. (Note that the calculator automatically places
this function within ' marks.) Make sure T is the INDEP variable, the H-VIEW is set
to 0 6.283 and the V-VIEW is set to -.5 .5, then ERASE and DRAW.

After completing this EXERCISE, you should check to see that the program which
calculates the values of F(T,Y) is stored in the variable EQ. To get some confidence
in the calculator solution, we can plot the exact solution y = .3 cos(t) + .1 sin(t).
Press ON to return to the PLOT application, change the TYPE to Function, and
enter .3*COS(T) + .1*SIN(T) as EQ. (Again the calculator places ' marks around the
function.) In this case we want to overlay the new plot over the old one so do not
ERASE. Press DRAW. Note the good agreement between the approximate solution

and the exact solution.

EXERCISE 1.2: Construct a solution of y ' = sin (ty), y(0) = 2 for 0 <t < 6. Choose
the program 'SIN(T*Y)' (or << 'SIN(T*Y)' EVAL >>) and V-VIEW as 0 8. Now
overlay the solution of the same differential equation which satisfies the initial
condition y(0) = 4, then overlay a third solution of the same differential equation
which satisfies the condition y(0) = 6. (Note: We do not know a formula for the
exact solutions of this differential equation and this overlay process will be used

frequently in this chapter to indicate the sensitivity of a problem to its inputs.)

EXERCISE 1.3: Construct a graph of the solution of y" + .5y +y =0, y(0) =0,
y'(0) = 1, for 0 < t <6.283. We convert this problem to a first order format using the
variables y and y' as components of a vector w = [y, y']l. Then
w ' =[w(2), -(.5 w(2) + w(1))] and w(0) = [0 1]. Our procedure calls for an appropriate
F function which in this case will be a 2-vector. Then we provide the program
<< 'W(2)' EVAL '5*W(2)+W(1)' EVAL NEG 2 —»ARRY >> for F together with
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the INDEP variable name T, SOLN name W and the INIT vector [0 1] for SOLN. If
we want a graph of W(1) versus T we choose INDEP for the H-VAR and SOLN(1)
for the V-VAR on the OPTS page. V-VIEW should be set at -8 .8. (If we want a
W(1) versus W(2) plot we choose SOLN(1) for H-VAR and SOLN(2) for V-VAR on
the OPTS page.)

X" +49% = 12 cos (5¢), x(0) =x'(0)=0

EXERCISE 1.4: The figure shown above is a plot of the solution of the indicated
problem for 0 < t < . What function F in the variables T and Y (vector with 2

components) is appropriate for the calculator input form ?

Hewlett Packard has also provided several "smaller" programs that perform
either individual or multiple steps in either of two basic algorithms for
approximating the solution to a differential equation. These programs can be
embedded in user programs to produce variations of the basic program described
above. The advantages gained by this process include some speedup when most
parameters are already set and any modifications of the basic problem not treated

easily by the first method. For example, the final time tf may be "when some

condition is satisfied" rather than a simple number which is known beforehand.

You can construct programs that ask for part of the total information required for
a solution plot. For example, the first program IN.FN asks you to write a program
for the function F(T,Y) (in variables T Y) which is then stored in FN.
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Program Name: IN.FN
Purpose: The user supplies program FN
Stored Quantities: none

No input is required. The appropriate response is a program.
<< "ENTER PRG FOR FN IN T Y" "*"
INPUT OBJ— 'FN' STO >>

Example responses might be << '-T*Y' EVAL >> ( or the reverse Polish notation
program << T Y *NEG >>) for the function F(T,Y) = - T*Y or

<< 'Y(2)' EVAL 'Y(1)' EVAL NEG 2 —>ARRY >>
for the function F(T,Y) = column [Y(2), -Y(1)].

The next program asks the user to set the viewing window for the plot.

Program Name: IN.PP  (plot parameters)
Purpose: The user supplies XRNG and YRNG
Stored Quantities: none

No input stack is required. The appropriate response for the first
query is a pair of numbers, H-min and H-max. The response for the
second query is a pair of numbers V-min and V-max.
Output: New values for XRNG, YRNG. PICT has been erased.
<< " KEY IN XRNG" " " INPUT OBJ— XRNG
" KEY IN YRNG" " " INPUT OBJ— YRNG ERASE >>

Note: The reader has probably correctly inferred that the commands XRNG and
YRNG set the H-VIEW and V-VIEW variable ranges.
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We wish to present a program to give a composite graph in the (T, Y) plane for a
differential equation with one or more initial conditions such as indicated in the

figure shown below.

2 b 4

Solutions of Y' = SIN(T *2-Y *2)
with¥(-2)=-3and ¥Y(-2) =-1.5

The following program contains the basic ingredients of a user plotting program. The
number 1 in the name indicates that the program is for a scalar differential equation.

The TY designation indicates that the plot is a (T, Y) plot.

Program Name: G1.TY
Purpose: Generate a T Y plot of the solution to T
Stored Quantities: XRNG YRNG FN TOL HS
Input level 3 level 2 level 1
To Yo Ty

The output stack is empty, the variables T Y contain updated values.
<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO'T' STO
— TF << {T YFN } TOL HS T Y R—»C 4 ROLLD DO
RKFSTEP T Y R—»C DUP 6 ROLLD 5 ROLL LINE DUP T +
TF UNTIL > END DROP TF T - RKFSTEP T Y R—~C DUP 6
ROLLD 5 ROLL LINEDROP TF T - RKFSTEP T Y R—»C 5
ROLL LINE 3 DROPN >> PICTURE >>
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Notes: Typical numbers for HS and TOL are .005 and .00005 and are to be stored
before execution of this program. If the user wants other names for the variables
other than T Y FN, such changes can be made by substituting for { T Y FN}, T,
and Y, the desired alternate notation. The command RKFSTEP invokes the built-in
Runge-Kutta-Feldberg program for one step.

EXERCISE 1.1a: Construct a plot of the solution of y ' + 3y = cos t, y(0) = .3 for
0 <t < 6.283 using the programs described above. Execute IN.FN, respond by typing
<< 'COS(T) - 3*Y' EVAL >> and press ENTER. Execute IN.PP, respond by typing 0
6.283 and ENTER, respond by typing -.5 .5 and press ENTER. Put0 .3 6.283 on the
stack and execute G1.TY. As in EXERCISE 1.1, plot the exact solution
y = .3 cos(t) + .1 sin(t). Press PLOT, change the TYPE to Function, and enter
.3*COS(T) + .1*SIN(T) as EQ. In this case we want to overlay the new plot on the
old one so do not ERASE. Now press DRAW. Note the good agreement between the

approximate solution and the exact solution.

EXERCISE 1.2a: Construct and plot solutions of y ' = sin (t1-5yR), y(0) = 2 for
0 £ t < 8 when R has the values .75, .5 and .33, in the same picture as follows:
Execute IN.FN, respond by typing << 'SIN(TA1.5*Y~R)' EVAL >> and press
ENTER. Execute IN.PP, respond by typing 0 8 and ENTER, respond by typing 0 4
and press ENTER. Put .75 on the stack and press 'R' STO, then put 0 2 8 on the
stack and execute G1.TY. Now put .5 on the stack, press '‘R' STO then put0 2 8 on
the stack and execute G1.TY. Finally put .33 on the stack, press 'R' STO, put0 2 8
on the stack and execute G1.TY. Notes: Here we are observing the solution for three
values of a parameter. The process of storing a value for R and placing appropriate
input on the stack for the graph program can be abbreviated in various ways. For
example, store the program << 'R' STO 0 2 8 >> under a name, say P.1. Then put

one of the values of R on the stack, execute P.1, then execute G1.TY, etc.
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Suppose that the user wants to plot (T, Y(I)) for a vector system Y' = F(T,Y). We
will call the program G.0I where the O represents the T variable and the I
represents the Y(I) variable. The modification consists of changes made to G1.TY in
four locations in which the Y number in G1.TY is changed to 'Y(I)' EVAL and
adding the first << — I and the last >>. The user can avoid retyping the whole
program by pressing 'G1.TY' RCL, EDIT, typing the corrections and additions
pressing ENTER, then 'G.0I' STO.

Program Name: G.0I
Purpose: Generate a T Y(1) plot of the solution
to T¢
Stored Quantities: XRNG YRNG FN TOL HS
Input level 4 level 3 level 2 level 1
Ty vector Yo T I

The output stack is empty, the variables T and Y contain updated values.
<< > I << {#0d # 0d } PVIEW DRAX 3 ROLLD 'Y'
STO 'T' STO —» TF << {T Y FN } TOL HS T 'Y(I)) EVAL
R—-C 4 ROLLD DO RKFSTEP T 'Y(I) EVAL R—C DUP 6
ROLLD 5 ROLL LINE DUP T + TF UNTIL > END DROP TF T
- RKFSTEP T 'Y(I)) EVAL R—»C DUP 6 ROLLD 5 ROLL LINE
DROP TF T - RKFSTEP T 'Y(I)) EVAL R—»C 5 ROLL
LINE 3 DROPN >> PICTURE >> >>

EXERCISE 1.3a: Construct a composite (t, x) plot of the solutions of
x"+Rx"+x=0,x(0) =0, x'(0) =1, for 0 <t <6.283 when R = .5, when R= 2 and
when R = 2.5. We convert this problem to a first order format using the variables y
and y' as components of a vector y = [x, x']. Then y' = [y(2), -(R y(2) + y(1))] and
y(0) = [0 1]. Our procedure calls for an appropriate F function which in this case will
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be a 2-vector. Then we provide the program << 'Y(2)' EVAL 'R*Y(2)+Y(1)' EVAL
NEG 2 - ARRY >> as a response to the query in the IN.FN program and the
responses to set 0 6.283 for XRNG and -.8 .8 for YRNG in IN.PP. We store the
value .5 in the variable R and place the objects 0, [0 1], 6.283 and 1 on the stack
and execute G.0I. We change R to each of the numbers 2 and 2.5 and place input
quantities 0, [1 0], 6.283 and 1 on the stack and execute G.0I twice more to overlay

plots of the other two solutions.

A similar change to G.0I gives the plot program G.12 in which the component
Y(1) of the solution is plotted against the component Y(2). The change is made in
four places and commands T 'Y(1)' EVAL are changed to 'Y(1)' EVAL 'Y(2)'
EVAL and by removing the first << — | and the last >>.

Program Name: G.12
Purpose: Generate a (Y(1), Y(2)) plot of the solution
from T, to T¢
Stored Quantities: XRNG YRNG FN TOL HS
Input: level 3 level 2 level 1
T, vector Yo T,
The output stack is empty, the variables T and Y contain updated values.
<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T'
STO —> TF << {T Y FN } TOL HS 'Y(1)' EVAL 'Y(2)'
EVAL R—C 4 ROLLD DO RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL
R—-C DUP 6 ROLLD 5 ROLL LINE DUP T + TF UNTIL >
END DROP TF T - RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL R-C
DUP 6 ROLLD 5 ROLL LINE DROP TF T - RKFSTEP 'Y(1)'
EVAL 'Y(2)') EVAL R—»>C 5 ROLL LINE 3 DROPN >>
PICTURE >>
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For consistency, from this point we will use notation as follows: for first order
differential equations, Y will be the dependent variable and T will be the
independent variable. For higher order differential equations, x will be the
dependent variable, t will be the independent variable and we will reserve Y as a

vector with components which may be constructed from the x, x, etc. variables.

EXERCISE 1.5: Construct an x vs x' plot of the solution of x" + .5 x' + x =0,
x(0) =0, x'(0) = 1, for 0 < t <6.283. As before, for vector y = [x, x'] we have

y ' =1Iy@),-(5y@2) +y1) y© =I[01].

An appropriate F function is given by the program << 'Y(2)' EVAL '.5*Y(2)+Y(1)'
EVAL NEG 2 - ARRY >> with the INDEP variable name T, SOLN name Y and
the INIT vector [0 1] for SOLN. We choose SOLN(1) for H-VAR and SOLN(2) for V-
VAR on the OPTS page. HVIEW should be set at -1 1 and V-VIEW should be set at
-1 1. ERASE and DRAW. This approximate solution of the differential equation

can be compared to the exact solution by overlaying the parametric curve
e~2t 1.0328 (sin(.9862t)+i*(.9862 cos(.9862t) — .25sin(.9862t))).

on the same picture. (Use Parametric type in the PLOT environment.) The user

should notice that the plot of the approximate solution consists of a set of points
{y1(t), y2(t):i=1,2, ..}

connected with straight lines. The parametric plot also has this form; however, the

points are spaced much closer.

We recommend that the user create a subdirectory for the programs in this
section. A possible subdirectory name is DE.1. This subdirectory should contain the
programs G.12, G.0I, G1.TY, ER.SE, IN.FN, IN.PP, T, Y, FN, TOL, HS, EQ, and
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PPAR in this order. The program ER.SE given by << ERASE >> is placed in this
directory for convenience. The subdirectory can be created by placing the name 'DE.1’
on the stack, then pressing MEMORY, pressing DIR, then CRDIR. To obtain the
desired order, press { and enter the program names in order, press ENTER, then
ORDER (located in the same MEMORY DIR menu).

Elementary User Programs

We present several user programs that are useful in a differential equations
course. The students should have some experience with algorithms used to calculate
approximate solutions to initial value problems containing differential equations and
with programs to implement these algorithms. The simplicity of the programs
presented here should help the reader whenever more complicated programs are

required for other purposes.

The Euler algorithm for the solution of an initial value problem results from
assuming the slope of the solution of a differential equation dy/dt = F(t,y) is well
approximated by the constant F(t,, y,) in the interval t, <t < t, + h and the
algorithm is given by t.., =t + h, y,,, =y, + hF(t., y,). (Here y, is the
approximation of y(t,) and it is assumed that initial values t;, and y, and the step
size h are given so the algorithm may be initiated.) Our program is called EULER
and takes t, y from the stack and returns the results of a single step using Euler's
algorithm. It will use the step size H, which is stored, and a stored program F.N

that takes t,y from the stack and returns F(t,y).
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Program Name: EULER

one step in the Euler algorithm.
Stored Quantities: H F.N

<< DUP2 FN H * + SWAPH + SWAP >>

Purpose: Generate new values of x and y resulting from

Input Output
level 2 level 1 level 2 level 1
t, Yn ti Yn+1

Notice that the structure of F.N is different from the FN program given in the first

section of this chapter. F.N requires input from the stack, whereas the programs for

FN in section 1 require stored values for t and y.

The reader should test this program using the F.N program << - T Y 'Y'>> for

the step size .1 stored in H and initial conditions y(0) = 1. (Put0 1 on the stack and

execute EULER EULER EULER, etc.) Note: Here we are solving y' =y, y(0) = 1,

using steps H = .1 and obtain the following results:

t y t y t
1 1.1 4 1.46 7
2 1.21 5 1.61

3 1.33 .6 1.77 9

and y at t = 1.0 is 2.59, a crude approximation of 2.718....

1.95
2.14
2.36

EXERCISE 1.6: To obtain approximate values of the solution of y' = sin(ty), y(0) = 3,

enter the program F.N givenby << —» T Y 'SIN(T*Y)"' >>, put initial values 0 3
on the stack and execute EULER, EULER, etc. You should get.1 3, then .2 3.03, then

.3 3.09, etc. (Make sure the calculator is in RAD mode.)
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Suppose we want to execute EULER, say, N times and observe the output only at

t=t, + NH. The following program, called RPT (for repeat), requires that N be

stored, requires initial values of t and y as input, and outputs the final values of t
andy: <<1 N START EULER NEXT >>.

The Improved Euler algorithm is another method for approximating the
solution of an initial value problem. The method results from assuming the slope of
the solution is well approximated by the average of f(t,, y,) and a guess at

f(tys1, Yieq) in the interval t, <t <t, + h. The algorithm is given by

teer = b+ 0y i =y + Dl yi) + £y, yiethi(te y0)1/2.

(Again y, is the approximation of y(t,) and t,, y, and h are given so the algorithm
may be initiated.) This program is named IULER and takes t y from the stack and
gives (t+h) (y+h*[f(t,y)+f(t+h,y+h*{(t,;y)]/2). Note EULER is part of this program.

Program Name: IULER
Purpose: Generate new values of x and y resulting from

one step in Improved Euler algorithm.
Stored Quantities: H F.N EULER

Input Output
level 2 level 1 level 2 level 1
ty Yn thes Yn+1
Instruction Resulting stack
<<DUP2 DUP2 EULER t y ty tth y+hf(ty)
F.N 3 ROLLD t y f(t+h, y+hf(ty)) t y
FN + 2/ t y (f(t+h, y+hi(ty))+f(ty)) /2

H*+ SWAP H + SWAP [y+h*{ f(t+h,y+h*f(t,y))+(t,y)}/2] t+h

>
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Just as in the EULER program we require that the program F.N and the step size
H be stored before execution. A multiple step program can be obtained by substituting

IULER for EULER in the program RPT given just after EXERCISE 2.1.

Try IULER using the F.N program << —» T Y 'Y' >>, H =.1 and initial data
0 1. Execute 9 times. You should get 1 2.7140808--- . (Euler gives about 2.593742---,
not nearly so good an approximation of e = 2.71828--- .) In general, the improved

Euler method can be shown to be a better approximation when h is small.

How is an appropriate value of h chosen? If it is decided to use a constant step
size throughout the interval of interest [t,, X;], one common way to select h is to try a
nominal size of h, say (t; - t;)/50, and calculate the solution approximate y; at t;.
Then reduce h by half and recalculate the approximate at t;. If the values agree to
your satisfaction (for example, to three decimal places), use the last set of values

obtained; if not, reduce h by half and try again.

This is a good time to check on the accuracy of the built-in differential equation

algorithm used by the HP-48G calculator. Press SOLVE, use the E arrow

key to select Solve Diff eq..., press OK, enter the F function Y, set the range of the
independent variable to 0 1 and set the initial value of the solution to 1. Move the
cursor to FINAL and press SOLVE. Press the ON key and you should see the value
2.718... on the stack. Put 1 on the stack, press the eX key and subtract to see the
apparent error -.000019... . This error was achieved with the default tolerance .0001.
The performance of the differential equation algorithm depends on the problem and

is not always this good.

A comment on the built-in algorithm on the HP-48G calculator for solving
differential equations is in order at this point. There is a default program based on

the well known Runge-Kutta Feldberg algorithm which automatically selects step



PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 19

size to keep the perceived error below the specified tolerance. There is also a second
built-in calculator program for solving stiff differential equations that we will

discuss briefly later.

EXERCISE 1.7: Try EULER on the problem y' = (y2 + y)/t, y(1) = 1 with h = .2.
Execute 5 times, then reduce h to .1 and execute 10 times. Next execute from the
initial value 20 times with H = .05. What is being indicated? Hint: this problem

can be solved exactly and has an asymptote at t = 2. Here F.N could be given by
<< > T Y "(Yr2+Y)T ' >>

EXERCISE 1.7a: Try the HP-48G calculator's Solve diff eq... algorithm for the F
function and initial condition given in EXERCISE 1.7 for the value of the solution at
t = 2. Change the tolerance TOL to .1 and try to SOLVE for FINAL. The calculator
will take over 10 seconds and returns a value of 1743.5... . If you change the value of
TOL to .05 and resolve for FINAL, the calculator will take over 20 seconds and
returns a value of 2187.8... . The long execution time tells us that the calculator is
struggling to achieve good results and in this case can not achieve accuracy for good

reason.

Programs to obtain graphical output are easy on the HP-48. The following
program, which we will call GRAF, requires t, yo from the stack and uses IULER (or

EULER) to advance N steps of size H. (N is also stored.) The user should pre-enter
the numbers tmin tmax as XRNG and numbers ymin Ymax as YRNG for the graph.
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Program Name: GRAF for scalar equation

Purpose: Plot N values of (x,y) obtained using
Euler algorithm

Stored quantities: N, H, F.N, IULER XRNG YRNG

Input Output
level 2 level 1 level 2 level 1
to Yo tN YN

and graph with cursor

<<{# 0d # 0d } PVIEWDRAX DUP2 R—»C 3 ROLLD 1N

START IULER DUP2 R-CDUP 5 ROLLD 4 ROLL LINE NEXT
PICTURE >>

GRAF contains a loop in which N new points (t,y) are calculated and plotted.
You may want to ERASE the graphics screen before executing the program. The
program EULER may be inserted in place of IULER so that GRAF uses whichever
algorithm is desired. Notice also that the last values of t and y remain on the stack

after GRAF is executed. To restore the stack screen, press ON.

As a footnote to this section, the following program can be used to remind the
user for the ingredients required for GRAF. As written, the user must enter an
expression for f(T, Y) (e. g. 'SIN(T*Y)') which will be stored by the program as
<< = T Y 'SIN(T*Y)" >> in the variable F.N. The program will also prompt for

initial conditions, step size, number of steps, etc.
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Program Name: INIT1

Initialization Program to set required ingredients for GRAF

<< "ENTERF.NINT)Y" " " INPUT OBJ—> 'F.N(T,Y)' SWAP =
DEFINE "KEY IN # OF STEPS" " " INPUT OBJ- 'N' STO
"KEY IN STEP SIZE" " " INPUT OBJ—> 'H' STO "KEY IN
XRNG" " " INPUT OBJ—» XRNG "KEY IN YRNG" "*"
INPUT OBJ— YRNG "KEY ININITIALT" "" INPUT OBJ-
"KEY IN INITIALY" " " INPUT OBJ— ERASE >>

As we have already indicated, it is often desirable to plot solutions of several
initial value problems on the same plot. Of course, plots can be combined simply by

not erasing the previous result.

EXERCISE 1.8: Consider the following differential equation together with several

initial conditions and plot the solutions on the same graph.
dy/dt = y(1-y), y(©0) = .2, 4, 6,15

where the solutions are plotted for 0 < t <5 and step size h = .05 is used. Try
FN: <<-> TY '"Y{(1-Y) >>.

Put 0 and .2 on the stack, then execute GRAF. (Remember H = .05 and N = 100 are
stored before execution.) Place another initial condition on the stack and add the
second solution graph. Notice the solution y = 1 is an attracting solution, i. e., nearby

solutions collapse to y = 1 as time increases.
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The EULER and IULER programs also work for the vector case when the F.N
program has the proper form and when the initial y input is a vector. Here again

F.N requires input T Y. We can modify the GRAF program to the following form:

Program Name: G.TYI

Purpose: Plot N values of (T,Y(I)) resulting from the
improved Euler algorithm which creates a
sequence of N values of t, and Y.

Stored Quantities: N H F.N EULER IULER XRNG YRNG

Input Output
level 2 level 1 level 3 level 2 level 1
to initial vector Y I tn  final vector Y & graph

<<—> I <<{ # 0d # 0d } PVIEW DRAX DUP2 I GET R—C 3
ROLLD 1 N START IULER DUP2 I GET R—»C DUP 5 ROLLD

4 ROLL LINE NEXT GRAPH >> >>

Program INIT.I is to set the plotting parameters for G.TYI. Notice that the
construction of the F.N program is to be done later since it is felt that F.N could be a

complicated program.
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Program Name: INIT.I
Purpose: Set parameters for G.TYI.
<< "KEY IN # OF STEPS" "" INPUT OBJ— 'N' STO
"KEY IN STEP SIZE" "" INPUT OBJ— 'H' STO
"KEY IN XRNG" "" INPUT OBJ— XRNG
"KEY IN YRNG" "" INPUT OBJ— YRNG
"KEY IN INITIAL T" "" INPUT OBJ—
"KEY IN INITIAL Y" "" INPUT OBJ—
"KEY I FOR Y(I) GRAPH" "" INPUT OBJ—
"PRESS ENTER, CONSTRUCT PROGRAM FN
EXECUTE G.TYI" ""INPUT OBJ-> >>

The program G.TYI as given above works for vector initial value problems with two

or more components. For example consider the following

EXERCISE 1.9: Set E.N to be
<<= T Y <<'-00001*Y(1)*Y(2)' EVAL '.00001*Y(1)*Y(2) - Y(2)/14' EVAL
'Y(2)/14' EVAL 3 —5ARRY >> >>
set initial T, Y to 0 [45400 2100 2400] with XRNG 0 25 YRNG 0 45400 and set
the number of steps to be N = 25 and step size to H = 1. Obtain a T-Y(1) plot,
overlay a T-Y(2) plot, etc.

Students who use the Euler and improved Euler algorithm will also need a
program to compute the solution and plot the components yj(t) versus ya(t) as t
increases. Such a program, call G.Y12 is presented below. The initialization
program INIT.I also works for this program, except the input I is not needed and
should be deleted before execution of G.Y12.
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Program Name: G.Y12

Purpose: Plot N values of (Y(1),Y(2)) resulting from
the improved Euler algorithm which creates
a sequence of N values of Y(1) and Y(2).

Stored Quantities: N H F.N EULER IULER XRNG YRNG

Input Output
level 2 level 1 level 2 level 1
to initial vector Y tn last vector Y & graph

<<{ # 0d # 0d } PVIEW DRAX DUP DUP 1 GET SWAP 2
GET R—>C 3 ROLLD 1 N START IULER DUP DUP 1 GET
SWAP 2 GET R—»C DUP 5 ROLLD 4 ROLL LINE NEXT

GRAPH >>

We recommend that the user create a subdirectory for the programs in this
section. A possible subdirectory name is DE.2. This subdirectory should contain the
programs INIT1, GRAF, INIT.l, G.TYl, ER.SE, G.Y12, T, Y, F.N, EQ, and PPAR in
this order. The program ER.SE given by << ERASE >> is placed in this directory
for convenience. The subdirectory can be created by placing the name 'DE.2' on the
stack, then pressing MEMORY, pressing DIR, then CRDIR. To obtain the
desired order, press { and enter the program names in order, press ENTER, then
ORDER (located in the same MEMORY DIR menu).
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Now that we can construct approximate solutions of a differential equation we
can suggest EXERCISES and activities that use these graphical and numerical

computations to enhance the study of differential equations.

y

235 S
Five solutions of dy/dt=y (1-y)

We will often be interested in constructing graphs of several solutions of a
differential equation. The figure shown above, constructed for the differential
equation y' = y(1-y) is an example. There may be solutions y(t) that remain constant
as time increases. Such solutions are called equilibrium solutions. In the case just

mentioned, the constant solutions are y(t) = 0 and y(t) = 1. Clearly the solutions

y(t) = ye of dy/dt = F(t, y), which are constant, satisfy
F(t, Ye) = 0.

If we wish to understand how solutions of a differential equation change as the
initial condition y(0) is varied, one of the first tasks is to find the equilibrium

solutions. If the function F(t, y) is continuous and has continuous derivatives then

25
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any solutions yj(t) and y2(t) which satisfy different initial conditions do not
intersect. Consequently, constant solutions restrict the region where nearby solutions

can proceed.

EXERCISE 2.1: Plot the solutions of the three initial value problems
dy/dt = y2 (1 - y2), that satisfy either y(0) = -1, y(0) =0, and y(0) =1 for 0 <t <5
all in the same picture. Then overlay plots of the solutions of the same differential

equation that satisfy y(0) = -.25 and y(0) = .25.

EXERCISE 2.2: Consider the differential equation y' = y - y3. The equilibrium
solutions are 0, -1 and 1. For an initial condition y(0) not in the set {-1, 0, 1}, use the
separation of variables technique to obtain the result

2

yOI 1- yOI

2 _ 2t
y ll-yl=l1+ylKe™, K= |1+y0|

This equation defines the solution y implicitly as a function of t. For example, if
0 <yp < 1, then since y(t) will not leave the interval 0 < y < 1, we have a cubic
equation for y as a function of t. We can use one of our calculator programs to
construct a plot of an approximate solution of the problem with such an initial
condition or if we only want a crude idea of the solution graph, we can sketch in an
increasing function proceeding from y(0) up toward the asymptotic value y(e) = 1.
Why?
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-7 ) ¢
dy/dt=2sin(t-y) dy/dt = cos (.5ty)

The solutions of the two differential equations pictured above show interesting
structure. The straight lines y = t + a are solutions of dy/dt = 2 sin(t - y) for
a = 3.665, a = -.524, a = - 2.618, or a = -6.81. (Hint: make the transformation t -y = w
to get the differential equation w' = 1 — 2sin w. What are the equilibrium solutions
of the w differential equation ?) Solutions starting near t = 0, y = -.524 collapse to
the straight line solution y = t — .524, while solutions starting near t = 0, y = -2.618
are repelled away for the straight line solution y = t — 2.618, etc.

As for the second plot shown just above, even though the functions y = (2n+1)rn/t
(n=0,%1, %2, ..) are not solutions of dy/dx = cos (.5ty), when t is large such a
function y has small derivative and we can see these approximate solutions emerge
for large t. Moreover when the initial value y(0) is large, there are more values of t

on the graph when .5ty(t) = (4n+1)n/2 and the slope y' is zero.

EXERCISE 2.3: Plot the solutions starting from y(0) = -7.85, y(0) = -1.57, y(0) = 4.71,
y(0) = -1.9, y(0) = -2.5, y(0) = 2.5 and y(0) = 4.3 that satisfy the differential
equation dy/dt = sin (t-y) for 0 < t <8. Use vertical dimension to show -8 <y < 8.
Hint: the transformation w = t — y gives a differential equation with equilibrium

solutions we =1/2, 5n/2, -3n/2, etc.
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EXERCISE 2.4: Plot the graph of the differential equation dy/dt = sin (ty) with
initial condition y(0) = 3 with plot parameters to show 0 <t <6, 0 <y <5. Select a
new starting point y(0) = 3.5 and add the new trajectory. Now choose y(0) = 1.5, get
the new combination graph, then choose y(0) = 1 and get another combination graph:

we see the bottom two trajectories approach each other.

The graphical study of solutions of dy/dt = sin(ty) led to an journal article that
gives mathematical proofs for some of the interesting behavior observed in the
graphs. See Mills, B. Weisfeiler and A. Krall, "Discovering Theorems with a
Computer", The American Mathematical Monthly, volume 86 (1979), pages 733-739.

EXERCISE 2.5: Consider the differential equation y' = y — .3t - (y — .3t)3. The
transformation w = y — .3t gives the new differential equation w' = w — w3 - .3.
What are the equilibrium solutions of the new differential equation ? Sketch
several solutions of the w differential equation including the equilibrium solutions, a
solution with w(0) above the largest equilibrium solution, one with w(0) below all of
the equilibrium solutions and one with w(0) near but not on the middle equilibrium
solution. Now make a sketch of the corresponding solutions of the y differential

equation.

EXERCISE 2.6: Repeat as much as possible of the previous EXERCISE for the
differential equation y' = y - .5t — (y - .5t)3.

We will wish to compare the graphs of solutions of different differential
equations. For example if we graph the solutions of the two initial value problems
dy/dt = y(1 - y), y(0) = .25 and dy/dt = y2(1 - y2), y(0) = .25 (graphic screen
parameters 0 < "t" < 5 and 0 < y < 1.2) on the same plot, we notice that the solutions

are structurally similar. In which case is a change of concavity apparent ?
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EXERCISE 2.7: Plot the solutions of the two initial value problems dy/dt = y(1 - y),
y(0) = .25 and dy/dt = -y In y, y(0) = .25 (plot screen parameters 0 < "t" < 5 and
0 £y £1.2) on the same plot. In what ways are the solution graphs similar ? In

what way are they different ?

There are many problems in a differential equations course in which a number (or
numbers) satisfying a somewhat complicated equation is needed. In one type of
example we can use the graphing capability of the calculator to display the inverse
of a particular function and thus graph a desired solution. We will give an example
of this below. In a second type of problem we may simply use the equation solver
routine contained in the calculator. An example of this type of problem is also given

below.

Implicitly defined solutions may arise in the study of first order differential
equations, particularly in those problems in which variables are "separated and

integrated" or in exact equations.
EXAMPLE: Plot the solution of
dx/dt=1-x32, x(0)=1/2

for 0 < t < 2.5. Clearly the solution x(t) will approach 1 as t increases. Using

separation of variables, we obtain
dx
J 1_X3/2=t+C.

We make the substitution x = y?> and use a partial fraction decomposition for the

fraction to obtain the implicit equation F(x) = t where F(x) = f(x) - f(.5) and

15f(x) = In { v (11+—)i/:xJ; )} -3 Arctan {%ﬁ} .
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We enter the formula for F(x) in the calculator and notice the range of F for
5 <x<.99is [0, 2.79]. We specify plotting parameters so that XRNG and YRNG are
0 3 and restrict the values of x to be graphed by entering {X .5 .99} as INDEP and
draw a plot of F(x). A plot of the inverse function can be overdrawn by altering EQ to

'F(X) +i*X' and changing the plot type to PARAM. Finally the graph of y = x is

also shown as part of the construction of F! from F.

y=F(x)

EXERCISE 2.8: Determine the solution of x' = 1 - x*, x(0) = .5 using separation of
variables technique for r = 5/4 and for r = 5/2. Then use the inverse function to plot

x(t). Hint: (x2+.5(1-V5)x+1)(x2+.5(1+V5)x+1) = (x4 3 +x2+x+1).

Suppose we wish a number x so that an equation f(x) = g(x) is satisfied. Construct
a list which contains expressions for f(x) and for g(x). Then store this list in the
variable EQ. Set plot parameters so that when both sides of the equation are
drawn, a crossing is shown. Use the cursor to locate the approximate crossing

coordinates and the ISECT command to obtain the result.

MIXING PROBLEM: Initially a large tank holds 2000 gallons of pure water. An
stream of 5 gallons per minute with salt content of 2 #/gallon is input into the tank
and 4 gallons per minute of the well mixed solution is drained from the tank. When
is there Q, pounds present in tank ? The usual model dQ/dt = input rate - output rate

gives
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(2000)
Q=2| 2000 +t- — .
(2000 + t)
Putting Q(t) = Q, gives
S .
2000 5 *t _ 2000
2000 | 2000 +t

to solve for t. For Q, = 100, we get

4
1950 + t _ M_] .
2000 2000 +t |

and if we use plotting parameters to show 0 < x <20, .9 <y <1, we get an intersection
at about 10 as shown:

T

N

Right side of equation

2 6 10 14

time
Mixtuxe Problem
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EXERCISE 2.9: A tank initially contains 300 gallons of pure water. Brine containing
1.5# of salt per gallon enters the tank at 2 gallons/minute and the well mixed
solution leaves at 3 gallons per minute. When will the tank contain 21 # of salt?

(There may be more than one solution.)

Population Problems

EXERCISE 2.7 gives two initial value problems that model population growth in a
food limited environment. Which model is appropriate? Some input from biologists
or some observation data could be used to answer this question. Suppose that from
experimental data, we can determine the limiting value of the population and that
we can also estimate at what fraction of the limiting value of y an inflection point
occurs. In EXERCISE 2.7, the inflection points occur at 36.8% (for the logarithm
model) and 50% (for the quadratic model) of the limiting value of y, which in both

cases is y = 1. We will further explore this question below.

Suppose we are given the assignment of explaining how the population of a
species evolves in time and we note that the environment will only support a finite

number of the population. Two much studied models of this type are:

e The logistic model:
d 2 Py

p
=7 =ap-bp, pO)=p,: p= -
dt 0 bp0+(a—bpo)e at

e The Gompertz model:

&

Po exp(-Bt)
dt=P(A-BInp), pO)=po: p=eA/B|

The parameters have different meanings: equating the carrying capacity of the

model (i. e., the value of the population that is reached in infinite time) gives eA/B
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in the Gompertz model and a/b in the logistic model. Which of these models is

better? Or should we look for another model?

These are not easy questions in general. Probably the first step is to pick a
model, use data to determine what the model parameters should be (e.g. the
constants a, b or A, B) and graph the solution. Then change the model, use data to

determine that model's parameters and graph the solution again, etc.

POPULATION PROBLEM: Suppose we use a logistic population model
dp/dt = ap - bp2 with parameters a, b and data taken from the following table:

Year Population Year Population
1790 3.93 1900 75.99
1800 5.31 1910 91.97
1810 7.24 1920 105.71
1820 9.64 1930 122.78
1830 12.87 1940 131.67
1840 17.07 1950 151.33
1850 23.19 1960 179.32
1860 31.44 1970 203.21
1870 39.83 1980 226.50
1880 50.16 1990 248.71
1890 62.95
To determine the parameters a and b: if we use p, = 3.93 and

p(50) = 17.07 we get

a 3.93 -SOa)

17.07 €
Py = 10 ’

and if we also take p = 75.99 at t = 110, we have
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[%‘em{l (1_e.ma)=[%_e_]1)a] (1—e'5) :

By setting x = 50a (which gives 110a = 2.2x) we obtain the equation
[e*-.23023] (1 -e22)=[e?22x - 05172 ] (1 - €e).

For plotting parameters 1 < x < 2, -0.05 <y < .02, we observe a solution at x = 1.53,
which means that a = .031 and b = .00014. We show below the data and the solution
curve for these values of the parameters, and also the solution curve for the values of
a and b obtained by fitting to data at time t = 140 and t = 200 (a = .0279 and

b = .0000855).

population population
250 o 250 /
a
time ,,.y’/ time

o ] 200
Data and Logistic Curve for fit Data and Logistic Cuxve fox fit
W p(50)=17.07,p(110) = 75.99 0 p(140)=122.78,p(200)=248.71

Note: A program D.GRF to produce a graph of data with "fat pixels" will be
suggested. A list of the data coordinate pairs is stored in a variable L1. After
XRNG and YRNG are set and the screen is erased the following program will plot
the data points:

PGM D.GRF << PPAR DUP 2 GET SWAP 1 GET - C-R
64 / SWAP 132 / MIN 1.2 * —» RADIUS
<< DRAX L1 OBJ— 1 SWAP START RADIUS 0 6.28 ARC NEXT >> >>
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EXERCISE 2.10. Suppose again that pg , (tj, pi), and (tk, pk) are known. Determine
the constants A and B in the Gompertz model. (Hint: put s = A/B and solve for e Bt
in the expression for the solution, then for B. Then evaluate the expression at each
time and set them equal.) Find the value of A and B for pg =1, (tj, pi) = (1, 1.46) and
(tk, PK) = (2, 1.5).

How might other models be constructed ? Here is a suggestion if data {(t1, p1),
(t2,p2), . . . (tn, pn) } is given and a graph of the data indicates the location of an
inflection point and the carrying capacity K. Population models may have the form
dp/dt = f(p) with £(0) = 0, £(K) = 0 for K > 0, and f(p) > 0 for 0 < p < K. Notice that
inflection points come at those points p with f'(p)f(p) = 0. Since f(p) > 0, we get
inflection points when f '(p) = 0. In the logistic model this occurs when p = .5 a/b

and in the Gompertz model whenInp = A/B - 1.

To get a model with inflection at p = .6K, we could try
p = f(p) = (6K)2 - (p - 6K)2 for 0 < p < .6K, and also p' = f(p) =
2.25 ( (.4K)2 - (p - .6K)2) for .6K < p < K.

EXERCISE 2.11. Use your calculator to obtain a plot of the solution of this model for
K=1,p0)=.2, XBRNG =-2 5 YRNG =-1 11. We will suggest here a method to
enter an appropriate F function using the HP-48G input form format. Press PLOT,
CHOOS, Diff Eq, press OK, then position the highlighted field to F. Press NXT,
press CALC, and place the following on the stack: 'IFTE(Y<.6, .36 - (Y-.6)"2,
2.25*(.16— (Y-.6)*2)))' Note: The command IFTE can be located by pressing PRG
BRCH NXT. The < command is located by pressing PRG TEST. When this step is
complete, press the ON (CONT) key, then you should see the desired stack entry and
the ON key. Press ON. The student should complete the EXERCISE from this point.
If you wish to invoke the user program, an appropriate FN program might be
<< 'IFTE(Y<.6, .36 — (Y-.6)*2, 2.25*(.16— (Y-.6)"2))' EVAL >>.
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EXERCISE 2.12. Suppose we have the following (time, population) data point
measurements {(0, .2), (.5, .37), (1, .61), (1.5, .88), (2, .98), (25, 1), (3, 1)}. Use your
calculator to plot the data and estimate the location of the inflection point. Then
construct a model that will give an inflection point at this value and overlay the

solution of the model with the data for comparison.

o) y

.....ﬁoooo... 1

/ )
25 ooey In /("_" 7
s - ///_- " custorn

. 1
Model Functions £(y) Resulting Solutions

quadxatic

Logistic, Gompextz and Custom Models (exexcise 2.8)

EXERCISE 2.13: Set plot parameters to show -.5 < t < 12.56, -.5 < y < 4. Graph the
solutions of y' = .5y(exp(sin t) — y) with y(0) = 1, and y(0) = 3. What initial
condition gives periodicity ? (This differential equation is a potential model for an

environment where the birth rate is periodic in time.)

Motion of a Particle in One Dimension

Mathematical models for the velocity of a particle falling from rest under

gravity with air resistance have the form

q:r — 8~ f(v), v(0) =0,

where the force exerted on the particle by the resistive medium, f(v), is determined

by experimental means. We will assume that f is an increasing function with
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£(0) = 0. The velocity will increase toward a terminal value which is given by
£ 1(g).

EXERCISE 2.14: For simplicity we take physical units so that g = 2. We want to
compare the trajectories from different models in which the f(v) functions are given
by:

(@) f(v)=v

(b) f(v) =.5v2

(©) f(v) = IFTE(v £ 1, (1.5)° v, (25 v - 1)-9)

(d) f(v)=IFTE(v<1,.75v1:5 125 v - 5)
Notice that these models have been chosen so that all have terminal velocity 2.
Use the calculator's function DRAW program to plot each f(v) function for 0 < v <2.
Use XRNG =-1 2 and YRNG = -1 2.1. Accumulate these graphs on the same
picture and label the graphs. Then use a differential equation plotting program to
graph the solution of the initial value problem given above for each f(v) function for

0 <t <£5. Accumulate them in the same picture for comparison. Again label the
solutions. Use the YRNG as above and XRNG -.2 5.

A particle falls or is projected from a great height and observations are made on

v for, say, n values of time. Two well-known models for such a problem are:

e linear air resistance model: dv/dt = g — kv, v(0) = vg. The solution is

v(t) = vo ekt + v, (1-ekt), v =g/k.

e quadratic air resistance model: dv/dt=g - kv2, v(0) = vg. The solution is
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MeSt -1 Veo + V( ,&
v(t)=v°° Mect+11M— 7 Voo = k,G—zklgk.

Voo — V()

Suppose that ve can be accurately determined from data, say {(t1, v1),
(t2,v2), . .. (t2, v2)}. In the case of the linear model k = g/ve and we note that the
graph of

z(t) =1In (Voo — V(t)) = In (Voo — vQ) — kt
is a straight line with slope -g/ve. Furthermore, in the case of the quadratic model,

k = g/(Veo)? and the graph of

Z(t) = In (Voo — V(t)) = In (2Veo /M) — (2g8/Veo )t
is a straight line with slope -2g/ve. This is twice the slope of the linear model.

Suppose that (time, velocity) data is available. = What model is
appropriate? Maybe if we plot tj vs In(ve. — vj) a straight line will appear for

large t, and we can choose a model with the appropriate slope.

EXERCISE 2.15. The data to be used for model selection is:
{ (0, 0), (1, 1.44), (211.87), (3, 1.97), (4, 1.99), (5, 2) }.

Consider models of the form dv/dt = 2 — a vT, v(0) = 0, where r is a positive number
and a is chosen so that veo = 2. (In our units g = 2.) Plot the points (tj, In(2 - vj)).
Determine the slope of a line which "fits" the plot for the latter data points and
choose an appropriate value of r. Then plot the data points (no logarithms) and use
a differential equation calculator graphing program to draw the trajectory of the
model you have chosen as an overlay of the data point graph. Conclusions? (It is
instructive to experiment with models of the form dv/dt = g —a vf and G1.TY can be
modified to plot the log (V.. — v(t)) by inserting the commands V., = ABS LN in 4

locations each following the command Y.)
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Consider the problem
M'(t)v + M(t)v' = T(t) - M(t)g — ov, v(0) = x(0) =0
where M(t) is the mass of a rocket and has equation
M(t) =m - at for 0 <t <ty and M(t) = mg + {m-oitg — mgle~Y(t-tp) for tg < t
with y= o/ (m-oatg — mg) (so that M'(t) is continuous) and T(t) = -B dM(t)/dt.
As an example we takem =1, 0=.19, mg=.2=.8m,t0=4,g=1,6 =.05and B = 22 so
M) =1-.19tfor0<t<4, M(t)=.2 +.04e475(t-4)) for4 < t, and

T(t) = -22 dM(t)/dt.

The graphs are shown below.

Mass M(v) Thrust T(t)

We notice that for these values of the parameters, after the thrust dissipates from mass
burnoff, we have Mo, = .2 and the terminal velocity will be vo, = -4. Store the formulas for

M(t) and M'(t) in user defined functions MAS and MDOT, and set F(T,Y) to be

<< ' MAS(T) + (22+Y)*MDOT(T)+.05*Y' EVAL 'MAS(T)' EVAL / NEG >>.
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Setting XRNG to0 25 and YRNG to -5 55 respectively, gives the velocity graph:

velocity
55

25
I ~te—t—t—+—itime

The velocity rises to 53 begins to decrease at t = 4.25 but remains positive until about t = 15.
The velocity at t = 25 is v = -3.65. The graph of height versus time is shown below. Recall
that we have used specialized units (e.g., g = 1), so the actual height is not in a common

physical unit.

height
140
time
25
Rocketheight versus time

EXERCISE 2.16 : We may wish to study the sensitivity of the results we have to the
parameter values used. Construct the velocity versus time graph shown above for
the parameters as given, then change the parameter values of a to o = .16,
to totgp = 3.8 and B to B = 18. Overlay the new velocity time graph on the first
graph.



FIRST ORDER DIFFERENTIAL EQUATIONS 41

Input Output Problems

Suppose a tank, which contains V volume units of a mixture of water and a
chemical substance, receives f(t) units (weight) of the chemical in solution per
minute. The chemical is vigorously mixed in the tank and the mixture drains from
the tank in such a way that constant volume in the tank is maintained. If y(t) is the
weight of chemical in the tank at time t, a balance equation gives dy/dt as the rate
that the chemical enters the tank minus the rate that the chemical exits from the
tank. This is one example of an important problem, namely, to determine a
particular solution of the equation
% + ry = f(t).

Here we assume r is a positive constant. Commonly, the function f(t) is called input
to the problem and the solution y(t) is called the output. Other examples of this

problem occur in electrical flow problems. The initial value problem solution is

t
v = y0) e™ + [ e" ) gs) as.

0

If the function f(t) is periodic with period P, then we can choose y(0) so that the
output is periodic. This is done by choosing y(0) so that y(0) = y(P), which gives

.[P e-r P-s

y(©0) = —— ) £(s) ds.

l1-e
The input function f is transformed to the output function y = Tf. Notice
T(af + bg) = aTf + bTg when a and b are constants and f, g are input functions. This
superposition property of the "operation” T shows the transformation T to be a linear

operator.
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Here we are interested in comparing the graphs of the input functions f to the
graphs of output functions y = Tf. An important example, f(t) = sin at, gives
y(t) = sin (at-0)/R2 with R? = (02+12) and cos 6 = r/R, sin 8 = a/R. In this example

there is an obvious similarity between the graphs of the input and output functions.

EXERCISE 2.17: If a signal f(t) = sin t is input into a device and produces output as
described above, what value of r will produce the "delayed" output version of the
signal, sin (t-m/4)? What distortion of the signal sin 3t will be produced by this

same device?

If the input signals are not sine or cosine in form, it may be difficult or impossible
to find an analytical form of the output; however, a graph of the output may be
found by using our differential equation graphing programs after using the calculator

to evaluate the integral in y(0).

EXERCISE 2.18: Let r = 1, and set the plot parameters so that 0 < t < 3.14 and
0 <y <£1.2. Use the calculator to plot the following input functions with the
Function DRAW program and the resulting output functions with a differential

equation plotting program.
(a) f(t) =1-sin* (3t), (c) £(t) = Max (sin 6t, 0).
(b) f(t) =1 - sinl®(3t),

If f(t) is stored in EQ and P = 1.047 = n/3, the following program can be used to
calculate y(0):

<< 3 FIX 'T" PURGE 0 1.047 EQ 'EXP(T)' * 'T' 3 NEG
SF |/ 3 NEG CF 1 1.047 EXP SWAP - / STD >>
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The input signals in (a) and (b) are periodic, spike-like disturbances of a constant

input and the input in (c) is a half-wave rectified sine function.

An observant student may notice that if we start with incorrect initial conditions
then the solution approaches the periodic output after some time. This suggests that
the starting condition y(0) = 0 is ignored and that the resulting motion will become
periodic. This is a result of the theorem that any solution of the non-homogeneous
problem is the sum of a particular solution and a solution of the homogeneous

problem.

The function f£(t) = 2*CEIL(SIN(t*r)) - 1 has values given by: for 0 <t <1,
ft))=2-1=1,for1<t<2f(t)=-1,for 2<t<3,f(t)=2-1=1, etc. This is called
a square wave. The calculator numerical integration "key" and graphing program can
handle such a function even though it is not defined at t = 1, t = 2, etc. The periodic

input function and its periodic output are shown for 0 <t < 4.

Input

!

S B e B ey

Output

The student can also construct the input function shown above as IFTE(T MOD
2<1,1,-1. In the same way, the switch function u,(t) = 0 when t < a and 1
otherwise can be given by an IFTE function or by u,(t) = .5[1 + (t-a)/ It-al] = 0 when
t <aand u,(t) = 1 when t > a. This could be called a switch-on function. Other

interesting functions can be obtained using the MOD function on the calculator. For
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example, f(x) = '2*X MOD 1' will produce repeated ramps of height 2. Finally,
functions defined by different formulae in different intervals can be produced by the
IFTE command: for example, f(x) = 2x for 0 < x < .5, f(x) = 1 - sin (x - .5) for
5<x<.5+1.571, x2forx>.5+1.571 is produced by 'IFTE(X < .5, 2*X,
IFTE(X <.5+1.571, SIN(X-.5), X"2))'.

PROJECT EXERCISE: Travel time for a sliding bead as a function of trajectory
shape:

We want to specify the shape of a curved wire by a function y=f(x), which
connects the point A with coordinates (x,,y;) to the origin (0,0) (denoted as point B)
so that a bead of mass m will slide along the wire from A to B in a minimum amount
of time. The bead begins with initial velocity zero and slides with no friction under

the force of gravity g.

4
y initial point A
:xmiml point X
—= — g

B:(0,0) Sliding Bead
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The well-known formula for arclength ,

X df 2
s(x) = J)x / 1+[ d(rr)] dr,

the principal of conservation of energy (this is a conservative system),

%mv2+mgy=mgy1,

and the expression for the travel time,
T ?0) T»
dt 1
T= I dt = as— ds = v ds

leads to the equation

2

1+( d;(:))

280y, -f0)

where we have explicitly noted that T depends on the curve y = f(x). (We have
used the technique of changing the variable of integration and the Fundamental
Theorem of Calculus.)

We further specialize the example by taking x; = 200, y; = 100 and g = 1. Later,
for this case we will find there is a curve such that the travel time T is
approximately 25.231. For these parameters the following curves connect the points

A and B:

(a) f(x) =x%/400
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(b) f(x) = exp(( x In 101)/200) - 1
(c) f£(x)=100[1 - cos (nx/400)].

We will evaluate the travel time integrals for each of these curves using numerical

integration.

For f(x) = x2/400 the descent time integral becomes

2
X
1+
4
4] 10
0 X
2[100 400]

Put x/200 = z, evaluate the integral to get T = 26.779 (attempted accuracy: 0.01).

Find T for the functions given in (b) and (c). (Note that so far, no differential

equation has arisen.)

The differential equation

dy _ [F=Gi-y)
dx Yi-y

can be shown to give the minimum time of descent. We have

dx = — =Y gy
VK2 - (y; - y)

Use the change of variables

)’1‘}’=kzsmzszlZ

to get
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2
dx=-k2sin? 5 dg, x=c-k5 (¢ - sin @).
At@9=0,x=x1 and y =y and at ¢ = ¢1 (to be determined), x =y = 0.

Thus the solution to the differential equation, along with the transformation y to

@, yields a parametric representation (x(¢),y(9)) of the curve of minimum descent

time. There are two constants to be determined, k? and ¢1; then
K2 . K2
X =X1 =% [¢ -sin 9], y=y1- 5 [1-cos¢], 0 ¢ <9,

The constraint x(¢1) = y(¢1) = 0 leads to the equation

e N 2
sinzsze l-cos@®, ¢ —sin@,

We solve

X
) 1
G(cp)=<p—sm<p—y—l(1—cos<p)=0

for ¢ = @, with the calculator. Notice there is a positive solution. Now determine

k2. Using the differential equation in the expression for the descent time

J_ dy(X)
e 2g(y -y(x)) e

we obtain the expression
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x . - (y1 y)
I + yl -y k J‘
T= 2(y, - y) S A )

But y; -y = k2 [1 - cos ¢]/2, and dx = - k% [1 - cos ¢]d¢ so that

k2

T(yope) = 2g &

Use the values you get for ¢, and k? to evaluate T. You should find
T(yop) = 25.231.

The reader may note that the slope of the optimal curve is infinite at the initial
point. This results in a quick start for the sliding bead. The optimal curve is called
a cycloid. Optimality is shown in the study of the calculus of variations. Notice

however, the exponential curve gives a travel time similar to the optimal curve.
PROJECT EXERCISE: Travel time up a hill versus initial energy

This project is also concerned with the shape of a unknown function f(x). Suppose
we give to a particle with initial position at the origin, energy E in the form of
initial velocity. The particle sliding on the shape function f(x) (we assume that f is
an increasing function) leaves the origin, travels up the "hill" f(x), reaches the limit
of its travel at which all its energy has been converted into potential energy and
then returns to the origin. We observe the time required to do this (as a function of
the initial energy). (This problem is also illustrated by the figure given for the
previous project.) The time between the particle's leaving and arriving back at the

origin is given by
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XE) \[1+ 601
T(E) = ¥2m |

X,
0 E - mgf(x)

and x(E) = f 1(E/mg), that is E - mgf(x) = 0.

Suppose the shape of the hill (i. e. the curve f (x) ) is one of the functions given
in the previous project (i.e., a parabola, an exponential function, or a trigonometric
function). Graph T vs E for E = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (numerical

integration required).

Now read the first part of the article by Keller on Inverse Problems in the
American Mathematician Monthly, volume 83, 1976, pages 107-118, and describe what

is meant by the inverse problem.



SECOND ORDER DIFFERENTIAL
EQUATIONS

We saw in chapter 1 that it is easy to program the HP-48 to treat a vector
differential equation. Consider the case where the vectors have two components,

y =[y1,y2]; that is, initial value problems consisting of two first order differential
equations and the initial values of the two dependent variables:

dy, dy,
at Ft Y Y g =Ry yy)

where y1(tp) and yi(tp) are given. You should note that a second order initial

value problem

2
%; =gltx %xt-), with x(tg) and%X; (to) given,

can be reduced to a first order system of differential equations

dy1 dy2
dt =Y2r 4 =8t y1,y2)

(with initial values of y1 and y2) by using the identification y; = x and yp = x". A
significant part of this chapter will be concerned with the study of solutions of
second order differential equations. We will obtain approximations of these
solutions using the calculator by studying the associated vector systems. This is a
common practice on all kinds of calculators and computer programs. We will plot
trajectories and study the solution characteristics of such systems. Of course, in this
case we can plot yj versus t, y2 versus t, or plot y1 versus yp as the parameter

t varies.

50
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As in the case of a single differential equation, the user has three choices: use
the built-in plotting form, the user programs described in the first section of chapter
1, or the Euler or modified Euler algorithms in plotting programs as described in the
second section of chapter 1. If you want to use the EULER and IULER programs as
written for the vector case, make sure the F.N program will give a vector dY/dT
when the input is a number T and a vector Y. Consider

dy, dy,
G Y qr Seost-y, y1(0)=y2(0)=0,

over the interval 0 < t < 2rn. An appropriate F.N program is

<< - T Y << 'Y(2)' EVAL 'Y(1)' EVAL NEG 2 —ARRY >> »>> .

(The first two stack items are used as local variables, and the inner program creates
the first and second components of the output and forms a vector from these
components.) After a value for H is stored, the stack input 0 [0 0] to either of the

programs EULER or IULER will produce the values at T = H.

Suppose we wish to plot the vector solution of dyj /dt = yp, dya /dt = -yq,
y1(0) =1, y2(0) =0 using the built-in HP-48G algorithm on the interval 0 < t < 2.
We can choose the input form Diff Eq under PLOT as indicated in chapter 1 or we can
use the user programs constructed in chapter 1 which eliminate some of the
inconveniences of the input form. In the latter case we execute the program IN.FN

and respond with

<< 'Y(2)' EVAL 'Y(1)) EVAL NEG 2 —ARRY >>

which will be stored in FN. We execute IN.PP, respond to set H-VIEW with -1.2
1.2, and respond with set V-View to -1.2 1.2. Then we enter 0 [1 0] 6.283 on the

stack and execute G.12. The solution is y1(t) = cos t, y2(t) = -sin t and the y; versus
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y2 plot should be a "circle". The actual figure is a set of points connected by straight
lines. Exit to the stack and press T and Y in the VAR menu to get (approximately)
6.283 [1 0]. This will be more accurate that the result as drawn by GR.12, say
with H = .0628 and N = 100. (The program GR.12 is obtained from GR.01 by
substituting DROP for DROP2 and inserting DROP after PIXON.)

Probably the first type of second order differential equation you will study is a
linear homogeneous equation with constant coefficients. Such an equation can be
solved by finding appropriate values of a constant r so that x = et is a solution of the
problem. The calculator can be used to determine unknown coefficients in constructing
general solutions. You should also use the calculator to become familiar with the
plots of solutions that occur in common problems. This type of EXERCISE will use the
function grapher in the calculator and we will not study these kinds of problems
here. But here is an associated problem. How are the coefficients in these

differential equations obtained?

Several mathematical models lead to second order ordinary differential
equations with constant coefficients. The coefficients are usually obtained from
measurements either directly on the physical system or on solutions of the system.
How could we deduce approximate values of these coefficients using measurements on
the solutions ? Consider the differential equation

dy gy
— B FTI Cy =0.
dt

A common solution function has the form

y(t) = ae Pt + be 4t
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where a, b, p, q are parameters. Suppose a set of values { (t, y) } is obtained by
making measurements. There is usually some experimental error in measurements so
the entire set { (t, y) } will be used to find the parameters. In this example the

measurements are:
{@©,1), (1,.30), (2, -.20), (.3, -.60), (.4, -.88), (.5, -1), (.6, -1.2), (.7, -1.2), (.8, -1.3),
(.9, -1.3), (1, -1.2), (1.5, -1), (2, -.70), (2.5, -.50), (3, -.3), (3.5, -.17), (4, -.11)}

We want to deduce first approximate values of the parameters a, b, p, q, then use

these to determine the parameters B and C in the equation above.

We may be able to learn something from a plot of the data. A program for
producing such a plot is given below. We also recall that if y = Ae’kt then a graph
of Inly| versus t is a straight line with slope -k. So a graph of data {(t, Inly|)} may

reveal information. Suppose we construct a list of the data and store as L1.

In Iyl

*

.

>
[ 2 .
. . . 3 .
0000 .

Graphs of Solution Observations

The graphs shown are generated with the HP-48 program
<< ERASE DRAX L1 LIST-»> 1 SWAP START PIXON NEXT GRAPH >>
<< ERASE DRAX L1 LIST-»> 1 SWAP START C—»R ABS LN
R—C PIXON NEXT GRAPH >>.
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after setting XRNG to 0 4 and YRNG in the first problem to -1.4 1.1 and in the
second program to -2.1 .28 (approximate values for In |-.111 and In 1.3).

To get approximations for a, b, p, and q we proceed as follows: suppose p > q,
then y(t) = e 9 t(ae" (P~ + b). Since the first term becomes negligible as t increases,
b < 0 (we replace b with -1bl) and a plot of (t, Inly!) is a straight line for large t
with slope -q. From the second graph we get q = -.5 In (.11/.7) = .925 from the data
points (4, -.11) and (2, -.7). The first data point gives a = |bl + 1 (which is, of course,
an approximate equation), and dy/dt(.85) = 0 gives p(1+Ibl) e85P = 421bl. Finally
we use the approximate equation In -y(t) = Inlbl -925 t = 0 at t = 1.5 which gives
Ibl =4,a=5,pe-85P = .336. This equation has two solutions p = .525 and p = 2.2.

Since we want p > q, we take p = 2.2. This yields the equation
y(t) =5 22t _ 4--925t

You should now plot this equation together with the plot of the data for comparison.
These approximate values for a, b, p and q can be taken as starting values to an
iterative process to determine the parameter values by a least squares fit to data.
See Chapter 5. It is easy to use the values of p and q to determine the corresponding

values of B and C in the differential equation.

EXERCISE 3.1: Suppose the following data is collected on the solution of the second

order differential equation given above.

{ (0, 11.04), (.4, 12), (.8, 11.06), (1.2, 8.47), (1.6, 4.75), (2, .54), (2.4, -3.48), (2.8, -6.71),
(3.2, -8.7), (3.6, -9.22), (4, -8.29), (4.4, -6.15), (4.8, -3.2), (5.2, .05), (5.6, 3.09) }

Find approximate values of B and C in the differential equation.
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Second Order Input Output Problems

We now consider constructing the solution of a non-homogeneous second order
differential equation with constant coefficients. The problem is treated in many
textbooks for special types of forcing, usually sine or cosine forcing functions. A model
for an elastic spring with damping and with external forcing f(t) or a model for a
simple electrical circuit loop with external voltage is:

d X dx , 2 2

SX 12 Xy 0 x = £(1), x(0) = X 0)=0 w1
2 dt

The solution is given by
t
X (t =%L-J'e smu(t—s)f(s)ds, p—\/wz—rz.
0

As indicated before, this problem is equivalent to the pair of differential

equations dy1 /dt = y2, dy2 /dt = f(t) - 2ry2 - @? y1, y1(0) = y2(0) = 0

EXAMPLE: Take w2 = 41, r = .5 (so p2 = .16) and f(t) = sin2(1.5t). Set FN as
<< 'Y(2)' EVAL 'SIN(1.5*T)*2 - Y(2) - .41*Y(1)' EVAL 2 —ARRY >> and the
plotting parameters to show 0 <t<9.42,0<y <2 Put0 [0 0] 9.42 on the stack and
execute G.01. Next overlay a plot of the input function. The forcing function (input)

and solution (output) resulting from this program are shown below.

21y
-~
’-N‘/‘ N et ™ N
A ~ K A, ~
;7% 5

¢ e . ",

MSon ok
/N, Nz v '~z X
14 9.5

EXERCISE 3.2: Find the output graph for f(t) =1 -sin*(3.14t) for p =1, and r = .5.
Choose plot parameters to show 0 <t <6 and 0 <y; < 1. Add the input function
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graph as an overlay. Comment: The output function for this input can be obtained
from a table of integrals after several substitutions using the method of undetermined
coefficients. But, an output function for an input f(t) = 1/(2 - sin*(3.14t)) can not be

found this way.

Suppose the forcing function f(t) is periodic with period length P. If we can
change the initial conditions so that x(P) = x(0) and x'(P) = x'(0), then the resulting
solution is periodic. And if the damping coefficient r > 0, then all solutions will
eventually be close approximations to the periodic solution when viewed over one
period. We may want to view such a solution without waiting for asymptotic
behavior to emerge. Suppose we determine solutions x1 (t) and x2(t) of the associated
homogeneous system so that x1 (0)= x'2(0) = 1 and x'1(0) = x2(0) = 0; then a general
solution is x(t) = a x1(t) + b x2(t) + xq(t) where xq(t) is the solution constructed above
for 0 initial conditions for x and x'. Expressions for xj (t) and x2(t) are x3 (t) = ™ [cos
ut + (r/p) sin pt] and xp(t) = (1/p) e tsin pt. We can use the calculator to compute
the integrals in xq(P) and x'q(P), then we can use the calculator to solve the

periodicity condition for a and b:
1- xl(P) - x2(P) [a ] . xq(P)
-x -x' bl | x )
xl(P) 1 xz(P) xq(P)
The periodic response can be obtained by using G.01 with input 0 [a b] P on the
stack.

Output for f(t) = (sin 38, r = 25 and p = 1 with the initial conditions
x(0) = dx/dt(0) = 0 is shown below. This input has period /3. The periodic response
is also shown over two periods. The average value for this forcing f(t) is ©/6 and

f(t) = [f(t) - =/6] + =/6, so a portion of the periodic response is the constant ©t/ (6@2).
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f(t) x(t)

45 9 45 i
Input: £(t) = (sin(3t))*8 Output
T N(t)
............ -t
-3 n/3 253
Periodic Response

EXERCISE 3.3 : Find and plot the periodic output response for f(t) = 1 — sin%(3.14t)
forp =1, and r =.5. Then overlay a plot of the input forcing function.

The friction/resistance term in the spring/circuit model that we have been
considering is given by 2rdx/dt and the restoring force term is @?x. These terms are
usually approximations for nonlinear phenomena. What happens to the periodic
response in the mathematical model driven by periodic input when the terms are
replaced by nonlinear functions? The method of calculating the correct initial
conditions no longer applies; however, in some cases the solution to the differential
equation with a variety of initial conditions will settle toward a periodic steady

state solution as time increases.

EXERCISE 3.4 : Find a periodic solution to nonlinear problems of the form

2
dx Ry 4 Kx)=2cos t.
at dt

Set H-VIEW (i. e, XRNG) =-2 6.283, H-VIEW (i. e, YRNG) = -2.1 2.1. Let
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R (dx/dt) = 2*IFTE(dx/dt < -1, dx/dt + .5, IFTE(dx/dt < 1, .5*dx/dt, dx/dt - 1)).

(a) Take R = Rj(dx/dt) and K(x) = x. Use initial condition t = 0, x = 0, x' = 1.56.
(b) Take R(dx/dt) = dx/dt and K(x) = x. Use initial condition t =0, x = 0, dx/dt = 2.
(c) Take R(dx/dt) = dx/dt and K(x) = sin x.

(d) Take R(dx/dt) = R1(dx/dt) and K(x) = sin x.

Note: In each case, if the solution you get is not periodic then use the values of x
and dx/dt at t = 6.283 as initial conditions and generate another solution. Which

nonlinearities caused a phase shift from the linear case (b)?

Suppose that in the system dY/dt = F(t,Y), F is periodic in t. Since the system
has a periodic rhythm, perhaps the rhythm will also exist in the solutions. It is
easy to use the calculator to illustrate the idea of locating a solution for t = any

multiple of a given time period. For example, the differential equation

2
d x 2

— tO x=.5cost, W#1,

dt
together with the initial condition x(0) = &, dx/dt(0) = 0 has solution

x(t)=[§+—1—2]cosmt- 5 cost

1-w) 2(1-w")

%(t):-w[§++2]sinmt+ L sin t

2(1 - ©°) 2(1 - &)

What are the properties of such a solution? For t = 2ntn we have

x(2nn) + ———— dx
21 - o) ar 2™
1 = cos 2nnw, 1 =-sin 2Tno.
£+ o[f+—7]

21 - @) 21 - @)
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By squaring both sides, we see that the points x(2nn), x'(2nn) lie on an ellipse.

EXERCISE 3.5: Plot the points x(2nn), x'(2nn) for £ =0 and n = 1, 2, ... (several values
of n) for ® = 1/Sqrt(5) and for ® = 1/3. Note that the points cycle around the
ellipse. If wn is an integer m for some integer n, then you can see the solution is

periodic, but what happens when  is irrational?

The graph of { (x(nT), dx/dt(nT)) : n =0, 1, 2, ... } of the solution of a differential
equation dx/dt = f(x,y,t), dy/dt = g(x, y, t) when the function f and g have period T
in t is called a Poincare section. The following program collects 10 points for such a

graph on the stack:

<<{T YFN} TOL 1 10 FORN II N * 2 * 5 NUM —> TF
<< TF RKF 'Y(1)' EVAL 'Y(2)' EVAL RC 3 ROLLD >> NEXT >>

Executing this program for the FN function
<< 'Y(2)' EVAL '12*COS(T) - X - e*('Y(1)*2-1)*Y(2)' EVAL 2 —ARRY >>

(periodically forced Van der Pol equations) for different values of € gives the data:

€ =.05 e=.1 e=.15
initial value Y =[1,1] Y =[1,1] Y=1[11]
first section point Y =[-2.1, 10.4] Y =[-2.24, 7.97] Y =[-2.21, 6.08]
second section point  Y=[ -2.19, 10.28] Y= [-1.99, 8.28] Y = [-1.82, 6.65]
third section point Y =[-2.19, 10.28] Y = [-1.98, 8.29] Y =[1.79, 6.86]

There were no further changes in the section points coordinates (to 6 places). In each
case the solution with initial value Y = [1,1] collapsed to a periodic solution.

Warning: the program's execution is about 30 minutes.
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It is interesting to plot a solution starting at one of the section points over a

period of the system. The following figure is such a plot for one of the examples
/Fz\

Foxced Vandex Polwith ¢ = .1

above.

71

Trajectories in the y1-y2 Plane

A topic occurring early in many differential equation textbooks is that of
determining trajectories that are orthogonal to the members of a one-parameter
family of curves, say W(y1, y2, p) = 0. The usual technique is to first find the
differential equation satisfied by the members of the given curve family, say
dy2/dy1 = m(y1, y2); then curves that are orthogonal satisfy the differential
equation dy2 /dy1=-1/m(y1, y2). If the original family is given in the form
dy1/dt = f(y1, y2), dy2/dt = g(y1, y2), trajectories for orthogonal curves satisfy
dy1/dt=-g(y1,y2), dy2/dt =f(y1, y2). This latter form is preferred if the curves
in either family must be specified in terms of a parameter t. Clearly, the program
G.12 can be used to plot members of both the given family of curves and the

orthogonal trajectories. This is our first example of what is called an autonomous

system. A specific example is shown.
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Orthogonal Trajectories dyy/dt=- y./yl, Wdt=’i/}’2

EXERCISE 3.6: Set the plot parameters to show both H-VIEW and V-VIEW as
-5 3.5 and enter the following FN:

<< 'Y(1)*(Y(1)A2-Y(2)*2)' EVAL 'Y(2)*(3*Y(1)A2-Y(2)*2)' EVAL 2 —ARRY >>.

Create a composite plot in the y1-y2 plane resulting from the inputs to the G.12:

to 0 0 0 0 0
yo [5 1] [75 .1] .1 [1 4] [15 5]
tg 4 4 2 2 2

These are five solution trajectories (ovals) for the system

dy1/dt=y1(y12 -y22), dyz2/dt=yz(3y12-y22).
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Now overlay the solution trajectories of the orthogonal system corresponding to the

following inputs to the G.12 program:

to 0 0 0 0 0
Yo 034 [0 25] [0 15] [2 0] [34 0]
tg 12 8 8 8 8

Plots in the yj-y2 plane of solutions (y1(t), y2(t)) of differential equations
y1' = F1(y1, y2), y2' = Fa(y1, y2) are called phase plane plots. If Fq(y1, y2), and
F2(y1, y2), have continuous partial derivatives, solutions to initial value problems
are unique and it is elementary to show that under such circumstances solution
trajectories arising from different initial points either coincide or do not intersect. If
fact, it is easy to see that if (yj(t), y2(t)) is a solution of an equation of this form
and a is any constant, then (yj (t+a), y2(t+a)) is also a solution. Closed trajectories in
the phase plane indicate periodic solutions. Constant solutions, that is, points
(y1, y2) such that F1(y1,y2) = F2( y1, y2),= 0 are called critical point solutions (also
equilibrium solutions). Other trajectories of particular interest are those nearby to a

critical point.

® If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) leave the vicinity of (y1¢, y2¢) ast — o, then (y1¢ y2c)
is called a repelling solution, i.e., unstable.
If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) approach (y1¢ y2¢) ast — oo, then (y1¢, y2¢) is called an

attracting solution, i.e., asymptotically stable.

Some well-studied examples of autonomous are presented below. Note the

asymptotic behavior of the solution trajectories as indicated by the graphs.
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EXERCISE 3.7 : Systems called Lotka-Voltera systems may be scaled to the form
dy1/dt=y1(3-y2), dy2/dt=ya(y1 -3).

Such systems arise in the study of populations of two species, one of which feeds on
the other. Trajectories that begin in the first quadrant are periodic. Plot the
solution that starts at 0 [2 2], for 0 <t < 2.25, after setting the plot parameters to
show H-VIEW 0 6, and V-VIEW 0 6, by using the plot program G.12.

EXAMPLE. The differential equations
x'+cx'+sinx=0 or y1'=y2, y2'=-siny] —cy2

arise in the study of the displacements of damped (or undamped) pendulums. The
critical points are (0,0) and (nm, 0). For ¢ >0, (0, 0) is an attracting solution. We use

G.12, c = .3, and FN given by
<< 'Y(2)' EVAL 'sin(Y(1))+.3*'Y(2)' EVAL NEG 2 —ARRY >>

to obtain the following graph. (For c = 0, there is a family of periodic solutions.)

Damped Pendulum Motion (¢ =.3)

EXAMPLE. The system

dy1 /dt=-2y7 +y1(1- 2)/r, dys /dt = 2xy1+ y2(1—r2)/r:
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where (r2 = y12 + y22) has an isolated periodic solution r = 1. Here ,nearby solutions
spiral towards the circle r = 1. To obtain graphs use G.12 and the function FN given
by
<< '-2*Y(2)+Y(1)*(1-Y(1)*2-Y(2)*2)/(Y(1)*2+Y(2)*2)*.5' EVAL
'2*Y(1)+Y(2)*(1-Y(1)*2-Y(2)*2)/(Y(1)*2+Y(2)*2)».5' EVAL 2 —ARRY >>.

Another problem that has an isolated attracting periodic solution is the Van der
Pol differential equation. This equation was studied in connection with its
application to an electronic component. This example is usually studied as a function

of a parameter p contained in the "damping" term. Our figure shows a

72

dyyfdt=y,, dpfdt=- [y, + 302 D]

typical graph: here p = .3. Notice that the motion is counterclockwise and that the
solution was started at (x, y) = (2, 2). The solution quickly moves close to its
asymptotic shape and is periodic. Solutions starting inside the closed curve (except
from (0, 0)) also move out to the periodic solution. Variation of the parameter p

causes dramatic changes in the shape and period of the solution.

EXERCISE 3.8: In this EXERCISE we will examine the cycle times of periodic
solutions of several special differential equations. The equations under consideration

have solutions that resemble the trajectories graphed in the figure below.
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Construction fox Trajectories
(Seexegionbetween F [z] & F[x])

Trajectories

Here we assuming that y(t) satisfies the initial value problem

2
94X L fx)=0, x(0)=2 = =0,
2 dt
dt
where the essential feature of f(x) is that it changes sign from negative to positive

as y increases through zero. We multiply by dx/dt and integrate from O to t to obtain

X
% =+ [F(z) - F(x), where F(x)=2 | f(s) ds.

0

If we denote by P/2 the time for the trajectory to proceed from the starting point to
the state x(P/2) = z;, dx/dt(P/2) = 0, then
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We list the value y; for several examples:

(a) f(x)=x, F(x) = X2, z1 =-2

(b) £(x) = sin x, F(x) =2[ 1-cos x], z1 =-z

(¢) f(x)=x+x2, F(x) = x2 +2x3/3, z; =largest negative root of
2

22 2 22
3x +[1+3]x+[z+3z]-0.

(d) f(x) =x + x cos 4x + .25 sin 4x F(x) = x2 + 5x sin 4x, 2] = -z
Notice that in (a), (b) and (d), the function F is even in x, but in (c) it is not.
Calculate and plot the values of P for one of the examples (a), (b), or (c) listed above
for several values of z. Use the numerical integration key (program) on your

calculator with a tolerance of 0.005. The following values of P are for part (d)

above:

z values .25 5 .75 1 1.25 1.5 1.75 2 2.25
P values 3.94 529 1274 21.54 8.29 5.74 5.04 5.45 8.37

Note that dx/dt = 0 and x = ®/4 and dx/dt =0, x = 3n/4 are equilibrium points.
Linear Variational Systems in the y1-y2 Plane

Linear autonomous systems can be solved analytically. These systems have the

form:

dy1/dt = a11y1 +aj2y2, dy2/dt=a1y; + az2y2

We will consider the case det (A) # 0, which means that the origin (0,0) is the only
critical point. Special solutions have the form w = column [ y1, y2] =e A v where A
is a solution of the equation det (A- AI) = 0 and v will be given below. Such a
number A is called an eigenvalue of the system. The equation det (A — AI) =0 is

called the characteristic equation or the eigenvalue equation for the system. If A is an
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eigenvalue for the system then the column vector v = [c, d] is a non-zero solution of
(A= AI)v = 0. Other solutions of our system are linear combinations of these special

solutions (in most cases).

The solution graphs of such systems near the origin (0,0) are particularly
interesting. Examples fall into the following cases: closed trajectories (indicating a
family of periodic solutions), spiraling trajectories (inward or outward spirals) and
curved spoke-like trajectories (again traveling toward or away from the origin). The
cases correspond to the type of eigenvalues for the system, viz. purely imaginary

values, complex numbers with non-zero real parts and real eigenvalues.
EXAMPLE: Consider the system
dyj/dt=y1 -4y2, dy2/dt= -y1+2y2.

The associated matrix A has eigenvalues A = .5(3% 17-5) and corresponding
eigenvectors ¢ = column [4, 1.56] and ¢ = column [-4, 2.56]. When a solution starts on a
multiple of the first eigenvector, it proceeds toward the origin exponentially. When
a solution starts on a multiple of the second eigenvector it travels away from the
origin exponentially. Other solutions are a linear combination of these two solutions
and eventually proceed away from the origin. Typical trajectories are shown in the
figure below. The procedure was to start on the eigenvector solution and trace that
trajectory. Other solutions starting very near these special solutions were followed

for short periods.
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1
tmv:my _I

n

L travel to origin Ttmvel away

Trajectories neax Saddle Point

EXERCISE 3.9 : For the case A is complex and has negative real part the origin, (0,0)
is called a spiral point critical point (so we have an attracting critical point). Use

G.12 to study
dy;/dt=-5y1 +4y2 , dy2/dt=-4y; - .5y2

Start at (t, y) = (0, [0, 1]) after setting the plot parameters to show H-VIEW -2 2
and V-VIEW -1 1and plot for0<t<3.

EXERCISE 3.10 : Use G.12 to graph the trajectories initiating at (t, [y1,y2]) =
(0, [0, 1]) and at (O, [-1, -1]) for the system

dy1 dy2

O T @ YY) g T Yy
What are the eigenvectors for this system associated with the [0, 0] critical point?
Can you see them on the graphs ? The graph should show that the origin (0,0) is

neither an attracting or repelling critical point solution for the system.

EXERCISE 3.11 (a) Use the calculator to draw a graph of the solution of
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with initial conditions x(0) = -.5, y(0) = .5 for 0 < t < 4. Use XRNG scale
-14 < x£14, and YRNG - 1 <y £ 1. When the plotting program is completed, record
the final values of the solution x(4)/y(4). Consider the matrix of coefficients

A= {column[l, 1.5], column[-2.5, -3]} What is the characteristic equation
det (A-rI) = 0 ? What are the solutions ry, rp? Give nontrivial solutions of

(A-1rI)v = 0 for r = r] and for rp, Calculate v1 /vy for each solution. Compare with

the answer you obtained for x(4)/y(4).c) Give the general solution of dw/dt = Aw.

Which term tends to vanish first as t increases ?

(b) Use the calculator to draw a plot of the solution of

d
—y=4x-—6.3y

dx _
=57x-10y, =

dt
with initial conditions x(0) = .3, y(0) = -2 for 0 < t £ 6. Use XRNG scale
-1.47< x £ 1.7, and YRNG -1 <y < 1. Consider the matrix of coefficients

A= {column[5.7, 4], column[-10, -6.3]}] What is the characteristic equation
det (A-rI) = 0 ? What are the solutions ry, rp ? Give nontrivial solutions of

(A-rI)v =0 forr =] and for rp  Give the general solution of dw/dt = Aw.

Solution graphs of nonlinear autonomous systems near a critical point solution
can be studied using a linear approximation. Let the vector y = column [y1, y2] and
suppose we have the system dy/dt = F(y) for F(y) = column [F1(y1, y2), F2(y1, y2)l,
and F1(y1c, ¥2¢) = F2(y1c, Y2¢) = 0. Solution behavior near the critical point
Ve = (Yic, Y2¢) can be determined by studying the linear variational matrix
J(yc) = Fy(yc) defined below. If all eigenvalues of this matrix have negative real
parts, the solution y = y. is an attracting solution. If one of the eigenvalues has a
positive real part, some solutions leave immediate neighborhoods of the critical

point. The matrix J(yc) has (i, j) element
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oF;

a_Yi (ye)
EXAMPLE: Consider the system dy; /dt = 2y12 + y22 - 9, dyp/dt = y12 + y22 - 5,
which has critical point solutions (2, 1), (-2, 1), (2, -1), (-2, -1). The variational
matrix for the last critical point has eigenvalue equation A2 + 16\ + 8 = 0. The roots

of this equation clearly are negative so that (-2,-1) is an attracting critical point.

The calculator can be used to find the matrix J associated with any equilibrium
point y. by using the sequence of programs given below. Because such information is
also useful for a vector system dy/dt = F(y) where y and F(y) are vectors with m
components, we present the programs for the vector case. We further will present the
programs in a form where the labeling of the independent variables can be specified
by the user. For example, instead of y1, y2, etc. the user might prefer u, v, ... . The
user's preference will be entered into a stored list as shown. After the matrix J is
determined then the calculator can be used to find the eigenvalues as explained in

the next section of this chapter.

Here is an outline of the procedure, assuming that we know the point y.. We
store the value of m in M and store the names of the m components in a list called
PL. For example, PL ={U V }. Make sure each of the variables in PL have been
purged. Store the components of the F function in a list FL. For instance, in the
example given above FL = {'2*U*2+VA2-9' 'UA2 + VA2 - §' } where U replaces y;
and V replaces y2. Then execute the program DER below:

Subprogram Name: DER
Purpose: Creates list JL puts the FL functions on the
stack and executes DERA M times.

<< {} 'JL' STO FL OBJ—> 1 SWAP START DERA NEXT>>
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Program DER calls the subprograms DERA and DERB.

Subprogram Name: =~ DERA
Purpose: Creates M -1 more copies of the first element

on the stack for use in the next subprogram.

<<1 M1 - START DUP NEXT DERB >>

Subprogram Name: =~ DERB
Purpose: Takes M copies of a function in FL, creates the
derivatives with respect to each parameter in

PL and stores them in JL.

<<1 M FORIPLIGETO0 M 1 + | — ROLLD NEXT
M SLIST JL + 'JL ' STO>>.

At this point, for m = 2, JL= {F1y (w,v) Fiy (u, v) Foy (u, v) Fay (u, v)}. Now store
the values of the variables in PL at Y. (e. g. U =-2, V = -1) and create matrix JMAT

with a program called JEV given by

<< JL OBJ—> 1 SWAP START -NUM M SQ ROLLD NEXT
{M M} ->ARRY 'UMAT' STO >>

At this point we have constructed the matrix JMAT. There is a straight
forward procedure for finding the eigenvalues of JMAT. See the next chapter. For

m = 2, the eigenvalues are the roots of the quadratic polynomial

A2 — JMAT[1,1}+JMAT[2,2])A + JMAT[1,1]*JMAT[2,2] - JMAT[1,2]*JMAT[2,1]).
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Finding critical points is not always easy. Newton's method for solving
simultaneous nonlinear equations may be used to find critical points of a system if an
approximate location y, = column [ug Vo] of the critical point is known. Then better
approximations of the critical point may result from one or more applications of the

following algorithm:

-1
Yn=Ya—J OJFG) ¥, 2V,
0 0o Yo 0

The same programs listed above can be used to create the JL list for the

components of the J matrix. We need additional programs to calculate the F(yq)

vector. The program FEV that will be used to create the vector FVEC is given by

<<FL OBJ—> 1 SWAP START -»NUM M ROLLD NEXT
{M} —>ARRY 'FVEC' STO >>.

Put an approximation of the critical point [U V] on the stack and execute the

program NWTN given by

<< DUP OBJ— DROP 'V' STO 'U’' STO JEV FEV FVEC JMAT / >>.

At this point you have an incremental vector [U = Up, V = V] on the first level of
the stack and the old vector [U, V] on the second level. If the incremental vector is
sufficiently small, create the new vector [Up, Vp], by the command - (a minus

command). If not, execute —, then NWTN again, etc.

EXERCISE 3.12: Find a critical point of the system
du/dt=sinu+cosv-u, dv/dt=cosu-sinv-v

near u = 1.9 and v = .2, and determine the eigenvalues of the variational matrix.

(Answer u = 1.9235, v = -.17315, A = -1.66 * i .244)
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EXERCISE 3.13: Find a critical point of the system
du/dt=u-sinu*cosh v, dv/dt =v-cos u*sinh v

near u = 7 and v = 2.5, and determine the eigenvalues of the variational matrix.
(Answer u = 7.49768, v = 2.76868, A = -1.79 £ i 7.4)

How does one find starting values for such a procedure? If the equilibrium is
attracting, then for a variety of initial conditions the output of G.12 will indicate
an approximate location. If the equilibrium is repelling, then running the system
backwards in time will yield the approximate location for many initial conditions.
If the equilibrium is neither attracting or repelling, then the same procedure will

work if care is used in choosing the initial conditions.

Recall that the Runge-Kutta Feldberg algorithm attempts to set a step size for
which the perceived error is below a tolerance level. There are cases for which this
algorithm is not efficient: the step selected is too small and too much time is
required to proceed from the initial time to a desirable termination. We have

previously discussed systems of the form
dy1/dt =a11y1 + a12y2, dyz2/dt=az1y1 +azy>.

The failure of the default algorithm occurs for such systems when the eigenvalues A1,
A of the matrix A made from the coefficients are both negative and A1/A is a large
number. This indicates that there are two solutions of the differential equation that
approach zero as time increases at widely differing rates. Such a system of
differential equations is called stiff and Hewlett Packard has provided a second
algorithm to handle such cases. Nonlinear systems can also be stiff. For example, a
system dy/dt = F(y) which has an equilibrium y. for which the matrix J(yc)

discussed above has eigenvalues with Aj/A; large is stiff in the neighborhood of y..
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An algorithm for a stiff system is somewhat less efficient than the default
algorithm when operating on a nonstiff case. Consequently Hewlett Packard's
alternate differential equation program attempts to use the default algorithm

whenever possible and switches to a stiff algorithm when stiffness is 'detected'.

To execute the alternate differential equation program, the user must provide a
program F for the function F(y), a program for J(y) and a program for 0F/dt. We will

illustrate for the problem
y1' =y2, y2' =-1000 y1 - 1001 y>.

The matrix ] here does not depend on y: a program for J is << 0 1 -1000 -1001
{22} -ARRY >>. A program for dF/dtis<< 0 0 2 —-ARRY >>. We store these
programs under the names FNY and FNT respectively. The following adaptation of
G.01 is constructed for this problem. The reader should recall G.01 and edit. Note
that the stack command {T Y FN FNY FNT} replaces {T Y FN} in the default
algorithm and that the stack input to RRKSTEP consist of four elements. The last
element is an indicator variable (in this case 2) which determines the method to be

used.

EXERCISE 3.14: Use IN.FN to store an appropriate function FN. Store FNY and FNT
as given above. Use IN.PP to set XRNG to 0 1 and YRNG to 0 1. Put the entries 0
[1 -1]1 on the stack and execute GS.01 (see next page). An alternative is to use the
form provided by HP for plotting the solution of a differential equation. To do this
enter the FN function as given above for F and check the STIFF box. Then enter the
FNY and FNT functions given above in the dFdY and dFdT boxes respectively. The
exact solution is y1 = e, yp = -et- Use the Function mode to overlay the solution as

an accuracy check.
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Program Name: GS.01
Purpose: Generate a T Y(1) graph of the solution
to Ty.
Stored Quantities: XRNG YRNG FN FNY FNT TOL HS
Input level 3 level 2 level 1
T, vector Y T

The output stack is empty, the variables T and Y contain updated values
<< { # 0d # 0Od } PVIEW DRAX 3 ROLLD 'Y' STO 'T'
STO > TF << {T Y FN FNY FNT } TOL HS 0 T 'Y(1)
EVAL R—»C 5 ROLLD DO RRKSTEP T 'Y(1)) EVAL R-C
DUP 7 ROLLD 6 ROLL LINE SWAP DUP 3 ROLLD T + TF
UNTIL > END SWAP DROP TF T - SWAP RRKSTEP T
'Y(1)) EVAL R—»C DUP 7 ROLLD 6 ROLL LINE SWAP DROP
TF T - SWAP RRKSTEP T 'Y(1)) EVAL R—»C 6 ROLL LINE
4 DROPN >> PICTURE >>

EXERCISE 3.15: Use the calculator to graph several solutions in the x y plane of the

‘non-stiff' system

d
g=x(1-x-y), -alt’-=y(.5-.75x-.25y)

showing XRNG 0<x <15, and YRNG 0<y<25. Forx(0)=.1, y(0) = .2, plot for 0
<t <25, for x(0) = .1, y(0) = .3 plot for 0 < t < 15, for x(0) = y(0) = 1.5 plot for 0 < t
<15, for x(0) = 1.5, y(0) = 1.0, plot for 0 < t < 20 and for x(0) = 1.5, y(0) = .8 plot for 0
<t £ 20. Here notice that (x, y) = (.5, .5), (x, y) = (0, 2) and (x, y) = (1, 0) are

equilibrium solutions.



LINEAR SYSTEMS OF DIFFERENTIAL
EQUATIONS WITH CONSTANT
COEFFICIENTS

In this chapter we consider linear systems of differential equations of the form
y' = Ay + f(t) where y and f(t) are vectors with, say, n components and A is an n by n
matrix. Solutions can be constructed from the eigenvalues and eigenvectors of A.
There are built-in programs in the HP-48G calculator for these eigenvalues and
eigenvectors. However, a differential equations student may wish to know just how
these quantities could be calculated. Consequently, we will present several special
programs to illustrate steps involved in obtaining eigenvalues and eigenvectors. We
recommend that beginning students use these special programs at first to become
comfortable with the mathematical concepts then use the built-in programs to avoid

the computational pitfalls that are sometimes encountered.

Homogeneous Systems

Consider first the vector problem dy/dt = Ay. Here we want to find all solutions
of the differential equation. It is readily shown that if n independent vector
functions satisfying the differential equation can be determined and a matrix Y(t) is
constructed with these columns, then all solutions have the form Y(t)c where c is a
vector with n components. The "educated guess" y(t) = ety (here y(t) and v are
vectors) leads to the nth order polynomial equation det(A-AI) = 0 which is called
the eigenvalue or characteristic equation, and to the problem of determining
nontrivial solution vectors v to the problem (A-AI)v = 0 (where A is a solution to the
eigenvalue equation). Thus the problem breaks into several parts: (1) find the

eigenvalue equation, (2) find the solutions of the eigenvalue equation, (3) for each

76
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solution A, find a corresponding eigenvector v, and (4) assemble the matrix Y(t). We
will illustrate the solution process first for n = 2 and then for n = 3 component
systems. Then we will outline a procedure that uses the calculator's built-in routine

for eigenvalues and eigenvectors for all n > 2. EXAMPLES/EXERCISES are given.

A calculator program to display the eigenvalue equation for a 2 by 2 matrix is:

Program Name: EIG2
Purpose: Display the eigenvalue equation.
Stored Quantities: 2 by 2 matrix A
<< 'X' PURGE A DET 8 RND — D1 <<'X*2-(A(1,1) +
A(2,2))*X + D1' EVAL >> >>

EXERCISE 4.1: Find the eigenvalue (or characteristic) equation for the matrices

2 P e

A calculator program to display the eigenvalue equation in the 3 by 3 case is:

Program Name: EIG3

Purpose: Display the eigenvalue equation

Stored Quantities: 3 by 3 matrix A

<< 'X' PURGE A DET 8 RND — D1 <<'X*3 - (A(1,1) + A(2,2)
+ A(3,3))*X*2 + (A(1,1)*A(2,2) - A(1,2)*A(2,1) + A(1,1)*A(3,3) -
A(1,3)*A(3,1) + A(2,2)*A(3,3) - A(3,2)*A(2,3))*'X — D1' EVAL >>

>
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The program will display the eigenvalue equation as a cubic in X.

EXERCISE 4.2: Find the characteristic equation for the matrices

12-1 1-6 3 5 -8 -12
A= 1 01| A=|383|, A=|-6-10-10
445 6 12 4 6 10 13

(The first matrix has the eigenvalue equation A3 — 6A2 + 11\ - 6.)

We can find the roots of the eigenvalue equation simply by executing the PROOT
program on the HP-48G calculator (left-shift SOLVE, then POLY) — see below — or
by storing the equation and using the DRAW and/or SOLVR programs. You may
have to try several settings of the plot parameters XRNG, YRNG.

EXERCISE 4.3: Find the eigenvalues of the matrices given in EXERCISE 4.2.
(Eigenvalues for the first matrix are 1, 2, 3.)

i3]

The eigenvalue equation in the variable x is x3 — 3x — 1. A simple way to obtain the
roots on the HP-48G is to press SOLVE, move to Solve poly... and press OK.

Enter the vector of coefficients [1 0 -1 -1] and press OK and SOLVE to get all roots.

Consider the matrix

- O O
- -
o = O

(You may want to go to EDIT MODES 3 FIX to see all the roots.) Another way to
obtain the roots is to use the ROOT command (under FCN on the graphics screen)
after plotting the ploynomial from -2 to 2. A root is x = 1.3247---. If we divide the
polynomial x3 - x — 1 by (x — 1.3247...) we obtain the quotient x2 + 1.3247---x +
(1.3247--A2-1). Zeros of this quadratic are complex eigenvalues. At this point the x

has a value stored in it. To avoid confused notation we take an extra step: bring the
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value in x to the stack and store it in R. Now place 'x"2 + r*x +(r*2-1)' on the stack,
and key in the command 'X' PURGE. You now have the desired quadratic on the
stack, enter 'X' and execute QUAD (on the SYMBOLIC menu). Follow the usual
procedure for the QUAD program to obtain the roots -.662 + i .563.

EXERCISE 4.4: Determine the eigenvalues for each of the matrices

010 0 0 -11 -8 -12
A=[{0 01 A=|0 11, A= 2 1 4 |
4 30 1 0 6 4 5

When an eigenvalue A is determined, the matrix (A-AI) is singular and the

W o

linear system solver is not appropriate to solve the equation (A-AI)v = 0. Place
(A-AI) on the stack and use the programs named PIV and ROKL given below to
obtain the Gauss-Jordon echelon form to determine the row space of (A-AI) and
nontrivial solution vectors v. Alternately you can use the program RREF on the HP-

48G (see below).

Program Name: PIV (Adapted from D. R. LaTorre)
Purpose: Gauss pivot on element K L
Input: Matrix A, integers K L Output: Altered matrix A

<< > A K L << IF 'A(K,L) EVAL 0 == THEN "PIVOT ENTRY IS

0" ELSE A SIZE 1 GET - M << M IDN ‘A(1,1)' EVAL TYPE

IF THENDUP 0 CON R—-C END 1 M FOR | 'A(l,L)' EVAL {
| K} SWAP PUT NEXT INV A * >> 8 RND END >> >>
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Program Name: ROKL (Adapted from D. R. LaTorre)
Purpose: Interchange rows K and L
Input: Matrix A, integers K L Output: Altered matrix A

<< > AKL<<ASIZE 2 GET > N<< A 1NFOR I
'A(K,I)) EVAL { L 1 } SWAP PUT NEXT 1 N FOR J 'A(L\J)
EVAL { K J } SWAP PUT NEXT >> >> >>

Notice that the programs PIV and ROKL given above are valid for any size

square matrix.
EXAMPLE: The first matrix in the EXERCISE 4.2 has eigenvalues 1, 2, and 3.

For A = 1 an equation for v is

0 2 -1
1 11
4 -4 4

V=0.

If this matrix is placed on the stack and the command 1, 2 ROKL (to interchange

1-1
02-1]
44 4

Next give the command 1,1 PIV (creating 0's in the first column) to get

1 11
02 -1{.
000

rows) is given we get

-
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Now the commands 2,2 PIV gives

o O =
o = O
1
oS g »n

The solution relations v1 =-5v3, v2 =.5v3 result: i.e, v =[-1,1, 2] or any nonzero
multiple of this vector. Alternately the command RREF (on the HP-48G) will
accomplish the same result as the ROKL and PIV commands. Similarly for A = 2, we
find that any multiple of v = [-2, 1, 4] is a corresponding eigenvector; for A = 3, we

find that any multiple of v = [-1, 1, 4] is a corresponding eigenvector.

EXAMPLE: The matrix

6 7 8
A=| 2 0-2
-4 -6 -6

has eigenvalues A = -2 and 1 +i. The procedure shown above gives the eigenvector
v = column [1, 0, -1] corresponding to A = -2. For A =1 +i, the matrix A-A Iis
6G-1) 7 8

A=l 2 (11 -2
4 -6 (7-1)

When we use RREF (or1 1 PIV, then2 2 PIV) we obtain

(1,0 (©0 (@1,-5)
0,00 (1,0 (5, .5
0 0 0

This leads to an eigenvector v = column [(-1, .5), ((-.5, -.5), 1]. Recall that for the

conjugate eigenvalue, there is a eigenvector conjugate to this vector v.
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The next step is to assemble a fundamental matrix of solutions Y(t) that has as
its columns the vector solutions determined above. For the first matrix in EXERCISE
4.2 we determined eigenvalues and corresponding eigenvectors in the example just

after the ROKL program. Thus

of g2t o3t
2et 4e2t 4e3t

The solution of y' = Ay, y(0) = column[l 3 -5] is y(t) = Y(t)Y-1(0) column[1 3 5].

For the matrix example given just above the preceding paragraph (one real and a
pair of complex eigenvalue) we proceed as follows. If a matrix A has eigenvalues
A =o % Bi and corresponding eigenvectors ¢ = a * ib, then by adding the exponential
solutions obtained it is known that the quantities e®t (cos Bt a - sin Bt b) and
e (sin Bt a + cos Bt b) are real valued solutions of the differential equation y' = Ay.

Consequently, for this example we get the fundamental matrix of solutions

-t (cost+.5sint) et (-sint + .5 cos t) e 2t
Y(t) = 5et (-cos t + sin t) -5et (sin t + cos t) 0
et cos t et sint 2t

EXERCISE 4.5: Find a fundamental matrix of solutions of dy/dt = Ay for

4 -4 5 010
A= -1 -1 -1 , A= 0 01
4 4 5 4 30

When there is a eigenvalue A of multiplicity two, either there are two
independent eigenvectors ¢ such that (A — AI)c = 0 or there is a solution of the form

y(t) = eM (vt + d). In the latter case, we derive the following requirements by
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substitution: (A - Al)v=0and (A-AI)d =v. To determine the vector d we can
augment the matrix (A - AI) with the additional column v and use Gauss elimination

to determine d. For

311
A = 1 '3 ‘1
4 21

A = -2 is a eigenvalue of multiplicity 2 and A = -1 is a simple eigenvalue. The
eigenvectors corresponding to A = -2 are multiples of v = column [1, -1, 2] and the
eigenvectors corresponding to A = -1 are multiples of v = column [1, -1, 3]. The
equation (A + 2I) d = column [1, -1, 2 ] has a solution d = column [0, 1, 0]. (Such a
solution vector is easily obtained on the calculator, first by calculating (A + 2I),
augmenting the matrix with the column [ 1, -1, 2 ] then using RREF on the HP-48G or
PIV as listed above to obtain d.) For this matrix A we have a fundamental matrix

of solutions

-t -2t -2t
e e te
Yo - ot _e-2t (1—t)e’2t
- -t -2t -2t

The matrix eigenvalues for

5 -2 -3
A=| 0 3 0
2 2 0

are A = -3 (multiplicity 2) and A = -2. The eigenvectors corresponding to A = -3 are
linear combinations of ¢ = column [1, -1, 0] and ¢ = column [-3, 0, 2]. The eigenvectors
corresponding to A = -2 are multiples of c = column [1, 0, -1]. A fundamental matrix of

solutions is
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PV 3t
2B o
3t
0 -e 0
Y(t) =
3t
N

EXERCISE 4.6: Find a fundamental matrix of solutions for the system y' = Ay for

each of the following matrices:

011 310 -1.25 -5 .75
101,{0 31|, S5 -1 5
110 4 82 25 5 -175

We wish to present a program which accepts an n by n matrix as input and
generates its eigenvalue equation. There is a algorithm for the coefficients of this
equation which combines many subdeterminants to form the coefficients. Such an
algorithm seems cumbersome for the calculator; however another less well known
algorithm involves products and sums of n by n matrices and the computation of the
traces of some of these matrices, something this calculator does with little trouble.
The following algorithm is taken from Cullen, Linear Algebra with Applications, Scott
Foresman and Company, 1988: Let A be an n by n matrix, set By = I and then for

k=1,2,..., nlet
Ak = ABg_1, ck = -(1/k) tr(Ax), Bx = Ak + ckl.
Then the characteristic polynomial is given by
AN Al 4 A2 4 4 cn 1A+ cp.

The following program will generate the coefficients in the eigenvalue equation:
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Program Name

Purpose

CHAR

Find the eigenvalue equation for a matrix in

85

level 1 on the stack
Input stack: square matrix Output stack: list of the
coefficients in characteristic equation
<<DUPSIZE 1 GET { 1} > mtx n poly <<mtx 1 n FOR j
01 n FOR k OVER { k k } GET + NEXT
j NEG / 'poly' OVER STO+ mtx DUP ROT * SWAP ROT *

+ NEXT DROP poly >> >>

EXAMPLE: Place the matrix

3 4 6 4
1 1 1 1
A=l ¢ 8 7 8

-1 -12 -15 -14

on the stack and execute CHAR. You should receive output {1 5 13 19 10},
meaning that the eigenvalue equation is A4 + 5.3 + 132 + 191 + 10 = 0. This
equation has two real zeros, A = -1 and A = -2. Dividing A2 + 3A+ 2 into the
eigenvalue equation gives a factor A2 + 21 +5s0 A = -1 + i are two remaining
eigenvalues. The procedure given above for 3 by 3 matrices extends to n by n matrices

and therefore a fundamental matrix of solutions is

4e.t 0 etcos2t etsin2t ]
-t -2t 0 0
Y(®) = -2e-t 0 e tsin2t etcos2t
I -2e-t < ot (sin 2t —cos 2 t) et (cos2t+sin2t) |
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Recall that an HP-48G calculator has a program to obtain solutions of a
polynomial equation. After obtaining the characteristic equation using CHAR, the
roots of the equation can be determined using the program PROOT located in the
POLY directory on the SOLVE menu. The output of CHAR is a list of the
coefficients. This list should be converted to an array by using the keystrokes PRG
TYPE OBJ— —ARRY before using PROOT.

EXERCISES 4.7: Find a fundamental matrix of solutions for y' = Ay when

-25 25 -35 -5

1 2 2 1

5 4 6 6
-45 85 -55 -75

A=

We noted earlier that Hewlett Packard has provided professional programs to
calculate the eigenvalues and eigenvectors of n by n matrices (n 2 2). These programs
are located by pressing the MTH MATR NXT keys. EGV determines the eigenvalues

and eigenvectors of the matrix on level 1, EGVL determines only the eigenvalues.

EXAMPLE: Place the matrix

3 4 6 4
1 1 1 1
A=l ¢ 8 7 8

-11 -12 -15 -14

on the stack and execute EGV. You should receive output [(-1, 2) (-1, -2) (-1, 0) (-2, 0)]

for the eigenvalues and output for corresponding eigenvectors

-5,.5 ¢5,-5 (1,00 (0,0
0,0) 0,00 (250 (1,0
-5,-5) (-5,.5) (50 (0,0
1,0) (1,00 ¢-50 (1,0
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The first two eigenvalues are complex -1 #2i and have conjugate eigenvectors which

are the first two columns of the matrix.

The procedure given above for 3 by 3

matrices extends to n by n matrices and therefore a fundamental matrix of solutions is

[ -t -t -t ]
4e 0 e cos2t e sin2t
et et 0 0
= -t - -
Y(t) = -2e 0 -etsin2t etc052t
-t -2t -t . -t .
-2e -e e (sin2t — cos2t) -e (cos2t+sin2t)

EXERCISE 4.8: Find a fundamental matrix of solutions for y' = Ay when

25 25
1 2
A=l 5 4
45 85

-35 -5
2 1
6 6

-5.5 -75

Remark on EXERCISE 4.8. Suppose you use EGV on the HP-48G to obtain eigenvectors

on stack level two and eigenvalues on level one. We note that the first eigenvalue is

approximately 5.964. If we want to find an eigenvector corresponding to A = 5.964

with fourth component equal to 1 we can proceed as follows: Bring the matrix of

eigenvectors to stack level one and create a copy by pressing ENTER. Press MTH

MATR and execute the command 1 COL-. You will now have the first column of the

eigenvector matrix on level one (and the eigenvector matrix without column 1 on

level two). Create a copy of this column by pressing ENTER. Then execute 4 GET

and / to bring the fourth element of the column to stack level one and to then divide

the eigenvector by its fourth component to get [6.049, -8.871, -21.106, 1] as an

eigenvector corresponding to the first eigenvalue.
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Non-homogeneous Systems

If the functions in a vector f(t) are elementary, we can use the method of
undetermined coefficients to construct a particular solution to y' = Ay + f(t). The
computation of the coefficients will require the solution of linear algebraic equations.
For more complicated functions f(t) to obtain solutions of the nonhomogeneous
equation suppose that a fundamental matrix Y(t) of solutions for the associated

homogeneous equation is known (so Y'(t) = AY(t)). It is easy to see that

t -
yO=Y®c+ [ Yt-5)Y 1(0) f(s) ds
0

is a solution of the nonhomogenous system for any vector c. In the general case a
program that uses the numerical integration capability of the calculator can produce

values at various times t for the components of the integral listed above.

EXAMPLE: Suppose A is the matrix given by

-85 .85 -2.05
A= .1 0 -9
55 1.5 -25

(a) We calculate the eigenvalues (one real and a pair of complex conjugate
eigenvalues, viz. {-.786... , -.1568... + i 1.527...}) and corresponding eigenvectors
(v1 = column {1, -.3096... , -.159..,, }, and a £ ib = column(1l, .467... +i .1985... , -.144...+
i -.827...} for the matrix and determine 3 independent vector solutions u(t), v(t), w(t)
of the homogeneous system dy/dt = Ay. We take Y(t) = {eMtvq, e%t(cos Bt a — sin Pt
b), e*(sin Bt a + cos Bt b)}, so that Y(0) = [v1, a, b] . (To obtain this matrix put A on
the stack, execute EGV, SWAP and OBJ—, then use the OBJ— to put the real and

imaginary parts of the first two columns of the matrix of eigenvectors on the stack.
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Finally use the (up-arrow)STK and the ECHO commands in the matrix editor to
construct Y(0).)

(b) For simple forcing functions we can use the method of undetermined "coefficients"
to find a particular solution: for example we can choose vectors o, B so that y(t) = o

cos 2nt + P sin 2wt is a particular solution of

2 sin 2mt
Y _a
ac ot 0

-3 cos 27t

as follows: we split the nonhomogeneous term into a column vector {2, 0, 0} *sin 2nt +
a column vector *cos 2nt then by substituting the prescribed form for y into the

differential equation we get the equations

0 2
2rB=Aa+| 0|, 2na=AB+]|0|.
-3 0

If we use the first equation in the second equation we get
o = - column { .485..., .08..., .026}, B = column { .0317..., - .002... , -.269}.

(c) For more complicated forcing functions we use the variation of parameters

method to find a particular solution. Suppose
f(t) = column [ 0, 0, w(t)]

where w(t) = IFTE(t < .34, 5t , IFTE(t < .68, 1.7 - 5(t-.34), 0)) for 0 < t < 1 and w(t) is
periodic with period 1. Then if we choose c so that y(0) = y(1) in the equation for
y(t) given above we will have a particular solution of dy/dt = A y + f(t) which is
periodic with period 1. This gives the following equation for ¢ (which forms part of

the appropriate initial condition)
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! -1
[YO) -Y(Dlc=] Y(1-s)Y (0) f(s) ds
0
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