
Illustrations by Robert L. Bloch

By Chris Coffin

Programming the HP 48G/GX

An Easy Course in Using and

An Easy Course in Using and

Programming the HP 48G/GX

by Chris Coffin

Illustrations by Robert L. Bloch

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

The term “48” is used for convenience herein to refer to the HP

48GX and the HP 48G, the registered trade names for the

handheld calculator/computer products of Hewlett-Packard

Co. We extend our thanks once again to Hewlett-Packard for

their top-quality products and documentation.

© 1993, Grapevine Publications, Inc. All rights reserved. No

portion of this book or its contents, nor any portion of the

programs contained herein, may be reproduced in any form,

printed, electronic or mechanical, without written permission

from Grapevine Publications, Inc.

Printed in the United States ofAmerica

ISBN 0-931011-41-8

Third Printing — August, 1996

Notice of Disclaimer: Neither the author nor Grapevine Publications, Inc. makes

any express or implied warrantywith regard to the keystroke procedures and program

materials herein offered, nor to their merchantability nor fitness for any particular

purpose. These keystroke procedures and program materials are made available sole-

ly on an “as is” basis, and the entire risk as to their quality and performance is with

the user. Should the keystroke procedures and program materials prove defective, the

user (and not the author, nor Grapevine Publications, Inc., nor any other party) shall

bear the entire cost ofall necessary correction and all incidental or consequential dam-

ages. Neither the author nor Grapevine Publications, Inc. shall be liable for any inci-

dental or consequential damages in connection with, or arising out of, the furnishing,

use, or performance of these keystroke procedures or program materials.

CONTENTS

(0] START HERE .uucecererreeremasmnesssssssescssssssssssasssssssssssssssssssssssnss8

(1) YOUR 48 WORKSHOPccooomrrerrmmanesssenmamssnsessmmasnssscssasassses 12

Calculating with Tools and Objectsccceeeeviiiiiiiiinieennnnnn. 13

The Big Picture: A Workshopccccoooveieieiiiiiiiiiiieeeeeeeen, 14

The Display: Your Window into the Workshop............. 16

The Keyboard: Access to Your Workshop 18

The Tools in Your Workshopcccevvvveeiiiiiieeeniiiieeeeeee, 21

The Raw Materials in Your Workshopcccoeeevvnnnniin, 22

Quiz on the “Big Picture”cccooovviieiiiiiiiiiiiieiiieeeeeeeeeeene. 27

QUIZ ANSWETS .. covvueiiiiiiieeeiiieeeeerteeeeviieeeeteeeertieesssteeeesnaesnes 28

(2) THE StACK AND COMMAND LINE:

YOUR WORKBENCHoeeurenessressnssnsesssssssnssasssesssessassses30

Typing and the Command Linecccccoevviviiiiiieniiinnnnnnnnn.. 31

Simple Materials: Real Numbersccccoooevvieiiiiniiiiinnnnn. 40

Postfix Notationovviiiiiiiiiiiiiieceee48

Stack Manipulations..........ccccooeiiviiiiiiiiiiiiiieeeeeec 52

Learning By Doingcccoovvveiiiiiiiiiiiee59

Workbench QUIz...........cooovvviiiiiiiiiiicee60

Workbench Solutionsccoeevveeeeinieeieeeeeeeeeee62

(3) OBJECTS: YOUR RAW MATERIALS....cooomeemmrrereresssssssse66

The Fundamental Ideacccccoevvveevvviiiiiiiiiiciciiieeeceeeeeeeee, 67

Real NUMDETSccooivviiiiiieeieeeieeeeeeeeeee67

UIESootee e e e eeree e e e seaas68

LSSetereeeraae 74

Complex NUMDETSoovviiiiiiiiiiieeeeeeee80

Y21631)S86

ATTAYS ..coiiiiiiiiiieeettteree e ee et e e e et e e e e e e saneaeraneeens 92

O=YSRR98

Binary Integerscccccooiiiiiiiiiiiiiiiie,102

Character Stringscccccvvviieeiieeiiieeeeeeeeee108

TS oeniiiiiiieieeettteet e e e e eeeet e aa e ran e aaaaaans 112

NAIMNIES ...cciniiiiiieeeeeeeette e et e e e te e et e senesanaesannaaees 116

Algebraic Objectsccoooiiiiiiiiiiiiiie,124

Postfix Programs...........ccooeeiiiiiiiiiiiiieeeeieee132

DIrecCtOriescouniviiiiiieeeeeeee136

Objects: A SUMMATY........ccevvviiiiieiiiiiieeee142

Test Your Objectivitycccoooviiiiiiiiiiiiiiiiiieeeececee, 143

Objective ANSWETScceevviiiiiiieeeeeeicieeeeeeeeee150

THE WIDE WORLD OF THE HP 48.................... 164

(4] PROGRAMMING FUNDAMENTALS ..cccoouuveeenessnseccssunmnnnes 166

Your “Automation” Optionscccceeeeeiiiiviiiiiiiiieereeeeeneeennnn. 167

Local NAMEScooevviiiiiieeeeieiiicceeeeeevee e e e vt eee e e eeaaeee 170

Program Designccooovvviiiiiiiiiiieiieeeee178

Conditional Testsccoovvviiieiiiiiiiieee183

Branching..........ooooviiiiieiiiiiiieeeee186

LOOPINE.oae193

QUIZ oottteteeeeera e eaaas 200

QUIZ ANISWETS ..couuniiieniiiiieeiieeeeeeeeettt e et eere s es eanaes 202

(5] CusTOMIZING YOUR WORKSHOPcooosmmeremrernsssnssssenn210

Labor-Saving DeviCesccouveviiiiiiiiiiieiiiieeeeeeee211

Input Shortcuts..........oovvvvviiieiieiiiiiiee212

The Recovery Commandscccoeeeeeviiueeeiiiiiieeeiiiiieeeeeeenn, 217

Customizing Your Workspaceccccoceeeeeeeeeeivivviieeeeeeennnnn, 220

Directory Structureccoooevvvviiiieiiiiiiiieeieeiieeeeei, 221

Custom MenuUS.......ccoooeeeiieeeieeiieeeecieeeee224

Custom Keyboardscccooeveeiviiiiiiiiiieieiiiiiiiiceeee230

Custom Flag Settings......ccccccevviiiiiiiieiiiiiiiiiieeceeeeeeenn, 236

Optimization: A Case Studyccccoooeeeiriiiiiiiiiiiiniennnnnnns 238

Custom QUESEIONSuuviiiiiiiiiiiee241

Optimum ANSWETSceeeiiiiiiiiieeeeeiiiiieeeeeeeeans 242

(6] PROGRAMMING PRACTICEcommmmnennnersssssssssssssssssssnns244

Before You Study......cccooouviiviiiiiieiiiiiiiee, 245

A Calculator of Feet, Inches, and Sixteenths 247

Memory Management Programs............c.ccccccovvevvivvunnnnnnnnne. 262

Data Analysis Application: A Gradebook.......................... 268

More Ideas......cccccoeieiiiiiiiiiiiiee278

FOUNDATION COMPLETEDuoeeeeeeeecrcreessnssncsscssessassssessens286

50105 RNceveusnensasasasasasesnsesesesesesessssessasasnssssssnsasnenens288

53
“ =

2y///
1!!117,

0] START HERE

What Is This Machine?

Before you start using your HP 48G or HP 48GX (call it simply “48” for

short), here’s someidea ofwhatyou can expect: The 48is a calculator—

a tool to give you quick answers to quick questions. Most often this

means keying in a value or two, pressing a key, and reading the result

in the display.

The 48 is designed to work injust that way. Although it’s very sophisti-

cated, most of its operations are just variations on that basic theme:

Ask-A-Question/Get-An-Answer. If you keep this in mind, you'll get

along very well.

One more thought: The 48isatool, designed to be used in a certain way

for certain things. It’s a great general-purpose calculating tool, butit’s

not the best tool for everyjob. When it’s easier to use pencil and paper

—or a larger computer—do it! Always choose the right tool for the job.

What Is This Book?

This book is not a reference manual (HP already did their usual great

job on that). It’s not an intensely in-depth treatment ofprogramming,

equation-solving, or any of the many things you can do “in-depth” on

the 48. There are simply not enough pages in one book to do all that.

This book is a tutorial introductory course on the 48—a step-by-step,

self-pacing course to orient you and get you “up-to-speed” on many

features of the machine—so that you can then use the HP manuals

more profitably as you continue to practice with your 48.

The (ON] Ke

From the looks of the keyboard, there’s a lot to learn about this

machine; each key has several meanings. So although the (ON)key may

seem a trivial a place to start...

Do This: Turn on your 48 by pressing the key at the lower left.

Now turn it off, by pressing (2JOFF). Notice the different

function names printed on or around the key. The

functions are related to one another, but the one you get

depends on whether you press one of the shift keys first.

This is the case with most keys on the machine.

Adjusting the Display

Next, make sure that you can read the display comfortably.

Do This: With the machine turned on, press and hold down the

key, then press either the or (=) key until the display

adjusts to a comfortable viewing angle.

You can do this at any time. And—Ilike most ofits modes and settings—

the calculator will remember and use this viewing angle until you

change it.

10 (0) StarT HERE

Setting the Machine for this Course

There’s one other thing to do before beginning with the actual Course.

You may not yet know what this is all about—but don’t worry: This is

the one time when it’s all right simply to press buttons without trying

to understand what you’re doing. This procedure isjust to be sure that

your machine has the settings this Course assumes....

Do This: Type: QUIRI#0I#0)[ENTER). Again,
notice how you must press the purple () or the green()

to activate a keyboard function of that color.

Then (o]@)(s]T]O)FIENTER[1]6)+/-)(SPCla]S]]F)({IHOME)
(the alphabeticcharacters are printed inwhite

at the lower right ofthe keys). Now your display should

look like this:*

OME }{H
q:
3s
e
]1: WECTRIMATR]LITHVPREAL[EAZE]

That’s it—you’re finished with the preparations. Now, on with the

Course....

*Ifyour display looks different, just repeat this entire procedure.

11

(1) Your 48 WORKSHOP

Calculating with Tools and Objects

Once upon a time, workingwith a calculator meantjust usingnumbers

and doing math. You could calculate lengths and angles in geometry,

and distances, areas, rates, logarithms and roots—to 10-digit accuracy.

But that’s not enough anymore. Now engineers, scientists and techni-

cians from all sorts ofdisciplines expect a calculator to deal with com-

plex numbers, vectors, matrices, tables ofdata, etc. And nearly every-

body uses some kind of electronic note pad or text storage nowadays.

So, wouldn’t it be nice to have a calculator that worked with these more

sophisticated datatypesin the same way thatyourold calculatorworked

with numbers? (...yep—you guessed it....)

How the 48 Does It

One unifying idea now emerging in computers is that data are simply

“things”—objects on which you perform work. And functions or pro-

grams are the tools with which you do this work. In the expression

2 +3, for example, the numbers 2 and 3 are simply objects that you

combine to form a new object (5), using the + tool—just as you combine

two blocks of wood to form a new object, using a hammer.

And now thisidea ofa tool (+) can apply to more thanjust real numbers.

It works the same, whether you're adding real numbers, complex num-

bers or vectors. The results are different, because you start with differ-

ent “materials,” but the tool you use is the same—so the 48 lets you use

the same simple keystroke (1)) in each case.

Calculating with Tools and Objects 13

The Big Picture: A Workshop

The 48 is a collection ofmaterials (objects) and the tools to use on them

(operations, etc.). So it’s really a calculations workshop:

The Stack is the “workbench” in

your workshop—where you liter-

ally “stack up” objects to use or

combine. Most ofthis combining

happens at the bottom of the

Stack, sothose bottom Levels are

generally shown in the display.

the workshop—-store andretrleve |

objects,gettools-rearrangethe

workbench, setmodes,ete.

The rest of the keys are mostly

“hand tools.” That is, they are

functions, within your easy reach

at the workbench, that perform| i{EGUAT

simple operations on objects on

the Stack. The most commonly

used hand tools (along with their

inverses) have their own keys,

but many others are gathered in

“toolboxes”—collections of items

you use via menus in the dis-

play—like the MaTH menu you

see in the display here.

14

 /7

OME }

{

IIHlI [1 E

"Good mor

i H
4:
3
e
1:

LN
@

. EDTICcMD)(PORGIARG)LCLEAR] Erop)

&bm)

(1) Your 48 WORKSHOP

As you work in the workshop, you create your own storage compart-

ments for the objects you build (the objects shown below are just

examples—these are not stored in your machine). The storage com-

partments are directories.

You can create directories even within other directories. And each di-

rectory has a path from the HOME (uppermost) directory—the route

you must take to reach it. The path ofthe current directory (i.e. “where

you are” right now) shows at the top of the display within{ }.

{ HOME 1}

DATAVARLVAR2VART[GEOR]CHER)

{ HOME DATA }
TE=ZTL|TEZT2|TEZT3| FITZ

{ HOME GEOM }

(TRlCIRC PREL [HYPEL

{ HOME CHEM }

TAELE|FORM[REDDH
{ HOME DATA FITS }
[TETNAETOVER (1T

The key shows you the menu of all the objects (“VARiables”) you

have stored in the current directory.

The Big Picture: A Workshop 15

The Display: Your Window into the Workshop

To see into your workshop, turn on your 48 and look at the display....

The Stack

Look at the space between the horizontal line near the top ofthe display

and the row of boxes at the very bottom (if you don’t see these things,

press (CANCEL}—the key). This is the Stack—the actual “workbench”

where you place the materials you're using. It’s called a Stack because

that’s how objects “sit” on the workbench: The object nearest to you is

at the bottom of the Stack (Level 1); and the next nearest objectis at

Level Z, etc. You may not see many more objects stacked up above that

(in fact you’ll never see more than the closest four objects), but there can

be hundreds more up there. They reappear as you remove lower objects.

The Command Line

The Command Line is a temporary space created to let you gather your

materials before putting them onto the Stack—your work bench.

Do This: Type a number—say, 14 (press (1]4)).... See how the Stack

lines move up to make room for what you type? That 14 is

not on the Stack—it’s on the Command Line—until you

actually put it onto the Stack, by pressing (ENTER), or throw

it away via (CANCEL) (ON)). Throw it away now: (CANCEL).

16 (1) Your 48 WorksHOP

The Menu Line

At the very bottom of the display is the Menu Line. A menu is simply

a convenient collection ofrelated tools—a “toolbox,” ifyou will. For al-

though the crowded 48 keyboard already offers many tools “within

your immediate reach,” there are hundreds more stored in menus—

even in menus within menus.

So, in making a selection from a menu, you are selecting a tool or

opening another toolbox (menu). And it’s easy: To make a selection

from a menu, you just press the white key directly beneath it.

The Status Area

Now look at the display above the horizontal line. Here sits a set of

warning lights and messages above your work bench—signs that light

up to announce events or warn you of problems.

In areal workshop you might see “Power On” lights and “SawJammed”

signs. On the 48, you’ll see warning messages telling you, in effect:

“You just tried to use a tool on the empty benchtop!” or “You can’t use

that tool on that object.” And you’ll see “indicator lights” that tell you

when certain tools will operate differently because you’ve turned on an

optional mode.

So be sure to watch the Status Area! Mode indicators stay on as long

as the mode is active, but warning signs appear only temporarily; they

turn off the next time you press a key.*

*Therefore, to further attract your attention to these warnings, the 48 usually beeps at you,too.

The Display: Your Window into the Workshop 17

The Keyboard: Access to Your Workshop

The keyboard is how you make things happen in your workshop—

putting objects on the workbench, using tools, moving around,etc.

The Shift Keys

The colored keys, (&) (“left-shift”) and (@) (“right-shift”), indeed shift

the meanings ofkeys to the colored functions printed above them. Also,

amode indicator appears in the StatusArea when a “shift” is in effect).

Notice that shift keys are toggle keys: If a “shift” is on, pressing that

shift key turns it off—and vice versa.

The Numeric Keys

Often the objects on your workbench are numbers, so the numeric keys

and (+), (=), %), (=), ENTER), (+/-), and are all grouped togetherfor your

“calculating convenience.”

The Alphabetic Keys

The (o) key is really another shift key: You press it prior to another key

to get that key’salphabetic function (shown in white to the lowerright).

The StatusArea will then show a a indicator. Notice that you can lock

alpha mode on by pressing (a)a second time; the third time turns it off,

so (o) is a 3-way toggle key. And you can use () and () within alpha

mode; each key can have 3 primary meanings and 3 alpha meanings.

18 (1) Your 48 WoRrksHOP

Selecting: Menu Keys and Input Forms

The six blank white keys directly under the display are the menu keys.

Menus appear in the display, and you make selections with these keys.

Try It: Press(JMODES)EIZIEIM. This menu is where you can set the

machine’s angle modes (options). As with most menus,

there are more than six selections here, though. Use

(to see the NeXT page) or (the PREVious page)....

This menu hasjust two pages (and the second page hasjust

one item—an easy way to return to the MODES menu).

Move to the menu page that looks something like this:

=390TTV(=0(W)T

The little boxes in the [35K] and selections tell you

that those modes are now set (DEGree angle mode and

RECTangular vector mode). But press the menu key under

I... The menu and the Status Area tell you that the

machine is now in RADians angle mode. Try otheritemson

this menu page ifyou wish (but when you’re finished, leave

the modes as you found them—as shown above).

In many areas of the 48, you can control it in two different ways:

(i) through a menu—via the unlabeled (&) (left-shifted) key;

(ii) through an input form—via the labelled () (right-shifted) key.

Thus, (asyoujustdid, above)gave you the MODES menu; but

will give you the MODES input form....

The Keyboard: Access to Your Workshop 19

Try It: Press ([JMODES). You’ll see this:

CHLIIULFITI]R I'-‘II][lES

MUMEER FORMAT: 2Ed

AMGLE MERSURE: Degrees
COORD SYSTEM: Rectangular
v EEEP _CLOCK _FM.

CHOOSE MUMBER DISPLAY FORMAT
I(TN[TTT

The general rules for input forms are:

e The highlighted field is the one you can change (e.g. the NUMEER

FORMAT field above)—the line just above the menu will remind

you with a prompt. To move the highlight, use (a), (v}, (») and («).

* The MI[iE item on the menu offers you a message box from

which you can make a highlighted selection (again, use the arrow

keys to move the highlight).

* For fields such as _EBEEP or _CLOCK, a menu item ap-

pears when you highlight that field. It is a toggle: use it either

to check or uncheck the field.

. or IN[Hl will accept your selection; will cancel it.

Experiment with this form. Keep in mind that you’ll find many such

input forms on the 48, and they all work similarly.

When you’re finished, leave the modes as shown above, return to a

normal Stack display (via (CANCEL), or IIIZM). Then press (MTH).

20 (1) Your 48 WorksHOP

The Tools in Your Workshop

Hand Tools

Usually with the 48 , you create a simple object and select a simple, one-

step tool to use on it—like putting a board onto the workbench and

using a hammer to drive a nail into it. The drawers and toolboxes

(menus)inyour48 workshop are full ofsuch simple, one-step tools. You

must simply learn when to use them—and how.

Power Tools

Sometimes simple tools aren’t enough. To build, use, or make major

changes to a sophisticated object (and be guided through the process)

you needpower tools—instruments and analyzers that perform more

complex manipulations. For example, to create a table ofnumbers (an

array)—4 rows of 5 columns, you could type the whole thing into the

Command Line; or, you could use the MATRIX editor power tool, which

presents you with a template that you can fill and edit more easily.

Other power tools let you build, solve or plot equations, manage time,

do statistics, etc. These are all smart tools; theyknow something about

the materials you’re using and thus can eliminate much ofthe simple-

minded work. So instead of a tool that “nails this piece to that,” you

have a tool that “makes a chair,” or “designs a beam to support a 1-ton

load.” In this way, power tools actually augment your knowledge, by

automaticallyperforming sophisticated operations whose details would

otherwise cost you time to learn or recall, and then execute one-by-one.

The Tools in Your Workshop 21

The Raw Materials in Your Workshop

With all the hundreds oftools in your 48 workshop, you havejust a few

basic types ofmaterials (objects) with which to build. Each type looks

different so that you can distinguish it from the others:

Real Numbers

On the 48, real numbers look and act like what you normally think of

as numbers: 3 15 16664 -8.9 -54.7¢ 3.14

Units

Units are real numbers with dimensions. That is, you can use real

numbers to represent physical quantities (i.e., feet, pounds, psi, liters,

etc.), by assigning them units—and these units will be used correctly

throughout any calculations you perform. Here are some numbers

with units: 1_ft 17.3_kPa 9.81_mss™2.
Note the underscore (_) that connects the number to its units.

Complex Numbers

Acomplex number is a vector—an ordered pair—in the complex plane.

The 48 represents a rectangular complex number as two real numbers

(real, imaginary), like this: (3;4). Or, that same number can also

appearinpolarform, with a magnitude and anangle: (5, £33.13). The

angle may be in degrees, radians or grads.

22 (1) Your 48 WORKsHOP

Arrays

An array is a group ofnumbers (either real or complex numbers), with

no set limit on the size of the group, as long as it’s arranged in a table

of rows and columns—which can then be used mathematically as a

matrix. The 48 represents arrays within brackets:

[l 12] ([l 123 1] I

[3 4 1] [2 1]

2X2 array lI-row array 1-column array

(row-vector) (column-vector)

Flags

Flags are the simplest object type of all—bits—objects with only two

possible values: 1 or 0 (on or off, set or clear—whatever)—usually to

signal a mode or condition. Flags don’t appear individually on the

Stack, but you can set or test them individually or as groups.

Binary Integers

Binary integers arejust that—integers made up ofbinary digits—bits

(i.e. flags). You can do binary arithmetic on them and use them to

representgroups offlags. The 48 displaysbinary integers on the Stack,

not only in binary form (base 2) but also in number bases 8, 10 and 16.

For example, 1011, appears as # 1811b 307, appears as # 36ro

43, appears as # 43d A’TF appears as# ArFh

The # indicates a binary integer; theb,0,d, orh suffix tells you the base

(binary, octal, decimal, hexadecimal).

The Raw Materials in Your Workshop 23

Character Strings

On the 48, you build character strings—sets of characters linked to-

gether to form objects—words or sentences of verbal information,

denoted by quotation marks: "Hi!" "Phone home." "1+1=2"

Tags

Tags are temporary labels for objects on the workbench (the Stack)—

like masking tape. Atag labels an object with an identifier and a colon

toitsleft: HAnswer: 17 Altitude: 29600 RANGE: 18

Names

Names are words that identify things. On the 48, you use names to

identify storage locations. The name is the label you tape onto the

storage location to identify what’s in it (you don’t name an object itself).

A 48 name is a single word within apostrophes: '"HUBERT' 'Wrench'

Algebraic Objects

Algebraic objects look and behave like algebraic expressions and equa-

tions. On the 48, you type them between apostrophes—just like names,

except that algebraic objects can contain mathematical operations and

functions not allowed in names:

'‘A+B=C" 'SINCx)! 'pi*RADIUS™Z'

24 (1) Your 48 WorksHOP

Programs

A program is a custom-built tool—a series of instructions (objects and

tools) strung together, to be executed at a later time. You create a pro-

gram,thennameit(i.e.,storeitin anamed toolbox). Andthenyouhave

anew tool to use—just as youwould use any other tool in the workshop.

48 programs are enclosed in ¥ #like this:

« 1 2+ » « "Hi" BEEP CLERR =

Lists

Lists are collections ofobjects, the wire and glue ofyour workshop that

binds together objects of any types—even other lists—within braces:

{123} { "Hi" 7 (3,4) "Bye" 2

Directories

Directories are the storage areas you create for your objects. They

appear as menu items with small “index tabs:”

(0ATH GEOH CHEH

There are other, more obscure object types on the 48, but these are the

basic raw materials you’ll be working with most often.

The Raw Materials in Your Workshop 25

Look Again at the Workshop

Holding your place here, look back again at the Big Picture ofyour 48

workshop (page 14)....

Gradually, now, the maze of names and keys on your machine should

be emerging into some kind ofcoherent picture ofwhat you’re working

with here:

* You have a very sophisticated calculator—one that allows you to

operate on (i.e. build, edit, combine) not only numbers but many

other types of objects.

e When performing these operations, you generally place these

objects on your workbench—the Stack.

* You perform the operations themselves with commands that are

available on keys or via menus. Most of these commands do

simple things; they are “hand tools.” A certain few are smarter

and more complex—the “power tools.”

* You name and store your created objects in directories that you

create.

Conceptually, it’s pretty simple, no? Be sure to keep this “Big Picture”

in mind as you start to learn the details. Test yourself now....

26 (1) Your 48 WoRrksHOP

Quiz on the “Big Picture”

At the end of every chapter this Course gives you a quiz, to make sure

you're “digesting” what you read. These quizzes aren’t trivial—they’re

a big part of your learning process—so don’t breeze over them; think

and applyyour knowledge! The solutions immediately follow the ques-

tions, so study them and re-read parts of the chapter, as necessary.

1. What sorts of problems do you expect to solve with the 48?

2. Why use a workshop analogy when describing the 48?

3. How many keys would the 48 need ifit didn’t have the (o), (&) and

) keys?

4. What’s a menu? What’s an input form? Why does the 48 use

them? What are the advantages of each?

5. What’s a real number (as represented on the 48)?

6. What’s an array (as represented on the 48)?

7. What'’s a power tool (on the 48)? Name three of them.

Quiz on the “Big Picture” 27

28

Quiz Answers

You can expect to solve most kinds of number-crunching and

data-intensive problems. Some may be intricate and require

special programming, but for most you will key in some values,

press a function key, and get an answer. The 48 has a vast supply

offunctions—and the flexibility to allow you to create your own.

The workshop analogyis goodbecause the 48 usestools (functions

and operations) on raw materials (data objects—real numbers,

arrays, lists, etc.). The Stack acts much like a workbench,too;it’s

where most of the building and crunching happens.

It would need about six times as many as it has now. The (o), (&)

and () keys allow most keys to “mean” six different things.

The 48 uses menus to avoid the need for even more keys: Amenu

is a selection ofitems that appears in the display. To select from

a menu, press the blank white key beneath that selection.

For many purposes, the 48 also offers input forms—*“fill-in-the-

blank” screens which are more explanatory and which prompt

you and show you your options for each field on the screen.

In general, the trade-offbetween menus and input forms is that

input forms are “friendlier” but menus are often faster.

(1) Your 48 WoRKsHOP

On the 48, real numbers are what you usually think of as real

numbers: 1 15 -18684 H.3 -50 3.1416

On the 48, arrays are groups ofnumbers—either real or complex

number—arranged in rows and columns and represented within

brackets: [[1 2 1] [[12 3 1] [[1]

[3 4 1] [2 1]

2x2 array 1-row array 1-column array

(row-vector) (column-vector)

Apower toolis a smart, specialized tool that helps you build, view

or “crunch” sophisticated objects more conveniently. Where your

simpler “hand tools” are like saws and hammers, your power

tools are more like lathes and drill presses. They are: (PICTURE),

(EQUATION), (MATRIX), (SOLVE), (PLOT), (SYMBOLIC), (TIME), (STAT), and (UNITS).

o n
T PR; N\(5/1;,‘,,N

B ARTl ST
v HALS(£ 26,9972i) LLSAEABS Y

e A "l'- N

,(X
e
(A

Quiz Answers 29

' -

T s
“’/EJO&

 A
‘::Zfié’'A,«

\\&‘Q'l‘,-flpx‘m wfl\w‘

T\\)

YOUR WORKBENCH

2) THE STACK AND COMMAND LINE:

Typing and the Command Line

It’s time to start learning how to work at your workbench....

To Begin: Press the digit keys ((0)through(9))in sequence and look

at the display. You should see something like this:*

{ HOME }
3

<
H1Z34067/89+4

MaTE] LIZTHYP[REAL[EAZE

A space opens up between the workbench itself (the

Stack) and the Menu Line. And what youjust typed has

been placed in this space, which is the Command Line.

The numberyou've typed is notyet onthe workbench;it’s

still an unfinished command. To finish it—and to offi-

cially place the object onto the workbench—you must

press (ENTER). Do that now....

See? The Command Line disappears and the object, as

the 48 has interpreted it, is placed on Level 1—that’s the

bottom, the nearest Level to you—on your workbench.

*Ifyour display isn’t exactly like this, don’t worry too much. At this point you're most concerned

with that number you just typed in. Ifit’s just the menu line that’s different, press (MTH).

Typing and the Command Line 31

So that’s how to type in a real number and put it onto the workbench.

Now, what about something that’s not a number?

Do This: Press (a)....

OME I{H
q:
3

7
]1: 123436759

[EAZENNARE =3

Notice the a that appears now in the StatusArea, telling

you that the nextkeyyou press will return its alphabetic

character; you are in alpha mode.

Continue: Press(A]a]B]a)c). ABC# appearsontheCommandLine—

and notice that you had to press (a) before every letter.

Now press (that’s the key).

What happened?

TheABC that you had typed on the Command Line was not put onto the

workbench. It was thrown away.

That’s what does: it tells the calculator to cancel whatever was

“in progress.”

32 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Now try typing something a little more complicated.

Press: (ofoJWIHJAITISPC)(YIOJU)(SPC)(SIEIE)SPC)(1IS)(SPC)WIHALT)
GET

123406783
«oEE IS WHAT YOU GET. +
WECTR[MATR]LI=T[HYP[REALEASE

See how you can save a lot of keystrokes by using “alpha-lock”

(pressing (@) twice in a row), so that the alpha annunciator stays on?

Notice also that the first part of what you typed is now pushed off the

left-hand side of the display. The .. on the left tells you that the

Command Line extends off that side of the display. To see what’s

missing, press (4 repeatedly (or press it and hold it) until the 48 beeps

to tell you “there ain’t no more.”

Notice that you couldn’t do thisifyou hadn’t switched back out ofalpha

mode with the final (@), above. In alpha mode, the () key is something

entirely different—the (P) key. So you can see that it’s important to

know what mode you're working in—watch your Status Area!

Typing and the Command Line 33

Inserting and Deleting Characters

Next question: How do you correct mistakes and make amendments

to your typing on the Command Line?

Do This: Using (<€) and (»), move the cursor so that it’s on top ofthe S

in SEE. Then type (a]o)(C]A]N)SPC)(@).

The new characters are inserted; this is how you add to

what’s already in the Command Line.

And it’s just as easy to remove characters. For example, to

remove the CAN that you just inserted...

Do This: Press(«]«]«]«). Notice how («)deletes the character before

the cursor.

You could have used the (delete) key, also—but it deletes the

character under the cursor (not to its left), so you would have had to

move the cursor. Press once now, to delete the 5 in SEE.

34 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

Lower-Case Letters

Try This: Type: (CANCE) (o)) (HIG] (SPY)IGIH) GIE) &IR)
(GJE)(-Ja). Nothing to it—you get lower-case by using

() before each letter! Butit’s a lot of extra typing,so...

Notice: (&)o) (XsPC[THIEIRIE-J@). Pressing
(&) a)when you’re already in alpha mode will lock the 48

into lower-case mode. And it will stay in effect until you

leave the Command Line or press (G]a) again.

Special Characters

There are lots of non-alphabetic characters (things other than A-z)

available on the 48. Most are right-shifted () alphabet keys, for

which HP offers you some built-in help via the key (try it

now).... This screen shows you 64 characters at a time (select a differ-

ent 64 via the &Mland IEFEN). The display shows you the key to get

the highlighted character (use the arrow keys to move the highlight)—

or [N} will also put the character on the Command Line for you.

Note that certain characters, called delimiters, are indeed marked on

keys, because they denote certain object types. For example, (') gives

you ' ' (and the # points between them)—because you’ll usually want

to enclose the object you're typing with these apostrophes. The other

delimiter characters that come in pairs are on the shifted arithmetic

keys (G]0), &I, &I«»), (21", &)U, and ()3

Typing and the Command Line 35

(]+)(NEWLINE)

The Command Line is actually a space—not a line. It can be broken

up into more than one line by using (right-shifted (:))—the

NEWLINE key.

Try This: Type MIOJRIE] (TIHJAIN]
EHUONEP&(that’s (GIDEL) (o)

You now have five lines in the Command “Line.” The

first line has scrolled off the top of the display, but it’s

still there.

Notice also that when you have more than one line like this, (o) and (¥)

move the cursor from line to line up and down—just as (4Jand (») move

you around to edit a single-line Command Line.

Not only that, (°]<4) and (2]») will move you to the first and last

characters of a line, and (=] and (©)¥) will move you to the first and

last lines.

Spend a little time now and play with this....

Then, without leaving your current Command “Line” (that multi-line

thing), read on....

36 (2) THE StACK AND COMMAND LINE: YOUR WORKBENCH

The EDIT Toolbox

Not all your Command Line editing tools are available on their own

keys. With so many tools, the 48 has most ofthem stored in toolboxes

(menus)—including a set of tools for editing the Command Line. You

can open that toolbox with the key.

Try It: Press to see this menu ofthe items in that toolbox:

eo1lATW[TIT

EHHId and EHAIE move the cursor in the indicated directions (similar

to(4)and (»)), but they move until they encountera space (or NEWLINE)

and then stop at the next character. Try and now and

watch how the cursor moves.

and work the same way as and BHIES, except that

instead of skipping over those characters, they delete them.

IFEK is a mode key (remember the[lkey on the MODES menu?)

TheBkeychanges theform ofcursorin the Command Line: When

the [J appears to the right of [[iH, the calculator is in insert mode; the

cursor is *, and newly typed characters are inserted to its left.

But press [[RE now.... Notice that it becomes [lIJEll, and that the #

becomes a . The 48 is now in replace mode; a newly typed character

will replace the character under the cursor.

Now press to throw away the current Command Line.

Typing and the Command Line 37

Next: Press (5)(ENTER)(4]3)(ENTER. You should now see this:

{ HOME }

q:

3: 12345689
Eg 5

£ZEIP[ZHIP£0EL[DELYINZm]-+.2TH]

Then: Begin a new Command Line. Type: (a]a)(1)(SPC)(A]M)(SPC]SPC)

(YEYAJRIS)SPS)0]L(D)-Ja). Next, use CEIATIEFIAI(«)to move

the insert cursor here: AM 4YEARS, then press EEITA:

Now ECHO (i.e. copy) an object (the 5) from the Stack to the

Command Line: Press(a)once to move the pointer up a Level.

Then press [3Xi[ilonce, then to return to the Command

Line.... See how ECHO works? Acopy ofthe 3 is now inserted

where the insert cursor was pointing (the replace cursor

would have replaced existing characters, starting with the

character under it).

38 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

A Command Line Summary

Review what you now know about the Command Line:

* You know how to type in a wide assortment ofthings—numbers

and alphabetic characters, including lowercase letters, special

symbols, and the NEWLINE character.

* Youknowhow touse(«),(»),(a),(v),[DEL), and («)to move around and

edit the Command Line.

e Youknowthatifyouneed even moretools—such as [l

IEEE] and EBATA-—you can also open the EDIT toolbox: (&]EDIT).

But, did you know?... When you’re not already working on something

in the Command Line, lets you edit the object at Stack Level

1, by making a “working copy” of it for you on the Command Line!

Try It: Press to clear the current Command Line. Then press

(GJEDIT).... The 43 has been copied into the Command Line,

ready to be modified. Press (2)(ENTER). As usual, takes

the object from the Command Line and put it onto the Stack.

But in this case, it replaces the original 43 with the new ver-

sion of that object in the Command Line: £43.

Now try another: (&JEDIT)(DEL)(-)(CANCEL). The trashes

only the edited version (. 43) in the Command Line; it leaves

the original £43 intact at Level 1 of the Stack.

Typing and the Command Line 39

Simple Materials: Real Numbers

All right, it’s time to look at what happens once you’ve succeeded in

putting an object on the Stack—after you've finished typing on the

Command Line and pressed to put the object at Level 1.

Real numbers are the most intuitive objects to start with, since you’re

somewhat familiar with them already: As you know, real numbers

include the positive and negative integers (1,2,-3,-5, etc.), the positive

and negative rational numbers (4.56,-2.3, etc.), the positive and

negative irrational numbers (1/2, &, e, etc.), and zero (0).

Well, your 48 “sees” real numbers in much the same way that you do.

They’re easy to represent—just a set of digits—as in any calculator.

But what about extremely large or small numbers—so awkward to

deal withbecause their decimal representations uselots ofplaceholding

zeroes (e.g. 00000001 and 1,000,000,000)?

That’s why there’s scientific notation.* Thus:

5,280=5.28x10° 0.00023=2.3x107"* 1=1x10°

The mantissa shows the number’s precision. It is then multiplied by

a power of 10 (the “exponent”), to show the number’s magnitude.

Actually, the 48 uses a slightly compacted version ofthis notation—to

avoid the need for superscripts in its line-oriented display:

5,280=5.28E3 0.00023 =2.3E-4 1=1EH

*Not that it’s any more “scientific” than other notations, but science is one discipline where you

commonly encounter very large or very small numbers. It could as easily have been called “national

debt notation,” for example.

40 (2) THE StACK AND CoOMMAND LINE: YOUR WORKBENCH

Real Number Limitations on the 48

As you would expect, the 48 uses this scientific notation to achieve a

huge range in real-number calculations. But it’s still a finite machine

with a few reasonable limitations that you need to understand.

12-DigitAccuracy: Some real numbers simply have infinite decimal

representations. For example, Y is really 0.333.... But of course,it’s

impossible to use all of those 3’s during arithmetic. Naturally, you

round it, shortening it to a value that is both convenient and accurate

enough for your purposes. Though the rounded numberis not the same

as the original, the difference is usually negligible in practice.

So, when dealing with infinite or extremely long decimal representa-

tions, the 48 rounds them, keeping a 12-digit mantissa ofeach number.

The inaccuracy that results is rounding error, and—as you would

expect—multiplying two rounded numbers will multiply this error.

So, how great an error is this?

Suppose you’re the pilot ofa plane flyingfrom LosAngeles to NewYork.

And it’s a lovely day, and once airborne, your navigator lets it slip that

he’s been using his 48 to do fuel calculations—so his computations of

miles per pound of fuel are accurate only to .000000000001 miles (uh-

oh).... How big an error is this over 3,000 miles?

About one two-hundredth of a millimeter. If you’d flown clear to the

moon and back, the error would be about 0.8 mm. And in a round trip

to the sun, you’d be off by about a foot. Not a lot, really.

So the 48’s 12-digit accuracy is slightly more than barely adequate.

Simple Materials: Real Numbers 41

Magnitude: Another limitation of the 48 is the magnitude of a real

numbers (i.e., the value, not the number ofdigits) it can represent: You

simply cannot expect it to represent arbitrarily large or small num-

bers. Everyone has a limit; you do—and so does your machine.

The largest real-number value representable on the 48 is a number

called MAKR: 9.99999999999E499 (9.99999999999 x 10**)

And the smallest value, called MINR, is 1IE-499 (1x10™*)

These numbers are fantastically large and small. It is difficult—if not

truly impossible—to contemplate these quantities.*

*It’s a tough job—but someone’s gotta do it:> Compare MAXR and MINR with some of the largest

and smallest things in the known universe....

The effective radius of an electron is about 2.817938 x 10" m(eters)—or about 2.978626 x 10"

light years (a light year is the distance that light travels through free space in one year’s time). So

the volume of an electron (assuming it’s a sphere) is about 9.373093 x 107 cubic meters, or about

1.106972 x 10" cubic light years. Now, the radius ofthe sphere ofthe known universe is about 10"

light years—so its volume is about 10* cubic light years. And so,if you were to pack the known

universe absolutely solidly with electrons (no wasted space), you’d need about 10'* electrons.

Now that’s alot—more than anybody can really envision. ButMAXR on the 48isso much larger than

this, that ifyou really had a collection of MAXR electrons, you’d have enough electronsto fill 10,000,

000,000

000,000

000,000

000,000

000,000

known universes.

On the small end ofthings, picture in your mind the colossal gob ofelectrons numbered above. Then

picture yourself picking out just ten of those electrons. That ten—in relation to the whole—is the

fraction you're talking about when you use the smallest 48 real value, MINR.

42 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Suffice it to say that the magnitude limits of the 48 aren’t all that

restrictive.

Indeed, you may have heard of human cultures whose numbering

systems went something like:

“1...2...3...more-than-3...”

...and that was all the higher they described numerical magnitude.

Well, so it is in every society. In this modern-day, technical world, for

example, the numbering goes beyond 3, but at some point, it runs out

of names and meanings too:

“...millions ... billions ... trillions ... quadrillions ...”

...and so on, up to about “nonillions”—about 10*. But what do you call

numbers on the order of 10'®, or 10*°?*

Truly, there is a limit to your practical needs to describe numbers.

Yours may simply be a little higher than another’s—but not by much.

*The authors recommend the term “several gadzillion.”

Simple Materials: Real Numbers 43

Changing Signs and Entering Exponents

All right—enough worrying about the limitations ofreal numbers. It’s

time to see how they work as objects you manipulate on your work-

bench—the Stack. Try putting some real numbers on the bench-top....

Do This: Press(CANCEL)(JCLEAR)MTH)(5]2]8]0] 8088808

ENTER])(6]-Jo] 2]2]a]E]2]3)(ENTER). You should see:

OME TLH
g:

3¢ oeod
%= 360, 22

6.HZ2EZ3
MATE] LIZTHYPREALEAZE]

Notice that when you keyed in 6. BZZEZ3, you used

to key in the exponent—but you could have used

(Enter EXponent) instead.

For keying in exponents like this, works much the

same as except for one case: Press now....

See what happens? Ifthere’s no mantissa already on the

Command Line, gives you one: 1.

(Press now to clear the Command Line.)

44 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Now, how about negative numbers? Try these...

Examples: Press (1)ENTER)(+/-)(*/)....The key simply changes

positive object values to negative—and vice versa.

Nowput -1.3,4.5x107*, —7.8x 10’ and -9 x 10~>* onto the

workbench. Press: (1]-3][+/-]ENTER]

(7)+/=)-)8JEEX]3JENTER)

(e)+/-)([EEX)(+/-)()4)[ENTER).

You’ll see this:

OME I

-1.3
4. 0E-24

-/oHH
-9.E-54

WECTR[MATE]LIZTHYP[REALEAZE

—
I
O
)

E
E

E
m

E
m

u
E

|
x

So there are two ways to get a negative number: You can

put the positive number on the workbench in the usual

way, then press (+/-). Or, you can change the sign of

either the mantissa or the exponent at any time while

you'’re typing in that portion of the number.

Simple Materials: Real Numbers 45

Display Formats

You’'ll notice that the real numbers on the Stack have varying numbers

of decimal places showing. What’s going on?

Try This: Press HAuill(4) IEEM. You should see:

H

43 ~1, 3500
3: 4. 58BBE-24
2 -7, 890, BAGH

-9, BhBE-34
IIONTPT

Youjust told the 48 to change theformat ofreal numbers

in the display. Their values haven’t changed—just the

way you see them.

(4) IIZEM tells the 48 to show a FIX’ed number ofdigits—

four in this case—to the right of the decimal point.

Notice how the [d has appeared on the IIHEll mode key

totell you that FIXmodeis currently set (recall page 19).

Now press (0)IZE.... See? Now there are zero digits

to the right of the decimal point. Again, the numbers

haven’t changed in value—only in appearance.

46 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Do This: Press (11)IEEN.

OME }

-1 . SHEHHHEEHEHEH
4. 2BHEEREHEEHE-24
-¢ . SHHHEHEEEERE5

-3, HHHHEERERBE-39
IELEIRN ETARO

{

g
3
¢
]

Notice: In the previous examples some numbers were

displayed in scientific notation even though the requested

display mode was FIX. But that was only because it was

impossible to display them any other way—using the 12

available digits. Any number greater than 999,999,999,999

or smaller than .000000000001 must be displayed in scien-

tific notation, since its magnitude exceeds the ability ofthe

display to show it as an explicit, one-part number.

But now, with SCI mode, you are forcing the display to use

scientific notation for every number, regardless whether

that number could otherwise be correctly represented in

the display.

Finally—before going on—press JElIM. This is STandarD

display format, where all significant digits are displayed

andwhere scientific notation is used onlywhenthe number’s

value is outside of the display’s magnitude limits.

Simple Materials: Real Numbers 47

Postfix Notation

“...Scientific notation, real-number representation limits, display for-

matting... when am I going to start doing things—like arithmetic—

with real numbers?”

Right now:

Remember that what you’re seeing in the display is quite literally a

Stack of objects. Everything you’ve created so far has been “stacked

up” on this “workbench.”

Remember, too, that you put the latest additions on the bottom here;

that’s “upside-down” from your notion ofa stack oflumber or pancakes.

But it is a stack, nevertheless—because it’s a last-in-first-out type of

arrangement: the last thingyou put onto the Stack is thefirst thingyou

take off.

With that in mind, here’s the one simple rule to know as you begin

working with the 48’s Stack:

Whenever you use some tool to work on an object—say, to change the

sign of a real number, for example—the tool assumes that the object is

alreadyonthe bench-top (i.e. on the Stack) whenyou start to use the tool.

This means that you must first put onto the Stack any number(s) that

you want to manipulate and then perform the operation. This way of

doing things is called “postfix” (frompost-affix: literally, “to add after”)

because the operation itself comes after the operands.

48 (2) THE STACK AND COMMAND LINE: YOUR WORKBENCH

Real Number Tools

Try this postfix pattern of operation with some real-number tools.

Do It: Press (7)[ENTER. Now press (7/x).... What happens? The 7 is

replaced by .142837142857, which is 1/ (rounded to 12

digits). The tool inverts the number in Stack Level 1.

Press again. You get 7. 88088808081 That’s 7};

Try another: Press(4)]-J3)iX)....YougetZ. B7364413533—the

square root of the 4. 3 that was at Level 1. But how did that

4. 3get to Level 1? You never pressed to send it there

from the Command Line—you just pressed (/X)!

Answer: When you’re working in the Command Line, most

tools automatically put the contents of that Command Line

onto the Stack (i.e. “press (ENTER)” for you) before they start

working—just to save you a step.

Postfix Notation 49

Notice: Theinverse of a tool is often located on the same key as the

tools itself. For example, press now.... You will get

4.29999999999, which is (v4.3) to 12 digits.

But there are far more tools than keys, so—as usual—when you want

more tools, look in a toolbox....

Like So: Press to open the MaTH toolbox. From the menu that

appears, you can see that this toolbox has six “drawers” in

it. You can tell that they’re drawers and not tools because

they each have a “folder tab” on their top, left-hand corner.

Select the drawer.... You now see six tools in this

REAL menu, but remember that there may be more than

these six tools in this drawer—and you can see more by

pressing or (]PREV].

So “rummage” around in this toolbox now, until you find the

I(Integer Portion) tool. Try it—pressI...

The resultis4—the Integer Portion ofthe 4. 29999999999

that was at Level 1 of the Stack.

Again, the point is, whether you use tools from the keyboard or from

some toolbox, they all make the samepostfix assumption: the object to

be “worked on”is already on the Stack.

50 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

Two-Number Tools

The tools you’ve seen so far have worked on one object on the Stack—

at Level 1—the closest object to you. But many tools are designed to

combine fwo objects to form another—as in “plain old arithmetic....”

Do Some: Addtworeal numberson the Stack: Press(1)ENTER)(2)(+).

The result is no big surprise, right?

Try (3)(ENTER)(4)(X). Also no surprise.

Now, addition and multiplication are commutative op-

erations(thatis,1+2=2+1 and 3x4 =4x3). Butthat’s

not true for subtraction and division—so which number

do you put onto the Stack first?

Just put the two numbers onto the bench-top in the

order that you would say them. Thus 8 -2 would be

(ENTER)(2)(-); and 6 + 4 is (6]ENTER)(4]+). Try those....

Notice alsothat several ofthe keyboard toolsusexandyin their names.

This is to help you remember where in the Stack the operand(s) should

be to correctly use these tools:

The number at Level 1 is x; the number at Level 2 is y.

So, (5)ENTER)(3)¥ calculates 5°; and (8]1)([ENTER)(4)[2IX3) finds /81.

There are other one- and two-number math tools in the other MTH

toolboxes, too. Check them out, if you want.

Postfix Notation 51

Stack Manipulations

So that’s the basic idea: You put objects on your 48’s postfix Stack

workbench and then use tools on them.

Of course, you've seen this only with real numbers so far—and there

are plenty of other objects and tools to learn. But first you ought to

know how to organize, arrange and rearrange your workbench—the

Stack. As you might expect, there are tools to help you do this....

The first and most basic of these is ((§]CLEAR). As its name implies,it

clears the Stack, throwing away every object on it.

Do It Now: [&]CLEAR)

Another commonly used command is (G]DROP). It throws away the

object currently on Level 1 of the Stack, then drops all remaining

objects down one level.

Try This: Press (1)(ENTER)(2)([ENTER)(3)(ENTER)

¢ (]DROP)(]DROP).

Or This: (1)(ENTER)(2)(ENTER)(3)(ENTER)(«) («) («).

As long as the Command Line is not active, («)is DROP (but of course,

if you are typing in the Command Line, then («) is backspace).

52 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Now, what if you want to duplicate the object at Level 1? (You'll want

to do this a lot, as you’ll soon see.)

Guess what? serves that purpose. Remember that when the

Command Line is active, places its contents on the Stack. But

when the Command Line is not active, (ENTER) makes a copy ofthe level

1 object and pushes it onto the Stack.

Example: Press (6)([ENTER)[ENTER)(ENTER).. ..

The first puts the b on the Stack at Level 1. The

second copies this b, pushing the original up a

Level; you now have two 6’s. The third again

copies the bottom b and pushes the fresh copy onto Level

1, again pushingthe existing objects up a Level; you now

have three 6’s. Press now to clear them all.

The last of the common bench-top organizers is (]SWAP). It simply

swaps Stack Levels 1 and 2, which is useful when working with order-

sensitive tools such as subtraction and division. Similar to (&]DROP),

whentheCommand Lineis not active, you needn’tpress(&)to use(SWAP).

Try It: Press (1)(ENTER)(2)(ENTER)(3)(ENTER) (or just

that’s the () key). See? The £ and 3 are swapped. Play

around with this, and then press to go on....

Stack Manipulations 53

The Interactive Stack

The workbench can become pretty crowded with projects and raw

materials in various stages ofcompletion. Organizing, throwing away

or bringing down selected items can be a real chore. But—how’d you

guess?—there’s a tool to help you.

Watch: First, put some “stuff” on the bench-top to play with. Press:

(JCLEAR) (1) ENTER) (2) (ENTER) (3) (4) (5] ()
(ENTER)(7)(ENTER)(8)(ENTER)(9)(ENTER)

Now, press (a) and see this:

: 7
: 0
= J
; 1H

[ECHO [VIEW [PICk[ROLLJROLLO[*LIZT]

Thisis the Interactive Stack. It is designed to give you a quick and easy

way to look at, edit and use an object at any Level in the Stack.

Remember the RlA tool in the EDIT toolbox (page 38)? Well, the

Interactive Stack’s arrow keys work in the same way: (a)and (¥)move

the pointer up and down the Stack. And (©]a) and (=]¥) jump all the

way to the extreme top and bottom of the Stack, respectively.

54 (2) THE StAck AND COMMAND LINE: YOUR WORKBENCH

Do This: Move to Level 1 now ifyou’re not there (i.e., press (2]¥).

IEX:] should look familiar, too. It works like EDIT’s

I8}except that it opens the Command Line (because

there isn’t one already) and echoes into it the object at

the pointer Level. Try it—press [HHiIL....

Nothing seems to happen, except for the changed menu,

but the Command Line is open—with 18 in it. But be-

fore showingit to you,the machineis givingyou a chance

to move around the Stack and echo other Levels, too.

Press (a]a)1l ENTER). Now the Command Line ap-

pears—and it contains the 18 and the 8 that you've

echoed from the Stack. And if you were to press

now, those numbers would go onto the Stack—just as

they would ifyou had typed this Command Line instead.

But press to discard them. Notice that you’ve

left the Interactive Stack; press (a) to reactivate it.

Notice also the next item in the Interactive Stack menu: %Y. It

worksjust like except that it edits the object beingpointed-to—

creating a working copy on the Command Line so that and

can either accept or reject the changes you made.

Again, the idea of the Interactive Stack is to let you move around the

Stack and work with any object as you normally do with the bottom-

most object.

Stack Manipulations 55

Continue across the Interactive Stack’s menu items:

I3makes a copy ofthe pointed-to object and pushes this copy onto

the Stack at Level 1, moving everything else up a Level.

Try It Now:

Then Notice:

Make copies of Levels 3 and 11. Press: ([2]V)(a]a)

EEA00HElGand see:

k
e

|
—
~
C
C
I
G
.
'
I
'
«
.
D

 ITT IT[)T§

{14 and [H!N8] “roll” the contents of the Stack

between Level 1 and the pointer’s Level. §!|§¥ rolls

up; (11484 rolls down.

Move the pointer to Level 4 ((a]a)a)) and press

several times to see the effect. Each time, the four

numbers are “rolled up,” with the Level-4 number

coming down to replace the Level-1 number.

And {11484 rolls the other direction. So roll Levels 1

through 4 around until you’ve had enough, then put

them back in their original order: 9 18 8 1.

56 (2) THE Stack AND COMMAND LINE: YOUR WORKBENCH

Now turn to the next page of the Interactive Stack menu (press (NXT))

to see more tools.... These tools use the Level number of the pointer

as a kind of counter—telling the machine how many Levels to dupli-

cate, drop or keep.

Examples: Move the pointer to Level 2 and press [[I[di] You see:

{ HOME }

s 3
3¢ 1

o i
E‘:Iifl[mflm--

You now have two copies ofthe contents of Levels 1 and

2. The duplicate set was pushed onto the bottom of the

Stack—bumping the originals up to Levels 3 and 4.

[TAE5] drops (discards) the pointed-to level and every-

thing below it. Press [Iddsll now to drop levels 1 and 2.

Conversely, [R33@l keeps the pointed-to Level and ev-

erything below it—but discards everything above it.

Press [33@l now.... See? Only Levels 1 and 2 remain.

N3N 38 simply pushes the Level number of the pointer

onto the Stack. Press|[43448now, while pointing to Level

2, and watch as the 48 pushes a 2 onto the Stack.

Stack Manipulations 57

Finally, there’s one other Interactive Stack tool that’s not in the toolbox

(the menu)—because it’s on the keyboard: ()

As you may remember from page 52, when there’s no Command Line,

(#) acts as a DROP (identical to (§]DROP)), which discards the Level-1

object.

Well, in the Interactive Stack, («) drops the pointed-to object....

Prove It: Press(e)todrop the 1l at Level 2. Press(«)again to drop

the 8.

Press («) once more to drop the 2. Notice how the pointer

won’t ever go any higher than the highest filled Level of

the Stack.

Notice also that dropping the last object on the Stack terminates

Interactive Stack—you’re back to the menu you were looking at before

that—probably somewhere in the MaTH menu.

You can see that the 48 is designed to be as convenient as possible:

Maybe you went into the Interactive Stack to do some vast (or half-

vast) Stack manipulations, object building, copying—who knows? But

the reason for it all might be that you need to use something in this

MaTH menu on the resulting object(s). So the 48 remembers which

menu you were in and treats the Interactive Stack excursion as just a

temporary “side-trip”—a “time-out” for preparations.

58 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Learning By Doing

By now, you're surely reeling with all the tools at your disposal—just

to “mess around” in the Stack. Look how much you've seen:

* You know how to type on the Command Line, and how to use the

(o) key (one (@) per character or to “lock” it on);

e You know how to use lowercase letters, NEWLINE and other

special characters;

* You know how to edit the Command Line with, (DEL), () and the

EDIT toolbox, which (among other things) lets you choose be-

tween the insert (#) and the overwrite (M) cursors and ECHO

objects from the Stack into the Command Line

* You know various and sundry other things, too.

Ofcourse, there’s no wayyou’re going to memorize all the various Stack

and Command Line manipulation tools just through brief introduc-

tions like these—so don’t panic if a lot of this has blurred together by

Now.

Butnow isthetimetodrive it home to yourself: The best way to become

familiar with the tools and concepts presented in this chapter is to use

them. So there’s a quiz on the following pages—mainly real-number

math and Stack problems. You may not be able to work every problem

correctly the first time. If you get stuck, look at the answer! See how

it’s done. Then work the problem again until you understand the

solution. After you've done all these problems, think up some of your

own. Play with the Stack—get used to it. Masterit.

Learning By Doing 59

Workbench Quiz

1. Find 1+42+3+4

Find 1+2+3x4 Then find (1+2+3)x4

Find 1+2+3 Then find (1+2)+3

: 1
2. Find ——

2+3

3. Find 2In(7)
45

4 g 2+4/122 = 4(3)(-5)
2(3)

—16+43(.004)]

5. Find 173e[32163

2 3 4

6. Find 1+.5+l§——+’—§—+15—
2! 31 4!

16 % 4/(~16)* — 4(20)(—48)
2(20)

7. Find both answers:

60 (2) THE StAck AND COMMAND LINE: YOUR WORKBENCH

10.

11.

12.

13.

14.

Find sin45°, cos134grad, and arcsin0.5, in radians.

For 6 =75°, show that: sin36 =2sin@cos’0+(1-2sin’0)sin6

What are the differences in rounding error for sin & radians ifyou

round 7« to 4 decimal places? 11 places? What ifyou truncate at

4 decimal places? 11 places?

With 26 refrigerator magnets, one ofeach letter in the alphabet,

how many different six-letter “words” can you make? What ifno

two “words” may use the same six magnets?

 L to get V5 -1
+

By what percentage must you decrease > >

Put the numbers 12, 34, 56, 78, and 98 onto the Stack. Now

reverse their order (without typing them in again).

Without typing any digits, form the least possible positive inte-

ger from the digits of the five numbers in the previous problem.

Workbench Quiz 61

1.

5.

Workbench Solutions*

(ENER(2)HRERHEH Answer: 18

(RRHEENEREXE Answer: 13

ENTER2)HEHMWX Answer: 24
GENTER)(2[ENTR[B)P Answer: 1.66666666667

OENTER)(2)H(BE)H Answer: 1

Remember: In the absence of parentheses, do multiplication

before addition. When construing a written arithmetic problem

to solve on the Stack, work from the highest operator priority to

the lowest—and from the innermost parentheses outward.

(2JeNTER)(3)(H)(/) Answer: .2

HENEXEEE Answer: 8.64848955138E-2

REAEENTER)X)XE=2+

(2JENTER]3]X)(+) Answer: .3884/614285

(a)3JENTER)(-o]04X -3O

eTE]X Answer: 63. 1263787068

*Keep in mind that there are many ways to solve arithmetic problems on the Stack. The solutions

shown here are amongthe most straightforward and easiest to understand. Butthere are certainly

other solutions—some of which use fewer keystrokes—so use whatever methods make sense to

you. Unless otherwise noted, the answers assume STD display notation.

62 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

6. EERCEBHOEEMHNDEIES0
(EERNREYIEEEEE
(e@YY@EEM=® Answer: 1.6484375

As you can see, the PROB toolbox in your MTH menu has the

factorial function, to help you “crunch” this Taylor expansion by

brute force; later you’ll see another function to make this easier.

7.
)+EIxX3(4IENTER)(2)08]+X))(RJENTER(X))

a)[N(CANCEL) (1) Answer: 2

(@& Answer: -1.2

Keep in mind your Interactive Stack.

8. (©Ymopes)ELEMT(if necessary) (4)5)SN
Answer: .787186781187

[HATA (1)3)4)(cos) Answer: -.589841415¢5

HATH(5&)AsN Answer: .923998779598

You've seen the MODES menu before. Here you use it to set the

angle mode—degrees, radians or grads.

9. (Imones)LNENTER)BIX)SNJSIN)ENTERIENTER)
EXIRXEEHEIX)RIX)ICos)GXIH)
Answers: -.787186781187 and -.7B7186781181

That’s close enough, allowing for rounding error (see prob. 10).

Workbench Solutions 63

10. mis 3.14159265358979323846.... But no machine represents it (or

any irrational value) exactly; any numerical computation must

approximate. As for all values, the 48 uses a 12-digit represen-

tation of ©t (11 decimal places), then rounds for best accuracy:

3.14159265358979323846... ----> 3.14159265339

To truncate would decrease the accuracy:

3.14159265358979323846... > 3.14159265358

The same argument is true at the fourth decimal place:

3.14159265358979323846... ----> 3.1416

3.14159265358979323846... > 3.1415

The sine function is sensitive* to such approximations of: Since

sin®t = 0, any approximation greater than n gives a negative sine;

any “under-approximation” gives a positive sine:

EXOS]AHGL]Rl(8080080808880ENED
(ENTERJENTERJENTER)(SIN) Answer: -2.86761537357E-13

Answer: 9.79323846264E-12

QD]FEAL[EGEEIE]FHD[N
Answer: -7.3464187B67E-6

(«2)SN Answer: 9.26535896687E-5

The RND and TRNC functions round or truncate to the number

of decimal places you specify (4 here). A negative specifier re-

quests that many significant digits (rather than decimal places).

*This isn’t true for all angles. For example,sin 1.5707963268 (sin “ %”) is 1 . 808BBBBARBA—to 11

decimal places—but only because the rounding happens to works out, not because the 48 treats nt

somehow specially in its numeric calculations. It never uses w itself and can never give answers

other than those produced by the digits it does use. This is true for any irrational number: Take

V2 onthe 48 and then square the 12-digit answer. You do not (and should not) get2. 88000800660

(do the arithmetic by hand, to prove this, if you wish: 1.41421356237x1.41421356237). Any cal-

culator that gives you 2.00000000000 for that answer (or 0.00000000000 for sin 3.14159265359) is doing

“funny math”—and you should feel free to be outraged.

64 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

11.

12.

13.

14.

This is a probability problem—go to the PROB tool box:

ATThe question is, how many permutations (the order

matters) can you make of 26 objects, taking 6 at a time?

BOGNEY@] PEFH Answer: 165765686

Ifthe order doesn’t matter, then it’s combinations of 26, taking 6

at a time: (2J8]ENTER)(6)IEIA Answer: Z36230

(Result: 1.61883398879)

EX0ODES (Result: .61883398873)
Now, the percentage calculations are kept in the REAL toolbox,

SNER]FEAL=CH Answer: -b61.863396875

That’s a 61.80...% decrease (it’s a negative change).

Press 2JENTER)(3]JENTER)(5JENTER)(7)JENTER)JENTER).
Of course, there are many solutions to the reversal problem.

here’s one with the Interactive Stack: (a)(a) dUN%(a) A48 (a)

ROLL (78] FOLL [ENED)

The key here is to use the Interactive Stack to ECHO items from

the Stack onto your Command Line: (a)[HI (&)EEI10I

(a)BNB(a)I3HENTER). That sends you to the Command Line,

where all you need to do is delete the space delimiters*: (&)il

@CHAR@)CHAE@)CHEE)AL)6.

*Technically, the smallest positive integer possible is 81234956789, which, when [ENTER)ed, would

be 123456789, so you could argue that it’s “legal” to delete the B character here too. (“OK, fine.”)

Workbench Solutions 65

 (3) OBJECTS: YOUR RAW MATERIALS

The Fundamental Idea

This chapteris anintroduction to the basic raw materials—“objects”—

in your 48 workshop. You may not use all ofthese objects, but read this

chapter completely, anyway—so that at least you’ll know what options

you have for solvingproblems. Many solutions on the 48 use more than

one type ofobject, so take the time now to understand the basics ofeach

type—even if you don’t see what good it is right away.

Besides, this will give you a better understanding of the 48’s way of

doing things—its Fundamental Idea: You can generalize the problem-

solvingprocess. Once you know the keystrokes and strategies for prob-

lem-solving with one type of object, you can use other objects similarly

—without learning entire new sets of commands and rules.

Real Numbers

You've already seen real numbers in action on the 48—to show youhow

postfix arithmetic works on the Stack. The only point to reiterate here

is this:

Just as you combine real numbers on the Stack via real-number math

functions, so you combine other objects via math functions, often using

the same function keys (e.g. (=) (=} etc.).

Sonow it’s time to look at how these other object types work. Ofcourse,

to use them, you must know how to build and recognize them, too....

The Fundamental Idea /| Real Numbers 67

Units

In a sense, real numbers aren’t soreal. Whenyou add 1 to 2, what does

that mean? 1 what? 2 whats? 3 whats?

In the real world, you generally talk about real numbers as indicating

quantities ofsomething. When you drive 100 miles one day and 75 the

next, you speak of distances; the basic unit of measure is the mile.

When youfill your gasoline tank by adding 7.4 gallons to your 15 gallon

tank, you're talking about volume, with a basic unit of a gallon.

The point is, you wouldn’t need to specify such units ifeverybody meas-

ured things the same way; if that were the case, you could simply use

real numbers. But it’s not. You can add 1 foot to 1 yard and get 4 feet

or 1.3333 yards. And just how many teaspoons of liquid are there in a

liter? Andhowmanysquare feetin anacre? Sometimes, doing the unit

conversions and checking your units for consistency are the most diffi-

cult parts of doing a calculation.

How does the 48 represent them?

The 48 allows you to associate units with real numbers—much as you

do now. When you associate values and units on paper, you write the

unit after the value: 14 ft 26.3 in 142 acre

The 48 does it very similarly, simply using an underscore (_) tolink the

real number with its unit:

14_ft 2b.3_in 142_acre

68 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a unit object?

The easiest way to create a unit object is to use the UNITS toolbox....

Do This:

Like So:

Press (G]CLEAR), then open the UNITS toolbox.

Press(JUNTS).... Notice that each ofthe resultingmenu

items is a drawer with an “tab”—telling you that each

leads to yet another menu—a sub-menu with more

selections (use to see all 16 submenus available):

LENGth,AREA, VOLume, TIME, SPEED,MASS, FORCE,

ENeRGy, POWeR, PRESSure,TEMPerature, ELECtricity

ANGLe, LIGHT, RADiation and VISCosity.

On the first page of the menu, select the LENGth sub-

menu: [lffIA. Lookingthrough this menu, you’ll find 22

different units of length.

To build a unit object, simply key in the real number

value and press the corresponding unit key. For exam-

ple, to build the unit object 14_ft , press (do

this now)....* By pressing the key, you created a

single unit, 1 _ft, and then multiplied this by the real

number, 14, to form the unit object, 14_ft .

That’s true in general: Pressing any unit key forms a

value of 1 ofthat unit, then multiplies that by the object

already at Level 1 of the Stack.

*The menu keys show all letters in upper case, but the unit name itself often uses lower case.

Units 69

How do you use a unit object?

The beauty of unit objects is that you use themjust as you would real

numbers—and the 48 will keep track of the units automatically.

Example: Calculate how many feet of 10-inch-wide lumber planks

you’ll need to build a 7-level (backless) shelfunit that is

2 meters tall, 1 yard wide and 10 inches deep.

Solution: You need seven 1-yard pieces and two 2-meter pieces,

each 10 inches wide. So press: (G)cLEAR)()KT

2N GEM Answer*: 34.12_ft

Things to notice:

e 1_ydx/?=7_yd AndZxZ2_m=4%_m.

Multiplying a unit object by a real number (scalar) gives you

another unit object with the same units.

e 7_yd+4_m=108.4968_nm.

Adding (or subtracting) two compatible unit objects gives you an

object with units the same as that ofthe previous Level- 1 object.

* To convert a unit object to other compatible units, simply press

[()before pressingthe desired unit’s key. Anyofthe LENGthunits

are compatible with each other; any of the AREA units are com-

patible with one another, etc.

*Until further notice, all answers will assume a display mode of FIX 2 (so press HEk

(2)IEEA,then return to your previous menu (UNITS LENGth) with a handy shortcut key, [3]MENU)).

70 (3) OBJECTS: YOUR RAW MATERIALS

Now:

Easy:

You've just calculated the length of 10-inch planking you’ll

need. How many square feet of lumber is this?

Simply multiply this length by 10 inches: B(%)

Result: 341.23_ft#*in Notice that the units ofa product

(X) or (+)) is not forced into the units of either of the previous

values. Instead it forms a combination ofthose previous units.

This is different than with a sum (4] or (-)).

So you now have a correct area—but in rather uninformative

“mixed” units—ft#in. To convert it to something more

meaningful, simply move to theAREAmenu (CunTs)EREED),

and convert it to square feet: (IR

Answer: £8.44_ft"7

Notice that the 48 uses ™ to indicate raising to a power. That

is, f1*Z represents ft2.

Question: What if you ask the 48 to add incompatible units?

Try It: Move back to the LENGth menu (press (LEMI3)

and try to add 1_ft to the square feet from the above

answer (press(1)I(®).... No go, right? The 48 says:

+ Error: _
Inconsistent Units

The 48 saves you from these common—but deadly—unit

errors.

Units 71

Press (CANCEL) to clear that error message, and practice some more....

Problem:

Solution:

It’s roughly 700 km by road from Calgary to Saskatoon,

and you'vejust filled up in Calgary with 50 liters offuel.

You know that your car gets about 35 miles per U.S. gal-

lonin the kind ofdriving conditions you expect. Can you

make it all the way to Saskatoon without refueling?

Aswith most problems, there are several ways to do this.

One way is to convert your car’s mpg rating into kilome-

ters/liter: At the LENGth menu, press (NxT)(3]5)IIZIH

(the (O) keyis other varia-

tion available on each unit key: just as the unshifted

key multiplies 1_gal by the Level-1 object, so

divides).

There’s your known mpg. Now build your desired units:

1 (A, then (O[MENU) (o) IEEM(X)....

Why zero km”1? Because then you can convert your

answertokm/1 simply byadding this zero harmlessly to

your 39_mi~gal (recall what addition does with units)!

Do it: Result: 14.88_km~1

This is your car’s fuel usage rate in local units. Now, to

see your car’s probable range, just multiply your rate by

yourfuel supply: (=ONTS)ITTHINxT)(5I(X)....
Result: r44.88_km

Yep—barring unforeseen problems—you should make it to Saskatoon.

72 (3) OBJECTS: YOUR RAW MATERIALS

That’s one way to attack this kind ofunits conversion problem—using

the 48’s ability to convert between compatible units during addition.

But there’s a more direct way....

Recalculate:

Solution:

When you reached Saskatoon and refueled, your 50-

liter tank took 48.4 liters, and your trip-meter odom-

eter showed 712.8 km. What was your actual mileage

(miles per gallon) for the trip?

First, find your fuel usageinkm~1:

eBTSB
NxT) (@)-[«(=).... Result: 14.73_km-1

Now build your desired units:

)KN(=veny)IETH

Now here’s the point where you can do things differ-

ently: Press (the other shift key).... This

small menu has units commands on them—specific

things you can do with unit objects.

That first item is the one you’ll probably use the most:

CONVert simply converts the object in Stack Level 2

totheunits ofthe objectin Level 1 (the numberin Level

1 doesn’t matter). Try it now—press [iZER....

Result: 34.64_mi~gal

So just remember that you can convert between units either through

addition/subtraction or with the CONVert command (you’ll explore the

other items on the ((JUNITS) menu later).

Units 73

Lists

Before you go on to explore the other object types available to youin the

48, consider this: A unit object is an ordered collection of two simpler

“things”—a real number and a unit, in that order. The new object

arises from this specifically ordered collection of otherwise distinct

parts. This is a general pattern within the 48: More sophisticated

“things” are often created from collections of simpler “things.”

So what makes a collection an object? Simply gathering together an

ordered collection of “things” doesn’t mean anything by itself. 14_ft

is an ordered collection of two “things”—but it means nothing until

those numerals, underscore and letters are given rules governing their

significance and use: “The numerals stand for a real number and may

be mathematically treated as such; the underscore links the number

with an associated (multiplied) unit.”

The point is, only with such specific governing rules for manipulating

and interpreting a collection does it become a distinct form—an object.

Each object type is distinguished by a different set of these rules.

So what’s a list?

A list is simply the object type with the most general (least restrictive)

rules for manipulating and interpreting its collection of elements: It’s

just an ordered collection of objects of any type, listed together in a

sequence. That’s why it’s called simply a list: there’s no more specific

mathematical or physical interpretation ofit.

74 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent a list?

Thetelltale characteristic of a list is its enclosing set of{ }. Here are

examples oflists:

{ 123456 7 "Hi there" 14_feet 3

{ "o, dude!" (3,4 { 1 2 % 98.6_F >

{[121 G310)3

A list can contain any number of any type of object* in any mixture—

including other lists—or even no objects at all.

 &
N\N\

"(\\ v < B

\§\§\\\\\\ \\\\\‘ tu D) i \\§S

*Some ofthe object types in these sample lists may be new to you yet. Don’t sweat their details—

just realize that they, too, may be elements of lists.

Lists 75

How do you build a list?

There are several ways to put a list onto your Stack workbench.

Naturally, you can type it in directly from the Command Line....

Do This: Press GJ1Y(1)(SPC)(2]ENTER)....

You’ve just built the list{ 1.88 Z.68 3

Easy, right? And did you notice the PRG sign in the Status Area while

you were keying in the list? (Do the above exercise again, ifyou wish).

This mode activates when you start the list, so that keystrokes that

would normally execute immediately will instead just record their

names as items in your list.

So use the (G]{) key to start a list. Then you can key in any objects—

even executable commands—as elements in that list.

 76 (3) OBJECTS: YOUR RAW MATERIALS

Now, what about making lists from objects already on the Stack?

To start with, consider this: Whathappens whenyou add different (but

compatible) unit objects on the Stack? The result takes the units ofthe

previous Level-1 object, right? All right, then what do you think might

happen when you try to add different object types together?

Find Out: Entertheobjectsdandl4_feet (press

©(onTs)ATTH)2)MEED, and then add them together
(#)....No can do, right? Nor does the order matter: Try

the above addition again, reversing the order ofthe two

objects. ...Nope. But you knew this from page 71, right?

Ah, but what if at least one ofthe objects is a list? Press

CANCED)EENER).... Result: { 5.88 3

Now, try adding another object type to it. Press(2]4)....

How about that? Make a copy (ENTER)), and then try

another object type: (1[4IEIM)....

And what about adding another list? Press (+)....

Notice how the order matters: Try (1]JENTER[SWAP]+]....

Moral ofthe story: You can add unlike object types ifat least one ofthem

is a list. If the non-list object is in Level 2, it will be appended to the

front of the list; if at Level 1, it goes onto the end of the list.

Lists 77

The other question: How do create a list out of existing Stack objects

where none of them are necessarily lists?

Try This: (&)CLEAR)(1)ENTER)(2]ENTER)(3)]ENTER)(PRG) (3)EINEL

Result: { 1.60 2.88 3.68 I

You can put any number ofStack objects into a list sim-

ply by specifying that number and invoking EINE.

Try another:
(QEMEN Result:

{ { 1.00 2.00 3.8 } 14_ft 5.80 { } }

Notice the order of list formation: First onto the Stack goes first into

the list.

Notice also the list “length specifier”—the number that goes onto the

Stack last, before you invoke EINELN. Thisisthe argument ofthe

command. With its postfix notation, the 48 assumes that all informa-

tion necessary for the execution of any command is already on the

Stack* when you invoke a command name; it won’t stop and prompt

you for anything more once you invoke the command.

You've already seen at least one argument in action: remember how

you set the display to FIX 2 decimal places (page 70)? First you entered

the 2—your argument—then you selected the command (IZFH).

*or in the Command Line—remember that most executable commands come with a “built-in

ENTER?”that effectively puts the current Command Line on the Stack before proceeding.

78 (3) OBJECTS: YOUR RAW MATERIALS

One other key point about arguments on the Stack: The 48 reads each

argument and then discards (DROP)s) it before proceeding with a com-

mand. It never includes the argument(s) as part of the Stack when

actually carrying out the command’s actions. Thisis why, for example,

yougot{ 1.88 2.88 3.88 }insteadof{ Z.88 3.88 3.868 }in

the first exercise on the opposite page: the bottommost 3. B8 was the

argument of and was therefore read and dropped before

was actually performed.*

So that’s how to build a list from objects on the Stack. Now, can you

take it apart again?

No Sweat: Press[\[FEX... See what happens?

is the 48’s General Purpose Object Decomposer.

That is, it breaks down virtually any compound object

intoitslist ofcomponents, stackingup these components

in order in the Stack. And for objects such as lists—that

don’t necessarily have a fixed number of components

also leaves the element count at Level 1—so that

you can re-compose with a single command (EJ{E, in

this case—try it)!

*To practice more with arguments, you might want to try some of the commands in the STACK

toolbox ((§]STACK)). This Course covered some of the basics of Stack manipulations in Chapter 2,

mainly with the Interactive Stack. But ifyou stop and think about it for a moment, you’ll realize

that the pointer you moved around in the Interactive Stack is just a visual way ofproviding the 48

with an argument for those Stack commands that require it. When you're not in the interactive

Stack, you can still use all those same Stack manipulation functions, but you must key in the

necessary argument—just as you did here with EINE.

Lists 79

Complex Numbers

Time to move on now, to learn about the next object type.

Mathematically, a complex number is a vector in the complex plane, an

ordered pair of numbers representing the vector’s coordinates. The

coordinates are usually expressed in either rectangular form (a+bi) or

in polar form (Z£60).

How does the 48 represent a complex number?

On the 48, a complex number is also an ordered pair of(i.e. a list oftwo)

real numbers, which are vector coordinates expressed in either rectan-

gular form (3. 88, 4.88) or polar form (5.88, £33.13). The pair is

surrounded by parentheses and separated by s and possibly £. Of

course, you can use this pair to represent anything you want, but

mathematically it is a complex number—to be added, multiplied, etc.

Try One: [GQJCLEAR)JO)(3JSPCI4)[ENTER). Result: (3. 60, 4. 688)

Thisis the complexnumber 3+4i. Nowpress

(ENTER)to make some copies, then(+).... Complex addition

is as easy as real addition. Press (X].... Also easy, no?

Now that result (leaving the last (3. 88, 4. 88) at

Stack Level 1).

80 (3) OBJECTS: YOUR RAW MATERIALS

Question:

Answer:

When does the 48 display a complex number in rectan-

gular form, and when in polar form?

It depends on the current vector display mode. Go tothe

MODES ANGL menu (press (&)mopes) EITIE®) and find

the items [AI8EL], and EFIId] (the [means that

RECTangularmodeis now set): displays complex

numbers in rectangular mode; and HZIE] dis-

play them in cylindrical and polar modes, respectively.

Try changing the mode and watch the complex number

at Level 1 change its format (notice the annunciators in

the StatusArea, too). But keep in mind that the number

retains its same (rectangular) complex value (3+4i); only

its display formatting is being altered—for your eyes.

This is true in general: Once you've keyed in a complex

number, the machine “remembers” it internally in rect-

angular form, but it presents the number to you accord-

ing to the current mode settings.

Question:

Answer:

How does the 48 know when to represent a complex

number’s vector angle in degrees, radians or grads?

It judges by the current angular mode. You can switch

this mode—and thus thepolar formats ofthe number—

by pressingIor IELIA (try these now, but leave

things in [{39] and modes when you finish).

Complex Numbers 81

How do you build a complex number?

You have several ways to put a complex number onto the workbench—

and you've already seen the most rudimentary way to do it.

Again: Type it in directly from the Command Line: Press (&G]0)(1)

(SPC)(2)ENTER). This gives (1.88, 2.88), a complex number

in rectangular form. (You could use either (&) or (SPC);

both act as delimiters to separate the parts ofthe number.)

Now change the mode to polar form (press (]POLAR}—a

handy keyboard modes toggle). Of course, you won’t get

(1.68, <Z.88), which is (1.00£2.00°). Rather, you get the

polar representation of 1+2i—about (2.24£63.43°). Re-

member, you don’t change the existing vector value by

changing its displayed format.

To actually key in a complex number value in polar form,

you mustprecede the second value with a£—because using

ay ora always means rectangular complex inputto the

48. Try it: (1)(2]<)(2)([ENTER). Now the 48 will take the

second value to be an angle—in the current angle mode.

Thisisthevalue (1.00£2.00°)—or about 1.00+.03i,as you can

verify now by returning to rectangular mode ((=3]POLAR)).

So that’s the basic idea when keying in complex-numbers—either in

rectangular or polar format. But to build complex numbers from other

values already on the Stack, the 48 has some tools to help you....

82 (3) OBJECTS: YOUR RAW MATERIALS

Example: Put the numbers 3 and 18 on the Stack ((5)ENTER)(1]0)

(ENTER)). Now use these two real numbers to form the

rectangular complex number (5. 88, 18.88).

Like This: Press (MTH|NXT), then select the toolbox. Thisis a

menu of operations you can perform on complex num-

bers. Here you’ll find (“Real to Complex”). Try it

now.... As you see, takes two real numbers from

the Stack, using the Level-2 number as the real portion

and Level 1 as the imaginary portion ofthe new complex

number.

And the (“Complex to Real”) goes the otherway—

taking apart the complex number and leaving two real

numbers on the Stack. Try it now:

The 48 is full oftools like these—designed to build or take apart a given

type of object. And remember that there’s one very “smart” operation

that can dismantle virtually any object into its components....

Watch: Press to rebuild (5.886, 18.8d). Then

BN Same effect as IREAA, right? So here’s a reminder:

is the general-purpose object decomposition tool.

Butyou can also extract the two parts ofa complex numbermathemati-

cally—with some specialized tools in the CMPL tool collection....

Complex Numbers 83

Challenge: Extract the two components of (3.88, 4. B8)—both in

rectangular and polar forms.

Solution: Keyinthe number ((G])]3]sPc]4)) and make four copies

of it (ENTER]ENTER]ENTERJENTER)). Then press the key

and M ulJd%. Here aresome commands made to order

“for all your extraction needs:”

B3extracts the REal portion: 3.88 ([DROP) that);

Mextracts the IMaginary portion: 4.88 ([DRoP)it);

Iextracts the ABSolute value ofthe complex num-

ber, which is simply the magnitude ofitspolar represen-

tation: 9.88 (now that);

Iextracts the angle (in the current angle mode) of

the complex value in its polar form: 53.13

Complex Number Math

Complex numbers have mathematical properties similar to those of

real numbers, so many ofthe 48’s real-number operations also work for

complex numbers. You’ve already seen complex arithmetic, but trigo-

nometric and logarithmic functions work, too. And remember that you

can use mixtures of complex and real numbers in complex math.

So practice some more now. As you do these, concentrate on your num-

ber entry format—and the 48’s interpretation of it. Which vector dis-

play mode and which angle display mode is it using?

84 (3) OBJECTs: YOUR RAW MATERIALS

Challenge:

Solution:

Another:

Solution:

Another:

Solution:

Another:

Solution:

Find 3% and % in rectangular format.
i

R)ENER)EQOESPC).... Result: (8.68, -0.28)

Result: (1.58, 8.58)

The 48 converts the real number Z. 88 into the complex

number (Z. 88, B.BB) before doing the division. Then

just invert the first answer to get the second.

Find In(5£1.618), in polar format.

Change the angle and vector modes: (§]RAD)(=]POLAR).

Then: GOS0L18)(2)LN)....

Result: (2.28, £<8.79)

Find sin+/7 +10irad in rectangular format.

(back to rectangular mode), then (G]O)7]SPC]

(1]0). Now take the square root (X)),then the sine ((SIN)).

Result: (B.11,-2.41)

Find _lnz_i’ii___ in rectangular format.
sin 45°%(1+i~/3)

(2]PN2+/-]&]+]

<JRADJ4]5JSINJ1[ENTER]3[+/-X[+X]+)-. ..
Result: (1.11,8.688)

Complex Numbers 85

Vectors

Acomplex number is one special kind ofvector. Butin general, a vector

is an ordered list ofnumbers—usually representing dimensions (direc-

tions) in some physical sense. The typical vectors you use most often

are therefore two-and three-dimensional (“2D” and “3D”) quantities:

2D

rectangular notation

xi+yj or (xy)

polar notation

(r,6)

(r, 6)

86

3D

rectangular notation

xi+yj+zk or (x,y,z2)

cylindrical notation

(r,60,2)

spherical notation

(p,6,9)

(3) OBJECTS: YOUR RAW MATERIALS

Vectors are more generally defined mathematically as single-column

matrices*—often encountered, for example, in linear systems:

ay G a3 Gy X b,

Gy Qyp Gy Gy X b,

31 Q3 Q33 Gy Xy b,

Ay Qg Qu3 Gy X4 b,

In this capacity, ofcourse, vectors are not limited to everyday physical

interpretations; they may be n-dimensional (“2-D”). And their format

is then only rectangular notation: (a,b,c,d.e...)

How does the 48 represent vectors?

Though you can use vector objects to represent anythingyou want, the

48 can also treat them as mathematical vectors. Butsince {) are used

for complex numbers, vectors are bracketed within [1. Notice that

a vector’s elements may be real or complex—but not both:

2D 3D

[12 1] [1 -2 3]

[3 «-38] [6 £40 -19]

[93 «1Z21 «£3.5 1]

n-D

[(1!2) ':‘1,4:']

[(5,«37) (13.5,£-155.9) (B, <B)]

[2 34 19 44 64 118 -25 37.5 9.69]

*The 48’s display represents vectors horizontally; nevertheless, the machine uses them mathe-

matically as vertical (single-column) matrices. Don’t let the visual difference throw you.

Vectors 87

How do you build a vector?

As usual, the most straightforward way to build a vector is to type it

in directly from the Command Line. Try a few examples (these assume

that your vector display and angle modes are as you left them in the

last problem—rectangular and degrees, respectively):

Examples: Press(&]CLEAR), then11]SPC)(2]SPC)(3]SPC)(4)(ENTER).

Here’s what youget: [1.688 2.88 3.680 4.68]

Press (G112<)(2)[ENTER)....You get:

[1.6868 B.83 1]

Ofcourse, to see this in the polar form you had intended,

just press (@JPoLAR).... [1.688 «2.68]

Press QU112<)1)-]o]+/=JSPC]7)(ENTER)....You get:

[11.88 <-1.98 7.88]

To see this in rectangular form, just press (JPOLAR]....

[16.99 -B.36 /.60]

As you can see, the rules for separating components in vectors are the

same as for complex numbers: You separate rectangular components

with (ory); you precede angular components with £. And keep in

mind that the £ is meaningful only in the second and third components

of2D and 3D vectors. You won’t be allowed to key it in anywhere else;

and any vector larger than 3D doesn’t change from rectangular format

when you change the vector display modes, anyway.

88 (3) OBJECTS: YOUR RAW MATERIALS

Speaking of vector display modes,...

Do This: Press (NXT).... Did you know those mode keys

were available here—as well as in the MODES menu? As

you see, HP has put some often-used commands in several

places, so you needn’t jump around as much to use them.

Something else to notice: At the moment, when you press

on the keyboard,it alternates (toggles) between

rectangular and cylindrical (R&2) modes. But ifyou press

B33, then will toggle between rectangular and

spherical (Rd4) modes... (try it—and then leave the mode

at rectangular and the toggle to cylindrical).

Now This: Press to move to the first page ofthe VECTR menu.

Now put two values on the Stack, 2)ENTER)(1]5JENTER),

and press to build a 2D vector from these values.

Easy, no? And the “loading” order ofthe vector’s compo-

nents is like those of complex numbers and lists: The

higher in the Stack, the farther forward in the object.

Try a 3D case: (2)9)ENTER)(4]5)ENTER)(11)IEZEN. Voila.

And and are sensitive to the vector display

mode. To see this, press to change to polar/

cylindrical mode, then repeat the above keystrokes....

See the difference? The resulting vectors took the cor-

responding values to be angular. This is how to key in

angular components without using the key.

Vectors 89

What goes up must come down: How do you tear apart vectors?

Easy: Justpress lEEB—tryit.... Thus, with either or

andJEEM, you can go back and forth between the vectoritself

and its Stack of individual components.

Question:

Answer:

The commands in the VECTR menu are all good and fine

for 2D and 3D vectors, but what about an n-D vector—

of any arbitrary size? How do you build that?

Use an argument, just as for a list of arbitrary size. Go

to the general object-building menu: L=

Now key in your n-D vector’s values: (1]ENTER)(4]ENTER

(9)JENTER)(1)6 JENTER)(2)5JENTER). Now press (5)ELdA...

Result: [1.88 4.08 9.88 16.88 25.668 1

Your vector-size argument (3. B8 here) is just like the

list-length argument you use to build a list—except that

you use ELIAA, instead ofEANEN, to do the building.*

*There’s no command called IEZII8l; you use Efilf@because an n-D vector is actually a one-column

array (matrix)—and the 48 treats it as such, mathematically. Infact, to break down an n-D vector

into its components once again, you use (the All-Purpose, Whole-wheat, Recyclable, Bio-

degradable, Universal Decomposer Tool), and it leaves the vector length argumentas a list (the

argumentform used by arrays), rather than the real number argumentyou used to build the vector.

90 (3) OBJECTS: YOUR RAW MATERIALS

Vector Math

Now that you know how to build them and tear them apart, there’s not

much more to say about vectors in the 48 except “use them!”

Find:

Press:

Find:

Press:

Find:

Press:

Then:

|(3+ 44,7 +11i)|

(in rectangular mode—{JPOLAR), ifnecessary), then (G]L

QIOEIsPeQIOITsPeNENTERMTH)HRTAIEEEN
Result: 13.96 Avectormaybe complex-valued, but

ABS finds its magnitude (“length”)—always a real value.

10(~1,-2,-3) +§f‘—’-§-’9—)-

(oJENTER)(1JENTER)(2ENTER]3JIEEN+/-)(X)(4JENTER]
OEZEN2=® Result: [-8.88 -17.58 -Z2/7.60]
You can add vectors of the same dimensions; and you can

multiply any vector by any scalar (including =1, via (#/9).

(1,2)+(3,4) and (3,245°,10)x(9,260°,2)

eEIEGIEN=R)ETE

Result: 11.688

The dot product oftwo same-dimension vectors is a scalar.

(4]5JENTER[1](0]
Enter))IETENEH
Result: [84.722 «151.86 6.99]
The cross product of two 3D vectors is another 3D vector.

And notice how easyitis to keyinthese cylindrical formats.

Vectors 91

Arrays

In the most general sense, arrays are simply tables of “things” (dots,

sticks, numbers—anything), arranged in rectangular formations of

rows and columns:

-
e

-
-

- -
-

-

< <

a, ap

a, daxp

a,+b,i a,+b,i a,+b,i

When you arrange numbers (either real or complex) in this way, you

can, of course, use them for anything you wish, but one of the most

common uses is as a matrix—an array with mathematical rules and

properties:

A % b,

Ay X2 | by

A3y X3 b,

Ays X4 b,

Notice the numbering convention used in arrays: element; is the

element in the ith row, at thejth column. An nxmarrayis an array with

n rows and m columns.

92 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent arrays?

The 48 can represent real-valued and complex-valued arrays—and do

many matrix operations on them. But because it also does non-matrix

operations, the object type is called by its more general name—array.

The 48 uses double brackets to delimit the array itself—and single

brackets to delimit each row within the array:

[(C 11 1] [l 12 31

1x2 real-valued array [4 561

[7 89 1]

3x3 real-valued array

[[d1,2) (-13.5,24.1) (4,-3.2) 1]
1x3 complex-valued array

[[-32.4]

[15.6 1 [-32.4 15.6 1.815 -19.623 1]

[1.6815 1 4-element vector

[-19.623 1]

4x1 real-valued array

Notice that these last two examples are actually different object types

(the array, with its [[1] notation on the left; the vector, with its

simpler [] on the right). But mathematically, they are treated the

same by the 48 in many ofits array/matrix operations. Thatis, a vector

is actually a I-column array, displayed on its side for ease of viewing.

Arrays 93

How do you build an array?

As usual, start with the basics—keying in the object at the Command

Line. You key in arrays by row—a sequence called row-major order.

Practice by keying in the examples on the previous page....

Go: Clear your Stack and go to STD mode, then: (]t&)LJ(1]SPC)

(1JENTER). There’s your 1x2 real-valued array.

 Next: (GGJ(1)sPc)2]sPc]3]»]4)sPc]5sPcI6]sPc]7]sPc]8)

[SPC]9JENTER). There’s your 3x3 real-valued array.

Notice how you use () to skip over the closing bracket at the

end of the first row in the array. And that’s the only time you

need to key in the inner brackets—around the first row. After

that, aslong as you enter the elements in row-major order, the

48 can arrange the remaining elements correctly—because it

knows that all rows must have the same number ofelements.

Continue: Go to rectangular mode (JPOLAR)), if necessary,

then (LIGI1G]O)(1IsPc]2)MJa]O)
(X3+-]sPel2]4TIO4)sPe3]-2]*/-) (ENTER).
There’s your 1x3 complex-valued array.

And: (LISJ13)2]-J4]»)15]JelsPc]1]-JoJ1)5SPC]

(1]9)-6]2]3]+/-JENTER). There’s your 4x1 real-valued array;

mThere’s your 4-element real-valued vector.

94 (3) OBJECTS: YOUR RAW MATERIALS

The Next Step: Build these same arrays from elements that you put

onto the Stack first....

OK: Press to clean the slate, then:

@B05AENEETS)]PE*ARF|
There’s your 1x2 real-valued array.

As you'll recall from your practice with building vectors, the

command takes the argument from Stack Level 1 and

uses this to build an array or vector ofthe proper dimensions.

To build a vector—whose dimensions are always nxl1—you use

a real number argument (since only » needs to be specified).

Buttobuild annxm array, you must specifyboth nandminyour

argument—and you do this in a list.

Next: (1JsPc]2)spc]3]sPc]4JsPc]5[sPc]e]sPC]7)sPc]8]sPc]9)

(remember that you can line up several objects in the

Command Line—separated by delimiting spaces like this—

then them onto the Stack all at once). Now (G]{]

(B3IENTER)ELIAA. There’s your 3x3 real-valued array.

Then: (G]O) GJO))3

)

Js)+/=IsPc)(2)4]

]

1
ENTERIGJOL4IP3-)+JeNTERIaIOIsPO)[ENTERLA
There’s your 1x3 complex-valued array.

And: (3]2]-Ja[+/=JsPc)(1)5)-L8]sPc] (1]-JoJ 1)5sPC)(1]9]-6

2)3)#)ENTER). Then either (G0} EX3—to
build your 4x1 real-valued array; or (4)ELildd —to build your

4-element, real-valued vector. Try both. The type ofargument

(real or list) determines the type of object (vector or array).

Arrays 95

No prizes for guessing what does to arrays....

Try It: Press and see that 4x1 array/vector decompose right

before your eyes.... Notice, however, that the machine

always puts the argument onto the Stack as a list—even if

it’s decomposing a vector. But the fact that there’s just a

single dimension in the list tells the machine that this is

meant to build a vector rather than an array. Try

now and watch it reconstruct....

In this way you can toggle back and forth all day between

and [[BEA. This is precisely the purpose of all of

these object-building and decomposing functions: to let

you quickly take an object apart, edit some or all of it, then

rebuild the result with a minimum of hassle.

Feel free to the 4x1 array off the Stack and observe

in action with some ofthe other arrays you still have

hanging around up there....

96 (3) OBJECTS: YOUR RAW MATERIALS

Math with Arrays

The best thing about arrays is how easy it is to do matrix math....

To Wit:

Too Easy:

2 5 8 8
LetA =[1 3]andC =[8 8} If 2AB+C =0, find B.

WhatifC =| = |2atifC = = |

Solving forB gives B=(A1)(—C/2). So first, press [¢5]CLEAR]

RCIAREAA. Here is where the matrix-building

operations live.

To build C, press (]t&)8]sPc]8]»]8)SPC]8JENTER]

or (G}2)sPC]2JENTER]8)IHi[IHl (the quick way to build a

matrix filled with a CONstant value). Next, to ne-

gateC (i.e. allits elements), then divide itby2 (2]=)). Now,

the 48 knows that when you say Y+X, what you really

mean is X'Y. Sojust divide by A: (GJL1G]12]SPC]5)

®[1)EPY(BE]E) Result: [[8 8] This is B.

[4 -4 1]

Now, usingC= [[€ B 1 repeatthe calculation.*

[B8 -2 1]

You should getB= [[3 -5 1

[-1 2 1]

*And note that to build this value of C, you also have the [l[IZJll command, which creates a mul-

tiplicative identity matrix (a square matrix with 1’s on the diagonal)—provided that you tell it the

size of the matrix. So you could build C as follows: (2) HIGHARF/=X)

Arrays 97

Flags

Aflagis one ofthe simplest objects ofall. It’sjust a single bit—a binary

digit—that hasjust two possible values: 1 or8. Using the 48’s jargon,

a flag is either set or clear. Ifyou set a given flag, you turn that bit on

(giving it a value of 1); if you clear it, you turn the bit off (giving it a

value of B).

How does the 48 represent flags?

Flags are indeed objects in the 48, but they’re a little different than the

other objects you've seen so far. First ofall youdon’t build flags; they’re

alreadybuilt. There are a fixed number ofthem—128—already identi-

fied by number and reserved in the machine (whereas, with other ob-

ject types, you can build as many as you want).

Secondly, some flags already have very specific meanings to the ma-

chine—not so with the real numbers, vectors, or lists you might use in

your calculations. Those objects’ values have no preconceived signifi-

cance to the 48; the values may be meaningful to you, causing you to

change your behavior (e.g. answer a test question, redesign a bridge,

etc.), but they don’t cause the 48 to change its behavior (e.g. redefine

the keyboard, change the display format, etc.). By contrast, fully half

of the flags (numbered -1 to —64 and called system flags) are indeed

dedicated to controlling parts ofthe 48 workshop itself, like operating

lights on the wall that flip on/off as indicators of certain conditions

(display modes, etc.). The other 64 flags (numbered 1 to 64 and called

user flags) have no such prescribed meanings; they’re left up to you to

interpret—much like other object types.

98 (3) OBJECTS: YOUR RAW MATERIALS

The third big difference between flags and other objects is in their

representation: they have none. Thatis, the 48 doesn’t represent a flag

“on the Stack.” There’s simply no delimiter (such as{ Yor[1)that

means “this is a flag.”

To “see” a flag, you must identify it by number and inquire as to its

current value. The machine will then respond by putting either a1 or

B onto the Stack. But this response is just the machine’s message to

you—just a real number object—not the flagitself. You can change this

response number however you want without affecting the flag; tearing

up a sports page doesn’t alter the outcome of the contests it reports.

Also, besides reporting the status of any flag you ask about, the 48

continually informs you ofthe states of certain flags—with annuncia-

torsin the Status Area. Several system flags are tied to the annuncia-

tors for angle mode and vector display mode. And, when set, user flags

1 through 5 display their numbers in the Status Area, too—just so you

have a few flags of your own that you can monitor easily.

Flags 99

How do vou control flags?

Of course, you can do more than just test flags (ask if they’re set or

clear); you can set or clear them yourself....

Watch: System flags —17 and —18 control the display’s angle mode.

When both these flags are clear, you’re in degrees mode (as

you should be now—press ifnecessary). But ifonly

flag —17 is set, this sets RADians mode. Press

(NXTINXT). Here are your flag control functions.

As with all commands on the 48, you key in any necessary

argument (in this case, that’s the number of the flag) and

then invoke the command. Thus, to use Set Flag (SF), you

would press BEA.... See? The KAD annunciator

appears in the Status Area.

Now test flag—17 (i.e. ask ifit’s set): (1)7[+/-)IEEM.... The

answeris] (“yes”). But ask a different question: “Isthe flag

clear?” (1)7)+/-)E%M.... Ofcourse, this answerisH (“no”)

—it’s not clear. Now re-set degrees mode: i

You can set, clear and test any ofthe 128 flags. Try setting

and clearing some user flags (ifyou're usingjust a few user

flags, it’s handiest to use the first five, because the Status

Area informs you when they are set): (2) (3)

(4) (5)IEEM... You get the idea (now be sure

to clear those five flags—try this list shortcut:

(21sP)(3)sPc)(a)sPc)G)EnTer)D).

100 (3) OBJECTS: YOUR RAW MATERIALS

Flags aren’t particularly useful from the keyboard. You’ll use them

most often within programs—to inquire of the current system states

and to remember previous decisions and inputs—as you’ll see later.

Here are some questions to consider, though:

Question: You know you can test or change the value ofany single

flag. Can you test or change the values of all flags?

Answer: Yes, you can test or adjust the values of all 128 flags or

the 64 system flags—all at once (see p. 105).

Question: If you ask for the states of all 128 flags, what kind of

response value could possibly represent this?

Answer: Since a flag is just a single bit, you’d need a value that

contained multiple bits—a binary integer. That’s the

object type you’re going to study next. The results of

your multiple flag test (via a command called RCLF—

“ReCall Flags”) will be such a binary integer. And the

argument you give to simultaneously alter the values of

a group of flags (via a command called STOF—“STOre

Flags”) will also be a binary integer.

Now,ifyou stop and think about it, you’ll realize that RCLF and STOF

lets you preserve in a different object type—a binary integer—exact

“blueprints” ofall the flag settings at any given time. So although you

can have only 128 flag states at once, there’s no limit to the number of

such “blueprints” you can save and later transplant as necessary.

Flags 101

Binary Integers

All right—now for binary integers. A binary integer is an ordered

collection of flags, or bits. And, like other object types, the binary

integer objecthasits own set ofrules for manipulatingand interpreting

this collection.

First ofall, the reason it’s called an integer is that its list ofbits is most

commonly used to represent integer values. The integer may vary

length from 1 to 64 bits. For example, here’s an 8-bit binary integer:

00101100

The integer value these bits form is commonly expressed in any offour

convenient number bases:

00101100, (base 2 or binary format)

54, (base 8 or octal format)

44 (base 10 ordecimal format—whichyouknowand love)

2C,, (base 16 or hexadecimal format)

102 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent binary integers?

The 48 can express binary integer valuesin any ofthose four bases, but

its display doesn’t accommodate subscripts very well, so it represents

a binary integer on the Stack beginning with a pound sign, # (to signal

that it’s a binary integer) and ending with either b, 0, d or h—to

indicate which base it’s using to format the value:

181166b ¥ %o # 44d ¥ 2Ch

Do This: Build a binary integer with the above value (there’s only

one value represented there), and then view it in each of

those four formats.

Like So: Press MTH), then [EEHA, and notice the first four items on

that menu. The base currently in use will be the interpre-

tation the 48 puts on any value you key in with a # For

example, press [I[HMl, then (O[#[1]ENTER)....

Nothingtoit, right? And nowyou canview thisvalue in any

of the other three base formats also: Press IIIZM...; press

EEH...; press TdM.... Simple.

Binary Integers 103

All right, now how do you change the number of bits in a binary

integer? As you read, you can have anywhere from 1 to 64 bits.

Simple: Change the current word size—the maximum number of

bits allowed in the integer. For instance, to change the

word size to 8, you would press (there’s the argument of

the command), then (there’s the command).

Andyou can checkthe currentword size any time you want,

too—with [AMZKY (try it now).... The 48 answers your

question with the appropriate real number.

Thelargestvalue youcan representin 8 bitsis# 11111111b,

whichis# £39d. So, whatifyou try to keyin a value larger

than this, say, # £56d?

Press (NXT)I3®M, ifnecessary) (=[#)2)56JENTER)....Hmm.

You get: # Bd Why? Because # £56dis# 1860BB6HED,

which takes nine bits to represent. But you’ve told the 48—

via the word size—that you want to use only the first (right-

most) eight bits (BB88B8BB), which form the value # Hd.

Good news: That ninth bit is actually still there. Press(9)

and “thar she blows”—the complete number (go

back to an 8-bit word size and do this change while watch-

ing in binary format, too).

104 (3) OBJECTS: YOUR RAW MATERIALS

Want to see how the flags look when you use RCLF to put their

aggregate values onto the Stack as binary integers?

OK: Change the current word size to 64 (press

make the values easier to comprehend, use decimal formatting

(press I3, if necessary). Now, execute the RCLF command:

(@]@)(R]CJU(F)ENTER).... You should* get this list:

{ # 316659348866H496c # Bd

The first number is the aggregate binary-integer value of all 64

system flags; the second is the aggregate binary-integer value of

your 64 user flags. These two values represent the entire “blue-

print” of the machine’s status and your own flag settings.

Now, holding your place here, look back at page 11. That

preparatory exercise you performed before starting the Course

was simply a setting of all flags to their clear states—so both the

two desired values were given as # B. You did this mass flag

adjustment with the STOF command—do it again now:

G0#]0]J#]0 JENTER) (])S|TIOJFJENTER

Ifyou give STOF asingle binaryintegervalue (not a list), this will

adjust only the 64 system flags: (a]a]S]T]O]FENTER]

*Ifyou don’t get these values, don’t worry. It just means one ofthe your display settings or angle

modes or something like that is set differently than assumed here. No problem—you’re going to

reset them here anyway.

Binary Integers 105

Math and logic with binary integers

The principal reason you have binary integers is so that you can do

digital math and logic operations—the stuff so near and dear to the

hearts ofcomputer scientists. Don’t worry—you’re not going to explore

all the bit manipulations and logical operations the BASE menu offers

(if you need them, then you already know what they’re good for, and

you don’t need an Easy Course to tell you).

But it’s good for everybody to see a little bit of integer arithmetic in

action—just so you understand some of the 48’s rules.

Example:

Solution:

What’s 125 + ABC,, expressed in 64-bit decimal?

Press(6]4)BELIREINXT]1)2]5JenTer)LM=)#)(@]2)(A)(B)
@NIEM.... Answer: # 2873d As you can see,

you can combine a real number with a binary integer.

The result is a binary integer in the same base. To make

this possible, the machine transforms the real number

into a binary integer first—with the command

(“Real-to-Binary”, which you’ll find, with its counter-

part, IEELfll, there on the BASE menu). Of course, you

can also use “manually” on a real number, but the

48 is smart enough to do it for you here. Be aware that

rounds fractional portions of the real number,

and it takes negative numbers tobe 0. And anyvalue re-

quiring a binary representation larger than the current

word size is silently truncated.

106 (3) OBJECTS: YOUR RAW MATERIALS

Example:

Solution:

What’s 125, — ABC,, expressed in 64-bit decimal?

Press (1]2)sJENTER) (2)#) (eoJAlBICIaIH])T] ...
Answer: # 184467/448737/89548993d

Notice that you can key in the base identifier (h here)

directly—without switching to that display mode.

Why this huge answer? Why not # -2623d ?

Because instead of subtracting a binary integer, the 48

adds its 2’s-complement.*

Example:

Solutions:

What are 258, x 3, and 258+3,, computed in 8-bit

decimal?

10

NxTBMEE#ERG[8)ENTER)(3]X) Answer: # 6d
BENERG Answer: # Bd

The 48 actually truncates (to the current word size) any

value you use in arithmetic. Thus the above multiplica-

tion was actually 2, x 3,. And the division was actually

2, + 3,, (binary division remainders are dropped).

That’s different than if you did the division with reals

and then limited the word size in the result. And you can

do just that with the (Real-to-Binary) command

in the BASE menu: T

*Complementing is the computer scientist’s method for carrying and borrowing and negation dur-

ing arithmetic with binary integers. If you don’t already know how complementing works, you

probably don’t need to worry about it.

Binary Integers 107

Character Strings

Character strings are just that—strings of characters (letters, num-

bers, symbols—basically, anything you can type):

ABCDEF_XYZ 12345 #~3@&(%) 3.1416+pi=o0ps

Within such strings, characters have no numeric or other quantitative

or special significance; they’re just characters. Astring may have sev-

eral characters, one character, or even none at all.

How does the 48 represent character strings?

Often called simply strings, character strings on the 48 appear within

quotation marks, " ", as if to say that the enclosed characters are to

be taken literally, with no further interpretation:

"ABCDEF_KYZ" "12345"

"b0k()TIY "3. 1416+pi=00ps"

The main purpose of strings is to let you store and manipulate verbal

information. For example, you can use strings to put together results

such as "The answer is no." and"The AREA is 2.5_ft", thus

making your calculations more meaningful and complete than just

unadorned numeric results. And then there’s textual information—

the kind of “stuff” that can be represented only by character strings:

names and addresses, etc.

108 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a string?

Begin as usual....

Type It: Try building the four strings on the opposite page.

Like So: oJAIBXCIDXEXFIIXYIZIENTER);
(2Y3J4JSJENTER); then [(B]""[o[o[[#PIV)(GI4)(IENTER)
BETRGIO)EIY)(e>]][JDELIENTER); then
REO00000000G0R0IE00EEAEIENE:

No big mysteries, right?* But remember: no matter what numerals

you see within strings (as with the "12345"), they’re not numbers.

Then: Guess how you can build strings from other Stack values?

Hmm: Press(4)....Two strings “add” (append) to one anotherjust like

two lists do (recall page 77). Press (DROP), then (6]7]+)....

When you “add” other object types** to a string, the machine

converts those objects to their string representations*** and

then appends these to the existing string. Try

(ENTER][SWAPJ+].... The order matters—again,just as with lists.

*Though it was a bit of a refresher in Command Line typing. Do you remember how to find non-

letter characters and type in lowercase, etc.? If not, look back at pages 31-39.

**except lists—you can’t them to strings (you’ll add the string to the list instead).

***The string representations of some objects are slightly different than the objects themselves.

Character Strings 109

Ofcourse, you can also convert objects to strings “manually”—instead

of letting the machine do it—during a concatenation (appending).

Try It: Press EETA Keyin, say, a vector:

(SPC)(5)(ENTER). Now convert this into a string, by pressing

(it simply wraps this object in quotes, thus trans-

forming its type into a string.... Now concatenate this to

the string above it: (4.

As you might suspect from all this object conversion, a string is only

slightly less “general” an object type than a list. So it’s almost as

important to know how to take strings apart as to build them....

Do This: RemembertheAll-Purpose Object Dissector? Try it now

(press [[FER)....See what happens?

When a string contains representations ofother objects,

the machine will extract them, one by one (from left to

right), and put them onto the Stack—just as ifthey had

been (ENTERJed from the Command Line without quota-

tion marks. But remember, too, that a string can contain

anything else too—besides syntactically correct object

representations. Therefore can often give you er-

rors as the machine tries to make an object out of char-

acters in the string that were never meant for such.

110 (3) OBJECTS: YOUR RAW MATERIALS

Then: Press to make a copy ofthe vector now at Level 1. Then

and (NXT), to go to the nextpage oftheTYPE menu.

Example: Type (@[]S][1]Z)EJENTER). The number you get, 18, tells

you how many characters werein"[2 27 5 1". Now

(@),), and use SIZE on the vector [2 £7 5 1instead.

Theresultis{ 3 1, right? There are three elements in

the vector, soits SIZE appears in this single-elementlist

—just as ifyou had used to break it down into its

components (recall page 90). Now press («).

Question:

Answer:

Recall page 35. The 48 can display 256 different charac-

ters, but not all are available on keys. Can you put them

into strings without using the CHARS menu?

Yes. Each character has an associated number—a char-

acter code that represents the character. [E[l[gll returns

the character code ofthe first character ofa given string.

Try IEITEN now and see 91, which is the code for the [

character. Then use J[HiI{ll to confirm this—converting

from the code back to the character.

Ofcourse, there’s certainly a lot more you can do with strings—just as

with all the other objects—but at least you get the idea here.

Character Strings 111

Tags

Just as real numbers are linked together to build complex numbers

and arrays—and just as bits form flags or binary integers—so too can

strings be the simpler building blocks of other, “hybrid” object types.

One simple one is a tag.

A tagis a pairing ofa string with another object (any type) on the Stack

so that the string forms a temporary label. Your workbench can get

pretty “Stacked” up with objects, and so it’s difficult to keep track of

them all and remember what meant what. Tags are a harmless,

temporary way to help you do this.

 I— W
S TR N

eIR

112 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent tags?

You don’t build a tag by itself. As the name implies, you attach it to

some other object—so it’s more meaningful to ask “How does the 48

represent tagged objects?”

On the Stack, they might look, for example, like these:

Root: -1 Extrm: (8, -1)

Zero: B Unit: [8.2/ 8.33 6.88 1

The tag itself is everything to the left of (and including) the colon. To

the right of the colon is the object being tagged

How do you build a tag?

First—as always—you can simply type it in.

Thus: ([P:3)(e]ofRIa]o]o]olT]a)®)(1]+/-IENTER).

Notice that the displayed version of a tag has one colon—

to save space in the display. But you must enclose the tag

(both sides) with colons when you type it in, so use (»)to skip

over the second # before typing the object—just as you do

when starting a new row of elements in an array.

Tags 113

That’s how to build a tagwhen you key in an object, butmost ofthe time

you’ll want to tag an object that’s already on the Stack.

Well, you can’t put a tagby itselfon the Stack. Atagisjust a stringuntil

it is attached to another object. Fortunately the tag-attachment tool,

EXLTH,is right there on the first page of the PRG TYPE menu.

Try This:

And Also:

As Usual:

Press(&)CLEAR), then put—1 onto the Stack: (1]+/=JENTER).

Suppose that’s the result of some calculation, and now,

afterwards, you want to label it with a tag. Just key in

the tag, as a string: (P]""o]¢]RJ&]2]OJO]TJENTER). Then

use EAEE. The result is the same as before.

You can use real numbers as tags. Suppose you’re aland

surveyor who deals with coordinates all day long. Each

point in a survey might have an identifying number—a

tag—attached to the vector coordinate pair itself:

Press(&qJr11]5J0o)-J2)3]sPc]s]5])-J7]9JENTER).... There

are your coordinates. Now label it with some identifying

number: (1]2)BBThe 48 actually converts the real

number to a string and then uses this as the tag.

You can break up a tagged object into its object and its

tag string, by using the General Purpose Object De-

composer, [[NER. Try it now....

Now to rebuild the tagged object.

114 (3) OBJECTS: YOUR RAW MATERIALS

How do you use tags?

Tags are indeed temporary labels. Ifyou do any operation on a tagged

object, the 48 will remove and discard the tag. After all, the result of

the operation isn’t generally the same object as before.

Watch: Tryadding another vector to the tagged vector now sitting

at Level 1: (GJui[1]o]sPc]2]o]+].... See whathappens?

The vector addition works just fine, but the tag on the

previous object goes away.

Try another: multiply the Root: =1 by this result vector:

(X).... Again, the math works fine, but the tag doesn’t stick

to the result.

As you saw with that surveyor’s scenario, you can use real numbers as

tags to index multiple results of the same kind (e.g. the points in the

surveyor example). Or—more commonly—you use a string to give it

some kind of temporary label of characters.

No matterwhat, a tagis the most fragile ofobjects—as you can see from

above. Any meaningful operation ofthe object will “rip the tag off.” A

tag is for your benefit only; it doesn’t mean anything to the machine.

So the best use for tags is at the end ofprograms or other calculations,

when you can attach them and display finished results.

Tags 115

Names

By contrast to tags, a name in the 48 is a much more “solid” kind of

label. Names are very important, because they identifyplaces where

objects are stored. Names are like labelled boxes in your workshop.

When you want to “use an object,” you simply invoke (type) its name.

That goes for all the built-in objects, too. Every command (every key

and menu item) is an object of some type, and when you press its key,

this actually invokes (“types”) the object’s built-in name. For example,

when you press the (SIN) key, you are invoking the name, SIN, which is

the built-in (permanently labelled) box containing the sine program.

Well, buildingyour ownnames is simply the act ofcreatingnewstorage

boxes with your own labels on them. Once you’ve done that, the names

exist; you can put them onto the Stack, move them around, etc.—just

like other objects—even when they’re empty. But, of course, they're

usually more useful whenyou do store objects in them. So here’s where

you start learning how to do that—how to save the objects you build....

116 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent names?

A name is simply a character string with special restrictions on the

characters allowed. Examples:

'R 'Exl’ '"Tuesday' '20AT' 'PPAR'

'Whatchamacal 1it ' 'SINw'

How do you build a name?

Build the first couple of names you see above.

Easy: Press ('JoJAJENTER); press (']o] E]Ja]X] 1]ENTER]); and so on—

you get the idea. The '' delimiters appear in pairs—just

like so many others you’ve seen by now.

As you can see, names are always enclosed in apostrophes (' ')rather
nu

than quotes(")—to distinguish themfrom normal character strings.

Also, names have these special restrictions:

e You cannot use any delimiter in aname: #, ', ", _, &, () [1,{3,

€% £4, <space> and <newline> are all off limits.

e Numerals (B-9) and decimal points are OK, except as the first

character: Youcanuse 'Al' and 'Hi.',butnot '1A'or '.WP".

e No arithmetic symbols or operators! Names like 'A+B' are out.

¢ Youcan’tcreateanamethat’salreadyusedby abuilt-in command:

'SIN' is the built-in name for the sine function; 'SIN%' is not.

Names 117

How do you use a name?

To put something into a named box, you use (STOre).

Watch: Press (1JENTER)(" JoJA)(STO)....

You just stored the real number 1 into the name 'A’.

Notice the order ofthe objects: First you put the object to be stored onto

the workbench. Then you put the name (that labelled storage box).

Then the STO command puts the object into the box, takes the filled

box off the Stack and puts it into storage.

Question: “...into storage”—where’s that?

Answer: It’sin your own personal toolbox—the VAR menu. To get

to it, simply press (do this now)....

This is the menu of all the names that you've filled with

objects (i.e. STOred objects into). As you can see, [IGIE

is now the left-most box because it’s the most recently

filled; anythingelse you’ve stored (ifanything)isbumped

farther to the right in the menu.

It’s called the VARiable menu because a variable is ex-

actly that—aname labellingand containingsome value,

which can be changed (i.e. it can vary).

118 (3) OBJECTS: YOUR RAW MATERIALS

Once you’ve named an object, to use it you simply refer to it by name.

Look: Type (a]A[ENTER)....

Result: You get the value in 'A', which is the real number, 1.

This is the general rule: Whenever you type the name of an

object you are invoking that name. The machine will evaluate

the object for you—exactly as ifyou had typed the object itself

from the CommandLine (i.e. asifyou had typed here).

Press the[litem on the VAR menu.... Same thing, right?

Again—as you read earlier—pressing a VARiable key is just a

shortcut for typing that name.

But: Type (JeJAIENTER) (or ()IIEEMENTER)). ..
Result: You don’t get the value in 'A' —only its name.

This is just what you saw when creating names (page 117):

The ' means that you simply want to put the name onto the

Stack. Maybe you’re building a new name; maybe you want

to STOre a new value into an existing name—whatever.

It’s a very important point—worth “harping on” once more:

e Toputjustthenameontothe Stack, encloseitin ' marks.

e To invoke the name—i.e. to get the value it contains—

use it without ' marks.

Names 119

Question: What if you have a name on the Stack and then you

decide that you want to evaluate it?

No Sweat: To evaluate a name already on the Stack, simply press

[EVAL.... See? It EVALuates the name 'R'.

By the way, notice this: Evaluating a name always gets you a copy of

its object’s value. Thus, you can evaluate the name over and over

again—using and consuming the resulting values on the Stack—but

the original object stays safely in its labelled box.

Clean Up: Press(q]CLEAR("LI(amenukey isjust a shortcutfor

typing, right?). Now (G]PURG).... IlEIM disappears from

your VAR menu; you PURGe’d it from your toolbox—

both the name and the object it contained.

Now: What will happen if you try to invoke the name A? Hmm—

there’s no such name, right? Try it: Press (¢]AJENTER)....

You get the name: 'R’ How? And why?

Because whenever you invoke a name—any name—the 48

actually puts ' marks around it and puts the name onto the

Stack first. Then it performs an EVAL on it. If the name

contains any other object, then of course, you’ll get that ob-

ject’s value. But if the name contains no other object, it uses

itsown object value (after all, a name is an object, too—right?).

120 (3) OBJECTS: YOUR RAW MATERIALS

Practice some more: Store some objects and evaluate some names....

Example:

Solution:

Store the vector[1 2 3]in the name 'VYector.1'

Press (Q]CLEAR) to clear distractions, then (] 3(1)SPC]

(2JsPCBJENTER) (N]eVIa)eJEICITIOIR]- [1]o)(sTO).

Nowlook in your VAR menu. The left-mostbox isFIa1]

Did the 48 truncate (and capitalize) the name you keyed

in—just to fit it into the display’s menu box?

To find out, press fI38M1l.... Nope—the 48 knows and

remembers the entire actual name; it simply needs to

alterit forits menuboxes. So keep yournames short and

distinct! Each menu box holds only up to 5 characters—

and uppercase always. So any similar (yet completely

valid) names such as 'Vector.1l' and 'Vector.2' or

'"VECT' and 'Vect' will appear identical in the menu.

Question:

OK, But:

Can you store a name within a name? It seems reason-

able. After all, you can put one box containing an object

into another box, right? Try it—store 1 in 'B' and 'B'

in 'A*: (€ancED(D())B)ETo)(MMENTERA)(STO)

What will you get now when you invoke (evaluate) the

name A? Press IGE.... You get 1! So the EVALuation

process goes all the way: If the value ofone name is yet

another name, the 48 then evaluates that name, and so

on—down to the last “box within a box within a box...”.

Names 121

So evaluation is really a chain of evaluations—as long as necessary:*

The 48 follows its nose through each name, evaluating its contents—

until finally it finds the value of the “innermost” object.

Problem: What if you're interested in a name’s actual contents

only—the object immediately “inside” the name? That

is, you don’t want the 48 to evaluate that object any

further—just put it on the Stack. How do you do this?

Solution: Use RCL torecall the contentsof 'A' : (" JIEI=)RcL....

You get 'B' —the actual contents of 'A'. Because you

recalled the contents of 'A' (rather than evaluating it),

the 48 did not go on to evaluate those contents. And note

that RCLis acopying process: the objectin 'A' (the name

'B')isstillin 'R’ (try again).

So and form a kind of matched set:

* ToSTOreanobjectintoa name, you put the object onto the Stack,

then the name, then press (ST0). The STOrage process consumes

both object and name—it’s not a copying process (the object is

taken as the original, and no duplicate is left on the Stack).

* To ReCalL the object, you put the name onto the Stack. Then you

use ([PJRCL) and you get (a copy of) the object back on the Stack.

*Up tothe memory ofthe machine, ofcourse. Andbeware ofcircular references: Ifyou were to store

'A' into 'B' right now, then 'A' would contain 'B' and 'B' would contain 'A'. And M.C. Escher

would love such a conundrum—butyour 48 wouldn’t. It would evaluate in a circle, and you’d need

to press to interrupt this infinite goose-chase. The 48 can actually catch self-referencing

names (i.e. storing 'A' into 'A') and give you a message, Error: Circular Reference.

122 (3) OBJECTS: YOUR RAW MATERIALS

Infact, STO and RCL are so useful that the VAR menu offers a shortcut:

This: Press (]CLEAR), then (4)(@JllZE. Now pressI...
You just did this: (G]CLEAR)(4)("IEIMSTo)MIEIM(O)Re)

Using a VAR menu key by itself will evaluate the name.

Using (') first simply types the name onto the Command Line.

Using () first STOres the Level-1 object into that name.

Using()first ReCalLs a copy ofthe actual object in the name.

Of course, once you recall the contents of a name to the Stack, you

might want to alter it. But how?

Easy:

So:

EDIT it! For example, to change the first value in Yector. 1

to 18: Ed1(recallits currentvalue), then

(EDIT that object), andl3M(store this newversion

back into the name 'Yector.1'). Remember: EDITing alters

only a copy ofthe contents of a name on the Stack. It does not

automatically STOre the EDITed version back into that name.

To recall, edit and restore a named object in one smooth mo-

tion, use EDIT on the name ofthe object: Change that vector

componentbackto 1: (TIIRINIENTER)G)EDIT>>>«1)ENTER).

See? This lets you skip the RCL and the STO.*

*And in case of mistakes during “alterations,” remember that aborts an EDIT.

Names 123

Algebraic Objects

Algebra is the branch of mathematics that manipulates expressions

and equations involving variables—“unidentified numbers” that can

nevertheless be manipulated as symbols because their numerical

properties are known and predictable:

x4yt =r’ ax’ +bx+c=0

The beauty ofalgebra is that you can manipulate the symbols into the

most advantageous arrangement—before ever worrying about the

numerical values these symbols might represent.

—_— 2_y= P2 Y= bx~b* —4ac

2a

Then you can “plug in” numerical values:

o _ -10+/10° —4(3)(3)
Y= - 2(3)

Well, it’s no coincidence that your menu of named objects in the 48 is

called a VARiable menu: You can use names in the 48 literally as alge-

braic symbols, to form algebraic expressions and equations (such as

those above) that you manipulate and solve symbolically. Andjustlike

algebra on paper, you needn’t worry aboutthe actual, numericalvalues
'”in those variables until you're ready to “plug them in

124 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent algebraic objects?

As you know, you can’t use math operators (e.g. + — ¥ “)ascharacters

innames. Ifyoudo, you’ll form an algebraic object instead. Names and

algebraic objects use the same delimiter (').

Examples:

Watch:

At your VAR menu, press JlIGEMENTER). That’s a name.

Press JIIEMENTER). That’s another name. But press

(" L B ENTER). That’s an algebraic object. You

built it by typing a mathematically meaningful combi-

nation of names and algebraic operations.

And of course, you can edit this object—just like any

other: (JeEDT) AL (<[«]C)[ENTER). Result: 'A+B-LC'

So you can always type in an algebraic object at the

Command Line—using whatever combinations of VAR

and alphabetic keys that are most convenient. But often

it’s easier to let the Stack’s postfix operations actually

help you build an algebraic object:

the 'A+B-C', then press(#).... See what happens?

Just as(+]lets you combine lists or strings, so it combines

names and algebraicobjects into larger algebraic objects.

Try another: Key in the name 'C' (press ("]a)C)[ENTER)),

then (=).... Voil4!

Algebraic Objects 125

How do you use algebraic objects?

“Ah—how sweet it is!...
»

Question:

Do This:

One More:

What’s going to happen now if you EVALuate this alge-

braic object, 'A+B-C' ? Press(EVAL.... Result: '5-C'.

Why? Because the machine evaluates everything in the

expression that it can (the variable names 'A' and 'B'

have the values4 and 1 stored in them); but it leaves any

undefined value as is—in symbolic form (the name 'C'

contains nothing—it’s not on your VAR menu).*

Evaluate the algebraic object ' A+B'.

Press (" I} FENTER) (or(G ENTER)(I

ENTER[+)}—your choice), then [EVAL).... Result: 3

This result is not an algebraic object—it’s a real num-

ber—because all the parts of 'A+B' are numerically

evaluable; it has no undefined names (such as 'C").

Evaluate 'A*VYector.l': (" IEIIXEIRLIENTER

(or (JIIGCENENTER)(R(ENTER) (X)), then [EVAL....
Result: [4 8 12 1] Isn’t this great?

€
NNtR

* Notice that this exactly matches how the 48 EVALuates names: If a name has an object stored

in it, the 48 evaluates that object; if not, the name itself becomes the final object value.

126 (3) OBJEcTs: YOUR RAW MATERIALS

Question:

Answer(s):

How do you know this last answer is correct? Thatis,

how can you verify the current values ofyour VARiables

'A' and 'Vector.1'?

An easy way is simply to evaluate 'A' and 'Vector.1',

by pressing JIZI and f[I&I1]. You should get, respec-

tively: 4andl 1 2 3 1.

Or, to review the values in all the names on the current

page of your VAR menu, press (©]VEW):

A: 4
B: 1
Vector.1: [1 2 3 1

BGDS
is especially handywhen you want to check a lot

of values at once—but you don’t want to mess up the

Stack with name evaluations. Notice that the entire

view is just a large message that appears temporarily

over the normal Stack display (press to clear it).

Algebraic Objects 127

For practice with a more complicated example, try using an algebraic

object to build one of the general solutions to a quadratic equation:

b+ p—dac
2a

X

Go: First, press to tidy up. Now start building:

Press ('[o]J&BJENTER[+/-). Result: '-b' So far, so good.

Again, you’re doing a mathematical operation on an algebraic

object, and the object changes to reflect that operation.

Next, press (nosensekeying 'b' inagain from scratch;

this is quicker). Then (2]9.... Result: 'b*Z'

Because the 48 can’t display superscripts in the Stack, it uses the

circumflex (*) to indicate “raising to a power.” *

Next, (4)(o)AENTERIX[JoJQJCIENTERIX). ... Result: '4*a*c’
Notice that the result is not '4ac'. Such implied multiplication

(i.e. omitting the multiplication signs between single-character

variables—often used in written algebra) would confuse alge-

braic objects with names on the 48 Stack: 'wy', 'abc’, etc.

Now (), to form 'b*Z2—4*a*c' Notice how the 48’s postfix

subtraction rule (“Level 2 minus Level 1”) determines the order

ofthe subtraction operation formed inside the algebraic object. **

*You could have typed instead of but the result, 'SA(b) ', isn’t quite as readable.

Either form is OK, though—they both evaluate the same way.

**Notice also that you don’t need any parentheses here: Under conventional algebraic notation

(which the 48 uses), exponentiation takes precedence over multiplication/division, which takes

precedence over addition/subtraction.

128 (3) OBJECTS: YOUR RAW MATERIALS

Next step: (X).... You get ' [(b"2-4*a*c)'

Notice the parentheses. A one-line algebraic object can’t draw

the radical to include an entire expression under it. Instead, the

square rootisrepresented as a mathematical function (asinflx)),

and the parentheses enclose the argument ofthe function: {{)

Now press (+). Result: '-b+{(b*Z-4*a*c)’

No surprises, right?

Keep going: (2)(JoJ&JAJENTER]X).... Result: 'Z*a’

Nothing unusual here, either—but by now you may have noticed

somethingthat’s worth a little discussion: Normally, when doing

Stack arithmetic with something like real numbers, you could

just press (2)[ENTER)(3)(X). Here, you need a second (ENTER), to put

the 'a’ onto the Stack before multiplying. This is because when

you press ('), the 48 goes into algebraic entry mode (the ALG

annunciator appears in the StatusArea), so that operations such

as(X)are not executed immediately. Instead, they’re simply typed

(¥, +, etc.) ontothe Command Line. Therefore, you could also key

inthe expression '2*a' as("]2]X][o)&qJAJENTER), ratherthanbuild

it via Stack operations.

Finally, press ().... Result: '(-b+{(b*2-4*a*c))-(Z*a)’

Since algebraic objects are represented in aline on the Stack, the

extra parentheses are needed to show what’s being divided by

what. Indeed, withoutthemyou’dhave ' b+(b*Z-4*a*c)7*a',

which, according to the notational conventions, would be evalu-

ated as

2
_b+(__\/bz—4ac]a

Algebraic Objects 129

Some observations:

When building expressions involving your variable names, you began

each name with ', totell the machine that you were merelyspelling out

the name as part ofthis object, not evaluating it. But ifyou know that

the names you’re using are empty (i.e. they’re not on your VAR list—

either you've PURGEd them or never used them before), then you can

get away without the ' —because evaluating an empty namejust gives

you that name anyway.

Of course, you could have typed in the entire object directly from the

Command Line: (*Jq]O[+/-Jela]efe]B]HXIG]O[e]B]Y2]-4)X)(e]
AX))HIO2)IX)(@AJENTER).

Admittedly, this saves some (ENTERfs—and you can use lower-case lock

((q)) in alpha mode) to make it easier to type &, b, and c. But it also

means you have to know where all the parentheses go beforeyou start.

And so you must know and follow the algebraic syntax and precedence

conventions—instead of letting the 48 put it together for you “on the

fly,” as you simply specify the order ofoperations with the postfix Stack

operations. So you decide—use the method easiest for you.

&Koo

130 (3) OBJECTS: YOUR RAW MATERIALS

No matter how you’ve built it, now that you have such an impressive

algebraic object all built, what do you do with it?

This: Put values into the variables and evaluate the expression:

(VAR (JeJEle]Q)(sTO)
CealA)E0) HEEEVAD

You've just stored your freshly-built algebraic object into the

name 'ER'. Thenyoustoredlinto'a',~£into'b',and 1 into

'c' (in reverse order—to appear in order in the menu*).

Then you put the expression back on the Stack by pressing

T2, thus evaluating the name 'EQ'. Then you evaluated

the expression, and you got the real result.

“Hmm...but why doesn’t the EVALuation process ‘go

all the way,” and evaluate the algebraic object?”

It’san exception tothe “EVALuate-all-the-way” rule: Ifaname

contains an algebraic object, the 48 evaluates only to that ob-

ject; you must press explicitly to evaluate the algebraic

any more. So you did—and zap—the machine replaced all

names with their values and did the math. And as with all

evaluations, the result was left on the Stack: 1

Anyway, the beauty of such algebraic objects is this: Now you have

your algebraic expression named,you can easily reuse it. For example:

PGGMEE(4«MKlEVAD. Result: ¢.22.

*Remember that they will appear in uppercase in the menu boxes—butyou know they’re the boxes

farther to the left because they’ve been more recently created than the boxes for 'A' and 'B"'.

Algebraic Objects 131

Postfix Programs

When you say the word program, you probably think of some task or

series of tasks that you “record” in a computer now and then “play

back” later—at which time the machine automatically performs those

tasks. The power ofa program is that you can play the recording over

and overwithvery little effort on your part every time—often the touch

of a single key. It can become a new tool in your workshop.

Well, that’s a fair way to think about a program. But then that means

that algebraic objects are reallyprograms ofa sort. Look at how much

work the machine does automatically when you press the key

with an algebraic object: It evaluates all the names, then uses the

math to combine them as you’ve specified—and it will do this over and

over, for whatever values of variables you wish to give it.

You could make a similar argument for simply EVALuating a series of

“names within names,” too: That chain ofevaluations can go on a long

time—a very convenient series oftasks the machine does for you auto-

matically. And, as you’ll soon see, you can even get the 48 to sequen-

tially evaluate the objects contained in a list object € I)—again,

simply by pressing that all-powerful key.

The point is, although there are several different types of objects that

can act as programs, they have other roles as well. In fact, there’s only

one object type that was defined strictly for the purpose of acting as

such a pre-recorded, ready-to-use series ofcommands. This is the ob-

ject type called a postfix program.

132 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent postfix programs?

Apostfix program (you can call it simply “program”for short), is indeed

an object; you can put it onto the Stack, store (name)it, recall it and

evaluate it. And, as with most other objects in your workshop, pro-

grams are bracketed by a pair of distinctive delimiters—in this case,

guillemots: % #

Also true to the pattern of other objects is the program’s underlying

list-like structure: A program is an ordered collection of zero or more

elements (objects and commands). When you evaluate the program,it

sequentially evaluates its elements.

How do you build a postfix program?

Unlike most other objects, there is only one way to create a program,

and that’s to type it in from the Command Line.

Try One: Press (]«»(1JSPCJ2)+)ENTER). Result: « 1 2 + =»

Notice that program entry mode activates (i.e. the PRG

annunciator appearsinthe Status Area) when you press

»—so0 that commands such as simply type their

names in the Command Line rather than executing

immediately.

Postfix Programs 133

So there you have it—a three-step program.

Question: What does it do?

Answer: See for yourself: It’s called apostfix program because it

handles objects and commands in the same manner as

your 48’s postfix Stack would handle them as you key

them in on the Command Line. So you can mimic this

program’s behavior at the Command Line: (1]JSPc)2)(+).*

Now this “manual” result, then press once

(to DUPIlicate the program so you don’t need to rebuild it

later), and [EVALjuate it.... Sure enough: 3

Of course, you can name the program, too—to save for later....

Do It: (DROP)the EVAL result, and then ("Jo)E]a]X]1)(STO).... Just like

any other freshly-named object, the program, now called EX1,

will appear on the left side of your growing VAR menu.

*You’ll notice, however, that the program can delay the execution of +, whereas you can’t at the

normal Command Line. To mimic the program even more closely, you can activate program entry

mode without using by pressing ([JENTRY).

134 (3) OBJECTS: YOUR RAW MATERIALS

But this EX] program doesn’t do anything particularly valuable (you

already know what 1+2 is). So you ought to change it.

OK:

How?

Suppose you want E®] to add 1 to whatever object is at Stack

Level 1.

You can’t decompose a postfix program into its elements with

[[FER. In fact, the only way to change it (other than PURGE

it and start over) is to edit it: I3 (ENTER) (SJEDIT). Now

delete the 2: [T3EX; and restore the program:

(ENTER). Now EX1 will simply put the number 1 onto the Stack

and then perform a +.

Try It: (G)CLEAR), then (1) IFEM gives a result of £; I3 again: 3

O3]2)spc)4)4)IEHM gives (33, 44).

Pre)A2EME VARIEEFM gives{ 3 (33,44) 1 1.

elefRJa) 1)Mgives "Hil".
(er)eJa 1)ENTER)Mgives 'Hi+l'.

IE3W gives an error (you cannot add a

scalar to a vector). This leaves the Stack as it was at the

time ofthe error (the 1 put there by the program remains).

Don’t worry—you’ll get lots more sophisticated practice with programs

(and most of the other objects later). The point here is this: Using a

program—such asI3W—from your VAR menu is really no different

from using any built-in command—such as (X3, Naming a program

creates a new tool in your workshop, and it works like any built-in tool.

Postfix Programs 135

Directories

A directory—any directory (a phone book, a map, a kiosk in the mall,

whatever)—is a reference tool to help you find what you need from

among a given selection. And there are different directories for differ-

ent selections. For example, it would be a hopeless mess to try to list

all the telephone numbers in the country in one huge phone book, so

the listings are broken down into different books. And each book is

often divided even further—by city or suburb—into subdirectories.

The point is, a directory’s very purpose is this dividing/subdividing

effect. It offers youonly a certain selection among“all possible items”—

in order to simplify and narrow the field of your search (assuming, of

course, that the selection uses some logical criterion—all the names in

the phone book from the same city, etc.).

In the 48, you use directories in just that way: Your VAR menu—your

toolbox for your own custom-built objects—is quite roomy, and you can

put anything you want into it. You can divide it up into drawers, each

with some more specific criterion for the named objects it contains.

And you can even subdivide those drawers into still smaller com-

partments, then subcompartments, etc.

How does the 48 represent directories?

Directories are objects—just as arrays, strings and lists are objects—

but because it’s seldom useful to put a directory on your Stack work-

bench, there’s no 48 delimiter reserved to denote a directory object.

The best way to see one is to build one....

136 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a directory?

To create a directory, just put a unique name into Level 1 of the Stack

and invoke the CRDIR command....

Watch: Press ()CLEAR DR&vemory) NIIR
VAR).... The new name, JI[FW, is now in the VAR menu.

Notice the “file folder tab” on the top ofthe@Mmenubox.

This is to help you distinguish directories from the other

named objects.

How do vou use a directory?

So you now have a new, empty directory called DIR1.

Question: Can you look into it—and store objects into it now?

Answer: Sure—but you need to open it first. Just evaluate its

name—press lmfll Your VAR menu becomes empty,

because now it’s showing you only the contents of the

DIR1 directory. And the StatusArea shows a list, telling

you “where” you are: 1 HOME DIR1 }

That is, you started in yourHOME “toolbox,” then opened

the DIR1 “drawer” within that toolbox.

Directories 137

Now, to put somethinginto this drawer, you do exactly whatyou always

do—just STOre into a name.

Like So: For example, (1)(")a)JA)[STO) puts the named object 'A' into

your opened DIR1 drawer. With this drawer open, when-

ever you evaluate, store or recall 'A', you’ll be referring to

this 'A"'.

Question:

Find Out:

Doesthis replace the 'A' in your HOME directory—the

one that contained the value of4 (recall pages 118-123)?

Returntothe HOME directory (i.e. close the DIR1 drawer),

by pressing (JHOME).... The list in the Status Area now

shows £ HOME ¥}, and the VAR menu should look fa-

miliar. All right, now evaluate the name 'R’ (press

BE). You get4. Sothe 'A' in DIR1 is different than

the 'A' in the HOME directory—Ilike two John Smith’sin

two different phone books. You can use identical names

for different objects if they’re in different directories.

When evaluating a name, apparently, the 48 looks for

that name only in the current directory (HOME, in this

case). Testthat theory: Goback to DIR1 (mfl)and

evaluate 'R'(press JIGE).... Yep—you get 1—the

value of the 'A' stored in the DIR1 directory.

*Remember that there are two items that look like IlEBll—the one farther to the leftisfor 'a' ; the

other is for 'A' (butifyou forget which is which, pressing JlliIll would tell you).

138 (3) OBJECTS: YOUR RAW MATERIALS

But: PURGe the name 'A' from the DIR1 directory:

()M (G)PURG).

Now evaluate 'R': (@]AJENTER).... You get ¢ !

How can this be? The name 'A' doesn’t exist in DIR1—you

just PURGed it. Thisisthe value ofthename 'R’ in the HOME

directory—and yet you obtained it by evaluating 'A' from the

DIR1 directory!

This is because the 'A' in HOME is in your current PATH.

As you've read, the directories you create in the HOME

directory are “drawers”—subdivisions ofthat HOME directory

“toolbox.” And directories you create from any such “drawer”

are further subdivisions (“compartments”) within that

drawer. So, starting from HOME, to get to any particular

directory, you sequentially open the correct drawer, the cor-

rect compartment within that drawer, etc. That is, you

traverse an access PATH through your directory structure.

That list in the StatusArea is your PATH list—the description

ofthe PATH you took from HOME to get to where you are now.

When you evaluate or recall a name, the 48 first looks in the

current directory (thedirectory attheend ofthe PATH list). But

if it can’t find the specified name there, the 48 will methodi-

cally search backward through that PATH list until it either

finds the name or exhausts all directories in that PATH list.

Directories 139

A little terminology clarification: Directories within other directories

are commonly called subdirectories. So DIR1 is a subdirectory ofHOME

and HOME is the parent directory of DIR1.

A directory may contain many objects—and many subdirectories.

Watch:

Like So:

Create a subdirectory, 'DIRZ"', in the HOME directory.

EFoveIFN@R) &Mevor)IIIEETIAVAR).... Now
DIR2 is DIR1’s “sibling”—another drawer in the HOME

toolbox.

Next, create another directory, ' DIR3',inside DIR2: First,

open the empty DIR2 (pressD). Then: (o)a)d]1)R]3)

memory)IITTNINAATA(VAR).

You now have a directory (DIR3) within a directory (DIR2)

within a directory (HOME). So HOME is DIR3’s “grand-

parent,” if you will. Since a family tree is such an obvious

analogy for this directory structure, it is commonly referred

to as a directory tree.

Practice moving through the tree:

Store € into 'D' in DIR3: INEN (2)(")[D)[ST0).

StoreBinto 'C' in DIR2: (§)uP)(8)("JaJc)ST0). The UP(DIR)

command moves you up to the current directory’s parent.

Store 16 into 'B' in DIR1: &)ur)M(1)s)(")[B)ST0).

140 (3) OBJECTS: YOUR RAW MATERIALS

Questions: From which directories can you now recall and evaluate

'A','B','C',and 'D'? Feel free to use your 48 to help.

Answers: 'A': HOME, DIR1, DIR2, DIR3

'B': DIRT

'C': DIR2, DIR3

'0':. DIR3

Remember: You can recall or evaluate any name in the

current directory’s PATH. Since all PATHs contain the

HOME directory, anything stored there is accessible

from any subdirectory—no matter how many genera-

tionsremoved. By contrast, objects stored inthe “leaves”

of the tree (i.e. in directories with no children) are

accessible only from that “leaf” directory.

Now: Time tocleanup: There are two ways to PURGE a directory....

As with any other name, you may use the PURGE command

on adirectory name—butonly ifthat directoryisempty (so you

can’t easily destroy alot ofvaluable information with PURGE).

Or, if you're sure that you want to destroy a directory and

everything in it (objects, subdirectories, their contents—the

whole shootin’ match), use PGDIR (PurGe DIRectory). PGDIR

assumes that you know what you’re doing. It removes a direc-

tory and its contents—so use it with caution (go ahead and do

this now): (JHome)(IRDIRIEEEvevory)TN
Pi0IF|PGOIF(7))

Directories 141

Objects: A Summary

No sense kidding yourself: You’ve covered a lot in this long chapter.

You've seen how to build and at least begin to use these basic object

types in the 48:

Real numbers Units Lists

Complex numbers Vectors Arrays

Flags Binary integers

Strings Tags

Names Algebraic objects

Postfix programs Directories

Yes, there are few other object types that you haven’t seen yet—mainly

because they’re for special purposes—plotting, programming, backing

up your data, etc.

Right now, hold your place here and look back at pages 14-15—“The

Big Picture”.... Surely the keyboard’s organizational structure ought

to seem more familiar now. And ofcourse, the Stack is definitely “home

turf’ by now, right? But even that example directory tree structure on

page 15 ought to be clearer, now that you know a little about sub-

directories, parent directories and PATHs, no?

But just in case, here are a few more exercises to help you put it all

together. These quiz problems will force you to use and combine what

you know—and you’ll even see a few new variations and features not

covered before now—so heads up!—and enjoy....

142 (3) OBJECTS: YOUR RAW MATERIALS

Test Your Objectivity

Sum the first 10 positive integers. Now sum the first 1000

positive integers.

Silver (Ag) crystallizes in a face-centered cubic unit cell (4

atoms). The density ofAgis 10.5 g/cm?. The atomic mass ofsilver

is 107.868 g/mol. There are 6.022 x 102 atoms/mole. Find the mass,

volume and dimensions (in Angstroms) of a silver unit cell.

-E,

In an elementary chemical reaction, e *" is the fraction of colli-

sions with enough energy to react. E, is the activation energy; R

is the ideal gas constant (8.314 J/K-mol); T is the absolute tem-

perature (in Kelvins). Find the fraction of successful collisions

for a reaction at 980° F with an activation energy of2.14x10* J/mol.

What are the differencesbetween { 1 2 3 4 } and

[1 2 3 4 1? How would you convert between them?

You can add elements to a list usingthe (+]key, but how might you

delete, say, the last element? The first element?

How would you change the value 1+2i into 2+i on the 48?

Test Your Objectivity 143

144

Fill in the table below to compare the costs and benefits ofthree

strategies for replacing part of the current U.S. daily use of

petroleum—now totalling about 15 million barrels:

Option Costs (Savings) Energy % of cur-

gain (bbl/d) rentuse

80 nuclear Total: $ %

reactors

80 coal plants Total: $ %

Simple H,O heat: %

efficiency Appliances: %

measures Lighting: %

Tire infl.: %

Total: $ %

Nuclear reactor (1000 MW): Capital invest. (3-5-yr constr./testing): $ 1200/kW

Fuel and maintenance (for 25-year life): 200/kW

Disposal/cleanup (100-1,000 years): 50000/kW

Coal-fired plant (1000 MW): Capital invest. (3-year constr./testing): $ 1000/kW

Fuel and maintenance (for 50-yearlife): 100/kW

Disposal/cleanup (10 years): 10000/kW

Efficiencies: 100 million U.S. households each use the energy equivalent average of 1253

gallons ofoil per year—at a cost of about $1,200. 40% of this goes for space heating, 20%

for water heating, 15% for major appliances, 10% for lighting, the rest for other uses. 140

million U.S. cars average 10,000 miles per year each, at 19 mpg. 1 barrel of oil has 5900

MJ of chemical energy and produces 16.4 gallons of gasoline. A unit of electrical energy

requires 3 units of oil energy. Electric plants typically operate at 75% of rated capacity.

Low-flow heads on faucets and showers cost $40 per household and last at least 10 years.

That plus using cold water rinse in the washer would save 20% on water heating. Lowering

the H,O heater to 130°F. and raising the freezer and refrigerator to 0° and 40° F. would save

at least 5% on appliance usage. Using compact fluorescent light bulbs (20 per household)

would cost $150 more to buy (for the same 5-yr. life) as incandescent bulbs but save 75% in

electricity. Inflating car tires to correct pressures would save 3% in fuel consumption.

(3) OBJECTS: YOUR RAW MATERIALS

8. What’ssin(2)? What are the units of the solution angle? What

does this solution mean?

9. Find the angle, ¢ , between —9i+4j—2k and (12,1.39rad,0.48rad).

10. Find the volume of the parallelepiped defined by:

a=3i+3j+5k b="7i+j-2k c=i+8j—k

11. IfA=(1,23), B=(-34£25°-2),and C = (}4£+/2rad, -6 rad),

find the unitvector that pointsin the same direction as ofthe sum

of the real and imaginary portions of 14.54 —0.2B + (1+i{)C

12. Withinthevector[£ 4 6 8 18 1, how could you change the

8 to 19? How could you change the € to (1, 1)?

138. Createthevector[1 £ 1. Now redimension it to a 5-element

vector. Then change the third element to 3. Then “dot” it with

[543211

Sources:

InformationAlmanac, Houghton Mifflin Company, Boston, 1990.

CanEarth, The Earth Works Group, Earthworks Press,

Berkeley, 1989 (book available through: NRDC, 40 West 20th St., New York, NY 10011).

Ecoscience: Population, Resources, Environment, Erlich, Erlich and Holdren, W.H. Freeman

& Co., San Francisco, 1977.

Test Your Objectivity 145

14.

15.

16.

146

Convertthevectorl 1 2 3456 7 8 9 Jintoa3x3array.

Then change element, to 18. Then convert the resulting array

into an array with complex elements.

How might you extract individual rows from the result of prob-

lem 14? Would these be vectors?

Legends still speak ofthat dark and fateful night, over a century

ago, whena U.S. Mail Expresslocomotive became a runaway and

collided with a long-haul Canadian grain engine at a remote

prairie borderjunction. The crews may have bailed out in time,

but they were never found. Your theory: The collision startled

alarge herd ofbison nearby, whose ensuingstampede obliterated

the entire scene. You’ve surmised that the wreckageitselflanded

somewhere out in a bison mud wallow, sinking well out of sight

beneath the muck and chaos of the stampede. Vague stories of

some such incident—pieced together from railroad memorabilia

in both countries—have allowed you to estimate these speeds,

compass headings and weights for each engine (including its coal

tender) at the point of collision:

Engine Speed Heading Weight

Squash Blossom Special 88 mph 44°19' 150 tons

Home, Wheat, Home 110 km/hr 256°32' 300,000 kg

Problem: Which government should have excavation jurisdic-

tion over your proposed International Peace-Railroad Memorial

Mud Wallow?

(3) OBJECTS: YOUR RAW MATERIALS

17.

18.

19.

20.

21.

22,

23.

Find the total hours worked by each person and by all together:

Andy Beth Carla David

Mon. 8 8 5 7

Tues. 8 8 6 7

Wed. 4 7 5 7

Thurs. 8 7 4 8

Fri. 8 8 5 7
Test matrix multiplication commutativity with these:

1 2 16 9
A= 3 4 and B = 4 1

Use to help you build complex numbers.

Set ENG display notation and polar/cylindrical vector mode—

using only one page of one menu and the digit keys.

Find the 48’s current binary wordsize without using RCWS.

What's the easiest way to preserve the system settings—such as

those discussed in problems 19-21—for quick restoration later?

Calculate 2, x (FFF,+2) in 16-bit integers.

Test Your Objectivity 147

24.

25.

26.

27.

28.

29.

30.

31.

148

Keyin# 188d and duplicate it. Then convert one copy to a string.

Then set binary mode....Why are the two results different?

Change "You understand®™to "You understand!"

Build the string "Vol.= 4.8 gal." without using the (4) key.

Then, starting with such a string, extract the numeric value.

Format a number in scientific notation—such as b6.82ZE23—

within a string, in this format: "6.82¢ * 1B8*(23)"

What will produce from this string?

Use PURGetorename 'A' as'%'. Then use this name to tag the

_ —bx+b*-4ac

2a
solutionto x ,fora=1,b=-8,and c =15.

Set flag -3 and try to build the solution to prob. 28 “from scratch.”

Keyinthenames 't','i' and 'e' and evaluate them. Now set

flag -2 and repeat this exercise.

How can you PURGe more than one name at a time?

(3) OBJECTS: YOUR RAW MATERIALS

32.

33.

34.

35.

36.

Evaluate the expression '2*x+y' for:

a. x=-2y c. x=t y=t-1

b, y=-2 d. x=z-3y, y=y-3z

Write the solutions to problem 4 as two complementary pro-

grams, named L*V and V#L. Test them with these lists:

{8} {1231}
{18 {,8) {3

UseL*V and/or Y+L to write another program, called LABS (“List

ABSolute value”), that produces a 1-element list containing the

“magnitude” (the “square root of the sum ofthe squares”) of the

argument list. Test LABS with these lists:

a. {1234:

b. {(1:1) (‘3,4)}

c. {[121034173

When would evaluating a directory’s name not send you to that

directory? How could you give a directory two different names?

Suppose you want to build yourself a little phone book: Write a

program that will open the correct one among 26 alphabetically

named (A through £) subdirectories—depending upon the first

letter of the string you key in.

Test Your Objectivity 149

150

Objective Answers

Just a reminder ofthe options you have for keying in objects and

doing arithmetic with them on the Stack. For example:

ENTER)2[HBIHBEHEIHBD(@B(o)), or
(1)sPc)(2)sPc)(3]sPc)(4]spc)(5sPc)(sJsPC)(7JsPc)(8]sPc)(s)sPc)(1]

, ete. Answer: 33
Of course, no such method is good for adding a thousand num-

bers, but observe that 1+2+3... +998+999+1000

=(14+1000)+(2+999)+(3+998)...+(500+501)

= 1001x500.

So: Answer: 586580

mopesIZEIE2)RN Keyinthe atomic mass:

EEESAnxT)IEMM. Next, key inAvogadro’s

number: 0)2)2JEEX[2)3)IE[M. Note that the item being

counted (atoms) is implied—as with cycles in “cycles per second”

(Hz) or any other discrete item. Now divide the two arguments:

(=) (that’s grams per atom), then multiply by 4 (atoms per cell):

(A)X).... Result: 7.16E-22_g (grams per cell)

Volumeis mass divided by density. You have the mass already,

sokeyinthe density: (10)~5NxT) IEI =onTsIRTREEE]L
And divide: (+) Result: 6.82E-23_cm™3

And, since the unit cell is a cube, just take the cube root of the

volume to find the length ofan edge: (3]2]X7). Nowjust convert

to A: (IoNTs)MLTHGPREV)IEMM.... Result: 4.B9E@_A

(3) OBJECTS: YOUR RAW MATERIALS

3. (Yonts)xD)EXEE (2)2)EEx<)I
(YonTs)REEE GPrev) oIEIH
(2veny)=310I
EYonis)(vxT)TRI

BMEEE[EHOL(&)

(e)8) o)=>mveny)IA()
Result: 4.HBE-Z (4.00%)

4. One is a list; the other is a vector.

To convert, start with the list: MoDEs)IZELEIEII

(I1)sPc)2)sPC)3)SPC4)ENTER) (and [TVPE))

Then is the easiest conversion; leaves the

Stack all ready for ELIAA.

To convert back: [NEXITNES(«)EMEl Since needs a

real number for a length argument, you use [[ZNEM() to extract

that real numberfrom the list-typelength argumentproduced by

decomposing the vector.

5. Use the list from problem 4: deletes the first

element; [[ZNER(SwAP)(DRoP)(1]=) deletes the last element.

6. Start with 1+2i: [(q]O)1]SPC]2]ENTER) (and to go to the second

page of the TYPE menu). Then does the job.

Objective Answers 151

152

Do the power plants first: Calculate the barrels of oil saved by

typical daily generating levels: [&mopes)IZEIE(®)IHIH(to re-

flect the certainties of the data). Then

ENTeRIMTHRNaXEX00
(a]MIo]JJENTERH)(5)9

)

o

J

o]2_Je]MI]JJENTER)(=)(8)0]X](note the

unit prefixes here). Result: 2.6E6 The oil (barrels)thateighty

1000-MW power plants would save daily. The costs?...

(110oJoJEEX]8 JENTER[EEX]3]+80JX|ENTER](ratedkWfor 80 plants)

(1]2]o]oJENTER](2]0]oJ+H)(5) 0]o]oJoJ+IX]2]5]+)3]6)5]=]
Result: 458.E6 That’s $450 million spent per day for 25

years for the 80 nuclear plants

(@]1) o]oJoJENTER])(1]0]oJ+)(1]ooJoJoJ+[Xx]5oJ+I3]6)5]+]
Result: 49.E6 That’s $49 million spent per day for 50

yearsfor the 80 coal-fired plants

The efficiencies. First, the daily oil savings in water heating:

Result: 338.E3_bbl

The $avings: (the plumbing ought to last at

least 10 years) (1]2)] o]oJENTER[-[2]X)(- J2)X[H3]6]5]
Result: 12.E6 That’s $12 million saved per day.

Next, the daily oil savings in electrical appliance efficiency:

DEREGEENTERE)(EEEHHDEXEDEXEEX)(BXNXDNXT)
T7(S I Result: 188.E3_bbl

The $avings: (1)2) o]oJENTER[3)6]5=-LTIEIXI-Jo)5xJEEX]8)(X]
Result: Z.5E6 That’s $2.5 million saved per day.

Then there’s the daily oil savings in electrical lighting efficiency:

(12)53ENTER]3)65[+)-XNJ7LSIXIEEX]8IXINXTINXT]
<A Result: 1.8E6_bbl

(3) OBJECTS: YOUR RAW MATERIALS

The $avings: (115o]+/-JENTER[s]1]2)o]oJENTER] -[1]X]
80868

Result: 16.EB That’s $16 million saved per day.

Finally, the daily oil savings from proper tire inflation:

(1] 0] o]o)oJENTER]1]9)+)1)40JEEX]8)X]-[0)3]x]3)8]5[+]ENTER]
(18-Ja]+] Result: 378.E3
The $avings: («][1]-]2]5]X] (cheap for a gallon of gas by now)

Result: 7.6EB $7.6 million saved per day.

So here’s the filled-in table (remember—these are daily figures):

Option $Costs (Savings) Energy |% of cur-

gain (bbl/d) rentuse

80 nuclear Total: $ 450 million 2.6 million 17%

reactors

80 coal plants| Total: $ 49 million 2.6 million 17%

Efficiency H,O heat: ($12 million) 0.33 million| 2.2%

measures Appls.: (2.5 million)| 0.18 million| 1.2%

Lighting: (16 million) 1.8 million| 12%

Tire infl.: (7.6 million)| 0.37 million| 2.5%

Total: ($39.1 million)| 2.7 million 18%
So, to add 17-18% to the nation’s daily oil supply—without any

change to your life-style—which would you rather do:

spend $50-450 million/day—and wait 3-5 years for results?

or save $40 million/day—with immediate results?

Objective Answers 153

10.

154

Press (2J&q)JAsN). Answer: (1.57879632679, -1.31695/89692)

(assumes RECT and STD modes here). Acomplex trig argument

doesn’t carry the circular geometric interpretation (“units”) that

real arguments do. The general sine function is an infinite series

sum: Sinx=x——+———+:-:

The angle, ¢ , between any two vectors, A and B, is given by

L[AeB

o= cos (IAHBI)
Be sure that you enter each vector in its proper mode:

I9)+/-]sPC)(4]sPC)(2]+/-)([ENTER[A]STO);

()BT(vxBEEA()R(1)2)5PS)3)9)SPC)8
IEXEN)2)8]s10). Nowcalculate: (VAR)IIEENXT)I(=MENY)
I)veno)B(5(varIinxI

VENU)BT())ACOS)....Result: 1.64693273493 (rad)

Thevolume ofa parallelepiped is the absolute value ofits vectors’

triple scalar product, defined as any of these variations:

a°*(xc) be(axc) ce*(axb)

a°*(cxb) be(cxa) ce(bxa)

So: (&)1 (7IsPe) (1)sPS) (L2)+/-JENTER) ()1 (1)SPC) (8]sPC) (1) (+/5)
(ENTER)(LJ)(3]SPC)(3JSPC)(5JENTER). Then evaluate the function:

MTHITSRAETEENTIE Result: 297.2

(3) OBJECTS: YOUR RAW MATERIALS

11. Build and name your three vectors:)mopes)EIXIEM, then

ISl()01sPc)2)sPC3JENTER)AJSTO)
LT()E)+ol25sPe)-2]+/-JEnTER) B]STO)

LTT()V/x)2)ix(6*/-IMTH)
Then: (VARINXT)(1J4)-)5)G(X)EX)&)&PreVIG]0)
(DEPO()(X))IonesERTMIEAIRE—to see the real and
imaginary portions of the complex vector result.

Next, RETIE I(yes,I/ will split/build
complex-valued vectors, t0o).

Then adds the two real-valued vectors, and to find the corre-

sponding unit vector, you divide the vectorby its own magnitude:

mTHESRAEN=REEES. ... Answer:

[.273121183844 .533411568534 .86H54/88587 1

12. First,build the vector: (2]sPC)(4)sPC)(esPC)(8]sPC)(1)0o]JsPC)(5[PRG)

ETEHEAA Now (4)Pc1)(eIsP)(@(@PIUTIENTER. Thefirst
argument for PUT is theposition ofthe target element in the vec-

tor (or array or list). The second argument is its new value.

Ofcourse, you can’t put a complex value into a real-valued vector,

so [qJO)1]sPc]0]X) first, to convert the vector, then SJ0)

(1)SPC]1JENTER)(a]o]PJU]TJENTER) does the job.

13. Press (QIUI(1JSPCI2JENTER), then (SIOI[sJENTER)MTH)IXENTA(XETH
IIEE. The ReDiMension command needs a list argumentto tell

it the new dimension ofyour vector (for an array, you would need

two dimension numbers in this argument). Then (3]SPC]5]SPC]

(PJU]TJENTER) changes the third element, and K]1)(5]SPC)

(a)spc3)sPc)2)sPc)(NMTHSRIANTEM finds the Answer: 28

Objective Answers 155

14.

15.

16.

156

Build the vector: (&)L1)(1]sPc)(2)sPc)(3]sPc)(4)sPc)(5sPc)(6)(SPC)(7)

(SPC)(8)SPC)(8)ENTER). Then (QIUI3)sPc3ENTERMTH[REMABETET

redimensions;
[ENTER)to change element.. makes it complex.

Simply multiply by the appropriate row identity matrices. For

example, to extract the first row, multiplyby [[1 B8 B 1]

(GiaJi1]spc]oJspc]oJaswWAP]X]). And for the second row,

multiply by [[B 1 B 1], and so on. Notice that the order of

your multiplication is important. Notice, too, that each result is

an array (1x3), not a vector.

This is just a vector problem—with momentum (mass X velocity):

(you want polar mode, angles in degrees), then

(vonEs)I)IEEE[Je

(JunTs)TEREEITERTM-mivelnxT)IREE]
(vTH)A.
(UBASE, UVAL and HMS* are new here; notice how they work.)

That’s the first train. The second train: (3JEEX]5)(2]-)(@)E&]K)

(@) eIENTERI11o] @)e eK]PYH)o[ENTER]X6JUNITS]

(EREET(2)56-32>MENY] 8TN

Now, the big moment: Result: [5445411.1 «-71.9 1

But compass bearings proceed clockwise from north (not coun-

terclockwise from “east,” as in math conventions). The momen-

tum heading ofthe wreckage (—71.9°) therefore indicates north of

due west (-90°)—so it looks like Canada should hire the backhoe.

(3) OBJECTS: YOUR RAW MATERIALS

17.

18.

19.

20.

One possible strategy: Build a “five-day” vector for each person.

[GJ3)(8)sPc)(8]sPc)(4]JsPc)(8]SPC)(8JENTER]Ja]AJSTO)

)13)(8)spc)(8]sPc)(7)sPc)(7)sPC)(8JENTER]B)STO)

[(GJLI)(5)sPc)(6]sPCc)(5)sPC)(4]SPC)(5JENTER]C]STO)

&)(7)spc)(7)sPc)(7)sPc)(8)sPC)(7JENTER]D)STO)

Now press SEIALTTAEL and use [MITAZ on each person’s

vector to sum his/her hours ((a]A) HiIA&1, (o]BHZIAZ], etc.). Then

you can either sum these results (4]+]+))}—or sum the vectors

(@[AJENTER]@]B]H)...) and MXTARE—to total all hours: 135

Gl1]spc]2]»]3]sPC]4 JENTER] 'JoJ AJSTO), and

Q)&(1e)sPco)»4SPC)1 ENTER] "[a)B]STO).

Then (VARINXT)IIEEE()and(XSo matrix
multiplication is not commutative.

To use to build complex numbers, just set system flag —19:

()8)*+/JsPO) (@ISJFIENTER). Now (TIENTER) (2IMTH) EEEHARETEN
Your result is a complex number, right?

Use system flags. When flag —15 is clear (press

EEEEEED), and flag -16 is set (1[6)+/=)A, this activates

polar/cylindrical mode. Similarly, the combination of

Band0)+/-)lactivates ENG mode. Clear all four of

these flags before going on.

Objective Answers 157

21.

22,

158

The 48’s current binary wordsize is determined by the states of

system flags -5 through —-10. These six flags form their own six-

bit binary integer whose value plus I becomes the machine’s

wordsize (the wordsize ranges from 1 to 64; a six-bit binary word

represents values from 0 to 63—hence the addition of 1).

To extract this number from the flag settings, test those six flags,

line up the bits and read the value: [PRG)EEEANXTINXT), then

Key- (1o)+/-) (e]+/-) (8]+/-] 6]+/-) (58J+/-]

strokes KN IEEH IEEH I I R

Results: H H B 1 1 1
Thus, the wordsize here is 000111,+ 1, or 8

Alternatively, you could do it with math: Start with the adjust-

ment value, 1: (§]CLEAR)(1]ENTER). Then test each flag and multi-

ply the result by that flag’s place value in the six-bit integer:

(0)+-)IER21X)+~I)X
O3F:(ONQ@EA]F:ORGOLA]F:[AKREG
-NEE® Result: 8

The easiest way topreserve the 48’s system settings is to save the

binary integers that represent the values of all the flags:

Now all flag states are saved as the VARiable5YS1. And since you

can have all the VARiables you want, this means you can save

any number ofdifferent flag settings—both the 48’s system flags

and your own user flags!

(3) OBJECTS: YOUR RAW MATERIALS

23.

24.

25.

26.

Press (MTH)IEEEE7)1 BEE DIEEE@)
Result: # FFEh

You don’t get # FFFh back again, because binary division trun-

cates any remainder: Since FFF,is an odd number (4095,), divid-

ing by 2 resulted in 2047, (not 2047.5), and so multiplying by 2

then gave 4094 or FFE,.
10°

Press IEMl=]#)(1)0]0JENTERIENTER), and then
©IMENUIELRM.... The results differ because they’re different ob-

jects. Only a binary integer object changes its displayed appear-

ance in response to a change in the binary integer format. The

string was created with the characters it encountered in the for-

mat of the binary integer at the moment you pressed EEIA

First, press [0]"")(e]o]Y&e]oJuJsPc]UINIDIEIRISITIAIN]D]
(]«)(ENTER) (remember the many characters on the shifted keys

when in alpha mode—use your CHARS menu to help you). Then

S A ETATE(<)()<JDELJENTER).

""ele]VIa]eJolL)J&a=)JSPCIENTER) (ENTER o]@]FI1X
(ENTER)(2JENTER[ENTER[H) (gets 4. B without the (a) key). Then

"sPc)(a)eJe)«)(GJAIL)(-JENTER)(+). To extract the value, as-

sume youknow only its surrounding characters in the string, and

use some handy string dissecting commands:

JswAP]o)s]U)B)ENTER) PRG)KALENEA.... Result: 4.8

Objective Answers 159

27.

28.

29.

30.

160

TRIENTER)2IEEXENTERIENTER) (MTH)IATH
(vxT)[RELTSwap)LA(Ol
(110} (a2JENTRY]PJENTRY] ENTER[SWAPJ+]+).

will produce an Inwalid Synt ax error, because it

tries to decompose a string into objects and put them onto the

Stack in postfix notation. So if you want a string that separates

the mantissa and exponent but still evaluates back to the num-

ber, you would need to use "6.822 18 €3 * #*"

Press (VARINXT)IC)I[PURG)IX]STO)
n| (the more recent [lE), (1[5)&)

BN Then(ONTEMENTER)GIEDT-HEEN
EvaD@PreV)(IPRMIAIEITTA.... Result: %* 3

(31#/-JsPC)S]oJFIENTER). Then(VARINXT])IEE(ENTER]+/). This
isn’t howthings wentwhenyoubuilt the other quadratic solution

(pages 128-129). The difference: When flag -3, the Numerical

Results flag,is set, the 48 evaluates names during Stack opera-

tions. Your name 'b' contains -8, so on 'b' gives8.

(result: '1t');
(result: 'i'); and (eJ&)(EJEVAL) (result: 'e').

Then (a]s]a]FJENTER) and repeat these keystrokes....

Numerical values, right? Flag -2 is the Symbolic Constants flag.

Only when Flag -2 is set will these constants’ names evaluate to

their respective numerical values (unless flag -3 is set, which

overrides a clear flag -2).

(3) OBJECTS: YOUR RAW MATERIALS

31. To PURGe more than one name at a time from your VAR menu,

justform a list ofthe names youwant to PURGe: (VARGIIEIE

ITA=5I~>IIA(s
PURGes all VARiables except E[I.

32. Buildthe expression:

HC SEXXIPIR]2]sT0). Then
a. (IJJQENERIX eX]sTo)IHdAEval)

Result: '2%-(2¥y)+y’

b. Al ENTER]X]"oY]STO) ('JIIEI (S)PURG)
I3Evay Result: 'Z#x—g¥w'

c. JJQITENTERIENTER)(elIX)(ET0)(=)KM(STO)
|EXPF[GN Result: 'Z#t+(t-1)'

d. (JeJalzlenerlEenTer3KMENTERI
()IEI (3]swar()I ENTERswar5) (<KT

|EXPF[G7W Result: '2*(z-3%¥y)+(y-3*z)'

This isjust substitution. But notice how the 48 doesn’t automati-

cally simplify an algebraic. Notice also the self-referencing name

(4) in case d: press repeatedly to see its effect....

Objective Answers 161

33.

34.

162

LY. « 0BJ+ +ARRY =

\». « 0BJ+ 0BJ+ DROP =LIST =

Clean up: &0}IIEIBENTER)(G)PURG)(JCLEAR). Then:

>»Pre)REANNEIETTIAENTERU(>)~(V])sT0); and

Notice that these simple programs are really nothing more than

a recording ofthe keystrokes you use manually. Now test them:

...JEEIM. .. .1ooks good;

OsPc)2)sPc3IENTEREDM . ..IEEIM. ... OK—butnotice that

the vector display mode will affect your results;

OK—but since a vector can’t contain real and complex numbers

at the same time (unlike a list), it makes everything complex;

(GENTER) ...nope—an error. You haven’t allowed for the

possibility of an empty list (consider how might you do that).

LABS: « L=V ABS 1 =»ARRY V=L =

or ¢« |3V ABS { 3 + »

So, press(for example)(G«>IEIH(o]«[AlB)YS)oJSPO)GITH
mmThen

(IO1)sPc)2)spc)3)spc)2[eNnTerI...

Result: { 5.4/7222070685 1}

b.
Result: { 5.19615242271 2

SIS)SPC]2]»[13)SPC]4]ENTER]
Result: Error: Bad RArgument type
A vector cannot have vector components.

 LAE:

(3) OBJECTS: YOUR RAW MATERIALS

35.

36.

Invoking a directory’s name will not move you to that directory

unless it’s in the current PATH (“between you and HOME”).

To give a directory named BILL a second name—say, DAYE—just

csTloN[RcL) 'BILL' into 'DAVE'. That way, when you

evaluate either BILL or DAVE, you’ll be sent to BILL.

Here’s one way to do it—call this program PHONES:

« DUP NUM CHR 0BJ» =»

To key this in: (G« »)GENeR)Pre)ANT EIER T(NXT)

("JoJ o]PTHIOINJE)S]]

First, OUP makes another copy of the string—so that it’s still on

the Stack at the end ofthe program. ThenNUM gets the character

number of the first character of the string; CHRE changes this

number back to a one-character string. Then 0BJ* decomposes

the string and evaluates its single component character, thus

opening the appropriate directory.

To test PHONES,just create a couple of test directories (named

with single letters of the alphabet—say, [}, R and 5). Then feed

PHONESsome hypothetical “words” (say, "Buine", "Roberts"

and "Simons") to see if it will open up the correct directories.

Will it find the directories ifyou fail to capitalize the target word?

Objective Answers 163

The Wide World of the HP 48

At this point, youknowsome ofthe basics ofthe HP48. Youknow about

its objects, its Stack, its keyboard, and many ofits menus and conven-

iences. And (if you’ve been following along and keying in every solu-

tion) you’ve had quite a bit of hands-on practice with the machine.

Hopefully you're now more comfortable with it; it shouldn’t seem so

cryptic or intimidating.

But now your interest in your HP 48 is likely to become a little more

narrow. At this point you’re probably thinking about some very speci-

fic problem or need—the chief reason you bought the machine in the

first place. That makes sense; it’'s why anyone buys a tool.

The problem is, of course, that the 48 is so powerful and sophisticated

that it’s impossible to cover its potential uses in one book (or even ten

books). It is simply impossible to predict all the myriad uses to which

you might want to put this machine.

Sothisbook doesn’ttrytodothat. Instead it shows you one major strat-

egy for getting the solution(s) you want—by building them yourself,

using the building blocks ofpostscript programming. That’s what the

rest of this book will concentrate upon.

In doing so, it will also show you many workable methods for organiz-

ing memory and using the customizing features of the HP 48 to best

advantage.

164

However, you should keep in mind that keystroke programming is not

the only approach you can take to meet your needs on the 48. Indeed,

programming may not even be the best way to go.

HP has built in some very powerful (and fairly easy-to-use) applica-

tions for topics such as plotting, solving, and symbolic and numerical

math; there’s no sense re-inventing the wheel after HP has built it for

you. However, those applications are extensive enough and useful

enough to warrant books oftheir own, and so they are not covered here.

For more help on the HP 48’s built-in applications, here is a suggested

reading list:

e Tolearn more about the graphics capabilities ofthe machine, in-

cluding the Plotter, the Solver, and the EquationWriter, you

should read Graphics on the HP 48G |GX

e Ifyou want to use the HP 48 to help you in your algebra and pre-

calculus math studies, you should read Algebra and Pre-Calcu-

lus on the HP 48G |/ GX

¢ Ifyou want to use the 48 to help you in your calculus studies, you

should read Calculus on the HP 48G/GX

See the back ofthis book for more information on how to obtain these

books.

Now, on to postscript programming....

165

 4] PROGRAMMING FUNDAMENTALS

Your “Automation” Options

Nowthat you’ve seen some ofthe tools HPhasbuilt into the 48,it’s time

to learn how to build some for yourself.

A toolin your 48 is an automatedprocess—a set ofoperations, recorded

somehow, so that you don’t need to re-do them every time you want a

similar result. Keep in mind that there are several ways to do such

“automation”—some of which you’ve used extensively already:

e Bynaming an object, you effectively record the keystrokes you

used to build or calculate its value in the first place. You can

reproduce or re-use that value whenever you invoke the name.

e Analgebraic expressionorequation tellsthe machine to execute

a given set ofalgebraic operations—on a given set of VARiables—

whenever you EVALuate that algebraic object.

e A postfix program tells the machine to execute a given set of

commands—on a given set of VARiables, Stack arguments, and/

or system parameters—whenever you EVALuate that program.

e A list’s elements can be any objects and any commands. And

whenever you EVALuate a list, each of its elements is evaluated

sequentially, so this is another way to record and execute com-

mands on VARiables, Stack arguments and system parameters.

Your “Automation” Options 167

Compare the various methods of “automation” with this table:

Object Allowed Source of Range of How You

Actions Values Results “Run” It

Named EVALuate| any available a single value: |invoke its

Object VARiables the value of the| name

object stored in

the name

Algebraic any any available a single value: |[EVALuate

Object functions VARiables the result object it

Postfix any any Stack argu- any value(s), |EVALuate

Program commands ments, available |objects and sys-| it or

VARiables, sys- tem conditions |invoke its

tem parameters name

List any any Stack argu- any value(s), |EVALuate

commands |ments, available objects and sys- it VARiables, sys-

tem parameters tem conditions

Consider, therefore, how you might best use each type of“automation:”

168 (4) PROGRAMMING FUNDAMENTALS

¢ Torecord anobject’s value, ofcourse, just name it as a VARiable.

e To do math with VARiables and functions—generally, any

“crunching” intended to give you a single result—use algebraic

objects. Theyre generally easier than postfix programs to

build, read, use, troubleshoot and understand.

However, though an algebraicishandy,it’s not especially “smart.”

It can do only functions (calculations describable in the 48’s al-

gebraic syntax). And of course, not all functions are defined for

all object types: Youcanaddtwostringsnamedaandbwith 'a+b',

but you can’t subtract them with 'a-b'. You’ll get an error (and

an algebraic generally cannot test for or avoid an error). Also,

remember that, unlike most object types, you can’t EVALuate an

algebraic simply by invoking its name. Thatjust puts it onto the

Stack; you must then EVALuate it explicitly.

¢ Whenever you need to get multiple results, manipulate objects or

the Stack, adjust system settings (flags, directory structures,

etc.—i.e. do any non-mathematical but nevertheless “record-

able” kinds ofoperations—these are jobs for programs or lists.

Of the two, a program is the more tailor-made for ready execu-

tion, because it does EVALuate when you invoke its name (not so

with a list). On the other hand, once you’ve built a program, you

can’t modify it (edit it) under any sort of automation—only “by

hand.” But you can readily edit a list via “recorded” commands.

The point here is to choose the most straightforward method for the

job. When names and algebraics will suffice, use them. As you learn

about programming, remember to save it for when you really need it.

Your “Automation” Options 169

Local Names

To recall the basic idea of building and naming a program, look back

at pages 132-135. Ofcourse, not all programs are so simple as those.

Sometimes you’ll need more. For starters, consider this.

Problem: Define a new function, g=2x+xy, so that the 48 can use it

within algebraic objects—just like a built-in function.

Solution: (JeJeJq]eJJOIXJGYo>=)21XeX+HXIX]Y)

(ENTER). Then press (G]DEF). That’s all there is to it.

Question: What just happened?

Answer: Your HP 48 actually wrote a short little postfix program

for you. To see it, just press andI+

&«
>

'Z*X:i*fil
»

The DEFINE command built this from your definition.

Noticethe * ® Y. That’s to tell this UDF (User-Defined

Function) how to take your function’s arguments offthe

Stack whenever you evaluate it. The ¥ and Y are local

names—having nothing to do with VARiable names—

that the 48 associates temporarily with Stack objects.

*For the sake ofspace, this Course will notnecessarily show programs formatted identically to your

48’s displayed version, but they are entirely equivalent. Line breaks—here and in the machine’s

display—carry no significance; they are merely formatting for visual clarity.

170 (4) PROGRAMMING FUNDAMENTALS

Keep in mind that you can use a UDF just like any built-in function:

Either you put its arguments onto the Stack and invokejust the name:

(4)ENTER[5IEER; or, you invoke the name and arguments in an alge-

braic object and evaluate it: 'q(4, 3)'

When you invoke the function’s name, JlFlll, the 48 EVALuates the

program, 9. The first set of instructions it encountersis + % Y

Essentially, this says to the 48: “Take the objects from the bottom two

levels of the Stack (upper one first—it was on the Stack first), and

temporarily identify them with the names* given after the *.”

With the algebraic form, 904, 9), theparentheses tell the 48: “Take the

arguments from within the () and put them onto the Stack—in order.”

At that point, then, the situation is the same as when you placed the

arguments onto the Stack: 9 executes, and the *+ ¥ Y instructions

proceed as usual.

So that’s what a User-Defined Function really is—a postfix program

that does just two things:

(1) assigns one or more Stack arguments to local names;

(ii) uses those local names in calculating a single result.

*There’s absolutely no requirement to use lower-case letters for local names—but it’s probably a

good habit to develop. It’s a convenient reminder that they are indeed local names (as opposed to

global VARiable names, for which you’ll likely use uppercase characters more often, since the VAR

menu displays only in uppercase).

Local Names 171

Question:

Answer:

Do you have to use DEFINE to build a UDF?

Not at all. For example, you could have built the 9

function yourself: (GJ«P)+]ala]XIsPc]afa]Y]sPc])

EX(JaXH(eaX)XealV)ENTER) (NeJa))([sTo)

Now test it: (4]ENTER[5)I

or ('JaJaJaJa]O)J4JeJSIENTER)[EVAL) No difference.

Question:

Answer:

Does the “crunching” portion of a UDF have to be a

single algebraic object?

No. Infact,youdon’t need to use an algebraic atall. This

postfix form would work just as well:

€«

":"H':I

%

Zx*xg*+
»

»

Key that in:

L=ala)XxIsPc]aaYIa]«2)sPC]aJaX)X

(Ja)X)(sPY)(eJalY)X)BENTER)(TQ)(STO)

Then try it: (4JENTER]S)IIEEN
or(DI)04]SJENTER) EVAL

172 (4) ProGRAMMING FUNDAMENTALS

Notice the “program within a program”—the extra set of« » inside this

last version. To declare and assign local names, you use the #, followed

by the ordered listing ofthose names. Then, somehow you must signal

the end ofthat listing. The two allowed signals are an algebraic object

or the beginning of a program.

Thus, these programs are valid:*

& 4 &

* ¥y 45 "Hi"
'SIN(45) +wery! * ¥ ycC M
"Bye' & &

* c SINwy -~ + "Good-"
» »
] B';IE' n] b':lE' i

» »

But these are “illegal:”

& &

> Y Y * 3
||H-|| "Hi"

&
i

'SIN(45)+wry!
* adb -

»

2

An algebraic object or program segment is the only allowed signal for

ending a local names declaration, because it also defines the environ-

ment in which those local names exist. The names are local (and thus

not in conflict with your global VARiables) because ofthe strict bound-

ary you draw around their “jurisdiction.” That boundary is the defin-

ing procedure (the algebraic object or postfix program) immediately

after the names declaration.

*They’re valid programs, but notice that they’re not usable as UDF’s: Each of them leaves more

than one result on the Stack—a definite no-no for a function.

Local Names 173

Each local name is born,lives and dies within its definingprocedure....

Hmm: Write a program to find (x +1)(x —1); take x from the Stack.

Idea(s): (1) <« Direct, but its
OUP 1 + SWAP 1 - = argument use is

» not obvious.

(i) % Argument use is
'W' STO K 1 + ¥ 1 - * more obvious if

% it’s named.

(1i1) < Looks a lot like
X (it), but uses a
€ localvariablein-

x 1 + w1l - # stead ofa global
* VARiable.

%

(1v) < Clearest solution
+ ¥ of all, visually.
'+l)=(w-1)"

Cases (ii) and (iii) dolook similar. Indeed, '®' STOand* X aresimilar

in effect: both store the argument into a name, 8. But that name is

something entirely different in each case. In case (ii) '®' is a global

name and will remain in the current VARiable directory after being

used. At the very least, this clutters up that directory, but what if

you’ve alreadyused thename ' ®' to store some otherimportantvalue?

Case (ii) would overwrite (destroy) that value. By contrast, in cases

(iii) and (iv), the local name, ¥, never exists in any VARiable directory;

storing the argument in it during its defining procedure does not affect

any global name, '®'. And the local ¥ disappears at the completion of

its defining procedure.

174 (4) PROGRAMMING FUNDAMENTALS

So you can see that local names are just as handy as global VARiables

for “calling up” input values whenever you need them—so that you

needn’t try to keep track of them in the Stack meanwhile.

“Ah: So invoking local names works just like invoking global

VARiable names?”

No: Recall that when you invoke a VARiable’s name, this triggers

an automatic EVALuation ofthe object contained in the name

(except if it’s an algebraic or a list). But when you invoke a

local name, there’s never an automatic EVALuation; the object

contained in the local name is simply put onto the Stack. And

you can demonstrate this difference. Try this program that,

given two arguments (the old name and the new), renames an

existing VARiable in your current directory:

&

+ old new
&

old RCL new STO old PURGE
»

»

The fact that this program works at all (try it*) says a lot:

When it first invokes the local name, 0ld, this simply puts the

object contained in 0ld onto the Stack. That object is aglobal

(VARiable) name—the name you’re changing. And clearly

this isn’t evaluated; if it were, the value in that name (what-

ever it might be) would probably produce an errorwhen the 48

tried to execute RCL with that value as its argument.

*You won’t see many explicit keystrokes from now on. Ifyou're still not sure how to key in and use

a program like this, you may want to review Chapter 3, pages 132-135.

Local Names 175

One more thing about local names: Since you can “nest” one program

segment inside another, you can therefore “nest” the defining proce-

dures of local names. Look at these examples:

&
* bc
"I(c™2-b™2)!

»

The simple case: Local names C and b exist only inside the defining

procedure. This could be a UDF—named LEG or something similar.

{
+ bc
'I(c™2-b™2)!

Don’t forget that lists can do it, too. If you EVALuate this list, a local

environment with C and b will be established for the algebraic im-

mediately following—just as with the program version above.

&
* 5
&

s SR s ¢4 #

g
_ T2Zx(ar3+p30)

This is a sequence oflocal name environments: Assigning a single arg-

ument (the side ofa square) to the local name, 5, the first defining pro-

cedure uses S to leave two results on the Stack (the square’s area and

perimeter). Since you can’t use an algebraic to get more than one re-

sult, the first defining procedure must be a program. When it finishes

(and 5 and its environment are gone), the two results are assigned to

local names a and P for the final calculation in an algebraic procedure.

176 (4) PROGRAMMING FUNDAMENTALS

* XY Z
€«

5 SOR y SOR + [

I*rhz*z 1

. '(wh2+ytg+z™2) !

SWAP
%

This is a nesting of local environments: The first procedure assigns

arguments to®,4 and Z, then does a calculation on ¥ and Y and assigns

that to another, inner procedure environment (the first algebraic), to

calculate a cylindrical volume. The end ofthat first algebraicis the end

ofthe inner environment; at that point, disappears. But the outeren-

vironment still exists, so the program can still use ¥,4 and Z until it

encounters a # to end that environment. Notice that the local names

from the outer procedure (¥,4 and Z) exist within the inner procedure,

too—because they existed when the inner environment was created.

*bc
"JT({c*2)-T(b*2+LEGCh, c)*2)!

%

Here, within an environment with local names b and c, you invoke a

UDF, LEG (from the previous page). So LEG EVALuates, creating an

environmentfor its local names, b and c. Do those conflict with the b

and C created above? No. Unlike nesting (where all commands creat-

ing the inner environment are executed within the outer environ-

ment), when you invoke the name of another, already-created pro-

gram, any local environment that program creates will be outside the

invoking environment. Therefore, LEG cannot “see” the local names

created above. It will interpret theb and c in LEG(b, c) as the global

VARiables names 'b' and 'c' and assign those to its local names.

Local Names 177

Program Design

Obviously, you can do a lot more with a 48 program thanjust straight-

ahead arithmetic with a few arguments. It’s time to explore the 48’s

inventory of programming tools—loops, conditional tests, etc. But

first, some general comments....

No matter what kind of machine you’re programming, you generally

work through certain basic considerations when designing the pro-

gram—before you even begin to write the code itself.

A general program design checklist might look something like this:

Define the outputs

Define the inputs

Set your strategy

Subdivide tasks:

Prepare

Get inputs

Process inputs

Give outputs

Clean up

178

Identify the results the machine is to calcu-

late—the acceptableranges ofvalues and their

order and format of presentation.

Identify the information the user will supply to

the machine—acceptable ranges ofvalues and

the order and format of input.

Identify the critical approach and processes.

Prepare memory, system parameters;

Prompt for, check and store inputs;

Calculate, trap undesired errors;

Format, recall results;

Reset memory, system parameters, etc.

(4) PROGRAMMING FUNDAMENTALS

This checklist can help when you’re programming the 48, especially

the step where you set your strategy. If you clearly define that

strategy first, you’ll have no problem matching it properly with specific

tools in the 48.

Also:

There’s no way around it: In postfix programs, you’ll have to use

some postfix notation. And it’s not intuitively easy to read:

1 2 + instead of 1+¢

So in every solutionyou see here, force yourselfto “walk” mentally

through the program steps: Envision the Stack (do it on paperif

it helps) and track the arguments as they come and go. If you

want to be a programmer, you must learn the language.

What's the difference between a built-in command and a pro-

gram that you build and name? ...Think aboutit....

Not much, right? So ifyou don’t find, say, a certain handy Stack

command already built-into the 48—no problem—build it and

name it yourself! In this way, you can literally add to the tool box

ofcommands in your 48. And then, of course, you can use those

tools to create still others, and so on.

The 48 is well suited for such modular programming: no single

program structure need be very long or intricate. Instead, it can

invoke other small programs as commands, which, if you’ve de-

signed them consistently, will behave as such (take arguments,

return results, generate predictable errors). Your design strat-

egy simplifies immensely ifyou consistently mimic built-in tools.

Program Design 179

First, look at some “warmer-uppers” to see how that design checklist

applies to your modular 48 workshop....

Problem:

Solution:

Write two programs, LMAX and LSUM,that do for lists

what the commands RNRM and CNRM do for vectors.

Outputs. Each program should return a real number.

Inputs. Each program will take one argument (Stack

Level 1)—a list ofreal or complex numbers (one type

only). Any type error should be reported

Strategy. Convert list to array, then RNRM or CNRM.

Subdivide tasks. No need to prepare anything. These

programs should use the current memory configura-

tion and flag settings, just like built-in commands.

No prompt for the input—postfix commands assume

the argument is on the Stack already. And no input

checks; CNRM or RNRM will catch object-type errors.

Each program consumes its argument and leavesits

result on the Stack—just like a built-in command.

No need to clean up—you didn’t mess up anything.

The code.

LMAX: «
0BJ+ -+ARRY RNRM

%

LSUM: &«
. 0BJ+» -+ARRY CNREM

180 (4) PROGRAMMING FUNDAMENTALS

All the formal design may seem like a lot of fuss over those rather

simple programs, but—like anything else—ifyou do it consistently, it

will become automatic. More to the point, notice how many ofthe steps

in the design checklist are taken care of by using or mimicking the

built-in commands. Now LMAX and LSUM will behave as commands,

too—especially if you've stored them in the HOME directory (so that

they’re accessible from any other directory). Try some more....

Problem:

Solution:

Write a program to compute a unit vector in the same

direction as a given vector.

UNIT: <«
DUP ABS ~

»

This consumes the argument and leaves a result—for

any non-zero real number, unit, complex number, vector

or array (and depending on flag —3, an empty name or

algebraic could be acceptable, too). For other argument

types—or zero values—you’ll get an error. All ofthis is

consistent with the behavior ofthe built-in ABSfunction.

Problem:

Solution:

Write a program to double an array and subtract 1 from

every element.

DS1: «
Z % OUP 1 CON -

»

Again, this consumes the argument and leaves a result.

And it works on several argument types.

Program Design 181

When you need multiple arguments—or need to do more “horsing

around” on the Stack—that’s when to consider using local names to

keep things clear and tidy....

Problem:

Solution:

Write a program that splits a given character string into

two substrings before the given character position.

SPLIT: <«
S P

s 1 p 1 - 5SUB
. s p s SIZE SUB

»

Follow the progress ofevents on the Stack (work on your

postfix reading skills). Notice how the program pre-

pares two arguments for the built-in command, SUB.

As usual, the program consumes its own arguments.

Indeed, local names accomplish this very nicely: they

removethe argumentsfromthe Stack right away, keeping

them available by name, then disappearing with them

when their procedure ends.*

Notice also that the two results (the two parts of the

original string) are left on the Stack so that the reverse

process (combiningthem)is aseasy aspossible (+)). This,

too, is a typical trait of the built-in commands (recall

how OBJ* works so well in this respect).

*But is SPLIT a User-Defined Function? No—it leaves more than one result.

182 (4) PROGRAMMING FUNDAMENTALS

You’ve been designing new commands that relied upon built-in com-

mands they invoke to set their input limits and generate errors. But

what if you want to create a command with more flexible tolerances

(“smarter”) than any built-in command it invokes?

Conditional Tests

The mostbasickind ofprogram flexibility is a machine’s ability tomake

decisions. Thatis,it can changeits course ofaction “on the fly”—basing

its decisions upon information it encounters during execution. The 48

makes a decision by asking a question that can be answered by “yes”

or “no.” The command that asks the question is a conditional test, and

it returns a 1 result for “yes” or a B result for “no.”

Do This: Press(PRa)lIZAMand lookthroughthe resulting menu....

Each item asks a question™ answerable by “yes” or “no”

(1 orB). And most ofthese questions compare one value

with another, therefore demanding two arguments.**

For example, the > command asks: “Is the object in

Stack Level 2 greater than that in Level 1?”

*Actually the SF, CF, TYPE and NOT commands are not tests (yes-or-no questions) at all, but you

use them so often in conjunction with the other tests that they appear on this menu for convenience.

**There are a few single-argument tests, however—the flag tests (FS?, FC?, FS?C and FC?C)—

where the only argument needed is the number of the flag to be tested.

Conditional Tests 183

Ofcourse, when you’re conducting such comparative conditional tests,

the two argument objects must be comparable. You can’t compare

apples with oranges; nor an array with a character string. In general,

the two objects being compared should be of the same type.

Examples:

184

arguments Test

s 11 <
1: 19
Result: 1 “Yes—the object in Level 2 is less than the

object in Level 1.”

ot 11 *ab
1: 19 &

ab <
%

Result: 1 The same test as above, but using local

names and a program procedure.

2t 11 +ab
1: 19 'a<b’
Result: 1 Same again, with an algebraic procedure.

ot 11 >
1: 19
Result: B “No—Level 21is not greater than Level 1.”

2: "AARDVARK" <
1: "zymuragy"
Result: 1 For strings, “less than” means alphabeti-

cally first (note: "Z" comes before "a").

(4) PROGRAMMING FUNDAMENTALS

arguments Test

2 (11,8) ==
11

Result: 1 == tests for equality ofvalue (the single =

symbol is to build algebraic equations).

2: (11,8) SAME
Result: SAME tests for exactly identical objects.

2: I th I é

1: '4x[xC'
Result: 'B*724#A*C' A test comparing expressions

acts as an operator, combining the two arguments into a

new expression (recall that you built a quadratic expres-

sionsimilarly: 'B*Z-4*#A*C'). To get the yes-or-no (1 or

B) answer to the inequality test, you must EVALuate it

with numerical values in each VARiable (H, B and C).

Result: B The logical operators can test combina-

tions of real values. Each value is taken

simply as non-zero (true) or zero (false).

H + ab
1: 64 '(a OR b) AND b'
Result: 1 You can build tests of your own like this.

Conditional Tests 185

Branching

So now you know how to tell your 48 to test values—ask questions....

Question:

Answer(s):

What can it do with the answers? How do you give it

one set of commands (“Plan A”) for a “yes” and an-

other set (“Plan B”)—or maybe none at all—for “no”?

You use one of the four IF program structures, all

available in the I3 (BRanCH) menu:*

Ansuwer IF
PlanA Answer
IFT THEN

PlanA
NO

In each of the IF-THEN structures, the 48 evaluates

PlanA only if the Answer to the test is true (1). If

Answer is false (B), the structures do nothing.

Answer IF
PlanA Answer
PlanB
FTE @}anfl

PlanB

In each of the IF-THEN-ELSE structures, the 48 will

evaluate Planf if the Answer is true (1). But if the

Answer is false (B), the 48 evaluates PlanB instead.

*The various menus in the toolbox offer a wealth oftyping aids for programmable commands,

many ofwhich you can use in this chapter. Be sure to use them—and explore them, including their

shifted menu items—as you build programs here.

186 (4) PROGRAMMING FUNDAMENTALS

Example:

Solution:

Write a program that leaves the square of the Level-1

argument only if its absolute value is > 1 and < 5.

&
> X
&

FBS(OM AND ABS(x)4S
X
IFT

»
»

IFT is the postfix IF-THEN. It findsits arguments on the

Stack:

‘%= '"ABS(x)=1 AND HBS(x)£25'
= lxfi\ 1

The first argumentis the test, which evaluates either to

1 orB. The second argumentis “Plan A,” the object to be

evaluated only ifthe test evaluates to true (1). Ineither

case, like other commands, IFTconsumes its arguments.

Note that your “Plan A” (the second argument) could be

a program (or any other object) instead of an algebraic:

If it were a program, IFT would find the Stack like this:

2t 'ABS(x)x>1 AND ABS(x)<5!
1: « w S0 »

Programs and algebraics are both valid object types for

procedural arguments such as these. And you could, of

course, use a program for the conditional test, too:

&«

+ X
&

fixflBS»léxHBSSEHHD*
« w S0
IFT

»

»

Branching 187

Question:

Answer:

How would the solution to the previous problem look if

you were to use the more readable IF...THEN...END

structure rather than the strictly postfix IFT?

Probably something like this:

<«

* X
&

IF
'ABS(xJ)>1 AND ABS(xJ<3!

HEN
%

END
»

»

IF...THEN...END doesn’t expect Stack arguments; it’s

probably easier to read. Part ofits readability makes it

convenient to key in, too: Since it doesn’t look for Stack

arguments, it doesn’t force you to put your “PlanA” into

the form of a procedure object (program or algebraic).

Instead, the 48 simply takes all instructions between

the THEN and the END to be part ofyour “Plan A.” Thus,

attheveryleast, it can save you the keyingin ofthe extra

pairof ' 'or% ¥,

So IFT and IF...THEN...END are your two options for using the result

ofa test todecide whether or not to execute a certain set ofinstructions.

Often, though, you want to use a single test to choose between two

different courses of action (“Plan A” and “Plan B”)....

188 (4) PROGRAMMING FUNDAMENTALS

Problem:

Solution:

Write a program that negates (changes the sign of) the

Level-1 argument if it’s a real-valued array* but drops

it from the Stack if it’s anything else.

&

DUP TYPE
+ w t
&

=3
=X

B
IFTE

»

®

IFTE is just like IFT—except that you need an extra

argument on the Stack for the “else” case:
3 '§==3'
21 Iyl

I: b
The first argument onto the Stack is the conditional test

('t==3" asks “ist equal to 3?”). Next comes the “Plan

A” object (for a true answer), then the “Plan B” object (for

false). IFTE consumes all of its arguments. Note also

that IFTE can be used as an algebraic function:
&

DUP TYPE
> w2t
'IFTEC(t==3, -%, @)

»

Just as with any other function, the argumentsinIFTE’s

argument list correspond to those you would normally

prepare for it on the Stack. IFTE is unique among the

four IF-THEN structures in having this algebraic form.

*To test the type of the given object, use the TYPE command: It will return a 3 for a real-valued

array (look up and read about TYPE in your HPmanuals to see all the various values it can return).

Branching 189

IF...THEN...END is a more readable version of the postfix IFT, so

IF...THEN...ELSE...END is a more readable form of the postfix IFTE.

Here’s how you might solve the previous problem by using the

IF...THEN...ELSE...END structure:

«

DUP TYPE
+ w t
%

IFI .

THEH |
-3

ELSE
H

END
»

»

Or (without local names):

«

IF
DUP TYPE 3 ==

HEN
NEG

ELSE
DROP B

ND
»

So those are your four choices for branching one or two ways, depend-

ing upon the outcome of one conditional test. But what ifyou want to

branch one of several different ways—using several tests?

Problem: Write a program to return a character string describing

the magnitude of a given real value.

190 (4) PROGRAMMING FUNDAMENTALS

Solution: «

ABS «PON
*m
&

CASE
Imé I

THEN
"Ones"

END

“THEN
"Tens"

I y==2"

THEN
"Hundreds"

“THEN
"Thousands"

“THEN
"Tens of thousands"

“THEN
"Hundreds of thousands"

“THEN
"Millions"

"Several gadzillion" 1888 .1 BEEP
END

In a CASE statement, each case has its own test; the items following it

(between each THEN and END) are evaluated only if that test result is

true. The final (optional) items are evaluated ifno test results are true.

Branching 191

You’ve seen how to use conditional tests and branching to check object

types and ranges and proceed accordingly. But whatifyou don’t know

all the possible problems? Sometimes, you need to try your commands

and deal with the errors as they arise....

Problem: Write a program to perform a simple division, but

substitute a character string if the attempted division

causes any error.

Solution: «
IFERR

s

THEN
NDDRUPZ "Mot a number"

»

IFERR (IF ERRor) is much like the IF-THEN command,

but rather than obtaining a conditional test result from

the commands between it and THEN, IFERR checks to

see if those commands generate an error. If so, IFERR

causes a skip to the THEN part (OROPZ "Mot a Mumber"

here). If there’s no error, the original commands (¢') are

completed and those betweenTHEN and END are skipped.

There’s also IFERR...THEN...ELSE...END. So now you can trap er-

rors—even if you can’t predict in advance what they might be.

That’s your basic repertoire ofbranching devices. Don’t worry—you’ll

get lots more practicein the quiz comingup. But first, consider another

important set of programming structures....

192 (4) PROGRAMMING FUNDAMENTALS

Looping

One ofthe most valuable features ofany computing device is its ability

to accurately and tirelessly repeat a series of commands....

Look: You can use one of these six loop structures on the 48:

Go Go
StoE StoE
START START

Commands Commands
Increment

To repeat a set ofCommands a known number oftimes, you

cancountfrom onevalue,5o, to anothervalue, 5topP—byones

(START...NEXT) or by any Increment (START...STEP).

Go Go
Stop Stop
FOR Index FOR Index

Commands Commands
T Increment

You can also name the loop counter (here it’s Index), so that

you can use its changing value in your repeated Commands.

WHILE 00
'NOT Done' Commands

REPEAT UNTIL
Commands Done

END
Or, for an unknown numaber ofrepetitions, just repeat until

agivenexitconditionissatisfied: WHILE...REPEAT...END

tests for the exit condition at the beginning ofthe command

loop; DO...UNTIL...END tests for it at the end of the loop.

Looping 193

Try some examples of each kind of loop....

Problem: Write a program to sum the elements of a given list.

Solution: «
0BJ»_2 SWAP
START

+

NEXT
»

This uses a simple START...NEXT loop. Name this pro-

gram SUML, and try it on this list:

{ 2/ 89 43 }

The first command, 0BJ*, puts the list’s elements and

their element count (4) onto the Stack:

b: 27
2" 27 2* 8
4: 8 4: 9
3: 9 3: 43
Z2: 43 2k Z
1: 4 1: 4

Next, the program puts a € onto the Stack and SWAPs

positions with the 4. Your loop counters are now ready.

The START will read (and consume) them, thus counting

from 2 to 4* and performing the commands inside the

loop (in this case it’s just +), once for each count.

*Notice that the number ofadditions necessary to sum all the elementsis one less than the number

of elements. This is why your loop count goes from 2 to 4, not 1 to 4. You could, of course, count

from 1 to 3 (or —45 to —43, or any other 3-count interval), but it’s simplest to use the element count

(4) produced by 0BJ* as the “end” of the count.

194 (4) PROGRAMMING FUNDAMENTALS

Question: How could you change the SUML program so that it

would correctly ignore any error arising from trying to

add with an “unaddable” type of object?

Answer: Put an IFERR...THEN...END structure inside the loop:
&«

0BJ> B 1 ROT
START

IFERR
+

THEN
SWAP DROP

END
NEXT

»

In this version, you put an extra value (8) onto the

Stack—so that the program will start with a valid “run-

ning total” even if the very first list element it encoun-

tersis “unaddable.” Here’s the Stack as START finds it:*
(: 27
b: 8
2* 9
4: 43
3 B
Z 1
1: 4

The commands inside the loop are now the IFERR

structure, which will allow the + ifthat doesn’t cause an

error, but will substitute a SWHAP DROP to dispose of any

element causing an “unaddability” error.**

*Since you’ve inserted your own starting value @), the number of additions necessary to sum all

elements is now equal to the number of elements. So your count goes from 1 to 4 this time.

**Still, your “sum of all elements” may not turn out to be a real number: Recall what + does with

character strings, complex numbers, etc.: Those object types will not cause errors here.

Looping 195

Problem:

Solution:

Write a program to count (in the display) from any two

given real values, with any real increment.

&
+iJd
&

THR
gUP 1 DISP 1 WRIT d +

STEP
2

»

This solution uses the START...STEP loop—where you

specify the increment ofyour count as well asits starting

and ending values. Name the program COUNT and try it

with various starting, ending and increment values.*

First the program takes your three arguments (begin-

ning, ending and increment values, respectively) from

the Stack and puts them into local names. Then it puts

the beginning value (1) back—as the first running total

to be displayed—then the beginning and ending values

(1 and J), as consumable arguments for START. Then,

inside the loop, you DISPlay the running total on display

line 1 and pause via the WAIT command for 1 second.

Then you add the increment value, d, to the running

total, then give d also as the consumable argument for

STEP (so that it knows how to increment its own count),

and that ends the loop.

*How does it handle negative values? Non-integer values? Non-real values?

196 (4) PROGRAMMING FUNDAMENTALS

So one solution for the COUNT program is to build and increment your

own counter on the Stack. You must dothatifyouuse a START...STEP

loop, because the count it conducts is hidden and inaccessible to you.

But is there another, easier way to display a count?

Sure: Use a FOR...STEP structure instead. In that kind ofloop,

its own count is accessible to you—via the name you give it.

Watch: £
d* 1

&

T

J

UI’\; C
g 1 DISP 1 WAIT

STEP
»

»

After assigning arguments to local names, you enter a FOR

loop, supplying begin and end count values (1 and j). Ina

FOR loop, you declare alocal name (existing only inside that

loop), to represent the current value ofthe loop’s count. In

this example, you declare the count name (C); then you use

it to put the count onto the Stack for display. Thus you need

no explicit addition to increment the Stack count: When

you end the loop (d is the argument for STEP, as before), on

thenextcycle theloop structureitselfwill have incremented

its own count, C. Invoking that name, C, puts the current

count onto the Stack; the displayed countis the loop count.*

*Notice that ifCOUNT were to offer an incrementof 1 only, you’d use a FOR...NEXT structure and

dispense with d. Realize also that, within the loop, you can do any calculation you want with C;

it’s an entirely usable local name—with a local environment nested inside that of i, j and d.

Looping 197

So that’s how to design programs to cycle through a known number of

loops. But what if you don’t know that number?

Problem:

Solution:

Write a program that drops objects offthe Stack until it

encounters a character string or empties the Stack.

&«

WHILE
DEPTH
E DUP TYPE 2 # »

IFTE
DEPTH 1 > AND

REPERT
DROP

ND
»

First, notice the IFTE structure within the WHILE test:

To avoid an error, only if the Stack is not empty G.e. if

DEPTH gives a non-zero value) will the TYPE command

test the Level-1 object. Then, since the Stack will at that

point contain at least the truth value 8 or 1) from the

TYPE test, the test to see ifthe Stack was not originally

empty must actually test whether its DEPTH is now > 1.

Both the TYPE testAND the non-empty Stack test must

be true in order for the WHILE...REPEAT...END loop to

begin; ifthe WHILE test returns 8 on very first time, the

program will end without the commands in the loop

having executed even once. This suits the problem:

With a character string already at Level 1 (or with an

empty Stack), the program shouldn’t do anything.

198 (4) PROGRAMMING FUNDAMENTALS

Again: AWHILE...REPEAT...END loop tests its condition before enter-

ing the loop itself. By contrast, consider this...

Problem: Write a solution that produces two odd random integers

between 0 and 100.

Solution:* IRAND: « 00D?. «
EHNU 168 = P ¢ MOD

»

068
DO
HTDIIT_DPZ IRAND IRAND

N[IDUPE 0DD? SWAP ODDT AMD

%

Unlike WHILE...REPEAT...END, a DO...UNTIL...END

loop is appropriate here, since it always executesits loop

commands at least once (even if your first two values

come up odd, you do need to generate them, no?). So the

conditional test comes after the loop’s commands.

Practice your postfix reading as you follow the com-

mands. Notice howyou put two start values (8 and B) on-

to the Stack before entering the loop. This is to allow for

the first commands inside the loop, whichkeep the Stack

clean by dropping two previous, unacceptable values.

*Notice how you assist the program with two smaller programs: IRAND generates a random

integer between 0 and 100; and ODD? tests an integer value for “odd-ness,” returning a truth value

(i.e. either B or not B)—justlike a built-in test. Ofcourse, you could instead include their contents

twice in the main program, but that’s not as good a use of the 48’s modular extensibility .

Looping 199

Quiz

That’s a brief tour of the programming structures available to you.

Now put it all together with these practice problems.

1.

200

Write two programs, one with local names and one without, to

calculate (A“L_BM;B_), given arguments A, B, C (in that order).
C

Unlike the two-argument comparative tests, the four built-in

flag tests (FS?, FC?, FS?C and FC?C) are not valid in functional

(algebraic) form. That is, you can’t build expressions such as

'"FST(-2) AND FC7(-3) ' —thoughthese might indeed be handy

in your programs. So, write your own: write four UDF’s to allow

you effectively to use flag tests in algebraics. In general, how

might you make various system flags more convenient?

Write a new conditional test, called LIST?, that tests whether a

given objectis a list. Then use LIST? to write another test, called

FLST?, that tests whether a given object is a non-empty list.

Write programs that take a given string and:

(i) reverse the order of the characters;

(ii) change all lowercase characters to uppercase;

(iii) change all uppercase characters to lowercase;

(iv) change both cases simultaneously.

(4) PROGRAMMING FUNDAMENTALS

5. What’s the primary use of a list as a procedure object?

6. Write a program that deletes from a given string...

(i) all leading occurrences

(ii) all trailing occurrences

...of a given character (another string—the second argument).

7. Write a program that waits for you to press the () key.

8. Write a program that takes a given list and a given conditional

test procedure (in that order) and applies the test to each element

of the list, returning a “filtered” version of the list—containing

only the elements that satisfy the test.

9. Recall the alphabetical directory structure described in problem

36 on page 149. Write a program that returns the object stored

in a given name in one of those 26 alphabetical directories.

10. How would you build your own version of UBJ+?

11. Write four programs that take a given real-valued array (not a

vector) and reverse or sort a specified row/column.

Quiz 201

202

Quiz Answers

As is usually the case with programming, there are many ways

to solve a given problem. First, using local names:

&« or €«

+abc *abc
€ '(a+b)*(a-b)-c'
ab+ab-%cv~ »

»

»

& or &

+abc *abc
& '(a™Z-b™2)-c'

asSllbsSl -c v~ %
»

»

Then, without local names:

& &

ROT ROT DUPZ + * ROT SG ROT SO -
ROT ROT - # SWAP ~ SHAP ™~

» »

Simply “repackage” each built-in command:

Fs?. « Fc?:. «
> f > f
& &

£ FS? £ FC?
» »

» »

(4) PROGRAMMING FUNDAMENTALS

Fs?c:. « Fc?c: «
3 > F
& &

f FSYC f FCYC
% »

» %

Note that you could also build little routines to test certain sets

ofsystem flags. For example, flags 45 through —48 set the num-

ber ofdecimal places in the current display format; flags 49 and

—50 represent the format itself. So you could write routines

named, say, DGTS? and FMT?, to test these parameters (recall

how you extracted the binary word size similarly from its system

flags on page 104).

3. LIST™ «
TYPE ==

2

FLSTT: «
IF

DUP LIST?
HEN
SIZE 8 >

ELSE
DROP @

ND
»

Quiz Answers 203

STVINTHVANNJININWVII04](¥)

13
+dHL

=
&
&

(U2E+U“BEZY(WY
GISUYILAI"2E-Uga17u(WYd6<u)31d1.

WAN8nsT'[:
-1E

FZIS=T

+oHJ
(U“E+U"BE7U(WYS9tUJHLdI.

WONansTt'[s
T404

FZIS=T

S¢

Efléfiau
(US2E-UZ2T7UONYABTUJELAI.

WAN8nsT'[:
T¥0d

FZIS=Twu

=+
¥

1X3IN
+4dMsSansttos

TY04
JZIS5T

S¢

1414

(AD

(T

(In

Mv

5. Lists are useful to evaluate as directory PATHs. For example, to

DOSTUFF in a directory, DIR1, that’s not in the current PATH,

simply save the current PATH (it’s a list of directory names,

remember) and then later EVALuate it, to get back to that PATH:
.. PATH
+ whereiwas
8

HOME DIR1 DOSTUFF
whereiwas EVAL

} "

6. (@) &
+ ch
&

HILE
DUP NUM CHR ch ==

EPERT
¢ OVER SIZE SUB

ND
»

»

(ii) «
+ ch
4

WHILE
DUP SIZE DUPZ DUP SUB ch ==

REPERT
1 SWAP 1 - SUB

ND
OROP

»

»

A WHILE loop is appropriate for these, since you don’t know if

you’ll need to trim off any characters from the string; the test

comes before the action. Note that only one ofthe two arguments

(the character to be trimmed) is put into a local name. The origi-

nal string is “whittled down” (bySUB), one character each loop cy-

cle; the previous cycle’s result is the argument for the next cycle.

Quiz Answers 205

7. Here’s one way: &
DO

DO
(nothing)

UNTIL
KEY

END
UNTIL

bl =
END

»

The KEY command returns a 8 if no key is pressed or a key

location (row-column) code and a l ifa key is pressed. You’re look-

ing for key code 61 (row 6, column 1), using a nested pair of DO...

UNTIL loops. The inner loop repeats until any key is pressed; the

outer loop repeats until the correct keycode (61) is detected. See

your HP manual for more about the related WAIT command, too.

8. LFLTR: <«
; list test

(31 list SIZE
H_lst i GET OUP
est EWL

»

»

You know the number of cycles through the loop from the SIZE

ofthe givenlist. Note that you must EVALuate the test procedure

explicitly (invoking a local name won’t do this for you).

206 (4) PROGRAMMING FUNDAMENTALS

Notice also that the HP 48 offers another way to accomplish this,

via the DOLIST command:

LFLTR: =
; list test

list 1
&

OUP
IF

test EVAL NOT
HEN
DROP

ND
2

DOLIST
»

2

You’'ll find a lot ofinteresting list commands in Chapter 17 ofyour

User’s Guide (and you’ll see more uses ofthem in Chapter 6 here).

*n
&

{ HOME > n »5TR 1 2 SUB
0BJ* + n + RCL

2

2

The strategy here is to build a PATH list to the given name and

then RCL that path—rather than EVALuate it—thus staying in

the current directory (alternatively, you could use the “remem-

ber-and return” strategy shown in problem 5). Notice how you

extract the single-letter directory name by first converting the

given name to a string.

Quiz Answers 207

10.

208

Obj»: «
DUP TYPE
CASE

THEN
eal+

(Real> Celes Stro ..Getc...)
ob TYPE GET EVAL ¢

»

»

Of course, you also need to define each of the specific routines,

Real+,Cmplx?, etc. And then to change how a certain object type

“decomposes,” you'd simply edit that specific routine—not 0bj=.

(4) PROGRAMMING FUNDAMENTALS

11. ReuvRBuy: <«
> r

r_ ROW- 0BJ*> OBJ» DROP =LIST
REVLIST OBJ+ =+ARRY r ROW+

»

»

ReuCl: «
* C
%

c COL- 0BJ> 0OBJ+» DROP =LIST
REVLIST 0OBJ+» +ARRY c COL+

»

»

SriRBuw: <«
> r
&

r ROW- 0BJ» 0OBJ+ DROP =+LIST
. SORT 0BJ+ =+ARRY r ROW+

»

SriCl: «
* C
&

c COL- OBJ» OBJ» DROP =LIST
SORT 0BJ+ +ARRY c COL+

»

»

Notice the assumed order of inputs—the array, then the row/

column number. But only the latter is taken as a local variable;

the array just sits on the Stack, with one of its rows or columns

first extracted, then replaced.

Quiz Answers 209

 (5) CusTOoMIZING YOUR WORKSHOP

Labor-Saving Devices

A calculator as powerful as the 48 is certainly a labor-saving device.

But that very power offers you so many choices that the keystrokes

simply to make those choices soon become laborious, too—unless you

take advantage of certain built-in features.

For example, it’s great to be able to build and name a lot of new

commands. ButthenyoumayhaveseveralpagesinyourVARiable menu

to “leaf through” whenever you want to use one of those commands—

which defeats the convenience ofthe menu for quick typing/execution.

What to do? Use custom menus to group together the commands you

typically use together, thus reducingyour need for(NXT)’s and]PREV]s.

This is just one example ofthe many labor-saving devices the 48 offers

you. You set up certain assumptions about your particular needs and

work habits, so that the machine will do more of what you want with

fewer keystrokes.

So as you study (and in some cases, review) these features, consider

how you might best use them. Weigh the labor you save with a tool or

configuration against the labor you expend to build it and useit. That’s

the key question to ask yourself. This chapter on customizing is really

aboutoptimizing (not maximizing or minimizing); the best solution for

one situation isn’t necessarily that same for another.

Labor-Saving Devices 211

Input Shortcuts

You’ve already seen most of the ways to ease and shorten your use of

the 48’s densely-packed keyboard, but here’s a good one-glance recap.

Alpha Modes

212

(@) Normal single-stroke alpha mode. Normally, pressing

yieldsN; pressing (@J&q]N)yields n; and pressing yields

K. Thus, each key may have three alpha “meanings.” But the

alpha mode only lasts for the next keystroke.

Lower-case single-stroke alpha mode. When you need to

input many lower-case alpha characters, you can change what

the (&) key does by pressing (eJ&]a). Thereafter, until you

press or , yieldsn and yieldsN. The

or returns the alpha-shift keys to normal. The

alpha mode lasts just one keystroke.

Normal alpha-lock mode. This locks the keyboard into alpha

mode until a third press of(@) (or or (CANCEL)) releases it.

(@]eJ&q]o) Lower-case alpha-lock mode. This locks the keyboard

into lower-case alpha mode for the duration ofthe Command

Line.

Flag —60 affects the action ofthe four alpha modes. When it’s clear,

they operate as described above. But when it’s set, the single-

stroke alpha modes are disabled; a single(a)enters alpha-lock

mode until a second press of (@) (or (ENTER) or (CANCEL)) releases

it.

(5) Cusromizing YoUR WORKSHOP

The Interactive Stack

(a) Allowsyoutoreview the contents ofthe Stack and manipulate

it directly Among the many handy Stack tools are these:

1:
ECHO VIEW NG

{ HOME }

4: ungn

3 12%-T!
2 (A8 EHE

 {AB}

éfifl]lflflflfimfllIEUIHNEEEEEES

{ HOME }

4: g

> 1%/T!
e by [N
I2ITW

{ HOME }

gP 'Z*K:T':
%5 ' B% FOLLD

ONS

{ HOME }

4: nqn

2 ‘gxneT

{ HOME }

4: 2%T!
3 {AB}
2t 45
1: '2*11/T'
[EZHO [MIEK [PICK[ROLL[ROLLD[*LIZT]

{ HOME }

4: ngn

> {AB}2 45
1: 'Z*TI'/T'
[ECHO [MIEK [PICK[ROLLJROLLD{*LIZT]

{ HOME }

4: ngn

2 45
2t ei
1: {AB 2}
[ECHOVIEM[PICKROLL[ROLLOJ*LIZT]

{ HOME }

4:
3:

||d||

1: { 'Z*TI'/T' { H B }
[ECHO [MIEK[PICK |ROLL[ROLLO{*LIZT]

Remember, too, that [3di[ill copies a selected level ofthe Stack

right into your Command Line, to save you from retyping it.

With the 48, there are more than one way to do most things.

Input Shoritcuts

e

213

Command Line Entry Modes

A built-in menu item normally evaluates immediately, mak-

ing it impossible to use it as a typing aid. In fact, the only

keystrokes that won’t normally evaluate immediately are

numbers and characters. Thus, (4)(SPC)(5) results in a 9.

PRG Youcan activate this mode by starting a list ((G]{) or program

(&)«»)) or via [JENTRY). When you see the PRG annunciator,

any menu key for any command, function, or VARiable will—

instead ofevaluating—insertits name, surroundedby spaces,

at the cursor on the Command Line. Akeyboard command or

function (such as(+)) behaves similarly: its name goes into the

Command Line, surrounded by spaces. Thus, (=]ENTRY)(4)(SPC]

(5)#H)resultsin4 3 + 4 onthe Command Line.

ALG Youactivate thismode by starting an algebraic object or name

()). Now any key or menu item that is afunction or VARiable

(i.e. anything allowed in an algebraic object) will be inserted,

without spaces, at the cursor on the Command Line. Thus, ()

(4)H)(5) results in '4+3"' on the Command Line.

HALG PRG Youcanturnonthis mode by pressing (—ENTRY]>]ENTRY]

while in normal mode, or (') while in PRG mode, or (=]ENTRY

while in ALG mode. Here, any command key or menu item

behaves as it would in PRG mode, while any function or vari-

able key or menu item behaves as it would in ALG mode.

You cannot type an operation, such as (CANCEL), into the Command

Line (that’s the difference between commands and opera-

tions). To determine ifa keystroke is an operation, command,

or function, see the Operation Index in your HP manual.

214 (5) Cusromizing Your WORKSHOP

Special Entry Modes

(>|MATRIX] The Matrix Writer makes entering and editing two-

dimensional arrays extremely easy and intuitive.

You are less likely to make careless mistakes if you

use the MW instead of the Command Line to enter

arrays. See your HP manual for details.

(]JEQUATION] The Equation Writer allows you to enter any alge-

braic object—however complex—in a visual format

similar to that on paper. The EW itself has a special

entry mode:

GJ{) Withinthe EW,youcandisabletheimplicit parenthe-

ses by pressing (G]{}). This allows you to enter poly-

nomials without having to press (») after each expo-

nent. You can then reactivate the normal, implicit

parentheses feature by pressing once again.

For more practice with the EW, see your HP manual

or read Graphics on the HP 48G / GX, by Ray Depew

IV
IR g\

Input Shortcuts 215

The VAR Menu, CHOOQOSing and [>]MEMORY)

Keep in mind that for many built-in tools, there are input forms that

make your specifying ofvariables and their contents much easier, via

the MIIHE box.

In fact this is true even for variables and directories in general. Of

course, each directory has its own VAR menu, where all of the objects

you create in that directory are listed—and whenever you need quick

access either to the object’s name or the object itself, it’s usually easiest

to use the VAR menu. But for a more complete tool that surveys your

directories, variables and their contents, try the Variable Browser—

press (]MEMORY]....

This input form allows you to create, edit, move, copy, purge or mea-

sure the size ofthe objects in yourHP48’s memory. (In Chapter 6, there

are some programs which allow you to do similar things—without an

input form—not only with variables but with entire directories, too.)

Play around with the Variable Browser, as you wish—and read more

about it in your HP User’s Guide.

216 (5) Cusromizing Your WORKSHOP

The Recovery Commands

There are four operations that can:

* Save you time e Save you grief from errors

(2JCMD]

The 48 saves the last four most recently entered Command Lines in a

special part of its memory—just in case you need to retrieve a long,

hairy Command Line, make one small change, and re-enterit.

Example:

Solution:

Create these algebraics:

(a) '—T((n+6)(W*2-0))+K"2!

(b) 'J(x*3-8)'
(¢) 'JO(K+BI/(R2+30)-r"E!

UZAGEEROEOANGE08EWONFEBR80
)XY2)ENTER)
(]CMD]¥Y]ENTER

offers you a CHOOS box of the four most recent

Command Lines.

The Recovery Commands 217

(]UNDO

Try This:

Solution:

Assuming the three algebraics from the previous ex-

ample are still on the Stack, press(+)to add two ofthem.

Oops...you didn’t really want to do that. Now what?

How can you recover from such an error?

Use to retrieve the Stack as it was before the

most recent command (that was here).

(2JARG)

Calculate:

Solution:

Another:

Solution:

@4x5+4-@4+)5)

 (4]ENTER]5IX]2JARGIYJARGIH)=]+
Result (FIX 3): 1, 835, 860 returns all of

the arguments consumed by the last command.

1+

Evaluate = +x7 —x, for x =3. Then press (°]ARG).

(GJEQUATION[/Al1[+X¥eX[2))+>]=]a)X)
3]JoJX]STO)[EVAL]>JARG).. .. Results:

—-2.000 (Level3) B.588 (Level2) 3. 8008 (Levell)

The arguments of (=), the last command in the expres-

sion,return to the Stack (the radical evaluates toH. SHH).

218 (5) Cusromizing Your WORKsHOP

(™MENU

Often, switchingback to a previous menu involves only one or two key-

strokes, in which case is no shortcut. But to switch easily to

the back “pages” of a menu—or into the interior of a nested set of

menus, (JMENU) is a lifesaver.

To Wit: 2.351 A/sec + 4.56 p/min = _??_m/yr

Solution: ATHPrev)IET
THEECEEE
(4-)5)8)Iveny)IvenY)IRILE()
()eIveng)(vxT)I(EIveny)KT

Result: ¢.4H6_m-yr

The Recovery Commands 219

Customizing Your Workspace

Keyboard shortcuts are handy, but they can’t do it all for you. Custom-

izing your workspace can also go a long way toward reducing your key-

strokes and headaches.

But before you leap into it, remember one caveat:

Customization should make you more organized, not less.

As obvious as this advice seems, it’s quite easy to get lost in the levels

of customizing options that 48 provides—so that you end up making

more work for yourself.

Briefly then, here are some specific ways you can customize your 48:

* Organize your workspace into directories.

* (Create custom menus.

e (Create custom keyboard layouts.

* Create custom flag setups (mode settings).

* (Create custom tools.

How much of this customizing you should do depends on your needs.

The remainder of this chapter is devoted to introducing you to these

customization approaches and how they best fit together into an opti-

mization approach.

220 (5) Cusromizing Your WORKSHOP

Directory Structure

You’ve dealt with directories briefly in this Course, but here’s a more

“full-blown” scenario to consider: Assume for a moment that you're an

engineering student with a wide range ofbasic problems and subjects

in your courses. Therefore, the most important organizational deci-

sion you make on your 48 is probably your directory structure.

One option is simply to use your HOME directory for everything. To see

where this gets you, take a look at your HODME VAR menu right now. If

you’ve done all the examples and problems in this book, that menu now

has nearly twenty pages. You’ll wear out your key (and your pa-

tience) looking for any given VARiable ifyou insist on dumping every-

thingin yourHOME directory. Notonly that, you’ll be limited to keeping

only one variable named 'VY' or '®' at a time—despite the vast num-

bers of equations that use these common variable names.

ADbetter optionis to subdivide yourwork into a structure ofmeaningful

groups and subgroups. After careful thought, you—the engineering

student—might come up with something like this:

H[II"-1E

| 1 I |] -

CALC ELEC PHY: GEOM CHEM STAT

NUMRC :YME STATICS DYMAM MPARA PAHRA

METWORK FOURIER MISC PLAME SOLID TRIG

Directory Structure 221

Do It: Create that directory structure and return to HOME directory.

Go: (No)olcAU)o& mevory) ITFEEIA

("Ja]a]EJL)E]ICc]oIdul (YPRYS)o)I3

(TelocEloMETIA ()o)ocREM[«)HAIS

()SITAIT)I
(vaR)R(@)(NE(ARIA) (@)(veny)[HATHE
(Mol (PYAIRIA) (=)IS
[)HoME|VAR)HEE](@)()FDANE)(@))veN)
(Tele)(sYoo)(«)MMTRAT
(=>Yrove)(vaR)IR()(@)(@SDADCES)@Iveny)HHIH
(TYNA
()HoME)IEEEE(o]NEDWIOIRIK) (@))MENy)A
(Tl(EXoIulRIER)(o)EAIA(YoMIsIC)(«)AT
([)HomE(VAR)IR(o))NUIMIR)C)(@)()veny)A
(Tele)(SIYIM(B) (o)AT(-]HOME[

Nowyou can tidy up yourHOME directory’s VAR menu, by PURGingthe

unwanted variables and moving those that you do want to keep.

Tidy Up: Write a program, MOYY, to move a variable to another

directory and PURGE it from the original directory.

Like So: MOW. <« » a b « PATH a DOUP
RCL SWAP b EVAL STO
EVAL a PURGE » =»

222 (5) Cusromizing YOUR WORKSHOP

MOVV expects the name ofthe object on Level 2 and the PATH list ofthe

target subdirectory at Level 1 of the Stack. For example, to move the

variable 'EXPR' to the NUMRC subdirectory ofCALC, you would press

(A(inthe VAR menu)ENTER), and (GOlHOME]eo]cJAIL)(C)(SPC)
(NJUIM[R]C)JENTER), and (VARJIEIEI. To see your results, you would then

press RIMRTA;IFEA will be on that directory’s menu.*

And: While you’re at it, create a program, COPY, in your HOME

directory, that copies a variable into another directory

without purging it from its current directory.

COPY: « »+ a b « PATH a DUP
RCL SWAP b EVAL STO
EVAL » =»

Use It: Use MOYY and COPY (and G)PURGE) to shorten the VAR

menu of your HOME directory to 2-3 pages. Most of those

variables have been stored for this Easy Course and aren’t

going to be useful to you in the future, so you can purge

them (save any you think you may use). When cleaning

house, remember that allows you to quickly view

the variables on one menu page.

Notice also that HP has built in an entire application for

viewing, moving, copying, and purging variables. Feel free

to explore the (]MEMORY) menu on your own, as you wish.

MOVY does not check to see if a VARiable of the same name is already stored in the target

subdirectory. If so, you’ll lose the contents of that VARiable when MOVY executes. Of course, you

could modify MOVY so that it does check for a pre-existing VARiable by that name.

Directory Structure 223

Custom Menus

Now that your directories are in place, it’s time to make some custom

menus that will serve you conveniently in your engineering student

“career.”

Amenuisjustalist ofobjects that the 48 associates with the menukeys

and a menu display via the MENU command.

Watch: To go to the first page of the MODES menu, you could, of

course, press (§]MODES); or you could instead press

(ME)(N) (UJENTER).

The MENU command understands that a real number argument refers

to a built-in menu. Most built-in menus have corresponding numbers

(see Appendix C of your User’s Guide).

Another: Go to the third page of the UNITS VOL menu.

Solution: (4]5]-Jo]3)(efaJMIEINJUJENTER). The page number ofthe
menu is given by two digits after the decimal point (if

none are given, the 48 assumes . d1).

224 (5) Cusromizing YoUur WORKSHOP

Notice that the CST (CuSTom) menu has the number 1. That is, the

list ofobjects currently stored in the variable named CST in the current

directory is assigned the menu number 1 by the 48.

This is yourcustom menu—custom because you can readily change the

list stored in that VARiable CST. And keep in mind that:

e You can have a different CST VARiable in every directory;

¢ You can create many lists in a directory—Ilists that can be menu

lists whenever you decide to store them into CST.

Try One:

OK:

Custom Menus

Move tothe{ HOME CALC 3YME ¥ directory and create

a custom menu containing the functions COLCT, EXPAN,

ISOL, +0r, and two short programs, PRINC and GEN that

set and clear flag —1, respectively.

(vaRNxT)TRR

Then: (GJ«»[1]+/-)(sPc]a]s]a]F]

(YaJe]PIR]1N]C) (ENTER)(STO)()« »)

(1)3/-JsPc]e]c)o]FJENTER]'JofoG]EJN]ENTER)(STO).
These willappearonthe VAR menuinthe5YMEB directory.

Next, create the menu list and store it into CST: (&)}

I
GEN|PEINC[ENE@E008UELEIEO)

Now test it—press [CST). Presto!

225

Now go back to the HIME directory ((?JHOME)) to see what custom menu

you get.... It’s probably blank (if you don’t have anything stored into

CST at theHOME level yet) or it’s some other menu. But no matter what,

this is not the same menu youjust created. That one is available only

when you're in the $¥ME subdirectory.

Now, the thought may occur to you that this list could be useful as a

custom menuin several ofyour engineering directories. So, should you

copy the list to the CST VARiables in the other directories?

Probably not. There’s only one CST in each directory and you don’t want

to monopolize all of them with copies of the same menu. A better

approach is to store that particular menu list into some other name,

and make it available to all of the directories, so that when you need

it, you can store its name into the CST variable at that time.

Try It: Move to the $¥YMB subdirectory again and retrieve the list

stored inCST. Name itCALG and store it as a variable in the

HOME directory—so that it’s accessible to all directories

(remember how directory paths work?).

Simple: (VAR(NxT)ERETIERTRIEo)L(G)ENTER)
(ST0). Now, from any directory, you need only to store the

name CALG into the local CST variable (either with or

with the MENU command), and then press to activate

your custom menu.*

*Note, incidentally, that when you use [CsT), ifthe name CST is not defined in the currentdirectory,

the 48 will use CST from the parent directory.

226 (5) Cusromizing YOUR WORKSHOP

Actually, you really ought to name all ofyour custom menu lists. This

allows you to switch easily between different custom menus.

Some—like CALG—may be useful for many directories and therefore

you store them in the HOME directory so that they’re accessible by all.

Butifyou have other menu lists whose uses are more specific to a given

directory, you would store those list names there. The point is—as

with any VARiable—you control the universality of access to a custom

menu list by where you store it.

Keep in mind, too, that even if the 48 can find your custom menu list

name to storeintoCST, this doesn’t guarantee that it will be able to find

the menu items named in that list.

Try This: At HOME, press JSGINelENTER]"o)@)CIS]T)@JSTO)
{ALI.... What happens? Instead of executing PRINC

(i.e. setting flag —1), you get the empty name, 'PRINC'.

The 48 can’t find any object associated with that name.

Of course not—the VARiable, PRINC, is stored down the

hierarchyinthe{ HOME CALC $YME ¥ directory. That’s

not in the PATH of the HOME directory, so it’s currently

invisible to the 48. So use MOVY to move PRINC and GEN

back to the HOME directory where they now belong.

No matter how you invoke it (by typing it or via a VAR menu or custom

menu), a VARiable name can be evaluated only if it’s in the current

PATH.

Custom Menus 227

Custommenus work much like the built-in menus—including and

for (&) and (®}—unless you have other uses for the shift keys....

Example: Modify CALG so that instead of using three menu keys

for COLCT, EXPAN, and ISOL, you use just one. Make

COLCT the normal (unshifted) choice, EXPAN the left-

shifted (&) choice and ISOL the right-shifted()choice.

Solution: Create thislist: £ { "C,E, I" { COLCT E®PAN

ISOL } X =Gmr GEM PRINC 32

Note the format for each item with shifted meanings:

{ "“item name" { action (G}action [B}action } 2

This list-within-a-list appears wherever you wish it to

appear (first position in this case) in the custom menu.

Store this list in CALG (at HOME), and use to testit.

This is how to pack more functionality onto six menu keys. Ofcourse,

your custom menus can have multiple pages, too—but after a couple

of pages, you’d be playing hide-and-seek again with all the choices.

 [

 228 (5) Cusromizing YOUurR WORKSHOP

Do This: Turn CALG into a one-stop custom menu packed with

useful goodies gathered from various built-in menus:

Item name DEHN EES I Al

Normal COLCT 1_m DEG FS7 FIX ROLL

Left-shifted EXPAN 1_ft RAD SF STD ROLLD

Right-shifted 1S0L IFTE GRAD CF RND PICK

Solution: Store this list as CALG in the HOME directory:

{ { "GEI" { COLCT EWPAN ISOL 1 2
{ "MISC" € 1_m 1_ft IFTE J 3
{ "DRG" { DEG RAD GRAD I I
{ "FLG" { FST SF CF 1} I
{ "DIGIT" { FI» STD RND 3
{ "STAK" { ROLL ROLLD PICK } 3} 1}

CALG is now a very useful custom menu list, so useful, in fact, you might

want it available anytime—without overwritingthe CST in the current

directory. That is, you might want CALG as a temporary custom menu:

Look: < CALG TMENU *, stored as CMEN in your HOME directory, lets

you use CALG without putting it into CST. You invoke a

temporary menu with the TMENU command. Like any other

menu, it remains active until another menu replaces it. It’s

just a custom menu that doesn’t use any CST VARiable.

Custom Menus 229

Custom Keyboards

With custom menus, you redefine the menu keys—including their

shifted versions. But what about the rest ofthe keys on the keyboard?

HP has laid out the keyboard on the 48 to make it maximally useful for

most people. But in case you're not “most people” or in case you have

aspecial program or application, HPhas also made it possible to totally

“redo” the keyboard.

In fact, you may have already seen examples of this: Whenever you

enter a special environment—such as the Equation Writer—the key-

board is reassigned. Only a few of the keys are functional and their

operations change to fit the special needs of the environment.

It’s done like this: Each and every physical key is identified by its row

and column numbers. The key is 24 because it’s the fourth key in

the second row. Similarly, is 51; (Y¥is 45; (3) is 84; (w)is 55, etc.

Then, each physical key location has up to six standard definitions—

correspondingwith its six shift positions (recall page 28). For example,

key location 73 ((5)) has the following six definitions:

1 Unshifted ((5)): the number 3

2 Left-shifted ((&)STAT)): page one of the STAT menu.

3 Right-shifted (O)STAT)): the STAT application.

4 Alpha ((«JSTAT)): the character "2"

5 Alpha left-shifted (@[¢<3)STAT)): the character "£"

6 Alpha right-shifted (@]>)STAT)): the character "%"

230 (5) Cusromizing Your WORKSHOP

Plus, you can assign to each key location up to six more definitions

(user-assigned definitions), which become active whenever the 48 is in

User mode. Thus a physical key location may have up to twelve defin-

itions assigned to it—six built-in (active in normal mode) and six user-

assigned (active in User Mode).

To make a key assignment, you assign an object to a key number. For

example, in the standard (built-in) keyboard definitions, the character

“t"” is assigned to the key 73.5, where the 73 is the key location and the

.5 indicates which shift position. The codes for the shift positions

correspond to the list above—except that the unshifted position is de-

signated by either .1 or .0 (or no digit at all).

Try It: Change so that it executes *01 instead.

Easy: Enter the object: &)« »))SYMBOLICINXT) EXXR1M(ENTER)

Enter the desired location and shift mode: (3]3)-]2]

Assign the key: (]Mopes)(AFEIIETN

Then, you access User mode much the same as you do alpha mode:

Press once and your keyboard is the user keyboard forjust the

next keystroke. Press JUsR[&GJUsR)and you’re in User mode until you

press a third time.

Try both now, and test your key assignment....

Custom Keyboards 231

You can change your custom keyboard, too: Just as the current custom

menu refers to a list named or stored in CST, so the current custom

keyboard refers to a list of key assignments stored in memory.

Look: Press to retrieve the current user keyboard list.

Result (STDmode): £ § « *0r *» 33.2 }. The5 means

that the user keyboard is the same as the Standard key-

board except for the items following it in the list (i.e. with

nokey assignments at all, [dN@would yield simply{ S).

That means that you can use named lists to store and save special

keyboard settings—ready to “install” them when you need them.

Example: Redefine these keys to produce audio tones at specified

intervals in the musical scale, given a starting pitch:*

Key Interval (half-steps) Key Interval (half-steps)

0
™ -1 &) -12
(a) +1 2]a) +12

(< =)

) +2

*A complete-octave musical scale is a geometric series of 12 audio frequencies,

called half-steps. The 13th frequency is the octave—double the frequency of

the first.

232 (5) Custromizing YOur WORKSHOP

Solution: First, alittle program to compute and sound the correct

interval (for 1 second), given a starting frequency:

INTV. « 2 12 INY ™ SWARP *
* OUP 1 BEEP =

Store thisinHOME. Then, here’s the keyassignment list:

{ S« 8 INTV » 3l
« -1 INTV » 35 « -12 INTV » 33.2
« 1 INTV » 25 « 12 INTV » 23.3
« -2 INTV » 3¢ « 2 INTV » 36 ;

Store this list as TONES inHOME, and then make it your

User keyboard: (VARRIETE ImooEs)(REATTA.

Now test it: Key in a starting frequency, 4)0)(ENTER),

then press ((JUSRJ&JUSR) and horse around with

and the arrow keys.*

The point here is that you have saved these key assignments in the list

named TOMES, so you can reinstate them any time you want.

*Notice how it helps to use the existing labels of the keys: If your assignments are at all similar

to keyboard functions, consider locating them there (as did the example on the previous page). If

that isn’t practicable, and ifyou use a lot of key assignments so that it isn’t convenient to try to

memorize what and where they are, you might consider plastic keyboard overlays (available from

HP and/or their dealers). Notice also that although reassigning the key is certainly allow-

able, it’s not too wise. After all, it’s one of the most heavily used keys; ifyou need it—as

along with your key assignments, you’ll find yourselfconstantly having to toggle in and out ofUSER

mode. Not so handy.

Custom Keyboards 233

You’ll notice that the other keys still retain their standard definitions

while you’re in U$ER mode. Can you disable them so that only your

reassigned keys work?

Sure:

But:

No:

Justdelete the standard key definitions, 5: USR]"[«S)[ENTER)

vooes)[RFTEITANA Now press [IHMEto see the current

user key assignments.... The 5 is gone.

Notice also that *(1 is still defined as the key. How

can that be? Whenyou assigned TONES via BiIT#, didn’t that

wipe out the previous custom keyboard?

Custommenus use a VARiable (C5T) to store the current menu

list, so storing a new list into CST does indeed replace the

previous custom menu. However, custom key assignments

are stored in a reserved part of memory, and storing new key

assignments add to the previous key assignments; only the

specific keys designated in the new list get their assignments

replaced. You must specifically delete any old key assign-

ments that you don’t want.

234 (5) Cusromizing Your WORKSHOP

Do It: Delete the *01f user key assignment.

OK: Press (332)[IIMA Confirm your work with[NH.*

Finally, what if you now need some of the standard keys—say, ([ENTER),

(«), €sT), (VAR), and the menu keys? How do you restore their standard

definitions without restoring all of the standard keys?

Easy: Simply assign the name, 'SKEY', to each standard key you

want to restore. Here’s the list:

{ SKEY 31 SKEY 35 SKEY £3 SKEY 24 SKEY
11 SKEY 12 SKEY 13 SKEY 14 SKEY 15 SKEY 16

Store these additional user key assignments: EL[H.

You now have a user keyboard where only some keys have definitions.

Whenever you press a key that has no current definition, you’ll hear

the error beep to let you know that it’s “dead.”

*“0ld”, deletedkey assignmentsstill take up memory unlessyou periodically repack the way they’re

stored. This sequence accomplishes the repacking: TN(0) [[IAEITA If you use custom

keyboards often, you should repack your keyboard memory regularly.

Custom Keyboards 235

Custom Flag Settings

You know how to set and clear flags individually with IEZllandI3

Also, for some system flags (such as —3), you can use the special menu

items (ERIRL)) to toggle between set and clear. And here is a more in-

depth reminder how, like the user-key assignments, you can store and

recall a list of all the flag settings and save that list as a VARiable for

later use.

Do This: Press ANYou'll get a list of two

binary integer objects (recall page 105). The first integer

shows the states of all system flags (from —1 to —64); the

second one shows the states ofthe user flags (from 1 to 64).

Store thislist as a variable, OLDF: ("JaJa]o]DD]F))EST0).

Nowchange some flags:)2E<mooesIEEEH

(3)Mvooes)IETEEBIvooes)TNIETH
MTHIEEEAELE. Recall the new flag settings:

EYHEvooes)EH(vx7).

In binary format, you can see (use to explore) the 64

bits corresponding to the states of the 64 system flags:*

64 |-63|-62|-61]-60|-59|-58 |-57]-56|-55]-54 |-53|-52|-51|-50 |-49 -48 |-47 |-46 |-45|-44 |-43 -42 |-41 |-40 -39 |-38 |-37 -36 -35 -34 -33

l|le|o|(o|e|6o|B|B|B|B|B|(B|B|B|B|1|B|B|1|1|B|B|B|O|B|B|B|(B|B|B|B|B

-32(-31|-30|-29|-28 |-27 |-26 |-25|-24 |-23 |-22 |-21|-20 |-19 |-18 |17 |-16 |15 |-14 |13 |12 |-m |10 |9 8 |7 |6 |54 |-3]-2]

e|e 8|8 e|e|je|jeje|6je6|1|6|1]6|B|B|B|1 |61 |1}l]1]1]|1 |61 1]|®@

*You might have flags cleared or set other than the ones shown here. You may wish to refer to

Appendix D of your User’s Guide to confirm what each flag indicates in its current state.

236 (5) Cusromizing YOUR WORKSHOP

Notice that the user flag integer (the second value) isn’t 64 bits long.

The 48 doesn’t display leading zeroes in its binary integers, so the bi-

nary format of the integer representing flag conditions will be only as

long as the number of highest set flag (i.e. the left-most 1).*

To demonstrate this, clear flag —64 and press[J{N@® once again.... The

result is only 50 bits long; all flags numbered above —50 are clear (B).

Now: You could, ofcourse, store this list for later retrieval too—but

don’t bother. Suppose, however, that you do want to restore

the original flag settings as saved in the list VARiable, OLOF.

Easy: OLOF [GYMSWES)]FLAS[(Fa]TOF|

So ifyou’re using some program that requires a certain combination of

system flag states, this is how to quickly set all those states—and

preserve the previous flag states, too (so that you don’t mess things up

for the next task).

*You'll get all 64 bits only if flags —5 through —10 are set. That’s the 64-bit default setting for the

wordsize—recall page 103.

Custom Flag Settings 237

Optimization: A Case Study

All right, you’ve seen certain hypothetical examples oflists that allow

you to customize your calculator. Now, how willyou use such ideas to

save yourself labor and trouble?

First, go back to your original directory structure. Ask yourselfwhich

directories might benefit from custom menus or custom keyboards. If

you find some likely candidates, build and store the custom lists for

these goodies in the appropriate directories. And ifthere some custom

lists—like CALG—that should be available more generally, put them in

the HOME directory.

Next, refine the structure ofyour VAR menus by adding small touches.

For example, imagine that you’re creating a VAR menu for your di-

rectory,{ HOME PHYS DYMAM }. When you select [EITTE] to enter that

directory, you'll see its VAR menu.

What do you want in this menu? It’s worth a little thought....

238 (5) Cusromizing YOUR WORKSHOP

Suppose:

Well:

You want a custom menu, MEN1, to use with your motion

calculations—plus you want CALG available, too. Then

you’d like to be able to push one key to set the flags and

user keyboard for the kind of work you do in this

directory—and another key to reset the flags and keys

as they were before, when you’ve finished. And suppose

you want these features always to appear on the first

page ofyour VAR menu. How are you goingtodo all this?

Here’s one approach (you may think ofothers): First, in

your D¥YMAM directory, create and name the programs

that handle the various customizing details:

SET1. « RCLF 'OLDF' STO RCLKEYS 'OLDK' STO
CFL1 STOF @ DELKEYS CKY1 STOKEYS
CPP1 'PPAR' STO CZP1 'ZPAR' STO =

MEM1: <« CMN1 MENU =

ALGM: « CALG TMENU =

GUIT: <« @ DELKEYS OLDK STOKEYS OLDF STOF

HOME 2 MENU =

Next, create and name your custom lists:

CMMN1: { the items you want in your custom menu

CFL1: { #system flags value #Huser flags value 2

CkY1: { your custom key assignments

CPP1: { your custom plotting parameters I

CZP1: { vyour custom statistical parameters

Optimization: A Case Study 239

Finally, use theORDER function to specify thatSET1 MENI,

ALGM, and QUIT all appear on the first page of the VAR

menu. Create a list of the names you want placed:

{ SETI1 MEN1 ALGM QUIT 2

Then press MemorY)ATNow anything not

included in this list will be placed after these items.

Now your keystrokes are fairly well streamlined: As an engineering

student, to get started with the dynamics problems in your physics

class, starting at HIME, you would press [FIFE[T, then to

configure your flags, keyboard and analysis parameters. Atthat point,

you're ready to start on the problems themselves. You have all ofyour

calculation variables available via and your optimized menus via

[or (€sT) or[T

That’s doing a lot in very few keystrokes. And you can use this same

basic idea and structure in your other directories, too—even using the

same names of variables and custom lists, if the consistency helps.

Notice the naming scheme for your customized lists. If you found

yourselflater needing, say, two different plotting parameter setups in

the course ofyour analyses, you could name a second list CPPZ, right?

240 (5) Customizing YoUR WORKSHOP

Putting It All Together

The 48 workshop isn’t difficult to learn how to use, but it’s a real chal-

lenge is to choose appropriately among its myriad options for tools and

methods. Only you can decide what parts are ofinterest to you; nobody

uses it all. Consider the possibilities as you take this final quiz....

Custom Questions

1. When and why might you not be able to use the recovery keys?

2. How do these storage commands differ? STO STOKEYS STOF

3. What binary integer represents the default system flag states—

the flag states as they would be after a system reset? (Don’t do

this—just think about it.)

4. As an engineering student, suppose that you do a large number

of rigid-free-body analysis problems. You input vectors corre-

spondingto forces, positions and moments acting on the bodyand

then calculate the resultant sums ofthe forces and moments. You

alsodoa great deal of“what-iffing,” so you need to be able to store,

retrieve, and edit specific descriptions for specific bodies. What

strategy might you use to do all this on your 48?

Custom Questions 241

242

Optimum Answers

(UNDO), (ARG), (CMD), and all allow you to recover information

after you’ve moved on. But keeping these hidden records costs

memory, and if you prefer not to spend that memory on such

recovery features, you can so specify. is one of the built-in

menu numbers (B); you can’t turn this feature off. But you can

control via a toggle key in the MODES MISC menu. And also

in the MODES MISC menu are the toggle keys for disabling

and (the latter via the key). These two features can

use a lot ofmemory; ifyou need more memory, these might be the

first ones to forego, if appropriate.

Of these three, only STO allows you to control where in user

memory (i.e. directory structure) you are storing an object: STO

stores an object into the given name in the current VAR menu,

overwritingthe object (ifany) previously stored there. STOKEYS

stores a list ofuserkey assignmentsinto anunnamed placein the

48 memory. This overwrites the previous key assign-ments only

for the specific keys in the given argument list, leaving all other

key assignments intact. STOF stores a binary integer (or list of

two binary integers) into an unnamed place in the 48’s memory.

Each integer affects all of its 64 flags.

In the default settings, only flags —5 through —10 are set (for a

binary wordsize of 64). This valueis# 1111118886b (which is

3FBhor# 1612d).

(5) Cusromizing Your WORKSHOP

4. First, you'd probably want to set up some custom configurations

in your 3TATICS directory—similar to the approach you saw on

pages 238-240.

In your flags, for example, you might want to clear flag —19 (so

that you can build vectors rather than complex numbers with the

and keys) and set, say, ENG 2 display mode, then

DEGrees for angles, and probably cylindrical vector mode.

As for your custom menu, before you can set that up, you need to

envision the calculations themselves. For example, how are you

going to build a complete description of each free body—with all

its forces and moments acting upon it—into a single object that

you can then name (FB1, FBZ, etc.) for storage and use later? A

list of some kind would do it, right?

Then what objects would be included in each body-description

list? Vectors, probably, but how will you distinguish force vectors

—with their corresponding position vectors—from moment vec-

tors, which need no positional information? How about three

lists of vectors? The first two (forces and positions) would have

the same number ofvectors in them and correspond one-for-one;

the third list would contain all the moment vectors.

Then you might want to build yourselfsome little editing tools—

to make it easier to input, alter, delete and view the vectors in

each of the lists. Such items would indeed be handy on your

custom menu. And, ofcourse, you’ll need the calculation routines

themselves—the summation ofthe forces and the summation of

the moments—also good candidates for your custom menu.

Optimum Answers 243

 A
N
-
(
‘
\

R
N
e

N S S
N

N
7

\ SI
RI
TN
,

S
R
R
g

Y
-
‘ T
E
O
Y

£ 0_
‘1

‘
5
2

2
3
R

S
”
s

(e
Q2
2 KD >

I
S

S A\
)

\
@
c

\
\
‘
;
.

X

(6] PROGRAMMING PRACTICE

Before You Study

In previous chapters, you've seen some “nuts and bolts” of program-

ming the HP 48. You now know something about local variables, con-

ditional tests, loops, custom menus, key assignments and directories.

But that doesn’t automatically make you a programmer. If someone

hands you a box of machine parts, that doesn’t necessarily mean you

know how to put them together to get a properly working mechanism.

So in this final chapter you’ll see some examples of programming the

HP 48—plus some ideas for a variety ofinteresting tasks that you can

pursue further on your own. Hopefully, you’ll come awaywith a feel for

the powerand possibilities ofthe HP 48. Itisloaded with sophisticated

commands, but often it’s hard to grasp their significance until you en-

vision a task where they would come in handy. These examples were

selected for their ability to show a variety of machine features. So at

least browse through them to see what various commands can do.

One thing to reassure yourself right now: No matter how experienced

you become, programming is never a tidy, straightforward science.

The programs shown here didn’t just pop out onto the pages in final

form. They evolved out ofmany strategy changes, coding mistakes and

a lot of “horsing around.” The whole idea of writing a program is to

build a useful new tool from the tools already available. Butit will take

you a few iterations to discover exactly what is most useful—and most

appropriate, given the time you have, the purpose ofthe program, and

capabilities (and limitations) of the HP 48. Get used to this iteration

process; it never goes away entirely (and besides, it’s where you do the

most learning). With more proficiency, you will simply iterate more

quickly and easily toward an appropriate solution.

Before You Study 245

One other reminder: The programs in this chapter use certain conven-

tions—not requirements, but recommended habits that will help you

if you adopt them in your own programming:

246

e Every program is listed with a checksum after its name, to help

you catch typing errors. For example: Ft3FIS (¢ 48362d)

To obtain the checksum (and memory usage) of any object, store

the object in its intended Name, then type ' Name' BYTES. The

first output returned (in Level 2) is the checksum—shown as a bi-

nary integer in the current binary format (binary word size: 64).

The second output (in Level 1) is the memory usage ofthe object.

Every program is listed in expanded, indented form, with com-

ments, so that you can clearly trace what’s going on and keep the

sub-modules (¥ *), loops, branches, and tests straight. Just ig-

nore these line breaks when actually keying in the code.

To modify an existing program, you generally use the keystrokes

' Name ' (ENTER), (QJEDIT), modifying keystrokes, ENTER). (Note that the

HP48’s presentation ofa program in EDIT mode is different than

the expanded, indented form mentioned above.)

All local variables are entirely in lowercase; all global variables

are capitalized (but not entirely in uppercase). This helps you see

more clearly in a listing exactly what is local, what is global and

what is built-in (which is generally all uppercase). Thus, for ex-

ample, P would be a local variable, Purse would be global, and

PURGE is, of course, the built-in command. Keep in mind, too,

that on a menu, all characters appear uppercase, but they aren’t

necessarily so.

PROGRAMMING PRACTICE

A Calculator of Feet, Inches, and Sixteenths

This first topic is a case study—a comparison of various strategies to

solve a problem. You may be familiar with how the HP 48 can format

a time or angle—in minutes and seconds—as one number: hh.mmss

Thus, for example, 135°42'9" is formatted as 139.42H09. And 2:15:36

p.m.is formatted as 14. 1336. But there are other notations that aren’t

quite “decimal” format either. One such notationisfeet,inches and six-

teenths ofinches (“FIS”). This case study is a simple set of arithmetic

and trigonometry solutions for problems that use this notation.

Challenge: IntheHOME directory, create a new directory called FIS.

Then, inFIS, write two programs, Ft #F IS and FIS+Ft |

to convert between decimal feet and FIS notation.

Solutions: Ft*FIS @ 46362d)
« Eliminatere-conversionround-

S RND DUP IP offerror in whole feet; get
SWAP FP whole feet and fraction.

¥ Get whole inches and elimi-
S REND nate re-conversion roundoff
OUP IP error there, too.
SWAP FP .16 #* Get sixteenths.
+ Build formatted number from
Bl = + its three parts.

»

EIS-*Ft (¥ 56872d)

DUP IP Get whole feet.
SWAP FP 188 * DUP Get inches & sixteenths.

s Convert whole inches.
SWAP FP 188 * 192 ~# Convert sixteenths.
+ + Find decimal sum.

A Calculator ofFeet, Inches, and Sixteenths 247

Notice, then, that with those two routines, you can easily create other

conversions to/from FIS, by using the units features of the HP 48.

Challenge: Write a pair of programs, M*FIS and FIS+*M, to convert

between meters and FIS.

Solutions: l;l*FI S d 16816d)

1_m =UNIT Create unit (in meters) from value.
1 £t CONVERT Convert to equivalent in feet.
UYAL Ft+FIS Convert value portion to FIS.

»

EIS*'N * 47621d)

FIS+Ft Convert value to decimal feet.
1_ft 2UNIT Create unit (in feet) from value.
1 m CONVERT Convert to equivalent in meters.
VAL Keep value portion only.

Of course, you could do similar conversions to/from any other units of

length, as well. The point here is how easily any tool—whether built-

in or created by you—can then become a part in another tool. You’ll be

using FIS*Ft and F12FIS often in the set of solutions you’re now

considering.

Reminder: Put all such FIS solutions in the FIS directory.

248 PROGRAMMING PRACTICE

Now, many fabrications (welding, sheet metal) industries still use FIS

in their length specifications, so they often need to do simple arith-

metic in that notation. It would be very handy, therefore, to be able to

add or subtract lengths, and to multiply/divide lengths by scalars.

Challenge: Write four small programs, FISA, FISS, FISSM and

FISD, that add, subtract, multiply and divide, respec-

tively, lengths in FIS format. For FISM and FISD, as-

sume that the second argumentis a scalar, not a length.

Solutions: EISH ¢ 25481d)

FIS'}Ft SWAP FIS*Ft Convert both arguments
+ Ft»FIS to decimal feet; sum;

» convert result to FIS

FISS (¢ 51896d)
&

NEG FISA Just negate second argu-
& ment, then add.

FISM ¢t /828d)
&

SWAP FIS+Ft = Convert first argument
FtoFIS (secondis scalar); multi-

® ply; reconvert to FIS.

EISD # 39223d)

INV FISM Just invert second argu-
® ment, then multiply.

These are fairly straightforward. Notice howFIS5 uses

FISA, and FISD uses FISHM.

A Calculator ofFeet, Inches, and Sixteenths 249

Also common in such industries is the need to calculate various right-

triangle relations in FIS. Thatis, they often need to compute one ofthe

following values, based upon two of the other three:

Value desired Known values

Angle

Angle

Angle

Base

Base

Base

Rise

Rise

Rise

Slope

Slope

Slope

250

Slope

Angle

Rise

Base

Base, Rise

Base, Slope

Rise, Slope

Angle, Rise

Angle, Slope

Rise, Slope

Angle, Base

Angle, Slope

Base, Slope

Angle, Base

Angle, Rise

Base, Rise

Relation

Angle = tan'(Rise+Base)

Angle = cos'(Base+Slope)

Angle = sin’'(Rise+Slope)

Base = Rise+tan(Angle)

Base = Slopescos(Angle)

Base = \(Slope*-Rise?)

Rise = Basestan(Angle)

Rise = Slopessin(Angle)

Rise = N(Slope*-Base?)

Slope = Base+cos(Angle)

Slope = Rise+sin(Angle)

Slope = N(Base*+Rise?)

PROGRAMMING PRACTICE

Project Challenge: Put all the various FIS tools together—conver-

sions, arithmetic and the trig solutions shown

opposite—in a convenient and logical manner.

You've already developed routines for the conversions and the arith-

metic. The only questions remaining for those is where and how to

make them available to the user.

The same is true for the trig solutions, also. The problem with those

solutionsis clearly not in the logic or the number-crunching within the

programs; any given case is a simple calculation, mathematically. But

with so many cases to allow for, the problem again becomes a question

of how to offer those solutions conveniently.

Consider four different strategies....

A Calculator ofFeet, Inches, and Sixteenths 251

Strategy 1: A Collection of Unconnected Programs

The first—and simplest—option is to write six small trig programs

(and one small output utility)—enough to treat each possible combina-

tion of two trig unknowns. Just choose from among the relations

shown on page 250, then store these alongside your FIS*Ft and

F1+F IS conversions and your arithmetic routines. For example:

RBR (¢ 56621d)
&

Rise FIS*Ft Base FIS+*Ft -~ ATAN
'"Angle’ QOut

B~HR(# 18424d)

Rlse FIS*Ft Angle TAN - Ft=FIS
'Base' (Out

B”fifi(# a2dred)

Slore FIS+Ft S0 Rise FIS+Ft SO - I Ft-FIS
'Base' (Out

»

R“HS(# 29215d)

Hn91e SIN Slope FIS+Ft = FtsFIS
'Rise' (QOut

R“BS(# 2815d)

SIDPe FIS+*Ft SO Base FIS+Ft SO - [Ft=FIS
'Rise' QOut

252 PROGRAMMING PRACTICE

SAB (¢ 18138d)
€«

Base FIS»*Ft RAngle COS ~ Ft-=FIS
'Slope' Out

»

Uuié: # 33436d)

DUPZ STO »TAG Duplicate value and name together; store
» value; echo it with tagged Stack version.

Notice how each formula simply carries out the respective trig relation

as shown onpage 250—after convertingone orbothknownvalues form

FIS to usable decimal form. Then, to present the output and restore

the FIS format, each routine calls the Qut routine, sending it not only

the result value but the name of the variable that value represents.

Of course, this is definitely the “no-frills” strategy: For every calcula-

tion, you must find and select the correct program(s) from your VAR

menu. With 6 trig and 4 arithmetic programs, you’ll be using and

alot. Also, for yourtrig solutions, you’ll sometimes need to run

two trig programs to get your desired unknown from the available

knowns (unless you wish to add the other 6 solutions as programs to

yourVAR menu and therefore have even more items to hunt through).

Notice, too, that you're assuming that Angle is in decimal degrees. To

assume degrees, minutes and seconds, in each routine you’d insert *HF,

before using ANgle as a known or *HMS after calculating it. And you

must manually set DEG mode and the display format (4 FIR).

A Calculator ofFeet, Inches, and Sixteenths 253

Strategy 2: Key Assignments and a List ofSOLVR Formulas

Withjust a little work, you can relieve some ofthe “manual” aspects of

the previous strategy. First of all, you could use a little setup program

(to be undone by a cleanup program) to make some initial settings,

assign the FIS arithmetic programs to arithmetic keys, and assign the

conversion routines to, say, the and keys.

Secondly—in that same setup routine—you could cut down on the

number and complexity of trig programs by asking the intelligence of

the SOLVE application to do the actual math for you, via a linked list

ofequations. (Indeed, since you’ll have two knowns in every equation,

you can get away with a linked list of just three equations.) The

SOLVR version ofthe SOLVE application is what to use, because it al-

lows you to work in the Stack as well asin the application. That’s what

you need, since you’ll want to see what you're doing with your arith-

metic and conversion routines besides using the SOLVR menu.

The only catch is that a discrete quantity such as a FIS-formatted

number doesn’t work well in the SOLVE algorithm. So the trade-offis

that you’ll get more convenient trig solving, but you’ll have to do your

FIS/F't conversions as separate steps—before and after the actual trig

calculations—via your key assignments.

You may ask: “Whykey assignments? Why not include the FIS conver-

sion routines as part of a custom SOLVR menu?”

Good point. A list, describing a custom SOLVR menu (specifying the

order of variables and including other executable programs) with the

equation is allowable, but only if it’s a single equation—not true here.

254 PROGRAMMING PRACTICE

Setup (# 3rB6/d)
€

RCLF _'F' STO Save current flag states.
RCLKEYS 'K' STO Savecurrentkey assignments.
4 FIX DEG -62 SF Setdispl., angle, USER modes.

Ft=FIS 33 FIS+Ft D0l.2 List
Eleanl{ 91.7 of
FISD 65 FISM ¥3 key assignments

) ISS 85 FISA 95 to be made.

STOKEYS Make the assignments.

'Hngle=ATANCRisesBase)' Listoftrig relation equations
'Base=5S1ope*C0S(Angle)’ to be rotated in and out
'Rise=51ope#*SIN(Angle)’ by the SOLVR.

STEQ Store this list into EU.
/3 MENU Get SOLVR ROOT menu.

B

Clianup ¢ 63837d) (Assigned to [€]CONT))

{ 33 51.2 91.2 63 75 8BS 99 } Delete key assign-
DELKEYS ments; restore
K STOKEYS F STOF prev. keys, flags.
{ F K Angle Base Rise Slope EQ } Purge unneeded
PURGE variables.
HOME FIS 2 MENU Get VAR menu in

» FIS directory.

To use this strategy, you would simply press FI3I[d, then press

to start that application. Than you can use the arithmetic and trig

solutions as needed (keeping in mind that the SOLVR can handle only

decimal feet: FIS*Ft ison the key and Ft +F IS is on the

key). Use [REH3H to find the equation whose unknown you must solve

for first.

When you’re done, just press (6&q]CONT), and you’ve cleaned up!y J P y P

A Calculator ofFeet, Inches, and Sixteenths 255

Strategy 3: A Real MES

You can even dispense with the equation swapping needed within the

SOLVR: the Multiple Equation Solver (MES) doesit for you. This sol-

ution is almost identical to that of Strategy 2:

Sef%up (F 34247d)

RCLF 'F' STO Save current flag states.
RCLKEYS 'K' STO Savecurrentkey assignments.
E’r FIX DEG -62 SF Setdispl., angle, USER modes.

Ft=FIS 33 FIS#Ft 51.2 Cleanup 91.7
FISD 65 FISM /5 FISS 85 FISA 95

STOKEYS Make key assignments.

'"Angle=ATAN(RisesBase)' Listoftrig relation equations
'Base=S]ope*L0S(Angle)’ to be rotated in and out
'Rise=Slope*SIN(Angle)’ by the SOLVR.

STED Store this list into EQ
MINIT MSOLVR Initialize MES, then get

® its menu.

Cleanup (t 56236d) (Same as before except purge MPat-, too.)
&

{ 33 51.2 91.2 65 V5 85 95 } DELKEYS
k STOKEYS F STOF
{ F K Angle Base Rise Slope EQ Mpar } PURGE
HOME FIS 2 MENU

»

Press HAIM, and you’re rolling. As before, use the arithmetic and trig

solutionsfreely (with FIS#Ft on and Ft+FIS on (EVAL). Note

how the MES menu shows which variables you have defined (dark-

ened) and which are consistent with the most recent solving (the ®’s).

256 (6) PROGRAMMING PRACTICE

Strategy 4: Your Own Personal MES

Admitit: You’d still love to have the Ultimate Solution—the equation-

choosing smarts of the MES but with the convenience of a VAR menu

and the ability to tolerate FIS formatting right in the variables—no

conversions necessary on your part, eitherbefore and after the solving.

Well, you can do that: The setup program (call it &Go) would set angle

and display settings and assign the arithmetic routines to the appro-

priate keys, as usual. It would assign Ft*FI5 to the key—in

case you ever have to deal with a length in decimal feet. (This is differ-

ent than the previous solution where youhad to use decimal feet for the

SOLVR. Here, the entire process should accept FIS notation; the as-

signment of Ft*F IS to is only a just-in-case provision.)

Then &Go would create a custom menu containing your triangle para-

meters (BN, EEEHA, EA, ENE3)—a menu that imitates the be-

havior pattern ofyour VAR menu:

e Simply pressing a menu key evaluates (calculates) that variable

based upon the current values of other variables;

e Pressing (&), then a menu key, stores a value (from Stack Level

1) into that variable;

e Pressing (), then a menu key, recalls that variable’s value,

Also, this menu would offer a key, which would set all variables

to zero. As usual, the cleanup routine (call it Buit) would be assigned

to the key.

A Calculator ofFeet, Inches, and Sixteenths 257

The calculation will be based upon which two variables were modified

(either input or calculated) most recently. A history list (Hist) keeps

track ofthis and is updated after every operation, in your Qut routine.

Uut # 2£3621d)

DUP ROT SWAP DUPZ Three copies ofname, two of the value.
STU +TAG SWAP Store value; create Stack tag.

Y Name of variable becomes U.
¢:

vy Hist 1 Y will be ready to be added to result o
& procedure: Foreach element in Hist,

OUP v SAME keep the element
« DROP = unless it matches V.

¥
DOLIST The DOLIST executes this procedure.
+ Now add V to front of resulting list
'Hist' STO Store this as updated Hist.

2

»

Clzar‘ # 44294d)

'Angle' STO B 'Base STO Set all variable valuesH
H 'Rise' ST0 H 'SIOT to zero.

{ Angle Base Rise Slope Set default Hist list;
'Hist' STO CLEAR clear Stack.

%

Quit # 41126ed) (Assigned to]CONT)key.)
&

{ 51.2 91.2 65 ¢5 85 95 } Delete key assignments;
DELKEYS K STOKEYS restore previous keys

F STOF and flags.
{ F K Angle Base Rise Slope CST Hist X
PURGE Purgeunneeded variables.
HOME FIS 2 MENU Get VAR menu in FIS

% directory.

258 PROGRAMMING PRACTICE

&Go (¢ 433566d)
&«

CLF IFIR STO _RCLKEYS
? FIn DEG -62 SF Clear

'K' STO Save flags, keys.
Set modes, variables.

Ft»FIS 91.2 Ouit 91.2
FISD 65 FISM ?5 F1SS 85 FISA 95

3 Make key
STOKEYS assignments.
{ (Begin specifying custom menu:

EHHGL" First item label.

& ! Hngle Ealc# Unshifted action (calculate).
¢« 'HAng [%hhzftedactzon (store).
& ! Flngle DUP ECL AP +TAG * ()shifted

) action (recall)

{
EBHSE" Next item label.

¢« 'Base' Calc ®* Unshifted action (calculate).
« 'Base' Qut » shifted actzon (store).
« 'Base' DUP RCL SWAP »TAG (o)shifted

) action (recall)

{
ERISE" Next item label.

¢« 'Rise' Calc ® Unshifted action (calculate).
« 'Rise' QOut » shifted action (store).
« 'Rise' DUP RCL SWAP +TAG * (o)shifted

) action (recall).

{
:SLUPE" Next item label.

& ! SIDPE Calc# Unshifted action (calculate).
¢« 'Slope’ %Jshzfted action (store).
& ! Slope ! DUF‘ RCL AP »TRG * (o)shifted

) action (recall).

) { "sFt" FISsFt } Clear Last two menu items.

MENU Create the custom menu.
»

A Calculator ofFeet, Inches, and Sixteenths 259

This Calc routine is the key to the equation-selection “smarts” of the

solution. Essentially, it is just a large, nested CASE statement that de-

termines which “known” value was updated least recently (the “oldest

Hist item”—last in that list). It uses that determination to decide

which routine(s) to employ to calculate the unknown value.

Calc b#3287 1d)
&« P Hist 4 GET DUP RDT SAME Get4th (last)iteminHist.
PRDP Hist 3 GET =»

> U ¥
&

CASE
" 'Ansle' SAME

THEN

HEN
R~BS RA~BR

END
B~RS A~BR

ND

260

Or, if it matches given
name, get 3rd item.

Given name is U; oldest
Hist item is x.

What are you solving for?
Ifsolving for Angle,

then
What Hist item is oldest?
IfSlope is oldest,

find Angle via Base
and Rise.

IfRise is oldest,
find Rise via Base
and Slope, then Angle
via Base and Rise.

Otherwise, find Base via
Rise and Slope, then
Angle via Base & Rise.

Ifsolving for Base,
then

What Hist item is oldest?
IfSlope is oldest,

find Base via
Angle and Rise.

IfRise is oldest,
find Rise via Angle
and Slope, then Base
via Angle and Rise.

Otherwise, find Base via
Rise and Slope.

(6) PROGRAMMING PRACTICE

U 'Rise' SAME
THEN

CASE
% 'Slope’

S~AB

THEN
B~AR S~HB

END
A~BR S~AB

END
END

SHME

R~HS

Ifsolving for Rise,
then

What Hist item is oldest?
IfSlope is oldest,

find Slope via Angle
and Base, then Rise via
angle and Slope.

IfBase is oldest,
find Rise via Angle
and Slope.

Otherwise, find Rise via
Base and Slope.

Otherwise (if solving for
Slope), which is oldest?

IfRise is oldest,
find Slope via Angle
and Base.

IfBase is oldest,
find Base via Angle
and Rise, then Slope
via Angle and Base.

Otherwise, find Angle via
Base and Rise, then
Slope viaAngle & Base.

ACRHSE statement structure is certainly not the onlyway to accomplish

the equation selection task. You could instead use a set of (deeply)

nested IF..THEN..ELSE clauses. Or, you could store the various trig pro-

grams within a list, and select from the list via a pointer. As with any

program, there are many possibilities.

A Calculator ofFeet, Inches, and Sixteenths 261

Memory Management Programs

This next project is a set you'll find many uses for—put it in yourHOME

directory: Aset oftools for easily moving, copying, renaming, reorder-

ing, purging, and analyzing variables and directories. Namely, these:

{namel name2 ... } Tidy or 'name' Tidy or Tidy

In the current directory, alphabetizes the given name(s) and all their

subdirectories (directories alphabetize ahead ofother names). Execu-

tion on an empty Stack (or empty list) tidies all names in the current

VARS menu, but not in any of those names’ subdirectories.

{namel name2 ... } Bytes or 'name' Buytes or Bytes

Sums the checksums and bytes of the named object(s). Execution on

empty Stack sums all names in the current VAR menu.

{namel name2 ... } Purge or ' name' Purge

Deletes all the given names from the current directory.

{namel name2 ... } {destination path} Copy

Copies all the given named objects from the current directory to the

destination path. If such a path does not exist,it is created. A single

name is also acceptable instead of a list.

{namel name2 ... } {destination parh} Move

Performs a CopYy and then Purges the original(s).

Lold namel old name2 ... } {new namel new name2 ...} Rename

In the current directory, renames all the given named objects. Asingle

name is also acceptable instead of a list.

262 PROGRAMMING PRACTICE

Tidy & 9541d)
€«

DEPTH NOT « { } » IFT I ty Stack, Iy{ 1
°MN+L PATH g:::tlzeyargafs lislzfpge%’path
* NP Argument list becomes n;
& current path becomes P.

n SIZE Ifarg. list is not empty,
& keep a copy, and,
nnl for every element
& ifit names a dzrectory, move

DUP VTYPE 1 there & TJdyallits VARS
‘K EVAL UHRS Tld‘;l » (a recursive use of Tidy);

DROP = if element does not name
IFTE a directory, OROP it.

DULIST
»
« YHRS =» If arg. list is empty, substitute
IFTE VARS list.
E' L 2 MENU Return to original VAR menu.
".-'SE'P SORT SWAP SORT SWAP + Alphabetize arg. list

DUP SIZE (directories first)
« (ORDER = If resulting list is non-em
«DROP > GROER 5otherwise, DROP

it.

B':ltes # 4586d)

DEETHWEETS‘KVARS * IFT Ifempty Stack, supply VARS .
DU Ifargument is a list,

then
DUP SIZE if it is not empty,
% start running sums at 0;
BB ROT 1 for everyelement in list
« BYTES ROT + 3 ROLLD + SWAP * additsBYTES
DOSUBS to the running sums.

%
« BYTES ®» If argument is empty list,
IFTE rI:tn 5')"7-55 on thafo%yect

%
« BYTES =» Ifargument is not a list, do a
IFTE normal BYTESfunctzon

®

Memory Management Programs 263

Purge (¢ 64231d)
&«

IF
DUP SIZE

HEN

"VSep (# 49635d)
&«

264

»

IF
DUP SIZE

HEN
EIUP' { } SWAP

Ifarguments to be purged number at least 1,

Convert single name to list, if necessary.
Separate arguments into lists ofdirectories

and names; purge names list.
If directories list is not empty,

purge that list;
otherwise drop that list.

If original argument list is empty,
drop it.

Iflist ofarguments to be separated
LS not empty,

Save copy ofargument list; start
empty list to collect dir. names.

& Forevery element in argument list,
DUP VTYPE 15 == if type is directory
€ + » add it to collection list;
« DROP = otherwise, drop it.
IFTE

%
DOLIST
?NFIP { 3 SWAP

This command does the above.
Get other copy ofargument list;

start another empty list.
& Do exact same procedure

OUP VYTYPE 15 # as above,
€ + » but for non-directory
« [OROP = elements.
IFTE

»
DOLIST This command does it all.

LSE Ifargument list was empty,
DUP make two of them (to represent

END lists ofdirectories and names).

PROGRAMMING PRACTICE

"N+l (¢ £r34d)
€«

DUP TYPE 6 ==
« 1 sLIST »
IFT

'EEthh(# 637684d)

PATH
OVER
REVLIST OBJ+
SWAP_EVAL 1 -

SWAP DUP VTYPE -1 ==
« OUP CRDIR =
IFT

%FP VIYPE 13 ==

END
DROF EVYAL

Coig(# 18321d)

B "Cpy
»

Move (# 27967d)
&

1 "Cpy
»

Memory Management Programs

Ifargument is a name,
make it a list.

Note current path.
Get copy ofgiven dest. path.
Reverse and put onto Stack.
Go HOME—1 fewer path levels.
While there are other path

levels to traverse,

Ifnext levelgiven isempty name,
a directory by that name
needs to be created.

If next level given truly is a
directory now,

then
move there;

otherwise generate an error.

Decrement path level counter.
End of loop.
Drop counter and return to

original path.

Send “Copy” signal argument
to underlying CPY routine.

Send “Move”signal argument
to underlying "LPY routine.

265

“Cpy (# 46415d)
&

266

SWAP ROT °NsL °“VSep
ROT “ChkPth
PATH
+mduvt f
4

F

t £ SAME NOT
THEN

IF
v SIZE

THEN
y
1
« RCL »
DOLIST
t EVAL
Y
Z
« 570 »
DOLIST
f EVAL
m
« y PURGE »
IFT

END
F

d SIZE
THE

OUP EVAL
VARS
L RO

i £EUAL
DOLIST
¢ d PGDIR »

Clean up input argument.
Check [prepare destination path.
Note current path.
m=move indic.; d=dir. list; V=var.

list; t=dest. path; f=curr. path.

If not copying to same directory,
then:

If variable list is not empty
then:

For every element
in that list,
recall its value.

Do this for entire list.
Move to destination directory.
For every corresponding element

pair in variable and values list,
store the value in the name.

Do this for entire lists.
Move back to original path.
Ifmis non-zero, this indicates a

moveratherthan a copy, sopurge
original variable list.

End oftreatment of variable list.

If directory list is not empty
then:

Move to destination directory.
Create directories given in list.
Move back to original directory.
For every element

in directory list:

Move to that directory.
Get list of all its contents.
Adddir. nametocurrentdestina-
tion path; do a LopY (recursive).
Move back to original directory.

Do this for entire list.
Ifmis non-zero, this indicates a

moveratherthan acopy, sopurge

PROGRAMMING PRACTICE

IFT original directory list.
END End oftreatment of directory list.

END End oforiginal IF statement.

Rer;ame # 28946d)

“N=L SWAP °“NsL Clean up input arguments.
PA Note current path.
*nvh N=new names; Y=curr. names;
« h=current path.

If Vis not empty and
SIZE DUP n SIZE == AND the sizesofvand n

match, then:
For every corresponding pair

ofelements
in those two lists,

TH

11
a
r
o
c
0
D

DUP VTYPE 15 # Ifthe v-element is not a dir.,
N then
DUP RCL recall value;
SWAP PURGE purge old name;
SWAP STO store in new name.

LSE Otherwise (V-elementisadir.)
SWAP DUP CRDIR create dir. with new name;
SWAP DUP EVAL movetoold-namedirectory;

get a list of its contents;
h SWAP + addnew nametocurr. path;
Move Do a Move.

NDUPDIR PGDIR Go up to old-name’sparent
and purge old-name dir.

%
HDDUL IST Do thisfor entire}‘)fi_oftwo lists.

End oforiginal statement.

Memory Management Programs 267

Data Analysis Application: A Gradebook

This final example is quite a project—with lots of examples of input

and output formatting: Starting in a new subdirectory ofHOME (call

it Grds), build a set ofprograms that will manage and calculate scores,

grades and GPA’s for a student’s entire academic record—every as-

signment for every class, every term, every school.

If you think about for a moment, you’ll see that the HP 48’s directory

structure is already perfectly suited for thejob oforganizing such data:

At the highest level, it lists the academic record school-by-school; each

schoolisitsown subdirectory. Thenyou create subdirectories term-by-

term within each school, course-by-course within each term, and item-

by-item (i.e. any assignment or test) for each course.

That isideal: Whenever possible, you should design an application to

use already-existing tools and their general mechanics and assump-

tions. Such intuitive design saves you work in programming, and it

saves the user time and grief when learning to use the finished pro-

gram. Here, for example, given that you’ll be using ordinary directo-

ries, note that you can simply employ your Purge and Rename tools,

along with the built-in CRDIR to build and arrange most of the data

structure. Infact, the only places where you’ll need to program “some-

thing special” are down at the Courses and Items levels.

With that notionin mind, the editing and calculation tools should treat

directory items much as you are used to doing with ordinary variables.

For example, ifyou put the name of a directory (or item) on the Stack,

then could evaluate it (calculate grade, GPA, etc.) and

could edit it—just as you would expect. Here’s one solution:

268 PROGRAMMING PRACTICE

Init (¢ 39466d)
&«

HOME
RCLF T0
%ELKE?S "k

I!FI

STO

Move to proper directory.
Store current flags.
Store current keys.
List

CSc CHrs CWt CGr variables
Targ Hrs Pts Origin to

%’ initialize.

« B SWAP STO = For every element, store a
DOLIST 0in it.
% FIX -62 SF get FIX2 and U3ER mode.

Lst
UpDir 31.72 Quit 31.3 of
Calc 33 Edit 32.Z2 key

3 assignments.
STOKEYS Make the assignments.
15 TVYARS Get all directory names.
{ List of desired
Mt efeefefe ety menu items to follow
Init Edit Calc Quit all directory names.

3 Add these lists and rearrange
+ OROER the VARS menu with result.
"CROIR, Purge, Rename _or tray. Opening message to
[EDIT] to edit. [EVAL] to calc. remind user how
[HOME] to CGuit." things work.
MSGBOR Send the message.
¢ MENU Be sure VARS menu is present.

E!uit (# 34899d) (Assigned to []HOME) key.)

HOME Grds ove to proper directory.
{ 3l.2 31. 3 33 52.2 1} DELKE'T'S Del. key assignments.
K STUKEYS "F STOF Restoreprevious keysandflags.
{ List of

renene senenenene eCoc Lt CHes CGr variables
Targ Pts Hrs Origin °F "k CST no longer

needed.
PURGE Purge those variables.
HOME £ MENU Go to HOME directory

Data Analysis Application: A Gradebook

and show its VAR menu.

269

UpDir ¢t 56857d) (A substitute for built-in UPODIR—
€ assigned to the [(]UP]key)

PATH SIZE 2 == Ifnow at £ HOME GRD3 ¥ level,
€« [uit » clean up and go HOME;
« UPDIR 2 MENU = otherwise do a normal UPOIR
IFTE and go to VAR menu.

Here is the main Edit routine (assigned to the key):

Ed]jét ¢ 34936d)

PATH SIZE 4 < Ifabove the Courses directory level,
remind user

"You may EDIT only a course or item." with
error message.

Otherwise,
if now at

PATH SIZE 4 == the Courses directory level,

DEPTH ifgiven an argument,
&

DUP TYPE 6 # ifit’s not an existing name,
« Ng4 » create& edit new course;
« E4 » otherwise, edit the
IFTE course specified.

P

€« Nt » If not given an argument,
IFTE create & edit a new course.

ELSE Ifnow at Items level,
DEPTH ifgiven an argument,
&

DUP TYPE 6 # ifit’s not an existing name,
« N9 » create & edit new item;
« E5 » otherwise, edit the
IFTE item specified.

%

€« N3 » If not given an argument,
IFTE create & edit a new item.

EN
END

2

270 PROGRAMMING PRACTICE

N4 and NS are the two routines that, respectively, create (and edit) a

new course and a new item. (The 4 and the 5 refer to the PATH SIZE

of the directory level at which each is appropriate.) Each routine

simply creates and stores a new list of the appropriate data structure

(a 3-object list or an 8-object list, with appropriate object types in each

position), with default values and names. Note that while the routines

begin at differing levels, each stores its list at the Item level.

N4 ¢ 11936d)
«

'NEWC' DOUP DUP
ERDIR EVAL

"NELC"
NOVAL
{ 99 88 79 68)

3
"INFO' STO
UEDir

NSt 39984d)
&«

(NEMT
"NELT
NOYAL
{ 90 88 78 68
NOvAL
NOVAL
NOUAL

) NOVAL

OVER STO
ES

Create a new directory called MEWC
and move to that directory.

Build the default INFO list:
the course name;
its default # ofsemester hours;
itsdefault course curvepercentages.

Store this as INFUO.
Move back up to the Courses level.
Edit NEWC’ INFO ('NEWC" was

still on Stack for E¥s argument).

New item’s default name (arg. for ED).
Build the default list for the new item:

the course name;
its weight (%) in course;
its curve %’s for item grading;
its default raw score;
its default total possible;
its % score;
its default grading basis;
its letter grade.

Store this as NEWI.
Now edit NEWI

Data Analysis Application: A Gradebook 271

The actual editing routines are just extensive uses of the INFORM

command, followed by a storage of the new data in place of the old.

E4 & 8353d)
€ Move to Items level in Course directory

DUP EVAL specified by argument name.
"EDIT COURSE" First IHFURff'argument is screen label.
{ Next is list oféfield labels, instructions,

{ "NAME" "TYPE COURSE NAIM ¢} anddata types
{ "HOURS" “ENTER COURSE SEMESTER_ HRS."
{ "CURVE" "ENTER MIN. % FOR {A B C D2. 7

(Just 3 fields in course INFO).
} Use default field column configurations=

INFO' RCL DUP Use existing data for reset values and
INFORM default (input suggestion) values. Go.
€ Ifreturn argument is 1 (inputs OKd),

OUP 'INFO' STO store new list as INFO;
HEARD take its first object (the course name),
PATH HOME and, to convert string to name, note
SWAP 0OBJ- current path, move HOME to use UBJ?
SWAP EVAL (soevaluationgivesempty name), then

» return via path noted.
&« DUP = Ifreturn argumentis 0 (inputscancelled),
IFTE Pcurrent crs. name (still on Stack).
UpDir DUPZ Move to Course level, prepare name

comparison.
HESI"IHHE NOT If names are not the same,

Rename rename course with new name;

HDDRUP DROP otherwise, drop both names.

ES é# 2o666d)

+ t Item name argument becomes t.

"EDIT ITEM" Flrst IHFUEMargument is screen label.
Next is list of field labels, instructions,

{ "NAME" "TYPE ITEM NAME." 2 }and data types:
{ 3 (namefld., followedby blank column)

272 PROGRAMMING PRACTICE

"WT%" "ENTER WEIGHT% OF ITEM IN CRS."
B (Item weight%-in-course field)

}
{

"CURV" "ENTER MIN. % FOR {A B C D3."
) 9 (Item curve field)

{ } (Two blank fields after that,
{ ow rooml:(orlong list)
{ "SC" “ENTER ITENRHN SCORE. '
E "TL" "ENTER TOTAL POSSIBLE." B 3}

'8'2" "(PERCENT SCORE WILL BE COMPUTED.)"
(Raw score, total-possible and

;.:} % score fields).

"P-G" "MARK IS GRADE OR % (G OR PO7"
) ¢ (Grade-basis indicator field)

) { "GRD" "TYPE LETTER GRADE." 2 3}(Grade field)

{311 Column numbering and spacing.
t RCL DUP Use existing data for reset values and
INFORM default (input suggestion) values. Go.
& If return argument is 1 (inputs OK’d)

OUP t STO store new list under name in
take its first object (the item name)

PATH HOME and, to convert string to name, note
SWAP 0BJ+ current path, move HOME to use UBJ*
SWAP EVAL (so evaluation gives empty name), then

* return via path noted.
€« { » Ifreturn argument is O (inputs cancelled),

supply second copy ofname in
t SWAP DUPZ Prepare for names comparison.

HESHHNE NOT If names are not the same,

Rename rename item with new name;

DDRDP OROP otherwise, drop both names.

Data Analysis Application: A Gradebook 273

Calc (& 32285d) (Assigned tothe [EVAL) key)
& Flag 1 tells "Clc to note argument

on first level of recursion only.
PATH 'Origin' Sto Note original path as Urigin.
H 'Pts' Sto B 'Hrs' Sto Start running sums at 0.
“Clc Calculate ("CIcC calls itselfas nec.)
Targ Supply argument list or name.
F

! EI'I‘lrigin SIZE 5 < Ifat Courses level or higher,

Pts "Total Pts" =»TRAG output gives total points,
Hrs "Total Hrs" =TAG total hours,
DUPZ ~ "GPA" -=TAG and GPA.

ELSE otherwise (if at Items level),
CSc "Course %" *TRG _output gives combine % ofarg.
CGr "Course Grade" =+TAG items and equivalent grade.

Origin EVAL Return to original directory.
¥

“Clc # £8764d) (The core calculation routine—
€ . recursive.)

HEEI']'JEPTH If the Stack is not empty,

OUP TYPE == ifthe argumentis a single name,
« 1 »LIST =» make it a list;
&

IF otherwise,
EEI']'IUP TYPE 5 # if it’s not a list,

EHDGEt A1l getall VARS (except INFD).

%
IFTE

ELSE If the Stack is empty,
HDGEtHll get all VARS (except INFU).

1 FSTC I 1 is set, this is the first call
&« JUP 'Targ' Sto = fflgfi]cff—;f)te a;‘;.lSlistea]cirsTafi’C;,- o

clear the flag regardless.
+ t The argument list becomes t.
&

274 PROGRAMMING PRACTICE

t SIZE
THEN

IF
PATH SIZE 5 <

TH

If t is not empty,

ifabove Items level,
EN for every element in
t 1 , move to that sub-
« EVAL GetAll "Clc = dzr et all VARS
OOLTST but[NF0and *Clc

ELSE Ifnot above Items level,
BB B 'CHs' Sto initialize course
'CSc' Sto 'CWt' Sto running sums;
t 1 for each elem. in t,
&

* N element is n;
&

IF
n ¢ GET "G" == If’s grade basis

THEN 1s letter, get
n 8 GET INFO 3 GET grd &ecrs.cru,
G*P n 6 ROT PUT find % & store.

ELSE Ifnis %-basedgr.,
n 4 GET n 5 GET getraw score &
< 188 * DUP total, find &
n 6 BOT PUT store %, calc. &
n 3 GET PG store corresp.

ENDn 8 ROT PUT letter grade;

n 2 GET 188 -~ DUP DUP add n’s weight
'CWt ' StoPl tocrs. wt. sum;
n 6 GET # add weighted
SWAP INFO ¢ GET = score & hours
'CHrs' StoPl to those course
'CSc' StoPl sums.

%
%
DOLIST Allelementstotalled;
CSc CWt -~ DUP 'CSc' Sto normalize crs. score;
INFO 3 GET P»G DUP 'CGr' Sto findcrs. grd.
{ /058 25 8 } G*P 25 - viacurve & add
INFO 2 GET SWAP OVER =
D'Pts' StoPl 'Hrs' S5StoPl

EN
END

Data Analysis Application: A Gradebook

resulting grade
points and hours
tooverallrunning
sums.

275

Geiflll(# 36693d)

IF
PATH SIZE

HEN
VARS DUP
"INFO' POS
> U P

* lpl-P

P 1+

+
C
C

»

ELSE
15 TVARS

END

G»P (¢ 6B14d)
&«

0BJ+ DROP
*gbcdf
&

CHSE
g NUM B3

THEN
166

END
g NUM 66

THEN
b

END
g NUM &7

THEN
C

END
g NUM 68

THEN
d

END
.F

END

276

SUB
v SIZE

(Get all VARS except INFU)

Ifnow at Items level,

get all VARS;
find where INFO is in that list,
list=u; INFO’s position=P;

extract all of list prior to p;
SUB extract all of list after p;

combine the two extractions.

Ifnot at Items level, get all directory
names only.

(Convert lettergrade to percentage)

Decomposelistofcurvepercenta%es
Grade=9; min.

likewise for C,dand f.

Iffirst character in 9is "A"

percentage is 100;

iffirst character in 9is "B",

percentage is b;

iffirst character in 9is "L

percentage is C;

iffirst character in 9is "["

percentage is d;

otherwise, percentage is f.

PROGRAMMING PRACTICE

P+G ¢ 57/669d)
&«

0BJ+ DOROP
* pabcd
&

CASE

AND

AND

AND

Sto ¢ 13813d)
&«

PATH 3 ROLLD
HOME Grds STO
EVAL

St%Pl (¥ 3915d)

PATH 3 ROLLD
HOME Grds STO+
EVAL

Data Analysis Application: A Gradebook

(Convertpercentageto lettergrade)

Decompose list ofcurve %’s.
Percentage=9; min. '=a; min

"B"=b;likewise for C, dand f

Ifpercentage is > 3,

grade is "A";

if @ > percentage > b,

grade is "B";

ifb > percentage >,

grade is "C";

if C > percentage > d,

grade is "0";

. - N
otherwise, grade is "F".

(A substitute for built-in STO—
stores into € HOME GRD% 1).

Notecurrentpath above other args.
Moveto T HOME GRD% ¥ and 5%0.
Go back to original directory.

(A substitute for built-in S5TO+—
stores into 1 HOME GRD%).

Notecurrentpath above other args.
Moveto{ HOME GRD3 ¥} and STU+.
Go back to original directory.

277

More Ideas

Of course, one book can never contain more than a few of the myriad

possibilities for useful programs on the HP 48. For example, here are

a few projects that, due to space limitations, didn’t make it into this

book. The strategies are outlined (but you may think ofbetter ways).

Tackle them as you wish; you will learn a lot—and enjoy the challenge!

Other Data Analysis Applications

After working through the gradebook example, you can now see some

of the possibilities ofthe HP 48 as a general data analysis application

driver. Using the same basic strategy as the gradebook example, you

could construct similar applications for a variety of relevant topics.

For example, recall the description of the static free-body analysis on

page 243: You could create your list offorces and moments via INFORPM.

And the whole application could live in a directory structure like this:

{ HOME FREEE WORK DATA } Asusual, the first level ofsubdirectory,

FreeB would contain the program routines themselves; and Work

would be the level from which you’d execute them. But the program

would name and store the free-body descriptorlists at the Dat a level—

safe from “clobbering” from the Work level.

Of course, that is just one of many areas for this general application

pattern. You could do something similar for circuits, chemical equa-

tions, statistics, and on and on. Use whatyou’ve already seen and done

—mnot in the details (those are different for every topic) but in the strat-

egies for how the program to works with the user, store data, etc.

278 PROGRAMMING PRACTICE

Alternative Calculator: A Vector Calculator with Units

Another general programming pattern to consider is the extension or

modification of the calculator’s basic arithmetic and number-crunch-

ing capabilities.

For example, you could write a set of routines to allow your HP 48 to

do common arithmetic with vectors (and real numbers) that may have

units attached. All object types would appear and behave normally,

except that a list is assumed to be a vector with units, in this format:

{01231 I1_mkh

The arithmetic keys would be reassigned to handle this special format

when it is encountered. Those arithmetic routines would also judge

when should mean CROUSS and should mean D0OT. Also, for con-

venience, you could assign *YZ and *V3 to and ()ENTER),

respectively, and the RAD/DEG and RECT/CYLIN/SPHER commands to

other convenient keys. Then you could offer custom menus of unit

selectors that behave like the built-in units menus but also accept vec-

tor arguments (formatting them, as necessary, into the list notation).

Directory recommendation: £ HOME YECS WORK } Yecs is where you

store all the programs; Work is the subdirectory from which you use

them and in which you can store results of your calculations without

worrying about name conflicts with your routines. (And don’t forget to

do a cleanup routine, as well as your setup routine.)

(For another, more involved example ofaltering your calculator’s basic

functionality, consider the following idea, too. --->)

More Ideas 279

Alternative Calculator: Significant-Figures, with Units

Write a set of routines to allow your HP 48 to do normal Stack oper-

ations and arithmetic (including units), where each real or unit value

is retained internally (on the Stack) in full machine precision, but

where only its significant figures (and units, if any) are displayed.

This task has several problems. The first problem is to decide how to

carry, with the value itself, its precision information—i.e., how many

ofits digits are significant. You could opt for a list format —containing

the value, its precision, and its units—similar to the vector calculator

described on the previous page. But that’s too much visual clutter

around what should be an easy-to-read value in the display. (By con-

trast, since vectors are long, often multiple-line objects anyway, the

attaching of units via lists isn’t such a major detraction there).

Consider this: Suppose that you round the last digit in each value’s

mantissa and substitute a precision digit (0-9), that indicates how

many decimal places are significant in the mantissa. That way you

have up to 10 digits (9 decimal places) of accuracy, plus a guard digit

by which to round, plus your precision digit—all in one value.

The second problem is to decide on a readable way to format the sig-

nificant digit display ofthe value. Alistis too ugly, but how about a tag?

Suppose that you set the display to single line mode (i.e. non-multi-line

mode) and format the entire significant portion of the value—includ-

ing its unit—as a string, then use that to tag the value itself. If you're

clever in how you pad that string, the value itself (with its embedded

precision and its unit, if any) will be preserved but will disappear out

tothe right (offthe screen); you’ll see only the significant part—the tag.

280 PROGRAMMING PRACTICE

Notice that the tag strategy is appropriate alsoin that a tag disappears

when you do anything to the value—which is exactly when the tag

must change anyway, since the precision ofthe result may be different.

The third problem is how to emulate normal Stack operations other-

wise. You could generally ignore this question with the vector calcu-

lator because the mechanics of keying in a vector are a little more

involved than for real numbers. Vector arithmetic is much more lim-

ited than for real numbers, anyway. But the convenience of this pro-

gram diminishes if you need to change a lot of “driving habits” just to

do simple arithmetic. And you don’t want to use custom menus here;

you may need the built-in real-number and UNITS menus.

Suggestion: Try vectored ENTER. Any Stack-oriented command you

execute manually (via a key) generally does an “implied ENTER” (i.e.

puts the Command Line onto the Stack) first. But when flags -62

(UFER) and -63 (vectored ENTER) are both set, the rules are different:

e First, ifthe name oENTER exists, the Command Line is put onto

the Stack as a string and oENTER is evaluated.

e Next, the command itself is executed.

e Then, ifthe name BENTER exists, the command name itselfis put

onto the stack as a string and BENTER is evaluated.

This gives you a wayboth to test what was on the command line (there-

fore how to treat it) and what command was executed (therefore what

to do about it or how to reformat the result afterwards). Have fun!

Recommendations: Use{ HOME 51GF WORK ¥ asadirectory structure

(similarto the vector calculator). And you should probably build/purge

oENTER and BENTER in your setup/cleanup routines.

More Ideas 281

Dead-Reckoning Course and Speed

Foryou navigation buffs, here’s more practice with the EquationWriter,

formatted numbers, custom menus, and/or the Solver: Write a set of

routines that, when given a set of destination coordinates (longitude

and latitude, in DD.MMSS format), will compute some combination of

following: Course and speed oftravel, net course and speed ofambient

conditions (wind and/or current), estimated time of arrival.

Here are some relevant facts:*

cos(GCD) = sin(Lat,)sin(Lat,) + cos(Lat,) cos(Lat,)cos|Lng, — Lng,

cos(Z) = sin(Lat,) — cot(GCD)sin(Lat,) cos(Lat,)

In these equations, GCD is the Great Circle Distance, expressed in arc;

Z is the Great Circle initial heading, in degrees.

Strategy 1: Create a solution (similar to the first FIS triangle pro-

gram example) where a custom menu mimics a VAR menu andjudges

which equation to use by which values were modified most recently.

Strategy 2: Create a list oflinked Solver equations, where you rotate

the appropriate equation in and out ofthe Solver, asneeded. Note that

you can’t add any frills (conversion routines) to the menu, though.

Strategy 3: Make a MES (Multiple Equation Solution), where the

Solveris smart enough to know which variables it has enough informa-

tion to solve for. Note that you can’t add any frills to the menu, though.

*Acknowledgments: These formulas are described in The Sailings, a public-domain program

originally written for the HP-41 by Derrill M. Daniel. In turn, Mr. Daniel makes reference to The

Calculator Afloat, a fascinating book by Captain Henry H. Shufeldt and Kenneth E. Newcommer,

Naval Institute Press, Annapolis, MD.

282 PROGRAMMING PRACTICE

3-D Topographical Analysis and Plotting

One thing you may have noticed about the 3-D plotting and analysis

tools in the HP 48: They generally require a mathematical function,

z=1(x,y) to generate the points. Ifyou have a set ofraw empirical data

(say, readings from a topographical survey), you’ll need some tools to

help you sort, analyze and visualize it. Write some: Assume that the

data appearsin a matrix ofn rows by 3 columns, where each row repre-

sents a single point. The first column is the northing coordinate; the

second column is the easting; the final column is the altitude.

Your first mission is to sort the matrix by northing, then by easting, so

that the points appear in the matrix as they would have been recorded

if a surveyor traversed over the grid in an orderly fashion—back and

forth, as if mowing a lawn. Then, offer some data visualization:*

¢ Provide a routine that will use a bar plot to show any one cross-

sectional slice (E-W or N-S) of the landscape in question.

¢ Provide a “fly-through” routine that animates the entire set of

those cross-sectional slices—again, either E-W or N-S.

* Provide a perspective panorama (i.e. a view looking somewhat

down at an angle onthe landscape). Hint: Combine successively

modulated slices via GXOR.

e Animate the perspective as a “fiyover” routine.

Directory recommendation: € HOME TOPOD WORK } (with approach

and reasoning similar to the vectors problem on page 279.)

*If graphics solutions are of special interest, you may want to read Graphics on the HP 48G/GX,

by Ray Depew. See the back of this book for more information.

More Ideas 283

Cincinnati 5-Way Tic-Tac-Toe

Life just wouldn’t be complete without a game or two. Writing your

own game program on the HP 48 can get very involved, of course, de-

pending upon what game you choose. In fact, it’s one of the harder

questions to answer: What game and with what rules?

Here’s a simple first try (and it’s hard enough): Write a set ofroutines

to play a modified version of tic-tac-toe on the screen of your HP 48.

Make the playing area a 15 x 15 grid of squares (with each square a 4

x 4 block of pixels). The object of the game is just like regular tic-tac-

toe, but you must get five in a row (vertically, horizontally or diago-

nally)—not just three. Simple game, but quite interesting.

Obviously you’re one player, but see if you can allow the other player

to be either another humanoid (easier) or the machine itself (harder).

Allow the players to choose who is X and who is O, and who goes first.

It alsomightbe nice to show either in the menu orthe display (on either

side of the board) whose turn it is.

Don’t forget to allow an edit/correction routine in case a player fumble-

fingers his/her move to the wrong location and wants toundoit (ah, but

no changes after the other player has made his/her next move)!

Directory recommendation: € HOME TTTHS PLAY } This structure

is similar in scheme and rationale to the vector calculator example on

page 279.

*Again, if graphics-oriented programs are of special interest, you may want to read Graphics

the HP 48G/GX, by Ray Depew. See the back of this book for more information.

284 PROGRAMMING PRACTICE

As you can tell from these ideas and examples, sometimes thinking

through the strategies and writing little “warm-up” routines —parts

oflarger programs—can help you focus on what the real problems are.

Often the hardest partis not the actual core calculation but ratherhow

to make it easily accessible without compromising the convenience of

the rest of the machine. With so many tools to interact with, a pro-

gram’s design and compatibility is as important as the results it pro-

duces. It pays to “sit on your hands” or play on paper a bit before rush-

ing into much of the program code itself.

Then, when you do begin to the code, try not to go overboard the other

way: Learning never really stops, and with a machine like the HP 48,

your “tinkering” could go on indefinitely. Programming is addictive,

and it’s all too easy to lose sight of the reason you began a program in

the first place. You will always be able to find other ways to solve any

problem (including those presented here)—more clearly, quickly or

elegantly.

So, one ofthe most important (and most difficult) lessons tolearn about

programming is when to stop. Ifyou do it as a hobby, that’s one thing—

then it’s just a pastime. But ifyou do it to build a tool for a necessary

task, you should keep one question firmly in mind:

“Has the extra time I am spending to improve this program be-

gun to outweigh the added benefit I thereby gain when using it?”

Hopefully, these pages will help you often to answer: “Not yet.”

More Ideas 285

Foundation Completed

Thisis only the beginning—trulyjust a foundation ofunderstanding—

upon which you should continue to build and use your 48 workshop.

As you certainly realize by now, there's no way that any single book

could give you an in-depth look at everything about the 48. You prob-

ably noticed on many occasions that this Course made just a passing,

one-time reference to a certain function, keystrokes or calculation

method. It was by necessity, not by neglect.

So if you marked those spots or scratched your head over them, you

might wish now to read some ofthe books recommended on pages 164-

165—to explore some of those “breezed-over” features.

Note also that this Course did not cover:

¢ Alarms and the TIME application;

* Printing;

* Transferring data into and out of the 48;

e Using plug-in cards;

¢ Using the LIBRARY features;

e Making backup objects; the ARCHIVE command.

Those topics are best handled by your HP User's Guide.

287

Index

(a) key 213, 232
Wkey 232
[@key 217, 232
() key 94, 113, 215, 217, 232

(«) key 20, 34, 52, 151, 217, 230, 235

Pkey 76, 215
% command 152
&Go program 257, 259
?+ character 170-3, 184, 189-91, 202-9,

222

£ character 81-2, 88

< command 184
== command 185, 189-91, 203-6

> command 183-4, 203-4
£ function 187, 191, 203-4

= function 184, 187, 203-4

2-'s complement 107

3-D plotting 283

oENTER 281
BENTER 281

A~BR program 252
ABS command 84, 91, 154-5, 181, 187,

191

key 154
Addition 51

with lists 77, 135, 143, 149

with objects of different type 77, 195

with strings 109, 135, 195

with unit objects 70, 72

with vectors 155, 162

Algebra 124, 128

Algebra [Pre-Calculus on the HP 48

165, 302

Algebraic entry mode 129, 214

Algebraic notation 128, 130

Algebraic objects 24, 124-32, 135, 148-

9,176, 214

evaluating 126, 169

single-line version 129

ALGM program 239-40
(o) key 18, 27-8, 32, 59, 230

Alpha lock 19, 33, 35, 212

Alpha mode 19, 32-3, 35, 130, 212

Alphabetical order 184, 201

AND function 185, 187, 199, 203-4
Angle between two vectors 145, 154

Angle conversion 61

Angle of triangle 250

Angle mode 69, 81, 88, 100, 243

Annunciators

ALG 129, 214

alpha 33

angle mode 99

PRG 133, 214

user flags 99

vector display mode 99

Appending an object to a list 77

Appending strings 109

ARCHIVE command 287
Area 69-71, 176

ARG command 84
(ARG) key 218, 241-2
Arguments

of a command 78-9, 90, 104, 151

on the Stack 79, 168, 171, 174, 181-

2

recovering previous 218

Arithmetic 48-51

+ARRY 90, 95-6, 151, 155, 162, 180,
208-9

Arrays 23, 27, 29, 90-7, 156, 180-1

creating 94-8

decomposing 96, 146

elements of 92, 155

Arrays (cont.)

non-matrix operations 93

real vs. complex 93-5, 146, 189

reversing rows or columns 201, 209

row-major order 94

rows and columns 92

sorting rows or columns 201, 209

arrow keys 20, 36, 94, 233

key 154
ASN command 231
Assigning programs to keys 254

Audio frequencies 232

Automated processes 167-9, 183

Backup objects 287

B~AR program 252
Base identifier 103, 107

Base of triangle 250

Bases 23, 102

Bearings 156

BEEP command 191, 233
BIN command 103, 159, 236
Binary arithmetic 23, 106-7, 147

Binary digits 23, 98, 236

Binary integers 101-7, 148, 159, 241

and flags 237, 243

and fractions 106, 159

and negative numbers 106

display of 37

word size of 104, 158, 202

Bits 23, 98, 101-2, 104, 236-7

Branching 186-92, 203-4

B*R command 106-7
B~RS program 252
Byt es program 262-3

Calc program 260, 274
Calculus on the HP 48G/GX 165, 302

CALG menu list 226-9, 238-9
key 16, 20, 32, 39, 72, 122-3,

148, 212

CASE command structure 191, 207-8
CASE...THEN.. END.. END command

191, 207-8, 260-1, 276-7

CF command 100, 157, 183, 229, 236
Character codes 111, 163

Character strings 24, 108-12, 117,

159, 163

alphabetizing 184

appending 109, 135, 182

comparing 184

decomposing 110, 159-60, 163

editing 182, 201, 205

extracting characters from 159

manipulating 200, 203-5

vs. numbers 109, 148, 191

Characters 34-7

alphabetic 11, 32

lower-case 35, 200

NEWLINE 37
non-alphabetic 35, 111, 230

upper-case 200

Checksum 246

ChkPth program 265
CHR command 111, 163, 203-5
“Clc program 274
C3R command 83, 151, 155

Circular references 122, 161

Cleanup program 255-6
key 52, 128

Clear program 258
Clearing flags 100-1, 105

Clearing Level 1 of the Stack 52, 58

Clearing the pointed-to level 58

Clearing the Stack 52, 57

key 217, 241-2

CNRM command 157, 180
COLCT command 225, 228-9

Combinations 61, 65

Command Line 16, 21, 31-9, 44, 49,

52-3, 55, 58-9, 65, 76, 78, 82, 94,

110, 119, 123, 125, 130, 134, 213

editing an object in 37-8

entry modes 214

multiple lines in 36

previous 217

Commands 31, 78, 117, 135, 167, 179

arguments of 79

in a list 76

in programs 133, 246

names of 116

Comparing values 183-4, 200

Complex numbers 13, 22, 80-6, 135,

143, 147, 157

extracting components of 84

CON command 97, 181, 208-9
Concatenation 110

Conditional tests 170, 183-5, 200-4

CONV 73
CONVERT command 219, 248
Converting

between real and complex 83

between units 68, 70-3

lists to arrays 180

objects to strings 110, 148, 159

Coordinates

complex numbers 80

COPY program 223
CopY program 262, 265
Copying in the Stack 38, 56, 77

Cost-benefit analysis 144, 152

COUNT program 196-7
“CPY program 266
CRDIR command 137, 140, 222
Creating

arrays 94-8

complex numbers 82-4, 157

directories 137

lists 76-81

programs 133

Creating (cont.)

strings 159

unit objects 69, 72

vectors 88-90, 155

Cross product (CROSS) 91, 154
key 225-9, 235, 240

CST variable 225-6, 229, 232, 234
Cursor 35

Cursor keys 36, 54

Custom menus 211, 238-9, 243

mode 81, 89, 155
Cylindrical mode 89, 91, 147, 157, 243

Cylindrical vector notation 86

Dead-reckoning navigation 282

DEC command 103-6, 159
Decimal degrees 253

Decimal places 46, 64, 202

Decimal representations 40-1

Declaring local names 173

Default system flag states 241, 243

DEFINE command 170, 172
Defining procedures 173-7, 184

DEG command 229, 243

Imode 81, 100, 155
key 20, 34, 217

Delimiters 35, 117, 136

apostrophes 24, 117, 119-20, 188

braces 25, 75

brackets 23, 87, 93

colon 24, 113

commas 82, 88

double brackets 93

french quotes 25, 133, 188

pound sign (#) 23, 103

quotation marks 24, 108

spaces 65, 88, 95

underscore 22, 68

DELKEYS command 234-5, 239, 255
Density 150

DEPTH command 198
Digital math 106-7

Dimensions 86-7, 91, 95

Directories 15, 25, 136-41, 149, 220

CST menus 226

current 15, 138-40, 175, 205, 208,

223, 225, 229

HOME 15, 137-8, 140-1, 163, 181,
221-3, 226-8, 233

parent 140, 226

structure 139-40, 221-3, 227, 238,

240, 268

variables and 175, 216, 227

Directory path 205

Directory tree 140, 169

DISP command 196-7

Display 10, 16-7, 31, 36, 48

binary integers 23, 107

formats 46-7, 202

of vectors 87

Division 51

with binary integers 107, 159

with unit objects 71-2

DO...UNTIL..END loop 193, 199, 206-7
DOLIST command 207, 258, 263
DOSUBS command 263
Dot product (00T) 91, 154-5
DROP command 190, 195, 203-7, 208
(DRoP)key 52, 58, 125, 134, 151, 162

DROPZ command 192, 199
Dropping arguments 79

Dropping multiple stack levels 57

Dropping objects off the Stack 198-9

DRPN command 57
DS1 program 181
DUP 181, 189-90, 196, 198, 203-9,

222-3, 233

DUPZ command 199, 202, 205
Duplicating Level 1 of the Stack 53,

181

Duplicating multiple stack levels 57

DUPN command 57, 63

E4 program 272
ES program 272
IEX1l operation (IS) 38, 55, 65, 213
Ebmkey 123, 125, 159, 236, 246

Edit program 270
Editing objects 37-9, 54, 123, 135,

145-8, 159, 246

Editing keys 20, 123, 135

EEX)key 44, 54, 150, 152

Electricity 69

Element count 79, 92

Energy 69, 151

ENG command 147, 152, 157, 243
key 16, 20, 31, 49, 53, 77-8,

128-9, 134, 212, 230, 232-3, 235

[ENTRY) key 134, 160, 214, 217
Entry modes 212-6

Environments

EquationWriter 230

local variable 173, 176-7, 197

PICTURE 230

EQ equation 131, 160

(EQUATION) key 215
EquationWriter 215

Error beep 235

Error messages 72

custom 192

Invalid Dimension 162
Invalid Syntax 160

Error traps 170, 178, 192, 195, 208-9

Errors

recovery 218

testing for 169, 208-9

unit 71

with 0BJ+ 110
EVAL command 206-8, 222-3
EvaUkey 120, 131-2, 134, 160-1, 167,

171-2

Evaluating

alist 168

a name 120-1, 130-1, 137-8, 160,

168

Evaluating (cont.)

a program 133, 167-8

algebraics 126, 131, 149, 167-8, 185

an object 119, 139

conditional tests 185

vs. recalling 122

Exiting environments 58

Exiting program loops 193

EXPAN command 225, 228-9
Exponential expressions 60, 62

Exponents 44-7, 160

EXPR command 161
Expressions 24, 124, 149

Extracting components 84, 88, 159

Factorials 60, 63

FC? command 100, 183, 200, 202
FC?C command 183, 200, 202
Feet, inches, and sixteenths 247

Filtering a list 201

FIS directory 247
FIS tools 251

FISA program 249
FISD program 249

FIS+*Ft program 247
FISM program 249

FIS+M program 248
FISS program 249

FIX command 46-7, 156, 229, 236
Flags 23, 98-101, 102

alpha lock (-60) 212

Curve-Filling (-31) 236
custom 220, 236-7

Last Argument (-55) 242

Num. Results (-3) 160, 181, 236

Principal Solution (-1) 225

setting and clearing 98, 101, 157,

236, 239

storing flag settings 101,

105, 158, 237

Flags (cont.)

Symbolic Constants (—2) 160

system 98, 100, 105, 157-8, 169

testing 100-1, 158, 183

user 98-100, 105, 236

FLST? program 203-4
FOR...NEXT loop 193, 197, 203-4, 206-7
FOR...STEP loop 193, 197
Force 69

Formatting alternative notations 247

Formatting output from programs 178

Free-body analysis 38, 278

FST command 100, 158, 183, 200, 202,
229

FSTC command 183, 200, 202
Ft+FIS program 247
Functions 24, 169, 173

entering 214

user-defined 173

GEN program 225, 227-8
GET command 206-8
GetAll program 276
Global name 174, 246

G*P program 276

GRAD command 229
GRAD mode 81

Gradebook application 268-77

Graphics on the HP 48G/GX 165, 302

HEAD command 272
HEX command 103, 106, 159
HMS?*command 156
HOME command 205, 207-8, 239
HOME directory 15, 138-41, 181, 221-3,

226-9, 233, 238

FoMBlkey 138, 140-1, 222-3, 226

Identical vs. Equal 185

Identity matrix 97

IDN command 97
IF...THEN...ELSE.. END 186, 190, 203-

7,261

IF...THEN...END 186, 188-92, 198
IFERR...THEN.. ELSE.. END command

192

IFERR...THEN.. END command 192,
195

IFT command 186-90
IFTE command 186, 189-90, 203-4,

229

IM command 84, 145

Imaginary numbers 22

Immediate vs. delayed execution 129,

133

Incrementing a loop counter 193, 196

Indented program listings 246

INFORM command 272-3, 278
Init program 269
Input checking 180-1, 183, 189, 208-9

Input shortcuts 212-6

Insert mode 37

Inserting characters 34, 37

Integer value (binary integers) 102

Integers 40

Interactive Stack 54-8, 63, 65, 213

entering 54-5

exiting 58

INTV program 233
INV function 233
Inverse operations 49-50, 145

IP 50

IRAND program 199
Irrational numbers 64

ISOL command 225, 228-9

E33d operation 57
Key assignment list 233-4, 242

Key assignments 234-5, 239

Key code 206-7, 230

KEY command 206-7
Keyboard 10, 18-20

custom 220, 230-5, 238

overlays 233

standard 232, 234

user-assigned definitions 231

Keys 14, 18, 31

alphabetic 18-9

arrow 20, 36

control 20

function 67

menu 17, 19, 20

Newline 36

shift 10-1, 18-9, 27-8, 35, 73

toggle 18-9

Keystrokes 167, 214

Labels, temporary (tags) 24, 112, 115

Length 69-71, 73, 150, 219

operation 57
Level number 57

LFLTR program 206-7

Libraries 287

key 287

Light 69

Linear systems 87

+LIST command 78-9, 151, 162, 208-9
operation (IS) 213

LIST? program 203-4
Lists 25, 74-81, 155, 161, 200, 214

adding/subtracting 143, 149, 151

and strings 109-10

as directory paths 205, 207-8, 223

creating from other object types 78

custom flag settings 236, 239

custom keyboard 232-3, 239

Lists (cont.)

custom menu 225, 227, 239

editing 169

element count of 79, 90, 194

empty 162

evaluating 132, 167, 169, 176, 205

filtering 201, 206-207

manipulating 180

parameter 239

SOLVR equations 254

summing the elements of 194

vs. programs 169, 176, 201

with arrays and vectors 96, 111

LMAX program 180-1
Local names 170-7, 182, 184, 196-7,

200-7, 246

Logarithmic expressions 60, 62

Logarithmic functions 85

Logic 106

Loop counter 193, 197, 203-4

Looping 193-9, 203-5

Lower-case alpha 35, 130, 159, 212

Lower-case mode 35

LSUM program 180-1

Magnitude of a number 40, 42-3, 47,

191

Magnitude of a vector 155

MANT command 160
Mantissa 40-1, 45, 160

Mass 69, 150, 151, 156

Matrices 13, 23, 87, 90, 92-7

arithmetic 97, 147, 156-7, 181

identity 97, 156

reversing rows or columns 201, 209

row-major order 94

sorting rows or columns 201, 209

key 215

MatrixWriter environment 21, 215

MARR 42

Memory 178, 180, 242

(MEMORY)key 222, 240

Memory management programs 262-7

Memory operations 217-9

Memory repacking 235

Memory usage 246

MEN1 program 239-40
Menu boxes 121, 131

MENU command 224, 226, 239
Menu items 25, 28, 214, 227-8, 236

key 70, 72, 151-6, 159, 224-5,

237, 241-2

Menu keys 19-20, 28, 69, 230

Menu Line 17, 31

Menu numbers 224-5, 242

Menu pages 19, 211, 219, 221, 224

Menus 14, 17, 21, 27, 28

BASE 103, 106-7, 159, 236
BRCH 186
CST 225
customized 211, 220, 224-9, 234,

238-9, 243

EDIT 37-38
HYP 51
MTH 14, 50, 83
MATR 97, 155-7

menu keys 17, 19-20, 28, 69

MODES 19, 37, 63, 89, 103, 224, 242
previous 219

PROB 51, 63, 65
SOLYR, custom 254

STACK 79, 186
STAT 224
temporary custom 229

TEST 158, 183
TYPE 189
UNITS 69
VAR 15, 118-21, 123, 125-7, 134-5,
161

VECTR 89-90, 154-5
within menus 17

MES (see Multiple Equation Solver)

MES menu 256

Messages 17, 72,99, 127

M2FIS program 248

MINIT command 256
MINR command 42
MOD function 199

Mode indicators 17-8, 214

Modes 17, 23

algebraic entry 129, 214

alpha 19, 212

angle 19, 63, 81-2, 84-5, 88, 100

customized 220

display 46-7, 70

IEEN 46
insert 37

key 37, 89

number base 102-3, 107, 148

program 76, 133-4, 214

replace 37

47
47

User 231, 234

vector 19, 81, 84-5, 88-9, 154, 162

key 224, 231, 233-4, 236

Modifying meanings of shift keys 228

Moles 150-151

Momentum 156

Move program 262, 265
Moving a variable between directories

222, 262, 265

Moving around using menus 28

MOVY program 222-3, 227
MSGBOKX command 269-70

MSOLYR command 256
Multiple Equation Solver (MES) 256

Multiple results 169

Multiplication 51

with algebraic objects 128

with binary integers 107

with matrices 156-7

with unit objects 70-2

Musical scale 232

N4 program 271
N3 program 271
Name objects 24, 116-23, 168, 174

Names 24, 116-23, 125, 128, 169, 214

capitalization 121

directory 137, 149, 163

empty 120, 126, 130

evaluating 175, 227

identical 138

invoking 116, 120, 163, 175, 177

local (vs. global) 170-7, 182, 184,

200-4

of programs 134-5

self-referencing 161

special restrictions 117

temporary 170

within names 121, 132

NEG command 190
Negating a value 189

Negative numbers 45, 106

*N+L program 265
NOT command 183
NOVAL 271
NUM command 111, 163, 203-5
Number bases 23, 102-3

Numbers

complex 13, 22, 80-5, 157

imaginary 22

largest and smallest 42

real 13, 22, 27-8, 32, 40-7, 70, 99

Numerals 109, 117

key 19-20, 50, 151, 211, 221

0BJ+ 79, 83, 90, 96, 110-1, 114, 148,
151, 159-60, 162-3, 180, 182, 194,

201, 207-9

Objects 13-4, 16, 22-6, 48, 67

appending to a list 77

backup 287

collections of 25, 74

decomposing 79, 83, 151, 207-8

Objects (cont.)

delimiters 22

evaluating 119

governing rules for 74

naming 167

performing operations on 115

procedure 167

purging 120

recalling to the Stack 122

saving 116

string representations of 109, 148

tagged 113

types 22-6, 66, 195

OCT command 103
0007 program 199

key 10
key 10, 16, 32

Operations 214

Operators 117, 125, 185

Optimizing the HP 48 210-43

UF command 185

UROER command 240

Order of entry on the Stack 51, 118,

131,171

Order of local names in a UDF 173

Order of operations 128, 130

Ordered collections 74, 86, 133

Ordered pairs 22, 80

Organizing variables 221-3

in VAR menu 240

(ut program 253, 258

("EF command 205
Overwriting variables 223

Parameter lists 239

Parentheses 128-30, 171, 215

Path 15, 139, 141, 163, 205, 207, 223,

226-7

PATH command 205, 222, 223
Percentages 61, 65, 144, 152

Perimeter 176

Permutations 61, 65, 173

P+ program 277
PGOIR command 141

T (Pi) 64, 148,160

PICK command 229
operation 56, 213

Place value 158

Plotting parameters 239

Plug-in cards 287

(POLAR)key 82, 85, 88-9, 91, 156

Polar mode 81-2, 156

Polynomials 215

P05 command 159
Postfix notation 48-50, 52, 78, 132,

134-5, 160, 179

Power 69

FPAR variable 239
Precision of a number 40-1, 64

Pressure 69

(PREV)key 19-20, 50, 150-1, 211

PR3 annunciator 76, 133

FRIMNC program 225, 227-8
Printing 287

Probability 65

Procedural arguments 187

Procedure environments 177

Procedure object 188, 201

Program mode 76, 133-4, 214

Program structures

branching 186-92, 203-4

conditional tests 183-5, 200-1, 203-4

defining procedure 184

error trapping 192, 195, 208-9

looping 193-9, 203-5

Programming 166-209

defining inputs and outputs 178

design strategy 179-80

habits 246

managing flags 237

modular 179-80, 199

practice 244-85

Programs 13, 25, 101, 115, 132-5,

149, 162, 166-209, 220

decomposing 135

designing 178-83

editing 169

and the Stack 170, 174, 196

within programs 173

Prompting 178, 180

key 120, 139, 160-1, 223

PURGE command 141, 161, 222
Purge program 262, 264

Purging a directory 141

Purging objects from the YAR menu
120, 135, 139, 148, 222-3

PUT command 155-6, 208-9

Fgkey 231, 234
+Qnr 225, 228, 231, 234-5
Quadratic equation 128-31

QUIT program 239-40
Quit program 252, 258, 269

RAD annunciator 100

RAD command 229, 236
key 100, 154, 156

Imode 81, 100, 155
Radiation 69

RAM cards 287

RAND command 199

Random numbers 199

R~AS program 252
Rational numbers 40

R+B command 106-7
R~BS program 252
R+C command 83, 151, 155
RCL command 175, 207-8, 222-3

key 122, 228
RCLF command 105, 236, 239

RCLKEYS command 232, 234-5, 237,
239, 255

RCWS command 104
RDOM command 155-6
RE command 84, 145
Real numbers 13, 22, 27-8, 32, 40-7,

67, 70, 83, 99, 114

Recalling an object

from a different directory 201

to the Stack 122-3

388 mode 81, 154-5, 157
Rectangular mode 82, 89

Repeating commands 193

a predetermined number of times

193-5

indefinitely 193, 198-9, 206-7

using a incremental counter 193,

196-7

Replace mode 37

Rename program 262, 267
Restore previous flag settings 237

Results of a calculation 115

Return key (see(<)key)
ReuCl program 209
REVEW)key 127, 223
Reviewing the list of equations 228

Reviewing variables 127, 223

REVLIST command 209, 265
RevRw program 209
Rise of triangle 250

RND function 64, 229, 247
RNRM command 180
ROLL 56, 65, 208-9, 229

operation 213
ROLLD command 56, 229

operation 213
Rolling the Stack contents 56, 65

ROM cards 287

ROT command 195, 202, 208-9
Rounding error 41, 61-4, 106

Rounding numbers 41

Row-major order 94

S~AB program 253
SAME command 185
Saving keystrokes 211

Saving objects 116

Scalars 70, 91, 249

SCI command 47, 150
Scientific notation 40-1, 47, 148

Series 154

SET1 program 239-40
Setting flags 100-1

Setting the machine for the Course

11, 105

Setup program 255-6

SF command 100, 157, 183, 229, 236
Shift keys 18-9, 27-8, 35, 72-3, 123,

212, 228, 230

Significant digits 47, 64, 280-1

SIZE command 111, 159, 182, 203-7,
208-9

SKEY command 235
Slope of triangle 250

key 216
SOLVE tool 220, 254
SOLYR menu, customizing 220, 254
SORT command 209

Speed 69

mode 81, 89, 154-5

Spherical mode 81, 86, 89

SPLIT program 182
S@ function 187, 202
Square root 129

SrtCl program 209
SrtRw program 209
Stack 14, 16, 23-4, 28, 31, 48-51, 52-

9, 67, 76-8, 83, 89, 95, 105, 109,

113-4, 116, 118, 122, 129, 150

and evaluating objects 127

and looping 195

effect of errors on 135

Interactive 54-58, 79

levels of 14, 31, 38, 39, 51, 57

manipulating 169, 179

Stack (cont.)

recovering previous 218

rolling the contents of 56

Stack pointer 54, 56-7

START...NEXT loop 194-5
START...STEP loop 193, 196-7

key 216, 230
STAT menu 224, 230
STAT tool 220
Status area 17-9, 32-3, 76, 81, 99, 129

STD command 47, 94, 151, 154, 157,
160, 229

STO command 222-3, 239, 241-2
(STO) key 118, 122, 138, 154, 163, 172,

226

Sto program 277
STOF command 101, 105, 237, 239,

241, 243

STOKEYS command 233-4, 239, 241-2,
255

StoPl program 277
Storage 14-5, 24-5, 116, 118, 123, 138

Storing flag settings 101

Storing values in variables 226

+5TR command 110-1, 159, 207-8
String objects 108-11 (see also Char-

acter strings)

String representations of objects 109-

10

STWS command 104-6, 159, 236

SUB command 159, 182, 203-4, 205,
207-9, 276

Subdirectories 136, 140-1, 149, 221,

223

Subtraction 51, 70, 107

SUML program 194-5
Summations 143, 145, 157

Superscripts 128

SWAP 194-5, 199, 202, 204, 207, 222-3,
233

(SWAP) key 53, 151, 162

Index

Symbolic constants 148

key 231
Symbolic vs. numeric evaluation 148,

160

System flags 98, 100, 105, 158, 169,

180, 200, 202, 212, 236-7, 239

System parameters 167-8, 178

System reset 241

System states 101, 105, 147, 158,

169, 236

default 241, 243

+TAG command 114, 160, 253
Tags 24, 113-5, 148

Taylor series 63

Temperature 69, 151

Temporary custom menu 229

Testing flags 100-1, 183, 202

Tic-tac-toe, 5-way 284

Tidy program 262-3
Time 69, 219

key 156, 216

TMENU command 229, 239
Toggle keys 18, 82, 89-90, 96, 236,

242

three-way 19, 231, 233

Topographical analysis 283

Transferring data to other machines

287

Triangle relations 250

Trigonometric functions 85, 154

Trigonometry 61

Triple scalar product 154

TRN command 208-9
TRNC function 64
Truncation 61, 64

and binary integers 106, 159

TYPE command 183, 189-90, 198,
203-4, 207-8

UBASE command 156
UDF (see User-defined functions)

Undefined values 126

key 218, 241-2

Undoing a stack error 218

Unit objects 22, 68-74, 77, 144-5

adding and subtracting 70, 72

building 69, 72, 143

multiplying 70

multiplying and dividing 71-2, 143

+UNIT command 248
UNIT program 181

Units 22, 68-73, 154

compound 72

consistency 68, 71

converting 68, 70-3

prefixes to 152

key 69, 73, 150-1, 156, 219

key 140
UPDIR command 140
UpDir program 270
User flags 98-100, 105, 236, 239

User mode 231, 233

User-defined functions (UDF's) 170-2,

182, 200, 203-4

algebraic vs. postfix 171-2, 184

User-keyboard definitions 231-3, 239

key 231, 233-4
UVAL command 156, 248

+YZ command 89-91, 147, 156-7, 243
V3 command 89-91, 154, 243
Y+ command 90

key 15, 154-5, 216, 230, 235, 240
VAR menu 118-27, 134-5, 138, 161,

167, 174, 211, 216, 221, 225, 242
directories and 137, 238

imitating 257
subdividing 136-7, 222

Variables 118, 124, 168-9, 214 RPON command 160, 191
YPAR 239
CST 225-6, 229, 232, 234

global 171, 173-5, 177

in different directories 138-9 Zero values 181

local 173

moving 222

PPAR 239
value of 127, 132

Vectored ENTER 281

Vectors 13, 86-91, 93, 143, 151, 155-

7, 241, 243

angle between 145, 154

arithmetic with 91, 146, 155, 162

compared with arrays 93-4, 146

cross product 91, 154

display mode 88, 89, 154, 162

dot product 91, 145, 154, 155

extracting components of 87-8, 90

finding length of 91

in complex plane 80

real and complex 87, 155-6, 162

rectangular vs. polar form 88

redimensioning 145, 155-6

unit 145, 155, 181

with units 279

within vectors 162

Velocity 156

operation 55
Viscosity 69

Volume 69, 72-3, 145, 150-4, 177

"¥Sep program 264
WTYPE command 263-4

WAIT command 196-7, 206-7
Waiting for input 201

WHILE...REPERT...END loop 193, 198-
9, 205

Word size 104-7, 147, 158, 202, 237,

243

Reader Comments

We here at Grapevine like to hear feedback about our books. It helps

us produce books tailored to your needs. If you have any specific com-

ments or advice for our authors after reading this book, we’d appreci-

ate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State:

How long have you had your calculator?

Please send Grapevine catalogs to these persons:

Name

Address

City State Zip

Name

Address

City State Zip

Here are some other related Grapevine books (see also pp. 164-165):

Graphics on the HP 48G/GX

Here's a “must-have” ifyou want to use the full potential ofthat big display. Ray

Depew shows you how to build graphics objects (“grobs”) and how to use them to

program and customize displays with diagrams, pictures, and data plots. First the

book offers a great in-depth review of the built-in graphics tools. Then you learn

to build your own grobs and use them in programs—with impressive results!

Algebra/Pre-Calculus Calculus

on the HP 48G/GX on the HP 48G/GX

Grab your calculator, grab this book, Get ready now for your college math!

and you're all set for math class. You'll Plot and solve problems with this great

get lots oflessons, examples and advice collection of lessons, examples and pro-

on graphing and problem-solving with: gram tricks from an experienced class-

: : : : room math teacher:
Functions (linear, quadratic, rational,

polynomial), trig, coordinate and ana- Limits, series, sums, vectors and gradi-

lyticgeometry, conics, equationsoflines ents, differentiation (formal, stepwise,

and planes, inequalities, vectors. implicit, partial), integration (definite,

indefinite, improper, by parts, with vec-

tors), rates, curve shapes, function aver-

ages, constraints, growth & decay, force,

velocity, acceleration, arcs, surfaces of

revolution, solids, and more.

You'll also get great programmed tricks

and tips for plotting and solving—all

from an experienced classroom math

teacher.

The HP 48G/GX Pocket Guide

Don’t take your calculator anywhere without this handy quick-reference booklet!

It fits right in the case withyourHP48G/GX, and it’s packed with the remind-

ers you need most: The alpha keyboard; object types/syntax; constants/reserved

names; names, variables, directories and paths; menus, diagrams and summaries;

custom menus/key assignments; system flags; and @ complete command index.

For more details on these or any of our books, check with your local

bookseller or electronics dealer. For a full Grapevine catalog, write,

call or fax:

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Phone: 1-800-338-4331 or 541-754-0583

Fax: 541-754-6508

ISBN | Price*
Books for personal computers :f_ . L

0-931011-28-0 Lotus Be Brief $9.95
0-931011-29-9 A Little DOS Will Do You 9.95

0-931011-32-9 Concise and WordPerfect 9.95

0-931011-37-X An Easy Course in Using WordPerfect 19.95

0-931011-38-8 An Easy Course in Using LOTUS 1-2-3 19.95

0-931011-40-X| An Easy Course in Using DOS 19.95

Books for Hewlett-Packard Scientific Calculators .

0-931011-18-3 An Easy Course in Using the HP-28S 9.95
0-931011-25-6 HP-28S Software Power Tools: Electrical Circuits 9.95

0-931011-26-4 An Easy Course in Using the HP-42S 19.95

0-931011-27-2 HP-28S Software Power Tools: Utilities 9.95

0-931011-33-7 HP 48S/SX Graphics 19.95

0-931011-XX-0| HP 48S/SX Machine Language 19.95

0-931011-41-8 An Easy Course in Using and Programming the HP 48G/GX 19.95

0-931011-42-6 Graphics on the HP 48G/GX 19.95

0-931011-43-4 Algebra/Pre-Calculus on the HP 48G/GX 19.95

0-931011-44-2 Calculus on the HP 48G/GX 19.95

0-931011-45-0 The HP 48G/GX Pocket Guide 9.95

0-931011-46-9 The HP 38G Pocket Guide 9.95

 Books for Hewlett-Packard financial calculators .
0-931011-08-6 An Easy Course in Using the HP-12C 19.95
0-931011-12-4 The HP-12C Pocket Guide: Just In Case 6.95

0-931011-19-1 An Easy Course in Using the HP 19Bn 19.95

0-931011-20-5 An Easy Course In Using the HP 17B11 19.95

0-931011-22-1 The HP 19B11 Pocket Guide: Just In Case 6.95

0-931011-23-X| The HP 17B11 Pocket Guide: Just In Case 6.95

0-931011-XX-0| Business Solutions on Your HP Financial Calculator 9.95

 Books for Hewlett-Packard computers o

0-931011-35-3 The Answers You Need for the HP 95LX 9.95
0-931011-38-8 An Easy Course in Using LOTUS 1-2-3 19.95

0-931011-40-X| An Easy Course in Using DOS 19.95

Other books , o

0-931011-14-0 Problem-Solving Situations: A Teacher’s Resource Book 9.95

0-931011-39-6 House-Training Your VCR: A Help Manual for Humans 9.95
 Contact: Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449 Corvallis, Oregon 97339-2449 U.S.A.

800-338-4331 (541-754-0583) Fax: 541-754-6508

*Prices shown are as of8/6/96 and are subject to change without notice. Check with your

local bookseller or electronics/computer dealer—or contact Grapevine Publications, Inc.

An Easy Course in Using and

Programming the HP 48G/GX

Here is an Easy Course in true Grapevine style: Examples,

illustrations, and clear, simple explanations give you a real feel

for the machine how its many features work together.

In the first part of the book, you get lessons on the Stack, the

Command Line. Then you study the various objects, how to build

them, combine them, name them and calculate with them. Then

youre ready for simple programing: looping, branching, etc.

Next you learn to programwith some ofthe built-in applications,

and finally you design your own applications, too, complete with

custom menus, directory structures, the works.

All of this is yours—in one of the best self-study courses you’ll

ever take. Let Grapevine transform your HP 48G/GX from a

complex machine into a friendly and powerful tool!

ISBN 0-931011-41-4&

626 N.W. 4th St. P.O. Box 2449

519095

Grapevine Publications, Inc. ||

Corvallis, OR 97339 ULS.A. 9 17809311011412

	Cover
	Contents
	0. Start Here
	1. Your 48 Workshop
	Calculating with Tools and Objects
	The Big Picture: A Workshop
	The Display: Your Window into the Workshop
	The Keyboard: Access to Your Workshop
	The Tools in Your Workshop
	The Raw Materials in Your Workshop

	Quiz on the “Big Picture”
	Quiz Answers

	2. The Stack and Command Line: Your Workbench
	Typing and the Command Line
	Simple Materials: Real Numbers
	Postfix Notation
	Stack Manipulations
	Learning By Doing
	Workbench Quiz
	Workbench Solutions

	3. Objects: Your Raw Materials
	The Fundamental Idea
	Real Numbers
	Units
	Lists
	Complex Numbers
	Vectors
	Arrays
	Flags
	Binary Integers
	Character Strings
	Tags
	Names
	Algebraic Objects
	Postfix Programs
	Directories
	Objects: A Summary
	Test Your Objectivity
	Objective Answers

	The Wide World of the HP 48
	4. Programming Fundamentals
	Your “Automation” Options
	Local Names
	Program Design
	Conditional Tests
	Branching
	Looping
	Quiz
	Quiz Answers

	5. Customizing Your Workshop
	Labor-Saving Devices
	Input Shortcuts
	The Recovery Commands
	Customizing Your Workspace
	Directory Structure
	Custom Menus
	Custom Keyboards
	Custom Flag Settings
	Optimization: A Case Study

	Custom Questions
	Optimum Answers

	6. Programming Practice
	Before You Study
	A Calculator of Feet, Inches, and Sixteenths
	Memory Management Programs
	Data Analysis Application: A Gradebook
	More Ideas

	Foundation Completed
	Index

