Graphics on the
HP 48G/GX

By R. Ray Depew

(FRAPHICS
oN THE HP 48G/GX

by
R. Ray Depew

Grapevine Publications, Inc.
P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

Thanks goes once again to Hewlett-Packard for their top-quality pro-
ducts and documentation. Thanksalsotothegangoncomp.sys.hp48
(you know who you are), to Charlie Patton for his assistance with 3-D
graphics, and to Jim Donnelly for his assistance with menu grobs.

Pen-and-ink illustrations by Robert L. Bloch.

© 1993, by R. Ray Depew. All rights reserved. No portion of this book
or its contents, nor any portion of the programs contained herein, may
be reproduced in any form, whether printed, electronic or mechanical,
without written permission from R. Ray Depew and Grapevine Publi-
cations, Inc.

Printed in the United States of America
ISBN 0-931011-42-6

First Printing — October, 1993

Notice of Disclaimer: Neither the author nor Grapevine Publications, Inc. make any express or
implied warranty with regard to the keystroke procedures and program materials herein offered,
nor to their merchantability nor fitness for any particular purpose. These keystroke procedures
and program materials are made available solely on an “as is” basis, and the entire risk as to their
quality and performance is with the user. Should the keystroke procedures and program materials
prove defective, the user (and not the author, nor Grapevine Publications, Inc., nor any other party)
shall bear the entire cost of all necessary correction and all incidental or consequential damages.
Grapevine Publications, Inc. shall not be liable for any incidental or consequential damages in
connection with, or arising out of, the furnishing, use, or performance of these keystroke pro-
cedures or program materials.

To my sweet wife, Valerie, who encouraged and
indulged me in this effort from the start, and whose
love and cookies helped me to finish it.

CONTENTS

1: Introduction.............. teeeessesstnnnestessssssessersrttssstsssssssssssnssssssssrsssrsernes 8
What This Book Is About........cccoeeiiniiiiiiiiiiiiiiee e, 9
Plotting a Simple Function........cccoooiiiiiiiiiiiiiiinn 10
Solving Within the Plotter........ccccceeeviiiiiiiiiiiiie, 13
Freehand Graphics........cccccceeviiiiiiiiiiiecieenieineenieieeeeeeeeeee e 14
Grobbing Aroundcccceeeeeeeiiiiiiee e e e 16
What NexXt? ... 18

Notes on Using This BooKccccoeevuiiiiiiiiiiiiieiieeiieeeeeeeee, 20

2: The EqQUuationWriter.....eieeceiieennneisnnccsssesssesessssssssssssssssssnes 24
Preparationscccoooceeiiieeiii e e ee e e e e e e e e e e aeeas 25
Opening Remarkscccoeovuiieiiiiiiiiiieciieec e 25
So What Does It Do? ...ccccoiiiiiiiiiieieiieeeee e 27

Examples......cccooiiiiiiiiiiieeeee e 28
Using the EquationWriter..........ccccooveiiiiiiiiiiieeeee e, 30
The Selection Environmentccccoceeeeeeeiiieieeeniiiiiineiiieennnnnnn, 32
A Fourier Series Example........cccccooeeveiiiiiiiiiiieiiiiieeeeeeeeee 34
Test Your SKilloooeiiiiiiiiiiiieeeeeeeeiieeee e 35
Other ThingS......cccoiiiiiiieeeeeecceee e e e e e e ee e eeenes 38

Closing Remarks............uvuvivvviiiiiiiiiiiriieiieieieeiireseeeeeeeeeeeeeee e 39

3: The SOLVEer...cccceeeeeeeccesseeeeeccsasessocccsess 40

Opening Remarksccccveivierriiiniiiiiieeeeee et e 41
Preparationsccceeviieiiiieniiieiiieiecce e 41
Apples and Oranges........c.ccceeuveeriieiiiiiiiiiiiiiniiiieeneeceeee e 42
The Ideal Gas Lawccooovviiiiiiiiiiiiiiiiiiiecceee e evaeaens 46
The Time Value of MONEYcccccevveeiiieiiiiiiiiiieieeeeeeeeeeeeve e 49
Customizing the SolvVerccooovviiiiiiiiiiiiiiiiicieceee e, 51

Linking Equations: Solving Several at Once..................... 59

Using the Solver on Ill-Mannered Functions...................... 64
Using the Solver Inside the Plotter.......cccccccciiiiiiiiiiniiiiiinnnnn, 70
The Multiple Equation Solver (MES).......cccccoeeiveeiiiirrereeeennnen, 79
Programmable Use of the Solver (and MES)cc..c......... 85
REVIEW ittt ettt e e et e e e e e e e e e 86

: What’s @ Grob?eeccccicccccnnnnncneccccccscsssnssssssscsssssessssscssssssssesssss 88
Opening Remarksccccveiiiiiiiiieiiiiiiiees et 89
A Clean Slatecoovieeiiiieeieieeeee e 89
What Is @ GIrob?........cooooiiiiiiiiieeeeeeeeee e 90
Pixel Numbers vs. User Units.......ccoccveeeieeiiiiiiiiiininreneeeneee, 92
“Roll Your OWn” Grobs.......ccccvviiieiiiiiieeeiriiee e 95
The Hexadecimal Bitmap.......ccccccceeeeeeieiiiniiieiieeieeecccecccciis 96
The SEE Programccccccooiiiiiiiiiiiiiiiiieeeeeeee e 98
What Does a Grob Eat?.........cccoeevieeieiiiniiiiiiieieeeeeeeeeeeeeeiias 99
The Grob as IComcccoeoiiiiiiiiieieeeeeeceeee e 101

5: Graphics BasiCscccuieicccccnsscccsssssoscccssesssscscssesssns 104

The Graphics Functionsccccccoeeeeiiiiiiiieiieniee e, 105
The Secrets of PPAR ... 107
The PLOT MENU....ccuvtiiiiiiiiierieiiireerenireeeeeessivereeessssnnnseesesnns 111
The PRGHEFIE MenUcoovevvieeeeeeeeeeeeee e 119
The PRGHIZIRE Menuooovievieeieceeeieeeeeeeeeeeeeeeeeeenes 123
The MENUoovevenierenireeieeeeeteeeeee e eeseeesesnas 125
Other Graphics Commandscccccceevervveerineerirriveesennneenn. 126

Building a To0lboXcccocvniiiiieieiiicieiieireceeeee e 127

RevieW .o 131

6: Three-Dimensional Graphicscccccccceeecceencescsssssssesssecssesconses 132

The BaSICS ...uuuiiiiiiiiiiieieiiiiieeeee e ettt e e e e e e e e e e seaeeee e 133

Getting the Most Out of WIREFRAME Plotscccccuuuvneeen. 140
Choosing an Eyepointccccccovvieiiiiiiieiiiiiiiiieieneeeeeeeeeeeeeennes 140
Rotating the VieW.......ccoooiiiiieiiiiiiiieeeeeee e, 141
Translatingccooeeeeeieiiieiiieeeceeeeececcceecceeeee e 144
Zooming and Panningcccccceeeeveviiininiriiiieeneeeeeeeeeeee, 145
Plotting in Four Dimensions.........cccccecevveeeeiieeeeiinniineeeeennnnns 148

ROVIEW e e e e e e e e ee e e e aa e e rarae e 153

7: Graphics IMProvementsccccccnsccccccccssssssssoccccsssssssssccccess 154

Opening Remarks.........ccccevvvviiiiiiiiiiiiiiiceeeeeeeeeeeeeeee e 155

Labelling the AXesccccccveeeeiiieieiiiiieireeeeeee e 156

Adding Text to Graphicscccccevevviereeirniieiiereeiieeieeee e 157

Adding Graphics to Enhance Plots.......ccccccceeeeeeieecinnnnnnnnnne. 165

ROVICW ettt et et s et e e e e e eans 167

8: Freehand Drawingcccceeccsscccciccccssssssssssssssssssssssssssssssse 168

How to Do It oo eeeeeeeeees 169
Drawing a Voltmeter Facecccccovvvviiiiiiiiiiiiiiiiiiiinininnnnn. 171
REVIEW ..ot e e et e e s eean s e e e ee 175
9. Programmable Graphics Applications......cccccecccnssscscccennns 176
INtroductionceeeiiiiiiieiiiiee s 177
Programmable Scanning Inside a Big Grob.............cccuuunnnees 178
Generating a Stripchartccccooeeieeiiiiiiiiee e, 193
An Analog Voltmeter..........cccovvveeeiiiiiieiiieeeee e, 205
Plots with Two Independent Variablesccccccevvvvernnvnnnnnnn.. 212
A Contour-Plotting Programccccecoevviviieiieeiiieeieieeeeieeennnns 220
Driving a Bulldozer Around the Display.........ccccoeeeennnnnnnnns 228
A Friendly Game of Checkers.........ccccccevvvinrrrrrireeeeeeeeeeeeeeneenn, 232
A Calendar Demo........ccccoueieeiiieeiiieeeieceeiieee e eeeeireeeeeaiaeeeens 262
More SugZeStIONScceeeeeirririeieeeeeeeiirreee e e eeeeeee e eeaaaaaeaaes 268
10. Graphics Beyond the 48....... cessesssssssnsasssasssssssssssses 270
Printing Graphics on the Infrared Printer............................. 271
Printing Graphics on a Larger Printerccceeeevieennnnnnns 272
Printing Graphics on a Pen Plotter..........ccccoovieiiiiiiinnnnnnne, 290
Grobs and Other Computersccccceeveeiiiieiiiiiiicceene, 291
Graphics Between Two 48’s......cccccoeeiiiiiiiiiiiiieieeieeeieeeeeeeeeevea, 293
Final Thoughts ..o 294

APPENAICES.ccaaueeeririieccssccsscssassssssossass 296

INTRODUCTION

1

What This Book Is About

The HP 48G/GX calculator (“48” for short) is the latest in a long line of
great handheld calculators from Hewlett Packard Company. It com-
bines nearly all of HP’s most popular features into one package.

The 48 makes handheld problem-solving and/or data manipulation
easier than ever before. Among other new capabilities, it offers you the
EquationWriter, the Solver, and the Plotter.

e With the EquationWriter, you can enter an equation in textbook
notation—just the way you normally see it on paper (as opposed
to algebraic notation, which forced you to count parentheses and
put all your terms on one line).

¢ With the most powerful version of HP Solve to date, you may
never have to write another program again: The 48 Solver lets
you solve your equation directly from the equation form, rather
than having to translate it into a program.

* Oneofthe greatest—but most neglected—features of the 48 isits
Plotter, and more generally, its graphics capability. You can
manipulate the entire 64x131-pixel display, with many powerful
built-in functions. And you needn’t stop at 64x131 pixels. This
book will show you how that display is only a small window into
a much larger world of graphics power.

First, take just a moment to see these three capabilities in action. This
isjust a “warmer-upper” to pique your interest—so don’t worry—you’ll
get more explanation on all of this in the chapters to come....

What This Book Is About 9

Plotting a Simple Function

Set your display mode to FIX 2 (2JsPc]e)eJF]1JXJENTER)). Then begin
with this simple quadratic function: y=(x+4)(x-3). Start the PLOT

application by pressing (?JPLOT). The plot input form will appear:

TYPE: Function & Deg

INDEP: ¥ H-VIEW: .
_AUTOSCALE V-VIEW: -3.1 3.2

ENTER FUMCTIONCS) TO PLOT
EDT [cHOO:[| OPT: [ERASE[DR

Press ((qJEQUATION) (the key) to enter the EquationWriter.
Then press these keys (if you make a mistake, backspace it out with («)):

eEEEOXHE G0 (@X=3]»). Your equation should
look like this:
Y=(®+4) (K-3)0

Press to store your equation and return to PLOT. Next, enter the
x-domain, say, -5 to 5: Press(¥)»)(5]+/-JENTER)(5 JENTER). You should see:

TYPE: Function & Deg
EQ: "Y=(R+42x(K-3>!
INDEP: X H-VIEW: =3 o

EAUTOSCALE V-WIEW: —-3.1 3.2

AUTOSCALE YERTICAL PLOT RAMGE?
| |« CHE|OPTS [ERASE[DRAK]

Press to let the 48 calculate the y-range automatically.

10 1. INTRODUCTION

Now plot the function: Simply press HEI[TTIRL.... The display will
blank out, then fill with a parabola as the 48 calculates and plots each

point.

Now press B34l [W;1:38 to label the axes.

Your display should then look like this:

18.007Y
o
% + - :'-J + 5.:
=5.00 5.00
Hakk] +/- [LREEL] DEL |ERAZE[MEML]

Plotting a Simple Function

11

Adjusting Your Plot

Of course, you can change your y-range—it doesn’t have to be the one
that the machine automatically calculated.

Press twice. Now, to choose a y-range of 20 to 30, type in the
coordinates of the lower left and upper right hand corners of the plot:

(-5, -28) (5, 38), and press Pra) I I

Now press ETESLIITE.... Your previous parabola is erased,
and a new parabola is drawn in its place. Press HIIHl LHEELE?Y
label the axes.

But notice this: Press(]«), then press and hold down (a). The display
scrolls down as the cursor travels up the y-axistoy=30.... Now where’s
your parabola? Press and hold (v)to bring it back into sight. The point
here is that you can make your plots larger than the display.

So keep in mind that you can either check the _AUTO%CALE field in the
PLOT input form to tell the 48 to calculate the y-range for you—suffi-

cient to fit the display; or you can specify your own y-range manually,
by modifying the ¥=YIEH field in that input form.

Both scaling options are useful: For example, use _AUTOSCALE to give
you a “feel” for where your function plot will lie. Then use [HIIgH to
stretch or shrink your plotting range, in a way similar to the [Ei[\g}
functions provided in the graphics environment. (You’ll read more
about ZOOM later in this book; see also your User’s Guide for details
on the 14 different ZOOM functions.)

12 1. INTRODUCTION

Solving Within the Plotter

You can do more with your parabola than just look at it and marvel:
Hidden in that display is a graphics cursor, shaped like a crosshair.
Press (v) and (€)a couple of times to find it.

Now, find out what the two roots of this function are: Press and hold
(«) until the crosshair is close to the left side of the plot, where the

function crosses the x-axis. Now press [PICT | FCW [ROOT 8

The crosshair zeroes in on the root and the bottom line of the display
tells you that the root is at =4.00!

Press(=)or to get the menu back, and then to find the slope
of the function at this root point (x=—4).... The slope is=7.00. Now (v)
and (>]») to find the cursor, then press and hold (») to get to the right
side of the screen. Now use and again to find that the
slope at the positive root is 7.00, as it should be.

Press (I3 to find the extremum, or lowest point on the function.
It’s at (-0.50.,-12.2858). Press(-jor to bring back the menu, then
W« IEEHH to find the function value at the current location.

As you can see, you can utilize most of the capabilities of the Solver
without ever leaving the Plotter application. And while this quadratic
function was admittedly simple, you can do these same things with
much more complicated functions—you’ll see how in later chapters.

Now press twice to return to the Stack display. See? The roots,

that you just calculated from inside the Plotter have also been placed
on the Stack—for your subsequent use (and calculating enjoyment)!

Solving Within the Plotter 13

Freehand Graphics

Using the built-in capabilities of the Plotter and Solver are perfect for
many needs. But when you want to create custom graphics of your
own, that’s a job for the PICTURE EDIT menu.

Often the 48 gives you more than one way to do things. For example,
the PICTURE menu comes up automatically when a plot is completed
or (in a program) when thePICTURE command is executed, or when you

(manually) press (G]PICTURE]. Do that now—press (GJPICTURE. The

menu looks like this:

200K | (3240 [TRACE] FCH | EDIT JCANCL]
And now press [HII, to see the PICTURE EDIT menu:

(00T+[00T- [LINE [TLIME] ED: JCIRCL

Using the (a), (v),(») and (4 keys, put the cursor half an inch to the right
of the origin. Now press (X] (multiply), then (») a few times. You’ll see
an ¥ where the cursor appeared originally—but now the cursor is
sliding to the right. Now press [H[IdN.... You’ll eventually see this:

-5.30 5.00

~ 4
00T+ 00T- | LIME [TLINE] EOH [CIRCL]
You’re doing freehand drawing on a plot drawn by the 48!

14 1. INTRODUCTION

Next look at the menu items labeled [TIEN and ITIER

turns pixels on (makes them black), while turns pixels
off (makes them white). The l] annunciator appears in the [ILEN or
menu key label to indicate which one is active.

Experiment with and by pressing each once...then
twice...while moving the cursor around....

See? If is activated, to deactivate it, press the menu key
once more. The annunciator will turn off—so you can move the cursor
about freely, without trailing a black line behind you. In the same way,
if [Tl is activated, press a second time to move around with-
out erasing whatever images you've just finished making.

Freehand Graphics 15

Grobbing Around

For the next exercise, press (CANCELJuntil you return to the Stack. Now,
carefully type (without quotation marks):

GROB 3 & 1683876384840

You should see Graphic 3 % 6 on Level 1 of the Stack. Now press the
following keys:

(Pre) I N (ST0) & JPICTURE)

You should see a small arrow in the upper left corner of the display, like
this:

[200H [k 3 TRACE[FEN | EDIT [CANCL]

You've done freehand drawing without even using the GRAPHICS
menu. (Actually, you have created a grob—more on that soon.)

16 1. INTRODUCTION

Is It Real—OrIs It...?2

Now, just for fun, press to return to the Stack display. Then fill
the lowest four levels of the Stack with any objects you want, and press
the following keys:

[SFOE | SO)E&JPICTURE)

Look at the menu. That’s the first page of the PICTURE menu....
What'’s it doing in the Stack display?

Press H30Il. If the [Tl annunciator isn’t on, press once to
turn it on. Then use the arrow keys to move the cursor around the
display.... You’re drawing all over your Stack display!

The secret? You're not really drawing on the Stack display (and you can
confirm this by pressing to return to the real Stack display).
Rather, you’ve created a grob image of the Stack display—and stored
itin the graphics display. The advantages of this feature for document-
ing your programs and creating friendly output should be obvious—
and you’ll see other uses for this later on, too!

Grobbing Around 17

What Next?

By this time, hopefully, you’ve gotten a taste—and whetted your

appetite—for what the 48 can do. Of course, it would take several books

to tell you all the great things it can do, but this book is to show you how

to use the new graphical features in the 48.

To do that, this book is divided into three parts:

18

1. Beyond-the-Manual Basics

To give credit where credit is due, HP has carefully documented
just about every feature they built into the machine. Butfaceit—
it’s hard to show you everything a new application can do in a
manual of any reasonable size. Sothat’s what the first part of the
book will do with the graphical features:

Chapter 2 should help you be more comfortable—and more
effective—with the EquationWriter.

Chapter 3 showsyou how tounlock the real power of the Solver.
You have already seen how it looks in its “Sunday best”—running
inside the PLOT application—but wait until you see it “getting
down and dirty,” in its work clothes!

Chapter 4 teaches you the basics—the “care and feeding”—of
grobs, the graphics objects in the 48. You’ll learn how to conjure
them up and manipulate them as easily as any other object.

1. INTRODUCTION

2. Advanced Use—the Graphics “Power Tools:”

Chapters 5-8 go beyond the basics. To help you to effectively use
graphics, you'll build a toolkit of convenient and useful routines
for storing and recalling grobs, combining text and graphics, etc.

Next, you’ll see how to use those tools: You'll tip your head
sideways and learn how to do “sideways plotting”—strip charts,
waveforms and the like. And you’ll see how to create and use
freehand graphics in the display.

You’ll explore the three-dimensional plotting capabilities built
into the HP 48 G/GX—and you’ll see how to use them to visualize
abstract functions and data more easily. You’ll even see how to
make all your graphics come alive with the 48’s animation tools.

3. Full-Blown Applications:

Chapters 9 and 10 present several self-contained applications
that use programmable Plotter and Solver commands.

Some of these applications are useful as is, while others are
offered in hopes that you’ll then alter them for your own purposes
(“Oh wow—if I change that one subroutine I can ...”).

Keep in mind, however, that this book is not necessarily meant to be
read from cover to cover. Here are a few suggestions....

What Next? 19

Notes on Using this Book

Of course, read this book with your 48 by your side. You needn’t do
every example or program here, but it’s a lot easier to try things—or
clarify them—right away, rather than waiting until later, when you've
forgotten what was so mystifying and/or exciting. Also, if this is your
own personal copy of this book, then by all means, write in the margins,
inside the covers, etc. Make the book useful to you. Keep a highlighter
and a notepad handy—and use them.

First Note: As you can tell from those opening “warmer-upper”
keystrokes, this book assumes that you already know a few things
about your 48. You should know how to:

¢ Name objects, edit them, store/recall them—and how to ma-
nipulate them on the Stack (e.g. (SWAP) or (DROP) them, etc.);

¢ Use menus and menu keys—and the and (G]PREV] keys;

¢ Use the MODES menu and input form to set display and calcu-
lations modes;

¢ Use directories and “move” through a directory structure;

¢ Build strings, algebraic expressions/equations, binary in-
tegers, and programs.

This book may occasionally offer reminders on some of these basics,
but that’s about it. For a good tutorial on all these sorts of topics, read

An Easy Course in Programming the HP 48G/GX

This book is available from your HP dealer or from the publisher.

20 1. INTRODUCTION

Or, if you simply need some “brushing-up” as you go, here’s how to use
your 48 User’s Guide (“‘UG”) alongside this book:

¢ First, carefully reread the UG’s chapter 2, called “Objects.”

e Work through the examples in chapter 7 of the UG. The EW is
something new—far ahead of other machines—and it takes a
little practice to get used to. (For best results, keep a stack of
homemade oatmeal-chocolate-chip cookies nearby, to pass the
time while the 48 redraws the display.)

e Before you start on Chapter 3 here, skim once more through
chapter 18 in the UG (just work through the examples they pro-
vide). The basic Solver is easy to learn, and once you understand
it, Chapter 3 in this book will be much more useful.

¢ When you've reached the end of Chapter 3 here, you’re ready for
aseriousintermission. Watch some mental junk food on network
TV. Eat some real junk food. Eat some real food. Take a nap.

¢ When you come back, reread chapters 9 and 22-24 in the UG.
Then work through Chapter 4 here, to learn the fundamentals of
grobs—and some “good habits” you should consider adopting.

e After that, you can pick and choose among the remaining chap-
ters in this book. If you don’t understand something, come back
to Chapters 2-4—or to the index of the UG—for help.* If some-
thing here is still unclear, write to the publisher.

*Note: Certain advanced topics, such as input forms and pop-up windows, are described not in the

UG but rather in the HP 48G Series Advanced User’s Reference Manual, available separately

from Hewlett-Packard or from your HP dealer.

Notes on Using this Book 21

Second Note: As in any computer, there are 4 kinds of “features” in
the 48:

¢ Documented Features. Designed features that are described
or at least mentioned in the HP manual(s).

¢ Undocumented features. Designed features which work pre-
dictably—and sometimes usefully—but nevertheless don’t make
it into the manual(s), for various reasons.

¢ Unsupported Features. Features or operations that HP “ac-
cidentally” left accessible to users but were never intended for
use by the general buying public. These features can greatly
enhance your calculator’s capabilities, but their misuses often
carry drastic consequences (e.g. Mlemory Clear). So these fea-
tures are neither encouraged nor documented by HP.

¢ Bucs. Abugis simply a design mistake in program code. Abug’s
behavior may be predictable or erratic, but its consequences are
undesirable. If you find a bug in your 48’s operation, report it at
once to HP. Ifyou find a bugin any code in this book, please write
to the publisher.

This book will use primarily Documented Features, so that all its
examples and programs will work on all 48’s. You’ll also encounter a
small handful of Undocumented Features that HP publicized after
the manuals were written. You may even find a few Unsupported
Features.

22 1. INTRODUCTION

Third Note: The procedures, examples and programs in this book
won’t hurt your 48. None ofthe ideas and procedures described should
give you the dreaded Memory Clear (ifyou get such a message, retrace
your steps very carefully, to see where you went wrong). In general, if
you fear memory loss—for whatever reason—it’s a good idea to back up
your valuable files frequently.

All the examples in this book worked on HP 48G/GX ROM version K.
If you use them exactly as they appear in this book (forgiving typos),
they should work fine on your HP 48G or HP 48GX, as well, if your
ROM version is K or later.* But feel free to experiment, too: try some
things differently from the way the book does it, and see if you can im-
prove on the ways you see them done here.

Note: Because of the enhancements made to the HP 48 operating
system in the HP 48G and HP 48GX, these examples may or may not
work with older HP 48S and HP 48SX. If you want to study graphics
on the older machines, there is a book very similar to this one, written
exclusively for the HP 48S/SX. For more information, contact the
publisher.

Fourth Note: Go!

*To identify the ROM version in your machine, type (a]a]VIEJR]S]1]O[N)JENTER).

Notes on Using this Book 23

o M) P
'i-.-..: f\“?,‘;
S X))

2. THE EQUATIONWRITER

Preparations

First, you need to create a directory for this chapter—so you don’t
clobber anything you may already have going:

Press (3JHOME), then type ' G. CH2 " (vevory) AN NATE vAR) [EXH
togetinto thisbrand-newG.CHE directory. The menu items should now

all be blank, and the Status Area at the top of the display should show
{ HOME G.CHZ }

Opening Remarks

The EquationWriter (EW) is one of the 48’s most exciting features—
perhaps setting it apart from all other handheld machines. In a world
that turns on legal questions of “look and feel,” the EW display may
look like some brand-x displays you’ve seen, but it feels quite different.

The EW version in the G series of HP 48’s is much faster than the origi-
nal version introduced with the S series (the HP 48S and HP 48SX), but
it is still no speed demon—you may at first be put off by that. At least
work through this chapter before deciding.

Indeed, you may find that the speed doesn’t matter; the very existence
of the EW is one of the most revolutionary advances in calculator
technology to-date. Ever since the first FORTRAN compiler or BASIC
interpreter let you enter equations on a digital computer, you’ve had
to cram the normal, two-dimensional, textbook notation equations into
the single line of display characters—algebraic notation—in order to
be understood by the software. There had to be a better way....

Preparations /| Opening Remarks 25

Thereis abetter way: Even with the EW’s not-so-blinding speed, it will
usually take you far less time to enter an equation correctly into the
EquationWriter than with the “algebraic” form.

As you discover this, you'll probably go through these three typical
stages with the EW:

¢ Excitement & Delight: “Wow—look at what this can do!”
Typically, this lasts about twice as long as it takes you to work
through the EW chapter in the Owner’s Manual.*

¢ Frustration & Discouragement: Fed up with its slowness—
or not yet completely understanding it—many are tempted to
abandon the EW in favor of the Command Line editor. These
people may have as much trouble trying to debug their algebraics
on the Command Line, but they don’t realize it, having accepted
line editors and their attendant frustrations as the cost of mach-
ine algebraics.

* For those who survive, there’s the third stage, characterized by
your high school band teacher’s pet motto: “Proficiency comes
through practice” (translation: “Use It Or Lose It”).

Actually, the EW and the Command Line Editor (CLE) are both useful
in certain situations: If the EW’s slowness bothers you, then use it
strictly as an equation writer, or viewer, but not as an editor.

*By the way, have you worked through that chapter yet? If not, put a bookmark—not a cookie—
here, and go do all the examples in that chapter.

26 2. THE EQUATIONWRITER

So What Does It Do?

When you write an equation or an expression on paper...

a’+1
{x3 -22x+1
Inx+x dx
3Inx+e**?
b-4.32

...you use this textbook notation, an easy way for your brain to under-
stand the problem: It detects visual patterns (position, size, enclosure,
etc.) to give you an immediate grasp of what’s being said.

Compare that with the computerized algebraic notation for the above
expression:

J(b*3-4.32, a"3+1, [((x"3-22%x+1)
#(LNCed+%))7 (3#LN()+ERP(%-4.2)), %)

It’s not so clear at one glance, is it? So the EW lets you enter and view
the expression in whichever notation you prefer (inside the 48 it’s
always represented the same way, no matter which way you enter it).

Then, after you've entered the equation, the EW also provides several

tools for manipulating and modifying it. It can even recognize parts of
the equation to modify, using the properties of algebra and calculus!

So What Does It Do? 27

Examples

Like the Command Line, you can use the EW to write algebraic ex-
pressions, equations and unit objects. An algebraic expression is half
an equation; an equation is two algebraic expressions joined by an
equal sign (). For example, the positive root of a quadratic equation
is this algebraic expression:

-B+VB? - 4AC

2A

How would you enter this, using the EW?

To Do This Press This
Enter the EW and start a numerator. (G)EQUATION)(a)
Use (¥ instead of (X?}—it looks better. (eB]H=)B]Y¥2)
Close the exponent.)

Forgetting to close subexpressions with (»)is a common EW error!

Imply a (X) between a number and the B)@)(e)A)X)(e]c)
letter following it. The letter is taken as
the start of a variable or function name.

Close the subexpression opened by (ix).)
Close the numerator/start the denominator. (»)
Again, imply the (X). (2)(«)A)
Close the denominator.)
Place the expression onto the Stack. ENTER

28 2. THE EQUATIONWRITER

Complex unit objects are also easy to assemble with the EW. Look, for

example, at:
The universal gas constant, R: The gravitational constant, G :
J kg-m
R=8.315 G =9.8
mol-K ¢ s*-N
To enter R using the EW:

(JeauaTioN)(8] - B3)15)(2I-) (_ denotes a unit object)
EWRG] J

MAz: [EEEY

TEMP] K IO

Then press to put this constant onto the Stack.

To enter G :
(G)EquaTIoN)(9) - J8)(2]2)

CrEE LENG] H
LTEE I 0 2) (%)
FORCEl N[O

Then press to put this constant onto the Stack.

Examples 29

Using the EquationWriter

This would be a good place to insert a table of all the keystrokes used
in the EW. But your HP User’s Guide already has a complete table.

To be really proficient with the EW, just remember these...

Rules of Thumb:
¢ (»),(a)and («)(not(«)) are the most frequently used keysinthe EW.

e Use (a) to start a numerator, then (») to finish it and start the
denominator (incidentally, (v) acts identically to (»)).

* (»)finishes all subexpressions (“it slices...it dices”):
It finishes powers, as in y*;
It finishes numerators and starts denominators
It finishes denominators and exits the fraction
It finishes square roots and other roots: x/y
It finishes mathematical functions, such as sin (x)

It jumps to the next parameter when constructing a
derivative, an integral or a sum

It exits a parenthesized subexpression, such asa + (b + ¢)

It finishes any pending subexpression (and ()») finishes
all pending subexpressions).

30 2. THE EQUATIONWRITER

(#)is the only real editing key you have. Each time you press (),
it “undoes” the last keystroke in the equation. Pressit repeatedly
to go as far back in the equation as you want (the pause is always
longest after the first press).

¢ Ifyou notice an error deep inside your equation, your options are
limited. Do not press (4}, trying to move the cursor to the error («)
takes you to the Selection Environment—an upcoming topic).

¢ Most analytical functions, such as those in the MaTH menu and
the powerful IFTE function, work inside the EW. If a function
requires parameters, you enter the function, then the parameters,
separated by (SPC), and finally (») to close the parameter list. For
example, to enter the function IFTECA, B, CJ, you would press

@D EFCH [(B4)] IFTE [ORENEREBIOR0!

¢ All the UNITS menus work inside the EW.

There are 4 ways to exit the EW:

. evaluates the expression and puts the result onto the Stack.

. puts the equation on the Stack as an algebraic, then exits
gracefully.

. gives up in disgust and slams the (usually) unfinished
equation into the Command Line for further editing. After
editing, you can press toreturntothe EW, and again
to place the equation onto the Stack.

. is the “panic button.” It dumps the whole thing into the
waste basket and escapes to the safety of the Stack display.

Using the EquationWriter 31

The Selection Environment

The EquationWriter actually consists of three separate environments
(also called modes). Here’s how to switch between the three modes:

E— Scl'olling mode «———

(CANCEL) or (QJPICTURE] (CANCEL] or ((4]PICTURE]

Selection environment < Entry mode
A

\Z
zln
A

If you accidentally pressed («) while practicing with the EW, you may
have noticed that you had to wait a terribly long time for the display
to do anything. Go ahead—try it now (then go get a cookie).... When
the smoke finally clears, you can use the arrow keys to move quickly
around the equation, highlighting terms and operators as you go.

You’ll also see this menu: [ATERIETIEFEIEREREIENELR

This is the Selection Environment, where you can easily select various
parts of the equation you're building, to edit or rearrange them. The
last menu item, [[3Il, simply sends you back to the normal EW
display—but look at what the other menu items do for you:

is a compilation of rules for algebraic manipulation—to let you
massage the form of your equation or expression. [HIIll and A
generally work together to let you select the highlighted portion of the
equation for individual editing on the Command Line. You can then
press to put this edited expression back into your equation, or
to abort the edit and return to the EW.

32 2. THE EQUATIONWRITER

Try one—key in the Ideal Gas Law:

pV = nT(8.315])
mol-K

Now press (€) and use the arrow keys to move the highlight around,
pressing [I3dA occasionally. Notice these things:

If the first - is highlighted, [El{d@ includes p - V.

If the = is highlighted, then I3d includes the whole equation.
If the _ is highlighted, I3dd includes the unit object.

Ifthe ———— is highlighted, then I3{da@l includes just the units.

If the - between mol and K is highlighted, I includes only the
denominator of the units.

Pressing I3ddA a second time highlights only the operator (but
pressing [3dd@ when a term is highlighted doesn’t do anything).

extracts a copy of the highlighted operator, term or expression
and puts it on the Stack. replaces the highlighted term or ex-
pression (but not operator) with the object on Stack Level 1.* These are
useful when you have an often-repeated sub-expression, or when you
want to modify only a small part of the equation.

*WarnNiNG: [I3dM copies, then drops the object on Level 1—it’s gone. can get it back for

you, but it will also undo your last equation-editing session.

The Selection Environment 33

A Fourier Series Example

Here’s a fun equation for playing with the PLOT functions, so key it in
now as EW practice. This is the Fourier Series representation for a
full-wave rectified sine wave:

NIMX
2A 4A cos nwt
)= ———
£ T T 4n* -1

n=1

where A is the amplitude of the wave, wis its frequency,and N___is the
highest harmonic you want to include (see MULTIPLOT in Chapter 9 for
an application which uses N).

You should be able to enter that equation into the EW without much
trouble, but here are a few reminders to help:

* Enter f(¢) as just plain (=) (@J&]F)).
* T is &JsPc)
* Use W (@JJW)—not w—for w (omega).

e Enter the summation as) (e e NG M[G]A)
EIX])(>)(cos) ORUROE00RAREE N
B0

e Don’t use for the 4n? term. Instead, use (4)(cJaIN)OX2]»).

Work at this until you get it. Then press to put the completed
equation onto the Stack, and name it FOYRY: ("Jo)e]Fo) Y AY)a]STO).

34 2. THE EQUATIONWRITER

Test Your Skill

At this point, you should have worked through the EW examples in the
Owner’s Manual. If not, do it—now. Then here’s a simple self-test:

The classical expression for the behavior of a series RLC circuit is

v=Lﬂ+IR+lj'1dt
dt c o

1. Enter this equation with the EW and store it as RLC.

2. Rewrite the equation as
t
d, ., . 1 s
sza?(Ioe ")+ 1e"R +EJ‘IOe " dt

0

and save it as RLCEXP (for RLC EXPonential).

3. Rewrite the equation as

v= L%(Ao sin @t) + A, sin orR +%IA0 sin @ dt
0

and save it as RLCPER (for RLC PERodic).*

Turn the page to see the EW solutions....

*There. That takes care of about 25% of your undergraduate electronics textbook. The 48 can now
solve symbolically for any one of the variables, via ISOL. It can simplify the equations by solving
theintegral and the first derivative, and differentiate or integrate, too. But that’s for another book.

A Fourier Series Example | Test Your Skill 35

Solutions

36

Press to enter the EquationWriter, then:

OENEACEROOEW0EN0GONROE
BHOEELEMN DO JAIT el P e TIENTER

You should then see ‘'v=L*at (I)+I*R+1-C*S(B,t,I,1)'
at Stack Level 1.

Press ("JaJa]R]L)C]a]STO) to store this.

(GJEcuATION enters the EW. Then press (o] 1] el [0))ed(efa]s)
X)(@JS]T)ENTER), to put the expression ' [o*EXP(s%*t)'
onto Stack Level 1.

Now press (ENTER[ENTER| VAR TN (W) CANCEL), then (@to the first I,
and press [I3dM. Next,(»)to the second I, and press [I3dM; then

) to the last I, and press [ATAM(ENTER).

On Level 1, you should now see

'u=L*3t (Jo*EXP(s*t))+Io*ERP(s#t)*R+1-Cx/(B, t,
[o*ERP(s%t), 1)

(The line breaks will be different than those shown here.)

Press ('] o] a]R]L)(C]E]X]P]a]STO) to store this.

2. THE EQUATIONWRITER

3. [(gJequATION entersthe EW (alternatively, you could do the entire
problem at the Command Line—always keep this in mind).

Then press (@JA[eJG[O)EN(CIZIWX)(JS[TDENTER), to put

'"Ao*SINCw*t)’
onto Stack Level 1.

Now press (ENTER[ENTER| VAR ITXE(¥] CANCEL), then (@) to the first I,
and press [IIdM. Next,(»)tothesecond I, and press [IIdM; then

() to the last I, and press ITIdM(ENTER).

On Level 1, you should now see

'y=L#*at (Ao*SINCu*t))
+Ao*SINCu#*t J%R+1-C*JS (B, t, Ao*SINCw*t), 1)

(The line breaks will be different than those shown here.)

Press (']a]a]R]L)C]P]E]R]@]STO) to store this.

How did you do on this little self-test?

If you need more practice, do it now, on your own—or go back over the
examples in the HP User’s Guide.

Test Your Skill 37

Other Things
Here are a few other EW tidbits to know:

Printing: If you press (that’s (ON) and (1) simultaneously), you
can print out the current EW equation on the HP 82240B printer.
However, if you print the equation—in some form or another—from
the Stack, you will get a better-looking printout. Here are your options:

From the EW,
* pressing saves a grob image of the equation on the Stack;
* pressing saves a string (ASCII) version to the Stack;

* pressing saves the equation as an algebraic and then exits
the EW.

Put whichever version you want printed onto Stack Level 1, then press

IE3W The HP 82240B infrared printer even provides cutting
lines for splicing together printouts of large grobs.*

*The PCL and Epson printer drivers print large grobs and strings without the need for cutting
lines. See Chapter 10 for more details on these printer drivers.

38 2. THE EQUATIONWRITER

Closing Remarks

One of the best uses for the EW is to build—and later, to view—your
own libraries of equations, constants and units. That way, you won’t
have to decipher the algebraic notation used on the 48 Command Line
and in the rest of the world. A single glance in the EW will tell you
everything you need to know about the equation.

Don’t give up on it too easily. The entire EW concept is a new one for
handheld computing, and you’ll surely see it more in the future. In the
meantime, remember the words of Mr. Whetstone, your high school
band teacher: “Proficiency comes through practice.”

Other Things / Closing Remarks 39

. - /" 7
/ 0
;/ /’/,,4 ‘/’,;:;‘{; ‘ 7 /////
L o Yy,

oy
w, ;//”fofff‘fl/

2 e
///,//{//,,////;/// /,/
T 3 {5 ,:// 2 L~y

Z ,—,«/7_,‘ NI 2 5 USSR
gy 7 //2;/”/*’/;&\} ﬂdtf;é;%%//zf/% 2
= AENEN

3: THE SOLVER

Opening Remarks

This is the most sophisticated Solver HP has yet produced. The more
you use it, the more valuable you’ll find it to be. In many cases, the
problems you used to solve by writing programs can be handled more
easily and quickly with the Solver.

The Solver is indeed like another programming language. In the past,
you had to translate the equation(s) into a program—a list of data and
operations to perform on it. But compared to this Solver, those ingen-
ious and sophisticated programs now appear clumsy, slow, and incred-
ibly complicated. Of course, you can still write step-by-step programs
for the 48, but after reading this chapter, you may decide to save your
programming skills for more worthy challenges then equations.

The HP 48G/GX offers 4 ways to use the Solver: programmable com-
mands; the PLOT application; a menu-based interface (as in the HP
48S/SX); and the SOLVE EQUATION input form. All methods use the
same internal routines; none is more accurate than any other. The
examples here will show solutions for the menu-based interface (plain

background) and the newe

Preparations

First, you must create a directory for this chapter—so you don’t clobber
anything you may already have: Press (3JHOME), then type 'G.CH3'
and [DIk [CROIR) [FXRTED to move to this new G.CHI di-

rectory. The menu items should now all be blank, and the Status Area
at the top of the display should show: { HOME G.CH3 }

Opening Remarks | Preparations 41

Apples and Oranges

Ifapples cost $.29 each and oranges cost $.89, and you have $20 to spend,
how many of each can you buy? There are many possibilities, and the
Solverisideal, because it lets you play What-If: “If I buy 3 apples, how
many oranges can I get?” So type the following equation onto the Stack,

and name it 'Fruit': TOTAL=CSTA*APPLES+CSTO*0RANGES. Now
press)50 TR .

MW A

OLVR[ROOT] E: | | [SOLVE

TouseFruit asthecurrentequation,type 'Fruit ' and press(I
Thisstores 'Fruit ' into EQ, a name reserved for the current equation.
Then press to get into the Solver itself. Now things are simple:

¢ Pressing a menu key stores a value into a variable name;
¢ Pressing () prior to the menu key recalls the value to the Stack;
* Pressing (&) prior to the menu key solves for that variable.

Press [IoTal (-2 e czTal (- e o JLE10l, then([= TOTAl to recall your
$20.00 to Stack Level 1. Now you’re ready to solve.

If you buy 8 apples, how many oranges can you buy? Press(8)[APPL]()
MEAM]... Result: ORANGES: 19.87 Or, if you buyjust5 of each, how

much will that cost? Press (5)[APPL] (5) [IEAM] (&) [T0IAl...
Result: TOTAL: 5.98 (Skip now to page 45)

42 3: THE SOLVER

Apples and Oranges 43

44 3: THE SOLVER

Notice the last item in the Solver menu:

If your equation is a bona fide, “grammatically correct” equation (two
algebraic expressions linked by a =), @ will solve for each side of
the equation and display the results in Stack Levels 1 and 2. This is
useful in cases where an exact solution may be impossible—or unbe-
lievable—and you want to see ifthe left-hand side really does equal the
right-hand side.

If your “equation” is really just an expression, then [Fd will calcu-
late its current value and put this at Stack Level 1.

If you see a special on oranges, say, 6 for $8.00, you can quickly see how
“special” the special really is. Just set the number of apples equal to
zero and solve the equation for the corresponding cost of one orange:

(o) [aePLI(e) [DEAN] (8] [TOTA] (&) [C2TD]

Some bargain—$1.33 each! Better to buy them singly at $.89!

The next two examples mimic two built-in features of the HP 48G/GX
—the Ideal Gas Law (found in the Equation Library) and the Time
Value of Money (part of the SOLVE application). These “non-built-in”
versions illustrate the extended uses of the Solver.

Apples and Oranges 45

The Ideal Gas Law

For the next example, take something from chemistry and physics—
the Ideal Gas law: p*Y=n*R*T

P is the pressure of the gas

| is the gas volume

N is the number of moles of the gas

R is the ideal gas constant, 8.315 J/molsK
T is the absolute temperature of the gas.

Enter this equation, using either the Command Line or the
EquationWriter, so that you have ' p¥Y=n#*R*T"' on Level 1 ofthe Stack.
Then store it into a variable: 'IdealGas' (ST0). Next, retrieve the
value for R from the Constants Library and store it in the variable 'R'.
To do this, type 'R' CONST (5)aRG)ST0). 'R' should now contain the
value 8. 31431 _J~(gmol#K).

Press (") VAR [IITEMENTER) to put the name ' IdealGas' onto the Stack,

then (G)SovE) NI to enter the SOLVE menu. Press (GlEEM to

store the IdealGas equation into EQ.

Now use this equation to calculate the number of moles of air in a
typical bicycle tire: Fora27"x1.25" tube, the volume is about 33.13 cubic
inches. Use T =70°F, and P = 80 psi (but to account for atmospheric
pressure, 14.7 psi, you must use 80+14.7, or 94.7 psi).

46 3: THE SOLVER

In the menu-based Solver: (9])]7)=)unTs)NxT) T334 I
Eveng) CE EEEE) o) I ITEER
ey] [7)0) Yons) (xR Tl I
EMeny[1]

Solve for n: (§[_H_J.... Result: Bad Guess(es)—an error message.

When working with unit objects, you must store an initial guess for the
variable you’re solving for.* So, press FMOL
M1 Nowtryn again: (g M_] Result: n: 1.18_mol

Well, you got a result. Too bad it’s wrong. “What?” Yep, it’s wrong....

*If you get this Bad Guess(es) error while solving for a unit object, press (&)(REVIEW) to get a sum-
mary of the contents of each variable and of the current equation. Often, you’ll have forgotten to
press () when solving for the unknown, thus inadvertently storing some (incorrect) object there
instead. Remember: Press the unshifted key only to store a value in a named variable! (&) solves
for the variable, () recalls the variable contents to the Stack.

For the Solver to ignore units entirely, you must PURGE all variables named in the equation and

re-enter the Solver. That means you’re likely to clobber the Gas Constant, R, which is a variable
to the machine. Later in this chapter you'll see how to keep the Gas Constant safe from harm.

The Ideal Gas Law 47

This isn’t the fault of the Solver, but stems from a quirk in the way
temperature units are converted. You can read more about this quirk
onpage 10-10 of the User’s Guide. The Solver makes no errors convert-
ing other types of units, but it is often suckered into making relative
instead of absolute temperature conversions. And it doesn’t tell you it’s
doing this—it just gives you the wrong answer. To be safe, always con-
vert temperatures to Kelvins before using them with the Solver.

So, in the menu-based Solver, recall the temperature (=)[_T_J) and
convert it to Kelvins ((UNTS)IIET) and then recalculate n:

E)tasT MenD) T e[N] Result: n: ©.14_mol

Now then, for subsequent calculations, if you know that the previous
value of the variable has the correct units, then you can just store a
numeric value on top of it, and it will assume those same units.

Example: Find out how many cubic inches of air at atmospheric pres-
sure are compressed into that bicycle tire.

Atmospheric pressure is 14.7 psi, so in the menu-based Solver, press

(1]a)-)7) [CF_] to store the value in P—using the psi units from last
time (the correct units appear on the Status Line). Now press(&[_¥]
to find the volume of uncompressed gas.... Result: ¥: 213.43_in"3

48 3: THE SOLVER

The Time Value of Money

Next up—for all you finance wizards—is the Time Value of Money

equation.
-N
0=PV+ PMT{I—Q—;L—D——-} +FV(I+1)Y
where

PV is the Present Value of the loan or investment.

PMT is the periodic (monthly, annual, ...) PayMenT.

FV is the Future Value of the loan or investment.

N is the Number of periodic payments or compounding periods.
I is the Interest rate per compounding period.

Build this equation using the EW or the Command Line (the EW is
easier)and putitonto Stack Level 1. Then name it—type ' TVall' (sT0).
This TVoM equation is a mainstay of all business calculators, but it
comesinhandyeven forengineerstryingtobuy houses, figure out their
IRA’s, or calculate the balances on their student loans.

Example: You want to buy a $95,000 home. You have $10,000 for the
down payment, and you want to finance the rest at 8.0% for 30 years.

For the menu-based Solver, press KL IRl (ENTER), to put ' TVoll'
onto the Stack, then EXTHA to enter the menu. Press
to store the T¥ol equation into EQ, then press EITRA.

The Time Value of Money 49

Now, the Present Yalue is the money you’re going to receive right now,
$85,000 (OK, you may never see it, but the bank is technically giving it
to you to give to the seller). The Future Yalue is what you’ll owe at the

end of the mortgage term—i.e. nothing (hopefully). So press(8]5]0]0]o]

L ey J(o)LEY |

Since this is a 30-year loan with monthly payments, the term, N, is
30%x12,0r360. The monthlyinterest rateis0.08+12, or.0066667. To enter

the term and the monthly interest, press(3)6)0o)[_H_](-J0Jo)&)s)6]6]7)
[1L {or(¥) EE)(E)

Now just press ([FHT] {or (aTa]®)) to find that your monthly
payment is $623.70. The minus sign means that it’s money subtracted

from your pocket.

Notice that both the Ideal Gas and the Time Value of Money equations
use variables named N orn.* So after you’ve used each equation, you’ll
see not one but two [lIZIM labels in your VAR menu. You can press
from either the VAR menu or the menu-based Solver variable
menu to see which is which (or—ifit really bothers you—store the two
equations in separate sub-directories inside the G.CH3 directory).

Anyway, since you’ve used a capitalN for one and a smalln for the other,
the Solver can tell them apart, and that’s the main thing. But if you
use the identical variable N in two separate equations in the same
directory, beware—especially if either uses a unit object: You’ll get all
sorts of nasty messages until you purge the unit-object N.

*Note also that the built-in TVM application (3JSOLVE)(a)[ENTER)) is much faster than either of the
2 Solvers with 'TVoM'. But don’t erase TVoM yet; it will prove useful in the next few pages.

50 3: THE SOLVER

Customizing the Solver

Keeping the Gas Constant a Constant

In your IdealGas equation, you just know that sooner or later, some-
one will try to check th i

instead of (O & 1

So why not take it off the Solver menu:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | altogether,
preventing access to it there? Yes—you can do that: You can design
your own variable menu for use with your equations, omitting vari-

ables that don’t vary—like the Gas Constant.

To do so with the menu-based Solver, just put your equationinto a list:*
{ 'p¥V=n*R*T' { p V T n } }. In thislist, the equation comes
first, followed by a list of the variables you do want on the menu. You
can put those variables in any order—say, with the most frequently
used variables first (handy if there are more than six variables).

Put this list onto Stack Level 1, and then type ' IdealGasZ' (sTo)and
'IdealGasZ' 'EQ' (STO)to name it and make it the current equatlon.
Now press EOOT to see your customized menu that
hides CE_J:

| | T P = | |

*The menu-based Solver accepts any of the following as an “equation:”

e an algebraic equation or expression (example: 'P*¥V=n*R*T"');

e areal-number constant (example: 8.319);

e aprogram that uses only global (no local) variables to return exactly one result to Stack
Level 1(example: €« p V #* n R # T # - »),

* alist of one or more of the above (example: { 'P*Y=n*R*T' 8.315 'T=To+=T' });

¢ g list of one or more of the above, plus an extra item—a list usable as a CST menu

(example: { 'P¥V=n*R*T' { PV T n }).

Customizing the Solver 51

52 3: THE SOLVER

Running Programs from Inside the Solver

The vanable Solver menu list structure can also include executable
i Intheldeal Gas
law, for example, suppose you're using your 48 to monitor the amount

of gasin a pressurized reactor. Volume and temperature are constant,
and you can calculate the quantity of gas from the measured pressure.
Hypothetically you’d have a program, READP, to read a pressure sensor
and putthe value onto the Stack. To simulate that here, just use RERDP
(Checksum: # 45658d Bytes: 37.9), a constant: & S_atm »

So replace P in your variable list with a list of this form: { " menu labe!"
{ «prgl® €prg2® «prg3® } }. The "menulabel" is the label that
will appear on the menu; € prg/ * is the program that its unshifted
selection will execute. ¥ prg2® and ¥ prg3 * are the programs that the
(&) and (}shifted selections of this item will execute, respectively
(but these are optional; you can ignore the shift keys and simplify your
list to{ "“menu label" € prgl® 1)

Let the unshifted menu key be the call toREADP. Therefore « prg1 * will
be« READP DUP 'p' STO 1 DISP 1 FREEZE *. This reads the
pressure, stores it into the variable name 'P', and displays it in the
Status Area—just as the Solver would do for a value that you keyed in.
Then % prg2 * will be an empty (“do-nothing”) program, ¥ *, since you
don’t plan to calculate the pressure. And % prg3*® willbe % p *, torecall
the value in P to Stack Level 1—just as any other (©}-ed variable key
would do in the Solver.

Thus, the list to replace P becomes{ "p" { « READP DUP 'p'
STO 1 DISP 1 FREEZE » « » « p » } 1}

Customizing the Solver 53

Now type (VAR) (I (¥) to edit a copy of IdealGasZ. When you
finish, your list should look like this:

{ 'peV=pxR=T' { { "p" { « READP OUP 'p' STO 1 DISP
1 FREEZE » « » « p » } } ¥V T n } }

Press(ENTER) to put it onto the Stack. Storeitas 'REACTOR'. Now spec-
ify REACTOR as the current equation (MFAZIM] ENTER) (G)sowve) TR
@I, and start the Solver (HiIMIJ). The display looks a little
different, as shown here:

REACTOR: { 'p¥VY=nxRE* ..

NwWA

]
P [O P = |

If you the variables, you’ll see only ¥, T and n, since P is no
longer a Solver variable (notice that the [l item is white- on-blue,
instead of the blue-on-white). This is how the 48 helps you differenti-
ate between variables and programs in the menu. Try the unshifted
and shifted Il key to see how it works....

The unshifted key displays 'S_atm' in the status line (and notice that
with a slightly more elaborate program in the variable list, you could
make it display p* 9_atm).

The () key does nothing (as you intended), and the () key puts the
value of 'P' onto the Stack.

54 3: THE SOLVER

A More Versatile TVoM Equation

The next thing to change is your TVol equation a little bit (look back
on page 49 to see the original). You customize with the Solver to make
the equation easier to us

¢ First,includeafactortoaccount for when the payments are made

(i.e. thebeginningor end of the month). This factoris a multiplier
to the PMT:

-N
0=PV+(+I* Begin?)PMT[Ll;-Il—} +FV(A+1)™"

Beain® will be a true/false variable, with a value of 1 if payments
are made at the beginning of the month, or 0 (the default) if
payments are made at the end of the month.

e Next, change all occurrences of I to I#188. This way, you can

enter 5% interest as (5) [_1_J, instead of 11

¢ Finally, to accommodate interest compounded quarterly or
monthly, introduce a variable called Per (periods per year)—the
number of compounding periods in a year (12 for monthly
payments, 4 for quarterly, 1 for annual, etc.).

Thus, since N is the number of years, N*¥Per will be the total

number of periods—and payments. And I/(188*Per) will be
the interest per compounding period.

Customizing the Solver 55

By now, the TWol equation is a monster. In textbook notation, it is:

—~NPer
1- (1 + J) NP
* . ? - er
0=PV+(1+M)PMT 100 Per +FV(1+ d)
100Per 1 100 Per
100Per

Or, in algebraic notation, it is:

B=PY+(1+I#Begin?~(180*Per))*PMT*((1-(1+I1-(108*%Per))*
-(N#Per))-(1-(188%Per)))+FY=(1+1-(188%Per))"~ (NxPer)

Yep, that’s right: You get to build this, using whichever method you
wish—EW or Command Line—to edit the current version of TVol
(quiz: which method would you rather use?). Go...

Finished? OK, now if you were to store this equation (don’t do it yet),
the Solver would give you seven variables to juggle, plus the I
item besides. But you can make the equation a bit more friendly, by
attaching this variable list to it:

{NIPYPMT FY { "SETUP" { « VIEWP » « MOR =»
« BEGEMD » } } Per Begin? }

No—you don’t need to re-enter the equation. Using your list-building

process, just put the current monster TYol equation on Stack Level 2,
the variable list on Level 1, then press(2) Prc) INEIMEMHEA. ..and save
the whole thing in ' TVMZ'.

You now have a full-fledged Solver “program.” Type 'TVMZ' STEQ
(STEQ is the same as 'EQ' (STO)). Then start the Solver.

56 3: THE SOLVER

You should get a display like the one below.

TVM2: { '8=PY+{1+IxBe..

=)

Ce I ey I(PAT ICFY 1HITE

This version of TYol is more “friendly” than the first one: On the first

page of its two-page menu are the commonly-used variables, plus a
B3I menu key. BRI serves three functions.

Unshifted will run a program called YIEWP (for “view param-
eters”), which displays the current settings of the variables Per and
Begin®: If Per has a value of 1, 4 or 12, the first status line will show
ANMUAL , QUARTERLY or MOMTHLY, respectively; if Per has any other
value, say 5, the first status line will show 3 PERIODS-YERR. And, if
Begin® contains zero, the second status line will show PMTS AT END;
otherwise it will show PMTS AT BEGINNING.

will run a program called @A to rotate the Solver through
monthly, quarterly or annual payments. And (E3IMJ will run the
program BEGEND, which toggles the value of Begin® between 1 and 0.
Both MAA and BEGEND call VIEWP to update the display.

The second page of the variables menu gives you direct access to Per
and Begin?, so you can set bimonthly payments or calculate interest
compounded daily—when Per- must have a value other than 1, 4 or 12.

Here are the three programs, YIEWP, MQA and BEGEMD:

Customizing the Solver 57

VIEWP

Checksum: # 14516d

Bytes: 415.5

« JFERR 'Per' RCL
THEN DROP MQA 'Per' RCL
END
+ per

»

58

« IF 'per==4'
THEN "QUARTERLY"
ELSE
IF 'per==12'
THEN "MONTHLY"
ELSE
IF 'per==1'
THEN "ANNUAL"
ELSE
Per IP »STR
" PERIODS-YEAR"

+
END
END
END

»

1 DISP

IFERR 'Besin?' RCL

THEN DROP BEGEND
'Begin®' RCL

END

+ begin

« IF 'besin'
THEN "PMTS AT BEGIMNING"
ELSE "PMTS AT END"
END
¢ DISP 1 FREEZE

»

MBA
17323d
164

Checksum:
Bytes:

« JFERR 'Per' RCL
THEN DROP 1
END
+ per
« IF 'per==1'
THEN 4
ELSE
IF 'per==4'
THEN 12
ELSE 1
END
END

»
'Per' STO VIEWP

»

BEGEND
Checksum: # 34866d
Bytes: 94.5

« IFERR
'Begin?'
THEM OROP B
ELSE NOT
END
'Begin®'
»

RCL

STO VIEWP

3: THE SOLVER

Linking Equations: Solving Several at Once

toyour “Apples and Oranges” equation. Suppose you’ve borrowed your

nephew’s little red wagon—which can hold only 50 pounds—to haul
your groceries home. How many apples and oranges can you afford—
and still be able to get them home?

Hmm...to avoid exceeding either your budget or your wagon’s capacity,
you now have two problems. The first is already taken care of by your
existing Fruit equation:

TOTAL=CSTA=APPLES+CSTO=0RANGES

But now there’s this new equation (key it in and store it as 'Wagon'):

LOAD=WT. A=APPLES+WT. 0*0RANGES

The Solver lets you link equations in order to solve several at once. To
use this feature, you combine the equation names in a list and give the
list a name.

So create the list { Fruit Wagon 3. it and store it as

'Shopping'. Then type 'Shopping' STEQ to make this list the cur-
rent equation.

Linking Equations: Solving Several at Once 59

Now press kOOT to start the Solver. Your display will
look like the one below.

Fruit: 'TOTAL=CSTA*AP..

-

MW

]
(el (5T Al (AFEL] (CET0 MRAN] IR

Notice that the Solver is ready to work on the first equation in the list,
'Fruit'. Butpress and notice the new menu label: [EIE. Press
B now to see what it does.

Wagon: 'LOARD=WT.A*AFPP..

~rwWA

1
[LoAD] [T, AI[APPLI(WT.0] [DEAN] FTTE

Get the idea? If you have several equations in your list, such as { EQ1

EQ2 EQ3 EQ4 I, EFIEA bumpsEQ1 to the last place in line, moves all
the other equations up one place,{ EQZ EQ3 EQ4 EQ1 X, and sets
up the Solver to work on EQZ.

Now press FBI#] a few times until the Solver returnsto 'Fruit '.
It’s time to test all this!...

60 3: THE SOLVER

Press to see that each variable in 'Fruit' has an assigned
value (the values in the examples at the beginning of this chapter
should still be there: CSTA should contain 8.9, and CSTO should
contain 8. 89).

Now press (NxT) EEI3®] to go to the 'Wagon' equation. Apples are about
three to a pound, so press (- [3)5) [HLAl to enter an apple’s weight. Now
imagine some big, juicy oranges—about a pint each: Enter (-]5)[HLO]
Solve for the total weight by pressing (GJLOAD] ...

For another variation on the problem (and to further demonstrate the
“What-If?” nature of the Solver), how much would it cost to fill your
wagon with an equal weight of apples and oranges?

Press (2)5) [L0AR] (o) MEAM] (JAPFL].... Result: APPLES: 71.

Then press (0) [APPL] (G JOEAMI. ... Result: ORANGES: 58.

Then [(RPPL] [DEAN], then B33 to get back to the costing
equation, and (GJIOTA].... Result: TOTAL: 65.69

That’s the cost of a wagonful of equal weights of apples and oranges.

Linking Equations: Solving Several at Once 61

Another good example of a set of linked equations is this set for linear
motion:

v=yv, +at

X =X, +%(v0 +v)t

X=x,+vt+ lat
2
v =) +2a(x - x,)
Enter these four equations and store theminto 'M1', 'M2' 'M3', and
'M4', respectively.

Then store the list{ M1 MZ M3 M4 3 into 'MOTION'.

Now you can solve for x, x,, v, v,, @ and ¢, if you know any three of them:
You store the three (or more) known values and then use [E{3® and
to cycle through the equations, solving each one in turn,
until there are no more undefined variables.

62 3: THE SOLVER

Solving with linked equations does have some limitations:

¢ The Solver won't search for undefined variables nor define or
solve for them automatically. For example, if you define every-
thing but the variable ORANGES in the Fruit equation—so that
its value is implied—then solve for LOAD in the lagon equation,
you’ll still get the error message: Undefined VYariable(s).

¢ In some iterative methods using more than one equation, the
order of solving the equations determines whether the solutions
converge or diverge. The Solver cannot help you avoid diverging
solutions.

Fortunately, there are two workarounds for these limitations:

¢ Sincethe Solveris programmable, you can automate much of the
process for use in analysis and design of iterative solutions.

e The Multiple Equation Solver application (&§)Ec us)IEI3) can
solve for all the unknowns in a system of equations, given the

necessary minimum number of independent variables.

For most of your needs, the normal interactive Solver is sufficient, but
if you need more, stay tuned for more information on programmabil-
ity—and on the MES!

Linking Equations: Solving Several at Once 63

Using the Solver on IllI-Mannered Functions

Earlier versions of the Solver accepted only “well-mannered” func-
tions; you couldn’t use it with square waves, step functions, or other
real-world functions. For those, you had to resort to programming.

Well, no more. The 48’s Solver can handle it all. The key to making it
work is to think ahead. Plan out exactly how you’ll approach your
problem from the start. With planning and practice, you can now make
the Solver do what used to require a lot more programming.

1 where x > x,

Try it: For the step function y = {0 where x < x,

}, write a simple

program: « JF '"KaK@'
THEN 1
ELSE 6
END

»

Next, name the program, say, 'Step'
(Checksum: # 293949d Bytes: 51).

Press 'Step' STEQET=R G sove) AT EMMI, and see:
Step: & IF 'XaxXB@' THE..

—MNWI-h

I | T E PRl | ||]

64 3: THE SOLVER

Just as with an algebraic equation, the Solver examines the program,
extracts variable names and builds a variable menu from those names.
And you can “lock in” values by specifying a variable list and omitting
the fixed values. For example, for the menu-based Solver, change St ep

toStepZ: { « IF 'X2XB' THEN 1 ELSE B END » { X }

Now x,is omitted from the menu, so the menu-based Solver appears as

Step2: { &« IF 'k2kB ..

o LS B P

= 1EETEI L Il | I

Of course, this function is ill-mannered; it can’t be differentiated:
Trying to do so onto the Stack with (] 3)givesa Bad Arsument Type
error; trying it in the Plotter via m“ gives Invalid EQ. Even
rewriting the program as a user-defined function doesn’t help:

« » w %@ « [F 'w<x@' THEN @ ELSE 1 END » =»

This stillisn’t written as an algebraic, and the 48 can differentiate only
algebraics. But also in the PRGHIAAN menu—on the very last page—
is IFTE, which can be used in algebraics. For example, the above step
function can be rewritten simply as IFTECK<KB, By 1). And IFTE can
be differentiated and integrated—like a constant coefficient that
passes transparentiy through the differentiation or integration.

Using the Solver on Ill-Mannered Functions 65

One problem that has vexed engineers for years—and led to many
ingenious programs—is how to model a real diode. A diode is a kind of
electronic “One Way” sign, ideally allowing infinite current flow in one
direction (called forward bias) and zero current flow in the other
direction (called reverse bias). Here’s a plot of voltage vs. current for
an ideal diode: I

Well, a real, solid-state diode isn’t quite that good:

Typically, the transition from forward to reverse bias takes place at
about V=0 volts. Under reverse bias (V < 0) the current is fairly con-
stant at / =1 picoampere to 1 microampere. Under forward bias (V >
0), the diode current follows this relation:*

|4
I = IO [e.0259 volts __ 1)

*This assumes a constant temperature of 300 K. A good electronics text will give you temperature-
dependencies for both I and I,. Also, the Equation Library offers a more rigorous equation.

66 3: THE SOLVER

If the reverse bias voltage exceeds a given value V,, or breakdown
voltage, then the diode loses all effectiveness and becomes essentially
a short circuit—current is very high.

So a good diode equation should model all three areas of the V-I curve,
and it should be continuous. It can be done using two nested
IF...THEN.. ELSE commandsin a program—or twonested IFTE functions
in a single equation:

[=IFTECYVb, 1E99+Y, IFTECV>B, To*x(ExP(V-.B259)-1), -10))

Type this in and call it DIODE (Checksum: # 44495d Bytes: 127).
This matches the diode model very well and maintains a continuous
function through the three regions of forward bias, reverse bias and
breakdown.

For example, a typical diode has these characteristics:

105A
-10V

I
Vv

B

Storing these two values completely defines your diode—and since the
variables are naturally arranged in the variable menu, you don’t even
need to create a variables list!

Using the Solver on Ill-Mannered Functions 67

The Care and Feeding of derFN

It may seem strange to have a section on functions in the middle of the
Solver chapter, but such considerations of ill-behaved functions are
important for using the Solver inside the Plotter—coming up next.

In many cases you will find it easier to differentiate an equation and
solve for the variables in the resulting first-derivative equation. But
if your original equation contains several functions for which the 48
cannot find a derivative, it will indicate this by creating a dummy
derivative and listing the variables available to solve the problem.

Press (JuTH) IEETM x7) IEEE (]XJENTER), then D6
You’ll get the algebraic function 'SIGN(X)'. Now press (' Jo)X]ENTER)
([2)3) again, to get the function 'derSIGN(-3, 1)'.

“Where did this come from?” you may well ask.

To answer your question, repeat the calculation, but this time create
the algebraic 'aR(SIGN(K))' and press EVAL. This time you get:
'derSIGN(Y, a¥(K))'. Now you can see what happened in the first
case:instead of stopping at a symbolic representation of the differential,
the 48 went on and completely evaluated the variables, replacing ¥
with =3 (currently stored in ®) and calculating the derivative of a
constant (1). Press again to see this substitution.

Moral: Ifyouwanttocompletely evaluate a derivativein one step, use
the Stack method. For symbolic representation of the deriva-
tive or for stepwise differentiation, include the derivative into
your algebraic and evaluate to thelevel you need. See your HP
UG (pages 20-9 through 20-10) for more details.

68 3: THE SOLVER

Now, next question: What is this derSIGN all about?

This is the 48’s way of saying “I don’t know how to differentiate the
function SIGN(K) , but I'll use these placeholders for ¥ and dX until you
show me how the derivative should be defined.”

You’ll probably face the same problem with many of your own user-
defined functions. When you use [[ZXylIIlZl on one of these func-
tions, if the 48 can’t find a numerical approximation to the derivative,
it will give you a nasty message and give up.

You can avoid thisby trying all your derivatives beforehand. Ifyou find
aderFN somewhere in your differentiated expression, then you should
consider how the function should be differentiated.

For example, with SIGN(R), it’s obvious that ' derSIGNCK, dR(K)) ' is
zero everywhere but at x =0, where it is infinitely large. So you could
create the function® + % dx 'IFTE('w==8', 1E499,8)"' * andstore
thisas 'derSIGN'. When you evaluatederSIGN after definingit, you’ll
get a result of B (assuming -3 is still stored in ¥).

SIGN is a unary function; it acts on only one argument. By contrast,
percent is a binary function—two arguments. For example, the deriv-

ative of '%(K, Y) ' with respect to Z is: 'der®%(¥, Y, 0Z(¥), 8Z(Y))'

Page 20-11 in the User’s Guide gives a solution for 'der%'. Work out
other user-defined derivatives in the same manner.

Using the Solver on Ill-Mannered Functions 69

Using the Solver Inside the Plotter

The 48 Solver really shines inside the Plotter application, where it’s
even more versatile than in its stand-alone form. For example, create
a 3rd-degree polynomial: 'R*3+2*#¥*2-5*¥RK-6'. Store this into EQ
(and press to ensure that X won’t get in the way).

Now, a good mathematician would be able to tell by inspection that it’s
a cubic curve from lower left to upper right, with a “dipsy-doodle”
around the x-axis that crosses the axis 3 times (you can tell that it has
3 real roots, right? ... right?...).* Prove it: Press to get the
PLOT input form. Press to put ® into the INDEP: field.
Press(v)(«)®IH to enable the AUTOSCALE option, then [I1TET [TTIE].

[200H [044 [TRACE] FEN | EDIT [CANCL
No big deal, right? And you can use the Hi[T&l commands to get to the
interesting part of the curve. The menu in the display is the PICTURE
menu (you saw this briefly in Chapter 1). Press (¢« to find the
graphics cursor. Then press and hold (€] until the cursor is above and
to the left of the leftmost root. Press HIEIIEHR to mark the point.
Now press and hold (»)to move the cursor past the rightmost root, then
press and hold (v) until the cursor is about four pixels below the x-axis.

*A good mathematician could also work out these roots in his’her head—or maybe use the poly-
nomial root-finder (via (®]SOLVE[¥]¥]ENTER)), but that’s a topic for another book....

70 3: THE SOLVER

Now pressHI[IIEl The Plotter will redraw the function:

(200K [0413 [TRACE] FIN | EDIT [CANCL]

Reminder: Press(CANCEL)&]<)(CANCEL]J&]«)to toggle between the PLOT
input form and the current plot. If you're not using the input form,
press (CANCEL)(«)(CANCEL)(«) to toggle between the Stack display and the
current plot. Pressing (4)sends you from an idle Stack display (i.e. no

Command Line or interactive Stack) to the graphics display. Pressing
returns you to the Stack display. Also, pressing (]« will go
to the graphics display from almost anywhere; the (4} shortcut is worth
remembering.

Press IHX1H to see the Solver and other function analysis tools. The
Solverisbuilt into the first two of these menu items: [[Filll and [E3&1.

With [d1['hll (as described in Chapter 1), you use the (a)(v)(4)and(») keys
to position the graphics cursor near where the curve crosses the x-axis,

then press Rd!'AN.

Try finding the three roots of the polynomial: -3, -1 and 2....

(When the menu disappears, press or (=) to get it back.)

Using the Solver Inside the Plotter 71

There are some significant differences between the way that the Solver

application works in its stand-alone form and the way it works within
the Ld!['Il operation:

72

¢ The stand-alone Solver solves for any variable you want, but the

{i1'k M version solves for the value of the independent variable
which makes the dependent variable go to zero. To solve for a dif-
ferent variable using [[{illll, you must change independent vari-
ables from the PLOT input form or by typing ' varname' &JSOLVE)
A CTEA from the command line.

Another difference is that the Solver will display intermediate
results for you if you press any button except while it’s
thinking ([ENTER) is probably the easiest key to find while you're
watching the display). The Solver tells you, with a short message,
how it arrived at the answer, and it puts the numeric result onto
the Stack with the variable name for a tag.

[{i'll, by contrast, doesn’t give you intermediate results or a
message, butit does position the cursor exactly on the intersection
(useful for subsequent operations like RINIlgs). Also it puts the

result onto the Stack as a real number—with the tagRoot ¢ —and

displays the numeric result on the graphics display until the next
keystroke.

3: THE SOLVER

o Ifthefunction doesnothave areal root, such as with ' Y=R*2+2'
the Solver finds a local extremum (minimum or maximum). It
then puts that x-value onto the Stack and the Extremum value
in the Status line.

H!l'kll puts the closest approximation onto the Stack and flashes
EXTREMUM on the graphics display, positioning the cursor at the
extremum of the function and displaying the numeric result.

e Notethatinsomecases(asinthe'Y=K"2+2' examplecited here),
the Solver and [[i0EH will return slightly different values of ¥ for
the extremum.

. can return results that are difficult or impossible to coax
out of the Solver. Ifthe Solver’s answers don’t make sense, enter
the Plotter, declare your unknown as the independent variable,
and solve for it graphically. And note that if EQ contains a list of
two or more equations, then the Plotter will plot all the functions,
but will find the roots of the first equation, and [EIZd# will
find the points of intersection between the first two equations in
the list.

Using the Solver Inside the Plotter 73

The majority of equations you’ll plot have an isolated variable on the
left of the equals sign—or no equals sign at all. But you may occasion-
ally have an equation such as this:

15-22=x2+3x+5

The Plotter treats this equation as two separate algebraics, separated
by an equals sign; it plots them both.

| FEN [EDIT [CAMCL]

A"kl finds only the point where the right hand side of the equation
equals zero. In order to find the roots of the equation, you must use
[E 341 to find the point(s) where the two function plots intersect.

Of course, you can get around this by subtracting the left side from the
right side to get an equation of the form ' B=Fn(KX) ' but sometimes you
do want to see both sides of the equation separately.

74 3: THE SOLVER

Look at some other items on the FCN menu. At first glance, you might
think that and JlI3lll do the same thing, but not quite:
computes the slope of the function at the cursor location (though the
cursor need not be right on the curve; it will “home in” on the curve once
the result is computed and displayed).

I3 computes and plots the derivative of the equation at every x-
valueinthe plot range. It also adds the equation for the first derivative
tothelistin EQ(or,if EQcontains a single equation, then il creates
alist with the new equation inserted at the start of the list). To see this,
use the PLOT input form and HIE] EIFEIETIE], as on pages 70-71:

3 [TRACE] FCW | EDNT [CANCL

Now, pressing IIZHSHNXT) I3l adds a parabola to the display, since
the first derivative of a cubic function is a quadratic:

(200K [04. 13 [TRACE] FIN [EDIT [CHWCL]

And now EQis: { '3%R"2+2%(2¥R)-3" 'RA3+2ER2-0%N-b' }

Using the Solver Inside the Plotter 75

Press IEEATE~NxT) I twice more (give each press time to draw)....
The list in EQ becomes

{ 6.88 '3x(Z2xX)+4'
'3xRMZH2X(2%R)-0" 'RAFH2ERM2-D*R-6']

And the next two derivatives—a slanted line and a horizontal line—
appear on the display:

2000 (3,13 [TRACE] FCN | ECIT [CANCLY

The menu item [ZTH EE3H simply makes the next equation in
the EQ list the current (“first”) equation. For example, after you have

pressed [REIIH twice, your display should look like this:

‘xR E+2X(2XRI-5'

The “first equation” is now the parabola.

76 3: THE SOLVER

For unruly equations, such as 15 -2x2=x2+ 3x + 5, [EI& will swap the
left- side and right-side expressions, and all [fil operations will then
act upon the new right-hand side.

Keep in mind that you can switch back and forth between the Plotter
and Solver at any time—and use [E{3®in either application. And keep
in mind also that if you alter any other variables used in the equations,
you must redraw the graphics display (by pressing [IREF[TTIRD).

R (nx7) IEEEE simply returns the function value at the current cur-
sor location. For unruly equations, [Z¥HHl returns the value of the
right-hand side; the Plotter’s IZ¥Hl is the graphical analog of the
Solver’s [dE.

m Al returns the coordinates of an extremum of a curve—but
it won't tell you if it’s a maximum or minimum. With the third-degree
poly-nomial, pressing I3l with the cursorjust to the left of the origin
re-turns this display:

EXTRM: (-2.12.-4.08)

Using the Solver Inside the Plotter 77

EIZT] does a numeric integration on the “first equation” in EQ, with
respect to the x-axis. You just put the cursor near the starting point,
and press [EId38 or (X) to mark one limit. Then put the cursor near the
other limit and press [EIATA.... It takes awhile, and you get only the
labeled integral, but it’s easy—try it: Find the area under the curve
between the greatest and least roots of the third-degree polynomial.

Move the cursor near the least root and press Tl I © ERT
Move it near the greatest root and press [IIll(=) BTN You'll see:

ARER: -10.42

EEI3 helps show the area used in integration. With the x-limit still
at the least root, and the + cursor still at the greatest root, press
or (5) (if necessary) to get the menu. Then press HIIII03.... Note that
BT colors only the area below the curve and above the x-axis. How-
ever, when you store a list of multiple expressions in EQ, shade colors
the area above the first expression and below the second expression. For

example, here’s the shaded plot of { 'Z*¥SINCK)' 'SIN(K)' .

4
2000 [e84 [TRACE] FCN | EDIT [CANCL]

78 3: THE SOLVER

The Multiple Equation Solver (MES)

The menu-based Solver allows you to solve a set of linked equations,
provided you solve them one at a time, cycling through each via [[E{3d
until you find the answer you were seeking. (An exampleis on page 59.)
You enter all your known values, and then find an equation with only
one unknown. You solve for that one, then continue switching equa-
tions until you solve for the unknown you really want (or all of them).

HP built the Multiple Equation Solver (MES) to automate this manual
process. Try it now: Go to the G. CH3 directory and type 'Shopping'

STEQ to make ShopPpina the current equation. Press &)Ec Le)iEE3A
BT to create the reserved variable Mpar.* Then press [EEH to en-
ter the MES Solver menu. You should see 3 pages of menu items:

(orallc=TA][CEToI(LoAD] [T A 1(AFFL]

TR TTCTT | | | .| riLL
PALZE | FACAL | N | -

In practical terms, the MES feels much like the menu-based Solver: To
enter a known value into a variable, you simply key in the value and
press the appropriate menu key. To solve for an unknown, you press
(&), then the menu key; to recall a value, you press () first.

*Press (VAR [RLLA to have a look at it.... All you seeisLibrary Data. The MINIT command takes
all the equations in EQ, extracts variable names from them, and builds a list of the equations, var-
iable names and other important information. Unfortunately, you cannot directly access this list
like other reserved variables, but the MES provides tools to modify it indirectly. Note that MES
will run only in a directory containing an Mpar, but that different directories can have different
Mpars, so you can switch from directory to directory with the MES Solver menu active. (If you do
this and accidentally change to a directory without an Mpar, the 48 will default to the MTH menu.)

The Multiple Equation Solver (MES) 79

Now, re-work the example on pages 59-61: You have $20. Apples cost
$.29 and weigh .35 Ibs.; oranges cost $.89 and weigh .5 1bs. You want 8
apples and as many oranges as you can afford, taking them home in the
wagon, which can carry up to 50 lbs. Will the wagon hold up?

Press (2)0) [T0Tal ()2)9) [C£Ta] (-Xe)9) [T ()3)5) (LAl (8) [RERL] (WXT)
G5 HLAINXTINXT). Note how the menu labels change from inverse to
normal as you enter a value, indicating that the variable’s value is now

user-defined—“sacred.” The MES will not change the value of a vari-
able with a normal menu label except when you’re solving for it. By con-
trast, inverse labels indicate variables whose value is calculated, or
unknown at the start of the problem, and the MES may calculate or
change the value of this variable in future calculations.

Now press (G JLOAD] to solve for the total weight of the purchase. Watch
the status line of the display. It says Seatr-ching asit decides what
equations it needs to solve to determine the LOAD, then looks for the
first one of those with only one unknown. Next it says

Solving for ORANGES Solving for LOAD
ORANGES: 19.87 then LOAD: 12.73
Zero Zero

and finally puts the tagged result, LOAD: 12.73, onto Stack Level 1.

Notice how [Jindicators have been added to all the menu labels. A[]
in a user-defined variable’s label, such as B[], shows that the MES
used this variable in the most recent calculation; a |l in a calculated
variable’s label, such as[LOAs]indicates that the MES calculated a new
value for this variable in the most recent calculation. In this particular
case, all the variables were used or calculated (all the menu labels have
Hin them), but there will be cases when only some of the variables are

80 3: THE SOLVER

involved in a calculation, and only those menu labels will have the [
All [Jed variables are related—as “participants” in the most recent
solution—but the values of the unfJed variables may or may not be
consistent with them. Press BT to store a new value into
CSTA. The s disappear; the new value you store invalidates the last
solution—all calculated variables are “unknown” again.

Next, how much will it cost to fill your wagon with an equal weight of
apples and oranges? First, press to be sure that CSTA is still
B.29, and CSTO is still B.89. Now TOTAL, APPLES, and ORANGES
must become calculated variables. You use the MCALC command todo
this: First, put the list{ TOTAL APPLES ORANGES 2 onto the Stack.
Now, press until the menu key appears. Press (NXT).
The variables you specified are now in inverse labels; they are no long-
er sacred—the MES can change them. Press (2]5)[L0A0] (o) [AFPL]
and watch the status line. The MES will now solve only for
ORANGES (and since TOTAL, CSTAand CSTOwere not used in the cal-
culation, no [boxes appear in their labels).

Now, to preserve the value of ORANGES while solving for APPLES, use
the MUSER command: ("JOEAs] EI'E3, then to confirm
that the [IEA =] label has changed to [ERN. Now you can press
to solve for APPLES alone. When you tell MES to
solve for the sacred variable APPLES, it sees it as no longer sacred,
calculates its value and changes its menu label from to [APE =]

Of course, 71.43 is not a realistic amount of apples to buy, but 71 is OK.
So press [APF =] (the label will change back to EIdd®Md), and press
(GJIIOIA] to solve the problem completely. Result: TOTAL: 6£65.89

The Multiple Equation Solver (MES) 81

The Ke

Press until you see the menu label. has 3 important
uses in the MES. First, pulls up the progress catalog, a kind
of “show-your-work” notepad for the most recent calculation. The pro-
gress catalog for the previous example looks like this:

MALUs[EGNZPEINT] | | ERIT

The first line shows the name of the equation set used in the solution

(it defaults to EQ if no name is supplied). Subsequent lines show the
values for all variables calculated in the last solution (i.e. all variables
with labels like [T0Ts]). [HEIYHE shows the equations used to solve for
each variable; re-displays the values. sends all of this
information to the printer; 31l returns to the MES Solver menu.

is the “solve for all” command. Just as you use the (5) prefix
to solve for a specific variable, solves for all calculated vari-

ables. Try it—press (D] and watch
as the MES solves for both ORANGES and TOTAL.

Unshifted is the “undefine all” command. It turns all variables
into calculated variables, with inverse labels. This is the most drastic
use of JEINMl—and the most useful: It wipes the slate clean, so you can
enter a completely new solution.

82 3: THE SOLVER

Other Tips on ME.

e On page 51, you wanted to keep the gas constant a constant.
Similarly here, suppose you want to keep the fruit prices from
being overwritten with garbage. The MES Solver is not quite as
helpful as the 48’s other Solvers, but you can make the prices
user-defined variables, via{ CSTA CSTO 2} MUSER.* Or, at the
very least, you can move them to the end of the menu, via the
MITM command. MITM takes two arguments: a title string on
Level 2, and a variable list on Level 1. The list must contain all
the variables in the equation set, but you can reorder them and
insert null strings ("") to serve as blank menu keys. Try it: Type
"SHOPPING" ENTER), then press and use the MES Solver
menu and to create the list { ORANGES APPLES TOTAL
LORD WT.O WT.A "™ "" CSTO CSTA . Now press
IEEAEIELE] to reorder the menu, and to view it.*

¢ Because of the way the MES works, some sets of equations can-
not be solved. MES looks through all the equations for an equa-
tion containing only one unknown and solves that equation first.
Thus it is possible to have equations arranged in such a way that
the MES cannot solve them. The UG (p. 25-9) shows 2 equations
in 2 unknowns which you can solve by hand, but which the MES
still chokes on, because it can solve for only one unknown at once:

'wl=yB+a*t]1’ and 'wZ=yB+axt2’

To solve this, subtract one equation from the other to eliminate
vB: '(kl-xZ)=a*(t1-t2)'. Then put the three equations into
a MES list.

*But this step can be negated merely by pressing the key, so be careful.

The Multiple Equation Solver (MES) 83

Be aware also of other “gotchas” with equation sets—things
which you take for granted, such as positive, negative and com-
plex square roots; absolute vs. relative temperatures (see page
48); unit objects; multiple trig solutions (e.g. tan45°=tan 225°); and
bad guesses. See pp. 25-8 to 25-11 in the UG for more ideas.

You can help the MES with initial guesses. As with the other
HP48 Solvers, a guess may be one value, or a list of 2 or 3 values.
When you enter a guess, the variable label will change to “user-
defined.” (See Chapter 18 in the UG for more information.)

In a nutshell, that’s the Multiple Equation Solver. You can read more
about it in the UG, pages 25-6 to 25-11, and in the AUR if you have it.
To summarize the essentials:

84

Create your list of linked equations, just as you would create for
the regular HP48 Solver. Store the list in EQ.

Execute MINIT (ﬂ@) to initialize Mpar.
ExecuteMSOLYR (&)Ec LB IEEAIEEM) to enter the MES Solver.

Store known values by entering them and pressing the unshifted
menu keys. Solve for individual variables by pressing the (Gled
menu keys, or solve for all unknowns by pressing (@ IGIAML.

All values marked with [or B] were used or calculated, respec-
tively, in the most recent solution; they are internally consistent.

You can protect variable values from being overwritten by speci-
fying a list of their names and executing MUSER (IEMEA). Like-
wise, you can unprotect selected variables by listing their names
and executing MCALC (IX¥M), or, for all variables, via IFTHEN.

3: THE SOLVER

Programmable Use of the Solver (and MES)

Sometimes you need to use the Solver in the middle of a program.
STEQand RCEQ are programmable, and you can store or solve for var-
iables interactively during the program. For example, to store the
equation into EQ and invoke the menu-based Solver:

« ... 'egname' STEQ 38 MENU HALT ... »

When the 48 encounters this, it stores ' eqname' into EQ, activates the
SOLVR menu (number 30) and halts program execution. You can then
use the Solver to store values or run other programs from its variable
menu, then press when ready to resume the program. Or, to
avoid halting the program during the Solver, you can instead use
ROQT, after setting up the Stack so that ROOT finds its arguments:

Inputs: > Qutputs:

symbolic or program (the equation)
global variable name
real, cmplx., list or unit (1st guess) |1 real, complex or unit (ans.)

l—tNL.p..J

Programmable Use of the Solver (and MES) 85

Here’s an example of using ROOT. This program calculates payments
for a 5-year, $15,000 loan at various interest rates. The program (AMRT:
Checksum: # 28425d Bytes: 226) uses the original TVol equation
(p. 49) and invokes ROOT to print a table of rates and payments:

« 15888 'PY' STO 8 'FV' STO 68 'N' STO
.83 .15
FOR int
int DUP 12 ~ 'I' STO 3 FIK #5TR "+ " +
'TVol' 'PMT' -188 ROOT 2 FIX »STR +
PR1 DROP .61
STEP

»

A more polished version would give prettier output, but you get the
idea. Another example: To solve partial pressures, you can combine

and

« wwx.wx_mol 'n' STO 'lIdealGas' 'p' 1_atm ROOT... =»

The MES is also programmable. If, for example, you want to solve the
equations of motion within a program, you could include the sequence:

« . 'MOTION' STEQ MINIT MSOLVR... ®* simplytosetuptheequation

and invoke the MES. Or you could use this sequence:*

« _..'MOTION' STEQ MINIT value varname STU...(repeatasneeded)
..x sacredvarnames } MUSER { non-sacred varnames ¥ MCALC
desired varname MROOT... »

*Note that substituting "ALL" for desired varname will instruct MROOT to solve for all unknowns.
And MITM is programmable, too: € ..."Title String" { allvarnames } MITM... »

86 3: THE SOLVER

Review

Okay, set down your calculator, grab a handful of cookies, and think for
a moment about the 48 Solver application. You heard it suggested at
the start of this chapter that it’s really another programming language
—even another programming environment. And you’ve seen the acro-
batics the Solver can do:

* You learned about two of the Solver environments—menu-based
and the input-form—and the strengths and weaknesses of each.

* You learned how to customize the Solver menus, how to protect
variables and perform “outside” tasks from inside the Solver.

¢ You saw how the Solver is integrated with the Plotter applica-
tion, and you learned about differences between the graphical
Solver and the stand-alone Solver.

* You learned how to solve multiple equations at once—with or
without the MES (Multiple Equation Solver).

* You were introduced to using the Solver within a program.

As you can see, if your work relies on math to any degree, the 48 Solver
can greatly reduce the amount of € .. programming... * you do. The
Solve Equation Library contains 300 prewritten equations covering
dozens of different topics—and new equation libraries are being com-
piled constantly. Of course, ¥ .. programming... * isn’t dead; there will
always be needs for it. But now the Solver can do many of the things
that formerly had tobe done in a ¥ program *. So get comfortable with
the Solver—using a handheld computer has never been so easy!

Review 87

PO\x
R

X

S
N

b

et SRS
0%,

R

N

2R S \\\\g\‘:“‘

oSty S

SR YN
X

SIORAR
AR
% \?" e
&

.

RUROHA
e ™
R

3 \\
AN
ﬁ“:‘:‘ R
RO

4: WHAT’S A GROB?

R
RS
%

ORI,

Z
% ’)
XSO X . a2 N

W

I
DR

RN :
\‘\‘\\\ REKI

Opening Remarks

With its ability to manipulate complex information in the forms of
objects, the 48 makes it easy for anyone to do serious graphics on a
handheld machine—something not possible before. Other handhelds
have “large” screens or dot-matrix displays but nothing as accessible
orversatile asthe 48 grob (its proper name is “graphics object,” but the
48 shortens this to grob).

A Clean Slate

Before you start, set up your machine for some good, hard graphics
work:

¢ First, in your HOME directory, create a directory called TOOLS, to
store your programs.

¢ Then, in that TOOLS directory, create another directory called
PICS, where you'll store your grobs and do your graphics work.

This will prevent you from clobbering other object names and prevent
both your HOME directory and working directory (PIC%) from becoming
too cluttered. So from now on (unless specifically directed otherwise),
store all programs in TOOLS and all grobs in PIC%. And when actually
using (executing/evaluating) any program or grob, do so from PIC%.

Now it’s time to talk about grobs....

Opening Remarks / A Clean Slate 89

What Is a Grob?

A grob is simply another way for the 48 to store data. You’re already
familiar with matrix objects, program objects, character string objects,
complex number objects, etc.

A grob is just another kind of object—a pixel-by-pixel description of an
image that can be displayed on the 48 display, or passed to another 48
or PC, or “dumped” to a printer. A grob can also be manipulated or
combined with other grobs—just as other objects can be manipulated
and combined in various ways.

Create a simple grob to experiment with—plot a sine wave:

If you’re not in RADians mode, press Then press ([PLOTJSIN
OIENEIUR CHEIERAZE[DFALL N

The graphics display should fill with a sine wave—big deal.

Press (CANCEL]CANCEL] to exit graphics mode.

90 4: WHAT’s A GROB?

Move into your new PICS directory, and then press [PICT | PICT |
'SINE' (570)

PICT is the reserved name in which the 48 stores the current graphics
display (much as EQ is the reserved name in which the 48 stores the
current equation). Therefore, PICT can be (STOJed and (RCLed, but it
cannot be deleted (yes, you can it, but a new PICT will be au-
tomatically created if you then plot a function or press (§]GRAPH)). So
make a mental note: Don’t use PICT as an object name, because the 48
has reserved that name for its own use.

In the above exercise, placed the grob representing the
current graphics display onto Stack Level 1. Then 'SINE' stored
it under that name in your PIC% directory.

Now take a closer look at this grob. Press (VARIEILIH(Y), and you’ll see
GROB 131 64, followed by a mass of characters.

What do all those characters mean? To get a betteridea,compare them
with an “empty” grob: Press [ENTER)&o)(PLOT)[TiET to clear the graphics
display, and then [PICT [PICT | '"EMPTY" to store the
blank display as an object called 'EMPTY'. Now press),
to see GROB 131 64, followed by a mass of zeros.

This is the Stack’s representation of a grob. The word GROB simply tells
you that the object is a grob. The second “word”, 131, is the number of
columns of pixels (dots)in the grob. The third “word”,64,is the number
of rows of pixels in the grob. And then the huge “word” after that is a
hexadecimal bitmap of all the pixels themselves, where every digit
represents 4 pixels.

What Is a Grob? 91

Pixel Numbers vs. User Units

A grob’s size is normally expressed as “m pixels wide by n pixels high.”
For example, the display grob PICT has a normal default size of 131
pixels wide by 64 pixels high. But you can also express such dimensions
inuser units. Userunits allow you to define the scale and limits of PICT
in more convenient units—to save you a conversion between Cartesian
coordinates and pixel locations every time you want to modify PICT.

Toillustrate this, return the SINE grob to the graphics display and view
it, by pressing (VARIEIE PR IEM #5709

Each pixel in this 131x64 grob is defined by a list of two binary integers,
of the form{ #col #row }. These are “pixel coordinates.” Here are
a few pixel locations expressed in their pixel coordinates:

—{ # 6d # 6d 2
{ #123d # 16d }—

{#65d#2d }—

{ # 136d # 63d X

However, recall that when you plotted the sine wave, the 48 used the
default x-axis range of —6.5 to 6.5, and it assigned the y-axis range to be
-1.3 to 1.0. These ranges were in user units.

92 4: WHAT’s A GRoB?

A graphical location in user units is expressed in the form of a complex
number, (x; y). Here are the same four locations as on the previous
page, but expressed in user units rather than in pixel coordinates:

—(-6.51.8)
(6.8,8.63)—

(9, B)_'

(6.5, ‘1.3)\

Comparing the two diagrams, notice that their scales behave differ-
ently: The pixel coordinate scale always startsat{ # B8d # Bd }
intheupperleft-hand corner, and the numbersincrease as you proceed
downward and to the right. But the user-units scale starts at whatever
values you (or, by default, the 48) have defined, and these numbers
increase as you move upward and to the right.

So, which scale should you use? Obviously, user units are much more
convenient in many respects. You do your computations, you plug in
the numbers, you plot them—just as on graph paper.

Anyhow, HP has made the plotting commands versatile enough to
accommodate both scales. And the A functions IEEEM and
allow you to quickly convert from one scale to the other if you
want to see both sets of the numbers.

Pixel Numbers vs. User Units 93

But performing grob manipulations with user units does have a couple
of disadvantages. First of all, it’s slower. The 48 doesn’t “think” in user
units. When you give it a graphics command with real or complex
arguments, it has to find out what the current graphics scale is, then
convert the arguments to binary integers (pixel coordinate values) and
then execute the command. This can increase your program execution
time by as much as 50 percent.

Secondly, user units don’t always remain the same. They can differ
from directory to directory and program to program, as you redefine
them. So always check the graphics scale before manipulating grobs,
if you’re going to do so in user units.

With those considerations in mind, you can see that if your application
involves a good deal of plotting and mathematical modeling, then user
units are for you. On the other hand, if your application involves
placing text in grobs, extensive fiddling with bitmaps, or mixing grobs
of unknown user units, then you should stay with pixel coordinates. As
a good rule of thumb, if you're doing too many conversions from one
scale to the other, it’s a sure sign that you need to switch to the other
scale.

94 4: WHAT’s A GROB?

“Roll Your Own” Grobs

You have several ways to create a grob (i.e. put one onto the Stack):

* PonETHEEFRe) INENNEHEEO[RC) creates an empty 131x64
grob.

e Tocreate an empty grob of a specified size, use the (BLANK)
command. You put the number of columns (as a decimal integer)
at Stack Level 2, and the number of rows (as a decimal integer)

at Stack Level 1, then press ETEABEETE The empty grob
will be placed at Level 1.

¢ Toturn any object into a grob, put the object at Level 2 and a real
number on Level 1. Then press(Pre)[HATA (that’s*GROB).
If the real numberis 1, € or 3, the 48 will use the small, medium
or large font, respectively, to create the grob. If that argumentis
B and the object is an algebraic or unit object, its grob will be
created in textbook format—as in the EquationWriter.

. AT IEAED copies the current display to a grob.

. (X% and (O)PLoT) [will create a grob named PICT
with a function or statistical data plotted on it. To then put this

grob onto the Stack, you type PICT (from the Stack dis-
play), or (from within the Graphics display).

o converts to a grob directly from the EquationWriter.

¢ You can also create a grob on the Command Line. For example

(do this now), type GROB 8 2 83FF ENTER).... See?

“Roll Your Own” Grobs 95

The Hexadecimal Bitmap

That grob you just created is 2 rows (of pixels) tall and 8 columns (of
pixels) wide. An 8x2 grob therefore has 16 pixels (“picture elements”).

A hexadecimal digit*, expressed in binary form, can hold information
for 4 pixels. For example, the hex number B (which has a decimal value
of eleven), is expressed in binary as 1011. So the hex number B can
describe a row of 4 pixels, where all but the second pixel are “on” (dark);
the second pixel is “off” (light). Similarly, a hex 0 (binary 0000) would
be all pixels “off”, and a hex F (binary 1111) would be all pixels “on”.

The 48 always uses an even number of hex digits for each row. So if your
grob is between 1 and 8 pixels wide, you’ll need 2 hex digits to describe
that row—even if you use only a few of those pixels.

Since each hexadecimal digit represents 4 pixels in a row, it’s easy to
think of a grob as a collection of 1-row, 4-column bitmaps:

m columns

n rows

*If you don’t understand hexadecimal numbers, keep your place here while you read Appendix A.

96 4: WHAT’s A GROB?

In the grob you just created (via GROB 8 2 83FF), for example, the
digits 83 described the first row of pixels; the digits FF described the
second row.

Unfortunately, HP decided that the bitmaps should read backward
from the conventional ordering of the digits in a binary number. That
is, you might naturally think that 83 would describe this bitmap:

hex digit value 8 3
binary placevalue 8 4 2 1 8 4 21
pixel value 1 000 0011

But no—it doesn’t. Rather, the 83 describes this bitmap:

hex digit value g8 3
binary place value 1 2 48 1 2 48
pixel value 0001 1100

Perplexed? It’sunderstandable. This takes some getting used to—and
to help that process along, take a look at your grob....

The Hexadecimal Bitmap 97

The SEE Program

The 48 doesn’t have a quick command to let you “see” the graphics
representation of a grob on the Stack, so you need to write one now.*

Notice that [HIHM(STO) takes a grob from Stack Level 1 and putsitinto
the reserved variable PICT, and that the command lets you
view and manipulate PICT.** Your Mission: incorporate your obser-
vations into a program, 'SEE' (Checksum: # 9388d Bytes: £9).

Solution: « PICT STO PICTURE

»

In your TOOLS directory, type this on the Command Line
and press [ENTER). Then type 'SEE' (s70).

Now, with any grob in Stack Level 1, SEE will let you see
it immediately—try it! Use SINE, EMPTY, or your GROB 8
¢ 83FF—whatever.

Create other grobs using the Command Line, and view them using
SEE. Remember: If you use too few digits, the 48 will simply “pad” the
grob with zeros, but if you use too many digits, it will give you an error
message.

*If you don’t know how to write programs on the 48, place a bookmark here, skim over the chapter
on “Programming the HP 48” in the Owner’s Manual, then return here.

** Yes, you could use the PYIEW command in place of (GJPICTURE), but PYIEW requires an argument
in Level 1, and it doesn’t allow access to the graphics editing menus—not so handy.

98 4: WHAT’s A GROB?2

What Does a Grob Eat?

A grob eats memory. Lots of it.

Even a 0x0 grob uses 10 bytes of memory. And how would you make a
0x0 grob to see this? A couple of different ways, actually:

GROB 6 B

or

LI A G OE: [ELAM

What’s more, if you were to convert that 0x0 grob to a string, "GROB B
8", it would use /4 bytes.

As you can see, memory use is of primary consideration when you’re
working with grobs. So here are two quick utilities to help you measure

grob size:
GSIZE
Checksum: # 52166d
Bytes: 78
€« + uw h

'18+h=(1+IP((u-1)-8))'

»

GSIZE takes the row and column arguments from the Stack and gives
you the size of the graphics object itself.

What Does a Grob Eat? 99

$SIZE
Checksum: # 4548d
Bytes: 136

« DUPZ SWAP +STR SIZE
SWAP +STR SIZE SWAP
+ w h lu lh
"12+]1w+lh+éxh*(1+IP(C(u-1)-8))"'

$SIZE takes the row and column arguments and gives you the size of
the string representation of the grob. This is very important to know
if you’re uploading grobs in ASCII format to another computer; the 48
must have enough memory to hold both the binary and the ASCII rep-
resentations.

Keep these two utilities in your TOOLS directory. They’ll help you
budget your memory resources as you develop graphics applications.
For example, they’ll tell you that a screen-sized, 131x64 grob uses 1098
bytes, and its corresponding string uses 2193 bytes. And a 200x200 grob
needs 5010 bytes in binary and 10018 in ASCII.

As you can see, grobs eat memory in big bytes.

100 4: WHAT’s A GROB?

The Grob as Icon

Grobs that are 21x8 have a special application in the 48—as menu
icons. To create an icon via freehand drawing:

¢ Inthe PICTURE environment, press(&]CLEAR[>]<4]>]a), then (X),
then (¥) seven times, then (») twenty times, then IS TN

¢ Use freehand drawing (see Chapters 5 and 8) to draw your icon.
Then erase the outline, if you wish.

e Press (2]<]>Ja), then (X), then (¥) seven times, then (») twenty
times, and then (NxT)) BT, to copy your icon to the Stack.

¢ Put your unshifted/shifted key actions* on Stack Levels below
the icon, specify the icon Level, and press LIET [*LIET]

Repeat the above steps as needed to create more icon lists. Then give

the number of menu items and press S EeE HEMLU X

Or, here’s a “pre-fab” example: Key in this custom menu list (it’s all 1
object—don’t hit until the very end—and ignore line breaks):

{ { GROB 21 8
?B%%%%BGZBIBISBQMZBBB124849218939[388IBBBBBBBBBBBB "SINE" 3
?B%%%%B‘}ZBIBIEBGCBI195H49884925|34E81382489IBGBBBBB "SAW" 3
?B%%%%BFZIIE?SSB124889124888124989124BE8F3C1888888 "SQUARE" 3

888808677501 155558155301 15555867 75016000006060008 "YEARH!" 3
} MENU (ENTER).... Avery interesting custom menu—4 grobs as labels!

*See chapter 30 of the User’s Guide (“Customizing the HP 48”) for more information on creating
custom menus. And you may want to make a note there that 21x8 grobs can act as menu labels.

The Grob as Icon 101

Notjust interesting—useful: You can fit only 4-5 characters of text into
a menu label, but anicon—even of that size—is a picture worth a thou-
sand words. Infact, you can even create menu labels with the little box
that appears/disappears to indicate status—like this: INEEIIEE.
To do this, you use the SYSEVAL command.* The table below shows
4 SYSEVAL codes and the results they would give via this sequence:

"LABEL" syseval-code SYSEVAL PICT STO PICTURE

SYSEVAL code Description Result of above sequence
3A328h normal label
3R3ECh directory
3A44Eh inverse (LAEE]
3A38Ah status “on” LAEEm
(see below) MES “unknown solved” [LAE =]

Use the 21x8 grobs created by these codes just as you would use the
21x8 grob icons on the previous pages. To create the MES menu grob,
use one of these two routines:

(Checksum: # 12967d Bytes: 108.5)

« 1 3 SUB #3A38Ah SYSEVAL { % Gh ¥ Bh 3 GROB 21
§ FFFFFIEFFFFOEFFFFBEFFFFOEFFFFOEFFFFBEFFFFE GHOR »

(Checksum: # 49868d Bytes: 81.9)

« 1 4 SUB #3A44Eh SYSEVAL { # Fh # 2h
GROB 5 5 BBCICIC16B REPL »

The first routine uses the “indicator on” SYSEVAL, cropping the label
string to make it fit. The second routine uses the “inverse” SYSEVAL—
slightly smaller and faster—also cropping the string to make it fit.

*Warning: SYSEVAL can be very dangerous. If you enter an incorrect SYSEVAL code, you can
cause a Memory Clear. Enter SYSEVAL codes very carefully—and back up your memory first!

102 4: WHAT’s A GROB?

Three other useful menu SYSEVAL codes are: # 3A1FCh (DispMenu1)
which causes the 48 to update a custom menu display immediately;
and # 4EZCFh (TurnMenuOff) and # 4E347h (TurnMenuOn), which

cause the menu line to “turn off” or “turn on” during a program. Here

is a short demo of these codes (Checksum: # 5Z819d Bytes: £38):

« { "HELLO" "THERE"
£ Y { X "BYE" } TMENU
3A1FCh SYSEVAL
1 188 FOR n n 1 DISP MEKT
4EZCFh SYSEUFIL
"MENU OFF" 3 DISP
1 188 FOR n n 1 DISP NEXT
4E347h S‘r‘SEUHL
"MENU ON" 3 DISP
1 188 FOR n n 1 DISP NEKXT
B MENU
»
Review

Create a
temporary menu.
Display this menu,
and count to 100.
Turn the menu off,
glve message,
and count to 100.
Turn the menu on,
glve message,
and count to 100.

Restore previous menu.

In this chapter, you created the TOOLS and PICS subdirectories to hold
your grobs and your programs—and to help you organize your thoughts.

You also learned:

e how a grob is represented graphically and numerically—and

how much memory it eats;

e how to use the GROB row col nn... notation, so that you can read or
write a grob from the Command Line;

¢ how to create grobs—both empty or with pre-plotted patternsin

them—and how to use them in custom menus.

Review

103

5: GRrAPHICS BAsics

The Graphics Functions

Now that you understand what a grob is and how it is built, return to
the built-in graphics functions and run through them briefly. They are
all programmable to some degree, and you’re going to see that pro-
grammability at work now, too.

HP chose to scatter the graphics commands among several different
menus (a custom menu might be very handy—food for thought). Some
are in the and menus, some under (PRGHE![A, and

some under PRGHIZIHM, PRGHETIM and FRGHIMTTEM. For a reference
listing of the graphics commands, see Appendix B.

Now, as you know, you can get to the PICTURE display by pressing («
from the normal Stack display. However, the more general form of the
command is (§]PICTURE}—and in a program listing, []PICTURE) gives you
the PICTURE command, which causes the program to halt in the
PICTURE display with the PICTURE menu active. Then
returns you to the Stack display and continues program execution
(note: in a program, the TEXT command also returns you to the Stack
display).

(Incidentally, on the HP 48S/SX, the graphics display command was
called GRAPH. Try typing this on your HP 48G/GX: « GRAPH * ENTER))

The Graphics Functions 105

To view a grob in the Stack display, put the grob onto Stack Level 1 and
use the *LCD command ((PRG) I3 ED).

The grob will fill the display with its upper-left pixel in the upper-left
corner of the display, overwriting everything except the menu line (and
the menu remains active). *LCD does not halt program execution.

To activate the graphics display without the menu line—and still
without halting program execution—use the PVIEW command.

PVIEW requires an argument in Stack Level 1—the location of the
pixel to be in the upper-left corner of the display. Normally, this would
be the row 0, column 0 pixel, so you wouldput{ # Bd # Bd }in Level
1 and press [{l[T%] Remember that the first number in this list is the
column number; the second is the row number. Remember also that,
if you wish, you may give the coordinates of the upper-left corner in
user units instead, with a complex number (x y), where you choose
the coordinates x and y.

Within the PICTURE environment, pressing a second time
removes the menu and puts you in a “scrolling mode.” In this scrolling
mode, you can use the arrow keys and (®fed arrow keys to scan around
alarge grob, with the display acting as a “window” into the grob. In fact,
PVIEW is the programmable equivalent of this scanning capability.

Press athird time toreturn to the PICTURE display, or press
to return to the Stack display.

106 5: GrapHICS Basics

The Secrets of PPAR

Asyoureadin Chapter4, every grob has associated with it aheight and
a width, measured in pixels. The height (rows) and width (columns)
appear in the Stack display as Graphic ccc % rrr
or in the Command Line as GROB ccc rrr dddd....

If you ever need to test a grob within a program, the programmable
command SIZE returns the number of columns to Level 2 and the
number of rows to Level 1.

With that in mind, consider this: Associated with the plotting and
graphics routines is a reserved variable named PPAR (for Plot
PARameters). Like the reserved variables IOPAR and PRTPAR, PPAR
is created (if it doesn’t already exist) only when a routine invokes it.
(Note also that there is another reserved variable, VPAR, associated
with the 3-D plotting routines—discussed in Chapter 6.)

That is, PPAR is invoked or created anytime you activate the graphics

environment, even if you don’t see the graphics display. Specifically,
PPAR is invoked by:

or (@;

(&4]PLOT) or (=]PLOT);

Any drawing function (most of these are in ﬂm);
PVIEW with user units (a complex number)—but not with a list

of binary integers or an empty list.

The Secrets of PPAR 107

And of course, PPAR canbe STOed, RCLed and PURGed, like any other
variable. The contents of PPAR, however, must follow this pattern:

{ (xmin, y) (x - ym) indep res axes ptype depend 3

min

You set these 7 parameters from the PLOT menu, or by using the PLOT
menu commands inside a program. The default values are:

{ (-6.5-3.1) (6.53.2) K B (B,8) FUNCTION Y }

Alternate forms for the last five parameters in PPAR allow you to take
advantage of certain “advanced” plotting options. Watch PPAR change
as these options are invoked:

X plotting range restricted to -5, +5:

{
(-6.5,-3.1) (6.5,3.2) { ¥ -5 5 3
, B (8,8 FUNCTION ¥

Here, the indep field has changed to show the minimum and maximum
values to be plotted for the independent variable.

Resolution (step size) changed to 5 pixels:

) (6.5,3.2) { ¥ -5 5 3}
10N

If the res parameter has a value of 0.0 (user units) or #0d (pixels), then
the default (calculate and plot at every pixel column) is used. Other-
wise, function values are calculated and plotted at the interval speci-
fied by res, in user units (a real number) or pixels (a binary integer).

108 5: GRrapHICs Basics

Tic spacing on axes changed to 3.14 (x), .5 (y) user units:

{
(-6.3%-3.1) (6,5,3.2) { ¥ 5.5 2
) #5d { (6,8 { 3.14 8.58 } } FUNCTION ¥

The axes parameter changes from a complex number denoting the in-
tersection of the x and y axes, to a list containing that number and an-
other list denoting the space between tic marks on the x and y axes.

Tic spacing changed to 2 (x), 5 (y) pixels:

{
(-6.2-3.1) (6,53.2) { K -5 5 2
) #5d{ (8,8 { # 2d # 5d } } FUNCTION Y

As this example shows, the tick spacing can be in either user units or
pixels. If the sublistis{ 6.8 8.8 Yor{ # Bd # Bd J}, then the
default tic spacing of 10 pixels is used.

Axis labels changed from 8 and ¥ to something else:

{

(-6.5-3.1) (6.5,3.2) { ¥ -5 5

§ 54 (8,80 { ¥ 2d # 5d "TIFE® "RATIO" 3 3
} FUNCTION ¢

Here, the axes parameter has expanded yet again. The list now in-
cludes two strings, which replace the default axis labels (usually "K"
and "Y") used by the [l{[9W command.

The next section will show how to create this expanded version of PPAR
(itis also automatically created by inside the PLOT input form).

The Secrets of PPAR 109

This short program:
« PICT SIZE PPAR 28 FS? 29 FS? 31 FST »

will tell you everything you need to know about the graphics display
—if you can read it.

All of the PPAR information is also available from the PLOT input form
and its input form. This same information is also displayed, in
a little different format, when the (GJPLOT) menu and (G)JPLoT) IHEIA
menus are active (if the information is not displayed, press IEIZl or
(©2JVEW)). In a program, the best way to get at the PPAR data is to recall
the contents to the Stack and either OBJ* or SUB to extract the parts
that you need.

Bear in mind that each directory in the 48 can have its own PPAR,
which can cause you trouble if you work in user units and switch direc-
tories a lot.

For example, if you're working in DIR1 where PPAR contains xmin=—19
and xm=19, and then you switch to DIR2 where PPAR contains xmi"=9
and x_=b.28, you’ll get undesirable results if you use DRAW or any
user-unit commands without first adjustingx , and x__.

Generally speaking, you’ll need to get only the plotting limits at the

start of PPAR. In the next section, you’ll see how to get out more
information.

110 5: GRrapHIcs Basics

The PLOT Menu

The PLOT menu consists of 2 pages of commands and submenus:

PTVPE[PPAFR | EC [ERAZE] DEAY [DFAL]
30 | STAT [FLAG [LAEEL| AUTO | IMFO |

These selections give you access to the same tools as in the PLOT input
form. For example:

[REE and BEF-GEET correspond to the TYPE: field;

I and its shifted versions correspond to the ER: field;
ETHES corresponds to HIE in the input form;

ITTH and [TEM together work like [I®] in the input form;
is identical to in the Tl menu;
the key corresponds to the _RAUTOSCALE checkbox;

the menu gives you access to the 3 system flags that
control other aspects of plotting;

the [TEA menu is equivalent to most of the other fields, and to
the fields in the input form. The 3-D viewing parameters

that aren’t covered in [can be found in JEEFI EGETR (these

are covered in more detail in Chapter 6);

To create a graph with these tools takes a little more work than the

input form and you must often press(«€jor to see your graph.
On the other hand, these commands are programmable (and you will

see them hard at work in Chapter 9). Look at them now in detail:

The PLOT Menu 111

The IIEEM key is the only key with &) and ()features. Pressing l[IZll
recalls the contents of EQ to the Stack (same thing as RCEQ), unless
EQdoesn’t exist yet, in which case it puts 'EQ' on the Stack. & EZI
performs the command STEQ, which stores the item in Level 1into EQ.
(M performs the command RCEQ.

[EXHd erases the contents of PICT. It'sidentical to the [fEd found in
the PICTURE JEIIll menu and the PLOT input form menu, and it’s
programmable. (By contrast, the more drastic {33l resets PPAR to
its default values, resizes PICT toits default 131x64 size, and erases the

contents of PICT. {331 is not programmable—nor is it recoverable;
there’s no LAST GRAPHICS command. So use [d343] with care!)

IITH is a command for drawing axes inside the PICT grob. It is useful
inside a program, used in conjunction with DRAW. For example, the

MULTIPLOT program in Chapter 9 uses [IFI%] and I together to
make iterative plots on the same axes.

[T1¥] is the programmable plotting command. [IFI%] turns on the
graphics display, plots the contents of EQ, then turns off the graphics
display. It does not draw axes or labels, and the graphics display re-
mains active only while plotting EQ. So (T METHIMTTLTAITTE
(or the program « STE[Ql ERASE DRAX DRAW *)is an easy way to plot
a function or equation from Stack Level 1.

reads the contents of PPAR and adds axis labels to PICT. It
doesn’t check for the presence of axes; [ITiH3Mi1d3Mis a valid command
sequence. uses the current numeric display format (thus STD
format often produces too many digits in your plot). is the
programmable version of the in the PICTURE-IHJI#l menu.

112 5: GrApHICS Basics

calculates the y-values of the dependent variable in EQ, for
everyvalueoftheindependentvariablefromx tox .Itsetsy _equal
to the maximum calculated value, and it sets y . eight pixels (in user
units) lower than the minimum calculated value. [ElTlilis a program-
mable substitute for the _RAUTOSCALE setting in the PLOT input form.

ET does not draw anything; IETEIAITTT®] does.

The IEIH1M key displays information about some current plot settings.
This display disappears when you press or do something that

affects the Stack. It reappears when you press IIZI31H, or (O VIEW).
IEI38 is not programmable.

The JJEIMl menu is described more in the next chapter.

The menu contains statistical plotting tools, which will not be
discussed in this book.

The PLOT Menu 113

The [1Ed3 and IZEA menus give you direct (and programmable) con-

trol over PPAR. The [ET3 (and JEMIHAKTEY) menu keys set the prype
parameter as indicated by the keys. The [Jiill menu keys are:

INDEF [DEPN |iFHG | TG | FES [RESET
CENT |ZCHLE] #UT | EH | RHEZ JATICE]
CRRAF LINFD || |FLOT

The last three keys make life easier. You already know about IRl
@'}l returns you to the main plotting menu.

1A is a typing aid, recalling the contents of PPAR to the stack or
adding the word PPAR to the command line (if PPAR doesn’t exist, then
'PPAR' RCL creates one on the spot). Unfortunately, I does not
have the (§]2) capabilities of [I3¥lll. However, you can fake it if {51
is in your VAR or CST menu: Pressing (QIiLIRId or (ALIRIE not only
stores/recalls the contents of the variable, but inserts ' name' ST0 or
"name' RCL into a program.

[T93d and [I3370 (INDEP and DEPND) specify the independent and
dependent variables by name. Defaults are 8 and Y—but those won’t
work in equations such as ' Impact =(Mass*Speed”*2)-2'.

Note that you can use a list, instead of just a name, to specify the range
over which the function may be plotted. For example, to plot just the
first two revolutions (720°) of a spiral, yow'd type{ '8' 8 728 }[FTUEd.
Then you could use small programs to recall those parameters:

« PPAR 3 GET * (independent variable)
« PPAR 7 GET * (dependent variable)

114 5: GraPHICS Basics

The 48 gives you three different ways to independently specify values
forx ,y _,x _,andy : AN, A AATE, and PMIN PMAX

The HGINd (CENTR and SCALE) combination is most useful for
specifying a certain point as the center of the plot, then scaling the x-
and y-axes relative to each other—as for a polar or conic plot.

accepts a real number argument to center the plot along the
x-axis; or a complex argument to center the plot in both x and y. The
inverse of CENTR would be a program that finds the center of PICT:

« PPAR OBJ» 6 DROPN DUPZ - 2 ~ DUP RE - PICT
SIZE SWAP DROP B»R 1 - ~ ROT ROT + 2 ~ + »

N85 takes two real-number arguments: the x-axis scale and the
y-axis scale — both in units per ten pixels. Thus, if (0,0) is the center of
your 131x64 grob, and your x-axis scale is, say, 5, then your grob’s x__
will be (-130/2)*(5/10) or -32.5, and its x __ will be 32.5. The inverse of
SCALE—to find the x and y scales—would be this program:

« PPAR OBJ+ & DROPN SWAP - 18 * C»R PICT SIZE
1 - B»R ROT SWAP -~ ROT ROT B*R 1 - ~ SWAP =»

The more rectangular EATIAAE combination is the most intuitive
for FUNCTION type plots and general drawing. HAIH and A are
identical in function, each taking 2 real number arguments: the mini-
mumrangevalue,x . ory ;thenthe maximumrangevalue,x ory .
XRNG and YRNG areboth programmable. Their inverse functions are:

« PPAR 1 2 SUB RE EVAL » for x_,x_
and « PPAR 1 2 SUB INM EVAL » fory,y..

The PLOT Menu 115

PMIN and PMAX are mentioned in the User’s Guide only in the Opera-
tion Index after the Appendices. To use these two commands, you must
key them in (or assign them to a custom menu or key). They were used
to set the display limits on the HP 28S, and are included in the 48 for
compatibility. The 48 stores the display limits in PPAR as the complex
numbers (xmin, ymm) and (x sy). Their inverse functions are:

« PPAR 1 GET #» for PMIN, and
« PPAR 2 GET » for PMAX.

EEE3A and [N are related functions. IFf3 defines the coordinates
where the drawn axes will intersect, and optionally sets alternate axis
labels and spacing between tick marks. It takes one argument, which
may have any one of the following formats:

(x, y:'

{ (ny) "x-label® "y-label" }

{ Cuy) { xtick ytick } 2

{ Cuy) { xtick ytick } "“x-label® "y-label" %}
{ Couy) ticks }

{ Cuy) ticks "x-label" “y-label" 1}

LA sets the spacing between tick marks. It takes a single argument
of the form { xtick ytick } or ticks. The complex number (x; yJ is the
point where the axes intersect. " x-label" and "y-label" are strings that
replace the default axis labels when [I{iBll is executed. xtick and ytick
can be real numbers (to describe the tick spacing in user units) or bi-
nary integers (to describe the tick spacing in pixels). One number, icks,
can be used instead of { xrick ytick } if xtick and yrick are identical.

The inverse function for both AXES and ATICK is: « PPAR 5 GET =

116 5: GRrAPHICS Basics

B and are the only programmable “ZOOM” commands in
the 48. Both Il and leave PICT unchanged, but they multi-
ply the height or width by a real-number argument. An argument
greater than 1 “zooms out,” showing more range with less detail; an
argument less than 1 “zooms in,” showing less range but more detail.

Be careful with Il and BIEf¥l! Because PICT remains unchanged,
it’s possible to get plots with different scales superimposed on each oth-
er. For example, here’s what happens when JE¥l is used carelessly:

« ERRSE

'Y=SINCK) ' STEQ
RAD DRAW 2 =W DRAW
2 *W DRAW

»

So to avoid serious trouble, it’s a good idea to always follow a IEEIIl or

EEYH command with [{TET.

ITEH sets the resolution of the plot, according to the real or binary
number given as an argument. Ifthe argument is real, [I1% will cal-
culate and plot a function value at intervals of that many user units.
If the argument is a binary integer, [IFiI%] will calculate and plot the
function value at intervals of that many pixel columns in a FUNCTIOMN
plot. An argument of @ or # Bd resets the resolution to the default—
every single pixel column.

The inverse of [T would be: ¢« PPAR 4 GET =

The PLOT Menu 117

Finally, there’s the [d%ilcll menu:

CRHES [CHCT | ZIMUL | | PLOT

This menu controls the value of 3 system flags related to plotting. The
menu keys toggle the flag values (default states for the flags are clear).

Flag -28 is the “sequential plot” flag. When it’s clear (EI&EI), multiple
functions in EQ are plotted sequentially, one after the other. When it’s
set (EIEITE)), the multiple functions are plotted simultaneously. This
is more a matter of aesthetics than processor speed, but you may have
memory problems trying to plot too many functions simultaneously .

Flag -29 is the “draw axes” flag. When it’s clear (3] on the menu),
axes are added to a plot made from the PLOT input form. When it’s set
(EE3), axes are not added. This flag doesn’t affect plots made from
the menu; you still have to use [T for these.

Flag -31 is the “connect-the-dots” flag. When it’s set (IIDLN), the 48
will connect each consecutive pair of plotted points with a line. When
it'’s clear ((i[dl), the 48 only plots the points it calculates. Using
HAEH and flag -31 together can save you a lot of computation time.

Here is a program to imitate these keys:

« flag DUP IF FSY THEN CF ELSE SF END =»

You canalsoset/clear/check these flagsinthe Browser
or PLOT OPTIOMS input form.*

*T'o make your life easier, the [EFT3, and HIE[M keys are typing aids: Pressing(@&g)and one
of these keys sets that flag; pressing () and the key clears the flag—works even in program entry.

118 5: GRapHICS Basics

The FrRHEAT Menu

Behind the key are four menus useful for doing graphics work: the

[GROE N PICT R menus. The menu contains pro-

grammable functions for manipulating grobs on the Stack:

#GROJELAM | GOFR|SHOF | SUE | KEPL
(FLED L0 | ZIZE [ANIM

All of the grob-building methods mentioned earlier (page 95) are pro-
grammable. Three of these live in the PRGHIEATA menu:

takes the object in Stack Level 2 and turns it into a grob, using
the font size specified in Level 1. The font size specifieris a real number
between 0 and 3 and is interpreted as follows:

font size grob’s character height (in pixels)
3 10
2 8
1 6 (characters are all uppercase)
0 10 (for text and numbers), or

EW (for algebraics and unit objects)

Try one: Retrieve the TVoll algebraic from your G.CH3 directory, then
press 8 PRGIEAEEIAT] You'll briefly see the EquationWriter view
of TYolM before a long grob is returned to Stack Level 1.

creates a blank grob from width and height argumentsin Levels
2 and 1.

takes a “snapshot” of the current display and stores it as a grob
on the Stack ((STO)does this for the EW and the graphics environment).

The PraHERT Menu 119

Four extremely useful commands allow you to store part of an image
as a grob, and to superimpose a small grob on a larger one:

BEA lets you extract part of a grob (just as you extract part of a list
or string object). When used with a grob, [E[3ll takes the grob or PICT
from Level 3, and the upper-left and lower-right corners of the area to
be SUB’bed from Stack Levels 2 and 1, respectively.

Try extracting part of the SINE grob: Move to the PICS directory. Press

VARELTA{ # 56d # 18d Y@= { # 85d # 40d } FroEAA
IR You get a 36x23 grob. Press &)Ur)(VAR) BT to view it.

The commands I (“Grob OR”), A (“Grob XOR”) and
(“REPLace”) let you superimpose one grob upon another. These com-
mands all take the same arguments—the target grob (or PICT), the
location, and the grob to be added. The location (Level 2) specifies the

spot on the target grob (Level 3) where the upper-left corner of the grob
to be added (Level 1) will go.

Both GOR and GXOR give a kind of transparency effect thanks to the
Booleanlogic. GOR will superimpose the pixels of the two grobs in such
a way that if at least one of the pair of corresponding pixels is “on” then
the pixel in the resulting grob is “on.” GXOR, on the other hand, will
superimpose the pixels so that exactly one of the corresponding pair
must be “on”in order to turn “on” the pixel in the resulting grob. GXOR,
in particular, is useful for manipulating cursors and other kinds of
objects that need to alwaysbe visible within the background—whether
it be dark on light or light on dark.

120 5: GRrapHICS Basics

T3 and work here much as they work within the PICTURE
EDIT environment. Recall that the interactive menu also includes a
HT38 command, to delete or blank out part of a grob, but this isn’t in
the m menu. The best you can do is to create a grob of the
right size, using[IEiill, then [I3dM it onto PICT or the grob.

ismore of a command than a PRGHERTA command.
replaces the stack display with a grob taken from Level 1. You
played with this while “Grobbing Around” in Chapter 1.

IEE takes a grob from Level 1 and returns two binary integers repre-
senting the width (or number of pixel columns) and height (or number
of pixel rows) of the grob.

ELTEN (ANIMATE) is a fun one. For arguments, it takes a real number
on Level 1, and that number of grobs in the Levels immediately above
it. ANIMATE cycles through the series of grobs, starting at the highest
one and rolling the stack to display the next one, etc., pasting them in

the upper-left corner of PICT and displaying the result (an endless loop
of PICT { # 6d # 8d } grobREPL).

Try it. Put this onto the Stack:
GROB 4 1 1 GROB 4 1 2 GROB 4 1 4 GROB 4 1 8 ¢

Now press EIZIIEN.... You'll see whatever was in PICT before (probably
a piece of SINE), plus a little scrolling light in the upper-left corner.
Press to stop the show.

Notice: the Stack is unchanged (grobs in their original order); you can
restart just by pressing EIMIIEl again.

The FReHETT Menu 121

Instead of a real number, ANIMATE can use a list argument of the form:
{ ngrobs { % xpixel # y-pixel } duration cycles 1}

ngrobs and cycles are the number of grobs to be used and the number of
times the animation should run. If cycles is zero , the show will cycle un-
til ispressed. # x-pixeland# y-pixel arebinaryintegers specify-
ing the location inside PICT where the upper-left corner of the grobs
should be pasted. Duration is the interval (in seconds) for each frame.

The single real-number argument you used earlier was equivalent to
{ ngrobs { # 8d # 8d } .1 B }. Nowtryalist argument: Instead
ofatinLevel 1,usethelist{ 4 { # 48d # 26d } .2 18 1I}...

On machines with black LCD pixels, duration values faster than the
default 0.1 (1/10 second) may cause the grobs to cycle too fast to be seen
(the black crystals are too slow to keep up). If this is the case, then
adjust the duration parameter to slow down the animation. Machines
with blue LCD pixels (Version K) shouldn’t have the problem.

ANIMATE can produce some very entertaining effects, but it’s also very
useful in showing 4-dimensional functions—and in viewing 3-D plots
from various viewpoints without having to re-draw them every time.
Subsequent chapters will show how to use it effectively. ANIMATE (and
the other 3-D tools suite) is based on the work of some real giants in the
HP 48 programming world.

*Some early editions of the User’s Guide contain an erroneous description of the list. If you follow
the directions in the UG, page 9-10, you may get an ANIMATE ERROR: Wrong Argument Count
message. If so, after reading this explanation, take a permanent ink pen and enter the correct
version of the list in the UG.

122 5: GRrAPHICS Basics

The FPRGHIZEE Menu

The (PRGHIAIMM menu contains programmable graphics functions for
modifying PICT:

PO [LIME [TLIME] EOY | ARC
PION]PIZOF] Pl [PYIER] PR+

is a typing aid (but unfortunately, you cannot use (&) or () to
easily store or recall the contents of PICT).

&N is a powerful command that allows you to re-dimension PICT. It
can affect PICT and PPAR in different ways—best explained on pages
24-3 to 24-6 of the User’s Guide.

The commands BOX, LINE and TLINE require two arguments for end-
points or diagonal corners. Results areidentical to those achieved with
the IEH, INCTA and in the interactive graphics environment.
You can express the points either in user units—via complex numbers:
(-1.35, 28.6)—as a CAD system does; or as decimal integers repre-
senting the pixel column androw: { # 31d # 35d . Ineither case,
the first term represents the x-axis and the second term the y-axis. The
top left pixel of a grobis always{ # Bd # 6d 3.

The commands and allow you to convert between the

two, according to the current values of PPAR. Remember that each di-
rectory will have its own PPAR and its own unique user units.

The FroHIHEE Menu 123

The interactive graphics environment has a operation but no
IEA3; here you have an [IETI8l but no (a circle is a 360° arc).
IETTl takes four arguments. The first two are the center of rotation
(in Stack Level 4) and the radius of the arc (Level 3). The units (user
vs. pixel) for these arguments must match (a radius’ user units are x-
axis units only; you can’t get an ellipse). The last two arguments are
the starting angle (Level 2) and the ending angle (Level 1). Angles are

measured conventionally: 90° (1/2)
o 0° or 360°
180° () \/ (0 or 21)
270° (3n/2)

In the interactive graphics environment, [TIlEl and determine
whether a pixel will be turned on or off as the cursor lands on it. Press-
ing one key cancels the other; pressing the same key twice leaves the
pixelsuntouched as the cursor moves around. In programs, use PIXON
and PIXOFF to do this. They operate on the pixel located at the coordin-
ates givenin Level 1. The pixel may be expressed as a complex number
in user units, or as a list of two binary integers. To test individual
pixels, use the IIHEEM command (returns 1 if the pixel is on; 8 if it’s off).

And this tool, TPIX (Checksum: # 29273d Bytes: 38.5), togglesany

given pixel: « DUP IF PIXT THEN PIKOFF
ELSE PIKON END =

You already know about GI[A®]. It appears in both the PRGHIEHE
menu and the (PRGHE!I'!IIl menu. Speaking of which,...

124 5: GrapHICS Basics

The ml'ﬂ Menu
PUIEK| TERT [CLLCD| 0IZP [FREE2[M:SE |

The first page of this menu contains commands that control the dis-
play. You already know about [I[3%] (recall page 106).

simply restores the normal stack display.

simply clears the display. Usually the 48 does it automatically,
but sometimes—as with [lIE@—you must do it yourself.

Use IIE@M to build a text display other than the normal Stack display.
The display is divided into 7 lines. [[IE#M takes the object from Level
2 and displays it in size-2 font (8 pixels high), on the line specified in
Level 1. The uppermost line is numbered 1; the lowest, 7. [lIE#l also
honors NEWLINE’s (@]]+)); grobs can have more than one line of text.

[A3H prevents parts of the display from updating until some key is
pressed. The Level-1 integer indicates which part(s) to freeze:

1 Status area 9 Menu & Status area
¢ Stack & Command Line 6 Menu & Stack/

3 Status & Stack/Command Line Command Line

4 Menu ¢ Entire display

EEHI (MSGBOX) takes a string from Level 1 and displays it in a mes-
sage box—Ilike the kind you get when you press (=]PLOT]] Z]ENTER),
except for the little “alert” sign that the built-in applications use.
MSGBOX will try to parse your string (breaking it only at spaces, if
possible) and will display only the first 75 characters.

The FreH T Menu 125

Other Graphics Commands

You can also add grobs with the (+) key and invert them with the
key or via the NEG command. Use the NEG function to create inverse
video effects in your applications. Use addition to combine small grobs
quickly or “stamp” frames and legends onto common-sized grobs.

For two grobs of exactly the same size, addition goes pixel-by-pixel,

equivalentto: ¢« grobl { # 8d # Bd } arobZ GOR *

Inverting a grob inverts all the pixels, turning the black ones white and
the white ones black. Just for fun, put the SINE grob onto the Stack.
Then PICT and press (4 to see your creation....

Grobs with row sizes that aren’t multiples of 8 are inverted only inso-
far as their bits actually represent pixels. Thus, GROB 2 2 8660 in-
verted becomesGROB 2 2 3838. The 3’s represent the displayed pixel
pairs, but the B’s are placeholders—bits that don’t represent pixels.

AndNEG and (¥ together do a GAND (“Grob AND”), a function HP seems
to have omitted. Here’s GAMD (Checksum: # 61392d Bytes: 31):*
« NEG SWAP MEG + MEG =»

Store this into your TOOLS directory. Then try it out, using GROB 2 2
38008 and GROB 2 2 18618. Result: GROB 2 2 1660

*If the grobs are not of the same size, use this version of GAND (Checksum: # 68472d Bytes: 36),
which takes the same arguments as GOR, GXOR and REPL:

« NEG ROT NEG ROT ROT GOR NEG »

126 5: GrapHICS Basics

Building a Toolbox

With all of its capabilities, the 48 is still missing some useful com-
mands. Such commands are called utilities, and now you’re going to
create them yourself—along with some “standard” grobs for use in
testing/troubleshooting programs. You've already created the SEE
utility (in your TOOLS directory), to “view” a grob on the Stack. Also,
you have TPIK to toggle pixels, GAND for Boolean addition, and GSIZE
and $SIZE for memory management.

How about a pair of utilities to store/recall grobs from/to the graphics
display? Suppose you create a gorgeous picture—how do you save it?
Exit to the Stack display, putthe name ' GORGEOUS' on Level 1,and use
a program, named STOPIC (Checksum: # 49324d Bytes: 36.5):

« PICT RCL SWAP STO

»

The grob goes onto the Stack and is then SWAP’ped to bring the name
to Level 1. Then the grob is stored and the Stack is left as before. Put
STOPIC into your TOOLS directory.

RCLPIC does the opposite, taking an object name from Stack Level 1
and (only if it’s a grob) storing it into the graphics display. AsRCLPIC
avoids using GRAPH and PYIEW, it’s very general and programmable:

« DUP RCLPIC (Checksum: # 12851d

%EE# TEEE Ilj%c-ls Hg%ﬂ Bytes: 98.3) chastises you if the

ELSE -+STR named object isn’t a grob. Store it
" not a GROB!" alongside STOPIC, in your TOOLS
END+ DOERR directory.

Building a Toolbox 127

Now you need to create three empty grobs (change to the PICS directory
now, to store them there). Create a 200x200 grob called BIG; a 131x64
grob called NORMAL; and a 2x2 grob called TINY, as follows:*

For each grob, put the number of columns (# 288d, # 131d or # 2d) onto
Stack Level 2; the number of rows (# 288d, # 64d or # 2d) onto Level
1, and select from the (PRGHEHATA menu. Then type the name
('BIG', "NORMAL' or ' TINY')into the Command Line and press (ST0).

Next, create two non-empty grobs: First, load the Stack with any four
objects, then store the Stack display as a grob, by pressing (PRG)IHATA
'DISPLAY' s10)

Second, type GROB 5 8 4B4BEBEBF1F148408 EnTer) 'ARROW' (5T0), to

build and store an “arrowhead” grob.

With these 5 good grobs to work with, switch to the TOOLS directory to
create a custom menu. This custom menu is defined in a list inside a
program (feel free to modify the list to serve your own needs):

&

{ PICS PICT BLANK ERASE =»LCD LCD+» -+GROB SEE
) STOPIC RCLPIC
MENU

»

Store this menu-building program called GRAFX (Checksum: # 41596d
Bytes: r9)in your TOOLS directory.

*Ifyou’re working on an HP 48G (not GX), your machine’s memory is undoubtedly getting crowded.
Now is a good time to back up the directories on your 48, and then delete anything you won’t need
immediately, like the G.CHZ and G.CH3 directories. You may also wish to omit the 200200 grobs
in these lessons, if they won’t fit into your machine.

128 5: GRAPHICS Basics

Sines and Big Sines

In Chapter 4, you used a sine wave to illustrate some of the graphics
capabilities of the 48. Go back now and repeat the exercise on page 90
(don’t forget to use RADians mode).... Then store this plot in a grob
called SINE (type ([CanceL cancey) I ' SINE' STOPIC).

Now create a sine wave plot using the BIG grob: Make sure you're in
thePICS directory. Putthe name 'BIG' onLevel 1and executeRCLPIC.
Press ([©JPLOT), and be sure the current equation is ' Y=SIN(X)'. Then
set H=VIEW to =18 and 18 and V-VIEW to=1.1 and 1.1 (do not select
AUTOSCALE—that would reset XRNG and YRNG). Now press T3
[TTT¥] to draw the plot... (cookie time).

When the plot finishes, press IHTIENxT) RN to add the finishing
touches, and then have a look at this monster. With the PICTURE
menu displayed, the arrow keys have the following functions:

1. Unshifted arrow keys move the cursor within the display “win-
dow.” At the edge of the window, they scroll the display across
the grob—to its actual edge.

2. (Jed arrow keys jump the cursor to the edge of the window. At
the edge of the window, (@fed arrow keys jump the cursor and
display to the edge of the grob.

3. (§]4)puts you in scrolling mode. Think of scrolling as viewing a
large picture through a small window or frame: You don’t move
the picture, you move the window.

Building a ToolBox 129

Press (&)< now, to get into scrolling mode. In scrolling mode, no cursor
is visible, and the arrow keys have the following functions:

1. Unshifted arrow keys scroll the display across the grob.
2. (PJed arrow keys jump the display to the edge of the grob.

3. (]« returns you to the interactive graphics environment.

Press twice to return to the Stack display. Then, in the PIC%
directory, enterthename 'BIGSINE' onto Level 1 and execute STOPIC.

Now you can review both SINE and BIGSINE any time you want—and
you can also practice with other graphics functions on these grobs.

130 5: GrAaPHICS Basics

Review

In this chapter, you explored the graphics commands in several of the

48’s built-in menus. Then you began to augment those commands with

your own graphics “toolbox”—a collection of programs and sample

grobs useful in your own graphics development work.

At this point, then, you should have these programs in TOOLS:

GRAF K
RCLPIC
STOPIC
GAND
TPIR
$SIZE
GSIZE
SEE

builds a custom menu to make graphics work easier.
recalls a grob to the graphics display.

stores the graphics display in a grob.

does a pixel-by-pixel “AND” of two grobs.

toggles individual pixels on and off.

finds the byte-size of a grob’s string representation.
finds the size of a grob, in bytes.

graphically displays the contents of a grob.

And you should have these grobs in PIC%:

BIGSINE
ARROW
DISPLAY
TINY
NORMAL
BIG
EMPTY
SINE

Review

a 200x200 sine-wave plot, with axes

a 5x8 arrowhead

a 64x131 “snapshot” of the Stack display
a blank 2x2 grob

a blank 64x131 grob

a blank 200x200 grob

a blank 64x131 grob

a 64x131 sine-wave plot, with axes

131

6: THREE-DIMENSIONAL (GRAPHICS

The Basics

“See severed heads that almost fall right in your lap! See that
bloody hatchet coming right at you!”

— Weird Al Yankovic, commenting on 3D as an
entertainment medium.

Unbeknownst to Weird Al, some more constructive uses for three-
dimensional graphics were presented at HP user’s groups over the past
several years. They were marvelous application examples—and great
algorithms for the HP 48S/SX. Then a math professor developed and
placed into the public domain a set of 3-D plotting utilities he called
“SUITE3D,” which received such a positive response from the HP48
user’s community that HP adapted it for inclusion in the HP48G/GX.

Although the 3-D tools in the HP 48G/GX don’t pretend to be as good
as those in expensive CAD packages, they are indeed useful at least for
“visualizing functions of two variables,” if not for analyzing them (and
HP included some rudimentary 3-D analysis tools anyway.)

The best introduction to the 3-D plotting tools is in the section called
“Plotting Functions in Three Dimensions” in the Quick Start Guide
(QSG) that came with your machine. More detail is given in chapter
23 of the User’s Guide (UG), “Plot Types,” starting with the section
called “Plotting Functions of Two Variables,” on page 23-22.

Ifyou haven’t yet read those sections, then nowisa good time to set this

book down, get a handful of cookies and work through those sections
of the QSG and the UG....

The Basics 133

On page 6-7 of the QSG are two diagrams explaining the concepts of
view volume, view plane, and eyepoint. The more clearly you under-
stand these concepts, the better you can use the 3-D tools on the 48.

Imagine looking though the window of a pet store at some puppies in
a playpen inside the store. They can’t escape the playpen; it limits the
area in which you can view them. The view volume in 3-D plotting is
like the playpen: the display of the function is confined within it.

The diagrams in the QSG shows the orientation of the x-, y- and z- axes
as they relate to these concepts:

¢ The “floor of the pet shop” is the x-y plane; the z-axis is vertical.

¢ The shop window—between you and the puppies—is parallel to
the x-z plane. This is the view plane.

* You are standing along the negative y-axis, some distance from
the window. That vantage point is your eyepoint.

The 48 imposes two restraints on the plotting tools:

* Your eyepoint must stay at least one unit away from the view
plane—on the outside only. You can’t mash your nose against the
glass to get a better view, nor can you go into the store to get a
better look, nor can the puppies’ playpen be wheeled outside.*

¢ Theview plane must stay parallel to the x-z plane. You can’t twist
or bend or lever open the store window.

*You can get around these restraints by use of some mathematical sleight-of-hand, such as scaling
and rotating functions. We'll talk about rotating a plot in the following pages.

134 6: THREE-DIMENSIONAL GRAPHICS

The 48 gives you six different tools tousein 3-D analysis, in the
(a3 30 [PTPERISYOR =L OPE [IKEF[YSLIC|PCON | GRID [PiF: LRGN
compare these, you need a function that can be displayed well in each
of the six tools. Use the application or the (&)PLoTNxT) IET
menus to set up these parameters, which are stored in VPAR (to be
discussed next):

EQ: 'SINCRI*SINCY>! < RAD

INDEP: X STEPS: 18

DEPND: Y $TEPS: 8

woL: —-3.2 3.2 yyoL: -3.2 3.2 2voL: -1 1
HRHG: —3.2 3.2 YRNG: -3.2 3.2

RE: 4 YE: —18 2E: 8

(To set this from the PLOT input form: PICT G)Pure)([=)PLoT)SIN 2)X)
PXENV)ENTERGRAD A]a)EITHEI WENTER (VV)) (1 0)ENTERI)
B F/-IENTeR) 3 2JeNTer) B N2+~ ENTer) 3 2)
ENTER)(1)*+/=)ENTER) (1 JENTER) (4JENTER) (1) 0] +/=JENTER 8 JENTER) I .

[MIA33, or WIREFRAME, is the most commonly recognized form of 3-D
plotting. As the name implies, a wireframe plot is an array of points
in space, connected by line segments parallel to the x-z and y-z planes.

Here is a wireframe plot of ' SIN(K)*SINCY)' (press HEHEIMEED:

-l.lﬁl". .'."'a
"%ﬁ

The Basics 135

NI (PCONTOUR) creates a pseudo-contour plot: an array of points
on the x-y plane, with a short line segment drawn through each point,
showing the direction a contour line (a curve of constant z-value, or
“altitude”) would have at that point. Here’sthe same ' SINCR)*SIN(Y)
in a pseudo-contour plot (press [GIXMHN, (a) to TYPE: field, then [MiI'H
and (v) to Ps—Cont our, enTer) ERHIMTEIED:

e e
b —
VS — L

??:TaJTZTn
VA —) a—]

This plot is not very easy to decipher; the point spacing is too coarse.
Try increasing the ¥ steps from 18 to28, and the ¥ stepsfrom8to 1 &
(press UUCBOEIE) Q@O ENEIERAZE| DRAk)2

A T s e — e
STy T A=Y
GE=aiEEn
Ny o S [| N, g, S

e

TSI e
I ey, S, o L P — ey, S
(L | ({1550

S S v — e)

Moy e e e e 2 e e e e T

In both plots, you can see the maxima (peaks) in the upper-right and
lower-left quadrants, and the minima (valleys) in the upper left and
lower-right quadrants. Often, you can take a printout of a pseudo-con-
tour plot and use a pen to connect the lines to generate the contours (or,
use the CONTOUR program in Chapter 9 to draw real contours).

136 6: THREE-DIMENSIONAL GRAPHICS

(YSLICE) is yet another view of the function. A y-slice plotisa
series of two-dimensional plots, generated as a function of ¥, with Y
held constant for each slice—as if you took the wire-frame plot and cut
it into slices. YSLICE uses the ANIMATE routine to demonstrate dy-
namically how the function varies with Y. It leaves a counter and a pile
of grobs on the stack. Press [Wili[4l, (a) to TYPE: field, i1 (a]Y)ENTER)

¥)>))o)ENTER)(>)(8JENTER) [(TEIITAIR. . . (CANCEL to stop. (Note: the
MULTIPLOT program in Chapter 9 offers an alternative to YSLICE.)

\f‘\

At first, a (SLOPEFIELD) plot resembles a pseudo-contour plot
(choose the Slopefield type plot, then HTHT and [ETED:

. ™ ™, " e e ™ ™ _ el s

e e s ™ e ™ s ™ e, sl ™ sl ™ el ™
— e T P, e, O e, "

— ™ _ ™ s, s ", | ™ e

Like PCONTOUR, SLOPEFIELD produces an array of points on the x-y
plane, with a line segment through each point. But here the slope of
the line segment indicates the value (“altitude”) of the function at that
point. Compare the two plot types: The high points on the wireframe
correspond to the steep lines on the slopefield; the middle, zero-value
points on the wireframe correspond to the level lines on the slopefield.

The Basics 137

The last two plot types, IHAIM (GRIDMAP) and [EE (PARSURFACE)
are better left to people who understand the math behind them.
Now, about VPAR: VPAR (short for View PARameters) is the reserved
name of the list containing all the information necessary for 3-D plot-
ting. (Depending on the plot type and the parameter settings in VPAR,
the 48 may also adjust some PPAR parameters such as Xrange and
Yrange.) VPAR is a list of 15 real numbers:

{

Xup Xigie e Vor Ziow Zhigh up Frign Wip W %o Yo 2, 1, 1, 3
All of the VPAR parameters may be set manually from the
BEI I menu commands (even within a program) or the PLOT
and PLOT OPTIOMS input forms. Any given parameter may also be set
via the command sequence € .. YPAR » ROT PUT .. * (wherenis
the position in the VPAR list of that parameter). Similarly, you can
retrieve any parameter or parameters via¥ .. YPAR » GET .. ® or

€ .. VPAR n, n, SUB EVAL .. ».

The first three pairs of numbers in VPAR define the view volume (and
in the VPAR menu or in a program, you do enter them as pairs of real
numbers: =1 1 YVOL, for example). Note that Y ear <V @lWays. Note
also that only WIREFRAME, YSLICE and PARSURFACE use z,, and
Zygs PCONTOUR, SLOPEFIELD and GRIDMAP ignore them.

Here’s how to enter the values from a program or the VPAR menu.

Xp X oWOL y

YWOL 2, z,, ZVOL

y far

To retrieve their values: YPAR 1 2 SUB EVAL for X and X, o
YPAR 3 4 SUB EVAL fory, andy,
VPAR 5 6 SUB EVAL forz, and:,,

138 6: THREE-DIMENSIONAL GRAPHICS

The next two pairs of numbers define the range for the input sampling
grid used by GRIDMAP and PARSURFACE (the other plot types ignore
these or set them to the corresponding values in the view volume).

To enter the values from a program or the VPAR menu:

xx,, 16, RSRNG yy., vy, YYRNG

left

To retrieve their values: YPAR 7 8 SUB EVAL for xx,, and xx_
VPAR 9 18 SUB EVAL for yy,, and yy

right

The next three values, x,, y, and z,, define the eyepoint. Only the
WIREFRAME and PARSURFACE plots care about the eyepoint, which
you enter as three real numbers, like this: x, y, z, EYEPT

To retrieve the eyepoint coordinates: YPAR 11 13 SUB EVAL

Remember that y, must always be at least one “unit” lessthany _,the
lesser y-coordinate of the view volume. If, for example, you try to set
y, to —4.8andy_ is —3. 2, the 48 will reset y, to -4.2.

The final two parameters, n and n , specify how many points will be cal-
culated in each direction. YSLICE appears to ignore the n parameter
(the other plot types use it), but all plot types need n_.

To enter the values from a program or the VPAR menu:

n, NUMK »n NUNY

To retrieve their values: YPAR 14 GET for n,
VPAR 13 GET forn

The Basics 139

Getting the Most Out of Wireframe Plots

Every kind of 3-D plot is useful, but most persons use a WIREFRAME
plot most often. This section will introduce some tools that help you
utilize the WIREFRAME plotting tool more effectively.

Choosing an Eyepoint

The 48 automatically adjusts the plotting limits so that, no matter
what eyepoint is selected, the view volume is centered in the display.
The tricky part is selecting an eyepoint that gives an informative view
of the plot. For example, here are 4 different views of SIN(K)+SINCY):

For most functions, the optimum eyepoint is at least one view-volume
away from the function (that’s y). Height and vertical placement are
more subjective, but it’s usually good to place the eyepoint one view-
volume above the function (that’s z), and slightly shifted to one side or
the other (that’s x)—to visually disrupt any symmetry in the function.

140 6: THREE-DIMENSIONAL GRAPHICS

Rotating the View

It would be nice if you could see the function you’re plotting from back
angles as well as from the front. Unfortunately, you can’t get past the
view window (and neither can the view volume). To get around the
problem, rotate the function itself—recast x and y into something use-
ful in the new coordinate system. A complete rotation involves a lot of
vector arithmetic and can easily double the time to generate a single
plot (to say nothing of a series of them), but you can rotate around the
z-axis, so that only x and y need to be modified. Examine this figure:

'

y (x.y)
(XY
o <— s length = ABS((x,,y,))
N\
©0,0) \"1 angle = ARG((x,,,))
AR X

Suppose you have a vector, x;+y, i, and you want to rotate it B°in the x-y
plane, around the point (B, 8). Expressed as a complex number in pol-
ar form, the vector is (ry Angle) , where r is the magnitude of the vector
(ABS((KB, YB)) on the 48). Angle is the polar angle from the positive
x-axis to the vector (ARGC (KB, YB)) on the 48). To rotate the vector, you
multiply the complex number by the unit vector (1, 8). The result:*

in polar coordinates: (ABS((KA, YB)), ARGC(K\, Y8))+B)

inrectangular coordinates: (ABS((X8, Y8)*COSCARG((KB, Y8))+8),
ABSC (KB, YB))=SINCARG((X8, YB))+8))

*Note that when B=0, this general form reduces to (X8, Y8).

Rotating the View 141

To make this all convenient, you can create a program called ROKY
(“ROtate in ¥ and Y”) that will convert any algebraic expression in x and
y into one that can be rotated as described. The program uses a global
variable, B, so that it will work inside the 3-D plotter. It takes a sym-
bolic object (a function of ¥ and Y) from Level 1 and returns the trans-
formed version. (This formula uses ¥ and Y instead of K8 and Y8.)

RU}i\" (Checksum: # 42966d Bytes: 195.5)
{ ¥ ¥ TMATCH OROP
Y TCH DROP
(R, Y))*COSCARGC(K, Y))+8)' } TMATCH DROP
(H Y) RGC(K, ¥Y))+B)' X TMATCH DROP

Tryit: Create the hyperboloid 'K#Y' and store it in your TOOLS direct-
ory as 'HYP'. Then press 'HYP' to put '®*Y' onto the Stack.
Now press (VAR ITEHH to get:

'ABSC (K, Y))*COSCARGC (K, Y))+8)
*(ABSC (X, Y I*SINCARGC(R, Y¥))+82)!

You can then store this ROKY’ed form of HYP into EQ and use it with a
program like this (be sure to set DEGrees mode and | IREFRAME plot
type before you start):

TRYIT (Checksum: # 46869d Bytes: 228.9)
« %%3811 # 6d > PVIEW

FOR t

'8' STO ERASE_DRAW PICT RCL
STE{F' 1d # 1d > t 1 »GROB REPL 38
{12 { # 6d # 6d } .2 188 } ANIMATE

»
Approximate running time: 12:23 to create 12 frames of HYP.

142 6: THREE-DIMENSIONAL GRAPHICS

You can use ROKY with any function f{x,y), but it’s a good idea first to
name the non-transformed version of your function and use it to set up
VPAR. When you'’ve positioned VPAR correctly, then you can use RORY
to put a transformed version of the function on the Stack, store it into
EQ, and run TRYIT.

If you want to try your hand at rotations in other planes or around oth-
er axes, you’ll need to do some reading on coordinate transformations.
You can find some good work on coordinate transformations in HP48
Insights, by William C. Wickes, or in the HP42S Owner’s Manual
from Hewlett-Packard. Both books are available from EduCalc Mail
Store (1-800-677-7001).

Rotating the View 143

Translating

On a related subject, here’s how to translate a function. The routine
TRKY uses the global variables X and &Y to define the transformed
function.

TRKY (Checksum: # 43468d Bytes: 62.9)
&«

{ k '"B-=x'} TMATCH DROP
{Y 'Y-oY' 3 TMATCH DROP

»

Try it: Since HYP isn’t a good sample function for this program, create
'SINCKI+SINCY) ' and store it (in TOOLS) as 'EGGS'. Then recall
'"EGGS' to the Stack and run TRKY on it. Store the resulting equation
into EQ (not into 'EGGS'), and turn on RADians mode. Then store
H. 7854 (that’s n/4) into ¥; and 1.571 (that’s n/2) into &Y.

Now enter and execute the following program (Checksum: # 1324d
Bytes: 234.9). Be sure you set RADians mode before you start.

«

{ # 6d # 6d ¥ PVIEW B8 7

FOR dw dw
't-4' »NUM *= DUP 'aX' STO 2 -~ 'aY' STO
ERASE DRAW PICT RCL € # 1d # 1d X
d¢ 1 »GROB REPL

NE&T
{8 { #6d#6d 3 .2 188 } ANIMATE

4

Approximate running time: 5:08 to create 8 frames of EGGS.

144 6: THREE-DIMENSIONAL GRAPHICS

Zooming and Panning

The 3-D plotting routines built into the HP48G/GX are written to take
fullest advantage of the 48’s small display. This means that the rou-
tines will distort the view as required to fill the display, even if the
eyepoint is miles away from the view volume—as if there were a huge
telescopic lens at the eyepoint, always trained on the view volume.

You can see this by plotting the EGGS function repeatedly, varying the
XVOL, YVOL and ZVOL parameters. You’ll notice that the plot always
extends from the left edge of the display to the right edge. Strangely
enough, the z-axis is not automatically scaled; it’s possible to adjust
ZVOL so that your plot either becomes very flat, or extends beyond the
top and bottom edges of the display:

£ ,-"T_L"(""_‘é\

Zooming and Panning 145

Even with this distortion, it is useful to look at a function from several
different angles and distances. Here are three programs that create
series of plots while varying the three components of the eyepoint. The
running times indicated are for the following plot setup:

TYPE: Wireframe

ER: 'B' (thisis a flat plane)

INDEP: X S$TEPS: 3

DEPND: Y STEPS: 3

wyoL: -1 1 wyyoL: -1 1 2voe: -1 1
RE: 1 YE: —3 2E: 2

This first program varies x,, the x-component of the eyepoint. In movie
parlance, this is called “panning,” so the program is called XPAN. The
program takes three arguments from the Stack: beginning x, ending
x,,and x,increment. It leaves a stack of grobs and an ANIMATE counter.

#PAN (Checksum: # £8913d Bytes: 168)
&

+ Rinc
&

OR
'"WPAR' 11 % PUT ERASE DRAW
PICT RCL { # 1d # 1d 2
CVPAR_11 13 SUB 1 »GROB REPL
winc STEP

»
DEPTH ANIMATE

»

Tryitnow: typel -3 2 EYEPT -8 8 1 XPAN.... It will take a little

over 2 minutes to create 17 grobs.

146 6: THREE-DIMENSIONAL GRAPHICS

YPAN does the same thing with y,, the y-component of the eyepoint. It
takes three arguments: beginning y , ending y, and y, increment.

YPAN (Checksum: # 24445d Bytes: 168)
&

+ yinc
&

OR
'U%HR' 12 4y PUT ERASE DRAW
PICT RCL £ # 1d # 1d I}
CVPAR 11 13 SUB 1 »GROB REPL
yinc STEP

»
DEPTH ANIMATE

»

Try it now: typel -3 2 EYEPT -3 -19 -1 YPAN....

This third program, ZPAN, varies z, the vertical component of the eye-
point, using three z, arguments in the same manner as XPAN and YPAN.

ZPAN (Checksum: # 13781d Bytes: 135.9)
&

+ zZinc
&

OR z
'VPAR' 13 y PUT ERASE DRAW
PICT RCL € # 1d # 1d 2
CVPAR 11 13 SUB 1 -»GROB REPL
zinc STEP

»
DEPTH ANIMATE

»

Try it now: typel -3 2 EYEPT -8 8 2 ZPAN....

Since the three programs are so similar, you may be able to combine
them into one all-purpose PAN program. Can you?

Zooming and Panning 147

Plotting in Four Dimensions

If you could make the function vary with time as well as with x and y,
then you could create 4-dimensional plots. Good news: You can use
ANIMATE to do just that. Since the 3D plotting tools already work on
functions of ¥ and Y, it is easy to create a function of ¥, ¥ and T. You
simply make T a global variable, create several plots of the function for
different values of T, and use ANIM ATE to review them.

In fact, you can write a program to do the plotting for you automati-
cally. This four-dimensional plotting program, called PL4D, takes three
arguments from the stack: the starting time, ending time and time
increment. Like ®/Y/ZPAN, it uses ANIMATE to display the plots and
leaves them on the stack with the ANIMATE counter.

PL4D (Checksum: # 37239d Bytes: 128):
&

+ tinc
&

t

'T' STO ERASE DRAW
PICT RCL { # 1d # 1d
T 1 _»GROB REPL

tinc STEP

»
DEPTH ANIMATE

As an example, try turning a paraboloid inside out. One expression for
a paraboloid is: z=ax?+ by So create the expression ' A*KR*Z+B*Y*2 '

and store it as BOLOID. Now store the expression 'B.2*T' into 'A';
and the expression 'B.3#*T"' into 'B'. A and B are now functions of T.

148 6: THREE-DIMENSIONAL GRAPHICS

Set up your plotting parameters as follows:

INDEP: ¥ STEPS: 7

DEPMD: ¥ STEPS: 7

¥voL: -1 1 wyeoL: -1 1 2z2voL: -1 1
RE: .8 VYE: -3 2E: 1.5

Now type—4 4 2 PL4D and see what happens....

Here’s another example: Store the expression ' TZ7(R*2+Y*2)' into
EQ. Set up your plotting parameters as follows:

INDEP: A STEPs: 18

DEPMD: Y STEPS: 8

wepL: -1 1 wyyoL: -1 1 2voL: 8 4
wE: 1 YE: =3 2E: 3

Now type: 8 8.8 8.1 PL4D....

Ifyou have already written a consolidated version of 8/Y/ZPAN, you may
want to consider adding PL4D’s capabilities to it. On the other hand,
that may introduce so much programming overhead as to weigh down
the program, making it too big and too slow. That’s your decision.

Plotting in Four Dimensions 149

Extensions and Alternatives to ANIMATE

ANIMATE is one of those “why didn’t I think of that?” routines that was
just begging to be written. The core of the routine could be written as:

&

»

(Of course, this quick version ignores the optional list argument and
omits all type-checking, stack size checking and so on. All that extra
code would naturally be built around the core shown above.)

The input for ANIMATE is simple in its beauty: a stack of grobs and a
counter. This arrangement is important in the several programs you

can create to enhance ANIMATE: PRANIM, SSTEP,BSTEP and COMBINE.

PRANIM allows you to print out the sequence of grobs on an 82240B
infrared printer, or on a PCL- or Epson-compatible printer (if you have
the PCL or Epson graphics print driver installed). It leaves the Stack
unchanged, as long as it’s not interrupted while it’s running.

PRANIM (Checksum: # 63294d Bytes: 49)
&

1 SWAP FOR n
n ROLL PRI NEWT
n

150 6: THREE-DIMENSIONAL GRAPHICS

SSTEP allows you to view one grob at a time, at your own pace. BSTEP
does the same thing, only backwards, by using the ROLL command in-
stead of ROLLD. The Stack is unchanged, except that the grobs may
be out of order from the stepping.

SSTEP (Checksum: # 515d Bytes: 122.95)
&

3>

€
n

FREEZE

BSTEP (Checksum: # 52273d Buytes: 122.5)
&

*n
&«
n ROLLD DUP PICT
{ # 0d # 6d 3 ROT REPL n
{ # 6d # 6d > PVIEW 7 FREEZE

»
»

COMBINE is useful with YSLICE (and marginally so with WIREFRAME)
for creating composite plots by superimposing all the grobs on one an-
other. COMBINE removes the counter and grobs from the Stack, leaving
a single grob on Level 1. HULTIPLOT in Ch. 9 uses the same principle.

COMBIME (Checksum: # 8942d Bytes: 39)
&
1 - 1 SWAP START + MNEXT

»

+LIST turns the arguments for ANIMATE into a list for storage or
transfer; 0BJ* converts the list back into arguments for ANIMATE.

Plotting in Four Dimensions 151

Although ANIMATE is an elegant routine, there are alternatives. One
of these is to combine all frames of the animation into one larger grob,
and use PVIEW to scan to different locations in the grob.

Consider that a full-size grob (131x64) requires 1,098 bytes. If you have
a series of ten grobs, therefore, you will need 10,980 bytes of memory.
If, instead, you paste all ten frames into a tall, skinny 131x640 grob,
you will need 10,890 bytes—not too much different. Butif you paste all
ten frames into a short, wide 1310x64 grob, you will need just 10,506
bytes. If your available memory is getting short, that 476-byte differ-
ence is significant.

To experiment with such an alternative to the ANIMATE tool, here is a
small (119.5-byte) program that will cycle through a short, wide grob
of any size. It doesn’t require a counter like ANIMATE, and it doesn’t
take any input. It assumes that you've already stored the grob into
PICT, and it uses PVIEW to move around and display different parts of
PICT. It moves even faster than top-speed ANIMATE:

L3
B PICT SIZE DROP B-R
FOR Fn
'na524"
THEN
B 'n' STO
END
n B*B # 8d 2 »LIST PVIEW
131 STEP
»

*CautioN: If you try to run ANIMATE after you have turned PICT into a huge, misshapen grob like
the ones used here, it may appear to “hang” with the first frame of the animation displayed and
the “busy” annunciator lit. This has something to do with the oversized grob. To fix the problem,
press (Cancer) 'PICT' @§JPURG) and try ANIMATE again.

152 6: THREE-DIMENSIONAL GRAPHICS

Review

By now you should understand better the concepts of view volume,
eyepoint and view plane. You should know how to manipulate the eye-
point, the plotted function and VPAR to get the best view of your 3D
plots. By combining this knowledge with your knowledge of ANIMATE
and its alternatives, you’ll be able to use the 3-D tools to their fullest.

Although this chapter has concentrated on WIREFRAME plots, the
principles you’ve learned can be applied to other 3D plot applications
as well. Keep in mind that the HP48 never promised to be a handheld
CAD tool or a 3D analytical tool; the applications are meant to help you
“visualize” the relationships between three variables.

Don’t be afraid to experiment. The 3-D plotting tools are perhaps the
most complex tools on the 48, from a user’s point of view, and they will
take some practice before you become adept at using them. Remember
what your band leader said.

Review 153

GrarHICS IMPROVEMENTS

7

Opening Remarks

The PLOT routines give accurate graphical representations of your
functions or statistical data. Still, a plot like the one below doesn’t tell
you much except the shape of the function. For example, you can’t tell
what the 3 roots of the function are—and you may not even recognize
the function.

But the 48 does have a command to give the plot some scale—and then
you can write a program to add text onto the plot anywhere you wish.
You're going to do that here.

Also, you’ll be learning how to use the BOX, LINE, TLINE and CIRCLE
commands to make your plots more informative.

Opening Remarks 155

Labelling the Axes

If you’ve already tried axis labels, you probably got results like these:

-6.28318530718

[200H [[TRACE] FIN | EDIT JCAMEL

The axis label format uses the current numeric display format. So an
x-axis label of 2t might be plotted in the following ways, depending on
your current numeric display format: STD 6.¢83185368718
FIX4 6.2832
SCl1 6.3E6

Here’s a simple exercise to try the different label formats.

1. Type 'SINE' RCLPIC to put your SINE grob into PICT.

2. Press (]9 (or (]PICTURE)).

3. Press K1l H:1398. You should see a picture like the one
above.

4. Press(CANCEL), then [(®JMODES). Change the number format to, say,
Fix 4 or Sci 1. Then repeat steps 1-3 to see how the labels change.

This technique also works with BIGSINE and other oversized plots.

156 7: GrapHIcS IMPROVEMENTS

Adding Text to Graphics

Suppose you have a 200x200 grob with a multifunction plot on it and
you want to include the names of the three functions being plotted.
There isn’t a built- in function for adding that text.

You can use the cursor control keys with and todraw the
individual letters, but that’s tedious—and there’s a better way.

Create a new command (call it GLABEL) that places text into the
graphics display (or into PICT), with the upper left corner of the text
at the coordinates specified. Like most 48 graphics functions, GLABEL
should allow you to specify the coordinates either in user units or in
pixels. Also, you should be able to specify a font size for the text: 1, 2
or 3 will select small, medium or large text; 0 will select either large
text or special formatting (textbook or matrix format), whichever is
applicable. Here’s a Stack diagram for GLABEL:

Stack Inputs Stack Outputs

3¢ Location{ #col #row }or(xy)
2% text string to be placed (None)
1t Textsize®@, 1,2 or3)

And here is GLABEL (Checksum: # 65476d Bytes: 33):

« »GROB PICT
ROT ROT GOR

»

Store a copy of GLABEL in your TOOL$ directory.

Adding Text to Graphics 157

Now make two variations of GLABEL.

Name the first variation GL{ (Checksum: # 668923d Bytes: 115.5):

« »GROB DUPZ PICT

ROT ROT GOR SWAP
DUP TYPE SWAP
IFERR C+PX

THEN

END

0BJ» DROP 4 ROLL
SIZE # 2d + SWAP
DROP + 2 =LIST
IF SWAP 1 SAME
THEN Pk=C

END

GL! puts a label into the graphics
display and then returns the loca-
tion two pixels below the lower left
corner of the grob. This will help
when you want to create blocks of
left-justified text of varying sizes
in your graphics display.

StoreGL! into the TOOL$ directory.

Name the second variation GL* (Checksum: # 57747d Bytes: 172):

158

« »GROB SWAP DUP

TYPE SWAP

IFERR C+PX

THEN

END

ROT DUPZ SIZE NEG
16d + # Bd SWAP
¢ »LIST ROT RDDB
PICT SWAP 4 ROLL
GOR # 2d + # Bd 2
+LIST AODDB

IF SWAP 1 SAME
THEN P+C

END

GL+ puts a label into the graphics
display, and then returns a loca-
tion two pixels to the right of the
upperright corner ofthe grob. This
will help when you want to create
a line of various-sized text in the
graphics display.

StoreGL* into the TOOLF directory.

7: GrapHIcs IMPROVEMENTS

Note that before you can use GL#* you must write the small utility it
uses: ADDB adds two pixel locations as binary integers.

Here are the Stack diagram and program listing for AUDB:

Stack Inputs Stack Outputs

2% locationt # col, # row, 3
1 location{ # col | # row, 3 1t new location
{ #col 1+# col, # row 1+# row, 3

And here is ADDB (Checksum: # 18393d Bytes: 51)—storeitinto
your TOOLS directory:

« 0BJ> DROP ROT
0BJ> DROP ROT
+ ROT ROT +
SWAP 2 sLIST

Adding Text to Graphics 159

Now look at GL+ once again.

Note that it aligns the bottom edges of the text in the graphics display.
Since [, BELIA and align to the top left corner of the grob,
GL+ must compute the location of the bottom edge as if your text were
a 10-pixel high grob. That is, since your text will end up as a grob of
height 6, 8 or 10 pixels, depending on the font you use, to align the text
correctly, GL* must account for those differences in height.

As an illustration, first use GLABEL alone to create a line of text in the
graphics display, using all three fonts. To better see what happens,
incorporate all the commandsinto a program and it from the Stack.

« { # 6Bd # 8d } PVIEW
{ # Bbd # Bd } "TEKTI"
1 GLABEL (for the first line)
{ # 22d # 6d "TEXTZ"
¢ GLABEL (forthe secondline)
{ # D4d # Bd X "TEKT3"
3 GLABEL (for the third line)
PICTURE

»

You'll see three different sizes of text, aligned at the top edges, like this:

TETITERT2 TERT3

But NOBODYWRITES] 5 |, o THIS. It 'STOOL . 14 GREAD.

160 7: GrapHIcS IMPROVEMENTS

The largest text font on the 48 (not counting equations and unit
objects) creates grobs that are 10 pixels high. The command sequence

... SIZE NEG
18d + ..

®

adjusts the placement of text grobs of any size such that all the text
ends up aligned at the bottom edges.

Now, erase the display, and then use GL* to create a line of text like the
one you created above, and see the difference. Again, to see it happen,
put all the commands in a program and it from the Stack.

« { # 6d # Bd ; PVIEW
{_# &d

8d } "TEXTI" 1 GL* (for the first line)
"TEXTZ" 2 GL=» (for the second line)
TEHT3 3 GL+ (for the third line)
PICTURE

®

You’ll get the following effect. Notice how the text is aligned on the
bottom edge:

s TEXT2TERT3

Adding Text to Graphics 161

Now test GLABEL itself:

Move back to PICS. Put BIGSINE into the graphics display (type

'BIGSINE' RCLPIC). Then type &)Pron) IHEIA(6 - 5)*/=JsPC)
BT and (- 3)+/5)Pc) () A to set the correct ranges. Now type
(.55 1) "Sine Wave Plot" (3)enTer)GLABEL (ENTER), and (@) to see your

creation (use the arrow keys to scan around until you see this):

1.10] \'S/ie Wave ?ﬂ\t

0200|343 [TRACE] FCN | EDIT JCANCL]

Nowput{ # 128d # 15d } onto Stack Level 3, your name in quotes
onto Level 2 and the number & onto Level 1. Execute GLABEL, then («).
You should see something similar to this:

1uv5ine Wave Plot
ay Depe
+

200K [843 [TRACE] FEN [EDIT [CANEL

162 7: GrapHICcS IMPROVEMENTS

Now put (8. 35, 8.35) onto Level 3, "August 1, 1998" onto Level 2,
and the number | onto Level 1. Execute GLABEL, then press(4).... You
should see the date in 6-pixel text below your name, like this:*

1u)vSine Wave Plot
ay Depe
+

UGUAT 1. 1990

2000 | (3.3 [TRACE] FCN | EDIT [CANCLY

Save this as BIGSINE (in PICS) again (remember how—page 130?).

Now try this: (G)Pron) ITETAAFE creates a blank 131x64 grob. Then
typeuP){ # 1d # 2d }"Welcome" (3) vAREEER™. You should
see{ # 1d # 14d }. Now press(«q)to see lelcome in the graphics
display. Next, type "to the neu" (2 "HP 48GK" (3)
"Graphical Expandable calculator" ()EMIE—and press

(«4) to see your creation—a startup screen (more on this in Chapter 8)!

Best of all, GLABEL, GL+ and GL{ can be used as subprograms in your
own programs, and they can be easily rewritten as functions—or into
functions. They don’t halt program execution, and they’re not interac-
tive; they take their arguments from the Stack. They’re also fairly tidy:
they clean up the Stack after themselves. However, they do alter PICT
irreversibly, and they don’t include error checking—they assume you
have given them correct inputs.

*WAaRNING: If you execute GLABEL from your TOOLS directory, you may get different results from
those pictured here. GOR and other graphics commands compute user units as specified by PPAR
in the current directory. If your directories have PPAR’s with differing user units, your results will
be unpredictable. Therefore, it may be advisable to avoid user units in cases like this.

Adding Text to Graphics 163

Here’s one more handy routine, called CTR, that centers text around a
given point in a grob. The text is drawn in font size 1:

CTR
Checksum: # 63567d
Bytes: 66
Stack Inputs Stack Outputs

3t target GROB (may even be PICT)

2% location X # rowno. # columnno. }

1: "rext " 13 modifiea GROB

« 1 »GROB DUP SIZE
DROP 2 ~ ROT EVAL
SWAP ROT - SWAP 2
+LIST SWAP GOR

»

Store CTR into your TOOLS directory. Then test it and experiment with
it as you wish.

164 7: GrapHICS IMPROVEMENTS

Adding Graphics to Enhance Plots

Purge PICT and pull out BIGSINE again. Now suppose you want to
label the origin. How do you do this?

Press @] to get to the PICTURE EDIT menu. Then use the arrow
keys to position the cursor on the origin and press(X). Press any arrow
key four times, then [H[JdM. Now the origin is circled. Next, press the
arrow keys to get the cursor at the 4 o’clock position on the circle. Press
again. Press (b)fifteen times, then (¥) eight times, then LA

You've now drawn a line from the circle to some arbitrary point. The
Toggle LINE function draws a line that turns black pixels white and
white ones black. Now press to save the pixel position to the
Stack. Then press to return to the Stack for a moment.

Back in the Stack display, you see the digitized cursor position on Level
1. You want tolabel the origin as either ORIGIN or8. 8888 (your choice).
With the cursor position on Level 3, put either "ORIGIN" or8 onto Level
2, and 1 onto Level 1. Then execute GLABEL .* Finally, press («).

Move the cursor to just under the 8. Now press (X), then (»)repeatedly
to move the cursor to the end of the label. Press to under-
line the label (you could also use [TiiEH to do all this, but the canned
shape routines are faster in a program and give more predictable
results—use them as much as possible).

*Remember the hazards of differing PPAR’s in different directories (see the footnote on page 163).

Adding Graphics to Enhance Plots 165

Your grob should now look like this.

[200H [i34 [TRACE[FCN | ENT [CAMECL

Hmm...in a presentation-quality plot, the title block should probably
be enclosed in some kind of box, no?

All right: Press the arrow keys to get the cursor above and to the left
of the title, 5ine Wave Plot. Press(X). Now move the cursor below
the date and to the right of the title and your name. Press [HIINIEFH,
and you should see your title block as shown below.

1L1o0]rolne Wave Flot
| /Xag Depey}\
1 +
llsuGudr 1. 1930

I r 1
LIME [TLINE| EDi [CIRCL]

Save this as BIGSINE (in PIC%) again.

166 7: GrapHICS IMPROVEMENTS

Review

In this chapter you learned how to manipulate the PLOT functions to
display your plot the way you want to see it. You learned how to display
the axis labels in different numeric formats.

You also created some programs to place text—of various sizes—
anywhere on a plot. These programs, GLABEL,GL{, GL+ and ADDB, are
important additions to your toolbox.

You then used some of the shape commands (e.g. IEF, NN, INGTA,
LRI IF) to accent your plot. This is what the shape functions were
originally intended for.

Infact, from now on, you can refer to the shape commands as “freehand
drawing figures.” Together with the freehand drawing commands

(N ERTT and EIEER/ @B, they form the core of the 48’s tre-
mendous graphics capability. And that’s what the next chapter is

devoted to—freehand drawing.

Review 167

%

A
ECIINR LN
\ SR A
o.‘/@‘b“

0020
,'0.:1

7R
7N

8: FREEHAND DRAWING

How to Do It

What if you could turn on your 48, or start a program, and see an open-
ing display like this?

T lelcome

TO THE

HF 450

With freehand drawing, you can create graphics to give your programs
more pizzazz, simplify and clarify user interaction, or produce more
intuitively understandable, pictorial outputs.

This chapter shows you how to do it.

How to Do It 169

The procedure for creating freehand graphics is this:

1. Use or[dTiEdto create ablank grob—your drawing board.

2. Use HAH and A, or IIIER—or even and EiN3—to

define your user units. Or, just work in pixels.

3. Use IIET'EH to draw a single- or double-line around your grob.

4. Use NI, N, etc. as much as possible, and [MERE]/ ENEEN,
IFE / IIE only when the shapes won’t do. In the lelcome
picture at the start of the chapter, for example, all parts of the
calculatorexcept the keys were drawn with and IE4l. The
keys were work. The text was done with GL and GLABEL.

5. Periodically during your creation (and of course, when it’s done),
save your drawing by typing ' TITLE' (or any other name), then
STOPIC. Remember that your grob is only an object, which can
be lost with a single keystroke.

Now use this program, named OFF1 (store it in your HOME directory:
Checksum: # 38534d Bytes: 68):

« { HOME TOOLS PICS TITLE 3
RCL PICT STO OFF
{ 3 PVIEW

»

You can add it to your CUSTOM menu, or assign the program to the
key. Then, whenever you use OFF1 to turn the calculator off,
you’ll see your own TITLE grob.*

*With everything elsethe 48 has, it’s a pity HP didn’t include (or at least document) an AUTOSTART
feature—a flag to activate a user program whenever the machine is turned on.

170 8: FREEHAND DRAWING

Drawing a Voltmeter Face

As another example, here’s how to use freehand drawing figures and
user units to create the face of an analog instrument meter, such as a
voltmeter. You should end up with a grob that looks like this:

Press [([PLon) AT to create a blank 131x64 grob. Then press
(4to get to the graphics environment, and put a frame around the grob

by drawing a box: B[94 ¥RV IETINETE

Now define your drawing area in user units. To make it easier, call the
pivot point of the needle the origin, or (8, 8).

Give the arc on the numeric scale a radius of 0.9 unit from the origin.
Then, allowing for tic marks and lettering, your maximum meter
height will be 1.14 units, and your minimum meter height will be -0.12
units. For now, use a meter width of 2.6 units.

Note that you are using arbitrary units right now. When creating a

strip chart or a bar graph, you’ll probably want to use more meaningful
units, like dollars/month or thousands of barrels per day, etc.

Drawing a Voltmeter Face 171

You can set your user units in two ways:

¢ Specify thelower-left and upper-right corners via PMIN and PMAX:
(-1.3,-.12) PMIN (1.3,1.14) PMAX

* Or, specify the x- and y- ranges, using FAIIH and HAIH:

-1.3 1.3 H&H -.12 1.14 HRE

Either approach works fine. What you're doing is setting the plotting
limits in terms of your own units. This diagram illustrates the
relationship between PMIN / PMAX and A / FEAH:

Y mai] PMAX=C(x_,y J—

A - |
C#y #y 3 :
i | Em- T~
| { *xm #xm}
PMIN=Cx_yy_) Jl

172 8: FREEHAND DRAWING

Now draw a small circle at the pivot point. You can do this from the
Stack or from the PICTURE environment.

From the PICTURE environment, use [E§¥ or (1) to find the pixel clos-
est to (0,0), then (X)>»)») (=) gets the menu back), then IHITHIEAAN.

Or, to draw the pivot circle from the Stack, place these arguments on
the Stack:

4: (B, 8) center of the circle

3+ .63 radius of the circle

2t 7] start angle of the circle

1: 368 or6.2832 end angle of circle (° or rad)

Then press (PRG) NG (the command doesn’t work on the
Stack, and IETAM doesn’t work in the graphics environment.)

Next, draw the meter arc, by using (PRG) IZIRMIETAA, with these Stack
arguments: 4 (8, 8) center of the arc

3t 8.9 radius of the arc

2t 150rB.2618 arcstart angle (n/8 RADians)

1: 1650r2.8798 arc end angle (7n/8 RADians)

Have a look at it so far: («J; then prepare for the next step: EJLl.

Nowdraw the 6 tic marks in the graphics environment, by “eyeballing”
their locations (you could calculate their locations exactly, but you’ll
get equally good resolution using the interactive commands): Move
the cursor to the point on the arc where the tic mark originates; press
(X). Then move the cursor to the other end of the tic mark, and press
IMETA. Repeat this for all six tic marks, evenly spaced.

Drawing a Voltmeter Face 173

Now use the GLABEL utility from Chapter 7 to label the tic marks. You
want to label the tic marks 8,2, 4,6, 8 and 18.

For each label, follow this procedure:

1. Press or{qJto get the graphics environment. Move the
cursor to the point above the tic mark where the label belongs,

and press (ENTER).

2. Press to exit graphics. Putthe label on Level 1 as a string,
ie. "B","2" "4" etc. Press(1), then execute GLABEL.*

At the end, your grob should look like the figure shown on page 171.
Store this grob by entering 'METER' STOPIC.

Later, you will see how this versatile grob can be used in conjunction
with the RS-232C interface to simulate a wide variety of measurement

instruments.

*Keep in mind that GOR, GXOR and REPL use the plotting limits in the current directory when
they add data to PICT. This can give you unexpected resultsifyou execute GLABEL from adirectory
with a different PPAR than what you intend.

174 8: FREEHAND DRAWING

Review

In this chapter you've seen the freehand drawing tools and a few
examples for using them to create your own grobs, not necessarily tied
to the normal PLOT routines. You should feel free to explore any other
uses for grobs you can think of.

Keep in mind that a freehand grob can also be created programmati-
cally, by using the commands from within% *. Or, you can useRCLPIC
to recall the (previously stored) grob, or SEE if the grob is on the Stack.
And any grob on the Stack can be turned into a program by placing it
on the Command Line and enclosing it in ¥ * brackets.

Now you're ready to see some real applications—examples of how you
might put together everything you've learned here so far....

Review 175

9: PROGRAMMABLE (GRAPHICS

APPLICATIONS

Introduction

In this chapter you're going to see several graphics applications. Some
are meant to be used “asis,” while others are given simply as examples
of what you can do with graphics—to be modified or finished to fit your
needs.

Each application begins with a description of the program(s). Then
follows a list of subroutines and other variables, then a complete set of
program listings, along with checksums, byte counts, Stack argument
listings (where appropriate), notes and/or comments (where appro-
priate). Occasionally, too, you may see multiple versions of a program—
just to show you how different your approaches can be.

*The checksum and byte counts given are for a Rev. K machine. To compare checksum and byte
count, enter the program and store it under the indicated name. Then put that name onto Stack

Level 1 and press ' TE N

Introduction 177

Programmable Scanning Inside a Big Grob

These programs automate scanning inside a large grob—say, 300x200.

Descriptions

PSCAN: To display only certain, predetermined parts of the grob, you
can use PSCAN from within a program to display those parts.

SCAN: To examine the grob yourself, use SCAN as a versatile alternative
to the built-in PICTURE scrolling mode, moving by pixel, ten pixels, or
across the entire grob.* SCAN treats the 48 display as a window onto
the grob and redefines the numeric keypad as a window control pad;
each numeric key, except(5)and (0), indicates a direction for movement:

¢ The (7] key, for example, moves the grob one pixel up and to the
left (that is, it moves the window one pixel down and to the right).

. moves the grob ten pixels up and to the left.
. moves the grob to the upper left corner of the window.

¢ Similarly, the other numeric keys move the grob in their direc-
tions: (3)to the lower right, (6] to the right, etc. ((5) does nothing).

e (0)exits SCAN in an orderly fashion. is OK for emergen-
cies, but it will leave the directory cluttered with extra objects.

*You may wish to disable the clock display (clear system flag —40) when using SCAN. A strange
feature causes the clock display to appear on the top edge of the grob, where it scrolls off- and on-
screen, as part of the grob. Interestingly, the clock even keeps “ticking” as it moves around.

178 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

PSCAN, SCAN and these subroutines should all be in the same directory.

SETUP: Creates temporary variables and initializes the 48 prop-
erly for SCAN and PSCAN.

NUDGE: “Nudges” the graphics display the distance and direc-
tion given in Level 1.

MVY1. Moves 1 pixel in the direction indicated.
My1e: Moves ten pixels in the direction indicated.
MWall: Moves across the entire grob, in the direction indicated.

ADDB: Adds two lists of the form{ #rrr #ccc } (see page 159).

Alternat roach

These routines offer another solution, for the sake of comparison.

PSCN An alternate version of PSCAN.
SCN An alternate version of SCAN.
My Combines the functions of MUDGE, V1, MVY18 and MYall

above. Moves the distance indicated (1 pixel, 10 pixels
or all the way) in the direction indicated.

Programmable Scanning Inside a Big Grob 179

Listings

SCAN

« SETUP
Cursor PVIEW
00 8 WARIT DUP FP
+ ky kfp
« CASE
kfp .1 SAME
THEN ky MV1
END
kfp .2 SAME
THEN ky MV1B
END
kfp .3 SAME
THEN ky MVall
END
END
ky

»
UNTIL 92.1 SAME
END
{ Cursor PSIZE 2} PURGE

*

Checksum: # 47364d
Bytes: 297.9

Stack Arguments

1: (none)

Notes: SCAN uses PICT.

180

(Initialize PICTand variables)

(Unshifted)

(&) shifted)

() shifted)

(Key zero—exit)

(Remove global variables)

Stack Results

(none)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

PSCAN

« 0BJ» (Break down list into locations; use list size as a counter)
D0 DUP 1 + ROLL PYIEW (“Roll up” to the next location,
.9 WAIT 1 - use it and discard it)
UNTIL DUP 8 SAME
END
»

Checksum: ¥ 29428d

Bytes: 67.5
Stack Arguments Stack Results
12 { loc, loc, loc, ... loc, } (none)

Notes: PSCAN uses PICT.

The Stack argument may be given either in user units (com-
plex numbers) or pixel locations{ # rownum ¥ colnum }. Each
set of coordinates in the list represents a location on the grob
that will successively be passed to PYIEW in the program.

Programmable Scanning Inside a Big Grob 181

SETUP

« PICT SIZE DUPZ 2 =+LIST

'PSIZE' STO (Save PICTsize)

IF # 64d < SWAP (If PICT is no bigger than the default...
131d £ AND

THEN ...offer to view without scrolling or aborting)

IF "GROB is smaller than®= (= is NEWLINE; press(=]<)
display! Look anyway?"
gll{lll:lYggu Ilﬁ 1 CUNT * }
{ "NO" « @ CONT = X} }
TMENU PROMPT B MENU

EHEN { } PVIEW (Press(CANCEL)to exit from this)
CONT (CONT breaks out of SCAN here)
ELSE { # 6d # B6d
EI‘:I[ll:ursor ' STO (Initialize the cursor)

>

Checksum: # 272847d

Bytes: 311.5
Stack Arguments Stack Results
1: (none) (none)

Notes: SETUP initializes SCAN and PSCAN.

182 9: PROGRAMMABLE GRAPHICS APPLICATIONS

NUDGE

« Cursor ADDB (Add increment to Cursor)
+ cursor

« IFERR cursor PVIEW
THEN 3688 .2 BEEP
DROP

ELSE cursor
ENDI Cursor' STO (Update Cursor for next time)

Checksum: # 68163d

Bytes: 143
Stack Arguments Stack Results
1: { # column-increment % row-increment } (none)

Notes: MNUDGE moves the grob according to the increment given in
Level 1.

The increment must be given in binary integers.

MUDGE is called by MY1 and MV18.

Programmable Scanning Inside a Big Grob 183

M1

€ + ky
&« CRASE

ky 62.1 SAME (Key (7} up and left)
EHEN { # 1d # 1d X NUDGE

ky 63.1 SAME (Key (8) straight up)
EHEN { # 6d # 1d X NUDGE

ky 64.1 SAME up and right)
Eﬂ%ﬂ { #18446?44@?3?99551615d 1d } NUDGE

ky /2.1 SAME (Key (4} left)
EHEN { # 1d # 6d } NUDGE

ky 73.1 SAME (Key (5) nowhere)
EHEN { # 6d # Bd X NUDGE

ky 74.1 SAME right)

>
®

184

EHEDN { #18446/446737B9551615d # Bd NUDGE
ky 82.1 SAME down and left)
'II_:__}r:II%N { # 1d #18446?448?3?8955 615d } NUDGE
ky 83.1 SAME straight down)
1E.I:'~IED” { # 6Bd #18446?449?3?995 615d } NUDGE
ky T?iqéﬂ 1 SAME (Key (3) down and right)
{ # 18446/44873789551615d
1844674468737B9551615d }
NUDGE
END

END

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 48385d

Bytes: 652.5
Stack Arguments Stack Results
1: keycode (none)

Notes: MY1 moves the grob 1 pixel at a time.

You cannot create the large binary integerinlf¥1 via# 1d
while editing the program. You'llget ... # 1d NEG ... =,
which won’t work in the program. And # 1 causes
an Invalid Syntaxerrorat« ... # -1d ... ».

To get the large integer, you must either key it in digit-by-digit
each time (not too thrilling a prospect) or put it onto the Stack
before keying in the program, then pull it into the program
during editing via (QJEDT)EEAIA. This seems far easier, since
the number is just the negative of a smaller, more familiar

integer: # 1 ENTER[*/2) Result: # 18446744873789551615d

Then, while creating your program, put the insert cursor (%)
in the space to the right of where you want to place the integer.
Press to get the EDIT menu and to get to the
selection environment. Use(a)and (¥)to select the integer, and
then 31l ENTER). You'll return to the program editing, with
the integer in the right place.*

*Qr, alternatively, you can add the number to your CST menu and enter it from there: Ifyou al-
ready have a CST menu, press (@CsD# 1 ENTER)([FD @B EICST); if you don’t already have a CST
menu, press # 1 'CST' 50

Programmable Scanning Inside a Big Grob 185

MY18

£ 3 kl:]
B, 622 e am
Y . (K d left)
THEN 4 10 # 10d) NUDGE LD U and lf
ky 63.2 SANE (Key I8 straight up)
THEN (4 6d # 164 3 NUDGE S sraentup
ky 64.2 SAME dright)
THER ¥ 1544674407370955 120t H 08 S WL
ky 72.2 SAME (Key EE) left)
THEN C# 109 # 84) NUDGE @I ef
ky 73.2 SANE (Key @[5} nowhere)
THEN ' 6d # 8d) NUDGE S nothere
ky 74.2 SAME (Key Y8, right)
THEN C # [B#46744073709551606d # 63) NUDGE
ky 82.2 SHME ey (] 1) down and left)

>

186

»

E;\l.l%ﬂ { #16d # 18446?449?3?8 eBed } NUDGE
ky 83.2 SAME straight down)
EH%N { # 6d # 18446?449?3?8 6Bed } NUDGE
ky T?-I‘EN ¢ SAME (Key (] 3) down and right)
{ # 184467/44873769551666d
18446/44073789551686d
NUDGE
END

END

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 38868d

Bytes: 653.5
Stack Arguments Stack Results
1: keycode (none)

Notes: MY18 moves the grob 10 pixels at a time.

As with V1, to get the large integer here, you must either key
it in digit-by-digit each time or put it onto the Stack before
keying in the program, then pull it into the program during
editing via (G)EDIT)EEAIA. Again, this seems far easier, since
the number is just the negative of a smaller, more familiar
integer:

16d EnTER[F/) Result: # 18446/44873789551606d

Then, while creating your program, put the insert cursor (%)
in the space to the right of where you want to place the integer.
Press to get the EDIT menu and to get to the
selection environment. Use(a)and (v)to select the integer, and
then [EI ENTER). You’ll return to the program editing, with
the integer in the right place.*

*QOr, alternatively, you can add the number to your CST menu and enter it from there: Ifyou al-
ready have a CST menu, press ([@JcsT# 18d ENTER)F/D@DEGICST); if you don’t already have a CST
menu, press # 18d 'CST' 500

Programmable Scanning Inside a Big Grob 187

MYall

€ + ky
« CASE
ky 62.3 SAME (Key)7} up and left)
THEN PSIZE
{ # 18446/446873789551485d
18446/44073789551552d 1}
ADOB
k EEI';JSE'] 3 SAME
y ba. (Key straight up)
THEN Cursor 0BJ+ DROPZ
PSIZE 0BJ+ ROT DROPZ
64d - 2 =LIST
k EEI:II‘? 3 SAME
y b4%. (Key (]9} up andright)
THEN # B8d PSIZE 0BJ+ ROT
ENUDRDPZ # 64d - 2 -LIST
ky /2.3 SAME (Key (]4) left)
THEN PSIZE 0BJ+ DROPZ
131d - Cursor 0BJ+
ROT DROPZ 2 =LIST
END
ky 73.3 SAME (Key ()5}, nowhere)
THEN Cursor
k E?'rin3 SAME
y r19. (Key (2] 8), right)
THEN # 8d Cursor 0BJ-
ROT DROPZ 2 -LIST
k Egg 3 SAME
y . (Key (2]1) down and left)
THEN PSIZE 0OBJ+ DROPZ
131d - # Bd 2 -LIST
k Eg?? 3 SAME
Yy oba. (Key (2]2) straight down)
THEN Cursor 0BJ* DROPZ
8d 2 -LIST
END

188 9: PROGRAMMABLE GRAPHICS APPLICATIONS

ky 84.3 SANE (Key @[3 down and right)
THEN C B od #ed 3 wnanane

END
Cursor (If no other case is true)
END (CASE)
¥
DUP 'Cursor' STO PVIEW

Checksum: # 44757d

Bytes: 674
Stack Arguments Stack Results
1: keycode (none)

Notes: MVYall movesthe grob all the way to one side or corner. As with
MY1 and MY18, to get the large integers here, you must either
key them in digit-by-digit each time or put them onto the
Stack before keying in the program, then pull them into the
program during editing via
they are just the negatives of smaller, more familiar integers:

. That seems easier:

131d Result: # 184467/440737/89551485d
64d Result: # 184467/44873789551552d

Then, while creating your program, put the # to the right of the
integer’s desired location. Then press AEAIA, and use
(a) and (¥) to select the integer, then 31l (ENTER). *

*Or you can add the number to your CST menu and enter it from there: Ifyou already have a CST
menu, press(VARIDICsO# 131dEEnF# 64dener -2 Fre) INEEENERH VARG ICST); if you
don’t have a CST menu, press # 131deERFA# 64deverFA2Pre) INEMZNEE 'CST' GTo)

Programmable Scanning Inside a Big Grob 189

Listings for Alternate roach

Often you may first solve a programming problem in the way clearest
to you, only to discover later that you could have accomplished the
same task more simply, or with less code, less memory usage, better
execution speed, etc. Infact, the very act of creating and documenting
the first version often reveals the possibilities for improvement.

This application is a good example of that process. After studying the
previous version, you'll see how this version “streamlines” it somewhat
(though the effective speed is about the same either way):

PSCN

« 0BJ» 1
FOR j J ROLL
PYIEW .5 WRIT -1
STEP

»

Checksum: # 12373d

Bytes: 98
Stack Arguments Stack Results
1: { loc, loc, loc, ... loc, } (none)

Notes: PSCN is very similar to PSCAN (page 181).

190 9: PROGRAMMABLE GRAPHICS APPLICATIONS

SCN

« { # 6d # 6d > PVIEW (Display PICT)
RCLF 'Flags' STO 64 STWS (Save current flag settings

before messing with them)

PICT SIZE 64 - BsR 'PY' STO (Re-size PICT if
131 - BsR 'PKR' STO it’s too small)
g 'CX' STO @ 'CY' STO (Initialize variables)
WHILE 8 WARIT DUP IP 92 # (Get keycode)
REPEAT DUP IP (Dissect it into two
SWAP FP 18 = arguments for M)
EI'-.IDMU (Do the move and display the result)
DROP Flags STOF (Restore previous flag settings)
{Flags P¥ PY CK CY } PURGE (Clean up)

®

Checksum: # 22¢4d

Bytes: 291
Stack Arguments Stack Results
1: (none) (none)

Notes: SCN behaves like SCAN (page 180).

Programmable Scanning Inside a Big Grob 191

Y

18 1E12 3 SWAP GET

« {
3>
&

-~ hHh

1 3{-113
B{-181:
B-13{-1-11313
/3 74 B2 83 84 3

Y + PY MIN @ MAX 'CY' STO
2 + PX MIN 8 MAX 'Ck' STO

»
Cx R+B CY R+B 2 »LIST PVIEW

wly.

»

Checksum: # 7919d

Bytes: 372
Stack Arguments Stack Results
s keycode (integer portion) (none)
1: keycode (tenths digit) (none)

Notes: MY moves the grob asindicated by the two keycode arguments
it receives from SCN. Compare this with HUDGE,MY1,MV18, and
MVall on pages 183-189. Note, too, that since only SCN calls

MY—and only once—you could certainlyincorporateMY into SCH
with no loss of efficiency.

192 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Generating a Stripchart

Here are two programs which allow you to display data in a stripchart
format. Astripchart recorderis a mechanism thatdrags a strip of paper
at a constant speed under a pen being activated by a signal from an
instrument or sensor. Usually the signal is a 0-5-volt or 4-20-milliamp
signal.

Now, with the advent of low-power signal conditioning modules, you
can read an analog signal input, then convert it to a real number and
transmit it via datacomm lines to a digital computer.*

The 48 has a unique position as a portable instrument controller or
data logger: On the (VoNxT)EBEFAL] menu are some low-level com-
mands with which you can configure your 48 to communicate with any
serial device in the world. These stripchart programs and the ¥/ pro-
gram which follows, are intended to demonstrate this capability.

*Signal conditioning modules that do this are available from Omega Engineering, DGH, Onset
Computer Corp., Keithley-Metrabyte, Inc., and many other sources. Most modern test and meas-
urement instruments are now sold with a built-in or optional serial interface.

Generating a Stripchart 193

Descriptions

STRIP: This program displays an animated (rolling) stripchart on the
display. It may be halted by pressing any key.

PSTRIP: This program prints a stripchart on the infrared printer. The
output is very elementary, but the program is easily modified to add
more detail to the output. It may be halted by pressing any key.

STRIP and PSTRIP do not take their input from the Stack. Instead,
they look for a list called DAPar (“Data Acquisition parameters”), of the
form { minimum-value maximum-value title time-interval 1}, where

minimum-value and maximum-value (real numbers) are the chartlimits.
title (a character string) is the chart title.

time-interval (a real number) is the minimum interval between
measurements (not used in STRIP). This is given in HMS format—
as hh.mmss, where hh is the number of hours, mm the minutes, and
ss the seconds. The routine Nxt ime uses this time interval to com-
pute the time until the next measurement. The minimum useful
time interval varies from machine to machine, and depends on how
long it takes to execute RERDY and print the results.

If the programs do not find any list object named DAPar-, then they use
this default DApar:
{1 "8}

194 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Note that in a real setting, where the 48 would be connected to a
voltmeter or other signal conditioning module, the routine READY

would query that instrument or module, and the commands within
READY would typically look like this:

« ... "#IRD" ®MIT DROP
REPEAT
UNTIL BUFLEN DROP
END
SRECY DROP ...

Here, however, for the purposes of these demonstration programs, the

input of a real meter is simulated with a random number generator.

Therefore READY becomes simply « RAND
>

Generating a Stripchart 195

Subroutines

STRIP and PSTRIP use several subroutines. The main programs and
the subroutines should all be stored in the same 48 directory.

READY: Program to collect the data from the serial- or infrared-
equipped sensor or instrument.

MkAxis: Draws a y-axis for PSTRIP paper output.

Now™: Performs an elapsed-time (true-false) test.

Pr8: Prints eight pixel rows to the infrared printer.
Variables

DApar-: The data-acquisition parameter list

&t (delta-t): The time interval, in ticks, between measurements.

Nt ime: PSTRIP usesaD0...UNTIL loop totime readings, rather
than alarms;the current time (in ticks)isincremented
by &t to generate the value Nxt ime. But in a remote
application, PSTRIP could be modified to set alarms
and turn itself off, rather than use such a[D0 ...UNTIL
loop.

196 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Listings

STRIP
« RCLF 'Flags' STO 64 STWS (Save current status)
IF DApar DUP TYPE S # (Find or create UAPar)
EHEN {e1" 8) DUP ROT STO
DUP 2 GET SWAP 1 GET DUPZ - (Extract parameter values
+ hi lo diff from OAPar)
« PICT PURGE (Draw the stripchart recorder)

{ #6d # 6d } { # 136d # 63d } BOK
{ # 26d # 11d > { # 126d # 54d } BOX
28 128
FOR z z R*B # 355d
2 =LIST
PIXON 26
STEP
{ # 6d # Bd } PVIEW STD (Showthestripchartrecorder)
PICT { # 268d # 5/d 1}
lo 1 +GROB GOR (Label the reticle)
PICT hi 1 »GROB DUP
SIZE DROP NEG # 121d + # 5/d
¢ +LIST SWAP GOR
PICT { # 2d # 2d }

IF DApar 3 GET DUP SIZE NOT (Draw the title)
EHEN DROP "Press any key to quit." (Default title)
1 »GROB GOR

00 (The data acquisition loop)

READY lo MAX hi MIN lo - diff ~
PICT { # 21d # 12d 3 { # 119d # 52d } SUB
PICT { # 21d # 13d } ROT REPL
PICT { # 21d # 12d 3 GROB 99
1 BBBBBERNEEEEEEBBEBBBBEBBBE REPL
188 * 28 + R+B # 12d 2 -»LIST PIKON
EHEIL KEY

Generating a Stripchart 197

DROP

»
Flags STOF (Restore status)

{ Flass } PURGE (Delete global variables)
»

Checksum: # ¢89685d

Bytes: 899
Stack Arguments Stack Results
1: (none) (none)

Notes: STRIP generates an on-screen stripchart.

DAPar may be modified before running the program. On
machines with black LCD pixels, the default DApar may
cause the data to scroll by too quickly to be seen. If so, then
adjust the time interval parameter to slow down the data
display. A setting of B.B88B81, or 1/10th of a second, should
work fine. Machines with blue LCD pixels (version K) won’t
have this problem.

ERT ROCKEX.

198 9: PROGRAMMABLE GRAPHICS APPLICATIONS

PSTRIP

¢« "Printing Stripchart:" 1 DISP

IF DRApar DUP TYPE 5 # (Find or create DApar)
EHEN {81 "B Y DUP ROT STO

BE#+ DROP HMS» 29491268 =+ 'S&t' STO (Calculate &t)

IF SIZE (Print and display the chart title...
THEN PR1 2 DISP
Eth DROP ...unless there isn’t one)

DUPZ KRNG -56 7 YRNG (Setup PICT, draw & print y-axis)
PICT PURGE
PICT { # 6d # 68d } MkAxis GOR

+ lo hi
€ H]CK?S Bét + 'Netime' STO (Increment the timer)
FOR rowcounter (Printer can print 8 rows at once)
UNTIL Now?
END (An idle loop: Now?is a T/F test)
READY (Read the “voltage”)
lo MAX hi MIN (“Peg the meter” limits)

rowcounter R»C PIRXON
IF rowcounter MOT

THEN Pr8
ETD
STEP
UNTIL KEY
END (End of D0loop)
"Stripchart completed" 1 DISP Pr8 DROP
»
{ & MNxtime } PURGE (Delete global variables)

»

Generating a Stripchart 199

Checksum: # 45726d

Bytes: 472.5
Stack Arguments Stack Results
1: (none) (none)

Notes: PSTRIP generates a stripchart on the HP 82240B infrared
printer.

DApar may be modified before running the program.

Printing St hart:
ERT Ritgg T tPchar

q:

3:

%:

(ERCH | TEST [TVPE [LIET [GROE | PICT |
EAT RDEHS _

-1 A

200 9: PROGRAMMABLE GRAPHICS APPLICATIONS

READY

« RAND

Checksum: # 51986d

Bytes: 22
Stack Arguments Stack Results
1: (none) a real number

Notes: READV reads a voltmeter or other serial output device. In this
demonstration case, it’s a simple random number generator;
in real applications, this routine would contain the appropri-
ate commands to read the device.

Generating a Stripchart 201

Mow™?

« TICKS
IF Mxtime > DUP
THEN &t 'Nxtime' STO+
END

>

Checksum: # 63658d

Bytes: ra.5
Stack Arguments Stack Results
1: (none) 1 (if it’s time to take another

measurement, or...)
7] (...if it’s not)

Notes: Mow? updates (increments) the value in Nxt ime and returns
a 1 or B to the Stack.

202 9: PROGRAMMABLE GRAPHICS APPLICATIONS

MkAxis

« PPAR 0BJ+ & DROPN (Get PMIN, PMAX)
SWAP RE SWAP IM R=C AXES (Calculate axis intersection)
ERASE DRAX LABEL (Draw axis)

PICT { # 6d # 2d }

GROB 1 6 BB0BBBBBEBEE REPL

PICT { # 6d # 6d }

{ # 136d # 7d } SUB (Cut out axis for printing)

®

Checksum: # 32336d

Bytes: 177
Stack Arguments Stack Results
1: (none) grob for the y-axis

Notes: MkAxis creates the grob for the y-axis of the stripchart.

Generating a Stripchart 203

Pr3

« PICT
{ #6d #6d > # 136d # 7d }
SUB PR1 DROP ERASE

»

Checksum: # 55876d

Bytes: 9z
Stack Arguments Stack Results
1: (none) (none)

Notes: Pr8 sends the top 8 pixel rows of PICT to the printer and then
erases PICT.

204 9: PROGRAMMABLE GRAPHICS APPLICATIONS

An Analog Voltmeter

This is a versatile application that lends itself to infinite modification.
Using the same DApar and READY as used for the stripcharts, the 48
display becomes an analog meter with a swinging needle. With an
analog display, your brain can immediately analyze data without
taking the time to translate from digital representation to a quanti-
tative “picture.” This is probably why digital car dashboards have
disappeared, and the reason for the return of the “old-fashioned” dial—
now called “analog” (UGH!)—wristwatch.

Description

The VM application can be used in lieu of the stripchart, when you want
instantaneous display of a signal in analog form. VI will draw a volt-
meter face in the graphics display, label the display according to the
parameters it finds in the list named DApar, and then swing a needle
back and forth, using a routine called POINT. The needle’s position will
reflect the values it receives from the “voltage-reading” routine, READY.

EAT ROCK:.

-1 2

Simply press any key to halt /M. The program and display are simple
enough that you can add other features, such as Out of Range
indicators, auto-ranging, secondary digital readout, etc.

An Analog Voltmeter 205

VM takes no input from the Stack. Instead, it looks for a list called
DAPar (“Data Acquisition parameters”), of the form { minimum-value
maximum-value title time-interval }, where

minimum-value and maximum-value (real numbers) are the meter

limits.
title (a character string) is the meter title.

time-interval (a real number) is the minimum interval between
timed measurements (not used in YM).

If the program does not find any list object named DApar, then it uses
this defaultDApar: { 8 1 "" @ 2

Note that in a real setting, where the 48 would be connected to a
voltmeter or other signal-conditioning module, the routine READV
would query that instrument or module, and the commands within
READY would typically look like this:

« ... "#IRD" ®KMIT DROP
REPERT
UNTIL BUFLEN DROP
END
SRECY DROP ...

Here, however, for the purposes of these demonstrations programs, the
input of a real meter is simulated with a random number generator.

Therefore READY becomes simply « RAND
»

206 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

VM uses the following subroutines, which should be stored in the same
directory as VM:

MAKEFACE: Draws the meter face, except for the needle, title and
scale labels.

RERDVY: Program to collect the data from the serial device, IR
device, or whatever else.
POINT: Erases and redraws the needle, using TLINE.
CTR: Centers text around a point in a grob.
Variables
DApar: The data-acquisition parameter list

An Analog Voltmeter 207

Listings
Wi

« RCLF + f (Save current status)
« -16 SF -19 SF DEG 64 STWS (Set flags as needed)
(B, .5) CENTR .2 DUP SCALE (Setgraphics parameters)

IF DApar TYPE 5 # (Find or create UApar)
EHEN {B1"" 8 } 'DApar' STO
MAKEFACE PICT (Draw the meter face)

{ # 21d % 58d } DApar 1 GET CTR PICT
{ # 164d # 568d } DApar 2 GET CTR PICT
{ # 66d # 2d } DApar 3 GET CTR

OApar 1 GET DUP POINT (Putthe needleat far left)
D0 READY DUP ROT POINT POINT (Move the needle)
UNTIL KEY

END

DROPZ f STOF (Restore previous status)

Checksum: # 4616d

Bytes: 417.5
Stack Arguments Stack Results
1: (none) (none)

Notes: VM generates a working analog meterin the 48 display. DRpar
may be modified before running the program.

208 9: PROGRAMMABLE GRAPHICS APPLICATIONS

»

MAKEFACE

PICT PURGE
6d # 6d » PVIEW
6d # B6d 3 { # 136d # 63d

"

65d # 57d } DUP
3d B8 368 ARC (Needle pivot)
45d 15 165 ARC (Scale)
165 15

FOR n 1 n »¥2 .9 n »V2 LINE -38

STEP

E
{B:U (Meter bezel)
#

Checksum: # 55665d
Bytes: 294.5

Stack Arguments Stack Results

1: (none) (none)

Notes: MAKEFACE draws the meter face:

An Analog Voltmeter 209

POINT

€ 3+ Y

« |1

'15+158*MINC]1, MAK (B, (DApar(2)-
v)~(DApar (2)-DApar(1322)'

+NUM +¥2 (B,8) TLINE

»
b

Checksum: # 6495d

Bytes: 176
Stack Arguments Stack Results
1t signal level (a real number) (none)

Notes: POINT erases and redraws the meter’s needle.

A properly formatted DApar should be in the same directory.

210 9: PROGRAMMABLE GRAPHICS APPLICATIONS

CTR

(see page 164)

RERDY

(see page 195)

Plots with Two Independent Variables 211

Plots with Two Independent Variables

The 48’s two-dimensional plotter allows you to plot multiple equations
simultaneously, but it allows for only one independent variable.

For example, with the equation 'Z=R+Y', you must store several
versions of the equation with different values for either 8 or Y, then
create an EQ list containing all the versions of the equation.

The 48’s 3-D tools (particularly YSLICE and WIREFRAME) eliminate
some of thisinconvenience, but they require that you use evenly-spaced

incremental values for the second independent variable (by specifying
YRNG and NUMY).

For example, if you're interested in the shape of the function at
Y-values of 1, 2, 18 and 36, you can’t do it with only YRNG and NUMY.

212 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Description

MULTIPLOT allows you to plot functions such as z = f(x,y) without all the
headache. Before executing MULTIPLOT, you do the following:

1. Create the equation just as you would for the PLOT application;
any equation or program that works with PLOT will also work
with MULTIPLOT. However, you must store it under a global
variable name other than EQ.

2. Press (GJPLOTHEHIIA Set up the ranges, independent variable
and dependent variable appropriately (see Chapter 5 for a
reminder on how to do this—or you can create an entirely new
PPAR on the Command Line and store it directly.)

3. Onto Stack Level 1 put a list of this form:

{ eqname yname { Y, Y, - Y, 3 } where
eqname is the name of the equation (or the equation itself);

yname is the name of the second independent variable;

¥, Y, --Y,... are the values of that variable to be used in the plot.

Plots with Two Independent Variables 213

MULTIPLOT is remarkably small and simple, since it uses built-in 48
routines to do most of the work—and it works at about the same speed
as the Plotter application. Some examples follow the program listing.

You may wish to try your multivariable equation with the built-in
Plotter first, to find a good range for the second independent variable.
Also, note that you can store and recall the equation lists as desired,
effectively saving many different MULTIPLOT applications.

Yariables

VALS: a list of values for the second independent variable

SIV: the second independent variable’s current value

214 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Listing

&

*

MULTIPLOT

1 GETI STEQ (Saveequation namein EQ)
GETI 'SIV' STO GET 'VALS' STO (Save 51 and VALY
ERASE { # B6d # B8d } PVIEW

DRA® LABEL (Draw and label axes)
1 VALS SIZE
FOR n (For each value ...
VALS n GET 'SIV' RCL STO ...storeitin2ndind. var....
DRAW ...and plot the function)
NEKT
{ VALS SIV 2} PURGE (Clean up)
7 FREEZE (Freezethedisplay)

Checksum: # 18534d

Bytes: 188
Stack Arguments Stack Results
1t { egname yname { Y, Y, - Y, 3} (none)

Notes: MULTIPLOT generatesa plot of the function f(x,y). The function

is plotted in PICT (which is displayed during the plot), and the
program stops with PICT displayed.

Be sure that the PPAR settings are correct.

Plots with Two Independent Variables 215

Example: A Simple Plane

Equation: PLANE: ‘'Z=K+Y'

Plot parameters: XRNG: 010 YRNG: 0 20
INDEP: ¥ RES: 0
AXES: (B, 8)
PTYPE: FUNCTION
DEPND: Z

PPAR: { (B,8) (18,28) ¥ B (8,8) FUNCTION Z 2
Level-1 Stack argument: { PLANE ¥ { B8 2 4 6 8 18 } 2

Result: A series of lines representing contours on the plane:

Note that in this example and the next, the dependent variable in
PPAR does not appear in the algebraic. This simply allows LABEL to
label the y-axis correctly and does not affect the computation at all.
However, in this first example, the dependent variable in PPAR must
be the same as the dependent variable in the equation; an equals sign
makes a lot of difference.

216 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Example: A Fourier Series of a Full-Wave Rectified Sine Wave

Equation: FOURIER: 'Z2#A-w-4*A-w*Z(n=1, Nmax,
COSCn*u*t)~ (4*n™2-1))"
(Checksum: # 133153d Bytes: 128.5)

Variables: A: 1

w: 1
Plot parameters: XRNG: 06.3 YRNG: 01
INDEP: t RES: 0
AXES: (8, 8)
PTYPE: FUNCTION
DEPND: f

(PPAR): { (8,8) (6.3,1) t B (B,8) FUNCTION £ 2
Level-1 Stack argument: { FOURIER Nmax { 1 18 3}

Result: A plot of the first several approximations to the Fourier
Series representation of a full-wave rectified sine wave:

Compare this with a similar plot of the function 'ABS(SINC(u*t 230"
To see more than one lobe, increase x _from 6.3 to 13 or more.

Plots with Two Independent Variables 217

Example: A Field-Effect Transistor

Equation: IDIDB: 'IFTECYD2VG-Yp, (VD-2-32(Vbi-Vp)#
CCVD+Hbi-VE) ~(Vbi-Vp))*1.5-
((Ybi-VG) - (Vbi-Vp))*1.5))7
(-Yp-2-3=(Vbi-Vp)=(1-(Ybi-(Vbi-
Vp))*1.5)), (1-\VG-Yp)n2)!
(Checksum: # 668795d Bytes: ¢78.9)

Variables: VYbi: 1

Vp: -2.5
Plot parameters: XRNG: 05 YRNG: 01
INDEP: VD RES: 0
AXES: (B,8)
PTYPE: FUNCTION
DEPND: ID

(pPAR): { (B,8) (5,1) VD 8 (B,8) FUNCTION ID X
Level-1 Stack arg: { IDIDB VG { B8 -.5 -1 -1.5 -2 } }

Result: Aplot of a theoretical ID-VD curve for a FET. The y-axis is
ID/ID ,where ID,is ID at saturation, with zero gate voltage:

L

LU

Compare this curve with those found in typical electronics textbooks.

218 9: PROGRAMMABLE GRAPHICS APPLICATIONS

An undocumented feature of the HP48 is its ability to use indexing to

extract items from lists or matrices: for example, ' ARA(Z) ' EVAL will
return the third item in a list named AAA; and 'AARAC1, 93 ' EVAL will
return the number from the row 1, column 9 of an array named AAA.

See if you can create an equation using an indexed list, and use this

equation with YSLICE to duplicate MULTIPLOT’s action with the built-
in routines. You may find that MULTIPLOT is faster.

Plots with Two Independent Variables 219

A Contour-Plotting Program

In Chapter 6, you wereintroduced to plotting data in three dimensions.
But not all three-dimensional data sets can be reduced to an equation
in three variables. Consider, for example, the need to measure current
uniformity in a plating tank, or temperature distribution on a heat
exchanger fin, or noise levels on a factory floor.

Although such data sets are empirically gathered—not analytically

generated—you can nevertheless analyze them with the contour-plot
approach by mapping the physical grid of measurements onto an array.

Description

CONTOUR makes a contour plot, taking data contained in an array and
displaying it as a three-dimensional surface, as seen from above. The
contour lines represent “isovalues”—places on the surface at the same
“altitude,” or value. An example follows the program listing.

CONTOUR takes all of its arguments from the Stack, including the array

of data tobe plotted. However, this array will be saved asARRAY, so that
you can modify it after running CONTOUR, if you wish.*

*Note that the easiest way to enter array data into the 48 is through the MatrixWriter, (2]MATRIX]
(for more on the MatrixWriter, read chapter 14 in the User’s Guide.)

220 9: PROGRAMMABLE GRAPHICS APPLICATIONS

CONTOUR divides the array into squares, with the points in the array
being the corners of the squares:

A

i,J i, j+1

i+1,j Ai+1,j+1

CONTOUR works on one square at a time, cycling through all possible
contour values. At each contour value, CONTOUR searches for inter-
sections of the desired contour line with the sides of the square, finding
either zero, two or four intersections per square.

If CONTOUR finds zero intersections for a given contour value, it skips
to the next value.

Ifit finds two intersections, it determines which two sides of the square
are affected. Simple linear interpolation is used to find the points of
intersection, and the contour line segment is drawn in the square.

Ifit finds fourintersections, CONTOUR has encountered a “saddle,” where
two diagonally opposite corners of the square are higher than the other
two corners. Saddles are frequently found in the real world—potato
chips, mountain passes, and (of course) a cowboy’s saddle.

A Contour-Plotting Program 221

Saddles are difficult for CONTOUR to draw. It tries to draw a pair of
roughly parallel contour lines, closest to the corners whose average
value comes closest to the contour value. Ifthe value of the contour is
equal to the average of all four corners, then CONTOUR draws two
crossing lines in the square.

// \ \
/ \\ \
7 \
/] —
/ L ”//X
/ \
/ \ \
/ AN \
Contour value Contour value Contour value
closest to average closest to average equal to average
of upper-left and of lower-left and of all four corners

lower-right corners upper-right corners

In each case, simple linear interpolation determines the points of
intersection. The more points you have, the more accurate CONTOUR is.

Variables

ARRAY: The name in which the given data array will be saved.

Suggestion: Before keying in CONTOUR, store this list into CST in your
TOOLS directory, and then press to use it as a typing aid:

{ ARRAY smallest largest lowlimit hilimit stepsize
range rows cols ii j ul ur 11 1lr small bisg top
bottom left right contour }

222 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Listing
CONTOUR

« PICT PURGE DUP 'ARRAY' STO
1 GETI DUP
+ smallest largest (Local varlablesformax and min. values)
« DO GETI DUP (Flnd array’s max. and min. values)
smallest MIN 'smallest' STﬁ
largest MAX 'largest' STO
UNTIL -64 FS?TC

END
DROPZ largest smallest DUPZ - (Find array’s range)
»

{ # 6d # 6d > PVIEW ARRAY SIZE EVAL

+ lowlimit hilimit stepsize (Save array
largest smallest range rows cols parameters)
« 1 rows R+C PMIN
cols 1 R+C PMAR (Set drawing boundaries)
l rous 1 -
FOR ii (For each row...
l cols 1 -
FOR J andeachcolumn...
ARRAY ii j 2 =LIST GET wwork the four cor-
ARRAY ii j 1 + 2 3LIST GET nersof the square)
ARRAY ii 1 + j 2 "LIST GET
ARRAY ii 1 + j 1 + 2 =LIST GET

4 DUPN 4 DUPM MIN MIM MIN
9 ROLLD MAX MAK MAK
BB BB
+ ul ur 11 1r small big
top bottom left right
« lowlimit hilimit
FOR contour (For each contour value...
IF 'contour 2 small ...if necessary...
AND contour £ bisg'
THEN ..find the number of edge intersections)
'contour » MINCul,ur) ARND
contour < MAXCul,ur)’

A Contour-Plotting Program 223

224

>NUM 'top' STO

'contour > MINC11,1r) AND
contour < MAKC11, 1r)!

sNUM 'bottom' STO

'contour = MINCul,11) AND
contour £ MAKCul,11)'

>NUM 'left' STO

'contour > MINCur, 1r) AND
contour £ MAXCur, 1r)!

sNUM 'right' STO

't op+bottom+left+right' +NUM

CARSE (How many intersections?)

OUP B == (none...

THEN DROP ...skip computations)

END

DUP 2 == (2 intersections)

THEN DROP
IF top
THEN

'j+(contour-ul)~ Cur-ul)'

>NUM ii R-»C
IF bottom

THEN (Top-to-bottom)

'i+(contour-11)-(1r-11)"
sNUM ii 1 + R»C LINE
ELSE (Okay, not top-to-bottom)

IF left (Top-to-left?)
THEN
"ii+(contour-ul)-
11-ul)’
*NUM j SWAP R+C LINE
ELSE (Aha—top-to-right)
"ii+(contour-ur)~
(lr-ur)’
*NUM j 1 + SWAP
R+C LINE
END
END (IF...bot tom...ELSE)
ELSE (ot top, so try bottom edge)
IF bottom
THEN

9: PROGRAMMABLE GRAPHICS APPLICATIONS

'j+(contour-11)~
(1r-11)"
*NUM ii 1 + R=C
IF left
THEN (Bottom-to-left)
'ii+(contour-ul)~
(11-ul)'
+NUM j SWAP
R+C LINE
ELSE (Bottom-to-right)
'ii+(contour-ur)-
(lr-ur)'
*NUM j 1 + SWAP
R+C LINE
END
ELSE (Not bottom, either, so...
'ii+(contour-ul)~
11-ul)' ...left-to-right)
>NUM § SWAP R-=C
'ii+(contour-url)”
(lr-ur)!
*NUM j 1 + SWAP
R+C LINE
END (IF...bot tom.. .ELSE)
END (IF...top...ELSE)
END (Case of 2 intersections)
4 == (Caseof 4 intersections—a saddle—
so calculate those 4 intersections)

THEN 'j+(contour-ul)-Cur-ul)’
sNUM ii R-C
'j+(contour-11)-Clr-11)"
>NUM ii 1 + R»C
"ii+(contour-ul)~(l11-ul)'
>NUM j SWAP R=C
"ii+(contour-ur)-(lr-ur)’
>NUM 4 1 + SWAP R-»C
'"ABS(cont our-Cul+1r)-2)!
+NUM
'"ABS(contour-(11+ur)-2)'
sNUM DUPZ

A Contour-Plotting Program 225

agonal toupperright)
THEN DRUPZ R T (Closer toul, Ir)

ELSIEF .
onal to upper left)
THEN ROT RO% (Closer 2211 r)
END (So crossover is at midpoint)
END (IF...<...ELSE)
LINE LINE
END (Case of 4 intersections)
END (CHSE)
END (contour range IF test)
stepsize
STEP (Next contour value)
»
NEKT (For J loop)
NERXT (For i1 loop)

smallest "Min value" =THG
largest "Max wvalue" »THG
lowlimit "Min contour" -=TAG
hilimit "Max contour" =TAG
stepsize "Contour step" »THG

Checksum: # 21186d
Bytes: 24268.5

LR fd

226

Stack Arguments Stack Results
minimum data value (tagged)
low limit (real) maximum data value (tagged)
high limit (real) lower contour limit (tagged)
step size (real) upper contour limit (tagged)
nxm (real) data array contour step size (tagged)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: Clearly, you could shorten the program with shorter variable
names; these were used for clarity. Also, you might explore
alternate ways to arrive at the same solution. As yousaw with
SCAN/PSCAN, there’s always more than one way to do things.*

Example

With the Stack set up as follows, use CONTOUR to get the result shown:

4: d
3 9
2: 1
1t the following array (use the MatrixWriter):
([8.8 1.3 2.2 8.5 1.3 2.4 1.3 8.3]
[8.9 1.5 2.5 6.5 8.9 8.5 8.5 1.5]
[1.8 3.8 3.2 1.8 8.5 1.1 2.1 3.8]
[1.9 3.2 4.3 1.6 6.8 2.8 2.7 3.3]
[1.8 2.1 2.9 1.9 8.5 1.7 2.6 3.7]
[1.5 1.4 1.1 8.1 1.5 2.4 2.9 4.8]
[1.4 8.9 8.5 1.3 2.1 3.2 3.6 4.2]
[1.1 8.9 8.5 1.2 2.8 3.9 4.3 4.8 1]

SN T

o

8

-

*Speaking of other ways to do things: Can you write a program using EQ and VPAR to create ARRAY
from any three-dimensional function (thereby adding CONTOUR to your suite of 3-D tools)? How
about the other way? Can you write a program using indexed values (e.g. ARRAY (X, ¥)) to extract
values from ARRAY for use in YSLICE, PCONTOUR, SLOPEFIELD or WIREFRAME plots?

A Contour-Plotting Program 227

Drive a Bulldozer Around the Display

This is a fun demonstration of using small grobs as “sprites”—objects
that you can move around the display at will.

Description

The main program, called BULLDOZER, uses a list called DOZDATA, which,
in turn, consists of two sublists. The first sublist is a list of four grobs,
showing the bulldozer facing north, east, south and west. The second
sublist is a list of four complex numbers representing those directions.
Thus if you tire of the bulldozer image, you can always create another
8x8 grob, then make 3 rotated copies, assemble a new DOZDATA, and
run the program with your own custom “sprite.”

To start the program, just execute BULLDOZER. A bulldozer will appear
at the bottom of the display and start plowing a swath towards the top.
Use the arrow keys to control its direction (it will stop when it hits the
wall at the edge of the display). Note that these arrow keys are not
“north, south, east and west.” Rather, they are “forward, reverse, left-
turn and right-turn.”

228 9: PROGRAMMABLE GRAPHICS APPLICATIONS

A speed factor is built into BULLDOZER; you change the bulldozer’s
speed by increasing or decreasing this number. The speed is stored as
a local variable in the program, in case you want to add a “gas pedal”
key to the program.

Press to halt the program (if you use (CANCEL), it may leave a
spurious KEY output on the Stack).

Variable

DOZDATA: The grob data for BULLDOZER:

{ { GROB 8 8 FFC37EDASASASAFF (Dozer north)

GROB 8 8 FBIAFFIDICFFIAFE (Dozer east)

GROB 8 8 FFSASASASBPEC3FF (Dozer south)

GROB 8 8 DFSBFF3BBSFFS8DF } (Dozer west)
{ 8,1 (1,8 (B,-10 (-1,8) } %

(North, East, South and West

in complex numbers)

(Checksum: # 33345d Bytes: 172.9)

Drive a Bulldozer Around the Display 229

Listing
BULLDOZER

« PICT PURGE € # 6d # 6d X PVIEW
B 131 KRNG B8 63 YRNG (B,8) (131,63) BOX (Define area)
DOZDATA 1 GET 1 GET ¢61,8) 1 18 (B,1) RCLF
+ cat locn gear speed direction flags
« 58 CF PICT locn cat REPL
00 'gear*direction+locn' EVAL C=R
8 MAX 62 MIN SWAP 1 MAX 123 MIN SWAP
R+C 'locn' STO PICT locn cat REPL
.3 speed - WAIT
UNTIL
IF KEY
THEN =+ k
« CRASE
Tk==25"' (Forward)
THEN 1 'gear' STO
END
'k==35" (Reverse)
THEN -1 ‘'gear' STO
END
'k==34" _ (Left turn)
THEN DOZDATA 0BJ+ DROP
DUP direction POS 1 -

IF DUP == (You can’t turn
EHEN OROP 4 past 0°)

SWAP OVER GET
'direction' STO GET 'cat' STO
END
'k==36" (Right turn)
THEN DOZDATA 0BJ+ DROP
DUP direction POS 1 +
IF DUP == (You can’t turn
EHEN OROP 1 past 360°)

230 9: PROGRAMMABLE GRAPHICS APPLICATIONS

SWAP OVER GET
'direction' STO GET 'cat' STO

END
'k==51"

THEN 58 SF (Quit)

END
END (CASE)

»
END (IF...KEY)
o8 FS?

END @0...UNTIL)
flags STOF (Clean up)

®

Checksum: # 6914d

Bytes: 933
Stack Arguments Stack Results
1: (none) (none)

Notes: The bulldozer leaves some “litter” when it turns. And differ-
ent grobs will leave different garbage (the culprits here are the
little cutouts behind the dozer’s blade). This is because the
program turns, increments the position and then writes to the

display. A commercial game machine would fix this by using
a separate sprite for the tracks and/or a “mask” sprite under
the bulldozer. But both approaches are slow here and make
the dozer flicker. So for this demo, just ignore the litter.*

*But in case you're interested in exploring other solutions here’s an observation: A sprite with an
all-black border always leaves tracks; if it has an all-white border, it never leaves tracks.

Drive a Bulldozer Around the Display 231

A Friendly Game of Checkers

Here is a checkers game to be played by two 48’s—via the Infrared
interface or wired serial ports.

This is the book’s largest application. If you’ve been working through

Chapter 9 nonstop to this point, STor! Go get some cookies and milk.
Give your brain a rest. Then come back.

Description

You start the game by executing CHKRS.

The title screen should appear, with two menu keys to choose lIII M or
(okay, so it’s white and blue—give HP a few more years....)

CHECKERS
RED:
BLACK:

Hre you red or black?
FED|@ ELE[D

232 9: PROGRAMMABLE GRAPHICS APPLICATIONS

After someone has chosen a color, the other player’s coloris set, and the
48’s set up their playing boards accordingly.

Red moves first, and the two players take turns...

CHECKERS
FRED:
BLACK:

YOUR MOVE

...until one player is out of pieces.

CHECKERS
MRED:
BLACK:

WAIT.....

RAD
{ HOME CH.B CHERZ: }

¥
3s
ik
]1:

"BLACK WIN5"
CHEF [:ETUPIREDRA[MTHO] THMO ZELEC

A Friendly Game of Checkers 233

In CHKRS, the numeric keypad becomes a “selector control pad.” As
with SCAN, the (5) key is the neutral center of the pad, and the other
non-zero keys act as arrow keys:

R T 7
©
@ 8 (6)*
0 @ @
s 1 .

When it’s your move, the 48 will highlight a suggested piece to move.
Its selections are not very smart, so use the numeric keys to move the
highlight to the piece you want to move, and press (ENTER). Then press
one of the diagonal-move keys ((1),(3),(5) or (7)) to indicate the direction
you wish to move.

If you choose an invalid move, the piece you selected remains high-
lighted and you must re-select the move. Ifit’s a valid move or jump,
the 48 will update the board display, and send the move information
to your opponent’s machine. It will also crown your piece if that move
sends it to the 8th row.

When your move is over, the 48 passes control to your opponent’s
machine. At the end of each player’s turn, the 48 checks to see if both
of you are still in the game, and then goes through the selection and
movement procedure again. This cycle continues until one or the other
of the players has no more pieces on the board, at which time both
machines declare the winner.

234 9: PROGRAMMABLE GRAPHICS APPLICATIONS

The checkerboard layout is contained in an 8x8 array, appropriately
called LAYOUT, which is updated during the game to reflect each move.
The graphic checkerboard is stored in a grob called BOARD. If you ac-
cidentally erase BOARD, don’t worry. The STARTUP routine checks for
the existence of BOARD, and if it doesn’t find it, calls a routine called

MAKEBOARD to generate a new one. The pieces themselves are stored
as 8x8 grobs called RPIECE, BPIECE, RKING and BKING.

This is indeed a “friendly” game of checkers. A complete and ruthless
game would probably require an entire chapter in this book, so this
version has the following limitations:

¢ It won’t do multiple jumps (but notice that flag 58 has been left
in reserve—for indicating “multiple jump allowed”—so if you’re
ambitious, go for it).

¢ The forced-jumping rule is not in effect: If you’re in a position to
jump, then you are not forced to “jump or lose the piece.”

¢ There’s no “boss key” to quickly save the current game status as
your boss walks up. To abort the game, you must press
and risk leaving junk on the Stack.

A Friendly Game of Checkers 235

Subroutines

CHKRS is organized in a modular fashion. This keeps each routine
short, easy to understand, and tightly focused.

STARTUP: A routine called initially by CHKRS to check for the ex-
istence of a checkerboard grob called BOARD. Ifit doesn’t
find BOARD, then STARTUP calls MKBOARD to create one.

STARTUP also prompts the user to choose sides, and
waits for input from either the keyboard or the I/O port.

REDRAW: A routine that maps the contents of LAYOUT onto PICT.

MYMOVE: The busiest module in the application, HYMOVE calls
SELECT to suggest a piece to play. It accepts key input
on the direction to move the piece of your choice, sending
this information to a routine called YALID.

VALID: The routine that determines whether your proposed
moveislegal: You may move only to diagonally adjacent,
unoccupied squares, unless you are jumping. You may
jump only an opponent in a diagonally adjacent square,
and only if the square beyond your opponent’s piece is
empty. Also, only kings may move or jump backwards.

THMOVE: A routine that waits for an "M", "J", "K" or "D" string
from the other machine, then translates the move in-
formation and callsMOVEIT to update LAYOUT and PICT.
When a "D" is received, THMOVE sets flag 59 and exits.

236 9: PROGRAMMABLE GRAPHICS APPLICATIONS

SELECT: This routine simply searches LAYOUT for the first occur-
rence of your playing pieces as its suggestion for your
next move. Fortunately, it doesn’t commit to any square
until you press with the square highlighted (The
highlight can be on any square—even an empty one or
one occupied by an opponent—so if the chosen square is
not occupied by one of your pieces, the highlight re-
mains). SELECT will not move past the board edges.

MOVEIT: Thisroutinetakesthe parametersofthe validated move
and the piece to be moved and performs the manipula-

tions on LAYOUT and PICT.

MKBOARD: The routine that generates the checkerboard inside a
57x57 grob—called by STARTUP when necessary.

WHOZAT: A small routine that determines which player (if any) is
occupying a given square.

C-L: A utility (quite generally useful) that converts a complex
number (x y) into a list of the form{ # row # col }.

GLI: A text formatting routine (see page 158).

GLABEL: A text formatting routine (see page 157).

A Friendly Game of Checkers 237

Variables

LAYOUT: An 8x8 array listing the entire layout of the checker-
board, created by STARTUP. Row 1 of the array is the
bottom row of the checkerboard. Element values:

B=empty 1=redpiece & =black piece
J=redking 4 =black king
Elements on red squares are always zero. Red squares

are identified by adding the row and column indices.
The sum is always even for red, odd for black.

Initial values (red player’s values are shown; exchange
1’s and 2’s for black players initial values):

[LB18161681]1]

TTesrMrraTrararm
NN —®
ONOOE—
NN E—
ONOOE—®
NN —
ONOEE—
NN —
ONEOE—®
:I—ll—lul_luu

Checksum: LAYOUT is dynamic; checksums change.
Bytes: 937.5

BOARD: 57x57 grob of blank checkerboard, created by MKBOARD.
Checksum: #31247d Bytes: 479.5

238 9: PROGRAMMABLE GRAPHICS APPLICATIONS

RPIECE: Grob of a red piece: GROB 8 ¢ B881C3EFE/C381

*

BPIECE: Grob of a black piece: GROB 8 7 BB814224244781

X

RKING: Grob of ared king: GROB 8 7 BBBBASE/ECC3C3

BKING: Grob of a black king: GROB 8 7 BBBBAS662442C3

K

A Friendly Game of Checkers 239

Listings

CHKRS

« RCLF 'Flags' STO (Save defaults)
-48 CF (Turn off clock display)
STARTUP REDRAW (Initialize game, choose sides...
IF 57 F57 ...draw board—red goes first)
THEN 59 SF (Flag 57 set means: “I'm red”)
ELSE 59 CF (Flag 59 set means: “My turn”)
4

240

PICT { # 76d # 46d }
#54 #8 BLAMNK REPL
IF 59 FS? (My turn?)
THEN { # 76d # 46d » "YOUR MOVE"
¢ GLABEL MYMOVE
ELSE { # 76d # 48d } "WAIT..... "
¢ GLABEL THMOVE

END
UNTIL
IF LAYOUT »STR DUP "1" POS (Game ends when...
SWAP "3" POS OR NOT DUP reds are gone...
EHEH "BLACK WINS" SWAP
IF LAYOUT »STR DUP "2" POS ...or blacks are gone)

SWAP "4" POS OR NOT DUP
THEN "RED WINS" SWAP
END
OR
END
Flags STOF (Restore previous states)
'Flags' PURGE (Clean up)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 19875d

Bytes: 538.5
Stack Arguments Stack Results
1: (none) "RED WINS"
or
"BLACK WINS"

Notes: CHKRS is the main program. Be sure both players have the
same I/O setup. This means checking the status of IOPAR, and
clearing system flags —33, -34 and -38.

The layout data is stored in the 8x8 array, LAYOUT. Pieces on
squares are identified by number:

B=empty 1=redpiece 2 =black piece
3 =redking 4 =black king

Row 1 in LAYOUT is the first row of the array; Row 1 of the
checkerboard is the bottom row of the board—the row nearest
you. This makes for faster computing. Notice also that the
sum of the row and column numbers of a red square is an even
number, while the sum of row and column numbers of a black
square is an odd number. This fact speeds up execution time.

Since the game is played only on the black squares, an 8x4
array could also be used. But this would require monitoring
of zigzag movements, and the additional code would far
outweigh any memory savings from using the smaller array.

All the red squares in the array contain 8’s. You could use the
red squares for storing game status, etc., if you incorporate a

A Friendly Game of Checkers 241

242

“boss key” into your game, but be aware that some sections of
the application check all squares for zeros—you can’t use the
red squares for temporary storage during a game.

These user flags are used:

57 SET: You are red. CLEAR: You are black.
58 (reserved for use in multiple jumping)
59 SET: Your move. CLEAR: Their move.

After initialization, CHKRS checks flag 57. Since red always
goes first, for the first move CHKRS sets user flag 59 to match
flag 57. It then enters a D0...UNTIL loop, which can be exited
only when one player runs out of pieces (or via (CANCEL)).

Throughout the game, depending on the status of flag 59,
CHKRS calls either MYMOVE or THMOVE (“THeir MOVE”).

When it’s your opponent’s move, the 48 monitors the input
buffer for any activity. As soon as some information enters the
buffer, the 48 analyzes it and updates LAYOUT and the display.

To communicate between the two machines, the 48 relies on
the commands XMIT, BUFLEN and SRECV.

XMIT takes a string from Level 1 and transmits it over the
current I/O port. Ifthe transmission is successful, then a l is
returned to the Stack; otherwise the unsent fragment of the
string is put into Level 2, and a B into Level 1. Use ERRM to
see the cause of the error.

BUFLEN returns the number of characters in the I/O buffer to
Level 2 and puts a 1 to Level 1 if no framing errors or UART
overruns occur. If an error does occur, then BUFLEN returns

the number of characters received before the error to Level 2,
and a B to Level 1.

9: PROGRAMMABLE GRAPHICS APPLICATIONS

SRECV takes the number specified in Level 1, returns that
number of characters from the I/O buffer to Level 2, and
returns a 1 to Level 1 if the data were retrieved successfully.
If an error occurs during SRECV, then Level 2 contains the
data received before the error, and Level 1 contains a zero.
Execute ERRM to see the cause of the error.

CHKRS does not use the error-trapping capability of these
commands, so in order to keep transmission errors to a
minimum, CHKRS uses a small number of short messages to
communicate between machines. Each message is transmit-
ted as a list inside a string—the most efficient way of passing
a variable number of parameters. Valid messages are:

"{ Cepyd Cxpyd "M 3" Movethepieceat(x;s y,)
to (xz, y2).

"{ (xpyd (xpy) "J" 3 Jumpthepieceat(x,y,)
to (x2, y2) , capturing the
opposing piece en route.

"{ Cuy) "K' " Crownthe pieceat (x y),
replacing it with a king
of that color.

"o o Done. It’s the opponent’s
turn.

The only exception to this “list in a string” rule is the "R" or
"B" that is transmitted at the start of the game, when players
are choosing sides.

A Friendly Game of Checkers 243

&

244

STARTUP

IF BOARD TYPE 11 # (Does BUARD already exist?)
EHEN MKBOARD (If not, then make it)
BOARD PICT STO (Draw board)
(1,-1) PMIN (19.5714285714,8) PMAX (Set user limits)
{ # 6d # 6d > PVIEW (Display board)
{ # 78d # 5d } "CHECKERS" 3 GL! (Title labels)
" RED:" 2 GLI

" BLACK:" 2 GLABEL

PICT RCL (Set up prompt to choose color)

PICT { # Bd # 43d > # 57d # 14d BLANK REPL
{ # 8d # 45d } "Are you red or black?™ 3 GLABEL
PICT { # Bd # 57d }

GROB 21 7 FFFDF1919081505568191556815055681519081FFFDF1

(“RED” menu key)

REPL PICT { # 118d # 5¢d }
GROB 21 ¢ FFFOF1905081505571909571505571915081FFFDF1
(“BLACK” menu key)

REPL
BEEN I0 (Necessary to receive input from the other 48)
UNTIL
IF KEY
THEN DUP
CASE
11 SAME (User chooses red....
EHEH DROP “R" "B" XMIT ... tell opponent)
16 SAME (Userchooses black....
THEN "B" "R" XMIT ...tell opponent)
END
B
END
ELSE B

END

9: PROGRAMMABLE GRAPHICS APPLICATIONS

IF BUFLEN DOROP DUP (Opponent chose first)
EHEN SRECY ROT (What usergets)
OR (00 UNTIL loop ends when one of the 3 options is satisfied...
END ...user chooses red or black, or opponent chooses)
CLOSEIOD (To save battery life)
SWAP PICT { # Bd # Bd } ROT REPL (Remove prompt)
IF "R" SAME
THEN 57 SF (“'m red”)

[[LB1 681681811 (Red’s startup LAYOUT)
[1 8168168181

[B1B81B818681]1

[6BBBBHBBHB]

[BBBBBB A]

[2B82B8268¢2808]1]

[B2BZBZBZ]

[Z2B82B208¢28 1]

{ # 76d # 17d 2

ELSE 57 CF (“I'm black”)
[[B2BZ2BZ2B 2] (Black’s startup LAYOUT)
[2B2B26828]

[B2B2B20B 2]

[BBBBBBBE B]

[6BBBBBBAHE]

[1 8168168181

[B1B818181]

[1 81681818 1]

{ # 76d # 27d 2

END

PICT SWAP 134 CHR

¢ »GROB REPL (Put a “selection arrow” beside user’s color)
'"LAYOUT' STO

»

Checksum: # 42184d
Bytes: 1927.5

A Friendly Game of Checkers 245

Stack Arguments Stack Results

(none) a real number

Notes: STARTUP draws the checkerboardin PICT, prompts the user to

246

choose a color, communicates this choice to the opponent’s 48,
and sets up pieces on the board to start the game.

If the user chooses a color from the keyboard, then a single-
character string identifying the opposite color ("R" or "B")is
transmitted to the opponent’s 48. If the user doesn’t choose a
color before a "R" or "B" is received from the other machine,
then the 48 acts on that string.

If the user is red, the 48 sets user flag 57 (the “I'm red” flag),
initializes LAYOUT with red pieces in the first three rows, and
calls REDRAK to put the pieces from LAYOUT in the right places
on the board. Similarly, if the user is black, the 48 clears user
flag 57, initializes LAYOUT with black pieces in the first three
rows, and calls REDRANW.

9: PROGRAMMABLE GRAPHICS APPLICATIONS

REDRAW

« qICBT { # Bd # Bd } BOARD REPL (Redraw a blank board)

FOR y
1 8
FOR x
IF «w gy + 2 MOD (Only check black squares)
THEN PICT % y R=C (Calculate square location)
ElﬁgEUUT' OVER CsL GET (Check array contents)
OUP 1 SAME (1isared piece)
EHEN DROP RPIECE GKOR
OUP 2 SAME (2 is a black piece)
EHEN DROP BPIECE GKOR
DUP 3 SAME (3 isared king)
EHEN DROP RKING GROR
4 SAME (4 is a black king)
THEN BKING GKOR
END
DROPZ
END (CASE)
END (IF)
MEKT (FOR x loop)
NEKT (FOR y loop)

»

Checksum: # 25345d Bytes: 296.5
Stack Arguments: (none) Stack Results: (none)

Notes: REDRAW redraws the pieces on the checkerboard, according to
the contents of LAYOUT. It assumes that BOARD already exists
and redraws part of PICT.

A Friendly Game of Checkers 247

MYMOVE

« WHILE 59 FS? (Loop to find and complete valid move)
REPCEF'I:IgE SELECT 8 WRIT VALID (Select, validate movement)
OUP "X" SAME (Invalid move—try again)
THEN DROP
END
OUP "D" SAME (End of move)
EHEN DROP 39 CF

DUP "m" SAME OVER "J" SAME OR (Move or jump)
THEN 3 DUPN 3 »LIST »STR

s“MIT DROP (Tell the other machine...
MOVEIT 59 CF ...update LAYOUT, display, end move)
IF DUP IM 8 == (If a piece reaches row 8...

OVER WHOZAT 2 < AND ...anditisn* a king...)
THEN "K" DUPZ 2 =LIST =STR ...“king me”)

SMIT DROP (Tell theother machine...
MOVEIT 59 CF ...update LAYOUT and display)
ELSE DROP
END (IF)
END

END (CASE)
END (WHILE ... REPEAT loop)

IF 59 FC? (End of turn?)

EHEN { "D" } »5TR XMIT DROP (Pass token to other 48)

Checksum: # 8688d

Bytes: 343
Stack Arguments Stack Results
1: (none) (none)

248 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: MYMOVE prompts user to select the piece to move, validates the
move, communicates it to the opponent’s 48 (sends "M", "J",
"K", or "D"), updates LAYOUT and the display, and passes the
turn to the opponent (clears flag 59). Notice that if MYMOVE
gets an "R" from YALID, it repeats SELECT and VALID until

you make a valid move.

A Friendly Game of Checkers 249

THMOVE

« UIEEI"-IIU (Necessary to receive data)
D
IF BUFLEN DROP DOUP (Check buffer for input)
THEN SRECY DROP OBJ*» EVAL (Read buffer, evaluate list)
* move (Store only Level 1 as local variable)
« CRSE
move "D" SAME (Other 48 passes token to me...
EHEN 59 SF ...therefore, it’s my turn)
move "K" SAME (“King me”)
THEN (9,9) SWAP - (Rotate coordinates)
. r?[?UE MOVEIT (Update LAYOUT and display)
move "M" SAME
move "J" SAME OR (move or jump)
THEN (9,9) ROT -
(9,9) ROT - (Rotate coordinates)
ENEIOUE' MOVEIT DROP(Update LAYOUT, display)
END (CASE)
»
ELSE DROP (No input in buffer yet)
END (IF BUFLEN..)
UNTIL 59 FS? (that is, UNTIL my turn)
END @0 ... UNTIL)
CLOSEID (To conserve battery power)

®

Checksum: # 35466d

Bytes: 322.5
Stack Arguments Stack Results
1: (none) (none)

250 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: THMOVE receives the data string from the opponent’s 48,
translates it and updates LAYOUT and the display accordingly
(and sets flag 59). It does not validate the opponent’s moves.

A Friendly Game of Checkers 251

SELECT

« IF 57 FS? (If ’'m red...
THEN 1 3 ...then search for red pieces...
EII':IEE 2 4 ...otherwise, search for black pieces)
+ pl p2 (The search for the pieces)
« 'LAYOUT' 1 (Initialize the search)

D0 GETI (Search...
UNTIL DUP pl == SWAP

p¢ == OR ...until a piece is found)
END
1 - (Index is 1 count too high)

»
SWAP DROP DUP 8 -~ CEIL SWAP 8 MOD (Convertcounter...
IF DUP

THEN DROP 8
END
SWAP R-»C ... into a square location—a complex #)
BEIT |I'|ELITE 8 WAIT (Highlight the square and wait for...
+ loc key ...key input)
« loc HILITE
CASE
'key==83.1' own 2 squares)
EHEN C+R 2 - OVER Z NUD + MAX R+C 6
'key==63.1" 2)
THEN CoR 2 + OVER 2 oD 3% WO Rot 6
'key==72Z.1"' (Key eft 2 squares)

THEN CsR SWAP 2 - OVER 2 FOD
i + MAX SHAP RoC B

ceos 1

'key==74.1' (K ght 2)
TN R P 2 + OvER £ hgpe ™ sauares
2+ N SHP oL e

252 9: PROGRAMMABLE GRAPHICS APPLICATIONS

éhﬁ'ﬂﬁﬁ‘{ 1 JEI;D RE(loc)<8
oc)<8' (Key (9}—up and right)
THEN (1,1) + B
END
éhg'ﬂﬁqﬁ&i 1)Ell'é-l[l RE(loc)>1
oC ! (Key up and left)
THEN (-1,1) + @ @up and i
END
I;EEH??IB(% 1)grill.'l RE(loc)>1
oc)>l! (Key (1}—down and left)
THEN (1,1) - B
END
'key==84.1 AND RE(loc)<8
AND IM(loc)>1! (Key (3}—down and right)
THEN (1,-1) + @
END
'key==51.1" ¢ key—select highlighted square)
THEN DUP C-L 'LAYQUT' SWAP GET
DUP DUP 1 == SWAP 3 == OR (If the piece
o7 FC? KOR AND on the square is my color...

END ...return its location to Stack)
B (Otherwise,...
END
»
END (Repeat the search)

»

Checksum: # 43366d

Bytes: 984
Stack Arguments Stack Results
1: (none) location of selected piece (complex)

A Friendly Game of Checkers 253

Notes: SELECT searches LAYOUT for the first occurrence of the user’s

254

piece and suggests it as the piece to move. By redefining the
numeric keypad as a direction control pad, it also allows the
user to move the selector around the board to choose a piece
to move. Then, with the highlight on a valid piece,
selects the piece. SELECT usesHILITE to drawan inverted box
around the indicated square.

Note that to make them applicable to either color, many
routines use the XOR command, as in this sequence from

SELECT: « .. DUP 1 ==SWAP 3 == OR
97 FC? WOR AND ...

»
This says: “If the square has a red piece and I'm red, OR if the
square has a black piece and I'm black ... ”, thus eliminating
the need for: « ...

IF 57 FS?
THEN DUP 1 == SWAP 3 == OR
EhSE DUP 2 == SWAP 4 == OR

»

9: PROGRAMMABLE GRAPHICS APPLICATIONS

HILITE

« PICT OVER
GROB 8 8 FF181B818181818FF
GKOR

»

Checksum: # 4262d

Bytes: 46
Stack Arguments Stack Results
1t squarelocation (complex) same square location (complex)

Notes: HILITE highlights the indicated square by drawing an in-
verse box around it. It also “un-highlights” the square.

A Friendly Game of Checkers 255

VALID

« OVER DUP
+ oldloc key newloc jumploc
« CASE
'key==62.1" (Key (7}—up and left)
THEN (-1, 1)
END
'key==64.1" (Key (9}—up and right)
THEN (1, 1)
END
'key==82.1' oldloc WHOZAT
¢ > AND (Key(1)—down and left—kingsonly)
THEN (-1,-1)
END
'key==84.1' oldloc WHOZAT
¢ > AND (Key (3)—down and right—Fkings only)
THEN (1,-1)
END
"y (Invalid key)
END (CASE)
IF DUP TYPE == (Complex type means a valid key)
THEN
+ inc (Save increment)
¢« oldloc inc + DUP C=R (Calculate new location)
IF DUP B8 > SWAP 9 < AMD SWAP (If in bounds ...
DUP B8 > SWAP 9 < AND AND
THEN 'newloc' STO
IF newloc WHOZAT MNOT ... and if nobody’s there...
THEN oldloc newloc "M" ... then do the move)
ELSE newloc DUP (Somebody’s there)
'jumploc' STO
inc + DUP C-R
IF DUP 8 > SWAP 9 < AND
SWAPDUP B8 > SWAP 9 <
AND AND (If it’s a jump ...and in bounds...
THEN 'newloc' STO
IF newloc WHOZAT NOT...far side is vacant

256 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Jjumploc WHOZAT 2 MOD...and ctr. piece
9f FS57 KOR AND ...istheotherguy...

THEN oldloc newloc "J" .. .thenjump)
ELSE "¥" (Otherwise, not a valid jump)
END (IF far side is vacant)
ELSE DROP "®" (Jump is out of bounds)
END (IF jump is in bounds)
END (IF nobody’s there)
ELSE DROP "X" (Move is out of bounds)
END (IFmoveisin bounds)
»
END (IFvalid key)

»

Checksum: # 16646d

Bytes: 781
Stack Arguments Stack Results
3: starting location (complex)
2% starting location (complex) ending location (complex)
1t keycode for move direction "J" or "M" or "K"
Notes: YALID validates the proposed move passed to it from MYMOVE.

The contents of the string output at Stack Level 1 depend on
whether the move is a valid Jump, a valid simple Move, or an
invalid proposed move ("®"). In the case of an invalid move
proposal, no location values are returned in Levels 2 and 3.
VAL ID doesn’t check for “king me” opportunities; MYMOVE does.

VALID uses WHOZAT to determine the target square’s current
occupant.

A Friendly Game of Checkers 257

MOVELT

« B

258

+ move Plece

« IF move "M" SAME

THET'IDUEI "J" SAME OR (Move or Jump)
+ oldloc newloc (Store start and end locations)

« 'LAYOUT' oldloc C=L (Get piece from LAYOUT)
DUPZ GET 'piece' STO
8 PUT (Blank out old LAYOUT location)
'LAYOUT' newloc CsL
piece PUT (Put piece in new LAYOUT location)
CRSE (Select the appropriate grob)
'piece==]1'
THEN RPIECE
END
'piece==2'
THEN BPIECE
END
'piece==3'
THEN RKING
END
'piece==%'
THEN BKING
END
END (CASE)
'piece' STO (Store the grob in place of the #)
PICT oldloc piece GWOR (Blank out old location)
PICT newloc piece GHOR (Putpiece in new location)
IF move "J" SAME (Extra work needed for jumps..
THEN oldloc neuwloc + 2 7 ...findjumped s’guare

'LAYOUT' OVER C»L 8 PUT . blank its LAYOUT
PICT SWAP # 8d # 8d location and its
ENDBLHNK MEG REPL board location)

newloc (Dummy Stack value—*killed by ... END)

END (IF Move or jump)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

IF move "K" SAME (“King me”)

THEN
+ loc (Store location)
« 'LAYOUT' loc C-L (Get piece from LAYOUT...

DUPZ GET_DUP

'piece' STO 2 + PUT ...and replace it with a king)
PICT loc # 8d # 8d

BLANK NEG REPL (Blank out board location...
PICT loc
CASE
'piece==]" ... and replace it with a red king...
THEN RKING
END
'piece==¢' ...or a black king)
THEN BKING
END
END (CASE)
GKOR (The actual replacement)
»
END (IF “king me”)

Checksum: # 56746d

Bytes: 788.3
Stack Arguments Stack Results
3t starting location (complex)

n

ending location (complex)
1: “IJ“ or IIMIl or III{II (none)

Notes: MOVEIT updates LAYOUT and PICT according to the move data
received from other processes. Fora"K" (“king me”), the piece’s
location is the Level-2 argument, with no Level-3 argument.

A Friendly Game of Checkers 259

WHOZAT

« 'LAYOUT' SWAP C-L GET

b

Checksum: # 5341d

Bytes: 46.5
Stack Arguments Stack Results
1t square location (complex) value of LAYOUT there (B-4)

Notes: WHOZAT determines “who’s at” a given location on the board.

CL

« C»R SWAP 2 »LIST

»

Checksum: # 34716d

Bytes: 7.9
Stack Arguments Stack Results
1% square location (complex) array index{ # row # col }

Notes: C*L converts a complex number to an array index.

260 9: PROGRAMMABLE GRAPHICS APPLICATIONS

MBOARD

« PICT PURGE (Start with a clean slate)
(B8, -7) PMIN (131,56) PMAX (Set user limits)
{ # 6d # Bd } PVIEW (Just for fun, show it being built)
;B,SBSJ (56, 56) BOX (Outline of the board)
FOR y
B 49
FOR

IF w y + 2 MOD NOT (Sum of row and column of black
THEN PICT % y R*C squareis not odd in this case)
GROB 8 8 FFFFFFFFFFFFFFFF GOR (Fill black square)

END
4
STEP
7
STEP
PICT (B,8) (56,562 SUB
'BOARD' STO (Store as BOARD)
»
Checksum: # 65383d Bytes: 315.5
Stack Arguments: (none) Stack Results: (none)

Notes: MKBOARD makes a blank checkerboard and stores the grob

under the variable name BOARD.

A Friendly Game of Checkers 261

A Calendar Demo

With its time and date functions, the 48 is certainly equipped to be a
time management tool. One of the features in most electronic time
managers is some kind of perpetual calendar, usually presented in the
classic seven-column format. As a final little demo, here’s an example
of what you could do.

Description

The program CALEND displays the current month in seven-column
format, offering unshifted menu keys to increment the day, month and
year; and (G}-shifted menu keys to decrement the day, month and year.
Press the [Flll key to exit the program.

CALEMD uses DISP to build the calendar, then turns it into a grob via
LCD*. The grob’s contents are stored inPICT, and the graphics display
is frozen—with the custom menu line displayed—via PYIEW -1 WAIT.

Note that CALEND doesn’t use PICT STO to store the calendarin PICT.
When the HP 48 executesPICT STO, it resizes PICT to zero, then to the
size of the new grob. If your graphics display is active during this time
(for example, during a PYIEW), you will see “snow” fill your screen
momentarily. This is a graphical representation of part of the HP 48’s
memory and is displayed while the machine is re-sizing PICT.

However, since the REPL command does not cause PICT to be re-sized.
CALEMD uses PICT { #B8d #8d } ROT REPL, instead of PICT STO,

thus avoiding the “snow.”

262 9: PROGRAMMABLE GRAPHICS APPLICATIONS

The Il and (& JlITTM menu keys in CALEMD are not active, although
“hooks” (entry points) are included in here so that you can use them to
increment/decrement the days as you wish.

Of course, CALEMD could also be embellished to do other useful things:
set and clear appointments, create “to-do” lists, and do other time-
management tasks.

Subroutines

MYR: is the major subroutine behind CALEND. Note that its algo-
rithm uses DISP and not PYIEW to do the display. MYR was
written and modified by several members of the CHIP HP48
user’s group. The version presented here was developed by
Ron Johnson and is used with his permission—and with much
appreciation.

A Calendar Demo 263

Listings

CALEND

« RCLMENU
DATE DUP IP SWAP FP 188 = DUP IP SWAP FP 1E4 =
* menu mdy
« IFERR
0o
my MYR (Create the calendar)
LCO+» PICT { #Bd #8d } ROT REPL (Avoidsnow)
€ "0DRY" ¥ { "MON" 3 € "YR" > { X { }

{ "ERIT" } }
TMENU { #B6d #B8d } PVIEW -1 WARIT Disp. menw)
+ key (Wait for keystroke)
« CASE
'key==11.1"
EHEN "Not used" DROP (Increment day)
'key==11.2'
EH[E]N "Not used" DROP (Decrement day)
'key==12.1"
THEN (Increment month)
IF 'm==12'

THEN 1 'm' STO 'y' 1 STO+
ELSE 'm' 1 STO+
END
END
'key==12.2'
THEN (Decrement month)
IF 'm==1'
THEN 12 'm' STO 'y' 1 STO-
ELSE 'm' 1 STO-
END
END
'key==13.1"'
THEN 'y' 1 STO+ (Increment year)
END

264 9: PROGRAMMABLE GRAPHICS APPLICATIONS

'key==13.2"

THEN 'y' 1 STO- (Decrement year)
END
'key==16.1"
'ETHEN 8 DOERR (Create exit condition)
1768 .1 BEEP (Otherwise, beep—invalid key)
END (CASE)
»
UNTIL @
END
THEN menu MENU
END

»
»

Checksum: # 29788d

Bytes: 88
Stack Arguments Stack Results
1: (none) (none)

Notes: CALEND displays a perpetual calendarin classic seven-column
format. It usesthe current system date to determine the first

month displayed.
Aug 1998
= M T W T F S
) 1 2 2 4
S & 7 & 9 1@ 11
12 12 14 15 16 17 13
13 28 21 22 23 24 25
28 27 28 29 28 31
oAy [MOM L Y] | [ERIT

A Calendar Demo 265

266

(Local function g)
"1 2 3 4 5 6 ¢ 8 91811 " (Builda
"12 13 14 15 16 17 18 19 28 21 22 " week string)
"23 24 25 26 27 28 29 38 31" + +
ROT 3 # 2 - ROT 3 # 1 - SUB
(Local function pP)
IF DUP TYPE ¢ == (Display the week string)
THEN INCR OVER SWAP DISP
END
DROP
»
RCLF B 8 B16886
*m pfd n 1 b e
€y IBBBBBB s a1 + DUP 'd' ST0
18.171582 SMHP DDHYS ¢ MOD 'i' STO (Day of week:
B=Sun, 6=Sat)
IF m 12 == (Figure number of days in month...
THEN 31 ...where December is a special case)
ELSE d DUP 1 + DDARYS
END
'n' STO CLLCD " " (Month-year string—7 spaces)

"JanFebMarAprrMaydundul AusSeplct NovDec"
M EU;LDUP 2 - SWAP SUB + " " + STD y + 'r!
P

"S M T W T F §" (Days-of-week header)
IF ni+ 35 < (Leave it out if it doesn’t fit)
o

P EVAL 7 i - 'e' STO i 3 #

" DUP + 1 RUT SUB (First row—29 spaces)
begEVWL + 'r' p EVAL (Display first row)
DO el + 'b' STO e 7 + n MIN

'e' STO (Build subsequent rows)
begEVAL 'r' p EVAL (Display subsequent rows)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

UNTIL e n ==
END
3 FREEZE £ STOF

*

Checksum: # 61525d

Bytes: 844.5
Stack Arguments Stack Results
month (real number from 1 to 12)
1t year (real number > 1582) (none)

Notes: MYR draws the calendar for any given month and year (the
earliest allowable month is November, 1582).

A Calendar Demo 267

More Suggestions

Now that you've seen some working examples of 48 graphics, you may

be speculating on the infinite possibilities. Here’s a suggestion or two:

268

* The 48 has enough graphics power that you could come up with

agreatPAINT program or grob editor for it, with a display similar
to the one shown below. At a menu line, the user would select
from the available tools—and submenus would select different
brush or fill patterns for each respective tool. Avertical menu on
the right side could be used, via the arrow keys, for object/
variable management or other purposes. Then the rest of the
display would be a window into the grob, which could be scanned
as needed. The current grob would not reside in PICT, but por-
tions of it would be displayed in PICT when being edited.

PAINT would use KEY and WAIT to redefine the keyboard as ap-
propriate. And note that several of the routines developed in this
book could be incorporated into PRINT, too.

= - T-[+

E=nor

c00xgon
S010 EYT

]
21 o TERT

The only drawbacks—as with all graphics routines—are memory
use and speed. Consider those your challenges. After all, you're
the judge as to what’s acceptable and usable.

9: PROGRAMMABLE GRAPHICS APPLICATIONS

¢ Some of the most intriguing home video games are the role-
playing adventure games, where the hero negotiates some large
playing field, encountering monsters and other baddies.

Such a game on the 48, for example, could use an intricately
detailed 800x800 grob as the playing field, and dozens of little 8x8
grobs for the hero and the baddies. It wouldn’t be hard.

o[HF: 32 MP: 47 E1: 54!
B T
R R

YOU EMCOUNTER
3 FIREERLLZ.
ACTION?

¢ You've seen a checkers game. How about other familiar games
(Battleship, Tetris, hangman, cards, etc.)? Your only limits are

your imagination (and spare time).

J{)L OHC‘-‘

HEE L HHE

geoEane
O
= BATTLESHIP T

More Suggestions 269

10: GraprHICS BEYOND THE 48

(OR, “WHAT’s THAT FuNNY HOLE IN THE ToP OF MYy CALCULATOR?”’)

Of course, graphics on the 48 are nice in and of themselves, but their
utility increases when you can transfer them to other machines.

Printing Graphics on the Infrared Printer

Although it is possible to send low-level graphics commands to the
HP82240B infrared printer, it is faster and more efficient to use the
built-in commands PR1 and PRVAR.

PR1 prints the grob in Stack Level 1. PRVAR prints the grob whose
variable name appearsin Level 1. To print more than one grob, you can
use a list of variable names asthe PRVAR argument. Note that PRVAR
prefaces each object with a blank line and the variable name.

The HP 82240B printer can print only 166 dot columns. For a grob
wider than 166 pixels, the printer will print the graphic in strips, with
“cut here” dotted lines separating the strips, so you can paste them
together later. You can avoid this problem if you have an Epson-
compatible or PCL-compatible printer (keep reading...).

To print the text representation of a grob, (GROB x y ddd...), it’s best

to convert the grob to a string, a list or a program, and print it via PR1
(or, better yet, upload it to a personal computer and print it from there).

Printing Graphics on the Infrared Printer 271

Printing Graphics on a Larger Printer

To print a graphic on a larger printer, you must translate the grob from
48 language into a language that the larger printer can understand.
Recall from Chapter 4 that a grob is an object of the format

GROB x y bbbbbb....

where x and y are the width and height, respectively, in pixels,
and bbbbbb.... is a hexadecimal bitmap of the grob—in the 48’s
“reversed” notation.

Before you can print the grob, you must separate these three pieces of
information for the printer. This program takes a grob from Stack
Level 1 and separates the information into its three parts on the Stack:

ODISSECT
& ESTIR DUP SIZE 6 SWAP SUB
FOR n

DUP DUP " " POS SWAP OVER

1 - 1 SWAP SUB 0OBJ>

ROT ROT 1 + OVER SIZE SUB
NERT

Checksum: # 4886¢d Bytes: 187

Stack Arguments Stack Results

3: x (a real number)

y (a real number)
GROB x y bbbbbb.... bbbbbb....(a string)

272 10: GrapHICS BEYOND THE 48

Now, you’ll also recall from the discussion in Chapter 4 (see page 97)
that each nybble in the bitmap is presented with the bits reversed from
the normal convention.

Here’s a table that shows the translation between the 48 bitmap and
a “right-reading” bitmap:

48 nybble reversed “right-reading”
hex value Dbit pattern bit pattern hex value
B 0000 0000 0
1 0001 1000 8
P 0010 0100 4
3 0011 1100 C
4 0100 0010 2
9 0101 1010 A
6 0110 0110 6
7 0111 1110 E
8 1000 0001 1
9 1001 1001 9
A 1010 0101 5
B 1011 1101 D
C 1100 0011 3
D 1101 1011 B
E 1110 0111 7
F 1111 1111 F

Notice the symmetry in the table: E translates to 7, and 7 translates
toE, for example. Also,8,6,9 andF translate into themselves, because
their bit patterns are symmetrical.

Printing Graphics on a Larger Printer 273

From the translation table given above, you can assemble a string to

represent the translated bitmap. The string is composed of the entries
in the “right-reading” column of the table: "B84CZA6E19303B7F".
Thus, in a program, translating a nybble becomes as simple as

« ... "B123456/89ABCOEF"
"B84C2A6E19503B7F"
ROT POS OUP SUB ...

b

And you can build this sequence into a routine for translating bitmaps
of any size. The following program will take a bitmap string from Stack
Level 1 and replace it with a translated string:

TRANSLATE

« DUP SIZE
+ map len
« 1 len
FOR
"B123456/89ABCOEF" "B84CZAGE19503B7F"
map j Jj SUB POS DUP SUB
map j ROT REPL 'map' STO
NEKT

Mmap

Checksum: # 58829d Bytes: 171.5

Stack Arguments Stack Results
1z bbbbbb....(a string) bbbbbb....(a string)

Note: Togetyouroriginal stringback again, just execute TRANSLATE
a second time—the translation table is symmetrical.

274 10: Grapruics BEYOND THE 48

Formatting Qutput for the Printer

The most common printer protocols in use today are Epson and PCL.
Most printers—including laser printers—offer Epson compatibility,
either built-in or as an option. PCL is the Printer Control Language
used by all HP printers, including the HP LaserdJet and DeskdJet. Most
laser printers offer built-in PCL compatibility.

The main difference between the two protocols is that PCL uses raster
graphics—receiving data in 8-dot rows—while Epson uses column

graphics—receiving data in 8-dot columns:

PCL-Protocol Printers Epson-Protocol Printers

byte 1-| byte 2—‘ byte 3J l’)yte 1 byte2 byte3

Each byte here represents 8 dots* of graphic output.

In PCL, each bit represents one dot in a row, with the least significant
bit on the right. Bytes are sent to the printer as characters, so a row
of four black dots followed by four white dots would have a character

value of # 1111868686b (that’s # FBh or # 246d).

By contrast, in Epson, the least significant bit goes at the bottom of a
column of bits. Bytes are sent to the printer as characters, so acolumn
of four black dots atop four white dots would have a character value of

111168686b (that’s # FBh or # 248d).

*Dots are printer data, as opposed to pixels, which are display data.

Printing Graphics on a Larger Printer 275

So suppose you wanted to print this 19x15 graphics object:

On the 48, you would describe this object as

GROB 19 15

18FB40 166348 118448 9608840 960840
548158 5AB258 548150 500B56 548158
98F840 988840 116448 168348 18FB40

(rows are separated for clarity)

Running the bitmap string through TRANSLATE would then give you:

81FBZ0 B8eBCZ2@ BBB228 9SBB12B 9B@1Z2A
A2BBAB AS14A0 A2BBAB ABBBAB AZBSAD
91F120 9688120 BBB228 BEBCZB 81FBZA

276 10: GrapHIcs BEYOND THE 48

To successfully print the grob, a PCL printer would need to see a string
of the form "%& Pu..." where

% iS CHR(129) or 81h
O iSCHR(240) or FOh
IS CHR(32) or 20h (<space>)
P isCHR(134) or 86h
® jSCHR(12) or OCh (<Form Feed>)

As you can see, the PCL data string can be readily obtained directly
from the TRANSLATE’d bitmap string (compare for yourself).

On the other hand, an Epson printer would expect to see a string of the
form "Yuwss " where

Y iSCHR(255) or FFh

® §SCHR(0) or 00h (<NUL>)

® jSCHR(7) or07h (<BEL>)

® iSCHR(24) or 18h (<CAN>)
iISCHR(32) or 20h (<space>)

This Epson string is not so easy to obtain from the TRANSLATE d string.
In fact, it’s probably easier to write an Epson print program on the 48
which stores the grob in PICT and builds the Epson data string by
testing individual pixels.

Printing Graphics on a Larger Printer 277

Printer Control Codes

When printing graphics, you must send control codes to the printer,
warning it that the next batch of data it receives is graphics data
instead of text. Otherwise, your printer will act unpredictably.

For PCL printers, use these commands, each sent as a string:*

"<esc>*rA" (Start raster graphics)
"<esc>*bull..." (Printthe next “n” bytes asgraphics data. For your
19x15 grob, you'd repeat this string 15 times—once

for each row. The first part of the command, then,
would be "<Esc>*b3WzE <esc>*b3ps= "

"<cr><LF>" (Print the buffer, advance to the next line and
return to the left margin)
"<esc>*rB" (End raster graphics)

These PCL control codes are for the HP ThinkdJet, Quietdet, DeskdJet
and LaserdJet printers, and any other printers which understand PCL.

Keep in mind that your display grobs printed at 300 dpi will become
postage-stamp size. But on some printers, (for example, the DeskdJet
and Laserdet), you can select from different dot pitches. To change dot
pitches in PCL printers, use these commands.

"<esc>*¥t7OR" Set dot pitch to 75 dpi—DeskJet or LaserJet only)
"<esc>*t 1BBR" Set dot pitch to 100 dpi—DeskJet or Laserdet only)
"<esc>*#t 15BR" Set dot pitch to 150 dpi—DeskJet or Laserdet only)
"<gsc>#t 3BBR" Set dot pitch to 300 dpi—DeskJet or LaserdJet only)
"<Esc>*t96R" Set dot pitch to 96 dpi—QuietJet only—default)
"<gsc>*#L192R" Set dot pitch to 192 dpi—QuieteJet only)

*<ESC>isCHR (27) (“Escape”); <CR>is CHR (13) (“Carriage Return”); <LF>is CHR (10) (“Line Feed”).

278 10: GrarHics BEYOND THE 48

For Epson printers, use these commands, each sent as a string:*

"<esc>A8" (Set the line spacing to 8-dot rows)

"<eEsc>Knm..." (Print the next “n+(256xm)” bytes as graphics data.
For the 48, usually you’ll have less than 256 bytes
per row, so m=0. In the example grob, you have 19
columnsofdata, sonwill be CHR (19);you have 15
rows of data, so you’ll have to send such a string
twice: "<gsc>kemymmm H

and "<gsc>kuw "

The first two " ® in each string are CHR (19) and
CHR (0), respectively, and then the actual data
commences—with Yu®u® __ for example, in the
first string, as shown on page 277)

"<CR><LF>" (Print the buffer, advance to the next line and
return to the left margin)

"<gsc>2" (Reset the line spacing to 6 lines per inch)

These Epson control codes are for printers that print at 96 dpiin “single-
density” mode (<ESC>K selects “single-density” printing). The codes
will work with printers of other dot pitches, also—even with the 300-
dpi Epson emulation on most laser printers. But as you know, at that
resolution, your 131x64 display-sized grobs start looking like postage
stamps. You’ll need to modify your printing program to print a square
of several dots for each pixel in your grob.

For more information on printer control codes, consult the owner’s
manual for your printer.

*<ESC>isCHR (27) (“Escape”); <CR>is CHR (13) (“Carriage Return”); <LF>is CHR (10) (“Line Feed”).

Printing Graphics on a Larger Printer 279

The basic algorithm for a printer driver is as follows:

280

. Clear system flag —33, to route non-printing I/O through the

infrared port, and set system flag —34, to route printer output
through the serial port.

. Epson: Set the line spacing on your printer—typically 8 for most

Epson printers. PCL: Set the dot pitch, if applicable; enable
raster graphics.

. PCL: Use the “translation string” to translate the grob data to

a “right-reading” bitmap. Epson: Store the grob in PICT and
extract data, 1 column of 8 pixels at a time.

. Build the graphics data string for the first row of data. Preface

it with the appropriate printer control code (see previous page).

. Build data strings for all subsequent rows of data. Preface each

string with the appropriate printer control code, and append
them to the data string (for every case with the 48, the printer
control codes will be identical).

. Send the data string to the printer, making sure to end the line

with a <CR> only. Note that on the 48, the <CR><LF> is auto-
matic. But you can disable the <LF> by setting system flag —38,
executing@ TRANSIO, and then storing a null string ("") in the
fourth field of PRTPAR.

. Epson: Reset the line spacing to 6 lines per inch. PCL: End or

disable raster graphics; reset the dot pitch, if necessary.

. Restore system flags, if necessary.

10: GrapHICcs BEYOND THE 48

Avoiding Problems

Laser printersdon’t print to the paperuntil they receivea <Form Feed>,
which is CHR (12). If you're printing to a laser printer, you won’t see
any output until either the end of the page has been reached, or you
send a CHR (12) to the printer.

However, if you store this program, FF, in your HOME directory, then
you can send a <Form Feed> simply by executing FF, or by including
it in any program:

FF: « 12 CHR PR1 DOROP

*

Checksum: # 22456d Bytes: 34.5

It is strongly recommended that you use handshaking on both your
printer and the 48. This gives the printer a chance to say “wait a
minute, I'm busy” without either the 48 or the printer losing any data.
You can select XON / XOF F handshaking on the 48 by setting the fourth
parameter in the IOPAR reserved variable to 1 (for more information
on using IOPAR, see chapter 27 of the User’s Guide).

Printing Graphics on a Larger Printer 281

Two Sample Printing Programs

Combining all the above information into one place, you should be able
to create a program to suit your needs and your printer. Use these two
programs as examples.

PRGROB1
« DUP SIZE PICT RCLF (Save defaults)
STD (Select standard numeric notation)
2¢ CHR "AB" + (Set dot pitch to 8)
2¢ CHR "K" + (Beginning of data string)
ef CHR "z2" + (Reset dot pitch to default)
4] (Temporary storage variable)

+ gr ¥ 9y pictw flags dp8 dat re t

« gr PICT STO
-33 CF -34 SF -38 SF (IR I1/0, serial printing, auto LF)
dr8 PR1 DROP
¥ B*R 256 MOD CHR dat
OVER + 'dat' STO (Build <Esc>K to <esc>Kn)
% B*R SWAP NUM - 256 - CHR
dat SWAP + 'dat' STO0 (Build <esc>Knto <Esc>Knm)

nn (Initialize data string)

B yBR 8 ~ CEIL

FOR bigrow
dat + (Initialize line data)
B x B*R
FOR col
g ;t ' STO (Initialize column data)
FOR row (Test each pixel)
col R+B
bisrow 8 # row + R+B
¢ »LIST PIK? (Returns 1 or 8)
2 7 row — * % '"t' ST+ (Increment col. data)
NEXT (Next row)

282 10: GrAPHICS BEYOND THE 48

t CHR +

NEXT (Next column)
NEXT (Next big row)
PR1 DROP re PR1 DROP (Print grob, reset printer)

pictx PICT STO flass STOF (Restore previous states)

»

Checksum: # 61444d

Bytes: 949
Stack Arguments Stack Results
1: GROB x y bbbbbe.... (none)

Notes: PRGROB1 prints a grob on an Epson-compatible printer, de-
stroying PICT in the process.

Printing Graphics on a Larger Printer 283

« DISSECT TRANSLATE

284

PRGROBZ

(Get width, height and bitmap)

RCLF (Save previous states)
STD (Select standard numeric notation)
2f CHR "#t75R" + (Set dot pitch to 75 dpi—96 for QuietJet)
2f CHR "=rRp" + (Begin raster graphics)
¢ CHR "#rB" + (End raster graphics)
¢ CHR "=b" + (Beginning of data string)
5 (Temporary storage variable)

+ ¥ y map flass dprS beors endrg dat t

« -33 CF -34 SF -38 SF (IR1/0,...
B8 TRANSIO 'PRTPAR' DUP
3 18688 PUT 4 "" PUT ...serial printing, disable LF)
endrg PR1 DROP (Garbage collection on the printer)
dp?S PR1 DROP (Set dot pitch)
bearg PR1 DROP (Begin raster graphics)
map SIZE y ~
DUP 't' STO (Data string length per row)
dat SWAP 2 -~ + "I"
+ 'dat' STO (Build <Esc>bto <Esc>bnll)
'1' . (Initializedata string)
Y
FOR row
dat + (Initialize line data)
row 1 -t #1 +rouwt #
FOR char
map char
OUP 1 + SUB (Read bitmap for next 8 bits)
"#" SWAP + "h" + OBJ»
E"R CHR + (Add to data string)
STEP (Next character)
NEKT (Next row)
PR1 DROP endrg PR1 DROP (Prt. grob, end raster graphics)
12 CHR PR1 DROP (Form feed—optional)
flags STOF (Restore previous states)

10: GrapHIcs BEYOND THE 48

Checksum: # 23776d

Bytes: 995
Stack Arguments Stack Results
1: GROB x y bbbbbe.... (none)

Notes: PRGROBZ prints a grob on a PCL-compatible printer.

The program assumes that PRTPAR already exists in the
current directory.

Printing Graphics on a Larger Printer 285

The Hard Work’s Already Done

Fortunately, HP has already provided print routines that do all this for
you, in the form of two public-domain libraries called EPSPRINT . LIB
and PCLPRINT.LIB.

These libraries are available on the HP 82208C Serial Interface Kit
disk, orare downloadable from the HP Calculator Bulletin Board System
(BBS). Instructions for using the libraries are located in two other files
called EPSPRINT.TXT and PCLPRINT.TXT.*

Using EPSPRINT

Onceinstalled, the EPSPRINT library appears in the Library menu as
FId31. When selected, it shows this menu: FHFEEITIEEER

Pressing &7l modifies PRTPAR and system flags —33 and —34 to
send all printer output to an Epson-compatible printer over the serial
interface, using XxON/XOFF flow control. It uses a “hook” in the 48’s
operating system to activate the Epson graphics printer driver. Text
is output in the printer’s current font, and graphics is output at 60 dpi
(you can modify PRTPAR to set it to 120 or 240 dpi, but 240 dpi is not
recommended).

Pressing [di[dd returns PRTPAR and flags —33 and —34 to their turn-
on states, allowing you to continue using the infrared printer. You may
ignore [{di[d3d if you don’t use an infrared printer.

*For more information on the HP BBS, contact HP Calculator Technical Support at (503) 757-2004,
or look on the inside back cover of your User’s Guide.

286 10: GRraprHICS BEYOND THE 48

Pressing [EEEH with an argument of 1, Z or 4 causes EPPRT to use the
given magnification factor in printing graphics (the default is 2). For
example, 4 IEEEH causes every pixel in the grob to be printed as a
square, 4 dots x 4 dots.

All 48 printing commands except (ON{1/0) work normally with EPPRT.
(ONH0)does unpredictable nasties with your printer and should not be
used. Use PRLCD instead. Also, you can automate your Epson print-
ing somewhat by storing these routines in your HOME directory:

EPR1: « EPON PR1 EPOFF

®

Checksum: # 6487d Bytes: 32
EPRVAR: « EPON PRVAR EPOFF

»

Checksum: # 13816d Bytes: 34

Printing Graphics on a Larger Printer 287

Using PCLPRINT

The PCLPRINT library appears in the Library menu as [[dd@l] When
you select it, you see this menu: [[HFICEIEENTIMIEEEN

Similar to [HdI7] in EPPRT, [Id[{l also modifies PRTPAR and system
flags —33 and —34, but it does so in order to send all printer output to
a PCL-compatible printer over the serial interface, using XON/XOFF
flow control. It, too, uses a “hook” in the HP-48’s operating system to
activate the PCL graphics printer driver. Text is outputin the printer’s
current font.

(@33 acts much like [{did3 , allowing you to continue using the in-
frared printer (and likewise, you may ignore [[[fi]dd if you aren’t using
an infrared printer).

ITIM takes an argument from Stack Level 1 and uses it to set the
printer to the proper dot pitch. This could be 75, 150 or 300 dpi for a
Deskdet or Laserdet (doesn’t apply to other printers).

Unlike the [EEIM in EPPRT, the IRGIM in HPPRT can take any integer
as an argument for the magnification factor. Entering n [EGITH causes
every pixel in the grob to be printed asa square, ndots xndots (no default
is given, but it appears to be 1).

For a 300 dpi printer, 1 IREIEH will give you a postage-stamp sized image
of a 131x64 grob. A grob printed at £ [EEIHM is about the same scale as
an HP82240B printout, and a grob printed at 6 [EEIH is about the

same scale as the 48’s LCD display.

288 10: GrapHICSs BEYOND THE 48

All 48 printing commands except (ON{/0) work normally with HPPRT.
(ONH{0) has the same problems in HPPRT as in EPPRT.

However, when printing to a Laserdet series printer, note that the
LaserdJet prints to a buffer, not directly to the paper. The buffer is
printed onto the paper either when the buffer is full, or when a form-
feed character (ASCII # 12d) issenttothe printer. Soifyou’re putting
several graphics on one page, be sure to send a CR (there’s a Il il key
in the PRINT menu) after each grob to provide some white space.

Whenyou’reready toeject the page,you'llneedtosenda<Form Feed>
character to the printer (you can use your FF program to do this).

Also, you can automate your PCL printing somewhat by storing the
following two routines in your HOME directory.

HPR1: « HPON PR1 HPOFF FF

®

Checksum: # 32965d Bytes: 37.5

HPRVAR: « HPON PRVAR HPOFF FF

®

Checksum: # 32188d Buytes: 39.5

You may omit the FF’s in these two routines if you’re not using a Laser-
dJet, or if you wish to put multiple printouts on one page.

Printing Graphics on a Larger Printer 289

Printing Graphics on a Pen Plotter

With the advent of high-resolution, wide-carriage, color dot-matrix
printers, pen plotters seem to be disappearing quickly. Still, a pen
plotter can be used as a graphics output device. The algorithm for a
plotter driver is very simple—and fast, since pixels can be printed “on
the fly,” without waiting to build large graphics command strings.

The basic algorithm for a plotter driver is as follows:

1. Set the pen width and pixel spacing for the plotter—typically 0.3
mm or 0.65 mm.

2. Either use TRANSLATE to translate the grob’s data to a “right-
reading” bitmap, and then process the bitmap; or store the grob
in PICT, and scan PICT, pixel by pixel.

3. With pen UP, scan the paper, row by row. At each pixel location,
put the pen DOWN ifthe pixel is “dark” in thatlocation, and draw
a small square. Then put the pen UP again to resume scanning.

You may also wish to draw an outline box around your grob after it is
completed.

290 10: GrapHICS BEYOND THE 48

Grobs and Other Computers

Since integrated text and graphics are taken for granted on computers
these days, it would be nice to be able to include grobs in your computer
work.

For example, if you’re writing a lab report on your PC and have some
important data stored in your 48, you can upload the numeric data to
your computer, but you might also want toinclude the impressive graph
you made on the 48 to avoid having to duplicate it in a spreadsheet.

Or suppose your report contains several long, involved equations like
the ones in Chapter 3 in this book. Using the two-dimensional EW
version is an easy way to get “textbook” notation in your report without
having to buy the mathematics add-on for your word processor.

By virtue of their (admittedly) superior raw computing power, con-
version of raw grobs to computer-format graphics is best done by the
computers. DISSECT and TRANSLATE are trivial on a PC, but the grob-
to-graphics conversion problem is complicated by the fact that there
doesn’t yet exist a standard computer graphics format.

Here, Hewlett-Packard comes to the rescue again. HP has developed
programs called GROB2TIF .EXE and TIF2GROB.EXE for MS-DOS
computers, GROBer for Macintosh computers, and GRAB48.EXE for
MS Windows®.

Printing Graphics on a Pen Plotter /| Grobs and Other Computers 291

GROB2TIF .EXE converts grobs to TIFF files, which can be used, or at
least converted into something else, by the most popular word-process-
ing and desktop-publishing programs. TIF2GROB . EXE converts TIFF
files to grobs for use on the 48.

The GROBe r allows you to convert grobs to Macintosh graphics for use
with any Macintosh package, and to convert Macintosh graphics to
grobs. Some ofthe finest 48 graphics to appear to date were taken from
the Macintosh.

GRAB4 8 turns your PC into a “virtual HP82240B printer,” one that re-
ceives 82240B graphics commands and turns them into an image in
MS Windows®. You can then print the image, save it in a variety of
graphic file formats, or cut it and paste it into other Windows applica-
tions. If you have GRAB48 .EXE, you may not need the HP82240B
infrared printer,the EPSPRINT.LIBorPCLPRINT.LIBlibraries, or
the GROB2TIF .EXE utility—and GRAB48 .EXE is free!

GROB2TIF .EXE is available on the HP82208C Serial Interface Kit
disk for MS-DOS machines. The GROBer is available on the HP82209
Serial Interface Kit disk for Macintoshes. Both of these programs are
also available from the HP Calculator BBS (see the footnote on page
286).

TIF2GROB.EXE and GRAB48.EXE are available only from the HP
Calculator BBS.

292 10: GrapHIcs BEYOND THE 48

Graphics Between Two 48’s

It’s hard to think of a serious use for two-machine graphics besides
games or cool-looking demos, but some people take their games and
their demos very seriously.

As you’ve seen with the CHKRS program, it is quite straightforward to
create some two-player games on the 48, with two machines connected
via IR or the serial port.

Awell-behaved game program shows the board from the player’s point
of view and passes a token to keep track of whose move it was. Askilled
game program checks for invalid moves (such as moving backwards in
checkers) and allow for complex moves (such as double-jumping in
checkers), and—of course—it would keep score.

Graphics Between Two 48’s 293

Final Thoughts

This book is only the beginning. It has shown youjust a few of the great
graphics tricks the 48 can do, and how you can use these graphics tricks
to your advantage. And in the process, hopefully, you’ve become more
comfortable with the machine, by working through the exercises and
trying the applications (and maybe you also have a better idea of how
to use the EquationWriter, the Solvers and the Plotter).

All that remainsis for you to find real uses for these tools—applications
in your job, studies or hobbies. As you use the 48, you will undoubtedly
become more skilled with it and thus it will become the more useful to
you in return. Again, remember what your high school band teacher

told you:

“Proficiency comes through practice.”

Above all, have fun!

294 10: GrapHIcs BEYOND THE 48

Graphite Grobs

Famous 0a4mea(GCookies *

% Cup veqetable shortering

’ Cup Firmly packed brown sugar
% Cup grunu[aM Sugar

[egg

,/‘1 Cu.p waler

(-{‘ea.;pem chd{a

3 Cups rolled odtts, uncooked

| Cup all-purpose HMour

(teaspoon salt (oph'nna’)

'/2 *ta}foom bdkiq,, soda

Preheat ovento 350°F, Beat together shorlening, sugars, eqq,
water and vanilla until creamy . Add combined remaining
injrediwﬁ'; mix well.

(Finall,, Valerie saps o foldin 1 Cup of semi-sueet
chocolate olnip;)

Drop by rounded -}easfoon&(s onto greasd cooliie cheek.

Bake at 350°F $or 12 +o 5 minmlt}.

¥ Qecipe covl"'ety o the Quaker Oals company.

Final Thoughts

295

APPENDICES

A: Review of the Hexadecimal
Number System

“Hexadecimal” is a word derived from the Latin roots for six (“hexa-")
and ten (“decimal”). It is a form of expressing numbers in base sixteen.
“Hexadecimal” is often abbreviated to “hex.”

The Decimal System as an Example of Counting Systems

Most human beings count in the decimal, or base-ten, number system
(though you may have heard also of the binary, or base-two, number
system). In base ten, you use the numerals from 0 to 9. To count past
nine, you need some way to indicate the overflow, so you use a second
digit—the “tens” digit—to count the “number of overflows.” Likewise,
when you run out of digits to express the “overflows,” you add a third
digit—a “hundreds” digit—to count the “overflows of overflows.” And
so on, until you have enough digits to express any given number.

So, proceeding from right to left, the first digit represents the number
of “ones,” or 10° in the number; the second digit represents the number
of whole sets of ten (10'); the third digit represents the number of whole
sets of a hundred (10?), etc. Thus, the nth digit represents the number
of whole sets of 10*! in the number.

So you could think of the number 3401 as:

3x10% + 4x10% + 0x10' + 1x10°

A: Review of the Hexadecimal Number System 297

Significant Digits

Obviously, changing the leftmost digit in the number has a greater
effect on the number than changing the rightmost digit. That is, the
leftmost digit is the most significant digit; and the rightmost digit is
the least significant digit. For example, if you see a house selling for
$93,499 and one selling for $93,500, you’d say they both cost the same.
One dollar isn’t very significant compared to ninety thousand dollars.

The right-to-left order of increasing significance is a convention used
in other place-value numbering systems, including binary and hexa-
decimal.

Hexadecimal Values

Computers count in binary, using only the numerals 0 and 1. That’s
difficult for humans to comprehend and uses a lot of space in displays
and printouts. A more convenient way to organize binary data is to
group the binary digits (bits) together in groups of four, and assign each
group a single value.

Look at the table on the opposite page. You’ll see that a group of four
bits can range from 0000, with a value of zero, to 1111, with a value of
fifteen. That’s sixteen values, which is why sixteen—hexadecimal—is
such a convenient number base to use when working with computers.

298 APPENDICES

Of course, when expressing number values, you have only ten conven-
tional Arabic numerals (0-9). But when counting in hexadecimal, you
must go all the way to fifteen before adding a second numeral as a
“counter of overflows.” So the letters A-F are used as numerals to rep-
resent the values ten through fifteen in hexadecimal.

Decimal Binary Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

In the 48, integer objects can be expressed as binary, decimal, hex or
octal (base eight). The # sign before the number means that it’s an
integer, and the b/dh/o suffix indicates its number base. You can con-
vert these integer number formats from one base to another using the
48’s MTHIEEE@ menu, or use the following table (for the corresponding
48 display characters, use (CHARS), or see page 2-5 in the UG.):

A: Review of the Hexadecimal Number System 299

Binary Decimal Hex. Binary Decimal Hex.
0ooboBBBb # 6BBd # BBh # 0010bBBBL # B32d # 26h
0ooBBEBlb # BB1d # Blh # 00l600Blb # B33d # 21h
0ooobBl1Bb # BB2d # B2h # 00l06016b # 634d & 22h
0oooBBl1lb # BB3d # B3h # 0oleeellb # 635d # 23h
00oBB1GBb # BB4d # B4h # 0016016Bb # B36d & 24h
0oooB1Blb # 8B85d # B5h # 001681681b # B3°/d # 25h
00oBB116b # BBed # B6h # 00160116b # B@38d # 26h
000BB111b # BB7d # B6°¢h # 00160111b # B39d # 2/h
0oooloBBb # 6B8d # BBh # 001016660 # B4B6d # 2Bh
00BB16B1D # B689d # BSh # 001016681b # B41d # 25h
00oB1B16b # Bl6d # OAh # 00181616b # B42d # 2Ah
00BB1611b # B11d # BBh # 00181811b # B43d # 2Bh
00BB116Bb # B12d # 6BCh # 00161166b # B44d # 2Ch
00BB1161b # B13d # B0h # 0016811681b # B45d # 20h
00BB1116b # Bl14d # BEh # 00101116b # B46d # 2Eh
00BB1111b # B15d # OFh # 00181111b # B4/d # 2Fh
0bO10BBBL # Bled # 1Bh # 001166BBb # B648d # 36h
00016BB1b # Bl7d # llh # 001166681b # B49d # 31h
00016B16b # B18d # 12h # 00116616b # B5Bd # 32h
00O16B11b # B19d # 13h # 00116811b # B51d # 33h
0001616Bb # B286d # 14h # 0011616Bb # B52d # 34h
000161681b # B21d # 15h # 00110181b # B53d # 35h
00016116b # B22d # 1l6h # 00116116b # B54d # 36h
00018111b # 823d # 1¢h # 00116111b # B35d # 37h
0bO1166Bb # B24d # 1Bh # 0011166Bb # B56d # 36h
00011661b # B8253d # 1%h # 601116681b # B85°d # 35h
00011616b # B26d # 1Ah # 60111616b # ©858d # 3Ah
0BB11011b # B27d # 1Bh # 00111611b # B839d # 3Bh
00B11166b # B828d # 1Ch # B6111166b # B6Bd # 3Ch
00011161b # 829d # 1Dh # 0681111681b # Beld # 3Dh
0BB11116b # B386d # 1Eh # 600111116b # Be2d # 3Eh
00011111b # 831d # 1Fh # 66111111b # B863d # 3Fh

300 APPENDICES

= SE SE S3E S 3 3 S3F S3F 3 S SF S S SE S S S S S S S 2 23 SE S S3E 23 S SE 3 S

Binary

81806066b
8160868681b
8106860168b
81808011b
81608106b
816868181b
816868116b
81888111b
81601806b
816018681b
816010168b
816810811b
81601166b
8168011681b
81601116b
816801111b
810166686b
810186081b
81816016b
B18160811b
B1818166b
81018181b
B1818116b
B18108111b
816811666b
8168116681b
816811816b
8168116811b
B16811166b
B18111681b
B16811116b
B16811111b

Decimal

Bodd
B65d

#

SE SE SE S 3 3 S SE S S S SE S SE S S S S eSS S e S e S e

B66d
B67d
B68d
869d
Bred
8rld
Bred
873d
B74d
873d
Br6d
aeed
Br8d
879d
88ad
881d
882d
883d
884d
885d
886d
B8ed
B88d
889d
89ad
B91d
892d
893d
894d
895d

SE SE S 3 3 S 3 SE 3 SF S3F SF SE SE S S S S S S S S S S S S S S S S S S

Hex.

46h
41h
42h
43h
44h
45h
46h
47h
48h
4Sh
4Ah
4Bh
4Ch
40h
4Eh
4Fh
96h
alh
9zh
a3h
24h
95h
26h
a¢h
98h
2%h
9Rh
9Bh
aCh
90h
9Eh
9Fh

= S SE SE SE SE 3 S 3 S S S S S S S S S S SE S S S S S S S e S S e

A: Review of the Hexadecimal Number System

Binary Decimal
011066866b # B96d
01188681b # B897d
B1166816b # B98d
B1166811b # B99d
01166166b # 1668d
01168181b # 181d
p1168116b # 182d
B1166111b # 163d
p1101666b # 1B84d
B1181681b # 1B5d
p11816816b # 1B6d
g1181811b # 187d
p1161166b # 168d
p1181181b # 189d
B1181116b # 116d
B1181111b # 111d
B1116666b # 112d
B11166881b # 113d
B11166816b # 114d
B1118811b # 115d
B1118166b # 116d
g11181681b # 117d
B1116116b # 118d
p1116111b # 119d
p1111666b # 126d
g11116881b # 121d
B1111816b # 122d
B1111811b # 123d
B1111166b # 124d
B1111181b # 125d
B1111116b # 12ed
B1111111b # 127d

SE 3= S SE 3= SE S S3F 3 3 S3F S 2 S 3= 23 2 S S S S3E 3 S3F 3 S 3F 3F 3 4 S S S3E

Hex.

6Bh
blh
62h
63h
bth
b3h
bbh
67h
68h
6Sh
6Ah
6Bh
6Ch
60h
bEh
6Fh
76h
71h
7¢h
73h
74h
7sh
76h
?7h
78h
7Sh
7Ah
7Bh
7Ch
?Dh
7Eh
’Fh

301

Binary Decimal Hex. Binary Decimal Hex.
106000BBb # 1286d # 86h # 101660666b # 168d # ABh
10600061b # 129d # 81h # 10166681b # 161d # Alh
10000016b # 138d # 82h # 10106816b # 162d # AZh
100066811b # 131d # 83h # 10166011b # 163d # A3h
16006166b # 132d # 84h # 10160166b # 164d # A4h
18008101b # 133d # 85h # 181681681b # 165d # ASh
10060116b # 134d # 86h # 10160116b # le6d # AGh
1066068111b # 135d # 87/h # 10168111b # 16/d # A7h
10001666b # 136d # 88h # 10101666b # 168d # ASBh
10001601b # 137d # 8%5h # 10161661b # 169d # ASh
10001616b # 138d # BAh # 10101616b # 176d # AAh
16601811b # 139d # B8Bh # 181016811b # 171d # ABh
10001166b # 148d # BCh # 10101166b # 172d # ACh
10001161b # 141d # 80h # 18101161b # 173d # ADh
10001116b # 142d # BEh # 168101116b # 174d # AEh
10601111b # 143d # BFh # 10181111b # 175d # AFh
10016666b # 144d # 96h # 10116806b # 176d # BBh
10016681b # 145d # 91h # 10116801b # 177d # Blh
10016816b # 146d # 9S2h # 10116816b # 178d # Bzh
10016811b # 147d # 93h # 101168811b # 179d # B3h
10010166b # 148d # 94h # 101168166b # 188d # Bdh
100168161b # 149d # 95h # 1681168161b # 181d # BSh
10016116b # 158d # 96h # 168118116b # 182d # Boh
160818111b # 151d # S¢h # 108118111b # 183d # Brh
10011606b # 152d # 9Bh # 18111666b # 184d # BSBh
10811661b # 153d # 9Sh # 168111861b # 185d # BSh
10011816b # 154d # SAh # 10111816b # 186d # BAh
16611811b # 135d # 9Bh # 16111811b # 187d # BBh
10011166b # 156d # 9Ch # 10111166b # 188d # BCh
10611181b # 157d # 90h # 10111181b # 189d # BOh
10811116b # 158d # SEh # 168111116b # 198d # BEh
10611111b # 159d # SFh # 18111111b # 191d # BFh

302 APPENDICES

SE SE S 3= SF S SE SE S SE S SR SE S S e e S S e S S S e S SE e S S S SE S

Binary

11800006
118866881b
11868818b
1160001 1b
11868188b
116680181b
116661168b
116680111b
118016668b
11681081b
1160810168b
11681811b
11681166b
11881181b
116681118b
11681111b
1181686806b
11816681b
118160818b
11816611b
118108188b
11818181b
11818118b
11818111b
11811668b
11811881b
11811818b
11811811b
11811168b
11811181b
11811116b
11811111b

Decimal

Hex.

192d
193d

#

SE S S S S S S SE S S S S S S S SE S SE S S SE S S e e

1944
195d
196d
197d
196d
199d
20ad
28l1d
28zd
283d
284d
285d
28ed
2@ed
2esd
289d
216d
211d
2l2d
213d
214d
215d
216d
2led
218d
219d
220d
221d
2zzd
223d

SE SE S3F S 3 S3E S S 3F 3 3 SE SE SE S S S S S eSS S S S SE S S S S S

Céh
Clh
CZh
C3h
C4h
Csh
Céh
Ceh
Céh
CSh
CAh
CBh
CCh
CDh
CEh
CFh
DBh
D1h
D2h
D3h
D4h
D5h
Deh
D7h
D8h
DSh
DAh
DBh
OCh
DDh
DEh
DFh

SE SE SE SE S SE S3E S3E 3 SF S SE S S SE SE S S S S S S S e S S SE S S S e

A: Review of the Hexadecimal Number System

Binary

11160006b
11186681b
11106816b
11108811b
11188166b
111881081b
11188116b
11188111b
11181666b
111816081b
111818168b
11181811b
11181166b
111811081b
11181116b
11181111b
111168666b
111168881b
111168816b
11118811b
111181686b
11118181b
111181168b
11118111b
11111886b
11111681b
11111818b
11111811b
11111166b
111111681b
11111116b
11111111b

Decimal

224d
223d

#

$E S SE S S SE 3E S S3E S3F SF SF 3= S S S S S S S SE Sk S S 2 Sk 3= 2 2

226d
eeed
228d
229d
236d
231d
232d
233d
234d
233d
236d
23¢d
238d
23%d
246ed
241d
242d
243d
244d
245d
246d
24ed
248d
249d
258d
2ald
292d
293d
294d
295d

SE S SE S S S SE S SE S SE SE S S S S S S S e S S S SR SR S S e S S S e

Hex.

EBh
Elh
EZh
E3h
E4h
ESh
E6h
E¢h
EBh
ESh
ERh
EBh
ECh
EDh
EEh
EFh
Féh
Flh
Feh
F3h
F4h
F3h
Féh
Feh
F8h
FSh
FAh
FBh
FCh
FDh
FEh
FFh

303

B: Graphics Operations and Commands

Setting/ cking Graphics Parameters
Operation Command
(Interactive) (Programmable)

-Eﬂa SIZE

D) 5FOE (0] I2E |
ETT « PPAR' PURGE
 [CES8|FEZET] PICT PURGE
PPAF [REZET] PICT DROP

m- »
| O |

R GEXeas] PPAF [IMDEP | INDEP

= ETes] OPT =

« PPAR 3 GET
»
m DEPND
(GJPLon) %Eﬁﬂﬂ
« PPAR 7 GET
%
PPiF | REZ | RES
0PT: [y
« PPAR 4 GET
»

oD IS « -31 CF
REVEETE »

304

Description

Returnstheheightand
width of the grob, in
pixel units (page 107).

Resetsplot parameters
to defaults (page 112).

Specifies independent
variable (page 114).

Recalls independent
variable (page 114).

Specifies dependent
variable (page 114).

Recalls the dependent
variable (page 114).

Specifies the plot reso-
lution (page 117).

Recalls plot resolution
(page 117).

Enables curve filling
(page 118).

APPENDICES

Operation Command

(Interactive) (Programmable) Description
PoTnxDEEEIEREN « -31 SF Disables the curve fill-
OPT: [(2]« CHE: S ing (page 118).

(= EXeas] PPAF: [(E&8] AHES | AXES Specifies intersection
of axes (pp. 108, 116).
« PPAR 5 GET Recalls intersection of
® axes (pp. 108, 116).
(= E¥es] PPAF [(Ea8] CENT CENTR Specifies the center of

PICT (page 115).

« PPAR 0OBJ* 6 DROPN Recalls center of PICT
DUPZ - 2 # DUP RE (page 115).
- PICT SIZE SWAP
OROP B*R 1 - ~ ROT
ROT + 2 - +

&

(=) PPk (588 =CALE SCALE
Sets the x and y plot-
ting scales (page 115).
« PPAR 0BJ+ & DROPN
SWAP - 18 *# C3R Recallsxand yplotting
PICT SIZE 1 - B*Rscales (page 115).
ROT SWAP -~ ROT ROT

B*sR 1 - ~ SWAP
»
(GEYGIeIS] PPAF [HFNG | XRNG
2 EENU0 Setsx-range (page 115).
« PPAR 1 2 SUB
RE EVAL Recalls x-range (p. 115).
»
G EYeN) PPAF: [VEMS | YRNG Setsy-range (page 115).

(2IPLOT] VY] v]>)

B: Graphics Operations and Commands 305

Command

(Programmable)

PPAR 1 2 SUB
IM EVAL

Operation
(Interactive)

&

PMIN
PPAR 1 GET

&

PMAX
PPAR 2 GET

&

@S] PICT | PO | PDIM

CPoDEEAGDEZE W
EroDEEFAGOEIE *H

Creation/Manipulation of Grobs

(PICTURE)(sTO) « PICT RCL
(PICTURE) HTL »
PICT | PICT [DEER)
(EW)(sT0) « B »GROB
»
(Pre) (A (vxT) (ED LCD*

306

Description
Recalls y-axis range
(page 115).

Sets PMIN (page 116).

Recalls PMIN (page
116).

Sets PMAX (page 116).

Recalls PMAX (page
116).

Changes PICT size or
user units (page 123).

Changesx-rng. (p.117).

Changesy-rng. (p. 117).

Puts PICT onto Stack
(pages 95, 119).

Turns equation into a
grob (pages 95, 119).

Turns Stack displayin-

toagrob (a “snapshot”)
(pages 95, 119).

APPENDICES

Operation Command

(Interactive) (Programmable)
(Pre) EATAEET] +GROB
GRS 5ROE [ELAN | BLANK

« GROB x y B
¥

GEE)5R0E [G0F GOR
G| GROE [GHOF GXOR
aROE REPL
LIZT | REPL
(PICTURE) K4k
SROE | ZUE | SuB
(PICTURE) NxTNxTD IETE
(PICTURE)
(PICTURE) (DEY
&JroT) (or PPLoT)ETEI ERASE
(PICTURE) [(qJCLEAR]
(PICTURE) HTi#(NnxT) ETHS
(Stack) (+) +
(Stack) (+/-) NEG

B: Graphics Operations and Commands

Description

Turns any object into a
grob (pages 95, 119).

Creates a blank grob
(pages 95, 119).

Superimposes one grob
upon another, OR’ing
pixels (page 120).

Superimposes one grob
upon another, XOR’ing
pixels (page 120).

Superimposes one grob
upon another, replac-
ing target grob pixels
(pages 120, 121).

Creates subgrob from

parent grob (pages 120,
121).

Erases (“blanks out”)
part of grob (page 121).

Erases (blanks out) all
of PICT (page 112).
Adds (GOR’s)two grobs

of same size (page 126).

Inverts a grob, toggling
each pixel (page 126).

307

Accessing, Viewing/Displaying Grobs

Operation Command
(Interactive) (Programmable) Description
(Stack) (€ PICTURE Enters graphics envi-
(Stack/CL) or GRAPH ronment (page 105).
Gy GXeas) ['Fifk | DRAW (Draws all or some of
DG [FAk | PICT (pages 95, 112).
(PICTURE) @]9 « { } PVIEW Enters scrolling mode
(EW) G« & (pages 32, 106).
(Scrolling) («),(a),(¥),») Scrolls through grob.
(pages 106, 129-130).
(Scrolling) Jumps to edge of dis-
ERUEONRUIR0) play or grob (pages 106,
129-130).
(Scrolling) (q]« Exits scrolling mode to
EW or graphics (pages
106, 129-130).
(Scrolling) Exits scrolling mode to
EW or Stack (page 130).
IZIII] TEXT Exitsgraphics environ-
(PICTURE)(CANCEL) ment (pages 105, 125).
GE9] ouT [PYIEK] PVIEW Viewsselected portions
of PICT (page 106).
EEID] F.0E [(Eas] +L O | *LCD Displays grob in Stack
display (page 100).
(Pre) HA A N7 BRI ANIMATE Displays grobsequence

308

(pp.- 121-122,150-152).

APPENDICES

Editing/Drawing on Grobs

Operation Command

(Interactive) (Programmable)
AUTO
D EXe13[(2 82K
(G o) CFift b4 DRAW
(=)PLon) [T
(G G [Fifii | DRAX
LAEEL LABEL

(PICTURE) IHII

FES PX>C
(Pre) I (vx7) EEGF C*PX
GER) FICT | EOY | BOX
(PICTURE) IHILAIEER

B: Graphics Operations and Commands

Description

Automatically rescales
y-axis prior to DRAW
(page 113).

Plots a curve in PICT.
When used in a pro-
gram, DRAW does not
erase PICT or draw
axes (pages 95, 112).

Drawsthex-and y-axes
(page 112).

Labels x- and y- axes (or
PICT boundaries), us-
ing current number
format (page 112).

Converts pixel coordi-
nates into user units
(page 123).

Converts user units
into pixel coordinates
(page 123).

Draws a box in PICT
(page 123).

309

Operation

(Interactive)
LINE

(PICTURE) RUimENI, 1=

G| PICT [TLINE

(PICTURE) B34l

GEQ] PICT | ARL |

(PICTURE) H34li

GS] PICT [aiPIHOM]|

(PICTURE) IFHIAEIT I EX

(Pre) IEANDEEE

(PICTURE) IHIAENT RN

E9] PICT (@] Plty

310

Command
(Programmable)

LINE

TLINE

ARC

PIXON

PIXOFF

PIX?

Description

Draws a line in PICT
(page 123).

Draws a line in PICT,
toggling pixels (page
123).

Draws acircle or arcin
PICT. isn’t pro-
grammable; use a 360°
arc (page 124).

Turns a pixel on (page
124).

Turns a pixel off (page
124).

Tests pixel status:

l=on HB=off
(page 124).

APPENDICES

Printin raphic

Operation Command
(Interactive) (Programmable)
PRl PR1

@ES|FFINT (3] PRL

G CQ|PFINT [FEYAF] PRVAR
EED|PFINT | PR=T | PRST
EORIPFINT [PEETEC PRSTC
« ... »STR
PRI ...
»

« ... 1 »LIST PRI ...

EYOR|PEINT [PRLED PRLCD

B: Graphics Operations and Commands

Description

Prints grob in Level 1,
in graphics mode (page
271).

Prints grob(s) named
in Level 1, in graphics
mode (page 271).

Prints the contents of
Stack—grobs in com-
pact mode:

Graprhics nxm

Prints a grob in text
mode. Note that a list
uses less memory than
a string.

Prints display. Note:
Do not use (ON-(10)

with EPSPRINT.LIB
or PCLPRINT.LIB
(pages 287, 289).

311

Miscellaneous Graphics Commands

Command

(Programmable)
PICT

Operation

(Interactive)
GRD)] PICT [PICT |

CLLCD

GEQ] OUT | bIzP DISP

EEO)] OUT |[FREEZ] FREEZE

9] OUT [r:5E] MSGBOX

[2lPLoT)(a) EiITH

PT4PE|

(PICTURE)
(PICTURE) IHH M

(PICTURE)
(PICTURE) [FET1

312

Description

Specifies the current
graphics object.

Use « ..PICT RCL...

b

toput contentsontothe
Stack (page 123).

Clears (blanks out) the
display (page 125).

Displays a line of text
(page 125).

Freezes all or part of
the display until next
keystroke (page 125).

Displays a messagebox
(page 125).

Offersaselection of plot
types; the [didd menu
selections are program-
mable (page 114).

Returns cursor coordi-
nates to Stack (p. 165).

Displays cursor coor-
dinates in user units.
(+), &) or any menu key
will restore menu (page
173).

APPENDICES

Operation Command
(Interactive) (Programmable)
(PICTURE)
(PICTURE) (D) R
(PICTURE)

(PICTURE) IET 7 EEAH

(PICTURE)

(PICTURE) IETH &) XN

(PICTURE) IR

PLOT |ERRPL
PLOT [HIZTP
PLOT

BARPLOT
HISTPLOT
SCATRPLOT

B: Graphics Operations and Commands

Description

Hides/restores Graph-
ics menu. (=) or any
menu key restores the
menu.

Marks current cursor
location for BOX, LINE,
etc.

Toggles cursor style—
overwrite vs. invert.

Menu of graphic Solver
functions (page 71).

Generates statistical
plots. Refer tothe HP
User’s Guide (UG),
chapter21, “Statistics,”
for more information.

313

Setting/Checking 3-D Graphics Parameters

Operation Command
(Interactive) (Programmable) Description

XVOL Sets x-range of view
YPAF | wY0OL volume (page 138).
(=) GXeas) OPT=

&

VPAR 1 2 SUB EVAL Recalls x-range of view
* volume (page 138).

an YVOL Sets y-range of view
i volume (page 138).

« VPAR 3 4 SUB EVYAL Recalls y-range of view
® volume (page 138).
[JPLOTINXTIEIL ZVOL Setsz-range of view vol-

YPAF ume, for WIREFRAME,

)] 0PT: [G) YSLICE and PARSUR-
FACE only (page 138).

« VWPAR 5 6 SUB EVYAL Recalls z-range of the
* view volume, for WIRE-
FRAME, YSLICE and
PARSURFACE only

(page 138).
(SJPLOTINXTIEIY XXRNG Sets x-range of sam-
WPRE [HEREN pling grid, GRIDMAP
EroDREVY) and PARSURFACE on-

ly (page 139).

& UPHR ¢ 8 SUB EVAL Recallsx-range of sam-
pling grid, GRIDMAP
and PARSURFACE on-
ly (page 139).

314 APPENDICES

Operation Command

(Interactive) (Programmable)
[]PLOT|NXT EILL YYRNG

WPAFR [YYEM |

D EE] 0PT= [GUU

[lPron) BRI
« WPAR 9 18 SUB EVAL
»

EYEPT

Description

Sets y-range of sam-
pling grid, GRIDMAP
and PARSURFACE on-
ly (page 139).

Recalls y-range of sam-
pling grid, GRIDMAP
and PARSURFACE on-
ly (page 139).

Sets x-, y- and z- coordi-
nates of eyepoint, for
WIREFRAME and PAR-
SURFACE only (p. 139).

« UPHR 11 13 SUB EVAL Recalls x-, y- and z- co-

proTRx iR NUMX
UPAF [RERHU:

2P

&

VPAR 14 GET

oD NUMY
UPAF [(ER[HUHM
RGO

&

VPAR 15 GET

B: Graphics Operations and Commands

ordinates of eyepoint,
WIREFRAME and PAR-
SURFACE only (p. 139).

Sets number of x inter-
vals to be plotted (page
139).

Recalls the number of x
intervals to be plotted
(page 139).

Sets number of y inter-
vals to be plotted (page
139).

Recalls the number of y
intervals to be plotted
(page 139).

315

C: User-Named Objects

Alphabetically (objects named by other objects are also listed here,

among the References)
Name PATH References Page
ADDB { HOME TOOLS } 159
AMRT { HOME G.CH3 } PV,FV,N, I,PMT 84
TVoM
ARROW { HOME TOOLS PICS 128
BEGEND { HOME G.CH3 } VIEWP 58
BIG { HOME TOOLS PICS } 128
BIGSINE { HOME TOOLS PICS } 130
BKING { HOME TOOLS PICS } 239
BOLOID { HOME TOOLS % Y 148
BPIECE { HOME TOOLS PICS } 239
BSTEP { HOME TOOLS } 151
BULLDOZER { HOME TOOLS } DOZDATA 230
CALEND { HOME TOOLS } MYR 264
CHKRS { HOME TOOLS } Flags, SETUP, 240
REDRAW, GLABEL,
MYMOVE, THMOVE,
LAYOUT
COMBINE { HOME TOOLS } 151
CONTOUR { HOME TOOLS } ARRAY 223

316 APPENDICES

Name

CTR

CsL
DIODE
DISPLAY
DISSECT
DOZDATA
EGGS
EMPTY
EPR1
EPRVAR
FF
FOURIER
FOYRY
Fruit

G.CHZ
G.CH3
GAND
GLABEL
GL{
GL-+

[T TR T Y . TR T . R TR B T B B . B]

Lo T o R . IR . B . R

HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME

HOME
HOME
HOME
HOME
HOME
HOME

C: User-Named Objects

PATH

TOoOL®
TooL®
G.CH3
TOoOL®
TOOL®
TOOL®
TOOL®
TOOL®
TOOL®
TOOL®
TOOL®
TOOL®
G.CHd
G.CH3

TOOL®
TOoOL®
TooL®
TooL®

}
}

PICS }

PICS }

PICS }

e R R

L L

References

IV, Vb, Io

A, Nmax, w, t
f,A, N, Nmax, w, t

CSTA, APPLES,
CSTO, ORANGES,
TOTAL

RODB

165
260

67
128
272
229
144

91
287
287
281
218

34

42

25
41
126
157
158
158

317

Name

GRAF K

GSIZE
HILITE
HPR1
HPRVAR
HYP
IdealGas
IdealGas?
IDIDA
Shopping
M1

Me

M3

M4
MAKEFACE
METER
MkAxis
MKBOARD
MOTION
MOVEIT

318

HOME

HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME
HOME

PATH

ToOL®

TOOL®
TOOL®
TOOL®
TOOL®
TOOL®
G.CH3
G.CH3
TooL*
G.CH3
G.CH3
G.CH3
G.CH3
G.CH3
TOOLS
TOOL®
TOOL®
TOoOL®
G.CH3
TOOLS

e e e e I Y SR L Y " R

PICS }
}
}
}
}

References

SEE, STOPIC,
RCLPIC

FF

FF

K, Y
P,V,n,R, T
p,V,n,R, T
VD, VG, Vp, Vbi
Fruit, Wagon
y,ul, a,t

%, %8 vl u t
w,xB,u t a
y,uB, a, %, xl

MeterFace

BOARRD
M1, M2, M3, M4

LAYOUT, C-L,
RPIECE, BPIECE
RKING, BRING,

99
255
289
289
142

46

51
219

59

62

62

62

62
180
174
203
261

62
258

APPENDICES

Name PATH References Page

MOA { HOME G.CH3 } Per, VIEWP 58
MULTIPLOT { HOME TOOLS % SIV,VALS 216
MY { HOME TOOLS } CX, CY, PX, PY 162
MVl { HOME TOOLS } NUDGE 184
My18 { HOME TOOLS } NUDGE 186
Myall { HOME TOOLS % PSIZE, ADDB, 188
Cursor
MYMOVE { HOME TOOLS } SELECT, VALID, 248
MOVEIT
MYR { HOME TOOLS } 266
NORMAL { HOME TOOLS PICS } 128
Now? { HOME TOOLS } Nutime, &t 202
NUDGE { HOME TOOLS } Cursor, RDDB 183
OFF1 { HOME } TOOLS, TITLE,PICS 170
PICS { HOME TOOLS } 89
PLANE { HOME TOOLS } Z, %Y 217
PL4D { HOME TOOLS } 148
POINT { HOME TOOLS % DAPar 181
Pr8 { HOME TOOLS } 204
PRANIM { HOME TOOLS % 150
PRGROB1 { HOME TOOLS } 282
PRGROBZ { HOME TOOLS } DISSECT, 284
TRANSLATE

C: User-Named Objects 319

Name PATH References Page

PSCAN { HOME TOOLS } 181
PSCN { HOME TOOLS } 190
PSTRIP { HOME TOOLS } DAPar, 8t,Nxtime, 199

Pr8, Now?
R { HOME G.CH3 } 46
RCLPIC { HOME TOOLS } 127
REACTOR { HOME G.CH3 } p,V,n,R, T,RERDP 54
RERDP { HOME G.CH3 } 53
RERDY { HOME TOOLS % 195
REDRAW { HOME TOOLS } BOARD, LAYOUT, 247

C+L, RPIECE,

BPIECE, RKING,

BKING
RKING { HOME TOOLS PICS } 239
RLC { HOME G.CHZ } v,L,R,C,t,1 35
RLCEXP { HOME G.CH2 } v,L,R,C,t,Io,s 35
RLCPER { HOME G.CH2 } v,L,R,C,t,Ao,u 35
ROKY { HOME TOOLS } 142
RPIECE { HOME TOOLS PICS } 239
$SIZE { HOME TOOLS % 100
SCAN { HOME TOOLS } Cursor, MV1,MY1B, 180

Myall, PSIZE

320 APPENDICES

Name PATH References Page

SCN { HOME TOOLS } Flass, PY,PX,CK, 191
CY, v, PYU
SEE { HOME TOOLS } 98
SELECT { HOME TOOLS } LAYOUT,HILITE, 252
CsL
SETUP { HOME TOOLS } PSIZE, Cursor 182
SINE { HOME TOOLS PICS } 91, 129
SSTEP { HOME TOOLS } 151
STARTUP { HOME TOOLS } BOARD, MKBOARD, 244
GL{, GLABEL,
LAYOUT
Step { HOME G.CH3 } K, X8 64
Step2 { HOME G.CH3 } R, nE 65
STOPIC { HOME TOOLS } 127
STRIP { HOME TOOLS } Flags, DApar 197
THMOVE { HOME TOOLS } MOVEIT 250
TINY { HOME TOOLS PICS 128
TITLE { HOME TOOLS PICS 140
TOOLS { HOME } 89
TPIR { HOME TOOLS } 124
TRANSLATE { HOME TOOLS } 274
TRRY { HOME TOOLS } 144
TRYIT { HOME TOOLS } 142

C: User-Named Objects 321

Name PATH References Page

TVaM { HOME G.CH3 } PY.PMT, I,N,FV 49
TVMZ { HOME G.CH3 } PV, I,Begin?,Per, 56
PMT, N, FV, VIEWP,
MQA, BEGEMND
VALID { HOME TOOLS } WHOZAT 256
VIEWP { HOME G.CH3 } Per, MOA, Besin™® 58
VM { HOME TOOLS } DApar, MAKEFACE, 208
CTR, POINT
lagon { HOME G.CH3 } LOAD, WT.A, 59
APPLES, WT. O,
ORANGES
WHOZAT { HOME TOOLS } LAYOUT 260
#PAN { HOME TOOLS } VPAR 146
YPAN { HOME TOOLS % VPAR 147
ZPAN { HOME TOOLS } VPAR 147

322 APPENDICES

By Directory (Last?*First)

Directory PATH

i HOME }

i HOME TOOLS }

C: User-Named Objects

Name

OFF1

TOOLS
G.CH3
G.CHZ

HPRVAR
HPR1
EPRVAR
EPRI
PRGROBZ
PRGROB1
FF
TRANSLATE
DISSECT
YR
CALEND
MKBORRD
CsL
WHOZAT
MOVEIT
VALID
HILITE
SELECT
THMOVE
MYMOVE
REDRA
STARTUP
CHKRS

Directory PATH Name

{ HOME TOOLS ¥ BULLDOZER

(cont.)

CONTOUR
1DID8
FOURIER
PLANE
MULTIPLOT
POINT
MAKEFACE
VM

Pr8
MkAxis
Now?
READY
PSTRIP
STRIP
My

SCN
PSCN
Mall
Mvy1@
Myl
NUDGE
SETUP
PSCAN
SCAN
CTR
ADDB
GL+

323

Directory PATH

i HOME TOOLS }

324

(cont.)

Name

GL!
GLABEL
COMBINE
BSTEP
SSTEP
PRANIM
BOLOID
PL4D
ZPAN
YPAN
»PAN
TRRY
EGGS
TRYIT
HYP
RORY
GRAFX
RCLPIC
STOPIC
GAND
TPIR
$SIZE
GSIZE
SEE
PICS

Directory PATH

{ HOME TOOL: PICS }

Name

BKING
RKING
BPIECE
RPIECE
DOZDATA
METER
TITLE
BIGSINE
ARROW
DISPLAY
TINY
NORMAL
BIG
EMPTY
SINE

APPENDICES

Directory PATH Name

{ HOME G.CH3 } AMRT
DIODE
Step2
Step
MOTION
M4
M3
MZ
M1
Shopping
Wagon
BEGEND
MOA
VIEWP
TVMe
REACTOR
REARDP
IdealGas2
TVoM
R
IdealGas
Fruit

{ HOME G.CH2 } RLCPER
RLCEKP
RLC
FOYRY

C: User-Named Objects 325

Index

(Entries do not include user-named objects—see Appendix C)

B, 111112, 114

Adding two grobs, 126, 304

Algebraic notation, 9, 25, 27

IEMW, 81-82

Analog, 205

Analytical functions, 31

ANIMATE, 121, 150-152

Apples and oranges, 42, 59, 79

ARC, 124, 173, 304

[, 78

ATICK, 116

AUTO (see also _AUTOSCALE), 111-
112, 304

AUTOSCALE, 12, 70, 111

AXES, 116, 118, 304

Axes, 11, 108-110

Band teacher, high school, 26, 39, 294
Battleship, 269
Bitmap, 91, 96-97, 273
BLANK, 95, 119, 121, 140, 304
BOX, 101, 123, 166, 171, 304
EEH, 70, 75
Bugs, 22
clock display, 178
Bulldozer, 228
BYTES, 177

326

Calendar, 262
Centering a plot, 115
CENTR, 115, 304
Checkers, 232
Checksum, 177
EEN, 14, 124, 165, 173, 304
CLLCD, 125, 304
Clock display bug, 178
THA, 118, 304
Command Line, 31-32, 39
CONST, 46
Constants Library, 46
Contour plotting, 220
Converting grobs, 291-292
Cookie(s), 21, 32, 87, 101, 129, 295
Current equation (see EQ)
Curve filling, 110-111, 118
Custom menus:
containing icons, 101-103
in MES, 81-82
in Solver, 51-54
including programs in, 53-54
SYSEVALs, 102-103
C*PX, 93, 123, 277

APPENDICES

| DEL WAL
PICTURE environment, 121
programmable equivalent, 121
DEPND, 114, 272
der(FNJ, 68
Diode, 66-67
equation for, 67
Diode (cont.):
ideal vs. real, 66
DISP, 125, 304
Dot spacing, 271-289
[TEY, 15, 17, 124, 165, 304
ISl 15, 124, 304
DPI, 286-289
DRAW (see also AUTO), 11, 95, 111-
112, 304
DRAX, 111-112, 116, 304
duplicate variables, 50

East, 228-229

Easy Course on HP 48, 20

(see PICTURE EDIT menu)
EPOFF, 286

EPON, 286

EPSPRINT.LIB 286

EQ (current equation), 42, 43, 111
N, 112

Index

EquationWriter, 9, 24-39, 95
ease of use, 9, 27
examples, 10, 28, 33-37
exercises/self-test, 35-37
exiting, 31
rules of thumb, 30
Selection Environment, 32
speed, 25-26
stages of familiarity, 26
textbook notation, 9, 25, 27
use with algebraics, unit objects,
28-29
use with analytical functions, 31
vs. Command Line, 26, 31, 39, 56
ERASE, 11, 111-112, 117, 304
EW (see EquationWriter)
A (see Selection Environment)
A, 13
Extremum, 13, 73, 77
Eyepoint, 134, 139-140

&=, 75-76
Field-effect transistor, 219
EXE, 111, 118
Flags, 110-111, 118
Font sizes, 119, 157-163
Form feed, 281, 289
Fourier series:

with EW, 34

with MULTIPLOT, 218
Freehand drawing, 14, 16, 169-175
FREEZE, 125, 304
=, 75
IR, 13, 77

327

Games: Hexadecimal:

between two machines, 232 bitmap, 91, 96-97
playing field, 269 digits, 96-97
role-playing adventure, 269 number system, 297-303
sprites, 228 High school band teacher, 26, 39, 294
video, 269 HP Calculator BBS, 286, 292
GAND, 126 HP 48 calculator, 9, 23, 105, 132
Gas constant (R): HP 82240B printer, 271
EW example, 29 HPOFF, 288
Solver example, 46-47, 57 HPON, 288
GOR, 120, 174, 275 *H, 117, 274

GRAB48 .EXE, 291-292
GRAPH, 105 (see PICTURE)

Graphics between two 48’s, 232, 293 Icon, 101-103
Graphics cursor, 13, 14 Ideal Gas Law, 33, 45-46, 54
Graphics object (see grob) IFTE, 65
Grob, 16, 18, 89 Ill-mannered functions, 64
adding two together, 126, 275 INDEP, 114, 272
asicon, 101-103 Independent variables, 108, 114
bitmap (hexadecimal), 91 multiple, 182
converting to other picture formats, Indexed lists/matrices, 215, 227
291-292 ICEN, 112
creating, 16, 90-91, 95, 98 Input form, 10
default size, 92 Solver, 41, 43
definitions, 89-90 Plot, 71
memory requirements, 99-100 Instrument control, 193
in menus, 101-103 Integral inside Plotter, 78
inverting, 126 Intermediate results, 72
size, 91, 99-100, 103 Inverting a grob, 126
viewing in the Stack, 91, 95, 106 [E3d, 71, 73-74
BT, 119
GROBer, 291-292
GROB2TIF .EXE 291-292 Junk food, 21

GXOR, 120, 174, 304
*GROB, 95, 119, 304

328 APPENDICES

LABEL, 11-12, 109, 111-112, 118, 277
Labelling axes, 11, 109, 111-112, 156

LCD*, 119, 274
example, 17, 95
use in documentation, 17
LIBEVAL, 83 (see also SYSEVAL)
LINE, 123, 165, 173, 278
Linear motion, 62
Linked equations:
creating, 59-63, 81-82
in Solver, 59
limitations, 63
rotating with NXEQ, 60, 62
vs. Multiple Equ. Solver, 63, 79
*LCD, 106, 121, 276
2LIST, 151

Macintosh graphics, 291-292
MAG, 286-289

Memory, 22-23, 128, 236

MES (see Multiple Equ. Solver)
MINIT, 79-82

Mpar, 79

MSGBOX, 125

(see MSOLVR)

MSOLVR, 79

Multiple Equ. Solver, 63, 79-82, 85

NEG, 126, 275
North, 228-229
NUMX, 139
NUMY, 139
A, 60, 76-77

Index

(ON}HPRINT), 38, 287, 289
L, 125
LA, 109

Owner’s Manual (see User’s Guide)

PAINT (suggestion), 268
Parabola, 11, 13
PCLPRINT.LIR 286, 288
PDIM, 12, 123, 304
EEA, 123
PICT, 16-17, 90, 123, 304
purging, 90
recalling , 90, 95
storing, 90, 98
PICTURE EDIT menu, 14
PICTURE environment, 14, 304
entering, 14, 98, 105, 165, 275
Pixel:
coordinates, 304
turning on and off, 15, 304
Pixel number, 92-94
vs. user units, 92-94
format, 92
PIXOFF, 124, 304
PIXON, 124, 304
PIX?, 124, 304
PLOT menu, 111-113
Plotter, 9
example, 10
input form, 10, 111
Solver within, 13, 71-74
Plotter driver, 290
PMAX, 116, 172
PMIN, 116, 172

329

Polynomial, 3rd-degree in Plotter, 70
PPAR, 107, 111, 114-117, 304
contents and usage, 108-110
creating, 107
default values, 108
in each directory, 108, 123, 163,
165, 174
Printer:
Epson, 38, 275, 277, 279, 282, 286
HP 82440B, 38, 271
Infrared (IR), 38, 271
Laserdet/Deskdet, 275
PCL, 38, 275, 277, 278, 284, 288
Printer driver:
algorithm, 280
construction considerations, 281
control codes, 278
EPSPRINT, 286
HPPRINT, 288
plotters, 290
usage, 281, 286-289
Printing:
equation, 38
with MES, 81-82
with (oNH0), 38, 287, 289
with PR1, 38, 271
Printing grobs, 271-290
limitations of HP 82240B, 271
text representation, 271
PRLCD, 304
Programs inside Solver, 53
PRST, 304
PRSTC, 304
PRTPAR, 304
PRVAR, 271

330

PR1, 38, 271

, 111, 114, 135, 304
PVIEW, 98, 106, 124-125, 304
PX*C, 93, 123, 304

Quick Start Guide (QSG), 133-134

REPL, 120-121, 174, 275

in Selection Environment, 32
RES, 108, 117, 118, 304
, 304
Right-reading bitmap strings, 273
RLC circuit, series, 35-36
ROM versions, 23
ROOT, 13

in Plotter, 71-74

in a program, 79

vs. ISECT, 73-74

with multiple equations, 73
T, 46

Rotating a 3-D view, 141-143

Sacred variables, 81-82
SCALE, 115
Scanning inside a big grob, 178
Scrolling mode:
in EW, 106, 304
in PICTURE environment, 106,
129-130, 304

APPENDICES

Selection Environment (in EW):
1A, 32
3, 32-33
M, 32
AT, 32
ETA, 32
Serial Interface Kit, 286, 292
BIL, 78
Signal conditioning, 193, 206
EM, 118
Sine wave, 90, 92, 129, 218
SIZE, 304
, 13
vs. I, 75
Solver, 9, 40-87
acceptable forms of EQ, 51
as a programming language, 41
custom menus, 51-54, 56
customizing, 51
error message(s), 47
examples, 46, 49, 51, 53, 59, 62,
64, 66
ill-mannered functions, 64
in a program, 63, 83-84
in MES, 79-82
in Plotter, 13, 41, 70-78
including programs, 53
input form, 41, 43
linking equations, 59, 60, 62-63, 79
menu-based, 41-42
programmable commands, 41
protecting variables, 51
unit objects, cautions, 47-49
vs. programming, 9, 41, 87
(see Solver)

Index

South, 228-229

Step functions, 64

Stripchart, 193

SUB, 120, 304

Subexpressions, 30, 33

SYSEVAL, 102-103 (see also LIBEVAL)

Temperature units, cautions, 47-48
TEXT, 125, 304
Text in graphics, 157-164
Textbook notation, 9, 25, 27
Three-dimensional graphics, 132-153
eyepoint, 134, 139-140
rotating, 141-143
translating, 144
view plane, 134
view volume, 134, 138
VPAR, 138-139, 304
zooming and panning, 145-149
TIF2GROB.EXE 291-292
TIFF files, 292
Time Value of Money, 45, 49-50, 55-58
Title page, 169-170
TLINE, 123, 165, 304
Toolbox, 127, 131
TRANSIO, 280
Translating in 3-D, 144
Translation string, 273-274
converting grobs, 276
printing grobs, 273-276
Two-machine graphics, 293

331

Undocumented features, 101-103, 215
Unit objects:
use in EW, 29
use in Solver, cautions, 47-48
Unsupported features, 22
User units, 92-94
defined via PPAR, 108-110
disadvantages, 94
vs. pixel number, 92-93
User’s Guide (UQG), 21, 26, 30, 37, 121,
133, 220
User-defined derivative, 68-69

VERSION, 23
View plane, 134
View volume, 134, 138
VPAR, 107, 111, 138-139, 304
Voltmeter, 205

face, 171

Weird Al (see Yankovic)
Welcome screen, 169-170
West, 228, 229
Whetstone, Mr., 39

*W, 117, 274

x-range:

default, 92

setting, 11, 115
XON/XOFF, 281, 286, 288
XRNG, 11, 115, 172, 304
XVOL, 138, 304

332

y-range:

adjusting, 12
automatic setting, 10, 115
default, 92
Yankovic (see Weird Al)
YRNG, 115, 172, 304
YVOL, 138, 304

ELLTEL, 12, 70, 75
Zooming/panning in 3D, 145-149
ZVOL, 138, 304

APPENDICES

Reader Comments

We here at Grapevine like to hear feedback about our books. It helps
us produce books tailored to your needs. If you have any specific
comments or advice for our authors after reading this book, we’d
appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:
City, State:

How long have you had your calculator?

Please send Grapevine catalogs to these persons:

Name
Address
City State Zip

Name
Address
City State Zip

If you liked this book, there are others that you will certainly enjoy also
(and see also the comments on pages 20-21):

An Easy Course in Programming the HP 48G/GX

Hereisan Easy Coursein true Grapevine style: Examples, illustrations, and clear,
simple explanations give you a real feel for the machine and how its many features
work together. First you get lessons on using the Stack, the keyboard, and on how
to build, combine and store the many kinds of data objects. Then you learn about
programming—looping, branching, testing, etc.—and you learn how to customize
your directories and menus for convenient “automated” use. And the final chapter
is filled with example programs—all documented with comments and tips.

Algebra/Pre-Calculus Calculus
on the HP 48G/GX on the HP 48G/GX

Grab your calculator, grab this book, Get ready now for your college math!
and you're all set for math class. Youll Plot and solve problems with this ter-
getlots oflessons, examples and advice rific collection of lessons, examples and
on graphing and problem-solving with: program tricks from an experienced
classroom math teacher:
Functions (linear, quadratic, rational,
polynomial), trig, coordinate and ana- Limits, series, sums, vectors and gradi-
lytic geometry, conics, equationsoflines ents, differentiation (formal, stepwise,
and planes, inequalities, vectors. implicit, partial), integration (definite,
indefinite, improper, by parts, with vec-
You'll also get great programmed tricks tors), rates, curve shapes, function aver-
and tips for plotting and solving—all ages, constraints, growth & decay, force,
from an experienced classroom math velocity, acceleration, arcs, surfaces of
teacher. revolution, solids, and more.

For more details on these books or any of our titles, check with your
local bookseller or calculator/computer dealer. Or, for a full Grapevine
catalog, write, call or fax:

Grapevine Publications, Inc.
626 N.W. 4th Street P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.
Phone: 1-800-338-4331 or 503-754-0583
Fax: 503-754-6508

ISBN | Price*
.. . Books for personal computers ' .
0-931011-28-0 | Lotus Be Brief $9.95
0-931011-29-9 | A Little DOS Will Do You 9.95
0-931011-32-9 | Concise and WordPerfect 9.95
0-931011-37-X | An Easy Course in Using WordPerfect 19.95
0-931011-38-8 | An Easy Course in Using LOTUS 1-2-3 19.95
0-93 1011-40-X An Easy Course in Using DOS 19.95
,,,,,,, _ Books for Hewlett-Packard Scientific Calculators .
0—93 1011- 18 3 An Easy Course in Using the HP-28S 9.95
0-931011-25-6 | HP-28S Software Power Tools: Electrical Circuits 9.95
0-931011-26-4 | An Easy Course in Using the HP-42S 19.95
0-931011-27-2 | HP-28S Software Power Tools: Utilities 9.95
0-931011-31-0 | An Easy Course in Using the HP 48S/SX 19.95
0-931011-33-7 | HP 48S/SX Graphics 19.95
0-931011-XX-0| HP 48S/SX Machine Language 19.95
0-931011-41-8 | An Easy Course in Programming the HP 48G/GX 19.95
0-931011-42-6 | Graphics on the HP 48G/GX 19.95
0-931011-45-0 | Algebra/Pre-Calculus on the HP 48G/GX 19.95
0-93 1011-46 9 Calculus on the HP 48G/GX 19.95
""" - - Books for Hewlett-Packard financial calculators L
0- 93 1011 08 6 An Easy Course in Using the HP-12C 19.95
0-931011-12-4 | The HP-12C Pocket Guide: Just In Case 6.95
0-931011-19-1 | An Easy Course in Using the HP 19Bu 19.95
0-931011-20-5 | An Easy Course In Using the HP 17Bu 19.95
0-931011-22-1 | The HP-19B Pocket Guide: Just In Case 6.95
0-931011-23-X | The HP-17B Pocket Guide: Just In Case 6.95
0-931011-XX-0| Business Solutions on Your HP Financial Calculator 9.95
o : . Books for Hewlett-Packard computers G
0-931011-34-5 Lotus in Mmutes on the HP 95LX 9.95
0-931011-35-3 | The Answers You Need for the HP 951X 9.95
0-931011-44-2 | Making Connections: Data Communications w/the HP Palmtop 9.95
: : Other books
0-931011-14-0 | Problem-Solving Situations: A Teacher’s Resource Book 9.95
0-931011-39-6 | House-Training Your VCR: A Help Manual for Humans 9.95

Contact: Grapevine Publications, Inc.
626 N.W. 4th Street P.O. Box 2449 Corvallis, Oregon 97339-2449 U.S.A.
800-338-4331 (503-754-0583) Fax: 503-754-6508

*Prices shown are as of 8/6/93 and are subject to change without notice. Check with your
local bookseller or electronics /computer dealer—or contact Grapevine Publications, Inc.

About the Author

RayDepew is a very normal guy who happens to own an HP
48 and likes to write. Graphics on the HP 48G/GX is his
second published work. His other projects in various stages

of completion include a compilation of children’s stories,
additional software for the HP 48, and some musical com-
positions that may never see the light of day. To make some
money on the side, Ray works as an integrated circuit en-
gineer for Hewlett-Packard in Loveland, Colorado, where
he lives with his wife, 5 children, and a Dalmatian named
LazerdJet. When he’s not working, writing, or fixing up the
house, he likes to spend time in the Rockies, read, make
music, play with his family (and the dog), and eat oatmeal-
chocolate chip cookies.

If you have comments or suggestions about this book, he
would appreciate hearing them. You can write to him in
care of the publisher:

Grapevine Publications, Inc.
P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.

Graphics on the HP 48G/GX

Here is a fascinating look at the potential of that big display
on your HP 48G/GX. HP engineer Ray Depew shows you how to
build graphics objects (“grobs”) and then use them to customize
displays with diagrams, pictures, labels, titles, multiple plots,
games, and menu icons.

The book begins with a good, in-depth review of the Equation-
Writer, the SOLVE and the PLOT applications. Next, it guides
you through the locations and uses of the 48’s built-in graphics
commands, including the 3-D commands and animation. Then
you learn to build your own grobs and combine them into some
extensive application programs. There’s even a chapter that dis-
cusses transferring your HP 48 graphics to other computers or
printers.

So don’t miss this insightful—and fun—excursion into the
world of Graphics on the HP 48G/GX. It adds a whole new di-
mension to your use of this powerful machine.

ISBN 0-931011-42-b
51995 °

Grapevine Publications, Inc.

626 N.W. 4th St. P.O. Box 2449 ‘
Coruallis, OR 97339 U.S.A. 91780931 011429

	Cover
	Contents
	1: Introduction
	What This Book Is About
	Plotting a Simple Function
	Solving Within the Plotter
	Freehand Graphics
	Grobbing Around
	What Next?
	Notes on Using This Book

	2: The EquationWriter
	Preparations
	Opening Remarks
	So What Does It Do?
	Examples

	Using the EquationWriter
	The Selection Environment
	A Fourier Series Example

	Test Your Skill
	Other Things
	Closing Remarks

	3: The Solver
	Opening Remarks
	Preparations
	Apples and Oranges
	The Ideal Gas Law
	The Time Value of Money
	Customizing the Solver
	Linking Equations: Solving Several at Once
	Using the Solver on Ill-Mannered Functions

	Using the Solver Inside the Plotter
	The Multiple Equation Solver (MES)
	Programmable Use of the Solver (and MES)
	Review

	4: What’s a Grob?
	Opening Remarks
	A Clean Slate
	What Is a Grob?
	Pixel Numbers vs. User Units
	“Roll Your Own” Grobs
	The Hexadecimal Bitmap
	The SEE Program
	What Does a Grob Eat?
	The Grob as Icon
	Review

	5: Graphics Basics
	The Graphics Functions
	The Secrets of PPAR
	The PLOT Menu
	The [PRG]|GROB| Menu
	The [PRG]|PICT| Menu
	The [PRG]|OUT| Menu
	Other Graphics Commands

	Building a Toolbox
	Review

	6: Three-Dimensional Graphics
	The Basics
	Getting the Most Out of WIREFRAME Plots
	Choosing an Eyepoint
	Rotating the View
	Translating
	Zooming and Panning
	Plotting in Four Dimensions

	Review

	7: Graphics Improvements
	Opening Remarks
	Labelling the Axes
	Adding Text to Graphics
	Adding Graphics to Enhance Plots
	Review

	8: Freehand Drawing
	How to Do It
	Drawing a Voltmeter Face

	Review

	9. Programmable Graphics Applications
	Introduction
	Programmable Scanning Inside a Big Grob
	Generating a Stripchart
	An Analog Voltmeter
	Plots with Two Independent Variables
	A Contour-Plotting Program
	Driving a Bulldozer Around the Display
	A Friendly Game of Checkers
	A Calendar Demo
	More Suggestions

	10. Graphics Beyond the 48
	Printing Graphics on the Infrared Printer
	Printing Graphics on a Larger Printer
	Printing Graphics on a Pen Plotter
	Grobs and Other Computers
	Graphics Between Two 48’s
	Final Thoughts

	Appendices
	A. Review of the Hexadecimal Number System
	B. Graphics Operations and Commands
	C. User-Named Objects
	Index

