
Graphics on the

HP 48G/GX

By R. Ray Depew

(FRAPHICS

oN THE HP 48G/GX

by
R. Ray Depew

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

Thanks goes once again to Hewlett-Packard for their top-quality pro-

ducts and documentation. Thanksalsotothegangoncomp.sys.hp48

(you know who you are), to Charlie Patton for his assistance with 3-D

graphics, and to Jim Donnelly for his assistance with menu grobs.

Pen-and-ink illustrations by Robert L. Bloch.

© 1993, by R. Ray Depew. All rights reserved. No portion of this book

or its contents, nor any portion ofthe programs contained herein, may

be reproduced in any form, whether printed, electronic or mechanical,

without written permission from R. Ray Depew and Grapevine Publi-

cations, Inc.

Printed in the United States ofAmerica

ISBN 0-931011-42-6

First Printing — October, 1993

Notice ofDisclaimer: Neither the author nor Grapevine Publications, Inc. make any express or

implied warranty with regard to the keystroke procedures and program materials herein offered,

nor to their merchantability nor fitness for any particular purpose. These keystroke procedures

and program materials are made available solely on an “as is” basis, and the entire risk as to their

quality and performance is with the user. Should the keystroke procedures and program materials

prove defective, the user (and not the author, nor Grapevine Publications, Inc.,nor any other party)

shall bear the entire cost of all necessary correction and all incidental or consequential damages.

Grapevine Publications, Inc. shall not be liable for any incidental or consequential damages in

connection with, or arising out of, the furnishing, use, or performance of these keystroke pro-

cedures or program materials.

To my sweet wife, Valerie, who encouraged and

indulged me in this effort from the start, and whose

love and cookies helped me to finish it.

CONTENTS

1: INtroducCtion .ccccceeeeeecssccceceecceccesssssssssscescssscssssssssssosssssssssssssssssssces8

What This Book Is Aboutccoooviiiiiiiiiiiiiiieee,9

Plotting a Simple Function.........ccccooiiiiiiiiiiiine,10

Solving Within the Plotter........cccccccoiiiiiiiiiiiiiiii, 13

Freehand GraphiCs........cccovviieiiiiiiiiieieeeeercceee14

Grobbing Aroundccoooeeiiiiiiiiiiieeee16

What NeXt?..oee e e e e eeeaa 18

Notes on Using This BooKcccoooevvvvieiiiiiiiiiiiiieeiieeeiee, 20

2: The EQUatiOonWIiter....cccvcccecerecccensseccccsseocccssoccssssscscsssoocsssssnns24

Preparationscccoooieiiiiiiiiiiiiceeee25

Opening Remarksccoovvviviveiiiiiiiieeeeee25

So What Does It D0?oeeeeiiieeeeeeeee27

EXAMPIES ..couviiiiiiiiiiiiieeee28

Using the EquationWriter............ccocuviviiiiiiiiiiiiiiiieieeeeeeeeeeeeee, 30

The Selection Environment..........c..cooveeiiiiiiiiiiiiniiiinieiiee, 32

A Fourier Series Example......cccocooovviieiiiiiiiiiiiiiiiiieeeiieeeeeens 34

Test Your SKill.......ooooviiiiiiiiieeeeee35

Other ThingSooviiiiiiiiiieeceeee38

Closing Remarks........cooouvuiiiiiiiiiiiiiiiiiiceieccce39

B2 THE SOLlVET caucucteieececcecseescssessessessoscssesscssessssessesssssssessoscssessescssessesse40

Opening Remarkscooiviviiiiiiiiiiiieiieieeees41

Preparationsccccoeeeiiiiiiiiie41

Apples and Oranges........cccccceeeiiieiiiiiiiiieiieieieeee42

The Ideal Gas Lawcccceiiiiiiiiiiiiiiiccccececee46

The Time Value of MONEYccooovvvvviiiiiiiiieeeiiceceieeeeieeeeeeeee49

Customizing the SolVerccoovviiiiiiiiiiiiiiccceee51

Linking Equations: Solving Several at Once..................... 59

Using the Solver on Ill-Mannered Functions...................... 64

Using the Solver Inside the Plotter........cccoooeeviiiiiiiiiiiiiniininnnnnn, 70

The Multiple Equation Solver (MES).........cccccovvvrrvvvvvrrvrennnnnnnes 79

Programmable Use of the Solver (and MES)cccuuu..e. 85

REVIEW ..oeee e eee e e aab e e s e e aaes 86

4: What’s @ Grob?eccccecccccccecnnneesssssssssccccsssssssssssssessssssssssesseee88

Opening Remarkscccccuvvvvvivirienirieieieiiieeireeerreeeeevveee 89

A Clean Slateccccvveeiiiiiiiiieeeecccree89

What Is @ Grob?........eeeeeeieeieeeeeee,90

Pixel Numbers vs. User Units........cccoeeeeeiieeieeeniiiiiiiniiieeinieinnnnn, 92

“Roll Your OwWn” GIobS.....cccccoeeiiiieiiieiciieiiiicccieeeeeeeeeeeeeeeeeeeeeeeveeens 95

The Hexadecimal Bitmap......ccccoooeeevrviiniiiiiiiiiieiiiiieeeeeeeees 96

The SEE Programcccoooeiiiiiiiiiiiiiiiiiieeeeeieeee etttee98

What Does a Grob Eat?........cccooiieiiiiiiiiiiiiii,99

The Grob as IConcooooeiiiiiiiiiiiiiieecieceecceeee,101

ROVIOW ettteeet e et e taeeaesneeseaseasnasnsnseesenasnennsananeeesnnens 103

5: Graphics BasSiCsccccccccccsscssscssssessssssssssssesssssessssssssssssssssssssssans 104

The Graphics Functionscccooeevvviieiiiiiiiiiiiiiieeee,105

The Secrets of PPAR...107

The PLOT MeNU....cccovviiiiiiiiiieiieeieeeeeeeeiiieeeeeeeeeee111

The PRGHETATE Menuc.ooovevieieeeeeeeeeeeeeeeeeeees119

The MEIIU..oeeeee, 123
The PRI MENU...,125
Other Graphics Commandsc.cccceeeeveeeiviiiiiieeeeeeereieiennnn, 126

Building a ToolboXccoovvuiiiiiiiiiiiiieeee,127

ReVIEWooeeteeeee131

6: Three-Dimensional GraphicCscccccnnecccccsnsseccccssssscccans 132

The BasiCS ...ccoeeiiiiieieeieeicceeeeeeeee e e e ee vtee e e e e e saaaes 133

Getting the Most Out of WIREFRAME Plotsccccceeeeee 140

Choosing an Eyepointccccooveeiiiiiiiiiiiiiiiiiiieeeeeeeceeeeeeeaen, 140

Rotating the VieW......coooooviiiiiiiiieieeeee,141

Translatingouueiiiiiiiiie144

Zooming and Panningccccooeeevviiiiiiiiiiiiiiieieiiieeeeeeeien, 145

Plotting in Four Dimensions...........ccccoevvvvvviiieeeeeeeecvrnennnnnnnn. 148

REVIEWooteee et e eee e raeas 153

7: Graphics ImMpProvements.......ccccccccccenseccccssssecccssseccssseccesseoccese 154

Opening Remarkscooouueiiiiiiiiiiiiiiieiiie155

Labelling the AXeScoooviiviiiiiiiiiieieeiieeeee156

Adding Text to Graphicsccccceeeeviveiiiiiiiieeeeeeeeeeeeeeeee157

Adding Graphics to Enhance Plots.......ccccooeeeviiviiiiiiiiiiininnnnnnn. 165

ROVICW etetttet et e e e saesaesansnesnsensnasnesaseasnasasaesasnnsasenen 167

8: Freehand Drawingcccccecceccccccnssssessscccccsccsssssssecccsscssssssee 168

How t0 D0 Itoo169

Drawing a Voltmeter Facec.cccoeeviiiiiiiiiiiiiiiiiiiine, 171

REVIEW .otette e e raa e e e ee s saaa e eaanneeeen 175

9. Programmable Graphics Applications......cccccssneeeccccccsssnnes 176

INtroductioncooviiiiiiiii177

Programmable Scanning Inside a Big Grob........................... 178

Generating a Stripchartcooovvvviiiiiiiii, 193

An Analog Voltmeter.........ccooovvvneiiiiiiiiieiieeeee205

Plots with Two Independent Variablescccccoevvvvvnnnrnnnnnn.. 212

A Contour-Plotting Programcccccccviieiiiiviiiiiiiirriiieeeeeennnnn. 220

Driving a Bulldozer Around the Display.......cccccccouvrrrinnennnnene. 228

A Friendly Game of Checkers.........ccooeeeveeeiiiieererrrnceeeeeeeneennnnne. 232

A Calendar Demo.........cccceeiiiiieiiiiiiiiiiieieeeee262

More SUuggeStiONSccceeeeeeieiiieiiiiiieeciieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeareaaans 268

10. Graphics Beyond the 48........cccecccccecccnnenecccccccccssesceeces270

Printing Graphics on the Infrared Printer............ccccccoouueei.. 271

Printing Graphics on a Larger Printercccccccoeeevvvennnnnen. 272

Printing Graphics on a Pen Plotter.........ccccccvvuviiiiiniiinnnnnn.n. 290

Grobs and Other Computersccccevvvviiiieeiiiiiiiiiicieeeeeeeeeee, 291

Graphics Between Two 48’Scccooeeiiiiiiiiiiiiiiiieieeeeereeveeeeee e, 293

Final Thoughtscccouuiiiiiiiiiiiiiiceee294

APPENAICEScciiiirnccciionnrarccccecsssssesescesssssessssssssssossssssssossasssssesssssses296

1 INTRODUCTION

What This Book Is About

The HP 48G/GX calculator (“48” for short) is the latest in a long line of

great handheld calculators from Hewlett Packard Company. It com-

bines nearly all of HP’s most popular features into one package.

The 48 makes handheld problem-solving and/or data manipulation

easier than ever before. Among other new capabilities, it offers you the

EquationWriter, the Solver, and the Plotter.

e With the EquationWriter, you can enter an equation in textbook

notation—just the way you normally see it on paper (as opposed

to algebraic notation, which forced you to count parentheses and

put all your terms on one line).

¢ With the most powerful version of HP Solve to date, you may

never have to write another program again: The 48 Solver lets

you solve your equation directly from the equation form, rather

than having to translate it into a program.

* Oneofthegreatest—but most neglected—features ofthe 481isits

Plotter, and more generally, its graphics capability. You can

manipulate the entire 64x131-pixel display, with many powerful

built-in functions. And you needn’t stop at 64x131 pixels. This

book will show you how that display is only a small window into

a much larger world of graphics power.

First, takejust a moment to see these three capabilities in action. This

isjust a “warmer-upper” to pique your interest—so don’t worry—you’ll

get more explanation on all of this in the chapters to come....

What This Book Is About 9

Plotting a Simple Function

Set your display mode to FIX 2 (2]sPc]a]a]F]|[XJENTER)). Then begin

with this simple quadratic function: y=(x+4)(x-3). Start the PLOT

application by pressing (2]PLOT). The plot input form will appear:

_HUTDSCHLE '.' '.'IEH—3 1 3.2

ENTER FUNCTION(S) TO PLOT
LECIT|CHOOS][OPT:[ERAZE[DRALL

Press (G]EQUATION) (the key) to enter the EquationWriter.

Then press these keys (ifyou make a mistake, backspace it out with («)):

eEEEO)E@XH@)GO(@X]=)3]»). Your equation should
look like this:

Y=[K+4) (K-3)0

Press to store your equation and return to PLOT. Next, enter the

x-domain, say, -5 to 5: Press(v)(»)(5]+/-JENTER)(5JENTER). You should see:

TYPE: Function £ Deg
EQ: "Y=(R+4)% (X-3>"'
INDEP: X H-VIEW: —5 9
BAUTOSCALE V-VIEW: —3.1 3.2

AUTOSCALE VERTICAL PLOT RANGE?
|[VCHE]OPTS[ERASE[DRAM]

Press to let the 48 calculate the y-range automatically.

10 1. INTRODUCTION

Now plot the function: Simply press [ITEI[AXIRL.... The display will

blank out, then fill with a parabola as the 48 calculates and plots each

point.

Now press [HIIH T30 to label the axes.

Your display should then look like this:

J
18.00TY ,.-".I

. —’)/H
=5.00 5.00 Hakk]+4- [LAEEL| DEL[ERAZE[MENLU]

Plotting a Simple Function 11

Adjusting Your Plot

Of course, you can change your y-range—it doesn’t have to be the one

that the machine automatically calculated.

Press twice. Now, to choose a y-range of —20 to 30, type in the

coordinates of the lower left and upper right hand corners ofthe plot:

(-5, -28) (5,38), and press Pre)NNEIRL

Now press ETEIIITTE.. ..Your previous parabola is erased,

and a new parabola is drawnin its place. Press [HIIHl LAEEL K7

label the axes.

But notice this: Press(]«), then press and hold down (a). The display

scrolls down as the cursor travels up the y-axistoy=30.... Now where’s

your parabola? Press and hold (¥) to bring it back into sight. The point

here is that you can make your plots larger than the display.

So keep in mind that you can either check the _AUTOSCALE field in the

PLOT input form to tell the 48 to calculate the y-range for you—suffi-

cient to fit the display; or you can specify your own y-range manually,

by modifying the ¥=¥IEH field in that input form.

Both scaling options are useful: For example, use _AUTOSCALE to give

you a “feel” for where your function plot will lie. Then use [HdIZH to

stretch or shrink your plotting range, in a way similar to the FHiiIgl

functions provided in the graphics environment. (You’ll read more

about ZOOM later in this book; see also your User’s Guide for details

on the 14 different ZOOM functions.)

12 1. INTRODUCTION

Solving Within the Plotter

You can do more with your parabola than just look at it and marvel:

Hidden in that display is a graphics cursor, shaped like a crosshair.

Press (v) and (€)a couple of times to find it.

Now, find out what the two roots of this function are: Press and hold

(4] until the crosshair is close to the left side of the plot, where the

function crosses the x-axis. Now press HEIEERET..

The crosshair zeroes in on the root and the bottom line of the display

tells you that the root is at =4.00!

Press(=)or to get the menu back, and then to find the slope

ofthe function at this root point (x=—4).... The slope is=7.00. Now (¥)

and (>]») to find the cursor, then press and hold (») to get to the right

side of the screen. Now use [[{i[illl and again to find that the

slope at the positive root is #.00, as it should be.

Press (=3I to find the extremum, or lowest point on the function.

It’s at (=0.50.-18.85). Press(—jor to bring back the menu, then

W<« to find the function value at the current location.

As you can see, you can utilize most of the capabilities of the Solver

without ever leaving the Plotter application. And while this quadratic

function was admittedly simple, you can do these same things with

much more complicated functions—you’ll see how in later chapters.

Nowpress twice to return to the Stack display. See? The roots,

that you just calculated from inside the Plotter have also been placed

on the Stack—for your subsequent use (and calculating enjoyment)!

Solving Within the Plotter 13

Freehand Graphics

Using the built-in capabilities ofthe Plotter and Solver are perfect for

many needs. But when you want to create custom graphics of your

own, that’s a job for the PICTURE EDIT menu.

Often the 48 gives you more than one way to do things. For example,

the PICTURE menu comes up automatically when a plot is completed

or (ina program) when thePICTURE command is executed, orwhenyou

(manually) press (§JPICTURE). Do that now—press (GJPICTURE. The

menu looks like this:

D]AOGSTOT

And now press [HIIH, to see the PICTURE EDIT menu:

ITTS TSol[N

Using the (a),(v), () and (4} keys, put the cursor halfan inch to the right

of the origin. Now press (multiply), then (») a few times. You’ll see

an ¥ where the cursor appeared originally—but now the cursor is

sliding to the right. Now press [{[4N.... You’ll eventually see this:

-5.30 5.00
~ +

ARGIRT

You're doing freehand drawing on a plot drawn by the 48!

14 1. INTRODUCTION

Next look at the menu items labeled [TLEN and LES.

ITEE turns pixels on (makes them black), while [Tl turns pixels

off (makes them white). The [] annunciator appears in the ['LE} or

ITEEl menu key label to indicate which one is active.

Experiment with ITIEN and by pressing each once...then

twice...while moving the cursor around....

See? If[IEH is activated, to deactivate it, press the menu key

once more. The annunciator will turn off—so you can move the cursor

about freely, without trailing a black line behind you. In the same way,

if[lis activated, press [dilEl a second time to move around with-

out erasing whatever images you’ve just finished making.

Freehand Graphics 15

GrobbingAround

For the next exercise, press (CANCELJuntil you return to the Stack. Now,

carefully type (without quotation marks):

GROB 3 & 1830768384840

You should see Graphic 3 % 6 on Level 1 of the Stack. Now press the

following keys:

ERe)INHEEIHENO GIPCTURE)

You should see a small arrow in the upper left corner ofthe display, like

this:

 TRLTIOT

You’ve done freehand drawing without even using the GRAPHICS

menu. (Actually, you have created a grob—more on that soon.)

16 1. INTRODUCTION

Is It Real—Or Is 1t...2

Now,just for fun, press to return to the Stack display. Then fill

the lowest four levels ofthe Stack with any objects you want, and press

the following keys:

Fre) [HATA (vxT) INEES (Prc) IEHE IHHE (ST0) GPICTURE)

Look at the menu. That’s the first page of the PICTURE menu....

What'’s it doing in the Stack display?

Press JHIIl. If the annunciator isn’t on, press [I'LER once to

turn it on. Then use the arrow keys to move the cursor around the

display.... You’re drawing all over your Stack display!

The secret? You’re not really drawingon the Stack display (and you can

confirm this by pressing to return to the real Stack display).

Rather, you've created a grob image of the Stack display—and stored

itin the graphics display. The advantages ofthis feature for document-

ing your programs and creating friendly output should be obvious—

and you’ll see other uses for this later on, too!

Grobbing Around 17

What Next?

By this time, hopefully, you've gotten a taste—and whetted your

appetite—forwhatthe 48 can do. Ofcourse, it would take several books

totell you all the great things it can do, but this book is to showyouhow

to use the new graphical features in the 48.

To do that, this book is divided into three parts:

18

1. Beyond-the-Manual Basics

To give credit where credit is due, HP has carefully documented

just about every feature they builtinto the machine. Butfaceit—

it’s hard to show you everything a new application can do in a

manual ofany reasonable size. Sothat’s what the first part ofthe

book will do with the graphical features:

Chapter 2 should help you be more comfortable—and more

effective—with the EquationWriter.

Chapter 3 shows youhowto unlock the real power ofthe Solver.

Youhave already seenhow it looks in its “Sundaybest”—running

inside the PLOT application—but wait until you see it “getting

down and dirty,” in its work clothes!

Chapter 4 teaches you the basics—the “care and feeding”—of

grobs, thegraphics objects in the 48. You'll learn how to conjure

them up and manipulate them as easily as any other object.

1. INTRODUCTION

2. Advanced Use—the Graphics “Power Tools:”

Chapters 5-8 go beyond the basics. To help you to effectively use

graphics, you’ll build a toolkit of convenient and useful routines

for storing and recalling grobs, combining text and graphics, etc.

Next, you’ll see how to use those tools: You'll tip your head

sideways and learn how to do “sideways plotting”—strip charts,

waveforms and the like. And you’ll see how to create and use

freehand graphics in the display.

You'll explore the three-dimensional plotting capabilities built

into the HP 48G/GX—and you’ll see how to use them to visualize

abstract functions and data more easily. You’ll even see how to

make all your graphics come alive with the 48’s animation tools.

3. Full-Blown Applications:

Chapters 9 and 10 present several self-contained applications

that use programmable Plotter and Solver commands.

Some of these applications are useful as is, while others are

offered in hopes that you’ll then alter them for your ownpurposes

(“Oh wow—if I change that one subroutine I can ...”).

Keep in mind, however, that this book is not necessarily meant to be

read from cover to cover. Here are a few suggestions....

What Next? 19

Notes on Using this Book

Of course, read this book with your 48 by your side. You needn’t do

every example or program here, but it’s a lot easier to try things—or

clarify them—right away, rather than waiting until later, when you've

forgotten what was so mystifying and/or exciting. Also, if this is your

ownpersonal copy ofthis book, thenby all means, write in the margins,

inside the covers, etc. Make the book useful toyou. Keep a highlighter

and a notepad handy—and use them.

First Note: As you can tell from those opening “warmer-upper”

keystrokes, this book assumes that you already know a few things

about your 48. You should know how to:

¢ Name objects, edit them, store/recall them—and how to ma-

nipulate them on the Stack (e.g. or them, etc.);

e Use menus and menu keys—and the and (G]PREV) keys;

* Use the MODES menu and input form to set display and calcu-

lations modes;

¢ Use directories and “move” through a directory structure;

* Build strings, algebraic expressions/equations, binary in-

tegers, and programs.

This book may occasionally offer reminders on some of these basics,

but that’s about it. For a good tutorial on all these sorts oftopics, read

An Easy Course in Programming the HP 48G/GX

This book is available from your HP dealer or from the publisher.

20 1. INTRODUCTION

Or, ifyou simply need some “brushing-up” as you go, here’s how to use

your 48 User’s Guide (“UG”) alongside this book:

*Note:

First, carefully reread the UG’s chapter 2, called “Objects.”

Work through the examples in chapter 7 of the UG. The EW is

something new—far ahead of other machines—and it takes a

little practice to get used to. (For best results, keep a stack of

homemade oatmeal-chocolate-chip cookies nearby, to pass the

time while the 48 redraws the display.)

Before you start on Chapter 3 here, skim once more through

chapter 18 in the UG (just work through the examples they pro-

vide). The basic Solver is easy to learn, and once you understand

it, Chapter 3 in this book will be much more useful.

When you’ve reached the end ofChapter 3 here, you're ready for

aserious intermission. Watch some mentaljunk food on network

TV. Eat some real junk food. Eat some real food. Take a nap.

When you come back, reread chapters 9 and 22-24 in the UG.

Then work through Chapter 4 here, tolearn the fundamentals of

grobs—and some “good habits” you should consider adopting.

After that, you can pick and choose among the remaining chap-

ters in this book. Ifyou don’t understand something, come back

to Chapters 2-4—or to the index of the UG—for help.* If some-

thing here is still unclear, write to the publisher.

Certain advanced topics, such as input forms and pop-up windows, are described not in the

UG but rather in the SeriesUser’sManual, available separately
from Hewlett-Packard or from your HP dealer.

Notes on Using this Book 21

Second Note: As in any computer, there are 4 kinds of “features” in

the 48:

¢ Documented Features. Designed features that are described

or at least mentioned in the HP manual(s).

¢ Undocumented features. Designed features which work pre-

dictably—and sometimes usefully—but nevertheless don’t make

it into the manual(s), for various reasons.

e Unsupported Features. Features or operations that HP “ac-

cidentally” left accessible to users but were never intended for

use by the general buying public. These features can greatly

enhance your calculator’s capabilities, but their misuses often

carry drastic consequences (e.g. Memory Clear). So these fea-

tures are neither encouraged nor documented by HP.

¢ Buas. Abugis simply a design mistake in program code. Abug’s

behavior may be predictable or erratic, but its consequences are

undesirable. Ifyou find a bug in your 48’s operation, report it at

once to HP. Ifyou find a bugin any code in this book, please write

to the publisher.

This book will use primarily Documented Features, so that all its

examples and programs will work on all 48’s. You'll also encounter a

small handful ofUndocumented Features that HP publicized after

the manuals were written. You may even find a few Unsupported

Features.

22 1. INTRODUCTION

Third Note: The procedures, examples and programs in this book

won’t hurt your 48. None ofthe ideas and procedures described should

give you the dreadedMemory Clear (ifyou get such a message, retrace

your steps very carefully, to see whereyou went wrong). In general, if

you fearmemoryloss—forwhatever reason—it’s a good idea to backup

your valuable files frequently.

All the examples in this book worked on HP 48G/GX ROM version K.

If you use them exactly as they appear in this book (forgiving typos),

they should work fine on your HP 48G or HP 48GX, as well,if your

ROM version is K or later.* But feel free to experiment, too: try some

things differently from the way the book does it, and see ifyou can im-

prove on the ways you see them done here.

Note: Because of the enhancements made to the HP 48 operating

system in the HP 48G and HP 48GX, these examples may or may not

work with older HP 48S and HP 48SX. Ifyou want to study graphics

on the older machines, there is a book very similar to this one, written

exclusively for the HP 48S/SX. For more information, contact the

publisher.

Fourth Note: Go!

*To identify the ROM version in your machine, type (a]a]VIEJR]S]1JOJNJENTER]

Notes on Using this Book 23

/)
////////////{////

////////7///////

/
/)

egy
.o'oe?—— AR

=L ~ AL ‘-4’

= ...,';:.vn;.ss
i Y

= £2 _—.""r 'J

sSIV27 5
(o L2 3 |Wi -
A ¥

2. THE EQUATIONWRITER

Preparations

First, you need to create a directory for this chapter—so you don’t

clobber anything you may already have going:

Press [3JHOME), then type ' G. CHZ ' vemory)NNHATAVAR(EXEH
togetinto thisbrand-newG.CH2 directory. The menuitems should now

all be blank, and the Status Area at the top ofthe display should show

{ HOME G.CHZ }

Opening Remarks

The EquationWriter (EW)is one of the 48’s most exciting features—

perhaps setting it apart from all other handheld machines. In a world

that turns on legal questions of “look and feel,” the EW display may

look like some brand-x displays you've seen, but itfeels quite different.

The EWversion in the G series ofHP48’s is much faster than the origi-

nal versionintroduced with the S series (theHP48S andHP48SX), but

it is still no speed demon—you may at first be put offby that. At least

work through this chapter before deciding.

Indeed, you may find that the speed doesn’t matter; the very existence

of the EW is one of the most revolutionary advances in calculator

technology to-date. Ever since the first FORTRAN compiler or BASIC

interpreter let you enter equations on a digital computer, you've had

to cram the normal, two-dimensional, textbook notation equations into

the single line of display characters—algebraic notation—in order to

be understood by the software. There had to be a better way....

Preparations / Opening Remarks 25

Thereis abetter way: Even with the EW’s not-so-blinding speed,it will

usually take you far less time to enter an equation correctly into the

EquationWriter than with the “algebraic” form.

As you discover this, you’ll probably go through these three typical

stages with the EW:

e Excitement & Delight: “Wow—Ilook at what this can do!”

Typically, this lasts about twice as long as it takes you to work

through the EW chapter in the Owner’s Manual.*

¢ Frustration & Discouragement: Fed up with its slowness—

or not yet completely understanding it—many are tempted to

abandon the EW in favor of the Command Line editor. These

people mayhave asmuchtrouble tryingto debugtheir algebraics

on the Command Line, but they don’t realize it, having accepted

line editors and their attendant frustrations as the cost ofmach-

ine algebraics.

* For those who survive, there’s the third stage, characterized by

your high school band teacher’s pet motto: “Proficiency comes

through practice” (translation: “Use It Or Lose It”).

Actually, the EW and the Command Line Editor (CLE) are both useful

in certain situations: If the EW’s slowness bothers you, then use it

strictly as an equation writer, or viewer, but not as an editor.

*By the way, have you worked through that chapter yet? If not, put a bookmark—not a cookie—

here, and go do all the examples in that chapter.

26 2. THE EQUATIONWRITER

So What Does It Do?

When you write an equation or an expression on paper...

a3+1

/x3 —-2x+1

Inx+x dx

3lnx + e*?
b3-4.32

...you use this textbook notation, an easy way for your brain to under-

stand the problem: It detects visualpatterns (position, size, enclosure,

etc.) to give you an immediate grasp of what’s being said.

Compare that with the computerized algebraic notation for the above

expression:

J(b*3-4.32, a"3+], {((x*3-22%x+])
#(LNCs)+07(3%N()+ERP(%-4.2)), %)

It’s not so clear at one glance, is it? So the EW lets you enter and view

the expression in whichever notation you prefer (inside the 48 it’s

always represented the same way, no matter which way you enter it).

Then, after you’ve entered the equation, the EW also provides several

tools for manipulating and modifying it. It can even recognizeparts of

the equation to modify, using the properties of algebra and calculus!

So What Does It Do? 27

Examples

Like the Command Line, you can use the EW to write algebraic ex-

pressions, equations and unit objects. An algebraic expression is half

an equation; an equation is two algebraic expressions joined by an

equal sign (). For example, the positive root of a quadratic equation

is this algebraic expression:

~B++B?-4AC
2A

How would you enter this, using the EW?

28

To Do This Press This

Enter the EW and start a numerator. ()EQUATION)(A)

Use instead of (X2—it looks better. (—]o]B]+][ix]a]B]YX2]

Close the exponent.)

Forgetting to close subexpressions with (»)is a common EW error!

Imply a between a number and the (@)(eJa)X)(e]C)

letter following it. The letter is taken as

the start of a variable or function name.

Close the subexpression opened by (iX).)

Close the numerator/start the denominator. (»)

Again, imply the (X). (2)(e]A)

Close the denominator.)

Place the expression onto the Stack. ENTER

2. THE EQUATIONWRITER

Complex unit objects are also easy to assemble with the EW. Look, for

example, at:

The universal gas constant, R: The gravitational constant, G_:

kg-m
R=8.315—> Gc =9.8-%

mol-K § -

To enter R using the EW:

-3 (_ denotes a unit object)

EonTs)(xD)II(1)
(E)onTs) EREEPrReV) IR
TSxD) RiFETI)

Then press to put this constant onto the Stack.

To enter G:

G Jequation)(s)-(@)
CrEE AIEEEE ()
LTETS IEE2)0)(X)

EoNTs)(xT)[I)

Then press to put this constant onto the Stack.

Examples 29

Using the EquationWriter

This would be a good place to insert a table of all the keystrokes used

in the EW. But your HP User’s Guide already has a complete table.

To be really proficient with the EW, just remember these...

Rules of Thumb:

¢ (»),(a)and («)(not(«)) are the most frequently used keysin the EW.

e Use (a) to start a numerator, then (») to finish it and start the

denominator (incidentally, (¥) acts identically to (»)).

e (»)finishes all subexpressions (“it slices...it dices”):

It finishes powers, as in y*;

It finishes numerators and starts denominators

It finishes denominators and exits the fraction

It finishes square roots and other roots: x/y

It finishes mathematical functions, such as sin (x)

It jumps to the next parameter when constructing a

derivative, an integral or a sum

It exits a parenthesized subexpression, such asa + (b + ¢)

It finishes any pending subexpression (and ([») finishes

all pending subexpressions).

30 2. THE EQUATIONWRITER

* («)is the only real editing key you have. Each time you press («),

it “undoes” the last keystrokein the equation. Pressit repeatedly

to go as far back in the equation as you want (the pause is always

longest after the first press).

e Ifyou notice an error deep inside your equation, your options are

limited. Do not press (4, trying to move the cursor to the error («

takes you to the Selection Environment—an upcoming topic).

e Most analytical functions, such as those in the MaTH menu and

the powerful IFTE function, work inside the EW. If a function

requires parameters, you enterthe function, thenthe parameters,

separated by (SPC), and finally (») to close the parameter list. For

example, to enter the function IFTECR, B, C), you would press

(Pre)I1) MG @)

e All the UNITS menus work inside the EW.

There are 4 ways to exit the EW:

evaluates the expression and puts the result onto the Stack.

. puts the equation on the Stack as an algebraic, then exits

gracefully.

. gives up in disgust and slams the (usually) unfinished

equation into the Command Line for further editing. After

editing, you can press toreturntothe EW, and again

to place the equation onto the Stack.

. is the “panic button.” It dumps the whole thing into the

waste basket and escapes to the safety of the Stack display.

Using the EquationWriter 31

The Selection Environment

The EquationWriter actually consists ofthree separate environments

(also called modes). Here’s how to switch between the three modes:

——

>

Scrolling mode«——

(CANCED) or [(JPICTURE) (CANCEL) or [(]PICTURE]

Selection environment < Entry mode
A

v 2o
A

If you accidentally pressed (€) while practicing with the EW, you may

have noticed that you had to wait a terribly long time for the display

to do anything. Go ahead—try it now (then go get a cookie).... When

the smoke finally clears, you can use the arrow keys to move quickly

around the equation, highlighting terms and operators as you go.

You’ll also see this menu: [ATHREENEIFIAETREENIELE

This is the Selection Environment, where you can easily select various

parts of the equation you’re building, to edit or rearrange them. The

last menu item, F{IMll, simply sends you back to the normal EW

display—but look at what the other menu items do for you:

is a compilation of rules for algebraic manipulation—to let you

massage the form of your equation or expression. and [F{d3

generally work together to let you select the highlighted portion ofthe

equation for individual editing on the Command Line. You can then

press to put this edited expression back into your equation, or

to abort the edit and return to the EW.

32 2. THE EQUATIONWRITER

Try one—key in the Ideal Gas Law:

 pV = nT(8.315 !)
mol - K

Now press (¢) and use the arrow keys to move the highlight around,

pressing [3ddA occasionally. Notice these things:

If the first - is highlighted, I3d@ includesp - V.

If the = is highlighted, then [3d#l includes the whole equation.

If the _ is highlighted, I3dd includes the unit object.

Ifthe ———— is highlighted, then [3d#l includesjust the units.

If the - between mol andK is highlighted, IFdA includes only the

denominator of the units.

Pressing [FdA a second time highlights only the operator (but

pressing [I{ddwhen a term is highlighted doesn’t do anything).

BET3 extracts a copy of the highlighted operator, term or expression

and puts it on the Stack. replaces the highlighted term or ex-

pression (but not operator) with the object on Stack Level 1.* These are

useful when you have an often-repeated sub-expression, or when you

want to modify only a small part of the equation.

*WarNING: [A3dM copies, then drops the object on Level 1—it’s gone. can getit back for

you, but it will also undo your last equation-editing session.

The Selection Environment 33

A Fourier Series Example

Here’s a fun equation for playing with the PLOT functions, so key it in

now as EW practice. This is the Fourier Series representation for a

full-wave rectified sine wave:

Nmnx

2A 4A cosnwt
t)=—-—

f6) T T 4n* -1
n=1

whereA is the amplitude ofthe wave, wis its frequency,and N__ is the

highest harmonic you want to include (see MULTIPLOT in Chapter 9 for

an application which uses N_).

You should be able to enter that equation into the EW without much

trouble, but here are a few reminders to help:

e Enter f(¢) as just plain (@J&JF)).

* T is [&]SPC).

e Use W (o]]W))—not W—for w (omega).

e Enter the summation as)(D0)()NGIMG]A]

EIx]e)()(cos) (WX(@alDMHEXeINGS
EEM

e Don’t use for the 4n? term. Instead, use (4)(aJ2]»).

Work at this until you get it. Then press to put the completed

equation onto the Stack, and name it FOYRY: ("Yo)o]Flo)YA]Y)a)sTO).

34 2. THE EQUATIONWRITER

Test Your Skill

At this point, you should have worked through the EWexamples in the

Owner’s Manual. If not, do it—now. Then here’s a simple self-test:

The classical expression for the behavior of a series RLC circuit is

v:Lii!+1R+lj'ldt
dt CJ

1. Enter this equation with the EW and store it as RLC.

2. Rewrite the equation as

v= Li(loe") +1,e"R+ 1 I,e" dt
dt cJ,

and save it as RLCERP (for RLC EXPonential).

3. Rewrite the equation as

V= L%(A0 sinaot)+A0sina)tR+%-.‘A0 sin @t dt
0

and save it as RLCPER (for RLC PERodic).*

Turn the page to see the EW solutions....

*There. That takes care ofabout 25% ofyour undergraduate electronics textbook. The 48 can now

solve symbolically for any one of the variables, via ISOL. It can simplify the equations by solving

theintegral and the first derivative, and differentiate or integrate, too. But that’s for another book.

A Fourier Series Example / Test Your Skill 35

Solutions

36

Press to enter the EquationWriter, then:

OEUGEEOROOEBOOO0GEBRORE
HOBEECEFD)(T)oG]TIENTER

You should then see 'v=L*at ([)+]*R+1-C*S(B,t, I, 1)’

at Stack Level 1.

Press ('] o]a]R]L)C]a]STO) to store this.

enters the EW. Then press (o]1JeJ&]O)
X)(@[)T)ENTER), to put the expression ' [o*EXP(s#*t)’

onto Stack Level 1.

Nowpress XSl(v]CANCEL), then (Wto thefirst I,
and press [I3dM. Next,(»)to the second I, and press [H3dM; then

() to the last I, and pressAWM (ENTER).

On Level 1, you should now see

'y=L*ot (Jo*EXP(s#*t))+Io*ExP(s*t)*R+1-C+xJ (0, t,
[o*EnP(s%t), 1)

(The line breaks will be different than those shown here.)

Press (']Ja]a]R]L)C]E]X]P]a]STO) to store this.

2. THE EQUATIONWRITER

3. [GJEquATION)enters the EW (alternatively, you could do the entire

problem at the Command Line—always keep this in mind).

Then press (¢JA[eJqJ0)SN(@I2WX) (@TENTER), to put

'Ao*SINCy*t)

onto Stack Level 1.

Nowpress [ENTER[ENTER(VAR)ITNEN(V]CANCEL), then(@to the first I,
and press [IJdM. Next,(»)to the second I, and press [A3dM; then

() to the last I, and press ITIAMENTER).

On Level 1, you should now see

'y=Lxdt (Ao*SINC(w*t))
+Ao*SIN(w*t)xR+1-C*S(B, t, AoxSINC(u*t), '

(The line breaks will be different than those shown here.)

Press ('JaJa]R]L)(C]P]E]R]a]STO) to store this.

How did you do on this little self-test?

Ifyou need more practice, do it now, on your own—or go back over the

examples in the HP User’s Guide.

Test Your Skill 37

Other Things

Here are a few other EW tidbits to know:

Printing: If you press (that’s and simultaneously), you

can print out the current EW equation on the HP 82240B printer.

However, if you print the equation—in some form or another—from

the Stack, you will get a better-lookingprintout. Here are your options:

From the EW,

® pressing saves a grob image of the equation on the Stack;

* pressing saves a string (ASCII) version to the Stack;

e pressing(ENTER)saves the equation as an algebraic and then exits

the EW.

Put whichever version you want printed onto Stack Level 1, then press

HZ3W. The HP 82240B infrared printer even provides cutting

lines for splicing together printouts of large grobs.*

*The PCL and Epson printer drivers print large grobs and strings without the need for cutting

lines. See Chapter 10 for more details on these printer drivers.

38 2. THE EQUATIONWRITER

Closing Remarks

One of the best uses for the EW is to build—and later, to view—your

own libraries of equations, constants and units. That way, you won’t

have to decipher the algebraic notation used on the 48 Command Line

and in the rest of the world. A single glance in the EW will tell you

everything you need to know about the equation.

Don’t give up on it too easily. The entire EW concept is a new one for

handheld computing, and you'll surely see it more in the future. In the

meantime, remember the words of Mr. Whetstone, your high school

band teacher: “Proficiency comes through practice.”

Other Things / Closing Remarks 39

\.\.\
— &

7

7

s

\\ /
e \\

; A es e S . \ - 5 .

\\\\\ ; s \\A \\\\ CoL oA 7
/ / \ S \\\‘ ‘o .‘w:\.\ \.:<\\\\ y

7y \\\\\ S 7,

ey A ‘.\\.\2.

s e \ s i

SS.S,

\ s \\e

s- /w

v w\x x\‘\

SN
.

\\\\\7 o,

=
7

-
s o . ~

-
3: THE SOLVER

Opening Remarks

This is the most sophisticated Solver HP has yet produced. The more

you use it, the more valuable you’ll find it to be. In many cases, the

problems you used to solve by writing programs can be handled more

easily and quickly with the Solver.

The Solver is indeed like another programming language. In the past,

you had to translate the equation(s) into a program—a list ofdata and

operations to perform on it. But compared to this Solver, those ingen-

ious and sophisticated programs now appear clumsy, slow, and incred-

ibly complicated. Ofcourse, you can still write step-by-step programs

for the 48, but after reading this chapter, you may decide to save your

programming skills for more worthy challenges then equations.

The HP 48G/GX offers 4 ways to use the Solver: programmable com-

mands; the PLOT application; a menu-based interface (as in the HP

48S/SX); and the SOLVE EQUATION input form. All methods use the

same internal routines; none is more accurate than any other. The

examples here will show solutions for the menu-based interface (plain

background) and the newer}

Preparations

First, you must create a directory for this chapter—so you don’t clobber

anything you may already have: Press (JHOME), then type 'G.CH3'

and DIE[CRDIE] [FXFE] to move to this new G.CHI di-

rectory. The menu items should now all be blank, and the Status Area

at the top of the display should show: { HOME G.CH3 }

Opening Remarks | Preparations 41

Apples and Oranges

Ifapples cost $.29 each and oranges cost $.89, andyouhave $20to spend,

how many ofeach can you buy? There are many possibilities, and the

Solverisideal, because it lets you play What-If: “IfI buy 3 apples, how

many oranges can Iget?” So type the following equation onto the Stack,

and name it 'Fruit': TUTFIL‘CSTH*HPPLES"'CSTU*URHNGES Now

preSSmm
U

-:'.I.

3
Z
]

TRI.T

TouseFruit asthecurrentequation,type 'Fruit ' and press(IEZ.

Thisstores 'Fruit ' into EQ, a name reserved for the current equation.

Then press to get into the Solver itself. Now things are simple:

e Pressing a menu key stores a value into a variable name;

e Pressing () prior to the menu key recalls the value to the Stack;

e Pressing (&) prior to the menu key solves for that variable.

Press [To1alC2efczTal (-eo fCE1n], then(=ITNTA] to recall your

$20.00 to Stack Level 1. Now you’re ready to solve.

Ifyou buy 8 apples, how many oranges can you buy? Press (8)[RPEL]()

OEAM]... Result: ORANGES: 19.87 Or,ifyou buyjust 5 ofeach, how

much will that cost? Press (5) [RPPL] (5)) [1n1al...

Result: TOTAL: 5.98 (Skip now to page 45)

42 3: THE SOLVER

Apples and Oranges 43

44 3: THE SOLVER

Notice the last item in the Solver menu:

If your equation is a bona fide, “grammatically correct” equation (two

algebraic expressions linked by a =), [JIdE will solve for each side of

the equation and display the results in Stack Levels 1 and 2. This is

useful in cases where an exact solution may be impossible—or unbe-

lievable—and you want to see ifthe left-hand side really does equal the

right-hand side.

If your “equation”is really just an expression, then[will calcu-

late its current value and put this at Stack Level 1.

Ifyou see a special on oranges, say, 6 for $8.00, you can quickly see how

“special” the special really is. Just set the number of apples equal to

zero and solve the equation for the corresponding cost of one orange:

(0) [aEEL] (¢) [mEAN] (e) [TOTA] () [C2T0]

Some bargain—$1.33 each! Better to buy them singly at $.89!

The next two examples mimic two built-in features ofthe HP 48G/GX

—the Ideal Gas Law (found in the Equation Library) and the Time

Value ofMoney (part of the SOLVE application). These “non-built-in”

versions illustrate the extended uses of the Solver.

Apples and Oranges 45

The Ideal Gas Law

For the next example, take something from chemistry and physics—

the Ideal Gas law: p*V=n*R*T

P is the pressure of the gas

|} is the gas volume

N is the number of moles of the gas

R is the ideal gas constant, 8.315 J/mol:K

T is the absolute temperature of the gas.

Enter this equation, using either the Command Line or the

EquationWriter, sothat youhave ' p¥VY=n*R#T' on Level 1 ofthe Stack.

Then store it into a variable: 'IdealGas' (ST0). Next, retrieve the

value forR from the Constants Library and store it in the variable 'R"'.

To do this, type 'R' CONST (5]aRG)ST0). 'R’ should now contain the

value 8.31451_J-(gmol#K).

Press(")(vAR [ITTTH toputthe name ' [dealGas' ontothe Stack,

then ATEl to enter the SOLVE menu. Press(M to

store the IdealGas equation into EQ.

Now use this equation to calculate the number of moles of air in a

typical bicycle tire: Fora27"x1.25" tube, the volume is about 33.13 cubic

inches. Use T =70°F, and P = 80 psi (but to account for atmospheric

pressure, 14.7 psi, you must use 80+14.7, or 94.7 psi).

46 3: THE SOLVER

In the menu-based Solver: (9)a)-]7]=/unTs)NxT)IR

EMeNg)CEEYEE) ElonTs)TIEER
(] (x)ST

EMeNgLT

Solve forn:M_J.... Result: Bad Guess(es)—an error message.

When working with unit objects, you must store an initial guess for the

variable you're solving for.* So, press (1)unTs)[RGBPrev) LT

[N] Now tryn again:M] Result: n* 1.168_mol

Well, you got a result. Too bad it’s wrong. “What?” Yep, it’s wrong....

*Ifyou get this Bad Guess(es) error while solving for a unit object, press (&)(REVIEW] to get a sum-

mary ofthe contents of each variable and of the current equation. Often, you’ll have forgotten to

press (&) when solving for the unknown, thus inadvertently storing some (incorrect) object there

instead. Remember: Press the unshifted key only to store a value in a named variable! solves

for the variable, () recalls the variable contents to the Stack.

For the Solver to ignore units entirely, you must PURGE all variables named in the equation and

re-enter the Solver. That means you're likely to clobber the Gas Constant, R, which is a variable

to the machine. Later in this chapter you'll see how to keep the Gas Constant safe from harm.

The Ideal Gas Law 47

This isn’t the fault of the Solver, but stems from a quirk in the way

temperature units are converted. You can read more about this quirk

on page 10-10 ofthe User’s Guide. The Solver makes no errors convert-

ing other types of units, but it is often suckered into making relative

instead ofabsolute temperature conversions. And it doesn’t tell you it’s

doing this—itjust gives you the wrong answer. To be safe, always con-

vert temperatures to Kelvins before using them with the Solver.

So, in the menu-based Solver, recall the temperature ()[_I_]) and

convert it to Kelvins ((qJUNTS)IIEiHT) and then recalculate n:

[E)tasT MENU)T][N Result: n: B.14_mol

Now then, for subsequent calculations, if you know that the previous

value of the variable has the correct units, then you can just store a

numeric value on top of it, and it will assume those same units.

Example: Find out how many cubicinches ofair at atmospheric pres-

sure are compressed into that bicycle tire.

Atmospheric pressure is 14.7 psi, so in the menu-based Solver, press

(1]4)-)7) [P to store the value in P—using the psi units from last

time (the correct units appear on the Status Line). Now press(&[_¥_]

to find the volume ofuncompressed gas.... Result: ¥2 213.43_in™3

48 3: THE SOLVER

The Time Value of Money

Next up—for all you finance wizards—is the Time Value of Money

equation.

-N

0=PV+PMT{%}+FV(1+1)™

where

PV is the Present Value of the loan or investment.

PMT 1is the periodic (monthly, annual,...) PayMenT.

FV is the Future Value of the loan or investment.

N is the Number of periodic payments or compounding periods.

I is the Interest rate per compounding period.

Build this equation using the EW or the Command Line (the EW is

easier)and putitonto Stack Level 1. Then nameit—type ' TVall' (sT0).

This TVoll equation is a mainstay of all business calculators, but it

comesinhandyeven for engineers tryingtobuy houses, figure out their

IRA’s, or calculate the balances on their student loans.

Example: You want to buy a $95,000 home. You have $10,000 for the

down payment, and you want to finance the rest at 8.0% for 30 years.

For the menu-based Solver, press KT(ENTER), to put ' TWolT'

onto the Stack, then IATHH to enter the menu. Press

to store the TYol equation into EQ, then press EHI3.

The Time Value ofMoney 49

Now, the Present Yalue is the money you’re going to receive right now,

$85,000 (OK, you may never see it, but the bank is technically giving it

to you to give to the seller). The Future Yalue is what you’ll owe at the

end ofthe mortgage term—i.e. nothing(hopefully). So press Bamflm

Since this is a 30-year loan with monthly payments, the term, N, is

30x12,0r360. The monthlyinterestrateis0.08+12, or.0066667. To enter

the term and the monthlyinterest, press[-_-H__]flmflBBBG.

payment is $623.70. The minus sign means that it’'s money subtracted

from your pocket.

Notice that both the Ideal Gas and the Time Value ofMoney equations

use variables named N orn.* So after you've used each equation, you’ll

see not one but two Tl 1abels in your VAR menu. You can press

from either the VAR menu or the menu-based Solver variable

menu to see which is which (or—ifit really bothers you—store the two

equations in separate sub-directories inside the G.CH3 directory).

Anyway, since you’ve used a capitalN for one and a smalln for the other,

the Solver can tell them apart, and that’s the main thing. But if you

use the identical variable N in two separate equations in the same

directory, beware—especially ifeither uses a unit object: You’ll get all

sorts of nasty messages until you purge the unit-object N.

*Note also that the built-in TVM application (3)SOLVE)(a)ENTER)) is much faster than either of the

2 Solvers with 'TVoM'. But don’t erase TVoM yet; it will prove useful in the next few pages.

50 3: THE SOLVER

Customizing the Solver

Keeping the Gas Constant a Constant

In your IdealGas equation, youjust 2Znow that sooner or later, some-

one will try to check the value of the Gas Constant by pressing II]

instead of(@K_J{or

bypressing

Hilk
So why not take it off the Solver menu:

preventing access to it there? Yes—youcan do that: You can design

} altogether,

your own variable menu for use with your equations, omitting vari-

ables that don’t vary—like the Gas Constant.

To do so with the menu-based Solver,just put your equationinto a list:*

{ 'p¥V=n*R#T' { p V T n } 1 Inthislist, the equation comes

first, followed by a list ofthe variables you do want on the menu. You

can put those variables in any order—say, with the most frequently

used variables first (handy if there are more than six variables).

Put this list onto Stack Level 1, and then type ' [deal Gasg' and

'IdealGasz' 'EQ’ to name it and makeit the current equation.

Now press EOOT to see your customized menu that

hides [E_I:

Cr Iy I I 13383

*The menu-based Solver accepts any of the following as an “equation:”

e an algebraic equation or expression (example: 'P*¥Y=n*R#*T"');

* areal-number constant (example: 8.319);

e a program that uses only global (no local) variables to return exactly one result to Stack

Level 1(example: €« p V #* n R # T * - »);

* alist of one or more of the above (example: { 'P*¥/=n*R*T' 8.315 'T=To+sT' J);

¢ alist of one or more of the above, plus an extra item—a list usable as a CST menu

(example: { 'p¥Y=n*R*T' { p V T n }).

Customizing the Solver 51

52 3: THE SOLVER

Running Programs from Inside the Solver

The variable Solver menu list structure can also include executable

. Inthe Ideal Gas

law, for example, suppose you’re using your 48 to monitor the amount

programs{

ofgasin a pressurized reactor. Volume and temperature are constant,

and you can calculate the quantity ofgas from the measured pressure.

Hypothetically you’d have a program, READP, to read a pressure sensor

and putthe value onto the Stack. To simulate that here,just use READP

(Checksum: # 45658d Bytes: 37.9), a constant: % 5S_atm *

So replace P in your variablelist with a list ofthis form: { " menu label"

{ «prgl® €prg2%® «prg3® } }. The "menulabel" is the label that

will appear on the menu; € prgl/ * is the program that its unshifted

selection will execute. ¥ prg2 ® and % prg3 * are the programs that the

(&) and (O}shifted selections of this item will execute, respectively

(but these are optional; you can ignore the shift keys and simplify your

list to{ "“menulabel" % prgl® 1).

Let the unshifted menukeybe the call toREADP. Therefore % prg1 * will

be« READP DUP 'p' STO 1 DISP 1 FREEZE *. This reads the

pressure, stores it into the variable name 'P', and displays it in the

Status Area—just as the Solver would do for a value that you keyed in.

Then % prg2 * will be an empty (“do-nothing”) program, % #, since you

don’t plan to calculate the pressure. And ¥prg3* willbe¥ p *, torecall

the value in P to StackLevel 1—just as any other (}-ed variable key

would do in the Solver.

Thus,the list to replace p becomes{ "p" { « RERADP OUP 'p'

STO 1 DISP 1 FREEZE » « » « p » } },

Customizing the Solver 53

Now type (VAR) (©IITZM (¥) to edit a copy of IdealGasZ. When you

finish, your list should look like this:

{ '"p¥V=nxR+T' { { "p" { « RERDP DUP 'p' STO 1 DISP
1 FREEZE » « » « p » } 3V T n } }

Press(ENTER) to put it onto the Stack. Storeitas 'REACTOR'. Now spec-

ify REACTOR as the current equation (ATENTER) (&) sove)I
W), and start the Solver (EIMIJ). The display looks a little

different, as shown here:

REACTOR: { 'p¥V=nxkE¥* ..

-
t

M
~

1
BT I 1IR3

If you the variables, you'll see only ¥, T and n, since P is no

longer a Solver variable (notice that the[litem is white- on-blue,

instead of the blue-on-white). This is how the 48 helps you differenti-

ate between variables and programs in the menu. Try the unshifted

and shifted [lkey to see how it works....

The unshifted key displays '5_atm' in the status line (and notice that

with a slightly more elaborate program in the variable list, you could

make it display p* S_atm).

The () key does nothing (as you intended), and the () key puts the

value of 'P' onto the Stack.

54 3: THE SOLVER

A More Versatile TVoM Equation

The next thing to change is your TYoll equation a little bit (look back

on page 49 to see the original). You customize with the Solver to make

 the equation easier to use{i

e First,include afactortoaccount forwhenthe payments are made

(i.e.thebeginning or end ofthe month). This factoris a multiplier

to the PMT:
-N

0=PV+(1+I* Begin?)PMT{%} +FV(1+1)™"

Begin® will be a true/false variable, with a value of 1 ifpayments

are made at the beginning of the month, or 0 (the default) if

payments are made at the end of the month.

e Next, change all occurrences of I to I7188. This way, you can

enter 5% interest as (5)[_L_], instead of 11

* Finally, to accommodate interest compounded quarterly or

monthly, introduce a variable called Per (periods per year)—the

number of compounding periods in a year (12 for monthly

payments, 4 for quarterly, 1 for annual, etc.).

Thus, since N is the number of years, N¥Per will be the total

number of periods—and payments. And I/(1B8*Per) will be

the interest per compounding period.

Customizing the Solver 55

By now, the T¥oll equation is a monster. In textbook notation,it is:

—NPer

1- (1 + !) NP* o ? - er

0=PV+(1+-IM)PMT 100Per +FV(1+ !)
100Per 1 100Per

100Per

Or, in algebraic notation,it is:

B=PY+(1+I#Begin?~(180%Per)) *PMT*((1-(1+I-(188%Per))*
=(N#Per))-(1-(188%Per)))+FY*(1+1-(180%Per))*-(N*Per)

Yep, that’s right: You get to build this, using whichever method you

wish—EW or Command Line—to edit the current version of TVoll

(quiz: which method would you rather use?). Go...

Finished? OK, now ifyou were to store this equation (don’t do it yet),

the Solver would give you seven variables to juggle, plus the [T1dd

item besides. But you can make the equation a bit more friendly, by

attaching this variable list to it:

{NIPYPNT FV { "SETUP" { « VIEWP » « MOR =»
« BEGEMD *» } } Per Begin? I

No—you don’t need to re-enter the equation. Using your list-building

process, just put the current monster TVYolM equation on Stack Level 2,

the variable list on Level 1, then press (2) Prc)INEIETMEA. ..and save

the whole thing in ' TVMZ'.

You now have a full-fledged Solver “program.” Type 'TVMZ' STEQ

(5TEQ is the same as 'EQl' (STO)). Then start the Solver.

56 3: THE SOLVER

You should get a display like the one below.

TVM2: { 'B=PY+({1+Ix¥Be..

 b
k

M L1 Il Py IPMTFY IR13M;

This version ofTYolM is more “friendly” than the first one: On the first

page of its two-page menu are the commonly-used variables, plus a

B3I menu key. ERIN serves three functions.

Unshifted will run a program called YIEWP (for “view param-

eters”), which displays the current settings of the variables Per and

Begin®: If Per has a value of 1, 4 or 12, the first status line will show

ANMUAL, QUARTERLY or MONTHLY, respectively; if Per has any other

value, say 5, the first status line will show> PERIODS-YEAR. And, if

Begin? contains zero, the second status line will show PMTS AT END;

otherwise it will show PMTS AT BEGINMNING.

will run a program called MG to rotate the Solver through

monthly, quarterly or annual payments. And (BE3IE will run the

program BEGEND, which toggles the value ofBegin? between 1 and 0.

Both MOA and BEGEND call YVIEWP to update the display.

The second page of the variables menu gives you direct access to Per

and Begin?, so you can set bimonthly payments or calculate interest

compounded daily—when Per- must have a value other than 1, 4 or 12.

Here are the three programs, YIEWP, MOA and BEGEMND:

Customizing the Solver 57

VIEWP
Checksum: # 14516d

Bytes:

« JFERR

»

58

415.5

'Per' RCL
THEN DROP MBA 'Per' RCL
END
+> per
« [F 'per==4'

THEN “QUARTERLY"
ELSE

IF 'per==12'
THEN “MOMNTHLY"
ELSE

IF 'per==1"
THEN “ANMUAL"
ELSE

Per IP »STR
" PERIODS-YEAR"
+

END
END

END
»

1 DISP
IFERR 'Begin?' RCL
THEN DROP BEGEMD

'Begin?' RCL
END
+ begin
¢« [F 'besin'

THEN "PMTS AT BEGINMNIMG"
ELSE "PMTS RT END"
END
¢ DISP 1 FREEZE

>

MaA
¥ 17323d
164

Checksum:

Bytes:

« JFERR 'Per' RCL
THEN DROP 1
END
> per
« [F 'per==1'

THEN 4
ELSE

IF 'per==4'
THEN 12
ELSE 1
END

END
»

'‘Per' STO VIEWP

BEGEND

Checksum: # 34886d

Bytes: 94.5

« JFERR
'Begin™®'’

THEN DROP @
ELSE NOT
END
'Begin™®’

RCL

STO VIEWP

3: THE SOLVER

Linking Equations: Solving Several at Once

For this next topic{ne

toyour “Apples and Orangesequatlon Suppose you’ve borrowed your

nephew’s little red wagon—which can hold only 50 pounds—to haul

your groceries home. How many apples and oranges can you afford—

and still be able to get them home?

Hmm...to avoid exceeding either yourbudget oryourwagon’s capacity,

you now have two problems. The first is already taken care ofby your

existing Fruit equation:

TOTAL=CSTAR*APPLES+CSTO=0RANGES

But now there’s this new equation (key it in and store it as 'WMason'):

LOAD=WT. A*APPLES+WT. 0*0RANGES

The Solver lets you link equations in order to solve several at once. To

use this feature, you combine the equation namesin a list and give the

list a name.

So create the list { Fruit MWagon J. it and store it as

'Shopping'. Then type 'Shopping' STEQ to make this list the cur-

rent equation.

Linking Equations: Solving Several at Once 59

Now press A to start the Solver. Your display will

look like the one below.

Fruit: 'TOTAL=CSTA*APF..

M
-
k

 (xorallcsTallapPLI[CsTOIEAN][FFTTE

Notice that the Solver is ready to work on the first equation in the list,

'Fruit'. Butpress and notice the new menu label: FEI&. Press

FBEH now to see what it does.

Wagon: 'LOAD=WT.A*APF..

—
r
o
w
W
-
h
A

[Loapl[Tal[APPLI[MT.[DEAN][FEE

Get the idea? Ifyou have several equations in your list, suchas { EQ1

EQZ EQ3 EQ4 I, DEEA bumpsEB1 to the last place in line, moves all

the other equations up one place,{ EQZ EQ3 EQ4 EQ1 X, and sets

up the Solver to work on EQZ.

Nowpress IFB{dH a few times until the Solver returns to 'Fruit '.

It’s time to test all this!...

60 3: THE SOLVER

Press to see that each variable in 'Fruit' has an assigned

value (the values in the examples at the beginning of this chapter

should still be there: CSTA should contain B.29, and CSTO should

contain B.89).

Nowpress B[to go to the 'Wagon' equation. Apples are about

three to a pound, so press)3)5) [HLAlto enter an apple’s weight. Now

imagine some big,juicy oranges—about a pint each: Enter]5)[HL0]

Solve for the total weight by pressing (JLOAD]...

For another variation on the problem (and to further demonstrate the

“What-If?” nature of the Solver), how much would it cost to fill your

wagon with an equal weight of apples and oranges?

Press (2]5) [LOAR] (0) &JAPPL].... Result: APPLES: 71.

Then press (0) [AFPL])J0EAM].... Result: ORANGES: 58.

Then [APPL] [DEAN], then 3to get back to the costing

equation, and (&fT0OTA].... Result: TOTAL: 65.69

That’s the cost of a wagonful of equal weights of apples and oranges.

Linking Equations: Solving Several at Once 61

Another good example ofa set oflinked equationsis this set for linear

motion:

v=v, +at

X=X, +—;—(v0 +v)t

X=X, +vt+1
2

v =v) +2a(x—x,)

Enter these four equations and store theminto 'M1"', '"M2' 'M3', and

'M4', respectively.

Then store the list{ M1 MZ M3 M4 Jinto 'MOTION'.

Now you can solve for x, x, v, v, a and ¢, ifyou know any three ofthem:

You store the three (or more) known values and then use[and

to cycle through the equations, solving each one in turn,

until there are no more undefined variables.

62 3: THE SOLVER

Solving with linked equations does have some limitations:

e The Solver won’t search for undefined variables nor define or

solve for them automatically. For example, if you define every-

thing but the variable ORANGES in the Fruit equation—so that

its value is implied—then solve for LOAD in the Magon equation,

you’ll still get the error message: Undefined VYariable(s).

e In some iterative methods using more than one equation, the

order ofsolving the equations determines whether the solutions

converge or diverge. The Solver cannot help you avoid diverging

solutions.

Fortunately, there are two workarounds for these limitations:

¢ Sincethe Solveris programmable, you can automate much ofthe

process for use in analysis and design of iterative solutions.

e The Multiple Equation Solver application (&)Ec3can

solve for all the unknowns in a system of equations, given the

necessary minimum number of independent variables.

For most ofyour needs, the normal interactive Solver is sufficient, but

if you need more, stay tuned for more information on programmabil-

ity—and on the MES!

Linking Equations: Solving Several at Once 63

Using the Solver on IllI-Mannered Functions

Earlier versions of the Solver accepted only “well-mannered” func-

tions; you couldn’t use it with square waves, step functions, or other

real-world functions. For those, you had to resort to programming.

Well, no more. The 48’s Solver can handle it all. The key to making it

work is to think ahead. Plan out exactly how you’ll approach your

problemfromthe start. With planningand practice, you can now make

the Solver do what used to require a lot more programming.

1 where x 2 x,
Tryit: For the step function y= {0 where x < x, }, write a simple

program: « [F '®aK@'
THEN 1
ELSE 6
END

»

Next, name the program, say, 'Step'

(Checksum: # 729349d Bytes: 91).

Press 'Step' STEQET=R)Q) sove)TNENIA,and see:

Stept & IF '"XaxB' THE..

—
M
N
W
A

 BTT[P F=| I |

64 3: THE SOLVER

Just as with an algebraic equation, the Solver examines the program,

extracts variable names and builds a variable menufrom those names.

And you can “lock in” values by specifying a variable list and omitting

the fixed values. For example, for the menu-based Solver, change 5t ep

toStepZ: { « IF 'waxB' THEN 1 ELSE B END » { X 3 }
Nowx,is omitted from the menu, so the menu-based Solver appears as

Step2: { & IF 'wRaxB .

—
M
N
a
w
-
A

Of course, this function is ill-mannered; it can’t be differentiated:

Trying to do so onto the Stack with (3]3)givesa Bad Argument Type

error; trying it in the Plotter viaIZfHIEgives Invalid EQ. Even

rewriting the program as a user-defined function doesn’t help:

« » w x8 « [F 'w<xB' THEN @ ELSE 1 END » =»

This stillisn’t written as an algebraic, and the 48 can differentiate only

algebraics. But also in the PRGHIIANI menu—on the very last page—

is IFTE, which can be used in algebraics. For example, the above step

function can be rewritten simply as IFTE(X<XB, B, 1). And IFTE can

be differentiated and integrated—like a constant coefficient that

passes transparentiy through the differentiation or integration.

Using the Solver on Ill-Mannered Functions 65

One problem that has vexed engineers for years—and led to many

ingenious programs—is how to model a real diode. Adiode is a kind of

electronic “One Way” sign, ideally allowing infinite current flow in one

direction (called forward bias) and zero current flow in the other

direction (called reverse bias). Here’s a plot of voltage vs. current for

an ideal diode: I

Well, a real, solid-state diode isn’t quite that good:

Typically, the transition from forward to reverse bias takes place at

about V=0 volts. Under reverse bias (V <0) the currentis fairly con-

stant at / = 1 picoampere to 1 microampere. Under forward bias (V >

0), the diode current follows this relation:*

v

I = IO (e.0259 volts __ 1)

*This assumes a constant temperature of300 K. Agood electronics text will give you temperature-

dependencies for both / and /,. Also, the Equation Library offers a more rigorous equation.

66 3: THE SOLVER

If the reverse bias voltage exceeds a given value V,, or breakdown

voltage, then the diode loses all effectiveness and becomes essentially

a short circuit—current is very high.

So a good diode equation should model all three areas ofthe V-1 curve,

and it should be continuous. It can be done using two nested

IF...THEN.. ELSEcommandsinaprogram—ortwo nested IFTE functions

in a single equation:

[=IFTEC(W¥<Vb, 1E99+V, IFTECV>B, Tox(ExP(Y-.B259)-1), -T0))

Type this in and call it DI0DE (Checksum: # 44495d Bytes: 127).

This matches the diode model very well and maintains a continuous

function through the three regions of forward bias, reverse bias and

breakdown.

For example, a typical diode has these characteristics:

10 A

-10V
IO

VB

Storingthese two values completely defines your diode—and since the

variables are naturally arranged in the variable menu, you don’t even

need to create a variables list!

Using the Solver on Ill-Mannered Functions 67

The Care and Feeding of derFN

It may seem strange to have a section on functions in the middle ofthe

Solver chapter, but such considerations of ill-behaved functions are

important for using the Solver inside the Plotter—coming up next.

In many cases you will find it easier to differentiate an equation and

solve for the variables in the resulting first-derivative equation. But

if your original equation contains several functions for which the 48

cannot find a derivative, it will indicate this by creating a dummy

derivative and listing the variables available to solve the problem.

Press (JMTH)Mvx7)I (XENTER), then)3}
You'll get the algebraic function 'SIGNCK)'. Now press ("Ja]X]ENTER]

[2)3) again, to get the function 'derSIGN(-3, 1) '.

“Where did this come from?” you may well ask.

To answer your question, repeat the calculation, but this time create

the algebraic 'oK(SIGN(X))' and press [EVALD. This time you get:

'derSIGNCK, 8¥(R)J)'. Now you can see what happened in the first

case: instead ofstopping at a symbolicrepresentation ofthe differential,

the 48 went on and completely evaluated the variables, replacing ®

with =3 (currently stored in ®) and calculating the derivative of a

constant (1). Press again to see this substitution.

Moral: Ifyouwanttocompletelyevaluate aderivativeinonestep, use

the Stack method. For symbolic representation ofthe deriva-

tive or for stepwise differentiation, include the derivative into

your algebraic and evaluate tothelevel you need. See yourHP

UG (pages 20-9 through 20-10) for more detalils.

68 8: THE SOLVER

Now, next question: What is this der'SIGN all about?

This is the 48’s way of saying “I don’t know how to differentiate the

function SIGNCRX) , but I'll use these placeholders for¥ and dX until you

show me how the derivative should be defined.”

You'll probably face the same problem with many of your own user-

defined functions. When you use [[EEXIIIlEl on one of these func-

tions, ifthe 48 can’t find a numerical approximation to the derivative,

it will give you a nasty message and give up.

You can avoid this bytrying all your derivatives beforehand. Ifyou find

aderFN somewhere in your differentiated expression, then you should

consider how the function should be differentiated.

For example, with SIGN(R), it’s obvious that ' derSIGN(®, dX(K)) ' is

zero everywhere but at x =0, where it is infinitely large. So you could

create the function® # % dx 'IFTE('x==8', 1E499,8)' * andstore

thisas 'derSIGN'. WhenyouevaluatederSIGN after definingit, you'll

get a result of B (assuming -3 is still stored in ¥).

SIGN is a unary function; it acts on only one argument. By contrast,

percent is a binary function—two arguments. For example, the deriv-

ative of ' %(¥s Y)' with respect to Z is: 'der%(¥, Yy 0Z(¥), oZ(Y))!

Page 20-11 in the User’s Guide gives a solution for 'der%'. Work out

other user-defined derivatives in the same manner.

Using the Solver on Ill-Mannered Functions 69

Using the Solver Inside the Plotter

The 48 Solver really shines inside the Plotter application, where it’s

even more versatile than in its stand-alone form. For example, create

a 3rd-degree polynomial: 'K*3+Z2*¥*2-5%K-6'. Store this into EQ

(and press to ensure that 8 won’t get in the way).

Now, a good mathematician would be able to tell by inspection that it’s

a cubic curve from lower left to upper right, with a “dipsy-doodle”

around the x-axis that crosses the axis 3 times (you can tell that it has

3 real roots, right? ... right?...).* Prove it: Press to get the

PLOT input form. Press to put ¥ into the INDEP: field.

Press (v)(«)AMIIH to enable the AUTOFCALE option, then [T

No big deal, right? And you can use theHii[§] commands to get to the

interesting part ofthe curve. The menu in the display is the PICTURE

menu (you saw this briefly in Chapter 1). Press (4]« to find the

graphics cursor. Then press and hold (€] until the cursor is above and

to the left of the leftmost root. Pressmmto mark the point.

Now press and hold (»)to move the cursor past the rightmost root, then

press and hold (v) until the cursor is about four pixels below the x-axis.

*A good mathematician could also work out these roots in his/her head—or maybe use the poly-

nomial root-finder (via (=]SOLVE]Y] Y]JENTER)), but that’s a topic for another book....

70 3: THE SOLVER

Now pressHI[I[El. The Plotter will redraw the function:

ETNTSWTT
Reminder: Press(CANCEL)&]<4)(CANCELJG]€)to toggle between the PLOT

input form and the current plot. If you’re not using the input form,

press (CANCEL)(€J(CANCEL)(«) to toggle between the Stack display and the

current plot. Pressing («4Jsends you from an idle Stack display (i.e. no

Command Line or interactive Stack) to the graphics display. Pressing

returns you to the Stack display. Also, pressing (]« will go

to the graphics display from almost anywhere; the (4)shortcut is worth

remembering.

Press IZHIH to see the Solver and other function analysis tools. The

Solverisbuiltinto the first two ofthese menu items: [[Iilll and[HI&4.

With [l (as described in Chapter 1), you use the (a)(v)(€Jand(®) keys

to position the graphics cursor near where the curve crosses the x-axis,

then press Ed!'AN.

Try finding the three roots of the polynomial: -3, -1 and 2....

(When the menu disappears, press or (=) to get it back.)

Using the Solver Inside the Plotter 71

There are some significant differences between the waythatthe Solver

application works in its stand-alone form and the way it works within

the K"kl operation:

72

¢ The stand-alone Solver solves for any variable you want, but the

version solves for the value of the independent variable

which makes the dependentvariable go to zero. To solve for a dif-

ferent variable using [[illill, you must change independent vari-

ables from the PLOT input form or by typing ' varname' (&)SOLVE

LALTfrom the command line.

Another difference is that the Solver will display intermediate

results for you if you press any button except while it’s

thinking ([ENTER) is probably the easiest key to find while you're

watchingthe display). The Solver tells you, with a short message,

how it arrived at the answer, and it puts the numeric result onto

the Stack with the variable name for a tag.

Al by contrast, doesn’t give you intermediate results or a

message,butit does position the cursorexactly on the intersection

(useful for subsequent operations like EIi[dd). Also it puts the

result onto the Stack as a real number—withthe tagRoot ¢ and

displays the numeric result on the graphics display until the next

keystroke.

3: THE SOLVER

o Ifthefunction doesnot have a real root, such as with ' Y=R*Z+2"' ,

the Solver finds a local extremum (minimum or maximum). It

then puts that x-value onto the Stack and the Extremum value

in the Status line.

i1klputs the closest approximation onto the Stack and flashes

EXTREMUM on the graphics display, positioning the cursor at the

extremum of the function and displaying the numeric result.

e Notethatinsome cases(asinthe ' Y=K"Z+Z' example cited here),

the Solver and [Tl will return slightly different values of¥ for

the extremum.

. can return results that are difficult or impossible to coax

out ofthe Solver. Ifthe Solver’s answers don’t make sense, enter

the Plotter, declare your unknown as the independent variable,

and solve for it graphically. And note that if EQ contains a list of

two or more equations, then the Plotter will plot all the functions,

but [T[ikfll will find the roots ofthe first equation, and will

find the points ofintersection between the first two equations in

the list.

Using the Solver Inside the Plotter 73

The majority of equations you’ll plot have an isolated variable on the

left ofthe equals sign—or no equals sign at all. But you may occasion-

ally have an equation such as this:

15-2x2=x*+3x+5

The Plotter treats this equation as two separate algebraics, separated

by an equals sign; it plots them both.

 ET:] EH

1lfinds only the point where the right hand side of the equation

equals zero. In order to find the roots of the equation, you must use

to find the point(s) where the two function plots intersect.

Ofcourse, you can get around this by subtracting the left side from the

right side to get an equation ofthe form ' B=fn(KX) ', but sometimesyou

do want to see both sides of the equation separately.

74 3: THE SOLVER

Look at some other items on the FCN menu. At first glance, you might

think that andJlI3lll do the same thing, but not quite:

computes the slope of the function at the cursor location (though the

cursorneed notbe right on the curve; it will “home in” on the curve once

the result is computed and displayed).

I3 computes and plots the derivative of the equation at every x-

value in the plot range. It also adds the equation for the first derivative

tothe listin EQ(or,ifEQcontains a single equation, then[lcreates

alist with the new equation inserted at the start ofthe list). To see this,

use the PLOT input form and EE]IIEEIHETIE],as on pages 70-71:

Now, pressing IIZELE(NxT) I3l adds a parabola to the display, since

the first derivative of a cubic function is a quadratic:

 BTNTWT(T

And now EQis: { '3¥x"2+2%(2%8)-0"' 'RA3+2ERZ2-0¥n-b'

Using the Solver Inside the Plotter 75

Press IEEYH(NxT)Itwice more (give each press time to draw)....

The list in EQ becomes

{ 6.00 '3x(Zxx)+4'
'3ERMZH2E(Z2¥R)-0 ' RNSH2ER"E-0%n-6' 3

And the next two derivatives—a slanted line and a horizontal line—

appear on the display:

g

 ITPT =WTT
The menu item IFTH IIE simply makes the next equation in

the EQ list the current (“first”) equation. For example, after you have

pressed EE{IH twice, your display should look like this:

'JxA"2+X(2Xn)-5'
The “first equation” is now the parabola.

76 3: THE SOLVER

For unruly equations, such as 15-2x?=x?+ 3x + 5, LEI38 will swap the

left- side and right-side expressions, and allmfloperations will then

act upon the new right-hand side.

Keep in mind that you can switch back and forth between the Plotter

and Solver at anytime—and use [[EI3®in either application. Andkeep

in mind also that ifyou alter any other variables used in the equations,

you must redraw the graphics display (by pressing[T[TEI21).

FCM ¥simply returns the function value at the current cur-

sor location. For unruly equations, IZ¥ll returns the value of the

right-hand side; the Plotter’s IZXEHl is the graphical analog of the

Solver’s [dE.

FCM returns the coordinates ofan extremum ofa curve—but

it won’t tell you ifit’s a maximum or minimum. With the third-degree

poly-nomial, pressing[lwith the cursorjust to the left ofthe origin

re-turns this display:

 EXTRM: (-d.1d.4.08)

Using the Solver Inside the Plotter 77

I3} does a numeric integration on the “first equation” in EQ, with

respect to the x-axis. You just put the cursor near the starting point,

and press [EId3i0 or to mark one limit. Then put the cursor near the

other limit and press [EIAL:R.... It takes awhile, and you get only the

labeled integral, but it’s easy—try it: Find the area under the curve

between the greatest and least roots of the third-degree polynomial.

Move the cursor nearthe least root and press IZErlIETHOERTL.

Moveit near the greatest root and press [Il(=) EIATZE You’'ll see:

AREA: -10.42

helps show the area used in integration. With the x-limit still

at the least root, and the + cursor still at the greatest root, press

or (=) (if necessary) to get the menu. Then press Hilll43.... Note that

B0colors only the area below the curve and above the x-axis. How-

ever, when you store a list of multiple expressions in EQ, shade colors

the area above thefirst expression and below the second expression. For

example, here’s the shaded plot of £ 'Z*SIN(XK)' 'SINCK)' I

 200Ko8,[TRACE]FENEONT[CANCL

78 3: THE SOLVER

The Multiple Equation Solver (MES)

The menu-based Solver allows you to solve a set of linked equations,

provided you solve them one at a time, cycling through each via [FF{I5}

until youfind the answeryouwere seeking. (An exampleis on page59.)

You enter all your known values, and then find an equation with only

one unknown. You solve for that one, then continue switching equa-

tions until you solve for the unknown you really want (or all of them).

HP built the Multiple Equation Solver (MES) to automate this manual

process. Try it now: Go to the G. CH3 directory and type 'Shopping'

STEQ to make Shopping the current equation. Press (G)gce

to create the reserved variable Mpar.* Then press to en-

ter the MES Solver menu. You should see 3 pages of menu items:

(oTAl[CETAICETRILOAR[TA][ARRL]

(roimeanil 010 JIGTON
EEEEE I IC C]

In practical terms, the MES feels much like the menu-based Solver: To

enter a known value into a variable, you simply key in the value and

press the appropriate menu key. To solve for an unknown, you press

(&), then the menu key; to recall a value, you press () first.

*Press (VAR[EIiA to have alook atit.... All youseeisLibrary Data. The MINIT command takes

all the equations in EQ, extracts variable names from them, and builds a list ofthe equations, var-

iable names and other important information. Unfortunately, you cannot directly access this list

like other reserved variables, but the MES provides tools to modify it indirectly. Note that MES

will run only in a directory containing an Mpar, but that different directories can have different

Mpars, so you can switch from directory to directory with the MES Solver menu active. (Ifyou do

this and accidentally change to a directory without an Mpar-, the 48 will default to the MTH menu.)

The Multiple Equation Solver (MES) 79

Now, re-work the example on pages 59-61: You have $20. Apples cost

$.29 and weigh .35 Ibs.; oranges cost $.89 and weigh .5 lbs. You want 8

apples and as many oranges as you can afford, takingthemhome in the

wagon, which can carry up to 50 Ibs. Will the wagon hold up?

Press (2)0) [(T1a] (-X2)9) [c=1a] (-Xe)o) (210 (-X3)5)[Tl(8) [AREL] (NXT)
(-15)LANXTINXT). Note how the menu labels change from inverse to

normal as you enter a value, indicating that the variable’s value is now

user-defined—“sacred.” The MES will not change the value of a vari-

able with a normal menulabel except whenyou’re solvingfor it. By con-

trast, inverse labels indicate variables whose value is calculated, or

unknown at the start of the problem, and the MES may calculate or

change the value of this variable in future calculations.

Now press JLOAR] to solve for the total weight ofthe purchase. Watch

the status line ofthe display. It says Searching asit decides what

equations it needs to solve to determine the LOAD, then looks for the

first one of those with only one unknown. Next it says

Solving for ORAHGES Solving for LOAD
ORANMGES: 19.87 then LOAD: 12.73
Zero Zero

and finally puts the tagged result, LOAD: 12.73, onto Stack Level 1.

Notice how [J indicators have been added to all the menu labels. A[]

in a user-defined variable’s label, such as L], shows that the MES

used this variable in the most recent calculation; a] in a calculated

variable’s label, such as[LOAs]indicates that the MES calculated a new

value for this variable in the most recent calculation. In this particular

case, all thevariables were used or calculated (all the menulabels have

Oin them), but there will be cases when only some ofthe variables are

80 3: THE SOLVER

involved in a calculation, and only those menu labels will have the [J.

All [Yed variables are related—as “participants” in the most recent

solution—but the values of the unfJed variables may or may not be

consistent with them. Press BT to store a new value into

CSTA. The [I's disappear; the new value you store invalidates the last

solution—all calculated variables are “unknown” again.

Next, how much will it cost to fill your wagon with an equal weight of

apples and oranges? First, press to be sure that CSTA is still

B.729and CSTO is still B. 89. Now TOTAL, APPLES, and ORANGES

mustbecome calculated variables. You use the MCALC command to do

this: First, put thelist{ TOTAL APPLES ORAMGES % onto the Stack.

Now, press until the menu key appears. Press (NXT).

The variables you specified are now in inverse labels; they are no long-

er sacred—the MES can change them. Press(2]5)[LOAD] (o) [APPL](NXT)

and watch the status line. The MES will now solve only for

ORANGES (and sinceTOTAL, CSTA and CSTOwere not used in the cal-

culation, no [J boxes appear in their labels).

Now, to preserve the value ofORANGES while solvingforAPPLES, use

the MUSER command: JOEAs] EEd, then to confirm

that the [IEA label has changed to [I{Itl Now you can press [(JPREV]

to solve forAPPLES alone. When you tell MES to

solve for the sacred variable APPLES, it sees it as no longer sacred,

calculates its value and changes its menu label from to [APP=],

Ofcourse, 71.43 is not a realistic amount ofapples to buy, but 71 is OK.

So press [APP (the label will change back to EIdd®3), and press

II01A] to solve the problem completely. Result: TOTAL: 65.69

The Multiple Equation Solver (MES) 81

The Ke

Press until you see the menu label. has 3 important

uses in the MES. First, pulls up theprogress catalog, a kind

of“show-your-work” notepad for the most recent calculation. The pro-

gress catalog for the previous example looks like this:

MALUm[ERMZ[PRINT]||
The first line shows the name of the equation set used in the solution

(it defaults to EQ if no name is supplied). Subsequent lines show the

values for all variables calculated in the last solution (i.e. all variables

with labels like [TOTs]). [I¥XHE shows the equations used to solve for

each variable; re-displays the values. sends all of this

information to the printer; I3ill returns to the MES Solver menu.

is the “solve for all” command. Just as you use the ((§) prefix

to solve for a specific variable, solves for all calculated vari-

ables. Try it—pressNI and watch
as the MES solves for both ORANGES and TOTAL.

Unshifted is the “undefine all” command. It turns all variables

into calculated variables, with inverse labels. This is the most drastic

use ofIlINMl—and the most useful: It wipes the slate clean, so you can

enter a completely new solution.

82 3: THE SOLVER

Other Tips on MES

e On page 51, you wanted to keep the gas constant a constant.

Similarly here, suppose you want to keep the fruit prices from

being overwritten with garbage. The MES Solver is not quite as

helpful as the 48’s other Solvers, but you can make the prices

user-defined variables, via{ CSTH CSTO } MUSER.* Or, at the

very least, you can move them to the end of the menu, via the

MITM command. MITM takes two arguments: a title string on

Level 2, and a variable list on Level 1. The list must contain all

the variables in the equation set, but you can reorder them and

insert null strings ("") to serve as blank menu keys. Try it: Type

"SHOPPING" (ENTER), then press and use the MES Solver

menu and to create the list { ORANMGES APPLES TOTAL

LORD WT.O0 WT.A "" "" CSTO CSTA . Now press(JEQ LB

IRto reorder the menu, and to view it.*

e Because of the way the MES works, some sets of equations can-

not be solved. MESlooks through all the equations for an equa-

tion containing only one unknown and solves that equation first.

Thus it is possible to have equations arranged in such a way that

the MES cannot solve them. The UG (p. 25-9) shows 2 equations

in 2 unknowns which you can solve by hand, but which the MES

still chokes on, because it can solve for only one unknown at once:

'wl=uB+axt1’ and 'wZ=uB+axt 2’

To solve this, subtract one equation from the other to eliminate

VB: '(xl-%Z2)=a*(t1-12)'. Then put the three equations into

a MES list.

*But this step can be negated merely by pressing the key, so be careful.

The Multiple Equation Solver (MES) 83

Be aware also of other “gotchas” with equation sets—things

which you take for granted, such as positive, negative and com-

plex square roots; absolute vs. relative temperatures (see page

48); unit objects; multiple trig solutions (e.g.tan 45°=tan 225°); and

bad guesses. See pp. 25-8 to 25-11 in the UG for more ideas.

You can help the MES with initial guesses. As with the other

HP48 Solvers, a guess may be one value, or a list of2 or 3 values.

When you enter a guess, the variable label will change to “user-

defined.” (See Chapter 18 in the UG for more information.)

In a nutshell, that’s the Multiple Equation Solver. You can read more

about it in the UG, pages 25-6 to 25-11, and in the AUR ifyou have it.

To summarize the essentials:

84

Create your list oflinked equations, just as you would create for

the regular HP48 Solver. Store the list in EQ.

Execute MINIT (G)ecIEEHEIRTED) to initialize Mpar-.

ExecuteMSOLYR(GEcIEIFAIEEM)to enterthe MES Solver.

Store knownvalues by enteringthem and pressing the unshifted

menu keys. Solve for individual variables by pressing the (Gled

menu keys, or solve for all unknowns by pressing IGIHM.

All values marked with [or Bl were used or calculated, respec-

tively, in the most recent solution; they are internally consistent.

You can protect variable values from being overwritten by speci-

fying a list of their names and executing MUSER (IEITER). Like-

wise, you can unprotect selected variables by listing their names

and executing MCALC (IEIM), or, for all variables, via IETHM.

3: THE SOLVER

Programmable Use of the Solver (and MES)

Sometimes you need to use the Solver in the middle of a program.

STEQand RCEQ are programmable, and you can store or solve for var-

iables interactively during the program. For example, to store the

equation into EQ and invoke the menu-based Solver:

€ ... 'egname' STEQ 38 MENU HALT ... #

When the 48 encounters this, it stores ' egname' into EQ, activates the

SOLVR menu (number 30) and haltsprogram execution. You can then

use the Solver to store values or run other programs from its variable

menu, then press when ready to resume the program. Or, to

avoid halting the program during the Solver, you can instead use

ROOT, after setting up the Stack so that ROOT finds its arguments:

Inputs: > Outputs:

symbolic or program (the equation)

global variable name

real, cmplx., list or unit (1st guess)|1? real, complex or unit (ans.)w
R

Programmable Use ofthe Solver (and MES) 85

Here’s an example ofusing ROOT. This program calculates payments

for a 5-year, $15,000 loan at various interest rates. The program (AMRT:

Checksum: # 28425d Buytes: £26) uses the original TVoll equation

(p. 49) and invokes ROOQOTto print a table of rates and payments:

« 1568688 'PY' STO B8 'FV' STO 68 'N' STO
.85 .15
FOR int

int OUP 12 -~ 'I' ST0 3 FIK »STR "» " +
'TVol' 'PMT' -188 ROOT 2 FIX +STR +
PR1 DROP .81

STEP
»

A more polished version would give prettier output, but you get the

idea. Another example: To solve partial pressures, you can combine

« 'ldealGas' STEQ 38 MENU HALT... =»

& wwx.we_mol 'm' STO 'IdealGas' 'p' 1_atm ROOT... =

The MES is also programmable. If, for example, you want to solve the

equations ofmotion within a program, you could include the sequence:

« ... 'MOTION' STEQ MINIT MSOLVR... ® simplytosetuptheequation

and invoke the MES. Or you could use this sequence:*

« . 'MOTION' STEQ MINIT value varname STO... (repeat as needed)

..X sacredvarnames } MUSER { non-sacred varnames ¥ MCALC

desired varname PMROOT... *

*Note that substituting "ALL" for desired varname will instruct MROOTto solvefor all unknowns.

And MITM is programmable,too: € ..."Title String" { allvarnames } MITM... »

86 3: THE SOLVER

Review

Okay, set down your calculator, grab a handful ofcookies, and think for

a moment about the 48 Solver application. You heard it suggested at

the start ofthis chapter that it’s really anotherprogramminglanguage

—even another programming environment. And you've seen the acro-

batics the Solver can do:

¢ You learned about two ofthe Solver environments—menu-based

and the input-form—and the strengths and weaknesses of each.

* You learned how to customize the Solver menus, how to protect

variables and perform “outside” tasks from inside the Solver.

e You saw how the Solver is integrated with the Plotter applica-

tion, and you learned about differences between the graphical

Solver and the stand-alone Solver.

* You learned how to solve multiple equations at once—with or

without the MES (Multiple Equation Solver).

* You were introduced to using the Solver within a program.

As you can see, ifyour work relies on math to any degree, the 48 Solver

can greatly reduce the amount of € ..programming... * you do. The

Solve Equation Library contains 300 prewritten equations covering

dozens of different topics—and new equation libraries are being com-

piled constantly. Ofcourse, ¥ ...programming... ® isn’t dead; there will

always be needs for it. But now the Solver can do many of the things

that formerly had tobe done in a¥ program *. So get comfortable with

the Solver—using a handheld computer has never been so easy!

Review 87

L4095VSIVHMNF

8RS3

IR

s\\\.w&..o.
&l25/

3OO&
2R

X/XRoi.qs.flo‘.'NTNX

3?VQ‘%WI(XS,,‘OoQO.VowA\\H.,wofssw‘.’

Q
2&S

0
" 9Oo2 &&
O»
"
,
o

<.O

%& N

55)

2
20~0§

O8
N 52

R
S

.’.
'

9X2.

NXQ)5X%
ARRRSSRRER%f/&W,«,....3 oSNR VeRSRRO

, Xs R
N0‘O

XKsO7,0\\54<-.a...«Q;fl;&%@g@/.4.4_..,

RReRe N!ORIRSR
RRRReRR QRSNFANDRXXX

RX///Jw.a..%v»,..w»%fiw.\XA //cofir//\‘v#RO2BN“'WOl,./‘fl-/J\afio-~
NQ.AONX

)
3KNSXN

3SSRSEXRN
Oa«l"‘l\.z‘“\uo.S\%MO”/”“.M“O_/")

vele,\Mm&\%'%0/%e
SRR

9/‘%;\Q.@Oo.nmo.;un.o.flovwwwu\.v.,,...fl/,RGNX
LONORR 3»'

C’
K5

\.-G

MRPN XRN
SRRRN :160///’3..”1//01&1/

RN

%

SFOIIXDS
QIIRRIRONRDSIR ARSQRN SNw/olo!0090.000'0”""/’/,”RO QRIS

RRREIRIIAXNSRS
RRRN

IR
CNORCCHINS BSOSKX
ECOXSAIRIRSK

&a&fl.’“ 3
EIRRRN
SRS

x
4

.
"
'
1

‘

=
%
2
55

052

s
R

|
u
“
l
u
l
“
l
|
n
l
l
,
p
u
l
l
,
.
l
‘
,
,
u
'
l
l
:
:
,
l
“
‘
r
l
n
r
u
'
-
;
"
"
“
,
“
,
”
”
’
“
"

I
R
R
E
R
A
T
R

/

 No
ARSR
.XK R
NX"Iooo,.).‘..::“

 KRR
RV.!.qows'/!.o,.782.,

YIRBILREP
7PR

R\s“#\\\\\.\/gY/ 4,
3\\sfic\7

)SRR) \o,/onofi.mN
R

N

=

()
J~0'RN

XQQ\sewiww.o
O
Q0
>0,
LA
XKSR %O./o,o

XEROAXN

Opening Remarks

With its ability to manipulate complex information in the forms of

objects, the 48 makes it easy for anyone to do serious graphics on a

handheld machine—something not possible before. Other handhelds

have “large” screens or dot-matrix displays but nothing as accessible

orversatile asthe 48grob (its propername is “graphics object,” but the

48 shortens this to grob).

A Clean Slate

Before you start, set up your machine for some good, hard graphics

work:

¢ First, in your HOME directory, create a directory called TOOLZ%, to

store your programs.

¢ Then, in that TOOL% directory, create another directory called

PIC%, where you’ll store your grobs and do your graphics work.

This will prevent you from clobbering other object names and prevent

both yourHOME directory and working directory (PIC%) from becoming

too cluttered. So from now on (unless specifically directed otherwise),

store all programs in TOOL% and all grobs in PICS. And when actually

using (executing/evaluating) any program or grob, do so from PIC%.

Now it’s time to talk about grobs....

Opening Remarks /|A Clean Slate 89

What Is a Grob?

A grob is simply another way for the 48 to store data. You’re already

familiarwith matrix objects, program objects, character string objects,

complex number objects, etc.

A grob is just another kind ofobject—a pixel-by-pixel description ofan

image that can be displayed on the 48 display, or passed to another 48

or PC, or “dumped” to a printer. A grob can also be manipulated or

combined with other grobs—just as other objects can be manipulated

and combined in various ways.

Create a simple grob to experiment with—plot a sine wave:

If you’re not in RADians mode, press (G]RAD. Then press (=]PLOT|SIN]

(o]

X)(ENTER)()(¢TRT

H

NI..

The graphics display should fill with a sine wave—big deal.

Press [CANCELJCANCEL) to exit graphics mode.

90 4: WHAT’s A GROB?

Move into your new PICE directory, and then press PICTPICT

'SINE' 5T0)

PICT is the reserved name in which the 48 stores the current graphics

display (much as EQ is the reserved name in which the 48 stores the

current equation). Therefore, PICT can be (ST0fed and (RCLJed, but it

cannot be deleted (yes, you can it, but a new PICT will be au-

tomatically created if you then plot a function or press (G]GRAPH)). So

make a mental note: Don’t use PICT as an object name, because the 48

has reserved that name for its own use.

In the above exercise,I placed the grob representing the

current graphics display onto Stack Level 1. Then 'SINE' stored

it under that name in your PIC directory.

Now take a closer look at this grob. Press (VARJIEILIH(Y), and you’ll see

GROB 131 64, followed by a mass of characters.

What do all those characters mean? To get abetteridea, compare them

with an “empty” grob: Press [ENTER)&)[PLOT)[EiETto clear the graphics

display, and then PICTPICT '"EMPTY to store the

blank display as an object called 'EMPTY'. Now press EHPTY][]

to see GROB 131 64, followed by a mass of zeros.

This is the Stack’s representation ofa grob. The wordGROB simply tells

you that the object is a grob. The second “word”, 131, is the number of

columns ofpixels (dots) in the grob. The third “word”,64,is the number

ofrows ofpixels in the grob. And then the huge “word” after that is a

hexadecimal bitmap of all the pixels themselves, where every digit

represents 4 pixels.

What Is a Grob? 91

Pixel Numbers vs. User Units

Agrob’s size is normally expressed as “m pixels wide by n pixels high.”

For example, the display grob PICT has a normal default size of 131

pixels wideby 64 pixels high. Butyou can also express such dimensions

in user units. Userunits allow you to define the scale and limits ofPICT

in more convenient units—to save you a conversion between Cartesian

coordinates and pixel locations every time you want to modify PICT.

Toillustrate this, returntheSINE grob to the graphics display andview

it, by pressing (VARIEREFRE)INHEIHIHE).

Each pixel in this 131x64 grob is defined by a list oftwo binary integers,

of the form{ #col #row 2. These are “pixel coordinates.” Here are

a few pixel locations expressed in their pixel coordinates:

—{ # 6d # 6d }

{ #125d # 168d }—

{ #65d #2d }—

 { # 138d # 63d X

However, recall that when you plotted the sine wave, the 48 used the

default x-axis range of6.5 to 6.5, and it assigned the y-axis range to be

—~1.3 to 1.0. These ranges were in user units.

92 4: WHAT’s A GrROB?

Agraphical location in user units is expressed in the form ofa complex

number, (x, y). Here are the same four locations as on the previous

page, but expressed in user units rather than in pixel coordinates:

—(-6.5,1.8)

(6.8,8.63)—

(Bs B)‘—'

 (6.5, 1.3

Comparing the two diagrams, notice that their scales behave differ-

ently: The pixel coordinate scale always startsat{ # Bd # Bd 2

inthe upperleft-hand corner, and the numbersincrease as youproceed

downward and to the right. But the user-units scale starts at whatever

values you (or, by default, the 48) have defined, and these numbers

increase as you move upward and to the right.

So, which scale should you use? Obviously, user units are much more

convenient in many respects. You do your computations, you plug in

the numbers, you plot them—just as on graph paper.

Anyhow, HP has made the plotting commands versatile enough to

accommodate both scales. And the flfil functions Izki¥ and

a3l allow you to quickly convert from one scale to the other if you

want to see both sets of the numbers.

Pixel Numbers vs. User Units 93

But performing grob manipulations with userunits does have a couple

ofdisadvantages. First ofall,it’s slower. The 48 doesn’t “think” in user

units. When you give it a graphics command with real or complex

arguments, it has to find out what the current graphics scale is, then

convert the arguments to binary integers (pixel coordinate values) and

then execute the command. This can increase yourprogram execution

time by as much as 50 percent.

Secondly, user units don’t always remain the same. They can differ

from directory to directory and program to program, as you redefine

them. So always check the graphics scale before manipulating grobs,

if you’re going to do so in user units.

With those considerations in mind, you can see that ifyour application

involves a good deal ofplotting and mathematical modeling, then user

units are for you. On the other hand, if your application involves

placing text in grobs, extensive fiddling with bitmaps, or mixing grobs

ofunknownuser units, then you should stay with pixel coordinates. As

a good rule of thumb, if you're doing too many conversions from one

scale to the other,it’s a sure sign that you need to switch to the other

scale.

94 4: WHAT’s A GroOB?

“Roll Your Own” Grobs

You have several ways to create a grob (i.e. put one onto the Stack):

PLonETEE(PRG) creates an empty 131x64

grob.

To create an empty grob ofa specified size, use the (BLANK)

command. You put the number ofcolumns (as a decimal integer)

at Stack Level 2, and the number of rows (as a decimal integer)

at Stack Level 1, then press HTAEETE The empty grob

will be placed at Level 1.

To turn any object into a grob, put the object at Level 2 and a real

numberon Level 1. Thenpress[Pre)[HAHA (that’s*GROB).

Ifthe real numberis 1,2 or 3, the 48 will use the small, medium

or large font, respectively, to create the grob. Ifthat argumentis

B and the object is an algebraic or unit object, its grob will be

created in textbook format—as in the EquationWriter.

I(vx7)Icopies the current display to a grob.

PLon[IA®and %] will create a grob named PICT

with a function or statistical data plotted on it. To then put this

grob onto the Stack, you type PICT (from the Stack dis-

play), or (from within the Graphics display).

converts to a grob directly from the EquationWriter.

You can also create a grob on the Command Line. For example

(do this now), type GROB 8 2 83FF (ENTER).... See?

“Roll Your Own” Grobs 95

The Hexadecimal Bitmap

That grob you just created is 2 rows (of pixels) tall and 8 columns (of

pixels) wide. An 8x2 grob therefore has 16 pixels (“picture elements”).

A hexadecimal digit*, expressed in binary form, can hold information

for 4 pixels. For example, the hex numberB (whichhas a decimal value

of eleven), is expressed in binary as 1011. So the hex number B can

describe a row of4 pixels, where all but the second pixel are “on” (dark);

the second pixel is “off” (light). Similarly, a hex 0 (binary 0000) would

be all pixels “off”, and a hex F (binary 1111) would be all pixels “on”.

The 48 always uses aneven number ofhex digits for each row. Soifyour

grob is between 1 and 8 pixels wide, you’ll need 2 hex digits to describe

that row—even if you use only a few of those pixels.

Since each hexadecimal digit represents 4 pixels in a row, it’s easy to

think of a grob as a collection of 1-row, 4-column bitmaps:

m columns

n row

*Ifyou don’t understand hexadecimal numbers, keep your place here while you read Appendix A.

96 4: WHAT’s A GROB?

In the grob you just created (via GROB 8 2 83FF), for example, the

digits 83 described the first row of pixels; the digits FF described the

second row.

Unfortunately, HP decided that the bitmaps should read backward

from the conventional ordering ofthe digits in a binary number. That

is, you might naturally ¢think that 83 would describe this bitmap:

hex digit value 8 3

binary place value 8 4 2 1 8 4 2 1

pixel value 1 000 0011

But no—it doesn’t. Rather, the 83 describes this bitmap:

hex digit value 8 3

binary placevalue 1 2 4 8 1 2 48

pixel value 0 001 1100

Perplexed? It’sunderstandable. This takes some gettingused to—and

to help that process along, take a look at your grob....

The Hexadecimal Bitmap 97

The SEE Program

The 48 doesn’t have a quick command to let you “see” the graphics

representation of a grob on the Stack, so you need to write one now.*

Notice that IH[Mll(STO) takes a grob from Stack Level 1 and putsitinto

the reserved variable PICT, and that the (&]PICTURE) command lets you

view and manipulate PICT.** Your Mission: incorporate your obser-

vations into a program, 'SEE' (Checksum: # 9388d Bytes: £9).

Solution: « PICT STO PICTURE
»

In your TOOLS directory, type this on the Command Line

and press (ENTER). Then type 'SEE' (5T0).

Now, with any grob in Stack Level 1, SEE will let you see

it immediately—try it! Use SINE, EMPTY, or your GROB 8

¢ 83FF—whatever.

Create other grobs using the Command Line, and view them using

SEE. Remember: Ifyou use too few digits, the 48 will simply “pad” the

grob with zeros, but ifyou use too many digits, it will give you an error

message.

*Ifyou don’t know how to write programs on the 48, place a bookmark here, skim over the chapter

on “Programming the HP 48” in the Owner’s Manual, then return here.

** Yes, you could use the PYIEW command in place of@G)PICTURE), but PVIEW requires an argument

in Level 1, and it doesn’t allow access to the graphics editing menus—not so handy.

98 4: WHAT’s A GrROB?

What Does a Grob Eat?

A grob eats memory. Lots ofit.

Even a 0x0 grob uses 10 bytes ofmemory. And how would you make a

0x0 grob to see this? A couple of different ways, actually:

GROB B 6

or

8 # 0 @re)EIEEEL]

What’s more,ifyou were to convert that 0x0 grob to a string, "GROB 8

B" it would use 4 bytes.

As you can see, memory use is of primary consideration when you’re

workingwith grobs. So here are two quick utilities to help you measure

grob size:

GSIZE

Checksum: # 52186d

Bytes: 78

€ * u h

'18+h*(1+IP((w-1)-8))'
»

GSIZE takes the row and column arguments from the Stack and gives

you the size of the graphics object itself.

What Does a Grob Eat? 99

$SIZE

Checksum: # 4548d

Bytes: 136

« DUPZ SWAP »STR SIZE
SWAP +STR SIZE SWAP
* w h lw lh
"12+1u+lh+Z2*h*(1+]P((w-1)-8))"'

$SIZE takes the row and column arguments and gives you the size of

the string representation of the grob. This is very important to know

ifyou're uploading grobs in ASCII format to another computer; the 48

must have enough memory to hold both the binary and theASCII rep-

resentations.

Keep these two utilities in your TOOL? directory. They’ll help you

budget your memory resources as you develop graphics applications.

For example, they’ll tell you that a screen-sized, 131x64 grob uses 1098

bytes, and its corresponding stringuses 2193 bytes. And a 200x200 grob

needs 5010 bytes in binary and 10018 in ASCII.

As you can see, grobs eat memory in big bytes.

100 4: WHAT’s A GrROB?

The Grob as Icon

Grobs that are 21x8 have a special application in the 48—as menu

icons. To create an icon via freehand drawing:

* Inthe PICTURE environment, press(&JCLEAR][>[<]>]a), then(X),

then (¥) seven times, then (») twenty times, then JIILRIEEN.

e Use freehand drawing (see Chapters 5 and 8) to draw your icon.

Then erase the outline, if you wish.

e Press (2]<]Ja), then (X), then (¥v) seven times, then (») twenty

times, and then (NXT)) BRI, to copy your icon to the Stack.

e Put your unshifted/shifted key actions* on Stack Levels below

the icon, specify the icon Level, and press NEIETEL

Repeat the above steps as needed to create more icon lists. Then give

the number of menu items and press (=MEMORY[RIZT

Or, here’s a “pre-fab” example: Key in this custom menu list (it’s all 1

object—don’t hit until the very end—and ignore line breaks):

{ { GROB 21 8
?B%%%BBBBEBIBISB%‘}ZBBB124848218838[3881888888888888 "SINE" }

?B%%%BBB‘IZSIBIgBBCBI18594988492584[381382488IBBBBBBB "SAW" 3}

?B%%%BBFZIIE?SBB124888124888124888124BEBF3CIBBBBBB "SAUARE"
B

B8B80886/7501 1555581553011553568677/5010680000006BB68 "YEAH!"
} MENU [ETER).... Avery interesting custom menu—4 grobs as labels!

*See chapter 30 of the User’s Guide (“Customizing the HP 48”) for more information on creating

custom menus. And you may want to make a note there that 21x8 grobs can act as menu labels.

The Grob as Icon 101

Notjust interesting—useful: You can fit only 4-5 characters oftext into

amenu label, but anicon—even ofthat size—is a picture worth a thou-

sand words. In fact, you can even create menu labels with the little box

that appears/disappears to indicate status—like this: IELEEIIINEEN.

To do this, you use the SYSEVAL command.* The table below shows

4 SYSEVAL codes and the results they would give via this sequence:

"LABEL" syseval-code SYSEVAL PICT STO PICTURE

SYSEVAL code Description Result ofabove sequence

3A3Z8h normal label

3A3ECh directory
3RA44Eh inverse [LREE]

3A38Ah status “on” AL
(see below) MES “unknown solved” [LAE

Use the 21x8 grobs created by these codes just as you would use the

21x8 grob icons on the previous pages. To create the MES menu grob,

use one of these two routines:

(Checksum: # 12967d Bytes: 1868.5)
« 1 3 SUB #3A3BAh SYSEVAL { # Bh ¥ Bh } GROB 2|

8 FFFFFIEFFFFOEFFFFBEFFFFEEFFFFOEFFFFBEFFFFE GROR »

(Checksum: # 49866d Bytes: 81.9)
« 1 4 SUB #3A44Eh SYSEVAL { # Fh # 2h 2

GROB 5 5 BBCICIC1BB REPL =

The first routine uses the “indicator on” SYSEVAL, cropping the label

string to make it fit. The second routine uses the “inverse” SYSEVAL—

slightly smaller and faster—also cropping the string to make it fit.

*Warning: SYSEVAL can be very dangerous. If you enter an incorrect SYSEVAL code, you can

cause a Memory Clear. Enter SYSEVAL codes very carefully—and back up your memory first!

102 4: WHAT’s A GROB?

Three other useful menu SYSEVAL codes are: # 3A1FCh (DispMenu1)

which causes the 48 to update a custom menu display immediately;

and # 4EZCFh (TurnMenuOff) and # 4E347h (TurnMenuOn), which

cause the menu line to “turn off” or “turn on” during a program. Here

is a short demo of these codes (Checksum: # 52819d Bytes: £38):

« { "HELLO" "THERE"
{ 3 { > "BYE" } TMENU

3ALFCh SYSEVAL
1 188 FOR n n 1 DISP NEKT
¥ 4E2CFh SYSEVAL
"MENU OFF" 3 DISP
1 188 FOR n n 1 DISP NEKT
4E34/°h SYSEVAL
"MENU ON" 3 DISP
1 188 FOR n n 1 DISP NEXKT
8 MENU

Review

Create a
lemporary menu.

Display this menu,
and count to 100.

Turn the menu off,
glve message,
and count to 100.

Turn the menu on,
give message,
and count to 100.

Restore previous menu.

In this chapter, you created the TOOLS and PIC% subdirectories to hold

yourgrobs and yourprograms—and to help youorganize yourthoughts.

You also learned:

e how a grob is represented graphically and numerically—and

how much memory it eats;

e how to use the GROB row col nn... notation, so that you can read or

write a grob from the Command Line;

* how to create grobs—both empty or with pre-plotted patternsin

them—and how to use them in custom menus.

Review 103

GraPrHICS BASICSo

The Graphics Functions

Now that you understand what a grob is and how it is built, return to

the built-in graphics functions and run through them briefly. They are

all programmable to some degree, and you’re going to see that pro-

grammability at work now, too.

HP chose to scatter the graphics commands among several different

menus (a custom menu might be very handy—food for thought). Some

areinthe and menus, some underPRGHEFTA, and

some under PRGHIZIRE, PRGHIITIM andPRG-IFor a reference

listing of the graphics commands, see Appendix B.

Now, as you know, you can get to the PICTURE display by pressing («

from the normal Stack display. However, the more general form ofthe

command is [G]PICTURE}—and in a program listing,]PICTURE) gives you

the PICTURE command, which causes the program to halt in the

PICTURE display with the PICTURE menu active. Then

returns you to the Stack display and continues program execution

(note: in a program, the TEXT command also returns you to the Stack

display).

(Incidentally, on the HP 48S/SX, the graphics display command was

called GRAPH. Try typing this on yourHP48G/GX: ¢ GRAPH * (ENTER))

The Graphics Functions 105

To view a grob in the Stack display, put the grob onto Stack Level 1 and

use the *LCD command (PRG) K13 EXd)).

The grob will fill the display with its upper-left pixel in the upper-left

corner ofthe display, overwriting everything except the menu line (and

the menu remains active). #*LCD does not halt program execution.

To activate the graphics display without the menu line—and still

without halting program execution—use the PVIEW command.

PVIEW requires an argument in Stack Level 1—the location of the

pixel to be in the upper-left corner ofthe display. Normally, this would

be the row 0, column 0 pixel, so you would put{ # Bd # Bd 2} in Level

1 and press [@][T%] Remember that the first numberin this list is the

column number; the second is the row number. Remember also that,

if you wish, you may give the coordinates of the upper-left corner in

user units instead, with a complex number (x yJ), where you choose

the coordinates x and y.

Within the PICTURE environment, pressing a second time

removes the menu and puts you in a “scrolling mode.” In this scrolling

mode, you can use the arrow keys and(»ed arrow keys to scan around

alarge grob, withthe display actingas a “window” into the grob. Infact,

PVIEW is the programmable equivalent of this scanning capability.

Press athird time to return to the PICTURE display, or press

to return to the Stack display.

106 5: GRraprHICS Basics

The Secrets of PPAR

Asyoureadin Chapter4, everygrob has associated withit aheightand

a width, measured in pixels. The height (rows) and width (columns)

appear in the Stack display as Graphic ccc % rrr

or in the Command Line as GROB ccc rrr ddd....

If you ever need to test a grob within a program, the programmable

command SIZE returns the number of columns to Level 2 and the

number of rows to Level 1.

With that in mind, consider this: Associated with the plotting and

graphics routines is a reserved variable named PPAR (for Plot

PARameters). Like the reserved variables IOPAR and PRTPAR, PPAR

is created (if it doesn’t already exist) only when a routine invokes it.

(Note also that there is another reserved variable, VPAR, associated

with the 3-D plotting routines—discussed in Chapter 6.)

That is, PPAR is invoked or created anytime you activate the graphics

environment, even ifyou don’t see the graphics display. Specifically,

PPAR is invoked by:

* (&JPICTURE] or (4;
* &JPLOT) or (DJPLOT);
Any drawing function (most of these are in (PRG-IHIHN);

PVIEW with user units (a complex number)—but not with a list

of binary integers or an empty list.

The Secrets ofPPAR 107

And ofcourse, PPAR canbe STOed, RCLed and PURGed, like any other

variable. The contents of PPAR, however, must follow this pattern:

{ (xmin, y) (xo) yw) indep res axes ptype depend 3
min

You set these 7 parameters from the PLOT menu, orby using the PLOT

menu commands inside a program. The default values are:

{ (-6.5-3.1) (6.5,3.2) ¥ B (B,8) FUNCTION ¥ 3

Alternate forms for the last five parameters in PPAR allow you to take

advantage ofcertain “advanced” plotting options. Watch PPAR change

as these options are invoked:

X plotting range restricted to -5, +5:

{
(-6.5-3.1) (6.5,3.2) { ¥ -5 5 3}

} B (8,8 FUNCTION ¥

Here, the indep field has changed to show the minimum and maximum

values to be plotted for the independent variable.

Resolution (step size) changed to 5 pixels:

(-6.5-3.1) (6.5,3.2) { ¥ 55 3
} § 54 (6,8 FUNCTION'Y

Ifthe res parameter has a value of 0.0 (user units) or #0d (pixels), then

the default (calculate and plot at every pixel column) is used. Other-

wise, function values are calculated and plotted at the interval speci-

fied by res, in user units (a real number) or pixels (a binary integer).

108 5: GraprHICS BAsIcs

Tic spacing on axes changed to 3.14 (x), .5 (y) user units:

{
(-6.3-3,1)_(6,5,3.2) { ¥ =5 5 3

) ¥ 5d { (B,8) { 3.14 8.58 X } FUNCTION Y

The axes parameter changes from a complex number denoting the in-

tersection ofthe x and y axes, to a list containing that number and an-

otherlist denoting the space between tic marks on the x and y axes.

Tic spacing changed to 2 (x), 5 (y) pixels:

{
(6.3 -3.1) (6,5,3.2) { & -2 35 }

) #9d { (B,8) { % 2d # 5d + » FUNCTION Y

As this example shows, the tick spacing can be in either user units or

pixels. If the sublistis{ 8.8 8.8 Yor{ # Bd # Bd I, then the

default tic spacing of 10 pixels is used.

Axis labels changed from #§ and Y to something else:

{
(-6.5-3.1) (6,53.2) { ¥ -5 5 2
§ 54 £ (6,8 { ¥ 2d # 5d "TIME®™ "RATIO" 3 3}

} FUNCTION ¢

Here, the axes parameter has expanded yet again. The list now in-

cludes two strings, which replace the default axis labels (usually "K"

and "Y") used by the [lfII38 command.

The next section will showhow to create this expandedversion ofPPAR

(itis also automatically created by [i[diEl inside the PLOT input form).

The Secrets ofPPAR 109

This short program:

« PICT SIZE PPAR 28 FST 29 FST 31 FST »

will tell you everything you need to know about the graphics display

—if you can read it.

All ofthe PPAR information is also available from the PLOTinput form

and its input form. This same information is also displayed, in

a little different format, when the menu and (G)PLoT)IELIA

menus are active (if the information is not displayed, press IIXIa'll or

(2]VEW)). In a program, the best way to get at the PPAR data is to recall

the contents to the Stack and either OBJ* or SUB to extract the parts

that you need.

Bear in mind that each directory in the 48 can have its own PPAR,

which can cause you trouble ifyou work in user units and switch direc-

tories a lot.

For example, if you’re working in DIR1 where PPAR contains xmin=—18

and x=10, and then you switch to DIR2 where PPAR contains x_=8
and x=b.28, you'll get undesirable results if you use DRAW or any

user-unit commands without first adjustingx. and x__.

Generally speaking, you’ll need to get only the plotting limits at the

start of PPAR. In the next section, you’ll see how to get out more

information.

110 5: GrapHICS Basics

The PLOT Menu

The PLOT menu consists of 2 pages of commands and submenus:

PTYFPE[PPAFECt|ERASE|DRfi[DRAH]
30=TAT[FLAS [LAEEL] AUTOINFO_

These selections give you access to the same tools as in the PLOT input

form. For example:

and JEFI-EEEE correspond to the TYPE: field;

Mand its shifted versions correspond to the EQ: field;

[{TE corresponds to [ddiHd in the input form;

IITH and [ITTY] together work like [IHiI%] in the input form;

is identical to in the I8l menu;

the [EITH'} key corresponds to the _RAUTOSCALE checkbox;

the menu gives you access to the 3 system flags that

control other aspects of plotting;

theAmenu is equivalent to most ofthe other fields, and to

the fields in the i@l input form. The 3-D viewing parameters

that aren’t covered in[lcan be found in JEEFIEGETR (these

are covered in more detail in Chapter 6);

To create a graph with these tools takes a little more work than the

input form and you must often press(«€jor to see your graph.

On the other hand, these commands are programmable (and you will

see them hard at work in Chapter 9). Look at them now in detail:

The PLOTMenu 111

TheI3lkey is the onlykey with&)and()features. PressingIl

recalls the contents of EQ to the Stack (same thing as RCEQ), unless

EQ doesn’t exist yet, in which case it puts 'EQl' on the Stack.T

performs the command STEQ, which stores the itemin Level 1into EQ.

(Tperforms the command RCEQ.

erases the contents of PICT. It’sidentical to the [J{Hd found in

the PICTURE [HTIll menu and the PLOT input form menu, and it’s

programmable. (By contrast, the more drastic [I33l resets PPAR to

its default values, resizes PICT toits default 131x64 size, and erases the

contents of PICT. [f331 is not programmable—noris it recoverable;

there’s no LAST GRAPHICS command. So use [A=3] with care!)

ITTis a command for drawing axes inside the PICT grob. It is useful

inside a program, used in conjunction with DRAW. For example, the

MULTIPLOT program in Chapter 9 uses[T and [Tl together to

make iterative plots on the same axes.

[IX1¥] is the programmable plotting command. [IFI%] turns on the

graphics display, plots the contents of EQ, then turns offthe graphics

display. It does not draw axes or labels, and the graphics display re-

mains active only while plotting EQ. SoTMETEIITTAT

(or the program ¢ STE(Q ERASE DRAX DRAW *)is an easy way to plot

a function or equation from Stack Level 1.

reads the contents of PPAR and adds axis labels to PICT. It

doesn’t check for the presence ofaxes; [IT;E3M;1330is a valid command

sequence. uses the current numeric display format (thus STD

format often produces too many digits in your plot). is the

programmable version of the in the PICTURE-H1I1#]l menu.

112 5: GRApHICS Basics

calculates the y-values of the dependent variable in EQ, for

everyvalueoftheindependentvariablefromx tox.Itsetsy_equal

to the maximum calculated value, and it sets y. eight pixels (in user

units) lower than the minimum calculated value. [fITLI}is a program-

mable substitute for the _RUTO>CALE setting in the PLOT input form.

Gdoes not draw anything; T does.

The IIdil key displays information about some current plot settings.

This display disappears when you press or do something that

affects the Stack. It reappears when you press IEI3'H, orVIEW).

I13H is not programmable.

The JJEIMl menu is described more in the next chapter.

The menu contains statistical plotting tools, which will not be

discussed in this book.

The PLOTMenu 113

The [REIE3 and I&EAmenus give you direct (and programmable) con-

trol over PPAR. The[¥Td3(andBEMIHAETEY) menukeys set theprype

parameter as indicated by the keys. The IJiilAl menu keys are:

INDEP[DEPM[HENG|YENG]RES[REZET)
(CEMT [SCALE] %14 |%H |RAES[ATICE
(PPAEJINFOL[||PLOT

The last three keys make life easier. You already know aboutLI

HN'Il returns you to the main plotting menu.

IdLIA is a typing aid, recalling the contents of PPAR to the stack or

adding the word PPAR to the command line (if PPAR doesn’t exist, then

'PPAR' RCL creates one on the spot). Unfortunately,Idoes not

have the (§]2)capabilities oflIEFll. However, you can fake it ifI{ailA

is in your VAR or CST menu: Pressing (GIiEIR[or (OELIGId not only

stores/recalls the contents of the variable, but inserts ' name' ST0 or

'name' RCL into a program.

[GId3d and [I3d0 (INDEP and DEPND) specify the independent and

dependent variables by name. Defaults are 8 and Y—but those won’t

work in equations such as ' Impact=(Mass*Speed*2)-2"'.

Note that you can use a list, instead ofjust a name, to specify the range

over which the function may be plotted. For example, to plot just the

first two revolutions (720°) ofa spiral, you'd type{ '8' B 728 } [TI3d.

Then you could use small programs to recall those parameters:

¢« PPAR 3 GET * (independent variable)

¢« PPAR 7 GET * (dependent variable)

114 5: GRapHICS Basics

The 48 gives you three different ways to independently specify values

forx.,y,x,andy: G,ETEAHATA, and PMIN PMAX

The AN03 (CENTR and SCALE) combination is most useful for

specifying a certain point as the center of the plot, then scaling the x-

and y-axes relative to each other—as for a polar or conic plot.

accepts a real number argument to center the plot along the

x-axis; or a complex argument to center the plot in both x and y. The

inverse of CENTR would be a program that finds the center of PICT:

« PPAR OBJ» & OROPN DUPZ - 2 -~ DUP RE - PICT
SIZE SWAP DROP B*R 1 - ~ ROT ROT + 2 ~» + »

N8 takes two real-number arguments: the x-axis scale and the

y-axis scale — both in unitsper ten pixels. Thus, if (0,0) is the center of

your 131x64 grob, and your x-axis scale is, say, 5, then your grob’s x__

will be (-130/2)*(5/10) or -32.5, and its x__ will be 32.5. The inverse of

SCALE—+to find the x and y scales—would be this program:

« PPAR 0BJ+ & DROPN SWAP - 18 = C»R PICT SIZE
1 - B*R ROT SWAP -~ ROT ROT B+R 1 - ~ SWAP =»

The more rectangulariIAWAE combination is the most intuitive

for FUNCTION type plots and general drawing. AandAare

identical in function, each taking 2 real number arguments: the mini-

mumrangevalue,x.ory;thenthemaximumrangevalue,x_ory.

XRNG andYRNG areboth programmable. Theirinverse functions are:

« PPAR 1 2 SUB RE EVAL » for x_,x_
and « PPAR 1 2 SUB IM EVAL » fory.,y.

The PLOTMenu 115

PMIN and PMAX are mentioned in the User’s Guide only in the Opera-

tion Index after theAppendices. To use these two commands, you must

key them in (or assign them to a custom menu or key). They were used

to set the display limits on the HP 28S, and are included in the 48 for

compatibility. The 48 stores the display limits in PPAR as the complex

numbers (x,y) and (xsy). Their inverse functions are:

« PPAR 1 GET * for PMIN, and

« PPAR 2 GET * for PMAX.

B3and[Nare related functions. IEF{F defines the coordinates

where the drawn axes will intersect, and optionally sets alternate axis

labels and spacing between tick marks. It takes one argument, which

may have any one of the following formats:

(x, y)

{ Cuy) "x-label" "y-label" }

{ Couy) { xtick ytick ¥ }

{ Couy) { xtick ytick } "x-label" "y-label" }

{ (xny) ticks }

{ Cuy) ticks "x-label" "y-label" 1}

ELIINH sets the spacingbetween tick marks. It takes a single argument

of the form { =xtick ytick } or ticks. The complex number (x; y) is the

point where the axes intersect. "x-label" and "y-label" are strings that

replace the default axis labels when [I{iFll is executed. xtick and ytick

can be real numbers (to describe the tick spacing in user units) or bi-

nary integers (to describe the tick spacing in pixels). One number, ticks,

can be used instead of { xtick ytick 1} if xtick and ytick are identical.

The inverse function for both AXES and ATICK is: « PPAR 5 GET =

116 5: GRrapHICS Basics

BEI and BE¥H are the only programmable “ZOOM” commands in

the 48. BothIland leave PICT unchanged, but they multi-

ply the height or width by a real-number argument. An argument

greater than 1 “zooms out,” showing more range with less detail; an

argument less than 1 “zooms in,” showing less range but more detail.

Be careful with JlEIIlll and BEf¥Yl! Because PICT remains unchanged,

it’s possible to get plots with different scales superimposed on each oth-

er. For example, here’s what happens when EEIZM is used carelessly:

« ERASE
'Y=SIN(K)' STEQ
RAD DRAW 2 #*W DRAW
2 *W DRAW

»

So to avoid serious trouble, it’s a good idea to always follow aIlor

BEE*H command with [THI.

HAEH sets the resolution of the plot, according to the real or binary

number given as an argument. Ifthe argumentis real, [Twill cal-

culate and plot a function value at intervals of that many user units.

If the argumentis a binary integer, [IfiI%] will calculate and plot the

function value at intervals of that manypixel columns in a FUMCTIOM

plot. An argument ofB or# Bd resets the resolution to the default—

every single pixel column.

The inverse of732 would be: ¢« PPAR 4 GET =

The PLOTMenu 117

Finally, there’s the [§4ilc] menu:

TTTVAIT}

This menu controls the value of3 system flags related to plotting. The

menu keys toggle the flag values (default states for the flags are clear).

Flag -28 is the “sequential plot” flag. Whenit’s clear (EHIEID, multiple

functions inEQ are plotted sequentially, one after the other. Whenit’s

set (HIEIED), the multiple functions are plotted simultaneously. This

is more a matter ofaesthetics than processor speed, but you may have

memory problems trying to plot too many functions simultaneously .

Flag -29 is the “draw axes” flag. When it’s clear (fE{Z] on the menu),

axes are added to a plot made from the PLOT input form. When it’s set

(EH3), axes are not added. This flag doesn’t affect plots made from

the menu; you still have to use [IXEH for these.

Flag -31 is the “connect-the-dots” flag. When it’s set ([HIDLN), the 48

will connect each consecutive pair of plotted points with a line. When

it'’s clear (Ii[4il), the 48 only plots the points it calculates. Using

B33 and flag -31 together can save you a lot of computation time.

Here is a program to imitate these keys:

« flag OUP IF FST THEN CF ELSE SF END =»

You can also set/clear/check these flagsin the Browser

or @PLoT-MMPLOT OPTIONS input form.*

*T'o make yourlife easier, the [EF{33, Ii[H#ll and E[E[Mkeys are typing aids: Pressing(@&)and one

ofthese keyssets that flag; pressing (@) and the key clears the flag—works even in program entry.

118 5: GraprHICS Basics

The PRGHHAATA Menu

Behind the key are fourmenus useful for doinggraphics work: the

A,A,and menus. The PRGHEHATA menu contains pro-

grammable functions for manipulating grobs on the Stack:

+GROJELAMSO[i5H0FSUE REPL
FLCOLDZIZE[ANIM]

All of the grob-building methods mentioned earlier (page 95) are pro-

grammable. Three of these live in the PRGHEHATA menu:

takes the object in Stack Level 2 and turns it into a grob, using

the font size specified in Level 1. The font size specifierisareal number

between 0 and 3 and is interpreted as follows:

font size grob’s character height (in pixels)

3 10

2 8

1 6 (characters are all uppercase)

0 10 (for text and numbers), or
EW (for algebraics and unit objects)

Try one: Retrieve the TYoll algebraic from your G.CH3 directory, then

press B PRE)IITEAEITT You’ll briefly see the EquationWriter view

of TYolM before a long grob is returned to Stack Level 1.

creates a blank grob from width and height argumentsin Levels

2 and 1.

takes a “snapshot” ofthe current display and stores it as a grob

on the Stack ((STO)does this for the EW and the graphics environment).

The Fra}AMenu 119

Four extremely useful commands allow you to store part of an image

as a grob, and to superimpose a small grob on a larger one:

BETA lets you extract part of a grob (just as you extract part of a list
or string object). When used with a grob, JEl[3l takes the grob or PICT

from Level 3, and the upper-left and lower-right corners ofthe area to

be SUB’bed from Stack Levels 2 and 1, respectively.

Try extracting part ofthe SINE grob: Move to the PICS directory. Press

(VARELTA # 56d # 18d }Eev=m){ # 85d # 46d } FrolEATA
EETA You get a 36x23 grob. Press (G)up)(VAR)BB to view it.

The commandsi(“Grob OR”),R (“Grob XOR”) and
(“REPLace”) let you superimpose one grob upon another. These com-
mands all take the same arguments—the target grob (or PICT), the
location, and the grob to be added. The location (Level 2) specifies the
spot on the targetgrob (Level 3) where the upper-left corner ofthegrob

to be added (Level 1) will go.

Both GOR and GXOR give a kind oftransparency effect thanks to the
Booleanlogic. GOR will superimpose the pixels ofthe two grobsin such
a way that ifat least one ofthe pair ofcorresponding pixels is “on” then
the pixel in the resulting grob is “on.” GXOR,on the other hand, will
superimpose the pixels so that exactly one of the corresponding pair
mustbe “on”in order to turn “on” the pixel in the resulting grob. GXOR,
in particular,is useful for manipulating cursors and other kinds of
objects that need to alwaysbe visible within the background—whether
it be dark on light or light on dark.

120 5: GRraPpHIcs Basics

Iand work here much as they work within the PICTURE

EDIT environment. Recall that the interactive menu also includes a

38command, to delete or blank out part ofa grob, but this isn’t in

theEmmenu. The best you can do is to create a grob of the

right size, usingLA, then[[I3dM it onto PICT or the grob.

is more ofa command than a (PRGHEHATA command.

replaces the stack display with a grob taken from Level 1. You

played with this while “Grobbing Around” in Chapter 1.

IEH3takes a grob from Level 1 and returns two binary integers repre-

senting the width (or number ofpixel columns) and height (or number

of pixel rows) of the grob.

EIFIEE (ANIMATE) is a fun one. For arguments, it takes a real number

on Level 1, and that number ofgrobs in the Levels immediately above

it. ANIMATE cycles through the series ofgrobs, starting at the highest

one and rolling the stack to display the next one, etc., pasting them in

the upper-left corner ofPICT and displaying the result (an endless loop

of PICT { # Bd # 8d 1} grobREPL).

Try it. Put this onto the Stack:

GROB 4 1 1 GROB 4 1 2 GROB 4 1 4 GROB 4 1 8 4

Now press EIZIIEN.... You’'ll see whatever was in PICT before (probably

a piece of SINE), plus a little scrolling light in the upper-left corner.

Press to stop the show.

Notice: the Stack is unchanged (grobs in their original order); you can

restart just by pressing EIiIgll again.

ThemMenu 121

Instead ofa real number,ANIMATE can use a list argument ofthe form:

{ ngrobs L # x-pixel % y-pixel } duration cycles }

ngrobs and cycles are the number ofgrobs to be used and the number of

times the animation should run. Ifcyclesis zero , the show will cycle un-

til ispressed. # x-pixeland# y-pixel arebinary integers specify-

ing the location inside PICT where the upper-left corner of the grobs

should be pasted. Duration is the interval (in seconds) for each frame.

The single real-number argument you used earlier was equivalent to

{ ngrobs { # Bd # Bd } .1 B }. Nowtryalistargument: Instead

ofa4inLevel 1,usethelist{ 4 { # 48d # 268d } .2 18 }...

On machines with black LCD pixels, duration values faster than the

default 0.1 (1/10 second) may cause the grobs to cycle too fast to be seen

(the black crystals are too slow to keep up). If this is the case, then

adjust the duration parameter to slow down the animation. Machines

with blue LCD pixels (Version K) shouldn’t have the problem.

ANIMATE can produce some very entertaining effects, but it’s also very

useful in showing 4-dimensional functions—and in viewing 3-D plots

from various viewpoints without having to re-draw them every time.

Subsequent chapters will showhow to use it effectively. ANIMATE (and

the other 3-D tools suite) is based on the work ofsome real giants in the

HP 48 programming world.

*Some early editions ofthe User’s Guide contain an erroneous description ofthe list. Ifyou follow

the directions in the UG, page 9-10, you may get an ANIMATE ERROR: Wrong Arsument Count

message. If so, after reading this explanation, take a permanent ink pen and enter the correct

version of the list in the UG.

122 5: GRrapHICS Basics

The Menu

The (PRGHIZ[M M menu contains programmable graphics functions for

modifying PICT:

PICTPOIM LIME |TLINE[ED:ARC
[TELTPTRTR

IEIEH is a typing aid (but unfortunately, you cannot use) or () to

easily store or recall the contents of PICT).

IddIEl is a powerful command that allows you to re-dimension PICT. It

can affect PICT and PPAR in different ways—best explained on pages

24-3 to 24-6 of the User’s Guide.

The commands BOK, LINE and TLINE require two arguments for end-

points or diagonal corners. Resultsareidentical to those achieved with

the IEEl,NIand in the interactive graphics environment.

You can express the points either in user units—via complex numbers:

(-1.35, 268.6)—as a CAD system does; or as decimal integers repre-

senting the pixel column and row: { # 31d # 53d . Ineither case,

the first term represents the x-axis and the second term the y-axis. The

top left pixel of a grobis always{ # 6Bd # Bd J.

The commands and EEIM allow you to convert between the

two, according to the current values ofPPAR. Remember that each di-

rectory will have its own PPAR and its own unique user units.

The Menu 123

The interactive graphics environment has a operation but no

IE: here you have anGbut no (a circle is a 360° arc).

IEEl takes four arguments. Thefirst two are the center of rotation

(in Stack Level 4) and the radius of the arc (Level 3). The units (user

vs. pixel) for these arguments must match (a radius’ user units are x-

axis units only; you can’t get an ellipse). The last two arguments are

the starting angle (Level 2) and the ending angle (Level 1). Angles are

measured conventionally: 90° (1/2)

. 0° or 360°
180° (m) J (0 or 2m)

270° (3n/2)

In the interactive graphics environment,[land[Tldetermine

whether a pixel will be turned on or offas the cursor lands on it. Press-

ing one key cancels the other; pressing the same key twice leaves the

pixelsuntouched as the cursor moves around. In programs, use PIXON

and PIXOFF to dothis. Theyoperate on the pixel located at the coordin-

ates givenin Level 1. The pixel maybe expressed as a complex number

in user units, or as a list of two binary integers. To test individual

pixels, use the IZEEN command (returns 1 ifthe pixel is on; B if it’s off).

And this tool, TPIX¥ (Checksum: # £9273d Bytes: 38.5),togglesany

given pixel: « OUP IF PIKT THEN PI®OFF
ELSE PIXON END =»

You already know about [HII¥. It appears in both the Prc-IEHE

menu and the (PRGHE!'IIM menu. Speaking of which,...

124 5: GRapHICS Basics

TheE[[flMenu

PUIER|TEST[CLLCD|DI2P[FREE2[M:SE

The first page of this menu contains commands that control the dis-

play. You already know about [{Iq®] (recall page 106).

simply restores the normal stack display.

simply clears the display. Usually the 48 does it automatically,

but sometimes—as with [[IEH@l—you must do it yourself.

Use ITE& to build a text display other than the normal Stack display.

The display is divided into 7 lines. IlIE# takes the object from Level

2 and displays it in size-2 font (8 pixels high), on the line specified in

Level 1. The uppermost line is numbered 1; the lowest, 7. I[IE@ also

honors NEWLINE’s (@]2]+)); grobs can have more than one line oftext.

[IA33H prevents parts of the display from updating until some key is

pressed. The Level-1 integer indicates which part(s) to freeze:

1 Status area 9 Menu & Status area
¢ Stack & Command Line 6 Menu & Stack/
3 Status & Stack/Command Line Command Line
4 Menu ¢ Entire display

EEH3 (MSGBOX) takes a string from Level 1 and displays it in a mes-

sage box—Ilike the kind you get when you press ([PLOT]]=]ENTER),

except for the little “alert” sign that the built-in applications use.

MSGBOX will try to parse your string (breaking it only at spaces, if

possible) and will display only the first 75 characters.

ThePR}Menu 125

Other Graphics Commands

You can also add grobs with the key and invert them with the

key or via the NEG command. Use the NEG function to create inverse

video effects in your applications. Use addition to combine small grobs

quickly or “stamp” frames and legends onto common-sized grobs.

For two grobs of exactly the same size, addition goes pixel-by-pixel,

equivalentto: « grobl { # Bd # B8d } aorob2 GOR =

Inverting a grob inverts all the pixels, turningthe black ones white and

the white ones black. Just for fun, put the SINE grob onto the Stack.

Then PICT and press (« to see your creation....

Grobs with row sizes that aren’t multiples of 8 are inverted only inso-

far as their bits actually represent pixels. Thus,GROB 2 £ BBBH in-

verted becomesGROB 2 2 3B36. The 3’s represent the displayed pixel

pairs, but the B’s are placeholders—bits that don’t represent pixels.

AndMNEG and() together do a GAND (“Grob AND”), a functionHPseems

to have omitted. Here’s GAND (Checksum: # 61392d Bytes: 31):*

« NEG SWAP MNEG + NEG =

Store this into your TOOLS directory. Then try it out, using GROB 2 Z

3860 and GROB 2 2 1818. Result: GROB 2 2 1666

*Ifthe grobs are not ofthe same size, use this version ofGAND (Checksum: # 68472d Bytes: 36),

which takes the same arguments as GOR, GXOR and REPL:

« NEG ROT NEG ROT ROT GOR NEG »

126 5: GraprHICS BasIcs

Building a Toolbox

With all of its capabilities, the 48 is still missing some useful com-

mands. Such commands are called utilities, and now you’re going to

create them yourself—along with some “standard” grobs for use in

testing/troubleshooting programs. You've already created the SEE

utility (in your TOOLZ directory), to “view” a grob on the Stack. Also,

you have TPIX to toggle pixels, GAND for Boolean addition, and GSIZE

and $SIZE for memory management.

How about a pair of utilities to store/recall grobs from/to the graphics

display? Suppose you create a gorgeous picture—how do you save it?

Exit to the Stack display, putthe name ' GORGEOUS ' on Level 1,and use

a program, named STOPIC (Checksum: # 49324d Bytes: 36.3):

« PICT RCL SWAP STO
»

The grob goes onto the Stack and is then SWAP’ped to bring the name

to Level 1. Then the grob is stored and the Stack is left as before. Put

STOPIC into your TOOLS directory.

RCLPIC does the opposite, taking an object name from Stack Level 1

and (only if it’s a grob) storing it into the graphics display. AsRCLPIC

avoids using GRAPH and PYIEW, it’s very general and programmable:

« DUP RCLPIC (Checksum: # 12651d

%EE#TEEE é%c-?Hg%fl Bytes: 98.95) chastises you if the

ELSE +STR named object isn’t a grob. Store it

" not a GROB!" alongside STOPIC, in your TOOLS

+ DOERR directoEND ry.

Building a Toolbox 127

Nowyou need to create three empty grobs (change to the PICS directory

now, to store them there). Create a 200x200 grob called BIG; a 131x64

grob called NORMAL ; and a 2x2 grob called TINY,as follows:*

For each grob, put the number ofcolumns (¥ 2688d, # 131d or # 2d) onto

Stack Level 2; the number of rows (# 288d, # 64d or # £d) onto Level

1, and select from the PRGHIHAA menu. Then type the name

('BIG', "NORMAL' or 'TINY') into the Command Line and press (STO).

Next, create two non-empty grobs: First, load the Stack with any four

objects, then store the Stack display as a grob, by pressing (PRG)T

'DISPLAY' (sT0)

Second, type GROB 5 8 4B4BEBEGF1F 14648 EnTer) 'ARROW' (570), to
build and store an “arrowhead” grob.

With these 5 good grobs to work with, switch to the TOOLS directory to

create a custom menu. This custom menu is defined in a list inside a

program (feel free to modify the list to serve your own needs):

&«

{ PICS PICT BLANk ERASE +LCD LCD+ -GROB SEE
) STOPIC RCLPIC

MENU
®

Store this menu-buildingprogram calledGRAFX (Checksum: # 41596d

Bytes: r9)in your TOOL$ directory.

*Ifyou’re workingon an HP48G (not GX), your machine’s memory is undoubtedly gettingcrowded.

Now is a good time to back up the directories on your 48, and then delete anything you won’t need

immediately, like the G. CH2 and G.CH3 directories. You may also wish to omit the 200x200 grobs

in these lessons, if they won't fit into your machine.

128 5: GraPHICS BasiIcs

Sines and Big Sines

In Chapter 4, you used a sine wave to illustrate some of the graphics

capabilities ofthe 48. Go back now and repeat the exercise on page 90

(don’t forget to use RADians mode).... Then store this plot in a grob

called SINE (type canceDIR ' SINE' STOPIC).

Now create a sine wave plot using the BIG grob: Make sure you’re in

thePICS directory. Putthe name 'BIG' onLevel 1 and execute RCLPIC.

Press ([3]PLOT), and be sure the current equation is ' Y=SIN(X)'. Then

set H=VIEW to —18 and 18 and Y-YIEW to-1.1 and 1.1 (do not select

AUTOSCALE—that would reset XRNG and YRNG). Now press [TES

[ITI®] to draw the plot... (cookie time).

When the plot finishes, press IFIINxT)MEETA to add the finishing

touches, and then have a look at this monster. With the PICTURE

menu displayed, the arrow keys have the following functions:

1. Unshifted arrow keys move the cursor within the display “win-

dow.” At the edge of the window, they scroll the display across

the grob—to its actual edge.

2. (Ofed arrow keys jump the cursor to the edge ofthe window. At

the edge of the window, (®)ed arrow keys jump the cursor and

display to the edge of the grob.

3. (G4 puts you in scrolling mode. Think of scrolling as viewing a

large picture through a small window or frame: You don’t move

the picture, you move the window.

Building a ToolBox 129

Press(G] now, to get into scrolling mode. In scrolling mode, no cursor

is visible, and the arrow keys have the following functions:

1. Unshifted arrow keys scroll the display across the grob.

2. (PJed arrow keys jump the display to the edge of the grob.

3. [G§]g returns you to the interactive graphics environment.

Press twice to return to the Stack display. Then, in the PICZ

directory, enterthename 'BIGSINE' onto Level 1 and execute STOPIC.

Now you can review both SINE and BIGSINE any time you want—and

you can also practice with other graphics functions on these grobs.

130 5: GRrapHICS Basics

Review

In this chapter, you explored the graphics commands in several ofthe

48’s built-in menus. Thenyoubegan to augmentthose commands with

your own graphics “toolbox”—a collection of programs and sample

grobs useful in your own graphics development work.

At this point, then, you should have these programs in TOOLS:

GRAFX

RCLPIC

STOPIC

GAND

TPIX

$SIZE

GSIZE

SEE

builds a custom menu to make graphics work easier.

recalls a grob to the graphics display.

stores the graphics display in a grob.

does a pixel-by-pixel “AND” of two grobs.

toggles individual pixels on and off.

finds the byte-size of a grob’s string representation.

finds the size of a grob, in bytes.

graphically displays the contents of a grob.

And you should have these grobs in PIC%:

BIGSINE

ARROW

DISPLAY

TINY

NORMAL

BIG

EMPTY

SINE

Review

a 200x200 sine-wave plot, with axes

a 5x8 arrowhead

a 64x131 “snapshot” of the Stack display

a blank 2x2 grob

a blank 64x131 grob

a blank 200x200 grob

a blank 64x131 grob

a 64x131 sine-wave plot, with axes

131

ZIETTTAA I

6: THREE-DIMENSIONAL (GRAPHICS

The Basics

“See severed heads that almostfall right in your lap! See that
bloody hatchet coming right at you!”

— Weird Al Yankovic, commenting on 3D as an
entertainment medium.

Unbeknownst to Weird Al, some more constructive uses for three-

dimensional graphics were presented atHPuser’s groups overthe past

several years. They were marvelous application examples—and great

algorithms for the HP 48S/SX. Then a math professor developed and

placed into the public domain a set of 3-D plotting utilities he called

“SUITE3D,” which received such a positive response from the HP48

user’s community that HP adapted it for inclusion in the HP48G/GX.

Although the 3-D tools in the HP 48G/GX don’t pretend to be as good

as those in expensive CAD packages, they are indeed useful at least for

“visualizing functions oftwo variables,” ifnot for analyzing them (and

HP included some rudimentary 3-D analysis tools anyway.)

The best introduction to the 3-D plotting tools is in the section called

“Plotting Functions in Three Dimensions” in the Quick Start Guide

(QSG) that came with your machine. More detailis given in chapter

23 of the User’s Guide (UG), “Plot Types,” starting with the section

called “Plotting Functions of Two Variables,” on page 23-22.

Ifyou haven’t yet read those sections, then nowis a good time to set this

book down, get a handful of cookies and work through those sections

of the QSG and the UG....

The Basics 133

On page 6-7 of the QSG are two diagrams explaining the concepts of

view volume, view plane, and eyepoint. The more clearly you under-

stand these concepts, the better you can use the 3-D tools on the 48.

Imagine looking though the window of a pet store at some puppies in

a playpen inside the store. They can’t escape the playpen;it limits the

area in which you can view them. The view volume in 3-D plotting is

like the playpen: the display of the function is confined within it.

The diagrams in the QSG shows the orientation ofthe x-, y- and z- axes

as they relate to these concepts:

e The “floor of the pet shop” is the x-y plane; the z-axis is vertical.

* The shop window—between you and the puppies—is parallel to

the x-z plane. This is the view plane.

* You are standing along the negative y-axis, some distance from

the window. That vantage point is your eyepoint.

The 48 imposes two restraints on the plotting tools:

¢ Your eyepoint must stay at least one unit away from the view

plane—on the outside only. You can’t mash your nose against the

glass to get a better view, nor can you go into the store to get a

better look, nor can the puppies’ playpen be wheeled outside.*

¢ Theviewplane must stay parallel to thex-z plane. You can’t twist

or bend or lever open the store window.

*You can get around these restraints by use ofsome mathematical sleight-of-hand, such as scaling

and rotating functions. We’ll talk about rotating a plot in the following pages.

134 6: THREE-DIMENSIONAL GRAPHICS

The48 gives you six different tools tousein 3-D analysis, in the

~xDEETEITEE menu: ENEEETETEEENEERTIEARRGEEET. To
compare these, you need a function that can be displayed well in each

of the six tools. Use the application or the (GPLoTINxT)ETIN

menus to set up these parameters, which are stored in VPAR (to be

discussed next):

EQ: 'SINCHI*SINCY>! £ RAD

INDEP: X STEPS: 18

DEPMD: Y $TEPS: 8

weoL: -3.2 3.2 yuoL: —3.

HENMG: —3.2 3.2 YRNG: —3.

HE: 4 YE: —16 2E: 8

3. 2 2uoL: -1 1

3.2

2
2

(To set this from the PLOT input form: PICT

PIX)ENYV)ENTER)RAD)(a4TE(c]WIENTER)(VIV)(>)[ENTER))
B2)+/-JENTER] BL12)

ENTER)[+/=JENTER)(JENTER)(4JENTER)(1][+/=[ENTER]8JENTER)I.)

[MIA3E, or WIREFRAME,is the most commonly recognized form of3-D

plotting. As the name implies, a wireframe plot is an array of points

in space, connected by line segments parallel to the x-z and y-z planes.

Here is a wireframe plot of ' SINCRI*SINCY)' (press HTEIMTTIED:

 I= TS
/]

The Basics 135

[T(PCONTOUR) creates apseudo-contour plot: an array ofpoints

on the x-y plane, with a short line segment drawn through each point,

showing the direction a contour line (a curve of constant z-value, or

“altitude”)wouldhave atthatpoint. Here’sthe same ' SIN(K)*SINCY)!

in a pseudo-contour plot (press [zMN, (a) to TYPE: field, then [iINH

and (¥) to Ps—Cont our, evver)EEEIEED:

PTS

Yy M—) =]
eeeee

This plot is not very easy to decipher; the point spacing is too coarse.

Try increasing the ¥ steps from 1@ to 28, and the ¥ steps from8 to 16

(press (™))JENTER))JENTER)HEEEIIATED:

HFEEEH'&#EEE:\“

GEBIGE
:}_:::fiz:ff,:::::::s:i-
f;";:::’:—_h"hs##:t':‘n !

IR{1500
o,"o e—e
MmNe

In both plots, you can see the maxima (peaks) in the upper-right and

lower-left quadrants, and the minima (valleys) in the upper left and

lower-right quadrants. Often, you can take a printout ofa pseudo-con-

tour plot and use a pen to connect the lines to generate the contours(or,

use the CONTOUR program in Chapter 9 to draw real contours).

136 6: THREE-DIMENSIONAL GRAPHICS

(YSLICE) is yet another view of the function. Ay-slice plotisa

series of two-dimensional plots, generated as a function of &%, with Y

held constant for each slice—as ifyou took the wire-frame plot and cut

it into slices. YSLICE uses the ANIMATE routine to demonstrate dy-

namically howthe function varies withY. It leaves a counter and a pile

ofgrobs on the stack. Press [WiIi[4N, (a) to TYPE: field,B[Y]ENTER)

™))JenTER)>)(8JENTER)ITEIIITIEN. .. (CANCEDto stop. (Note: the
MULTIPLOT program in Chapter 9 offers an alternative to YSLICE.)

\U//H\

At first, a (SLOPEFIELD) plot resembles a pseudo-contour plot

(choose the Slopefield type plot, then HHEE and [ITIED:

eee™™sel™sle

eeeeOee

Like PCONTOUR, SLOPEFIELD produces an array ofpoints on the x-y

plane, with a line segment through each point. But here the slope of

the line segment indicates the value (“altitude”) ofthe function at that

point. Compare the two plot types: The high points on the wireframe

correspond to the steep lines on the slopefield; the middle, zero-value

points on the wireframe correspond to the level lines on the slopefield.

The Basics 137

Thelast two plot types, IJAIM(GRIDMAP) and[(PARSURFACE)

are better left to people who understand the math behind them.

Now, about VPAR: VPAR(short for View PARameters) is the reserved

name ofthe list containing all the information necessary for 3-D plot-

ting. (Depending on the plot type and the parameter settings in VPAR,

the 48 may also adjust some PPAR parameters such as Xrange and

Yrange.) VPAR is a list of 15 real numbers:

{ X .
xleft right Ynear Yfar zlow zhigh xxleft xxright Yyleft Yyright xe ye Ze nx ny }

All ofthe VPAR parameters maybe set manually from the

BEImenu commands (even within a program) or the PLOT

and PLOT OPTION% input forms. Any given parameter may also be set

via the command sequence € .. YPAR » ROT PUT .. * (wherenis

the position in the VPARlist of that parameter). Similarly, you can

retrieve any parameter or parameters via € .. YPAR » GET .. ®* or

¢ .. VPAR n, n, SUB EVAL .. ».

The first three pairs of numbers in VPAR define the view volume (and

in the VPAR menu or in a program, you do enter them as pairs of real

numbers: =1 1 YV(L, for example). Note thaty_, <y,,always. Note

also that only WIREFRAME, YSLICE and PARSURFACE use z,_, and

Zo PCONTOUR, SLOPEFIELD and GRIDMAP ignore them.

Here’s how to enter the values from a program or the VPAR menu.

Xy X WOl y,. WOL z,, z,, ZVOL
Yfar

To retrieve their values: YPAR 1 2 SUB EVAL for X,andx

VPAR 3 4 SUB EVAL fory_ and Y

VPAR 5 6 SUB EVAL forz, and Zyioh

138 6: THREE-DIMENSIONAL GRAPHICS

The next two pairs ofnumbers define the range for the input sampling

grid used by GRIDMAP and PARSURFACE (the other plot types ignore

these or set them to the corresponding values in the view volume).

To enter the values from a program or the VPAR menu:

xx,, xx,, RARNG yy., .. YYRNG
left

To retrieve their values: YPAR 7 8 SUB EVAL for xx,,and xx_,

VPAR 9 18 SUB EVAL for yy,, and yy
right

The next three values, x, y, and z, define the eyepoint. Only the

WIREFRAME and PARSURFACE plots care about the eyepoint, which

you enter as three real numbers,like this: x, y, z, EYEPT

To retrieve the eyepoint coordinates: YPAR 11 13 SUB EVAL

Remember that y, must always be at least one “unit” less thany_,the

lesser y-coordinate of the view volume. If, for example, you try to set

y,to—4.8 andyis—3. 2, the 48 will reset y, to —%. 2.

The final two parameters, n_and n, specifyhowmany points will be cal-

culated in each direction. YSLICE appears to ignore the n parameter

(the other plot types use it), but all plot types need n_.

To enter the values from a program or the VPAR menu:

n, NUMR . NUMY

To retrieve their values: VYPAR 14 GET for n

VPAR 15 GET forn

The Basics 139

Getting the Most Out of Wireframe Plots

Every kind of 3-D plot is useful, but most persons use a WIREFRAME

plot most often. This section will introduce some tools that help you

utilize the WIREFRAME plotting tool more effectively.

Choosing an Eyepoint

The 48 automatically adjusts the plotting limits so that, no matter

what eyepoint is selected, the view volume is centered in the display.

The tricky part is selecting an eyepoint that gives an informative view

ofthe plot. For example, here are 4 different views ofSIN(®I+SINCY):

For most functions, the optimum eyepoint is at least one view-volume

away from the function (that’s y). Height and vertical placement are

more subjective, but it’s usually good to place the eyepoint one view-

volume above the function (that’s z), and slightly shifted to one side or

the other (that’s x}—to visually disrupt any symmetry in the function.

140 6: THREE-DIMENSIONAL GRAPHICS

Rotating the View

It would be nice ifyou could see the function you’re plotting from back

angles as well as from the front. Unfortunately, you can’t get past the

view window (and neither can the view volume). To get around the

problem, rotate the function itself—recast x and y into something use-

ful in the new coordinate system. Acomplete rotation involves a lot of

vector arithmetic and can easily double the time to generate a single

plot (to say nothing ofa series ofthem), but you can rotate around the

z-axis, so that only x and y need to be modified. Examine this figure:

A

y (x.y)

(X)sY,)

6

<—

slength = ABS((x,.,)

N\
(0’0) \él' anglc = ARG((xoyy0))

s v tt

Suppose you have a vector, x+y,i, and you want to rotate it B°in the x-y

plane, around the point (8, B). Expressed as a complex number in pol-

ar form, the vector is {7y Angle) , where r is the magnitude ofthe vector

(ABSC((KB, YB)) on the 48). Angle is the polar angle from the positive

x-axis to the vector (ARGC (®B, YB)) on the 48). To rotate the vector, you

multiply the complex number by the unit vector (1, 8). The result:*

in polar coordinates: (ABS((K8, YB)), ARG((KG, YB))+B)

inrectangularcoordinates: (ABS((X8, YB))*COS(ARG((X\, YB)) +8),

ABSC((¥B, YB))*SINCARGC(KE, YB))+8))

*Note that when B=0,this general form reduces to (X8, Y8).

Rotating the View 141

To make this all convenient, you can create a program called ROKY

(“‘ROtate in® and Y”) that will convert any algebraic expressioninx and

y into one that can be rotated as described. The program uses a global

variable, B, so that it will work inside the 3-D plotter. It takes a sym-

bolic object (a function of¥ and Y) from Level 1 and returns the trans-

formed version. (This formula uses ¥ and Y instead of8 and Y8.)

RU?iY (Checksum: # 42966d Bytes: 193.93)

{ ® % 2 TMATCH DROP
{ A RYy 3 THATCH DROP
{ » 'ABS((x, Y)I*COSCARG(C(x, ¥Y))+B)' 3 TMATCH DROP
{ y 'ABSC(K, YI)*SINCARG((K, Y))+B8)' X TMATCH DROP

Tryit: Create the hyperboloid 'K#Y' and store it in your TOOLS direct-

ory as 'HYP'. Then press 'HYP' to put 'K*#Y' onto the Stack.

Now press (VARIEIIEXH to get:

'ABS((x, Y2 =COSCARGC (K, Y2)+8)
*(ABSC(X, Y)I*SINCARG((K, ¥))+B82)!

You can then store this ROKY’ed form of HYP into EQ and use it with a

program like this (be sure to set DEGrees mode andW IREFRAME plot

type before you start):

TRYIT (Checksum: # 46869d Bytes: 228.9)
« {B%BEd # 6d } PVIEW

OR t t
'8' STO ERASE DRAW PICT RCL

STE{P # 1d # 1d > t 1 »GROB REPL 30

{12 { # 6d # 68d > .2 188 } ANIMATE
»

Approximate running time: 12:23 to create 12 frames of HYP.

142 6: THREE-DIMENSIONAL GRAPHICS

You can use ROXY with any functionfx,y), but it’s a good idea first to

name the non-transformed version ofyour function and use it to set up

VPAR. When you’ve positioned VPAR correctly, then you can use RORY

to put a transformed version ofthe function on the Stack, store it into

EQ, and run TRYIT.

Ifyou want to try your hand at rotations in other planes or around oth-

er axes, you'll need to do some reading on coordinate transformations.

You can find some good work on coordinate transformations in HP48

Insights, by William C. Wickes, or in the HP42S Owner’s Manual

from Hewlett-Packard. Both books are available from EduCalc Mail

Store (1-800-677-7001).

Rotating the View 143

Translating

On a related subject, here’s how to translate a function. The routine

TRRXY uses the global variables ¥ and &Y to define the transformed

function.

TRRXY (Checksum: # 43468d Bytes: 82.9)
&

{ B '®-=x'} TMRATCH DROP
{ Y 'Y-&¥'" 3 TMRTCH DROP

»

Try it: Since HYP isn’t a good sample function for this program, create

'SINCKI+SINCY)' and store it (in TOOLS) as 'EGGS'. Then recall

'EGGS' to the Stack and run TRXY on it. Store the resulting equation

into EQ (not into 'EGGS'), and turn on RADians mode. Then store

H. 7894 (that’s n/4) into &X; and 1.571 (that’s 7t/2) into &Y.

Now enter and execute the following program (Checksum: # 1324d

Bytes: 234.3). Be sure you set KADians mode before you start.

&

{ # Bd # 6d > PVIEW @ 7
FOR dx dw

'n74' »NUM *= DUP 'aXK' STO 2 -~ 'a&Y' STO
ERASE DRAW PICT RCL € # 1d # 1d 2

I"-IEHde 1 »GROB REPL

{ 8{ #068d # 6d > .2 188 > ANIMATE
»

Approximate running time: 5:08 to create 8 frames of EGGS.

144 6: THREE-DIMENSIONAL GRAPHICS

Zooming and Panning

The 3-D plotting routines built into the HP48G/GX are written to take

fullest advantage of the 48’s small display. This means that the rou-

tines will distort the view as required to fill the display, even if the

eyepoint is miles away from the view volume—as ifthere were a huge

telescopic lens at the eyepoint, always trained on the view volume.

You can see this by plotting the EGGS function repeatedly, varying the

XVOL, YVOL and ZVOL parameters. You'll notice that the plot always

extends from the left edge of the display to the right edge. Strangely

enough, the z-axis is not automatically scaled; it’s possible to adjust

ZVOL so that your plot either becomes very flat, or extends beyond the

top and bottom edges of the display:

Zooming and Panning 145

Even with this distortion,it is useful to look at a function from several

different angles and distances. Here are three programs that create

series ofplots while varying the three components ofthe eyepoint. The

running times indicated are for the following plot setup:

TYPE: Hireframe

EGx: '"B' (thisis a flat plane)

INDEP: ® STEPS: 3

DEPMD: ¥ STEPS: 3

weoL: =1 1 yyoL: -1 1 zvoe: -1 1

WE: 1 YE: =3 2E: 2

This first program varies x,, the x-component ofthe eyepoint. In movie

parlance, this is called “panning,” so the program is called XPAN. The

program takes three arguments from the Stack: beginning x, ending

x,,and x, increment. Itleaves a stack ofgrobs and anANIMATE counter.

APAN (Checksum: # £8913d Bytes: 168)
&

+ winc
&

OR w
'VPAR' 11 % PUT ERASE DRAW
PICT RCL { # 1d # 1d 3}

CVPAR 11 13 SUB 1 »GROB REPL
winc STEP

»

DEPTH ANIMATE
»

Tryit now: typel -3 € EYEPT -8 8 1 WPAN.... It will take a little

over 2 minutes to create 17 grobs.

146 6: THREE-DIMENSIONAL GRAPHICS

YPAN does the same thing with y,, the y-component ofthe eyepoint. It

takes three arguments: beginning y, ending y, and y, increment.

YPAN (Checksum: # 24445d Bytes: 168)
&

+ yinc
&

FOR
'dfiHR' 12 y PUT ERASE DRAW
PICT RCL £ # 1d # 1d }

~VPAR_11 13 SUB 1 +GROB REPL
yinc STEP

»

DEPTH ANIMATE
»

Try it now: typel -3 2 EYEPT -3 -19 -1 YPAN....

This third program, ZPAN, varies z, the vertical componentofthe eye-

point, using three z_ arguments in the same manner as "PAN and YPAN.

ZPAN (Checksum: # 13781d Bytes: 135.9)
&

+ zZinc
&

OR =z
'WVPAR' 13 4y PUT ERASE DRAW
PICT RCL € # 1d # 1d X

~VPAR_11 13 SUB 1 »GROB REPL
zinc STEP

2

DEPTH AMIMATE
»

Try it now: typel -3 2 EYEPT -B 8 2 ZPAN....

Since the three programs are so similar, you may be able to combine

them into one all-purpose PAN program. Can you?

Zooming and Panning 147

Plotting in Four Dimensions

If you could make the function vary with time as well as with x and y,

then you could create 4-dimensional plots. Good news: You can use

ANIMATE to do just that. Since the 3D plotting tools already work on

functions of ¥ and Y, it is easy to create a function of 8, Y and T. You

simply make T a global variable, create several plots ofthe function for

different values of T, and use ANIM ATE to review them.

In fact, you can write a program to do the plotting for you automati-

cally. This four-dimensional plottingprogram, called PL4D, takes three

arguments from the stack: the starting time, ending time and time

increment. Like 8/Y/ZPAN, it uses ANIMATE to display the plots and

leaves them on the stack with the ANIMATE counter.

PL4D (Checksum: # 37239d Bytes: 1¢8):
&

+ tinc
&

t
t 'T' STO ERASE DRAK
PICT RCL € # 1d # 1d X
T 1 »GROB REPL

tinc STEP
»

DEPTH ANIMATE

As an example, try turning a paraboloid inside out. One expression for

a paraboloid is: z=ax?+ by?. So create the expression ' A*¥R*Z+B*Y"*7'

and store it as BOLOID. Now store the expression 'B.2#T"' into 'R’;

and the expression 'B.3#T"' into 'B'. A and B are now functions of T.

148 6: THREE-DIMENSIONAL GRAPHICS

Set up your plotting parameters as follows:

INDEP: X STEPS: 7

DEPMD: ¥ STEPS: 7

weoL: -1 1 yvoL: -1 1 2voL: -1 1

HE: .8 YE: -3 2E: 1.5

Now type =4 4 £ PL4D and see what happens....

Here’s another example: Store the expression ' T7(K*2+Y"*2) ' into

EQ. Set up your plotting parameters as follows:

INDEP: A $TEPS: 16

DEPMD: Y STEPS: 8

weoL: =1 1 yyoL: -1 1 2voL: 8 4

RE: 1 YE: =3 ZE: 3

Now type: 8 8.8 8.1 PL4D....

Ifyou have already written a consolidated versionof8/Y/ZPAN, youmay

want to consider adding PL4D’s capabilities to it. On the other hand,

that may introduce so much programming overhead as to weigh down

the program, making it too big and too slow. That’s your decision.

Plotting in FourDimensions 149

Extensions and Alternatives to ANIMATE

ANIMATEis one ofthose “why didn’t I think ofthat?” routines that was

just begging to be written. The core ofthe routine could be written as:

&

{ # Bd # 6d } PVIEW
1 SWAP
FOR n

n ROLL PICT
{ # 6d # Bd } ROT REPL

NERXT
»

(Of course, this quick version ignores the optional list argument and

omits all type-checking, stack size checking and so on. All that extra

code would naturally be built around the core shown above.)

The input for ANIMATE is simple in its beauty: a stack of grobs and a

counter. This arrangement is important in the several programs you

can create to enhance ANIMATE: PRANIM, SSTEP, BSTEP and COMBINE.

PRANIM allows you to print out the sequence of grobs on an 82240B

infrared printer, or on a PCL- or Epson-compatible printer (ifyou have

the PCL or Epson graphics print driver installed). It leaves the Stack

unchanged, as long as it’s not interrupted while it’s running.

PRANIM (Checksum: # 63794d Bytes: 49)
&

1 SWAP FOR n
n ROLL PR1 ME&T
n

150 6: THREE-DIMENSIONAL GRAPHICS

SSTEP allows you to view one grob at a time, at your own pace. BSTEP

does the same thing, only backwards, by using the ROLL command in-

stead of ROLLD. The Stack is unchanged, except that the grobs may

be out of order from the stepping.

SSTEP (Checksum:# 515d Bytes: 122.9)

* >
&

0 PICTP

Bd } ROT
bBd } PVIe

3

S
=
=
=
1
0 L

B
B o

o
l o

s
z EPL n

7
R

EW FREEZE
»

»

BSTEP (Checksum:# 5277/3d Bytes: 127.9)

® >
&

L n
FREEZE

COMBINE is useful with YSLICE (and marginally so with WIREFRAME)

for creating composite plots by superimposing all the grobs on one an-

other. COMBINE removes the counter and grobs from the Stack, leaving

a single grob on Level 1. MULTIPLOT in Ch. 9 uses the sameprinciple.

COMBINE (Checksum: # 8942d Bytes: 39)
&

1 - 1 SWAP START + NEKT
>

+LIST turns the arguments for ANIMATE into a list for storage or

transfer; 0BJ* converts the list back into arguments for ANIMATE.

Plotting in Four Dimensions 151

Although ANIMATE is an elegant routine, there are alternatives. One

ofthese is to combine all frames ofthe animation into one larger grob,

and use PVIEW to scan to different locations in the grob.

Consider that a full-size grob (131x64) requires 1,098 bytes. Ifyouhave

a series of ten grobs, therefore, you will need 10,980 bytes of memory.

If, instead, you paste all ten frames into a tall, skinny 131x640 grob,

you will need 10,890 bytes—not too much different. But ifyou paste all

ten frames into a short, wide 1310x64 grob, you will need just 10,506

bytes. If your available memory is getting short, that 476-byte differ-

ence is significant.

To experiment with such an alternative to the ANIMATE tool, hereis a

small (119.5-byte) program that will cycle through a short, wide grob

of any size. It doesn’t require a counter like ANIMATE, and it doesn’t

take any input. It assumes that you’ve already stored the grob into

PICT, and it uses PVIEW to move around and display different parts of

PICT. It moves even faster than top-speed ANIMATE:

&«

B PICT SIZE DROP B-+R
FOR n

END
n R*B # Bd 2 »LIST PVIEW

131 STEP
»

*CaurioN: Ifyou try to run ANIMATE after you have turned PICT into a huge, misshapen grob like

the ones used here, it may appear to “hang” with the first frame of the animation displayed and

the “busy” annunciator lit. This has something to do with the oversized grob. To fix the problem,

press 'PICT' and try ANIMATE again.

152 6: THREE-DIMENSIONAL GRAPHICS

Review

By now you should understand better the concepts of view volume,

eyepoint and view plane. You should know how to manipulate the eye-

point, the plotted function and VPAR to get the best view of your 3D

plots. By combining this knowledge with your knowledge ofANIMATE

and its alternatives, you’ll be able to use the 3-D tools to their fullest.

Although this chapter has concentrated on WIREFRAME plots, the

principles you’ve learned can be applied to other 3D plot applications

as well. Keep in mind that the HP48 never promised to be a handheld

CAD tool or a 3D analytical tool; the applications are meant to help you

“visualize” the relationships between three variables.

Don’t be afraid to experiment. The 3-D plotting tools are perhaps the

most complex tools on the 48, from a user’s point ofview, and they will

take some practice before youbecome adept at using them. Remember

what your band leader said.

Review 153

7: GRAPHICS IMPROVEMENTS

Opening Remarks

The PLOT routines give accurate graphical representations of your

functions or statistical data. Still, a plot like the one below doesn’t tell

you much except the shape ofthe function. For example, you can’t tell

what the 3 roots ofthe function are—and you may not even recognize

the function.

But the 48 does have a command to give the plot some scale—and then

you can write a program to add text onto the plot anywhere you wish.

You’re going to do that here.

Also, you’ll be learning how to use the BOX, LINE, TLINE and CIRCLE

commands to make your plots more informative.

Opening Remarks 155

Labelling the Axes

If you’ve already tried axis labels, you probably got results like these:

-b.268318530718

 ISPT =WTlT

The axis label format uses the current numeric display format. So an

x-axis label of2 might be plotted in the following ways, depending on

your current numeric display format: STD 6.28318536/18

FIX4 6.2832

SCl1 6.3E6

Here’s a simple exercise to try the different label formats.

1. Type 'SINE' RCLPIC to put your SINE grob into PICT.

2. Press (o] (or (o]PICTURE)).

3. PressEflflNi1998. You should see a picture like the one

above.

4. Press(CANCEL), then (]MODES). Change the number formatto, say,

Fix4 or Sci 1. Then repeat steps 1-3 to see how the labels change.

This technique also works with BIGSINE and other oversized plots.

156 7: GrapHICS IMPROVEMENTS

Adding Text to Graphics

Suppose you have a 200x200 grob with a multifunction plot on it and

you want to include the names of the three functions being plotted.

There isn’t a built- in function for adding that text.

You can use the cursor control keys with and [IilEl to draw the

individual letters, but that’s tedious—and there’s a better way.

Create a new command (call it GLABEL) that places text into the

graphics display (or into PICT), with the upper left corner of the text

at the coordinates specified. Like most 48 graphics functions, GLABEL

should allow you to specify the coordinates either in user units or in

pixels. Also, you should be able to specify a font size for the text: 1, 2

or 3 will select small, medium or large text; 0 will select either large

text or special formatting (textbook or matrix format), whichever is

applicable. Here’s a Stack diagram for GLABEL:

Stack Inputs Stack Outputs

3¢ Location{ #col #row I or(xy)

2% text string to be placed (None)

1t Textsize®@,1,2 or3)

And here is GLABEL (Checksum: # 65476d Bytes: 33):

« »GROB PICT
ROT ROT GOR

»

Store a copy of GLABEL in your TOOLS directory.

Adding Text to Graphics 157

Now make two variations of GLABEL.

Namethe first variation GL{ (Checksum: # 689¢23d Bytes: 115.5):

« »GROB DUPZ PICT
ROT ROT GOR SWAP
DUP TYPE SWAP
IFERR C+Pn
THEN
END
0BJ+ DROP 4 ROLL
SIZE # 2d + SWAP
DROP + 2 =LIST
IF SWAP 1 SAME
THEN Px=C
END

GL{ puts a label into the graphics

display and then returns the loca-

tion two pixels below the lower left

corner of the grob. This will help

when you want to create blocks of

left-justified text of varying sizes

in your graphics display.

StorelL{ into the TOOLS directory.

Name the second variation GL* (Checksum: # 57747/d Bytes: 172):

158

« »GROB SWAP DUP
TYPE SWAP
IFERR C+Pn
THEN
END
ROT DUPZ SIZE NEG
18d + # Bd SWAP
2 *LIST ROT RDOB
PICT SWAP 4 ROLL
GOR # 2d + # Bd 2
+LIST ADDB
IF SWAP 1 SAME
THEN PksC
END

GL+ puts a label into the graphics

display, and then returns a loca-

tion two pixels to the right of the

upperright corner ofthe grob. This

will help when you want to create

a line of various-sized text in the

graphics display.

StorelGL* into the TOOLS directory.

7: GrapHICS IMPROVEMENTS

Note that before you can use GL* you must write the small utility it

uses: ADDB adds two pixel locations as binary integers

Here are the Stack diagram and program listing for ADDB

Stack Inputs Stack Outputs

22 locationt # col, # row, }

1 location{ # col| # row; } 1: new location

{ #col1+# col, # row1+# row, 3

And here is ADDB (Checksum: # 18393d Bytes: 31)—storeitinto

your TOOL?% directory:

« OBJ+ OROP ROT
0BJ> DROP ROT
+ ROT_ROT +
SWAP 2 +LIST

Adding Text to Graphics 159

Now look at GL#* once again.

Note that it aligns the bottom edges ofthe text in the graphics display.

SinceI,Aand align to the top left corner ofthe grob,

GL+ must compute the location ofthe bottom edge as ifyour text were

a 10-pixel high grob. That is, since your text will end up as a grob of

height 6, 8 or 10 pixels, depending on the font you use, to align the text

correctly, GL* must account for those differences in height.

As an illustration, first use GLABEL alone to create a line oftext in the

graphics display, using all three fonts. To better see what happens,

incorporate allthe commandsinto aprogramand it fromthe Stack.

« { # Bd # 6d } PVIEW
{ # Bd # Bd X "TERT1"
1 GLABEL (for the first line)
{ # 22d # Bd } "TEXTZ"
¢ GLABEL (forthe secondline)
{ # 54d # Bd } "TEXT3"
3 GLABEL (for the third line)
PICTURE

»

You’ll see three different sizes oftext, aligned at the top edges, like this:

TETITEXTZTEXT3

Bt NOBODYHRITES] 5 |, o THIS. Tt 'STOOL-14GREAD.

160 7: GRrAPHICS IMPROVEMENTS

The largest text font on the 48 (not counting equations and unit

objects) creates grobs that are 10 pixels high. The command sequence

... SIZE NEG
¥ lbd + ...

»

adjusts the placement of text grobs of any size such that all the text

ends up aligned at the bottom edges.

Now, erase the display, and then use GL* to create a line oftext like the

one you created above, and see the difference. Again, to see it happen,

put all the commands in a program and it from the Stack.

« { # 6d # 6d PVIEW
{_# bd # 6d 3 "TEKTL" 1 GL* (for the first line)
"TEXRTZ" 2 GL+ (for the second line)
"TEXT3" 3 GL=+ (for the third line)
PICTURE

»

You’ll get the following effect. Notice how the text is aligned on the

bottom edge:

eTEXT2TERT3

Adding Text to Graphics 161

Now test GLABEL itself:

Move back to PICS. Put BIGSINE into the graphics display (type

'BIGSINE' RCLPIC). Then type &lPron)IIIA(6)-)5+/=[SPC
BTand(][3)+/2 (DEAEto set the correct ranges. Nowtype

(.5, 1) "Sine Wave Plot" (3)enTer)GLABEL ENTER), and (€)to see your

creation (use the arrow keys to scan around until you see this):

1Jfi;?&1:Wave ;}i{

|ETT]TTSTWl(T

Nowput{ # 128d # 15d } onto Stack Level 3, your name in quotes

onto Level 2 and the numberonto Level 1. Execute GLABEL, then («).

You should see something similar to this:

11e]vS5ine Wave Plot
ay Depe

+

T)GTI

162 7: GrapHICcS IMPROVEMENTS

Now put (8. 33, 8.3) onto Level 3, "August 1, 1998" onto Level 2,

and the number 1 onto Level 1. Execute GLABEL, then press(4).... You

should see the date in 6-pixel text below your name, like this:*

110[v5ine Wave Plot
: ay Depe

1 +
| duGudr 1. 1330

LT]RTNTT

Save this as BIGSINE (in PIC%) again (remember how—page 130?).

Now try this: (JPron)lAFFT]creates a blank 131x64 grob. Then

typePl # 1d # 2d 3} "Welcome" (3)(vAR)EIR™M. You should

see{ # 1d # 14d }. Now press (@) to see lelcome in the graphics

display. Next, type "to the neuw" (2 "HP 48GK" (3)

"Grarhical Expandable calculator" ()EXIA—and press

(4 to see your creation—a startup screen (more on this in Chapter 8)!

Best of all, GLABEL, GL* and GL! can be used as subprograms in your

own programs, and they can be easily rewritten as functions—or into

functions. They don’t halt program execution, and they’re not interac-

tive; they take their arguments from the Stack. They’re also fairly tidy:

they clean up the Stack after themselves. However, they do alter PICT

irreversibly, and they don’t include error checking—they assume you

have given them correct inputs.

*WARNING: Ifyou execute GLABEL from your TOOLS directory, you may get different results from

those pictured here. GOR and other graphics commands compute user units as specified by PPAR

in the current directory. Ifyour directories have PPAR’s with differing user units, your results will

be unpredictable. Therefore, it may be advisable to avoid user units in cases like this.

Adding Text to Graphics 163

Here’s one more handy routine, called CTR, that centers text around a

given point in a grob. The text is drawn in font size 1:

CTR

Checksum: # 63567d

Bytes: 68

Stack Inputs Stack Outputs

3¢ target GROB (may even be PICT)

22 locationt ¥ rowno. ¥ columnno. }

1: "text " 1* modified GROB

« 1 »GROB DUP SIZE
DROP 2 ~ ROT EVAL
SWAP ROT - SWAP 2
+LIST SWAP GOR

Store CTR into your TOOL% directory. Then test it and experiment with

it as you wish.

164 7: GRrapHICS IMPROVEMENTS

Adding Graphics to Enhance Plots

Purge PICT and pull out BIGSINE again. Now suppose you want to

label the origin. How do you do this?

Press (<301l to get to the PICTURE EDIT menu. Then use the arrow

keys to position the cursor on the origin and press(X). Press any arrow

key four times, then [HIIdM. Now the origin is circled. Next, press the

arrow keys to get the cursor at the 4 o’clock position on the circle. Press

again. Press (B)fifteen times, then () eight times, then HINIZIA.

You’ve now drawn a line from the circle to some arbitrary point. The

Toggle LINE function draws a line that turns black pixels white and

white ones black. Now press to save the pixel position to the

Stack. Then press to return to the Stack for a moment.

Back in the Stack display, you see the digitized cursor position on Level

1. Youwanttolabel the origin as eitherORIGIN orB. B8BH (your choice).

Withthe cursorpositionon Level 3, put either "ORIGIN" orB onto Level

2, and 1 onto Level 1. Then execute GLABEL.* Finally, press ().

Move the cursor to just under the 8. Now press (X), then (»)repeatedly

to move the cursor to the end ofthe label. Press to under-

line the label (you could also use [TiEEN to do all this, but the canned

shape routines are faster in a program and give more predictable

results—use them as much as possible).

*Remember the hazards ofdiffering PPAR’s in different directories (see the footnote on page 163).

Adding Graphics to Enhance Plots 165

Your grob should now look like this.

 TTLSWT(TN

Hmm...in a presentation-quality plot, the title block should probably

be enclosed in some kind of box, no?

All right: Press the arrow keys to get the cursor above and to the left

of thetitle, 5ine Wave Plot. Press(X). Now move the cursor below

the date and to the right ofthe title and your name. Press[T,

and you should see your title block as shown below.

 T

Luorolne Wave Flot
4 ay Depe
! +

I #uGudr 1. 1330
1 i

LIME |TLINE| EDH|CIRCL

Save this as BIGSINE (in PIC%) again.

166 7: GrapHIcS IMPROVEMENTS

Review

In this chapter you learned how to manipulate the PLOT functions to

display yourplot the wayyou want to see it. You learned how to display

the axis labels in different numeric formats.

You also created some programs to place text—of various sizes—

anywhere on a plot. These programs, GLABEL, GL{, GL* and RDDOB,are

important additions to your toolbox.

You then used some ofthe shape commands (e.g. IEEl,NN, INGTHA,

LML) to accent your plot. This is what the shape functions were

originally intended for.

Infact, from now on, you can refer to the shape commands as “freehand

drawing figures.” Together with the freehand drawing commands

TIEMERTT] and EEN/[IEIE, they form the core of the 48’s tre-

mendous graphics capability. And that’s what the next chapter is

devoted to—freehand drawing.

Review 167

N
A

N
I
R

s
-
o

\\
\

‘|'
'.

\
‘
.

‘,.‘
\\\‘\.\‘

\\\
R

\
\
\

.
"
v
O
A

g
.
f
)
(

'//,._\..
-

\’\\

¥
(&:“i‘

""\:‘
v

“‘ 1)
::’\\\\\\Q‘Q\\\Q\\\&\}\‘*é

S
N

A
L

ANKINN-
I

T
—
—
A
N

V
S
R
\
N

U
R
S
N
N

R
N

A
=
S

>
l
_

7
¢

A\
»

:\\
N

N
\
"
:
'
v
'

.
D

W
O
e

7
S
N
N
N

\
!

A
N

'
\
'

i
\\‘\‘!«‘:

&
o
‘
&

]
)

2
N

B
p-"‘l’

EXAEXN
\
\
‘
\
=

)
O
R
G
S
R

S
&

‘\\;“
L

]
\

/
;

X
N

/7
|'
W
A

A
/

\.{\"’,
‘;‘

N
/
£

S
N

\

\":i’.\
¥

‘!"\
#

\
o

0,
B

W
108

Q
N

M
D
A

)
A

W
B
A
R

G
\
\
\
\

‘Q
\

11,'_"/
"
-

)
R

,
N

N
G

V
e

\
‘

.4‘4"1“\‘\\
\
}
’
/
\
\
\
\
o

>
._._

‘
’

B
N
e

=

S
N

A
R
T
N
=

\
‘
“

\
\
\
\

v)
~

N
=

.

O
\

.
\
V
J

“‘1‘\\‘7\
<

e
—

-
N
N

)T
=

O

FREEHAND DRAWING8

How to Do It

What ifyou could turn on your 48, or start a program, and see an open-

ing display like this?

T elcome
TO THE

HF450A
With freehand drawing, you can create graphics to give your programs

more pizzazz, simplify and clarify user interaction, or produce more

intuitively understandable, pictorial outputs.

This chapter shows you how to do it.

How to Do It 169

The procedure for creating freehand graphics is this:

1. Use AT orXHEIto create a blankgrob—yourdrawingboard.

2. Use HIMH andlAIA, or HIIER—or even and EHH3—to
define your user units. Or, just work in pixels.

3. Use IEIEM to draw a single- or double-line around your grob.

4. Use [N,XN, etc. as much as possible, and[T/[TTEN,

AT/ IITE only when the shapes won’t do. In the Welcome

picture at the start of the chapter, for example, all parts of the

calculatorexcept the keys were drawnwith [N[i[3 andIGTAM. The

keys were [lIIEl work. The text was done with GL{ and GLABEL.

5. Periodically during your creation (and ofcourse, when it’s done),

save your drawing by typing ' TITLE' (or any other name), then

STOPIC. Remember that your grob is only an object, which can

be lost with a single keystroke.

Now use this program, named OFF1 (store it in your HOME directory:

Checksum: # 38534d Bytes: 68):

« { HOME TOOLS PICS TITLE 3
RCL PICT STO OFF
{ + PVIEW

»

You can add it to your CUSTOM menu, or assign the program to the

key. Then, whenever you use OFF1 to turn the calculator off,

you’ll see your own TITLE grob.*

*With everythingelsethe 48 has, it’s a pity HP didn’t include (or at least document) an AUTOSTART

feature—a flag to activate a user program whenever the machine is turned on.

170 8: FREEHAND DRAWING

Drawing a Voltmeter Face

As another example, here’s how to use freehand drawing figures and

user units to create the face of an analog instrument meter, such as a

voltmeter. You should end up with a grob that looks like this:

Press PLoT)IEIAEAFET to create a blank 131x64 grob. Then press

(4 to get to the graphics environment, and put a frame around the grob

by drawing a box: (B9¥RVYEINEEE.

Now define your drawing area in user units. To make it easier, call the

pivot point of the needle the origin, or (8, 8).

Give the arc on the numeric scale a radius of 0.9 unit from the origin.

Then, allowing for tic marks and lettering, your maximum meter

height will be 1.14 units, and your minimum meter height will be -0.12

units. For now, use a meter width of 2.6 units.

Note that you are using arbitrary units right now. When creating a

strip chart or abargraph, you’ll probablywant to use more meaningful

units, like dollars/month or thousands of barrels per day, etc.

Drawing a Voltmeter Face 171

You can set your user units in two ways:

e Specifythe lower-leftandupper-right corners via PMIN and PMAX:

(-1.3,-.12) PMIN (1.3,1.14) PMAX

* Or, specify the x- and y- ranges, using H:IH and [AH:

-1.3 1.3 HIH -.12 1.14 BT

Either approach works fine. What you’re doing is setting the plotting

limits in terms of your own units. This diagram illustrates the

relationship between PMIN / PMAX and HA:H /A

Ymai] PMAX=C(x,yJ—

{ #x, #x_ 3

172 8: FREEHAND DRAWING

Now draw a small circle at the pivot point. You can do this from the

Stack or from the PICTURE environment.

From the PICTURE environment, use [EI¥l or (+) to find the pixel clos-

est to (0,0), then (X)(>]»)») (-] gets the menu back), then FIILRINNN.

Or, to draw the pivot circle from the Stack, place these arguments on

the Stack:

4: (6, 8) center of the circle

3: .63 radius ofthe circle

% B start angle of the circle

1: 36B0or6.2832 end angle ofcircle (° or rad)

Thenpress PICTARC[QoS command doesn’t workon the

Stack, and IGIAMll doesn’t work in the graphics environment.)

Next, drawthe meter arc, by using(PRG)IISEIETAM, with these Stack

arguments: 4 (B, 8) center of the arc

3t 8.9 radius of the arc

2: 150orB.2618 arc start angle (n/8 RADians)

12 1650r2.8798 arc end angle (7r/8 RADians)

Have a look at it so far: (€); then prepare for the next step: [HIL

Nowdraw the 6 tic marks in the graphics environment, by “eyeballing”

their locations (you could calculate their locations exactly, but you’ll

get equally good resolution using the interactive commands): Move

the cursor to the point on the arc where the tic mark originates; press

(X). Then move the cursor to the other end of the tic mark, and press

IMTA Repeat this for all six tic marks, evenly spaced.

Drawing a Voltmeter Face 173

Now use the GLABEL utility from Chapter 7 to label the tic marks. You

want to label the tic marks 8,2, 4,6,8 and 18.

For each label, follow this procedure:

1. Press or{4Jto get the graphics environment. Move the

cursor to the point above the tic mark where the label belongs,

and press (ENTER).

2. Press to exit graphics. Put thelabel on Level 1 as a string,

ie. "B", "2" "4" etc. Press (1), then execute GLABEL.*

At the end, your grob should look like the figure shown on page 171.

Store this grob by entering 'METER' STOPIC.

Later, you will see how this versatile grob can be used in conjunction

with the RS-232C interface to simulate a wide variety ofmeasurement

instruments.

*Keep in mind that GOR, GXOR and REPLuse the plotting limits in the current directory when

they add data to PICT. This can give you unexpected results ifyou execute GLABELfrom a directory

with a different PPAR than what you intend.

174 8: FREEHAND DRAWING

Review

In this chapter you’ve seen the freehand drawing tools and a few

examples for using them to create your own grobs, not necessarily tied

to the normal PLOT routines. You should feel free to explore any other

uses for grobs you can think of.

Keep in mind that a freehand grob can also be created programmati-

cally, by using the commands from within € *. Or, you can use RCLPIC

to recall the (previously stored) grob, or SEE ifthe grob is on the Stack.

And any grob on the Stack can be turned into a program by placing it

on the Command Line and enclosing it in € * brackets.

Now you’re ready to see some real applications—examples ofhow you

might put together everything you’ve learned here so far....

Review 175

9: PROGRAMMABLE (GRAPHICS

APPLICATIONS

Introduction

In this chapter you’re going to see several graphics applications. Some

are meant to be used “asis,” while others are given simply as examples

ofwhat you can do with graphics—to be modified or finished to fit your

needs.

Each application begins with a description of the program(s). Then

follows a list ofsubroutines and other variables, then a complete set of

program listings, along with checksums, byte counts, Stack argument

listings (where appropriate), notes and/or comments (where appro-

priate). Occasionally, too, youmaysee multiple versions ofaprogram—

just to show you how different your approaches can be.

*The checksum and byte counts given are for a Rev. K machine. To compare checksum and byte

count, enter the program and store it under the indicated name. Then put that name onto Stack

Level 1 and press EE.

Introduction 177

Programmable Scanning Inside a Big Grob

These programs automate scanning inside a large grob—say, 300x200.

Descriptions

PSCAN: To display only certain, predetermined parts of the grob, you

can use PSCAN from within a program to display those parts.

SCAN: To examine the grob yourself, use SCAN as a versatile alternative

to the built-in PICTURE scrolling mode, moving by pixel, ten pixels, or

across the entire grob.* SCAN treats the 48 display as a window onto

the grob and redefines the numeric keypad as a window control pad;

each numeric key, except(5)and(0), indicates a direction for movement:

* The key, for example, moves the grob one pixel up and to the

left (that is, it moves the window one pixel down and to the right).

. moves the grob ten pixels up and to the left.

. moves the grob to the upper left corner of the window.

e Similarly, the other numeric keys move the grob in their direc-

tions: (3)to the lower right, (6] to the right, etc. (5)does nothing).

 (0)exits SCAN in an orderly fashion. is OK for emergen-

cies, but it will leave the directory cluttered with extra objects.

*You may wish to disable the clock display (clear system flag —40) when using SCAN. A strange

feature causes the clock display to appear on the top edge ofthe grob, where it scrolls off- and on-

screen, as part of the grob. Interestingly, the clock even keeps “ticking” as it moves around.

178 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

PSCAN, SCAN and these subroutines should all be in the same directory.

SETUP: Createstemporaryvariables and initializes the 48 prop-

erly for SCAN and PSCAN.

NUDGE: “Nudges” the graphics display the distance and direc-

tion given in Level 1.

MV1. Moves 1 pixel in the direction indicated.

MV18: Moves ten pixels in the direction indicated.

MYall: Moves across the entire grob, in the direction indicated.

ADDB: Adds two lists ofthe form{ #rr # ccc I (see page 159).

Alternate Approach

These routines offer another solution, for the sake of comparison.

PSCN An alternate version ofPSCAN.

SCN An alternate version of SCAN.

My Combines the functions ofNUDGE, M1, MV18 and MYal 1

above. Moves the distance indicated (1 pixel, 10 pixels

or all the way) in the direction indicated.

Programmable Scanning Inside a Big Grob 179

Listings

SCAN

« SETUP
Cursor PVYIEW
D0 8 WRIT DUP FP

+ ky kfp
« CRSE

kfp .1 SAME
THEN ky MV1
END

kfp .2 SAME
THEN ky MV1B8
END

kfp .3 SAME
THEN ky MVall
END

END
ky

»

UNTIL 92.1 SAME
END
{ Cursor PSIZE } PURGE

*»

Checksum: # 47364d

Bytes: £97.9

Stack Arguments

l: (none)

Notes: SCAN uses PICT.

180

(Initialize PICTand variables)

(Unshifted)

()shifted)

(O}shifted)

(Key zero—exit)

(Remove global variables)

Stack Results

(none)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

PSCHN

« [(BJ+» (Break down list into locations; use list size as a counter)
D0 DUP 1 + ROLL PYIEW (“Roll up”to the next location,

.9 WARIT 1 - use it and discard it)
UNTIL DUP B SAME
END

%

Checksum: # 29478d

Bytes: 67.9

Stack Arguments Stack Results

12 { loc, loc, loc,...loc, } (none)

Notes: PSCAN uses PICT.

The Stack argument may be given either in user units (com-

plex numbers) or pixel locations{ # rownum # colnum }. Each

set of coordinates in the list represents a location on the grob

that will successively be passed to PYIEW in the program.

Programmable Scanning Inside a Big Grob 181

SETUP

« PICT SIZE DUPZ 2 »LIST
'PSIZE' STO (Save PICTsize)
IF # 64d £ SWAP (If PICTis no bigger than the default...

131d £ AND
THEN ...offer to view without scrolling or aborting)

IF "GROB is smaller than®= (= is NEWLINE;press (o)<
display! Look anyway?"

EII{III:IYE§“ ll:: 1 EUHT * }

{ "NO" « @ CONT » } X
TMENU PROMPT B MENU

EHEN { X PVIEW (Press(CANCEL)to exitfrom this)

CONT (COMTbreaks out ofSCANhere)
ELSE { # Bd # Bd }
EI'-.II[l]:ursor' ST0 (Initialize the cursor)

»

Checksum: # 22847d

Bytes: 311.5

Stack Arguments Stack Results

1: (none) (none)

Notes: SETUP initializes SCAN and PSCAN.

182 9: PROGRAMMABLE GRAPHICS APPLICATIONS

NUDGE

« Cursor ARODB (Add increment to Cursor)
+ cursor
« JFERR cursor PVIEW

THEN 388 .2 BEEP
DROP

ELSE cursor
ENDI Cursor' STO (Update Cursorfor next time)

Checksum: # 6B8163d

Bytes: 143

Stack Arguments Stack Results

1: { # column-increment # row-increment } (none)

Notes: NUOGE moves the grob according to the increment given in

Level 1.

The increment must be given in binary integers.

NUDGE is called by MY1 and MV18.

Programmable Scanning Inside a Big Grob 183

M1

€« % ky

« CARSE
ky 62.1 SHME (Key up and left)

EHEN { # 1d # 1d } NUDGE

ky 63.1 SAME (Key (8) straight up)
EHEN { # 6d # 1d } NUDGE

ky 64.1 SAME up and right)
Efi%fl { #18446?449?37’995516151:] 1d 3 MNUDGE

ky /2.1 SAME (Key (4] left)
EHEN { # 1d # Bd > NUDGE

ky 73.1 SAME (Key (5) nowhere)
EHEN { # 6d # Bd > NUDGE

ky 74.1 SAME right)

»

»

184

'Igr-lq%l"-l { #18446/446737689551615d # Bd NUDGE

ky 82.1 SAME down and left)
EHEDN { # 1d #18446?448?3?8955 615d I NUDGE

ky 83.1 SAME straight down)
E“EDH { # 6d #18446?449?3?895 615d } NUDGE

ky T?-l%l’-l1 SAME (Key(3) down and right)

{ # 184467446873709551615d
184467446873789351615d 1

NUDGE
END

END

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 48365d

Bytes: 652.5

Stack Arguments Stack Results

1: keycode (none)

Notes: MY1 moves the grob 1 pixel at a time.

You cannot create the large binary integerinfMV1 via# 1d

while editing the program. You'llget% ... # 1d NEG ... »,

which won’t work in the program. And # 1 causes

an Invalid Syntaxerrorat« ... # -1d ... ».

To get the large integer, you must eitherkey it in digit-by-digit

each time (not too thrilling a prospect) or put it onto the Stack

before keying in the program, then pull it into the program

during editing via 44l This seems far easier, since

the number is just the negative of a smaller, more familiar

integer: # 1 (ENTER[*/-) Result: # 18446744873789551615d

Then, while creating your program, put the insert cursor (%)

in the space to the right ofwhere you want to place the integer.

Press to get the EDIT menu and to get to the

selection environment. Use(a)and (¥)to select the integer, and

then[lENTER). You'll return to the program editing, with

the integer in the right place.*

*QOr, alternatively, you can add the number to your CST menu and enter it from there: Ifyou al-

ready have a CST menu, press @JCsO# 1 ENTER)F)[BDEGJCST); if you don’t already have a CST

menu, press # 1 &NTER)F/D) 'CST' (510)

Programmable Scanning Inside a Big Grob 185

MY18

£ > |<-:|

« CRSE
ky 62.2 SAME (Key (]7) up and left)

THEN (¥ 16d # 1ed 3 NUDGE

ky 63.2 SAME &)8)straight up)
THEN 4 ed # 18d) NUDGEY straight up

ky 64.2 SAME up andright)
THE(4 TB446744873709551eheH68 T L

ky 72.2 SAME (Key(&) left)
THEN C# 16d # ed 3 NUDGE

ky 73.2 SAME (& here)
THEN C# 6 # B) NUDGE 2 &5} nowhere

ky 74.2 SAME (Key (]6) right)
‘II'-:JI-‘!IEDN { #184467448737689501606d # Bd NUDGE

ky 82.2 SAME (Key down and left)
E:-I%N { #16d # 18446?449?3?8 6B86d } NUDGE

ky 83.2 SAME straight down)
E'I:I-I%N { # 6d # 18446?448?3?8 6B86d + NUDGE

ky T?{qéfl¢ SAME (Key (] 3) down and right)

{ # 184467/448737895516686d
18446/448737895516686d 2

NUDGE
END

END

186 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 386868d

Bytes: 653.5

Stack Arguments Stack Results

1: keycode (none)

Notes: MY18 moves the grob 10 pixels at a time.

As withY1, to get the large integer here, you must either key

it in digit-by-digit each time or put it onto the Stack before

keying in the program, then pull it into the program during

editing via (G]EDT)EEAIA. Again, this seems far easier, since

the numberis just the negative of a smaller, more familiar

integer:

18d ENTER[F) Result: # 18446744873709551606d

Then, while creating your program, put the insert cursor (*)

in the space to the right ofwhere you want to place the integer.

Press to get the EDIT menu and G431to get to the

selection environment. Use(a)and(¥)toselect the integer, and

then [3XlENTER). You'll return to the program editing, with

the integer in the right place.*

*Or, alternatively, you can add the number to your CST menu and enter it from there: Ifyou al-

ready have a CST menu, press ([@JcsO# 18d ENTER)F/2)[HEGJCST);ifyou don’t already have a CST

menu, press # 18d 'CsT!

Programmable Scanning Inside a Big Grob 187

MYall

€ + ky

« CASE
ky 62.3 SAME (Key ()7) up and left)

THEN PSIZE
{ # 18446/4468737B9551485d

18446/448737B89351352d 1
ADOB

k Egg 3 SAMEy ba. (Key straight up)
THEN Cursor 0BJ» DROPZ

PSIZE 0BJ+ ROT DROPZ
64d - 2 -LIST

k EEE 3 SAMEy b4, (Key ()9) up andright)
THEN # 68d PSIZE OBJ+» ROT
EI"-IDDRUPZ # 64d - 2 SLIST

ky /2.3 SAME (Key() left)
THEN PSIZE OBJ+» DROPZ

131d - Cursor 0BJ-
ROT OROPZ 2 -LIST

k E;I?El 3 SAMEYy ra. (Key (2] nowhere)
THEN Cursor

k %‘fiDS SAMEy . (Key ()6} right)
THEN # 8d Cursor 0BJ+
EI".IDRUT DROPZ 2 -=LIST

ky 82.3 SAME (Key ()1} down and left)
THEN PSIZE 0BJ+ DROPZ

131d - # Bd 2 -»LIST

k Eglg 3 SAME P2)y . (Key straight down)
THEN Cursor 0BJ+ DROPZ

Bd 2 =LIST
END

188 9: PROGRAMMABLE GRAPHICS APPLICATIONS

ky 84.3 SAME (Key[®)[3) d dright)
THEN € # Bd # 8d 3 oo ownenang
END

Cursor (Ifno other case is true)
END (CASE)

»

DUP 'Cursor' STO PVIEW

Checksum: # 44/57d

Bytes: 674

Stack Arguments Stack Results

1: keycode (none)

Notes: MVYall movesthe grob allthe waytoone side or corner. As with

MY1 and MVY18,to get the large integers here, you must either

key them in digit-by-digit each time or put them onto the

Stack before keying in the program, then pull them into the

program duringeditingvia]EDT)EEAIA. Thatseems easier:

they arejust the negatives ofsmaller, more familiar integers:

131d &NTERI*/2) Result: # 184467/44873789551485d
64d ENTER[+/D) Result: ¥ 18446/44873789331352d

Then, while creatingyourprogram, putthe # to the right ofthe

integer’s desired location. Then press a1l and use

(a) and (¥) to select the integer, then [3MII'l (ENTER).*

*Or you can add the number to your CST menu and enter it from there: Ifyou already have a CST

menu, press(VAR[ICSD# 131dE&TEREAH 64dENTERF/-2)FRs) INEMENEIHVARG)CST;ifyou
don’t have a CST menu, press# 131dEsRF# 64dener+-2Pre)MM'CST'

Programmable Scanning Inside a Big Grob 189

Listings for Alternate Approach

Often you may first solve a programming problem in the way clearest

to you, only to discover later that you could have accomplished the

same task more simply, or with less code, less memory usage, better

execution speed, etc. Infact, the very act ofcreating and documenting

the first version often reveals the possibilities for improvement.

This application is a good example of that process. After studying the

previous version, you’ll see how this version “streamlines” it somewhat

(though the effective speed is about the same either way):

PSCN

« 0BJ+ 1
FOR j J ROLL

PYIEW .5 WARIT -1
STEP

3

Checksum: # 12373d

Bytes: 98

Stack Arguments Stack Results

1: { loc, loc, loc, ...loc, 3 (none)

Notes: PSCN is very similar to PSCAN (page 181).

190 9: PROGRAMMABLE GRAPHICS APPLICATIONS

SCN

« { # 6d # bd } PYIEW
RCLF 'Flags' STO 64 STWS

PICT SIZE 64 - B*R 'PY' STO
131 - B»*R 'Px' STO
8 'CK' STO @8 'CY' STO
WHILE 8 WAIT ODUP IP 92 #
REPERT DOUP IP

(Display PICT)
(Save current flag settings
before messing with them)

(Re-size PICT if
it’s too small)

(Initialize variables)
(Get keycode)

(Dissect it into two

SWAP FP 18 = arguments for M)
ENDHU (Do the move and display the result)

DROP Flass STOF (Restorepreviousflag settings)
{Flags P¥ PY CX CY 2} PURGE (Clean up)

>

Checksum: # 2224d

Bytes: ¢91

Stack Arguments Stack Results

1: (none) (none)

Notes: SCN behaves like SCAN (page 180).

Programmable Scanning Inside a Big Grob 191

MY

« { 118 1E12 } SWAP GET
> f
&«

({113{813¥{-113
(183{B883{-1873
{(1-13¢8-13{-1-1733
2 63 6% 72 ?L3 74 82 B3 84 1

Y + PY MIN @ MA= 'CY' STO
n + Px MIN B8 MA= 'CXR' STO

»

Cx R*B CY R»B 2 »LIST PVIEW
»

o
)

Checksum: # 7919d

Bytes: 372

Stack Arguments Stack Results

cs keycode (integer portion) (none)

1: keycode (tenths digit) (none)

Notes: MY moves the grob asindicated by the two keycode arguments

it receives fromSCN. Compare this withNUDGE,MV1 ,MVY18, and

MVYall on pages 183-189. Note, too, that since only SCN calls

MY—andonly once—you could certainlyincorporateMY intoSCN

with no loss of efficiency.

192 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Generating a Stripchart

Here are two programs which allow you to display data in a stripchart

format. Astripchart recorderis a mechanismthatdragsastrip ofpaper

at a constant speed under a pen being activated by a signal from an

instrument or sensor. Usually the signal is a 0-5-volt or 4-20-milliamp

signal.

Now, with the advent of low-power signal conditioning modules, you

can read an analog signal input, then convert it to a real number and

transmit it via datacomm lines to a digital computer.*

The 48 has a unique position as a portable instrument controller or

data logger: On the (QONxT)EFAE] menu are some low-level com-

mands with which you can configure your 48 to communicate with any

serial device in the world. These stripchart programs and the VM pro-

gram which follows, are intended to demonstrate this capability.

*Signal conditioning modules that do this are available from Omega Engineering, DGH, Onset

Computer Corp., Keithley-Metrabyte, Inc., and many other sources. Most modern test and meas-

urement instruments are now sold with a built-in or optional serial interface.

Generating a Stripchart 193

Descriptions

STRIP: This program displays an animated (rolling) stripchart on the

display. It may be halted by pressing any key.

PSTRIP: This program prints a stripchart on the infrared printer. The

output is very elementary, but the program is easily modified to add

more detail to the output. It may be halted by pressing any key.

STRIP and PSTRIP do not take their input from the Stack. Instead,

they look for a list called DRpar (“DataAcquisition parameters”), ofthe

form { minimum-value maximum-value title time-interval }, where

minimum-value and maximum-value (real numbers) are the chart limits.

title (a character string) is the chart title.

time-interval (a real number) is the minimum interval between

measurements (not used in STRIP). This is given in HMS format—

as hh.mmss, where hh is the number of hours, mm the minutes, and

ss the seconds. The routine Nxt ime uses this time interval to com-

pute the time until the next measurement. The minimum useful

time interval varies from machine to machine, and depends on how

long it takes to execute RERDY and print the results.

Ifthe programs do not find any list object named DApar, then they use

this default DApar-:

{gl"e@gz

194 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Note that in a real setting, where the 48 would be connected to a

voltmeter or other signal conditioning module, the routine READY

would query that instrument or module, and the commands within

READY would typically look like this:

« .. "RIRD" KMIT DROP
REPERT
UNTIL BUFLEN DROP
END
SRECY DOROP ...

Here, however, for the purposes ofthese demonstration programs, the

input of a real meter is simulated with a random number generator.

Therefore READY becomes simply % RAND
»

Generating a Stripchart 195

Subroutines

STRIP and PSTRIP use several subroutines. The main programs and

the subroutines should all be stored in the same 48 directory.

READY: Program to collect the data from the serial- or infrared-

equipped sensor or instrument.

MkAxis: Draws a y-axis for PSTRIP paper output.

Now™: Performs an elapsed-time (true-false) test.

Pr8: Prints eight pixel rows to the infrared printer.

Variables

DApar-: The data-acquisition parameter list

&t (delta-t): The time interval, in ticks, between measurements.

Nyt ime: PSTRIP usesaD0...UNTIL loop totime readings, rather

thanalarms;the currenttime (in ticks)isincremented

by &t to generate the value Nxt ime. But in a remote

application, PSTRIP could be modified to set alarms

and turn itselfoff, rather than use such aD0 ... UNTIL

loop.

196 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Listings

STRIP
« RCLF 'Flags' STO 64 STWS (Save current status)

IF DApar DUP TYPE 5 # (Findorcreate UAPar)
EHEN {a1" a8) DUP ROT STO

DUP 2 GET SWAP 1 GET DUPZ - (Extract parameter values
+ hi lo diff from DAPar)
« PICT PURGE (Draw the stripchart recorder)

{ # 6d # 6d + { # 136d # 63d } BOX
{ # 26d # 11d > { # 126d # 54d } BOX
28 128
FOR z z R+B # 355d

¢ *LIST
PIXON 26

STEP
{ # 6d # Bd 3} PVIEW STD (Showthestripchartrecorder)
PICT { # 26d # 5/d 1
lo 1 »GROB GOR (Label the reticle)
PICT hi 1 »GROB DUP
SIZE DROP NEG # 121d + # 5/d
¢ *LIST SWAP GOR
PICT { # 2d # &2d 2
IF DApar 3 GET DUP SIZE NOT (Draw the title)
'EI'HEN DROP "Press any key to quit." (Default title)

1 »GROB GOR
0o (The data acquisition loop)

READY lo MAX hi MIN lo - diff -~
PICT { # 21d # 12d > { # 119d # 52d } SUB
PICT { # 21d # 13d } ROT REPL
PICT { % 21d # 12d 3 GROB 99
1 BBBBHHEBREEEEEREBBBBEAREBE REPL
168 = 20 + R+B # 12d 2 »LIST PIXON

IEIHBIL KEY

Generating a Stripchart 197

DROP
%

Flags STOF (Restore status)

{ Flass } PURGE (Delete global variables)
»

Checksum: # 26965d

Bytes: 899

Stack Arguments Stack Results

1: (none) (none)

Notes: STRIP generates an on-screen stripchart.

DAPar may be modified before running the program. On

machines with black LCD pixels, the default DApar may

cause the data to scroll by too quickly to be seen. If so, then

adjust the time interval parameter to slow down the data

display. A setting of 8.880881, or 1/10th of a second, should

work fine. Machines with blue LCD pixels (version K) won’t

have this problem.

ERAT ROCK:.

198 9: PROGRAMMABLE GRAPHICS APPLICATIONS

PSTRIP

« "Printing Stripchart:" 1 DISP
IF DApar DUP TYPE 5 # (Findorcreate UAPar)
EHEN {B81" @ DUP ROT STO

85.3-} DROP HMS+ 29491288 + '&t' STO (Calculate 5t)

IF SIZE (Print and display the chart title...
THEN PR1 2 DISP
Eth OROP ...unless there isn’t one)

DUPZ KRNG -56 7 YRNG (Set up PICT, draw &printy-axis)
PICT PURGE
PICT { # 6d # 6d MkAxis GOR
+ lo hi
€ BI[]EK?S Bélt + 'Nxtime' STO (Increment the timer)

FOR rowcounter (Printer can print 8 rows at once)

UNTIL Now?
END (An idle loop: Now?is a T/F test)
RERDY (Read the “voltage”)
lo MAX hi MIN (“Peg the meter” limits)
rowcounter R*C PIXON
IF rowcounter NOT
THEN Pr8
ETD

STEP
UNTIL KEY
END (End of00loop)
"Stripchart completed" 1 DISP Pr8 DROP

»
{ & Nxtime X PURGE (Delete global variables)

%

Generating a Stripchart 199

Checksum: # 45726d
Bytes: 472.3

Arguments Results

1: (none) (none)

Notes: PSTRIP generates a stripchart on the HP 82240B infrared

printer.

DAPar may be modified before running the program.

J
A
+
-)
3ESStripchart=

E
E

E
E

Em
EE

E
m
I
'
1

-

I
A
T

ERCH]TESTTVPELISTGROEPICT

EAT ROCKS.TTy

200 9: PROGRAMMABLE GRAPHICS APPLICATIONS

RERDY

« RAND

Checksum: # 51986d

Bytes: 22

Stack Arguments Stack Results

1: (none) a real number

Notes: READVY reads a voltmeter or other serial output device. In this

demonstration case, it’s a simple random number generator,

in real applications, this routine would contain the appropri-

ate commands to read the device.

Generating a Stripchart 201

Mow™

« TICKS
IF Nxtime > DUP
THEN &t 'Nxtime' STO+
END

»

Checksum: # 63658d

Bytes: 7H.3

Stack Arguments Stack Results

1: (none) 1 (if it’s time to take another

measurement, or...)

B (...if it’s not)

Notes: Mow? updates (increments) the value in Nxt ime and returns

a 1 or B to the Stack.

202 9: PROGRAMMABLE GRAPHICS APPLICATIONS

MkAxis

« PPAR OBJ+ & DROPN (Get PMIN, PMAX)
SWAP RE SWAP IM R»C RKES (Calculate axis intersection)

ERASE DRAX LABEL (Draw axis)
PICT { # Bd # 2d }
GROBE 1 6 BBBBBBBBEEBE REPL
PICT { # 6d # 6d }
{ # 136d # 7d + SUB (Cut out axis for printing)

»

Checksum: # 32336d

Bytes: 177

Stack Arguments Stack Results

1: (none) grob for the y-axis

Notes: MkAxis creates the grob for the y-axis of the stripchart.

Generating a Stripchart 203

Pr8

« PICT
{ #6d #6d > { # 136d % /d }
SUB PR1 DROP ERASE

»

Checksum: # 558¢76d

Bytes: 92

Stack Arguments Stack Results

1: (none) (none)

Notes: Pr8 sends the top 8 pixel rows of PICT to the printer and then

erases PICT.

204 9: PROGRAMMABLE GRAPHICS APPLICATIONS

An Analog Voltmeter

This is a versatile application that lends itselfto infinite modification.

Using the same DApar and RERDY as used for the stripcharts, the 48

display becomes an analog meter with a swinging needle. With an

analog display, your brain can immediately analyze data without

taking the time to translate from digital representation to a quanti-

tative “picture.” This is probably why digital car dashboards have

disappeared, and the reason for the return ofthe “old-fashioned” dial—

now called “analog” (UGH!)—wristwatch.

Description

The YM application can be used in lieu ofthe stripchart, when you want

instantaneous display ofa signal in analog form. VM will draw a volt-

meter face in the graphics display, label the display according to the

parameters it finds in the list named DApar, and then swing a needle

back and forth, using a routine called PUINT. The needle’s position will

reflect the values it receives from the “voltage-reading” routine, READY.

EAT ROCKE:.

-1 B
Simply press any key to halt Y. The program and display are simple

enough that you can add other features, such as Out of Range

indicators, auto-ranging, secondary digital readout, etc.

An Analog Voltmeter 205

UM takes no input from the Stack. Instead, it looks for a list called

DAPar (“Data Acquisition parameters”), of the form { minimum-value

maximum-value title time-interval }, where

minimum-value and maximum-value (real numbers) are the meter

limits.

title (a character string) is the metertitle.

time-interval (a real number) is the minimum interval between

timed measurements (not used in YM).

Ifthe program does not find anylist object named DAPar, then it uses

this defaultDApar: € B 1 "" B 2

Note that in a real setting, where the 48 would be connected to a

voltmeter or other signal-conditioning module, the routine READY

would query that instrument or module, and the commands within

READY would typically look like this:

« . "#1RD" wMIT DROP
REPERT
UNTIL BUFLEN DROP
END
SRECY DROP ...

Here, however, for the purposes ofthese demonstrations programs, the

input of a real meter is simulated with a random number generator.

Therefore READY becomes simply « RAND
%

206 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

VM uses the following subroutines, which should be stored in the same

directory asY

MAKEFACE: Draws the meter face, except for the needle, title and

scale labels.

READY: Program to collect the data from the serial device, IR

device, or whatever else.

POINT: Erases and redraws the needle, using TLINE.

CTR: Centers text around a point in a grob.

Variables

DRpar-: The data-acquisition parameter list

An Analog Voltmeter 207

Listings

VM

« RCLF + f (Save current status)
« -16 SF -19 SF DEG 64 STWS (Set flags as needed)

(B, .5) CENTR .2 DUP SCALE (Setgraphicsparameters)
IF DApar TYPE 5 # (Find or create UAPar)
'EI_'HEN {B81" 8 2} 'DAPar' STO

MAKEFACE PICT (Draw the meter face)
{ # 21d # 58d } DApar 1 GET CTR PICT
{ # 184d % 58d DApar £ GET CTR PICT
{ # 66d # 2d DApar 3 GET CTR
DApar 1 GET DUP POINT (Put the needle atfar left)
DO READY DUP ROT POINT POINT (Move the needle)
UNTIL KEY
END
ODROPZ £ STOF (Restore previous status)

Checksum: # 4616d

Bytes: 417.5

Stack Arguments Stack Results

1: (none) (none)

Notes: VM generatesa working analog meter in the 48 display. DRpar

may be modified before running the program.

208 9: PROGRAMMABLE GRAPHICS APPLICATIONS

»

MAKEFACE

PICT PURGE
6d # 6d } PVIEW
0d # Bd > { # 138d # 63d
s
65d # 57d I OUP
3d 8 368 ARC (Needle pivot)

45d 15 165 ARC (Scale)
165 15
FOR n 1 n *V2 .9 n +V2 LINE -36
STEP

{
{
{B:U (Meter bezel)

#

Checksum: # 55665d

Bytes: £94.5

Stack Arguments Stack Results

1: (none) (none)

Notes: MAKEFACE draws the meter face:

An Analog Voltmeter 209

POINT

€ >y

«]
'15+158=MINC1, MAX(B, (DAPar(2)-

V)~(DApar(2)-DApar(1)2))!
*NUM »V2 (8,80 TLINE

»

2

Checksum: # 6495d

Bytes: 176

Stack Arguments Stack Results

1t signal level (a real number) (none)

Notes: POINT erases and redraws the meter’s needle.

A properly formatted DApar should be in the same directory.

210 9: PROGRAMMABLE GRAPHICS APPLICATIONS

CTR
(see page 164)

RERDY
(see page 195)

Plots with Two Independent Variables 211

Plots with Two Independent Variables

The 48’s two-dimensional plotter allows you to plot multiple equations

simultaneously, but it allows for only one independent variable.

For example, with the equation 'Z=K+Y', you must store several

versions of the equation with different values for either ® or Y, then

create an EQ list containing all the versions of the equation.

The 48’s 3-D tools (particularly YSLICE and WIREFRAME) eliminate

some ofthisinconvenience, but they require thatyou use evenly-spaced

incremental values for the second independent variable (by specifying

YRNG and NUMY).

For example, if you’re interested in the shape of the function at

Y-values of 1,2, 18 and 36, you can’t do it with only YRNG and NUMY.

212 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Description

MULTIPLOT allows you to plot functions such as z = f(x,y) without all the

headache. Before executing MULTIPLOT, you do the following:

1. Create the equation just as you would for the PLOT application;

any equation or program that works with PLOT will also work

with MULTIPLOT. However, you must store it under a global

variable name other than EQ.

2. Press (]PLOTHAHIIA. Set up the ranges, independent variable

and dependent variable appropriately (see Chapter 5 for a

reminder on how to do this—or you can create an entirely new

PPAR on the Command Line and store it directly.)

3. Onto Stack Level 1 put a list of this form:

{ egname yname { vyLY, e Y, } } where

eqname is the name of the equation (or the equation itself);

yname is the name of the second independent variable;

Y, Yy -y,... are the values of that variable to be used in the plot.

Plots with Two Independent Variables 213

MULTIPLOT is remarkably small and simple, since it uses built-in 48

routines to do most ofthe work—and it works at about the same speed

as the Plotter application. Some examples follow the program listing.

You may wish to try your multivariable equation with the built-in

Plotterfirst, to find a good range for the second independent variable.

Also, note that you can store and recall the equation lists as desired,

effectively saving many different MULTIPLOT applications.

Variables

VALS: alist of values for the second independent variable

SIV. the second independent variable’s current value

214 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Listing

MULTIPLOT

« 1 GETI STEQ (Saveequation namein EQ)
GETI 'SIV' STO GET 'VALS' STO (Save SI¥and YALS)
ERASE { # Bd # 8d } PVIEW
ORAX LABEL (Draw andlabel axes)

1 VALS SIZE
FOR n (For each value ...

VALS n GET 'SIV' RCL STO ...storeitin 2ndind. var....
DRAW ...and plot the function)

NEXT
{ VALS SIV } PURGE (Clean up)
¢ FREEZE (Freezethedisplay)

®

Checksum: # 18534d
Bytes: 188

Stack Arguments Stack Results

1t { egname yname { Y, Y, o Y, 32 (none)

Notes: MULTIPLOT generatesa plot ofthe function f(x,y). The function

is plotted in PICT (which is displayed during the plot), and the

program stops with PICT displayed.

Be sure that the PPAR settings are correct.

Plots with Two Independent Variables 215

Example: A Simple Plane

Equation: PLANE: 'Z=K+Y'

Plot parameters: XRNG: 010 YRNG: 0 20

INDEP: X RES: O

AXES: (B, 8)

PTYPE: FUNCTION
DEPND: £

PPAR: { (B,8) (168,28) ¥ B (B,8) FUNCTION Z 32

Level-1 Stack argument: { PLANE ¥ { B 2 4 6 8 18 } }

Result: A series of lines representing contours on the plane:

Note that in this example and the next, the dependent variable in

PPAR does not appear in the algebraic. This simply allows LABEL to

label the y-axis correctly and does not affect the computation at all.

However, in this first example, the dependent variable in PPAR must

be the same as the dependent variable in the equation; an equals sign

makes a lot of difference.

216 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Example: A Fourier Series ofa Full-Wave Rectified Sine Wave

Equation: FOURIER: 'Z#R-/w-4*R-w*2(n=1, Nmax,
COS(n*w*t)~(4xn"2-1))'

(Checksum: # 13515d Bytes: 126.3)

Variables: A: 1

w: 1

Plot parameters: XRNG: 063 YRNG: 01

INDEP: t RES: 0

AXES: (Bs a)

PTYPE: FUNCTION

DEPND: f

(PPAR): { (B,8) (6.3,1) t B (B,8) FUNCTION £ 3

Level-1 Stack argument: { FOURIER Mmax { 1 18 1} 3

Result: A plot of the first several approximations to the Fourier

Series representation of a full-wave rectified sine wave:

 B

Compare this with a similar plot ofthe function ' ABS(SIN(w*t ~2))".

To see more than one lobe, increase x__from 6.3 to 13 or more.

Plots with Two Independent Variables 217

Example: A Field-Effect Transistor

Equation: IDIDB: 'IFTECYD£VG-Vp, (VD-2-32(Vbi-Vp)#
CCCVD+Hbi-VGE)~Vbi-Vp))1 5-
(CYbi-VR)~(Vbi-Vp))*1.9))~
(-Vp-2-3*(Vbi-Vp)*(1-(Vbir(Vbi-
Vp))*1.9)), (1-VG-Yp)n2d)!
(Checksum: # 667959d Bytes: ¢r8.9)

Variables: Vbi: 1

Vp: -2.5

Plot parameters: XRNG: 05 YRNG: 01

INDEP: VD RES: 0

AXES: (B, 8)

PTYPE: FUNCTION

DEPND: ID

(PPAR): { (B,8) (5,1 VD B (B,8) FUNCTION ID 2

Level-1 Stack arg: { IDIDB VG { B8 -.5 -1 -1.5 -2 } 3

Result: A plot of a theoretical ID-VD curve for a FET. The y-axis is

ID/ID,where ID,is ID at saturation, with zero gate voltage:

un

Compare this curve with those found in typical electronics textbooks.

218 9: PROGRAMMABLE GRAPHICS APPLICATIONS

An undocumented feature ofthe HP48 is its ability to use indexing to

extract items from lists or matrices: for example, ' HAA(Z) ' EVAL will

return the third item in a list named AAA; and 'ARAC1, 90 ' EVAL will

return the number from the row 1, column 9 of an array named AAA.

See if you can create an equation using an indexed list, and use this

equation with YSLICE to duplicate MULTIPLOT’s action with the built-

in routines. You may find that MULTIPLOT is faster.

Plots with Two Independent Variables 219

A Contour-Plotting Program

In Chapter 6, youwereintroduced to plotting data in three dimensions.

But not all three-dimensional data sets can be reduced to an equation

in three variables. Consider, for example, the need to measure current

uniformity in a plating tank, or temperature distribution on a heat

exchangerfin, or noise levels on a factory floor.

Although such data sets are empirically gathered—not analytically

generated—you can nevertheless analyze them with the contour-plot

approachbymappingthe physical grid ofmeasurements onto an array.

Description

CONTOUR makes a contour plot, taking data contained in an array and

displaying it as a three-dimensional surface, as seen from above. The

contour lines represent “isovalues”—places on the surface at the same

“altitude,” or value. An example follows the program listing.

CONTOUR takes all ofits arguments from the Stack, including the array

ofdata tobe plotted. However, this array willbe saved asARRAYso that

you can modify it after running CONTOUR, if you wish.*

*Note that the easiest way to enter array data into the 48 is through the MatrixWriter, (]MATRIX]

(for more on the MatrixWriter, read chapter 14 in the User’s Guide.)

220 9: PROGRAMMABLE GRAPHICS APPLICATIONS

CONTOUR divides the array into squares, with the points in the array

being the corners of the squares:

A, .
] i, j+1

i+1,j Ai+1,j+1

CONTOUR works on one square at a time, cycling through all possible

contour values. At each contour value, CONTOUR searches for inter-

sections ofthe desired contour line with the sides ofthe square, finding

either zero, two or four intersections per square.

IfCONTOUR finds zero intersections for a given contour value, it skips

to the next value.

Ifit finds two intersections, it determines whichtwo sides ofthe square

are affected. Simple linear interpolation is used to find the points of

intersection, and the contour line segment is drawn in the square.

Ifit finds fourintersections, CONTOUR has encountered a “saddle,”where

two diagonally opposite corners ofthe square are higher than the other

two corners. Saddles are frequently found in the real world—potato

chips, mountain passes, and (of course) a cowboy’s saddle.

A Contour-Plotting Program 221

Saddles are difficult for CONTOUR to draw. It tries to draw a pair of

roughly parallel contour lines, closest to the corners whose average

value comesclosest to the contour value. Ifthe value ofthe contour is

equal to the average of all four corners, then CONTOUR draws two

crossing lines in the square.

// \ \

/ \\ \
/ / N\ \ -1

/ N /// \
/ \

/ \ \
/ \ \

Contour value Contour value Contour value
closest to average closest to average equal to average
of upper-left and of lower-left and ofall four corners
lower-right corners upper-right corners

In each case, simple linear interpolation determines the points of

intersection. The more points you have, the more accurate CONTOUR is.

Variables

ARRAY: The name in which the given data array will be saved.

Suggestion: Before keying in CONTOUR,store this list into CST in your

TOOL# directory, and then press to use it as a typing aid:

{ ARRAY smallest largest lowlimit hilimit stepsize
range rows cols ii j ul ur 11 1lr small big top
bottom left risht contour 2

222 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Listing

COMTOUR

« PICT PURGE DUP 'ARRAY' STO
1 GETI DUP
+ smallest largest (Local varlablesformax and min. values)
« D0 GETI DUP (Find array’s max. and min. values)

smallest MIN 'smallest' 6
largest MAX 'largest' STU

UNTIL -64 FS*C
END
DROPZ largest smallest ODUPZ - (Find array’s range)

»
{ # 6d # 6d » PVIEW ARRAY SIZE EVAL
+ lowlimit hilimit stepsize (Save array

largest smallest ranse rows cols parameters)
« 1 rows R=C PMIN

cols 1 R2C PMAX (Set drawing boundaries)
l rowus 1 -
FOR ii (For each row...

l cols 1 -
FOR Jj andeach column...

ARRAY ii j 2 =+LIST GET wwork thefour cor-
ARRAY ii j 1 + 2 =LIST GET nersofthe square)
ARRAY ii 1 + j & *LIST GET
ARRAY ii 1 + j 1 + 2 =LIST GET
4 DUPN 4 DUPN MIN MIN MIN
9 ROLLD MAK MAX MAX
B BB H
+ ul ur 11 1lr small bis

top bottom left right
« lowlimit hilimit

FOR contour (For each contour value...
IF 'contour 2 small ...if necessary...

AND contour £ big'
THEN ...find the number o{edge intersections)

'contour > MINCul,ur) AND
contour < MAKCul,ur)’

A Contour-Plotting Program 223

224

>NUM 'top' STO
'contour > MINC11,1r) AND

contour < MAKC11, 1r)!
*NUM ‘'bottom' STO
'contour = MINCul,11) AND

contour £ MAKCul,11)'
*NUM 'left' STO
'contour > MINCur, 1r) AND

contour £ MAXCur, 1r)'
*NUM 'risht' STO
'top+bottom+left+right' =+NUM
CASE (How many intersections?)

ODUP B == (none...
THEN DROP ...skip computations)
END

DUP 2 == (2 intersections)
THEN DROP

IF top
THEN

' i+(contour-ul)~Cur-ul)’
*NUM ii R=C
IF bottom
THEN (Top-to-bottom)

'i+(contour-11)-(1r-11)"
*NUM ii 1 + R»C LINE

ELSE (Okay, nottop-to-bottom)
IF left (Top-to-left?)
THEN

'ii+(contour-ul)~
11-ul)’

*NUM j SWAP R»C LINE
ELSE (Aha—top-to-right)

'ii+(contour-ur)-
(lr-ur)!’

*NUM § 1 + SWAP
R+C LINE

END
END (IF...bottom.. ELSE)

ELSE (ot top, so try bottom edge)
IF bottom
THEN

9: PROGRAMMABLE GRAPHICS APPLICATIONS

A Contour-Plotting Program

'j+(contour-11)~
(1r-11)"'

*NUM ii 1 + R»C
IF left
THEN (Bottom-to-left)

'ii+(contour-ul)~
(11-ul)’

+NUM j SWAP
R+C LINE

ELSE (Bottom-to-right)
'ii+(contour-ur)-

(lr-ur)’
>NUM j 1 + SWAP
R+C LINE

END
ELSE (Not bottom, either,so...

'ii+(contour-ul)~
(11-ul)' .. .left-to-right)

*NUM J SWAP R-=C
'ii+(contour-ur)-

(lr—ur)’
*NUM j 1 + SWAP
R+C LINE

END (IF...bottom...ELSE)
(IF...top...ELSE)

(Case of2 intersections)
(Case of4 intersections—a saddle—
so calculate those 4 intersections)

THEN 'j+(contour-ul)-(ur-ul)'
*NUM ii R-»C
'j+(contour-11)-C1lr-11)"
>NUM ii 1 + R=C
"ii+(contour-ul)-(11-ul)’
*NUM j SWAP R-»C
"ii+(contour-ur)-(lr-ur)’
*NUM j 1 + SWAP R=C
'"ABS(cont our-Cul+1r)-2)!

'"ABSC(contour-C11+ur)-2)'
»NUM DUPZ

225

IF < (Diagonal toupperright)
THEN DROPZ ROT (Closer toul, 1r)

ELSE
IF > (Diagonal to upper left)
THEN ROT ROT (Closer to 11, ur)
EMD (So crossover is at midpoint)

END (IF...<..ELSE)
LINE LINE

END (Case of4 intersections)
END (CASE)

END (contour range IF test)
stepsize

STEP (Next contour value)
»

NEXT (For Jj loop)
(For i1 loop)

smallest "Min value" =»TAHG
largest "Max wvalue" =THG
lowlimit "Min contour" =TAG
hilimit "Max contour" =THG
stepsize "Contour step" +TAG

Checksum: # 21186d

Bytes: 2428.5

226

w
e

R
d

Stack Arguments

low limit (real)

high limit (real)

step size (real)

nxm (real) data array

Stack Results

minimum data value (tagged)

maximum data value (tagged)

lower contour limit (tagged)

upper contour limit (tagged)

contour step size (tagged)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: Clearly, you could shorten the program with shorter variable

names; these were used for clarity. Also, you might explore

alternate ways to arrive at the same solution. As yousawwith

SCAN/PSCAN, there’s always more than one way to do things. *

Example

With the Stack setup as follows, useCONTOUR to getthe resultshown:

4: @
3 5
s 1
1t the following array (use the MatrixWriter):

[[8.8 1.3 2.2 6.5 1.3 2.4 1.3 B.5]
[8.9 1.5 2.5 6.5 8.9 B.5 8.5 1.5]
[1.8 3.8 3.2 1.8 8.5 1.1 2.1 3.8]
[1.9 3.2 4.3 1.6 8.8 2.8 2.7 3.3]
[1.8 2.1 2.9 1.9 8.5 1.7 2.6 3.7]
[1.5 1.4 1.1 B.1 1.5 2.4 2.9 4.8 1]
[1.4 8.9 8.5 1.3 2.1 3.2 3.6 4.2]
[1.1 8.9 8.5 1.2 2.8 3.9 4.3 4.8 1]

s

b))

*Speaking ofother ways to do things: Can you write a program using EQ and VPARto create ARRAY

from any three-dimensional function (thereby adding CONTOUR to your suite of 3-D tools)? How

about the other way? Can you write a program using indexed values (e.g. ARRAY(X, Y¥)) to extract

values from ARRAY for use in YSLICE, PCONTOUR, SLOPEFIELD or WIREFRAME plots?

A Contour-Plotting Program 227

Drive a BulldozerAround the Display

This is a fun demonstration ofusing small grobs as “sprites”—objects

that you can move around the display at will.

Description

The mainprogram, called BULLDOZER, uses alist called DOZDATA, which,

in turn, consists oftwo sublists. The first sublist is a list offour grobs,

showing the bulldozer facing north, east, south and west. The second

sublist is a list offour complex numbers representing those directions.

Thus ifyou tire ofthe bulldozer image, you can always create another

8x8 grob, then make 3 rotated copies, assemble a new D0ZDATA, and

run the program with your own custom “sprite.”

To start the program,just execute BULLDOZER. A bulldozer will appear

at the bottom ofthe display and start plowing a swath towards the top.

Use the arrow keys to control its direction (it will stop when it hits the

wall at the edge of the display). Note that these arrow keys are not

“north, south, east and west.” Rather, they are “forward, reverse, left-

turn and right-turn.”

228 9: PROGRAMMABLE GRAPHICS APPLICATIONS

A speed factor is built into BULLDOZER; you change the bulldozer’s

speed by increasing or decreasing this number. The speed is stored as

a local variable in the program, in case you want to add a “gas pedal”

key to the program.

Press to halt the program (if you use (CANCEL), it may leave a

spurious KEY output on the Stack).

Variable

DOZDATA: The grob data for BULLDOZER:

{ { GROB 8 8 FFC37EDASASASAFF (Dozer north)
GROB 8 8 FBIAFFIDICFFIAFB (Dozer east)
GROB 8 8 FFSASASASBAEC3FF (Dozer south)
GROB 8 8 DFSBFF38BBFFS80F J (Dozer west)
{1) (1,8 (B,-1) (-1,8) 1+ }

(North, East, South and West

in complex numbers)

(Checksum: # 33345d Bytes: 172.9)

Drive a BulldozerAround the Display 229

Listing

BULLDOZER

« PICT PURGE € # Bd # Bd » PVIEW
B 131 XKRNG 8 63 YRNG (8,8) (131,63) BOK (Define area)
D0ZDATA 1 GET 1 GET (61,8> 1 18 (B,1) RCLF
+ cat locn gear speed direction flags
« 98 CF PICT locn cat REPL

D0 'gear*direction+locn' EVAL C-»R
8 MAX 62 MIN SWAP 1 MAXK 123 MIN SWAP
R+C 'locn' STO PICT locn cat REPL
.3 speed 7 MWRIT

UNTIL
IF KEY
THEN =+ k

« CASE
'k==25" (Forward)

THEN 1 'gear' STO
END

'k==35" (Reverse)

THEN -1 'gear' STO
END

'k==34' | (Left turn)
THEN DOZDATA 0BJ+ OROP

DUP direction POS 1 -
IF DUP == (You can’t turn

EHEN DROP ¢ past 0°)

SWAP OVER GET
'direction' STO GET 'cat' STO

END
'k==36" (Right turn)

THEN DOZDATA 0BJ+ DOROP
OUP direction POS 1 +
IF DUP 5 == (You can’t turn

EH[E]N OROP 1 past 360°)

230 9: PROGRAMMABLE GRAPHICS APPLICATIONS

SWAP OVER GET
'direction' STO GET 'cat' STO

END
'k==01"

THEN 58 SF (Quit)
END

END (CASE)
»

END (IF...KEY)
o8 FS?

END @o...UNTIL)
flags STOF (Clean up)

»

Checksum: # 6914d

Bytes: 933

Stack Arguments Stack Results

1: (none) (none)

Notes: The bulldozer leaves some “litter” when it turns. And differ-

ent grobs will leave different garbage (the culprits here are the

little cutouts behind the dozer’s blade). This is because the

program turns, increments the position and then writes to the

display. A commercial game machine would fix this by using

a separate sprite for the tracks and/or a “mask” sprite under

the bulldozer. But both approaches are slow here and make

the dozer flicker. So for this demo, just ignore the litter.*

*But in case you’re interested in exploring other solutions here’s an observation: A sprite with an

all-black border always leaves tracks; if it has an all-white border, it never leaves tracks.

Drive a BulldozerAround the Display 231

A Friendly Game of Checkers

Here is a checkers game to be played by two 48’s—via the Infrared

interface or wired serial ports.

This is the book’s largest application. If you’ve been working through

Chapter 9 nonstop to this point, STor! Go get some cookies and milk.

Give your brain a rest. Then come back.

Description

You start the game by executing CHKRS.

Thetitle screen should appear, with two menu keys to chooseIlor

(okay, so it’s white and blue—give HP a few more years....)

CHECKERS
FRED:
BLACK:

Hre you red aor black?
1] ELE[O]

232 9: PROGRAMMABLE GRAPHICS APPLICATIONS

After someone has chosen a color, the other player’s color is set, and the

48’s set up their playing boards accordingly.

Red moves first, and the two players take turns...

CHECKERS
MRED:
BLACEK: :

YOUR MOVE

...until one playeris out of pieces.

CHECKERS
FRED:
BLACK:

WAIT.....

KRD
HOME CH.B CHER: ¥

I
g
3
¢
] "BLACK WIMS"
CHEF[SETUP[REDRAIMTHO]THHO[SELEC

A Friendly Game ofCheckers 233

In CHKRS, the numeric keypad becomes a “selector control pad.” As

with SCAN, the (5) key is the neutral center of the pad, and the other

non-zero keys act as arrow keys:

K T 7
(9

€ (4 (8) (e)*

1) @ &)
v 1 N

When it’s your move, the 48 will highlight a suggested piece to move.

Its selections are not very smart, so use the numeric keys to move the

highlight to the piece you want to move, and press (ENTER. Then press

one ofthe diagonal-move keys (1), (3), (5) or (7)) to indicate the direction

you wish to move.

If you choose an invalid move, the piece you selected remains high-

lighted and you must re-select the move. Ifit’s a valid move or jump,

the 48 will update the board display, and send the move information

to your opponent’s machine. It will also crown your piece ifthat move

sends it to the 8th row.

When your move is over, the 48 passes control to your opponent’s

machine. At the end ofeach player’s turn, the 48 checks to see ifboth

of you are still in the game, and then goes through the selection and

movement procedure again. This cycle continues until one or the other

of the players has no more pieces on the board, at which time both

machines declare the winner.

234 9: PROGRAMMABLE GRAPHICS APPLICATIONS

The checkerboard layout is contained in an 8x8 array, appropriately

called LAYOUT, which is updated during the game to reflect each move.

The graphic checkerboard is stored in a grob called BORRD. Ifyou ac-

cidentally erase BUARD, don’t worry. The STARTUP routine checks for

the existence of BUARD, and if it doesn’t find it, calls a routine called

MAKEBOARD to generate a new one. The pieces themselves are stored

as 8x8 grobs called RPIECE, BPIECE, RKING and BKING.

This is indeed a “friendly” game of checkers. A complete and ruthless

game would probably require an entire chapter in this book, so this

version has the following limitations:

e It won’t do multiple jumps (but notice that flag 58 has been left

in reserve—for indicating “multiple jump allowed”—so if you’re

ambitious, go for it).

¢ The forced-jumping rule is not in effect: Ifyou’re in a position to

jump, then you are not forced to “jump or lose the piece.”

e There’s no “boss key” to quickly save the current game status as

your boss walks up. To abort the game, you must press

and risk leaving junk on the Stack.

A Friendly Game ofCheckers 235

Subroutines

CHKRS is organized in a modular fashion. This keeps each routine

short, easy to understand, and tightly focused.

STARTUP: A routine called initially by CHKRS to check for the ex-

istence ofa checkerboard grob called BOARD. Ifit doesn’t

find BOARD, then STARTUP calls MKBOARD to create one.

STARTUP also prompts the user to choose sides, and

waits for input from either the keyboard or the I/O port.

REDRAK: A routine that maps the contents ofLAYOUT onto PICT.

MYMOVE: The busiest module in the application, MYMOVE calls

SELECT to suggest a piece to play. It accepts key input

on the direction to move the piece ofyour choice, sending

this information to a routine called YALID.

VALID: The routine that determines whether your proposed

move is legal: Youmaymove only to diagonally adjacent,

unoccupied squares, unless you are jumping. You may

jump only an opponent in a diagonally adjacent square,

and only if the square beyond your opponent’s piece is

empty. Also, only kings may move orjump backwards.

THMOVE: A routine that waits for an "M", "J", "K" or "D" string

from the other machine, then translates the move in-

formation and callsMOVEIT to update LAYOUT and PICT.

When a "0"is received, THMOVE sets flag 59 and exits.

236 9: PROGRAMMABLE GRAPHICS APPLICATIONS

SELECT: This routine simply searches LAYOUT for the first occur-

rence of your playing pieces as its suggestion for your

next move. Fortunately, it doesn’t commit to any square

until you press with the square highlighted (The

highlight can be on any square—even an empty one or

one occupied by an opponent—so ifthe chosen square is

not occupied by one of your pieces, the highlight re-

mains). SELECT will not move past the board edges.

MOVEIT: Thisroutinetakesthe parametersofthe validated move

and the piece to be moved and performs the manipula-

tions on LAYOUT and PICT.

MKBOARD: The routine that generates the checkerboard inside a

57x57 grob—called by STARTUP when necessary.

WHOZAT: A small routine that determines which player (if any) is

occupying a given square.

CsL: Autility (quite generally useful) that converts a complex

number (x, y) into a list of the form € # row # col 1.

GL!: A text formatting routine (see page 158).

GLABEL: A text formatting routine (see page 157).

A Friendly Game ofCheckers 237

Variables

238

LAYQOUT:

BOARD:

An 8x8 array listing the entire layout of the checker-

board, created by STHRTUP. Row 1 of the array is the

bottom row of the checkerboard. Element values:

B=empty 1 =redpiece € =black piece

3 =red king 4 =black king

Elements on red squares are always zero. Red squares

are identified by adding the row and column indices.

The sum is always even for red, odd for black.

Initial values (red player’s values are shown; exchange

1’s and 2’s for black players initial values):

[LB168168181]

r
T
M
r
e
s
r
M
l
a
r
r
a
T
r
a
r
e
L
r
m

N
N
—
®

O
N
O
O
E
—

N
N
—

O
M
N
O
O
E
—
O

N
N
—

O
M
N
O
O
E
—

N
N
—

O
M
N
O
O
E
—

:
u
l
—
l
l
_
l
l
_
l
u
l
_
l

Checksum: LAYOUT is dynamic; checksums change.

Bytes: 337.5

57x57 grob ofblank checkerboard, created by MKBORRD.

Checksum: #31247d Bytes: 473.5

9: PROGRAMMABLE GRAPHICS APPLICATIONS

RPIECE: Grob of a red piece: GROB 8 ¢ BB81C3E7YE/C381

P

BPIECE: Grob of a black piece: GROB 8 ¢ BB8814224244281

i
RKING: Grob of a red king: GROB 8 ¢ BBBBASE/E/CIC3

BKING: Grob of a black king: GROB & ¢ BBBBA3662442C3

',

A Friendly Game ofCheckers 239

Listings

CHKRS

« RCLF 'Flags' STO (Save defaults)
-48 CF (Turn offclock display)
STARTUP REDRAW (Initialize game, choose sides...
IF 57 FS7 ...draw board—red goesfirst)
THEN 59 SF (Flag 57 set means: “I'm red”)
Eth 99 CF (Flag 59 set means: “My turn”)

DO

240

PICT { # 76d # 48d 2
#54 #8 BLANK REPL
IF 99 FS7 (My turn?)

THEN { # 76d # 46d > "YOUR MOVE"
¢ GLABEL MYMOVE

ELSE { # 78d # 46d > "WAIT..... "
¢ GLABEL THMOVE

END
UNTIL

IF LAYOUT »STR DUP "1" POS (Game ends when...
SWAP "3" POS OR NOT DUP reds are gone...

EHEN "BLACK WINS" SWAP

IF LAYOUT »STR DUP "2" POS ...or blacks are gone)
SWAP "4" POS OR NOT DUP

THEN "RED WINS" SWAP
END
OR

END
Flags STOF (Restore previous states)
'Flags' PURGE (Clean up)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 198¢/5d

Bytes: 538.5

Stack Arguments Stack Results

1: (none) "RED WINS"

or

"BLACK WINS"

Notes: CHKRS is the main program. Be sure both players have the

same I/O setup. This means checkingthe status ofIOPAR, and

clearing system flags —33, -34 and -38.

The layout data is stored in the 8x8 array, LAYOUT. Pieces on

squares are identified by number:

B=empty 1=redpiece & =black piece

3 =redking 4 =black king

Row 1 in LAYOUT is the first row of the array; Row 1 of the

checkerboard is the bottom row ofthe board—the row nearest

you. This makes for faster computing. Notice also that the

sum ofthe row and column numbers ofa red square is an even

number, while the sum ofrow and column numbers ofa black

square is an odd number. This fact speeds up execution time.

Since the game is played only on the black squares, an 8x4

array could also be used. But this would require monitoring

of zigzag movements, and the additional code would far

outweigh any memory savings from using the smaller array.

All the red squares in the array contain 8’s. You could use the

red squares for storing game status, etc., ifyou incorporate a

A Friendly Game ofCheckers 241

242

“boss key” into your game, but be aware that some sections of

the application check all squares for zeros—you can’t use the

red squares for temporary storage during a game.

These user flags are used:

57 SET: You are red. CLEAR: You are black.

58 (reserved for use in multiple jumping)

59 SET: Your move. CLEAR: Their move.

After initialization, CHKRS checks flag 57. Since red always

goes first, for the first move CHKRS sets user flag 59 to match

flag 57. It then enters a D0...UNTIL loop, which can be exited

only when one player runs out of pieces (or via (CANCEL).

Throughout the game, depending on the status of flag 59,

CHKRS calls either MYMOVE or THMOVE (“THeir MOVE?).

When it’s your opponent’s move, the 48 monitors the input

buffer for any activity. As soon as some information entersthe

buffer, the 48 analyzes it and updatesLAYOUT and the display.

To communicate between the two machines, the 48 relies on

the commands XMIT, BUFLEN and SRECV.

XMIT takes a string from Level 1 and transmits it over the

current I/O port. Ifthe transmission is successful, then a1 is

returned to the Stack; otherwise the unsent fragment of the

string is put into Level 2, and a 8 into Level 1. Use ERRM to

see the cause of the error.

BUFLEN returns the number ofcharacters in the I/O buffer to

Level 2 and puts a 1 to Level 1 if no framing errors or UART

overruns occur. If an error does occur, then BUFLEN returns

the number of characters received before the error to Level 2,

and a B to Level 1.

9: PROGRAMMABLE GRAPHICS APPLICATIONS

SRECV takes the number specified in Level 1, returns that

number of characters from the I/O buffer to Level 2, and

returns a 1 to Level 1 if the data were retrieved successfully.

If an error occurs during SRECV, then Level 2 contains the

data received before the error, and Level 1 contains a zero.

Execute ERRM to see the cause of the error.

CHKRS does not use the error-trapping capability of these

commands, so in order to keep transmission errors to a

minimum, CHKRS uses a small number of short messages to

communicate between machines. Each message is transmit-

ted as a list inside a string—the most efficient way ofpassing

a variable number of parameters. Valid messages are:

"{ C(xpyd Cxpy,d "M" 3" Movethepieceat(xy y,)

to (xz, yz).

"{ (xpyd Cxpy) "Jd" 3" Jumpthepieceat(xyy,)

to (x5 y,J, capturing the

opposing piece en route.

"I C(y) "K" 3" Crownthepieceat(x yJ,

replacing it with a king

of that color.

" "p" " Done. It’s the opponent’s

turn.

The only exception to this “list in a string” rule is the "R" or

"B" that is transmitted at the start ofthe game, when players

are choosing sides.

A Friendly Game ofCheckers 243

STRRTUP

« JF BOARD TYPE 11 # (Does BUARDalready exist?)
EHEH MKBOARD (If not, then make it)

BOARD PICT STO (Draw board)
(1,-1) PMIN (19.5714285714,8) PMAX (Set user limits)
{ # 6d # Bd X PVIEW (Display board)
{ # 76d # 5d } "CHECKERS" 3 GL! (Title labels)
" RED:=" 2 GL{
" BLACK:=" 2 GLABEL
PICT RCL (Set up prompt to choose color)
PICT { # Bd # 43d } # 57d # 14d BLANK REPL
{ # 0d # 45d } "Are you red or black?™ 3 GLABEL
PICT { # 6d # 57d }
GROB €1 7 FFFDF19190815055819155615055681519081FFFOF1

(“RED” menu key)
REPL PICT { # 118d # S¢d 2}
GROB 21 7 FFFOF19D5D815055719095715055¢71915081FFFOF 1

(“BLACK” menu key)
REPL
BEENIO (Necessary to receive inputfrom the other 48)

UNTIL
IF KEY
THEN DUP

CASE
11 SAME (User chooses red....

EHEN DROP "R" "B" ®MIT ... tell opponent)

16 SAME (Userchooses black....
THEN "B" "R" XMIT ...tell opponent)
END

B
END

ELSE B
END

244 9: PROGRAMMABLE GRAPHICS APPLICATIONS

IF BUFLEN DROP DUP (Opponent chose first)
EHEN SRECY ROT (Whatusergets)

OR (00 UNTIL loop ends when one ofthe 3 options is satisfied...
END ...user chooses red or black, or opponent chooses)
CLOSEIO (To save battery life)
SWAP PICT { # 6d # 8d } ROT REPL (Remove prompt)
IF "R" SAME
THEN 57 SF (“I'm red”)
[[B1 81616811 (Red’s startup LAYOUT)
[18168168181
[B1l1B816B8181]1]
[6 BBBBBBOBA]
[6 BBBBBBBA]
[2B82B2B82808]
[BZ2BZ2B208 2]
[2B82B82828 1]
{ # 76d # 17d 2

ELSE 57 CF (“I'm black”)
[[BZ2B 2082821 (Black’s startup LAYOUT)
[2B82B82B82808]
[BZ2B2B208 2]
[6 BBBBBBOA]
[BBBB0606]
[1818168186]
(616816816811
[181681818 1]
{ # 76d # 27d 2

END
PICT SWAP 134 CHR
¢ *GROB REPL (Put a “selection arrow” beside user’s color)
'LAYOUT"' STO

Checksum: # 42184d

Bytes: 1927.5

A Friendly Game ofCheckers 245

Stack Arguments Stack Results

(none) a real number

Notes: STARTUP draws the checkerboard in PICT, prompts the user to

246

choose a color, communicates this choice to the opponent’s 48,

and sets up pieces on the board to start the game.

If the user chooses a color from the keyboard, then a single-

character string identifying the opposite color ("R" or "B") is

transmitted to the opponent’s 48. Ifthe user doesn’t choose a

color before a "R" or "B" is received from the other machine,

then the 48 acts on that string.

If the user is red, the 48 sets user flag 57 (the “I'm red” flag),

initializes LAYOUT with red pieces in the first three rows, and

calls REDRAW to put the pieces from LAYOUT in the right places

on the board. Similarly, ifthe user is black, the 48 clears user

flag 57, initializes LAYOUT with black pieces in the first three

rows, and calls REDRANW.

9: PROGRAMMABLE GRAPHICS APPLICATIONS

REDRAW

« FiII:BT { # 6d # Bd » BOARD REPL (Redraw a blank board)

FOR y
1 8
FOR x

IF wy + 2 MOD (Only check black squares)
THEN PICT % y R=C (Calculate square location)

l;:I'_:_Ig"IE"UUT' OVER C=L GET (Check array contents)

OUP 1 SAME (1is aredpiece)
EHEN DROP RPIECE GKOR

DUP 2 SAME (2 is a black piece)
EHEN DROP BPIECE GKOR

DUP 3 SAME (3 is a red king)
'IE'HEH DROP RKING GKOR

4 SAME (4 is a black king)
THEN BKING GXOR
END

DROPZ
END (CASE)

END (IF)
MNERT (FURx loop)

NEXT (FOR y loop)
»

Checksum: # 25345d Bytes: £96.5

Stack Arguments: (none) Stack Results: (none)

Notes: REDRAW redraws the pieces on the checkerboard, according to

the contents ofLAYOUT. It assumes that BOARD already exists

and redraws part of PICT.

A Friendly Game ofCheckers 247

MYMOVE

« WHILE 59 FS7? (Loop to find and complete valid move)
REP[:EFTSTE SELECT B WAIT VALID (Select, validate movement)

DUP "®¥" SHME (Invalid move—itry again)
THEN DROP
END

OUP "D" SAME (End ofmove)
EHEN DROP 59 CF

DUP "M" SAME OVER "J" SHME OR (Move orjump)
THEN 3 DUPN 3 =LIST =»5TR

~MIT DROP (Tell the other machine...
MOVEIT 39 CF ...update LAYOUT display, end move)
IF DUP IM == (Ifa piece reaches row 8...
OVER WHOZART 2 < AND ...anditisnta king...)
THEN "K" DUPZ2 2 =+LIST »STR ... “Ring me”)

sMIT DROP (Telltheothermachine...
MOVEIT 39 CF ...update LAYOUT and display)

ELSE DROP
END (IF)

END
END (CASE)

END (WHILE ... REPERATloop)
IF 59 FC? (End of turn?)
EHEN { "D" 3 »STR XMIT DROP (Pass token to other 48)

Checksum: # 8688d

Bytes: 343

Stack Arguments Stack Results

l: (none) (none)

248 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: MYMOVE prompts user to select the piece to move, validates the

move, communicates it to the opponent’s 48 (sends "M", "J",

"K" or"D"), updates LAYOUT and the display, and passes the

turn to the opponent (clears flag 59). Notice that if MYMOVE

gets an "K" from VYALID, it repeats SELECT and YALID until

you make a valid move.

A Friendly Game ofCheckers 249

THMOVE

« OPENIO (Necessary to receive data)
D0

IF BUFLEN DROP OUP (Check buffer for input)
THEN SRECY DROP 0BJ+ EVAL (Read buffer, evaluate list)

+ move (Store only Level 1 as local variable)
« CHSE

move "D" SAME (Other 48 passes token to me...
EHEN 99 SF ...therefore, it’s my turn)

move "K" SAME (“King me”)
THEN (9,9) SWAP - (Rotate coordinates)
EFT[?UE MOVEIT (Update LAYOUTand display)

move "M" SAME
move "J" SAME OR (move orjump)

THEN (S,9) ROT -
(9,9) ROT - (Rotate coordinates)

EHEIDUE MOVEIT DROP(Update LAYOUT, display)

END (CASE)
>

ELSE DOROP (No input in buffer yet)
END (IF BUFLEN...)

UNTIL 59 FS? (that is, UNTIL my turn)
END @0 ... UNTIL)
CLOSEIO (To conserve batterypower)

»

Checksum: # 35468d

Bytes: 322.5

Stack Arguments Stack Results

1: (none) (none)

250 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: THMOVE receives the data string from the opponent’s 48,

translates it and updates LAYOUT and the display accordingly

(and sets flag 59). It does not validate the opponent’s moves.

A Friendly Game ofCheckers 251

SELECT

« [F 57 FS7 (If’'m red...
THEN 1 3 ...then search for red pieces...
EhSE Z 4 ...otherwise, search for blackpieces)

+ pl P2 (The search for the pieces)
« 'LAYOUT' 1 (Initialize the search)

DO GETI (Search...
UNTIL DUP pl == SWAP

p¢ == OR ...until a piece is found)
END
1 - (Index is 1 count too high)

»

SWAP DROP DUP 8 ~ CEIL SWAP 8 MOD (Convert counter...

IF DUP 6 ==
THEN DROP 8
END
SWAP R-=C ... into a square location—a complex #)
HEIT |I'|ELITE B WAIT (Highlight the square and wait for...

+ loc key ...key input)
« loc HILITE

CASE
'key==83.1" own 2 squares)

EHEN C:R 2 - OVER 2 NUD + MAX R=C B

'key==63.1" (Key (8)—up 2 squares)
EHEN C:R 2 + OVER 2 MOD ? + MIN R=C B

'key==rZ.1' @—left 2 squares)
THEN C-R SWAP 2 - U'-.-'ER2
1 + MAX SWAP R+C @
END

'key==r4.1" (Key @—rzght2squares)
THEN C-R SWAP 2 + OVER20D
¢ + MIN SWAP R+C B
END

252 9: PROGRAMMABLE GRAPHICS APPLICATIONS

éhgu?fifl 1)EEID RE(loc)<8
ocJ)<8' (Key (9}—up and right)

THEN (1, 1) + 8 ¢
END

éhgs?fififi 1)<H:|'é|D RE(loc)>1
oC ! (Ke up and left)

THEN (-1,1) + @ Yup i
END

éhEH'—iEB(Ei 1)gli-lfl RE(loc)>1
oc)>l! (Key (1}—down and left)

THEN (1,1) - B
END

'key==84.1 AND RE(loc)<8
AND IM(locy>1! (Key (3}—down and right)

THEN (1,-1) + B
END

'key==51.1" ¢ key—select highlighted square)
THEN DUP CsL 'LARYOUT' SWAP GET

DUP DUP 1 == SWAP 3 == OR (If the piece
of FC? KOR AMD on the square is my color...

END ...return its location to Stack)

H (Otherwise,...
END

%

END (Repeat the search)
»

Checksum: # 433668d

Bytes: 984

Stack Arguments Stack Results

1: (none) location of selected piece (complex)

A Friendly Game ofCheckers 253

Notes: SELECT searches LAYOUT for the first occurrence ofthe user’s

254

piece and suggests it as the piece to move. By redefining the

numeric keypad as a direction control pad, it also allows the

user to move the selector around the board to choose a piece

to move. Then, with the highlight on a valid piece,

selects the piece. SELECT usesHILITE todrawaninverted box

around the indicated square.

Note that to make them applicable to either color, many

routines use the XOR command, as in this sequence from

SELECT: « .. DUP 1 ==75SWAP 3 == OR
27 FC? ®OR AND ...

»

This says: “Ifthe square has a red piece and I'm red, OR ifthe

square has a black piece and I'm black ... ”, thus eliminating

the need for: « ...

IF 37 F57
THEN DUP 1 == SWAP 3 == OR
EhSE DUP 2 == SWAP ¢4 == OR

»

9: PROGRAMMABLE GRAPHICS APPLICATIONS

HILITE

« PICT OVER
GROB 8 8 FF1B1B18181818FF
GrOR

»

Checksum: # 4262d

Bytes: 46

Stack Arguments Stack Results

1: square location (complex) same square location (complex)

Notes: HILITE highlights the indicated square by drawing an in-

verse box around it. It also “un-highlights” the square.

A Friendly Game ofCheckers 255

VALID

« OVER DUP
+ oldloc key newloc jumploc
« CASE

'key==62.1" (Key (7}—up and left)
THEN (-1,1)
END

'key==64.1" (Key (9)—up and right)
THEN (1, 1)
END

'key==8Z.1"' oldloc WHOZAT
¢ > AND (Key(1}—down andleft—kings only)

THEN (-1,-1)
END

'key==84.1"' oldloc WHOZAT
¢ > AND (Key (3}—down and right—kings only)

THEN (1,-1)
END

"y (Invalid key)
END (CASE)
IF DUP TYPE 1 == (Complex type means a valid key)
THEN

+ inc (Save increment)
¢ pldloc inc + DUP C=R (Calculate new location)

IF DUP B8 > SWAP 9 < AMD SWAP (Ifin bounds ...
DUP B > SWAP 9 < AND AND

THEN 'newloc' STO
IF newloc WHOZAT MOT ... and if nobody’s there...
THEN oldloc newloc "M" ... then do the move)
ELSE newloc DUP (Somebody’s there)

'jumploc' STO
inc + OUP C-R
IF DUP B8 > SWAP 9 < AND

SWAPDUP B > SWAP 9 <
AND AND (If it’s ajump ...and in bounds...

THEN 'newloc' STO
IF newloc WHOZAT NOT...far side is vacant

256 9: PROGRAMMABLE GRAPHICS APPLICATIONS

Jumploc WHOZAT 2 MOD...and ctr. piece
o¢ FST WOR AND ...i1stheotherguy...

THEN oldloc newloc "J" ...thenjump)
ELSE "&" (Otherwise, not a validjump)

END (IFfar side is vacant)
ELSE DROP "R" (Jump is out of bounds)
END (IFjump is in bounds)

END (IFnobody’s there)
ELSE DROP "¥" (Move is out of bounds)
END (IFmoveisin bounds)

%

END (IFvalid key)
»

Checksum: # 16646d

Bytes: 81

Stack Arguments Stack Results

3t starting location (complex)

€% starting location (complex) ending location (complex)

1t keycodefor move direction "J" or "M" or "R"

Notes: YALID validates the proposed move passed to it from MYMOVE.

The contents of the string output at Stack Level 1 depend on

whether the move is a valid Jump, a valid simple Move, or an

invalid proposed move ("®"). In the case of an invalid move

proposal, no location values are returned in Levels 2 and 3.

VALID doesn’t check for “king me” opportunities; MYMOVE does.

VALID uses WHOZAT to determine the target square’s current

occupant.

A Friendly Game ofCheckers 257

MOVELT

« f
+ move plece
« IF move "M" SAME

THET'.IDUE "J" SAME OR (Move or Jump)

+ oldloc newloc (Store start and end locations)
« 'LAYOUT' oldloc C-L (Get piece from LAYOUT)

DUPZ GET 'piece' STO
B PUT (Blank out old LAYOUT location)
'LAYOUT' rewloc CsL
piece PUT (Put piece in new LAYOUT location)
CASE (Select the appropriate grob)

'piece==]"
THEN RPIECE
END

piece==2'
THEN BPIECE
END

'piece==3'
THEN RKING
END

'piece==4'
THEN BKING
END

END (CASE)
'piece' STO (Store the grob in place of the #)
PICT oldloc piece GROR (Blank out old location)
PICT newloc piece GROR (Putpiece in new location)
IF move "J" SAME (Extra work needed forjumps..
THEN oldloc newloc + 2 7 ...findjumpedsquare

'LAYOUT' OVER CsL B PUT ...blank its LAYOUT
PICT SWAP # 8d # 8d location and its

ENDBLHNK MEG REPL board location)

newloc (Dummy Stack value—*killed by ... END)

END (IFMove orjump)

258 9: PROGRAMMABLE GRAPHICS APPLICATIONS

IF move "K" SAME (“King me”)
THEN

+ loc (Store location)
« 'LAYOUT' loc C-L (Get piece from LAYOUT...

DUPZ GET DUP
'piece' STO 2 + PUT ..and replace it with a king)
PICT loc # 8d # 8d
BLANK NEG REPL (Blank out board location...
PICT loc
CASE

'pPiece==1" ... and replace it with a red king...
THEN RKING
END

'piece==2' ...or a black king)
THEN BKING
END

END (CASE)
GXOR (The actual replacement)

»
END (IF “king me”)

2

»

Checksum: # 56746d

Bytes: 788.3

Stack Arguments Stack Results

3% starting location (complex)

2% ending location (complex)
1: Ildll or III‘I’III or IIKII (none)

Notes: MOVEIT updatesLAYOUT and PICT according to the move data

received from otherprocesses. Fora"K" (“king me”), the piece’s

location is the Level-2 argument, with no Level-3 argument.

A Friendly Game ofCheckers 259

WHOZAT

« 'LAYOUT' SWAP CsL GET
»

Checksum: # 5341d

Bytes: 46.3

Stack Arguments Stack Results

1t square location (complex) value of LAYOUT there (8-4)

Notes: WHOZAT determines “who’s at” a given location on the board.

CL

« C»R SWAP 2 »LIST
»

Checksum: # 34716d

Bytes: 27.9

Stack Arguments Stack Results

1% square location (complex) array index{ # row # col 2

Notes: C*L converts a complex number to an array index.

260 9: PROGRAMMABLE GRAPHICS APPLICATIONS

MBOARD

« PICT PURGE (Start with a clean slate)

(8, -7) PMIN (131,56) PMAK (Set user limits)

{ # 6d # 6d + PVIEW (Just forfun, show it being built)
TE‘B,SBE,) (56, 56) BOK (Outline ofthe board)

FOR y
H 49
FOR x

IF w gy + 2 MOD NOT (Sum ofrow and column ofblack
THEN PICT % y R*C square is not odd in this case)
GROB 8 8 FFFFFFFFFFFFFFFF GOR (Fill black square)
END
7

STEP
7

STEP
PICT (8,8) (56,56) SUB
'BOARD' STO (Store as BOARD)

%

Checksum: # 65383d Bytes: 315.5

Stack Arguments: (none) Stack Results: (none)

Notes: MKBOARD makes a blank checkerboard and stores the grob

under the variable name BOARD.

A Friendly Game ofCheckers 261

A Calendar Demo

With its time and date functions, the 48 is certainly equipped to be a

time management tool. One of the features in most electronic time

managers is some kind ofperpetual calendar, usually presented in the

classic seven-column format. As a final little demo, here’s an example

of what you could do.

Description

The program CALEND displays the current month in seven-column

format, offering unshifted menu keys to increment the day, month and

year; and (}-shifted menu keys to decrement the day, month and year.

Press the 13118l key to exit the program.

CALEMD uses DISP to build the calendar, then turnsit into a grob via

LCD+. The grob’s contents are stored inPICT, and the graphics display

is frozen—with the custom menu line displayed—via PYIEW =1 WAIT.

Note that CALEND doesn’t use PICT STO to store the calendar in PICT.

When the HP 48 executesPICT ST0,it resizes PICT to zero, then to the

size ofthe new grob. Ifyour graphics display is active during this time

(for example, during a PYIEW), you will see “snow” fill your screen

momentarily. This is a graphical representation ofpart ofthe HP 48’s

memory and is displayed while the machineis re-sizing PICT.

However, since the REPL command does not cause PICT to be re-sized.

CALEND uses PICT { #Bd #Bd } ROT REPL,instead ofPICT STO,

thus avoiding the “snow.”

262 9: PROGRAMMABLE GRAPHICS APPLICATIONS

The[[T¥l andTmenukeys inCHLEND are not active, although

“hooks” (entry points) are included in here so that you can use them to

increment/decrement the days as you wish.

Ofcourse, CALEND could also be embellished to do other useful things:

set and clear appointments, create “to-do” lists, and do other time-

management tasks.

Subroutines

MYR: is the major subroutine behind CALEMND. Note that its algo-

rithm uses DISP and not PYIEW to do the display. MYR was

written and modified by several members of the CHIP HP48

user’s group. The version presented here was developed by

RonJohnson and is used with his permission—and with much

appreciation.

A Calendar Demo _ 263

Listings

CHLEND

« RCLMENU
DATE DUP IP SWAP FP 1688 = DUP IP SWAP FP 1E4 #
> menu mdy
« JFERR

D0
my MYR (Create the calendar)

LCD+ PICT { #Bd #Bd } ROT REPL (Avoidsnow)
€ "DRY" } { "MON" > € "YR" X € { 2
{ "EXIT" } 2

TMENU { #Bd #B8d } PVIEW -1 WRIT (Disp. menw
+ key (Waitforkeystroke)
« CASE

'key==11.1"
EI"H.IEN "Mot used" DROP (Increment day)

'key==11.2"
EHEN "Not used" DROP (Decrement day)

'key==12.1"
THEN (Increment month)

IF 'm==12'
THEN 1 'm' STO 'y' 1 STO+
ELSE 'm' 1 STO+

THEINF ' ! (Decrement month)
m== |

THEN 12 'm' STO 'y' 1 STO-
ELSE 'm' 1 STO-
END

END
'key==13.1"

THEN 'y' 1 STO+ (Increment year)
END

264 9: PROGRAMMABLE GRAPHICS APPLICATIONS

'key==13.2"'
THEN 'g' 1 STO- (Decrement year)
END

'key==16.1"
E“EN 8 DOERR (Create exit condition)

1768 .1 BEEP (Otherwise, beep—invalid key)
END (CASE)

%

UNTIL B
END

THEN menu MENU
END

»

»

Checksum: # 29788d

Bytes: 828

Stack Arguments Stack Results

1: (none) (none)

Notes: CALEMD displays a perpetual calendarin classic seven-column

format. It uses the current system date to determine the first

month displayed.

Hug 1993
= M T W T F S

) 1 2 2 4
o B 7 2 918 11
12 12 14 15 16 17 13
13 28 21 22 23 24 23
20 27 28 29 38 31
DAY[MON|VE|||EHIT

A Calendar Demo 265

266

(Local function 9)
"1 2 34 5 6 ¢ 8 91811 " (Builda
"12 13 14 15 16 17 18 19 28 21 22 " week string)
"?3 24 25 26 &7 28 29 38 31" + +
ROT 3 # 2 - ROT 3 # 1 - SUB

(Local function P)
IF DUP TYPE 7 == (Display the week string)
THEN INCR OVER SWAP DISP
END
DROP

%

RCLF B B B1686
> m pfd n 1 b e
€y 1888888 s Bl +DUP 'd' STO

18. 171382 SNHF’ DDFI‘r'S ¢ MOD 'i' STO (Day of week:
B=Sun, 6=Sat)

IF m 12 == (Figure number ofdays in month...
THEN 31 ...where December is a special case)
ELSE 4 DUP 1 + DOARYS
END
'n' STO CLLCD " " (Month-year string—7 spaces)
"JanFebMarAprMaydundul AusSeplct NovDec"
M EU;LDUP 2 - SWAP SUB + " " + STD y + 'v!
P

"S M T W T F 5" (Days-of-week header)
IF ni+ 35 £ (Leave it outifit doesn’t fit)

80
PE'-."FIL?I"'E" STO i 3 #

" DUP + 1 ROT SUB (First row—9 spaces)
begtEVWL + 'r' p EVAL (Display first row)
D0 el + 'b' STO e 7 + n MIN

'e!' STO (Build subsequent rows)
begEVAL 'r' p EVAL (Display subsequent rows)

9: PROGRAMMABLE GRAPHICS APPLICATIONS

UNTIL e n ==
END
3 FREEZE £ STOF

»

Checksum: # 61525d

Bytes: 844.5

Stack Arguments Stack Results

month (real number from 1 to 12)

1t year (real number > 1562) (none)

Notes: MYR draws the calendar for any given month and year (the

earliest allowable month is November, 1582).

A Calendar Demo 267

More Suggestions

Now that you’ve seen some working examples of48 graphics, you may

be speculating on the infinite possibilities. Here’s a suggestion or two:

268

e The 48 has enough graphics power that you could come up with

a greatPRINT program or grob editorfor it, with a display similar

to the one shown below. At a menu line, the user would select

from the available tools—and submenus would select different

brush orfill patterns for each respective tool. Avertical menu on

the right side could be used, via the arrow keys, for object/

variable management or other purposes. Then the rest of the

display would be a window into the grob, which could be scanned

as needed. The current grob would not reside in PICT, but por-

tions of it would be displayed in PICT when being edited.

PAINT would use KEY and WMAIT to redefine the keyboard as ap-

propriate. And note that several ofthe routines developed in this

book could be incorporated into PRINT,too.

F AN+

e

c00x200
010 EYTm

21 7 TEXT

The only drawbacks—as with all graphics routines—are memory

use and speed. Consider those your challenges. After all, you're

the judge as to what’s acceptable and usable.

9: PROGRAMMABLE GRAPHICS APPLICATIONS

e Some of the most intriguing home video games are the role-

playing adventure games, where the hero negotiates some large

playing field, encountering monsters and other baddies.

Such a game on the 48, for example, could use an intricately

detailed 800x800 grob as the playing field, and dozens oflittle 8x8

grobs for the hero and the baddies. It wouldn’t be hard.

) T o[HP: 38 _TR: 47 =T: gq!
=h e @

F &

b

vOU EMCOUMTER
3 FIKEERALLE.
ACTIOM?

e You’ve seen a checkers game. How about other familiar games

(Battleship, Tetris, hangman, cards, etc.)? Your only limits are

your imagination (and spare time).

i

()

-
o I-

{:"C}

= BATTLESHIP e
o

More Suggestions 269

10: GrAprPHICS BEYOND THE 48

(OR, “WHAT’S THAT FUNNY HOLE IN THE ToOP OF MY CALCULATOR?”’)

Of course, graphics on the 48 are nice in and of themselves, but their

utility increases when you can transfer them to other machines.

Printing Graphics on the Infrared Printer

Although it is possible to send low-level graphics commands to the

HP82240B infrared printer, it is faster and more efficient to use the

built-in commands PR1 and PRVAR.

PR1 prints the grob in Stack Level 1. PRVAR prints the grob whose

variable name appearsin Level 1. To print more than one grob, you can

use a list ofvariable names as the PRVAR argument. Note that PRVAR

prefaces each object with a blank line and the variable name.

The HP 82240B printer can print only 166 dot columns. For a grob

wider than 166 pixels, the printer will print the graphic in strips, with

“cut here” dotted lines separating the strips, so you can paste them

together later. You can avoid this problem if you have an Epson-

compatible or PCL-compatible printer (keep reading...).

To print the text representation of a grob, (GROB x y ddd...), it’s best

to convert the grob to a string, a list or a program, and print it via PR1

(or, better yet, upload it to a personal computer and print it from there).

Printing Graphics on the Infrared Printer 271

Printing Graphics on a Larger Printer

To print a graphic on a larger printer, you must translate the grob from

48 language into a language that the larger printer can understand.

Recall from Chapter 4 that a grob is an object of the format

GROB x y bbbbbb....

where x and y are the width and height, respectively, in pixels,

and bbbbbb.... is a hexadecimal bitmap of the grob—in the 48’s

“reversed” notation.

Before you can print the grob, you must separate these three pieces of

information for the printer. This program takes a grob from Stack

Level 1 and separates the information into its three parts on the Stack:

DISSECT

& ESTIR DUP SIZE & SWAP SUB

FOR n
DUP DUP " " POS SWAP OVER
1 - 1 SWAP SUB OBJ-»
ROT ROT 1 + OVER SIZE SUB

NERT
»

Checksum: # 48862d Bytes: 182

Stack Arguments Stack Results

3t x (a real number)

2t y (a real number)

1: GROB x y bbbbbb.... bbbbbb....(a string)

272 10: GraprHIcs BEYOND THE 48

Now, you’ll also recall from the discussion in Chapter 4 (see page 97)

that each nybble in the bitmap is presented with the bits reversed from

the normal convention.

Here’s a table that shows the translation between the 48 bitmap and

a “right-reading” bitmap:

48 nybble reversed “right-reading”
hex value pattern bit pattern hex value

B 0000 0000 0

1 0001 1000 8

c 0010 0100 4

3 0011 1100 C

4 0100 0010 2

5 0101 1010 A

b 0110 0110 6

7 0111 1110 E

8 1000 0001 1

9 1001 1001 9

A 1010 0101 5

B 1011 1101 D

C 1100 0011 3

0 1101 1011 B

E 1110 0111 7

F 1111 1111 F

Notice the symmetry in the table: E translates to 7, and ¢ translates

to E, for example. Also,B,6,9 andF translate into themselves, because

their bit patterns are symmetrical.

Printing Graphics on a Larger Printer 273

From the translation table given above, you can assemble a string to

represent the translated bitmap. The string is composed ofthe entries

in the “right-reading” column of the table: "B84CZAGE19503B7F" .

Thus, in a program, translating a nybble becomes as simple as

« ... "B123456/69RBCOEF"
"B84C2A6E1950367F"
ROT POS DUP SUB ...

»

And you can build this sequence into a routine for translating bitmaps

ofany size. The followingprogram will take a bitmap stringfrom Stack

Level 1 and replace it with a translated string:

TRANSLATE

« DUP SIZE
+ map len
« 1 len
FOR

"B123456789ABCOEF" "B84C2AGE19503B7F"
map j Jj SUB POS DUP SUB
map j ROT REPL 'map' STO

NEXT
map

Checksum: # 58829d Bytes: 171.5

Stack Arguments Stack Results

1: bbbbbb....(a string) bbbbbb....(a string)

Note: Togetyouroriginal stringback again,just executeTRANSLATE

a second time—the translation table is symmetrical.

274 10: GrarHICS BEYOND THE 48

Formatting Output for the Printer

The most common printer protocols in use today are Epson and PCL.

Most printers—including laser printers—offer Epson compatibility,

either built-in or as an option. PCL is the Printer Control Language

used by all HP printers, including the HP LaserdJet and DeskdJet. Most

laser printers offer built-in PCL compatibility.

The main difference between the two protocols is that PCL uses raster

graphics—receiving data in 8-dot rows—while Epson uses column

graphics—receiving data in 8-dot columns:

PCL-Protocol Printers Epson-Protocol Printers

’ byte 1‘! byte 2| byte 3J l,)yte 1 byte2 byte 3
......................] etc. ..

Each byte here represents 8 dots* of graphic output.

In PCL, each bit represents one dot in a row, with the least significant

bit on the right. Bytes are sent to the printer as characters, so a row

of four black dots followed by four white dots would have a character

value of # 111188686b (that’s # FBh or # 248d).

By contrast, in Epson, the least significant bit goes at the bottom of a

column ofbits. Bytes are sent to the printer as characters, so acolumn

offour black dots atop four white dots would have a character value of

#111160668b (that’s # FBh or # 248d).

*Dots are printer data, as opposed to pixels, which are display data.

Printing Graphics on a Larger Printer 275

So suppose you wanted to print this 19x15 graphics object:

On the 48, you would describe this object as

GROB 19 15
18FB48 168348 118448 S0B848 SBBG4H
248158 SAB258 548158 500B58 548156
96FB48 9BBB40 110448 168348 18FB40

(rows are separated for clarity)

Running the bitmap string through TRANSLATE would then give you:

81FB28 86BC28 880228 900128 9BA12H
A2BBAB AS14AB AZBB8AB RBBBAB R2BBAO
91F126 988120 880228 B6BCZH B1FBZO

276 10: GraprHICS BEYOND THE 48

To successfully print the grob, a PCLprinter would need to see a string

of the form "% P=..." where

X iSCHR(129) or 81h

& iS CHR(240) or FOh

IS CHR(32) or 20h (<space>)

P isCHR(134) or 86h

® §SCHR(12) or OCh (<Form Feed>)

As you can see, the PCL data string can be readily obtained directly

from the TRANSLATE’d bitmap string (compare for yourself).

On the other hand, an Epson printer would expect to see a string ofthe

form "Yumm " where

Y iSCHR(255) or FFh

® ijSCHR(0) or O00h (<KNUL>)

® iSCHR(7) or07h (<BEL>)

® iSCHR(24) or 18h (<CAN>)

ISCHR(32) or 20h (<space>)

This Epson string is not so easy to obtain from the TRANSLATE’d string.

In fact, it’s probably easier to write an Epson print program on the 48

which stores the grob in PICT and builds the Epson data string by

testing individual pixels.

Printing Graphics on a Larger Printer 277

Printer Conitrol Codes

When printing graphics, you must send control codes to the printer,

warning it that the next batch of data it receives is graphics data

instead of text. Otherwise, your printer will act unpredictably.

For PCL printers, use these commands, each sent as a string:*

"<Esc>#rA" (Start raster graphics)

"<gsc>*brll..." (Print the next “n” bytes asgraphics data. Foryour

19x15grob, you'd repeat this string 15 times—once

for each row. The first part ofthe command, then,

would be "<Esc>*b3Wxd <Esc>*b3kp=.."

"<CcrR><LF>" (Print the buffer, advance to the next line and

return to the left margin)

"<Esc>#*rB" (End raster graphics)

These PCL control codes are for the HP ThinkdJet, Quietdet, DeskdJet

and LaserdJet printers, and any other printers which understand PCL.

Keep in mind that your display grobs printed at 300 dpi will become

postage-stamp size. But on some printers, (for example, the Deskdet

and Laserdet), you can select from different dot pitches. To change dot

pitches in PCL printers, use these commands.

"<esc>#t7OR" Set dot pitch to 75 dpi—DeskdJet or LaserdJet only)

"<Esc>*t1BBR" Set dot pitch to 100 dpi—Desket or Laserdet only)

"<esc>*t 15BR" Set dot pitch to 150 dpi—DeskJet or Laserdet only)

"<Esc>#¥t30BR" Set dot pitch to 300 dpi—Desket or LaserdJet only)

"<Esc>*¥t96R" Set dot pitch to 96 dpi—QuietJet only—default)

"<Esc>*#t 192R" Set dot pitch to 192 dpi—QuietJet only)

*<ESC>1isCHR (27) (“Escape”); <CR>is CHR (13) (“Carriage Return”); <LF>is CHR (10) (“Line Feed”).

278 10: GraprHIcS BEYOND THE 48

For Epson printers, use these commands, each sent as a string:*

"<gsc>A8" (Set the line spacing to 8-dot rows)

"<Esc>Knm..." (Printthe next “n+(256xm)” bytes asgraphics data.

For the 48, usually you’ll have less than 256 bytes

per row, so m=0. In the example grob, you have 19

columnsofdata, sonwill be CHR (19);you have 15

rows of data, so you’ll have to send such a string

twice: "<Esco>Kmmymmm 1

and "<gpsc>Kmw "

The first two " ® in each string are CHR (19) and

CHR (0), respectively, and then the actual data

commences—with Y"uw for example, in the

first string, as shown on page 277)

"<CcrR><LF>" (Print the buffer, advance to the next line and

return to the left margin)

"<Esc>e" (Reset the line spacing to 6 lines per inch)

These Epson control codes are for printers that print at 96 dpiin “single-

density” mode (<ESC>K selects “single-density” printing). The codes

will work with printers of other dot pitches, also—even with the 300-

dpi Epson emulation on most laser printers. But as you know, at that

resolution, your 131x64 display-sized grobs start looking like postage

stamps. You’ll need to modify your printing program to print a square

of several dots for each pixel in your grob.

For more information on printer control codes, consult the owner’s

manual for your printer.

*<ESC>1sCHR (27) (“Escape”); <CR>1is CHR (13) (“Carriage Return”); <LF>is CHR (10) (“Line Feed”).

Printing Graphics on a Larger Printer 279

The basic algorithm for a printer driver is as follows:

280

. Clear system flag —33, to route non-printing I/O through the

infrared port, and set system flag —34, to route printer output

through the serial port.

. Epson: Set the line spacing on yourprinter—typically 8 for most

Epson printers. PCL: Set the dot pitch, if applicable; enable

raster graphics.

. PCL: Use the “translation string” to translate the grob data to

a “right-reading” bitmap. Epson: Store the grob in PICT and

extract data, 1 column of 8 pixels at a time.

. Build the graphics data string for the first row of data. Preface

it with the appropriate printer control code (see previous page).

. Build data strings for all subsequent rows of data. Preface each

string with the appropriate printer control code, and append

them to the data string (for every case with the 48, the printer

control codes will be identical).

. Send the data string to the printer, making sure to end the line

with a <CR> only. Note that on the 48, the <CR><LF> is auto-

matic. But you can disable the <L.F> by setting system flag —38,

executing@ TRANSIO, and then storing a null string ("") in the

fourth field of PRTPAR.

. Epson: Reset the line spacing to 6 lines per inch. PCL: End or

disable raster graphics; reset the dot pitch, if necessary.

. Restore system flags, if necessary.

10: GrapHICcS BEYOND THE 48

Avoiding Problems

Laserprintersdon’tprint to the paperuntiltheyreceivea<Form Feed>,

which is CHR (12). Ifyou're printing to a laser printer, you won'’t see

any output until either the end of the page has been reached, or you

send a CHR (12) to the printer.

However, if you store this program, FF, in your HOME directory, then

you can send a <Form Feed> simply by executing FF, or by including

it in any program:

FF: « 12 CHR PR1 DROP
»

Checksum: # 22456d Bytes: 34.5

It is strongly recommended that you use handshaking on both your

printer and the 48. This gives the printer a chance to say “wait a

minute, I'm busy” without either the 48 or the printer losing any data.

You can select XON/XOFF handshaking on the 48 by setting the fourth

parameter in the IOPAR reserved variable to 1 (for more information

on using IOPAR, see chapter 27 of the User’s Guide).

Printing Graphics on a Larger Printer 281

Two Sample Printing Programs

Combining all the above information into one place, you should be able

to create a program to suit your needs and your printer. Use these two

programs as examples.

PRGROB1

« ODUP SIZE PICT RCLF (Save defaults)
STO (Select standard numeric notation)
¢f CHR "A8" + (Set dot pitch to 8)
2f CHR "K" + (Beginning ofdata string)
¢ CHR "2" + (Reset dot pitch to default)
B (Temporary storage variable)
+ gr ¥ y pictx flags dpB dat re t
« gr PICT STO

-33 CF -34 SF -38 SF (IR 1/0, serial printing, auto LF)
dr8 PR1 DROP
¥ B*R 256 MOD CHR dat
OVER + 'dat' STO (Build <esc>K to <Esc>Kn)
% B*R SWAP NUM - 256 - CHR
dat SWAP + 'dat' STO0 (Build <esc>Knto <Esc>Knm)
nn (Initialize data string)
By B*R 8 ~ CEIL
FOR bigrow

dat + (Initialize line data)
H % B*R
FOR col

g ?'It' STO (Initialize column data)

FOR row (Test eachpixel)
col R+B
bigrow 8 *# row + R+B
¢ »LIST PIRK? (Returns 1 or 8)

¢ ¢ row - * % 't' STO+ (Increment col. data)

NEXRT (Next row)

282 10: GraprHICS BEYOND THE 48

t CHR +
NEXT (Next column)

NEXT (Next big row)
PR1 DROP re PR1 DROP (Print grob, reset printer)
pictx PICT STO fl ags STOF (Restoreprevious states)

»

Checksum: # 61444d
Bytes: 949

Stack Arguments Stack Results

1: GROB x y bbbbbe.... (none)

Notes: PRGROBI prints a grob on an Epson-compatible printer, de-

stroying PICT in the process.

Printing Graphics on a Larger Printer 283

« DISSECT TRANSLATE

284

PRGROBZ

(Get width, heightand bitmap)
RCLF (Saveprevious states)
STD (Select standard numeric notation)
¢f CHR "=t/5R" + (Set dot pitch to 75 dpi—96 for QuietJet)
¢f CHR "#-R" + (Begin raster graphics)
¢f CHR "#-B" + (End rastergraphics)
¢ CHR "#b" + (Beginning ofdata string)
B (Temporary storage variable)
* ¥ Yy map flags dprd begrg endrg dat t
« -33 CF -3¢ SF -38 SF (IR1/O0.,...

8 TRANSIO 'PRTPAR' DUP
3 1868 PUT 4 "" PUT ...serial printing, disable LF)
endrg PR1 DROP (Garbage collection on the printer)
de/S> PR1 DROP (Set dot pitch)
begrg PR1 DROP (Begin raster graphics)
map SIZE y ~
DUP 't' STO (Data string length per row)
dat SWAP 2 ~ + "W"
+ 'dat' STO (Build <ESsc>bto <Esc>bnll)
;" (Initializedata string)

Y
FOR rou

dat + (Initialize line data)
row 1 -t #1 +rouwt =
FOR char

map char
DUP 1 + SUB (Read bitmap for next 8 bits)
"#" SWAP + "R" + OBJ+
E*R CHR + (Add to data string)

STEP (Next character)
NEXT (Next row)
PR1 DROP endrs PR1 DROP (Prt. grob, end raster graphics)
12 CHR PR1 DROP (Form feed—optional)
flags STOF (Restoreprevious states)

10: GrapHIcS BEYOND THE 48

Checksum: # 23778d

Bytes: 995

Stack Arguments Stack Results

1: GROB x y bbbbbb.... (none)

Notes: PRGROBZ prints a grob on a PCL-compatible printer.

The program assumes that PRTPAR already exists in the

current directory.

Printing Graphics on a Larger Printer 285

The Hard Work’s Already Done

Fortunately, HPhas already provided print routines that do all this for

you, in the form oftwo public-domain libraries called EPSPRINT.LIB

and PCLPRINT.LIB.

These libraries are available on the HP 82208C Serial Interface Kit

disk, orare downloadablefromtheHPCalculatorBulletinBoard System

(BBS). Instructions for using the libraries are located in two other files

called EPSPRINT.TXT and PCLPRINT.TXT.*

Using EPSPRINT

Once installed, the EPSPRINT library appears in the Library menu as

[@ddA]. When selected, it shows this menu: FFFETLTIIEEER

Pressing [l modifies PRTPAR and system flags —33 and —34 to

send all printer output to an Epson-compatible printer over the serial

interface, using XON/XOFF flow control. It uses a “hook” in the 48’s

operating system to activate the Epson graphics printer driver. Text

is output in the printer’s current font, and graphics is output at 60 dpi

(you can modify PRTPAR to set it to 120 or 240 dpi, but 240 dpi is not

recommended).

Pressing [ddi[dd returns PRTPAR and flags —33 and —34 to their turn-

on states, allowing you to continue using the infrared printer. You may

ignore [{d[F3 if you don’t use an infrared printer.

*For more information on the HP BBS,contact HP Calculator Technical Support at (503) 757-2004,

or look on the inside back cover ofyour User’s Guide.

286 10: GrapHICS BEYOND THE 48

Pressing[RGIEM with an argument of 1,2 or 4 causes EPPRT to use the

given magnification factor in printing graphics (the default is 2). For

example, 4 [EEEH causes every pixel in the grob to be printed as a

square, 4 dots x 4 dots.

All 48 printing commands except (ON{1/0) work normally with EPPRT.

(ON-{©0)does unpredictable nasties with your printer and should not be

used. Use PRLCD instead. Also, you can automate your Epson print-

ing somewhat by storing these routines in your HOME directory:

EPR1: « EPON PR1 EPOFF
»

Checksum: # 6487d Bytes: 32

EPRVAR: « EPON PRVAR EPOFF
2

Checksum: # 13816d Bytes: 34

Printing Graphics on a Larger Printer 287

UsingPCLPRINT

The PCLPRINT library appears in the Library menu as [Idd#l When

you select it, you see this menu: [[HIFACETLENITHIEGTR

Similar to [Idi[f} in EPPRT, [IZI} also modifies PRTPAR and system

flags —33 and —34, but it does so in order to send all printer output to

a PCL-compatible printer over the serial interface, using XON/XOFF

flow control. It, too, uses a “hook” in the HP-48’s operating system to

activate the PCLgraphics printer driver. Text is outputinthe printer’s

current font.

(33 acts much like [AdIdF , allowing you to continue using the in-

frared printer (and likewise, you may ignore [[Id[dd ifyou aren’t using

an infrared printer).

1M takes an argument from Stack Level 1 and uses it to set the

printer to the proper dot pitch. This could be 75, 150 or 300 dpi for a

Deskdet or Laserdet (doesn’t apply to other printers).

Unlike the [IREIM in EPPRT, the IEGIEM in HPPRT can take any integer

as an argument for the magnification factor. Entering » [RGITH causes

every pixelinthe grob tobeprinted asa square, n dots xn dots (no default

is given, but it appears to be 1).

For a 300 dpi printer,] IZEIEl will give you a postage-stamp sized image

of a 131x64 grob. Agrob printed at € [[EEIEM is about the same scale as

an HP82240B printout, and a grob printed at & IEGIH is about the

same scale as the 48’s LCD display.

288 10: GrapHICS BEYOND THE 48

All 48 printing commands except (ONH{/©0) work normally with HPPRT.

(ONH©0) has the same problems in HPPRT as in EPPRT.

However, when printing to a Laserdet series printer, note that the

LaserdJet prints to a buffer, not directly to the paper. The buffer is

printed onto the paper either when the buffer is full, or when a form-

feed character(ASCII # 12d) issenttothe printer. Soifyou’re putting

several graphics on one page, be sure to send a CR (there’s ailkey

in the PRINT menu) after each grob to provide some white space.

Whenyou're readyto ejectthe page,you'llneedtosenda<Form Feed>

character to the printer (you can use your FF program to do this).

Also, you can automate your PCL printing somewhat by storing the

following two routines in your HOME directory.

HPR1: « HPON PR1 HPOFF FF
»

Checksum: # 32965d Bytes: 37.5

HPRYAR: « HPON PRVAR HPOFF FF
»

Checksum: # 37188d Bytes: 39.5

You may omit the FF’s in these two routines ifyou’re not using a Laser-

Jet, or if you wish to put multiple printouts on one page.

Printing Graphics on a Larger Printer 289

Printing Graphics on a Pen Plotter

With the advent of high-resolution, wide-carriage, color dot-matrix

printers, pen plotters seem to be disappearing quickly. Still, a pen

plotter can be used as a graphics output device. The algorithm for a

plotter driver is very simple—and fast, since pixels can be printed “on

the fly,” without waiting to build large graphics command strings.

The basic algorithm for a plotter driver is as follows:

1. Set the pen width and pixel spacing for the plotter—typically 0.3

mm or 0.65 mm.

2. Either use TRANSLATE to translate the grob’s data to a “right-

reading” bitmap, and then process the bitmap; or store the grob

in PICT, and scan PICT, pixel by pixel.

3. With pen UP, scan the paper, row by row. At each pixel location,

putthe penDOWNifthe pixel is “dark” in that location, and draw

a small square. Then put the pen UP again to resume scanning.

You may also wish to draw an outline box around your grob after it is

completed.

290 10: GrapHICcS BEYOND THE 48

Grobs and Other Computers

Since integrated text and graphics are taken for granted on computers

these days, it wouldbe nice to be able to include grobs in your computer

work.

For example, if you’re writing a lab report on your PC and have some

important data stored in your 48, you can upload the numeric data to

yourcomputer, butyoumightalso wanttoinclude the impressive graph

you made on the 48 to avoid having to duplicate it in a spreadsheet.

Or suppose your report contains several long, involved equations like

the ones in Chapter 3 in this book. Using the two-dimensional EW

version is an easyway to get “textbook” notation in your report without

having to buy the mathematics add-on for your word processor.

By virtue of their (admittedly) superior raw computing power, con-

version of raw grobs to computer-format graphics is best done by the

computers. DISSECT and TRANSLATE are trivial on a PC, but the grob-

to-graphics conversion problem is complicated by the fact that there

doesn’t yet exist a standard computer graphics format.

Here, Hewlett-Packard comes to the rescue again. HP has developed

programs called GROB2TIF .EXE and TIF2GROB.EXE for MS-DOS

computers, GROBer for Macintosh computers, and GRAB48.EXE for

MS Windows®.

Printing Graphics on a Pen Plotter /| Grobs and Other Computers 291

GROB2TIF . EXE converts grobs to TIFF files, which can be used, or at

least converted into something else, by the most popularword-process-

ingand desktop-publishingprograms. TIF2GROB . EXE converts TIFF

files to grobs for use on the 48.

The GROBer allows you to convert grobs to Macintosh graphics for use

with any Macintosh package, and to convert Macintosh graphics to

grobs. Some ofthe finest 48 graphics to appear to date were taken from

the Macintosh.

GRAB4 8 turns your PC into a “virtual HP82240B printer,” one that re-

ceives 82240B graphics commands and turns them into an image in

MS Windows®. You can then print the image, save it in a variety of

graphic file formats, or cut it and paste it into other Windows applica-

tions. If you have GRAB48 .EXE, you may not need the HP82240B

infrared printer,the EPSPRINT.LIBorPCLPRINT. LIBlibraries,or

the GROB2TIF .EXE utility—and GRAB48 .EXE is free!

GROB2TIF .EXE is available on the HP82208C Serial Interface Kit

disk forMS-DOS machines. The GROBer is available on the HP82209

Serial Interface Kit disk for Macintoshes. Both ofthese programs are

also available from the HP Calculator BBS (see the footnote on page

286).

TIF2GROB.EXE and GRAB48.EXE are available only from the HP

Calculator BBS.

292 10: GrapHIcS BEYOND THE 48

Graphics Between Two 48’s

It’s hard to think of a serious use for two-machine graphics besides

games or cool-looking demos, but some people take their games and

their demos very seriously.

As you've seen with the CHKRS program,it is quite straightforward to

create some two-playergames on the 48, with two machines connected

via IR or the serial port.

Awell-behaved game program shows the board from the player’s point

ofview and passes a token to keep track ofwhose move it was. Askilled

game program checks for invalid moves (such as moving backwards in

checkers) and allow for complex moves (such as double-jumping in

checkers), and—of course—it would keep score.

Graphics Between Two 48’s 293

Final Thoughts

This book is only the beginning. It has shownyoujust a few ofthe great

graphics tricks the 48 can do, andhowyou canuse these graphics tricks

to your advantage. And in the process, hopefully, you’ve become more

comfortable with the machine, by working through the exercises and

trying the applications (and maybe you also have a better idea ofhow

to use the EquationWriter, the Solvers and the Plotter).

All that remainsis foryou to find real uses for these tools—applications

in yourjob, studies or hobbies. As you use the 48, you will undoubtedly

become more skilled with it and thus it will become the more useful to

you in return. Again, remember what your high school band teacher

told you:

“Proficiency comes through practice.”

Above all, have fun!

294 10: GrapHICS BEYOND THE 48

Graphite Grobs

‘Famous Oatmea CGookies *

% Cup vcfleflblc ’karkn?nj

l Cup Firmly packed brown sugar

t Cup grzmuhf-efi(Sugar

[eaq
I/‘f Cu.p water

(%easram Vomd{a

3 Cups rolled octs, uncooked

l Cup all- purpose Llour

(teaspoon salt (OFH""")

Y2 ‘teaspoon baling soda

Preheat ovento 350°F. Beat fogetHher shortening, Sugars eqq,

waler amf \/qn;”q am‘v” creamy - Add wmb:’neal r€main?nj

injrealiw'lr; mixe well.

(Fina/(y' Valere ;afiJ—o rflo[& n 1 G.«p od fwi—fwee}

chocolate oln#pc.>

Drbp Ly be'\JQJ ']-easl’oonp‘((S on"-o WCA coolie ;Aea#

Balke s+ 350°F for 12 to 15 minufes.

* Req'pe cour'"ety o the Quaker Oafs company.

Final Thoughts 295

APPENDICES

A: Review of the Hexadecimal

Number System

“Hexadecimal” is a word derived from the Latin roots for six (“hexa-")

and ten (“decimal”). Itis a form ofexpressing numbers in base sixteen.

“Hexadecimal” is often abbreviated to “hex.”

The Decimal System as an Example of Counting Systems

Most human beings count in the decimal, or base-ten, number system

(though you may have heard also of the binary, or base-two, number

system). In base ten, you use the numerals from 0 to 9. To count past

nine, you need some way to indicate the overflow, so you use a second

digit—the “tens” digit—to count the “number ofoverflows.” Likewise,

when you run out of digits to express the “overflows,” you add a third

digit—a “hundreds” digit—to count the “overflows of overflows.” And

so on, until you have enough digits to express any given number.

So, proceeding from right to left, the first digit represents the number

of“ones,” or 10° in the number; the second digit represents the number

ofwhole sets often (10'); the third digit represents the number ofwhole

sets ofa hundred (10?), etc. Thus, the nth digit represents the number

of whole sets of 10*! in the number.

So you could think of the number 3401 as:

3x10° + 4x10% + 0x10! + 1x10Q°

A: Review ofthe Hexadecimal Number System 297

Significant Digits

Obviously, changing the leftmost digit in the number has a greater

effect on the number than changing the rightmost digit. That is, the

leftmost digit is the most significant digit; and the rightmost digit is

the least significant digit. For example, if you see a house selling for

$93,499 and one selling for $93,500, you’d say they both cost the same.

One dollar isn’t very significant compared to ninety thousand dollars.

The right-to-left order of increasing significance is a convention used

in other place-value numbering systems, including binary and hexa-

decimal.

Hexadecimal Values

Computers count in binary, using only the numerals 0 and 1. That’s

difficult for humans to comprehend and uses a lot of space in displays

and printouts. A more convenient way to organize binary data is to

group the binary digits (bits) togetherin groups offour, and assign each

group a single value.

Look at the table on the opposite page. You’ll see that a group of four

bits can range from 0000, with a value of zero, to 1111, with a value of

fifteen. That’s sixteen values, which is why sixteen—hexadecimal—is

such a convenient number base to use when working with computers.

298 APPENDICES

Ofcourse, when expressing number values, you have only ten conven-

tional Arabic numerals (0-9). But when counting in hexadecimal, you

must go all the way to fifteen before adding a second numeral as a

“counter of overflows.” So the letters A-F are used as numerals to rep-

resent the values ten through fifteen in hexadecimal.

Decimal Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

In the 48, integer objects can be expressed as binary, decimal, hex or

octal (base eight). The # sign before the number means that it’s an

integer, and the b/dh/o suffix indicates its number base. You can con-

vert these integer number formats from one base to another using the

48’smmenu, or use the following table (for the corresponding

48 display characters, use (]CHARS), or see page 2-5 in the UG.):

A: Review ofthe Hexadecimal Number System 299

Binary Decimal Hex. Binary Decimal Hex.

0BPEBBBBb # BBBd # B6h # PBlboBABLD # B32d # 26h

0PBoBBElb # BB1d # Blh # 001PBBB1b # B33d # Z21h

0PBOBBR1BL # BB2d # B2h # PBlBPB1BLD # B34d # 22h

PBoBPB11b # BB3d # B3h # 00166BB11b # B35d # 23h

0PoBoB1BBb # BB4d # B4h # 0B1601PBL # B36d # 24h

PBPBA1Alb # BB5d # B5h # 00166161b # B37/d # 25h

0BPBA11Bb # BBed # B6h # 0B160116b # B38d # 26h

PBBEB111b # BB7d # B7h # 00168111b # B39d # 2¢/h

PBPB1BBBL # BBBd # BBh # 0010166B6b # B46d # Z26h

PBBB1BAlL # BB9d # BSh # 00181601b # B41d # 2Z2Sh

0BOB1B1BL # B18d # 6AK # 061616160 # B42d # ZAh

0BBB1011b # B11d # BBh # 0616816811b # B43d # ZBh

0B0B11B6b # B12d # BCh # 06161166b # B44d # 2Ch

pBEB11B1b # B13d # 60h # 008101181b # B45d # Z20h

0BBB1116b # B14d # BEh # 60161116b # B46d # ZEh

60661111b # B15d # BOFh # 00181111b # B4°/d # ZFh

6001066 # Bled # 1Bh # 001160B6b # B48d # 36h

0B0160B1b # B17d # 1llh # 0011666B1b # B49d # 31h

0B016B0l6b # B18d # 12h # 00116016b # B5Bd # 32h

0BO16B11b # B19d # 13h # 060116611b # B51d # 33h

060181B6b # 626d # 14h # 061101660 # B52d # 34h

B0B16161b # B21d # 15h # 0611601681b # B53d # 35h

06B016116b # B22d # 16h # 0B1168116b # B54d # 36h

06B0168111b # B23d # 1¢h # 08118111b # B35d # 3¢/h

00011066b # B24d # 18h # 00111666b # B56d # 36h

06011661b # B25d # 1Sh # 00111681b # B5/d # 35h

00011016b # B2ed # 1Ah # 00111616b # B58d # 3Ah

060011611b # B27d # 1Bh # 068111611b # B59d # 3Bh

06011166b # 628d # 1Ch # 00111166b # B6Bd # 3Ch

06011161b # 629d # 1Dh # 00111181b # B61d # 30h

06B011116b # 636d # 1Eh # 68111116b # B62d # 3Eh

66B011111b # 631d # 1Fh # 68111111b # B63d # 3Fh
300 APPENDICES

S
E
S

S
E
S

2
3
S
S
S
S
S
S
S
S
S
S
S

S
S
E
S
S
S
R

S
S

Binary

#186868866b
818680681b
B18686816b
B1866811b
B18688166b
816868181b
816868116b
B16888111b
B18810868b
B18081681b
B16810816b
B1881811b
81801166b
81801181b
B1881118b
B16881111b
81816666
818166610
B1818818b
B18166811b
B1818166b
B1818181b
81818118b
B1818111b
810811666b
B18116881b
B18116816b
B1811611b
B1811168b
B1811161b
B1811118b
B1811111b

Decimal

¥ B64d
B863d

2
=

S
E
S

S
E
S
S
S
S

S3
E
S
S
S

S
E
S
S
S
S

S
S

S
S

S
S
S
S

B66bd
B67d
B68d
B69d
Bréd
Br1d
Bred
B73d
B74d
B73d
Bred
Br/ed
Br8d
B79d
B8ad
B8ld
B82d
B83d
B84d
A85d
B8ed
B87d
B88d
B89d
B98d
B91d
B92d
B93d
B94d
B95d S

E
S
S
S
S
S
S
S
S
S
S

S
E
S
S
S
S

S
S

S
S

S
S
S
S
S

e

Hex,

48h
41h
42h
43h
44h
45h
46h
47h
48h
4Sh
4Ah
4Bh
4Ch
40h
4Eh
1Fh
28h
alh
ach
a3h
th
23h
26h
a’h
28h
a%h
9fh
9Bh
aCh
aDh
oEh
9Fh S

E
S
S

S
E

3
=
S
3

3
=
S

S
F
S
S
S
S

3
=
S
S
S
S

S3
E
S
S
S
S
S

S3
F
S

S3
E
S
S

3
=
S

A: Review ofthe Hexadecimal Number System

Binary

811086666b
811668681b
8116668160
81188811b
81188168b
B1188181b
B1168116b
B1168111b
81181066b
B11816881b
B1181816b
81181811b
81181166b
B1181181b
B1181118b
B1181111b
B1116666b
B1116661b
B1116816b
B11186811b
B1118166b
B1118181b
B1118118b
B1118111b
B1111666b
B1111881b
B1111816b
B1111811b
B1111166b
B1111181b
B1111118b
B1111111b

Decimal

B896d
897d

S
E

S
E
S

S
E
S
S

S
E

S3
F
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

898d
B99d
166d
161d
162d
183d
184d
185d
186d
187d
188d
189d
116d
111d
112d
113d
114d
115d
116d
117d
118d
119d
126d
121d
122d
123d
124d
125d
126d
127d S

E
=
S
S
S
S
S
S
3

S
E

S3
E
2
3
S
2
S

2
3
3

3
=
S
S
S
S

S
E
S
S
S

S3
F
3
S
S
S
S

Hex.

66h
blh
b2h
63h
64h
63h
66h
67h
68h
6Sh
6ARh
6Bh
6Ch
6Dh
bEh
6Fh
7Bh
’lh
’¢h
73h
74h
7ah
76h
77h
78h
7Sh
7Ah
7Bh
7Ch
7Dh
’Eh
’Fh

301

Binary Decimal Hex. Binary Decimal Hex.

100BB0BBb # 128d # 8bBh # 1010680BBb # 166d # ABh

10806861b # 129d # 8lh # 10108681b # 16l1d # Alh

106006016b # 138d # B2Zh # 101666818b # le2d # AZh

10806811b # 131d # 83h # 101686811b # 163d # A3h

160601660 # 132d # 84h # 10160166b # 164d # RAth

10660161b # 133d # 85h # 101681681b # 165d # ASh

16060116b # 134d # 86h # 16160116b # leed # AGh

10608111b # 135d # 87h # 10166111b # l6/d # A/h

1060106Bb # 136d # 8Bh # 1010166Bb # 168d # RABh

10001681b # 137/d # 8Sh # 101616601b # 169d # RASh

10001616b # 138d # 8Ah # 10101616b # 178d # AAh

10601611b # 139d # 8Bh # 10101811b # 171d # ABh

10001166b # 148d # 8Ch # 18181166b # 17°2d # ACh

16061161b # 141d # 8Dh # 10161161b # 173d # ADh

106801116b # 142d # BEh # 10101116b # 174d # AEh

106081111b # 143d # BFh # 101681111b # 175d # AFh

160106060 # 144d # 96h # 10116606b # 176d # B6h

160166601b # 145d # Slh # 18116681b # 1/7d # Blh

16010816b # 146d # 92Zh # 16116616b # 178d # BZh

16016811b # 147d # 93h # 16116611b # 1/9d # B3h

16010166b # 148d # 94h # 1601101660 # 188d # B4h

10616161b # 149d # 95h # 1681160161b # 181d # BSh

16010116b # 158d # 96h # 16116116b # 182d # B6h

16818111b # 151d # S¢h # 1681168111b # 183d # B¢/h

1601160Bb # 152d # 98h # 16111666b # 184d # BBh

16011681b # 153d # 95Sh # 16111661b # 185d # BSh

16011616b # 154d # SAK # 168111616b # 186d # BAh

166011811b # 155d # 9Bh # 10111811b # 187d # BBh

106111686b # 156d # SCh # 10111166b # 188d # BCh

16011161b # 157d # 9S0h # 16111181b # 189d # BOh

16011116b # 158d # SEh # 18111116b # 198d # BEh

18611111b # 139d # SFh # 18111111b # 191d # BFh
302 APPENDICES

S
S
k
S
S
3
S
S

S
E
S

S
E
S
S
S
3
S
S
S
S
S

2
3
S
S
S
R
S
S

S
S
S
e

Binary

11666666b
116686081b
116668168b
116666811b
1166081668b
1168808181b
116668116b
1168608111b
116681666
118816081b
116681816b
116681611b
11661166b
11681181b
116681116b
11861111b
11816686b
11816681b
11816816b
118160811b
11818186b
118168181b
118168116b
118168111b
11811666b
11811681b
118118168b
116116811b
11811166b
11811181b
11811118b
11611111b

Decimal

¥ 192d
¥ 193d
#

S
S
S
S
S
S
S
S
S
S

S
E
S
S
e
S
S

S
S
S
S

S
S
S

194d
195d
196d
197d
196d
199d
288d
28ld
282d
283d
284d
282d
286d
287/d
268d
289d
216d
211d
212d
213d
214d
215d
216d
217d
218d
219d
228d
221d
222d
223d S

S
E
=
S
S
S
S
S
S
S
S
S
S
S
S
S
S

S
S
S
S
S
S

S
S
S
S
R

Hex.

CBh
Clh
C2h
C3h
C4h
Coh
Ceh
C’h
CBh
CSh
CAh
CBh
CCh
COh
CEh
CFh
DBh
Dih
DZh
D3h
D4h
DSh
Déh
D7h
DBh
DSh
DA
DBh
DCh
DDk
DEh
DFh S

E
S
S

S
E
S

S
E
S
S
S
S
S
S
S

S
S

S
S

S
E
S
S
S

S
R
S

A: Review ofthe Hexadecimal Number System

Binary

11166666
111668681b
111668818b
111666811b
11168168b
111668181b
11188118b
11188111b
11161666
111816681b
111681816b
11181811b
11181166b
11181181b
11161116b
11161111b
11116666
111166681b
1111668168b
111166811b
11118188b
111168181b
11118116b
111168111b
11111666b
111116681b
11111818b
11111811b
11111166b
11111181b
11111116b
11111111b

Decimal

224d
¥ 223d
i

S
E
S
S

S
E
S
S

2
3

S3
F
3
S
3
S
S
3
S
S
S
S
S
S
S

S
E
S

S
E
2

S
E
S
S
e

226d
22ed
228d
229d
2368d
231d
232d
233d
234d
233d
236d
237d
238d
239d
2468d
241d
24ed
243d
244d
242d
246d
247d
248d
249d
228d
2ald
2a2d
233d
234d
292d S

S
3
S
S
S
S
S
S
S
S
3
S
S
S
S
S
S
R
S
S
S
S
S
S

S
R
S
S

Hex.

EBh
Elh
Ech
E3h
E4h
ESh
E6h
E’h
EBh
ESh
ERh
EBh
ECh
EDh
EEh
EFh
FBh
Flh
Feh
F3h
F4h
F3h
Féh
Feh
FBh
FSh
FAh
FBh
FCh
FDh
FEh
FFh

303

B: Graphics Operations and Commands

Setting/Checking Graphics Parameters

Operation Command
(Interactive) (Programmable)

ELEHEH3 SIZE
SATANDIEE

 LT
CronnxdHEulyY) *
N

oD GEACTE INDEP
oPonIEE

« PPAR 3 GET
»

m DEPND
&JPLoT)%Efiifl

« PPAR 7 GET
»

LA RES
15l ()

« PPAR 4 GET
»

o)IEEIETEE « -31 CF
HEVEEE

304

« PPAR' PURGE
PICT PURGE

REZET PICT DROP

Description

Returnstheheightand
width of the grob, in
pixel units (page 107).

Resets plot parameters
to defaults (page 112).

Specifies independent
variable (page 114).

Recalls independent
variable (page 114).

Specifies dependent
variable (page 114).

Recalls the dependent
variable (page 114).

Specifies the plot reso-
lution (page 117).

Recalls plot resolution
(page 117).

Enables curve filling
(page 118).

APPENDICES

Operation Command
(Interactive) (Programmable) Description

o)HEEIED « -31 SF Disables the curve fill-

EREIVENTE » ing (page 118).

rron)AvEEEE AXES Specifies intersection
of axes (pp. 108, 116).

« PPAR 5 GET Recalls intersection of
» axes (pp. 108, 116).

&ron)HETATI CENTR Specifies the center of
PICT (page 115).

« PPAR 0OBJ* & DROPN Recalls center of PICT
DUPZ - 2 -~ DUP RE (page 115).
- PICT SIZE SWAP
DROP B*R 1 - -~ ROT

ROT + 2 -~ +
»

PTN

T

EEIN: SCALE
Sets the x and y plot-
ting scales (page 115).

« PPAR 0BJ+ & DROPN
SWAP - 18 # C*R Recallsxand yplotting
PICT SIZE 1 - B*Rscales (page 115).
ROT SWAP -~ ROT ROT
B*R 1 - ~ SWAP

%

PAT XRNG
2JPLOT]V> Setsx-range (page 115).

« PPAR 1 Z SUB
RE EVAL Recallsx-range (p. 115).

»

PonAN YRNG Setsy-range (page 115).

2JPLOT]Y]Y]»

B: Graphics Operations and Commands 305

Command

(Programmable)

PPAR 1 2 SUB
IM EVAL

Operation
(Interactive)

&

PMIN

PPAR 1 GET&

PMAX

PPAR 2 GET&

Fre)IRN PDIM

EroDETAMDETE W

EPoDEIAMDEIN °H

Creation/Manipulation ofGrobs

(PICTURE)(sTO] « PICT RCL
(PICTURE) IH1LI »

PICT |PICT[RGEN

(EW)(ET0) « B »GROB
»

(Pr)(AT(vxT)[MEER LCD?

306

Description

Recalls y-axis range
(page 115).

Sets PMIN (page 116).

Recalls PMIN (page
116).

Sets PMAX (page 116).

Recalls PMAX (page
116).

Changes PICT size or
user units (page 123).

Changesx-rng. (p.117).

Changesy-rng. (p.117).

Puts PICT onto Stack

(pages 95, 119).

Turns equation into a
grob (pages 95, 119).

Turns Stack display in-
to a grob (a “snapshot”)
(pages 95, 119).

APPENDICES

Operation Command
(Interactive) (Programmable)

Pre)HIEEHT] *GROB

Pre)IEIEET BLANK

« GROB x y B
»

9|GROE50F GOR

Pre)AR GXOR

RS REPL

LIZT REPL
(PICTURE) 1L

FreEAAIETE SUB

(PICTURE) NxT(NxT)I

(PICTURE) IHTIMK~AW
(PICTURE) [DED)

(JPLoT) (or (JPLOT)AT ERASE
(PICTURE) (G)CLEAR)
(PICTURE) IHIl~)EEES

(Stack) (+) +

(Stack) (+/9) NEG

B: Graphics Operations and Commands

Description

Turns any object into a
grob (pages 95, 119).

Creates a blank grob
(pages 95, 119).

Superimposes one grob
upon another, OR’ing
pixels (page 120).

Superimposes one grob
upon another, XOR’ing
pixels (page 120).

Superimposes one grob
upon another, replac-
ing target grob pixels
(pages 120, 121).

Creates subgrob from
parentgrob (pages 120,
121).

Erases (“blanks out”)
part ofgrob (page 121).

Erases (blanks out) all
of PICT (page 112).

Adds(GOR’s)two grobs
ofsame size (page 126).

Inverts a grob, toggling
each pixel (page 126).

307

Accessing, Viewing/Displaying Grobs

Operation Command
(Interactive) (Programmable) Description

(Stack) () PICTURE Enters graphics envi-
(Stack/CL) or GRAPH ronment (page 105).

DFRAL DRAW (Draws all or some of

([o)PLoT)[IETH] PICT (pages 95, 112).

(PICTURE) Q]9 PVIEW Enters scrolling mode
(EW) &9 (pages 32, 106).

(Scrolling) («),(a),(v),(») Scrolls through grob.
(pages 106, 129-130).

(Scrolling) Jumps to edge of dis-

BURNEUIR0 play orgrob (pages 106,
129-130).

(Scrolling) (G]« Exits scrolling mode to
EW or graphics (pages
106, 129-130).

(Scrolling) Exits scrolling mode to
EWor Stack(page 130).

IEEEI TEXT Exits graphics environ-
(PICTURE)(CANCEL) ment (pages 105, 125).

OUT[PYIEW PVIEW Viewsselected portions
of PICT (page 106).

(Pre)(AT~x7)ETNHT *LCD Displays grob in Stack
display (page 100).

(Pre)ANT)BT ANIMATE Displays grob sequence

308

(pp- 121-122,150-152).

APPENDICES

Editing/Drawing on Grobs

Operation Command
(Interactive) (Programmable) Description

AUTO Automatically rescales
(@PronMYEETA y-axis prior to DRAW

(page 113).

PITH DRAW Plots a curve in PICT.

([oJPLon)[TTTR] When used in a pro-
gram, DRAW does not
erase PICT or draw
axes (pages 95, 112).

GronT DRAX Drawsthex-andy- axes
(page 112).

K13 3. LABEL Labelsx- andy- axes (or
(PICTURE) RAdhm(NXT)[W;1:358 PICT boundaries), us-

ing current number
format (page 112).

PX*C Converts pixel coordi-
nates into user units
(page 123).

C*PX Converts user units
into pixel coordinates

(page 123).

m BOX Draws a box in PICT
(PICTURE) IHILEN (page 123).

B: Graphics Operations and Commands 309

Operation
(Interactive)

)]PICT LINE
(PICTURE) IHTIINLT

GRSPICT |TLIME
(PICTURE) IHTINIMLT

Pre)AIETHE
(PICTURE) IHIIENN

Pra)IN7IF
(PICTURE) EHTRE LTI

Fre)INEENDHETE
(PICTURE) IHILE LTIl

Pre)IGIHENxT)IGEEN

310

Command

(Programmable)

LINE

TLINE

ARC

PIXON

PIXOFF

PIX?

Description

Draws a line in PICT

(page 123).

Draws a line in PICT,
toggling pixels (page
123).

Draws a circle or arc in

PICT. isn’t pro-
grammable; use a 360°
arc (page 124).

Turns a pixel on (page
124).

Turns a pixel off (page
124).

Tests pixel status:
l=0on HB=off

(page 124).

APPENDICES

Printin raphic

Operation Command
(Interactive) (Programmable)

GWER PR1
Vo)LTvI

WANEITR PRVAR

Q10 [FAL PRST
(Gvo)[ddlhi PRSTC

« ... *5TR
PR1
%

« ... 1 =LIST PRI ...
¥

EIRIPEINT [PRLLD PRLCD

B: Graphics Operations and Commands

Description

Prints grob in Level 1,
in graphics mode (page
271).

Prints grob(s) named
in Level 1, in graphics
mode (page 271).

Prints the contents of
Stack—grobs in com-
pact mode:

Graphics nxm

Prints a grob in text
mode. Note that a list
uses less memory than
a string.

Prints display. Note:
Do not use (ON-(/0)
with EPSPRINT.LIB

or PCLPRINT.LIB

(pages 287, 289).

311

Miscellaneous Graphics Commands

Operation Command
(Interactive) (Programmable)

GES]PICT

|

PICT

|

PICT

EX9]OUT[CLLCO] CLLCD

G|OUT

|

DIEP DISP

G|OUT[FREEZ FREEZE

Fre)INMEEETA MSGBOX

(2JPLoT)(a)MIITH

(PICTURE)
(PICTURE) IHIH

(PICTURE)
(PICTURE) ATl

312

Description

Specifies the current
graphics object.

Use « ...PICT RCL...
>

toput contentsontothe
Stack (page 123).

Clears (blanks out) the

display (page 125).

Displays a line of text
(page 125).

Freezes all or part of
the display until next
keystroke (page 125).

Displays a messagebox
(page 125).

Offersaselection ofplot
types; the [AEfddmenu
selections areprogram-
mable (page 114).

Returns cursor coordi-
nates to Stack (p. 165).

Displays cursor coor-
dinates in user units.
(+),) or any menu key
will restore menu(page
173).

APPENDICES

Operation
(Interactive)

(PICTURE)

Command

(Programmable)

(PICTURE) nxT)[

(PICTURE)
(PICTURE) IETIH =TEEEH

BARPLOT
HISTPLOT
SCATRPLOT

(PICTURE)
(PICTURE) IR 7I

(PICTURE)IR

(SIsTAD LFH LA [:
()sTAT) (N LA LRI
(SIsTAD) T :::nn.

B: Graphics Operations and Commands

Description

Hides/restores Graph-
ics menu. (-] or any
menu key restores the
menu.

Marks current cursor

location for BOX, LINE,
etc.

Toggles cursor style—
overwrite vs. invert.

Menu ofgraphic Solver
functions (page 71).

Generates statistical

plots. Refer tothe HP
User’s Guide (UG),
chapter21, “Statistics,”
for more information.

313

Setting/Checking 3-D Graphics Parameters

Operation Command
(Interactive) (Programmable) Description

XVOL Sets x-range of view

iolR volume (page 138).

ronliEE

« VPAR 1 Z SUB EVAL Recalls x-range ofview
* volume (page 138).

YVOL Sets y-range of view

L[volume (page 138).

™

« VPAR 3 4 SUB EVAL Recalls y-range ofview
® volume (page 138).

 ZVOL Setsz-range ofviewvol-
3 ume, forWIREFRAME,

PNEE(V)Y) YSLICE and PARSUR-
FACE only (page 138).

« VPAR 5 6 SUB EVYAL Recalls z-range of the
® viewvolume, forWIRE-

FRAME, YSLICE and
PARSURFACE only
(page 138).

S[PLOTINXTEIL XXRNG Sets x-range of sam-
AR pling grid, GRIDMAP

EroDIRE)Y) and PARSURFACE on-
ly (page 139).

« VWPAR 7 8 SUB EVYAL Recalls x-range ofsam-
* pling grid, GRIDMAP

and PARSURFACE on-
ly (page 139).

314 APPENDICES

Operation Command
(Interactive) (Programmable)

SrrronnxT R YYRNG
]

v
([2)ProT)FEETE

« VPAR 9 18 SUB EVAL

EYEPT

Description

Sets y-range of sam-
pling grid, GRIDMAP
and PARSURFACE on-
ly (page 139).

Recalls y-range ofsam-
pling grid, GRIDMAP
and PARSURFACE on-
ly (page 139).

Sets x-, y- and z- coordi-
nates of eyepoint, for
WIREFRAME and PAR-
SURFACE only (p. 139).

« YPAR 11 13 SUB EVAL Recalls x-, y- and z- co-
»

pLoTInxTlER NUMX
LT ()KIS

DEENU0

& VPAR 14 GET

SJPLOTINXTIEIL NUMY
il (vxCTTRE

E2PLoT)(VIY>)

£ VPAR 15 GET

B: Graphics Operations and Commands

ordinates of eyepoint,
WIREFRAME and PAR-
SURFACE only (p. 139).

Sets number ofx inter-
vals to be plotted (page
139).

Recallsthe numberofx

intervals to be plotted
(page 139).

Sets number ofy inter-
vals to be plotted (page
139).

Recalls the number ofy
intervals to be plotted
(page 139).

315

C: User-Named Objects

Alphabetically (objects named by other objects are also listed here,

among the References)

Name PATH References Page

AODB { HOME TOOLS 1} 159

AMRT { HOME G.CH3 } PV,FVON, I, PMT 84

TVal

ARROW { HOME TOOLS PICS } 128

BEGEND { HOME G.CH3 } VIEWP 58

BIG { HOME TOOLS PICS } 128

BIGSINE { HOME TOOLS PICS } 130

BKING { HOME TOOLS PICS } 239

BOLOID { HOME TOOLS } 8, Y 148

BPIECE { HOME TOOLS PICS } 239

BSTEP { HOME TOOLS % 151

BULLDOZER { HOME TOOLS } DOZDATA 230

CALEND { HOME TOOLS } MYR 264

CHKRS { HOME TOOLS } Flags, SETUP, 240
REDRAW, GLABEL,
MYMOVE, THMOVE,
LAYOUT

COMBINE { HOME TOOLS } 151

CONTOUR { HOME TOOLS } ARRAY 223

316 APPENDICES

Name

CTR

C=L

DIODE

DISPLAY

DISSECT

DOZDATA

EGGS

EMPTY

EPRI1

EPRVAR

FF

FOURIER

FOYRY

Fruit

G.CHZ

G.CH3

GAND

GLABEL

GL{

GL-»

i
y

i
y

o
y

o
y
o
y
i
y

i
y
o
y

o
y

e
i
y

i
y

P
y

i
y

P
y

e
y

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

C: User-Named Objects

PATH

TOOL:

TooL:

G.CH3

TOOL®

TOOL®

TOOL®

TOOL®

TOOL®

TOOL®

TOOL®

TOOL®

TOOL®

G.CHZ

G.CH3

TOOL®

TOOL®

TOOL®

TOOL®

}

PICS }

PIC }

PICS: }

e
L
R

T
S
L
,

References

ILV,Vb, Io

A, Nmax, w, t

f,A, N, Nmax, w, t

CSTA, APPLES,
CSTO, ORANGES,
TOTHL

AODB

165

260

67

128

272

229

144

91

287

287

281

218

34

42

25

41

126

157

158

158

317

Name

GRAF&

GSIZE

HILITE

HPR1

HPRVAR

HYP

IdealGas

IdealGas2

IDIDA

Shopping

M1

M2

M3

M4

MAKEFACE

METER

MkAxis

MKBOARD

MOTION

MOVEIT

318

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

PATH

TOOL:

TOOL®

TOOL:

TOOL:

TOOL:

TOOL®

G.CH3

G.CH3

TOOoLS

G.CH3

G.CH3

G.CH3

G.CH3

G.CH3

TOOL:

TOOL:

TOOLS

TOOL:

G.CH3

TOOL:

o
M

M
N

g
Y

g
g

g
g

g

PIC: }

}

}

}

}

References

SEE, STOPIC,
RCLPIC

FF

FF

K, Y

P,V,nR,T

P,V.N,RT

VO, VG, Vp, Vbi

Fruit, Wagon

v,vl, at

%, %@ vdut

w,x8,uta

V, vla, %, x6

MeterFace

BOARD

M1, M2, M3, M4

LAYOUT, C-L,
RPIECE, BPIECE
RKING, BRING,

99

255

289

289

142

46

51

219

o9

62

62

62

62

180

174

203

261

62

258

APPENDICES

Name PATH References Page

MAA { HOME G.CH3 } Per, VIEWP 58

MULTIPLOT { HOME TOOLS % SIV,VALS 216

My { HOME TOOLS Cx, CY, PX, PY 162

Myl { HOME TOOLS % NUDGE 184

Mv1@ { HOME TOOL: ¥ NUDGE 186

Mall { HOME TOOL: } PSIZE, ADDB, 188

Cursor

MYMOVE { HOME TOOL? } SELECT, VALID, 248

MOVEIT

MYR { HOME TOOL: } 266

NORMAL { HOME TOOL: PICS } 128

Now? { HOME TOOL: } Nxt ime, &t 202

NUDGE { HOME TOOLS } Cursor, ADDB 183

OFF1 { HOME } TOOLS, TITLE, PICS 170

PICS { HOME TOOL: } 89

PLANE { HOME TOOL: } Z, R, 217

PL4D { HOME TOOL: } 148

POINT { HOME TOOLS } DAPar 181

Pr8 { HOME TOOL: } 204

PRANIM { HOME TOOL: } 150

PRGROB1 { HOME TOOL: } 282

PRGROBZ { HOME TOOL: } DISSECT, 284

TRANSLATE

C: User-Named Objects 319

PSCAN
PSCN
PSTRIP

R

RCLPIC

REACTOR

RERDP

READV

REDRANW

RKING

RLC

RLCEXP

RLCPER

ROXY

RPIECE

$SIZE

SCAN

320

i
y

i
y

i
y

i
y

o
P

i
y

i
y

i
y
A

A
f
a

e

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

PATH

TOOL: ¥

TOOL: }

TOOL: }

G.CH3 }

TOOL: }

G.CH3 }

G.CH3 }

TOOL: }

TOOL: }

TOOLS: PICE: }

G.CHZ }

G.CHEZ }

G.CHE }

TOOLS }

TOOL® PICE: }

TOOL: ¥

TOOL: ¥

References

DApar, &t Nxtime,

Pr8, Now™

P,VY,n, R, T, RERDP

BOARD, LAYOUT,
C-L, RPIECE,
BPIECE, RKING,
BKING

LRCt,I

y,L,R,C,t, Io,s

y,L,R,C,t, Ao, v

Cursor, MY1, MY18,

Mall, PSIZE

181

190

199

46

127

54

53

195

247

239

35

35

35

142

239

100

180

APPENDICES

Name

SCN

SEE

SELECT

SETUP

SINE

SSTEP

STARTUP

Step

Step2

STOPIC

STRIP

THMOVE

TINY

TITLE

TOOLS

TPIX

TRANSLATE

TRAY

TRYIT

i
y

i
i
y

e

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

C: User-Named Objects

PATH

TOOLS

TOOL®

TOOLS

TOOL*

TOOL®

TOOL*

TOOL:

G.CH3

G.CH3

TOOL:

TOOL:

TOOL:

TOOL:

TOOL®

TOOL:

TooL:

TOOL:

TOOL:

e
b

b
M

PIC: }

PICZ }

W
b

b
by

References Page

Flags, PYPK,CK, 191

CY, My, PYU

98

LAYOUT,HILITE, 252
C-L

PSIZE, Cursor 182

91, 129

151

BOARD, MKBOARD, 244
GL{, GLABEL,
LAYOUT

K, KB 64

R, K8 65

127

Flags, DApar 197

MOVEIT 250

128

140

89

124

274

144

142

321

Name

TVol

TVMZ

VALID

VIEWP

I

llagon

WHOZAT

#PAN

YPAN

ZPAN

322

r
y

i
y

o
y

e
y

HOME G.CH3 }

HOME G.CH3 }

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

PATH

TOOL: ¥

G.CH3 }

TOOL: }

G.CH3 }

TOOL: }

TOOL: ¥

TOOL: }

TOOL: }

References

PY,PNMT, I, N, FV

Page

49

PV, I, Begin?Per, 56

PMT, N, FY, VIEWP,

MEAA, BEGEND

WHOZAT

Per,MOA, Besin™

256

58

DApar, MAKEFACE, 208

CTR, POINT

LOAD, WT. A,
APPLES, WT. 0,
ORANGES

LAYOUT

VPAR

VPAR

VPAR

59

260

146

147

147

APPENDICES

By Directory (Last*First)

Directory PATH Name

1 HOME }

i HOME TOOLS ¥

C: User-Named Objects

OFF1
TOOLS
G.CH3
G.CHZ

HPRVAR
HPRI
EPRVAR
EPRI
PRGROB2
PRGROB
FF
TRANSLATE
DISSECT
MYR
CALEND
MKBORRD
CsL
WHOZAT
MOVEIT
VALID
HILITE
SELECT
THMOVE
MYMOVE
REDRA
STARTUP
CHKRS

Directory PATH Name

{ HOME TOOLS } BULLDOZER

(cont.) CONTOUR

IDI0B
FOURIER

PLANE
MULTIPLOT

POINT

MAKEFACE

VM
Pr8

MkAxkis
Now?
READY

PSTRIP

STRIP

My

SCN
PSCN

Mall

My1B
MV1
NUDGE

SETUP
PSCAN
SCAN

CTR

ADDB
GL+

323

Directory PATH

i HOME TO0OLS }

(cont.)

324

Name

GL!
GLABEL
COMBINE
BSTEP
SSTEP
PRANIM
BOLOID
PL4D
ZPAN
YPAN
»PAN
TR&Y
EGGS
TRYIT
HYP
ROKY
GRAFX
RCLPIC
STOPIC
GAND
TPIR
$SIZE
GSIZE
SEE
PICS

Directory PATH

1 HOME TOOL: PICE: }

Name

BKING
RKING
BPIECE
RPIECE
DOZDATA
METER
TITLE
BIGSINE
ARROW
DISPLAY
TINY
NORMAL
BIG
EMPTY
SINE

APPENDICES

Directory PATH Name

{ HOME G.CH3 } AMRT

DIODE

Step?

Step
MOTION
M4

M3

MZ
M1

Shopping
Wagon
BEGEND

MBA

VIEWP
TVMZ
REACTOR

RERDP
IdealGasZ

TVol

R
IdealGas
Fruit

{ HOME G.CH2 } RLCPER

RLCEXP
RLC
FOYRY

C: User-Named Objects 325

Index

(Entries do not include user-named objects—see Appendix C)

B, 111-112, 114

Adding two grobs, 126, 304

Algebraic notation, 9, 25, 27

IETM, 81-82

Analog, 205

Analytical functions, 31

ANIMATE, 121, 150-152

Apples and oranges, 42, 59, 79

ARC, 124, 173, 304

AKERMYE
ATICK, 116

AUTO (see also _AUTOSCALE), 111-

112, 304

AUTOSCALE, 12, 70, 111

AXES,116, 118, 304

Axes, 11, 108-110

Band teacher, high school, 26, 39, 294

Battleship, 269

Bitmap, 91, 96-97, 273

BLANK, 95, 119, 121, 140, 304

BOX, 101, 123, 166, 171, 304

EEH, 70, 75

Bugs, 22

clock display, 178

Bulldozer, 228

BYTES,177

326

Calendar, 262

Centering a plot, 115

CENTR,115, 304

Checkers, 232

Checksum, 177

RN, 14, 124, 165, 173, 304

CLLCD, 125, 304

Clock display bug, 178

BT, 118, 304

Command Line, 31-32, 39

CONST,46

Constants Library, 46

Contour plotting, 220

Converting grobs, 291-292

Cookie(s), 21, 32, 87, 101, 129, 295

Current equation (see EQ)

Curvefilling, 110-111, 118

Custom menus:

containing icons, 101-103

in MES, 81-82

in Solver, 51-54

including programs in, 53-54

SYSEVALs, 102-103

C*PX, 93, 123, 277

APPENDICES

KW, 275

PICTURE environment, 121

programmable equivalent, 121

DEPND, 114, 272

der(FN)J, 68

Diode, 66-67

equation for, 67

Diode (cont.):

ideal vs. real, 66

DISP, 125, 304

Dot spacing, 271-289

ITiEd, 15, 17, 124, 165, 304

T8N, 15, 124, 304

DPI, 286-289

DRAW (see also AUTO), 11, 95, 111-

112, 304

DRAX, 111-112, 116, 304

duplicate variables, 50

East, 228-229

Course on HP 48, 20

(see PICTURE EDIT menu)
EPOFF, 286

EPON, 286

EPSPRINT.LIB 286

EQ (current equation), 42, 43, 111

N112

Index

EquationWriter, 9, 24-39, 95

ease of use, 9, 27

examples, 10, 28, 33-37

exercises/self-test, 35-37

exiting, 31

rules of thumb, 30

Selection Environment, 32

speed, 25-26

stages of familiarity, 26

textbook notation, 9, 25, 27

use with algebraics, unit objects,

28-29

use with analytical functions, 31

vs. Command Line, 26, 31, 39, 56

ERASE, 11, 111-112, 117, 304

EW (see EquationWriter)

I3 (see Selection Environment)

i3, 13
Extremum, 13, 73, 77

Eyepoint, 134, 139-140

X, 75-76

Field-effect transistor, 219

X, 111, 118
Flags, 110-111, 118

Font sizes, 119, 157-163

Form feed, 281, 289

Fourier series:

with EW, 34

with MULTIPLOT, 218

Freehand drawing, 14, 16, 169-175

FREEZE, 125, 304

.75
EEER, 13, 77

327

Games:

between two machines, 232

playing field, 269

role-playing adventure, 269

sprites, 228

video, 269

GAND,126

Gas constant R):

EW example, 29

Solver example, 46-47, 57

GOR, 120, 174, 275

GRAB48.EXE, 291-292

GRAPH, 105 (see PICTURE)

Graphics between two 48’s, 232, 293

Graphics cursor, 13, 14

Graphics object (see grob)

Grob, 16, 18, 89

adding two together, 126, 275

as icon, 101-103

bitmap (hexadecimal), 91

convertingto otherpicture formats,

291-292

creating, 16, 90-91, 95, 98

default size, 92

definitions, 89-90

memory requirements, 99-100

in menus, 101-103

inverting, 126

size, 91, 99-100, 103

viewing in the Stack, 91, 95, 106

E13, 119
GROBer, 291-292

GROB2TIF .EXE 291-292

GXOR, 120, 174, 304

*GROB, 95, 119, 304

328

Hexadecimal:

bitmap, 91, 96-97

digits, 96-97

number system, 297-303

High school band teacher, 26, 39, 294

HP Calculator BBS, 286, 292

HP 48 calculator, 9, 23, 105, 132

HP 82240B printer, 271

HPOFF, 288

HPON, 288

*H, 117, 274

Icon, 101-103

Ideal Gas Law, 33, 45-46, 54

IFTE, 65

I1l-mannered functions, 64

INDEP, 114, 272

Independent variables, 108, 114

multiple, 182

Indexed lists/matrices, 215, 227

A, 112

Input form, 10

Solver, 41, 43

Plot, 71

Instrument control, 193

Integral inside Plotter, 78

Intermediate results, 72

Inverting a grob, 126

B3, 71, 73-74

Junk food, 21

APPENDICES

LABEL, 11-12, 109, 111-112, 118, 277

Labelling axes, 11, 109, 111-112, 156

LCD*, 119, 274

example, 17, 95

use in documentation, 17

LIBEVAL, 83 (see also SYSEVAL)

LINE, 123, 165, 173, 278

Linear motion, 62

Linked equations:

creating, 59-63, 81-82

in Solver, 59

limitations, 63

rotating with NXEQ, 60, 62

vs. Multiple Equ. Solver, 63, 79

*LCD, 106, 121, 276

*LIST, 151

Macintosh graphics, 291-292

MAG, 286-289

Memory, 22-23, 128, 236

MES (see Multiple Equ. Solver)

MINIT, 79-82

Mpar, 79

MSGBOX, 125

(see MSOLVR)
MSOLVR, 79

Multiple Equ. Solver, 63, 79-82, 85

NEG, 126, 275

North, 228-229

NUMX, 139

NUMY, 139

LEIA, 60, 76-77

Index

(ONHPRINT), 38, 287, 289

KTl 125
LA, 109
Owner’s Manual (see User’s Guide)

PRINT (suggestion), 268

Parabola, 11, 13

PCLPRINT.LIB 286, 288

PDIM, 12, 123, 304

PICT DX
PICT, 16-17, 90, 123, 304

purging, 90

recalling , 90, 95

storing, 90, 98

PICTURE EDIT menu, 14

PICTURE environment, 14, 304

entering, 14, 98, 105, 165, 275

Pixel:

coordinates, 304

turning on and off, 15, 304

Pixel number, 92-94

vs. user units, 92-94

format, 92

PIXOFF, 124, 304

PIXON, 124, 304

PIX?, 124, 304

PLOT menu, 111-113

Plotter, 9

example, 10

input form, 10, 111

Solver within, 13, 71-74

Plotter driver, 290

PMAX, 116, 172

PMIN, 116, 172

329

Polynomial, 3rd-degree in Plotter, 70

PPAR, 107, 111, 114-117, 304

contents and usage, 108-110

creating, 107

default values, 108

in each directory, 108, 123, 163,

165, 174

Printer:

Epson, 38, 275, 277, 279, 282, 286

HP 824408, 38, 271

Infrared (IR), 38, 271

Laserdet/Deskdet, 275

PCL, 38, 275, 277, 278, 284, 288

Printer driver:

algorithm, 280

construction considerations, 281

control codes, 278

EPSPRINT, 286

HPPRINT, 288

plotters, 290

usage, 281, 286-289

Printing:

equation, 38

with MES, 81-82

with (ONH/0), 38, 287, 289

with PR1, 38, 271

Printing grobs, 271-290

limitations ofHP 82240B, 271

text representation, 271

PRLCD, 304

Programs inside Solver, 53

PRST, 304

PRSTC, 304

PRTPAR, 304

PRVAR, 271

330

PR1, 38, 271

, 111, 114, 135, 304

PVIEW, 98, 106, 124-125, 304

PX*C, 93, 123, 304

Quick Start Guide (QSG), 133-134

REPL, 120-121, 174, 275

in Selection Environment, 32

RES, 108, 117, 118, 304

, 304

Right-reading bitmap strings, 273

RLC circuit, series, 35-36

ROM versions, 23

ROOT, 13

in Plotter, 71-74

in a program, 79

vs. ISECT, 73-74

with multiple equations, 73

T, 46
Rotating a 3-D view, 141-143

Sacred variables, 81-82

SCALE, 115

Scanning inside a big grob, 178

Scrolling mode:

in EW, 106, 304

in PICTURE environment, 106,

129-130, 304

APPENDICES

Selection Environment (in EW):

EDITARY
1A32-33

N, 32
[, 32
ETN 32

Serial Interface Kit, 286, 292

“HADE L]

Signal conditioning, 193, 206

EEM, 118

Sine wave, 90, 92, 129, 218

SIZE, 304

, 13
vs. EIER, 75

Solver, 9, 40-87

acceptable forms of EQ, 51

as a programming language, 41

custom menus, 51-54, 56

customizing, 51

error message(s), 47

examples, 46, 49, 51, 53, 59, 62,

64, 66

ill-mannered functions, 64

in a program, 63, 83-84

in MES, 79-82

in Plotter, 13, 41, 70-78

including programs, 53

input form, 41, 43

linking equations, 59, 60, 62-63, 79

menu-based, 41-42

programmable commands, 41

protecting variables, 51

unit objects, cautions, 47-49

vs. programming, 9, 41, 87

(see Solver)

Index

South, 228-229

Step functions, 64

Stripchart, 193

SUB, 120, 304

Subexpressions, 30, 33

SYSEVAL, 102-103 (see also LIBEVAL)

Temperature units, cautions, 47-48

TEXT, 125, 304

Text in graphics, 157-164

Textbook notation, 9, 25, 27

Three-dimensional graphics, 132-153

eyepoint, 134, 139-140

rotating, 141-143

translating, 144

view plane, 134

view volume, 134, 138

VPAR, 138-139, 304

zooming and panning, 145-149

TIF2GROB.EXE 291-292

TIFF files, 292

Time Value ofMoney, 45, 49-50, 55-58

Title page, 169-170

TLINE, 123, 165, 304

Toolbox, 127, 131

TRANSIO, 280

Translating in 3-D, 144

Translation string, 273-274

converting grobs, 276

printing grobs, 273-276

Two-machine graphics, 293

331

Undocumented features, 101-103, 215

Unit objects:

use in EW, 29

use in Solver, cautions, 47-48

Unsupported features, 22

User units, 92-94

defined via PPAR, 108-110

disadvantages, 94

vs. pixel number, 92-93

User’s Guide (UQ), 21, 26, 30, 37, 121,

133, 220

User-defined derivative, 68-69

VERSION,23

View plane, 134

View volume, 134, 138

VPAR, 107, 111, 138-139, 304

Voltmeter, 205

face, 171

Weird Al (see Yankovic)

Welcome screen, 169-170

West, 228, 229

Whetstone, Mr., 39

*W, 117, 274

x-range:

default, 92

setting, 11, 115

XON/XOFF,281, 286, 288

XRNG,11, 115, 172, 304

XVOL,138, 304

332

y-range:

adjusting, 12

automatic setting, 10, 115

default, 92

Yankovic (see Weird Al)

YRNG, 115, 172, 304

YVOL, 138, 304

EIE]12, 70, 75
Zooming/panning in 3D, 145-149

ZVOL, 138, 304

APPENDICES

Reader Comments

We here at Grapevine like to hear feedback about our books. It helps

us produce books tailored to your needs. If you have any specific

comments or advice for our authors after reading this book, we’d

appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State:

How long have you had your calculator?

Please send Grapevine catalogs to these persons:

Name

Address

City State Zip

Name

Address

City State Zip

Ifyou liked this book, there are others that you will certainly enjoy also

(and see also the comments on pages 20-21):

An Easy Course in Programming the HP 48G/GX

Hereis anEasy Coursein true Grapevine style: Examples, illustrations, and clear,

simple explanations give you a real feel for the machine and how its many features

work together. First you get lessons on using the Stack, the keyboard, and on how

to build, combine and store the many kinds ofdata objects. Then you learn about

programming—looping, branching, testing, etc.—and you learn how to customize

your directories and menus for convenient “automated” use. And the final chapter

is filled with example programs—all documented with comments and tips.

Algebra/Pre-Calculus Calculus

on the HP 48G/GX on the HP 48G/GX

Grab your calculator, grab this book, Get ready now for your college math!

and you're all set for math class. Youll Plot and solve problems with this ter-

getlots oflessons, examples and advice rific collection of lessons, examples and

on graphing and problem-solving with: program tricks from an experienced

classroom math teacher:

Functions (linear, quadratic, rational,

polynomial), trig, coordinate and ana- Limits, series, sums, vectors and gradi-

lytic geometry, conics, equations oflines ents, differentiation (formal, stepwise,

and planes, inequalities, vectors. implicit, partial), integration (definite,

indefinite, improper, by parts, with vec-
You'll also get greatprogrammed tricks tors), rates, curve shapes, function aver-

and tips for plotting and solving—all ages, constraints, growth & decay, force,

from an experienced classroom math velocity, acceleration, arcs, surfaces of

teacher. revolution, solids, and more.

For more details on these books or any of our titles, check with your

local bookseller or calculator/computer dealer. Or, for a full Grapevine

catalog, write, call or fax:

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Phone: 1-800-338-4331 or 503-754-0583

Fax: 503-754-6508

ISBN __|Price?

Booksforpersonalcomputers

Lotus Be Brief $9.95

0-931011-40-X

0-931011-28-0

0-931011-29-9 A Little DOS Will Do You 9.95

0-931011-32-9 Concise and WordPerfect 9.95

0-931011-37-X| An Easy Course in Using WordPerfect 19.95

0-931011-38-8 An Easy Course in Using LOTUS 1-2-3 19.95

An Easy Course in Using DOS 19.95

ooksforHewlett-Packard ScientificCalculators

9.95_

0-931011-18-3 An Easy Course in Using the HP-28S

0-931011-25-6 HP-28S Software Power Tools: Electrical Circuits 9.95

0-931011-26-4 An Easy Course in Using the HP-42S 19.95

0-931011-27-2 HP-28S Software Power Tools: Utilities 9.95

0-931011-31-0 An Easy Course in Using the HP 48S/SX 19.95

0-931011-33-7 HP 48S/SX Graphics 19.95

0-931011-XX-0| HP 48S/SX Machine Language 19.95

0-931011-41-8 An Easy Course in Programming the HP 48G/GX 19.95

0-931011-42-6 Graphics on the HP 48G/GX 19.95

0-931011-45-0 Algebra/Pre-Calculus on the HP 48G/GX 19.95

0-931011-46-9 Calculus onthe HP 48G/GX 19.95

forHewlett-Packardfinancialcalculators
0-931011-08-6 An EasyCoursein Using the HP-12C 19.95

0-931011-12-4 The HP-12C Pocket Guide: Just In Case 6.95

0-931011-19-1 An Easy Course in Using the HP 19Bn 19.95

0-931011-20-5 An Easy Course In Using the HP 17Bu 19.95

0-931011-22-1 The HP-19B Pocket Guide: Just In Case 6.95

0-931011-23-X| The HP-17B Pocket Guide: Just In Case 6.95

0-931011-XX-0| Business Solutions on Your HP Financial Calculator 9.95

BooksforHewlettPackardcomputers-----e'

T0-931011-34-5

i 9.95,..

 Lotus in Minutes on the HP 951X

0-931011-35-3 The Answers You Need for the HP 951X 9.95

0-931011-44-2 Making Connections: Data Communications w/the HP Palmtop 9.95

S . Otherbooks e .

0-931011-14-0 Problem-SolvmgSxtuatlons A Teachers Resource Book 9.95

0-931011-39-6 House-Training Your VCR: A Help Manual for Humans 9.95
Contact: Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449 Corvallis, Oregon 97339-2449 U.S.A.
800-338-4331 (503-754-0583) Fax: 503-754-6508

*Prices shown are as of8/6/93 and are subject to change without notice. Check with your

local bookseller or electronics |computer dealer—or contact Grapevine Publications, Inc.

About the Author

RayDepew is a very normal guywho happens to own anHP

48 and likes to write. Graphics on the HP 48G/GX is his

second published work. His other projects in various stages

of completion include a compilation of children’s stories,

additional software for the HP 48, and some musical com-

positions that may never see the light ofday. To make some

money on the side, Ray works as an integrated circuit en-

gineer for Hewlett-Packard in Loveland, Colorado, where

he lives with his wife, 5 children, and a Dalmatian named

LazerJet. When he’s not working, writing, or fixing up the

house, he likes to spend time in the Rockies, read, make

music, play with his family (and the dog), and eat oatmeal-

chocolate chip cookies.

If you have comments or suggestions about this book, he

would appreciate hearing them. You can write to him in

care of the publisher:

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Graphics on the HP 48G/GX

Here is a fascinating look at the potential of that big display

on your HP 48G/GX. HP engineer Ray Depew shows you how to

build graphics objects (“grobs”) and then use them to customize

displays with diagrams, pictures, labels, titles, multiple plots,

games, and menu icons.

The book begins with a good, in-depth review ofthe Equation-

Writer, the SOLVE and the PLOT applications. Next, it guides

you through the locations and uses of the 48’s built-in graphics

commands, including the 3-D commands and animation. Then

you learn to build your own grobs and combine them into some

extensive application programs. There’s even a chapter that dis-

cusses transferring your HP 48 graphics to other computers or

printers.

So don’t miss this insightful—and fun—excursion into the

world of Graphics on the HP 48G/GX. It adds a whole new di-

mension to your use of this powerful machine.

ISBN 0-931011-42-b
’ 519095

Grapevine Publications, Inc.
626 N.W. 4th St. P.O. Box 2449

Coruvallis, OR 97339 U.S.A. 9 7809317011429

	Cover
	Contents
	1: Introduction
	What This Book Is About
	Plotting a Simple Function
	Solving Within the Plotter
	Freehand Graphics
	Grobbing Around
	What Next?
	Notes on Using This Book

	2: The EquationWriter
	Preparations
	Opening Remarks
	So What Does It Do?
	Examples

	Using the EquationWriter
	The Selection Environment
	A Fourier Series Example

	Test Your Skill
	Other Things
	Closing Remarks

	3: The Solver
	Opening Remarks
	Preparations
	Apples and Oranges
	The Ideal Gas Law
	The Time Value of Money
	Customizing the Solver
	Linking Equations: Solving Several at Once
	Using the Solver on Ill-Mannered Functions

	Using the Solver Inside the Plotter
	The Multiple Equation Solver (MES)
	Programmable Use of the Solver (and MES)
	Review

	4: What’s a Grob?
	Opening Remarks
	A Clean Slate
	What Is a Grob?
	Pixel Numbers vs. User Units
	“Roll Your Own” Grobs
	The Hexadecimal Bitmap
	The SEE Program
	What Does a Grob Eat?
	The Grob as Icon
	Review

	5: Graphics Basics
	The Graphics Functions
	The Secrets of PPAR
	The PLOT Menu
	The [PRG]|GROB| Menu
	The [PRG]|PICT| Menu
	The [PRG]|OUT| Menu
	Other Graphics Commands

	Building a Toolbox
	Review

	6: Three-Dimensional Graphics
	The Basics
	Getting the Most Out of WIREFRAME Plots
	Choosing an Eyepoint
	Rotating the View
	Translating
	Zooming and Panning
	Plotting in Four Dimensions

	Review

	7: Graphics Improvements
	Opening Remarks
	Labelling the Axes
	Adding Text to Graphics
	Adding Graphics to Enhance Plots
	Review

	8: Freehand Drawing
	How to Do It
	Drawing a Voltmeter Face

	Review

	9. Programmable Graphics Applications
	Introduction
	Programmable Scanning Inside a Big Grob
	Generating a Stripchart
	An Analog Voltmeter
	Plots with Two Independent Variables
	A Contour-Plotting Program
	Driving a Bulldozer Around the Display
	A Friendly Game of Checkers
	A Calendar Demo
	More Suggestions

	10. Graphics Beyond the 48
	Printing Graphics on the Infrared Printer
	Printing Graphics on a Larger Printer
	Printing Graphics on a Pen Plotter
	Grobs and Other Computers
	Graphics Between Two 48’s
	Final Thoughts

	Appendices
	A. Review of the Hexadecimal Number System
	B. Graphics Operations and Commands
	C. User-Named Objects
	Index

