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It is not too surprising that the current movement directed towards reform in the

teaching and learning of calculus is occurring at a time when hand-held technology

is, literally, invading our mathematics classrooms. Indeed, these two movements

have a strong element of casual interaction.

The so-called "calculus reform" movement is generally recognized to date from

the conference Toward a Lean and Lively Calculus, held at Tulane University in

January 1986. There was already substantial evidence of widespread dissatisfaction

with the way that calculus was being taught and with the results of that teaching,

but the Tulane conference was the first to legitimatize that concern.

Graphics calculators were not yet an issue in January 1986, and the discussion on

hand-held technology focused primarily on calculators with numerical "solve" and

"integrate" keys — calculators such as Hewlett-Packard's HP-15C and units by Texas

Instruments, Casio and Radio Shack. Although the role of symbolic manipulation

programs (smp’s) in calculus was often at the forefront of the discussion, the

conference ultimately recommended syllabi for Calculus I and Calculus II that

assumed that all students would have access only to numerical integrate and

numerical solve keys. But, a separate syllabus for a microcomputer based "Calculus

II — Computer Alternative", clearly envisioned the more powerful changes that smp's

could facilitate.

The January 1987 release of the Hewlett Packard HP-28C calculator gave the

mathematics teaching community its first glimpse of the dynamic changes possible

with sophisticated hand-held technology. For not only was the HP-28C a graphics
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calculator, but it was also the first calculator to process symbolic objects —

expressions, programs, strings, etc. — with many of the same commands and

operations used on numbers. Since 1987, the HP-28C has evolved through the HP-28S

and the HP-48S/SX units into the current HP-48G/GX series units. As the most

powerful and sophisticated calculators available, the -48G/GX units offer students

and teachers unprecedented opportunity to bring graphical, numerical, and symbolic

processing into the teaching and learning of calculus.

This book is a textbook supplement for undergraduate courses in single variable

calculus. It presents appropriate pedagogical uses of, and teaching code for, the

Hewlett Packard HP-48G/GX graphics calculators. It is intended to help students

and instructors incorporate these powerful devices as a tool for the interactive

learning of single variable calculus, and is independent of any particular textbook.

The chapters survey the main topics of the subject and include activities that have

been carefully designed to engage students in a modern, technology enhanced study of

the material.

FEATURES

Outline of the Book

No two instructors and no two textbooks approach single variable calculus alike.

Therefore, I have organized the material into independent chapters that address

main topics:

e Functions and Graphs

e Derivatives

e Integrals

e Series
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These four chapters are preceded by an introductory chapter on Getting Started

with the HP-48G/GX and followed by an appendix on the organization of our HP-

48G/GX Teaching Code for Calculus.

Teaching Code for Calculus

The Teaching Code is a collection of special-purpose HP-48G/GX programs, each

one addressing a specific aspect of the course. A complete listing of the teaching

code appears on the inside back cover. The code is readily available from the

author for downloading to an HP-48G/GX from a microcomputer.

Pedagogy

The material is an outgrowth of the extensive classroom use of the HP-48

calculators (and before that, the HP-28 units) at Clemson University in teaching

single variable calculus since 1987. Starting with an early pilot course taught by my

colleague John Kenelly with the HP-28C in 1987, Clemson has been at the forefront

of the move to graphics calculators and now teaches over 100 classes each year in

which every student is required to have their own HP-48G/GX unit. The university

is strongly oriented towards science and engineering, and our mainstream calculusis

populated by students from a variety of fields: the chemical, physical and

biological sciences, mathematical and computer sciences, all engineering fields,

secondary mathematics education, architecture, accounting and economics, and a few

liberal arts students. We do not teaeh an abstract, proof-oriented course. Instead, our

instructors concentrate on explanations, examples, classroom discussions, and

calculator activities to generate interest and enthusiasm for learning calculus. For

beginning students of calculus, proofs are not as important as "convincing evidence".
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HOW TO USE THIS BOOK

At Clemson, the material in this book is used to supplement whatever textbook

we are using at the particular time. If the use of technology is to be of any real

significance in the learning process, then it must not be used as an occasional “add-on”

to the course. Rather, it must become an integral part of the teaching and learning

process. Therefore, we require our students to use their HP-48G/GX units on a regular,

almost daily basis. We have found that the calculators bring a unique, personal

dimension to the use of technology.

Wheneverit is appropriate, homework assignments can be made from this book;

sometimes in addition to assignments from the main textbook, sometimes in lieu of

such assignments. My own personal teaching style allows free and unrestricted use of

the calculators on all tests and exams. There is ample opportunity for me to assess

my students learning of both concepts and procedures, so the technology poses no

threat. On the contrary, it has helped my students to place in proper perspective

much of what has traditionally occupied their predecessors in courses in single

variable calculus: excessive attention to routine, algebraically intensive procedures

for finding derivatives and antiderivatives. I have found students to be

overwhelmingly enthusiastic about the use of the calculators as a tool to help them

learn.
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GETTING STARTED WITH

THE HP-48G/GX

 

This brief chapter is intended to provide new users with a basic introduction to

the HP-48G/GX calculator and its operation. It is no substitute for the User's Guide,

but should help you get started quickly.

Notation

To help you recognize calculator keystrokes and commands, we shall adopt

certain notational conventions.

o With the exception of the six white keys on the top row, keys will be

EVAL |, STO |,
 

 

  

represented by helvetica characters in a box: ENTER 7
 

etc.

e Shifted keys on the 48G/GX may occasionally have the key name in a box

preceded by the appropriate shift as in . But ordinarily, we will

not show the shift.

e Menu keys for commands on various menus will show the key name in outline

form in a box, asinl ROOT | or[ TANL I

 

 

e Calculator operations and commands that appear in programs or in the text

material will be in helvetica characters, e.g.,, DUP SWAP INV.

On, Off and Contrast

Press the key (bottom left of the keyboard) to turn the unit on. Press

to turn it off. The key is the right-shifted (green) version of the
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key. With the calculator on, hold down the key and press to

darken the display contrast or E to make it lighter.

Stack Display Screen

When you first turn on a factory fresh HP-48G series calculator, you will be

looking at the stack display screen. To remove any objects from the screen that may

remain from previous use, press the key several times then the key

(on the same row of keys as ENTER |). Above the horizontal line near the top of

the screen you will see {HOME}, indicating that you are in your HOME directory.

Immediately below are levels 1-4 of the stack. Like lines on a piece of paper, the

stack is a sequence of temporary storage locations for numbers and the other kinds of

objects used by the calculator such as algebraic expressions, arrays, equations, and

programs.

Just below level 1 are six menu boxes. Normally, these menu boxes will have

labels in them that reflect the operation of the six white menu keys beneath them. If

you press the key near the top left of the keyboard, the labels will show

that the first page of the MTH menu contains the six submenus VECTR, MATR, LIST,

HYP, REAL , and BASE;the key (same row as ) will turn you to the

second page of the MTH menu and another will cycle you back to the

beginning. Return to the previous page with PREV (the left shifted NXT key).

The small horizontal tabs above the labels in the MTH menu indicate that each of

the boxes contains a submenu (a file, folder or subdirectory in HP parlance). Open the

HYP (= hyperbolic) submenu by pressing the white menu key beneath it to access the

special commands for working with hyperbolic functions. Press to return to

the MTH menu at any time.

Similarly, the key opens the PRG (= Program) menu where you may use

the white menu keys to access the various submenus of commands for use in writing
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programs. An extremely important key is the key. It opens the VAR

(= Variables) menu, which is where you look to find the objects that you have created and

stored into the memory of the machine. For routine calculations on the stack, it does

not matter which menu labels are active. Simply press to make them all

blank.

Keyboard

The keyboard of an HP-48G series calculator may at first appear to be

somewhat intimidating. But, like the control panel of any high-performance device,

it enables you to control and to monitor a vast array of operations. The number entry

keys are bordered on the right by , [Z,, , and ; and on the left by

: ’ , and E The right-shift key (green) and the left-shift key

(purple) are color coded to many of the keyboard labels, and the E key is

used to obtain alphabetical characters.

Adjacent to is for changing signs, then for entering

exponents, for deleting characters (and clearing the stack), and for

backspace-and-delete (and dropping objects from level 1). The , ,

,and| Vx keys are just above, as are (for obtaining powers) and

(for reciprocals and matrix inverses). Above the trig function keys are El (tick), for

entering algebraic expressions, and and EVAL for storing and evaluating

objects. The four cursor keys E, E, L_EI] and [EI control the movement of

the cursor when it is active.

 

   

Applications and Command Menus

You will notice that some keys have both purple and green labels printed above

them (like the E key), but many have only one of the two (like the , and

@ keys).
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The keys that have only green labels above them represent applications, e.g.,

I/0, PLOT, SOLVE, SYMBOLIC. The right-shifted version of an application key

invokes a specially designed user-interface that lets you interact directly with the

named application, often through the use of input forms, which are the HP

equivalent of the familiar computer "dialogue boxes". Alternatively, the left-

shifted version of an application key gives you access to the various commands on

the command menu that is associated with the particular application. The

commands may be included in programs or executed directly from the keyboard while

viewing the stack display screen.

Display Settings

It is best to keep the calculator's angle mode set to radians in order to work

with trigonometric functions. Press (purple) to toggle between radian

mode and degree mode. When radian mode is set, the message RAD appears at the

top left of the stack display screen.

To display numbers in standard form, set your unit to STD display mode (the

default setting) by pressing MODES (the left-shifted ’ CST key), opening

the FMT (= Format) menu and checking to see that the left-most menu box reads

STD[ |. The small box next to STD indicates that STD mode is active. If the

menu simply reads press the associated white menu key to activate STD

mode. Now press MODES to interact with the main MODES screen. You

should see that the number format is highlighted and set to Std, and that the angle

 

 

   

measure is set to Radians. Press the E twice to highlight the coordinate system

field (it should read Rectangular, by default). To see how to change such a field,

press the white menu key beneath CHOOS |, use E to highlight Polar and

press. You have just changed to polar coordinates. Now change back to

rectangular coordinates. When the display is set to show only a fixed number of



GETTING STARTED WITH THE HP-48G/GX 5

digits to the right of the decimal point, say with 3 FIX to display only three such

digits, the numerical calculations are still executed internally to the full 12- or 15-

digit precision of the machine. Only the display is affected. By resetting to STD

mode, you will display full 12-digit precision. Unless stated otherwise, we will

assume throughout this book that the display mode is set to STD and that the

coordinate system is set to RECTANGULAR.

The ¥ by BEEP means that the beeper is turned on (to alert you of syntax errors,

alarms, etc.). To activate the clock, highlight the clock field and press the

key. Leave the fraction mark ( FM, ) unchecked so that decimal points, rather than

commas, will appear in decimal numbers like 123.45. Exit this screen by pressing

. Notice that the time and date now appear above the horizontal line. If

you wish to modify the time or date, press TIME (the green shifted key)

and proceed as above.

Symbolic Execution Mode

The HP-48G/GX is a third generation symbolic calculator, which means that you

can apply operations and functions to symbolic expressions and obtain symbolic

results. For example, you can enter the symbolic expressions for x? and for sin x, then

press the key to obtain the symbolic result x? + sin x. Most other calculators are

numerical calculators, capable of applying functions and operations only to numerical

objects to obtain numerical results.

Symbolic execution mode is controlled by a system flag (flag -3). In the default

state, flag -3 is clear and the HP-48 is in Symbolic Execution Mode. In this mode, the

symbolic constants ( e, i 7, MAXR, and MINR) and functions with symbolic arguments

will evaluate to symbolic results. But if flag -3 is set, Numerical Results mode is

active and the symbolic constants and functions with symbolic arguments will

evaluate to numbers.
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We strongly recommend that you keep your HP-48G/GX in Symbolic Execution

Mode. If you go to the MODES menu with the keys and open the

MISGC submenu, the SYM menu key should read SYM[ |. The small box that
 

   

appears next to SYM indicates that Symbolic Execution Mode is active. If no box

appears in this key, simply press the key to change itto SYMO |.
 

   

Numerical Calculations

Simple numerical calculations are done on the stack. The idea is this: put

inputs on the stack and then execute commands that use the inputs. To enter -12.34,

begin by pressing the appropriate number keys and the decimal point key (bottom

row, center), then use to change the sign. Notice that the typing starts at the

bottom left of the display screen, below level 1 of the stack, on the command line.

Press ENTER to put -12.34 on level 1. Now enter 56.789; notice that ENTER

inserts it onto level 1, moving -12.34 up to level 2. Press to compute the sum. To

recapture the stack before you added, press UNDO (the right-shifted EVAL

key). Now subtract 56.789 from -12.34 with E, then use UNDO and swap

positions with SWAP (the right cursor key @; no need to press now). Now

subtract again to get 69.129. Take the square root with Vx |, then cubethe result

 

    

  with 3 YX |. You should have 574.765129278.
 

To edit this result, press the Izl (down cursor) key, use the right cursor key to

move the cursor over the 9, delete the 9 with and press 3

. Now use (the right-shifted key) to obtain the natural

logarithm. To multiply by =, press E] (r is obtained with the left-shift

key) then . Notice the symbolic result '6.35396147609 * &' on level 1,

enclosed in tick marks. To convert this to a numerical result, use (the

left-shift EVAL key). Now drop the 19.9615586945 from level 1 with ]. The
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IE key drops objects from level 1; the adjacent key (labeled CLEAR in purple)

clears the entire stack. Normally, you need not left-shift these keys; shifting is

required only when the command line is active.

nth Roots
 

  With a real or complex number on stack level 1, the Vx key will return its
  

  square root. If the number is real and negative, say -3, then the \/; key will return
 

a complex number whose real part is zero: (0, 1.73205080757) for the square root of -3.

To take the n'h root of a real number x for n > 2 we can calculate x!/: 2 A (1/3)

is 1.25992104989. But when n is odd and x is negative, this procedure will always

return a complex number: (-8) A (1/3) is (1, 1.73205080757). This result is the principal

cube root of -8, certainly not the real cube root that we expected. To obtain the real
 

  nth root of a negative number for an odd value of 7, use the XROOT key W ,
  

  which is the right-shifted Vx key. For example, to obtain the real cube root of -8,
  

simply enter -8 and then 3 (the desired root); press i/; to obtain -2.   

Data Entry

When keying a sequence of real numbers into the command line, say 1.1, 2.2 and

3.3, you must separate the numbers with spaces or commas for proper recognition, as

in 1.1 22 33 or 1.1, 22,3.3. We recommend that you use spaces for ease of use. For

consistency we will show commas, but you should always interpret them as spaces.

You need not insert commas or spaces between a real number and a complex number (an

ordered pair), or between two complex numbers, because the calculator recognizes

parentheses as object delimiters. Unless we specify otherwise, all examples and exercises

in this book assume the calculator is set to STD display mode.
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Algebraic Expressions

Algebraic expressions must be typed in beginning with a ' (tick) mark using the

D key. Alphabetical characters are obtained by first pressing E and then the

desired key. Note that alphabetical characters appear in white letters to the lower right of

the keys on the top four rows. To produce, say 'S', press D followed by E

. Lower case characters are obtained by the sequence D E] then

the character key. For example, D @ @ puts 'd' on level 1.

(Thus E’ left-shift will give lower case).

To enter the algebraic expression 'SIN(X)', press D E

ENTER |. Notice the location of the cursor after each keystroke; after the

cursor is still inside the right parenthesis. To move it outside, use the right cursor

key EI But, pressing ENTER does it all for you. As a more complicated

example, try 'COS( X A 2)/( 2 + X A 3)'. The keystroke sequence is:

[] [cos] [a] [1x] [y*] 2 [B] 2
Lo [1/x] Y*| 3 [ENTER].

Yes, it is necessary to insert the » in2 » X A 3; if you forget, when you press

ENTER |, an Invalid Syntax message will appear and you can then correct your

typing. If things are not going well on the command line, remember that the

key will backspace and delete. Finally, if you get desperate, press

(sometimes, more than once) to cancel what is taking place and then start over.

 
 

  
  

   

Stack Manipulation

We often need to manipulate the stack. For example, to duplicate one or more

levels, to copy an object from a higher level down to level 1, or to otherwise

rearrange the stack. Complete details can be found in chapter 3 of the HP-48G series
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User's Guide, but we will survey the basics here. This survey should suffice for most

purposes.

To make a duplicate copy of the object on level 1, simply press |ENTER|. This

executes the DUP command, which duplicates level 1. We have already commented

on the obvious keyboard commands DROP (the key), CLEAR (the key),

SWAP (theDJkey), and UNDO (the EVAL| key). Although the DROP,

CLEAR and SWAP keysare labelled in purple, it is not necessary to use the purple

key except when the command line is active.

The best way to understand the other stack commands is to begin with your

stack arranged like this:

4: 'S'

3: T

2: 'U

1: 'V

Now press the E key to engage the interactive stack. The interactive stack is an

environment that lets you interact with the stack and is active when the dark

pointer Pp» appears at the left of the screen. You exit the interactive stack with
 

| ENTERJ or l ON l (either one will work). So arrange your stack as in the above
 

illustration and then press the E key. The commands that are most often used

are PICK, ROLL, ROLLD, —»LIST and (on the next page) DUPN and DRPN.

Move the pointer up to level 3 and press PICK I l ENTER | The command

PICK copies the content of level 3 to level 1. Use E:l:l to DROP the 'T' from

 

level 1.
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Now move the pointer back to level 3 and press | - LIST | ' ENTER | Notice

that the contents of levels 1-3 were put into a list (lists use curly braces). Now restore

the stack to its original state with | UNDO |. 

The commands DUPN and DRPN (on the next page) are almost self-evident.

With the pointer situated on level N, DUPN will duplicate the first N levels of the

stack while DRPN will drop the first N levels. Try using DRPN with the pointer

at level 3. Press ENTER to exit, then use UNDO to restore everything.

The last two commands, ROLL and ROLLD are extremely useful. With the

pointer specifying the number N of levels, ROLL will push (roll) the stack upward,

causing the object on level N to fall down to level 1. Try using 4 ROLL to rearrange

the stack:

4. 'S 4: T

3: T 4 ROLL =¥ 3: 'V

2: 'v 2: 'V

1: 'V 1: 'S

(The 'S’ rolled off the top level and fell down to level 1)

The command ROLLD (roll down) is just the opposite: it pulls the specified

number of objects down, causing the level 1 object to move to the top level. Restore

the current stack to its original state with 4 ROLLD. Now use CLEAR to clear the

stack.

RPN

RPN stands for Reverse Polish Notation, the type of logic used by almost all

Hewlett Packard calculators. The essence of RPN is this: first provide the inputs,

then execute commands that operate on the inputs. When we did our earlier

calculations on the stack, we were using RPN entry. Thus, to add -12.34 and 56.789 in
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RPN we input -12.34 and 56.789, then executed the command +. In fact, we built

-12.34 using RPN: input 12.34, then press. Notice how this differs from the

algebraic entry logic employed by most other types of calculators. Algebraic entry

requires that we type in -12.34 + 56.789 from left-to-right and then press an ENTER

or EI key. To produce a numerical result for VIn 2.3 on the HP-48 using algebraic

entry we type

'V LN 23 EVAL

But to obtain this using RPN, we do

23 LN vV

RPN is an especially powerful logic for constructing the algebraic expressions

that we encounter in a beginning study of calculus. Expressions such as

2x+1
+cos2(x¥®) or (1+x)%3 + \/—;_:—4 .

Consider the first of these two. Superficially,it is simply the square root of one plus

the cosine squared of x3. But it is important that we understand this expression

mathematically, from inside out, as follows: start with x and cube it, take the cosine

of x3 and square the result, then add 1 and take the square root. RPN entry

corresponds exactly to this way of thinking:

X'3ACOSSQ1+V .

A more complex example is provided by the second of the above two expressions.

First, try entering this expression using direct algebraic entry (remember to start with

a ' (tick) mark); what did you find out? Now use RPN entry as follows: begin by

putting the three main components '(1 + X) A (2/3),'2 » X + 1', and '\/_(X A2 -4) on

the stack in this order (you can use either direct algebraic entry or RPN for any of

them); now press to build the quotient, then to obtain the sum.
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This last example clearly illustrates why RPN is the preferred method for

entering complicated expressions onto the stack. Most users tend to develop their own

style, often using direct algebraic entry to build simple components and then RPN to

produce the more complicated final results. Of course, all programs on the HP-48

must be written in RPN. For example, the program

« SQ SWAP SQ + \V »

uses RPN logic to take two inputs from the stack, say x and y, and then returns the

result Va2 +y2.

Memory Management

The HP-48 can manipulate and store many types of objects, such as real and

complex numbers, algebraic expressions, vectors and matrices, lists, graphics,

programs, and text. Any of these objects can be placed on the stack, but to be saved in

the calculator's memory it must be given a name and stored. When you store an

object, it is stored as a variable in user memory (that part of the calculator's memory

that you, the user, have access to) and is accessible through the VAR menu. The

variables that you create in this way are called global variables to distinguish them

from other kinds of variables that the HP-48 uses (e.g., local variables — that are

created within and used entirely by a program, and system variables — that are used

by the calculator's operating system). You can think of a global variable as a named

storage location containing an object.

For example, suppose that you wish to create a variable named TRY1 containing

a program that will accept numbers x and y as inputs and calculate V2 + y2. Here

is the program:

« SQ SWAP sQ + YV »
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To build the program, press E] to get the program delimiters « », then use

Vx @ Vx Vx lfi'fil Now put the name 'TRY1' on the

stack and press the key. If you press the VAR key you will see that the

leftmost menu key is labeled. To run the program with inputs 1 and 2, put

1 and 2 on the stack and then press to see the result 2.2360679775. In fact,

you need not actually enter the inputs onto the stack: simply press 1 2, then

TRY1 to get the result. The HP-48 recognizes spaces as object separators and

TRY1 will take the inputs directly from the command line. We will often use this

   

         

shortcut with our programs.

To delete a variable from user memory, put its name on stack level 1 and execute

the command PURGE. The PURGE key is the left-shifted key. To purge

variable TRY1, press ' (tick), | TRY1 ENTER |, then PURGE |.

To organize the variables that you create, you can put them into files (or

directories). Whenever you create a variable and store it, it is stored in the current

directory. If you are using a factory fresh HP-48 then your current directory is the

HOME directory, indicated by the list { HOME } at the top left of the stack display

screen. The name of the current directory always appears as the rightmost name in

the list that begins with HOME, as above. To create a subdirectory named CALC in

which you can store any variables that you may need in a study of calculus, begin by

putting the name 'CALC' on stack level 1. Now press MEMORY (the left-

shifted key), open the DIR submenu and execute the command CRDIR (create

directory). If you then open the VAR menu you will see the CGALC directory on

the left. The short bar above the label is suggestive of the tab on a file folder, and

reminds you that CALC is a subdirectory. Press CALGC to open this directory and

notice the list {HOME CALC]}at the top of your screen, indicating that the current

directory is now CALC. This directory is presently empty, containing no variables.
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To return to the parent directory HOME, you need only go up one level in the

directory tree. The commands UP and HOME, executed by shifting the EI (tick)

key appropriately, send you up one level or, alternatively, send you directly to

HOME.

A few final comments about storing and purging variables from directories. The

same variable can exist in different directories, often containing different objects. For

example, whenever you use the PLOT application, copies of the reserved variables

EQ (the "equation”) and PPAR (the plot parameters) are stored into the current

directory. Likewise, whenever you use the SOLVE application, a copy of EQ and

the "unknown" variable are stored in the current directory. In this way, EQ and,

say, 'X' can appear in different directories with different contents. Since the contents

of EQ and PPAR are automatically updated whenever the PLOT application is used,

it is usually not important to purge them. On the other hand, a variable like 'X’,

which is the default independent variable for graphing, should be purged from the

current directory immediately after it is used. Keep in mind, also, that when you

purge 'X' from a particular directory it may continue to exist in an "ancestral"

directory where it may cause trouble later on. For example, suppose that CALC is

the current directory, that no variable 'X' is stored in CALC, but that the parent

directory HOME contains the variable 'X' in which the value 2 is stored. Suppose

further that you wish to take the symbolic derivative of a function f with respect

to the independent variable 'X'. Because 'X' appears in the parent directory, the

derivative will be automatically evaluated at the value x = 2. This is because the

HP-48 always searches upward in the directory tree in search of variables; it does

not search for variable in directories that are on the same level as, or below, the

current directory. And, having found that HOME contains variable 'X' with the

value 2, the derivative at x = 2 was returned. Had the calculator found no value for

‘X', it would have treated 'X' symbolically, as was desired. Moral: purge all 'X''s.



FUNCTIONS: EVALUATION AND

GRAPHING

 

Beginning calculus is a study of the behavior of functions: their variation, rates

of change, limiting behaviors. We shall thus begin with a brief look at how

functions can be represented, evaluated and graphed on the HP-48G/GX calculators.

2.1 FUNCTION EVALUATION

Evaluating with SOLVR

The basic idea of a function F of a single variable x is simple enough: for

each value of the input variable x we obtain exactly one output value F(x). The

HP-48G/GX units have a built-in environment that is ideal for the evaluation of

functions, the SOLVR. Although the SOLVR is designed to solve equations, the

format of its menu makes it convenient for evaluating functions. With the function on

level 1, press SOLVE to access the SOLVE application, open the ROOT

subdirectory and then load the function on level 1 into EQ by pressing

(remember: left-shift will load). Now press the SOLVR key. To evaluate the

function stored in EQ at a number (or variable), simply key in the number (or

variable), press then EXPR= |. For example, to numerically investigate the
2

behavior of the function f(x) =% as x approaches 0 we can proceed as follows.

Put ‘(X +2) /(2 *X + 1) on level 1 and press | SOLVE } ROOT | ,

then . To find F(.01), press 2 then

to see 1.97058823529.

15
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To find F(.0001), press 4 then to see

1.99970005999.

To find F(.000001), press 6 then to see

1.99999700001.

To find F(.00000001), press 8 then to see

1.99999997.

Clearly, we can see that f(x) is approaching 2 as we let x approach 0 from the

right. What happens to f(x) as welet x approach 0 from the left? Experiment to

find out.

When using the SOLVR,if you store an equation, say 'expression 1 = expression

2, in EQ instead of a single expression, pressing EXPR= for a given value of X

will return two values, one for the left side of the equation and one for the right

side. This provides a convenient way to compare the outputs of two functions at

various input values of X.

You should be aware that whenever you use the calculator's SOLVE

application, the last value for X is stored under the variable name 'X' in user

memory. You need not make explicit use of the SOLVR for this to occur: pressing

ROOT on the FCN submenu automatically activates the SOLVR (as do the

commands ISECT, EXTR and F' which appear as menu keys on the FCN submenu).

You can see this variable by pressing to go to the VAR menu, where you will

see the menu key . Press to recall the value stored for X. Our

recommendation is that before going on to the next application you immediately purge

this variable to avoid trouble later on. Purge by pressing E] PURGE |.



FUNCTIONS: EVALUATION AND GRAPHING 17

User-Defined Functions

Another way to represent functions on the HP-48G/GX is by creating user-defined

functions. In HP-48 parlance, a user-defined function is simply a short program that

captures the essence of the formal way that we define a function by an equation like

F(x) = 2 sin x + sin 4x. Here, F is the name of the function, x is the input variable,

and the expression to the right of the = sign is an algebraic description of the

desired output for a given input x.

The user-defined function that represents this mathematical function is the

program « — X '2 * SIN(X) + SIN(4 * X)' » stored in the global variable F. The

DEFINE command lets you create a user-defined function directly from an equation.

For the example at hand, simply enter the equation 'F(X) = 2 * SIN(X) + SIN(4 * X)'

onto level 1 of the stack and press . If you access the VAR menu with

the key, you will see the label appearing above a white menu key; this

identifies F as the name of the user-defined function. To verify that the variable

named F actually contains the above program, you can recall the contents of

variable F by pressing ; press DROP when you've finished viewing the

program.

To evaluate this function, enter the desired input and press the menu key .

For example, put T A 2' on level 1 and press to see '2 * SIN(T A 2) +

SIN(4 * T A 2)". Likewise, press 4 to see 2 sin 4 + sin(4 * 4) evaluated as

-1.80150830728. Note that you can enter the equation 'F(X) = expression in X' directly

or by first entering 'F(X)', then the 'expression in X' and pressing E In either

case the key automatically creates the user-defined function from the

equation.

User-defined functions of two or more variables are constructed in the same way.

For instance, to represent G(s, t ) = s/#* enter 'G(S, T) = S/T A 2' and press .
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To evaluate G we input a value for S, then for T. Try it for yourself:

G(2, 3) = .222222222222.

Piecewise-defined functions often occur in applications and are introduced early

in calculus to illustrate the ideas of one-sided limits and points of discontinuity.

The best way to represent them on the HP-48G/GX is to use the IFTE command, found

on the second page of the PRG BRCH menu. The IFTE command is an abbreviation

for the "if ... then ... else ... end" construction and executes one of two procedures that

you specify, according as a "test clause" is true or false. The IFTE command takes

three arguments: a test argument and two procedural arguments, as in IFTE (test,

procedure 1, procedure 2). You should interpret this as "If test clause is true, then

execute procedure 1 else execute procedure 2”.

2
x -2x x<0

To represent the function p(x) = 5 , the desired expression is
1-x 0<x

'"FTE(X <0, XA2-2*X,1-XA2). Begin with a tick, then go to the second page

of the PRG BRCH menu and press I[FTE |, followed by the three required

arguments separated by commas (@ 2 will produce the < symbol or you can

go to the PRG TEST menu), then ENTER |. This expression can now be treated like

any other function. For instance, with 'IFTE(X <0, XA2 -2*X, 1 - X A 2)'

displayed on stack level 1, enter 'P(X)’, then press SWAP |, E:I and finally

to create a user-defined function. Try evaluating P(X) using values to the left and

right of 0 to discover the behavior of the function p as x approaches O.

The general construction for a piecewise-defined function with two pieces like

filx) x<a

flx = {fz(x) a1 <x

is IFTE( x <ay, fi(x), fox) ).



FUNCTIONS: EVALUATION AND GRAPHING 19

For three or more pieces, you can nest the IFTE commands:

filx) x<ay
for f(x) = 4fo(x) a1<x<ay ,

fa(x) az<x

use |FTE(X < al,fl(X), |FTE(X < az,fz(X),f3(X)))_

Activity Set 2.1

1. What happens to values of f(x) = —-E as x approaches 0? Use the SOLVR to

find out. Let x approach 0 through values x =102, 103, ..., 106, then their

negatives. PressEEX- to input 1072, etc.

 2.  What happens to values of f(x) = cosx-1 as x approaches 0? Use the SOLVR

to find out. Let x approach 0 through values x =102, 103, ..., 105, then their

negatives. PressEEX- to input 102, etc.

3. What happens to values of f(x) = xe* as x approaches -? Use the SOLVR to

find out. Let x approach - through values x = -1, -10, -1,000 and -10,000.

4. Repeat Activities 1-3, but this time with a user-defined function for f(x).

5. (a) Evaluate f(x)=(1+1/x)*for x =102, 104, ..., 1011. Then make a conjecture

about what happens to f(x) as x — ee.

(b) Now evaluate f(x) for x = 1012. Can you explain the result?

6. Investigate the behavior of the following function as x — 0:

f(x)=x+ |1-\l x+1|

|[1-Vx+1]
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7. (a) Use the IFTE command to build an expression for

2 if x<0

fx) = cosx if x=20°

(b) Evaluate f(x) for a sequence of values that approaches 0 from the left;

what does f(x) approach?

(c) Now evaluate f(x) for a sequence of values that approaches 0 from the

right; what does f(x) approach?

(d) In view of your results in (b) and (c), does lim f(x) exist?
x>0

8. The greatest integer function, often denoted by | x |, is defined by

L x | = the greatest integer < x.

It is executed on the HP-48G/GX by the FLOOR command (a menu key appears

on the third page of the MTH REAL menu). Use the FLOOR command to

calculate | x | for each of the following values of x:

(a) m* b) -7 () e (d) (V'm0

9. The least integer function, often denoted by [ x 1, is defined by

[ x ] = the least integer > x.

It is executed on the HP-48G/GX by the CEIL command (a menu key appears on

the third page of the MTH REAL menu). Use the CEIL command to calculate

[ x 1 for each of the following values of x:

(@) n (b) -7 (c) e~ (d) (V& )0
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2.2 FUNCTION GRAPHING

The single most important application of the HP-48G/GX to a study of calculus

is to create visual images of the wide variety of functions under study. More than

anything else, the ability to graph quickly and easily adds a powerful new

dimension to the traditional analytical approach to calculus. Many of the important

aspects of functional behavior — maximum and minimum values, rates of

change, etc. — can be effectively displayed by the graph of the function. With the

HP-48, graphical representations can be used from the beginning of the course.

To get informative representations of graphs on the HP-48 you must set the

viewing window to display the part of the graph that you want to see. The default

settings of the plotting ranges for points (x, y) are -6.5 < x < 6.5 and -3.1 <y < 3.2,

with a common unit scaling of each axis. Since there are 131 columns and 64 rows of

pixels, the default settings produce square pixels of size .1 and your visual intuition

of slope and area is preserved on the screen. The default settings also work well for

trigonometric functions of amplitude 3 or less. You can, of course, change the settings

in a variety of ways , some of which will be illustrated in the examples. To

accomodate trigonometric graphs, make sure your calculator is set to radians mode.

The key will toggle between degrees and radians; when radian mode is

set, the message RAD will appear in the top left corner of the screen.

Basic Plotting

Functions are represented graphically as plots in the PICTURE environment.

The general procedure to produce a plot of a function of a single independent variable

is as follows:

e Access the PLOT application;

e Make sure the plot type is set to FUNCTION;
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o Enter the expression that defines the function;

e Set the plotting parameters: the independent variable, horizontal and

vertical plotting ranges, etc.;

o ERASE ( if desired) any previous plots;

e Execute the DRAW command.

The HP-48G/GX calculators allow you to access the PLOT application in two

different ways in order to enter a function's expression and to set the plotting

parameters: with PLOT to interact directly with the main PLOT screen, or

with PLOT to use the various commands on the PLOT menu. We will

illustrate both approaches in our first two examples.

EXAMPLE 1. Graph y = 2 sin x + sin 4 x with the default plotting parameters.

Using the PLOT screen

From the stack display screen, go to the PLOT application with .

The main PLOT screen will show the current plot type, current angle mode, current

expression in EQ (if any), the independent variable (X, by default), and the current

horizontal and vertical display ranges. If the current plot type does not show

Function, press [A CHOOS |, highlight FUNCTION and press OK |. If

necessary, use E and a similar procedure to set the angle mode to RAD. Now

highlight the field EQ: and type '2 * SIN( X ) + SIN(4 * X)' and press ENTER |.

Notice that when you are using the PLOT screen, you do not have to begin the

algebraic expression that defines the function with a tick mark. If the default

plotting parameters are current, the independent variable will appear as INDEP: X,

the horizontal display range as H-VIEW: -6.5 6.5, and the vertical display range as

V-VIEW: -3.1 3.2. If any of these settings appears otherwise, go to the next page of
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the PLOT menu with , press RESET and highlight Reset Plot and

press. Once the default plotting parameters are set, return to the previous

page with PREV and press ERASE to erase any previous plot. Now

press DRAW |. You should see a plot like this:

 

    
When the plot is complete and the menu labels appear, press TRACE and then

use the right and left cursor keys to trace along the plot. Press (X, Y) to obtain

coordinate readouts for the cursor. The x: value is the pixel location of the cursor but

the y: value is the value of the function in EQ computed at the x: value. Press

to restore the menu keys. When you have finished viewing the plot, press

twice to return to the stack environment. You can bring back the plot by using the

E key to access the PICTURE environment.

Using the PLOT menu

Enter 2 * SIN( X ) + SIN(4 * X)' on level 1 (you will have to start with a tick

mark), and press PLOT to access the PLOT menu. If you do not now read

"Ptype: FUNCTION" at the top of your screen press PTYPE and then

FUNGC |. Then use , to store the expression on level 1 into EQ. Now

press PPAR to see the plotting parameters. If you do not now read

Indep: ‘X'

Depnd: 'Y

Xrng: -6.5 6.5

Yrng: -3.1 3.2

Res: 0
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ON your screen, press to return your screen to the default settings. Now

press to turn back a page and open the PLOT menu with.

Press to erase any plot previously drawn, then to draw axes

and. You should see the graph we had before:

 

    
Now trace along the plot with coordinate readouts. When you have finished

viewing the plot, return to the stack display screen by pressing . You can

always bring back the plot by using the E key.

Often, in order see more of a plot you can compress or expand the viewing screen

vertically or horizontally by using commands from the ZOOM menu, as in the next

example.

EXAMPLE 2. Graphy = x3 -3x2 - 5x + 1.

Using the PLOT screen

Open the PLOT application with . Since the default settings are

current from our previous example, we need only enter the new function. With the

EQ field highlighted, type 'XA3-3*XA2-5*X+ 1'and press ENTER |. If

you made a mistake in entering the expression, simply highlight the EQ field, press

EDIT |, and use the cursor keys and the key to correct the entry. Use

to insert the corrected expression into the EQ field. Press ERASE and DRAW

to produce this plot:
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   IE
The lower right part of the plot is not visible, so to see more we will zoom out

 

on the vertical axis but leave the x-axis unchanged. Open the ZOOM menu, then the

ZFACT submenu. Set the H-FACTOR to 1, the V-FACTOR to 5, then press.

Move to the next page and zoom out on the vertical axis with the VZOUT command.

4]
N

Use the subtraction key E] to remove the labels from the bottom of the screen

that hide the plot; use to put the labels back. To verify that we have

You will get the following plot:

 

    

expanded the height of the graphing screen by a factor of 5 activate the coordinate

read-out with the menu key (X, Y)|, and use the IZI key to move the cursor up

to the first tick mark on the y-axis. Notice that this tick mark records the zoom

factor. The zoom factor 5 was determined by trial and error; a smaller factor failed

to show the low point of the graph. Press to return to the stack display

screen when you've finished.

Using the PLOT menu

Begin with 'XA3-3*XA2-5*X + 1'on level 1 of the stack and press

to access the PLOT menu. Then use to load the expression on

level 1 into EQ and use PPAR to see the current plotting parameters. Since we
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wish to plot first with the default settings use RESET to set the plotting

parameters to their default settings. Return to the previous page and open the PLOT

menu, then use ERASE I, I DRAX ] and to produce this plot:

|
Now zoom out as before to see more of the local behavior.

 

 

 

   
 

The above two examples convey the major differences in using the PLOT screen

( ) and the PLOT menu( ) to access the PLOT application.

Using lets you interact with the main PLOT screen, and using

PLOT provides direct access to the commands on the PLOT menu. Many beginners

prefer to interact with the PLOT screen, but more experienced users tend to prefer the

menu commands because of their speed and versatility. From here on, we shall leave

the choice to you, the reader.

Zoom Operations

As EXAMPLE 2 shows, after producing a plot we may have to modify one or more

of the plotting parameters in order to better see some portion of the plot. Here are

two examples of plots that require adjustment on the range of x values:

EXAMPLE 3. Graph y = sin(107x) on the default viewing screen. You will see:
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No plot appears. With the default plotting parameters the HP-48 calculates values

of y for each of the 131 values of x from x = -6.5 to x = 6.5, .1 unit apart. Since 107

times each of these numbers is an integer multiple of «, the sine function is 0 at each

of these values of x. Thus the plot lies along the x-axis. You can see this by turning

off the axes and redrawing the plot. To get a better picture we can compress the

viewing window in the x direction. Zoom in on the horizontal axis by a factor of 10

(set the H-FACTOR,then use HZIN |) to see:

 7
*-

   
 

EXAMPLE 4. If you plot y = x ¥ 5 - x2 with the default plot parameters, you will

see:
 

 

    
Why does the plot fail to touch the x-axis? From the function, y is 0 when x =+ \'5,

but these points do not show on the plot. To four decimal places, V5= 2.2361. With

the default plotting parameters, the HP-48 will plot a point for x = 2.2; but for

2.3 < x,y is a complex number so no points will be plotted. We can "tie down" the

plot to the x-axis by modifying the scale along the x-axis. For example, if we zoom

inon x by a factor of 2.2361 we will be rescaling the x-axis so that 5 units on the

x-axis is approximately v 5, and will see the following plot:
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The Zoom Menu

 

 

    

Several of the commands on the ZOOM menu are fairly self-evident:

ZIN and ZOUT:

HZIN and HZOUT:

VZIN and VZOUT:

ZDFLT:

ZLAST:

Zoom in or zoom out on both axes according to the ZOOM

FACTORS.

Zoom in or zoom out on the horizontal axis according to the

H-FACTOR.

Zoom in or zoom out on the vertical axis according to the

V-FACTOR.

Zoom to the default plotting screen.

Zoom to the last plotting screen.

But some of the other commands are not so obvious:

ZSQR:

ZDECI:

ZINTG:

ZTRIG:

Leaves Xrng unchanged but changes Yrng so that each

pixel is square.

Leaves Yrng unchanged but resets Xrng to its default state:

-6.5 6.5 . Pixels are .1 unit along the horizontal axis.

Leaves Yrng unchanged but sets Xrng to -65 65 so that

each pixel along the horizontal axis is 1 unit.

Resets Xrng so that every 10 pixels equals 7/2 units and

resets Yrng so that every 10 pixels equals 1 unit.
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ZAUTO: Leaves Xrng unchanged but rescales the vertical axis by

sampling the expression in EQ at 40 equally spaced values

across the x-axis plotting range, resets the Yrng to include

the maximum and minimum sampled values, and then

redraws the plot.

Caution: It is tempting for beginning users of the HP-48G/GX to use the ZAUTO

command instead of adjusting the vertical display range in other ways. But we urge

restraint and caution in the use of ZAUTO because it tends to excessively "flatten" a

plot due to the narrow vertical dimension of the display screen. For instance, if we

return to the function of EXAMPLE 2, y = x3 - 3x2 - 5x + 1, and apply the ZAUTO

command to the plot obtained with the default plotting parameters, we obtain the

following "flattened" plot:
 

 

    
Compare this with the plot we obtained by rescaling the vertical axis with a zoom-

out factor of 5. Which would you prefer to see?

The BOXZ application on the ZOOM menu of the HP-48G/GX is especially

helpful for zooming in on a particular region of a plot. The basic idea is to capture

the region of interest within a small "box", then zoom in on the box. Here's an

example.

. . 1
EXAMPLE 5. Begin by plotting y = x sin - on the default screen. To better see

what's happening near the origin, begin by opening the ZOOM menu. Now move the

cursor 5 pixels to the left of the origin, then down 3 pixels and open BOXZ file. Now
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move the cursor 5 pixels to the right of the origin, then 3 pixels above the origin.

Notice that the cursor drags a small box that has the origin as its center. Now press

ZOOM to zoom in on the box, and obtain the following plot:

 

 

    
Repeat this zooming-in process with BOXZ by moving to a corner of a box 5 pixels to

the left and 3 pixels below the origin, then moving to the diagonally opposite corner

5 pixels to the right and 3 pixels above the origin and pressing ZOOM |. You

should by now be ready to explain the behavior of y = x sin - as x approaches 0.

Superimposing Plots

To superimpose the plots of the graphs of two or more functions you can plot

them individually without erasing. A better procedure is to put a list

{F G H ... etc} of the functions F, G, H, ... etc. to be graphed into EQ and set the

calculator to sequential plotting mode (the default mode). When the DRAW command

is executed, the functions in the list are plotted sequentially, left-to-right. The

following example will illustrate this, both from the PLOT screen and the PLOT

menu.

EXAMPLE 6. Superimpose plots of the graphs of sin x, 2 sin x and sin 2x on the same

set of coordinate axes using the default parameters.

(a) Using the PLOT menu. Put'SIN( X )', '2 * SIN( X )' and 'SIN(2 * X)' on the

stack press the E] key to engage the interactive stack. Then move the

pointer to level 3 and press t—)[L.I]STI !ENTERI to build the list



(b)

FUNCTIONS: EVALUATION AND GRAPHING 31

{'SIN( X)) '2*SIN(X)" 'SIN@2 *X)'}. Now go to the PLOT menu and store

this list into EQ. Open the FLAG menu on the second page of the PLOT menu

and make sure that the middle menu key reads SIMU |. If SIMUO
 

   

appears, toggle off the key. Then return to the PLOT menu, reset the default

DRAX l and to see the

plots. Observe how the plots are drawn sequentially from the list.

 

 plotting parameters, and press , ERASEI

 

<+

>

 

    
To draw the plots in the list simultaneously instead of sequentially, go to the

second page of the PLOT menu, open the FLAG submenu and toggle on the middle

key to show SIMU[] |.
 

   

Using the PLOT screen. Open the PLOT screen and insert the list

{'SIN( X) '2*SIN(X)" 'SIN(2 * X)' } into the EQ field (note that tick marks

are required in the list). Open the OPTS (Options) submenu and make certain

that there is no check mark (') in the SIMLT field. Return to the previous

screen, set the default plotting parameters, then ERASE and DRAW. You

should observe the list being plotted sequentially.

Disconnected Plots

All of our function plots so far have been done in connected mode, which means

that any spaces between the pixels activated by the plot EQ were filled in with

short line segments. But there are times when it is desirable to plot in disconnected

mode, so that no filling in will be done. In connected mode, the HP-48 connects
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adjacent pixels with short line segments and sometimes extraneous lines can appear

on the plot.

The choice between connected versus disconnected plotting modes is specified by

system flag -31. When flag -31 is clear (the default state), plotting is done in

connected mode. But if flag -31 is set, then plotting is done in disconnected mode.

If you are using the PLOT screen ( PLOT |), use the OPTS menu key to

access the various PLOT OPTIONS. A check (¢/) in the CONNECT field indicates

that connected plotting mode is active. If you are using the PLOT menu

( ), go to the second page of the PLOT menu use the key to

access the three flags that are pertinent to basic plotting (AXES, CNCT, and SIMU).

If the second menu key shows CN C [0 then connected plotting mode is active. If

the key reads CNCT |, then disconnected mode is active; simply press the key to

change the status of the flag. Here is an example.

 

   

EXAMPLE 7. If you plot y = tan x in connected mode using the default screen, you

A
[

Notice that this plot contains vertical lines that are not part of the graph of

will see
 

 

     

y = tan x. The vertical lines appear because the HP-48 connects adjacent plotted

pixels. A graph of the tangent function without these extraneous lines is obtained by

plotting in disconnected mode:
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Although the disconnected plot is a little "dotty", it is nevertheless a better

representation of the graph of y = tan x than the plot above.

Piecewise Plots

Piecewise-defined functions are plotted by putting the defining IFTE expression

into EQ and proceeding as usual. To get the plot shown in the next example, use the

default viewing screen and the disconnected plotting mode; in the connected mode the

calculator will connect the pixels on opposite sides of the two discontinuities and

give you an inaccurate representation. To set the HP-48G/GX to plot in disconnected

mode, go to the second page of the PLOT menu and open the FLAG submenu. Press

the second white menu key so that CNCT appears in the second menu box.

bx+45 x< -2.5

EXAMPLE 8. To plot the graph of f(x) =y 2+sinx -2.5 <x<2.5 , use the expression

-c0s 2x 25<«x

'FTE ( X <-2.5, .6 *X + 45, IFTE ( X < 2.5, 2 + SIN( X ), -COS(2 * X) ) ). This

gives the plot:

. A

 

 

    
When you have finished, reset your calculator to plot in connected mode.
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Plotting Inverse Functions

When a function f is one-to-one (different input values produce different output

values), it has an inverse function f! that satisfies

fly)=x iff f(x)=y.

Whenever (x, y) is a point on the graph of f then (y, x) will be a point on the graph

off1. Thus, the graphs of f and f! will be reflections of one another across the line

y=x

To compare the graph off(x) = x3 with that of its inverse g(x) = \7;, you can begin

by plotting the list { 'X A 3' X A (1/3)' }. Using the default settings you will see:

......—
 

    
This fails to show the left branch of g(x) = \7; The reason is that for each negative

value of X, X ” (1/3) is calculated as the principal cube root of x, a complex number,

and so no pixel is activated. Although you may at first find this a bit disquieting,

the ability of the HP-48G/GX to return complex values for odd roots and for natural

logarithms of negative numbers is but one of the many features that makes the unit

so appropriate for post-calculus mathematics.

To obtain real odd roots of negative numbers, use the XROOT command, given by
  

    the W key (the Vx key). To see both branches of the graph of g(x) = \7;,  

we must plot the expression '’XROOT(3, X)'. There are two ways to enter this:
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  (i) Put X', then 3 on the stack and press )(/; .

(ii) Alternatively, go to the Equation Writer with ENTER |, and enter the

expression 3; with the keystrokes Vx| 3 | I>| l o I | 1/x ]

Press to convert this to the expression 'XROOT(3, X)' on stack level1.

 

 
 

   
 

When the list {'X A 3' 'XROOT(3, X)'} is plotted with the default screen, then

enlarged by a factor of 2 with the ZOOM menu, we see the following:

______7

Notice that the original plot and its inverse meet on the line y =x and that

 

    

the plots are reflections across this line.

To help plot the graph of an inverse function, you can use the following program

INV.F.! To use INV.F, begin by storing an expression for the original function f in EQ

and drawing a "good" plot of EQ, i.e., a plot on which you wish to superimpose a

plot of f1. Then execute INV.F. Since the program uses the expression stored in EQ

and the plotting parameters from the reserved variable PPAR, make certain that

you produce your original plot from the same user directory in which INV.F resides,

preferably, your CALC directory. The program will redraw the original plot of f,

overlay the line y = x, and then overdraw a plot of f1. Incase f is not a one-to-one

function, INV.F will overdraw the inverse relation for f.

 

1 Thanks to William C. Wickes of Hewlett Packard for suggesting this version that
uses parametric plotting.
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INV.F

Inputs: An expression for a function f, stored in EQ; and the desired

plotting parameters, stored in PPAR.

Outputs: Draws, over the plot of y = f(x), plots of the line y=x and

of the inverse relation f1to f.

« RCEQ PPAR — eql ppari « PARAMETRIC eql i » X' + X' i = 'X' +

eql 'i*X' + 3 -LIST STEQ ERASE DRAX DRAW eq1 STEQ ppari 'PPAR'

STO FUNCTION PICTURE » »

 

EXAMPLE 9. Plotf(x) = (x + 1)3 with the default viewing window. To see its inverse,

clear the graphing screen with and go to the VAR menu with .

Press INV.[F to see plots of f, the line y = x, and f! drawn sequentially:

 

 

  

 

 

Parametric Curves

Not every curve in the xy-plane is the graph of a function. For example, a circle

is not the graph of a function. More generally, imagine a point P moving in the xy-

plane in such a way that its coordinates are given as functions of time ¢:

x =f(t) and y = g(t).

We call t a parameter and call the curve that is traced by the moving point a

parametric curve.
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EXAMPLE 10. The coordinates of a moving point are given by

x=2cos2t, y=t-3sin2t for 0<t<45.

Plot the curve and determine the location of the point at ¢ = 2.

Using the Parametric Plot Form

Access the PLOT screen with PLOT |. If the plot type does not already

read Parametric, open the CHOOS box and select Parametric. Set the angle display

mode to Rad (for this example and any others that use trigonometric functions).

Parametric plots require that the expression(s) for EQ appear as complex-valued

functions: functions like

f(t) +1i%g(t)

where x =f(t) and y =g(t) give the x- and y- coordinates of the moving point.

Therefore, enter the following expression into the EQ field:

2+COS(2 +T) + i*(T—-3=x SIN@2 » T))

Now set the independent variable (INDEP:) to 'T', set H-VIEW: -6.5 6.5, and set

V-VIEW: -3 6. Open the OPTS submenu and set the independent variable to range

from LO: 0 to HI: 45. Check AXES and CONNECT. Return to the previous screen

with and ERASE and DRAW to see the following parametric plot. Note that

¢
To get the approximate location of the moving point when t = 2, trace clockwise

it is traced in a clockwise direction:

 

    

along the plot with coordinate readouts active. Notice that the screen shows pixel
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coordinates as t varies. We can only get close to t = 2 with t = 2.01, and for this

value of t the pixel coordinates of the point are approximately (-1.28, 4.31). We

can determine the exact location of the point when ¢ = 2 as follows.

Return to the stack display screen and access the SOLVE menu with

SOLVE |. Open the ROOT menu, then the SOLVR submenu. Now input the

value 2 for and press EXPR= to see

Expr: '-1.30728724173 + i+ 4.27040748592.

Thus the exact coordinates of the point when t = 2 are

x = -1.30728724173 and y = 4.27040748592.

Using the PLOT menu

Access the PLOT menu with PLOT |. If necessary, open the PTYPE menu

and press PARA to select PARAMETRIC plot mode. Enter '2 * COS(2 = T) + i (T

— 3 » SIN(2 = T) )’ onto stack level 1 and load it into EQ with . Now open

the PPAR submenu. Key in the expression { T 0 4.5} and touch INDEP to

specify the independent variable as T with a range from 0 to 4.5. Type -6.5 6.5 and

touch I XRNG to set the Xrng, then type -3 6 and touch YRNG to set the

Yrng. Return to the previous page, open the PLOT submenu, and ERASE, DRAX, and

DRAW the plot:

You can obtain the coordinates when ¢t = 2 as above.

 

 

    

When plotting in PARAMETRIC mode, you are free to specify any variable as

the independent variable, not just ‘T'. Unless you specify a range of values for that
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variable, the HP-48G/GX will by default use the values specified by the Xrng; this

is likely not to be the best choice.

You should recall that the ellipse given by 2zt e = 1 has the

parameterization

x=acost, y=bsint for 0<t<2m

If we take a = b then the circle x2 + y? =42 has the parameterization

x=acost, y=asint for 0<t<2nm

Of course, any function y = f(x), a < x <b can be parameterized by

x=t y=ft) for a<t<b.

We shall consider more exotic parametric curves in the activities.

Activity Set 2.2

1. (a) Plot the graph of y = sz% using the default plotting parameters.

 

(b) ERASE and then plot the graph of y =s@ :

-1
(c) ERASE and then plot the graph of y = COS;C :

2. (a) Plot the list { 'SIN(4 * X)' '-2+SIN(X)' } using the default plotting

parameters.

(b) ERASE and plot the sum of the two functions in the list.

(c) Overdraw your plot in (b) with the plot of y = -2 sin x.

(d) ERASE and plot the product of the two functions in the list.

(e) Overdraw your plot in (d) with the plot of y = -2 sin x.
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10.
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Plot y = cos(107x) on the default plotting screen. Why does the plot look this

way? Adjust the screen to make the plot look more like a cosine curve.

Set your calculator to degree mode and plot y = sin(x°) using the default screen.

Without changing back to radian mode, zoom on X to make the plot look like

sin x, x in radians. When you're done, reset to radian mode.

Graph = x° - 1.3x* + .32x — .02 using the default plotting screen. Examine thephy g P g

behavior of this function near the origin by using BOXZ several times.

To appreciate how "steep" are the graphs of simple polynomial functions, begin

by plotting y = 34x3 —91x2 — 117x + 54 on the default screen. Now zoom out along

the y-axis as necessary until you can see all the high points and low points

(local extreme points).

Plot y = cos (cos''x) using the default screen. Is the plot what you expected?

Now ERASE and plot cos(cos x). Can you explain what you see?

Investigate, graphically, the following limit:

lim x+ | 1-vx+11

x>0 | 1-x+1]

(see Activity 6 in Activity Set 2.1):

1
Graphically investigate the behavior of f(x) =sin (}-)near x = 0. Begin by

plotting on the default screen, then use BOXZ. What is your conclusion?

-x x<0

(a) Ploty=9sinx 0<x<r, using the default plotting screen.

X-T WSX

(b) Recall EQ to the stack, change it's sign with and then overdraw the

original plot with this expression.
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Plot y = x\/ 3- x% Adjust the viewing screen to make the plot touch the

x-axis at the end points of the domain.

Graph y = x3 - 9x2 + 2x + 48 with the default plotting screen, then zoom out on

the vertical axis by a factor of 16 to see the local maximum. Now move the

cursor to the point (4, 0), open the ZOOM menu and press the menu key

on the second page to relocate the center of the viewing window. You may want

to remove the menu key labels to see the local minimum. When you have

finished, use ZLAST to zoom to the last screen. When the plot is done, use

ZLAST again.

4
(a) Ploty = x? +2 on the default plotting screen, then zoom out on the vertical

axis by a factor of 4. Use TRACE to approximate the local minimum value

to the right of the origin.

x3-1

x-1
 (b) Ploty= on the default plotting screen, then relocate the center of the

viewing rectangle at (0, 2). Where is the "hole" in the graph?

(a) Use the default plotting screen to plot f(x) = 2x — 3, then use the INV.F

program to plot f1.

(b) Write an equation for f1.

(c) ERASE, then plot g(x) = -.6x + 1 and its inverse. When you've finished,

write an equation for g!.

(d) What is your observation about the slopes of non-parallel lines that are

symmetric to the line y = x? Prove it.

(e) Is the converse to your observation true?
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15.

16.

17.

18.
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Let u(x) = x2 + x + 1 and v(x) = sin x.

(a) Plot the composite function f(x) = u[v(x)] on the default plotting screen and

compare it with the graph of v(x).

(b) Now ERASE, plot the composite function g(x) = v[u(x)] on the default

plotting screen and compare it with the plot of u(x).

Use the default plotting parameters to graph

(a) y=23 () y=3@x-23+1
-4

(a) Use the XROOT command to plot y =2 (x + 2)?/3 + ;Cz + 1 Use the default 

plotting screen.

(b) Zoom in on both axes by a factor of .6. Trace to obtain an approximation to

the local maximum to the left of the origin.

(c) Now trace to find the approximate location of the local minimum that is

nearest to the origin; with the cursor resting at that point, press ENTER

to record the coordinates on the stack.

The HP-48G/GX command |P will return the integer part of any real number on

the stack. Thus, to determine whether a real number X is an integer, we need

only test X against IP(X): X is an integer iff X is the same as IP(X). The

syntax to test X against IP(X) is 'X == IP(X)', and you can find the == command

on the PRG TEST menu. Use these ideas to graph each of the following

functions on the default plotting screen.

1 if x is an integer

(@) f(xX)=142 4+2x-1 ifxisnotan integer

1-x if x is an integer

(b) 8(x)=)74x ifxisnotan integer
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19. Plot the parametric curve traced by a point P moving in such a way that the

coordinates are given by the equations

x=t-2sin3t, y=2cos2t for 0<t<6.3.

Give the exact location of P when t = 3. Use Xrng: -3.5 9.5 and Yrng: -2 2.

In activities 20 - 25, draw a plot of the indicated parametric curves on the default

plotting screen. Go to the MTH CONS menu to get a 12-digit approximation for .

20. x=4cost, y=2sint for 0<t<2m

21. x=3cost+2cos3t, y=3sint-2sin3t for 0<t<2m

22. x=2cos3t, y=sin7t for 0<t<2m

(When done, zoom in using ZOOM factors of 2.)

23. x=3cos*t, y=3sin3t for 0<t<2nm

24. x=sect, y=tant for 0<t<2m

25. x=2cost—-15cos3t, y=2sint-15sin3t for 0<t<2rx
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Elementary calculus is concerned with the mathematics of continuous change.

For example, given a function f whose graph is smooth, the rate of change of f ata

point P = (x, f(x)) on the graph is given by the intuitive notion of the slope of the

graph at point P. Calculus provides us with a precise mathematical meaning for

this intuitive notion by defining the derivative f'(x) of f at x, then declaring the

slope of the graph at P to be the derivative.

3.1 APPROXIMATING SLOPES

Difference Quotients

Given a function f, the derivative of f is the function f’ given by

o) = i L2D=1
h—0

The geometry is clear enough. The difference quotient

flx +h) - f(x)
h

appearing in the definition of f’ is the slope of the secant line joining the point

(x, f(x)) on the graph of f with some nearby point (x + h, f(x + h)) on the graph. Thus

the derivative can be viewed geometrically as the limiting position of the slopes of

nearby secant lines. For a given x, we can approximate f'(x) numerically by

f(x + h) - f(x)
h

evaluating the difference quotient for suitably small values of h.

A simple way to do this on the HP-48G/GX is to evaluate a user-defined

function for the difference quotient:

44
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F(X+ H)-F(X)
DQ(X,H) = T

This procedure requires that we also build a user-defined function F for the given

functionf.

To illustrate, consider the function f(x) = (x> + 5)3. We create a user-defined

function F forf: « > X' (X A 2 + 523 ' »; and another, DQ, for the difference

quotient: « - X H ' (F(X + H) - F(X))/H ' ». To approximate f'(2), we simply

evaluate DQ using input values (2, H) for varying values of H.

H DQ(2, H)

.001 972.67528
.0001 972.0675

.00001 972.0067

.000001 972
 

-.001 971.32528

-.0001 971.9325

-.00001 971.9933

-.000001 972

This numerical investigation should convince you that f'(2) = 972.

However, you must exercise caution with the numerical computation of

difference quotients because they are susceptible to serious cancellation error with the

finite precision arithmetic used in any machine computation. For example, consider

the function

3/ 21 + cos*x
flx) = 3
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If you build a user-defined function for f and then evaluate DQ for the following

input values (1, H) you will obtain these results:

H DQ(1, H)

104 -3.5221718

10° -3.522835

106 -3.52291

107 -3.523

The correct value is f'(1) = -3.5229074056, so you can see that we are losing digits

with each successive evaluation of the difference quotient.

Slopes by Zooming

Because there is a strong element of geometry underlying the definition of the

derivative, it is not surprising that graphical investigations can often help in

building an understanding of the concepts that surround derivatives. By zooming in

on a graph, we can often "see" the slope at a point.

EXAMPLE 1. We wish to "see" the slope of the graph of f(x) = 2x3 - 3x + 1 at the

point (-.2, 1.584). Begin by drawing a plot of the graph of f(x) =2x3 - 3x + 1 on the

default screen, then zoom in on the horizontal axis by a factor of 4 to obtain a better

//Nf\.‘.,/

Activate TRACE and the coordinate readout (X, Y), trace to the point on the curve

view:
 

    
where x = -.2, reset both zoom factors to 100 with recentering at the crosshairs, and
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then zoom in. Again, with the cursor resting on the curve at x = -.2, zoom in to see

the following approximation to the tangent line at x = -.2:

 

   
To calculate the slope of this line, we choose two points on the line. Trace left to

the point P where x = .20001 and press ENTER to record the precise coordinates on

the stack. Then trace right to the point Q where x = -.19999 and use ENTER to record

the precise location. Return to the stack with ON and press IZ' to calculate the

ordered pair (Ax, Ay), where Ax and Ay are the differences in the x and y

coordinates of P and Q, respectively. Use the C—R (complex into real) command on

the MTH CMPL menu to put Ax and Ay on the stack, then SWAP and divide to obtain

Ay _the approximation Ax -2.76 to the slope of the curve at x = -.2. In this case, we are

very accurate: the slope of the curve at x = -.2 is -2.76.

In the activities that follow, we will use this zooming technique to investigate

the slopes of several important functions.

Activity Set 3.1

1. Can you see the slope of y = sin x at (0, 0)?

(a) Draw a plot of y = sin x using the default screen, then zoom in by factors of

100 three times.

(b) Trace left to the point P on the curve where x = -.000001 and record the

coordinates on the stack with ENTER |, then trace right to the point Q

on the curve where x = .000001 and record the coordinate.
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2.

3.
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(c)

(d)

(e)

AyUse P and Q to calculate your approximation A to the slope as in

EXAMPLE 1.

Find the slope of y = sin x at (0, 0) by evaluating difference quotients.

What is the slope of y =sin x at (0, 0)? Express your answer in

mathematical terms as the formal limit of a difference quotient involving

the Sine function.

Can you see the slope of y = cos x at (0, 0)?

(a)

(b)

(c)

Draw a plot of y =cos x using the default screen, then zoom in on the

horizontal axis by a factor of 100 (no vertical axis zoom). Zoom in again on

the horizontal axis by a factor of 100 (no vertical zoom). With the

coordinate readout active, trace along the curve to determine its slope at

(0, 0).

Find the slope of y = cos x at (0, 0) by evaluating difference quotients.

Express the slope of y =cos x at (0, 0) in mathematical terms as the formal

limit of a difference quotient involving the Cosine function.

Use zoom in (with the same horizontal and vertical factors) to estimate the

slope of each of the following functions at the point where x = 1. Be sure to

check (v') RECENTER AT CROSSHAIRS to keep the zooming region centered on

the screen, and always make sure that the cursor is resting on the curve at the

desired point.

(a) y=x23  (b) y=%-2 () y=sin(x>2-1) (d) y=sine*
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4. Use difference quotients to estimate the following slopes:

(a) the slope ofy=\/3x—2 atx =2

 (b) the slope of y = x:-x atx = -1

3.2 DERIVATIVES WITH THE HP-48

It is important that students learn the basic mechanics of finding derivatives

without their calculators. However, there are times when it is perfectly natural to

use the calculator to take derivatives; for example, when we want to plot a function

and its first two derivatives, and then find the roots. Since the plotting and root-

finding will be done on the HP-48, we may as well do the differentiation process

there also.

The Derivative Function 0

The HP-48 uses the derivative function 0 (@ is the right-shifted @ key)

to perform symbolic differentiation. The differentiation can be executed all at once

or in step-by-step fashion following the chain rule. In either case, you must specify

the expression that is to be differentiated and also the variable of differentiation.

In order to obtain symbolic results, the HP-48 must be set to display symbolic results

(the default state) and no numerical value should be stored for the variable of

differentiation.

Using the Stack

To perform symbolic differentiation on the stack all at once, the two inputs are

specified on the stack:

level 1: 'the expression to be differentiated’

level 2: 'the variable of differentiation'

Then execute the d command with @
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EXAMPLE 2. To differentiate f(x) = sin x2, arrange the stack as follows:

level 2: 'SIN(X A 2)'

level 1: X'

then press the E key to see the symbolic result

level 1: 'COS(X A 2) « (2 » X)".

Recall that the chain rule says (in mixed notation) that

d
I JI8(X)] = fIg(x)] g'(x).

To perform symbolic differentiation of f(x) = sin x? on the stack in step-by-step fashion

following the chain rule, begin with the expression '9X(SIN(X 2 2))' on level 1:

level 1: '9X(SIN(X A 2))'.

Press to perform one step of the differentiation and obtain:

level 1: 'COS(X A 2) = aX(X A 2)".

Press EVAL again the perform the second step:

level 1: 'COS(X A 2) » (dX( X) » 2 «+ XA2 - 1))".

Finally, press EVAL again to execute the final step:

level 1: 'COS(X A 2) * (2  X)'.

As an alternative to keying in '9X(SIN(X A 2))' directly to stack level 1, you can

use the Equation Writer. The Equation Writer is an environment that enables you to

enter mathematical expressions and text in much the same way they are written by

hand. Activate the Equation Writer with , then use the @ key to

begin the expression. When you see the form

_9_
o0
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respond by entering X and then press the IEI key to move away from the

denominator and obtain

d
= (0.

Now enter SIN and then X to see

d
x (SINKXIO .

Close the two parentheses with ‘E E to obtain

0
x (SIN(X)) O.

Our use of the IE key in this illustration is typical: in the Equation Writer, the

EI key is used to complete any subexpression and move on to the next part. Press

ENTER to convert the expression into '9X(SIN(X))' on level 1.

Using the Symbolic Differentiate Screen

Go to the Symbolic application with SYMBOLIC |, highlight Differentiate

and press. When the Differentiate screen appears, enter 'SIN(X A 2)' into the

EXPR field and 'X' into the VAR field. With the result type specified as Symbolic

press to see the result returned all at once to stack level 1:

1: 'COS(X A 2) « (2 + X)'.

To obtain the symbolic derivative in step-by-step fashion, return to the Symbolic

application and select Differentiate as before. After entering 'X' into the VAR field,

press STEP |. The result of the first step of the differentiation process will

appear on level 1:

1: 'COS(X A 2) » 9aX(X A 2)".
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As before, each succeeding press of the EVAL key will perform another step of the

differentiation.

EXAMPLE 3. If you put your calculator in degree mode and take the derivative of a

trigonometric function, say f(x) = sin x, you will see 'COS(X) * (n/180)'. Why the

factor /1807 There are several ways to explain this.

d
When x is measured in radians, we know that Ix (sin x) = cos x. Thus by the

. d . d . =« T d = T
chain rule, we have Ix [sin(x°)] = Ix [sm(m x)] = cos(m x) o (@x) = cos(x°)(m).

For an explanation at the more fundamental level, recall the derivation of the

derivative of the sine function:

 

  

 

E—(sin ) = lim sin (x + h) — sin x

dx - h—0 h

- lim (sin x cos h + cos x sin h) — sin x
- h—0 h

. : cosh—l) . sinh)
= lim |sinx- + lim cos x-

h—0 h h—-0 h

) ( cosh—l) ( sinh)
= sinx - lim ———— + cosx - lim .

h—0 h hso h

Thus, the result depends upon the two limits

. cosh-1 . Sinh
lim———— and Ilim
h—0 h 0 h

 

Whether h is measured in radians or degrees, we have

cosh—l_
lim = 0.
0 h

When h is measured in radians, we have seen (see Activity 1 in Section 3.1) that

lim sin h

h—0 h

 = 1.
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But when h is measured in degrees,

< = 3 T Si

We h T 180

(see Activity 1, Section 3.2).

Thus, using degree measure we have

i . cosh -1 . sinh
sinx - lim ———— + cosx - lim

h—0 h h—0 h

 ;_x (sin x)

- L
sin x - +COSX°180

T
cos x - ig(‘)‘ .

Differentiating the XROOT Function

Although the XROOT function is built into the HP-48G/GX, its derivative is

not. You can, however, differentiate XROOT if you have the following program

stored in your HOME directory. It is important that the name derXROOT use

lowercase letters for d, ¢, and r followed by XROOT in uppercase letters because this

is the syntax recognized by the HP-48's differentiation routine. (Note: to obtain

lowercase alphabetical characters, use @ @, EI EI, etc.)

 

 

derXROOT

Input: 'XROOT(N, F(X)) on level 1, where N > 0 is an integer

Effect. returns d—ci( \’N F(X) ) on level 1

« > nwy z'INV(n) » XROOT(n, w) A (1 =n) * Z'»

  



54 CHAPTER3

EXAMPLE 4. Plot the derivative of f(x) =\7 5 sin x on the default screen. With the

program derXROOT in the HOME directory of your 48G/GX, put 'XROOT(3,5 +

SIN(X))' on the stack, enter 'X' and press @ to see the derivative '.333333333333 «

XROOT(3, 5 « SIN(X))M — 2 = (5 » COS(X))'. Now plot on the default screen to see

 

|

 

 

  
 

Notice that the derivative is not defined at the values x = nm,n =0, 1, ... .

Piecewise Differentiation

Although the HP-48G/GX will not completely symbolically differentiate a

function defined with the IFTE command, it will correctly plot the derivative. Here

is an example.

-X x<0

EXAMPLE 5. Find the derivative of f(x) = sinx 0<x<7m and then plot both f

X-T TWsXx

and its derivative.

Put two copies of IFTE(X < 0, -X, IFTE(X < &, SIN(X), X — &))" on the stack and graph

in disconnected mode with the default parameters to see

 

 

  

 

 

For greater clarity, especially after we overdraw f’, trace along the curve to the

point where x = 1.5, open the ZOOM menu and press CNTR |. The plot will be
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redrawn with the point you choose as center. Now ZOOM in on both axes by .67 to

see

 

 

    
Press to return to the stack, put X' on level 1 and press @ to differentiate.

This gives 'lFTE(X < 0, aX(-X), dX(IFTE(X < =, SIN(X), X — ®)))'. Notice that the

differentiation is not complete. Use of EVAL does not change the expression.

However, if we plot f' without erasing we see the plot of the derivative

7/_

<

superimposed on the plot of f:

 

   9 
Notice that f has local minima at values of x where f'(x) does not exist.

Implicit Differentiation

Implicit differentiation is a technique that is used to obtain the derivative
d

y' = a% when y is implicitly defined as a function of x.

For example, the equation y3 —xy?2 —y = 5 implicitly defines y as a function of

x. To use implicit differentiation, we think of y as an implicit function of x and

apply the chain rule to differentiate both sides of the equation. The resulting

equation can then be solved, if necessary for y'.

To implicitly differentiate y3 —xy? -y = 5 we proceed as follows:
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(i) 3y-+x2yy')-y'=0 (apply chain rule)

(ii) By*-2xy-1)y'-y*>=0 (algebra)

¥(iii) y'= (solve for y')
3y - 2xy -1

The HP-48G/GX cannot remember that y is an implicit function of x. Instead,

we must specify that Y depends upon X by using Y(X) instead of simply Y. When

the calculator takes the derivative, the symbolic derivative of Y(X) will appear as

the expression derY(X, 1). Try it. Put 'Y(X) A 2' on level 2, and 'X' on level 1 and

press @ . You will see 'derY(X, 1) » 2 » Y(X)' returned to level 1, the calculator's

version of

d \
7z W?) = 2yy".

To avoid having to type Y(X) in place of Y, and to make the result appear

more like what we are accustomed to writing, we can use a short calculator program.

The program given below does the following:

e replaces Y with Y(X);

o takes the derivative with respect to X; then

o replaces Y(X) with Y and derY(X, 1) with y' in the resulting expression
 

IM.y'

Input: level 1: an expression involving X and Y

Effect: differentiates the expression on level 1 with respect to X;

returns an expression for the derivative that uses X, Y and y.

«{Y 'Y(X))} TMATCH DROP 'X' 9 {'Y(X))Y} TMATCH DROP

{'derY(X, 1)'y'} TMATCH DROP »
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Thus, with 'X A2 + Y A 2' on level 1, program IM.y' returns '2 « X + y' « 2 « Y".

EXAMPLE 6. To implicitly differentiate the equation y3 —xy2 -y = 5 on the HP-

48G/GX, put the equation 'YA3-X+*YA2-Y =5"on level 1 and run program IM.y'

to see:

'V x 3 YA2-(YA24 Xx(y'*x2+Y) -y =0

This is the calculator's version of equation (i) above. You can now isolate y' and then

solve for y' as in equations (ii) - (iii).

An alternative to the above way of performing implicit differentiation on the

HP-48G/GX, we can use a more advanced result that relates implicit differentiation

to partial derivatives. Given a function of two independent variables, say F(x, y),

the partial derivative Fx with respect to x is obtained by regarding y as a constant and

taking the derivative with respect to x. For the function F(x, y) =y3 -xy?> —y — 5 the

partial derivative with respect to x is F, = -y%2. Similarly, we obtain the partial

derivative F, with respect to y by regarding x as a constant and differentiating with

respect to y: F, =3y? - 2xy — 1. The following result relates implicit differentiation

to partial derivatives:

If the equation F(x, y) = O defines y as a differentiable function of x , then at any

point where F, # 0 we have

dy _ -Fy
dx_Fy'

Using this result we see that for the example F(x, y) = y3 —xy?> -y — 5 we have

AyBy
Y =dx T F, = 32 -2xy-1
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which agrees with our earlier calculation in (iii). Given an equation F(x,y) = 0 that

implicitly defines y as a function of x, the following program takes as input the
-F

algebraic expression F(x, y) and returns the result y' = ffi :
y
 

 

yl

Input: level 1: an algebraic expression in terms of X and Y

representing F(x, y)

Effect: returns to level 1 an algebraic expression of the form

' fl( i iy'= Fy for the derivative

«{X Y} PURGE DUP 'X' 0 SWAP 'Y' 9 NEG / 'y -»TAG »

 

EXAMPLE 7. To obtain the derivative y' for the function y of x that is implicitly

defined by the equation y3 -xy2 -y -5=0, put 'YA3 - X+ YA 2 -Y - 5" on level 1

and press to see the following result returned to level 1:

1y '-(YA2)/—=(B+YA2-X*x(2+Y)=-1))

Compare this to our expression in (iii) above.

As the above example illustrates, implicit differentiation usually results in an

expression for the derivative y' in terms of x and y, say y' = G(x, y). To evaluate

the two-variable function G(x,y) at a particular point (4, b), we can use the

following program F.XY.
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F.XY

Inputs: level 3: an algebraic expression F(x, y) in variables X

and Y

level 2: a real number "a"

level 3: a real number "b"

Effect. returns the number F(a, b) to level 1 and the original

expression F(x, y) to level 2

« 'Y'STO X' STO DUP EVAL {X Y} PURGE »

 

EXAMPLE 8. To find the derivatives y'(-1, 2) and y'(3, -4) of the function y

implicitly defined by the equation y? -xy? —y = 5, at the points (-1, 2) and (3, -4),

put 'YA3 =X+ YA2-Y -5"on level 1 and press E to obtain the symbolic

derivative y';'-(YA2/-(3+YA2-X+(2+Y) = 1)) on level 1. now press 1

2 to see the derivative y'(-1, 2) = 2.666666666667 on level 1 and

the original symbolic derivative on level 2. Now SWAP levels 1 and 2 and use 3

4 to see y'(3, -4) = 225352112676 on level 1.

Activity Set 3.2

 

1. (a) Calculate a full precision decimal approximation to 7/180.

(b) Set your calculator to DEGREE mode. Use the SOLVR to numerically
: : . sinx .
investigate lim—  in degree mode. Complete the table:

x—0
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X SIN(X)/X

01
.001

.0001
 

-.01

-.001

-.0001

(c) Keepyour calculator in degree mode and do a graphical investigation of
sin x

lim —— , as follows.
x—0 X

e Plot 'SIN(X)/X"' using the default plotting parameters. What do you

see? We need to zoom in.

e Put the full precision decimal approximation to /180 on level 1. Go to

the PLOT menu with ,open,go to the next page

and press « H to rescale the vertical axis so that each tick mark

represents 7/180. UsemPL@T andDRAW to redraw your

plot of 'SIN(X)/X'. Whatis lim 2T in degree mode?
x—0

 

   

2. For each of the following functions, find the derivative by hand calculation. As

a check on your result, use the HP-48G/GX to calculate the symbolic derivative

in a single step as follows:

(i) using the stack

(ii) using the Symbolic Differentiate Screen.
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 (a) y= X (b) y=cosVx+1
x2+1

() y=sinx (d) y=e*/3sin(2x)

3. (a) Ploty-= asinzx on the default screen.

(b) Recall EQ to the stack, take its derivative with the HP-48 and then

overdraw the plot from (a) with a plot of the derivative.

(c) For what values of x is the derivative undefined? What can you say

about the function at these values?

4. (a) Ploty=sin| x| on the default screen. (Use ABS(X) for| x|.) By examining

the plot, can you tell where the derivative will not be defined?

(b) Use the HP-48G/GX to take the derivative. The term SIGN(X) is

interpreted as follows:

+1 forx>0

SIGN(X) = 0 forx=0

-1 forx<0

Overdraw your plot in (a) with a plot of the derivative. Where is the

derivative not defined?

5. The following plot shows two graphs, a function f and its derivative f. Which

plotis f and whichis f'?

.A:
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3 s
6. (a) Draw, on the default screen, a plot of y =35 tan'12x. Try hard to visualize

a plot of the derivative.

(b) Confirm (or refute) your visualization efforts by overdrawing a plot of the

derivative.

7. Each of the following equations implicitly defines y as a function of x. Use

program IM.y' to implicitly differentiate the equation, then solve for the

derivative y' by hand.

(a) 3x-9y3=17 (d) y’—\/;+cosxy2=8

(b) x(y?>+5x)=9 (e) x*¥/3+y3/2=7

() x¥+sinx?y-y?2=1 (f) cos x =sin?y

8. Use program Y' to obtain the derivative % of each of the implicitly defined

functions in Activity 7, then use program F.XY to evaluate the derivative at the

indicated point.

(a) (5, -3) () B n/2) (e) (8, 9)

(b) (-2, -3) (d) (=, 2) (f) (n/4, n/4)

3.3 USING THE DERIVATIVE

Maxima, Minima and Inflection Points

The derivative of a function is the source of considerable information about the

behavior of the graph of the function. It can tell us where the graph of the function

is increasing and decreasing, help pinpoint the location of local maximum and

minimum values on the graph, and show where the graph is concave up and concave

down. It is thus advantageous to consider functions and their derivatives from the

very beginning of a study of calculus.
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A plot of the graph of a function produced on a calculator's screen can often

provide valuable information about the behavior of the function. When graphical

techniques are carefully combined with an understanding of the derivative as a rate

of change, we have a powerful tool for analyzing a function's behavior in

considerable detail.

When the DRAW command is executed and the HP-48G/GX draws a plot of the

graph of a function, the calculator enters the PICTURE environment and displays the

PICTURE menu. In addition to the zoom operations accessible through the ZOOM

submenu, the FCN (= function) submenu contains a number of commands that are

helpful in analyzing a function's behavior with calculus without leaving the

PICTURE environment. Commands such as ROOT (to find roots of equations), ISECT

(for finding intersections of curves), SLOPE (for the slope of a graph), AREA (for

calculating areas of regions beneath curves), EXTR (for finding extreme points (i.e.,

local maxima or minima) on curves), F' (to calculate and plot the derivative of a

function), and TANL (to plot the line tangent to a curve at a point).

EXAMPLE 9. Find the x-intercepts, local maxima and minima, and any inflection

points for the function f(x) = x3 - 5x2 + 2x + 2.

Use the default parameters in connected mode to obtain the following plot:

\
N

Since the plot goes off screen, we zoom out on the vertical axis. A zoom factor of

 

 

   

_
\
-

.

 

5 gives the plot:
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L J

2T . ./

/‘:\/
)    

This plot shows all of the graph between x =-2and x = 5. Before proceeding,

we pause to consider what calculus tells us about the graph of this function.

The function is a cubic polynomial, so has at most three real roots. Since we see

the plot crossing the x-axis three times, all the x-intercepts are displayed. The

derivative is a second-degree polynomial and thus has at most two real roots. So the

graph of f can have at most two local extreme points, and because we see a high

point and a low point, we certainly have all the local extrema displayed.

The second derivative is a nonconstant linear function having one real root, so

the graph of f has only one inflection point. Since the graph is concave down at the

origin and concave up near x = 3, the inflection point lies between these two points.

With the plot still displayed open the FCN menu.

To find the x intercepts: Move the cursor to the point to the left of 0 where the plot

appears to cross the x-axis and press ROOT |. You will see a twelve digit

approximation to this root displayed at the bottom of the screen:

ROOT: -.449489742783.

This has also been entered onto the stack. Go to the stack and you will see:

1: Root: -.449489742783.

Now return to the graph with PICTURE (the E:I key) and find the other

two roots in the same way. When you're done, return to the stack to see all three

roots. When you find a root of a function in this way, the HP-48 uses the
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x-coordinate of the cursor as a first approximation for its own ROOT program to

numerically approximate the root.

To find the coordinates of the local extrema: Move the cursor to the apparent high

point of the graph located above the x-axis just to the right of the origin and press

EXTR \ The message EXTRM: (.213700352153, 2.2088207353) appears below 

the graph. This point was also entered on the stack. Now move the cursor to the

apparent low point of the graph and again press EXTR |. The new message

EXTRM: (3.11963298118, -10.0606725872) appears below the graph and this

point was entered on the stack.

When you execute the EXTR command, the HP-48 finds the extreme point by a

well-known procedure. It finds the derivative f ' of f and then uses the x-

coordinate of the cursor as a first approximation for the ROOT program to find a root

of f’. Finally, it calculates the value of f at this root and displays the two

coordinates.

To find the inflection point: There is no key on the FCN menu to do this so we

must use our knowledge of the relation between the function and its derivatives. We

know that inflection points occur where the graph of the function changes concavity.

And for functions that are everywhere differentiable (such as this one), concavity

will change at points where the derivative f° changes its direction, i.e., at points

where the graph of f’ has a local extremum. We can therefore locate the inflection

point on the graph of f by locating the extreme point on the graph of the derivative

f . This can be done in the PICTURE environment.

With the graph of f displayed, go to the second page of the FCN menu and

press the key. This will plot the derivative f' and then replot f.
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\_ /]
/

When you press the key, EQ becomes a list {f’ f} containing f’ and f, in

this order. The HP-48 commands ROOT, EXTR,etc., apply only to the first function in

  
 

the list, which is now f’. So move the cursor to the apparent low point of f° and

press EXTR |. You will see EXTRM: (1.66666666667,-6.333333333) displayed

at the bottom of the screen. This is the low point on the graph of f° and we want to

use its x-coordinate as the x-coordinate of the inflection point of f.

To get the y-coordinate of the inflection point P we must evaluate the function

f at the x-coordinate of P. Perhaps the easiest way to do this is to use a short

program. The following program assumes that EQ is alist { f' f } composed of f’

and f in order, and that the coordinates of an extreme point of f* are displayed on

stack level 1. With this input, the program returns the corresponding inflection

point of f with the tag "Infl". The 1 in the name "INFL1" indicates that the first

derivative is used in the process.

 

INFL1 ( Inflection point of f)

Input. level 1: the coordinates (xg, ¥o) of an extreme point of f

As a stored variable EQ: the list { f' f} consisting of f' and f

Effect: returns to level 1 the point (xp, f(x;)) tagged as 'Infl’

« RE EQ 2 GET OVER X' STO EVAL R—C 'Infll 2TAG 'X' PURGE »
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With this program in your calculator and the extreme point of f" on stack level 1,

press INFL1 to see

level 1: Infl: ( 1.666666666667, -3.925925926 ).

The stack now displays, on levels 6 through 1, the three x-intercepts (roots), the

two extreme points and the inflection point of f, all with identifying tags. In the

display below, we have set the display mode to show only two decimal places to

avoid running off the right of the screen, and have again shown the plot of f to

coordinate it with the information about the points of interest:

L]
[N

 

   
 

6 Root: -0.45

5 Root 1.00

4: Root 4.45

3. Extrm: (0.21, 2.21)

2: Extrm: (3.12, -10.06)

1: Infl: (1.67, -3.93)

You will, of course, have to scroll with the Izl key to see all six stack levels.

Since the coordinates of extrema can be found from the FCN menu with a single

keystroke, it was convenient to find the inflection points of f from the extrema of f".

But another way to find inflection points of f is to find the x-intercepts of the second

derivative f”, because f has an inflection point at the values of x where the graph

of f” crosses the x axis. We will now use this method to again locate the

inflection point of f. With the graphs of f" and f displayed on the screen, press

again and the calculator will plot f”, then f' and finally f.
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EQ is now the list { f” f' f} consisting of f”, f* and f, in this order. Move the

cursor to the root of f” and press ROOT to display the message ROOT:

1.66666666667 below the graph. To find the value of f atthis x and then

display both coordinates as an inflection point, we will use the following program,

INFL2. The 2 in the name indicates that the second derivative was used.

 

 

INFL2 (Inflection point of f)

Input: level 1: the coordinate x, of a root of f"

As a stored variable EQ: the list { f* f' f} consisting

of f, f and f.

Effect: returns to level 1 the point (xq, f(Xo)) tagged as 'Infl’

« EQ 3 GET OVER 'X' STO EVAL R—C 'Infl 2TAG 'X' PURGE »

 

This program assumes that EQ contains a list of f”, f" and f, in this order, and

that a root of f” is displayed on stack level 1. With this input it returns the

corresponding inflection point of f, tagged "Infl". With the root of f” displayed on

stack level 1, executing INFL2 will give:

1: Infl: (1.67, -3.93) (the display was again fixed at two decimal places).

The next example uses a trigonometric function and would not be appropriate

without the use of technology because of the difficulty of finding roots. With the

HP-48G/GX, the procedure is the same as in EXAMPLE 9.
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EXAMPLE 10. Plot the graph of f(x) = sin(2x) + cos(x + 2). Find the x-intercepts and

the coordinates of the local extreme points and inflection points.

Since this is a periodic function with period 2z, so it is sufficient to find the

desired points on the interval [0, 2n). Plot f with the x-range set to-.1 < x <6.29

and the y-range set to - 2.5 <y < 2.5 to see:

SEA_ N\
 

    
First, the intercepts: Move the cursor to each of the four points between 0 and 27

where the plot appears to cross the x-axis and press ROOT on the

submenu at each point. Return to the stack display screen to see:

4: Root: .429203673203

3: Root: .904129660127

2: Root: 299852476252

1: Root: 5.09291986492

To find the extreme points: We proceed as in EXAMPLE 9. Move the cursor to each

of the four apparent extreme points and press at each one. Return to the

stack display screen and set the display to show two decimal places. You will see

these results:

Extrm: (0.67, 0.08)

Extrm: (2.14, -1.45)

Extrm: (4.00, 1.95)

Extrm: (5.76, -0.77)
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To find the inflection points: It should be clear from the plot that there is an

inflection point between each consecutive pair of extreme points. We will proceed as

before by finding the extreme points of f* and then using program INFL1 to build the

inflection points of f. Retrieve the graph of f with PICTURE |. When we use

to plot both f’ and f, the high point of f* is off screen, so we zoom out on the

vertical axis with a factor of 1.5 to see:

 

   4
 

Move the cursor to each of the four extreme points of the graph of f' and press

at each point. Return to the stack display and convert each of the extreme

points of f’ to inflection points of f with program INFL1. You must do some stack

manipulation in order to move the extrema of f' to level 1 in left-to-right order to

use with the program. Here's an easy way: with the four extreme points of f on

the stack, press INFL1 to convert the point on level 1 to an inflection point of f.

Then press the E key to activate the interactive stack and then use the Iz:l key

to position the pointer p» on level 4 and press I ROLLD l ENTER l This rolls the

first four levels of the stack downward, moving the first inflection point up to

 

level 4. Now repeat this entire process three more times until all four extreme points

are converted and appear in their natural order, left-to-right.
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We display again the graph of f and the points that we have found:
 

v   
 

12: Root: 0.43

11: Root: 0.90

10: Root: 3.00

9: Root: 5.09

8: Extrm: (0.67, 0.08)

7: Extrm: (2.14, 1.45)

6: Extrm: (4.00, 1.95)

5: Extrm: (5.76, -0.77)

4: Infl: (0.06, -0.35)

3: Infl: (1.45, -0.71)

2: Infl: (3.09, 0.28)

1: Infl: (4.82, 0.64)

In the activities we will examine a function whose inflection points occur where

the derivative is not defined. Sometimes we need to find the absolute maximum and

absolute minimum values of a function f on a closed interval[a, b].

EXAMPLE 11. Find the absolute maximum and minimum values of the function

fix)=x* -2x3 —x2 + x on the interval [-1, 2].

We could graph f with -1 < x <2 as the x-range but, instead, we will keep the

default x-range and restrict the independent variable to plot only those points satisfying

-1 £ x < 2. The correct plotis
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   \
Clearly the absolute maximum value of f on [-1, 2] occurs at the left endpoint

 

x = -1, and the absolute minimum value occurs at the minimum point where x is

approximately 1.5. To find f(-1), move the cursor to any point whose x-coordinate is

-1 and press on the second page of the PICTURE FCN menu to see the

message F(X): 1 displayed at the bottom of the screen. So the absolute maximum

value of f on [-1, 2] is 1, occurring when x =-1. To find the absolute minimum value

of f from the graph, position the cursor near the apparent minimum point whose

x-coordinate is close to 1.5 and press on the PICTURE FCN menu. The

message EXTRM: (1.70710678119, -2.66421356232) will appear. Thus the absolute

minimum value of f on [-1, 2] is -2.66421356232, occurring when x = 1.70710678119.

Before moving on to the next example, clear your stack and be sure to reset the

independent variable to its default state with.

In a situation like that of EXAMPLE 11, if the plot of a function shows an

absolute extreme value occurring at the left endpoint of the interval [a, b] but a is

not a pixel coordinate, say, a = \f?or w for example, then you will have to exit the

PICTURE environment to evaluate the function at a. Of course, the HP-48 will never

evaluate a function at «, only at its 12-digit rational number approximation.

EXAMPLE 12. Find the absolute maximum and absolute minimum values of the

functionf(x) = \' 1 +sin3x on the interval [-m/5, 2m/3].
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We first PLOT the graph with the default parameters to see:
 

L J

   
 

Now restrict the independent variable to plot only the interval [-7/5, 27/3] and

redraw:

 

 

    
It is clear from the plot that we can use the EXTR command to obtain the

absolute maximum:

Extrm: (1.57079632679, 1.41421356237)

We recognize this as the decimal approximation to (n/2, ¥ 2). The absolute

minimum occurs at the left endpoint of the interval. To evaluate f there, we return

to the stack display screen and go to the SOLVE menu with SOLVE |. Open

the ROOT submenu, then the SOLVR submenu. Build the decimal approximation to

-m/5 with El 5 . Use ENTER to make a duplicate

copy, then touch and EXPR= to see y-coordinate .892706665066. Thus the

absolute minimum point of the graph on the interval [-7/5, 27/3] is approximately

(-.628318530718, .892706665066).

EXAMPLE 13. Plot the graph of f(x) = 1.7 e-*/2sin(3x) for 0 < x.
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Since we are interested in the graph only for non-negative values of x, we set the

x-range as -.1 < x £ 6.4 and the y-range as -1.55 < y < 1.6. This halving of both ranges

retains equal unit distances (number of pixels per coordinate unit) on both axes and

produces the graph:
 

   
 

This function (which represents damped harmonic motion) is not periodic and

has infinitely many roots, extrema and inflection points for values of x 2 0. We could

find any of these that we desired by using the techniques described earlier. But in

this example, we will use the HP-48G/GX to analyze another aspect of the function's

behavior.

Since -1 < sin(3x) < 1, the graph of f lies between the graphs of u(x) = 1.7 e"*2

and v(x) = -1.7 e*2, coinciding with the graph of u when sin(3x) = 1 and with the

graph of v when sin(3x) = - 1. We can illustrate this by plotting the list { fu v }

using the same plotting parameters that we used for f. Exit the PICTURE

environment, recall f to the stack with , and use to put a

second copy on the stack. Edit the copy on level 1 to read '1.7 * EXP(-X/2)', make a

second copy of the newly edited expression and then press to change sign. Use

them key and the —»LIST command to build the list { fu v }. Now store the list

in EQ and graph it to see:
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The roots of f occur where sin(3x) = 0, that is, at the roots of sin(3x). Question:

do the extrema of f occur at the extrema of sin(3x), that is, at the points of coincidence of f

with u or v?

We investigate this question both analytically and graphically. Move the

cursor to the first maximum point to the right of the y-axis and press to see

EXTRM: (.468549216461, 1.32664626947) at the bottom of the plot screen. If this were

the point where sin(3x) = 1, then its first coordinate should be /6. But

r/6 = 523598775598, so the extreme points of f do not coincide with those of sin(3x).

We can illustrate this graphically by using BOXZ to zoom in on the region of the

graph around the first maximum point to the right of the y-axis:
 

  
 

The maximum point of f is clearly seen to be to the left of the point where the

graph of f intersects the graph of u. With some analysis of the derivative, you can

show that successive extrema of f occur every n/3 units along the x-axis, as do

successive points of coincidence of f with u or v. So the spacing shown between an

extreme point and the corresponding point of intersection with one of the bounding

graphs is constant.

Caution

When you execute the EXTR command on the PICTURE FCN menu, the HP-

48G/GX takes the derivative of the expression stored in EQ and then finds the value

of x closest to the cursor that causes the derivative to evaluate to 0. Thus, if the

x-coordinate of the extreme point that you are finding is a root of the derivative, you

are using the EXTR command in the way in which it was designed to be used. But,if
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the extreme value of f does not occur at a root of the derivative, you should not use

this command.

EXAMPLE 14. Find the roots, extrema and inflection points of the function
x-4

=2(x +2)2/3 + .
fix) 2(x+2) ©+1

 

Put '2 » XROOT(3, (X + 2)A2) + (X — 4)/(X A2 + 1)’ on level 1 and plot with the

2

We can find the two roots in the usual way, by moving the cursor to each of them

and pressing ROOT on the PICTURE FCN menu. We can find the local maximum

default parameters to see:
 

  
 

point near x = -1 and the local minimum near x = -.3 by moving the cursor near these

points and pressing EXTR |. However, if we move the cursor to the minimum point

where x = -2 and press EXTR |, we get EXTRM: (-7.52928344591E213,

7.68302819356E142) which is nonsense. From the graph, f clearly has a minimum at
-6 6

x=-2andf(-2) =0+ g =-5 . The problem is that f has no derivative at x = -2 so

the EXTR approach is not appropriate. If we press on the PICTURE FCN

menu to plot both f and f' we see:
 

 

 
A\=

The plot makes it clear that f' does not exist at x = -2. Since the inflection points

 
 

of f occur at values of x where f* has extrema, we move the cursor near the local
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minimum of f* to the left of the origin and press EXTR to obtain (-.661278286618,

-1.07868129833). Now return to the stack, open the VAR menu and use INFL1 to build

the inflection point as

Infl: (-.661278286618, -.81375384108).

Similarly, we find the inflection point that lies to the right of the origin to be

Infl: (464327883331, .74032208835).

Activity Set 3.3.1

For each of the functions given in Activities 1-18 below, plot the graph and find

all local extreme values and inflection points. When a closed interval is given, also

find the absolute extreme values on that interval.

1. flx)y=x83-x+2 10. f(x) = cos 2x —sin x on [0, 7]

2. flx)=x3-(1.3)x% + (.32)x - .02 11. f(x) = sin(3x) — cos(2x),0 < x < 2m

1+x2 x<0
3. flx)=x*-2x3+3x-2 12,f(x)={cosx 0<x<m

T—-X T<Xx
4. flx)=x>+3xt-x3-3x2-x+3

_a2h5. fx) = 23x2 13. f(x) 3e

4 14. fx)=x"
6. flx)=2_%

7. fx)=N1-2

8. f(x) =x + 3 sin x, on the interval

[0, 2x].

15. f(x) = cos(4 cos™1 X).

16. f(x) = 1.5 tan'12x

17. fx)=x"*,0<x <27
5

18- fl0 = T35e=
9. f(x) =sin x + 2 cos(3x) on [0, ]



78 CHAPTER3

Activities 19-21 are printed with thanks to Jim Nicholson.

19. A telephone company plans to run a new telephone line to a customer whose

house is located one mile off the straight road along which the telephone lines

are run. The new line must go from a junction box on the road to the customer's

house. The junction box that is nearest to the house is three miles down the road

from the point on the road that is closest to the house. It costs $100 per mile to

run telephone cable along the road and $150 per mile to run cable off the road.

What cable route minimizes total costs?

20. The owner of Big Sky Farm wants to build a rectangular paddock using one side

of her horse barn as part, or all, of one side of the paddock. Her barn side is 50

feet in length. There is enough material on hand to build 200 feet of paddock

fencing. What dimensions will give a paddock with maximum turn-out area?

21. As an afterthought, the owner of Big Sky Farm needs to use enough of her

material to repair 70 feet of existing paddock fencing elsewhere, leaving only

enough material to build 130 feet of fencing for the new barn paddock. With

only 130 feet available, what dimensions will maximize turn-out area?

Newton's Method

The technique known as Newton's method has become a classic topic for

inclusion in calculus. It is important because it not only invokes the notion of the

derivative to produce a simple geometric procedure for finding roots of many

functions, but also because it introduces several important ideas: algorithms,

recursion, iteration. And it is especially easy to implement on the HP-48G/GX. The
: : : (x,) :
iteration formula for Newton's method is x,,; = x, -}L(xL) , so we need only iterate

n

f(x)the new function F(x) = x -o
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EXAMPLE 15. To use Newton's method to find the roots of f(x) = 3x — 4 sin x, we first

graph f to see how many roots there are and to supply first guesses. The plot below

is the result of plotting with the default parameters and then zooming in by a factor

of .333 on both axes:

We will now create a user-defined function for NM(x) = x —j';f-((% . An easy way

 

    

to do this is to put 'NM(X)', ‘X', and two copies of '3 + X — 4 + SIN(X)' on the stack,

then take the derivative, divide, subtract and equate. The result is

'NM(X) = X — (3 » X—4 » SIN(X))/(3 — 4 + COS(X))'. Now press to create

the function NM on the VAR menu.

From the graph, 1.4 appears to be a reasonable first guess, so put 1.4 on the stack

and press to see 1.28871273546 as the next approximation. Press |[ENTER| to

make a duplicate copy to keep. Now press again to obtain a second

approximation and then ENTER to keep a copy. If you repeat this for three more

iterations of Newton's method, you will have:

1.28871273546

1.27587035767

1.27569814018

1.27569810928

1.27569810928

Five iterations have given us successive approximations that agree to 11

decimal places.
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The above procedure for building a user-defined function to implement Newton's

method for a given function f can be automated with a short program. Program

NEWTON , given below, takes an expression for f(x) from level 1 of the stack and

constructs a user-defined function NM to perform the iteration.
 

 

NEWTON

Input: level 1: an expression for f(x)

Effect:  constructs the user-defined function NM to implement

Newton's method.

« 'X' PURGE 'NM(X)' 'X' ROT DUP 'X'90 / — = DEFINE X' PURGE »

 

If, for instance, you put '3 * X — 4 » SIN(X)' on level 1 and press NEWT |, you

can then execute Newton's method from the menu key as above.

Newton's method has its limitations. It will obviously not converge if we ever

obtain f'(x,) = 0. But there can be other causes for its failure. We shall examine

some of these in the next set of Activities.

Roots

You should appreciate Newton's method for what it is: a simple iterative

procedure, based upon the geometric interpretation of the derivative as the slope of

the tangent line, for finding roots of an equation y = f(x). But it pales in comparison

to the more powerful, robust and sophisticated root-finder that is built in to the HP-

48G/GX. We called upon this root-finder when we used the key on the

FCN submenu of the PICTURE environment to find the roots of a function whose plot

was displayed. The location of the cursor on the graphics screen provided the

initial guess for the procedure which, like Newton's method, is iterative.
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The HP-48's root-finder program is the heart of the HP Solve System, which

allows you to use menu keys to obtain a numerical solution to any problem that can be

expressed in terms of an equation that includes only one unknown variable. The root-

finder can be activated in either of two ways:

e with SOLVE OK|, to gain access to the SOLVE EQUATION screen;

e with | SOLVE I ROOT I, to gain access to the SOLVE command menu.

No matter which way you activate the HP Solve system, the general procedure for

using it is the same:

e enter the equation you want to solve;

e enter values for all known variables;

e optional: enter an initial guess for the unknown variable;

e solve for the unknown variable.

The local procedures that support this general scheme depend upon how you activate

the HP Solve system. Here is a worked example in which the HP Solve system is

activated and used each way.

EXAMPLE 16. The following equation is often used in financial calculations that

involve loan payments:

(r/12) 1 +1/12)"

1+7/12) -1

where: A = monthly payment made at the end of each month

P = total amount of the loan

n = total number of monthly payments

r = annual interest rate (e.g., for 7%, r = .07).
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Suppose that you are considering different options associated with buying a new car.

(a)

(b)

(c)

How much would your monthly payments be if you were to borrow $10,000

for 4 years at 7.5% annual interest?

How much could you borrow for 4 years at 7.5% interest if you could only

afford to pay $175 per month?

What annual interest rate would you have to obtain in order to borrow

$9,000 for 4 years with monthly payments of $215?

Using the SOLVE EQUATION screen

Use to gain access to the SOLVE EQUATION screen. The

EQ dialogue box will reflect the contents of the current EQ. Enter ‘A =P » (R/12) » (1

+ RMA2) AN/ ((1 + R/12) AN - 1)" into the EQ field.

(a)

(b)

(c)

Enter .075 into the R field, 48 into the N field, and 10,000 into the P

field. Optional: as an initial guess for the amount A of monthly payment,

enter 100. If you make no initial guess, the root finder will use the default

guess of 0. Now highlight the A field and press SOLVE to see the

correct monthly payment of $241.79 returned to the A field.

With the screen set from part (a), enter 175 into the A field. When the

P field is highlighted, press SOLVE to see the correct principal

amount $7,237.71 returned to the P field.

With the screen set from part (b), enter 9,000 into the P field and 215 into

the A field. Highlight the R field and press SOLVE to see the

correct interest rate of a little over 6.876% returned to the R field.
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Using the SOLVE command menu

Return to the stack display screen and purge the variables N, R, P,and A from

our previous work on this problem; only the EQ should remain. Use SOLVE

ROOT to activate the SOLVE menu. Press to verify that the desired

expression is present in EQ. Clear the stack (if necessary) and open the SOLVR |.

You will see input boxes for each of the variables A, P, R, N at the bottom of the

screen, along with an EXPR= box. The top of the screen will display the

contents of EQ.

(a)

(b)

(c)

Store the initial guess 100 into variable A with 100 , then store the

values 10,000 into P, .075 into R, and 48 into N by a similar procedure.

Since the value for A is only an initial (and optional) guess, we need to

solve for the correct value of variable A. To do this, press . The

message at the top of the screen will say Solving for A. When done, the

top of the screen will read Zero (to indicate that an exact root of the

equation was found) and show the root on level 1: 241.789019379. Thus the

monthly payment would be $241.79.

Now store the value 175 into A and solve for P to see the value

7237.71494872 returned to level 1. Thus, you could only borrow $7,237.71

with $175 monthly payments.

Finally, store the value 9,000 into P, the value 215 into A, and solve for

variable R. The correct value is 6.87628494944E-2, so you would have to

obtain an annual interest rate of 6.876%. Now press and purge the

variables used in this problem.

To avoid confusion, you should know that there is another ROOT command on

the HP-48G/GX. It appears on the ROOT submenu of the SOLVE menu and is useful
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for solving in programs. It solves an expression (on level 3) for an unknown (on

level 2) using a first guess (on level 1). Try it out now for the function of

EXAMPLE 15, f(x) = 3x — 4 sin x, with an initial guess in the vicinity of x = 1.5.

Activity Set 3.3.2

1. Use Newton's method to find all roots of the following functions:

(a) flx)=x3-3x2-5x+15

(b) f(x) =sin x —2 cos 3x in the interval[0, 27]

(c) f(x)=e*-2cos x in the interval [-27, 1]

(d) the Legendre Polynomial of degree 3:

P;(x) = gxa —%x

(e) the Chebyshev Polynomial of degree 4:

Ty(x) =8x* -8x2 + 1

2. Because Newton's method relies on tangent lines to generate a sequence of

successive approximations xg, X1, X, ... to a desired root 7, you might expect that

the method is somewhat sensitive to the slopes of these tangent lines. Indeed,

tangent lines with small slopes often lead us away from the root we seek. To see

this, try to locate the root r =0 of f(x) = sin x by Newton's method, using the

following initial guesses:

(a) x =n/2 [What happens here? Why?]

(b) x =16

(c) x% =15

(d) x =14



(e)

(f)

(8)
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x =13

X% =12

x5 =11

3. Apply Newton's method to f(x) = \7_; . The graph of f should help you to

understand what is happening here.

4. Apply Newton's method to the function

(a)

(b)

(c)

(a)

(b)

f(x)_{-VZ—x forx <2

- Vx-2 forx>2

Use any convenient initial guess, say xo = 3. When program NM returns a

symbolic result, simply press EVAL to evaluate that result and obtain a

numerical result.

Experiment with several other initial guesses. What is taking place here?

To "see" what is taking place, plot the graph of f on the default plotting

screen. Trace along the plot to the point P where x = 3 (our first initial

guess), open the FCN submenu and use TANL to plot the tangent line to

f at P. Return to PICT |, trace along the plot to the point Q where

x =1 (our second guess when xy = 3), and use TANL to draw the tangent

line to fat Q. What is apparent about these tangent lines? Return to the

stack and examine their slopes.

Plot the list { 'EXP (-X A 2)' “75/(1 + X A 2)' } on the default screen, then

zoom in using zoom factors of 3 to enlarge the plot.

Use the command ISECT on the FCN submenu to find the points of

intersection of the two plots. ISECT uses the HP Solve system to produceits

results.
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6.

CHAPTER 3

Find the value for 0 (in degrees) that will give the shaded region an area of

1.5in? if r = 4 in. (The command R—D on the MTH REAL menu will convert

radians to degrees.)

 

It is well-known that the centroid of the St. Louis arch is in the shape of an

inverted catenary (hyperbolic cosine). The outside surface is much thicker at the

base than at the top and thus is not a true catenary. Nevertheless, we shall

model the outside surface as a catenary having both its height and base equal to

630 ft. Since a catenary hanging above the origin with lowest point at (0, a) has
. X ... . .

an equation y =a cosh -, it is easy to see that an equation for the St. Louis arch

is

y =630+a(1—cosh§)

for some positive parameter a. To help determine this parameter, we use the

fact that the point (315, 0) lies on the arch. Use the HP Solve system to

determine the parameter a and then write an equation for the St. Louis arch

that is free of unknown parameters. Remember, the HP Solve system only needs

an initial guess. The cosh command resides on the MTH HYP menu.
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Polynomial Approximations

A great deal of calculus is concerned with approximations. Indeed,

approximations lie at the heart of the two main ideas of calculus, the derivative

and the integral. The derivative is defined as a limit of approximating slopes and

the integral is defined as a limit of approximating sumes.

1
Aside from familiar approximations like .3, .33, .333, .3333, ... — 3 the simplest

approximations in calculus occur when we approximate differentiable functions f by

their tangent lines at points x = a. Recall that the slope of the tangent line of a

function f at x =a is given by

f(x) = f(a)f(@) = lim T2

Thus, for values of x close to a, we have

f(a) = f(x) = f(a)
x-a '/

so that

(1) f(x) = f(a) + f(a)(x - a).

The expression on the right hand side of (1) is a linear polynomial in (x - a):

P;(x) = fla) + f'(a)(x — a)

and its graph is the tangent line y =f(a) + f'(a)(x — a) to f at x =a. Of all

possible linear polynomials in (x —a), P,(x) is the only one that satisfies the two

conditions:

(i) Pi(a) = f(a) [P, and f agree at x = a]

(ii) Pi(a) = f'(a) [Py and f have the same derivative at x = a]
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Because conditions (i) and (ii) are enough to completely determine the form of the

polynomial P;(x), we call P;(x) the best linear approximation to f at x = a. By zooming

in enough near the point where x = a, the graphs of P; and f appear almost

identical.

For some functions f, the best linear approximation at x =a can be a good one
 

1:

   
 

The best linear approximation to fix)=V x at x=7
is a good fit to the graph for values of x near x = .

But for functions f having more curvature at x = a, the best linear approximation can

be poor:
 

<

The best linear approximation to f(x) = cos x at x = mis a poorfit to the
graph for values of x near x = # because of the high degree of curvature.

   
 

To account for a higher degree of curvature at a point x =4, we need an

approximating polynomial whose higher order derivatives are not all zero at that

point.
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The best quadratic approximation to the function f at x = a is the quadratic

polynomial P,(x) in (x —a) satisfying the three conditions:

(i) Py(a) = f(a) [P, and f agree at a]

(ii) Plz(a) = f'(a) [P, and f have the same first and second

(iii) P'(a) = £"(a) derivatives at x = a]
2

The defining expression is

 
) ” (a)

Py(x) = fla) + f'(a)(x — a) +f2! (x — a).

The plot below shoes the best linear and best quadratic approximations to f(x) = cos x

The best quadratic approximation to f(x) =cosx at x=rm
is a better fit than the best linear approximation.

atx = 7.
 

    

The best linear and quadratic approximations to a function f at x =a are also

called the Taylor Polynomials of orders 1 and 2 for f at x =a. More generally, given

a function f whose first n derivatives exist in a neighborhood of x = a, the Taylor

Polynomial of order n at x =a is the polynomial

 
” n)

P =f@) + f@x-0) +L2 eyuSTgy
n!

As our last plot suggests, higher order Taylor polynomials at x = a extend the

range of values near x = a for which we can expect to get reasonably good

approximations to f.
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The HP-48G/GX will find Taylor polynomials at x = 0 for any function that it

can differentiate, and it is easy to write short programs that extend this capability

to the more general case of Taylor polynomials at an arbitrary value x =a.

Using the Taylor Polynomial Screen

Access the Taylor Polynomial screen with SYMBOLIC |, highlight Taylor

Polynomial and press. Enter an expression for the function into the EXPR

field, say EXPR: 'SIN(X)', the variable of differentiation into the VAR field, VAR:

'X', and the desired order of the Taylor polynomial, say ORDER: 3. With the

result set to RESULT: Symbolic, press to see the Taylor Polynomial at x =0

on stack level 1:

level 1: 'X =1/3! « XA 3

Using the TAYLR command

The command TAYLR, located on the first page of the SYMBOLIC menu,

requires a threefold input: on level 3 the function f whose Taylor polynomial at

x = 0 is desired, on level 2 the independent variable, and on level 1 the degree of

the desired polynomial. This command produces Taylor polynomials about x = 0:

3: 'SIN(X)'

2: X T 1: X —1/31« XA 3
1: 3

To efficiently graph plot f(x) = sin x and its Taylor polynomials P3, P; and Pq;

of orders 3, 7 and 11 at x = 0, begin with 'SIN(X)' on level 1 and press ENTER

three times to make three additional copies. Build the list {'SIN(X)'} by pressing the

IE followed byl - LIST l ENTER |. SWAP levels 1 and 2, enter 'X' and 3,

then press TAYLR to build P3(x): 'X — 1/3! * X A 3'. Insert this as the second
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element of the list with . Now SWAP levels 1 and 2 and proceed as before to

build P;(x) and P;;(x), adding them to the list as they become available. You can

then store the final list into EQ and plot with the default viewing screen to see:
 

   
Displaying plots is a dramatic way of showing how a function can be

approximated by its Taylor polynomials, but you should remember that with the

default plotting parameters two plots will coincide for a value of x if their

y-coordinates are the same when rounded to one decimal digit; ordinarily, this is not

good enough for serious numerical approximations.

To find Taylor polynomials centered about an arbitrary point x =a, you can use

program TAY.A. Make sure that the independent variable is set to X and that no

value is stored for X before using the program.
 

 

TAY.A

Input: Level 3: an algebraic expression for a function f,

in terms of 'X'.

Level 2: the order n of the desired Taylor polynomial.

Level 1: the new center point, a.

Effect: Returns the Taylor polynomial of order n for function

fat x=a.

« > n a « 'Y a +'X'" STO EVAL 'Y' n TAYLR 'X' PURGE X'

a - 'Y' STO EVAL 'Y' PURGE » »
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For example, to find the fourth order Taylor polynomial for f(x) = sin x, at the

point x = 2, put 'SIN(X)' on the stack, then enter 4 and 2 and press TAY.A to see

the calculator's version of

0.909297 — 0.416147(x — 2) — .454649(x — 2)? + 0.069358(x — 2)3 + 0.037887(x — 2)4

on level 1. (We set the display to show 6 decimal places.) Plot the list containing

sin x and this polynomial with the default parameters to see:

Notice that the graphs appear to coincide from near x = -5 to near x = 3.5, that

is, on an interval centered about x = 2.

Although TAY.A does the obvious by making a change of variables X =Y +a to

translate the Taylor polynomial from x =0 to x =4, you should be aware of the fact

that the symbolic computations required to calculate higher order Taylor

polynomials at points x =a away from x = 0 can be substantial. Thus, as a

symbolic processor, you may sometimes find the HP-48G/GX not quite up to the task

of finding the Taylor polynomials that you desire if you use TAY.A. For example,

the HP-48G runs out of memory (32K RAM) before it can produce the Taylor

polynomial of order 7 for f(x) =x! at x =2 and the HP-48GX (with 128K RAM)

requires almost 25 minutes to produce this polynomial. The solution is to be a bit

more clever in how we approach the symbolics. Program TAYLAT ("Taylor at") is

due to Charlie Patton of Hewlett Packard and uses the {MATCH and | commandsto

rearrange the symbolic computations. With TAYLAT, you can produce the Taylor

polynomial of order 7 for f(x) = x! at x = 2 in less than 30 seconds.
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TAYLAT

Input. Level 4: an expression for a function f.

Level 3: the independent variable.

Level 2: the order n of the desired Taylor polynomial

Level 1: the new center point a.

Effect: Returns the Taylor polynomial of order n for function f,

centered about x = a.

« = XP VA ORD PT « XP VA VA PT + 2 —LIST \MATCH DROP

VA ORD TAYLR VA VA PT — 2 LIST | » »

 

Activity Set 3.3.3

1. Plot f(x) = tan'}(x) on the default screen. Then overdraw the Taylor Polynomials

of orders 1 and 3 for f at x =0.

Plot f(x) = sec x on the interval [-7, #]. Then overdraw the Taylor Polynomials

of orders 2 and 4 for f at x = 0.

(a) Plot f(x) =sin 2x —2sin x on the default plotting screen and then overdraw

the Taylor polynomials of orders 3, 5, 7 and 9 for f at x = 0.

(b) ERASE the plots from part (a) and plot f(x) = sin 2x — 2 sin x using Xrng: -2

6 and Yrng: -3.1 3.2. Now use TAY.A to overdraw with the plot of the

Taylor polynomials of orders 2 and 5 for f centered at x = 2.
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4. (a) Plot f(x)= e*'/2 on the default screen, then zoom in with factors of 3.

(b) Overdraw your plot in (a) with the Taylor polynomials of orders 2 and 4

for f at x =0.

(c) Now overdraw your plot in (b) with the Taylor polynomial of order 6 for f

at x = 0. The HP-48G/GX takes quite some time to produce this sixth

degree polynomial (approximately 2.5 min), an illustration of how complex

the computation of such polynomials can be. To convince yourself, try

finding this polynomial by hand.

Discovering the Mean Value Theorem

The Mean Value Theorem is one of the "gems" of elementary calculus. Its

statement is simple, its geometric character makes it believable, and it is an

extremely useful result. Indeed, the Mean Value Theorem provides the theoretical

basis for a host of other theorems that comprise an important part of differential

calculus.

What does the Mean Value Theorem say?

Given a function f that is continuous on the closed interval [a, b] and

differentiable between a and b, then for some point c between a and
f(b) — f(a)

b, the tangent line to f at x = c has slope equal to b—a

 

    
Geometrically: At some point ¢ between a and b the tangent line to f

at x = c is parallel to the secant line joining (a, f(a)) and (b, f(b)).
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EXAMPLE 17. In this example we will apply the Mean Value Theorem to the

function f(x) =x3 -3x2 —x + 3 on the interval [-.75, 2.6] and produce the above plot

of the result. Before beginning, purge X from the current directory and its ancestors.

Begin by plotting f(x) =x3 -3x2 —x + 3 with Xrng: -2.25 4.25 and Yrng: -4.65

4.8. Trace left along the plot to the point P where x = -.75, press ENTER to

record the coordinates (a, f(a)) of P on the stack, then press to mark the

location of the cursor on the plot screen. Now trace right along the plot to the point

Q where x = 2.6 and again press ENTER to record the coordinates (b, f(b)) of Q

on the stack. Press, open the EDIT menu, and press LINE to draw the

secant line joining points P and Q.

f(b) = f(a)
b-a

To calculate the slope of the secant line, first exit to the stack

display screen to see the coordinates of P on level 2and Q on level 1:

2: (-.75, 1.640625)

1: (2.6, -2.304)

Press E] to calculate (a - b, f(a) — f(b)):

1: (-3.35, 3.944625)

then divide 3.944625 by -3.35 to obtain the slope m = -1.1775 (Here is an easy way to

do the division without retyping the numbers: open the MTH CMPL ( = complex )

menu, press C—R to separate the ordered pair into its two components, then

SWAP and divide.) Leave -1.1775 on level 1.

To find a point ¢ between x =a and x = b where the tangent lineto f at x =¢

has slope equal to -1.1775, recall EQ to the stack and press ENTER to make a

duplicate copy. Now take the symbolic derivative of EQ, move -1.1775 from level 3
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to level 1 with the command 3 ROLL; and then use lE‘ to equate -1.1775 to the

derivative:

1: '3+ XA2-3+2+X)=1=-1.1775'

Go to the SOLVE menu with SOLVE |, open ROOT and store the

equation on level 1 into EQ. Open SOLVR |. Since a4 =-75 and b = 2.6, we can

use x = 0 as an initial guess for the root-finder; so put 0 into and then solve for

x = ¢ with . You will see X: 3.00343648694E-2 returned to level 1. Now

SWAP the value for ¢ on level 1 with the original f(x) on level 2, restore f(x) as

the EQ with the command STEO, open the VAR menu and purge the value stored in

. (You should still have the value for ¢ on level 1.)

To build an equation for the tangent line to f at x = ¢, use the following

program TAN.L. Recall that the HP-48G/GX has a menu key on the PICTURE FCN

menu for drawing the tangent line to a function whose plot appears on the screen.

But this built-in feature uses as input the x-coordinate of the cursor, and our value ¢

is not such a point; hence the need for a more general purpose program. At any rate,

run program TAN.L now. The program will use the value of ¢ from level 1 and the

expression f(x) in EQ to calculate and overdraw a plot of the tanget line to f at

x = ¢ ; for convenience, a copy of the equation of the tangent line is left on level 1 of

the stack.

1: '-2.9672865388 — 1.1775 » (X — 3.00343648694E-2)’
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TAN.L

Input: Level 1: a real number ¢ or a complex number (c, d)

As the stored variable EQ: an algebraic expression for a

function of f.

Effect.  Calculates an expression for the tangent line to f at x = ¢,

plots the expression on the existing plotting screen, and

returns the expression to level 1 of the stack.

« DTAG DUP IF TYPE 0 == THEN 'X' STO ELSE C—»R DROP X'

STO END EQ DUP EVAL EQ 'X' ¢ EVAL X' X - + + 'X' PURGE DUP

STEQ DRAW SWAP STEQ PICTURE »
 

Activity Set 3.3.4

1
1. (a) Plot the function y = using Xrng: -5 3 and Yrng: 0 4.2.

(b) Apply the Mean Value Theorem (as in the last Example) to f on the

interval [a, b], where a4, b are the x-coordinates of points P, Q obtained

as follows: trace left along the curve to the point P where x = .496, then

trace right along the curve to the point Q where x = 1.44. As in the last

example, overlay plots of the secant line and tangent line on the plot of f.

2. (a) Plot the function f(x) =V x sin x using Xrng: 0 3.14 and Yrng: 0 1.5.

(b) Apply the Mean Value Theorem to f on the interval [a, b] where a, b are

the x-coordinates of points P, Q determined as follows: trace left along

the curve to the point P where x = .725, then trace right along the curve

to the point Q where x = 2.15. Plot the secant line joining P and Q.

When you get ready to use the root-finder, use x = 0 as your initial guess.
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Overdraw plots of the secant and tangent lines. Does the location of the

tangent line at x = ¢ surprise you? Now seed the root finder with x = 1.5 to

find another value for c. Is the tangent line to f at this new x = c the one

you expected originally?

3. As Activity 2 shows, there may be more than one value of ¢ between x =a and

x = b that meets the conditions of the Mean Value Theorem. Here is a

spectacular example.

(a) Plot f(x) =sin x -2 cos 3x using Xrng: 0 6.28 and Yrng: -3.1 3.2.

(b) Apply the Mean Value Theorem to f over the interval [a, b] where a4, b

are the x-coordinates of points P, Q determined as follows: trace left

along the curve to the point P where x = 2.75, then trace right along the

curve to the point Q where x = 4.64. Plot the secant line joining P

and Q.

(c) Now find six values of ¢ between a and b that meet the conditions of

the Mean Value Theorem. Do this by using the initial guesses for the root-

finder of x =1, 2, 3,4, 5 and 6. Plot all six tangent lines.

Parametric Differentiation

How can we find the slope of a smooth parametric curve

x=f(t), y=gt), a<t<b

at a point (xg, yo) on the curve?

If the coordinate functions f and g are reasonably "well-behaved", then y can

be expressed as a function of x, say y = F(x). Then, since y is a function of x and x

is a function of t the Chain rule tells us that

dy _dydx
dt ~ dx dt -
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d
At a point where d—f # 0 we can then obtain

 

dy _ dy ,dx
dx — dt’ dt   

d d
In this last equation, H‘ltiand fi are the rates of change of the coordinates with

d
respect to the parameter ¢, while d—% is the rate of change of y with respectto x —

d d
the slope of the curve. In case 2% =0 and 32:- # 0, the slope of the curve is 0, meaning

a horizontal tangent line. On the other hand, if t;—;c =0 and %‘% # 0 then the curve

d d
has a vertical tangent line. The case that both derivatives H}ti and d—f are 0 is ruled

out when we have a smooth curve.

EXAMPLE 18. Consider the parametric curve given by x =2 cos 2t, y =t — 3 sin 2t for

0<t<45. We first met this curve in Chapter 2.

The slope of the curve at any value t is given by

d_z_ g/é_1-6c052t

dcx — dt’ dt = -4sin?2t

Thus, the slope of the curve at the point where t =2 is

1-6c0s2(2)

The point on the curve corresponding to t =2 is (xg, yo) = (-1.30728724173,

4.27040748592), so an equation for the tangent line y =y, + m(x — xy) to the curve at

this point is

y = 4.270470748592 + 1.62587390888(x + 1.30728724713)

or

y = 1.62587390888x + 6.39589170366.
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In addition to plotting parametric curves, the HP-48G/GX can calculate the

slope of a smooth parametic curve at a point (xg, yp) and then overdraw a plot of the

tangent line to the curve at this point. Instead of performing all of the calculations

on the stack, we can use a program to do most of the work. Program PAR'

dy[= PARametric derivative], given below, will calculate the slope m =7~ of a smooth

parametric curve at a point (xg, y9) and then determine an equation for the tangent

line y =y, +m(x—xp).
 

 

PAR'

Input: Level 2: a parametric curve '(f(T), g(T)' in terms of the

parameter 'T'

Level 1: avalue t, of the parameter 'T'

Effect:  Calculates the slope m = (%( (X0, Yo) of the curve at

(X0, Yo), where xo = f(fy) and y, = g(1;), and returns to level 1

an expression for the tangent line y =y, + m(x — xp) at

(X0, Yo). Displays the message "VERTICAL TANGENT" in the

case of a vertical tangent.

« 'T" PURGE SWAP OBJ— DROP2 OBJ— DROP2 2 —LIST =LIST i

NEG « COLCT DUP2 2 —LIST T o0 OBJ» DROP 5 ROLL —-NUM 'T' STO

EVAL 9 RND SWAP EVAL DUP ABS IF 1E-10 < THEN 4 DROPN

"VERTICAL TANGENT" ELSE / 3 ROLLD EVAL SWAP EVAL 3 PICK « -

SWAP 'X' «+ SWAP + END 'T' PURGE »
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EXAMPLE 19. we shall apply program PAR' to the parametric curve of EXAMPLE 18.

Begin with a parametric plot of the curve using Xrng: -6.5 6.5, Yrng: -3 6, and

independent variable T restricted by { T 0 4.5 }. The plot should appear as

follows:
 

Now recall the EQ to level 1, enter 2 and run program PAR' to see the expression

    

'1.62587390881 « X + 6.39589170357

for the tangent line when T = 2.

To overlay the tangent line on the plot of the curve, change the plot type to

FUNCTION, put the above expression into EQ and set the independent variable to

X. Without erasing the original plot, execute the DRAW command to obtain the

following:
 

A
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Activity Set 3.3.5

1. (a)

(b)

(a)

(b)

(a)

(b)

Plot the parametric curve given by

x=t-2sin3t, y=2cos2t, 0<t<2m

using Xrng: -3.5 9.5 and Yrng: -2 2.

Calculate and overdraw plots of the tangent lines to the curve at points

corresponding to t=0,t=n/2,t=5r/6,and t = 7r/6.

Plot the parametric curve given by

x=4cost, y=2sint, 0<t<2m

using the default plotting screen.

Calculate and overdraw plots of the tangent lines to the curve at points

corresponding to the following values oft:

(i) t=0andt=nrx

(ii) t=m/2and t=3m/2

(iii) t=n/4and t=5n/4

Plot the parametric curve given by

x=3cos®t, y=3sin3t, 0<t<2m

using the default plotting screen.

Calculate and overdraw plots of the tangent lines to the curve at points

corresponding to t =0, n/2, n and 37/2; then at points corresponding to

t=3n/4 and 7r/4.
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Calculus is rich in its connections to geometry. The two main ideas of calculus —

the derivative and the integral — arose from simple geometric questions: what is

the slope of a curve? what is the area beneath a curve?

  

     

 

 

 

b

The integral f(x)dx gives the area between
The derivative g—g gives the slope of y = f(x) & '[f &a

y = f(x) and the x-axis from x=ato x=b

Figure 1(a) Figure 1(b)

4.1 APPROXIMATING AREA

Rectangle Approximations

To approximate the area of the region lying between the curve y = f(x) and the

x-axis from x =a to x =b (the shaded region in Figure 1(b)), we can sum areas of

rectangles.

b -
Divide the interval [4, b ] into n equal subintervals of length h = __fi__‘}_ with

points a =x5 <x; <...<X,.;=b. On each subinterval, build a rectangle whose

width is h and whose height is given by a value f(x*) of the function for some x*

chosen within the subinterval. If x* is always chosen as the left endpoint of the

108
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subinterval we build left rectangles;if x* is always chosen as the right endpoint of the

subinterval we build right rectangles. The sum of the areas of the rectangles is an

approximation to the area of the region.

  

  

            
 

 

LRECT: .117695276935 RRECT: .130564808185

Approximation with 10 left rectangles Approximation with 10 right rectangles

Figure 2(a) Figure 2(b)

By increasing the number of rectangles we can improve the approximations.

  

  

                    
 
 

LRECT: .123205970687 RRECT: .126423353459

Approximation with 40 left rectangles Approximation with 40 right rectangles

Figure 3(a) Figure 3(b)

When a graph is increasing, left rectangles will clearly underestimate the area,

while right rectangles will overestimate the area. Exactly the opposite occurs when a

graph is decreasing: left rectangles will overestimate and right rectangles

underestimate. Thus, a convenient way to balance the errors is to use midpoint

rectangles, rectangles whose heights are calculated by f(x*) where x* is always

chosen as the midpoint of each subinterval.
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MiD: 125225017839 MID: .124883260538    
               

Approximation with 10 midpoint rectangles Approximation with 40 midpoint rectangles

Figure 4(a) Figure 4(b)

  
 

  

Since it is impractical to calculate a large number of rectangle areas by hand,

we can use the HP-48G/GX. Below we present a sequence of HP-48 programs to do

this. The first one, GRECT! [= Graphing RECTangles] provides a graphical/

numerical interface for rectangle sum approximations. Depending upon your choice, it

calls upon programs LRECT [= Left RECTangles], RRECT [Right RECTangles ], or MID

[= MIDpoint rectangles] to do the numerical calculations. These three programs call

upon program SUM to do the actual summing and SUM calls upon program F.val to

evaluate the input function f at the appropriate values. Two other utility programs

are given: FABSTO, used to store the expression for f and values for a and b ; and

NSTO, used to store the number n of subintervals. All of these programs (and two

others) can be found in the special INTG subdirectory of the main calculus directory

CALC, on the teaching code diskette (available from the publisher). Following a

listing of these programs, we will work an example.

 

1The GRECT program was written by Robert E. Simms of Clemson Univeristy. We
are indebted to him for permission to use it here.
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FABSTO

Input.  Level 3: an expression for f(x), in terms of ‘X'

Level 2: the lower limit of integration, a

Level 1: the upper limit of integration, b

Effect: stores f, a and b as EQ, A and B.

« 'B' STO 'A' STO STEQ »

 

 

 
NSTO

Input: level 1: a positive integer n

Effect: stores n as the number of subintervals N

and stores h=(b—a)/nas H

« 'N' STO B A - N/'H STO »
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GRECT

Input. As stored variables: an expression for f(x) in EQ and values for a

and b in A and B, respectively, from the program FABSTO; a value

for n in N from program NSTO.

Effect: Prompts the user for a rectangle type; based upon the choice,

produces an autoscaled plot of the function in EQ, overlays the

approximating rectangles on the plot, and calculates the sum of their

signed areas; puts the sum on stack level 1 as a tagged object. (By

signed areas we mean that areas of rectangles lying below the x-axis

carry a negative ( - ) sign while areas of rectangles lying above the

x-axis carry a positive ( + ) sign.)

Comment. In order for the program to properly draw the approximating

rectangles, the number n of subintervals (rectangles) must be a

divisor of 120: N=2, 3,4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 60 or 120.

When n = 120, the entire region beneath the graph from x=atox=>bis

shaded because each rectangle is exactly one pixel in width.

« N 120 MIN 1 MAX DUP B A - SWAP / - n h « CLLCD "Select rectangle type 1

for Left 2 for Mid 3 for Right" 1 DISP 7 FREEZE IFERR 0 WAIT THEN DROP ELSE —-c «

CASE c 82.1 == THEN 'LRECT' A END c 83.1 == THEN 'MID' Ah 2/ + END c 84.1 ==

THEN 'RRECT' A h + END KILL END » 0 0 10 FOR z AB A -10/z « + X' STO EQ

EVAL NEXT 12 DUPN 1 11 START MAX NEXT 13 ROLLD 1 11 START MIN NEXT DUP2

DUP2 -260/+5 ROLLD — 160/« -3 ROLLD + YRNG B A -5 120 / « DUP NEG A +

SWAP B + XRNG # 131d #64d PDIM {#0d #0d} PVIEW DRAX DRAW 'X' STO IFERR A

1 n START DUP 0 R—»C CHoPXSWAP h + DUP 3 ROLLD EQ EVAL R—»C C—-PX BOX X

h STO+ NEXT DROP PICT {#0d #0d} 3 ROLL EVAL DUP 4 ROLLD 1 -GROB REPL 7

FREEZE THEN END 'X' PURGE END » »
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LRECT

Input: none from the stack

Effect. uses SUM to compute the Riemann sum for the f, a, b and n

stored, with f evaluated at the left end point of each

subinterval

« A SUM 'lrect -TAG »

 

 

RRECT

Input.  none from the stack

Effect: uses SUM to compute the Riemann sum for the f, a, b and n

stored, with f evaluated at the right end point of each

subinterval

« A H+ SUM "rrect" -TAG »

 

 

 MID

Input: none from the stack

Effect. uses SUM to compute the Riemann sum for the f, a, b and n

stored, with f evaluated at the midpoint of each subinterval

« AH2/ + SUM "mid" -TAG »
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F.val

Input.  none from the stack

Effect: a utility program used by other programs to evaluate f at a

specified number

« X' STO EQ EVAL »  
 

SUM

Input.  none from the stack

Effect.  a utility program used for computation by each of the

Riemann sum programs and by TRAP and SIMP. It takes the

initial value of x from the other program, a for LRECT, a + h

for RRECT and a + h/2 for MID.

« 5> X « 01 N START X Fwval + X H +'X' STO NEXT H *» 'X'

PURGE »  
EXAMPLE 1. To approximate the area of the region beneath the graph of

f(x) = x* — x* over the interval [.05 .9], first with n = 10 rectangles and then with

n = 40 rectangles, arrange the stack like

3: XA2-X7r4

2: .05

1: .9

and press FABST to store 'XA2 - X" 4'as EQ,.05as A and .9 as B. Now enter

10 and press NSTO to store 10 as the number N of rectangles. Press
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GRECT |; at the prompt, press 1 to choose left rectangles. You should obtain the

plot shown in Figure 2(a). Exit to the stack to see the approximating sum on stack

level 1. Press GRECT again, and this time select right rectangles. You should

obtain the plot shown in Figure 2(b). Run GRECT again and select midpoint

rectangles. You should obtain the plot of Figure 4(a). Return to the stack

environment and store 40 into N with 40. Select 1 to obtain the plot of

Figure 3(a). Running GRECT and selecting 3 and then 2 will produce the plots of

Figure 3(b) and Figure 4(b). Clear the stack when you have finished plotting.

Although program GRECT will only plot approximating rectangles for values of

n that divide 120, we can use the programs LRECT, RRECT and MID by themselves

to obtain rectangle approximations to signed areas for arbitrary values of n. As with

GRECT, we must first use FABSTO and NSTO to store EQ, A, B and N.

EXAMPLE 2. In EXAMPLE 1 we applied GRECT to f(x) = x2 — x* over [.05 .9] to

graphically view the approximating rectangles and calculate the sum of their areas

for n=10and n = 40. Here we use programs LRECT, RRECT and MID by

themselves to simply calculate the approximating sums. Using n = 100, 200 and 500

you should verify the following results:

n LRECT RRECT MID

100 .124209601096 .125496554221 .124864054865

200 .124536827979 .125180304542 .124861310615

 500 .124731407787 .124988798412 .124860542199

Which column of approximations appears to be the most accurate? The exact area is

.124860395833 to twelve decimal places.
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Activity Set 4.1.1

1. Consider the function f(x) =1/x% over the interval [1, 3].

(a) Use GRECT with n = 15, 30, 60 and 120 rectangles to complete the first

four lines of the following table.

 

n LRECT RRECT MID

15

 

 

30
 

60
 

120
 

200
 

500
 

1000        
(b) Now use programs LRECT, RRECT and MID by themselves to complete the

last three lines of the table.

(c) Which of the three columns in the table appears to be producing the best
2

approximations? The exact area is 3 = -666666666666.

2. Consider the function f(x) =+ x sin x over the interval [0, «t].

(a) Use GRECT with n = 15, 30, 60 and 120 rectangles to complete the first

four lines of the following table.
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n LRECT RRECT MID

15
 

 

30

 

60

 

120

 

200

 

500

 

1000     
 

(b) Now use programs LRECT, RRECT and MID by themselves to complete the

last three lines of the table.

(c) Which of the three columns in the table appears to be producing the best

approximations? The exact area is 2.43532116417 to twelve decimal places.

3. Consider the function f(x) = 3x — 4 sin x over the interval [-2, 2].

(a) Use program GRECT to obtain midpoint rectangle approximations to the

signed area over [-2, 2] for n =5, 20 and 40. Explain your answers.

(b) Now use GRECT to compare the left rectangle and right rectangle

approximations to the signed area over [-2, 2] for n =5, 20 and 40.

 

n LRECT RRECT
 

 

20
 

40    
 



(i) Explain these results.
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(ii) Are these results what you expected? Why don't the left and right

rectangle approximations more closely match the results from the

midpoint rectangle approximations?

(c) What is the exact signed area of f(x) =3x -4sinx over [-2, 2]? Why?

4. Consider the function f(x) =2 cos 2x — sin(x + 2) on the interval [0, 4].

(a) Use GRECT to obtain left, right and midpoint rectangle approximations to

the signed area over [0, 4] for n = 10, 25, and 40. Then use LRECT, RRECT

and MID by themselves to obtain approximations for n = 100, 200 and 500.

 
n LRECT RRECT MID
 

10

 
25

 
40

 
100

 
200

 
500     
 

(b) Which of the three columns in the table appears to be producing the best

approximations? The exact signed area is 2.36567536982.

Riemann Sums

Whenever rectangles are used to approximate a region lying between a curve

y = f(x) and the x-axis over an interval [4, b], the sum of the areas of the

approximating rectangles is given by an expression of the form
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N
(1) kz:.If(xk) Axy .

This sum is based upon a division of the interval [, b] into N subintervals [x,, x;],

[x, %], ..., [*N-1, xN] using points a4 =xy <x; <...<xy =b. The meaning of the

terms in the sum (1) are as follows:

e Ax;: the width of the k* rectangle

e x: a point somewhere in the kt* subinterval

o f(xy): the height of the k" rectangle

o f(x;) Ax;: the area of the k' rectangle

To acquire a better understanding of such sums we can use the HP-48G/GX to

create user-defined functions for them.

EXAMPLE 3. Given f(x) =x2 -x* on the interval [0, 1], create user-defined functions

S(N) and T(N) for sums like (1) that use N equally spaced right rectangles and N

equally spaced midpoint rectangles.

The key ingredients for the right rectangle sum in HP-48G/GX notation are:

e width of each rectangle (Axy): 1%

e right endpoint of the k** rectangle (x;): %

KV (k)
 height of the k** rectangle (f(xy)): (—) - (W)

2 4
e area of the k** rectangle: [(—Ilé) - (—g—) :| (71,-
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The user-defined function is

N 2 4
K K 1

s =3 (%)~ (%)) (%)
If you use the Equation Writer to create this expression, the right-hand side

will appear like

 

1474
Remember to use the @ key to end each subexpression. If you build the expression

  
 

on the stack, it will appear as:

1: 'S(N) =X (K=1, N, (K/N) A 2 — (K/N) A 4) « (1/N))'

If you build the expression with the Equation Writer, it will be put on the stack

when you press ENTER |. Use to complete the construction. Now

evaluate S for values of N = 10, 20, 50, and 100 to obtain the following table:

N S(N)

10 |.13167

20 |.132916875

50 |.13326672

100 .13316667 
Suggestion: The easiest way to build a complicated user-defined function like this one

is to use RPN on the stack. Put 'S(N)' on level 1, then enter 'K', 1, and 'N'. Then put

'K/N' on level 1 and press ENTER to make a duplicate copy. Now build
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((K/IN) A 2 = (K/N) A 4) « (1/N)' using RPN. Press to complete the sum. Do
E‘ to equate 'S(N)' with the sum, then use to complete the task.

For the midpoint rectangles, the only difference is that we have

2K -1
e midpoint of the k' rectangle (x}) : —55— -

Thus, in this case the user-defined function will be

TIN) =X(K=1, N, (2 + K=1)/(2 « N) A2 = ((2 + K= 1)/(2 « N)) A 4) » (1/N))’

Evaluating T for N = 10, 20, 50 and 100 we have

N T(N)
 

10 .13416375

20 |.133541484376

50 |.133366662 100 .133341666383

For an arbitrary choice of points x; <x; <...<xy_; between a4 and b and an

arbitrary choice of a point x; in the k** subinterval, the sum (1) is called a Riemann

sum. Sums constructed from subintervals of equal width, or with a uniform choice of

points x; in each subinterval, or both, are special kinds of Riemann sums. But

arbitrary Riemann sums work just as well, with no restrictions whatsoever on the

widths of the subintervals or the location of the x; 's. The general result is that for

a "well-behaved" function on the interval [a, ], e.g., a function f that is continuous

on [a, b], Riemann sums have a limit I

N

lim Y fx) Axg = L.
N—ooo k=1

The number [ is called the definite integral of f from a to b, and is denoted by



INTEGRALS 117

b
I= [ fix)dx.

a

b
The integral [ f(x)dx is the signed area of the region between the curve y = f(x) and

a

the x-axis over the interval [a, b].

For a given value of n, the midpoint rectangle approximation M, to an
b

integral [ = [ f(x)dx will be more accurate than the left or right rectangle
a

approximations, L, or R,. Upper bounds for the errors are well-known and are

related to the first and second derivatives of f. If | f'(x)| <B; and | f"(x)| < B,

for all x in [a, b] then

Bl (b — a)z

2n

By (b - a)? By (b —a)?
2n ‘| L, -1 < 24n?and | R, -I| < but | M, -1l <

Activity Set 4.1.2

1. Consider the region between the curve y = x3 and the x-axis on the interval [0, 4].

We want to create a user-defined function for a Riemann sum like (1) that uses N

equally spaced right rectangles.

(a) Express the following in terms of N:

o the width of each rectangle (Axy):

e the right endpoint of the kt* rectangle (x;):

e the height of the k** rectangle (f(xy)):

o the area of the k** rectangle f(x;) Ax;:
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N
(b) Create a user defined function S(N) = Y (area of the k! rectangle) on your

K=1

HP-48G/GX and use it to complete the table below:

N S(N)
 

10

50

100  200

1
2. Repeat Activity 1 using y = on[l,3].

3. Repeat Activity 1 using y =e* on[-1, 3].

3
4. Repeat Activity 1 for y = 2 T xon [-3, -1] using N equally spaced left rectangles.

Trapezoid and Simpson's Approximations

Recall that for an increasing (decreasing) function, the left rectangle

approximation underestimates (overestimates) the area and the right rectangle

approximation does exactly the opposite. Thus, midpoint rectangles were introduced

as a way of "balancing" the two errors. But instead of using midpoint rectangles, we

can simply average the left and right rectangle results.

For an evenly spaced division of the interval [4, b] into N subintervals of

length Ax we have

N N
LRECT = ), f(xx1)Ax and RRECT =3f(x;)Ax .

k=1 k=1

Their average is
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g Lf(xk—1)2+f(%) | Ax.

k=1

This summand is the area of a trapezoid sitting on the kt* subinterval [x,_;, x]:

Xk-1 

 

xk b4

For this reason, the average is called the Trapezoid approximation. It is easy to

see that it can be a much better approximation than the left and right rectangle
1

approximations. Consider, for example, the case y = 2 over the interval [1, 3].

With n = 5 we have:

 

LRECT: .B69354648508

 

 

       and

 

 

RRECT: .51373990592352

 

 

     
 

But the Trapezoidal approximation looks like this:
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TRAP: .69157687073

The following program TRAP appears in the INTG subdirectory of the main

CALC directory. Like LRECT, RRECT, and MID, it requires that you first use

FABSTO and NSTO.
 

 

TRAP

Input.  none from the stack

Effect: uses SUM to compute the trapezoidal approximation

for the stored quantities f, a, b, and n

« ASUM B F.val A Fval - 2 / H « + 'X' PURGE "trap" -»TAG »

 

EXAMPLE 4. We return to EXAMPLE 2 where we used LRECT, RRECT and MID to
9

calculate approximating sums for the integral [ (x> -x*)dx using N = 100, 200 and

05

500.

Applying TRAP we obtain

N TRAP
 

100 .124853077658

200 .12485856626

500 |.1248601031 
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Because the Trapezoid approximation simply sums the areas of trapezoids, it is

possible to give a formula for the approximation. Given that the interval [a, b] is
- : : b -

divided into n subintervals of equal length Ax = Ta by points a =xy <x; < .. <

Xp-1 b< x, =b,let yj=f(x;) for j=0,1, .., n. Then the Trapezoid approximation T,

to [ fix)dx is given by
a

[vo +2y2 + ... + 2y, + y,].

This formula is frequently used in hand calculations for small values of n.

It is well-known that

1
4

0

 

You can verify this with your HP-48G/GX as follows: Draw a plot of y = 172

using Xrng: -6.5 6.5 and Yrng: -2.1 4.2.
 

 

    
Move the cursor to (0, 0) and press to mark its location, then reposition the

cursor at (1, 0) and press AREA on the FCN menu. The message AREA:

3.14159265359 will appear on the lower left of your screen (and on level 1 of the

stack). With the origin marked and the cursor still at (1, 0), press to return

to the FCN menu and press SHADE to shade the region whose area is .
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This use of the AREA key on the HP-48G/GX requires that the lower and upper

limits of integration be given by pixel coordinates.

We shall use this example to compare the errors made by the trapezoid and

midpoint approximations. Open the INTG subdirectory and use FABSTO to store

'4/(1 + X A 2)" into EQ and 0, 1 into A, B respectively. Now enter the following

program and store it under the name 'ERROR":

« T -»NUM - ‘error" -TAG ».

For a calculated approximation A on level 1, program ERROR will calculate

(A - m) and display it on level 1 with the tag "error".

To compare the Trapezoid and midpoint approximations for N = 50, 100, 150

and 200, proceed as follows:

(i) Use NSTO to store 50 for N. Press‘ TRAP | ENTER ], then ERROR

to see

2. trap: 3.1415259869

1: error: -.00006666669

Now press ,then to see

2: mid: 3.14162598694

1: error: .00003333335

Notice that the magnitude of the error from MID is one-half of that from

TRAP.
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(ii) - (iv). Repeat step (i) using N = 100, 150 and 200 in succession.

The following table summarizes the results:

N TRAP ERROR MID ERROR
 

50 3.1415259869 -.00006666669 3.14162598694  .00003333335

100 3.14157598691  -.00001666668 3.1416009869 .00000833331

150 3.1415852461 -.00000740749 3.14159635725  .00000370366

200 3.1415884869 -.00000416669 3.14159473692  .00000208333  
The TRAP and MID columns tell us that the trapezoid estimates are too low,

while the midpoint estimates are too high. And the two ERROR columns show that

the midpoint error is consistently one-half the trapezoid error in magnitude.

This is not surprising if we examine the upper bounds on the errors. We noted

earlier that for a given value of 7, a bound on the error by the midpoint rectangle
b

approximation M, to an integral I = [ f(x)dx is given by

Bz(b - a)3| M, -1l <=5 , where | f"(x)| <B, forall x in [a, b].

For the Trapezoid approximation T, with n subintervals, a bound on the erroris

Bz(b - a)3

| T,-11 < 12n2

To get an improved estimate of the integral that balances the errors, we can use

a "weighted" average of the trapezoid and midpoint estimates:

1 2
weighted average = 3 (trapezoid) + 3 (midpoint).
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Averaging will tend to balance the low versus high estimates, and we weight the

midpoint estimate twice as much because its error is only half that of the trapezoid

estimate.

This particular weighted average is known as Simpson’s approximation. It
b

produces approximations to the integral [ f(x)dx that are far more accurate than
a

those by the other methods that we have considered. A bound on the error involves

the fourth derivative of f on[a, b]. If | fiv)(x)| <B4 for all x in [a, b], then

Simpson's approximation S, using n subintervals satisfies

B4(b —a)®

Bbecause of this, Simpson's approximation produces exact results for any integral

[ flx)dx where fi?(x) = 0. In particular, it gives exact results for all linear,
a

quadratic and cubic polynomial functions.

The following HP-48G/GX program SIMP resides in the INTG subdirectory of the

main CALC directory.

 

SIMP

Input. none from the stack

Effect. uses MID and TRAP to compute Simpson's approximation

for the stored quantities f, a, b and n

« MID 2 * TRAP + 3 / "simp" -»TAG »
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To appreciate the accuracy of Simpson's approximation, we apply program
1
 dx=nm:SIMP to the integral | 112

0

N SIMP ERROR

5 3.14159261393 -.00000003966

10 3.14159265297 -.00000000062

15 |3.14159265354 -.00000000005

20 3.14159265359 0 
Like the Trapezoid approximation, there is an easy formula for Simpson's

approximation. The formula is based upon dividing the interval [a, b] into an even
b-a
e number n of subintervals of equal width Ax =

Ax
Sn=*§‘ (Yo +4y1 +2y, +. .. + 2y2 +4Yn1 + V,).

Observe, carefully, the pattern 1, 4, 2, 4, 2, ... in the coefficients; and how it ends: 2,

4, 1. This pattern requires that n be an even number. This formula for Simpson's
b

approximation to the integral [ f(x)dx is useful when f is given only in graphical
a

or tabular forms.
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Activity Set 4.1.3

In each of the following Activities, use the AREA command on the FCN

submenu to obtain an accurate twelve (12) digit approximation to the integral. Then

calculate Trapezoid and Simpson's approximations to the integral using the

indicated number of subintervals. Keep your numeric display mode set to STD to

show full precision.

 

3 T
1

1. j;dx,n=50,100 2. j\]x sin x dx, n =100

1 0

4 4
3. [ (4sin x-x)dx,n =100 4. [ (2cos 2x-sin(x +2)dx , n = 100

0 0

3 1 -1 3

5. J' 1_'_xadx,n=100 6. j (x+x—2)dx,n=50, 100

0 -3

3, 1
7. j e* dx, n=100 8. _[ V1 +sec2x dx,n =100

0 0

9

2 2
. j N1 +sin2x dx,n =100 10. J' (1+-—13-) dx ,n = 100, 200

v x
0 1
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11. Consider

cos (mx%2/2) x<1

=12 _3y+2 x31

3

(a) Find the integral [ f(x)dx using the AREA key on the FCN submenu.

0
3

(b) Now approximate the integral [f(x)dx using Simpson's approximation

0

with n =100 and n = 200 subintervals.

4.2 INTEGRATION ON THE HP-48G/GX

Numerical Integration

In the application of calculus to fields such as engineering, physics, probability

and statistics there is often a need to obtain fairly accurate estimates of definite

integrals. The integrands in question may be simple in appearance, but usually lack

elementary, closed-form antiderivatives so that the fundamental theorem of calculus

cannot be applied. Simple examples are:

1
e the standard normal integral —— e**2 dx from probability theory

\2m

o

22 dy
VCOS y—COS o

e the period T = of a simple pendulum

o the electrostatic potential V at a point P(x,y) due to a variable charge

density A(s) applied along a straight wire over an interval [-a, a]:

a

B A(s)ds

V(x-5)? +y2
Vv
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The HP-48G/GX has a built-in numerical integration routine that uses a Romberg

numerical integration technique. The routine is iterative, producing increasingly

accurate estimates derived from values of the integrand at points sampled within

the interval of integration until three successive estimates agree to within an error

tolerance specified by the user. The error tolerance e is specified by setting the

numeric display mode as follows: n FIX specifies an error tolerance e = 10" and STD

specifies an error tolerance e = 10-11.

For example, setting the numeric display to 5 FIX will specify an error tolerance

e = .00001. In general, the smaller the error tolerance, the longer the calculation

time and the more accurate the result. When the calculation is finished, an estimate

of the error in the result is given in the variable IERR.

There are two ways to perform a numerical integration on the 48G/GX: with

the INTEGRATE Form on the SYMBOLIC Application or on the Stack. Weillustrate
T

each way with the integral [ 3x sin 2x dx. The exact answer and its decimal

0

approximation are

T

J' 3x sin 2x dx = -3n/2 = -4.71238898038.

0

Using the INTEGRATE Form

Open the Symbolic Application with SYMBOLIC and press to

select Integrate. Type in '3 + X + SIN(2 + X)' and use ENTER to enter it into the

EXPR: field. Then enter 'X' into the VAR: field and 0, x into the LO: and HI: fields.

When the RESULT: field is highlighted press if it reads Numeric, otherwise

press to change to Numeric. Set the NUMBER FORMAT:field to Std, using
the CHOOS box if necessary. Press to perform the numerical integration.
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The result will be shown on stack level 1.

1: -4.71238898038

Press then to see the error estimate 9.4E-11.

Using the Stack

Arrange the stack as follows:

4: 0

3: /4

2: ‘3« X » SIN(2 » X)'

1: X'

Press to see the symbolic expression

(0, m, 3+ X » SIN@ * X), X)'

returned to level 1. Use to see the numerical result -4.71238898038

returned to level 1. Press then to see the error estimate 9.4E-11.

If you wish, you can use the Equation Writer to key in the integral:
 

J;3-X-SIN(2-X) dX

   
Use the [___|>__] to end each subexpression. When the expression is complete, press

to view it on the stack and then to evaluate.

Alternatively, with the expression showing in the Equation Writer press

to bypass the stack and obtain the numerical result.
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sin(x2 -1) x<1
EXAMPLE 5. As another example, we graph the function f(x) ={ sin(1m/x) 1<x

2
with the default parameters and calculate the integral | f(x) dx. Enter the function

-2

as 'IFTE(X < 1, SIN(X A 2 — 1), SIN(n/X))'. Plotting with the default parameters,

we see:
 

+

    
To calculate the integral, we first set the numeric display mode to 5 FIX, then

press E to again view the plot. Activate coordinate read-out with,

move the cursor to (-2, 0) and press to mark the location. Now move the cursor

to (2, 0), press to return the menu labels, open the FCN submenu and press

AREA |. In approximately 1 minute, 12 seconds you will see the result .20163

displayed at the bottom left of the screen and on stack level 1. IERR shows the error

to be approximately .00003.

To use the numerical integration routine in this way (while viewing a plot of

the integrand), the limits of integration must be pixel coordinates. It is also

interesting to note that if you perform the same integration on the stack, its execution

is a little faster, approximately 1 minute, 8 seconds.

Why did we set the numeric display to 5 FIX instead of asking for full twelve

digit precision in STD mode? We actually tried for twelve digit precision, but gave

up and interrupted the integration process at the end of one hour. When we seek

twelve digit precision, many more points on the integrand are sampled than with

five digit precision, and the "break point" x = 1 in the definition of the integrand
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causes problems. How can we obtain twelve digit precision? The trick is to split the

integral into two parts at the break point:

2 1 2
[fx)dx = [ fixdx + [ flx)dx.
-2 .2 1

The first integral on the right hand side is found in 36 seconds:

1

[f(x)dx = -.546976060733.
-2

And the second integral on the right hand side takes only 14 seconds:

2

[ fix)dx = .748600792238.
1

Thus, we can add to obtain

2

[ fix)dx = 201624731505
2

in a little over 50 seconds.

This trick of splitting the integral into several other integrals is standard

practice with almost all numerical integration routines on calculators or computers.

Obvious separation points are any break points in the definition of the integral (as

in the above example), as well as any points where the function is not defined or is

non-differentiable.
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Activity Set 4.2.1

1. A roller coaster has part of its track in the shape of the curve y =x + sin 2x?2

when plotted using Xrng: 0 2 and Yrng: 0 3.

(a) Plot the curve in this viewing window.

(b) Calculate the area of the region between the track and the x-axis (the

ground) over the interval [0, 2].

(c) Calculate the area of the region between the track and the ground over the

interval between the two local maxima.

Find the volume of the solid of revolution generated by revolving the curve

y = es"* around the x-axis over the interval [0, 3].

Find the volume of the solid generated by revolving about the y-axis the region

between the graph of y = e’ and the x-axis over the interval [1/3, 1].

Calculate the "arch length" of the St. Louis Arch using the formula from

Activity 7 in ACTIVITY SET 3.2.2.

Imagine a point P moving along a parametric curve C: x =f(t), y = g(t) in such

a way that it traces the curve only once from t=a to t=b. Then the length of

the curve from t=atot =" is given by the formula

b

J VIFOPR +[g'(W] dt.
a

Find the lengths of the following curves.

(a) x=3cos®t, y=3sin3t from t=0 to t=2m.

(b) x=3cost+2cos3t, y=3sint-2sin3t from t=0 to t=2r.
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6. The following formula gives the period T of a simple pendulum of length L

that is released from rest at an angle o with the vertical axis (g is the constant

acceleration due to gravity):

a

22 1 4
Vg/L \ cos y — cos s

0

T 

Find the approximate period for a pendulum of length L = 1.5m that is released

at an angle of 7/4 rad from the vertical axis. (Use 3 FIX.)

Symbolic Integration

b

Symbolic integration refers to calculating an integral J f(x)dx by finding an

a

antiderivative F(x) of the integrand f(x) and then returning a symbolic expression

for F(b) — F(b). Because of its restricted memory, the HP-48G/GX can perform

symbolic integration for only the following restricted set of integrands:

e All built-in functions that have an antiderivative expressible in terms of

built-in functions (except LNP1);

e sums, differences, negatives, linear combinations and other selected patterns of

the above functions;

e all derivatives of built-in functions;

e polynomials whose base term is linear.

The HP-48G/GX will not, for example, perform symbolic integration on such simple

integrals as

b b b

I x sin x dx, f xe*dx, or I sin x cos x dx .

a a a
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These integrands are not included in the above list. On the other hand, the HP-48

will perform symbolic integration on the integral

b

1
J Sin X cos x dx
a

because the integrand is one of the selected patterns that is built-in. Because of all

this, you should not view the HP-48G/GX as a serious symbolic integrator.

Nevertheless, we will briefly outline some of its symbolic integration features so

that you will be familiar with them.

Whether or not the | function performs numerical or symbolic integration

depends upon whether numerical or symbolic execution mode is active. The default

state of the HP-48G/GX is for symbolic execution (flag -3 clear). In this state, the |

function uses a built-in system of pattern matching and returns a symbolic result

(which may be nothing more than the original symbolic input). If you specify

numerical results mode by setting flag -3, then the | function will return a numerical

result. No matter what the setting of flag -3, you can temporarily achieve numerical

results by applying the -NUM command to evaluate an integral.

EXAMPLE 6.

(i) Make certain that your HP-48G/GX is in its default state for symbolic

results. With 'J (0, &, SIN(X), X)' on level 1, EVAL returns the following

symbolic result.

1: “COS(X) /o X(X)| X ==

) — (-COS(X) / 3 X(X) | (X

=0))
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The vertical stroke | is the "where" command, used to substitute values in

an expression. You can recognize this result as the HP-48 version of the

familiar symbolic expression

-C0S X

x=0

Press EVAL again to effectively substitute the values #x and O into

-COS(X) and obtain the numerical result 2.

(ii) Again, with 'l (0, m, SIN(X), X)' on level 1 and symbolic results active,

press to temporarily set numerical results mode and obtain

the numerical result 2.

(iii) You can achieve the same symbolic results as in (i) by using the

INTEGRATE form in the SYMBOLIC Application. Do SYMBOLIC

and then enter 'SIN(X)' into the EQ field, 'X' into the VAR field,

and 0 and 7 into the LO and HI fields. With Symbolic highlighted, press

to see the same symbolic results as in (i), then use EVAL to effect

the substitution and obtain the numerical result 2.

Occasionally, you may want to use your HP-48 to obtain an antiderivative for a

function f(x). Recall that Part 1 of the Fundamental Theorem of Calculus tells us

that every continuous function f(x) on an interval [4, b] has an antiderivative F(x),

namely
X

F(x) = | fit)dt.
a

Therefore, if the HP-48G/GX can symbolically integrate f(t), we can obtain a

symbolic expression for the antiderivative F(x).
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EXAMPLE 7. To obtain an antiderivative for f(x) =Inx, perform the symbolic

integration

[ Int dt.
a

Use 'T' for the variable of integration and make certain that the upper limit 'X' is a

formal wvariable, i.e., no value for 'X' is stored in the current directory or any of its

ancestral directories. Use lowercase 'a’ for the lower limit of integration. When the

first symbolic result appears, press PRGi TYPE 1OBJ—-> , then

| DROP | | DROP | | DROP |. The remaining symbolic result will be
 

 

T«LN(M)-=T)/9 T(M| (T=X).

A final EVAL will return the desired antiderivative 'X » LN(X) — X'.

Activity Set 4.2.2

In activities 1-10, use your HP-48G/GX to find the indicated antiderivatives.

 1| —L— i 6. | 3(5x— 5 dx
V5x-1

 

dx-3/2 S
2. j (2x +3)™/% dx 7. I(tan .5x)(sin .5x)

3. | tan? xdx 8. | (x-tanh x) dx

tan x
x+14. | 22 9. [ 201 4x

5. | tan1(2x + 3) dx 10. [ x=1 dx

4.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Chief among the significant contributions of Newton and Leibniz to the

"invention" of calculus in the 17th century was their clarification of the inverse

relationship between differentiation and integration. This relationship, which is

the intended focus of the Fundamental Theorem of Calculus, is often obscured by a
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failure to focus on Part 1 of that Theorem, which asserts that continuous functions

have antiderivatives:

d x

(*) ax I:j'f(t)dt} = f(x).
a

Traditionally, our calculus textbooks have focused instead on Part 2 of the Theorem,

which says that integration "undoes" differentiation, up to a constant:

[ F(Hdt = Fx) - F(a).

Indeed, it is because of their focus on Part 2 that students often come to view

integration as simply a search for antiderivatives rather than as the limit of

Riemann sums. In retrospect, this has been a somewhat natural occurrence because, in

the teaching process, teachers tend to seek out activities that students can do to help

reinforce their understanding of the theory. And without computing power, the

activities that reinforce Part 1 are restricted, for the most part, to purely analytical

investigations.

But certainly, the HP-48G/GX provides enough computing power for students to

engage in graphical and numerical activities that support Part 1 of the Fundamental

Theorem. The midpoint approximation can be used to construct a symbolic expression

F(x) that approximates the antiderivative ff(x)dt, ie, F(x) = ff(t)dt. This
a a

approximation and its derivative F’ can then be plotted and we can observe to

what extent F’ approximates f. Not only does such an activity bring to the fore

the mathematical content of Part 1 of the Theorem, but it also reinforces our desired

goal of understanding the integral as a limit of approximating sums.

The algebraic formulation of the midpoint approximation using n subintervals
x-a of equal length Ax = is
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X

[ fivat = 5 f(a + 2i-1) %)Ax.

When f is stored in memory as a user-defined function F, program FTC, given below,

takes a and n as inputs and returns an algebraic expression for the midpoint

approximation on level 2 and its derivative on level 1.

The program is due to William C. Wickes of Hewlett Packard and is about

fifteen times as fast as the original program that we devised for the task. It is a

marvel of extremely clever programming, and is written at a level that will not be

obvious to a casual HP-48 programmer. We are indebted to Dr. Wickes for his

permission to use it here.

 

 

FTC (Fundamental Theorem of Calculus)

Input.  level 2: the lower limit of integration, a

level 1: the number of rectangles, n

As a user-defined function F: an algebraic expression for f(x).

Effect: Returns to level 2 an expression that is algebraically equivalent

to the midpoint approximation

. . Ax
Z f(a+(2/—1)-2—)Ax.
=1

and to level 1 the derivative of that expression.

« X' PURGE X' 3 PICK - >anz«a'«i'n/z++FaTln/

z++F X 93{MN «i}) IMATCH DROP —» f g « 00 .5 n .5 — FOR «i f

EVAL ROT + SWAP g EVAL + NEXT OVER z » n/ 3 ROLLD z + + n / »

» »
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Consider the elementary function f(x) =sin x. Since f is continuous everywhere,

Part 1 of the Fundamental Theorem tells us that the function

X

G(x) = f sin t dt

a

is an antiderivative of sin x on any interval (a, b). We take a = 0 for convenience.

Then

X

G(x)=fsintdt=-cost|x =1-cos x
00

and we can readily verify that G'(x) = sin x.

To apply program FTC, begin by constructing a user-defined function F for sin x

and then plotting y = sin x using the default settings for Xrng and Yrng. To better

see what is happening, plot in disconnected mode with the resolution set to .2 (from

the PLOT menu, use .2 ; from the PLOT screen, select OPTS and enter .2

into the STEP field).
 

    
Now run program FTC with inputs 0 (for a =0) and 6 (for n = 6 rectangles). The

program will return to level 2 an expression in 'X' that represents the midpoint

approximation to G(x) using n = 6 rectangles, and its derivative on level 1. Change

the plotting resolution back to its default sate of 0 and then overdraw the

derivative on the original plot. Note the close agreement. Now change the

resolution back to .2 and overdraw with a plot of the approximate antiderivative.

Finally, to see how closely the approximate antiderivative agrees with the known
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exact antiderivative 1 — cos x, change the resolution back to 0 and overdraw a plot

of 1 - cos x:

 

Differential Equations and the Fundamental Theorem

    

Equations that contain derivatives of one or more unknown functions are called

differential equations. The simplest differential equations have the form y’ = f(x) and

their general solution is given by y = [f(ix)dx + C. Since C is a constant, there are

infinitely many solutions. But we can always obtain a particular solution by

specifying an initial condition that y is required to meet: y(x;) =y,. Together, the

differential equation with an initial condition

y' =f(x), where y(xy) =y

is called an initial value problem.

Part 1 of the Fundamental Theorem of Calculus is really an initial value
X

problem. For if we adopt the notation y(x) = J f(t)dt, then equation ( * ) of Part 1 of

a

the Theorem reads

% =f(x), or simply y’ = f(x).

Since y(x) represents the (signed) area between the graph of f and the horizontal

axis over the interval [4, x], we have the initial condition y(a) = 0. Thus, equation

( ) of the Fundamental Theorem is really the initial value problem

y' = flx), y(a)=0.
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The HP-48G/GX will not only find numerical solutions to initial value problems

but will also plot their solutions. To plot a solution to the initial value problem

y'(t) =f(t, y), y(ty) =y, we go to the PLOT screen and choose Diff Eq for the plot

TYPE. Although the screen will show

PLOT Y'(T) = F(T, Y)

at the top, the default independent variable is 'X', which is fine for our application

to the Fundamental Theorem. The application we are referring to, of course, is to

simply plot the antiderivative given by Part 1, using its reformulation as an initial

value problem.

The special Diff Eq plot screen is designed to let you plot a solution to the

general initial value problem y’(t) = f(t, y), subject to the initial condition y(#;) = yp,

over the t-interval [ty, ¢]. For our purposes, we will use the default variable 'X'

instead of 'T', and take the initial value of Y to be 0.

EXAMPLE. To illustrate the use of the Diff Eq plotting routine, we will plot an
X

antiderivative | f(t)dt for f(x) = Inx. For convenience, we take a = 1. Thus we want

a

to plot the solution to the initial-value problem

y'(x)=Inx, y(1)=0.

Go to the Diff Eq plot screen and set the screen like this:

TYPE: Diff Eq X : Rad

F: 'LN(X)"

INDEP: X INIT: 1 FINAL: 6

SOL: Y INIT: 0 _ STIFF
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Open OPTS and set the PLOT OPTIONS like this:

TOL: .000001 STEP: Dflt v AXES

H-VAR: 0 H-VIEW: 0 6

V-VAR: 1 V-VIEW: -1 6

H-TICK: 10 V-TICK: 10 v PIXELS

Note: H-VIEW and V-VIEW correspond to Xrng and Yrng, respectively.

Press to return to the previous screen, then ERASE and DRAW to see

a plot of the antiderivative.

 

 

    
 

The differential equations plotter leaves values stored in X and Y , so you should

now purge X and Y from your VAR menu.

In this case, we know a closed-form expression for the antiderivative: [ Inxdx =

xlnx — x + C. To meet the initial condition y(1) = 0, we must choose C = 1. If you

now overdraw your plot of the initial value solution with a plot of y = xInx —x +1

(first, be sure to reset the function type to FUNCTION, and the independent variable

to 'X' and the dependent variable to 'Y'), you will see that the two plots are in close

agreement for x > 1.
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This use of the built-in plotter for numerical solutions to initial value problems

is especially helpful for viewing plots of antiderivatives that have no elementary

closed-form expressions.

Activity Set 4.3

1. (a)

(b)

(c)

(d)

(e)

(f)

Build a user-defined function F for y = x cos x.

Plot y = x cos x in disconnected mode using Resolution .1 (if you are plotting

from the PLOT menu) or STEP size .1 (if you are plotting from the PLOT

screen), with Xrng: 0 6.28 and Yrng: -6.3 1.

Run program FTC with inputs 0 and 6 to construct an approximation to
X

the antiderivative | t cost dt using the midpoint rule with n = 6

0

rectangles.

Change the resolution (or STEP size) back to 0 and overdraw with a plot

of the derivative of your approximate antiderivative. How closely does it

appear to approximate y = x cos x?

Now reset the resolution to .1 and overdraw with a plot of your

approximate antiderivative found by FTC in (c).

Use integration by parts to find an elementary antiderivative of y = x cos x.

Choose an initial condition so your antiderivative will pass through (0, 0).

Reset the resolution to 0 and overdraw your plot in (e) with this exact

antiderivative. How closely do the two plots appear to agree?

2. Repeat Activity 1 using the function y = x sin x. Use Yrng: -5.3 2. Zoom out on

the vertical axis by a factor of 1.5 after plotting in part (b).
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In Activities 3 - 5, the function f is known to have no elementary, closed-form

antiderivative. Proceed as in Activity 1, parts (a) - (e). Note any special conditions.

3. Let f(x) = e*’. Draw the initial plot in disconnected mode with resolution .1

using Xrng: -2 2and Yrng: -2 2. Use a =0 and n =6 for program FTC. Reset

the resolution to 0 before plotting the results of FTC.

4. Let f(x) = sin x2. Plot everything in connected mode with default resolution 0

over Xrng: 0 6.28 and Yrng: -2.5 2.5. Use a =0 and n = 20 for program FTC.

The higher value for n is needed because of the more frequent oscillations in the

graph of f. Notice that the derivative of the approximate antiderivative

begins to deviate from f as the oscillations increase in frequency.

ex

5. Let f(x) == . Draw the initial plot in disconnected mode with resolution .1 using

Xrng: -6.5 6.5 and Yrng: 0 6.3. Use a=.1 and n =6 for program FTC. Before

plotting the results from FTC, reset to connected mode with resolution 0 and the

independent variable restricted to plot only from 0 to 6.5.

6. Use the Differential Equations Plot Screen to plot the following antiderivatives;

use the indicated settings for H-VIEW and V-VIEW.

X

(a) Ie‘xzdx ;H-VIEW: -2 2 and V-VIEW: -2 2

0

X

() | sinx?dx;H-VIEW: 0 628 and V-VIEW: 25 25
0

X

() | xlerdx;H-VIEW: -65 65 and V-VIEW: 0 6.3
1
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4.4 IMPROPER INTEGRALS
©co

In applications of calculus we often meet improperintegrals like | f(x)dx . The

a

meaning is clear:

t

| fo)dx =lim | fox)dx .
t—yo0

©co

If the limit is the real number L then we say that the improper integral | f(x)dx

a

converges to L and write

| fiyax =L
a

If the limit does not exist (is not a real number), we say that the improper integral

| fix)dx diverges.

©co

Assume that we have a convergent improper integral, say | f(x)dx =L. Then

a

for any value of N >a we have

N 0o

L= | fivdx +] fix).
a N

The second integral in this sum is called the "tail" and if we can choose N so that

the tail is "sufficiently small", then we can approximate L with the ordinary
N

integral | f(x)dx. We measure "sufficiently small" by specifying an acceptable

a

error tolerance € > 0, and then attempt to find a value of N for which
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<E€.

N

= IL-] f(x)dx
  

        

N

Thus, to within the tolerance specified by € , we have | flx)dx =L. The following

a

result is of some help.

 

 

Absolute Comparison Theorem

Suppose that f and g are continuous functions for x >a and there is a

constant K such that |f(x)| <K g(x) whenever x is sufficiently large. Then if

j g(x)dx converges, so does If(x)dx and

a a

[ flx)dx

a

<[ 1fx1dx<K | g(x) dx.
  
 

Two convergent improper integrals that are useful for such comparisons are:

1 1
ajxvdx =D for p > 1.

Ie'“dx = L for ¢ > 0.
Ceca

a

(1) Suppose that for sufficiently large x, |f(x) < %for some K >0 and p > 1. Then

by the Absolute Comparison Theorem we have

___K
~ (p-1)NP1’*&

l'
-‘

 
        < [ lfwldx < K]

N N
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K 1 1/(p-1)

With N > 0, to have < e wechoose N > {—-——} .__K
(p - 1)NP-1 e p-1

(2) Suppose that for sufficiently large x, |f(x)| < Ke* for some K >0 and c¢ > 0.

Then we have

 

  

 

" . ; K| fxdx| < [ Iftxldx < K[ erax =—5.
N N N

K
To have Cew<e,choose N>%1n(£).

EXAMPLE 8. The improper integral

1 2
e* 2dx

J \ 2r

is important in probability theory. A plot of the integrand

 ex’ over the interval [-3, 3] appears below.
1

(x) =
fix \/27:

 

     
©o 0 ©o 0 t t

Now [ fixydx = [ fix)dx + | flx)dx = lim [ fix)dx + lim | f(x)dx . Since | f(x)dx
t—-00 t t—o0 0 0

-0 -00 0

is the area of the region between the graph of y = f(x) and the x-axis over the finite

interval [0, t], we can interpret the improper integral j f(x)dx as the area of the

0

"infinite" region between the graph of y = f(x) and the x-axis to the right of x = 0.
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©o

Thus the improperintegral | f(x)dx is the area of the entire infinite region between
-00

the graph of y = f(x) and the x-axis. By symmetry, to show that J f(x)dx converges,
-0

it suffices to show that | flx)dx converges.

0

©co

e*2 < e*2 for x> 1. Thus | f(x)dx converges
0

  e2 ¢Now |f(x)| =
2r 2r

©o

1
because _[ e*2 dx converges. Moreover, we can take K=1 and ¢ = 5 in (2) above, so

0

that

N > lzn(fi) - zzn(E).
¢ ce €

  

With € =101, N> 2In (i?z‘fi)z 52.04 and we can approximate

- 52.04

1 2 1 2
e* /2 dx with ex /2 dx .

J \ 27 J \ 27

0 0

Evaluating this last integral with the HP-48G/GX we obtain .500000000001, so

oo

 

1
e2 dx = 1.00000000002 to within € = 10°11.

\l 2r

0

The exact value is 1.
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Activity Set 4.4

In each of the following, establish the convergence and then evaluate the improper

integral to within the specified tolerance €.

J S X dx; use € = .01 
x4

n/4

oo

dS
0

 .001dx ; use €

©o

-2X

3. J X dx ; use € .001

@fl+1

 

0

oo

 4. J ! dx ; use € =.001
Va5 -1

2

 (Hint: < —— for what values of x ?)
1 2

V-1

5. J\]x+1e‘2"dx ; use € = .005

0

(Hint: N x+1e2 = (\lx+1 e‘(““) e e*; what is the maximum value of

Vx+1e(+D?)



INFINITE SERIES

 

Approximations by infinite processes are central to calculus. The concept of the

limit of a function

limf(x)=L,
X—C

which is fundamental to the development of so much in calculus, has its roots in the

intuitive notion that as x approaches the number ¢ through an infinite succession of

increasingly better approximations

X1,X,X3,...=>C

then the corresponding function values are an infinite succession of increasingly better

approximations to the limit L :

f(xl)lf(xZ)l f(x3)l ...=>1L.

Infinite series, which are expressions of the form

Yay=a, +a; +az + ...,
k=1

also represent approximations by an infinite process. Since the core of any such series

is the sequence of terms

a,,ay,asz, ...,

we usually begin a study of series by first considering sequences.

150
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5.1 SEQUENCES

A sequence of numbers

(1) a,,a,,as, ..

©o

is simply an infinite ordered list. We often use the compact notation { a; }k_1 to

represent the sequence (1), and a; denotes the kth term of the sequence.

More precisely, we can view the sequence (1) as the output values of a function f

that is defined only for the positive integers k =1, 2, 3, ... :

a, a , as ,

),  f2), fQ)

We can use the HP-48G/GX to calculate and view the terms of a sequence.

Program SHO, given below, will calculate and show the consecutive terms of a

sequence { aj }:1 from a specified starting value of k to a specified ending value.

This program, and all the others in this chapter, can be found in the SERIES

subdirectory of the main CALC directory.
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SHO (Show sequence terms)

Input. Level 3-5: expressions for the k' terms of 1-3 sequences

{f}, {gx} and {h,} in terms of the variable ‘K’

Level 2:  a starting value for ‘K’

Level 1:  an ending value for ‘K’

Effect.  dynamically displays (every two seconds) the successive terms

of 1-3 sequences {fi}, {gx} and {h,} from the starting value of

k to the ending value, beneath the index k; leaves everything

on the stack.

« DEPTH - b nd « CLLCD IF d 3 == THEN —»f « b n FOR j j

‘K" STO K DUP 1 DISP f EVAL DUP 3 DISP 2 WAIT NEXT » ‘K' PURGE

ELSE IF d 4 == THEN - f g « b n FOR j j ‘K STO K DUP 1 DISP f

EVAL DUP 3 DISP g EVAL DUP 5 DISP 2 WAIT NEXT » ‘K’ PURGE

ELSE - f g h « bn FOR jj 'K STO K DUP 1 DISP f EVAL DUP 3

DISP g EVAL DUP 5 DISP h EVAL DUP 7 DISP 2 WAIT NEXT » ‘K

PURGE END END » »

 

EXAMPLE 1.

0o 1

(a) Consider the sequence f; }k_1 where f; = r- To see the first 25 terms of this

sequence, arrange the stack as follows and press

3: ‘1/K’

2: 1

1: 25
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The display will show, in timed two second intervals, the first 25 terms of

the index k and the sequence { 1/k}. When done, the stack will contain

everything that was displayed, so that you can scroll upward with the

EI and view any particular term.

(b) Consider the two sequences { f; }1:1 and { g };1 , where f; = % and g; = % ,

To see terms 10 through 20 of these two sequences, arrange the stack as

follows and run program SHO.

4: 1/K

3: 1KA2

2: 10

1: 20

The display will show, in timed two second intervals, terms 10 through 20

of each sequence, with sequence { f; } being above sequence { gx } on the

display screen, just below the index k. When done, everything is left on

the stack for your perusal.

It is helpful to regard the terms of the sequences { f; } and { gx } in EXAMPLE 1
1 1

as being sample values from the two ordinary functions f(x) = X and g(x) = 2

defined for all x > 1. The graphs of the functions f and g consist of all points in

the plane (x,}-) and (x,iz) for x 2 1, respectively. Therefore, the graphs of the
x X

sequences { f; } and { g, } will consist of the discrete points (k,%) and (k 1 ) for
K*

k=1,23, ...

To plot the graph of a sequence { gy}, we can use program GSEQ!.
k=1

 

lprogram GSEQ and a later one GPS were written by Mr. Robert E. Simms of
Clemson University. We are indebted to Mr. Simms for permission to use his
programs here.
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GSEQ (Sequence Graph)

Input. Level 1: an expression for the k' term a, of a sequence

{ ay } in terms of the variable ‘K’

Level 2: the number of discrete points on the graph of the

sequence { a} that you wish to see.

As a stored variable: program SDRW (below),

which scales and plots the points that are created by

GSEQ and stored in the variable YDAT

Effect. draws coordinate axes and plots, in sequential order, the

specified number of discrete points (k, a,) on the graph of the

sequence { ay }

« # 131d # 64d PDIM 0 —» eq n k « eq {K k} TMATCH DROP ‘eq

STO [00] 1 n FOR k k NEXT n —>LIST 1 « DUP 'k STO eq —NUM 2

ROW— » DOLIST » OBJ-» 1 + ROW— 3DAT STO 1 XCOL 2 YCOL

SDRW 7 FREEZE »

 

  SDRW (a utility subroutine)

Effect: Used by GSEQ and GPS to scale and plot the xy-data in the

matrix YDAT

« SCLY DRAX {#0d #0d} PVIEW YDAT SIZE 1 GET 1 SWAP FOR

i 2DAT i ROW- OBJ—» DROP R—C PIXON DROP NEXT »

 

1
EXAMPLE 2. To plot the first 50 terms of the sequence { a, } where a; =7, arrange

the stack as follows:
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2: ‘1/K’

1: 50

Now press GSEQ to see the following plot develop:

 

 

   
To graphically verify that the graph of a; = % is simply a discrete sampling of

points from the graph of the function f(x =% , overdraw the above plot with a plot

1
of the graph of f(x) = —

 

-------------    
Activity Set 5.1

1. (a)

(b)

()

(d)

Use program SHO to calculate and view the first 25 terms of the sequence
2

{ ar }, where a; =75 . Do these terms seem to be approaching a limit?

Use program GSEQ to plot the first 25 points on the graph of the sequence
{ar }. Does the graph suggest thatlim a; exists?

k>

Consider the graph in (b) as a discrete sampling of points on the graph of

the continuous function f(x) = for x 2 0. Overdraw your plot in (b) with

the graph of f. What does the graph of f say about limé—i ?
X—yo0

2

Use I’'Hospital’s Rule to analytically find lim;—i . What is lim g—,; ?
X—300 k —o0
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2.

CHAPTER 5

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(a)

Use program SHO to calculate and view the first 25 terms of the sequence
In k

{ a; } where a; =lk—.

Now use program GSEQ to plot the first 50 point on the graph of { 4, }.

Does the graph suggest a limit for { a; } ?

!
Overdraw your plot in (b) with the graph of the function f(x) = -’—;—Jfi . Does

the graph suggest that lim l_;;g exists?
X—»o0

. Inx
Use I'Hospital’s Rule to investigate the limit lim — . Based on your

X—»00

. Ink
results, what can you conclude about Ilim % ?

k—oo

Use program SHO to calculate and view the first 25 terms of the sequence
sin k

{ ax } where a; =05k - Do these numbers convey to you a sense of what is

happening to the terms a4, ask — o ?

Use program GSEQ to plot the first 50 points on the graph of { 4, }. What

does the plot suggest?

Overdraw your plot in (b) with the graph of f(x) = Sé_an , for x 2 0. What

does the new plot suggest about the limit Ilim S% and the limit
X—00

in k
lim S;(;Lfi ? Is 'Hospital's Rule of any help here?
k—oo

Use SHO to calculate and view the first 25 terms of the sequence { a; }

where g; = (-1)k+1 [%) Do these numbers convey to you a sense of the limit

lim(-l)k+l (l) ?

koo k
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(b) Use GSEQ to plot the first 50 points on the graph of the sequence {a; } . Is

lim (—1)"*{%) any more apparent?
k>0

(c) Overdraw your plot in (b) with the graphs of a function f and its negative

-f. Now what can you conclude about the limit of the sequence { a; }?

5. Use program GSEQ to investigate the limits of the following sequences { a; }:

cos kk
(a) %= (b) LN

6. (Just for fun!) Plot the first 300 terms of the graph of the sequence { a; } , where

  

a, = sin k.

5.2 SERIES

What do we mean by an infinite series?

(1) Zak=a1+a2+a3+...

k=1

How can we possibly sum infinitely many numbers?

This is exactly the same kind of question we face when confronted with an

improper integral of the form

(2) | flodx .
1

How can we possibly integrate from 1 to oo ?

Infinite series and improper integrals have much more in common that mere

superficial appearances. Indeed, they behave in very similar ways.

The improper integral (2) is a limit of ordinary integrals:
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o t

[ fodx =lim | fodx .
1 t—o0 1

In a similar way, the infinite series (1) is a limit of ordinary sums:

N

(3) iak: lim Zak .
k=1 N-oo k=1

N
The ordinary sum Y, a; is called a partial sum of the series. Indeed, the partial sums

k=1

of the series form a sequence { sy }, where the terms are:

51=m4

S =ay1 +4ap

S3 =4, +4a; +a;s

N

SN=8; +ay +...+ay =, a4
k=1

If the sequence of partial sums { sy } has a limit S

lim {sy}=S5,
N>oo

oo

then we call S the sum of the infinite series Y, a; and write
k=1

M
s

S = A .

k 1

In this case we also say that the series converges to the sum S. If the sequence of

partial sums fails to converge to a limit (a real number), then we say that the series

diverges. It is no wonder that students find infinite series difficult to study. We are

combining the terms of one sequence a,,4, , a3 , ... to form the terms of a new

sequence of partial sums s;,s; , s3 , ... , and then have to consider the limit of the

sequence of partial sums:
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N
S= limsy = lim ) a.

Noo N-oow k=1

How can the HP-48G/GX be of use in a study of a subject that is so analytically

complex as infinite series?

To begin, we can use the built-in }' function to quickly calculate partial sums.

For example, consider the series

1Ll 1t e L+y+gtgt ... = .k-1iMk

Go to the Equation Writer and build the following expression for the N** partial sum

1
| 2k-1 *M

z

SN =

> I

 

  

N

2 1

K=1 2

Press ENTER to throw it onto the stack:

1: L (K=1,N, 127 (K=1)

Open the SOLVE application with, press and load the

expression on level 1 into EQ with . Now open the where you

will see boxes labeled | K | | N | | EXPR= l Ignore the box . Put 10 into

and press EXPR= to see the 10th partial sum

1: Expr: 1.998046875 .

Repeat by putting 20, 30, 35 into and using EXPR= to obtain the 20th, 30th

and 35% partial sums:

 

 

 

4: Expr: 1.998046875

3: Expr: 1.99999809266

2: Expr: 1.99999999814
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1: Expr: 1.99999999995

Is there any doubt that the sequence { sy } of partial sums is converging to S = 2?

 

1—_ =2
12k—1™

M
s

k

   
©o

o 1 : 1
EXAMPLE 3. The series ), @ is an example of a p-series Y, 7 known to converge

k=1 k=1

if and only if p > 1.

What is the sum? Using the SOLVR as above to calculate partial sums, we have

s100 = 108232290538

Sa00 = 1.08232319242

s300 = 1.08232322151

ss0 = 1.08232322861

sse0 = 1.08232323119

seo0 = 1.08232323227

s700 = 1.08232323295

sgo0 = 1.08232323295

Since these last two partial sums agree to 11 decimal places, we have determined

that the sum is S = 1.08232323295 to within the precision of the HP-48G/GX.

As an alternative to using the SOLVR, you can use the following program

INFSUM. This program, a modification of one due to William C. Wickes of Hewlett

Packard in [1], shows the convergence of the series dynamically, by showing the

partial sums as a single number with the last digits changing as more terms are

added. The program sums series that begin with initial index k =1, so you will
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have to make adjustments for series that do not start there. It should only be used

with series that are known to converge.

 

INFSUM

(=]

Input.  the term a,, for the infinite series Y, a,, in terms of the
k=1

variable ‘K’

N

Effect.  calculates partial sums Y, a, until two successive sums agree,
k=1

displays the last partial sum and the value of n at which

agreement was reached

« »f « 1 'K STO f EVAL 2 'K' STO DO DUP f EVAL + DUP 3

DISP 1 'K' STO+ SWAP UNTIL OVER == END K 1 - ‘K" PURGE »

 

Continuing with EXAMPLE 3, put ‘1/K A 4’ on level 1 and run program INFSUM.

You will see the partial sums accumulate dynamically at the top left of the display

screen, until two consecutive sums agree to the precision of the HP-48G/GX. This

agreement is reached when N = 669. Thus to the precision of the machine, the sum
669

is S = 1.08232323295 = El @

EXAMPLE 4. The series Y, (-1)¥*1(1/k®) has terms that alternate in sign. It converges
k=1

by the alternating series test. As an alternating series, we know that the error made

in using any partial sum s, as the sum of the series is less than the absolute value of

the term to be added to get the next partial sum s,,;. For twelve place accuracy, we

must take n large enough so that 1/(n + 1)® < 5x10-13. Using the HP-48 for the

calculation, we find that 1/113¢ is approximately 4.8x10-13. Thus, calculating the

112% partial sum with the SOLVR we obtain .985551091299 as our estimate of the
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sum, to 12 decimal places. (You can calculate the 113" partial sum to see if you get

agreement or run program INFSUM.)

©o

Since the partial sums of a series Y, 4; form a sequence { s; }, it is also helpful to
k=1

plot the graph of this sequence. Program GPS does that. Like its predecessor GSEQ

for sequences, the code is due to Robert E. Simm:s.

 

GPS (Graphical partial sums)

Input.  Level 2: an expression for the ki" term a, of the series
oo

Y ay, in terms of the variable ‘K’
k=1

Level 1: the number of partial sums of the series

Y, a, that you wish to plot
k=1

Effect:  draws coordinate axes and plots, in sequential order, the

specified number of points (k, s, ) on the graph of the
©o

sequence of partial sums { s, } for the series Y ay
k=1

« # 131d # 64d PDIM 0 0 > eq n s k « eq {K k} TMATCH DROP

‘e@ STO [0 0] 1 n FOR k k NEXT n —LIST 1 « DUP k' STO eq -»NUM

s + DUP ‘s’ STO 2 ROW— » DOLIST » OBJ—» 1 + ROW—- ‘IDAT STO 1

XCOL 2 YCOL SDRW 7 FREEZE »  
 

EXAMPLE 5. To show the use of program GPS, we graph the first 50 partial sums of

the series ), 1 and Y (-1)"1.
sk k=1 k

For the first one, arrange the stack as follows:
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2: 1/KA 3

1: 50

Now press to see

 

   
Despite the fact that these partial sums appear to level off rather quickly,

convergence is extremely slow. Program INFSUM will approximate the sum S to the

full precision of the HP-48 by the 5,849t partial sum

5849 1

Y &= 1.20205689144 .
k=1

oo

1
For the alternating harmonic series, Y, (-1)k*17 , arrange the stack like

k=1

2: ‘(DA K+ 1)+ (1/K)

1: 50

and press to see
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Activity Set 5.2.1

1. Consider the series Y, 10k /k!
k=0

(a) Apply a standard test to show that the series converges.

(b) Plot a graph of the first 25 partial sums of the series.

(c) Use the SOLVR to obtain a 12-digit approximation to the sum of the series.

(d) Use program INFSUM to obtain a 12-digit approximation to the sum.

Which partial sum gives a full precision approximation?

(e) Overdraw your plot in (b) with the sum of the series.

2. Repeat Activity 1 with the following series:

™
M

s

(a) 1/k! (b) ES"/k! (c) i(-l)"”(k/z")
k=1 k=1k=1

3. Consider the series ), (-1)"*1(%).
k=1 -

(a) Prove that the series converges.

(b) Find a value for n so that the n** partial sum will approximate the sum

of the series to 12 decimal digits.

(c) Use the SOLVR to calculate the partial sum s, for the value of n in (b).

4. Prove that the series Y (k + 1)/k1° converges. What is the sum to 12 decimal
k=1

digits?
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5. (a) Prove that Y, k!/(k + 2)! converges.
k=1

(b) Plot a graph of the first 25 partial sums of this series.

(c) Apply program INFSUM to find the sum of the series. Watch closely what

takes place. How can you explain this?

Series and Improper Integrals

We mentioned earlier that the connection between series and improper integrals

was more than cosmetic:

©o

Sa, versus | f(x)dx.
1 1

Indeed, for series of positive terms we have the integral test.
 

 

Integral Test

Let f(x) be a continuous, positive, decreasing function for x 21 and let a; = f(k)

for k=1,2, ... Then if either | f(x)dx or 3, a; converges, both converge. If either
1 k=1

I fix)dx or Y a; diverges, both diverge.
k=11
 

o0 ©o

In other words, the series ), a; and the integral | flx)dx converge or diverge
k=1 1

together.

oo

Suppose that we have a convergent pair, S= ) a5 and [= J f(x)dx , as above.
k=1 .

In Chapter 4 (Section 4.4.) we saw that
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oo N oo

I=] fixydx = [ fixydx + | fix)dx.
1 1 N

(the “tail”)

If we can make the tail of the integral small enough, then we can approximate the
N N

improper integral I with the ordinary integral | flx)dx : I = J flx)dx.

1 1

Similarly,

0o N oo

S=Zak=k21ak+ Y a
k=1 k=N+1

(the “tail”, R py)

And if we can make the tail of the series small enough, then we can approximate
N N

the series with the ordinary sum ) a;:S = Y, 4.
k=1 k=1

As with improper integrals, we measure “small enough” by specifying an

acceptable error tolerance € > 0, and then attempt to find a value for N so that

  

o N
Y a = S-Y a|<e.

k=N+1 k=1  
N

Then, to within the tolerance specified by €, S= Y a; .
k=1

The trick, then, is to relate the tail Ry of the series to the tail of the integral.

The following picture tells all:
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oo

RN= Zak= aN+1 + an+2 + ... < If(x)dx

k=N+1 N

(tail of the integral)

Since f(x) 20 for all x, the Absolute Comparison Theorem for improper

integrals applies (see Section 4.4).

K
(1) Suppose that for sufficiently large x, f(x) < 7 for some K > 0 and

p > 1. Then by (1) in Section 4.4, we have

. K
Ry < A}[f(x)dx < (}JT)NP‘I .

K
Thus, to have Ry <m < €, we choose

(2) Suppose that for sufficiently large x, f(x) < Ke* for some K >0 and

¢ > 0. Then by (2) in Section 4.4., we have
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‘ K
< [ fodx < _x
N

KK 1
To have Ry £ —;x < €, we choose N > = In [—)

ce c ce

EXAMPLE 6. Show that Z COS(k) converges and find its sum S to within € = 10%.

cos(x , . ,
The natural integral to use is f x(g )dx, which converges on comparison with

1

- k 1
dx. Thus, the series Z cos() also converges. Since f(x) =COSx(5X) < g for

 

  

Rl
-f

N
k

x 2 1, to approximate the sum S by 2 os( )

1/(5-1) 6)1/4
N>{1._1...} {w} - 236

 to within € = 10%, we need to choose

€ 5-1 4

23 k
Thus § = 3 COS” ~ 522820670966 (Equation Writer, ->NUM)

Activity Set 5.2.2

In each of the following, establish the convergence of the series and then find the

sum to within the specified tolerance €.

 

 

o sink
1 kz=:1 € = 01

2 i k , € =.001
i1+

o k e-2
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- 1
5. ln(—) , € =.0001

El k>

The Ratio Test

oo

The well-known ratio test states that for a series Y, a; of positive terms, if the
k=1

Ak+1

%

 ratios approach a limit 7,

. a
lim < = 4

then the series converges for r <1 and diverges for r > 1.

o0

Suppose we have a series of positive terms Y, 4; that is known to converge by
k=1

the ratio test. As in the preceding section, we wish to approximate the sum S of

the series by a finite sum ) a; to within a specified tolerance €. We must
k=1

therefore choose a value for N that will make the absolute value of the tail less

  

 

than €:

(*) Y a.| = Y <e.
k=N+1 k=N+1

.oa
Let I' be any number so that r < I"< 1. Since lim Z;l = r, we can choose N so

k—oo

that

a
(1) —ck;i—l< I' forall k> N.

[ 1 \ 1 1
\ 1 ] 1 I
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 a o ,
For all k>N, the ratios :;1 will lie in the open interval centered at r.

If we can also choose N so that

2) on(1op) <

then we will have our desired result (*). The justification is as follows.

Ak +1

ax

 Since we have chosen N so that < I for k2N then we have

ans+1 S Tay

ans2 < Tan,< TPay

an.s S Ty, < Pay

etc.

Thus

(l) aN+1 Yany2 ... +anm < (F+1-2+...+FM)QN.

 Since | I'| < 1, the geometric series '+ I'Z + I + ... converges to In fact,
1-T°

since the sequence of partial sums of this geometric series is bounded and increasing,

we have

(ii) F+I'2+...+FM<%, for all M.

Combining (i) and (ii) we have

(iii) + + < r
111) an4+ oo+ aAnsMm an -1-:—1—-: .

Therefore, we can obtain (*) by choosing N so that, in addition to (1), also

r
aN(fi) <E€E.
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= k10 . a 1
EXAMPLE 7. Consider the series ), 10F By the ratio test, lim kel 10’ S° the

k=1 Akk—eo

series converges. We wish to approximate the sum of the series to within € = 104

1 1 Yo
Choose I'=5 . To satisfy condition (1), choose N so that E(%) < 7 for all

10

k =2 N. This reduces to (1+%) <5 for k 2 N, and the smallest such N =6. To

10
satisfy condition (2) we must also choose N sothat jpn<e = 104, Build a user-

N10
defined function for G(N) = 108 and evaluate G for different values of N, starting

with the value N = 6. We find that N = 17 is the first value that gives G(N) <
17 k10

104 Now evaluate the sum Y, 10F On the HP-48G/GX to obtain S = 376.17943.
k=1

Activity Set 5.2.3

Establish the convergence of each of the following series by the ratio test and then

find the sum of the series to within the specified tolerance €.

k
> ,€ =10°= M

s

N

b L —

,e =10N M
3

N
7T

>
~ " 1

i‘;‘ (k+ 1)(k + 2)
k' , €E = 10-6

k=1

o  10%k!
=7 , € =10= (2k +1)!

o k
5. 2 %4-_1) ,E = 10-6

k=1
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TEACHING CODE:

ORGANIZATION

 

The special-purpose HP-48G/GX programs for teaching single variable calculus

that are contained in this book are called teaching code; a listing appears on the

inside back cover. The teaching code is readily available on a diskette from the

author for downloading to an HP-48G/GX from a microcomputer. This appendix

shows how the teaching code is organized in files, or directories.

A factory-fresh HP-48G/GX calculator contains only the built-in HOME

directory, indicated by the message { HOME } at the top left of the stack display

screen. The teaching code for calculus is stored in a directory called CALC. The

CALC directory contains three subdirectories, each one containing teaching code

related to a major topic.

HOME

CALC

DERIV INTG SERIES

e Subdirectory DERIV. Contains the teaching code related to differentiation (see

Chapters 2-3): INV.F, derXROOT, IM.y', Y', F.XY, INFL1, INFL2,

NEWTON, TAY.A, TAYLAT, TAN.L, and PAR'".
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e Subdirectory INTG. Contains the teaching code related to integration (see

Chapter 4): FABSTO, NSTO, GRECT, LRECT, RRECT, MID, TRAP,

SIMP, SUM, F.val and FTC.

e Subdirectory SERIES. Contains the teaching code related to series (see Chapter

5): SHO, GSEQ, INFSUM, GPS, and SDRW.

To execute any of these programs, open the CALC directory with the CALGC

key, then open the appropriate subdirectory with its menu key. Put the necessary

inputs to a particular program on the stack and then execute the name of the program

by typing the correct name and using the ENTER key, or (preferably) using the

appropriate menu key.

You have access to all built-in commands from any CALC subdirectory without

exiting from that subdirectory. Simply type the command and press ENTER (be sure

to first provide the necessary inputs on the stack), or use the appropriate built-in

menu key. If you use a built-in menu key, you can return directly to the subdirectory

you are in with the VAR key.

Because the HP-48 needs program derXROOT in order to differentiate the

XROOT function, we recommend that you move it from your DERIV subdirectory into

your HOME directory, whereit sill be accessible from anywhere. Here is how to do

that. Open your DERIV subdirectory and recall derROOT to the stack with

DERXR |, then put its name on the stack using E] | DERXR I l ENTER | Use

HOME to go to HOME. Now press to store the program in your

HOME directory.

To move up from a particular CALC subdirectory to the main CALC directory,

use the UP key (the left-shifted ' key).
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To rearrange any of the variables in a subdirectory of CALC (including the

CALC directory itself), apply the command ORDER (on the MEMORY DIR

submenu) to a list that contains the names of the variables in the desired order, left-

to-right.

And finally, a word of caution. With any object on stack level 1, pressing

and then the menu key beneath a particular user-constructed variable (in particular,

one of our teaching code programs) will overwrite the contents of that variable with

the object from level 1. So be careful; in a hasty moment it is easy to destroy

teaching code!



SOLUTIONS

 

Activity Set 2.1

  

1. x flx) 2. x  f(x)

+102  .999983333417 +102 F.004999583

+103 99999933333 +103 F.0005

104 .999999998333 +104 F.00005

+10°  .999999999983 +105 T .000005

+10% 1 +106 O

3. x f(x) 4. See numbers 1, 2, and 3.
 

-1 -.367879441171

-10 -4.5399297625E-4

-1,000  -5.07595889755E-432

-10,000 O

5. (a) x flx)

102 2.70481382942

104 2.71814592683

106  2.71828046932 as x = oo, f(x) > e

108 2.71828181487

1010 2.71828182832

1011 2.71828182845

(b) When x =10'% f(x) is evaluated as 1 by the HP48. Why? The precision of
the HP-48 is 12 decimal digits. With x = 102, 1/x = .000000000001 and

1+ 1/x is evaluated as 1. Then 1* =1.
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7.

8.

9.

 

 

 

 

(a) x flx)

102 3.00498756295

103 3.00049988491

104  3.00000400001

105 3

x  flx)

-102  -.994987437258

-103  -.99499873095

-10¢  -.99995000125

-10°  -.999994800014

-106 -1

(a) 'IFTE (X <0, XA 2, COS (X))'

(b) x  f(x)

-102  .0001

-104 .00000001

-10¢ .000000000001

-108 1.E-16

-1010 1.E-20

(c) x__fx)

102 999950000417

104 99999995

106 1

(d) lim f(x) does not exist.
x-0

(a) 22 (b) -23 (c) 23

(a) 23 (b) -22 (c) 24

SoLuTions 177

as x = 0%, f(x) - 3.

asx -0,f(x) > -1.

asx — 0,f(x) > 0.

asx = 0%, f(x) - 1.

(d) 306

(d) 307
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Activity Set 2.2

3.

(a)

(a)

(d)

 

    
(b)

 

   
 

(c) —_—

    
 

 

 

 

    
HZIN by a factor of 10.

Since 1 rad = 180°/x = 57.2957795131, HZOUT by this factor.

 
t /

    
Original

(b)

(e)

 

  
 

  
 

  

1/
/| 

Xrng: -1 2
Yrng: -1 1

 

 

 



6.
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YZOUT by a factor of 100 to see the plot |—— &\ /

[N
 

 

 
 

       
 

Graph with the default PPAR, then ZOUT by a factor of 2 to see

/\

 

 

    
Clearly, lim f(x) # lim_ f(x),so lim f(x) does not exist.

x—0° x—-0* x—0

Graph with the default PPAR, then use BOXZ:

W
-

Yrng: -1 1

Conclusion: lim f(x) does not exist.
x—0
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10. (a)

11.

12.

13. (a)

(b)

  

(b) +  

 

 

     

Plot with the default PPAR, then HZIN by a factor of 1.733 to see
 

 

 

 

The final plot //\\// ‘

Trace to x:1.2 y: 4.77 and press ENTER, then trace to x: 1.3 y: 4.77 and press
ENTER. Press ON to return to the stack and see

2: (1.2, 4.77333333333)
1: (1.3, 4.76692307692)

The local minimum is approximately the point on level 1.

    

 

:/ The "hole" is at x = 1.

     



SOLUTIONS 181

 

x+3
(b) fl(x)= 2

 
14. (a) 

 

 

(c)  

 

   
£=32(1-7%)

(d) Non-parallel lines that are symmetric to the line y = x have slopes that are
reciprocals of one another.

(e) The converse is false.

  

15. (a) (b) 

   

 

  
  

u[ v(x) ] and v(x) v[ ulx) ] and u(x)

{ i v

16. (a) —— — (b) |-
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17. (b)

18. (a)

(b)

19.

20.

SOLUTIONS

 

 

 

.---------

 

 

 

 
 

    
 

() (-3, -1.09614986962)

Use disconnected mode.

When t = 3, x = 2.17576302952 and y = 1.9203405733.

 

 
=-  
 

21.

 

 \ W 
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 22. 23, |——-

 

 

  

  

V
N

24. e N 25. <.\ V       

Activity Set 3.1

 

1. (<) %xz =1 (d) H  DQ(0,H)

+102  .999983333417

+104 999999998333

+10°  .999999999983

+106 1

(e) ;_x[Sinx]x =o=hli_)m0 sin (0 +;}lz)—sin 0

2. (a) After zooming in on the horizontal axis twice by a factor of 100 each time,
tracing shows that the y-coordinate remains constant at y = 1. Thus the
tangent line at x = 0 is horizontal with slope 0.

 

(b) H DQ(0,H)

+102  F.004999583

+103  F.0005

104  F.00005

+10° ¥ .000005

+10 o
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(c)

3. (a)

(b)

(c)

(d)

4. (a)

d . cos(0+h)-cosO
J-[cosx], -g=lim ——F—
x| ke -0 b 0 h

Graph on the default screen; ZIN twice by factors of 100 each time. Trace
A

left to x = .99995, then right to 1.00005. Calculate sz = -.66666664. The

slope when x=11is 3.

Repeat the procedure in part (a), and calculate )

The slope when x =1is -2.

A
Repeat the procedure in part (a), and calculate sz = 1.99999999666. The

slope when x =1 is 2.

A
Repeat the procedure in part (a), and calculate X;f = -2.4783497. The slope

when x =1 is -2.47834973296.

  

H_ DQ(2,H) (b) H DQ(-1H)

102 .748598999 102 .492361819

104 .7499859 104 499925

10¢ .75 106 .5

-102  .751411548 -102 5073631939

-104  .7500141 -10¢  .50007498

-106 .75 -106  .499999

-107 .5

The slope at x =2is .75 The slope at x =-11is.5
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1. (a) m/180 = .0174532925199 (b) X  SIN(X)/X

.01 .0174532924313

.001 0174532925191

.0001 .017432925199

-.01 .017432924313

-.001 .017432925191

-.0001 017432925199

. sinx W
(c) Indegree mode,xlz_r)n0 ~ = 180 -

1-x2 -xsin\ ¥ +1
2. (a) y'= b) y=—————) V= O YT e

(c) y,=2_sl1___xcgs_x (d) y'=e’x/3(2c052x - lsian)
: 3

3 \sintx

3. (a) [N N N7N

(b) y'is not defined for the values x =nn,n =1+1,+2, ...
y = 0 for these values of x.

 
 

b

b

 T
    
 

 
 

The derivative is not defined at x = 0.
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A horizontal tangent line to the graph of f will cause the plot of f to cross
the x-axis.

 

(a)

 

 

 

]
)       

2 — - — 2(b) y,=zzxy10x (©) v= e/ —2 Xy cos x°y

x&¥ + x? cos x? y — 2y

-Sin x
 

2x
(a) y'=z,‘y‘z‘

(d) y'=(

(a) % (5, -3) = 123456790123

(c) %(3, 7/2) = -.426089085256 (d)

(e) Z—f (8, 9) = -7.40740740748E-2 (f)

" 0x1/3y1/2 £) 25m Yy Cos

éz -
(b) 7 (2,-3) = 916

% (7, 2) = .023507899329

% (n/4, n/4) = 707106781188

Activity Set 3.3.1

1. local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

(-.577, 2.385)
(.577, 1.615)
0, 2)

(.149, 2.127)
(.718, -.090)
(433, -.044)

none

(-.598, -3.238)
(0, -2) and (1, 0)

(-2.459, 21.968) and (-.202, 3.092)
(-.517, 3.031) and (.778, 1.319)
(-1.875, 14.819), (-.364, 3.061) and (.439, 2.026)



10.

11.

12.

13.

14.

local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

absolute max:

local max:

local min:

absolute min:

infl. point:

absolute max:

local max:

local min:

absolute min:

infl. point:

absolute max:

absolute min:

infl. point:

absolute max:

local max:

local min:

absolute min:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

absolute min:

infl. point:

0, 2)
none

(-.816, 1.5) and (.816, 1.5)

(Or '8)

none

none

0, 1)
none

(-1, 0) and (1, 0)

0, 2m)
(1.912, 4.739)
(4.373, 1.544)

(0, 0)
(7, m)

(2.068, 2.873)
(.056, 2.028)
(1.018, -1.41)
(7, -2)
(.533, .452), (1.552, .889) and (2.627, .437)

(0, 1) and (=, 1)

(n/zl -2)

(.704, -.486) and (2.437, -.486)

4.712, 2)
(.767, .708), (2.375, .708) and (27, -1)
(O, "1)

(3.510, -1.634) and (5.915, -1.634)

none

none

(0, 1) and (%/2, 0)

©, 3)
none

(-1.414, 1.819) and (1.414, 1.819)

none

(.368, .692)
('1/ -1)
none
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15. absolute max: (-1, 1), (0, 1) and (1, 1)
absolute min: (-.707, -1) and (.707, -1)
infl. point: (.-.408, -.111) and (.408, -.111)

16. no local extrema

infl. point: 0, 0)

17. absolute max: (2.128, 1.898)
local max: (0, 1) and (27, 1)
local min: none

absolute min: (4.843, .209)
infl. point: (1.395, 1.388) and (2.916, 1.270)

18. none

19. Run the cable from the junction box along the road to a point .894 miles from the
closest point on the road to the house, then run straight to the house.

20. The maximum area is achieved with a square pen of side length 62.5 feet
situated on the back of the barn.

21. The maxiumum area is achieved with a rectangular pen 40 x 50 feet in size.

Activity Set 3.3.2

1. Starting value Number of iterations Convergence to

(a) -2.2 4 -2.2360679775

2.3 5 between 2.23606797748
and 2.236067897751

29 5 3

(b) .483 4 450451159135

1.79 4 1.74250596672

2.56 4 2.51943185453

3.58 5 3.59204381272

4.88 5 4.8840986203



2.

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

()

(8)

-4.71

-1.52

552

-7

.8

-9

-3

6

5
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-4.7168606007

-1.45367366646

.539785160809

-.774596669242

774596669242

-.923879532511

-.382683432366

The other two roots are obtained by symmetry.

At xy = /2, the denominator in the iteration formula is equal to 0.

— 31.4159265359 (= 107) after 8 iterations

— -12.5663706144 (= 4n) after 4 iterations

— 3.14159265359 (= r) after 7 iterations

— -3.14159265359 (= -m) after 6 iterations

— 3.14159265359 (= r) after 6 iterations

— 0 after 6 iterations

Newton's method diverges away from 0 for any starting value x; # 0.

(a)

(b)

(c)

(a)

Starting with x; = 3, the iterations oscillate between 3 and 1.

Starting with x, = 2.5, the iterations oscillate between 2.5 and 1.5; and

starting with x, = 1.8, the iterations oscillate between 1.8 and 2.2. In

general, starting with xy =2 +h or x; =2 - h, the iterations oscillate
between x; and x; .

The tangent lines are parallel; they have the same slope.

 

-
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(b) The intersection points are (+.980448246014, .382403569603).

6. 0 = 60.72°

 7. a=127.71148013. An equation for the arch is y = 630 + 127.7 (1—cosh 12; 7).

Activity Set 3.3.3

 

 

  
 

 

  
 

 

     
 

 

 

1.

2.

3. (a) (b)

4. (a) (b) 
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Activity Set 3.3.4

SN
Tangent line: ' 1.53352292311 - 3.7980913324 * (X - .807522931339) '

 

   
 

 

   
Tangent line: ' 3.01253819463E-2 + .465272415481 * (X — 9.69188952391E-2) '
Tangent line: ' 1.23212271031 + .465272415482 * (X - 1.52177971665) '

 

 

 

  
Activity Set 3.3.5

))
Nd

 

 

    



192  SOLUTIONS

2. (b) (i) Vertical tangents when t=0and t=m=

6y ]g
—
D

TN
—

 

 

 

 

 

(iii)     
3

3. Vertical tangents when t =0, ZE , T and ST

 

 

  

 

  
3 7

Tangents when ¢t = Tn and t= -74'75

Activity Set 4.1.1
 

 

 

 

 

1. (a) n LRECT RRECT MID

15| .728768788418 .6102502699 665249108684

30| .697008948527 637749689263 .666310585448

60| .681659767039 .652030137409 666577539299

120| .674118653051 .659303838236 666644378016      



2.

3.

(a)
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continued . .

200] .671127160162 662238271273 666658642265

500| .668447012312 66489145676 666665382712

1000| .667556197498 66577841972 666666345704

(c) The midpoint approximations are the best.

n LRECT RRECT MID

15| 2.42832476027 2.42832476027 2.43889647161

30| 2.43361061595 2.43361061595 2.43618981423

60| 2.43490021509 2.43490021509 2.43553398801

120| 2.43521710155 2.43521710155 2.43537360984

200| 2.43528393107 2.43528393107 2.43533989579

500| 2.4531525233 2.43531525232 2.43532413036

1000| 2.43531969458 2.43531969459 2.43532190445    
 

(c) The midpoint approximations are the best.

(a) By symmetry, all midpoint approximations are 0.

(b)
 

 

 

 

 

n LRECT RRECT

51 -1.89024823416 1.89024823416

20| -.47256205854 47256205854

40| -.23628102927 23628102927   
 

 

 



194  SOLUTIONS

Activity Set 4.1.2

1. (a)

(b)

2. (a)

4width = N

4K
right endpoint = 1~

3
height = (fi)

N

(4K )[4
area = (W) (N-)

S(N)=3 (K=1,N, (4 « KIN) A 3 + (4/N))

N  S(N)
 

10 77.44

50  66.5856

100  65.2864

200 64.6416

i 2
w1dth=N

2K+ N

N
 

2K
right endpoint = 1 + N =

, N
height = 57—

wer - (ew[7) 



3.

(b)

(a)

(b)

(a)

SN =X (K=1,N, N/(2 + K+ N) » (2/N))

N S(N)
 

10  1.0348956599

50  1.0853974528

100  1.0919752503

200  1.09528636265

 

 

, 4
width = 7

4K 4K-N
right endpoint = -1 + 17 = —

height = e A (4K_N)

area = (e A @)(%)

S(N) =X (K=1, N, EXP((4 + K—N)/N « (4/N)))

N S(N)
 

10  23.923392666

50  20.5168787439

100  20.1146395823

200  19.9154913077

 

2width = 7

— 2K-3N -2
left endpoint = -3 + Z(KN 1) = i,

2
height = 3 + (2K—3N—2) +(2K—3N-—2)

N N

(ZK—SN—Z)Z (2K—3N—2) (2
area= [3+|—m7m— + —mmm =

N N N )
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(b) SN =X (K=1,N,3/(2+«K-3+N-2)/N) "2 +

2+K=3+«N=2)N « (2/N))

 

N  S(N)

10  -2.44756241499

50  -2.09256321762

100  -2.04647408997

200  -2.0232851862

Activity Set 4.1.3

1. AREA = .666666666667

2. AREA = 3.71221866457

3. AREA =-1.38542551654

4. AREA = 2.36567536982

5. AREA = 1.15444851259

 

 

 

 

  

N TRAP SIMP

50 666923371902  .666666687877

100 666730858883  .666666667993

N TRAP SIMP

100 3.71108428728  3.71205883637

N TRAP SIMP

100 -1.38630748336  -1.38542551069

N TRAP SIMP

100 2.36496414195  2.36567538512

N TRAP SIMP

100 1.544445492303 1.5444851427



10.

11.

AREA =-2

AREA = 886207348259

AREA = 1.58846779582

AREA = 2.50798211423

AREA = 1.08531739235

AREA = 1.446560

(Using 6 FIX )

Activity Set 4.2.1
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N TRAP SIMP

50 -1.99922988429  -1.99999993636

100 -1.99980742337  -1.999999996

N TRAP SIMP

100 .886207292754 .88620734825

N TRAP SIMP

100 1.58848892823 1.58846779602

N TRAP SIMP

100 2.50797278189 2.50798211428

N TRAP SIMP

100 1.08532405829  1.0853173924

200 1.08531905887  1.08531739236

N SIMP

100 1.44655963409

200 1.44656012035

 

 

  

 
(b) AREA: 2.45375670998

(c) AREA: 1.52818183784
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2.  Volume: 41.1062399578 (units)? 3. Volume: 1.65549327405 (units)?

4. The "arch length" is 1493.74 feet 5. (a) 18.001 (b) 40.095

6. Period = 2554 m

Activity Set 4.2.2

14
1. 5 V5x-1 2. -(2x +3)1/2 3. tanx—-x 4. secx

5 L 2x+3)tan ™ (2 +3) L In(1 + (2x + 3)? 6. ~ 5 6 7. e. 2(x Yan™" (2x )—En( (2x+3) . 1O(x—n') © " sin Bx

xz 2x+1 S

8. 5—ln cosh x 9. Tno 10. If s-1=-1, In x; otherwise %

Activity Set 4.3

 

1. The final plot:

  
 

2.  The final plot:

 

  
 3.  The final plot:     
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4.  The final plot:

   
 

5.  The final plot:    
 

 

    
(b)

 

   
 

   (c)
Activity Set 4.4

 

 

 

1. s:lx Sxi‘l. With K=1,p =4 and €

integral = .56 to within €.

2. Z
Vxb+4| X  
integral = 1.112 to within €.

.01 we have N > 3.22. Thus, the

<—1—2 . WithK=1,p =2and € =.001 we have N > 1000. Thus, the
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-2x

3. X l<e™®  WithK=1,c=2and € = .001 we have N > 3.2. Thus,the
x> +1

integral = .198 to within €.

 

4. 1 <
2

\/¥ 2
N > 121.2. Thus, the integral = .236.

 for x 22. With K =2,p =5/2 and € = .001 we have  
5. Using the hint, for x 20 l\/x+1 e%

 
<(l) ee”*. Thus K =1and c =1. For

e
€ =.005, N > 1n200 = 5.3 and the integral = .605.

Activity Set 5.1

1. (a) - (b). The terms appear to approach 0.

(c) The graph approaches the x-axis.

x? k?
(d) by l-Hospital's Rule, lim ——=0. Thuslim — =0.

x—00 2% k—o 2

2. (a) - (b). The terms appear to approach 0.

(c) The graph approaches the x-axis.

] In k(d) by l-Hospital's Rule, lim ~=== 0. Thus lim 1~ = 0.
X—oo k —o0

3. (a) - (b). The terms appear to approach 0.

in k
(c) The plot suggests that iim % = 0.

—)

The Rule of 1-Hospital is of no help.
00

4. (a) - (b). The terms appear to approach 0.

1. (1
(c) Usefix)=_; iz_)nl (-1) 1(7(—) = 0.

cosk
5. (a) {_\/_{TI} diverges (b) { Tk } converges to 0. 
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Activity Set 5.2.1

 

    
1. (a) Use the ratio test (b)

l v e p———

(c) sum =2026.4657948 (d) The 38t partial sum.

2. (a) Use the ratio test. (b) Use the ratio test

(c)

3. (a)

5. (b)

 

     
sum = 1.71828182846

The 14* partial sum

Use the alternating series test
 

    
sum = 2
The 4274 partial sum

Use the alternating series test.

Sum = 2.00300296795

 

    

(b) n =15

 

 -------------    
sum = 147.413159104
The 27th partial sum

(c) Si5 = 1.71828182846
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|
(c) For sufficiently large k, (k—i?)—' is sensed as 1 by the HP-48. From that

point on, the partial sums accumulate by 1.

Activity Set 5.2.2

 

 

 

 
 

 

 

 

1. J S—EZA—xdx converges on comparison with J Adx and -S-# < %— ;use K =2
X x

1 1

> sinkand p = 4. With € = .01, N > 4.05. Thus the sum = Y 7 =90 to within
k=1

e = .01

2 J Z__ dx converges on comparison with j"’ xlzdx since Z_|<— for
; Vxb+4 1 Vxb+4| X
x>1; use K=1 and p =2. With € =.001, N > 1000. Thus the sum =
1001
Y K~ 1.083 to within €.
o Vk®+4

xe2% % >
3. Let f(x) = :{/—3_ Then | f(x)dx converges on comparison with [ e2xdx

x°+1 1 1

since |f(x)| <e?; use K=1and c =2 Withe =.0012, N > 3.1. Thus the
4

sum = Z a, = .128 to within €.

k=1
oo

 X : : 1 : x 1
= dx converges on comparison with I A2 dx since ——— < 2 for
-1 2 V xs -1

>1.41; use K=1 and p =1.2. With € =.001, N >5.5. Thus the sum =

=

4. |
2

X

 

-kY = 835 to within €.
k=2 Vk® +1
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©co

5. f In ()dx converges on comparison with [ izdx since In (iz) < xl.z for
x1

x>0; use K=1 and p =2. With € =.0001, N > 10,000. Thus the sum =
10,001
> l"(fz') = -164,236.277 to within €.
k=1

Activity Set 5.2.3

1 3
1. Since r = 5 let I' = i The smallest value of N that satisfies (1) is N = 3.

The smallest value of N that satisfies (2) is N = 27. Thus the sum =
27

Z (-—’%—)= 2 to within € = 10°.
2

k=1

, 1 1 - :
2. Since r = z let I' = 5 The smallest value of N that satisfies (1) is N = 10.

The smallest value of N that satisfies (2) is N = 24. Thus the sum =
24 3
Y [k) 6.006512 to within € =10,
k=1 et

1
3. Since r=0 let I' = 5 The smallest value of N that satisfies (1) is N = 3.

The smallest value of N that satisfies (2) is N = 12. Thus the sum =

2 ErDEL2) 17027973 to within € = 10¢.

1
4. Since r=0 let I' = 5 - The smallest value of N that satisfies (1) is N = 4.

The smallest value of N that satisfies (2) is N = 14. Thus the sum =
14

2 (2}<Oik1)v = 5.655198 to within € =10%.

3
5. Since r=.7 let I = Z The smallest value of N that satisfies (1) is N = 1.

The smallest value of N that satisfies (2) is N = 42. Thus the sum =

S 7k(k + 1)
Y,5 =3537305 to within € =10°.
k=1



 

Absolute Comparison Theorem 146

Antiderivative 137

Approximations

Polynomial 87

Rectangle 103

Trapezoid 118

Midpoint 104

Simpson's 118, 124

Arc length

Parametric 132

Symbolic integration 133

AREA 121

BOXZ 29

C—-R 47

Cancellation errors 45

Catenary 86

CEIL 20

Chebyshev Polynomial 84

Damped harmonic motion 74

DEFINE 17

Definite Integral 116

Derivative

Definition 44

d function 49

Partial 57

Difference quotient 44

Differential equation 140

Differentiation

Using 0 49

Using the stack 49

204

Using the Symbolic
Differentiate Screen 51

of XROOT 53

Piecewise 54

Implicit 55

Parametric 98

DRPN 10

DUPN 10

Equation Writer 50

Errors

Cancellation 44

Left rectangle 117

Right rectangle 117

Midpoint rectangle 117

Simpson's 124

Trapezoid 123

Integration 128

EXTR 75

FLOOR 20

Function

One-to-one 34

Evaluation with SOLVR 15

Inverse 34

User-defined 17

Two or more variables 17

Piecewise-defined 18

Fundamental Theorem

of Calculus 136, 137

Greatest integer function 20

HP Solve System 81

Hyperbolic cosine 86



HZIN and HZOUT 28

IFTE 18

Improper integrals 145, 165

Inflection points 62

Infinite

Series 157

Sequence 151

Initial value problem 140

Integer part 42

Integral 116

Improper 145, 165

Test 165

INTEGRATE Form 128

Integration

Symbolic 133

Numerical 127

Error 128

Using the stack 129

Interactive stack 9, 70

Inverse function 34

IP 42

I'Hospital's Rule 155, 156

Least integer function 20

Legendre Polynomial 84

—LIST 10

Maxima 63

Mean Value Theorem 94

Midpoint Rule 138

Minima 63

Newton's Method 78

nth roots 7

Parametric curves 36

Slopes of 99

Partial derivative 57

Partial sum 158

INDEX 205

PICK 9

Piecewise Plots 33

PLOT menu 23

PLOT screen 22

Plots

Superimposing 30

Disconnected 30

Sequential 31

Simultaneous 31

Connected 32

Piecewise 33

Parametric 36

Polynomial

Approximations 87

Legendre 84

Chebyshev 84

Best Linear Approximation 87

Best Quadratic Approx. 89

Taylor 89

Principal cube root 34

PURGE 13

Ratio test 169

Riemann Sums 113

ROLL 10

ROLLD 10

Root-finder 80

RPN 10

Series

Alternating 161

Convergent 158

Alternating harmonic 163

SHADE 121

SIGN(X) 60

Simpson's approximation 118, 124

Slope 44
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SOLVE command menu 83

SOLVE EQUATION screen 82

SOLVR 15

St. Louis arch 86

Superimposing plots 30

Symbolic Differentiate Screen 51

Symbolic Execution Mode 5

Tail

Improper Integral 145

Infinite series 166

Taylor Polynomial Screen 90

TAYLR 90

Trapezoid approximation 118

User-defined functions 17

VZIN and VZOUT 28

XROOT 34

ZAUTO 29

ZDECI 28

ZDFLT 28

ZIN and ZOUT 28

ZINTG 28

ZLAST 28

ZOOM menu 28

ZSQR 28

ZTRIG 28







HP-48G/GX TEACHING CODE

derXROOT

F.val

F.XY

FABSTO

FTC

GPS

GRECT

GSEQ

IM.y'

INFL1

INFL2

INFSUM

INV.F

LRECT

MID

NEWTON

NSTO

PAR'

RRECT

SDRW

SHO

SIMP

SUM

TAN.L

TAY.A

TAYLAT

TRAP
v

Derivative of XROOT

Utility for SUM

Evaluate F(x,y)

Store f, a, b

Fundamental Theorem of Calculus

Graphical partial sums

Graphical rectangles

Sequence graph

Implicit differentiation

Inflection point via f’

Inflection point via f”

Sum a series

Inverse function

Left rectangle sum

Midpoint rectangle sum

Newton's Method

Store n

Parametric derivative

Right rectangle sum

Utility for GSEQ, GPS

Show sequence

Simpson's rule

Utility for LRECT, RRECT,etc.

Tangent line

Taylor polynomial at x =4

Taylor polynomial at x = a (alternate version)

Trapezoid sum

Implicit derivative
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