

HP-48G/GX

INVESTIGATIONS

Mathematics

TIRTTs

Copyright © 1996 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a

retrieval system of any type, or transmitted by any means or media,

electronic or mechanical, including, but not limited to, photocopy,

recording, or scanning, without prior permission in writing from the

publisher.

Publisher: David F. Pallai

Production: Reuben Kantor

Cover Design: Gary Ragaglia

Printer: InterCity Press, Rockland, MA.

CHARLES RIVER MEDIA, INC.

P.O. Box 417

403 VFW Drive

Rockland, Massachusetts 02370

617-871-4184

617-871-4376 (FAX)

chrivmedia@aol.com

This book is printed on acid-free paper.

All brand names and product names mentioned in this book are

trademarks or service marks oftheir respective companies. Any

omission or misuse (of any kind) of service marks or trademarks

should not be regarded as intent to infringe on the property of others.

The publisher recognizes and respects all marks used by companies,

manufacturers, and developers as a means to distinguish their

products.

HP-48G/GX Investigations in Mathematics

Donald R. LaTorre, Donald L. Kreider, and T. G. Proctor

ISBN: 1-886801-23-1

Printed in the United States of America

9596 9798 99 76 5 4 3 2 First Edition

CHARLES RIVER MEDIA titles are available for bulk purchase by

institutions, user groups, corporations, etc. For additional information,

please contact the Special Sales Department at 617-871-4184.

PREFACE X

GETTING STARTED WITH THE HP-48G/GX 1

PART | SINGLE VARIABLE CALCULUS 15

1 FUNCTIONS: EVALUATION AND GRAPHING 17

1.1 FUNCTION EVALUATION 17

1.2 FUNCTION GRAPHING 23

2 DERIVATIVES 46

2.1 APPROXIMATING SLOPES 46

2.2 DERIVATIVES WITH THE HP-48 51

2.3 USING THE DERIVATIVE 64

3 INTEGRALS 105

3.1 APPROXIMATING AREA 105

3.2 INTEGRATION ON THE HP-48G/GX 129

3.3 THE FUNDAMENTAL THEOREM OF CALCULUS 138

3.4 IMPROPER INTEGRALS 147

4 INFINITE SERIES 152

4.1 SEQUENCES 153

4.2 SERIES 159

APPENDIX FOR PART |

TEACHING CODE FOR PARTI 174

vi CONTENTS

PART Il DIFFERENTIAL EQUATIONS 177

5 PLOTTING SOLUTIONS FOR DIFFERENTIAL
EQUATIONS ON THE HP-48 181

5.1 USING BUILT-IN PROGRAMS 182

5.2 ELEMENTARY USER PROGRAMS 191

6 FIRST ORDER DIFFERENTIAL EQUATIONS 200

6.1 POPULATION PROBLEMS 207

6.2 MOTION OF A PARTICLE IN ONE DIMENSION 211

6.3 INPUT OUTPUT PROBLEMS 216

7 SECOND ORDER DIFFERENTIAL EQUATIONS 225

7.1 SECOND ORDER INPUT OUTPUT PROBLEMS 230

7.2 TRAJECTORIES IN THE y1-y, PLANE 238

7.3 LINEAR VARIATIONAL SYSTEMS IN THE PLANE 244

8 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS 254

8.1 HOMOGENEOUS SYSTEMS 254

8.2 NON-HOMOGENEOUS SYSTEMS 266

9 MISCELLANEOUS SYSTEMS 273

9.1 THE LORENTZ EQUATIONS 278

9.2 EARTH, MOON, SATALLITE MOTION 281

9.3 DISCRETE DYNAMICAL SYSTEMS 284

9.4 PARAMETER IDENTIFICATION PROBLEMS REVISITED 290

CONTENTS vii

9.5 DIRECTION FIELDS 298

9.6 PROGRAMS FOR THREE DIMENSIONAL TRAJECTORIES 305

PART Ill ENGINEERING MATHEMATICS 309

10 MORE ON SOLUTIONS FOR DIFFERENTIAL
EQUATIONS 310

10.1 A RUNGE KUTTA METHOD FOR TWO EQUATIONS 311

10.2 SERIES SOLUTIONS 315

11 BESSEL FUNCTIONS 325

11.1 BESSEL'S EQUATION: SOLUTIONS OF THE FIRST KIND 325

11.2 BESSEL'S EQUATION: GENERAL SOLUTIONS 331

11.3 SELECTED PROPERTIES OF BESSEL FUNCTIONS 335

11.4 POSTSCRIPT ON NUMERICAL SOLUTIONS OF
DIFFERENTIAL EQUATIONS 341

11.5 BOUNDARY VALUE PROBLEMS 348

12 ORTHOGONAL FUNCTIONS 354

12.1 FOURIER SERIES 355

12.2 LEGENDRE POLYNOMIALS 358

13 APPLICATIONS TO VECTOR CALCULUS 368

13.1 ANALYSIS OF SPACE CURVES 369

13.2 LINE INTEGRALS 372

13.3 DOUBLE INTEGRALS 375

viik CONTENTS

APPENDIX FOR PART Il

PROGRAMS FOR THE APAPTIVE 4TH ORDER RUNGE-KUTTA
METHOD 382

PART IV LINEAR ALGEBRA

14 ARRAYS

14.1 ENTERING ARRAYS 392

14.2 EDITING ARRAYS 405

14.3 ARRAY ARITHMETIC 413

14.4 DETERMINANTS AND INVERSES 422

14.5 APPLYING FUNCTIONS TO ARRAYS 426

15 SYSTEMS OF LINEAR EQUATIONS

15.1 GAUSSIAN ELIMINATION 429

15.2 LU-FACTORIZATIONS 439

15.3 GAUSS-JORDAN REDUCTION 449

16 VECTOR SPACES

16.1 LINEAR COMBINATIONS AND SPANNING SETS

16.2 DEPENDENCE AND INDEPENDENCE 455

16.3 BASES AND DIMENSION 460

16.4 CHANGE OF BASIS 466

390

392

429

452

453

CONTENTS ix

17 ORTHOGONALITY 470

17.1 ORTHOGONAL VECTORS AND SUBSPACES 471

17.2 ORTHONORMAL BASES 475

17.3 ORTHOGONAL MATRICES AND QR-FACTORIZATIONS 482

17.4 LEAST SQUARES SOLUTIONS 489

18 EIGENVALUES AND EIGENVECTORS 495

18.1 THE CHARACTERISTIC POLYNOMIAL 495

18.2 EIGENVALUE CALCULATIONS 500

18.3 SIMILARITY 504

18.4 REAL SYMMETRIC MATRICES 510

18.5 POSITIVE DEFINITE MATRICES 513

18.6 SINGULAR VALUE DECOMPOSITIONS 520

19 ITERATIVE METHODS 531

19.1 THE JACOBI AND GAUSS-SEIDEL METHODS 532

19.2 THE POWER METHOD 542

APPENDICES FOR PART IV

A. VECTOR AND MATRIX NORMS 549

B. TEACHING CODE FOR PART IV 554

SOLUTIONS 557

INDEX 631

It is not too surprising that the current movement directed towards reform in the

teaching and learning of mathematics is occurring at a time when hand-held

technology is, literally, invading our classrooms. Indeed, these two movements have

a strong element of casual interaction.

The so-called "calculus reform" movement is generally recognized to date from

the conference Toward a Lean and Lively Calculus, held at Tulane University in

January 1986. There was already substantial evidence of widespread dissatisfaction

with the way that calculus was being taught and with the results of that teaching,

but the Tulane conference was the first to legitimatize that concern.

Since that time powerful programmable graphics calculators and widely

available computer algebra systems have been used to enhance the teaching of

elementary mathematics courses at many colleges and universities. Indeed reports of

these activities are a regular feature of the annual January mathematics meetings

and the annual International Conferences of Technology in Collegiate Mathematics.

Such activity in calculus has spread to calculus programs in secondary schools

(numerous workshops in the Technology Intensive Calculus for Advanced Placement

program and at least five calculus consortiums sponsored by the National Science

Foundation).

One of the most powerful and sophisticated calculators available, Hewlett-

Packard's HP-48G/GX units offer students and teachers practical opportunity to bring

graphical, numerical, and symbolic processing into the teaching and learning of

single variable calculus, differential equations, engineering mathematics and linear

PREFACE Xxi

algebra. This book is a textbook supplement for undergraduate courses in such courses.

It presents appropriate pedagogical uses of, and teaching code for, the Hewlett

Packard HP-48G/GX graphics calculators. It is intended to help students and

instructors incorporate these powerful devices as a tool for the interactive learning

and is independent of any particular textbook. The chapters survey the main topics

of the subject and include activities that have been carefully designed to engage

students in a modern, technology enhanced study of the material.

Much of this material is an outgrowth of the extensive classroom use of the HP-

48 calculators (and before that, the HP-28 units) at Clemson University in teaching

single variable calculus, differential equations and linear algebra since 1987.

Starting with an early pilot course taught by John Kenelly with the HP-28C in 1987,

Clemson has gradually used graphics calculators in more classes and now teaches

over 100 classes each year in which every student is required to have their own HP-

48G/GX unit. The university is strongly oriented towards science and engineering,

and our mainstream calculus is populated by students from a variety of fields: the

chemical, physical and biological sciences, mathematical and computer sciences, all

engineering fields, secondary mathematics education, architecture, accounting and

economics, and a few liberal arts students. Our instructors concentrate on

explanations, examples, classroom discussions, and calculator activities to generate

interest and enthusiasm for learning mathematics. For beginning students

experimentation and "convincing evidence" developed by this technology is

important.

At Clemson, the material in this book is used to supplement whatever textbook

is being used at the particular time. If the use of technology is to be of any real

significance in the learning process, then it must not be used as an occasional “add-on”

to the course. Rather, it must become an integral part of the teaching and learning

process. Therefore, the students are required to use their HP-48G/GX units on a

xii PREFACE

regular, almost daily basis. The calculators seem to bring a unique, personal

dimension to the use of technology.

Wheneverit is appropriate, homework from this book is assigned; sometimes in

addition to assignments from the main textbook, sometimes in lieu of such

assignments. Most of the Clemson faculty allow free and unrestricted use of the

calculators on all tests and exams. There is ample opportunity to assess students

learning of both concepts and procedures, so the technology poses no threat. On the

contrary, it has helped the students to place in proper perspective much of what has

traditionally occupied their predecessors in courses in single variable calculus:

excessive attention to routine, algebraically intensive procedures for finding

derivatives and antiderivatives. Many of the students are quite enthusiastic about

the use of the calculators as a tool to help them learn.

At Dartmouth the emphasis on computing technology in the educational

environment has been on the use of computers rather than calculators. From 1964 to

1984 all students were introduced to programming in BASIC on a campus time sharing

system, and they made extensive use of it in some 600 Dartmouth courses, more than

half outside the sciences. For the past decade students have used personal computers,

and they are now required to purchase one. Most have Macintosh computers. The use

of graphing calculators was not widespread until recently when students began

arriving with a graphing calculator in their possession. It has been instructive to

observe the interaction between computer and calculator technology. Students are now

commonly expected to use Mathematica in their first calculus course, and both

subsequent physics and engineering courses capitalize on the students' skills in using

computer algebra systems. Graphing calculators are not required, but their use is

encouraged, and many students express a preference for the portability and ease of

use of calculators. Groups of students,sitting under an elm tree working together on

their mathematics homework, are most likely not using a computer. They, perhaps

PREFACE xiii

more than their faculty instructors, have come to recognize computers and calculators

as complementary, non-competing technologies. An earlier version of this book has

been used by many Dartmouth students who wanted to learn to make more effective

use of their graphing calculators. They have found it to be accessible and most

interesting.

Professor Don Krieder and I want to acknowledge the contributions of several

pioneers in the development of calculators in the teaching of elementary

mathematics and to this book. To John Kenelly who foresaw the potential at

Clemson and at other institutions with the HP units in calculus. To Tom Tucker (of

Colgate University) for numerical integration routines, which date back to the early

days of the HP-28C. To Bill Wickes, Charlie Patton and Paul McClellan of Hewlett

Packard. (Bill Wickes improved the code for the program FTC dealing with the

Fundamental Theorem of Calculus, Charlie Patton wrote the program TAYLAT to

speed up Taylor polynomial calculations and Paul McCellan developed calculator

versions of LAPACK code for the matrix operations that are built in to the HP-

48G/GX.) To Robert Simms of Clemson for his very creative programs GRECT, GSEQ

and GPS that enable students to visualize rectangle approximations to integrals and

the graphs of infinite sequences. To Gloria Orr and April Haynes, who with

considerable skill and patience, produced by word-processing everything that

appears between the covers of this book. Finally to our co-author, Professor Don

LaTorre the inspiration for this publication and many other developments in the use

of calculators. Even though this past summer Don suffered a disabling stroke, he

maintains a keen interest in this project. We wish him the best of luck in the future.

Clemson University Gil Proctor

October, 1995

GETTING STARTED WITH

THE HP-48G/GX

This section is intended to provide new users with a basic introduction to the

HP-48G/GX calculator and its operation. It is no substitute for the User's Guide, but

should help you get started quickly.

Notation

To help you recognize calculator keystrokes and commands, we shall adopt

certain notational conventions.

e With the exception of the six white keys on the top row, keys will be

, | EVAL STO

represented by helvetica characters in a box: ENTER 7 7

etc.

o Shifted keys on the 48G/GX may occasionally have the key name in a box

preceded by the appropriate shift as in . But ordinarily, we will

not show the shift.

e Menu keys for commands on various menus will show the key name in outline

form in a box, as in‘ ROOT J or| TANL |

e Calculator operations and commands that appear in programs or in the text

material will be in helvetica characters, e.g.,, DUP SWAP INV.

On, Off and Contrast

Press the key (bottom left of the keyboard) to turn the unit on. Press

to turn it off. The key is the right-shifted (green) version of the

2 GETTING STARTED WITH THE HP48G/GX

key. With the calculator on, hold down the key and press to

darken the display contrast or B to make it lighter.

Stack Display Screen

When you first turn on a factory fresh HP-48G series calculator, you will be

looking at the stack display screen. To remove any objects from the screen that may

remain from previous use, press the key several times then the key

(on the same row of keys as ENTER |). Above the horizontal line near the top of

the screen you will see {HOME}, indicating that you are in your HOME directory.

Immediately below are levels 1-4 of the stack. Like lines on a piece of paper, the

stack is a sequence of temporary storage locations for numbers and the other kinds of

objects used by the calculator such as algebraic expressions, arrays, equations, and

programs.

Just below level 1 are six menu boxes. Normally, these menu boxes will have

labels in them that reflect the operation of the six white menu keys beneath them. If

you press the key near the top left of the keyboard, the labels will show

that the first page of the MTH menu contains the six submenus VECTR, MATR, LIST,

HYP, REAL , and BASE;the key (same row as) will turn you to the

second page of the MTH menu and another will cycle you back to the

beginning. Return to the previous page with PREV (the left shifted NXT key).

The small horizontal tabs above the labels in the MTH menu indicate that each of

the boxes contains a submenu (a file, folder or subdirectory in HP parlance). Open the

HYP (= hyperbolic) submenu by pressing the white menu key beneath it to access the

special commands for working with hyperbolic functions. Press to return to

the MTH menu at any time.

Similarly, the key opens the PRG (= Program) menu where you may use

the white menu keys to access the various submenus of commands for use in writing

GETTING STARTED WITH THE HP-48G/GX 3

programs. An extremely important key is the key. It opens the VAR

(= Variables) menu, which is where you look to find the objects that you have created and

stored into the memory of the machine. For routine calculations on the stack, it does

not matter which menu labels are active. Simply press to make them all

blank.

Keyboard

The keyboard of an HP-48G series calculator may at first appear to be

somewhat intimidating. But, like the control panel of any high-performance device,

it enables you to control and to monitor a vast array of operations. The number entry

keys are bordered on the right by , I_—:_|, , and E|; and on the left by

, , , and E The right-shift key (green) and the left-shift key

(purple) are color coded to many of the keyboard labels, and the E key is

used to obtain alphabetical characters.

Adjacent to ENTER is for changing signs, then for entering

exponents, for deleting characters (and clearing the stack), and for

backspace-and-delete (and dropping objects from level 1). The , COS|,

, and| Vx keys are just above, as are (for obtaining powers) and 1/x]

(for reciprocals and matrix inverses). Above the trig function keys are E] (tick), for

entering algebraic expressions, and and EVAL for storing and evaluating

objects. The four cursor keys III, I_l—l, E and IEI control the movement of

the cursor when it is active.

Applications and Command Menus

You will notice that some keys have both purple and green labels printed above

them (like the E key), but many have only one of the two (like the , and

EI keys).

4 GETTING STARTED WITH THE HP48G/GX

The keys that have only green labels above them represent applications, e.g.,

I/0, PLOT, SOLVE, SYMBOLIC. The right-shifted version of an application key

invokes a specially designed user-interface that lets you interact directly with the

named application, often through the use of input forms, which are the HP

equivalent of the familiar computer "dialogue boxes". Alternatively, the left-

shifted version of an application key gives you access to the various commands on

the command menu that is associated with the particular application. The

commands may be included in programs or executed directly from the keyboard while

viewing the stack display screen.

Display Settings

It is best to keep the calculator's angle mode set to radians in order to work

with trigonometric functions. Press (purple) to toggle between radian

mode and degree mode. When radian mode is set, the message RAD appears at the

top left of the stack display screen.

To display numbers in standard form, set your unit to STD display mode (the

default setting) by pressing MODES (the left-shifted CST key), opening

the FMT (= Format) menu and checking to see that the left-most menu box reads

STDO |. The small box next to STD indicates that STD mode is active. If the

menu simply reads STD press the associated white menu key to activate STD

mode. Now press MODES to interact with the main MODES screen. You

should see that the number format is highlighted and set to Std, and that the angle

measure is set to Radians. Press the E twice to highlight the coordinate system

field (it should read Rectangular, by default). To see how to change such a field,

press the white menu key beneath CHOOS |, use EI to highlight Polar and

press. You have just changed to polar coordinates. Now change back to

rectangular coordinates. When the display is set to show only a fixed number of

GETTING STARTED WITH THE HP-48G/GX 5

digits to the right of the decimal point, say with 3 FIX to display only three such

digits, the numerical calculations are still executed internally to the full 12- or 15-

digit precision of the machine. Only the display is affected. By resetting to STD

mode, you will display full 12-digit precision. Unless stated otherwise, we will

assume throughout this book that the display mode is set to STD and that the

coordinate system is set to RECTANGULAR.

The ¥ by BEEP means that the beeperis turned on (to alert you of syntax errors,

alarms, etc.). To activate the clock, highlight the clock field and press the

key. Leave the fraction mark (FM,) unchecked so that decimal points, rather than

commas, will appear in decimal numbers like 123.45. Exit this screen by pressing

. Notice that the time and date now appear above the horizontal line. If

you wish to modify the time or date, press TIME (the green shifted key)

and proceed as above.

Symbolic Execution Mode

The HP-48G/GX is a third generation symbolic calculator, which means that you

can apply operations and functions to symbolic expressions and obtain symbolic

results. For example, you can enter the symbolic expressions for x? and for sin x, then

press the key to obtain the symbolic result x? + sin x. Most other calculators are

numerical calculators, capable of applying functions and operations only to numerical

objects to obtain numerical results.

Symbolic execution mode is controlled by a system flag (flag -3). In the default

state, flag -3 is clear and the HP-48 is in Symbolic Execution Mode. In this mode, the

symbolic constants (¢, i 7, MAXR, and MINR) and functions with symbolic arguments

will evaluate to symbolic results. But if flag -3 is set, Numerical Results mode is

active and the symbolic constants and functions with symbolic arguments will

evaluate to numbers.

6 GETTING STARTED WITH THE HP48G/GX

We strongly recommend that you keep your HP-48G/GX in Symbolic Execution

Mode. If you go to the MODES menu with the keys and open the

MISC submenu, the SYM menu key should read SYM[|. The small box that

appears next to SYM indicates that Symbolic Execution Mode is active. If no box

appears in this key, simply press the SYM key to change it to SYM [PP y Py P y g

Numerical Calculations

Simple numerical calculations are done on the stack. The idea is this: put

inputs on the stack and then execute commands that use the inputs. To enter -12.34,

begin by pressing the appropriate number keys and the decimal point key (bottom

row, center), then use to change the sign. Notice that the typing starts at the

bottom left of the display screen, below level 1 of the stack, on the command line.

Press ENTER to put -12.34 on level 1. Now enter 56.789; notice that ENTER

insertsit onto level 1, moving -12.34 up to level 2. Press to compute the sum. To

recapture the stack before you added, press (the right-shifted EVAL

key). Now subtract 56.789 from -12.34 with E, then use and swap

positions with (the right cursor key IEI ; no need to press now). Now

subtract again to get 69.129. Take the square root with Vx |, then cube the result

with 3| YX|. You should have 574.765129278.

To edit this result, press the E (down cursor) key, use the right cursor key to

move the cursor over the 9, delete the 9 with and press 3

. Now use (the right-shifted key) to obtain the natural

logarithm. To multiply by =&, press E (m is obtained with the left-shift

key) then . Notice the symbolic result '6.35396147609 * ' on level 1,

enclosed in tick marks. To convert this to a numerical result, use (the

left-shift EVAL key). Now drop the 19.9615586945 from level 1 with [<1]. The

GETTING STARTED WITH THE HP-48G/GX 7

El key drops objects from level 1; the adjacent key (labeled CLEAR in purple)

clears the entire stack. Normally, you need not left-shift these keys; shifting is

required only when the command line is active.

nth Roots

 With a real or complex number on stack level 1, the Vx key will return its

 square root. If the numberis real and negative, say -3, then the x key will return

a complex number whose real part is zero: (0, 1.73205080757) for the square root of -3.

To take the nth root of a real number x for n >2 we can calculate x1/n: 2 A(1/3)

is 1.25992104989. But when n is odd and x is negative, this procedure will always

return a complex number: (-8) ~ (1/3) is (1, 1.73205080757). This result is the principal

cube root of -8, certainly not the real cube root that we expected. To obtain the rea

 nth root of a negative number for an odd value of n, use the XROOT key VT/ i,

 which is the right-shifted Vx key. For example, to obtain the real cube root of -8,

 simply enter -8 and then 3 (the desired root); press {/; to obtain -2.

Data Entry

When keying a sequence of real numbers into the command line, say 1.1, 2.2 and

3.3, you must separate the numbers with spaces or commas for proper recognition, as

in 1.1 22 33 or 1.1,2.2,3.3. We recommend that you use spaces for ease of use. For

consistency we will show commas, but you should always interpret them as spaces.

You need not insert commas or spaces between a real number and a complex number (an

ordered pair), or between two complex numbers, because the calculator recognizes

parentheses as object delimiters. Unless we specify otherwise, all examples and exercises

in this book assume the calculator is set to STD display mode.

8 GETTING STARTED WITH THE HP48G/GX

Algebraic Expressions

Algebraic expressions must be typed in beginning with a ' (tick) mark using the

D key. Alphabetical characters are obtained by first pressing @ and then the

desired key. Note that alphabetical characters appear in white letters to the lower right of

the keys on the top four rows. To produce, say 'S', press E} followed by @ SIN

ENTER Lower case characters are obtained by the sequence D E . then

the character key. For example, E] E .@ENTER puts 'd' on level 1.

(Thus E' left-shift will give lower case).

To enter the algebraic expression 'SIN(X)', press D E

ENTER |. Notice the location of the cursor after each keystroke; after the

cursor is still inside the right parenthesis. To move it outside, use the right cursor

key [EI But, pressing ENTER does it all for you. As a more complicated

example, try 'COS(X A 2)/(2 » X A 3)". The keystroke sequence is:

(] [cos] [a] [1x] ¥] 2 [>] [+][all+] 2

lo| [1/x] Y| 3 [ENTER].

Yes, it is necessary to insert the » in 2 » X A 3; if you forget, when you press

ENTER |, an Invalid Syntax message will appear and you can then correct your

typing. If things are not going well on the command line, remember that the

key will backspace and delete. Finally, if you get desperate, press ON |

(sometimes, more than once) to cancel what is taking place and then start over.

Stack Manipulation

We often need to manipulate the stack. For example, to duplicate one or more

levels, to copy an object from a higher level down to level 1, or to otherwise

rearrange the stack. Complete details can be found in chapter 3 of the HP-48G series

GETTING STARTED WITH THE HP-48G/GX 9

User's Guide, but we will survey the basics here. This survey should suffice for most

purposes.

To make a duplicate copy of the object on level 1, simply press |ENTER|. This

executes the DUP command, which duplicates level 1. We have already commented

on the obvious keyboard commands DROP (the key), CLEAR (the key),

SWAP (the D> Jkey), and UNDO (the EVAL| key). Although the DROP,

CLEAR and SWAP keys are labelled in purple, it is not necessary to use the purple

key except when the command line is active.

The best way to understand the other stack commands is to begin with your

stack arranged like this:

4: 'S

3: T

2: 'V

1. 'V

Now press the E key to engage the interactive stack. The interactive stack is an

environment that lets you interact with the stack and is active when the dark

pointer P» appears at the left of the screen. You exit the interactive stack with

l ENTER i or I ON I (either one will work). So arrange your stack as in the above

illustration and then press the @ key. The commands that are most often used

are PICK, ROLL, ROLLD, —»LIST and (on the next page) DUPN and DRPN.

Move the pointer up to level 3 and press PICK I ENTER |. The command

PICK copies the content of level 3 to level 1. Use to DROP the 'T' from

level 1.

10 GETTING STARTED WITH THE HP48G/GX

Now move the pointer back to level 3 and press = LIST ENTER |. Notice

that the contents of levels 1-3 were put into a list (lists use curly braces). Now restore

the stack to its original state with UNDO |.

The commands DUPN and DRPN (on the next page) are almost self-evident.

With the pointer situated on level N, DUPN will duplicate the first N levels of the

stack while DRPN will drop the first N levels. Try using DRPN with the pointer

at level 3. Press ENTER to exit, then use UNDO to restore everything.

The last two commands, ROLL and ROLLD are extremely useful. With the

pointer specifying the number N of levels, ROLL will push (roll) the stack upward,

causing the object on level N to fall down to level 1. Try using 4 ROLL to rearrange

the stack:

4: 'S 4: T

3: T 4 ROLL = 3: 'V

2: 'U 2: 'V

1: 'V 1: 'S’

(The 'S' rolled off the top level and fell down to level 1)

The command ROLLD (roll down) is just the opposite: it pulls the specified

number of objects down, causing the level 1 object to move to the top level. Restore

the current stack to its original state with 4 ROLLD. Now use CLEAR to clear the

stack.

RPN

RPN stands for Reverse Polish Notation, the type of logic used by almost all

Hewlett Packard calculators. The essence of RPN is this: first provide the inputs,

then execute commands that operate on the inputs. When we did our earlier

calculations on the stack, we were using RPN entry. Thus, to add -12.34 and 56.789 in

GETTING STARTED WITH THE HP-48G/GX 11

RPN we input -12.34 and 56.789, then executed the command +. In fact, we built

-12.34 using RPN: input 12.34, then press . Notice how this differs from the

algebraic entry logic employed by most other types of calculators. Algebraic entry

requires that we type in -12.34 + 56.789 from left-to-right and then press an ENTER

or E key. To produce a numerical result for VIn 2.3 on the HP-48 using algebraic

entry we type

'\ LN 2.3 EVAL

But to obtain this using RPN, we do

23 LN vV

RPN is an especially powerful logic for constructing the algebraic expressions

that we encounter in a beginning study of calculus. Expressions such as

V1 + cos?(x3) or (1+x)23 + 53;2;_14 .

Consider the first of these two. Superficially, it is simply the square root of one plus

the cosine squared of x3. But it is important that we understand this expression

mathematically, from inside out, as follows: start with x and cube it, take the cosine

of x3 and square the result, then add 1 and take the square root. RPN entry

corresponds exactly to this way of thinking:

X 3ACOS8Q1+V .

A more complex example is provided by the second of the above two expressions.

First, try entering this expression using direct algebraic entry (remember to start with

a ' (tick) mark); what did you find out? Now use RPN entry as follows: begin by

putting the three main components ‘(1 + X) A (2/3)','2 » X + 1', and '\/—(X A2 —4) on

the stack in this order (you can use either direct algebraic entry or RPN for any of

them); now press El to build the quotient, then to obtain the sum.

12 GETTING STARTED WITH THE HP48G/GX

This last example clearly illustrates why RPN is the preferred method for

entering complicated expressions onto the stack. Most users tend to develop their own

style, often using direct algebraic entry to build simple components and then RPN to

produce the more complicated final results. Of course, all programs on the HP-48

must be written in RPN. For example, the program

« SQ SWAP sQ + VvV »

uses RPN logic to take two inputs from the stack, say x and y, and then returns the

result Vo2 + 2.

Memory Management

The HP-48 can manipulate and store many types of objects, such as real and

complex numbers, algebraic expressions, vectors and matrices, lists, graphics,

programs, and text. Any of these objects can be placed on the stack, but to be saved in

the calculator's memory it must be given a name and stored. When you store an

object, it is stored as a variable in user memory (that part of the calculator's memory

that you, the user, have access to) and is accessible through the VAR menu. The

variables that you create in this way are called global variables to distinguish them

from other kinds of variables that the HP-48 uses (e.g., local variables — that are

created within and used entirely by a program, and system variables — that are used

by the calculator's operating system). You can think of a global variable as a named

storage location containing an object.

For example, suppose that you wish to create a variable named TRY1 containing

a program that will accept numbers x and y as inputs and calculate Vx> + y? . Here

is the program:

« SQ SWAP sQ + YV »

GETTING STARTED WITH THE HP-48G/GX 13

To build the program, press B to get the program delimiters « », then use

Vx @ Vx Vx ENTER |. Now put the name 'TRY1' on the

stack and press the key. If you press the VAR key you will see that the

leftmost menu key is labeled. To run the program with inputs 1 and 2, put

1 and 2 on the stack and then press to see the result 2.2360679775. In fact,

you need not actually enter the inputs onto the stack: simply press 1 2, then

TRY1 to get the result. The HP-48 recognizes spaces as object separators and

TRY1 will take the inputs directly from the command line. We will often use this

shortcut with our programs.

To delete a variable from user memory, put its name on stack level 1 and execute

the command PURGE. The PURGE key is the left-shifted key. To purge

variable TRY1, press ' (tick), TRY | ENTER |, then PURGE |.

To organize the variables that you create, you can put them into files (or

directories). Whenever you create a variable and store it, it is stored in the current

directory. If you are using a factory fresh HP-48 then your current directory is the

HOME directory, indicated by the list { HOME } at the top left of the stack display

screen. The name of the current directory always appears as the rightmost name in

the list that begins with HOME, as above. To create a subdirectory named CALC in

which you can store any variables that you may need in a study of calculus, begin by

putting the name 'CALC' on stack level 1. Now press MEMORY (the left-

shifted key), open the DIR submenu and execute the command CRDIR (create

directory). If you then open the VAR menu you will see the CALC directory on

the left. The short bar above the label is suggestive of the tab on a file folder, and

reminds you that CALC is a subdirectory. Press CALGC to open this directory and

notice the list {HOME CALC]}at the top of your screen, indicating that the current

directory is now CALC. This directory is presently empty, containing no variables.

14 GETTING STARTED WITH THE HP48G/GX

To return to the parent directory HOME, you need only go up one level in the

directory tree. The commands UP and HOME, executed by shifting the D (tick)

key appropriately, send you up one level or, alternatively, send you directly to

HOME.

A few final comments about storing and purging variables from directories. The

same variable can exist in different directories, often containing different objects. For

example, whenever you use the PLOT application, copies of the reserved variables

EQ (the "equation") and PPAR (the plot parameters) are stored into the current

directory. Likewise, whenever you use the SOLVE application, a copy of EQ and

the "unknown" variable are stored in the current directory. In this way, EQ and,

say, 'X' can appear in different directories with different contents. Since the contents

of EQ and PPAR are automatically updated whenever the PLOT application is used,

it is usually not important to purge them. On the other hand, a variable like 'X’,

which is the default independent variable for graphing, should be purged from the

current directory immediately after it is used. Keep in mind, also, that when you

purge 'X' from a particular directory it may continue to exist in an "ancestral"

directory where it may cause trouble later on. For example, suppose that CALC is

the current directory, that no variable 'X' is stored in CALC, but that the parent

directory HOME contains the variable 'X' in which the value 2 is stored. Suppose

further that you wish to take the symbolic derivative of a function f with respect

to the independent variable 'X'. Because 'X' appears in the parent directory, the

derivative will be automatically evaluated at the value x = 2. This is because the

HP-48 always searches upward in the directory tree in search of variables; it does

not search for variable in directories that are on the same level as, or below, the

current directory. And, having found that HOME contains variable 'X' with the

value 2, the derivative at x = 2 was returned. Had the calculator found no value for

'X', it would have treated 'X' symbolically, as was desired. Moral: purge all 'X"'s.

SINGLE VARIABLE CALCULUS

Part I of this work is a textbook supplement for undergraduate courses in single variable

calculus. It presents appropriate pedagogical uses of, and teaching code for, the Hewlett

Packard HP-48G/GX graphics calculators. It is intended to help students and instructors

incorporate these powerful devices as a tool for the interactive learning of single variable

calculus, and is independent of any particular textbook. The chapters survey the main topics

of the subject and include activities that have been carefully designed to engage students in a

modern, technology enhanced study of the material.

No two instructors and no two textbooks approach single variable calculus alike.

Therefore, the material has been organized into independent chapters that address main

topics:

e Functions and Graphs

e Derivatives

e Integrals

e Series

The Teaching Code given in the APPENDIX FOR PART I is a collection of special-

purpose HP-48G/GX programs, each one addressing a specific aspect of the course. The

appendix contains a complete listing of the teaching code appears on the inside back cover.

The code is readily available from the editor for downloading to an HP-48G/GX from a

microcomputer.

Calculus students are well served by classroom and homework exercises which reveal

the graphs as well as the analytical representations of the elementary functions. A sense

PARTI 16

of size and geometric pattern of these functions can be acquired through participation by the

student beginning in class and directed by the course instructor. This use of calculators gives

some immediate feedback concerning the student's grasp of the concepts. Questions about

the steps required in deriving the solutions of problems can be resolved in class. Implications

to be derived from graphs or tables can be discussed and illustrated through class exercises in

which part of the solution has been worked out by the student. Small group learning can be

initiated in class.

Use of the HP-48G/GX calculator requires some learning time just as the use of other

high level mathematics software. However the instruction set required by the calculator

has much in common with the instruction set of this software. The greater resolution in the

graphs presented and the speed of computation on larger computers do have advantages.

However the student will be able to transfer between these environments quickly, and the

portability of the calculator will serve the student throughout his career. A particular

advantage of the HP-48-GX is that the memory allows the student to arrange work into

directories and store program and results for many subjects.

The material in this book can be used to supplement a traditional or a reform

calculus textbook. Highlights include comparisons between rectangular, trapezoidal and

quadratic method for approximating the integral and the associated errors, the speed toward

convergence of a series such as the p series, the graphs associated with various Taylor

polynomials of a function and the graphical presentations of a function and its derivative in

a common picture. We hope you will find the enhancement of your calculus course with a

calculator as much fun as we did.

FUNCTIONS: EVALUATION AND

GRAPHING

Beginning calculus is a study of the behavior of functions: their variation, rates

of change, limiting behaviors. We shall thus begin with a brief look at how

functions can be represented, evaluated and graphed on the HP-48G/GX calculators.

1.1 FUNCTION EVALUATION

Evaluating with SOLVR

The basic idea of a function F of a single variable x is simple enough: for

each value of the input variable x we obtain exactly one output value F(x). The

HP-48G/GX units have a built-in environment that is ideal for the evaluation of

functions, the SOLVR. Although the SOLVR is designed to solve equations, the

format of its menu makes it convenient for evaluating functions. With the function on

level 1, press SOLVE to access the SOLVE application, open the ROOT

subdirectory and then load the function on level 1 into EQ by pressing

(remember: left-shift will load). Now press the SOLVR key. To evaluate the

function stored in EQ at a number (or variable), simply key in the number (or

variable), press then EXPR= |. For example, to numerically investigate the

2
behavior of the function f(x) =% as x approaches 0 we can proceed as follows.

Put (X +2) /(2 *X + 1) on level 1 and press SOLVE ROOT ,

then . To find F(.01), press 2 then

to see 1.97058823529.

17

18 CHAPTER1

To find F(.0001), press 4 then to see

1.99970005999.

To find F(.000001), press 6 then to see

1.99999700001.

To find F(.00000001), press 8 then to see

1.99999997.

Clearly, we can see that f(x) is approaching 2 as we let x approach 0 from the

right. What happens to f(x) as we let x approach 0 from the left? Experiment to

find out.

When using the SOLVR,if you store an equation, say 'expression 1 = expression

2, in EQ instead of a single expression, pressing EXPR= for a given value of X

will return two values, one for the left side of the equation and one for the right

side. This provides a convenient way to compare the outputs of two functions at

various input values of X.

You should be aware that whenever you use the calculator's SOLVE

application, the last value for X is stored under the variable name 'X' in user

memory. You need not make explicit use of the SOLVR for this to occur: pressing

ROOT on the FCN submenu automatically activates the SOLVR (as do the

commands ISECT, EXTR and F' which appear as menu keys on the FCN submenu).

You can see this variable by pressing to go to the VAR menu, where you will

see the menu key . Press to recall the value stored for X. Our

recommendation is that before going on to the next application you immediately purge

this variable to avoid trouble later on. Purge by pressing E} PURGE |.

FUNCTIONS: EVALUATION AND GRAPHING 19

User-Defined Functions

Another way to represent functions on the HP-48G/GX is by creating user-defined

functions. In HP-48 parlance, a user-defined function is simply a short program that

captures the essence of the formal way that we define a function by an equation like

F(x) =2 sin x + sin 4x. Here, F is the name of the function, x is the input variable,

and the expression to the right of the = sign is an algebraic description of the

desired output for a given input x.

The user-defined function that represents this mathematical function is the

program « — X '2 * SIN(X) + SIN(4 * X)' » stored in the global variable F. The

DEFINE command lets you create a user-defined function directly from an equation.

For the example at hand, simply enter the equation 'F(X) = 2 * SIN(X) + SIN(4 * X)'

onto level 1 of the stack and press . If you access the VAR menu with

the key, you will see the label appearing above a white menu key; this

identifies F as the name of the user-defined function. To verify that the variable

named F actually contains the above program, you can recall the contents of

variable F by pressing ; press DROP when you've finished viewing the

program.

To evaluate this function, enter the desired input and press the menu key .

For example, put T A 2' on level 1 and press to see '2 * SIN(T ~ 2) +

SIN(4 * T A 2)'. Likewise, press 4 to see 2 sin 4 + sin(4 * 4) evaluated as

-1.80150830728. Note that you can enter the equation 'F(X) = expression in X' directly

or by first entering 'F(X)', then the 'expression in X' and pressing E In either

case the key automatically creates the user-defined function from the

equation.

User-defined functions of two or more variables are constructed in the same way.

For instance, to represent G(s, t) = s/#* enter 'G(S, T) = S/T A 2' and press .

20 CHAPTER1

To evaluate G we input a value for S, then for T. Try it for yourself:

G(2, 3) = .222222222222.

Piecewise-defined functions often occur in applications and are introduced early

in calculus to illustrate the ideas of one-sided limits and points of discontinuity.

The best way to represent them on the HP-48G/GX is to use the IFTE command, found

on the second page of the PRG BRCH menu. The IFTE command is an abbreviation

for the "if ... then ... else ... end" construction and executes one of two procedures that

you specify, according as a "test clause" is true or false. The IFTE command takes

three arguments: a test argument and two procedural arguments, as in IFTE (test,

procedure 1, procedure 2). You should interpret this as "If test clause is true, then

execute procedure 1 else execute procedure 2”.

2
x -2x x<0

To represent the function p(x) = 5 , the desired expression is
1-x 0 <x

NTFTE(XX <0, XA2-2*X,1-XA"2). Begin with a tick, then go to the second page

of the PRG BRCH menu and press , followed by the three required

arguments separated by commas (@ 2 will produce the < symbol or you can

go to the PRG TEST menu), then. This expression can now be treated like

any other function. For instance, with 'IFTE(X <0, XA2 -2*X, 1 = X /A 2)

displayed on stack level 1, enter 'P(X)', then press SWAP |, E and finally

to create a user-defined function. Try evaluating P(X) using values to the left and

right of 0 to discover the behavior of the function p as x approaches 0.

The general construction for a piecewise-defined function with two pieces like

hx) x<a
fl) = {fz(X) o <x

is IFTE(x <ay, f1(x), fa(x)).

FUNCTIONS: EVALUATION AND GRAPHING 2

For three or more pieces, you can nest the IFTE commands:

filx) x<a
for f(x) = |fa(x) a1<x<ay,

fa(x) ax<x

use |FTE(X < ul,fl(X),. IFTE(X < 'dz,fz(X),f:;(X)))_

Activity Set 1.1

1. What happens to values of f(x) = _x as x approaches 0? Use the SOLVR to

find out. Let x approach 0 through values x =102, 1073, ..., 10°%, then their

negatives. Press 2 to input 102, etc.

CoS X — 1
What happens to values of f(x) = as x approaches 0? Use the SOLVR

to find out. Let x approach 0 through values x =102, 103, ..., 10, then their

negatives. Press 2 to input 102, etc.

What happens to values of f(x) = xe* as x approaches -? Use the SOLVR to

find out. Let x approach -« through values x = -1, -10, -1,000 and -10,000.

Repeat Activities 1-3, but this time with a user-defined function for f(x).

(a) Evaluate f(x) =(1+1/x)*for x =10%,10%, ..., 10!11. Then make a conjecture)

about what happens to f(x) as x — eo.

(b) Now evaluate f(x) for x = 10!2. Can you explain the result?

Investigate the behavior of the following function as x — 0:

_x+|1Vax+1 |

|1—Vx+ |.

22 CHAPTER 1

7. (a) Use the IFTE command to build an expression for

X if x<0
flx) = {

cosx if x>0

(b) Evaluate f(x) for a sequence of values that approaches 0 from the left;

what does f(x) approach?

(c) Now evaluate f(x) for a sequence of values that approaches 0 from the

right; what does f(x) approach?

(d) In view of your results in (b) and (c), does lim f(x) exist?
x—>0

8. The greatest integer function, often denoted by | x |, is defined by

| x | = the greatest integer < x.

It is executed on the HP-48G/GX by the FLOOR command (a menu key appears

on the third page of the MTH REAL menu). Use the FLOOR command to

calculate | x | for each of the following values of x:

(a) b) -z () e (d) (N z)

9. The least integer function, often denoted by [x |, is defined by

[x 1 = the least integer > x.

It is executed on the HP-48G/GX by the CEIL command (a menu key appears on

the third page of the MTH REAL menu). Use the CEIL command to calculate

[x] for each of the following values of x:

(a) 7 (b) -7 (c) er d) (N m o

FUNCTIONS: EVALUATION AND GRAPHING 23

1.2 FUNCTION GRAPHING

The single most important application of the HP-48G/GX to a study of calculus is

to create visual images of the wide variety of functions under study. More than

anything else, the ability to graph quickly and easily adds a powerful new dimension

to the traditional analytical approach to calculus. Many of the important aspects of

functional behavior — maximum and minimum values, rates of

change, etc. — can be effectively displayed by the graph of the function. With the

HP-48, graphical representations can be used from the beginning of the course.

To get informative representations of graphs on the HP-48 you must set the viewing

window to display the part of the graph that you want to see. The default settings of

the plotting ranges for points (x, y) are -6.5 < x < 6.5 and -3.1 <y < 3.2, with a common unit

scaling of each axis. Since there are 131 columns and 64 rows of pixels, the default

settings produce square pixels of size .1 and your visual intuition of slope and area is

preserved on the screen. The default settings also work well for trigonometric functions

of amplitude 3 or less. You can, of course, change the settings in a variety of ways , some

of which will be illustrated in the examples. To accomodate trigonometric graphs,

make sure your calculator is set to radians mode. The key will toggle

between degrees and radians; when radian mode is set, the message RAD will appear in

the top left corner of the screen.

Basic Plotting

Functions are represented graphically as plots in the PICTURE environment. The

general procedure to produce a plot of a function of a single independent variable is as

follows:

o Access the PLOT application;

e Make sure the plot type is set to FUNCTION;

24 CHAPTER 1

e Enter the expression that defines the function;

o Set the plotting parameters: the independent variable, horizontal and

vertical plotting ranges, etc.;

o ERASE (if desired) any previous plots;

e Execute the DRAW command.

The HP-48G/GX calculators allow you to access the PLOT application in two

different ways in order to enter a function's expression and to set the plotting

parameters: with PLOT to interact directly with the main PLOT screen, or

with PLOT to use the various commands on the PLOT menu. We will

illustrate both approaches in our first two examples.

EXAMPLE 1. Graph y =2 sin x + sin 4 x with the default plotting parameters.

Using the PLOT screen

From the stack display screen, go to the PLOT application with .

The main PLOT screen will show the current plot type, current angle mode, current

expression in EQ (if any), the independent variable (X, by default), and the current

horizontal and vertical display ranges. If the current plot type does not show

Function, press A CHOOS |, highlight FUNCTION and press OK |. If

necessary, use EI and a similar procedure to set the angle mode to RAD. Now

highlight the field EQ: and type '2 * SIN(X) + SIN(4 * X)' and press ENTER |.

Notice that when you are using the PLOT screen, you do not have to begin the

algebraic expression that defines the function with a tick mark. If the default

plotting parameters are current, the independent variable will appear as INDEP: X,

the horizontal display range as H-VIEW: -6.5 6.5, and the vertical display range as

V-VIEW: -3.1 3.2. If any of these settings appears otherwise, go to the next page of

FUNCTIONS: EVALUATION AND GRAPHING 25

the PLOT menu with , press RESET and highlight Reset Plot and

press. Once the default plotting parameters are set, return to the previous

page with PREV and press ERASE to erase any previous plot. Now

press DRAW |. You should see a plot like this:

When the plot is complete and the menu labels appear, press TRACE and then

use the right and left cursor keys to trace along the plot. Press (X, V) to obtain

coordinate readouts for the cursor. The x: value is the pixel location of the cursor but

the y: value is the value of the function in EQ computed at the x: value. Press + |

to restore the menu keys. When you have finished viewing the plot, press ON |

twice to return to the stack environment. You can bring back the plot by using the

EI key to access the PICTURE environment.

Using the PLOT menu

Enter '2 * SIN(X) + SIN(4 * X)' on level 1 (you will have to start with a tick

mark), and press to access the PLOT menu. If you do not now read

"Ptype: FUNCTION" at the top of your screen press and then

.Then use , to store the expression on level 1 into EQ. Now

press to see the plotting parameters. If you do not now read

Indep: X

Depnd: 'Y’

Xrng: -6.5 6.5

Yrng: -3.1 3.2

Res: 0

26 CHAPTER 1

On your screen, press to return your screen to the default settings. Now

press to turn back a page and open the PLOT menu with PLOT |.

Press to erase any plot previously drawn, then to draw axes

and. You should see the graph we had before:

wWW
Now trace along the plot with coordinate readouts. When you have finished

viewing the plot, return to the stack display screen by pressing . You can

always bring back the plot by using the E key.

Often, in order see more of a plot you can compress or expand the viewing screen

vertically or horizontally by using commands from the ZOOM menu, as in the next

example.

EXAMPLE 2. Graphy = x3 -3x? - 5x + 1.

Using the PLOT screen

Open the PLOT application with . Since the default settings are

current from our previous example, we need only enter the new function. With the

EQ field highlighted, type XA3-3*XA2-5"X+ 1"and press ENTER |. If

you made a mistake in entering the expression, simply highlight the EQ field, press

EDIT |, and use the cursor keys and the key to correct the entry. Use OK

to insert the corrected expression into the EQ field. Press| ERASE and DRAW

to produce this plot:

FUNCTIONS: EVALUATION AND GRAPHING 27

‘|
The lower right part of the plot is not visible, so to see more we will zoom out

on the vertical axis but leave the x-axis unchanged. Open the ZOOM menu, then the

ZFACT submenu. Set the H-FACTOR to 1, the V-FACTOR to 5, then press OK |.
Move to the next page and zoom out on the vertical axis with the VZOUT command.

A
[N

Use the subtraction key B to remove the labels from the bottom of the screen

that hide the plot; use to put the labels back. To verify that we have

You will get the following plot:

expanded the height of the graphing screen by a factor of 5 activate the coordinate

read-out with the menu key (X, V)|, and use the key to move the cursor uy y p

to the first tick mark on the y-axis. Notice that this tick mark records the zoom

factor. The zoom factor 5 was determined by trial and error; a smaller factor failed

to show the low point of the graph. Press to return to the stack display

screen when you've finished.

Using the PLOT menu

Begin with 'XA3-3*XA2-5*X + 1' on level 1 of the stack and press

PLOT to access the PLOT menu. Then use to load the expression on

level 1 into EQ and use PPAR to see the current plotting parameters. Since we

28 CHAPTER1

wish to plot first with the default settings use RESET to set the plotting

parameters to their default settings. Return to the previous page and open the PLOT

menu, then use ERASE ‘, ‘ DRAX | and to produce this plot:

[
Now zoom out as before to see more of the local behavior.

The above two examples convey the major differences in using the PLOT screen

() and the PLOT menu() to access the PLOT application.

Using lets you interact with the main PLOT screen, and using

PLOT provides direct access to the commands on the PLOT menu. Many beginners

prefer to interact with the PLOT screen, but more experienced users tend to prefer the

menu commands because of their speed and versatility. From here on, we shall leave

the choice to you, the reader.

Zoom Operations

As EXAMPLE 2 shows, after producing a plot we may have to modify one or more

of the plotting parameters in order to better see some portion of the plot. Here are

two examples of plots that require adjustment on the range of x values:

EXAMPLE 3. Graph y =sin(107mx) on the default viewing screen. You will see:

FUNCTIONS: EVALUATION AND GRAPHING 29

No plot appears. With the default plotting parameters the HP-48 calculates values

of y for each of the 131 values of x from x =-6.5 to x = 6.5, .1 unit apart. Since 107

times each of these numbers is an integer multiple of #, the sine function is 0 at each

of these values of x. Thus the plot lies along the x-axis. You can see this by turning

off the axes and redrawing the plot. To get a better picture we can compress the

viewing window in the x direction. Zoom in on the horizontal axis by a factor of 10

(set the H-FACTOR,then use HZIN |) to see:

APARAAS

EXAMPLE 4. If you plot y = x V' 5 - x2 with the default plot parameters, you will

see:

 -

Why does the plotfail to touch the x-axis? From the function, y is 0 when x =%+ 5,

but these points do not show on the plot. To four decimal places, \'5= 2.2361. With

the default plotting parameters, the HP-48 will plot a point for x = 2.2; but for

2.3 < x,y is a complex number so no points will be plotted. We can "tie down" the

plot to the x-axis by modifying the scale along the x-axis. For example, if we zoom

inon x by a factor of 2.2361 we will be rescaling the x-axis so that 5 units on the

x-axis is approximately V 5, and will see the following plot:

30 CHAPTER 1

The Zoom Menu

Several of the commands on the ZOOM menu are fairly self-evident:

ZIN and ZOUT:

HZIN and HZOUT:

VZIN and VZOUT:

ZDFLT:

ZLAST:

Zoom in or zoom out on both axes according to the ZOOM

FACTORS.

Zoom in or zoom out on the horizontal axis according to the

H-FACTOR.

Zoom in or zoom out on the vertical axis according to the

V-FACTOR.

Zoom to the default plotting screen.

Zoom to the last plotting screen.

But some of the other commands are not so obvious:

ZSQR:

ZDECI:

ZINTG:

ZTRIG:

Leaves Xrng unchanged but changes Yrng so that each

pixel is square.

Leaves Yrng unchanged but resets Xrng to its default state:

-6.5 6.5 . Pixels are .1 unit along the horizontal axis.

Leaves Yrng unchanged but sets Xrng to -65 65 so that

each pixel along the horizontal axis is 1 unit.

Resets Xrng so that every 10 pixels equals 7/2 units and

resets Yrng so that every 10 pixels equals 1 unit.

FUNCTIONS: EVALUATION AND GRAPHING 3l

ZAUTO: Leaves Xrng unchanged but rescales the vertical axis by

sampling the expression in EQ at 40 equally spaced values

across the x-axis plotting range, resets the Yrng to include

the maximum and minimum sampled values, and then

redraws the plot.

Caution: It is tempting for beginning users of the HP-48G/GX to use the ZAUTO

command instead of adjusting the vertical display range in other ways. But we urge

restraint and caution in the use of ZAUTO because it tends to excessively "flatten" a

plot due to the narrow vertical dimension of the display screen. For instance, if we

return to the function of EXAMPLE 2, y = x3 - 3x2 - 5x + 1, and apply the ZAUTO

command to the plot obtained with the default plotting parameters, we obtain the

following "flattened" plot:

U

Compare this with the plot we obtained by rescaling the vertical axis with a zoom-

out factor of 5. Which would you prefer to see?

The BOXZ application on the ZOOM menu of the HP-48G/GX is especially

helpful for zooming in on a particular region of a plot. The basic idea is to capture

the region of interest within a small "box", then zoom in on the box. Here's an

example.

1
EXAMPLE 5. Begin by plotting y = x sin - on the default screen. To better see

what's happening near the origin, begin by opening the ZOOM menu. Now move the

cursor 5 pixels to the left of the origin, then down 3 pixels and open BOXZ file. Now

32 CHAPTER1

move the cursor 5 pixels to the right of the origin, then 3 pixels above the origin.

Notice that the cursor drags a small box that has the origin as its center. Now press

ZOOM to zoom in on the box, and obtain the following plot:

Repeat this zooming-in process with BOXZ by moving to a corner of a box 5 pixels to

the left and 3 pixels below the origin, then moving to the diagonally opposite corner

5 pixels to the right and 3 pixels above the origin and pressing ZOOM |. You

1
should by now be ready to explain the behavior of y = x sin = as x approaches 0.

Superimposing Plots

To superimpose the plots of the graphs of two or more functions you can plot

them individually without erasing. @A better procedure is to put a list

{F G H ... etc.} of the functions F, G, H, ... etc. to be graphed into EQ and set the

calculator to sequential plotting mode (the default mode). When the DRAW command

is executed, the functions in the list are plotted sequentially, left-to-right. The

following example will illustrate this, both from the PLOT screen and the PLOT

menu.

EXAMPLE 6. Superimpose plots of the graphs of sin x, 2 sin x and sin 2x on the same

set of coordinate axes using the default parameters.

(a) Using the PLOT menu. Put'SIN(X)', '2 * SIN(X)" and 'SIN(2 * X)' on the

stack press the EI key to engage the interactive stack. Then move the

pointer to level 3 and press = LIST |ENTER to build the list

(b)

FUNCTIONS: EVALUATION AND GRAPHING 33

{'SIN(X) '2*SIN(X)" 'SIN(2 * X)' }. Now go to the PLOT menu and store

this list into EQ. Open the FLAG menu on the second page of the PLOT menu

and make sure that the middle menu key reads SIMU |. If SIMUO

appears, toggle off the key. Then return to the PLOT menu, reset the default

DRAX | and to see the

plots. Observe how the plots are drawn sequentially from the list.

 plotting parameters, and press ERASE ',

To draw the plots in the list simultaneously instead of sequentially, go to the

second page of the PLOT menu, open the FLAG submenu and toggle on the middle

key to show SIMU |.

Using the PLOT screen. Open the PLOT screen and insert the list

{'SIN(X') '2*SIN(X)" 'SIN(2 * X)' } into the EQ field (note that tick marks

are required in the list). Open the OPTS (Options) submenu and make certain

that there is no check mark (¢) in the SIMLT field. Return to the previous

screen, set the default plotting parameters, then ERASE and DRAW. You

should observe the list being plotted sequentially.

Disconnected Plots

All of our function plots so far have been done in connected mode, which means

that any spaces between the pixels activated by the plot EQ were filled in with

short line segments. But there are times when it is desirable to plot in disconnected

mode, so that no filling in will be done. In connected mode, the HP-48 connects

34 CHAPTER1

adjacent pixels with short line segments and sometimes extraneous lines can appear

on the plot.

The choice between connected versus disconnected plotting modes is specified by

system flag -31. When flag -31 is clear (the default state), plotting is done in

connected mode. Butif flag -31 is set, then plotting is done in disconnected mode.

If you are using the PLOT screen (), use the menu key to

access the various PLOT OPTIONS. A check () in the CONNECT field indicates

that connected plotting mode is active. If you are using the PLOT menu

(), go to the second page of the PLOT menu use the key to

access the three flags that are pertinent to basic plotting (AXES, CNCT, and SIMU).

If the second menu key shows CN C[J then connected plotting mode is active. If

the key reads CNCT |, then disconnected mode is active; simply press the key to

change the status of the flag. Here is an example.

EXAMPLE 7. If you plot y = tan x in connected mode using the default screen, you

IAU
Y

Notice that this plot contains vertical lines that are not part of the graph of

will see

y = tan x. The vertical lines appear because the HP-48 connects adjacent plotted

pixels. A graph of the tangent function without these extraneous lines is obtained by

plotting in disconnected mode:

FUNCTIONS: EVALUATION AND GRAPHING 35

Although the disconnected plot is a little "dotty", it is nevertheless a better

representation of the graph of y = tan x than the plot above.

Piecewise Plots

Piecewise-defined functions are plotted by putting the defining IFTE expression

into EQ and proceeding as usual. To get the plot shown in the next example, use the

default viewing screen and the disconnected plotting mode; in the connected mode the

calculator will connect the pixels on opposite sides of the two discontinuities and

give you an inaccurate representation. To set the HP-48G/GX to plot in disconnected

mode, go to the second page of the PLOT menu and open the FLAG submenu. Press

the second white menu key so that CGNCT appears in the second menu box.

bx+45 x< -25

EXAMPLE 8. To plot the graph of f(x) = 2 +sinx -2.5 <x<2.5 , use the expression

-C0S 2x 25<x

'"FTE (X <-25, 6 *X + 45, IFTE (X <25, 2 + SIN(X), -COS(2 * X))). This

gives the plot:

When you have finished, reset your calculator to plot in connected mode.

36 CHAPTER1

Plotting Inverse Functions

When a function f is one-to-one (different input values produce different output

values), it has an inverse function f! that satisfies

fiy)=x iff f(x)=y.

Whenever (x, y) is a point on the graph of f then (y, x) will be a point on the graph

of fI. Thus, the graphs of f and f1 will be reflections of one another across the line

y=x.

3
To compare the graph off(x) = x3 with that of its inverse g(x) = Vx, you can begin

by plotting the list { 'X A 3" 'X A (1/3)' }. Using the default settings you will see:

T

3
This fails to show the left branch of g(x) = Vx. The reason is that for each negative

value of X, X ~ (1/3) is calculated as the principal cube root of x, a complex number,

and so no pixel is activated. Although you may at first find this a bit disquieting,

the ability of the HP-48G/GX to return complex values for odd roots and for natural

logarithms of negative numbers is but one of the many features that makes the unit

so appropriate for post-calculus mathematics.

To obtain real odd roots of negative numbers, use the XROOT command, given by

 the i/; key (the Vx key). To see both branches of the graph of g(x) = \7;,

we must plot the expression 'XROOT(3, X)'. There are two ways to enter this:

FUNCTIONS: EVALUATION AND GRAPHING 37

X

(i) Put 'X', then 3 on the stack and press \/7/ :

(ii) Alternatively, go to the Equation Writer with ENTER |, and enter the

3
expression Vx with the keystrokes v x 3 I Dl \ o ’) 1/x |

Press ENTER to convert this to the expression 'XROOT(3, X)' on stack level 1.

When the list {'X A 3' 'XROOT(3, X)'} is plotted with the default screen, then

enlarged by a factor of 2 with the ZOOM menu, we see the following:

_#
Notice that the original plot and its inverse meet on the line y =x and that

the plots are reflections across this line.

To help plot the graph of an inverse function, you can use the following program

INV.F.1 To use INV.F, begin by storing an expression for the original function f in EQ

and drawing a "good" plot of EQ, i.e., a plot on which you wish to superimpose a

plot of f1. Then execute INV.F. Since the program uses the expression stored in EQ

and the plotting parameters from the reserved variable PPAR, make certain that

you produce your original plot from the same user directory in which INV.F resides,

preferably, your CALC directory. The program will redraw the original plot of f,

overlay the line y = x, and then overdraw a plot of fI. Incase f is not a one-to-one

function, INV.F will overdraw the inverse relation for f.

! Thanks to William C. Wickes of Hewlett Packard for suggesting this version that
uses parametric plotting.

38 CHAPTER 1

INV.F

Inputs: An expression for a function f, stored in EQ; and the desired

plotting parameters, stored in PPAR.

Outputs: Draws, over the plot of y = f(x), plots of the line y=x and

of the inverse relation f1to f.

« RCEQ PPAR — eql ppart « PARAMETRIC eql i = X' + X' i » X' +

eql 'i*X' + 3 -»LIST STEQ ERASE DRAX DRAW eq1 STEQ ppari 'PPAR'

STO FUNCTION PICTURE » »

EXAMPLE 9. Plot f(x) = (x + 1) with the default viewing window. To see its inverse,

clear the graphing screen with and go to the VAR menu with |VAR|.

Press INV.F to see plots of f, the line y = x, and f! drawn sequentially:

Parametric Curves

Not every curve in the xy-plane is the graph of a function. For example, a circle

is not the graph of a function. More generally, imagine a point P moving in the xy-

plane in such a way that its coordinates are given as functions of time ¢:

x =f(t) and y = g(t).

We call t a parameter and call the curve that is traced by the moving point a

parametric curve.

FUNCTIONS: EVALUATION AND GRAPHING 39

EXAMPLE 10. The coordinates of a moving point are given by

x=2cos2t, y=t-3sin2t for 0<t<4.5.

Plot the curve and determine the location of the point at t = 2.

Using the Parametric Plot Form

Access the PLOT screen with PLOT |. If the plot type does not already

read Parametric, open the CHOOS box and select Parametric. Set the angle display

mode to Rad (for this example and any others that use trigonometric functions).

Parametric plots require that the expression(s) for EQ appear as complex-valued

functions: functions like

ft) +1ixg(t)

where x =f(t) and y = g(t) give the x- and y- coordinates of the moving point.

Therefore, enter the following expression into the EQ field:

'2+COS(2 +T) + i*(T—=3= SINR2 * T))

Now set the independent variable (INDEP:) to 'T', set H-VIEW: -6.5 6.5, and set

V-VIEW: -3 6. Open the OPTS submenu and set the independent variable to range

from LO: 0 to HI: 4.5. Check AXES and CONNECT. Return to the previous screen

with and ERASE and DRAW to see the following parametric plot. Note that

it is traced in a clockwise direction:

&
To get the approximate location of the moving point when ¢ = 2, trace clockwise

along the plot with coordinate readouts active. Notice that the screen shows pixel

40 CHAPTER 1

coordinates as t varies. We can only get close to t = 2 with ¢t = 2.01, and for this

value of t the pixel coordinates of the point are approximately (-1.28, 4.31). We

can determine the exact location of the point when t = 2 as follows.

Return to the stack display screen and access the SOLVE menu with

SOLVE |. Open the ROOT menu, then the SOLVR submenu. Now input the

value 2 for and press EXPR= to see

Expr: '-1.30728724173 + i~ 4.27040748592.

Thus the exact coordinates of the point when t = 2 are

x = -1.30728724173 and y = 4.27040748592.

Using the PLOT menu

Access the PLOT menu with PLOT |. If necessary, open the PTYPE menu

and press PARA to select PARAMETRIC plot mode. Enter '2 x COS(2 T) + i« (T

— 3 * SIN(2 » T))’ onto stack level 1 and load it into EQ with . Now open

the PPAR submenu. Key in the expression { T 0 4.5 } and touch INDEP to

specify the independent variable as T with a range from 0 to 4.5. Type -6.5 6.5 and

touch XRNG | to set the Xrng, then type -3 6 and touch YRNG to set the

Yrng. Return to the previous page, open the PLOT submenu, and ERASE, DRAX, and

DRAW the plot:

You can obtain the coordinates when ¢ = 2 as above.

When plotting in PARAMETRIC mode, you are free to specify any variable as

the independent variable, not just 'T'. Unless you specify a range of values for that

FUNCTIONS: EVALUATION AND GRAPHING 41

variable, the HP-48G/GX will by default use the values specified by the Xrng; this

is likely not to be the best choice.

You should recall that the ellipse given by 2ty = 1 has the

parameterization

x=acost, y=bsint for 0<t<2m

If we take a = b then the circle x? + y? = a2 has the parameterization

x=acost, y=asint for 0<t<2m

Of course, any function y = f(x), a < x < b can be parameterized by

x=t y=f(t) for a<t<b.

We shall consider more exotic parametric curves in the activities.

Activity Set 1.2

1. (a) Plot the graph of y = Sl% using the default plotting parameters.

n(-2
(b) ERASE and then plot the graph of y = Sl—n-(-xi) :

(c) ERASE and then plot the graph of y = R ;c -1

2. (a) Plot the list { 'SIN(4 * X)' '-2*SIN(X)' } using the default plotting

parameters.

(b) ERASE and plot the sum of the two functions in the list.

(c) Overdraw your plot in (b) with the plot of y = -2 sin x.

(d) ERASE and plot the product of the two functions in the list.

(e) Overdraw your plot in (d) with the plot of y = -2 sin x.

42

10.

CHAPTER 1

Plot y = cos(107x) on the default plotting screen. Why does the plot look this

way? Adjust the screen to make the plot look more like a cosine curve.

Set your calculator to degree mode and plot y = sin(x°) using the default screen.

Without changing back to radian mode, zoom on X to make the plot look like

sin x, x in radians. When you're done, reset to radian mode.

Graph = x° — 1.3x% + .32x — .02 using the default plotting screen. Examine thephy g P g

behavior of this function near the origin by using BOXZ several times.

To appreciate how "steep" are the graphs of simple polynomial functions, begin

by plotting y = 34x> —91x? — 117x + 54 on the default screen. Now zoom out along

the y-axis as necessary until you can see all the high points and low points

(local extreme points).

Plot y = cos (cos'!x) using the default screen. Is the plot what you expected?

Now ERASE and plot cos!(cos x). Can you explain what you see?

Investigate, graphically, the following limit:

lim X+ | 1-vVx+1 |

x—0 | 1-vVx+1]|

(see Activity 6 in Activity Set 2.1):

1
Graphically investigate the behavior of f(x) =sin (;)near x = 0. Begin by

plotting on the default screen, then use BOXZ. What is your conclusion?

-X x<0

(a) Ploty=93sinx 0<x<m , using the default plotting screen.

X—-TmT mw<Xx

(b) Recall EQ to the stack, change it's sign with and then overdraw the

original plot with this expression.

11.

12.

13.

14.

FUNCTIONS: EVALUATION AND GRAPHING 43

Plot y = x\/ 3- x% Adjust the viewing screen to make the plot touch the

x-axis at the end points of the domain.

Graph y = x3 - 9x2 + 2x + 48 with the default plotting screen, then zoom out on

the vertical axis by a factor of 16 to see the local maximum. Now move the

cursor to the point (4, 0), open the ZOOM menu and press the menu key

on the second page to relocate the center of the viewing window. You may want

to remove the menu key labels to see the local minimum. When you have

finished, use ZLAST to zoom to the last screen. When the plot is done, use

ZLAST again.

4
(a) Ploty=x? +2 on the default plotting screen, then zoom out on the vertical

axis by a factor of 4. Use TRACE to approximate the local minimum value

to the right of the origin.

x3 -1

x-1
 (b) Ploty= on the default plotting screen, then relocate the center of the

viewing rectangle at (0, 2). Where is the "hole" in the graph?

(a) Use the default plotting screen to plot f(x) = 2x - 3, then use the INV.F

program to plot f1.

(b) Write an equation for f1.

(c) ERASE,then plot g(x) = -.6x + 1 and its inverse. When you've finished,

write an equation for g1

(d) What is your observation about the slopes of non-parallel lines that are

symmetric to the line y = x? Prove it.

(e) Is the converse to your observation true?

15.

16.

17.

18.

CHAPTER 1

Let u(x) = x2 + x + 1 and v(x) = sin x.

(a) Plot the composite function f(x) = u[v(x)] on the default plotting screen and

compare it with the graph of v(x).

(b) Now ERASE, plot the composite function g(x) = v[u(x)] on the default

plotting screen and compare it with the plot of u(x).

Use the default plotting parameters to graph

(a) y=2P (b) y=3(x-223+1
 -4x2 Use the default= /(a) Use the XROOT command to plot y =2 (x + 2)?/3 + 251"

plotting screen.

(b) Zoom in on both axes by a factor of .6. Trace to obtain an approximation to

the local maximum to the left of the origin.

(c) Now trace to find the approximate location of the local minimum that is

nearest to the origin; with the cursor resting at that point, press ENTER

to record the coordinates on the stack.

The HP-48G/GX command |P will return the integer part of any real number on

the stack. Thus, to determine whether a real number X is an integer, we need

only test X against IP(X): X is an integer iff X is the same as IP(X). The

syntax to test X against IP(X) is 'X == IP(X)', and you can find the == command

on the PRG TEST menu. Use these ideas to graph each of the following

functions on the default plotting screen.

1 if x is an integer

(a) flx)= {xz +2x-1 if x is not an integer

1-x if x is an integer

(b) 8(x)=174+x ifxisnotan integer

19.

FUNCTIONS: EVALUATION AND GRAPHING 45

Plot the parametric curve traced by a point P moving in such a way that the

coordinates are given by the equations

x=t-2sin3t, y=2cos2t for 0<t<6.3.

Give the exact location of P when t = 3. Use Xrng: -3.5 9.5 and Yrng: -2 2.

In activities 20 - 25, draw a plot of the indicated parametric curves on the default

plotting screen. Go to the MTH CONS menu to get a 12-digit approximation for .

20.

21.

22.

23.

24.

25.

x=4cost, y=2sint for 0<t<2m

x=3cost+2cos3t, y=3sint-2sin3t for 0<t<2m

x=2cos 3t, y=sin7t for 0<t<2m

(When done, zoom in using ZOOM factors of 2.)

x=3cos3t, y=3sindt for 0<t<2rm

x=sect, y=tant for 0<t<2rxm

x=2cost-15cos3t, y=2sint-15sin3t for 0<t<2rm

DERIVATIVES

Elementary calculus is concerned with the mathematics of continuous change.

For example, given a function f whose graph is smooth, the rate of change of f ata

point P = (x, f(x)) on the graph is given by the intuitive notion of the slope of the

graph at point P. Calculus provides us with a precise mathematical meaning for

this intuitive notion by defining the derivative f'(x) of f at x, then declaring the

slope of the graph at P to be the derivative.

2.1 APPROXIMATING SLOPES

Difference Quotients

Given a function f, the derivative of f is the function f* given by

) = lim flx + hh) - flx) .

h—0

The geometry is clear enough. The difference quotient

flx + h) = f(x)

h

appearing in the definition of f’ is the slope of the secant line joining the point

(x, f(x)) on the graph of f with some nearby point (x + &, f(x + h)) on the graph. Thus

the derivative can be viewed geometrically as the limiting position of the slopes of

nearby secant lines. For a given x, we can approximate f'(x) numerically by

fx + ’111) - f(x)evaluating the difference quotient for suitably small values of h.

A simple way to do this on the HP-48G/GX is to evaluate a user-defined

function for the difference quotient:

46

DERIVATIVES 47

F(X+ H) - F(X)
DQ(X,H) = H

This procedure requires that we also build a user-defined function F for the given

functionf.

To illustrate, consider the function f(x) = (x2 + 5)3. We create a user-defined

function F forf: « > X' (X A 2 + 5)A3 ' »; and another, DQ, for the difference

quotient: « - X H' (F(X + H) - F(X))/H ' ». To approximate f'(2), we simply

evaluate DQ using input values (2, H) for varying values of H.

H DQ(2, H)

001 972.67528
.0001 972.0675

.00001 972.0067

.000001 972

-.001 971.32528

-.0001 971.9325

-.00001 971.9933

-.000001 972

This numerical investigation should convince you that f'(2) = 972.

However, you must exercise caution with the numerical computation of

difference quotients because they are susceptible to serious cancellation error with the

finite precision arithmetic used in any machine computation. For example, consider

the function

VB 1 + cos?x
flx) = 3

48 CHAPTER2

If you build a user-defined function for f and then evaluate DQ for the following

input values (1, H) you will obtain these results:

H DQ(1, H)

104 -3.5221718

105 -3.522835

106 -3.52291

107 -3523

The correct value is f'(1) = -3.5229074056, so you can see that we are losing digits

with each successive evaluation of the difference quotient.

Slopes by Zooming

Because there is a strong element of geometry underlying the definition of the

derivative, it is not surprising that graphical investigations can often help in

building an understanding of the concepts that surround derivatives. By zooming in

on a graph, we can often "see" the slope at a point.

EXAMPLE 1. We wish to "see" the slope of the graph of f(x) = 2x3 - 3x + 1 at the

point (-.2, 1.584). Begin by drawing a plot of the graph of f(x) =2x3 —3x + 1 on the

default screen, then zoom in on the horizontal axis by a factor of 4 to obtain a better

view:

Activate TRACE and the coordinate readout (X, Y), trace to the point on the curve

where x = -.2, reset both zoom factors to 100 with recentering at the crosshairs, and

DERIVATIVES 49

then zoom in. Again, with the cursor resting on the curve at x = -.2, zoom in to see

the following approximation to the tangent line at x = -.2:

To calculate the slope of this line, we choose two points on the line. Trace left to

the point P where x = .20001 and press ENTER to record the precise coordinates on

the stack. Then trace right to the point Q where x = -.19999 and use ENTER to record

the precise location. Return to the stack with ON and press B to calculate the

ordered pair (Ax, Ay), where Ax and Ay are the differences in the x and y

coordinates of P and Q, respectively. Use the C—R (complex into real) command on

the MTH CMPL menu to put Ax and Ay on the stack, then SWAP and divide to obtain

Ay _the approximation Ax = -2.76 to the slope of the curve at x = -.2. In this case, we are

very accurate: the slope of the curve at x =-.2is -2.76.

In the activities that follow, we will use this zooming technique to investigate

the slopes of several important functions.

Activity Set 2.1

1. Can you see the slope of y = sin x at (0, 0)?

(a) Draw a plot of y = sin x using the default screen, then zoom in by factors of

100 three times.

(b) Trace left to the point P on the curve where x = -.000001 and record the

coordinates on the stack with ENTER |, then trace right to the point Q

on the curve where x = .000001 and record the coordinate.

50

3.

CHAPTER 2

(c)

(d)

(e)

AyUse P and Q to calculate your approximation A to the slope as in

EXAMPLE 1.

Find the slope of y = sin x at (0, 0) by evaluating difference quotients.

What is the slope of y =sin x at (0, 0)? Express your answer in

mathematical terms as the formal limit of a difference quotient involving

the Sine function.

Can you see the slope of y = cos x at (0, 0)?

(a)

(b)

(c)

Draw a plot of y =cos x using the default screen, then zoom in on the

horizontal axis by a factor of 100 (no vertical axis zoom). Zoom in again on

the horizontal axis by a factor of 100 (no vertical zoom). With the

coordinate readout active, trace along the curve to determine its slope at

(0, 0).

Find the slope of y = cos x at (0, 0) by evaluating difference quotients.

Express the slope of y =cos x at (0, 0) in mathematical terms as the formal

limit of a difference quotient involving the Cosine function.

Use zoom in (with the same horizontal and vertical factors) to estimate the

slope of each of the following functions at the point where x = 1. Be sure to

check (v) RECENTER AT CROSSHAIRS to keep the zooming region centered on

the screen, and always make sure that the cursor is resting on the curve at the

desired point.

(a) y=x23 (b) y=3-2 () y=sin@-1) (d) y=sine

DERIVATIVES 51

4. Use difference quotients to estimate the following slopes:

(a) the slope of y =V3x-2atx=2

 (b) the slope of y = x32x atx =-1

2.2 DERIVATIVES WITH THE HP-48

It is important that students learn the basic mechanics of finding derivatives

without their calculators. However, there are times when it is perfectly natural to

use the calculator to take derivatives; for example, when we want to plot a function

and its first two derivatives, and then find the roots. Since the plotting and root-

finding will be done on the HP-48, we may as well do the differentiation process

there also.

The Derivative Function o

The HP-48 uses the derivative function d (@ is the right-shifted key)

to perform symbolic differentiation. The differentiation can be executed all at once

or in step-by-step fashion following the chain rule. In either case, you must specify

the expression that is to be differentiated and also the variable of differentiation.

In order to obtain symbolic results, the HP-48 must be set to display symbolic results

(the default state) and no numerical value should be stored for the variable of

differentiation.

Using the Stack

To perform symbolic differentiation on the stack all at once, the two inputs are

specified on the stack:

level 1: 'the expression to be differentiated’

level 2: 'the variable of differentiation’

Then execute the d command with @

52 CHAPTER2

EXAMPLE 2. To differentiate f(x) = sin x2, arrange the stack as follows:

level 2: 'SIN(X 7 2)'

level 1: 'X'

then press the @ key to see the symbolic result

level 1: 'COS(X 7 2) « (2 » X)'.

Recall that the chain rule says (in mixed notation) that

;_x flg(x)] = f'lg(x)] g'(x).

To perform symbolic differentiation of f(x) = sin x?> on the stack in step-by-step fashion

following the chain rule, begin with the expression '9X(SIN(X A 2))' on level 1:

level 1: '9X(SIN(X A 2))'.

Press to perform one step of the differentiation and obtain:

level 1: 'COS(X A 2) » aX(X A 2)'.

Press EVAL again the perform the second step:

level 1: 'COS(X A 2) « (OX(X) * 2 « XA(2 = 1))

Finally, press EVAL again to execute the final step:

level 1: 'COS(X A 2) = (2 = X)'.

As an alternative to keying in '9X(SIN(X A 2))' directly to stack level 1, you can

use the Equation Writer. The Equation Writer is an environment that enables you to

enter mathematical expressions and text in much the same way they are written by

hand. Activate the Equation Writer with , then use the @ key to

begin the expression. When you see the form

9
o0

DERIVATIVES 53

respond by entering X and then press the key to move away from theP y g P y y

denominator and obtain

0
5 (0.

Now enter SIN and then X to see

0
> (SIN(X[O .

Close the two parentheses with E EI to obtain

03 (SINGK) 0.

Our use of the lE key in this illustration is typical: in the Equation Writer, the

IEI key is used to complete any subexpression and move on to the next part. Press

ENTER to convert the expression into '9X(SIN(X))' on level 1.

Using the Symbolic Differentiate Screen

Go to the Symbolic application with SYMBOLIC |, highlight Differentiate

and press. When the Differentiate screen appears, enter 'SIN(X A 2)' into the

EXPR field and 'X' into the VAR field. With the result type specified as Symbolic

press to see the result returned all at once to stack level 1:

1. 'COS(X A 2) » (2 « X)'.

To obtain the symbolic derivative in step-by-step fashion, return to the Symbolic

application and select Differentiate as before. After entering 'X' into the VAR field,

press STEP |. The result of the first step of the differentiation process will

appear on level 1:

1: 'COS(X A 2) » aX(X A 2).

54 CHAPTER2

As before, each succeeding press of the EVAL key will perform another step of the

differentiation.

EXAMPLE 3. If you put your calculator in degree mode and take the derivative of a

trigonometric function, say f(x) = sin x, you will see 'COS(X) * (n/180)'. Why the

factor 7/180? There are several ways to explain this.

d
When x is measured in radians, we know that Ix (sin x) = cos x. Thus by the

, d . d . T T d = T
chain rule, we have Ix [sin(x°)] = Ix [Sm(T_SE x)] = cos(@ x) e (‘1"56") = cos(x°)(@).

For an explanation at the more fundamental level, recall the derivation of the

derivative of the sine function:

d . sin (x + h) —sin x
Ix (sin x) = lim—

. (sin x cos h + cos x sin h) —sin x
= lim

h—0 h

X i cos h-1) sin h
= lim |sinx- + lim cosx-

h—0 h h—0 h

. . cosh -1 . sinh
= sinx - |lim ——— + cosx - lim .

h—0 h hso h

Thus, the result depends upon the two limits

h-1 inh
lim cosn-- and lim S
h—0 h h—0 h

Whether h is measured in radians or degrees, we have

h-1
limc—os——=0.
h—0 h

When h is measured in radians, we have seen (see Activity 1 in Section 3.1) that

 . sinh
lim =1.
h—0 h

DERIVATIVES 55

But when & is measured in degrees,

I sinh =&

hl—>ng h 180

(see Activity 1, Section 3.2).

Thus, using degree measure we have

i . cosh -1 . sinh
sinx - lim ———— + cosx - lim

h—0 h h—»0 h
 ;_x (sin x)

0 2
sin x - +COSX'180

Tcos X - gg -

Differentiating the XROOT Function

Although the XROOT function is built into the HP-48G/GX, its derivative is

not. You can, however, differentiate XROOT if you have the following program

stored in your HOME directory. It is important that the name derXROOT use

lowercase letters for d, e, and r followed by XROOT in uppercase letters because this

is the syntax recognized by the HP-48's differentiation routine. (Note: to obtain

lowercase alphabetical characters, use E @, @ E, etc.)

derXROOT

Input. 'XROOT(N, F(X)) on level 1, where N > 0 is an integer

d N
Effect: returns d—x(N F(X)) on level 1

« = nwy z'INV(n) » XROOT(n, w) A (1 = n) + z'»

56 CHAPTER?Z2

EXAMPLE 4. Plot the derivative of f(x) =\7 5 sin x on the default screen. With the

program derXROOT in the HOME directory of your 48G/GX, put 'XROOT(@3, 5 «

SIN(X))" on the stack, enter 'X' and press @ to see the derivative '.333333333333 =«

XROOT(3, 5 « SIN(X))A = 2 = (5 » COS(X))'. Now plot on the default screen to see

LA
Yiy

Notice that the derivative is not defined at the values x = nm, n =0, %1,

Piecewise Differentiation

Although the HP-48G/GX will not completely symbolically differentiate a

function defined with the IFTE command, it will correctly plot the derivative. Here

is an example.

-X x<0

EXAMPLE 5. Find the derivative of f(x) = sinx 0<x <7 and then plot both f
X-m WX

and its derivative.

Put two copies of 'IFTE(X < 0, -X, IFTE(X < &, SIN(X), X — 7))’ on the stack and graph

in disconnected mode with the default parameters to see

For greater clarity, especially after we overdraw f’, trace along the curve to the

point where x = 1.5, open the ZOOM menu and press CNTR |. The plot will be

DERIVATIVES 57

redrawn with the point you choose as center. Now ZOOM in on both axes by .67 to

I~
Press to return to the stack, put 'X' on level 1 and press @ to differentiate.

This gives 'IFTE(X < 0, dX(-X), oX(IFTE(X < =, SIN(X), X — m)))". Notice that the

differentiation is not complete. Use of EVAL does not change the expression.

see

However, if we plot f° without erasing we see the plot of the derivative

74
N

superimposed on the plot of f:

Notice that f has local minima at values of x where f'(x) does not exist.

Implicit Differentiation

Implicit differentiation is a technique that is used to obtain the derivative
d

y' = d—;lci when y is implicitly defined as a function of x.

For example, the equation y3 - xy? —y = 5 implicitly defines y as a function of

x. To use implicit differentiation, we think of y as an implicit function of x and

apply the chain rule to differentiate both sides of the equation. The resulting

equation can then be solved,if necessary for y'.

To implicitly differentiate y3 —xy?> -y = 5 we proceed as follows:

58 CHAPTER2

(i) 3y -@W?+x2yy')-y'=0 (apply chain rule)

(ii) Gy*-2xy-1)y'-y*>=0 (algebra)

2
(iii) y' = —L—o (solve for ')

3y - 2xy - 1

The HP-48G/GX cannot remember that y is an implicit function of x. Instead,

we must specify that Y depends upon X by using Y(X) instead of simply Y. When

the calculator takes the derivative, the symbolic derivative of Y(X) will appear as

the expression derY(X, 1). Try it. Put'Y(X) A 2' on level 2, and 'X' on level 1 and

press E . You will see 'derY(X, 1) = 2 » Y(X)' returned to level 1, the calculator's

version of

d :
77 W?) = 2yy".

To avoid having to type Y(X) in place of Y, and to make the result appear

more like what we are accustomed to writing, we can use a short calculator program.

The program given below does the following:

e replaces Y with Y(X);

o takes the derivative with respect to X; then

e replaces Y(X) with Y and derY(X, 1) with y' in the resulting expression

IM.y'

Input. level 1: an expression involving X and Y

Effect: differentiates the expression on level 1 with respect to X;

returns an expression for the derivative that uses X, Y and y'

«{Y 'YX} TMATCH DROP ‘X' 3 {'Y(X) Y} TMATCH DROP
{'derY(X, 1)'y'} TMATCH DROP »

DERIVATIVES 59

Thus, with 'X A2 + Y A 2' on level 1, program IM.y' returns '2 » X + y' « 2 « Y".

EXAMPLE 6. To implicitly differentiate the equation y3 - xy? -y = 5 on the HP-

48G/GX, put the equation 'YA3 - X+« YA 2 -Y =5'on level 1 and run program IM.y'

to see:

'Y 3+ YA2-(YA2+ X+ (Y*x2+Y))-y' =0

This is the calculator's version of equation (i) above. You can now isolate y' and then

solve for y' as in equations (ii) - (iii).

An alternative to the above way of performing implicit differentiation on the

HP-48G/GX, we can use a more advanced result that relates implicit differentiation

to partial derivatives. Given a function of two independent variables, say F(x, y),

the partial derivative Fx with respect to x is obtained by regarding y as a constant and

taking the derivative with respect to x. For the function F(x, y) =y3 —xy> —y — 5 the

partial derivative with respect to x is F, = -y2. Similarly, we obtain the partial

derivative F, with respect to y by regarding x as a constant and differentiating with

respect to y: F, =3y? — 2xy — 1. The following result relates implicit differentiation

to partial derivatives:

If the equation F(x, y) = 0 defines y as a differentiable function of x , then at any

point where F, # 0 we have

Using this result we see that for the example F(x, y) = y3 —xy?> —y - 5 we have

,_dy _-Fe ¥
Y =dx = F, - 3y? - 2xy -1

60 CHAPTER2

which agrees with our earlier calculation in (iii). Given an equation F(x,y) = 0 that

implicitly defines y as a function of x, the following program takes as input the

algebraic expression F(x, y) and returns the result y' = .Tl :
y

y

Input. level 1: an algebraic expression in terms of X and Y

representing F(x,)

Effect. returns to level 1 an algebraic expression of the form

r_ .'_F_X i iY'="5 for the derivative

«{X Y} PURGE DUP 'X' 9 SWAP 'Y' 9 NEG / 'y"' -TAG »

EXAMPLE 7. To obtain the derivative y' for the function y of x that is implicitly

defined by the equation y3 —xy? -y -5=0, put 'YA3 =X+ Y A2 -Y -5 on level 1

and press to see the following result returned to level 1:

1.y "= (YNA2)/=(B+xYNA2-X+(2+Y)-1))

Compare this to our expression in (iii) above.

As the above example illustrates, implicit differentiation usually results in an

expression for the derivative y' in terms of x and y,say y' = G(x, y). To evaluate

the two-variable function G(x,y) at a particular point (2, b), we can use the

following program F.XY.

DERIVATIVES 61

F.XY

Inputs: level 3: an algebraic expression F(x, y) in variables X

and Y

level 2: a real number "a"

level 3: a real number "b"

Effect: returns the number F(a, b) to level 1 and the original

expression F(x, y) to level 2

« 'Y*STO 'X' STO DUP EVAL {X Y} PURGE »

EXAMPLE 8. To find the derivatives y'(-1, 2) and y'(3, -4) of the function vy

implicitly defined by the equation y3 —xy? —y = 5, at the points (-1, 2) and (3, -4),

put YA3-X*YA2-Y -5 on level 1 and press to obtain the symbolic

derivative y';'-(Y A2 /- (383+*YA2-X+«(2+Y)—1)) onlevel 1. now press 1| +/- |

2 to see the derivative y'(-1, 2) = 2666666666667 on level 1 and

the original symbolic derivative on level 2. Now SWAP levels 1 and 2 and use 3

4 to see y'(3, -4) = 225352112676 on level 1.

Activity Set 2.2

1. (a) Calculate a full precision decimal approximation to 7/180.

(b) Set your calculator to DEGREE mode. Use the SOLVR to numerically
. sinx |

investigate lim —— in degree mode. Complete the table:
x—0

62 CHAPTER2

X SIN(X)/X

01
.001

.0001

-.01

-.001

-.0001

(c) Keep your calculator in degree mode and do a graphical investigation of
. sinx

lim —— , as follows.
x—0 X

e Plot 'SIN(X)/X" using the default plotting parameters. What do you

see? We need to zoom in.

e Put the full precision decimal approximation to 7/180 on level 1. Go to

the PLOT menu with ,open,go to the next page

and press * H to rescale the vertical axis so that each tick mark

represents n/180. UsemPL@T andDRAW to redraw your

plot of 'SIN(X)/X'. Whatis lzm——x—- in degree mode?
x-0

2. For each of the following functions, find the derivative by hand calculation. As

a check on your result, use the HP-48G/GX to calculate the symbolic derivative

in a single step as follows:

(i) using the stack

(ii) using the Symbolic Differentiate Screen.

DERIVATIVES 63

 (a) y= z (b) y=cosVx*+1
X +1

(c) y= \l3 sin?x (d) y=e*3sin(2x)

3. (a) Ploty-= asinzx on the default screen.

(b) Recall EQ to the stack, take its derivative with the HP-48 and then

overdraw the plot from (a) with a plot of the derivative.

(c) For what values of x is the derivative undefined? What can you say

about the function at these values?

4. (a) Ploty=sin | x| on the default screen. (Use ABS(X) for | x| .) By examining

the plot, can you tell where the derivative will not be defined?

(b) Use the HP-48G/GX to take the derivative. The term SIGN(X) is

interpreted as follows:

+1 forx>0

SIGN(X) = 0 forx=0
-1 forx<0

Overdraw your plot in (a) with a plot of the derivative. Where is the

derivative not defined?

5. The following plot shows two graphs, a function f and its derivative f. Which

plotis f and which is f'?

N

64 CHAPTER2

3
6. (a) Draw, on the default screen, a plot of y =5 tan-12x. Try hard to visualize

a plot of the derivative.

(b) Confirm (or refute) your visualization efforts by overdrawing a plot of the

derivative.

7. Each of the following equations implicitly defines y as a function of x. Use

program [M.y' to implicitly differentiate the equation, then solve for the

derivative y' by hand.

(a) 3x2-9y3 =17 (d) y3—\/;+cosxy2 =8

(b) x(y*+5x)=9 (e) x2B3+4+4y3/2=7

() x&¥+sinx?y-y?=1 (f) cos x = sin?y

dy8. Use program Y' to obtain the derivative 7>~ of each of the implicitly defined

functions in Activity 7, then use program F.XY to evaluate the derivative at the

indicated point.

(a) (5, -3) () (B7/2) (e) (8,9

(b) (-2, -3) (d) (m, 2) (f) (n/4, 7/4)

2.3 USING THE DERIVATIVE

Maxima, Minima and Inflection Points

The derivative of a function is the source of considerable information about the

behavior of the graph of the function. It can tell us where the graph of the function

is increasing and decreasing, help pinpoint the location of local maximum and

minimum values on the graph, and show where the graph is concave up and concave

down. It is thus advantageous to consider functions and their derivatives from the

very beginning of a study of calculus.

DERIVATIVES 65

A plot of the graph of a function produced on a calculator's screen can often

provide valuable information about the behavior of the function. When graphical

techniques are carefully combined with an understanding of the derivative as a rate

of change, we have a powerful tool for analyzing a function's behavior in

considerable detail.

When the DRAW command is executed and the HP-48G/GX draws a plot of the

graph of a function, the calculator enters the PICTURE environment and displays the

PICTURE menu. In addition to the zoom operations accessible through the ZOOM

submenu, the FCN (= function) submenu contains a number of commands that are

helpful in analyzing a function's behavior with calculus without leaving the

PICTURE environment. Commands such as ROOT (to find roots of equations), ISECT

(for finding intersections of curves), SLOPE (for the slope of a graph), AREA (for

calculating areas of regions beneath curves), EXTR (for finding extreme points (i.e.,

local maxima or minima) on curves), F' (to calculate and plot the derivative of a

function), and TANL (to plot the line tangent to a curve at a point).

EXAMPLE 9. Find the x-intercepts, local maxima and minima, and any inflection

points for the function f(x) = x3 - 5x2 + 2x + 2.

Use the default parameters in connected mode to obtain the following plot:

Since the plot goes off screen, we zoom out on the vertical axis. A zoom factor of

5 gives the plot:

66 CHAPTER?Z2

b7
[

This plot shows all of the graph between x =-2and x = 5. Before proceeding,

we pause to consider what calculus tells us about the graph of this function.

The function is a cubic polynomial, so has at most three real roots. Since we see

the plot crossing the x-axis three times, all the x-intercepts are displayed. The

derivative is a second-degree polynomial and thus has at most two real roots. So the

graph of f can have at most two local extreme points, and because we see a high

point and a low point, we certainly have all the local extrema displayed.

The second derivative is a nonconstant linear function having one real root, so

the graph of f has only one inflection point. Since the graph is concave down at the

origin and concave up near x = 3, the inflection point lies between these two points.

With the plot still displayed open the FCN menu.

To find the x intercepts: Move the cursor to the point to the left of 0 where the plot

appears to cross the x-axis and press ROOT |. You will see a twelve digit

approximation to this root displayed at the bottom of the screen:

ROOT: -.449489742783.

This has also been entered onto the stack. Go to the stack and you will see:

1: Root: -.449489742783.

Now return to the graph with PICTURE (the El key) and find the other

two roots in the same way. When you're done, return to the stack to see all three

roots. When you find a root of a function in this way, the HP-48 uses the

DERIVATIVES 67

x-coordinate of the cursor as a first approximation for its own ROOT program to

numerically approximate the root.

To find the coordinates of the local extrema: Move the cursor to the apparent high

point of the graph located above the x-axis just to the right of the origin and press

EXTR |. The message EXTRM: (.213700352153, 2.2088207353) appears below

the graph. This point was also entered on the stack. Now move the cursor to the

apparent low point of the graph and again press EXTR |. The new message

EXTRM: (3.11963298118, -10.0606725872) appears below the graph and this

point was entered on the stack.

When you execute the EXTR command, the HP-48 finds the extreme point by a

well-known procedure. It finds the derivative f ' of f and then uses the x-

coordinate of the cursor as a first approximation for the ROOT program to find a root

of f'. Finally, it calculates the value of f at this root and displays the two

coordinates.

To find the inflection point: There is no key on the FCN menu to do this so we

must use our knowledge of the relation between the function and its derivatives. We

know that inflection points occur where the graph of the function changes concavity.

And for functions that are everywhere differentiable (such as this one), concavity

will change at points where the derivative f' changes its direction, i.e., at points

where the graph of f’ has a local extremum. We can therefore locate the inflection

point on the graph of f by locating the extreme point on the graph of the derivative

f . This can be done in the PICTURE environment.

With the graph of f displayed, go to the second page of the FCN menu and

press the key. This will plot the derivative f' and then replot f.

68 CHAPTER2

When you press the key, EQ becomes a list {f' f} containing f° and f, in

this order. The HP-48 commands ROOT, EXTR,etc., apply only to the first function in

the list, which is now f’. So move the cursor to the apparent low point of f° and

press EXTR |. You will see EXTRM: (1.66666666667,-6.333333333) displayed

at the bottom of the screen. This is the low point on the graph of f° and we want to

use its x-coordinate as the x-coordinate of the inflection point of f.

To get the y-coordinate of the inflection point P we must evaluate the function

f at the x-coordinate of P. Perhaps the easiest way to do this is to use a short

program. The following program assumes that EQ is alist { f' f } composed of f’

and f in order, and that the coordinates of an extreme point of f* are displayed on

stack level 1. With this input, the program returns the corresponding inflection

point of f with the tag "Infl". The 1 in the name "INFL1" indicates that the first

derivative is used in the process.

INFL1 (Inflection point of f)

Input. level 1: the coordinates (X, yo) of an extreme point of f

As a stored variable EQ: the list { f' f} consisting of f' and f

Effect: returns to level 1 the point (xo, f(xy)) tagged as 'Infl’

« RE EQ 2 GET OVER 'X' STO EVAL R—C 'Infll 2TAG 'X' PURGE »

DERIVATIVES 69

With this program in your calculator and the extreme point of f" on stack level 1,

press to see

level 1: Infl: (1.666666666667, -3.925925926).

The stack now displays, on levels 6 through 1, the three x-intercepts (roots), the

two extreme points and the inflection point of f, all with identifying tags. In the

display below, we have set the display mode to show only two decimal places to

avoid running off the right of the screen, and have again shown the plot of f to

coordinate it with the information about the points of interest:

+

L1 /

/:\/

6 Root: -0.45

5 Root 1.00

4: Root 4.45

3: Extrm: (0.21, 2.21)

2: Extrm: (3.12, -10.06)

1: Infl: (1.67, -3.93)

You will, of course, have to scroll with the @ key to see all six stack levels.

Since the coordinates of extrema can be found from the FCN menu with a single

keystroke, it was convenient to find the inflection points of f from the extrema of f'.

But another way to find inflection points of f is to find the x-intercepts of the second

derivative f”, because f has an inflection point at the values of x where the graph

of f” «crosses the x axis. We will now use this method to again locate the

inflection point of f. With the graphs of f' and f displayed on the screen, press

again and the calculator will plot f”, then f' and finally f.

70 CHAPTER2

EQ is now the list { f” f' f} consisting of f”, f* and f, in this order. Move the

cursor to the root of f” and press ROOT to display the message ROOT:

1.66666666667 below the graph. To find the value of f at this x and then

display both coordinates as an inflection point, we will use the following program,

INFL2. The 2 in the name indicates that the second derivative was used.

INFL2 (Inflection point of f)

Input: level 1: the coordinate x, of a root of f*

As a stored variable EQ: the list { f* f'f} consisting

of f, f and f.

Effect: returns to level 1 the point (xq, f(xg)) tagged as 'Infl’

« EQ 3 GET OVER 'X' STO EVAL R—C 'Infl 2TAG 'X' PURGE »

This program assumes that EQ contains a list of f”, f" and f, in this order, and

that a root of f” 1is displayed on stack level 1. With this input it returns the

corresponding inflection point of f, tagged "Infl". With the root of f” displayed on

stack level 1, executing INFL2 will give:

1: Infl: (1.67, -38.93) (the display was again fixed at two decimal places).

The next example uses a trigonometric function and would not be appropriate

without the use of technology because of the difficulty of finding roots. With the

HP-48G/GX, the procedure is the same as in EXAMPLE 9.

DERIVATIVES 71

EXAMPLE 10. Plot the graph of f(x) =sin(2x) + cos(x + 2). Find the x-intercepts and

the coordinates of the local extreme points and inflection points.

Since this is a periodic function with period 27, so it is sufficient to find the

desired points on the interval [0, 2r). Plot f with the x-range setto-.1 <x <6.29

and the y-range set to - 2.5 <y < 2.5 to see:

First, the intercepts: Move the cursor to each of the four points between 0 and 27

where the plot appears to cross the x-axis and press ROOT on the

submenu at each point. Return to the stack display screen to see:

4: Root: .429203673203

3: Root: .904129660127

2: Root: 299852476252

1: Root: 5.09291986492

To find the extreme points: We proceed as in EXAMPLE 9. Move the cursor to each

of the four apparent extreme points and press at each one. Return to the

stack display screen and set the display to show two decimal places. You will see

these results:

Extrm: (0.67, 0.08)

Extrm: (2.14, -1.45)

Extrm: (4.00, 1.95)

Extrm: (5.76, -0.77)

72 CHAPTER 2

To find the inflection points: It should be clear from the plot that there is an

inflection point between each consecutive pair of extreme points. We will proceed as

before by finding the extreme points of f* and then using program INFL1 to build the

inflection points of f. Retrieve the graph of f with PICTURE |. When we use

to plot both f' and f, the high point of f* is off screen, so we zoom out on the

vertical axis with a factor of 1.5 to see:

Move the cursor to each of the four extreme points of the graph of f* and press

EXTR at each point. Return to the stack display and convert each of the extreme

points of f* to inflection points of f with program INFL1. You must do some stack

manipulation in order to move the extrema of f' to level 1 in left-to-right order to

use with the program. Here's an easy way: with the four extreme points of f* on

the stack, press INFL{ to convert the point on level 1 to an inflection point of f.

Then press the EI key to activate the interactive stack and then use the IZI key

to position the pointer P on level 4 and press ROLLD ENTER |. This rolls the

first four levels of the stack downward, moving the first inflection point up to

level 4. Now repeat this entire process three more times until all four extreme points

are converted and appear in their natural order, left-to-right.

DERIVATIVES 73

We display again the graph of f and the points that we have found:

 TN\
N

— N Root:

— — Root:
— e Root:

Root:

Infl:

Infl:

Infl:

Infl:B
N

@
o
N
2

0

Extrm:

Extrm:

Extrm:

Extrm:

0.43

0.90

3.00

5.09

(0.67, 0.08)

(2.14, 1.45)

(4.00, 1.95)

(5.76, -0.77)

(0.06, -0.35)

(1.45, -0.71)

(3.09, 0.28)

(4.82, 0.64)

In the activities we will examine a function whose inflection points occur where

the derivative is not defined. Sometimes we need to find the absolute maximum and

absolute minimum values of a function f on a closed interval [a, b].

EXAMPLE 11. Find the absolute maximum and minimum values of the function

flx) =x*-2x3 —x2 + x on the interval [-1, 2].

We could graph f with -1 < x <2 as the x-range but, instead, we will keep the

default x-range and restrict the independent variable to plot only those points satisfying

-1 £ x £ 2. The correct plot is

74 CHAPTER2

 \,
Clearly the absolute maximum value of f on [-1, 2] occurs at the left endpoint

x = -1, and the absolute minimum value occurs at the minimum point where x is

approximately 1.5. To find f(-1), move the cursor to any point whose x-coordinate is

-1 and press on the second page of the PICTURE FCN menu to see the

message F(X): 1 displayed at the bottom of the screen. So the absolute maximum

value of f on [-1, 2] is 1, occurring when x =-1. To find the absolute minimum value

of f from the graph, position the cursor near the apparent minimum point whose

x-coordinate is close to 1.5 and press on the PICTURE FCN menu. The

message EXTRM: (1.70710678119, -2.66421356232) will appear. Thus the absolute

minimum value of f on [-1, 2] is -2.66421356232, occurring when x = 1.70710678119.

Before moving on to the next example, clear your stack and be sure to reset the

independent variable to its default state with.

In a situation like that of EXAMPLE 11, if the plot of a function shows an

absolute extreme value occurring at the left endpoint of the interval [a, b] but a is

not a pixel coordinate, say, a = V2or 7 for example, then you will have to exit the

PICTURE environment to evaluate the function at a. Of course, the HP-48 will never

evaluate a function at =, only at its 12-digit rational number approximation.

EXAMPLE 12. Find the absolute maximum and absolute minimum values of the

functionf(x) = \' 1 +sin3x on the interval [-7/5, 27/ 3].

DERIVATIVES 75

We first PLOT the graph with the default parameters to see:

Now restrict the independent variable to plot only the interval [-7/5, 27/3] and

redraw:

It is clear from the plot that we can use the EXTR command to obtain the

absolute maximum:

Extrm: (1.57079632679, 1.41421356237)

We recognize this as the decimal approximation to (7#/2, V'2). The absolute

minimum occurs at the left endpoint of the interval. To evaluate f there, we return

to the stack display screen and go to the SOLVE menu with SOLVE |. Open

the ROOT submenu, then the SOLVR submenu. Build the decimal approximation to

-n/5 with 5 B —NUM |. Use to make a duplicate

copy, then touch and to see y-coordinate .892706665066. Thus the

absolute minimum point of the graph on the interval [-7/5, 27/3] is approximately

(-.628318530718, .892706665066).

EXAMPLE 13. Plot the graph of f(x) = 1.7 e*2sin(3x) for 0 < x.

76 CHAPTER2

Since we are interested in the graph only for non-negative values of x, we set the

x-range as -.1 < x < 6.4 and the y-range as -1.55 <y < 1.6. This halving of both ranges

retains equal unit distances (number of pixels per coordinate unit) on both axes and

produces the graph:

This function (which represents damped harmonic motion) is not periodic and

has infinitely many roots, extrema and inflection points for values of x 2 0. We could

find any of these that we desired by using the techniques described earlier. But in

this example, we will use the HP-48G/GX to analyze another aspect of the function's

behavior.

Since -1 < sin(3x) < 1, the graph of f lies between the graphs of u(x) = 1.7 e"*/2

and v(x) =-1.7 e*2, coinciding with the graph of u when sin(3x) = 1 and with the

graph of v when sin(3x) = - 1. We can illustrate this by plotting the list { fu v }

using the same plotting parameters that we used for f. Exit the PICTURE

environment, recall f to the stack with , and use to put a

second copy on the stack. Edit the copy on level 1 to read '1.7 * EXP(-X/2)', make a

second copy of the newly edited expression and then press to change sign. Use

the@ key and the —»LIST command to build the list { fu v }. Now store the list

in EQ and graph it to see:

DERIVATIVES 77

The roots of f occur where sin(3x) = 0, that is, at the roots of sin(3x). Question:

do the extrema of f occur at the extrema of sin(3x), that is, at the points of coincidence of f

with u or v?

We investigate this question both analytically and graphically. Move the

cursor to the first maximum point to the right of the y-axis and press to see

EXTRM: (.468549216461, 1.32664626947) at the bottom of the plot screen. If this were

the point where sin(3x) = 1, then its first coordinate should be /6. But

/6 = .523598775598, so the extreme points of f do not coincide with those of sin(3x).

We can illustrate this graphically by using BOXZ to zoom in on the region of the

graph around the first maximum point to the right of the y-axis:

The maximum point of f is clearly seen to be to the left of the point where the

graph of f intersects the graph of u. With some analysis of the derivative, you can

show that successive extrema of f occur every 7/3 units along the x-axis, as do

successive points of coincidence of f with u# or v. So the spacing shown between an

extreme point and the corresponding point of intersection with one of the bounding

graphs is constant.

Caution

When you execute the EXTR command on the PICTURE FCN menu, the HP-

48G/GX takes the derivative of the expression stored in EQ and then finds the value

of x closest to the cursor that causes the derivative to evaluate to 0. Thus, if the

x-coordinate of the extreme point that you are finding is a root of the derivative, you

are using the EXTR command in the way in which it was designed to be used. But,if

78 CHAPTER?Z2

the extreme value of f does not occur at a root of the derivative, you should not use

this command.

EXAMPLE 14. Find the roots, extrema and inflection points of the function

_ 23, X=4flx) =2(x + 2) +x2+1'

Put '2 » XROOT(3, (X + 2)A2) + (X = 4)/(X A2 + 1)' on level 1 and plot with the

We can find the two roots in the usual way, by moving the cursor to each of them

and pressing ROOT on the PICTURE FCN menu. We can find the local maximum

point near x = -1 and the local minimum near x = -.3 by moving the cursor near these

points and pressing EXTR |. However, if we move the cursor to the minimum point

where x = -2 and press EXTR |, we get EXTRM: (-7.52928344591E213,

7.68302819356E142) which is nonsense. From the graph, f clearly has a minimum at

default parameters to see:

-6 6
x=-2andf(-2)=0+ 5=-5 . The problem is that f has no derivative at x = -2 so

the EXTR approach is not appropriate. If we press on the PICTURE FCN

menu to plot both f and f° we see:

 N
The plot makes it clear that f° does not exist at x = -2. Since the inflection points

of f occur at values of x where f* has extrema, we move the cursor near the local

DERIVATIVES 79

minimum of f to the left of the origin and press EXTR to obtain (-.661278286618,

-1.07868129833). Now return to the stack, open the VAR menu and use INFL1 to build

the inflection point as

Infl: (-.661278286618, -.81375384108).

Similarly, we find the inflection point that lies to the right of the origin to be

Infl: (.464327883331, .74032208835).

Activity Set 2.3.1

For each of the functions given in Activities 1-18 below, plot the graph and find

all local extreme values and inflection points. When a closed interval is given, also

find the absolute extreme values on that interval.

1. fx)=x3-x+2 10. f(x) = cos 2x —sin x on [0, 7]

2. flx)=x3—(1.3)x? + (.32)x - .02 11. f(x) = sin(3x) — cos(2x), 0 < x < 27

1+4x2 x<0

12. flx)=qcosx O<x<m
T—X T<Xx

3. flx)=x*-2x3 +3x-2

4. fix)=x> +3x4 -3 3x2 -x+3

4) — 3p-x2 /45. f(x)zm 13. f(x) 3e

4 14. f(x) = X

6. flx)=2_%

7. fx)=V1-x2

8. f(x) =x + 3 sin x, on the interval

[0, 27].

15. f(x) = cos(4 cosL x).

16. f(x) = 1.5 tan"12x

17. fix) = xSiM, 0<x<2m

18. f(x) = T—-I—-557

9. f(x) =sin x + 2 cos(3x) on [0, 7]

80 CHAPTER2

Activities 19-21 are printed with thanks to Jim Nicholson.

19. A telephone company plans to run a new telephone line to a customer whose

house is located one mile off the straight road along which the telephone lines

are run. The new line must go from a junction box on the road to the customer's

house. The junction box that is nearest to the house is three miles down the road

from the point on the road that is closest to the house. It costs $100 per mile to

run telephone cable along the road and $150 per mile to run cable off the road.

What cable route minimizes total costs?

20. The owner of Big Sky Farm wants to build a rectangular paddock using one side

of her horse barn as part, or all, of one side of the paddock. Her barn side is 50

feet in length. There is enough material on hand to build 200 feet of paddock

fencing. What dimensions will give a paddock with maximum turn-out area?

21. As an afterthought, the owner of Big Sky Farm needs to use enough of her

material to repair 70 feet of existing paddock fencing elsewhere, leaving only

enough material to build 130 feet of fencing for the new barn paddock. With

only 130 feet available, what dimensions will maximize turn-out area?

Newton's Method

The technique known as Newton's method has become a classic topic for

inclusion in calculus. It is important because it not only invokes the notion of the

derivative to produce a simple geometric procedure for finding roots of many

functions, but also because it introduces several important ideas: algorithms,

recursion, iteration. And it is especially easy to implement on the HP-48G/GX. The
f(x,)

iteration formula for Newton's method is x,,; = x,, -Flx,) * so we need only iterate
n

(x)
the new function F(x) = x -ooy

DERIVATIVES 81

EXAMPLE 15. To use Newton's method to find the roots of f(x) = 3x —4 sin x, we first

graph f to see how many roots there are and to supply first guesses. The plot below

is the result of plotting with the default parameters and then zooming in by a factor

of .333 on both axes:

f(x)
We will now create a user-defined function for NM(x) = x —o An easy way

to do this is to put 'NM(X)', 'X', and two copies of '3 » X — 4 + SIN(X)' on the stack,

then take the derivative, divide, subtract and equate. The result is

'NM(X) = X = (3 X—=4 » SIN(X))/(8 — 4 » COS(X))'. Now press DEF to create

the function NM on the VAR menu.

From the graph, 1.4 appears to be a reasonable first guess, so put 1.4 on the stack

and press to see 1.28871273546 as the next approximation. Press |[ENTER]| to

make a duplicate copy to keep. Now press again to obtain a second

approximation and then ENTER to keep a copy. If you repeat this for three more

iterations of Newton's method, you will have:

1.28871273546

1.27587035767

1.27569814018

1.27569810928

1.27569810928

Five iterations have given us successive approximations that agree to 11

decimal places.

82 CHAPTER2

The above procedure for building a user-defined function to implement Newton's

method for a given function f can be automated with a short program. Program

NEWTON , given below, takes an expression for f(x) from level 1 of the stack and

constructs a user-defined function NM to perform the iteration.

NEWTON

Input: level 1: an expression for f(x)

Effect: constructs the user-defined function NM to implement

Newton's method.

« 'X' PURGE 'NM(X)' X' ROT DUP 'X'9 / — = DEFINE 'X' PURGE »

If, for instance, you put '3 * X — 4 » SIN(X)' on level 1 and press NEWT |, you

can then execute Newton's method from the menu key as above.

Newton's method has its limitations. It will obviously not converge if we ever

obtain f'(x,) = 0. But there can be other causes for its failure. We shall examine

some of these in the next set of Activities.

Roots

You should appreciate Newton's method for what it is: a simple iterative

procedure, based upon the geometric interpretation of the derivative as the slope of

the tangent line, for finding roots of an equation y = f(x). But it pales in comparison

to the more powerful, robust and sophisticated root-finder that is built in to the HP-

48G/GX. We called upon this root-finder when we used the key on the

FCN submenu of the PICTURE environment to find the roots of a function whose plot

was displayed. The location of the cursor on the graphics screen provided the

initial guess for the procedure which, like Newton's method,is iterative.

DERIVATIVES 83

The HP-48's root-finder program is the heart of the HP Solve System, which

allows you to use menu keys to obtain a numerical solution to any problem that can be

expressed in terms of an equation that includes only one unknown variable. The root-

finder can be activated in either of two ways:

e with SOLVE , to gain access to the SOLVE EQUATION screen;

e with | SOLVE ROOT i, to gain access to the SOLVE command menu.

No matter which way you activate the HP Solve system, the general procedure for

using it is the same:

e enter the equation you want to solve;

e enter values for all known variables;

e optional: enter an initial guess for the unknown variable;

¢ solve for the unknown variable.

The local procedures that support this general scheme depend upon how you activate

the HP Solve system. Here is a worked example in which the HP Solve system is

activated and used each way.

EXAMPLE 16. The following equation is often used in financial calculations that

involve loan payments:

(r/12) (1 +1/12)’
1+r/12) -1

where: A = monthly payment made at the end of each month

P = total amount of the loan

n = total number of monthly payments

r = annual interest rate (e.g., for 7%, r = .07).

84 CHAPTER2

Suppose that you are considering different options associated with buying a new car.

(a)

(b)

(c)

How much would your monthly payments be if you were to borrow $10,000

for 4 years at 7.5% annual interest?

How much could you borrow for 4 years at 7.5% interest if you could only

afford to pay $175 per month?

What annual interest rate would you have to obtain in order to borrow

$9,000 for 4 years with monthly payments of $215?

Using the SOLVE EQUATION screen

Use to gain access to the SOLVE EQUATION screen. The

EQ dialogue box will reflect the contents of the current EQ. Enter 'A = P « (R/12) (1

+ RM2) AN/ ((1 + R/12) AN - 1)' into the EQ field.

(a)

(b)

(c)

Enter .075 into the R field, 48 into the N field, and 10,000 into the P

field. Optional: as an initial guess for the amount A of monthly payment,

enter 100. If you make no initial guess, the root finder will use the default

guess of 0. Now highlight the A field and press SOLVE to see the

correct monthly payment of $241.79 returned to the A field.

With the screen set from part (a), enter 175 into the A field. When the

P field is highlighted, press SOLVE to see the correct principal

amount $7,237.71 returned to the P field.

With the screen set from part (b), enter 9,000 into the P field and 215 into

the A field. Highlight the R field and press SOLVE to see the

correct interest rate of a little over 6.876% returned to the R field.

DERIVATIVES 85

Using the SOLVE command menu

Return to the stack display screen and purge the variables N, R, P,and A from

our previous work on this problem; only the EQ should remain. Use SOLVE

ROOT to activate the SOLVE menu. Press to verify that the desired

expression is present in EQ. Clear the stack (if necessary) and open the SOLVR |.

You will see input boxes for each of the variables A, P, R, N at the bottom of the

screen, along with an EXPR= box. The top of the screen will display the

contents of EQ.

(a)

(b)

(c)

Store the initial guess 100 into variable A with 100 , then store the

values 10,000 into P, .075 into R, and 48 into N by a similar procedure.

Since the value for A is only an initial (and optional) guess, we need to

solve for the correct value of variable A. To do this, press . The

message at the top of the screen will say Solving for A. When done, the

top of the screen will read Zero (to indicate that an exact root of the

equation was found) and show the root on level 1: 241.789019379. Thus the

monthly payment would be $241.79.

Now store the value 175 into A and solve for P to see the value

7237.71494872 returned to level 1. Thus, you could only borrow $7,237.71

with $175 monthly payments.

Finally, store the value 9,000 into P, the value 215 into A, and solve for

variable R. The correct value is 6.87628494944E-2, so you would have to

obtain an annual interest rate of 6.876%. Now press and purge the

variables used in this problem.

To avoid confusion, you should know that there is another ROOT command on

the HP-48G/GX. It appears on the ROOT submenu of the SOLVE menu and is useful

86 CHAPTER2

for solving in programs. It solves an expression (on level 3) for an unknown (on

level 2) using a first guess (on level 1). Try it out now for the function of

EXAMPLE 15, f(x) = 3x — 4 sin x, with an initial guess in the vicinity of x = 1.5.

Activity Set 2.3.2

1. Use Newton's method to find all roots of the following functions:

(a) flx)=x3-3x2-5x+15

(b) f(x) =sin x —2 cos 3x in the interval [0, 27]

(c) fl(x)=€*—2cos x in the interval [-27, 1]

(d) the Legendre Polynomial of degree 3:

5 3
P;(x) = §x3 —5X

(e) the Chebyshev Polynomial of degree 4:

Ty(x)=8x*-8x2 +1

2. Because Newton's method relies on tangent lines to generate a sequence of

successive approximations xg, X1, X, ... to a desired root r, you might expect that

the method is somewhat sensitive to the slopes of these tangent lines. Indeed,

tangent lines with small slopes often lead us away from the root we seek. To see

this, try to locate the root r =0 of f(x) = sin x by Newton's method, using the

following initial guesses:

(a) x =m/2 [What happens here? Why?]

(b) x =16

(c) x =15

(d) % =14

(e)

(f)

(8)

DERIVATIVES 87

x =13

X% =12

% =11

Apply Newton's method to f(x) = \7; . The graph of f should help you to

understand what is happening here.

Apply Newton's method to the function

(a)

(b)

(c)

(a)

(b)

f(x)_{-\]2—x forx <2

- Vx-2 forx>2

Use any convenient initial guess, say xo = 3. When program NM returns a

symbolic result, simply press EVAL to evaluate that result and obtain a

numerical result.

Experiment with several other initial guesses. What is taking place here?

To "see" what is taking place, plot the graph of f on the default plotting

screen. Trace along the plot to the point P where x = 3 (our first initial

guess), open the FCN submenu and use TANL to plot the tangent line to

f at P. Return to PICT |, trace along the plot to the point Q where

x =1 (our second guess when xy = 3), and use TANL to draw the tangent

line to fat Q. What is apparent about these tangent lines? Return to the

stack and examine their slopes.

Plot the list { 'EXP (-X A 2)' “75/(1 + X A 2)' } on the default screen, then

zoom in using zoom factors of 3 to enlarge the plot.

Use the command ISECT on the FCN submenu to find the points of

intersection of the two plots. ISECT uses the HP Solve system to produce its

results.

88

6.

CHAPTER 2

Find the value for 0 (in degrees) that will give the shaded region an area of

1.5in? if r = 4 in. (The command R—D on the MTH REAL menu will convert

radians to degrees.)

It is well-known that the centroid of the St. Louis arch is in the shape of an

inverted catenary (hyperbolic cosine). The outside surface is much thicker at the

base than at the top and thus is not a true catenary. Nevertheless, we shall

model the outside surface as a catenary having both its height and base equal to

630 ft. Since a catenary hanging above the origin with lowest point at (0, a) has

an equation y =4 coshja£ , it is easy to see that an equation for the St. Louis arch

is

y =630+a(1—cosh§-)

for some positive parameter a. To help determine this parameter, we use the

fact that the point (315, 0) lies on the arch. Use the HP Solve system to

determine the parameter a and then write an equation for the St. Louis arch

that is free of unknown parameters. Remember, the HP Solve system only needs

an initial guess. The cosh command resides on the MTH HYP menu.

DERIVATIVES 89

Polynomial Approximations

A great deal of calculus is concerned with approximations. Indeed,

approximations lie at the heart of the two main ideas of calculus, the derivative

and the integral. The derivative is defined as a limit of approximating slopes and

the integral is defined as a limit of approximating sums.

1
Aside from familiar approximations like .3, .33, .333, .3333, ... — 3 the simplest

approximations in calculus occur when we approximate differentiable functions f by

their tangent lines at points x =a. Recall that the slope of the tangent line of a

function f at x =a is given by

f(x) - f(a)fl@) = lim PE =

Thus, for values of x close to a, we have

f(a) - f(xi _a(a) ’

so that

(1) fix) = fla) + f(a)(x — a).

The expression on the right hand side of (1) is a linear polynomial in (x — a):

Piy(x) = fla) + f'(a)(x - a)

and its graph is the tangent line y =f(a) + f(a)(x — a) to f at x = a. Of all

possible linear polynomials in (x —a), Py(x) is the only one that satisfies the two

conditions:

(i) Py(a) = fa) [P, and f agree at x = a]

(ii) Pi(a) = f'(a) [P, and f have the same derivative at x = a]

90 CHAPTER?2

Because conditions (i) and (ii) are enough to completely determine the form of the

polynomial P;(x), we call P;(x) the best linear approximation to f at x = a. By zooming

in enough near the point where x =4, the graphs of P; and f appear almost

identical.

For some functions f, the best linear approximation at x =a can be a good one

—_

The best linear approximation to f(x)=\ x at x=r
is a good fit to the graph for values of x near x = r.

But for functions f having more curvature at x = a, the best linear approximation can

be poor:

+

The best linear approximation to f(x) = cos x at x = mis a poorfit to the
graph for values of x near x = 7 because of the high degree of curvature.

To account for a higher degree of curvature at a point x = a, we need an

approximating polynomial whose higher order derivatives are not all zero at that

point.

DERIVATIVES 91

The best quadratic approximation to the function f at x = a is the quadratic

polynomial P,(x) in (x —a) satisfying the three conditions:

(1) P,(a) = f(a) [P, and f agree at a]

(ii) P;(a) = f(a) [P, and f have the same first and second

(111) P"(a) - f"(a) derivatives at x = a]

2

The defining expression is

 Py(x) = f(a) + f'(a)(x — a) +f2(;1) (x —a).

The plot below shoes the best linear and best quadratic approximations to f(x) = cos x

The best quadratic approximation to f(x) =cosx at x=1
is a better fit than the best linear approximation.

atx =1

The best linear and quadratic approximations to a function f at x =a are also

called the Taylor Polynomials of orders 1 and 2 for f at x =a. More generally, given

a function f whose first n derivatives exist in a neighborhood of x = a, the Taylor

Polynomial of order n at x =a is the polynomial
")

P,(x) = fa) + f'(a)(x — a) +f2—(_,a2 (x—a)+... +jr (a) (x — a).
n!

As our last plot suggests, higher order Taylor polynomials at x =a extend the

range of values near x = a for which we can expect to get reasonably good

approximations to f.

92 CHAPTER 2

The HP-48G/GX will find Taylor polynomials at x = 0 for any function thatit

can differentiate, and it is easy to write short programs that extend this capability

to the more general case of Taylor polynomials at an arbitrary value x =a.

Using the Taylor Polynomial Screen

Access the Taylor Polynomial screen with SYMBOLIC |, highlight Taylor

Polynomial and press. Enter an expression for the function into the EXPR

field, say EXPR: 'SIN(X)', the variable of differentiation into the VAR field, VAR:

‘X', and the desired order of the Taylor polynomial, say ORDER: 3. With the

result set to RESULT: Symbolic, press | OK to see the Taylor Polynomial at x =0

on stack level 1:

level 1: 'X = 1/3! « XA 3'

Using the TAYLR command

The command TAYLR, located on the first page of the SYMBOLIC menu,

requires a threefold input: on level 3 the function f whose Taylor polynomial at

x = 0 is desired, on level 2 the independent variable, and on level 1 the degree of

the desired polynomial. This command produces Taylor polynomials about x = 0:

3: 'SIN(X)'

2. X 05 1: X —1/31+ XA 3
1: 3

To efficiently graph plot f(x) = sin x and its Taylor polynomials P;, P; and P,

of orders 3, 7 and 11 at x = 0, begin with 'SIN(X)' on level 1 and press ENTER |

three times to make three additional copies. Build the list {'SIN(X)'} by pressing the

IZI followed byi —LIST . ENTER |. SWAP levels 1 and 2, enter 'X' and 3,

then press TAYLR to build P3(x): 'X — 1/3! * X A 3'. Insert this as the second

DERIVATIVES 93

element of the list with . Now SWAP levels 1 and 2 and proceed as before to

build P;(x) and P,;(x), adding them to the list as they become available. You can

then store the final list into EQ and plot with the default viewing screen to see:

N
Displaying plots is a dramatic way of showing how a function can be

approximated by its Taylor polynomials, but you should remember that with the

default plotting parameters two plots will coincide for a value of x if their

y-coordinates are the same when rounded to one decimal digit; ordinarily, this is not

good enough for serious numerical approximations.

To find Taylor polynomials centered about an arbitrary point x =a, you can use

program TAY.A. Make sure that the independent variable is set to X and that no

value is stored for X before using the program.

TAY.A

Input: Level 3: an algebraic expression for a function f,

in terms of 'X".

Level 2: the order n of the desired Taylor polynomial.

Level 1: the new center point, a.

Effect: Returns the Taylor polynomial of order n for function

f at x=a.

« > n a « 'Y' a +'X" STO EVAL 'Y' n TAYLR 'X' PURGE X'

a - 'Y' STO EVAL 'Y' PURGE » »

94 CHAPTER2

For example, to find the fourth order Taylor polynomial for f(x) =sin x, at the

point x = 2, put 'SIN(X)' on the stack, then enter 4 and 2 and press TAY.A to see

the calculator's version of

0.909297 — 0.416147(x — 2) — .454649(x — 2)? + 0.069358(x — 2)3 + 0.037887(x — 2)*

on level 1. (We set the display to show 6 decimal places.) Plot the list containing

sin x and this polynomial with the default parameters to see:

Notice that the graphs appear to coincide from near x =-.5to near x = 3.5, that

is, on an interval centered about x = 2.

Although TAY.A does the obvious by making a change of variables X =Y +a to

translate the Taylor polynomial from x =0 to x =a, you should be aware of the fact

that the symbolic computations required to calculate higher order Taylor

polynomials at points x =a away from x = 0 can be substantial. Thus, as a

symbolic processor, you may sometimes find the HP-48G/GX not quite up to the task

of finding the Taylor polynomials that you desire if you use TAY.A. For example,

the HP-48G runs out of memory (32K RAM) before it can produce the Taylor

polynomial of order 7 for f(x) =x! at x = 2 and the HP-48GX (with 128K RAM)

requires almost 25 minutes to produce this polynomial. The solution is to be a bit

more clever in how we approach the symbolics. Program TAYLAT ("Taylor at") is

due to Charlie Patton of Hewlett Packard and uses the {MATCH and | commands to

rearrange the symbolic computations. With TAYLAT, you can produce the Taylor

polynomial of order 7 for f(x) = x! at x = 2 in less than 30 seconds.

DERIVATIVES 95

TAYLAT

Input. Level 4: an expression for a function f.

Level 3: the independent variable.

Level 2: the order n of the desired Taylor polynomial

Level 1: the new center point a.

Effect: Returns the Taylor polynomial of order n for function f,

centered about x = a.

« = XP VA ORD PT « XP VA VA PT + 2 —LIST IMATCH DROP

VA ORD TAYLR VA VA PT — 2 LIST | » »

Activity Set 2.3.3

1. Plot f(x) = tan’!(x) on the default screen. Then overdraw the Taylor Polynomials

of orders 1 and 3 for f at x = 0.

Plot f(x) = sec x on the interval [-7, #]. Then overdraw the Taylor Polynomials

of orders 2 and 4 for f at x =0.

(a) Plot f(x) =sin 2x —2sin x on the default plotting screen and then overdraw

the Taylor polynomials of orders 3,5, 7 and 9 for f at x = 0.

(b) ERASE the plots from part (a) and plot f(x) = sin 2x — 2 sin x using Xrng: -2

6 and Yrng: -3.1 3.2. Now use TAY.A to overdraw with the plot of the

Taylor polynomials of orders 2 and 5 for f centered at x = 2.

96 CHAPTERZ2

4. (a) Plot f(x)= e*/2 on the default screen, then zoom in with factors of 3.

(b) Overdraw your plot in (a) with the Taylor polynomials of orders 2 and 4

for f at x =0.

(c) Now overdraw your plot in (b) with the Taylor polynomial of order 6 for f

at x = 0. The HP-48G/GX takes quite some time to produce this sixth

degree polynomial (approximately 2.5 min), an illustration of how complex

the computation of such polynomials can be. To convince yourself, try

finding this polynomial by hand.

Discovering the Mean Value Theorem

The Mean Value Theorem is one of the "gems" of elementary calculus. Its

statement is simple, its geometric character makes it believable, and it is an

extremely useful result. Indeed, the Mean Value Theorem provides the theoretical

basis for a host of other theorems that comprise an important part of differential

calculus.

What does the Mean Value Theorem say?

Given a function f that is continuous on the closed interval [a, b] and

differentiable between a and b, then for some point c¢ between a and
f(b) — f(a)
b-a

b, the tangent line to f at x =c has slope equal to

A
T~)

Geometrically: At some point ¢ between a and b the tangent line to f

at x = c is parallel to the secant line joining (a, f(a)) and (b, f(b)).

DERIVATIVES 97

EXAMPLE 17. In this example we will apply the Mean Value Theorem to the

function f(x) =x3 -3x2 —x + 3 on the interval [-.75, 2.6] and produce the above plot

of the result. Before beginning, purge X from the current directory and its ancestors.

Begin by plotting f(x) = x3 -3x? - x + 3 with Xrng: -2.25 4.25 and Yrng: -4.65

4.8. Trace left along the plot to the point P where x = -75, press ENTER to

record the coordinates (a, f(a)) of P on the stack, then press to mark the

location of the cursor on the plot screen. Now trace right along the plot to the point

Q where x = 2.6 and again press ENTER to record the coordinates (b, f(b)) of Q

on the stack. Press, open the EDIT menu, and press LINE to draw the

secant line joining points P and Q.

f(b) - f(a)
b-a

To calculate the slope of the secant line, first exit to the stack

display screen to see the coordinates of P on level 2 and Q on level 1:

2: (-.75, 1.640625)

1: (2.6, -2.304)

Press E to calculate (a - b, f(a) — f(b)):

1: (-3.35, 3.944625)

then divide 3.944625 by -3.35 to obtain the slope m = -1.1775 (Here is an easy way to

do the division without retyping the numbers: open the MTH CMPL (= complex)

menu, pressm to separate the ordered pair into its two components, then

SWAP and divide.) Leave -1.1775 on level 1.

To find a point ¢ between x =a and x =b where the tangent line to f at x =¢

has slope equal to -1.1775, recall EQ to the stack and press ENTER to make a

duplicate copy. Now take the symbolic derivative of EQ, move -1.1775 from level 3

98 CHAPTER2

to level 1 with the command 3 ROLL; and then use E to equate -1.1775 to the

derivative:

1: '3+XA2-3+(2+X)=1=-1.1775'

Go to the SOLVE menu with SOLVE |, open ROOT and store the

equation on level 1 into EQ. Open SOLVR |. Since a =-75and b = 2.6, we can

use x = 0 as an initial guess for the root-finder; so put 0 into and then solve for

x = c with X |. You will see X: 3.00343648694E-2 returned to level 1. Now
SWAP the value for ¢ on level 1 with the original f(x) on level 2, restore f(x) as

the EQ with the command STEO, open the VAR menu and purge the value stored in

. (You should still have the value for ¢ on level 1.)

To build an equation for the tangent line to f at x = ¢, use the following

program TAN.L. Recall that the HP-48G/GX has a menu key on the PICTURE FCN

menu for drawing the tangent line to a function whose plot appears on the screen.

But this built-in feature uses as input the x-coordinate of the cursor, and our value ¢

is not such a point; hence the need for a more general purpose program. At any rate,

run program TAN.L now. The program will use the value of ¢ from level 1 and the

expression f(x) in EQ to calculate and overdraw a plot of the tanget line to f at

x = ¢ ; for convenience, a copy of the equation of the tangent line is left on level 1 of

the stack.

1: '-2.9672865388 — 1.1775 » (X — 3.00343648694E-2)'

DERIVATIVES 99

TAN.L

Input: Level 1: areal number ¢ or a complex number (c, d)

As the stored variable EQ: an algebraic expression for a

function of f.

Effect. Calculates an expression for the tangent line to f at x = ¢,

plots the expression on the existing plotting screen, and

returns the expression to level 1 of the stack.

« DTAG DUP IF TYPE 0 == THEN X' STO ELSE C—R DROP X'

STO END EQ DUP EVAL EQ 'X' 0 EVAL X' X -— « + 'X' PURGE DUP

STEQ DRAW SWAP STEQ PICTURE »

Activity Set 2.3.4

1
1. (a) Plot the function y =2 using Xrng: -5 3 and Yrng: 0 4.2.

(b) Apply the Mean Value Theorem (as in the last Example) to f on the

interval [a, b], where a, b are the x-coordinates of points P, Q obtained

as follows: trace left along the curve to the point P where x = .496, then

trace right along the curve to the point Q where x = 1.44. As in the last

example, overlay plots of the secant line and tangent line on the plot of f.

2. (a) Plot the function f(x) =+ x sin x using Xrng: 0 3.14 and Yrng: 0 1.5.

(b) Apply the Mean Value Theorem to f on the interval [a, b] where a, b are

the x-coordinates of points P, Q determined as follows: trace left along

the curve to the point P where x = .725, then trace right along the curve

to the point Q where x = 2.15. Plot the secant line joining P and Q.

When you get ready to use the root-finder, use x = 0 as your initial guess.

100 CHAPTER2

Overdraw plots of the secant and tangent lines. Does the location of the

tangent line at x = c surprise you? Now seed the root finder with x =1.5to

find another value for c. Is the tangent line to f at this new x =c the one

you expected originally?

3. As Activity 2 shows, there may be more than one value of ¢ between x =a and

x = b that meets the conditions of the Mean Value Theorem. Here is a

spectacular example.

(a) Plot f(x) =sin x —2 cos 3x using Xrng: 0 6.28 and Yrng: -3.1 3.2.

(b) Apply the Mean Value Theorem to f over the interval [a, b] where a, b

are the x-coordinates of points P, Q determined as follows: trace left

along the curve to the point P where x = 2.75, then trace right along the

curve to the point Q where x = 4.64. Plot the secant line joining P

and Q.

(c) Now find six values of ¢ between a and b that meet the conditions of

the Mean Value Theorem. Do this by using the initial guesses for the root-

finder of x =1, 2, 3,4, 5 and 6. Plot all six tangent lines.

Parametric Differentiation

How can we find the slope of a smooth parametric curve

x=f(t), y=g(t), as<ts<b

at a point (xg, yo) on the curve?

If the coordinate functions f and g are reasonably "well-behaved", then y can

be expressed as a function of x, say y = F(x). Then, since y is a function of x and x

is a function of t the Chain rule tells us that

dy _ dy dx
dt = dx dat -

DerivATIVES 101

d
At a point where d_)tc # 0 we can then obtain

ciz_éz/%
dx — d dt

d d
In this last equation, E%and HZ;- are the rates of change of the coordinates with

dyrespect to the parameter t, while 7.~ is the rate of change of y with respect to x —

d d
the slope of the curve. In case E% =0 and fi # 0, the slope of the curve is 0, meaning

d d
a horizontal tangent line. On the other hand, if d_JtC = 0 and E‘Iti # 0 then the curve

dX
has a vertical tangent line. The case that both derivatives E% and 77 are 0 is ruled

out when we have a smooth curve.

EXAMPLE 18. Consider the parametric curve given by x =2 cos 2t, y =t -3 sin 2t for

0<t<45. We first met this curve in Chapter 1.

The slope of the curve at any value t is given by

dy ‘i.‘i/éf _ 1-6cos 2t
dx — dt’ dt = -4sin?2t

Thus, the slope of the curve at the point where t =2 is

1 -6 cos 2(2)
m=—_g 22) - 1.62587390888.

The point on the curve corresponding to t =2 is (xo, yo) = (-1.30728724173,

4.27040748592), so an equation for the tangent line y =y, + m(x - xy) to the curve at

this point is

y = 4.270470748592 + 1.62587390888(x + 1.30728724713)

or

y = 1.62587390888x + 6.39589170366.

102 CHAPTER2

In addition to plotting parametric curves, the HP-48G/GX can calculate the

slope of a smooth parametic curve at a point (xy, y9) and then overdraw a plot of the

tangent line to the curve at this point. Instead of performing all of the calculations

on the stack, we can use a program to do most of the work. Program PAR'
dy

[= PARametric derivative], given below, will calculate the slope m = I of a smooth

parametric curve at a point (xg, yo) and then determine an equation for the tangent

line y =y, +m(x-xp).

PAR'

Input: Level 2: a parametric curve ‘'(f(T), g(T)' in terms of the

parameter 'T'

Level 1: avalue t, of the parameter T

Effect: Calculates the slope m = %((Xg, Yo) of the curve at

(X0, Yo), Where xo = f(ty) and yo = g(ty), and returns to level 1

an expression for the tangent line y =y, + m(x — xp) at

(X0, Yo). Displays the message "VERTICAL TANGENT" in the

case of a vertical tangent.

« 'T" PURGE SWAP OBJ— DROP2 OBJ— DROP2 2 —LIST =nLIST i

NEG « COLCT DUP2 2 —LIST 'T' 9 OBJ—» DROP 5 ROLL —»NUM 'T' STO

EVAL 9 RND SWAP EVAL DUP ABS IF 1E-10 < THEN 4 DROPN

"VERTICAL TANGENT" ELSE / 3 ROLLD EVAL SWAP EVAL 3 PICK * -

SWAP 'X' » SWAP + END 'T' PURGE »

DERIVATIVES 103

EXAMPLE 19. we shall apply program PAR' to the parametric curve of EXAMPLE 18.

Begin with a parametric plot of the curve using Xrng: -6.5 6.5, Yrng: -3 6, and

independent variable T restricted by { T 0 4.5 }. The plot should appear as

follows:

NA

Now recall the EQ to level 1, enter 2 and run program PAR' to see the expression

'1.62587390881 + X + 6.39589170357

for the tangent line when T = 2.

To overlay the tangent line on the plot of the curve, change the plot type to

FUNCTION, put the above expression into EQ and set the independent variable to

X. Without erasing the original plot, execute the DRAW command to obtain the

following:

104 CHAPTER 2

Activity Set 2.3.5

1. (a)

(b)

(a)

(b)

(a)

(b)

Plot the parametric curve given by

x=t-2sin3t, y=2cos2t, 0<t<2nm

using Xrng: -3.5 9.5 and Yrng: -2 2.

Calculate and overdraw plots of the tangent lines to the curve at points

corresponding to ¢t =0,t=7n/2,t=5n/6,and t = 77/6.

Plot the parametric curve given by

x=4cost y=2sint, 0<t<2m

using the default plotting screen.

Calculate and overdraw plots of the tangent lines to the curve at points

corresponding to the following values of t:

(i) t=0andt=1m

(ii) t=m/2and t=3n/2

(iii) t=n/4and t=5n/4

Plot the parametric curve given by

x=3cos3t, y=3sin3t, 0<t<2nm

using the default plotting screen.

Calculate and overdraw plots of the tangent lines to the curve at points

corresponding to t =0, n/2, © and 37/2; then at points corresponding to

t=3n/4 and 71/4.

INTEGRALS

Calculusis rich in its connections to geometry. The two main ideas of calculus —

the derivative and the integral — arose from simple geometric questions: what is

the slope of a curve? what is the area beneath a curve?

b

The integral f(x)dx gives the area between
The derivative % gives the slope of y = f(x) 8 ‘[f 8

y = f(x) andthe x-axis from x=ato x=b

Figure 1(a) Figure 1(b)

3.1 APPROXIMATING AREA

Rectangle Approximations

To approximate the area of the region lying between the curve y = f(x) and the

x-axis from x =a to x =b (the shaded region in Figure 1(b)), we can sum areas of

rectangles.

b —
Divide the interval [a, b] into n equal subintervals of length h = 4 with

points a =xy <x; <...<Xx,1=b. On each subinterval, build a rectangle whose

width is & and whose height is given by a value f(x*) of the function for some x*

chosen within the subinterval. If x* is always chosen as the left endpoint of the

106

106 CHAPTER3

subinterval we build left rectangles; if x* is always chosen as the right endpoint of the

subinterval we build right rectangles. The sum of the areas of the rectangles is an

approximation to the area of the region.

 LRECT: .117695276935 < RRECT: .130564808185

Approximation with 10 left rectangles Approximation with 10 right rectangles

Figure 2(a) Figure 2(b)

By increasing the number of rectangles we can improve the approximations.

 LRECT: .123205970687 RRECT: .1264233534593

Approximation with 40 left rectangles Approximation with 40 right rectangles

Figure 3(a) Figure 3(b)

When a graph is increasing, left rectangles will clearly underestimate the area,

while right rectangles will overestimate the area. Exactly the opposite occurs when a

graph is decreasing: left rectangles will overestimate and right rectangles

underestimate. Thus, a convenient way to balance the errors is to use midpoint

rectangles, rectangles whose heights are calculated by f(x*) where x* is always

chosen as the midpoint of each subinterval.

INTEGRALS 107

MID: .1252285017839 MiD: 124883260538

Approximation with 10 midpoint rectangles Approximation with 40 midpoint rectangles

Figure 4(a) Figure 4(b)

Since it is impractical to calculate a large number of rectangle areas by hand,

we can use the HP-48G/GX. Below we present a sequence of HP-48 programs to do

this. The first one, GRECT! [= Graphing RECTangles] provides a graphical/

numerical interface for rectangle sum approximations. Depending upon your choice,it

calls upon programs LRECT [= Left RECTangles], RRECT [Right RECTangles], or MID

[= MIDpoint rectangles] to do the numerical calculations. These three programs call

upon program SUM to do the actual summing and SUM calls upon program F.val to

evaluate the input function f at the appropriate values. Two other utility programs

are given: FABSTO, used to store the expression for f and values for a and b ; and

NSTO, used to store the number n of subintervals. All of these programs (and two

others) can be found in the special INTG subdirectory of the main calculus directory

CALC, on the teaching code diskette (available from the publisher). Following a

listing of these programs, we will work an example.

1The GRECT program was written by Robert E. Simms of Clemson Univeristy. We
are indebted to him for permission to use it here.

108 CHAPTER3

FABSTO

Input. Level 3: an expression for f(x), in terms of 'X'

Level 2: the lower limit of integration, a

Level 1. the upper limit of integration, b

Effect: stores f, a and b as EQ, A and B.

« 'B' STO 'A' STO STEQ »

NSTO

Input. level 1: a positive integer n

Effect: stores n as the number of subintervals N

and stores h=(b-a)/nas H

« 'N' STO B A - N/ 'H STO »

INTEGRALS 109

GRECT

Input. As stored variables: an expression for f(x) in EQ and values for a

and b in A and B, respectively, from the program FABSTO; a value

for n in N from program NSTO.

Effect: Prompts the user for a rectangle type; based upon the choice,

produces an autoscaled plot of the function in EQ, overlays the

approximating rectangles on the plot, and calculates the sum of their

signed areas; puts the sum on stack level 1 as a tagged object. (By

signed areas we mean that areas of rectangles lying below the x-axis

carry a negative (-) sign while areas of rectangles lying above the

Xx-axis carry a positive (+) sign.)

Comment. In order for the program to properly draw the approximating

rectangles, the number n of subintervals (rectangles) must be a

divisorof 120: N=2, 3,4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 60 or 120.

When n = 120, the entire region beneath the graph from x=atox=>b s

shaded because each rectangle is exactly one pixel in width.

« N 120 MIN 1 MAX DUP B A — SWAP / - n h « CLLCD "Select rectangle type 1

for Left 2 for Mid 3 for Right" 1 DISP 7 FREEZE IFERR 0 WAIT THEN DROP ELSE —c «

CASE c 82.1 == THEN 'LRECT' A END ¢ 83.1 == THEN MID' Ah 2/ + END c 84.1 ==

THEN 'RRECT' A h + END KILL END » 0 0 10 FORz AB A -10/ z «» + 'X' STO EQ

EVAL NEXT 12 DUPN 1 11 START MAX NEXT 13 ROLLD 1 11 START MIN NEXT DUP2

DUP2 -2 60/ + 5 ROLLD - 160/ + -3 ROLLD + YRNG B A -5 120 / » DUP NEG A +

SWAP B + XRNG # 131d #64d PDIM {#0d #0d} PVIEW DRAX DRAW X' STO IFERR A

1 n START DUP 0 R—-C C—»PXSWAP h + DUP 3 ROLLD EQ EVAL R—»C C—PX BOX ‘X'

h STO+ NEXT DROP PICT {#0d #0d} 3 ROLL EVAL DUP 4 ROLLD 1 -GROB REPL 7

FREEZE THEN END X' PURGE END » »

110 CHAPTER3

LRECT

Input: none from the stack

Effect: uses SUM to compute the Riemann sum for the f, a, b and n

stored, with f evaluated at the left end point of each

subinterval

« A SUM 'lrect’ -TAG »

RRECT

Input. none from the stack

Effect: uses SUM to compute the Riemann sum for the f, a, b and n

stored, with f evaluated at the right end point of each

subinterval

« AH + SUM "rrect" -TAG »

 MID

Input. none from the stack

Effect. uses SUM to compute the Riemann sum for the f, a, b and n

stored, with f evaluated at the midpoint of each subinterval

« AH2/+ SUM "mid" -TAG »

INTEGRALS 111

F.val

Input. none from the stack

Effect. a utility program used by other programs to evaluate f at a

specified number

« 'X' STO EQ EVAL »

SUM

Input: none from the stack

Effect. a utility program used for computation by each of the

Riemann sum programs and by TRAP and SIMP. It takes the

initial value of x from the other program, a for LRECT, a + h

for RRECT and a + h/2 for MID.

« 5> X « 01N START X F.wval + X H +'X' STO NEXT H *» 'X'

PURGE »

EXAMPLE 1. To approximate the area of the region beneath the graph of

f(x) = x* = x* over the interval [.05 .9], first with n = 10 rectangles and then with

n = 40 rectangles, arrange the stack like

3: XA2-XAr4

2: .05

1: .9

and press FABST to store 'X A2 - XA 4'as EQ,.05as A and .9 as B. Now enter

10 and press NSTO to store 10 as the number N of rectangles. Press

112 CHAPTER3

GRECT |; at the prompt, press 1 to choose left rectangles. You should obtain the

plot shown in Figure 2(a). Exit to the stack to see the approximating sum on stack

level 1. Press GRECT again, and this time select right rectangles. You should

obtain the plot shown in Figure 2(b). Run GRECT again and select midpoint

rectangles. You should obtain the plot of Figure 4(a). Return to the stack

environment and store 40 into N with 40| NSTO |. Select 1 to obtain the plot of

Figure 3(a). Running GRECT and selecting 3 and then 2 will produce the plots of

Figure 3(b) and Figure 4(b). Clear the stack when you have finished plotting.

Although program GRECT will only plot approximating rectangles for values of

n that divide 120, we can use the programs LRECT, RRECT and MID by themselves

to obtain rectangle approximations to signed areas for arbitrary values of n. As with

GRECT, we must first use FABSTO and NSTO to store EQ, A, B and N.

EXAMPLE 2. In EXAMPLE 1 we applied GRECT to f(x) = x2 — x* over [.05 .9] to

graphically view the approximating rectangles and calculate the sum of their areas

for n =10 and n = 40. Here we use programs LRECT, RRECT and MID by

themselves to simply calculate the approximating sums. Using n = 100, 200 and 500

you should verify the following results:

n LRECT RRECT MID

100 .124209601096 .125496554221 .124864054865

200 .124536827979 .125180304542 .124861310615

 500 .124731407787 .124988798412 .124860542199

Which column of approximations appears to be the most accurate? The exact area is

.124860395833 to twelve decimal places.

INTEGRALS 113

Activity Set 3.1.1

1. Consider the function f(x) =1/x? over the interval [1, 3].

(a) Use GRECT with n =15, 30, 60 and 120 rectangles to complete the first

four lines of the following table.

n LRECT RRECT MID

15

30

60

120

200

500

1000
(b) Now use programs LRECT, RRECT and MID by themselves to complete the

last three lines of the table.

(c) Which of the three columns in the table appears to be producing the best
2

approximations? The exact area is 3 = 666666666666

Consider the function f(x) =V x sin x over the interval [0, 7).

(a) Use GRECT with n =15, 30, 60 and 120 rectangles to complete the first

four lines of the following table.

114 CHAPTER3

n LRECT RRECT MID

15

30

60

120

200

500

 1000

(b) Now use programs LRECT, RRECT and MID by themselves to complete the

last three lines of the table.

(c) Which of the three columns in the table appears to be producing the best

approximations? The exact area is 2.43532116417 to twelve decimal places.

3. Consider the function f(x) = 3x —4 sin x over the interval [-2, 2].

(a) Use program GRECT to obtain midpoint rectangle approximations to the

signed area over [-2, 2] for n =5, 20 and 40. Explain your answers.

(b)) Now use GRECT to compare the left rectangle and right rectangle

approximations to the signed area over [-2, 2] for n =5, 20 and 40.

n LRECT RRECT

20
 40

(i) Explain these results.

INTEGRALS 115

(ii) Are these results what you expected? Why don't the left and right

rectangle approximations more closely match the results from the

midpoint rectangle approximations?

(c) What is the exact signed area of f(x) =3x —4sinx over [-2, 2]? Why?

4. Consider the function f(x) =2 cos 2x —sin(x + 2) on the interval[0, 4].

(a) Use GRECT to obtain left, right and midpoint rectangle approximations to

the signed area over [0, 4] for n = 10, 25, and 40. Then use LRECT, RRECT

and MID by themselves to obtain approximations for n = 100, 200 and 500.

n LRECT RRECT MID

10

25

40

100

200

500

(b) Which of the three columns in the table appears to be producing the best

approximations? The exact signed area is 2.36567536982.

Riemann Sums

Whenever rectangles are used to approximate a region lying between a curve

y = f(x) and the x-axis over an interval [a, b], the sum of the areas of the

approximating rectangles is given by an expression of the form

116 CHAPTER3

N

(1) >flxi) Ax.
k=1

This sum is based upon a division of the interval [4, b] into N subintervals [x,, x;],

[x1, x2], ..., [xn-1, xN] using points a = x5 <x; <...<xy =b. The meaning of the

terms in the sum (1) are as follows:

e Ax;: the width of the k!* rectangle

* x: a point somewhere in the k! subinterval

e f(x;): the height of the k*" rectangle

e f(x;) Ax: the area of the k!’ rectangle

To acquire a better understanding of such sums we can use the HP-48G/GX to

create user-defined functions for them.

EXAMPLE 3. Given f(x) = x2 -x* on the interval [0, 1], create user-defined functions

S(N) and T(N) for sums like (1) that use N equally spaced right rectangles and N

equally spaced midpoint rectangles.

The key ingredients for the right rectangle sum in HP-48G/GX notation are:

1
width of each rectangle (Axy): N

K
right endpoint of the k' rectangle (x): N

2 4
height of the k! rectangle (f(x})): (—) - (—1157)

KY (KY'|(1th =] - [= —area of the k' rectangle: {(N) (N)] (N)

INTEGRALS 117

The user-defined function is

N 2 4
K K 1w- 2(%) - (3) (7)

If you use the Equation Writer to create this expression, the right-hand side

will appear like

Remember to use the IE! key to end each subexpression. If you build the expression

on the stack, it will appear as:

1: 'S(N) =X (K= 1, N, ((K/N) » 2 = (K/N) ~ 4) » (1/N))’

If you build the expression with the Equation Writer, it will be put on the stack

when you press ENTER |. Use to complete the construction. Now

evaluate S for values of N =10, 20, 50, and 100 to obtain the following table:

N S(N)

10 .13167

20 |.132916875

50 |.13326672 100 .13316667

Suggestion: The easiest way to build a complicated user-defined function like this one

is to use RPN on the stack. Put 'S(N)' on level 1, then enter 'K', 1, and 'N'. Then put

'K/N' on level 1 and press ENTER to make a duplicate copy. Now build

118 CHAPTER3

(K/N) A 2 = (K/N) A 4) « (1/N)' using RPN. Press to complete the sum. Do

EI to equate 'S(N)' with the sum, then use to complete the task.

For the midpoint rectangles, the only difference is that we have

2K -1
e midpoint of the k™ rectangle (x): —55— -

Thus, in this case the user-defined function will be

T(N) =3(K=1,N, ((Q~K-1)/(2«N)"r2-(2+ K- 1)/(2 + N)) A 4) ~ (1/N))'

Evaluating T for N = 10, 20, 50 and 100 we have

N T(N)

10 .13416375

20 |.133541484376

50 |.133366662 100 .133341666383

For an arbitrary choice of points x; <x; <...<xy_; between a and b and an

arbitrary choice of a point x; in the k** subinterval, the sum (1) is called a Riemann

sum. Sums constructed from subintervals of equal width, or with a uniform choice of

points x; in each subinterval, or both, are special kinds of Riemann sums. But

arbitrary Riemann sums work just as well, with no restrictions whatsoever on the

widths of the subintervals or the location of the x; 's. The general result is that for

a "well-behaved" function on the interval [a, b], e.g., a function f that is continuous

on [a, b], Riemann sums have a limit I

N

lim Y, flxx) Ax = L.
N =1

The number [is called the definite integral of f from a to b, and is denoted by

INTEGRALS 119

b
I= [fix)dx.

b
The integral [f(x)dx is the signed area of the region between the curve y = f(x) and

a

the x-axis over the interval [a, b].

For a given value of n, the midpoint rectangle approximation M, to an
b

integral I = [f(x)dx will be more accurate than the left or right rectangle
a

approximations, L, or R,. Upper bounds for the errors are well-known and are

related to the first and second derivatives of f. If | f/(x)| <B; and | f"(x)| < B,

for all x in [a, b] then

Bl (b - a)2

2n

Bl(b - a)2 Bz(b — a)3

2n '| L, -1] < 24n2
and | R, -1| < but | M, -1I| <

Activity Set 3.1.2

1. Consider the region between the curve y = x> and the x-axis on the interval [0, 4].

We want to create a user-defined function for a Riemann sum like (1) that uses N

equally spaced right rectangles.

(a) Express the following in terms of N:

o the width of each rectangle (Axy):

e the right endpoint of the k! rectangle (x;):

e the height of the k" rectangle (f(x;)):

e the area of the k" rectangle f(x;) Ax;:

120 CHAPTER3

N

(b) Create a user defined function S(N) = Y. (area of the k'" rectangle) on your
K=1

HP-48G/GX and use it to complete the table below:

N S(N)

10

50

100 200

. 1
2. Repeat Activity 1 using y = > onlL, 3]

3. Repeat Activity 1 using y =e* on [-1, 3].

3
4. Repeat Activity 1 for y = z T xon [-3, -1] using N equally spaced left rectangles.

Trapezoid and Simpson's Approximations

Recall that for an increasing (decreasing) function, the left rectangle

approximation underestimates (overestimates) the area and the right rectangle

approximation does exactly the opposite. Thus, midpoint rectangles were introduced

as a way of "balancing” the two errors. But instead of using midpoint rectangles, we

can simply average the left and right rectangle results.

For an evenly spaced division of the interval [a, b] into N subintervals of

length Ax we have

N N

LRECT = ¥ f(x,.)Ax and RRECT =¥f(x,)Ax .
k=1 k=1

Their average is

Average =

INTEGRALS 121

g [f(xk_1)2+f(xk)] Ax.
k=1

This summand is the area of a trapezoid sitting on the k' subinterval [x,_;, Xi]:

j{xk_l)

flxg)

 Xk-1

N
/

xk X

For this reason, the average is called the Trapezoid approximation. It is easy to

see that it can be a much better approximation than the left and right rectangle
1

approximations. Consider, for example, the case y =2 over the interval [1, 3].

With n =5 we have:

LRECT: .B69354648508

and

RRECT: .5137939082352

But the Trapezoidal approximation looks like this:

122 CHAPTER3

TRAP: .69157687073

The following program TRAP appears in the INTG subdirectory of the main

CALC directory. Like LRECT, RRECT, and MID, it requires that you first use

FABSTO and NSTO.

TRAP

Input. none from the stack

Effect. uses SUM to compute the trapezoidal approximation

for the stored quantities f, a, b, and n

« A.SUM B F.val A Fval - 2 / H « + 'X' PURGE "trap" -»TAG »

EXAMPLE 4. We return to EXAMPLE 2 where we used LRECT, RRECT and MID to
9

calculate approximating sums for the integral [(x?> —x*)dx using N = 100, 200 and

05

500.

Applying TRAP we obtain

N TRAP

100 .124853077658

200 .12485856626

 500 |.1248601031

INTEGRALS 123

Because the Trapezoid approximation simply sums the areas of trapezoids,it is

possible to give a formula for the approximation. Given that the interval [a, b] is
o : b-a :

divided into n subintervals of equal length Ax =——Dby points a =xy <x; < .. <

Xp1 <X, =Db,let y;=f(x) for j=0,1,.., n. Then the Trapezoid approximation T,
b

to [fix)dx is given by
a

Ax
Tn=7[y0 +2Yr + .+ 2y,+ Y4l

This formula is frequently used in hand calculations for small values of n.

It is well-known that

1
4

0

4
You can verify this with your HP-48G/GX as follows: Draw a plot of y = 172

using Xrng: -6.5 6.5 and Yrng: -2.1 4.2.

Move the cursor to (0, 0) and press to mark its location, then reposition the

cursor at (1, 0) and press AREA on the FCN menu. The message AREA:

3.14159265359 will appear on the lower left of your screen (and on level 1 of the

stack). With the origin marked and the cursor still at (1, 0), press to return

to the FCN menu and press SHADE to shade the region whose area is .

124 CHAPTER3

This use of the AREA key on the HP-48G/GX requires that the lower and upper

limits of integration be given by pixel coordinates.

We shall use this example to compare the errors made by the trapezoid and

midpoint approximations. Open the INTG subdirectory and use FABSTO to store

'4/(1 + X A 2)' into EQ and 0, 1 into A, B respectively. Now enter the following

program and store it under the name 'ERROR":

« 1 ->NUM - "error" -TAG ».

For a calculated approximation A on level 1, program ERROR will calculate

(A - m) and display it on level 1 with the tag "error".

To compare the Trapezoid and midpoint approximations for N = 50, 100, 150

and 200, proceed as follows:

(i) Use NSTO to store 50 for N. Press\ TRAP ENTER |, then ERROR |

to see

2. trap: 3.1415259869

1: error: -.00006666669

Now press ,then to see

2: mid: 3.14162598694

1: error: .00003333335

Notice that the magnitude of the error from MID is one-half of that from

TRAP.

INTEGRALS 125

(ii) - (iv). Repeat step (i) using N = 100, 150 and 200 in succession.

The following table summarizes the results:

N TRAP ERROR MID ERROR

50 3.1415259869 -.00006666669 3.14162598694 .00003333335

100 3.14157598691 -.00001666668 3.1416009869 00000833331

150 3.1415852461 -.00000740749 3.14159635725 .00000370366 200 3.1415884869 -.00000416669 3.14159473692 .00000208333

The TRAP and MID columns tell us that the trapezoid estimates are too low,

while the midpoint estimates are too high. And the two ERROR columns show that

the midpoint error is consistently one-half the trapezoid error in magnitude.

This is not surprising if we examine the upper bounds on the errors. We noted

earlier that for a given value of n, a bound on the error by the midpoint rectangle
b

approximation M, to an integral I= [flx)dx is given by
a

B+ - a)3
| M, - I S-Z(ZZTM,Where |f"(x)| < B, forall x in [a, b].

For the Trapezoid approximation T, with n subintervals, a bound on the error is

To get an improved estimate of the integral that balances the errors, we can use

a "weighted" average of the trapezoid and midpoint estimates:

1 2
weighted average = 3 (trapezoid) + 3 (midpoint).

126 CHAPTER3

Averaging will tend to balance the low versus high estimates, and we weight the

midpoint estimate twice as much because its error is only half that of the trapezoid

estimate.

This particular weighted average is known as Simpson’s approximation. It
b

produces approximations to the integral [f(x)dx that are far more accurate than
a

those by the other methods that we have considered. A bound on the error involves

the fourth derivative of f on[a, b]. If | fiY)(x)] <B, for all x in [a, b], then

Simpson's approximation S, using n subintervals satisfies

B4(b —a)’
| Sy -1l <=g5a

Because of this, Simpson's approximation produces exact results for any integral
b
[fix)dx where fi")(x) = 0. In particular, it gives exact results for all linear,
a

quadratic and cubic polynomial functions.

The following HP-48G/GX program SIMP resides in the INTG subdirectory of the

main CALC directory.

SIMP

Input: none from the stack

Effect: uses MID and TRAP to compute Simpson's approximation

for the stored quantities f, a, b and n

« MID 2 * TRAP + 3 / "simp" -TAG »

INTEGRALS 127

To appreciate the accuracy of Simpson's approximation, we apply program

 dx =1SIMP to the integral | T2

0

N SIMP ERROR

5 3.14159261393 -.00000003966

10 3.14159265297 -.00000000062

15 3.14159265354 -.00000000005

20 3.14159265359 0
Like the Trapezoid approximation, there is an easy formula for Simpson's

approximation. The formula is based upon dividing the interval [a, b] into an even
b-a
n
 number n of subintervals of equal width Ax =

AxSn="73 o +41 +22 + ... +2Yn2+ Wn1+Yn).

Observe, carefully, the pattern 1, 4, 2, 4, 2, ... in the coefficients; and how it ends: 2,

4, 1. This pattern requires that n be an even number. This formula for Simpson's
b

approximation to the integral [f(x)dx is useful when f is given only in graphical
a

or tabular forms.

128 CHAPTER3

Activity Set 3.1.3

In each of the following Activities, use the AREA command on the FCN

submenu to obtain an accurate twelve (12) digit approximation to the integral. Then

calculate Trapezoid and Simpson's approximations to the integral using the

indicated number of subintervals. Keep your numeric display mode set to STD to

show full precision.

3 T
1

1. j;dx,n=50,100 2. j\]x sin x dx , n =100

1 0

4 4
3. [(4sin x-x)dx,n =100 4. | (2cos 2x~sin(x + 2)dx , n =100

0 0

3 1 1 3
5. = . —_— =j 1+x3dx,n 100 6 j (x+x2)dx,n 50, 100

0 -3

3

7. | e¥dx, n=100
0

2 2
. j\)1+sin2x dx ,n =100 10. j i’ (1+—{4—) dx ,n = 100, 200

X

0 1

®

1
j N1 +sec2x dx,n = 100

0

\
O

INTEGRALS 129

11. Consider

cos (mx2/2) x<1

fx) = X-3x+2 x2>1

3

(a) Find the integral | f(x)dx using the AREA key on the FCN submenu.

0
3

(b) Now approximate the integral [f(x)dx using Simpson's approximation

0

with n = 100 and n = 200 subintervals.

3.2 INTEGRATION ON THE HP-48G/GX

Numerical Integration

In the application of calculus to fields such as engineering, physics, probability

and statistics there is often a need to obtain fairly accurate estimates of definite

integrals. The integrands in question may be simple in appearance, but usually lack

elementary, closed-form antiderivatives so that the fundamental theorem of calculus

cannot be applied. Simple examples are:

Z

1
e the standard normal integral —— ¢**2dx from probability theory

\2m

o

22dy

Vcos y - cos «
e the period T = of a simple pendulum

o the electrostatic potential V at a point P(x,y) due to a variable charge

density A(s) applied along a straight wire over an interval [-a, a]:

a

_ A(s)ds

V(x—5)? + 12
Vv

130 CHAPTER3

The HP-48G/GX has a built-in numerical integration routine that uses a Romberg

numerical integration technique. The routine is iterative, producing increasingly

accurate estimates derived from values of the integrand at points sampled within

the interval of integration until three successive estimates agree to within an error

tolerance specified by the user. The error tolerance e is specified by setting the

numeric display mode as follows: n FIX specifies an error tolerance e = 10" and STD

specifies an error tolerance e = 1011

For example, setting the numeric display to 5 FIX will specify an error tolerance

e = .00001. In general, the smaller the error tolerance, the longer the calculation

time and the more accurate the result. When the calculation is finished, an estimate

of the error in the result is given in the variable IERR.

There are two ways to perform a numerical integration on the 48G/GX: with

the INTEGRATE Form on the SYMBOLIC Application or on the Stack. We illustrate
4

each way with the integral [3x sin 2x dx. The exact answer and its decimal

0

approximation are

T

J' 3x sin 2x dx = -3n/2 = -4.71238898038.

0

Using the INTEGRATE Form

Open the Symbolic Application with SYMBOLIC and press to

select Integrate. Type in '3 + X + SIN(2 + X)' and use ENTER to enter it into the

EXPR: field. Then enter 'X' into the VAR: field and 0, x into the LO: and HI: fields.

When the RESULT: field is highlighted press if it reads Numeric, otherwise

press to change to Numeric. Set the NUMBER FORMAT: field to Std, using

the CHOOS box if necessary. Press OK to perform the numerical integration.

INTEGRALS 131

The result will be shown on stack level 1.

1: -4.71238898038

Press then to see the error estimate 9.4E-11.

Using the Stack

Arrange the stack as follows:

4: 0

3: b4

2: '3 » X = SIN(2 = X)'

1: X'

Press to see the symbolic expression

(0, , 3+ X« SIN@ + X), X)'

returned to level 1. Use to see the numerical result -4.71238898038

returned to level 1. Press then to see the error estimate 9.4E-11.

If you wish, you can use the Equation Writer to key in the integral:

m

I03-X-SIN(2-X) dX

Use the IE] to end each subexpression. When the expression is complete, press

ENTER to view it on the stack and then to evaluate.

Alternatively, with the expression showing in the Equation Writer press

to bypass the stack and obtain the numerical result.

132 CHAPTER3

sin(x2 -1) x<1
EXAMPLE 5. As another example, we graph the function f(x) ={ sin(m/x) 1<y

2
with the default parameters and calculate the integral | f(x) dx. Enter the function

2

as 'IFTE(X < 1, SIN(X A 2 — 1), SIN(n/X))'. Plotting with the default parameters,

we see:

v
To calculate the integral, we first set the numeric display mode to 5 FIX, then

press E to again view the plot. Activate coordinate read-out with (X, Y) |,

move the cursor to (-2, 0) and press to mark the location. Now move the cursor

to (2, 0), press to return the menu labels, open the FCN submenu and press

AREA |. In approximately 1 minute, 12 seconds you will see the result .20163

displayed at the bottom left of the screen and on stack level 1. IERR shows the error

to be approximately .00003.

To use the numerical integration routine in this way (while viewing a plot of

the integrand), the limits of integration must be pixel coordinates. It is also

interesting to note that if you perform the same integration on the stack, its execution

is a little faster, approximately 1 minute, 8 seconds.

Why did we set the numeric display to 5 FIX instead of asking for full twelve

digit precision in STD mode? We actually tried for twelve digit precision, but gave

up and interrupted the integration process at the end of one hour. When we seek

twelve digit precision, many more points on the integrand are sampled than with

five digit precision, and the "break point" x = 1 in the definition of the integrand

INTEGRALS 133

causes problems. How can we obtain twelve digit precision? The trick is to split the

integral into two parts at the break point:

2 1 2
[fodx = [flx)dx + [fix)dx.
-2 -2 1

The first integral on the right hand side is found in 36 seconds:

1

[f(x)dx = -.546976060733.
-2

And the second integral on the right hand side takes only 14 seconds:

2

[fix)dx = .748600792238.
1

Thus, we can add to obtain

2

[flx)dx = 201624731505
2

in a little over 50 seconds.

This trick of splitting the integral into several other integrals is standard

practice with almost all numerical integration routines on calculators or computers.

Obvious separation points are any break points in the definition of the integral (as

in the above example), as well as any points where the function is not defined or is

non-differentiable.

134 CHAPTER3

Activity Set 3.2.1

1. A roller coaster has part of its track in the shape of the curve y =x + sin 2x?

when plotted using Xrng: 0 2 and Yrng: 0 3.

(a) Plot the curve in this viewing window.

(b) Calculate the area of the region between the track and the x-axis (the

ground) over the interval [0, 2].

(c) Calculate the area of the region between the track and the ground over the

interval between the two local maxima.

Find the volume of the solid of revolution generated by revolving the curve

y = es"* around the x-axis over the interval [0, 3].

Find the volume of the solid generated by revolving about the y-axis the region

between the graph of y = ex’ and the x-axis over the interval [1/3, 1].

Calculate the "arch length" of the St. Louis Arch using the formula from

Activity 7 in ACTIVITY SET 3.2.2.

Imagine a point P moving along a parametric curve C: x =f(t), y = g(t) in such

a way that it traces the curve only once from t=a to t =b. Then the length of

the curve from t=atot =b is given by the formula

b

J. V[P +[g'(W] dt.
a

Find the lengths of the following curves.

(a) x=3cost, y=3sin®t from t=0 to t=2m.

(b) x=3cost+2cos3t y=3sint-2sin3t from t=0 to t=2m.

INTEGRALS 135

6. The following formula gives the period T of a simple pendulum of length L

that is released from rest at an angle o with the vertical axis (g is the constant

acceleration due to gravity):

 dy.
\/g/Lj\/cosy—cosa J

Find the approximate period for a pendulum of length L = 1.5m that is released

at an angle of n/4 rad from the vertical axis. (Use 3 FIX.)

Symbolic Integration
b

Symbolic integration refers to calculating an integral J f(x)dx by finding an

a

antiderivative F(x) of the integrand f(x) and then returning a symbolic expression

for F(b) — F(b). Because of its restricted memory, the HP-48G/GX can perform

symbolic integration for only the following restricted set of integrands:

e All built-in functions that have an antiderivative expressible in terms of

built-in functions (except LNP1);

e sums, differences, negatives, linear combinations and other selected patterns of

the above functions;

e all derivatives of built-in functions;

¢ polynomials whose base term is linear.

The HP-48G/GX will not, for example, perform symbolic integration on such simple

integrals as

b b b

J x sin x dx, | xe*dx, or I sin x cos x dx .

a a a

136 CHAPTER3

These integrands are not included in the above list. On the other hand, the HP-48

will perform symbolic integration on the integral

b

1
———— dx

j Sin X cos x
a

because the integrand is one of the selected patterns that is built-in. Because of all

this, you should not view the HP-48G/GX as a serious symbolic integrator.

Nevertheless, we will briefly outline some of its symbolic integration features so

that you will be familiar with them.

Whether or not the | function performs numerical or symbolic integration

depends upon whether numerical or symbolic execution mode is active. The default

state of the HP-48G/GX is for symbolic execution (flag -3 clear). In this state, the |

function uses a built-in system of pattern matching and returns a symbolic result

(which may be nothing more than the original symbolic input). If you specify

numerical results mode by setting flag -3, then the | function will return a numerical

result. No matter what the setting of flag -3, you can temporarily achieve numerical

results by applying the -NUM command to evaluate an integral.

EXAMPLE 6.

(i) Make certain that your HP-48G/GX is in its default state for symbolic

results. With '/ (0, m, SIN(X), X)' on level 1, EVAL returns the following

symbolic result.

1: -COS(X) /a X(X)| X ==

) — (-COS(X) / 9 X(X) | (X

=0))

INTEGRALS 137

The vertical stroke | is the "where" command, used to substitute values in

an expression. You can recognize this result as the HP-48 version of the

familiar symbolic expression

= I 3

-C0S X

x=0

Press EVAL again to effectively substitute the values # and 0O into

-COS(X) and obtain the numerical result 2.

(ii) Again, with ' (0, m, SIN(X), X)' on level 1 and symbolic results active,

press to temporarily set numerical results mode and obtain

the numerical result 2.

(iii) You can achieve the same symbolic results as in (i) by using the

INTEGRATE form in the SYMBOLIC Application. Do SYMBOLIC

and then enter 'SIN(X)' into the EQ field, 'X' into the VAR field,

and 0 and 7 into the LO and HI fields. With Symbolic highlighted, press

to see the same symbolic results as in (i), then use EVAL to effect

the substitution and obtain the numerical result 2.

Occasionally, you may want to use your HP-48 to obtain an antiderivative for a

function f(x). Recall that Part 1 of the Fundamental Theorem of Calculus tells us

that every continuous function f(x) on an interval [a, b] has an antiderivative F(x),

namely

F(x) = [fipat.
a

Therefore, if the HP-48G/GX can symbolically integrate f(t), we can obtain a

symbolic expression for the antiderivative F(x).

138 CHAPTER3

EXAMPLE 7. To obtain an antiderivative for f(x) =Inx, perform the symbolic

integration
X

[Int dt.
a

Use 'T' for the variable of integration and make certain that the upper limit 'X' is a

formal variable, i.e., no value for 'X' is stored in the current directory or any ofits

ancestral directories. Use lowercase 'a' for the lower limit of integration. When the

first symbolic result appears, press PRG TYPE OBJ— |, then

|DROP | | DROP | DROP |. The remaining symbolic result will be

T+«LN(M)=T)/9 T(M)| (T =X)".

A final EVAL will return the desired antiderivative 'X » LN(X) — X

Activity Set 3.2.2

In activities 1-10, use your HP-48G/GX to find the indicated antiderivatives.

7
1. j dx 6. 3(5x - nm)° dx

\V5x-1 f

dx3/2 ___ax
2. [@x+3)y¥2dx O=GRS

3. [tan? xdx 8. [(x-tanh x) dx

tan x
4. fcosx dx 9. [214y

5. | tan1(2x + 3) dx 10. | xs1 dx

3.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Chief among the significant contributions of Newton and Leibniz to the

"invention” of calculus in the 17th century was their clarification of the inverse

relationship between differentiation and integration. This relationship, which is

the intended focus of the Fundamental Theorem of Calculus, is often obscured by a

INTEGRALS 139

failure to focus on Part 1 of that Theorem, which asserts that continuous functions

have antiderivatives:

d X

(*) Ir I:jf(t)dtjl = f(x).
a

Traditionally, our calculus textbooks have focused instead on Part 2 of the Theorem,

which says that integration "undoes" differentiation, up to a constant:

[F(Hdt = F(x) - F(a).

Indeed, it is because of their focus on Part 2 that students often come to view

integration as simply a search for antiderivatives rather than as the limit of

Riemann sums. In retrospect, this has been a somewhat natural occurrence because, in

the teaching process, teachers tend to seek out activities that students can do to help

reinforce their understanding of the theory. And without computing power, the

activities that reinforce Part 1 are restricted, for the most part, to purely analytical

investigations.

But certainly, the HP-48G/GX provides enough computing power for students to

engage in graphical and numerical activities that support Part 1 of the Fundamental

Theorem. The midpoint approximation can be used to construct a symbolic expression

F(x) that approximates the antiderivative jxf(x)dt, ie, F(x) = ff(t)dt. This

approximation and its derivative F’ can then be plotted and we can observe to

what extent F’' approximates f. Not only does such an activity bring to the fore

the mathematical content of Part 1 of the Theorem, but it also reinforces our desired

goal of understanding the integral as a limit of approximating sums.

The algebraic formulation of the midpoint approximation using n subintervals
x—a of equal length Ax = is

140 CHAPTER3

[fivat = ¥ f(a + 2i- 1) %)Ax.
i=1

When f is stored in memory as a user-defined function F, program FTC, given below,

takes a and n as inputs and returns an algebraic expression for the midpoint

approximation on level 2 and its derivative on level 1.

The program is due to William C. Wickes of Hewlett Packard and is about

fifteen times as fast as the original program that we devised for the task. It is a

marvel of extremely clever programming, and is written at a level that will not be

obvious to a casual HP-48 programmer. We are indebted to Dr. Wickes for his

permission to use it here.

FTC (Fundamental Theorem of Calculus)

Input. level 2: the lower limit of integration, a

level 1: the number of rectangles, n

As a user-defined function F: an algebraic expression for f(x).

Effect. Returns to level 2 an expression that is algebraically equivalent

to the midpoint approximation

n
Y f(a+(2i—1)%)Ax.
=1

and to level 1 the derivative of that expression.

« X' PURGE X' 3 PICK - >anze«a'«in/z++Fa'Tln/

z++F X 9{T «i} IMATCH DROP —» fg « 0 0 .5 n .5 — FOR «i f

EVAL ROT + SWAP g EVAL + NEXT OVER z + n/ 3 ROLLD z + + n / »

» »

INTEGRALS 141

Consider the elementary function f(x) =sin x. Since f is continuous everywhere,

Part 1 of the Fundamental Theorem tells us that the function

G(x) = j sin t dt

a

is an antiderivative of sin x on any interval (a, b). We take a = 0 for convenience.

Then

X

G(x)=jsintdt=-cost|x =1 -cos x
0

0

and we can readily verify that G'(x) = sin x.

To apply program FTC, begin by constructing a user-defined function F for sin x

and then plotting y = sin x using the default settings for Xrng and Yrng. To better

see what is happening, plot in disconnected mode with the resolution set to .2 (from

the PLOT menu, use .2 ; from the PLOT screen, select OPTS and enter .2

into the STEP field).

................
. .

Now run program FTC with inputs 0 (for a =0) and 6 (for n = 6 rectangles). The

program will return to level 2 an expression in 'X' that represents the midpoint

approximation to G(x) using n = 6 rectangles, and its derivative on level 1. Change

the plotting resolution back to its default sate of 0 and then overdraw the

derivative on the original plot. Note the close agreement. Now change the

resolution back to .2 and overdraw with a plot of the approximate antiderivative.

Finally, to see how closely the approximate antiderivative agrees with the known

142 CHAPTER3

exact antiderivative 1 - cos x, change the resolution back to 0 and overdraw a plot

b

of 1 - cos x:

Differential Equations and the Fundamental Theorem

Equations that contain derivatives of one or more unknown functions are called

differential equations. The simplest differential equations have the form y’ = f(x) and

their general solution is given by y = [f(x)dx + C. Since C is a constant, there are

infinitely many solutions. But we can always obtain a particular solution by

specifying an initial condition that y is required to meet: y(x;) = y,. Together, the

differential equation with an initial condition

y' =f(x), where y(xy) =y

is called an initial value problem.

Part 1 of the Fundamental Theorem of Calculus is really an initial value
X

problem. For if we adopt the notation y(x) = | f(t)dt, then equation (») of Part 1 of

a

the Theorem reads

d
a*;i = f(x), or simply y’' = f(x).

Since y(x) represents the (signed) area between the graph of f and the horizontal

axis over the interval [a, x], we have the initial condition y(a) = 0. Thus, equation

() of the Fundamental Theorem is really the initial value problem

y' = fl(x), y(a)=0.

INTEGRALS 143

The HP-48G/GX will not only find numerical solutions to initial value problems

but will also plot their solutions. To plot a solution to the initial value problem

y'(t) =f(t, y), y(ty) =y, we go to the PLOT screen and choose Diff Eq for the plot

TYPE. Although the screen will show

PLOT Y(T) = F(T, Y)

at the top, the default independent variable is 'X', which is fine for our application

to the Fundamental Theorem. The application we are referring to, of course, is to

simply plot the antiderivative given by Part 1, using its reformulation as an initial

value problem.

The special Diff EQ plot screen is designed to let you plot a solution to the

general initial value problem y’'(t) = f(t, y), subject to the initial condition y(ty) = yy,

over the t-interval [t,, tf]. For our purposes, we will use the default variable 'X'

instead of 'T', and take the initial value of Y to be 0.

EXAMPLE. To illustrate the use of the Diff Eq plotting routine, we will plot an
X

antiderivative I f(t)dt for f(x) = Inx. For convenience, we take a = 1. Thus we want

a

to plot the solution to the initial-value problem

y'(x) =Inx, y(1)=0.

Go to the Diff Eq plot screen and set the screen like this:

TYPE: Diff Eq X : Rad

F: 'LN(X)'

INDEP: X INIT: 1 FINAL: 6

SOL: Y INIT: 0 _ STIFF

144 CHAPTER3

Open OPTS and set the PLOT OPTIONS like this:

TOL: .000001 STEP: Dflt v AXES

H-VAR: 0 H-VIEW: 0 6

V-VAR: 1 V-VIEW: -1 6

H-TICK: 10 V-TICK: 10 v PIXELS

Note: H-VIEW and V-VIEW correspond to Xrng and Yrng, respectively.

Press to return to the previous screen, then ERASE and DRAW to see

a plot of the antiderivative.

The differential equations plotter leaves values stored in X and Y, so you should

now purge X and Y from your VAR menu.

In this case, we know a closed-form expression for the antiderivative: [Inxdx =

xInx — x + C. To meet the initial condition y(1) = 0, we must choose C =1. If you

now overdraw your plot of the initial value solution with a plot of y = xlnx —x + 1

(first, be sure to reset the function type to FUNCTION, and the independent variable

to 'X' and the dependent variable to 'Y'), you will see that the two plots are in close

agreement for x > 1.

INTEGRALS 145

This use of the built-in plotter for numerical solutions to initial value problems

is especially helpful for viewing plots of antiderivatives that have no elementary

closed-form expressions.

Activity Set 3.3

1. (a)

(b)

(c)

(d)

(e)

(f)

Build a user-defined function F for y = x cos x.

Plot y = x cos x in disconnected mode using Resolution .1 (if you are plotting

from the PLOT menu) or STEP size .1 (if you are plotting from the PLOT

screen), with Xrng: 0 6.28 and Yrng: -6.3 1.

Run program FTC with inputs 0 and 6 to construct an approximation to
X

the antiderivative | t cost dt using the midpoint rule with »n = 6

0

rectangles.

Change the resolution (or STEP size) back to 0 and overdraw with a plot

of the derivative of your approximate antiderivative. How closely doesit

appear to approximate y = x cos x?

Now reset the resolution to .1 and overdraw with a plot of your

approximate antiderivative found by FTC in (c).

Use integration by parts to find an elementary antiderivative of y = x cos x.

Choose an initial condition so your antiderivative will pass through (0, 0).

Reset the resolution to 0 and overdraw your plot in (e) with this exact

antiderivative. How closely do the two plots appear to agree?

2. Repeat Activity 1 using the function y = x sin x. Use Yrng: -5.3 2. Zoom out on

the vertical axis by a factor of 1.5 after plotting in part (b).

146 CHAPTER3

In Activities 3 - 5, the function f is known to have no elementary, closed-form

antiderivative. Proceed as in Activity 1, parts (a) - (e). Note any special conditions.

3. Let f(x)= e*’. Draw the initial plot in disconnected mode with resolution .1

using Xrng: -2 2and Yrng: -2 2. Use a=0 and n =6 for program FTC. Reset

the resolution to 0 before plotting the results of FTC.

4. Let f(x) = sin x2. Plot everything in connected mode with default resolution 0

over Xrng: 0 6.28 and Yrng: -2.5 2.5. Use a =0 and n = 20 for program FTC.

The higher value for n is needed because of the more frequent oscillations in the

graph of f. Notice that the derivative of the approximate antiderivative

begins to deviate from f as the oscillations increase in frequency.

5. Let f(x) = % . Draw the initial plot in disconnected mode with resolution .1 using
x

x

Xrng: -6.5 6.5 and Yrng: 0 6.3. Use a=.1 and n =6 for program FTC. Before

plotting the results from FTC, reset to connected mode with resolution 0 and the

independent variable restricted to plot only from 0 to 6.5.

6. Use the Differential Equations Plot Screen to plot the following antiderivatives;

use the indicated settings for H-VIEW and V-VIEW.

(a) _[e-xzdx ;H-VIEW: -2 2 and V-VIEW: 2 2
0

X

(b) | sinx?dx;H-VIEW: 0 6.28 and V-VIEW: -25 25
0

X

(c) | xle¥ dx;H-VIEW: -65 65 and V-VIEW: 0 6.3
1

INTEGRALS 147

3.4 IMPROPER INTEGRALS
(==

In applications of calculus we often meet improper integrals like | fix)dx . The

a

meaning is clear:

oo t

,[f(x)dx = lim jf(x)dx.
t—o0

oo

If the limit is the real number L then we say that the improper integral | f(x)dx
a

converges to L and write

[fix)dx =L
a

If the limit does not exist (is not a real number), we say that the improper integral
oo

J f(x)dx diverges.

a

oo

Assume that we have a convergent improper integral, say | f(x)dx =L. Then

a

for any value of N >a we have

N oo

L= | flxdx +] fix).
a N

The second integral in this sum is called the "tail" and if we can choose N so that

the tail is "sufficiently small’, then we can approximate L with the ordinary
N

integral | f(x)dx . We measure "sufficiently small" by specifying an acceptable

a

error tolerance € > 0, and then attempt to find a value of N for which

148 CHAPTER3

<E€E.

N

= ’L—j f(x)dx

N

Thus, to within the tolerance specified by € , we have | flx)dx =L. The following

a

result is of some help.

Absolute Comparison Theorem

Suppose that f and g are continuous functions for x >a and there is a

constant K such that |f(x)| <K g(x) whenever x is sufficiently large. Then if

J g(x)dx converges, so does _[f(x)dx and

a a

[f(x)dx
a

<[1f(1dx <Kk | g(x) dx.

Two convergent improper integrals that are useful for such comparisons are:

1 1
jxudx =-1 for p > 1.

oo

Jewdx =

a

 for ¢ > 0.
Ceca

K
(1) Suppose that for sufficiently large x, |f(x)| < 7 for some K >0 and p > 1. Then

by the Absolute Comparison Theorem we have

. T 1 K
SA{ |f(X)|dx < KI\}‘. ;dx =W

INTEGRALS 149

K 1 1/(p-1)

With N > 0, to have < e we choose N > {————}S
(p - NP e p-1

(2) Suppose that for sufficiently large x, |f(x)| < Ke=* for some K >0 and ¢ > 0.

Then we have

o0 o o K

J' f(x)dx < I | flo)ldx < KI e dx =N

N N N

K 1
To have N <€, choose N > Eln(g%).

EXAMPLE 8. The improper integral

1 2
e'x /de

J \ 2@

is important in probability theory. A plot of the integrand

 e’ overthe interval [-3, 3] appears below.
1

(x) =
fix \N 27

) 0 oo 0 t t

Now | fix)dx = [fixydx + [flx)dx = lim [fix)dx + lim | f(x)dx . Since | f(x)dx
t—-c0 ¢ t—o0 0 0

-oo -o0 0

is the area of the region between the graph of y = f(x) and the x-axis over the finite

interval [0, t], we can interpret the improper integral | ftx)dx as the area of the

0

"infinite" region between the graph of y = f(x) and the x-axis to the right of x = 0.

150 CHAPTER3

©o

Thus the improperintegral | f(x)dx is the area of the entire infinite region between
-00

oo

the graph of y = f(x) and the x-axis. By symmetry, to show that | f(x)dx converges,
-00

oo

it suffices to show that | f(x)dx converges.
0

oo

e*2 < ¢*2 for x> 1. Thus | f(x)dx converges
0

e'xz/z <

27 27

 Now |f(x)l =

©o

1.
because | e*2 dx converges. Moreover, we can take K=1 and ¢ =75 in (2) above, so

A
0

that

N > lln(—E—) = ZIn(Ej.
¢ ce €

With € =101}, N > 2 ln(l—oz_l—l)z 52.04 and we can approximate

o 52.04

1 2 1 2
e*" /2 dx with ex 2 dx .

J \ 27 J \ 27

0 0

Evaluating this last integral with the HP-48G/GX we obtain .500000000001, so

©co

 1 2
e* /2 dx = 1.00000000002 to within € = 1011,

J \ 2m

0

The exact value is 1.

INTEGRALS 151

Activity Set 3.4

In each of the following, establish the convergence and then evaluate the improper

integral to within the specified tolerance €.

J- Sin x

7
 dx; use € = .01

n/4

 .001dx ; use €
X

2.
J Ve +4

0

xe-2x

3. J dx ; use € =.001

3f+1

0

Vo -1

1
4. J dx ; use € =.001

2

2

Vo
 (Hint: < for what values of x ?)

1

Va5 -1

5. IVx+le'2xdx ; use € =.005
0

(Hint: Vx+1 e= (\]x+1 e'(”“) e e*; what is the maximum value of

Vx +1e®x+1?)

INFINITE SERIES

Approximations by infinite processes are central to calculus. The concept of the

limit of a function

limf(x) =L,
X—=C

which is fundamental to the development of so much in calculus, has its roots in the

intuitive notion that as x approaches the number ¢ through an infinite succession of

increasingly better approximations

X1,X2,X3,...—>¢C

then the corresponding function values are an infinite succession of increasingly better

approximations to the limit L :

f(xl)lf(xZ)l f(x3)l ...—> L.

Infinite series, which are expressions of the form

Yay=a, +a; +az + ...,
k=1

also represent approximations by an infinite process. Since the core of any such series

is the sequence of terms

a,,a,4as, ...,

we usually begin a study of series by first considering sequences.

182

INFINTESERIES 153

4.1 SEQUENCES

A sequence of numbers

(1) a;, a,as, ...

is simply an infinite ordered list. We often use the compact notation { a; }:1 to

represent the sequence (1), and a; denotes the k# term of the sequence.

More precisely, we can view the sequence (1) as the output values of a function f

that is defined only for the positive integers k=1, 2, 3, ...:

a,, a , as ,

o, f2), fO),

We can use the HP-48G/GX to calculate and view the terms of a sequence.

Program SHO, given below, will calculate and show the consecutive terms of a

sequence { a; }k°° . from a specified starting value of k to a specified ending value.

This program, and all the others in this chapter, can be found in the SERIES

subdirectory of the main CALC directory.

154 CHAPTER4

SHO

Input.

Effect:

(Show sequence terms)

Level 3-5: expressions for the k" terms of 1-3 sequences

{t}, {9} and {h,} in terms of the variable ‘K’

Level 2: a starting value for ‘K’

Level 1: an ending value for ‘K’

dynamically displays (every two seconds) the successive terms

of 1-3 sequences {fi}, {gx} and {h,} from the starting value of

k to the ending value, beneath the index k; leaves everything

on the stack.

« DEPTH - b nd « CLLCD IF d 3 == THEN —-f « b n FOR j |

‘K" STO K DUP 1 DISP f EVAL DUP 3 DISP 2 WAIT NEXT » ‘K' PURGE

ELSE IF d 4 == THEN - f g « b n FOR j j ‘'K STO K DUP 1 DISP f

EVAL DUP 3 DISP g EVAL DUP 5 DISP 2 WAIT NEXT » ‘K PURGE

ELSE —- f g h « bn FOR jj ‘KK STO K DUP 1 DISP f EVAL DUP 3

DISP g EVAL DUP 5 DISP h EVAL DUP 7 DISP 2 WAIT NEXT » K

PURGE END END » »

EXAMPLE 1.

oo 1

(a) Consider the sequence { f; }k_1 where fy =% . To see the first 25 terms of this

sequence, arrange the stack as follows and press

3: ‘1/K’

2: 1

1: 25

INFINTE SERIES 155

The display will show, in timed two second intervals, the first 25 terms of

the index k and the sequence { 1/k}. When done, the stack will contain

everything that was displayed, so that you can scroll upward with the

I_T_I and view any particular term.

o oo 1 1
(b) Consider the two sequences { f; }k=1 and { gx }k=1 , where f; = X and g, = 2

To see terms 10 through 20 of these two sequences, arrange the stack as

follows and run program SHO.

4: 1/K

3: 1YKAr2

2: 10

1: 20

The display will show, in timed two second intervals, terms 10 through 20

of each sequence, with sequence { f; } being above sequence { g, | on the

display screen, just below the index k. When done, everything is left on

the stack for your perusal.

It is helpful to regard the terms of the sequences { f; } and { g, } in EXAMPLE 1
1 1

as being sample values from the two ordinary functions f(x) =7 and g(x) = 2

defined for all x > 1. The graphs of the functions f and g consist of all points in

the plane (x,l) and [x,iz) for x 2 1, respectively. Therefore, the graphs of the
x x

sequences { f, } and { gx } will consist of the discrete points (k,%j and (k,%z-j for

k=1,23, ...

To plot the graph of a sequence { gx} , we can use program GSEQ!.
k=1

lprogram GSEQ and a later one GPS were written by Mr. Robert E. Simms of
Clemson University. We are indebted to Mr. Simms for permission to use his
programs here.

156 CHAPTER 4

GSEQ (Sequence Graph)

Input. Level 1: an expression for the k!" term a, of a sequence

{ ax } in terms of the variable ‘K’

Level 2: the number of discrete points on the graph of the

sequence { a} that you wish to see.

As a stored variable: program SDRW (below),

which scales and plots the points that are created by

GSEQ and stored in the variable >DAT

Effect. draws coordinate axes and plots, in sequential order, the

specified number of discrete points (k, a,) on the graph of the

sequence { a, }

« # 131d # 64d PDIM 0 — eq n k « eq {K k} TMATCH DROP ‘eq’

STO [00] 1 n FOR k k NEXT n —LIST 1 « DUP 'k STO eq —NUM 2

ROW— » DOLIST » OBJ» 1 + ROW— ‘SDAT" STO 1 XCOL 2 YCOL

SDRW 7 FREEZE »

 SDRW (a utility subroutine)

Effect. Used by GSEQ and GPS to scale and plot the xy-data in the

matrix 2DAT

« SCLY DRAX {#0d #0d} PVIEW XDAT SIZE 1 GET 1 SWAP FOR

i 2DAT i ROW- OBJ—» DROP R—C PIXON DROP NEXT »

1
EXAMPLE 2. To plot the first 50 terms of the sequence { a4, } where a; =1 arrange

the stack as follows:

INFINITE SERIES 157

2: ‘1/K

1: 50

Now press GSEQ to see the following plot develop:

1

To graphically verify that the graph of ay =7 is simply a discrete sampling of

1
points from the graph of the function f(x) = -~ overdraw the above plot with a plotx 7

of the graph of f(x) = 31; :

Activity Set 4.1

1. (a)

(b)

(c)

(d)

Use program SHO to calculate and view the first 25 terms of the sequence
2

{ ar }, where a; =3¢ . Do these terms seem to be approaching a limit?

Use program GSEQ to plot the first 25 points on the graph of the sequence
{ar }. Does the graph suggest thatlim a;, exists?

k—e

Consider the graph in (b) as a discrete sampling of points on the graph of
2

the continuous function f(x) = % for x 2 0. Overdraw your plot in (b) with

2
the graph of f. What does the graph of f say about Ilim % ?

X2 %
Use I'Hospital’s Rule to analytically find lim5; . What is lim o ?k

X —o0 k —o0 2

158

2.

CHAPTER 4

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(a)

Use program SHO to calculate and view the first 25 terms of the sequence
In k

{ ar } where a; =%

Now use program GSEQ to plot the first 50 point on the graph of { a; }.

Does the graph suggest a limit for { a; } ?

I
Overdraw your plot in (b) with the graph of the function f(x) = % . Does

I
the graph suggest that lim 7L exists?

X—o0

, 1 : : . . Inx
Use 1'Hospital’s Rule to investigate the limit lim —— . Based on your

X —o0

. Ink
results, what can you conclude about [lim 7= 7

k—o

Use program SHO to calculate and view the first 25 terms of the sequence
sin k .

{ ax } where a, =755 . Do these numbers convey to you a sense of what is

happening to the terms a; ask — o ?

Use program GSEQ to plot the first 50 points on the graph of { 4, }. What

does the plot suggest?

Overdraw your plot in (b) with the graph of f(x) = %:,’Z—J , for x 2 0. What

does the new plot suggest about the limit [im S:};—; and the limit
X—oo

in k
lim% ? Is I'Hospital's Rule of any help here?
k —o0

Use SHO to calculate and view the first 25 terms of the sequence { a; }

where a; = (-1) +1(%). Do these numbers convey to you a sense of the limit

iDks1 (1)?
k—oo k

INFINTE SERIES 159

(b) Use GSEQ to plot the first 50 points on the graph of the sequence { a;, } . Is

lim (-1)"*1(-’1;) any more apparent?
k—o0

(c) Overdraw your plot in (b) with the graphs of a function f and its negative

-f. Now what can you conclude about the limit of the sequence { a; }?

5. Use program GSEQ to investigate the limits of the following sequences { a; }:

cos kk
(a) ak_\/?+1 (b) ak=\/7

6. (Just for fun!) Plot the first 300 terms of the graph of the sequence { 4, } , where

a, = sin k.

4.2 SERIES

What do we mean by an infinite series?

M(1) Qr=4ay, +a, +az + ...

k=1

How can we possibly sum infinitely many numbers?

This is exactly the same kind of question we face when confronted with an

improper integral of the form

(2) | fix)dx .
1

How can we possibly integrate from 1 to oo ?

Infinite series and improper integrals have much more in common that mere

superficial appearances. Indeed, they behave in very similar ways.

The improper integral (2) is a limit of ordinary integrals:

160 CHAPTER4

o0 t

[fx)dax =tim | fix)dx .
t—o0

1 1

In a similar way, the infinite series (1) is a limit of ordinary sums:

- N
(3) Yac= lim Y a.

k=1 Noow k=1

N
The ordinary sum Y, a; is called a partial sum of the series. Indeed, the partial sums

k=1

of the series form a sequence { sy }, where the terms are:

$1 =04

S, =ay +4a;

S3=4ay +4; +4aj

N

SN=a1 +ay +...+aN =, d,
k=1

If the sequence of partial sums { sy } has a limit S

lim {sy}=S,
N—ooo

oo

then we call S the sum of the infinite series Y, a; and write
k=1

S = ap .

,, n
p
M
e

In this case we also say that the series converges to the sum S. If the sequence of

partial sums fails to converge to a limit (a real number), then we say that the series

diverges. It is no wonder that students find infinite series difficult to study. We are

combining the terms of one sequence a;,a, , a3 , ... to form the terms of a new

sequence of partial sums s;,s,, s3 , ... , and then have to consider the limit of the

sequence of partial sums:

INFINITE SERIES 161

N
S=limsy = lim Y a.

N—ooo Noe k=1

How can the HP-48G/GX be of use in a study of a subject that is so analytically

complex as infinite series?

To begin, we can use the built-in 3 function to quickly calculate partial sums.

For example, consider the series

1Ll 1t _s L
+2+4+8+...— .k-1| 2Mk

Go to the Equation Writer and build the following expression for the Npartial sum

L
1 2k-1 -M

z

SN =

k

N
2 1

K=1 2

Press ENTER to throw it onto the stack:

1: ‘L (K=1,N, 127 (K= 1))

Open the SOLVE application with, press and load the

expression on level 1 into EQ with . Now open the where you

will see boxes labeled ‘ K | [N ‘ | EXPR=] Ignore the box . Put 10 into

and press EXPR= to see the 10" partial sum

1: Expr: 1.998046875 .

Repeat by putting 20, 30, 35 into and using EXPR= to obtain the 20, 30th

and 351 partial sums:

4: Expr: 1.998046875

3: Expr: 1.99999809266

2: Expr: 1.99999999814

162 CHAPTER4

1: Expr: 1.99999999995

Is there any doubt that the sequence { sy } of partial sums is converging to S = 2?

8

1—— =2
k12k1

, known to converge

x
|
=

oo 1 oo

EXAMPLE 3. The series), 4 is an example of a p-series Y,
k=1 k=1

if and only if p > 1.

What is the sum? Using the SOLVR as above to calculate partial sums, we have

s100 = 1.08232290538

Sp00 = 1.08232319242

ss00 = 1.08232322151

ss0 = 1.08232322861

sspo = 108232323119

seo0 = 1.08232323227

s700 = 1.08232323295

sgoo = 108232323295

Since these last two partial sums agree to 11 decimal places, we have determined

that the sum is S = 1.08232323295 to within the precision of the HP-48G/GX.

As an alternative to using the SOLVR, you can use the following program

INFSUM. This program, a modification of one due to William C. Wickes of Hewlett

Packard in [1], shows the convergence of the series dynamically, by showing the

partial sums as a single number with the last digits changing as more terms are

added. The program sums series that begin with initial index k = 1, so you will

INFINTESERIES 163

have to make adjustments for series that do not start there. It should only be used

with series that are known to converge.

INFSUM

oo

Input. the term a, for the infinite series Y a, , in terms of the
k=1

variable ‘K’

N

Effect. calculates partial sums Y’ a, until two successive sums agree,
k=1

displays the last partial sum and the value of n at which

agreement was reached

« »f « 1 'K STO f EVAL 2 'K' STO DO DUP f EVAL + DUP 3

DISP 1 'K' STO+ SWAP UNTIL OVER == END K 1 - ‘K" PURGE »

Continuing with EXAMPLE 3, put ‘1/K A 4’ on level 1 and run program INFSUM.

You will see the partial sums accumulate dynamically at the top left of the display

screen, until two consecutive sums agree to the precision of the HP-48G/GX. This

agreement is reached when N = 669. Thus to the precision of the machine, the sum
669 1

is S = 1.08232323295 = El @

EXAMPLE 4. Theseries Y, (-1)k*1(1/k®) has terms that alternate in sign. It converges
k=1

by the alternating series test. As an alternating series, we know that the error made

in using any partial sum s, as the sum of the series is less than the absolute value of

the term to be added to get the next partial sum s,,;. For twelve place accuracy, we

must take n large enough so that 1/(n + 1)® < 5x10-13. Using the HP-48 for the

calculation, we find that 1/113% is approximately 4.8x10-13. Thus, calculating the

112% partial sum with the SOLVR we obtain .985551091299 as our estimate of the

164 CHAPTER4

sum, to 12 decimal places. (You can calculate the 113" partial sum to see if you get

agreement or run program INFSUM.)

o0

Since the partial sums of a series Y 4, form a sequence { s; }, it is also helpful to
k=1

plot the graph of this sequence. Program GPS does that. Like its predecessor GSEQ

for sequences, the code is due to Robert E. Simms.

GPS (Graphical partial sums)

Input. Level 2: an expression for the ki term a, of the series

Y ay, in terms of the variable ‘K’
k=1

Level 1: the number of partial sums of the series

Y ay that you wish to plot
k=1

Effect. draws coordinate axes and plots, in sequential order, the

specified number of points (k, s,) on the graph of the
oo

sequence of partial sums { s, } for the series Y, ay
k=1

« # 131d # 64d PDIM 0 0 - eq n s k « eq {K k} TMATCH DROP

‘eq’” STO [0 0] 1 n FOR k k NEXT n —»LIST 1 « DUP 'k STO eq —»NUM

s + DUP ‘s’ STO 2 ROW— » DOLIST » OBJ— 1 + ROW— 3DAT STO 1

XCOL 2 YCOL SDRW 7 FREEZE »

EXAMPLE 5. To show the use of program GPS, we graph the first 50 partial sums of

the series Y, 1 and Y (-1)k l
ik k=1 k

For the first one, arrange the stack as follows:

INFINTE SERIES 165

2: 1/KAZ

1: 50

Now press to see

Despite the fact that these partial sums appear to level off rather quickly,

convergence is extremely slow. Program INFSUM will approximate the sum S to the

full precision of the HP-48 by the 5,849'h partial sum

5849 4
> B = 1.20205689144 .
k=1

oo

1
For the alternating harmonic series,), (-1)fHE , arrange the stack like

k=1

2: ‘(-)AM K+ 1)« (1/KY

1: 50

and press to see

166 CHAPTER4

Activity Set 4.2.1

1. Consider the series Y, 10k /k!
k=0

(a) Apply a standard test to show that the series converges.

(b) Plot a graph of the first 25 partial sums of the series.

(c) Use the SOLVR to obtain a 12-digit approximation to the sum of the series.

(d) Use program INFSUM to obtain a 12-digit approximation to the sum.

Which partial sum gives a full precision approximation?

(e) Overdraw your plot in (b) with the sum of the series.

2. Repeat Activity 1 with the following series:

M
s

™
M

s

(a) 1/k! (b) 5k / k! (c) i (-1)k+1(k/2K)
1 k k=1k 1

3. Consider the series 1?:'1 (-1)k+1 (%)

(a) Prove that the series converges.

(b) Find a value for n so that the n'* partial sum will approximate the sum

of the series to 12 decimal digits.

(c) Use the SOLVR to calculate the partial sum s, for the value of n in (b).

4. Prove that the series Y, (k + 1)/k1° converges. What is the sum to 12 decimal
k=1

digits?

INFINTE SERIES 167

5. (a) Prove that Y k!/(k + 2)! converges.
k=1

(b) Plot a graph of the first 25 partial sums of this series.

(c) Apply program INFSUM to find the sum of the series. Watch closely what

takes place. How can you explain this?

Series and Improper Integrals

We mentioned earlier that the connection between series and improper integrals

was more than cosmetic:

oo

Y a versus | flx)dx.
1

Indeed, for series of positive terms we have the integral test.

Integral Test

Let f(x) be a continuous, positive, decreasing function for x 21 and let a; = f(k)

for k=1,2, ... Then if either | flx)dx or 3, a; converges, both converge. If either
k=11

J fix)dx or Y a, diverges, both diverge.
. k=1

00 oo

In other words, the series ¥ a; and the integral | f(x)dx converge or diverge
k=1 1

together.

oo

Suppose that we have a convergent pair, S= Y a; and I = | f(x)dx , as above.
k=1 1

In Chapter 3 (Section 3.4.) we saw that

168 CHAPTER4

N o0

I=| fixdx = [fidx + | fix)dx.
1 1 N

(the “tail”)

If we can make the tail of the integral small enough, then we can approximate the
N N

improper integral I with the ordinary integral [fl)dx : 1= | flx)dx.

1 1

Similarly,

oo N oo

S=Xa =Xax + Xy
k=1 k=1 k=N+1

(the “tail”, R)

And if we can make the tail of the series small enough, then we can approximate
N N

the series with the ordinary sum Y a;:S =) a;.
k=1 k=1

As with improper integrals, we measure “small enough” by specifying an

acceptable error tolerance € > 0, and then attempt to find a value for N so that

N
= S—Zak <E.

k=1
2 q

k=N+1
N

Then, to within the tolerance specified by €, S = Y ag .
k=1

The trick, then, is to relate the tail Ry of the series to the tail of the integral.

The following picture tells all:

INFINITE SERIES 169

A

\ y =f(x)

N~

41 | 47 IN+1| AN+2

1 2 .. N N+1 .. > X

RN = 2 ak = aN+1 + aN+2 4+ ... < I f(x)dx

k=N+1
N

(tail of the integral)

Since f(x) 20 for all x, the Absolute Comparison Theorem for improper

integrals applies (see Section 4.4).

K
(1) Suppose that for sufficiently large x, f(x) < 7 for some K > 0 and

p > 1. Then by (1) in Section 4.4, we have

Ry € | flx)dx <
N

__K_
(p—1)NPL

Thus, to have Ry < (pT)NP'l < €, we choose

1/(p-1)

N> {5.#}

(2) Suppose that for sufficiently large x, f(x) < Ke* for some K >0 and

¢ > 0. Then by (2) in Section 4.4., we have

170 CHAPTER4

. K
Ry < | flvdx <—zx

N

K 1
To have Ry < —x < €, we choose N> =In [fijce c ce

= cos(k) L -
EXAMPLE 6. Show that), o converges and find its sum S to within € =10°.

k=1

: . ¢ cos(x) : . .
The natural integral to use is J ©_ 4x, which converges on comparison with

1

c 1 = k 1
J 2 dx. Thus, the series Y, Coig) also converges. Since f(x) =C—Oi(f) < 3 for

k=11

N
cos(k

x 2 1, to approximate the sum S by —,ch) to within € =10, we need to choose
k=1

1/(5-1) 614v(LT -2

e 5-1

2 cos(k)
Thus S =), 5 = 522820670966 (Equation Writer, >NUM)

k=1

Activity Set 4.2.2

In each of the following, establish the convergence of the series and then find the

sum to within the specified tolerance €.

= sink
1 , € =.012 E

= k
2. % e =.001

8

k e-2k
3. Y a;, where g, =

= 3= e

INFINITE SERIES 171

The Ratio Test

oo

The well-known ratio test states that for a series Y, a; of positive terms, if the
k=1

.Gk ..ratios _a,: approach a limit r,

. Ak +1
lim —— =r

then the series converges for r <1 and diverges for r > 1.

oo

Suppose we have a series of positive terms Y a; that is known to converge by
k=1

the ratio test. As in the preceding section, we wish to approximate the sum S of

the series by a finite sum Y a; to within a specified tolerance €. We must
k=1

therefore choose a value for N that will make the absolute value of the tail less

than e:

© k:%fl " =k=§f+1<E .

Let I be any number so that r < I"< 1. Since /fl_To az—:l = r, we can choose N so

that

(1) “L’;—kl < T forall k2N.

A
~

—
—

N — —
—

172 CHAPTER4

 a .
For all k>N, the ratios Z;l will lie in the open interval centered at r.

If we can also choose N so that

@) on(17) <e

then we will have our desired result (*). The justification is as follows.

Ak +1

%

 Since we have chosen N so that < I for k2N then we have

an+1 S Tay

ans2 < Tay,, < MPay

an+s S Tan, < Day

etc.

Thus

(i) ane +aNns2 +-..+tanm < (C+ T2 +... .+ ™) ay.

 Since | I'| < 1, the geometric series '+ I'2 + I® + ... converges to In fact,
1-r°

since the sequence of partial sums of this geometric series is bounded and increasing,

we have

 (i) T+I*+...+IMM< for all M.
I

1-Ir

Combining (i) and (ii) we have

(iii) + + < r
111) an+1 . e AN+M an 'I—:'T .

Therefore, we can obtain (*) by choosing N so that, in addition to (1), also

r
aN(fi) <E.

INFINITE SERIES 173

= k10 1
EXAMPLE 7. Consider the series), T0F By the ratio test, lim Geel 10 S° the

k=1 Ak—o0

series converges. We wish to approximate the sum of the series to within € = 104,

1 1 0o
Choose I'= 5 To satisfy condition (1), choose N so that E(E—;—lj < 5 for all

10

k 2 N. This reduces to (1+-11€) <5 for k 2 N, and the smallest such N = 6. To

10
satisfy condition (2) we must also choose N so that JON<€ = 104, Build a user-

N10

defined function for G(N) = 108 and evaluate G for different values of N, starting

with the value N = 6. We find that N = 17 is the first value that gives G(N) <
17 110

104 Now evaluate the sum), 10% on the HP-48G/GX to obtain S = 376.17943.
k=1

Activity Set 4.2.3

Establish the convergence of each of the following series by the ratio test and then

find the sum of the series to within the specified tolerance €.

1. Y % ,e =10°%
k=1

s & ;2. - ,€ =10
i

s 5 EENEeD
k=1 :

> 10kk!
. A , =10°& X @k+1y €

© ok
5. Z .Z__(_I_H-_l) ,E = 106

k=1 k

 TEACHING CODE FOR PART |

APPENDIX

The special-purpose HP-48G/GX programs for teaching single variable calculus

that are contained in this book are called teaching code; a listing appears on the

inside back cover. The teaching code is readily available on a diskette from the

author for downloading to an HP-48G/GX from a microcomputer. This appendix

shows how the teaching code is organized in files, or directories.

A factory-fresh HP-48G/GX calculator contains only the built-in HOME

directory, indicated by the message { HOME } at the top left of the stack display

screen. The teaching code for calculus is stored in a directory called CALC. The

CALC directory contains three subdirectories, each one containing teaching code

related to a major topic.

HOME

CALC

DERIV INTG SERIES

e Subdirectory DERIV. Contains the teaching code related to differentiation (see

Chapters 1-2): INV.F, derXROOT, IM.y', Y', F.XY, INFL1, INFL2,

NEWTON, TAY.A, TAYLAT, TAN.L, and PAR'".

174

TEACHING CODE 175

e Subdirectory INTG. Contains the teaching code related to integration (see

Chapter 3): FABSTO, NSTO, GRECT, LRECT, RRECT, MID, TRAP,

SIMP, SUM, F.val and FTC.

e Subdirectory SERIES. Contains the teaching code related to series (see Chapter

4). SHO, GSEQ, INFSUM, GPS, and SDRW.

To execute any of these programs, open the CALC directory with the CALC |

key, then open the appropriate subdirectory with its menu key. Put the necessary

inputs to a particular program on the stack, execute the name of the program by

typing the correct name and use the ENTER key, or using the appropriate menu key.

You have access to built-in commands from any CALC subdirectory without

exiting from the subdirectory. Type the command, press ENTER (be sure to first

provide the necessary inputs on the stack), or use the appropriate built-in menu key.

If you use a built-in menu key, return directly to the subdirectory you are in with the

VAR key.

Because the HP-48 needs program derXROOT in order to differentiate the

XROOT function, we recommend that you move it from your DERIV subdirectory into

your HOME directory, whereit sill be accessible from anywhere. Here is how to do

that. Open your DERIV subdirectory and recall derROOT to the stack with

DERXR |, then put its name on the stack using D DERXR l ENTER |. Use

HOME to go HOME. Press to store the program in HOME directory.

To move up from a particular CALC subdirectory to the main CALC directory,

use the UP key (the left-shifted E] key). To rearrange any of the variables in a

subdirectory of CALC (including the CALC directory itself), apply the command

ORDER (on the [€|MEMORY DIR submenu) to a list that contains the names of the

variables in the desired order, left-to-right.

176 APPENDIX

And finally, a word of caution. With any object on stack level 1, pressing

and then the menu key beneath a particular user-constructed variable (in particular,

one of our teaching code programs) will overwrite the contents of that variable with

the object from level 1. So be careful; in a hasty moment it is easy to destroy

teaching code!
HP-48G/GX Teaching code

derXROOT Derivative of XROOT

F.val Utility for SUM

F.XY Evaluate F(x,y)

FABSTO Store f, a, b

FTC Fundamental Theorem of Calculus

GPS Graphical partial sums

GRECT Graphical rectangles

GSEQ Sequence graph

IM.y' Implicit differentiation

INFL1 Inflection point via f’

INFL2 Inflection point via f”

INFSUM Sum a series

INV.F Inverse function

LRECT Left rectangle sum

MID Midpoint rectangle sum

NEWTON Newton's Method

NSTO Store n

PAR' Parametric derivative

RRECT Right rectangle sum

SDRW Utility for GSEQ, GPS

SHO Show sequence

SIMP Simpson's rule

SUM Utility for LRECT, RRECT,etc.

TAN.L Tangent line

TAY.A Taylor polynomial at x = a

TAYLAT Taylor polynomial at x = a (alternate version)

TRAP Trapezoid sum

Y' Implicit derivative

PART
L DIFFERENTIAL EQUATIONS

Part II contains examples and exercises which require a graphics calculator and

supplement the elementary differential equations course. Students learn early in such a

course that important mathematical models for scientific problems often contain

differential equations and that particular solutions of these equations describe the

behavior of the model. The problem solver often has some intuition concerning how the

system should behave and the graphical properties of a single solution or a family of

solutions are an important clue to the correctness of the model and provide qualitative

properties of the solution. Even if analytical expressions can be obtained for the solutions,

their graphs may reveal behavior a scientist may not discover from these expressions.

The HP-48G/GX calculator is a great graphics and computational tool in this course. It

can be used in class to illustrate concepts. It can be used for homework in your favorite study

area, for example, a library or a dormitory room. The graphs and computations that are

created on the calculator can be stored or recreated on a microcomputer. The presentation

does not require that the reader be a good HP 48 programmer since nearly all of the

programs are explained within this manual.

One of the distinctive features of the HP-48G/GX is a built-in program for calculating

and displaying in the same graph approximate solutions to one or more initial value

problems containing differential equations. The HP-485/SX does not have such a program

but we will present user programs which will accomplish the same purposes. To emphasize

the statement given above, the capability to easily display solutions of several problems

allows us to study how the solutions depend on various parameters and to focus on

geometrical characteristics of a system.

177

178 PART Il

The first part of Chapter 5 describes the programs that have been provided (in the HP-

48G/GX) for obtaining and plotting approximate solutions of initial value problems. Then

we show how to construct programs using elementary algorithms (the Euler and improved

Euler algorithms) for obtaining and plotting approximate solutions. These programs can be

used on both the HP-485/SX and HP-48G/GX. They can be adapted for various special

purposes such as creating other graphical displays or for use in higher order numerical

methods for differential equations such as the Runge-Kutta algorithms.

Chapter 6 contains examples and exercises to illustrate graphical study of the

characteristics of solutions obtained in the portion of the course dealing with first order

differential equations. Chapter 7 concerns the solution of two first order differential

equations or a single second order equation with initial conditions. Because the HP-48

processes vector and scalar quantities with many of the same commands,it is possible to use

some programs for scalar systems as vector programs, including the algorithms for solving

initial value problems (Euler, improved Euler, Runge-Kutta, etc.). To solve and plot the

solutions of a second order differential equation with initial conditions, we borrow from

problems involving particle motion. For displacement x(t) and velocity v(t), of the

solution of the pair of equations

dx/dt=v, dv/dt =g(t, x, v), x(tp) and v(tp) given,

the function x(t) satisfies the second order initial value problem

2

d_)2< = g(t, x, %’i), x(to) and %(tO) given,

dt

and conversely, if we have a solution x(t) of the second order initial value problem, the

pair x(t), dx/dt(t) = v(t) satisfies the pair of first order differential equations. Thus, to

solve the second order initial value problem we make a vector

[Y1, Y2] =[x, v] and solve the vector system

PART Il 179

dx . y

dt
)

dyY
E;— dv =F(t, Y) = _

a 8(": X, V) g(tr Yll YZ)

with Y(tg) = column [x(tg), v(tg)] as given using the same algorithms as for a first order

scalar problem. In chapter 7, exercises are provided to study in particular the solutions of

the second order differential equations encountered in linear and nonlinear models of

mechanical springs and electrical circuits.

Chapter 8 contains programs that construct solutions of linear vector systems of

differential equations of the form dy/dt = A y + f(t). Chapter 9 contains several problems

that extend the earlier material and result in three or more differential equations and

contains a set of programs that can be used to sketch the direction field for a pair of

differential equations.

Yy -,
~ 7’
N /
N !

/
~ 1

YOV N NS N Y Y
YOV N NTS N VY Y Y
VN N SNES N N Y Y
YN N NTS N N V)Y
NN N 018N N S N Y

X' + X' -x2=0

1.5 - N
-_ \
- \

:@)
) |x

\ 1
~ I2
~ /
N /
~ 7’

1
y
l

7
7
7
7

Assorted Direction Fields

with Solution Overlays

' N —
—
]
—

S
\

S
N
\

I
X
R
R
A
N

A
R
N
/
/
]

V
I
N
W
-
7
7
9
7
/

=
l

L
I
N
s
L

z
-

+ D z
—

+
U

%
,

4] o

L
A
Y

L
I
S

o 1
1
7
~

1
o

1
Y

180 PART Il

A convenient directory structure for the material in Part II is as follows:

HOME: DE1 MTX

|

WKSP

level 2: G.12 G.OI GLTY ER.SE IN.FN IN.PP

level 2 T Y FN DIRF FN.EQ| EQ
page 2

level 2 DF1 DF2 DF3

|

DF4

|

TOL HSpage 3 - °

HOME contains various entries, perhaps one being the DE1 subdirectory — in which you

may group together all the stored quantities for differential equations. HOME is the parent

directory of subdirectory DE1. HP-48S owners should create directory DE.2 instead of DE.1

(see below).

To create subdirectory DE1, press D DE1 CRDIR |M (note that CRDIR |M appears

on the MEMORY menu): a new label M appears in the original VAR menu. Pressing

M will send you to this subdirectory, which is now empty.

You should enter the programs in DE1: IN.FN, IN.PP, G1.TY, G.0l, G.12 ER.SE, FN, T,

Y, TOL, HS, PPAR, and EQ. The programs INIT1, GRAF, N, H, PPAR, EULER, IULER,

INIT.I, G.TYI, etc. (if used) should be entered into a separate directory, DE2. Subdirectory

MTX should contain the PIV, ROKL, and CHAR programs. You may want an WKSP

directory for odds and ends.

PLOTTING SOLUTIONS FOR DIFFERENTIAL

EQUATIONS ON THE HP-48

Suppose we wish to plot an approximate solution of an initial value problem

dy E
dt - (t’ Y), y(tO) - yO

for some interval tg <t < tf, where tf may not be predetermined. What inputs to a

calculator are required?

e A program that gives the value of F when t and y are

specified.

e The initial quantities tp, yo and criteria for completion

(e. g. the final value of tf).

e The plot window must be specified and the plot screen may

have to be erased.

e It may also be necessary to specify an appropriate algorithm

for computing the approximate solution and any necessary

inputs to the algorithm such as a global error tolerance and a

starting value of the step size.

e The command to draw.
There are three methods on the HP-48G/GX to provide these inputs and obtain a

plot of an approximate solution. The built-in method prompts the user for the

necessary information with input forms and choose boxes. Alternatively, we can

182 CHAPTERS

construct a set of programs that take or generate some of the required inputs from the

stack and then call the basic algorithm to calculate solutions in a plotting program.

This alternative method is particularly useful when only one or two of the inputs

must be modified or when the stopping criterion is nonstandard. The third method is

to construct programs that employ easy algorithms for computing and plotting

approximate solutions to initial value problems. This last method can be used on the

HP-485/SX calculators. We will illustrate each of these methods with EXERCISES.

The user must make a decision on the appropriate method for the other EXERCISES.

In this section we begin with the built-in method, then pass on to the second

alternative. The third method will be featured in a separate section of this

chapter.

5.1 USING BUILT IN PROGRAMS

Open the PLOT application with PLOT. The cursor keys can then be used to

move around the screen and highlight the desired fields. Highlight the TYPE

field, press CHOOS, highlight Diff EQ and press OK. If the STIFF field is checked,

highlight it and press CHK to remove the check. This will cause the Runge-Kutta

Feldberg algorithm to be used for the initial value problem.

o Highlight the F field, type in the desired function F(T,Y) and

press OK.

e Set the INDEP variable to T and specify its initial and final

values. Set the SOLN field to Y and specify its initial value.

e Press OPTS, set the H-VAR (by pressing CHOOS, highlight

the desired field and OK) and the V-VAR variables in a

similar manner, set the limits of H-VIEW and V-VIEW.

o Press ERASE and DRAW.

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 183

EXERCISE 5.1: Construct a plot of the solution of y ' + 3y = cos t, y(0) = .3 for 0 <

t < 6.283 using the calculator's differential equation plot feature. Enter COS(T) - 3*Y

in the F field of the input form. (Note that the calculator automatically places this

function within ' marks.) Make sure T is the INDEP variable, the H-VIEW is set to 0

6.283 and the V-VIEW is set to -.5 .5, then ERASE and DRAW.

After completing this EXERCISE, you should check to see that the program which

calculates the values of F(T,Y) is stored in the variable EQ. To get some confidence

in the calculator solution, we can plot the exact solution y = .3 cos(t) + .1 sin(t).

Press ON to return to the PLOT application, change the TYPE to Function, and enter

.3*COS(T) + .1*SIN(T) as EQ. (Again the calculator places ' marks around the

function.) In this case we want to overlay the new plot over the old one so do not

ERASE. Press DRAW. Note the good agreement between the approximate solution

and the exact solution.

EXERCISE 5.2: Construct a solution of y ' = sin (ty), y(0) = 2 for 0 < t < 6. Choose

the program 'SIN(T*Y)' (or << 'SIN(T*Y)" EVAL >>) and V-VIEW as 0 8. Now

overlay the solution of the same differential equation which satisfies the initial

condition y(0) = 4, then overlay a third solution of the same differential equation

which satisfies the condition y(0) = 6. (Note: We do not know a formula for the

exact solutions of this differential equation and this overlay process will be used

frequently in this chapter to indicate the sensitivity of a problem to its inputs.)

EXERCISE 5.3: Construct a graph of the solution of y" + 5y +y =0, y(0) =0,

y'(0) =1, for 0 <t <6.283. We convert this problem to a first order format using the

variables y and y' as components of a vector w = [y, y'l. Then

w ' = [w(2), -(.5 w(2) + w(1))] and w(0) = [0 1]. Our procedure calls for an appropriate

F function which in this case will be a 2-vector. Then we provide the program

<< 'W(2)' EVAL '5"W(2)+W(1)' EVAL NEG 2 —»ARRY >> for F together with the

184 CHAPTERS

INDEP variable name T, SOLN name W and the INIT vector [0 1] for SOLN. If we

want a graph of W(1) versus T we choose INDEP (i. e. 0) for the H-VAR and

SOLN(1) for the V-VAR on the OPTS page. V-VIEW should be set at -.8 .8. (If we

want a W(1) versus W(2) plot we choose SOLN(1) for H-VAR and SOLN(2) for V-

VAR on the OPTS page.)

X"+ 4x = 12 cos (5t), x(0) =x'(0) =0

EXERCISE 5.4: The figure shown above is a plot of the solution of the indicated

problem for 0 <t < n. What function F in the variables T and Y (vector with 2

components) is appropriate for the calculator input form ?

Hewlett Packard has also provided several "smaller" programs that perform

either individual or multiple steps in either of two basic algorithms for

approximating the solution to a differential equation. These programs can be

embedded in user programs to produce variations of the basic program described

above. The advantages gained by this process include some speedup when most

parameters are already set and any modifications of the basic problem not treated

easily by the first method. For example, the final time tf may be "when some

condition is satisfied" rather than a simple number which is known beforehand.

You can construct programs that ask for part of the total information required for

a solution plot. For example, the first program IN.FN asks you to write a program

for the function F(T,Y) (in variables T Y) which is then stored in FN.

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 185

Program Name: IN.FN

Purpose: The user supplies program FN

Stored Quantities: none

No input is required. The appropriate response is a program.

<< "ENTER PRG FOR FN IN T Y" ""

INPUT OBJ— 'FN' STO >>
Example responses might be << '-T*Y' EVAL >> (or the reverse Polish notation

program << T Y *NEG >>) for the function F(T,Y) = - T*Y or

<< 'Y(2)' EVAL 'Y(1)' EVAL NEG 2 —ARRY >>

for the function F(T,Y) = column [Y(2), -Y(1)].

The next program asks the user to set the viewing window for the plot.

Program Name: IN.PP (plot parameters)

Purpose: The user supplies XRNG and YRNG

Stored Quantities: none

No input stack is required. The appropriate response for the first

query is a pair of numbers, H-min and H-max. The response for the

second query is a pair of numbers V-min and V-max.

Output: New values for XRNG, YRNG. PICT has been erased.

<< "KEY IN XBRNG" " " INPUT OBJ— XRNG

"KEY IN YRNG" "" INPUT OBJ— YRNG ERASE >>
Note: The reader has probably correctly inferred that the commands XRNG and

YRNG set the H-VIEW and V-VIEW variable ranges.

186 CHAPTERS

We wish to present a program to give a composite graph in the (T, Y) plane for a

differential equation with one or more initial conditions such as indicated in the

figure shown below.

Solutions of Y' = SIN(T "2-Y *2)

withY(-2)=-3and Y(-2) =-1.5

The following program contains the basic ingredients of a user plotting program. The

number 1 in the name indicates that the program is for a scalar differential equation.

The TY designation indicates that the plot is a (T, Y) plot.

Program Name: G1.TY

Purpose: Generate a T Y plot of the solution to T¢

Stored Quantities: XRNG YRNG FN TOL HS

Input level 3 level 2 level 1

To Yo Ty

The output stack is empty, the variables T Y contain updated values.

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO'T" STO

- TF << {T YFN } TOL HS T Y R—»C 4 ROLLD DO

RKFSTEP T Y R—C DUP 6 ROLLD 5 ROLL LINE DUP T +

TF UNTIL > END DROP TF T - RKFSTEP T Y R—C DUP 6

ROLLD 5 ROLL LINEDROP TF T - RKFSTEP T Y R—»C 5

ROLL LINE 3 DROPN >> PICTURE >>

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 187

Notes: Typical numbers for HS and TOL are .005 and .00005 and are to be stored

before execution of this program. If the user wants other names for the variables

other than T Y FN, such changes can be made by substituting for { T Y FN}, T, and

Y, the desired alternate notation. The command RKFSTEP invokes the built-in

Runge-Kutta-Feldberg program for one step.

EXERCISE 5.1a: Construct a plot of the solution of y ' + 3y = cos t, y(0) = .3 for

0 <t < 6.283 using the programs described above. Execute IN.FN, respond by typing

<< 'COS(T) - 3"Y' EVAL >> and press ENTER. Execute IN.PP, respond by typing 0

6.283 and ENTER,respond by typing -.5 .5 and press ENTER. Put0 .3 6.283 on the

stack and execute G1.TY. As in EXERCISE 1.1, plot the exact solution

y = .3 cos(t) + .1 sin(t). Press PLOT, change the TYPE to Function, and enter

.3*COS(T) + .1*SIN(T) as EQ. In this case we want to overlay the new plot on the

old one so do not ERASE. Now press DRAW. Note the good agreement between the

approximate solution and the exact solution.

EXERCISE 5.2a: Construct and plot solutions of y ' = sin (t1-9yR), y(0) = 2 for

0 <t £ 8 when R has the values .75, .5 and .33, in the same picture as follows:

Execute IN.FN, respond by typing << 'SIN(TA.5*YAR)' EVAL >> and press ENTER.

Execute IN.PP, respond by typing 0 8 and ENTER,respond by typing 0 4 and press

ENTER. Put .75 on the stack and press 'R' STO, then put 0 2 8 on the stack and

execute G1.TY. Now put .5 on the stack, press 'R STO then put 0 2 8 on the stack

and execute G1.TY. Finally put .33 on the stack, press 'R’ STO, put0 2 8 on the

stack and execute G1.TY. Notes: Here we are observing the solution for three values

of a parameter. The process of storing a value for R and placing appropriate input on

the stack for the graph program can be abbreviated in various ways. For example,

store the program << 'R' STO 0 2 8 >> under a name, say P.1. Then put one of

the values of R on the stack, execute P.1, then execute G1.TY,etc.

188 CHAPTERS

Suppose that the user wants to plot (T, Y(I)) for a vector system Y' = F(T,Y). We

will call the program G.0I where the O represents the T variable and the I

represents the Y(I) variable. The modification consists of changes made to G1.TY in

four locations in which the Y number in G1.TY is changed to 'Y(I)) EVAL and adding

the first << — I and the last >>. The user can avoid retyping the whole program

by pressing 'G1.TY' RCL, EDIT, typing the corrections pressing ENTER, 'G.0I' STO.

Program Name: G.0I

Purpose: Generate a T Y(I) plot of the solution

to T¢

Stored Quantities: XBRNG YRNG FN TOL HS

Input level 4 level 3 level 2 level 1

To vector Yg T; I

The output stack is empty, the variables T and Y contain updated values.

<< > I << {#0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO '

T STO —» TF << {T Y FN } TOL HS T 'Y(I)) EVAL R—C 4

ROLLD DO RKFSTEP T 'Y(I)) EVAL R—»C DUP 6 ROLLD 5

ROLL LINE DUP T + TF UNTIL > END DROP TF T -

RKFSTEP T 'Y(I)) EVAL R—»C DUP 6 ROLLD 5 ROLL LINE

DROP TF T - RKFSTEP T 'Y(I)) EVAL R—»C 5 ROLL

LINE 3 DROPN >> PICTURE >> >>
EXERCISE 5.3a: Construct a composite (t, x) plot of the solutions of

x'"+Rx'"+x=0,x(0)=0, x'(0) =1, for 0 £t £6.283 when R = .5, when R= 2 and

when R = 2.5. We convert this problem to a first order format using the variables y

and y' as components of a vector y = [x, x']. Then y' = [y(2), -(R y(2) + y(1))] and

y(0) = [0 1]. Our procedure calls for an appropriate F function which in this case will

be a 2-vector. Then we provide the program << 'Y(2)' EVAL 'R*Y(2)+Y(1)' EVAL

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 189

NEG 2 -ARRY >> as a response to the query in the IN.FN program and the

responses to set 0 6.283 for XRNG and -.8 .8 for YRNG in IN.PP. We store the value

.5 in the variable R and place the objects 0, [0 1], 6.283 and 1 on the stack and

execute G.0I. We change R to each of the numbers 2 and 2.5 and place input

quantities 0, [1 0], 6.283 and 1 on the stack and execute G.0I twice more to overlay

plots of the other two solutions.

A similar change to G.0I gives the plot program G.12 in which the component

Y(1) of the solution is plotted against the component Y(2). The change is made in

four places and commands T 'Y(1)' EVAL are changed to 'Y(1)' EVAL 'Y(2)' EVAL

and by removing the first << — | and the last >>.

Program Name: G.12

Purpose: Generate a (Y(1), Y(2)) plot of the solution

from T, to T¢

Stored Quantities: XRBRNG YRNG FN TOL HS

Input: level 3 level 2 level 1

Ty vector Yo T

The output stack is empty, the variables T and Y contain updated values.

<< { #0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T' STO

— TF << {T Y FN } TOL HS 'Y(1)' EVAL 'Y(2)' EVAL R—C 4

ROLLD DO RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL R—C DUP 6

ROLLD 5 ROLL LINE DUP T + TF UNTIL > END DROP TF T

- RKFSTEP 'Y(1)' EVAL 'Y(2)) EVAL R—»C DUP 6 ROLLD 5

ROLL LINE DROP TF T - RKFSTEP 'Y(1)' EVAL 'Y(2)' EVAL

R—>C 5 ROLL LINE 3 DROPN >> PICTURE >>
For consistency, from this point we will use notation as follows: for first order

differential equations, Y will be the dependent variable and T will be the

independent variable. For higher order differential equations, x will be the

190 CHAPTERS

dependent variable, t will be the independent variable and we will reserve Y as a

vector with components which may be constructed from the x, x', etc. variables.

EXERCISE 5.5: Construct an x vs x' plot of the solution of x" + .5 x' + x =0,

x(0) =0, x'(0) =1, for 0 <t <6.283. As before, for vector y = [x, x'] we have

y ' =I[y@),-(5y@2) +y1)l, y(©)=1[01].

An appropriate F function is given by the program << 'Y(2)' EVAL '.5*Y(2)+Y(1)'

EVAL NEG 2 -ARRY >> with the INDEP variable name T, SOLN name Y and the

INIT vector [0 1] for SOLN. We choose SOLN(1) for H-VAR and SOLN(2) for V-VAR

on the OPTS page. HVIEW should be set at -1 1 and V-VIEW should be set at -1 1.

ERASE and DRAW. This approximate solution of the differential equation can be

compared to the exact solution by overlaying the parametric curve

e~25t 1.0328 (sin(.9862t)+i*(.9862 cos(.9862t) — .25sin(.9862t))).

on the same picture. (Use Parametric type in the PLOT environment.) The user

should notice that the plot of the approximate solution consists of a set of points

{(y1(ti) , y2(ti)): i =1,2, ..}

connected with straight lines. The parametric plot also has this form; however, the

points are spaced much closer.

We recommend that the user create a subdirectory for the programs in this

section. A possible subdirectory name is DE.1. This subdirectory should contain the

programs G.12, G.0I, G1.TY, ER.SE, IN.FN, IN.PP, T, Y, FN, TOL, HS, EQ, and

PPAR in this order. The program ER.SE given by << ERASE >> is placed in this

directory for convenience. The subdirectory can be created by placing the name

'DE.1" on the stack, then pressing MEMORY, pressing DIR, then CRDIR. To

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 191

obtain the desired order, press { and enter the program names in order, press ENTER,

then ORDER (located in the same MEMORY DIR menu).

5.2 ELEMENTARY USER PROGRAMS

We present several user programs that are useful in a differential equations

course. The students should have some experience with algorithms used to calculate

approximate solutions to initial value problems containing differential equations and

with programs to implement these algorithms. The simplicity of the programs

presented here should help the reader whenever more complicated programs are

required for other purposes.

The Euler algorithm for the solution of an initial value problem results from

assuming the slope of the solution of a differential equation dy/dt = F(t,y) is well

approximated by the constant F(t,, y,) in the interval t,, <t <t + h and the

algorithm is given by t, ., =t + h, y, ., =y, + hF(t,, y,). (Here y, is the

approximation of y(t,) and it is assumed that initial values t, and y, and the step

size h are given so the algorithm may be initiated.) Our program is called EULER

and takes t, y from the stack and returns the results of a single step using Euler's

algorithm. It will use the step size H, which is stored, and a stored program F.N

that takes t,y from the stack and returns F(t,y).

Program Name: EULER

Purpose: Generate new values of x and y resulting from

one step in the Euler algorithm.

Stored Quantities: H F.N

Input Output

level 2 level 1 level 2 level 1

tn yn tn+1 Yn+1

<< DUP2 FN H * + SWAPH + SWAP >>

192 CHAPTERS

Notice that the structure of F.N is different from the FN program given in the first

section of this chapter. F.N requires input from the stack, whereas the programs for

FN in section 1 require stored values for t and y.

The reader should test this program using the F.N program << —» T Y "Y' >> for

the step size .1 stored in H and initial conditions y(0) = 1. (Put 0 1 on the stack and

execute EULER EULER EULER, etc.) Note: Here we are solving y' =y, y(0) =1,

using steps H = .1 and obtain the following results:

t y t y t y

1 1.1 4 1.46 7 1.95

2 1.21 .5 1.61 .8 2.14

3 1.33 .6 1.77 9 2.36

and y at t = 1.0 is 2.59, a crude approximation of 2.718....

EXERCISE 5.6: To obtain approximate values of the solution of y' = sin(ty), y(0) =3,

enter the program F.N givenby << — T Y 'SIN(T*Y)' >>, put initial values 0 3

on the stack and execute EULER, EULER, etc. You should get .1 3, then .2 3.03,

then .3 3.09, etc. (Make sure the calculator is in RAD mode.)

Suppose we want to execute EULER, say, N times and observe the output only at

t =t, + NH. The following program, called RPT (for repeat), requires that N be

stored, requires initial values of t and y as input, and outputs the final values of t

andy: <<1 N START EULER NEXT >>.

The Improved Euler algorithm is another method for approximating the solution

of an initial value problem. The method results from assuming the slope of the

solution is well approximated by the average of f(t,, y,) and a guess at

f(ty,1, Yksq) in the interval t, <t <t, + h. The algorithm is given by

teer = b+ hy vy=y + hIf(ti) + £tg, Yethi(te, yi)1/2.

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 193

(Again y, is the approximation of y(t,) and t;, y, and h are given so the algorithm

may be initiated.) This program is named |I[ULER and takes t y from the stack and

gives (t+h) (y+h*[f(t,y)+f(t+h,y+h*f(t,y)]/2). Note EULER is part of this

program.

Program Name: IULER

Purpose: Generate new values of x and y resulting from

one step in Improved Euler algorithm.

Stored Quantities: H F.N EULER

Input Output

level 2 level 1 level 2 level 1

ty Yn ths1 Yn+1

Instruction Resulting stack

<< DUP2 DUP2 EULER t y t y t+h y+hf(ty)

F.N 3 ROLLD t y f(t+h, y+hi(ty)) t y

FN + 2/ t y (f(t+h, y+hf(t,y))+f(t,y)) /2

H*+ SWAP H + SWAP [y+h*{ f(t+h,y+h*f(t,y))+f(t,y)}/2] t+h

>>

Just as in the EULER program we require that the program F.N and the step size

H be stored before execution. A multiple step program can be obtained by substituting

IULER for EULER in the program RPT given just after EXERCISE 2.1.

Try IULER using the F.N program << — T Y 'Y' >>, H =.1 and initial data 0

1. Execute 9 times. You should get 1 2.7140808--- . (Euler gives about 2.593742---,

not nearly so good an approximation of e = 2.71828--- .) In general, the improved

Euler method can be shown to be a better approximation when h is small.

194 CHAPTERS

How is an appropriate value of h chosen? If it is decided to use a constant step

size throughout the interval of interest [t,, X;], one common way to select h is to try a

nominal size of h, say (t; - t;)/50, and calculate the solution approximate y; at t;.

Then reduce h by half and recalculate the approximate at t;. If the values agree to

your satisfaction (for example, to three decimal places), use the last set of values

obtained; if not, reduce h by half and try again.

This is a good time to check on the accuracy of the built-in differential equation

algorithm used by the HP-48G calculator. Press SOLVE,use the Izl arrow

key to select Solve Diff eq..., press OK, enter the F function Y, set the range of the

independent variable to 0 1 and set the initial value of the solution to 1. Move the

cursor to FINAL and press SOLVE. Press the ON key and you should see the value

2.718... on the stack. Put 1 on the stack, press the eX key and subtract to see the

apparent error -.000019... . This error was achieved with the default tolerance .0001.

The performance of the differential equation algorithm depends on the problem and

is not always this good.

A comment on the built-in algorithm on the HP-48G calculator for solving

differential equations is in order at this point. There is a default program based on

the well known Runge-Kutta Feldberg algorithm which automatically selects step

size to keep the perceived error below the specified tolerance. There is also a second

built-in calculator program for solving stiff differential equations that we will

discuss briefly later.

EXERCISE 5.7: Try EULER on the problem y' = (y2 + y)/t, y(1) = 1 with h = .2.

Execute 5 times, then reduce h to .1 and execute 10 times. Next execute from the

initial value 20 times with H = .05. What is being indicated? Hint: this problem

can be solved exactly and has an asymptote at t = 2. Here F.N could be given by

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 195

<<= T Y "(Yr2+Y)/T' >>

EXERCISE 5.7a: Try the HP-48G calculator's Solve diff eq... algorithm for the F

function and initial condition given in EXERCISE 1.7 for the value of the solution at

t = 2. Change the tolerance TOL to .1 and try to SOLVE for FINAL. The calculator

will take over 10 seconds and returns a value of 1743.5... . If you change the value of

TOL to .05 and resolve for FINAL, the calculator will take over 20 seconds and returns

a value of 2187.8... . The long execution time tells us that the calculator is struggling

to achieve good results and in this case can not achieve accuracy for good reason.

Programs to obtain graphical output are easy on the HP-48. The following

program, which we will call GRAF, requires t,y, from the stack and uses IULER (or

EULER) to advance N steps of size H. (N is also stored.) The user should pre-enter

the numbers tmin tmax as XRNG and numbers ymin Ymax as YRNG for the graph.

Program Name: GRAF for scalar equation

Purpose: Plot N values of (x,y) obtained using

Euler algorithm

Stored quantities: N, H, F.N, IULER XRNG YRNG

Input Output

level 2 level 1 level 2 level 1

to Yo tN YN

and graph with cursor

<<{# 0d # 0d } PVIEWDRAX DUP2 R—»C 3 ROLLD 1N

START IULER DUP2 R—»C DUP 5 ROLLD 4 ROLL LINE NEXT

PICTURE >>

196 CHAPTERS

GRAF contains a loop in which N new points (t,y) are calculated and plotted.

You may want to ERASE the graphics screen before executing the program. The

program EULER may be inserted in place of IULER so that GRAF uses whichever

algorithm is desired. Notice also that the last values of t and y remain on the stack

after GRAF is executed. To restore the stack screen, press ON.

As a footnote to this section, the following program can be used to remind the

user for the ingredients required for GRAF. As written, the user must enter an

expression for F(T, Y) (for example 'SIN(T*Y)') which will be stored by the program

as

<< = T Y 'SIN(TYY)" >> in the variable F.N. The program will also prompt for

initial conditions, step size, number of steps, etc.

Program Name: INIT1

Initialization Program to set required ingredients for GRAF

DEFINE "KEY IN # OF STEPS" "" INPUT OBJ— 'N' STO

Y" """ INPUT OBJ—» ERASE >>
<< "ENTER F.N INT,Y"" " INPUT OBJ— 'F.N(T,Y)' SWAP =

IN STEP SIZE" "" INPUT OBJ- 'H' STO "KEY IN XRNG"

INPUT OBJ— XRNG "KEY INYRNG" "" INPUT OBJ—

YRNG "KEY ININITIALT" "" INPUT OBJ— "KEY IN INITIAL

As we have already indicated, it is often desirable to plot solutions of several

initial value problems on the same plot. Of course, plots can be combined simply by

not erasing the previous result.

EXERCISE 5.8: Consider the following differential equation together with several

initial conditions and plot the solutions on the same graph.

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 197

dy/dt = y(1-y), y(©0) = .2, 4, 6,15

where the solutions are plotted for 0 <t <5 and step size h = .05 is used. Try

FN: <<-> TY "Y(1-Y) >>.

Put 0 and .2 on the stack, then execute GRAF. (Remember H = .05 and N = 100 are

stored before execution.) Place another initial condition on the stack and add the

second solution graph. Notice the solution y = 1 is an attracting solution,i. e., nearby

solutions collapse to y = 1 as time increases.

The EULER and IULER programs also work for the vector case when the F.N

program has the proper form and when the initial y input is a vector. Here again

F.N requires input T Y. We can modify the GRAF program to the following form:

Program Name: G.TYI

Purpose: Plot N values of (T,Y(I)) resulting from the

improved Euler algorithm which creates a

sequence of N values of t, and Y.

Stored Quantities: N H F.N EULER IULER XBRNG YRNG

Input Output

level 2 level 1 level 3 level 2 level 1

to initial vector Y I tn final vector Y & graph

<<—> I <<{ #0d # 0d } PVIEW DRAX DUP2 T GET R—>C 3

ROLLD 1 N START IULER DUP2 T GET R—C DUP 5 ROLLD

4 ROLL LINE NEXT GRAPH >> >>

Program INIT.I is to set the plotting parameters for G.TYI. Notice that the

construction of the F.N program is to be done later since it is felt that F.N could be a

complicated program.

198 CHAPTERS

Program Name: INIT.I

Purpose: Set parameters for G.TYL

<< "KEY IN # OF STEPS" "" INPUT OBJ— 'N' STO

"KEY IN STEP SIZE" "" INPUT OBJ— 'H' STO

"KEY IN XRNG" " INPUT OBJ— XRNG

"KEY IN YRNG" "* INPUT OBJ— YRNG

"KEY IN INITIAL T" " INPUT OBJ—

"KEY IN INITIAL Y" "" INPUT OBJ—

"KEY I FOR Y(I) GRAPH" " INPUT OBJ—

"PRESS ENTER, CONSTRUCT PROGRAM F.N

EXECUTE G.TYI" ™ INPUT OBJ— >>

The program G.TYI as given above works for vector initial value problems with two

or more components. For example consider the following

EXERCISE 5.9: Set F.N to be

<<—> T Y <<'-.00001*Y(1)*Y(2)' EVAL '.00001*Y(1)*Y(2) - Y(2)/14' EVAL

'Y(2)/14' EVAL 3 —ARRY >> >>

set initial T, Y to 0 [45400 2100 2400] with XRNG 0 25 YRNG 0 45400 and set

the number of steps to be N = 25 and step size to H =1. Obtain a T-Y(1) plot,

overlay a T-Y(2) plot, etc.

Students who use the Euler and improved Euler algorithm will also need a

program to compute the solution and plot the components y(t) versus yp(t) as t

increases. Such a program, call G.Y12 is presented below. The initialization

program INIT.I also works for this program, except the input I is not needed and

should be deleted before execution of G.Y12.

PLOTTING SOLUTIONS FOR DIFFERENTIAL EQUATIONS 199

Program Name: G.Y12

Purpose: Plot N values of (Y(1),Y(2)) resulting from

the improved Euler algorithm which creates

a sequence of N values of Y(1) and Y(2).

Stored Quantities: N H F.N EULER IULER XBRNG YRNG

Input Output

level 2 level 1 level 2 level 1

to initial vector Y tn last vector Y & graph

<<{ # 0d # 0d } PVIEW DRAX DUP DUP 1 GET SWAP 2

GET R—»C 3 ROLLD 1 N START IULER DUP DUP 1 GET

SWAP 2 GET R—C DUP 5 ROLLD 4 ROLL LINE NEXT

GRAPH >>

We recommend that the user create a subdirectory for the programs in this

section. A possible subdirectory name is DE.2. This subdirectory should contain the

programs INIT1, GRAF, INIT.l, G.TYIl, ER.SE, G.Y12, T, Y, F.N, EQ, N, H, IULER,

EULER and PPAR in this order. The program ER.SE given by << ERASE >> is

placed in this directory for convenience. The subdirectory can be created by placing

the name 'DE.2' on the stack, then pressing MEMORY, pressing DIR, then

CRDIR. To obtain the desired order, press { and enter the program names in order,

press ENTER, then ORDER (located in the same MEMORY DIR menu).

FIRST ORDER DIFFERENTIAL EQUATIONS

Now that we can construct approximate solutions of a differential equation we

can suggest exercises and activities that use these graphical and numerical

computations to enhance the study of differential equations.

y

2.5 S

Five solutions of dy/dt =y (1-y)

We will often be interested in constructing graphs of several solutions of a

differential equation. The figure shown above, constructed for the differential

equation y' = y(1-y) is an example. There may be solutions y(t) that remain constant

as time increases. Such solutions are called equilibrium solutions. In the case just

mentioned, the constant solutions are y(t) = 0 and y(t) = 1. Clearly the solutions

y(t) = ye of dy/dt = F(t, y), which are constant, satisfy

F(t, Ye) = 0.

If we wish to understand how solutions of a differential equation change as the

initial condition y(0) is varied, one of the first tasks is to find the equilibrium

solutions. If the function F(t, y) is continuous and has continuous derivatives then

200

FIRST ORDER DIFFERENTIAL EQUATIONS 201

any solutions y1(t) and y2(t) which satisfy different initial conditions do not

intersect. Consequently, constant solutions restrict the region where nearby solutions

can proceed.

EXERCISE 6.1: Plot the solutions of the three initial value problems

dy/dt = y2 (1 - y2), that satisfy either y(0) = -1, y(0) =0, and y(0) =1 for 0<t<5

all in the same picture. Then overlay plots of the solutions of the same differential

equation that satisfy y(0) = -.25 and y(0) = .25.

EXERCISE 6.2: Consider the differential equation y' = y — y3. The equilibrium

solutions are 0, -1 and 1. For an initial condition y(0) not in the set {-1, 0, 1}, use the

separation of variables technique to obtain the result

2) yOI l-yOI
2 B 24

y ll-yl=I1+ylKe™, K= |1+y0|

This equation defines the solution y implicitly as a function of t. For example, if

0 <yp < 1, then since y(t) will not leave the interval 0 <y < 1, we have a cubic

equation for y as a function of t. We can use one of our calculator programs to

construct a plot of an approximate solution of the problem with such an initial

condition or if we only want a crude idea of the solution graph, we can sketch in an

increasing function proceeding from y(0) up toward the asymptotic value y(«) = 1.

Why?

202 CHAPTERG

t
—
3_—

dy/dt=2sin(t-y) dy/dt = cos (Sty)

The solutions of the two differential equations pictured above show interesting

structure. The straight lines y = t + a are solutions of dy/dt = 2 sin(t - y) for

a =3.665 a =-524, a = - 2.618, or a = -6.81. (Hint: make the transformationt -y = w

to get the differential equation w' = 1 — 2sin w. What are the equilibrium solutions

of the w differential equation ?) Solutions starting near t = 0, y = -.524 collapse to

the straight line solution y = t — .524, while solutions starting near t = 0, y = -2.618

are repelled away for the straight line solution y = t — 2.618, etc.

As for the second plot shown just above, even though the functions y = (2n+1)n/t

(n=0,%1,%2, ..) are not solutions of dy/dx = cos (.5ty), when t is large such a

function y has small derivative and we can see these approximate solutions emerge

for large t. Moreover when the initial value y(0) is large, there are more values of t

on the graph when .5ty(t) = (4n+1)n/2 and the slope y' is zero.

EXERCISE 6.3: Plot the solutions starting from y(0) = -7.85, y(0) = -1.57, y(0) = 4.71,

y(0) = -1.9, y(0) = -2.5, y(0) = 2.5 and y(0) = 4.3 that satisfy the differential

equation dy/dt = sin (t-y) for 0 < t <8. Use vertical dimension to show -8 <y < 8.

Hint: the transformation w =t — y gives a differential equation with equilibrium

solutions we =1/2,5n/2, -3n/2, etc.

FIRST ORDER DIFFERENTIAL EQUATIONS 203

EXERCISE 6.4: Plot the graph of the differential equation dy/dt = sin (ty) with

initial condition y(0) = 3 with plot parameters to show 0 <t <6, 0 <y <5. Selecta

new starting point y(0) = 3.5 and add the new trajectory. Now choose y(0) = 1.5, get

the new combination graph, then choose y(0) = 1 and get another combination graph:

we see the bottom two trajectories approach each other.

The graphical study of solutions of dy/dt = sin(ty) led to an journal article that

gives mathematical proofs for some of the interesting behavior observed in the

graphs. See Mills, B. Weisfeiler and A. Krall, "Discovering Theorems with a

Computer"”, The American Mathematical Monthly, volume 86 (1979), pages 733-739.

EXERCISE 6.5: Consider the differential equation y' = y — .3t — (y - .3t)3. The

transformation w = y — .3t gives the new differential equation w' = w — w3 — 3.

What are the equilibrium solutions of the new differential equation ? Sketch

several solutions of the w differential equation including the equilibrium solutions, a

solution with w(0) above the largest equilibrium solution, one with w(0) below all of

the equilibrium solutions and one with w(0) near but not on the middle equilibrium

solution. Now make a sketch of the corresponding solutions of the y differential

equation.

EXERCISE 6.6: Repeat as much as possible of the previous EXERCISE for the

differential equation y' = y — .5t — (y - .5t)3.

We will wish to compare the graphs of solutions of different differential

equations. For example if we graph the solutions of the two initial value problems

dy/dt = y(1 - y), y(0) = .25 and dy/dt = y2(1 - y2), y(0) = .25 (graphic screen

parameters 0 < "t" <5 and 0 < y < 1.2) on the same plot, we notice that the solutions

are structurally similar. In which case is a change of concavity apparent ?

204 CHAPTERG

EXERCISE 6.7: Plot the solutions of the two initial value problems dy/dt = y(1 - y),

y(0) = .25 and dy/dt = -y In y, y(0) = .25 (plot screen parameters 0 < "t" < 5 and

0 <y £ 1.2) on the same plot. In what ways are the solution graphs similar ? In

what way are they different ?

There are many problemsin a differential equations course in which a number (or

numbers) satisfying a somewhat complicated equation is needed. In one type of

example we can use the graphing capability of the calculator to display the inverse

of a particular function and thus graph a desired solution. We will give an example

of this below. In a second type of problem we may simply use the equation solver

routine contained in the calculator. An example of this type of problem is also given

below.

Implicitly defined solutions may arise in the study of first order differential

equations, particularly in those problems in which variables are "separated and

integrated" or in exact equations.

EXAMPLE: Plot the solution of

dx/dt=1-x3/2, x(0)=1/2

for 0 <t < 25. Clearly the solution x(t) will approach 1 as t increases. Using

separation of variables, we obtain

We make the substitution x = y?> and use a partial fraction decomposition for the

fraction to obtain the implicit equation F(x) = t where F(x) = f(x) — {(.5) and

1.5f(x)=h1{(11—+‘/_—xJ+;—1/_;.l} _ /3 Arctan {1+J2_J—}

FIRST ORDER DIFFERENTIAL EQUATIONS 205

We enter the formula for F(x) in the calculator and notice the range of F for

5 <x<.99is [0, 2.79]. We specify plotting parameters so that XRNG and YRNG are

0 3 and restrict the values of x to be graphed by entering {X .5 .99} as INDEP and

draw a plot of F(x). A plot of the inverse function can be overdrawn by altering EQ to

'F(X) +i*X' and changing the plot type to PARAM. Finally the graph of y = x is

also shown as partof the construction of F-! from F.

y = F(x)

EXERCISE 6.8: Determine the solution of x' = 1 — x*, x(0) = .5 using separation of

variables technique for r = 5/4 and for r = 5/2. Then use the inverse function to plot

x(t). Hint: (x2+.5(1-V5)x+1)(x2+.5(1+V5)x+1) = (x4 +x3+x2+x+1).

Suppose we wish a number x so that an equation f(x) = g(x) is satisfied. Construct

a list which contains expressions for f(x) and for g(x). Then store this list in the

variable EQ. Set plot parameters so that when both sides of the equation are

drawn, a crossing is shown. Use the cursor to locate the approximate crossing

coordinates and the ISECT command to obtain the result.

MIXING PROBLEM: Initially a large tank holds 2000 gallons of pure water. An

stream of 5 gallons per minute with salt content of 2 #/gallon is input into the tank

and 4 gallons per minute of the well mixed solution is drained from the tank. When

is there Q, pounds present in tank ? The usual model dQ/dt = input rate - output rate

gives

206 CHAPTERG6

(2000
Q=2| 2000 +t- ———4

(2000 + t)

Putting Q(t) = Q, gives

% .2000-22+t r a0

2000 | 2000 +t

to solve for t. For Q, = 100, we get

4

1950 + t _ _J4XXL_] .
2000 2000+t |’

and if we use plotting parameters to show 0 < x <20, .9 <y <1, we get an intersection

at about 10 as shown:

Right side of equation

 2 6 10 14

time

Mixtuxe Problem

FIRST ORDER DIFFERENTIAL EQUATIONS 207

EXERCISE 6.9: A tank initially contains 300 gallons of pure water. Brine containing

1.5# of salt per gallon enters the tank at 2 gallons/minute and the well mixed

solution leaves at 3 gallons per minute. When will the tank contain 21 # of salt?

(There may be more than one solution.)

6.1 POPULATION PROBLEMS

EXERCISE 2.7 gives two initial value problems that model population growth in a

food limited environment. Which model is appropriate? Some input from biologists

or some observation data could be used to answer this question. Suppose that from

experimental data, we can determine the limiting value of the population and that

we can also estimate at what fraction of the limiting value of y an inflection point

occurs. In EXERCISE 2.7, the inflection points occur at 36.8% (for the logarithm

model) and 50% (for the quadratic model) of the limiting value of y, which in both

cases is y = 1. We will further explore this question below.

Suppose we are given the assignment of explaining how the population of a

species evolves in time and we note that the environment will only support a finite

number of the population. Two much studied models of this type are:

e The logistic model:

dp 2 ap,
'&T=3P‘bp » pO) =Py P=T4t

pr + (a- pr) e

e The Gompertz model:

4
P exp(-Bt)

a%: p(A-Blnp), p0)=po: p =eA/BLA/B }

The parameters have different meanings: equating the carrying capacity of the

model (i. e., the value of the population that is reached in infinite time) gives e/A/B

208 CHAPTERG6

in the Gompertz model and a/b in the logistic model. Which of these models is

better? Or should we look for another model?

These are not easy questions in general. Probably the first step is to pick a

model, use data to determine what the model parameters should be (e.g. the

constants a, b or A, B) and graph the solution. Then change the model, use data to

determine that model's parameters and graph the solution again, etc.

POPULATION PROBLEM: Suppose we use a logistic population model

dp/dt = ap - bp? with parameters a, b and data taken from the following table:

Year Population Year Population

1790 3.93 1900 75.99

1800 5.31 1910 91.97

1810 7.24 1920 105.71

1820 9.64 1930 122.78

1830 12.87 1940 131.67

1840 17.07 1950 151.33

1850 23.19 1960 179.32

1860 31.44 1970 203.21

1870 39.83 1980 226.50

1880 50.16 1990 248.71

1890 62.95

To determine the parameters a and b: if we use p, = 3.93 and

p(50) = 17.07 we get

3.93 _ e-SOa)

17.07

bp0 = 1-— e-50a

and if we also take p = 75.99 at t = 110, we have

FIRST ORDER DIFFERENTIAL EQUATIONS 209

[-] (1-e10 [£F-110%] (1-e%0)

By setting x = 50a (which gives 110a = 2.2x) we obtain the equation

[e*x-.23023] (1 -e2%)=[e22x - 05172] (1 —e™).

For plotting parameters 1 < x < 2, -0.05 <y < .02, we observe a solution at x = 1.53,

which means that a = .031 and b = .00014. We show below the data and the solution

curve for these values of the parameters, and also the solution curve for the values of

a and b obtained by fitting to data at time t = 140 and t = 200 (a = .0279 and

b = .0000855).

population population

250 e 250 /

/mz } .»/ time

. . . 200

Data and Logistic Curve for fit Data and Logistic Cuxve for fit

t0 p(30)=17.07,p(110) =75.99 to p(140)=122.78,p(200)=248.71

Note: A program D.GRF to produce a graph of data with "fat pixels" will be

suggested. A list of the data coordinate pairs is stored in a variable L1. After

XRNG and YRNG are set and the screen is erased the following program will plot

the data points:

PGM D.GRF << PPAR DUP 2 GET SWAP 1 GET - C—R

64 / SWAP 132 / MIN 1.2 * —» RADIUS

<< DRAX L1 OBJ— 1 SWAP START RADIUS 0 6.28 ARC NEXT >> >>.

210 CHAPTERG

EXERCISE 6.10. Suppose again that pg , (ti, pi), and (tk, pk) are known. Determine

the constants A and B in the Gompertz model. (Hint: put s = A/B and solve for eBt

in the expression for the solution, then for B. Then evaluate the expression at each

time and set them equal.) Find the value of A and B for pg =1, (tj, pi) = (1, 1.46) and

(t, PK) = (2, 1.5).

How might other models be constructed ? Here is a suggestion if data {(t1, p1),

(t2,p2), - - - (tn, pn) } is given and a graph of the data indicates the location of an

inflection point and the carrying capacity K. Population models may have the form

dp/dt = f(p) with £(0) = 0, f(K) = 0 for K > 0, and f(p) > 0 for 0 < p < K. Notice that

inflection points come at those points p with f'(p)f(p) = 0. Since f(p) > 0, we get

inflection points when f '(p) = 0. In the logistic model this occurs when p = .5 a/b

and in the Gompertz model whenlnp = A/B - 1.

To get a model with inflection at p = .6K, we could try

p' = f(p) = (6K)2 - (p - 6K)? for 0 < p < .6K, and also p' = f(p) =

2.25 ((.4K)2 - (p - .6K)?) for .6K < p < K.

EXERCISE 6.11. Use your calculator to obtain a plot of the solution of this model for

K=1,p0)=.2XBRNG =-2 5 YRNG =-1 1.1. We will suggest here a method to

enter an appropriate F function using the HP-48G input form format. Press PLOT,

CHOOS,Diff Eq, press OK, then position the highlighted field to F. Press NXT,

press CALC, and place the following on the stack: 'IFTE(Y<.6, .36 — (Y-.6)"2,

2.25*(.16— (Y-.6)"2)))' Note: The command IFTE can be located by pressing PRG

BRCH NXT. The < command is located by pressing PRG TEST. When this step is

complete, press the ON (CONT) key, then you should see the desired stack entry and

the ON key. Press ON. The student should complete the EXERCISE from this point.

If you wish to invoke the user program, an appropriate FN program might be

<< 'IFTE(Y<.6, .36 — (Y-.6)A2, 2.25*(.16— (Y—.6)"2))' EVAL >>.

FIRST ORDER DIFFERENTIAL EQUATIONS 211

EXERCISE 6.12. Suppose we have the following (time, population) data point

measurements {(0, .2), (.5, .37), (1, .61), (1.5, .88), (2, .98), (2.5, 1), (3, 1)}. Use your

calculator to plot the data and estimate the location of the inflection point. Then

construct a model that will give an inflection point at this value and overlay the

solution of the model with the data for comparison.

quad!m'c

. 1
Model Functions f(y) Resulting Solutions

Logistic, Gompextz and Custom Models (exexcise 2.8)

EXERCISE 6.13: Set plot parameters to show -5 <t <1256, -5 <y < 4. Graph the

3. What initialsolutions of y' = .5y(exp(sin t) — y) with y(0) = 1, and y(0)

condition gives periodicity ? (This differential equation is a potential model for an

environment where the birth rate is periodic in time.)

6.2 MOTION OF A PARTICLE IN ONE DIMENSION

Mathematical models for the velocity of a particle falling from rest under

gravity with air resistance have the form

dv
dt =8 f(V)/ V(O) =0,

where the force exerted on the particle by the resistive medium, f(v), is determined

by experimental means. We will assume that f is an increasing function with

212 CHAPTER6

f(0) = 0. The velocity will increase toward a terminal value which is given by

- 1(g).

EXERCISE 6.14: For simplicity we take physical units so that g = 2. We want to

compare the trajectories from different models in which the f(v) functions are given

by:

(@) f(v) =v

(b) f(v) = .5 v2

(c) f(v) = IFTE(v £ 1, (1.5)° v, (2.5 v - 1)-9)

(d) f(v) = IFTE(v<1,.75v12, 125 v - 5)

Notice that these models have been chosen so that all have terminal velocity 2.

Use the calculator's function DRAW program to plot each f(v) function for 0 < v <2.

Use XRNG =-1 2 and YRNG = -1 2.1. Accumulate these graphs on the same

picture and label the graphs. Then use a differential equation plotting program to

graph the solution of the initial value problem given above for each f(v) function for

0 <t <5. Accumulate them in the same picture for comparison. Again label the

solutions. Use the YRNG as above and XRNG -.2 5.

A particle falls or is projected from a great height and observations are made on

v for, say, n values of time. Two well-known models for such a problem are:

e linear air resistance model: dv/dt =g - kv, v(0) = vg. The solution is

v(t) = vo ekt + v, (1-ekt), v, =g/k.

e quadratic air resistance model: dv/dt = g - kv2, v(0) = vg. The solution is

FIRST ORDER DIFFERENTIAL EQUATIONS 213

 V(t)=Voom,M= Vm=‘\/k,0=2\]gk.
Voo = V0’

Suppose that Ve, can be accurately determined from data, say {(t1, v1),

(t2,v2), ... (t2, v2)}. In the case of the linear model k = g/v. and we note that the

graph of
z(t) =In (Voo — V(t)) = In (Voo — vQ) — kt

is a straight line with slope -g/ve. Furthermore, in the case of the quadratic model,

k=g/(Veo)? and the graph of

z(t) = In (Voo — V(t)) = In (2Vee /M) — (28/Veo)t

is a straight line with slope -2g/ve. This is twice the slope of the linear model.

Suppose that (time, velocity) data is available. What model is

appropriate? Maybe if we plot tj vs In(ve — vj) a straight line will appear for

large t, and we can choose a model with the appropriate slope.

EXERCISE 6.15. The data to be used for model selection is:

{(0,0), (1, 1.44), (2,1.87), (3, 1.97), (4, 1.99), (5, 2) }.

Consider models of the form dv/dt = 2 — a vf, v(0) = 0, where r is a positive number

and a is chosen so that ve., = 2. (In our units g = 2.) Plot the points (tj, In(2 - vj)).

Determine the slope of a line which "fits" the plot for the latter data points and

choose an appropriate value of r. Then plot the data points (no logarithms) and use

a differential equation calculator graphing program to draw the trajectory of the

model you have chosen as an overlay of the data point graph. Conclusions? (It is

instructive to experiment with models of the form dv/dt = g —a vf and G1.TY can be

modified to plot the log (Ve — v(t)) by inserting the commands V.. — ABS LN in 4

locations each following the command Y.)

214 CHAPTERG6

Consider the problem

M'(t)v + M(t)v' = T(t) - M(t)g — ov, v(0) =x(0) =0

where M(t) is the mass of a rocket and has equation

M(t) = m - at for 0 <t < tg and M(t) = mg + {m—oitg — mole~Y(t-ty) for tg < t

with y= a/(m-otg — mQ) (so that M'(t) is continuous) and T(t) = -p dM(t)/dt.

As an example we takem =1, 00=.19, mg=.2=.8m,t0=4,g=1,6=.05and f =22 so

M(t)=1-.19tfor0<t<4, M(t) =.2 +.04e475(t4)) for 4 < t, and

T(t) = -22 dM(t)/dt.

The graphs are shown below.

Mass M(t) Thrust T(t)

We notice that for these values of the parameters, after the thrust dissipates from mass

burnoff, we have Mo, = .2 and the terminal velocity will be ves = -4. Store the formulas for

M(t) and M'(t) in user defined functions MAS and MDOT, and set F(T,Y) to be

<< ' MAS(T) + (22+Y)*MDOT(T)+.05*Y" EVAL 'MAS(T)' EVAL / NEG >>.

FIRST ORDER DIFFERENTIAL EQUATIONS 215

Setting H-VIEW to 0 25 and V-VIEW to -5 55 respectively, gives the velocity graph:

velocity

S5

25
time

The velocity rises to 53 begins to decrease at t = 4.25 but remains positive until about t = 15.

The velocity at t = 25 is v = -3.65. The graph of height versus time is shown below. Recall

that we have used specialized units (e.g., g = 1), so the actual height is not in a common

physical unit.

height

140

time

25

Rocketheightversus time

EXERCISE 6.16 : We may wish to study the sensitivity of the results we have to the

parameter values used. Construct the velocity versus time graph shown above for

the parameters as given, then change the parameter values of o to o = .16,

to totg = 3.8 and B to B = 18. Overlay the new velocity time graph on the first

graph.

216 CHAPTERG6

6.3 INPUT OUTPUT PROBLEMS

Suppose a tank, which contains V volume units of a mixture of water and a

chemical substance, receives f(t) units (weight) of the chemical in solution per

minute. The chemical is vigorously mixed in the tank and the mixture drains from

the tank in such a way that constant volume in the tank is maintained. If y(t) is the

weight of chemical in the tank at time t, a balance equation gives dy/dt as the rate

that the chemical enters the tank minus the rate that the chemical exits from the

tank. This is one example of an important problem, namely, to determine a

particular solution of the equation

% + ry = f(t).

Here we assume r is a positive constant. Commonly, the function f(t) is called input

to the problem and the solution y(t) is called the output. Other examples of this

problem occur in electrical flow problems. The initial value problem solution is

t

g = y(0) e+ [™ Tg5) ds.
0

If the function f(t) is periodic with period P, then we can choose y(0) so that the

output is periodic. This is done by choosing y(0) so that y(0) = y(P), which gives

P r(P-s
y0) =——] e)f(s) ds.

0

The input function f is transformed to the output function y = Tf. Notice

T(af + bg) = aTf + bTg when a and b are constants and f, g are input functions. This

superposition property of the "operation" T shows the transformation T to be a linear

operator.

FIRST ORDER DIFFERENTIAL EQUATIONS 217

Here we are interested in comparing the graphs of the input functions f to the

graphs of output functions y = Tf. An important example, f(t) = sin at, gives

y(t) = sin (at-0)/R? with R? = («2+r?) and cos 6 = r/R, sin 6 = «/R. In this example

there is an obvious similarity between the graphs of the input and output functions.

EXERCISE 6.17: If a signal f(t) = sin t is input into a device and produces output as

described above, what value of r will produce the "delayed" output version of the

signal, sin (t-n/4)? What distortion of the signal sin 3t will be produced by this

same device?

If the input signals are not sine or cosine in form, it may be difficult or impossible

to find an analytical form of the output; however, a graph of the output may be

found by using our differential equation graphing programs after using the calculator

to evaluate the integral in y(0).

EXERCISE 6.18: Let r = 1, and set the plot parameters so that 0 < t < 3.14 and

0 <y £ 1.2. Use the calculator to plot the following input functions with the

Function DRAW program and the resulting output functions with a differential

equation plotting program.

(a) f(t) =1 - sin? (3t), (c) f(t) = Max (sin 6t, 0).

(b) f(t) =1 - sin!® (3t),

If f(t) is stored in EQ and P = 1.047 = n/3, the following program can be used to

calculate y(0):

<< 3 FIX 'T" PURGE 0 1.047 EQ 'EXP(T)' * 'T' 3 NEG

SF | 3 NEG CF 1 1.047 EXP SWAP — / STD >>

218 CHAPTERG

The input signals in (a) and (b) are periodic, spike-like disturbances of a constant

input and the input in (c) is a half-wave rectified sine function.

An observant student may notice that if we start with incorrect initial conditions

then the solution approaches the periodic output after some time. This suggests that

the starting condition y(0) = 0 is ignored and that the resulting motion will become

periodic. This is a result of the theorem that any solution of the non-homogeneous

problem is the sum of a particular solution and a solution of the homogeneous

problem.

The function f(t) = 2*CEIL(SIN(t*n)) - 1 has values given by: for 0 <t < 1,

ft)=2-1=1,forl1<t<2f(t)=-1,for 2<t<3,f(t)=2-1=1, etc. This is called

a square wave. The calculator numerical integration "key" and graphing program can

handle such a function even though it is not defined at t = 1, t = 2, etc. The periodic

input function and its periodic output are shown for 0 < t < 4.

Input

l

Output
_

dy/dt + y = £(1)

The student can also construct the input function shown above as IFTE(T MOD

2<1,1,-1). In the same way, the switch function u,(t) = 0 when t £ a and 1

otherwise can be given by an IFTE function or by u,(t) = .5[1 + (t-a)/ It-al] = 0 when

t <aand uy(t) = 1 when t > a. This could be called a switch-on function. Other

interesting functions can be obtained using the MOD function on the calculator. For

example, f(x) = '2*X MOD 1' will produce repeated ramps of height 2. Finally,

FIRST ORDER DIFFERENTIAL EQUATIONS 219

functions defined by different formulae in different intervals can be produced by the

IFTE command: for example, f(x) = 2x for 0 < x < .5, f(x) = 1 - sin (x — .5) for

S5 <x<5+1.571, x2 for x > .5 + 1.571 is produced by 'IFTE(X < .5, 2*X

IFTE(X <.5+1.571, SIN(X-.5), X"2)).

PROJECT EXERCISE: Travel time for a sliding bead as a function of trajectory

shape:

We want to specify the shape of a curved wire by a function y=f(x), which

connects the point A with coordinates (x;,y;) to the origin (0,0) (denoted as point B)

so that a bead of mass m will slide along the wire from A to B in a minimum amount

of time. The bead begins with initial velocity zero and slides with no friction under

the force of gravity g.

4
y initial point A

terminal point
4
B:(0,0) Sliding Bead

 '
X

220 CHAPTERG

The well-known formula for arclength ,

X i 2

s(x) = JJ\ / 1+[d(rr)J dr,

the principal of conservation of energy (this is a conservative system),

-;?mv2+mgy=mgy1,

and the expression for the travel time,

T 0) 0)

7= at =T %ds;j Las
0 0 0

leads to the equation
 2

df

1+(diz())
—_— dx,

2g(y, —f))

where we have explicitly noted that T depends on the curve y = f(x).

used the technique of changing the variable of integration and the Fundamental

Theorem of Calculus.)

We further specialize the example by taking x, = 200, y, = 100 and g = 1. Later,

for this case we will find there is a curve such that the travel time T is

approximately 25.231. For these parameters the following curves connect the points

A and B:

(a) f(x) =x2/400

FIRST ORDER DIFFERENTIAL EQUATIONS 221

(b) f(x) = exp((x In 101)/200) - 1

(¢) f(x)=100[1 - cos (nx/400)].

We will evaluate the travel time integrals for each of these curves using numerical

integration.

For f(x) = x2/400 the descent time integral becomes

Put x/200 = z, evaluate the integral to get T = 26.779 (attempted accuracy: 0.01).

Find T for the functions given in (b) and (c). (Note that so far, no differential

equation has arisen.)

The differential equation

dy [¥-(-y)
dx yi—-y

can be shown to give the minimum time of descent. We have

dx = —1Y dy.
VK2 = (y1 - y)

Use the change of variables

YI_Y':kZSinZSZQ

to get

222 CHAPTERG

2
dx = - k? sinzszgd(p, x=C—k7 (¢ - sin @).

At9=0,x=x1 and y =y] and at ¢ = @] (to be determined), x =y = 0.

Thus the solution to the differential equation, along with the transformation y to

¢, yields a parametric representation (x(¢),y(¢)) of the curve of minimum descent

time. There are two constants to be determined, k2 and ¢7; then

K2 _ K2
x=x1 -5[p-sing], y=y;-5 [1-cosq], 0< ¢ <

The constraint x(@1) = y(@1) = 0 leads to the equation

2o Y1 2y, 2xq
Sinzgzg— 1-cos@, @ —sin @,

We solve

X
, 1

G((P)=<P—Smtp—fi(1-costp)=0

for ¢ = @, with the calculator. Notice there is a positive solution. Now determine

k2. Using the differential equation in the expression for the descent time

HW=J

we obtain the expression

FIRST ORDER DIFFERENTIAL EQUATIONS 223

2

k -(y,-y) X

Y, ~Y K J‘ dx
—~ dx=F]) T

2(y, -y) L . y, —y(x)

Buty) -y = k2 [1 - cos ¢]/2, and dx = - k2 [1 — cos @]d¢ so that

T(Ygpr) = 2g 1

Use the values you get for ¢, and k? to evaluate T. You should find

T(yopy) = 25.231.

The reader may note that the slope of the optimal curve is infinite at the initial

point. This results in a quick start for the sliding bead. The optimal curve is called

a cycloid. Optimality is shown in the study of the calculus of variations. Notice

however, the exponential curve gives a travel time similar to the optimal curve.

PROJECT EXERCISE: Travel time up a hill versus initial energy

This project is also concerned with the shape of a unknown function f(x). Suppose

we give to a particle with initial position at the origin, energy E in the form of

initial velocity. The particle sliding on the shape function f(x) (we assume that f is

an increasing function) leaves the origin, travels up the "hill" f(x), reaches the limit

of its travel at which all its energy has been converted into potential energy and

then returns to the origin. We observe the time required to do this (as a function of

the initial energy). (This problem is also illustrated by the figure given for the

previous project.) The time between the particle's leaving and arriving back at the

origin is given by

224 CHAPTER 6

X,

xE) (/1 + [f'(x)]z
T(E) =y2m | ~~—0—

0
E — mgf(x)

and x(E) = f 1(E/mg), that is E — mgf(x) = 0.

Suppose the shape of the hill (i. e. the curve f (x)) is one of the functions given

in the previous project (i.e., a parabola, an exponential function, or a trigonometric

function). Graph T vs E for E = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (numerical

integration required).

Now read the first part of the article by Keller on Inverse Problems in the

American Mathematician Monthly, volume 83, 1976, pages 107-118, and describe what

is meant by the inverse problem.

SECOND ORDER DIFFERENTIAL

EQUATIONS

We saw in chapter 5 that it is easy to program the HP-48 to treat a vector

differential equation. Consider the case where the vectors have two components,

y =[y1, y2]; that is, initial value problems consisting of two first order differential

equations and the initial values of the two dependent variables:

dy1 dy2

Tt SRy vy g =Bty y,y)

where y1(tg) and yj(tp) are given. You should note that a second order initial

value problem

dZX dx . dx .
F=g (t, X, a‘), with X(t()) and dt (tO) given,

can be reduced to a first order system of differential equations

dy1 dy2
at =Y2. gt =8t y1,y2)

(with initial values of y1 and y2) by using the identification y; = x and y2 = x'. A

significant part of this chapter will be concerned with the study of solutions of

second order differential equations. We will obtain approximations of these

solutions using the calculator by studying the associated vector systems. This is a

common practice on all kinds of calculators and computer programs. We will plot

trajectories and study the solution characteristics of such systems. Of course, in this

case we can plot y1 versus t, yo versus t, or plot y1 versus yp as the parameter t

varies.

225

226 CHAPTER7

As in the case of a single differential equation, the user has three choices: use

the built-in plotting form, the user programs described in the first section of chapter

5, or the Euler or modified Euler algorithms in plotting programs as described in the

second section of chapter 5. If you want to use the EULER and IULER programs as

written for the vector case, make sure the F.N program will give a vector dY/dT

when the input is a number T and a vector Y. Consider

dy, dy,
ae Y2 gSty v0=y,0=0

over the interval 0 < t < 2n. An appropriate F.N program is

<< > T Y << 'Y(2) EVAL 'Y(1)) EVAL NEG 2 —ARRY >> >> .

(The first two stack items are used as local variables, and the inner program creates

the first and second components of the output and forms a vector from these

components.) After a value for H is stored, the stack input 0 [0 0] to either of the

programs EULER or IULER will produce the values at T = H.

Suppose we wish to plot the vector solution of dyj/dt = yp, dyp/dt = -yq,

y1(0) =1, y2(0) =0 using the built-in HP-48G algorithm on the interval 0 < t < 2.

We can choose the input form Diff Eq under PLOT as indicated in chapter 5 or we can

use the user programs constructed in chapter 5 which eliminate some of the

inconveniences of the input form. In the latter case we execute the program IN.FN

and respond with

<< 'Y(2)' EVAL 'Y(1)) EVAL NEG 2 —ARRY >>

which will be stored in FN. We execute IN.PP, respond to set H-VIEW with -1.2 1.2,

and respond with set V-View to -1.2 1.2. Then we enter 0 [1 0] 6.283 on the stack

and execute G.12. The solution is y1 (t) = cos t, y2(t) = -sin t and the y] versus yp plot

SECOND ORDER DIFFERENTIAL EQUATIONS 227

should be a "circle". The actual figure is a set of points connected by straight lines.

Exit to the stack and press T and Y in the VAR menu to get (approximately) 6.283 [1

0]. This will be more accurate that the result as drawn by G.Y12, say with H =

.0628 and N = 100 which uses the improved Euler algorithm.

Probably the first type of second order differential equation you will study is a

linear homogeneous equation with constant coefficients. Such an equation can be

solved by finding appropriate values of a constant r so that x = et is a solution of the

problem. The calculator can be used to determine unknown coefficients in constructing

general solutions. You should also use the calculator to become familiar with the

plots of solutions that occur in common problems. This type of exercise will use the

function grapher in the calculator and we will not study these kinds of problems

here. But here is an associated problem. How are the coefficients in these

differential equations obtained?

Several mathematical models lead to second order ordinary differential

equations with constant coefficients. The coefficients are usually obtained from

measurements either directly on the physical system or on solutions of the system.

How could we deduce approximate values of these coefficients using measurements on

the solutions ? Consider the differential equation

2
d d
=2 4B scy-=o.2 dt
dt

A common solution function has the form

y(t) = ae" Pt +be 4t

228 CHAPTER7

where a, b, p, q are parameters. Suppose a set of values { (t, y) } is obtained by

making measurements. There is usually some experimental error in measurements so

the entire set { (t, y) } will be used to find the parameters. In this example the

measurements are:

{0, 1), (1,.30), (.2, -.20), (.3, -.60), (.4, -.88), (.5, -1), (.6, -1.2), (.7, -1.2), (.8, -1.3),

(.9, -1.3), (1, -1.2), (1.5, -1), (2, -.70), (2.5, -.50), (3, -.3), (3.5, -.17), (4, -.11)}

We want to deduce first approximate values of the parameters a, b, p, q, then use

these to determine the parameters B and C in the equation above.

We may be able to learn something from a plot of the data. A program for

producing such a plot is given below. We also recall that if y = Ae’kt then a graph

of Inly| versus t is a straight line with slope -k. So a graph of data {(t, Inly|)} may

reveal information. Suppose we construct a list of the data and store it as L1.

In Iyl

Graphs of Solution Observations

The graphs shown are generated with the HP-48 program

<< ERASE DRAX L1 LIST—»> 1 SWAP START PIXON NEXT GRAPH >>

<< ERASE DRAX L1 LIST-»> 1 SWAP START C—R ABS LN

R—C PIXON NEXT GRAPH >>

SECOND ORDER DIFFERENTIAL EQUATIONS 229

after setting H-VIEW to 0 4 and V-VIEW in the first problem to -1.4 1.1 and in the

second program to -2.1 .28 (approximate values for In [-.111 and In 1.3).

To get approximations for a, b, p, and q we proceed as follows: suppose p > q,

then y(t) = e~ 4 t(ae'(P‘q)t + b). Since the first term becomes negligible as t increases,

b < 0 (we replace b with -1bl) and a plot of (t, Inlyl) is a straight line for large t

with slope -q. From the second graph we get q = -5 In (.11/.7) = .925 from the data

points (4, -.11) and (2, -.7). The first data point gives a = Ib| + 1 (which is, of course,

an approximate equation), and dy/dt(.85) = 0 gives p(1+Ibl) e85P = 42Ib|. Finally

we use the approximate equation In -y(t) = InIbl -.925 t = 0 at t = 1.5 which gives

Ibl =4,a=5,p e85P = 336. This equation has two solutions p = .525 and p = 2.2.

Since we want p > q, we take p = 2.2. This yields the equation

y(t) =5 22t _ 4o--925t

You should now plot this equation together with the plot of the data for comparison.

These approximate values for a, b, p and q can be taken as starting values to an

iterative process to determine the parameter values by a least squares fit to data.

See Chapter 9. It is easy to use the values of p and q to determine the corresponding

values of B and C in the differential equation.

EXERCISE 7.1: Suppose the following data is collected on the solution of the second

order differential equation given above.

{ (0, 11.04), (.4, 12), (.8, 11.06), (1.2, 8.47), (1.6, 4.75), (2, .54), (2.4, -3.48), (2.8, -6.71),

(3.2, -8.7), (3.6, -9.22), (4, -8.29), (4.4, -6.15), (4.8, -3.2), (5.2, .05), (5.6, 3.09))

Find approximate values of B and C in the differential equation.

230 CHAPTER7

7.1 SECOND ORDER INPUT OUTPUT PROBLEMS

We now consider constructing the solution of a non-homogeneous second order

differential equation with constant coefficients. The problem is treated in many

textbooks for special types of forcing, usually sine or cosine forcing functions. A model

for an elastic spring with damping and with external forcing f(t) or a model for a

simple electrical circuit loop with external voltage is:
2
dx or DX 02 x =), x(0) = L40) =0, 0® > 1.2t dt

The solution is given by

t

Xq(®) = & [e ") gin u(ts) £(s) ds , p=~/0> =12,
0

As indicated before, this problem is equivalent to the pair of differential

equations dy1 /dt = y2, dy2 /dt = {(t) - 2ryp - 2 y1, y1(0) = y2(0) = 0.

EXAMPLE: Take w2 = 41, r = .5 (so p2 = .16) and f(t) = sin?2(1.5t). Set FN as

<< 'Y(2)' EVAL 'SIN(1.5*T)"2 - Y(2) - .41*Y(1)) EVAL 2 —ARRY >> and the

plotting parameters to show 0 <t <942, 0<y<2. Put0 [0 O] 9.42 1 on the stack

and execute G.0Il. Next overlay a plot of the input function. The forcing function

(input) and solution (output) resulting from this program are shown below.

2Ty

NNf-~'/ - -

A ~C A A, ~
. s/ s
. e

. ,;/ s .'. -:

gl N !

{u 8.5

EXERCISE 7.2: Find the output graph for f(t) =1 - sin*(3.14t) for p =1, and r = .5.

Choose plot parameters to show 0 <t <6 and 0 < y; < 1. Add the input function

SECOND ORDER DIFFERENTIAL EQUATIONS 231

graph as an overlay. Comment: The output function for this input can be obtained

from a table of integrals after several substitutions using the method of undetermined

coefficients. But, an output function for an input f(t) = 1/(2 - sin*(3.14t)) can not be

found this way.

Suppose the forcing function f(t) is periodic with period length P. If we can

change the initial conditions so that x(P) = x(0) and x'(P) = x'(0), then the resulting

solution is periodic. And if the damping coefficient r > 0, then all solutions will

eventually be close approximations to the periodic solution when viewed over one

period. We may want to view such a solution without waiting for asymptotic

behavior to emerge. Suppose we determine solutions x1 (t) and x(t) of the associated

homogeneous system so that x1 (0)= x'2(0) = 1 and x'1(0) = x2(0) = 0; then a general

solution is x(t) = a x1(t) + b x2(t) + Xq(t) where xq(t) is the solution constructed above

for 0 initial conditions for x and x'. Expressions for x1 (t) and x2(t) are x1(t) = e’™ [cos

Ut + (r/p) sin put] and xp(t) = (1/p) Tt sin ut. We can use the calculator to compute

the integrals in xq(P) and x'q(P), then we can use the calculator to solve the

periodicity condition for a and b:

1- xl(P) - x2(P) [a :| xq(P)

-x' -x' b] |x 'X 1(P) 1-x 2(P) xq(P)

The periodic response can be obtained by using G.0I with input0 [a b] P 1 on the

stack.

Output for f(t) = (sin 3t8, r = .25 and p = 1 with the initial conditions

x(0) = dx/dt(0) = 0 is shown below. This input has period n/3. The periodic response

is also shown over two periods. The average value for this forcing f(t) is n/6 and

f(t) = [f(t) - /6] + =/6, so a portion of the periodic response is the constant 7/ (602).

232 CHAPTER7

£(t) x(t)

AL,s

Input: (1) = (sin(3t))*8 Output

T X(1)

ee
-l3 I‘B 2“6

Periodic Response

EXERCISE 7.3 : Find and plot the periodic output response for f(t) = 1 - sin®(3.14t) for

u =1, and r =.5. Then overlay a plot of the input forcing function.

The friction/resistance term in the spring/circuit model that we have been

considering is given by 2rdx/dt and the restoring force term is w?x. These terms are

usually approximations for nonlinear phenomena. What happens to the periodic

response in the mathematical model driven by periodic input when the terms are

replaced by nonlinear functions? The method of calculating the correct initial

conditions no longer applies; however, in some cases the solution to the differential

equation with a variety of initial conditions will settle toward a periodic steady

state solution as time increases.

EXERCISE 7.4 : Find a periodic solution to nonlinear problems of the form

2

94X LR KK =2costdx

dt t
dt

Set H-VIEW (i. e, XRNG) =-.2 6.283, H-VIEW (i. e., YRNG) = -2.1 2.1. Let

SEcCOND ORDER DIFFERENTIAL EQUATIONS 233

Rq(dx/dt) = 2*IFTE(dx/dt < -1, dx/dt + .5, IFTE(dx/dt < 1, .5*dx/dt, dx/dt - 1)).

(a) Take R = Ry(dx/dt) and K(x) = x. Use initial condition t =0, x = 0, x' = 1.56.

(b) Take R(dx/dt) = dx/dt and K(x) = x. Use initial condition t = 0, x = 0, dx/dt = 2.

(c) Take R(dx/dt) = dx/dt and K(x) = sin x.

(d) Take R(dx/dt) = R1(dx/dt) and K(x) = sin x.

Note: In each case, if the solution you get is not periodic then use the values of x

and dx/dt at t = 6.283 as initial conditions and generate another solution. Which

nonlinearities caused a phase shift from the linear case (b)?

Suppose that in the system dY/dt = F(t,Y), F is periodic in t. Since the system

has a periodic rhythm, perhaps the rhythm will also exist in the solutions. It is

easy to use the calculator to illustrate the idea of locating a solution for t = any

multiple of a given time period. For example, the differential equation

2
d x 2
— +®x=.5cost, W#1,

dt

together with the initial condition x(0) = &, dx/dt(0) = 0 has solution

x(t)=[§+;2-]cosmt- 5 cost
21 -w") 21-w))

>]sinu)t+—1— sin t

2(1 - ®°) 2(1 - wz)

&
8 H=-o[§+

What are the properties of such a solution? For t = 2nn we have

x(2nn) + ———— dx
2(1 - 0)2) _(dt 21n) .

=C0Ss 2MtNwW, —————— =-Ssin 27no.
1 1g+—s 0[&+—75]

21 - ") 21 -w")

234 CHAPTER 7

By squaring both sides, we see that the points x(2nn), x'(2nn) lie on an ellipse.

EXERCISE 7.5: Plot the points x(2nn), x'(2nn) for § =0 and n = 1, 2, ... (several values

of n) for ® = 1/Sqrt(5) and for o = 1/3. Note that the points cycle around the

ellipse. If wn is an integer m for some integer n, then you can see the solution is

periodic, but what happens when is irrational?

The graph of { (x(nT), dx/dt(nT)) : n =0, 1, 2, ... } of the solution of a differential

equation dx/dt = f(x,y,t), dy/dt = g(x, y, t) when the function f and g have period T

in t is called a Poincare section. The following program collects 10 points for such a

graph on the stack:

<<{T YFN} TOL 1 10 FORNII N * 2 * -5NUM — TF

<< TF RKF 'Y(1)' EVAL 'Y(2)') EVAL RC 3 ROLLD >> NEXT >>

Executing this program for the FN function

<< 'Y(2)' EVAL '"12*COS(T) — X = e*('Y(1)"2-1)*Y(2)' EVAL 2 —ARRY >>

(periodically forced Van der Pol equations) for different values of € gives the data:

e =.05 e=.1 e=.15

initial value Y =[1,1] Y =[1,1] Y =[1,1]

first section point Y =[-2.1, 10.4] Y = [-2.24, 7.97] Y = [-2.21, 6.08]

second section point Y=[-2.19, 10.28] Y= [-1.99, 8.28] Y = [-1.82, 6.65]

third section point Y = [-2.19, 10.28] Y =[-1.98, 8.29] Y =[1.79, 6.86]

There were no further changes in the section points coordinates (to 6 places). In each

case the solution with initial value Y = [1,1] collapsed to a periodic solution.

Warning: the program's execution is about 30 minutes.

SECOND ORDER DIFFERENTIAL EQUATIONS 235

It is interesting to plot a solution starting at one of the section points over a

period of the system. The following figure is such a plot for one of the examples

above.

Foxced Vandex Polwith ¢ = .1

We have already noted that if periodic forcing with period T is imposed on the

undamped oscillator, solutions may result which have a periodic behavior of a

period inherited from the natural frequency of the oscillator and T. To be specific,

the solution for

2

dx +(1)2x=F cos Vt, x(0)=d—x(0)=0
2 0 dt

dt

for y# w is

2F . W+Y .-y
x(t) = > 2sm(—?_—t) sin (Tt)'

® -y

This special solution for a forced harmonic oscillator is quite unusual. The

homogeneous differential equation associated with this problem has periodic

solutions of period 2n/w, the forcing has period 2n/y. The presence of this, possibly

periodic solution with a different period, although surprising, comes from the

interaction of the forcing function with the solutions of the associated homogeneous

236 CHAPTER7

problem. Moreover the structure of this special solution is intriguing because it has

the form of a relatively slowing amplitude, sin((w-y)t/2) multiplying a factor

which varies at a faster rate.

EXERCISE 7.6: (a) Store the functions

2 . WO+Y . W=y 2 . W-Y .
5 5 sin (—2— t) sin (——t), 5 o sin (-——2-—- t) anc

oW -y 0 -y
-2 . =Y
5 5 Sin (Tt)

W -y

in the function grapher of your calculator. These function are, of course, x(t) as given

above, and two additional curves which are bounding curves for x(t). Plot each of the

functions for 0 <t < 4n/|y-w| for the cases: (i) ® =2, y=22/9, (ii) o = 2,

Y =20/7. Keep a copy of these graphs for comparison with later work.

The case w =2,y =22/9 is graphed below.

Beats Vibmion

(b) Suppose Sly-w!| t =2n. Then .5(y+®) 1t = 2n (y+w)/ | y—w!|. What is the

difference of the behavior of x(t) for t near T between the case when (y+®)/ | y-o| is

an even integer and the case when (y+w)/|y-®!| is an odd integer? Try some

examples to discover the answer. For example graph the solution given above for

cases (i) and (ii) in the classroom problem given above and in the cases (iii) y = 18/7

and o = 2, (iv) Yy=8/3 and ® = 2. Give a partial answer based on your result to the

SECOND ORDER DIFFERENTIAL EQUATIONS 237

question: does an input forcing of period T = 2n/y gives periodic output of least period

4n/|y-wl .

Many questions concerning the presence of a "special" solution to a forced

oscillator may occur to you. We mention several below.

The external forcing in the oscillator mentioned above is periodic (with least

period 2m/y) and has average value zero. Is it possible to replace Fy cos yt with

another function with these properties and discover a solution which resembles the

special solution studied above? As an example we consider the function

= T
f(t) =Fp X (-1)" 8(t-n")

n=0 Y

consisting of a sum of Dirac delta functions. You should show the transform of the

solution of y" + @2y = f(t), y(0) = y'(0) = 0 is

F - (nT/y)s

) E DY(s) =+) —F—————
® = 2 2

and the corresponding solution is

FO
y(t) = @ (-DM sinfo(t — nrn/Y)} u(t - nn/vy).i

k

Here u(t) = 0 for t < 0, = 1 otherwise. For w =2,y = 22/9, we obtain the graph

shown below for 0 <t < 9n = 28.274. Note the input function changes sign every 1.285

units so we must sum at least 25 terms to graph this interval. We note that the

graph has generally the same shape as that arising from the forcing f(t) = cos yt;

however there is some variation for positive t near t = 0 where the slope of the

graph is 2 rather than 0 as in the cosine case, near t = 9n/2 with a flat spot and near

t = 9n with a flat spot. The width of the flat spot at 4.5n is approximately 1.1 units

238 CHAPTER7

and the graphs of +1.4 sin (2t + .55) are good enveloping curves for this "distorted

beats vibration.

(v

on

Response of Harmonic Oscillatox to Pexiodic Inpulses

If the graph is extended to 0 <t <18m, it is seen that the response apparently has

period 9n. Next question: for a case in which (y+)/|y — o!| is an odd integer, does

the resulting solution have least period 2m/|w — Y| ? To get an indication of the

answer, try the case ® =2 and y=20/7.

7.2 TRAJECTORIES IN THE y1-y2 PLANE

A topic occurring early in many differential equation textbooks is that of

determining trajectories that are orthogonal to the members of a one-parameter

family of curves, say W(y1, y2, p) = 0. The usual technique is to first find the

differential equation satisfied by the members of the given curve family, say

dy2/dy1; = m(y1, y2); then curves that are orthogonal satisfy the differential

equation dyp /dy; = -1/m(y1, y2). If the original family is given by equations of

the form dyq /dt = f(y1, y2), dy2/dt = g(y1, y2), trajectories for orthogonal curves

satisfy dyq/dt=-g(y1,y2), dy2/dt=1£(y1,y2). This latter form is preferred if the

curves in either family must be specified in terms of a parameter t. Clearly, the

program G.12 (or G.Y12) can be used to plot members of both the given family of

curves and the orthogonal trajectories. This is our first example of what is called an

autonomous system. A specific example is shown.

SecoND ORDER DIFFERENTIAL EQUATIONS 239

Orthogonal Trajectories dyy/dt=-)y‘yl, dyzldt=y1/y2

EXERCISE 7.7: Set the plot parameters to show both H-VIEW and V-VIEW as

-5 3.5 and enter the following FN:

<< "Y(1)*(Y(1)A2=Y(2)A2)' EVAL 'Y(2)*(3*Y(1)A2-Y(2)"2)' EVAL 2 —ARRY >>.

Create a composite plot in the y1-y7 plane resulting from the inputs to the G.12:

to 0 0 0 0 0

y0 [5 .1] [75 .1] 1 .1] 1 .4] [1.5 .5]

tf 4 4 2 2 2

These are five solution trajectories (ovals) for the system

dy/dt=y1(y12 -y22), dyz2/dt=yz(3y12-y2?).

Now overlay the solution trajectories of the orthogonal system corresponding to the

following inputs to the G.12 program:

240 CHAPTER 7

to 0 0 0 0 0

Y0 [0 3.4] [0 25] [0 1.5] [2 0] [3.4 0]

tf 1.2 .8 .8 .8 .8

Plots in the yj-y2 plane of solutions (yi(t), y2(t)) of differential equations

y1' = F1(y1, y2), y2' = Fa(y1, y2) are called phase plane plots. If F1(y1, y2), and

Fa(y1, y2), have continuous partial derivatives, solutions to initial value problems

are unique and it is elementary to show that under such circumstances solution

trajectories arising from different initial points either coincide or do not intersect. If

fact, it is easy to see that if (yj(t), y2(t)) is a solution of an equation of this form

and a is any constant, then (y7(t+a), y2(t+a)) is also a solution. Closed trajectories in

the

y2)

phase plane indicate periodic solutions. Constant solutions, that is, points (y1,

such that F1(y1, y2) = F2(y1, y2),= 0 are called critical point solutions (also

equilibrium solutions). Other trajectories of particular interest are those nearby to a

critical point.

® If trajectories arising at all points within some circle around a critical

point (y1c, y2¢) leave the vicinity of (y1c, y2¢) ast = e, then (y1¢, y2c)

is called a repelling solution, i.e., unstable.

® If trajectories arising at all points within some circle around a critical

point (y1¢, y2¢) approach (y1¢, y2¢) as t = o, then (y1¢y2¢) is called an

attracting solution, i.e., asymptotically stable.

Some well-studied examples of autonomous are presented below. Note the

asymptotic behavior of the solution trajectories as indicated by the graphs.

EXERCISE 7.8 : Systems called Lotka-Voltera systems may be scaled to the form

dy1/dt=y1(3-y2), dyz2/dt=y2(y1 - 3).

SECOND ORDER DIFFERENTIAL EQUATIONS 241

Such systems arise in the study of populations of two species, one of which feeds on

the other. Trajectories that begin in the first quadrant are periodic. Plot the

solution that starts at 0 [2 2], for 0 <t < 2.25, after setting the plot parameters to

show H-VIEW 0 6,and V-VIEW 0 6, by using the plot program G.12.

EXAMPLE. The differential equations

x"+cx'+sinx=0 or y1'=yp, y2'=-siny] —cyp

arise in the study of the displacements of damped (or undamped) pendulums. The

critical points are (0,0) and (n=, 0). For ¢ > 0, (0, 0) is an attracting solution. We use

G.12, ¢ = .3, and FN given by

<< 'Y(2)' EVAL 'sin(Y(1))+.3*Y(2)' EVAL NEG 2 —ARRY >>

to obtain the following graph. (For c = 0, there is a family of periodic solutions.)

Damped Pendulum Motion (¢ = .3)

EXAMPLE. The system

dyq /dt =-2yp +y1(1-r2)/r, dyp/dt = 2xy1+ y2(1-r2)/r:

where (12 = y12 + y22) has an isolated periodic solution r = 1. Here ,nearby solutions

spiral towards the circle r = 1. To obtain graphs use G.12 and the function FN given

by

242 CHAPTER 7

<< 2Y(2)+Y(1)*(1=Y(1)A2=Y(2)A2)/(Y(1)A2+Y(2)A2)A.5' EVAL

2V(1)+Y(2)*(1=Y(1)A2=Y(2)A2)/(Y(1)A2+Y(2)A2)A.5' EVAL 2 —ARRY >>.

Another problem that has an isolated attracting periodic solution is the Van der

Pol differential equation. This equation was studied in connection with its

application to an electronic component. This example is usually studied as a function

of a parameter p contained in the "damping" term. Our figure shows a

Y
32.

o’"r N

il 33: ———y
7-\. /J" !

_3 1“ /I

e 3

dyyfdt=y,, dyfdt=- [y+ 3052L]

typical graph: here p = .3. Notice that the motion is counterclockwise and that the

solution was started at (x, y) = (2, 2). The solution quickly moves close to its

asymptotic shape and is periodic. Solutions starting inside the closed curve (except

from (0, 0)) also move out to the periodic solution. Variation of the parameter p

causes dramatic changes in the shape and period of the solution.

EXERCISE 7.9: In this exercise we will examine the cycle times of periodic solutions

of several special differential equations. The equations under consideration have

solutions that resemble the trajectories graphed in the figure below.

SECOND ORDER DIFFERENTIAL EQUATIONS 243

F[x]
JD x'

) \,

))

F(z)3
4:—&-—‘—/0—0—0—?(] X

t
)

Construction fox Trajectories _—

(Seexegionbetween F [z] & F[x]) Trajectories

Here we assuming that y(t) satisfies the initial value problem

2
d x

2
+f(x) =0, x(0)=z, dx =0,

dt dt

where the essential feature of f(x) is that it changes sign from negative to positive

as y increases through zero. We multiply by dx/dt and integrate from O to t to obtain

X

% =+ /F(z) - F(x), where F(x) =2 j f(s) ds.
0

If we denote by P/2 the time for the trajectory to proceed from the starting point to

the state x(P/2) = z1, dx/dt(P/2) = 0, then

o ~ N N

dx

0 z{ JF@) - Fo

244 CHAPTER7

We list the value z] for several examples:

(a) f(x) =x, F(x) =x2, z] =-z

(b) f(x) = sin x, F(x) =2[1-cos x], z1 =-z

(c) f(xX)=x+x2, F(x) =x2 +2x3/3, 71 =largest negative root of

2£ .2 2 2 2 _3x +[1+3]x+[z+3z]—0.

(d) f(x) =x + x cos 4x + .25 sin 4x F(x) = x2 + .5x sin 4x, z] = -z

Notice that in (a), (b) and (d), the function F is even in x, but in (c) it is not.

Calculate and plot the values of P for one of the examples (a), (b), or (c) listed above

for several values of z. Use the numerical integration key (program) on your

calculator with a tolerance of 0.005. The following values of P are for part (d)

above:

z values .25 5 .75 1 1.25 1.5 1.75 2 2.25

P values 3.94 529 12.74 2154 8.29 5.74 5.04 5.45 8.37

Note that dx/dt = 0 and x = ©/4 and dx/dt =0, x = 3n/4 are equilibrium points.

7.3 LINEAR VARIATIONAL SYSTEMS IN THE y1-y2 PLANE

Linear autonomous systems can be solved analytically. These systems have the

form:

dy1/dt = aj1y1 +ai2y2, dy2/dt=az1y1 +azy2

We will consider the case det (A) # 0, which means that the origin (0,0) is the only

critical point. Special solutions have the form w = column [y1, yo] =e * v where A

is a solution of the equation det (A- AI) = 0 and v will be given below. Such a

number A is called an eigenvalue of the system. The equation det (A — AI) = 0 is

called the characteristic equation or the eigenvalue equation for the system. If A is an

SECOND ORDER DIFFERENTIAL EQUATIONS 245

eigenvalue for the system then the column vector v = [c, d] is a non-zero solution of

(A - A)v = 0. Other solutions of our system are linear combinations of these special

solutions (in most cases).

The solution graphs of such systems near the origin (0,0) are particularly

interesting. Examples fall into the following cases: closed trajectories (indicating a

family of periodic solutions), spiraling trajectories (inward or outward spirals) and

curved spoke-like trajectories (again traveling toward or away from the origin). The

cases correspond to the type of eigenvalues for the system, viz. purely imaginary

values, complex numbers with non-zero real parts and real eigenvalues.

EXAMPLE: Consider the system

dyy/dt=y1 -4y2, dy2/dt= -y1+2y2.

The associated matrix A has eigenvalues A = .5(3t 17-°) and corresponding

eigenvectors ¢ = column [4, 1.56] and ¢ = column [-4, 2.56]. When a solution starts on a

multiple of the first eigenvector, it proceeds toward the origin exponentially. When

a solution starts on a multiple of the second eigenvector it travels away from the

origin exponentially. Other solutions are a linear combination of these two solutions

and eventually proceed away from the origin. Typical trajectories are shown in the

figure below. The procedure was to start on the eigenvector solution and trace that

trajectory. Other solutions starting very near these special solutions were followed

for short periods.

246 CHAPTER7

1tmv:way_I

n

Ltravel to origin T
travel away

Trajectories near Saddle Point

EXERCISE 7.10: For the case A is complex and has negative real part the origin, (0,0)

is called a spiral point critical point (so we have an attracting critical point). Use

G.12 to study

dy1/dt=-5y1 + 4y , dyz/dt=-4y1 - .5y2

Start at (t, y) = (0, [0, 1]) after setting the plot parameters to show H-VIEW -2 2

and V-VIEW -1 1 and plot for 0 <t <3.

EXERCISE 7.11 : Use G.12 to graph the trajectories initiating at (t, [y1,y2]) =

(0, [0, 1]) and at (0, [-1, -1]) for the system

dy dy
—1=-(2 +y.) —2_. +2dt N de TTH Ty

What are the eigenvectors for this system associated with the [0, 0] critical point?

Can you see them on the graphs ? The graph should show that the origin (0,0) is

neither an attracting or repelling critical point solution for the system.

EXERCISE 7.12 (a) Use the calculator to draw a graph of the solution of

x_5 %3
dt X722V g T2*7°7Y

SECOND ORDER DIFFERENTIAL EQUATIONS 247

with initial conditions x(0) = -.5, y(0) = .5 for 0 < t < 4. Use XRNG scale

-14 < x <14, and YRNG -1 <y <1. When the plotting program is completed, record

the final values of the solution x(4)/y(4). Consider the matrix of coefficients

A

det (A-rI) = 0 ? What are the solutions ry, rp? Give nontrivial solutions of

{column[1, 1.5], column[-2.5, -3]} What is the characteristic equation

(A-rI)v =0 for r = r; and for rp Calculate vy /vy for each solution. Compare with

the answer you obtained for x(4)/y(4).c) Give the general solution of dw/dt = Aw.

Which term tends to vanish first as t increases ?

(b) Use the calculator to draw a plot of the solution of

dx dy
dt_5'7x_10 Y, dt—4x—-6.3y

with initial conditions x(0) = .3, y(0) = -2 for 0 < t < 6. Use XRNG scale

-147< x £ 1.7, and YRNG -1 <y < 1. Consider the matrix of coefficients

A= {column[5.7, 4], column[-10, -6.3]} What is the characteristic equation

det (A-rI) = 0 ? What are the solutions rq, rp ? Give nontrivial solutions of

(A-rT)v =0 for r = rq and for rp Give the general solution of dw/dt = Aw.

Solution graphs of nonlinear autonomous systems near a critical point solution

can be studied using a linear approximation. Let the vector y = column [y, y2] and

suppose we have the system dy/dt = F(y) for F(y) = column [F1(y1, y2), F2(y1, y2)I.

and F1(y1c, y2¢) = F2(Y1c, ¥2¢) = 0. Solution behavior near the critical point

Ve = (Y1e, Y2¢) can be determined by studying the linear wvariational matrix

J(yc) = Fy(ye) defined below. If all eigenvalues of this matrix have negative real

parts, the solution y = y. is an attracting solution. If one of the eigenvalues has a

positive real part, some solutions leave immediate neighborhoods of the critical

point. The matrix J(yc) has (i, j) element

248 CHAPTER7

oF;
g} (yc)

EXAMPLE: Consider the system dy; /dt = 2y12 + y22 -9, dyp/dt = y12 + y22 - 5,

which has critical point solutions (2, 1), (-2, 1), (2, -1), (-2, -1). The variational

matrix for the last critical point has eigenvalue equation A% + 16\ + 8 = 0. The roots

of this equation clearly are negative so that (-2,-1) is an attracting critical point.

The calculator can be used to find the matrix J associated with any equilibrium

point y. by using the sequence of programs given below. Because such information is

also useful for a vector system dy/dt = F(y) where y and F(y) are vectors with m

components, we present the programs for the vector case. We further will present the

programs in a form where the labeling of the independent variables can be specified

by the user. For example, instead of y1, y2, etc. the user might prefer u, v, The

user's preference will be entered into a stored list as shown. After the matrix J is

determined then the calculator can be used to find the eigenvalues as explained in

the next section of this chapter.

Here is an outline of the procedure, assuming that we know the point y.. We

store the value of m in M and store the names of the m components in a list called

PL. For example, PL = {U V }. Make sure each of the variables in PL have been

purged. Store the components of the F function in a list FL. For instance, in the

example given above FL = {'2*UM2+VA2-9' 'UN2 + VA2 — §' } where U replaces yi

and V replaces yp. Then execute the program DER below:

Subprogram Name: DER

Purpose: Creates list JL puts the FL functions on the

stack and executes DERA M times.

<<{}'JL' STO FL OBJ— 1 SWAP START DERA NEXT>>

SECOND ORDER DIFFERENTIAL EQUATIONS 249

Program DER calls the subprograms DERA and DERB.

Subprogram Name: DERA

Purpose: Creates M -1 more copies of the first element

on the stack for use in the next subprogram.

<<1 M1 — START DUP NEXT DERB >>

Subprogram Name: DERB

Purpose: Takes M copies of a function in FL, creates the

derivatives with respect to each parameter in

PL and stores them in JL.

<<1 M FORIPLIGETo M 1 + | — ROLLD NEXT

M —LIST JL + 'JL' STO>>.
At this point, for m = 2, JL= {F1y (u,v) F1y (u, v) Fzy (u, v) Fzy (u, v)}. Now store

the values of the variables in PL at Y. (e. g. U =-2, V = -1) and create matrix JMAT

with a program called JEV given by

<< JL OBJ-> 1 SWAP START -NUM M SQ ROLLD NEXT

{M M} ->ARRY 'JMAT' STO >>

At this point we have constructed the matrix JMAT. There is a straight forward

procedure for finding the eigenvalues of JMAT. See the next chapter. For m = 2, the

eigenvalues are the roots of the quadratic polynomial

A2 — (JMAT[1,1}+JMAT[2,2]))A + (JMAT[1,1]*JMAT[2,2] - JMAT[1,2]*JMAT[2,1]).

250 CHAPTER7

Finding critical points is not always easy. Newton's method for solving

simultaneous nonlinear equations may be used to find critical points of a system if an

approximate location yo = column [ug V] of the critical point is known. Then better

approximations of the critical point may result from one or more applications of the

following algorithm:
-1

Yan=Ya—3 OHDFEQY), ¥y, DY,0 o o 0

The same programs listed above can be used to create the JL list for the

components of the] matrix. We need additional programs to calculate the F(yq)

vector. The program FEV that will be used to create the vector FVEC is given by

<< FL OBJ— 1 SWAP START —-NUM M ROLLD NEXT

{M} —-ARRY 'FVEC' STO >>.

Put an approximation of the critical point [U V] on the stack and execute the

program NWTN given by

<< DUP OBJ— DROP 'V'STO 'U' STO JEV FEV FVEC JMAT / >>.

At this point you have an incremental vector [U — U, V — V] on the first level of

the stack and the old vector [U, V] on the second level. If the incremental vector is

sufficiently small, create the new vector [Up, Vp], by the command - (a minus

command). If not, execute —, then NWTN again,etc.

EXERCISE 7.13: Find a critical point of the system

du/dt=sinu+cosv-u, dv/dt=cosu-sinv-v

near u = 1.9 and v = .2, and determine the eigenvalues of the variational matrix.

(Answer u = 1.9235, v = -.17315, A = -1.66 % i .244)

SECOND ORDER DIFFERENTIAL EQUATIONS 251

EXERCISE 7.14: Find a critical point of the system

du/dt=u-sinu*coshv, dv/dt=v-cosu*sinhv

near u = 7 and v = 2.5, and determine the eigenvalues of the variational matrix.

(Answer u = 7.49768, v = 2.76868, A = -1.79 + 1 7.4)

How does one find starting values for such a procedure? If the equilibrium is

attracting, then for a variety of initial conditions the output of G.12 will indicate

an approximate location. If the equilibrium is repelling, then running the system

backwards in time will yield the approximate location for many initial conditions.

If the equilibrium is neither attracting or repelling, then the same procedure will

work if care is used in choosing the initial conditions.

Recall that the Runge-Kutta Feldberg algorithm attempts to set a step size for

which the perceived error is below a tolerance level. There are cases for which this

algorithm is not efficient: the step selected is too small and too much time is

required to proceed from the initial time to a desirable termination. We have

previously discussed systems of the form

dyy/dt=aj1y; +a12y2, dy2/dt=az1y1 +ay2.

The failure of the default algorithm occurs for such systems when the eigenvalues A}

A of the matrix A made from the coefficients are both negative and A;/A; is a large

number. This indicates that there are two solutions of the differential equation that

approach zero as time increases at widely differing rates. Such a system of

differential equations is called stiff and Hewlett Packard has provided a second

algorithm to handle such cases. Nonlinear systems can also be stiff. For example, a

system dy/dt = F(y) which has an equilibrium y. for which the matrix J(yc)

discussed above has eigenvalues with Aj/Aj large is stiff in the neighborhood of y.

252 CHAPTER7

An algorithm for a stiff system is somewhat less efficient than the default

algorithm when operating on a nonstiff case. Consequently Hewlett Packard's

alternate differential equation program attempts to use the default algorithm

whenever possible and switches to a stiff algorithm when stiffness is 'detected’.

To execute the alternate differential equation program, the user must provide a

program F for the function F(y), a program for J(y) and a program for 0F/dt. We will

illustrate for the problem

y1'=y2, y2'=-1000 y7 - 1001 y>.

The matrix J here does not depend on y: a program for J is << 0 1 -1000 -1001

{22} ->ARRY >>. A program for 0F/dtis << 0 0 2 —-ARRY >>. We store these

programs under the names FNY and FNT respectively. The following adaptation of

G.01 is constructed for this problem. The reader should recall G.01 and edit. Note

that the stack command {T Y FN FNY FNT} replaces {T Y FN} in the default

algorithm and that the stack input to RRKSTEP consist of four elements. The last

element is an indicator variable (in this case 2) which determines the method to be

used.

EXERCISE 7.15: Use IN.FN to store an appropriate function FN. Store FNY and FNT

as given above. Use IN.PP to set XRNG to 0 1 and YRNG to 0 1. Put the entries 0 [1

-1] 1 on the stack and execute GS.01 (see next page). An alternative is to use the

form provided by HP for plotting the solution of a differential equation. To do this

enter the FN function as given above for F and check the STIFF box. Then enter the

FNY and FNT functions given above in the dFdY and dFJT boxes respectively. The

exact solution is y1 = et, yp = -et Use the Function mode to overlay the solution as

an accuracy check.

SeECOND ORDER DIFFERENTIAL EQUATIONS 253

Program Name: GS.01

Purpose: Generate a T Y(1) graph of the solution

to Tt.

Stored Quantities: XBRNG YRNG FN FNY FNT TOL HS

Input level 3 level 2 level 1

To vector Yo T;

The output stack is empty, the variables T and Y contain updated values

<< { # 0d # 0d } PVIEW DRAX 3 ROLLD 'Y' STO 'T' STO

— TF << {T Y FN FNY FNT } TOL HS 0 T 'Y(1)) EVAL R-C

5 ROLLD DO RRKSTEP T 'Y(1)) EVAL R—»C DUP 7 ROLLD

6 ROLL LINE SWAP DUP 3 ROLLD T + TF UNTIL > END

SWAP DROP TF T — SWAP RRKSTEP T 'Y(1)' EVAL R-C

DUP 7 ROLLD 6 ROLL LINE SWAP DROP TF T - SWAP

RRKSTEP T 'Y(1)) EVAL R—»C 6 ROLL LINE 4 DROPN >>

PICTURE >>

EXERCISE 7.16: Use the calculator to graph several solutions in the x y plane of the

‘non-stiff' system

%=x(1 -X-Y), %=y(.5- 75x-.25y)

showing XRNG 0 <x <15, and YRNG 0<y<25. Forx(0)=.1, y(0) = .2, plot for 0

<t <25, for x(0) = .1, y(0) = .3 plot for 0 <t <15, for x(0) = y(0) = 1.5 plot for 0 < t

<15, for x(0) = 1.5, y(0) = 1.0, plot for 0 < t < 20 and for x(0) = 1.5, y(0) = .8 plot for O

< t £ 20. Here notice that (x, y) = (.5, .5), (x, y) = (0, 2) and (x, y) = (1, 0) are

equilibrium solutions.

LINEAR SYSTEMS OF DIFFERENTIAL

EQUATIONS WITH CONSTANT

COEFFICIENTS

In this chapter we consider linear systems of differential equations of the form

y' = Ay + f(t) where y and {(t) are vectors with, say, n components and A is an n by n

matrix. Solutions can be constructed from the eigenvalues and eigenvectors of A.

There are built-in programs in the HP-48G calculator for these eigenvalues and

eigenvectors. However, a differential equations student may wish to know just how

these quantities could be calculated. Consequently, we will present several special

programs to illustrate steps involved in obtaining eigenvalues and eigenvectors. We

recommend that beginning students use these special programs at first to become

comfortable with the mathematical concepts then use the built-in programs to avoid

the computational pitfalls that are sometimes encountered.

8.1 HOMOGENEOUS SYSTEMS

Considerfirst the vector problem dy/dt = Ay. Here we want to find all solutions

of the differential equation. It is readily shown that if n independent vector

functions satisfying the differential equation can be determined and a matrix Y(t) is

constructed with these columns, then all solutions have the form Y(t)c where c is a

vector with n components. The "educated guess" y(t) = eMy (here y(t) and v are

vectors) leads to the nth order polynomial equation det(A-AI) = 0 which is called

the eigenvalue or characteristic equation, and to the problem of determining

nontrivial solution vectors v to the problem (A-AI)v = 0 (where A is a solution to the

eigenvalue equation). Thus the problem breaks into several parts: (1) find the

eigenvalue equation, (2) find the solutions of the eigenvalue equation, (3) for each

254

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 255

solution A, find a corresponding eigenvector v, and (4) assemble the matrix Y(t). We

will illustrate the solution process first for n = 2 and then for n = 3 component

systems. Then we will outline a procedure that uses the calculator's built-in routine

for eigenvalues and eigenvectors for all n > 2. EXAMPLES /EXERCISES are given.

A calculator program to display the eigenvalue equation for a 2 by 2 matrix is:

Program Name: EIG2

Purpose: Display the eigenvalue equation.

Stored Quantities: 2 by 2 matrix A

<< 'X' PURGE A DET 8 RND — D1 <<'X*2-(A(1,1) +

A(2,2))*X + D1' EVAL >> >>

EXERCISE 8.1: Find the eigenvalue (or characteristic) equation for the matrices

34 0 1

21 -1000 -1001

A calculator program to display the eigenvalue equation in the 3 by 3 case is:

Program Name: EIG3

Purpose: Display the eigenvalue equation

Stored Quantities: 3 by 3 matrix A

<< 'X' PURGE A DET 8 RND — D1 <<'XA3 - (A(1,1) + A(2,2)

+ A(3,3))"X*2 + (A(1,1)*A(2,2) — A(1,2)*A(2,1) + A(1,1)*A(3,3) -

A(1,3)*A(3,1) + A(2,2)*A(3,3) — A(3,2)*A(2,3))*X — D1' EVAL >>

>>

256 CHAPTERS8

The program will display the eigenvalue equation as a cubic in X.

EXERCISE 8.2: Find the characteristic equation for the matrices

1 2-1 -1 -6 3 -5 -8 -12

A = 1 O 1 , A = 3 8 '3 , A = '6 '10 '10

4 -4 5 6 12 4 6 10 13

(The first matrix has the eigenvalue equation A3 — 6A2 + 11\ - 6.)

We can find the roots of the eigenvalue equation simply by executing the PROOT

program on the HP-48G calculator (left-shift SOLVE, then POLY) — see below — or

by storing the equation and using the DRAW and/or SOLVR programs. You may

have to try several settings of the plot parameters XRNG, YRNG.

EXERCISE 8.3: Find the eigenvalues of the matrices given in EXERCISE 8.2.

(Eigenvalues for the first matrix are 1, 2, 3.)

Consider the matrix

_
O
O

—
_
o

O
=
O

The eigenvalue equation in the variable x is x3 — 3x — 1. A simple way to obtain the

roots on the HP-48G is to press SOLVE, move to Solve poly... and press OK.

Enter the vector of coefficients [1 0 -1 -1] and press OK and SOLVE to get all roots.

(You may want to go to EDIT MODES 3 FIX to see all the roots.) Another way to

obtain the roots is to use the ROOT command (under FCN on the graphics screen)

after plotting the ploynomial from -2 to 2. A root is x = 1.3247---. If we divide the

polynomial x3 — x — 1 by (x — 1.3247...) we obtain the quotient xZ + 1.3247---x +

(1.3247--A2-1). Zeros of this quadratic are complex eigenvalues. At this point the x

has a value stored in it. To avoid confused notation we take an extra step: bring the

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 257

value in x to the stack and store it in R. Now place 'x"2 + r*x +(r*2-1)' on the stack,

and key in the command 'X' PURGE. You now have the desired quadratic on the

stack, enter 'X' and execute QUAD (on the SYMBOLIC menu). Follow the usual

procedure for the QUAD program to obtain the roots -.662 + i .563.

EXERCISE 8.4: Determine the eigenvalues for each of the matrices

010 010 -11 -8 -12

A=0 01| A=[001{ A= 2 1 4

4 30 130 6 4 5

When an eigenvalue A is determined, the matrix (A-AI) is singular and the

linear system solver is not appropriate to solve the equation (A-AI)v = 0. Place

(A-AI) on the stack and use the programs named PIV and ROKL given below to obtain

the Gauss-Jordon echelon form to determine the row space of (A-AI) and nontrivial

solution vectors v. Alternately you can use the program RREF on the HP-48G (see

below).

Program Name: PIV (Adapted from D. R. LaTorre)

Purpose: Gauss pivot on element K L

Input: Matrix A, integers K L Output: Altered matrix A

<< - A K L <<IF 'A(K,L)' EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET - M << M IDN ‘A(1,1)' EVAL TYPE IF

THEN DUP 0 CON R—»C END 1 M FOR | 'A(l,L)" EVAL { | K

} SWAP PUT NEXT INV A * >> 8 RND END >> >>

258 CHAPTERS8

Program Name: ROKL (Adapted from D. R. LaTorre)

Purpose: Interchange rows K and L

Input: Matrix A, integers K L Output: Altered matrix A

<< > AKL << A SIZE 2 GET - N << A 1 N FOR |

'‘A(K,1) EVAL { L | } SWAP PUT NEXT 1 N FOR J 'A(L,J)'

EVAL { K J } SWAP PUT NEXT >> >> >>

Notice that the programs PIV and ROKL given above are valid for any size

square matrix.

EXAMPLE: The first matrix in the EXERCISE 8.2 has eigenvalues 1, 2, and 3.

For A = 1 an equation for v is

0 2 -1

1 -1'1]y=0.

4 -4 4

If this matrix is placed on the stack and the command 1, 2 ROKL (to interchange

|
Next give the command 1,1 PIV (creating O's in the first column) to get

1 -1 1
02 -1].
0 0 O

rows) is given we get

s
O

B
N

e

B 1

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 259

Now the command 2,2 PIV gives

o
O
-

o
=
O 5

-5

0

The solution relations v1 =-5v3, v2 =.5v3result: i.e, v =[-1,1, 2] or any nonzero

multiple of this vector. Alternately the command RREF (on the HP-48G) will

accomplish the same result as the ROKL and PIV commands. Similarly for A = 2, we

find that any multiple of v = [-2, 1, 4] is a corresponding eigenvector; for A = 3, we

find that any multiple of v = [-1, 1, 4] is a corresponding eigenvector.

EXAMPLE: The matrix

6 7 8

A=| -2 0-2

-4 -6 -6

has eigenvalues A = -2 and 1 £i. The procedure shown above gives the eigenvector

v = column [1, 0, -1] corresponding to A = -2. For A =1 +i, the matrix A-A I is

6-1) 7 8

A=l 2 (11 -2
4 6 (7-1)

When we use RREF (or1 1 PIV, then2 2 PIV) we obtain

(1,o) (©,0 @,-5)

0,00 (1,00 (5, .5

0 0 0

This leads to an eigenvector v = column [(-1, .5), ((-.5, -.5), 1]. Recall that for the

conjugate eigenvalue, there is a eigenvector conjugate to this vector v.

260 CHAPTERS8

The next step is to assemble a fundamental matrix of solutions Y(t) that has as

its columns the vector solutions determined above. For the first matrix in EXERCISE

8.2 we determined eigenvalues and corresponding eigenvectors in the example just

after the ROKL program. Thus

b g2t 3t

Yty =| e 2t 3t

2et 4e2 t 4e3 t

The solution of y' = Ay, y(0) = column[1l 3 -5]is y(t) = Y(t)Y-1(0) column[1 3 5].

For the matrix example given just above the preceding paragraph (one real and a

pair of complex eigenvalue) we proceed as follows. If a matrix A has eigenvalues

A =a % Bi and corresponding eigenvectors ¢ = a + ib, then by adding the exponential

solutions obtained it is known that the quantities e®! (cos Bt a - sin Bt b) and

e®t (sin Bt a + cos Bt b) are real valued solutions of the differential equation y' = Ay.

Consequently, for this example we get the fundamental matrix of solutions

-e! (cos t + .5 sin t) et (-sin t + .5 cos t) e2t

Y(t) = Set (-cos t + sin t) -5t (sin t + cos t) 0

e cos t el sin t o2t

EXERCISE 8.5: Find a fundamental matrix of solutions of dy/dt = Ay for

-4 -4 -5 010

A=l-1-1-1}] A=|001

4 4 5 4 30

When there is a eigenvalue A of multiplicity two, either there are two

independent eigenvectors ¢ such that (A — AI)c = 0 or there is a solution of the form

y(t) = eM (vt + d). In the latter case, we derive the following requirements by

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 261

substitution: (A - Al) v=0and (A -AI) d =v. To determine the vector d we can

augment the matrix (A — AI) with the additional column v and use Gauss elimination

to determine d. For

311
A=| 1-3-1

4 21

A = -2 is a eigenvalue of multiplicity 2 and A = -1 is a simple eigenvalue. The

eigenvectors corresponding to A = -2 are multiples of v = column [1, -1, 2] and the

eigenvectors corresponding to A = -1 are multiples of v = column [1, -1, 3]. The

equation (A + 2I) d = column [1, -1, 2] has a solution d = column [0, 1, 0]. (Such a

solution vector is easily obtained on the calculator, first by calculating (A + 2I),

augmenting the matrix with the column [1, -1, 2] then using RREF on the HP-48G or

PIV as listed above to obtain d.) For this matrix A we have a fundamental matrix of

solutions

-t -2t -2t
e e te

-t -2t -2t
Y(t) = e - (1-t)e

-t -2t -2t

The matrix eigenvalues for

-5 -2 -3

A= 0 -3 O

2 20

are A = -3 (multiplicity 2) and A = -2. The eigenvectors corresponding to A = -3 are

linear combinations of ¢ = column [1, -1, 0] and ¢ = column [-3, 0, 2]. The eigenvectors

corresponding to A = -2 are multiples of ¢ = column [1, 0, -1]. A fundamental matrix of

solutions is

262 CHAPTERS8

- - -3to 2t o 3t 3¢

-3t
0 - 0o= %, 7

-e 0 2e

EXERCISE 8.6: Find a fundamental matrix of solutions for the system y' = Ay for

each of the following matrices:

011 310 -1.25 -5 .75

101, [0 311 S5 -1 5

110 4 -8 2 25 5 -175

We wish to present a program which accepts an n by n matrix as input and

generates its eigenvalue equation. There is a algorithm for the coefficients of this

equation which combines many subdeterminants to form the coefficients. Such an

algorithm seems cumbersome for the calculator; however another less well known

algorithm involves products and sums of n by n matrices and the computation of the

traces of some of these matrices, something this calculator does with little trouble.

The following algorithm is taken from Cullen, Linear Algebra with Applications, Scott

Foresman and Company, 1988: Let A be an n by n matrix, set By = I and then for

k=1,2,...,nlet

Ay = ABg_1, ck = -(1/Kk) tr(Ak), Bx = Ak + ckl.

Then the characteristic polynomial is given by

AN+ALA24+o1A+ cp.

The following program will generate the coefficients in the eigenvalue equation:

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Program Name CHAR

Purpose Find the eigenvalue equation for a matrix in

level 1 on the stack

Input stack: square matrix Output stack: list of the

coefficients in characteristic equation

<<DUPSIZE 1 GET { 1} > mitx n poly <<mtx 1 n FOR |

01 nFOR k OVER { k k } GET + NEXT

j NEG / 'poly' OVER STO+ mtx DUP ROT * SWAP ROT * +

NEXT DROP poly >> >>
EXAMPLE: Place the matrix

3 4 6 4
1 1 1 1

A=l ¢ g8 7 8
-11 -12 -15 -14

and therefore a fundamental matrix of solutions is

-t - _
4e 0 etc052t etsin2t

et e-2t 0 0
— -t _ -

Y(t) = -2e 0 -etsin2t etc052t

-t -2t -t . -t :
-2e -e e (sin2t-cos2t) -e (cos2t+sin2t)

263

on the stack and execute CHAR. You should receive output {1 5 13 19 10 },

meaning that the eigenvalue equation is A4 + 503 + 13 A2 + 194 + 10 = 0. This

equation has two real zeros, A = -1 and A = -2. Dividing A2 + 30+ 2 into the

eigenvalue equation gives a factor A2 + 2\ + 5s0 A = -1 * i are two remaining

eigenvalues. The procedure given above for 3 by 3 matrices extends to n by n matrices

264 CHAPTER 8

Recall that an HP-48G calculator has a program to obtain solutions of a

polynomial equation. After obtaining the characteristic equation using CHAR, the

roots of the equation can be determined using the program PROOT located in the

POLY directory on the SOLVE menu. The output of CHAR is a list of the

coefficients. This list should be converted to an array by using the keystrokes PRG

TYPE OBJ— —ARRY before using PROOT.

EXERCISES 8.7: Find a fundamental matrix of solutions for y' = Ay when

-25 25 -35 -5

1 2 2 1

5 4 6 6

-45 85 -55 -75

A=

We noted earlier that Hewlett Packard has provided professional programs to

calculate the eigenvalues and eigenvectors of n by n matrices (n 2 2). These programs

are located by pressing the MTH MATR NXT keys. EGV determines the eigenvalues

and eigenvectors of the matrix on level 1, EGVL determines only the eigenvalues.

EXAMPLE: Place the matrix

3 4 6 4
1 -1 1 1

A=l ¢ g8 7 8
-11 -12 -15 -14

on the stack and execute EGV. You should receive output [(-1, 2) (-1, -2) (-1, 0) (-2, 0)]

for the eigenvalues and output for corresponding eigenvectors

-5.5 (5-5 (1,00 (OO0

0, 0) 0,00 (25,00 (1,0

-5,-5) (5,5 (-5,00 (0,0

(1,0) (1,00 (50 (1,0

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 265

The first two eigenvalues are complex -1 #2i and have conjugate eigenvectors which

are the first two columns of the matrix. The procedure given above for 3 by 3

matrices extends to n by n matrices and therefore a fundamental matrix of solutions is

t
de 0 etcos 2t etsin2t

et e2t 0 0
_ -t . -

Y(t) = -2e 0 -etsin2t etc052t

-t 2t -t . -t .
-2e -e e (sin2t — cos2t) -e (cos2t+sin2t)

EXERCISE 8.8: Find a fundamental matrix of solutions for y' = Ay when

-25 25 -35 -5

1 2 2 1

5 4 6 6

-45 85 -55 -75

A=

Remark on EXERCISE 8.8. Suppose you use EGV on the HP-48G to obtain eigenvectors

on stack level two and eigenvalues on level one. We note that the first eigenvalue is

approximately 5.964. If we want to find an eigenvector corresponding to A = 5.964

with fourth component equal to 1 we can proceed as follows: Bring the matrix of

eigenvectors to stack level one and create a copy by pressing ENTER. Press MTH

MATR and execute the command 1 COL-. You will now have the first column of the

eigenvector matrix on level one (and the eigenvector matrix without column 1 on

level two). Create a copy of this column by pressing ENTER. Then execute 4 GET

and / to bring the fourth element of the column to stack level one and to then divide

the eigenvector by its fourth component to get [6.049, -8.871, -21.106, 1] as an

eigenvector corresponding to the first eigenvalue.

266 CHAPTERS8

8.2 NON-HOMOGENEOUS SYSTEMS

If the functions in a vector f(t) are elementary, we can use the method of

undetermined coefficients to construct a particular solution to y' = Ay + f(t). The

computation of the coefficients will require the solution of linear algebraic equations.

For more complicated functions f(t) to obtain solutions of the nonhomogeneous

equation suppose that a fundamental matrix Y(t) of solutions for the associated

homogeneous equation is known (so Y'(t) = AY(t)). It is easy to see that

t -1
yO=Y®c+ | Yt-s)Y (0)f(s) ds

0

is a solution of the nonhomogenous system for any vector c. In the general case a

program that uses the numerical integration capability of the calculator can produce

values at various times t for the components of the integral listed above.

EXAMPLE: Suppose A is the matrix given by

-85 .85 -2.05

A= .1 0 -9

S5 1.5 -25

(a) We calculate the eigenvalues (one real and a pair of complex conjugate

eigenvalues, viz. {-.786... , -.1568... £ i 1.527...}) and corresponding eigenvectors

(v1 = column {1, -.3096... , -.159..., }, and a *+ ib = column{1, .467... £ 1 .1985... , -.144...+

i-.827...} for the matrix and determine 3 independent vector solutions u(t), v(t), w(t)

of the homogeneous system dy/dt = Ay. We take Y(t) = {erMtvy, e®*t(cos Bt a — sin Bt

b), e*(sin Bt a + cos Bt b)}, so that Y(0) = [v1, a, b] . (To obtain this matrix put A on

the stack, execute EGV, SWAP and OBJ—, then use the OBJ— to put the real and

imaginary parts of the first two columns of the matrix of eigenvectors on the stack.

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 267

Finally use the (up-arrow)STK and the ECHO commands in the matrix editor to

construct Y(0).)

(b) For simple forcing functions we can use the method of undetermined "coefficients"

to find a particular solution: for example we can choose vectors a, B so that y(t) = «

cos 2nt + B sin 2xt is a particular solution of

2 sin 27t

Y _a
dg YT 0

-3 cos 27t

as follows: we split the nonhomogeneous term into a column vector {2, 0, 0} *sin 2rt +

a column vector *cos 2nt then by substituting the prescribed form for y into the

differential equation we get the equations

0 2

2nB=Aa+| 0|, 2na=AB+|0].

-3 0

If we use the first equation in the second equation we get

o = - column { .485..., .08..., .026}, B = column { .0317..., - .002... , -.269}.

(c) For more complicated forcing functions we use the variation of parameters

method to find a particular solution. Suppose

f(t) = column [0, 0, w(t)]

where w(t) = IFTE(t < .34, 5t , IFTE(t < .68, 1.7 - 5(t-.34), 0)) for 0 <t <1 and w(t) is

periodic with period 1. Then if we choose c so that y(0) = y(1) in the equation for

y(t) given above we will have a particular solution of dy/dt = A y + f(t) which is

periodic with period 1. This gives the following equation for ¢ (which forms part of

the appropriate initial condition)

268 CHAPTERS8

l -1
[YO-Y(D)]c= I Y(1-s)Y (0) f(s) ds

0

where for example, we let Y(t) = column [u(t), v(t), w(t)] and u, v, w were obtained

in (a). A graph of the input function is shown below.

w

Thixd Component of Input Function

After obtaining the value of ¢, the initial condition Y(0) ¢ will produce a periodic

response over 0 <t < 1.

To accomplish this computation we calculate numerically the integral values

1 A (1-s)
EW=]e! a(s)ds=.346,

0
1

SEW = | esin B(1-s) w(s) ds = 430,
0

1 _
CEW = I ea(1 S)cos B(1-s) w(s) ds = .2738.

0

Then

1 .310..
[s) Y(1-s) { -.310.. } ds = .310.EW v, - .310.(CEW a - SEW b)
0 -1.214..

-1.214 (SEW a + CEW b)

which we label as RHS. The equation {Y(0) - Y(1)} ¢ = RHS gives

c = [.19735, -.45535, .19735] and the appropriate initial condition for the periodic

solution is Y(0) c = [-.258, .-313, -.129]. A graph of the resulting components is shown.

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 269

Components of Periodic Solution

As noted above, the change in the third component is pronounced, whereas the other

components are influenced to a lesser extent to the change in w(t) at t = .34 and .68.

EXERCISE 8.9: Suppose that f(t) = w(t) column { 0, 1, 0} in the problem given

above. Obtain a graph of the resulting periodic solution.

EXERCISE 8.10. Use the method of undetermined coefficients to determine a

particular solution of

31 0) 1

y'=lo 3 1|y+e |1

4 -8 2 0

Hint: Try a solution of the form y =e - 2t {t a + b} where vectors a and b are to be

determined. By substitution the requirements for vectors a and b are Aa = -2a and

Ab=-2b+ a-column {1, 1, 0}. We choose a = column {1, 2, 4}, then

b = column{c, ¢, 6} — column {1, 1, 0} for any 6. The reader might ponder the case

where the nonhomogeneous term has the form e~2t column {g1, g7, g3} in the case

4(g1-82)* g3-

EXERCISE 8.11: A linear model for the angular displacements in a double pendulum

(see The Differential Equation Problem Solver published by Research and Education

270 CHAPTERS8

Association, 1978) for a system of two pendulums with lengths 17, Ip, a ratio of

pendulum masses given by d =1 + mp /my is given by the differential equations

ml1 6" = g{my B2—(m1+m2) 61}

mp(l161"+1262") = -mp g 6.

These equations may be recast as

1161"= g{mp/my 82-8q1)

(1161"+1262") = -g 62

and by standard elimination techniques, we obtain

111> el(iv) +g(l1+12)0 061" + g25 61 =0

g,
=51 lgitoy

We note § > 1. Show that for 8] = et the characteristic equation is quadratic in r2;

d
r2 =§%{- (1+1:)i'\/ (1+1)2 —%T }

where 71 is defined by the equation I = 1 17. Test these values of r2 for values of 1

Viz.

and & by putting 6 = 1.5 (i. e. mp =.5m]) and graph the term in brackets for 1 in the

interval 0 < 1 < 1. These graphs show the roots for r2 are negative and thus there

are two pairs of conjugate purely imaginary roots for r. If we denote the roots of the

characteristic equation as r = * i u, r=%iv, show the solution 61 and 67 will

contain terms of the form

aj cos put + bj sin ut + Gj cos vt + dj sin vt, j = 1,2.

with

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 271

With appropriate initial conditions, we can find terms of the form cos pt - cos vt

which leads to the form sin {.5(u+v)t }sin{.5(u—v)t}.

Alternately we put y1 =01, y2 =01, y3 =02, y4 =02' to derive the equation

y' = Ay where

0 1 0 O]
S o1_igg 0 g(1) 0

A= 1 1

0 0 O 1

S S

fl 0 - fl 0
- 1 1 -

For g = 1,11 =.75, 1 = 6-1 = .10059.. , the matrix A has eigenvalues A =%1iy,

A ==xiv with p=4.53817.., v = 1.13454.. and corresponding eigenvectors

0 .0079001.. 0 . 82435..
- 035852.. . 0 93526.. . 0

0 T 22035, |” o |T'| - ss14.
1 0 1 0

We denote the vectors listed above as a +ib, ¢ + i d. There is a solution of y' = Ay

y(t) = o { sin ut a + cos ut b — b(1) (sin vt ¢ + cos vt d)/d(1) },

and we note the first component has the form yj(t) = ¢ b(1) {cos ut — cos vt}. Thus

the angular displacement of the first pendulum oscillates with a beats motion. It is

272 CHAPTERS8

interesting to plot the motion of the angular displacement of the second pendulum

which looks deceptively like a regular periodic motion of a sine wave.

Y3
7

t
t

Motion ofpendulum 1 Motion ofpendulum 2

MISCELLANEOUS SYSTEMS

This chapter contains a set of applied problems that are appropriate in the

study of differential equations. The arrangement of the problems is somewhat

random and many, if not most, of the problems can be studied as soon as the concept

of solving a vector initial value problem is discussed. The first two problems might

occur more naturally just after Chapter 7. We delayed the presentation of these

problems so that students could keep the time schedule used in many classes. Some

classes use a nonstandard order of topics. For example, a class may choose to study

discrete systems early in the course. This chapter includes a short discussion of such

systems, but covers only an introduction to the concept of chaos.

Consider the motion of a particle in two dimensions (x and y) in a gravitational

field. We assume that the height attained by the particle is relatively low so

that gravity is constant, and motion occurs in a plane. Put

2 dy 2 -1d
v = @ (), eM=tan o (1)

The force on the projectile in the direction of the tangent to the trajectory is

F1 = T(t) — avl (thrust and air resistance). There are also horizontal and vertical

forces. The equations resulting from Newton's law of motion are:

2 2

d x dm dx dy dm dy
" + E' Et- =F1COSO—(1), m— + T dr

dt dt

=Flsin9—rn.

273

274 CHAPTER9

Here o is a force in the horizontal direction such as wind or an artifically imposed

control on the trajectory as described below for rocket flight. Since

%% = vcos0, %%= v sin 6, (9.1- 9.2)

dm
d?x 1 dt dx
a2 = E(T(t)—avr)cose——nT & " m

= dv/dtcos 8- vsin6do/dt

dm
d? 1 _ dt d
Et% = —(T()-avh)sin@-— & — g

= dv/dtsin 0 + v cos 6 d6/dt

Multiplying the right side of the x acceleration expression by cos 6 and the right

side of the y acceleration expression by sin 6 and adding gives

dm
dv 1 dt .
a = m (T-avh)-—- v—gsme—%cose (9.3)

If we differentiate the expression for 8 with respect to t we obtain

1
% = ;(@ntlsine—gcosfi). (9.4)

Differential equations 9.1-9.4, together with initial conditions x(0) =y(0) = 0, and

v(0) , 6(0) prescribed, will give the trajectory (x(t), y(t)). The reader may note that

when the initial velocity is low the initial values of 8 will be quite sensitive to the

v(0) value.

EXERCISE 9.1 : (Artillary shell EXERCISE for the HP-48G) Take r = 2, m = 500 kg,

a = .04, = 0 and initial condition Y = [6, v, x, y] = [6, 200, 0, 0] for several values of

MISCELLANEOUS SYSTEMS 275

8, say between .5 and 1.2. At each elevation, determine the range and maximum

height of the shell.

EXERCISE 9.2: (Baseball trajectory EXERCISE for the HP-48G) Take r = 1.2, a = .035,

m = .25 kg, and v(0) = 50 meters /second. Determine the trajectories that start at

x =0, y = 0 and terminate when the ball hits the ground for selected values of 6 and

o = 0, then for ® = +4 meters/second.

Rocket flight example for the HP-48G: We take r = 2, mg = 90,000 kg,

M(t) = mg - slope t for 0<t <120, =.1lmgo+ .OS*moe'Y(t‘lzo) for t > 120 where

slope = .85 m(/120 = 637.5 kg/sec, and .05mqy = 637.5 or y = .85/.05 * 1/120 = .14167

and a = .05. A reasonable model for thrust is T(t) proportional to dM(t)/dt, but some

easy experiments will convince the reader that unless some control is exerted on the

horizontal direction, say in the form of providing thrust in this direction, the rocket

will soon tilt into the ground with unburned fuel. To prevent this from happening we

take o = - B € dM(t)/dt cos 8 and T(t) = - dM(t)/dt (1 — € cos 8). Further we assume

that special conditions are placed on the system so that the rocket lifts off and

achieves a velocity of 10 meters per second as it clears the liftoff tower. From this

point we assume the equations of motion given above apply. For € = .825 and initial

vector Y with components 6, v, x, y having values [1.5, 10,0, 0] and XRNG 0

11,000, YRNG 0 350,000, we observe the following data:

t=120, ©6=1.5585 v =3178, x=1,666, y =67,800

t=240, ©6=1542, v=711, x=5,758, y=2316,279

t=300, 6=1302, v=67 x =6,878, y = 338,756

t=306, ©=.3, v =13, x = 7,000, y = 338,960

t =654.7, 6 =-1569, v =1313, x=10416, y =150

276 CHAPTER9

The graph of the rocket’s trajectory is shown below.

350,000
X

11,000
Rocket trajectoxy

EXERCISE 9.3 : Take € = .8, the initial Y to be [1.5, 10, 0, 0], and plot the trajectory.

Record the values of Y at times t = 120, 240, 300, 660. Then take € = .8125, initial

Y = [1.5, 10, 0, 0] and observe the values of Y for successive time steps to see whether

the control will give permit to a full trajectory, i.e.,, to a trajectory with flight

termination after fuel burnout (approximately 150 seconds). To do this place the

calculator in 2 FIX MODE, place {T Y FN} on stack level five, a tolerance .005 in

level four, starting step size, say .01 in level three, 0 on level two and [1.5 10 0 O]

on level one, and execute the program

<<'T" STO 'Y' STO RKFSTEP T Y >>.

Repeat execution of this program for several times to see that the first component of

Y shown on level one remains near 1.5 and the second component increases at each

execution.

EXERCISE 9.4 (Pursuit Problem): A rabbit starts at (0,1) and runs along y = 1 with

speed 1. At the same time a dog starts at (0, 0) and pursues the rabbit with speed

1.3. The dog attempts to point at the rabbit at all times but is constrained by his

momentum. Thatis, for the angle z between the dog's direction and the x axis, dz/dt

is restricted. What is the path of the dog? The equations of motion are:

MISCELLANEOUS SYSTEMS 277

dx/dt =13 cosz, dy/dt=13sinz, dz/dt=-(z-6(txX,y))

x(0) =0, y(0) =0, z(0) = 2.2.

Here 6(t,x,y) is the angle between the dog-rabbit vector and the x axis. We take

H = .15, N = 60, plot parameters to show -1 < x <8, -5 <y < 2, repeatedly apply

IULER to the differential equation dw/dt = F(t,w) and watch the trajectory.

Suitable functions for Fy (t, x, y, z), F2(t, x, y, z), and F3(t, x, y) (here F(t, w) = column

[F1, F2, F3]) are given by:

FN1: <<— T W '1.3* COS(W(3))' >>

FN2: << - T W '1.3* SINW(3))' >>

F.IN3: <<—> T W << 'W(3)' EVAL T 'W(1)') EVAL — DUP SQ 'W(2)' EVAL 1

- DUP SQ 3 ROLL + YV 3 ROLLD SWAP DUP 3 ROLLD THTA - NEG >>

THTA: << 0 IF 2 THEN THT1 ELSE THT2 END >>

THT1: << 0 IF < THEN SWAP / ACOS ELSE SWAP / ACOS NEG END >>

THT2: << 0 IF < THEN NEG SWAP / ACOS n -NUM SWAP - ELSE

NEG SWAP / ACOS n —-»NUM + END >>

F.N: << DUP2 DUP2 F.N1 5ROLLD F.N2 3 ROLLD F.N3 3 — ARRY >>

An easy modification of the GRAF program can be used to follow the action. The

program requires a starting stack of 0, [0, 0, 1.8] and the trajectories of both dog and

rabbit are shown dynamically as follows:

<<{ #0d # 0d } PVIEW 0 1 R—»C 3 ROLLD DRAX 1 N START IULER

DUP OBJ—» DROP2 R—C PIXON 3 ROLL H 0 R—»C + DUP PIXON 3

ROLLD NEXT PICTURE >>

278 CHAPTER9

9.1 THE LORENTZ EQUATIONS

Consider the problem:

dx/dt = 6(y—x), dy/dt = (r-z)x -y, dz/dt = xy - bz.

where o, r and b are parameters. This set of equations was proposed by E. Lorentz

(1963) in connection with convective heat transfer between the earth's surface and

the atmosphere. A point (x, y, z) represents convection velocities and temperature

profile, vertical and horizontal. An equilibrium, or periodic, solution to the system

represents predictable behavior. The graphs of particular solutions gave particularly

surprising results because most trajectories never seem to approach such

predictability. The paper has been one of the seminal studies in the area of chaos.

First the three critical points (that is, points (x, y, z) where the right sides of

the differential equations are zero) are (0, 0, 0) and (i(b(r—l))-5, i(b(r—l))-5, r-1).

-0 o 0

The variational matrix at (0, 0, 0) is| r -1 0 [, with system eigenvalues of -b and

0 0 -1

5(-(c+1) £ ((5—1)2 + 40r).

The variational matrices near the remaining critical points are

-c c O

1 -1 -8|:8=%Vb@1).
5 & b

Here, the eigenvalues satisfy the equation

23 + (0'+b+1)?\.2 + b(r+6)A + 20b(r-1) = 0.

Forr>1,b> 0,6 > 0 one of the variational eigenvalues near (0, 0, 0) is positive, so

most trajectories starting near (0, 0, 0) leave that neighborhood. For r sufficiently

MISCELLANEOUS SYSTEMS 279

near 1, the eigenvalues of the remaining variational matrices are negative and the

corresponding critical points are attracting solutions. When r is slightly larger, one

of the variation eigenvalues has a positive real part and the critical point is

repelling. It can be shown that solutions starting near the critical points stay

bounded and thus the trajectories have interesting behavior as t increases.

EXERCISE 9.5: Compute a solution for initial values x(0) =1, y(0) =1, z(0) =1 for

o0 =10, r = 28, and b = 8/3 using the built-in program for 0 <t < 15. Use viewing box

-15<x<0,-15<y <0, 20 <z <40 and position of the eye along the vector [1, 1, 5].

(See Appendix 5 for programs that give three dimensional plots.) Part of a typical

trajectory is shown below. A continuation of the trajectory reveals no asymptotic

pattern other than a continual looping in two of the x, y, z octants. The following

table shows partial results rounded to two decimals. At time t approximately .7, the

trajectory enters the viewing box, starts in a tight spiral that winds outward, finally

leaving the quadrant at about t = 14.4.

time X y z

608 -5.07 -8.06 2644

3.90 -8.67 -10.42 24.76

5.36 -987 -819 30.65

7.68 -8.80 -11.43 23.55

9.45 -524 -6.22 2138

11.48 -479 -6.82 18.16

1312 -1316 -1840 26.71

13.81 -6.50 -12 8.40

1437 -15.96 -25.44 26.07

14.55 -5.18 6.93 35.46

14.68 3.76 6.90 25.36

280 CHAPTERY9

 Xyz perspective

Lorentz trajectory enters viewing window
neay center ofpicture winds outward to t= 14 X-tpexspective

An extension to later times is shown below. Subsequently the trajectory winds in

the right hand portion of the picture making excursions into the left portion. The

trajectory never intersects inself so there is layering going on. Warning: the

development of this trajectory takes considerable time on the HP-48.

Lorentz System

MISCELLANEOUS SYSTEMS 281

9.2 EARTH, MOON, SATELLITE MOTION

Consider the model problem where the moon is circling the earth and a satellite

is in motion in the plane of the earth-moon orbit. The "restricted three body"

problem results when the satellite mass can be ignored when compared to the masses

of the moon and earth. (See Celestial Mechanics, Part II by S. Sternberg, W. A.

Benjamin Company, 1969.) If a rotating coordinate system is used so the coordinates

of the earth are (-i,0), the coordinates of the moon are (1-y,0), and the coordinates

of the satellite are denoted by (x(t), y(t)), then the equations of motion are

dx du 1- +u-1
G -u G m2vex-Cat e -p! 5)

d dv (1-p)
TV G c2uty- 3 Y-“ffs

where

2=x+p2+y2, p2=(x+p-1)2 +y?

The constant p is a ratio of the masses of the earth and moon

(=mp /(mp+mm) = 1/82.45). For the "earth-moon" system it has been discovered that

a solution with period approximately 6.1922 results from the initial conditions

x(0) = 1.2 u(0) =0, y(0) =0, v(0) = -1.04936... .

We take the vector w = [X, u, y, v] and create the subprogram

Subprogram Name RN

Stored Quantities none

input w: output: R1=r3 R2=p3

<< OBJ—> DROP2 SWAP DROP SQ SWAP 82.45 INV + DUP2

SQ + 1.5 23 ROLLD 1 — SQ + 1.5 A >>

282 CHAPTER9

The program F.N that takes w to F(w) can be as follows:

<< DUP RN 8245 INV - R1 R2 MU << OBJ—» DROP 3 ROLLD MU DUP

R2 / SWAP 1 - Rt / -1 - NEG * SWAP DUP 5 ROLLD 2 * — 3 ROLLD

SWAP DUP MU + 1 -— R2 / MU * SWAP DUP 3 ROLLD MU + 1 MU - R1

/' *+ — SWAP DUP 2 * 3 ROLL + 3 ROLLD SWAP 4 —-ARRY SWAP DROP

>> >>

Since this program is complex, we provide a stack status at various program

steps:

Instruction Stack contents

DUP RN 82.45 INV t w Rl R2 MU

— R1 R2 MU t w

OBJ— DROP txuyv

3 ROLLD MU DUP R2 / txvuypp/R2

SWAP 1 - R1 / txvuy p/R2 (u-1)/R1

-1 - NEG * t x v u y*(-1)[pn /R2-(n -1)/R1 -1]

SWAP DUP 5 ROLLD 2 * = tu x v {y*-1)[n /R2—-(n-1)/R1 -1]-2u}

3 ROLLD SWAP t u last equation v x

DUP MU + 1 — R2 / MU * t u last equation v x p[x+u-1J/R2

SWAP DUP 3 ROLLD t u last equation v x p[x+p-1]/R2 x

MU + 1 MU - R1 / t u last equation v x p[x+u-1J/R2 x+p (1-p)/R1

* + — SWAP DUP t u last equation x-pu[x+u—1J/R2+(x+n) (1-p)/R1 v v

2 * 3 ROLL + 3 ROLLD SWAP

4 —-ARRY SWAP DROP >>

MISCELLANEOUS SYSTEMS 283

carth y

 -& X

Satellite near Earth-Moon System

The graphs shown above require considerable execution time. The tolerance

parameter in the variable stepsize method was initially set to 0.01 and adjusted

when the satellite approaches the earth: later it was reduced back to 0.01, etc.

Another interesting periodic solution occurs for the approximate initial conditions

x(0) =0, u(0) = 1.58, y(0) = 1.2, v(0) = 0.

We note that equilibrium points for the restricted three body satisfy

u=v=0, y[1-Q-)/r3-p/p3]=0, x=(1-p)(x+u)/r3 + p(x-1+p)/p3.

PROJECT: Find the equilibrium solutions of this system and determine their

stability properties. Notice that for y = 0, we need only solve an equation of the

form g(x) = 0, but for other solutions, we need to find the solution of a pair of

nonlinear algebraic equations. We can use Newton's method as presented in Chapter

7 for finding such values of x and y if we can find a suitable starting point xq, yo.

(Two of the equilibrium points are located at x = .48787, y = + .86603.) To determine

284 CHAPTER9

the stability, we need to find the eigenvalues of the 4 by 4 variational matrices

associated with each critical point solution.

9.3 DISCRETE DYNAMICAL SYSTEMS

In some situations, the problem of interest is to determine information concerning

the asymptotic behavior (i.e., for large values of t) of solutions. This occurs often in

differential equations; however we will illustrate this type of problem by

introducing a new type of problem.

The sequence { y, }o* where y_ is given by a recursive function of the form

Ynst1 = F(yg), is called a discrete dynamical system. Euler's method, the improved

Euler method, and Newton's method for finding roots may give such systems.

Concepts such as constant "solutions", attractive or repelling solutions taken from

differential equations, are also present in the study of such systems. Discrete

dynamical systems (in one dimension) have solutions with more complicated structure

than do differential equations. For example, y, = a constant (for all n) is called a

period one solution, y44, = @ and y,., , = B is called a period two solution, y;,= o,

Vame1 = Br Yams2 = X is @ period three solution, etc. Consider

Vo = (1 +a)y,—a(y,)?and y, = .1.

We want to regard a as a parameter and study the effect on the "solution sequence

{y, 1" as a is varied. In particular we want to study a = 1.8, 2.3, 2.5 and 3 as well as

nearby values of a.

After several numerical experiments, we find that for a = 1.8 the terms of the

sequence approach 1, but for a = 2.3, the terms of the sequence approach 1.18 for even

n and .69 when n is odd, etc. This leads us to the following graphical program:

MISCELLANEOUS SYSTEMS 285

Set the value of a. Calculate the first 50 terms, then plot the values of the next

100, then change the value of a and repeat. To get these cases on a single plot, we

plot the values of y, on the horizontal axis and the values of a on the vertical axis.

The following programs can be used: Store A = 1.8 and N = 100, set the plot

parameters so that -5 <x <1.5and 1.6 <y < 3.2, then enter the programs.

Program Name DDS

Purpose Plot the asymptotic value of a discrete system

for several values of the parameter a

Stored Quantities FN1 DDS1 DDS2 A N XRNG YRNG

No input: Output is a graph

<<{# 0d # 0d } PVIEW .1 112 START DDS1 A .1 +'A' STO

.1 NEXT PICTURE >>
Subprograms are:

Subprogram Name FN1

Purpose Create the new value of y, given the previous

value

<< DUP SQ A* SWAP A 1+ *SWAP ->>

Subprogram Name DDSH1

Purpose Execute FN1 50 times, call DDS2

<< 1 50 START FN1 NEXT DDS2 >>

286 CHAPTER9

Subprogram Name DDS2

Purpose Repeat FN1 N times, plot points

<< 1 N START FN1 DUP A R—C PIXON NEXT >>
(The 50 executions of FN1 without graphing allows the sequence to come to "steady

state" before the graphing begins.) Execute DDS.

2
4L

Discxete Dynamical System

EXERCISE 9.6. Change FN1 to repeat the process for the system

Yne1 = (1 +a)y, +2a(cosy,-1)and y, = .1.

An appropriate range of the parameter a begins at 2.0.

The objects in a discrete dynamical system may be vectors. One example was

discussed (without labeling it as a discrete dynamical system) in EXERCISE 9.5.

Particular attention has been given to the case when the y, are two-dimensional

vectors. In this case we can easily plot the vectors (yn1, yn2), n =1, 2, ... on a graph.

In addition to the cases of an attracting or repelling equilibrium solution, other types

MISCELLANEOUS SYSTEMS 287

of interesting behavior may occur. The reader should consult [1] or [2] for more

details. We will present the example, called the Henon map, in which the point

(x, y) is "mapped"” to the point

— 2, .
X=xcos0—(y—-x) sin
— . 2
y=xsino + (y-x) cosa

Here a and the starting values (xg, yp) are parameters. For fixed o, the trajectory

(xn, Yn), n =0, 1, 2, ... may have significantly different structure for different values

of the initial point. Usually trajectories arising from several initial points are

shown on the same plot. And different values of a may result in quite different plots.

In our example we take o = Cos'1(.4). We modify the GRAF program from Chapter

5 to a program called GRF.H as follows:

<< {#06©d #06d} PVIEW DRAX DUP2 R—»C PIXON 1 N START HMAP DUP2

R—C PIXON NEXT PICTURE >>

where HMAP is given by

<< » X Y << 'X*COS(ALFA) — (Y — X72)*SIN(ALFA)" EVAL

' X*SIN(ALFA) + (Y — X~2)* COS(ALFA)' EVAL >>

If we set XRNG and YRNG each to -8 .8 and use N =400, xg = .63, yo = .2 and

execute GRF.H we obtain a curious picture with six islands. Repeating the program

with xg = .55, yo = 0, then with xg =.75, ygo = 0 give two "closed" curves. (The outer

curve seams to contain another island.) These three trajectories are shown on the

following plot:

288 CHAPTER9

Henon Mapforcose = 4

EXERCISE 9.7: Set a = Cos’l(-.OS), take initial points (.32, .9), (.30, .9), (.28, .9), (.30,

0) and (.2, 0) with XBRNG = YRNG = -1 1: execute GRF.H.

Next we consider here the case zn1+1 =f(zn,c), n=0,1, 2, ... for given zg, where

all the z elements are complex numbers (a two component vector with special

algebraic rules) and the complex parameter number c is given. The purpose is again

to focus attention on the asymptotic behavior of the dynamical system solution

sequence {zp}. In particular, we will study systems of the form z,,1 = z32 + ¢, zg

given, where c will be fixed in each system. For each number ¢ depending on the

starting position z(, one of three things can happen: (1) lim Iz, | =00, (2) lim Iz, | =

some number, or (3) neither of the above. We show the dependence of the elements

of the system on the starting value zp = o by using the notation z,(a) for the

elements. The "Julia" set for this sequence is the boundary of the set A = { a:

lzn(a) | — = }. (Elements on the boundary of this set do not belong to the set.) Many

of the elements of the Julia set have a wandering property, that is, they do not have

a limit and so their behavior is called chaotic. (Iterates f(at), f(f(at)), f(f(f(0))), . . .

wander around the Julia set.)

The following program is to graph members of the Julia set. The procedure of

finding lots of members of this set may seem tricky atfirst because the requirement to

be in the set is quite delicate and any roundoff error may cause a sequence a, f(a),

f(f(a)), f(f(f(e))), ... beginning with o in the Julia set to drift out of the set. The

MISCELLANEOUS SYSTEMS 289

algorithm to be given is based on the property that for any fixed ¢, the inverse

images of a repelling fixed point belong to the Julia set, that is, for w in the set, the

images flw), 1(w)), £F1(ELEL(w))), ... also belong to the set. (Here f-l(w) =

+V(w—c).) It can be shown that the latter sequence is stable for this function f,

whereas the sequence of direct images is not stable to roundoff error.

Suppose the mapping z — f(z) = z2 + ¢ has has a fixed point, that is z2 + ¢ = z

There are two such values of z, namely

The student should obtain this number z or several values of the complex number c to

see how the HP-48 handles complex square roots and to verify that the absolute

value |f(one of these two values of z)| > 1. Such a value of z is called a repelling

fixed point of the mapping f. (Complex numbers w near such z have the property

that f(w), f(f(w)), f(f(f(w))), ... get further and further from w.)

We call the repelling fixed point located by z, compute and graph members of

the sequence f'1(z), £1(f1(z), f1(f1(f1(z))), It can be shown that all such

complex numbers satisfy |w | < (1+ V(1+4!cl))/2. Fora complex number w since there

are two inverse images, viz. +V(w-c), the particular sequence of inverse iterates

chosen involves a random choice of +.

Choose and store a complex number C1. To set the drawing screen and compute

the repelling fixed point z we execute the following subprogram, named PREP.

<<C1DUPABS4*1++v 1 + 2 / DUP NEG SWAP DUP2

XRNG YRNG 4 * 1 SWAP = vV 1 + 2/ >>

290 CHAPTER9

The output is a fixed point of f. If the output has absolute value larger than .5 call

the number Z, if not put Z = 1 — the output. Store Z and execute the program BACK

given by

<<{ # 0d # 0d } PVIEW Z BCK1 >>.

Here BCK1 is

<< 1500 STARTC1 — ¥ ONE * DUP PIXON NEXT DROP PICTURE >>

and the subprogram ONE is given by

<< (1,0) IF RAND .5 < THEN NEG END >>.

For ¢ = (-.12256, .7449), the following "graph" results

SR
>,

{.A-::,'?

EXERCISE 9.8: Execute the program sequence given above for c = (-1,0), ¢ = (-.5, -.1).

9.4 PARAMETER IDENTIFICATION PROBLEMS REVISITED

Suppose { (t, y) } data is given for the solution of an initial value problem and

we wish to determine appropriate values of a parameter vector w = [p, q, a, b, ..] in a

function y = g(t, w) to fit the data, say in a least squares sense. That is, we want to

choose w to minimize the sum

N 2
'21 [Y~ g(t., w)] .

MISCELLANEOUS SYSTEMS 291

By taking partial derivatives with respect to the components of w and setting them

to 0 we obtain equations

N og

i§1 [y, - &(t, wlE (t, w)=0, k=12, ..M.

We take the left sides of these equations as components of a vector F, and attempt to

solve the vector F(w) = 0. We will assume we have a starting values for the

parameter vector w and give an iterative process.

The reader should review the algorithm we developed in Chapter 7 for finding

a solution of a vector equation F(w) = 0. In this case also we assume there are m

parameters and w will be the m vector of parameters and F will be the m vector

given above involving the partial derivatives. Just as before we assume the

components of the function F are smooth, and we have an approximate solution wy, so

that Taylors theorem gives the approximate formula

F(w) = E(wp) + J(wg) (W = wy)

where the matrix | has i, j element dF,/dw; If w is to be a good approximation of the

solution, the left side of this equation is zero and we get a "formula” for an improved

vector solution w in terms of the old approximate w,. Just as in Chapter 7 we will

provide an algorithm to construct and evaluate the function F(w) and the associated

Hessian matrix.

Here is an outline the problem: First we create calculator programs for

0

[Y—g(trw)]—g(t,W),k= 1,2, .., M
awk

then we will use the program called DER created in Chapter 7 for finding the

derivatives of these functions with respect to p = w1, q = w2, a = w3, b = wy, etc.

292 CHAPTER9

After execution, the derivatives can be used to create terms in the Hessian matrix J

used in Newton's method.

Next we form the list { (t,,y4), (t5, ¥5), ..., (t,, ¥,) } by entering the number

pairs on the stack, then entering n and the command —LIST and store this as DTA1.

Finally we create programs called JACM, JEVP, FACM and FEVP to accumulate

the data sums in the Hessian matrix and the function F after assigning values to p

and q. (These programs will replace JEV and FEV in the chapter three procedure.)

Now we have the ingredients of the Newton formula:

Wnew = W —J(w)1 F(w)

and can find a new vector w.

Many engineering and science problems require the solution of several nonlinear

equations. Newton's method is one such algorithm. Most methods to accomplish this

can fail under a variety of conditions. Good starting guesses are essential.

HP-48 programs are listed below for Newton's method for this problem. Here we

assume there are m parameters and n data points

1. Store the value of m in M and and the names of the m parameters in a list named

PL,say { P Q } for 2 parameters or in the case of four parameters, say PL ={P

Q A B). Make sure each of the parameter "variables" in PL has been purged.

2. Purge the variables T and Y and store the components for the m functions

F(T, Y, P, Q) in a list named FL. For example,

MISCELLANEOUS SYSTEMS 293

{'(Y =3*EXP(-P*T) + EXP(-Q*T))*3*T*EXP(-P*T)'

(Y = 3*"EXP(-P*T)+ EXP(-Q*T))*T*EXP(-Q*T)'}

would result from trying to fity =3 e "Pt-e 9t to data.

The program DER given in Chapter 7 will use the calculator's ability to take

appropriate derivatives of the functions in FL.

Store the the N elements of data { (T, Y) } in a list DTA1.

Now create the programs (which assume values are assigned to P, Q)

Program Name JACM

Purpose Create matrix JMAT, gets a data point t,y and

calls the subprogram JEVP and does this for

each data point

<<{M M} 0 CON'JMAT'STO 1 N FOR | DTA1 | GET C-R

Y STO 'T' STO JEVP NEXT >>

Subprogram Name JEVP

Purpose Evaluates the elements in JMAT at the data

point and adds it to the value to the previous

sum in the JMAT element

<< JL OBJ— 1 SWAP START -NUM M SQ ROLLD NEXT {M M}

—ARRY JMAT + 'UMAT' STO >>
JMAT will be the Hessian matrix of derivatives.

294 CHAPTER9

6. Now for FVEC (F vector). In the following P, Q values have been assigned.

Subprogram Name FACM

Purpose Create FVEC, get a data point t, y and call

FEV: do this for each data point

<<{M}0 CON 'FVEC' STO 1 N FOR | DTA1 | GET C-»R "

STO 'T' STO FEVP NEXT>>

Subprogram Name FEVP

Purpose Evaluate the functions in FL at t,y, P, Q, ...

and add the value to the previous value stored in

FVEC

<< FL OBJ— 1 SWAP START -NUM M ROLLD NEXT {M}

—ARRY FVEC + 'FVEC' STO >>
Procedure: Store PL, FL, N, M and execute DER to get JL (J list). Put a vector [p,q]

with initial values of P and Q on the stack and execute a program NST1 given by

<< DUP OBJ— DROP 'Q' STO 'P' STO JACM FACM FVEC JMAT / >>

The result is a copy of the old value of [P,Q] and the increment [AP, AQ]. Execute

the command - and repeat.

EXERCISE 9.9: Use starting values p = .25, q = 2 and the data to determine

appropriate values O0f p and q in

y=3ePt _2eqt:

MISCELLANEOUS SYSTEMS 295

to fit data { (0, 1), (.4, 1.89), (.8, 2.01), (1.2, 1.9), (1.6,1.72), (2,1.53), (2.4, 1.34),

(2.8, 1.18), (3.2, 1.03), (3.6, .903), (4, .79), (5, .57) }

EXERCISE 9.10: Use starting data p = 2.2, q = .925, a = 5 and b = -4 to determine

appropriate parameter values in

y=aePt +bed

to fit data {(0, 1), (.1, .3), (.2, -.2), (.3, -.6), (.4, -.88), (.5, -1), (.6, -1.2), (.7, -1.2),

(.8, -1.3), (.9, -1.3), (1, -1.2), (1.5, -1), (2, -.7), (2.5, -5), (3, -:3), (3.5, -1.7), (4, -.11)}

PROJECT EXERCISE: Data Fit in a Population Problem. Population data { p; } at

times { t; } (in ten year intervals between 1790 and 1990) was given in Chapter 6 just

before problem 2.10. Suppose we use a model dp/dt = ap — bp? : the form of the

solution was also given in Chapter 6. We wish to minimize the payoff function

2

. 2 2Py
' bp;+(a—bp;)e

i=0 i

Starting values for the equations obtained by setting the partial derivatives with

respect to p,, a, and b to zero can be obtained by using the data in the year t = 0

(1790) and the years when t = 50 and t = 100. We use Newton's iterative method.

We do not know the form of the solution for some of the population models given

in Chapter 6. See EXERCISES 6.7, 6.9, 6.10 and 6.11. We have just discussed how to

choose problem parameters to achieve a fit to data observations when the functional

form of the solution g(t, p, q) is known. Consider the new problem of choosing p and q

so that the solution of

dy/dt=qy (1-yP), y(0) = .2

296 CHAPTER9

best fits the (t, y) data (1, .4), (2, .5), (3, .75), and (4, .9).

Here we have an initial value problem, say for population growth, of the form

dy/dt = {(y, p, q), y(0) = yo and wish to choose the parameters p and q so that a

close fit to data is achieved. The solution must be obtained by using a numerical

method (improved Euler, Runge Kutta, etc.) and the functional form of the solution is

unknown. Even though we may attack a vector initial value problem of this type,

for simplicity we will assume y, p, and q are real numbers and for values of y, p, q in

the domain of {, f(y, p, q) is a real number. If we also assume f is a smooth function,

we can differentiate the differential equation with respect to p to obtain

du
-yPQu+f, (v p9

where u =dy/dp and fy and f, denote the partial derivatives of f with respect to y

and p respectively. A similar equation holds for v = dy/dq. Consider the vector

initial value problem dw/dt = F(w) with w = w(0) at t = O for

f(y, p, Q) Y,

F(W) = fy (YI p/ q) u + fp (YI P, q) , W(O) — 0
7s I

<
g
<

0t, (v, P, QVv+i (v, p9

Our criterion for best fit is to choose p, q to minimize the payoff function

N 2
J= _21 [y, - y(t, p, 91 .

1=

Here the data observations are {(t1, y1), (t2,y2), ..., (tN, YN)}, and y(t, p, q) is the

solution of the original problem (and the first component of the solution of the vector

equation). If we set the derivatives of] with respect to p and q to zero, we get

N N
2 [y, -yt, p,@lut,p, =0, 3 [y-yt, p, Pl v(t, p, q=0
i= i=1

MISCELLANEOUS SYSTEMS 297

to determine p and q.

Ourfirst thought here may be to apply Newton's method to determine solutions

p, q of these two nonlinear equations. However, recall that Newton's method would

require partial derivatives of u and v with respect to p and q. This could be done by

differentiating the original differential equation more times, but then we would need

to solve an initial value problem containing 6 differential equations !

Alternately, suppose that we have a trial set of parameters p and q and wish to

choose better values p + Ap, q + Aq. If the incremental values are small then

dy dy
y(t, p+Ap, q+AQ) = y(ty P, @) + (8, P, @) Ap + {8, P) A

Define a vector z with components y; - y(ti, p, q),i=1,2, ... N and an N by 2

matrix A with components A(i, 1) = dy/dp(t;, p, @) and A(i, 2) = dy/dq(ti, p, 9), i = 1,

2, ..., N. The payoff at p + Ap, q + Aq is

N 2
J= % [y, - y(t, p+Ap, q+Aq)]

i=1

and we wish to choose Ap and Aq so that the new value of] is minimized. If we

substitute the approximate value of y(tj, p+Ap, q+Aq) into], we need to choose the

vector & = column [Ap, Aq] so that the quantity | |Ad - z| 12 is minimized. Here

| IA§—2112 is the sum of squares of the components of the vector Ad — z. This is

called a linear least squares problem. The solution is determined by solving

AtAS = At z where At is A transpose. (There is a better numerical method to

determine 3 presented in standard linear algebra textbooks.) We change to the new

values of p and q and repeat the process several times until either this process

converges to good values of p and q or until it is clear the process is not converging. In

the latter case, we need new starting values of p and q.

298 CHAPTER9

Thus our procedure is to take an initial guess for p and q and solve the initial

value problem for w and recording the values of y, u, v at the various t; measurement

points, forming the matrix A and vector z and solving for the incremental vector 9o,

correcting p and q and cycling thru this sequence of steps until a conclusion arises.

EXERCISE 9.11: Choose p and q so that the solution of

dy/dt=qy (1-yP), y(0)=.2

best fits the (t, y) data (1, .4), (2, .5), (3, .75), and (4, .9). Our criterion is to

minimize

P=[y; -yp@I +[y2 -y2p, Q1% +[y3 - y3, p, Q12 + [y4 - y@&,p,)]

where y1 = 4,y2 =.5,y3 =.75, y4 = .9 and y(t, p, q) is the solution of the original

problem. Choose starting values of p and q near 1 and 1.

9.5 DIRECTION FIELDS

The following is a set of programs that will construct a direction field for

dy1 dy2

a Ch0pYy). g =Ry

We construct the programs so that a student may conveniently overlay a plot of one

or more solution trajectories on the direction field. This means that we should

present one set of programs for those students who will use the built-in algorithm for

constructing solutions and a second set of programs for those users who will use the

Euler or improved Euler method to produce the solutions.

To use the HP-48G built-in algorithm suppose that FN gives the values of the

vector [F1(Y), F2(Y)] (as illustrated in the first part of Chapter 5). That is FN

takes values of the variable Y from memory. Set appropriate values in XRNG and

MISCELLANEOUS SYSTEMS 299

YRNG (program IN.PP presented in Chapter 5 can be used for this task), enter

program FN (a method is to use IN.FN also from Chapter 5) and execute DIRF.

Program Name: DIRF

Purpose: Generate a direction field in the region

prescribed by XRNG, YRNG.

Stored Quantities: FN

Input: none Output: direction field

<<[0 0] 'Y" STO ERASE {#0d # Od} DRAX PVIEW PPAR 2

GET PPAR 1 GET DUP 3 ROLLD - OBJ— 9 / 3 ROLLD DUP

40 / 4 ROLLD 11 / SWAP OBJ— DF1 PICTURE >>

Subprogram Name: DF1

<< —> R DY2 DY1 Y1L Y2L << YiL 1 10 START DY1 + DUP

1 12 FOR J DUP Y2L DY2 J * + R 3 ROLLD DF2 NEXT

DROP NEXT DROP >> >>

Subprogram Name: DF2

<< DUP2 'Y(2)' STO 'Y(1)' STO FN OBJ—» DROP SWAP DUP2

IF O == THEN DF.3 ELSE DF.4 END >>

Subprogram Name: DF.3

<< 0 IF == THEN DROP2 R—C PIXON DROP

ELSE DROP2 3 ROLL 3 DUPN DUP2 - R—C 4 ROLLD

+ RC LINE END >>

300 CHAPTER9

Subprogram Name: DF.4

<< DROP / ATAN DUP COS 3 ROLLD SIN 5 ROLL DUP 4

ROLLD * DUP2 - 6 ROLLD + 4 ROLLD * DUP2 - 5 ROLLD

+ SWAP R-C

3 ROLLD R—-C LINE >>

Note that you can overlay a solution trajectory of the system using G.12 as

described in Chapter 5 after the inputs tg , yo, tf are placed on the stack or one can

use the input forms and the choose boxes. In the latter case we need to load the

appropriate program into EQ by excecuting FN.EQ given by

<< 'FN' RCL 'EQ' STO >>.

The user may want to place these programs in the directory DE.1 containing the

programs from chapter 5, placing DIRF early in the menu order and the subprograms

late in the order.

For those users who wish to use the Euler or improved Euler algorithm given in

the second part of Chapter 5, the programs D.RF, DF.1 and DF.2 are alternatives to

DIRF, DF1 and DF2. To execute these programs we require a program F.N that takes

the number T and the vector Y from the stack and produces [F1(Y), F2(Y)].

Program Name: D.RF

Purpose: Generate a direction field in the region

prescribed by XRNG, YRNG.

Stored Quantities: F.N

Input: none Output: direction field

<< ERASE { # 0d # Od } DRAX PVIEW PPAR 2 GET PPAR 1 GET

DUP 3 ROLLD - OBJ—» 9 / 3 ROLLD DUP 40 / 4 ROLLD 11

/_ SWAP OBJ—» DF.1 GRAPH >>

MISCELLANEOUS SYSTEMS 301

Subprogram Name: DF.1

<<—> R DY2 DY1 YiL Y2L << YiL 1 10 START DY1 + DUP

1 12 FOR J DUP Y2L DY2 J * + R 3 ROLLD DF.2 NEXT

DROP NEXT DROP >> >>

Subprogram Name: DF.2

<< DUP2 2 -ARRY 0 SWAP FN OBJ— DROP SWAP DUP2 IF

== THEN DF.3 ELSE DF.4 END >>

Note that you can overlay a solution trajectory of the system using G.Y12 as

described in Chapter 5 after the inputs tg , yo, tf are placed on the stack. The user

may want to place these programs in the directory DE.2 containing the programs

from the second part of Chapter 5, placing D.RF early in the menu order and the

subprograms late in the order.

EXAMPLE: Consider the system

dy1 dyz

at Y2y ar TTETYy

The equilibrium points are yp =0,y =€. Let e = 1 and draw the direction field for

-2<y1 £2, -1.5<yp £15. Overlay the trajectory which begins, t = 0 at y; = 0,

y2 = 1.5 and and ends when t = 2. Notice from the direction field that solution

which initiates at y; =.5, yp = 1.5 has significantly different behavior for t > 0.

Overlay such a solution. Now see the first figure in the introduction.

302 CHAPTER9

EXERCISE: Consider the system

The equilibrium points are y; =y =+ 1. Draw the direction field for -3 <y <3,

-3<yp <3.

EXERCISE: Consider the system

M2 Y
at Y1 77 Tat TN Yy

The equilibrium points are y; = %1, yp = 0. Draw the direction field for -2 <y; <2,

-3<yp <3.

EXERCISE: Consider the system

dy1 dy2))

dt Y2 dr TNy

The equilibrium points are y2 =0, y; =0and y2 =0, y; = 1/3. Draw the direction

field for -4 <y; <.6, -5<yy <.5. Overlay the four trajectories which begin

(t=0)aty) =.15 y2 =0 and ends when t = 7, begin at y; = -3, y2 = .3 and ends

when t = 3, begin at yl = -3, y2 = .4 and ends when t = 10, and begin at y; = .5,

y2 = 0 and ends when t = 3.6. (The last one satisfies y; =.5 sech?(t/2).)

Project Exercise in acoustical dynamics

The speed of sound traveling underwater depends on depth. We will use a ray

model for underwater acoustic propagation and let z(x) denote the depth of a sound

ray at position x, measured along the ocean surface. Snell's law can be written in the

MISCELLANEOUS SYSTEMS 303

form cos 6/C(z) is a constant where tan 6 is the slope dz/dx and C(z) denotes the

speed of sound transmission at depth z. Change the variable by y = C(z) dz/dx to

obtain

dz__y dy_ .
X = C(zy dx = €@

Determine C(z) by a least squares fit of the form C(z) = a e~ bz L ¢ 4 mz (a, b, ¢, and

m are constants to be determined) using the data

z 0 500 1000 1500 2000 2500 3000 3500 4000 5000

C(z) 5042 4995 4948 4887 4868 4863 4865 4869 4875 4875

z 6000 7000 8000 9000 10000 11000 12000

C(z) 4887 4905 4918 4933 4949 4973 4991
Next, find a value of 6 for the initial conditions:

z(0) = zg, y(0) = C(zg) tan 6,

so that for z(xf) = zf, a prescribed number. For this problem take zg = 2000,

xf = 24(5280), z¢ = 3000. Plot the ray trajectory.

The function C(z) can be approximated by a least squares fit to data to another

type of function (see Forsythe, George, Michael Malcolm and Cleve Moler, Computer

Methods for Mathematical Computations, Prentice Hall, 1977.) Such a fit is given by

C(z) = 4779 + 0.01668 x + 160,295/ (x+600).

Re-scale the variables x, and z by t = x/10%, X = z/1000: the equation become

dy/dt = - 10 f'(X), dX/dt = 100y/{(X)

where {(X) = C(1000X). Now we want to find y(0) = f(2) tan 6 and X(0) = 2 so that

X(12.672) = 3. Dividing the differential equations gives dy/dX = -f'(X) {(X)/(10y)

304 CHAPTER9

integration gives 10 y2 + f2(X) = a constant. Phase plane graphs are shown. (An

adaptive step method was used to obtain the graphs.)

It is interesting to compare the graph of the solution z(x) obtained by using the

C(z) given above with that obtained using the C(z) function given in the project

EXERCISE above. Any interpolation formula used for C(z) instead of a least squares

fit also gives an interesting comparison.

Y/ P .~~~ ~ ~ ~

/ [(2,7.6) —~ S~ -~

+s5/ S — ~ N~ ~ ~

/ s ~ N~ N X\ N

/ — NNS N N YN\

| f/ ~ \ Vv
I\ - [/ [JIx
\ -/ S L S
VN _]— =~ s S S

15\ (35— —~ -

\ ~ - - - —~
-— -— -— -—

Phase Plot for Acoustic IModel

\

The X vs. t graph is:

10

MISCELLANEOUS SYSTEMS 305

3)
O © — N r

Depthversus Horizontal Distance

9.6 PROGRAMS FOR THREE DIMENSIONAL TRAJECTORIES

The programs given below may be used to produce graphs of solution trajectories

in three dimensions. The user executes IN.P to input the high and low values of X, Y,

Z for the view box to be shown and the position of the eye XE, YE, ZE. The utility

program UTL1 defines an orthogonal set of vectors U.1, V.1 and W.1 and sets the

associated two dimensional plot parameters. Subprograms SCAL, UVW and PJ.1 are

called by the other programs. The program G.Y3 is similar to other programs given

earlier to graph the solution trajectories.

306 CHAPTER 9

Program Name G.Y3

Stored Quantities FN HS TOL PJ.1

Input To (initial time)

Yo (initial value as a three vector)

T¢ (final time)

Output: Solution graph of Y' = F(T, Y), Y(Tg) = Yo,

To<T<Ts

<< { # 0d # 0d } PVIEW 3 ROLLD 'Y' STO 'T" STO —» TF <<

{TYFN}TOL HS Y PJ1 R»>C 4 ROLLD DO RKFSTEP Y

PJ1 R»>C DUP 6 ROLLD 5 ROLL LINE DUP T + TF UNTIL

> END DROP TF T - RKFSTEP Y PJ.1 R—» C DUP 6 ROLLD

5 ROLL LINE DROP TF T — RKFSTEP Y PJ.1 R—»C 5 ROLL

LINE 3 DROPN >> PICTURE >>

Program Name IN.P

Stored Quantities none Input none

Output coordinates of the corners of the viewing box

and the position of the eye have been stored

<<"ENTER XL XU" "" INPUT OBJ— 'XU' STO 'XL' STO

"ENTER YL YU" "" INPUT OBJ— 'YU' STO 'YL' STO

"ENTER ZL ZU" "" INPUT OBJ- 'ZU' STO 'ZL' STO

"ENTER XE" " " INPUT OBJ— "ENTER YE" "" INPUT OBJ—

"ENTER ZE" "" INPUT OBJ—» 3 —ARRY 'W.1 STO >>

MISCELLANEOUS SYSTEMS 307

Program Name UTL1

Stored Quantities variables from IN.P and programs SCAL,

UVW

Input none

Output the parameters XRNG YRNG have been set.

<< UVW SCAL SCATRPLOT 1.125 DUP *W *H

ERASE FUNCTION CLX >>

Subprogram Name SCAL

Stored Quantities: Output from IN.P and UVW Input: none

Output a matrix ZDAT has been defined containing

the projections of the corners of the viewing box.

<<CLZ XL YL DUP2 ZL -»V3 PJ.1 —-V2 zZ+ ZU —-V3 PJA1

—-V2 Z+ XL YU DUP2 ZL —»V3 PJ.1 -V2 Z+ ZU —-V3 PJ.1

—-V2 Z+ XU YL DUP2 ZL —»V3 PJ.1 -V2 I+ ZU -V3 PJA

—-V2 Z+ XU YU DUP2 ZL —»V3 PJ1 —-V2 Z+ ZU -V3 PJA1

-V2 I+ >>

Subprogram Name uvw

Stored Quantities Output from IN.P and UVW

Input none

Output an orthogonal set of vectors U.1, V.1 and W.1

have been constructed.

<< W.1 DUP ABS / DUP DUP 'W.1" STO [0 O 1] DUP 3

ROLL DOT 3 ROLL * — DUP ABS / DUP 'V.1' STO W.1

CROSS 'U.1_STO >>

308 CHAPTER9

Subprogram Name PJ.1

Stored Quantities Output from UVW

Input any vector Z in R3

Output the coordinates of the projection of Z in R2.

<< DUP U.1 DOT SWAP V.1 DOT >>

EXAMPLE: For view box -2<x<2,-2<y<2,-5<z<2, eye position [1, 1, .5], Y' = AY,

with A given below, Y(0) = [2, 0, 2] and 0 < t < 12.56 we obtain the following picture:

==
Xyx solution fox

Y =AY, Y(0)=2,0,2]

Here the first row of A is [-.1, 2, 0], the second row is [-2, -.1, 0], and the third row is

[0, O, -.2]. Here the solution is given by x(t) = 2 e~1tcos t, y(t) =2 el tsin t, and z(t) =

2 o2t

EXERCISE: Use the same view box and eye position as given above. For 0 <t < 6 and

-1 0 O

A=10 -5 0

0O 0 -25

plot the solutions of Y' = AY with initial conditions [2, 0, 2], [0, 2, 2] and [2, 2, 0] .

73

71 Y2

Noxmal Mode Solutions

wY'=AY

ENGINEERING MATHEMATICS

Applications of the HP-48G Scientific Calculator to problems in elementary

mathematics, calculus, probability, linear algebra, and differential equations were

the subject of earlier chapters. Examples were chosen to demonstrate the power of

computational methods for deducing useful information from mathematical

models and for reinforcing mathematical concepts.

These chapters pursue further examples often associated with a course in

advanced calculus or “advanced engineering mathematics”. Typical examples

include numerical methods for solving differential equations, use of infinite series

and integrals to study non-elementary functions, boundary-value problems, and

problems from vector field theory. When students first encounter such problems

they often underestimate the power of the mathematical methods involved. The

apparent resistance of the problems to pencil and paper techniques can lead them

to conclude that the tools at hand lack real practical utility. It is in this setting that a

few well-selected computational algorithms, and knowledge of how to implement

them on the HP-48G calculator, can contribute enormously to the student’s

confidence. The marriage of mathematical theory and computational methods

gives students power to solve the kind of scientific and engineering problems that

arise in real world situations.

Examples in the chapters illustrate the power of the HP-48G calculator—both

its built-in functions and its programming potential. No attempt was made to

include all possible topics from a typical engineering mathematics course. But the

author hopes that the examples hold intrinsic interest and are of sufficient variety

to stimulate further mathematical explorations.

309

MORE ON SOLUTIONS FOR DIFFERENTIAL

EQUATIONS

Differential equations are commonly used to model the dynamic behavior of

physical systems. Beginning courses in the subject classify such equations according to

their order and whether they are linear or nonlinear. Students learn to solve a variety of

simple cases that apply to problems in physics, engineering, chemistry and biology. But

they also soon learn that, more likely than not, differential equations encountered in real

applications do not yield easily to simple techniques, and indeed they frequently do not

possess solutions expressible in a finite closed form in terms of elementary functions

familiar to the student. This is disquieting when first learning the subject. One can easily

have concern that around every corner there lurk inaccessible problems. Fortunately,

numerical methods can be applied in many such cases. And, combined with a few

mathematical theorems concerning the existence and global behavior of solutions,

numerical techniques restore the student’s ability to extract information from

mathematical models.

Even simple numerical methods are useful. For example the Euler and Improved

Euler methods, introduced in Chapter 5, enable one to generate numerical solutions for

quite generalinitial-value problems. And the built-in functions of the HP-48G for solving

and plotting differential equations provide sophisticated and powerful tools. Our

examples will compare both elementary methods, such as the second-order Runge-Kutta

algorithm that has useful teaching value, and the more powerful Runge-Kutta-Fehlberg

algorithm that is built-in.

310

MoRE DIFFERENTIAL EQUATIONS 311

10.1 A RUNGE KUTTA METHOD FOR TWO EQUATIONS

Consider the following initial-value problem

y'+x’y=0, y0)=1,y(0)=0. (10.1)

It occurs in problems of bending beams and in optics. It does not have a closed form

solution expressible in elementary functions.! Nevertheless the graph of y(x) can be

generated using a Runge-Kutta method. And important features, such as the location of

its zeros, can be determined (approximately). The HP-48G program below is a simple

implementation of a second-order Runge-Kutta algorithm. It solves an initial-value

problem for a system of two first-order differential equations.

PROGRAM 10.1. A Runge-Kutta method.

The program generates a numerical solution of the initial-value problem

d = fi(xy

a'
—=f0.2) (10.2)

y(xo) = Yo

7 (%)) =2,

on the interval x, < x < xmax with stepsize h . It takes as inputs the functions f, and

f,, programmed as user-defined functions, and the initial conditions and graph

parameters, as shown in the following table.

1 Later in the section we will see thatits solutions can be expressed in terms of Bessel

functions.

312 CHAPTER 10

Inputs Outputs

4: << - xyz'fi(xy,z)>>

3: <<— XYy z'2(xy,2)'>> Draws graph of solution

2: {x0 y0 z0 h} of (10.2)

1: {xmin xmax ymin ymax}

<< 4 DUPN OBJ— DROP
YRNG DUP 3 ROLLD
XRNG SWAP OBJ— DROP 0 0
- fif2bxyzhpq

<<xyR->C
CLLCD {(0,0) {1 1}} AXES ERASE DRAX LABEL

WHILE x b <
REPEAT
'v+h*f1(x,y,z)' 5NUM 'p' STO
'z+h*f2(x,y,z)' -5NUM 'q' STO
xh+'x' STO
'(y+p)/2+.5*h*f1(x,p,q)' -NUM 'y' STO
'(z+q)/2+.5*h*f2(x,p,q)' -NUM 'z' STO

Xy R-C DUP 3 ROLLD LINE
"My u,n y ||)|| ++++2DISP

END
>> DROP PICTURE
>>

* Unpack input lists,
set x and y range,
and load inputs
into variables.

¢ Initialize graph

* Loop to generate the
points on the
curve.

¢ Generate the next
point on the
curve, using the
Runge-Kutta
method.

e Draw line to next
point, and display
it.

The graph that follows was generated by this program on the interval 0 < x <6,

using the value & = 0.1. The given second-order initial-value problem wasfirst

converted to an equivalent system of two first-order differential equations:

dy _
dx—z

fl = _xzy

dx

y0)=1, z(0)=0,

(10.3)

MORE DIFFERENTIAL EQUATIONS 313

and the program was provided with initial data by placing the four objects

<< OS> XYZ2'2 > << > Xyz'-=x"'y >>{010.1}{06-11}

on the stack.

Y Graph ofthe solution of the

M NIV/A VAN iytoe
° \/ \/ \f us.in:g progran}: 10.1.

. Figure 10.1

The oscillatory nature of the solution is easily observed in the graph, as is the

damping of the oscillations and the increase in their frequency as X increases. Such

behavior is predicted by the Sturm Comparison Theorem which implies that the zeros of

the solution separate, on any interval on which x> k, the zeros of any solution of

y"+k%y = 0. In particular they separate the zeros of sinkx. The damping in Figure 10.1

is implied by the Sonin-Polya theorem 2

The zeros of the solution shown in Figure 10.1 can be found approximately using

the COORD key in the HP-48G’s PICTURE environment. They are found at 2.0, 3.2, 4.1,

..., approximately. We shall determine them more accurately later.

As appealing as the example and graph, above, appear, we will discover that things

are not so simple as we might hope. When the solution is graphed on a larger interval

something clearly goes wrong.

2 For the Sturm Comparison Theorem,see [Kreider,et al.]. A special case of the Sonin-

Polya theorem covering our example is also included there. A more general proof can be

found in Birkhoff and Rota, Ordinary Differential Equations, Ginn, Boston, 1962.

314 CHAPTER 10

Graph of the solution of
(10.1), drawn on the interval

0 0 £ x £10 by the same
program.

Figure 10.2

EXERCISE 10.1.

Enter Program 10.1 into your HP-48G and reproduce the graphs shown above.

Then generate the graph of the solution of (10.1) on the interval 0 < x <15. How much

confidence do you now have in the zeros estimated using the HP-48G’s COORD key?

What explanation would you give as to why matters have deteriorated so badly? What

happensif a smaller value of h is used? Try using h = 0.01. What disadvantage does

this entail?

EXERCISE 10.2.

To regain your confidence slightly, apply Program 10.1 to graphing on the interval

0 < x £15 the solution of the initial-value problem

y'+y=0, y0)=1)y(0)=0,

again using the value & = 0.1. How accurateis the fifth zero 9n/2 ? (In this case we know

that the solution is COS x.)

In Section 3 we will see that the difficulties we met in applying the simple Runge-

Kutta algorithm disappear when the requirement of constant step size / is abandoned.

Indeed, the built-in differential equation functions of the HP-48G implement a variable

step size algorithm, and we will see in Section 3 how effectively this solves the problem.

Nevertheless the simple Runge-Kutta algorithm is useful for many situations when

accuracy is not the principal concern, and it remains a valuable teaching tool.

MORE DIFFERENTIAL EQUATIONS 315

10.2 SERIES SOLUTIONS

The foregoing examples are typical of differential equations that arise in practice.

When the equations are nonlinear, or when they are linear but do not have constant

coefficients,it is a rare accident if their solutions can be expressed in closed form in terms

of elementary functions. In such cases, however, we abandon our demand for neat little

formulas for solutions. After all, a differential equation itself completely determines the

solution to the given initial-value problem. A number of mathematical theorems stand

ready to predict the solution’s global behavior. And numerical methods are available,

finally, to obtain useful local values and behavior.

Nevertheless we often seek explicit representations of solutions in more general

forms—infinite series or integral representations being commonly employed. For

example we might try to find solutions y(x) that can be expressed in the form of Taylor

series

oo (k)
y(x) =Zy(xo)(x x,)" —Zak(x x,)" (10.4)

k=0

Undersuitable conditions a solution is represented by such a series within its interval of

convergence. And the coefficients can be determined in a straightforward way—by

determining the values of y(k)(x0)directly from the differential equation, or by using a

recurrence relation for a,. Several examples will illustrate the method.

EXAMPLE 10.2.

Find a Taylor series solution

00 (k)

2(O)(x—) (10.5)
k=0

that satisfies the initial-value problem y"+x’y=0, y(0)=1,y(0)=0,0f Example

10.1. We compute the derivatives of y(x) successively. The differential equation yields

316 CHAPTER 10

immediately y"(0) =0 when we set x =0. In the same way, successive derivatives of

the equation give

¥ +x*y +2xy=0: y''(0)=0,

y +x%y"+4xy +2y = 0: y*(0)=-2, (10.6)

and in general

YD 4 x2y™ L2yD 4 p(n— 1)y2 = 0;
Do e (10.7)

¥y (0)==(n=2)(n-3)y"""(0).

From equations (10.6) and (10.7) we then obtain

0=y"(0)=y*0)=y""0)= ...,
0=y"0)=y"0)=y""0)= ...,

and the remaining derivatives depend on either y(0) or y'(0). Thus we can find two

linearly independent solutions y,(x) and y,(x), corresponding to the two sets of initial

conditions: y(0) =1, y' (0)=0 or y(0) =0, y (0)=1. In the first case we obtain

Yy(0) = —(4k = 2)(4k = 3)y“**(0), k=1, 2, 3, ...,.

and we then quickly calculate as many of the non-zero derivatives as we wish. The

desired solution is then

- y(4k)(0) 4k
(x)=14+ —=x

Yo ; (4k)!
: (10.8)

and the function y,(x) can be computed by a simple program on the HP-48G.

PROGRAM 10.2. Series solution of an initial-value problem.

The program computes values of the solution y,(x) (Equation (10.8)).

MORE DIFFERENTIAL EQUATIONS 317

Inputs Outputs

1: x| 1: y(x)

Store the program in the variable Y0. Since the program was written in the form of

a user-defined function,i.e. with the syntax << — x '<<...>> >>,it can be executed either

by placing its argument X on the stack and pressing the user menu key YO, or by

evaluating the algebraic expression 'YO(X)'. Thus the PLOT and SOLVE environments of

the HP-48G are available to plot the graph of y,(x) or to find its zeros. (Since its

definition is in the form of a program rather than an expression, operations involving

differentiation, such as finding relative maximum and minimum points, are excluded.)

<< o X e Make it a user-
defined function

<<0111>5 kYTS ¢ Initial values

<< DO * Add terms until

lk+4| EVAL |k| STO they are small

Yk2-k3-*NEG*'Y'STO
Yk!/xkA*'T'STO
TS +'S' STO

UNTIL T ABS 1E-12 <

END ¢ Put the final sum on
S the stack

>>

>>

>>

EXERCISE 10.3.

Enter Program 10.2 into your HP-48G and experiment with computing various

values of y,(x). Plot the function on the interval 0 < x < 5. Find the zeros near 2.0, 3.2,

and 4.1 more exactly using the SOLVE application or the function ROOT

(SOLVE:ROOT:ROOT).

318 CHAPTER 10

EXERCISE 10.4.

If the initial conditions y(0)=0, y'(0)=1 are used with the same differential

equation, a second linearly independent solution

oo (4k+1)

Y (0) 4kX)=x+) ———7 2 G!
is obtained. Exactly the same recurrence relation (10.7) determines all the derivatives,

hence only the initial conditions need to be changed in Program 10.2. (In fact only the

initial values of k and S need to be changed. The initial value of T is not used.

Initializing T serves only to create T as a local variable.) Change the initial values of k

and S to 1 and x, respectively, and have the HP-48G draw the graph of y,(x) on the

interval 0 £ x £ 5. Find its smallest zeros.

One source of inaccuracy in Program 10.2 arises from the way terms of the series

are computed. Each of the quantities y*’(0), and k! becomesvery large as k increases,

although their quotient becomes vanishingly small. Avoiding large intermediate results in

computations is generally helpful in achieving accuracy. In this case we observe that the

coefficients a, = vy(0) / k! in (10.4) satisfy the recurrence relation

Gy_4a =————. (10.9)
© k(k-1)

This leads to an alternative program (below) for computing the solutions y,(x)and y, (x).

PROGRAM 10.3. Series solution of an initial-value problem.

The program defines a user-defined function to compute two linearly independent

solutions y,(x), n =1, 2, for the differential equation y"+x2y=0.

Inputs Outputs

 L: o Y, (X)

MORE DIFFERENTIAL EQUATIONS 319

<< — NnX e Make it a user-
defined function

<<n IF n THEN x ELSE 1 END DUP * Initialize k, Tand S
> kTS

<< DO

'k+4' EVAL 'k' STO ¢ Add terms until

Tkk1-*/NEGx4A*'TSTO they are small
TS +'S STO

UNTIL T ABS 1E-12 <

END

S e Put the final sum on

>> the stack
>>

>>

EXAMPLE 10.3.

Store Program 10.3 in the variable Y. Then useit to graph the functions y,(x) and

¥,(x) on the intervals 0 < x <5 (Fig 10.3) and 0 < x <8 (Fig 1.4). They can be graphed

simultaneously by entering the list

{Y(O0,X) Y(1,X)'}

into the EQ field of the HP-48G’s PLOT application.

 Figure 10.3 Figure 10.4

320 CHAPTER 10

Again, on a sufficiently small interval the program apparently behaves well, but for

larger values of x something is still going wrong. We have avoided the problem caused

by the large values of y*’(0) and k!, but when x is large, the terms @,x"of the series

initially grow very large before eventually settling down and approaching zero. We thus

have a situation in which an alternating series of very large terms is adding up to a very

small final value. The HP-48G represents real numbers to about 15 significant digits of

accuracy, thus when x is large enough that the magnitude of intermediate terms in the

computation of the sum of the series are themselves 15-digit numbers,all accuracy in the

final sum is lost!

EXERCISE 10.5.

Enter Program 10.3 into your HP-48G and verify the results in Figures 10.3 and

10.4. Modify the program so that each partial sum S is displayed as the program runs.

(Insert S1 DISP -1 WAIT immediately before the UNTIL statement.) For what value of x

do the partial sums grow to 12 digits (= 10'%). How is this related to Figure 10.4? How

accurate would you expect the computed values of y,(x) and y,(x) to be when x =57

The method of Taylor series for solving differential equations is quite general. Most

texts on the subject show, for example,that the linear differential equation

a(x)y" + an_l(x)y("_” +...+a,(x)y +a,(x)y = h(x) (10.10)

has two linearly independent Taylor series solutions about any point X, at which the

coefficients and h(x) themselves possess such expansions and the leading coefficient

a,(x,) #0. The radius of convergence of the series solutions can be shown to be the

distance from X, (in the complex plane) to the nearest point at which such regularity

conditions fail. Such a point X, is called a regular point of equation (10.10), and we can

develop programs for the Taylor series solutions in the same manner as was done in the

examples above. Note, by the way, that the origin is a regular point for the differential

equation in Example 10.2 and that there are no points in the complex plane where the

MORE DIFFERENTIAL EQUATIONS 321

regularity conditions fail. Thus the radius of convergence of the series expansions of

Yo(x) and y,(x) is infinity . This would seem to settle the question completely of finding

solutions on the interval —oo < x < oo, As the examples show, however, numerical issues

often become the limiting factor rather than the issue of mathematical convergence.

We conclude with one final example to show that the series method is still useful

when the recurrence relation is substantially more complicated—when each coefficient of

the series can depend on several preceding coefficients, not just one as in Equation (10.9).

EXAMPLE 10.4

We propose to solve the initial-value problem

y'+e'y=0, y(0)=y0)=1 (10.11)

The origin is a regular point of the differential equation, thus two linearly independent

Taylor series solutions exist. They converge for all values of x.

Since we seek solutions of the form y(x) = 2:;0 akxk we substitute into (10.11):

oo _ oo x oo

Zk(k-l)akx" 2+2——Z =0
k=0 k=0 k k=0

Multiplying the two series and collecting terms we obtain

oo k a.

(k+2)k+Da,,,+ L |x*=0
Z(; o j:O(k_])!

This leads, finally, to a recurrence relation from which each coefficient @, can be

computed from the values of coefficients with smaller index:

k

a,,, = —1) % —, k20. (10.12)
(k+2)(k+1) <(k- j)!

322 CHAPTER 10

The initial conditions determine g, =a, =1, and the recurrence relation (1.12) then

permits us to calculate as many of the remaining coefficients as we need:

a 1
a, ==l =e_

2 2

a3=_a0+a1 1,

6 3

a ———(29—+a +a)———1—-
* 202 17 12°

The initial terms of the desired solution are, therefore,

2 3 4
X X X

X)=1+x—-——-—-—+
Y 2 3 12

The following program provides a user-defined function for y(x):

PROGRAM 10.4. Handling a many-term recurrence relation.

The program defines a user-defined function to compute the solution y(x) of the

initial-value problem (10.11).

Inputs Outputs

1: X| 1L y(x)

The program stores the coefficients a,, a,, ..., a, used in the computation in the

variable COEFFS.

<< —> X

<<1xx1+0

— kT S nextA

<< {1 1} 'COEFFS' STO
DO
'k+1' EVAL 'k' STO

0 'nextA' STO

0k2-FOR|j

COEFFSj1+ GET

'(k-2-j)!" EVAL /

nextA + 'nextA' STO

NEXT

nextA k k1 -*/NEG 'nextA' STO

COEFFS nextA + 'COEFFS' STO

nextAx kA*'T'STO

TS+'S'STO

UNTIL T ABS 1E-6 <

END

S

>>

>>

>>

MORE DIFFERENTIAL EQUATIONS 323

e Make it a user-
defined function

e Initialize k, Tand S
and nextA

¢ Initialize COEFFS
e Start adding series
e Update k

e Next coefficient is
nextA. Itis a sum.

The FOR loop
evaluates the sum.

* Finish computation
of nextA

* Update Tand S

e Put the final sum on

the stack

We store the program in the variable YMT and, in the HP-48G’s PLOT application,

enter 'YMT(X)' as the current equation. On the interval 0 < x <3 the following graph is

drawn. (We note, by examining the variable COEFFS that the program uses 52 terms of

the series to achieve the desired accuracy when x = 3. Since each coefficient in the series

is itself a sum, the computation is of considerable size! (It is useful to increase the stepsize

in the PLOT application to reduce the time needed for generating the graph.) Using the

HP-48G’s SOLVE application, the first zero of the solution is found at x =1.58656.

324 CHAPTER 10

! Graph of the solution of the
/ initial-value problem (10.1),

+ ‘ ., drawn by the HP-48G using0 3
' \/ program 10.4.

Figure 10.5

EXERCISE 10.6.

Enter Program 10.4 into your HP-48G, and verify the example above. Find the

second zero of the solution lying in the interval 0 < x <3. Add to the program at an

appropriate place the commands S 3 DISP, and then monitor the size of the partial sums

during the course of the computation. What can you say about the accuracy achieved in

the computation of y(3)?

EXERCISE 10.7.

Find a recurrence relation for Taylor series solutions about the origin of the

differential equation y"—3xy'+y = 0. Write a program for the solution satisfying the

initial conditions y(0) =0, y' (0) = 1. Use your HP-48G to plot this solution on a suitable

interval, and find any zeros thatlie in the interval.

EXERCISE 10.8.

Find a recurrence relation for the Taylor series solution about the origin of the

initial-value problem

1

3y

¥(0) =y (0) =0, y"(0>=i-.

_xyv +x2y=ex,

Write a program for the HP-48G that defines this function as a user-defined function (as

in the examples above). Explore the solution graphically.

BESSEL FUNCTIONS

11.1 BESSEL'S EQUATION: SOLUTIONS OF THE FIRST KIND

Bessel’s equation of order p is

d’ d
x2—¥+x—y+(x2—p2)y=0. (11.1)

dx dx

Its solutions are encountered in problems involving temperature distributions over

regions with cylindrical symmetry, in determining fundamental buckling modes of

columns with non-uniform cross section, and in many other problems involving damped

oscillatory motion with non-uniform frequency.

Bessel’s equation differs mathematically from those explored in Chapter 10 in that

the origin is a singular point of the equation. Thus we cannot in general expect it to

possess power series solutions about the origin. On the other hand the singularity of

Bessel’s equation is a modest one—it is a regular singular point in the sense of the

following definition.

Definition. A point X, is said to be a regular singular point of a second-order linear

differential equation if the equation can be written in the form

(x =%)"Y' +H(x = xp)a, (x)Y +a,(x)y = h(x),

where g,(x), a,(x) and h(x) have powerseries expansions about Xx,,.

Although there may be no power series solution about a regular singular point,

there is always at least one solution of the form

y=(x=x)"Ya(x—x)", (11.2)
k=0

325

326 CHAPTER 11

where ¢ is a constant. Both ¢ and the coefficients a, can be determined by the method of

undetermined coefficients , i.e. by substituting (11.2) into the differential equation and

determining the coefficients from the requirement that the equation be satisfied. We

illustrate this in the case of Bessel’s equation.

EXAMPLE 11.1.

Substituting (11.2) into Bessel’s equation we obtain

Y(k+o)k+c—Dax'7 +x)(k+c)ax*" +(x* = p))ax=0,
k=0k=0 k=0

and, after simplifying and collecting terms,

(c® = pPa, + (2p +1+c* - pz)a1 + 2[(k +c)’ - pz]akx“c + Zak_zx“" =0.
k=0 k=2

For a, to remain arbitrary we must have c? - p2 =0, or c¢=1%p. The quadratic

equation is called the indicial equation for Bessel’s equation and the roots ¢ the indices .

The positive root determines a solution, with

a, arbitrary,

a, =0, and (11.3)

4y
ak ==T

k(2p+k)

We could stop at this point, using the recurrence relations (11.3), in the manner of the

foregoing examples, to develop an infinite series for the solution. But further

simplification is possible. From (11.3) we obtain

BESSELL FUNCTIONS 327

a=a,=a;=...=0, and

a2k=(—1)k o =
2:4-6---(2k)-2p+2)2p+4)---2p+2k)

_(_l)k, Gy

S 2%k (p+1)(p+2)--(p+k)

A final simplification will result from expressing the product in the denominator as

I'(p+k+1)/T'(p+1), where T is the celebrated gammafunction defined by

I'(x)= Je"t"'l dt, x>0.
0

It is easily verified that I'(1) =0 and (integrating by parts) that I'(x + 1) = xI'(x). Thus

if n is a non-negative integer it follows that I'(n+1)=n(n-1)(n—-2)---2-1=n!,

earning the gamma function the distinction of generalizing the factorial function to a

continuous function of x for x > 0.1 Finally, choosing a, =27" /T'(p+1), we are led

to the solution

(1) X 2k+p

J,(x)= 2k'(k+p)'() , (11.4)

usually called the Bessel function of order p of thefirst kind . In equation (11.4) we have

followed the usual convention of abbreviating I'(k+ p+1) as (k + p)!. Indeed, the HP-

48G includes the gamma function as a built-in function x! under the menu

[MTH][PROB]. Try it out, verifying that for integer arguments it returns the usual

factorial values, but for non-integer arguments x it also returns a value (I'(x +1)).

1 Undersuitable conditions of regularity, namely a continuous, positive second

derivative (i.e. very smooth and concave-up), the gamma function can be shown to be the

unique such generalization of the factorial function to the positive real numbers.

328 CHAPTER 11

Equation (11.4) gives one solution of Bessel’s equation. It can be shown that the

method of undetermined coefficients will always thus determine one solution y,(x) of

the form (11.2) about a regular singular point of a second-order differential equation,

corresponding to the larger root ¢, of the indicial equation . It can also be shown that a

second linearly independent solution y,(x) of the same form is determined by the

remaining rootc, of the indicial equation whenever ¢, — ¢, is not an integer. Finally,if

¢, — C, is an integer there is always a second solution of the form

Ybx* + Cy,(x)Inlx| (11.5)
k=0

 y,(x)= |x

where C is a constant. The method of undetermined coefficients can be applied in any of

these cases to determine the constants. This effectively gives us a method for developing

two linearly independentseries solutions about any regular singular point. Details of this

method are found in most of the textbooks listed at the end of the chapter.

PROGRAM 11.1. Bessel functions of the first kind.

The program computes J,(x), when p is not a negative integer. (In general when

x is negative and p is not an integer we must replace x™? by |x|")

The program monitors the size of the intermediate partial sums and estimates the

accuracy of the final result. It sets the display mode to the approximate number of digits

of accuracy achieved, and issues a warning if all accuracyis lost.

Store the program in the variable JS. Since the form of the program is that of a user-

defined function, it can be executed by placing its two arguments on the stack and

pressing the user menu key JS or by evaluating the expression 'JS(P,X)'. The HP-48G’s

PLOT and SOLVE applications are also available. (Its definition as a program instead of

an expression , however, excludes operations that involve the derivative (e.g. SLOPE).)

BESSELL FUNCTIONS 329

Inputs Outputs

2: pl 2:

1: x| 1: J,(x)

<< - pX * Make it a user-

<<10x2/pAp!/DUP

- maxTkTS$S

<<WHILE T ABS 1E-12 >

REPEAT

Tx2/DUP* *

'k INCR/kp+/NEG T STO

TS +'S'STO

IF T ABS maxT >

THEN T ABS 'maxT' STO

END

END

10 maxT LOG 1 + IP - DUP
IFO>

THEN FIX S
ELSE CLLCD
STD " ALL ACCURACY LOST"
1600 .5 BEEP
3 DISP 7 FREEZE
END

>>
>>

>>

EXAMPLE 11.2.

defined function
¢ Initialize maxT, k, T,

and S

e Start adding series

e Update k, T, and S

¢ Update maxT to
monitor size of

intermediate sums

e Estimate accuracy of
the value returned

Plot the functions J,,(x), J,(x) and J,(x) on the interval 0 < x <10. We do this

in the HP-48G’s PLOT application, entering thelist

330 CHAPTER 11

{JS(0,X)' 'US(1,X)' US(2,X)}

as the current equation. The graphs are shown in Figure 11.1, below.

Note, in the graph, that J,(x) has zeros at 2.4, 5.5, and 8.7, approximately. Indeed,

using the HP-48G’s SOLVE application, we can find these zeros more accurately as

2.404825558, 5.52007811, and 8.6537279. Even more difficult computations can be carried

outeasily. For example, the pointof intersection of the graphs of J,(x) and J,(x) can be

found at the point (1.434695651, 0.547946450), using the [PICTURE][FCN][ISECT]

function.

Graph of J,(x), J,(x), and

J,(x), drawn by the HP-48G
using Program 11.1

EXERCISE 11.1

Enter Program 11.1 into your HP-48G and verify the results of Example 11.2. Find

the zeros of J,(x) and J,(x) visible in the above graph. Find the second point of

intersection of J,(x) and J,(x). Find the first point of intersection of J,(x) and J,(x).

(Hint: The HP-48G finds the nearest intersection of the first two functions in the current

equation list. Thus it is necessary to change the orderof the list.)

EXAMPLE 11.3.

Plot the functions J,(x) and J_,(x) on the interval 0.001 < x <10. (Why this

interval?) In the HP-48G’s I;LOT applica4tion, enter the list

{'JS(-.25,X)' 'US(.25,X)'}

as the current equation. The graphs are shown in Figure 11.2.

BESSELL FUNCTIONS 331

Graph of J,(x) and J,(x),

drawn by the HP-48G using
Program 11.1

 Figure 11.2

11.2 BESSEL'S EQUATION: GENERAL SOLUTIONS

The function Jp(x) is one solution of Bessel’s equation, and when p is not an

integer the function J_,(x)is a second linearly independentsolution. In other words, the

general solutionis y = ¢,Jp(x) +c,J_p(x). When p is an integer, a second solution can

be found in the form of equation (11.5), containing a logarithmic term. Equation (11.6),

below, gives a common form ofthis solution, called Weber’s form of the Bessel function of

order n of the second kind . It is described in most of the textbooks listed at the end of the

chapter, and it is fully described and tabulated in [Abramowitz and Stegun].

_ ' 2k—n

Y, (x)==(1n +y)J,,()—=29—'—:#(2)
k0

—-l—i(—l)k Hk + Hn+k (Tkflz

T k'(n+k)!k=0

(11.6)

The general solution of Bessel’s equation is then y=¢,J(x)+c,Y,(x) when p=n is

an integer. An HP-48G program that defines Y, (x) follows. The function H, that

appears in (11.6) is the partial sum of the harmonic series H, =1+++1+...¢ ,

H, =0. The constant ¥ is Euler’s constant ¥ = lim(H,, —Inm) = 0.577215664902.
m-—roo

PROGRAM 11.2.

The program computes Y, (x) when 7 is a nonnegative integer and x > 0. It calls

a subprogram to compute the function H,. Store this subprogram in the variable H:

332 CHAPTER 11

<< > n<<IFn0==
THENO
ELSEO1n
FORKk1k/+
NEXT
END

>>
>>

The program monitors the size of the individual terms that are generated and

estimates the accuracy of the final result. It sets the display mode to the approximate

number of digits of accuracy achieved, and issues a warning if all accuracy is lost.

The program itself should be stored in the variable YS. Since the form of the

program is that of a user-defined function, it can be executed by placing its two

arguments on the stack and pressing the user menu key YS or by evaluating the

expression 'YS(N,X)'. The HP-48G’s PLOT and SOLVE applications are also available. (Its

definition as a program instead of an expression, however, excludes operations that

involve the derivative (e.g. SLOPE).)

Inputs Outputs

 1: x| 1: Y(x)

<< > NX

<<10-> maxT S

<< 'JS(n,x)' EVAL
x 2 /LN .577215664902 + * 'S' STO

15T

<<IFnO>

THENON 1 -

FOR k

'(n-k-1)1*(x/2)M(2*k-n)/Kk!/2'

EVAL NEG

T STO

TS +'S'STO

NEXT

END

>>

015 KT

<<WHILE T ABS 1E-12 >

k2 <OR

REPEAT

'-1D)Mk+1)*(H(K)+H(n+k))

*(x/2)M2*k+n)/k!/(n+k)!/2'

EVAL 'T' STO

TS +'S'STO

'k' INCR DROP

IF T ABS maxT >

THEN T ABS 'maxT' STO

END

END

>>

(continued)

BESSELL FUNCTIONS 333

® Make it a user-
defined function

e Initialize maxT and S

e First term of (11.6)

¢ Second term of
(11.6) is a finite
sum. Add it to S
next. Skip it if
n=0. (Don't
monitor size of
these terms —they
are all of the same
sign.)

e Third term of (11.6)
is an infinite
series. The WHILE
loop adds it to S.

334 CHAPTER 11

(continued)

10 maxT LOG 1 + IP - DUP * Finally, estimate the
IFO> accuracy achieved
THEN and set the
FIX 'S*2/2 -NUM display mode.

ELSE

STD CLLCD

" ALL ACCURACY LOST"

1600 .5 BEEP 3 DISP 7 FREEZE

END

>>

>>

>>

EXAMPLE 114.

Plot the functions J,(x) and Y, (x) together on the interval 0 < x < 10. Also plot

J,(x) and Y,(x) together on 0 < x <10. For the first, make the current equation the list

{JS(0,X) YS(0,X)}. For the second, makeit the list {JS(1,X) YS(1,X)}.

YO
Figure 11.3 Figure 114

The programs that define J,(x) and Y(x), although having the form of user-

defined functions, are not of the kind for which the HP-48G can calculate derivatives.

Thus built-in functions that use derivatives, such as SLOPE, cannot be used. We could, of

course, obtain the derivative functions by differentiating the defining series, but that

would only defer the obvious need to study Bessel functions more closely. Are there, for

example, simple differentiation formulas for Bessel functions? What relationships exist

between Bessel functions for different values of p? Are there other ways of representing

BESSELL FUNCTIONS 335

Bessel functions (and perhaps of computing them) besides infinite series? The studentis

invited to think about other important classes of functions, for example the trigonometric

functions, and whatit is important to know besides numerical methods for computing

their values. In the case of trigonometric functionsit is their differentiation formulas and

the many identities relating them that render the class of functions so useful in myriad

applications. Bessel functions, also, are widely studied, and many of their properties can

be found in the textbooks listed at the end of the chapter as well as in reference workslike

[Abramowitz and Stegun]. We refer the student to these references but include here a few

properties of Bessel functions that help us in our numerical calculations.

11.3 SELECTED PROPERTIES OF BESSEL'S FUNCTIONS

1. Behavior for small values of x:

 J,(x) ~ xP J_,(x)~
27 p!

"(n—=1)!_2'(n 1).x_,,

T

(11.7)

Y, (x)~ (n#0), Y,(x)~ %m X.

2. Behaviorfor large values of x:

2 T pn) f2 . (T nn)
J ~ Al ————1 Y ~ .S -_—- 11.8(%) 71:xcos(x 24 (x) - | x 1 4 (11.8)

3. Differentiation formulas:

d(0==p+lx)+£7(x),
X

; (11.9)
Ly(x)=-Y,x)+21Y(x)
dx X

336 CHAPTER 11

4. Recurrence relations:

S() +J,,(x)= -2—pJp(x),
x
5 (11.10)
n

Y(x)+Y,.,(x)= - Y, (x).

5. Integral representations:

Gx)" . 5
J,(x) = —==———| cos(xcost)sin“’tdt >—1),(%) fir(“_%)jo (xcos?) (p>-1) o

1 ¢x . . 1 e . N

Yn(X)=—JO Sln(xs1nt_nt)dt
__JO [e'"_’_e nfcosnn]e ,\Slnhtdl_.

T T

The asymptotic behaviors for small and large values of X, given in (11.7) and (11.8),

are useful in limit calculations and in interpreting the graphs of Bessel functions. The

differentiation formulas in (11.9) are representative of a larger number of such formulas

found in the references. The recurrence relations (11.10) are useful for rewriting Bessel

functions in terms of others of higher or lower orders, often to achieve more satisfactory

convergence properties of the series or integral representations. The integral forms of

representation (11.11) provide an alternative way to compute values of Bessel functions,

and as we will show in examples are often essential for this purpose. All of these

properties can be proved by direct consideration of the differential equation or of the

series definitions of the functions. Details are in the references cited at the end of the

chapter.

EXAMPLE 11.5.

Plot J,(x) with its derivative, and find the coordinates ofitsfirst relative
3

minimum point. The differentiation formula (11.9) gives

d 1
o J_%(x) = —J%(x) - g]_%(x).

BESSELL FUNCTIONS 337

Thus we can enter the list

{-JS(2/3,X)-1/(3*x)*JS(-1/3,X)" 'US(-1/3,X)'}

as the current equation in the HP-48G’s PLOT application, draw its graph on a suitable

interval, and use the function [PICTURE][FCN][ROOT] (or the SOLVE application) to

find the first zero of the derivative. The first relative minimum is thus found at

(3.27468213, -0.43476438), and the graph, drawn by the HP-48G is shown in Figure 2.5.

Y

[\ dy/dx Graph of J_, (x)plotted with

/_" its derivative.
0

l
EXAMPLE 11.6.

Figure 11.5

Examine the behavior of J,(x) on the larger interval 0 < x <35, and find its

largest zero in this interval. The plot of the function in this interval, Figure 11.6 below,

exhibits the expected failure of the series for large values of x. (For this example the

monitoring of the size of terms in the series was turned off.) The smearing effect, caused

by large terms early in the series, obscures the final value which is close to zero. Less

apparentis the loss of accuracy for intermediate values of x. The zero near x =20 is

reported by the HP-48G, using Program 11.1, as 21.21, accurate to only 2 decimal places!

The zero near x =24 is given as 24.0 (24.35 is better). Near x =35 the values are

worthless.

Jo(x) plotted on 0 < x <35,
X showing the disastrous effect

0 5 of smearing in the
computation of the series

Figure 11.1 defining J,(x).

338 CHAPTER 11

In this situation consider using the integral formula (11.11) for computing J,(x).

Programs 11.3 and 11.4, below, implement the integral representations for J,(x) and

Y(x). They are slower than their series counterparts, however they retain full accuracy

in their computations! The same zeros of J,(x) reported above using the series

definition are given by the integral representation as 21.2116366299 and 24.352471531.

The zeros in the vicinity of x =30 are found successfully to be 27.4934791320,

30.6346064684 and 33.7758202136. The author enjoyed lunch and a short nap while the

HP-48G worked to find these zeros. Butall digits in the results obtained are accurate!2

PROGRAMS 11.3 and 11.4.

The two programs below calculate values of J,(x) and Y, (x) using the integral

representations (11.11).

Store the programs in the variables JI and YI, respectively. The syntax of the

programs permits them to be executed either from the stack or in algebraic mode. Note

that the infinite integral in the equation for Y, (x) is replaced by the finite limits 0 and 10.

The integrand of this improper integral can be shown to be negligible for > 10(cf

Exercise 11.3, below).

Inputs for JI Outputs

2: pl 2:

I: X 1 J,(x)

Inputs for YI Outputs

2: 2:

1: x| 1: Y,(x)

2 As tabulated in [Abramowitz and Stegun].

BESSELL FUNCTIONS 339

<< > pX * User-defined

<< RAD function for the
"(x/2)Ap/NT/(p-.5)!* first equation

J (0,m,COS(X*COS(t))*SIN(t)A(2*p),b’ (11.11)
-NUM

>> >>

e User-defined
<< - NX function for the
<<RAD10-> U second equation
[(0,m,SIN(X*SIN(t)-n*t),t)’ >NUM (11.11)
' (0,U,(EXP(n*t)+EXP(-n*t)*COS(r*r))
*EXP(-x*SINH(1)),t)' SNUM
-t/ -NUM

>> >> >>

When using the integral forms, above, for drawing graphs, extreme accuracy is not

needed,so it is best to limit the accuracy of the integral calculations by setting the display

format to only a few decimal places. When an approximate value of a zero of the solution

function is determined from the graph, the SOLVE application can then be used to find

the zero to full accuracy.

EXERCISE 11.2.

Enter the programs given above into your HP-48G and experiment with their use in

computing values, drawing graphs, finding zeros, and finding maximum and minimum

points. In particular compare the series and integral programs with regard to speed,

accuracy, and range. Can you find the 20th zero of J,(x)? (Answer: 62.0484691902. Hint:

equation (11.8) can suggest approximate values of the zeros.)

EXERCISE 11.3.

Define the integrand of the infinite integral in equation (11.11) as a function in your

HP-48G. Demonstrate thatit is very small when > 10, for all values of n and x of

interest.

340 CHAPTER 11

EXAMPLE 11.7.

Many differential equations can be solved in terms of Bessel functions. The

textbooks and references each list a variety of such equations. For example [Abramowitz

and Stegun] note that the differential equation

2
—Zx—); +A2x"%y =0

has the solution y =+/x Z,, (2Ax""*/ p), where Z denotes J, or Y, as appropriate to
nIp

the value of 1/p. This enables us to give an explicit solution of the differential equation

y"+x%y =0 studied in Examples 1.1 and 1.2. Setting A =1 and p =4 wesee that the

general solution of y"+x°y =0 is

y=cNxJ, (A x)) +cxT(3 xP).

To satisfy the initial conditions y(0) =1, ¥' (0) = 0 of Example 1.1, therefore, we deduce

from the formulas (11.7) that ¢, =0 and ¢, =T(3)/ V2. Hence the solution Yo(X)

obtained earlier, both by the Runge-Kutta method and by Taylor series methods, is

')
(x)=—4=Yo 2

We tried earlier, but failed, to draw the graph ofthis function on the interval 0 < x < 10.

 «/—)EJ_%(%xz). (11.12)

The simple Runge-Kutta method was unable to “track” the rapid oscillations of the

function. And the series solution was unable to avoid catastrophic smearing effects. Can

we do it now? We have several ways of computing values of J, (x). Since for x in the
4

interval 0 £ x <10 the argument of J, in (11.12) will range from 0 to 50, we cannot

-

expect to use the series program JS. So we turn to the integral representation,

implemented through the program JI. With high expectations we enter, in the HP-48G’s

PLOT application, the current equation

'(-1/4)N(X/2)*JI(-1/4,XA2/2)'

BESSELL FUNCTIONS 341

The calculation proceeds apace, exceeding the duration of any lunch and nap time that a

reasonable person might entertain. This prompts a closer look at the integral formula, and

we soon notice the trouble—the integral is improper when p is negative. It converges

mathematically, but that is small comfort. At this point we recall the recurrence relations.

From Equation (11.10) we can write

3
J__L(x) = _J}_(x) - Jl(.X).

‘ 2x ¥ I

Thus we enter as the current equation the somewhat more complicated expression

'(-1/4)!*‘/—(X/2)*((3/x/\2)*JI(3/4,X/\2/2)-JI(7/4,X/\2/2))'

This time we succeed! Figure 11.7 shows the graph of the function y,(x) on the interval

6 < x <10 that was problematical in Example 10.3. And we are able to compute the

zeros in this interval with full precision! For example, the last zero in the interval was

determined by the HP-48G’s SOLVE application to be 9.90851094691.

Graph of the solution of the

N N\ N\ N\ N« initial-value problem (10.1) on

TN VU VUV W 6<x<10.

Figure 11.7

11.4 POSTCRIPT ON NUMERICAL SOLUTION OF DIFFERENTIAL
EQUATIONS

In Chapter 10 we employed a rather naive numerical method in the cause of

solving an initial-value problem. Ourfirst effort , which we called a second-order Runge-

Kutta algorithm , was rewarded nicely, and Figure 10.1 gave reason for optimism. The

algorithm used had the merit of great simplicity and intuitive appeal. It behaved well in

relatively simple cases, such as in Exercise 10.2, where the solution function changed

uniformly over the interval of interest. Butit failed, finally, when pushed too hard—when

342 CHAPTER 11

we asked it to plot the solution of the initial-value problem (10.1) whose solution

oscillates with ever increasing frequency as x — oo.

In general we wish to solve initial-value problems of the form

fl=F(tY), Y0)=Y, (11.13)
dt

in which Y(t) is a vector function. We may think of such a system of equations as

determining a curve beginning at the point ¥, and having a tangent vector given by

(11.13) at each point Y(#) on the curve. Most numerical differential equation solvers,

then, generate an approximate solution by taking small steps along the curve, each step

using the tangent vectors given by (11.13) to guide its direction. The only thing in

question is the size of the step and the particular way the tangent vectors are used.

In Chapter 5 a number of examples were given using Euler’s method and Iniproved

Euler’s method. Euler’s method is the simplest of all, using the tangent vector given by

(11.13) directly and taking steps of constant size A (in the independent variable). The

second-order Runge-Kutta method of Section 10.1 uses a weighted average of two

tangent vectors to improve accuracy. It also maintains constant step size. Further

improvementis possible by increasing the mathematical sophistication of the algorithm

for taking one step, and we include below as an example the fourth order Runge-Kutta

method. Such improvements help. But our benchmark example, the initial-value problem

(10.1), shows that any algorithm that insists on taking steps of constant size will

eventually fail to track the oscillations. A rather full treatment of Runge-Kutta methodsis

given in [Numerical Recipes], where the second-order and fourth-order versions are

described in detail. But the authors of that reference assert that any good integrator for

ordinary differential equations should exert some adaptive control over its own progress,

frequently changing its stepsize to match the current behavior of the solution. The built-in

differential equation solver of the HP-48G does this, implementing an adaptive fourth-

order algorithm known as the Runge-Kutta-Fehlberg method (RKF). Our examples, below,

BESSELL FUNCTIONS 343

compare the simple non-adaptive methods with the built-in RKF algorithm. The power,

flexibility and speed of the HP-48G’s built-in functions will be apparent.

For the sake of completeness (and for use with the HP-48S that does not have built-

in differential equation functions) we have included programs in the Appendix that

implement an adaptive fourth-order Runge-Kutta algorithm as well as the simpler non-

adaptive versions. Each such differential equation solver provides an algorithm for

taking a single step along the solution curve, from a point (¢, Y(#)) to the next point

(t+h, Y(t+ h)). And it also provides an integrator—a program that manages taking

multiple steps to generate the solution curve to a specified stopping point. The built-in

solver of the HP-48G, for example, provides the function RKFSTEP to take a single step

and the function RKF to take multiple steps to a specified value of the independent

variable. The HP-48G also provides user interfaces in the form of SOLVE and PLOT

applications, simplifying the task of using the built-in functions. Many will find the

applications sufficient for all of their purposes and will never use the functions RKFSTEP

and RKF directly. We will see, however, that it is often very useful to do so.

The programs in the appendix, mainly of interest to users of the HP-48S, provide

algorithms RK2, RK4 and RK4A for taking a single step along a solution curve. They also

provide an integrator SOLV that generates and graphs a solution curve using any one of

the single-step algorithms. And a SETUP procedure makes it convenient to apply the

programs to an arbitrary system of n first-order differential equations. The Appendix

contains instructions for entering and using the programs given there.

The graphs below, drawn by the HP-48G, compare the second-order and fourth-

order Runge-Kutta algorithms with the built-in RKF algorithm, as applied to our

benchmark initial-value problem (10.1). The zeros of the solution lying in the interval

0 < x <10 are also obtained for the purpose of comparing accuracy of the algorithms.

The improved stability of the built-in RKF algorithm is evident.

344 CHAPTER 11

Figure 11.8

Figure 11.9

Figure 11.10

Figure 11.11

Figure 11.12

Graph of the solution of the
initial-value problem (10.3) on

0 £ x £10 drawn by the HP-
48G using the second-order
Runge-Kutta method.

Graph of the solution of the
initial-value problem (10.3)

0 < x £10 drawn by the HP-
48G using the fourth-order
Runge-Kutta method.

Graph of the solution of the
initial-value problem (10.3)

0 < x £10 using the built-in
RKF algorithm.

Graph of the solution of the
initial-value problem (10.3) on

the interval 0 < x < 30using
the fourth-order Runge-Kutta
method.

Graph of the solution of the
initial-value problem (10.3) on

the interval 0 < x < 30 using
the built-in RKF algorithm.

BESSELL FUNCTIONS 345

Figures 11.8, 11.9 and 11.11were drawn by the programs in the Appendix,

following the instructions given there. The special program SETUP prompts for the

functions on the right hand side of the system (10.3) as well as for the initial conditions.

Figures 11.10 and 11.12 were drawn by the HP-48G’s PLOT application. In this case it was

necessary to provide a program to evaluate the function F(#,Y) in (11.13). For a single

first-order equation this usually takes the form of an expression 'F(t,y), entered in the

PLOT application’s EQ field. When a system of more than one equation is given,

however, Y is a vector, and the entry into the EQ field more typically takes the form of a

program. For the system of first-order equations in (10.3), for example, with T as

independent variable and the vector Y as dependent variable, the program

<<'Y(2)' EVAL -TA2*Y(1) EVAL 2 »ARRY >>

is the appropriate entry. And the initial value s of T and Y are provided as 0 and [1, 0],

respectively.

Note how badly Figure 11.11 represents the solution! The constant stepsize

algorithms do not handle this example at all well except for very limited domains.

Another measure of the problem, presented in the following table, is the achievable

accuracy in computing zeros of the solution in the interval 0 < x <10 . For the 2nd and

4th order Runge-Kutta methods the zeros were generated by the programs in the

Appendix. For the built-in RKF algorithm we used the HP-48G’s SOLVERapplication in a

very appealing way that we now describe.

First, it is useful to know how the HP-48G’s RKF function works. It takes three

arguments from the stack as shown in the table:

Inputs Outputs

3: {TYF}

2: accuracy desired {TYF}

1: final value of T accuracy desired

346 CHAPTER 11

The list in level three contains the names of the independent variable, the dependent

variable, and the variable containing the program (or expression) that was entered,

above, in the EQ field of the PLOT application. The number in level two is the desired

accuracy to be maintained as the solution is generated. The number in level one is the

desired final value of the independent variable. RKF starts with initial conditions stored

in T and Y, generates the solution as far as the given final value of T, and terminates with

T and Y holding the final point on the curve. For convenience in generating further

extensions of the solution,it leaves the first two of its arguments on the stack.

We can now define a user-defined function SOL(T1) that represents the solution of

the initial-value problem. Merely save the following program in the variable SOL.

<< — T1 << {T Y F}.00000005 T1 RKF CLEAR 'Y(1)' EVAL >>

If we initialize T and Y to any point on the solution curve, for example to the given initial

values, then SOL(T1) will return the value of the solution at any other point T1. Behind

the scenes RKF is wielding its magic, invisibly generating the solution curve between the

two points, stepping along the curve with steps adapted to the local nature of the solution

so as to maintain the specified accuracy. Finally, the user-defined function clears from the

stack the arguments left there by RKF and leaves the value of Y(1), instead. (Note that any

of the other components of the solution vector Y could have been returned instead. If we

were to return Y(2) instead of Y(1) in this example, the function SOL(T1) would define the

derivative of the solution function.)

Since this solution SOL(T1) has the form of a user-defined function, it has all the

privileges of such functions. In particular the algebraic expression 'SOL(T1)' can be entered

directly in the EQ field of the SOLVE application to find zeros or other characteristics of

the solution. This is how the last column of the table of zeros, below, was generated.

Such direct use of the HP-48G’s function RKF illustrates the great flexibility and

power of its differential equation solver. Indeed, although the PLOT application is very

useful for graphing the solution of a single differential equation (or system offirst-order

BESSELL FUNCTIONS 347

differential equations), the direct use of the RKF functions in programs is, perhaps, their

more important use. In the application at hand, the finding of zeros of the solution

function, the accuracy specified for the RKF algorithm was 5E-8. The 16th zero thatit

found is, indeed, accurate to 1 part in 100,000,000!

Zeros of the initial-value problem (10.1)

2nd Order

2.00203644891

3.19492413783

4.05128652588

4.75358445731

5.36231454325

5.90668117367

6.40268633618

6.86131541392

7.28957420209

7.69178778272

8.07357868843

8.43599505705

8.78272725853

9.11562873391

9.43417449644

9.74356252066

4th Order

2.00313594472

3.2009154135

4.06405777033

4.77440169509

5.39209207961

5.94602222796

6.45310927629

6.92251066537

7.36299391049

7.77815861927

8.17170813129

8.54848304089

8.90884476027

9.25522004356

9.58850392663

9.91106744133

built-in RKF

2.00314729270
3.20095692562
4.06397614690
4.77419471552
5.39190129467
5.94588151508
6.45252653428
6.92221834643
7.36202330847
7.77700811227
8.17095208315
8.54676317595
8.90673565134
9.25271736799
9.58622265412
9.90851094399

EXERCISE 11.4.

Enter the programs of the Appendix into your HP-48G (or HP-48S). Use them to

plot the solution of these initial-value problems:

y'+y=0, y0)=0,y(0)=1,

y"+—1-y' +y=0, y(.00001)=1,y(.00001)=0,
X

y'+e'y=0, y(0)=0,y(0)=1,
3yvn_.xyv+x2y=ex, y(O)zy'(O)-:O,y"(O)z%

348 CHAPTER 11

In each case, also use the built-in differential equation solver and compare results.

Examine the list of the zeros of the solution accumulated by the programs (or obtained as

shown above using the HP-48G’s SOLVE application.) How well do the zeros found by

the different algorithms agree with your expectations? The second of the above equations

is Bessel’s equation of order zero. The solution in that case is started slightly to the right

of the point (0, 1). Why? How well doesthe solution agree with J,(x) ? How well do the

zeros agree with those of J;,(x)?

11.5 BOUNDARY VALUE PROBLEMS

Initial-value problems arise naturally in studying physical systems whose behavior

is determined by a differential equation and a complete description of the initial state of

the system. In contrast to these, many problems in engineering and science lead instead to

boundary-value problems where initial conditions give way to conditions imposed at

several different points. A rotating shaft, for example, is modeled by a fourth-order

differential equation that embodies the elasticity properties of the shaft, together with

conditions imposed at each end of the shaft specifying how the shaft is constrained.

Examples frequently studied involve a linear differential equation accompanied by

boundary conditions of the form

o,y(a)+ o,y(b) + oy (a)+ o,y (b) =),

Biy(a) + B,y(b) + By(@) + B,y(b) = 7,,

where t;, f3;, and 7,are constants. A simple example would be the following boundary-

value problem on the interval 0 < x < L:

y'+Ay =0,
y(0) =0, (11.14)

hy(L)+y(L) =0,

where h is a constant. As is typical of such problems, we seek non-trivial solutions of the

differential equation that satisfy the two end point conditions—solutions that pass

BESSELL FUNCTIONS 349

through the point(0, 0)and that satisfy the relation specified between the ordinate and

slope at the other end of the interval. In general such solutions exist only for discrete

values of A, called eigenvalues or critical values of the boundary-value problem. The

corresponding solutions are called eigenfunctions or characteristic modes of the problem.

Sometimes, as in the case of Equation (11.14), the boundary-value problem can be

solved explicitly. For in this very simple case, we can find the general solution of the

differential equation and apply the two boundary conditions directly. We obtain:

y=C cosvVAx+ G, sinAx,

C -1+C,-0=0,

h(C,cosNVAL+ C,sin\AL)+ VA(—C,sinVAL+ C,cos\/AL)=0

(Note that when A is zero or negative the general solution takes a different form. These

cases must be considered also if one wants to find all eigenvalues of the problem. We

leave it as an exercise to show that there are no non-trivial solutions in these cases, i.e. no

eigenvalues A <0.) The equations above imply immediately that C, =0 and

C,(hsin \/IL+ \/I cos \/IL) = 0. Hence, there can be non-trivial solutions only if A

is chosen so that

hsinxfIL+\/_}tcosx/_/fL =0.

Withu = /ALwethus seek solutions of the equationtand = (—=1/hL)l . As expected

the eigenvalues form a discrete set—corresponding to the points of intersection

Uy Hys 1y, ... of the curves as shown in the graph below (drawn by the HP-48G). The

eigenvalues are then A, =/,£i2/ [}, i=1,2,3,.... The first few values are easily

computed, using the HP-48G’s SOLVE function.

350 CHAPTER 11

pi u2 u3 ua

- 2

]
Figure 11.13

In many physical problems it may be only the first few eigenvalues that have

physical significance, and in simple cases these might be computed analytically, as above.

When the differential equation itself yields only to numerical methods of solution,

however, we turn to numerical algorithms for finding the smaller eigenvalues. Of the two

commonly used methods—shooting methods and relaxation methods —we illustrate only

the former.3 Consider, for example, the boundary-value problem

y'+Axy=0, y(0)=y(2)=0. (11.15)

The shooting method seeks to find the first few positive eigenvalues by choosing an

additional initial condition at x =0 and determining A by trial-and-error so that the

(unique) solution of the initial-value problem satisfies the other boundary condition at

x =2 as well. (The analogy with shooting a rifle bullet at a 45 degree angle,

experimenting with the muzzle velocity that will cause the bullet to land at a prescribed

point, comes to mind.) Which second initial condition is chosen is immaterial (so long as

it does not lead to trivial solutions) since the eigenfunction corresponding to a given

eigenvalue is determined only up to an arbitrary constant. Thus we will determine

solutions of the initial-value problem y"+Axy=0, y(0)=0, y (0)=1for various

values of A, experimenting until the condition y(2) = Ois satisfied. The plots below,

drawn by the HP-48G using the built-in differential equation PLOT application,illustrate

the method. Figures 11.14 to 11.17 show the solutions for A =1, 2, 3, 4, while Figures

11.18 to 11.21 show solutions for A =8, 9, 10, 11. Notice that when A is 1 or 2 the solution

3Both methodsare discussed in [Numerical Recipes].

BESSELL FUNCTIONS 351

overshoots the target point (2, 0), whereas when A is 3 or 4 it undershoots the target. The

first eigenvalue is thus seen to be between 2 and 3. And it would not be difficult (only a

bit time consuming) to narrow in on the eigenvalue with further trials. We will show,

below, that the HP-48G’s SOLVE application can be used to find the eigenvalue more

efficiently. The second group of four figures show, by similar reasoning, that the second

eigenvalue lies between 9 and 11. Thisis the essence of the shooting method.

P

lo

Figure 11.14

< <S
o] TFigure 11.16 Figure 11.17

P e~
lo _,l/ 2.5 .

Figure 11.18

—
—
—
—
—
—
—

o n u
n

Figure 11.19

352 CHAPTER 11

Figure 11.20 Figure 11.21

To find the eigenvalues more exactly we will define a user-defined function for the

HP-48G that takes A as input and returns y(2), the value of the solution at x = 2:

<< > M

<<AM AV STOO0'XSTO[01]'Y'STO

{X'Y F} .00000005 2 RKF

CLEAR 'Y(1)' EVAL

>> >>

Save this program in a variable EV. The program assumes that variables X, Y, and F

exist and that F contains the function that defines the differential equation. The roots of

the function EV(L)are the desired eigenvalues of the boundary-value problem, thus we

can use the SOLVE application with EQ set to 'EV(A1)' to find the roots. With the display

mode set to 6 digits, the initial guess 2.5 yields the value 2.369533 for the smallest

eigenvalue. The guess 9.5 yields 10.235823 as the second eigenvalue. (In exercise 11.5 we

will see that these values are, indeed, correct to all digits shown.)

EXERCISE 11.5.

Use the program, above, to verify on your HP-48G calculator that the first two

eigenvalues of the boundary-value problem (3.3) are the values stated. Can you find the

third eigenvalue?

EXERCISE 11.6.

Use Example 11.7 to show that the general solution of the differential equation is

BESSELL FUNCTIONS 353

y=x(CJ,GV+IG2

From equations (11.7) deduce that the boundary condition y(0) = Oimplies C, = 0. Thus

the second boundary condition implies that C, remains arbitrary only if

J,3A2h=o0.

Find the first several eigenvalues accurately by using your HP-48G and the program JS

for computing JJj(x). How do these values compare with those obtained by the shooting

method?

The eigenvalues)LO,)L], /12, ... of the boundary-value problem (11.15) have been

“found” in the sense that, at least in principle, they can be calculated numerically. The

corresponding eigenfunctions @,, ¢,, @,, ... have also been “found”—they are exactly

the solutions arrived at, above, by the shooting method. Exercise 11.5 also showed,in fact,

that the eigenvalues are given by A, =91,*/32,n=1,2,3,..., where U, U, U, ...

are the positive roots of J; (x) = 0; and the eigenfunctions are

)=VxJ,32,x7), n=1,2,3, (11.16)

It is clear that there is great merit in expressing the solution of the boundary-value

problem in terms of known functions. A little mathematics goes a long way! But the point

of the example is to show that we are not helpless in the face of a problem that just

happens to elude the class of functions in our current repertoire.

12 ORTHOGONAL FUNCTIONS

Treatments of boundary-value problems lead naturally to the study of orthogonal

sequences of functions. Two functions f(x)and g(x)are defined to be orthogonal (on the

interval a < x < b, with respectto the weightingfunction p(x)) if

b

fp(x)f(x)g(x)dx =0. (12.1)

Most of the boundary-value problems that arise in applications belong to the class of

Sturm-Liouville Problems, whose determining characteristic is that the eigenfunctions form

an orthogonal sequence. Sturm-Liouville problems involve a second-order differential

equation of the form -j;(p(x)%) +[g(x)+ Ar(x)]y =0, together with boundary

conditions that ensure that Equation (12.1) holds.1

Our sample problem (11.15) is a Sturm-Liouville problem with p(x) =1, thus the

sequence (11.16) ofits eigenfunctions is orthogonal. It is this property that enables us to

expand quite general functions f(x) in a series

f(x)= Zan(pn(x) = Zan \/;J%(%w/l,, xT), (12.2)
n=1 n=1)

where the coefficients are given by

1n the various textbook referenceslisted it is shown that admissible boundary conditions

include the common formsy(a) =0, y'(a) =0, and o,y(a)+ a,y(a) =0.

354

ORTHOGONAL FUNCTIONS 355

rwedr [roodsi)
Foiode [(e)d

Note, again, that we can, in principle, calculate the coefficients a, numerically, using the

an

built-in integration function of the HP-48G. As might be expected, however, the

integrations can often be handled by use of general formulas available in comprehensive

works such as [Abramowitz and Stegun].

EXERCISE 12.1.

Use the values of /11, /12, /13, ... that you determined in Exercise 11.5 to determine

the first few terms of the series (12.2). Use the built-in integration function of your HP-

48G and the user-defined function JS (or JI) given by Program 11.1.

12.1 FOURIER SERIES

The common (trigonometric) Fourier series

f(x)= "—20 +Y' (a4 coskx +h, sinkx),
k=1

1
a, = —TE jf(x)coskxdx, (12.3)

arises from the Sturm-Liouville problem y"+Ay = 0, y(-7t) = (), y' (—=1t) = y' (7). The

series effects the analysis of the function f(x) into itsfundamental vibrational modes, and

all of the popular textbooks in the subject include many applications. We include one

example here to demonstrate the capacity of the HP-48G to handle Fourier series.

Considerthe step function

356 CHAPTER 12

-1 —-mt<x<0
xX)=

) % O<x<m.

Equations (12.3) in this case lead to

b, = 1 If(x)sinkxdx = zJ‘sinkxdx
Y T

0

2
=— (1—-cosknkn(COSkTr)

i, k=1,3,5,...,
=4 kT

0, k=2,4,6,....

Hence the Fourier series expansion of f(x)is

=i = sin(2k —1)x

) né 2%k—1

4[.

=—|sinx+
sin3x sinSx

+ + ...

T 5

We define a user-defined function FS for the HP-48G by entering the following program

and storing it in the variable FS:

<< - N X << '4/n*Z(K=1,N,SIN((2*K-1)*X)/(2*K-1))'>NUM >> >>

Then the nth partial sum of the series for a given value of x can be calculated either by

entering n and X into the stack and pressing the user menu key FS, or by evaluating the

algebraic expression 'FS(N,X)'. More conveniently, the algebraic expression can be made

the current equation in the HP-48G’s SOLVE or PLOT applications.

Graphs of the first several, and the 50th partial sums, drawn by the HP-48G, are

shown below. Note that the pointwise convergence of the series to f(x) is nicely

demonstrated. The non-uniformity of the convergence is also visible, the Gibb’s

phenomenon showing up clearly. The student should repeat the steps leading to these

ORTHOGONAL FUNCTIONS 357

graphs and generate additional partial sums. Further examples of Fourier series can also

be found in the textbooks, and they can be explored graphically in the same manner.

[m Figure 12.1 shows thefirst three

— o partial sums, Figure 12.2 the 6th

M S partial sum, and Figure 12.3 the

50th partial sum.
Figure 12.1

\NW\/\A Figure 12.2 l Figure 12.3

EXERCISE 12.2.

Save the graphs of the 1st, 2nd, 3rd, ..., nth partial sums on the stack as individual

pictures, (graphic objects) and then “animate the convergence” of the series. (As each

graph is drawn you can save it to the stack by pressing [PICTURE] [EDIT] [NEXT]

[NEXT] [PICT—]. Then enter the number of pictures on the stack and execute the

ANIMATE command by pressing [PROG] [GROB] [NEXT] [ANIM].) Note: The number

of graphic objects that you will be able to save on the stack depends on the amount of

memory that your calculator has. With 32K of memory you may be limited to a dozen or

so pictures. With 128K of memory you can save many more.

358 CHAPTER 12

12.2 LEGENDRE POLYNOMIALS

Important among sequences of orthogonal functions are a number of sequences of

orthogonal polynomials. Legendre polynomials appear, for example, as the eigenfunctions

P,(x), P,(x), P,(x),... of the Sturm-Liouville problem

(1-x*)y"=2xy +n(n+1)y =0,
12.4

y(=1) and y(1) finite. (12.4)

The textbooks derive from the differential equation many of the important properties of

these polynomials, important ones for our immediate purposes being

P(x) is a polynomial of degree n,

P, (x) has n distinct zeros in the interval —1< x <1,

P, (x) is an odd or even function according as n is odd or even,

P,(1)=1,and P,(-1) = (-1)",
2n—1 n—1 (12.5)

Py(x)=1, P(x)=x,and P(x)=——P,_,(x)———P,_,(x),
n n

1

an(x)Pn,(x)dx =0 if n#m, if n=m.
2n+1

The last of these equations states the orthogonality of the Legendre polynomials. We can

thus expect to represent functions f(x)in Fourier-Legendre series

f(x)= ZakPku),

2k+1
 jF(x)P,(x)dx.

To develop programs for computing Legendre polynomials efficiently, we turn to the

recurrence relation (12.5). Starting with Pj(x)=1 and P,(x)=Xx, we can compute

successively as many of the polynomials as desired. Program 12.1 carries outthis plan.

ORTHOGONAL FUNCTIONS 359

PROGRAM 12.1. Generation of Legendre Polynomials.

Program to generate the first # Legendre polynomials, store them in a subdirectory

GRF, and plot P, (x).

Inputs Outputs

1: n The subdirectory GRF contains the
first n Legendre polynomials.

The program assumes that the subdirectory GRF is created before running. It also

calls three subprograms SETPP, EXCO. and MULTI. The program SETPP sets the

graphing parameters and is included below. The programs EXCO and MULTI completely

expand an expression algebraically. They are included with Program 13.2 in chapter 13.

If subdirectory GRF has not been created, the current directory will be cleared.

<< GRF CLVAR 1'P0' STO X' 'P1' STO * Initialize the stack.

1'X' ROT 2 SWAP

FOR n e Use thc? recurrence

DUP ROT SWAP 'X' * '(2*n-1)/n' EVAL ;ia;fé‘stt"o‘fg?fr'
* SWAP ‘(n-1)/n' EVAL * - Legendre polyno-

EXCO mials.
CLLCDDUP"P"n+DUP" " SWAP

" stored" + + 3 DISP OBJ— STO

NEXT

DUP STEQ SET PP e Store P(x) in the
ERASE DRAX LABEL DRAW 7 FREEZE current plotting
CLEAR UPDIR equation and

>> draw it.

e SETPP
<<-11 XRNG -1 1 YRNG {X -1 1} INDEP >> Program to set the

plot parameters

360 CHAPTER 12

EXERCISE 12.3.

Enter the first of the Programs 12.1 and save it in a variable LGN. Also enter the

programs SETPP, EXCO and MULTI and create a subdirectory named GRF. Experiment!

In particular run LGN with input 16 to generate the first sixteen Legendre polynomials.

The subdirectory now contains the polynomial expressions.

EXAMPLE 12.1.

Using the expression for the sixteenth Legendre polynomial from the subdirectory

GRF, we enter the following program into the HP-48G that defines a user-defined

function PP.

<< — X'.196380615234-

26.7077636719*X2+

592.022094728*X"\4-

4972.9855957*X"\6+

20424.7622681*XN8-

45388.3605956*XM 0+

55703.8970947*XN 2-

35503.5827636*XM 4+

9171.7588806*XM6' >>

Store it in the variable PP. Now we can evaluate P,((x)by either putting its

argument on the stack and pressing the user menu key PP or by evaluating the algebraic

expression 'PP(X)'. Using the HP-48G SOLVE application, we can find the roots of P, (x),

only the positive roots being listed since the polynomial is an even function. The values

returned are:

0.095012509838
0.281603550774
0.458016777679
0.617876243864
0.755404411444
0.865631200614
0.944575030377
0.989400931244

ORTHOGONAL FUNCTIONS 361

Comparing these roots with values listed in [Abramowitz and Stegun] we find that the

last one is accurate to only 8 significant digits. The purpose of this example is to

demonstrate the loss of accuracy that ensues from evaluating a polynomial naively,i.e.

from its standard form. We have seen, earlier, the smearing effect that reduces accuracy

when computing a sum—the result of adding large intermediate terms of opposite sign

that contribute to a final result that is small. In the calculation carried out by the above

program, we would expect to lose aboutfive or six digits of precision since the largest

terms can be about that large and the final answer is less than 1 in magnitude. Except for

polynomials of quite small degree, one avoids computing them in the straightforward

way. Example 12.2 shows a correct way.

EXAMPLE 12.2.

Again we use the recurrence relation (12.5), this time avoiding the symbolic

expressions for the Legendre polynomials. The program uses the recurrence relation for

each value of x individually.

PROGRAM 12.2. Evaluation of Legendre Polynomials.

User-defined function to compute the value of P(x).

Inputs Outputs

2: n

1: x| 1: P(x)

<< >N X e Uses the recurrence
<<1X2n relations (5.1) for
FOR k each value of x

* * * rather than
g\l/JVPAqu"I- -SXV/P:Fi x*2k*1-k/ symbolically.

NEXT
SWAP DROP

>>
>>

362 CHAPTER 12

The expression 'P(16,X)' can now be entered as the current equation in the SOLVE or

PLOT application. Again we find the 8 positive zeros of the function. But this time they

are accurate to the full precision of the calculator. We will list the values obtained for

these zeros, below, when we use them in an important application—Gaussian 16 point

quadrature.

Graph of P,¢(x) drawn on the

interval —1<x < 1.

Figure 12.4

Applications of Legendre polynomials are nearly always related to their

orthogonality properties. They arise, for example, in solving partial differential equations

using the method of separation of variables. It is their origin as eigenfunctions of the

Sturm-Liouville problem (12.4) that explains their appearance. Another example is their

use in Gaussian quadrature , an important technique for numerical integration. It nicely

complements the built-in integration function of the HP-48G, as we will show in the final

examples in the chapter.

A continuous function f(x) can be approximated by a unique interpolating

polynomial p(x)of degree n that agrees with f(x) at n+1 points x,, x,,..., x,. The

existence of such a polynomial is proved most easily by exhibiting it explicitly:

f(x) = i f(x) L (x), where
k=0~ K k

(12.6)
(x — xO)(x - xl) e (x— xk_l)(x=X

(xk—xo) (xk—xl) (xk _xk-l) (xk—xk+1

) ... (x—xn)

) ... (xk
Lk(x) =)

ORTHOGONAL FUNCTIONS 363

L, (x) is a product of exactly n factors, thusit is a polynomial of degree n. Moreover,it

is clear thatit has the following properties:

L(x)=1, and

L.(x)=0 i#k.

The approximation for f(x) in (12.6) follows from these facts. It is the famous Lagrange

interpolation formula for f(x).

Many numerical integration formulas are derived by integrating the interpolating

polynomial approximation (12.6) for f(x). This yields

b " b

[fodx =Yfx)[L(xdx
“ =0 “ (12.7)

= 2wf(x).
k=0

In other words the approximation to the integral of f(x) is obtained as a weighted sum

of n+1 values of f(x). The weights w, do not involve the function f(x) at all. Thus,

once the weights are determined, equation (12.7) provides a scheme for numerically

integrating any continuous function f(x). The student will recognize in (12.7) many of

the common integration routines such as the trapezoid rule, Simpson's rule, and others.

The weights do depend, of course, on the interpolating points x,, x,, ..., X, chosen. The

point of departure for Gaussian quadrature is to ask the question “For a given number 7,

whatis the best way to choose the interpolating points?”

Let us take as interpolating points the sixteen zeros of P(x)in —1< x <1. This

might seem strange at first, since so many common integration methods begin with

equally spaced interpolation points. But we will see that it pays off handsomely. We arrive

at an integration method from (12.7), known as 16 point Gaussian Quadrature . It is only

necessary that we know the weights w,. As one might expect, they can be found in

[Abramowitz and Stegun]. But we can also compute them ourselves on the HP-48G, and

364 CHAPTER 12

it is important to realize how simply this can be done. For in some future application we

may find it necessary to use a sequence of orthogonal polynomials different from the

Legendre polynomials in order to meet the requirements of the application. The set of

Programs 12.3, below, accomplish the computation of the required weights. And Program

12.4 implements the Gaussian quadrature integration method.

PROGRAM 12.3. Calculation of weights for 16 point Gaussian quadrature.

The program takes no arguments from the stack and returns none. It generates the

eight weights corresponding to the eight positive zeros of P((x) (from symmetry, we

know that the zeros & of P,((x) have the same weight) and stores the weightsas a list

in the variable W. It assumes that the 16 zeros of P,(x) are stored in the variable P16R

before the program runs. Computing the weights also requires a user-defined function to

compute L, (x). Enter this program first, and and store it in the variable L.

<<- kx ¢ User-defined
<1 v function

<<116 FOR | * Compute the
IFiks product that

THEN defines L, (x)

P16R i GET DUP x - SWAP
P16R k GET -/*'v' STO
END
NEXT v

>>
>>

>>

Finally, store the following program in the variable BLDW:
<<{}'W'STO e Initialize list W
916 FOR i ¢ Calculate weights

IJ' (_1 ’1 ,L(i,X),X)' NUM fOf the 8 positive

DUP W SWAP + 'W' STO roots
i 1 DISP

NEXT

>>

ORTHOGONAL FUNCTIONS 365

PROGRAM 12.4. Gaussian quadrature (two versions).

b
The two programs given here evaluate j f(x)dx . Their use differs only in the

form of the inputs required. The first expects the function f(x) in the form of an

algebraic expression, for example 'SIN(X)'. The second expects a program for the function

f(x) that takes one input from the stack and returns one value to the stack. The second is

more useful in further programming applications, for example in computing double

integrals (below). Store the programs in the variables GIN and PGIN.

Inputs for GIN (version 1) Outputs

3: 'f(x)'

2: a b

1: bl L L f(x)dx

Inputs for PGIN (version 2) Outputs

3: << program for f(x) >3

2: a b

1: bl L L f(x)dx

GIN: <<— fab ® User-defined

<<0<<ab DUP2 SWAP - 2/4 ROLL function
*3ROLLD +2/+>> ® u changes coord-
 sum u inates from [-1, 1]

<<1 8 FOR k to [, b]¢ Compute sum (12.7)
Z k GET DUP NEG ¢ Get next zero

u -»>NUM 'X' STO f -NUM SWAP
u ->NUM 'X' STO f -5NUM + e Multiply by weight

W k GET * sum + 'sum' STO

NEXT ¢ Finish coordinate

sumba-2/* -5 NUM>> transformation
>> 'X' PURGE >>

366 CHAPTER 12

PGIN:
<< —=fab e User-defined

<<0<<abDUP2 SWAP - 2/4 ROLL function
*3ROLLD +2/+>> * uchanges coord-

inates from [-1, 1]
— sumu to [a, b]

¢ Compute sum (12.7)

<<18FORk ¢ Next zero X
Z Kk GET u -NUM f EVAL and its weight

W k GET * sum + 'sum' STO ¢ Next zero —(X

Z k GET NEG u -NUM f EVAL and its weight

W k GET * sum + 'sum' STO

NEXT ¢ Finish coordinate

sumba-2/* sNUM transformation

>>

>>

>>

EXERCISE 12.4.

Enter the programs GIN and PGIN, above, into your HP-48G, and use them to

evaluate several integrals, including the following. In each case compare the result with

the value given by the HP-48G’s built-in integration function. How do the computing

times compare?

(a) Jsinxdx,

0

. L =1 meter
2 d¢

(b) 4,/£ ———, where g =9.80665
\/;'([w/l—kz sin’ @ A

k =sin—

The second integral is an example of an elliptic integral of the first kind . With the values of

L, g, and k given, it represents the period of a simple pendulum of length 1 meter

swinging with a maximum amplitude of 7/ 2. It is a non-elementary integral. Note that

our 16 point Gaussian integration routine gives the correct result to 12 digits of precision!

ORTHOGONAL FUNCTIONS 367

In fact, it is shown in numerical analysis texts that 16 point Gaussian quadrature gives

exactly correct results for polynomials of degree < 33! Simpson's rule, by way of contrast,

gives exact results only for polynomials of degree < 3.

EXERCISE 12.5.

The function F(k,x) defined by the integral, below, is called the elliptic integral of

thefirst kind .

F(k,x) = ji______d_?____

< [1—k%sin® ¢

Write a program for your HP-48G that makes it a user-defined function that can be

evaluated either from the stack or in algebraic form. Then study it by generating graphs,

for various values of kK with independent variable x (have the HP-48G draw a family of

curves), and for various values of x with independent variable k. Find the reference

work by Abramowitz and Stegun (cf. bibliography) and compare your results with the

onesit catalogs.

(APPLICATIONS TO VECTOR CALCULUS

The HP-48G handles matrices and vectors well, and has built-in functions for

handling the common operations on two and three dimensional vectors. Some of these

were illustrated in earlier chapters, and further applications should suggest themselves to

the student.

EXAMPLE 13.1.

As an example, the problem of finding the distance between two skew lines L, and

L, in 3-space involves evaluating the vector expression

_(P,=P,)-(V,xV,)
dist

[V, xV,|

9

where P, and P, are points on L, and L,, and V, and V, are vectors parallel to L,

and L,, respectively. On the HP-48G we can store in the variable DIST the program

<<—- P1P2V1V2<< V1V2CROSS DUP P1 P2 - DOT SWAP ABS / >>

creating a user-defined function for evaluating the distance.

EXERCISE 13.1.

Enter the program above into your HP-48G, and find the distance between the lines

determined by the vectors P= [1 2 3], P,= [-2 3 -5], V,= [1 0 2], and

V,=[-358]. (You should obtain the value 1.33955 for the distance.)

368

APPLICATIONS TO VECTOR CALCULUS 369

13.1 ANALYSIS OF SPACE CURVES

Let yY(t) =[acost,asint,bt] be a curve in 3-space. The curve is a helix spiraling

around the z-axis. We can study the geometry of this curve by computing the following

quantities that characterize its shape and orientation:

dyV = velocity vector = —,
dt

 v =speed =||V|,

. Vv
U = unit tangent vector = —,

[V]
dU :
Y =vykN, N =unit normal vector, K = curvature, (13.1)

t

B = U X N = unit binormal vector,

—=—vN, 7 =torsion.
dt

The various textbooks discuss these quantities and their relation to the curve ¥(#). The

vectors U and N determine the osculating plane of the curve Y(#) at a point P. The

constant 1/ K is the radius of curvature of the curve at P. The vector B is perpendicular

to the osculating plane, and its rate of change measures the rate at which the curve tends

to twist out ofits osculating plane (hence the term torsion).

To compute these quantities for a given space curve Y(t) =[x(¢), y(t), z(1)], using

the HP-48G, we assume that the three coordinate functions x(¢), y(f) and z(f) are

defined as user-defined functions. Thus, for example, the three variables X, Y and Z

might contain programs
<< - t'A1*COS(t)' >>
<< — t'AT*SIN(1)' >> (13.2)
<< > t'B1*t' >>

370 CHAPTER 13

and the variables Al and B1 contain constants. The essential feature of these programs in

only that they take one argument from the stack and return their value to the stack. We

could write them in many different ways, for example the first, which is written in (14.2)

as a user-defined function, could be written << COS A1l * >> instead. The following

programs then compute the various quantities that describe the space curve.

PROGRAM 13.1. Analysis of a space curve.

The programs below compute the various elements of a space curve defined in

Equation (6.1). A numerical differentiation routine is used in place of the HP-48G’s built-

in symbolic differentiation, which is not readily used with the vector functions. All of the

programs take a single input f from the stack and return their result to the stack, with the

exception of the numerical differential function DER. It takes two arguments from the

stack—the quoted name of a vector function and a value of t. It returns to the stack the

vector derivative of the named vector function, evaluated at f.

Each program is labeled with the variable name in which it should be stored. To

use the programs, store definitions of the three coordinate functions x(#), y(f) and z(?)

in the variables X, Y and Z.

P:
<< > t ¢ Return the vector
<< 'X(t)' -NUM P(t) to the stack

Y(t)' -5NUM

'Z(t)' -NUM

3 -ARRY

>> >>

APPLICATIONS TO VECTOR CALCULUS 371

DER: e Numerical different-

<< .0001 - vth ation

<< th+VvEVALth-vEVAL-

2h*/

>> >>

V: dt
<< >t

<< 'P't DER

>> >>

u: vV
<< >t U

<< 'V(t)) -NUM DUP ABS/

>> >>

N:

<<t °

<<'U't DER DUP ABS /

>> >>

B:

<< >t

<< 'U(t)' -5NUM 'N(t)' -NUM CROSS

>> >>

= I c X Z

SPD:

<< >t

<< 'V(t)) -NUM ABS

>> >>

< L =

CURV: * K=——
<< >t

<< 'U't DER ABS 'SPD(t)' -NUM /
>> >>

TORS: —

<<t v
<< 'B't DER ABS NEG 'SPD(t)' -NUM /

>> >>

 idt

372 CHAPTER 13

EXERCISE 13.2.

Enter the programs 13.1 into your HP-48G, and use them to compute the velocity

vector, speed, unit normal vector, curvature, etc. for various values of f. The helix is a

very simple curve for which the curvature and torsion are constants. Verify that the

vectors U, N, and B are indeed perpendicular. What accuracy is obtained by the

programs?

EXERCISE 13.3.

Study the space curve ¥(t)=[t,1+¢*,¢' =3t+1], 0<t<1. What are its
I

curvature and torsion when ¢ = %? Whatis the length of the curve? (Hint: L = Jo v(t)dt.

Since SPD is a user-defined function the HP-48G is able to evaluate the expression

' (0,1,SPD(T),T)".)

13.2 LINE INTEGRALS

Line integrals of the form

j Pdx+ Qdy+ Rdz,
Y

where ¥ is a curve in 3-space and P, Q and R are functions of X, y and Z, occur often

in applications of vector calculus. In particular,if

F(x,y,2) =[P(x,y,2), Q(x,¥,2), R(x,y,2)]

is a vectorfield that represents a force exerted on a particle at the point (x,y,z), then the

line integral

LP&+Q@+R&=LFfly

expresses the work done by the force field on the particle as it moves along .

APPLICATIONS TO VECTOR CALCULUS 373

As a specific example, let us compute the line integral J. F-dy where 7 is the
Y

curve Y(t)=[t,1+ 2.=3+ 1], 0 <7 <1 of Exercise 13.3, and the force field is given

by F(x,y,2)=[-x,y, xy+ z*]. Then the work done by the force field as the particle

moves along the curve is

b

W=[Fdy=[[P(x.y.0x (0+Q(x,.2y (0 + R(x.%,2)2(D]dr

It is tempting to try performing this calculation symbolically on the HP-48G. We do this

by defining the functions x(t), y(¢), z(t) and P(x,y,z), O(x,y,2), R(x,y,z) as user-

defined functions:

'X(T)=T' [DEF]
'Y(T)=1+TA2' [DEF]
'Z(T)=TA3-3*T+1 [DEF]
'P(X,Y,Z)=-X' [DEF]
'‘Q(X,Y,Z)=Y' [DEF]
'‘R(X,Y,Z)=X*T+ZA2' [DEF]

We also store the limits of integration in variables:

0 'A' STO
'2'n' 'B' STO

The variables ABXY ZP Q Rnow appear on the user menu, and they are user-defined

functions. (They can therefore be evaluated from algebraic notation and can be

differentiated by the HP-48G.) We now enter the integrand of the line integral as an

expression, and storeit in a variable L3IN (so we never have to typeit in again):

'PX(T),Y(T),Z(T)*aT(X(T))+Q(X(T),Y(T),Z(T))*aT(Y(T))

+R(X(T),Y(T),Z(T))*dT(Z(T))’
Finally, we enter the following programs:

374 CHAPTER 13

PROGRAM 13.2 Computation of a Line Integral in 3-space.

The program LLL evaluates the integrand L3IN of the line integral repeatedly,

carrying out the indicated differentiations and substitutions. It then computes the integral

of the resulting function of .

Each program is labeled with the variable name in which it should be stored. They

assume that you have defined the variables ABXY ZP QR as described above.

LLL: - e Simplify and
<< L3INEVCOAB3ROLL 'T'] -NUM >> integrate.

EVCO: * EVCO evaluates the
<< << EVAL >> MULTI >> expression repeat-

edly.

EXco: EXPAN MULT] | Segwfie};l'ff/giual,
<< << >>MULT Volume II (p 569)
<< COLCT >> MULTI >> for EXCO and

MULTI. They
accomplish the

MULTI: complete alge-
<< p braic expansion
<< DO and collection of
DUP p EVAL DUP ROT terms.
UNTIL SAME
END

>>
>>

EXERCISE 13.4.

Enter the programs 13.2 and evaluate the line integral of F(x, y, z) = [-x, y, xy + x2]

over the curve given in Example 13.3 over various intervals. Also evaluate the following

line integrals.

APPLICATIONS TO VECTOR CALcuLUS 375

F(x,y,z)=[x,—yz, e’]and
jF-d}/ where

’ y(t)=[t’, -1, 11,051 <1

J xyz2 dz where y(t) = [, 1, 2¢%].
Y

It is instructive to evaluate the integrals, above, “manually” rather than using the

program LLL. Press L3IN to put the integrand on the stack. Then press EVCO to

completely evaluate the expression (doing all differentiations and substitutions). Finally

press EXCO to expand algebraically and collect terms.

Note: Try integrating the integrand L3IN withoutfirst completely evaluating it. The

integration routine is confused by the extra variables and gives erroneous answers. The

use of the evaluation routine EVCO is essential in the program LLL.

EXERCISE 13.5.

Construct a version of Program 13.2 for computing a line integral in two

dimensions. The modifications are minor. Store the modified version in the variable LL.

We will use it in the next section. (Note that the 3-dimensional version LLL can be used to

compute line integrals in the plane. Simply set Z(t)=0 and R(x,y,z)=0. It is

nevertheless convenient to have a version dedicated to two-dimensional problems.)

13.3 DOUBLE INTEGRALS

Green’s Theorem in the plane states that, under suitable conditions of continuity

and smoothness, an important relationship holds between a line integral

§ F-dy=¢ Pdx+Qdy
Y Y

around a simple closed curve 7 in the plane, and a double integral over the region D of

the plane enclosed by the curve:

376 CHAPTER 13

§Fody=],[Qfi_”jdxdy.

This relationship is one of several forms that the fundamental theorem of calculus takes

in higher dimensions. It, along with its higher dimensional cousins (Stokes theorem), has

important applications and interpretations for fluid flow and conservative force fields.

Note indeed that it gives immediately a sufficient condition that a force field be

90conservative, namely that — —— = 0 hold throughout the region D.
ox dy

We will verify Green’s theorem by calculating the integrals in a number of

examples. We already know how to evaluate the line integral, of course. So we now

consider the calculation of the double integral. This is often done by expressing the

multiple integral as an iterated integral

b d(x)

[,fydxdy=] [f(xy)dydx
a c(x)

b d(x)

= jdx jf(x,y)dy
a c(x)

or a sum of several such integrals, depending on the shape of the region D. The latter can

then be evaluated by entering the expression

'] (A,B,] (C(X),D(X),F(X,Y),Y),X)’

into the HP-48G and executing — NUM. The key, of course,is to define the variables A, B

and the user-defined functions C, D, and F before evaluating the integral expression. The

following program is arranged to make this convenient.

APPLICATIONS To VECTOR CALCULUS 377

PROGRAM 13.3. Evaluation of a Double Integral.

The program takes six arguments from the stack, as shown below, and returns the

value of the iterated integral. It creates the user-defined functions needed.

Inputs Outputs

6: 'F(X,Y)'
5: 'C(X)'
4. 'D(X)’
3: A b d(x)

2: B| 1: jdx Jf(x,y)dy
1: <number of decimal places> a o(x)

DBL: << 6 DUPN FIX * Copy arguments,
'B' SWAP = DEFINE set output mode
'A' SWAP = DEFINE ¢ Define the functions

from expressions
'D(X)' SWAP = DEFINE on the stack
'C(X)' SWAP = DEFINE
'F(X,Y)' SWAP = DEFINE * Evaluate the integral

‘I (AB,] (C(X),D(X),F(X.Y),Y),X)' 5NUM e Clean up the mess
{F C D AB} PURGE

>>

EXAMPLE 13.2.

Find the volume under the paraboloid z =1+ 2x> + 3y’ and lying over the region

of the xy-plane bounded by the x-axis and the curve y = sin(x). We enter the following

inputs into the HP-48G:

'142*XA2+43*YA2'
0
'SIN(X)'
0
.1n
6

The program returns the value 15.072542. The computation time is a couple of minutes.

378 CHAPTER 13

EXAMPLE 13.3.

The area in the xy-plane lying below the parabola y =4 — x*> and above the

hyperbolic cosine curve y =coshx can be found by evaluating a double integral with

f(x,y) =1. The points of intersection of the two curves can first be found with the HP-

48G’s SOLVE application. The value 1.37617667019 is returned, and we store this in a

variable RT. Wefinally enter the inputs

1

'COSH(X)'

‘4-x12'
I_RTI

RT'

5

and after a few moments the result 5.56470 is returned. An enormous amount of

computation is done easily!

EXAMPLE 13.4.

Use Green’s Theorem to evaluate the line integral J. F-dy around the curve ¥
Y

consisting of pieces of the x-axis and of the parabola y =4 — x® (the student should

draw a sketch of these curves), the curve being traversed in a counter-clockwise direction.

Let the vector function be

F(x,y)= [2y3e", 3x%- 4y2].

We must evaluate the double integral

”D(aa—g - %)dxdy =”D(6x —6y’e")dx dy.

APPLICATIONS TO VECTOR CALCULUS 379

With the inputs to the program DBL:

'6*X-6*YA2*EXP(X)'
0
'"4-XA2'
-2
2
5

we obtain -291.04903. Using Program 13.2 we also evaluate the line integral around the

boundary, breaking the computation into 2 parts corresponding to the piece of the x-axis

and the parabolic part. The line integral along the x-axis is zero (verify this). For the

parabolic piece we use the parameterization y(t)=[~t,4—1*], —2<t<2. Program

13.2 gives exactly the same answer as did the double integral, above, in confirmation of

Green’s Theorem.

We conclude this survey of examples of the use of the HP-48G by returning to the

Gaussian integration routine, Program 12.4, of Chapter 12. We are motivated by the very

long computing times for double integrals experienced when using the built-in

integration function of the HP-4G8. A second difficulty in computing such integrals arises

in cases where the functions ¢(x) and d(x) have some irregularity such as an infinite

derivative at points of the interval a < x < b. In such cases the computing time of the

program DBL can be prohibitive. In Program 13.4 we evaluate iterated integrals, using

Gaussian quadrature for both the inside and outside integral. In doing this we use the

second version of Gaussian integration that requires programs as inputs rather than

expressions .

380 CHAPTER 13

PROGRAM 13.4. Evaluation of a Double Integral using Gaussian quadrature.

The program takes five arguments from the stack, as shown below, and returns the

value of the iterated integral. It creates the variables used in the Gaussian quadrature

routine by defining them as user-defined function.

Inputs Outputs

5: 'F(X,Y)'
4 'C(X)'
3: 'D(X)' b d(x)

2 Al 1: Idx Jf(x,y)dy
1: B a c(x)

DINT:
<< 5 DUPN * Copy the arguments

'‘B' SWAP = DEFINE
'A' SWAP = DEFINE Define the functions
'D(X)' SWAP = DEFINE from expressions

'C(X)' SWAP = DEFINE on the stack

'F(X,Y)' SWAP = DEFINE

¢ Do the outside
<< G > : .

Integration.
A -NUM B -NUM
PGIN

(F C D A B} PURGE ¢ Clean up the mess

>>

G:<< > X ¢ Inside integration.

<< 116 START x NEXT * Fx, y) is called 16
<< F >> times by PGIN

x C -NUM x D -NUM
PGIN

>> >>

APPLICATIONS TO VECTOR CALCULUS 381

EXAMPLE 13.5.

Let us compare the programs DBL and DINT by computing the double integral

e X

j Jsin(x + y)dydx.
01

We place the inputs 'SIN(X+Y)' 1 'EXP(X)' 0 1 11 on the stack and execute DBL. After 30

minutes (!) of computing we obtain the value 0.49242316000. We then place the first five

of these inputs on the stack and execute DINT. In about 40 seconds we obtain the result

0.492423159996!

EXAMPLE 13.6.

Find problems involving Green’s Theorem in your textbook and use Programs 13.2

to 13.4 to evaluate the line integrals and double integrals. Compare Programs 13.3 and

134.

EXAMPLE13.7.

Find the volume of a sphere of radius 1 by writing the volume as the iterated

integral

1
volume = f f 21 -x*—y? dy dx.

The infinite derivatives of c¢(x) and d(x) at the end points of the interval —1< x <1

are troublesome for most numerical integration methods. How well does the HP-48G do?

How well does Gaussian quadrature do?

PART Il

PROGRAMS FOR THE ADAPTIVE 4th ORDER RUNGE-KUTTA

METHOD

The programs here are based on algorithms presented in Numerical Recipes,

Press, Flannery et al. Three algorithms are included—the 2nd order Runge-Kutta

method, the 4th order Runge-Kutta method, and a 4th order Runge-Kutta method

with adaptive stepsize. A single driver program SOLV is provided in which the

call to take a single step by way of one of these algorithms can be any of STP2, STP4

or STP4A.

The driver program plots the solution as it progresses, and it accumulates a list

of all zero-crossings encountered. The zeros are determined by linear interpolation

between pairs of points for which a sign change occurred. It is relatively easy to

modify the driver so that it also stores lists of zeros of the derivatives.

In practice the 2nd order Runge-Kutta algorithm is useful for drawing simple

graphs quickly when a high degree of accuracy is not required. It works quite well

for solution functions that are relatively smooth and that have bounded rate of

change. The 4th order Runge-Kutta algorithm often performs more satisfactorily,its

larger admissible stepsize more than making up for the greater computing cost for

each step.

PROGRAM Adaptive 4th Order Runge-Kutta Algorithm.

A package of programs is given for solving an initial-value problem involving a

system of first-order differential equations:

382

PART Ill 383

dy
7;=f1(t’y1’})2’“-’yn)

d)’z—2 = (6, Yy ee0r Y,dt fz(Yis Y2 V)

dy
~ = t, ’ 900y Jp

W)=y @)=y .0 ¥,E) =Y,

The user will normally use three programs — SETUP, INIT, and SOLYV,in that

order — by pressing the user menu keys bearing those names. SETUP prompts for the

inputs defining the system of equations and puts them on the stack in appropriate

form. INIT initializes all global variables. And SOLV does the rest. The comments

below are merely explanatory with regard to the other programs in the package.

The programs RK2, RK4 and RK4A, perform one step by the second-order,

fourth-order or adaptive fourth-order Runge-Kutta algorithms, respectively. RK2 and

RK4 each take four arguments from the stack — the current value of t, a vector

[Y1,Y2,...,Yn] giving the current values of the dependent variables, a vector

[Y1',Y2',..,Yn'] giving the current values of the derivatives of the dependent variables,

and the current value of the stepsize H. RK4A takes only the first three of these

arguments. They all return the new values of t and [Y1,Y2,...,Yn] to the stack. In

addition, RK4A modifies the global variable H.

The driver program SOLV orchestrates the setting up of the graph, taking

repetitive steps, and doing the necessary bookkeeping. Choose the desired step

algorithm RK2, RK4 or RK4A by editing the first line of SOLV. It assumes that

global variables H, N, and F are available — N containing the number of equations

in the system, H containing the current stepsize, and F containing a list of programs

for the right-hand sides of the differential equations.

384 APPENDIX

The programs SETUP and INIT take care of all the details of setting up the

variables called for above. SETUP prompts the user for the functions f|, f,,..., f, in

the form of algebraic expressions (SETUP converts them to program form), the initial

conditions in the form of a list {f, ¥, ¥, ... y,} and the graph parameters in the form

is used by RK2 and RK4 as the

stepsize h. It is used by RK4A as an upper bound on the stepsize. (RK4A decides

of alist {xX. X. Yiin Yoax Pac)- The value of h__

what size steps to take, but it is often useful to limit the maximum stepsize according

to the requirements of plotting; for example the stepsize might be limited to 1 pixel.)

The program SETUP merely puts the appropriate inputs on the stack. INIT actually

sets up the global variables used by all the other routines.

The programs REVW (review) and SVST (save stack) make it convenient to

save the list of inputs and to recall them to the stack. SVST is executed

automatically by the other routines. Thus REVW can be used at any time to restore

the list of inputs originally constructed by SETUP. In situations where the user is

solving many related initial-value problems, for example changing only the initial

conditions, it is easier to use REVW to restore the inputs, edit them directly, and

then use INIT and SOLV again.

REVW: * Recall previous
<< STK OBJ— DROP >> inputs

INIT:
<< SVST * Put starting point

OBJ— DROP DUP 'HMAX' STO 'H' STO on the stack and

YRNG XRNG ERASE DRAX LABEL igllitz'e the sranh

OBJ- 1 -'N'STO N -5ARRY € grap

N 2 + ROLLD N 2 + ROLLD

N —>LIST 'F' STO >>

SOLV: << << STP2>> — stepAlg

<< ERASE DRAX LABEL {#0 #0} PVIEW

{ } 'RTLS' STO
DO

DUP2 stepAlg EVAL

4 PICK 4 PICK 1 GET R-C

3 PICK 3 PICK 1 GET R—C LINE

IF 3 PICK 1 GET 2 PICK 1 GET *0 <

THEN INTRP RTLS SWAP + 'RTLS' STO

END

4 ROLL 4 ROLL DROP2

UNTIL

OVER PPAR 2 GET RE >

END

>> >>

STP2:

<< DUP2 DYDX H RK2 >>

STP4:

<< DUP2 DYDX H RK4 >>

STP4A:

<< DUP2 DYDX RK4A >>

RK2:

<<—>xYDYh

<<DYh*2/Y+

xh2/+ SWAP DYDX

h*Y +xh+ SWAP

>>>>

RK4:

<<00-> x YDY hh2x2

<<xh2/+'2 STO

DYh*DUP2/Y +

x2SWAPDYDX h*DUP2/Y +

x 2 SWAP DYDX h*DUP Y +

x h+ SWAP DYDX h * SWAP

2*+SWAP2*++6/Y +

X h + SWAP

>> >>

PART lll 385

* CHANGE ME
to STP4 or STP4A

® Main program loop.
Generate points
until the graph
is finished.

* Take one step of
RK2

* Take one step of
RK4

* Take one step of
RK4A

® RK2 step

* RK4 step

386 APPENDIX

RK4A: ® RK4A step
<< 000 -> x Y DY scale err done i
<< 1 NFOR k * Set up scaling

'1+ABS(Y(k))+H*ABS(DY(k))' EVAL

NEXT N -ARRY 'scale' STO

* Loop until the
DO right stepsize is

found
x Y DY H 2 / RK4 e Take 2 halfsize
DUP2 DYDX H 2 / RK4 DUP RK4 steps
IF 3 PICK x ==
THEN
DROP 880 .5 BEEP HALT * Abort of no progress

is being made

ELSE e Take a full RK4
x Y DY H RK4 step and estimate
SWAP DROP - OBJ— DROP 0 'err' STO the error by com-
N 1 FOR k paring it with
ABS scale k GET / DUP the 2 halfsize
IF err > steps
THEN 'err' STO

ELSE DROP

END -1

STEP

err EPS / 'err’ STO

IFerr1<

THEN e If error is small,
err -2 7.9 * H*'H STO reduce stepsize
1 'done’ STO and proceed

ELSE

err -.25 A 9 * H * HMAX MIN ¢ Otherwise decrease
'H' STO DROP? stepsize and try

END again

END

UNTIL done 1 ==

END

>>

>>

PART Ill 387

SETUP: ® SETUP routine

<< STD "How many equations?"

":N: " INPUT OBJ—- 'N' STO
1 N FOR i * Prompt user for the

input equations,

N and put the

TEEIN== appropriate form
' of definition on

<> TX""f"i+"(T,X)" + the stack (user-
END defined function)

<< > TXY" "f'i+"(T,XY)" +
END
N3 ==
THEN
"«< > TXYZ" "fi+"(TXY2)" +
END
<< = T" "f" i+ "(T" +
1 N FORj
"Y"j++SWAP " Y"j + + SWAP

NEXT
"y P4

END
{ "™ 2 ALG V } INPUT
">>" + + OBJ-> .p ¢
NEXT rompt user for

initial conditions
and package

CLLCD " Initial conditions?" them into a list

3 DISP .5 WAIT

CASE

N 1 == THEN "{T X} 7" END

N2 ==THEN "{T XY} 7" END

N3=THEN "{TX Y Z} 7" END

T

1 N FOR j

"Y'+ +

NEXT "} 7 +

END

{ "{}"2V } INPUT OBJ-

(continued)

388 APPENDIX

(continued)

CLLCD " Graph parameters ?" * Prompt userfor the
3 DISP .5 WAIT graph
"(X1 X2 Y1 Y2 H} ?" parameters and
{ "{}" 2V } INPUT OBJ— for the value of h

>>

DYDX: e Calculate the next

<< 1N FOR k direction vector

DUP2 OBJ- DROP F k GET EVAL 3 ROLLD

NEXT

DROP2 N -ARRY

>>

INTRP: * Interpolate

<< 4 PICK 4 PICK 1 GET between the last
4 PICK 4 PICK 1 GET two Pomctis
DUP 4 PICK - 5 ROLLD generate
4 ROLL * 3 ROLLD * - SWAP /

>>

SVST: * Save the input

<< { } 'STK' STO STK arguments for. .
1 N 2 + START review or editing

SWAP 1 -LIST SWAP +

NEXT

'STK' STO REVW

>>

REVW: ® Recall inputs to

<< STK OBJ- DROP the stack for
editing

PART Ill 389

SOME TEXTBOOK REFERENCES FOR PART Il

1.

10.

11.

12.

Handbook of Mathematical Functions; Edited by Milton Abramowitz and Irene

A. Stegun; Dover Publications, Inc., New York

Numerical Recipes in Pascal, The Art of Scientific Computing; Press, Flannery,

Teukolsky, Vetterling; Cambridge University Press, Cambridge, New York,

Melbourne, Sidney.

Introduction to Applied Mathematics; Gilbert Strang; Wellesley-Cambridge

Press, Wellesley, Massachusetts.

An Introduction to Linear Analysis; Kreider, Kuller, Ostberg, Perkins; Addison-

Wesley, Reading, Massachusetts.

Advanced Calculus for Engineers; Francis B. Hildebrand; Prentice-Hall, New

York.

Advanced Calculus for Applications; Francis B. Hildebrand; Prentice-Hall, New

York.

Advanced Engineering Mathematics; Peter V. O'Neil; Wadsworth, Belmont,

California.

Mathematics of Physics and Modern Engineering; Sokolnikoff and Redheffer;

McGraw-Hill, New York, San Francisco, London.

Mathematical Methods for Physicists; George Arfken; Academic Press, New

York, San Francisco, London.

Advanced Engineering Mathematics; Erwin Kreyszig; John Wiley and Sons, New

York, London.

Foundations of Applied Mathematics; Michael Greenberg; Prentice-Hall,

Englewood Cliffs, New Jersey.

Advanced Engineering Mathematics; C. Ray Wylie; McGraw-Hill, New York,

San Francisco, London.

LINEAR ALGEBRA

Linear Algebra is a fantastic subject! Incredibly rich and powerful in terms of

its mathematical content and applicability, linear algebra is riding the crest of a

nationwide resurgence of interest in mathematics at the undergraduate level. The

Linear Algebra Curriculum Study Group has issued recommendations for the First

Course in Linear Algebra [The College Mathematics Journal, Vol. 24, No. 1, January

1993]. The recommendations advocate a matrix theoretic approach and call for the

appropriate use of technology. Not only microcomputers running state-of-the-art

software such as MATLAB, but also technology in the form of the new hand-held

“supercalculators” that are sweeping across the country.

Part IV is intended as a technology supplement for undergraduate courses in

linear algebra. It presents appropriate pedagogical uses of, and teaching code for,

the Hewlett Packard HP-48G/GX graphics calculators. It is designed specifically to

help students and instructors incorporate these powerful hand-held devices as a

computational tool for the interactive learning of linear algebra, and is independent

of any particular textbook. The chapters survey the main topics of linear algebra

and include activities and discovery projects that will engage students in a serious,

calculator enhanced study of the material.

The Teaching Codeitself is a collection of special-purpose HP-48G/GX programs,

each one addressing a specific aspect of the course. A complete listing of the

teaching code appears in the appendix for part IV. The code is readily available

from the editor for downloading to an HP-48G/GX from a microcomputer.

390

PArRTIV 391

The material is an outgrowth of extensive classroom use of the HP-48 calculators

(and before that, the HP-28 units) in teaching linear algebra every semester for the

last five years. The course is at the sophomore level and is populated by students

from a variety of fields: the physical and biological sciences, mathematical and

computer sciences, many engineering fields, secondary mathematics education, and an

occasional social sciences student. The teaching style concentrates on explanations,

examples, classroom discussions, and calculator activities to generate a real interest

in, and enthusiasm for the learning of linear algebra. Proofs are important and many

are included in the course, but the instructors exercise some care to prevent

“theorems” and “proofs” from intimidating these beginning students.

Although the course in linear algebra is at the sophomore level, many of the

students are further along in their studies. They can be nudged beyond normal

expectations in linear algebra into treating certain topics in more depth: e.g.,

orthogonality, least squares, and real symmetric matrices. The material on iterative

methods and singular value decompositions for honors students is provided for outside

class projects.

The material in Part IV supplements whatever textbook is being used. If the

use of technology is to be of any significance in the learning process, it must not be

used as an occasional “add-on” to the course. Rather, its use must become an integral

part of the teaching and learning process. Therefore, students should be required to

use their HP-48G/GX units on a regular, almost daily basis.

ARRAYS

Rectangular arrangements of real or complex numbers are recognized by the HP-

48G/GX as arrays. Arrays can be one-dimensional (vectors) or two-dimensional

(matrices) and are considered to be single objects. They can be manipulated with

many of the same basic commands used in ordinary arithmetic. We shall begin by

examining some ways of entering, editing, and manipulating arrays.

14.1 ENTERING ARRAYS

A one-dimensional array (vector) is represented on the calculator by enclosing a

sequence of real or complex numbers in square brackets, as in [1 2 3] or

[(1, 2) (3, 4) (5, 6)]. A two-dimensional array (matrix) is distinguished by an initial

square bracket [, followed by each row vector, and ends with a closing square bracket

] . For example, in standard display mode the 2 x 3 real matrix

: [[1 23]
[igg]wfllappearas [(456]]

Similarly, the 3 X2 complex matrix

1+ 142i [(0(1,1),01,2)]
2+i 2+42i will appear as [(2, 1), (2,2)]

3+ 3+2 [(3,1), 32)]]

There are several ways to enter arrays: directly from the keyboard, with the built-

in MatrixWriter, or as a dimensioned sequence of numbers. The built-in random

matrix generator can also be used.

392

ARRAYS 393

Direct Keyboard Entry

The vector [1 2 3] is entered with keystrokes IE 1, 2, 3 ENTER |.

Although we show commas to separate the three numbers, you should instead insert

spaces with the key. To enter a matrix, start with [[by pressing the @

key twice (the left-shifted key), enter the first row and press EI to move the

cursor beyond the innermost bracket, then continue entering the remaining entries in

row order and press.

EXAMPLE: Keystrokes E 1,2,3 El 4,5,6,7,8,9 will

produce the following matrix:

[[12 3]
[4 5 6]
[7 8 9]]

The IE key simply defines the number of columns. Now press DROP to drop

this matrix from the stack. (When no command line is present you need not press the

to DROP.)

To put the complex number (1, 2) on the stack, use the left-shifted E key to

get the double parentheses (), and press 1 I SPC] 2 | ENTER}. When building a

matrix with complex numbers, use the right cursor ke to move beyond eachp g y y

right parenthesis. The numbers can be any mixture of real or complex numbers

(ordered pairs), but if any one entry is complex then the entire array will be

complex. Also, you need not insert spaces between two complex numbers or between a

real and a complex number. Try entering the following matrix:

[[(1.2) (B.4)]

[(65.0) 06)11

394 CHAPTER 14

Using the MatrixWriter

Enter the MatrixWriter application by pressing MATRIX |. This activates

a spreadsheet-type display, with a dark cursor resting in the 1-1 position. Check

to see that the GO= [J| command is active by noting a small white box within

this menu label (if the box is not present, simply press the white key beneath the

label to activate it.) Key in the numbers of the first row of the matrix in

row order separated by spaces and then press ENTER |. When you are ready to go

to the second row press I_il This will define the number of columns and position

the cursor at the 2-1 entry. Now key in the remaining entries of the matrix in row

order (separated by spaces) and press ENTER |. A finall ENTER will put the

matrix onto the stack.

EXAMPLE. The keystrokes 1,23 [v] 456 7.8
9 ENTER | I ENTER l will produce this matrix on the stack:

[[12 3]
[456].
[7 8 9]]

Clearly, for entering simple matrices (say, with small integer entries) the

command line is faster and easier to use than the MatrixWriter application. But the

MatrixWriter has the advantage that for more complicated matrices, an entry can be

calculated (using RPN syntax) on the command line within the MatrixWriter

environment before it is entered into its position. As an example, construct the

numerical approximation to the matrix

[[{17 In3]

[e n/2]].

ARRAYS 395

Although the term MatrixWriter suggests that it can be used only for matrices,

it is actually an environment for entering, reviewing and editing both vectors and

matrices. To enter a vector using the MatrixWriter, say vector [1 2 3 4], clear the

stack and enter the MatrixWriter environment with MATRIX |. Note that the

menu key VECG[J| appears. If you press 1 2 3 4 (separate the digits with

spaces) | ENTER | | ENTER

, the vector[1 2 3 4] will show on the stack. The

presence of the white box in VE C[J| indicates that vector entry is active. If you

toggle off this key to see without the box, the keystrokes 1, 2, 3, 4 [ENTER |
ENTER will return the matrix [[1 2 3 4]]. Although in mathematics we

identify this matrix with its single row vector, they are different objects as far as

the calculator is concerned.

Whenever you enter the MatrixWriter with MATRIX |, the vector entry

mode VECG[| is active by default. But if there is an array on level 1 and you

enter the MatrixWriter b ressin to review that array, the status ofyP g y

reflects the nature of the array: VECG[| for a vector and for a

matrix. Try it for yourself with[1 2 3 4]and with [[1 2 3 4]]. Finally, note

that you can quickly convert the vector [1 2 3 4] to the matrix

[[1 2 3 4]]and vice-versa by starting with either one on level 1, pressing E to

enter the MatrixWriter, then changing the status of and pressing

[Enten]
A final note about entering arrays using the MatrixWriter application. Array

entries can be real or complex numbers, but when you use the MatrixWriter to

initially enter a matrix into the calculator, the array object type (real or complex) is

determined by the 1-1 entry. Thus, if the 1-1 entry is real, you cannot enter a

subsequent entry as a complex number. But, if the 1-1 entry is a complex number (an

396 CHAPTER 14

ordered pair), any subsequent entry of a real number x will be accepted and written as

the complex number (x, 0).

As a Dimensioned Sequence

Enter the numbers into the command line from left-to-right in row order

separated by spaces, then the dimensions as a list, {no. rows, no. columns}, and press

ENTER to place all this on the stack. Then press the menu key (on

the PRG TYPE menu).

EXAMPLE: Keystrokes 1,2, 3, 4, 5,6 2, 3

return the matrix

[[1 2 3]

[4 56]]

Keystrokes 1,2, 3,4, 5, 6[{ }] 6 [ENTER| | ARR

return the vector [1 2 3 4 5 6].

The Random Matrix Generator

The random matrix generator, activated by the command RANM on the MTH

MATR MAKE submenu will generate an array with entries from the set

Z1p=1{0, %1, £2, .., £9 }. The size of the array is specified by an appropriate input

list, a singleton list { n } for a vector and a list { m n } for an m x n matrix.

The RANM command calls upon the calculator’s random number generator to

construct a random matrix with a random assignment of * signs to the entries. The

calculator command RAND (found on the MTH PROB menu) generates uniformly

distributed pseudo-random numbers x, where each x lies in the range 0 < x < 1. Each

execution of RAND returns a value calculated from a seed based upon the previous

RAND value, and the seed can be changed by using the command RDZ (adjacent to

ARRAYS 397

RAND in the MTH PROB menu). RDZ takes a real number z as a seed for the

RAND command. If z is O, the seed is based upon the system clock. After a

complete memory reset, a built-in seed is used.

For example, begin by seeding the random number generator with 2: press 2

. Then {4 5} will return the matrix

[[4-2 5-8 5]

[-4 7 8 0 -6]

[-4 0 8-5-2]

[5 6 0 2 3]]

Nowuse{6}| RANM toobtain[0 4 0 -9 0 -8].

Special Arrays

To build the identity matrix of order n, use the command IDN preceded by the

number n that specifies the order. Thus, 3 IDN returns

[[1 0 0]

[0 1 0]

[0 0O 1]]

to level 1 of the stack. When a square matrix is on level 1, the command IDN by

itself will replace that matrix with the identity matrix of the same order. The IDN

command appears on the MTH MATR MAKE submenu, but as with most simple

commands, it is easy to simply type IDN and press to execute the

command.

An array whose entries are all equal to the same constant ¢ (a real or complex

number) can be built using the CON command. For example,

398 CHAPTER 14

2: {4}
L 2 CON returns[2 2 2 2]

while: 2. (23} [[S5 5 5]
1: 5 returns [55 5]

Similar to the IDN command, you can replace a matrix on level 1 with a constant

matrix by specifying only the constant and executing CON. But note that if the

matrix has only real number entries then the constant must also be a real number.

It is occasionally helpful to generate matrices of a special type: diagonal,

tridiagonal, triangular or symmetric. Such matrices can be readily generated with

the following calculator programes.

DIAG: builds a random diagonal matrix over Z,,

U.TRI: builds a random upper-triangular matrix over Z,,

L.TRI: builds a random unit lower-triangular matrix over Z,,

TRIDIA: builds a random tridiagonal matrix over Z,,

SYMM: builds a random symmetric matrix over Z,,

HILB: builds a Hilbert matrix

Each of these programs uses the calculator command RAND to construct a random

matrix of the desired type.

For classwork, it is often convenient to begin a particular discussion, example or

exercise by having everyone in the class use the same non-zero seed for their random

number generator. In this event, subsequent synchronous use of the RAND command by

the class members will result in a common sequence of random numbers. Such will

ARRAYS 399

occur, for example, with a common non-zero seed and then synchronous use of any of

the above six programs. Thus, with only a few simple keystrokes, each member of

the class can generate the same random matrix. I have found this to be an effective

classroom procedure. Here are the six programs with illustrations of their use. They

should all be stored in a BILDR subdirectory of a user-defined MTRX directory (see

the section Getting Started with the HP-48G/GX).

DIAG (Diagonal Matrix Generator)

Input: level 1: an integer n

Effect: returns a random n by n diagonal matrix over Z,,

with a random assignment of * to the entries.

« DUP 1 —>LIST RANM SWAP DUP 2 —LIST DIAG— »

EXAMPLE. Press S5 to use the seed that begins this example, then press 4

to generate

[[5 0 0 0]
010 0]
06 0]
0 0-71]

400 CHAPTER 14

U.TRI

Input:

Effect:

FLOOR RAND 10 *

END NEXT NEXT {n

(Upper Triangular Matrix Generator

level 1: an integer n

returns a random n by n upper triangular matrix

over Z,, with a random assignment of + to the

entries.

« »>n«1nFORI1nFORJIFIJ>THEN 0 ELSE RAND 10 *

FLOOR - X « X 6§ < -1 1 IFTE » EVAL *

n}—)ARRY » »

EXAMPLE. Press 4 to use the seed that begins this example, then press 4

to generate

[[-8 8 9 -4]
[0 -9 0 1]
[0 0 4 -4]
[0 0 0 2]

L.TRI

Input:

Effect:

FLOOR RAND 10 #*

END NEXT NEXT {n

(Unit Lower Triangular Matrix Generator)

level 1: an integer n

returns a random n by n unit lower triangular

matrix over Z,, with a random assignment of + to

the entries.

« >n«1nFORI11nFOR JIFIJ < THEN 0 ELSE RAND 10 *

FLOOR - X « X 5§ < -1 1 IFTE » EVAL *

n} —>ARRY DUP IDN + » »

EXAMPLE. Press 3 to use the seed that begins this example, then press 4

to generate

ARRAYS 401

0]
0]
0]

7 11]]_
.
L
(
:
n
—
h
-
h

M
D
D
=
O

-
O
o

TRIDIA (Tridiagonal Matrix Generator)

Input: an integer n

Effect: returns a random n by n tridiagonal matrix over

Z,, with a random assignment of * to the entries

« >n« 1 nFORI1TnFORJIFIJ-ABS 1 > THEN O ELSE

RAND 10 * FLOOR RAND 10 * FLOOR - X « X 5 < -1 1 IFTE »

EVAL * END NEXT NEXT {n n}—>ARRY » »
EXAMPLE. Press 3 to use the seed that begins this example, then press 5

to generate

[[1 5 0 0 O]
[2 -1 2 0 0]
[0 -7 4 1 0]
[0 0 -7 9 1]
[0 0 0 3 5]]

402 CHAPTER 14

SYMM (Symmetric Matrix Generator)

Input: level 1: an integer n

Effect: returns a random n by n symmetric matrix over Z,,

with a random assignment of * to the entries.

Required program: DIAG

« DUP >n «1nFOR I 1nFORJIF I J2>THEN O ELSE RAND

10 * FLOOR RAND 10 * FLOOR —» X « X 5 < -1 1 IFTE » EVAL

* END NEXT NEXT {n n}—>ARRY DUP TRN » 3 ROLL DIAG + +

»

EXAMPLE. Press 1 to use the seed which begins this example, then press 5

to generate

®
©
N
N

) o o

9 -8 -5]
8 -1 0]
1 5 3]

1 5 -2 -3]
3 -3 5]]

HILB (Hilbert matrix Generator)

Input: level 1: an integer n

Effect: returns a 12-digit approximation to the n by n

Hilbert matrix.

« >N« 1 nFORI1TNFOR JI J + 1 = INV NEXT NEXT {n n}

—ARRY » »

ARRAYS 403

EXAMPLE. Press 4 HILB to see the approximation to the 4 x4 Hilbert matrix

[[1 1/2 1/3 1/4]

[1/2 1/3 1/4 1/5]

[1/3 1/4 1/5 1/6]

[1/4 1/5 1/6 1/7]]

Activity Set 14.1

1. Set the number display mode in your 48G/GX to STD and enter each of the

following arrays using direct keyboard entry. After each array is put on level 1

of the stack, you can see any hidden entries by pressing EI to view the array

in the Matrix Writer environment, where the cursor keys will enable you to

move to any position. The entry in the cursor position is identified on the

command line.

(a) [-11 12 -13 14 -15 16 -17 18]

[[4 2 -1 7]
[[3 -1 2]

b) [4 0 1] @ [° 03 8][6 9 -2 5]
[2 3 5]]

[0 -4 1 -3]]

(-3 2]
-9 8 -7[l] o

[6 -5 4]
(1 2]o (8 2 3 o]

@ o4 © I
(5 6]

[-3 4 -5]

[6 -7 8]] [7 8]

L9 0]

404 CHAPTER 14

[[<9 6 -3 0 -3 -6]

) [8 5 2 -1 4 7] (g)

[-7 4 1 2 5 8]]

[[(61 '5) ('2!'1) (4’ '8)]

[(-3,0) (7,9) (0,-11)]]

2. Practice entering each of the arrays in ACTIVITY 1 as a dimensioned sequence.

3. Enter each of the following arrays using the Matrix Writer. View any hidden

entries. If part of an entry on the command line is still hidden, press the menu

key EDIT and then use the right cursor key to scroll through the entry.

[[-3 -8]

2 4 L1](2 0 1] (4 6]

@ 3% 2 7] b) [2 7]
[1 3 10 6]

45 1 -1]] L5 -4]
[[-8 5]

[6 0]]

[[('1» 0) (1"2) ('3! 4)]

© 166 (7.8 (0.9] @ 482 11

[[-4]
[3] [(re’ 1]© ® | w3 siNaj

[11]

() [[In(-2) V-2 cos(-2)]]

ARRAYS 405

14.2 EDITING ARRAYS

When using the HP-48G/GX, it is often necessary to edit arrays by changing

some of their entries, redimensioning, separating into rows or columns, inserting new

rows or columns, or applying a mathematical function to the entries of an array.

To Disassemble an Array

The calculator command OBJ—, which appears as a menu key on the PRG TYPE

submenu, will disassemble an array into its component entries and indicate the

dimension(s) of the array. Thus OBJ— is the inverse command to -ARRY.

EXAMPLE. With[0 2 4 6] on level 1 the command OBJ— will return the

following stack arrangement:

5:0

4: 2

3: 4

2: 6

1: {1}

With the following matrix on level 1,

[[2 4]

[6 8]]

406 CHAPTER 14

the command OBJ— will return the following stack arrangement:

5:2

4. 4

3:6

2: 8

1: {22}

To Redimension an Array

The command used to redimension an array is RDM. A menu key for it appears

on the MTH MATR MAKE submenu. Entries are taken from the original array in row

order and are reassembled in that same order into a new array whose dimensions are

specified by an input list. Any excess entries from the original array are discarded,

and if there are too few entries in the original array then the new array is finished

with zeros.

EXAMPLE. With the stack arrangement

2:[0 2 4 6 8]

1: {3}

the command RDM returns [0 2 4]. With

22:[02468]

1: {3 2}

the command RDM returns the matrix

[[0 2]

[4 6]

[80]]

ARRAYS 407

With the stack arrangement:

2: [[1 2 3]

[4 5 6]

[7 8 9]]

1: {2 4}

the command RDM returns the matrix

[[12 3 4]

[5678]]

Changing Entries

There are two ways to change entries in an array.

(i) You can copy the array from level 1 to the command line with EDIT

(the key), where the white cursor keys then let you move to any

desired entry and change it. You can use the key to delete

characters, then simply key in the new characters. Return the edited

matrix to level 1 with ENTER |.

(ii) You can copy the array into the MatrixWriter with EI, position the

cursor over the entry to be changed, key the new entry into the command

line and press ENTER to insert it at the cursor location. Return to the

stack with another ENTER |. This method is especially useful because

you can calculate the new entry on the command line in RPN before

entering it.

EXAMPLE: Begin with the following matrix on level 1

[[12 3]

[456]]

408 CHAPTER 14

Press EDIT |, move the cursor over the 2 and press to delete, then do 7

ENTER to see

[[1 -7 3]

[4 56]

Now press E to view the last matrix in the Matrix Writer, position the cursor

 over the six and do 5 |Vx| 2 El l ENTER l | ENTER | to replace the 6 by a 12

digit approximation to V5/2.

Separating into Rows or Columns

To separate a matrix into its row or column vectors, the appropriate commands

are ->ROW,located on the MTH MATR ROW menu, and -COL, located on the MTH

MATR COL menu. For example, with

[[0 2 4-6]
[5 -1 8 3]
[(7 9 -4 2]
[6 -3 5 8]]

on stack level 1, press to separate the matrix into its four row vectors.

Notice that stack level 1 contains the number of rows. Press @ five times to see

the first row vector on level 5, then press to return to the normal stack

environment.

The inverse commands to -ROW and -COL are ROW— and COL—, located

next to the -ROW and -COL commands on the appropriate menus. With four

vectors on levels 1 through 4, simply press 4 to build the matrix having

the four vectors as columns:

[0 2 4 -6]
[5-1 8 3]
[-7 9 -4 2]

[6 -3 5 8]-
R

4 returns

ARRAYS 409

[[0 5 -7 6]
[2 -1 9 -3]
[4 8 -4 5]
[-6 3 2 8]]

Deleting and Inserting Rows or Columns

The commands ROW- and ROW+, located on the MTH MATR ROW menu, can be

used to delete and to insert rows. Analogous commands for column deletion and

insertion, COL- and COL+, appear on the MTH MATR COL menu. For example,

with

on stack level 1, press 2 to delete row two. Notice that the diminished

matrix

[[9

[-3

[4

[-8

appears on level 2 and the deleted row [3 1

-7
5 -6 -9]

-1 -3 5]
0 2 71]

3 6] appears on level 1. Then, to

insert this deleted row as the third column of the diminished matrix, press 3

[coLe]
[[9 -7
[-3 5
[4 -1
[-8 0

3 5 0]
1-6 -9]
3 -3 5]
6 2 7]]

410 CHAPTER 14

More generally, the ROW+ and COL+ commands can be used to insert all of the

rows, or columns, of one matrix into another matrix at a specified position. With

[[1 2 3] [[11 12]

A= [4 5 6] onlevel2and B= [13 14] on level 1,

[7 8 9]] [15 16]]

press 2 to insert the columns of B into matrix A, starting at the column 2

position:

[[1 11 12 2 3]
[4 13 14 5 6].
[7 15 16 8 9]]

ROW+ works similarly.

Using the Diagonal. The HP-48G/GX units include two commands that are useful

in certain special contexts.

e The - DIAG command (on the MTH MATR menu) will extract the main

diagonal (as a vector) from any matrix on level 1. For example,

123L L]
—DIAG returns the vector [1 5].

[4 56]]

e The -»DIAG command (on the MTH MATR menu) will insert a given vector as

the main diagonal of a matrix of specified size, all other entries being zero.

For example:

2:[2 2 2] DIAG— returns [[2 0 0]

1: 3 [0 2 0],
[0 0 2]]

ARRAYS 411

2:[2 2 2] DIAG— returns [[2 0 0 O]

1 4 [0 2 0 O] and

[0 0 2 0]

[0 0 0 0]]

2:[2 2 2] DIAG— returns [[2 0]

1: {82} [0 2] .

[0 O]]

Activity Set 14.2

1. Start with the following matrix on level 1:

[[3 2 -1 5]

[0 6 7 3]

A= [0 1 2 -4]

[8 7 9 5]

[2 -6 1 3]]

(a) Redimension A intoa 4 x5 matrix B that preserves row order.

(b) Disassemble B into its entries, drop the last five entries, and reassemble

the remaining entries into a 5 X 3 matrix C.

(c) Change the 5 in C to -3, the 8 to 0, and the 9 to 11/8 to get a new matrix D.

(d) Delete rows 2 and 4 from matrix D to obtain a final matrix E.

2. (a) Build a 5x4 matrix A whose (i, j)-entry is .ij.

(b) Extract the submatrix B consisting of rows 2, 3, and 5.

412 CHAPTER 14

(c) Redimension B intoa 4 x3 matrix C that preserves row order.

(d) Extract row 4 of C, change each 5 in this vector to a 6, and insert the result

as a new row 1.

3. Enter the following matrix

111
A=1222].

333

Enlarge A by inserting an additional row on the bottom and an additional

column on the right. Do this as follows:

(a) Insert a row of 4's, then a column of 5's.

(b) Now start over with A, and first insert a column of 5's, than a row of 4's.

(c) Are the results in (a) and (b) the same?

[[1 -3 4] [[7 0 -1]

4. EnterandstoreA= [2 5 0] andB= [5 3 2].

[6 -3 4]] [9 -6 0]

(a) Use the ROW+ and COL+ commands to build the block matrices

A
[A B] and B |

A O A B
(b) Build the block matrices [0 B:I and [| O} (hint: the command 3 IDN,

on the MTH MATR MAKE menu, will build the identity matrix of order 3).

5. Seed your calculator’s random number generator with 5 and use the RANM

command to build a 3 x4 matrix A. Now use RANM to generate a 3 x 2

ARRAYS 413

matrix B. Insert B into A immediately after column 2 of A to obtain a new 3 x 6

matrix C.

6. Seed your calculator’s random number generator with 6 and use program SYMM

to generate a 3 x 3 symmetric matrix A. Then use program TRIDIA to generate a

3 x 3 tridiagonal matrix B. Insert B into A immediately after row 1 of A to

obtain matrix C. Delete rows 1 and 3 of C to form matrix D. Redimension D into

a 3 x4 matrix E that preserves row order.

14.3 ARRAY ARITHMETIC

Addition and Subtraction

Addition and subtraction of arrays proceeds just as for real numbers. To calculate

the sum A + B of two arrays having the same dimension, arrange the stack like this

(so, normally, A is entered first):

2: A

1: B

Now press . Press B instead of to calculate A — B. Note that the

commands and E add or subtract the object on level 1 to or from the object on

level 2. In case A and B are stored as variables in user memory, press

to add.

Scalar Multiplication

To multiply an array by a scalar c, put the array and the scalar on levels 1 and

2 of the stack (in either order) and press . Multiplying by -1 can be done in a

single keystroke with the key.

414 CHAPTER 14

Dot Products and Length

The dot product of two real or complex vectors [x; x, ... x,]Jand [y; v, ...y,]
n

is the number), x;y;. Put the two vectors on stack levels 1 and 2 and execute the
i=1

command DOT. A menu key is located on the MTH VECTR menu.

2: [4 31 2] DOT returns 13
1: [(1234]

21612 GY] 557 retums (-11,7)
1 [(L1) (0,2]

nn

To obtain the Hermitian product) x;j; or Y X;y;of two complex vectors
i=1 l=1

[x1 x2 ...x,]and [y; ¥, ...y,], (Where the bar denotes complex conjugation) you

must first conjugate the appropriate vector with CONJ (on the MTH CMPL menu)

before executing DOT.

2 [(-1,2) 3,4)]

1L [(1,1) 2]
CONJ DOT returns (9, -3).

Here, we conjugated the vector on level 1.

For a real or complex vector [x; x, ...x,] the command ABS (see the MTH

VECTR menu) will calculate the Euclidean length (norm)

x| =vlxgl2+lxl2 +... +]x]2,

which is the usual notion of length in R” or C". In the complex case, | x| 2 is the

square of the modulus of the complex number x; .

1: [2 45 2] ABS returns 7.

ARRAYS 415

Matrix Multiplication

To calculate a matrix product A B, proceed as in forming

A + B but press instead of . Note that in calculating AB, matrix A must be

on level 2 and matrix B on level 1. The number of columns of the matrix on level 2

must equal the number of rows of the matrix on level 1.

EXAMPLE: Begin this example by seeding your random number generator with 1: 1

RDZ. Then put a matrix A onlevel 1 with { 2 3 } RANM:

[[7-9 -8]
(-5 8 -1]]

Put a matrix B on level 1 with { 3 4} RANM, moving A to level 2:

[[O 5 3 -3]

[-7 7 1 -2]

[-5 -2 9 -7]]

Press to see

[[103 -12 -60 53]
AB = :

[-51 33 -16 61]]

Matrix by Vector Multiplication

As a matter of convenience, the HP-48G series calculators will let you

premultiply any n-vector x =[x; x, .. x,] by any m xn matrix A to obtain Ax.

Thus, in this context, vector x is treated as if it were an n x 1 matrix. But you

should note that this treatment of x is peculiar to this context: in all other

applications, x is a vector, not a matrix. You can not, e.g., perform a multiplication like

XA, nor can you transpose x or take the determinant of a 1-vector [x]. Transposing

416 CHAPTER 14

and finding determinants are operations to be performed on matrices and not on

vectors.

Matrix Powers

Unlike the case for real or complex numbers, you cannot use the key to

calculate powers of a square matrix A. You can, however, obtain A? by using the

key or by executing the command SQ. For more general powers of A, say A¥ where

k=1,2,3,...,youcan use the following program.

ATk (kth power of a matrix)

Inputs: level 2: a square matrix

level 1: an integer k

Effect: returns the k' power of the matrix

«—> Ak « ASIZE 1 GET IDN 1 k FOR | A * NEXT » »
EXAMPLE. Calculate BS for the following matrix

[[O 1 0-1]

[1 0-1 0]

[0-1 0 1]

[-1 0 1 0]]

Begin by entering the matrix B onto level 1. Now press 5 to see

[[0 16 0 -16]
[16 0 -16 O]

BS = :[0 -16 0 16]
[-16 0 16 0]

ARRAYS 417

CAUTION: You must use caution when calculating powers of a matrix. Because your

calculator only shows 12 digit mantissas, powers of even small matrices may lead to

computational inaccuracies. For example, if

[[9 9 9 9]

_[9 9 9 9]

A‘[9999]’

[9 9 9 9]]

then A8 can be found correctly on the calculator to be the constant 4 x 4 matrix

whose entries are 47 * 98 = 705,277,476,864. But A? has entries 4% * 99, a number which

the calculator can only represent as 2.5389989167E13, but which is somewhat short of

the actual 2.5389989167104E13.

More generally, given a square matrix A and an arbitrary polynomial

p(x) = a,x™ + a,_ ;x""1 + .. + a,x + a,, we sometimes want to find

p(A) = A" +a,_A"l + .. +a;A +a,l The following program, P.of.A, does just that.

P.of.A (Polynomial evaluation at A)

Inputs: level 2: avector[a, a,_; .. a; a,] of coefficients

level 1: a square matrix A

Effect: returns p(A) = aA" + a,_A" + ... + a,A + a,l

« > Vv A« ASIZE1 GET - k «v 1 GET 2 v SIZE

OBJ— DROP FOR n A * v n GET k IDN * +

NEXT » » »

418 CHAPTER 14

EXAMPLE. Find p(A) for p(x) = 1.3x5 — 4x* + 2.1x% + 5x + 6.2 and

[[1 2 .3 .4]
A 1[5 6 7 8]

[9 8 7 6]
[5 4 3 2]]

Enter the coefficients as a vector [1.3 -4 0 2.1 5 6.2]. Next enter matrix A.

Set 3 FIX display mode and press to see

[[12.455 6.677 7.099 7.521]
[16.975 23.597 17.819 18.241]
[20.545 20.123 25.901 19.279]
[9.825 9.403 8981 14.759]]

p(A) =

Transpose and Trace

With a matrix on level 1, the command TRN, returns the conjugate transpose i.e.,

the conjugate of the transpose (a menu key is located on the MTH MATR MAKE

menu). Thus, if the matrix on level 1 is real, TRN returns its ordinary transpose. To

obtain the ordinary transpose of a complex matrix, use TRN then CONJ. The

CONJ key, on the MTH CMPL menu, returns the complex conjugate of its input

argument.

The command TRACE will return the trace (the sum of the main diagonal

entries) of a square matrix. A menu key for it appears at the end of the MTH MATR

NORM menu.

EXAMPLE: Put the following matrix on level1:

[[(2!3) (7"4) (3v O)]

To obtain the conjugate transpose, execute TRN:

ARRAYS 419

[[(23) (0,-1)]

[(7.-4) (2, 0)]

[(3,0) (5,1)]

Activity Set 14.3

1.

2.

3.

Seed your calculator’s random number generator with 1, and use RANM to build a

3 x 2 matrix A, then a 4 x 3 matrix B, and calculate BA.

(a)

(b)

(c)

(d)

Create a 5x4 matrix A = (a;) where a;;=1-].

Extract the submatrix B consisting of rows 2, 3 and 5.

Remove col 3 from B to obtain matrix C.

Calculate C? and C3.

Start with matrix

(a)

(b)

(a)

(b)

(c)

[[1 0 -2 3]

A= [2 -3 0 -1].

[6 -2 4 1]]

Build the matrix B whose first two rows are columns 2 and 3 of A,

respectively, and calculate BA.

Now let C be the submatrix of A consisting of columns 1 and 4 of A;

calculate CB.

Generate a random 3 x4 matrix A over Z,o and calculate ATA; carefully

observe your result.

Repeat part (a) using random 4 x5 and 5 X 6 matrices.

Formulate a conjecture based upon your observations.

420 CHAPTER 14

7.

(d) Prove your conjecture.

(a) Seed your calculator's random number generator with 1, then generate two

random 4 X 4 matrices A and B with the RANM command.

(b) Combine A and B into the complex matrix A + /B by executing the command

R — C, found on the MTH CMPL menu; transpose A + iB.

(c) Separate your answer in (b) into its real and imaginary parts with the

command C — R (also on the MTH CMPL menu), SWAP levels 1 and 2 and

then recombine the two matrices into a complex matrix with R — C. Now

extract column 4.

Enter and store the following matrices:

[[6 2 -1]

[[1 2 3 5 4] [3 5 4]

A=[7 9 0 -1 3], B=[-2 8 0]

[-3 8 6 2 1]] [7 1 6]

[1 -3 2]]

(a) Get the submatrix C of B consisting of rows 2 and 4.

(b) Form the block matrix [A CT] = D and get the submatrix E consisting of the

odd-numbered columns.

Enter and store the following matrices:

[[(5,1) (2,-3) (1,0)] [[(-3,1) (6,0)]
= 0’4 6, -1 3’4 ’ B = [(O’ O) (2’-1)][(0,4) (6-1) (3 4] (4-3) (.1)]1]

(a) Find the conjugate transpose A* of A and the transpose BT of B.

10.

ARRAYS 421

(b) Calculate A* + B, A + BT , AA*, BTB and (2 - 3i)A.

Find A2 — 4A* + 3AT -] for the following matrix:

[[(2-1) (0.-2) (3,-2)]
A= |

[
(1,5) (3,2) (5,0)]
0,1) (6,00 (-1,2) 1]

Consider the following matrix

[[7 2 4 6]
A 16 -1 -4 -4]

[4 4 5 -2]
[- 16 -12 -14 -3]]

(a) Find A% - 8A3 + 22A? — 40A + 251

(b) Use your result from (a) to find a polynomial in A that gives AL

(c) Calculate Al from your answer in (b).

(d) Check your result from (c).

For this exercise, set your calculator to 3 FIX mode. Let

[[.3 .3 3 .2]

[4 3 2 0]
x=[1.2.3 4]and A=

[1 2 2 3]

[2 2 .3 5]]

(a) Examine the sequence A, A2, A3, ... to find lim {A"} .
n—oo

(b) Examine the sequence Ax, A%x, A3x, ... to find lim {A” x} i
N —>o0

(c) What is the connection between the two limits in (a) and (b)?

422 CHAPTER 14

11. Repeat parts (b) — (c) of exercise 10 using any vector x = [a b ¢ d] of your choice

where a+b+c+d=1.

12. Seed your calculator’s random number generator with 2 and generate two vectors

in R%. Store the first one as u# and the second one as v. Now find:

(a) uev (b) ue(u+v (c) ve(v-—u)

(d) the length of HET
gy -oll

(e) Verify the triangle inequality: [|u + || <[[ull +]lv |l .

(f) Verify the Cauchy-Schwarz inequality:

wevl<lull Nvll.

14.4 DETERMINANTS AND INVERSES

With a square matrix A on stack level 1, the command DET will return the

determinant of A, and pressing to execute the INV command will return A1 in

the event that detA # 0. A menu key for DET appears on the second page of the MTH

MATR NORM menu.

EXAMPLE. Put three copies of the following matrix A on the stack. Then execute

DET to show detA = 256.

[[-4 4 8 8]
[-16 12 16 16]

A= [-8 4 12 8]
[8 -4 -8 -4]]

Cofactor expansions tell us that a matrix having only integer entries will have an

integer for its determinant. As in this example, the HP-48G and 48GX will always

ARRAYS 423

return an integer for the determinant of a matrix having only integer entries if flag

-54 is clear (the default case). Use DROP |, then to show

[[.75 -25 -5 -5]
a1 L1 =25 -1]

[5 -25 -25 -5]
[-5 25 5 .75]]

Finally, press to check that AAT =1.

However, some care must be exercised with these commands in order to obtain

results that are mathematically correct. To make the point, enter two copies of the

matrix

(1 1 1]

B= [3 6 4]

[3 6 4]]

With the default setting, its determinant is seen to be zero, and when you try to

invert matrix B, you get the message INV error: Infinite Result. But now multiply B

by .101031 to obtain matrix

[[.101031 .101031 .101031]

C= [.303093 .606186 .404124] .
[.303093 .606186 .404124]]

Use ENTER to put two more copies of C on the stack, then execute the DET

command to obtain detC = 6.1E-17. Drop the determinant, then use to get

[[19.7959042274 3.33333333333E14 -3.33333333333E14]
o1 [-9.89795211371 1.66666666667E14 -1.66666666667E14 | .

[0 -5.E14 5.E14 1]

Look suspicious? Confirm your doubt by pressing SWAP |, then to show

424 CHAPTER 14

[[2 2 2]

cic= [-1-1-1]
[0 0 0]]

Matrix C, like B, has two identical rows. Thus, detC = 0, so C has no inverse. One

thing is clear: wusing the calculator to calculate determinants and matrix inverses may

yield incorrect results. As in this example, the calculator may return a non-zero value

(the result of round-of error) for the determinant of a singular matrix and then a

ridiculous candidate for an inverse. The numerical calculation of matrix determinants

and inverses is extremely sensitive to round-off error, scaling, and choice of numerical

algorithm in a floating point environment. Thus, our advice is to proceed with caution

in a calculator environment and, whenever possible, avoid calculating determinants and

inverses. If you think that you need to calculate a determinant or an inverse of a numerical

matrix then you should think again very carefully about your problem. You can almost

certainly reformulate to avoid such calculations.

To clean up round-off error, we recommend that you round your answer to a

desired number n of decimal digits, 1 < n < 11. For example, to round the matrix

[[1 O -.000000000001]

[0 1 .000000000001]

[0 0O .999999999999]]

to 11 decimal places, simply enter 11 RND to obtain

[[1 0 O]
[0 1 0].
[0 0 1]]

ARRAYS 425

Activity Set 14.4

1. Here is another example that illustrates the difficulty in numerically

calculating determinants. Begin by setting flag -54 (use -54 SF) and entering the

following matrix:

(a)

(b)

(c)

(d)

(e)

[[1 1010 1]

[-3 136 4 1]

[0 <11 1 1 1]
A=

[01 36 4 1]

[01 1 1 1 3]

[1 136 4 1]]

Unlike our example in the text discussion, no two rows of A are identical.

Multiply A by 1000 and apply the DET command to the result. Does the

result (a large integer) seem reasonable? Do you see round-off error?

Use cofactor expansions along column 1 of A to find the determinant of A.

What does this tell you about det[1000A]?

Apply the DET command to matrix A. Use the fact that for any nxn

matrix A, det[kA] = k" detA to explain how round-off error led to the result

in (a).

Return flag -54 to its default (clear) state; use -54 CF. Now apply DET to

matrix A.

Go back and read, again, the statements in italics in Section 14.4.

426 CHAPTER 14

14.5 APPLYING FUNCTIONS TO ARRAYS

Ordinary mathematical functions of a single variable can be applied to each

entry of an array. For example, when the function f(x) = V (x+1)? is applied to

[([1-12-2]

[3-34-4]]

we obtain the matrix

[[2031]
[425 3]]

The HP-48G/GX has no command that will apply a mathematical function to

the entries of an array, but it does include a program APLY that will do this. Here

is how to access program APLY. Hold down the E key, type TEACH and press

ENTER. This procedure will load (from ROM) into your current directory a

subdirectory named EXAMPLES. Open EXAMPLES, and then the PRGS

subdirectory to see a menu key APLY |.

To use program APLY (not to be confused with the command APPLY, which does

something else) to apply a mathematical function f to an array, arrange the stack

like this:

2: array

1: "procedure for f"

Now run APLY. You have two choices for the "procedure for f":

(i) an RPN program for f

(ii) a user-defined function for f.

ARRAYS 427

To work the above example on the HP-48G/GX, put matrix A on level 1 of the stack

and then enter the program

«1+8QV »

Now run program APLY to obtain matrix B. Instead of this RPN program you can put

a user-defined function, say F, for f in the same directory as APLY and then simply

put its name 'F' on level 1 before running program APLY. See the Getting Started

section to review user-defined functions.

My recommendation is that you copy APLY into your { HOME } directory, so

that you can access it from any subdirectory whatsoever by simply typing APLY.

The quickest way to copy APLY into { HOME } is as follows. Use APLY to

recall the program to the stack, press D ‘ APLY | ENTER l to put the name

'APLY" on level 1, go to { HOME } and press. Touch to see the copy

in your { HOME } directory. (At this point you may wish to purge the EXAMPLES

directory.)

Activity Set 14.5

1. Apply the function f(x) = cos mx to the matrix

[[1 2 3]

[4 5 6]

[78 9]]

by writing a short RPN program and using program APLY. Note that the

command — NUM (the EVAL key) will convert the symbolic 7 to a

numerical value.

428 CHAPTER 14

2. For a real number x, the command FLOOR will return the greatest integer less

than or equal to x. In mathematics, we usually denote the greatest integer less

than or equal to x byl x |. Apply the function f(x) =| 2 + Vx | to the matrix

[[1 2 3]

[4 5§ 6] .

[7 8 9]]

3. For a real number x, the command CEIL will return the least integer greater

than or equal to x, usually denoted by [x |in mathematics. Apply the function

f(x) = I_ % _I to the matrix

[[1-2 3]

[-4 5-6] .

[7 -8 9]]

SYSTEMS OF LINEAR EQUATIONS

Systems of linear equations arise in practically every field of mathematical

application. Not only must we understand some of the algorithms for their solution,

but also some of the surrounding theory. For it is a combination of both algorithms

and theory that, when cast in matrix-theoretic terms, foreshadows many of the more

sophisticated concepts that lie ahead. For brevity, we shall refer to systems of

linear equations as linear systems and denote their matrix formulation as Ax = b.

The standard methods for dealing with linear systems in introductory linear

algebra courses are the elimination methods, consisting of several variants of

Gaussian elimination with back substitution. Many beginning courses blur the

distinction between these variants in the interest of expediency. But with an eye

toward a subsequent study of linear analysis or numerical methods and the use of

professional elimination codes, it is important to distinguish carefully between the

traditional Gaussian elimination algorithm, the back substitution process, partial

pivoting and Gauss-Jordan reduction. Likewise, it is important to understand

Gaussian elimination for square matrices as an algebraic process that factors a matrix

A into triangular factors, A = LU.

15.1 GAUSSIAN ELIMINATION

In its traditional form, the Gaussian elimination algorithm for solving a square

nonsingular linear system Ax = b adds suitable multiples of one equation to the others

with the goal of obtaining an equivalent upper triangular system Ux = b’. It may be

necessary to interchange equations at various times for the elimination process to

429

430 CHAPTER 15

continue. Back substitution then solves Ux = b’ systematically by solving the last

equation for its single unknown, putting this value into the next-to-last equation and

solving for the next-to-last unknown, and so on until all values for the unknowns have

been determined. All this is usually carried out without reference to the unknowns

by working with the augmented matrices [Alb]and [U5’]. Computationally, the

only source of error is round-off, induced by the computational device itself. It is

especially important to view the elimination as an orderly process that proceeds in a

top-to-bottom, left-to-right fashion.

Once a basic understanding of Gaussian elimination has been established and

several examples have been worked by hand, the calculator can be used to efficiently

perform the row operations that transform [Alblinto [Ul b’].

The HP-48G and 48GX units include built-in commands for row operations on the

MTH MATR ROW menu. With a matrix A on level 1, the RCIJ command is used to

multiply row I of matrix A by scalar ¢ and then add the result to row], and the

RSWP command is used to interchange rows I and]. The RC| command is used to

rescale row I by multiplying it by scalarc.

To solve this linear system

2 +30 + 25 - xq = 4

4x; -6, + x3 + 2 = -1

4 + 8% + 7x3 + 20 = -3

2 +40 + x3 - 4x = 2

using these commands, begin with the augmented matrix [Alb] on level1:

[[2 3 2 -1 4]
[-4 -6 1 2 -1]
[4 8 7 2 -3]
[2 4 1 -4 2]]

SYSTEMS OF LINEAR EQUATIONS 431

To add 2 times row 1 to row 2, press 2, 1, 2| RCIJ |:

3 2 -1 4]
0 5 0 7]
8 7 2-3]
4 1 -4 2]]

Thendo-2,1,3| RCIJ followed by -1, 1,4 RClJ to finish the elimination in

the first column:

[[2 3 2-1 4]
[0 0 50 7]
[0 2 3 4-11]
[0 1-1-3-2]]

Now interchange rows 2 and 3 with 2, 3| RSWP |, then complete the elimination in

the second column with -5, 2, 4, RCIJ |:

[[2 3 2 -1 4]
[0 2 3 4 -11]
[0 0 5 0 7]
[0 0 -25 -5 35]]

A final .5, 3, 4 RCIJ produces the desired triangular system [Ul b’]:

[[2 3 2 -1 4]
[0 2 3 4-11]
[0 0 5 0 7]
[0 O 0-5 7]]

Back substitution by hand shows the solution vector tobe [7.1 -48 1.4 -14]. To

assist with the back substitution process, we can use the following program BACK.

432 CHAPTER 15

BACK (Back substitution)

Inputs: level 2: an nx n invertible upper triangular

matrix U

level 1: an n-vector b

Effect: Solves the linear system Ux = b by back

substitution. Solves for x, and halts until you press

,then backsolves for x,_, and halts,

etc. After x,, x,_,, ..., X, are on the stack, a final

returns x = [x, X5, ..., X,].

« > Ab « ASIZE1 GET - n « {n} 0 CON 'A(1, 1) EVAL TYPE

IF THEN DUP R—»C END —» x « n 1 FOR J 'b(J)’ EVAL 1 n FOR k

'A(j, k) EVAL NEXT n —-ARRY x DOT - 'A(j, j)' EVAL / HALT DUP x

{j} ROT PUT X' STO -1 STEP n DROPN x » » » »

To apply BACK to the above system, start with the upper triangular system

[Ulb’], above, on level 1. Press 5 to split off the rightmost column, then

press BACK to see the last component of the solution vector, -1.4. Each press of

CONT will return the next component. When all four components are on the

stack, a final CONT shows the solution vector tobe [71 -4.8 14 -14], as

before.

As this example shows, row interchanges may be needed in order for Gaussian

elimination to proceed to its natural conclusion. In so doing we are simply avoiding

zero pivots. But to solve many of the linear systems that arise in science and

engineering, it is just as important to avoid using pivots that are extremely small,

because division by small numbers in floating point arithmetic may induce

considerable error. Thus, a common pivoting strategy is to choose as the pivot

element the first element on or below the pivot position whose absolute value is

SYSTEMS OF LINEAR EQUATIONS 433

maximum. The need for this so-called partial pivoting strategy is difficult to

illustrate on the calculator because of its use of 12 digit mantissas. Nevertheless, I

require that my students adopt partial pivoting by using the RSWP command to

reinforce their understanding of this technique. It is routinely used by all

professional computer codes.

We rework the above example, this time using partial pivoting throughout.

With the augmented matrix on level 1:

[[2 3 2 -1 4]

[-4 -6 1 2 -1]

[4 8 7 2 -3]

[2 4 1-4 2]]

partial pivoting requires that we interchange rows 1 and 2. Thus 1, 2

gives

[[-4 6 12 -1]

[2 3 2 -1 4]

[4 8 7 2 -3]

[2 41 -4 2]]

Then, the commands .5, 1, 2, 1,1, 3 and 5,1, 4 complete

the elimination in the first column:

[[-4 6 1 2 -1]

[0 0O 25 0 35]

[02 8 4 -4

[01 15 -3 15]]

Now interchange rows 2 and 3 with 2, 3 RSWP and then finish the elimination

in the second column with -5,2,4 RCIJ |:

434 CHAPTER 15

[[4-6 1 2 -1]

[02 8 4 -4]

[0 0 25 0 35]

[0 0-25 -5 35]]

A final row operation with 1, 3, 4 RCIJ does the job:

[[4-6 1 2 -1]

[02 8 4 -4]

[00 25 035] "

[00 0 -5 71]]

Notice how this matrix differs from the one we obtrained without partial pivoting.

To complete the solution process, split-off column 5 with 5, then apply

program BACK as before to obtain the solution vector [7.1 -4.8 1.4 -1.4].

To speed up the elimination phase without losing control over the process, we

can use the following program ELIM. Program ELIM pivots on a specified entry, the

pivot, to produce zeros below that entry. It will handle both real and complex

matrices and can be used, more generally, to convert a matrix to row-echelon form.

Notice that the program will abort and print the error message "PIVOT ENTRY IS 0"

in case the intended pivot is zero. In this event, simply press UNDO to

recapture the matrix before the last application of ELIM.

SYSTEMS OF LINEAR EQUATIONS 435

ELIM (Gaussian elimination)

Inputs: level 3: a matrix

level 2: an integer k

level 1: an integer /

Effect: pivots on the (k,))-entry of the matrix to produce

zeros below the pivot.

« -5 A k| « IF 'Ak, 1)) EVAL 0 == THEN "PIVOT ENTRY IS 0" ELSE

A SIZE 1 GET » m « k1 + m FOR i A 'A(i, l)) EVAL NEG 'A(k,)’

EVAL / k i RCIJ 'A' STO NEXT A 10 RND » END » »
EXAMPLE . To use ELIM and BACK with partial pivoting to solve the linear system

5¢ - 9%, + 16x; + 6x, = 48
Sx + 9%, - 16x; - 8x, = 45,
10x; - 9%, + 24x, + 8x, = 72
Sx; - 9%, + 8x + 8 = 3

begin with the augmented matrix [A | b]

[[5 -9 16 6 48]

[-6 9 -16 -8 -45]

[10-9 24 8 72]

[-6-9 8 8 31]]

on level 1. The sequence of commands 1, 3|RSWP |; 1, 1| ELIM |; 2, 4| RSWP |;

2,2 ELIM [;3, 3| ELIM returns the equivalent upper triangular system [Ulb’]

436 CHAPTER 15

[[10 -9 24 8 72]

[0 -135 20 12 39]

[0 0-26 -2 -1]"

[0 0 0 -2 3]

Press 5, to split off the last column. Then, BACK followed by four

applications of CONT shows the solution as [3.00000000002 -2.00000000003

1.49999999998 -1.5]. Now clean up the obvious round off error with 10 RND to

see the solution[3 -2 15 -15].

Our discussion of ELIM has been in the context of solving a nonsingular linear

system, which has a unique solution. But since ELIM can be applied to convert an

arbitrary non-zero matrix to a row-equivalent row echelon form, it can be applied to

the augmented matrix [A | b] of an arbitrary linear system Ax =b. If [UIb] is a

resulting row echelon form, the nature of the solutions to Ax = b becomes apparent.

Specifically, any variable (or unknown) associated with a pivot is called a pivot

variable while the other variables, if any, are called free variables. If the last non-

zero row of [UIb] looks like [0 0 ... 0 *] where * is a non-zero number, the system

has no solution. In any other case there is at least one solution: a unique solution if

there are no free variables, but infinitely many solutions when free variables are

present. It is standard practice to use back substitution to express each pivot

variable in terms of the free variables, and values for the free variables may be

arbitrarily (i.e., freely) chosen. Here is an example.

EXAMPLE. To solve the linear system

, + x5 + 3y - 24+ x = 5
8 + 2, + X, — 5x, = 13,
o, + x, + 84 - x+ 2% = 7
8 + 2%, - 9% - xy - 2% = 9

SYSTEMS OF LINEAR EQUATIONS 437

begin with the augmented matrix [A | b]

[[4 1 3 2 1 5]

[8 2 -5 0 13]

[4 1 8 -1 2 7]

[8 2 9 -7 -2 9]]

on level 1. If we use partial pivoting, the sequence of commands 1,2 RSWP |; 1, 1

;2, 4;2, 3;and 3, 5 returns the following

row echelon matrix:

[[8 2 1 -5 0 13]
[00-10 2 2 -4]
[00 0O 0 5-25]
[00 0 0 0 01]

Since the last non-zero row is well behaved,the system is consistent. Since x;, x3 and

X5 are pivot variables while x, and x; are free variables, there are infinitely many

solutions. Back substitution (by hand . . . the HP-48 is of no help here) shows all

solutions to be given by

X% = -5
X3 = 14 - .ZX4

X = 1.45 - .25x2 + .65.7(.'4

and x,, x4 are freely chosen.

Later, we shall give a calculator routine for the variant of Gaussian elimination

known as Gauss-Jordan reduction, the effect of which is to do both elimination and

back substitution in one routine.

438 CHAPTER 15

Activity Set 15.1

1. Use partial pivoting and the commands RSWP and RCIJ to convert the

augmented matrix [Alb] of each of the following linear systems to a row-

equivalent [U|b’], where U is upper triangular. Record your row operations.

Then use program BACK to solve the system with back substitution.

(a) 4x1 + X + 3x3 = 6

8x1 - 2xz + 4X3 = -8

8x1 - 6X2 - ZX3 =-36

b) 3+ 20 - 2 + 24 = -5

6x; + 2% - 3 - 24 = -10

3x + % + 25x; = 8

6x, + 25 + 4 = 2

2. Use Gaussian elimination with partial pivoting to solve the following linear

systems. Use program ELIM to do the pivoting. Record all your calculator

commands.

(a) 'le + 3x2 - X3 + ZX'4 = 8

8, + 4x, + 3 + x4 = 6

6x1 - X - ZX3 + 3JC4 = 22

4x, - 6X2 + ZX3 + 3X4 = 12

(b) -le - 4, + SX3 - 7.7(.'4 = -8

X + ZX2 - X3 + 3x4 = 4

n+ 4 + 6x3 + 3x = 1

3x1 + 8X2 - ZX3 + 1OX4 = 6

SYSTEMS OF LINEAR EQUATIONS 439

3. Repeat Activity 2 for the following linear systems.

(a) x\+ 20 + 3x + 4 = 5

n+ 3% + 4 + 5x =

3 + 6x, + 9% + 244 = -5

20+ 46 + 63 + x4 = 4

(b) 2+ 3% + 5x3 - 2% + 3x% - 9% = 6

2 - 3% + 3 + 4 - x5 + X = 2

6x; — 9% + 1lxy — 19%5 + 3x = O

4, — 6x, + 5x3 + 9x4 — 16x5 - 2% = 8

15.2 LU-FACTORIZATIONS

In addition to recognizing Gaussian elimination as an orderly process for

converting a square matrix to upper triangular form, it is important to understand it

as a factorization process. This understanding is not only interesting from an

algebraic viewpoint; it also lies at the heart of many computer codes used to handle

linear systems.

When the matrix A in a linear system Ax = b can be brought to upper triangular

form U by Gaussian elimination without row interchanges, then A = LU where L is

lower triangular with 1's along its main diagonal and the entries below the diagonal

are the negatives of the multipliers used in the elimination process. For example, if

3 times row 1 is added to row 2 to produce a zero in the (2, 1)-entry of U, then the

(2, 1)-entry of L is -3. When row interchanges are needed to avoid zero pivots, then

A = LU is no longer valid; it is replaced by a factorization of the form PA = LU

where P is a permutation matrix that accounts for the various row interchanges, and

the multipliers in the lower triangle of L are rearranged accordingly.

440 CHAPTER 15

Program L.U, given below, is but a slight modification of ELIM. In addition to

performing the basic elimination step L.U stores the negatives of the multipliers

below the diagonal in a matrix L which initially is the identity matrix. Program

— LP creates the initial L and a matrix P, also the identity matrix. If row

interchanges are needed, the proper use of RSWP must be made with both P and U in

order to continue, and program L.SWP will effect the necessary interchanges of the

multipliers in L. At the end, the calculator shows U on the stack, and L and P as

stored variables. As before, complex matrices are allowed. (Note: The e appearing

in the name L.U is necessary to distinguish this teaching code from a similar, built-in

command LU. More about this command later.)

LU (Used to construct LU-factorizations)

Inputs: As stored variables: variables L and P, obtained

from program —LP(below), each containing

an identity matrix.

level 3: a square matrix

level 2: an integer k

level 1: the integer k

Effect: Pivots on the (k, k)-entry to return a row-

equivalent matrix with zeros below the pivot; also

puts the negatives of the multipliers into column k

of L below the main diagonal. Press to view

L. Used iteratively to obtain an LU-factorization.

« -5 A k k « IF 'Ak, k) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET-> m « k1 + m FOR i A 'A(i, k) EVAL NEG

'‘A(k, k) EVAL / DUP NEG 10 RND 'L(i, k)) STO k i RCIJ ‘A" STO

NEXT A 10 RND » END » »

SYSTEMS OF LINEAR EQUATIONS 441

- LP (Make L and P)

Input: level 1: a square matrix A

Effect: Creates variables L and P, each containing an

identity matrix the same size as A. Used as the

initial start-up to construct an LU-factorization.

« DUP IDN DUP 'L' STO 'P* STO »

L.SWP (Interchange multipliers in L)

Input: level 1: a square matrix L

level 2: an integer /> 1

level 3: an integer j> i

Effect: Interchanges the parts of rows /i and j that lie

to the left of the (i, i)-entry in L; used to update L

by interchanging multipliers.

« > Aij« IFi1<ji< ORTHEN "INVALID ROW INPUT" ELSE A

SIZE 2 GET —»n « A 1i1 - FOR k 'AGi, k) EVAL {j k} SWAP

PUT NEXT 1 i 1 — FOR m 'A(, m)' EVAL {i m} SWAP PUT NEXT »

» »

442 CHAPTER 15

EXAMPLE . Use partial pivoting to construct an LU-factorization of

Step 1:

Step 2:

Step 3:

[[2 3-1 2]
[-4-6 2 1]
[2 4-4 1]
[4 8 2 7]

Enter A onto level 1, and press to create appropriate starting

matrices L and P. Interchange rows 1 and 2 in A with 1, 2 RSWP |,

recall P to the stack and make the same row interchange, then store the

updated result in P with . Now press 1, 1 to see

[[4-6 2 1]

[0 0 0 25]
[0 1-3 1.5]
[0 2 4 81]]

A=

Since the (2, 2)-entry of this last matrix is 0, we must interchange row 2

with row 4. Thus press 2, 4| RSWP to effect the interchange, then

bring P to level 1, make the same row interchange with RSWP and

store the result in P. Now bring L to level 1 with , interchange

multipliers with 2, 4 and store the result in L with

L]
[[-4 -6 2 1]

0 2 4 8
Now execute 2, 2 to see [] . Store this as U.

[0 0 -5-25]

[0 0 0 25]]

SYSTEMS OF LINEAR EQUATIONS 443

[[1 0 0 0]

Step 4: GetL = [-11.00] with ,thendotosee
[-5 .56 1 0]

[-5 0 0 1]]

[[-4-6 2 1]

[4 8 2 7]
LU=

[2 4-4 1]

[2 3-1 2]]

Since P is a permutation matrix, we know that P-1 = PT. Thus

P-ILU = PTLU = A. Recall P to level 1 and get PT, SWAP levels with LU

and then use to see PTLU = A.

Why are LU-factorizations important? Here are several reasons:

(i) In the case that A = LU, all the information regarding Gaussian

eliminiation on A is stored in the factors L and U. Matrix L maintains a

record of the multipliers used in the eliminiation process and U records

the results of the elimination. Thus, L and U may be viewed as

storehouses of information about A that can be exploited later in a variety

of situations. With PA = LU, P records the row interchanges.

(ii) Once we have A = LU we can solve Ax = b for different b's by first using

forward substitution to solve Ly = b for y, then by using back substitution to

solve Ux = y for x. (In the case of PA = LU, we solve Ly = Pb in the first

step.) Indeed, this is often the preferred method built into computer codes

for solving linear systems. It is a matter of economy. Assume that A is

nxn and that Al as well as the factors L and U are available. Using A-!

to obtain x = A-lb requires n? multiplications. Solving Ly = b for y by

forward substitution and then solving Ux = y for x by back substitution also

444 CHAPTER 15

(iii)

requires n? multiplications. But the difference is seen in comparing the

number of multiplications required to obtain A-! to the number of
3n

multiplications required to obtain the factors L and U: n3 verses 3 - For

large n, the savings in using L and U is substantial.

The interpretation of Gaussian elimination as a matrix factorization

PA = LU sets the stage for the more sophisticated matrix factorizations

that are encountered in a study of numerical linear algebra; for example,

the QR, Schur, and SVD factorizations.

To apply forward substitution to Ly = Pb on the calculator, use the following

program FWD.

FWD (Forward substitution)

Inputs: level 2: an nx n invertible lower triangular matrix L

level 1: an n-vector b

Effect: Solves the linear system Lx = b by forward

substitution. Solves for x, and halts until you press

CONT |, then solves for x, and halts, etc.

After x,, Xx,, ..., X, are on the stack, a final CONT

returns x =[x, X,, ..., X,].

« > Ab «ASIZE1GET - n « {n} 0 CON 'A(1, 1) EVAL TYPE

IF THEN DUP R—C END — y « 1 n FOR j 'b()’ EVAL 1 n FOR k

‘A, k) EVAL NEXT n —ARRY y DOT -'A(j, j) EVAL / HALT DUP vy

{i} ROT PUT 'y’ STO NEXT n DROPN y» » » »

SYSTEMS OF LINEAR EQUATIONS 445

EXAMPLE. To solve 2+ 3 - x5+ 2 =1

dx, - 6x, + 26 + x, = 2

2 + 4x, - 45 + x, = 3

e, + 8, + 24 + 7x, = 4

by using an LU-factorization, we first obtain a PA = LU factorization of the

coefficient matrix

[[2 3 -1 2]

[-4 -6 2 1]

A= 12 4-4 1]
[4 8 2 7]]

Since A is the matrix of our last example, we shall use the P, L and U obtained

there:

[[0100] [[1 0 0 0] [[-4-6 2 1]
[0 00 1] [-1 1 0 0] [0 2 4 8]

P=10010]. L=1.5510]" U= 10 0-5-25]

[1 00 0]] [-5 0 0 1]] [0 0 0 25]]

Let b=[1 2 3 4]. Tosolve Ly = Pb for y by forward substitution, calculate

Pb=[2 4 3 1]. Then, with L on level 2 and Pb on level 1, and four

applications of |CONT show ytobe[2 6 1 2] Then with U on level 2 and

[2 6 1 2] on level 1, BACK and four applications of |CONT show the

solution x of Ax=btobe[-2.1 1 -6 .8].

The HP-48G and 48GX calculators include a command LU that produces an LU-

factorization PA = LU which differs from the one we have just described in that U

has 1's along the main diagonal and the pivots appear on the main diagonal of L.

To see how this can occur, imagine PA = LU where L is unit lower triangular and U

446 CHAPTER 15

has the non-zero pivots on the main diagonal. If D is the diagonal matrix whose

main diagonal contains the pivots u;q, Uy, ..., Uy, from U, then PA = (LD) (D-1U).

The effect of matrix D is to multiply each column j of L by uj; so that LD is lower

triangular with the pivots on its main diagonal. The effect of D! is to multiply

each row jof U by u}.]l., so that D-IU is unit upper triangular. The actual method

used to obtain this factorization is known as the Crout algorithm. It employs partial

pivoting throughout and is particularly well-suited to calculator use. For example,

with our previous matrix

7]]

on level 1 of the stack, pressing on the MTH MATR FACTR menu will return

[[O 1 0 0]

[0 0O O 1]
P:

[0 0 1 0]

[1 0 0 0]]

to level 1,

[[1 1.5 -5 -.25]

U = [0 1 2 4]

[O O 1 5]

[O 0 O 1]

to level 2, and

[[-4 0 O 0]

[= [4 2 0 0]

[2 1 -5 0]

[2 0 0 25]]

to level 3.

SYSTEMS OF LINEAR EQUATIONS 447

You will recognize this U as a rescaled version of the one we obtained earlier: row i

of our earlier U has been rescaled by multiplying by u ;. Likewise, L is just a

rescaled version of the one we obtained earlier: column j of our earlier L has been

rescaled by multiplying by u;. Rescaling our earlier U and L will not affect the

final solution.

Unlike the ELIM and L.U programs, which round-off intermediate computations

to 10-digit precision to clean up round off errors, the built-in matrix routines on the

HP-48G and 48GX, such as the LU routine, perform all intermediate computations to

15-digit precision and then pack the computed results to the displayed 12-digits.

Finally, although our discussion has concentrated on developing an

understanding of Gaussian elimination and its interpretation as an LU-factorization,

you should note that the HP-48G and 48GX units enable you to solve any nonsingular

linear system by applying an LU-factorization with a single keystroke. With an

invertible matrix A of order n on stack level 1 and n-vector b on level 2, the

command /, executed from the keyboard by pressing the key, will solve the

linear system Ax = b by the method cited earlier: use partial pivoting to obtain an

LU-factorization PA = LU, then solve Ly = Pb for y by forward substitution, then

solve Ux = y for x by back substitution. Try it with the last example. More

generally, if b is replaced by an 7 X p matrix B, the same procedure will solve the

matrix equation AX =B; column jin the computed X is the solution to AX; = B,

where B; is the corresponding column in matrix B.

Activity Set 15.2

1. Use partial pivoting to construct PA = LU factorizations of each of the following

matrices. Then use P, L and U as in our last example to solve the linear system

Ax = b; in each case, record the solution y to Ly = Pb.

448 CHAPTER 15

[[2 4 5]
(a) A= [-1 35 25]

[2 -1 8]]

b=[10 3.5 11]

[[O0 -2 7 -3]

[3 0 3 5]
(c) A=

[-3 6 -3 4]

[9 6 -3 6]]

b=[44 -24 -24 -24]

[[-2 6 5]

b) A= [38 1 -5]

[-6 -6 -31]]

b=[26 15 18]

[[2 0 -3 0 -5]

[-6 -3-12 -9 3]

[6 6 6 12 6]

[0 3 3 -3 6]

[2 1 -4 1 1]]

(d) A=

b=[-7 36 -6 27 10]

For each of the following matrices, find the Crout PA = LU factorization by

using the LU command. Then use P, L and U to solve the system Ax = b. Check

your results using the / command.

[[-1 -1

[-4 2

[9 6
(a) A=

[[1 -5

by 4=17 o
[5 -8

[[-7 -7

[-1 0

(c) A= [7 -1

[5 4

[9 -6

2]
-1]

0]]

2 -1]

1]
3]’

9 8]]

7

7 2 7]

5 -8 7]

7],

9 0 -9]

5 -9 8]]

b=[-8

b=[-16 45

b=[-7 11 21]

-13 63 -76]

80 7 17]

SYSTEMS OF LINEAR EQUATIONS 449

15.3 GAUSS-JORDAN REDUCTION

Although Gaussian elimination with back substitution is more efficient than

Gauss-Jordan reduction for dealing with linear systems in general, and is certainly

the preferred method in professional computer libraries, students have traditionally

used Gauss-Jordan reduction for the small-scale problems employed to learn the basic

concepts. This minimizes the rational number arithmetic involved when Gaussian

elimination is performed by hand on matrices with integer entries.

Gauss-Jordan reduction differs from Gaussian elimination in two ways:

(i) all pivots are converted to 1.

(ii) the basic pivot process is used to produce zero's both below and above the

pivot element.

When applied to a non-zero matrix A, Gauss-Jordan reduction produces what is

popularly called the reduced row echelon form (RREF) of A:

(a) any zero rows lie at the bottom;

(b) the first non-zero entry in any non-zero row (the pivot) is a 1, and lies to

the right of the pivot in any preceding row;

(c) each pivot is the only non-zero entry in its column.

The reduced row echelon form of A is important because it represents the

ultimate we can get from A by applying elementary row operations. As such,it is

uniquely associated with A; that is, each non-zero matrix A has one and only one

RREF.

When Gauss-Jordan reduction is applied to the augmented matrix [Alb] of an

arbitrary linear system Ax = b we obtain an equivalent linear system Ux = b’ whose

augmented matrix [Ul b’]is the RREF of [Al b] and whose solutions are practically

450 CHAPTER 15

obvious. Although impractical for extremely large linear systems that arise in

practice, Gauss-Jordan reduction is in popular use as a device to solve small systems,

and to further advance the theory of linear algebra. And it is easy to devise a

calculator program to step through the reduction process.

The following program, PIVOT, pivots on a specified entry to convert the pivot

to 1 and to produce zeros above and below the pivot. It can be used in conjunction

with the command RSWP to produce the RREF matrix. The program is written to

accommodate both real and complex matrices.

PIVOT (Gauss-Jordan Pivot)

Inputs: level 3: a matrix

level 2: an integer k

level 1: an integer /

Effect: converts the (k, /)-entry to 1 and then pivots on

that entry to produce zeros above and below the

pivot.

« > A kIl « IF 'Ak I)) EVAL 0 == THEN "PIVOT ENTRY IS 0" ELSE

A SIZE 1 GET -» m « m IDN 'A(1, 1)' EVAL TYPE IF THEN DUP 0

CON R—C END 1 m FOR i 'A(i, I)) EVAL {i k} SWAP PUT NEXT INV

A * » 8 RND END » »

EXAMPLE. Solve the linear system

2x1—3x2+ X3—3X4+2X'5=6

I &-2x1 +3x2 - X3 + 4.X'4 + X5

I N o6, - 9% + 7x3 - 7x4 + b5xg

20 + 3% + 3X3 + 3% - 9% = -6

SYSTEMS OF LINEAR EQUATIONS 451

by applying Gauss-Jordan reduction with partial pivoting to the augmented matrix.

The sequence of commands 1, 3 ; 1,1 ; 2,4; 2,3

PIVOT |; 34 RSWP |; 3,4 PIVOT returns the following matrix as the

reduced row-echelon form:

[[1 15 0 0 6375 45]
[0 0 1 0 -175 0]
[0 0 0 1 3 1]
[0 0O 0O 0 O 01]]

Thus x, and x5 are free variables and all solutions are given by

X = [45 + 1.5X2 - 6.375X5, Xo, 1.75X5, 1—3X5, X5].

Although the reduced row-echelon form of a matrix is not in use at the

professional level to solve linear systems, it can be an effective pedagogical tool to

help understand the role of pivot variables versus free variables and such vector

space concepts as linear combinations, independence, bases and eigenspaces. The HP-

48G and 48GX calculators provide access to the reduced row-echelon form by means of

the RREF command, located on the MTH MATR FACTR menu. With a matrix on

level 1 of the stack, simply press the key (or type and enter the command

RREF) to obtain the reduced row-echelon form. In order to obtain correct results,

flag -54 must be clear (the default state). After some initial experiences in producing

the reduced row-echelon form with program PIVOT and the command RSWP, I allow

my students to call upon the RREF command thereafter. The underlying code uses

partial pivoting throughout.

Activity Set 15.3

1. Perform Gauss-Jordan reduction with PIVOT to solve each of the linear systems

in ACTIVITY SET 15.1. Verify your results by applying the RREF command.

VECTOR SPACES

Of the many concepts from linear algebra that permeate the different fields of

mathematics, perhaps none is as powerful as that of a vector space. Indeed, for

some, to study linear algebra is to study vector spaces and their associated notions.

Informally, a vector space V is simply a set of objects together with a way of

combining any two of them under an operation called addition, and a way of

multiplying any one of them by a scalar (a number). Of course, we require that these

two operations obey a few basic laws. The prototype for all vector spaces is the

familiar set R” of all n-tuples of real numbers together with the usual component

addition and scalar multiplication. The basic laws are the four usual properties for

addition of n-tuples and the four usual properties for scalar multiplication of

n-tuples. Vector spaces provide an umbrella environment that serves to both clarify

and to unify a number of seemingly unrelated concepts and topics from a variety of

fields.

When cast in purely abstract terms, such fundamental vector space notions as

linear combinations and spanning sets, independence and dependence, bases and

dimension, and change of basis appear to be somewhat removed from a study of

linear systems. But exactly the opposite is true: in the historical development of

linear algebra it was from a study of linear systems and their associated matrices

that these vector space concepts emerged.

452

VECTOR SPACES 453

16.1 LINEAR COMBINATIONS AND SPANNING SETS

Recall that by a linear combination of vectors v,, v,, ..., v, in a vector space V

(you may regard V as being R" if it helps) we mean any vector of the form

X0y + X0, + ... + x;U where the x;’s are scalars . The set of all possible linear

combinations of v,, v,, . . ., v, is a subspace of V, often denoted by Span

[v,,v,, ..., v,], and the vectors v, are said to span this subspace. To verify that

Span [v,,v,, ..., v,]is a subspace of V we need only add two linear combinations of

the vectors v, v,, . . ., v, to see that we obtain another one, and then multiply an

arbitrary linear combination of the v;’s by a scalar to obtain still another such

combination. To determine whether a given vector u lies in the subspace Span

[v,,v,, . . ., v,] we must determine whether u can be written as

u=x0 +%0, +...+ X0 for suitable scalars x,.

The connection to linear systems comes from the fact that for an m xn matrix A the

matrix equation Ax = b expresses vector b as a linear combination of the column

vectors of A:

b=xA; +X,A, +...+ XA,

where A, is column j of matrix A and x is the column vector = [x;, x,,. . ., x,]. The

column vectors A, A,, . .., A, of matrix A span the column space CS(A) of A. Vector

b is a linear combination of the columns of A iff the linear system Ax = b has a

solution; and any solution to Ax = b will serve to express b as a linear combination

of these columns.

EXAMPLE 1. To investigate whether the vector u =[3 10 -2 18]is a linear

combination of vectorsv; =[1 -2 3 0],v,=[-1 4 2 3]andv; =[2 0 -1 4], we set

up the linear system Ax = u where A has v;, v, and v; as its columns. Program ELIM

454 CHAPTER 16

can be used to determine whether a solution exists, but an even better choice would be

to use PIVOT because it will enable us to obtain all solutions. Applying PIVOT

to the augmented matrix [A lu], we see that

[[1-12 3] [[1 0 0 -1]

[-2 4 0 10] [0 1 0 2]

[32-1-2] I [0 0 1 3] -

[0 3 4 18]] [0 O 0 O]]

from which we can write u = -v; +2v, + 30, .

EXAMPLE 2. Which of the vectors u; =[0 3 -6 3], u, =[-4 7 -4 0]and

u, =[6 -45 2 2] are in the span of vectorsv; =[4 -1 0 2]andv, =[0 3 -2 1]?

To answer this we investigate the three linear systems Ax = u; (i = 1, 2, 3), where A

has vectors v; and v, as its two columns. Applying PIVOT to the triple

augmented matrix [Al u, u, uy] toreduce A to its RREF we find that

[[4 0 0 -4 6] [[1 O O -1 1.5]

[-1 3 3 7 -45] [01 0 2 -1]

[0 2 -6 -4 2] L= (0010 0]
[2 13 0 2]] [0 00 O 0]]

Column 3 tells us that u#; is not a linear combination of v; and v;, so not in Span

[v,, v,]; columns 4 and 5 show the exact opposite: u, =-v; +2v, , u; =150, -v,.

VECTOR SPACES 455

Activity Set 16.1

1. Which of the following vectors u; =[1 -5 4], u, =[2 11 23] and

uz =[16 -7 3] are linear combinationsof v; =[8 9 7]andv, =[3 -1 -8]?

For any u; that is a linear combination of v, and v,, show such a linear

combination.

2. Which of the following vectors u; =[-3 16 3 -15],u, =[-9 0 4 -3]and

u3 =[0 -5 27 14]lie in the subspace of R* spannedbyv; =[-2 7 6 -5],

v,=[5 6 -6 4]andvy3 =[4 -8 3 9] Forany vector u; that lies in this

subspace, show how it gets there.

3. Which of the following polynomials p(x) = -5 + 7x - 5x2 - 13x® and

g(x) = -4 — 16x? — 19x3 are linear combinations of r(x) = 4 — 3x - 2x? + 3x3,

s(x) =9 + 6x —9x2 —5x3 and #(x) = 6 + 5x + 2x3? For any that are, show how.

16.2 DEPENDENCE AND INDEPENDENCE

When a vector u is a linear combination of some other vectors v,,v,, ..., v, we

say that u depends linearly upon the v/’s and that the entire set of vectors is a

“linearly dependent” set. More precisely, a set of vectors { v;,v,, ..., v, } (k > 1) is

called (linearly) dependent if one of these vectors is a linear combination of the

others. To the contrary, the set of vectors { v, v,, ..., v, } (k> 1) is called (linearly)

independent if no one of these vectors is a linear combination of the others. In case

we have a single vector v; we agree that { v, } is linearly dependent if v; =0,, and

linearly independent if v; #0,.

To relate these notions to linear systems, recall that they may be reformulated,

equivalently, as follows:

456 CHAPTER 16

(a) theset{wv,,v,,... v, }is dependent iff there are scalars x;, x,, . . ., x|, not

all of which are 0, such that x;v, +x,v, +...+ x,v, =0,; thus

(b) the set { v;,v,, ... v, } is independent iff whenever we have

XU + X0, + ... + x,0 =0, then necessarily all x; = 0.

These are the standard notions of dependence and independence found in elementary

texts, but you should not lose sight of the fact that they are the mathematically

equivalent reformulations of the more intuitive ideas given above.

In terms of linear systems: if matrix A has the vectors v, v,, . . ., v, as its

columns then

(a) theset{wv,,v,,... v, }isdependent iff Ax = 0 has a non-zero solution; and

(b) theset{wv,,v,,... v }isindependent iff Ax = 0 has only the zero solution.

To put this to use, recall some of the conditions under which Ax = 0 has non-zero

solutions: Ax = 0 has non-zero solutions iff

(i) A has fewer rows than columns,

(ii) A is row-equivalent to a row echelon matrix having fewer non-zero rows

than columns; or

(iii) when A is square, A is singular.

In each of these cases, Gaussian elimination will show the existence of free

variables, hence non-zero solutions.

EXAMPLE 3. |Investigate the dependence/independence of the vectors

v,=[-12-13)v,=[2-141]andv;=[-45 -6 5]inR*. 1If the set { v,,v,, V5 |}

is dependent, write an equation that expresses the dependency. We set up matrix A

as

VECTOR SPACES 457

e
C
d
e

e
d

and find its RREF to be

[[1 O 2]

[0 1 -1]

[0 O 0]

[0 O O0]]

E =

Thus by (ii), we see that Ax = 0 has non-zero solutions and so { v,, v,, v; } is

dependent. In fact, all solutions are given by x =[-2¢, a, o], where o is freely

chosen. Choosing o = 1 we obtain the particular solution x = [-2 1 1] which says

that -2v; + v, + v; = 0, an equation that expresses the general dependency among

these vectors.

One final observation: it is almost obvious that the non-zero rows of any row

echelon matrix are independent; also the columns of any row echelon matrix that

contain the pivots are independent. For example, look at the non-zero rows, and the

pivot columns (columns 1, 2, and 4), of the row echelon matrix

[[2 0 3 4 5]

[0 6 7 8 9]

[0 0 010 11]

[00 00 0]]

Generally, we regard independence as being a desirable property and dependence

as being undesirable. For when a set of vectors (more than one vector) is dependent,

at least one of them can be written as a linear combination of the others, say

U1 = X0, + ...+ x;v. Consequently, any linear combination of the vectors in

{v1,v2, ..., v } can be replaced by a linear combination of the vectors in the smaller

458 CHAPTER 16

set { v, ..., v }J. In terms of spanning sets, this observation is simply that

W=Span[v;,vy,...,0r]=Span[v,, ... 0] so we have effectively deleted the

vector v;; it was redundant. And if the remaining set { v, . .. ,vx } is dependent then

we can delete still another of these vectors (say v,, for example), so that

W=Span[vy,v,,03,...,0x]=Span[v,,v;3,...,0¢] =Span[v;, ...,v].

In this way we can continue deleting “redundant” vectors until we arrive at an

independent spanning set for W.

EXAMPLE 4. To continue with the vectors v, v; and v3 from EXAMPLE 3, recall that

we found in Example 3 that the set { v, v,, v3 } was dependent; indeed the equation

-2v, + v, + v3 = 0 displays the precise way in which any one of these three vectors

can be written in terms of the other two. For instance, solving for v; we have

v3 = 2v; — v,. The subspace W spanned by the set { v;, v, v3} is thus also spanned by

the set { v1, v, }; we have deleted the redundant vector v3. Can we delete even more?

In other words, is the set { v;, v, } dependent? The answer is no, which you can

quickly verify by glancing back at the first two columns of matrix A and its reduced

row echelon form (the first two columns of matrix E). Therefore { v;, v, } is an

independent spanning set for W.

Finally, notice how the columns in the reduced row echelon form convey all of

the above information: the leading 1’s in the first two columns of E tell us that

column vectors 1 and 2 of matrix A are independent. The third column of E specifies

how column 3 of A depends upon the first two columns of A, v3 = 2v; —v;.

Activity Set 16.2

VECTOR SPACES 459

1. Investigate the independence/dependence of each of the following sets of

vectors. If dependent, write an equation that expresses the exact nature of the

dependency.

(a) The rows of

[[3
[1

[1

[0 -
O

W
o 10 7]

1 0]

4 2]

1 1]]

(b) The columns of the matrix A in (a).

(c) The rows of

[[72 42

[60 24

[29 27

[12 45

58 83 55]

90 20 -34]

44 37 -5 1°

82 4 -111]]

(d) The columns of the matrix C in (c).

(e) The columns of

[[1 10

[-3 -8

E=[5 9

[7 17

0 -8 -2]

1 2 8]

4 1 -18]

2 3 -18]

[2 2 7 6 10]]

460 CHAPTER 16

2. Each of the following sets of vectors spans a subspace W of R4. Show that the

set is dependent, specify the exact nature of the dependency, and then discard

vectors one at a time until you get an independent spanning set for W.

(a) u;=[8 -1 -7 6], u=[3 6 -4 7]

uz=[-2 -1 3 3], uu=[1 4 0 2]

(b) 1v=[3 3 -2 1], v»=[-1 6 -1 4]

vs=[7 4 3 0], v,=[6 7 -3 2]

(c) wy=[3 05 7], w,=[2 8 -1 6]

wy=[1 16 3 5], w,=[2 -8 1 -6]

16.3 BASES AND DIMENSION

Spanning sets that are independent are especially desirable because no one of

the spanning vectors depends linearly upon the others. This is what we mean by a

basis. More formally, by a basis for a subspace W of a vector space V (again, you may

imagine V to be R" if it helps) we mean a collection of vectors w,, w,, ..., w, from W

that

(i) is independent, and

(ii) spans W.

When you choose a basis for W, you have chosen a “well-behaved” set of vectors

to use in describing or understanding W. Basis vectors are well-behaved in the sense

that they are independent vectors, hence no dependency upon one another. They can

be used to describe W because each vector in W is a linear combination of them.

Together, the two conditions (i), (ii) tell us that each vector in W can be written as a

VECTOR SPACES 461

linear combination of the basis vectors in only one way. Here is why. Condition (ii)

guarantees that each vector w in W can be written in at least one way, say w = x; w,

+ X,W, +... +x,w,. Suppose, however, that there is another way to do this, say w

=y, Wy + Yow, +... +y,w,. Then, easily

Op=w—-—w=(x1=y1)wy +(Xz —Y2)wz + ...+ (X —Yyx)w .

This last equation is a linear combination of the w;’s equal to the zero vector.

Therefore, because of the independence of { w;, w,, ... wy_}, all coefficients (x; - y;) in

this combination must be zero: (x;-y;) =0,s0x;=y, forj=1, .., k and we really

have only one way of expressing w.

It is important to know that whenever we have a basis for a vector space V, say

B={v,,v,,...v,}, then any set in V having more than n vectors is dependent.

Your textbook in linear algebra most certainly includes an argument to convince you of

this fact. The impact is, of course, clear: all bases for V contain the same total

number of vectors. This is the dimension of V, dim V. Recall that dim R" = n, and dim

P,[x] =n+1 (P,[x] consists of all polynomials having degree < n).

We are interested in the four fundamental subspaces associated with a real

m X n matrix A:

o the row space RS(A): the subspace of R" spanned by the row vectors of A;

e the column space CS(A): the subspace of R™ spanned by the column vectors

of A;

e the null space of A, NS(A): the subspace of R" consisting of all solutions x to

the homogeneous linear system Ax =0;

o the left null space of A, NS(AT): the subspace of R™ consisting of all solutions x

to the homogeneous linear system ATx = 0.

462 CHAPTER 16

You should recall how we can produce bases for each of these subspaces. For the first

three, begin by converting A to any row echelon form U by row operations; then

¢ A and U have the same row space, RS(A) = RS(U), and the non-zero rows of U

form a basis for RS(A);

e although A and U do not have the same column space, CS(A) # CS(U), the

columns in A corresponding to the pivot columns in U form a basis for CS(A);

e if NS(A) = 0,, we have no basis. Otherwise, there will be free variables and

all solutions to Ax = 0 can be obtained by choosing arbitrary values for the free

variables. Construct special solutions as follows: assign, in turn, the value 1 to

each free variable and the value 0 to the other free variables. These special

solutions form a basis for NS(A).

o For the left null space of A, NS(AT), simply convert AT to row echelon form

and proceed as in the case of the null space NS(A).

Programs ELIM or PIVOT, or the command RREF may be used to construct bases for

RS(A) and CS(A); but PIVOT or RREF should always be used to construct bases for

the two null spaces.

EXAMPLE 5. Find bases for the row space, column space, null space, and left null

space of the following matrix:

[[1 2 3 4 5]
A_[138455]

[3 6 9 2-5]
[2 4 6 1-4]]

VECTOR SPACES 463

The reduced row echelon form of matrix A is

[
u-= .

o
=+
0
O1 1

1 -2

0 2

0 0o
o
o
-
—

O
O
0
O

[
[
[
[]

Thus, the first three rows of U form a basis for the row space RS(A) and columns 1, 2,

and 4 of A form a basis for the column space CS(A). Clearly x; and x; are free

variables, and all solutions to Ax = 0 are given by

X, =X -1 -1

-x, + 2.x5 -1 2

x=| x =X |1[+X| 0O

- 2x 2

xs 1

The two vectors on the right-hand side form a basis for the null space NS(A). They

were obtained from the general solution by factoring out x; and x;; but notice that

they are the special solutions described earlier that we can obtain by setting x; =1

and x; = 0, then x; =0 and x5 = 1.

For the left null space NS(AT) of A we begin by obtaining the reduced row

echelon form of AT:

[[1 0 0-1]

[01 0 0]

[0 0 1 .7]

[0 0 0 0]]

464 CHAPTER 16

This time, only x4 is a free variable and all solutions to ATx = 0 are given by

.1x4

0 0

X = =X-.7x4 4 -7

X
4

The single vector on the right side of the last equation forms a basis for the left

null space NS(A).

EXAMPLE 6. The basis for the row space of A that we obtained in EXAMPLE 5

consisted of the non-zero rows of U. Since the rows of A span RS(A), we know they

can be cut down to obtain a basis for RS(A). How can we obtain a basis from among

the original rows of matrix A?

From the reduced row echelon form of AT we can choose a basis for CS(AT)

consisting of columns 1, 2 and 3 of AT. Then, since CS(AT) = RS(A), we will have a

basis for RS(A) that is chosen from among the original rows of A.

A few final comments are in order. When the m X n matrix A is converted to

row echelon form U, it is clear that the number of non-zero rows in U is precisely the

number of non-zero pivots in U. Thus

dim RS(A) = the number of non-zero pivots.

Similarly,it is clear that the number of pivot columns in U is the number of non-zero

pivots, so that also

dim CS(A) = the number of non-zero pivots

This common number, dim RS(A) = dim CS(A) = number of non-zero pivots is known as

the rank of A:

rank A =dim RS(A) =dim CS(A)

VECTOR SPACES 465

Of course, an identical result holds for matrix AT. But since the row space of A

coincides with the column space of A7, we have the result

rank A = rank AT

If not zero, the dimension of the null space of A is the number of “special vectors”

that can be constructed from the free variables in the reduction of A to U. Thus

dim NS(A) = the number of free variables

= n — (the number of non-zero pivots)

=n - rank A.

We therefore have the fundamental result that

rank A + dim NS(A) = number of columns of A.

Since this results applies when we replace A with AT, we see that

rank A + dim NS(AT) = number of rows of A.

Activity Set 16.3

1. Find bases for each of the four fundamental subspaces of the following matrices.

[([3 1 1 0] [[-12 1 -3 1]
[6 3 0 1] [1-1 0 2 1]

(@) A= 110 -1 4 1] ® B=1 54 3 2 6]

[7 02 1]] [-13 2 -3 1]]

466 CHAPTER 16

[[4 1 8 -6 -3]
[[1 2 3 4 5]

[5 -4 6 -14 -5]
[3 6 9 2 -5]

(c) C= d D= [8 4 6 2 6]
[1 3 4 5 5]

[4 -3 2 -8 -1]
[2 4 6 1-4]]

[-8 3 -2 8 -3]]

2. For each of the following matrices A find a basis for the row space from among

the original rows of A.

[[1 3 1 2] [[-1 1 2 -1]

[2 6 3 4] [2 -1 1 3]

(@) [3 9 4 6]) [1 0 3 2]

[4 2 5 1] [-3 2 2 -3]

[5 -5 5 -4]] [1 1 6 1]]

16.4 CHANGE OF BASIS

The ability to change from one basis to another is of fundamental importance.

Each linear operator on a finite-dimensional vector space can be represented in a

concrete fashion by a matrix, but the matrix itself depends upon the choice of the

basis. Changing to a new basis often provides us with a simpler, or more well-

structured, matrix.

Although the notation used to discuss change of basis will vary from textbook to

textbook, most of them follow a style somewhat like what follows. Let

B={u,,u,,..,u, } be an ordered basis for a finite-dimensional vector space W (a

subspace of R" if you wish). Each vector w in W can be written in exactly one way

as a linear combination of the vectors in basis B:

w =X + XoUy + .o + XU, .

VECTOR SPACES 467

The column vector [w]z =[x, x, ... x,] is called the coordinate matrix of w relative to

the B-basis. In R" (or C"), finding the coordinate matrix [w]; for a given vector w

and given basis B usually entails solving a linear system. But we are primarily

interested in how we move from the “old” ordered basis B to a “new” ordered basis

B’ ={v,,v,,..v,}. The theorem describing how to do this is as follows:

Let B={u,uy, .. u,}and B' ={ v;, v,, ..., v, } be ordered bases for a vector space

W. Write each of the old basis vectors in terms of the new basis B’ and consider the

coordinate matrices [u;lg , [u,lg ... , [u,lg . If P is the nxn matrix whose j* column is

[ulg, then P is invertible and is the only matrix for which Plwly = [w]y, for all vectors w

in W. We call P the change-of-basis matrix from the B-basis to the B’ basis. (Note

that P depends upon the order of the basis vectors as well as the vectors themselves.)

EXAMPLE 7. Find the change of basis matrix P from the “old” basis B to the “new”

basis B’ given below, then write w =[3 -2 -11 17] in terms of the new basis.

B={[10 -3 -3 10]T,[-3 23 10 -21]7,[-3 10 7-13]7,[10 -21 -13 30]T},

B={[21-12],[132-3]T,[-121-1]T,[2-3-14]T}.

(a) To find P we must write each vector in the B-basis in terms of the B’-basis.

To do this, we consider the quadruple-augmented matrix and its reduced

row echelon form:

[2 112 :10 -3 -3 10] [[1 O 0 O : 1 -1 2
[1 3 2-3: -3 23 10 -21] [001 00 1 3 2 -3]
[1 211 31 7 -13] ® [0010:!-121-1]
[2-3-1 4 :10 -21 -13 301]] [00 0 1 2-3-14]]

468 CHAPTER 16

Thus the change-of-basis matrix P is

[[2 1-1 2]
[1 3 2 -3]

P="14 2 1]
[2-3-1 4]]

(b) Forw=[3 -2 -11 17]T, we mustfirst find its coordinate matrix [w]; :

[[10 -3 -3 10 3] [[1t 0 0 O -1]
[-3 23 10 -21 -2] , [0 1 0 0 2]
[-3 10 7 -13 -11] [0 0 1 0 -3]"
[10 -21 -13 30 17]] [0 0 0 1 1]]

sothat [w]; =[-1 2 -3 1]and therefore P[w];. =[5 -4 1 -1].

Activity Set 16.4

1. Consider the two sets B ={u;, u,,u; } and B’ ={v;,v,,v, } in R*, where

u;=[1020]%,u,=[204-3]T,u;=[1221]Tand

v,=[214-1]%0v,=[122 41T, v,=[020 1]T.

(a) Show that both B and B’ are independent sets of vectors and that Span B =

Span B’.

(b) Let W = Span B = Span B’. Show that w =[1 2 2 -2]isin W.

(c) Find the change-of-basis matrix P from the B-basis to the B’ basis for W.

(d) Use P to express w in terms of the B’-basis. Check your result by directly

expressing w in terms of the B’-basis.

VECTOR SPACES 469

Repeat Activity 1, this time using the sets B ={u,, u,, u; ,u,} and

B’= {v,,v,,v;,v,} in R> where

u=[4 2 -1 0 2] u3=[2 0 -1 1 -2]

uy=[3 1 0 0 3] ug=[-1-1-1 0 6]

and

nv=[2 0 1 0 6] ©v3=[-2 -2 -2 1 -6]

n=[4 -2 -5 0 14 v,=[0 2 3 3 -7].

Take w to be the vector w=[4 -4 -8 -3 21].

ORTHOGONALITY

Orthogonality concepts lie at the very heart of modern linear algebra.

Orthogonal vectors, orthogonal projections, orthogonal bases, orthogonal subspaces,

and orthogonal matrices all combine to produce a rich and elegant theory as well as

powerful numerical techniques and algorithms that are widely used in numerical

linear algebra.

The geometry of R3 is the place to begin. This geometry is easily extended to R”

or to C" by means of the standard inner product. In R" the standard inner product of

vectorsx=[x; x...x,Jandy=[y; y,...y,] is their dot product

xXey=xim + X2 Y2 +... + XnYn -

In C", where the underlying scalars are complex numbers, the standard inner

product is their Hermitian product x e y, where x denotes the vector conjugate to x.

The HP-48 command DOT will return the dot product of any two vectors (real or

complex) on stack levels 1 and 2. To obtain the Hermitian product of two complex

vectors you mustfirst apply the CONJ command, then DOT.

For any vector x =[x, x, ... x,,] the command ABS will return its Euclidean

length (norm) || x ||, = \/%, P +|x,? + ... +]x,|*> which is the usual notion of length in

R" or C". When applied to an 7 xn matrix A = (a;;) , ABS will return the Frobenius

matrix norm || A ||p= [Z |“,-j f] . Three other vector and matrix norms are provided
i, j

on the HP-48G series calculators, but we will not use them in this

470

ORTHOGONALITY 471

chapter. You will find a brief summary of norms in Appendix 1, as well as a

discussion of their application with the HP-48.

17.1 ORTHOGONAL VECTORS AND SUBSPACES

From now on, we shall restrict our attention to R". Recall that two vectors x, y

are called orthogonalif their dot product is zero: x e y = 0. In R? or R? this amounts

to saying that x and y are perpendicular vectors. A set B =

{1, vy, .., v } of mutually orthogonal vectors (v;e v; =0 fori=j) is called an

orthogonal set, and any such set of non-zero vectors is linearly independent.

Consequently, B is a basis for the subspace W =Span [v,, v,, ..., v,]. An attractive

feature of such a basis is the ease with which we can obtain the coordinates of any

vector w in W:

w e v, , en L, Lo
v — U+t 5T

o 112 1 o, 12 72 o 112 7k
 (") w=

Even better is when each basis vector has length 1, for then (*) becomes

w = (w o vl)v1 + (w . vz)vz + ..+ (w . vk)vk .

Vectors of length 1 are sometimes called normal vectors, and we can “normalize”

any vector v by simply dividing by its length:

v has length 1.
ol &

By normalizing an orthogonal basis for W we can obtain a basis of mutually

orthogonal, normal vectors, an orthonormal basis, and it is a fundamental result that

any non-zero subspace of R" has such a basis. The proof of this is the content of the

Gram-Schmidt process, which we shall examine later.

472 CHAPTER 17

Look again at the criterion for the orthogonality of a set { v,, v,, ..., v, } of

vectors in R™ v;ev; =0 fori#j. Since v;e v, is the (i, j)-entry of the k x k matrix

ATA, where A is the n x k matrix having v,,v,, ..., v, as its columns, we see that

the set of vectors { v,, v,, ..., v, } is orthogonal iff ATA is a diagonal matrix:

And clearly { v, v,, ..., v, } is an orthonormal set iff ATA is the k x k identity matrix.

EXAMPLE 1. To determine whetherv;, =[1 01 -1],v,=[4 -6 3 7]and v, =

[-2 3 4 2] are orthogonal, construct the matrix A having v,, v, and v; as its

columns:

([1 4 -2]

[0 -6 3]

[1 3 4]

[-1 7 2]]

Then check to see that

[[3 0 0]

ATA= [0 110 O] .

[0 0 33]]

so the vectors are orthogonal.

More generally, since the (i, j)-entry in AB is the dot product

(row of A) e (col j of B), we see that AB = 0 iff the rows of A are orthogonal to the

columnsof B.

ORTHOGONALITY 473

Two subspaces W; and W, of R" are said to be orthogonal subspaces if every

vector in one is orthogonal to every vector in the other:

uev=0forall u in W; and v in W,.

By the orthogonal complement of a subspace W of R" we mean the subspace W+ of R"

consisting of all vectors in R" that are orthogonal to W. The four fundamental

subspaces associated with a matrix are examples. Indeed,

xe NS(A) <=> Ax=0

<=> x is orthogonal to the rows of A

<=> x is orthogonal to RS(A).

Thus, the nullspace NS(A) and the rowspace RS(A) are orthogonal complements.

Since the same is true for AT, and the row space of AT is the column space of A, we

also have:

x € NS(AT) <=> x is orthogonal to CS(A).

Thus the left nullspace NS(AT) and the column space CS(A) are orthogonal

complements.

Activity Set 17.1

1. Let < x,y > denote the standard inner product of vectors x, y in R" or C". Use

the following pairs of vectors to verify the Cauchy-Schwartz Inequality:

I<xy>|<lxll lyl

(a) x=[1-23-5],y=[69 -7 3]inR4,

(b) x=[1+i-2+3ii],y=[3-4i -i 5+i]inC3,

(c) Any two random vectors of your choosing in R>.

474 CHAPTER 17

Use the vectors in (a), (b) and (c) of Activity 1 to verify the triangle inequality:

lx+yli<lixll+llyll

The Pythagorean Equality in R" say that for any orthogonal vectors u and v,

Nu+ol2=ul?+|v|?

u+v

u

Verify this equality for the following pairs of orthogonal vectors:

(a) u=[-6437] and v=[3 -2 4 2]

(b) u=[2-1-11] and v=[322-2]T

Verify that each of the following sets of vectors forms an orthogonal set:

(a) uy,=[1-12-1],u,=[120-1},u;3=[2002],u,=[-2232]

b) v =[1/N6 1/N6 0 2/N6],v,=[-1/N3 -1/¥3 0 1/43],
vy=[-1/2 1/2 0 0]

() wy;=[-15555]w,=[1111],wy;=[0-211]

For each of the matrices A given below:

(a) Find a basis for the nullspace NS(A) of A and for the row space

RS(A) of A.

(b) Verify that NS(A) and RS(A) are orthogonal subspaces by checking that

every basis vector for NS(A) is orthogonal to every basis vector for RS(A).

(c) Find a basis for the left nullspace NS(AT) of A and a basis for the column

space CS(A) of A.

ORTHOGONALITY 475

(d) Verify that NS(AT) and CS(A) are orthogonal subspaces by checking that

every basis vector for NS(AT) is orthogonal to every basis vector for CS(A).

(1 2 1] (1 2 1 7]

i) [2 3 0] (ii) [1 2 0 4]
[-1 -5 -7]] [2 -4 0 -8]]

(1 2 2 1 2 2]
[([1 -2 0 4 0]

[0 0 1 -1 1 0]
ap L2410 i 1 2 2 0 1 3]G g g 4 q g 0

[2 4 3 -2 4 2]
[-3 2 6 2]]

[1 2 1 -2 3 2]]

17.2 ORTHONORMAL BASES

We have already noted some of the advantages in having an orthonormal basis

Uy, Uy, ..., Uy for a subspace W of R". The basis vectors are mutually orthogonal and

have length 1, so in this respect they are just like the standard basis vectors

€y, €y, -, € for R¥, where ; is column j of the identity matrix. Also, orthonormal

bases are valued for the ease with which they enable us to write any vector w

in W:

w=(wev,)v;+(wWev,)v, +..+(wev)y .

The coefficients in this equation are just dot products, and can be found by a simple

matrix multiplication instead of the more involved process of solving a linear

system:

— —_— °0 vlw

476 CHAPTER 17

And finally, if vectors u and w in W are written in terms of the orthonormal

basis vectors, u = x;v; + ...+ x3v and w =y10; + ...+ Y, v , then it is easy to see

that the dot product of u and w is given by the simple equation

uHew=x1Yy, +...+ XYy .

Thus, dot products in W appear just as they do when we are using the standard basis

vectors in R". Each non-zero subspace W of R" has an orthonormal basis, and we

shall soon consider the Gram-Schmidt process for constructing such a basis. But first,

we need to review the notion of the orthogonal projection of one vector onto another.

The word projection comes from visualizing vectors in R? and R3 as arrows, and

pictures such as the following:

X - projy X
b

Ys
projy * -

Figure 1.

As Figure 1 suggests, the orthogonal projection of vector x onto vector y, proj,x is a

scalar multiple of vector y, and the vector x - proj,x is orthogonal to y:

(i) projyx =ky, for some scalar k

(ii) x-proj,x is orthogonal to y.

These two facts combine to tell us the scalar k:

O=(x-ky)ey (condition (ii))

O=xey-k(yey)

ORTHOGONALITY 477

Xy
yey

Thus,

. xXey
1 roj, X =(1) proj, (y.y)y

When working in R" with n > 3, we take equation (1) as the definition of the

projection vector proj,x ; it is then easy to verify that condition (ii) also holds.

The following program, PROJ, can be used to calculate the orthogonal projection

of x onto y.

PROJ (Projection vector)

Inputs: level 2: a vector x

level 1: a vector y

Effect: Returns the orthogonal projection vector projyx

« 5> XY « XYDOTY * YYDOT/ » »

EXAMPLE 2. Forx =[5 15 5]andy =[3 4 5] find projyx and verify that

x — proj,x is orthogonal to y.

Put two copies vector x on the stack, followed by two copies of vector y. The

command 4 ROLLD will rearrange the stack to

level 4: y

3: x

2: x

1: y

478 CHAPTER 17

Press PROJ to see proj,x, then subtract to see x - proj, x, then use DOT to see

y ® (x - proj,x).

More generally, we can consider the orthogonal projection proj,b of a vector b

W\ b -proj wb
z

2N
proj wP

onto a subspace W:

Figure 2.

Later we shall define the projection vector proj,b precisely; but for now all we

need to remember is what our geometric intuition tells us: that vector b — proj,b is

orthogonal to each vector in W.

The Gram-Schmidt Process

The Gram-Schmidt process is a procedure for building an orthonormalbasis g,

45, ---» 4, from a given basis x,, x,, ..., x; for a subspace W. Here’s how it works in R".

Let g, be the normalized version of x, : g, = l-l—;c-ll—fl . Then, inductively, having

constructed orthonormal vectors g;, ..., ;, we construct g;,; as follows:

(*) 4,1 = Xj,; — (the sum of the projections of x;,; onto q;, q,, ..., q;), normalized.

Thus, before normalization, g;,; = x;,; — (the projection of X;,; onto the subspace

spanned by gy, ..., ;).

ORTHOGONALITY 479

Let’s look at several steps:

Step 1: ¢, =x;, normalized

Step 2: gq,=x,- Mfir
normalized

the projection of x,onto q,

Step 3: g, =x,-(x;99,)q,- (x;049,)q, , normalized
| J

the sum of the projections of xyonto q,and q,

etc.

This is the standard Gram-Schmidt process (there are variations). You should recall

that, at each stage, Span [x,,..., x;] =Span[4,,...4;], so when we're done,

W=Span|[x;,...,x,] =Span[q,, ... g,] and we have an orthonormal basis for W.

To use the HP-48G or 48GX, we begin with the basis vectors stored as variables

X1, X1, ..., XK in user memory and execute a simple one-line program to carry out the

construction at each step.

Step 1: « X1 X1 ABS / E’ Q1 (calculates g, and

stores it as Q1)

Step 2: « X2 X2 Q1 PROJ — DUP ABS /] @2
(calculates g, and stores it as Q2)

Step 3: « X8 X8 Q1 PROJ - X3 Q2 PROJ — DUP ABS / |[ENTER IEVALI

[:l Q3 (calculates g, and stores it as Q3)

and so on.

480 CHAPTER 17

The purpose of the programs (instead of simply doing the calculations on the stack)

is simple: you can review your work before execution.

EXAMPLE 3. Apply the above construction to the vectors x; =[2 1 0], x, =[0 1 1],

andx; =[2 0 2]inR3. You should obtain these results:

Q1. [.894427191 4472135955 0]

Q2: [-.298142697 596284794 .7453559925]

Q3: [.333333333334 -.666666666665 .666666666665 | .

You may not recognize the entries, but the Q1, Q2 and Q3 you constructed in Example
1 1

3 are actually the calculator’s approximations to g, = E [2 1 0], 49, = 3—\[—5

[-2 45],and g4 =-é— [2 -4 4]. Once you have Q1, Q2, Q3 as stored variables, you

should check to see how close they are to being orthonormal by putting Q1, Q2, Q3

on the stack (in this order), pressing 3 COL— to create a matrix

|
= T -Q=|Q Q Q| then|[ENTER | [TRN] [SWAP [x to see QTQ. Clean up round

|1

off error with 11 RND and you should see I,.

The Gram-Schmidt process, as we have presented it, is numerically unstable in

floating point arithmetic. That is, round-off errors may conspire to produce vectors

that are not, numerically, orthogonal. Although there is a variation of the Gram-

Schmidt process that is more stable, it is not so geometrically obvious. In practice

other methods are used: Householder reflections or Givens rotations. These are

orthogonal matrices that can be used very effectively to build orthonormal vectors.

ORTHOGONALITY 481

Finally, we return briefly to an idea that we met at the beginning of this section

and which was central to our discussion of least squares solutions: the projection

projwb of a vector b onto a non-zero subspace W of R”. It is not difficult to show

that any vector b can be written as a sum of two vectors:

b=f7\+z

where f)\ isin W and z is in W, the orthogonal complement of W. Moreover, this

decomposition of b is unique: for any given vector b, b and z are unique. Vector b

is known as the projection of b onto W:

b= projwb.

Since b is uniquely determined by b and W , it is independent of any particular

basis that we may use to describe W. Nevertheless, the proof of the existence of b

shows that we can always describe it in terms of any orthonormal basis

{v1, vy, ..., v } for W:

projwb=(bevy)vy + (bevy)uy +...+ (bevy)v.

Thus projwb is the sum of the projections of vector b onto the individual basis

vectors in any orthonormal basis for W.

Activity Set 17.2

1. (a) Use the RANM command to generate a random 4 x 3 matrix over Z,, whose

columns will be called u, v and w.

(b) Find proj,u and verify that u - proj,u is orthogonal to v.

(c) Find proj,u and verify that u - proj,u is orthogonal to w.

2. (a) Use the RANM command to generate a random 4 x 3 matrix over Z,, whose

columns will be called x,, x, and x;.

482 CHAPTER 17

(b)

(c)

(d)

(b)

(c)

(d)

4. (a)

(b)

(c)

(d)

(e)

(f)

Construct an orthonormal basis { q,, g, } for W =Span [x; x,].

Find the projection vector proj,x; of x; onto W.

Verify that x, - proj,x, is orthogonal to W by checking thatit is

orthogonal to both x; and x, .

Use the RANM command to generate a random 5 x 4 matrix over Z,, whose

columns will be called x,, x,, x3 and x,.

Construct an orthonormal basis { q,, 4, ,q3 } for W =5pan [x; x, x, |.

Find the projection vector proj,x, of x; onto W.

Verify that x; — proj,x; is orthogonal to W by checking thatit is

orthogonal to x;, x, and x, .

Normalize v =[1 -2 1 -3 1] to get a unit vector, then convert it to a

column matrix w.

Use w to build a Householder matrix H =1 - 2ww?.

Verify that H is orthogonal.

Look at H. What else is obvious?

In view of your conclusion in (c), without calculating, what will H! be?

Verify your result in (d) with a calculation.

17.3 ORTHOGONAL MATRICES AND QR-FACTORIZATIONS

Orthonormal bases are, in essence, rectangular coordinate systems. But what do

we know about the change of basis matrix, call it Q, from one orthonormal basis B to

another orthonormal basis B’? Without going into the details here,it is not hard to

ORTHOGONALITY 483

see that QTQ =1, or in other words, that the columns of Q are orthonormal vectors.

Even more is true: since Q is square, the equation Q7Q = I guarantees that also

QQT = I, which says that Q also has orthonormal rows and Q1 = QT.

In general, we shall call a square matrix Q orthogonal if QTQ =1. Any

orthogonal matrix Q has orthonormal columns, orthonormal rows, and QT = Q1. Two

other properties of such matrices are worth noting:

(i) Q preserves lengths: || Qx || =[x ||, all x

(ii) det Q ==1.

If we are called upon to solve a linear system Qx = b with Q orthogonal, it is

easy enough: x = Qb = Q7b.

Not only do orthogonal matrices occur when we change from one orthonormal

basis to another (as for instance, when we rotate R3), but they lie at the very heart of

the Gram-Schmidt process. In fact, just as Guassian elimination without row

interchanges on a matrix A amounts to an LU-factorization A = LU, the Gram-

Schmidt process applied to a matrix A having independent columns amounts to a QR-

factorization A = QR where Q has orthonormal columns and R is an invertible upper

triangular matrix.

To see this, look back at the steps in the Gram-Schmidt process, and in each

step solve for the x-vector:

Step 1: x, is a scalar multiple of q,, say x; =71,,4;

Step 2: x, is a linear combination of g, and g,, say x, = 7,4, + 7,4,

Step 3: x; is a linear combination of g,, g, and g, say x; =739, + 7530, + 7333

Step j: x;is a linear combination of 4y, q,, ..., q;, say X; = 114, + 15/, + ... + 74

484 CHAPTER 17

Let A be the matrix having x,, x,, ..., x,, as its columns, left-to-right, and let Q be

the matrix having ¢,, q,, ..., q, as its columns, left-to-right. Let R be the right

triangular matrix determined from the coefficients r;; above:

n 7'12 7’13 rln

In terms of the matrices A, Q, and R the above steps show us that

collof A = Q(col 1 of R)

col2o0f A = Q(col 2 of R)

col30of A = Q(col 3 of R)

coljof A = Q(coljof R)

so that we have A = QR. Moreover, since the vectors 41,95, ---» 4, are orthonormal,

we know that QTQ =1 and that the ith coefficient in the linear combination

is given by r;; = g;¢ x; . Matrix R is invertible since its diagonal entries are positive:

11> 0 because r;; = || x; ||, 7,, > 0 because 7,, = || x, — (x, ® g,)4;Il, etc. Finally, using

QTQ =Iand A = QR we can obtain R as follows: QTA = QTQ R = R.

Thus, when the Gram-Schmidt process is applied to the columns of an mxn

matrix A whose columns are independent we get a factorization A = QR, where Q is

the same size as A and has orthonormal columns, and R = QTA is the n X n invertible

upper triangular matrix whose non-zero entries are given by rii = 4,9

To construct the factors Q and R on the HP-48G or 48GX:

ORTHOGONALITY 485

(1) Start with A and its columns X1, X2, ..., XN stored in user memory.

(2) Construct Q1, Q2, ..., Qu from X1, X2, ..., XN by the Gram-Schmidt process.

(3) Construct and store matrix Q:

Q1 Q2 .. N N [coL— [+] a [sTO].

(4) Construct and store matrix R: R = QTA.

You can verify that A = QR as follows:

Press to put A on level 2 and Q * R on level 1, then use the

command RND as necessary to clean-up round-off error in Q * R. Now press \x(

SAME). (| SAME is located on the second page of the PRG TEST menu; a1

indicates A = QR, and a 0 indicates A # QR. If you forget to clean up round-off

error, you probably won't get A = QR.)

EXAMPLE 4. Continuing with the vectors from EXAMPLE 3, construct A as

[[20 2]
A= [110]

[012]]

After constructing) you should see

[[.894427191 -.298142397 .33333333334]

Q= |[.4472135955 .596284794 -.666666666665]

[0 .7453559925 .666666666665]]

After constructing R you should see

[[2.2360679775 .4472135955 1.788854382 |

R= [0 1.3416407865 .894427191 |

[.000000000003 0 2 1]

Verify that A = QR:

486 CHAPTER 17

11 RND returns 1. Now purge R, Q,

A, Q3, Q2, Q1, X3, X2, X1 from user memory.

The factorization A = QR of a matrix A with independent columns produced by

the Gram-Schmidt process is usually the only type of QR-factorization encountered in

an introductory study of linear algebra. But QR-factorizations of more general

matrices, obtained by more sophisticated numerical methods, are in widespread use

by the professional matrix codes that are used in science and engineering. The HP-

48G and 48GX calculators incorporate such professional code for a variety of

applications, including producing least squares solutions to linear systems, and for the

calculation of eigenvalues and eigenvectors. Although a detailed discussion of these

ideas is beyond the scope of this brief chapter, a few comments on the QR-

factorization made accessible to users of the HP-48G series calculators is in order.

The command QR (located on the MTH MATR FACTR menu) will return a QR-

factorization of any m x n matrix on level 1: AP = QR. Here, Q is an m X m

orthogonal matrix, R is an m X n upper trapezoidal matrix, and P is ann X n

permutation matrix. Matrix P appears on level 1, R on level 2, and Q on level 3 of

the stack. Likewise, the adjacent command LQ will return an LQ-factorization of

matrix A (the QR-factorization of AT). Here, A is factored as PA = LQ where P is

an m X m permutation matrix, L isan m xn lower trapezoidal matrix, and Q is an

n x n orthogonal matrix.

For example, with the matrix

[[-5 -2 2 0]
A=[1 38 -5 7]

[-9 2 5 0]]

on level 1, executing the command QR will return the permutation matrix

ORTHOGONALITY 487

[[1 0 0 0]
[0 0 1 0]

P= 10 0 0 1]

[0 1 0 0]]

to level 1, the upper trapezoidal matrix

[[10.3440804328 .676715542332 -.483368244523 -5.80041893427]

R= [0 -6.96721293451 -3.06106659926 4.46014305107]

[0 0 -2.7196004146 -.67990010365]

to level 2, and the orthogonal matrix

[[-.483368244523 -4.69488742217E-2 874157276122]

Q= [9.66736489046E-2 -.995316133501 -8.E-16]

[-.870062840141 -.845079735991E-2 -.485642931179]]

to level 3. A quick calculation (using 10 RND to clean up round-off error) shows that

QR = AP.

Activity Set 17.3

1. Consider the following matrix

[[1 4 -2]

[1 -1 4]

[1 -1 0]

[1 4 2]]

(a) Verify that the column vectors of A are linearly independent.

(b) Without using the built-in command QR, construct a QR-factorization of

matrix A. Verify your results.

488 CHAPTER 17

(c) Use the built-in command QR to obtain an AP = QR factorization of matrix

A. Verify your results.

(d) Verify that the Q matrix from (c) is an orthogonal matrix.

Repeat Activity 1 for the following matrix

([t -2 -1]

[2 0 1]

T [2 -4 2]

[4 0 0]]

Now that you have mastered the traditional Gram-Schmidt algorithm, you

may find it convenient in the future to use the following program GS, which

automatically produces the orthonormal vectors. Actually, the program

implements the modified Gram-Schmidt algorithm in order to be as numerically

accurate as possible.

« > n « 5LIST -L « 1 n FOR k 'L(k)' EVAL DUP ABS / 'L(k)'

STO IF k n # THEN k 1 + n FOR j 'L(j)' EVAL DUP 'L(k)) EVAL

DUP 3 ROLLD DOT * - 'L(j)’ STO NEXT ELSE END NEXT L OBJ—

DROP » » »

GS (Gram-Schmidt Algorithm)

Input: levels 2 — n: vectors X1, ..., XN

level 1: the number n of vectors

Effect: Applies the modified Gram-Schmidt Algorithm to

vectors X1, ..., XN and returns the orthonormal

vectors Q1, . . ., QN

Rework Activities 1 and 2 using this program.

ORTHOGONALITY 489

17.4 LEAST SQUARES SOLUTIONS

An important application of QR- and LQ-factorizations is to obtain least squares

solutions to linear systems.

Sometimes we seek to solve a linear system Ax = b for which either no solution

exists, or else there are infinitely many solutions from which to choose. In either

case, we may seek a vector x for which the distance || Ax - b ||, from Ax to b is as

small as possible. Here, || || denotes the 2-norm of the included vector and such an x

is called a least squares solution because minimizing || Ax - b ||, is equivalent to

minimizing || Ax - b ||§, which is a sum of squares.

We thus seek x so that vector Ax, which lies in the column space W of A,is

closest to b. Looking back at Figure 2 we see that Ax must be the projection of vector

b onto the column space W, in which case b - Ax is orthogonal to each vector in

CS(A). Remembering that the vectors that are orthogonal to CS(A) are precisely

the vectors in NS(AT), we are practically forced into AT[b — Ax] = 0, or equivalently

ATAx = ATb.

The linear system ATAx = ATb is referred to as the system of normal equations;

thus, vector x is a least squares solution to Ax = b iff it is a solution to the associated

system of normal equations. In general, the normal equations will have more than

one solution. But in the special case that A has full column rank, i.e., rank A =n, we

know that ATA is invertible, so the system of normal equations ATAx = ATb has a

unique solution x. Since, in general, there may be more than one least squares

solution, we desire one having minimum norm; that is, a least squares solution x for

which || x||; is minimal among all such solutions.

More generally, with an array B on level 2 and a matrix A on level 1 of the

stack, the command LSQ (a menu key is on the MTH MATR menu) will return a

490 CHAPTER 17

minimum norm least squares solution of the generalized system AX = B. If Bis a

vector then the solution X has the minimum norm || X ||, over all vectors X that

minimize || AX - B ||,. If B is a matrix, then each column X; of X is a minimum norm

least squares solution of AX; = B, The LSQ command constructs the solution X by

computing a “complete orthogonal factorization” of the coefficient matrix A using

either, or both, of the QR- and LQ-factorizations of A. Complete orthogonal

factorizations are somewhat beyond the scope of introductory linear algebra.

For example, to obtain a minimum norm least squares solution to the linear

system

20 - 3% + 3 - 3 + 2% = 6

20 + 3% - 3 + 44 + x5 = -5

6x; - 9% + 7x3 - 7x4 + 5x5 = 20 ,

20 + 3% + 3xg + 3 - 9% = 6

enter vector [6 -5 20 -6] onto level 2, then the coefficient matrix

[[2 -3 1 -3 2]
[-2 3 -1 4 1]
[6 -9 7 -7 5]
[-2 3 3 3-9]]

onto level 1 and execute the LSQ command. The solution that is returned is

x = [.47724708537 -.715870628056 .809514855209 -.38779751786 .462579917262].

Fitting Curves to Data

Least squares solutions arise in curve fitting problems. Suppose we have n data

points (x;, ¥,), (x5, Y¥5), ..., (x,, y,) where all the x.’s are distinct. Consider thej

problem of finding a polynomial P(t) = ¢, + c;t + ... + c,,t™ of degree < m that passes

through these data points, i.e. fits the data. We know from elementary mathematics

ORTHOGONALITY 491

that we can fit a line to any two data points, and a quadratic polynomial to any

three. Therefore, we shall require that the number n of data points exceed the

degree m of the polynomial: n 2m + 1. Our requirements are P(x;) =y, for

i=1,.., nor

m _C + X + .+ x =y

G + x5 + ..+=y,

C + X, + ...+xt =y,

This linear system has n equations and (m + 1)-unknowns (the coefficients of the

polynomial P(t)).

In terms of matrices, the system is Ac = y, where

lxle =
—

=
N
3

CO yl

C1 yz

and c=| . andy =

Cm Yn

Since there are at least as many equations as unknowns, the system will, in

general, be overdetermined and we naturally seek a least squares solution. However,

A has independent columns, for if Ac = 0 were to have a non-zero solution, this would

mean that there is a non-zero polynomial P(t) of degree < m having m + 1 roots ..

492 CHAPTER 17

an impossibility. Then, since A has independent columns, there is a unique least

squares solution, given by the unique solution to the normal equations

(ATA)c = ATy.

It is tempting to obtain the least squares solution by calculating x = (ATA)1ATy or

by applying Gaussian elimination via the / command. But the coefficient matrix

ATA is likely to be ill-conditioned, in the sense that solutions to (ATA)x = ATy are

somewhat sensitive to perturbations caused by round-off errors. This is especially

the case with large data sets where the x-values are equally spaced. Thus, good

computational practice suggests that the above two approaches to solving the normal

equations be abandoned in favor of the more sophisticated one provided by the

calculators built-in LSQ command. We shall return to this conditioning question in

the Activities.

The following program, P.FIT, will create the coefficient matrix A.

P.FIT (Polynomial Fit Matrix)

Input: level 2: an integer m

level 1: a list {x, x,, ..., X,)}

Effect: Returns the matrix

2 m
1 X X ... X

1 1 1

2 m
1 X X .. X

2 T2 2

1 X 2 m
nxn'xn

« DUP SIZE > miIst n « 1 n FOR jIst j GET - x « 1 1 m FOR

i x i ANEXT » NEXT n m 1 + 2 = LIST - ARRY » »

ORTHOGONALITY 493

EXAMPLE 5. Find the least squares cubic polynomial that fits the data: (1, .6),

(2, 1.2), (3, 2), (4, 2.8), (5, 4.1).

Key in the number 3, then the list {1 2 3 4 5} of the x-coordinates of the data

and press to see

(11 1 1]
[1 2 4 8]

A= [13 9 27]
[1 4 16 64]
[1 5 25 125]]

Now puty =[.6 1.2 2 2.8 4.1] on the stack, SWAP levels 1 and 2, and execute the

LSQ command to see the least squares solution ¢ = [-.16 .85 -.125 .025]. Thus the

least squares cubic polynomial fit is P,(t) = -.16 + .85t — .125t% + .025t3.

Activity Set 17.4

1. Consider the overdetermined linear system

le - XL + X3 = 0

le + 3x2 - X3 = 1

3 - 3% + 3x =8

3 + x + x3 =6

(a) Show that this system is inconsistent (i.e., has no solution in the usual

sense) but that the coefficient matrix A has full column rank.

(b) Obtain the unique least squares solution by applying Gaussian elimination

to the associated system of normal equations.

(c) Obtain the unique least squares solution by applying the LSQ command.

2. (a) Fill-in the following table of values for f(x) = (x + 2)?e* (3 decimal places).

494 CHAPTER 17

X | 22] 1 | 5 | 15

y=(x+2)2%e*

(b) Plot the 5 data points.

(c) Find the least squares cubic polynomial P,(x) for this data; overlay your

data plot with the graph of P,(x).

(d) Find the least squares polynomial P,(x) of degree 4 for this data; overlay

your data plot with the graph of P,(x).

Augment the data in our last example with a sixth data point (6, 5.8), so that

the data becomes (1, .6), (2, 1.2), (3, 2), (4, 2.8), (5, 4.1), (6, 5.8) and consider the

problem of fitting a cubic polynomial to this data.

(a) Build the coefficient matrix ATA of the system of normal equations

(b)

(c)

and obtain an approximation to its condition number with the

command COND on the MTH MATR NORM menu. This large condition

number (= 3 x 10°) indicates that ATA is ill-conditioned so that using

Gaussian elimination or matrix inversion to solve the normal equations

may produce inaccurate results.

Find the least squares cubic polynomial by using the LSQ command,

then with the / command; note that the two solutions agree to 12

decimal places.

Now find the least squares cubic polynomial by applying the RREF

command to the augmented matrix, then by inverting the coefficient

matrix. Compare the accuracy of the two solutions with those

obtained above in (b).

EIGENVALUES AND

EIGENVECTORS

Eigenvalue-eigenvector considerations are of paramount importance in many of

the applications of linear algebra to science and engineering, especially in those

applications involving systems of linear differential equations. The HP-48G/GX

calculators can assist students in developing conceptual understandings by removing

the computational burden associated with hand calculation of characteristic

polynomials, eigenvalues and associated eigenvectors, and the construction of

diagonalizing matrices. We have already seen how to use the calculators to solve

linear systems (useful for finding eigenvectors) and to construct orthonormal bases.

What remains is to see how they might be reasonably used in eigenvalue-eigenvector

investigations.

18.1 THE CHARACTERISTIC POLYNOMIAL

Given a square matrix A of order n, any real or complex number A for which

there is a non-zero vector x such that Ax = Ax is called an eigenvalue of A, and the

vector x is called an associated eigenvector. If matrix A is regarded as an operator

acting on vector x, then Ax = Ax simply says that A sends x onto a scalar multiple of

itself. To find such pairs (4, x) we consider the equation Ax = Ax, which is clearly

equivalent to (A — Al)x = 0. For a given eigenvalue 4, x is an associated eigenvector

iff x is a non-zero solution to the homogeneous linear system with coefficient matrix

A - Al. So the eigenvectors of A associated with A4 are just the non-zero vectors in the

nullspace of A — Al. We often call this nullspace the eigenspace of A determined by A.

495

496 CHAPTER 18

Although it is no easy task to find the eigenvalues of matrix A, theoretically

things are simple. For we know that (A — AI)x = 0 has a non-zero solution iff A — Al

is singular, which happens precisely when det(A — AI) = 0. The left-hand side,

det(A — Al), is a polynomial of degree n in A, called the characteristic polynomial of

matrix A. Some writers prefer to use det(Al - A) instead, but the difference is minor

since these two polynomials differ only by a factor of (-1)". What really counts is

that the eigenvalues of A are the roots of either of these polynomials, and for any

such root A the associated eigenvectors are the non-zero solutions to the homogeneous

linear system (A — Al)x = 0.

All this is rather elegant from a purely algebraic viewpoint, but it can be a

computational nightmare. In the first place, the defining equation for the

characteristic polynomial, det(A - AlI), is computationally impractical for all but

small, highly-specialized matrices. And secondly, it is no easy task to determine

the roots of a polynomial.

Given an n X n matrix A, the calculator program CHAR will calculate the

coefficients of the monic polynomial det(Al - A) = A" + ¢,;A"+ ...+ ¢;A + c,, which

is the characteristic polynomial of A, or (-1)" times the characteristic polynomial of

A, depending upon your point of view. The program implements the SOURIAU-

FRAME method, which uses traces of the first n powers of A.

EIGENVALUES AND EIGENVECTORS 497

CHAR (Characteristic polynomial)

Input: level 1: an nx n matrix A

Effect: returnsavector[1 ¢,.. ¢, ¢,]of

coefficients of det(Al-A)=A"+c,A" + ... +

CiA + ¢,

« DUP SIZE 1 GET {1} - Mtx n Poly « Mtx 1 n FOR j 0 1 n FOR

k OVER {k k} GET + NEXT j NEG / 'Poly' OVER STO+ Mix DUP

ROT * SWAP ROT * + NEXT DROP Poly OBJ— —ARRY » »
EXAMPLE 1. Enter the following matrix onto level 1:

[[4 -8 2 5]
[0 1 -6 -2]
-9 0 7 1]
[7 3-8 9]]

Execute CHAR to see the vector of coefficients [1 -21 144 -421 -4623]. Thus

det(Al — A) = A* — 21A3 + 144A% — 4214 — 4623. Retrieve the matrix with UNDO

and then execute the TRACE command (on the MTH MATR NORM menu) to see 21 for

the trace.

Activity Set 18.1

1. (a) Generate and store random 3 x 3 matrices A and B over Z,,.

(b) Compare trace A, trace B and trace (A + B). What do you observe?

(c) Repeat (a) - (b) using random 4 x 4 matrices.

(d) Formulate a conjecture on the basis of your observations. Prove your

conjecture.

498 CHAPTER 18

(a) Generate a random 3 X 4 matrix A and a random 4 x 3 matrix B, both

over Z,,.

(b) Compare trace (AB) and trace (BA); what do you observe?

(c) Repeat (a) - (b) for random 3 x 5 and 5 x 3 matrices over Z,,,.

(d) Formulate a conjecture on the basis of your observations. Prove your

conjecture.

(a) Generate a random 3 X 3 matrix A over Z,,.

(b) Calculate the characteristic polynomials of A and AT. What do you

observe?

(c) Repeat (a) - (b) for random 4 x 4 and 5 x 5 matrices over Z,,,.

(d) Formulate a conjecture based upon your observations.

(e) Prove your conjecture.

Generate and store random 3 X% 3, 4 x 4, and 5 x 5 matrices over Zy,,.

(a) For each of these matrices A, calculate detA, traceA, and the polynomial

det(Al - A). What do you observe?

(b) Formulate your observations into conjectures; then discuss your conjectures

with your instructor.

Let A,(1) denote the n X n matrix of all 1’s.

(a) Find det[AI-A(1)] forn =2,3,4,5.

(b) For arbitrary n what will det[A] - A(1)] be?

(c) What are the eigenvalues of A, (1)?

Given the polynomial p(A) = A" + ¢,;A" + ... + c; A + ¢, its companion matrix is

(a)

(b)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

EIGENVALUES AND EIGENVECTORS 499

0 1 O 0
0O 0 1 0

C =
0O 0 O 1

For each of the following polynomials find its companion matrix and the

characteristic polynomial det[Al — C] of the companion matrix:

(i) p(A) =A% +5A2-31+2

(ii) p(A) =A% -6A% +2A? -51+7

(iii) p(A) =A% +5A% +4A3 + 342 + 24 + 1

What is the characteristic polynomial of the companion matrix for

pA) = A"+ c,A"+ o+A+ cy?

Generate two random 3 x 3 matrices A and B over Z,, and calculate the

characteristic polynomials of AB and BA. What do you observe?

Repeat (a) for random 4 x4 and 5 x 5 matrices over Z,,,.

Repeat (a) - (b) for random 3 x 3,4 x4 and 5 x 5 complex matrices over Z,.

Formulate a conjecture based upon your observations. Discuss your conjecture

and its implications with your instructor.

Generate a random 3 x 3 matrix A over Z,, and put two copies of A on the

stack.

Find the characteristic polynomial p(x) of A and use program P.of.A to

evaluate p(A).

Repeat (a) — (b) using random 4 x 4 and 5 x 5 matrices over Z,,.

500 CHAPTER 18

(d) Repeat (a) — (c) using random 3 x 3,4 x4 and 5 x 5 complex matrices

over Zm.

(e) Formulate a conjecture based upon your observations. Discuss your conjecture

with your instructor.

18.2 EIGENVALUE CALCULATIONS

Although low order matrices having integer entries are not typical of the

matrices encountered in scientific and engineering applications, they serve us well in

the learning process. But even with such matrices, finding the eigenvalues by hand

as the roots of the characteristic polynomial is a difficult, if not impossible, task

unless the matrices are highly contrived. To avoid such contrivance, we may use the

polynomial root-finding routine PROOT on the HP-48G/GX calculators. PROOT will

find all roots of an arbitrary real or complex polynomial a,x" + a,_1x""! + ... a;x +a,.

It requires as input the vector [a, a,_; ...4a; ap] of coefficients.

EXAMPLE 2. Put three copies of the following matrix on the stack:

[[1 3 1 -1]

[6 -2 5 1]

A= 13 a3 4 0]

[-3 -3 1 3]]

CHAR returns [1 -6 3 26 -24], so the characteristic polynomial is A* — 64 3+

3A%2 + 26A — 24. The command PROOT returns the vector [1 3 -2 4], showing that

A has four distinct eigenvalues: A = -2, 1, 3 and 4. To find the eigenspace

determined by A = 3 we proceed as follows. With A onlevel2and[1 3 -2 4]on

level 1 extract 3 from the vector with the command 2 GET and build A - 3I with the

commands 4 IDN E To obtain a basis for the nullspace of A - 3I, apply the

RREF command. The result

EIGENVALUES AND EIGENVECTORS 501

[[1 -1]

[0 1]

[0 0]

[0 O 0O O0]]

o
=
+
O

-
O

O

shows that x; is a free variable and that the eigenvectors associated with A =3 are

scalar multiples of x =[1 -1 0 1] DROP the RREF matrix and enter

[1 -1 0 1] Since A still appears on level 2, a simple multiplication will confirm

that Ax = 3x.

EXAMPLE 3. Put two copies of the following matrix on the stack:

[[7 2 4 6]

[-6 -1 -4 -4]

[4 4 5 -2]°

[-16 -12 -14 -3]]

A=

CHAR returns [1 -8 22 -40 25], so the characteristic polynomialis p(A) = A* - 843 +

2272 - 404 + 25. PROOTreturns the vector [(1, 0) (1, 2) (1, -2) (5, 0)] containing the

roots. Thus the eigenvalues of A are A =1,5and 1+ 2i. To find the eigenspace

associated with A = 1-2i we proceed as follows. With A on level 2, extract (1, -2)

from the vector on level 1 with the command 3 GET and build A -(1, -2)I with the

commands 4 IDN E Apply RREF. Use EDIT to view the last column.

Clean up round off error with 11 RND and see that [-1+i 1 -i 1] spans the

eigenspace.

Cofactor expansions tell us that the characteristic polynomial of a matrix A

having only integer entries will have only integer coefficients. Since CHAR uses

traces of powers of A, it will accurately return the coefficients of the characteristic

polynomial of any such A. But finding eigenvalues as the roots of the characteristic

polynomial is seldom done in computational practice because even sophisticated

polynomial root finding routines are often limited in their ability to obtain multiple

502 CHAPTER 18

roots with a high degree of accuracy. For example, the roots of x* — 843 + 1042 + 484

~99are A =33 and 1+2V3. Although PROOT returns decimal approximations to 1

+ 2\/_3_ that are accurate to twelve places, it returns 2.99999907027 and 3.00000092973

for the other two values.

The numerical computation of eigenvalues is much more complicated than the

numerical solution of linear systems and any discussion of the appropriate procedures

is well beyond the scope of this brief chapter. But the HP-48G and 48GX calculators

include code for finding eigenvalues and eigenvectors that is based upon advanced

numerical techniques that use the Schur factorization of a matrix. (You can obtain a

12-digit version of the Schur factorization via the command SCHUR.)

EXAMPLE 4. We use the following matrix A

[[-14 -16 -26 -9]
[16 19 28 12]
[-7 -8 -1 -7]
[13 14 24 14]]

Make another copy with I ENTER |. ' CHAR returns [1 -8 10 48 -99], and we

have seen that PROOT returns only two of the four eigenvalues with 12-digit

accuracy. Drop this vector. Then with A on level 1, the command EGVL (on the

MTH MATR menu) returns the vector [4.46410161514 -2.46410161514 3 3] of

eigenvalues accurate to 12-digits.

Activity Set 18.2

1. Adding a multiple of a row to another row will not change the determinant of a

square matrix A. Will this change the eigenvalues? The characteristic

polynomial? Use your calculator to investigate these questions by experimenting

with random 3 X 3 and 4 x 4 matrices over Z.

2. Consider the following matrix

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)

(f)

EIGENVALUES AND EIGENVECTORS 503

[[4 8 2 5]

[0 1 -6 -2]

[<9 0 7 1]

[7 3 8 9]]

Find the characteristic polynomial of A, then use PROOT to obtain the

vector of eigenvalues as the roots of this polynomial. Go to the PRG TYPE

menu and use the OBJ— command to separate the vector into its component

eigenvalues (use DROP to remove the list { 4 } that indicates the size of

this vector).

With the roots of the characteristic polynomial still on the stack, use the

EGVL command to obtain the vector of eigenvalues of matrix A. As in part

(a), separate this vector into its component entries.

Use the interactive stack (e.g., the IZI and the ROLLD command) and

the command SAME (on the PRG TEST menu) to compare the accuracy of

the eigenvalues obtained by the two methods.

Calculate and store a random 3 X 3 matrix A over Z,,. Calculate detA and

traceA.

Compare traceA with the sum of the eigenvalues of A; what do you

observe?

Compare detA with the product of the eigenvalues of A; what do you

observe?

Repeat the above for random 4 x 4 and 5 x 5 matrices over Zy,,.

Formulate your observations as a conjecture.

Discuss your conjecture with your instructor.

504 CHAPTER 18

4. For each of the following matrices, find:

(a) all eigenvalues

(b) for the eigenvalue A of maximum absolute value, the associated eigenspace.

[[2 -8 -1 6 5]
[[4 3 2 1]

[1 7 1 2 -2]
[3 2 1 4]

A= B= [-11 -16 0 10 5]
[2 1 4 3]

[7 -8 -1 10 4]
[1 4 3 2]]

[7 8 1 -6 0]]

[[54 22 -4 -2 -12 -6]

[91 -3¢ 9 2 22 8]

[170 70 -12 -7 -37 -20]

[92 47 0 -8 -15 -18]

[27 7 5 0 7 0]

[0 0 O 0 0 1]]

[[8 6 8 5 -3]

[9 8 -10 -9 1]

C=[1-8 -2 -3 -2 1] D=

[11 11 12 12 1]

[8 -9 -8 -8 -1]]

18.3 SIMILARITY

Given that we earlier made a case for having independent sets of vectors - sets in

which no one vector depends linearly upon the others — we now ask “independence

questions” about the eigenvectors of A. In particular, how large can a set of

independent eigenvectors of A be? Certainly no larger than n, because the

eigenvectors lie in R” and any set of more than n vectors in R" is dependent. And the

case where A has a set of n independent eigenvectors, say { x;, x,, vy X, 1S

especially nice. For then we have

PlAP=D =

EIGENVALUES AND EIGENVECTORS 505

where A, is the eigenvalue associated with x; and P is the matrix having x,, x,, ..., x
n

as its columns:

I
= x, x, ..x

P 1 72 n

In fact, the equation P-'AP =D is equivalent to saying that A has n

independent eigenvectors. This equation is just a rearrangement of AP = PD which,

when read column-by-column, simply says Ax; = 4,x;. The set of x;’s is independent

because the x;’s are the columns of the invertible matrix P. We are thus led to focus

on the case where the n x n matrix A has n independent eigenvectors as the

desirable one, and we call any n X n matrix A having fewer than n independent

eigenvectors a defective matrix.

For a non-defective matrix A the equation P'!AP =D has important

implications. In general, we call matrices A and B similar provided that P-1AP = B

for some invertible matrix P. The term “similar” probably derives from the

elementary result that similar matrices have the same characteristic polynomial, the same

eigenvalues, determinant, trace and rank. When A is similar to a diagonal matrix D

we say that A is a diagonalizable matrix, and the above discussion may be

summarized as follows:

A is diagonalizable iff A has n independent eigenvectors.

Of fundamental help in deciding whether A is diagonalizable is the result that

eigenvectors associated with distinct eigenvalues are independent.

Consequently, if A has n distinct eigenvalues, then A has n independent

eigenvectors, one associated with each eigenvalue, so A is diagonalizable. But it is

506 CHAPTER 18

also possible for A to be diagonalizable even when it has fewer than n distinct

eigenvalues. There are two keys to understanding how this may happen:

(1) For any eigenvalue A of A, the dimension of the eigenspace determined by

A, dim NS(A - AlI), does not exceed the multiplicity of A as a root of the

characteristic polynomial;

(2) If A,, A,, ..., A, are the distinct eigenvalues of A and B,, B,, ..., B, are bases

for the associated eigenspaces then the union of these bases is an

independent set of eigenvectors of A.

Think about the characteristic polynomial of A in factored form:

det(A-A) = (A= A)YA -24,)"2 .. (A=2)"k

where 4,, ..., A, are the distinct eigenvalues and m,, ..., m, are their respective

multiplicities. Since det(Al — A) is a polynomial of degree n, we have n =m; + m, +

... + m,. According to (1), we have dim NS(A - /le) sm, foreach j =1, .., k. Thus,

in the case where equality holds for every j, the bases in (2) will contain exactly m;,

vectors and their union will produce n independent eigenvectors for A. But in the

case that we have dim NS(A - /1]-1) <m; for even one j, the union of the bases in (2)

will fail to produce n independent eigenvectors and A will be a defective matrix.

A is defective ifffor some eigenvalue A there are not enough

independent eigenvectors associated with A.

EIGENVALUES AND EIGENVECTORS 507

EXAMPLE 5. Consider the following matrix:

[[-9 2 -6 0]

[6 1 6 7]

[6 0 3 1]

[3-2 3 -1]]

A=

Program CHAR returns [1 6 9 0 0]. Thus the characteristic polynomial of A is

At + 643 + 942 = A2(A% + 64 + 9) = A2(A+ 3)? and the distinct eignevalues are 0 and -3,

each having multiplicity 2. A quick application of the RREF command to A - 0I and

to A + 31 shows that NS(A - 0I) and NS(A + 3I) each have dimension 1, so A is a

(doubly) defective matrix.

EXAMPLE 6. Consider the following matrix

[[2 5 -1 -2 3]

[0 1 2 4 -6]

A=[0 0 2 1 -2].

[4 2 2 3 2]

[4 2 2 1 4]]

The EGVL command shows the eigenvalues to be A =1, 2, 2, 3, 4. Since A = 2 is the

only repeated root, to settle the question whether A is diagonalizable or defective

we must determine dim NS[A - 2I]. RREF shows two free variables, so dim

NS[A - 2I] = 2, the multiplicity of 2 as a root of the characteristic polynomial. Thus

A is diagonalizable. In fact, a basis for the eigenspace associated with A = 2 consists

of the vectors [-1 4 2 0 O]Jand [0 2 0 2 1]. The eigenspaces associated with

A=43andlhave[1 -2 -1 2 2],[1 -2 -1 1 1]and[-1 2 0 O O] as bases,

respectively. Using these basis vectors as the columns of matrix

508 CHAPTER 18

((1+ 1 -1 0 -1]

[2 -2 4 2 2]

p=[1 -1 2 0 0],

[2 1 0 2 0]

[2 1 0 1 0]]

you can verify that

[[4 O 0O O 0]

[0 3 0 0 0]

PAP=D= [0 0 2 0 0]

[0 0O 0 2 0]

[0 O O 0 1]]

It is important that students understand how to construct a diagonalizing matrix

P for a diagonalizable matrix A by finding bases for the different eigenspaces of A.

But you should also note that the HP-48G/GX calculators will produce such a P with

a single keystroke. With a square matrix A on level 1, the command EGV (on the

MTH MATR menu) will return to level 1 a vector containing the eigenvalues, and to

level 2 a matrix P whose columns are corresponding eigenvectors. In case A is

diagonalizable, the columns of P are independent so that P-1AP is diagonal. You

should try this with the matrix A of our last example. EGV returns[4 3 2 2 1]

as the vector of eigenvalues and you will notice that columns 1, 2, 3, and 5 of the

matrix P that is returned to level 2 are rescaled versions of the vectors we constructed

in the example. If you extract columns 3 and 4 and assemble them as the columns in a

new matrix, the RREF command will show them to be independent.

EIGENVALUES AND EIGENVECTORS

Activity Set 18.3

509

1. (a) Find matrix B = P''AP given the following matrices P and A:

[(r 7 2 4 6] [[0 -1 -1 -1]

[-6 -1 -4 -4] [1 1 0 0]
A = P =

[4 4 5 -2] [-1 0 1 0]

[-16 -12 -14 -3]] [1 0 0 1]]

(b) Use program CHAR to verify that A and B have the characteristic

polynomial.

(c) Verify that A and B have the same eigenvalues, trace, determinant, and

rank.

2. Determine whether the following matrices A are defective or diagonalizable.

For each one that is diagonalizable, find an invertible P and a diagonal D for

which P1AP =D.

[[0 1-2 0] [[10 -5 12 0]
[2 3 -4 0] [9 -4 12 0]

@) 1001 0] ®) 1535 0]
[-1 -1 0-1]] [7 2 9 -2]]

[[8-3 8 0 5] [[1 0O 3 0 -3

[9-412 0 9] [-1 2 2 -1 -2

d [53-50-5] (¢ (00022

[-7 2 -9 0-5] [2 20 40

[2-2 4 0 5]] [2 2-3 15
[0 0 -1 -1 1

[[6 -2 -4 -2]
© [2 3 2 1]

[2 1 0 -3]
[2 -1 2 5]]

3]

3]

2]

0]

2]

411

510 CHAPTER 18

18.4 REAL SYMMETRIC MATRICES

The most important matrices for the physical sciences are the real symmetric

matrices, real matrices A satisfying AT = A. Such matrices play a significant role in

a number of applications.

We have seen that for a general matrix, repeated eigenvalues may lead to a

defective matrix. But this never happens with a real symmetric matrix:

every real symmetric matrix is diagonalizable.

This is because for each eigenvalue A there are “enough” independent eigenvectors.

The important features that surround any real symmetric matrix A of order n are as

follows:

(i) The eigenvalues of A are real numbers (no complex eigenvalues occur).

(ii) The eigenspaces of A are orthogonal subspaces (eigenvectors associated

with distinct eigenvalues are orthogonal).

(iii) If an eigenvalue A of A is a root of multiplicity k of the characteristic

polynomial then the associated eigenspace has dimension k.

(iv) A hasn orthogonal (hence independent) eigenvectors.

If n orthonormal eigenvectors of A are used as the columns of an orthogonal

matrix Q, then Q is an orthogonal diagonalizing matrix for A:

Q1AQ=D
where D is the diagonal matrix of eigenvalues of A, the eigenvalues corresponding

in order to the eigenvector columns of matrix Q.

EIGENVALUES AND EIGENVECTORS 511

The steps to be followed in constructing an orthogonal diagonalizing matrix Q

for a real symmetric matrix A should be clear:

Step 1: Find the eigenvalues of A.

Step 2: For each eigenspace, construct an orthonormal basis (perhaps by using the

Gram-Schmidt process).

Step 3: The union of the orthonormal bases constructed in step 2 will be an

orthonormal basis for R”; use these basis vectors as the columns of Q.

EXAMPLE 7. Consider the real symmetric matrix

[
A=

p
r
—
p
—
g
—
— 2

-1
0
1

o
O
N
O
O

]

-1
0
2-

O
N
=

]

The EGVL command shows that the eigenvalues of A are A =1, 1, 2, 4. Applying the

RREF command to both (A - 2I) and to (A —4) weobtain[0 0 1 O]Jand[1 -1 0 1]

as bases for the associated eigenspaces, respectively. Notice that these two

eigenvectors, which are associated with different eigenvalues, are orthogonal.

Normalize [1 -1 0 1] to get [.577350269189 -.577350269189 0 .577350269189].

Now apply RREF to (A -I)to getthebasis{[1 1 0 0],[-1 0 O 1]} for the third

eigenspace. Since these vectors are not orthogonal we apply the Gram-Schmidt

process to get the orthonormal basis vectors [.707106781188 .707106781188 0 O]

and [-.408248290463 .408248290466 0 .816496580929]. Now put these vectors as

the columns of a matrix

[[O .577350269189 .707106781188 -.408248290463]
[0O -577350269189 .707106781188 .408248290466]

Q=
[1 0 0 0]
[0 .577350269189 0 .816496580929] |

Since Q is orthogonal, Q! = QT and a quick check will verify that

512 CHAPTER 18

QTAQ=Diag[2 41 1]

As in this example, Q1 = QT changes the similarity equation Q-'AQ =D to

QTAQ = D. More important is when we solve for A:

A = QDQT.

If matrix Q has the orthonormal column vectors q;, qz, . - ., qn as its columns

Q=[9192 --- 4a]l

then we have

T
1 q,

A=QDQT =[gq,... q,1 . j

A q:

=Mdq1+ Mgz + - Anlnd -

This is a spectral decomposition of matrix A, so-called because the set { 4;, 4;, ... , 4, }

of eigenvalues is sometimes called the spectrum of A. Each ;9,9]T in the

decomposition is an nxn matrix of rank 1 (each column being a multiple of g;). Notice

that any particular spectral decomposition of A depends upon the choice of the

orthonormal vectors gy, . . ., g,.

EXAMPLE 8. To compute a spectral decomposition of the matrix A in EXAMPLE 7

using the particular Q matrix above, we have:

20191+ 49293 + 19395 +1q491

EIGENVALUES AND EIGENVECTORS 513

[[0 0 0 0] [[3-3 03] I[]
., [0 00 0] [3 .3 0 -3] [
20101[0 0001t

[0 000]] (3.3 0-3]] I

[[.16 -16 0 -3] [[2 -1 0 1]

L q -6 .16 0 3] _[1 2 0 -1]
[0 0 0 0] [0 0 2 0]

[-3 3 0 &]] [1 -1 0 2]]

Activity Set 18.4

o
o

vt
m;

m

0]
0]
0]
0]]o

o
u
m

o
o
o
o

(after 10 RND).

1. Find an orthogonal matrix Q and a diagonal matrix D such that Q"!AQ =D.

[[4-1-1-1] ([3
[-1 4 -1 -1] [-1

@ 49 4] ®) 1
[-1 -1 -1 4]] [0

[[1 2 -3 2] [Eg
[2 1 2 3]

© (32 1 2] (d) {:
[2 3 2 1]] 2

-1
3
1
0

2
]

T
v

-
=
W

1 0]
1 0]
3 0]
0 4]]

2 2 2]
3 -1 1]
11 1]
1 5 1]
1 1 5]]

2. Find a spectral decomposition for each of the matrices in Activity 1(a) - 1(b).

18.5 POSITIVE DEFINITE MATRICES

A real symmetric matrix A of order n is called positive definite provided that

xTAx > 0 for each non-zero x in R".

In the expression xTAx, we are viewing vector x in R" as a column matrix; thus xTAx

isa 1 x 1 matrix, a single real number.

514 CHAPTER 18

Positive definite matrices are the most important of the real symmetric matrices

and appear often in applications such as electrical circuit analysis, elastic stress

studies, and least squares problems.

It is easy to see that any positive definite matrix A is nonsingular (for if Ax =0

had a non-zero solution x then xTAx = 0, contrary to xTAx > 0). More importantly, any

such matrix A has only positive eigenvalues (if Ax = Ax for some non-zero x then xTAx

=xTAx = Ax||?, so that A = xTAx/|| x ||> > 0). The converse of this last result is also

true, and provides us with the first of a number of different criteria for positive

definiteness. These are summarized in the following theorem.

Theorem. Given a real symmetric matrix A of order n, the following are

equivalent conditions:

(i) A is positive definite (xTAx > 0 for all non-zero x in R").

(ii) All eigenvalues of A are positive.

(iii) All upper left sub-determinants of A are positive.

(iv) A can be converted to an upper triangular matrix without row interchanges

and all pivots will be positive.

(v) A can be factored as A = LLT, where L is a lower triangular matrix having

positive diagonal entries.

(vi) A can be factored as A = MTM for some nonsingular matrix M.

These results are impressive because they embrace such a wide range of basic

concepts in linear algebra: Gaussian elimination, pivots, eigenvalues, matrix

factorizations, and determinants. In keeping with the spirit of this book we will not

provide a proof of this theorem. That should be done by your instructor or your

EIGENVALUES AND EIGENVECTORS 515

linear algebra textbook. But it is appropriate to comment briefly upon several of

these equivalent conditions.

Condition (iii) connects determinants to pivots. It asserts that if Ay denotes the

upper left k x k submatrix then det Ay >0 forallk =1, 2, .., n. For k =1 this simply

says that pivot a;; > 0. Then

and pivot azlz > 0 because det A, = auaz’z >0 and a;; > 0.

Then we have

a * *a. % %a, a, a, I 1

la. a a —> ’ -Az = |%n %2 *n 0 a, 0 a, =
a_ a._ a ,
S 0 »* = 0 0 a

and pivot a3;, > 0 because det Az = a11a2'2a3; > 0 and both a,, azlz > 0. Notice that with

positive pivots we never have to interchange rows. In this way, condition (iv) is

true.

Condition (v) comes from the LU-factorization of A. Here’s how. Although LU-

factorizations are not, in general, unique, there is a related factorization for certain

invertible matrices that is unique. Suppose that an invertible matrix A can be

brought to upper triangular form U without row interchanges. Then A =L;U where

L, is lower triangular with 1’s on its diagonal and U is upper triangular with non-

zero diagonal entries u,,, u,,, ... u,,. If D is the diagonal matrix D = diag

[y, Uy .. u,,] then D! = diag [u‘lll Uy . . Uy] and A = L,DD'U = L,;DU,, where the

516 CHAPTER 18

upper triangular matrix U; = D-!U also has 1’s on its diagonal. This is the

LDU-factorization of A and it is easy to see that it is unique. If matrix A is also

symmetric then, in addition to A = L;DU;, we also have A = AT = (L,DU,)T =

UfDTLZ = LIT{ D L{ and the uniqueness tells us that L{ = U,. Thus, the LDU-

factorization in this case has the form A =L;DL ;r Finally, suppose that A is

positive definite. Then D has only positive diagonal entries and can be split into

the product of two “square root” matrices:

u
ull 1 ull

o IR
=YDD

Then A =1L, DLT =(L,ND) (LyND)T = LLT, where L = L,V D. This factorization can

be shown to be unique and is called the Cholesky factorization of A.

EXAMPLE 8. Construct the Cholesky factorization of

[[2 4 -4]
A= [4 12 -20]

[-4 20 50]]

Elementary calculations show that A has the following LU-factorization without

row interchanges:

1 0 0|2 4 4

A=12 1 0|0 4 -12

2 -3 1{|0 0 6

Factoring out the diagonal entries from U we see that A has the following LDLT

factorization:

EIGENVALUES AND EIGENVECTORS 517

1 0 0|2 1 2 -2

A=|2 1 0 4 0 1 -3]

2 -3 1 6|0 0 1

Finally, accounting for square roots we see the Cholesky factorization A = LLT:

2 0 ollf2 22 2L

A=22 2 0 0 2 6 =LLT.

_2J£ -6 Jg 0 0 Jg

Of all the criteria in the Theorem for determining positive definiteness, the

Cholesky factorization is the one that is most practical for numerical computations.

For we should avoid the computation of eigenvalues and determinants whenever

possible. There is a fairly straightforward algorithm for constructing the Cholesky

factorization. Most importantly, if the algorithm is applied to a real symmetric

matrix A that is not positive definite then the algorithm will fail: at some point it

will attempt to take the square root of a number that is not positive. Because of

this, the algorithm can be applied to any real symmetric matrix as a test for

positive definiteness. If the algorithm does not fail, it succeeds in calculating the

Cholesky factor L in A =LLT. The following code implements the algorithm.

518 CHAPTER 18

P.DEF (Test for Positive Definiteness)

Input:. level 1: a real symmetric matrix

Effect. If the input matrix is positive definite, the Cholesky

factor L is returned to level 1 and the input matrix

to level 2. If not positive definite, the message

“NOT POS DEFINITE” appears.

« DUP - A« A SIZE1 GET - n«1nFORjIFj1=THEN 1]

1 — FOR k 'A(j, j)’ EVAL 'A(, k) EVAL SQ - 'A(, j)’ STO NEXT END

IF 'A(j,)’ EVAL 0 < THEN “NOT POS DEFINITE” KILL END 'A(j, j)

EVAL \V 'A(,j) STOIF jn#THEN j1 +n FOR i IF j 1 # THEN 1

j 1 — FOR k 'A(i, j) EVAL 'A(i, k) EVAL 'A(j, k)’ EVAL * - 'A(i, j)'

STO NEXT END 'A(j, j)’ EVAL 'A(j, j)’ EVAL / ‘A, j)’ STO NEXT END

1 nFORi1nFORjIFjis>THEN 0 'A(,j’ STO END NEXT NEXT
» A » »
Given the Cholesky factorization A = LLT of a positive definite matrix A, we

can use the two factors to solve the linear system Ax = b in two easy steps:

(i) solve Ly =bfor y by forward substitution

(ii) then solve LTx =y for x by back substitution.

EXAMPLE 9. Use program P.DEF to check the following matrices A for positive

definiteness; where possible, use the Cholesky factorization to solve Ax=[1 1 1].

[[6 -1 -4] [([2 4 -4]

(a) A= [-1 0 -6] (b) A= [4 12 -20]

[-4 -6 0]] [-4 -20 50]]

EIGENVALUES AND EIGENVECTORS 519

With the matrix A in (a) on level 1, executing P.DEF returns the message “NOT

POS DEFINITE”. The matrix A in (b) is the matrix of EXAMPLE 8, so is already

known to be positive definite. With this matrix on level 1, P.DEF returns the

input matrix A to level 2 and the following Cholesky factor L in A = LLT:

[[1.41421356237 0 0]

L= [2.8284712475 1.99999999999 0] .

[-2.8284712475 -6.00000000003 2.4494897427 1]

To check this last result, press the ENTER key to duplicate L, transpose with TRN,

multiply and then clean up round-off error with 10 RND.

To solve Ax = b using the Cholesky factors L and LT wefirst solve Ly =[1 1 1]

for y using forward substitution (program FWD) to obtain [.707106781188 -5 0]

(after cleaning up some obvious round-off error). Then we use back substitution

(program BACK) to solve LTx =y forx=[1 -25 0].

Activity Set 18.5

1. Which of the following symmetric matrices are positive definite?

[[3 3 4] ([2 -1 -1]
(a) A= [3 3 7] b) A= [1 2 1]

[4 7 2]] (-1 1 2]]

[([5 7 2 5] ([3 -1 -1 1]
[7 9 -4 5] (41 2 4 1]

© A= 12 4 5 8] @ A= 14 4 2 1]
[5 5 8 -8]] (1 1 -1 2]]

520 CHAPTER 18

[[5 8 2 -9 9] [[4 10 -4 3 3]
[8 -8 -7 -1 4] [-10 32 12 -2 -4]

() A=[2 -7 0 -8 -2] (f) A= [-4 12 6 -3 -3]
[9 1 -8 9 3] [3 2 -3 9 7]
[3 4 2 3 7]] [3 -4 -3 7 6]]

2. For any of y the matrices A in Activity 1 that are positive definite, use the

Cholesky factors in A =LLT to solve the linear system Ax = b, where

b=[1 2 3],b=[1 2 3 4],orb=[1 2 3 4 5] as appropriate.

3. Test the following symmetric matrix A for positive definiteness. If positive

definite, use the Cholesky factors in A = LLT to solve the linear system Ax = b.

[[1 -1 0 0 0]
[1 2 1 0 0]

A= [0 -1 2 -1 0] b=[1 1 1 1 1]
[0 0 -1 2 -1]
[0 0 0 -1 2]]

18.6 SINGULAR VALUE DECOMPOSITIONS

Now that we have some experience with matrix factorizations like A = LU, A =

QR,A =LLT A=PDP!,and A =QDQ"! we turn finally to singular value

decompositions, factorizations like

(1) A=UXVT

As we might expect from the case A = PDP-!, the middle term XY in (1) will

still be a diagonal matrix: all off-diagonal entries are zero. And just as in the more

elegant factorization A = QDQT, both of the outside matrices U and V will be

orthogonal. What is different about the singular value decomposition (1) is that

because U and V are different orthogonal matrices, 3 will no longer contain the

eigenvalues of A; instead it will contain the singular wvalues of A, non-negative

EIGENVALUES AND EIGENVECTORS 521

numbers 6; 2 0; 2 In fact, A itself need not be a square matrix. We can obtain

singular value decompositions A = UXVT for an arbitrary rectangular matrix A.

Without concerning ourselves with the details of the construction of singular

value decompositions (they can be considerable), what can we find out about the

factors U, 3, and V from the factorization itself? Since U and V are orthogonal, we

expect that symmetric matrices are somehow involved. Indeed they are: both ATA

and AAT are symmetric.

We begin with ATA. From A = UXVT we find that

ATA = (VITUT)(UZVT)

(2) = V(ZTY)VT.

Since X has entries 0, 0, , ... along the main diagonal, 37Y will have diagonal

entries 07, 03, Thus, equation (2) is an orthogonal diagonalization of the real

symmetric matrix ATA, so the o2, 03, ... are the eigenvalues of ATA and the column

vectors of V are orthonormal eigenvectors of ATA.

Similarly, we find that

AAT = UXVT)(VETUT)

(3) = u(X3nur.

Thus, the o}, 03, ... are also the eigenvalues of AAT and the column vectors of U are

orthonormal eigenvectors of AAT.

If A is a5 x 2 matrix, then ATA is 2 x 2 while AATis 5 x 5. The difference in

their eigenvalues is this: they have the same non-zero eigenvalues (including

multiplicities), but any eigenvalue 0 will have different multiplicities for the two

matrices. For example, consider the matrix

522 CHAPTER 18

[[1 2]

[3 4]

A= [5 6]

[7 8]

[9 0]]

Then ATA is the 2 x 2 matrix

., _L[16s 100]
ATA="1100 120]]

whose eigenvalues are A = 245, 40. But AAT is the 5 x 5 matrix

[[5 11 17 23 9]

[11 25 39 53 27]

AAT= [17 39 61 83 45]

[23 53 83 113 63]

[9 27 45 63 81]]

whose eigenvalues are A = 245, 40, 0, 0, 0.

In the general case, consider any eigenvalue A of ATA, say (ATA)x = Ax for some

non-zero x. Then A is a real number and we have

|Ax|[> = Ax e Ax = (Ax)T(Ax)

= xT(ATAx)

= xTAx

=Allx|?

so that || x || # 0 implies A 2 0. Then, since the non-zero entries 0'12, o3, ... of XTY are

just the non-zero eigenvalues of ATA, each o; is the (positive) square root of a A;: 0; =

\]/lj, j=1, .. r. (Parenthetical note: notice that in the case where matrix A has full

EIGENVALUES AND EIGENVECTORS 523

column rank, ATA is nonsingular, so that ATAx #0,. Thus each eigenvalue A of ATA

will satisfy A > 0, so that ATA will be positive definite.)

How many non-zero /s and o;’s are there? The notion of rank is the key:

rank A =rank (UXVT)

= rank (XVT), since U is nonsingular

= rank J, since V is nonsingular

= the number r of non-zero diagonal entries: oy, 0, .. ., ;.

Normally, we assume that the oj’s are arranged on the diagonal of X in decreasing

order:

,Wwhere 0y 20, 2...20,.

Using equation (2), we see in a similar way that

rank ATA = rank (X7Y)

= the number r of non-zero diagonal entries: of, o, ..., of

Thus rank A = rank ATA. Replacing A in this last result with AT we have rank AT

= rank AAT. Thus, all four of these matrices have the same rank:

rank A = rank AT = rank ATA = rank AAT.

One final comment: although the singular values 0y 20, =...2 0, are uniquely

determined by A (the 0']2 are the non-zero eignevalues of ATA and AAT), the matrices

524 CHAPTER 18

Uand Vin A = UXVT are not unique. The columns of U are orthonormal eigenvectors

of AAT and the columns of V are orthonormal eigenvectors of ATA, and different

choices for these columns can be made.

The HP-48G/GX units include the command SVD (on the MTH MATR FACTR

menu) for computing a singular value decomposition of a matrix. The command

implements a version of the LAPACK routine XxGESVD in producing the

decomposition. There are also several related commands. The command SVL (also

on the MTH MATR FACTR menu) computes only the singular values, and RANK (on

the MTH MATR NORM menu) returns a value for the rank of matrix A determined as

the number of non-zero singular values of A. If Flag -54 is clear (the default state),

RANK automatically treats any computed singular value as zero if it is less than

10times the size of the largest computed singular value. The command SNRM

(also on the MTH MATR NORM menu) returns the spectral norm of a matrix, which is

defined as the largest singular value.

EXAMPLE 10. Begin with the following matrix on level 1:

[([1 -1 1]
[-3 -9 -15]

A= [0 -9 -9]
[<7 2 -12]]

(a) The command RANK returns the value 2 for the rank of A. You can verify this

by applying the command RREF to A, obtaining

[[1 0 2]

[0 1 1]

[0 O 0]

[0 0 0]]

Thus column 3 of A is 2 times column 1 plus column 2.

(b)

(c)

(d)

EIGENVALUES AND EIGENVECTORS 525

With A on level 1, the command SVL returns the following vector S of singular

values:

[23.9965775198 10.0580449062 5.06289164242E-14].

The third component shows why the RANK command returned 2 for the rank.

Replace the third component with 0 and then square the components in vector S

by applying the procedure « SQ » APLY. You will obtain the following vector

S2:

[575.835732664 101.164267335 0].

With the 3 x 3 matrix ATA on level 1, the command EGVL will show the vector

of eigenvalues to be

[5.38034799593E-13 575.835732666 101.164267334].

Compare this with the components of vector S2.

With the 4 x 4 matrix AAT on level 1, the command EGVL will show the vector

of eigenvalues to be

[2.80338767559E-14 575.835732666 101.164267334 -1.41891530649E-12].

(e) With A on level 1, use the command SVD to obtain a singular value

decomposition. The stack will be arranged as follows:

3: matrix U

2: matrix VT

1: vector S of computed singular values

526 CHAPTER 18

[[-2.88503909637E-2 -.157851068131 -.434161002673 .88642818039]
U [.734808458395 -.200855325398 .586417975786 .275368163386]

[.486192964128 -.505806397342 -.607810084379 -.371945145644]

][.472059939039 .823953922836 -.313344990004 8.61767003328E-3]]

[[-.230770214413 -.417394627437 -.878935056262]

V = [-.529224377248 .811859013819 -.246589740676]

[-.816496580928 -.408248290464 408248290464]]

S=[23.9965775198 10.0580449062 5.06289164242E-14]
01 o O3

(f) You can verify that column 1 of U is an eigenvector of AAT corresponding to the

eigenvalue 0% = 575.835732664 as follows: move U to level 1 and use 1 COL- to

get column 1 of U, make a duplicate copy and then compare

AAT* (col 1 of U) = [-16.6130860183 423.128967009 279.967281716

271.828980859]

with the vector

o} * (col 1 of U) = [-16.6130860182 423.128967008 279.967281715

271.828980858 |

by subtracting them. Notice that the components agree up to the twelfth digit.

(g) Likewise, you should verify that column 2 of V is an eigenvector of ATA

corresponding to the eigenvalue 03 = 101.164267335: compare the vector

ATA * (col 2 of V) = [-563.56385963797 82.1311223117 -24.9460704477]

with the vector

EIGENVALUES AND EIGENVECTORS 527

05 * (col 2 of V) = [-53.5384963801 82.1311223123 -24.9460704478 |.

Application to Least Squares Solutions

An important application of singular value decompositions is to produce least

squares solutions of arbitrary linear systems Ax = b. Recall that by a least squares

solution to Ax = b we mean a vector x for which || Ax -b||, is as small as possible.

And because there may be more than one such solution, we seek one having minimum

norm: || x|, is minimal among all least squares solutions.

We begin with a singular value decomposition of the m x n coefficient matrix A

in the linear system Ax = b: A = UXYVT. Here U and V are m x m and n x n

orthogonal matrices, respectively, and X is the mxn diagonal matrix

5]0 O

where, 3is the rxr (7 = rankA) diagonal matrix containing the singular values o 2

0, 2...20,. Recall that orthogonal matrices preserve length, ie., || Qz|, =l z ||,

for all orthogonal matrices Q. Applying this with the orthogonal matrix UT and

the vector z = Ax — b, we have

|Ax-bll; ||UTAx-UTb| 3

| SVTx - UTh || 2

| Sy-cll3, withy =VTxand c = UTb.

Thus || Ax — b || will be minimized if || Yy — ¢ ||, is minimized. Exploiting the special

structure of 3 we have

r m

(*) NAx=blz = IZy-clz = Xlog-cP+TP .
)= j=r+

528 CHAPTER 18

Certainly we can make (*) as small as possible by choosing y;’s that will cause

the first term to become 0: y;=c;/0jfor 1 <j<r. Since x = Vy, we can minimize || x ||,

by minimizing ||y |l,. And since (*) places no restriction upon the y;forj=r+1, ..,

m, we can minimize || y ||, by choosing y, ,; = ... = y,, = 0.

Reformulating these results in terms of matrix multiplication, we see that the

minimum norm least squares solution x can be obtained as follows: calculate, in tern,

c
(i) c¢c=UTp= [d] (¢ is an r-vector)

(ii) useCtobuildyj=237]C (¥ is also an r-vector)

y
(iii) usey to build x = V[O] (an n-vector)

EXAMPLE 11. We return to the matrix A of our previous example and use

b=[1 -2 0 -1]. Since the rank of the augmented matrix [Al b] is 3 and the rank of

A is 2, Ax = b has no solution in the usual sense. Use SVD to build a singular value

decomposition A = UXVT for A. Then delete the last two entries in ¢ = UTb to obtain

¢ =[-1.97052724679 -.580094340171].

Now delete the last entry in the vector of singular values and use the command

2 DIAG— to construct the 2 x 2 matrix

_ [[23.9965775198 0]

L | 0 10.0580449062]]

Then calculate

y=21¢=[-8.21170121099E-2 -5.76746619826E-2].

Finally, build the 3-vector y = [¥ 0] and calculate the minimum norm least squares

solution as

EIGENVALUES AND EIGENVECTORS 529

x =Vy =[4.94729975623E-2 -1.25484945237E-2 8.63975006007E-2].

If you compare this solution with the one obtained by the LSQ command, you will

notice that the components agree until the twelfth decimal digit.

A final comment. In the most frequent applications of least squares solutions to

linear systems Ax = b, the m X n coefficient matrix A has many more rows than

columns, so that m is very much larger than n. In the singular value decomposition

A=UJVT matrix U ismxm and Visn xn,soU will, in general, be very much

larger than V. Although our simple examples do not show it, computing a very large

U can be expensive. However, as the equations (i) — (iii) that precede EXAMPLE 11

show, U is needed only to modify vector b to obtain the r-vector ¢. Fortunately, there

are less expensive ways to obtain ¢ than by computing matrix U and these ways are

often exploited in professional computer code.

Activity Set 18.6

1. (a) Obtain a singular value decomposition A = UXVT for the following matrix

(o -7 -5 -1]

[7 0 8 -4]
A=[9 9 3 3],

[2 9 1 4]
[6 6 -12 9]]

(b) Compare the non-zero eigenvalues of ATA with the squares of the singular

values of A. Repeat, using the non-zero eigenvalues of AAT.

(c) Verify that column 1 of U is an eigenvector of AAT associated with the

eigenvalue 0}, where 0 is the singular value of greatest magnitude.

(d) Verify that column 3 of V is an eigenvector of ATA associated with the

eigenvalue 03, where 0, is the singular value of least magnitude.

530 CHAPTER 18

(a) Solve the linear system Ax = b where

[[4 8 -6]
A= [-6 1 -4] and b=[-16 2 17].

[-3 -7 7]]

(b) Use a singular value decomposition of A to obtain a minimum norm least

squares solution to Ax = b. Compare your results to those from (a).

(c) Use the built-in LSQ command to obtain a minimum norm least squares

solution to Ax = b. Compare your results to those from (a) and (b).

(a) Use a singular value decomposition to obtain a minimum norm least squares

solution to Ax = b, where A is the matrix of Activity 1 and

b=[1 0 -2 1 2].

(b) Use the built-in LSQ command to obtain a minimum norm least squares

solution to the linear system in (b). Compare your results to those in (b).

When the coefficent matrix A in a least squares problem Ax = b has full column

rank, the matrix ATA appearing in the system of normal equations ATAx = ATb

is positive definite (see the parenthetical note on the third page of this

section). Using a Cholesky factorization ATA = LLT, the normal equations are

LLTx = ATb and can therefore be solved by forward and back substitutions: solve

Ly = ATb by forward substitution, then LTx = y by back substitution. Apply this

approach and solve the least squares problem associated with fitting a cubic

polynomial to the data (1.1, -1), (2.2, 2), (3.3, -3), (4.4, 4), (5.5, -5), (6.6, 6).

Compare your answer to the one obtained by using the built-in professional code

LSQ.

ITERATIVE METHODS

For large linear systems, Gaussian elimination can be costly. The number of

multiplications/divisions required to solve Ax = b, where Aisn x n, is

nd—n e . .
3 multiplications/divisions for the elimination phase,

followed by an additional

n? multiplications/divisions for the back-substitution phase

for a total of

w-n , n . n
3 tn'=73 +n’-3 multiplications/divisions.

3
When n is large, the 11—3* term dominates; thus, if n is doubled the number of

multiplications/divisions is increased by a factor of 8.

Fortunately, many of the large linear systems that arise in practice have

coefficient matrices A that are sparse, i.e., all but a small fraction of the entries are

zero. And there are versions of Gaussian elimination for sparse matrices that

capitalize upon the sparseness. But iterative techniques also use sparseness to good

advantage by generating a sequence of increasingly better approximations to a

solution. By way of introduction to iterative techniques for linear systems, we shall

briefly discuss two simple approaches: the Jacobi and Gauss-Seidel iterations.

We will also consider the elementary iterative process known as the power

method for approximating the dominant eigenvalue and an associated eigenvector of

531

532 CHAPTER 19

certain matrices. Though somewhat limited in its applicability, the power method

sets the stage for a subsequent study of the preferred iterative technique for finding

eigenvalues, the QR-algorithm. However, the QR-algorithm is beyond the scope of

this book.

19.1 THE JACOBI AND GAUSS-SEIDEL METHODS

The Jacobi and Gauss-Seidel methods for solving a linear system Ax = b are

based upon splitting the matrix A into a difference A =M - N, and then rewriting

Ax = bas Mx = Nx +b. Starting with an initial estimate x, for x, we generate a

sequence of successive approximations { x, } where

(1) Mx, =Nx,_, +b (k21).

With suitable choices for M and N the sequence { x, } will converge to a solution x. In

particular, M should be invertible in order that x, be uniquely defined:

The matrix M-IN is called the iteration matrix and is the key to convergence.

e The Jacobi iteration takes M to be the diagonal part of A, so N =M - A is

the negative of the off-diagonal part of A.

e The Gauss-Seidel iteration takes M to be the lower triangular part of A, so

N =M - A is the negative of the strictly upper triangular part of A.

Convergence of { x;, } to x is usually defined in terms of the vector max norm:

{x }ox if lim|x -x| =0,

where forv=[v; v, ... v,] we define || v ||, =™4X|v;|

This is equivalent to requiring that each component of { x, } converge to the

corresponding componentofx.

ITERATIVE METHODS 533

More advanced work shows that for an arbitrary initial estimate x,, { x, } U x iff

| A] < 1 for each eigenvalue A of the iteration matrix M-IN; in equivalent terms, iff

the spectral radius p(M"IN) =max {| 1|} is less than 1.

To see how the Jacobi and Gauss-Seidel methods differ, write iteration equation

(1) in detail (the components of x, will be displayed as x, = [x;® x,® ... x (9]). For

the Jacobi iteration, we have

K — _ k-1) _ k1) _ _ k-1a;,x,0 = ay,%,%D g,(KD . a,x,&Y+ b

o k-1 _ k1) _ _ k-1
Apx,® = -ayx, K1) Ay3%3 (k) ce a,x5V + b,

K — k-1 k-1 k-1
annxn() = 'anlxl() - an2x2() - s - an,n-lxn-l() + bn

Thus, to obtain the components of x, on the left-hand side we clearly need to have all

a; #0. It is also apparent that the Jacobi method uses the components of the vector

X, calculated during the (k- 1)t iteration (on the right-hand side) to obtain the

components of x, (on the left-hand side) during the k*h iteration.

When equation (1) is written in detail for the Gauss-Seidel iteration and the

diagonal terms are isolated on the left, we see a difference:

_ k-1 - -1
a0 = = apn*)-D - - a0+ by

N = k 1 -apx,® = -ayx,® = Ayxy (KD - - - axkD + b,

b = k-1 k
annxn() = -anlx’l() - aanZ(k) - s - an,n-lxn-l() + bn

We calculate x;® from the first equation and immediately use it in the second

equation to calculate x,K); then we use both x;(®and x,® in the third equation to

calculate x;%), etc. Thus, in the Gauss-Seidel iteration, components calculated early

in the kth iteration are used as soon as they are available to calculate other

components in that iteration. This continual updating of components often causes the

534 CHAPTER 19

Gauss-Seidel process to converge faster than the Jacobi process. But there are

matrices A for which only one of these two processes will converge. Thus, we need

both methods.

We previously noted that a necessary and sufficient condition for convergence of

either iterative method is that the spectral radius of the iteration matrix M-IN be

less than 1: p(M™IN) < 1. Since for any square matrix B, p(B) <|| B || for any matrix

norm, estimates on p(M-IN) are usually expressed in terms of matrix norms; thus a

sufficient condition for convergence is that || MIN || < 1, for any matrix norm. Because

the row-sum norm || ¢ ||, and the column-sum norm || ||, are so easy to calculate, they

are often used:

NANl,="8*X]a;] and [|All ="8X3]a;].
] 1

Another criterion that is sufficient for the convergence of either process is that

the coefficient matrix A be diagonally dominant:

n

(i) row diagonally dominant, |a;| > in | aijl fori<n

j#i

or

n

(ii) column diagonally dominant, | a;| > P a;| fori<n.
i=1
17

The basis for this criterion is the following result:

ITERATIVE METHODS 535

THEOREM

(a) A is diagonally dominant iff the Jacobi iteration matrix has row-sum

norm< 1.

(b) If A is diagonally dominant then the Gauss-Seidel iteration matrix has

row-sum norm < 1. (The converse is false; see Activity 2.)

We shall use the row-sum and column-sum norms in two calculator programs to

test the iteration matrices for convergence. But you should remember that these tests

are only sufficient for convergence, not necessary. Thus, it is possible for the tests to

fail and still have convergence.

Here are some HP-48G/GX calculator programs that can be used to implement

the Jacobi and Gauss-Seidel iterations.

e D.DOM: tests the coefficient matrix for diagonal dominance.

o JTEST: tests the Jacobi iteration matrix to see if its row-sum norm || ¢ ||_ or

column-sumnorm || ¢ ||, is less than 1.

e JACOBI: performs the Jacobi iterative process.

e STEST: tests the Gauss-Seidel iteration matrix to see if its row-sum norm || e ||,

or column-sum norm || ¢ ||; is less than 1.

e SEIDL: performs the Gauss-Seidel iterative process.

The stopping criterion used in both the JACOBI and SEIDL programs is the usual

vector max norm measure of relative error:

| X = X1 Il

I xx M.,

536 CHAPTER 19

where € is the error tolerance specified by the user, e.g.,, € =5 x 108 for

approximately 8 significant digits.

D.DOM (Diagonal dominance)

Input: level 1: an nx n matrix A

Effect: tests to see if A is diagonally dominant. Returns

one of the messages “ROW DIAG DOMINANT”,

“COL DIAG DOMINANT", or “NOT DIAG

DOMINANT".

« > A A SIZE 1 GET—->n « 1 nFOR i 1 n FOR j 'A(j, j) EVAL

NEXT n —-ARRY DUP {i} GET ABS 2 * SWAP CNRM IF < THEN A

TRN '‘A' STO 1 n FOR i 1 n FOR j 'A(i, j) EVAL NEXT n -ARRY

DUP {i} GET ABS 2 * SWAP CNRM IF < THEN MAXR —NUM i’

STO “NOT DIAG DOMINANT” END IF i n == THEN “COL DIAG

DOMINANT” END NEXT KILL END IF i n == THEN “ROW DIAG

DOMINANT” END NEXT » » »

JTEST (Test Jacobi iteration matrix)

Input: level 1: an nx n matrix A

Effect: tests the Jacobi iteration matrix for Ax = b to see if

its row-sum norm or column-sum norm is less than

1. Returns an appropriate message.

« > A « ASIZE1 GET > n « n IDN DUP 1 n FOR i ‘A(i, i)) EVAL

{i i} SWAP PUT NEXT A SWAP / - — itmtrx « IF itmtrx RNRM 1 <

THEN “BNRM < 1” ELSE IF itmtrx CNRM 1 < THEN “CNRM < 1”

ELSE “RNRM, CNRM > 1" END END » » » »

ITERATIVE METHODS 537

JACOBI (Jacobi iteration)

Inputs: level 3: an nx n matrix A

level 2: an n-vector b

level 1: an accuracy level € in the form .00005

Effect: returns, at timed intervals, the successive terms of

the Jacobi iteration for Ax = b starting with x;, = 0;

terminates when the relative error is less than € or

when 60 iterations have occurred; display is set to n

FIX where n is the number of digits in €.

« >Abe « ASIZE1 GET -5 n « nIDN 1 n FOR i'A(, i) EVAL

{i i} SWAP PUT NEXT DUP A -— > M K « 0 ‘ct’ STO € XPON NEG

FIX {n} 0 CON 'xn' STO DO xn 'xo' STO K xo * b+ M / 'xn' STO

xn CLLCD 3 DISP .5 WAIT 1 'ct' STO+ UNTIL xn xo — RNRM xn

RNRM 1012 + / € < ct 60 == OR ENDIF ct 60 < THEN ct

'iterations' =TAG ELSE 60 '‘iterations' 5TAG END xn {ct xo xn}

PURGE » » » »

538 CHAPTER 19

EXAMPLE 1. Consider the linear system Ax = b where

[([4 2 -2]
A= [1 6 -2]

[2 2 10]]

and b=[2 10 -3]. A is column diagonally dominant, hence invertible, so Ax =b

has a unique solution. With A on level 1, JTEST returns the message “CNRM<1”. To

apply Jacobi iteration to determine the solution x to approximately 5 decimal place

accuracy, enter A, b and .00005. Press to see the iterations converge to

[-0.37498 1.71876 -0.03126] after 19 iterations. After changing back to STD

display mode you should verify that the exact solution is given by x = [-.375 1.71875

-.03125].

STEST (Test Gauss-Seidel iteration matrix)

Input: level 1: an nx n matrix A

Effect: tests the Gauss-Seidel iteration matrix for Ax = b to

see if its row-sum norm or column-sum norm is less

than 1. Returns an appropriate message.

« > A « ASIZE 1 GET ->n « n IDN DUP 1 n FOR i1 i FOR j

‘A(i, j)' EVAL {i j} SWAP PUT NEXT NEXT A SWAP / - — itmtrx « |F

itmtrx RNRM 1 < THEN “BNRM<1” ELSE IF itmtrx CNRM 1 < THEN

‘CNRM<1” ELSE “RNRM, CNRM2>1" END END » » » »

ITERATIVE METHODS 539

SEIDL (Gauss-Seideliteration)

Inputs: level 3: an nx n matrix A

level 2: an n vector b

level 1: an accuracy level € in the form .00005.

Effect: returns, at timed intervals, the successive terms of

the Gauss-Seidel iteration for Ax = b starting with

X, = 0; terminates when the relative error is less

than € or when 60 iterations have occurred; display

is setto n FIX where n is the number of digits

in e.

« >Abe « ASIZE1 GET > n«nIDN 1 n FOR i 1 i FOR j

'‘A(i, j)' EVAL {i j } SWAP PUT NEXT NEXT DUP A - - M K « 0 'ct

STO € XPON NEG FIX {n} 0 CON 'xn' STO DO xn 'xo' STO K xo

* b+ M/ 'xn' STO xn CLLCD 3 DISP .5 WAIT 1 '‘ct' STO+ UNTIL

xn xo —RNRM xn RNRM 102 + / € < ¢t 60 == OR END IF ct 60

< THEN ct 'iterations' 5TAG ELSE 60 ‘iterations' 5TAG END xn {ct

xo xn} PURGE » » » »

EXAMPLE 2. Use the linear system of EXAMPLE 1. With e = .00005, SEIDL shows

the iterations converging to [-0.37499 1.71875 -0.03125] after only 8 iterations.

540 CHAPTER 19

Activity Set 19.1

1. Consider the following linear system:

(a)

(b)

(c)

(d)

(e)

(f)

(a)

-3x + 92 + 3w + 2v =-29

2x + Yy + 2w - 6v = 29

10x + 2y - 4z + 2w - ©v =-26

x - 2y + 2z + 7w - v = 6

2x + 8y + 4z - w = 24

Is the coefficient matrix diagonally dominant?

Apply program JTEST. What is the problem here? Swap rows four and

five and try again.

Apply program STEST to the last matrix you had in (b). What is your

conclusion?

Rearrange the equations to get an equivalent system with a diagonally

dominant coefficient matrix.

Solve the rearranged system by Gauss-Seidel iteration, accurate to

approximately 6 decimal places.

Write a paragraph explaining your observations and what you have

learned by this activity.

Use matrix

[[9 2 -3]

A= [-1 4 2]

[2 -3 5]]

to show that the converse of part (b) of the above Theorem is false.

ITERATIVE METHODS 541

(b) Test the Jacobi iteration matrix for Ax = b for convergence.

Consider the linear system Ax = b where

[[6 1 2 0
[0 4 0O -1

A=[1 -1 5 2
[-1 0 1 5
[0 1 O -1

and b=[-22 -44 465 -198 18.7]

(a) Is A diagonally dominant?

0]
0]
1]
0]
311

(b) Apply the Jacobi iteration to obtain a solution that is accurate to

approximately 8 decimal digits; how many iterations were required?

(c) Now apply the Gauss-Seidel iteration using an accuracy factor of 5 x 10%;

how many iterations were required?

(d) What is the exact solution?

Consider this tridiagonal system:

2 + x

n o+ 2 + x

X + 2 + x

B o+ 2 o+ X

Xy + ZX5

(a) Apply D.DOM, JTEST and STEST as tests for convergence.

(b) On the basis of your results in (a), apply an iterative method to solve the

system to approximately 8 decimal place accuracy.

542 CHAPTER 19

5. Consider the tridiagonal system

n - X = 4

x o+ 3% - X3 = 11

- x - 3 - x = -1

- x5 + 3 - x = 3

- x5 + 3 - x = -2

- %5 + X = -3

(a) Apply all our tests for convergence. What can you conclude?

(b) Remember, these tests are only sufficient conditions for convergence. Thus,

ignore the test results and try for an iterative solution anyway, accurate to

approximately 6 decimal places.

(c) What is the actual solution?

19.2 THE POWER METHOD

The power method is a simple iterative technique for finding an approximation

to the dominant eigenvalue and an associated eigenvector of a matrix A. By a

dominant eigenvalue we mean an eigenvalue A, satisfying

A >4 122] 4,]

where 4,, 4,, ..., 4, are all the eigenvalues of A. Since a matrix may fail to have a

dominant eigenvalue, the power method is not a general purpose technique.

However, it forms the basis for other, more powerful, iterative methods; in

particular, the QR-algorithm.

The power method is based upon the following assumptions about the matrix A:

(a) A is real and diagonalizable;

ITERATIVE METHODS 543

(b) A has a dominant eigenvalue 4,.

We start with an arbitrary vector y, written in terms of independent eigenvectors

X;, Xy, oy X, @S Yo = @1X + ...+ a,x,a where a; # 0, and form the sequence of unit
A

vectors {y, } as y, =fi,fork =1, 2, ... Here, we are using the usual Euclidean
k-1

Ay, __4y __4y
1Ay I 72 Tl Ay, I Y3 Tl Ay, |
 vector norm (or length). Thusy, = , etc. Under the

two stated assumptions and that a; # 0, the power method asserts that

(i) the sequence { y, } converges to a unit eigenvector v associated with 4,;

and

(ii) the sequence { Ay, ® y, } converges to the dominant eigenvalue A,.

To see why, consider the sequence z;, = y,, z, = Az,; (k = 1, 2, ...) without

normalization:

z, = AY,, 2, = Az, = A%y,, ..., 2, = Az,; = Ay,

Using A*x; = 2*x; and our expression for y, we have

z, = Aky, = alk’; X; + o+ an)»’:l X,, OF

ok AP A(2) z = 7~1|:a1x1 +a2(7~1) Xyt ..+ a"(kl) X,]

Y =t
Ay, Z, Ay, Iz I Az, zZ,

N = = , = = = = ,

WI TN Ay, I Nz 1 72 Ay, | z, 1Az, I~ Nz, |
”A I z, I ”

Zy

Iz I
 and in general, y, = Looking back at (2), we see that

544 CHAPTER 19

Z.:[alxl +a2(%)k:|x2+ .t a, (%)k X,

(3) Y= A
|A';|||a1x1+a2(%)k Xy + .+ an(—")k X,

1 1

A.

Since | 4; | > | ;| for j = 2, ..., n, we have 7“’- <1forj=2,.., m. Thus from (3),
1

a1%
k = o, 5>+ —1-—y,

a® = ayx |

which is a unit eigenvector associated with A,.

Finally, since y, - v, Ay, &> Av = 4,0, so that Ay, ey, DA, v ev =A,(v ev) =

Al v > = A;. This completes the argument.

In summary, under our three assumptions, the power method gives us two

sequences:

e a sequence of vectors { y, } converging to an eigenvector v associated with the

dominant eigenvalue A, ;

e an associated sequence of numbers { Ay, ¢ y, } converging to the dominant

eigenvalue 4,.

In practice, we calculate the sequences together, term-by-term. Because the

convergence of { y, } to a vector v amounts to the convergence of the components of y,

to the corresponding components of v, we base our stopping criterion in terms of the

Y5 = Vi1 Ml
Il ¥ Ml

often converges more rapidly.

relative error on the sequence { y, }. The sequence of numbers { Ay, e v, }

To implement the entire process on the HP-48G/GX requires a program to

calculate both sequences, term-by-term, and to apply the desired stopping criterion.

Program POWER does just that.

ITERATIVE METHODS 545

POWER (Power method)

Input: level 3: a real nx n matrix A, assumed to be

diagonalizable and have a dominant

eigenvalue A

level 2: an n-vector y,, assumed to have a non-

zero component in the direction of an

eigenvector associated with A

level 1: an accuracy level € in the form .00005

Effect: returns, at timed intervals, the successive terms of

a sequence of vectors that approaches a dominant

eigenvector, and a corresponding sequence of

numbers that approaches the dominant eigenvalue;

terminates the relative error in the sequence of

vectors is less than € or when 180 iterations have

occurred. Display is set to n FIX, where n is the

number of digits in €.

« > Ay, e «0'ctt STO e XPON NEG FIX y, 'yN' STO DO yN 'yO'

STO A yO * DUP ABS / 'yN' STO A yN * yN DOT CLLCD 1

DISP yN 4 DISP .5 WAIT 1 'ct' STO+ UNTIL yN yO - RNRM yN

RNRM 102 + / e < ¢t 180 == OR END IF ct 180 < THEN ct

'iterations' 5TAG ELSE 180 '‘iterations' -TAG END A yN * yN DOT

yN {ct yO yN} PURGE » »

546 CHAPTER 19

EXAMPLE 3. Enter and store the matrix

[[1 -1 2 -3]
[1 3 2 3]
[0 -1 -1 -3]
[-1 1 2 3]]

A=

You can verify that A has eigenvalues 3, 2, 1 and 0, hence is diagonalizable. Thus

A = 3 is the dominant eigenvalue. Lety, =[1 1 1 1] and proceed on the assumption

that y, has a non-zero component in the direction of an eigenvector associated with

A = 3. Using 6 decimal place accuracy specified by € =.000005, POWER shows a

sequence of numbers converging to 2 = 3.000009 and a sequence of vectors converging to

X = [-.499999 .500004 -.499999 .499999] after 27 iterations. To see how close the

pair (A, x) is to being an eigenvalue-eigenvector pair for A: duplicate x with

, recall A to level 1 with and press to see

Ax =[-1.500001 1.500013 -1.500001 1.50001]. Now do 3 ROLLD IENTER

to see A x = [-1.500000 1.500018 -1.500000 1.500000]. Compare levels 1 and 2.

COMMENT. As in this example, we usually do not know in advance whether the

initial vector y, has a non-zero component in the direction of a dominant eigenvector.

But this rarely causes difficulty in practice because the round-off errors that appear

after a few iterations usually perturb the problem to the point where this is the

case.

EXAMPLE 4. To see the effect of different initial vectors y,, return to the matrix A

of EXAMPLE 3and usey, =[1 0 -1 O], thenusey, =[1 2 3 4] With 6 place

accuracy, the first choice shows A = 2.999991 and x = [.500001 -.499996 .500001

-.500001] after 28 iterations while the second choice shows 2 = 3.00010 and ¥ = [

-.499998 .500005 -.499998 .499998] after 25 iterations.

ITERATIVE METHODS 547

Activity Set 19.2

1. Seed your random number generator with 2 and generate the following random

6 X 6 symmatrix matrix A

[[5 4 2 5 -8 5]
[4 6 4 7 8 0]

A=[2 4 0 6 -4 0]
[5 7 6 2 8 -5]
[8 8 4 8 3 -2]
[5 0 0 5 2 0]]

over Z,, with program SYMM:

(a) Verify that A has a dominant eigenvalue A.

(b) Apply the power method via program POWER, starting with the vector of

all 1’s and using 8 decimal place accuracy.

(c) Let 2 and x denote the approximations to A and an associated eigenvector

obtained in (b). Verify that Ax =1 x.

2. Looking back at equation (2) in our derivation of the power method, you can see

A
that the rate of convergence is governed by the factor 712

1

(remember: |4, |>|A,|2...2 | A,|). The smaller this factor, the faster the

convergence. That is, the convergence will be faster if 1, strongly dominates the

next largest eigenvalue. To see this in practice, consider the following two

sparse (tridiagonal) matrices A and B, that differ only in their (1,1)-entries.

[[2 1 0 0 0 0] [[6 1 0 0 0 O]
[-1 1 -1 0 0 0] [-1 1 1 0 0 0]

A L0114 00 ,_[0-11-1 0 0]
[0 0 -1 1 -1 0] [0 0 -1 1 -1 0]
[0 0 0 -1 1 -1] [0 0 O -1 1 -1]
[0 0 0 0 -1 1]] [0 0 0 0 -1 1]]

548 CHAPTER 19

A
M

A
(a) Verify that for matrix A, 1—2 =~ .84878 and for matrix B, =~ .43725,

1

a little more than one-half the value for matrix A.

(b) Apply the power method to matrix Ausingy, =[1 1 1 1 1 1] Aim

for 12 decimal place accuracy and note the number ofiterations required.

(c) Now apply the power method to matrix Busingy, =[1 1 1 1 1 1]

Again, aim for 12 decimal place accuracy and note the number of iterations

required. Compare the iteration count with that in (b).

3. Seed your random number generator with 3, and use program SYMM to build the

following 5 x 5 symmetrix matrix:

[[1 1 -5 2 -1]
[1 3 2 -7 4]

A=[5 2 5 1 7]
[2 -7 1 -8 9]
[-1 4 -7 9 -9]]

(a) Apply the power method using [1 1 1 1 1] and 6 decimal place

accuracy. Pay close attention to the sequence of vectors being generated.

(b) How manyiterations occurred? This is the maximum number allowed by

program POWER.

To see why this many iterations occurred, notice that the stopping criteria in

POWER is: —n—yl‘-fl:—y—k—"fi < € or ¢t = 180 (where ct is the iteration counter). For this
” Yi+1 " +10

particular matrix, after 18 iterations, the components of y;.; and y, agree to 6

decimal places except for a sign: yi.1 = -Yx. Thus yx,1 — Yk = 2¥k41, SO | Vi1 — Yk lleo =

Il 2y4sq lle = 2 Il Y4,q Il and the relative error ceases to decrease. Thus the iterations

continue to the maximum allowable.

VECTOR AND MATRIX NORMS

When a vector v = [x;, x,, x;] in R? is interpreted geometrically, its length is

given by || v || = [xf + xi + x§]1/ 2. The well-known properties of vector lengths include:

(1) Nlo|l>0ifv#0,

(2) llow]|| =] alllv]|for any scalar @ and any vector v,

3) llv+wll<|lv]l+]|lwl for any vectors v, w.

It seems natural to adopt the corresponding notion for length R™: for any vector

22
v=[x,%,.,x,], ||v||=[xf+x2+...+xln]1/ 2, But there are situations where other

scalar measures of the “size” of vectors in R" is more meaningful. For instance, if the

components of v = [6, 3, 2, 5, 9] record the average times required to complete

different components in an assembly operation, then (62 + 32 + 22 + 52 + 92)1/2 jg

somewhat meaningless when compared to 6 + 3 + 2 + 5 + 9 (the sum of the average

assembly times) or to max { 6, 3, 2, 5, 9 } (the largest average assembly time). In

general, several different notions of the length, or size, of a vector may be useful.

549

550 APPENDIX A

The term norm is applied to any generalization of Euclidean length in R3 as long

as the above three conditions are met. The most commonly used norms for vectors in

R™ are these:

12
2

e The Euclidean vector norm: || v I, = [Z |xi|]
1

e The vector sum norm: vl =y | x; |
7

e The vector max norm: o], = m:l;x | x;].

All of these are true vector norms, in the sense that they satisfy the above

conditions (1) - (3).

Analogous to vector norms are the matrix norms || A || which are scalar measures

of square matrices. To qualify as a matrix norm the number || A || must satisfy:

(1) 1All>0if A #0,

(2) llaAll=|a]llAll, for any scalar o and any matrix A,

(3) NA+BI|I<||A|l + |IB]l, for any matrices A, B,

(4) WABI<IIAI|IIBI , for any matrices A, B.

Conditions (1) - (3) are the same as for vector norms, but (4) is new and implies that

| A"|| < || A ||". One of its more important uses is that if || A || <1 then || A"|| -0

as N — oo,

When our earlier examples of vector norms are applied to square matrices, the

first two are matrix norms:

VECTOR AND MATRIX NORMS 551

1”2
2

e the Euclidean (or Frobenius) norm: || A ||; = [2 |x,-,-|:| , and
i)

o the sum norm: | A |l = 2, la;l;
1]

but the third one, || A || = max |a,-j| fails to be a matrix norm because condition (4)
ij

need not hold.

Although there are many ways to define matrix norms, it is especially useful to

use a matrix norm that is connected to an existing vector norm. This can be done as

follows: given a vector norm || x || for vectors x in R"”, we define a matrix norm || A ||

for n x n matrices by || A || = fi’;I‘Iz—Jf | Ax ||.

This produces a true matrix norm (that is, (1) — (4) hold) that measures the

amount by which a vector x of norm 1 is “magnified” by matrix A. We call || A || the

matrix norm induced by the vector norm || x || The most important properties of

induced matrix norms are these:

(5) NAxNI<IIA |l x]forall x, and

6) LI =1

When the three common vector norms are used to induce matrix norms, it can be

proved! that:

e the vector sum norm induces the column-sum norm of A:

WA, =max Y, |a;
i T

Igee, e.g., Section 5.6 in Matrix Analysis, by Horn and Johnson, Cambridge
University Press, 1985.

552 APPENDIX A

e the vector max norm induces the row-sum norm of A:

Al= m?x 2 |aij
J

¢ the Euclidean norm induces the spectral norm of A:

| All, = max {\/_l : A is an eigenvalue of ATA}.

Of these three matrix norms, the column-sum and row-sum norms are used most

often because they are so easy to calculate. The Frobenius norm is also easy to

calculate but is not induced by a vector norm. The spectral norm, on the other hand,

is much more difficult to obtain and is mainly for theoretical use.

The spectral norm is not the only connection between matrix norms and

eigenvalues. For any square matrix A,its spectral radius p(A) is defined by

p(A) =max {|A]: A is an eigenvalue of A } , and it can be shown that p(A) < | A ||

for any matrix norm. Thus the column-sum and row-sum norms provide easy estimates

of p(A).

Norms on the HP-48G/GX

Four matrix and vector norms are provided on the MTH MATR NORM menu of

the 48G/GX:

e The Euclidean (Frobenius) matrix norm || A ||: the ABS command. Since vectors

on the HP-48G/GX are one-dimensional arrays sensed as column vectors, ABS

applied to a vector v returns its vector Euclidean norm || v ||, .

e The row-sum, or ~-norm || A ||.: the RNRM command. For a vector v, RNRM

returns its vector max norm || v ||, .

e The column-sum, or 1-norm || A ||;: the CNRM command. For a vector v, CNRM

returnsits vector sum norm || v ||, .

VECTOR AND MATRIX NORMS 553

e The spectral norm || A ||,: the SNRM command. For a vector v, SNRM returns

the vector Euclidean norm || v ||, .

EXAMPLE

(a) Consider the following matrix

[[4 -8 0]

A= [0 &5 -1] .

[2 0 -3]]

The command ABS returns || A ||z = 8, the command RNRM returns || A ||, =7,

the command CNRM returns || A ||; = 8 and the command SNRM returns

Il All, =6.3996414623.

(b) Forv=[-1251-21], ABS returns ||v |, =6, RNRM returns ||[v ||, =5,

CNRM returns || v ||; = 12, and SNRM returns || v ||, = 6.

ACTIVITIES

1. What is the Frobenius norm for an identity matrix? Experiment with identity

matrices of orders 3, 4, 5, 9 and 16 to find out.

How do the row-sum and column-sum norms compare for symmetric matrices?

Experiment with random 3 x 3, 4 x 4 and 5 x 5 matrices over Z, to find out.

Seed your random number generator with 3 and generate a random 4 x 4 matrix A

and a random 4-vector x over Z;p. Use A and x to verify that for each of the

four matrix and vector norms provided on the HP-48G/GX, [|Ax||[<|[A |l x |I.

maXx
Consider the attempt to define a matrix norm by || A || ="}j |a,-]- |. Experiment

with random 3 x 3 matrices over Z,, to find a pair A, B for which the

inequality || AB [|[<||A |||l B || is invalid.

TEACHING CODE FOR PART IV

The special-purpose HP-48G/GX programs for teaching linear algebra that are

contained in this book are called teaching code; a listing appears on the inside back

cover. The teaching code is readily available on a diskette from the author for

downloading to an HP-48G/GX from a microcomputer. This appendix shows how the

teaching code is organized in files, or directories.

A factory-fresh HP-48G/GX calculator contains only the built-in HOME

directory, indicated by the message { HOME } at the top left of the stack display

screen. The teaching code for linear algebra is stored in a directory called MTRX,

and MTRX is divided into five subdirectories, each one containing teaching code

related to a major topic.

HOME

MTRX

BUILD GAUSS ORTH MISC ITERATE

e Subdirectory BUILD. Contains the teaching code used to build special types of

matrices (see Chapter 14): SYMM, L.TRI, U.TRI, DIAG, TRIDIA,

HILB.

554

TEACHING CODE FOR PARTIV 555

e Subdirectory GAUSS. Contains the teaching code related to Gaussian

elimination (see Chapter 15): ELIM, PIVOT, L.U, FWD, BACK,

L.SWP, >LP.

e Subdirectory ORTH. Contains the teaching code related to orthogonality concepts

(see Chapter 17): PROJ, GS, P.FIT.

e Subdirectory MISC. A subdirectory containing miscellaneous teaching code:

CHAR, P.DEF, P.of.A, ATK, APLY.

e Subdirectory ITERATE. Contains the teaching code related to iterative methods

(see Chapter 19): JTEST, JACOBI, STEST, SEIDL, D.DOM,

POWER.

To execute any of these programs, open the MTRX directory with the MTRX

key, then open the appropriate subdirectory with its menu key. Put the necessary

inputs to a particular program on the stack and then execute the name of the program

by typing the name and using the ENTER key, or using the appropriate menu key.

You have access to all built-in commands from any MTRX subdirectory without

exiting from that subdirectory. Simply type the command and press ENTER (be sure

to first provide the necessary inputs on the stack), or use the appropriate built-in

menu key. If you use a built-in menu key, you can return directly to the MTRX

subdirectory with the VAR key.

To move up from a particular MTRX subdirectory to the main MTRX directory,

use the UP key (the left-shifted D key). To rearrange any of the variables in a

subdirectory of MTRX (including the MTRX directory itself), apply the command

ORDER (on the MEMORY DIR submenu) to a list that contains the names of the

variables in the desired order, left-to-right.

556 APPENDIX B

And finally, a word of caution. With any object on stack level 1, pressing

and then the menu key beneath a particular user-constructed variable (in particular,

one of our teaching code programs) will overwrite the contents of that variable with

the object from level 1. So be careful; in a hasty moment it is easy to destroy

teaching code.
HP-48G/GX TEACHING CODE

APLY Apply procedure to matrix

ATK Calculate A
BACK Back substitution
CHAR Characteristic polynomial
D.DOM Diagonal dominance

DIAG Diagonal matrix
ELIM Eliminate below pivot
FWD Forward substitution
GS Gram-Schmit procedure
HILB Hilbert matrix
JACOBI Jacobi iteration

JTEST Test Jacobi iteration matrix
—LP Build L and P
L.SWP Swap multipliers in L
L.TRI Unit lower triangular matrix

L.U Eliminate below pivot; put multipliers in L
P.DEF Cholesky factor
P.FIT Vandermonde matrix

P.of.A Evaluate polynomial at matrix A
PIVOT Gauss-Jordan pivot
POWER Power method
PROJ Project vector x onto vector y
SEIDL Gauss-Seidel iteration

STEST Test Gauss-Seidel iteration matrix
SYMM Symmetric matrix
TRIDIA Tridiagonal matrix
U.TRI Upper triangular matrix

SOLUTIONS

PART | EXERCISES Activity Set 1.1

1. x flx) 2. x f(x)

+ 102 .999983333417 +102 F.004999583

+ 103 99999933333 +103 F.0005

+ 104 999999998333 + 104 F.00005

+ 10 1 +10% 0

3. x flx) 4. See numbers 1, 2, and 3.

-1 -367879441171

-10 -4.5399297625E-4

-1,000 -5.07595889755E-432

-10,000 O

5. (a) x flx)

102 2.70481382942

104 2.71814592683

106 2.71828046932 as x — oo, f(x) > e

108 2.71828181487

1010 271828182832

1011 2.71828182845

(b) When x =10'2, f(x) is evaluated as 1 by the HP48. Why? The precision of
the HP-48 is 12 decimal digits. With x = 102, 1/x = .000000000001 and
1 + 1/x is evaluated as 1. Then 1* =1.

557

558

6.

7.

8.

9.

SOLUTIONS

(a) x_fx)

102 3.00498756295

103 3.00049988491

104 3.00000400001

10° 3

x fi(x)

-102 -.994987437258

-103 -.99499873095

-104 -.99995000125

-10° -.999994800014

-106 -1

(a) 'IFTE (X <0, XA 2, COS (X))'

(b) x__f(x)

-102 .0001

-104¢ .00000001

-10¢ .000000000001

-108 1.E-16

-1010 1.E-20

(c) x_f(x)

102 .999950000417

104 99999995

10-6 1

(d) lim f(x) does not exist.
x-0

(a) 22 (b)

(a) 23 (b)

-23 (c) 23

-22 (c) 24

as x — 0%, f(x) > 3.

asx >0,f(x) > -1.

asx — 0, f(x) - 0.

asx — 0%, f(x) > 1.

(d) 306

(d) 307

Activity Set 1.2

3.

(a)

(a)

(d)

SOLUTIONS 559

I (b) —_ N ' = -

+

(c) *‘@W

' (b)

(e)
HZIN by a factor of 10.

Since 1 rad = 180°/m = 57.2957795131, HZOUT by this factor.

-*
Original

560 SOLUTIONS

YZOUT by a factor of 100 to see the plot |—+— Lh /

Graph with the default PPAR, then ZOUT by a factor of 2 to see

fi/__,__—

/‘_’/\.

Clearly, lim f(x) # lim_f(x),so lim f(x) does not exist.
x—0° x—>0* x—0

Graph with the default PPAR, then use BOXZ:

VR
_

Xrng: -1 1
Yrng: -1 1

Conclusion: lim f(x) does not exist.
x>0

10. (a)

11.

12.

13. (a)

(b)

SOLUTIONS 561

 (b)

Plot with the default PPAR, then HZIN by a factor of 1.733 to see

The final plot //\\//

Trace to x: 1.2 y: 477 and press ENTER, then trace to x: 1.3 y: 4.77 and
press ENTER. Press ON to return to the stack and see

2: (1.2, 4.77333333333)
1: (1.3, 4.76692307692)

The local minimum is approximately the point on level 1.

-/ The "hole" is at x = 1.

562 SOLUTIONS

14. (a)

(c)

NI

glx) =

5
3(1-x)

(e) The converse is false.

15. (a) |

.: N

u[v(x)] and v(x)

16. (a)

x+3 b) f,0="5

(d) Non-parallel lines that are
symmetric to the line y = x have
slopes that are reciprocals of one
another.

(b)

o[u(x)] and u(x)

(b)
LY

17. (b)

18. (a)

(b)

19.

20.

22.

(c) (-3, -1.09614986962)

Use disconnected mode.

When t =3, x = 2.17576302952 and y = 1.9203405733.

//{

N

5
—

X

21.

23.

SOLUTIONS 563

(/é

T

/
S

564 SOLUTIONS

24.

25.

Activity Set 2.1

1.

2.

© =1 (d)

(e) \f(d,dx)[sinx], - = \o(lim,)
-0

sin (0 + h)-sin 0
h

H DQ(0,H)

+102 999983333417

+104 999999998333

+105 999999999983

+106 1

(a) After zooming in on the horizontal axis twice by a factor of 100 each time,
tracing shows that the y-coordinate remains constant at y = 1. Thus the
tangent line at x = 0 is horizontal with slope 0.

(b) H DQ(0,H)

+102 T .004999583

+10° F.0005

+104 ¥ .00005

+10° F.000005

+106 0
d _ . cos(0+h)-cosO

(c) dx[cosx]x=o—hh_{)n05

(a)

(b)

(c)

(d)

(a)

SOLUTIONS 565

Graph on the default screen; ZIN twice by factors of 100 each time. Trace
A

left to x = .99995, then right to 1.00005. Calculate fi = -.66666664. The

slope when x=1is 3.

A
Repeat the procedure in part (a), and calculate sz = -2.

The slope when x =11is -2.

A
Repeat the procedure in part (a), and calculate sz = 1.99999999666. The

slope when x =1 is 2.

A
Repeat the procedure in part (a), and calculate le = -2.4783497. The

slope when x =1 is -2.47834973296.

H DQ(2,H) (b) H DQ(-1,H)

102 .748598999 102 .492361819

104 .7499859 104 499925

106 .75 106 .5

-102 751411548 -102 .5073631939

-104 .7500141 -104 .50007498

-10¢ .75 -10¢ .499999

-107 .5

The slope at x =21is .75 The slope at x =-11is .5

566 SOLUTIONS

Activity Set 2.2

1. (a) /180 =.0174532925199 (b) X SIN(X)/X

.01 .0174532924313

.001 .0174532925191

.0001 .017432925199

-.01 017432924313

-.001 .017432925191

-.0001 017432925199

. sinx T
(c) In degree mode, lim ~ = 180"

2 (a) y' = 1-2x2 (b) ,_xsinV 2 +1

YT@ T
2 si

(c) y'=w (d) y'=e'xfi(2c052x - lsin2x)
3 et 3

sintx

3. (a) [N o\

(b) y'is not defined for the values x =nn,n=4+1,42,...
y = 0 for these values of x.

-~

The derivative is not defined at x = 0.

5. A horizontal tangent line to the
cross the x-axis.

SOLUTIONS 567

graph of f will cause the plot of f to

6. (a) |=t—tmttt—s o (b) j><——

. X . y2-10x , -&¥ — 2 xy cos x?7 @) y=gs ®) v =5 @ y=——
xe¥ + x% cos x* y — 2y

(yz sin xy* + L] ,

@ y= R(3y2 — 2xy sin xyz) 9x1/3y1/2 2sinycosy

8. (a) %;'f (5, -3) = 123456790123 (b) % (-2, -3) = 916

(c) % (3, ®/2) = -.426089085256 (d) g*;l (7, 2) = .023507899329

(e) % (8, 9) = -7.40740740748E-2 (f) % (n/4, n/4) = 707106781188

Activity Set 2.3.1

1. local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

(-.577, 2.385)
(577, 1.615)
0, 2)

(.149, 2.127)
(.718, -.090)
(433, -.044)

none

(-.598, -3.238)
(0, '2) and (11 O)

(-2.459, 21.968) and (-.202, 3.092)
(-517, 3.031) and (.778, 1.319)
(-1.875, 14.819), (-.364, 3.061) and (.439, 2.026)

568

10.

11.

12.

13.

14.

SOLUTIONS

local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

absolute max:

local max:

local min:

absolute min:

infl. point:

absolute max:

local max:

local min:

absolute min:

infl. point:

absolute max:

absolute min:

infl. point:

absolute max:

local max:

local min:

absolute min:

local max:

local min:

infl. point:

local max:

local min:

infl. point:

local max:

local min:

absolute min:

infl. point:

0, 2)
none

(-.816, 1.5) and (.816, 1.5)

(O/ '8)

none

none

0, 1)
none

(-1, 0) and (1, 0)

(0, 27)

(1.912, 4.739)
(4.373, 1.544)

(0, 0)
(7, m)

(2.068, 2.873)
(.056, 2.028)
(1.018, -1.41)
(7[/ '2)

(.533, .452), (1.552, .889) and (2.627, .437)

©, 1) and (, 1)
(fl/ 2/ -2)

(.704, -.486) and (2.437,-.486)
4.712, 2)
(.767, .708), (2.375, .708) and (27, -1)
O, -1)

(3.510, -1.634) and (5.915, -1.634)

none

none

(0, 1) and (x/2, 0)

0, 3)
none

(-1.414, 1.819) and (1.414, 1.819)

none

(.368, .692)
('11 '1)

none

15.

16.

17.

18.

19.

20.

21.

SOLUTIONS 569

absolute max: (-1, 1), (0, 1) and (1, 1)

absolute min: (-.707, -1) and (.707, -1)
infl. point: (.-.408, -.111) and (.408, -.111)

no local extrema

infl. point: 0, 0)

absolute max: (2.128, 1.898)

local max: (0, 1) and (27, 1)
local min: none

absolute min: (4.843, .209)

infl. point: (1.395, 1.388) and (2.916, 1.270)

none

Run the cable from the junction box along the road to a point .894 miles from the
closest point on the road to the house, then run straight to the house.

The maximum area is achieved with a square pen of side length 62.5 feet
situated on the back of the barn.

The maxiumum area is achieved with a rectangular pen 40 x 50 feet in size.

Activity Set 2.3.2

1. Starting value Number of iterations Convergence to

(a) -2.2 4 -2.2360679775

2.3 5 between 2.23606797748
and 2.236067897751

2.9 5 3

(b) .483 4 450451159135

1.79 4 1.74250596672

2.56 4 2.51943185453

3.58 5 3.59204381272

4.88 5 4.8840986203

570 SOLUTIONS

(c) -4.71 3 -4.7168606007

-1.52 4 -1.45367366646

552 4 539785160809

(d) -7 5 -774596669242

8 6 774596669242

(e) -9 6 -.923879532511

-3 5 -.382683432366

The other two roots are obtained by symmetry.

2. (a) At xp =n/2, the denominator in the iteration formula is equal to 0.

(b) — 31.4159265359 (= 107) after 8 iterations

(c) — -12.5663706144 (= 4nr) after 4 iterations

(d) — 3.14159265359 (= &) after 7 iterations

(e) — -3.14159265359 (= -m) after 6 iterations

(f) — 3.14159265359 (= m) after 6 iterations

(g) — 0 after 6 iterations

3. Newton's method diverges away from 0 for any starting value x, # 0.

4. (a) Starting with x, = 3, the iterations oscillate between 3 and 1.

(b) Starting with xy = 2.5, the iterations oscillate between 2.5 and 1.5; and

starting with x, = 1.8, the iterations oscillate between 1.8 and 2.2. In
general, starting with xo =2 + h or x; =2 - h, the iterations oscillate

between x, and x; .

(c) The tangent lines are parallel; they have the same slope.

SOLUTIONS 571

s
(b) The intersection points are (+.980448246014, .382403569603).

6. 0 = 60.72°

 7. a=127.71148013. An equation for the arch is y = 630 + 127.7 (1—cosh 12; 7).

Activity Set 2.3.3

o AP

572 SOLUTIONS

4. (a)

Y

7

Activity Set 2.3.4

Tangent line: ' 1.53352292311 - 3.7980913324 * (X — .807522931339) '

Tangent line: ' 3.01253819463E-2 + .465272415481 * (X — 9.69188952391E-2) '

Tangent line: ' 1.23212271031 + .465272415482 * (X - 1.52177971665) '

SOLUTIONS

Activity Set 2.3.5

G
NA

2. (b) (i) Vertical tangents when t=0and t=7

+

(i) |~ \ I / '

N\\\

~

. /4 3
3. Vertical tangents when t =0, 7, T and R

3n n

Tangents when t=7" and t="7

573

574

Activity Set 3.1.1

1.

2.

SOLUTIONS

(a) n LRECT RRECT MID

15| .728768788418 6102502699 .665249108684

30| .697008948527 637749689263 6663105854438

60| .681659767039 .652030137409 666577539299

120| .674118653051 .659303838236 666644378016

200 .671127160162 662238271273 666658642265

500] .668447012312 66489145676 666665382712

1000| .667556197498 66577841972 666666345704

(c¢) The midpoint approximations are the best.

(a) n LRECT RRECT MID

15| 2.42832476027 2.42832476027 2.43889647161

30| 243361061595 2.43361061595 2.43618981423

60| 2.43490021509 2.43490021509 2.43553398801

120| 2.43521710155 2.43521710155 2.43537360984

200| 2.43528393107 2.43528393107 2.43533989579

500] 2.4531525233 2.43531525232 2.43532413036

1000| 2.43531969458 2.43531969459 2.43532190445
(c) The midpoint approximations are the best.

3. (a) By symmetry, all midpoint approximations are 0.

(b) n

LRECT RRECT

5| -1.89024823416 1.89024823416

20| -.47256205854 47256205854

40| -.23628102927 23628102927

Activity Set 3.1.2

4
1. (a) width=fi

4K
right endpoint = 1

3
height = (g)

N

o()13
() S(N) =3 (K=1, N, (4 + KIN) A3 « (4/N))

N S(N)

10 77.44

50 66.5856

100 65.2864

200 64.6416

SOLUTIONS 575

576 SOLUTIONS

2. (a) width =—IE\ZI—

2K+ N

N
 2K

right endpoint = 1 + T~ =

) N
height = K+

e (2I<Ii N)(%)
(b) S(N)=X (K=1,N,N/(2+K+N) = (2/N))

N S(N)

10 1.0348956599

50 1.0853974528

100 1.0919752503

200 1.09528636265

3. (a) width = 1—3—

4K 4K-N
right endpoint = -1 + & = —;

height = e A (4K_N)

- o0
(b) S(N) =3 (K=1, N, EXP((4 « K= N)/N » (4/N)))

N S(N)

10 23.923392666

50 20.5168787439

100 20.1146395823

200 19.9154913077

4. (a) width=1%

2K - 2K - -5, 2K=1) 3N -2
 left endpoint = - N

N

2
height = 3 + (2K—3N—2) +(2K—3N—2)

N N

[(2K—3N—2]2 (
area= |3+| —mmmm—| +

N HoN-1))(2)
(b) SN)=3 (K=1,N, 3/(2+«+K-3+N=-2)/N)A2 +

2 «K=3+N=2)N« (2/N)

N S(N)

10 -2.44756241499

50 -2.09256321762

100 -2.04647408997

200 -2.0232851862

Activity Set 3.1.3

1. AREA = .666666666667

2. AREA = 3.71221866457

3. AREA = -1.38542551654

SOLUTIONS 577

N TRAP SIMP

50 666923371902 .666666687877

100 666730858883 .666666667993

N TRAP SIMP

100 3.71108428728 3.71205883637

N TRAP SIMP

100 -1.38630748336 -1.38542551069

578

10.

11.

SOLUTIONS

AREA = 2.36567536982

AREA = 1.15444851259

AREA = -2

AREA = .886207348259

AREA = 1.58846779582

AREA = 250798211423

AREA = 1.08531739235

AREA = 1.446560

(Using 6 FIX)

N TRAP SIMP

100 2.36496414195 2.36567538512

N TRAP SIMP

100 1.544445492303 1.5444851427

N TRAP SIMP

50 -1.99922988429 -1.99999993636

100 -1.99980742337 -1.999999996

N TRAP SIMP

100 .886207292754 .88620734825

N TRAP SIMP

100 1.58848892823 1.58846779602

N TRAP SIMP

100 2.50797278189 2.50798211428

N TRAP SIMP

100 1.08532405829 1.0853173924

200 1.08531905887 1.08531739236

N SIMP

100 1.44655963409

200 1.44656012035

SOLUTIONS 579

Activity Set 3.2.1

(b) AREA: 2.45375670998

(c) AREA: 1.52818183784

2. Volume: 41.1062399578 (units)?

3. Volume: 1.65549327405 (units)?

4. The "arch length" is 1493.74 feet

5. (a) 18.001 (b) 40.095

6. Period = 2.554 m

Activity Set 3.2.2

14
1. 5 V5x-1 2. -(2x+3)1/2 3. tanx-x 4. secx

5 Ll x4 3)tan(25 +3) Lin(1+ (2% 3)? 6. =5 6 7.. E(x+ Yan™ (2x +)-—En(+(2x+3) . 1O(x—7l') - " sin Bx

2x + 1 S

8. x;_ In cosh x 9. T 10. If s—-1=-1, In x; otherwise %

580 SOLUTIONS

Activity Set 3.3

1. The final plot:

2. The final plot:

3. The final plot:

4. The final plot:

5. The final plot:

(a)

SoLuTIONS 581

| l/V\MM...... (b)

 (c) e

Activity Set 3.4

sinx| 1
Pl I

integral = .56 to within €.

 <—. WithK=1,p =4 and € = .01 we have N > 3.22. Thus, the

X

‘\/x6+4

the integral = 1.112 to within €.

<i2 . WithK=1,p =2and € = .001 we have N > 1000. Thus,
X

xe—2x

%}x3+1

the integral = .198 to within €.

<e? . WithK=1,¢c=2and € =.001 we have N > 3.2. Thus,

1
x° -1

N > 121.2. Thus, the integral = .236.

<—§2/—2 for x 22. With K =2,p = 5/2 and € = .001 we have
X

Using the hint, for x 20 ‘\/x+1 e2*

<(l) ee*. Thus K=1and c =1. For

e

€ =.005, N > 1n200 = 5.3 and the integral = .605.

582 SOLUTIONS

Activity Set 4.1

1. (a) - (b). The terms appear to approach 0.

(c) The graph approaches the x-axis.

2 k2
(d) by l-Hospital's Rule, lim —=0. Thus lim — = 0.

X—o0 2 k—oo 2k

2. (a) - (b). The terms appear to approach 0.

(c) The graph approaches the x-axis.

(d) by 1-Hospital's Rule, lim I"Tx = 0. Thuslim
X—y00 k —oo

3. (a) - (b). The terms appear to approach 0.

sin k
05r =0.e

The Rule of 1-Hospital is of no help.

(c) The plot suggests that lim
koo

4. (a) - (b). The terms appear to approach 0.

1 . 11
(©) Usef(x)=;; iz_)ni (-1)k 1(-}:) =0.

5. (a) {:/—_I;I%-_I} diverges (b) {Cf/%k

Activity Set 4.2.1

In k
k =O.

} converges to 0.

1. (a) Use the ratio test (b)

(c) sum =2026.4657948 (d) The 38t partial sum.

2. (a)

(c)

3. (a)

4.

5. (b)

(c)

SOLUTIONS 583

Use the ratio test. (b) Use the ratio test

sum = 1.71828182846 sum = 147.413159104
The 14th partial sum The 27t partial sum

Use the alternating series test

sum = 2
The 4274 partial sum

Use the alternating series test. (b) n =15 (c) S;5 =1.71828182846

Sum = 2.00300296795

k!

For sufficiently large k, k+2)! is sensed as 1 by the HP-48. From that

point on, the partial sums accumulate by 1.

584 SOLUTIONS

Activity Set 4.2.2

oo

oo . 1 .

| sz;x dx converges on comparison with J Adx and sz:4x < x%; use K =2

1 1

> sink
and p = 4. With € =.01, N > 4.05. Thus thesum= Y —— =90 to

k
k=1

within € = .01.

oo

1
< — for2

j” Z__ dx converges on comparison with J L dx since Z
1 Vx®+4 1 * Vxb +4

x>1; use K=1 and p =2. With € =.001, N >1000. Thus the sum =
1001 r
> = 1.083 to within €.
o1 VK®+4

oo ©co

-2xxe : :
%/3_. Then | f(x)dx converges on comparison with | e-2dx
x°+1 1 1

since |f(x)| <eZ;use K=1and c =2. With e =.0012, N > 3.1. Thus the
4

Let f(x) =

sum= Y a =.128 to within €.
k=1

J Z__ dx converges on comparison with | % dx since ——— < %

2 Vx®-1 2 Vx® -1

for x >1.41; use K=1 and p = 1.2. With € =.001, N >5.5. Thus the sum

o k

~ 2 = .835 to within €.

[In (x_lz) dx converges on comparison with | %dx since In (x—lzj < xlz for

1 1
x>0; use K=1 and p =2. With € =.0001, N > 10,000. Thus the sum =
10,001 1

Y ln(k—z) = -164,236.277 to within €.
k=1

SOLUTIONS 585

Activity Set 4.2.3

1 3
1. Since r = 5 let I' = 1 The smallest value of N that satisfies (1) is N = 3.

The smallest value of N that satisfies (2) is N = 27. Thus the sum =
27

Y (%): 2 to within € = 10°.
2

k=1

_ 1 1 . :
2. Since r = - let I' = 5 The smallest value of N that satisfies (1) is N = 10.

The smallest value of N that satisfies (2) is N = 24. Thus the sum =
24 3
Z (k] 6.006512 to within € = 10°.

k=1 \©

1
3. Since r=0 let I' = 5 The smallest value of N that satisfies (1) is N = 3.

The smallest value of N that satisfies (2) is N = 12. Thus the sum =

k+2
2 (k+1)k1)(*2) 17027973 to within € = 10%,

1
4. Since r=0 let I = 5 The smallest value of N that satisfies (1) is N = 4.

The smallest value of N that satisfies (2) is N = 14. Thus the sum =
14 10kk! . _

2 (2k+ 1) T= 5.655198 to within € = 10°.

.
3

N |

5. Since r=.7 let I' =7 . The smallest value of N that satisfies (1) is N = 1.

The smallest value of N that satisfies (2) is N = 42. Thus the sum =
42 Tk 1Y 2D 53537305 to within € = 10%.
k=1

586 SOLUTIONS

PART II EXERCISES

57 Startingat T=1,Y=1 forH=2wegetY=14Y=196,Y =2788,Y =

4110, and Y = 6443 when T=14,T=1.6, T = 1.8, and T = 2 respectively.

5.8

6.1

6.3

6.5

SOLUTIONS 587

Starting at T=1, Y =1 for H=.1 we get Y =144, Y = 2.097, Y = 3.169,

Y =5.168,and Y =9.839 when T=14, T=1.6, T=1.8, and T = 2 respectively.

Starting at T =1, Y =1 for H= .05 we get Y = 1467, Y = 2.196, Y = 3.484,

Y =6.280,and Y = 15.693 when T =14, T=1.6, T = 1.8, and T = 2 respectively.

See page 200.

gty

8

27

-1.12

.............

y

588

6.6 There is only one 'equilibrium’' solution 6.7

SOLUTIONS

 <logistic model

 J

6.8 The substitution x = @4 leads to the equation

e 3,4, -+ C
(1-0)(1+0+0 +0 +0 ')

A Bw+C Dw+E
The integrand is + +

6.9

-0 2 50+o+l 0505 o+l

for A= .8, B =23677, C =1.2944, D = -1.5677, E = -.4944. An antiderivative of

the left side is .5B In {®2 + .5(1 + V5) @+ 1} + (C-.25B(1+V5))1.7 tan"]

\f(20+1.618,1.1755) + .5D In {®2 + .5(1- \r(5)) o + 1} +(E-.25D(1-
2 o - . 6 1 8-1Vv5))1.0515 tan 11902

-Aln |1-0|. We replace ® by x25 and use the initial condition x(0) = .5 to

evaluate the constant of integration. This analytical procedure is already

quite formidable and we muststill invert the expression to graph x(t). What

if a parameter value in the equation changes? This adds further complication

to the analytical procedure. The case r = 5/2 is similar.

If Q(t) is the weight of salt in the tank at time t (in minutes), we have that

dQ Q
at = 212~ 350

300-t
where X =355 1f we put Q =21, we get x solutions .04677 and .9758 which

 3,Q0)=0. This equation has solution Q = 450x (1-x2)

translate to t = 7.262 and y = 286.

6.10

6.12

SOLUTIONS 589

X = e’S.
In (p(t.)x In(p(t,)x

Following the hint gives t, ln{——(g—(—l—)—z} =tm{M} for
In(p(0)x) |~ In(p(0)x)

Using the solver we solve this equation for x. This gives a value for

In(p(t,)x)
In(p(0)x)

x = .665282 which gives B = 2.6391 and A = 1.07557. Plotting the resulting

A/B =-Inx. Bis given by -Btj = ln{ } For the case at hand, we get

solution gives the expected results.

Clearly K = 1, so a quadratic model as constructed in Exercise 6.11 has the

form

62
Y' = o IFTE(Y < 0, 82 - (Y-0)2, 102 [(1-0)2 - Y-0)2) for some s > 0. The

following pictures were obtained by using 6 = .6, 06 =14 and 6 = .65, 6 = 1.25.

P

590 SOLUTIONS

6.14

6.15

velocity

35

6.16 6.18a
time

trajectory with new parameter values

12} ¥ inpwt
Jd

 “t
3.14

peak at t = 5.6, v = 29,final velocity = -3.64.

6.18b

SOLUTIONS 591

6.18c

st y=Ae "cos (bt+c)

7.2

o To 56 y=0att=5. _ =l- y=0att=522and 21050 b= ">o= 101

and 12 e- 4r =9 ¢ -1(-4+1/b) 50 r = -b (In .75)/n = .092. Thus B = .184 and

C = (.092)2+(1.01)2 = 1.029.

1

 7.3 \
6 scale on owtput enlarged 3

The calculator gives Xq(1) = .1973, xq'(1) = .3228 so initial conditions are

x(0) = .488, x'(0)= .012.

592 SOLUTIONS

74 Agraphof Ry(z)vszis o , , , =2

2.1tx 4(1.57,1.57)

I/\ 6.28
7.4a lo_/t Contrast (a) with (c) solution x = 2 sin t.

7.5 The program<< - W << WDUP 2 *1-NEG2*INV >5C<x< C2*

NEG 0 XRNG C W * DUP NEG SWAP YRNG ERASE { # 0d # oOd

}) PVIEW 1 200 FOR NN 2 * P * W * -NUM DUP SIN SWAP

COS 1 - C * SWAP W * C * NEG R—>C PIXON NEXT >> >> »>>

requires input W and outputs the desired graph and leaves a copy of W on

the stack. Try for W = 19/20, W = 6/7, W = 1//7.

Y,

7.6

Yy

trajectories for first system trajectories for both systems

7.7

SOLUTIONS 593

Z

Q 7.8b P(z) = —= [&
0¥, fi Jcosx-cosz

P(rm/4) = 6.5340 (takes HP about 9 minutes at 4 FIX to evaluate integral)

P(n/2) = 7.4158

7.9

&
7.10 The system has eignevalues * V5 and eigenvectors proportional to [4.236, 1]

and [.2361, -1]. For initial conditions not proportional to the latter vector the

trajectory will quickly approach the first vector as t increases.

Y,

7.11a

594 SOLUTIONS

In 7.11a the final value of [x,y] was [-.333, -.198]. The ratio of y to x was 1.68.

We show in the figure both the trajectory and the line y = 1.67 x. The

eigenvalues of the matrix are -1.5 and -.5 with associated eigenvectors [1, 1]

and [1, .6].

2
A + .6A+4.09

711b X

elo[[e

8.1la x2 +2x+5=0 8.1b x2+1001x +1000=0 8.2a x3-6x2+11x-6=0

82b x3-3x2+4=0 82 x3+2x2 -21x -6=0

8.3a 2, 3,1 83b -1,2,2 8.3c -5.574.., -.279.., 3.853...

8.4a -1.0979... +i.785..., 2.1958... 8.4b -.347..., 1.879..., -1.532...

8.4c

8.5b

8.6a

8.6b

SOLUTIONS 595

-e e -1

1+42i -3 852 Y®=| o 5¢% |

el el 0

[.1776 cos Bt — .5195 sin Pt |

column 1 = e®| —.6027 cos Bt + .4309 sin Bt|,

cos Bt

[.1776 sin Bt + .5195 cos Pt |

column 2 = e*| —.6027 sin Bt — .4309 cos Pt

sin Pt
with a = - 1.079, B = .785... and column 3 = e2:196t column [.2074, .4554, 1].

el e _o17a¢t
- -t -

YO =| 56 2t _983¢7"

The eigenvalues are -1 (repeated) and -2. Let a = column [1, 2, 4], an

eigenvector corresponding to the eigenvalue -1. We try y = et (at + b) as a

solution to y' = Ay and see this will be a solution if (A + I) b =a. We create

the 3 by 4 matrix [A, a] and reduce it by using the RREF command or a series

of pivot operations to get the solution b = column [0, 1, 4]. Finally an

eigenvector corresponding to the eigenvalue -2 is column [1, 1, 1]. Hence a

fundamental matrix of solutions is

-t -t -2t

YO =| 2" etewl) e

-t - -
4e eldud) e

596

8.6¢

8.7

9.10

SOLUTIONS

Again the eigenvalues are -1 (repeated) and -2, and there is only one

eigenvector corresponding to the eigenvalue -1, viz., a = column [-.5, 1, .5]. We

try as a second solution y = e'(at + b) and proceed as in 4.3b.

The eigenvalues are 5.964, -1.529 and -3.218 * i 2.703 with corresponding

eigenvectors column [-.2866, .4203, 1, -.04738], column [1, -.0063, -.1994, -.5790]

and column [-.1846% (-.5511), .0255 + .0844, -.5882 + i.0899, 1].

The list FL should be { ‘(Y -A*EXP(-P*T)-B*EXP(-Q*T))*A*T*EXP(-P*T)'

‘(Y - A*EXP(-P*T)-B*EXP(-Q*T))*B*T*EXP(-Q*T)'

‘(Y - A*EXP(-P*T)-B*EXP(-Q*T))*EXP(-P*T)'

(Y - A*EXP(-P*T)-B*EXP(-Q*T))*EXP(-P*T)'},

the parameter list PL should be {P Q A B}, M = 4. The program NST1

should be modified to << DUP OBJ— DROP 'B' STO ‘A’ STO 'Q' STO

'P* STO JACM FACM FVEC JMAT / >>. After several iterations, we

obtain P = 2.07, Q = .93, A = 6.13, B = -5.13.

Fit using stanting parsmeters Fit using final parameters

SOLUTIONS 597

PART IlIl EXERCISES

o LLAMMA m

 < < - —
—

=
=

y

10.2 X 10.3 %x
5

11.1 The first several zeros of]l (x) are 3.831705970, 7.01558667, 10.17345681, the

first several zeros of J,(x) are 5.135622302, 8.4172441, the second intersection of

J;(x) and J;(x) occurs at (4.680102554, -.274841815) and thefirst intersectiuon

intersection of J;(x) and J,(x) occurs at (2.629874112, 0.462386403).

a.alv/\

11.4a TTN
] T

598

11.4b

11.4c

11.4d

11.6

12.1

12.4

13.3

13.4

13.5

13.7

SOLUTIONS

1.6]Y 1.6]Y

o . . X

l6]Y

-1

yooty uoolv

X) __ -
-15 10 -i.sl N '

=400 =400

Thefirst three values of A which give roots of J; /3(2) with z = 2°/2 V2, /3

are 2.369533199, 10.23582292 and 23.6526167.

Ao = 2.369533199, A; = 10.23582292, A, = 23.6526167

The integral (a) is 2, the integral (b) is 2.36824634629

The curvature at t = 1/2 is 0.443376024, the torsion is 0.21660881309. The
length of the curve 0 <t <1 is 2.64403204553.

The integral over F(x,y,z) = [-X, y, Xy + z2] on the curve of Example 13.3 is
4,072,716.93773; the integrals of the F functions of this exercise are 1.88498 and
1.454545 respectively.

Replace L3IN with P(X(T),Y(T))*aT(X(T)) + Q(X(T), Y(T))*aT(Y(T)) in LLL program.

The HP-48G integration program gives 4.18879020478, Gaussian quadrature
gives 4.18928084371.

SOLUTIONS 599

PART IV EXERCISES Activity Set 14.2

—
1. (a) B =

A
N
g
W

—

2. (a) A=

B
a
@
R
N
Z
o
a
~
b
o

—

—
Y

e
—
—
e

e
—
.

e
e

(c) C=

H
P
O
N

o
w
n
b

N
-

A
W
M

o
|

3. (a)

H
B
O
W
O
D
N
a

4. (a) level 2:
level 1:

level 2:
level 1:

.

N
E
A
E
N
D
N
D

N
N

W
w
W
o
N

22 .
32 .
42 .

.52 .

22 .
31 .

o
w

o
o

®
a

>
>

1 5 0] [[3 2 -]
3 0 1] [5 0 -6]
8 7 9] b) C= 173 0]
-6 1 31]] [1 2-4]

[8 7 9]]

14]

-6] ([2 -1]
0] (d E=[7 3 0
-4] [0 7 1375]]

1375 1]

13 .14]

23 .24] [[21 .22 .23 .24]
33 .34 | (b) B= [31 .32 .33 .34]
43 .44] [51 .52 .53 .54]]
53 .54]]

23 | [[.62 .63 .64]
32] (d) [21 22 .23]
51] [.33 .34 51]
54 1] [.52 .53 .54]]

] [([1 1 15]
] (b) [2 2 2 5] (c) No; notice the (4,4)-entries
] [3 3 3 5]

1] [4 4 4 4]]

4 COL+ returns [A B] (b) Approaches vary

and

4 ROW returns [g]

SOLUTIONS600

Activity Set 14.3

o
W
v

.
1

N
0
O
©

!

e
t
e
S

NT
O
o
O
N

o
r
-
m

~
Q
<

e
b
S

r
—
p
—
—
—

p
—

[[-35-18 16]
]-4

14 -24 -44]]
-28 -20[

[
3 =

-
a
u
w

o
r
a
n
m
s
N
O
T

Il
]

i
o
~

<
Q

<

~
~

~
~

©
o

N
N

N
)

1
2

p
—
p
—

'
—

0
O

O
o
o

r
Q
N
-

'

M
o
o
M
o

-
o

©
0O
O

-
1

r
.
-
l
l
[
S

e
l
e

I
Il

<
M

M
Og

S
b
t
b
e

C
d

—
—
—

<
<
+
©

'

o
T
©

0
O
N

0
O
<

'
v
y

4. (a) For example, seed with 4 and generate the 3 x 4 matrix

[[161 -72 -113 -28]
Then ATA= [-72 68 88 -20]

[113 88 146 16]
[-28 -20 16 68]]

(b) For the 4 x 5 matrix

SOoLUTIONS 601

[[-2 1 6 1 0]
B= [6 6 -9 -4 0]

[-4 -5 4 -4 7]
[-8 -5 0 4 -4]]
[[120 94 -82 -42 4]

we have BTB = [94 87 -68 -23 -15]

[-82 -68 133 26 28]

[-42 -23 26 49 -44]
[4 -15 28 -44 65]]

and for the 5 x 6 matrix

[[-6 9 4 8 1 2]
[7 -2 -6 9 -2 -2]

C=15-3 1 4 4 -8]
[2 2 4 -4 4 9]
[1 5 -7 5 5 -4]]

[[115 -84 -46 22 3 -44]
[84 123 18 59 34 44]

[- 18 118 -69 1 76]

we have CTC = | 22 59 -69 202 15 -90]

[3 34 1 156 62 -10]

[- 44 76 -90 -10 169]]

(c) Conjecture: For any matrix A, ATA is symmetric.

(d) Proof: (ATA)T = AT(AT)T = ATA.

[-9 - [
1

5.(a) A=

-
W
0
o

.
!

O
N
O

]
]
] and B =

1]

([(7.9) (-9,-7) (-85) (-5,
(b) A+iB= [(83 (1,1) (6,3) (5,

[3 -3) (35 (7, -6 (7,
[(1’ 4) ('2’ '1) ('51 '3) ('2s

N
N
O
O

-3

-2

1

&
w
w

o . 7
1

5

W
o

w
o
;
m

1
1

g
©O

©
o

O

q -

0)]
6) 1

-9) |
]5) 1]

602 SOLUTIONS

(rt 7.9 @3 @6-3 1.4]
(A+iB)T= [(-9,-7) (1,1) (3,5 (-2,-1)]

[(-85) (63 (7,-6) (-5-3)]
[(6,0 (5.6 (7,-9) (2,5 1]

(c) After separating, SWAPing and recombining the new matrix is

[[(91 7) ('7v '9) (5, '8) (0’ '5)]

[B8 (1-1) &0 (65]
[(-3,3) (5,-3) (-6,-7) (-9,7)]
[41) (1,-2) (-3,-5) (5,-2)]]

6.(a) C=1[[35 4]
[71 6]]

[[1-2 3 56 4 3 7] [[1834 7]

) D= [79 04 35 1] E= [7 03 1]
[-38 62 14 6]] [-36 16]]

7. (a) A*=[[(5-1) (0,-4)] BT = [[(-3,1) (0,0) (4,-3)]
[@3) (61)] [6,0) (2-1) (11 1]
[(1,O) (3, -4)]]

(b) A*+B=1[[(20) (6, -4)] A+BT= [[(22) (2,-3) (5-3)]

[&3) (80] [(6,4) (8,-2) (4,5)]]
[6,-3) (4 -3]]

AA* = [[(40,0) (22, -40)] BTB = [[(15,-3) (11,7)]
[(22, 40) (78,0)]] [(11,7) (39,-2)]]

2-3)A= [[(13,-13) (-5,-12) (2, -3)]

[(12,8 (9,-20) (18,-1) 1]

[[(12,-100 (19,13) (5, -2)]

8. A2 —4A* +3AT-I= [(0,17) (41,24) (17,33)]

[@217) (9,24) (29,13) 1]

9. (a) A*-8A3 +22A2 —-40A +251=0

(b) A[A3-8A2 +22A —40I] =-25 so Al =% [A3 —8A2 + 22A — 401]

[[-4.68 -3.28 -4.48 -2]
[56 .76 16 0]

(c) Al = [432 272 452 2]
1][256 176 216]

[[.269

, [212
10. (a) To three decimal places, il_’)’zo {A"} = [205

[315

To three decimal places, r{’_’)’i {A"x}= [.269(b)

(c)

11.

12.

(a)

(d)

Each column mi’_’)’i {A"}is i’_’)’i {Anx }.

The conclusion is the same as in 10(c).

u=[4-2 5-8 5]andv=[-4 7 8 0 -6]

uev=-20 (b) ue (u+v) =114

u-v

lu-oll

Activity Set 14.4

1. (a)

(b)

(c)

det[1000A] = -1,536,000

Using cofactors along column 1,

[[1 3 6 4 1] [[
[1 11 1] [

detA=det [1 3 6 4 1] +3det [
[1 1 1 1 3] [

[1 3 6 4 1]] [

[[1 O 10

[1 3 6 4
—det [1 1 11

[1 3 6 4
[11 11

and since each of the three matrices on the righ
det A =0. Thus det[1000A] =0

=1 (e) 16.093476934 < 24.4210694815

.269

212

.205

315

212

.269

212

.205

315

.205

SOLUTIONS 603

269]
212]
205]
315 1]

315]

(c) ve(v—u) =185

—
b
—

W
e
a
W
a
0

W
a
2

]
]

]
]
1]

-

D
O
a

A
a
p
b
a
O

(f) 20 < 148.69431731

—
_
W
a
a
a

S
b
l
b
l
b
l
S

has two identical rows,

When detA is calculated as -1.536 x 10-12 due to round-off error,

det[1000A] =det[103A] = (103)6det A = 1018(-1.536 x 1012
= -1.536 x 10° = -1,536,000.

604 SOLUTIONS

(d) With flag -54 clear, det A is calculated to be 0.

Activity Set 14.5

1. The RPN program is « 1 -5NUM « COS ». The result is

(r 1+ 1 1]

[1 1 17].
[1 1 1 1]]

2. The RPN program is « ¥ 2 + FLOOR ». The result is

[[3 3 3]
[4 4 4].
[4 4 5]]

3. The RPN program is « DUP 1 + SWAP / Y CEIL ». The result is

(r 2 1 2]
[1 2 1].
[2 1 2]]

Activity Set 15.1

[[4 1 3 6] 1,2RSWP [[8 -2 4 -8]
1. (a) [8 -2 4 -8] - [0 2 1 10]

[8 -6 -2-36]] FRo(-5) [0-4 -6-28]]
R31(-1)

2,3RSWP [[8 -2 4 -8] Rap(.5) [[8 -2 4 -8]
- [0 -4 -6 -28] - [0-4 -6-28] =[Ulb]

[0 2 1 10]] [0 0 -2 -4]]

BACK> [-1 4 2]

[[3 2 -2 2 -5] [[6 2 -4 -2 -10]
[6 2 4 -2 -10] 1, 2 [3 2 -2 2 -5]

(b) [-3 1 25 0 8] RSWP [-3 1 25 0 8]
[60 2 4 2] - [6 0 2 4 2 1]

2. (a)

3. (a)

(b)

4 -2
15 3
2 A
3 6

R21(-.5) [I

- [

R31(.5) [

Ra1(-1) [

3, 4 [4 -2
RSWP [1

- [

Ra3(.5) [

Row Operations:
1, 2 RSWP
1, 1 ELIM
2, 4 RSWP
2,2 ELIM
3, 3 ELIM
5 COL-
BACK—[1 0 -2 4]

o
O
O

o
O

O
O

O

'

O
O
N
N

D
D
L
N

2

5 5

0 6

Row Operations: 1, 3 RSWP [[

1,1TELIM - [

3, 4 ELIM [

[

Thus x3 is a free variable x,

SOLUTIONS 605

10] 2, 3 [[6 2 -1 -2 -10]
O] RSWP —» [0 2 -2 2 -5]

31 R32(-5) [0 0 -25385-15]
” 11 Ra2(1) [0 0 5 5 15]]

10] -
3] =[Ulb] BACK [1 0 2 1]
15]

6 1]

(b) Row Operations:

1, 4 RSWP
1, 1 ELIM
2, 3 RSWP

2, 2 ELIM
9 RND

3, 3 ELIM

5 COL-
BACK and

7RND - [6 -5 1 3]

36 9 2 -5]
0 1 143 686]
0 0 0 33 6.6]
00 0 0 0]]

= 2. Also

X = 6.—6-—X3 "45X4

And 3x1

1, 3 RSWP

1, 1 ELIM [[6-9 0

2, 3 RSWP [0O 0 5

2,3ELIM - [0 O O

= 6.6-x; — 86

='2—X3.

= -5-6x;, -9x3 —2x4

= -5-6(-2-x3)-9x3 —2(2)

=-5+12+6x3-9x3-4=3-3x3,50x1 =1-x3 .

11 19 3 0]

16 -33 -8 6]
0 0 4 2]

0 1]

5.

00

1.5x; — 1.83x, + 3.16x5 — .25.

10 - 1.6x, + 33x

6 - 1.6X4 + 33x§ + 8x6

0

2- 3x + .6x5 .

6 — 1.6x; + 33xs + 4

9x2 - 11X4 + 19x5 - 3x6

= 9x2 - 11X4 + 19x5 - 3/2

[00 O

SOLUTIONS

3, 4 RSWP
3, 6 ELIM

Then x,, x4 and x5 are free variables and x,

Also 5x;

SO X3

Finally, 6x;

so that x;

Activity Set 15.2

606

—
—
—

M
m
O
N

'
'

n
o
<

!

<+
M
O

©
©
o

N
O
O

©
o
o

—
_
—
—

1
—

=
I

c
o
o
o
r
~

©
1

I
S

<
o
o

3
c
o
~
-
4
¥

@
<

o
o

o
O
T
L
W

O
—

o
v

2
'

™
-

—
—

T
i
m
o
l
m

<«
o
—

p
—

—
T

—
-
.

9
—
h

!
—

o
o
™

™
O
O

T
N

e
e

e
t
e
t
—

—

~
—

(
=
1

o
T

o
™

w
-

"
o

I
I

I
T
w
w

v
T
i
o
w

o
~

=
®

I
I

I
=

~J
=

3

—
_

—
T
O
O
0
O
O
0
O

O
N
N

N
O
O

—
—

'

o
o

"
T
o
o

'
'

o
~

-
o

c
o
~

&8
c
o
~

§
©
c
o

©
¢

O
O

o
O

O
O
0
O
T
O
0
O
O
O
O
O

o
o

I
I

I
I

I
I

~~
>
=

=
~
~

~
~
~

\
Q

=
o

2
—

SOLUTIONS 607

(dd P=[000 10] L= [0 1100]
[100 0 O] [3.33 10]
[000 0 1]] [300.5 1]]

[[-6 -3 -12 -9 3]
[0 3 -6 3 9] y= [36 30-3-28 12]

U=[0 0 9-6-3]
[0 0O O 4-8] x= [-4 20 4 3]
[00 00 4]]

[0 0O 1] ([-9 0 0] [[1-6 0]
2.(a) P= [0 0 1] L=14-18 0] U= [0 1 -12]

[0 10]] [-4 -6 -1.8]] [0 0 1]]

y= [-23 656-3] x= [1 2 -3]

[[0010] [[-7 0 0 0]
(b) P= [0100] L= [2 -4.42857142857 0 0]

[0001] [5 -1.57142857143 -9.8064516129 0]
[1000]] [1 -3.71428571429 -1.45161290323 -3.53289473684 |]

U=[[1 -1.28571428571 -.142857142857 -.428571428571]
[0 1 -.967741935484 -.419354893871]
[0 0 1 -867105263158 |
[0 0 0 1 1]

y= [-7.57142857143 -.483870964452 396710526316 -1]

x= [-52 3 1]

[[0O O 0O 0 1]
[10 00 0]

() P=[00 10 0]
[0 100 0]
[00 O0O0 1]]

[[9 0 0 0 0]
[-7 -116 0 0 0]

L= [7 36 -8.53 0 0]
[-1 -6 -4.93 -15.3214285714 0]
[5 7.3 4.93 8.46428571429 -9.41258741259]]

[l 1 -.6 -.5 -1 .8]
[0 1 .93 428571428571 .06]

U= [0 0 1 -1.33928571429 -.0625]

608 SOLUTIONS

[O 0 0 1 -4.97668997669]
[O 0 0 0 1 11

y= [18 .238095238096 11.0267857143 -6.62121212126 .270430906347]

x= [-2.99577087667 .800891530589 2.35624071312 -6.48662704316 .270430906347]

Activity Set 15.3

1. The RREF's for the augmented matrices are:

a. [[1 00 1] b. [[1 0 0 0 -]

[0 10 4] [0 1 0 0 O]
[00 1 2]] [0 0 1 0 2]

[0 0 0 1 11]]

2. The RREF's for the augmented matrices are:

a. [[1 00 0 1] b. [[1 0 0 0 6]
[0 10 0 0] [0 1 0O O -5]
[0 0 10-2] [0 0 1 0 1]
[0 00 14]] [0 0 0 1 3]]

3. The RREF's for the augmented matrices are:

a. [[1 010 1] b. [[1 0 0 0 O 13 .6]
[0 110 -2] [0 1 0 <12 27 i 32]
[0 00 12] [0 0 1 3 -8 -13 -13]
[0 OO0 O 01]] [0 O 0 O O 0O 0 1]]

Activity Set 16.1

1. Consider the matrix] [[8 3 1 2 16]
Uy Uy Uq Uy Uj = [9 1 -5 11 -7]

[7 -84 23 3]

The reduced row echelon form is

[[1 0 0O 1 .961904761905][
[O 1 0 -2 1.84761904762] .
[0O 0 1 0 27619047619]]

Thus neither u; nor u; is a linear combination of v; and v,; but u, = v; - 20,.

SOLUTIONS 609

2. Consider the matrix

] [[-2 5 4 -3 -9 0]
V1 Uy U3 U U Uz = [7 -6 -8 16 0 -5]
I | | | | [6 -6 3 3 4 27].

[-5 4 9 -15 -3 14]]

The reduced row echelon form is

[[100 20 1]
[010 10 -2].
[001 10 3]
[000 0 1 01]]

Thus u;, =2v; + v; —v;, U, is not in Span [vy, v;, v3], and u; = v; - 2v, + 30,4

3. [[4 9 6 -5 -4] [[10 0-2 -1]
[-3 65 7 0] [0 10 12]
[-2-9 0-5-16] [0 0 1-1-3]
[3-5 2-13 -19] [000 0O]]

Thus p(x) = -2 r(x) + s(x) — t(x) and g(x) = -r(x) + 2s(x) — 3t(x).

Activity Set 16.2

1. (a) Since the rows of A are the columns of AT, we consider AT:

[[10 0 13]
10 -1

The reduced echelon form of ATis { 8 0 C1) 2;% } :

[0O0 O O]]

Since x, is a free variable, ATx = 0 had infinitely many solutions. Thus the
columns of AT (i.e., the rows of A) are dependent.

All solutions to ATx = 0 appear like [-1/3x4,1/3x4,2/3x, , x4], and choosing

xy=1weget[-1/3,1/3,2/3,1].

Thus the dependence among the rows of A is given by
1 1 2
3 (row 1) + 3 (row 2) + 3 (row 3) + (row 4) = 0.

610

2. (a)

SOLUTIONS

[[10 0 -5]
0 1 0 .375

The reduced echelon form of A is { 00 1 625 } :

[0O0 O 0]]

Thus the columns of A are dependent and a general dependency is given by
A4 = '.5A1 + 375A2 + 625A3

The reduced row echelon form of CT has a 1 in every column, so the columns

of CT (i.e., the rows of C) are independent.

We look to solve Cx = 0. The reduced row echelon form is

[

O
O
O

a

O
O
a
0

O
4
0
0

-
O
O
0
O

-
A
L
o

1]

So x5 is a free variable and the columns of C are dependent. A general
dependency relation is A5 = A; - A, — A3 + Ay.

The reduced row echelon form of E is

[0 0 -2]

00O

2

0 10

0 0 0]]

So x5 is a free variable and the columns of E are dependent. A dependency
relation is A5 =-2A; + 2A;.

O
O
0

O
0
O
O
0
O

O
O
0
a
0

- o

Let A have uq, up, u3 and uy as its columns. The RREF of A is

[

P
r
—
p
—
)

g
—

Q
O
O

-

O
O
a
0

O
a
4
0
0

'
-

S
;
o

n;
m

]

Thus { uy, u;, us3, uy } is a dependent set of vectors. In particular,

Uy = -.5u1 + .Sllz - .5u3.

We delete u, and consider { u;, u;, u3 }. Let matrix B consist of the first

three columns of A. The RREF of B is

(b)

(c)

SOLUTIONS 611

O
O
a

O
a
4
0
0

O
O
0
O
O
o
O
O
o

]

Thus { 1y, uy, u3 } is independent and W = Span [uy, u,, u3 | .

Let A have v, v,, v3 and vy as its columns. The reduced row echelon form

of A is

[-.8]
7]
13]
0 1]]

Thus { v1, v;, v3 } is independent and W =Span [vy, v, v3 | .

O
O
O
-

O
O
a
0

O
a
4
0
0

Let A have w,, w,, w3 and wy as its columns. The reduced row echelon

form of A is

[

O
O
O

O
O
a
0

O
C
O
D
N

e
N
N

]

Thus { wy, w, } is independent and W = Span [wy, w,] .

Activity Set 16.3

1. (a) The reduced row echelon form of A is

[[100 .3]
[0 1 0-3]

E= [00 1-8]"
[00 0 0]]

Rows 1, 2,3 of E form a basis for the row space of A.

Columns 1, 2, 3 of A form a basis for the column space of A.

A basis for the null space of A: [-3 3 6 1].

A basis for the left null space of A: [.5 -375 -625 1].

612

(b)

(c)

(d)

SOLUTIONS

The reduced row echelon form of B is

[

E-=

0
0
1

0O
O
0

O
O
0
a
0

O
O
a

O
N

O
O
,

]

Rows 1, 2, 3 of E form a basis for the row space of B.

Columns 1, 2, 4 of B form a basis for the column space of B.

A basis for the null spaceof B: [-1-1 1 0 0]Jand [-6 0 0 2 1].

A basis for the left null spaceof B: [1 4 -1 1].

The reduced row echelon form of C is

[

E=

O
O
O

O
O
0
4
0

O
O

a
4
-

O
4
0
0

O
N
I
{
J
_
;

]

Rows 1, 2, 3 of E form a basis for the row space of C.

Columns 1, 2, 4 of C form a basis for the column space of C.

A basis for the null spaceof C: [-1 -1 1 0 O0]Jand [-1 2 0-2 1]

A basis for the left null spaceof C: [.1 -7 0 1].

The reduced row echelon form of D is

[[1000 1]
[0102 1]

E= (00 14 4]
[00 00 0]
[00 00 0]]

Rows 1, 2,3 of E form a basis for the row space of D.

Columns 1, 2, 3 of D form a basis for the column space of D.

A basisfor the null spaceof D: [0-2 1 1 O]and [-1 -1 1 O 1].

A basis for the left null space of D:

[.5686776859504 -8.59504132231 -.256198347107 1 0] and

[-1.38016528926 1.28925619835 .884297520661 0 1].

2. (a)

(b)

SOLUTIONS 613

Rows 1,2, 4 of A form a basis for the row space of A.

Rows 1,2,4 of A form a basis for the row space of A.

Activity Set 16.4

1. (a)

(b)

(c)

(d)

Let A have u;, u; and u3 as its columns and let C have v, v, and v; as its
columns. Then AT and CT have the same reduced row echelon form

[
E=

O
O

a

O
a
4

0
O

O
O
N

-
O
O

| :

Thus B and B' are independent sets of vectors and Span B = RS(AT) =

RS(CT) = Span B'. Indeed, Span B = CS(A) = CS(B) = Span B'.

Consider the augmented matrix [Al w]. Its reduced row echelon form is

[

O
4
0
0 -2

1

1

0O
O
O
-

O
O
0
a
0

]

which shows that w =-2u; + u; +u3,s0 w isin W = Span B and

[wlg=[-211].

The reduced row echelon form of the block matrix [C| A] is

[[1 00 .4 12 .4] [[.4 12 .4]

[0 11 2 -4 2] .Thus P= [.2 -4 2].
[00 0 -4 -2 6] [-.4 -2 6]]
[000 O 0 0]

[wlg=P[w]g=[.8 -6 1.2]T. The reduced row echelon form of [C| w] is

[[100 .8]
[0 1 0 -.6]

[0 0 1 12]
[00 O 0]]

The last column shows that [w]z = [.8 -6 1.2]T.

614 SOLUTIONS

2. (a) Let A have uy, u,, uz, and u4 as its columns and let C have vy, v, v3 and

(c)

(d)

v, as its columns. Then AT and CT have the same reduced row echelon
form

[[10-5 0 0]
[0 115 0 0]
[00 O 1 0]
[0O0 0O O 1]]

Thus B and B' are independent sets of vectors and Span B = RS(AT) =
RS(CT) = Span B'.

The augmented matrix [Al w]has reduced row echelon form

[[100 0 72]
[010 0 79]
[00 1 0 -3]
[00 0 1 61 1]

This shows that w = 72u; + 79u; — 3u3 — 61luy; so w isin W = Span B and

[w]p=[72 79 -3 -61]T.

The reduced row echelon form of the block matrix [C| A]is

[[100 0 -13 575 70 -89.5]
[0 1 0 O 49-205 -25 325]
[00 1 0 -36 15 19 -24 .
[00O0 1 ® -5 -6 -8]
[00O0 O 0O O 0 0]]

[[136 57.5 70 -89.5]
Thus P= [49 -205 -25 325]

[-36 15 19 -24]
[12 -5 -6 -8]]

[wlg=P[w]g=[0 1 0 -1]T. The reduced row echelon form of [C| w] is

[

O
O
O
0

-

o

O
O
4
0
0

O
4
0
0
0
O
0

L
O
a
a
o
0
O

o]

The last column shows that [w]g=[0 1 0 -1]

SOLUTIONS 615

Activity Set 17.1

1. (a)

(b)

(c)

2. (a)

(b)

(c)

3. (a)

(b)

4. (a)

(b)

5. (i)

(i1)

48 < (6.2449979984)(13.2287565553)

10.4403065089 < 4(7.21110255093)

Answers will vary.

10.8627804912 < 6.2449979984 + 13.2287565553

7.87400787401 < 4 + 7.21110255093

Answers will vary.

143 =110 + 33

28=7+21

Let A have uq, u;, u3, and uy as its columns, left-to-right. Then

ATA=diag[7 6 8 21].

Let A have vy, v,, and v; as its columns, left-to-right. Then ATA = I;.

The null space of A is the zero vector, so no basis exists.

[[12 0 4]
[00 1-3].
[00 0O0]]

Thus, a basis for RS(A)is{[1 2 0 4],[0 0 1 -3]}and abasis for NS(A)

is{[-2100],[4031])

RS(A) is orthogonal to NS(A) because

[

The reduced row echelon form of A is

»

0 4] ., -
1-31]] o

o

o
o[[12

[0 0

-
W
O

-2
1
0
0 e

t
b
e
e

—
P

p
—

]

A basis for CS(A) is{[1 1-2],[-1 0 0]}

The reduced row echelon form of AT is

[

O
O
O
a

O
O
a
0

o
o
O

616

(iii)

(iv)

SOLUTIONS

2 1]}). CS(A) is orthogonal to NS(AT) because

[

A basis for NS(AT) is {

2 [[0]
= [0]].

(1 1-
[100O

0

0
1 7 (2

1
e
t
S

]

A basis for RS(A)is{[1 2 0 4 0],[0 01 30],[]000O0 1]}

A basis for NS(A)is{[2 1 0 0 0],[-4 0 -3 1 0]}

RS(A) is orthogonal to NS(A) because

[[2 -

[*

o
o

o
o

O
a
O

o
w
h

2
o
0
o

o
o
o

o
c
o
o

]]
O
.
L
W
O
o
s[

[
[
[
[e

t
d
b

S
d
b
d2

1

0

0

0]

A basis for CS(A)is{[1 2 -1 -3],[0 11 2],[001 2]}

A basis for NS(AT)is{[1 0 -2 1]}. CS(A) is orthogonal to NS(AT)
because

[[[

O
O
-

Q
O
a

-
a
l
h

N
N
G

* |

O
o
o

]]

—
p
—
—

g
—

.

-
N
N
O
=

e
l
d
S
e

]

Abasis for RS(A)is{[1 2 001 0],[001000],[0001-10],
[000001]})

Abasis for NS(A)is{[2 1 0 0 0 0],[-1 00 1 1 0]}

RS(A) is orthogonal to NS(A) because

[([-2 1]
[[12 00 10] [1 0] [[0 O]
[001000] , [0O0] _ [O0O0].
[00 0 1-10]] [0 1] [0 0]]

[0 1]
[0 O]]

Abasis forCS(A)is{[10121],[212831],[-1-1 0-2 2],[20322]
}.

A basis for NS(AT)is{[-9 3 4 2 1]}. CS(A) is orthogonal to NS(AT)
because

SOLUTIONS 617

[([10 12 1] [([-9] ([0]
[2 123 1] , [38] _ [0]
[110-2-2] [4] [0]
[2 032 2]] [2] [0]]

[11]]

Activity Set 17.2

1. (a) Seed the random number generator with 1 (1 RDZ) to produce

(b) proj,u =[3.3698630137 -2.99543378995 -1.87214611872 2.62100456621]

(c) proj,u =[4.68292682927 .585365853659 -1.75609756098 -4.09756097561]

2. (a) Seed the random number generator with 2 to produce

(b) g, =[.311399577664 -.622799155328 .544949260912 -.467099366496] .

g2 =[-273777516016 .646186669899 .655153182431 -.279755191039].

(c) proj,x; = [2.34302222747 -5.07599787749 -.38417546136 -.78485938328].

3. (a) Seed the random number generator with 3 to produce

]
]
] .
]
1]

(b) Rounding to six decimal places:

g, = [.106600 213201 -.746203 .533002 31980]

g, =[-.408126 -.486755 1.248090E-3 -.173485 .752598]

g1 =[-.399263 -.225475 365122 .789454 -.180902]

618 SOLUTIONS

(c) proj,x = [1.576232 -782662 -2.477077 -9.772820 5.504552]

[[.25] [[.875 .25 -.125 .375 -.125]
[-.5] [256 .5 .25 -75 .25] (c) H is symmetric

4. (a) [.25] (b) [-125 .25 .875 .375 -.125 |
[-.75] [.375 -.75 .375-125 375] (d) H'=H
[.25 1] [-1.25 .25 -125 .375 .875]]

Activity Set 17.3

[[10 0]
[0 1 0]

1. (a) The RREF of A is [00 1].

[0 0 0]]

[[.5 .5-5] [[2 3 2]
b) Q= [.5 -5 .5] R= [0 5-2]

[.5 -.5-5] [00 4]]
[5 .5 .5]]

([.2-.4-8] [[5-2 1]
2 Q= [.4 2 .4) R= 104 1]

[.4 -.8 .4] [00 2]]
[.8 .4 .2]]

Activity Set 17.4

1. (a) The RREF of the augmented matrix is .

[[26 -2 12] ~
(b) ATA=1[-2 20 -12] andATh=[44 -15 29 Jandx=[-1.6 3.83 7.916]

[12 12 12]]

2. (a) x| -2.2| -1 I 5 | 1.5 | 3

y | 361 | 2718 | 3791 | 2.733 | 1.245

(b) P;(x) = 3.56125138045 + .168633453671x — .476477181213x2 + .0530615957649x3

(c) Py(x) = .381750 + .347647x —.808918x% + .008864x> + .048199x*
(rounded to six decimal places)

SOLUTIONS 619

3. (a) The condition number of A is 3034650.03175.

(b) Both polynomials are ¢y + ¢, + ;22 + c3x° where

[¢ ¢ G ¢3]=[-.13 .810582010582 -.109126984127 .0231481482],

(c) Applying the RREF command we obtain

[-13 .81058201058 -.109126984126 .0231481481481]

Using x = (ATA)1(ATb) we obtain

[-.133333334713 .8105820101475 -.109126983096 .0231481483408].

Activity Set 18.1

1. (a) Seed the random number generator with 1 and generate

[[.7 -9 -8] [[-3 -7 7]
A= [-5 8 1] andB= [1 -2 -5]

[0 5 3 1] [-2 9 -7]]

(b) Trace A =18, Trace B = -12 and Trace (A + B) =6

[[56 0 3 1] [[83 9 0 -3]

c) A= [3 6 -35] andB= [6 -3 5 0]
[-6 -9 4 -1] [1 3 4 -4]
[-3 5 -5 0]] [0 53 -9]]

Trace A =15, Trace B = -5 and Trace (A + B) = 10

(d) Trace (A + B) = Trace A + Trace B

n n n

Proof: Trace (A +B)=) (a;+b;) =Y a;+ 2 b; =Trace A + Trace B
i=1 i=1 i=1

2. (a) Seed the random number generator wit

620

(b)

(c)

(d)

(b)

(c)

(d)

SOLUTIONS

Trace (A B) = -28 = Trace (B A)

[[-6 2-3]
[[0-8 3-2 1] [-8 6 1]

A= [408-23] andB= [-7-7 8]
[02-7-6 3 1]] [0-2 8]

[6 0 8]]

Trace (A B) = -73 = Trace (B A)

Trace (A B) = Trace (B A)

Proof: Let A bemxnand B be nxm

m m/n
Trace (A B) = Z,I(A B)ii= Y, (_IA,-ijijand

i=1\ j=

n n m

Trace (B A) =3, (B A);j= 3, (Z B]-iAij) These are clearly the same.
=1 i=1A

Seed the random number generator with 3 and generate

[[1-56 2]
A= [1 2-7]

[4 1-7]]

det(Al - A) = A3 + 4A*> — 254 - 150 = det (Al - AT)

[[9 13 5]
A= [-8-9 8 3]

[3 9-6-7]
[-7-7-2-7]]

det(Al — A) = A* + 1343 — 70A? - 10094 + 3240 = det (Al - AT)

[[1 0-5-8 7]
A= [71-96 7]

[54 9 0-9]
[9-6-5-9 8]
[04 17-51]

det(Al — A) = A5 + 7A* + 24A% — 1021A? + 62571 + 15082 = det (Al - AT)

- (e) A and AT have the same characteristic polynomial.

Proof: det (Al - AT) = det (AIT — AT) = det (AI - A)T = det (Al - A)

(a)

(b)

5. (a)

(b)

(c)

6. (a)

(b)

7. (a)

SOLUTIONS 621

Seed the random number generator with 4 and generate

—
e
e
b

Det A = -479, Trace A = -21, det(Al - A) = A3 + 21A? + 1631 + 479.
Det B = -684, Trace B = 3, det(Al — B) = A* — 343 — 134A2 + 696\ — 684.
Det C = 87,902, Trace C = -16,

det(Al = C) = A5 + 1624 + 53 + 46812 — 6811 — 87,902.

For an n x n matrix A, the constant term in det(Al - A) is (-1)"det A; the

coefficient of A*1is -(Trace A).

det [AI- A(1)]=A2 =24, A3 —3A2, A4 =443, A5 =54 forn = 2, 3, 4, 5.

det [AI-A,(1)]=A"Y(A-n)

0 (of multiplicity n — 1) and n

[[O 10]
(i) C= [00 1] ,det[AI-C]=A%+5A2-31+2

[-2 3-5]]

[[0 10 0]
(ii) C= [00 10] ,det[AI-C]=A%-6A%+242-51+7

[00 0O 1]
[-7 5-2 6]]

[[O 10 0 0]

[OO0 10 0]
(iii) C= [0 0 0 10] ,det[Al =C]=A%+5A% +4A3 +3A2 +24 +1

[0000 1]
[1-2-3-4-5]]

1For p(A) = A" + ¢c,.1A"1 + ... + c;A + ¢y the characteristic polynomial ofits
companion matrix is p(A).

Seed the random number generator with 7 and generate A and B.

[[-30 81 94] [[28 22 106]
AB= [3 18 30] and BA = [13-42 -35]

[7 -13 -36]] [-13 -16 -34]]

have the same characteristic polynomial p(4) = A3 + 484% - 1334 + 33,528.

622

(b)

(c)

(d)

(b)

(c)

(d)

(e)

SOLUTIONS

[[96 63 57 -124] [[21 23 -65 -2]
AB= [-36-45-63 68 | and BA= [77 -5 63 74]

[-52 96 16 -27] [12-76 60 8 |
[54 49 9 71]] [-24-84 74 -38]]

have the same p(A) = A* + 443 + 6,626A? + 116,180A + 1,523,808.

[[-28 0 -34 40 -77 [[137 -9 10 57 17]
AB = [-72 46 -104 -70 -38 and BA= [-5 26 78 23 17]

[-30 2 69 68 -59 [-98 -74 118 -2 -10]
[16 72 -88 -56 4]] [131 -46 -34 -17 45]]

have p(A) = A° - 122A* + 1,489A3 — 1,176,076A% + 26,827,552 — 294,808,320.

]
]

[-36 5 32 39 -3] [-139 -45 -84 11 -27]
]
]

AB and BA have the same characteristic polynomial, thus the same

determinant, trace and eigenvalues.

Seed the random number generator with 8 and generate

[[-6 0-7]

A= [6-7 2]

[-9-6 2]
p(x) = x* + 11x2 - 35x — 705 and p(A) = 0.

[
For A =

N
O
W
b

N
P
O

N
O

W
o

D
D

o
o[-]

[]

[-]
[1]

p(x) = x4 = 3x3 = 70x2 + 174x + 720 and p(A) = 0.

[
For A =

O
O
b
h
O
D
M
N
M
D
O[-5 0

[-2 6 -4
[0-9 -4 -5 4]
[-4 1 0 4
[-9 -6

p(x) = x5 —12x* + 69x3 — 24x2 + 7x + 5288 and p(A) = 0.

Every nXxn matrix satisfies its characteristic polynomial. This is known
as the Cayley-Hamilton Theorem.

SOLUTIONS 623

Activity Set 18.2

1.

2. (a)

3. (a)

(e)

4. (a)

(b)

(c)

(d)

Adding a multiple of one row to another row changes the characteristic
polynomial and the eigenvalues.

CHARreturns the vector [1 -21 144 -421 -4623] of coefficients of p(A);

PROOT and OBJ— show the eigenvlaues to be

4: (-3.63770276026, 0)
3: (56.0202378832, 7.86503318779)
2: (5.0202378832, -7.86503318779)
1: (14.5972269939, 0)

EGVL and OBJ— return identical results.

Seed the random number generator with 3 and generate

([1-5 2]
A= [2 -7]

[4 1 -7]]

det A =150 and trace A = -4. the sum of the eigenvlaues is -3.9 and the
product of the eigenvlaues is 150.

The sum of the A-values is the trace and the product of the A-values is the
determinant.

The eigenvalues of A are 10, 2 and + 2.82842712475. The eigenspace

associated with A = 10 is spanned by the vector[1 1 1 1].

The eigenvalues of B are 1, 2, 3, 4 and 5. The eigenspace associated with

A =5 is spanned by the vector[1 -1 1 0 0].

The eignevalues of C are 3.73205080756, 4, £ i and .267949192431. The

eigenspace associated with A =4 is spanned by [-2 3 1 -3 1].

The eigenvalues of D arel, 2, 2,3 and +i. The eigenspace associated with

A=3isspannedby [-2 4 -6 -1 1 0].

624 SOLUTIONS

Activity Set 18.3

1. (a)

(b)

(c)

2. (a)

(b)

(c)

(d)

(e)

S[[-
B=PlAP = |

[-

[-
-

'

a
N
D
O

]
]
]
]O

A
O
—
*

o
o

O
W

O
N

]

CHAR returns [1 -8 22 -40 25]for A and B.

The A-values are 1, 5 and 1 % 2i; trace = 8, det = 25 and rank = 4.

A is diagonalizable. Its eigenvalues are A =-1,1, 1 and 2.

For D=diag[-1 1 1 2], adiagonalizing matrix P is

([O 101]
P= [0 1 4 -2]

[01 0 0]
[10 1 11]]

A is defective. Its eigenvalues are A =-2,-1,1and 1, but dim NS[A-1I] = 1.

A is diagonalizable. Its eigenvalues are A =2, 2, 4 and 6. For

D =diag[2 2 4 6], adiagonalizing matrix P is

[[1 1 2]

P= [0 1 1]
[10 4]
[0 1 1 1]

.

w
l

o
l

]

A is defective. Its eigenvlaues are A =-1,0,1,1and 3. Dim NS[A-1I] = 1.

A is diagonalizable. Its eigenvalues are A =4,4,3,2,2and 1. For

D =diag[4 4 3 2 2 1]adiagonalizing matrix P is

[([1 2 0 -3

— o L

o
.

O
.
0
0]

]
]
]
]
]O

O
O
O

.
.
.

SOLUTIONS 625

Activity Set 18.4

1. (a)

(b)

(c)

The eigenvalues of A areA =1,5,5,5. A basis for the eigenspace of A =1

isX1=[1 1 1 1],normalizedtoQl=[.5 .5 .5 .5]A basis for the

eigenspace of A =5 consists of the vectors X2=[-1 1 0 0],X3=[-1 0 1 O

Jand X4=[-1 0 0 1]. Convert to an orthonormal basis using the modified

Gram-Schmidt algorithm via program GS to obtain

Q2= [-707106781 188 .707106781188 0 O]

Q3 = [-.408248290463 -.408248290466 .816496580929 O]

Q4 = [-.288675134593 -.288675134595 -.288675134595 .866025403784]

ThenwithQ=[Q1 Q2 Q3 @4](in column form), QTAQ=diag [1 5 5 5]

The eigenvalues of A are A =1, 4, 4, 4. A basis for the eigenspace of A = 1 is

Xl1=[-1 -1 1 0], normalized to

Q1 =[-.577350269189 -.577350269189 .577350269189 0].

A basis for the eigenspace of A = 4 consists of the vectors

X2=[-1 1 0 0],X3=[1 01 0]JandX4=[0 0 O 1]. Apply program

GS to obtain

Q2= [-707106781188 .707106781188 0 0]

Q3 = [.408248290463 .408248290466 .816496580929 O]

M=[0 0 0 1]

ThenwithQ=[Q1 @2 Q3 @4](in column form), QTAQ =diag [1 4 4 4

].

The eigenvalues are A = -6, 2, 4, 4. A basis for the eigenspace of A = -6 is

X1=[-1 -1 -1 1], normalizedtoQl1=[-5 -5 -5 .5]A basis for the

eigenspaceof A=2is X2=[1 -1 1 1 JnormalizedtoQ2=[.5 -5 5 5] A

basis for the eigenspace of A =4 consists of X3=[-1 0 1 0]and

X4=[0 1 0 1], already orthogonal. Normalizing we obtain

Q3=[-707106781188 0 .707106781188 0]

Q4=1[0 0707106781188 0 .707106781188]

626 SOLUTIONS

ThenwithQ=[Q1 @2 Q3 @4](in column form) we obtain

QTAQ =diag[-6 2 4 4]

(d) The eigenvalues are A =-2, -2, 6, 6, 6. A basis for the eigenspace of 4 = 2

consists of the vectors X1=[0 1 1 0 OJand X2=[-2 2 0 1 1]. Apply

program GS to obtain (we round to six decimal places)

Q3=[0 .707107 .707107 0 O]

Q4 = [-.707107 .353553 -.353553 .353553 .353553]

A basis for the eigenspace of A = 6 consists of the vectors X3=[-1 -1 1 0 0],

X4=[1 00 2 0JandX5=[1 0 0 0 2]. Apply program GS to obtain

Q3 =[-.577350 -.577350 .577350 0 O]

Q4 = [.3086067 -.154303 .154303 .925820 O]

Q5= .267261 -.133630 .133630 -.133630 .935414]

ThenwithQ=[Q1 @2 Q@3 Q4 Q5] (in column form)

QTAQ =diag[-2 -2 6 6 6]

2. (a) A spectral decomposition for matrix A is

[[.25 .25 .25 .25] [[5-5 0 0] [[16 16 .3 0]
[.25.25.25.25] +5 [-5 .5 0 0] +5 [.16 .16 -3 0]
[.26 .26 .25 .25] [O 0 0 O] [-3 -3 & 0]
[.25 .25 .25 25]] [0 0 0 0]] [0O 0 0 0]

[[.083 .083 .083 -.25]
+5 [.083 .083 .083 -.25]

[-.083 .083 .083 -.25]
[-25 -25 -25 .75]]

(b) A spectral decomposition for matrix A is

[[3 3-3 0] [[.5-5 0 0] [[.16 16 .3 0]
[3 3-3 0] +4 [-5 .5 0 0] +4 [16 16 .3 0]
[-.3-3 .3 0] [0O 0 0 0] [.3 .3 6 0]
[0 0 0 0 1] [0 0 0 O0]] [0 0 0 0]

[[00 0O]
+4 [00 0 0]

[00 0O]
[00 0 1]]

(c) A spectral decomposition for matrix A is

[[.25 .25 .25-.25]
-6 [.25 .25 .25-25] +2

[25 .25 .25-25 |
[-.25 -.25 -.25 .25]]

+ n

a
O
0
o
0
o
o
O
o

o
m
o
w
v
o

o
c
o
o
o
o

(d) A spectral

0

c
o
o
o
o
o

c
o
w
u
w
v
o

o
o
c
o
o
o

+6

C
O
o
O
W
W
w
W
O
O

v
wm

o
O

W
l
w
l
w
l

.

O
O

W
l
w
l
w
l

1

+ » .095238
-.047619
.0476199
.285714

0

.071429
-.035714

.035714
-.035714

.25

+ » —

—
e

p
—

—
—

p
—
)

p
—
—
—

p
—
p
—
—

Activity Set 18.5

n
o
;
o

O
O
0
O
O
0
O
O
0
O
O
0
o

O
O

O
0
O
O
0
O
o

1. (a) Not positive definite

(b) Positive definite

(c) Not positive definite

(d) Positive definite

—
e
e

]

]
]
]
]
]

[[.25 -.25 .25 .25
[-.25 .25 -.25 -.25
[.25 -.25 .25 -.25
[.25 -.25 .25 -.25

-2

O
O
0
0
0
0

+
—
w

]
]
]
]
1]

-.047619
.023809
-.023809
-.142857

0

-.035714
.017857
-.017857
.017857
-.125

[[.5 -.25
[-.256 1256 -125 .125 .125
[.25-125
[-.26 125 -1256 .125 .125
[-.25 126 -125 .125 .125

.047619
-.238095
.023809
.142857

0

.035714
-.017857
.017857
-.017857

125

SOLUTIONS 627

+ S

o
w
n
n
o
w
m

—

.25 -.25 -25

125 -.125 -.125

—
_
—
e

.285714 0
-.142857 0
.142857 0
.857143 0

0 0

-.035714 .25
017857 -.125
-017857 125
017857 -.125
-.125 .875

c
o
c
o
o

o
o

m

c
o
o
o

ecomposition for matrix A (we round to six decimal digits) is

e
t
b
t
b

b
t
d
—
e

e
t
d

b
d

—
_
—

—
_
—

628

(e)

(f)

2. (b)

(d)

(f)

SOLUTIONS

Not positive definite

Positive definite

The solution to Ly =bis y=[.707106781188 2.04124145232 2.30940107676].

The solution to LTx=yis x=[2 1 2].

The solution to Ly = bis y=[.577350269189 1.80739222822 6.713171 13328

17.8978583435]. The solutionto LTx=yis x=[37 29 50 31].

The solutionto Ly =bis y=[.5 1.70084012854 2.27093435774

3.22711724525 1.13389341893]. The solutionto LTx=yis x=[-3 -2 4 0 3

]-

The Cholesky factor is

L=[[1000
1100
0410
0 0 4 1
0 0 0 -1 -

0
0
0
0

]

The solutionto Ly =bis y=[1 2 3 4 5] Thesolutionto LTx =y is

x=[15 14 12 9 5].

Activity Set 18.6

1. (a)

(b)

The non-zero singular values of A are
oy = 22.2760011085, o, = 15.655141875, 03 = 6.4572678035.

Their squares are
o7 = 496.220225386, 0; = 245.083467126 o, = 41.6963074861.

The non-zero eigenvalues of ATA and AAT are
A =496.220225387, A, = 245.083467127, A; = 41.6963074861.

All three methods producex=[-1 0 2]

Both methods produce

x= [-.276893387225 .0697403149571 -.187791269405 .128765792031].

SOLUTIONS 629

Using a Cholesky factorization, we find the vector of coefficients in p(x) to

be [-10.6666667605 12.7609428657 -4.14534963083 .389570640143].

Using the LSQ command we obtain

[-10.6666666667 12.7609427609 -4.1453495999 .389570637505].

The norms of these vectors agree to 6 decimal places.

Activity Set 19.1

1. (a)

(b)

(c)

(d)

(e)

2. (a)

(b)

3. (a)

(b)

(c)

(d)

4. (a)

(b)

Not diagonally dominant.

JTEST fails to execute because the diagonal part of A is not invertible.
After swapping rows four and five JTEST shows that both the row-sum norm
and column-sum norm are > 1.

STEST shows that both norms are > 1.

Swap rows one and three, then rows two and five.

After 25 iterations, x =[-8.762155 6.560882 -8.564386 6.754029 2.265541 1.

The Gauss-Seidel iteration matrix has row-sum norm < 1 but A is not

diagonally dominant.

The Jacobiiteration matrix has column-sum norm < 1.

A is column diagonally dominant

After 17 iterations,

x=[3.10325718 -2.39543980 9.21205220 -5.18175900 5.30456021].

After 13 iterations,

x=[3.10325731 -2.39543974 9.21205212 -5.18175896 5.30456026].

To full machine precision, the solution is

x =[3.10325732899 -2.39543973941 9.21205211726 -5.18175895765 5.30456026059]

The coefficient matrix is not diagonally dominant and the JTEST fails. The
STEST succeeds with row-sum norm < 1.

After 55 iterations,

x =[3.66666598 -2.33333231 -1.00000102 -8.66666590 8.33333295].

630

5. (a)

(b)

(c)

SOLUTIONS

All of the tests for convergence fail.

After 16 iterations, the Gauss-Seidel procedure converges to

x=[-846168 3.153840 -.692309 -.076918 -2.538454 -5.538454].

To full machine precision, the solution is

X =[-846153846154 3.15384615385 -.692307692308 -.076923076923 -2.53846153846 | .

Activity Set 19.2

1. (a)

(b)

2. (b)

(c)

3. (a) -

The dominant eigenvalue is A = 22.644832095.

After 31 iterations, the power method converges to A = 22.64483210

x= [.03978762 .56098114 -.33459603 .53336803 .51329075 -.156431704].

After 154 iterations, 2 = 2.94188363485 and x = [.55065580727 -.51865369330

45650931190 -.36783426864 .25778203471 -.13274844593].

After 30 iterations, 2 = 6.19999998113 and ;c=[97979591798 -.19595916510

.03919176386 -.0078378681 .005156516522 -.000300099331].

(b) After 180 iterations we have no convergence because the components of
successive vectors agree to within a * sign.

Absolute Comparison Theorem 148

Acoustical dynamics 302

Antiderivative 139

Approximations

Polynomial 89

Rectangle 105

Trapezoid 120

Midpoint 106

Simpson's 120, 126

Arc length

Parametric 134

Symbolic integration 135

AREA 123

Artillary shell 273

Asymptotic 201, 281

Attracting solutions 240, 246, 250, 284,

Autonomous 238, 244, 247

Back substitution 432

Basis 460

Beats vibration 236

Bessell equation 325, 326, 328

Bessell function 327, 328, 331, 335-6

Bessell functions 340

Bessell function, program 328-9, 331-4

Boundary value problems 348

BOXZ 31

C—-R 49

Cancellation errors 47

Catenary 88

Cauchy-Schwartz 473

CEIL 22

Change of basis 466

Characteristic equation 244

Characteristic polynomial 495

Characteristic polynomial 262

Chebyshev Polynomial 86

Cholesky factorization 516

Column space 453, 461

Column sum norm 535, 551

Companion matrix 499

Conjugate transpose 418

Critical point (see equilibrium point)

Crout algorithm 446

Curve fitting 490

Data fit 209, 213, 228, 230, 288, 187

Determinant 422

Diagonal matrix 399

Diagonalizable matrix 505

Diagonally dominant 534

Dimension 460, 461

Damped harmonic motion 76

DEFINE 19

Definite Integral 118

Derivative

Definition 46

d function 51

Partial 59

Difference quotient 46

Differential equation 142

631

632 INDEX

Differentiation

Using d 51

Using the stack 51

Using the Symbolic
Differentiate Screen 53

of XROOT 55

Piecewise 56

Implicit 57

Parametric 100

Direction fields 179, 298-302

Directory (subdirectory) 190, 199

Discrete dynamical system 284ff

Dominant eigenvalue 542

Dot product 414

Double integrals 375ff

DRPN 10

Echelon matrix 434, 449

Eigenfunctions 244, 254ff, 349

Eigenspace 495

Eigenvalues 244, 244ff, 349, 495

Eigenvector 495

Elliptic integral 366, 367

Equation Writer 52

Equilibrium solution 200-203, 237, 243, 301-2

Errors

Cancellation 46

Left rectangle 119

Right rectangle 119

Midpoint rectangle 119

Simpson's 126

Trapezoid 125

Integration 130

EXTR 77

Euler algorithm 191-3, 197, 227, 296

Flag -54 425, 451, 524

FLOOR 22

Fitting curves to data 490

Forward Substitution 443, 444

Free variable 436

Frobenius norm 470

Fundamental solution matrix 260-1, 263-5

Function

One-to-one 36

Evaluation with SOLVR 17

Inverse 36

User-defined 19

Two or more variables 19

Piecewise-defined 20

Fundamental Theorem

of Calculus 138, 139

Gamma function 327

Gaussian quadrature 362ff, 379-81

Gauss-Jordan reduction 449

Gauss-Seidel iteration 532

Gaussian elimination 429, 435

Gram-Schmidt process 478

Greatest integer function 22

Greens theorem 376, 378

Harmonic oscillator 233, 235

Henon map 287

Hermitian product 470

Hilbert matrix 402

Householder matrix 482

HP Solve System 83

Hyperbolic cosine 88

HZIN and HZOUT 30

IFTE 20

Ill-conditioned 492

Implicitly defined solution 204

Improper integrals 147, 167

Improved Euler alg. 192-94, 197, 226, 296

Inflection points 64

Infinite

Series 159

Sequence 153

Inflection points 210

Initialization program 184-5, 198

Initial value problem 142

Inner product 470

Input/output problems 216, 230

Input signal delay 217

Integer part 44

Integral 118

Improper 147, 167

Test 167

INTEGRATE Form 130

Integration

Symbolic 135

Numerical 129

Error 130

Using the stack 131

Interactive stack 9, 72

Inverse function 36

IP 44

Jacobi iteration 532

Julia set 288

LAPACK code 524

LDLT-factorization 517

LDU-factorization 517

Least integer function 22

Least squares 492, 528

Left null space 461

Legendre polynomials 86, 358ff

Linear autonomous system 244

Linear combination 453

Linear dependence 455

INDEX 633

Linearly independant sols 318, 321

Linear independence 455

Line integrals 372-75

I'Hospital's Rule 157, 158

Lorentz 278

Lotka-Volterra model 240

Lower triangular matrix 400

LU-factorization 439

—LIST 10

Matrix

change of basis 467

companion 535

defective 507

diagonalizable 505

echelon 434

Hilbert 402

Householder 482

ill-conditioned 492

inverse 422

iteration 532

lower triangular 400

orthogonal 514

permutation 439

positive definite 514

powers 416

symmetric 510

tridiagonal 402

uppertriangular 400

MatrixWriter 394

Maxima 65

Mean Value Theorem 96

Midpoint Rule 140

Minima 65

Mixing problem 205-6

Newton's method 80, 250, 292

634 INDEX

Nonhomogeneous 266ff

Norms

column-sum 535, 551

Euclidean 414, 550, 551

Frobenius 551

matrix 550

row-sum 550

spectral 552

sum 551

vector 550

vector-max 550

vector-sum 550

Normal equations 489

Normal vector 471

nth roots 7

Null space 461

Orthogonal 354

Orthogonal complement 473

Orthogonal matrix 482

Orthogonal projection 476

Orthogonal subspaces 472

Orthogonal trajectories 238

Orthogonal vectors 471

Orthonormal basis 475

Overlay 186, 189, 202

Parametric curves 38

Slopes of 101

Parameters 187-8, 208, 284

Partial derivative 59

Partial pivoting 433

Partial sum 160

Particle motion 211-5, 219-24, 290

Pendulum 241, 269

Periodic 23, 233, 241-3, 283

Permutation matrix 439

Phase plane 240

PICK 9

Piecewise Plots 35

Pivot 432

Pivot variable 436

PLOT menu 25

PLOT screen 24

Plots

Superimposing 32

Disconnected 32

Sequential 33

Simultaneous 33

Connected 34

Piecewise 35

Parametric 38

Poincare section 234

Polynomial

Approximations 89

Legendre 86

Chebyshev 86

Best Linear Approximation 89

Best Quadratic Approx. 91

Taylor 91

Population growth problems 207-12

Positive definite matrix 513

Power method 542

Powerseries solution 325

Principal cube root 36

Projectile motion 273-6

Projection 476

PURGE 13

Pursuit problem 276

QR-factorization 483, 486

Radius of convergence 320

Random Matrix Generator 396

Rank 464

Ratio test 171

Recurrence 321, 322, 324, 326

Reduced row echelon matrix 449

Regular point 320, 321

Regular singular point 325

Repelling solutions 238, 240, 284, 286

Restricted three body problem 281

Riemann Sums 115

RKF program 345

Rocket flight 273

ROLL 10

ROLLD 10

Root-finder 82

Row echelon matrix 436

Row space 461

Row sum norm 535, 552

RPN 10

RREF 449

Runge Kutta 311,314, 341-3, 382-3

Runge Kutta algorithm 187, 194, , 251

Schur factorization 502

Second order IVP 183, 225

Series

Alternating 163

Convergent 160

Alternating harmonic 165

Series solution of IVP 316, 318

SHADE 123

Shooting method 350

SIGN(X) 62

Similar matrices 505

Simpson's approximation 120, 126

Singular value decomposition 520

Singular values 522

INDEX 635

Slope 46

Solution structure 202-3

SOLVE command menu 85

SOLVE EQUATION screen 84

SOLVR 17

Sonin-Polya Theorm 313

Souriau-Frame method 496

Space curves 369-372

Span 453

Spectral decomposition 512

Spectral radius 534, 552

Spiral point 244

Spring /circuit model 233

Square wave, Switch function 218-9

Step size selection 194

Stiff differential equation 251

St. Louis arch 88

Sturm Comparison Theorem 313

Sturm Liouville problems 354, 355

Superimposing plots 32

Symbolic Differentiate Screen 53

Symbolic Execution Mode 5

Symmetric matrix 402, 510

Tail

Improper Integral 147

Infinite series 168

Taylor Polynomial Screen 92

Taylor series solution 315, 320, 321

TAYLR 92

Trace 418, 504

Tridiagonal matrix 401

Terminal velocity 211-2

Trajectories in three dimensions 305ff

Trapezoid approximation 120

Undetermined coefficients 267

636 INDEX

Unit lower triangular matrix 400

Upper triangular matrix 400

User-defined functions 19

Vander Pol 235,242

Variational matrix 247

Vector space 452

VZIN and VZOUT 30

XROOT 36

ZAUTO 31

ZDECI 30

ZDFLT 30

ZIN and ZOUT 30

ZINTG 30

ZLAST 30

ZOOM menu 30

ZSQR 30

ZTRIG 30

HP-48G/GX
INVESTIGATIONS in MATHEMATICS

Donald LaTorre, Don Kreider, and Gil Proctor

Use HP-48 G/GX graphing calculator technology to aid in
the computation and visualization of Calculus, Differential Equations,

Linear Algebra and Vector Calculus.

FEATURES

~ Includes calculator investigations that reinforce key topics in Engineering Mathematics—

Calculus, Linear Algebra, Differential Equations, and Vector Calculus;

.ll Includes a DOSdiskette with a collection of special purpose HP-48G/GX calculator programs

contained in the book;

- Provides "activity sets and their solutions for many computational and applied

exercises;

~ 'Getting-startedsection offers students a friendly introduction to the keyboard, data entry,

RPN, and memory management;

"~ Surveys the main topics included in the standard one or two semester courses in these

subject areas;

~ May be used as a supplement with any textbook. -

SYSTEM REQUIREMENTS

IBM or compatible » 386 or higher » DOS « 4MB RAM
ISBN 1-886801-23-1 —F]/m—/—/m//7—

52995)>

CHARLES RIVER MEDIA, INC ll Il II|
PO Box 417 9 "781886"801233
Rockland, MA 02370

All trademarks and service marks are the property of their respective owners.

Printed in the USA by InterCity Press, Rockland, MA

	Cover
	Contents
	Preface
	Getting Started with the HP-48G/GX
	Part I: Single Variable Calculus
	1 Functions: Evaluation and Graphing
	1.1 Function Evaluation
	1.2 Function Graphing

	2 Derivatives
	2.1 Approximating Slopes
	2.2 Derivatives with the HP-48
	2.3 Using the Derivative

	3 Integrals
	3.1 Approximating Area
	3.2 Integration on the HP-48G/GX
	3.3 The Fundamental Theorem Of Calculus
	3.4 Improper Integrals

	4 Infinite Series
	4.1 Sequences
	4.2 Series

	Appendix for Part I
	Teaching Code for Part I

	Part II: Differential Equations
	5 Plotting Solutions for Differential Equations on the HP-48
	5.1 Using Built-In Programs
	5.2 Elementary User Programs

	6 First Order Differential Equations
	6.1 Population Problems
	6.2 Motion of a Particle in One Dimension
	6.3 Input Output Problems

	7 Second Order Differential Equations
	7.1 Second Order Input Output Problems
	7.2 Trajectories in the y1-y2 Plane
	7.3 Linear Variational Systems in the Plane

	8 Linear Systems of Differential Equations with Constant Coefficients
	8.1 Homogeneous Systems
	8.2 Non-Homogeneous Systems

	9 Miscellaneous Systems
	9.1 The Lorentz Equations
	9.2 Earth, Moon, Satallite Motion
	9.3 Discrete Dynamical Systems
	9.4 Parameter Identification Problems Revisited
	9.5 Direction Fields
	9.6 Programs for Three Dimensional Trajectories

	Part III: Engineering Mathematics
	10 More on Solutions for Differential Equations
	10.1 A Runge Kutta Method for Two Equations
	10.2 Series Solutions

	11 Bessel Functions
	11.1 Bessel's Equation: Solutions of the First Kind
	11.2 Bessel's Equation: General Solutions
	11.3 Selected Properties of Bessel Functions
	11.4 Postscript on Numerical Solutions of Differential Equations
	11.5 Boundary Value Problems

	12 Orthogonal Functions
	12.1 Fourier Series
	12.2 Legendre Polynomials

	13 Applications to Vector Calculus
	13.1 Analysis of Space Curves
	13.2 Line Integrals
	13.3 Double Integrals

	Appendix for Part III
	Programs for the Adaptive 4th Order Runge-Kutta Method

	Part IV: Linear Algebra
	14 Arrays
	14.1 Entering Arrays
	14.2 Editing Arrays
	14.3 Array Arithmetic
	14.4 Determinants and Inverses
	14.5 Applying Functions to Arrays

	15 Systems of Linear Equations
	15.1 Gaussian Elimination
	15.2 Lu-Factorizations
	15.3 Gauss-Jordan Reduction

	16 Vector Spaces
	16.1 Linear Combinations and Spanning Sets
	16.2 Dependence and Independence
	16.3 Bases and Dimension
	16.4 Change of Basis

	17 Orthogonality
	17.1 Orthogonal Vectors and Subspaces
	17.2 Orthonormal Bases
	17.3 Orthogonal Matrices and QR-Factorizations
	17.4 Least Squares Solutions

	18 Eigenvalues and Eigenvectors
	18.1 The Characteristic Polynomial
	18.2 Eigenvalue Calculations
	18.3 Similarity
	18.4 Real Symmetric Matrices
	18.5 Positive Definite Matrices
	18.6 Singular Value Decompositions

	19 Iterative Methods
	19.1 The Jacobi and Gauss-Seidel Methods
	19.2 The Power Method

	Appendices for Part IV
	A. Vector and Matrix Norms
	B. Teaching Code for Part IV

	Solutions
	Index

