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Linear Algebra is a fantastic subject! Incredibly rich and powerful in terms of

its mathematical content and applicability, linear algebra is riding the crest of a

nationwide resurgence of interest in mathematics at the undergraduate level.

It is not coincidental that this renewed attention to linear algebra is occurring at

a time when technology is invading our classrooms. For, more than anything else,

computing technology is opening up linear algebra in new and unprecedented ways.

Ways that are challenging, exciting, and stimulating to students and teachers alike.

The Linear Algebra Curriculum Study Group has issued recommendations for the

First Course in Linear Algebra [The College Mathematics Journal, Vol. 24, No. 1,

January 1993]. The recommendations advocate a matrix theoretic approach and call

for the appropriate use of technology. Not only microcomputers running state-of-the-

art software such as MATLAB, but also technology in the form of the new hand-held

“supercalculators” that are sweeping across the country.

This book is intended as a technology supplement for undergraduate courses in

linear algebra. It presents appropriate pedagogical uses of, and teaching code for,

the Hewlett Packard HP-48G/GX graphics calculators. It is designed specifically to

help students and instructors incorporate these powerful hand-held devices as a

computational tool for the interactive learning of linear algebra, and is independent

of any particular textbook. The chapters survey the main topics of linear algebra

and include activities and discovery projects that will engage students in a serious,

calculator enhanced study of the material.

vii
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FEATURES

Outline of the Book

Realizing that different instructors and different textbooks approach linear

algebra in their own unique ways, I have organized the material into independent

chapters that follow main themes:

e Arrays

e Systems of Linear Equations

e Vector Spaces

e Orthogonality

e Eigenvalues and Eigenvectors

e Iterative Methods

These chapters are preceded by an introductory chapter on HP-48G/GX Calculator

Basics and followed by two appendices: one on Vector and Matrix Norms and

another on the organization of our HP-48G/GX Teaching Code.

HP-48G/GX Teaching Code

The Teaching Code itself is a collection of special-purpose HP-48G/GX programs,

each one addressing a specific aspect of the course. A complete listing of the

teaching code appears on the inside back cover. The code is readily available from

the author for downloading to an HP-48G/GX from a microcomputer.

Pedagogy

The material is an outgrowth of my extensive classroom use of the HP-48

calculators (and before that, the HP-28 units) in teaching linear algebra every

semester for the last five years. My course is at the sophomore level and is

populated by students from a variety of fields: the physical and biological sciences,
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mathematical and computer sciences, many engineering fields, secondary

mathematics education, and an occasional social sciences student. I do not teach an

abstract, proof-oriented course. Instead, I prefer to concentrate on explanations,

examples, classroom discussions, and calculator activities to generate a real interest

in, and enthusiasm for the learning of linear algebra. Proofs are important, and I do

my share of them. But for almost all of my students, this is the only formal course in

linear algebra that they will ever take, so I must be careful to not let my own

predilection as a mathematician for “theorems” and “proofs” hinder the efforts of

these beginning students.

Level

Although my course in linear algebra is pitched at the sophomore level, many

of the students are further along in their studies. Most have completed (or will soon

complete) Clemson’s four semester sequence in calculus and differential equations.

Thus, I am often able to nudge them beyond our normal expectations in linear algebra

at the sophomore level and treat certain topics in more depth: e.g., orthogonality,

least squares, and real symmetric matrices. I usually reserve the material on

iterative methods and singular value decompositions for honors students as outside

class projects. Of course, none of this push beyond traditional expectations would be

possible without immediate access to first-rate computational capability. Viol4 the

HP-48G/GX!

How to use this book

I use the material in this book to supplement whatever textbook I am using at

the particular time. If the use of technology is to be of any significance in the

learning process, it must not be used as an occasional “add-on” to the course. Rather,

its use must become an integral part of the teaching and learning process. Therefore,

I require my students to use their HP-48G/GX units on a regular, almost daily basis.
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Whenever it is appropriate, I make homework assignments from this book;

sometimes in addition to assignments from the main textbook, sometimes in lieu of

such assignments. I allow free and unrestricted use of the calculators on all tests and

exams. There is ample opportunity for me to assess their learning of both concepts

and procedures, so the technology poses no threat. On the contrary, it has helped my

students to place much of what has traditionally occupied them in courses in linear

algebra (i.e., hand computation of elementary matrix algorithms) in proper

perspective. I have found students to be overwhelmingly enthusiastic about the use

of the calculators as a tool for effective learning.
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HP-48G/GX CALCULATOR BASICS

 

       

This brief chapter is intended to provide new users with a basic introduction to

the HP-48G/GX calculator and its operation. It is no substitute for the User’s Guide,

but should help you get started quickly.

Notation

To help you recognize calculator keystrokes and commands, we shall adopt

certain notational conventions.

e With the exception of the six white keys on the top row, keys will be

EVAL |, | STO |,
 

   

represented by helvetica characters in a box: ENTER 7 

etc.

e Shifted keys on the 48G/GX may occasionally have the key name in a box

preceded by the appropriate shift as in . But ordinarily, we will

not show the shift.

e Menu keys for commands on various menus will show the key name in outline

form in a box, asinl RSWP lorl DET ]

 

 

e Calculator operations and commands that appear in programs or in the text

material will be in helvetica characters, e.g., DUP SWAP INV.

On, Off and Contrast

Press the key (bottom left of the keyboard) to turn the unit on. Press

to turn it off. The key is the right-shifted (green) version of the
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key. With the calculator on, hold down the key and press to

darken the display contrast or B to make it lighter.

Stack Display Screen

When you first turn on a factory fresh HP-48G series calculator, you will be

looking at the stack display screen. To remove any objects from the screen that may

remain from previous use, press the key several times then the DEL kep P y y

(on the same row of keys as ENTER |). Above the horizontal line near the top of

the screen you will see {HOME}, indicating that you are in your HOME directory.

Immediately below are levels 1-4 of the stack. Like lines on a piece of paper, the

stack is a sequence of temporary storage locations for numbers and the other kinds of

objects used by the calculator such as algebraic expressions, arrays, equations, and

programs.

Just below level 1 are six menu boxes. Normally, these menu boxes will have

labels in them that reflect the operation of the six white menu keys beneath them. If

you press the key near the top left of the keyboard, the labels will show

that the first page of the MTH menu contains the six submenus VECTR, MATR, LIST,

HYP, REAL, and BASE;the key (same row as) will turn you to the

second page of the MTH menu and another will cycle you back to the

beginning. Return to the previous page with PREV (the left shifted NXT key).

The small horizontal tabs above the labels in the MTH menu indicate that each of

the boxes contains a submenu (a file, folder or subdirectory in HP parlance). Open the

MATR (= matrix) submenu by pressing the white menu key beneath it to access the

various subdirectories and special commands for working with matrices. Press

to return to the MTH menu at any time.

Similarly, the key opens the PRG (= Program) menu where you may use

the white menu keys to access the various submenus of commands for use in writing
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programs. An extremely important key is the key. It opens the VAR

(= Variables) menu, which is where you look to find the objects that you have created and

stored into the memory of the machine. For routine calculations on the stack, it does

not matter which menu labels are active. Simply press to make them all

blank.

Keyboard

The keyboard of an HP-48G series calculator may at first appear to be

somewhat intimidating. But, like the control panel of any high-performance device,

it enables you to control and to monitor a vast array of operations. The number entry

keys are bordered on the right by , B, , and ; and on the left by

, , , and @ The right-shift key (green) and the left-shift key

(purple) are color coded to many of the keyboard labels, and the El key is

used to obtain alphabetical characters.

Adjacent to is for changing signs, then for entering

exponents, for deleting characters (and clearing the stack), and IEI for

backspace-and-delete (and dropping objects from level 1). The , ,

,and \/; keys are just above, as are (for obtaining powers) and

(for reciprocals and matrix inverses). Above the trig function keys are D (tick), for

entering algebraic expressions, and and EVAL for storing and evaluating

objects. The four cursor keys E, EI, E and EI control the movement of

the cursor when it is active.

 

   

Applications and Command Menus

You will notice that some keys have both purple and green labels printed above

them (like the E key), but many have only one of the two (like the , and

IEI keys).
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The keys that have only green labels above them represent applications, e.g.,

I/0, PLOT, SOLVE, TIME, UNITS. The right-shifted version of an application key

invokes a specially designed user-interface that lets you interact directly with the

named application, often through the use of input forms, which are the HP

equivalent of the familiar computer “dialogue boxes”. Alternatively, the left-

shifted version of an application key gives you access to the various commands on

the command menu that is associated with the particular application. The

commands may be included in programs or executed directly from the keyboard while

viewing the stack display screen. In linear algebra, we almost never use any of the

above named applications.

Display Settings

It is best to keep the calculator’s angle mode set to radians in order to work

with trigonometric functions. Press (purple) to toggle between radian

mode and degree mode. When radian mode is set, the message RAD appears at the

top left of the stack display screen.

To display numbers in standard form, set your unit to STD display mode (the

default setting) by pressing MODES (the left-shifted l CST | key), opening

the FMT (= Format) menu and checking to see that the left-most menu box reads

STD[O |. The small box next to STD indicates that STD mode is active. If the

 

 

   

menu simply reads STD press the associated white menu key to activate STD

mode. Now press MODES to interact with the main MODES screen. You

should see that the number format is highlighted and set to Std, and that the angle

measure is set to Radians. Press the E twice to highlight the coordinate system

field (it should read Rectangular, by default). To see how to change such a field,

press the white menu key beneath CHOOS |, use Izl to highlight Polar and

press. You have just changed to polar coordinates. Now change back to
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rectangular coordinates. When the display is set to show only a fixed number of

digits to the right of the decimal point, say with 3 FIX to display only three such

digits, the numerical calculations are still executed internally to the full 12- or 15-

digit precision of the machine. Only the display is affected. By resetting to STD

mode, you will display full 12-digit precision. Unless stated otherwise, we will

assume throughout this book that the display mode is set to STD and that the

coordinate system is set to RECTANGULAR.

The V by BEEP means that the beeper is turned on (to alert you of syntax errors,

alarms, etc.). To activate the clock, highlight the clock field and press the

key. Leave the fraction mark ( FM, ) unchecked so that decimal points, rather than

commas, will appear in decimal numbers like 123.45. Exit this screen by pressing

. Notice that the time and date now appear above the horizontal line. If

you wish to modify the time or date, press TIME (the green shifted key)

and proceed as above.

Symbolic Execution Mode

The HP-48G/GX is a third generation symbolic calculator, which means that you

can apply operations and functions to symbolic expressions and obtain symbolic

results. For example, you can enter the symbolic expressions for x? and for sin x, then

press the key to obtain the symbolic result x? + sin x. Most other calculators are

numerical calculators, capable of applying functions and operations only to numerical

objects to obtain numerical results.

Symbolic execution mode is controlled by a system flag (flag -3). In the default

state, flag -3 is clear and the HP-48 is in Symbolic Execution Mode. In this mode, the

symbolic constants (e, i 7, MAXR, and MINR) and functions with symbolic arguments

will evaluate to symbolic results. But if flag -3 is set, Numerical Results mode is
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active and the symbolic constants and functions with symbolic arguments will

evaluate to numbers.

We strongly recommend that you keep your HP-48G/GX in Symbolic Execution

Mode. If you go to the MODES menu with the keys and open the

MISC submenu, the SYM menu key should read SYM[ |. The small box that

 

   

appears next to SYM indicates that Symbolic Execution Mode is active. If no box

appears in this key, simply press the SYM key to change itto SYM [ |.PP y ply p y g

 

   

Numerical Calculations

Simple numerical calculations are done on the stack. The idea is this: put

inputs on the stack and then execute commands that use the inputs. To enter -12.34,

begin by pressing the appropriate number keys and the decimal point key (bottom

row, center), then use to change the sign. Notice that the typing starts at the

bottom left of the display screen, below level 1 of the stack, on the command line.

Press ENTER to put -12.34 on level 1. Now enter 56.789; notice that ENTER

inserts it onto level 1, moving -12.34 up to level 2. Press to compute the sum. To

recapture the stack before you added, press UNDO (the right-shifted EVAL

key). Now subtract 56.789 from -12.34 with E], then use UNDO and swap

positions with SWAP (the right cursor key |EI; no need to press now). Now

subtract again to get 69.129. Take the square root with Vx , then cube the result

 

   
 

  with 3 YX |. You should have 574.765129278.
 

To edit this result, press the E (down cursor) key, use the right cursor key to

move the cursor over the 9, delete the 9 with and press 3

. Now use (the right-shifted key) to obtain the natural

logarithm. To multiply by =, press E (r is obtained with the left-shift

key) then . Notice the symbolic result 6.35396147609 * n’ on level 1,
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enclosed in tick marks. To convert this to a numerical result, use (the

left-shift EVAL key). Now drop the 19.9615586945 from level 1 with . The

E key drops objects from level 1; the adjacent key (labeled CLEAR in purple)

clears the entire stack. Normally, you need not left-shift these keys; shifting is

required only when the command line is active.

Data Entry

When keying a sequence of real numbers into the command line, say 1.1, 2.2 and

3.3, you must separate the numbers with spaces or commas for proper recognition, as

in 1.1 22 3.3 or 1.1,22,3.3. We recommend that you use spaces for ease of use. For

consistency we will show commas, but you should always interpret them as spaces.

You need not insert commas or spaces between a real number and a complex number (an

ordered pair), or between two complex numbers, because the calculator recognizes

parentheses as object delimiters. Unless we specify otherwise, all examples and exercises

in this book assume the calculator is set to STD display mode.

Algebraic Expressions

Algebraic expressions must be typed in beginning with a ' (tick) mark using the

D key. Alphabetical characters are obtained by first pressing E and then the

desired key. Note that alphabetical characters appear in white letters to the lower right of

the keys on the top four rows. To produce, say ‘S’, press D followed by E

. Lower case characters are obtained by the sequence l:l E then

the character key. For example, l:‘ E [EI puts ‘d” on level 1.

(Thus [E left-shift will give lower case).

To enter the algebraic expression ‘SIN(X)’, press D E

ENTER |. Notice the location of the cursor after each keystroke; after the

cursor is still inside the right parenthesis. To move it outside, use the right cursor
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key EI But, pressing does it all for you. As a more complicated

example, try 'COS( X A 2)/( 2 » X A 3)". The keystroke sequence is:

[cos | [a] [1x] [yx] 2 [B] [+][a][+] 2
o] [1/x] YX| 3 [ENTER].

Yes, it is necessary to insert the = in 2+XA3; if you forget, when you press ENTER |,

an Invalid Syntax message will appear and you can then correct your typing. If

 
 

  
  

  
 

things are not going well on the command line, remember that the E key will

backspace and delete. Finally, if you get desperate, press (sometimes, more

than once) to cancel what is taking place and then start over.

Stack Manipulation

We often need to manipulate the stack. For example, to duplicate one or more

levels, to copy an object from a higher level down to level 1, or to otherwise

rearrange the stack. Complete details can be found in chapter 3 of the HP-48G series

User’s Guide, but we will survey the basics here. This survey should suffice for most

purposes.

To make a duplicate copy of the object on level 1, simply press |[ENTER|. This

executes the DUP command, which duplicates level 1. We have already commented

on the obvious keyboard commands DROP (the IE key), CLEAR (the key),

SWAP (the[DJkey), and UNDO (the EVAL| key). Although the DROP,

CLEAR and SWAP keys are labelled in purple, it is not necessary to use the purple

key except when the command line is active.

The best way to understand the other stack commands is to begin with your

stack arranged like this:
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!

Now press the E key to engage the interactive stack. The interactive stack is an

environment that lets you interact with the stack and is active when the dark

pointer p» appears at the left of the screen. You exit the interactive stack with
 

l ENTER l or | ON l (either one will work). So arrange your stack as in the above
 

illustration and then press the m key. The commands that are most often used

are PICK, ROLL, ROLLD, —»LIST and (on the next page) DUPN and DRPN.

Move the pointer up to level 3 and press PICK i ENTER |. The command

PICK copies the content of level 3 to level 1. Use IEI to DROP the ‘T’ from

 

level 1.

Now move the pointer back to level 3 and press l —LIST I I ENTER |. Notice

that the contents of levels 1 — 3 were put into a list (lists use curly braces). Now

restore the stack to its original state with UNDO |.

The commands DUPN and DRPN (on the next page) are almost self-evident.

 

With the pointer situated on level N, DUPN will duplicate the first N levels of the

stack while DRPN will drop the first N levels. Try using DRPN with the pointer at

level 3. Press ENTER to exit, then use UNDO to restore everything.ything

The last two commands, ROLL and ROLLD are extremely useful. With the

pointer specifying the number N of levels, ROLL will push (roll) the stack upward,

causing the object on level N to fall down to level 1. Try using 4 ROLL to rearrange

the stack:
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4: 'S’ 4: 'T"

3. 'T 4 ROLL = 3. 'U’

2: 'U’ 2: 'V’

1. 'V’ 1. 'S’

(The ‘S’ rolled off the top level and fell down to level 1.)

The command ROLLD (roll down) is just the opposite: it pulls the specified

number of objects down, causing the level 1 object to move to the top level. Restore

the current stack to its original state with 4 ROLLD. Now use CLEAR to clear the

stack.

RPN

RPN stands for Reverse Polish Notation, the type of logic used by almost all

Hewlett Packard calculators. The essence of RPN is this: first provide the inputs,

then execute commands that operate on the inputs. When we did our earlier

calculations on the stack, we were using RPN entry. Thus, to add -12.34 and 56.789 in

RPN we input -12.34 and 56.789, then executed the command +. In fact, we built

-12.34 using RPN: input 12.34, then press. Notice how this differs from the

algebraic entry logic employed by most other types of calculators. Algebraic entry

requires that we type in -12.34 + 56.789 from left-to-right and then press an

or E‘ key. To produce a numerical result for \In2.3 on the HP-48 using algebraic

entry we type

'y LN 2.3 EVAL

But to obtain this using RPN, we do

23 LN V

RPN is an especially powerful logic for constructing the algebraic expressions

that we encounter in a beginning study of calculus. Expressions such as



CALCULATOR Basics 11

2x +1
V1 +cos2(x3)) or (1+x)+ —— .

Va2 -4

Consider the first of these two. Superficially, it is simply the square root of one plus

the cosine squared of x3. But it is important that we understand this expression

mathematically, from inside out, as follows: start with x and cube it, take the cosine

of x3 and square the result, then add 1 and take the square root. RPN entry

corresponds exactly to this way of thinking:

X 3ACOSSQ1+V .

A more complex example is provided by the second of the above two expressions.

First, try entering this expression using direct algebraic entry (remember to start with

a ‘ (tick) mark); what did you find out? Now use RPN entry as follows: begin by

putting the three main components '(1 + X) A (2/3)', '2+X + 1', and v(XA 2-4) on

the stack in this order (you can use either direct algebraic entry or RPN for any of

them); now press to build the quotient, then to obtain the sum.

This last example clearly illustrates why RPN is the preferred method for

entering complicated expressions onto the stack. Most users tend to develop their own

style, often using direct algebraic entry to build simple components and then RPN to

produce the more complicated final results. Of course, all programs on the HP-48

must be written in RPN. For example, the program

« 8Q SWAP sQ +  »

uses RPN logic to take two inputs from the stack, say x and y, and then returns the

result Va2 + y2.

User-Defined Functions

A convenient way to represent a mathematical function on the HP-48 is to create

a user-defined function. In HP-48 language, a user-defined function is a short program
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that captures the essence of the formal way that we define a function by an equation

like F(x) = 2 sin x + sin 4x. Here, F is the name of the function, x is the input

variable, and the expression to the right of the = sign is an algebraic description of

the desired output for a given input x.

The user-defined function that represents this mathematical function is the

program « — X '2*SIN(X) + SIN(4*X)' » stored in the global variable F. The

DEFINE command lets you create a user-defined function directly from an equation.

For the example at hand, simply enter the equation 'F( X ) =2 * SIN( X ) +

SIN( 4 * X )" onto level 1 of the stack and press . If you access the VAR

menu with the VAR key, you will see the label appearing above a whitey:y PP g

menu key; this identifies F as the name of the user-defined function. To verify that

the variable named F actually contains the above program, you can recall the

contents of variable F by pressing @ (the right-shift key will recall);

press| DROP when you’ve finished viewing the program.

To evaluate this function, enter the desired input and press the menu key E

For example, put 'T A 2' on level 1 and press @ to see '2 *SIN( T A 2 ) +

SIN( 4 *TA2). Likewise, press 4 E to see 2 sin 4 + sin(4*4) evaluated as

-1.80150830728. User-defined functions of two or more variables are constructed in the

same way.

Memory Management

The HP-48 can manipulate and store many types of objects, such as real and

complex numbers, algebraic expressions, vectors and matrices, lists, graphics,

programs, and text. Any of these objects can be placed on the stack, but to be saved in

the calculator’s memory it must be given a name and stored. When you store an

object, it is stored as a variable in user memory (that part of the calculator’s memory

that you, the user, have access to) and is accessible through the VAR menu. The
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variables that you create in this way are called global variables to distinguish them

from other kinds of variables that the HP-48 uses (e.g., local variables — that are

created within and used entirely by a program, and system variables — that are used

by the calculator’s operating system). You can think of a global variable as a named

storage location containing an object.

For example, suppose that you wish to create a variable named TRY1 containing

a program that will accept numbers x and y as inputs and calculate V2 + y2 . Here

is the program:

« SQ SWAP sQ + \V  »

To build the program, press E] to get the program delimiters « », then use

Vx IE] Vx Vx l——EfiE?’ Now put the name 'TRY1' on the

stack and press the key. If you press the VAR key you will see that the

leftmost menu key is labeled. To run the program with inputs 1 and 2, put

1 and 2 on the stack and then press to see the result 2.2360679775. In fact,

you need not actually enter the inputs onto the stack: simply press 1 2, then

TRY1 to get the result. The HP-48 recognizes spaces as object separators and

TRY1 will take the inputs directly from the command line. We will use this

   

         

shortcut extensively with our programs that manipulate matrices.

To delete a variable from user memory, put its name on stack level 1 and execute

the command PURGE. The PURGE key is the left-shifted key. To purge

variable TRY1, press D (tick), TRYT | ENTER |, then PURGE |.

To organize the variables that you create, you can put them into files (or

directories). Whenever you create a variable and store it, it is stored in the current

directory. If you are using a factory fresh HP-48 then your current directory is the

HOME directory, indicated by the list { HOME } at the top left of the stack display
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screen. The name of the current directory always appears as the rightmost name in

the list that begins with HOME, as above. To create a subdirectory named MTRX in

which you can store any variables that you may need in a study of linear algebra,

begin by putting the name 'MTRX' on stack level 1. Now press MEMORY (the

left-shifted key), open the DIR submenu and execute the command CRDIR

(create directory). If you then open the VAR menu you will see the MTRX

directory on the left. The short bar above the label is suggestive of the tab on a file

folder, and reminds you that MTRX is a subdirectory. Press MTRX to open this

directory and notice the list {HOME MTRX]} at the top of your screen, indicating that

the current directory is now MTRX. This directory is presently empty, containing no

variables. To return to the parent directory HOME, you need only go up one level in

the directory tree. The commands UP and HOME, executed by shifting the D

(tick) key appropriately, send you up one level or, alternatively, send you directly to

HOME.

A few final comments about storing and purging variables from directories. The

same variable can exist in different directories, often containing different objects. For

example, whenever you use the PLOT application, copies of the reserved variables

EQ (the “equation”) and PPAR (the plot parameters) are stored into the current

directory. Likewise, whenever you use the SOLVE application, a copy of EQ and

the “unknown” variable are stored in the current directory. In this way, EQ and,

say, 'X' can appear in different directories with different contents. Since the contents

of EQ and PPAR are automatically updated whenever the PLOT application is used,

it is usually not important to purge them. On the other hand, a variable like 'X’,

which is the default independent variable for graphing, should be purged from the

current directory immediately after it is used. Keep in mind, also, that when you

purge 'X' from a particular directory it may continue to exist in an “ancestral”

directory where it may cause trouble later on. For example, suppose that MTRX is
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the current directory, that no variable 'X' is stored in MTRX, but that the parent

directory HOME contains the variable 'X' in which the value 2 is stored. Suppose

further that you wish to take the symbolic derivative of a function f with respect

to the independent variable 'X'. Because 'X' appears in the parent directory, the

derivative will be automatically evaluated at the value x = 2. This is because the

HP-48 always searches upward in the directory tree in search of variables; it does

not search for variable in directories that are on the same level as, or below, the

current directory. And, having found that HOME contains variable 'X' with the

value 2, the derivative at x = 2 was returned. Had the calculator found no value for

'X", it would have treated 'X' symbolically, as was desired. Moral: purge all 'X"s.

The Matrix Commands

The HP-48G series calculators contain an impressive variety of commands for

working with matrices. Many of these commands execute professional level code

constructed from the new LAPACK Fortran library of matrix routines.

The MTH MATR menu is the place to look. In addition to such commands as LSQ

(for obtaining least squares solutions) and EGV (for finding eigenvalues and

associated eigenvectors), this menu includes five submenus, each containing commands

that are thematically linked.

e  The MAKE submenu, whose commands are useful for making special kinds of

matrices and for manipulating matrix entries.

° The NORM submenu, whose commands produce various matrix norms, the

spectral radius, an estimate of the condition number, the rank, determinant

and trace.

e The FACTR submenu, containing commands for the RREF, LU, LQ, QR, and

Schur factorizations, as well as the singular value decomposition (SVD).
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e  The ROW submenu, with commands for executing various operations with

rows of a matrix.

e The COL submenu, with commands for executing various operations with

columns of a matrix.

To execute one of the built-in matrix commands, say DET (determinant), for a

matrix on level 1 of the stack, you open the appropriate submenu that contains the

command (in this case, the second page of the MTH MATR NORM menu) and press

the associated white key. But to keep from having to open several submenus, you can

simply hold down the E key, type the name of the command DET, and then press

ENTER to execute. We shall say more about using the built-in commands as we

encounter them.
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Rectangular arrangements of real or complex numbers are recognized by the HP-

48G/GX as arrays. Arrays can be one-dimensional (vectors) or two-dimensional

(matrices) and are considered to be single objects. They can be manipulated with

many of the same basic commands used in ordinary arithmetic. We shall begin by

examining some ways of entering, editing, and manipulating arrays.

2.1 ENTERING ARRAYS

A one-dimensional array (vector) is represented on the calculator by enclosing a

sequence of real or complex numbers in square brackets, as in [ 1 2 3 ] or

[(1, 2) (3, 4) (5, 6)]. A two-dimensional array (matrix) is distinguished by an initial

square bracket [ , followed by each row vector, and ends with a closing square bracket

] . For example, in standard display mode the 2 x 3 real matrix

. [[1 23]
[411 g g]wfllappearas [456]]

Similarly, the 3 x2 complex matrix

14 142i (0a, 1,021
2+i 2+2i

|

will appear as [ (2, 1), (2,2)]
3+ 3421 [(3,1),(@2)1]]

There are several ways to enter arrays: directly from the keyboard, with the built-

in MatrixWriter, or as a dimensioned sequence of numbers. The built-in random

matrix generator can also be used.
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Direct Keyboard Entry

The vector [ 1 2 3 ] is entered with keystrokes @ 1, 2, 3 ENTER |.

Although we show commas to separate the three numbers, you should instead insert

spaces with the key. To enter a matrix, start with [ [ by pressing the [E

key twice (the left-shifted key), enter the first row and press IEI to move the

cursor beyond the innermost bracket, then continue entering the remaining entries in

row order and press.

EXAMPLE: Keystrokes @ Efl 1,2,3 IE‘ 4,5,6,7,8,9 will

produce the following matrix:

[[12 3]
[4 5 6]
[7 8 9]]

The IE key simply defines the number of columns. Now press DROP to drop

this matrix from the stack. (When no command line is present you need not press the

to DROP.)

To put the complex number (1, 2) on the stack, use the left-shifted E key to

get the double parentheses ( ), and press 1 I SPC ] 2 l ENTER ] When building a
 

 

matrix with complex numbers, use the right cursor key IE to move beyond each

right parenthesis. The numbers can be any mixture of real or complex numbers

(ordered pairs), but if any one entry is complex then the entire array will be

complex. Also, you need not insert spaces between two complex numbers or between a

real and a complex number. Try entering the following matrix:

[([(1,2) (GB4)]

[(5.0) (©6)11
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Using the MatrixWriter

Enter the MatrixWriter application by pressing MATRIX |. This activates

a spreadsheet-type display, with a dark cursor resting in the 1-1 position. Check
 

to see that the GO [d| command is active by noting a small white box within
   

this menu label (if the box is not present, simply press the white key beneath the

label to activate it.) Key in the numbers of the first row of the matrix in

row order separated by spaces and then press ENTER |. When you are ready to go

to the second row press E This will define the number of columns and position

the cursor at the 2-1 entry. Now key in the remaining entries of the matrix in row

order (separated by spaces) and press ENTER |. A finall ENTER will put the

matrix onto the stack.

EXAMPLE. The keystrokes 1,23 [v] 456 7.8
9 | ENTER | | ENTER | will produce this matrix on the stack:
 

 

[[12 3]
[456].
[7 8 9]]

Clearly, for entering simple matrices (say, with small integer entries) the

command line is faster and easier to use than the MatrixWriter application. But the

MatrixWriter has the advantage that for more complicated matrices, an entry can be

calculated (using RPN syntax) on the command line within the MatrixWriter

environment before it is entered into its position. As an example, construct the

numerical approximation to the matrix

[[/17 In3]

[ e n2]].
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Although the term MatrixWriter suggests that it can be used only for matrices,

it is actually an environment for entering, reviewing and editing both vectors and

matrices. To enter a vector using the MatrixWriter, say vector [1 2 3 4], clear the

stack and enter the MatrixWriter environment with MATRIX |. Note that the

menu key VEC[| appears. If you press 1 2 3 4 (separate the digits with

spaces) | ENTER | | ENTER

 

   
 

 
, the vector[1 2 3 4] will show on the stack. The

  

  
presence of the white box in VEG[J| indicates that vector entry is active. If you

toggle off this key to see without the box, the keystrokes 1, 2, 3, 4 ENTER

ENTER will return the matrix[[1 2 3 4]]. Although in mathematics we

identify this matrix with its single row vector, they are different objects as far as

 

the calculator is concerned.

Whenever you enter the MatrixWriter with MATRIX |, the vector entry

mode VEC[| is active by default. But if there is an array on level 1 and you
 

   

enter the MatrixWriter by pressing E] to review that array, the status of

reflects the nature of the array: VEG[| for a vector and for a

matrix. Try it for yourself with[1 2 3 4]and with [[1 2 3 4 ]]. Finally, note

 

   

that you can quickly convert the vector [1 2 3 4] to the matrix

[[1 2 3 4]]and vice-versa by starting with either one on level 1, pressing E' to

enter the MatrixWriter, then changing the status of and pressing

[enren |
A final note about entering arrays using the MatrixWriter application. Array

entries can be real or complex numbers, but when you use the MatrixWriter to

initially enter a matrix into the calculator, the array object type (real or complex) is

determined by the 1-1 entry. Thus, if the 1-1 entry is real, you cannot enter a

subsequent entry as a complex number. But,if the 1-1 entry is a complex number (an
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ordered pair), any subsequent entry of a real number x will be accepted and written as

the complex number ( x, 0).

As a Dimensioned Sequence

Enter the numbers into the command line from left-to-right in row order

separated by spaces, then the dimensions as a list, {no. rows, no. columns}, and press

ENTER to place all this on the stack. Then press the menu key (on

the PRG TYPE menu).

EXAMPLE: Keystrokes 1, 2, 3,4, 5,6[{}] 2, 3 ENTER | 2ARR|

return the matrix

[[1 2 3]

[4 56]]

Keystrokes 1, 2, 3, 4,5, 6 6 l ENTER | l —ARR l

return the vector[1 2 3 4 5 6].

The Random Matrix Generator

The random matrix generator, activated by the command RANM on the MTH

MATR MAKE submenu will generate an array with entries from the set

Z1ip=1{0, %1, £2, .., 29 }. The size of the array is specified by an appropriate input

list, a singleton list { n } for a vector and a list { m n } for an m xn matrix.

The RANM command calls upon the calculator’s random number generator to

construct a random matrix with a random assignment of + signs to the entries. The

calculator command RAND (found on the MTH PROB menu) generates uniformly

distributed pseudo-random numbers x, where each x lies in the range 0 < x < 1. Each

execution of RAND returns a value calculated from a seed based upon the previous

RAND value, and the seed can be changed by using the command RDZ (adjacent to
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RAND in the MTH PROB menu). RDZ takes a real number z as a seed for the

RAND command. If z is 0, the seed is based upon the system clock. After a

complete memory reset, a built-in seed is used.

For example, begin by seeding the random number generator with 2: press 2

. Then{4 5}| RANM will return the matrix

[[4-2 5 -8 5]

[-4 7 8 0-6]

[-4 0 8-5-2]

[5 6 0 2 3]]

Nowuse{6}| RANM toobtain[0 4 0 -9 0 -8].

Special Arrays

To build the identity matrix of order n, use the command IDN preceded by the

number n that specifies the order. Thus, 3 IDN returns

[[1 0 O]

[0 1 0]

[0 0 1]]

to level 1 of the stack. When a square matrix is on level 1, the command IDN by

itself will replace that matrix with the identity matrix of the same order. The IDN

command appears on the MTH MATR MAKE submenu, but as with most simple

commands, it is easy to simply type IDN and press to execute the

command.

An array whose entries are all equal to the same constant ¢ (a real or complex

number) can be built using the CON command. For example,
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2: {4}
1 2 CONreturns[2 2 2 2]

while: 2 (23} [[5 5 5]
L 5 returns (55 5]]

Similar to the IDN command, you can replace a matrix on level 1 with a constant

matrix by specifying only the constant and executing CON. But note that if the

matrix has only real number entries then the constant must also be a real number.

It is occasionally helpful to generate matrices of a special type: diagonal,

tridiagonal, triangular or symmetric. Such matrices can be readily generated with

the following calculator programs.

DIAG: builds a random diagonal matrix over Z,,

U.TRI: builds a random upper-triangular matrix over Z,,

L.TRI: builds a random unit lower-triangular matrix over Z,,

TRIDIA: builds a random tridiagonal matrix over Z,,

SYMM: builds a random symmetric matrix over Z,,

HILB: builds a Hilbert matrix

Each of these programs uses the calculator command RAND to construct a random

matrix of the desired type.

For classwork, it is often convenient to begin a particular discussion, example or

exercise by having everyone in the class use the same non-zero seed for their random

number generator. In this event, subsequent synchronous use of the RAND command by

the class members will result in a common sequence of random numbers. Such will
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occur, for example, with a common non-zero seed and then synchronous use of any of

the above six programs. Thus, with only a few simple keystrokes, each member of

the class can generate the same random matrix. I have found this to be an effective

classroom procedure. Here are the six programs with illustrations of their use. They

should all be stored in a BILDR subdirectory of a user-defined MTRX directory (see

the Memory Management section of Chapter 1).
 

DIAG (Diagonal Matrix Generator)

Input. level 1: an integer n

Effect: returns a random n by n diagonal matrix over Z,,

with a random assignment of * to the entries.

« DUP 1 —>LIST RANM SWAP DUP 2 —LIST DIAG— »  
 

EXAMPLE. Press 5 to use the seed that begins this example, then press 4

to generate

[[-5 0 0 0]
[0 1 0 0]
[0 06 0]
[0 0 0 -7]]
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U.TRI (Upper Triangular Matrix Generator

Input: level 1: an integer n

Effect: returns a random n by n upper triangular matrix

over Z,, with a random assignment of + to the

entries.

«>n«1nFORI1NFORUJIFIJ>THEN 0 ELSE RAND 10

* FLOOR RAND 10 * FLOOR - X « X 5 < -1 1 IFTE » EVAL *

END NEXT NEXT {n n} -»ARRY » »  
 

EXAMPLE. Press 4 to use the seed that begins this example, then press 4

U.TRI to generate

 

[[-8 8 9 -4]

[0 -9 0 1]

[0 0O 4 -4]

[0 O 0 2]

L.TRI (Unit Lower Triangular Matrix Generator)

Input: level 1: an integer n

Effect: returns a random n by n unit lower triangular

matrix over Z,, with a random assignment of + to

the entries.

« 2 n«1nFORI 1 nFOR JIFI J < THEN 0O ELSE RAND 10 #*

FLOOR RAND 10 * FLOOR -» X « X 5 < -1 1 IFTE » EVAL *

END NEXT NEXT {n n}->ARRY DUP IDN + » »  
 

EXAMPLE. Press 3 to use the seed that begins this example, then press 4

to generate
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TRIDIA (Tridiagonal Matrix Generator)

Input:  an integer n

Effect: returns a random n by n tridiagonal matrix over

Z,, with a random assignment of + to the entries

« > n«1nFORI1nFORJIFIJ-ABS 1 > THEN 0 ELSE

RAND 10 * FLOOR RAND 10 #* FLOOR-» X « X 5 < -1 1 IFTE »

EVAL * END NEXT NEXT {n n} -ARRY » »   
EXAMPLE. Press 3 to use the seed that begins this example, then press 5

to generate

[[1 5 0 0 0]
[2 -1 2 0 0]
[0 -7 4 1 0]
[0 0 -7 9 1]
[0 0 0 3 5]]
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SYMM (Symmetric Matrix Generator)

Input:  level 1: an integer n

Effect: returns a random n by n symmetric matrix over Z,,

with a random assignment of + to the entries.

Required program: DIAG

« DUP » n«1nFORI1nFORJIFIJ2THEN 0 ELSE RAND

10 * FLOOR RAND 10 * FLOOR -» X « X 5 < -1 1 IFTE » EVAL

* END NEXT NEXT {n n} -ARRY DUP TRN » 3 ROLL DIAG + +

»  
 

EXAMPLE. Press 1 to use the seed which begins this example, then press 5

to generate

 

[[-7 7 9 -8 -5]

[7 7 8 -1 0]

[-9 8 1 5 3]

[8 -1 5 -2 -3]

[-56 0 3 -3 -5]]

HILB (Hilbert matrix Generator)

Input:  level 1: an integer n

Effect: returns a 12-digit approximation to the nby n

Hilbert matrix.

« > n«1nFORI1NFORJIJ+ 1 - INV NEXT NEXT {n n}

-+ARRY » »  
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EXAMPLE. Press 4 HILB to see the approximation to the 4 x4 Hilbert matrix

[[ 1 1/2 1/3 1/4]

[1/2 1/3 1/4 1/5]

[1/3 1/4 1/5 1/6 ]

[1/4 1/5 1/6 1/7]]

Activity Set 2.1

1. Set the number display mode in your 48G/GX to STD and enter each of the

following arrays using direct keyboard entry. After each array is put on level 1

of the stack, you can see any hidden entries by pressing E‘ to view the array

in the Matrix Writer environment, where the cursor keys will enable you to

move to any position. The entry in the cursor position is identified on the

command line.

(a) [-11 12 -13 14 -15 16 -17 18]

[[4 2 -1 7]
[[3 -1 2]

[-5 0 3 8]
(b) [4 0 1] (c)

[6 9 2 5]
[2 -3 5]]

[0 -4 1 -3]]

3 -2([-9 8 -7] [[ ]

[-1 0][ 6 -5 4]
[ 1 2]4, L8 2] \ 3

eG (&) [3 3]
[ 5 6][-3 4 -5]

[ 6 -7 8]] [7 8]
[ 9 0]]



ARRAYS 29

[[9 6 3 0 -3 -6]

f) [8 5 2 -1 4 7] (g)

[7 4 -1 2 5 8]]

[[(6,-5) (-2,-1) (4,-8) ]
[ ('3! 0) (7! 9) (0!'11) ] ]

Practice entering each of the arrays in ACTIVITY 1 as a dimensioned sequence.

Enter each of the following arrays using the Matrix Writer. View any hidden

entries. If part of an entry on the command line is still hidden, press the menu

key EDIT and then use the right cursor key to scroll through the entry.

[[-3 -8]

2 4 0 1 L1 ][[- ] ‘4 6]

@ > 2 7] b) [2 7]
[1 3 10 -6]

45 1 -1]] L5 4]
[ [8 5]

[6 0]]

[ [ ('19 0) (1v'2) ('3’ 4) ]

](C) [ (5’ -6) (_7’ 8) (0, _9) (d) [ ['4 3 -2 1 ]]

[[-4]

[ 3] (et 11 ]© ® | w3 sina)

[11]

(8) [[In(-2) V-2 cos™(-2)]]
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2.2 EDITING ARRAYS

When using the HP-48G/GX, it is often necessary to edit arrays by changing

some of their entries, redimensioning, separating into rows or columns, inserting new

rows or columns, or applying a mathematical function to the entries of an array.

To Disassemble an Array

The calculator command OBJ—, which appears as a menu key on the PRG TYPE

submenu, will disassemble an array into its component entries and indicate the

dimension(s) of the array. Thus OBJ— is the inverse command to -ARRY.

EXAMPLE. With[ 0 2 4 6] on level 1 the command OBJ— will return the

following stack arrangement:

5:0

4: 2

3: 4

2: 6

1: {1}

With the following matrix on level 1,

[[ 2 4]

[ 68]]
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the command OBJ— will return the following stack arrangement:

5:2

4. 4

3: 6

2: 8

1:{22}

To Redimension an Array

The command used to redimension an array is RDM. A menu key for it appears

on the MTH MATR MAKE submenu. Entries are taken from the original array in row

order and are reassembled in that same order into a new array whose dimensions are

specified by an input list. Any excess entries from the original array are discarded,

and if there are too few entries in the original array then the new array is finished

with zeros.

EXAMPLE. With the stack arrangement

2:[0 2 4 6 8]

1: {3}

the command RDM returns [0 2 4]. With

2. [0246 8]

1: {3 2}

the command RDM returns the matrix

[[02]

[ 46]

[80]]
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With the stack arrangement:

2: [[1 2 3]

[4 5 6]

[7 8 9]]

1: {2 4}

the command RDM returns the matrix

[[12 3 4]
[5678]]

Changing Entries

There are two ways to change entries in an array.

(i)  You can copy the array from level 1 to the command line with EDIT

(the key), where the white cursor keys then let you move to any

desired entry and change it. You can use the key to delete

characters, then simply key in the new characters. Return the edited

matrix to level 1 with ENTER |.

(ii) You can copy the array into the MatrixWriter with E, position the

cursor over the entry to be changed, key the new entry into the command

line and press ENTER to insert it at the cursor location. Return to the

stack with another ENTER |. This method is especially useful because

you can calculate the new entry on the command line in RPN before

entering it.

EXAMPLE: Begin with the following matrix on level 1

[[1 2 3]

[456]]
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Press EDIT |, move the cursor over the 2 and press to delete, then do 7

ENTER to see

[[1 -7 3]

[4 56]

Now press E to view the last matrix in the Matrix Writer, position the cursor
 
 

  over the six and do 5 Vx| 2 | ENTER l | ENTER | to replace the 6 by a 12  

digit approximation to \5/2.

Separating into Rows or Columns

To separate a matrix into its row or column vectors, the appropriate commands

are ->ROW,located on the MTH MATR ROW menu, and -COL, located on the MTH

MATR COL menu. For example, with

[[0 2 4-6]
[5 -1 8 3]
[(7 9 -4 2]
[6 -3 5 8]]

on stack level 1, press to separate the matrix into its four row vectors.

Notice that stack level 1 contains the number of rows. Press E five times to see

the first row vector on level 5, then press to return to the normal stack

environment.

The inverse commands to »ROW and -COL are ROW— and COL—, located

next to the 5ROW and -COL commands on the appropriate menus. With four

vectors on levels 1 through 4, simply press 4 to build the matrix having

the four vectors as columns:
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4 [0 2 4 -6] [[0 5 -7 6]

3 [5-1 8 3] [2 -1 9 -3]
2. [-7 9 -4 2] 4retums [4 8 -4 5]

1: [ 6 -3 5 8] -6 3 2 8]]

Deleting and Inserting Rows or Columns

The commands ROW- and ROW+, located on the MTH MATR ROW menu, can be

used to delete and to insert rows. Analogous commands for column deletion and

insertion, COL- and COL+, appear on the MTH MATR COL menu. For example,

with

7 5 0]

1 3 6]

5 -6 -9]

1 -3 5]

0 2 7]]

on stack level 1, press 2 to delete row two. Notice that the diminished

matrix

appears on level 2 and the deleted row [3 1 3 6] appears on level 1. Then, to

insert this deleted row as the third column of the diminished matrix, press 3

[coLe |
[[9 -7 3 5 0]

[-8 5 1 -6 -9]

[4 -1 3 -3 5]

[-8 0 6 2 7]]
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More generally, the ROW+ and COL+ commands can be used to insert all of the

rows, or columns, of one matrix into another matrix at a specified position. With

[[1 2 3] [[11 12]

A= [4 5 6] onlevel2and B= [13 14 ] on level 1,

[7 8 9]] [15 16]]

press 2 to insert the columns of B into matrix A, starting at the column 2

position:

[[1 11 12 2 3]
[4 13 14 5 6].
[7 15 16 8 9]]

ROW+ works similarly.

Using the Diagonal. The HP-48G/GX units include two commands that are useful

in certain special contexts.

e The -»DIAG command (on the MTH MATR menu) will extract the main

diagonal (as a vector) from any matrix on level 1. For example,

123. L ]
—DIAG returns the vector [1 5].

[4 56]]

¢ The »DIAG command (on the MTH MATR menu) will insert a given vector as

the main diagonal of a matrix of specified size, all other entries being zero.

For example:

2:[2 2 2] DIAG— returns [[2 0 O]

1. 3 [0 2 0],
[0 0 2]]
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2: [2 2 2] DIAG— returns [[2 0 0 O]

1 4 [0 2 0 0] and

[0 0 2 0]

[0 0 0 0]]

2. [2 2 2] DIAG— returns [[2 0]

1: {3 2} [0 2] .

[0 0]]

Activity Set 2.2

1. Start with the following matrix on level 1:

[[3 2 -1 5]

[0 6 7 3]

A= [0 1 2 4] .

[8 7 9 5]

[2 6 1 3]]

(a) Redimension A into a 4 x5 matrix B that preserves row order.

(b) Disassemble B into its entries, drop the last five entries, and reassemble

the remaining entries into a 5 x 3 matrix C.

(c) Change the 5 in C to -3, the 8 to 0, and the 9 to 11/8 to get a new matrix D.

(d) Delete rows 2 and 4 from matrix D to obtain a final matrix E.

2. (a) Build a 5x4 matrix A whose (i, j)-entry is .ij.

(b) Extract the submatrix B consisting of rows 2, 3, and 5.
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(c) Redimension B intoa 4 x 3 matrix C that preserves row order.

(d) Extract row 4 of C, change each 5 in this vector to a 6, and insert the result

as a new row 1.

Enter the following matrix

111
A=1222]|.

333

Enlarge A by inserting an additional row on the bottom and an additional

column on the right. Do this as follows:

(a) Insert a row of 4's, then a column of 5's.

(b) Now start over with A, and first insert a column of 5's, than a row of 4's.

(c) Are the results in (a) and (b) the same?

[[1 -3 4] [[7 0 -1]

Enter and store A= [ 2 5 0] andB= [ 5 3 2].

[ 6 -3 4]] [9 -6 0]

(a) Use the ROW+ and COL+ commands to build the block matrices

A
[A B] and B |

A O
(b) Build the block matrices [ } and [

A B ,
O B } (hint: the command 3 IDN,

| O

on the MTH MATR MAKE menu, will build the identity matrix of order 3).

Seed your calculator’s random number generator with 5 and use the RANM

command to build a 3 x4 matrix A. Now use RANM to generate a 3 x 2
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matrix B. Insert B into A immediately after column 2 of A to obtain a new 3 x 6

matrix C.

6. Seed your calculator’s random number generator with 6 and use program SYMM

to generate a 3 X 3 symmetric matrix A. Then use program TRIDIA to generate a

3 x 3 tridiagonal matrix B. Insert B into A immediately after row 1 of A to

obtain matrix C. Delete rows 1 and 3 of C to form matrix D. Redimension D into

a 3 x4 matrix E that preserves row order.

2.3 ARRAY ARITHMETIC

Addition and Subtraction

Addition and subtraction of arrays proceeds just as for real numbers. To calculate

the sum A + B of two arrays having the same dimension, arrange the stack like this

(so, normally, A is entered first):

2: A

1. B

Now press . Press E] instead of to calculate A — B. Note that the

commands and B add or subtract the object on level 1 to or from the object on

level 2. In case A and B are stored as variables in user memory, press

to add.

Scalar Multiplication

To multiply an array by a scalar c, put the array and the scalar on levels 1 and

2 of the stack (in either order) and press . Multiplying by -1 can be done in a

single keystroke with the key.
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Dot Products and Length

The dot product of two real or complex vectors [ x; x;...x,]Jand [y; v, ... Yy, ]
n

is the number Y x;y;. Put the two vectors on stack levels 1 and 2 and execute the
i=1

command DOT. A menu key is located on the MTH VECTR menu.

2[4 31 2]

1:[1234]
DOT returns 13

2: [(1,2) G9]

L[(11 2]
DOT returns (-11, 7)

n n

To obtain the Hermitian product ) x;7; or Y X;jy; of two complex vectors
i=1 i=1

[x; x, ... x,]and [y; ¥2 ...Y.], (Where the bar denotes complex conjugation) you

must first conjugate the appropriate vector with CONJ (on the MTH CMPL menu)

before executing DOT.

2: [(-1,2) 3,4)]

1: [(1,1) (0,2)]
CONJ DOT returns (9, -3).

Here, we conjugated the vector on level 1.

For a real or complex vector [ x; x; ...x,] the command ABS (see the MTH

VECTR menu) will calculate the Euclidean length (norm)

 

I x Il =Vl241002 +. . +1x,]2,

which is the usual notion of length in R" or C". In the complex case, | x|/ 2 is the

square of the modulus of the complex number x; .

1: [2 45 2] ABS returns 7.
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Matrix Multiplication

To calculate a matrix product A B, proceed as in forming

A + B but press instead of . Note that in calculating AB, matrix A must be

on level 2 and matrix B on level 1. The number of columns of the matrix on level 2

must equal the number of rows of the matrix on level 1.

EXAMPLE: Begin this example by seeding your random number generator with 1: 1

RDZ. Then put a matrix A on level 1 with { 2 3 } RANM:

[[7-9 -8]
(-5 8 -1]]

Put a matrix B on level 1 with {3 4} RANM, moving A to level 2:

[[0 5 3 -3]

[-7 7 1 -2]

[-5 -2 9 -7]]

Press to see

[[103 -12 -60 53]
AB = :

[ -51 33 -16 6]

Matrix by Vector Multiplication

As a matter of convenience, the HP-48G series calculators will let you

premultiply any n-vector x =[x; x, .. x,] by any m xn matrix A to obtain Ax.

Thus, in this context, vector x is treated as if it were an n X 1 matrix. But you

should note that this treatment of x is peculiar to this context: in all other

applications, x is a vector, not a matrix. You can not, e.g., perform a multiplication like

xA, nor can you transpose x or take the determinant of a 1-vector [ x ]. Transposing



ARRAYS 41

and finding determinants are operations to be performed on matrices and not on

vectors.

Matrix Powers

Unlike the case for real or complex numbers, you cannot use the key to

calculate powers of a square matrix A. You can, however, obtain A2 by using the

key or by executing the command SQ. For more general powers of A, say A* where

k=1,2,3,...,you can use the following program.

 

ATk (k™ power of a matrix)

Inputs: level 2: a square matrix

level 1: an integer k

Effect: returns the k' power of the matrix

«—> Ak « ASIZE 1 GET IDN 1 k FOR | A * NEXT » »   
EXAMPLE. Calculate B> for the following matrix

[[O 1 0-1]

[1 0-1 0]

[0-1 0 1]

[-1 0 1 0]]

Begin by entering the matrix B onto level 1. Now press 5 to see

[[0 16 0 -16 ]
[16 0 -16 O ]
[0 -16 0 16]"
[-16 0 16 0]

B5 =
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CAUTION: You must use caution when calculating powers of a matrix. Because your

calculator only shows 12 digit mantissas, powers of even small matrices may lead to

computational inaccuracies. For example, if

[[9 9 9 9]
(9 9 9 9]

A= 1999 9]"
[9 9 9 9]]

then A8 can be found correctly on the calculator to be the constant 4 x 4 matrix

whose entries are 47 * 98 = 705,277,476,864. But A% has entries 48 * 99, a number which

the calculator can only represent as 2.5389989167E13, but which is somewhat short of

the actual 2.5389989167104E13.

More generally, given a square matrix A and an arbitrary polynomial

p(x) = a,x" +a,;x"1 + ... +a,x + a,, we sometimes want to find

p(A) = A" +a,A"1 + .. +a;A +al. The following program, P.of.A, does just that.

 

P.of.A (Polynomial evaluation at A)

Inputs: level 2: avector[a, a,_, ...a; a, ] of coefficients

level 1: a square matrix A

Effect: returns p(A) = a,A" + a,_;,A™ ! + ... + a,A + a,l

« > v A« ASIZE1 GET - k «v 1 GET 2 v SIZE

OBJ— DROP FOR n A * v n GET k IDN * +

NEXT » » »  
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EXAMPLE. Find p(A) for p(x) = 1.3x° — .4x* + 2.1x? + 5x + 6.2 and

[[1 2 3 .4]
A 1[5 6 .7 8]

[9 8 .7 6]
[5 4 3 2]]

Enter the coefficients as a vector [ 1.3 -4 0 2.1 5 6.2]. Next enter matrix A.

Set 3 FIX display mode and press to see

[[12.455 6.677 7.099 7.521]
[ 16.975 23.597 17.819 18.241 ]
[ 20.545 20.123 25.901 19.279 ]
[ 9.825 9.403 8.981 14.759]]

p(A) =

Transpose and Trace

With a matrix on level 1, the command TRN, returns the conjugate transpose i.e.,

the conjugate of the transpose (a menu key is located on the MTH MATR MAKE

menu). Thus, if the matrix on level 1 is real, TRN returns its ordinary transpose. To

obtain the ordinary transpose of a complex matrix, use TRN then CONJ. The

CONdJ key, on the MTH CMPL menu, returns the complex conjugate of its input

argument.

The command TRACE will return the trace (the sum of the main diagonal

entries) of a square matrix. A menu key for it appears at the end of the MTH MATR

NORM menu.

EXAMPLE: Put the following matrix on level 1:

[[(2,3) (7,-4) (3,0)]

To obtain the conjugate transpose, execute TRN:
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[[(23) (0,-1)]

[(7"4) (2! 0) ]

[(3,0) (5 1)]

Activity Set 2.3

1.

2.

Seed your calculator’s random number generator with 1, and use RANM to build a

3 x 2 matrix A, then a 4 x 3 matrix B, and calculate BA.

(a)

(b)

(c)

(d)

Create a 5x4 matrix A = (ai]-) where a;= i—j.

Extract the submatrix B consisting of rows 2, 3 and 5.

Remove col 3 from B to obtain matrix C.

Calculate C? and C3.

Start with matrix

(a)

(b)

(a)

(b)

(c)

[[1 0 -2 3]

A= [2 3 0 1] .

[5 2 4 1]]

Build the matrix B whose first two rows are columns 2 and 3 of A,

respectively, and calculate BA.

Now let C be the submatrix of A consisting of columns 1 and 4 of A;

calculate CB.

Generate a random 3 x4 matrix A over Z;, and calculate ATA; carefully

observe your result.

Repeat part (a) using random 4 x5 and 5 X 6 matrices.

Formulate a conjecture based upon your observations.
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(d) Prove your conjecture.

(a) Seed your calculator's random number generator with 1, then generate two

random 4 X 4 matrices A and B with the RANM command.

(b) Combine A and B into the complex matrix A + iB by executing the command

R — C, found on the MTH CMPL menu; transpose A + iB.

(c) Separate your answer in (b) into its real and imaginary parts with the

command C — R (also on the MTH CMPL menu), SWAP levels 1 and 2 and

then recombine the two matrices into a complex matrix with R — C. Now

extract column 4.

Enter and store the following matrices:

[[6 2 -1]

[[1 -2 3 5 4] [3 5 4]

A=[7 9 0 -1 3], B=[-2 8 0]

[-3 8 6 2 1]] [7 1 6]

[1 -3 2]]

(a) Get the submatrix C of B consisting of rows 2 and 4.

(b) Form the block matrix [ A CT] =D and get the submatrix E consisting of the

odd-numbered columns.

Enter and store the following matrices:

[[(5,1) (2,-3) (1,0)] [[(-3,1) (6,0)]

A= 10,4 (6-1) (34] B= [0 @1)]
[(0,4) (6,-1) (3,4)] (a3 @1

(a) Find the conjugate transpose A* of A and the transpose BT of B.
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(b) Calculate A* + B, A + BT, AA*, BTB and (2 - 3i)A.

Find A% - 4A* + 3AT -] for the following matrix:

[[@2-1) (0,-2) (3,-2)]

[ (0,1) (6,00 (-1,2)]]

Consider the following matrix

[[ 7 2 4 6]
Ao [6 -1 -4 -4]

[ 4 4 5 -2]
[- 16 -12 -14 -3]]

(a) Find A% - 8A3 + 22A2 — 40A + 251

(b) Use your result from (a) to find a polynomial in A that gives AL

(c) Calculate Al from your answerin (b).

(d) Check your result from (c).

For this exercise, set your calculator to 3 FIX mode. Let

[[3 .3 .3 .2]

[4 3 2 0]
x=[.1.2.3 4]andA=

[1 2 2 3]

[2 2 3 5]]

(a) Examine the sequence A, A%, A3,... to find lim {A"} iq
n-—oo

(b) Examine the sequence Ax, A%x, A3x, ... to find lim {A"x} .
n—oo

(c) What is the connection between the two limits in (a) and (b)?
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11. Repeat parts (b) — (c) of exercise 10 using any vector x = [a b ¢ d ] of your choice

where a+b+c+d=1.

12. Seed your calculator’s random number generator with 2 and generate two vectors

in R3. Store the first one as u and the second one as v. Now find:

(a) uev (b) ue(u+0v (c) ve(v—-u)

(d) the length of ——
Iy ol

(e) Verify the triangle inequality: ||u + o|| <|u|l +|v ].

(f) Verify the Cauchy-Schwarz inequality:

lwev|<|ul lv].

2.4 DETERMINANTS AND INVERSES

With a square matrix A on stack level 1, the command DET will return the

determinant of A, and pressing to execute the INV command will return Al in

the event that detA # 0. A menu key for DET appears on the second page of the MTH

MATR NORM menu.

EXAMPLE. Put three copies of the following matrix A on the stack. Then execute

DET to show detA = 256.

[[ -4 4 8 8]
[-16 12 16 16]

A= [-8 4 12 8]

[ 8 -4 -8 -41]

Cofactor expansions tell us that a matrix having only integer entries will have an

integer for its determinant. As in this example, the HP-48G and 48GX will always
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return an integer for the determinant of a matrix having only integer entries if flag

-54 is clear (the default case). Use DROP |, then to show

[[ .75 -25 -5 -5]
a1 L1 =25 1 ]

[ 5 -25 -25 -5]
[ -5 25 5 .75]]

Finally, press to check that AA1 =1

However, some care must be exercised with these commands in order to obtain

results that are mathematically correct. To make the point, enter two copies of the

matrix

(r1 1 1]

B= [3 6 4]

[ 3 6 4]]

With the default setting, its determinant is seen to be zero, and when you try to

invert matrix B, you get the message INV error: Infinite Result. But now multiply B

by .101031 to obtain matrix

[[ .101031 .101031 .101031 ]

C= [ .303093 .606186 .404124] .

[ .303093 .606186 .404124]]

Use ENTER to put two more copies of C on the stack, then execute the DET

command to obtain detC = 6.1E-17. Drop the determinant, then use to get

[ [ 19.7959042274 3.33333333333E14 -3.33333333333E14 ]
c1 [-9.89795211371 1.66666666667E14 -1.66666666667E14 ] .

[ 0 -5.E14 5.E14 1]

Look suspicious? Confirm your doubt by pressing SWAP |, then to show
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[[ 2 2 2]

ciCc= [-1-1-1]

[ 0 0 0]]

Matrix C, like B, has two identical rows. Thus, detC =0, so C has no inverse. One

thing is clear: wusing the calculator to calculate determinants and matrix inverses may

yield incorrect results. As in this example, the calculator may return a non-zero value

(the result of round-of error) for the determinant of a singular matrix and then a

ridiculous candidate for an inverse. The numerical calculation of matrix determinants

and inverses is extremely sensitive to round-off error, scaling, and choice of numerical

algorithm in a floating point environment. Thus, our advice is to proceed with caution

in a calculator environment and, whenever possible, avoid calculating determinants and

inverses. If you think that you need to calculate a determinant or an inverse of a numerical

matrix then you should think again very carefully about your problem. You can almost

certainly reformulate to avoid such calculations.

To clean up round-off error, we recommend that you round your answer to a

desired number n of decimal digits, 1 <n < 11. For example, to round the matrix

[[1 O -.000000000001 ]
[0 1 .000000000001 ]
[0 O .999999999999 ]

to 11 decimal places, simply enter 11 RND to obtain

[[1 0 O]
[0 1 0].
[0 0 1]]
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Activity Set 2.4

1. Here is another example that illustrates the difficulty in numerically

calculating determinants. Begin by setting flag -54 (use -54 SF) and entering the

following matrix:

(a)

(b)

(c)

(d)

(e)

[[1
[-3

[0

[0

[0

[ 1 W
=

W
=

W
o

O
=

O
=

O
=

A
=
2
A

a
4
M

O 1]

1]

1]

1]

3]

11]]

Unlike our example in the text discussion, no two rows of A are identical.

Multiply A by 1000 and apply the DET command to the result. Does the

result (a large integer) seem reasonable? Do you see round-off error?

Use cofactor expansions along column 1 of A to find the determinant of A.

What does this tell you about det[1000A]?

Apply the DET command to matrix A. Use the fact that for any nxn

matrix A, det[kA] = k" detA to explain how round-off error led to the result

in (a).

Return flag -54 to its default (clear) state; use -54 CF. Now apply DET to

matrix A.

Go back and read, again, the statements in italics in Section 2.4.
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2.5 APPLYING FUNCTIONS TO ARRAYS

Ordinary mathematical functions of a single variable can be applied to each

entry of an array. For example, when the function f(x) = \ (x+1)? is applied to

[[1-12-2]

T334 -4]]

we obtain the matrix

p [[2031]

[ 4253]]

The HP-48G/GX has no command that will apply a mathematical function to

the entries of an array, but it does include a program APLY that will do this. Here

is how to access program APLY. Hold down the E key, type TEACH and press

ENTER. This procedure will load (from ROM) into your current directory a

subdirectory named EXAMPLES. Open EXAMPLES, and then the PRGS

subdirectory to see a menu key APLY |.

To use program APLY (not to be confused with the command APPLY, which does

something else) to apply a mathematical function f to an array, arrange the stack

like this:

2: array

1: "procedure for f"

Now run APLY. You have two choices for the "procedure for f":

(i) an RPN program for f

(ii) a user-defined function forf.
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To work the above example on the HP-48G/GX, put matrix A on level 1 of the stack

and then enter the program

«1+8Q7V »

Now run program APLY to obtain matrix B. Instead of this RPN program you can put

a user-defined function, say F, for f in the same directory as APLY and then simply

put its name 'F' on level 1 before running program APLY. See Chapter 1 to review

user-defined functions.

My recommendation is that you copy APLY into your { HOME } directory, so

that you can access it from any subdirectory whatsoever by simply typing APLY.

The quickest way to copy APLY into { HOME } is as follows. Use APLY to

recall the program to the stack, press D i APLY I I ENTER I to put the name

'APLY" on level 1, go to { HOME } and press. Touch to see the copy

in your { HOME } directory. (At this point you may wish to purge the EXAMPLES

directory.)

Activity Set 2.5

1. Apply the function f(x) = cos mx to the matrix

[[1 2 3]

[4 5 6]

[ 78 9]]

by writing a short RPN program and using program APLY. Note that the

command — NUM (the EVAL key) will convert the symbolic « to a

numerical value.
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For a real number x, the command FLOOR will return the greatest integer less

than or equal to x. In mathematics, we usually denote the greatest integer less

than or equal to x byl x J. Apply the function f(ix) = 2 + Vx ] to the matrix

[[1 2 3]
[4 5§ 6].

[7 8 9]]

For a real number x, the command CEIL will return the least integer greater

than or equal to x, usually denoted by [ x |in mathematics. Apply the function

f(x) =[ -x;'('—l ] to the matrix

([ 1 -2 3]

[4 5 6] .
[7 -8 9]]



SYSTEMS OF LINEAR EQUATIONS

 

Systems of linear equations arise in practically every field of mathematical

application. Not only must we understand some of the algorithms for their solution,

but also some of the surrounding theory. For it is a combination of both algorithms

and theory that, when cast in matrix-theoretic terms, foreshadows many of the more

sophisticated concepts that lie ahead. For brevity, we shall refer to systems of

linear equations as linear systems and denote their matrix formulation as Ax = b.

The standard methods for dealing with linear systems in introductory linear

algebra courses are the elimination methods, consisting of several variants of

Gaussian elimination with back substitution. Many beginning courses blur the

distinction between these variants in the interest of expediency. But with an eye

toward a subsequent study of linear analysis or numerical methods and the use of

professional elimination codes, it is important to distinguish carefully between the

traditional Gaussian elimination algorithm, the back substitution process, partial

pivoting and Gauss-Jordan reduction. Likewise, it is important to understand

Gaussian elimination for square matrices as an algebraic process that factors a matrix

A into triangular factors, A = LU.

3.1 GAUSSIAN ELIMINATION

In its traditional form, the Gaussian elimination algorithm for solving a square

nonsingular linear system Ax = b adds suitable multiples of one equation to the others

with the goal of obtaining an equivalent upper triangular system Ux = b’. It may be

necessary to interchange equations at various times for the elimination process to

54
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continue. Back substitution then solves Ux = b’ systematically by solving the last

equation for its single unknown, putting this value into the next-to-last equation and

solving for the next-to-last unknown, and so on until all values for the unknowns have

been determined. All this is usually carried out without reference to the unknowns

by working with the augmented matrices [ Albland [ Ulb']. Computationally, the

only source of error is round-off, induced by the computational device itself. It is

especially important to view the elimination as an orderly process that proceeds in a

top-to-bottom, left-to-right fashion.

Once a basic understanding of Gaussian elimination has been established and

several examples have been worked by hand, the calculator can be used to efficiently

perform the row operations that transform [ Alblinto[ Ulb’].

The HP-48G and 48GX units include built-in commands for row operations on the

MTH MATR ROW menu. With a matrix A on level 1, the RClJ command is used to

multiply row I of matrix A by scalar ¢ and then add the result to row ], and the

RSWP command is used to interchange rows I and /. The RCl command is used to

rescale row [ by multiplying it by scalar c.

To solve this linear system

2q +30p + 2% - xq = 4

4dx;, -6x;, + 3 + 2 = -1

4q + 84 + 7x3 + 2 = -3

2 +49 + x3 - 4 = 2

using these commands, begin with the augmented matrix [ Alb ] on level1:

[[ 2 3 2 -1 4]
[-4 -6 1 2 -1]
[ 4 8 7 2 -3]
[ 2 4 1-4 2]]
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To add 2 times row 1 to row 2, press 2, 1, 2| RCIJ |:

[ 2 -1 4]
5 0 7]
7 2-3]
1 -4 2]]

Thendo-2,1,3| RCIJ followed by -1,1,4| RClJ to finish the elimination in

the first column:

[
[
[
[ N

b
O

N

H
0

O
W

[ 3 2-1 4]
0 50 7]
2 3 4-11]
1

[
[
[
[ -1 -3 -2]]O

O
O

D
N

Now interchange rows 2 and 3 with 2,3 RSWP |, then complete the elimination in

the second column with -.5, 2, 4, RCIJ |:

 

[[2 3 2 -1 4]

[0 2 3 4 -11]

[0 O 5 0 7]

[0 0 -25 -5 3.5]]

A final .5, 3, 4 RCIJ produces the desired triangular system [ Ul b’ ]:

[[2 3 2 -1 4]

[0 2 3 4-11]

[0 O 5 0 7]

[0 O O0-5 7]]

Back substitution by hand shows the solution vector tobe [ 7.1 -48 14 -14]. To

assist with the back substitution process, we can use the following program BACK.
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BACK (Back substitution)

Inputs: level 2: an nx n invertible upper triangular

matrix U

level 1: an n-vector b

Effect: Solves the linear system Ux = b by back

substitution. Solves for x,, and halts until you press

,then backsolves for x,,_, and halts,

etc. After x,, x,4, ..., X; are on the stack, a final

returns X = [ Xy, X,, ..., X,].

« > ADb« A SIZE1GET - n « {n} 0 CON 'A(1,1)" EVAL TYPE

IF THEN DUP R—»C END —» x « n 1 FOR J 'b(J)' EVAL 1 n FOR k

'A(j, k) EVAL NEXT n —ARRY x DOT - 'A(j, j)' EVAL / HALT DUP x

{j} ROT PUT 'x' STO -1 STEP n DROPN x » » » »   
To apply BACK to the above system, start with the upper triangular system

[Ulb’ ], above, on level 1. Press 5 to split off the rightmost column, then

press BACK to see the last component of the solution vector, -1.4. Each press of

CONT will return the next component. When all four components are on the

stack, a final CONT shows the solution vector to be [ 7.1 -4.8 14 -1.4], as

before.

As this example shows, row interchanges may be needed in order for Gaussian

elimination to proceed to its natural conclusion. In so doing we are simply avoiding

zero pivots. But to solve many of the linear systems that arise in science and

engineering, it is just as important to avoid using pivots that are extremely small,

because division by small numbers in floating point arithmetic may induce

considerable error. Thus, a common pivoting strategy is to choose as the pivot

element the first element on or below the pivot position whose absolute value is
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maximum. The need for this so-called partial pivoting strategy is difficult to

illustrate on the calculator because of its use of 12 digit mantissas. Nevertheless, I

require that my students adopt partial pivoting by using the RSWP command to

reinforce their understanding of this technique. It is routinely used by all

professional computer codes.

We rework the above example, this time using partial pivoting throughout.

With the augmented matrix on level 1:

[[ 2 3 2 -1 4]

[-4 -6 1 2 -1]

[ 4 8 7 2 -3]

[ 2 4 1 -4 2]]

partial pivoting requires that we interchange rows 1 and 2. Thus 1, 2

gives

[[-4 -6 12 -1]

[2 3 2 -1 4]

[4 8 7 2 -3]

[2 41 -4 2]]

Then, the commands .5, 1, 2, 1,1,3 and 5,1, 4 complete

the elimination in the first column:

[[-4 6 1 2 -1]

[0 O 25 0 3.5]

[02 8 4 -4

[0 1 15 -3 15]]

Now interchange rows 2 and 3 with 2, 3| RSWP and then finish the elimination

in the second column with -5,2,4 RCIJ |:
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[[-4 6 1 2 -1]

[ 02 8 4 -4]

[ 0 0 25 0 35]

[ 0 0 -25 -5 35]]

A final row operation with 1, 3, 4 RCIlJ does the job:

[[4-6 1 2 -1]
[ 02 8 4 -4]

[ 0 0 25 035]"

[ 00 0 -5 71]]

Notice how this matrix differs from the one we obtrained without partial pivoting.

To complete the solution process, split-off column 5 with 5, then apply

program BACK as before to obtain the solution vector [ 7.1 -4.8 1.4 -1.4].

To speed up the elimination phase without losing control over the process, we

can use the following program ELIM. Program ELIM pivots on a specified entry, the

pivot, to produce zeros below that entry. It will handle both real and complex

matrices and can be used, more generally, to convert a matrix to row-echelon form.

Notice that the program will abort and print the error message "PIVOT ENTRY IS 0"

in case the intended pivot is zero. In this event, simply press UNDO to

recapture the matrix before the last application of ELIM.
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ELIM (Gaussian elimination)

Inputs: level 3: a matrix

level 2: an integer k

level 1: an integer /

Effect: pivots on the (k, ))-entry of the matrix to produce

zeros below the pivot.

« 5> A k|l «|F 'Ak, 1)) EVAL 0 == THEN "PIVOT ENTRY IS 0" ELSE

A SIZE 1 GET > m « k1 + m FOR i A 'A(i, l)) EVAL NEG 'A(k, I)'

EVAL / k i RCIJ 'A' STO NEXT A 10 RND » END » »   
EXAMPLE . To use ELIM and BACK with partial pivoting to solve the linear system

5x, 9, + 16x; + 6x, = 48
5%, + 9, - 16x; - 8x, = 45,
10x; - 9%, + 24x; + 8x, = 72
S5- 9%, + 8 + 8 = 3

begin with the augmented matrix [A | b]

[[ 5-9 16 6 48]

[-5 9 -16 -8 -45]
[10-9 24 8 72]
[-5-9 8 8 31]]

on level 1. The sequence of commands 1, 3| RSWP |;1,1 ELIM |;2, 4| RSWP |;

2,2| ELIM |;3, 3| ELIM returns the equivalent upper triangular system [ Ulb’ ]
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[[10 -9 24 8 72]

[ 0 -13.5 20 12 39]

[0 0-26 -2 -1]"

[0 0 0 -2 3]

Press 5, to split off the last column. Then, BACK followed by four

applications of CONT shows the solution as [3.00000000002 -2.00000000003

1.49999999998 -1.5 ]. Now clean up the obvious round off error with 10 RND to

see the solution[ 3 -2 1.5 -1.5]

Our discussion of ELIM has been in the context of solving a nonsingular linear

system, which has a unique solution. But since ELIM can be applied to convert an

arbitrary non-zero matrix to a row-equivalent row echelon form, it can be applied to

the augmented matrix [A | b] of an arbitrary linear system Ax =b. If [UIb]is a

resulting row echelon form, the nature of the solutions to Ax = b becomes apparent.

Specifically, any variable (or unknown) associated with a pivot is called a pivot

variable while the other variables, if any, are called free variables. If the last non-

zero row of [UIb] looks like [0 0 ... 0 *] where * is a non-zero number, the system

has no solution. In any other case there is at least one solution: a unique solution if

there are no free variables, but infinitely many solutions when free variables are

present. It is standard practice to use back substitution to express each pivot

variable in terms of the free variables, and values for the free variables may be

arbitrarily (i.e., freely) chosen. Here is an example.

EXAMPLE. To solve the linear system

dx, + x + 3x; - 22+ x = 5
8x, + 2x, + x, — 5x, = 13,
, + x + 8y - x4+ 26 = 7
8, + 24, - 9 - Tx, - 2% = 9



62 CHAPTER3

begin with the augmented matrix [A | b]

[[4 1 3 2 1 5]

[8 2 1 -5 0 13]

[4 1 8 1 2 7]

[8 2 -9 -7 -2 9]]

on level 1. If we use partial pivoting, the sequence of commands 1,2 RSWP |; 1, 1

;2, 4;2, 3; and 3, 5 returns the following

row echelon matrix:

[[8 2 1 -5 0 13 ]

[0 0-10 2 -2 -4 ]

[00 0 0 5 25]

[00 0O 0 O 0 ]]

Since the last non-zero row is well behaved,the system is consistent. Since x;, x3 and

X5 are pivot variables while x, and x4 are free variables, there are infinitely many

solutions. Back substitution (by hand . . . the HP-48 is of no help here) shows all

solutions to be given by

X5 = -5

X3 = 14 - .2.‘X'4

x = 1.45 - .ZSX2 + .65X4

and x;, x4 are freely chosen.

Later, we shall give a calculator routine for the variant of Gaussian elimination

known as Gauss-Jordan reduction, the effect of which is to do both elimination and

back substitution in one routine.
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Activity Set 3.1

1. Use partial pivoting and the commands RSWP and RCIJ to convert the

augmented matrix [A|b] of each of the following linear systems to a row-

equivalent [U|b’], where U is upper triangular. Record your row operations.

Then use program BACKto solve the system with back substitution.

(a) 49+ % + 3x = 6

8x1 - ZXZ + 4JC3 = -8

8x1 - 6X2 - 2x3 =-36

(b) 3+ 2% - 2 + 2 = -5

6x; + 2x%, - 3 - 24 = -10

3x + x + 2.5x; = 8

6x; + 26 + 43 = 2

2. Use Gaussian elimination with partial pivoting to solve the following linear

systems. Use program ELIM to do the pivoting. Record all your calculator

commands.

(a.) 'le + 3x2 - X3 + ZX4 = 8

8 + 4 + 3 + x = 6

6x1 - X - ZX3 + BX4 = 22

4x1 - 6X2 + 2x:>, + 3X4 = 12

(b) -2x1 - 4.X'2 + SX3 - 7X4 = -8

n+ 2 - B3 + 3x = 4

x + 4x2 + 6.7(.'3 + 3.X4 = 1

3 + 8 - 2 +10x, = 6
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3. Repeat Activity 2 for the following linear systems.

(a) xm+ 2 + 3x + 4 = 5

xn+ 3% + 43 + 5% = 5

3+ 6 + 9% + 24 = 5

24+ 4 + 6x3 + x4 = 4

(b) 2+ 3% + 5x3 - 2% + 3% - 9% = 6

20 - 3% + x3 + 4 - x5 + x = 2

6x; - 9, + 1lxy = 19% + 3x = 0

4 - 6x; + 5x3 + 9xy - 16x5 - 2% = 8

3.2 LU-FACTORIZATIONS

In addition to recognizing Gaussian elimination as an orderly process for

converting a square matrix to upper triangular form, it is important to understand it

as a factorization process. This understanding is not only interesting from an

algebraic viewpoint; it also lies at the heart of many computer codes used to handle

linear systems.

When the matrix A in a linear system Ax = b can be brought to upper triangular

form U by Gaussian elimination without row interchanges, then A = LU where L is

lower triangular with 1's along its main diagonal and the entries below the diagonal

are the negatives of the multipliers used in the elimination process. For example, if

3 times row 1 is added to row 2 to produce a zero in the (2, 1)-entry of U, then the

(2, 1)-entry of L is -3. When row interchanges are needed to avoid zero pivots, then

A = LU is no longer valid; it is replaced by a factorization of the form PA = LU

where P is a permutation matrix that accounts for the various row interchanges, and

the multipliers in the lower triangle of L are rearranged accordingly.
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Program L.U, given below, is but a slight modification of ELIM. In addition to

performing the basic elimination step L.U stores the negatives of the multipliers

below the diagonal in a matrix L which initially is the identity matrix. Program

— LP creates the initial L and a matrix P, also the identity matrix. If row

interchanges are needed, the proper use of RSWP must be made with both P and U in

order to continue, and program L.SWP will effect the necessary interchanges of the

multipliers in L. At the end, the calculator shows U on the stack, and L and P as

stored variables. As before, complex matrices are allowed. (Note: The e appearing

in the name L.U is necessary to distinguish this teaching code from a similar, built-in

command LU. More about this command later.)

 

LU (Used to construct LU-factorizations)

Inputs:  As stored variables: variables L and P, obtained

from program —LP(below), each containing

an identity matrix.

level 3: a square matrix

level 2: an integer k

level 1: the integer k

Effect: Pivots on the (k, k)-entry to return a row-

equivalent matrix with zeros below the pivot; also

puts the negatives of the multipliers into column k

of L below the main diagonal. Press m to view

L. Used iteratively to obtain an LU-factorization.

« = A k k « IF 'Ak, k) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET-> m « k 1 + m FOR i A 'A(i, k) EVAL NEG

'‘A(k, k) EVAL / DUP NEG 10 RND 'L(i, k) STO k i RCIJ 'A" STO

NEXT A 10 RND » END » »   
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- LP (Make L and P)

Input:  level 1: a square matrix A

Effect: Creates variables L and P, each containing an

identity matrix the same size as A. Used as the

initial start-up to construct an LU-factorization.

« DUP IDN DUP 'L' STO 'P' STO »

 

 

 

L.SWP (Interchange multipliers in L)

Input:  level 1: a square matrix L

level 2: an integeri> 1

level 3: an integer j> i

Effect: Interchanges the parts of rows i and j that lie

to the left of the (i, )-entry in L; used to update L

by interchanging multipliers.

« > Aij« IFi1<ji< ORTHEN"INVALID ROW INPUT" ELSE A

SIZE 2 GET —-n « A 11— FOR k 'A(, k) EVAL {j k} SWAP

PUT NEXT 1 i 1 — FOR m 'A(, m)' EVAL {i m} SWAP PUT NEXT »

» »
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EXAMPLE . Use partial pivoting to construct an LU-factorization of

[[2 3-1 2]
[-4-6 2 1]
[2 4-4 1]
[4 8 2 7]

A=

Step 1: Enter A onto level 1, and press to create appropriate starting

matrices L and P. Interchange rows 1 and 2 in A with 1, 2 RSWP |,

recall P to the stack and make the same row interchange, then store the

updated result in P with . Now press 1, 1 to see

[[4-6 2 1]
[0 0 0 25]
[0 1-3 15]
[0 2 4 81]]

Step 2: Since the (2, 2)-entry of this last matrix is 0, we must interchange row 2

with row 4. Thus press 2, 4| RSWP to effect the interchange, then

bring P to level 1, make the same row interchange with RSW[P and

store the result in P. Now bring L to level 1 with , interchange

multipliers with 2, 4 and store the result in L with

.
[[-4 -6 2 1 ]

0 2 4 8
Step 3: Now execute 2, 2 to see { 6 0 -5-25 } . Store this as U.

[0 0 0 2.5]]
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Step 4: GetL =

[[1 0 0 O]

[-1 1 0 0]
-5 .5 10] with ,thendotosee

[-5 0 0 1]]

[[-4-6 2 1]

[4 8 2 7]
LU=

[2 4-4 1]
[2 3-1 2]]

Since P is a permutation matrix, we know that P! = PT. Thus

PILU = PTLU = A. Recall P to level 1 and get PT, SWAP levels with LU

and then use to see PTLU = A.

Why are LU-factorizations important? Here are several reasons:

(i)

(ii)

In the case that A = LU, all the information regarding Gaussian

eliminiation on A is stored in the factors L and U. Matrix L maintains a

record of the multipliers used in the eliminiation process and U records

the results of the elimination. Thus, L and U may be viewed as

storehouses of information about A that can be exploited later in a variety

of situations. With PA = LU, P records the row interchanges.

Once we have A = LU we can solve Ax = b for different b's by first using

forward substitution to solve Ly = b for y, then by using back substitution to

solve Ux = y for x. (In the case of PA = LU, we solve Ly = Pb in the first

step.) Indeed, this is often the preferred method built into computer codes

for solving linear systems. It is a matter of economy. Assume that A is

nxn and that A1 as well as the factors L and U are available. Using A-!

to obtain x = Alb requires n? multiplications. Solving Ly = b for y by

forward substitution and then solving Ux = y for x by back substitution also
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requires n? multiplications. But the difference is seen in comparing the

number of multiplications required to obtain A-! to the number of
3n

multiplications required to obtain the factors L and U: n3 verses 3 - For

large n, the savings in using L and U is substantial.

(iii) The interpretation of Gaussian elimination as a matrix factorization

PA = LU sets the stage for the more sophisticated matrix factorizations

that are encountered in a study of numerical linear algebra; for example,

the QR, Schur, and SVD factorizations.

To apply forward substitution to Ly = Pb on the calculator, use the following

program FWD.

 

FWD (Forward substitution)

Inputs: level 2: an nx n invertible lower triangular matrix L

level 1: an n-vector b

Effect: Solves the linear system Lx = b by forward

substitution. Solves for x, and halts until you press

CONT |, then solves for x, and halts,etc.

After x,, x,, ..., X, are on the stack, a final CONT

returns x = [ Xx;, X, ..., X,].

« > Ab« ASIZE1GET - n « {n} 0 CON 'A(1,1)' EVAL TYPE

IF THEN DUP R—-C END —» y « 1 n FOR j 'b()' EVAL 1 n FOR k

'‘A(j, k)' EVAL NEXT n —-ARRY y DOT -"'A(,j) EVAL / HALT DUP vy

{j} ROT PUT 'y" STO NEXT n DROPN y» » »»   
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EXAMPLE. To solve 2+ 3 - o+ 2 =1

4x, - 6x, + 2 + x = 2

2 + 4, - 4+ x = 3

4, + 8, + 24 + 7x, = 4

by using an LU-factorization, we first obtain a PA = LU factorization of the

coefficient matrix

[[2 3 -1 2]

-4 -6 2 1]

A= 12 4 -4 1]
[4 8 2 7]]

Since A is the matrix of our last example, we shall use the P, L and U obtained

there:

[[0 10 0] [[1 0 0 0] [[-4-6 2 1]

[000 1] [-1 1 0 0] [0 2 4 8]

P=1001 0], L= 1.5 51 0]" U= 10 0-5-25]
[1 00 0]] [-5 0 0 1]] [0 0 0 25]]

Let b=[1 2 3 4] To solve Ly = Pb for y by forward substitution, calculate

Pb=[2 4 3 1]. Then, with L on level 2 and Pb on level 1, and four

applications of |[CONT show y tobe[2 6 1 2]. Then with U on level 2 and

[2 6 1 2] on level 1, BACK and four applications of CONT show the

solution x of Ax=btobe[-21 1 -6 .8].

The HP-48G and 48GX calculators include a command LU that produces an LU-

factorization PA = LU which differs from the one we have just described in that U

has 1's along the main diagonal and the pivots appear on the main diagonal of L.

To see how this can occur, imagine PA = LU where L is unit lower triangular and U
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has the non-zero pivots on the main diagonal. If D is the diagonal matrix whose

main diagonal contains the pivots uyy, U3y, ..., Up, from U, then PA = (LD) (D-1U).

The effect of matrix D is to multiply each column j of L by u;; so that LD is lower

triangular with the pivots on its main diagonal. The effect of D! is to multiply

each row jof U by u}}l., so that D-1U is unit upper triangular. The actual method

used to obtain this factorization is known as the Crout algorithm. It employs partial

pivoting throughout and is particularly well-suited to calculator use. For example,

with our previous matrix

[[2 3 -1 2]
A< [4-6 2 1]

[2 4-4 1]
[4 8 2 7]]

on level 1 of the stack, pressing on the MTH MATR FACTR menu will return

[[O 1 0 0]

[0 O 0O 1]
P =

[0 0O 1 0]

[1 0 0 0]]

to level 1,

[[ 1 1.5 -5 -.25]

U = [ O 1 2 4 ]

[ O O 1 5]

[ 0O 0 O 1]

to level 2, and

[[-4 0 0 0]

= [ 4 2 0 0]

[ 2 1 -5 0]

[ 2 0 0 25]]

to level 3.
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You will recognize this U as a rescaled version of the one we obtained earlier: row i

of our earlier U has been rescaled by multiplying by u ;. Likewise, L is just a

rescaled version of the one we obtained earlier: column j of our earlier L has been

rescaled by multiplying by u;. Rescaling our earlier U and L will not affect the

final solution.

Unlike the ELIM and L.U programs, which round-off intermediate computations

to 10-digit precision to clean up round off errors, the built-in matrix routines on the

HP-48G and 48GX, such as the LU routine, perform all intermediate computations to

15-digit precision and then pack the computed results to the displayed 12-digits.

Finally, although our discussion has concentrated on developing an

understanding of Gaussian elimination and its interpretation as an LU-factorization,

you should note that the HP-48G and 48GX units enable you to solve any nonsingular

linear system by applying an LU-factorization with a single keystroke. With an

invertible matrix A of order n on stack level 1 and n-vector b on level 2, the

command /, executed from the keyboard by pressing the key, will solve the

linear system Ax = b by the method cited earlier: use partial pivoting to obtain an

LU-factorization PA = LU, then solve Ly = Pb for y by forward substitution, then

solve Ux = y for x by back substitution. Try it with the last example. More

generally, if b is replaced by an n X p matrix B, the same procedure will solve the

matrix equation AX =B; column jin the computed X is the solution to AX; = B,

where Bis the corresponding column in matrix B.

Activity Set 3.2

1. Use partial pivoting to construct PA = LU factorizations of each of the following

matrices. Then use P, L and U as in our last example to solve the linear system

Ax = b; in each case, record the solution y to Ly = Pb.



[[-2 4 5]
(a) A= [ -1 35 25]

[ 2 1 3 ]]

b=[10 35 11]

[[0 2 7 -3]

[3 0 3 5]
(c) A=

[3 6 -3 4]

[-9 6 -3 6]]

b=[44 -24 -24 -24]
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[[-2 6 5]

b) A=[-3 1 -5]

[6 6 -3]]

b=[26 15 18]

[[2 0 -3 0 -5]

[ -6 -3 -12 -9 3]

d A=[ 6 6 6 12 6]

[ 0 3 3 -3 6]

[2 1 -4 -1 1]]

b= [-7 36 -6 27 10]

For each of the following matrices, find the Crout PA = LU factorization by

using the LU command. Then use P, L and U to solve the system Ax = b. Check

your results using the / command.

[[-1 -1 2]

(a) A= [4 2 1] ,

[-9 6 0]]

[([1 -5 2 -1]

[2 -7 4 1]

[<7 9 1 3]

[5 -8 -9 8]]

(b) A=

[[-7 -7 -7 2 -7]

[-1 0 5 -8 7]

) A=[7 1 -9 6 7],

[5 4 9 9]

[9 6 -5 -9 8]]

o

S I [-7 11 21]

b=[-8 -13 53 -76]

b=[-16 45 -80 7 17]
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3.3 GAUSS-JORDAN REDUCTION

Although Gaussian elimination with back substitution is more efficient than

Gauss-Jordan reduction for dealing with linear systems in general, and is certainly

the preferred method in professional computer libraries, students have traditionally

used Gauss-Jordan reduction for the small-scale problems employed to learn the basic

concepts. This minimizes the rational number arithmetic involved when Gaussian

elimination is performed by hand on matrices with integer entries.

Gauss-Jordan reduction differs from Gaussian elimination in two ways:

(i) all pivots are converted to 1.

(ii) the basic pivot process is used to produce zero's both below and above the

pivot element.

When applied to a non-zero matrix A, Gauss-Jordan reduction produces what is

popularly called the reduced row echelon form (RREF) of A:

(a) any zero rows lie at the bottom;

(b) the first non-zero entry in any non-zero row (the pivot) is a 1, and lies to

the right of the pivot in any preceding row;

(c) each pivot is the only non-zero entry in its column.

The reduced row echelon form of A is important because it represents the

ultimate we can get from A by applying elementary row operations. As such,it is

uniquely associated with A; that is, each non-zero matrix A has one and only one

RREF.

When Gauss-Jordan reduction is applied to the augmented matrix [ Alb ] of an

arbitrary linear system Ax = b we obtain an equivalent linear system Ux = b’ whose

augmented matrix [ Ul b’ ] is the RREF of [ Al b ] and whose solutions are practically
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obvious. Although impractical for extremely large linear systems that arise in

practice, Gauss-Jordan reduction is in popular use as a device to solve small systems,

and to further advance the theory of linear algebra. And it is easy to devise a

calculator program to step through the reduction process.

The following program, PIVOT, pivots on a specified entry to convert the pivot

to 1 and to produce zeros above and below the pivot. It can be used in conjunction

with the command RSWP to produce the RREF matrix. The program is written to

accommodate both real and complex matrices.

 

PIVOT (Gauss-Jordan Pivot)

Inputs: level 3: a matrix

level 2: an integer k

level 1: an integer /

Effect: converts the (k, /)-entry to 1 and then pivots on

that entry to produce zeros above and below the

pivot.

« > A k| « IF 'Ak, 1)) EVAL 0 == THEN "PIVOT ENTRY IS 0" ELSE

A SIZE 1 GET - m « m IDN 'A(1, 1) EVAL TYPE IF THEN DUP 0

CON R—-C END 1 m FOR i 'A(i, I)) EVAL {i k} SWAP PUT NEXT INV

A * » 8 RND END » »    
EXAMPLE. Solve the linear system

2xl—3x2+ x3—3x4+2x5=6

I 1 G-le +3x2 - X3 + 4X4 + X5

Il N o6X1 - 9x2 + 7x3 - 7X4 + 5x5

'le + 3x2 + 3.X3 + 3X4 - 9x5 = -6
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by applying Gauss-Jordan reduction with partial pivoting to the augmented matrix.

The sequence of commands 1, 3 RSWP |; 1,1 |PIVOT |; 2,4 RSWP |; 2,3

PIVOT |; 3,4 RSWP |; 3,4 PIVOT returns the following matrix as the

reduced row-echelon form:

[[ 1 15 0 0 6375 4.5]
[0 0 1 0 175 0]
[0 0 0 1 3 1]
[0 0 0 0O O O0]]

Thus x; and x5; are free variables and all solutions are given by

X = [ 45 + 1.5)(2 - 6.375X5, Xo, 1.75)(5, 1—3)(5, X5].

Although the reduced row-echelon form of a matrix is not in use at the

professional level to solve linear systems, it can be an effective pedagogical tool to

help understand the role of pivot variables versus free variables and such vector

space concepts as linear combinations, independence, bases and eigenspaces. The HP-

48G and 48GX calculators provide access to the reduced row-echelon form by means of

the RREF command, located on the MTH MATR FACTR menu. With a matrix on

level 1 of the stack, simply press the key (or type and enter the command

RREF) to obtain the reduced row-echelon form. In order to obtain correct results,

flag -54 must be clear (the default state). After some initial experiences in producing

the reduced row-echelon form with program PIVOT and the command RSWP, I allow

my students to call upon the RREF command thereafter. The underlying code uses

partial pivoting throughout.

Activity Set 3.3

1. Perform Gauss-Jordan reduction with PIVOT to solve each of the linear systems

in ACTIVITY SET 3.1. Verify your results by applying the RREF command.



VECTOR SPACES

 

Of the many concepts from linear algebra that permeate the different fields of

mathematics, perhaps none is as powerful as that of a vector space. Indeed, for

some, to study linear algebra is to study vector spaces and their associated notions.

Informally, a vector space V is simply a set of objects together with a way of

combining any two of them under an operation called addition, and a way of

multiplying any one of them by a scalar (a number). Of course, we require that these

two operations obey a few basic laws. The prototype for all vector spaces is the

familiar set R" of all n-tuples of real numbers together with the usual component

addition and scalar multiplication. The basic laws are the four usual properties for

addition of n-tuples and the four usual properties for scalar multiplication of

n-tuples. Vector spaces provide an umbrella environment that serves to both clarify

and to unify a number of seemingly unrelated concepts and topics from a variety of

fields.

When cast in purely abstract terms, such fundamental vector space notions as

linear combinations and spanning sets, independence and dependence, bases and

dimension, and change of basis appear to be somewhat removed from a study of

linear systems. But exactly the opposite is true: in the historical development of

linear algebra it was from a study of linear systems and their associated matrices

that these vector space concepts emerged.

77
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4.1 LINEAR COMBINATIONS AND SPANNING SETS

Recall that by a linear combination of vectors v,, v,, . . ., v, in a vector space V

(you may regard V as being R" if it helps) we mean any vector of the form

X0, + X0, + ... + X, 7 where the x/s are scalars . The set of all possible linear

combinations of v,, v,, . . ., v, is a subspace of V, often denoted by Span

[v1,v,, ..., v, ], and the vectors v; are said to span this subspace. To verify that

Span [v;,v,, ... v, ]is a subspace of V we need only add two linear combinations of

the vectors v,, v,, . . ., v, to see that we obtain another one, and then multiply an

arbitrary linear combination of the v;’s by a scalar to obtain still another such

combination. To determine whether a given vector u lies in the subspace Span

[v,,v,, . . ., v, ] we must determine whether u can be written as

U=x,0, +X0, +...+ x,7, for suitable scalars x;.

The connection to linear systems comes from the fact that for an m x n matrix A the

matrix equation Ax = b expresses vector b as a linear combination of the column

vectors of A:

b=xA; +X,A, +...+x,A,

where Aj is column j of matrix A and x is the column vector = [ x;, x,,. . ., x,]. The

column vectors A, A,, ..., Aof matrix A span the column space CS(A) of A. Vector

b is a linear combination of the columns of A iff the linear system Ax = b has a

solution; and any solution to Ax = b will serve to express b as a linear combination

of these columns.

EXAMPLE 1. To investigate whether the vector u =[3 10 -2 18 ]is a linear

combination of vectorsv; =[1 -2 3 0],v, =[-1 4 2 3]andv; =[2 0 -1 4], we set

up the linear system Ax = u where A has v;, v, and v; as its columns. Program ELIM

can be used to determine whether a solution exists, but an even better choice would be
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to use PIVOT because it will enable us to obtain all solutions. Applying RIVOT

to the augmented matrix [ A lu ], we see that

[[1-12 3] [[1 0 0 -1]

[-2 4 0 10] [0 1 0 2]

[32 -1 -2] I [0 0 1 3] -
[0 3 4 18]] [0 0 0 0]]

from which we can write u = -v; + 2v, + 30, .

EXAMPLE 2. Which of the vectors u; =[0 3 -6 3], u, =[-4 7 -4 0]and

u, =[6 -4.5 2 2] are in the span of vectorsv; =[4 -1 0 2]andv, =[0 3 -2 1]?

To answer this we investigate the three linear systems Ax = u, (i = 1, 2, 3), where A

has vectors v; and v, as its two columns. Applying PIVOT to the triple

augmented matrix [A| u, u, u, ]toreduce A to its RREF we find that

[[4 0 0 4 6] [[1 O 0 -1 1.5]

[-1 3 3 7 -45] [01 0 2 -1]

[026 -4 2] " (0010 0]
[2 13 0 2]] [0 00O 0]]

Column 3 tells us that u, is not a linear combination of v; and v,, so not in Span

[v,, v, ]; columns 4 and 5 show the exact opposite: u, =-v; +20v, , uz; =150, -v,.
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Activity Set 4.1

1. Which of the following vectors u; =[1 -5 4 J,u, =[2 11 23] and

uz3 =[16 -7 3] are linear combinationsof v; =[8 9 7]andv, =[3 -1 -8]?

For any uj that is a linear combination of v; and v,, show such a linear

combination.

2. Which of the following vectors u; =[-3 16 3 -15J,u, =[-9 0 4 -3]and

u3 =[0 -5 27 14]lie in the subspace of R spanned byv; =[-2 7 6 -5],

v,=[5 -6 -6 4]andv; =[4 -8 3 9] Forany vector u; that lies in this

subspace, show how it gets there.

3. Which of the following polynomials p(x) = -5 + 7x — 5x2 - 13x3 and

g(x) = -4 — 16x2 — 19x3 are linear combinations of r(x) = 4 - 3x - 2x2 + 3x3,

s(x) =9 + 6x —9x% - 5x3 and t(x) = 6 + 5x + 2x3? For any that are, show how.

4.2 DEPENDENCE AND INDEPENDENCE

When a vector u is a linear combination of some other vectors v;,v,, ..., v, we

j’s and that the entire set of vectors is a

“linearly dependent” set. More precisely, a set of vectors { v,,v,, ..., v, } (k >1)is

say that u depends linearly upon the v

called (linearly) dependent if one of these vectors is a linear combination of the

others. To the contrary, the set of vectors { v,,v,, ..., v, } (k> 1) is called (linearly)

independent if no one of these vectors is a linear combination of the others. In case

we have a single vector v; we agree that { v, } is linearly dependent if v; =0,, and

linearly independent if v; #0,.

To relate these notions to linear systems, recall that they may be reformulated,

equivalently, as follows:
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(a) theset{wv,v,, ... v, }is dependent iff there are scalars x,, x,, . . ., x,, not

all of which are 0, such that x,v, + x,v, + ...+ x, v, =0,; thus

(b) the set { v;,v,, ... v, } is independent iff whenever we have

X0, + X,0, + ...+ x.0, =0, then necessarily all x; = 0.

These are the standard notions of dependence and independence found in elementary

texts, but you should not lose sight of the fact that they are the mathematically

equivalent reformulations of the more intuitive ideas given above.

In terms of linear systems: if matrix A has the vectors v,,v,, ... v, as its

columns then

(a) theset{wv,,v,, ... v, }is dependent iff Ax = 0 has a non-zero solution; and

(b) theset{wv,,v,, ..., v, }isindependent iff Ax = 0 has only the zero solution.

To put this to use, recall some of the conditions under which Ax = 0 has non-zero

solutions: Ax = 0 has non-zero solutions iff

(i) A has fewer rows than columns,

(ii) A is row-equivalent to a row echelon matrix having fewer non-zero rows

than columns; or

(iii) when A is square, A is singular.

In each of these cases, Gaussian elimination will show the existence of free

variables, hence non-zero solutions.

EXAMPLE 3. Investigate the dependence/independence of the vectors

v,=[-12-13}v,=[2-141]andv;=[-45 -6 5]inR%. If the set { v,,v,, v, }
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is dependent, write an equation that expresses the dependency. We set up matrix A

as

e
t
e
G

S
e
d

and find its RREF to be

[[1 0 2]
[0 1 -1]
[0 0 O]
[0 O 0]]

E=

Thus by (ii), we see that Ax = 0 has non-zero solutions and so { v,, v,, v; } is

dependent. In fact, all solutions are given by x =[-2¢, a, o ], where a is freely

chosen. Choosing o = 1 we obtain the particular solution x = [ -2 1 1 ] which says

that -2, + v, + v; = 0, an equation that expresses the general dependency among

these vectors.

One final observation: it is almost obvious that the non-zero rows of any row

echelon matrix are independent; also the columns of any row echelon matrix that

contain the pivots are independent. For example, look at the non-zero rows, and the

pivot columns (columns 1, 2, and 4), of the row echelon matrix

[[2 0 3 4 5]

[0 6 7 8 9]

[0 0 0 10 11]

[00 00 0]]

Generally, we regard independence as being a desirable property and dependence

as being undesirable. For when a set of vectors (more than one vector) is dependent,

at least one of them can be written as a linear combination of the others, say

U1 = X0, + ...+ x;v. Consequently, any linear combination of the vectors in
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{v1,v,, ..., v¢ } can be replaced by a linear combination of the vectors in the smaller

set { v3, ..., vx }. In terms of spanning sets, this observation is simply that

W=Span[vy,v;,...,v]=Span[v,,...,vr] so we have effectively deleted the

vector v;; it was redundant. And if the remaining set { v;, . .. ,v; } is dependent then

we can delete still another of these vectors (say v,, for example), so that

W=Span[v,v;,v3,...,0¢]=Span[vy,v3,...,0¢] =Span[vs, ...,0].

In this way we can continue deleting “redundant” vectors until we arrive at an

independent spanning set for W.

EXAMPLE 4. To continue with the vectors v;, v, and v3 from EXAMPLE 3, recall that

we found in Example 3 that the set { vy, v,, v; } was dependent; indeed the equation

-2v; + v, + v3 = 0 displays the precise way in which any one of these three vectors

can be written in terms of the other two. For instance, solving for v; we have

v3 = 2v; — v,. The subspace W spanned by the set { v;, v;, v3 } is thus also spanned by

the set { v1, v, }; we have deleted the redundant vector v;. Can we delete even more?

In other words, is the set { vy, v, } dependent? The answer is no, which you can

quickly verify by glancing back at the first two columns of matrix A and its reduced

row echelon form (the first two columns of matrix E). Therefore { v;, v, } is an

independent spanning set for W.

Finally, notice how the columns in the reduced row echelon form convey all of

the above information: the leading 1’s in the first two columns of E tell us that

column vectors 1 and 2 of matrix A are independent. The third column of E specifies

how column 3 of A depends upon the first two columns of A, v; = 2v; - v,.
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Activity Set 4.2

1. Investigate the independence/dependence of each of the following sets of

vectors. If dependent, write an equation that expresses the exact nature of the

dependency.

(a) The rows of

[[3 6 10 7]

Lo [1 3 1ol

[1 0 4 2]

[0 1 1 1]]

(b) The columns of the matrix A in (a).

(c) The rows of

[[72 42 58 83 55]

[60 24 90 20 -34 ]

[29 27 44 37 -5 ]

[12 45 82 4 -111]]

(d) The columns of the matrix C in (c).

(e) The columns of

[[1 10 O -8 -2 ]

[-3 8 1 2 8]

E=[5 9 -4 1 -18]

[7 17 -2 3 -18]

[2 -2 7 6 10]]
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2. Each of the following sets of vectors spans a subspace W of R4. Show that the

set is dependent, specify the exact nature of the dependency, and then discard

vectors one at a time until you get an independent spanning set for W.

(a) uy;=[8 -1 -7 6], u=[3 6 -4 7]

uz=[-2 -1 3 3], uu=[1 4 0 2]

(b) v1,=[3 3 -2 1], v,=[-1 6 -1 4]

U3=['7 -4 3 O], '04:[6 7 -3 2]

(¢) wp=[-83 05 7], wy=[2 8 -1 6]

wy=[1 16 3 5], wy=[-2 -8 1 6]

4.3 BASES AND DIMENSION

Spanning sets that are independent are especially desirable because no one of

the spanning vectors depends linearly upon the others. This is what we mean by a

basis. More formally, by a basis for a subspace W of a vector space V (again, you may

imagine V to be R" if it helps) we mean a collection of vectors w,, w,, ..., w, from W

that

(i) is independent, and

(ii) spans W.

When you choose a basis for W, you have chosen a “well-behaved” set of vectors

to use in describing or understanding W. Basis vectors are well-behaved in the sense

that they are independent vectors, hence no dependency upon one another. They can

be used to describe W because each vector in W is a linear combination of them.
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Together, the two conditions (i), (ii) tell us that each vector in W can be written as a

linear combination of the basis vectors in only one way. Here is why. Condition (ii)

guarantees that each vector w in W can be written in at least one way, say w = x,w,

+ X,W, +... +x,w,. Suppose, however, that there is another way to do this, say w

=y, w; + Y,w, +... +y,w,. Then, easily

Op=w—-—w=(x; -y )wy +(Xg =Y )wz + ...+ (X —yx)w .

This last equation is a linear combination of the w;’s equal to the zero vector.

Therefore, because of the independence of { w;, w,, ... w, }, all coefficients (xj—y;) in

this combination must be zero: (x;-y;) =0,s0x;=y; forj=1, .., k and we really

have only one way of expressing w.

It is important to know that whenever we have a basis for a vector space V, say

B={v,,v,,...7,}, then any set in V having more than n vectors is dependent.

Your textbook in linear algebra most certainly includes an argument to convince you of

this fact. The impact is, of course, clear: all bases for V  contain the same total

number of vectors. This is the dimension of V, dim V. Recall that dim R” = n, and dim

P,[ x] =n+1 (P,[ x ] consists of all polynomials having degree < n).

We are interested in the four fundamental subspaces associated with a real

m X n matrix A:

e the row space RS(A): the subspace of R" spanned by the row vectors of A;

o the column space CS(A): the subspace of R™ spanned by the column vectors

of A;

e the null space of A, NS(A): the subspace of R” consisting of all solutions x to

the homogeneous linear system Ax = 0;

o the left null space of A, NS(AT): the subspace of R™ consisting of all solutions x

to the homogeneouslinear system ATx = 0.
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You should recall how we can produce bases for each of these subspaces. For the first

three, begin by converting A to any row echelon form U by row operations; then

e A and U have the same row space, RS(A) = RS(U), and the non-zero rows of U

form a basis for RS(A);

e although A and U do not have the same column space, CS(A) # CS(U), the

columns in A corresponding to the pivot columns in U form a basis for CS(A);

e if NS(A) =0,, we have no basis. Otherwise, there will be free variables and

all solutions to Ax = 0 can be obtained by choosing arbitrary values for the free

variables. Construct special solutions as follows: assign, in turn, the value 1 to

each free variable and the value 0 to the other free variables. These special

solutions form a basis for NS(A).

e For the left null space of A, NS(AT), simply convert AT to row echelon form

and proceed as in the case of the null space NS(A).

Programs ELIM or PIVOT, or the command RREF may be used to construct bases for

RS(A) and CS(A); but PIVOT or RREF should always be used to construct bases for

the two null spaces.

EXAMPLE 5. Find bases for the row space, column space, null space, and left null

space of the following matrix:

[[1 2 3 4 5]
A_[138455]

[3 6 9 2 -5]
[2 4 6 1-4]]
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The reduced row echelon form of matrix A is

[[1 O 1 0 1]
[0 11 0-2]
u‘[00012]‘

[0 0 0 0 0]]

Thus, the first three rows of U form a basis for the row space RS(A) and columns 1, 2,

and 4 of A form a basis for the column space CS(A). Clearly x; and x; are free

variables, and all solutions to Ax = 0 are given by

X, - X -1 -1

-x, + sz -1 2

X = x3 = x3 11|+ x5 0

- 2x5 0 2

xs 1

The two vectors on the right-hand side form a basis for the null space NS(A). They

were obtained from the general solution by factoring out x; and x;; but notice that

they are the special solutions described earlier that we can obtain by setting x, = 1

and x; = 0, then x; =0 and x; = 1.

For the left null space NS(AT) of A we begin by obtaining the reduced row

echelon form of AT:

[[1 0 0-1]

[01 0 0]

[0 0 1 .7]

[0 0 0 0]]
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This time, only x, is a free variable and all solutions to ATx = 0 are given by

1.1x4

0 0
x=| _ =X

.7x4 4 -7

X
4

The single vector on the right side of the last equation forms a basis for the left

null space NS(A).

EXAMPLE 6. The basis for the row space of A that we obtained in EXAMPLE 5

consisted of the non-zero rows of U. Since the rows of A span RS(A), we know they

can be cut down to obtain a basis for RS(A). How can we obtain a basis from among

the original rows of matrix A?

From the reduced row echelon form of AT we can choose a basis for CS(AT)

consisting of columns 1, 2 and 3 of AT. Then, since CS(AT) = RS(A), we will have a

basis for RS(A) that is chosen from among the original rows of A.

A few final comments are in order. When the m x n matrix A is converted to

row echelon form U,it is clear that the number of non-zero rows in U is precisely the

number of non-zero pivots in U. Thus

dim RS(A) = the number of non-zero pivots.

Similarly,it is clear that the number of pivot columns in U is the number of non-zero

pivots, so that also

dim CS(A) = the number of non-zero pivots

This common number, dim RS(A) = dim CS(A) = number of non-zero pivots is known as

the rank of A:
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rank A =dim RS(A) =dim CS(A)

Of course, an identical result holds for matrix AT. But since the row space of A

coincides with the column space of AT, we have the result

rank A = rank AT.

If not zero, the dimension of the null space of A is the number of “special vectors”

that can be constructed from the free variables in the reduction of A to U. Thus

dim NS(A) = the number of free variables

= n — (the number of non-zero pivots)

=n-rank A.

We therefore have the fundamental result that

rank A +dim NS(A) = number of columns of A.

Since this results applies when we replace A with AT, we see that

rank A + dim NS(AT) = number of rows of A.

Activity Set 4.3

1. Find bases for each of the four fundamental subspaces of the following matrices.

[[ 3 1 1 0] [[-12 1 -3 1]

[6 3 0 1] [ 110 2 1]

@) A= 11014 1] ® B=1524 32 6]
[7 0 2 1]] [-1 3 2 -3 1]]
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[[4 1 8 6 -3]
[[1 2 3 4 5]

[5 -4 6 -14 -5]
[3 6 9 2 -5]

(c) C= (d D= [8 4 6 2 6]
[1 3 4 5 5]

[4 3 2 -8 -1]
[2 4 6 1-4]]

[-8 3 -2 8 -3]]

2. For each of the following matrices A find a basis for the row space from among

the original rows of A.

[[1 3 1 2] [[-1 1 2 -1]

[2 6 3 4] [2 -1 1 3]

(a) [3 9 4 6] ) [1 0 3 2]

[4 2 5 1] [3 2 2 -3]

[5 -5 5 -4]] [1 1 6 1]]

4.4 CHANGE OF BASIS

The ability to change from one basis to another is of fundamental importance.

Each linear operator on a finite-dimensional vector space can be represented in a

concrete fashion by a matrix, but the matrix itself depends upon the choice of the

basis. Changing to a new basis often provides us with a simpler, or more well-

structured, matrix.

Although the notation used to discuss change of basis will vary from textbook to

textbook, most of them follow a style somewhat like what follows. Let

B={u,,u,,..,u, } be an ordered basis for a finite-dimensional vector space W (a

subspace of R" if you wish). Each vector w in W can be written in exactly one way

as a linear combination of the vectors in basis B:

W=2XU; + XUy + o+ XU
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The column vector [w ]z =[x; x, ... x,] is called the coordinate matrix of w relative to

the B-basis. In R" (or C"), finding the coordinate matrix [ w ]; for a given vector w

and given basis B usually entails solving a linear system. But we are primarily

interested in how we move from the “old” ordered basis B to a “new” ordered basis

B’ ={v,,v,,..,v,}. The theorem describing how to do this is as follows:

Let B={u;, uy, .., u,}and B' ={ v;, v,, ..., v, } be ordered bases for a vector space

W. Write each of the old basis vectors in terms of the new basis B’ and consider the

coordinate matrices [u;lg , [u,lg ..., [u,lg. If P is the nxn matrix whose j* column is

[ulg , then P is invertible and is the only matrix for which Plwly = [wly. , for all vectors w

in W. We call P the change-of-basis matrix from the B-basis to the B’ basis. (Note

that P depends upon the order of the basis vectors as well as the vectors themselves.)

EXAMPLE 7. Find the change of basis matrix P from the “old” basis B to the “new”

basis B’ given below, then write w =[3 -2 -11 17 ] in terms of the new basis.

B={[10 -3 -3 10]T,[-3 23 10 -21]T,[-3 10 7-13]T,[10 -21 -13 30]T},

B'={[21-12],[132-3]T,[-121-1]T,[2-3-14]T}.

(a) To find P we must write each vector in the B-basis in terms of the B’-basis.

To do this, we consider the quadruple-augmented matrix and its reduced

row echelon form:

[[2 1-1 2 :10 -3 -3 10] [[1 000 :2 1-1 2]
[1 3 2-3: -3 23 10 -21] [01 00 1 3 2 -3]
[(1 211310 7 -13] ™ [(0010:-121-1]
[2-3-1 4 :10 -21 -13 30 ]] [00 0 1: 2-3-1 4]]
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Thus the change-of-basis matrix P is

[ [ -1
[P= |

[

2]
-3]

-1
4

N
W
=

]
1]N

=
=

D
N

2
1

1

w

(b) Forw=[3 -2 -11 17]T, we mustfirst find its coordinate matrix [ w ]:

[[10 -3 -3 10 3] ([t 0 0 0 -1]
[-3 23 10 -21 2] , [0 1 0 0 2]
[-3 10 7 -13 -11] [0 0 1 0 -3]"’
[10 -21 -13 30 17]] [0 0 0 1 1]]

sothat [w ]z =[-1 2 -3 1]and therefore P[w ]z, =[5 -4 1 -1].

Activity Set 4.4

1. Consider the two sets B ={u,, u,, 4, } and B’ = { v;, v,, v, } in R%, where

u;=[1020]%,u,=[204 -3]5,u;=[1221]"and

v,=[214-11T0,=[1224]T,v,=[020 1]

(a) Show that both B and B’ are independent sets of vectors and that Span B =

Span B’.

(b) Let W =Span B = Span B’. Show thatw =[1 2 2 -2]isin W.

(c) Find the change-of-basis matrix P from the B-basis to the B’ basis for W.

(d) Use P to express w in terms of the B’-basis. Check your result by directly

expressing w in terms of the B’-basis.
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Repeat Activity 1, this time using the sets B ={u,, u,, u; ,u,} and

B’= {v,,v,,v;,v,} in R> where

u=[-4 2 -1 0 2] us=[2 0 -1 1 -2]

u,=[3 1 0 0 3] ug=[-1-1-1 0 6]

and

v =[2 0 -1 0 6] wv3=[2 2 2 1 -6]

vn=[4 2 5 0 14] v,=[0 2 3 3 -7].

Take w to be the vector w=[4 -4 -8 -3 21].
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Orthogonality concepts lie at the very heart of modern linear algebra.

Orthogonal vectors, orthogonal projections, orthogonal bases, orthogonal subspaces,

and orthogonal matrices all combine to produce a rich and elegant theory as well as

powerful numerical techniques and algorithms that are widely used in numerical

linear algebra.

The geometry of R3 is the place to begin. This geometry is easily extended to R"

or to C" by means of the standard inner product. In R" the standard inner product of

vectorsx=[x; x;...x,]Jandy=[y; y, ...y, ] is their dot product

xey=x1y; + XoY, +... + XY, .

In C", where the underlying scalars are complex numbers, the standard inner

product is their Hermitian product X e y, where ¥ denotes the vector conjugate to x.

The HP-48 command DOT will return the dot product of any two vectors (real or

complex) on stack levels 1 and 2. To obtain the Hermitian product of two complex

vectors you must first apply the CONJ command, then DOT.

For any vector x = [ x; x, ... x, ] the command ABS will return its Euclidean
 

length (norm) || x ||, = \/ | %,+|x,* + ... + | x,|* which is the usual notion of length in

R™ or C". When applied to an n xn matrix A = (a;) , ABS will return the Frobenius

matrix norm || A || = [2 I“,-j r } . Three other vector and matrix norms are provided
i,j

on the HP-48G series calculators, but we will not use them in this

95
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chapter. You will find a brief summary of norms in Appendix 1, as well as a

discussion of their application with the HP-48.

5.1 ORTHOGONAL VECTORS AND SUBSPACES

From now on, we shall restrict our attention to R”. Recall that two vectors x, y

are called orthogonal if their dot product is zero: x ey =0. In R? or R?® this amounts

to saying that x and y are perpendicular vectors. A set B =

{vy,v5, ..., v } of mutually orthogonal vectors ( v;e v; = 0 fori#j) is called an

orthogonal set, and any such set of non-zero vectors is linearly independent.

Consequently, B is a basis for the subspace W = Span [ v;, v,, ... , v, ]. An attractive

feature of such a basis is the ease with which we can obtain the coordinates of any

vector w in W:

wevoy wevuv wev* 1 72 k
w = 0, + Uy + ... + 0, .

) o, 12 1 v, 12 2 No 1% 7%1 2 k

  

Even better is when each basis vector has length 1, for then (*) becomes

w= (w . vl)v1 + (w . vz)v2 + .+ (w . vk)vk :

Vectors of length 1 are sometimes called normal vectors, and we can “normalize”

any vector v by simply dividing by its length:

v1l has length 1.

By normalizing an orthogonal basis for W we can obtain a basis of mutually

orthogonal, normal vectors, an orthonormal basis, and it is a fundamental result that

any non-zero subspace of R” has such a basis. The proof of this is the content of the

Gram-Schmidt process, which we shall examine later.

Look again at the criterion for the orthogonality of a set { v,, v,, ..., v, } of

vectors in R™ v;ev; =0 fori#j. Since v;e v; is the (i, j)-entry of the kx k matrix
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ATA, where A is the n x k matrix having v,,v,, ..., v, as its columns, we see that

the set of vectors { v,, v, ..., v, } is orthogonal iff ATA is a diagonal matrix:

And clearly { v,,v,, ..., v, } is an orthonormalset iff ATA is the k x k identity matrix.

EXAMPLE 1. To determine whetherv, =[1 01 -1],v,=[4 -6 3 7]and v, =

[-2 3 4 2] are orthogonal, construct the matrix A having v;, v, and v3 asits

columns:

[([1 4 -2]

[0 -6 3]

[ 1 3 4]

[-1 7 2]]

Then check to see that

[[3 0 0]

ATA= [0 110 0] .

[0 0 33]]

so the vectors are orthogonal.

More generally, since the (i, j)-entry in AB is the dot product

(row of A) e (col j of B), we see that AB = 0 iff the rows of A are orthogonal to the

columns of B.

Two subspaces W; and W, of R" are said to be orthogonal subspaces if every

vector in one is orthogonal to every vector in the other:



98 CHAPTERS

ueyv=0forall u in W; and v in W,.

By the orthogonal complement of a subspace W of R” we mean the subspace Wt of R”

consisting of all vectors in R" that are orthogonal to W. The four fundamental

subspaces associated with a matrix are examples. Indeed,

xe NS(A) <=> Ax=0

<=> x is orthogonal to the rows of A

<=> x is orthogonal to RS(A).

Thus, the nullspace NS(A) and the rowspace RS(A) are orthogonal complements.

Since the same is true for AT, and the row space of AT is the column space of A, we

also have:

x € NS(AT) <=> x is orthogonal to CS(A).

Thus the left nullspace NS(AT) and the column space CS(A) are orthogonal

complements.

Activity Set 5.1

1. Let < x,y > denote the standard inner product of vectors x, y in R” or C". Use

the following pairs of vectors to verify the Cauchy-Schwartz Inequality:

I<xy>|<lxllllyl

(a) x=[1-23-5],y=[69 -7 3]inR*4,

(b) x=[1+i-2+3ii],y=[3-4i -i 5+i]inC3,

(c) Any two random vectors of your choosing in R®.

2. Use the vectors in (a), (b) and (c) of Activity 1 to verify the triangle inequality:

Nx+yll<Uxil+Ilyll
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The Pythagorean Equality in R" say that for any orthogonal vectors u and v,

lu+vlP=llul?+]lv]>

u+ov

 

u

Verify this equality for the following pairs of orthogonal vectors:

(a) u=[-6437] and v=[3 -2 4 2]

(b) u=[2-1-11] and v=[322-2]T

Verify that each of the following sets of vectors forms an orthogonal set:

(a) uy=[1-12-1],u,=[120-1J,u;=[2002]u,=[-2232]

®) v =[1/N6 1/V6 0 2/V6],v,=[-1/N3 -1/¥3 0 1/3],
v,=[-1/N2 1/V2 0 0]

() w;=[-15555],w,=[1111],wy;=[0-211]

For each of the matrices A given below:

(a) Find a basis for the nullspace NS(A) of A and for the row space

RS(A) of A.

(b) Verify that NS(A) and RS(A) are orthogonal subspaces by checking that

every basis vector for NS(A) is orthogonal to every basis vector for RS(A).

(c) Find a basis for the left nullspace NS(AT) of A and a basis for the column

space CS(A) of A.
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(d) Verify that NS(AT) and CS(A) are orthogonal subspaces by checking that

every basis vector for NS(AT) is orthogonal to every basis vector for CS(A).

[[1 2 1] [[1 2 -1 7]

G) [-2 3 0] (ii) [1 2 0 4]

[1 5 -7]] [2 -4 0 -8]]

[[1 2 2 11 2 2]
[[1 2 0 4 0]

[0 0 1 -1 1 0]
[2 4 1 11 0]

(iii) o . iv) [1 2 2 0 1 3]

[2 4 3 2 4 2]
[-3 2 6 2]]

[1 2 1 2 3 2]]

5.2 ORTHONORMAL BASES

We have already noted some of the advantages in having an orthonormal basis

vy, Uy, ..., U, for a subspace W of R". The basis vectors are mutually orthogonal and

have length 1, so in this respect they are just like the standard basis vectors

e, e, ..., ¢ for Rk, where ; is column j of the identity matrix. Also, orthonormal

bases are valued for the ease with which they enable us to write any vector w

in W:

w=(wev,)Jv; +(wWev,)v, +...+(wev, v, .

The coefficients in this equation are just dot products, and can be found by a simple

matrix multiplication instead of the more involved process of solving a linear

system:

— v, — vew

— v, — vew
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And finally, if vectors u# and w in W are written in terms of the orthonormal

basis vectors, u = x,0; + ...+ X3 and w =y;0; + . .. + YU , then it is easy to see

that the dot product of # and w is given by the simple equation

uew=x1yp +...+ XY .

Thus, dot products in W appear just as they do when we are using the standard basis

vectors in R". Each non-zero subspace W of R" has an orthonormal basis, and we

shall soon consider the Gram-Schmidt process for constructing such a basis. Butfirst,

we need to review the notion of the orthogonal projection of one vector onto another.

The word projection comes from visualizing vectors in R? and R® as arrows, and

pictures such as the following:

 

X - projy X
x

Y
projy X -

Figure 1.

As Figure 1 suggests, the orthogonal projection of vector x onto vector y, proj,x is a

scalar multiple of vector y, and the vector x - proj,x is orthogonal to y:

(i) proj,x =ky, for some scalar k

(ii) x-proj,x is orthogonal to y.

These two facts combine to tell us the scalar k:

O=(x-ky)ey (condition (ii))

O=xey-k(yey)
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KXY
yey

Thus,

. xey
1 =(1)  projx (y.y)y

When working in R” with n > 3, we take equation (1) as the definition of the

projection vector proj,x ; it is then easy to verify that condition (ii) also holds.

The following program, PROJ, can be used to calculate the orthogonal projection

of x onto y.
 

PROJ (Projection vector)

Inputs: level 2: a vector x

level 1: a vector y

Effect: Returns the orthogonal projection vector proj,x

« 2 XY « XYDOTY * YYDOT/ » »  
 

EXAMPLE 2. Forx =[5 15 5]andy =[3 4 5] find proj,x and verify that

x — proj,x is orthogonal to y.

Put two copies vector x on the stack, followed by two copies of vector y. The

command 4 ROLLD will rearrange the stack to

level 4: y

3: x

2: x

1. y



ORTHOGONALITY 103

Press PROJ to see projx, then subtract to see x — proj,x, then use DOT to see

y ® (x - proj, x).

More generally, we can consider the orthogonal projection proj,b of a vector b

W\ b -proj wb
<

2
proj uwb

onto a subspace W:

 
 

Figure 2.

Later we shall define the projection vector proj,b precisely; but for now all we

need to remember is what our geometric intuition tells us: that vector b — proj,b is

orthogonal to each vector in W.

The Gram-Schmidt Process

The Gram-Schmidt process is a procedure for building an orthonormalbasis g,

g5, ---» 4, from a given basis x,, x,, ..., x, for a subspace W. Here’s how it works in R™.

%
Let be the normalized version of x, : = —— . Then, inductively, havinq 1 1 ql " xl " y g

constructed orthonormal vectors ¢, ..., q, we construct Gjsq @S follows:

(*) a1 = Xjuy — (the sum of the projections of Xjq onto 4y, 4y, s 45), normalized.

Thus, before normalization, g;,, = x;,; — (the projection of x;,; onto the subspace

spanned by g, ..., q;).
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Let’s look at several steps:

Step 1: q, =x,, normalized

(x,0q.) normalized
Step 2: g,=x,- 2* 0y

the projection of x, onto q,

Step 3: g, =x,-(x;0q,)9,- (x;049,)q, , normalized
| J
 

the sum of the projections of xonto q,and q,

etc.

This is the standard Gram-Schmidt process (there are variations). You should recall

that, at each stage, Span [ x,, ..., X; ]=Span[gq,,... q ], so when we’re done,

W=5pan[x,,..., x, ] =Span[gq,, ... q, ] and we have an orthonormal basis for W.

To use the HP-48G or 48GX, we begin with the basis vectors stored as variables

X1, X1, ..., XK in user memory and execute a simple one-line program to carry out the

construction at each step.

Step 1: « X1 X1 ABS / D Q1 (calculates g, and

stores it as Q1)

Step 2: « X2 X2 Q1 PROJ — DUP ABS / (] @2
(calculates g, and stores it as Q2)

Step 3: « X3 X3 Q1 PROJ — X3 Q2 PROJ — DUP ABS / |ENTER| |[EVAL

D Q3 (calculates g, and stores it as Q3)

and so on.
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The purpose of the programs (instead of simply doing the calculations on the stack)

is simple: you can review your work before execution.

EXAMPLE 3. Apply the above construction to the vectors x; =[2 1 0], x, =[0 1 1],

andx; =[2 0 2]in R3. You should obtain these results:

Q1: [ .894427191 4472135955 0 ]

Q2: [ -.298142697 596284794 .7453559925 ]

Q3: [ .333333333334 -.666666666665 .666666666665 | .

You may not recognize the entries, but the Q1, Q2 and Q3 yc;u constructed in Example
1

210149, =——
x/E[ laz 35

1
[-245],andg; =¢g [2 -4 4]. Once you have Q1, Q2, Q3 as stored variables, you

3 are actually the calculator’s approximations to gq; =

should check to see how close they are to being orthonormal by putting Q1, Q2, Q3
 

on the stack (in this order), pressing 3 COL— to create a matrix

T
= T -Q=| Q@ @, Q| then | ENTER TRN [SWAP to see QTQ. Clean up round

off error with 11 RND and you should see I;.

   

 

The Gram-Schmidt process, as we have presented it, is numerically unstable in

floating point arithmetic. That is, round-off errors may conspire to produce vectors

that are not, numerically, orthogonal. Although there is a variation of the Gram-

Schmidt process that is more stable, it is not so geometrically obvious. In practice

other methods are used: Householder reflections or Givens rotations. These are

orthogonal matrices that can be used very effectively to build orthonormal vectors.
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Finally, we return briefly to an idea that we met at the beginning of this section

and which was central to our discussion of least squares solutions: the projection

projwb of a vector b onto a non-zero subspace W of R". It is not difficult to show

that any vector b can be written as a sum of two vectors:

b=b+z

where b isin W and z is in WY,the orthogonal complement of W. Moreover, this

decomposition of b is unique: for any given vector b,g and z are unique. Vector b

is known as the projection of b onto W:

b= projwb.

Since b is uniquely determined by b and W, it is independent of any particular

basis that we may use to describe W. Nevertheless, the proof of the existence of b

shows that we can always describe it in terms of any orthonormal basis

{vy,09, ..., U } for W:

projwb=(bovl)v1 +(b.Uz)Uz+...+(b.'0k)’Uk.

Thus projwb is the sum of the projections of vector b onto the individual basis

vectors in any orthonormal basis for W.

Activity Set 5.2

1. (a) Use the RANM command to generate a random 4 x 3 matrix over Z,, whose

columns will be called u, v and w.

(b) Find proj,u and verify that u - proj,u is orthogonal to v.

(c) Find proj,u and verify that u - proj,,u is orthogonal to w.

2. (a) Use the RANM command to generate a random 4 x 3 matrix over Z,, whose

columns will be called x,, x, and x,.



(b)

(c)

(d)

3. (a)

(b)

(c)

(d)

4. (a)

(b)

(c)

(d)

(e)

(f)
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Construct an orthonormal basis { g;, g, } for W=Span [ x; x, ].

Find the projection vector proj,x; of x; onto W.

Verify that x, - proj,x,; is orthogonal to W by checking that it is

orthogonal to both x; and x, .

Use the RANM command to generate a random 5 x4 matrix over Z,, whose

columns will be called x,, x,, x3 and x,.

Construct an orthonormal basis { g;, 4, , 43} for W=Span [ x; x, x, ].

Find the projection vector proj,x; of x; onto W.

Verify that x, —proj,x; is orthogonal to W by checking that it is

orthogonal to x,, x, and x, .

Normalize v =[1 -2 1 -3 1] to get a unit vector, then convert it to a

column matrix w.

Use w to build a Householder matrix H =1 - 2wwT.

Verify that H is orthogonal.

Look at H. What else is obvious?

In view of your conclusion in (c), without calculating, what will H! be?

Verify your result in (d) with a calculation.

5.3 ORTHOGONAL MATRICES AND QR-FACTORIZATIONS

Orthonormal bases are, in essence, rectangular coordinate systems. But what do

we know about the change of basis matrix, call it Q, from one orthonormal basis B to

another orthonormal basis B’? Without going into the details here, it is not hard to
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see that QTQ = I, or in other words, that the columns of Q are orthonormal vectors.

Even more is true: since Q is square, the equation QTQ = I guarantees that also

QQT = I, which says that Q also has orthonormal rows and Q! = QT.

In general, we shall call a square matrix Q orthogonal if QTQ =1. Any

orthogonal matrix Q has orthonormal columns, orthonormal rows, and QT = Q1. Two

other properties of such matrices are worth noting:

(i) Q preserves lengths: || Qx || = x ||, all x

(ii) det Q ==1.

If we are called upon to solve a linear system Qx =b with Q orthogonal, it is

easy enough: x = Qb = QTb.

Not only do orthogonal matrices occur when we change from one orthonormal

basis to another (as for instance, when we rotate R?), but they lie at the very heart of

the Gram-Schmidt process. In fact, just as Guassian elimination without row

interchanges on a matrix A amounts to an LU-factorization A = LU, the Gram-

Schmidt process applied to a matrix A having independent columns amounts to a QR-

factorization A = QR where Q has orthonormal columns and R is an invertible upper

triangular matrix.

To see this, look back at the steps in the Gram-Schmidt process, and in each

step solve for the x-vector:

Step 1: x, is a scalar multiple of q,, say x; =r,9,

Step 2: x, is a linear combination of g, and g,, say x, =7,,4; + 7,4,

Step 3: x; is a linear combination of q,, g, and g, say x5 =7,3g; + 7539, + 7335

Step j: x;is a linear combination of 4y, 4,, ..., 4;, say X; =1y, + 1,4, + ... + 1,4,
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Let A be the matrix having x,, x,, ..., x,, as its columns, left-to-right, and let Q be

the matrix having q,, q9,, ..., 4, as its columns, left-to-right. Let R be the right

triangular matrix determined from the coefficients r;; above:

In terms of the matrices A, Q, and R the above steps show us that

collof A = (Q(coll of R)

col2o0f A = (Q(col 2 of R)

col30of A = Q(col 3 of R)

coljof A - Q(col j of R)

so that we have A = QR. Moreover, since the vectors q,, g,, ..., q,, are orthonormal,

we know that QTQ = I and that the ith coefficient in the linear combination

is given by 7;; = g;® x; . Matrix R is invertible since its diagonal entries are positive:

111> 0 because r,; = || x; ||, 7,, > 0 because r,, = || x, — (x, ® 4,)9,ll, etc. Finally, using

QTQ =Tand A = QR we can obtain R as follows: QTA = QTQ R = R.

Thus, when the Gram-Schmidt process is applied to the columns of an mxn

matrix A whose columns are independent we get a factorization A = QR, where Q is

the same size as A and has orthonormal columns, and R = QTA is the n x n invertible

upper triangular matrix whose non-zero entries are given by r;; = g,ex;.
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To construct the factors Q and R on the HP-48G or 48GX:

(1) Start with A and its columns X1, X2, ..., XN stored in user memory.

(2) Construct Q1, Q2, ..., Qy from X1, X2, ..., XN by the Gram-Schmidt process.

(3) Construct and store matrix Q:

Q1 @2 .. N N [coL— [] @ [sTO].

(4) Construct and store matrix R: R = QTA.

You can verify that A = QR as follows:

Press to put A on level 2 and Q * R on level 1, then

use the command RND as necessary to clean-up round-off error in Q * R. Now

press l SAME I (‘ SAME | is located on the second page of the PRG TEST
 

 

menu; a 1 indicates A = QR, and a 0 indicates A # QR. If you forget to clean up

round-off error, you probably won’t get A = QR.)

EXAMPLE 4. Continuing with the vectors from EXAMPLE 3, construct A as

[[2 0 2]
A= [110]

[0 12]]

After constructing () you should see

[ [ .894427191 -.298142397  .33333333334 ]

Q= [.4472135955 .596284794 -.666666666665 ]

[ 0 .7453559925 .666666666665 ] ]

After constructing R you should see

[ [ 2.2360679775 .4472135955 1.788854382 ]

R= [ 0 1.3416407865  .894427191 | .

[ .000000000003 0 2 1]
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Verify that A = QR:

11 RND returns 1. Now purge R, Q,

A, Q3, Q2, Q1, X3, X2, X1 from user memory.

The factorization A = QR of a matrix A with independent columns produced by

the Gram-Schmidt process is usually the only type of QR-factorization encountered in

an introductory study of linear algebra. But QR-factorizations of more general

matrices, obtained by more sophisticated numerical methods, are in widespread use

by the professional matrix codes that are used in science and engineering. The HP-

48G and 48GX calculators incorporate such professional code for a variety of

applications, including producing least squares solutions to linear systems, and for the

calculation of eigenvalues and eigenvectors. Although a detailed discussion of these

ideas is beyond the scope of this brief chapter, a few comments on the QR-

factorization made accessible to users of the HP-48G series calculators is in order.

The command QR (located on the MTH MATR FACTR menu) will return a QR-

factorization of any m X n matrix on level 1: AP = QR. Here, Q isanm x m

orthogonal matrix, R is an m x n upper trapezoidal matrix, and P is ann x n

permutation matrix. Matrix P appears on level 1, R on level 2, and Q on level 3 of

the stack. Likewise, the adjacent command LQ will return an LQ-factorization of

matrix A (the QR-factorization of AT). Here, A is factored as PA = LQ where P is

an m X m permutation matrix, L is an m X n lower trapezoidal matrix, and Q is an

n X n orthogonal matrix.

For example, with the matrix

[[-5 -2 2 0]

A= [ 1 8 -5 7]

[-9 2 5 0]]
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on level 1, executing the command QR will return the permutation matrix

[[1 0 O O]

[0 0 1 0]

P= 10 0 0 1]

[0 1 0 0]]

to level 1, the upper trapezoidal matrix

[ [ 10.3440804328 .676715542332 -.483368244523 -5.80041893427 ]

R= [ 0 -6.96721293451 -3.06106659926 4.46014305107 ]

[ 0 0 -2.7196004146 -.67990010365 ] ]

to level 2, and the orthogonal matrix

[ [ -.483368244523 -4.69488742217E-2 874157276122 ]

Q= [ 9.66736489046E-2 -.995316133501 -8.E-16 ]

[ -.870062840141 -.845079735991E-2  -.485642931179 ] ]

to level 3. A quick calculation (using 10 RND to clean up round-off error) shows that

QR = AP.

Activity Set 5.3

1. Consider the following matrix

[[1 4 -2]

[1 -1 4]

A= [1 -1 0] "

[1 4 2]]

(a) Verify that the column vectors of A are linearly independent.

(b) Without using the built-in command QR, construct a QR-factorization of

matrix A. Verify your results.



 

ORTHOGONALITY 113

(c) Use the built-in command QR to obtain an AP = QR factorization of matrix

A. Verify your results.

(d) Verify that the Q matrix from (c) is an orthogonal matrix.

Repeat Activity 1 for the following matrix

[[1 2 -1]
[2 0 1]

A% 12 4 21
[4 0 0]]

Now that you have mastered the traditional Gram-Schmidt algorithm, you

may find it convenient in the future to use the following program GS, which

automatically produces the orthonormal vectors. Actually, the program

implements the modified Gram-Schmidt algorithm in order to be as numerically

accurate as possible.

 

GS (Gram-Schmidt Algorithm)

Input: levels 2 — n: vectors X1, ..., XN

level 1: the number n of vectors

Effect: Applies the modified Gram-Schmidt Algorithm to

vectors X1, ..., XN and returns the orthonormal

vectors Q1, . . ., QN

« »>n « -LIST »L « 1 n FOR k 'L(k)' EVAL DUP ABS / 'L(k)

STO IF k n # THEN k 1 + n FOR j 'L()’ EVAL DUP 'L(k) EVAL

DUP 3 ROLLD DOT » - 'L(j) STO NEXT ELSE END NEXT L OBJ—

DROP » » »  
 

Rework Activities 1 and 2 using this program.
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5.4 LEAST SQUARES SOLUTIONS

An important application of QR- and LQ-factorizations is to obtain least squares

solutions to linear systems.

Sometimes we seek to solve a linear system Ax = b for which either no solution

exists, or else there are infinitely many solutions from which to choose. In either

case, we may seek a vector x for which the distance || Ax - b ||, from Ax to b is as

small as possible. Here, || ||, denotes the 2-norm of the included vector and such an x

is called a least squares solution because minimizing || Ax —b ||, is equivalent to

minimizing || Ax - b ||§, which is a sum of squares.

We thus seek x so that vector Ax, which lies in the column space W of A, is

closest to b. Looking back at Figure 2 we see that Ax must be the projection of vector

b onto the column space W, in which case b — Ax is orthogonal to each vector in

CS(A). Remembering that the vectors that are orthogonal to CS(A) are precisely

the vectors in NS(AT), we are practically forced into AT[b — Ax] = 0, or equivalently

ATAx = ATb.

The linear system ATAx = ATb is referred to as the system of normal equations;

thus, vector x is a least squares solution to Ax = b iff it is a solution to the associated

system of normal equations. In general, the normal equations will have more than

one solution. But in the special case that A has full column rank, i.e., rank A =n, we

know that ATA is invertible, so the system of normal equations ATAx = ATb has a

unique solution x. Since, in general, there may be more than one least squares

solution, we desire one having minimum norm; that is, a least squares solution x for

which || x|, is minimal among all such solutions.

More generally, with an array B on level 2 and a matrix A on level 1 of the

stack, the command LSQ (a menu key is on the MTH MATR menu) will return a
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minimum norm least squares solution of the generalized system AX = B. If B is a

vector then the solution X has the minimum norm || X ||, over all vectors X that

minimize || AX - B ||,. If B is a matrix, then each column X;of X is a minimum norm

least squares solution of AX; = B;. The LSQ command constructs the solution X by

computing a “complete orthogonal factorization” of the coefficient matrix A using

either, or both, of the QR- and LQ-factorizations of A. Complete orthogonal

factorizations are somewhat beyond the scope of introductory linear algebra.

For example, to obtain a minimum norm least squares solution to the linear

system

2q - 3 + x3 - 3x + ZX5 = 6

-2x1 + 3x2 - X3 + 4X4 + X5 = -5

6, - 9% + 7x3 - 7x4 + 5x5 = 20 ,

-le + 3x2 + 3.X3 + 3% - 9% = -6

enter vector [ 6 -5 20 -6] onto level 2, then the coefficient matrix

[[2 -3 1 -3 2]
[-2 3 -1 4 1]
[ 6 -9 7 -7 5]
[-2 3 3 3-9]]

onto level 1 and execute the LSQ command. The solution that is returned is

x = [ .47724708537 -.715870628056 .809514855209 -.38779751786 .462579917262 ].

Fitting Curves to Data

Least squares solutions arise in curve fitting problems. Suppose we have n data

points (x;, y,), (x5, Y,), ... , (x,, y,) where all the xj’s are distinct. Consider the

problem of finding a polynomial P(t) =¢, + ¢c;t + ... + c,,t™ of degree < m that passes
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through these data points,i.e. fits the data. We know from elementary mathematics

that we can fit a line to any two data points, and a quadratic polynomial to any

three. Therefore, we shall require that the number n of data points exceed the

degree m of the polynomial: n >m + 1. Our requirements are P(x,) =y, for

i=1,.., nor

€ + X + ...+cCp, I S

Cp + C1% + ...+,

C + X, + ...+Xt =Y,

This linear system has n equations and ( m + 1 )-unknowns (the coefficients of the

polynomial P(t)).

In terms of matrices, the system is Ac = y, where

21 x x x7

A<l 1% X2 Xy ’

1 x, x5 .. X

CO yl

C1 yz

and ¢ = andy=|

Cm Yau

Since there are at least as many equations as unknowns, the system will, in

general, be overdetermined and we naturally seek a least squares solution. However,

A has independent columns, for if Ac = 0 were to have a non-zero solution, this would

mean that there is a non-zero polynomial P(t) of degree < m having m + 1 roots ..
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an impossibility. Then, since A has independent columns, there is a unique least

squares solution, given by the unique solution to the normal equations

(ATA)c = ATy.

It is tempting to obtain the least squares solution by calculating x = ( ATA )1ATy or

by applying Gaussian elimination via the / command. But the coefficient matrix

ATA is likely to be ill-conditioned, in the sense that solutions to ( ATA )x = ATy are

somewhat sensitive to perturbations caused by round-off errors. This is especially

the case with large data sets where the x-values are equally spaced. Thus, good

computational practice suggests that the above two approaches to solving the normal

equations be abandoned in favor of the more sophisticated one provided by the

calculators built-in LSQ command. We shall return to this conditioning question in

the Activities.

The following program, P.FIT, will create the coefficient matrix A.

 

P.FIT (Polynomial Fit Matrix)

Input:  level 2: an integer m

level 1: a list {x, x,, ..., X}

Effect: Returns the matrix

2 m
1 X X ... X

1 1 1

2 m
1 X X X

2 T2 2

1 2 m

Xn Xn Xn

« DUP SIZE » miIst n « 1 n FOR jIst j GET - x « 1 1 m FOR

i X i ANNEXT » NEXT nm 1 + 2 - LIST - ARRY » »   
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EXAMPLE 5. Find the least squares cubic polynomial that fits the data: (1, .6),

(2, 1.2), (3, 2), (4, 2.8), (5, 4.1).

Key in the number 3, then the list {1 2 3 4 5} of the x-coordinates of the data

and press to see

[[11 1 1]
[1 2 4 8]

A= [13 9 27]
[1 4 16 64]
[1 5 25 125]]

Now put y =[.6 1.2 2 2.8 4.1 ] on the stack, SWAP levels 1 and 2, and execute the

LSQ command to see the least squares solution ¢ = [ -.16 .85 -.125 .025]. Thus the

least squares cubic polynomialfit is P,(t) = -.16 + .85t — .125t2 + .025t3.

Activity Set 5.4

1. Consider the overdetermined linear system

24 - % + x =0

2 + 3 - x3 =1

3 - 3 + 3x =8

63x1 + X + X3 =

(a) Show that this system is inconsistent (i.e., has no solution in the usual

sense) but that the coefficient matrix A has full column rank.

(b) Obtain the unique least squares solution by applying Gaussian elimination

to the associated system of normal equations.

(c) Obtain the unique least squares solution by applying the LSQ command.

2. (a) Fill-in the following table of values for f(x) = ( x + 2 )2¢™* (round to 3

decimal places).
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X -2.2 -1 5 1.5 3
 

y = (x + 2)%e*      
(b) Plot the 5 data points.

(c) Find the least squares cubic polynomial P,(x) for this data; overlay your

data plot with the graph of P,(x).

(d) Find the least squares polynomial P,(x) of degree 4 for this data; overlay

your data plot with the graph of P,(x).

Augment the data in our last example with a sixth data point (6, 5.8), so that

the data becomes (1, .6), (2, 1.2), (3, 2), (4, 2.8), (5, 4.1), (6, 5.8) and consider the

problem of fitting a cubic polynomial to this data.

(a) Build the coefficient matrix ATA of the system of normal equations

(b)

(c)

and obtain an approximation to its condition number with the

command COND on the MTH MATR NORM menu. This large condition

number (= 3 x 10%) indicates that ATA is ill-conditioned so that using

Gaussian elimination or matrix inversion to solve the normal equations

may produce inaccurate results.

Find the least squares cubic polynomial by using the LSQ command,

then with the / command; note that the two solutions agree to 12

decimal places.

Now find the least squares cubic polynomial by applying the RREF

command to the augmented matrix, then by inverting the coefficient

matrix. Compare the accuracy of the two solutions with those

obtained above in (b).



EIGENVALUES AND

EIGENVECTORS

 

Eigenvalue-eigenvector considerations are of paramount importance in many of

the applications of linear algebra to science and engineering, especially in those

applications involving systems of linear differential equations. The HP-48G/GX

calculators can assist students in developing conceptual understandings by removing

the computational burden associated with hand calculation of characteristic

polynomials, eigenvalues and associated eigenvectors, and the construction of

diagonalizing matrices. We have already seen how to use the calculators to solve

linear systems (useful for finding eigenvectors) and to construct orthonormal bases.

What remains is to see how they might be reasonably used in eigenvalue-eigenvector

investigations.

6.1 THE CHARACTERISTIC POLYNOMIAL

Given a square matrix A of order n, any real or complex number A for which

there is a non-zero vector x such that Ax = Ax is called an eigenvalue of A, and the

vector x is called an associated eigenvector. If matrix A is regarded as an operator

acting on vector x, then Ax = Ax simply says that A sends x onto a scalar multiple of

itself. To find such pairs (4, x) we consider the equation Ax = Ax, which is clearly

equivalent to (A — Al)x = 0. For a given eigenvalue 4, x is an associated eigenvector

iff x is a non-zero solution to the homogeneous linear system with coefficient matrix

A - Al. So the eigenvectors of A associated with A are just the non-zero vectors in the

nullspace of A — AI. We often call this nullspace the eigenspace of A determined by A.

120
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Although it is no easy task to find the eigenvalues of matrix A, theoretically

things are simple. For we know that (A — Al)x = 0 has a non-zero solution iff A — Al

is singular, which happens precisely when det(A — AI) = 0. The left-hand side,

det(A - Al), is a polynomial of degree n in A, called the characteristic polynomial of

matrix A. Some writers prefer to use det(Al - A) instead, but the difference is minor

since these two polynomials differ only by a factor of (-1)". What really counts is

that the eigenvalues of A are the roots of either of these polynomials, and for any

such root A the associated eigenvectors are the non-zero solutions to the homogeneous

linear system (A — Al)x = 0.

All this is rather elegant from a purely algebraic viewpoint, but it can be a

computational nightmare. In the first place, the defining equation for the

characteristic polynomial, det(A - AI), is computationally impractical for all but

small, highly-specialized matrices. And secondly, it is no easy task to determine

the roots of a polynomial.

Given an n X n matrix A, the calculator program CHAR will calculate the

coefficients of the monic polynomial det(Al - A) = A" + ¢,;A"! + .. + c;A + ¢,, which

is the characteristic polynomial of A, or (-1)” times the characteristic polynomial of

A, depending upon your point of view. The program implements the SOURIAU-

FRAME method, which uses traces of the first n powers of A.
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CHAR (Characteristic polynomial)

Input: level 1: an nx n matrix A

Effect: returns a vector[1 ¢,... ¢; C,]oOf

coefficients of det(Al— A) = A"+ ¢,A" + ... +

CiA + C,

« DUP SIZE 1 GET {1} - Mix n Poly « Mtx 1 n FOR j 0 1 n FOR

k OVER {k k} GET + NEXT j NEG / 'Poly' OVER STO+ Mtx DUP

ROT * SWAP ROT * + NEXT DROP Poly OBJ—» —ARRY » »   
EXAMPLE 1. Enter the following matrix onto level 1:

[[4 -8 2 5]
[0 1 -6 -2]
-9 0 7 1]
[7 3-8 9]]

Execute CHAR to see the vector of coefficients [ 1 -21 144 -421 -4623 ]. Thus

det(Al — A) = A4 — 21A3 + 144A% — 4214 - 4623. Retrieve the matrix with UNDO

and then execute the TRACE command (on the MTH MATR NORM menu) to see 21 for

the trace.

Activity Set 6.1

1. (a) Generate and store random 3 X 3 matrices A and B over Z,,.

(b) Compare trace A, trace B and trace (A + B). What do you observe?

(c) Repeat (a) - (b) using random 4 x 4 matrices.

(d) Formulate a conjecture on the basis of your observations. Prove your

conjecture.
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(e)
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Generate a random 3 x 4 matrix A and a random 4 x 3 matrix B, both

over Z,,.

Compare trace (AB) and trace (BA); what do you observe?

Repeat (a) - (b) for random 3 x 5 and 5 x 3 matrices over Z,.

Formulate a conjecture on the basis of your observations. Prove your

conjecture.

Generate a random 3 x 3 matrix A over Z,,,.

Calculate the characteristic polynomials of A and AT. What do you

observe?

Repeat (a) - (b) for random 4 x 4 and 5 x 5 matrices over Z,,,.

Formulate a conjecture based upon your observations.

Prove your conjecture.

Generate and store random 3 x 3, 4 x 4, and 5 x 5 matrices over Z,.

(a)

(b)

For each of these matrices A, calculate detA, traceA, and the polynomial

det(Al - A). What do you observe?

Formulate your observations into conjectures; then discuss your conjectures

with your instructor.

Let A(1) denote the n x n matrix of all 1’s.

(a)

(b)

(c)

Find det[Al - A,(1)] forn =2, 3, 4, 5.

For arbitrary n what will det[Al - A,(1)] be?

What are the eigenvalues of A, (1)?
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6. Given the polynomial p(A) = A" + ¢,;A" + ... + c; A + ¢, its companion matrix is

(a)

(b)

(b)

(c)

(d)

8. (a)

(b)

01 0..0
0 01..0

C=| - :
O 0 0 .. 1

Cy € €, - C

For each of the following polynomials find its companion matrix and the

characteristic polynomial det[Al - C] of the companion matrix:

(i) pA)=A3+5A2-31+2

(ii) p(A) =A% -6A%3 +242 -54+7

(iii) p(A) = A5 +5A% +4A3 +3A2 + 24 + 1

What is the characteristic polynomial of the companion matrix for

p(A) = A" + ¢,A"+ ..+A +¢y?

Generate two random 3 x 3 matrices A and B over Z,, and calculate the

characteristic polynomials of AB and BA. What do you observe?

Repeat (a) for random 4 x 4 and 5 X 5 matrices over Z,,.

Repeat (a) - (b) for random 3 x 3,4 x4 and 5 x 5 complex matrices over Z,,.

Formulate a conjecture based upon your observations. Discuss your conjecture

and its implications with your instructor.

Generate a random 3 x 3 matrix A over Z,, and put two copies of A on the

stack.

Find the characteristic polynomial p(x) of A and use program P.of.A to

evaluate p(A).
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(c) Repeat (a) — (b) using random 4 X 4 and 5 x 5 matrices over Z,,

(d) Repeat (a) — (c) using random 3 x 3,4 x4 and 5 x 5 complex matrices

over Z,,.

(e) Formulate a conjecture based upon your observations. Discuss your conjecture

with your instructor.

6.2 EIGENVALUE CALCULATIONS

Although low order matrices having integer entries are not typical of the

matrices encountered in scientific and engineering applications, they serve us well in

the learning process. But even with such matrices, finding the eigenvalues by hand

as the roots of the characteristic polynomial is a difficult, if not impossible, task

unless the matrices are highly contrived. To avoid such contrivance, we may use the

polynomial root-finding routine PROOT on the HP-48G/GX calculators. PROOT will

find all roots of an arbitrary real or complex polynomial a,x" + a,_1x"1 +...a,x + ay.

It requires as input the vector [ a, a,_;...a; ay ] of coefficients.

EXAMPLE 2. Put three copies of the following matrix on the stack:

([1 -3 1 -]

[6 2 5 1]

[3 3 4 0]

[3 -3 1 3]]

CHAR returns [1 -6 3 26 -24], so the characteristic polynomial is A4 — 64 3+

3A%? + 26A — 24. The command PROOT returns the vector[1 3 -2 4], showing that

A has four distinct eigenvalues: A = -2, 1, 3 and 4. To find the eigenspace

determined by A = 3 we proceed as follows. With A onlevel2and[1 3 -2 4]on

level 1 extract 3 from the vector with the command 2 GET and build A - 3I with the
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commands 4 IDN B To obtain a basis for the nullspace of A —3I, apply the

RREF command. The result

[[1 0 0 -1]

[001 0 1]

[0 0 1 0]

[0 O 0 O0]]

shows that x, is a free variable and that the eigenvectors associated with A = 3 are

scalar multiples of x =[ 1 -1 0 1]. DROP the RREF matrix and enter

[1 -1 0 1] Since A still appears on level 2, a simple multiplication will confirm

that Ax = 3x.

EXAMPLE 3. Put two copies of the following matrix on the stack:

([l 7 2 4 6]

[6 -1 -4 -4]

[ 4 4 5 -2]°

[-16 -12 -14 -3]]

CHAR returns [ 1 -8 22 -40 25], so the characteristic polynomial is p(4) = A* - 843 +

22A? — 404 + 25. PROQOTreturns the vector [ (1, 0) (1, 2) (1, -2) (5, 0) ] containing the

roots. Thus the eigenvalues of A are A =1,5and 1 +2i. To find the eigenspace

associated with A = 1-2i we proceed as follows. With A on level 2, extract (1, -2)

from the vector on level 1 with the command 3 GET and build A -(1, -2)I with the

commands 4 IDN E Apply RREF. Use EDIT to view the last column.

Clean up round off error with 11 RND and see that [ -1+i 1 -i 1] spans the

eigenspace.

Cofactor expansions tell us that the characteristic polynomial of a matrix A

having only integer entries will have only integer coefficients. Since CHAR uses

traces of powers of A, it will accurately return the coefficients of the characteristic

polynomial of any such A. But finding eigenvalues as the roots of the characteristic
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polynomial is seldom done in computational practice because even sophisticated

polynomial root finding routines are often limited in their ability to obtain multiple

roots with a high degree of accuracy. For example, the roots of x* — 843 + 10A% + 484

~99are A=33and 1+2V3. Although PROOT returns decimal approximations to 1

+ 2\[5 that are accurate to twelve places, it returns 2.99999907027 and 3.00000092973

for the other two values.

The numerical computation of eigenvalues is much more complicated than the

numerical solution of linear systems and any discussion of the appropriate procedures

is well beyond the scope of this brief chapter. But the HP-48G and 48GX calculators

include code for finding eigenvalues and eigenvectors that is based upon advanced

numerical techniques that use the Schur factorization of a matrix. (You can obtain a

12-digit version of the Schur factorization via the command SCHUR.)

EXAMPLE 4. We use the following matrix A

[[-14 -16 26 -9]
[ 16 19 28 12]
[ 7 -8 11 -7]
[ 13 14 24 14]]

Make another copy with l ENTER |. CHAR returns [1 -8 10 48 -99 ], and we

have seen that PROOT returns only two of the four eigenvalues with 12-digit

accuracy. Drop this vector. Then with A on level 1, the command EGVL (on the

MTH MATR menu) returns the vector [ 4.46410161514 -2.46410161514 3 3] of

eigenvalues accurate to 12-digits.

Activity Set 6.2

1. Adding a multiple of a row to another row will not change the determinant of a

square matrix A. Will this change the eigenvalues? The characteristic
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polynomial? Use your calculator to investigate these questions by experimenting

with random 3 x 3 and 4 X 4 matrices over Z,,.

Consider the following matrix

(a)

(b)

(c)

(a)

(b)

(c)

[[4 -8 2 5]

[0 1 6 -2]

[<9 0 7 1]

[7 3 -8 9]]

A=

Find the characteristic polynomial of A, then use PROOT to obtain the

vector of eigenvalues as the roots of this polynomial. Go to the PRG TYPE

menu and use the OBJ— command to separate the vector into its component

eigenvalues (use DROP to remove the list { 4 } that indicates the size of

this vector).

With the roots of the characteristic polynomial still on the stack, use the

EGVL command to obtain the vector of eigenvalues of matrix A. As in part

(a), separate this vector into its component entries.

Use the interactive stack (e.g., the IZI and the ROLLD command) and

the command SAME (on the PRG TEST menu) to compare the accuracy of

the eigenvalues obtained by the two methods.

Calculate and store a random 3 x 3 matrix A over Z;y. Calculate detA and

traceA.

Compare traceA with the sum of the eigenvalues of A; what do you

observe?

Compare detA with the product of the eigenvalues of A; what do you

observe?
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(d) Repeat the above for random 4 x 4 and 5 x 5 matrices over Z,.

(e) Formulate your observations as a conjecture.

(f) Discuss your conjecture with your instructor.

4. For each of the following matrices, find:

(a) all eigenvalues

(b) for the eigenvalue A of maximum absolute value, the associated eigenspace.

[[2 8 -1 6 5]
[[4 3 2 1]

[1 7 1 2 -2]
[3 2 1 4]

A= B= [-11 -16 0 10 5]
[2 1 4 3]

[7 -8 -1 10 4]
[1 4 3 2]]

[ 7 8 1 -6 0]]

[[ 54 22 -4 -2 -12 6]

[91 -3¢ 9 2 22 8]

[170 70 -12 -7 -37 -20]

[92 47 0 -8 -15 -18]

[27 7 5 0 7 0]

[0 0 0 0 0 1]]

[[ 8 6 8 5 -3]

[-9 -8 -10 -9 1]

C=[3 -2 3 2 1] D=

[11 11 12 12 1]

[8 -9 -8 -8 -1]]

6.3 SIMILARITY

Given that we earlier made a case for having independent sets of vectors - sets in

which no one vector depends linearly upon the others — we now ask “independence

questions” about the eigenvectors of A. In particular, how large can a set of

independent eigenvectors of A be? Certainly no larger than n, because the

eigenvectors lie in R” and any set of more than n vectors in R" is dependent. And the
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case where A has a set of n independent eigenvectors, say { x;, x,, ..., x,}, is

especially nice. For then we have

P'AP=D = - ,

where A, is the eigenvalue associated with x; and P is the matrix having x,, x,, ..., x,,

as its columns:

|| l
P= xl x2 e X

I |

n

In fact, the equation P-'!AP =D is equivalent to saying that A has n

independent eigenvectors. This equation is just a rearrangement of AP = PD which,

when read column-by-column, simply says Ax; = A;x;. The set of x;’s is independent

because the x;’s are the columns of the invertible matrix P. We are thus led to focus

on the case where the n X n matrix A has n independent eigenvectors as the

desirable one, and we call any n x n matrix A having fewer than n independent

eigenvectors a defective matrix.

For a non-defective matrix A the equation P'!AP =D has important

implications. In general, we call matrices A and B similar provided that P-!AP =B

for some invertible matrix P. The term “similar” probably derives from the

elementary result that similar matrices have the same characteristic polynomial, the same

eigenvalues, determinant, trace and rank. When A is similar to a diagonal matrix D

we say that A is a diagonalizable matrix, and the above discussion may be

summarized as follows:

A is diagonalizable iff A has n independent eigenvectors.

Of fundamental help in deciding whether A is diagonalizable is the result that



EIGENVALUES AND EIGENVECTORS 131

eigenvectors associated with distinct eigenvalues are independent.

Consequently, if A has n distinct eigenvalues, then A has n independent

eigenvectors, one associated with each eigenvalue, so A is diagonalizable. Butit is

also possible for A to be diagonalizable even when it has fewer than n distinct

eigenvalues. There are two keys to understanding how this may happen:

(1) For any eigenvalue A of A, the dimension of the eigenspace determined by

A, dim NS(A - Al), does not exceed the multiplicity of 4 as a root of the

characteristic polynomial;

(2) If 4, 4,, ..., A, are the distinct eigenvalues of A and B, B,, ..., B, are bases

for the associated eigenspaces then the union of these bases is an

independent set of eigenvectors of A.

Think about the characteristic polynomial of A in factored form:

det(Al-A) = (A=A)Y(A=24,)"2 .. (A-A)

where A,, ..., A, are the distinct eigenvalues and m,, ..., m, are their respective

multiplicities. Since det(Al — A) is a polynomial of degree n, we have n =m; + m, +

.. + m,. According to (1), we have dim NS(A - le) smj, for each j=1, .., k. Thus,

in the case where equality holds for every j, the bases in (2) will contain exactly m,

vectors and their union will produce n independent eigenvectors for A. But in the

case that we have dim NS(A - )le) <m; for even one j, the union of the bases in (2)

will fail to produce n independent eigenvectors and A will be a defective matrix.

A is defective ifffor some eigenvalue A there are not enough

independent eigenvectors associated with A.
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EXAMPLE 5. Consider the following matrix:

[[9 2 -6 0]
[51 5 7]
[6 0 3 1]
[3-2 3-1]]

A=

Program CHAR returns [1 6 9 0 0 ]. Thus the characteristic polynomial of A is

A+ 6A3 + 942 = A2(A2 + 64 +9) = A2(A+ 3)? and the distinct eignevalues are 0 and -3,

each having multiplicity 2. A quick application of the RREF command to A - 0I and

to A + 3I shows that NS(A - 0I) and NS(A + 3I) each have dimension 1, so A is a

(doubly) defective matrix.

EXAMPLE 6. Consider the following matrix

[[2 5 -1 -2 3]

[0 1 2 4 -6]

A=[0 0 2 1 -2].

[4 2 2 3 2]

[4 2 2 1 4]]

The EGVL command shows the eigenvalues to be A =1, 2, 2, 3, 4. Since A = 2 is the

only repeated root, to settle the question whether A is diagonalizable or defective

we must determine dim NS[A - 2I]. RREF shows two free variables, so dim

NS[A - 2I] = 2, the multiplicity of 2 as a root of the characteristic polynomial. Thus

A is diagonalizable. In fact, a basis for the eigenspace associated with A = 2 consists

of the vectors [-1 4 2 0 O]Jand [0 2 0 2 1]. The eigenspaces associated with

A=4,3andl1have[1l -2 -1 2 2],[1 -2 -1 1 1]Jand[-1 2 O O 0] as bases,

respectively. Using these basis vectors as the columns of matrix
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(1T 1 -1 0 -1]

[2 -2 4 2 2]

P=[-1 1 2 0 0],

[2 1 0 2 0]

[2 1 0 1 0]]

you can verify that

[[4 O 0 O O]

[0 3 0 0 0]

P1AP=D= [0 0 2 0 0]

[0 0O 0O 2 0]

[0 O O 0 1]]

It is important that students understand how to construct a diagonalizing matrix

P for a diagonalizable matrix A by finding bases for the different eigenspaces of A.

But you should also note that the HP-48G/GX calculators will produce such a P with

a single keystroke. With a square matrix A on level 1, the command EGV (on the

MTH MATR menu) will return to level 1 a vector containing the eigenvalues, and to

level 2 a matrix P whose columns are corresponding eigenvectors. In case A is

diagonalizable, the columns of P are independent so that P-AP is diagonal. You

should try this with the matrix A of our last example. EGV returns[4 3 2 2 1]

as the vector of eigenvalues and you will notice that columns 1, 2, 3, and 5 of the

matrix P that is returned to level 2 are rescaled versions of the vectors we constructed

in the example. If you extract columns 3 and 4 and assemble them as the columns in a

new matrix, the RREF command will show them to be independent.
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Activity Set 6.3

1. (a) Find matrix B = P''AP given the following matrices P and A:

[[ 7 2 4 6] [[0 -1 -1-1]
[ 6 -1 -4 -4) _[1 10 0]

A'[4 4 5 -2] P‘[-1010]
[-16 -12 -14 -3]] [1 0 0 1]]

(b) Use program CHAR to verify that A and B have the characteristic

polynomial.

(c) Verify that A and B have the same eigenvalues, trace, determinant, and

rank.

2. Determine whether the following matrices A are defective or diagonalizable.

For each one that is diagonalizable, find an invertible P and a diagonal D for

which P-1AP =D.

[[0 1-2 0] [[10 -5 12 0] [[6 2 -4 -2]
[2 3-4 0] [ 9 -4 12 0] [2 3 2 1]

@ 100101 ® (5350 © (21 03
[-1-1 0-1]] [-7 2 -9 -2]] [2 -1 2 5]]

([838 0 5] [[1 0 3 0 -3 3]
[9-412 0 9] [-1 2 2 -1-2 3]

d [53-50-5] (¢ 00022 2]

[-7 2 -9 0-5] [2 2 0 4 0 0]
[2-2 4 0 5]] [2 2-3 -1 5 2]

[0 0-1 -1 1 4]]
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6.4 REAL SYMMETRIC MATRICES

The most important matrices for the physical sciences are the real symmetric

matrices, real matrices A satisfying AT = A. Such matrices play a significant role in

a number of applications.

We have seen that for a general matrix, repeated eigenvalues may lead to a

defective matrix. But this never happens with a real symmetric matrix:

every real symmetric matrix is diagonalizable.

This is because for each eigenvalue A there are “enough” independent eigenvectors.

The important features that surround any real symmetric matrix A of order n are as

follows:

(i) The eigenvalues of A are real numbers (no complex eigenvalues occur).

(ii) The eigenspaces of A are orthogonal subspaces (eigenvectors associated

with distinct eigenvalues are orthogonal).

(iii) If an eigenvalue A of A is a root of multiplicity k of the characteristic

polynomial then the associated eigenspace has dimension k.

(iv) A hasn orthogonal (hence independent) eigenvectors.

If n orthonormal eigenvectors of A are used as the columns of an orthogonal

matrix Q, then Q is an orthogonal diagonalizing matrix for A:

QlAQ=D

where D is the diagonal matrix of eigenvalues of A, the eigenvalues corresponding

in order to the eigenvector columns of matrix Q.
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The steps to be followed in constructing an orthogonal diagonalizing matrix Q

for a real symmetric matrix A should be clear:

Step 1: Find the eigenvalues of A.

Step 2: For each eigenspace, construct an orthonormal basis (perhaps by using the

Gram-Schmidt process).

Step 3: The union of the orthonormal bases constructed in step 2 will be an

orthonormal basis for R”; use these basis vectors as the columns of Q.

EXAMPLE 7. Consider the real symmetric matrix

[[2 -1 0 1]
_[-1 2 0-1]

A= [0 0 2 0]
[1-1 0 2]]

The EGVL command shows that the eigenvalues of A are A =1, 1, 2, 4. Applying the

RREF command to both (A - 2I) and to (A —-4I) weobtain[0 0 1 O]Jand[1 -1 0 1]

as bases for the associated eigenspaces, respectively. Notice that these two

eigenvectors, which are associated with different eigenvalues, are orthogonal.

Normalize [1 -1 0 1] to get [ .577350269189 -.577350269189 0 .577350269189 ].

Now apply RREF to (A -I)to getthebasis{[1 1 0 0],[-1 0 0 1]} for the third

eigenspace. Since these vectors are not orthogonal we apply the Gram-Schmidt

process to get the orthonormal basis vectors [ .707106781188 .707106781188 0 O ]

and [ -.408248290463 .408248290466 0 .816496580929 ]. Now put these vectors as

the columns of a matrix

[ [ 577350269189 .707106781188 -.408248290463 ]

O
Q=

[

0
0 -.577350269189 .707106781188  .408248290466 ]
1 0 0 0 ]
0 .577350269189 0 .816496580929 ] ]

Since Q is orthogonal, Q! = QT and a quick check will verify that
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QTAQ=Diag[2 41 1]

As in this example, Q! = QT changes the similarity equation Q'1AQ =D to

QTAQ = D. More important is when we solve for A:

A = QDQT.

If matrix Q has the orthonormal column vectors q;, q, . . . , g, as its columns

Q=[49192 --- qn]

then we have

A=QDQT =[g,... q,]

=M1+ MGz + - Alg -

This is a spectral decomposition of matrix A, so-called because the set { A, 4,, ... , 1, }

of eigenvalues is sometimes called the spectrum of A. Each 44,9 ]T in the

decomposition is an nxn matrix of rank 1 (each column being a multiple of g;). Notice

that any particular spectral decomposition of A depends upon the choice of the

orthonormal vectors q,, . . ., g,.

EXAMPLE 8. To compute a spectral decomposition of the matrix A in EXAMPLE 7

using the particular Q matrix above, we have:

20191+ 49293 + 14395 +14494
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(after 10 RND).

1. Find an orthogonal matrix Q and a diagonal matrix D such that Q-!AQ =D.

[[4-1-1-
[1 4 -1 -

@ 144 4-
[-1 -1 -1

([ 1 -2 -3
[2 1 -2

© 13 2 1
[2 3 2

2]
3]
2]
111

[[3 -1 1
[-1 3 1

® 113
[0 0 O

[[2 2
[2 1

d) [-2 -3
[2 -1
[2 -1

-3

0]
0]
0]
4]]

2 2 2]
4 1]
1 1]
5 -1 ]
1 5]]

2. Find a spectral decomposition for each of the matrices in Activity 1(a) - 1(b).

6.5 POSITIVE DEFINITE MATRICES

A real symmetric matrix A of order n is called positive definite provided that

xTAx > 0 for each non-zero x in R".

In the expression xTAx, we are viewing vector x in R" as a column matrix; thus xTAx

is a 1 x 1 matrix, a single real number.
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Positive definite matrices are the most important of the real symmetric matrices

and appear often in applications such as electrical circuit analysis, elastic stress

studies, and least squares problems.

It is easy to see that any positive definite matrix A is nonsingular (for if Ax =0

had a non-zero solution x then xTAx = 0, contrary to xTAx > 0). More importantly, any

such matrix A has only positive eigenvalues (if Ax = Ax for some non-zero x then xTAx

=xTAx = A|| x ||, so that A = xTAx/|| x ||> > 0). The converse of this last result is also

true, and provides us with the first of a number of different criteria for positive

definiteness. These are summarized in the following theorem.

Theorem. Given a real symmetric matrix A of order n, the following are

equivalent conditions:

(i) A is positive definite (xTAx > 0 for all non-zero x in R").

(ii) All eigenvalues of A are positive.

(iii) All upper left sub-determinants of A are positive.

(iv) A can be converted to an upper triangular matrix without row interchanges

and all pivots will be positive.

(v) A can be factored as A = LLT, where L is a lower triangular matrix having

positive diagonal entries.

(vi) A can be factored as A = MTM for some nonsingular matrix M.

These results are impressive because they embrace such a wide range of basic

concepts in linear algebra: Gaussian elimination, pivots, eigenvalues, matrix

factorizations, and determinants. In keeping with the spirit of this book we will not

provide a proof of this theorem. That should be done by your instructor or your
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linear algebra textbook. But it is appropriate to comment briefly upon several of

these equivalent conditions.

Condition (iii) connects determinants to pivots. It asserts that if A; denotes the

upper left k x k submatrix then det Ay > 0 forallk =1, 2,.., n. For k =1 this simply

says that pivot 4;; > 0. Then

and pivot azlz > 0 because det A, = auazlz >0 and a,; > 0.

Then we have

a_ a a * % 1n % %3 1

_ |a a a —> ’ —
Ay = |%n 0 a_ = 0 a, =*

2
a_ a_ a ’
a2 » 0 * =* 0 0 a,

and pivot a3l3 > 0 because det A; = a11a2'2a3l3 > 0 and both ay;, a212 > 0. Notice that with

positive pivots we never have to interchange rows. In this way, condition (iv) is

true.

Condition (v) comes from the LU-factorization of A. Here’s how. Although LU-

factorizations are not, in general, unique, there is a related factorization for certain

invertible matrices that is unique. Suppose that an invertible matrix A can be

brought to upper triangular form U without row interchanges. Then A = L;U where

L, is lower triangular with 1’s on its diagonal and U is upper triangular with non-

zero diagonal entries u,;, u,,,...u,,. If D is the diagonal matrix D = diag
nn

[ 4y, Uy, ... u,, ] then D! = diag [u'lll Uy . .. Uy, ] and A = L;DD'U = L, DU,, where the

upper triangular matrix U; = D-!U also has 1’s on its diagonal. This is the
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LDU-factorization of A and it is easy to see that it is unique. If matrix A is also

symmetric then, in addition to A =L;DU,, we also have A = AT = (L;DU;)T =

U{DTLz = U{ D LE and the uniqueness tells us that LE = U,. Thus, the LDU-

factorization in this case has the form A =L;DL f Finally, suppose that A is

positive definite. Then D has only positive diagonal entries and can be split into

the product of two “square root” matrices:

/ u
ull ull 11

o I
=\D \D.

Then A = L;DL! = (LyVD ) (L;VD )T = LLT, where L = L;vVD. This factorization can

be shown to be unique and is called the Cholesky factorization of A.

EXAMPLE 8. Construct the Cholesky factorization of

(2 4 -4]
A= [4 12 -20]

[-4 -20 501]]

Elementary calculations show that A has the following LU-factorization without

row interchanges:

1 0 0|2 4 4

A=|2 1 0|0 4 -12

2 -3 1|{0 0 6

Factoring out the diagonal entries from U we see that A has the following LDLT

factorization:
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1 0 0|2 1 2 -2

A=(2 1 0 4 0 1 -3}

2 -3 1 6]10 0 1

Finally, accounting for square roots we see the Cholesky factorization A = LLT:

2 o0 ollf 22 2f2

A=l22 2 o] 0 2 6 =1LT

22 6 J6|L O O J6

Of all the criteria in the Theorem for determining positive definiteness, the

Cholesky factorization is the one that is most practical for numerical computations.

For we should avoid the computation of eigenvalues and determinants whenever

possible. There is a fairly straightforward algorithm for constructing the Cholesky

factorization. Most importantly, if the algorithm is applied to a real symmetric

matrix A that is not positive definite then the algorithm will fail: at some pointit

will attempt to take the square root of a number that is not positive. Because of

this, the algorithm can be applied to any real symmetric matrix as a test for

positive definiteness. If the algorithm does not fail, it succeeds in calculating the

Cholesky factor L in A =LLT. The following code implements the algorithm.
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P.DEF (Test for Positive Definiteness)

Input. level 1: a real symmetric matrix

Effect: If the input matrix is positive definite, the Cholesky

factor L is returned to level 1 and the input matrix

to level 2. If not positive definite, the message

“NOT POS DEFINITE” appears.

« DUP - A« A SIZE1 GET > n«1nFORjIFj1#THEN 1 |

1 — FOR k 'A(,j) EVAL 'A(,k) EVAL SQ - 'A(j, j) STO NEXT END

IF 'A(j, )’ EVAL 0 < THEN “NOT POS DEFINITE” KILL END 'A(j, j)

EVAL YV'A(,j) STOIFjn=THENj1 +n FOR i IFj 1 # THEN 1

j 1 — FOR k 'A(i, j)’) EVAL 'A(,k) EVAL 'A(j, k)’ EVAL * — 'A(,j)

STO NEXT END 'A(j, j)' EVAL 'A(j, j)’ EVAL / 'A(,j) STO NEXT END

1nFORi1nFORjIFji>THEN 0 'A(,j) STO END NEXT NEXT

» A » »  
 

Given the Cholesky factorization A = LLT of a positive definite matrix A, we

can use the two factors to solve the linear system Ax = b in two easy steps:

(i) solve Ly =bfor y by forward substitution

(ii) then solve LTx =y for x by back substitution.

EXAMPLE 9. Use program P.DEF to check the following matrices A for positive

definiteness; where possible, use the Cholesky factorization to solve Ax=[ 1 1 1].

[[6 -1 -4] [[2 4 -4]
(a) A= [1 0 -6] by A= [ 4 12 -20]

[-4 6 0]] [-4 20 50]]
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With the matrix A in (a) on level 1, executing P.DEF returns the message “NOT

POS DEFINITE”. The matrix A in (b) is the matrix of EXAMPLE 8, so is already

known to be positive definite. With this matrix on level 1, P.DEF returns the

input matrix A to level 2 and the following Cholesky factor L in A = LLT:

[[ 1.41421356237 0 0 ]

L= [ 2.8284712475 1.99999999999 0 ] .

[ -2.8284712475 -6.00000000003 2.4494897427 ] ]

To check this last result, press the ENTER key to duplicate L, transpose with TRN,

multiply and then clean up round-off error with 10 RND.

To solve Ax = b using the Cholesky factors L and LT we first solve Ly =[ 1 1 1]

for y using forward substitution (program FWD) to obtain [ .707106781188 -5 0]

(after cleaning up some obvious round-off error). Then we use back substitution

(program BACK) to solve LTx =y forx=[1 -.25 0].

Activity Set 6.5

1. Which of the following symmetric matrices are positive definite?

[[3 3 4] [[2 -1 -1]
(a) A= [3 3 7] b) A= [1 2 1]

[4 7 2]] [-1 1 2]]

[[-5 -7 -2 5] [[3 -1 -1 -1]
[7 9 -4 5] [1 2 -1 1]

© 4= 12 4 5 8] A A="14 4 2 4
[5 5 8 -8]] [11 1 -1 2]]



EIGENVALUES AND EIGENVECTORS 145

[[5 8 2 -9 -9] [[ 4 -10 -4 3 3]
[8 -8 -7 -1 4] [-10 32 12 -2 -4]

() A=[2 -7 0 -8 -2] f) A= [4 12 6 -3 -3]
[(9 -1 8 9 3] [ 3 2 -3 9 7]
[-3 4 2 3 7]] [ 3 4 -3 7 6]]

2. For any of y the matrices A in Activity 1 that are positive definite, use the

Cholesky factors in A =LLT to solve the linear system Ax = b, where

b=[1 2 3],b=[1 2 3 4],orb=[1 2 3 4 5] as appropriate.

3. Test the following symmetric matrix A for positive definiteness. If positive

definite, use the Cholesky factors in A = LLT to solve the linear system Ax = b.

[[1 1 0 0 O]
[-1 2 1 0 0]

A=[0 -1 2 -1 0] b=[1 1 1 1 1]
[0 0 -1 2 -1]
[0 0 0 -1 2]]

6.6 SINGULAR VALUE DECOMPOSITIONS

Now that we have some experience with matrix factorizations like A = LU, A =

QR,A =LLT A=PDP!, and A = QDQ"! we turn finally to singular value

decompositions, factorizations like

(1) A=UXVT

As we might expect from the case A = PDP-1, the middle term 3 in (1) will

still be a diagonal matrix: all off-diagonal entries are zero. And just as in the more

elegant factorization A = QDQT, both of the outside matrices U and V will be

orthogonal. What is different about the singular value decomposition (1) is that

because U and V are different orthogonal matrices, 3 will no longer contain the
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eigenvalues of A; instead it will contain the singular values of A, non-negative

numbers 6; 20, 2 ... . In fact, A itself need not be a square matrix. We can obtain

singular value decompositions A = UXVT for an arbitrary rectangular matrix A.

Without concerning ourselves with the details of the construction of singular

value decompositions (they can be considerable), what can we find out about the

factors U, 3, and V from the factorization itself? Since U and V are orthogonal, we

expect that symmetric matrices are somehow involved. Indeed they are: both ATA

and AAT are symmetric.

We begin with ATA. From A = UXVT we find that

ATA = (VXTUT(UXVT)

(2) =V(TX)VT,

Since X has entries 0, 0, , ... along the main diagonal, ¥7¥ will have diagonal

entries 07, 03, ... . Thus, equation (2) is an orthogonal diagonalization of the real

symmetric matrix ATA, so the of, og, ... are the eigenvalues of ATA and the column

vectors of V are orthonormal eigenvectors of ATA.

Similarly, we find that

AAT = UXVTY(VETUT)

(3) = u(xsnur.

Thus, the 07, 65, ... are also the eigenvalues of AAT and the column vectors of U are

orthonormal eigenvectors of AAT.

If A is a5 x 2 matrix, then ATA is 2 x 2 while AATis 5 x 5. The difference in

their eigenvalues is this: they have the same non-zero eigenvalues (including

multiplicities), but any eigenvalue 0 will have different multiplicities for the two

matrices. For example, consider the matrix
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[[1 2]

[3 4]

A= [5 6]

[7 8]

[9 0]]

Then ATA is the 2 X 2 matrix

[[165 100]
TA =ATA="1100 120]]

whose eigenvalues are A = 245, 40. But AAT is the 5 x 5 matrix

[[5 11 17 23 9]

[11 25 39 53 27]

AAT= [17 39 61 83 45]

[23 53 83 113 63]

[ 9 27 45 63 81]]

whose eigenvalues are A = 245, 40, 0, 0, 0.

In the general case, consider any eigenvalue A of ATA, say (ATA)x = Ax for some

non-zero x. Then A is a real number and we have

IAx> = Ax e Ax = (Ax)T(Ax)

= xT(ATAx)

=xTAx

=Allx|?

so that || x || # 0 implies A 2 0. Then, since the non-zero entries 0'12, 0'22 ,... of XT3 are

just the non-zero eigenvalues of ATA, each o; is the (positive) square root of a 4;: o; =

\l lj, j=1, .., r. (Parenthetical note: notice that in the case where matrix A has full
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column rank, ATA is nonsingular, so that ATAx #0,. Thus each eigenvalue A of ATA

will satisfy A > 0, so that ATA will be positive definite.)

How many non-zero A;'s and o;j’s are there? The notion of rank is the key:

rank A = rank (UXVT)

= rank (X'VT), since U is nonsingular

= rank %, since V is nonsingular

= the number r of non-zero diagonal entries: ¢, 0;, ..., O,.

Normally, we assume that the oj’s are arranged on the diagonal of Y in decreasing

order:

,where 0y 20, 2...20,.

Using equation (2), we see in a similar way that

rank ATA =rank (XT2Y)

= the number r of non-zero diagonal entries: 0'12, 02, ., of

Thus rank A = rank ATA. Replacing A in this last result with AT we have rank AT

= rank AAT. Thus, all four of these matrices have the same rank:

rank A = rank AT = rank ATA = rank AAT.

One final comment: although the singular values 0, 20; ... 2 0, are uniquely

determined by A (the of are the non-zero eignevalues of ATA and AAT), the matrices
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U and V in A = UXVT are not unique. The columns of U are orthonormal eigenvectors

of AAT and the columns of V are orthonormal eigenvectors of ATA, and different

choices for these columns can be made.

The HP-48G/GX units include the command SVD (on the MTH MATR FACTR

menu) for computing a singular value decomposition of a matrix. The command

implements a version of the LAPACK routine XxGESVD in producing the

decomposition. There are also several related commands. The command SVL (also

on the MTH MATR FACTR menu) computes only the singular values, and RANK (on

the MTH MATR NORM menu) returns a value for the rank of matrix A determined as

the number of non-zero singular values of A. If Flag -54 is clear (the default state),

RANK automatically treats any computed singular value as zero if it is less than

104 times the size of the largest computed singular value. The command SNRM

(also on the MTH MATR NORM menu) returns the spectral norm of a matrix, which is

defined as the largest singular value.

EXAMPLE 10. Begin with the following matrix on level 1:

[[1 -1 1]
[-3 -9 -15]

A= [0 -9 -9]
[-7 2 -12]]

(a) The command RANK returns the value 2 for the rank of A. You can verify this

by applying the command RREF to A, obtaining

[[1 0 2]

[0 1 1]

[0 O 0]

[0 O 0]]

Thus column 3 of A is 2 times column 1 plus column 2.
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(b) With A on level 1, the command SVL returns the following vector S of singular

values:

[ 23.9965775198 10.0580449062 5.06289164242E-14 ].

The third component shows why the RANK command returned 2 for the rank.

Replace the third component with 0 and then square the components in vector S

by applying the procedure « SQ » APLY. You will obtain the following vector

S2:

[ 575.835732664 101.164267335 0]

(c) With the 3 x 3 matrix ATA on level 1, the command EGVL will show the vector

of eigenvalues to be

[ 5.38034799593E-13 575.835732666 101.164267334 ].

Compare this with the components of vector S2.

(d) With the 4 x 4 matrix AAT on level 1, the command EGVL will show the vector

of eigenvalues to be

[ 2.80338767559E-14 575.835732666 101.164267334 -1.41891530649E-12 ].

(e) With A on level 1, use the command SVD to obtain a singular value

decomposition. The stack will be arranged as follows:

3: matrix U

2: matrix VT

1: vector S of computed singular values
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[[-2.88503909637E-2 -.157851068131 -.434161002673 .88642818039 ]
U [ .734808458395 -.200855325398 .586417975786 275368163386 |

~ [ .486192964128 -.505806397342 -.607810084379 -.371945145644 |

][ .472059939039 .823953922836 -.313344990004 8.61767003328E-3]]

[ [ -.230770214413 -.417394627437 -.878935056262 ]

V = [ -.529224377248 .811859013819  -.246589740676 ]

[ -.816496580928 -.408248290464 408248290464 ] ]

S= [ 23.9965775198 10.0580449062 5.06289164242E-14 |
oy o 3

(f) You can verify that column 1 of U is an eigenvector of AAT corresponding to the

eigenvalue o7 = 575.835732664 as follows: move U to level 1 and use 1 COL- to

get column 1 of U, make a duplicate copy and then compare

AAT % (col 1 of U) = [-16.6130860183 423.128967009 279.967281716

271.828980859]

with the vector

o * (col 1 of U) = [-16.6130860182 423.128967008 279.967281715

271.828980858 ]

by subtracting them. Notice that the components agree up to the twelfth digit.

(g) Likewise, you should verify that column 2 of V is an eigenvector of ATA

corresponding to the eigenvalue 03 = 101.164267335: compare the vector

ATA * (col 2 of V) = [-53.5385963797 82.1311223117 -24.9460704477 ]

with the vector
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& * (col 2 of V) = [ -53.5384963801 82.1311223123 -24.9460704478 |.

Application to Least Squares Solutions

An important application of singular value decompositions is to produce least

squares solutions of arbitrary linear systems Ax = b. Recall that by a least squares

solution to Ax = b we mean a vector x for which ||Ax -b||, is as small as possible.

And because there may be more than one such solution, we seek one having minimum

norm: || x|, is minimal among all least squares solutions.

We begin with a singular value decomposition of the m x n coefficient matrix A

in the linear system Ax = b: A = UXVT. Here U and V are m x m and n X n

orthogonal matrices, respectively, and Y is the mxn diagonal matrix

[5]0O O

where, 3 is the rxr (7 = rankA) diagonal matrix containing the singular values o, 2

0, 2...20,. Recall that orthogonal matrices preserve length, ie., || Qz |, =l z |l,

for all orthogonal matrices Q. Applying this with the orthogonal matrix UT and

the vector z = Ax — b, we have

|Ax-b|l7 ||UTAx-UTb|| 3

| SVTx - UTh || 2

| Xy -cll3, withy = VTx and ¢ = UTb.

Thus || Ax — b || will be minimized if || Xy — ¢ || is minimized. Exploiting the special

structure of 3 we have

r m

(*) NAx=bI; = 1 Zy-cli =X loyj-ciP+TP .
]:1 ]=r+l
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Certainly we can make (*) as small as possible by choosing y;’s that will cause

the first term to become 0: y;=c¢;/0jfor 1 <j<r. Since x = Vy, we can minimize || x ||,

by minimizing ||y |l,- And since (*) places no restriction upon the y;forj=r+1, ..,

m, we can minimize || y ||, by choosing y, ,; = ... =y, = 0.

Reformulating these results in terms of matrix multiplication, we see that the

minimum norm least squares solution x can be obtained as follows: calculate, in tern,

(i) c=UTh= [; ] (c is an r-vector)

(ii) wusec tobuild ¥ = Jic (y is also an r-vector)

. _ , y
(iii) usey tobuild x = V[O ] (an n-vector)

EXAMPLE 11. We return to the matrix A of our previous example and use

b=[1 -2 0 -1]. Since the rank of the augmented matrix [Al b] is 3 and the rank of

A is 2, Ax = b has no solution in the usual sense. Use SVD to build a singular value

decomposition A = UXVT for A. Then delete the last two entries in ¢ = UTb to obtain

c=[ -1.97052724679 -.580094340171 ].

Now delete the last entry in the vector of singular values and use the command

2 DIAG— to construct the 2 x 2 matrix

_ [[23.9965775198 0 ]

T 0 10.0580449062 ] ]

Then calculate

7=21¢=[-8.21170121099E-2 -5.76746619826E-2 |.
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Finally, build the 3-vector y = [ ¥ 0 ] and calculate the minimum norm least squares

solution as

x =Vy=[ 4.94729975623E-2 -1.25484945237E-2 8.63975006007E-2 ].

If you compare this solution with the one obtained by the LSQ command, you will

notice that the components agree until the twelfth decimal digit.

A final comment. In the most frequent applications of least squares solutions to

linear systems Ax = b, the m x n coefficient matrix A has many more rows than

columns, so that m is very much larger than n. In the singular value decomposition

A =UXVT matrix U ismxm and V isn xn, so U will, in general, be very much

larger than V. Although our simple examples do not show it, computing a very large

U can be expensive. However, as the equations (i) — (iii) that precede EXAMPLE 11

show, U is needed only to modify vector b to obtain the r-vector ¢. Fortunately, there

are less expensive ways to obtain ¢ than by computing matrix U and these ways are

often exploited in professional computer code.

Activity Set 6.6

1. (a) Obtain a singular value decomposition A = UXVT for the following matrix

[[0 -7 -5 -1]
[7 0 8 -4]

A=[9 9 3 3],
[2 9 1 4]
[6 6 -12 9]]

(b) Compare the non-zero eigenvalues of ATA with the squares of the singular

values of A. Repeat, using the non-zero eigenvalues of AAT.

(c) Verify that column 1 of U is an eigenvector of AAT associated with the

eigenvalue o7, where oy is the singular value of greatest magnitude.



(d)

(a)

(b)

(c)

(a)

(b)
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Verify that column 3 of V is an eigenvector of ATA associated with the

eigenvalue 03, where 0, is the singular value of least magnitude.

Solve the linear system Ax = b where

[[4 8 -6]
A= [6 1 -4] and b=[ -16 -2 17]

[-3 -7 71]]

Use a singular value decomposition of A to obtain a minimum norm least

squares solution to Ax = b. Compare your results to those from (a).

Use the built-in LSQ command to obtain a minimum norm least squares

solution to Ax = b. Compare your results to those from (a) and (b).

Use a singular value decomposition to obtain a minimum norm least squares

solution to Ax = b, where A is the matrix of Activity 1 and

b=[1 0 2 1 2]

Use the built-in LSQ command to obtain a minimum norm least squares

solution to the linear system in (b). Compare your results to those in (b).

When the coefficent matrix A in a least squares problem Ax = b has full column

rank, the matrix ATA appearing in the system of normal equations ATAx = ATh

is positive definite (see the parenthetical note on page 147 of Section 6.4).

Using a Cholesky factorization ATA = LLT, the normal equations are LLTx = ATb

and can therefore be solved by forward and back substitutions: solve Ly = ATb

by forward substitution, then LTx = y by back substitution. Apply this approach

and solve the least squares problem associated with fitting a cubic polynomial

to the data (1.1, -1), (2.2, 2), (3.3, -3), (4.4, 4), (5.5, -5), (6.6, 6). Compare your

answer to the one obtained by using the built-in professional code LSQ.
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For large linear systems, Gaussian elimination can be costly. The number of

multiplications/divisions required to solve Ax = b, where A isn X n,is

n3 n
3 multiplications/divisions for the elimination phase, 

followed by an additional

n? multiplications/divisions for the back-substitution phase

for a total of

w-n , n ,n
3 tni=3 +n’-3 multiplications/divisions. 

3
When n is large, the % term dominates; thus, if n is doubled the number of

multiplications/divisions is increased by a factor of 8.

Fortunately, many of the large linear systems that arise in practice have

coefficient matrices A that are sparse, i.e., all but a small fraction of the entries are

zero. And there are versions of Gaussian elimination for sparse matrices that

capitalize upon the sparseness. But iterative techniques also use sparseness to good

advantage by generating a sequence of increasingly better approximations to a

solution. By way of introduction to iterative techniques for linear systems, we shall

briefly discuss two simple approaches: the Jacobi and Gauss-Seidel iterations.

We will also consider the elementary iterative process known as the power

method for approximating the dominant eigenvalue and an associated eigenvector of

156
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certain matrices. Though somewhat limited in its applicability, the power method

sets the stage for a subsequent study of the preferred iterative technique for finding

eigenvalues, the QR-algorithm. However, the QR-algorithm is beyond the scope of

this book.

7.1 THE JACOBI AND GAUSS-SEIDEL METHODS

The Jacobi and Gauss-Seidel methods for solving a linear system Ax = b are

based upon splitting the matrix A into a difference A = M - N, and then rewriting

Ax = bas Mx = Nx + b. Starting with an initial estimate x, for x, we generate a

sequence of successive approximations { x, } where

With suitable choices for M and N the sequence { x, } will converge to a solution x. In

particular, M should be invertible in order that x, be uniquely defined:

x, = MY(Nx,; +b) = (MIN)x,; + M"1b

The matrix M-IN is called the iteration matrix and is the key to convergence.

e The Jacobi iteration takes M to be the diagonal part of A,so N =M - A is

the negative of the off-diagonal part of A.

e The Gauss-Seidel iteration takes M to be the lower triangular part of A, so

N =M - A is the negative of the strictly upper triangular part of A.

Convergence of { x, } to x is usually defined in terms of the vector max norm:

{x )= x if Lim|x-x|.=0,

where forv =[v; v, ... v,] we define || v || , ="4X| v;|
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This is equivalent to requiring that each component of { x, } converge to the

corresponding component of x.

More advanced work shows that for an arbitrary initial estimate x,, { x, } = x iff

| A| < 1 for each eigenvalue A of the iteration matrix MIN; in equivalent terms, iff

the spectral radius p(M-IN) = max {| A | } is less than 1.

To see how the Jacobi and Gauss-Seidel methods differ, write iteration equation

(1) in detail (the components of x, will be displayed as x, = [x;®¥ x,(®... x(K]). For

the Jacobi iteration, we have

apxy® = = ap() — gD - coe = axY+ by

Ayx,0 = g,x, (k1) = fyxD - - - a,x,D)+ b,

annxn(k) = 'anlxl(k-l) - an2x2(k-1) - s - an,n-lxn-l(k—l) + bn

Thus, to obtain the components of x, on the left-hand side we clearly need to have all

a; #0. It is also apparent that the Jacobi method uses the components of the vector

X, calculated during the (k — 1)st iteration (on the right-hand side) to obtain the

components of x, (on the left-hand side) during the kt iteration.

When equation (1) is written in detail for the Gauss-Seidel iteration and the

diagonal terms are isolated on the left, we see a difference:

a0 = = 4D - a4) - e eY+ by

ayx,® = -a,x,® = AyxyD - e - ax,K,V + b,

annxn(k) = 'anlxl(k-l) - an2x2(k) - te T -l(k) + bn

We calculate x;® from the first equation and immediately use it in the second

equation to calculate x,k); then we use both x,® and x,®) in the third equation to

calculate x,%), etc. Thus, in the Gauss-Seidel iteration, components calculated early
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in the kth iteration are used as soon as they are available to calculate other

components in that iteration. This continual updating of components often causes the

Gauss-Seidel process to converge faster than the Jacobi process. But there are

matrices A for which only one of these two processes will converge. Thus, we need

both methods.

We previously noted that a necessary and sufficient condition for convergence of

either iterative method is that the spectral radius of the iteration matrix M-IN be

less than 1: p(M-IN) < 1. Since for any square matrix B, p(B) <|| B || for any matrix

norm, estimates on p(M-IN) are usually expressed in terms of matrix norms; thus a

sufficient condition for convergence is that || MIN || < 1, for any matrix norm. Because

the row-sum norm || ¢ ||, and the column-sum norm || ¢ ||, are so easy to calculate, they

are often used:

AN =T9%3]a;] and [|Al, =m§1x2|azj|-
] 1

Another criterion that is sufficient for the convergence of either process is that

the coefficient matrix A be diagonally dominant:

n

(i) row diagonally dominant, | a;| >j—21 | aijl fori<n

j#i

or

n

(ii) column diagonally dominant, |a;|> > a;| foris<n.
i=1
i#

The basis for this criterion is the following result:
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THEOREM

(a) A is diagonally dominant iff the Jacobi iteration matrix has row-sum

norm < 1.

(b) If A is diagonally dominant then the Gauss-Seidel iteration matrix has

row-sum norm < 1. (The converse is false; see Activity 2.)

We shall use the row-sum and column-sum norms in two calculator programs to

test the iteration matrices for convergence. But you should remember that these tests

are only sufficient for convergence, not necessary. Thus, it is possible for the tests to

fail and still have convergence.

Here are some HP-48G/GX calculator programs that can be used to implement

the Jacobi and Gauss-Seidel iterations.

e D.DOM: tests the coefficient matrix for diagonal dominance.

o JTEST: tests the Jacobi iteration matrix to see if its row-sum norm || ¢ || or

column-sum norm || ¢ ||, is less than 1.

e JACOBI: performs the Jacobi iterative process.

e STEST: tests the Gauss-Seidel iteration matrix to see if its row-sum norm || e ||,

or column-sum norm || ¢ ||, is less than 1.

e SEIDL: performs the Gauss-Seidel iterative process.

The stopping criterion used in both the JACOBI and SEIDL programs is the usual

vector max norm measure of relative error:

I X% = X1 |l

Il xx 1l
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where € is the error tolerance specified by the user, e.g.,, € =5x 108 for

approximately 8 significant digits.

 

D.DOM (Diagonal dominance)

Input:  level 1: an nx n matrix A

Effect: tests to see if A is diagonally dominant. Returns

one of the messages “ROW DIAG DOMINANT”,

“COL DIAG DOMINANT”, or “NOT DIAG

DOMINANT”.

« > AASIZE1 GET » n « 1 nFOR i 1 n FOR j 'A(, j)' EVAL

NEXT n -ARRY DUP {i} GET ABS 2 * SWAP CNRM IF < THEN A

TRN 'A' STO 1 n FOR i 1 n FOR j 'A(i, j)) EVAL NEXT n -ARRY

DUP {i} GET ABS 2 * SWAP CNRM IF £ THEN MAXR -NUM

STO “NOT DIAG DOMINANT” END IF i n == THEN “COL DIAG

DOMINANT” END NEXT KILL END IF i n == THEN “ROW DIAG

DOMINANT” END NEXT » » »

 

 

JTEST (Test Jacobi iteration matrix)

Input:  level 1: an nx n matrix A

Effect: tests the Jacobi iteration matrix for Ax = b to see if

its row-sum norm or column-sum norm is less than

1. Returns an appropriate message.

« > A« ASIZE1GET » n « n IDN DUP 1 n FOR i ‘A(i, i)’ EVAL

{i i} SWAP PUT NEXT A SWAP / - - itmtrx « IF itmtrx RNRM 1 <

THEN “BNRM < 1" ELSE IF itmtrx CNRM 1 < THEN “CNRM < 1”

ELSE “RNRM, CNRM > 1" END END » » » »   
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JACOBI (Jacobi iteration)

Inputs: level 3: an nx n matrix A

level 2: an n-vector b

level 1: an accuracy level € in the form .00005

Effect: returns, at timed intervals, the successive terms of

the Jacobiiteration for Ax = b starting with x, = 0;

terminates when the relative error is less than € or

when 60 iterations have occurred; display is set to n

FIX where n is the number of digits in €.

« > Abe « ASIZE1 GET » n « n IDN 1 n FOR i'A(i, i)' EVAL

{i i} SWAP PUT NEXT DUP A — » M K « 0 ‘ct STO € XPON NEG

FIX {n} 0 CON 'xn* STO DO xn 'xo' STO K x0o * b+ M / 'xn' STO

xn CLLCD 3 DISP .5 WAIT 1 ‘ct' STO+ UNTIL xn xo — RNRM xn

RNRM 1072 + / € < ¢t 60 == OR ENDIF ct 60 < THEN ct

iterations' »TAG ELSE 60 'iterations' > TAG END xn {ct xo xn}

PURGE » » » »   
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EXAMPLE 1. Consider the linear system Ax = b where

(14 2 -2]
A= [1 6 -2]

[2 2 10]]

and b=[2 10 -3]. A is column diagonally dominant, hence invertible, so Ax =b

has a unique solution. With A on level 1, JTEST returns the message “CNRM<1”. To

apply Jacobi iteration to determine the solution x to approximately 5 decimal place

accuracy, enter A, b and .00005. Press to see the iterations converge to

[ -0.37498  1.71876  -0.03126 ] after 19 iterations. After changing back to STD

display mode you should verify that the exact solution is given by x = [ -.375 1.71875

-.03125 ].
 

STEST (Test Gauss-Seidel iteration matrix)

Input: level 1: an nx n matrix A

Effect: tests the Gauss-Seidel iteration matrix for Ax = b to

see if its row-sum norm or column-sum norm is less

than 1. Returns an appropriate message.

« > A« ASIZE1 GET » n « nIDN DUP 1 n FOR i1 i FOR |

'A(i, j) EVAL {i j} SWAP PUT NEXT NEXT A SWAP / — - itmtrx « IF

itmtrx RNRM 1 < THEN “BRNRM<1” ELSE IF itmtrx CNRM 1 < THEN

“CNRM<1” ELSE “RNRM, CNRM21" END END » » » »    
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SEIDL (Gauss-Seideliteration)

Inputs: level 3: an nx n matrix A

level 2: an n vector b

level 1: an accuracy level € in the form .00005.

Effect: returns, at timed intervals, the successive terms of

the Gauss-Seidel iteration for Ax = b starting with

X, = 0; terminates when the relative erroris less

than € or when 60 iterations have occurred; display

is setto n FIX where n is the number of digits

in e.

« > Abe « ASIZE1 GET > n«nIDN 1 n FOR i 1 i FOR |j

'A(i, j)' EVAL {i j } SWAP PUT NEXT NEXT DUP A — » M K « 0 'ct'

STO € XPON NEG FIX {n} 0 CON 'xn' STO DO xn 'xo' STO K xo

* b+ M/ 'xn' STO xn CLLCD 3 DISP .5 WAIT 1 'ct' STO+ UNTIL

xn xo —RNRM xn RNRM 102 + / € < ct 60 == OR END IF ct 60

< THEN ct ‘iterations' »TAG ELSE 60 'iterations' » TAG END xn {ct

xo xn} PURGE » » » »   
 

EXAMPLE 2. Use the linear system of EXAMPLE 1. With € = .00005, SEIDL shows

the iterations converging to [ -0.37499 1.71875 -0.03125 ] after only 8 iterations.
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Activity Set 7.1

1. Consider the following linear system:

(a)

(b)

(c)

(d)

(e)

(f)

(a)

-3x + 9z + 3w + 2v =-29

2 + 0y + 2w - 6v = 29

10x + 2y - 4z + 2w - v =-26

x - 2y + 2z + 7w - v = 6

2x + 8y + 4z - w = 24

Is the coefficient matrix diagonally dominant?

Apply program JTEST. What is the problem here? Swap rows four and

five and try again.

Apply program STEST to the last matrix you had in (b). What is your

conclusion?

Rearrange the equations to get an equivalent system with a diagonally

dominant coefficient matrix.

Solve the rearranged system by Gauss-Seidel iteration, accurate to

approximately 6 decimal places.

Write a paragraph explaining your observations and what you have

learned by this activity.

Use matrix

[[9 2 -3]
A= [1 4 2]

[2 -3 5]]

to show that the converse of part (b) of the above Theorem is false.
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(b) Test the Jacobiiteration matrix for Ax = b for convergence.

3. Consider the linear system Ax = b where

[[6 1 2 O
[0 4 0 -1

A=[1 -1 5 2
[-1 0 1 5
[0 1 0 -1

andb=[-22 -44 465 -198 187].

(a)

(b)

Is A diagonally dominant?

0]
0]
1]
0]
31]

Apply the Jacobi iteration to obtain a solution that is accurate to

approximately 8 decimal digits; how many iterations were required?

(c) Now apply the Gauss-Seidel iteration using an accuracy factor of 5 x 105;

how many iterations were required?

What is the exact solution?(d)

4. Consider this tridiagonal system:

2 + x

N o+ 2 + x

XL + 26 + X

B o+ 2 + X

Xy + 2x

(a) Apply D.DOM, JTEST and STEST as tests for convergence.

(b) On the basis of your results in (a), apply an iterative method to solve the

system to approximately 8 decimal place accuracy.
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5. Consider the tridiagonal system

n - x = 4

X+ 3 - 3 = 11

- x - 3 - x = -1

- 3 + 3 - X% = 3

- X o+ 3 - x5 = -2

- x5 + X = -3

(a) Apply all our tests for convergence. What can you conclude?

(b) Remember, these tests are only sufficient conditions for convergence. Thus,

ignore the test results and try for an iterative solution anyway, accurate to

approximately 6 decimal places.

(c) What is the actual solution?

7.2 THE POWER METHOD

The power method is a simple iterative technique for finding an approximation

to the dominant eigenvalue and an associated eigenvector of a matrix A. By a

dominant eigenvalue we mean an eigenvalue A, satisfying

1A 1> 14 2. 2] A

where 4, 4,, ..., A, are all the eigenvalues of A. Since a matrix may fail to have a

dominant eigenvalue, the power method is not a general purpose technique.

However, it forms the basis for other, more powerful, iterative methods; in

particular, the QR-algorithm.

The power method is based upon the following assumptions about the matrix A:
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(a) A is real and diagonalizable;

(b) A has a dominant eigenvalue A,.

We start with an arbitrary vector y, written in terms of independent eigenvectors

 

Xy, Xy, oy X, @S Yo =a1X% + ... +a,x,a where a; # 0, and form the sequence of unit
A

vectors {y, } as y, = i Azk-l Tk fork =1, 2, ... Here, we are using the usual Euclidean
k-1

Ay, Ay, Ay, vector norm (or length). Thus y, = etc. Under the
1Ay, 1" Y2 Ay, I’ 3 SAy, 11

two stated assumptions and that a; # 0, the power method asserts that

(i) the sequence {y, } converges to a unit eigenvector v associated with A, ;

and

(ii) the sequence { Ay, ¢y, } converges to the dominant eigenvalue 2, .

To see why, consider the sequence z, =y, z, = Az,; (k = 1, 2, ...) without

normalization:

z, = Ay, 2, = Az, = A%y,, ..., 2, = Az,; = ARy,

Using Akxj = /'U‘xj and our expression for y, we have

 

  
 

 

z, = Aky, = alk’; X+ e+ an)»: X,, OF

= k _}2 k _}fi k2) z = Kl[alxl +a2()‘1) Xp+ ... + an(xlj X, ]

Al 2
Ay, z Ay, Iz Il Az, z,

Now = = , = = = = ,

NAy T Iz 0 Y2 Ayl llaf~2 )| M4l e
I z, I

z
and in general, y, =k Looking back at (2), we see that

Il z, Il
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B

 

(3) %=

/l’;iialxl +a2(%)k]x2+ .t oa, (%)k X,

ln|/l';|||a1x1+a2(%)k X, + ...+ "(T)k X,

A
1

  

—

Since | A4; | > | /”tjl forj=2, .., n, we have <1lforj=2,.. m Thus from (3),
  

a
as k = oo, yk*i—”alil”—

1%
/

which is a unit eigenvector associated with A,.

Finally, since y, = v, Ay, @ Av = A,v, so that Ay, ey, > AL,vev =A,(vev) =

Allv > = A,. This completes the argument.

In summary, under our three assumptions, the power method gives us two

sequences:

e a sequence of vectors { y, } converging to an eigenvector v associated with the

dominant eigenvalue 4,;

e an associated sequence of numbers { Ay, e y, } converging to the dominant

eigenvalue 4, .

In practice, we calculate the sequences together, term-by-term. Because the

convergence of { y, } to a vector v amounts to the convergence of the components of y,

to the corresponding components of v, we base our stopping criterion in terms of the

Il Yi = Yia llo
Il vye

often converges more rapidly.

relative error on the sequence { y, }. The sequence of numbers { Ay, e vy, }
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To implement the entire process on the HP-48G/GX requires a program to

calculate both sequences, term-by-term, and to apply the desired stopping criterion.

Program POWER doesjust that.
 

POWER (Power method)

Input:  level 3: a real nx n matrix A, assumed to be

diagonalizable and have a dominant

eigenvalue A4

level 2: an n-vector y,, assumed to have a non-

zero component in the direction of an

eigenvector associated with 4

level 1: an accuracy level € in the form .00005

Effect: returns, at timed intervals, the successive terms of

a sequence of vectors that approaches a dominant

eigenvector, and a corresponding sequence of

numbers that approaches the dominant eigenvalue;

terminates the relative error in the sequence of

vectors is less than € or when 180 iterations have

occurred. Display is set to n FIX, where n is the

number of digits in €.

« > Ay, e « 0 'ctt STO e XPON NEG FIX y, 'yN' STO DO yN 'yO'

STO A yO * DUP ABS / 'yN' STO A yN * yN DOT CLLCD 1

DISP yN 4 DISP .5 WAIT 1 ‘ct' STO+ UNTIL yN yO - RNRM yN

RNRM 102 + / € < ct 180 == OR END IF ct 180 < THEN ct

'iterations' »TAG ELSE 180 'iterations' -TAG END A yN * yN DOT

yN {ct yO yN} PURGE » »    
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EXAMPLE 3. Enter and store the matrix

[[1 -1 -2 -3]
[1 3 2 3]

A= 10 4 1 3]
[-1 1 2 3]]

You can verify that A has eigenvalues 3, 2, 1 and 0, hence is diagonalizable. Thus

A = 3 is the dominant eigenvalue. Lety, =[1 1 1 1] and proceed on the assumption

that y, has a non-zero component in the direction of an eigenvector associated with

A = 3. Using 6 decimal place accuracy specified by € = .000005, POWER shows a

sequence of numbers converging to 7 = 3.000009 and a sequence of vectors converging to

X = [ -.499999 500004 -.499999 .499999 ] after 27 iterations. To see how close the

pair (Z , x) is to being an eigenvalue-eigenvector pair for A: duplicate x with

, recall A to level 1 with and press to see

Ax=[-1.500001 1500013 -1.500001 1.50001]. Now do 3| ROLLD IENTER

to see A x = [-1.500000 1500018 -1.500000 1.500000]. Compare levels 1 and 2.

COMMENT. As in this example, we usually do not know in advance whether the

initial vector y, has a non-zero component in the direction of a dominant eigenvector.

But this rarely causes difficulty in practice because the round-off errors that appear

after a few iterations usually perturb the problem to the point where this is the

case.

EXAMPLE 4. To see the effect of different initial vectors y,, return to the matrix A

of EXAMPLE 3and usey, =[1 0 -1 O], thenusey, =[1 2 3 4]. With 6 place

accuracy, the first choice shows A = 2999991 and x = [ .500001 -.499996 .500001

-.500001 ] after 28 iterations while the second choice shows A = 3.00010 and

X = [ -.499998 .500005 -.499998 .499998 ] after 25 iterations.
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Activity Set 7.2

1. Seed your random number generator with 2 and generate the following random

6 X 6 symmatrix matrix A

[[5 4 2 5 -8 5]
[4 6 -4 7 8 0]

A=[2 4 0 -6 -4 0]
[5 7 6 2 8 -5]
[8 8 -4 8 3 -2]
[5 0 0 5 2 0]]

over Z;, with program SYMM:

(a) Verify that A has a dominant eigenvalue A.

(b) Apply the power method via program POWER, starting with the vector of

all 1’s and using 8 decimal place accuracy.

(c) LetZ and x denote the approximations to A and an associated eigenvector

obtained in (b). Verify that Ax = 4 x.

Looking back at equation (2) in our derivation of the power method, you can see

A
that the rate of convergence is governed by the factor f

1

(remember: |A;|> |4, |2...2 | A,| ). The smaller this factor, the faster the

convergence. That is, the convergence will be faster if A; strongly dominates the

next largest eigenvalue. To see this in practice, consider the following two

sparse (tridiagonal) matrices A and B, that differ only in their (1,1)-entries.



(a)

(b)

(c)
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[[2 -1 0 0O 0 0] [[6 -1 0 0O 0 0]

[-1 1 -1 0 0 0] [-1 1 1 0 0 0]

A= [0 -1 1 -1 0 0] B = [0 -1 1 1 0 0]

[0 O -1 1 -1 0] [0 O -1 1 -1 0]

[0 O O -1 1 -] [0 O O -1 1 -1]

[0 O O O -1 1]] [0 O O 0 -1 1]]

. : A : A
Verify that for matrix A, 1—1 =~ .84878 and for matrix B, 1_1 = .43725,

    
a little more than one-half the value for matrix A.

Apply the power method to matrix Ausingy, =[1 1 1 1 1 1] Aim

for 12 decimal place accuracy and note the number of iterations required.

Now apply the power method to matrix Busingy, =[1 1 1 1 1 1]

Again, aim for 12 decimal place accuracy and note the number of iterations

required. Compare the iteration count with that in (b).

Seed your random number generator with 3, and use program SYMM to build the

following 5 x 5 symmetrix matrix:

(a)

(b)

[[1 1 5 2 -1]
[1 3 2 -7 4]

A=[5 2 5 1 7]
[2 7 1 -8 9]
[-1 4 -7 9 -9]]

Apply the power method using [1 1 1 1 1] and 6 decimal place

accuracy. Pay close attention to the sequence of vectors being generated.

How many iterations occurred? This is the maximum number allowed by

program POWER.
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To see why this many iterations occurred, notice that the stopping criteria in

POWER is: -"ykfl_—yk"u < € or ¢t = 180 (where ct is the iteration counter). For this
" yk+1 " +10

particular matrix, after 18 iterations, the components of y;,; and y; agree to 6

decimal places except for a sign: yi.1 = -yx. Thus yeq = yx = 2¥k41, 50 | Yipq — Yk Nl=

I 2V541 lle = 2 Il Y41 ll« and the relative error ceases to decrease. Thus the iterations

continue to the maximum allowable.



 

 
VECTOR AND MATRIX NORMS

  

  

When a vector v = [ x;, x,, x; ] in R3 is interpreted geometrically, its length is

2
given by || v || = [xf + xi +X; ]1/ 2. The well-known properties of vector lengths include:

(1) lvll>0ifv =0,

(2) llow|l =] alllv] for any scalar a and any vector v,

3) lv+wl|<|lv|l+]|lw] for any vectors v, w.

It seems natural to adopt the corresponding notion for length R": for any vector

v=[x,%,.,x, 1 llvi= [xf + xi +.. + xi ]1/2. But there are situations where other

scalar measures of the “size” of vectors in R” is more meaningful. For instance, if the

components of v = [ 6, 3, 2, 5, 9 ] record the average times required to complete

different components in an assembly operation, then (62 + 32 + 22 + 52 + 92)1/2 jg

somewhat meaningless when compared to 6 + 3 + 2 + 5 + 9 (the sum of the average

assembly times) or to max { 6, 3, 2, 5, 9 } (the largest average assembly time). In

general, several different notions of the length, or size, of a vector may be useful.

175
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The term norm is applied to any generalization of Euclidean length in R3 as long

as the above three conditions are met. The most commonly used norms for vectors in

R" are these:

12
2

e The Euclidean vector norm: || v ||2 = [2 lxil]
1

e The vector sum norm: Il vl =Z | x;]
1

e The vector max norm: vl= mzizx | x;l.

All of these are true vector norms, in the sense that they satisfy the above

conditions (1) — (3).

Analogous to vector norms are the matrix norms || A || which are scalar measures

of square matrices. To qualify as a matrix norm the number|| A || must satisfy:

(1) NA|l>0ifA =0,

(2)A ll=]la|llAll, for any scalar & and any matrix A,

3) WA+BI|I<IIAIl + |l B, for any matrices A, B,

(4) WABII<IIAINBI, for any matrices A, B.

Conditions (1) - (3) are the same as for vector norms, but (4) is new and implies that

Il A"|| <|| A ||*. One of its more important uses is that if || A || < 1 then || A”|| = 0

as n —> oo,

When our earlier examples of vector norms are applied to square matrices, the

first two are matrix norms:
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1/2
2

e the Euclidean (or Frobenius) norm: || A ||y = [Z lxijlj| , and
’,

o the sum norm: ||A|l = ) la;l;
]

but the third one, || A || = max Iaijl fails to be a matrix norm because condition (4)
i,j

need not hold.

Although there are many ways to define matrix norms, it is especially useful to

use a matrix norm that is connected to an existing vector norm. This can be done as

follows: given a vector norm || x || for vectors x in R”, we define a matrix norm || A ||

for n x n matrices by || A || = l’;}fi Il Ax ||.

This produces a true matrix norm (that is, (1) — (4) hold) that measures the

amount by which a vector x of norm 1 is “magnified” by matrix A. We call || A || the

matrix norm induced by the vector norm || x ||. The most important properties of

induced matrix norms are these:

(5) NAx|I<lIA]lll x|l for all x, and

(6) Il =1

When the three common vector norms are used to induce matrix norms, it can be

proved! that:

e the vector sum norm induces the column-sum norm of A:

I A |, =max Y, |a;
;T

 

Igee, e.g., Section 5.6 in Matrix Analysis, by Horn and Johnson, Cambridge
University Press, 1985.
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e the vector max norm induces the row-sum norm of A:

Al = max Z |a,‘j
J

e the Euclidean norm induces the spectral norm of A:

Il All, = max (\/—/_1: A is an eigenvalue of ATA}.

Of these three matrix norms, the column-sum and row-sum norms are used most

often because they are so easy to calculate. The Frobenius norm is also easy to

calculate but is not induced by a vector norm. The spectral norm, on the other hand,

is much more difficult to obtain and is mainly for theoretical use.

The spectral norm is not the only connection between matrix norms and

eigenvalues. For any square matrix A, its spectral radius p(A) is defined by

p(A) =max {|A|: A is an eigenvalue of A } , and it can be shown that p(A) < || A ||

for any matrix norm. Thus the column-sum and row-sum norms provide easy estimates

of p(A).

Norms on the HP-48G/GX

Four matrix and vector norms are provided on the MTH MATR NORM menu of

the 48G/GX:

e The Euclidean (Frobenius) matrix norm || A ||z: the ABS command. Since vectors

on the HP-48G/GX are one-dimensional arrays sensed as column vectors, ABS

applied to a vector v returns its vector Euclidean norm || v ||, .

e The row-sum, or «-norm || A ||,: the RNRM command. For a vector v, RNRM

returns its vector max norm || v ||, .

e The column-sum, or 1-norm || A ||;: the CNRM command. For a vector v, CNRM

returns its vector sum norm || v ||, .
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e The spectral norm || A ||,: the SNRM command. For a vector v, SNRM returns

the vector Euclidean norm || v ||, .

EXAMPLE

(a) Consider the following matrix

[[4-3 0]
A= [0 5 -1] .

[2 0 -3]]

The command ABS returns || A || = 8, the command RNRM returns || A ||, =7,

the command CNRM returns || A ||; = 8 and the command SNRM returns

I All, =6.3996414623.

(b) Forv=[-1 251 -21] ABS returns |v |, =6, RNRM returns || v ||, =5,

CNRM returns || v ||, = 12, and SNRM returns || v ||, = 6.

ACTIVITIES

1. What is the Frobenius norm for an identity matrix? Experiment with identity

matrices of orders 3, 4, 5, 9 and 16 to find out.

How do the row-sum and column-sum norms compare for symmetric matrices?

Experiment with random 3 x 3, 4 x 4 and 5 x 5 matrices over Z,, to find out.

Seed your random number generator with 3 and generate a random 4 x 4 matrix A

and a random 4-vector x over Z;;. Use A and x to verify that for each of the

four matrix and vector norms provided on the HP-48G/GX, ||Ax||[<||A ||l x|l

max
Consider the attempt to define a matrix norm by || A || = 1,i | a Experiment"
with random 3 X 3 matrices over Z,, to find a pair A, B for which the

inequality||AB <[A ||| Blis invalid.



TEACHING CODE:

ORGANIZATION

 

The special-purpose HP-48G/GX programs for teaching linear algebra that are

contained in this book are called teaching code; a listing appears on the inside back

cover. The teaching code is readily available on a diskette from the author for

downloading to an HP-48G/GX from a microcomputer. This appendix shows how the

teaching code is organized in files, or directories.

A factory-fresh HP-48G/GX calculator contains only the built-in HOME

directory, indicated by the message { HOME } at the top left of the stack display

screen. The teaching code for linear algebra is stored in a directory called MTRX,

and MTRX is divided into five subdirectories, each one containing teaching code

related to a major topic.

HOME

MTRX

BUILD GAUSS ORTH MISC ITERATE

e Subdirectory BUILD. Contains the teaching code used to build special types of

matrices (see Chapter 2): SYMM, L.TRI, U.TRI, DIAG, TRIDIA,

HILB.

180
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e Subdirectory GAUSS. Contains the teaching code related to Gaussian

elimination (see Chapter 3): ELIM, PIVOT, L.U, FWD, BACK,

L.SWP, -LP.

e Subdirectory ORTH. Contains the teaching code related to orthogonality concepts

(see Chapter 5): PROJ, GS, P.FIT.

e Subdirectory MISC. A subdirectory containing miscellaneous teaching code:

CHAR, P.DEF, P.of.A, ATK, APLY.

e Subdirectory ITERATE. Contains the teaching code related to iterative methods

(see Chapter 7): JTEST, JACOBI, STEST, SEIDL, D.DOM,

POWER.

To execute any of these programs, open the MTRX directory with the MTRX

key, then open the appropriate subdirectory with its menu key. Put the necessary

inputs to a particular program on the stack and then execute the name of the program

by typing the name and using the ENTER key, or using the appropriate menu key.

You have access to all built-in commands from any MTRX subdirectory without

exiting from that subdirectory. Simply type the command and press ENTER (be sure

to first provide the necessary inputs on the stack), or use the appropriate built-in

menu key. If you use a built-in menu key, you can return directly to the MTRX

subdirectory with the VAR key.

To move up from a particular MTRX subdirectory to the main MTRX directory,

use the UP key (the left-shifted ' key).

To rearrange any of the variables in a subdirectory of MTRX (including the

MTRX directory itself), apply the command ORDER (on the MEMOHY DIR
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submenu) to a list that contains the names of the variables in the desired order, left-

to-right.

And finally, a word of caution. With any object on stack level 1, pressing

and then the menu key beneath a particular user-constructed variable (in particular,

one of our teaching code programs) will overwrite the contents of that variable with

the object from level 1. So be careful; in a hasty moment it is easy to destroy

teaching code.



 

SOLUTIONS

Activity Set 2.2

([ 3
[ -6

1.(a) B= [ 2
[ 5

[([3
[ -3

(c) D= [7
[ 1
[ O

[[ M
[ 21

2. (a) A= [.3
[ .41
[ 51

[[21

(c) C= [.24
[.33

[.52

(1 1 1

3. (a) [2 2 2
[3 3 3

[4 4 4

4. (a) level 2:
level 1:

level 2:
level 1:

'
N
S
A
E
N
D
N

N
N
D
D
W
O
o
O
D
N

22 .
32 .
42 .
52 .

22 .
31 .
.34 .
.53 .

>
o
o
,

o
>

1 5 0] [[ 8 2 1)

3 0 1] [5 0 -6]
8 7 9] (b) C= [7 3 0]
6 1 3]] [12-4]

(8 7 9]]

1 ]

-6 ] [[ 3 2 1 ]

0 ] (d) E= [7 3 0 ]
-4 ] [0 7 1375 1]

1.375 ]]

13 .14 ]
23 .24 ] [[21 .22 .23 .24 ]
33 .34 ] (b) B= [31 .32.33 .34 ]
43 .44 | [ 51 .52 .53 .54 ]
53 .54 1]

23 ] [[ .62 .63 .64 ]
32 ] (d) [ 21 22 .23 ]
51 ] [ .33 .34 51 ]
54 1] [ .52 .53 .54 ]]

] [[1 1 1 5]

] (b) [2 2 2 5] (c) No; notice the (4,4)-entries
] [ 3 3 3 5]

1] [4 4 4 4]]

4 COL+ returns [ A B] (b) Approaches vary

and

4 ROW returns |:g]

183
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Activity Set 2.3

9
5
4
.
|

o

N
0
O
©

'

S
t
S
l

p
r
—
—
—
—

p
—

[[ -835-18 16 ]
-4 ]-28 -20

14 -24 -44 ]]
[
[

C3 =

—
_
—
—
—

<
t
©
O
1

1

o
n
o
w
O

.

~
N
W

Y
S
l
S
l
S
l

C
d
e

S
l

N
O

Y
.

(d) C?=

—
_
—
—
—

M
5

N
o
«

1]
18 -8 20 -2 ]]

-16 13 -8

S
t
b
d

[
BA =

S
t
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e
t
b
t
e
t

S
S
l
S
l
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For example, seed with 4 and generate the 3 x 4 matrix

[[-8 8 9 -4]
A= [-9 0 1 4] .

[-4 2 8 61]]

[[161 -72 -113 -28 ]
Then ATA= [-72 68 88 -20 ]

[113 88 146 16 ]
[-28 -20 16 68 ]]

For the 4 X 5 matrix

[
B =

o
p
r
O
N

-8 -5

[[120 94 -82 -42 4]
we have BTB = [ 94 87 -68 -23 -15 ]

[-82 -68 13 26 28]
[-42 -23 26 49 -44 ]
[ 4 -15 28 -44 65]]

[
[
[
[

[

and for the 5 x 6 matrix

[[-6 9 4 8 1 2]
[ 7 -2 -6 9 -2 -2]

C=15-3 1 4 4 -8]
[ 2 2 4 -4 4 9]
[1 5 -7 5 5 -4]]

[[ 115 -84 -46 22 3 -44
[ -84 123 18 59 34 44
[ -46 18 118 -69 1 76

wehave CTC= [ 22 59 -69 202 15 -90
[ 3 34 1 15 62 -10
[ -44 44 76 -90 -10 169 —
e
b

b
d
)
e

]

(c) Conjecture: For any matrix A, ATA is symmetric.

(d) Proof: (ATA )T = AT(AT)T = ATA.

5. (a)
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([ 7,9 (9,-7) (-8,5) (5,0 ]
(b) A+iB= [ (83) (1,1) (6,3 (5¢6) ]

[@3-3) (3,5 (7,-6) (7,-9) ]
[ (11 4) ('21 '1) ('51 '3) ('2v 5) ] ]

[t 7.9 @63 @G-3) (149 ]
(A+iB)T= [(-9,-7) (1,1) (3,5 (2-1) ]

[ (-8,5) (6,3) (7,-6) (-5,-3) ]
[ (-5, O) (5! 6) (7v '9) ('21 5) ] ]

(c) After separating, SWAPing and recombining the new matrix is

[[ (9! 7) ('7’ '9) (5' '8) (0! '5) ]

[ (-3,3) (5,-3) (6,-7) (-9,7) ]
[ (4!1) ('1"2) ('3» '5) (5’ '2) ]]

6.(a) C=1[[ 35 4 ]
[ 716 ]]

[[ 1-2 3 5 4 3 7 ] [[ 134 7 ]

(b)) D= [ 79 01 35 1] E= [7 03 1]
[-38 6 2 14 6 ]] [-3 6 16 ]]

7. (a) A*=[[ (5-1) (0,-4) ] BT = [[ (-3,1) (0,0) (4, -3) ]

[3) 61) ] [ 6,0 2-1) (171 1]
[ (1,O) (3,-4)1]]

(b) A*+B=1[[ 20 (6-4] A+BT=[[ (22 (2-3) (5-3) ]
[3) (80 ] [ 6,4) (8,-2) (4,5 ]]

[ (5,-3) (4,-3)]]

AA* = [[ (40, 0) (22, -40) ] BTB = [[(15,-3) (-11,7) ]

[ (22, 40) (78,0) 1] [ (11,7) (39,-2) ]]

@-3)A= [[ (13,-13) (-5,-12) (2,-3) ]
[ (12,8 (9,-20) (18,-1) ]]

[[ (12,-10) (19,13) (5, -2) ]
8. A2 —4A* +3AT-1= [ (0,17) (41,24) (17,33) ]

[ @17) (9, 24) (29,13) ]]

9. (a) A%—-8A3 +22A2 —40A +25[=0
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-1
(b) A[A3-8A? +22A -40I]=-25I so A'1=g [ A3 —-8AZ + 22A - 401 ]

[[ -4.68 -3.28 -4.48 -2 ]
[ 56 .76 16 0 ]

(c) Al = [ 432 272 452 2]
[ 256 176 216 1 ]

[[.269
. [ 212

10. (a) To three decimal places, ,l,l_’:i {A"} = [ 205

[ 315

(b) To three decimal places, r{‘_’)’l {A"x} = [ .269

(c) Each column in lim { pony s lim { Any }.
n—oo Nn—oo

11. The conclusion is the same as in 10(c).

12. u=[4 -2 5-8 5]Jandv=[-4 7 8 0 -6]

(a) uev=-20 (b) ue(u+v)=114

(d) u-9

| u-vll

Activity Set 2.4

1. (a) det[ 1000A ] = -1,536,000

(b) Using cofactors along column 1,

[[13 6 4 1] [
[ 1 11 1]

det A=det [ 1 3 6 4 1] +3det
[1 1 1 1 3]

[1 3 6 4 1]]

[ 0 10

[ 3 6 4
—det [ 1 1 1 1

[ 1 3 6 4
[ 11 11

=1 (e) 16.093476934 < 24.4210694815

.269

212

.205

315

212

.269

212

.205

315

.205

269 |
212 ]
205 |
315 1]

315 ]

(c) ve(v—-u)=185
—
_
-

W
a
W
a
0

W
a
2

[
S
e

D
a
0

-

A
a
p
P
p
b
a
O

(f) 20 < 148.69431731

—
_
W
a

C
d
b

b
e
d
e

e
e
d
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and since each of the three matrices on the right has two identical rows,
det A = 0. Thus det [ 10004 ] =0

(c) When detA is calculated as -1.536 x 10-12 due to round-off error,
det[ 1000A ] =det[ 103A ] = (103)6det A = 1018( -1.536 x 10-12)

= -1.536 x 10° = -1,536,000.

(d) With flag -54 clear, det A is calculated to be 0.

Activity Set 2.5

1. The RPN program is « 1 -NUM + COS ». The resultis

(r 1+ 1 1]

[ 1 1 1].

[ 1 1 1 ]]

2. The RPN program is « Y 2 + FLOOR ». The result is

[[ 83 3 3]

[ 4 4 4 ].
[ 4 4 5 ]]

3. The RPN program is « DUP 1 + SWAP / \ CEIL ». The result is

({2 1 2 ]
[ 1 2 1 7.
[ 2 1 2 ]]

Activity Set 3.1

[[4 1 3 6] 1,2RSWP [[ 8 -2 4 -8]
1. (a) [ 8 -2 4 -8] > [0 2 1 10]

[ 8 -6 -2-36]] Rp(-5) [ 0-4 -6-28]]
R34(-1)

2,3RSWP [[ 8 -2 4 -8] Rsx(.5) [[ 8 -2 4 -8]
- [ 0 -4 -6 -28 ] > [0-4 -6-28] =[Ulb].

[ 0 2 1 10]] [0 0 -2 -4]]

BACK > [ 4 2]
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[[ 32 -2 2 -5 [([6 2 -1 -2 -10 ]
[ 6 2 4 -2 -10 ] 1,2 [3 2 -2 2 -5 ]

(b) [-3 1 25 0 8 ] RSWP [-8 1 25 0 8 ]

[ 6 0 2 4 2 ]] - [6 0 2 4 2 ]]

Ro1(-5) [[ 6 2 -1 -2 -10 ] 2,3 [[6 2 -1 -2 -10]
- [0 115 3 O0]RSWP > [0 2 -2 2 -5]

R31(.5) [ 02 2 414 3] R32(-5) [ 0 0 -25 35-15]

Ra1(-1) [ 0-2 3 6 ® ]] Ra2(1) [0 0 5 5 15 ]]

34 [[ 6 2 1 -2 -10 ] -
RSWP [ 02 2 4 3] =[Ulb] BACK [1 0 2 1]
- [ 00 5 5 15 ]

R43(5) [0 0 0 6 6 ]]

2. (a) Row Operations: (b) Row Operations:
1, 2 RSWP 1, 4 RSWP
1, 1 ELIM 1, 1 ELIM
2, 4 RSWP 2, 3 RSWP
2, 2 ELIM 2,2 ELIM
3, 3 ELIM 9 RND
5 COL- 3, 3 ELIM
BACK—>[1 0 -2 4] 5 COL-

BACK and

7BRND - [6 -5 1 3]

3. (a) Row Operations: 1, 3 RSWP [[ 36 9 2 -5]

1,1ELIM > [ 0 1 1 4.3 6.6 ]
3,4 ELIM [ 00 0 33 6.6 ]

[00 O O 01]]

Thus x; is a free variable x4 = 2. Also

X = 6.g—x3 - 4§x4

= 6.6-x; —86

=-2-Xx3.

And 3x; = -5-6x; —9x3 — 2x4

5-6(-2-x3)-9x3 —2(2)

S5+12+6x3-9x3-4=3-3x3,50x;=1-x3 .
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1, 3 RSWP
1,1 ELIM
2, 3 RSWP

(b)

2,3ELIM -
3, 4 RSWP
3, 6 ELIM

Then x,, x4, and x5 are free variables and x4 = .

Also5x3 =

Finally, 6x,

so that x;

Activity Set 3.2

S0OX3 =

-9 0 11 19 3 0]
0 5 16 -33 -8 6 ]
0 0 O 0 4 2]
0 0 O 0 0 0 ]]

5.

6 — 1.6x;, + 33x + 8x,

6 — 1.6xy + 33x5 + 4

10 - 1.6x4 + 33%

2 - 3x + .6x5 .

9x2—11x4+19x5—3x6

9%, — 11x4 + 19x5 — 3/2

1.5x; — 1.83x, + 3.16x5 — .25.

[[10 0] [[-2 4 5]
L= [110] U= [ 0 3 8]

[.6.5 1]] [ 0 0-4]]

x= [.5 -1 3]

([10 0] [[-6-6 -3 ]
L= [3 1 0] U= [ 0 8 6 ]

[.6 .5 1]] [ 0 0-21]]

x=[-5 1 2]

[l 1 0 0 0]
L= [ 3 10 0]

[ 0-5 1 0]
[ -3 5 .5 1]]

y= [-24-16 36-42 ]

([100]
1.(a) P= [0 0 1]

[0 10]]

y= [10 2 12 ]

[[0 O 1]
() P= 110 0]

[0 10]]

y= [1820-4 ]

[[0 0 0 1]
(c) P= [00 10]

[10 0 0]
[0 10 0]]

[[9 6 -3 6]
U= [0 4 -2 2]

[0 0 6-2]
[0 0 0 7]]

x= [ -2 1
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[[ 1 -8 -5 1 8 ]
[0 1 .93 428571428571 .06 ]

U= [0 0 1 -1.33928571429 -.0625 ]
[ O 0 0 1 -4.97668997669 |
[ O 0 0 0 1 1]

y= [18 .238095238096 11.0267857143 -6.62121212126 .270430906347 ]

x= [ -2.99577087667 .800891530589  2.35624071312 -6.48662704316 .270430906347 ]

Activity Set 3.3

1.  The RREF's for the augmented matrices are:

a. [[ 100 - ] b. [[1 0 0 0 -1]
[ 0 10 4 ] [0 1 0 0 0]
[ 001 2] [0 0 1 0 2]

[0 O O 1 11]]

2.  The RREF's for the augmented matrices are:

a. [[100 0 1] b. [[1 0 0 0 6]
[0 10 0O0] [0 1 0 O -5]
[0 0 10-2] [0 0 1 0 1]
[0 00 141]] [0 0 0 1 31]]

3.  The RREF's for the augmented matrices are:

a. [[1 0 10 1] b. [[1 0 0 0 O 13 .6 ]
[0 11 0-2] [0 1 0 12 27 7 2 ]
[0 00 12] [0 0 1 .3 -8 -13 -13 ]
[0 00 O0O1]] [0 0O OO 0 0 0 ]]

Activity Set 4.1

1. Consider the matrix ] [[ 8 3 1 2 16 ]
U1 U Uq Uy Uz = [ 9 414 -5 11 -7 ]

L [ 7 -84 23 3 ]]

The reduced row echelon form is

0 0 1 .961904761905 ]
1 0 -2 1.84761904762 ] .
0 1 0 27619047619 ]]
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Thus neither u; nor u; is a linear combination of v; and v,; but u, = v; - 2v,.

2. Consider the matrix

L0 [[-2 5 4 -3 -9 0 ]
U1 Uy U3 Uy Uy Ujz = [ 7 -6 -8 16 0 -5 ]

o [ 6 -6 3 3 4 27 ].
[-5 4 9 -15 -3 14 ]]

The reduced row echelon form is

-
—

e
t
b
d
e

Thus u; = 2v, + v; —v3, U, is not in Span [ vy, v,, v3 ], and uz = v; — 20, + 3v; .

3. [[4 9 6-5 -4 ] [[10 0-2- ]
[-3 65 7 0 ] [0 10 12 ]
[-2-9 0-5-16 ] — [0 0 1-1-3 ]
[ 3-5 2-13 -19 ]] [000 0O ]]

Thus p(x) = -2 r(x) + s(x) — t(x) and g(x) = -r(x) + 2s(x) — 3t(x).

Activity Set 4.2

1. (a) Since the rows of A are the columns of AT, we consider AT:

[([10 0 18 ]
10 -1

The reduced echelon form of ATis { 8 0 ? zg } .

[00 0 O ]

Since x, is a free variable, ATx = 0 had infinitely many solutions. Thus the
columns of AT (i.e., the rows of A) are dependent.

All solutions to ATx = 0 appearlike [ -1/3x,,1/3x4,2/3x4 , x4 ], and choosing x,

=1weget[-1/3,1/3,2/3,1].

Thus the dependence among the rows of A is given by
1 1 2
3 (row 1) + 3 (row 2) + 3 (row 3) + (row 4) = 0.
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b.

C.

d.

e.

2. (a)

SOLUTIONS

[[10 0 -5 ]
0 .37

The reduced echelon form of A is { g 3 1 222 } :

[00 0 0 ]]

Thus the columns of A are dependent and a general dependency is given by
Ay =-5A; + 375A, + 625A,.

The reduced row echelon form of CT hasa 1 in every column, so the columns of

CT (i.e., the rows of C) are independent.

We look to solve Cx = 0. The reduced row echelon form is

[[1000 1]
[0 100 -]
[00 10 17"
[00 0 1 1]]

So x5 is a free variable and the columns of C are dependent. A general
dependency relation is A5 = A; - A; — A3 + Ay.

The reduced row echelon form of E is

[

O
C
O
0
O
0
O
a
a

O
o
0
O
0
a
0

-
o

o
o

o
N
O

0 0 01]]

So x5 is a free variable and the columns of E are dependent. A dependency
relation is A5 = "2A1 + 2A3.

Let A have uy, u,, u3 and uy as its columns. The RREF of A is

-5 ]
5 ]
-5 ]
0 ]]

Thus { uy, u, u3, uy } is a dependent set of vectors. In particular,
ug =-5u; + .5u, — Su;.

0
0
1

0O
O
.
0

We delete u, and consider { u;, u,, u3 }. Let matrix B consist of the first
three columns of A. The RREF of B is



(b)

(c)
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O
O

a
a

O
4
0
0

o
O
o
O
0
o
O
0
O
o

]

Thus { u;, u,, u3 } is independent and W = Span [ u;, u,, u; ] .

Let A have vy, v,, v3 and v, as its columns. The reduced row echelon form of
A is

[ -.8
g

-1.3

0 ]]

Thus { vy, v3, v3 } is independent and W = Span [ vy, v, v3 ] .

O
O
0

-

O
O
0
4
0

O
4
0
0[

[
[
[

Let A have w;, w,, w3 and w, as its columns. The reduced row echelon form

of A is

[[ 10 1 0]
[0 1 2 4]
[0O0O0 O O]

[00 0 0]]

Thus { w,, w, } is independent and W = Span [ wy, w, ] .

Activity Set 4.3

1. (a) The reduced ro echelon form of A is

[

E=

wW

0
0 -
1

00
0
O

O
O
a
0

o
o
l
W
l
W
i

]

Rows 1, 2,3 of E form a basis for the row space of A.

Columns 1, 2, 3 of A form a basis for the column space of A.

A basis for the null space of A: [-3 3 6 1].

A basis for the left null space of A: [ .5 -375 -625 1 ].
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(b) The reduced row echelon form of B is

(c)

(d)

[

E=
O
O
O

- 0
0
1
0O

O
4
0

O
O
a

O
O

O
,

]

Rows 1, 2, 3 of E form a basis for the row space of B.

Columns 1, 2, 4 of B form a basis for the column space of B.

A basis for the null spaceof B: [-1 -1 1 0 0]and [-5 0 0 2 1]

A basis for the left null spaceof B: [ 1 4 -1 1].

The reduced row echelon form of C is

[

E=

O
O
O

a
a

O
O
a
0

O
O
a
-

O
4
0
O
0

O
N
I
{
)
_
L

]

Rows 1, 2, 3 of E form a basis for the row space of C.

Columns 1, 2, 4 of C form a basis for the column space of C.

A basis for the null spaceof C: [-1 -1 1 0 0] and [-1 2 0-2 1]

A basis for the left null spaceof C: [ .1 -7 0 1].

The reduced row echelon form of D is

[[1000 1]
[0102 1]

E= (00 14 4"
[00 00 0]
[00 00 0]]

Rows 1, 2, 3 of E form a basis for the row space of D.

Columns 1, 2, 3 of D form a basis for the column space of D.

A basis for the null spaceof D: [0 -2 1 1 O]and [-1-1 1 O 1].

A basis for the left null space of D:

[ .586776859504 -8.59504132231 -.256198347107 1 0 ] and

[ -1.38016528926 1.28925619835 .884297520661 0 1 ].
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2. (a) Rows1,2,40f A form a basis for the row space of A.

(b) Rows1,2,40f A form a basis for the row space of A.

Activity Set 4.4

1. (a)

(b)

(c)

(d)

Let A have u;, u, and uj as its columns and let C have v, v, and v3 as its
columns. Then AT and CT have the same reduced row echelon form

[
E=

O
O

-

O
4
O

o
o
m
N

-
O
O

| :

Thus B and B' are independent sets of vectors and Span B = RS(AT) =
RS(CT) = Span B'. Indeed, Span B = CS(A) = CS(B) = Span B'.

Consider the augmented matrix [ Al w]. Its reduced row echelon form is

[[1 0 0-2]
[0 10 1]
[0O0 1 1]
[0 0 0 0]]

which shows that w =-2u; +u, +u3,s0 w isin W = Span B and

[wlg=[-211]".

The reduced row echelon form of the block matrix [C| A]is

[([100 .4 12 .4 ] [[.4 12 .4]
[011 2 -4 2] .Thus P= [.2 -4 2] .
[00 0 -4 -2 .6 ] [-.4 -2 6]]
[000 O 0 0 ]]

[w]g=P[wlg=[.8 -6 1.2]". The reduced row echelon form of [ C| w] is

[[1 0 O .8]

[0 10 -6]
[0 0 1 12]
[0 0 O 0]]

The last column shows that [w ]z = [ .8 -6 1.2].
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2. (a) Let A have uy, uy, u3, and uy as its columns and let C have v,, v;, v3 and v,
as its columns. Then AT and CT have the same reduced row echelon form

[[10-50 0]
[0 115 0 0 ]
[00 0 10]
[00O0 O 1]]

Thus B and B' are independent sets of vectors and Span B = RS(AT) =
RS(CT) = Span B'.

(b) The augmented matrix [ Al w] has reduced row echelon form

[[1 00 0 72 ]

[010 0 79 ]
[00 1 0 -3 ]
[00 0 1 61 ]]

This shows that w = 72u; + 79u, - 3u3 — 61u,;so w isin W = Span B and

[wlg=[72 79 -3 -61]T.

(c) The reduced row echelon form of the block matrix [ C| A]is

[[10 0 O -13 575 70 -89.5 ]
[0 1 0 0 49-205 -25 325 ]
[00 1 0 -36 15 19 -24 ].
[00O0 1 ® -5 -6 -8]
[00O0 O O O O 01]]

[[ 136 57.5 70 -89.5 ]
Thus P= [ 49 -205 -25 325 ]

[ -36 15 19 -24 ]
[ 12 -5 -6 -8 ]]

(d) [wlg=P[wl]lg=[0 1 0 -1]T. The reduced row echelon form of [ C| w] is

The last column shows that [ w]lg=[0 1 0 -1
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Activity Set 5.1

1. (a)

(b)

(c)

2. (a)

(b)

(c)

3. (a)

(b)

4. (a)

(b)

5. (i)

(ii)

48 < (6.2449979984)(13.2287565553)

10.4403065089 < 4(7.21110255093)

Answers will vary.

10.8627804912 < 6.2449979984 + 13.2287565553

7.87400787401 < 4 + 7.21110255093

Answers will vary.

143 =110 + 33

28=7+21

Let A have u;, uy, u3, and uy as its columns, left-to-right. Then

ATA=diag[7 6 8 21 ]

Let A have vy, v,, and v3 as its columns, left-to-right. Then ATA = I;.

The null space of A is the zero vector, so no basis exists.

[[1 2 0 4]

[0 0 1-3].
[0 0 O O01]]

Thus, a basis for RS(A)is{[ 1 2 0 4],[ 0 0 1 -3 ]}and abasis for NS(A)

is{[2 1 00],[-403 1]}

RS(A) is orthogonal to NS(A) because

[[-2
(12 04] , [1
[0 0 1-3]] [ O

[ O

The reduced row echelon form of A is

o
o

—
e
t

| —

N
p
—

o
o

—
.

-4
0

3

1 1]

A basis for CS(A) is{[1 1 -2],[-1 0 0]}

The reduced row echelon form of AT is

[

0
0
O

O
O
a
0

o
c
o
o
p
n
©
o
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(iii)

(iv)
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2 1 ]}. CS(A) is orthogonal to NS(AT) because

] [[ 0]
1] = [0]].
]

Abasis forRS(A)is{[1 2 0 4 0],[0 013 0],[000 0 1]}

A basis for NS(A)is{[2 1 0 0 0],[-4 0 -3 1 0]}

RS(A) is orthogonal to NS(A) because

([ 2-4 ]
(([1-204 0] , [1 O] _ [[00O0]

[00 13 0] [0 -3 ] [0 0 ]
[00 00 1]] [0 1] [0 0 ]]

[0 0 ]]

A basis for CS(A)is{[1 2 -1 -3],[0 11 2],[00 1 2]}

A basis for NS(AT)is{[ 1 0 -2 1 ]}. CS(A) is orthogonal to NS(AT) because

([12 1-3] ([ 11 ([ 0]
(0ot 12] , [O0] _ [O].
[00 12]] [-2] [0]]

[ 11]

A basis for RS(A)is{[1 2 00 1 0],[]0 01 000],[]0001-10],
[000001])

A basis for NS(A)is{[2 1 0 0 0 0],[-1 001 1 0]}

RS(A) is orthogonal to NS(A) because

[
[

O
O
-

o
o
n
N

O
a
0

-
O
O

L
O

o
o
o

*»

O
O
O
0
a
p

o
O
.
.
0
0

|

o
o
o

o
o
o

]

Abasis for CS(A)is{[10121],[21231],[-1-1 02 2],[20322]}.

A basis for NS(AT)is{[ -9 3 4 2 1 ]}. CS(A) is orthogonal to NS(AT)
because
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[([10 12 1] [[-9] [([0]
[2 123 1] , [8]1 _ [0]
[1-1 0-2-2] [ 4] [ 0]
[2 032 2]] [ 2] [ 0]]

[ 11]

Activity Set 5.2

1. (a) Seed the random number generator with 1 (1 RDZ) to produce

(b) proj,u =[3.3698630137 -2.99543378995 -1.87214611872 2.62100456621 ]

(c) proj,u =[4.68292682927 .585365853659 -1.75609756098 -4.09756097561 ]

2. (a) Seed the random number generator with 2 to produce

(b) g1 =[ .311399577664 -.622799155328 .544949260912 -.467099366496 .

g, =[ -273777516016 .646186669899 .655153182431 -.279755191039].

(c) proj,x; = [2.34302222747 -5.07599787749 -.38417546136 -.78485938328 ].

3. (a) Seed the random number generator with 3 to produce

1
3
8
-6

b) Rounding to six decimal places:g P
g, = [ .106600 213201 -.746203 .533002 31980 ]

g, =[-.408126 -.486755  1.248090E-3  -.173485 .752598 |

g1 =[-.399263 -.225475 365122 .789454 -.180902 ]
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(c) projy,x=[ 1.576232 -782662 -2.477077 -9.772820 5.504552 ]

[[ .25 ] [[ .875 .25 -.125 .375 -.1256 ]
[ -.5 ] [ 26 .5 .25 -75 .25 ] (c) H is symmetric

4. (a) [ .25 ] (b) [-125 .25 .875 .375 -.125 ]
[ -.75 ] [ .375 -.75 375-125 375 | (d) H!=H
[ .25 ]] [-1.25 .25 -.125 .375 .875 ]]

Activity Set 5.3

[[100]
[0 1 0]

1. (a) The RREF of A is [0O0 1].

[0 0 0]]

([ .5 .5-.5 ] ([ 2 3 2 ]
() Q= [ .5 -5 .5 ] R=[05-2 ]

[ .6§-5-5] [ 00 4 ]]
[ .56 .5 .5 ]]

([ .2-.4 -8 ] ([ 5-2 1]
2 Q= [.4 2 .4 ] R=[04 1]

[ .4 -.8 .4 ] [ 00 2 ]]
[ .8 .4 .2 ]]

Activity Set 5.4

1. (a) The RREF of the augmented matrix is I,.

[[ 26 -2 12 ] _ _
(b) ATA=[ -2 20 12 ] and ATh=[ 44 -15 29 Jandx=[ -1.6 3.83 7.916]

[ 12 -12 12 ]

2. (a) xI -2.2| -1 | 5 | 1.5 I 3
 

y | 361 | 2718 | 3.791 | 2.733 | 1.245

(b) P3(x) = 3.56125138045 + .168633453671x — .476477181213x2 + .0530615957649x3

(c) Py(x)=.381750 + .347647x —.808918x2 + .008864x> + .048199x*
(rounded to six decimal places)
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3. (a) The condition number of A is 3034650.03175.

(b) Both polynomials are c( + c; + ;22 + c3x® where

[ Co ¢ C C3]=[-.13 810582010582 -.109126984127 .0231481482],

(c) Applying the RREF command we obtain

[-.15 .81058201058 -.109126984126 .0231481481481 ].

Using x = (ATA)1(ATb) we obtain

[-.133333334713 .8105820101475 -.109126983096 .0231481483408 ].

Activity Set 6.1

1. (a) Seed the random number generator with 1 and generate

[[.7 -9 -8 ] [([-3 -7 7 ]
A= [-5 8 1] andB= [ 1 -2 -5 ]

[ 0 5 3 ]] [-2 9 -7 ]]

(b) Trace A =18, Trace B = -12 and Trace (A + B) =6

[[ 586 0 3 1] [[ 3 9 0 -3 ]
c) A= [ 3 6 -35] andB= [ 6 -3 5 0 ]

[-6 -9 4 4 ] [ 1 3 4 -4 ]
[-3 5 -5 0 ]] [ 0 53 -9 ]]

Trace A = 15, Trace B = -5 and Trace (A + B) = 10

(d) Trace (A + B) = Trace A + Trace B

n n n

Proof: Trace (A +B) =Y (aj+b;) =Y a;+ Y b; = Trace A + Trace B
=1 =1 i=1

2. (a) Seed the random number generator with 2 and generate

[[ 4 -2 5-8 ] [[ 8-5-2 ]
A= [ 5-4 78] andB= [ 5 6 0 ]

[-0 -6 -4 0 ]] [ 2 3 0]
[ 4 0-9 ]]
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(b)

(c)

(d)

3. (a)

(b)

(c)

Trace (A B) = -28 = Trace (B A)

[[-6 2-3 ]
[[ 0-8 3-2 1] [-8 6 1]

A= [ 408-23] andB= [-7-7 8 ]
[ 0 2-7-6 3 ]] [ 0-2 8 ]

[ 6 0 8 ]

Trace (A B) = -73 = Trace (B A)

Trace (A B) = Trace (B A)

Proof: Let A bemxnand B be nxm

i=1 i=1
Trace (A B) = g: (A B)ii = g (:A,,B,,)and

j=

n n m

Trace (BA) = 3, (B A)jj= 2, (Z Bj,-A,-]-) These are clearly the same.
j=1 =i

Seed the random number generator with 3 and generate

[[ 1-5 2 ]

[ 1 2-7 ]
[ 4 1-7 ]]

det(Al - A) = A3 + 442 — 251 — 150 = det (Al - AT)

A=

[[ 9 135 ]
A= [-8-9 8 3 ]

[ 3 9-6-7 ]
[ -7-7-2-7 1]

det(Al — A) = A% + 1343 — 70A2 — 10094 + 3240 = det (Al — AT)

[[1 0-5-8 7 ]
A= [ 71-96 7]

[ 54 9 0-9 ]
[ 9-6-5-9 8 |
[ 04 17-5]]

det(Al — A) = A5 + 724 + 2423 — 102142 + 62571 + 15082 = det (Al - AT)

(d) - () A and AT have the same characteristic polynomial.

Proof: det (Al - AT) = det (AIT — AT) = det (A - A)T = det (AI - A)



(a)

(b)

5. (a)

(b)

(c)

6. (a)

(b)

7. (a)
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Seed the random number generator with 4 and generate

[[-8 8 9 ] [[ 2 8 6 -2] [[-4 7-8-5 0 ]
A= [-4-90] ,B= [ 16 1 0] andC= [ 4-4-6 9 4 ]

[ 14-4]] [ 6 6 -9 -4] [ 8 12 7-2 ]
[ 0-4 -5 4]] [-6 9-2-2 5 ]

[-3 14 4-8 ]]

Det A = -479, Trace A = -21, det(Al - A) = A3 + 21A% + 1634 + 479.

Det B = -684, Trace B = 3, det(Al — B) = A% — 343 — 134A% + 6964 — 684.
Det C = 87,902, Trace C = -16,

det(Al = C) = A5 + 1614 + 513 + 46842 — 6814 — 87,902.

For an n x n matrix A, the constant term in det(Al — A) is (-1)"det A; the

coefficient of A*1is -(Trace A).

det [ AI- A,(1)]1=A? — 24, A3 —3A?, A* - 443, 5 -5forn =2, 3, 4, 5.

det [AI-A,(1)]=A"YA-n)

0 (of multiplicity n — 1) and n

[[ O 10 ]

(i) C= [ 00 1] ,det[AI-C]=A3+5A2-31+2
[-2 3-5 ]]

[[ O 10 0]

(ii) C= [ 00 10 ] ,det[AI-C]=2%-6A3+2A2-51+7
[ 00 0O 1]
[-7 5-2 6 ]]

[[ O 10 00 ]

[ OO0 100 ]

(iii) C= [ 0 0 0 10 ] ,det[Al —C]=A5+5A* +4A3 +3A2 +2A +1
[ 00O OO0 1]

[ 1-2-3-4-5 ]]

For p(A) = A" + c,.4A"1 + ... + c; A + ¢y the characteristic polynomial of its

companion matrix is p(A).

Seed the random number generator with 7 and generate A and B.

[[-30 81 94 ] [[28 22 106 ]
AB= [ 3 18 30 ] and BA = [13-42 -35 ]

[ 7 -13-36 ]] [-13 -15 -34 ]]

have the same characteristic polynomial p(A) = A3 + 48A? — 1334 + 33,528.
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(b)

(c)

(d)

(b)

(c)

(d)

(e)

SOLUTIONS

[[ 96 63 57 -124 ] [[ 21 23 -65 -2 ]
AB= [-36-45-63 68 ] and BA= [ 77 -5 63 74 ]

[-52 96 16 -27 ] [ 12-76 60 8 ]

[ 54 49 9 -71 ]] [-24-84 74 -38 ]]

have the same p(A) = A4 + 443 + 6,626A? + 116,1804 + 1,523,808.

[[-28 0 -34 40 -77 ] [[ 137 -9 10 57 17 ]
AB= [-72 46 -104 -70 -38 ] and BA= [ -5 26 78 23 17 ]

[-36 5 32 39 -3 ] [-139 -45 -84 11 -27 ]
[-30 2 69 68 -59 ] [ -98 -74 118 -2 -10 ]
[ 16 72 -88 -56 4 1] [ 131 -46 -34 17 45 ]]

have p(A) = A% - 1224* + 1,48943 - 1,176,076A%? + 26,827,552A — 294,808,320.

AB and BA have the same characteristic polynomial, thus the same
determinant, trace and eigenvalues.

Seed the random number generator with 8 and generate

[([-6 0-7 ]
A= [ 6-7 2 ]

[-9-6 2 ]]

p(x) = 23 + 11x2 — 35x — 705 and p(A) = 0.

[
For A =

N
G
)
O
O
-
&

m
:
:
-
h
a
:

\
J
_
.
w
o
o

N
N
C
.
D
O(-

[
[-
[ ]

+174x + 720 and p(A) =Np(x) = x* - 3x3 - 70x

[[ 6-56 0 3 -2 ]

ForA= [-2 6 -4 41 -2 ]

[ 0-9 -4 -5 4 ]

[-4 1 0 4 -3 ]

[ 5-9 -6 -2 0 ]]

p(x) = x° —12x* + 69x3 — 24x? + 7x + 5288 and p(A) =

Every nxn matrix satisfies its characteristic polynomial. This is known as
the Cayley-Hamilton Theorem.
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Activity Set 6.2

1.

2. (a)

3. (a)

(e)

4. (a)

(b)

(c)

(d)

Adding a multiple of one row to another row changes the characteristic
polynomial and the eigenvalues.

CHAR returns the vector [ 1 -21 144 -421 -4623 ] of coefficients of p(4);
PROOT and OBJ— show the eigenvlaues to be

4: (-3.63770276026, 0)
3. (5.0202378832, 7.86503318779)
2: (5.0202378832, -7.86503318779)
1: (14.5972269939, 0)

EGVL and OBJ— return identical results.

Seed the random number generator with 3 and generate

[[ 1-5 2]
A= [ 2 -7]

[ 4 1 -71]]

det A =150 and trace A = -4. the sum of the eigenvlaues is -3.9 and the
product of the eigenvlaues is 150.

The sum of the A-values is the trace and the product of the A-values is the

determinant.

The eigenvalues of A are 10, 2 and + 2.82842712475. The eigenspace

associated with A = 10 is spanned by the vector[ 1 1 1 1].

The eigenvalues of B are 1, 2, 3, 4 and 5. The eigenspace associated with

A =5is spanned by the vector[1 -1 1 0 0].

The eignevalues of C are 3.73205080756, 4, + i and .267949192431. The

eigenspace associated with A = 4 is spanned by [-2 3 1 -3 1].

The eigenvalues of D arel,2,2,3and +i. The eigenspace associated with

A=3isspannedby [-2 4 -6 -1 1 0].
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Activity Set 6.3

-1 4

1

[
1. (a) B=PlAP=

o
wW
w
o
n
m
N

a
n
N
n
O
O[ ]

[ O ]

[-4 ]
[-0 1]

(b) CHARreturns [1 -8 22 -40 25]for A and B.

(c) The A-values are 1, 5 and 1 % 2i; trace = 8, det = 25 and rank = 4.

2. (a) A is diagonalizable. Its eigenvalues are A =-1,1,1 and 2.

For D=diag[-1 1 1 2], adiagonalizing matrix P is

(b) A is defective. Its eigenvalues are A =-2,-1,1 and 1, but dim NS[A-1I] = 1.

(c) A is diagonalizable. Its eigenvalues are A =2, 2, 4 and 6. For

D =diag[2 2 4 6], a diagonalizing matrix P is

([ 1

P= [0
[ 1

w
l

o
l1 -

1

0 4 - ]
1 1 1 1]

(d) A is defective. Its eigenvlaues are A =-1,0,1,1and 3. Dim NS[A-1] = 1.

[ O

(e) A is diagonalizable. Its eigenvalues are A =4,4,3,2,2and 1. For

D =diag[4 4 3 2 2 1 ]adiagonalizing matrix P is

[[4 2 0 -3
[1 2 1 -4
[ 0 1

P= [ 1 A4
[ 1
[ O

]
]
]
]

0 ]
1 ]o

a
b
o

o
.

0
.
.
0
0

O
O
O
O

.
4
.
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Activity Set 6.4

1. (a)

(b)

(c)

The eigenvalues of A areA=1,5,5,5. A basis for the eigenspace of A =1 is

Xl1=[1 1 1 1], normalizedtoQl=[.5 .5 .5 .5 ]Abasis for the

eigenspace of A =5 consists of the vectors X2=[ -1 1 0 0],X3=[-1 0 1 0]

and X4=[ -1 0 0 1]. Convert to an orthonormal basis using the modified

Gram-Schmidt algorithm via program GS to obtain

Q2= [ -707106781 188 .707106781188 0 0]

Q3 = [ -.408248290463 -.408248290466 .816496580929 0 ]

Q4 = [ -.288675134593 -.288675134595 -.288675134595 .866025403784 |

ThenwithQ=[ Q1 @2 Q3 @4 ](in column form), QTAQ=diag [1 5 5 5].

The eigenvalues of A are A =1, 4, 4, 4. A basis for the eigenspace of A =1 is

X1=[-1 -1 1 0 ], normalized to

Q1 =[ -.577350269189 -.577350269189 .577350269189 0].

A basis for the eigenspace of A = 4 consists of the vectors

X2=[-1 1 0 0],X3=[1 01 0]JandX4=[0 0 0 1]. Apply program GS
to obtain

Q2= [ -.707106781188 .707106781188 0 0]

Q3 = [ .408248290463 .408248290466 .816496580929 O ]

M=[0 0 0 1]

ThenwithQ=[ Q1 Q2 Q3 Q4 ](in column form), QTAQ=diag [ 1 4 4 4

]-

The eigenvalues are A = -6, 2, 4, 4. A basis for the eigenspace of A = -6 is

Xl=[-1 -1 -1 1], normalizedtoQ1=[-5 -5 -5 .5 ]. A basis for the

eigenspaceof A=2is X2=[1 -1 1 1 ]normalizedtoQ2=[.5 -5 5 5] A

basis for the eigenspace of A =4 consistsof X3=[ -1 0 1 0]and

X4=[0 1 0 1] already orthogonal. Normalizing we obtain

Q3 =[ -.707106781188 0 .707106781188 0]

(M4=[0 0707106781188 0 .707106781188 ]

ThenwithQ=[ Q1 Q2 Q3 @4 ](in column form) we obtain

QTAQ =diag[ -6 2 4 4].
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(d) The eigenvalues are A = -2, -2, 6, 6, 6. A basis for the eigenspace of A =2

consists of the vectors X1 =[0 1 1 0 0landX2=1[-2 2 0 1 1]. Apply

program GS to obtain (we round to six decimal places)

Q3=[ 0 .707107 .707107 0 0]
Q4 = [ -.707107 .353553 -.353553 .353553 .353553 |

A basis for the eigenspace of A = 6 consists of the vectors X3=[-1 -1 1 0 0],

X4=[1 00 2 0]JandX5=[1 0 0 0 2]. Apply program GS to obtain

Q3 =[ -.577350 -.577350 .577350 0 0]

Q4 = [ .3086067 -.154303 .154303 .925820 O ]

Q5= [ .267261 -.133630 .133630 -.133630 .935414]

ThenwithQ=[ Q1 Q2 Q8 @4 Q5] (in column form)

QTAQ =diag[-2 -2 6 6 6]

2. (a) A spectral decomposition for matrix A is

[[ .25 .25 .25 .25 ] [[5-5 0 0] [[ 16 16 .3 0 ]
[25.25.25 .25 ] +5 [-6 5 0 0] +5 [ 16 16 -3 0 ]
[ .25 .25 25 .25 ] [ 0 0 0 0] [ -8 -3 6 0]
[ .25 .25 .25 .25 ]] [ 0 0 0 0]] [ 0O 0 0 01]]

[[ .083 .083 .083 -.25 ]
+5 [ .083 .083 .083 -.25 ]

[ -.083 .083 .083 -.25 ]
[ -.26 -25 -25 .75 ]]

(b) A spectral decomposition for matrix A is

[[ 3 3-3 0] [[5-5 0 0] [[16 16 .3 0 ]
[ 3 83-3 0] +4[-5 .5 0 0] +4 [.186 16 .3 0 ]
[ -3-3 .3 0] [ 0O 0 0 0] [ 3 3 6 0]
[ 0 0 0 0 ]] [ 0 0 0 0]] [ 0 0 0 01]]

[[ 00 0 0]
+4 [ 00 0 0]

[ 00 0 0]
[ 00 0 1]]
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(c) A spectral decomposition for matrix A is

[[ .25 .25 25 -.25 ] [[ .25 -.25 .25 .25 ] [[.5 0-.5 0]
-6 [.25 25 25-25 ] +2 [-.25 .25-25-25 ]+4 [ O O O O]

[ .25 .25 .25 -.25 ] [ .25 -.25 .25 -25 | [-5 0 .5 0]
[-.25 -.25 -.25 25 ]] [ 25 -.25 .25 -25 ]] [ 0 0 0 0]]

[[ OO0 0 0]

+4 [ 0.5 0.5]
[ 00 0 0]

[ 0.5 0.5 1]

(d) A spectral decomposition for matrix A (we round to six decimal digits)is

[[ 0 00O O] [[ .5-25 .25 -.25 -.25 ]
-2 [ 05500 ] -2 [-25 .25 -125 .125 .125 ]

[ 0.5.50 0 ] [ .25-125 .125 -.125 -.125 |
[ O 0O0OO0 0 ]] [-.25 125 -125 125 .125 ]

[ 0000 0 ]] [-.25 125 -125 125 .125 ]]

[[.3 .3-30 0]
+6 [.3 3-30 0]

[-3 -3 30 0 ]
[ O O 00 O]

[ 0O 0O 00 0 ]]

+6 [ .095238 -.047619 .047619 .285714 0 ]

[ -.047619 .023809 -.238095 -.142857 0 ]

[ .0476199 -.023809 .023809 .142857 0 ]

[ 285714 -.142857 142857 .857143 0 ]

[ 0 0 0 0 0 ]]

+6 [] .071429 -.035714 .035714 -.035714 25 ]

[ -.035714 .017857 -.017857 017857 -.125 ]

[ .035714 -.017857 .017857 -.017857 125 ]

[ -.035714 .017857 -.017857 .017857 -.125 ]

[ 25 -125 125 125 875 1]

Activity Set 6.5

1. (a)

(b)

(c)

(d)

Positive definite

Positive definite

Not positive definite

Not positive definite
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(e)

(f)

2. (b)

(d)

(f)

SOLUTIONS

Not positive definite

Positive definite

The solutionto Ly=bis y=[ .707106781188 2.04124145232 2.30940107676 ].

The solution to LTx=yis x=[2 1 2]

The solutionto Ly =bis y =[ .577350269189 1.80739222822 6.71317113328

17.8978583435 ). The solutionto LTx=yis x=[ 37 29 50 31 ]

The solution to Ly = bis y=[ .5 1.70084012854 2.27093435774 3.22711724525

1.13389341893 ]. The solutionto LTx=yis x=[ -3 -2 4 0 3]

The Cholesky factor is

L=[[ 1000
1 100
0410
0 0 1 1
0 0 0 - -

O
O
O
O

]

The solutionto Ly=bis y=[1 2 3 4 5] Thesolutionto LTx=yis

x=[15 14 12 9 5]

Activity Set 6.6

1. (a)

(b)

The non-zero singular values of A are
0y = 22.2760011085, 0, = 15.655141875, 03 = 6.4572678035.

Their squares are

012 = 496.220225386, 0'22 = 245.083467126 0'32 = 41.6963074861.

The non-zero eigenvalues of ATA and AAT are
A = 496.220225387, A, = 245.083467127, A3 = 41.6963074861.

All three methods producex=[ -1 0 2 ].

Both methods produce

x= [ -.276893387225 .0697403149571 -.187791269405 .128765792031 ].
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Using a Cholesky factorization, we find the vector of coefficients in p(x) to be

[-10.6666667605 12.7609428657 -4.14534963083 .389570640143].

Using the LSQ command we obtain

[ -10.6666666667 12.7609427609 -4.1453495999 .389570637505 ].

The norms of these vectors agree to 6 decimal places.

Activity Set 7.1

1. (a)

(b)

(c)

(d)

(e)

2. (a)

(b)

3. (a)

(b)

(c)

(d)

4. (a)

(b)

Not diagonally dominant.

JTEST fails to execute because the diagonal part of A is not invertible.
After swapping rows four and five JTEST shows that both the row-sum norm
and column-sum norm are > 1.

STEST shows that both norms are > 1.

Swap rows one and three, then rows two and five.

After 25 iterations, x =[ -8.762155 6.560882 -8.564386 6.754029 2.265541 ].

The Gauss-Seidel iteration matrix has row-sum norm < 1 but A is not

diagonally dominant.

The Jacobi iteration matrix has column-sum norm < 1.

A is column diagonally dominant

After 17 iterations,

x=[ 3.10325718 -2.39543980 9.21205220 -5.18175900 5.30456021 ].

After 13 iterations,

x=[ 3.10325731 -2.39543974 9.21205212 -5.18175896 5.30456026 ].

To full machine precision, the solution is

X =[ 310325732899  -2.39543973941  9.21205211726  -5.18175895765 5.30456026059 ]

The coefficient matrix is not diagonally dominant and the JTEST fails. The
STEST succeeds with row-sum norm < 1.

After 55 iterations,

x = 3.66666598 -2.33333231 -1.00000102 -8.66666590 8.33333295 ].
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5. (a) All of the tests for convergence fail.

(b) After 16 iterations, the Gauss-Seidel procedure converges to

x=[ -.846168 3.153840 -.692309 -.076918 -2.538454 -5.538454 ].

(c) To full machine precision, the solution is

X =[ -846153846154  3.15384615385  -.692307692308  -.076923076923  -2.53846153846 ] .

Activity Set 7.2

1. (a) The dominant eigenvalue is A = 22.644832095.

(b) After 31 iterations, the power method converges to A = 22.64483210

x= [ .03978762 .56098114 -.33459603 .53336803 .51329075 -.15431704 ].

2. (b) After 154 iterations, A = 2.94188363485 and x = [ .55065580727 -.51865369330
45650931190 -.36783426864 25778203471 -.13274844593 ] .

(c) After 30 iterations, A = 6.19999998113 and x =[ .97979591798 -.19595916510
03919176386 -.0078378681 .005156516522 -.000300099331 ].

3. (a) - (b) After 180 iterations we have no convergence because the components of
successive vectors agree to within a * sign.
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