
.
-

oo
-

a
-

o
e
.
.

=
:

-
=
.

-
.

-
R
e

R
e

a

-
>

:
a

a
:

a
.

2
:

:
.
a

oe
e
e

5
a

:
2

a
T
r
i

H
o

S
N

.
.
.
.
_
.

.
.
_

:
.

.
.
.
.
.
.
.

.
.

a
e
B
e
B
e

S
n
a

.
a
a
e

.
G
o

-

san

o

; i

.

. .

a
e

c
o

e
e

.
a

-
=

5 Sd

S
o

E
O

C
a

oo
o
o

-
=

a
a
n

.
-

3

a

.
.

f
a
a
0

.
:

:
=

o
o

-
:

:
:

.
=
.

=
>

i
:

-
=

-
-

-
O
o

:
a

C
o

:
e
g

=
a

a e
o

.
-

-
.
C
e

oe
C
a

o
o

S
a
a
.
.
-
.

a
S
o
n

o
o

-

A Step-by-Step, Easy-to-Read Introduction to
Operating and Programming the HP48G/GX

Thomas Adams
Michigan State University

KENDALL/HUNT PUBLISHING COMPANY
4050 Westmark Drive Dubuque, lowa 52002

Information in this book is presented without any kind of

representation or warranty. No liability is assumed by the

author resulting from the direct or indirect use of any material

or information in this book. All information, instructions and

examples are presented solely and exclusively for the purpose

of illustration and explanation, not for application.

Information about Instructor’s Materials is available from:

Thomas Adams, Ph.D.

Department of Physiology
Michigan State University

East Lansing, MI 48824-1101

Copyright © 1994 by Thomas Adams

ISBN 0-8403-9534-5

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the copyright owner.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Table of Contents

Tableof Exercises1v

Prefacevii

Chapter 1 Inthe Beginning 0... 1

Section 1.1. Keyboard Designations 2

Section 1.2. Backing Out of an Operation 3
Section 1.3. Writing Words and Numbers 4

Section 1.3.1. Generating ALPHA Characters. 4
Section 1.3.2. Generating Special Characters. 6
Section 1.3.3. Selecting How Numbers are Displayed. 7

Section 1.4. Setting the Clock, Calendar and Alarms 9

Chapter 2 Basic Operations 11

Section 2.1. Number Control 11

Section 2.2. The Importance of STACK Position 14

Section 2.3. Tools for STACK Control 16
Section 2.3.1. Exercises for LS STACK Operations 17

Section 2.3.2. Exercises for RS STACK Operations 19

Section 2.4. Calculations of Percent 19
Section 2.5. Variables as Numbers and Vice Versa. 21

Section 2.6. Variableswith Units 22
Section 2.7. Unit Conversions «+ vv vv. 25

Section 2.8. Customized Menus 29
Section 2.9. Arithmetic with Complex Units. 32

Chapter 3 Writing and Solving Equations 35

Section 3.1. Writing an Equation and Solving it 35

Section 3.2. Cleaning-up VARMenus. 41

Section 3.3. Making Changes in Stored Equations. 42

Section 3.4. An Alternative Way to Solve an Equation. 43

Section 3.5. Solving Equations Algebraically 45
Section 3.6. The LS DEF Operation 47

Section 3.7. A Special Feature For Special Cases 51
Section 3.8. Taking Score and Looking Ahead. 54

Chapter 4 Basic Statistics 0000. 56

Section 4.1. Evaluating a Single Column ofNumbers 56
Section 4.2. Editing Stored Data. 60

Section 4.3. Using Two Columns ofNumbers 60
Section 4.3.1. Basic Calculations. 60
Section 4.3.2. Curve-Fitting. 63

Section 4.3.3. Making Predictions 69
Section 4.4. A Mystery Solved withthe HP48G 70

Section 4.5. Directories: Basic Concepts 74
Section 4.6. Directory Structure and Construction. 75

Section 4.7. More Progress. 78

Chapter S Basic Programming 79

Section 5.1. Getting Started 79

Section 5.1.1. AProgramMap 79
Section 5.1.2. Menus for Program Writing 82

Section 5.2. Storing Equations and Data as Variables. 82

Section 5.3. Using Local Variables. 85
Section 5.4. Combining STACK and VARData. 89
Section 5.5. Constructing Data Requests. 92
Section 5.6. Finding Program Errors. 99

Chapter 6 Programming Strategies. 101

Section 6.1. Programming withRPN. 101

Section 6.2. Other Ways to EnterData. 103
Section 6.3. Decision Structures 108
Section 6.4. Loop Structures. 119

il

Chapter 7 Flags

Section 7.1. TheBasicConcept

Section 7.2. Where FLAGs Are And What They Do.
Section 7.3. "User-defined FLAGS"

Section 7.4. Complex Choices with FLAGs
Section 7.5. Keeping Track

Section 7.6. Controlled FLAG Clearing
Section 7.7. Wrapping ItUp.

Chapter 8 Sample Problems.

Population Growth
Relative Humidity

Checks
PlantDensity

Useful Statistics

Chapter 9 File Transfer and Printing.

Section 9.1. File Transfer Operations
Section 9.1.1. Installing the Software.

Section 9.1.2. File Transfer from the HP48G to a Tabletop Computer .

Section 9.1.3. File Transfer from a Tabletop Computer to the HP48G .
Section 9.1.4. File Transfer Between HP48Gs

Section 9.1.5. File Transfer Between HP48S/SX and HP48G/GX . . .
Section 9.1.6. File Transfer Between HP48S/SXs.

Section 9.2. Printing HP48 View Window Displays

Section 9.2.1. Obtaining Prints of the HP48G/GX View Window . . .

Section 9.2.2. Obtaining Prints of the HP48S/SX View Window

ee eo oe eo eo es se eo eo eo eo eo oe 6 es eo es eo eo eo + ee ee eo ee e es 6 eo eo eo ee ee ee eo ee

iii

Table of Exercises

Chapter 2 Basic Operations

Exercise 2.1. Basic "Reverse Polish Notation" (RPN) Operations 12

Exercise 2.2. A Complex Calculation Using the STACK 16
Exercise 2.3. Clearing STACK Lines 18
Exercise 2.4. Reordering The STACK. 18
Exercise 2.5. Duplicating and Counting the STACK. 18
Exercise 2.6. RS STACK Operations 19
Exercise 2.7. Percent Calculations. 20

Exercise 2.8. Sample Unit Conversions: Using Built-in Units. 26

Exercise 2.9. Sample Unit Conversion: Mixing Built-in Units 28

Exercise 2.10. Complex Units Conversions 29

Exercise 2.11. Creating and Using Customized Menus. 31
Exercise 2.12. Calculations with Complex Units. 32

Chapter 3 Writing and Solving Equations

Exercise 3.1. Writing and Storing a Simple Equation 36

Exercise 3.2. Writing and Storing a Complex Equation 37

Exercise 3.3. Equation Solutions with RS SOLVE. 38
Exercise 3.4. Equation Solutions with LSSOLVE. 39

Exercise 3.5. Amending an Existing Equation Using EDIT 42

Exercise 3.6. Writinga Program 44
Exercise 3.7. Solving an Equation Algebraically. 46

Exercise 3.8. An Alternative for Algebraic Solutions 46

Exercise 3.9. Equation Display and Storage 47
Exercise 3.10. Using LSDEF. 48

Exercise 3.11. Calculating Mound Temperature 53

Iv

Chapter 4 Basic Statistics

Exercise 4.1. Calculations Using RSSTAT 58

Exercise 4.2. Calculations Using LS STAT 59
Exercise 4.3. Array Functions with RSSTAT 61
Exercise 4.4. Armay functions with LS STAT 62
Exercise 4.5. Curve-fitting with RSSTAT. 65

Exercise 4.6. Curve-fittingwith LSSTAT. 67

Exercise 4.7. Predictions. 69
Exercise 4.8. Curve-fitting With Equation Solutions. 70

Exercise 4.9. Subdirectory Functions 76

Chapter S Basic Programming

Exercise 5.1. Examination Score. 83
Exercise 5.2. Examination Score - A BetterIdea. 85

Exercise 5.3. Course Score I. 87

Exercise 5.4. Course Score Il 89

Exercise 5.5. AreaofaRectangle 92
Exercise 5.6. Calculating Volumes. 95

Exercise 5.7. Calculating Volume - The Next Step. 96
Exercise 5.8. VOL -Fmnal Version. 98
Exercise 5.9. Single-step Execution of a Program 100

Chapter 6 Programming Strategies

Exercise 6.1. ProgrammingwithRPN 102
Exercise 6.2. Data Entry with ENTER and INPUT 104

Exercise 6.3. Automatic Program Execution. 105

Exercise 6.4. Programming Options 107

Exercise 6.5. Controlled Choices 108

Exercise 6.6. Addition with Conditional Branching 111
Exercise 6.7. Tests with Double Conditionals 113

Exercise 6.8. Tests with Many Conditions. 117

Exercise 6.9. Controlled Looping. 120

Exercise 6.10. "DO/UNTIL". 121
Exercise 6.11. Keepinginthe Budget 123
Exercise 6.12. Guess Again. 124

Chapter 7 Flags

Exercise 7.1.

Exercise 7.2.

Exercise 7.3.

Exercise 7.4.

Exercise 7.5.

FLAG Test and Manipulation: The Basics 128

FLAGs: A Simple Application. 130

Weight Predictions. 132
Controlled FLAG Review 137
Programmed Clearing 140

vi

Preface

Why this book?

This book is written for those who want to take advantage of the newest and most

powerful calculator/computer technology to improve math and programming skills and to
apply them to practical problems. There is no better machine than the HP48G/GX for these
purposes. It is powerful, inexpensive and with a little practice, intuitive and easy to use. Even
so, many people find it difficult and frustrating to operate in the beginning. For some, basic

math skills are poorly remembered, or perhaps inadequately learned in the first place. Others
find it difficult to read and apply instructions that come with the HP48G/GX. All too many

abandon their efforts because they cannot span the gap between existing abilities and those

required to operate the HP48G/GX. This book provides a bridge to get beginners from the

level of basic skills to the point of mastery of the instrument.

The book begins by introducing the keyboard of the HP48G/GX. It describes next
how to construct alphanumeric symbols, then how to use and control the machine's memory
for basic mathematical operations. As an intermediate stage, It describes how to use the
instrument's powerful features for unit conversion, numerical and symbolic solutions of

equations, how to compute basic statistics, how to perform curve-fitting tasks, and how to

interpret these data. Final chapters describe how to write first simple, then more complex

computer programs to solve equations and make decisions. The last chapter shows how to
transfer files between machines in the HP48 family and between these instruments and IBM-
compatible computers.

Step-by-step instruction is an important feature of this book. Exercises in each

chapter give solutions to simple problems at first, then present progressively more
complicated strategies for more complex and difficult tasks. There is a lot to be said for
starting at the very beginning of the book and at each of its chapters and sections, even
though the problems presented at first look easy and familiar. In this way, there is less

chance of missing in important lesson in the sequence of incremental instruction.

Most readers will find the arithmetic and mathematical examples in this book

ridiculously easy. Certainly, no one needs an instrument as powerful as the HP48G/GX to

add a couple of numbers or calculate the area of a rectangle. But there is a reason for this
simplicity. Calculations are purposely simple so that computing and programming strategies
are more easily seen. Readers are encouraged to develop applications as complicated as
needed for their own purposes once the basic computing and programming skills are learned.

It is the nature of learning to use technology like that of the HP48G/GX that mistakes
will be made. Keystroke sequences sometimes will be incorrect and required characters will

not always appear in the view window as easily as expected. There are many hints,

vii

reminders and suggestions in each exercise to help get over the rough spots. Even with this

help, though, errors are inevitable. Each mistake from which one learns a lesson in using the
HP48G/GX, though, is a solid step forward in mastering a powerful and useful technology.

Readers will get the most from them if each exercise and demonstration is keyed into

their own machines, and ifthey construct problems of their own using the same basic skills.
Little-by-little, with no more than about a thirty minute daily investment, the power of the
HP48G/GX will soon reveal itself. Even though the instrument is complex and might even

be intimidating at first, a little practice soon makes it easy to use.

Why Learn about the HP48G/GX?

The benefits from learning how to use the HP48G/GX are enormous. No longer is
there a problem in converting even the most intricate and unfamiliar sets of units. No longer

are there obstacles for numerical or symbolic solutions of even the most complex equations.
No longer do problems involving integration or differentiation pose difficulties and no longer
is it difficult to write a computer program to meet one's own needs. The hardest part of
learning how to acquire these skills with the HP48G/GX are predictably at the very

beginning. Once the ice is broken, however, momentum and confidence soon build.

How is the HP48G/GX Similar to the HP48S/SX?

Superficial appearance is quite similar, but there are many differences under the

keyboard. The HP48G/GX comes with many more built-in solutions for equations, a larger
memory (512K ROM; 128K RAM), and more powerful graphing capabilities, among many

other improved, simplified and expanded features. Both models, though, use the same

programming languages, solve equations in about the same way, and require similar
keystrokes for most functions. Those who are proficient with the HP48S/SX will be
pleasantly surprised to discover they already know most of the things that have to be done
to use the HP48G/GX, even though a few basic keystroke sequences will have to be

relearned. View window displays for performing many operations are greatly improved, and
are easier to read and use.

viii

Chapter 1

In the Beginning...

Anyone who takes the HP48G out of the box for the first time must be impressed
with the many functions shown on the keyboard. What some of them do is obvious.
There's little doubt, for example, what the keys in the number pad do, or what the most

likely actions are for the ENTER key, the ON key and a few others. What most of the
other keys do, however, is much less obvious. The general impression for many people

could well be one of confusion and possibly even intimidation - there is such a complex

array. What does EQ LIB mean? What does ARG mean? What does < < > > do?
How come most of the keys have white letters on them, but also have colored labels above

them? What does all this mean? Suppose I damage the machine by pressing the wrong

button at the wrong time?

The purpose ofthis chapter is to introduce how the keyboard is arranged, how its

functions are organized and how to use some of the computer's basic operations. It will

also show that even though many functions are activated from the keyboard itself, however
complex and complete it might appear, the strength of the HP48G lies in its many more

operations not shown on the face of the instrument. Some will come from activating
functions in menus, others from using those in subdirectories.

As you become more familiar with the instrument, you'll construct menus,
directories and subdirectories to supplement those that are built-in. You'll be able to

customize an already powerful machine into one that is even more useful for your own
specific applications. Even so, that's not much consolation at the beginning when just
looking at the keyboard is confusing. It'll make a lot more sense by the time you get to
the end of this chapter. Using the keyboard will soon become second-nature as you
progress from chapter-to-chapter, despite whatever confusion there is at the beginning.

Whether you use just the functions that come with the computer or make others of
your own, there's no way short of gross abuse to damage the HP48G by pressing its
buttons, no matter in what sequence. You may not get the calculation you expected, but

you won't hurt the instrument. In fact, trial-and-error experiments are a good way to learn

how this complex machine operates. It's a safe-enough adventure. Section 1.2. gives

some useful hints about how to back out of any operations you may find yourself trapped
in when you test different key operations.

Section 1.1. Keyboard Designations

The first step in using this book to learn about the HP48G is to understand the way

in which its keys are identified. For example, the white letters embossed on each black
key indicates its primary function. The action performed by the purple-colored letters is
defined as the key's left-shift function designated in this text as "LS". The action
performed by the green-colored letters is defined as the key's right-shift function,
designated here as "RS". For example, for the first key in the first row of black keys, the
primary function of the key is MTH, LS RAD indicatesits left-shifted function, and RS
POLAR indicates its right-shifted function. The first few sections of this book will also
describe the location of some keys by count. For example, the phrase, “...the 4th key, 3rd

row..." helps find the key to press for a square root function. A small left- or right-
pointing arrow is displayed in the upper left corner of the view window whenever a shifted

function is about to be activated. It's a useful reminder.

But there is another function for the keys in the upper half of the keyboard - they
have a letter of the alphabet associated with them, as show to the lower right of each key.
These letters are placed in the view window by using the alpha («) function (primary
function of the 1st key, Sth row). Figure 1.1. later in this chapter describes how this key
is used in conjunction with others to construct alphanumeric and special symbols you'll
need in calculations and programs.

So much for the black keys - how about the white ones at the very top of the
keyboard just under the view window? They are used to select functions that will appear

in the six blue rectangles at the bottom of the view window. Many different menus and
"pages" of menus will be shown there from time-to-time. Using these six white keysis
the way to activate much of the power of this computer.

For a simple demonstration of what the white keys do, turn the computer on (press

the ON key at the lower left of the keyboard), then press the VAR key (4th key, 1st row).
All the menu rectangles in the view window are blank. Press RS UNITS (shifted function
of the "6" key). Each rectangle now designates a different subdirectory within UNITS,
as coded with the small flag at the upper left of each rectangle. Access to each of these
six subdirectories is controlled by pressing one of the corresponding six white keys. For

an example, press the first white key (marked "A") to select the subdirectory entitled,

LENG (for units of length). Units in this subdirectory of meter (M), centimeter (CM),

millimeter (MM), yard (YD), foot (FT) and inches (IN) have now replaced the

subdirectory titles. Key the number "4", then the "C" key to write "4 mm" in the view
window. Erase this entry by pressing the key with the left-pointing white arrow (5th key
in the 4th row). The entry you created is erased, but the menu selections remain. Press
VARto clear them.

The six white keys have another function besides selecting subdirectories and menu

2

options that appear at the bottom of the view window. They are used to write the
alphabetical symbols A to F after the « key is pressed. Much more about this later in this
chapter.

If you found the window displays hard to read when you completed this example,

it's easy to adjust display contrast to be just right for you. Hold down the ON key while

you press the + ("plus") key (lower right of keyboard) to increase contrast, or the -
("minus") key to decrease it.

Section 1.2. Backing Out of an Operation

Few people are so clever they will be able to execute the operations they need in the
HP48G without ever making the mistake of pressing a wrong key or getting into a wrong

subdirectory. Sometimes correcting such mistakes is easy, sometimes it's not so obvious

how to do it. A couple of examples, though, will help.

With the computer turned on, press RS SOLVE (the right-shifted function of the "7"

key). Once the SOLVE screen is displayed, pressing almost any black keys results in a

warning beep indicating this is an inappropriate choice. There are two simple ways to get

back where you started. Either press the white key marked "E" to select the menu option

CANCL (for "cancel"), or press the ON key (marked "CANCEL" in white letters below

the key). You're at the HOME menu again with a blank display.

As another example, press RS EQ LIB (right-shifted function of the "3" key).

Although there is no CANCL function among the menu options, there is a choice of QUIT

by pressing the "F" white Key. Pressing ON would have worked just as well. As a last

example, press RS PLOT (the right-shifted function of the "8" key) to see the PLOT
screen. Even though there is no CANCL or QUIT function in the menu bar, pressing the

ON key gets you back HOME. One or more presses of the ON key will return the display
to a cleared state.

Even though you're back to the HOME display, there are now the letters "PPAR"
in the "A" position of the menu options. Pressing VAR doesn't clear it. It will have to
be "purged". First, activate the left-shifted function of the + (plus) key by pressing LS
{ }. This places the symbols "{}" in the view window with a flashing arrow between
them. Press the "A" white key to select the displayed menu option and to write "{PPAR}"
in the view window. Purge this variable by first pressing ENTER, then use the left-shifted

function of the EEX key (3rd key, 4th row) by pressing LS PURG. The view is now as

it was when you started.

The ON key obviously controls several operations. It turns the computer ON, of
course, it is also used to adjust display contrast, it cancels operations and its right-shifted

function, RS OFF, turns the machine off. It is an important key for controlling operations

during program execution and it is useful for some printing functions. More later.

Section 1.3. Writing Words and Numbers

Manual input and output of the HP48G,asit is with all other computers too, will

be in words, numbers, mathematical symbols or similar notations used either singly or

most often in some unique combination. Learning how to construct messages using these

symbols is a good place to start putting the computer to your use. It's also a good
introduction to how the keyboard is arranged and to how gain access to alphanumeric and
special symbols. There are a lot of them, they are useful and they're easy to construct.

The next couple of sections, introduce the use of ALPHA symbols and special
characters, most of which are not referenced on the keyboard. A few simple and
easy-to-learn steps, though, will show how to take full advantage of them all.

Section 1.3.1. Generating ALPHA Characters

A useful feature of the HP48Gisits ability to use alphabetic and number symbols
in computations, in writing equations and in programming. Selecting number symbolsis

easy. Just use the number pad at the center bottom of the keyboard. Learning how to
control the ALPHA features of the machine is easy too and it's time well-spent, butit takes
a little more practice. Instructions for generating ALPHA symbols are summarized in

Figure 1.1.

Pressing | _____ Produces

ALPHA (once only) Upper case ALPHA symbol for next key press

ALPHA. ALPHA Continuous generation of upper case ALPHA symbols
until ALPHA or ENTER is pressed

ALPHA, LS Lower case ALPHA symbol for next key press

ALPHA, RS Special character for next key press

ALPHA, LS, ALPHA, Continuous generation of lower case ALPHA symbols
ALPHA, ALPHA until ALPHA or ENTERis pressed

ALPHA, ALPHA, LS Lower case ALPHA symbol for next key press;
upper case symbols for additional key presses

ALPHA, LS, ALPHA, Upper case ALPHA symbol for next key press;
ALPHA, ALPHA, LS lower case symbols for additional key presses.

Press LS for next ALPHA symbol in upper case

The easiest and most direct ALPHA operation is to generate an upper case letter.

Press the ALPHA key (note the "a." symbol at the top of the display), then press any key

that has an alphabetic symbolatits lower right. The selected ALPHA symbol appears in

an upper case format at the lower left of the view window. Pressing the same key again

will not write another ALPHA symbol. But repeating the process of pressing the ALPHA

key then choosing another alphabetic symbol adds a new ALPHA entry to the view

window. A little experimentation soon shows that number symbols can be mixed with
ALPHA symbols in any order. It will show also that each symbolin the string is erased
one at a time by pressing the key with the left-pointing arrow (the ERASE function). After

ENTERis pressed, all can be erased by LS DROP if only one line has been generated, or

by multiple LS DROP operations or just LS CLEAR if there is more than one line in the

view window. None can be eliminated just by turning the computer off. It has a

continuous memory for all data entries whether they are alphabetic or numeric.

There are two ways to construct a string of ALPHA symbols, as you might want
to in writing a word, without having to press the ALPHA key each time. One wayis to
hold the ALPHA key down as you select each alphabetic symbol. The other way is to
press the key twice, as described in Figure 1.1. The ALPHA annunciator remains
displayed at the top of the view window and each key press produces an alphabetic symbol
until the ALPHA key is pressed again. Erasing a single symbol in a series is easily done

with the ERASE key, but LS CLEAR no longer eliminates the entire string. It produces

a special symbol (an exclamation mark) when ALPHA is still on. More later about how
special symbols are controlled, but for now, how can the ALPHA string you've written

be erased? One way is to press the ALPHA key (the annunciator disappears) and LS

CLEAR works as before. Another way is to press ENTER (the ALPHA annunciator
vanishes) and LS CLEAR works again. Also, pressing CANCEL clears the display.

As shown in Figure 1.1., single lower case letters are written by first pressing
ALPHA,then LS. Pressing next the 4th key in the 2nd row then, for example, puts the

symbol "p" in the view window. Creating a string of lower case letters without having to

press ALPHA, LS each time requires the keystrokes, ALPHA, LS, ALPHA, ALPHA,

ALPHA. The first three keystrokes give the instruction to write letters in lower case, the
second two set the computer so it continues to write ALPHA characters. Pressing ALPHA

or ENTER returns the computer to its original data entry mode. Sequences of upper and

lower case letters can be mixed in any order. Start by pressing ALPHA, ALPHA, then

press the SIN key (1st key, 3rd row) to generate "S". Pressing the LS key, then the SIN

key once more produces "s". If you have keyed the sequence ALPHA, LS, ALPHA,

ALPHA, ALPHA to write a string of lower case letters, pressing LS produces an upper

case symbol. If you had just pressed ALPHA, ALPHA, LS produces a lower case

symbol.

|REG (I Edy =a
0123456789: ;<=>7

KEY: (NONE) i NUM:

Figure 1.2. Characters 0-63

BRSIPOLNtarl
tvdeq85pPoTwallQew
icf6"02¢~-8"

oF LERSTS ERNLS-3 21,1 12

Figure 1.4. Characters 128-191

7a Eres CHARACTERS [TE-127 SRL

EABCDEFGHIJKLMNO
PAERSTUVHWXYZLNI"_
‘abcdefghijklmno
parstuvwuxyz{ | I~¥

KEY: orP[ENTER] NUM: 64

Figure 1.3. Characters 64-127

EE CHARACTERS 102-258
BAARAAECEECEY2
PAOSOBBOXBULOUYEP
a4a%33eceééeiiia
NS PAN, « 2 AC» .

dRrododo+suuliugpy

Figure 1.5. Characters 192-255

Section 1.3.2. Generating Special Characters

In addition to using standard alphanumeric symbols in your programs and equation
solutions, the HP48G presents a wide range of special characters and symbols. They are

shown in Figures 1.2. to 1.5. in the form of the screen displays. Produce one of them by

pressing RS CHARS (the right-shifted function of the 2nd key, 1st row). There are several
features of these displays that will help you select the character you want, place it in the
view window, or scroll among the four displays for these special characters. View each
of the other displays by pressing the white key marked "D" for the previous set, or the
white key marked "E" to show the next set in the series.

As soon as you bring one of the these displays to the view window, one character

will be highlighted automatically. In Figure 1.5, for example, it's the capital letter "A"

with a small circle at its top. Use the cursor control keys (Sth key, 1st row; 4th, 5th and

6th keys, 2nd row) to move the cursor to highlight any other character. Two pieces of in-
formation change each time you move the cursor. Keystroke instructions for generating
the highlighted character are listed at the lower right of the view window next to "Key:",

and the character numberis listed at the lower right of the view window. Write the

selected character to the view window by selecting ECHO (press the white key marked
"F"). To see the highlighted character to the view window and to clear the character
menus, press NXT (6th key, 1st row), then the white key marked "E" to select CANCL,

or just press CANCEL (the ON key). Pressing NXT brings the "next page" of menu

options to the bottom of the view window. Some displays will have many "pages". This

one just has two of them. Press NXT again to see the first one.

Section 1.3.3. Selecting How Numbers are Displayed

There are two decisions to make about how numbers are displayed in the view
window or how they are printed. One is "How many digits to the right ofthe decimal are
needed" and the other is "What's the bestformatfor display". The decision about how

many digits are displayed affects what is seen in the window, but it doesn't affect the
accuracy with which a number is used in a calculation. For example, the number
"1234.56789" can be displayed as such or rounded to a decimal as "1235.", seen as

"1234.6", as "1234.57", as "1.235E3" or in a variety of other ways you can select. All

calculations, however, will use "1234.56789" no matter what display option is selected.

Calculations will use all numbers up to 12 digits to the right of the decimal.

It is an easy job to set the HP48G for exactly how TATETCRTIR TET]
you wantto see numbers displayed and how you want the [Numer Format: [FER 4

. . . ANGLE MEASURE: Degrees
view window to be configured with other features. Press |cooeo system: Rectangular

RS MODES (3rd key, Ist row) to bring the [¢PEEF CLOCK
CALCULATOR MODES menu into display (Figure
1.6). This menu allows selecting the format for digit Figure 1.6. Modes Menu

display to either "standard", "fixed", "scientific" or

"engineering", and controls how many digits will be shown to the right of the decimal.
It also allow customization for angle measurements (degrees, radians or grads), coordinate

system (rectangular, polar or spherical), enabling the "beep", displaying a "ticking clock”,

and whether fraction marks for a string of digits will be a comma (common in the United

States) or a decimal (common in Europe).

The CHARACTER MODES display shown in
Figure 1.6 has the cursor highlighting "Fix". To show

other format styles, select CHOOS (for "choose") by
pressing the white key marked "B". A new menu appears

with one line highlighted (Figure 1.7). Up or down cursor

keys control highlighting a different choice. Pressing EN-

TER returns the original display configured for whatever

format was selected. How many digits will be shown to the right of the decimal is deter-

Figure 1.7. Format Menu

mined by highlighting the number to the right of the formatselection, pressing CHOOS,

highlighting a number and pressing ENTER. An alternative is to highlight the number

next to the format choice, key any whole number from zero to 11, then press ENTER. The

view window is cleared and the computer configured to the choices by selecting OK (white

key marked "F"). When the format for number display is selected to be "standard", no

" choice can be made for the number ofdigits to the right of the decimal, because this choice

shows all digits. Figure 1.8 compares number displays in different formats.

To configure angle measure, coordinate system and other features, bring the display

in Figure 1.6 to the view window (by RS MODES), highlight the feature to be changed
using the cursor control keys, Key CHOOS to see options, then press ENTER and finally
OK to record the selections. A short phrase just above the rectangular menu option boxes

is a useful hint about the highlighted feature. "Page 2" of the CHARACTER MODES

menu (selected by pressing NXT) provides the options to reset either a specific value or
to return to the default settings for all choices. This page also allows canceling the current

operation.

Section 1.4. Setting the Clock, Calendar and Alarms

The HP48G's clock can be used to control many functions. One of its most

common is just to display the current time and date. Like buying a new watch, though,
the computer's clock has to be set correctly at least

once. It may also have to be adjusted once in a while nome rue

if second-to-second accuracy is required. Clock, : Sains:ar
calendar and alarm functions are set and adjusted in p, [Set time, date..

similar ways using menus displayed by RS TIME.
Figure 1.9 shows the opening menu.

Highlighting "Set time, date..." and pressing

ENTER presents the menu in Figure 1.10 with the

cursor initially set for changing the clock hour, as . PB1:26:01 PM
indicated by the brief reminder at the lower left of the : 12/29/94 M/DY
view window. Pressing CHOOS highlights a number

for the correct hour. Pressing ENTER selects it and a,

returns the view window to the previous display. Figure 1.10. Set Time and date...
Keying the number from the keyboard and pressing

ENTER accomplishes the same task. NXT presents "page 2" with options to RESET,

CANCL and other functions. Select the menu option OK on either "page" 1 or 2 to save
the choices you've configured. Abandoning changes is easy with either CANCL or
CANCEL. Displaying the date and time, as described in Section 1.3.3., is selected with

options in the RS MODES menu (Figure 1.6).
Setting one or more alarms begins by using the cursor controls to highlight the

middle option in the menu shown in Figure 1.9, then pressing ENTER. If a message
display is required, press «, « first, then use the ALPHA functions of appropriate keys to

write a word or short phrase. Use the cursor controls to highlight the hour, minutes,

seconds and date for the alarm to sound, and indicate whether the alarm will sound at

successive times, and if so, at what intervals. Indicating times and intervals for alarms is
made by highlighting "REPEAT", then pressing CHOOS. Select a number for the repeat

sequence, press ENTER, then move the cursor to the right, and press CHOOS. Highlight

the interval for the alarm and press ENTER. Pressing OK saves the settings you've

constructed.

If an alarm is set to activate only once, pressing CANCEL terminates it. An alarm

set to repeat must be erased with a purge function. To erase an alarm setting, press RS

TIME, and with "Browse alarms..." highlighted, press ENTER. Use the white key

marked "C" to PURG the highlighted alarm designation. OK returns the view window to

the HOME display.

The next chapter gets down to business by explaining how arithmetic operations are
performed and how units are designated and converted.

10

Chapter 2

Basic Operations

Chapter 1 described how to generate alphabetic and numeric symbols of one kind

or another. How to use them in actual calculations will soon be clear and will become

habit with just a little practice. The simplest calculations to start with are those involving

the basic arithmetic operations of addition, subtraction, multiplication and division. The

HP48G computer, along with others made by the same company, employs a special logic

for performing these tasks when they are used as a single operation, when they are

involved in complex strings of calculations and when they are used in programs. Its logic

is that of RPN ("Reverse Polish Notation") which is based on a system developed by a
Polish mathematician, Lukasiewicz, in the early 1920's, long before anyone envisioned

such a sophisticated and compact computer as the HP48G. It's easy to learn, as you see

in the next couple of pages, and offers many advantages in the direct and step-by-step way

it deals with relationships between numbers.

Section 2.1. Number Control

When you first turn your computer on and press LS CLEAR, you see the name of
the directory ("HOME") at the top left of the view window, and the numbers 1 to 4

displayed in a column at the far left (Figure 2.1). These numbers designate positions in

the STACK. More numbered STACK locations will be
generated when you ENTER more than 4 sets of num-
bers, as you'll see in some of the exercises to come, but |4
these 4 will be enough to show some important basic 3

operations. It is well worth the time to spend the next |:

few minutes to understand how the STACK is organized |iEESESE
and to see how numbers are positioned in it. This will Figure 2.1. View Window
show the basis not only for how all calculations are

performed with the HP48G, but also it will also describe the organization of logic used in

programs.
The HP48G computer operates on numbers in the STACK to add, subtract, multiply

and divide them in a different way than most people are used to. Ask almost anyone to
add, for example, the numbers 10 and 17. Good chance you'll hear something like, "Ten

11

plus seventeen equals twenty seven", a statement describing a sequence of 5 steps. Step

1: identifying the first number, Step 2: identifying what arithmetic operation will take
place, Step 3: identifying the second number, Step 4: making an "equals" statement, and
Step 5: stating the answer. A common strategy we are all used to using.

The HP48G performs arithmetic in a more direct and simpler way by using RPN.
The first and second numbers are identified, then the arithmetic operation is stated. That's
all. The answer is immediately available. A complex chain of calculations is performed

in a similar way, operating on numbers a pair at a time. A simple example is shown in
Exercise 2.1. Figure 2.2. shows the STACK display at each ofthe steps in this exercise.
As you go through this exercise, notice how each number assumes different positions in

the STACK.

Exercise 2.1. Basic "Reverse Polish Notation" (RPN) Operations

Problem Statement: Using only the STACK registers, calculate:

¥ - 0X6) - (10+17)

5

Solution:

Step Press

1. 30, ENTER,6, *, 10, ENTER, 17, +, -, 5, + (read: "30.60")

Working from an empty STACK (Step 1 in Figure 2.2.), keying "30" (Step 2)
places it to the left of the view window at line 1. ENTERIing it (Step 3) displaysit to the
right at line 1. Keying "6" raises the STACK to put "30" at line 2. Designating the
arithmetic function of multiplication drops the stack and places the correct answer "180"

at line 1. Keying "10" raises the STACK and ENTERIing it places it to the right at line
1. Keying "17" raises the STACK again and Step 9 adds the numbers in lines 1 and 2.
The numbers "180" and "27" are now in STACK positions 1 and 2 where Step 10 sub-

tracts them. Keying "5" raises the STACK, with Step 12 providing the final answer at line
1.

Each time a new number was keyed, all previously displayed numbers were raised
in the display. When an arithmetic operation was performed, the display was dropped one

line with the answer shown at the end of each step in the first line of the view window.
Each number was entered one-at-a-time into a STACK which went up or down depending

on the nature of each one-at-a-time operation.

12

Figure 2.2 Display for Exercise 2.1.

{ HOME 3 { HOME } { HOME }
4: 3: 4:

3: 2: 3s

fi 30¢ it
Step 1: Clear View Step 2: key 30 Step 3: ENTER

{ HOME } { HOME } { HOME }
3: 4: 3:
2: 3: 2:

be it 180| [10 +
Step 4: key 6 Step S: Multiply Step 6: key 10

{ HOME } { HOME } { HOME }

3 3: 188 3

: i ° 2
11| IESy| | ————
Step 7: ENTER Step 8: key 17 Step 9: Add

{ HOME } { HOME 3 { HOME }
4: 3: 4:

3: ‘: 153 3:
I: 153.08) [Se [: 30.6
INIRNI EEEEE|
 Step 10: Subtract

Step 11: key S Step 12: Divide

Many more numbers (up to the limit of the computer's memory) can be loaded into

the STACK. Notall of them, of course, can be displayed in the view window at the same

time. There is only room for four of them, but all of them remain in the STACK
nonetheless. For an example, starting with a blank HOME display, key, then ENTER

each of the numbers "100", "200", "300", "400", "500" and "600". Each of the first 4

numbers appeared in successive STACK positions and was shown in the view window.

As soon as the digit "5" was pressed for keying "500", however, "100" disappeared from

the top of the view window.
The number "200" vanished also with keying the last number in the sequence.

13

"100" and "200" remain in STACK locations 6 and 5, respectively, off-screen. To see

them, press the UP cursor control (Sth key, 1st row) until the screen scrolls down to show

the first number entry. If pressed again, a tone indicates the cursor is at the top of the

STACK. Pressing the DOWN cursor control (5th key, 2nd row) enough times until a tone
is sounded returns the STACK to its original position. Pressing the ERASE key eliminates

each number as it appears in the first line of the STACK. Pressing it several times
eventually clears the STACK. Pressing CANCEL, then LS CLEAR would have cleared

the STACK and the view window all at once.
You probably noticed that a menu automatically appeared in the view window as

soon as you pressed the UP cursor control. Its options permit manipulating and viewing
STACK contents in many ways. These will be explained in the context of specific

applications later in the book.

Section 2.2. The Importance of STACK Position

Entering two or more numbers raised the STACK in Exercise 2.1. and performing

an arithmetic operation lowered it. Not all functions affect the level or the order of

STACK contents in these ways. Any number at line 1 in the STACK, however, will be
changed in some way almost no matter what operation is performed.

To make the point with an example, key "1234" and press ENTER. Calculating the
sine function ofthis number by pressing SIN changes the number at line 1, of course, but
it doesn't alter the orientation of the STACK at any level. Had the cosine (COS) or

tangent (TAN) functions of the number been calculated, had its reciprocal been computed
with 1/X (6th key, 3rd row), or its square root taken, or had its sign been changed with
+/- (2nd key, 4th row), the STACK would have responded in similar ways. Each

operation would take place, but only the contents of line 1 would change.
Analogous operations affect the appearance of alphabetic symbols in line 1 in the

STACK although, of course, arithmetic operations cannot be performed on them. For an

example, press ALPHA twice, type the word "CAT", then press ENTER. The symbols

'CAT"' appear at line 1. Keying a number (try "123") and pressing ENTER puts "123" at
line 1 and raises the stack. The symbols 'CAT' now are listed at line 2. Erasing "123"

with the ERASE key, or by keying LS DROP (5th key, 4th row), brings 'CAT' back to
line 1. Pressing the SIN key constructs 'SIN(CAT)' as an ALPHA statement which can
be further modified to read '-SIN(CAT)' if the "+/-" key is pressed, and changed again
with a press of the "1/X" key to appear as 'INV(-SIN(CAT))'. Function keys (like "1/X",

SIN, +/-, etc.) construct corresponding ALPHA amendments to non-numerical symbols

appearing at line 1. Each would have performed its arithmetic function, of course, had

there been a number at line 1.
Although it may be a little confusing at first, automatic changes either in the

14

orientation of the STACK or in a number at line 1 provide great power for making
calculations, especially complicated ones. The number at line 1 and the one at line 2

combine in the way you designate when you add, subtract, multiply or divide them. The
order of the numbers at these two lines is unimportant for addition and multiplication,
since, for example, 5 plus 10 gives the same sum as does 10 plus 5, and the product of 12

times 30 is equal to that of 30 times 12. The order of numbers at lines 1 and 2 is critical

for subtraction and division because, for example, 24 minus 16 doesn't give the same

answer as does 16 minus 24, and 150 divided by 30 is not equivalent to 30 divided by 150.
Setting up or changing the STACK to position numbers where you want them for

a calculation is easy. Starting with a clear HOME screen, to divide 150 by 30, for
example, key 150, press ENTER then key 30 and press the division key to see "5" at line

1. Were 150 at line 2 and 30 at line 1 when 30 is to be divided by 150, pressing LS
SWAP (6th key, 2nd row) reverses the contents of lines 1 and 2 and pressing the division

key yields the desired calculation. Review Exercise 2.2. and Figure 2.3. to see how the
contents of the STACK change in working through a complex calculation.

Before beginning Exercise 2.2,it will be useful to know that numbers at different
levels in the STACK will have designations other than those of just the numbered levels

shown at the left of the view window (Figure 2.1). Level 1 is also called the X STACK

REGISTER and level 2 is also called the Y STACK REGISTER. Several functions
performed directly from the keyboard require knowing this nomenclature. It will be
important also when these functions are written into programs. For example, the primary

function ofthe last key in the 3rd row (1/X) calculates the reciprocal of whatever number
is at level 1 (the X STACK REGISTER), and the left-shifted function ofthis key raises to

a natural log base whatever numberis at level 1. Similarly, the primary function of the
4th key in the same row calculates the square root of the number at level 1. Its left-shifted

operation squares the number there. Its right-shifted operation calculates the X'th root of
Y,that is the number at level 1 provides the designation for the root and that at level 2 (the
Y STACK REGISTER) is the number for which the designated root is determined. The
primary function for the 5th key in the 3rd row (y*) raises the number at level 2 to the
power of the numberat level 1, and its left-shifted function raises to a base ten the number
at level 1.

There are a couple of places where there might be confusion about the X and Y

designated positions of the STACK levels 1 and 2, respectively. The ALPHA function of
the last key in the 3rd row (1/X), for example, is "X". This is an ALPHA character and

has no implicit reference to the X STACK REGISTER. Neither does the "X" on the 5th
key in the 6th row. It is, of course, the multiplication key. Its symbol has no reference
to either an ALPHA character or to the X STACK REGISTER.

Now, on with Exercise 2.2. It is constructed to review basic RPN operations and

to show how the X and Y designations of numbers at levels 1 and 2 in the view window

15

are important for using correctly keys that have these definitions. With not much more
practice than given in the exercise, these different key definitions will soon become habit
and commonplace.

Exercise 2.2. A Complex Calculation Using the STACK

Problem Statement: Solve the following equation using only the STACK:

Al2y13210G 4.9+(3.2)%)
9.6

X =

(2.01)

Solution:

Step Press

1. 31.2, ENTER, 9.6, +, 1.32, y*, 4.9, ENTER, RS LOG, 3.2, ENTER,
LS, x}, +, *, 2.01, ENTER,3, y*, + (read: "6.38")

Section 2.3. Tools for STACK Control

Even the simplest examples presented so far make it clear that where numbers
appear in the STACK is vitally important to the accuracy of a calculation. The sequence
with which data are manually entered and the pattern of arithmetic operations are just two
ways the STACK contents are ordered. There are many built-in functions for similar con-
trols. They are important to manual operation of the computer, but they are essential in
controlling the STACK during machine operations controlled by a program.

Access to the STACK comes in two ways. One is through the RS STACK opera-

tion (5th key, 1st row), and the other is by using LS STACK (not shown on keyboard; key
LS then press the upward pointing cursor control key, the 5th key, 1st row). Each
provides different operations related to the STACK, as described in Section 2.3.1. and
Section 2.3.2. Some are useful for repositioning, duplicating and deleting numbers in the

STACK. These will be described first. Others will be more usefully described later in the
context of programming examples.

Before examining these operations, it will be useful to know about RS UNDO
(right-shifted function of the 3rd key, 2nd row). It's a quick and easy way to recover from
the results of unwanted operations. For an easy example, first press LS CLEAR, then key
1, ENTER,2, ENTER, 3, ENTER, 4, ENTER. This "loads the stack". LS CLEAR, of
course, removes all entries and "clears the stack". If this operation is judged to be a
mistake, RS UNDO recovers from the error.

16

Figure 2.3. STACK Display for Exercise 2.2.

{ HOME » { HOME » { HOME } { HOME }»

4: 2 4: 3:
3: : 3: 2

£ 3.2¢ a 31.2| [5 6¢ 31-2
EEESWSSS ISNSNSSSOS |Sni |SO———

Step 1: Clear View Step 2: key 31.2 Step 3: ENTER Step 4: key 9.6

{ HOME » { HOME » { HOME)» { HOME »

4: : 4: 3:
3: : 3 2:

23 I 3.25] 22 1: 4.74
1: 3.25] |1.32¢ 13 4.74|14.9¢
Cpt —1[© gC[1[1WC _[1[1J

Step S: Divide Step 6: key 1.32 Step 7: y* Step 8: key 4.9

{ HOME) { NOME » { NOME) { HOME »

4: 4: 3 4:
3: 3 : 4.74 3: 4.74
2: 4.74] |2: 4.74] |1: 8.69] [2s 0.69
1: 4.90] |1: 0.69] |3.2¢ 1: 3.20
[11 1"mw 11+r1 ®m_@©11°°]

Step 9: ENTER Step 10: RS LOG Step 11: key 3.2 Step 12: ENTER

€ NOME) € HOME » { NOME) { HOME)

4: 4: 4: :
3: 4.74 3 3: :
2: B.69| |2: 4.74| |12: 3 51.80
1: 18.24] |1: 18.93] 1: 51.80|12.01
rr71 mw:rrrrrrrr ww+r+r1mr11

Step 13: LS x* Step 14: Add Step 15: Multiply Step 16: key 2.01

{ HOME » € NOME » { NOME 2} € NOME »

4: 3: 4: 4:

3: 2: 51.88] |3: 3:
2: 51.806] |1 2.01} |2: 51.88||2:
1: 2.011 |3 1: 8.12||1: 6.38
EEEEEA |I| EEDEC1[11[

Step 17: ENTER Step 18: key 3 Step 19: y* Step 20: Divide

Section 2.3.1. Exercises for LS STACK Operations

The STACK contents can be cleared, reordered, duplicated and counted, as

illustrated in Exercises 2.3. to 2.5., each of which begins with a cleared STACK.

17

Exercise 2.3. Clearing STACK Lines

Step Press
1. 1, ENTER, 2, ENTER, 3, ENTER, 4, ENTER

2. LS, DROP (erases number at Line 1. 4, ENTER returns original order.)

3 LS, STACK, NXT, DROP2 (erases numbers at Lines 1 and 2. 3, ENTER, 4,

ENTER returns original order)

4. 3 (for example), DRPN (erases numbers at Lines 1,2 and 3. 2, ENTER, 3,

ENTER. 4, ENTER returns original order)
5. LS CLEAR (erases entire STACK contents.)

Exercise 2.4. Reordering The STACK

Step Press
1. 10, ENTER, 20, ENTER, 30, ENTER, 40, ENTER

2. LS, SWAP (exchanges ("swaps") numbers at Lines 1 and 2. LS, SWAP returns

original order)

3. LS STACK, ROT (number at Line 3 is "rotated" to Line 1. Press ROT twice

for original order)
4. 4 (for example), ROLL (number at Line 4 is "rolled" to Line 1. 4, ROLL 3

times for original order)
5. 3 (for example), ROLLD (number at Line 1 is taken to Line 3. 3, ROLL for

original order), LS CLEAR erases STACK contents

Exercise 2.5. Duplicating and Counting the STACK

Step Press
1. 100, ENTER, 200, ENTER, 300, ENTER, 400, ENTER

2. LS, STACK, NXT, DUP (duplicates number at Line 1. LS, DROP returns

original order)

3. DUP2 (duplicates numbers at Lines 1 and 2. DROP2 returns original order)

4. 3 (for example), DUPN (duplicates numbers at Lines 1, 2 and 3. 3, DRPN

returns original order)
5. NXT, OVER (duplicates number at Line 2. LS, DROP returns original order)
6. 4 (for example), PICK (duplicates number at Line 4. LS, DROP returns

original order)

7. DEPTH (places the number of STACK entries at Line 1), LS CLEAR erases

STACK contents

18

Section 2.3.2. Exercises for RS STACK Operations

In contrast to LS STACK operations, those involving RS STACK institute an
"interactive STACK" and redefines the keyboard. Exercise 2.6. gives the basics. It makes
sense that something has to be in the STACK forits contents to be arranged, so Exercise
2.6. starts by entering data into each ofthe first four STACK positions. This exercise uses
keyboard controls in the first and second row for moving the cursor up, down, left or
right, designated here as UC, DC, LC, and RC respectively.

Exercise 2.6. RS STACK Operations

Step Press
1. 1, ENTER, 2, ENTER, 3, ENTER, 4, ENTER

2. RS, STACK, ECHO, ECHO, ENTER, ENTER (copies the contents of the current

level of the STACK,as indicated by the cursor position, to line 1; LS DROP, LS

DROP returns original order

3. RS, STACK, UC, UC, ECHO, ENTER, ENTER (copies the contents of the

current level (line 3) to line 1; LS DROP returns original order)

4. 3 (for example), PICK (copies contents of the numbered line to line 1; LS DROP

returns original order)

5. RS, STACK, UC, UC, LS, PREV KEEP (clears all STACK levels above the

cursor; CANCEL, LS CLEAR erases remaining STACK contents)

Section 2.4. Calculations of Percent

Calculations involving percents can be made, of course, following the general

procedures outlined in Exercises 2.1. and 2.2. just using the keyboard, but there is an
easier way to do them. Menus available for you to make these calculations with fewer
keystrokes are listed under the MTH directory. Figure 2.4. lists these menus.

Any calculation of percent requires 2 numbers. For example, asking, "What is
5.83% of 12.92?", or "What is the percent change when 129.36 goes to 208.11?", or
"What percent is 12.92 of 16.48?" all inquire about a relationship between 2 numbers.

Similarly, two numbers must be in the STACK when you ask your HP48G to calculate a
percent, a percent change or to determine what percent one number is of another.

Exercise 2.7. shows how to make these common and useful calculations. Before beginning

the exercise, refer to Figure 2.4. to see that the menus "%", "%CH" and "%T" are listed
in "page" 1 of the REAL subdirectory under the MTH main directory.

19

Figure 2.4. The MTH, REAL Menus

Menu Keys

page A B Cc D E

1 VECTR* MATR* LIST* HYP* REAL*
2 PROB* FFT* CMPL* CONS*

The "*" indicates a directory whose menus for PARTS are:

*REAL
1 % %CH %T MIN MAX
2 ABS SIGN MANT XPON IP
3 RND TRNC FLOOR CEIL D>R

I
r

BASE*

MOD
FP

Exercise 2.7. Percent Calculations

Part I. Problem Statements

What is:

ILA. 9.68% of 14.37?
I.LB. 51.78% of 10.92?

Solutions (Part I):

Step Press

ILA. 1. 14.37, ENTER, 9.68, MTH, REAL, % (read: "1.39")
I.LB. 1. 10.92, ENTER, 51.78, MTH, REAL, % (read: "5.65")

Part II. Problem Statements

Whatis the percent change when:

II.A. 138.42 increases to 961.38?

II.B. 1,427.11 decreases to 401.01?

20

Solutions (Part II):

Step Press
ILA. 1. 138.42, ENTER, 961.39, MTH, REAL, %CH (read: "594.55"
ILLB. 1. 1427.11, ENTER, 401.01, MTH, REAL, %CH (read: "-71.90")

Part III. Problem Statements

What percentis:

III.A. 107 out of 392?

II.B. 1.5x10° out of 4.9x 10°!

Solutions (Part III):

Step Press
ILA. 1. 392, ENTER, 107, MTH, REAL, %T (read: "27.30")
II.B. 1. 4.9, EEX, 1, +/-, ENTER, 1.5, EEX, 2, +/-, MTH, REAL,

%T (read: "3.06")

Section 2.5. Variables as Numbers and Vice Versa

It is common to need the same number more than once either in a single calculation

or in a series of calculations. Even many inexpensive calculators allow you to store a
number, then recall and use it whenever there is need. This saves both the number of

keystrokes and the time, let alone the aggravation, to make a calculation. In general, the
more complex the expression you store in this way, the more time and effort saved. The
HP43G allows you to store more than just numbers, though. This section of the chapter

introduces the advantages the HP48G gives you in being able to store complex variables,

as well as just simple numbers, under names you construct. The process is easy to learn
and handy to use.

Imagine that you need the number "1234.56" for a series of calculations. Starting
with the computer at the HOME directory and FIXed to display 2 digits to the right of the
decimal, making a calculation using 1234.56 is started by keying 1234.56, then pressing
ENTER, keying another number, then pressing the "+" key to complete addition, for

example. The number 1234.56 could be keyed again in subsequent calculations involving
subtraction, multiplication and/or division. That would work well enough, but keying and

entering 1234.56 each time is laborious and unnecessary.
An easier way to use a number repetitively is to store it, then recall it when it is

21

needed. The key VAR (4th key, lst row) makes this process simple. Using it first

requires identifying the number you need for the variable, then indicating a name forit,

then storing it under that name. The number will be recalled whenever you ask for the
variable by name or by just pressing the appropriately named menu key displayed by VAR.

For example, imagine that the number "1234.56" is going to be used many times

in a series of calculations and it will be stored under the name "N" (for number). Key

"1234.56" and press ENTER. Define the variable name by first using the apostrophe (')

key (1st key, 2nd row), then press the ALPHA key, then press the "N" key (2nd key, 2nd
row). Pressing STO (2nd key, 2nd row) stores 1234.56 under the variable name "N".

The menu of stored variables (in this example for the HOME directory) is seen

anytime by just pressing VAR. Recalling 1234.56 to line 1 requires pressing the white key
corresponding to the position in the menu where N appears. If is in the left-most position
of the menu, pressing the white key marked "A" brings the numerical equivalent of the
variable "N" into line 1 of the computer's display where it can be acted upon
arithmetically. But you don't need to display the menus with VAR to get the number

stored as "N". Just press the ' key, then ALPHA, then "N", and finally RS RCL (2nd
key, 2nd row) to get 1234.56. Once it's at line 1, you can do anything you want to with
it. If it is to be used often, the process for constructing a VAR menu for "N" makes a lot
more sense than having to key it each time.

When the number 1234.56 has outlived its usefulness as a stored variable, it is
easily purged from memory using the LS PURG function (3rd key, 4th row). To erase the

computer's memory for 1234.56, press the ' key, then ALPHA, then N, then LS PURG.
Pressing VAR to display the menu of stored variables shows that "N" is gone.

The VAR option of the HP48G computer gives many more valuable options than

just storing and recalling a single number. When you've become more familiar with using
VAR,it will allow you to save entire equations for future use, construct directories and
subdirectories for data and equation storage, use VAR menus interactively within and
between programs, among many other operations. These features will be explained later.

Section 2.6. Variables with Units

Using VAR menus for storing numbers is valuable. Additional poweris available
by using them to store variables with corresponding units. One advantage is that variables
stored in this way can have unit conversions made on them automatically during arithmetic
operations. This is a powerful feature and is well worth learning. Menus displayed under

the directory RS UNITS allow manipulating a large variety of units in different ways. A
simple example will show the basics. But first, an introduction to the directories and

subdirectories and their menus displayed by RS UNITS.
There are many sets of units among which you can make conversions, as you will

22

see in Section 2.7. The easiest way to make them is to use the menus shown in Figure
2.5. You may have to hold onto your hat when you make the first couple of passes

through the RS UNITS menus. They are complete and most valuable, but may be a little

overwhelming at first. Exercises later in this chapter along with a little practice on your

own will soon show that the RS UNITS menus are handy and not all that hard to use.

The directories and menus displayed with RS UNITS are so complex they deserve
special explanation. Press RS UNITS to see the first "page" of directories, as shown in
the first line of Figure 2.5. Press NXT twice more to see the next 2 "pages" of directories
and press it again to redisplay "page" 1. It is clear that each option in each display shows

a directory because each has a tab on its upperleft corner.

Each of these directories contains sets of units appropriate for the physical measure-

ment it designates. For example, the first directory (white key marked "A") on the first

"page" of RS UNITS contains units for the measurements of length (LENG). Press A to

see menus in its first "page" of M (for meter; position A), CM (for centimeter; position
B), mm (for millimeter; position C), etc. Pressing NXT displays "page" 2 of the menus
for this directory. The original display of directories is recaptured, of course, with RS

UNITS.
One of the functions for the menus shown in Figure 2.5. is to amend a number at

line 1 in the view window with an appropriate set of units. You may have already deduced

how this might be done. To test your expectation: How would you construct the statement

"55 mph" (miles per hour) in the view window? (Press: 55, ENTER, RS, UNITS,E (for

SPEED), E (for MPH).) How would you show "10 acre" at line 1 in the view window?

(Press: 10, ENTER, RS, UNITS, B (for AREA), NXT, F (for ACRE).) And a last one

- How would you show "5.3 MOL"? (Press: 5.3, ENTER, RS UNITS, F (for MASS),

NXT, NXT, B (for MOL).) As long as there are no "customized menus" stored in the

HP48G, pressing CST at any time, of course, clears the menu display and LS CLR clears
the display. By the end ofthis chapter, pressing CST will display the customized menus

constructed in Exercise 2.11. More about that later.

So what? Is all of this a trick just to be able to display units with numbers? Ifit

were, it certainly wouldn't be worth it in most people's opinion. But, there is much more
to it. For one thing, each designated number with its set of units can be stored as a menu
in VAR, much the same as you stored a number "N" a few pages ago in Section 2.5.

For an example, create and store the variable "1234.56" with units of seconds under

the name "T" (for time). Here's how. Key 1234.56, press ENTER. To add units of time

to the number which is now at line 1 in the view window, press: RS UNITS, D, E to add

the units of seconds (s). Store the variable under "T" by first pressing ', then ALPHA,

T, then STO.

23

Figure 2.5. The RS Units Menu

page A

1 LENG*

2 FORCE*

3 ANGL*

B

AREA*
ENRG*
LIGHT*

The "*" indicates a directory whose menus are:

*LENG
1 M
2 MPC
3 NMI
4 MIL
*AREA

1 M2
2 KM?
*VOL

1 mM’
2 L
3 ML
4 BBL
*TIME

1 YR
*SPEED

1 M/S
2 C
*MASS

1 KG
2 TON
3 U
*FORCE

1 N
*ENRG

1 J
2 THER
*POWR

1 Ww
*PRESS

1 PA
2 INHG
*TEMP

1 °C
*ELEC

1 Vv
2 FDY
*ANGL

1 o

*LIGHT
1 FC
2 CD
*RAD

1 GY
2 R

*VISC
1 P

CM
PC
MIUS
Y

CM?
HA

ST
GALU
Cu
BU

D

CM/S
GA

G
TONU
MOL

DYN

ERG
MEV

HP

ATM
INH20

°F

ST

Menu Keys
C D

VOL* TIME*
POWR* PRESS*
RAD* VISC*

MM YD
LYR AU
CHAIN RD
A FERMI

B YD?
A MFP

CM’ YD’
GALC GAL
OZFL OZUK
PK FBM

H MIN

FT/S KPH

LB oz
T OZT

GF KIP

KCAL CAL
EV

BAR PSI

K °R

C Q
MHO S

GRAD ARCMI

LX PH

REM SV

E

SPEED*
TEMP*

FATH

MIUS*

FT?

TBSP

MPH

SLUG

LBF

BTU

TORR

ARCS

SB

BQ

MASS*
ELEC*

HZ

KNOT

LBT
GRAIN

PDL

FT*LB

MMH

SR

LM

CI

24

You can see the variable named "T" at the far left of the VAR menu by pressing
VAR. Each newly defined variable takes the left-most position at the bottom of the view

window and the others are shifted to the right. Recalling the numerical value stored as "T"
requires simply pressing ', then ALPHA, T, RS RCL, or by just pressing the white key
designated A (if the menu "T" is at the far left) while viewing the VAR menu. If the menu
option "T" is at some other location, press one of the keys A to F corresponding to its
position. The number appears now with its unit designation. But that's not all. The best
is yet to come.

Numbers with units can be arithmetically operated upon whether they reside in the
view window at lines 1 and 2 (a standard RPN configuration for arithmetic operations, as

shown in Figure 2.2.) or if they are stored in separate VAR menus. For example, adding
78.9 minutes to 1234.56 seconds (which is presumably still at line 1) requires keying 78.9,
ENTER, RS UNITS, D, D. Pressing "+" adds these 2 numbers with there units to
display "99.48 min". A little experimentation shows how numbers with units of length

(LENG), AREA, volume (VOL), SPEED, MASS, FORCE, energy (ENGR), power

(PWR), pressure (PRESS), temperature (TEMP), electrical units (ELEC), LIGHT and
radiation (RAD) operate in similar mixed and matched ways. Arithmetic operations on
units, of course, requires they are internally consistent. For example, you couldn't add

5.5 knots to 12.4 BTU's. Were you to try, a warning tone and the displayed "Inconsistent
Units" tells you of the error.

A little experimentation also shows, for example, how a value of 2.54 cm can be
added to that of 1 inch to provide an indicated sum of 2 inches. It will show also how a

speed of 48 cm/sec (constructed by pressing: 48, ENTER, RS UNITS, LENG, B, RS

UNITS, TIME, RS E) can be subtracted from that of 24 knots (constructed by pressing:
24, ENTER, RS UNITS, SPEED, F) then LS SWAP, - to calculate a difference of

1186.67 cm/sec, and how a weight of 70 kg can be added to 150 lbs to give a total of
304.32 Ibs. The UNITSfeature of the HP48G computer is more than a convenience for
displaying appropriate units for a number. It is a valuable bonus for those who need a fast
and accurate way to combine and convert internally consistent units, as described in the
next section. The next section describes how to make yet another valuable use of the RS
UNITS menus, that of unit conversions.

Section 2.7. Unit Conversions

It may just be the simple tasks of converting a temperature value in degrees Fahren-

heit to one of degrees Celsius, converting a velocity expressed in miles per hour to one
using units of kilometers per minute or seeing how a pressure value in inches of water
equals one expressed in units of pounds per square inch. It could be the more complicated

challenge of seeing how a thermal conductivity value expressed in BTU per hour per foot
per degree Fahrenheit is represented when expressed in milliwatts per centimeter per

25

degree Kelvin. For any case, the processes of unit conversion by paper-and-pencil, even
with a calculator, usually are not quick or easy for anyone. Unless there is a longstanding
experience with particular sets of units, most of us depend on one or more reference books
and have to take a lot more time and care than we'd like to get final values in the units we
need. The HP48G comes to the rescue. Exercise 2.8. summarizes the steps in the next

few examples.

Exercise 2.8. Sample Unit Conversions: Using Built-in Units

Part I. Temperature

Problem Statement: Convert 37.84 degrees Celsius to degrees Fahrenheit, then to degrees
Kelvin.

Solution:

Step Press
1. 37.84, ENTER (read: "37.84")
2. RS, UNITS, NXT, TEMP, °C (read: "37.84°C")
3. LS, °F (read: "100.11°F")
4. LS, K (read: "310.99K")

Part II. Speed

Problem Statement: Convert 36.54 miles per hour to meters per second.

Solution:

Step Press
1. 36.54, ENTER (read: "36.54")
2. RS, UNITS, SPEED, MPH (read: "36.54 mph")
3. LS, M/S (read: "16.33 m/s")

Conversions among temperature scales, as shown in Part I of Exercise 2.8., is as
simple as it gets. For the first example, 37.84 degrees Celsius is readily converted to
100.11 degrees Fahrenheit by first keying the number sequence then pressing ENTER.
Press RS UNITS, then NXT, select TEMP on that menu "page" and press "°C" to give

your numberits units. Changing this value to °F is simply a matter of pressing first LS

then the white key marked B. Changing it to °K requires no more than pressing LS then
the white key marked C. Converting among units of speed (Part II, Exercise 2.8.),

26

follows about the same few keystroke patterns as does the temperature conversion, but, of
course, the specific menu selections are different. The next few examples will show that

conversions among other units is not much more difficult.
How to make conversions between sets of units which are not shown in the UNITS

menus is summarized in Exercise 2.9. It requires becoming familiar with a menu

displayed by the keystrokes LS UNITS. This menu is shown in Figure 2.6.

Figure 2.6. The LS UNITS Menu

Menu Keys

page A B C D E E

1 CONV UBASE UVAL UFACT UNIT

Examples in Exercise 2.9. reveal some of the HP48G's valuable features for unit

conversion using the LS UNITS menu. Keying the instructions to place "1.89 gal" in the
view window are generally similar to those in used in Exercise 2.8. Keying the remainder

of the phrase to display "1.89 gal/min" uses a couple of new procedures. As shown at
Step 3 in Part I, constructing the denominator of the units statement requires pressing RS

before pressing the appropriate menu key to select the units. A similar strategy is used in

Step 3 of Part II to construct ".05 N/m".
The other new technique is the conversion of the statement in line 2 of the STACK

to the units listed at line 1. Two features of this technique are important. First, the

number keyed at Step 4 (for both Part I and Part II) has no numerical value and will not

be used in the conversion. The number "1" was arbitrarily chosen for these examples.
Any other number would have served the same purpose. Second, the menu CONV needs
to be selected from the LS UNITS directory.

The conversion of a value expressed, for example, in BTU per hour per foot per
degree Fahrenheit to one in units of milliwatts per centimeter per degree Kelvin requires
a few more keystrokes than the examples in Exercise 2.8., but the basic procedure is about
the same. The number and its current set of units is written in line 1 of the view window
using appropriate RS UNIT menus (Figure 2.5.). Next, the desired set of units (lead by
an arbitrarily chosen number) is keyed followed by LS UNITS, CONV.

Only values with corresponding units, of course, can be converted in this manner.

In the example, 1.89 "volume per time unit" was converted to a different "volume per time

unit" set. Similarly in Part IT of Exercise 2.8., 0.05 "force per area" units of Newtons per

square meter were converted to a matched "force per area" set of units, dynes per square
inch.

27

Exercise 2.9. Sample Unit Conversion: Mixing Built-in Units

Part I. Volume flow rate

Problem Statement: Convert the value of 1.89 gallons per minute to liters per second.

Solution:

Press
1.89, ENTER (read: "1.89")

RS, UNITS, VOL, NXT, GAL (read: "1.89 gal")
RS, UNITS, TIME, RS, MIN (read: "1.89 gal/min")
1, RS, UNITS, VOL, NXT, L (read: "11")
RS, UNITS, TIME, RS, S (read: "1 1/s")
LS, UNITS, CONV (read: "0.12 l/s")o

o
p
—
f
d

Part II. Force per unit area

Problem Statement: Convert the value of 0.05 Newtons per square meter to dynes per square
inch.

Solution:

Step Press
1. .05, ENTER (read: ".05")
2. RS, UNITS, NXT, FORCE, N (read: ".05 N")
3. RS, UNITS, AREA, RS, M? (read: ".05 N/m?")
4. 1, RS, UNITS, NXT, FORCE, DYN (read: "1 dyn")
5. RS, UNITS, AREA,RS, IN? (read: "dyne/in?")
6. LS, UNITS, CONV (read: "3.23 dyn/in®")

For the example in Exercise 2.9., Part I, how is 1.89 gallons per min (GAL/MIN)

expressed in liters per second (L/S)? Starting at the HOME menu, key 1.89 and press

ENTER. Press RS UNITS, select VOL, press NXT and select GAL. To construct this
volume into a volume flow rate, press RS UNITS, select TIME, press RS and select MIN
from the displayed menu. Constructing the desired set of units and making the conversion

is straightforward too. Press 1 (or any other number), press RS UNITS, select VOL,
press NXT (to get next menu), select L. To complete the rate statement, press RS UNITS,

select TIME, press RS and select S (for seconds). The next step makes the conversion.
Press LS UNITS and select CONV.

28

Running these examples and others of your own design a couple of times and using
Figure 2.5. as a guide soon shows how combinations of a wide range of units of length,

area, volume, mass, speed, power, in addition to others, are readily converted among

themselves. It would be hard to argue with those who decide that just the unit conversions
features of the HP48G makes the computer worth its money.

It is nothing short of a revelation to discover that burdens imposed by the tyrannical
gods of unit designation have been lifted by the avenging HP48G. Freedom from
confusion, hours of newly found time and a sense of confidence and wellbeing all come
when one has learned the few basic and simple techniques shown in Exercises 2.8. and
2.9.

For the arrogant few who believe that unit conversions are trivial exercises, hardly
deserving much attention for anyone well-versed in basic math - a challenge and a test!

Using paper and pencil only, determine how many teaspoons per hectare per day are 5.3
x 10° stere per square foot per minute. Those with an HP48G will readily see from Figure

2.5. how just a few keystrokes solves the problem. It'll take the others a little time to
catch up, so HP48G owners, start reading the next section that describes how to construct

customized menus, a valuable feature of the HP48G.

Section 2.8. Customized Menus

Converting units for a single value, even if they are unusual and complicated, is
easy with the UNITS menu. Exercises 2.8. and 2.9 show some simple examples. But the
UNITS menu can be put to even better use as sets of units become more involved and more

specific to a specialty area. They are still easily managed with a little care. Exercise 2.10.
gives examples. There are several benefits for working through the different sections of

this next exercise, even if the example units are not of particular interest or use. It will
help develop familiarity with complex manipulation of the UNITS menu and it will provide
a valuable background for learning how to construct customized menus addressed by CST.

These skills will then allow constructing customized menus of one's own interest. It will

soon become clear in reviewing Exercise 2.10. that it deals with units that are notlisted
in the UNITS menu. It will also soon become clear that not having the units immediately
available doesn't matter, they are easily written anyway.

Exercise 2.10. Complex Units Conversions

Problem Statement No. 1: Convert 52.63 BTU/(ft**min) to Watts/in’.

29

Solution:

Step Press
1. 52.63, ENTER, RS, UNITS, NXT, ENRG, BTU, RS, UNITS, AREA,RS,

FT"2, RS, UNITS, TIME, RS, MIN, 1, ENTER, RS, UNITS, NXT, POWR,
W, RS, UNITS, AREA, RS, IN*2

2. LS, UNITS, CONV (read: "6.43 W/in?")

Problem Statement No. 2: Convert 63.71 Watts/in? to Calories/(hr*cm?).

Solution:

Step Press
1. 63.71, ENTER, RS, UNITS, NXT, POWR, W, RS, UNITS, AREA, RS,

IN“2, 1, ENTER, RS, UNITS, NXT, ENRG, KCAL, RS, UNITS, TIME, RS,

H, RS, UNITS, AREA, RS, CM"2

2. LS, UNITS, CONV (read: "8.49 KCAL/hr*cm?")

Problem Statement No. 3: Convert 14.03 BTU/(ft**min) to horsepower/ft.

Solution:

Step Press

1. 14.03, ENTER, RS, UNITS, NXT, ENRG, BTU, RS, UNITS, AREA,RS,
FT"2, RS, UNITS, TIME, RS, MIN,1, ENTER, RS, UNITS, NXT, POWR,
HP, RS, UNITS, AREA, RS, FT*2

2. LS, UNITS, CONV (read: "0.33 hp/ft2")

Even the conversion of complex and perhaps unfamiliar sets of units is manageable
with the UNITS menu and with using a few simple skills to construct appropriate

statements at different lines in the view window. It would be laborious, however, to have

to repeat all the differentsteps for the problem solutions in Exercise 2.10. were these unit

conversions used frequently. It would be much easier, efficient and practical to construct

a customized menu for them. Then,little more than a couple of keystrokes would provide
the final unit conversion, no matter how complex it was. Exercise 2.11. shows how to

create a customized menu for the conversions shown in Exercise 2.10.

30

Exercise 2.11. Creating and Using Customized Menus

Part 1. Creating a Customized Menu

Problem Statement: Create a customized menu to convert values among the units of
BTU/(ft>*min), Watts/in, horsepower/ft’> and Cal/(hr * cm?).

Solution:

(Hint: In the following sequence, the symbol "_" is constructed by using the RS function

of the multiplication key. The process of multiplication is symbolized by "*". "RC"
indicates press the right cursor key (6th key, 2nd row)).

Step Press
1. LS, {}, 1, RS, , RS, UNITS, NXT, ENRG, BTU, +, LS, (), RS, UNITS,

AREA, FT"2, *, RS, UNITS, TIME, MIN, RC, SPC, 1, RS, , RS, UNITS,

NXT, POWR, W, +, RS, UNITS, AREA, IN“2, SPC, 1, RS, _, RS, UNITS,

NXT, POWR, HP, +, RS, UNITS, AREA, FT"2, SPC, 1, RS, , RS, UNITS,

NXT, ENRG, KCAL, +, LS, (), RS, UNITS, TIME, H, *, RS, UNITS, AREA,

CM*2, ENTER

2. LS, MODES, MENU, CST, STO (press VAR, then CST (keyboard))

Part 2. Using a Customized Menu

Problem Statements:

Convert 52.63 BTU/(ft>*min) to Watts/in’.
Convert 63.71 Watts/in? to Calories/(hr*cm?).
Convert 14.03 BTU/(f**min) to horsepower/ft’.
Convert 4.56 horsepower/ft* to Watts/in?.
Convert 16.92 Calories/(hr*cm?) to horsepower/ft>.D

d
w
N
e

Solutions:

Press
52.63, BTU/F, LS, W/IN (read: "6.43 W/in>")
63.71, W/IN, LS, KCAL (read: "8.49 kcal/(h * cm?")
14.03, BTU/F, LS, HP/FT (read: "0.33 hp/ft®")
4.56, HP/FT, LS, W/IN (read: "23.61 W/in®")
16.92, KCAL, LS, HP/FT (read: "24.52 hp/ft*")I
N

31

The customized directory designed in Exercise 2.11. was stored in the HOME

directory. Pressing VAR shows this menu listed as CST among whatever other entries and

subdirectories exist at the same time in the HOME directory. Editing the customized menu
requires no more than pressing VAR, then CST (view window) and finally pressing LS
EDIT. Deletions or additions to the customized directory are made by moving the arrow
cursor to an appropriate location, then activating the appropriate operation. Pressing

ENTER returns the edited statement to line 1 in the view window, then LS, MODES,

MENU, MENU reconstructs the new version of the customized menu. If no changes are

to be made after LS EDIT has been activated, just pressing CANCEL abandons the editing

process.
Different customized menus can be constructed in any subdirectory. Erasing a

customized menu requires first going to the subdirectory in which it exists, then pressing
VAR. To delete the customized menu, press LS, { }, CST (view window), ENTER,LS,
PURGE. Pressing the CST key now shows only blank rectangles at the bottom of the view
window. Whatever customized menu was there before, no longer exists. (Hint: Don't

erase the customized menu generated in Exercise 2.11. until Exercise 2.12. in the next

section has been completed.)

Section 2.9. Arithmetic with Complex Units

Creating a customized menu, as demonstrated in Exercise 2.11. has more utility
than just converting among sets of complex units, although that is certainly a valuable

technique. Calculations can also be made among values using complex and customized

units. This procedure is illustrated in Exercise 2.12.

Exercise 2.12. Calculations with Complex Units

Problem Statement: A temperature regulated machine had been modified over the years to have
three different built-in heaters (A, B and C), each of which was separately regulated. These

heating elements were obtained from different manufacturers and each is calibrated in different
units. What is the total heat production of the heaters for Conditions 1, 2 and 3 shown in Table

2.1.7 (Hint: Use the customized menu constructed in Exercise 2.11. to solve this problem.)

Heater A (Cal/(hr*cmd) B (Watts/in®) C (BTU/(f? * min))

Condition 1 24.1 125.6 718.4

Condition 2 14.2 50.6 946

Condition 3 45.2 210.1 516.4

32

Solutions:

1. For "Condition 1":

Step Press

1. CST, 24.1, KCAL, 125.6, W/IN, 718.4, BTU/F, +, + (read: "3227.78

Btu/ft’*min")

To Express in: Press: read:

W/in? LS, W/IN 394.15 W/in?
hp/ft? LS, HP/FT 76.11 hp/ft?

Calories/(hr*cm?) LS, KCAL 52.33 kcal/h*cm?

2. For "Condition 2":

Step Press
1. CST, 946, BTU/F, 50.6, W/IN, 14.2, KCAL, +, + (read: "36.34

kcal/(h*cm?))

To Express in: Press: read:

W/in? LS, W/IN 272.66 W/in
HP/ft? LS, HP/FT 52.65 hp/ft®
BTU/(ft**min) LS, BTU/F 2232.89 Btu/(ft**min)

3. For "Condition 3":

Step Press
1. CST, 45.2, KCAL, 516.4, BTU/F, 210.1, W/IN, +, + (read: "612.30 W/in*")

To Express in: Press read:
HP/ft’ LS, HP/FT 118.24 hp/ft?
BTU/(ft>*min) LS, BTU/F 5014.25 Btu/(ft**min)
KCAL/(hr*cm?) LS, KCAL 81.61 kcal/(h*cm?)

There are several ways to solve the problems presented in Exercise 2.11., each of

which is equally valid. All of them would be awkward, frustrating and time-consuming
with just paper-and-pencil, even for someone who is familiar with heat production units.

All solutions are easy and accurate, however, for someone familiar with constructing
customized menus and using them arithmetically. The operations described in Exercise

2.11 required no more than keying each value with its appropriate units, then adding

several levels of the STACK. It is worthwhile to note that for each condition, the units for

33

the answer are provided in those for the last data entry. This feature makes it easy to get

the answer in the units you desire. Just be sure they are the units for the last entry you

make before doing the arithmetic.

Being familiar with the HP48G's menu structure and knowing how to create and use
VAR options provides skills that go beyond just the management of units. They are the
foundation for learning how to write and solve equations, as described in the next chapter.

34

Chapter 3

Writing and Solving Equations

Most calculators and computers do more than make just a single calculation. They
are often used to make strings of calculations and to solve equations. In a typical application,

you enter each number one at a time and perform each arithmetic or mathematical operation
also one step at a time to yield eventually your final solution. Easy enough for simple
calculations, but not good enough when an equation has many components or when it uses

complex variables. Until now, solving such complex equations required either using

expensive computer software or writing a program of your own. Times have changed.
The HP48G solves even the most complex equations without having to write a formal

computer program. Ifyou can write the equation on paper, you can key it into the computer
in a matching form and solve it either numerically or symbolically for any one ofits

variables. The ease of entering the equation and solving it is a unique characteristic of the
HP48G which makes it a powerful mathematical tool. Working through a few examples in

this chapter will give you the basic skills for writing and solving equations of your own

interest. In learning these techniques, you will see how the VAR menus described in Chapter

2 play an important role. As you complete each exercise in this chapter and have a good
grasp of the fundamental operations it demonstrates, you will gain much more if you

construct examples ofyour own which use them. The more examples you create, the bigger
library of applications you will accumulate and the more easily the basic operations will be

remembered.
Be prepared to be amazed and astonished. The HP48G has in its own memory

(ROM) all the rules of algebra, mathematical logic and equation-arranging and solving skills
you've struggled with over the years. For many, these skills may be rusty, for others they

may be all but solidified. The HP48G provides the lubrication, though, to get it all working

again better than ever.

Section 3.1. Writing an Equation and Solving it

There are several ways to enter an equation into the HP48G and to solve it. The

following exercise shows one of the simpler techniques. A feature ofthis first exercise is
to show how the equation is written into the computer in exactly the order you would write
it on paper or state it in words. A second exercise (Exercise 3.2.) shows how similar steps

are used to write and store a more complicated equation. Both exercises construct menus
within the HOME directory. Notice as you work through each exercise that the word

35

"HOME" remains displayed at the upper left of the view window as a handy reminder ofthe
name of the directory you are using. This status reminder will become more important as

you construct and use subdirectories in Chapter 4.
If you make a mistake in keying any element of an equation, simply erase the

incorrect entry with the ERASE key (5th key, 4th row), in the same way that you erased

numbers and lettersin earlier exercises. Ifyou recognize an error in some previous step, use

the cursor control keys to position the cursor at the miskeyed statement, use the ERASE key
to eliminate it, then key the correct entry. Move the cursor back to where you were when
you identified the error by using the appropriate cursor control keys, then continue
constructing your equation. If attempts to key an equation result in a hopeless jumble, bail

out of the equation writing mode by pressing CANCEL. Once you're back at the HOME

menu, you can start over again to write the equation, or go on to something else. Sometimes
just starting over saves time and aggravation compared to trying to patch up a bad job with

extensive editing and multiple corrections.

Reminder: Keying equations and editing them requires using one or more of the cursor
control keys. In this book, LC refers to the key that moves the cursor to the left (4th key,

2nd row), RC refers to the key which moves it to the right (6th key, 2nd row), UC refers to
the one that moves it up (Sth key, 1st row) and DC refers to the one that moves it down (5th

key 2nd row). The symbol "*" indicates multiplication.

The first step in solving any equation is to write it so it shows precise relationships
for its independent and dependent variables. Entering an equation in such a form into the
memory ofthe HP48G is a straightforward procedure, as described in Exercises 3.1. and

3.2. The process uses the powerful "Equation Writer" functions.

Exercise 3.1. Writing and Storing a Simple Equation

Problem Statement: Write and store the equation: =A+2B+3C

Solution:

~ Step Press

1. LS, EQUATION

2. a, a, X, LS= A + 2B, +3, C, ENTER

3. a, a, S,I M,P, a, STO

36

The simple equation in Exercise 3.1. was easy to write as a step-by-step process
into the view window of the HP48G, and it was just as easy to store it under the menu title
"SIMP". In writing the equation, its elements were addressed in the same order you
would use to describe the equation to someone. For example, reading the equation, "X
equals A plus 2B plus 3C" follows the same sequence you used to write the equation for
the computer. Ifyou had chosen to state the equation as, "X equals A plus 2 times B plus
3 times C", you could have used those steps also in writing the equation. They would
have been listed in Step 2 as: "a, a, X, LS, =A, +, 2, *, B, +, 3, *, C. The expression

would appear the same no matter which of these two expression styles was used.
It is explicit and clear to most people that the expressions in Exercise 3.1. "2B" and

"3C" mean "2 times B" and "3 times C", respectively. It would not be so clear were the

statement, for example, "2BC" to appear in an equation. Does this mean "2 times B times
C" or does it mean "2 times BC"? If you'd be unable to select between these meanings
when someone described the question to you, so would your HP48G be confused when

you directed it to solve the equation.
The solution is simple. If the expression "2BC" means "2 times B times C", then

key the expression as "2, B, *, C" or as "2, *, B, *, C". This is easy to remember because
it follows the same order and rules you'd use to describe the equation in words. You'd

state, "2 times B times C". If, however, the expression "2BC" means "2 times BC", then
key it as "2, *, BC". This means that you want the computer to multiply 2 times whatever

number is designated by the symbol "BC". The same clarity you'd guarantee with such

statements is required when you write it as part of an equation.

Exercise 3.2. Writing and Storing a Complex Equation

Problem Statement: Write and store the equation:

B

7=2"110g(G)
F

Solution:

Step Press

1. LS, EQUATION
2. «,Y,LS, =a, Dy, aERC, + Vx, a, F, RC, RC, +, RS, LOG,

a, G, RC, ENTER

3. Ya,a, COMP, aSTO

37

The equation in Exercise 3.2. was a little more complicated than the one in
Exercise 3.1., but with just a little familiarity with the sequential operations required for
generating ALPHA symbols, using the cursor controls and function keys,its writing
process is surprisingly easy. The next step after writing an equation is solving it. As for
so many operations for the HP48G,there are several waysto do this. Exercises 3.3. and

3.4. introduce the different ways to use the SOLVE operation.

Exercise 3.3. Equation Solutions with RS SOLVE

I. The SIMP equation

 Solus eguat 10m...
Solve diff eq.
Solve poly.
Solve lin sys.
Solve finance..

 A. Selecting and solving the equation

 Step Press
1. RS, SOLVE (see Figure 3.1.), OK,

CHOOS,(use DC to highlight "SIMP"), Figure 3.1. RS SOLVE

OK.

B. Solve for "X" when A=10, B=12 and C=14

Step Press

1. (move cursor to "A:" by RC), 10, ENTER, 12, ENTER, 14, ENTER, DC,

SOLVE (read: "X:76")

C. Solve for "C" when X=15.6, A=17.1 and B=19.2

Step Press

1. (with the cursor at "X:") 15.6, ENTER, 17.1, ENTER, 19.2, ENTER, SOLVE

(read: "C:-13.30")

2. CANCEL

II. The COMP equation

A. Selecting and solving the equation

Step Press

1. RS, SOLVE, OK, CHOOS, (use DC to highlight "COMP"), OK

B. Solve for "Y" when D=4.14, E=2, F=9.93, G=12.4

Step Press

1. (move cursor to "D:" by RC), 4.14, ENTER, 2, ENTER, 9.93, ENTER, 12.4,

ENTER, DC, SOLVE (read: "Y:6.53250...)

38

C. Solve for "Y" when F=30 and other values remain unchanged

Step Press

1. (move cursor to "F:" by DC, RC), 30, ENTER, UC, UC, SOLVE

(read: "Y:4.22267...)

2. CANCEL

Exercise 3.4. describes a different way to solve the SIMP and COMP equations.
Thefirst step is to select the equation, the second step is to identify the solution method.

Hint: Letters designating elements in an equation when LS SOLVE is used are chosen

from the menu inside the view window. Use the white keys at the top of the keyboard to
make these selections. Ignore the letters A to F printed at the lower right of each white
key. For example, in Step I.B.1. of the solution in Exercise 3.4., key 10, then press the

second white key from the left to enter this number as "A" (as listed at the bottom of the
view window). Key 12, then press the third white key from the left to enter this number

as "B", etc.)

Exercise 3.4. Equation Solutions with LS SOLVE

I. The SIMP equation

A. Selecting and solving the equation

Step Press

1. RS, SOLVE (see Figure 3.1.), OK, CHOOS (use DC to highlight SIMP), OK,
CANCEL

B. Solve for "X" when A=10, B=12 and C=14

Step Press
1. LS, SOLVE, ROOT, SOLVR, 10 (Reminder: letters X, A, B and C refer to

those shown at the bottom of the view window; selections are made using
corresponding white keys) A, 12, B, 14, C, LS, X (read: "X:76.00").

C. Solve for "C" when X=15.6, A=17.1 and B=19.2

Step Press

1. 15.6, X, 17.1, A, 19.2, B, LS, C (read: "C=-13.30")

2. CANCEL, VAR, LS, CLEAR

39

II. The COMP equation

A. Selecting and solving the equation

Press Press

1. RS, SOLVE, OK, CHOOS,(use DC to highlight COMP) OK, CANCEL

B. Solve for "Y" when D=4.14, E=2, F=9.93 and G=12.4

Step Press
1. LS, SOLVE, ROOT, SOLVR, 4.14, D,2E993, F, 124, G,LS,Y

(read: "Y:6.53)

C. Solve for "Y" when F=30 and other values remain unchanged

Step Press

1. 30,FLS, Y (read: "Y:4.22")

2. CANCEL, VAR, LS, CLEAR

You may have noticed statements displayed at the upperleft of the view window
as you completed Exercise 3.4. They indicated each step in the process of solving the

equation. The HP48G verified each number you entered for the solution of equations and
indicated each variable. For example, when you began the solution at Step I.B.1. by
keying "10", then pressing A, the message at the top of the view window confirmed that

now "A: 10.00". When you keyed "12", then pressed B, "B: 12.00" appeared. Once all

data had been entered and you completed the steps "LS, X", the machine indicated its

current status was "Solving for X". Similar confirming status displays will appear as you
solve other equations.

Another number besides the answer appeared when the last calculation was
complete. The word "Zero" was displayed at the upper left of the view window. This
indicated that a "root solution" or a final solution had been found for the equation. The

"Zero" will appear again as solutions are made for most ofthe equations used in this book.
After each solution, the HP48G remembers how you have defined each of the VAR

menus for the equation. To see a list of these definitions, along with those for all VAR
designations in the HOME directory, press RS MEMORY,then use the up or down cursor
control keys for the review. Press CANCEL, VAR, LS CLEAR to return to the opening
screen. Additional VAR menus for X, C, B, A, among others, have been constructed.

Another way to see how each VAR menu has been defined is to press the white key
corresponding to a selected symbol. For example, Using the left or right cursor keys to

bring the VAR menu "A" to the bottom of the view window, then pressing the white key

40

under it shows it has the definition "10", as used in Exercises 3.3. and 3.4. All VAR
menus will remain in the menu list until you erase them. The next section shows how to
erase unwanted menus.

Section 3.2. Cleaning-up VAR Menus

As you write more and more equations, the VAR menu in whatever directory you
are working will list each of the titles you have constructed for them. It will list also each
of the variables in each equation. These menus will remain until you clear them either
selectively or as a group. This section shows how to eliminate menus displayed by VAR.

The ones you have seen so far have all been in the single directory, "HOME".
You probably noticed in completing Exercises 3.3. and 3.4. that no variable name

was repeated. Exercise 3.2., for example, used the symbols X, A, B and C, and Exercise

3.4. used the symbols Y, D, E, F and G. Had the symbol A, for example, been used in

both exercises, errors would be likely if the number stored in A for the solutions in one

exercise were accidentally and incorrectly used in the solution of a different equation.
Menus within any one directory with the sametitle are used interchangeably. Operating
in the HOME directory, for example, the computer is unable to distinguish between a
stored value defined as "A" that you need for one equation from that stored as "A"
required for the solution of some other equation.

There are a couple ofways around this problem. One way is to write equations in
any single directory that do not use the same variable name. That's how the problem was
solved in constructing Exercises 3.3. and 3.4. A somewhat awkward strategy, but it works.
A more clever and practical solution is to write different equations in different
subdirectories. Yet another solution is to erase VAR menus when they are no longer
needed.

There are several ways to erase menus. One will be used to erase the menus X, A,

B and C used for Exercise 3.3. Another will be used to erase the menus Y, D, E, F, and

G associated with Exercise 3.4. The third way, described at the end ofthis section, is an
alternative to either of these methods.

To try the first method, press VAR to display the menus for the HOME directory.
Use NXT, if necessary, until you see the symbol "X" in the view window. Press the
apostrophe key (1st key, 2nd row), then designate the menu "X" by pressing the white key

under the view window corresponding to the menu titled "X". The symbol 'X' now
appears at the lower left ofthe view window. Then key LS PURG to see the menu "X"

disappear and to see remaining menus shift to the left to assume new positions in the
menu display. To eliminate the menu titled "A", display it in the view window with NXT,
if it is not already there. Then, press, ', use the appropriate white key to select the menu
titled "A", then key LS PURG. Repeat these steps in an appropriate manner to eliminate
the remaining menus B and C. The equation itself, listed as VAR menu "SIMP" is

41

eliminated in a similar way. Any other menu is erased in any directory in a similar way

using the LS PURG operation.
Removing menus one at a time is practical if there are only a few of them to

eliminate. If there are many menus to be erased, it is more expedient to list them as a
group for elimination. Menus used for Exercise 3.4. will be erased in this way. First, place
the set ofpointed brackets (that is, "{ }") in the view window. These are selected using
the left-shifted function ofthe plus key (5th key, bottom row). To put them in the view
window, press LS { }. Use NXTto scroll through the displayed HOME directory menus
until you find "Y". Selectit for erasure by pressing the white key corresponding to its

position in the view window. Press in order the white keys for menus D, E, F, G and

COMP in a similar way. You may have to use either NXT or LS PREV to move the menu

display back and forth to find the menu titles you need.
The view window now displays between pointed brackets ("{ }") the menus you

selected. If you discover a mistake in the list, use the left and/or right cursor keys to
position the arrow, then use the erase key to eliminate any selection. When your list is

correctly constructed, press ENTER, then LS PURG to erase all designated menus. This
process must be done with care, of course, because once menus are erased, they cannot

be retrieved. RS UNDO returns the "{...}" statement, but not the individually defined

VAR menus. They can be reconstructed, of course, but they cannot be resurrected once

the LS PURG function has operated.
The alternative method for erasing VAR menusis to press RS MEMORY, use the

down cursor control to highlight the object to be eliminated, then press NXT, and finally

activate PURG by pressing the white key marked "B". As for the other two methods, once
the PURG function is activated, there's no turning back.

Section 3.3. Making Changes in Stored Equations

It is a common task to have to amend an equation in some way afterit has been
written and stored. One reason might be there was an error in the way it was originally
written. Another might be that it is easier to modify an equation already in memory than
it is to write another one from scratch that is basically similar. This section describes how
to amend existing equations using the function LS EDIT. Its operation is demonstrated
in Exercise 3.5.

Exercise 3.5. Amending an Existing Equation Using EDIT

I. Problem Statement: Write and store the following equation as "TEST":

z=24+32pon
3C

42

Solution:

Step Press

LS EQUATION1.

2. oa, 0, ZLS =2 A +48B,+3,C a RC- «Dy, .12, RC, ENTER
3. "a, a, TEST, a, STO

II. Problem Statement: Change the equation "TEST" to read:

z=54+38_poss
3C

Solution:

(Hint: The symbol "<<" means press the erase key (5th key, 4th row))

Step Press

1. VAR, TEST

2. LS, EDIT, RC (4 times), «, 5, DC, LC, «, «, 48, ENTER

3. a, a, TEST2, a, STO

(Hint: Press VAR, then the white key at the far left to see the amended equation
"TEST2". LS CLEAR clears the view window for the next exercise.)

Section 3.4. An Alternative Way to Solve an Equation

No matter how an equation is written, it expresses specific relationships among its

different elements. Solving the equation by hand requires executing step-by-step
procedures to act on each of these relationships. Operations using a computer program

to solve the equation function in the same way by following sequential instructions to
complete a sequence of actions. The program's algorithm is a set of instructions for the

computer to use which are often about the same steps you would follow yourself if you
were solving the equation with paper and pencil. The advantage of solving the equation
with a computer program is, of course, operations are automatic. This saves time and
effort, and guarantees greater accuracy. The program won't forget important steps, but

you might.
If an equation is so much like a computer program in presenting sequential in-

structional steps, how come an equation can't be written in a VAR menu just like a

program (or vice versa)? It can. Exercise 3.6. gives a simple example just to show how

easy it is to do. How to write more complex programsis described later in the book.

43

Exercise 3.6. Writing a Program

Problem Statement: Write a program to evaluate:

A+B

B4

- Solution: Write the expression in a program and store it as "TEST3"

Step Press

1. LS, <<>>"LS, (), a, A +, a,B,RC, +, a, B, ¥, a, A, RC, ENTER

2. a,a, T,ES,T,3, a, STO

Problem No. 1: Evaluate TEST3 when A=0.12 and B=1.09

(Hint: It is easy to be confused in how the white keys (A to F) are used in this exercise.
Exercise 3.4. described how to use them to select variables listed in the view window for
an equation's solution. This exercise uses them in a different way because the menu
labeled TEST3 contains a program for the solution ofthe expression, not just the equation
itself. Step 1 in both Problems 1 and 2 in this exercise requires using the ALPHA defined
white key "A" at the far left. Step 2 requires using the ALPHA defined white key "B"

(second from the left). For this exercise and others with similar construction, the menus
titled "A" and "B" inside the view window are ignored for data entry.)

Solution:

Step Press
1. 0.12, ENTER, ', «, A, STO
2. 1.09, ENTER, ', a, B, STO
3. VAR, TEST3, EVAL (read: "1.20")

Problem No. 2: Evaluate TEST3 when A=3.05 and B=4.93

Solution:

Step Press

3.05, ENTER, , a, A, STO1.

2. 493,ENTER,', a, B, STO

3. TEST3, EVAL (read: "0.06")

44

The expression in TEST3 could have been written just as well using LS
EQUATION followed by keying appropriate symbols similar to those described in
Exercise 3.2. Writing it directly into a VAR menu as a program, though, requires only
a couple of different steps. One of them is that line 1 in the view window needs first to
be set for program writing. "LS, <<>>" accomplishes this. The apostrophe symbol (')
indicates that elements of an equation will follow in subsequent keystrokes. The
parenthesis symbols are used just as they would be for LS EQUATION constructions to

separate elements in the equation so they are grouped appropriately for solution. Once

the program is written, it is stored like any other one which would appear in line 1 ofthe
view window.

Solving TEST3 requires first generating numerical values for variables A and B,

then asking the program to evaluate them. The evaluation is initiated with the instruction
EVAL. New values ofA and B can easily be stored in the correspondingly titled VAR

menus and TEST3 can be easily re-EVAL-uated. Editing TEST3 would follow steps
similar to those described in Exercise 3.5.

Writing a program within a VAR menu to solve such a simple equation as TEST3
admittedly has limited practical value and it may seem just an awkward way to do things.
Using strategies followed in Exercises 3.3. and 3.4. must seem more attractive at this

stage. [Exercise 3.6., though, is an easy introduction to program writing and it
demonstrates important principles. You'll cash-in on having worked through this exercise

when programming is presented in later chapters.
First, though, there is another way to solve equations, as introduced in the next

section. All who struggle trying to remember some of the long-forgotten, half-remem-
bered or infrequently used rules of algebra and mathematics will welcome with open
minds learning this next set ofHP48G operations.

Section 3.5. Solving Equations Algebraically

It may not always be necessary to enter an equation as a variable and solve it
numerically as described in Sections 3.4. and 3.5. Nor will it always be the right choice

to write a program for it, as described in Chapter 5. A convenient alternative is to solve
it in its algebraic form. This section describes how to do that.

As for other operations, the HP48G offers alternatives for solving equations
symbolically. Exercise 3.7. shows one way. Exercise 3.8. shows another. Exercise 3.9.
presents useful tips for displaying equations in different formats and for storing a single

equation under different VAR names and in different subdirectories. For purpose of
illustration, Exercises 3.7. and 3.8. use relatively simple equations. Strategies used in

these examples, however, apply just as well to more complicated equations. For many,
using the HP48G to isolate an equation's variable will be one of its more important
features.

45

Exercise 3.7. Solving an Equation Algebraically

Problem Statement: Solve the following equation for "B":

4B
+—Z=5A+—-D%*
C

(Hint: This equation was stored as TEST2 in Part II of Exercise 3.5.)

Solution:

Step Press

1. RS, SYMBOLIC, DC, DC, DC (to highlight "Isolate Var..."), OK

2. CHOOS, (use up or down cursor control keys to highlight "TEST2"), OK

3. DC, a, B, OK, OK (read: 'B=(Z+D"0.48-5*A)*(3*C)/4")

4. (To save solution as TEST4) ', a, a, T, E, S, T, 4, a, STO

Exercise 3.8. An Alternative for Algebraic Solutions

Problem Statement: Solve the following equation for "A"

p(Z+D 048_54)(30)
4

(Hint: This equation was stored as TEST4)

Solution:

Step Press
1. TEST4, LS. SYMBOLIC

2. ' a, A, ENTER, ISOL (read: 'A=(Z+D"0.48-B*4/(3*C))/5")

3. (To save as TESTS), «, a, T,E, S, T, §, «, STO

It's hard to see how solving equations either numerically (Exercises 3.3. and 3.4.)

or symbolically (Exercise 3.7.) could be any easier! It might be convenient, however, to

see equations like TEST4 and TESTS in some other format than that shown in Exercises
3.7. and 3.8. It may also be necessary to save them under different names without

destroying their original addresses or VAR locations. Exercise 3.9. shows how to do this.

46

Exercise 3.9. Equation Display and Storage

Problem Statement: Display the equation stored as "TESTS" in "Equation Writer format and
then store it also as TEST6.

Solution:

Step Press

1. VAR, TESTS, DC (read:)

eB4
3C

Z+D 04

A=
5

2. CANCEL, CANCEL, ENTER

3. “a,a, T,ES,T,6, a, STO

Identical forms of the equation called TESTS are now stored in VAR addresses

TESTS and TEST6. As described in the next chapter, the contents of a VAR menu can

be transferred and stored in different subdirectories with about the same procedures as
described in Exercise 3.9.

Section 3.6. The LS DEF Operation

There are many ways to write and use equations with the HP48G, as described in
several sections of this book. They can be stored and used, for example, as VAR options,

operated upon directly from the keyboard, built into other programs, solved with the

SOLVE and SOLVR options, and in other ways too. Perhaps the simplest way to use an

equation, though, would require just listing numbers for one or more of its variables in the
view window, then with a single keystroke, solve the equation and see the answer in the

view window. Structuring equations to be used in this way is easy with the LS DEF

function (2nd key, 2nd row). It provides a direct and practical way to solve an equation
with either single or multiple variables. Also, it requires no great insight into how

programs are written, since the LS DEF operation will write the program all by itself and
design it to accept input right from lines in the view window. Learning to use the LS DEF

operation is a good introduction to equation and program structures.
Although writing complex equations into a customized program with structured

alphanumeric data requests and answer displays is highly useful in many applications,

47

equation use through LS DEF is also worthwhile learning. Exercise 3.10. illustrates some
applications for this useful option when an equation is written using the LS EQUATION

feature.

Exercise 3.10. Using LS DEF

I. Solving an equation with a single variable

Problem Statement: Solve the following equation for values of "A" of 2, 3 and 4:

sord = Lo8A)Lo16
A012

Solution:

A. Generate the program "SOLA" by:

2Step Press
1. LS, EQUATION, a, «,S,0,L, A, a,LS, (), «, A, RC, LS, = RS, LOG,

a, A,RC+ a, Ay", .12, RC, RC, +, .16, ENTER, LS, DEF

B. Use the "SOLA" program. Press VAR first, then if digit display set for FIX 4:

Step Press

1 2, SOLA (read: "0.4370")

2. 3, SOLA (read: "0.5782")
3 4, SOLA (read: "0.6698")

II. Solving an equation with two variables

Problem Statement: Solve the following equation when "B" equals 19.36 and "C" equals

2.19. Solve it again when "B" equals -0.16 and "C" equals 0.73:

SOLB=Be ©

(Hint: Answers are displayed with 2 digits to the right ofthe decimal)

48

Solution:

A. Generate the program "SOLB" by:

Step Press

1. LS,EQUATION, a, «, S,0,L,B, a, LS, (), a, B, SPC, a, C, RC, LS, =, a,
B, LS, ¢*, «, C, RC, ENTER, LS, DEF

B. Use the '"SOLB" program

Step Press

1. 19.36, ENTER, 2.19, SOLB (read: "172.99")

2. 16, +/-, ENTER, .73, SOLB (read: "-0.33")

ITI. Solving an equation with more than 2 variables

Problem Statement: Solve the following equation when "A", "B" and "C" are different for

different calculations, but "A" and "B" are constants in the same series of calculations:

Ao _ Ac

Ln(B) 5
SOLC=

Problem No. 1: A=4.0; B=0.23

Case 1: C=2.00

Case 2: C=0.14

Case 3: C=-0.60

Problem No. 2: A=3.26; B=15.17

Case 1: C=0.09

Case 2: C=0.21

Case 3: C=0.32

Solutions:

A. Generate the program "SOLC".

Step Press
1. LS, EQUATION, a, «,S,0,L,C, a,LS, (), a, a, A, SPC, B, SPC, C, «,

RC, LS, =, a, A, y*, .19,RC, +, RS, LN, a, B, RC, RC, -, LS, (), a, A, =,
a, B, RC, RC, y*, a, C, RC, ENTER, LS, DEF

49

B. Solve the sample problems

Problem No. 1, Case 1:

Step Press

1. 4,ENTER, .23, ENTER, LS, STACK, NXT, DUP2, 2.0, ENTER, VAR,

SOLC (read: "-303.34")

Problem No. 1, Case 2:

Step Press
1. «,LS, STACK, NXT, DUP2, .14, ENTER, VAR, SOLC (read: "-2.38")

Problem No. 1, Case 3:

Step Press

1. +LS, STACK, NXT, DUP2, .6, +/-, ENTER, VAR, SOLC (read: "-1.07")

Problem No. 2, Case 1:

Step Press

1. LS, CLEAR, 3.26, ENTER, 15.17, ENTER, LS, STACK, NXT, DUP2, .09,

ENTER, VAR, SOLC (read: "-0.41")

Problem No. 2, Case 2:

Step Press

1. «LS, STACK, NXT, DUP2, .21, ENTER, VAR, SOLC (read: "-0.26")

Problem No. 2, Case 3:

Step Press

1. «LS, STACK, NXT, DUP2, 32, ENTER, VAR, SOLC (read: "-0.15")

An important feature of programs generated by the LS DEF option is that an
equation produced by the LS EQUATION option is written directly into the VAR menu
for subsequent use, as shown in Exercise 3.10. This exercise also shows how data are

taken directly from one or more lines in the view window for program input. This is a
significant advantage, but it comes at the cost ofhaving to remember how data are ordered

at different lines when more than one inputis used. It also requires remembering how
multiple variables are placed and defined in the program and in the equation itself.

50

Constructing a program with LS DEF that is then selected as a VAR option
requires that input variables be defined within parentheses immediately after the title of

the program to the left of the equals symbol (see Step 1 in each of the solutions for
Exercise 3.10.). The order in which these terms is stated establishes the sequence in

which numbers must appear at different lines in the view window just prior to program

execution. The symbol appearing first in the parentheses must be at line 1, the one
appearing next must be at line 2, etc. Like any other program stored in a VAR menu,
those constructed by LS DEF can be edited by first pressing the apostrophe key, then

pressing the appropriate menu key, then LS EDIT. The cursor controls are then used to
target sites for editing.

Programs generated by LS DEF appear only in the VAR menu for the directory

which was active at the time of writing the equation. If it were written in the HOME

directory, for example, only its own VAR menu would list it. If it were written in some
subdirectory, only its own VAR menu would list it. The advantage is similar to that

provided by constructing customized menus for unit conversions. In this way, a selected

subdirectory can be constructed to hold programs for a particular series of calculations

without cluttering or filling the VAR menu of the HOME directory or its subdirectories.
For LS DEF generated programs, just as for the management of all VAR menus, their

contents can be scanned by pressing RS MEMORY. Also, each or all can be erased by
pressing LS, { }, selecting menu items to be eliminated by pressing each menu key for

them, pressing ENTER, then LS PURG.

Section 3.7. A Special Feature For Special Cases

The HP48G has many hidden values and features. One is the way it solves
equations. Although perhaps fortuitous, it is, nonetheless, of special value in obtaining
numerical approximations for equations that cannot be solved explicitly. An example is
perhaps the best way of demonstrating the uniqueness and utility ofthis strategy. What

more appropriate example to use than one that is a unique strategy too? But, a little
background is necessary.

The developing embryo or fetus of all warm-blooded animals (thatis, birds and

mammals) requires not only a mechanically protected and chemically controlled
environment in which to mature, but also one that is thermally stable. For most mammals,

this setting is the mother's uterus or pouch. For most birds, it is the nest where the
fertilized egg is kept warm, moist and protected by one of the brooding parents,
sometimes taking turns holding it close to their bodies.

The "Brush Turkey", a large Australian bird, uses a different technique. It scrapes

nearly seven tons of debris from the forest floor into an approximately 400 cubic foot,
about 3 foot high, mound in which it lays its eggs. Heat is produced in the mound by
fungus and microbial action on the vegetation, and heat is lost from the mound by

51

radiation, evaporation, conduction and convection to the environment. Diligent and
nearly constant attention by the parents in grooming and caring for the mound assures the
stability of moisture and temperature for the incubating eggs buried in it.

As shown in Figure 3.2., there is
a dynamic balance between rates of heat

production and heat loss at some M0 Heat Flux (Watts) | ,

maintained level of heat flux and mound 9 IAAT
temperature. If mound temperature falls BES4
below an optimum level, microbial .ez-e-c"c""
action slows, but the rate for heat ’

production is still transiently higher than s
that for heat loss. This favors heat 7

storage and the return of mound 7Heat Loss
temperature to a higher steady state. /

Conversely, if environmental conditions] ?
are such that mound temperature rises 20 Mound Temperature (C) 38

above an optimum level, heat loss rate

transiently exceeds that of heat
production, and mound temperature falls.

These simple dynamics go a long way in providing a nearly self-regulating thermal
environment for egg incubation.

Calculating the steady states for mound temperature and heat flux is not as easy as
it might appear at first. Where the heat production and heat loss curves intersect in Figure
3.2 indicates the unique mound temperature and heat flux at which mound heat production

and heat loss rates are equal. Assuming that at a steady state temperature (T; °C), heat

production rate (H,; Watts) is approximated by:

Figure 3.2. Nest Characteristics

H =55.44¢%9%D
p

and heat loss rate (H, Watts) is approximated by:

H=2081Ln(T)-617.4

then, when H, = H,,

55.64e%°2M=208.1Ln(1)-6174

This is an implicit equation that cannot be solved explicitly. It is impossible to
isolate the variable "T" so the equation has the form: "T= ..." A value for mound
temperature can be approximated, nonetheless, because the HP48G arrives at equation

solutions through a trial-an-error,iterative process. Exercise 3.11 shows how.

52

Exercise 3.11 Calculating Mound Temperature

Problem Statement: Determine a steady state temperature (T; °C) for the relationship:

55.64e%020=208.1Ln(T)-617.4

Solution:

I. A Numerical Solution

A. Write the equation

Step Press
1. LS, EQUATION, 55.64, * LS, ¢e* .021,*,a,T,RC,LS, =208.1, * RS, LN,

a, T, RC, -, 617.4, ENTER

2. Ya, a, NE ST, a, STO

B. Solve the equation

1. RS, SOLVE, OK (to select "Solve equation"), CHOOS, (place cursor on

"NEST..."), OK, SOLVE (read: "T:33.26+")

2. CANCEL

II. A Graphical Solution

A. Write the equation

A.1. For heat production (HP)

Step Press

1. LS, EQUATION, 55.44, * LS, €*, .021, *, a, T, RC, ENTER
(read:, "' 55.44*EXP(0.02*T"'")

2. "a, a, HP, a, STO

A.2. For heat loss (HL)

Step Press
1. LS, EQUATION, 208.1, *, RS, LN, a, T, RC, -, 617.4, ENTER

(read: "' 208.10*LN(T)-617.40 ' *)
2. ' x, «, H, L, ao, STO

53

B. Construct the graphic

Step Press
1. RS PLOT ("EQ:" is highlighted), CHOOS, (highlight "HL"), v"CHK,(highlight

"HP"), v'CHK, OK, DC (to highlight "INDEP:"), «, T, ENTER (to highlight "H-
view"), 20, ENTER, 40, ENTER, RC (to highlight "V-view"), 0 (zero), ENTER,
140, ENTER(see "Display 1"), ERASE, DRAW

Ee: { '208.1%LN(T>-6..
INDEP: T H-VIEW: 208 40
_AUTOSCALE Y-VIEW: @ 140

 =SECT: (33.16.111.2Y)

Display 1 Display 2

2. TRACE, (X,Y), NXT, FCN, ISECT (see "Display 2"; read: "I-SECT: (33.16,
111.24), CANCEL, CANCEL, LS, CLEAR

Solving either the equation for heat loss (H,) or the one for heat production (H,)
numerically or graphically shows that when mound temperature is about 33.2°C,heat flux

is about 112 Watts. Is it a biological and thermodynamic coincidence that, considering

the metabolic heat production of the embryo itself, its temperature is likely to be close to
an optimal level for incubation? Is it a coincidence also that the steady state heat

production of the mound at about 33°C is approximately that of a resting, adult human?

How did the Brush Turkey ever figure all this out without an HP48G? (For more

information, see "The Brush Turkey", Scientific American, Dec., 1991)

Section 3.8. Taking Score and Looking Ahead

You have by now built your basic skills to an important level for using the HP48G.
Applying these abilities to more complex mathematical operations is a reasonable and

useful next step. The next chapter takes you to the next level of proficiency by
introducing how the HP48G uses arrays to manipulate sets of numbers in an efficient and

powerful way. Although this mathematical tactic may be new to many,it is easy to learn.
You will soon become used to its notation and how it is applied. It will be introduced in
the context of calculating simple statistics, first on a single column of numbers and then
on columns of 2 or more data sets.

Chapter 4 also introduces how equations are written for different sets of numerical

data and how such curve-fitting gives valuable insight into relationships between

54

variables. Once the equations are deduced, you will then see how to use the HP48G to
plot them and how to use these on-screen graphs for graphical solutions, much like the
example shown in Exercise 3.11.

If you have taken advantage of the principles demonstrated so far in this book's
exercises, it is likely you have written and solved many equations of your own. Either
your HOME directory is getting rather crowded, or you're getting tired of having to PURG
menu options from it to make room for others. Chapter 4 introduces how to generate an
equation and program filing system using subdirectories. You'll soon see how your
imagination is the only required tool to customize your HP48G computer to your specific
needs.

You are at an important transition in using the HP48G. You have learned many
ofits basic operations for controlling data processing as well as those for equation writing,

editing and use. You are now in the enviable position of putting all of this to work for
you. You are about to see the HP48G's power open up and turn on its afterburners.

55

Chapter 4

Basic Statistics

Engineers, physicians, people in business, scientists, students and many others use
statistics of one form or another to describe the work they do. An application might be as

simple as calculating the average of a group of numbers. It might be more complex as in
calculating variances within a data group or as detailed as determining confidence limits

among data or computing trends for time varying functions. Regardless of the level of
complexity, the HP48G's built-in programs make many statistical calculations

straightforward.

This chapter has several goals. One is to introduce the HP48G's statistical menu
(STAT) and show how it is used for making several different kinds of useful calculations.
It will be used, for example, for computing the average (MEAN) and standard deviation
(SDEV) of groups of numbers. This menu is also used for deriving different types of

equations for sets of data and for determining their validity. Basic to these operations, this

chapter describes how to construct and edit data in the forms of an array and how to present
on-screen graphics for different functions. You will also see how to calculate predictive

values from a set of data and evaluate relationships between interdependent variables.

There 1s another goal too. To help organize the growing number of equations you are
now writing and using, sections at the end of this chapter show how to construct

subdirectories for their storage. This organizational strategy has several useful spinoffs. Not

only will each working directory be less cluttered and easier to use, but also each will allow
you to use similarly defined variables among the different subdirectories. Also, a well
thought-out directory structure for your different programs, equations and calculations will
help greatly in accessing them quickly and simply. But the next best step is to learn how to

enter data and evaluate it using options through the STAT menus. The following section
begins the process.

Section 4.1. Evaluating a Single Column of Numbers

A simple and commonplace statistical analysis is just to calculate the average

(MEAN) of a column of numbers. Using RPN techniques described in Section 2.2., you
could use just the HP48G's logic to work with numbers stored in the computer's STACK to
calculate their average. For example, starting with an empty STACK (obtained by LS
CLEAR), one wayto calculate the average for a set of data is simply to add each number in
the series then divide by the number of entries. For example, key 45.23, ENTER, 17.94, +,

56

3.47, +, 12.91, +, 4, + shows 19.89 in the view window as the average of this series.
Other statistics for a group of numbers like, for

example, their standard deviation, could be computed in a

Fit data.

H

similar (but laborious) way with RPN operations using pg: [Ef&duencies..
¢ |Summary stats... numbers in the STACK. There are much easier ways to do

all this and many other calculations too using RS STAT and

LS STAT functions. Predictably, the HP48G provides Figure 4.1. RS STAT
options for calculating basic statistics. RS STAT presents
the opening display shown in Figure 4.1. LS STAT generates a set of menus shown in
Figure 4.2.

Figure 4.2. The LS STAT Menu

Menu Keys

page A B C D E F

1 DATA* ZPAR* 1IVAR* PLOT* FIT* SUMS*

The "*" indicates a directory whose menus are:

*DATA
1 I+ Z- CLZ ZDAT STAT*

*LPAR
1 XCOL YCOL MODL* ZPAR RESET INFO
2 STAT*

*MODL
1 LINFI LOGFI EXPFI PWRFI BESTF ZPAR*

*1VAR
1 TOT MEAN SDEV MAXZ MINZ BINS
2 VAR PSDEV PVAR STAT*

*PLOT
1 BARPL HISTP SCATR STAT*

*FIT
1 ZLIN LR PREDX PREDY CORR cov
2 PCOV STAT*

*SUMS
1 IX ZY ZX" Zy"2 IX*Y NZ
2 STAT*

57

Exercise 4.1. demonstrates calculations using RS STAT. Exercise 4.2. shows how

similar calculations are accomplished using the LS STAT menus. A little practice with each

of these techniques will soon show which is preferred. Be prepared to see that RS STAT

may bethe best for some problems, and LS STAT workseasier for others.

Menus shown in Figure 4.2. are used to control many statistical and curve-fitting

operations. Examples in Exercise 4.2. describe first how to obtain basic statistics on a single

column of numbers. Later sections explain how to make similar calculations on more than

one set of data and introduce curve-fitting techniques.

Exercise 4.1. Calculations Using RS STAT

Problem Statement:

Body weights were measured for five
small animals, as shown in Table 4.1. What is

the average, minimum, maximum and total

weightsfor the group, and how do calculations
ofstandard deviation and variance indicate the

distribution of individual weights?

Solution:

A. Enter Data

Step Press
1. RS, STAT, OK (to select "Single Var..."), EDIT, 6.3, ENTER, DC, 7.8, ENTER, 9.4,

ENTER, 5.7, ENTER, 4.9, ENTER, ENTER

B. Select Calculations

Step Press

1. DC, DC, LC, vCHK, RC, vCHK, RC, vCHK, RC, vCHK, RC, vCHK, RC,
v'CHK, OK

C. Read Solutions

Step Press
1. UC (6 timesto see "line 6"; read: "Mean:6.82, Std. Dev: 1.79, Variance:3.21, Total:

34.10", DC (5 times to see "line 1"; read: "Maximum: 9.40, Minimum: 4.90"),
CANCEL, LS, CLEAR

58

Exercise 4.2. Calculations Using LS STAT

Problem Statement: No. Temp.(°C)

Temperatures were measured for five ! 46.3
locations in a container ofviscous material that 2 52.1
was presumably thermally uniform. Data are 3 47.6
shown in Figure 4.2. Whatis the average and 3 29 0
standard deviation for these measurements? 3 3 Tz

Solution:

Step Press

1. LS, STAT, DATA, CLZ, 46.3, £+, 52.1, £+, 47.6, £+, 49, T+, 51.7, T+, STAT,
1VAR, MEAN (read: "49.34"), SDEV (read: "2.53"

(Hints: 1. "CLX" at Step 1 cleared the statistical register before the temperature data were
entered. This was essential for Exercise 4.2. because the weight data were already resident
from Exercise 4.1. Had "CLZ" not been used, the temperature data would have been
appended to the existing weight data. It's a good idea to use "CLZ" before each new set of
statistical calculations. Exercise 4.3. shows how to do this for RS STAT operations.

2. If an incorrect value had been entered with "XZ +", key the same value, then press
"Z-" to remove it from thestatistical register. Continue with "Z+" to enter new data.)

Other calculations can be made on data in the

statistical register besides those demonstrated in Exercises er

4.1.and 4.2. Using LS STAT, "SUMS" (selection "F" in |caLcuLaTe:
the opening menu display shown in Figure 4.3.) generates
additional menu selectionsfor calculating ZX, ZY, ZX? EresTiiemil 288 or
XY? and Z(X*Y), as well as for showing the number of Figure 4.3. Summary Stats

data entries (NX). Using RS STAT, move the cursor to

"Summary stats..." in the opening display (Figure 4.1.), then press "OK". Next, move the

cursor to the 4th row ofthe new display (Figure 4.3.) and use "v"CHK"to select the required

summary statistic. "OK" makes the calculation.

Main points to learn from Exercise 4.1. are how to enter data for statistical and
curve-fitting analyses, and how to use menus on the different "pages" of the STAT register
to make each calculation. People who have struggled through computations like this with
only a hand calculator, or even worse, a slide rule in days ofyore, will soon see the powerful
advantages they have with the HP48G. People who don't have this questionably useful

background still have the advantage of the HP48G, of course, but not the mathematical scar
tissue.

—2R _ZY _ZX2_ZYa _ZRY NZ

59

Section 4.2. Editing Stored Data

Data entered into the statistical registers remain in the computer even if you erase the

display ofthe STAT menus by LS CLEAR, clear the view window by CANCEL, or use the

computer for almost any other calculations. They remain stored even if you turn the
computer off. Stored data can receive additional entries (by keying LS STAT, DATA then

the new number, then pressing +) or they can be edited or erased selectively, as described

next.

It's easy to change any data entry in the statistical register whether either RS STAT

or LS STAToperations are underway. Exercise 4.2. described how to correct an erroneous

entry at the time of placing data into the statistical register. Making changes at any other
time is just as straightforward.

Press RS, STAT, OK, EDIT, then move the cursor to the cell whose numberis to be
changed. The row number, column number and the value for the highlighted data are shown
at the lowerleft of the view window. Key the new number, then press ENTER. Pressing

ENTER again returns the RS STAT display. The new number has been stored.
Alternatively, press LS, STAT, DATA, ZDAT, DC to display the data table. Move the

cursor to the target cell, key the new data entry and press ENTER twice. LS, CLEAR clears
the STACK.

Section 4.3. Using Two Columns of Numbers

Although the operations in Exercise 4.1. and 4.2. are useful for demonstrating basic
steps for data entry, calculations and editing, they come nowhere near the potential of the
HP48G to makestatistical analyses. The next step will show how data are entered as paired

columns into the statistical registers. They are then available not only for the calculation of
statistical characteristics of both sets (as in Exercises 4.1. and 4.2.), but also for finding

relationships between the data sets. As examples, this will be done by calculating a correla-
tion coefficient, by defining an equation which best-fits these data as functions of one

another, by graphing the data and by displaying the best-fit equation within the graph.

These are powerful statistical procedures that have many practical applications.

Section 4.3.1. Basic Calculations

Exercises 4.3. and 4.4. show how basic statistical calculations are performed on
columns of matched data. For these examples, data are entered as an array with two

columns. Others, of course, might have 3, 4 or more columns. An array is simply an ordered
arrangements of mathematical elements constructed in rows and columns. The general

structure is no more than the familiar spreadsheet of data. For the examples here, the
elements of the arrays are numerical data. An advantage of entering data in this way is that

60

calculations can be performed simultaneously for the data set. Also, relationships can be
defined for data between columns. This gives unique opportunities for curve-fitting of data

of constructing graphs to gain insight into them. A couple of examples will make all this

clear. Exercise 4.3. demonstrates how functions provided by RS STAT operate on a data

array.

Exercise 4.3. Array Functions with RS STAT

Problem Statement:

 A chemist determined that the setting

time for an epoxy cement being developed | Mix Catalyst 1 Set Time
depended on how much catalyst was used. No. (grams) (hr)
Data are shown in Table 4.3. What are the 1 254 1.64

average catalyst weight and setting time for > 79.3 728

this test, and how did these observations vary, :

as indicated by the calculation of standard 3 326 2.75
deviation? 4 41.7 3.90

5 47.1 4.38

Solution:

A. Enter Data

Step Press
1. RS, STAT, OK (to select "Single var..."), NXT, RESET, DC (to select

"Reset all"), OK, NXT, RS, MATRIX
2. 25.4ENTER, 1.64, ENTER, DC, 29.3, ENTER, 2.28, ENTER, 32.6, ENTER, 2.75,

ENTER, 41.7, ENTER, 3.9, ENTER, 47.1, ENTER, 4.38, ENTER, ENTER
3. DC, DC, LC, vVCHK, RC, VCHK, OK (read: "Mean:35.22, Std.Dev:8.96"), LS,

CLEAR
4. RS, STAT, OK (to select "Single var..."), RC (to select column number "COL:"), 2,

ENTER (to designate data in column 2), DC, LC, v'CHK, RC, v'CHK, OK (read:
"Mean:2.99, Std. Dev:1.13"), LS, CLEAR)

(Hint: Calculations are for data in column 2, the "set time".)

Exercise 4.4. shows how to use LS STAT to make similar calculations. For both, data
will be entered either manually or automatically in the form "[N1 N2]", with the pair of
numbers enclosed in square brackets and a space separating them into adjacent columns.

Calculations in these exercises are purposely made to be simple. This allows seeing

61

more clearly just the process by which data are entered and calculations are made. These
skills will be put to more challenging use in the next section.

Exercise 4.4. Array functions with LS STAT

Problem Statement: A chemist found that a newly developed compound, CHEMX, increased the

hardness of a kind of paint. Experimental data are summarized in Table 4.4.

Measure Conc. (mg/dl) Hardness Index

1 0.13 6.98 x 10*

2 0.98 9.28

3 0.51 0.43

4 0.73 2.32

5 0.20 0.01

6 0.84 4.49

7 0.68 1.66

Solution:

A. Enter the Data

Step Press

1. LS, STAT, DATA, CLZ, LS, [], .13, SPC, 6.98, EEX, +/-, 4, +, .98, SPC, 9.28, I+,
31, SPC, 43, +, .73, SPC, 2.32, Z+, .2, SPC, .01, 2+, .84, SPC, 4.49, +, .68, SPC,
1.66, Z+, STAT

B. Make the Calculations

Step Press

1. 1VAR, TOT(read: "[4.07 18.19]"), MEAN (read: "[0.58 2.60]"), SDEV (read: "[0.32

3.35]"), MAXX (read: "[0.98 9.28]"), MINX (read: "[0.13 6.98E-4]"), NXT, VAR (in

view window, position "A"; read: "[0.10 11.22]"), LS, CLEAR, CANCEL, STAT

2. DATA, ZDAT, DC (to see data in statistical register)

At the end of Exercise 4.4, data are displayed in the statistical register with all digits
shown, except for the first numberin the second column. Ifyou wanted to show more numbers
in the view window, press WID->. The symbol "..." (called an ellipsis) indicates there are

62

digits in the stored data which are not displayed in the table. Any single data entry can be
viewed with all its digits, though, by positioning the highlighted cursor overit and reading the
complete number at the bottom left of the view window. The hyphenated numbers in front of
the displayed data entry indicate the row and column forit in the STAT table.

Ifyou need to see fewer digits displayed in the table, press <WID to decrease column

width. Using any ofthe 4 cursor controls (LC, RC, UC, DC) allows you to view, or edit if you

need to, any numberin the table, even though any one of them might be at first off-screen to

either side or to the top or bottom of the view window.

You can modify the data display in the table in other ways too. For example, press NXT

to display the set ofmenus on the next "page". These allow you to delete a row of data targeted

by the cursor (with -ROW), add a row (with +ROW) or perform analogous operations on data

columns with the menu choices -COL and +COL. Also, you can copy a highlighted number

to line 1 of the STACK (with STK) or gain access to STACK control operations (with
STK). Saving an edited table requires simply pressing ENTER. Ifyou wish to abandon the

data display and not save the changes you've made, press CANCEL.

The techniques you've seen so far in this chapter will more quickly become

second-nature if you design exercises of your own. An important feature of the HP48G is its

ability to make calculations on data organized in an array.

Section 4.3.2. Curve-Fitting

Exercise 4.5. (a couple ofpages later) shows how to model data you entered for Exercise
4.4. with different types of equations. This is a powerful analytic procedure that yields valuable

information about relationships between the dependent and independent variables in an
equation. The calculations you are about to review would not at all be easy without the power
of the HP48G. A brief introduction about modeling data will most likely be helpful.

Many different kinds of equations can be fitted to a set of data. No matter how

complicated the equation is, there is nothing particularly special or useful in just deriving it.
Whatever value the equation has lies in its being a tool for accurately describing and predicting
other data and for serving in other analyses. Getting the equation itself may be an interesting
mathematical exercise, but its poweris in knowing how to use it. This section shows you how
to do both.

Programs in the HP48G allow you to fit 4 of the more frequently used types of
equations. It lets you determine if your data are best predicted by a linear, a logarithmic, an
exponential equation or by one which describes a power function. As a shortcut, it will find the

best-fitting equation without your having to choose the type. The general form and equation
for each of these kinds ofrelationships is shown in Figures 4.4. to 4.7.

63

Y=a+b*X Y =a + b*Ln(X)

Figure 4.4. Linear Function Figure 4.5. Logarithmic Function

Y = asdX Y = a*d

Figure 4.6. Exponential Function Figure 4.7. Power Function

The general forms for each ofthe types of equations shown in Figures 4.4. to 4.7. have
analogous elements. For each, "a" defines a Y intercept value (the value of Y when X=0) and
"b" defines a slope for each line (how much the Y value changes for a change in the X value).
Defining the equation that most accurately represents such relationships is valuable for
calculating values that cannot be measured directly and for other kinds of analyses.

The practical value for curve-fitting a set of data may not be apparent to everyone at
first. The basic idea is to determine the formal mathematical relationship (in the form of an
equation) between some event and some other event you think might be related to it. For the
data in Exercise 4.4., for example, it would be valuable to have more detailed information about

64

the relationship between CHEMX andits effect on the physical properties of the paint under
development.

There are many ways in which this kind of information is useful. If you were in

business, for example, and were trying to determine the best way to present your products to
the public, you might ask, "How are my sales affected by the amount of money I put into
different kinds ofadvertising?". If you were in agriculture, you might ask of your data, "How
do the number ofweeds I get in my crops decrease when I use different concentrations ofa

herbicide?" Ifyou were a medical researcher, you might ask, "What is the effectiveness ofthis
new anti-cancer drug in reducing tumor size?" The basic question is: "What is the best

equation which describes how my dependent variable (that is, the event that has occurred)
varies as afunction ofmy independent variable (that is, the event I think it is related to)?"

It is conventional to identify the independent variable in a test with the symbol "X" and
to label the dependent variable "Y". This is more important than just following tradition. You
will need to employ this style in identifying each column of data you test in this way using the

HP48G. It is also conventional when drawing a graph to show relationships between data to

plot values for the dependent variable (Y) along the vertical axis and plot values for the
independent variable along the horizontal axis (X). This is how graphs are defined in Figures
4.4. to 4.7., and it's how you'll see data presented throughout this book.

Exercises 4.5. and 4.6. introduce basic curve fitting procedures. Once data have been
entered into the statistical register. (Exercises 4.3. and 4.4.), they are available for a number of
calculations including those which derive equations to predict their interrelationships. Curve

fitting can be accomplished using the RS STAT functions (Figure 4.1.; Exercise 4.5.) or those
available by LS STAT (Figure 4.2.; Exercise 4.6.). The calculations will be the same, of

course,it's just that the mechanisms for getting themare different. Try each to see what's best
for you.

Exercise 4.5. Cuive-fitting with RS STAT

Problem Statement:

Using data entered in Exercise 4.4., calculate best-fit linear, logarithmic, exponential and power
function equations. Determine which equation form is most accurate for these data by calculating a

correlation coefficient for each.

Solution:

(Hint: 1. If these data have been cleared, repeat Step 1 in Exercise 4.4.

2. Calculations show 3 digits to right of decimal set by: LS, MODES, FMT, 3, FIX)

65

Make the Calculations

A. For Linear Fit

Step Press

1. RS, STAT, DC, DC (to highlight "Fit data..."), OK, CHOOS (highlight "ZXDAT:

[[.13..."), OK, DC

(Hint: If"X-COL:1 Y-COL:2", go to Step 3, otherwise complete Step 2)

2. Highlight number for X-Col:, key "1", then ENTER, 2, ENTER

3. CHOOS(highlight "Linear Fit"), OK, OK (read: " '-2.469+8.716*X'; Correlation: 0.831,

Covariance" 0.889"), LS, CLEAR

B. For Logarithmic Fit

Step Press

(Same as for A.1.)1

2. (Same as for A.2))

3 CHOOS, DC (to highlight "Logarithmic Fit"), OK, OK (read: " '4.861+3.035*LN(X)"
Correlation: 0.701; Covariance"1.819 "), LS, CLEAR

C. For Exponential Fit

o
O

—- o vnStep

lI. (Same as for A.1.)

2. (Sameasfor A2)

3. CHOOS, DC (to highlight "Exponential Fit"), OK, OK (read: " '0.001*EXP(10.703*.. ;
Correlation: 0.969; Covariance"1.091 "), LS, CLEAR

D. For Power Fit

Step Press
1. (Same as for A.1))

2. (Same as for A.2.)

3. CHOOS, DC (to highlight "PowerFit"), OK, OK (read: " '9.953*X"4.547' "; Correlation:
0.998; Covariance"2.724"), LS, CLEAR

(Hint: For automatic calculation ofthe "best-fit" equation based on its correlation coefficient,
enter "Best-Fit" at Step 2. Read data for Power Fit equation)

66

Exercise 4.6. Curve-fitting with LS STAT

Problem Statement: (same as for Exercise 4.5.)

Solution:

Setup (Hint: If data for Exercise 4.4 have been erased, repeat its Step 1)

Step Press
1. RS, STAT, DC, DC (to highlight "Fit data..."), OK, CHOOS (highlight "XDAT:

[[.13..."), OK, CANCEL

A. For Linear Fit

Step Press

1. LS, STAT, SPAR, MODL, LINFI, NXT, STAT, FIT, SLINE
(read: " '-2.469+8.716*X' "), CORR (read: "0.831), NXT, STAT

B. For Logarithmic Fit

Step Press

1. LS, STAT, PAR, MODL, LOGFI, NXT, STAT, FIT, ZLINE

(read: "'4.861+3.035*LN(X)"), CORR (read: "0.701), NXT, STAT

C. For Exponential Fit

Step Press

1. LS, STAT, PAR, MODL, EXPFI, NXT, STAT, FIT, ZLINE

(read: "'0.001*EXP(10.703*X™), CORR (read: "0.969), NXT, STAT

D. For Power Fit

Step Press

1. LS, STAT, PAR, MODL, PWRFI, NXT, STAT, FIT, ZLINE

(read: " '9.953*X"4.547' "), CORR (read: "0.998), NXT, STAT

(Hint: For automatic calculation ofthe "best-fit" equation based on its correlation coefficient:
LS, STAT, PAR, MODL, BESTF (read: (data for Power Fit)), NXT, STAT, FIT,

CORR (read: "0.998"))

67

Which of these four equations calculated in Exercise 4.4. best predicts relationships

between the dependent and independent variables for the data you have entered is indicated,

of course, by which model has the correlation coefficient closest to 1.0. For these data, the

model using a power function equation yields the best-fit.
The calculation of a correlation coefficient (commonly symbolized by "r") for a set of

data provides a useful statistic. Like an equation itself, though, it has no intrinsic value,it has

to be accurately and appropriately interpreted. Whenit receives such an analysis, though, it

reveals how well one variable relates to another.
Were a correlation coefficient calculated to be zero for a set of data, it indicates there

is no predictive relationship between the data. The dependent variable (Y) does not vary as a

function ofthe independent variable (X). Such a relationship is likely to be deduced were you
to compare, for example, how many birds come each hour to your feeder in the backyard over

the period of a week, compared to the stock market price index for the same week.
Were a correlation coefficient calculated to be 1.00 (the highest possible value) for a set

of data, it indicates that there is a highly predictive relationship between the data you have

compared. The dependent variable (Y) would change characteristically in a very predictable

fashion for each change in the independent variable (X). A relationship similar to this is
revealed for how the paint hardness index varies as a function of the concentration of CHEMX
in Exercise 4.4. when a power function equation is used to describe the relationship.

A correlation coefficient calculated to be -1.00 would define a similarly excellent

relationship between the events being compared. It would show, though, that as the

independent variable (X) increased, the dependent variable (Y) decreased, and vice versa. Had
the chemist in Exercise 4.2., for example, compared the effects of concentrations of CHEMX
to a "softness index" for his paint, you'd reasonably expect that this index would decrease in
a very predictable way as the concentration ofCHEMX increased.

The correlation coefficient for a set of data yields yet additional information. As a

rule-of-thumb, subtracting the calculated correlation coefficient from 1.00 indicates a good
first-order estimate of how much of the relationship between the variables X and Y is
unaccounted for by the best-fit equation computed for them. For example, a correlation
coefficient of 1.00 indicates the most accurate evaluation with zero percent of the data effects
left to be explained (since 1.00-1.00 = 0.00). A correlation coefficient of 0.93, for example,
shows a generally good equation-fit for the data set, but not a perfect one. About 7% of the
observed values for the dependent variable are not related to the independent variable for
whatever equation was used as a test model (since 1.00-0.93 = 0.07). A correlation coefficient

of 0.50 indicates that only about 50% ofthe relationship between two events can be predicted

accurately by the equation tested, not a good predictor at all.
Just because thereis a high correlation coefficient calculated for the relationship between

two variables is not good grounds to expect that one causes the other. There might be, for

example, only by happenstance a good correlation between the changes in gasoline

consumption in a small midwestern town in the United States and variations in the price of eggs
in a village in southeast Asia. The logic is flimsy, though, if one then expects that not driving

68

one's car so much in the midwestern town is going to affect overseas agricultural values.
On the other hand, the implication is strong from data in Exercise 4.2. that adding

increased concentrations of CHEMX to a batch ofpaint increasesits hardness. That's a good
working hypothesis for the test. Inferences drawn from thestatistical tests provide valuable

guideposts for the chemist's research team as they start to track down the suspected and
expected causal relationship. It might be, of course, just coincidence, but more lab tests will

soon provide the answer. The statistical test, though, just indicates the phenomena are related,
nothing else.

Section 4.3.3. Making Predictions

A major value in determining a "best-fit" equation for a set of data, as described in

Exercises 4.5. and 4.6, is that predictions can be made from it. Any value for the dependent

variable (Y) can be predicted from a corresponding value for the independent variable (X), and
vice versa. How accurate these predictions are depends on how reliable the equation represents

the data set (indicated by the correlation coefficient), and that predictions are made generally

within the range of the data set from which the equation was derived.
This means that for the data presented in Exercise 4.4., the "hardness index" for a batch

of paint can be predicted for any concentration of CHEMX now that a "best-fit" equation has
been determined for the experimental data (Exercises 4.5. and 4.6.). Also, the concentration

of CHEMX required to produce any desired level of hardness can also be determined. Once

a "best-fit" equation has been deduced, these predictions can be made graphically or

equationally (Exercise 4.7.)

Exercise 4.7. Predictions

Problem Statement: Based on data in Exercise 4.4. and calculations completed in Exercises 4.5. and

4.6., determine the concentration ofCHEMX predicted to produce a "hardness index" of about 7.2 for

a paint mixture.

(Reminder: The "best-fit" equation for the data in

Exercise 4.4. was: Y=9.953*X"4.547.)

Graphic Solution:
a a A he a A

: 0.831 ¥: 7.183

Step Press Display 1

1 ' 9.953, * a, X, y\, 4.547, ENTER

2 "a, a, C,H, E;M, a, STO

3 RS, PLOT, CHOOS (highlight "CHEM: '9.953...), OK, DC, RC, 0 (zero), ENTER, I,

ENTER, v'CHK, ERASE, DRAW (see function in: "Display 1")
4 TRACE, (X,Y), (hold down RC until "Y:7.183"; read: "X:0.931), CANCEL, CANCEL

69

Equation Solution:

(Hint: Assume HOME directory is empty)

Construct the Equation

Step Press

1. "a, Y,LS, =9953, * a, X, vy, 4.547, ENTER

2. a,HARD,aSTO

A. Using RS SOLVE

Step Press
1. RS, SOLVE, OK (to select "Solve equation..."), CHOOS, OK (to select "HARD:

Y=9.953..."), 7.2, ENTER, SOLVE (read: ".93126+"), CANCEL

B. Using LS SOLVE

Step Press

1. LS, SOLVE, ROOT, SOLVR, 7.2, Y (view window), LS, X (view window; read:

"X:0.931"), CANCEL, LS, CLEAR, VAR

Section 4.4. A Mystery Solved with the HP48G

For many real life situations, obtaining statistical data for sets of numbers is only the

beginning of the analysis. Despite the beliefs of many, the numbers do not speak for

themselves, they have to be interpreted. Statistical profiles of data and equations that define

their relationships give only the first clue for seeing what they mean in the context of a specific
problem. Without them, though, analysis would be either more difficult or impossible.

Exercise 4.8. gives an example ofhow statistical data are combined with equation solutions to
yield valuable insight into a problem.

Exercise 4.8. Curve-fitting With Equation Solutions

Problem Statement: A partially clothed body was discovered in a wooded area about 5:00 PM on a

cloudy afternoon in early fall. The coroner arrived at the scene at 5:30PM and recorded the deceased's

body temperature at 30 minute intervals over the next several hours (Table 4.5). A wind was blowing

during this time, but air temperature remained about 70°F. What time did the person die? (Hint:
Objects cool exponentially under constant environmental conditions. Normal body temperature is

assumed to be 98.6°F.)

70

Observation Time (clock hours) Body Temp. (°C)

1 5:30 83.5

2 6:00 80.5

3 6:30 78.2

4 7:00 76.4

5 7:30 75.0

6 8:00 73.9

7 8:30 73.0

8 9:00 72.3

Solution:

A. Define the differences between body and air temperatures as a function of measurement time
intervals.

Observation Time (min.) Interval (hrs.) Tb-Ta (°F)

1 0 0.0 13.5

2 30 0.5 10.5

3 60 1.0 8.2

4 90 1.5 6.4

5 120 20 5.0

6 150 2.5 3.9

7 180 3.0 3.0

8 210 3.5 23
(Hint: he first temperature measurement was at 5:30 PM, then measured at 30 minute
intervals

71

B. Determine numerical values for the exponential equation using data in Table 4.7.

(Hint: The first data entry for "Time" in Table 4.6. is chosen to be "0.0001" because a zero
cannot be used in this calculation.)

Step Press
1. RS, MATRIX, 0.0001, ENTER, 13.5, ENTER, DC, .5, ENTER, 10.5, ENTER, 1,

ENTER, 8.2, ENTER, 1.5, ENTER, 6.4, ENTER, 2, ENTER, 5, ENTER, 2.5,

ENTER, 3.9, ENTER, 3, ENTER, 3, ENTER, 3.5, ENTER, 2.3, ENTER, ENTER

2. "a,a, T, EMP, a, STO

3. RS, STAT, DC, DC (to select :Fit data..."), OK, CHOOS (move cursor to

"TEMP:[[.0001. ..."), OK, DC, DC, CHOOS,(highlight: "Exponential Fit"), OK, OK

(read: "13.56*EXP(-.50*X...)

(Hint: The "best-fit" equation is: (T,-T,)=13.56 °° ®; (T,-T,) has units of degrees
Fahrenheit and (time) has units of hours.)

C. Determine time of death

(Hint: Solve for X to indicate time in hours before the first temperature measurement at
5:30PM when body temperature was 28.6°F above air temperature (98.6 - 70 = 28.6).)

Step Press

1. LS, EQUATION, 28.6,LS, =, 13.56, *LS, e, -, .5, *, a, T, RC, ENTER, ', a, a,
D,E, AD, a, STO

2. RS, SOLVE, OK (to select "Solve Equation..."), CHOOS, (highlight DEAD:
'28.6=13..."), OK, SOLVE (read: "-1.49+"), CANCEL, LS, CLEAR

(Hint: It's a good guess that the person was alive with a normal body temperature of 98.6°F
about 1.5 hours before the coroner made the first measurement at 5:30PM. This means that
death occurred about 4:00PM when the process ofbody cooling began.)

D. A Graphical Solution

A. Write the equation

Step Press
1. LS, EQUATION, 13.56. *, LS, &*, -, .5, *, «, T, RC, ENTER

(read: "' 13.56*EXP(-0.50*T)'")
2. Ya, a, T,M,P, a, STO

72

B. Construct the graphic

(Reminder: The function "CANCL"is activated by key "F" under the view window. The
function "CANCEL"is obtained by pressing the "ON" key.)

Step Press
1. RS, PLOT ("EQ." is highlighted), CHOOS, (highlight "TMP: '13.56..."), OK, DC,«,

T, ENTER, 2, +/-, ENTER, 4, ENTER, RC, 0 (zero), ENTER, 30, ENTER (see

"Display 1"), ERASE, DRAW

2. TRACE, (XY), LC (until "Y:28.6"; read: "T:-1.49"; see "Display 2"), NXT, CANCL,

CANCEL

_ AUTOSCALE Y-VIEW: B

ENTER FUNCTIONCS) TO PLOT
(JUL DNL1 ARR IRIAL) I: -1.49 Y: 28.60

Display 1 Display 2

(Hint: the graphical solution confirms that body temperature was about 98.6°F (that is,
28.6°F above ambient temperature (70°F)) about 1.5 hours (4:00PM) before the first body

temperature was measured at 5:30PM.)

Figure 4.8. is a graph for the solution to the mystery described in Exercise 4.8. For
other situations, of course, some features of this problem will remain the same and others

will change depending on different personal and environmental conditions. For example, for

a normal person, initial body temperature (about 98.6°F) will always be the same
independently of sex, age, body size, etc. The rate at which body temperature falls, however,

depends on the person's size and surface area, how the body is exposed to the environment,
whether the clothing or skin surface is wet or immersed in water, the wind speed, air

temperature, the warming effects of direct sunlight and many other factors. If any set of

these conditions is constant, though, an exponential function will describe best how
temperature decreases with time, as it does in Exercise 4.8. The rate of cooling will change,

but the initial temperature value and the form of the best-fit equation will remain the same.

73

0 1 2 3 4
 [I 1 I 1 I 1 I I I I 1 { 1

100 — 30
pg V Temp. Measures (hr.) Tb-Ta F)|

sormal body temp.

—] 25

-—] 20

—] 15

 |
|

ss Clock Time (PM) i.
1 1 }] 1

4:00 5:00 6:00 7:00 8:00 9:00

Figure 4.8. Body Temperature Changes

Section 4.5. Directories: Basic Concepts

Section 3.3. introduced an important basic idea that numbers, numbers with units and
even equations are stored as menu options which are then brought to the view window by
pressing VAR. So far, all data and equations have been stored in this way under the

HOME directory. A reminder that you were using this directory has been shown in the upper
left of the view window as you worked through all of the exercises and examples.

There is no reason not to continue to use the HOME directory. It's worked well for
you up to now and will continue to do its job. But the more VAR menus you construct, the
more cluttered the HOME directory menu display becomes and the more "pages" you have

to search with NXT to find the menu option you need. Also, you become progressively more

burdened by not being able to use the same menu designation for a variable. For example,
ifyou used the symbol "N" as a variable name (as you most likely did for Exercise 2.4.), you
cannot use "N" again in the HOME directory without running the risk of making an incorrect

calculation. There is an easy solution. Construct your own set of subdirectories, name them

what you want and store in each of them whatever you want.

Some people find the concepts of directory construction a little confusing at first.

Organizing, constructing and using them is no more difficult, though, than the process you'd

74

use for any other kind offiling system. An example gives the basic idea.

Imagine you are just starting a

small business, but have already a
number of steady customers. You Directory N

. . . rectory No. 1 Bills
will need, of course, to maintain Co

records for these people about the swbdiectory No.1. oui utedng To o on
ordersthey've placed, the deliveries CE So as

you've made, the bills you've | |
submitted to them, the payments Subdirectory No.2 Qos. §months
you've received, correspondence I
you've exchanged with them,

advertising you've generated and Figure 4.9. A Basic Filing System
keep files of other business

transactions too. It's unlikely you'd keep all of these important papers mixed up together in

an old shoe box under the sink. More than likely, you'd invest in a file cabinet and organize

it with a system similar to that shown in Figure 4.9.
If you used the system shown in Figure 4.9., one file drawer (one directory) would

be titled "BILLS" and other drawers (directories) might have "CORRESPONDENCE",

"INVENTORY"or similar headings. In the directory "BILLS" would be most likely a series
offile folders (subdirectories) indicating different types of bills. Some might be labelled
"PAID", "OUTSTANDING" or "TO BE SENT". Each of these folders might contain

additional subdirectories, like "OVERDUE 3 MOS.", "OVERDUE 6 MOS.", and the like.

Other file draws would be subdivided and appropriately titled in a similar way. The

purpose of this kind of organization is, of course, to make it easier to find and use items

when you need them..

Section 4.6. Directory Structure and Construction

Figure 4.10. lists the commands presented by RS MEMORY. They are used for

constructing, editing and otherwise manipulating the contents of subdirectories. Figure 4.11.

shows similar controls using LS MEMORY. Exercise 4.9. gives simple examples for
creating subdirectories, moving files among them, changing their contents and erasing them
when they are no longer needed. Once these skills are acquired, it's a good idea to use them

so that each new problem, calculation or program is listed in its own subdirectory. The
HOME directory will then list and provide access to these different subdirectories, but will

not contain any programs of its own. Besides the generally good organization this provides,
there are hidden benefits in terms of controlling the use of local variables. All this leads to
efficient use of the HP48G, less confusion among programs and a reduced chance for errors
when local labels are used in programs.

75

Figure 4.10. RS MEMORY

Menu Keys

page A B C D E F

1 EDIT* CHOOS v'CHK NEW* COPY* MOVE*
2 RCL PURG SIZE CANCL OK

The "*" indicates a directory whose menus are:

*EDIT (same for *NEW, *COPY and *MOVE)

1 EDIT CHOOS CANCL OK
2 RESET CALC TYPES CANCL OK

Figure 4.11. LS MEMORY
Menu Keys

page A B C D E F

1 MEM BYTES NEWO DIR* ARITH*
2 ARCHI RESTO

The "*" indicates a directory whose menus are:

*DIR

1 PATH CRDIR PGDIR VARS TVARS ORDER
2 MEM*

*ARITH

1 STO+ STO- STO* STO/ INCR DECR
2 SINV SNEG SCON MEM*

Exercise 4.9. Subdirectory Functions

A. Creating a Subdirectory

Problem Statement: Construct a subdirectory called "TEST" in the HOME directory.

Solution:

Step Press

1. RS, MEMORY, NEW, DC, a, a, T, E, S, T, a, ENTER, v'CHK, OK, CANCEL

(Alternative: ', a, a, T, E, S, T, a, ENTER, LS, MEMORY, DIR, CRDIR)

B. Moving a File to a Subdirectory

Problem Statement: Create a file in the HOME directory called "ABC" that contains the number
"123", then move it to the TEST subdirectory.

Solution: Beginning in the HOME directory:

Step Press

1. 123, ENTER, ', «, a, A,B, C, «, STO

2. RS, MEMORY (highlight "ABC:123"), v'CHK, MOVE, CHOOS, (highlight

"TEST"), OK, OK, CANCEL

(Hint: To copy a file, use "COPY" instead of "MOVE"at Step B.2.)

C. To Change the Contents of a File

Problem Statement: Change the contents of "ABC" in subdirectory TEST from "123" to "789".

Solution: Beginning in the HOME directory:

Step Press
1. TEST, RS, MEMORY, (highlight "ABC 123"), EDIT, EDIT, (move cursor to end

of "123" and erase it), 7, 8, 9, ENTER, OK, NXT, CANCL, CANCEL

D. To Erase a Subdirectory File

Problem Statement: Erase file "ABC" in the TEST subdirectory.

Solution: Beginning in the HOME directory:

Step Press

1. TEST, RS, MEMORY, (highlight "ABC"), v"CHK, NXT, PURG

77

Section 4.7. More Progress

Working directly from the keyboard with the functions in the LS STAT and RS STAT
menus gives powerful advantages in calculating basic statistics and for fitting curves to data.
This chapter gave several examples. There is even more power and ease of use when the
STAT functions are addressed by steps in a program. See the programs "Useful Statistics"
and "Automatic Curve Fitting" in Chapter 8.

All the skills you have acquired by now can be applied with benefit as you continue
to explore the full potential of the HP48G. One ofits special features is how it stores and
executes programs. It is a major bonus in using this machine to be able to write customized
programs for your own needs and applications. The next chapter gets you started.

78

Chapter 5

Basic Programming

There are several ways to use the HP48G's programming capabilities to solve

equations and to perform other logic tasks. This chapter describes a few simple programs
to get you started with the basic techniques. In no case does it show the only way to write
a program and maybe not even the best way to do it. Programs here are, after all, designed
to promote step-by-step learning for the beginner. Which kind of program structure is best

for any specific application depends on how you want to enter data, what you want the
program to do with them and how you want to see solutions displayed or manipulated for

other calculations. A practical standard is that any program is a good one if it runs
accurately and quickly and takes no more programming steps or memory than absolutely

necessary.

Section 5.1. Getting Started

Just getting started writing programs is often hard for those who have little or no

experience with it. So, the easier the first programs are, the better. From a simple beginning,

you'll see how more and more features are added to programs in other exercises as the

chapter continues and as you build your skill level. It won't be long before you'll set off on

your own to construct programs as involved and as complicated as you need. Breaking the

ice is the hardest part.

Section 5.1.1. A Program Map

It doesn't take more than a couple of hours for the beginning driver to learn how to
start and stop a car, how to make it turn at a corner, how to steer a desired path and how to

perform other basic maneuvers. Even with these skills, though, taking a trip from Chicago
to Los Angeles, for example, would be chancy without a well-thought out plan. The familiar
road map is, of course, the model most of us use for such a plan. It defines where we start,
what route we take, and what our destination is for a particular trip. In a similar way,it
doesn't take more than a couple ofhours for the beginner to learn how to turn a computer on
and off, how to perform its basic mathematical and logic operations and how to activate

appropriate keystrokes. You've already done this for the HP48G by progressing this far in

the book. Writing a computer program using these skills will be easier and less time

consuming ifyou also learn how to use a map (ofsorts) to document where you wantto start

in the program, what set of sequential steps and endpoint you want.

79

Most people who've taken car trips know it doesn't matter too much whose map you

use, as long as it's accurate and easy to read. Ones provided by gas stations are just about
as good for the purpose of the trip as are those bought in supermarkets or in bookstores.

Similarly, flow diagrams for a computer program work well even though one may be

organized slightly differently or uses different symbols than another. It's important the same

symbols mean the same thing from place to place in the same program, but one style works
about as well as another. Figure 5.1. defines the symbols used for flow diagrams in this
book.

Symbol Operation Note

CD Start or Stop 1 input or 1 output

Procedure 1 input and 1 output

J Data Entry 1 input and 1 output

> Decision 1 input; 1 of2 outputs

<) Display 1 input and 1 output

J 0 Off-page Connector 1 input or 1 output
Figure 5.1. Flow Diagram Symbols

Many ofthe first programs described in this chapter could be written without any flow
diagram at all. The logic for them is simplicity in itself and the math operations are trivial.

But as programs become more complicated, the flow diagrams become more important.
Getting used to using them in the beginning is a good habit and saves time in the long run.

Of the many hours invariably spent in de-bugging a complicated program, few are used to

track down mathematical or computational errors. Most are spent trying to get the logic of

the program to operate in the way you want. Simple programs will be difficult to write

accurately the first time without a flow diagram and complicated ones will be easier to write
accurately with a flow diagram, even for the expert.

80

Figure 5.2. The PRG Menu

Menu Keys

page A B C D

1 BRCH* TEST* TYPE* LIST*

The "*" indicates a directory whose menus are:

*BRCH
1 IF* CASE* START* FOR*
2 IFT IFTE
*TEST

1 == # < >

2 AND OR XOR NOT
3 SF CF FS? FC?
4 LININ
*TYPE

1 OBJ» ARR LIST STR
2 C>R R>C NUM CHR
3 TYPE YTYPE
*LIST
1 ELEM* PROC* OBJ» LIST
*GROB
1 >GRO BLAN GOR GXOR
2 >LCD LCD» SIZE ANIM
*PICT
1 PICT PDIM LINE TLINE
2 PIXON PIXOF PIX? PVIEW

For BRCH
*IF
1 IF THEN ELSE END
*CASE

1 CASE THEN END
*START
1 START NEXT STEP
*FOR

1 FOR NEXT STEP
*DO
1 DO UNTIL END
*WHILE
1 WHILE REPEA END

For LIST
*ELEM

1 GET GETI PUT PUTI
2 HEAD TAIL
*PROC

1 DOLIS DOSUB NSUB ENDS
2 SORT SEQ

GROB*

DO*

SAME
FS?C

>TAG
DTAG

SUB

SUB

BOX
PX->C

SIZE

STREA

PICT*

WHILE*

TYPE
FC?C

UNIT
EQ~>

REPL

REPL

ARC
C>PIX

BRCH*

BRCH*

BRCH*

BRCH*

BRCH*

BRCH*

POS

Section 5.1.2. Menus for Program Writing

Like so many other of the HP48G's features, writing programs depends on using the

machine's built-in menus. Their organization is somewhat different from other menus, as
shown in Figure 5.2.

For the most part, the subdirectories and menus shown in Figure 5.2. are used the
same way as others you've seen in earlier chapters. Just pressing PRG, for example, shows
a list of directories, each of which has its own set of menus. A difference, though, is that

menus within BRCH have several functions. They are shown at the bottom of the figure.

Section 5.2. Storing Equations and Data as Variables.

An equation and a computer program share important characteristics. Each is a
statement of relationships which if evaluated correctly lead to an accurate conclusion. For

an equation, this conclusion is often the calculation of a number, or if it is being solved
symbolically, it is a new statement of mathematical relationships among its variables. For

a computer program, the conclusion may be expressed as a numerical value, or it may be a

non-numerical statement about some decision the computer has been programmed to reach.
Just as in solving an equation, though, steps in using a computer program must be taken one
at a time following specific rules. Also like mathematical rules, those for program writing
are simple for the most part, but they cannot in any way be ignored or misused.

The simplest way to construct a set of usable steps to solve an equation using the
HP48Gis to store the equation itself as a VAR menu. In a sense, the equation becomes its
own computer program. The simplicity and utility of this strategy is that the user has no

decisions to make except to identify numerical values for the equation to use and then just
has to press a button to start the solution process. You were introduced to this technique in
Exercise 3.1.

Expanding on such a simple plan is a good place to start becoming familiar with the
processes of program writing. A simple example shows this procedure is much easier to

learn and use than it might sound. Exercise 5.1. describes how the HP48G VAR menus are
used to solve a single equation which determines a student's examination grade. Several
other programs will be written in this chapter. Take advantage of the directory system you

constructed for your computer in Exercise 4.9. for constructing them. Make your own
choice about where you wantto keep these programs, but a good suggestion is to store them
under each program's name within the subdirectory.

The first exercise shows how to solve an equation by storing it in a VAR menu. It
presents the simplest style for program construction. Figure 5.3. showsits flow diagram.

82

Exercise 5.1. Examination Score

Problem Statement: Ceo

?

Sam Tutor teaches a large class and decides that a B!
computer program would help him score examinations.

Each exam in the course has a different number of questions

and bonus points. Write a program which will calculate each
student's percent score based on the number of earned points
(the "raw score"), bonus points and questions on each exam.

 Calc. |)
. E

Solution: ES S

A. Define the Equation. Figure 5.3. Exercises 5.1. and 5.2.
gs . 100 (C+B)

N

where:
ES = examination score (percent)

C = number of correct questions, or "raw score"

B = examination bonus points (1 point equals 1 question)
N = number of questions on the exam

B. Write the Program

Hint: The program will contain the equation and will appearas:

<<'100*(C+B)/N'>NUM>>

Step Press

1. LS,<<>>"100, *LS, (), , C,+a, B,RC, +, «, N, RC, LS, >=NUM, ENTER
2. "a, Ea, S, STO

(Hint: The equation is now written in the form of a program and is stored in VAR as
"ES". To review the equation, press: ', ES, ENTER, LS, EDIT. Press CANCEL to clear

the view window and return to normal operation.)

C. Use the Program.

One of the exams Mr. Tutor gave to his class had 80 questions and 3.5 bonus points.

Calculate the percent score for each ofthe students whose "raw scores" are listed in Table 5.1.

83

(Hint: As you complete the following steps,

it's easy to get confused in distinguishing the
menu options titled "B" and "C" from the

white keys which have at their lowerright Student Raw Score

corner the same letters. It will help to A. Lincoln 71

remember that any time you press ALPHA, G. Wash 68

the next keystroke will generate the letter

printed to the right of the key. If you don't T. Jeff 70

press ALPHA first, then the choice "C", for B. Franklin 75

example, can be a menu option selected from D. Madison -

the display at the bottom of the view :
window.)

To make the calculations:

Press
3.5, ENTER, ', a, B, STO

80, ENTER, ', a, N, STO

71, ENTER, ', a, C, STO, ES (read: "93.13")

68, ENTER, ', a, C, STO, ES (read: "89.38")

70, ENTER, ', a, C, STO, ES (read: "91.88")

75, ENTER, ', a, C, STO, ES (read: "98.13")

72, ENTER, ', a, C, STO, ES (read: "94.38")

2

N
o
n
a
e
f

(Hint: Don't erase this program yet. It will be used in the next exercise.)

As Described in Chapter 3, numerical solutions for an equation stored in a VAR
menu require having a number defined for each symbol in the equation except, of course,
for the one you're solving for. Using a program to solve an equation requires the same

kind of definition. Steps A and B in Exercise 5.1. provide that information for the
constants B and N. Once they have been entered, a student's exam score (ES) is

calculated by defining C then activating the program ES. Exam scores for other students

are calculated simply by redefining C (the "raw score") for each of them. This is

performed by Steps 3 to 7 in Stage C. How this operation related to general program flow
is shown in the flow diagram (Figure 5.3.).

Mr. Tutor's course, like most others, has several different examinations throughout
the term. Also, other instructors use the program he has written. The program is easily
modified to meet the specific conditions for these different applications. The number of
questions on each exam, for example, is easily changed just by repeating Steps A and B

84

Exercise 5.1. Both ofthese pieces of information remain as constants for scoring any
single exam and only the student's raw score needs to be changed for each calculation.

This programming design has both advantages and disadvantages. An advantage
is that the numerical values for the two constants (B and N) need to be defined in their
respective VAR menus only once. The equation listed in the VAR menu "ES" uses these
stored data, along with that in VAR menu "C" for each calculation. A disadvantage ofthe

program is that it requires several keystrokes to enter the raw score for each student each

time a new calculation is made. The next section and Exercise 5.2. show a more direct
and easier way to enter data into a program.

Section 5.3. Using Local Variables.

A more practical program for Mr. Tutor and others to use for calculating exami-
nation grades would have the constants for bonus points and the number of exam ques-

tions entered only once, but have the program read each student's raw score from a value

keyed into line 1 of the STACK. Exercise 5.2. shows how to rewrite the program to
include this feature. The flow diagram is the same as that shown in Figure 5.3.

Exercise 5.2. Examination Score - A Better Idea

Problem Statement:

Amend the program in Exercise 5.1. so that each student's "raw score" is keyed into line

1 for calculation, but it doesn't have to be stored in a VAR menu.

Solution:

Hint: The program will appearas:

<< C'100*(C+B)/N' =NUM >>

A. Amend the program "ES" which you wrote for Exercise 5.1.

Step Press

1. ' ES, ENTER, LS, EDIT, RC, RS, >, a, C, ENTER

(Reminder: Pressing ENTER stores the amended program under the same menu title,

"ES". The program described in Exercise 5.1. no longer exists. It has been replaced by
the amended one.)

85

B. Using the Program

Use the newly defined program titled ES to compute examination scores for students
whose "raw scores"are listed in Table 5.2. This examination had 115 questions and 4.2 bonus
points.

To make the calculations:

Ste Press Student Raw Score

1. 4.2, ENTER,a, B, STO A. Lincoln 92

2. 115,ENTER, , a, N, STO SCWah 0
3. 92, ES (read: "83.65")

4. 80, ES (read: "73.22" T. Jeff 70
5. 70, ES (read: "64.52" B. Franklin lio
6. 110, ES (read: "99.30") :

7. 100, ES (read: "90.61" D. Madison 100

The program described in Exercise 5.2. has many features similar to the one you

used in Exercise 5.1. It is different, however, in that data used by the equation stored in
a VAR menu are drawn either from the STACK (for a student's raw score (C)) or from

VAR menus (for the bonus points (B) and for the number of questions (N)). The program

is only a little more complicated than the first one, butit is much easier and faster to run.
In this sense, it is a more practical format for Mr. Tutor and his academic associates to
use.

The amended instruction ("->C") in Exercise 5.2. instructs the computerto take the

value for C (the student's "raw score") from level 1 in the view window. This numberis
not stored anywhere after that, it is used just once in the ES calculation. As shown in
Steps 3 to 7 in Exercise 5.2., each new "raw score" for each studentis keyed into line 1,
then just pressing ES computes the student's exam score. An advantage of this program's
format is that fewer keystrokes are necessary than in Exercise 5.1. to calculate each
student's grade.

Mr. Tutor has othercalculations, however, to make for his course. Not only does
he need to determine a percent grade for each exam, he also has to calculate a final course

grade for each student at the end of the term. This grade depends, of course, on how well

each student has performed on each exam during the term and on how much each exam
is worth in determining the final grade. Exercise 5.3. shows how this new calculation is
made just about as easily as was the grade for each exam in Exercise 5.2. Figure 5.4.
presents the flow diagram.

86

Exercise 5.3. Course Score I

Problem Statement:

Sam Tutor's course has 3 examinations. Each has a

different number of questions, bonus points and weight in
determining a student's score for the course. These data are
listed in Table 5.3. Write a program that calculates each
student's score for the course based on the number of

questions he/she got right on each exam. Design the program
so that this information is listed in the STACK for the
program to use.

Figure 5.4. Exercises 5.3. and 5.4.

Examination No. of Quest. Exam Wgt (%) Bonus Pts.

1 30 25 5

2 40 20 3

3 60 55 1

Solution:

A. Define the Equation.

CS = WI(ESI) + W2(ES2) + W3(ES3)

where:

CS = score for the course (percent)

W1,W2,W3 = weights ofExams 1,2 and 3 (W1+W2+W3=100)

ES1,ES2ES3 = percent scores on Exams 1,2 and 3

or,
25(4+5) , 20(B+3) , 55(C+l)

30 40 60
CS =

(Reminder: 25(A+5)/30 yields the same result as: 100(.25(A+5)/30))

where:

A,B,C = number ofcorrect questions ("raw score") for any student on exams 1,2,3

87

B. Write the Program.

Hint: the program will appear as:

<<>A B C "25*(A+5)/30+20*(B+3)/40+55*(C+1)/60">>

Step Press

1. LS,<<>>RS, >, a,A SPC, a,B, SPC, a,C,', 25, *LS, (),a, A + 5, RC,

+, 30, SPC, +, 20, *| LS, (), «, B, +, 3, RC, +, 40, SPC, +, 55, *, LS, (), «, C,

+, 1, RC, +, 60, ENTER

2. "a, S, a, C, STO

(Hint: Program is now stored under menu "SC")

Stage 3. Run the Program

Calculate course scores for each of the students whose exam scores are shown in Table

54.

Student Exam 1 Exam 2 Exam 3

A. Lincoln 20 18 40

G. Wash 23 22 50

T. Jeff 18 17 43

B. Franklin 25 27 59

D. Madison 19 25 57
To make the calculations:

Press

20, ENTER, 18, ENTER, 40, SC (read: "68.92")

23, ENTER, 22, ENTER, 50, SC (read: "82.58")

18, ENTER, 17, ENTER, 43, SC (read: "69.50")

25, ENTER, 27, ENTER, 59, SC (read: "95.00")

19, ENTER, 25, ENTER, 57, SC (read: "87.17")

 §
n
h
~
~

88

Exercise 5.3. shows how more than one piece of data is drawn from the STACK
to be used in an equation. The raw scores for each exam arefirst listed in the STACK for
a particular student, then pressing SC begins the calculation of the course grade. As

shown in the equation, how much each exam contributes to the overall grade is

determined by multiplying the percent score for each exam (calculated by dividing total

exam points (raw score plus bonus points) by the number of exam questions) by its
relative percent weight. The sum of these products states the student's final grade.

The instruction "> A B C" in the program tells the computer to use the first three

numbers in the STACK (lines 1, 2 and 3) and define for each the variables A, B, and C,

respectively, for program use. An advantage to the program is that data for each exam are
readily entered into the STACK and the calculation is made with the press of a single key
(SC). Although this program would work well in many applications, it has at least a
couple of disadvantages. One is that Mr. Tutor will have to write a new version of the
program, or edit the present one, if the number of questions on an exam, its relative

weight or its bonus points change from term-to-term, as they probably would. This is not
hard to do, but it's an extra job. Another disadvantage is that whoever uses this program

in whatever form it has must rememberthe specific order for entering raw score grades.

Incorrectly ordered data in the STACK would lead, of course, to an inaccurate calculation.

The next section presents a little more sophisticated program that solves these problems.

Section 5.4. Combining STACK and VAR Data

The equation used in the next exercise has the same format as the one in Exercise
5.3. The flow diagram is shown in Figure 5.4. What is differentis its flexibility for use,

thanks to the way in which the program is written. The weight of each exam, its bonus

points and its number of questions are entered by the userat the beginning of the program.
Any change in these data for subsequent use requires only entering new constants. The

program itself doesn't have to be edited or rewritten when it is used in more than one
application. This new program is so much more practical than the one you've just written,
there's no point in keeping the one now stored as "SC". Erase it by pressing: ', SC,
ENTER, LS, PURG.

Exercise 5.4. Course Score I1

Problem Statement: Construct a program for calculating a student's score for a course that
allows changing constants for exam weight, number of questions and bonus points.

89

Solution:

A. Define the equation

W1(A+Bl) . W2(B+B2) . W3(C+B3)
SC =

Ni N2 N3

where:

A,B,C = number ofcorrect answers ("raw score") for exams 1, 2, 3

B1,B2,B3 = bonus points for exams 1, 2, 3

N1,N2,N3 = number of questions on exams 1, 2, 3

W1,W2,W3 =weight of exams 1, 2, 3

(Hint: W1+W2+W3=100)

B. Write the program

Hint: the program will appearas:

<< > AB C 'WI1*(A+B1)/N1+W2*(B+B2)/N2+W3*(C+B3)/N3>>

o

Step ress

1. LS, <<,RS, >, a, A, SPC, , B, SPC, «,C, SPC, ", at, a, W, 1, *, LS, (), A
+B,1,a,RC, a, a, + N, 1, SPC, +, W, 2, *LS, (),B, +B, 2, «,RC, a, «,
+ N, 2,8PC, +, W, 3, * LS, (),C,+B,3, aRC, a, a, +N, 3, a, RC,
ENTER

2. “a, Sa, C STO

C. Run the program

Use the data in Table 5.5. to construct the program's constants.

Examination No. of Quest. Exam Wgt (%) Bonus Pts.

1 45 20 3

2 60 25 5

3 120 55 12

90

Press
3, ENTER, ', a, B, 1, STO
5, ENTER, ', a, B, 2, STO
12, ENTER, ', , B, 3, STO
45 ENTER, ', «, N, 1, STO
60, ENTER, ', a, N, 2, STO
120, ENTER, ', «, N, 3, STO
20, ENTER, ', a, W, 1, STO
25, ENTER, ', a, W, 2, STO
55, ENTER, ', a, W, 3, STOe

o
N
o
n
a
f
F

D. Use data in Table 5.6. to calculate each student's course score.

Student Exam 1 Exam 2 Exam 3

A. Lincoln 32 50 94

G. Wash 40 49 101

T. Jeff 28 45 87

B. Franklin 25 52 102

D. Madison 39 48 96

To make the calculations:

Step Press
1. 32, ENTER, 50, ENTER, 94, NXT, SC (read: "87.06"
2. 40, ENTER, 49, ENTER, 101, SC (read: "93.40")
3. 28ENTER, 45, ENTER, 87, SC (read: "79.99")
4. 25,ENTER, 52, ENTER, 102, SC (read: "88.44")
5. 39, ENTER, 48, ENTER, 96, SC (read: "90.25")

The program in Exercise 5.4. is a step forward in that it lends itself to being
customized without much trouble. Only the steps required to enter new constants have to

be repeated with appropriate values to customize the program for a new course. The
program itself doesn't have to be rewritten. But it still requires that data about each exam be

91

ordered in the STACK registers in a particular way. Programs described in the next section
show how to structure data requests so the user is given a specific instruction about what

piece of information is needed next. Once you are comfortable with these techniques,

rewrite the program in Exercise 5.4. to use this strategy.

Section 5.5. Constructing Data Requests

Drawing data from the STACK is convenient for data entry, but unless the program

is used fairly frequently, it's likely one's memory will soon fade about how numbers have to
be listed there. Unfortunately, human memory is not as permanent as that of the HP48G.

Constructing explicit requests for data input at appropriate places in a program's flow would
be more than just a convenience. It would reduce chances for error. It is useful also to
attract the user's attention to a displayed data request by sounding a tone when it appears in
the view window. Exercise 5.5. introduces these techniques.

The program you will write next, that will help George design a floor he is laying, has
a different organization than others used so far. It uses two VAR locations, one for the
program itself titled "REC" (for calculating the area of a rectangle) and another titled
"AREA" for the equation used for the calculation. The program's arithmetic has been
purposely kept simple so programming features can be seen more clearly, as it has been for
the remainder of the programs in this chapter. Figure 5.5. shows the flow diagram.

Note as you progress through the next exercise that you first write and store the
equation for the calculation, then write and store a program which uses it by referring to its
VAR name.

Exercise 5.5. Area of a Rectangle

Problem Statement: Cares)
Area

George Mastic is designing the layout of a parquet

floor that will be made of rectangular pieces of exotic and «|

rare woods ofdifferent sizes. The kinds ofwood he will use

are particularly expensive and he wants to know the area he EN
needs for each new piece before he cuts it. Write a program
that displays data requests accompanied by a 400 Hz tone

that lasts for a quarter of a second, then makes the Cale area)
calculation for him.

Figure 5.5. Exercise 5.5.

92

Solution:

A. Define the equation

A=L*W

where:

A = area of rectangle in units of entered data

L,W = length and width of rectangle in corresponding units

B. Write the equation.

Hint: The equation will appear as:

<<>> A B'A*B>>

Step Press

1. LS, << >>RS, >, a, A SPC, a,B, , a, A, *o, B, ENTER

2. "a, a, AAR EA a, STO

C. Write the program.

Hint: The program will appear as:

<<"ENTER L THEN W"440 .25 BEEP PROMPT AREA 'AREA' > TAG>>

(Hint: Keying this program requires entering a decimal. In the following step-by-step

instructions,this is designated as " .")

Step Press

1. LS, <<>>RS, ""a,a, EN T,E R SPC, L, SPC, T,H, E, N, SPC, W, «, RC,

440, SPC, .25, SPC, PRG, NXT, OUT, NXT, BEEP, PRG, NXT, IN, NXT, PROM,

a, ¢, ARE A «a,'a, a, ARE, A a RC, PRG, TYPE, >TAG, ENTER

2. “a, a, REC, a, STO

(Hint: The program is now stored in VAR under REC.)

D. Run the program.

Use data in Table 5.7. to calculate areas for different sized pieces of wood George has
available.

93

Piece length width

1 13.9 cm. 35.2 cm.

2 0.13 ft. 0.76 ft.

3 48in. 3.91n.

Step Press

1. VAR, REC, 13.9, ENTER, 35.2, LS, CONT (read "AREA: 489.28")

2. REC, .13, ENTER, .76, LS, CONT (read "AREA: 0.10")

3. REC, 4.8, ENTER, 3.9, LS, CONT (read "AREA: 18.72")

The program in Exercise 5.5. is initialized by pressing REC. It is run by entering data
as instructed ("ENTER L THEN W") andtelling the program to continue (LS CONT). What
could be simpler? The instructions in AREA of ">A B" function similar to those in
Exercise 5.4. to take data from the STACK and define them for the appropriate equation.

Next, the calculation listed in AREA is made for them. Results are displayed with the tag
(TAG) then AREA as a reminder of what was calculated.

Displaying a data request and a reminder about how data are entered are useful
features in Exercise 5.5. Program statements within quotation marks define exactly how the

data request is displayed. The instruction PROMPT holds the displayed phrase until data

are keyed and the program is instructed to continue its step-by-step flow with LS, CONT.

It would also be useful to have a tone accompany the displayed request for data, if that is
your choice. Tones are constructed defining the frequency of the tone (in Hz), then the
length of time (in seconds) to hear the tone, followed by the instruction BEEP. The

program continues after LS CONT is pressed to execute the instructions in AREA, then
returns to display results with the tag "AREA".

The program REC took instructions from another VAR menu, AREA, to calculate the
areas that George needs. Instructions to enter data for a calculation and the equation for
using them need not exist outside ofmain program flow like this. They can be included just

as well as steps in the program itself. There are good reasons to know how to use both types
of constructions, as you'll see in writing more complicated programs later in this book. But
for now, examine the next exercise which shows how to store all instructions, data requests,

tone statements, calculations, display formats and other important step-by-step directions in
a single program. The flow diagram is shown in Figure 5.6.

94

Exercise 5.6. Calculating Volumes

Problem Statement:

L?

George has several boxes he intends to use for

storage. Write a program to calculate the volumes of
these boxes based on their inside measurements. we

Solution:

A. Define the equation. Calo
VOL VOL

V=L*W*D

where: Figure 5.6. Exercise 5.6.

V = volume ofbox in units of entered data

L,W,D = length, width and depth ofbox in corresponding units

B: Write the program.

Hint: The program will appear as:

<<"INPUT L, W, D" 800 .25 BEEP PROMPT > L W D L*W*D' 750 .5 BEEP 'VOL'
>TAG>>

(Note: Keying this program requires entering decimals and commas. In the step-by-step

instructions, these are designated as ", .," and ", ,," respectively.)

Step Press

1. LS, <<>RS," "eaa NPUTSPCLLS ,WLS D,c«aRCSPC,

800, SPC, .25, SPC, PRG, NXT, OUT, NXT, BEEP, PRG, NXT, IN, NXT, PROM,

RS, >, a, a,L, SPC,W, SPC,D, SPC, a,', a, a, L, *, W, * D, «,RC, SPC 750,

SPC,.5, SPC, PRG, NXT, OUT, NXT, BEEP, ', a, «, V, O, L, a, RC, PRG, TYPE,

>TAG, ENTER

2. a, a, V,0,L, a, STO

C. Run the program.

Use data in Table 5.8. to calculate volumes of different sized boxes.

95

Box No. Length Width Depth

1 20.9 18.3 cm. 15.0 cm.

2 0.9 ft. 1.3 ft. 1.11

3 11.91n. 14.3 in. 10.2 in.

Step Press
1. VAR, VOL, 20.9, ENTER, 18.3, ENTER, 15, LS, CONT (read: "VOL.

5737.05")

2. VOL, .9, ENTER, 1.3, ENTER, 1.1, LS, CONT (read: "VOL: 1.29")

3. VOL, 11.9, ENTER, 14.3, ENTER, 10.2, LS, CONT (read: "VOL: 1735.73")

When only two pieces of data (L and W in Exercise 5.5.) or three (L, W and D in

Exercise 5.6.) are used in a program,it probably doesn't make much difference that the data

request disappears from the view window when ENTER is pressed to enter the first number.
This wouldn't work as well if more data entries were required, because the sequence of
entering data could easily be forgot. Also, losing the display for a data request would be a
problem if data needed to be entered sequentially as the program ran to perform interim
calculations. Exercise 5.7. demonstrates techniques to modify the VOL program so that a
separate data request is made for each piece of information.

Exercise 5.7. Calculating Volume - The Next Step

Problem Statement: Edit the program VOL so that each request for data is made one at time.

Solution:

A. Define the equation. (same as in Exercise 5.6.)

B. Editing or writing the program

There are two choices. Either use LS EDIT to edit the program VOL, or use LS PURG to

erase the current program VOL from memory and write a new program. Whether edited or

rewritten, the new program will appearas:

<<"INPUT L" 800 .25 BEEP PROMPT "INPUT W" 800 .25 BEEP PROMPT "INPUT D"

800 .25 BEEP PROMPT—>L W D L*W*D' 750 .25 BEEP 750 .25 BEEP 'VOL'>-TAG>>

96

To write the new program:

Step Press

1. LS, <<>>RS," "PRG, NXT, IN, INPUT, «, L, RC, SPC, 800, SPC, .25, SPC,

PRG, NXT, OUT, NXT, BEEP, PRG, NXT, IN, NXT, PROM, RS, " ", PRG, NXT,

IN, INPUT, SPC, a, W, RC, SPC, 800, SPC, .25, SPC, PRG, NXT, OUT, NXT,

BEEP, PRG, NXT, IN, NXT, PROM, RS," ", PRG, NXT, IN, INPUT, SPC, «, D,

RC, SPC, 800, SPC, .25, SPC, PRG, NXT, OUT, NXT, BEEP, PRG, NXT, IN,

NXT, PROM, RS, >, a, «,L, SPC, W,SPC,D, «,RC,', a, a, L, *, W, * D, a,

RC, SPC, 750, SPC, .25, SPC, PRG, NXT, OUT, NXT, BEEP, SPC, 750, SPC, .25,

SPC, PRG, NXT, OUT, NXT, BEEP, SPC, ', a, «, V, O, L, a, RC, PRG, TYPE,

>TAG, ENTER

2. "a, a, V,0,L, @, STO

C. Run the program.

Use data in Table 5.8. to test the new program.

Step Press

1. VAR, VOL, 20.9, LS, CONT, 18.3, LS, CONT, 15, LS, CONT (read: "VOL:

5737.05")

2. VOL, 9,LS, CONT, 1.3,LS, CONT, 1.1, LS, CONT (read: "VOL: 1.29")

3. VOL, 119,LS, CONT, 143,LS, CONT, 10.2, LS, CONT (read:"VOL: 1735.73")

Exercise 5.1. presented a program that worked well enough, but it required more
keystrokes than necessary to enter data and it was not interactive at all. It provided no help
to the user about what data were required and when they needed to be entered. The program
described in Exercise 5.7., however, was much more interactive and easy to use. The user

was reminded about what inputs were required and was asked for them at appropriate times

in program flow. From a user's point ofview, the program is about as good asit needs to be.
One feature in the program in Exercise 5.7.is especially handy. Sounding a tone and

asking for each piece of data one at a time makesit easier for the user. No effort is required
to remember how many data need to be entered, what orderis required for them, or where
one is in the sequence ofproviding required information. This is not a difficult job for such
a simple calculation as determining the volume of a box. Imagine, though, how much more

confusing it would be and how much greater the chance for error were more data required

to be entered. Signaling each request for data one at a time makes sense in many
applications. The next exercise brings together several programming features introduced in

this chapter. It will use program instructions as well as equations stored as VAR options.

97

The program's value is that it introduces how a single calculation can be made by

executing instructions and using equations stored elsewhere than in the program itself. The

flow diagram for the next exercise is the same as for the last two (see Figure 5.6.). To keep
the slate clean, eliminate the existing program called VOL by pressing: ', VOL, LS, PURG,

then, LS, CLEAR.

Exercise 5.8. VOL - Final Version

Problem Statement:

Write a program to calculate the volume of a box that demonstrates how VAR options are
used as subroutines.

Solution:

A. Define the equation. (The equation is the same as in Exercise 5.6.)

B. Write the Program.

I. Construct the program to sound a tone (TON1) and to display a data request and contain
a PROMPT function.

The program will appear as: << 800 .25 BEEP PROMPT >>

oStep ress

1. LS, << >>800, SPC, .25, SPC, PRG, NXT, OUT, NXT, BEEP, PRG, NXT, IN,

NXT, PROM, ENTER

2. Ya,a, T,ON, 1, a, STO

II. Construct a program to sound a tone (TON2) to signal answer display.

The program will appear as: << 750 .25 BEEP >>

Step Press
1. LS, << >>750, SPC, .25, SPC, PRG, NXT, OUT, NXT, BEEP, ENTER
2. Ya,T,ON,2a STO

III. Construct lines to input data and list the equation (CALC).

The program will appear as: << >L W D L*W*D' >>

98

Step Press

1. LS, << >>RS, >, a,a,L, SPC,W,SPC,D, ¢,', a, a, L, *, W, * D, ENTER

2. Ya,a,C ALC, aSTO

IV. Construct main program (VOL). The program will appear as:

<<"INPUT L" TON1 "INPUT W" TON1 "INPUT D" TON1 CALC TON2 TON?2'VOL'

>TAG >>

Step Press

1. LS <<>>RS)" "PRG, NXT, IN, INPUT, «, L, RC, SPC, «, «, T, O, N, 1, SPC,

a, RS," ", INPUT, a, W,RC, SPC, a, a, T, O, N, 1, SPC, «, RS, " ", INPUT, «a,

D,RC,SPC, a, a, T,O,N, 1, SPC,C,A,L,C,SPC, T,O,N, 2, SPC, T, O, N, 2,

SPC, ,', a, a, V,O,L, a, RC, PRG, TYPE, >TAG, ENTER

2. "a,c, V,0,L, a, STO

C. Use data in Table 5.8. and the steps in Stage C of Exercise 5.7. to test the program. Begin by
pressing VAR, use NXT or LS, PREV to find VOL. Press VOL, then enter appropriate numbers

from Table 5.8. using LS, CONT.

Section 5.6. Finding Program Errors

Writing successful programs for the HP48G, or for any other computer, requires a
combination of knowledge about the machine, experience with its language structure,
planning, patience, persistence and much of the time, just plain luck. Sometimes even
seemingly simple programs cannot be written without errors, especially when one is first
starting to learn how to construct them, or trying to learn a new programming technique.
Although evenjust one error might be small, it can still sabotage accuracy and program flow.

Also, it can be easily overlooked in just rereading one's notes.
There are several tools available to the HP48G user to help with editing a program.

Once its title is listed as a VAR menu option in a directory or subdirectory, there are at least
two ways to review it. The simplest is to use the EDIT feature. To do this, press VAR, then

', then press the key under the view window which corresponds to the program's title to bring
it to line 1 of the view window. Next, press ENTER, then LS EDIT to see the first few lines

of the program. The cursor control keys allow seeing all program statements that can be

edited as required.
Another useful tool for debugging a program is to execute its lines one at a time with

the programming being stopped automatically after each step. Exercise 5.9. demonstrates

how to do this using the program "VOL" (Exercise 5.8.) as an example.

99

Exercise 5.9. Single-step Execution of a Program

Problem Statement: Examine and execute the program "VOL" one step at a time.

(Hint: Complete Steps in "B" ofExercise 5.8 to construct the "VOL" program if necessary.

Data for "Box No. 1" in Table 5.8. are used for debugging the program.)

Solution:

Step Press

1. VAR,’ VOL, PRG, NXT, RUN, DBUG
SST (read "INPUT L"as the first program line). SST (hear TON1), 20.9, SST, SST
(read "INPUT W"), SST (hear TON1), 18.3, SST, SST (read "INPUT D"), SST
(hear TON1), 15, SST, SST (read "CALC" and "5737.05), SST (hear TON2), SST
(hear TON2), SST (read 'VOL"), SST (read "VOL:5737.05), SST, SST

(Hint: When you are finished with the program, press: LS, { }, VOL, CALC, TON1, TON2,

ENTER, LS, PURG to erase all its VAR menus, then RS, CLEAR to clear the view

window.)

Step 1 in the solution for Exercise 5.9. first brings the program title to line 1 of the

view window. Pressing PRG, NXT, RUN provides access to functions for executing a
program step-by-step. Pressing DBUG begins the review process for the program "VOL".

Exercise 5.9. shows that each press of SST activates each program line one at a time.
Using SST steps through the program giving useful insight into what's going right and what

might be going wrong. Were the program under review to contain subroutines, pressing
SST (rather than SST) would branch the program review process to activate each of its lines
in sequence, just as for the listing of the main part of the program. Pressing just SST in a

program with subroutines displays the subroutine title, but does not direct the review process

through it. Just a little practice with the options in the DBUG menu soon shows how
valuable they are in finding program errors.

This chapter was intended to get you started programming the HP48G. It introduced
concepts for constructing flow diagrams, showed how to encode program instructions within

"<< >>" and demonstrated basic procedures for entering data, making calculations with them

and presenting different forms of output. It also demonstrated how to debug a program.

These are important basic skills upon which you can build a variety of programs to solve

equations in your own area of interest. You are able to do that now. The next chapter
introduces additional techniques for program construction.

100

Chapter 6

Programming Strategies

The HP48G is a versatile as well as a powerful machine. As you become more

familiar with its basic operations, you'll see how it allows many of the same tasks to be
performed in different ways. The advantage, of course,is that you're not locked into just one
"correct way" of doing things as you are with other simpler and more limited calculators and
handheld computers. The styles for the exercises presented in this book, for example, show
one way, but by no means the only way, to make each calculation. What's the best way for
you depends on your skills in using the HP48G and on your preferences. The first two
sectionsin this chapter introduce a few ofthe many alternatives for program construction and
data entry. You'll see others as you progress through the chapter.

Section 6.1. Programming with RPN

All exercises presented so far used a standard algebraic statement in the body of the
program. You saw this expression in each exercise just after the hint that, "The program will

appear as:". For example, Exercise 5.3. showed how to calculate a percent score for a
student based on the evaluation of an earned "raw score" for an exam, bonus points for it and
on how much weight each exam had been assigned by the instructor. Exercise 5.3. shows
the equation as:

25(4+5) | 20(B+3) , 55(C+1)
30 40 60

CS =

Program structure with an algebraic statement of the equation lists the program as:

<<>A B C '25%(A+5)/30+20*(B+3)/40+55%(C+1)/60>>

The program could have used a sequence ofRPN instructions just as well as it did the
algebraic statement to make the calculation. Exercise 6.1. shows how RPN is used to

calculate the percent course score that was solved with an algebraic expression in Exercise

5.3.

101

Exercise 6.1. Programming with RPN

Problem Statement: Write a program using RPN to solve the following equation (symbol

definitions are stated in Exercise 5.3.):

25(4+5) , 20(B+3) , 55(C+1)
30 40 60

CS =

A. Write the program.

The program will appear as:

<<>ABC<<A5+25*30/B3+20*40/+C1+55*60/+>>>>

Step Press

1. LS, <<>>RS, *, a, a, A, SPC, B, SPC, C, SPC, LS, <<>>A, SPC, §, SPC, +,

SPC, 25, SPC, *, SPC, 30, SPC, +, SPC, B, SPC, 3, SPC, +, SPC, 20, SPC, *, SPC,

40, SPC, +, SPC, +, SPC, C, SPC, 1, SPC, +, SPC, 55, SPC, *, SPC, 60, SPC, +,

SPC, +, ENTER

2. “a,CCR P,N, a, STO

(Hint: The program is now stored under VAR menu CRPN, indicating "course score in
RPN")

B: Run the program.

Use data in Table 5.4. to test the program.

Press

20, ENTER, 18, ENTER, 40, CRPN (read: "68.92")

23, ENTER, 22, ENTER, 50, CRPN (read: "82.58")

18, ENTER, 17, ENTER, 43, CRPN (read: "69.50")

25, ENTER, 27, ENTER, 59, CRPN (read: "95.00")

19, ENTER, 25, ENTER, 57, CRPN (read: "87.17")

g
n
h
L
N
=

There is no difference, of course, between answers when the course score is

calculated by a program with an algebraic statement (Exercise 5.4.) or by one which uses
RPN (Exercise 6.1.). The difference is only programming style.

An important common feature for the programs in Exercises 5.4. and 6.1.is that data
are first entered from lines 1 to 3 in the view window and defined as variables A, B and C,

102

respectively. The algebraic expression in Exercise 5.4. is included between apostrophes and
the entire program is stated between the symbols <<>>, as are all other programs for the
HP48G whether they use either algebraic or RPN logic.

The program in Exercise 6.1. includes its sequential instructions for an RPN solution

between the symbols << >> which themselves are between the program's symbols << >>,
The steps are easy to follow if one remembers how data are manipulated by RPN one at a
time in pairs. For example, the program reads, "Take the value for A, then add $5 to it,

multiply the sum by 25, divide the product by 30, take the value for B, add 3 to it, multiply

by 20, divide by 40, ..." etc. The answerfinally appears at line 1 in the view windowjust
the same as it does for Exercise 5.4.

It's important in keying the program steps for Exercise 6.1. to separate each RPN

symbol by a space. For example, the statement "A 5 +" is not the same as "AS +" or "A5+".
Spaces between symbols and statements are not as important when programs are written in

algebraic form, as shown in the first program listed in this chapter. Thatis not to say they
are unimportant, it's just that they are not as important as when RPN is used. For example,
the first program in this chapter shows that spaces between the symbols "A", "B" and "C"
are important for defining these inputs.

Although there are only two ways in which to construct the logic for mathematical

operations in programs for the HP48G (algebraic or RPN statements), there are several

different ways to enter data for calculations. A couple ofthem are shown in the next section.

Section 6.2. Other Ways to Enter Data

 How data are entered for a program is not always

just a matter of style. Numbers often have to be entered in
a specific sequence, as seen in some of the programs in the
last chapter. You've also seen how different program

constructions control for data to be entered appropriately
at each stage. There are other controls you can employ.
For example, sometimes it's preferable to have the
machine's STACK operations disabled during the phase of

fo
r
E
x
e
r
c
i
s
e
6.

3.

data entry. Exercise 6.2. gives an example. The flow Re

diagram is in Figure 6.1. and definitions for the exercise
are shown in Figure 6.2. Figure 6.1. also shows how <D

program flow is modified in Exercise 6.3.
As for other programs shown as exercises in this (enn)

book, the calculation is purposely kept simple so that for Exercise 6.2.
 programming strategies are more easily seen. Once a few

programming skills are in hand, it's always easy to expand
computational complexity.

Figure 6.1. Exercise 6.2 and 6.3

103

Exercise 6.2. Data Entry with ENTER and INPUT

Problem Statement:

Write a program using the INPUT
command which calculates the circumference of

an ellipse.

A. Define the equation.

A2+B?

\ 2

Figure 6.2. Ellipse Definitions
where:

C = circumference ofan ellipse
A = radius of short axis

B = radius of long axis

B. Write the program.

The program will appear as:

<< CLEAR TN "ENTER A" ":A:" INPUT OBJ> TN "ENTER B"":B:" INPUT OBJ> >A
B'2* x *v ((SQ (A) + SQ (B)) / 2)>NUM TN TN 'CIRC' ~TAG>>

Step Press

1. LS, <<>>LS, CLEAR, a, «, T,N, SPC, a, RS," ", a, «, E, N, T, E, R, SPC, A,

a, RC, SPC, RS," "RS, ::, a, A, RC, RC, PRG, NXT, IN, INPUT, PRG, TYPE,

OBJ», a, a, T,N, a, SPC,RS,"" «a, a, EN, T, E, R, SPC, B, «, RC, SPC, RS,

""' RS, a,B,RC, RC, SPC, PRG, NXT, IN, INPUT, PRG, TYPE, OBJ», RS,

>a,0a,A SPC,B,SPC, a,',2, *LS, nt, *vx, LS, (), LS, (), LS, X?, a, A, RC,

+LS, X? a, B,RC,RC, +, 2, RC, SPC, RC, LS, >NUM,«, «, T, N, SPC, T, N,

SPC, o,', a, a, C,IL R, C, a, RC, PRG, TYPE, >TAG, ENTER

2. “a,a, ELL, a, STO

3. LS, <<>>500, SPC, .1, SPC, PRG, NXT, OUT, NXT, BEEP, ENTER

4 “a,a, T,N, a, STO

The program written at Step 3 and stored at Step 4 will appear as: << 500 .1 BEEP >>

C. Run the program

Use data in Table 6.1. to calculate the circumferences for 3 ellipses.

104

Ellipse Number

Radius 1 2 3

A 3.28 1n. 0.34 cm. 0.5 miles

B 7.19 in. 1.01 cm. 1.39 miles

Step Press

1. VAR, ELL, 3.28, ENTER, 7.19, ENTER(read: "CIRC:35.11")
2. ELL, .34, ENTER, 1.01, ENTER(read: "CIRC:4.73")
3. ELL,.5, ENTER, 1.39, ENTER, (read: "CIRC:6.56")

Exercise 6.2. introduces several new features. The view window is cleared
automatically for each calculation (by CLEAR). Also, a data request has an explanatory
statement for it at the top of the view window and a constructed request at line 1, and data

are entered by pressing ENTER after each new number is keyed. The command "INPUT"

overrides any use of the STACKfor other calculations and holds the view window display
for controlled data entry only. Whatever number is entered, the command "OBJ>" converts

it to a usable number and ">A B" defines the STACK contents for use in the equation. The

statement "->NUM" operates as described earlier to provide a numerical evaluation for the
calculation including the symbol "rn".

The program works well to make the simple calculation for the circumference of an
ellipse. Having to press "ELL" each time to start the program, however, would be
cumbersome if many calculations are to be made in a series. Exercise 6.3. shows how to

modify the ELL program for such an operation. It is constructed so that the ELL program
1s automatically reactivated after each calculation.

Exercise 6.3. Automatic Program Execution

Problem Statement: Amend the program in Exercise 6.2. so that the answer for each calculation

is displayed for a period of 5 seconds, then the program is automatically started again for the next

calculation.

A. Amend the program.

The new program will appearas:

<< CLEAR TN "ENTER A" ":A:" INPUT OBJ» TN "ENTER B" ":B:" INPUT OBJ> >
AB'2* 1 *V((SQ (A) + SQ (B)) / 2)>NUM TN TN 'CIRC' >TAG 3 DISP 5 WAIT
ELL >>

105

Step Press

1. ELL, ENTER, LS, EDIT

2. (move the cursorto be between ">TAG" and ">>" at the end ofthe program),SPC,

3, PRG, NXT, OUT, DISP, 5, PRG, NXT, IN WAIT, «, «, E, L, L, ENTER

B. Use data in Table 6.1. to test the program.

Step Press

1. ELL, 3.28 ENTER, 7.19, ENTER(read: "CIRC:35.11"), .34, ENTER, 1.01, ENTER

(read: "CIRC:4.73"), .5, ENTER, 1.39, ENTER (read: "CIRC:6.56")

(Hint: To suspend program operation, press CANCEL twice.)

The amended program instruction "3 DISP" in Exercise 6.3. directs the computer to
display the calculated answer at line 3 in the view window. The instruction "5 WAIT"
controls program operation to stop for 5 seconds, after which the next program instruction

"ELL" directs the program to start over again. Displaying the answer at some other line

would be accomplished, of course, by using some appropriate number other than 3 before

"DISP". Similarly, holding the answer display for some other length of time would be

achieved by using some appropriate number other than 5 before "WAIT".
There are other ways to modify program operation. For example, the program could

be amended by the steps: PRG, NXT, RUN, HALT to read:

<< CLEAR TN "ENTER A" ":A:" INPUT OBJ> TN "ENTER B" ":B:" INPUT
OBJ> > AB'2* rn *v ((SQ (A) + SQ (B)) / 2) NUM TN TN 'CIRC' ~TAG
HALT ELL>>

This new program would calculate the circumference of an ellipse and display the
answer at line 1, just the same as in Exercise 6.2. Pressing: LS, CONT would start the

program over again without having to press ELL. In contrast to the operation of the program
in Exercise 6.2., the keyboard and view window would be free for other calculations in the
meantime. When these other operations are complete, pressing LS, CONT starts another

calculation. The ELL program waits patiently in the wings while you use the computer for

other tasks.
Being able to program the same task in different ways is an important, powerful and

attractive feature ofthe HP48G. It opens many doors for alternative approaches to problems
and it gives the user a variety of tools and options for program design. Having so many
choices, though, may be itself a little challenging to the beginner, leading to confusion,
feeling overwhelmed and being discouraged trying to find the "right way" to do things.

There is an easy way out of any such discomfort. Be courageous in trying different

106

programming techniques - there is nothing to be lost. The computer's internal logic will
check your programs for syntax and programming errors. Not being intimidated by the
machine's BEEP when you try to store a set of instructions in which there is one or more
errors can be a first step to learning something new. Any program structure you are
comfortable with that yields accurate results and doesn't take too much memory or time to
run can be justifiably defended as a "good program". The fact that someone else solves the

same problem(s) in another way makes their program different, but not necessarily better.
Exercise 6.4. demonstrates several different but equally good ways to solve the same simple
problem.

Exercise 6.4. Programming Options

The purpose ofthis exercise is to show there are several, equally good ways to solve an

equation using the HP48G. After each of the solutions has been constructed, key a number, then

press A, B, C, D, or E to activate each type of solution.

Problem Statement: Write a program to solve: X=2(Y+8)

Solution No. 1: The program will appear as: <<>Y <<Y 8 +2 *>>

Step Press

1. LS, <<>>RS, >, a,Y,LS, <<>>«,Y, SPC,8, +, 2, *, ENTER
2. 'a,A STO

Solution No. 2: The program will appear as: <<>Y 2 * (Y+8)>>

Step Press

1. LS, <<>> RS, >, a, Y, SPC," 2, *LS, (), «, Y, +, 8 ENTER

2. "a, B, STO

Solution No. 3: The program will appear as: <<DUP 8 + 2 *>>

Step Press
1. LS, <<>>LS, STACK, NXT, DUP,8, +, 2, *, ENTER
2. a CSTO

Solution No. 4: The program will appear as: <<'Y' STO Y 8 +2 *>>

Step Press
1. LS,<<>>"' a,Y,RC, STO, a, Y, SPC, 8, +, 2, *, ENTER

2. "a, D, STO

107

Solution No. 5: The program will appear as: <<'Y' STO Z >-NUM>>

Step Press
1. LS,<<>>'a,Y, RC, STO, a, Z, LS, >»NUM, ENTER

2. "a, E, STO
3. LS, <<>> a,Y, SPC, 8, +, 2, *, ENTER

4, "a, Z, STO

The program keyed at Step 3 will appear as: <<Y 8 +2 *>>

The next section shows how to apply many ofthe elementary programming skills you

now have to the construction ofmore sophisticated problem solving. It introduces techniques
for using decision making, branching, testing and constructing loops within a program.

Section 6.3. Decision Structures

A unique and one of the more important features of the handheld computers that

distinguishesit from a calculatoris not only that it can be programmed to solve equations,
but these programs can also be written to make decisions at one place or another in their

flow. Program operation and the pattern of its flow can be made to depend intimately on
how decision statements are constructed and where they appear in the program.

This section introduces the two basic decision statements "IF/THEN/END" and
"IF/THEN/ELSE/END". The logic of these statements is simple. The computer is
instructed: IF (some condition exists), THEN (perform this operation); and IF (some

condition exists), THEN (perform this operation), ELSE (do something else). Although this

structure is easily used to control symbolic and mathematical operations in a program, the
syntax may get a little convoluted and hard to follow in the program itself. The basic idea,
though, is no more complicated than the one a driver makes, for example, in the thought
process: IF (the gas gauge reads near empty), THEN (stop at the next gas station), ELSE
(drive on by). How a program uses this basic logic structure is demonstrated in Exercises
6.5. and 6.6.

Exercise 6.5. Controlled Choices

Problem Statement:

Calculating a student's score for a course ("SC"; Exercise 5.4.) is usually notthe last step in
academic evaluation. A letter grade, typically on a scale of "A to F", is commonly used to report each
student's status at the end of the term. Write a program which automatically assigns such a letter
grade using the criteria listed in Table 6.2. The flow diagram is shown in Figure 6.3.

108

<51

Solution: A. Write the Program

The program will appearas: Figure 6.3. Exercise 6.5.

<< »>X <<CLEAR IF 'X<50' THEN "F" P END IF 'X<69' THEN "D" P END IF 'X<73'

THEN "C" P END IF 'X<87' THEN "B" P END "A" P>> >>

Step Press

1. LS, << >>RS, >, a, XLS, << >>LS, CLEAR, PRG, BRCH, IF, IF, | a, X|

PRG, TEST, x, 50, RC, PRG, BRCH, IF, THEN, RS," ", «, F, RC, SPC, «, P,

END, IF, ', a, X, PRG, TEST, <, 69, RC, PRG, BRCH, IF, THEN, RS," " a, D,

RC, SPC, a, P, END, IF, ', a, X, PRG, TEST, <, 73, RC, PRG, BRCH, IF, THEN,

RS," ", a, C,RC, SPC, a, P, END, IF, ', a, X, PRG, TEST, x, 87, RC, PRG,

BRCH, IF, THEN, RS," " a, B,RC, SPC, a, PL, END, RS, " ", a, A, RC, SPC, «,

P, ENTER

2. a, a, GR, a, STO

3. LS,<<>>RS,"" a, a, G,R A DE, SPCI S, «, RC, PRG, TYPE, >TAG,

PRG, NXT, RUN, HALT, «a, a, G, R, ENTER

4. "a, P, STO

The program keyed at Step 3 will appearas:

<<"GRADE IS" ~TAG HALT GR>>

109

B. Use data in Table 6.3. to test the program.

Student Course Step Press
Eisen 68.2 I. 68.2, GR (read: "GRADE IS D")

2. 75.4, GR (read: "GRADE IS B")
75.4H. Volta > 3. 63.1,GR (read: "GRADE IS D")

B. Lagosi 63.1 4. 71, GR (read: "GRADE IS C")

J. Hoffa 71.0 5. 89.3, GR (read: "GRADE IS A")

S. Goldwin 89.3

The "IF/THEN/END" structure for the program in Exercise 6.5. sets the language not
only for the decision to be made, but also forits limits of operation within the program. If
the condition of the test ("IF X<NN.N") is tested to be true, then program flow continues
with the instructions immediately following the "THEN" statement. If the condition of the

test is not met, then program flow continues with the first instruction immediately past the

next "END" statement. Simple enough.
For example, when the student's percent "Score for the Course"is keyed, the program

defines the score as "X" and the first test is to ask "is X<50". If the test is true, then the

alpha symbol "F" is constructed and the next instruction (P) directs program flow to use the

phrase "GRADE IS". Program flow is then halted to await the next score to be presented for
test. If any test is not true, flow skips to the next program instruction immediately after the

next "END" to try the next test. The program is, of course, searching for an appropriate

statement to display depending on the level of the student's score. If all tests are false for an
entered score, then the good news "GRADE IS A" is displayed as the only possible last
option in the logic series.

There are many applications for the "IF/THEN/END" simple structure. It can be used
to set or clear a FLAG (as described in the next chapter), to define or redefine some variable,
to control program flow (as it did in the last exercise) and to perform many other useful

services. Some of the sample programs described in Chapter 8 show how nested versions
of the "IF/THEN/ELSE" structure gives additional power in controlling program flow.

Logic in a program may be a little more complicated than performing an action if only

one condition exists, as in the "[F/THEN/END" construction. There might be another option
on which to act. The "[F/THEN/ELSE/END"logic structure gives this additional choice, as

demonstrated in Exercise 6.6. The flow diagram is in Figure 6.4.

110

Exercise 6.6. Addition with Conditional Branching

Problem Statement. Design a program that requests a Gm

series of numbers of indefinite length, then displays their re

sum when the last number has been entered.

Solution.

A. Define the equation. N STO+

TOTAL =N1+N2..Nn <> 2

B. Write the Program Crome)

Where:

TOTAL = sum ofentered numbers Figure 6.4. Exercise 6.6.
N,,, = entered numbers

Step Press

1. LS, <<>>0(zero), SPC, ', a, S, RC, STO, «, o, R, E, Q, ENTER
2. Ya,a, T,O T, AL a STO

Program keyed at Step 1 will appear as: <<0 'S' STO REQ>>

3. LS, <<>>LS, CLEAR, a, &, T,N, SPC, «,RS,"", a, «a, EEN, T, E, R, SPC, N,
a, RC, SPC, RS, "", RS, :;, a, N, RC, RC, PRG, NXT, IN, INPUT, PRG, TYPE,
OBJ», SPC, ', a, N, RC, SPC, STO, «, a, T, S, T, ENTER

4. “a, a, RE, Q, a, STO

Program keyed at Step 3 will appear as:

<<CLEAR TN "ENTER N" ":N:" INPUT OBJ> N' STO TST>>

5. LS, <<>>PRG, BRCH, IF, IF, a, N, SPC, 0 (zero), SPC, PRG, TEST, ==, PRG,
BRCH,IF, THEN, «a, A, ELSE, «, B, END, ENTER

6. Ya,a, T,S, T, a, STO

111

Program keyed at Step 5 willappear as: <<IF N 0 == THEN A ELSE B END>>

7. LS, <<>>LS, CLEAR, PRG, NXT, OUT, CLLCD, «, a, T, N, SPC, T, N, SPC,
S,a, SPC," a, a, T,O, T, A L, a, RC, PRG, TYPE, >TAG, 3, PRG, NXT, OUT,
DISP, 2, PRG, NXT, IN, WAIT, «, «, T, O, T, A, L, ENTER

8. aA STO

Program keyed at Step 7 will appear as:

<<CLEAR CLLCD TN TN S 'TOTAL' TAG 3 DISP 2 WAIT TOTAL>>

9. LS, <<>> «a, N, SPC, ', a, S, RC, LS, MEMORY, ARITH, STO+, a, «,R, E, Q,

ENTER

10. ', «,B, STO

Program keyed at Step 9 will appear as: <<N'S' STO+ REQ>>

11. LS, <<>>800, SPC, .3, PRG, NXT, OUT, NXT, BEEP, ENTER

12. a,a,T,N, a, STO

Program keyed at Step 11 will appear as: <<800 .3 BEEP>>

D. Run the program.

The following example calculates the sum of the numbers: 3.9, 8.7, 4.0, -10.2, 3.9, -2.1 and

7.9.

Step Press

1. VAR, TOTAL, 3.9, ENTER, 8.7, ENTER, 4, ENTER, 10.2, +/-, ENTER, 3.9,

ENTER, 2.1, +/-, ENTER, 7.9, ENTER, 0, ENTER (read: "TOTAL:16.10")

(Hint: Pressing CANCEL twice exits the program.)

The flow diagram for Exercise 6.6. shows how each associated program is addressed

sequentially for decision making, branching, display control and other operations. First a
VARmenu entitled "S" is constructed and a zero is stored in it. The next instruction directs

program flow to "REQ" where a data request is constructed. Whatever number is entered

is stored in "N". Program flow then is directed to "TST" where a decision is made based on
the test ofN. Ifthe entered number is not equal to zero, the program activates "B" where N

112

is stored additively in "S". The next numberin the series is requested by once again using
the instructions in "REQ". When an entered number is zero, instructions in "A" control

displaying "S" which is the sum ofall numbers entered so far. The program then pauses for
2 seconds and begins again with the activation of "TOTAL". The firststep is to "clear" "S"

by storing a zero to make ready for the next calculation. Pressing CANCEL twice returns
the computerto its original display and the TOTAL program is deactivated.

There are a couple of instructions in this program that require clarification. The

instructions constructed at Step 5 of "PRG, BRCH, IF, IF" begins the
"IF/THEN/ELSE/END" logic required for program flow. The instruction "CLLCD"at Step
7 blanks the screen display so that the calculated answer can be read more easily. The

instruction "STO+" at Step 9 demonstrates how VAR menus can be used for programmed
arithmetic operations, not just for the storage of constants.

Although any number or other symbols could be used to terminate data entry, zero is

used for this function in Exercise 6.6. The reason, of course, is that any number might be
a legitimate data entry in a program designed to be able to add both positive as well as

negative numbers of any magnitude. Zero would never be used in this way, so it provides
a convenient basis for testing when the data entry phase is over.

The most likely point for confusion in the TOTAL program is the use of the symbol

"==" n the test "IF N 0 ==" at Step 5. The HP48G (and many other computers too) makes

an important distinction between the symbols "=" and "==". The symbol "=" designates a

statement of fact. For example, "A=B"is read as, "A is equal to B". The symbol "==" 1s

used in tests that ask a question. For example, "A B = =" asks, "is A equal to B?". This

distinction takes a little getting used to for the beginner, but it is an important one.

Both the IF/THEN/END and the IF/THEN/ELSE/END constructions can be used to
test more than just the simple statements like "is X less than N?", "is X equal to zero?", "is

X greater than Y?", and the like. They can be used to test FLAG status, as described in the

next chapter, and to test several different combinations of conditions at once. For example,
program branching can be directed on the basis of not only if one, but if two conditions are
met, if either one or both conditions are met, if one but not the other condition is met, and

ifneither of two conditions is met. These more complicated conditional tests are structured

using the instructions ("AND", "OR", "XOR" and "NOT") listed in "page" 2 of the menu

accessed by PRG, TEST. Exercise 6.7. gives a demonstration. The flow diagram for the
exercise is in Figure 6.5.

Exercise 6.7. Tests with Double Conditionals

Problem Statement: Harvey Pascal needs a program to determine if the oil pressure and

temperature in a system he is monitoring are within safe limits. Oil pressure must be between 50 and

150 PSI and temperature must be no less than 100°F and no more than 250°F. Write a program that

displays appropriate messages about these parameters based on the evaluation of entered data.

113

 CONTINUE

OPERATION

FIX

PROBLEM

Figure 6.5. Exercise 6.7.

Solution

A. Write the Program.

(Hint: the symbol " «< " indicates "next line". It is keyed byfirst pressing RS then the decimal
key.)

The program will appear as:

<< CLEAR TN 0'T' STO 0 'P' STO "ENTER PRESS AND TEMP" {":PRESS(PSI): (~)
:TEMP(F):" { 1 0 } V } INPUT OBJ> 'T' STO 'P' STO IF 'P>50' 'P<150' AND THEN
CLLCD TN "PRESS OK" 1 'P' STO W ELSE CLLCD TN "CHECK PRESS" W END IF
'T<100' 'T>250' OR THEN TN "CHECK TEMP" W ELSE "TEMP OK" 1 'T' STO W END
IF 'P==1' T= =1' AND THEN "CONTINUE OPERATION" W ELSE "FIX PROBLEM"
WEND >>

SLI

£0¢001

L861

§9¢0¢

SLT£8

oll081

‘weidoiday3159103“§°99]qeLulBIRP9S)‘Hl

N
n

|
nn]

©

0S1SLI

(1385p)dwa](ISJ)2mssaig"ON189]

<<ddddT0001>>seJeadde
mm¢dois1epakoyweidoidayj

 OLS‘0‘N‘L‘v‘0‘,‘9

MAINA‘d939‘IXN‘LNO‘IXN‘Odd‘T°‘OdS‘0001‘<<>>‘ST°S

<<NLdOTIO1IVM1dS1d¢>>

seJeadde[im¢doigjepakeyweiSoiday

OIS‘’M™®"¥
AINA‘N‘LI“©‘©‘@DT710‘LNO

‘IXN‘NOUd‘LIVM‘NI‘IXN‘DO¥d‘1‘dSIA‘1N0‘IXN‘D¥d‘€‘<<>>‘ST°¢
OLS‘PdLyd?@‘CT

MAING‘ANd‘MPDIPNTTAOTdDdSXTAPD5,,‘SYdSTd
‘MPDASDIPNOTLVAIAAODISTNNTLNOD™
“ou‘SYNHL‘AI‘HOY‘D¥d‘ANV‘IXNOdSDd‘1==‘L204‘l==
‘LSHL‘O¥Ud‘d©,‘AI‘ANAAI‘HOYd“Odd‘M‘©‘OLSDY‘L©,“©DdS
TDdSOd‘©M0DdS‘'dINA‘L©“©,,‘SY‘ASTAI‘HOYd‘Ddd‘»
‘MOdSwuSTANTLDOASAODOAHDWwSEDdSNL@“©‘NIHL
‘AI‘HOY‘D¥dMO‘ILXN‘LSAL‘Odd‘2dSDY‘0ST‘<‘1“©,0dS‘DY‘001
>‘LSAL‘Odd‘L‘©AI‘aNd‘AI‘HOU‘Odd‘M©»Dd2,,‘S4'S‘'Sd™
‘dOdSADAHDwu‘STDdSNL@©‘TIO‘LNO‘IXN‘DId‘ASTH
‘AI‘HOE‘Odd‘M‘©‘OLSOd‘d@‘©DdS‘TOdS‘uu‘SANA0DdS‘S
SAMwnSEDdS‘NL@D@‘@OTID‘LNO‘IXN‘Odd‘NAHLdl‘HOdd
‘DYd‘NV‘IXNOdSOY‘0ST>d“©‘OdSO¥0S‘<‘ISAL‘Dd‘d
“0JI‘AI‘HO¥I‘Odd‘OLSD9‘d‘©‘OLSO49‘L©,0dS‘<«[90‘ddAL
‘DYd‘LNdANI‘NI‘IXN‘Odd‘Od‘A“©09(0192)00dS‘1{}‘ST‘DdSOY
DIDIDPT()STANWHALDDST~SADADAPTS‘d()‘ST
CCAMdPPS.‘SAA}STDSDd©dWFLDdS‘dNV
DAS‘SSHYUADOASAALNA©®@",,‘SIOLSOF‘d‘©‘Dds(0192)
0‘OLSO¥‘L‘@,“0dS‘(0192)0‘©DdS‘N‘L‘©“©YVATID‘ST‘<<>>‘STI

ssa1ddais

Step Press

1. VAR, PRTP, 75, DC, 150, ENTER(read: ""PRESS OK"/"TEMP OK"/CONTINUE

OPERATION")
2. PRTP, 180, DC, 110, ENTER (read: "CHECK PRESS"/'TEMP OK"/"FIX

PROBLEM")
3. PRTP, 83, DC, 275, ENTER (read: "PRESS OK'"/'CHECK TEMP"/"FIX

PROBLEM")
4. PRTP, 30, DC, 265, ENTER (read: "CHECK PRESS"/"CHECK TEMP"/"FIX

PROBLEM")
5. PRTP, 100, DC, 203, ENTER (read: "PRESS OK"/"TEMPOK"/"CONTINUE

OPERATION")

There are two main purposes for presenting Exercise 6.7. One is to demonstrate how

two different conditions are tested together with the [F/THEN/ELSE/END construction. The
other is to show yet another style for data entry. From the beginning of the program, VAR
menus "T" and "P" are created and have zeros stored in them, then data for pressure and

temperature are requested. An advantage of this data entry style is that both pieces of

information remain displayed until ENTERis pressed. Only a slight modification of the

display instructions in the program accommodates more than two data entries.
Thefirst decision the program makes is to test entered data for pressure to determine

if they are within the stipulated operating limits of 50 to 150 PSI. The construction " 'P>50'

'P<150' AND" allows the program to display "PRESS OK" only if both tests are true. The
general test is: (condition 1) (condition 2) AND. Otherwise, the phrase following ELSE is

activated. Limits for entered temperature data are tested in an analogous way, but one which
allows the phrase following THEN to be displayed only if one of the two tests is true. The

general construction "(condition 1) (condition 2) OR" controls flow in this part of the

program.
The program has a third conditionaltest to make. The number "1" is stored in either

"P" or "T" if "CHECK ..." is the correct option to be displayed earlier in the program. The

phrase "CONTINUE OPERATION"is selected only if both "P" and "T" contain the number
"1". If neither does, or if only one of them does, then the phrase "FIX PROBLEM" is

selected. This makes sense in the context of the problem because "CONTINUE
OPERATION" is reasonable only if both pressure and temperature are tested to be within

operating limits of the system that Harvey is monitoring. Also, he will have to "FIX
PROBLEM" ifthere is a discrepancy in either the pressure or the temperature controls.

Testing the status of a VAR menu by seeing what number is stored there was a convenience

for deciding which phrase to display at the end of the program in Exercise 6.6. A similar and
more powerful test, but one which is much simpler and easier to use,is available by using
FLAGS. Their operation is described in the next chapter.

Certainly, flexibility and power are salient features of the HP48G. The more you

116

discoverofits characteristics, the more options you will have for making it do precisely and
quickly what you want. The conditionaltests of one
kind or another reviewed so far allow you to control

one or more operations depending on a single

condition (Exercise 6.4.), 2 conditions (Exercise 6.5.)

and on a variety of relationships between 2
conditions (Exercise 6.6.)

There is one more kind of conditional

statement for which you are sure to find many

applications. It is one in which a series of cases 1s
tested within the logic structure of a single nested
set of conditions. The logic involves the sequence:
CASE/THEN/END/END. As for so many of the
HP48G's features, a simple demonstration is

valuable. Exercise 6.8. introduces a technique for
sequentially testing a series of conditional statements

of your own choice within a single command

sequence. The flow diagram for the example is

shown in Figure 6.6.

Figure 6.6. Exercise 6.8.

Exercise 6.8. Tests with Many Conditions

Problem Statement: Write a program using a "CASE/THEN/END/END" construction that allows

the user to select a particular equation to be solved, then asks for data. The selected equations will
either add, divide, subtract or multiply the entered data.

Solution:

A. Write the programs

Step Press

1. LS,<<>>LS, CLEAR RS,"" a, a, E, Q,LS, DROP, LS, (),1, -4, a, RC, RC,
PRG, NXT, IN, NXT, PROM, RS, >, «, Z, LS, << >>, PRG, BRCH, CASE,
CASE, «, Z, SPC, 1, PRG, TEST, NXT, SAME, PRG, BRCH, CASE, THEN,«,
A END, «, Z, SPC, 2, PRG, TEST, NXT, SAME, PRG, BRCH, CASE, THEN,«,
B, END, «, Z, SPC, 3, PRG, TEST, NXT, SAME, PRG, BRCH, CASE, THEN,«,
C, END, a, Z, SPC, 4, PRG, TEST, NXT, SAME, PRG, BRCH, CASE, THEN, «,
D, END, END, PRG, NXT, OUT, CLLCD, 4, DISP, 2, PRG, NXT, IN, WAIT,«,
a, S, E, L, ENTER

2. "a,c, SEL, a, STO

117

The program keyed at Step 1 will appear as:

<<CLEAR "EQ?(1-4)" PROMPT -~ Z << CASE Z 1 SAME THEN A END Z 2 SAME
THEN B END Z 3 SAME THEN C END Z 4 SAME THEN D END END CLLCD 4 DISP
2 WAIT SEL >> >>

3. LS,<<>>RS, "" a, a, X,LS, DROP, a, RC, PRG, NXT, IN, NXT, PROM, |, «,
X, RC, STO, RS," ", a, a, Y, LS, DROP, a, RC, PROM, | a, Y, RC, STO,
ENTER

4. '«a,V,STO

The program keyed at Step 3 will appearas:

<< "X?" PROMPT 'X' STO "Y?" PROMPT 'Y' STO>>

5. LS,<<>> LS, CLEAR, «, V,SPC,", a, «, X, +, Y, a, RC, LS, >NUM, ENTER

6. a, A STO

The program keyed at Step 5 will appear as: <<CLEAR V 'X+Y'>-NUM>>

7. LS,<<>>LSCLEAR, «,V, SPC," a, a, X, +, Y, a, RC, LS, >NUM, ENTER

8. '«a,B,STO

The program keyed at Step 7 will appear as: <<CLEAR V 'X/Y' >NUM>>

9. LS§,<<>>LS, CLEAR, «, V, SPC," a, a, X, -, Y, a, RC, LS, >NUM, ENTER

10. ' a,C, STO

The program keyed at Step 9 will appear as: <<CLEAR V 'X-Y'>NUM>>

11. LS, <<>> LS, CLEAR, «, V,SPC,", a, «, X, *, Y, «, RC, LS, >NUM, ENTER

12. "| a,D, STO

The program keyed at Step 11 will appear as: <<CLEAR 'X*Y'>-NUM>>

B. Use the programs to solve for X when X=19 and Y=2.56.

Step Press

1. VAR, SEL, 1, LS, CONT, 19, LS, CONT, 2.56, LS, CONT(read: "21.56")

2. 2,LS, CONT, 19, LS, CONT, 2.56, LS, CONT (read: "7.42")

3. 3,LS, CONT, 19,LS, CONT, 2.56, LS, CONT (read: "16.44")

4. 4,LS, CONT, 19,LS, CONT, 2.56, LS, CONT (read: "48.64")

118

There is nothing at all fancy about how data are requested or entered in the program

in Exercise 6.8. All techniques have been demonstrated in earlier exercises. What is new
is the structure and function of the conditional phrases. The construction "CASE ... END"

surrounds a series of conditional tests each of which selects an appropriate equation based
on the number entered at the beginning of the program.

Analogous to the "IF/THEN/END" statement, at whatever level in the conditional

tests the entered number(stored as Z) is the SAME as the test number(1 to 4), the instruction
immediately following the next THEN statement is activated. For example, if the phrase "Z

3 SAME" is true, then the program branches to use the equation in C to subtract value Y
from value X. If the phrase is not true, program flow continues beyond the next END to test

the next conditional statement.
There are many built-in tests in the HP48G. In addition to the decision structures

introduced in this section, you are able to construct several different types of controlled loops
to activate selected sections of your program. A couple of them are introduced in the next

section.

Section 6.4. Loop Structures

It will be important at times to have operations in a program repeated during a
calculation. For example,if an error is encountered in a data entry for a program,it would

be useful to flash several times "ERROR", or some similar message, perhaps accompanied

by a repetitive warning tone. One wayto do this, of course, is just to rewrite the appropriate
lines so they appear as successive strings of instructions as the program runs. A more

efficient program writing strategy is to construct commands in the program that control

automatic reactivation of selected program lines in a looping fashion.
There are 2 built-in logic structures in the HP48G to do this. One is used to construct

a "definite loop" and the other is used in an "indefinite loop" structure. "Definite loop"

operations are designed to reactivate a specific sequence ofprogram lines a specified number

of times. This is done as a one-at-a-time operation using a "START/NEXT" format. A
typical instruction would be read as: "complete (designated steps) 6 times, then go on to

something else". Another technique is to use a step interval other than 1 in a
"START/STEP" instruction.

In a typical application, such an instruction might be read as: "increase a number by
its square root 3 times, then go on to something else". In either case, the basic structure of
this function is the same, for example: (number to start at) (number to end at) START

(repetitive operation to be performed) NEXT (operation to be continued). Exercise 6.9.
provides an example of a controlled loop. Figure 6.7. shows the flow diagram for the
calculation.

119

Exercise 6.9. Controlled Looping

Problem Statement:

Write a program that tests an entered number and will

accept it as a legitimate data entry only if it is less than 10. If
the numberis equal to or greater than 10, display "ERROR"
and sound a tone 3 times. If the tested numberis less than 10,

indicate that it is acceptable as a data input.

A. Write the program. Figure 6.7. Exercise 6.9.

The program will appear as:

<<"ENTER TEST NUMBER" ":N:" INPUT OBJ» »>X <<IF 'X>10' THEN CLEAR 1 3

START 900 .1 BEEP "ERROR" 3 DISP .2 WAIT NEXT "TRY AGAIN" 3 DISP 1 WAIT

CLEAR TEST ELSE 1000 .2 BEEP "NUMBER OK" 3 DISP 1 WAIT CLEAR TEST
END>> >>

Step

1.

2.

Press

LS, <<>>RS,"" a,a, EEN, T,E,R, SPC, T,E, S, T, SPC,N,U,M, B,E, R, «,

RC, SPC, RS, " "RS, :;, a, N, RC, RC, PRG, NXT, IN, INPUT, PRG, TYPE,

OBJ», RS, >, a, X, LS, <<>> PRG, BRCH, IF, IF, ', a, X, PRG, TEST, 2,10,

RC, PRG, BRCH, IF, THEN, LS, CLEAR, 1, SPC, 3, PRG, BRCH, START,

START, 900, SPC, .1, PRG, NXT, OUT, NXT, BEEP, RS," ", a, a, E,R, R, O, R,

a, RC, 3, PRG, NXT, OUT, DISP, .2, PRG, NXT, IN, WAIT, PRG, BRCH,

START, NEXT, RS," ", a, ¢, T,R, Y, SPC, A, G, A,N, a, RC, SPC, 3, PRG,

NXT, OUT, DISP, 1, PRG, NXT, IN, WAIT, LS, CLEAR, a, a, T,E, S, T, «,

PRG, BRCH,IF, ELSE, 1000, SPC, .2, PRG, NXT, OUT, NXT, BEEP, SPC, RS,

""a,a,N,UM,B,E, R, SPC, O,K, a, RC, SPC, 3, PRG, NXT, OUT, DISP,

1, PRG, NXT, IN, WAIT, LS, CLEAR, «, a, T, E, S, T, o, PRG, BRCH, IF, END,

ENTER

Ya,a, T,ES, T, a, STO

B. Run the program. Test the following numbers: 2, 12, 4, 15.

Step

B
O
N

Press

VAR, TEST,2, ENTER(read: "NUMBER OK")
12, ENTER(read: "ERROR/TRY AGAIN")
4, ENTER(read: "NUMBER OK")

15, ENTER(read: "ERROR/TRY AGAIN")

120

Exercise 6.9. demonstrates how the instructions "1 3 START ..NEXT" controls the
sequence oftones and the display of "ERROR", after which program flow continues beyond
"NEXT" to display "TRY AGAIN", then restart the program for the next numberto test.

This "definite loop" structure is contained within a controlled branch statement, but can exist
Just as well at any other place in the program, depending on the requirements for choices to
be made.

Controlled loops function not only to repeat a section of a program a designated
number of times, but may also be used in an "indefinite loop" structure to repeat program

lines until some variable has reached a designated level. An example is shown in Exercise
6.10. for which Figure 6.8. presents a flow diagram.

 Exercise 6.10. "DO/UNTIL"

Problem Statement: Write a program that increments

a number by a designated interval until it has become

greater than 10.

A. Write the program.

The program will appearas:

<<DUP > X<<0'N'STODO CLLCD X 1+

N' STO+ N 3 DISP .5 WAIT UNTIL N 10 >

END CLEAR "OVER" >> >>

Step Press Figure 6.8. Exercise 6.10.

1. LS; <<>>LS, STACK, NXT, DUP,

RS, >, a, X, SPC, LS, << >>, 0 (zero), SPC, ', «, N, RC, STO, PRG, BRCH, DO,
DO, PRG, NXT, OUT, CLLCD, «a, X, SPC, 1, SPC, +, SPC, ', a, N, RC, LS,

MEMORY, ARITH, STO+, a, N, SPC, 3, PRG, NXT, OUT, DISP, .5, PRG, NXT,

IN, WAIT, PRG, BRCH, DO, UNTIL, «, N, SPC, 10, SPC, PRG, TEST, >, PRG,

BRCH, DO, END, LS, CLEAR, RS, "" a, a, O, V, E, R, a, RC, ENTER

2. a, a, G0, a, STO

B. Run the program

Step Press
VAR, 0 (zero), GO (read: "1, 2,3 ... 11"/"OVER")

1, GO (read: "2, 4,6... 12"/"OVER")

2, GO (read: "3, 6, 9, 12"/"OVER")

25, GO (read: "1.25, 2.50, ... 11.25/"OVER")O
D
D

=

121

The first instructions in the program in Exercise 6.10. duplicate (DUP) the number

at Line 1 in the view window then define it as "X". VAR menu "N"is then created to
contain a zero. The "DO/UNTIL" loop starts with the instructions to clear the display
(CLLCD), add 1 to whatever number was entered at the beginning of the program, store the

sum in "N", then display that sum at Line 3. Program flow is delayed for 0.2 seconds, then
the "DO" loop is reactivated "UNTIL" the number in "N" is greater than 10. Whenthis limit
is exceeded, program flow goes beyond the END statement to clear the screen and display
"OVER".

Whatever message is displayed last, just before "OVER" is shown, depends, of
course, on the interval of the count entered at the beginning of the program. The instruction
to discontinue activation of the loop guards only when the sum in "N" is greater than 10. It
does not control how much greater than 10, or how much greater than 10 it needs to be.

For those preferring a different notation style, the program in Exercise 6.8. runs just

as well if it is constructed, for example, as:

<<DUP »X <<0'N' STO DO CLLCD 'X+1' >NUM N' STO+ N 3 DISP .5 WAIT

UNTIL N>10' END CLEAR "OVER" >> >>

Similar alternatives can be constructed for any other programs in which there are
conditional statements or which contain statements to direct arithmetic operations. Looping

in a program is particularly valuable whenit is used interactively with manual data entries.
Properly constructed, these program statements

automatically keep track of one or more

variables, either singly or in combination, as in

Exercise 6.8., where the program continues to run
and as you continue to enter data for it to use.

Exercise 6.11. demonstrates this feature as

it is employed with "WHILE/REPEAT/END"

control statements. Similar to the "DO/UNTIL"
strategy, they will monitor one or more limits set
in a program, continue to REPEAT specified

program lines WHILE these limits have not yet

been met, but like the other control statements,
follow program instructions beyond the END

statement when the internal test of the limits
indicate they have been exceeded. The flow

diagram for Exercise 6.11. is shown in Figure Figure6.9. Exercise 6.11.
6.9.

122

Exercise 6.11. Keeping in the Budget

Problem Statement:

George enjoys buying outdoor equipment and sports clothes by shopping from the catalog
supplied by a national distributor. Write a program that will allow him to enter each purchase he

wants to make, then signal when he is over the budget limit he has set for himself.

Solution:

A. Write the program.

The program will appearas:

<< CLEAR 0 'TEST' STO T "LIMIT?" PROMPT 'L' STO WHILE 'TEST<L' REPEAT T

"COST?" PROMPT 'TEST' STO+ END T T "OVER BUDGET" >>

Step Press
1. LS, <<>>LS, CLEAR, 0 (zero), SPC, ', a, a, T,E, S, T, «, RC, STO, «, T, SPC,

RS, "" a, a, L,I, MI T,LS, DROP, , RC, PRG, NXT, IN, NXT, PROM, ', a,

L, RC, STO, PRG, BRCH, WHILE, WHILE, ', a, a, T, E, S, T, a, PRG, TEST, <,

a, L, RC, PRG, BRCH, WHILE, REPEA, «, T,RS,"", a, «, C, O, S, T, LS,

DROP, a, RC, PRG, NXT, IN, NXT, PROM, ', a, a, T, E, S, T, «, RC, LS,

MEMORY, ARITH, STO+, PRG, BRCH, WHILE, END, «a, «, T, SPC, T, «, RS,

"a, a, O,V,E R SPC,B,U,D,G,E, T, ENTER

2. "a, a,S, HOP, a, STO

3. LS, <<>>2000, SPC, .1, PRG, NXT, OUT, NXT, BEEP, ENTER

4. ' a, TSTO

The program keyed at Step 3 will appear as: << 2000 .1 BEEP >>

B. Use the program.

George has $200 in his budget for Item Cost (8)
catalog purchases. He selects the items in hat 19.98

'Table 6.5. What's the last purchase he can gloves 25.50

afford?
boots 73.19

sweater 35.02

coat 40.50

socks 9.35
123

Step Press
1. VAR, SHOP, 200, LS, CONT, 19.98, LS, CONT, 25.50, LS, CONT, 73.19, LS,

CONT, 35.02, LS, CONT, 40.50, LS, CONT, 9.35, LS, CONT (read: "OVER
BUDGET". George will have to buy his socks some other time.)

It would have been a lot easier for George just to buy a $2.00 calculator (or

even better, a 50 cent pencil) to keep track of his purchases, but then you'd never have
had such an easy-to-understand example for how to use the "WHILE/REPEAT/END"

operations in a program. Once the limit for his shopping adventure is entered using LS,
CONT,the cost for each item he wishes to buy is entered in the same way. The accumulated
bill (stored in "TEST") is compared to the budget limit (stored in "L") repetitively (by

REPEAT) WHILE the conditional test "TEST<L" is true. When it is no longer true, the
phrase "OVER BUDGET" is displayed as the program automatically branches beyondits
END statement.

As good a way as any to end this chapter is to
present a guessing game that demonstrates controlled Gosr>
looping and shows a couple of new programming

techniques in the bargain. Some would argue that RANDOM
 learning to use the HP48G is a good enough guessing

game all by itself, but the demonstration will serve

other purposes too. Exercise 6.12. uses instructions

that trigger the HP48G's built-in "random number
generator", uses its operations for rounding a number

and shows how to decrement automatically by a unit of

1 a number stored in a VAR memory location. Figure
6.10. shows the flow diagram.

Figure 6.10. Exercise 6.12.

Exercise 6.12. Guess Again

Problem Statement: Write a program that controls a guessing game in which a number

between 0 and 10 is entered in an attempt to match a hidden "randomly generated" number. The

program recognizes when the correct match has been made and displays a score (maximum of 10)
based on the number of required trials.

A. Write the programs.

Step Press

1. LS, <<>> MTH, NXT, PROB, RAND, 10, *, 0 (zero), MTH, REAL, NXT, NXT,

RND,', a, X, RC, STO, 11, SPC, ', a, S, RC, STO, «a, a, G, S, ENTER

2. '“oa,a TEST, aSTO

124

The program keyed at Step 1 will appearas:

<<RAND 10 * 0 RND 'X' STO 11'S' STO GS>>

3. LS, <<>> PRG, BRCH, DO, DO, ', «, S, RC, LS, MEMORY, ARITH, DECR, «,

o, T,N, a, LS, CLEAR RS," ", a, ¢, G,U,E, S, S, SPC, N, LS, (), 0 (zero), -, 10,

a, RC, RC, SPC, RS, "", RS, :;, a, N, RC, RC, PRG, NXT, IN, INPUT, PRG,

TYPE, OBJ>, ', a, N, RC, STO, PRG, BRCH, DO, UNTIL, «a, «, N, SPC, X, «a,

PRG, TEST, NXT, SAME, PRG, BRCH, DO, END, «a, a, T, N, SPC, T, N, SPC,

o,RS,"" a, a, RI, G, HT, -N, SPC, W, A S SPC, a, RC, SPC, a, N, + RS,
""a,a,S,C, OR ELS, = a, RC, SPC, «a, S, + ENTER

4. Ya, a, GS, a, STO

Program keyed at Step 3 will appear as:

<<DO 'S' DECR TN CLEAR "GUESS N(0-10)" ":N:" INPUT OBJ» N' STO UNTIL N X

SAME END TN TN "RIGHT-N WAS " N + "SCORE=" S +>>

5. LS, <<>>, 1500, SPC, .2, PRG, NXT, OUT NXT, BEEP, ENTER

6. “a, a, T,N, a, STO

Program keyed at Step 5 will appear as: <<1500 .2 BEEP>>

B. Run the program

Step Press

1. VAR, TEST, (key a number between 0 and 10), ENTER, (if guess is incorrect, key

another number and press ENTER. If guess is correct, read: "RIGHT-N WAS
(correct number)" "SCORE=(score)").

2. TEST(for next game) or CANCEL, CANCELto discontinue the program.

The program in Exercise 6.12. first generates a "randomly selected" number between

0 and 1 which is then multiplied by 10 and rounded (by "0 RND") to have no digits to the

right ofthe decimal (the instruction "2 RND" would have rounded to 2 digits to the right of
the decimal, etc.). Using the "INPUT" instruction provides a particularly useful way to
accept the user's guess of the test number. The VAR menu "X" in which the test number is

stored cannot be easily seen without interrupting the game.
The "DO/UNTIL/END" sequence first compares the entered number with the test one

and continues the "DO" loop (which controls the request for another number) until they are

tested to be the same. With a correct guess, the test numberis revealed along with the user's
score. One point is automatically subtracted (by "DECR"; the instruction "INCR" would

125

increase a numberstored in a designated VAR menu by one) from the VAR menu "S" where

the score is kept each time the "DO" loop is activated. More than 10 incorrect guesses made
by a confused and unlucky user who enters the same number(s) more than once in a game,
earns well-deserved negative points. What game strategy guarantees at least breaking even
with the laws of chance? What would be a convincingly consistent score to document

"extra-sensory perception”?
The branching and looping statements introduced in this section may be a little

difficult to build into your own programs at first. Justa little practice, though, will no doubt
soon make them clear and easy to use. They add considerable power and flexibility to
programs and are well worthwhile learning.

The next chapter describes an additionally powerful programming tool, the use of

FLAGS. How you take advantage of the ones dedicated to machine use, as well as those
which are "user-defined" will soon become clear.

126

Chapter 7

FLAGS

Section 7.1. The Basic Concept

The last chapter gave several examples of the HP48G's flexibility when you take
advantage ofits branching and looping structures in combination with its conditional tests.

All these tests, though, depended on evaluating a specific condition. It might have been the

equality of two numbers or words, as in the constructions "XY = =" "X= =Y", "XY

SAME", or in comparing the magnitude of two numbers, as in the statements "A B <",
"A>B", or in some other similar test. Common to all of them, you tested the relationship

between two explicitly defined entities. When these tests were used within the logic

structures of "IF/THEN/END", "IF/THEN/ELSE/END" or other program devices, they gave

considerable freedom for making a calculation or solving a problem. But that's only part of
1t.

Despite the advantage, you were limited to options in conditional tests which gave

choices only in "closed-ended" comparisons. Only very specific values for A, B, X, Y and

other variables could be compared. The HP48G allows you to do much more by allowing

for program branching and looping on the basis of "open-ended" comparisons. You are not

limited to comparing just stored numbers, words and phrases. Using FLAGs, you can

compare the status of any situation you wish to define for your program. It need not be

numerical, nor must it have an alphanumerical symbol designed for it. Too good to be true?

Notat all.
Exploring these potentially unlimited opportunities to control program flow requires

understanding the basic concepts behind FLAGs and knowing how to use them. Fortunately,

both tasks are easy. Also making it easy, you have ready access to the different ways to test
and use FLAGS through the 6 statements listed on "page" 3 of the menu targeted by "PRG,

TEST, NXT, NXT. These functions are SF, CF, FS?, FC?, FS?C, and FC?C.
Calling a signaling device in the HP48G a "FLAG" makes a great deal of sense.

Everyone is familiar with the more general use of flags as devices to convey information.

National flags designate a country's identity, the checkered flag at the race track signals the

winner of a competition, and the red flag at a construction site shows a dangerous situation.
Each of these signaling instruments tells us something about what's going on in our world.

In the same way, each FLAG in a program tells the computer what's going on in its world as

the program makesits way through its many steps.

127

Flags familiar to us in everyday use, though, sometimes convey additional information

than just "something is going on". Quite often, they also tell us what to do depending on a

particular condition at any one time. For example,ifyou were driving down a road and saw

a construction worker with a flag, not only would you suspect that "something is going on",

but also you'd be aware from the position ofthe flag to know what to do next. If the flag

were lowered to the worker's side, most of us would interpret the signal to mean "proceed
with caution". If the flag were raised, most of us would recognize the flag's status means to

stop or go in some designated direction.
FLAGS in a computer program provide similar signals. There are two instructions that

work for all FLAGs. Oneis to indicate whether the FLAG is SET (FS?) or whether it is
CLEAR (FC?). There are also two instructions to change a FLAG's status. One will SET
it (FS) and one will CLEAR it (FC). There are two others which first check the FLAG's

status and then clear it (FS?C and FC?C). But what FLAGsare they controlling and what
is the function of any FLAG no matter what its status? The next section helps explain it all.

Section 7.2. Where FLAGs Are And What They Do

There are two categories ofFLAGS in the HP48G. You can test and change the status
of any ofthe FLAGS in either ofthem. Sixty four ofthem, designated "-1 to -64", are called

"system-defined FLAGs". Another 64, designated "1 to 64" are called "user-defined

FLAGs". Although you can manipulate the status (either SET or CLEAR) of the

"system-defined FLAGs", each has a predetermined and specific meaning in controlling a
built-in function of the computer. For example, FLAG -41 when SET displays the clock in
a 24 hour format. When this FLAG is CLEAR, a 12 hour clock display is shown. The

HP48G handbook gives a full listing of the "system-defined FLAGs". The "user-defined
FLAGs" 1 to 64 have no intrinsic meaning for computer function and you can use any of

them in any way you want. This chapter gives several demonstrations.
Determining whether a FLAG is SET or CLEAR (using FS? or FC?) requires

understanding a simple code. The answer "yes" or "no" to the questions about FLAG status
will be displayed as a number at Line 1 in the view window. If the answer to FS? (or to FC?)
is true (thatis, "the (designated) FLAG is SET (or CLEAR)"), the number 1 will be shown.
Zero will appear if the answer is "no" either to the question FS? or FC?. For example, if

FLAG 10 were set, "1" would appear in the view window after keying "10, FS?". Were it

clear, "0" would be shown. Exercise 7.1. gives an example of how to test and control FLAG
status. Its simple lessons are applicable to the use of all FLAGS, both system-defined and
user-defined.

Exercise 7.1. FLAG Test and Manipulation: The Basics

(Hint: The "system-defined" FLAG -51 used in this exercise controls whether a period (when

CLEAR) or a comma (when SET) serves as a decimal indicator. To get started, first press:

51, +/-, PRG, TEST, NXT, NXT, CF so that FLAG -51 is clear to begin the exercise.)

128

Problem No. 1: Test the status ofFLAG -51.

Step Press
1. 51, +/-, PRG, TEST, NXT, NXT, FS? (read: "0", indicating "No, FLAG -51

is not SET")

2. RS, ARG, FC? (read: "1", indicating "Yes, FLAG -51 is CLEAR")

(Hint: FLAG -51 status must have been CLEAR if it was tested at Step 1 not to be SET,
since SET or CLEAR are the only statuses any FLAG can have. The operation "RS, ARG"
in Step 2 brings to Line 1 the last "argument" that was the number "-51.)

Problem No. 2: Seeing the effect of having Flag -51 clear and changing its status.

 Step Press

1. RS, MODES, RC, 4, OK, OK,1, 2, 3, 4, (decimal), §, 6, 7, 8, ENTER(read:
"1,234.5678")

2. 51, +/-, PRG, TEST, NXT, NXT, SF (read: "1.234,5678")

3. RS, ARG,CF (set the original status for FLAG -51 and read: "1,234.5678")

Not much of a problem to see how changing the status of a "system-defined FLAG"
affects computer operation, as illustrated in Exercise 7.1. But what sense is there to make
ofthe "user-defined FLAGS" for which there is no proscribed functions? How do you use
them if they can mean anything you want them to? Section 7.3. gives an explanation and

some examples.

Section 7.3. "User-defined FLAGS"

By the same token that the "system-defined FLAGS" have functions for the operating

system of the HP48G,the "user-defined FLAGS" have functions defined by you. They can
be used to designate any condition you want. One could, for example, use a FLAG to let the

computer know certain data have been entered (or not entered), whether a particular

calculation has been made (or not yet made) as program flow continues, or to signal any
other circumstance you define. You need to define what numbered FLAG (from 1 to 64) you

wantto use to signal a particular condition, and you need to designate what specific meaning
does the FLAG have when it is SET and what meaning does it have when it is CLEAR.

The simplicity and ease of use, as well as the power of FLAGs is most easily seen

with an example, like the one presented in Exercise 7.2. The flow diagram is in Figure 7.1.
In view of the considerable experience gained so far with key entry skills, the "Step ... Press"

instructions for keying program statements are omitted in the exercises in this chapter. Those

for problem solutions, however will be kept.

129

Exercise 7.2. FLAGs: A Simple Application

Problem Statement:

Mary Worsted runs a retail fabric store which
has a liberal policy about returned purchases. She'll
accept any returned item in good condition, but

requires that the customer may have to pay some of the
paperwork expenses for processing the refund. She

knows, for example, it'll cost on the average $1.50 of

employee time to locate the record of a sale if the
customer doesn't have a receipt. Also,it costs her 75

cents ifthe payment was made by check. She needs to
pass these expenses on to the customer. If the person
has a receipt and didn't pay by check, they, of course,
get a full refund. Write a program that will calculate
how much ofthe orginal purchase the customer gets in
refund.

Solution:

A. Define FLAG status

$1.50

CHARGE

Figure 7.1. Exercise 7.2.

FLAG SET CLEAR

1 no receipt receipt

2 check no check
B. Write the program. (Hint: To key "$": RS, CHARS, +64, +64, (highlight "$"), ECHO,CANCEL)

Program: REF

<<ITN1CF2CF2 "CHECK?(Y or N)" ""
FIX "ITEM PRICE?" INPUT
"Price $:" INPUT IF "Y" SAME
OBJ» P' STO TN THEN 2 SF
"RECEIPT?(Y or N)" END

"" INPUT IF 1 FS?
IF "N" SAME THEN P' 1.5 STO-
THEN 1 SF END
END TN IF 2 FS?

130

THEN 'P' .75 STO-
END TN TN CLLCD
"REFUND=$"P +3
DISP 3 WAIT TN TN
TN OFF>>

Program:TN

<< 900 .2 BEEP>>

C. Run the program.

Determine the correct refund for each ofthe following customers:

Customer Item Price Receipt Check

M. Teresa $187.32 yes no

Z. Gabor $519.50 no yes

M. Jackson $324.19 yes yes

W. Clinton $132.00 no no

Step Press

1. VAR, REF, 187.32, ENTER, «a, Y, ENTER, a, N, ENTER (read: "REFUND

=§$187.32")

2. ON, REF, 519.50, ENTER, «, N, ENTER, «, Y, ENTER (read: "REFUND

=$517.25")

3. ON, REF, 324.19, ENTER, «, Y, ENTER, «, Y, ENTER, (read: "REFUND

=$323.44")

4. ON, REF, 132, ENTER, «, N, ENTER, «, N, ENTER (read:"REFUND=$130.50")

Exercise 7.2. gives a little more practice for key entry skills and shows a couple of
more programming techniques. Most important, though, it introduces the basic ideas ofhow
"user-defined FLAGS" are used. If you saw in this exercise how program flow is directed

depending on the SET or CLEAR status of a particular FLAG, you have a more than good

enough grasp oftheir operating principle. That's an important step because all FLAG use is
no more than a variation on the central theme demonstrated in this simple exercise.

There are a few features ofthe program that deserve additional comment. Because the
status of FLAGs 1 and 2 in Exercise 7.2. are going to have special meaning in the program
(Table 7.1.), it's important they be controlled right from the beginning. The instructions "1

CF 2 CF" initially place both FLAGs to CLEAR. The next program instruction (2 FIX)

controls the view window's display to be two digits to the right of the decimal, an appropriate
choice since data are processed in the program as dollars and cents.

If a customer doesn't have a receipt, FLAG 11s SET (by "1 SF"), and FLAG 2 is SET

if they paid by check. The customer's bill is calculated by subtracting $1.50 from their
purchase price if they've lost the receipt and subtracting an additional 75 cents if they paid by

check. The calculations are done automatically as program flow goes through
"IF/THEN/END" statements controlled by whether FLAGs 1 or 2 are SET ("1 FS?" and "2

FS?"). If the customer had a receipt and didn't pay by check, they receive a full refund.

131

There are a couple of extra features to watch for as the program runs. You may have
noticed the numbered indicators appear at the top of the view window when either FLAG 1

or FLAG 2 became SET, and how they disappeared at the beginning of the program as they
were automatically cleared. Setting FLAGs 3 to 5 would also be signaled by the appearance
of appropriate numbersin the view window. None of the other FLAGS ("user-defined" 6 to
64 or "system-defined" -1 to -64" will have their SET status indicated in this way. A short

program in Section 7.5. is designed to disclose FLAG status. As a last point, you were no
doubt aware of the action produced by the instruction "OFF" at the end of program.

Section 7.4. Complex Choices with FLAGs

Exercise 7.2. showed how the numerical contents of a VAR menu was modified based

on decisions made in the program and signaled by FLAGS. Useful though it may be, only the
target of the menu itself was affected by conditions of the program. Exercise 7.3.
demonstrates a more involved and practical use of FLAGs. The equations used in this
example are purposely simple so attention is not diverted from how FLAGs direct program
execution. The flow diagram for the exercise is shown in Figure 7.2.

Exercise 7.3. Weight Predictions

Problem Statement:

A zoologist needs to make a series ofcalculations using two different equations that predict
body weight changes for two species of small animal based on their nutrition and environment.
Calculations will be made either in metric or in English units. The equations are:

A=(T+U)/V B=(T/W)-X

where:

A,B = species
T,U,V,W,X = environmental and nurtitional data

Comment:

Valuesfor T, U and W aredifferent each time the program is run from the beginning, but they

are constants in any uninterrupted series of calculations. This means that when the program is run for
the first time, data will be requested for T, U and W. If a second, third or more calculations are made

without starting the program over, the computer needs to "remember" that if it already has these data,

it won't ask for them again. Values for V and X will be different for each calculation and have to be
requested each time a calculation is made whether the program isstarted at the beginning or not. A
test is necessary also for whether solutions need to be displayed in metric or in English units.

132

GO
Y

CFlto4

SF1

MET H>—

CALC?

yes

yes
no

T?

 yes
yes

U?

00

EEN

Ww?

X?

CALCB

Figure 7.2. Exercise 7.3.

133

Solution:

A. Define FLAG status.

Four FLAGS will be used to keep track ofwhat data are required and how calculations are to
be made. FLAG status is described in Table 7.3.

B. Write the program.

Program:FT

<<4'F' STO
DO F CF F' DECR
UNTILFO==
END TN
"MET or ENG?" ""

INPUT
IF "MET" ==
THEN 1 SF
END CAL >>

Program:CAL
<< TN

"CALC?(A,B or NEW)"
"" INPUT N' STO
CASE N "A" SAME
THEN A
END N "B" SAME
THEN B
END N "NEW"

SAME
THEN FT
END CAL
END >>

<<TN "ENTER T"

".T:" INPUT OBJ>

'T' STO 2 SF >>

134

FLAG SET CLEAR

1 metric English

2 T stored no data

3 U stored no data

4 W stored no data

Program:A cece

<< TR Program:UA

IF 3 FC? << TN "ENTER U"

THEN UA ".U:" INPUT OBJ>

END TU+ TN 'U' STO 3 SF >>

"ENTER V" ":V:" cemeeeee

INPUT OBJ» /D >> Program:WA
—mmmemeeee- << TN "ENTER W"

Program:B "'W:" INPUT OBJ»
<< TR 'W' STO 4 SF >>

IF4FC? ceeemeeeeeeee

THEN WA Program:TN

END TW/TN << 900 .2 BEEP >>

"ENTER X" ":X:" cmceemmeeeee

INPUT OBJ» -D >> Program:D

a << TN TN "WGT=" SWAP

Program:TR +

<<IF 2 FC? IF 1 FS?

THEN TA THEN "GM."

END >> ELSE "OZ."

——mmeemeeee- END + CLLCD 4

Program:TA DISP 3 WAIT CAL >>

C. Run the program.

Species A 19.3 7.2 10.1 6.4 0.2
 Species B 4.8 9.7 1.8 1.1 5.6

Problem No. 1:

Step 1. Calculate A in metric units using data for Animal No. 1.

Press: VAR, NXT, FT, a, a, M, E, T, ENTER, «, A, ENTER, 19.3, ENTER, 7.2,

ENTER, 10.1, ENTER (read: "WGT=2.62 GM.")

Problem No. 2: Calculate A again when V=15.3. Press: o, A, ENTER, 15.3, ENTER (read:

"WGT=1.73 GM.")

Problem No. 3: Calculate B using data for Species A. Press: a, B, ENTER, 6.4, ENTER,

.2, ENTER(read: "WGT=2.82 GM.")

Problem No. 4: Start a new calculation for B in English units using data for Species B. Press:
a, a, N, E, W, ENTER (read "MET or ENG?"). Press: «, «, E, N, G, ENTER, «, B,

ENTER, 4.8, ENTER, 1.1, ENTER, 5.6, ENTER (read: "WGT=-1.24 OZ.")

Problem No. 5: Calculate B again when X=0.8. Press: «, B, ENTER, .8, ENTER (read:

"WGT=3.56 OZ.")

Problem No. 6: Calculate A using data for \species B. Press: o«, A, ENTER, 9.7, ENTER,

1.8, ENTER(read: "WGT=8.06 OZ.")

(Hint: Press CANCEL to discontinue program.)

Although a little long and somewhat convoluted, Exercise 7.3. is a good example not
only ofhow to use FLAGs, but also of how to structure subroutines to make a program run
efficiently. The program's use ofFLAGS demonstrates how different user-defined conditions
are tested and how program flow is controlled as a function of the result of each test. For

example, FLAGs 2, 3 and 4 keep track of whether data required for a calculation have been

135

entered. As shown in the program's flow diagram (Figure 7.2.), they direct program flow to
subroutines to request appropriate data, if necessary. Also, FLAG 1 determines the selection

of the correct units for displaying data. Although there are other programming strategies to

provide similar control in a program, using FLAG:is the easiest.
Since FLAGs will be used in Exercise 7.3, it is good practice to control their initial

status at the very beginning of the program. The first few instructions CLEAR FLAGs 1 to

4. This could be done by a series of instructions similar to "1 CF 2 CF etc." that would serve
the purpose, but it might be impractical were many FLAGs used in a program. A more direct
way is, as shown at the beginning of the program, to create a "DO/UNTIL/END" loop in
which FLAGS 1 to 4 are cleared one at a time in the loop until the counter in "F" indicates no

additional FLAGs remain to be cleared.
The first time calculations are made in Exercise 7.3. (at Steps 1 and 5), data are

requested for T, then either for U and V (for calculating A) or for W and X (for calculating
B). The second time a calculation is made (at Steps 2 and 6), data are not requested for T

because FLAG 2 has now been SET. The rule established at the very beginning of the

program (Table 7.3.) was that data for T had already been entered when FLAG 2 was set.
The request for T is bypassed when "2 FS?" is tested to be true. Similarly, data requests for

U andW are activated only the first time the program is run because the SET status of FLAGs
3 and 4 respectively, now indicate new data are not required.

Data for V and X are always requested because they remain variables no matter how

many times the program is used. When "NEW" is entered in response to "CALC?(A, B or
NEW)", the program is begun again and will ignore any previously entered data for T, U and
W, even though "T", "U" and "W" remain as options in the VAR menu. The status of FLAG

1 determines whether answers will be displayed in metric or in English units by taking

advantage of the "IF/THEN/ELSE/END" construction at the end of the program.

There are a couple ofnew programming features in Exercise 7.3. DECR automatically
decreases by one whatever numberis in a designated storage location, which for this program
was the numberstored in "F". Even though this number was originally "4" (placed there by:
"4 'F' STO"), it soon became "3" by the steps "'F' DECR"the first time the "DO...UNTIL"

loop was activated. It became "2", then "1" and finally "0" under the repetitive activation of
"F' DECR". Similar control is provided by the instruction "INCR" which increments by one

the number in a designated storage location. Exercise 7.4. gives an example for the use of
"INCR".

There is also a new application of the program structure: " "(statement)" " " INPUT"
which appears in the subroutine "CAL". Notjust one alpha entry is evaluated, but several of

them are tested within the "CASE N "A" SAME ... END" subroutine. This is a convenient
and easy way to allow the program to search among several possible data inputs in order to
find the correct subroutine in which to make a particular calculation.

Another new feature is built into the display subroutine, "D", to append a displayed
answer with an appropriate set ofunits. Program statements determine both the units and the

instructions for how to show them. ""WGT=" SWAP +" indicates that the answer display

136

will be prefixed by "WGT=" and followed byeither "GM." or "OZ.", depending on the status
of FLAG 1. "4 DISPLAY" indicates which line in the view window to use to display the
constructed answer phrase. "3 WAIT" controls how long it will be displayed.

It's easy enough to know the status of FLAGs 1, 2, 3, 4 and 5 because of the

annunciators shown at the top of the view window when each is set. It's a little less easy to
know the status of the other "user-defined FLAGs". Although there's always the "N FS?" or

"N FC?" controls, with "N" designating the FLAG to be tested. Programs in the next two

sections have general use. Consider placing them in a subdirectory called, for example,
"FLG". The first program is a simple one for testing the status of any "user-defined FLAGs"
you want. The second one automatically clears FLAGs in a sequence you define, or
one-by-one as you designate them individually.

Section 7.5. Keeping Track

An obvious advantage ofhaving so many "user-defined FLAGs" is that there are many
circumstances, events and program conditions you can encode with them. A disadvantage is
that they provide just something else to have to keep track of. Program flow could be in
serious trouble if a FLAG or two were inadvertently addressed whose identity had been

overlooked and whose status had been ignored. One way to avoid errors like this is to

establish an initial condition for all FLAGs used in a program atits very beginning. This was

the plan used in Exercises 7.2. and 7.3. For the conservative user, this strategy is probably
the best. It is an attractively explicit way to start a new program with a completely clean
blackboard, and no chance of initial FLAG status sabotaging program flow. An alternative
is simply to reset all FLAGSat the end ofthe program. This procedure is analogous to using
PURG to eliminate VAR menus specific to a program.

Another wayis to review FLAG status from time-to-time outside of the program being
developed. Exercise 7.4. presents a program that allows reviewing the "user-defined FLAGs"

over a designated range. The program is constructed so that "system-defined FLAGs" are

excluded from review and FLAGs in the chosen range have to be checked in an ascending
order. Starting with this basic idea, it would not be difficult to redesign the program so that
it reviews "system-defined FLAGs" also, displaystheir status in some other way, or includes
additional features attractive for a specific application. Figure 7.3. shows the flow diagram
for the next exercise.

Exercise 7.4. Controlled FLAG Review

Problem Statement:

Write a program that will review the "user-defined FLAGS" over a specified range.

137

USER-DEF

ONLY

Figure 7.3. Exercise 7.4.
138

Solution:

A. Write the program

Program:FLG IFBE > E 64 >0R +
<< 0 FIX TN "START?" THEN CLLCD TN TN END TN 3 DISP 1
"First FLAG:" TN WAIT 'B' INCR
INPUT OBJ > STO "Data Entry Error" UNTILBE >

TN "STOP?" 3 DISP 1 WAIT FLG END TN TN CLLCD
":Last FLAG:" INPUT END "FLAG TEST OVER" 4
OBJ=> E' STO DO DISP 1 WAIT CLEAR
IFBO<EO<OR IF B FS? HALT >>

THEN TN TN TN THEN CLLCD eeememmeeeeee-
CLLCD "FLAG" B +" SET" Program:TN

"User-Defined ONLY" + << 900 .2 BEEP >>

4 DISP 1 WAIT FLG ELSE CLLCD —eeeecmeeeeee-

END "FLAG" B + "CLEAR"

B. Run the program.

Step Press
1. VAR, FLG, (key first FLAG to be checked; "1" is used as an example),

ENTER,(key last FLAG to be checked; "6" is used as an example), ENTER (read
"FLAG 1. SET", (pause), "FLAG 2. CLEAR", ... "FLAG TEST OVER")

Only a few program statements are required in Exercise 7.4. to assure that only
"user-defined FLAGs" will be reviewed. The first check is by "IF B 0 < E 0 < OR" to be sure
the beginning and end FLAGsare not negative, thatis, to be sure they are not "system-defined
FLAGs". Another one (IF "B E < E 64 > OR") determines that the beginning and ending
numbered FLAGs are in the correct order, and that neither is greater than the highest

numbered "user-defined FLAG". If eithertest is failed, the program displays an appropriate
message and the user hasto start over. If both tests are passed, each FLAG is automatically

reviewed in order.

Section 7.6. Controlled FLAG Clearing

A few modificationsto the basic structure of the program in Exercise 7.4. gives a new

and useful one for clearing designated FLAGs. There are several applications for such a

program. For example, you may want to be sure a certain range of FLAGs has a status of

"clear" before you begin writing a new program. Or, you may want to clear just certain

FLAGS before you start editing and testing an old program. The program described in

139

Exercise 7.5. allows you to act on these choices. The flow diagram is shown in Figure 7.4.

Exercise 7.5. Programmed Clearing

Problem Statement:

Write a program that will either clear FLAGsover a specified range, or will clear just those
designated one-at-a-time.

Solution:

A. Write the program

Program:FLC

<< 0FIX TN
"SEQUENCE?(Y/N)" "nn

INPUT
IF "Y" SAME
THEN S
END
DO TN
"FLAG TO CLEAR?"
":FLAG:" INPUT OBJ>
TSTOTFCFTN 1
'A' STO
"MORE?(Y/N)" "n

INPUT
IF "N" SAME
THEN 0'A' STO
END
UNTIL 'A==0'
END CLLCD
"FLAG CLEAR OVER" 3

B. Run the Program:

DISP 2 WAIT CLLCD
HALT >>

Program:S

<< TN "START?"
"FIRST FLAG:"
INPUT OBJ» F' STO
TF'ST' STO TN
"END?"

"LAST FLAG:" INPUT
OBJ» F STOTF
'LS' STO
DO CLLCD
"WORKING" 2 DISP ST
CF 'ST' INCR
UNTIL 'ST>LS'
END CLLCD TN 13
START
"FLAGS NOW CLEAR" 3
DISP .5 WAIT CLLCD

5 WAIT

NEXT CLLCD CLEAR

HALT >>

Program:T

<< IF 'F < 0' F>64'

OR

THEN TN CLLCD

"OUT OF RANGE" 4

DISP 2 WAIT FLC

END >>

Program:TN
15

START RAND 2500 *

'P' STO RAND 3 /

'D' STO P D BEEP

NEXT >>

(Hint: To see that the program does whatit's supposed to,first set FLAGs 1 to 5 by pressing:
PRG, TEST, NXT, NXT, 1, SF, 2, SF, 3, SF, 4, SF, 5, SF. The operation "SF" for these
FLAGS not only places them in a "set" status, it also displays annunciators for each of them
at the top ofthe view window. Watch for them to disappear as the program runs.)

140

FLC

=

SEQUENCE?

(Y/N)

. no Y yes

FLAG TO

CLEAR

i

OUT OF

CLEAR RANGE

FLAG
CLEAR FLAG

IN RANGE

 \

/ FLAGS

CLEAR
Figure 7.4. Exercise 7.5.

141

Problem No. 1 Clear selected FLAGs

Step Press

1. VAR, NXT, FLC, «, N, ENTER, 1, ENTER (see annunciator for FLAG 1

disappear; read: "MORE?(Y/N)")
2. a, Y, ENTER, 5, ENTER(see annunciator for FLAG 5 disappear; read: "MORE?

(Y/N)")
3. a, N, ENTER (read: "FLAG CLEAR OVER")

Problem No. 2 Clear a sequence ofFLAGs

Step Press
1. FLC, a, Y, ENTER, 2, ENTER, 4, ENTER(read: "WORKING"; see annunciators

for FLAGs 2, 3 and 4 disappear)

(Hint: Press CANCEL, CANCEL to terminate the program at any stage.)

The first operation in running the program in Exercise 7.5. is to set the number display

to show no digits to the right of the decimal. This makes sense because FLAGs are, of course,
designated only by whole numbers. If the choice is to clear a sequence of FLAGS, program

flow continues to the subroutine "S". Numbers for the first and last FLAGs in the sequence
are requested, then tested to assure they are not "system-defined FLAGs" or "user-defined

FLAGs" greater than 64. If they are in an appropriate range, they are then cleared
sequentially by instructions in the "DO...UNTIL...END" structure of the subroutine, and
program flow is terminated by HALT. IfFLAGs are to be cleared one-at-a-time, the number

for each is requested in FLC until "N" is entered in response to "MORE?(Y/N)".

The design of the subroutine "TN" provides an interesting structure for generating
tones. First, a random number is generated by RAND, then constructed and stored to be the
pitch of a tone which is stored as "P". Similarly, the duration of the tone is constructed by
RAND and stored as "D". The instructions "P D BEEP" sound the tone which, because it has

a randomly generated pitch and duration, is likely never to be heard again for a long time.
Program instructions "1 5 START...NEXT" control for the tone to be heard 5S times whenever

"TN" is encountered in the program.

Section 7.7. Wrapping It Up

Having read through each chapter to getthisfar, it's a good bet you now know more

about how to use your HP48G than you did when you first brought it home from the store.
Congratulations!! You have every reason to consider yourself an expert. Your time and

142

effort have been well-invested and you can look forward to your newly-found mathematical
proficiencies paying off for you in many years to come.

143

Chapter 8

Sample Problems

Reviewing exercises and practicing different programming and calculation strategies

are valuable, but sometimes just seeing an example helps too. Even though the content or

subject ofthe example itself may not be ofinterest, seeing how a mathematical operation is
performed and understanding how a programming procedure was accomplished can be useful
and important ways to improve one's own skills. This chapter presents representative
problems and typical solutions for the HP48G. Examples are selected because of their

variety of application, types of calculation, styles of analyses, and different ways of

constructing programs and solving problems.

These examples have special significance for people trying to improve math and

programming skills, as well as for those interested in learning the complexities of the
HP48G. A good case can be made for the idea that mathematics, statistics, computer
programming and similar skills have their greatest value for the general user when they are
applied in problem solving. The intricacies of a calculation, the significance of a
mathematical procedure and the power of a programming strategy are most often
remembered best when it is seen how they apply in practical applications. The general

educational principle is not much different from learning to tie a set of shoe laces. Being

told how to do it is one thing, but just seeing it done a couple of times makes the process
easier to learn and remember.

Learning mathematical and computing skills in the context of practical application and
example has another value. There is always value, of course, in being able to come up with
the "correct answer"for a problem. There is much greater benefit, though, when the "correct

answer" is only the first step in a series of analyses involving the questioning process of "let's
see what happens when..." For example, calculating current flow in an electrical circuit
requires not much more than the accurate application of existing equations. Understanding
the electrical principles involved, however, can be learned much better by using "what if..?."
reasoning and recalculating current flow when one or more elements in the circuit are

changed. The HP48G makes such a "what if...?" approach to problem solving easy, practical
and extremely valuable.

Even though some of the examples presented in this chapter may not be of specific
interest, examining how each is presented and solved will give important experience in using

the HP48G and in writing programs for it. Because the greatest value in presenting these
examples is to show program structure clearly, their physical and biological realities are
often compromised for the purpose of simplicity.

144

Sample Problem: Population Growth

Background

Population growth for many plants and animals typically follows an "S-shaped"

pattern. Starting from a small number of individuals, the population grows slowly at first,
then rises at a more rapid rate and finally slows its growth rate so that the population

approaches a maximum. The increase in the beginning is because of the growing number of
individuals that can produce offspring. The rate at which the population grows depends also

on the rate ofreproduction, among other factors. Slowed growth near the point ofmaximum

population may be because of limited food supply, predation, and many other factors.
The "S-shaped" growth pattern for a population is as applicable as a model for a

colony of bacteria, a group of fish in a pond and deer in a forest as it is for people in a
country. The example presented here demonstrates how the beginning number in a

population, its growth rate and its final count uniquely affect how a group of animals
becomesestablished in a particular environment. It also demonstrates how expediently the
HP48G solves a complex calculation and how conveniently data requests are constructed in

a program.

Problem Statement

Four species of insects have invaded 100 acres of recently drained wet land. How
successfully each is in this new environment depends on food availability, predation,

temperature, humidity, wind speed, egg survival and many other factors. The population

density for each species at any time 1s described by:

Ny)WNax)

Nye Had®O
0

N,+(N
max

where:

N, = numberofinsects at time,t
N, = number of insects att = 0
N_.,. = maximum number of insects
K = population growth rate constant; number per unit time

t = time; weeks

145

Questions

Use data in Table 1 to determine:

1. Whenis each species growing at the fastest rate?
2. When does each species reach 85% ofits final population density?
3. What is the population density for each species after 20 weeks?
4. A migratory bird, the Blue-beaked Flicker, feeds predominantly on insect species

B. After what period of time would this bird find the drained wet land especially

attractive?

Species A Species B Species C Species D

N, (x 10°) 0 0 10 2

N,.. (x 10%) 20 18 25 30

K 0.02 0.03 0.01 0.008

Hints:

1. Write the program so that N, # 0. Use a conditional test so that if a zero is entered
in response to the N, data request, a small number, like 0.001, is entered.

2. For calculating data, enter numbers as shown in the table.

Solution

A. Figure 1 presents solutions graphically for data in Table 2.

B. Sample Solution:

Step Press

1. VAR, POP, 0 (zero), ENTER, 20 ENTER, .02 ENTER, 4 ENTER

(read: "at 4 wks: 5), 8, ENTER(read: at 8 weeks: 25), 12, ENTER, (at
12 weeks: 121), etc.

(Hint: Press CANCEL, CANCEL to discontinue program. Press POP to begin again.)

146

Program: POP
<< TN "Beginning N?"
":No.."I'B' STO
IFBO==
THEN .001 'B' STO
END TN
"Maximum N?"
":Nmax:" I'M' STO
TN "Growth Rate?"
"K:"I'K'STO C >>

Program: C
<< TN "Time?(WEEKS)"
“T:"I'T' STO
'1000*B*M/(B+(M-B)*

EXP(-(M*K*T)))
>NUM P' STO TN TN
0 FIX CLLCD 0 FIX
"at n T + "n wks:" +

P +3 DISP 3 WAIT C >>

Program: I
<< INPUT OBJ» >>

Program: TN
<< 2000.25 BEEP >>

No= 0.001

CALC Nt

Week Species A Species B Species C Species D

4 0.01 0.01 16.11 4.72

8 0.03 0.08 20.78 9.83

12 0.12 0.63 23.26 16.80

16 0.58 4.30 24.33 23.06

20 2.60 13.17 24.75 26.90

24 8.49 17.27 24.91 28.73

28 15.71 17.91 24.97 29.50

32 18.95 17.99 24.99 29.81

36 19.78 18.00 25.00 29.93

40 19.96 18.00 25.00 29.97

147

Figure 1.

Insect Populations
. mmesssesdeesssdssbuwTTscscoesmTasasconnte"

ptoea=
pie.

oo”or

- oe weLo ly ede
Lamm

-®
-

-

(
J 1 ~ ~.

h
n | “i
s

:

“
e
,

: = T
e
l

N ~
N

i

N
u
m
b
e
r

(x
1
0
0
0
)

\
,

\ \

w
h

[-
] 1 s
a

Ng 1
%
, ~ ~
N

Baiee, STUrrrnsnssesses ph onssnsenss 4... SUT:a — — — Species A

ye : : , y : ———- SpeciesB
AeAbedenser gg onensdounsesnsanasAfepe] mea Species C
’ J ; : LoL : ~ : : :

1 Le : : Lo Species D
| | |

0 4 8 12 1] 20 24 28 32 36 40
Time (weeks)

Answers to Questions:

Question Species A Species B Species C Species D

1 24 weeks 18 weeks 2 weeks 11 weeks

2 28 weeks 20 weeks 8 weeks 16 weeks

 3 26x10° 13.2x 10° 248x 10° 269x 10°

Question 4: After about 24 weeks

148

Sample Problem: Relative Humidity

Background

Absolute humidity indicates the mass of water vapor in a unit volume of air. It is
often expressed in units of grams per cubic meter, or as a partial pressure (torr). Relative

humidity (RH) designates the amount of water vapor present in the air compared to how

much it could hold were it saturated. For example, were RH calculated to be 50%, the air

could hold twice as much water vapor. Were RH 90%, the air could hold only 10% more
water vapor.

Because the water saturation point of air changes with its temperature, so does the
air's relative humidity. The warmer the air, the more water vaporit can hold. For example,
the same amount ofwater vapor in air at a low temperature might produce a RH of 85%, but

only a RH of40% were the air to warm. Also, even though the absolute humidity remains

the same, relative humidity could increase, for example, from 50% to 90% were the air just

to cool.
Relative humidity plays an important role in human health and comfort. In summer,

relative humidity must remain less than 100% so that the water in sweat can evaporate to

provide body cooling. Sweating itself doesn't coolat all, but the evaporation of the water it
brings to the skin surface does. It is more than a matter of comfort. It can be lethal if the
heat produced by physical activity and that gained from the environmentis not dissipated.

Exercising or working hard in hot and humid weather can lead to heat stroke and death if
heat loss by evaporation doesn't keep pace to hold body temperature in a narrow range. They

can be justas life-threatening if the weatheris cool and dry, but the environment of the work

setting isn't. On the other hand, the samelevel of activity and body heat production presents

no danger at all, and often no discomfort,if relative humidity is low and there is good air

flow over the skin, even though air temperature itself is 100°F or more.
Ambient relative humidity is important in the winter also. Even with the same

absolute humidity, the air's relative humidity may be near 100% outside on a cold winter day,
but lower than that in the Sahara desert (less than about 20%) in a house heated to 75°F. The

total amount ofwater vapor in the air is the same, but the air can hold much more ofit when

it is warmed, so its relative humidity falls . The dry and itchy skin, chapped lips, and more
frequent nose bleeds common in the wintertime all testify to the lower relative humidity
inside heated dwellings in cold weather. It's hard sometimes to consider that room air is

relatively very dry, even though it's snowing outside and the weather report indicates that

relative humidity is 100%. The referenceis, of course, to the outside air and to its low

temperature.
Because water evaporates more rapidly the lower the relative humidity of the

surrounding air, the rate at which heatis lost from a wetted surface gives a convenient basis

for measuring ambient relative humidity. Were a wetted surface exposed to an environment

149

with 100% relative humidity, there would be no water vapor pressure gradient, no water

evaporation and no evaporative heat loss. The wetted object would have the same

temperature as one that was dry. The lowerthe relative humidity, however, the greater the
water vapor pressure gradient between the wetted surface and the surrounding air, the greater

the rate of evaporation, the greater the evaporative heat loss rate, and the further the

temperature of the wetted surface would be below that of a dry one exposed to the same
environment.

For more than a century, ambient relative humidity has been calculated based on the

difference in temperature measured by two thermometers (or thermistors, thermocouples
etc.), one that is dry (so-called "dry-bulb temperature") and one whose end is covered by a

wetted wick (so-called "wet-bulb temperature"). The technique is called "psychrometry" and
a device employing two such thermometersis called a "psychrometer”. Typically, air flow
is forced over the two thermometers to facilitate evaporation by swinging them in the air

(using a "sling psychrometer") or by exposing them to a fan. The lower the ambient relative
humidity, the greater the difference in temperatures measured, and vice versa. Relative

humidity is calculated from these data by referring to appropriate tables or graphs. The
easiest way, though, is to write a short computer program to make the calculations, as

described in this exercise. Approximations made by the equations and calculations are
assumed to be within measurement errors.

Problem Statement:

Develop an HP48G program to estimate ambient
relative humidity based on dry-bulb temperature and

wet-bulb temperature expressed on a Celsius scale. Design

the program so that no calculations will be made if
dry-bulb temperature is less than wet-bulb, or if dry-bulb
temperature is less than -10°C or greater than 40°C.

Symbol Definitions: Twb

 RH = relative humidity; dimensionless; %

Py,0 = Water vaporpartial pressure; mbar CALC RH
Pg, = water vapor partial pressure at Tdb; mbar

P,, = water vapor partial pressure at Twb; mbar
TK4 = dry bulb temperature; Kelvin = TC+273.16
TK,, = wet bulb temperature; K; = TC+273.16
TC, = wet bulb temperature; Celsius
TC, = wet bulb temperature; Celsius Flow Diagram

 0
150

Equations:

 RH=100 Pazo P.. =P .-0.674825 (TC..-TC= =) H20™* wb : (db wb)

db

: 314231

P,=antilog (28.59051-8.2LogTK, +0.00248TK, -)
db

314231
 P,=antilog (28.59051-8.2LogTK, +0.0024&TK, -)

wb

by substitution:

100(antilog (28.59051-8.2/ogTK, +0.0248 TK, - TX
314231
)10°-0.674825(TC,,-TC_,))

wb
 RH =

Solution:

Program: RH

<<1FIX TN

"ENTER Tdb:Twb

(degC)"
{ ":Tdb:m:Twb:" { 1
0} V } INPUT

OBJ» DUP2 'TW'

STO 'TD' STO 'TWT'

STO 'TDI' STO

273.16 DUP 'TDI'

STO+ 'TWI' STO+

IF 'TW>TD'

THEN R

END

IF 'TD<-10' 'TD>

40' OR

THEN R

antilog (28.59051-8.210gT'K,, +0.00248 TK,, -

END '100*(1000*
ALOG(28.59051-8.2*
LOG(TWI)+.00248*TWI
-3142.31/TWI)
-.674825*(TD-TW))/(
1000*ALOG(28.59051-
8.2*LOG(TDI)+.00248
*TDI-3142.3/TDI))
NUM TN TN CLLCD
"RH= "n SWAP + 7% +

2 DISP 2 WAIT CLEAR
TN "ANOTHER?" ""
INPUT
IF "Y" SAME
THEN RH
END { TW TD TWI
TDI } PURGE HALT>>

151

314231,

db

Program: R
<< TN TN CLLCD

"OUT OF RANGE" 2

DISP 2 WAIT CLLCD
RH>>

Program: TN

<<'12 START 2000 .1

BEEP NEXT>>

Run the Program

What is the approximate relative humidity when dry-bulb temperature is 25.2°C

and wet-bulb temperature is 18.9°C? What is it when dry-bulb temperature is 15.1°C and
wet-bulb temperature is 13.6°C?

Step Press

1. VAR, RH, 25.2, DC, 18.9, ENTER(read: "RH=54.8%"), «, Y, ENTER,

15.1, DC, 13.6, ENTER(read: "RH=84.8%"), , N

152

Sample Problem: Checks

Background

There are few jobs that provide so much aggravation as does the month-to-month

chore of balancing the household checkbook. Simple mistakes in recording checks and their
amountsin the register, forgotten entries and bad handwriting all add to the task. No wonder

so many people don't bother to do the arithmetic every pay period and just take their chances
with the bank. Nothing could make the job trouble-free and recreational, but the HP48G
makesit easier.

The program described here is designed first to ask for information in the check
statement and in the check register. In response to each on-screen prompt, each amountis

first keyed, then entered using ENTER. A zero is keyed and entered after the last entry has
been made for each category of information. This takes the program to the next set of data

entry requests. When all information has been entered, the program calculates important
features of the account, including the new balance, balance errors and other pertinent
information.

The program first asks for the bank's balance of the account. This amount is

commonly called the "current balance" or the "end balance". It is shown in the account

statement that comes with the package of returned checks at the end of the month. The

program next asks for each deposit for the period, then each returned check. The "returned
checks" are those your check register indicates you've written and which have been returned

by the bank. The program then asks for each outstanding check in this period, then each

outstanding checks from past balance periods. The "outstanding checks" are those your
check register indicates you've written, but which have not yet been returned by the bank.

The program asks finally for you to enter any service charges.

Problem Statement:

Construct a program to help reconcile the monthly checking account.

Symbol Definitions:

B = bank statement's "current balance" PO = sum ofpast outstanding checks
or "end balance" RC = sum of checks returned in this period

C = credit PB = prior balance (account balance
CB = calculated account balance at beginning of period)

for this period S = sum of service changes
E = balance error SD = sum of depositsin this period
NB = new check book balance SC = sum of checksin this period
OC = sum of outstanding checks SO = sum of outstanding checks

in this period

153

Equations:

C=SD+PB NB=C-RC-0OC-S SC=RC+OC+S

SO=0C+PO CB=PB+SD-RC+PO-S E=B-CB

Solution:

This solution uses data from the sample check register and bank statement shown on
the next page.

Step
1.

Press
VAR, CK, 328.12, ENTER, 150.37, ENTER, 12.16, ENTER, 29.34, ENTER,
126.95, ENTER, 714, ENTER, 0, ENTER, 10.23, ENTER, 54.16, ENTER,
87.56, ENTER, 487.10, ENTER, 5.85, ENTER, 13.13, ENTER, 2.45,
ENTER, 12.09, ENTER, 50.45, ENTER, 0, ENTER, 14.78, ENTER, 19.12,
ENTER, 2.45, ENTER, 50, ENTER, 60.17, ENTER, 0, ENTER, 10.08,
ENTER, 5.92, ENTER, 2.32, ENTER, 0, ENTER, 5, ENTER, 4, ENTER,
0, ENTER(read: "Bank Bal.=$328.12"), LS CONT (read: "Pr.Bal.=$150.37"),
LS CONT(read: "Tot.Dep.=$882.45"), LS CONT (read: "Cred=$1032.82"),
LS CONT (read: "Tot.Cks=$869.54"), LS CONT (read: "NewBal.=$163.28"),
LS CONT (read: "Tot.OC=$164.84"), LS CONT (read: "Cal.Bal=$328.12"),
LS CONT(read: "Bal.Err=$0.00"), LS CONT (read: "Begin Again?(Y/N)"),
o, N, ENTER (read: "Program Over")

154

 NEW BAL

Flow Diagram

Prog:CK
<<TN 2 FIX "Bank's
End Balance?" ":$:"
I'B' STO TN "Prior
Balance?" ":$:" 1
'PB' STO TN 0 'SD'
STO
DO TN "Deposit?"

":$:" IDUP N' STO
'SD' STO+
UNTIL N= =0'
END TN 0 'RC'
STO
DO TN

"Returned Check?"
":$." IDUP N' STO
'RC' STO+
UNTIL N= =0'
END TN 0'OC'
STO
DO TN

"Outst.Cks This
Pd?
":$:" 1 DUP N' STO

'OC' STO+
UNTIL N==0'
END TN 0 'PO'
STO
DO TN

"Past Outstanding
Checks?"
"$:"IDUP N' STO
'PO' STO+
UNTIL N==0'
END TN 0'S' STO
DO TN

"Service Charges?"
":$:"IDUP N' STO
'S' STO+
UNTIL N==0'
END TN TN
CLEAR
CLLCD "BkBal.=$"
B D "Pr.Bal.=$" PB
D "Tot.Dep.=$" SD

"Cred=$" 'SD+PB'
(NUM DUP 'C'

155

STOD
"Tot.Cks=$"
'RC+OC'(NUM
D "NewBal. =$"
'C-RC-OC'(NUM
D "Tot.OC=$"'OC+
PO' (NUM D
"Cal.Bal=$" 'PB+
SD-RC+PO'(NUM
DUP 'CB'STOD
"Bal.E=$" 'B-CB
'INUM DTN
"Begin

Again?(Y/N)"
"nn INPUT

IF"Y" SAME
THEN CK
END TN CLLCD
CLEAR
"PROGRAM
OVER" 2 DISP 1
WAIT { BPB SD
RCOCPOSCCB
CSN } PURGE

Program:D
<<+ HALT TN TN
CLEAR>>

Program: 1
<<INPUT OBIJ(>>

Program: TN
<<2500.15
BEEP>>

Note: "S" is
included in "RC"
for "SC", "NB" and
"CB".

B N B Budget National Bank

Checking Statement for Account No. 123456

Period: 6/12 to 7/13 Deposits 4 Checks 9

EB,Bont:niBal
HERS AE

Date: Amount

Jane and John Dough 6/15 1967 54
123 Fourth Street

Anywhere, USA 98765

Description ofTransaction Payment/Debit : Deposit Balance

09

92

3?

1

I)

18

16

56

b0JCHA 0

12

85

15

4s

00

45

00

00

09
17

45

L
O

y ball

dam's Jiu

S
l

r
o
l
e
d
S

oe
~
~

€

Sample Problem: Plant Density

Background

Plant populations, as well as those for animals, become established in a new

environment because of a balance between their rate of reproduction and the rate at which

individuals die. Evaluating the dynamics of the population requires considering each of

these rate functions and the differences between them. Although there are several ways to
approach problemslike these, one is to integrate numerically the known functions for gains
and losses in the population. This is a cumbersome and time consuming process with paper-

and-pencil, but direct, quick and simple with the HP48G, as demonstrated in this sample
problem for an exponential equation and for one with a power function.

Problem Statement

A species of annual plant was introduced to a test area of virgin forest to which it was

especially well-suited. The optimum rate at which individual plants will become established

is predicted by:

N,, = 2,000 e®Tpt

where:
N,,« = optimum number ofplants each year

T = time; years

It is unlikely, however, that the number of plants would become established at the
optimum rate. Some die each year from disease, others from insects, climatic damage and
related causes. How many plants actually survive is best estimated on the basis of samples
taken from the test area. Data in Table 1 indicate the estimated population of plants based

on sample data.

Time (years) Population

1 2797

2 3696

3 5351

4 8715

5 15305

157

Questions

What equation best predicts plant loss each year?
What would the population have been in 5 years had there been no losses?

How many plants were lost in the first 5 years?

Even with some losses, how many plants were there in 5 years?

How many plants were there during the period between 3 to 4 years?
How many plants were initially introduced to the forest?A

N
E
W

=

Solutions

I. Numerical Solutions (results shown in Table 2 and Figure 1)

A. Question 1

Thefirst step in determining the best-fit equation for how many plants were lost each
year is to determine how many were lost in the 5 year period for which there are data. The
number of plants lost each year is, of course, the difference between the optimum number
and the number that were actually in the test area, based on sample data (Table 1).
Calculating the number expected with an optimum growth rate could be done in several ways
with the HP48G. One way is to take advantage of the LS DEF operation, by:

Step Press

1. LS, MODES, FMT, 0 (zero), FIX, VAR, LS, EQUATION, «, «, N, O, P, T,
a, LS, (), a, T, RC, LS, =, 2000, *, LS, e, .5, *, «, T, RC, ENTER, LS,
DEF

2. 1,NOPT (read: "3,297"), 2, NOPT(read: "5,437"), 3, NOPT (read:"8,963"),
4, NOPT(read: "14,778"), 5, NOPT (read: "24,365")

Data are now available to determine how many plants were lost each year (Table 2).

Population

time (years) Optimum Sampled Lost

1 3297 2797 500

2 5437 3696 1741

3 8963 5351 3612

4 14778 8715 6063

5 24365 15305 9060
158

Using data in Table 2, the HP48G's curve-fitting functions can now be used to
determine the best-fit equation for predicting how many plants were lost each year:

Step Press
1. LS, MODES, FMT, 1 FIX, RS, STAT, (highlight "Fit data..."), OK, EDIT,1,

ENTER, 500, ENTER, DC, 2, ENTER, 1741, ENTER, 3, ENTER, 3612,

ENTER, 4, ENTER, 6063, ENTER, 5, ENTER, 9060, ENTER, ENTER,

(highlight "MODEL"), CHOOS, (highlight "Best Fit"), OK, OK, (read: "
'500.0*X"1.8'; Correlation 1.0")

The answer to Question 1 is the equation that best predicts the number of plants lost
each year (N,,) is:

N, =500T"*

B. Question 2

Obtaining an answer to Question 2 requires integrating the equation that predicts

optimum plant population growth rate as a function of time for the period from when the
plants were initially introduced until the end ofthe test period (5 years), thatis:

5

N= [@000 e® TdT
to

0

One way to do this is:

Step Press
1. RS, SYMBOLIC, ("Integrate..." is highlighted), OK, EDIT, 2000, *, LS, e*,

5S, *, a, T, ENTER, «, T, ENTER, 0 (zero), ENTER, 5, ENTER, CHOOS,
DC (to highlight "Numeric"), OK, DC, RC, (set "Fix 0"), OK, (read: "44,732")

An alternative strategy is:

(Hint: The symbol "[" is keyed using the RS function of the 2nd key, 3rd row.)

Step Press
1. LS, MODES, FMT, 0 (zero), FIX, LS, EQUATION, RS, |, 0 (zero), RC, 5,

RC, LS, (), 2000, *, LS, €*, .5, *, «, T, RC, RC, RC, a, T, ENTER, LS,

>NUM (read: "44,730")

159

C. Question 3

Getting the answer to Question 3 requires integrating as a function of time from zero
to S years the derived equation that best predicts plant loss rate, thatis:

5

N,, = [(500 T'*)dT
0

One way to do thisis:

Step Press
1. RS, SYMBOLIC, ("Integrate..." is highlighted), OK, NXT, RESET, DC, OK,

NXT, EDIT, 500, *, «, T,y*, 1.8, OK, «, T, ENTER, 0 (zero), ENTER, 5,
ENTER, CHOOS, DC, OK, DC, CHOOS,(highlight "Fixed"), OK, OK (read:
"16,173"

An alternative strategy is:

Step Press

1. LS EQUATION,RS, [, 0 (zero), RC, 5, RC, LS, (), 500, *, a, T, y*, 1.8, RC,

RC, RC, «, T, ENTER, LS, >NUM (read: "16, 173")

D. Question 4

The answer to Question 4 is obtained by integrating as a function of time from zero
to 5 years the difference between the equation that predicts the optimum number ofplants
and the one that predicts plant loss. To determine the number of surviving plants (N,_.):

5

N,., = [(2000 e357 - 500 71%)ar
0

One way to do this is to follow analogous Step/Press operations described for the
solutions to Questions 2 and 3. Another way, of course,is to follow analogous operations
described for the alternative solutions to these problems. For Questions 4, the solution is:
28,559.

E. Question 5

The answer to Question 5 comes from integrating as a function of time from 3 to 4

years the difference between the equation that predicts optimum plant population growth and

160

the one that predicts plantloss,thatis:

4

N = [(2000 ¢°* 7 - 500 T!®)aT
surv

3

One way to do this is to follow analogous Step/Press operations described for the

solutions to Questions 2 and 3. Another way, of course,is to follow analogous operations

described for the alternative solutions to these problems. For Questions 5, the solution is:
6,838.

F. Question 6

The answer to Question 6 is revealed in the equation that predicts optimum plant

population growth. It is the number by which the exponential function is multiplied, 2,000.

Data for this sample problem are shown graphically in Figure 1.

Figure 1

Legend : ; /

——— opimum : : : /
-——=- sampled : : Ly,

N
u
m
b
e
r
o
f
P
l
a
n
t
s

\

-—-—--
Time (years)

Figure 1

161

II. Graphical Solutions

(Reminder: The function "CANCL" is activated by the key "F" under the view

window. The function "CANCEL" is activated by pressing the "ON" key.
Differences between answers obtained numerically and graphically are due to

imprecision in coordinate selection and rounding.)

For Question No. 2:

A. Write the Equation

Step Press

1. LS EQUATION, 2000, *, LS, e*, .5, *, «, T, RC, ENTER

2. a, T, STO

B. Construct the Graphic

Step Press
1. LS, MODES, FMT, 2, FIX, RS, PLOT ("EQ:" is highlighted), CHOOS

(highlight "T"), OK, DC (to highlight "INDEP:"), a, T, ENTER (:H-view"is
highlighted), 0 (zero), ENTER, 6, ENTER, RC, 0 (zero), ENTER, 30000,
ENTER(see Figure 2), ERASE, DRAW, DC (until abscissa is seen; see Figure
3) |

H-VIEW: B
— AUTOSCALE Y-VIEW: @ ANA ETTE RHIEIEERIIEGE LEE EGACT

Figure 2 Figure 3 Figure 4

EPR ACIS | EDIT ELIE

2. TRACE, (X,Y), LC (until "T:0"), NXT, FCN, AREA, NXT, PICT, TRACE.
(X,Y), RC (until "T:4.98"), NXT, FCN, AREA (read: "AREA:44,356.57")

3. (to see area of integration), NXT, SHADE, DC (until abscissa is seen; see
Figure 4), CANCL, ERASE, CANCEL (read: "Area: 44356.57)

162

For Question No. 3:

A. Write the Equation

Step Press

1. LS EQUATION, 500, *, a, T, y*, 1.8, RC, ENTER
2. aL, STO

B. Construct the Graphic

Step Press
1. LS, MODES, FMT, 2, FIX, RS, PLOT ("EQ:" is highlighted), CHOOS

(highlight "L"), OK, DC (to highlight "INDEP:"), a, T, ENTER (:H-view"is

highlighted), 0 (zero), ENTER, 6, ENTER, RC, 0 (zero), ENTER, 30000,
ENTER(see Figure 5), ERASE, DRAW, DC (until abscissa is seen; see Figure

EQ:
INDEP: T H-YIEW: B
_AUTOSCALE VY-VIEW: @ 364...

CE] FCN | EDIT [CANCL

Figure § Figure 6

2. TRACE, (X,Y), LC (until "T:0"), NXT, FCN, AREA, NXT, PICT, TRACE,

(X,Y), RC (until "T:4.98"), NXT, FCN, AREA (read: "AREA:16,039.12)

3. (to see area of integration), NXT, SHADE, DC (until abscissa is seen; see
Figure 7), CANCL, ERASE, CANCEL (read: "Area: 16039.12")

For Question No. 4

A. Write the Equation

Step Press
1. LS EQUATION, 2000, * LS, &*, .5, *, «, T, RC, -, 500, *, «, T, y%, 1.8, RC,

ENTER

2. a,TL, a, STO

163

B. Construct the Graphic

Step
1.

: 'ZRaasESRC ST —-..,
NDEP: T N-VIEW: B
_AUTOSCALE Y-VIEW: @

Press

LS, MODES, FMT, 2, FIX, RS, PLOT ("EQ:" is highlighted), CHOOS
(highlight "TL"), OK, DC (to highlight "INDEP:"), a, T, ENTER (:H-view"
is highlighted), 0 (zero), ENTER, 6, ENTER, RC, 0 (zero), ENTER, 30000,
ENTER(see Figure 8), ERASE, DRAW, DC (until abscissa is seen; see Figure

TRE AGEREATTE

Figure 9 Figure 10

2. TRACE, (X,Y), LC (until "T:0"), NXT, FCN, AREA, NXT, PICT, TRACE,

3.

(X,Y), RC (until "T:4.98"), NXT, FCN, AREA (read: "AREA:28,317.45")

(to see area of integration), NXT, SHADE, DC (until abscissa is seen; see
Figure 10), CANCL, ERASE, CANCEL (read" "Area: 28317.45")

For Question No. 5

Step
1.

Press

LS, MODES, FMT, 2, FIX, RS, PLOT ("EQ:" is highlighted), CHOOS
(highlight "TL"), OK, DC (to highlight "INDEP:"), a, T, ENTER (:H-view"
is highlighted), 0 (zero), ENTER, 6, ENTER, RC, 0 (zero), ENTER, 30000,

ENTER(see Figure 8), ERASE, DRAW, DC (until abscissa is seen; see Figure

9

TRACE, (X,Y), LC (until "T:3.00"), NXT, FCN, AREA, NXT, PICT, TRACE,
(X,Y), RC (until "T:3.97"), NXT, FCN, AREA (read: "AREA:6,572.62")

(to see area of integration), NXT, SHADE, DC (until abscissa is seen; see
Figure 11), CANCL, ERASE, CANCEL (read: "Area: 6572.62")

164

To see area of integration in a different way:

Step Press
LS, MODES, FMT, 2, FIX, RS, PLOT ("EQ:" is highlighted), CHOOS
(highlight "T"), v/'CHK, (highlight "L"), v/'CHK, OK, DC (to highlight
"INDEP:"), a, T, ENTER (:H-view" is highlighted), 0 (zero), ENTER, 6,
ENTER, RC, 0 (zero), ENTER, 30000, ENTER.(see Figure 2), ERASE,
DRAW, DC (until abscissa is seen), TRACE, (X,Y), LC (until "T:3.00"),

NXT, FCN, AREA, NXT, PICT, TRACE, (X,Y), RC (until "T:3.97"), NXT,
FCN, AREA, NXT, SHADE(see Figure 12), CANCL, ERASE, CANCEL.

 ITCRA EIT200M

Figure 11 Figure 12

165

Sample Problem: Tumor Treatment

Background

Analyzing rates at which phenomena change is a common requirement for many

problems in engineering, medicine, business and other enterprises. Although valuable,

differentiating a function to evaluateits rate of change all too often requires drawing from
techniques only temporarily learned in half-remembered calculus lessons. The HP48G can
help. Its built-in rules handle differentiation for many functions, one of which is
demonstrated in this sample problem.

Problem Statement

An otherwise healthy person was found to have a benign tumor. Its mass was about
100 grams when it was first detected. Biopsy data showed the growth to be a type known

to respond well to a combination of radiation and chemotherapeutic treatments. Its change
in size with treatment is predicted by:

(30-7)M, = Se

8

where:

M; = tumor mass at time, T; grams

T = time; weeks

Questions

1. Construct a table that shows how tumor mass changes as a function of time after

treatment begins.

2. Derive an equation that predicts for any time during treatment the rate at which the
tumor is expected to shrink.

3. When after treatment begins with the tumor be approximately one half its mass
when it was first detected?

4. Treatments can be reduced one the rate oftumor shrinkage had fallen below about
3 grams per week. When can the person look forward to receiving reduced

treatment?
5. When can the person be predicted to be free of the tumor assuming the response

to treatment has been as effective as in the past?

166

Solutions

I. Numerical Solutions

(Hint: Solutions are shown in Table 1 and Figure 1)

A. Question 1

To answer Question 1, solve the equation that predicts tumor size with treatment for

different periods of time. Working in a new (empty) subdirectory, one way to do thisis:

Step Press
1. RS, MODES, RC, 1, ENTER, OK, RS, SOLVE, ("Solve equation..." is

highlighted), OK, EDIT, «, «,M, T, LS, =LS, (), 30, -, T, «, RC, y*, 2,
+, 8, OK, DC, 0 (zero), ENTER, DC, SOLVE (read: "112.5"), DC, 3, ENTER,
DC, SOLVE (read: "91.1"), DC, 6, ENTER, DC, SOLVE (read: "72"),
(continue solutions at 3 week intervals; see Table 1), CANCEL

An alternative solution is:

Step Press

1. LS, EQUATION, a, x, M,T,LS,(),T, «,RC,LS,=,LS,(),30-, «,T,

RC, v5, 2, RC, +, 8, ENTER, LS, DEF
2. 0 (zero), MT (read: "112.5"), 3, MT (read: "91.1"), 6, MT (read: "72.0"),

(continue solutions at 3 week intervals; see Table 1)

B. Question 2

The answer to Question 2 is obtained by differentiating the function that predicts

tumor mass with treatment for different periods of time. One way to do thisis:

Step Press
1. LS, MODES, FMT, 2, FIX, RS, SYMBOLIC, DC (to highlight

"Differentiate..."), OK, EDIT, «, «, M, T, LS, =LS, (), 30, -, T, a, RC,
y%, 2, RC, +, 8, OK ("VAR"is highlighted), «, T, ENTER, ("Symbolic" is

highlighted), CHOOS, DC, OK, DC, 0 (zero), ENTER, OK (read: "7.50"), RS,

SYMBOLIC, DC, OK, DC, «, T, ENTER, DC, DC, DC, CHOOS, DC, OK,
DC, 3, ENTER, OK (read: "6.75"), (continue solutions at 3 week intervals; see

Table 1)

167

An alternative solution is first to expand the equation by:

M, = (30-T)%8

= (30-T)(30-T)/8
(900-60T+T?)/8
112.5-7.5T+0.125T2

then differentiate the last expression by (working in a new (empty) subdirectory with

no variable defined as "T" in the HOME directory):

(Hint: The symbol "8" is obtained by the RS function of the 1st key, 2nd row. To

see the full expression after each of the following steps, press LS DEF, then ENTER

before executing the next step.)

Step
1.

n
h
w
b
n

Press
LS, MODES, FMT,3, FIX, LS, EQUATION, RS, 6, «, T, RC, 112.5, -, 7.5,
* oo, T, +, 125, *, «, T, y*, 2, RC, ENTER (read: " '6T(112.500-
7.500*T+.125*T"2)" "
EVAL (read:" '6T(112.500-7.500*T)+8T(0.125*T"2)' ")
EVAL (read: " '-8T(7.500*T)+0.125*8 T(T"2)' ")
EVAL (read: "' -(7.500*8 T(T))+0.125*(d T(T)*2*T~(2-1))' ")
EVAL (read: "'-7.500+0.125*(2*T)' ")

The last expression is equivalent to: "0.25T-7.5:. This reveals that the rate of change
of the tumor (S; grams per week) with treatment is predicted by:

§ = 0.250T-7.5

and is solved by:

Step Press
1. LS, EQUATION, «,S,LS,(), «, T,RC,LS,=, 25, *«,T,- 7.5, ENTER,

2.

LS, DEF
0 (zero), S (read: "-7.500"), 3, S (read: "-6.750)", (continue calculating "S" at

3 week intervals; see Table 1)

(Hint: The minus sign indicates that "S" is decreasing.)

C. Question 3 Calculated data show the tumor will be half its original size just before about

9 weeks of treatment.

168

D. Question 4: Calculated data show that therapy can be reduced after about 18 weeks.

E. Question 5: Calculated data predict that the tumor will be gone after about 30 weeks of

treatment.

Time (weeks) Tumor Size (grams) Growth Rate (g/wk)

0 112.5 -7.50

3 91.1 -6.75

6 72.0 -6.00

9 55.1 -5.25

12 40.5 -4.50

15 28.1 -3.75

18 18.0 -3.00

21 10.1 -2.25

24 4.5 -1.50

27 1.1 -0.75

30 0.0 0.0

Figure 1
Tumor Treatment

20 mpieeeseeeps—0
1 Legend oT

Neen ——= Mess(® |...ALis—_-—
1004rrr ——==- Shrinkage (WK) |..............ae”SSR

ooBNa—.2 ?

2 80rrrNII5

3 IN + g
= ood)SUeeece ©
x * NO 2
5 FEJoi-

eresTN£

-” Sa =

tt7

° [; r ; , : : Se- a)
° 3 ® ® 12 18 1 21 24 27 30

Time (weeks)

Figure 1

169

II. Graphical Solutions

A. Construct Equation

Step ress

1 LS, EQUATION,LS, (), 30, -, a, T, RC, ¥%, 2, RC, +, 8, ENTER
2. Sa,a,MT, eaSTO

B. Plot Data for Tumor Mass

Step Press
1. RS, PLOT ("EQ:" is highlighted), CHOOS, om——

(highlight "MT:'(30-T)*2..."), OK, DC (to Tee: 8FortinDeg

highlight: "INDEP:"), a, T, ENTER ("H- |uper: T

=

H-view: 8 20

view" is highlighted), 0 (zero), ENTER, 30, |-AUTOSCALE ¥-VIEW: © 120

ENTER, RC (to highlight: "V-view"), 0

(zero), ENTER, 120, ENTER(see Figure 2),

ERASE, DRAW
2. TRACE, (X,Y) (see Figure 3)

Figure 2

 (Hint: Use LC or RC to move cursor to a position
on the curve to show corresponding X (time; weeks)

and Y (tumor size; grams) coordinates. For
example, when "T:9.00", read: "Y:55.13"), and }
when "T:15.00", read: "Y:28.13" Check F.q00 v: 5513
graphically derived data with those in Table 1.) Figure 3

3. CANCEL, CANCEL

C. Plot Data for Tumor Growth Rate

(Hint: The function "F ' " shows the first derivative of the selected equation.)

Step Press
1. RS, PLOT (set "EQ:' (30-T)"2/8' "), DRAW,

FCN, NXT, F', (use the key "F" under the
view window for:) CANCL (set "V-view: 0

(zero) -8"; (use "8, +/-, ENTER to construct

"-8"), (do not press ERASE), DRAW (see
derivative function), TRACE, (X,Y) (see Figure 4

Figure 4)

170

(Hint: Use UC,if necessary, to position the cursor on the straight line representing
the derivative function. To determine when the tumor growth rate has fallen to below

about 3 grams per week (Question 4), use LC and/or RC to position cursor on "Y:-
3.00" (read: "T: 18.00"))

2. CANCEL, CANCEL (to return to view window)

171

Sample Problem: Useful Statistics

Background

Calculating basic statistics for a set of data is a commonplace enough operation, but

it is sometimes cumbersome and time consuming. The HP48G has a numberoffacilities to

make such calculations quickly and display them in a customized fashion. It is always

possible just to use the RS STAT operations, but it is more convenient to write a program to

calculate the most often used statistics and conveniently display their solutions.
The sample program described here first asks how many digits to the right of the

decimal the user requires, then asks for data entries one at a time in an indefinite series.

After the last entry has been made, entering a zero initializes data calculation and display.
There are a couple of ways to avoid problems with the program if one or more data to be

evaluated are, in fact, equal to zero. One solution is to enter a number that is small enough

not to introduce an error into the statistical calculation. For example, if a data series is,

"...25.4, 56.2, 10.5, 0.0...", entering "0.0001" instead of zero allows continuing with data

entry. Another solution is to rewrite the program so that some other entry signals

the end of the data entry phase.

Problem Statement

Write a program that automatically calculates and displays the total, average, standard
deviation, standard error and the number of entries in a series of data of indefinite length.
Configure the program so that an entry of zero ends the data entry phase and begins
calculations and display.

Solution

Program:STATS TOT "Total=" SWAP + ccccomeeeee

<< CLZ TN "decimal?" 2 DISP MEAN
"digits to right." "Mean=" SWAP + 3 Program: TN1
INPUT OBJ» FIX DISP SDEV DUP 'SD' << 1500 .1 BEEP >>
CLEAR REQ >> STO "SDev="SWAP + —cccemmeeee-
meme 4 DISP NZ 'T' STO' Program TN
Program REQ SDA(T-1)' >NUM << 1000 .1 BEEP>>
<< TN1 "Entry?" "SErr=" SWAP + §
":N:" INPUT OBJ» DISP 0 FIX NX "N="
N' STO SWAP + 6 DISP 0
IF 'N=0' WAIT CLEAR { SDTN
THENN Z+ REQ 2DAT } PURGE 2 FIX
ELSE TN TN CLLCD END >>

172

Run the Program

Calculate the total, mean, standard deviation, eT
standard error and N for the following data: 24.52, 12.85, DECMAL
45.87, 19.64, 22.71, 17.00, and 12.19. Show answers with

two digits to the right of the decimal.

Step Press
1. VAR, STATS, 2, ENTER, 24.52, ENTER,

12.85, ENTER, 45.87, ENTER, 19.64,
ENTER, 22.71, ENTER, 17, ENTER, 12.19,

ENTER, 0 (zero), ENTER Flow Diagram

read:

173

Sample Problem: Automatic Curve Fitting

Background

Determining which one of a series of equations best-fits a set of data can be an
important first step in analyzing functional relationships between independent and dependent

variables, and for providing important insight into phenomena. Prior to technology like that
available in the HP48G, curve-fitting was a laborious and time consuming process that often
cost many hours in pursuing false leads. Even with the HP48G's impressive statistical library

and built-in programs for curve-fitting data, it still takes time and a good memory to
remember which buttons to press first in the complicated sequence required for data entry,

model choice and final calculation. Unless these operations are performed frequently, it's
easy to forget what comes nextin the calculation process.

The program described in this section is designed to make curve-fitting with the
HP48G rapid, accurate and easy fortrying different data models. It also demonstrates some

useful programming strategies, like automatic entry of data into the statistical matrix table,
and constructing "keyboard-sensitive" operations so that just pressing a selected key triggers
the next series of operations. The program also shows how data entry is automatically tallied

and how program flow is controlled by information generated within the program itself.
Most importantly, though, the program is practical, easy-to-use and flexible for the user who

needs to curve-fit different sets of data. Instructions for data entry are explicit so that even
the infrequent user can operate the program with ease.

Problem Statement

Construct a program for the HP48G that provides automatic curve-fitting of entered
data. Design the program so thatit:

1. requests the number of digits to the right of the decimal for answer displays,
2. requests the number of X,Y pairs in the data set,

3. requests data with identifying pairs of numbers, for example "...X1...Y]1...
X2...Y2..." etc.

4. automatically constructs arrays in the statistical registers,
5. calculates and displays the intercept, slope and correlation coefficient for a

selected model once all data pairs have been entered,
6. allows additional model testing with the same data, and
7. allows entry ofnew data for additionaltests.

174

Program: CURV
<<1'T'STO CLZ
CLLCD TN
"No. of digits for

answer display?"

":N:" INPUT OBJ>
'D' STO TN
"No. ofX,Y pairs??"
":N:" INPUT OBJ»
'N' STO REQ >>

Program: REQ
<< JF N=+T-1'
THEN 0 FIX TN

"Enter X" T + ""
INPUT OBJ> TN
"Enter Y" T + ""
INPUT OBJ> 2 >ARRY
2+ 1'T'STO+ REQ
ELSE CALC
END >>

Program: CALC
<<D FIX CLLCD TN
"Key Number for model:
1 . Linear

2. Logarithmic
3 . Exponential
4. Power"

DUP 1 DISP 7 FREEZE

0 WAIT 'C' STO
CLLCD

DISP 2 DISP CORR"r="

CASE C 82.1 SAME
THEN LINFIT
END C 83.1 SAME

THEN LOGFIT

END C 84.1 SAME

THEN EXPFIT

END C 72.1 SAME

THEN PWRFIT
END

END TN TN LR 3

SWAP + 4 DISP

(any key to con't)"

6 DISP 0 WAIT TN
"ANOTHER MODEL FOR
SAME DATA?(Y/N)"
"" INPUT OBJ>"A'
STO
IF A'Y' SAME
THEN CALC
ELSE TN
"NEW DATA(Y/N)?" ""
INPUT OBJ>'A' STO

IF A'Y' SAME
THEN CURV
END { ZPARXDAT

DNCTA } PURGE
TN CLLCD
" END OF CURVE FIT"
4 DISP 1 WAIT CLEAR
TN TN
END >>

Program: TN
<< 1500 .1 BEEP >>

Run the Program

Determine the form of the equation that best-fits data in Table 1.

Observation X Y

1 5.93 4.06

2 1.25 12.26

3 3.01 6.57

4 8.45 3.16

5 0.98 14.57

175

Solution

Step Press
1. VAR, CURVY,4, ENTER, 5, ENTER, 5.93, ENTER, 4.06, ENTER, 1.25,

ENTER, 12.26, ENTER, 3.01, ENTER, 6.57, ENTER, 8.45, ENTER, 3.16,
ENTER, .98, ENTER, 14.57, ENTER (read: (see Figure 1)), 1 (read: (see

Figure 2)), (any key), «, Y, ENTER, 2 (read: (see Figure 3)), (any key), «, Y,
ENTER, 3 (read: (see Figure 4)), (any key), «, Y, ENTER, 4 (read: (see

Figure 5)), «, N, ENTER, «, N, ENTER

ey Number for model:
tIntercept: 13.7711

1. Linear Slope: -1.4391
. Logarithmic -8.9132
. Exponential
. Power (any key to con't)

Figure 1 Figure 2

st Intercept: 13.6522 tIntercept: 15.0945
:Slopes B 2Pel : Slope! 50-2014

Canny key to con't) (any key to con't)
Figure 3 Figure 4

The best-fit model for the test data : Intercept: 14,3620
is the power function: Slope: an 7896

=-1.

(any key to con't)
Y = 1436X7%7}

Figure §

176

CURV MODEL

No. of Calculate

digits? model

No. of

X,Y pairs?

data for

model

 ><
J
e

We
el

fee
l.

J
R
E

— ©

construct

array end of

curve-fit

Flow Diagram

177

Chapter 9

File Transfer and Printing

(Hint: The designation "HP48" in this section refers to the HP48S/SX and

HP48G/GX machines. Transferring files out of and into an HP48 requires a "serial

interface cable" and the software that comes with it in the model HP82208A or

HP82208C Serial Interface Kit. Other programs in this software allow for graphic
conversion, graphics printing, and provide a calendar function, stopwatch operations
and other utilities. Complete instructions are in the "README.TXT" file of the

program disks.)

The HP48 has comparatively large RAM storage. This allows keeping many programs

in the machine,either in the HOME directory, or in any one of a number of subdirectories.
There are times, however, when one or more programs are more conveniently stored outside
the HP48 in the hard drive of a tabletop computer, on a 5%4" or 3/2" disk, on tape, or on some

other storage device. This requires initially transferring files from the HP48 through an
IBM-compatible tabletop computer to whatever storage device is used. When the files need
to be used again in the HP48, they must be transferred back through an IBM-compatible

computer.
Besides transferring files to a storage device outside the HP48, it may also be

necessary to transfer files between HP48 machines. This enables others to use programs
you've developed, and gives you access to theirs. Fortunately, procedures for file transfer
between storage media and between other HP48's are relatively straightforward, but a
number of steps need to be taken in a precise order, and a number of conditions must be
satisfied for both the HP48 and for the tabletop computer. This chapter describes the basics
for file transfer and gives examples for them.

In addition to transferring files for storage or for use in other HP48's,it is often useful

to get a print ofthe HP48 view window. Displays of graphs, interim calculations, program
instructions and other view window configurations are easily transferred for printing using
an IBM-compatible computer and the serial interface cable. The procedures described in this
chapter for making prints of HP48 displays refer to tools available in the "HP Display
Grabber" program that comes with the software for the model HP82208C serial interface

cable.
The first step in the process of obtaining a print is to import a copy of the HP48 view

window so it is seen on the monitor display of the IBM-compatible computer. The second
step is to save the display either as a ".BMP" or ".TIFF" file. The last step is to use this file
with appropriate word processing or other appropriate programs to make prints of it.

178

Instructions in this chapter describe how to obtain these prints using either the HP48G/GX,
or HP48S/SX machines. Instructions are written with the assumption thatthe:

1. HP-48 series PC serial link for IBM-compatible PCs software (82208C) software
has been installed,

2. the IBM-compatible computer is running under WINDOWS. ver. 3.1. with the
"HP48 Display Grabber" installed.

2. serial interface cable is connected to an IBM-compatible computer and to an
HP48G/GX or HP48S/SX.

(Hint: Instructions for the installations at Steps 1 and 2 are in the software that comes
with the serial interface cable.)

Section 9.1. File Transfer Operations

Section 9.1.1. Installing the Software

Transferring HP48 files requires that the serial interface software be installed on the

hard disk of the tabletop computer. Afterits installation, you provide the instructions so that

these files can interact with those that are built-in to the HP48. To install the program that

comes with the "serial interface kit" in the tabletop computer:

1. Insert the software disk (or a backup copy of it) into a drive with matching size in
the tabletop computer.

(Hint: Complete the following steps from the DOS display of the computer's "C:"

drive, through the "File Manager" display in WINDOWS (ver. 3.1) or through the
"MS-DOS PROMPT" facility available in WINDOWS.)

2. If the DOS display is used, at the "C:\>" prompt, log to the drive that has the

program disk inserted into it and type "SETUP C:". For example, if the "serial
interface" software disk is in Drive A, read: "A:SETUP C:". Press ENTER and
follow screen instructions. Files will be copied from the software disk to a

subdirectory on the hard disk called, "SERIAL" if the HP82208A program is used,

or "LINK48" if the HP82208C program is used.

179

Section 9.1.2. File Transfer from the HP48G to a Tabletop Computer

A. For the IBM-compatible computer:

A.1. Turn off the tabletop computer and the HP48G. Connect the serial interface

cable to the HP48G and to the serial connection on the tabletop computer.

A.2. Turn on the tabletop computer. If the HP82208A program is used, go to the

"C:\>" display on the monitor ofthe tabletop computer and type, "CD SERIAL"

(read, "C:\>CD SERIAL") and press ENTER (read, "C:\SERIAL>"). If the
HP82208C program is used, go to the "C:\>" display on the monitor of the

tabletop computer and type, "CD LINK48 (read, "C:\>CD LINK48") and press
ENTER (read, "C:\LINK48>")

A.3. Type "KERMIT" (read, "C:\SERIAL>KERMIT"or read,
"C:\LINK48>KERMIT"), press ENTER (read, "Kermit-MS>").

A.4. Type "SET PORT 1" (read, "Kermit-MS>SET PORT 1)"), press ENTER

(read, "Kermit-MS>").

A.5. Type "SET BAUD 9600" (read, "Kermit-MS>SET BAUD 9600"), press

ENTER (read, "Kermit-MS>").

A.6. Type "RECEIVE" (read, "Kermit-MS>RECEIVE), press ENTER and read:

File Name:
KBytes transferred:

Receiving: In progress
Number of packets: 0

Packet length:
Number ofretries: 0

Last error:

Last message:
(Hint: The count for the "Number ofretries" will automatically increase until

successful file transfer begins. This phase may self-terminate to display

"Kermit-MS" at the bottom of the monitor. If so, after completing Steps B.1.
to B.7., repeat Step A.6., before continuing with Step B.8.)

180

B. For the HP48G:

B.1. Turn on the HP48G.

B.2. Press: RS, I/O.

B.3. Highlight "Transfer.." (see display below at left), press "OK" (see display below

at right).

DR% TRANSFER
t HojSend to HP 48. PORT: Wire TYPE: Kermit

: |Get from HP 48 NAME:
: |Print display FMT: ASC HLAT: Newl CHK: 3
: |Print.. BAUD: O60@ PARITY: None _OVRW

1: Transfer.

B.4. If necessary, set screen values to: PORT: Wire; TYPE: Kermit; FMT: ASC;
XLAT: Newl; CHK: 3; BAUD: 9600; Parity: None.

B.5. Select name(s) offiles to be transferred by: highlight "NAME.:", press CHOOS

B.6. Highlight "Local vars", press "OK".

B.7. Highlight directory/file name(s), press " v"CHK"for each, press "OK".

B.8. If necessary, repeat Step A.6., then press "SEND". Wait for file transfer to be
completed. Successful transfer places file(s) in either "C:\SERIAL" or in
"C:\LINK48".

(Hints: 1. Continue at Step A.6. to transfer additionalfiles. 2. To exit Kermit, at

Step A.6. type "EXIT" (read, "Kermit-MS>EXIT"), the press ENTER (read,

"C:\SERIAL>" or "C:\LINK48").

Keep a careful record of all files that were transferred from the HP48G to
"C:\SERIAL" or "C:\LINK48" in the tabletop computer. They can now be moved or copied
into most word processing programs to be configured for inclusion in a document, printed,

or manipulated in other ways. Be careful, of course, not to remove any files from
"C\SERIAL" OR "C:\LINK48" other than the ones transferred from the HP48G. This would

adversely affect the integrity of the SERIAL or LINK48 subdirectories. If this happens, the

remedy is either to copy the missing files back again, or reload the "serial interface"
software, as described in Section 9.1.1.

181

Notall characters used in HP48 programs will be transferred accurately. For example,

symbols like" << >>" " < "," >" among others will not transfer in these forms. The

solution is easy. Use your word processing program to erase the incorrect symbols and

figures, and insert the ones you need. Careful proofreading is essential, of course.

Section 9.1.3. File Transfer from a Tabletop Computer to the HP48G

One advantage of storing programs and data files produced by the HP48G on floppy

disks is it provides a library ofvirtually unlimited size. Another advantage is that these files
can now be more easily used by others, as well as inserted into documents and used in other

similar ways. Not the least advantage is that RAM storage in the HP48G itself is available
for other programs and use. Using the disk-stored programs once again in the HP48G,
however, requires they be copied back into the machine through a tabletop computer. The
procedureis just as straightforward as copying programsto the disk.

(Hint: Use all capital letters for entering file names)

A. For the IBM-compatible Computer

A.1. Complete steps A.1. to A.S. in Section 9.1.2.

A.2. At Step A.6. in Section 9.1.2., instead of "RECEIVE", type "SEND" (read,

"Kermit-MS>SEND"), press ENTER(read, "Local Source File:")

A.3. Using all capital letters, type the name of the file in "C:\SERIAL" or

"C:\LINK48" to be transferred, press ENTER(read, "Remote Destination File:).

A4. Using all capital letters, type the name ofthe file to be transferred, press ENTER,
read:

File Name:

KBytes transferred:
Sending: In progress

Number of packets: 0
Packet length: (read size offile)

Number of retries: 0
Last error:

Last message:
182

(Hint: The count for the "Number of retries" will automatically increase until
successful file transfer begins. This phase may self-terminate to display "Kermit-
MS" at the bottom of the monitor. If so, complete Steps B.1. to B.4. in this

section, then begin again at Step A. 1. in this section.)

B. For the HP48G

B.1. Tum on the HP48G, then go to the subdirectory into which transferred files will
be stored.

B.2. Press: RS, I/O

B.3. Highlight "Transfer...", press "OK".

B.4. If necessary, set screen values to: PORT: Wire; TYPE: Kermit; FMT: ASC;

XLAT: Newl; CHK: 3; BAUD: 9600; Parity: None.

B.S. Press "RECV", wait for file transfer process to complete.

B.6. Press "CANCEL" to exit "I/O" (read name of transferred file in VAR menu).

(Hint: To transfer anotherfile, begin at Step A.1. in this section.)

Section 9.1.4. File Transfer Between HP48Gs

The procedures for transferring files and programs from one HP48G to another is
similar to those for sending information back and forth between an HP48G and a tabletop
computer, but it is much simpler. The process still requires configuring and arranging both

machines so they can communicate, but there are far fewer keystrokes.

A. For the HP48 Source

A.1. Turn on the HP48G and go to the subdirectory that contains the files to be
transferred.

A.2. Press RS, I/O, highlight "Send to HP48G...", press "OK", then "CHOOS" to

select files.

A.3. Highlight each file to be transferred and indicate its selection by pressing
"v/CHK". Press "OK".

183

B. For the HP48G Recipient

B.1. Create and enter a subdirectory into which imported files will be stored.

B.2. Press RS, I/O and highlight "Get from HP48". Do not press "OK" at this time.

C. To Complete the File Transfer

C.1. Place the source and recipient HP48Gs head-to-head about an inch or so apart,
aligning them at their small arrows molded into the thin upper edge of each case.

C.2. Press "OK" on the HP48Grecipient, then press "SEND" on the HP48G source.
Wait for the file transfer process to be completed. Seeing the file names appear
in the originally empty subdirectory of the HP48G recipient indicates successful
file transfer.

Section 9.1.5. File Transfer Between HP48S/SX and HP48G/GX

I. From an HP48S/SX to an HP48G

A. For the HP48S/SX

A.1. Turn the HP48S/SX on and go to the subdirectory that contains the files to be
transferred.

A2. Press LS, { }. Using the white keys under the view window, select the files to

be transferred, then press ENTER.

A.3. Press LS, I/O, SETUP. Using the white keys, configure the view window to

indicate:

I/O setup menu

IR/wire: IR

ASClII/binary: binary
baud: 9600

parity: none 0

checksum type: 3

translate code: 1

A.4. Press, LS, I/O

184

B. For the HP48G/GX

B.1. Create and enter a subdirectory into which files will be stored.

B.2. Press RS, I/O, highlight "Get from HP48". Do not press "OK"at this time.

C. To Complete File Transfer

C.1. Place the source and recipient HP48Gs head-to-head about an inch or so apart,
aligning them at their small arrows molded into the thin upper edge of each case.

C.2. Press "SEND" on the HP48S/SX, then press "OK" on the HP48G/GX. Wait for
the file transfer process to be completed.

II. File Transfer from an HP48G/GX to an HP48S/SX

A. For the HP48G/GX

A.1. Turn on the HP48G/GX and go to the subdirectory that contains the files to be
transferred.

A.2. Press RS, I/O, highlight "Send to HP48G...", press "OK", then "CHOOS" to

select files.

A.3. Highlight each file to be transferred and indicate its selection by pressing
"CHK". Press "OK".

B. For the HP48S/SX

B.1. Create and enter a subdirectory into which files will be stored.

 B.2. Press LS, I/O, SETUP. Using the white
keys, configure the view window to appear I/O setup menu
as shown at the right: IR/wire: IR

ASClIl/binary: binary

baud: 9600

parity: none 0
checksum type: 3

translate code: 1
185

C. To Complete the File Transfer

C.1. Place the source and recipient HP48s head-to-head about an inch or so apart,

aligning them at their small arrows molded into the thin upper edge ofeach case.

C.2. Press "SEND" on the HP48G/GX, then press "RECV" on the HP48S/SX. Wait

for file transfer process to be completed. Press VAR on the HP48S to see the

new files.

Section 9.1.6. File Transfer Between HP48S/SXs

A. For the HP48S/SX Source:

A.1. Turn on the HP48S/SX and go to the subdirectory that contains the files to be
transferred.

A.2. Press LS, I/O, Setup and configure the view window to appear as shown on the
right, then press: LS, I/O.

B. For the HP48S/SX Recipient: I/O setup menu
IR/wire: IR

B.1. Create and enter a subdirectory into which ASCIDbinary: binary
files will be stored. baud: 9600

parity: none 0
B.2. Press LS, I/O, SETUP. Using the white keys, checksum type: 3

configure the view window to appear as

|

translate code: 1

shown on right, then press: LS, I/O

C. To Complete the File Transfer

C.1. Place the source and recipient HP48 S/SXs head-to-head about an inch or so

apart, aligning them at their small arrows molded into the thin upper edge of
each case.

C.2. Press "SEND" on the HP48S/SX source then press "RECV" on the HP48S/SX
recipient. Wait for file transfer process to be completed. Press VAR on the
HP48S/SX recipient to see the new files.

186

Section 9.2. Printing HP48 View Window Displays

Section 9.2.1. Obtaining Prints of the HP48G/GX View Window

A. For the IBM-compatible Computer:

A.1. Turn the computer on, and at the WINDOWS display, double-click on the "Grab
48" icon.

A.2.. Use buttons in the "HP48 Grabber" display on the IBM-compatible monitor first
to set Port to "COM1" and Baud to "9600" (under "Options").

B. For the HP48G/GX:

B.1. Tum on the HP48G/GX and set FLAG -34 by: VAR, 34, +/-, PRG, TEST, NXT,
NXT, SF.

B.2. Construct the view window ofthe HP48G/GX to appear as required for the print,

then press: RS, I/O, highlight "Print display”as:

{HO|Send to HP 48. |__|
id: |Get from HP 48
3: a
% Transfer. 4
 CLT IR

then press, OK.

B.3. Save the screen display on a selected disk drive as either an appropriately titled

"BMP" or ".TIFF" file.

Section 9.2.2. Obtaining Prints of the HP48S/SX View Window

A. For the IBM-compatible Computer:

A.1. Turn the computer on, and at the WINDOWS display, double-click on the "Grab
48" icon.

187

A.2.. Use buttons in the "HP48 Grabber" display on the IBM-compatible monitor first
to set Port to "COM1" and Baud to "9600" (under "Options").

I/O setup menu
B. For the HP48S/SX: IR/wire: wire

ASClII/binary: binary
B.1. Press LS, I/O, SETUP and configure the "I/O baud: 9600

setup menu" to be as shown on right: parity: none 0
checksum type: 3

B.2. Set FLAG -34 by: VAR, 34, +/-, PRG, translate code: 1

TEST, NXT, NXT, SF

B.3. Construct the view window ofthe HP48S/SX to appear as required for the print,

then press: LS, PRINT, PRLCD

B.4. Save the screen display on a selected disk drive as either an appropriately titled
".BMP" or "TIFF"file.

188

A

absolute humidity, 149
addition with conditional branching, 111
alarms, 9
algebraic solutions, 46
ALPHA characters, 4, 5

angl, 24
area, 23-25, 27-31, 70, 73, 92-94, 100
area of rectangle, 93
arithmetic with complex units, 32

array, 1, 56, 60-63

array functions, 61, 62
automatic curve-fitting, 174-177

automatic program execution, 105

B

Basic Operations, 11
Number Control, 11

UNDO,16
arithmetic, 12

RPN, 11
STACK Position, 14

Tools for STACK Control, 16

UC, DC, LC, and RC, 19

basic statistics, 56-58, 78
Brush Turkey, 51, 54

BTU, 24, 25, 27, 29-33

C

calculations of percent, 19

Index

189

calculations with complex units, 32

calendar, 9, 178

cancl, 3, 7, 9, 73, 76, 77

CASE/THEN/END/END, 117
Checks, 153-156

clearing stack lines, 18
clock, 7, 9, 71, 128

Clock, Calendar and Alarms, 9

Setting, 9
complex units, 29, 32
complex units conversions, 29

conditional branching, 111

controlled looping, 120, 124

conv, 27, 28, 30

correlation coefficient, 60, 65-69
course score, 87, 89-91, 101, 102

creating customized menus, 30

CST, 23, 29, 31-33

curve-fitting, 61, 65, 66

customized menus, 23, 29, 30, 32, 33, 51

D

data requests, 47, 92, 94, 135

DBUG, 100

decision structures, 108, 119

differentiating, 167-169
directory structure, 56, 75
Directories], 22, 23, 74, 75, 82

HOME directory, 74
LS MEMORY, 76
RS MEMORY, 75
Basic Concepts, 74

Directory Structure and
Construction, 75

Subdirectory Functions, 76

DO/UNTIL, 121, 122, 125, 135
double conditionals, 113

duplicating and counting the stack, 18

E

Editing Stored Data, 60

elec, 24, 25

energy, 25
enrg, 24, 30, 31
Equation Solutions with LS SOLVE,39
Equation Solutions with RS SOLVE,38
Equations, 35

Complex Equation, 37

LS SOLVE,39
more than 2 variables, 49

RS SOLVE, 38
two variables, 48

Writing an Equation and Solving
it, 35

Alternative for Algebraic
Solutions, 46

Alternative Way to Solve, 43

Amending an Existing Equation,
42

Display and Storage, 47
LS DEF Operation, 47

Making Changes in Stored
Equations, 42

Simple Equation, 36
single variable, 48

Solving an Equation Algebraically,
45, 46

Using EDIT 42

190

equation solutions, 6, 38, 39, 52, 70
errors, 41, 75, 80, 99, 100, 107, 136

white letters, 3

examination score, 83, 85
exponentialfit, 66, 67, 72

F

File Transfer and Printing, 178
between HP48S/SXs, 186

from an HP48G/GX to an

HP48S/5X,185

between HP48S/SX and

HP48G/GX, 184

between HP48Gs, 183
from the HP48G to a Tabletop

Computer, 180
HP48S/SX, 178

Serial Interface, 178

Tabletop Computer to the HP48G,
182

file transfer and printing, 178-186

finding program errors, 99, 100

FLAGs, 127
Basic Concept, 127

Complex Choices, 132

Controlled FLAG Clearing, 139
Controlled FLAG Review, 137

Keeping Track, 137
system-defined FLAGs, 128

user-defined FLAGS, 129
What They Do, 128
Where FLAGs Are, 128

flag clearing, 138

flag review, 136
flag status, 113, 128, 130, 132, 133, 137
flag test, 128, 139

force, 24, 25, 27, 28

G-K

graphical solution, 53, 55, 72, 73
home directory, 21, 22, 31, 32, 35, 40-42,

51, 55, 70, 74-77, 178

HP48S/SX, 179, 180, 185-189

IBM-compatible, 179-181, 183, 188, 189

IF/THEN/ELSE/END, 108, 110, 113,

116, 127, 135

IF/THEN/END, 108, 110, 113, 119, 127,

131
integration, 160-162
Kermit, 181-184

Keyboard, 1-4, 9, 15, 16, 19, 31, 39, 47,

77, 106
primary function, 2

white letters, 2

alphanumeric, 2

left-shift function, 2

right-shift function, 2

L

leng, 2, 23-25

length, 2, 23, 25, 29, 93-96, 106, 111

light, 24, 25

linear fit, 66, 67

Link48, 179-182

Local Variables, 85

local source file, 182

local variables, 75, 85
logarithmic fit, 66, 67
loop structures, 119
LS DEF Operation, 47
LS UNITS Menu, 27
LS CLEAR, 5, 11, 14, 16, 18, 19, 40, 43,

56, 60

LS DEF 47, 48, 50, 51
LS MEMORY,75, 76

191

LS SOLVE,39, 70
LS STACK, 16-19
LS STAT, 57-62, 65, 66, 77
LS SWAP, 15, 25
LS UNITS, 27, 28

M-Q

making predictions, 69
many conditions, 117

mass, 23-25, 29

Menus for Program Writing, 82
mound temperature, 52-54

mystery solved, 70

number control, 11
number display, 8, 142

numerical solutions, 53, 84

percent calculations, 19-21, 68, 83, 86,

87, 89, 101, 110
Plant density, 157-165

Population Growth, 145

power fit, 66, 67
powr, 24, 30, 31

pressure, 25, 113, 115, 116

PRG menu, 81

primary function 2, 15

Prints of the HP48S/SX View Window,
187

programming options, 107
Programming, 79, 119

Automatic Program Execution,
105

Finding Program Errors, 99
Single-step Execution of a

Program, 100

Strategies, 101
with RPN, 102

Addition with Conditional
Branching, 111

Combining STACK and VAR
Data, 89

Controlled Choices, 108

Controlled Looping, 120
Data Entry with ENTER and

INPUT, 104
Data Requests, 92
Decision Structures, 108

DO/UNTIL, 121
Getting Started, 79

Local Variables, 85

Loop Structures, 119
Menus for Program Writing, 82

Options, 107
Other Ways to Enter Data, 103
PRG Menu, 81

Program Map, 79

Storing Equations and Data, 82

Tests with Double Conditionals,
113

Tests with Many Conditions, 117
with RPN, 101, 102

program map, 79

R

rad, 2, 24, 25

random number, 124, 142

relative humidity, 149-152
remote destination file, 182

reordering the stack, 18
Reverse Polish Notation, 11, 12

RPN,11, 12, 15, 25, 56, 57, 101-103
RS Units Menu, 24

RS memory, 40, 42, 51, 75

RS SOLVE,3, 38, 70
RS STACK, 16, 19
RS STAT, 57-61, 65, 77

RS UNITS,2, 22-26, 28

192

S

sample problems, 50, 144
sample unit conversion, 28

serial, 178-182
Single Column, 54, 56, 58

Single-step Execution of a Program, 100

Solving Equations, 35

Special Cases, 51
Special Feature, 51

special symbols, 4
CALCULATOR MODES, 7
RS CHARS, 6
alphanumeric, 4

Generating Special Characters, 6
special characters, 4, 6

speed, 23-26, 29, 73

stack position, 14

STACK Control, 16

STACK REGISTER, 15
START/NEXT, 119
START/STEP, 119
statistics,54, 56-58, 60, 78, 144

Array Functions, 61

Exponential Fit, 67

Linear Fit, 66, 67

Logarithmic Fit, 66
LS STAT Menu, 57

Power Fit, 66
Single Column ofNumbers, 56

Basic Calculations, 60
correlation coefficient, 68

Curve-Fitting, 63, 65

Curve-fitting With Equation
Solutions, 70

Editing Stored Data, 60

Exponential Fit, 66

Linear Fit, 66

Logarithmic Fit, 67

Making Predictions, 69
Power Fit, 67

Single Column ofNumbers, 56
Two Columns ofNumbers, 60
Using RS STAT, 58

Subdirectory Functions, 76

Moving a File, 77
Change the Contents of a File, 77

Creating a Subdirectory, 76
Erase a Subdirectory File, 77

system-defined FLAGs, 128

T-Z

temp, 24-26, 59, 71, 72, 114-116

temperature, 25, 26, 32, 52-54, 59, 70-73,

113,116

tumor treatment, 166-171

two columns, 60

undo, 16, 42

Unit Conversions, 25

Complex Units Conversions, 29
Arithmetic with Complex Units, 32
Calculations with Complex Units,

32

Creating a Customized Menu, 31
CST, 29

Customized Menus, 29
Mixing Built-in Units, 28

Using Customized Menus, 30
units menu, 24, 27, 29, 30

units, 2, 10, 22-34, 72, 74, 93, 95, 132,

135-137
unit conversions, 22, 25, 26, 27-29, 30,

51

useful statistics, 78, 172-173
user-defined FLAGS, 129
Variables with Units, 22

LS UNITS Menu, 27

193

RS UNITS, 22

RS Units Menu, 24

Unit Conversions, 25

variables as numbers, 21
variables with units, 22

visc, 24

vol, 24, 25, 28, 96-100

volume, 25, 27-29, 95-98

watts, 29-32, 52, 54

WHILE/REPEAT/END, 122, 124

Writing and Solving Equations, 35
writing an equation, 35, 38
X stack register, 15
Y stack register,15

MASTERING
THE HP A8G/C&X

A Step-by-Step, Casy to Read Introduction to

Operating and Programming the HP 48G/aX

Thomas Adams

About the Author

Thomas Adams is a Professor of
Physiology at Michigan State
University in East Lansing, Michigan.
He is the author of numerous publi-

cations in the areas of physiology

and medicine, and has published

three books on the operation and

programming of handheld comput-

ers, including Programming the HP-
41C/CV/CX, Handheld Computers
in Physiology and Medicine, and An
Easy Guide to the HP48. He currently
teaches a course at MSU in the use

of handheld computers in physiology

and medicine.

Va ISBN 0-8403-9534-5

Dubuque, lowa

90000

KENDALL/HUNT PUBLISHING COMPANY |

9 "780840"395344

	Cover
	Table of Contents
	Table of Exercises
	Preface
	Chapter 1. In the Beginning
	Section 1.1. Keyboard Designations
	Section 1.2. Backing Out of an Operation
	Section 1.3. Writing Words and Numbers
	Section 1.3.1. Generating ALPHA Characters
	Section 1.3.2. Generating Special Characters
	Section 1.3.3. Selecting How Numbers are Displayed

	Section 1.4. Setting the Clock, Calendar and Alarms

	Chapter 2. Basic Operations
	Section 2.1. Number Control
	Section 2.2. The Importance of STACK Position
	Section 2.3. Tools for STACK Control
	Section 2.3.1. Exercises for LS STACK Operations
	Section 2.3.2. Exercises for RS STACK Operations

	Section 2.4. Calculations of Percent
	Section 2.5. Variables as Numbers and Vice Versa
	Section 2.6. Variables with Units
	Section 2.7. Unit Conversions
	Section 2.8. Customized Menus
	Section 2.9. Arithmetic with Complex Units

	Chapter 3. Writing and Solving Equations
	Section 3.1. Writing an Equation and Solving it
	Section 3.2. Cleaning-up VAR Menus
	Section 3.3. Making Changes in Stored Equations
	Section 3.4. An Alternative Way to Solve an Equation
	Section 3.5. Solving Equations Algebraically
	Section 3.6. The LS DEF Operation
	Section 3.7. A Special Feature For Special Cases
	Section 3.8. Taking Score and Looking Ahead

	Chapter 4. Basic Statistics
	Section 4.1. Evaluating a Single Column of Numbers
	Section 4.2. Editing Stored Data
	Section 4.3. Using Two Columns of Numbers
	Section 4.3.1. Basic Calculations
	Section 4.3.2. Curve-Fitting
	Section 4.3.3. Making Predictions

	Section 4.4. A Mystery Solved with the HP48G
	Section 4.5. Directories: Basic Concepts
	Section 4.6. Directory Structure and Construction
	Section 4.7. More Progress

	Chapter 5. Basic Programming
	Section 5.1. Getting Started
	Section 5.1.1. A Program Map
	Section 5.1.2. Menus for Program Writing

	Section 5.2. Storing Equations and Data as Variables
	Section 5.3. Using Local Variables
	Section 5.4. Combining STACK and VAR Data
	Section 5.5. Constructing Data Requests
	Section 5.6. Finding Program Errors

	Chapter 6. Programming Strategies
	Section 6.1. Programming with RPN
	Section 6.2. Other Ways to Enter Data
	Section 6.3. Decision Structures
	Section 6.4. Loop Structures

	Chapter 7. Flags
	Section 7.1. The Basic Concept
	Section 7.2. Where FLAGs Are And What They Do
	Section 7.3. "User-defined FLAGS"
	Section 7.4. Complex Choices with FLAGs
	Section 7.5. Keeping Track
	Section 7.6. Controlled FLAG Clearing
	Section 7.7. Wrapping It Up

	Chapter 8 Sample Problems
	Population Growth
	Relative Humidity
	Checks
	Plant Density
	Useful Statistics
	Automatic Curve-Fitting

	Chapter 9 File Transfer and Printing
	Section 9.1. File Transfer Operations
	Section 9.1.1. Installing the Software
	Section 9.1.2. File Transfer from the HP48G to a Tabletop Computer
	Section 9.1.3. File Transfer from a Tabletop Computer to the HP48G
	Section 9.1.4. File Transfer Between HP48Gs
	Section 9.1.5. File Transfer Between HP48S/SX and HP48G/GX
	Section 9.1.6. File Transfer Between HP48S/SXs

	Section 9.2. Printing HP48 View Window Displays
	Section 9.2.1. Obtaining Prints of the HP48G/GX View Window
	Section 9.2.2. Obtaining Prints of the HP48S/SX View Window

	Index

