An Easy Course in

Using the HP-48SX

! \ 4 = Ay
\ /
fiaee
!
7
3 o\
T Belio
S Proiaicd
\ 3 b 9 2
\ 4 / "
\ i x £ r 1
- f
e | of
5
ma
x’f 3.

{ M%

u ’/Za u-lf/&
A GRAPEVINE PUBLICATION

By Dan Coffin, Chris Coffin and John W. Loux
Cover Illustration by Robert L. Bloch

An Easy Course in
Using the HP-48SX

by Dan Coffin, Chris Coffin
and John W. Loux

Iustrated by Robert L. Bloch

Grapevine Publications, Inc.
P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

HP-48SX and 48 are terms used herein to refer to the HP 48SX, the
registered trade name for the handheld computing product of Hewlett-
Packard Company. We extend our thanks once again to Hewlett-
Packard for their top-quality products and documentation.

© 1990, Grapevine Publications, Inc., and Solve and Integrate Corp.
All rights reserved. No portion of this book or its contents may be
reproduced in any form, printed, electronic or mechanical, without
written permission from Grapevine Publications, Inc., and Solve and
Integrate Corporation.

Printed in the United States of America
ISBN 0-931011-31-0

First Printing — November, 1990

Notice of Disclaimer: Neither Solve and Integrate Corporation nor Grapevine Publications, Inc.
makes any express or implied warranty with regard to the keystroke procedures and program
materials herein offered, nor to their merchantability nor fitness for any particular purpose. These
keystroke procedures and program materials are made available solely on an “as is” basis, and the
entire risk as to their quality and performance is with the user. Should the keystroke procedures
and program materials prove defective, the user (and not Solve and Integrate Corporation, nor
Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all necessary
correction and all incidental or consequential damages. Neither Solve and Integrate Corporation
nor Grapevine Publications, Inc. shall be liable for any incidental or consequential damages in
connection with, or arising out of, the furnishing, use, or performance of these keystroke
procedures or program materials.

CONTENTS

(o) StarT HERE 8
(1) Your 48 WORKSHOP 12
Calculating with Tools and Objectsccccccceereeeeeeinnnnnneen. 13

The Big Picture: A Workshopccccoevevivieeniiiininenicsceennns 14

The Display: Your Window into the Workshop............. 16

The Keyboard: Access to Your Workshopccccccueeeene. 18

The Tools in Your Workshopccccceeevviiieininieeeennncnneeenne. 21

The Raw Materials in Your Workshopcccccceeeuveeenne 22

Quiz on the “Big Picture”cccccovvivimiinniienniieiniieeeceenne 27
QUIZ ANSWETScooivieiiieiieeeririeereereeeeesireeeesssteeeesessseeeesenans 28

(2) THE StAcK AND CoMMAND LINE:

Your WORKBENCH 30
Typing and the Command Lineccccceeveeennieenveennneennnne. 31
Simple Materials: Real Numbersc.cccceeevvieeiincnnnenenne, 40
Postfix Notationccceecvveririiieiiiiieiiniieeeeeeeeeeeee e 48
Stack Manipulations..........ccccceeeeiieeeeeiieieeciee e 52
Learning By Doingccccooviiiiiiiiiiiiiiiiiieceeenceeesseireeeeeeeeen e 59
WOrkbench QUIZccooeuiniiiniii e eee e e eee e e e 60

Workbench Solutionsccooevvvieiiiiiiiiiiiiie e, 62

(3) OBJsects: Your Raw MATERIALS 66

The Fundamental Ideaccccoeeieeeiiiiiiiiieieeeeiieeeeee e 67
Real NUmMDETSccccoviiiiiiiiiiieciee ettt e 67
UDIES coiteeeiie ettt ettt s st s st e s aa e saaesane 68
LSS eeiieeiiiieeee e s e 74
Complex NUMDETSccoveeiiiiiiieiie ettt e ee e 80
VECEOTS ..eeiiiiiieieeiiiee ettt ettt e e erae e e e e e e e e e e aaaaeas 86
ATTAYS ...eviiieiiiececie ettt tee e et re e e eae e e e aae e e rnaaae e e nnaae s 92
FIagS oo e e 98
Binary Integersccccceoviiieeiciiiieeieeeee e 102
Character Stringsccccoevvveieiiiiiiiieeeeeceeeeeeee e e 108
TAES weeeeeiiee ettt ettt et e e et e st e e e e raaaeeeaas 112
INAINES .ottt te e s ete e e s te e e e saabae s sesnneas 116
Algebraic ObJEctSooovvvvevieeeiiieceieceeecee e e 124
Postfix Programs........cccccceeeeiiiiiieiiiieiciieeecee e 132
DIrectOries ...cccccuiiiieiiiieeeieeeeee et 136
Objects: A SUMMATYccccoviiieeiiiieeiiieeeeieee et eeeeree e e e 142
Test Your ODbJectiVItycccoveeeivreeiieiiieiieieeeieeee e 143
ODbjJectiVe ANSWETScoevvieiveeeieeeereeeeee e e eneeas 150
(4) FunctioNs AND EXPRESSIONS 164
Functions and Argumentsccceeevvivieeeieiiiiiiireeeeeeeee. 165
Some Built-In Functions.........cccccoeeieiiiiiieeiiiiieeciiee e, 166
Symbolic Functions and Variablesccccceeevvviieeecnnnnn.n. 178
Creating EXpressions........cccccceeevviieeecieieeieieeeeeeeiee e e 180
Editing EXpressionscccccecevveeeeeiieeeeicieee e 185

Saving EXPressionsccccoceeeooiieeecoiieieee e eeeeieeee e 195

Using EXPressionscccccoccceeieeiieeineciieeeneeneeeeesseeessesnveeees 197

Evaluating EXpressionsc.ccccceeeeveeeneivieereesineereensnneeeen. 198
Rearranging EXpressions.......cccccceeevveeeieceiieeeisronneeensnsnnnes 200
Solving Equations of Expressions.........ccccccceeeeiiieceennnnnns 208
User-Defined Functions..........cccoeeueeiieivviiinnneecieenieeeeeeeeeeen. 212
Math AnXiety......cocoeeoiiiieeiiieeecee et e e e erae e e 216
Cool and Calculatingccccceeeveiieieiniieeenieeniie e e 218
SOLVING, PLOTTING AND ANALYZINGccooeunerrrnnnee 222
Equations, Data and Graphicscccccceceeieeiieeieecieee e, 223
Defining EQ, the Current Equationcocoeevevveveuennnne. 226
The SOLVR MeNU........ccocvimeirieirieiieeiensieeieesseessesssessssessees 230
Solving Equations with SOLVE..........ccceiviieiiniiininnnen. 232
Solving Equations Involving Units.........ccceeeeuveeeneennenn. 235
Solving Equations Using PLOTcccccceeeiiiiieiecceeeeceeeee, 238
Solving Two Expressions Simultaneously...................... 245
Solving Programs and User-Defined Functions............ 248
Multiple Equations with SOLVE and PLOT 252
Solving Systems of Equations.........ccccceeeeeeevierenrieeeneeennnee. 258
Analyzing Data: The STAT Toolcccoouveeeecreeeeeiieeeeeenn, 262
Creating the Data MatriX.........ccooceeeeevineieeennnneeeecnneen. 264
The STAT MENUccveevieiieieeieecieeteeeteere e v erneeereens 267
Single-Variable Statisticsccccecveeeeieiniieeecieeeeieeeeee, 268
Two-Variable Statisticsccccceevvievrieiiiiiiiniiiiniiieeceeen, 270
Two-Sample Statistical Tests........cccceveeviierieeecciriieeeeenens 276
Transforming Variables in the Data Matrix................. 279
More Challengesccccccveeevreecieeeiee e e ereee e e e eeenaeens 281

More SolUtionS........cooeeiveeiiieiiieeieeeeeeeeeeeeeeeee e eeeeeeeeeereeeaaes 289

FounbpaTioN COMPLETED

BuLping Your OwN TooLs:
PROGRAMMING

Your "Automation” Optionscccceceeveeereunnene.
Local Names.......cccooveeeeciieeeccieeeeceeeeeceeee e
Program Designccoeeoviiiieciiiiciieeecceeeeee,
Conditional Testscccceeveerrviiiniieenrieeriieenieeeenen,

CustoM1ZING YOUR WORKSHOP

Labor-Saving Devicesccccooeeeeeiiieeecnieeeeenneen.
Input ShortcutS......cccceeeeeviiiiciiiieecieeceeee e,
The LAST Commandsccccceeeuveeecreescereenneennnen.
Customizing Your Workspace............cccvveeennnennn.
Directory Structure..........ccccoeevveevveeeieeenneennen.
Custom Menus........cccceecvvveieecieeeesiieeeeerieee s
Custom Keyboardscccccoeeevvviveeieenieccnnnnns
Custom Flag Settings........cccoevvvviiiiieeeiiinnnnns
Customizing the Built-In Tools
Optimization: A Case Study........cccccocvveennnns
Custom QUEStIONS..........ccoovvvmvvveieeiiieiciireeeeeeeeen,
Optimum ANSWErS.........cccoevvrieeeeeeeeerrnrreeeeeenn.

(0] StaART HERE

What Is This Machine?

Before you start using the HP-48SX (or “48” for short), here’s some idea
of what you can expect from it: The 48 is a calculator—a tool to give
you quick answers to quick questions. Most often this means keying
in a value or two, pressing a key, and reading the result in the display.

The 48 was indeed designed to work in just that way. Although it’s
tremendously sophisticated, most of its operations are simply variations
on the basic theme: Ask-A-Question/Get-An-Answer. If you keep this
in mind, you'll get along very well.

One more thought: The 48is atool, designed tobe used in a certain way
for certain things. It’s a great general-purpose calculating tool, butit’s
not the best tool for every job. When it’s easier to use pencil and paper
—or a larger computer—do it! Always choose the right tool for the job.

What Is This Book?

This book is not a reference manual (HP already did their usual great
job on that). It’s not an intensely in-depth treatment of programming,
equation-solving, or any of the many things you can do “in-depth” on
the 48. There are simply not enough pages in one book to do all that.

This book is a tutorial introductory course on the 48—a step-by-step,
self-pacing course to orient you and get you “up-to-speed” on most
features of the machine—so that you can then use the HP manuals

more profitably as you continue to practice with your 48.

The (oN) Key

From the looks of the keyboard, there’s a lot to learn about this
machine; each key has several meanings. So although the (ON) key may
seem a trivial a place to start...

Do This: Turn on your 48 by pressing the key at the lower left.
Now turn it off, by pressing (3]oFF). Notice the different
function names printed on or around the key. The
functions are related to one another, but the one you get
depends on whether you press one of the shift keys first.
This is the case with most keys on the machine.

Adjusting the Display

Next, make sure that you can read the display comfortably.

Do This: With the machine turned on, press and hold down the

key, then press either the (4] or (=) key until the display
adjusts to a comfortable viewing angle.

You cando thisat any time. And—like most of its modes and settings—
the calculator will remember and use this viewing angle until you
change it.

10 0: START HERE

Setting the Machine for this Course

There’s one other thing to do before beginning with the actual Course.
You may not yet know what this is all about—but don’t worry: This is
the one time when it’s all right simply to press buttons without trying
tounderstand what you're doing. This procedure is just to be sure that
your machine has the settings this Course assumes....

Do This: Type: QORFOIDI#0)ENTER. Again,
notice how you must press the orange (&) or the blue ()

to activate a keyboard function of that color.

Then (SITIOJFJENTER[1) & J+/-) ([sPC]e) S]] F]>[HOME)
(©)(POLAR) (the alphabetic characters are printed in
white at the lower right of the keys). Now your display
should look like this:*

OME ¥

py—rWp| -

PARTS| PROE | HYP [MATE[VECTR] ERSE |

That’s it—you’re finished with the preparations. Now, on with the
Course....

*If your display looks different, just repeat this entire procedure.

11

(1) Your 48 WORKSHOP

Calculating with Tools and Objects

Once upon a time, working with a calculator meant just using numbers
and doing math. You could calculate lengths and angles in geometry,
and distances, areas, rates, logarithms and roots—to 10-digit accuracy.

But that’s not enough anymore. Now engineers, scientists and techni-
cians from all sorts of disciplines expect a calculator to deal with com-
plex numbers, vectors, matrices, tables of data, etc. And nearly every-
body uses some kind of electronic note pad or text storage nowadays.

So, wouldn’t it be nice to have a calculator that worked with these more
sophisticated data typesin the same way that your old calculator worked
with numbers? (...yep—you guessed it....)

How the 48 Does It

One unifying idea now emerging in computers is that data are simply
“things”—objects on which you perform work. And functions or pro-
grams are the tools with which you do this work. In the expression
2 +3, for example, the numbers 2 and 3 are simply objects that you
combine to form a new object (5), using the + tool—just as you combine
two blocks of wood to form a new object, using a hammer.

And now thisidea of a tool (+) can apply to more than just real numbers.
It works the same, whether you're adding real numbers, complex num-
bers or vectors. The results are different, because you start with differ-
ent “materials,” but the tool you use is the same—so the 48 lets you use
the same simple keystroke ((+)) in each case.

Calculating with Tools and Objects 13

The Big Picture: A Workshop

The 48 is a collection of materials (objects) and the tools to use on them
(operations, etc.). Soit's really a calculations workshop:
/

ME } _
{"R" [1231
"Good morn

The Stack is the “workbench” in
your workshop—where you liter-
ally “stack up” objects to use or

combine. Most of this combining|
happens at the bottom of the

—)R]
R

(@R]
[e—y
™

Stack, so those bottom Levels are
generally shown in the display.

:
c
3
1 B
g
o 8

Some keys simply help you con-
trol, move around and operate in

(PRINT) (Vo] (MODES) (MEMORY)
the workshop—storeandretrievel (MTH (PRG) CST VAR [A]
objects, get tools, rearrange the :
workbench, set modes, etc. &E"‘E L
The rest of the keys are mostly

“hand tools.” That is, they are
functions, within your easy reach
at the workbench, that perform
simple operations on objects on

d ®
2
B 0® 0 o

the Stack. The most commonly
used hand tools (along with their|
inverses) have their own keys,
but many others are gathered in

“toolboxes”—collections of items
you use via menus in the dis-
play—like the MaTH menu you
see in the display here.

-

14 (1) Your 48 WorksHOP

As you work in the workshop, you create your own storage compart-
ments for the objects you build (the objects shown below are just
examples—these are not stored in your machine). The storage com-
partments are directories.

You can create directories even within other directories. And each di-
rectory has a path from the HOME (uppermost) directory—the route
you must take to reach it. The path of the current directory (i.e. “where
you are” right now) shows at the top of the display within{ }.

{ HOME }

0ATA | YARL [VAR2 | YAR3 [GEDM]CHEH

{ HOME DATA } /

TEST1|{TESTR|TESTI| FITS |
{ HOME GEOM }
[TEIZ | CIRC [PREL [HYPEL

{ HOME CHEM }

TAELE[FOFRHM[REDOOY]
{ HOME DATA FITS }

RUFF]AOJL]ADJE [FINAL

The key shows you the menu of all the objects (“VARiables”) you
have stored in the current directory.

The Big Picture: A Workshop 15

The Display: Your Window into the Workshop

To see into your workshop, turn on your 48 and look at the display....

The Stack

Look at the space between the horizontal line near the top of the display
and the row of boxes at the very bottom (if you don’t see these things,
press (ATTN—the (ON) key). This is the Stack—the actual “workbench”
where you place the materials you're using. It’s called a Stack because
that’s how objects “sit” on the workbench: The object nearest to you is
at the bottom of the Stack (Level 1); and the next nearest object is at
Level £, etc. You may not see many more objects stacked up above that
(infact you’ll never see more than the closest four objects), but therecan
be hundreds more up there. They reappear asyouremove lower objects.

The Command Line

The Command Line is a temporary space created to let you gather your
materials before putting them onto the Stack—your work bench.

Do This: Type a number—say, 14 (press(1]3)).... See how the Stack
lines move up to make room for what you type? That 14 is
not on the Stack—it’s on the Command Line—until you
specifically putit onto the Stack, by pressing(ENTER), or throw
it away by pressing ((©N)). Throw it away now: (ATTN).

16 (i) Your 48 WorksHOP

The Menu Line

At the very bottom of the display is the Menu Line. A menu is simply
a convenient collection of related tools—a “toolbox”, if you will. For
although the crowded 48 keyboard already offers many tools “within
your immediate reach,” there are hundreds more stored in menus—
even in menus within menus.

So, in making a selection from a menu, you are selecting a tool or
opening another toolbox (menu). And it’s easy: To make a selection
from a menu, you just press the white key directly beneath it.

The Status Area

Now look at the display above the horizontal line. Here sits a set of
warning lights and messages above your work bench—signs that light
up to announce events or warn you of problems.

In areal workshop you might see “Power On” lights and “Saw Jammed”
signs. On the 48, you'll see warning messages telling you, in effect:
“You just tried to use a tool on the empty benchtop!” or “You can’t use
that tool on that object.” And you’ll see “indicator lights” that tell you
when certain tools will operate differently because you’ve turned on an

optional mode.

So be sure to watch the Status Area! Mode indicators stay on as long
as the mode is active, but warning signs appear only temporarily; they
turn off the next time you press a key.*

*Therefore, to further attract your attention to these warnings, the 48 usually beeps at you, too.

The Display: Your Window into the Workshop 17

The Keyboard: Access to Your Workshop

The keyboard is how you make things happen in your workshop—
putting objects on the workbench, using tools, moving around, etc.

The Shift Keys

The colored keys, (&) (“left-shift”) and () (“right-shift”),* indeed shift
the meanings of keys to the colored functions printed above them.

Also, a mode indicator appears in the Status Area when a “shift” is in
effect). Notice that shift keys are toggle keys: If a “shift”is on, pressing
that shift key turns it off—and vice versa.

The Numeric Keys

Often the objects on your workbench are numbers, so the numeric keys
and (4,1, X), =), ENTER), (+/5), and are all grouped together for your
“calculating convenience.”

The Alphabetic Keys

The (o) key is really another shift key: Press it prior to another key to

obtain thatkey’salphabetic function (printed in whiteto the lowerright).
Again, notice how a mode indicator appears up in the Status Area.

*Astrophysicists: Please refrain from calling them “red-shift” and “blue-shift.” Thank you.

18 (1) Your 48 WorksHoOP

Notice that you can lock this alpha mode on by pressing (@) a second
time; the third time turns it off, so (@) is a three-way toggle key.

Also, note that you can use (G)and (3)within alpha mode (try it). Each
key can have three primary meanings, and three alpha meanings.
The Menu Keys

The six blank white keys directly under the display are the menu keys.
Menus appearin the display, and you make selections with these keys.

Try It: Press and see the MODES menu in the display.
This is the menu where you can set many of the machine’s
modes (options). As with most menus, there are more than
six selections here, though. To move to other “pages,” use
the(NxT)key (to see the NeXT page) or (§JPREV)(the PRE Vious
page). Try these now.... The MODES menu has four pages.

Now, move to the menu page that looks like this:
(DEG o] RAD [GRAD | HV2 o] ka2 | Rdd

The little boxes in the [JIE] and selections tell you
what modes are currently in effect (DEGree angle mode and
rectangular vector mode). But press the menu key under
IETIM... The menu and the Status Area tell you the
machine is now in RADians angle mode. Try otheritemson
this menu page if you wish (but when you’re finished,
please leave the modes as you found them) and press (MTH).

The Keyboard: Access to Your Workshop 19

The Control Keys

Finally, focus for a moment on the keys that help you direct the
calculator’s “movements,” editing and attention.

The menu keys, and often act as control keys when they
lead to other menus. But there are other control keys, too: (ATTN), [ENTER),

(), OEL, («),), (), and (v}, to name a few. As you’ll see, these keys help
you “get to” and use many of the tools in the workshop.

20 (1) Your 48 WorksHOP

The Tools in Your Workshop

Hand Tools

Usually with the 48 , you create a simple object and select a simple, one-
step tool to use on it—like putting a board onto the workbench and
using a hammer to drive a nail into it. The drawers and toolboxes
(menus)inyour 48 workshop are full of such simple, one-step tools. You
must simply learn when to use them—and how.

Power Tools

Sometimes simple tools aren’t enough. To build, use, or make major
changes to a sophisticated object (and be guided through the process)
you need power tools—instruments and analyzers that perform more
complex manipulations. For example, to create a table of numbers (an
array)—4 rows of 5 columns, you could type the whole thing into the
Command Line; or, you could use the MATRIX editor power tool, which
presents you with a template that you can fill and edit more easily.

Other power tools let you build, solve or plot equations, manage time,
do statistics, etc. These are all smart tools; they know something about
the materials you’re using and thus can eliminate much of the simple-
minded work. So instead of a tool that “nails this piece to that,” you
have a tool that “makes a chair,” or “designs a beam to support a 1-ton
load.” In this way, power tools actually augment your knowledge, by
automatically performing sophisticated operations whose details would
otherwise cost you time tolearn or recall, and then execute one-by-one.

The Tools in Your Workshop 21

The Raw Materials in Your Workshop

With all the hundreds of tools in your 48 workshop, you have just a few
basic types of materials (objects) with which to build. Each type looks
different so that you can distinguish it from the others:

Real Numbers

On the 48, real numbers look and act like what you normally think of
asnumbers: 3 15 10666 -8.9 -58.2 3.14

Units

Units are real numbers with dimensions. That is, you can use real
numbers to represent physical quantities (i.e., feet, pounds, psi, liters,
etc.), by assigning them units—and these units will be used correctly
throughout any calculations you perform. Here are some numbers

with units: 1_ft 17.3_kPa 9.81_m-s"2.

Note the underscore (_) that connects the number to its units.

Complex Numbers

A complex number is a vector—an ordered pair—in the complex plane.
The 48 represents a rectangular complex number as two real numbers
(real, imaginary), like this: (3, 4). Or, that same number can also
appearinpolarform, with a magnitude and anangle: (3, £33.13). The
angle may be in degrees, radians or grads.

22 (1) Your 48 WorksHOP

Arrays

An array is a group of numbers (either real or complex numbers), with
no set limit on the size of the group, as long as it’s arranged in a table
of rows and columns—which can then be used mathematically as a
matrix. The 48 represents arrays within brackets:

(t12]1 (C1231] (11
[34]1] [2 1]
2X2 array 1-row array 1-column array
(row-vector) (column-vector)
Flags

Flags are the simplest object type of all—bits—objects with only two
possible values: 1 or 0 (on or off, set or clear—whatever)—usually to
signal a mode or condition. Flags don’t appear individually on the
Stack, but you can set or test them individually or as groups.

Binary Integers

Binary integers are just that—integers made up of binary digits—bits
(i.e. flags). You can do binary arithmetic on them and use them to
representgroups offlags. The 48 displays binary integers on the Stack,
not only in binary form (base 2) but also in number bases 8, 10 and 16.
For example, 1011, appears as # 1811b 307, appears as # 3070

43 appears as # 43d ATF appearsas# A7Fh

The# indicates a binary integer; theb,0,d, orh suffix tells you the base
(binary, octal, decimal, hexadecimal).

The Raw Materials in Your Workshop 23

Character Strings

On the 48, you build character strings—sets of characters linked to-
gether to form objects—words or sentences of verbal information,
denoted by quotation marks: "Hi!" "Phone home." "1+1=2"

Tags

Tags are temporary labels for objects on the workbench (the Stack)}—
like masking tape. Atag labels an object with an identifier and a colon

toitsleft: Answer: 17 Altitude: 29666 RANGE: 18

Names

Names are words that identify things. On the 48, you use names to
identify storage locations. The name is the label you tape onto the
storage location to identify what’s in it (you don’t name an object itself).
A 48 name is a single word within apostrophes: '"HUBERT' 'Wrench'

Algebraic Objects

Algebraic objects look and behave like algebraic expressions and
equations. On the 48, you type them between apostrophes—just like
names, except that algebraic objects contain mathematical operations
and functions not allowed in names:

'A+B=C' 'SINCx)! 'Pi*RADIUS™E!

24 (1) Your 48 WorksHOP

Programs

A program is a custom-built tool—a series of instructions (objects and
tools) strung together, to be executed at a later time. You create a
program, then name it (i.e., store it in a named toolbox). And then you
have a new tool to use—just as you would use any other tool in the
workshop. 48 programs are enclosed in ¢ #, like this:

« 12+ > « "Hi" BEEP CLEAR =

Lists

Lists are collections of objects, the wire and glue of your workshop that
binds together objects of any types—even other lists—within braces:

{1233} { "Hi" 7 (3,4 "Bye" 3

Directories

Directories are the storage areas you create for your objects. They
appear as menu items with small “index tabs” :

0ATA I GEOM I CHEM I FITS

There are other, more obscure object types on the 48, but those are the
basic raw materials you’ll be working with most often.

The Raw Materials in Your Workshop 25

Look Again at the Workshop

Holding your place here, look back again at the Big Picture of your 48
workshop (page 14)....

Gradually, now, the maze of names and keys on your machine should
be emerging into some kind of coherent picture of what you’re working
with here:

* You have a very sophisticated calculator—one that lets you
operate on (build, edit, combine) not only numbers but many
other types of objects.

¢ When performing these operations, you generally place these
objects on your workbench—the Stack.

¢ You perform the operations themselves with commands that are
available on keys or via menus. Most of these commands do
simple things; they are “hand tools.” A certain few are smarter
and more complex—the “power tools.”

* You name and store your created objects in directories that you
create.

Conceptually, it’s pretty simple, no? Be sure to keep this “Big Picture”
in mind as you start to learn the details. Test yourself now....

26 (1) Your 48 WorksHOP

Quiz on the “Big Picture”

At the end of every chapter this Course gives you a quiz, to make sure
you're “digesting” what you read. These quizzes aren’t trivial—they’re
a big part of your learning process—so don’t breeze over them; think
and apply your knowledge! The solutions immediately follow the
questions, so study them and re-read parts of the chapter, as necessary.

1. What sorts of problems do you expect to solve with the 48?

2. Why use a workshop analogy when describing the 48?

3. Howmany keys would the 48 need if it didn’t have the (), (&) and
) keys?

4. What'’s a menu? Why does the 48 use menus? What kinds of
items may appear on its menus?

5. What’s a real number (as represented on the 48)?

6. What’s an array (as represented on the 48)?

7. What’s a power tool (on the 48)? Name three of them.

Quiz on the “Big Picture” 27
74

28

Quiz Answers

You can expect to solve most kinds of number-crunching and
data-intensive problems. Some may be intricate and require
special programming, but for most you will key in some values,
press a function key, and get an answer. The 48 has a vast supply
of functions—and the flexibility to allow you to create your own.

The workshop analogy is good because the 48 usestools (functions
and operations) on raw materials (data objects—things like real
numbers, arrays, lists, etc.). The Stack acts much like a work-
bench, too; it’s where most of the building and crunching hap-
pens.

It would need about six times as many as it has now. The (o), (&)
and () keys allow most keys to “mean” six different things.

The 48 uses menus to avoid the need for even more keys: Amenu
is a selection of items that appears in the display. To make a
selection from a menu, you press the blank white key directly
beneath that selection. Menu items may be tools for object
manipulation, control operations—for moving around in your
workshop—or keys that lead to other menus.

On the 48, real numbers are what you usually think of as real

numbers: 1 15 -1666 8.3 -56 3.1416

(1) Your 48 WorgsHOP

6. Onthe48, arrays are groups of numbers—either real or complex

number—arranged in rows and columns and represented within

brackets: [[1 2 1 (12311 (f11

[3411 [2 1]
2x2 array 1-row array 1-column array
(row-vector) (column-vector)

7. Apowertoolis asmart,specialized tool that helps youbuild, view
or “crunch” sophisticated objects more conveniently. Where your
simpler “hand tools” are like saws and hammers, your power
tools are morelike lathes and drill presses. They are ((]EQUATION),
(2)JMATRIX), (q]SOLVE), ((]PLOT), (9 JALGEBRA), (4] TIME), and [()STAT).

Quiz Answers 29

I

(2) THE STACK AND COMMAND LINE:
YOUR WORKBENCH

Typing and the Command Line

It’s time to start learning how to work at your workbench....

To Begin: Press the digit keys (0 through 9) in sequence and look
at the display. You should see something like this:*

OME }

=Moo~

H
123456789+
ARTS] PROE | HYP [MATE[VECTE] EASE]

A space opens up between the workbench itself (the
Stack) and the Menu Line. And what you just typed has
been placed in this space, which is the Command Line.

'ﬂ
:"?
U

The number you've typed is not yet on the workbench; it’s
still an unfinished command. To finish it—and to offi-
cially place the object onto the workbench—you must
press (ENTER). Do that now....

See? The Command Line disappears and the object, as
the 48 has interpreted it, is placed on Level 1—that’s the
bottom, the nearest Level to you—on your workbench.

*If your display isn’t exactly like this, don’t worry too much. At this point you’re most concerned
with that number you just typed in.

Typing and the Command Line 31

So that’s how to type in a real number and put it onto the workbench.
Now, what about something that’s not a number?

Do This: Press (@)....

=]
4
m
[

123456763
RT5| PROE | HYP [MATRIECTREASE]

Notice the a that appears now in the Status Area, telling
you that the next key you press will return its alphabetic
character; you are in alpha mode.

3 i—"l""-.'.il'_l.'l-h ™
EE EE ER 8H | @

Continue: Press(A[a[B]a]c). ABC+appearsonthe Command Line—
and notice that you had to press (o) before every letter.

Now press (that’s the (ON) key).

What happened?

TheABC that you had typed on the Command Line was not put onto the
workbench. It was thrown away.

That’s what (“ATTentioN”) does: it tells the calculator to drop
whatever it’s doing and give you its full attention.

32 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

Now try typing something a little more complicated.

Press: (eJoJWHJAITISPOJ(YIO[U)(SPCI(SIESE)SPO)(S)SPCIWIHIAIT)
SN 0OUENEEU8E

123406759
woEE 5 WHAT YOU GET. 4
PARTS] PROE [HVP [MHATRVECTR] EASE]

See how you can save a lot of keystrokes by using “alpha-lock”
(pressing (o) twice in a row), so that the alpha annunciator stays on?

Notice also that the first part of what you typed is now pushed off the
left-hand side of the display. The .. on the left tells you that the
Command Line extends off that side of the display. To see what’s
missing, press ({repeatedly (or press it and hold it) until the 48 beeps
to tell you “there ain’t no more.”

Notice that you couldn’t do thisif you hadn’t switched back out of alpha
mode with the final (@), above. In alpha mode, the (4)key is something
entirely different—the (P) key. So you can see that it’s important to
know what mode you're working in—watch your Status Area!

Typing and the Command Line 33

Inserting and Deleting Characters

Next question: How do you correct mistakes and make amendments
to your typing on the Command Line?

Do This: Using (€} and (»), move the cursor so that it’s on top of the
in SEE. Then type (@]a)(CJA(N)SPC)(a).

The new characters are inserted; this is how you add to
what’s already in the Command Line.

And it’s just as easy to remove characters. For example, to
remove the CAN that you just inserted...

Do This: Press(«[«]«]«). Notice how («)deletes the character before
the cursor.

You could have used the (delete) key, also—but it deletes the
character under the cursor (not to its left), so you would have had to
move the cursor. Press once now, to delete the S in SEE.

34 (2) THE Stack AND ComMmMaND LINE: YoUR WORKBENCH

Lower-Case Letters

Up to now, you’ve typed only upper-case letters, but...

Try This: Type: (AN (e[JHGIDEPIGDEGIHGIEGIRIGIE)
(Jo). Nothing to it—you get lower-case by using (&)
before each letter! But that’s a lot of extra typing, so...

Notice: AN D SPTHERIEX)). Pressing (G]a)
when you’re already in alpha mode will lock the 48 into

lower-case mode. And it will stay in effect until you leave
the Command Line or press [(G)«) again.

Special Characters

There are lots of non-alphabetic characters (things other than A-z)
available to you on the 48. Most are right-shifted () alphabet keys,
but the keys aren’t labeled with these characters (no room), so there’s
a table of them on the back of HP’s quick reference card.

Certain characters—called delimiters—have special significance to
the 48 (you don’t even need to go into alpha mode to use them), because
they denote certain object types. For example, when you press ("] (not
in alpha mode), yousee ' ' (and the # points between them)—because
you’ll usually want to enclose the object you’re typing with these apos-
trophes. The other delimiter characters that come in pairs are on the

shifted arithmetic keys (&0, (GJ13, &I«), @[, &IU), and (23

Typing and the Command Line 35

The ([]+<) (NEWLINE) Ke:

The Command Line is actually a space—not a line. It can be broken
up into more than one line by using (right-shifted (:))—the
NEWLINE key.

Try This: Type TN« JMO[RER=THANE=ONEE)
LUNEEI=&) (that’s (GIDED) (@)

You now have five lines in the Command “Line.” The
first line has scrolled off the top of the display, but it’s
still there.

Notice also that when you have more than one line like this, (o) and (v)
move the cursor from line to line up and down—just as (€Jand (») move
you around to edit a single-line Command Line.

Not only that, (9)<) and (©)») will move you to the first and last
characters of a line, and (©)a) and (©)¥) will move you to the first and
last lines.

Spend a little time now and play with this....

Then, without leaving your current Command “Line” (that multi-line
thing), read on....

36 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

The EDIT Toolbox

Not all your Command Line editing tools are available on their own
keys. With so many tools, the 48 has most of them stored in toolboxes
(menus)—including a set of tools for editing the Command Line. You
can open that toolbox with the key.

Try It: Press to see this menu of the items in that toolbox:

£5HIP|SKIP3| £0EL [DEL# [IN5 a[t+5TH]

and move the cursor in the indicated directions (similar
to(€Jand (»)), but they move until they encounter a space (or NEWLINE)
and then stop at the next character. Try and now and
watch how the cursor moves.

and work the same way as B4 and ETHIE, except that
instead of skipping over those characters, they delete them.

IEEK] is a mode key (remember the [IIl key on the MODES menu?)
The IE key changes the form of cursor in the Command Line: When
the [J appears to the right of [E, the calculator is in insert mode; the
cursor is 4, and newly typed characters are inserted to its left.

But press [IZEE] now.... Notice that it becomes [[ZEM, and that the #
becomes a . The 48 is now in replace mode; a newly typed character
will replace the character under the cursor.

Now press to throw away the current Command Line.

Typing and the Command Line 37

Next: Press (5)ENTER)(4]3)ENTER). You should now see this:

{ HOME }

U H

3= 123456789
25 9

SKIP#| €DEL [DEL# | IN5 u]4.5TH]

Then: Begin a new Command Line. Type: (@)o)(1)(SPC)(A[M)(SPCISPC)
MERIRIS)IEPOILD). Next, use BETALEFAT(<) to move
the insert cursor here: Al 4YEARS, then press EEAIA:

123456?8%

b 43
(Ech0| |] [1 |

Now ECHO (i.e. copy) an object (the 5) from the Stack to the
Command Line: Press(a)once to move the pointer up a Level.
Then press once, then to return to the Command
Line.... See how ECHO works? Acopy of the J is now inserted
where the insert cursor was pointing (the replace cursor
would have replaced existing characters, starting with the
character under it).

38 (2) THE Stack AND ComMMAND LINE: YoUR WOREBENCH

A Command Line Summary
Review what you now know about the Command Line:

¢ You know how to type in a wide assortment of things—numbers
and alphabetic characters, including lowercase letters, special
symbols, and the NEWLINE character.

¢ Youknow how to use(«),(»),(a),(¥),[DEL, and () to move around and
edit the Command Line.

* Youknow thatifyou need even more tools—such as EEAI [TIEA,
IEEK] and EERTA—you can also open the EDIT toolbox: (]EDIT).

But, did you know?...When you’re not already working on something
in the Command Line, lets you edit the object at Stack Level
1, by making a “working copy” of it for you on the Command Line!

Try It: Press to clear the current Command Line. Then press
(JEDT).... The 43 has been copied into the Command Line,
ready to be modified. Press (2)[ENTER). As usual, takes
the object from the Command Line and put it onto the Stack.
But in this case, it replaces the original 43 with the new ver-
sion of that object in the Command Line: 243.

Now try another: (G)EDIT)[DEL(-)ATTN). The trashes only

the edited version (.43) in the Command Line; it leaves the
original 243 intact at Level 1 of the Stack.

Typing and the Command Line 39

Simple Materials: Real Numbers

All right, it’s time to look at what happens once you’ve succeeded in
putting an object on the Stack—after you've finished typing on the
Command Line and pressed to put the object at Level 1.

Real numbers are the most intuitive objects to start with, since you’re
somewhat familiar with them already: As you know, real numbers
include the positive and negative integers (1,2,-3,-5, etc.), the positive
and negative rational numbers (4.56,-2.3, etc.), the positive and

negative irrational numbers (+/2, 7, ¢, etc.), and zero (0).

Well, your 48 “sees” real numbers in much the same way that you do.
They’re easy to represent—just a set of digits—as in any calculator.
But what about extremely large or small numbers—so awkward to
deal with because their decimal representations use lots of placeholding
zeroes (e.g. 00000001 and 1,000,000,000)?

That’s why there’s scientific notation.* Thus:
5,280 =5.28x10’ 0.00023=2.3x107* 1=1x10°

The mantissa shows the number’s precision. It is then multiplied by
a power of 10 (the “exponent”), to show the number’s magnitude.

Actually, the 48 uses a slightly compacted version of this notation—to
avoid the need for superscripts in its line-oriented display:

5,280 =5.28E3 0.00023 =¢.3E-4 1=1EH

*Not that it’s any more “scientific” than other notations, but science is one discipline where you
commonly encounter very large or very small numbers. It could as easily have been called “national
debt notation,” for example.

40 (2) THE StACK AND CoMMAND LINE: YOUR WORKBENCH

Real Number Limitations on the 48

As you would expect, the 48 uses this scientific notation to achieve a
huge range in real-number calculations. Butit’s still a finite machine
with a few reasonable limitations that you need to understand.

12-Digit Accuracy: Some real numbers simply have infinite decimal
representations. For example, 4 is really 0.333.... But of course, it’s
impossible to use all of those 3’s during arithmetic. Naturally, you
round it, shortening it to a value that is both convenient and accurate
enough for your purposes. Though the rounded numberisnot the same
as the original, the difference is usually negligible in practice.

So, when dealing with infinite or extremely long decimal representa-
tions, the 48 rounds them, keeping a 12-digit mantissa of each number.
The inaccuracy that results is rounding error, and—as you would
expect—multiplying two rounded numbers will multiply this error.

So, how great an error is this?

Suppose you’re the pilot of a plane flying from Los Angeles to New York.
And it’s a lovely day, and once airborne, your navigator lets it slip that
he’s been using his 48 to do fuel calculations—so his computations of
miles per pound of fuel are accurate only to .000000000001 miles (uh-
oh).... How big an error is this over 3,000 miles?

About one two-hundredth of a millimeter. If you’d flown clear to the
moon and back, the error would be about 0.8 mm. And in a round trip
to the sun, you’d be off by about a foot. Not a lot, really.

So the 48’s 12-digit accuracy is slightly more than barely adequate.

Simple Materials: Real Numbers 41

Magnitude: Another limitation of the 48 is the magnitude of a real
numbers (i.e., the value, not the number of digits) it can represent: You
simply cannot expect it to represent arbitrarily large or small num-
bers. Everyone has a limit; you do—and so does your machine.

The largest real-number value representable on the 48 is a number

called MAXR: 9.99999999999E499 (9.99999999999 x 10**)
And the smallest value, called MINR, is 1IE-499 (1x10™*°)

These numbers are fantastically large and small. It is difficult—if not
truly impossible—to contemplate these quantities.*

*It’s a tough job—but someone’s gotta do it:” Compare MAXKR and MINR with some of the largest
and smallest things in the known universe....

The effective radius of an electron is about 2.817938 x 10™"° m(eters)—or about 2.978626 x 10"
light years (a light year is the distance that light travels through free space in one year’s time). So
the volume of an electron (assuming it’s a sphere) is about 9.373093 x 107 cubic meters, or about
1.106972 x 10" cubic light years. Now, the radius of the sphere of the known universe is about 10*°
light years—so its volume is about 10* cubic light years. And so, if you were to pack the known
universe absolutely solidly with electrons (no wasted space), you’d need about 10'* electrons.

Now that’s alot—more than anybody can really envision. ButMAXR on the 48is so much larger than
this, that if you really had a collection of MAXR electrons, you’d have enough electrons to fill 10,000,
000,000
000,000
000,000
000,000
000,000
known universes.

On the small end of things, picture in your mind the colossal gob of electrons numbered above. Then

picture yourself picking out just ten of those electrons. That ten—in relation to the whole—is the
fraction you're talking about when you use the smallest 48 real value, MINR.

42 (2) THE Stack AND CommaND LINE: YOUR WORKBENCH

Suffice it to say that the magnitude limits of the 48 aren’t all that
restrictive.

Indeed, you may have heard of human cultures whose numbering
systems went something like:

“l...2...3...more-than-3...”
...and that was all the higher they described numerical magnitude.
Well, so it is in every society. In this modern-day, technical world, for
example, the numbering goes beyond 3, but at some point, it runs out
of names and meanings too:

“...millions ... billions ... trillions ... quadrillions ...”

...and so on, up to about “nonillions”—about 10*. But what do you call
numbers on the order of 10'®, or 10*°?*

Truly, there is a limit to your practical needs to describe numbers.
Yours may simply be a little higher than another’s—but not by much.

*The authors recommend the term “several gadzillion.”

Simple Materials: Real Numbers 43

Changing Signs and Entering Exponents

All right—enough worrying about the limitations of real numbers. It’s
time to see how they work as objects you manipulate on your work-
bench—the Stack. Try putting some real numbers on the bench-top....

Do This: Press ([2JCLR) (5)2)8) o) (ENTER] (3] 6 5] - [2]5)
ENTER)(6) - Jo) 2] 2] e El2)3)[ENTER). You should see:

OME 3

LH
4:
3= ar8H
%:

363.29
6. B27EC3
PART 5] PROE [HYP [MATEVECTRERSE]

Notice that when you keyed in 6. B22EZ3, you used
to key in the exponent—but you could have used
(Enter EXponent) instead.

For keying in exponents like this, works much the
same as except for one case: Press now....

See what happens? Ifthere’s no mantissa already on the
Command Line, gives you one: 1.

(Press (ATTN) now to clear the Command Line.)

44 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

Now, how about negative numbers? Try these...

Examples: Press (1)ENTER)[*/J)(*/5)....The key simply changes

positive object values to negative—and vice versa.

Nowput —1.3,4.5x107,-7.8x10* and -9 x 10™* onto the
workbench. Press: (- J3]+/=JENTER)
(4] 5 EEX] 2] 4] +/-JENTER)
()+/9) EEX)(*/)(5)4) ENTER).

You’ll see this:

HOME ¥
: 3
: 4.5E-24

-9.E-54
PARTS| PROE | HYP [MATR[VECTE]

=R

So there are two ways to get a negative number: You can
put the positive number on the workbench in the usual
way, then press (+/=). Or, you can change the sign of
either the mantissa or the exponent at any time while
you’re typing in that portion of the number.

Simple Materials: Real Numbers 45

Display Formats

You’ll notice that the real numbers on the Stack have varying numbers

of decimal places showing. What’s going on?

Try This:

Press (G)moDES)(4) . You should see:

OME }

iH

g -1.3098
3: 4. 508BE-74
2: -7, 6. BoEa

-9. BHBBE-54
310 [Fii s scl] ENG J5vr a[EEEPa]

You just told the 48 to change the format of real numbers
in the display. Their values haven’t changed—just the
way you see them.

(4)IGEM tells the 48 to show a FIX’ed number of digits—
four in this case—to the right of the decimal point.

Notice how the [l has appeared on the IZEll mode key
to tell you that FIX mode is currently in effect.

Now press (0)IHEH.... See? Now there are zero digits
to the right of the decimal point. Again, the numbers
haven’t changed in value—only in appearance.

46

(2) THE StAck AND CoMMaND LINE: YOUR WORKBENCH

Do This: Press (1]1) BEERI.

OME ¥

-1 . 3HEHEAHEEREEY
4. SHEAREEEEARE —24
-7 . SHEHRAEEEABE 3

-9. HEEEEEREEEE -54
| 5T0 [Fitt [SCP a] ENG [5¥H a[EEEPa)

=IO fa ™
=s =m um mm|x

Notice: In the previous examples some numbers were
displayed in scientific notation even though the requested
display mode was FIX. But that was only because it was
impossible to display them any other way—using the 12
available digits. Any number greater than 999,999,999,999
or smaller than .000000000001 must be displayed in scien-
tific notation, since its magnitude exceeds the ability of the
display to show it as an explicit, one-part number.

But now, with SCI mode, you are forcing the display to use
scientific notation for every number, regardless whether
that number could otherwise be correctly represented in
the display.

Finally—before going on—press JEL{fill. This is STandarD
display format, where all significant digits are displayed
and where scientific notation isused only when the number’s
value is outside of the display’s magnitude limits.

Simple Materials: Real Numbers 47

Postfix Notation

“...Scientific notation, real-number representation limits, display
formatting...when am I going to start doing things—like arithmetic—
with real numbers?”

Right now:

Remember that what you’re seeing in the display is quite literally a
Stack of objects. Everything you’ve created so far has been “stacked
up” on this “workbench.”

Remember, too, that you put the latest additions on the bottom here;
that’s “upside-down” from your notion of a stack of lumber or pancakes.
But it is a stack, nevertheless—because it’s a last-in-first-out type of
arrangement: the last thing you put onto the Stack is the first thing you
take off.

With that in mind, here’s the one simple rule to know as you begin
working with the 48’s Stack:

Whenever you use some ¢00l to work on an object—say, to change the
sign of a real number, for example—the tool assumes that the object is
alreadyonthe bench-top (i.e. on the Stack) when you start to use the tool.

This means that you must first put onto the Stack any number(s) that
you want to manipulate and then perform the operation. This way of
doing things is called “postfix” (from post-affix: literally, “to add after”)
because the operation itself comes after the operands.

48 (2) THE StACKE AND CoMMAND LINE: YOUR WORKBENCH

Real Number Tools

Try this postfix pattern of operation with some real-number tools.

Do It: Press (7)[ENTER. Now press (/x).... What happens? The 7 is
replaced by . 142857142857, which is 1/ (rounded to 12 dig-
its). The tool inverts the number in Stack Level 1.

Press (I/x) again. You get 7. 80000800681 That’s %

Try another: Press(4)]-) 3)(x).... Youget 2. 87364413533 —the
square root of the 4. 3 that was at Level 1. But how did that
4. 3 get to Level 12 You never pressed to send it there
from the Command Line—you just pressed (ix)!

Answer: When you're working in the Command Line, most
tools automatically put the contents of that Command Line
onto the Stack (i.e. “press [ENTER)” for you) before they start
working—just to save you a step.

/<

Postfix Notation 49

Notice: The inverse of a tool is often located on the same key as the
tools itself. For example, press ()X now.... You will get

4.,29999999999, which is (v4.3)" to 12 digits.

But there are far more tools than keys, so—as usual—when you want
more tools, look in a toolbox....

Like So: Press to open the MaTH toolbox. From the menu that
appears, you can see that this toolbox has six “drawers” in
it. You can tell that they’re drawers and not tools because
they each have a “folder tab” on their top, left-hand corner.

Select the [{ild#] drawer....You now see six tools in this
PARTS menu, but remember that there may be more than
these six tools in this drawer—and you can see more by

pressing or (]PREV).

So “rummage” around in this toolbox now, until you find the
I (Integer Portion) tool. Try it—press IGIN ...

The resultis4—the Integer Portion of the 4. 29999999999
that was at Level 1 of the Stack.

Again, the point is, whether you use tools from the keyboard or from
some toolbox, they all make the same postfix assumption: the object to
be “worked on” is already on the Stack.

50 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

Two-Number Tools

The tools you've seen so far have worked on one object on the Stack—
at Level 1—the closest object to you. But many tools are designed to
combine fwo objects to form another—as in “plain old arithmetic....”

Do Some: Addtworeal numbers on the Stack: Press(1)ENTER)(2)H).
The result is no big surprise, right?

Try (3)[ENTER)(4)(X). Also no surprise.

Now, addition and multiplication are commutative op-
erations(thatis, 1+2=2+1 and 3x4 =4x3). Butthat’s
not true for subtraction and division—so which number
do you put onto the Stack first?

Just put the two numbers onto the bench-top in the
order that you would say them. Thus 8 -2 would be
ENTER)(2)(=); and 6+ 4 is (6]ENTER)(4]=). Try those....

Noticealsothat several ofthe keyboard toolsusexand yin their names.
This is to help you remember where in the Stack the operand(s) should
be to correctly use these tools:

The number at Level 1 is x; the number at Level 2 is y.

So, (5)([ENTER)(3)¥™ calculates 5°; and (8]1)([ENTER)(4)[2)X7) finds 4/81.

There are other one- and two-number math tools in the MTH PARTS,
MTH PROB, and MTH HYP toolboxes. Check them out if you want.

Postfix Notation 51

Stack Manipulations

So that’s the basic idea: You put objects on your 48’s postfix Stack
workbench and then use tools on them.

Of course, you’ve seen this only with real numbers so far—and there
are plenty of other objects and tools to learn. But first you ought to
know how to organize, arrange and rearrange your workbench—the
Stack. As you might expect, there are tools to help you do this....

The first and most basic of these is (CLeaR). As its name im-
plies, it clears the Stack, throwing away every object on it.

Do It Now: (JCLR]

Another commonly used command is (GJDROP). It throws away the
object on Level 1 object from the Stack and drops all remaining objects
down one Level.

Try This: Press (1)ENTER)(2)([ENTER)(3)(ENTER)
(1JDROP) & [DROP) (¢]DROP).

Or This: (1)(ENTER)(2) (ENTER)(3) ENTER) («) (+) («).

As long as the Command Line is not active, («)is DROP (but of course,
if you are typing in the Command Line, then («) is backspace).

52 (2) THE StACKE AND CoMMAND LINE: YOUR WORKBENCH

Now, what if you want to duplicate the object at Level 1? (You’ll want
to do this a lot, as you'll soon see.)

Guess what? serves that purpose. Remember that when the
Command Line is active, places its contents on the Stack. But
when the Command Line is not active, makes a copy of the level
1 object and pushes it onto the Stack.

Example: Press (6)(ENTER)[ENTER)ENTER)....

The first puts the b on the Stack at Level 1. The
second copies this 6, pushing the original up a
Level; you now have two &’s. The third again
copies the bottom b and pushes the fresh copy onto Level
1, again pushing the existing objects up a Level; you now
have threeb’s. Press now tothrow them all away.

The last of the common bench-top organizers is (G)]SWAP). It simply
swaps Stack Levels 1 and 2, which is useful when working with order-
sensitive tools such as subtraction and division. Similar to &]DROP),
when the Command Lineis not active, you needn’t press€q)to use(SWAP).

Try It: Press (1)[ENTER)(2)ENTER)(3) (ENTER) (§)SWAP) (or just
that’s the () key). See? The Z and 3 are swapped. Play

around with this, and then press to goon....

Stack Manipulations 53

The Interactive Stack

The workbench can become pretty crowded with projects and raw
materials in various stages of completion. Organizing, throwing away
or bringing down selected items can be a real chore. But—how’d you
guess?—there’s a tool to help you.

Watch: First, put some “stuff” on the bench-top to play with. Press:

(©)cLR)(1)([ENTER)(2) ENTER)(3)([ENTER)(4)ENTER)(5) ENTER)(6) ENTER)
(7)(ENTER)(8)(ENTER)(9) (ENTER) (1) 0) (ENTER)

Now, press (4] and see this:

HOME }

i
g i
3¢ 8
c 9
1p 18
[ECHO [VIEH | PICK [ROLL [ROLLDJ+LIST]

Thisisthe Interactive Stack. 1tis designed to give you a quick and easy
way to look at, edit and use an object at any Level in the Stack.

Remember the tool in the EDIT toolbox (page 38)? Well, the
Interactive Stack’s arrow keys work in the same way: () and (¥) move
the pointer up and down the Stack. And (©)a) and (©)¥) jump all the
way to the extreme top and bottom of the Stack, respectively.

54 (2) THE Stack AND CoMMAND LINE: YoUR WORKBENCH

Do This: Move to Level 1 now if you're not there (i.e., press (2)¥)).

should look familiar, too. It works like EDIT’s
except that it opens the Command Line (because
there isn’t one already) and echoes into it the object at
the pointer Level. Try it—press [HXi[N ...

Nothing seems to happen, except for the changed menu,
but the Command Line is open—with 18 in it. But be-
fore showingit to you, the machineis giving you a chance
to move around the Stack and echo other Levels, too.

Press (a]a) ENTER. Now the Command Line ap-
pears—and it contains the 18 and the 8 that you've
echoed from the Stack. And if you were to press
now, those numbers would go onto the Stack—just as
they would if you had ¢yped this Command Line instead.
But press to discard them. And notice that you've
left the Interactive Stack; press () to reactivate it.

Notice also the next item in the Interactive Stack menu: [FEHEN It
works just like (G]EDIT) except that it edits the object being pointed-to—
creating a working copy on the Command Line so that and
can either accept or reject the changes you made.

Again, the idea of the Interactive Stack is to let you move around the

Stack and work with any object as you normally do with the bottom-
most object.

Stack Manipulations 55

Continue across the Interactive Stack’s menu items:

A makes a copy of the pointed-to object and pushes this copy onto
the Stack at Level 1, moving everything else up a Level.

Try It Now:

Then Notice:

Make copies of Levels 3 and 11. Press: (]v)(a]a)
PICE. [P ([©]¥) and see:

l _
i — 00 S0

[ECHO [VIEW | PICK | ROLL JROLLD]>L

'[N and [d'[4¥1] “roll” the contents of the Stack
between Level 1 and the pointer’s Level. 1|48 rolls
up; [d[481] rolls down.

Move the pointer to Level 4 (a]aJa)) and press
several times to see the effect. Each time, the four
numbers are “rolled up,” with the Level-4 number
coming down to replace the Level-1 number.

And [{!]1%¥1] rolls the other direction. So roll Levels 1
through 4 around until you’ve had enough, then put
them back in their original order: 9 18 8 1.

56

(2) THE StaACcK AND CoMMAND LINE: YoUR WORKBENCH

Now turn to the next page of the Interactive Stack menu (press (NXT))
to see more tools.... These tools use the Level number of the pointer
as a kind of counter—telling the machine how many Levels to dupli-
cate, drop or keep.

Examples: Move the pointer to Level 2 and press [{IIdf] You see:

i HOME }
gz 8
3: 1
: i
Eﬁiﬂﬂﬂﬂ[ﬂm--

You now have two copies of the contents of Levels 1 and
2. The duplicate set was pushed onto the bottom of the
Stack—bumping the originals up to Levels 3 and 4.

338 drops (discards) the pointed-to level and every-
thing below it. Press [{ddill now to drop levels 1 and 2.
Conversely, keeps the pointed-to Level and ev-
erything below it—but discards everything above it.
Press now....See? Only Levels 1 and 2 remain.

(3N 38 simply pushes the Level number of the pointer
onto the Stack. Press [{34¥now, while pointing to Level
2, and watch as the 48 pushes a & onto the Stack.

Stack Manipulations 57

Finally, there’s one other Interactive Stack tool that’s notin the toolbox
(the menu)—Dbecause it’s on the keyboard: («)

As you may remember from page 52, when there’s no Command Line,
(#) acts as a DROP (identical to (&]DROP)), dropping (discarding) the
Level-1 object.

Well, in the Interactive Stack, («) drops the pointed-to object....

Prove It: Press (@) to drop the 1 at Level 2. Press («)again to drop
the 8.

Press(«)once more to drop the2. Notice how the pointer
won’t ever go any higher than the highest filled Level of
the Stack.

Notice also that dropping the last object on the Stack terminates
Interactive Stack—you’re back to the menu you were looking at before
that—probably somewhere in the MaTH menu.

You can see that the 48 is designed to be as convenient as possible:
Maybe you went into the Interactive Stack to do some vast (or half-
vast) Stack manipulations, object building, copying—who knows? But
the reason for it all might be that you need to use something in this
MaTH menu on the resulting object(s). So the 48 remembers which
menu you were in and treats the Interactive Stack excursion as just a
temporary “side-trip”—a “time-out” for preparations.

58 (2) THE Stack AND ComMmaND LINE: YoUR WORKBENCH

Learning By Doing

By now, you’re surely reeling with all the tools at your disposal—just
to “mess around” in the Stack. Look how much you’ve seen:

¢ You know how to type on the Command Line, and how to use the
(o) key (one (o) per character or to “lock” it on);

* You know how to use lowercase letters, NEWLINE and other
special characters;

¢ You know how to edit the Command Line with, (DEL, («) and the
EDIT toolbox, which (among other things) lets you choose be-
tween the insert (¢) and the overwrite () cursors and ECHO
objects from the Stack into the Command Line

¢ You know various and sundry other things, too.

Of course, there’s no way you're going to memorize all the various Stack
and Command Line manipulation tools just through brief introduc-
tions like these—so don’t panic if a lot of this has blurred together by
now.

Butnowisthetimetodrive it home to yourself: The best way to become
familiar with the tools and concepts presented in this chapter is to use
them. So there’s a quiz on the following pages—mainly real-number
math and Stack problems. You may not be able to work every problem
correctly the first time. If you get stuck, look at the answer! See how
it’s done. Then work the problem again until you understand the
solution. After you've done all these problems, think up some of your
own. Play with the Stack—get used to it. Master it.

Learning By Doing 59

1. Find

Find

Find
2. Find
3. Find
4. Find
5. Find
6. Find

7. TFind both answers:

60

Workbench Quiz

1+2+3+4

1+2+3x4 Then find (1+2+3)x4

1+2+3 Then find 1+2)+3

21n(7)
45

~12 +4/122 = 4(3)(=5)

2(3)
—~16+43(.004)
1736[32-16.3]
2 3 4
1+.5+ S + S + S
2t 31 4!

16 ++/(~16)* — 4(20)(—48)
2(20)

(2) THE StACK AND CoMMAND LINE: YOUR WORKBENCH

10.

11.

12.

13.

14.

Find sin45°, cos134grad, and arcsin0.5, in radians.

For 6 =75°, show that: sin36 =2sin8cos® 6+ (1-2sin’6)sind

What are the differences in rounding error for sin & radians if you
round =« to 4 decimal places? 11 places? What if you truncate at
4 decimal places? 11 places?

With 26 refrigerator magnets, one of each letter in the alphabet,
how many different six-letter “words” can you make? What if no
two “words” may use the same six magnets?

By what percentage must you decrease

to get

5+1 V5-1
2 2

Put the numbers 12, 34, 56, 78, and 98 onto the Stack. Now
reverse their order (without typing them in again).

Without typing any digits, form the least possible positive inte-
ger from the digits of the five numbers in the previous problem.

Workbench Quiz 61

5.

Workbench Solutions*

ETEREHEBEE Answer: 108
OBEREHEEEREX® Answer: 13
EERPBHEBHMAEX Answer: 2%
GENTER) 2 ENTERB)) Answer: 1.66666666667
EER(2HEE Answer: 1

Remember: In the absence of parentheses, do multiplication

before addition. When construing a written arithmetic problem
to solve on the Stack, work from the highest operator priority to
the lowest—and from the innermost parentheses outward.

EIENTER)(3)(H (/) Answer: .2
OeNEXEEE Answer: 8.64848955138E-2

R EEENTER) CX E /) XEERIFA®H
(2JENTER[3)X)(5) Answer: . 38847614285

(4)3JEnTER)(- JoJ 0] 4] 0000
G307 Answer: 63.1263787068

*Keep in mind that there are many ways to solve arithmetic problems on the Stack. The solutions
shown here are amongthe most straightforward and easiest tounderstand. But there are certainly
other solutions—some of which use fewer keystrokes—so use whatever methods make sense to
you. Unless otherwise noted, the answers assume STD display notation.

62

(2) THE Stack AND CommanD LINE: YoUrR WORKBENCH

6.

OB EEEOEE VTR A ®
(EEREREE G
CEENER) (Y3 Il =@ Answer: 1.6484375

As you can see, the PROB toolbox in your MTH menu has the

factorial function, to help you “crunch” this Taylor expansion by
brute force; later you’ll see another function to make this easier.

0072 @ 0RERAONGOZAREEBEREBORE
@AND [T (B Answer: 2
@ Answer: -1.2

Keep in mind your Interactive Stack.

&) monES) NxTINXT) I (if necessary) (4)5)SIN)
Answer: .r871086781187

(GRAD | Answer: —.5896841415¢5
T (5H&AsSN Answer: .D23998775598

You’ve seen the MODES menu before. Here you use it to set the
angle mode—degrees, radians or grads.

&ImopES) NxTINXT I
3R DFTIX)X I E]cos) X XH
Answers: —-.r87186781187 and -.787186781181

That’s close enough, allowing for rounding error (see prob. 10).

Workbench Solutions 63

10.

7 is 3.14159265358979323846.... But no machine represents it (or
any irrational value) exactly; any numerical computation must
approximate. As for all values, the 48 uses a 12-digit represen-
tation of ® (11 decimal places), then rounds for best accuracy:

3.14159265358979323846... ----> 3.14159265359
To truncate would decrease the accuracy:
3.14159265358979323846... > 3.14159265358
The same argument is true at the fourth decimal place:
3.14159265358979323846... ----> 3.1416
3.1415?265358979323846... —-> 3.1415

The sine functionis sensitive* to such approximations of t: Since
sinTt = 0, any approximation greater than «t gives a negative sine;
any “under-approximation” gives a positive sine:

& mopESINXTINXT) I (3 - 1 4)5 e) 2 6 5) 3)5 9 JENTER)
(ENTER[ENTERJENTER)(SIN) Answer: -2.86¢61537357E-13
Answer: 9.79323846264E-12
QUAR|PAF T3[R EGEYE)] EHD (SN

Answer: -7.346418Z067E-6
@] TFHE [E) Answer: 9.26535896667E-5
The RND and TRNC functions round or truncate to the number
of decimal places you specify (4 here). A negative specifier re-

quests that many significant digits (rather than decimal places).

*This isn’t true for all angles. For example, sin 1.5707963268 (sin “ %" is 1 . 00888060008—to 11
decimal places—but only because the rounding happens to works out, not because the 48 treats ©
somehow specially in its numeric calculations. It never uses = itself and can never give answers
other than those produced by the digits it does use. This is true for any irrational number: Take
V2 onthe 48 and then square the 12-digit answer. You do not (and should not) get 2. 88000080000
(do the arithmetic by hand, to prove this, if you wish: 1.41421356237 x1.41421356237). Any cal-
culator that gives you 2.00000000000 for that answer (or 0.00000000000 for sin 3.14159265359) is doing
“funny math”—and you should feel free to be outraged.

64

(2) THE Stack AND CoMMaND LINE: YoUR WORKBENCH

11.

12.

13.

14.

This is a probability problem—so go to the PROB tool box:
EETA. The question is, how many permutations (the order
matters) can you make of 26 objects, taking 6 at a time?

BB ENE)Q] PERH Answer: 165765666

If the order doesn’t matter, then it’s combinations of 26, taking 6

at a time: (2J6JENTER)(6)[HIEIA Answer: 236238

(Result: 1.61883398875)
808068 (Result: .61883398875)
Now, the percentage calculations are kept in the PARTS toolbox,

S0 Answer: -61.86033988¢5

That’s a 61.80...% decrease (it’s a negative change).

Press (1) 2)ENTER) (3] 4JENTER) (5 6 JENTER)(7) 8 JENTER) () 0 JENTER).

Of course, there are many solutions to the reversal problem.
here’s one with the Interactive Stack: (a)(a) M) NN ()
[N (a) [AW ENTER).

The key here is to use the Interactive Stack to ECHO items from

the Stack onto your Command Line: (a) [l (&) TN ETH
@ EET & IELTEENTER). That sends you to the Command Line,
where all you need to do is delete the space delimiters*: (&)L

O]« 5KIP[Q)] € 5KIP[@] € 5KIP[R] £ 5KIP[QENED)

*Technically, the smallest positive integer possible is 8123456789, which, when ENTERfed, would
be 123496789, so you could argue that it’s “legal” to delete the 8 character here too. (“OK, fine.”)

Workbench Solutions 65

)

/ i
"’!!"'i-";"i“:-"-'ﬁ {- ‘=;"‘ o o s -:ﬁi--===
Ve T - s
\é\ - y k\ \ “:-i:‘ e

e Tt
¢

Js

(3) OBJECTS: YOUR RAW MATERIALS

The Fundamental Idea

This chapteris anintroduction to the basic raw materials—“objects”—
in your 48 workshop. You may not use all of these objects, but read this
chapter completely, anyway—so that at least you’ll know what options
you have for solving problems. Many solutions on the 48 use more than
one type of object, so take the time now to understand the basics of each
type—even if you don’t see what good it is right away.

Besides, this will give you a better understanding of the 48’s way of
doing things—its Fundamental Idea: You can generalize the problem-
solving process. Once you know the keystrokes and strategies for
problem-solving with one type of object, you can use other objects
similarly—without learning entire new sets of commands and rules.

Real Numbers
You’ve already seen real numbers in action on the 48—to show you how
postfix arithmetic works on the Stack. The only point to reiterate here
is this:

Just as you combine real numbers on the Stack via real-number math
functions, so you combine other objects via math functions, often using

the same function keys (e.g. (+) (=) (X) (=} etc.).

Sonow it’s time tolook at how these other object types work. Of course,
to use them, you must know how to build and recognize them, too....

The Fundamental Idea /| Real Numbers 67

Units

In a sense, real numbers aren’t so real. When you add 1 to 2, what does
that mean? 1 what? 2 whats? 3 whats?

In the real world, you generally talk about real numbers as indicating
quantities of something. When you drive 100 miles one day and 75 the
next, you speak of distances; the basic unit of measure is the mile.
When you fill your gasoline tank by adding 7.4 gallons to your 15 gallon
tank, you're talking about volume, with a basic unit of a gallon.

The point is, you wouldn’t need to specify such units if everybody
measured things the same way; if that were the case, you could simply
use real numbers. But it’s not. You can add 1 foot to 1 yard and get 4
feet or 1.3333 yards. And just how many teaspoons of liquid are there
in a liter? And how many square feet in an acre? Sometimes, doing
the unit conversions and checking your units for consistency are the
most difficult parts of doing a calculation.

How does the 48 represent them?

The 48 allows you to associate units with real numbers—much as you
do now. When you associate values and units on paper, you write the
unit after the value: 14 ft 26.3 in 142 acre

The 48 does it very similarly, simply using an underscore (_) tolink the
real number with its unit:

14_ft Z26.3_in 14Z2_acre

68 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a unit object?

The easiest way to create a unit object is to use the UNITS toolbox....

Do This:

Like So:

Press()CLR), then open the UNITS toolbox to explore it.

Press(&JUNTS).... Notice that each of the resulting menu
items is a drawer with an “tab”—telling you that each
leads to yet another menu—a sub-menu with more
selections (use to see all 16 submenus available):
LENGth,AREA, VOLume, TIME, SPEED,MASS,FORCE,
ENeRGy, POWeR, PRESSure, TEMPerature, ELECtricity
ANGle, LIGHT, RADiation and VISCosity.

On the first page of the menu, select the LENGth sub-
menu: . Looking through this menu, you’ll find 22
different units of length.

To build a unit object, simply key in the real number
value and press the corresponding unit key. For ex-
ample, to build the unit object 14_ft, press [FT |
(dothis now)....* By pressing the key, you created
a single unit, 1 _ft, and then multiplied this by the real
number, 14, to form the unit object, 14_ft.

That’s true in general: Pressing any unit key forms a
value of | of that unit, then multiplies that by the object
already at Level 1 of the Stack.

*The menu keys show all letters in upper case, but the unit name itself often uses lower case.

Units

69

i ject?

The beauty of unit objects is that you use them just as you would real
numbers—and the 48 will keep track of the units automatically.

Example: Calculate how many feet of 10-inch-wide lumber planks
you’ll need to build a 7-level (backless) shelf unit that is
2 meters tall, 1 yard wide and 10 inches deep.

Solution: You need seven 1-yard pieces and two 2-meter pieces,

each 10 inches wide. So press: (2JcLR)() KT X)(2)
A Answer*: 34.12_ft

Things to notice:

e 1_ydx?=7_yd. AndZ2x2_m=4_nm.
Multiplying a unit object by a real number (scaler) gives you
another unit object with the same units.

o 7_yd+2_m=8.48_m.
Adding (or subtracting) two compatible unit objects gives you an
object with units the same as that of the previous Level- 1 object.

¢ To convert a unit object to other compatible units, simply press
(&)before pressing the desired unit’s key. Any ofthe LENGth units
are compatible with each other; any of the AREA units are com-
patible with one another, etc.

*Until further notice, all answers will assume a display mode of FIX 2 (so press SJMopes)(2) lEFH,
then return to your UNITS LENGth menu with the handy shortcut key, (®JLAST MENU)).

70 (3) OBJECTS: YOUR RAW MATERIALS

Now:

Easy:

You’ve just calculated the length of 10-inch planking you'll
need. How many square feet of lumber is this?

Simply multiply this length by 10 inches: [1N 3!
Result: 341.23_ft*in Notice that the units of a product
(X) or (v)) is not forced into the units of either of the previous
values. Instead it forms a combination of those previous units.
This is different than with a sum ((+) or (5)).

So you now have a correct area—but in rather uninformative
“mixed” units—ft*in. To convert it to something more
meaningful, simply move to the AREA menu (G)unTs) EETD),
and convert it to square feet: (B

Answer: ¢8.44_fi"2

Notice that the 48 uses * to indicate raising to a power. That
is, ft *Z represents ft2.

Question: Whathappensifyouask the48toaddincompatible units?

Try It:

Move back to the LENGth menu (press [LENG)
and try to add 1_ft to the square feet from the above

answer (press(1)lIZ(@).... No go, right? The 48says:

+ Ertror: _
Inconsistent Units

The 48 saves you from these common—but deadly—unit
errors.

Units

71

Press to clear that error message, and practice some more....

Problem: It’s roughly 700 km by road from Calgary to Saskatoon,
and you've just filled up in Calgary with 50 liters of fuel.
You know that your car gets about 35 miles per U.S.
gallon in the kind of driving conditions you expect. Can
you make it all the way to Saskatoon without refueling?

Solution: Aswith mostproblems, there are several ways todo this.
One way is to convert your car’s mpg rating into kilome-
ters perliter: Atthe LENGth menu, press NxT)(3)5) IEIH
(the (®) key is other varia-
tion available on each unit key: just as the unshifted
key multiplies 1 _gal by the Level-1 object, so

KM divides).

There’s your known mpg. Now build your desired units:

1 A, then (OJLAST MEND)(O IEEM(X). ..

Why zero km71? Because then you can convert your
answertokm~ 1 simply by adding this zero harmlessly to
your 39_mi~<gal (recall what addition does with units)!
Do it: Result: 14.88_km~1

This is your car’s fuel usage rate in local units. Now, to
see your car’s probable range, just multiply your rate by

your fuel supply: (JONTS) TIN5) 0 (3.
Result: 744.6868_km

Yep—barring unforeseen problems—you should make it to Saskatoon.

72 (3) OBJECTS: YOUR RAW MATERIALS

That’s one way to attack this kind of units conversion problem—using
the 48’s ability to convert between compatible units during addition.

But there’s a more direct way....

Recalculate:

Solution:

When you reached Saskatoon and refueled, your 50-
liter tank took 48.4 liters, and your trip-meter odom-
eter showed 712.8 km. What was your actual mileage
(miles per gallon) for the trip?

First, find your fuel usage in km~1:
LENG [FDR0080] K+ @S] oL
NxT)(@e -2 MMMM(>.... Result: 14.73_km~-1

Now build your desired units:

Q= GiL [RESIEY M

Now here’s the point where you can do things differ-
ently: Press (the other shift key).... This

small menu has units commands on them—specific

things you can do with unit objects.

That firstitem is the one you’ll probably use the most:
CONVert simply converts the object in Stack Level 2
totheunits of the objectin Level 1(the numberin Level
1 doesn’t matter). Try it now—press [ZIH....
Result: 34.64_mi~sgal

So just remember that you can convert between units either through

addition/subtraction or with the CONVert command (you’ll explore the
other items on the (JUNITS) menu later).

Units

73

Lists

Before you go on to explore the other object types available to youin the
48, consider this: A unit object is an ordered collection of two simpler
“things”—a real number and a unit, in that order. The new object
arises from this specifically ordered collection of otherwise distinct
parts. This is a general pattern within the 48: More sophisticated
“things” are often created from collections of simpler “things.”

So what makes a collection an object? Simply gathering together an
ordered collection of “things” doesn’t mean anything by itself. 14_ft
is an ordered collection of two “things”—but it means nothing until
those numerals, underscore and letters are given rules governing their
significance and use: “The numerals stand for a real number and may
be mathematically treated as such; the underscore links the number
with an associated (multiplied) unit.”

The point is, only with such specific governing rules for manipulating

and interpreting a collection does it become a distinct form—an object.
Each object type is distinguished by a different set of these rules.

So what’s a list?

A list is simply the object type with the most general—least restric-
tive—rules for manipulating and interpreting its collection of ele-
ments: It’s just an ordered collection of objects of any type, listed
together in a sequence. That’s why it’s called simply a list: there’s no
more specific mathematical or physical interpretation of it.

74 (3) OBJyECTS: YOUR RAW MATERIALS

H repr ist?

The telltale characteristic of a list is its enclosing set of { }. Here are
examples of lists:

{123456 7 "Hi there" 14_feet }
{ "o, dude!" (3,4) { 1 2 } 98.6_F 2
{01217 5e&53.1) (33

A list can contain any number of any type of object* in any mixture—
including other lists—or even no objects at all.

0 .2

L e R

D

*Some of the object types in these sample lists may be new to you yet. Don’t sweat their details—
just realize that they, too, may be elements of lists.

Lists 75

How do you build a list?

There are several ways to put a list onto your Stack workbench.
Naturally, you can type it in directly from the Command Line....

Do This: Press (2)CLR)(() (1)(SPC)(2]ENTER).....
You've just built the list{ 1.88 2.88

Easy, right? And did you notice the PRG sign in the Status Area while
you were keying in the list? (Do the above exercise again, if you wish).
This mode activates when you start the list, so that keystrokes that
would normally execute immediately will instead just record their
names as items in your list.

So use the (§]{] key to start a list. Then you can key in any objects—
even executable commands—as elements in that list.

76 (3) OBJyECTS: YOUR RAW MATERIALS

Now, what about making lists from objects already on the Stack?

To start with, consider this: What happens when you add different (but
compatible) unit objects on the Stack? The result takes the units of the
previous Level-1 object, right? All right, then what do you think might
happen when you try to add different object types together?

Find Out: Keyinthe objectsdand 14_feet (press
AT (1<) @), and then add them together
(#))....No can do, right? Nor does the order matter: Try

the above addition again, reversing the order of the two

objects: (ATTN)(to clear the error message), then(1)4)lEN
(5]4)....nope. But you knew this from page 71, right?

Ah, but what if at least one of the objects is a list? Press

ENGGEETE. .. Result: { 5.88 3

Now, try adding another object type to it. Press(2]H)....

How about that? Make a copy (ENTER)), and then try
another object type: (14) M.

And what about adding another list? Press (4....

Notice how the order matters: Try (1JENTER[SWAPJ+)....

Moral of the story: You can add unlike object types if at least one of them
is a list. If the non-list object is in Level 2, it will be appended to the
front of the list; if at Level 1, it goes onto the end of the list.

Lists 77

The other question: How do create a list out of existing Stack objects
where none of them are necessarily lists?

Try This: ()CLR)(1]ENTER)(2)ENTER)(3JENTER)(PRG) G)ENE1
Result: { 1.68 2.60 3.68 }

You can put any number of Stack objects into a list
simply by specifying that number and invoking EINELl.

Try another: (oS [EEH 2 HEMGETSR)
QOEERPRONENE (OEME] Result:
{ { 1.00 2.60 3.8 } 14_ft 5.68 { } 1}

Notice the order of list formation: First onto the Stack goes first into
the list.

Notice also the list “length specifier”—the number that goes onto the
Stack last, before you invoke EINERl. Thisis the argument ofthe
command. With its postfix notation, the 48 assumes that all informa-
tion necessary for the execution of any command is already on the
Stack* when you invoke a command name; it won’t stop and prompt
you for anything more once you invoke the command.

You've already seen at least one argument in action: remember how
you set the display to FIX 2 decimal places (page 70)? First you entered
the 2—your argument—then you selected the command (IEED.

*or in the Command Line—remember that most executable commands come with a “built-in
ENTER?” that effectively put the current Command Line on the Stack before proceeding.

78 (3) OBJECTS: YOUR RAW MATERIALS

One other key point about arguments on the Stack: The 48 reads each
argument and then discards (DROP)s) it before proceeding with a com-
mand. It never includes the argument(s) as part of the Stack when
actually carrying out the command’s actions. This is why, for example,
yougot{ 1.08 2.88 3.088 }insteadof{ 2.68 3.688 3.688 }in
the first exercise on the opposite page: the bottommost 3. 88 was the
argument of and was therefore read and dropped before
was actually performed.*

So that’s how to build a list from objects on the Stack. Now, can you
take it apart again?

No Sweat: Press [[-#EX.... See what happens?

is the 48’s General Purpose Object Decomposer.
That is, it breaks down virtually any compound object
intoitslist of components, stacking up these components
in orderin the Stack. And for objects such as lists—that
don’t necessarily have a fixed number of components
also leaves the element count at Level 1—so that
you can re-compose with a single command (EINE, in
this case—try it)!

*To practice more with arguments, you might want to play with some of the commands in the STK
toolbox. This Course covered some of the basics of Stack manipulations in Chapter 2, mainly with
the Interactive Stack. Butifyyou stop and think about it for a moment, you'll realize that the pointer
youmoved around in the Interactive Stack is just a visual way of providing the 48 with an argument
for those Stack commands that require it. When you’re not in the interactive Stack, you can still
use all those same Stack manipulation functions, but you must key in the necessary argument—
just as you did here with EINEll. In fact, you'll notice that appears also on that STK menu,
because forming lists out of objects on the Stack is something you'll do quite a bit.

Lists 79

Complex Numbers

Time to move on now, to learn about the next object type.

Mathematically, a complex number is a vector in the complex plane, an
ordered pair of numbers representing the vector’s coordinates. The
coordinates are usually expressed in either rectangular form (a+bi) or
in polar form (Z£6).

How does the 48 represent a complex number?

On the 48, a complex number is also an ordered pair of (i.e. a list of two)
real numbers, which are vector coordinates expressed in either rect-
angular form (3. 88, 4.88) or polar form (5. B8, £53. 13). The pairis
surrounded by parentheses and separated by s and possibly <. Of course,
you can use this pair to represent anything you want, but it is indeed
a mathematically complex number—to be added, multiplied, etc.

Try One: (OJCLR)&]()(3)SPCI4)[ENTER). Result: (3.606, 4.68)
Thisisthe complex number 3+4i. Now press
(ENTER)to make some copies, then(+).... Complex addition
is as easy as real addition. Press (X).... Also easy, no?
Now that result (leaving the last (3. 86, 4. B8) at
Stack Level 1).

80 (3) OBJECTS: YOUR RAW MATERIALS

Question:

Answer:

When does the 48 display a complex number in rectan-
gular form, and when in polar form?

It depends on the current vector display mode. Go tothe
third page of the MODES menu (press ((&3]MODES|NXTINXT))
and find these three items FIEE], IEFEl and I (the
0 means that XYZ mode is currently in effect): EEE
displays complex numbers in rectangular mode; either
or displays them in polar mode.

Try changing the mode and watch the complex number
at Level 1 change its format (notice the annunciators in
the Status Area, too). But keep in mind that the number
retains its same (rectangular) complex value (3+4i); only
its display formatting is being altered—for your eyes.
This is true in general: Once you've keyed in a complex
number, the machine “remembers” it internally in rect-
angular form, but it presents the number to you accord-
ing to the current mode settings.

Question:

Answer:

How does the 48 know when to represent a complex
number’s vector angle in degrees, radians or grads?

It judges by the current angular mode. You can switch
this mode—and thus the polar formats of the number—
by pressing IGTTM or T (try these now, but leave
things in [[359 and EF] modes when you finish).

Complex Numbers 81

How do you build a complex number?

You have several ways to put a complex number onto the work bench—

and you’ve already seen the most rudimentary way to do it.

Again:

Type it in directly from the Command Line: Press (&J())(1)
(SPC)(2)ENTER). This gives (1.806, 2.808), a complex number
inrectangularform. (You could use either(]*)or(sPc). Both
act as delimiters to separate the two parts of the number.)

Now change the mode to polar form (press (=[POLAR}—a
handy keyboard modes toggle). Of course, you won’t get
(1.80, <2.88), which is (1.00£2.00°). Rather, you get the
polar representation of 1+2i—about (2.24£63.43°). Re-
member, you don’t change the existing vector value by
changing its displayed format.

To actually key in a complex number value in polar form,
you must precede the second value with a£—because using
ay ora always means rectangular complex input to the
48. Tryit: (2] <)2)[ENTER). Now the 48 will take the
second value to be an angle—in the current angle mode.
Thisisthevalue (1.00£2.00°)—or about 1.00+.03;,as you can

verify now by returning to rectangular mode ((=3]POLAR)).

So that’s the basic idea when keying in complex-numbers—either in

rectangular or polar format. But to build complex numbers from other

values already on the Stack, the 48 has some tools to help you....

82

(3) OBJECTS: YOUR RAW MATERIALS

Example: Put the numbers 9 and 18 on the Stack (§)ENTER)(1)0)
ENTER). Now use these two real numbers to form the
rectangular complex number (5. 08, 18.068).

Like This: Press the key, and then from the resulting menu,
select the ml toolbox. This is a menu of operations
you can perform on various object types. On the second
page (press (NxT)), you'll find (“Real to Complex”).
Tryit now.... Asyou see, takes two real numbers
from the Stack, using the Level-2 number as the real
portion and Level 1 as the imaginary portion of the new
complex number.

And the (“Complex to Real”) goes the other way—
taking apart the complex number and leaving two real
numbers on the Stack. Try it now:

The 48 is full of tools like these—designed to build or take apart a given
type of object. And remember that there’s one very “smart” operation
that can dismantle virtually any object into its components....

Watch: Press to rebuild the (5.86, 18.88). Then (G)PREV)
(ENEN. Same effect as XA, right? So here’s a reminder:
I[:AEH is the general-purpose object decomposition tool.

But you can also extract the two parts of a complex number math-
ematically—with some specialized tools in the MaTH tool collection....

Complex Numbers 83

Challenge: Extract the two components of (3. 88, 4. 88) —both in
rectangular and polar forms.

Solution: Keyinthe number (G]())3]SPC]4)) and make four copies
of it (ENTER]ENTERJENTER]ENTER)). Then press the key
and select the [E] toolbox. Here are some commands

made to order “for all your extraction needs:”

I3 extracts the REal portion: 3.88 (DROP) that);

M extracts the IMaginary portion: 4.88 (DRoP)it);

IETEM extracts the ABSolute value of the complex num-
ber, which is simply the magnitude of its polar repre-

sentation: 9.88 (now that);

IEIIM extracts the angle (in the current angle mode) of
the complex value in its polar form: 33.13

Complex Number Math

Complex numbers have mathematical properties similar to those of
real numbers, so many of the 48’s real-number operations also work for
complex numbers. You’ve already seen complex arithmetic, but trigo-
nometric and logarithmic functions work, too. And remember that you
can use mixtures of complex and real numbers in complex math.

So practice some more now. As you do these, concentrate on your
number entry format—and the 48’s interpretation of it. Which vector
display mode and which angle display mode is it using?

84 (3) OBJECTS: YOUR RAW MATERIALS

Challenge:

Solution:

Another:

Solution:

Another:

Solution:

Another:

Solution:

Find i and 3+ in rectangular format.
3+ 2

RETEREOREPI)E. ... Result: (B.66,-8.28)
Result: (1.56,8.58)

The 48 converts the real number 2. B8 into the complex
number (2. 86, B. B8) before doing the division. Then
just invert the first answer to get the second.

Find In(5£1.618), in polar format.

Change the angle and vector modes: (G)RAD)([POLAR).

Then: QDEEEPDINEIDEM. ..
Result: (2.28, <B.79)

Find sin+/7 +10irad in rectangular format.

(back to rectangular mode), then (&]O)7JSPC)
(1)0). Now take the square root ((X)),then the sine ([SIN)).
Result: (B.11,-2.41)

Find M in rectangular format.

sin45°%(1+i~/3)
IN2[+/-Jx]H)
(JRAD[4] JSIN[1JENTER] 3 J+/=JX[H[X]).....
Result: (1.11,8.688)

Complex Numbers 85

Vectors

Acomplex number is one special kind of vector. Butin general, a vector
isan ordered list of numbers—usually representing dimensions (direc-
tions) in some physical sense. The typical vectors you use most often
are therefore two-and three-dimensional (“2D” and “3D”) quantities:

2D

rectangular notation
xi+yj or (xy)

polar notation
(r.6)

. 6)

86

3D

rectangular notation
xi+yj+zk or (x,y.2)

z

(x5 2)

cylindrical notation
(,6,2)

spherical notation

(p.6:¢)

(3) OBJECTS: YOUR RAW MATERIALS

Vectors are more generally defined mathematically as single-column
matrices*—often encountered, for example, in linear systems:

ay Gp G5 Gy || X% b,
Ay Gy Gy Gy (| X b,
a3 Gy Q33 Q3 || X5 b,
Ay Gy Q3 Gy || X4 b,

In this capacity, of course, vectors are not limited to everyday physical
interpretations; they may be n-dimensional (“2-D”). And their format
is then only rectangular notation: (a,b,cd.e...)

How does the 48 represent vectors?

Though you can use vector objects to represent anything you want, the
48 can also treat them as mathematical vectors. Butsince () are used
for complex numbers, vectors are bracketted within [1. Notice that
a vector’s elements may be real or complex—but not both:

2D 3D
[12] [1-23]1
[3«38 1] [6«45 -19 1

[93 <121 «23.5 1]
n-D

[(1,2) (_1,4)]
[(5«37) (13.5,£-155.9) (B,<8) 1
[2 34 19 44 64 118 -25 37.5 9.89]

*The 48’s display represents vectors horizontally; nevertheless, the machine uses them math-
ematically as vertical (single-column) matrices. Don’t let the visual difference throw you.

Vectors 87

How do you build a vector?

As usual, the most straightforward way to build a vector is to type it
in directly from the Command Line. Try a few examples (these assume
that your vector display and angle modes are as you left them in the
last problem—rectangular and degrees, respectively):

Examples: Press (3)CLR), then (Q)[)(1)SPC)(2JSPC)(3JSPC)(4)ENTER). ..
Here's whatyouget: [1.80 2.08 3.68 4.60 1

Press (QLI1]=2]«)(2)[ENTER).... You get:
[1.66 8.83]

Of course, to see this in the polar form you had intended,

just press (©[PoLAR).... [1.88 «Z.68]

Press QO BRDOEFIEFCDETER).... You get:
[11.08 «-1.98 7.68]

To see this in rectangular form, just press (JPOLAR)....
[18.99 -B.36 /.60 1

As you can see, the rules for separating components in vectors are the
same as for complex numbers: You separate rectangular components
with (or,); you precede angular components with £. And keep in
mind that the £ is meaningful only in the second and third components
of 2D and 3D vectors. You won’t be allowed to key it in anywhere else;
and any vector larger than 3D doesn’t change from rectangular format
when you change the vector display modes, anyway.

88 (3) OBJECTS: YOUR RAW MATERIALS

Speaking of vector display modes,...

Do This: Press WIS ... Did you know that those mode keys
were available here—as well as in the MODES menu? As

you see, HP has put some often-used commands in several

places so you needn’t jump around as much to use them.

Something else to notice: At the moment, when you press

on the keyboard, it alternates (toggles) between

rectangular and cylindrical (R&2) modes. But if you press

EEd, then will toggle between rectangular and
spherical (R&d) modes...(try it—and then leave the mode

at rectangular and the toggle to cylindrical).

Now This:

Press to move to the next page of the VECTR menu.
Now put two values on the Stack, (1]2)ENTER)(1]5[ENTER),
and press to build a 2D vector from these values.
Easy, no? And the “loading” order of the vector’s compo-

nents is like those of complex numbers and lists: The
higher in the Stack, the farther forward in the object.

Try a 3D case: (2)9)ENTER)(4JSJENTER)(1) IEXEN. Voila.
And and are sensitive to the vector display

mode. To see this, press to change to polar/
cylindrical mode, then repeat the above keystrokes....

See the difference? The resulting vectors took the
corresponding values to be angular. This is how to key
in angular components without using the key.

Vectors

89

What goes up must come down: How do you tear apart vectors?

Easy: Justpress IEEB—tryit.... Thus, with either [EXE or
and [lEEMM, you can go back and forth between the vector itself
and its Stack of individual components.

Not only that: Notice the and keys on the key-
board (shifted versions of the key). Try them now.... See?

They’re keyboard versions of] / and /IEER,

respectively—vector building/decomposing toggle keys!

Question:

Answer:

The commands in the VECTR menu are all good and fine
for 2D and 3D vectors, but what about an n-D vector—
of any arbitrary size? How do you build that?

Use an argument, just as for a list of arbitrary size. Go
to the general object-building menu: [OEdJ |
Now key in your »n-D vector’s values:

(8)ENTER)(1) 6 JENTER) (25 JENTER). Now press (5)ELlAA ...
Result: [1.60 4.608 9.08 16.88 25.680 1

Your vector-size argument (9. B8 here) is just like the
list-length argument you use to build a list—except that
you use ELIAA, instead of EINERM, to do the building.*

*There’s no command called IEIJIM; you use EElIA because an n-D vector is actually a one-column
array (matrix)—and the 48 treats it as such, mathematically. In fact, to break down an n-D vector
into its components once again, you use (the All-Purpose, Whole-wheat, Recyclable, Bio-
degradable, Universal Decomposer Tool), and it leaves the vector length argument as a list (the
argument form used by arrays), rather than the real number argument you used to build the vector.

90

(3) OBJECTS: YOUR RAW MATERIALS

Vector Math

Now that you know how to build them and tear them apart, there’s not

much more to say about vectors in the 48 except “use them!”

Find:

Press:

Find:

Press:

Find:

Press:

Then:

|3+4i,7+115)|

(in rectangular mode—{>]POLAR), if necessary), then (&)1 J)
QO EEPIER GOSN ENTERMTH) HTAE IEEER.
Result: 13.96 Avector maybe complex-valued, but
ABS finds its magnitude (“length”)—always a real value.

10(-1,-2,-3) + (4,5,6)

(1 oJENTER)(1JENTER)(2JENTER] 3])3D)+/-)(X)(4 JENTER] 5 JENTER]
(6)=>e0)2J5H Result: [-8.80 -17.58 -27.80]

You can add vectors of the same dimensions; and you can

multiply any vector by any scalar (including —1, via (+/9)).
(1,2)-(3,4) and (3,£45°,10)x(9,£60°,2)

(1JENTER) (2] 2D) 3JENTER] 4 &5]2D)
CEm|YECTR| DOT | Result: 11.66

The dot product of two same-dimension vectors is a scalar.

(=[POLAR]3]ENTER)(4] 5 JENTER] 1] 0J=>)3D)(9)JENTER] 8] 0]
Result: [84.22 «151.86 6.99]

The cross product of two 3D vectors is another 3D vector.

And notice how easy it is to key in these cylindrical formats.

Vectors

91

Arrays

In the most general sense, arrays are simply tables of “things” (dots,

sticks, numbers—anything), arranged in rectangular formations of

rows and columns:

e
e
-
e
e

a, ap
a; axn
a,+b,i a,+b,i a,+b,i
ay + byl ay byl ay + byl
ay +byi ay, +byi ay + byl

When you arrange numbers (either real or complex) in this way, you

can, of course, use them for anything you wish, but one of the most

common uses is as a matrix—an array with mathematical rules and

properties:

Ay || X% b,
Ay | X | _| by
3y || X3 b,
Qg J[X4 b,

Notice the numbering convention used in arrays: element, is the ele-

ment in the ith row, at the jth column. An n x m array is an array with

n rows and m columns.

92

(3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent arrays?

The 48 can represent real-valued and complex-valued arrays—and do
many matrix operations on them. But because it also does non-matrix
operations, the object type is called by its more general name—array.

The 48 uses double brackets to delimit the array itself—and single
brackets to delimit each row within the array:

(L1111 (L1231
1x2 real-valued array [4561
[789 1]

3x3 real-valued array

[[(1,2) (-13.5,24.1) (4,-3.2) 1]

1x3 complex-valued array

[[-32.4 1
[15.6 1 [-32.4 15.6 1.815 -19.623 1
[1.815 1] 4-element vector
[-19.623 1]

4x1 real-valued array

Notice that these last two examples are actually different object types
(the array, with its [[1] notation on the left; the vector, with its
simpler [] on the right). But mathematically, they are treated the
same by the 48 in many of its array/matrix operations. Thatis, a vector
is actually a I-column array, displayed on its side for ease of viewing.

Arrays 93

How do you build an array?

As usual, start with the basics—keying in the object at the Command
Line. You key in arrays by row—a sequence called row-major order.
Practice by keying in the examples on the previous page....

Go: Clear your Stack and go to STD mode, then: (&)t &)1 3)(1)SPC)
(2JENTER). There’s your 1x2 real-valued array.

Next: (]I]t) 1)sPc)2]spc] 3]»] 4IsPc] s [sPc] &]sPc] 7]sPc]8)
(SPC]9JENTER). There’s your 3x3 real-valued array.

Notice how you use (») to skip over the closing bracket at the
end of the first row in the array. And that’s the only time you
need to key in the inner brackets—around the first row. After
that, as long as you enter the elements in row-major order, the
48 can arrange the remaining elements correctly—because it
knows that all rows must have the same number of elements.

Continue: Go to rectangular mode (JPOLAR)), if necessary,
then (GILIGI TG[) >la]0)
(B -JsI*/-=JsPel2) 4] - 1> Ia O)4JsPc] 3] - J2]+/-)(ENTER).

There’s your 1x3 complex-valued array.

And: (QIUIGJOIE 2] - J 4> 1)5) - X&)sPc) 1] - Lo 1[5]SPC)
(s -I8)2)3]+/-JENTER). There’s your 4x1 real-valued array;

Or: [0 2) - L& +/=JsPc 1)5 - JeJsPcl 11 - XoJ 1 5 sPc)1)e)]
ENTER). There’s your 4-element real-valued vector.

94 (3) OBJECTS: YOUR RAW MATERIALS

The Next Step: Build these same arrays from elements that you put

onto the Stack first....
OK: Press to clean the slate, then:

AENRETER QO[NP 2)Eves) Pre) NN EXEA.

There’s your 1x2 real-valued array.

As you'll recall from your practice with building vectors, the
command takes the argument from Stack Level 1 and
uses this to build an array or vector of the proper dimensions.
To build a vector—whose dimensions are always nx1—you use
a real number argument (since only »n needs to be specified).
Buttobuild an nxm array, you must specify both nand min your
argument—and you do this in a list.

Next: (1]sPc]2]spc] 3]sPc] 4)spc] s Jspc] 8 JsPc] 7)sPc) 8]sPc] o)
(remember that you can line up several objects in the
Command Line—separated by delimiting spaces like this—
then them onto the Stack all at once). Now
GIENTER EDIAA. There’s your 3x3 real-valued array.

Then: G]0) IO)3 S5 +/-JsPc)(2) 4] - 1]
EIE)E 0088008 AMEE B SN B ENED + HFF |

There’s your 1x3 complex-valued array.

And:
#/=JENTER). Then either (Q]J)(4)SPC)(1JENTER) ELIAE—to build
your 4x1 real-valued array; or (4) ELId—to build your 4-ele-
ment, real-valued vector. Try both. The type of argument (real
or list) determines the type of object (vector or array).

Arrays

95

No prizes for guessing what ['[:AEH does to arrays....

Try It:

Press and see that 4x1 array/vector decompose right
before your eyes....Notice, however, that the machine al-
ways puts the argument onto the Stack as alist—even ifit’s
decomposing a vector. But the fact that there’s just a single
dimension in the list tells the machine that this is meant to
build a vector rather than an array. Try now and
watch it reconstruct....

In this way you can toggle back and forth all day between
and [ENEN. This is precisely the purpose of all of
these object-building and decomposing functions: to let
you quickly take an object apart, edit some or all of it, then
rebuild the result with a minimum of hassle.

Feel free to the 4x1 array off the Stack and observe
(A A in action with some of the other arrays you still have
hanging around up there....

(3) OBJECTS: YOUR RAW MATERIALS

Math with Arrays

The best thing about arrays is how easy it is to do matrix math....

To Wit:

Too Easy:

2 5 8 8
LetA = and C = . If 24B+C =0, find B.
13 8 8
Whatitc =| > %9
at1 o 2l

Solving for B gives B=(A")(—C/2). So first, press (]CLR]
MTAIEELA. Here’s where the matrix operations live.
These and the arithmetic keys will do the job:

To build C, press (]t &L 1[8]sPc]8]»]8]SPC) 8JENTER)
or (02 sPc]2)EnTER 8)T (the quick way to build a
matrix filled with a CONstant value). Next, to ne-

gateC(i.e. allitselements), then divide it by 2 (2]=)). Now,
the 48 knows that when you say Y+X, what you really
mean is X''Y. So just divide by A:
Result: [[8 8 1 This is B.

[-4 -4 1]

Now, usingC= [[-2 B] repeatthe calculation.*
[8 -2 1]

You should getB=[[3 -5 1]
[-1 2 1]

*And note that to build this value of C, you also have the lIIIIl command, which creates a mul-
tiplicative identity matrix (a square matrix with 1’s on the diagonal)—provided that you tell it the
size of the matrix. So you could build C as follows: (2) /X

Arrays

97

Flags

Aflagisone of the simplest objects of all. It’s just a single bit—a binary
digit—that has just two possible values: 1 or8. Using the 48’s jargon,
a flag is either set or clear. If you set a given flag, you turn that bit on
(giving it a value of 1); if you clear it, you turn the bit off (giving it a
value of B).

How s the 48 represent flags?

Flags are indeed objects in the 48, but they’re a little different than the
other objects you’ve seen so far. First of all youdon’t build flags; they’re
already built. There are a set number of them—128—already identi-
fied by number and reserved in the machine (whereas, with other
object types, you can build as many as you want).

Secondly, some flags already have very specific meanings to the ma-
chine—not so with the real numbers, vectors, lists you might use in
your calculations. Those objects’ values have no preconceived signifi-
cance to the 48; the values may be meaningful to you, causing you to
change your behavior (e.g. answer a tough test question, redesign a
bridge, etc.)—but they don’t cause the 48 to change its behavior (e.g.
redefine the keyboard, change the display format, etc.). By contrast,
fully half of the flags (numbered -1 to —64 and called system flags) are
indeed dedicated to controlling parts of the 48 workshop itself—like
operating lights on the wall that flip on/off as indicators of certain
conditions (display modes, etc.). The other 64 flags (numbered 1 to 64
and called user flags) have no such prescribed meanings; they’re left up
to you to interpret—much like other object types.

98 (3) OBJECTS: YOUR RAW MATERIALS

The third big difference between flags and other objects is in their
representation: they have none. Thatis,the48doesn’t representaflag
“on the Stack.” There’s simply no delimiter (suchas{ }or[1)that
means “this is a flag.”

To “see” a flag, you must identify it by number and inquire as to its
current value. The machine will then respond by putting eitheral or
B onto the Stack. But this response is just the machine’s message to
you—just a real number object—not the flagitself. You can change this
response number however you want without affecting the flag; tearing
up a sports page doesn’t alter the outcome of the contests it reports.

Also, besides reporting the status of any flag you ask about, the 48
continually informs you of the states of certain flags—with annuncia-
torsin the Status Area. Several system flags are tied to the annuncia-
tors for angle mode and vector display mode. And, when set, user flags
1 through 5 display their numbers in the Status Area, too—just so you
have a few flags of your own that you can monitor easily.

Flags 99

How do you control flags?

Of course, you can do more than just test flags (ask if they’re set or

clear); you can set or clear them yourself....

Watch:

System flags —17 and —18 control the display’s angle mode.
When both these flags are clear, you're in degrees mode (as
you should be now—press ifnecessary). Butifonly
flag —17 is set, this sets RADians mode. Press () (not)
(NxT). Here are your flag control functions.

As with all commands on the 48, you key in any necessary
argument (in this case, that’s the number of the flag) and
then invoke the command. Thus, to use Set Flag (SF), you

would press BEl ... See? TheRAD annunciator
appears in the Status Area.

Now test flag—17 (ask “isit set?”): NxT[1) 7+~ IEEA.... The
answeris 1 (“yes”). But ask a different question: “Isthe flag
clear?”’ SN ... And of course, this answer is 8
(“no”)—it’s not clear. Now return to degrees mode: (]PREV]
G

You can set, clear and test any of the 128 flags. Try setting
and clearing some user flags (if you're using just a few user
flags, it’s usually handiest to use the first five, because the
Status Area informs you when these are set): (1) Il (2)
G EEGOEEGEEM. ... Yougettheidea (now

clear those five flags—in any order you wish).

100

(3) OBJECTS: YOUR RAW MATERIALS

Flags aren’t particularly useful from the keyboard. You’ll use them
most often within programs—to inquire of the current system states
and to remember previous decisions and inputs—as you'll see later.

Here are some questions to consider, though:

Question: You know you can test or change the value of any single
flag. Canyoutestorchangethe values ofagroup offlags?

Answer: Yes, you can test or adjust the values of all 128 flags or
the 64 system flags—all at once.

Question: If you ask for the states of all 128 flags, what kind of
response value could possibly represent this?

Answer: Since a flag is just a single bit, you’d need a value that
contained multiple bits—a binary integer. That’s the
object type you're going to study next. The results of
your multiple flag test (via a command called RCLF—
“ReCallL Flags”) will be such a binary integer. And the
argument you give to simultaneously alter the values of
a group of flags (via a command called STOF—“STOre
Flags”) will also be a binary integer.

Now, if you stop and think about it, you’ll realize that RCLF and STOF
lets you preserve in a different object type—a binary integer—exact
“blueprints” of all the flag settings at any given time. So although you
can have only 128 flag states at once, there’s no limit to the number of
such “blueprints” you can save and later transplant as necessary.

Flags 101

Binary Integers

All right—now for binary integers. A binary integer is an ordered
collection of flags, or bits. And, like other object types, the binary
integer object hasits own set of rules for manipulating and interpreting
this collection.

First of all, the reason it’s called an integer is that its list of bits is most

commonly used to represent integer values. The integer may vary

length from 1 to 64 bits. For example, here’s an 8-bit binary integer:
00101100

The integer value these bits form is commonly expressed in any of four

convenient number bases:

00101100, (base 2 or binary format)

54, (base 8 or octal format)
44 (base 10 or decimal format—which you know and love)
2C,, (base 16 or hexadecimal format)

102 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent binary integers?

The 48 can express binary integer values in any of those four bases, but
its display doesn’t accommodate subscripts very well, so it represents
a binary integer on the Stack beginning with a pound sign, # (to signal
that it’s a binary integer) and ending with either b, 0, d or h—to in-
dicate which base it’s using to format the value:

181118b # 540 # 44d # 2Ch

Do This: Build a binary integer with the above value (there’s only
one value represented there), and then view it in each of
those four formats.

Like So: Press MTH), then EE, and notice the first four items on
that menu. The base currently in use will be the interpre-

tation the 48 puts on any value you key in with a #. For
example, press N[, then (5[#]5)4]ENTER....

Nothingtoit, right? And now you can view thisvalue in any
of the other three base formats also: Press IEHZM...; press
EEN...; press IIEWM.... Simple.

These four format keys are in the MODES menu, too—on
the last page of that menu.

Binary Integers 103

All right, now how do you change the number of bits in a binary

integer? As you read, you can have anywhere from 1 to 64 bits.

Simple:

Change the current word size—the maximum number of
bits allowed in the integer. For instance, to change the
word size to 8, you would press (8] (there’s the argument of
the command), then (there’s the command). And
you can check the current word size any time you want,
too—with (try it now).... The 48 answers your
question with the appropriate real number.

The largest value you can represent in 8 bits would be #
11111111b, whichis# 2535d. So, what if you try to key in
a value larger than this, say, # £56d?

Press =% 2)5)6)ENTER).... Hmm...You get: # Bd
Why? Because# 2o6dis# 100806808b, which takes nine

bits to represent. But you've told the 48—via the word
size—that you want to use only the first (rightmost) eight
bits (B8086BB00), which form the value # 8d.

Good news: That ninth bit is actually still there. Press(9)
and “thar she blows”—the complete number (go
back to an 8-bit word size and do this change while watch-
ing in binary format, too).

104

(3) OBJECTS: YOUR RAW MATERIALS

Want to see how the flags look when you use RCLF to put their ag-
gregate values onto the Stack as binary integers?

OK: Change the current word size to 64 (press E¥ED). And to
make the values easier to comprehend, use decimal formatting
(press I, if necessary). Now, execute the RCLF command:
(e)@)(R]CILJF)ENTER).... You should* get this list:

{ # 3166393488004% # Bd }

The first number is the aggregate binary-integer value of all 64
system flags; the second is the aggregate binary-integer value of
your 64 user flags. These two values represent the entire
“blueprint” of the machine’s status and your own flag settings.

Now, holding your place here, look back at page 11. That
preparatory exercise you performed before starting the Course
was simply a setting of all flags to their clear states—so both the
two desired values were given as # B. You did this mass flag
adjustment with the STOF command—do it again now:

IO #]0)spc]#] o JENTER) (] @) SITIOJFJENTER

Ifyou give STOF asingle binaryinteger value (not a list), this will
adjust only the 64 system flags: (a]a)S]T)Oo)JFJENTER]

*If you don’t get these values, don’t worry. It just means one of the your display settings or angle
modes or something like that is set differently than assumed here. No problem—you’re going to
reset them here anyway.

Binary Integers 105

Math and logic with binary integers

The principal reason you have binary integers is so that you can do
digital math and logic operations—the stuff so near and dear to the
hearts of computer scientists. Don’t worry—you're not going to explore
all the bit manipulations and logical operations the BASE menu offers
(if you need them, then you already know what they’re good for, and
you don’t need an Easy Course to tell you).

But it’s good for everybody to see a little bit of integer arithmetic in
action—just so you understand some of the 48’s rules.

Example: What’s 125+ ABC,, expressed in 64-bit decimal?

Solution: Press ()4 EUEEI() 2] ENTeR) IEHE(]#)(@)«]AlB)C])
@NEA.... Answer: # 2873d Asyou cansee,you
can combine a real number with a binary integer. The
resultis a binary integer in the same base. To make this
possible, the machine transforms the real number into
abinaryinteger first—with the command (“Real-
to-Binary”, which you’ll find, with its counterpart, IZEGE,
on another page of the BASE menu). Of course, you can
also use “manually” on a real number, but the 48
is smart enough to do it for you here. Be aware that
rounds fractional portions of the real number,
and it takes negative numbers to be 0. And any value
requiring a binary representation larger than the cur-
rent word size is silently truncated.

106 (3) OBJECTS: YOUR RAW MATERIALS

Example:

Solution:

What’s 125, —ABC,, expressed in 64-bit decimal?

Press (1]2)SJENTER) (2J#) (] AJBICIa]HI)
Answer: # 18446744873789548993d

Notice that you can key in the base identifier (h here)
directly—without switching to that display mode.

Why this huge answer? Why not # —-2623d ?
Because instead of subtracting a binary integer, the 48
adds its 2’s-complement.*

Example:

Solutions:

What are 258 x 3, and 258, +3,, computed in 8-bit

decimal?

10

(&) EYH E)#)(2)5) e)ENTER 3)X) Answer: # 6d
([2)#) 2)5]8JENTER)(3]5) Answer: # Bd

The 48 actually truncates (to the current word size) any
value you use in arithmetic. Thus the above multiplica-
tion was actually 2, x 3, . And the division was actually
2,,+ 3,, (binary division remainders are dropped).

That’s different than if you did the division with reals
and then limited the word size in the result. And you can
do just that with the (Real-to-Binary) command
in the BASE menu: I

*Complementing is the computer scientist’s method for carrying and borrowing and negation
during arithmetic with binary integers. If you don’t already know how complementing works, you
probably don’t need to worry about it.

Binary Integers

107

Character Strings

Character strings are just that—strings of characters (letters, num-
bers, symbols—basically, anything you can type):

ABCDEF_XYZ 12345 #~$@&(%)?! 3.1416+pi=oops

Within such strings, characters have no numeric or other quantitative
or special significance; they’re just characters. A string may have
many characters, one character, or even none at all.

How does the 48 represent character strings?

Often called simply strings, character strings on the 48 appear within
quotation marks, " ", as if to say that the enclosed characters are to
be taken literally, with no further interpretation:

"ABCDEF _KYZ" "12345"
i ac CIEI "3.1416+pi=o0ps"

The main purpose of strings is to let you store and manipulate verbal
information. For example, you can use strings to put together results
such as "The answer is no." and"The AREA is 2.5_ft", thus
making your calculations more meaningful and complete than just
unadorned numeric results. And then there’s textual information—
the kind of “stuff” that can be represented only by character strings:
names and addresses, etc.

108 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a string?

Begin as usual....

Type It: Try building the four strings on the opposite page.

Like So: (p[CLRIE[""[eJJABICIRIENFIRIIXIYIZIENTER), and (@
(2J3)4IE)ENTER); then (O e]JRIH#HRIV)GI4)(IENTER)
(e>)e]] €[)DELIENTER); then
IR eGP UEL=ToIC RIS ENTER);

No big mysteries, right?* But remember: no matter what numerals
you see within strings (as with the "12345"), they’re not numbers.

Then: Guess how you can build strings from other Stack values?

Hmm: Press(4)....Two strings “add” (append) to one another just like
two lists do (recall page 77). Press (DROP), then (6]7)]H)....
When you “add” other object types** to a string, the machine
converts those objects to their string representations*** and
then appends these to the existing string. Try
(ENTER[SWAP]+).... The order matters—again, just as with lists.

*Though it was a bit of a refresher in Command Line typing. Do you remember how to find non-
letter characters and type in lowercase, etc.? If not, look back at pages 31-39.

**except lists—you can’t () them to strings (you’ll add the string to the list instead).

***The string representations of some objects are slightly different than the objects themselves.

Character Strings 109

Of course, you can also convert objects to strings “manually”—instead

of letting the machine do it—during a concatenation (appending).

Try It:

Press X Here, in the object building/decompos-
ing menu is where to find the string-manipulation com-

mands. Key in, say, a vector: (&]t [2]sPc] 2] 7]sPC] 5 JENTER).
Now convert this into a string, by pressing EELI (it simply

wraps this object in quotes, thus transforming its type into
astring.... Now concatenate this to the string above it: (4.

As you might suspect from all this object conversion, a string is only

slightly less “general” an object type than a list. So it’s almost as

important to know how to take strings apart as to build them....

Do This:

Remember the All-Purpose Object Dissector? Try it now
(press [ERED....See what happens?

When a string contains representations of other objects,
the machine will extract them, one by one (from left to
right), and put them onto the Stack—just as if they had
been (ENTERJed from the Command Line without quota-
tion marks. But remember, too, that a string can contain
anything else too—besides syntactically correct object
representations. Therefore can often give you
errors as the machine tries to make an object out of
characters in the string that were never meant for such.

110

(3) OBJECTS: YOUR RAW MATERIALS

Then: Press to make a copy of the vector now at Level 1. Then
and (NXTINXT), to move through the OBJ menu.

Here’s where you'll find commands for editing and manipulating

strings (and some work on other objects, too).

Example:

Press[HH3. The number you get, 18, tells you howmany
characters werein"[2 27 3 1". Now («),), and use
onthe vector [2 27 5 1instead. The result
is{ 3 1, right? There are three elements in the vector,
so its SIZE appears in this single-element list—just as
it would have ifyou had used tobreak itdowninto
its components (recall page 90). Now press («).

Question:

Answer:

The 48 can display 256 different characters, but not all
are available on keys. How do you put them into strings?

Each character has an associated number—a character
code, so you convert between the character and its code.
IEIEM returns the character code of the first character of
a given string. Try IZI[EH now and see 91, which is the
codeforthel character. Thenuse to confirm this—
converting from the code back to the character.

Of course, there’s certainly a lot more you can do with strings—just as

with all the other objects—but at least you get the idea here.

Character Strings 111

Tags

Just as real numbers are linked together to build complex numbers
and arrays—and just as bits form flags or binary integers—so too can
strings be the simpler building blocks of other, “hybrid” object types.
One simple one is a tag.

Atagis a pairing of a string with another object (any type) on the Stack
so that the string forms a temporary label. Your workbench can get
pretty “Stacked” up with objects, and so it’s difficult to keep track of
them all and remember what meant what. Tags are a harmless,
temporary way to help you do this.

SN\
\‘\“\\\{

- \"‘“\\Q S
TR

112 (3) OBJECTS: YOoUR Raw MATERIALS

How does the 48 represent tags?
You don’t build a tag by itself. As the name implies, you attach it to
some other object—so it’s more meaningful to ask “How does the 48
represent tagged objects?”
On the Stack, they might look, for example, like these:

Root: -1 Extrm: (B,-1)

Zero: B Unit: [B8.27 8.53 8.88 1

The tag itself is everything to the left of (and including) the colon. To
the right of the colon is the object being tagged

How do you build a tag?

First—as always—you can simply type it in.

Thus: (Of:3)(efe]RIG]eJololTI)(»)(1)+/-JENTER).

Notice that the displayed version of a tag has one colon—
to save space in the display. But you must enclose the tag
(both sides) with colons when you type it in, so use () to skip
over the second ¢ before typing the object—just as you do
when starting a new row of elements in an array.

Tags 113

That’s how to build a tag when you key in an object, but most of the time

you’ll want to tag an object that’s already on the Stack.

Well, you can’t put a tag by itselfonthe Stack. Atagisjustastringuntil
it is attached to another object. Fortunately the tag-attachment tool,
EXETH, is right there on the first page of the PRG OBJ menu.

Try This:

And Also:

As Usual:

Press ()CLR), then put —1 onto the Stack: (1)+/=[ENTER).
Suppose that’s the result of some calculation, and now,
afterwards, you want to label it with a tag. Just key in

the tag, as astring: (""" a]a)RJ&) 2]O]OJTJENTER). Then
use EALIE. The result is the same as before.

You can use real numbers as tags. Suppose you’re aland
surveyor who deals with coordinates all day long. Each
point in a survey might have an identifying number—a
tag—attached to the vector coordinate pair itself:

Press(1)5)]0) - [2)3)eENTER[6]5) - J7)9)&)J2D) ... Thereare

your coordinates. Now label it with some identifying
number: EALTH. The 48 actually converts the real
number to a string and then uses this as the tag.

You can break up a tagged object into its object and its
tag string, by using the General Purpose Object De-

composer, [AEH. Try it now....
Now (@) to drop the string.

114

(3) OBJyECTS: YOUR RAW MATERIALS

How do you use tags?

Tags are indeed temporary labels. If you do any operation on a tagged
object, the 48 will remove and discard the tag. After all, the result of
the operation isn’t generally the same object as before.

Watch: Tryadding another vector to the tagged vector now sitting
at Level 1: (G)03[1)oJsPcl2]o]H.... See whathappens?
The vector addition works just fine, but the tag on the
previous object goes away.

Try another: multiply the Root: =1 by this result vector:
(X).... Again, the math works fine, but the tag doesn’t stick
to the result.

As you saw with that surveyor’s scenario, you can use real numbers as
tags to index multiple results of the same kind (e.g. the points in the
surveyor example). Or—more commonly—you use a string to give it
some kind of temporary label of characters.

Nomatter what, a tagis the most fragile of objects—as you can see from
above. Any meaningful operation of the object will “rip the tag off.” A
tag is for your benefit only; it doesn’t mean anything to the machine.
So the best use for tags is at the end of programs or other calculations,
when you can attach them and display finished results.

Tags 115

Names

By contrast to tags, a name in the 48 is a much more “solid” kind of
label. Names are very important, because they identify places where
objects are stored. Names are like labelled boxes in your workshop.
When you want to “use an object,” you simply invoke (type) its name.

That goes for all the built-in objects, too. Every command (every key
and menu item) is an object of some type, and when you press its key,
this actually invokes (“types”) the object’s built-in name. For example,
when you press the (SIN) key, you are invoking the name, SIN, which is
the built-in (permanently labelled) box containing the sine program.

Well, building your own names is simply the act of creating new storage
boxes with your own labels on them. Once you’ve done that, the names
exist; you can put them onto the Stack, move them around, etc.—just
like other objects—even when they’re empty. But, of course, they're
usually more useful when you do store objectsin them. So here’s where

you start learning how to do that—how to save the objects you build....

116 (3) OBJyEcTs: YoUr Raw MATERIALS

How does the 48 represent names?

A name is simply a character string with special restrictions on the
characters allowed. Examples:

'R! 'EX1! '"Tuesday' '2DAT' 'PPAR'
'"What chamacallit' 'SINk'

How do you build a name?

Build the first couple of names you see above.

Easy: Press ("JoJ AJENTER); press (' JoJEJeJX]1JENTER); and so on—
you get the idea. The '' delimiters appear in pairs—just
like so many others you've seen by now.

As you can see, names are always enclosed in apostrophes (' ')rather

(II n

than quotes)>—todistinguish them from normal character strings.

Also, names have these special restrictions:

* You cannot use any delimiterinaname: #, ', ", _, 2, (), [1,{},
¥, £ 4, <space> and <newline> are all off limits.

¢ Numerals (B-9) and decimal points are OK, except as the first
character: Youcanuse 'Al' and 'Hi."',butnot '1R'or ' . WP'.

 No arithmetic symbols or operators! Names like 'A+B' are out.
* Youcan’tcreateanamethat’salready used by a built-in command:

'SIN' is the built-in name for the sine function; 'SIN%' is not.

Names 117

How do you use a name?

To put something into a named box, you use (STOre).

Watch: Press (sTO)....

You just stored the real number 1 into the name 'R".

Notice the order of the objects: First you put the object to be stored onto
the workbench. Then you put the name (that labelled storage box).
Then the STO command puts the object into the box, takes the filled
box off the Stack and puts it into storage.

Question: “..into storage”—where’s that?

Answer: It’s in your own personal toolbox—the VAR menu. To get
to it, simply press (do this now)....

This is the menu of all the names that you've filled with
objects (i.e. STOred objects into). As you can see, IIEIE
is now the left-most box because it’s the most recently
filled; anything else you’ve stored (if anything)is bumped
farther to the right in the menu.

It’s called the VARiable menu because a variable is ex-
actly that—aname labelling and containing some value,
which can be changed (i.e. it can vary).

118 (3) OBJECTS: YOUR RAW MATERIALS

Once you’ve named an object, to use it you simply refer to it by name.

Look:

Type (QJAJENTER)....

Result: You get the valuein 'A', which is the real number, 1.

This is the general rule: Whenever you type the name of an
object you are invoking that name. The machine will evaluate
the object for you—exactly as if you had typed the object itself
from the Command Line (i.e. asif you had typed (1JENTER) here).

Press the I item on the VAR menu.... Same thing, right?
Again—as you read earlier—pressing a VARiable key is just a
shortcut for typing that name.

But:

Type (RAETES (or (O MEMETS). ..

Result: You don’t get the value in 'A' —only its name.

This is just what you saw when creating names (page 117):
The ' means that you simply want to put the name onto the
Stack. Maybe you're building a new name; maybe you want
to STOre a new value into an existing name—whatever.

It’s a very important point—worth “harping on” once more:

* Toputjustthename ontothe Stack, encloseitin ' marks.

¢ To invoke the name—i.e. to get the value it contains—
use it without ' marks.

Names

119

Question: What if you have a name on the Stack and then you
decide that you want to evaluate it?

No Sweat: To evaluate a name already on the Stack, simply press
EVAL.... See? It EVALuates the name 'R'.

By the way, notice this: Evaluating a name always gets you a copy of
its object’s value. Thus, you can evaluate the name over and over
again—using and consuming the resulting values on the Stack—but
the original object stays safely in its labelled box.

Clean Up: Press()CLR)(" M (a menu key is just a shortcut for

typing, right?). Now (&JPURGE).... Il disappears from
your VAR menu; you PURGE’d it from your toolbox (threw
it away)—both the name and the object it contained.

Now: What will happen if you try to invoke the name A? Hmm—
there’s no such name, right? Try it: Press (a]A[ENTER)....

You get the name: 'R’ How? And why?

Because whenever you invoke a name—any name—the 48
actually puts ' marks around it and puts the name onto the
Stack first. Then it performs an EVAL on it. If the name
contains any other object, then of course, you’ll get that
object’s value. But if the name contains no other object, it uses
its own object value (after all, a name is an object, too—right?).

120 (3) OBJECTS: YOUR RAW MATERIALS

Practice some more: Store some objects and evaluate some names....

Example:

Solution:

Store the vector[1 2 3 1 inthe name 'VYector.1'

Press (©]CLR) to remove distractions. Then press(1]SPC]

(2Jspc] 3]s o o] ViG] o ELC]TIo R - L1 a]sTO).
Now look in your VAR menu. The left-most box is [

Did the 48 truncate (and capitalize) the name you keyed
in—just to fit it into the display’s menu box?

To find out, press (lI3®{1].... Nope—the 48 knows and
remembers the entire actual name; it simply needs to
alterit forits menuboxes. So keep your names short and
distinct! Each menu box holds only up to 5 characters—
and uppercase always. So any similar (yet completely
valid) names such as 'Vector.1l' and 'Vector.2' or
'"VECT' and 'Vect' will appear identical in the menu.

Question:

OK, But:

Can you store a name within a name? It seems reason-
able. After all, you can put one box containing an object
into another box, right? Try it—store 1l in 'B' and 'B'
in 'A': AANEOE)EO)OMEEENTER))A)ST0)

What will you get now when you invoke (evaluate) the
name A? Press lIEIM.... Youget1! Sothe EVALuation
process goes all the way: If the value of one name is yet
another name, the 48 then evaluates that name, and so
on—down to the last “box within a box within a box...”.

Names

121

So evaluation is really a chain of evaluations—as long as necessary:*
The 48 follows its nose through each name, evaluating its contents—
until finally it finds the value of the “innermost” object.

Problem: What if you're interested in a name’s actual contents
only—the object immediately “inside” the name? That
is, you don’t want the 48 to evaluate that object any
further—just put it on the Stack. How do you do this?

Solution: Use RCLtorecall the contentsof 'A': .
You get 'B' —the actual contents of 'A'. Because you
recalled the contents of 'A' (rather than evaluating it),
the 48 did not go on to evaluate those contents. And note
that RCLis acopying process: theobjectin 'A' (thename

'B")isstillin 'A' (try (MIEIM=)RCL) again).

So and form a kind of matched set:

¢ ToSTOre anobjectinto a name, you put the object onto the Stack,
then the name, then press (ST0). The STOrage process consumes
both object and name—it’s not a copying process (the object is
taken as the original, and no duplicate is left on the Stack).

¢ ToReCall the object, you put the name onto the Stack. Then you
use and you get (a copy of) the object back on the Stack.

*Up to the memory of the machine, of course. Andbeware of circular references: If you were to store
'A' into 'B' right now, then 'R’ would contain 'B' and 'B' would contain 'A'. And M.C. Escher
would love such a conundrum—but your 48 wouldn’t. It would evaluate in a circle, and you'd need
to press to interrupt this infinite goose-chase. The 48 can actually catch self-referencing
names (i.e. storing 'A' into 'A') and give you a message, Error: Circular Reference.

122 (3) OBJECTS: YOUR RAW MATERIALS

Infact, STO and RCL are so useful that the VAR menu offers a shortcut:

This: Press ([3JCLR), then (). IEIM. Now press DGR ...
You just did this: [)CLR)(@)(LIS (O (©)Rc)

Using a VAR menu key by itself will evaluate the name.
Using () first simply ¢ypes the name onto the Command Line.
Using (&) first STOres the Level-1 object into that name.
Using(D)first ReCalLs a copy of the actual object in the name.

Of course, once you recall the contents of a name to the Stack, you
might want to alter it. But how?

Easy: EDITit! For example, to change the first value in Yector. 1
to18: &1 (recallits current value), then (S)EDIT> > [>]0)
(ENTER)(EDIT that object), and (& lIMI](store this new version
back into the name 'Vector.1'). Remember: EDITing alters
only a copy of the contents of a name on the Stack. It does not
automatically STOre the EDITed version back into that name.

So: To recall, edit and restore a named object in one smooth
motion, use VISIT instead of EDIT. Change that vector com-

ponent back to 1: (DHER] VST (> >)»)>«)[ENTER).... See?
VISIT lets you skip the initial RCL and the final STO.*

*And in case of mistakes during “alterations,” remember that, just as aborts an EDIT, leaving
Level 1 unchanged, so it also aborts a VISIT and leaves the named object unchanged.

Names 123

Algebraic Objects

Algebra is the branch of mathematics that manipulates expressions
and equations involving variables—“unidentified numbers” that can
nevertheless be manipulated as symbols because their numerical
properties are known and predictable:
2+yr=r? ax* +bx+c=0

The beauty of algebra is that you can manipulate the symbols into the
most advantageous arrangement—before ever worrying about the
numerical values these symbols might represent.

2
Y= -2 = —bENb —dac

2a

Then you can “plug in” numerical values:

e 102107 -4(3)3)

= 203)

Well, it’s no coincidence that your menu of named objects in the 48 is
called a VARiable menu: You can use names in the 48 literally as
algebraic symbols, to form algebraic expressions and equations (such
as those above) that you manipulate and solve symbolically. And just
like algebra on paper, you needn’t worry about the actual, numerical
values in those variables until you’re ready to “plug them in!”

124 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent algebraic objects?

Asyou know, you can’t use math operators (e.g.+ — ¥ ~)ascharacters

innames. Ifyoudo, you’ll form an algebraic object instead. Names and

algebraic objects use the same delimiter (*).

Examples:

Watch:

At your VAR menu, press (' JlIGEBENTER). That’s a name.
Press (" JZEMENTER). That’s another name. But press

8@ s B ENTER). That’s an algebraic object. You
built it by typing a mathematically meaningful combi-
nation of names and algebraic operations.

And of course, you can edit this object—just like any

other: (&JEoT)ERIEI (<= @)C)ENTER). Result: 'A+B-C'

So you can always type in an algebraic object at the
Command Line—using whatever combinations of VAR
and alphabetic keys that are most convenient. But often
it’s easier to let the Stack’s postfix operations actually
help you build an algebraic object:

the 'A+B-C', then press(¥.... See what happens?
Just as(+)lets you combine lists or strings, so it combines
names and algebraicobjectsintolarger algebraicobjects.

Try another: Key in the name 'C' (press ("Ja)C)[ENTER)),
then (5).... Voil4!

Algebraic Objects 125

How do you use algebraic objects?

“Ah—how sweet it is!...

»

Question:

Do This:

One More:

What’s going to happen now if you EVALuate this alge-
braic object, 'A+B-C' ? Press(EVAL.... Result: '5-C'.
Why? Because the machine evaluates everything in the
expression that it can (the variable names 'A' and 'B'
have the values4 and | stored in them); but it leaves any
undefined value as is—in symbolic form (the name 'C'
contains nothing—it’s not on your VAR menu).*

Evaluate the algebraic object 'A+B".

Press (or (ONIINENTER) (DI
(ENTER[+)}—your choice), then [EVAL.... Result: 3

This result is not an algebraic object—it’s a real num-
ber—because all the parts of 'A+B' are numerically
evaluable; it has no undefined names (such as 'C").

Evaluate 'A*Vector.l': (IR XEERDIENTER)

(or (_MIENTER) (IES T ENTER) (X)), then (EVAL...
Result: [4 8 12 1 Isn’t this great?

*Notice that this exactly matches how the 48 EVALuates names: If a name has an object stored
in it, the 48 evaluates that object; if not, the name itself becomes the final object value.

126

(3) OBJECTS: YOUR RAW MATERIALS

Question:

Answer(s):

How do you know this last answer is correct? That is,
how can you verify the current values of your VARiables
'A' and 'Vector.1'?

An easy way is simply to evaluate 'A' and 'Vector.1',
by pressing Il and {3411 You should get, respec-
tively: 4and[1 2 3 1.

Or, to review the values in all the names on the current

page of your VAR menu, press (]REVIEW):

A: 4
B: 1
Vector.1: [1 2 3 1

L a B _JuECTOl | |

REVIEW is especially handy when you want to check a
lot of values at once—but you don’t want to mess up the
Stack with name evaluations. Notice that the entire
review is just a large message that appears temporarily
over the normal Stack display (press to clear it).

Algebraic Objects 127

For practice with a more complicated example, try using an algebraic
object to build one of the general solutions to a quadratic equation:

_ —b++b* -4ac

2a

X

Go: First,press totidy up the workbench. Now start building:
Press (' JoJ&)BJENTER|[*/=). Result: '-b' So far, so good.

Again, you're doing a mathematical operation on an algebraic
object, and the object changes to reflect that operation.

Next, press(ENTER[+/=)(no sensekeying 'b' in again from scratch;
this is quicker). Then (2]Y%... Result: 'b*2'
Because the 48 can’t display superscripts in the Stack, it uses the

circumflex (*) to indicate “raising to a power.” *

Next, (4)() o) AENTERIX ' oJ&q CJENTERIX). ... Result: '4*a*c'
Notice that the result is not ' 4ac'. Such implied multiplication
(i.e. omitting the multiplication signs between single-character

variables—often used in written algebra) would confuse alge-
braic objects with names on the 48 Stack: 'xy', 'abc’, etc.

Now (=), to form 'b*Z-4*a*c' Notice how the 48’s postfix
subtraction rule (“Level 2 minus Levell”) determines the order
ofthe subtraction operation formed inside the algebraic object. **

*You could have typed instead of but the result, 'SQCb) ', isn’t quite as readable.
Either form is OK, though—they both evaluate the same way.

**Notice also that you don’t need any parentheses here: Under conventional algebraic notation
(which the 48 uses), exponentiation takes precedence over multiplication/division, which takes
precedence over addition/subtraction.

128 (3) OBJECTS: YOUR RAW MATERIALS

Next step: (X).... You get ' [(b*Z2-4*a*c)'

Notice the parentheses. A one-line algebraic object can’t draw
the radical toinclude an entire expression under it. Instead, the
squarerootisrepresented as a mathematical function (as inf(x)),
and the parentheses enclose the argument of the function: J{)

Now press (1. Result: '-b+{(b"2-4*a*c)'
No surprises, right?

Keep going: (2)(JeJ& AENTER]X).... Result: '2#*a’

Nothing unusual here, either—but by now you may have noticed

something that’s worth a little discussion: Normally, when doing
Stack arithmetic with something like real numbers, you could
just press (2)[ENTER)(3)(X). Here, you need a second (ENTER), to put
the 'a’' onto the Stack before multiplying. This is because when
you press ('), the 48 goes into algebraic entry mode (the ALG
annunciator appears in the Status Area), so that operations such
as(X)are not executed immediately. Instead, they’re simply typed
(*,+, etc.) onto the Command Line. Therefore, you could also key
inthe expression 'Z*a' as(")2)X[@)J6qJAJENTER), rather than build

it via Stack operations.

Finally, press (=).... Result: '(-b+[(b*2-4*a*c))-(Z*a)'
Since algebraic objects are represented in aline on the Stack , the
extra parentheses are needed to show what’s being divided by
what. Indeed, without them you’d have ' -b+{ (b*Z-4*a*c)2*a',
which, according to the notational conventions, would be evalu-
ated as

[\/bz -—4ac)

Algebraic Objects 129

Some observations:

When building expressions involving your variable names, you began
eachname with ', to tell the machine that you were merely spelling out
the name as part of this object, not evaluating it. But if you know that
the names you’re using are empty (i.e. they’re not on your VAR list—
either you’ve PURGEd them or never used them before), then you can
get away without the ' —because evaluating an empty name just gives
you that name anyway.

Of course, you could have typed in the entire object directly from the

Command Line: (JaIOGFJJal)BIHEIGOBIYH)]
(AXIefA)XeIC) 1) (L0 2IX) (ATENTER)

Admittedly, this saves some (ENTERfs—and you can use lower-case lock
(&)@)in alpha mode) to make it easier to type a,b, and c. But it also
means you have to know where all the parentheses go before you start.
And so you must know and follow the algebraic syntax and precedence
conventions—instead of letting the 48 put it together for you “on the
fly,” as you simply specify the order of operations with the postfix Stack
operations. So you decide—use the method easiest for you.

.

130 (3) OBJECTS: YOUR RAW MATERIALS

No matter how you’ve built it, now that you have such an impressive

algebraic object all built, what do you do with it?

This:

Put values into the variables and evaluate the expression:

VAR (JEIJQ)ETO)
| EC (G

You’ve just stored your freshly-built algebraic object into the
name 'EQ'. Thenyoustoredlinto'a',—Zinto'b',andl into
'c' (in reverse order—to appear in order in the menu*).

Then you put the expression back on the Stack by pressing
IEW, thus evaluating the name 'EQ'. Then you evaluated
the expression, and you got the real result.

“Hmm...but why doesn’t the EVALuation process ‘go
all the way,” and evaluate the algebraic object?”

It’san exception tothe “EVALuate-all-the-way” rule: Ifaname
contains an algebraic object, the 48 evaluates only to that
object; you must press explicitly to evaluate the alge-
braic any more. So you did—and zap—the machine replaced
all names with their values and did the math. And as with all
evaluations, the result was left on the Stack: 1

Anyway, the beauty of such algebraic objects is this: Now you have

your algebraic expression named, you can easily reuse it. For example:

@GN ([5G MEE (O M N EVAD. Result: 7.22.

*Remember that they will appear in uppercase in the menu boxes—but you know they’re the boxes
farther to the left because they’ve been more recently created than the boxes for 'A' and 'B'.

Algebraic Objects 131

Postfix Programs

When you say the word program, you probably think of some task or
series of tasks that you “record” in a computer now and then “play
back” later—at which time the machine automatically performs those
tasks. The power of a program is that you can play the recording over
and over with very little effort on your part every time—often the touch
of a single key. It can become a new tool in your workshop.

Well, that’s a fair way to think about a program. But then that means
that algebraic objects are really programs of a sort. For look at how
much work the machine does automatically when you press the
key with an algebraic object: It evaluates all the names, then uses the
math to combine them as you've specified—and it will do this over and
over, for whatever values of variables you wish to give it.

You could make a similar argument for simply EVALuating a series of
“names within names,” too: That chain of evaluations can go on along
time—a very convenient series of tasks the machine does for you
automatically. And, as you’ll soon see, you can even get the 48 to
sequentially evaluate the objects contained in alist object ({ })—again,
simply by pressing that all-powerful key.

The point is, although there are several different types of objects that
can act as programs, they have other roles as well. In fact, there’s only
one object type that was defined strictly for the purpose of acting as
such a pre-recorded, ready-to-use series of commands. This is the
object type called a postfix program.

132 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent postfix programs?

A postfix program (you can call it simply “program” for short), is indeed
an object; you can put it onto the Stack, store (name) it, recall it and
evaluate it. And, as with most other objects in your workshop,
programs are bracketed by a pair of distinctive delimiters—in this
case, guillemets: € *

Also true to the pattern of other objects is the program’s underlying
list-like structure: A program is an ordered collection of zero or more
elements (objects and commands). When you evaluate the program, it
sequentially evaluates its elements.

How do you build a postfix program?

Unlike most other objects, there is only one way to create a program,
and that’s to type it in from the Command Line.

Try One: Press (@)« »(1SPC2) HENTER. Result: « 1 2 + »

Notice that program entry mode activates (i.e. the PRG
annunciator appears in the Status Area) when you press
so that commands such as (+) simply type their
names in the Command Line rather than executing
immediately.

Postfix Programs 133

So there you have it—a three-step program.

Question: What does it do?

Answer: See for yourself: It’s called a postfix program because it
handles objects and commands in the same manner as
your 48’s postfix Stack would handle them as you key
them in on the Command Line. So you can mimic this

program’s behavior at the Command Line: (1]sPc)2)[#).*

Now this “manual” result, then press once
(to DUPlicate the program so you don’t need to rebuild it
later), and [EVAUuate it.... Sure enough: 3

Of course, you can name the program, too—to save for later....

Do It: (DRoP)the EVAL result, and then (" JoJE]«]X) 1)STO).... Just like
any other freshly-named object, the program, now called EX1,
will appear on the left side of your growing VAR menu.

*You'll notice, however, that the program can delay the execution of +, whereas you can’t at the
normal Command Line. To mimic the program even more closely, you can activate program entry

mode without using the by pressing (OJENTRY).

134 (3) OBJECTS: YOUR RAW MATERIALS

But this EX] program doesn’t do anything particularly valuable (you

already know what 142 is). So you ought to change it.

How?

Suppose you want EX1 to add 1 to whatever object is at Stack
Level 1.

You can’t decompose a postfix program into its elements with
[EXER. In fact, the only way to change it (other than PURGE
it and start over) is to edit it—easiest with VISIT: (JIEEN
@JvisiT). Now delete the Z: [II%X; and restore
the program: (ENTER). Now EX] will simply put the number 1
onto the Stack and then perform a +.

Try It:

(@J)cLR), then (1) IEHM gives a result of Z; again: 3
GO 2IsPo 2 4) I gives (33, 44).

G| OEJ [@]>LIST) gives{ 3 (33,442 1 1.
X EJa)) I gives "Hil".
CIlJHSDENTER) I gives 'Hi+l'.

IE3W gives an error (you can’t add a

scalar to a vector). This leaves the Stack as it was at the
time of the error (the 1 put there by the program remains).

Don’t worry—you’ll get lots more sophisticated practice with programs

(and most of the other objects later). The point here is this: Using a
program—such as [[EEM—from your VAR menu is really no different
from using any built-in command—such as (x3. Naming a program

creates a new tool in your workshop, and it works like any built-in tool.

Postfix Programs 135

Directories

A directory—any directory (a phone book, a map, a kiosk in the mall,
whatever)—is a reference tool to help you find what you need from
among a given selection. And there are different directories for
different selections. For example, it would be a hopeless mess to try to
list all the telephone numbers in the country in one huge phone book,
so the listings are broken down into different books. And each book is
often divided even further—by city or suburb—into subdirectories.

The point is, a directory’s very purpose is this dividing/subdividing
effect. It offers youonly a certain selection among “all possible items”—
in order to simplify and narrow the field of your search (assuming, of
course, that the selection uses some logical criterion—all the names in
the phone book from the same city, etc.).

In the 48, you use directories in just that way: Your VAR menu—your
toolbox for your own custom-built objects—is quite roomy, and you can
put anything you want into it. You can divide it up into drawers, each
with some more specific criterion for the named objects it contains.
And you can even subdivide those drawers into still smaller com-
partments, then subcompartments, etc.

How does the 48 represent directories?

Directories are objects—just as arrays, strings and lists are objects—
but because it’s seldom useful to put a directory on your Stack
workbench, there’s no 48 delimiter reserved to denote a directory
object. The best way to see one is to build one....

136 (3) OBJECTS: YOUR RAW MATERIALS

How do vou build a directory?

To create a directory, just put a unique name into Level 1 of the Stack
and invoke the CRDIR command....

Watch: Press (2JCLR) (e o) O R(1)@) & IvEmORY) [ITA (VAR)....
The new name, [[I[FW, is now in the VAR menu.

Notice the “file folder tab” on the top of the [l menu box.
This is to help you distinguish directories from the other
named objects.

How do you use a directory?

So you now have a new, empty directory called DIR1.

Question: Can you look into it—and store objects into it now?

Answer: Sure—but you need to open it first. Just evaluate its
name—press I3 Your VAR menu becomes empty,
because now it’s showing you only the contents of the
DIR1 directory. And the Status Area shows a list, telling
you “where” you are: £ HOME DIR1 }

Thatis, you started in your HOME “toolbox,” then opened
the DIR1 “drawer” within that toolbox.

Directories 137

Now, to put somethinginto this drawer, you do exactly what you always

do—just STOre into a name.

Like So: For example, puts the named object 'A' into

your opened DIR1 drawer. With this drawer open, when-

ever you evaluate, store or recall 'A", you’ll be referring to
this 'A’.

Question:

Find Out:

Does this replace the 'A' in your HOME directory—the
one that contained the value of 4 (recall pages 118-123)?

Returntothe HOME directory (i.e. close the DIR1 drawer),
by pressing (JHOME).... The list in the Status Area now
shows { HOME I, and the VAR menu should look fa-
miliar. All right, now evaluate the name 'R' (press
). You get4. Sothe 'R' in DIR1 is different than
the 'A'in the HOME directory—like two John Smith’sin
two different phone books. You can use identical names
for different objects if they’re in different directories.

When evaluating a name, apparently, the 48 looks for
that name only in the current directory (HOME, in this
case). Test that theory: Goback to DIR1 (NxT) W) and
evaluate 'A'(press lIGEM).... Yep—you get 1—the
value of the 'A' stored in the DIR1 directory.

*Remember that there are two items that look like IlZEll—the one farther to the leftisfor 'a'; the
other is for 'A' (but if you forget which is which, pressing (JIEIE would tell you).

138

(3) OBJECTS: YOUR RAW MATERIALS

But:

PURGE the name 'A' from the DIR1 directory:
()G (&)PURGE).

Now evaluate 'R": (@[A[ENTER).... You get ¢ !

How can thisbe? Thename 'R' doesn’t exist in DIR1—youjust
PURGEd it. This is the value of the name 'R' in the HOME
directory—and yet you obtained it by evaluating 'R' from the
DIR1 directory!

This is because the 'A' in HOME is in your current PATH,

As you've read, the directories you create in the HOME
directory are “drawers”—subdivisions of that HOME directory
“toolbox.” And directories you create from any such “drawer”
are further subdivisions (“compartments”) within that
drawer. So, starting from HOME, to get to any particular
directory, you sequentially open the correct drawer, the cor-
rect compartment within that drawer, etc. That is, you
traverse an access PATH through your directory structure.

That list in the Status Area is your PATH list—the description
of the PATH you took from HOME to get to where you are now.
When you evaluate or recall a name, the 48 first looks in the
current directory (the directory at the end of the PATH list). But
if it can’t find the specified name there, the 48 will methodi-
cally search backward through that PATH list until it either
finds the name or exhausts all directories in that PATH list.

Directories 139

A little terminology clarification: Directories within other directories

are commonly called subdirectories. So DIR1 is a subdirectory of HOME
and HOME is the parent directory of DIR1.

A directory may contain many objects—and many subdirectories.

Watch:

Like So:

Create a subdirectory, 'DIRZ2', in the HOME directory.

ElHove (I« (@) Mevor) MATAVAR).... Now DIR2
is DIR1’s “sibling”—another drawer in the HOME toolbox.

Next, create another directory, 'DIR3', inside DIR2: First,

open the empty DIR2 (press D). Then: (Jo[oJ0) JRI3)
CROIF: (7Y}

You now have a directory (DIR3) within a directory (DIR2)
within a directory (HOME). So HOME is DIR3’s “grand-
parent,” if you will. Since a family tree is such an obvious
analogy for this directory structure, it is commonly referred
to as a directory tree.

Practice moving through the tree:

Store 2 into 'D" in DIR3: N 2)()=)D)ET0).
Store 8 into 'C' in DIR2: &JuP)(8)("J@)c)(ST0). The UP

command moves you up to the current directory’s parent.

Store 16 into 'B' in DIR1: &)up) M G6)((=)B) o).

140

(3) OBJECTS: YOUR RAW MATERIALS

Questions: From which directories can you now recall and evaluate

'A' 'B','C',and 'D'? Feel free to use your 48 to help.

Answers: 'A': HOME, DIR1, DIR2, DIR3

'B': DIR1
'C': DIR2, DIR3
'D': DIR3

Remember: You can recall or evaluate any name in the
current directory’s PATH. Since all PATHs contain the
HOME directory, anything stored there is accessible
from any subdirectory—no matter how many genera-
tionsremoved. By contrast, objects stored in the “leaves”
of the tree (i.e. in directories with no children) are
accessible only from that “leaf” directory.

Now:

Time to clean up: There are two ways to PURGE a directory....

As with any other name, you may use the PURGE command
onadirectory name—butonly ifthat directoryisempty (soyou
can’t easily destroy alot of valuable information with PURGE).

Or, if you're sure that you want to destroy a directory and
everything in it (objects, subdirectories, their contents—the
whole shootin’ match), use PGDIR (PurGe DIRectory). PGDIR
assumes that you know what you’re doing. It removes a
directory and its contents—so use it with caution (go ahead
and do this now): [oJFove) N ENTER N &)MEMORY)
(NxTNXT) A A (VAR).

Directories 141

Objects: A Summary

No sense kidding yourself: You’ve covered a lot in this long chapter.
You’ve seen how to build and at least begin to use the basic object types
available in the 48:

Real numbers Units Lists
Complex numbers Vectors Arrays
Flags Binary integers

Strings Tags

Names Algebraic objects

Postfix programs Directories

Yes, there are few other object types that you haven’t seen yet—mainly
because they’re for special purposes—plotting, programming, backing
up your data, etc.

Right now, hold your place here and look back at pages 14-15—“The
Big Picture”.... Surely the keyboard’s organizational structure ought
to seem more familiar now—and of course, the Stack is definitely
“home turf” by now, right? But even that example directory tree
structure on page 15 ought to be clearer, now that you know a little
about subdirectories, parent directories and PATHSs, no?

But just in case, here are a few more exercises to help you put it all
together. These quiz problems will force you to use and combine what
you know—and you’ll even see a few new variations and features not
covered before now—so heads up!—and enjoy....

142 (3) OBJECTS: YOUR RAW MATERIALS

Test Your Objectivity

Sum the first 10 positive integers. Now sum the first 1000
positive integers.

Silver (Ag) crystallizes in a face-centered cubic unit cell (4
atoms). The density of Agis 10.5 g/cm?® The atomic mass of silver
is 107.868 g/mol. There are 6.022 x 10® atoms/mole. Find the mass,
volume and dimensions (in Angstroms) of a silver unit cell.

“Ea
In an elementary chemical reaction, e *7 is the fraction of colli-

sions with enough energy to react. E, is the activation energy; R
is the ideal gas constant (8.314 J/K-mol); T is the absolute tem-
perature (in Kelvins). Find the fraction of successful collisions
for a reaction at 980° F with an activation energy of 2.14x10*J/mol.

What are the differencesbetween { 1 2 3 4 2 and
[1 23 4 1?2 How would you convert between them?

You can add elements to a list using the (+) key, but how might you
delete, say, the last element? The first element?

How would you change the value 1+2i into 2+i on the 48?

Test Your Objectivity 143

144

Fill in the table below to compare the costs and benefits of three
strategies for replacing part of the current U.S. daily use of
petroleum—now totalling about 15 million barrels:

Option Costs (Savings Energy |% ofcur-
gain (bbl/d) | rentuse
80 nuclear Total: $ %
reactors
80 coal plants | Total: $ %
Simple H,O heat: %
efficiency Appliances: %
measures Lighting: %%
Tire infl.: %
Total: $ %
Nuclear reactor (1000 MW): Capital invest. (3-5-yr constr./testing): $ 1200kW
Fuel and maintenance (for 25-year life): 200/kW
Disposal/cleanup (100-1,000 years): 50000/kW
Coal-fired plant (1000 MW): Capital invest. (3-year constr./testing): $ 1000/kW
Fuel and maintenance (for 50-year life): 100/kW
Disposal/cleanup (10 years): 10000kW

Efficiencies: 100 million U.S. households each use the energy equivalent average of 1253
gallons of oil per year—at a cost of about $1,200. 40% of this goes for space heating, 20%
for water heating, 15% for major appliances, 10% for lighting, the rest for other uses. 140
million U.S. cars average 10,000 miles per year each, at 19 mpg. 1 barrel of oil has 5900
MJ of chemical energy and produces 16.4 gallons of gasoline. A unit of electrical energy
requires 3 units of oil energy. Electric plants typically operate at 75% of rated capacity.

Low-flow heads on faucets and showers cost $40 per household. That plus using cold water
rinse in the washer would save 20% on water heating. Lowering the water heater to 130°F.
and raising the freezer and refrigerator to 0° and 40°F. would save at least 5% on appliance
usage. Using compact fluorescent light bulbs (20 per household) would cost $150 more to
buy (for the same 5-yr. life) but save 75% in electricity. Inflating car tires to correct
pressures would save 3% in fuel consumption.

(3) OBJECTS: YOUR RAW MATERIALS

8. What’ssin'(2)? What are the units of the solution angle? What
does this solution mean?

9. Find the angle, ¢ , between —9i+4j-2k and (12, 1.4rad, 0.5 rad).

10. Find the volume of the parallelpiped defined by:

a=3i+3j+5k b=7i+j-2k c=i+8j-k

11. IfA=(1,2,3), B=(-34£25°-2),and C = (% Z~[2rad, -6 rad),
find the unit vector that pointsin the same direction as of the sum
of the real and imaginary portions of 14.54 —0.2B + (1+i)C

12. Withinthevector[2 4 6 8 18], how could you change the
8 to 197 How could you change the & to (1, 1)?

13. Createthevector[1 €]. Now redimension it to a 5-element
vector. Then change the third element to 3. Then “dot” it with
[543211

Sources:

The 1990 Information Please Almanac, Houghton Mifflin Company, Boston, 1990.

50 Simple Things You Can Do To Save The Earth, The Earth Works Group, Earthworks Press,
Berkeley, 1989 (book available through: NRDC, 40 West 20th St., New York, NY 10011).

Ecoscience: Population, Resources, Environment, Erlich, Erlich and Holdren, W.H. Freeman
& Co., San Francisco, 1977.

Test Your Objectivity 145

14.

15.

16.

146

Convertthevector[1 23456 7 8 9 Jintoa3x3array.
Then change element , to 18. Then convert the resulting array
into an array with complex elements.

How might you extract individual rows from the result of prob-
lem 14? Would these be vectors?

Legends still speak of that dark and fateful night, over a century
ago, when a U.S. Mail Expresslocomotive became a runaway and
collided with a long-haul Canadian grain engine at a remote
prairie border junction. The crews may have bailed out in time,
but they were never found. Your theory: The collision startled
alargeherd of bison nearby, whose ensuing stampede obliterated
the entire scene. You've surmised that the wreckageitselflanded
somewhere out in a bison mud wallow, sinking well out of sight
beneath the muck and chaos of the stampede. Vague stories of
some such incident—pieced together from railroad memorabilia
in both countries—have allowed you to estimate these speeds,
compass headings and weights for each engine (including its coal
tender) at the point of collision:

Engine Speed Heading Weight
Squash Blossom Special 88 mph 44°19' 150 tons
Home, Wheat, Home 110 km/hr 256°32' 300,000 kg

Problem: Which government should have excavation jurisdic-
tion over your proposed International Peace-Railroad Memorial
Mud Wallow?

(3) OBJECTS: YOUR RAW MATERIALS

17. Find the total hours worked by each person and by all together:

18.

19.

20.

21.

22,

23.

Andy Beth Carla David
Mon. 8 8 5 7
Tues. 8 8 6 7
Wed. 4 7 5 7
Thurs. 8 7 4 8
Fri. 8 8 5 7

Test matrix multiplication commutativity with these:

1 2 16 9
A= 3 4 and B=|, 4
Use to help you build complex numbers.

Set ENG display notation and polar/cylindrical vector mode—
using only one page of one menu and the digit keys.

Find the 48’s current binary wordsize without using RCWS.

What'’s the easiest way to preserve the system settings—such as
those discussed in problems 19-21—for quick restoration later?

Calculate 2, x (FFF 2,) in 16-bit integers.

Test Your Objectivity 147

24.

25.

26.

217.

28.

29.

30.

31.

148

Keyin# 188d and duplicate it. Then convert one copy to a string.
Then set binary mode....Why are the two results different?

Change "You understand? to "You understand!"

Build the string "Vol.= 4.8 gal." without using the (@) key.
Then, starting with such a string, extract the numeric value.

Format a number in scientific notation—such as b.82Z2EZ23—
within a string, in this format: "6.82¢ * 18*(23)"
What will produce from this string?

Use PURGE torename 'A' as '%'. Then use this name to tag the

_—btb*-4dac

2a

solutionto x ,fora=1,b=-8,and c=15.

Set flag—3 and try to build the solution to prob. 28 “from scratch.”

Keyinthenames 'tt','i' and 'e'and evaluate them. Now set
flag -2 and repeat this exercise.

How can you PURGE more than one name at a time?

(3) OBJECTS: YOUR RaW MATERIALS

32.

33.

34.

35.

36.

Evaluate the expression 'Z2¥x+y' for:

a. x=-2y c. x=t y=t-1
b. y=-2x d. x=z-3y, y=y-3z

Write the solutions to problem 4 as two complementary pro-
grams, named L?V and ¥2L. Test them with these lists:

{8} {1233
{18 (1,8 3} {3

Use L*V and Y3L to write another program, called LADD (“List
ADD?”), that adds the corresponding elements of two lists, pro-
ducing a list of the sums. Test LADD with these pairs of lists:

a {12341} {56783

b. { (1,1} (-3,4) } { -5.4 (4.3,-8.1) 3
ec. {96817 {1113

d {[12103413 {[-311[6911}

When would evaluating a directory’s name not send you to that
directory? How could you give a directory two different names?

Suppose you want to build yourself a little phone book: Write a
program that will open the correct one among 26 alphabetically
named (A through Z) subdirectories—depending upon the first
letter of the string you key in.

Test Your Objectivity 149

150

Objective Answers

Just a reminder of the options you have for keying in objects and

doing arithmetic with them on the Stack. For example:

BN D EHEHEHEBHTHEB B, or

, ete. Answer: 33

Of course, no such method is good for adding a thousand num-

bers, but observe that 1+2+3... +998+999+1000
=(1+1000)+(2+999)+(3+998)...+(500+501)
= 1001x500.

So: (1) o)oJ1)ENTERI(GJ0]0)X) Answer: 586560

©&)mopEs)2)BEITNM. Then key in the atomic mass:
ErEI I <7~ xT) (I Next, key in Avogadro’s
number: (8]~ J0)2)2)EEX)2)3)ENTER = IE['M. Notice that theitem
being counted (atoms) is implied—as with cycles in “cycles per
second” (Hz) or any other discrete item. Now divide the two
arguments: (+)(that'sgrams peratom), then multiply by 4 (atoms per
cell): (4]X).... Result: 7.16E-22_5 (grams per cell)

Volume is mass divided by density. You have the mass already,

sokey in the density: (05 vxD IS o) I S IEEEL
And divide: () Result: 6.8Z2E-23_cm"3

And, since the unit cell is a cube, just take the cube root of the
volume to find the length of an edge: (3]2]X7). Now just convert
to A: E@ONTS)MNEHGFREV M. ... Result: 4.09EB_A

(3) OBJECTS: YOUR RAW MATERIALS

)OS D EEE @@ EX) I
()casT MeNU) (8] 3)) 4) I

G (IB|(E) TEMP[K

EonTs) REEE G Prev) IR)
EIE)asT veny) IEE I ()
Result: 4.B6E-2 (4.00%)

One is a list; the other is a vector.

To convert between them, start with the list:
[(SJON1)sPc)2]sPc3]SPC] 4 ENTER) (and | OEJ)}

Then [NEX EXTAA is the easiest conversion; leaves the
Stack all ready for EZildA.

To convert back: [ENEALNEN(«)EMMEI]. Since needs a
real number for a length argument, you use [[ZNEM(«) to extract
that real number from the list-type length argument produced by
decomposing the vector.

Use the list from problem 4: [[NE3 deletes the first
element; [[NE] EANERd deletes the last element.

Start with 1+2i: [(§]O)1)SPC]2)ENTER) (and at the OBJ menu).
Then IE(>) XXM does the job.

Objective Answers 151

152

Do the power plants first: Calculate the barrels of oil saved by
their typical daily generating level: (qJmoDEs)(1) IEEIM (to reflect
the level of certainty of the data). Then
ETER @ IvTh) REE (o) HE (D e DT XX (©)

PO M@Q)ENTERH B o M JENTER) () (8]0)X)
(notice the unit prefixes here). Result: 2.6E6 Theoil (barrels)

that eighty 1000-MW power plants would save daily. The costs?...
(1] o] o) oJEEX] 6 JENTER[EEX] 3]=] 8] 0 IX]ENTER)(rated kW for 80 plants)

(1) 2] oJoJeNTER) (2] 0J o] H)(s X oS o o N oJHI XN 2 s [+ 3])5)+)
Result: 458.E6 That’s $450 million spent per day for 25

years for the 80 nuclear plants
Result: 49.E6 That’s $49 million spent per day for 50
years for the 80 coal-fired plants

The efficiencies. First, the daily oil savings in water heating:
| GAL [(Ea3 (T[] EEL | Result: 338.E3_bbl
The $avings: (4] 0)+/-JENTER] 1] 0)=)(the plumbing ought tolast at

least 10 years) (1]2) 0 oJENTER] - 2]X) (- [R) XI+H3I 6] 5]+
Result: 12.E6 That’s $12 million saved per day.

Next, the daily oil savings in electrical appliance efficiency:

DEEEETERE)(EEEHEHOEXEDOEXEEX)(EXNXTNXT
Result: 188.E3_bbl

The $avings: (1)2J 0] oJENTER]3)65 =) 1 XI- L o) 5 XIEEX]8)(X)
Result: 2.5E6 That’s $2.5 million saved per day.

Then there’s the daily oil savings in electrical lighting efficiency:
(2] s 3 ENTERL 316 I8 -1 LIXI- J7 LS IXIEEX] 8 [XINXTINXT)
(T (e[EEL Result: 1.8E6_bbl

(3) OBJECTS: YOUR RAW MATERIALS

The $avings: (1)5)o]+/=JENTER] =12 o o JENTER - 1 IX) (- J7)5)

8088
Result: 16.E6 That’s $16 million saved per day.

Finally, the daily oil savings from proper tire inflation:
(1] oJoJ o JoJENTER] 1) 9J+) 1) 4 o JEEX] 6 IX] - o) 3]x] 3) 6)5 J-JENTER
00006 Result: 376.E3

The $avings: («]1)-]2]5]X] (cheap for a gallon of gas by now)
Result: 7.6E6 $7.6 million saved per day.

So here’s the filled-in table (remember—these are daily figures):

Option $Costs (Savings) Energy | % of cur-
gain (bbl/d) | rentuse

80 nuclear Total: $ 450 million | 2.6 million 17%
reactors

80 coal plants| Total: $ 49 million | 2.6 million 17%

Efficiency H,O heat: ($12 million) | 0.33 million| 2.2%
measures Appls.: (2.5 million)| 0.18 million| 1.2%
Lighting: (16 million) | 1.8 million| 12%
Tire infl.: (7.6 million)| 0.37 million| 2.5%
Total: ($39.1 million)| 2.7 million 18%

So, to add 17-18% to the nation’s daily oil supply—without any
change to your life-style—which would you rather do:

spend $50-450 million/day—and wait 3-5 years for results?
or save $40 million/day—with immediate results?

Objective Answers 153

10.

154

Press (2J&q)ASIN. Answer: (1.57879632679, -1.31695789692)
(assumes XYZ and STD modes here). A complex trig argument
doesn’t carry the circular geometric interpretation (“units”) that

real arguments do. The general sine function is an infinite series

3 x5 X7

sum: sinx=x——+——"—+-..
3t 57

The angle, ¢ , between any two vectors, A and B, is given by

L[AeB
§=cos (IAIIBIJ

Be sure that you enter each vector in its proper mode:

)3 9)+/-JsPC)(4)sPC)(2]+/-)([ENTER] ! JeJ AJSTO);

() 30 S (S [RAD) () 2) SPI (- 3) =) EPY)
(J@)BJST0). Nowcalculate: (VAR IIEEENXT () LAST MENU)
G ()cAsT venu) IETER () (VAR I
(©@JtasT venu) IEEEE (5)ACOS)....Result: 1.64893275493 (rad)

The volume of a parallelpiped is the absolute value of its vectors’
triple scalar product, defined as any of these variations:

a*(xc) be(axc) ce(axb)
a*(cxb) be(cxa) ce(bxa)

So: ()03 [7)sPS) (1)SPS) () 2)+/-JENTER) ()13 (1)5PC) (8)SPS) () ()
(ENTER) ()1 I)(3)SPC)(3JSPC)(SJENTER). Then evaluate the function:
(v TS0 (TR G Result: 297.2

(3) OBJECTS: YOUR RAW MATERIALS

11. First,build and name your three vectors: ((G]MODES|NXTINXT), then
=
I Tl (3)/ sPc)5 SPel - =)+
I T (3)/ 2= e)+
Then: (VARINXD(1[4 5 IEIEX) - 2 IEX N TG I0))SPS)
() I (%) 3) (asT MeNu) IEREl—to see the real and imagi-
nary portions of the complex vector result.
Next, B (ves, / will split/build
complex-valued vectors, too).
Then (+) adds the two real-valued vectors, and to find the corre-
sponding unit vector, you divide the vector by its own magnitude:
(ED|PARTS[ERED)] AES [EI Answer:

[.27312118384¢ .533411568334 .8BB54788582 1

12. First,build the vector:
EEEESTA Now Il The first
argument for PUT is the position of the target element in the
vector (or array or list). The second argument is its new value.
Of course, you can’t put a complex value into a real-valued vector,
S0 first, to convert the vector, then
does the job.

13. Press@IIIA)SPCI2)ENTER), then QUEENERMTH LA TR

The ReDiMension command needs a list-type argument to tell it
the desired new dimension of your vector (for an array, you would
need two dimension numbers in thislist). Now
changes the third element, and (G)1J)
finds the Answer: 28

Objective Answers 155

14.

15.

16.

156

Build the vector: (QITJ(1]sPc)(2JsPc)(3)spC)(4]sPC)(sISPC)(6)(sPC)(7)
EPOEJSPC)(9)ENTER). Then (SIOIEISPCBIENTER)MTH (R ELIA MR

to redimension, and (U 1)SPc)2JenTER1)0) PRE)IN NG IPREY)
to change element,,. makes it complex.

Simply multiply by the appropriate row identity matrices. For
example, to extract the first row, multiplyby [[1 8 8 1]
(UG 1)sPc]oJsPc] o JJSWAPX)). And for the second row,
multiplyby [[8 1 B 1], and so on. Notice that the order of
your multiplication is important. Notice, too, that each result is
an array (1x3), not a vector.

This is just a vector problem—with momentum (mass X velocity):
(2JPOLAR]GJRAD) (you want polar mode, angles in degrees), then
&mones 1) IEEE (5 0 2 e[« ToN)
EINS|UEASE] UVAL (B0 60 EEUNEE EERY HH5+ |

(UVAL and HMS?* are new here; notice how they work.)

That’s the first train’s momentum. Now the other one: (3]JEEX]5]

=JeJa K] alq]GIENTER) 1 [1) o] Sl e [KIP H] o)ENTER]X]
()onTs) "EEE TS (2)5) 6) - (3)2) (D) LAST MENU

Now, the big moment: Result: [7731298.5 «-67.8 1

But compass bearings proceed clockwise from north (not coun-
terclockwise from “east,” as in math conventions). The momen-
tum heading of the wreckage (—67.8°) therefore indicates north of
due west (-90°)—so it looks like Canada should hire the backhoe.

(3) OBJECTS: YOUR RAW MATERIALS

17.

18.

19.

20.

One possible strategy: Build a “five-day” vector for each person.

E&mones) BELT (vxT(x D) IETEN

&J0)(e)spc)(eJsPo)(4)sPA)()SPC) (B JENTERI T[] AJSTO)
&I (e)sPc)(esPo)(7)sPC)(7]SPC) (8 JENTER] [B)STO)
E&I)(s)sPC)(e)JsPC)(5)sPC) (4)SPO) (S IENTERI [CJSTO)
EIO)FJsPA)(TIsPY)(7)sPA) ()SPC)(TIENTER] I DJSTO)

Now R GAA G)PREV) and use [MI[A%] on each person’s vector

to sum his/her hours (o]AJENTER) (iR, (o] B)ENTER[ELIARD, etc.).
Then you can either sum these results (+]J+[+))}—or sum the

vectors (@]AJENTER[@)B]H)...) and [X[AR}—to total all hours: 135

GILIa] Y 1)sPc2]») 3]SPC]4JENTER] ' JoJ AISTO), and
Q&I D) e)sPc s]»]4)sPCl 1 JENTER] " Ja)B]STO).

Then (VARINXT) NG I X) and IGENICIM(X).... So matrix

multiplication is not commutative.

To use to build complex numbers, just set system flag —19:
(1) e)+/-JsPc)(e)S]eJFJENTER. Now (1]ENTER)(2]&)2D)... Your result

is a complex number, right?

Use system flags: When flag —15 is clear (1]5]+/=)(=JMODESINXT)
), and flag -16 is set (1)6)+/-)EA, this activates polar/
cylindrical mode. Similarly, the combination of (4]o)+/-) Il
and (5] 0]+/-)Efll activates ENG mode. Clear all four of these
flags before going on.

Objective Answers 157

21.

22,

158

The 48’s current binary wordsize is determined by the states of
system flags -5 through —10. These six flags form their own six-
bit binary integer whose value plus I becomes the machine’s
wordsize (the wordsize ranges from 1 to 64; a six-bit binary word
represents values from 0 to 63—hence the addition of 1).

To extract this number from the flag settings, test those six flags,

line up the bits and read the value: (PRG)IIZEAG)FPREV), then

Key- | (JoJ+) | (slt) | (e]+] (6]+/5) | (8J*/5)
strokes | IGEEN |IGEEN | IEEE RN | IGEEE | R

Results: 8 8 8 1 1 1

Thus, the wordsize here is 000111,+ 1, or 8

Alternatively, you could do it with math: Start with the adjust-
ment value, 1: Then test each flag and multiply
the result by that flag’s place value in the six-bit integer:
A EEEEEXH) IEE (XD

(6~ ER (e)X @)+~ IEE (XD 6+~ IEE X1
GF-NE® Result: 8

The easiest way to preserve the 48’s system settings is to save the
binary integers that represent the values of all the flags:

Now all flag states are saved as the VARiable SYS1. And since you
can have all the VARiables you want, this means you can save
any number of different flag settings—both the 48’s system flags
and your own user flags!

(3) OBJECTS: YOUR RAW MATERIALS

23. Press (MTH) IEEEE (1)) ELITH EEH /%)< 0 FFIFENTER)
Result: # FFEh
You don’t get # FFFh back again, because binary division trun-
cates any remainder: Since FFF (is an odd number (4095,), di-
viding by 2 resulted in 2047, (not 2047.5), and so multiplying by
2 then gave 4094, , or FFE .

10°

24. Press INEME)#)1)0)0)JENTER[ENTER), then [DEJ |

©)tasT MeNUJIELRM. ... The results differ because they’re differ-
ent objects. Only a binary integer object changes its displayed

appearance in response to a change in the binary integer format.
The string was created with the characters it encountered in the
format of the binary integer at the moment you pressed EEA

25. First, press (2]""(e]a] Yl eJo[uIsPcIUINIDIEIRISITIAINID)
(J«)([ENTER) (remember the many characters on the shifted keys

when in alpha mode—use your Quick Reference Guide to help

you). Then (&)EDT) AR ETATED (< «) (@) IDELENTER)

26. (PI""a]a]vIa)eJo L) J&a)=ISPCIENTER) (1 JENTER]) F] 1]X)
(ENTER)(2JENTER[ENTER[H) (gets 4. B without the (4) key).

Then (#) (2I""[spc) (o] eJq]o) (GIALL)(- JENTER) To extract the

value, assume that you know only its surrounding characters in

the string, and use some handy string dissecting commands:
| 0E. [(Wa(Ew) P05 (@6
O] 512E | 5UE [ERE)WENELE) FI: @S8O
ETA Result: 4.8

Objective Answers 159

27.

28.

29.

30.

160

(e S[TDIENER) (- o) 2 2 EEX 2 3 [ENTEeR EnTer) MTH) ETALE
HANT [B] PON [EEOCEIREE 683 6=S)

(1]0) (@] 2IENTRY2IENTRY) Y. (&)O)DELENTER> [+ finishes it.
will produce an Invalid Sunt ax error, because it

tries to decompose a string into objects and put them onto the

Stack in postfix notation. So if you want a string that separates
the mantissa and exponent but still evaluates back to the
number, you would need to use "6.822 18 23 * =",

Press (VARINXT) I C) I (&)PuRGE) ())&)XISTO). Then (1)
G, 87+, and (OGN

Then () VST 613 G« =EvTeR HEEE EVAD VD ()
EECFONTNEERE... Result: % 3

BIF/JsPe o) ST FIENTER). Then(VARINXT) IMEEENTER]*/D). This
isn’t how things went when you built the other quadratic solution
(pages 128-129). The difference: When flag -3, the Numerical
Results flag, is set, the 48 evaluates names during Stack opera-
tions. Your name 'b' contains -8, so on 'b' gives 8.

E)*/=)sPo) (@) o) FIENTERIQImIEVAL) (result: 'T');

(result: 'i'); and (@J&)(EJEVAL (result: 'e').
Then and repeat these keystrokes....
Numerical values, right? Flag-2 is the Symbolic Constants flag.

Only when it’s set, will these constants’ names evaluated to their
respective numerical values (unless flag -3 is set, which overrides
a clear flag -2).

(3) OBJECTS: YOUR RAW MATERIALS

31. To PURGE more than one name at a time from your VAR menu,
justform alist of the names you want to PURGE: (VARI& O IEIE
5vs1l 0| [EXl | h (B E | | E_[UECTO]
PURGEs all VARiables except E.

32. Build theexpression:
Then
a. (e ENERX G XSO IEAEVAD
Result: 'Z2#(-Z2#y)+y’
b. () EEEENTERX) ela) v]sTo) (1) I G PURGE)
| EXPF [E7N Result; 'g*x—2%w'
c. (JeJaTENERENTER) (Ja)X)E0) (05 IS
| EXPF (G Result: '2#t+(1-1)'
d. (JeaZEeneRENeRE 0 Il ETRXD)
& I GIaswAr X () Il EvTer swar o) I
| EXPF [E7N Result: '2#(z-3%y)+(y-3#z)'

Thisisjust substitution. But notice how the 48 doesn’t automati-

cally simplify an algebraic. Notice also the self-referencing name
(Y) in case d: press repeatedly to see its effect....

Objective Answers 161

33.

34.

162

L+V. « OBJ» +ARRY »

VsL: « OBJ+ OBJ+ DROP =LIST »

First, clean up: (&0 IIEEIIIMENTER) G JPURGE)O)CLR). Then:
<> Pro NI EIEEAAEN = oo D= V[alsT0) and
< EEINENEN G oror) EMEIENTER oo [VIPI=]D(@)ST0)

Notice that these simple programs are really nothing more than

a recording of the keystrokes you use manually. Now test them:
...JEEIM....1ooks good;

QO spc 2 sPcCENTER RN . .. IEEIM. ... OK—but notice that
the vector display mode will affect your results;

(IO)sPc)oJsPcia O] 1]SPC 0 JENTER)
OK—but since a vector can’t contain real and complex numbers
at the same time (unlike a list), it makes everything complex;

(QOENTER) ...nope—an error. You haven’t allowed for the
possibility of an empty list (consider how might you do that).

LADD: « L+ SWAP L2V + VL » So,press[« »IEIH
) Ewar) IETH) EEMIENTER) () o)) D(A)D)D)(«)(STO). Then:
a. [(QJUI1JspPc]2]sPc)3]sPc] 4 JENTER) (] 5 JSPCI 6 JSPC] 7]SPC)
(GENERIEIIN ... Result: { 6 8 18 12 2
b. EQIOJQIO ISP AIGION3)*/-JSPCI4JENTER) (1)
B00AERE 0080 ERN000AENED)] LAlD
Result: { (-4.4,1) (1.3,-4.1) 2
(G (8) 628 0 529 O GLE) @ B O SZS [ENED)] LAl D B
Result: Error: Invalid Dimension
You can’t add vectors of different dimensions.
d. @UQGsPCGIE)SPC A ENERIGIOIATI(E)F-)
Pt 16)sPC o JENTERIIAA. ... Result: Error: Bad

Argument type Avectorcan’t have vector components.

(3) OBJECTS: YOUR RAW MATERIALS

35.

36.

Invoking a directory’s name will not move you to that directory
unless it’s in the current PATH (“between you and HOME”).

To give a directory named BILL a second name—say, DRYE—just
Stojre 'BILL' into 'DAVE' . That way, when you evaluate either
BILL or DAVE, you’ll be sent to BILL.

Here’s one way to do it—call this program PHONES:

« DUP NUM CHR OBJ» »

To key this in: [« e)ENTER) Pre) IMENETNxD EIEN AT
(YeJe]PYHIOINIEISI)STO)

First, DUP makes another copy of the string—so that it’s still on
the Stack at the end of the program. ThenNUM gets the character
number of the first character of the string; CHR changes this
number back to a one-character string. Then 0BJ* decomposes
the string and evaluates its single component character, thus
opening the appropriate directory.

To test PHONES, just create a couple of test directories (named
with single letters of the alphabet—say, @, R and 5). Then feed
PHONES some hypothetical “words” (say, "Quine", "Roberts"
and "Simons") to see if it will open up the correct directories.
Will it find the directories if you fail to capitalize the target word?

Objective Answers 163

(4) FuncTiOoNs AND EXPRESSIONS

Functions and Arguments

In Chapter 3, you learned about the various objects the 48 uses. That
is, you learned all about the machine’s “nouns”—its lists, units,
directories, arrays, flags, strings, etc. In this chapter, you'll start to
focus on the “verbs” of the calculator. These are the tools in your
workshop—the commands that produce the problem-solving, “num-
ber-crunching” actions.

Your Owner’s Manual refers to three kinds of calculator actions.

¢ Any action that you can do on the 48 is an operation.
¢ Operations that you can record in programs are commands.

¢ Commands that you can use in algebraic objects are functions.

This chapteris all about this third group, functions—and the algebraic
expressions you can build with them. Why a whole chapter? Because
many problems whose solutions require programs on other machines
can be solved in the 48 with these algebraic objects.

To build and use algebraics well, you must first know what functions
you can put into them. Functions in the 48 are much like those in the
conventional mathematical definition: A function transforms one or
more argument objects into exactly one result object.

A function is made up of a name and arguments. The nameis the tool—

the active, calculating, “verb” part of the process. The arguments are
objects—the “nouns.” When you evaluate the function, you get aresult.

Functions and Arguments 165

Some Built-In Functions

First, look at some of the 48’s built-in functions—and consider the
basic characteristics of this kind of tool....

Preparing Your Arguments

A function accepts only certain object types as arguments—and only

in a certain order. For example, the square root function has a name
(S0RT) and one argument (the object in Stack Level 1)—simple. But
the subtraction function has a name () and two arguments (in Stack

Levels 1 and 2). And of course, you must use the two arguments in the

right order to get the right answer....

Scalpel:

Slice:

Useabuilt-in function to truncate the real number 9.778629
to its integer part.

First, find the right function. If you haven’t discovered this
already, you’ll start to see it now: Finding the right
function—and knowingits requirements—is halfthe battle
in the 48. The function you need here is IP (Integer Por-
tion). Press ETAENXTNXT) to find it.

Next, prepare your argument(s). IP requires just one ar-

gument—at Stack Level 1: (9] -)7)7)8)6)2]9)(ENTER).

Now evaluate the function: press [l .
Result: 9 (in STD display mode)

166

(4) FuncTioNs AND EXPRESSIONS

Try Again: Using the same function, find the integer part of the
complex number, 6+4i.

Oops: Put (6, 4) into Level 1 (&)O)6)sPc)a]enTer)) and I
Error, right? Bad Argument Type You must
know the limitations of your function: IP doesn’t accept
a complex number object as an argument.

Now consider a function with fwo arguments....

More Slicing: Use the TRNC function to TRuNCate 9.77863 at two
decimal places.

Hmm... TRNC needs two arguments—the number being
truncated (that’s 9.778629 here) and the number of
decimal places (2 in this case). So which argument
goes on Level 1 and which on Level 2?

The Quick Reference Guide supplied with your 48 can
help you remember such things. In the alphabetical
Command Reference section, look up TRNC....

It says that the value being truncated goes at Level 2
and the number of decimal places at Level 1. Thus:

T EERENRENDHAE Result:9.77

Some Built-In Functions 167

Checking the Machine’s Assumptions

Whenever a function doesn’t behave the way you think it should, check
these three possible problems:

1. Did you key in all argument values correctly?
2. Did you place these arguments in proper order on the Stack?
3. Isyour calculator in the correct mode?

Your own keystroking accuracy is the only solution to problem 1;
The Quick Reference Guide is a simple way to avoid problem 2;
But for problem 3, you need to be thinking and alert....

Example: Find sin 3.49

Think: If you simply key in 3.49 and press (SIN), you’ll get an
answer—but it may be a wrong answer, if the 48 is in
DEGree mode instead of RADian mode (math conven-
tion: without an explicit °, the argument of a trig func-
tion is assumed to be in radians, not degrees).

So press (]RAD), if necessary, to set RADians mode
(announced by the RAD in the Status Area). Now do it:

G-)4)9)SIN).... Result: -.341481277877

The 48 can’t read your mind,; it doesn’t know what mode is correct for
the problem! It can only warn you of some of its current assumptions—
with Status Area annunciators: Angles RAD GRAD

Vector displays RdZ Rdd

168 (4) FuncTioNs AND EXPRESSIONS

But not every mode is announced in the display...

Example: Find sin Nx, for N=1.5.

Like So: (BB o NSTOVARD) I ENTERIG [mIX)SIN)

What do you get? That depends on the current states of
system flags -2 and -3—modes that are not displayed in
the Status Area.

Withboth of these flags clear, the 48 will not evaluate the
function beyond its symbolic form: 'SINCN#1t) ' . Toforce
the 48 to produce a numerical value for the function, you
must use ([]>NUM].

By contrast, with flag -3 (the Numerical Results flag)
set, you always get the numerical result automatically.

Or, with flag -3 clear but flag -2 (the Symbolic Constants
flag) set, the machine will automatically evaluate only
the symbolic constant (' ')—but leave your variable
("N') unevaluated.

Try the above function with each of these flag setting
combinations. Use the flag commands on the last page

of the menu (or use the menu to

change flag -3 between numerical and symbolic results:

(mooes) ERELED.

Keep all this in mind now—arguments and modes—as you explore some
more of the machine’s built-in functions....

Some Built-In Functions 169

Com

Numbers Vector

Complex numbers and two-dimensional vectors share a number of

properties as arguments for functions....

Try:

Find the inner product (“dot product”) of (4, 3) and (-3, 8).

[(GJO)4ISPC] S JENTER) (] OI3)+/-JSPC]8]JENTER) loads the argu-
ments onto the Stack. Then (a]a]D]O]T)ENTER).... No go, right?

Often, you can solve a problem with either complex numbers
or 2D vectors, but they are different object types—and some
functions accept only one of those types. Dot product is
defined only for vectors in the 48, so change the complex
numbers to vectors: Press (1]9]+/-JENTER|a]C]a]F)(ENTER)(re-
call page 157, problem 19). Then (G]2p]&)2D)(»)&)2D)(&)2D)
(») and ENTER).... Result: 28

Dates and Times

Suppose: Your property taxes are due in 37 days. That dateis...?

Easy:

Press Bl Now key in today’s date—format-
ted in M.DDYYYY date format used by the 48: If today
isSeptember 17,1990, press (8- 1 73 oo Jo)IEITIl. Now

add 37 days to today’s date:
[EX3 ... There’s your tax deadline date.

170

(4) Funcrions AND EXPRESSIONS

When: What day of the week was June 6, 1944?

How: Intime and date arithmetic functions, your arguments (the
times and dates) must be givenin the current time and date
formats (controlled by flags 41 and —42, respectively).
Thus, June 6, 1944 would be 6.861944.

Key this in:

Now key in any time that day (you’re not interested in the
time, but you must give some time as an argument)—say,
noon: (1]2). And now use thehandy TSTR function: [LELIA....
Result: "TUE B6-86-44 12:00:06P"

Another: Find the average time per mile for this relay team:

Runner Miles Time Runner Miles Time

Paul 5.4 36:23 Mike 52 32:38
Christy 53 40:49 Shirley 55 42:09
Bob 59 45:23 Bill 6.0 37:26

Solution: Press(4)J&MoDeEs) MG TIMEIGPREV) to prepare. Then
sum all the times—in H.MMSSs notation—with [TEEES:
08088EIEEO0B0 HH:+ [@0E8AaE] HrH5+
B8uag HHs5+

Now convert to hours and fractions: [lgkEd ... And total

thedistances and divide: (5] - J4JENTER)(5 - J3]H)(5]- [9]H)
G- 2HGE) - 5[H(6]HE). Finally, convert the resulting
average back to HMS form: EITgH....

Result: .B783 (that’s 7:03/mile).

Some Built-In Functions 171

Fractions

Your 48 can convert from decimal representation of rational numbers
to fractional representation of them (a ratio of integers). Set your

display mode to STD (&) mopES) B[for these exercises....

Example: Whatfractionisapproximately equal to0.875968992248?

Answer: 1380080000088 00&E &)
Result: '113-129"

Try This: What fraction is approximately equal to 3.4592385747?

Simple: Press (3] - J4[5]8)2)3)8)s)7J47Ja)=Q)
Result: '1889884-5232083' (Now that’s a fraction.)

But: Press (2]sPc]e]a)F] 1]XJENTER) and repeat the problem.
Result: '38-11' The display setting affects the
precision with which the 48 searches for the fraction.

Press [EVALJG]EDIT) to compare the two conversions.

Also: Convert 5.83438635667 to its closest fraction.

Solution: Set STD mode to get the most accurate conversion.

Then: (5]-J8]3]4)3)8)s)3]5]6)6)7)(&)=q)....
Result: '26656831-456788"

“But maybe 7 is involved somehow.” To find out, press

80080806848
Result: '13-7#n' (Aha!)

172 (@) FuncrioNs AND EXPRESSIONS

One More:

Solution:

Use to convert 6.85972486853 to a fraction.

Press Exd

Result: '1888129-262428' With [EIIll, you get the
best of everything: First it searches for multiples of &,
but if it doesn’t find any, it does a conversion!

Probabilities

Another very useful group of functions are in the PROBability menu....

Try Some:

Well...:

Another:

Hmm...

There are 100 senators in the U.S. Senate. How many
different 7-member committees are possible?

You want the number of combinations possible from 100

objects, taken 7 at a time. So: () 0)0)SPo) D MTHIEAEA
WEA Result: 16887566868 possible committees.*

How many different ways can you shuffle a regular deck
of 52 playing cards? How many different 5-card poker
hands can you draw?

Permutations of 52 cards—taken all 52 at a time (for
shuffling), or just 5 at a time (for poker):
EREPOER)EEER Result: 8.86581751789E67
E=EPOE) A Result: 311875268

*Please do not pass this classified information on to your senator.

Some Built-In Functions 173

As you continue this little tour of your workshop’s built-in function
tools, keep in mind that you can include any of these in the algebraic
objects you build. You’ll soon get practice doing that—but first, a few
more tools to discover....

PARTS of Numbers

The 48 has a big bunch of functions that you’ll probably use only
occasionally—but when you need them, they’re great. Most of these
work with real numbers, some with complex numbers, too. They’re in
the MATH menu (press (MTH)), in the PARTS toolbox (press [TAED). In

one way or another, these functions all treat parts of numbers.

Back on page 167, you learned about . Itis one of four functions
that help you round a number....

@4 'Jd — rounds a decimal down to the nearest lower integer.
— rounds a decimal up to the nearest higher integer.

M — rounds a decimal to a given number of decimal places
or significant digits. It works on the elements of
units, complex numbers, vectors and arrays, too.

E@Td — truncates a decimal to a given number of decimal
places or significant digits. It works on the elements
of units, complex numbers, vectors and arrays, too.

T and KR, require a second argument—to tell them where to
do their rounding or truncating.

174 () Funcrions AND EXPRESSIONS

Try Some:

Solutions:

FIX the display to four decimal places, then:

a. Round 5.9983675 to 6 digits.
b. Evaluate 6sin48°, rounded to 3 significant digits.
c. Truncate4.98330929 to the current display setting.

&)mopes]4) HE M sets the display. Then...

a. ©&JPREV)(e)
BT Result: Yourdisplaysays9. 9984, but press
to confirm that the actual number is now:
9.998368 (then press to cancel the EDIT).

b. InDEGree mode, press(4]8)SN6)X)3)+- N

Result: 4.4668. Using a negative number as an
argument tells the [[Ii[l function to round to that
many significant digits instead of decimal places.

000088008 0EIE)DR)] TFNC B
Result: 4.9833 (confirm with E)EDIT). The 12
tells the 48 to use the current display setting.

Question:

Answer:

What'’s the difference between FIXing 3 decimal places
and RouNDing to 3 decimal places?

FIXing the display affects only the display; it’s a mode
setting that has no effect on actual object values. But
rounding anumber actually changes that object. Thisis
why the rounding functions are indeed functions.

Some Built-In Functions 175

Dissecting Numbers

You've already used two functions ([l and Il that selectively
eliminate part of an argument. But there are eight different functions

that do some sort of extraction (these examples assume STD mode):

MANT

extracts the Integer Portion of a real number or unit:

(- Xe)e)Io) MMM yields O

extracts the Fractional Portion of a real number or unit:

(5 Xe)a) o) MM yields . 689

extracts the MANTissa of a number—as if it were for-
matted in scientific notation:

(A Xe) N 3)EEXI+/-V8) LI yields 4. 833

extracts the eXPONent of a number—as if it were for-
matted in scientific notation:

(A B3 EX+/-V8) Efill yields -8

extracts the ABSolute value, magnitude or norm of a
real number, unit, complex number, array or vector:

B2+~ KA yields 3. 4

extracts the SIGN or direction* of a real or complex

number, unit, or vector: (3]-)J4)+/=) HE yields -1

extracts the REal portion of a complex number or unit:

SIOEIsPEs)+-) M yields 3

extracts the IMaginary component of a complex number:

SIOEIsPEE)+-) MM yields =3

*EIIT10 returns a unit vector in the “direction” of the complex number or vector

176

(4) FuncTioNs AND EXPRESSIONS

Comparing Two Numbers

There are six simple comparison functions—each needing arguments
(reals or units) on the first two Stack levels. Then the arguments are
consumed and the result goes on Level 1:

IEIEW — keeps the lesser of the two arguments:
) E)EPe))3) IEIEH yields 4.5

Wbl — keeps the greater of the two arguments:
(@) 5)sPc) o)~ [3) IR yields 9.3
G — treatsboth arguments (real only) as integers, divides

the first by the second and reports the remainder:
(8)7)spc)7) IELIH yields 3

BEE — nmultiplies the two arguments and divides by 100:
yields 18.8

gA,l — calculates the % CHange in value from the first argu-

ment to the second:

(4)o)sPclE)) BT yields 37.9

BEIl — (% of Total) calculates the percentage of the first
argument represented by the second argument:

(8)s)oJspc1]7)0) yields £8

Some Built-In Functions 177

Symbolic Functions and Variables

All right—that gives you a fairly good feel for what tools you have at
your disposal when building functions of your own. Now it’s time to
start doing that.

As you know, the real power of the 48 is unleashed when you use it with
symbolic arguments. You can use symbolic arguments—i.e. your
variables—within algebraic objects.

There are three types of symbolic objects:

Variable: the basic building block of algebraic expressions and
equations—variables are the names into which you
store values.

Expression: an algebraic containing at least one function with its
arguments (and any of these arguments may be
variables).

Equation: an expression equated (by a =) to another expression,
or to a real number, complex number or unit.

It’s time to examine each of these objects in greater detail...

Creating and Reviewing Variables

You already know how to build and name variables, but you’ll need to
do a few more now—to use later. Some names will contain objects;
others will remain formal variables—names without objects.

178 () Funcrions aND EXPRESSIONS

Go: Create the following variables:

X = (undefined) Y = (undefined)

A=4 B=-3 C=42
D=1-2i E=4+6i L=B-A
VI ="Ti+4j V2=-2i-5j V3= 3i-2k

Press (@]CLR), then (" Ja]XJ&qJPURGE] ' Ja] YJ&JPURGE) to disso-

ciate values from the formal variables X and Y. Then:

&JO0JsPe 2]+ [oJDIsTO) (IO 4ISPCT 6 [>) * T E)STO)
@EBES00800UHES

Now go to your VARiable menu—press (VAR—and be sure
they’re all there (you’ll have to use to see all of them).

Question: How do you review the value stored in a variable?

Answer: You can press its menu key in the VAR menu. For ex-
ample, pressing [JEEl will put the current value of V2,
whichis[=2 -5 1, onto the Stack.

Or, you can press to get a list of the items and
values on the current menu page. Then, of course, you
can use and again for the next page (and
you can use on any menu—not just VAR).

Symbolic Functions and Variables 179

Creating Expressions

You can create algebraic expressions in three different ways—with the
Stack, the Command Line, or the Equation Writer. Look at each
method in turn....

Creating Expressions with the Stack or Command Line

You’ve already become acquainted with these two methods. Here’s a
quick comparison....

Do It: Build the expression sin(24+B) , using the Stack.

Like So: e (I ETER X (I ENTERH) SN

Easy—right? Indeed, you built a much more involved algebraic (the
solution to a quadratic equation) back on pages 128-129.

Or: Build the same expression, sin(24+B), using the Command Line.

OK: Press (SNXHECH®EENET=

Alsovery simple, no? But that’sbecauseit’s a simple expression. When
you encounter big, ugly expressions (lots of parentheses, radicals,
exponents, teeth, hair, etc.), it’s good to know your third option....

180 (4) FuncTioNs AND EXPRESSIONS

Creating Expressions with the Equation Writer

The Equation Writer is a built-in graphics program that allows you to

see algebraic objects in the form you’re used to seeing in a textbook.

And it’s easy to use....

Do It:

Go:

Build the expression sin(24+B) , using the Equation Writer.

Enter the Equation Writer (“EW”) environment by pressing
(GJEQUATION), whereupon you’ll see the box cursor (I) waiting
for you to begin.

Start by pressing (SIN)....Notice right away that you don’t need
the (') key in the EW to indicate that you're entering an
algebraic (the 48 knows that—why else would you be there?)!

Press (2)JlEIM. Notice that you don’t need to press (X)in the
expression; The EW lets you get by with implied multiplica-
tion—knowing that when you say 24 you really mean 2xA.

Now finish the expression: ()l ...and place it onto the
Stack: (ENTER).... See? The finished expression goes onto the
Stack exactly as it would if you had created it with the Stack
or Command Line!

But, again, that’s a simple case—which doesn’t really show you the

power of the Equation Writer....

Creating Expressions 181

Problem:

Solution:

Using Equation Writer, key in this expression:
1t 3
+—|(4-€*)"dx
"o Inn (¢)
A

This is quite straightforward to do, but study each step
carefully. Keep in mind that if you key in something
wrongly, just press the backspace key () to undo it:

gets you into the EW. (aJ&]N]0) enters the
first variable, n, (the EW doesn’t use subscripts).

(1)(&) ((a) begins the numerator of a fraction).
(1)) (v) ends a numerator and begins a denominator).

EN)(eJaN)(») () ends the current subexpression—
hereit’s the parenthetical argument of the LN function).
(»)again ends the fraction subexpression (notice how the
cursor tells you where you are). Now [©)f)(again, the
EW lets you imply the multiplication).

I > B) enters the limits of integration, then
(G)]O)begins a parenthetical subexpression:
(aJa)]X). Note that exponentiating the natural base, e,
is represented by the EW as EXP().

(»]») ends the exponential argument, then the paren-
thetical subexpression. Then (Y¥3]aJ&]N)»>)creates the

exponent, and (>)ends the integrand subexpression and
prepares for the variable of integration: (aJ&q]X)....Done!

Notice that the completed expression is too large to fit
into the display—part of it has scrolled off to the left.

182

(4) FuncTioNs AND EXPRESSIONS

Question:

Answer:

What would you have to do to create this expression
using the Command Line?

Press to put your expression onto the Stack and
exit the EW. The 48 converts the EW’s user-friendly
display to the Stack’s machine-friendly display:

'nB+1-LNCn)=S (A, B,
4-ExP (%)) (3#n), x) '

This is what you’d have to key in via the Command
Line. Not as easy as with the EW, is it?

Another:

Solution:

\1-cos®x
2

Use the EW to enter

[(GJEQUATION) enters Equation Writer; (a)()begins the
numerator and radical; (1]J=) begins the radicand. Now,
to enter the square of the cosine function, either:

CogelalX)®Y2®) or (Excos[eJGIXI>]p):

lt-costo®n [1-500C050 10

(»]¥) ends the radical and numerator subexpressions,
and finishes the expression and sends it to the
Stack. Its Stack form depends on your choice above, but
the expression will evaluate the same either way.

Creating Expressions 183

Problem:

Solution:

amp? «sec?
Nem

(GJEQUATION)(4] -] 7)2) enters the numerical part.
Then (©]_Ja)begins the unit’s numerator;

enters the amperes; (aJq)S)Y¥(2)») enters the seconds;
and (v)ends the numerator and begins the denominator.

Use the EW to create 4.72

Then completes the expression.

Lastly:

Do It:

Create the following expression in the Equation Writer:
4x%+y? where x=3b-2 and y=a+1

This uses “where” notation—a concise way to define both
the main function and functions defining its arguments.

So press (JEQUATION|(4)(eJa]X)Z 2] H S V)I(2)>) to
build the main function. Then &)ALGEBRAINXT) Il enters
the “where” syntax—that vertical bar—and be-
gins defining the first variable (x). Notice that (») auto-
matically ends the variable name and inserts an =.

(3)aJ)B)(=]2)sPc) completes the function defining x (and
notice that automatically inserts a comma to separate
the two variable definitions).

To finish: @EVEIGIE)) ENER.

184

(4) FuncTioNs AND EXPRESSIONS

Editing Expressions

As you know well, it’s easy to make mistakes when entering complex

expressions. Well, what if you discover a mistake “many keystrokes

Editing with the Command Line

You've already seen this method for error correction; here’s a quick...

Example:

Solution:

Use the Command Line to change the main function in
the previous example to 5x2 + 2y%

Since the expression needing editing is still in Level 1 of
the Stack (if not, rebuild it now), press to start.

Now, replace 4 with 3 as the first coefficient of the func-
tion: Press IIEEM] so that you are replacing instead of
inserting, and then (»]5)

Returntoinsert mode (pressl[iEM) and press
until the blinking cursor is on the Y.... Now press
to insert the second coefficient, and put the edited
expression on the Stack: (ENTER).

This should seem pretty familiar. But how would you do this editing
with the EW?...

Editing Expressions 185

Editing with the Equation Writer

Actually, you can’t edit directly using the Equation Writer. But it does
include a number of features that makes editing expressions easier.

10
Try This: Create Z(\/l + tan:T")n in the EW

n=1

Then, after you’ve completed the expression (but before
you it onto the Stack), use the Command Line to
change the upper limit to 25.

Solution: To create the expression: (G]EQUATION|Z)(eJaN)(>)(1)
D000E0EEYNNEEGUBI000NEaE 0N
To edit the expression: (&)EDT)IREREIREEEREF>)
You should see:

29 3 n
;JMHN[T] i

[c [B 1 A | N [PHON]LADD |

In this example, you brought the entire expression to the Command
Line even though you needed to change only a small part of it. But the
EW allows you select a part of an expression (a subexpression) to be
edited on the Command Line and then returned to the overall expres-
sion. This selection process goes on in the Selection Environment.

186 () FuncrioNs AND EXPRESSIONS

Watch: Assuming that you're still in Equation Writer looking at
the display of the previous summation expression, press (<.
Welcome to the Selection Environment.

Use the arrow keys to move the highlight around. You’ll
find that you can move “up” and “down” only when the
highlighted subexpression has an “up-down” direction—as
in the Z term and the fraction here.

To use the Selection Environment well, you must understand what the
48 sees as a subexpression—what it will actually select:

A subexpression is one function plus its arguments. If one or more of
those arguments contains other functions, then the selection will
include those functions, also.

Question: In the Selection Environment, press the arrow keys
until the division bar of the fraction is highlighted. Now,
what subexpression is defined by this dividing bar?

Check: Press [Fd3 to highlight the entire subexpression (the
fraction) determined by the dividing bar. Press A
again and just the division bar is highlighted. is
adisplay option only; whether you see the entire fraction
highlighted or just the division bar, it is the selection. So
the function selected was the division (+), along with its
two arguments—the numerator and denominator.

Editing Expressions 187

Question:

Find Out:

Question:

Find Out:

What subexpression is defined by the radical?

Move the highlight to the radical by pressing («) four
times. Then press [FIdA. The radical subexpression is
the square-root function plusits argument, 1 + tan 3%, even

though its argument has two additional nested
subexpressions.

Press (). What subexpression is defined by the 1?

PressIEddA. ... Nothing happens—because the number
is an argument, not a function, and therefore defines no
subexpression.

When an argument is highlighted, only that argument
isselected; but when a function is highlighted, the entire
subexpression that it defines is selected—and you can
actually see the entire subexpression via I3dddl

188

(35 o 12
%_1%\7320\'&43230\

(4) FuncTioNs AND EXPRESSIONS

Editing Subexpressions

Now that you know what subexpressions are—and how to select
them—Ilook what you can do with them. You can:

¢ Remove a subexpression from the main expression in the EW,
edit it in the Command Line, then put it back into the EW.

¢ Copy a subexpression to Stack Level 1.

¢ Take the subexpression sitting at Stack Level 1 and either insert
it or use it to replace another within your EW expression.

So, make sure that you're still in the Selection Environment from the
previous exercises, and then...

Try This: Select the fraction subexpression and, using the Com-
mand Line, change the denominator to 8.

Like So: Use the arrow keys to highlight the division line. Then

press IHIIll. Now just the subexpression is being edited.
Press(«]8)to change the denominator, and then (ENTER) to

return the result back to the main expression.

Easy, right?

Editing Expressions 189

Another: Copy the argument of the radical onto the Stack.

Hmm... Theargument oftheradicalisdefined by the*+ function. So
press (€[€)to highlight the + and then JE[3l. Then press
(ENTER)to see the copied subexpression. This will exit you
from the Selection Environment to the Stack, copying the
entire current expression to Level 1. And the subexpression
you copied, ' 1+TAN(3#1-8) "', should now be at Level 2.

That’s an important distinction: Use [ENTER}—within either the EW or
the Selection Environment—to return the complete expression to the
Stack. But you use I3l within the Selection Environment to copy
a selected subexpression to the Stack.

Question: How do you accomplish the reverse process—move ex-
pressions and subexpressions from the Stack to the EW
and/or Selection Environment?

Answer: To move the expression at Stack Level 1 into the EW
environment, press (¥) (do it now). Whenever you have
an algebraic object (or unit object) on Level 1, pressing
(v) displays it in friendly EW style. But (¥)delivers only
complete expressions. You can’t use it to add to an
expression already in the EW.

190 (4) FuncrioNs AND EXPRESSIONS

25

Challenge: Modify the expression to: Z(\/l + tan%")n —(1+tan¥)

n=1

Solution: Press (4 to enter the Selection Environment, then (4]«
(«[€to highlight the + function. Press I to copy the
radicand subexpression to the Stack. Then [HHIHll the
Selection Environment. Now (5)&]() to begin the new
term, and to recall the subexpression on Level 1
and insert it into the expression at the cursor’s location:

N b |
HH[%] . 1+THN[-38'—"]D
[C | E | A [W [PHOM]|LADD|

Since the expression is too big to fit in the display, press
and use the arrows to scroll around and view
the parts that are hidden. When you’re finished, press
again to continue your work.

Keep in mind the critical difference between(¥)and when moving
expressions from the Stack to the EW:

] does it only from the EW environment. It recalls the
expression from Stack Level 1 and inserts it at the EW box cursor.

¢ By contrast,(v)does it only from the Stack, overwriting the entire
contents of the EW with the expression in Stack Level 1. Thus

(v)is a shortcut for (&)EQUATION)(=RCL)

Editing Expressions 191

But (2)RCL) doesn’t meet all your needs for expression modification.
Yes, it adds to the existing expression, but how would you replace a

subexpression with that in Stack Level 1?

OK:

What if the proper trig function in this summation were
sine, not tangent? Replace the TAN's with SIN’s.

Copy the tangent subexpression to the Stack: («[<) IHIIEA.
Then exit Equation Writer, by pressing [ENTER). This puts
the main expression on Level 1 and the tangent
subexpression on Level 2.

So (») (SWAP) them and the subexpression:
(] o) S 1)([ENTER). Make an extra copy of this: (ENTER).

Now, reload the full expression into Equation Writer:

(aJa)a) IIH ENTER) copies the full expression (currently
sitting on Level 3) down to Level 1; then (¥)loads it into
Equation Writer.

Re-enter the Selection Environment and highlight the first

TAN subexpression: (<<« («{[«(«(«¥). Replace the TAN
subexpression with the SIN subexpression you left at Stack

Level 1: I3 Now hop over to the other TAN subexpression
and replace it, too: (> >»> >) I13E48.

192

() Funcrions AND EXPRESSIONS

Can you use [43¥ to replace an argument as well as a function?

Try This: Change the fraction in the previous expression to 5m/8.

Solution: Assumingthat you’re still in the Selection Environment
from the previous example, press [ENTER)(5) (ENTERJENTER)
OoQ kLl ENEUR0C FEFL IO NC)
3dM. This will change both occurrences of 3n/8 to S/
8. Press (ENTER).

Do This: In the Equation Writer, create this expression:

Tl
Iz

Then, using §d34dM , change the upper limit to 5A.

Solution: Create the original expression: (JEQUATION[=[I[2]»]9)
A EHX)) (X ENTER).
Next, create its replacement: (*']5]X]a]A)ENTER

Now recall the original to the Equation Writer: (»)(¥)
Enter the Selection Environment and highlight 9, the
upper bound: («J(«)(a)(a)(this is not exactly intuitive: you
can’t move from the integral to its bounds, but you can
from the integrand).

Press [[I3{M (ENTER)to complete your task.

Editing Expressions 193

A Visual Review

Justincase all these keystroke combinations and environment changes
have you reeling, here’s an all-in-one shot of your options for creating
and/or editing algebraic expressions:

(9 JEQUATION
Stack or EquationWriter
Environment Environment

Command Line Selection

Environment Environment

194 () Funcrions AND EXPRESSIONS

Saving Expressions

So far, you've been moving expressions created in the Equation Writer
to the Stack by pressing (ENTER). Once there, of course, you know how
to give them a name and store them for a later date....

Do It: Assuming your expression is in either the Selection Envi-
ronment or the EW, press to send it to the Stack.

Now, storeitinthename 'MYINT': () e oMY 1 N]T)ENTER)
(STO). Press to confirm that you indeed have the new
variable.

Nobigdeal, right? You’ve done this kind of naming of all sorts of objects
by now—including algebraic expressions like this.

But the point here is this: When you press in the Equation
Writer, you take an easy-to-read form of an expression and put it onto
the Stack in its easy-to-use (-but-sort-of-ugly) Command Line form.
And when you name ((STO)) the expression, you are indeed saving this
Command Line version.

Hmm... but wouldn’t it be nice to be able to save the big, friendly, easy-
to-read EW version, too?

(“yes, fans—that’s right....”)

Saving Expressions 195

Try This: Recall the expression you just saved into the Equation

Writer by pressing [RHI[zl(¥). Now press(ST0). Then press
to see what you’ve done.

Result: On Stack Level 2, you have: Graphic 131 x 56.
This is a graphic object (or grob). It’s a picture—like a
fax—ofthe EW expression. The picture has 131 columns
and 56 rows of pixels (dots). And you can name this

object: (] JoJaJPIMIY 1 IN]T]2JsTO]

Pretty neat, eh?

Well ...that depends on what you want to do with the expression. Ifyou
need to do any calculations with it, evaluate it, manipulate it, edit it,
or some such thing, then the grob version is useless to you. It’s just a
“photograph” of an expression; and after all, you can’t drive a nail with
a picture of a hammer, can you?*

But if you want to see the “pretty” version of a completed expression,
then use the grob version. Just remember the key distinction:

¢ The Command Line version acts like an algebraic expression.
Press from the Equation Writer.

¢ The grob version acts like a picture—any picture.
Press from the Equation Writer.

*The details about viewing, manipulating and editing grobs are not covered in this book, since
they’re almost exclusively used by programmers and other advanced users. If the material in the
Owner’s Manual isn’t sufficient for you, Grapevine’s book, HP 48SX Graphics (by Ray Depew),
covers this and many other useful topics extensively.

196 () FuncTIONS AND EXPRESSIONS

Using Expressions

All right, already—so you know how to build and edit an algebraic
expression—so what? It’s time to look at the things you can do with
these expressions.

You can do these three types of things:

¢ You canevaluate an expression—“crunch” it into a number as far
as possible.

¢ You can rearrange an expression—transform it into an equiva-
lent expression. The 48 offers you commands that follow alge-
braic rules for expanding terms, combining like terms, using the
distributive, associative and commutative properties, etc.

* You can symbolically solve an equation—isolate a given variable
out of an otherwise unsimplified expression; or reduce one side
of the equation to a numerical value.

Look at each category, in turn....

Using Expressions 197

Evaluating Expressions

You already know how to evaluate an algebraic object: With the alge-
braic at Stack Level 1 (or in the Command Line), just press [EVAL. But
you also need to better understand what happens when you do it....

Example: Create and then evaluate the expression 4A + 5B

Solution: Just use the Command Line for this simple expression:

(IR AHEXE)ENTE creates it; then EVAL....
Result: 1.8888 This uses the VARiables you stored.

Another: Create and then evaluate the expression 4L + 5M

Solution: ("] X[U5 X o MENTERIEVAL)
esul '4x(B-A)+5=M'
One of the variables (M) contains no value. And the other
(L) contains another algebraic object—the expression
'B-A'. Therefore (as you learned on page 131), you
must evaluate the expression again to reduce A and B to
numerical values: Result: '-28+5*M'

Remember: examines an algebraic expression and replaces each
name with the value that name contains. If there’s no value, then
leaves the empty name in the expression; if the value is a number, the
number is substituted; if the value is simply another name, then that
name is also evaluated; if the value is an algebraic object, then that
object is substituted but not evaluated.

198 (4) FuncrioNs AND EXPRESSIONS

There’s also another type of evaluation available to you—one that
gives you more control as to what is evaluated. The SHOW command

(available via (qJALGEBRAJELTTEI) allows you to choose which objects to
evaluate—useful for finding “hidden” variables....

Example: Given that v=v,+ar where v is velocity, v, is the initial
velocity, a is the constant acceleration and ¢ is time, and

1
given that x = x; + Et (vo +v), where x,is the initial posi-

tion and x is the position at time ¢, how is a related to x?
Solution: First, define ¥: (")o] V)0 o]A[X)] T)JENTER)

Next, create the equation: (&]EQUATION e X]& =] a]X] o]+
(=2 e TIXIGIO e V) o]+ e V]([ENTER).

Indicate which hidden variable you want to SHOW after
the substitution: ("] A)[ENTER)....

And perform the substitution: (qJALGEBRA) ELIX]
Result: '®=KB+1/2#T*(VYB+(VB+A*T))"

Do you see what SHOW did here? The A, which had been hidden inside
the ¥ variable, is now explicitly a part of the equation for &.

Evaluating Expressions 199

Rearranging Expressions

The 48 contains a number of ways to symbolically rearrange an alge-
braic expression. Whenever you make rearrangements, the new
expression is always equivalent to the old one—just as proper algebra
demands. Of course, not all of the rearrangement tools are equally
useful to you, but the 48’s repertoire is quite extensive:

¢ You can collect like terms and combine whatever can be
combined in order to simplify an expression.

¢ You can expand an expression to make all powers and prod-
ucts explicit.

¢ You can select a subexpression and move it around, associate
it or distribute it different, or a number of other things
depending on the nature of the subexpression.

* You can define your own algebraic rule (or identity) to aug-
ment the built-in rules and apply that rule to an expression.

Try One: Create 2 + x + 4x - 3x + 9 — x + 2x* in Equation Writer:
Then collect like terms.

Solution: (QEQUATION[2] +)(e]X]+] 4] JX[Y* 2)) = 3] X)+ o))
X JYH2)ENTER). Then (JALGEBRA)TNH] ...
Result: '11+6*K"Z2-3*K'

200 (4) FuncrioNs AND EXPRESSIONS

Now: Using the Interactive Stack (remember? press (a)), go find
the equation '¥=KB+1-2#T*(VYB+(VB+A*T)) 'and copy it
to Level 1 (press [while the pointer is pointing at the
equation). Then exitthe Interactive Stack (press(ATTN). Your
mission: Tidy up the equation with some rearrangements.

OK: First, notice that the two Y8’s can combine. Press
esult: '®=0.5000%(A*T+2*Y@)*T+K8'

That'’s still not very pretty (even in the Equation Writer—
press (v) to see). So (back at the Stack), press [3ii
EXPAnd the expression, by distributing terms wherever
possible. Often you’ll need to EXPAnd an expression like
this before [iI[M&] can do much tidying.

Result: 'K=(8. SBBB*(H*T)+B oBBB*(Z2YB))*T+kE"

The8. 5868 is distributed, but not the T. So [Tl again...
Result: 'K=0.5000%(A*T)*T+0, 5006*(2:V8)*T+K0"
Now try combining like terms—press [{i[N#]....

Result: 'X=0.5080*A=T*2+T*Y@+KB'

Much better—and you can make it even prettier: (G)]=Q)(v).
As a matter of fact, it might even look familiar.

Rearranging Expressions 201

Rearrangement using and works well for many expres-
sions, but they aren’t well-suited to make smaller, single-step, rear-
rangements. For those sorts of “microsurgeries,” you'll need the set of
algebraic tools collected in the toolbox, available in the EW’s
Selection Environment.

Example: As nice as the previous equation ended up, you'd prefer
tobe consistent in the order of the coefficients. Since it’s
aquadraticinT, the coefficients of the powers of T should
come first. Somehow, you need to switch the order of T
and Y8 in the second term. But how?

Solution: = Noamount of pressing [FdZil and [{i[Md]is going to make
this happen; you need to use the [d[43].

Assuming that you are looking at the Equation Writer
version of the quadratic already, press (<) to enter the
Selection Environment. Then press (€J(««) to high-
light the multiplication dot between T and V8. Just as
before, you are selecting a subexpression for editing.

Press [N ~NxT)IEEMN. This “commutes” (switches)
the order of the arguments, so that Y8 comes before T.

Then returns you to the Stack.

That’s just one example of the sorts of massaging you can do to your
expressions—either in the EW or on the Stack. Here is a list of all the
available RULES, which fall into three categories (these are the Stack
versions of the results):

202 (4) FuncrioNs AND EXPRESSIONS

¢ Rulesthatapplytoanyselection (argument or subexpression):

[CEd — & becomes @A

L — & becomes (MIMCA))
BEu - 1 becomes Al
Sl — 3 becomes AWl
EE - 1 becomes A4l
[+] -] [becomes A+1E1
Wi[ff] — collects like terms (in the selection only).

¢ Rules that apply to subexpressions.

Commutation
X8 — AGB
Distribution
Ol — (A+BIEC
[El — A3CB+0D
Oul — A=BGAxC
EEM — A=CGBxC
(Il — =(A+B)
BN — ARGB
¥l — A>B
Association

— Racz=B+C

(Ell — A+2x*BaC

Moving Terms (arguments of +, =, ¥, 7, or =)

— A+2=BXC
— RaC+e=B

becomes

becomes
becomes
becomes
becomes
becomes
becomes
becomes

BGA

AxCaBxC
A*BGEA*C
RAC(B+C)
(A+BJEC

-A=B

=(-A-B)
MENCINVCRY B

becomes HA+Z*BGC
becomes HA@(Z*B+C)

becomes HGC+Z*B
becomes C+AGZ*B

Building and Moving Parentheses

— R+2=BaC+D
Rl — R+2+B+(CEDD

Rearranging Expressions

becomes A@(Z*B+C)+0
becomes A+(Z*B@C+D)
— A+ (2#BRCI+D Dbecomes A+(Z*B+CEDY

203

Rules that apply only to specialized subexpressions:

Trigonometric Functions

EEd — B8 becomes (in radian mode)
(EXP(R*1i)-EXP(-(K*i)))E(2*i)
Il — [ME(X-Y) becomes

COS(KI=COSCYIRSINCRI*SINCYD

Exponential and Logarithmic Functions

— [MMECA™B) becomes LOGCA)EB
— LNCRIEB becomes [RICA*B)
— [(MECA=B) becomes HALOGCA)&B
N — EXP(R)AB becomes |HAY(A*B)
Fractions with Different Denominators
IEE — A-DEB-C becomes (A*C+D*BIE(D+C)
Question: How can you possibly remember all these RULES?

Answer:

You'll soon learn the ones you use most often. As for the
rest, don’t bother to memorize them at all. Also, your 48
helps you select among them: On its RULES menu, it
will offer only those rearrangement commands that
apply to the situation you’ve selected. And even then, it
won’t let you do something mathematically “illegal” to
your expression. So relax and explore the RULES....

204

(4) FuncTioNs AND EXPRESSIONS

. GMm 2. . 2n
Example: Given that R+r) =mwr; R<<r; and o© =T

show that: GM =4x*r’T>

Solution: Begin by keying in the first equation: (&]EQUATION

NEEERNSENCUGEOEEAOEEEONEA
e JaIMX AW 2] ¢ Ja)RIENTER)

Now, since R is insignificant relative to r, eliminate it by
storing 0 into it: (0] "JeJR]STO)andEVAL). Next, multiply
by 'r*2"' to clear the left-hand denominator: ()(«)&)[R)
2 X). Then collect like terms: (&)]ALGEBRA)
[HIH)), divide by 'm'and collect:
Result: 'G#M=r"3#p"2’

Now define the variable W and evaluate the equation:

(XD ENTR)(TJ2W(ETO) EVA
Result: 'G*FI r""3*(2*1r/T)“2'

Distribute the final exponent over the terms in paren-
theses: (v[<[<) X)T I Now re-
turn to the Stack and collect: [ENTER) [N}

Result: 'G*M= 4*r“3*T"‘-2*1r"‘2'

Finally (optionally) rearrange the terms on the right-
hand side to exactly match the target: (v] <] <] <]/ <)[d[H 3]
EIEEIEETS)... Result: 'GHM=4xp 25rA3T-2!

Your use of algebraic rearrangements depends entirely on your needs.
Often, it’s quicker to do them by hand (or eye). But for a derivation or
proof, they’re awfully handy to check for careless errors.

Rearranging Expressions 205

With all the algebra already built into it, the 48 even goes one step
further: It allows you to define your own algebraic transformations.

Try One: Define the following identity: cos?6 + sin?0 =1

Like So: To define the identity, you create a list object that contains
up to three algebraic expressions, in this order:

1. The expression you wish to replace.

2. The new expression to be substituted.

3. Anoptional expression (such as '&x>8")that puts
a condition on when the replacement should occur.

So, begin the list with the first expression: (GJ{J]'Jcos|c]
EETER LX) OraB0!

Notice that you're using a wildcard name—a name be-
ginning with the& character (&X in this case)—instead of 0,
as your variable. This will allow your 48 to recognize the
identity no matter what variable name is being used.

Next, enter the second expression—the replacement: (1).
And since there are no special conditions needed with this
identity, you don’t need any third expression, so just press
to put the list onto the Stack.

Finally, give your list a name: (" Jo)o]P Y] T[H)(@]STO).... and
press to confirm it.

Ready to test it? All right....

206 (4) FuncTioNs AND EXPRESSIONS

Problem:

Solution:

Use the PYTH identity to help you prove this one:
1 1 1

+ =
sinA cos?A sin’A cos’A

Use the EW to create the left-hand expression:

JEQUATION(1=JSIN[J AT I 2)) () (Cos) (@] A)>)
3@

Now, start the transformation: Press («[<[HTN I
to add the fractions over a common denominator. Re-
turn it to the Stack and collect: (ENTER)JALGEBRA)HTHH]

Now, test your customized transformation: Put PYTH
into Level 1: (VARIZ[Il. Your current expression should
now be in Level 2. Execute the MATch command—to

perform the search-and-replace: +HMAT

Result: (Level 1) 1 (means that a match was found)
(Level 2) '1*COSCRY*-2#SINCR)I~-2'

(the transformed expression)

This is the target expression.... Q.E.D.

So that’s the idea: You build a list containing a target, a replacement

and (if necessary) a conditional expression—all using wildcard names

for any variables. Then you use this list as one of the arguments (along

with the expression to be transformed) with the MATch command.

Rearranging Expressions 207

Solving Equations of Expressions

Face it: The algebraic trickery of the previous section wouldn’t be
nearly so interesting if the 48 couldn’t solve an algebraic equation.

On paper, the primary reason you perform algebraic rearrangements
istoisolate a key variable on one side of the equal sign, with everything
else on the other—i.e. to get somethingsuchas x=... or y=...

But, if you had to imitate each minuscule step of algebra on the 48 just
in order to solve for a particular variable, it would take you longer to
use your calculator than to do it on paper.

Well, there’s a shortcut: The ISOL command will automatically per-
form all the transformations necessary to isolate the variable.

Example: Enter 'A=B*C' and solve for C symbolically.

Easy: (JeJAla = o) BIX][2]Cc) puts the equation on the

Stack. Then, to solve forC,("Ja)C)and (] ALcEBRANEITML
Result: 'C=A-B'

is handy—for some cases. But it won’t isolate any variable that
appears more than once in an expression. If you ask it to, the 48 will
beep at you and display the message: Unable to Isolate.

208 (4) Funcrions AND EXPRESSIONS

That’s the bad news. The good news is that the ISOLate command can
work on an expression (i.e. an algebraic without an equal sign), too.

Watch:

Solution:

Isolate ¢ in the following expression: 2b— ?

Wait a minute! You can’t isolate (“solve for”) anything if
you don’t have an equation. You must have a math-
ematical sentence with a = in it.

True. Sothe 48 simply assumesthat the expression you’ve
entered is equal to zero and then proceeds to ISOLate the
requested variable.

Enter the expression: (JoJaJq) e 2]X[B]-JA[=]T)ENTER).
Now enter the variable to isolate: (* JoJ&]T]

And HEf[M... Result: 't=a-(2%b)'

Try Another: Solve for ¢ in the following expression: 2’

Solution:

...Ooops! What happened?

As usual, the 48 set the expression equal to zero:
2!=0; Butisolating ¢ in this circumstance requires
an impossible operation. You do have to be aware
of these things when using TEI[M.

Solving Equations of Expressions 209

In addition to ISOL, you can also use the QUAD command to “solve” for

a given variable in some algebraic expressions:

¢ You can solve for a polynomial variable of the second order (i.e.

the “x” in a quadratic);

* You can solve for an unknown polynomial variable of the first

order (linear) which appears more than once in the expression or

equation.

¢ You can approximate a solution for a polynomial variable of third

order or higher.

Try One:

Solution:

Solve -(X-1)=4 for X, to 2 decimal places.

1
1+X
Create the equation: OEOHEX D
IO IXI=1»)E&I=]4)ENTER. Now solve for X:

Result: 'K=(2+s1%3.46)-2

Notice the s1. A quadratic has two solutions, but a
function in the 48 can return only one at a time. So the
48 createsthesl to allow for the “t” part of the quadratic
solution (or any solution pairs that vary only in sign).

So you can choose either result. First,letsl=1:
)@&E&)E1)ESTO)EVAD.... Result: '®=2.73'

Now let s1=-1: (@F) S DETO(EVAD....
Result: 'K=-8.73"

210

(4) Funcrions AND EXPRESSIONS

This last example illustrates the difference between a principal so-
lution and a general solution. The 48’s built-in functions always
return the principal solution (given real or complex arguments):

¢ The square root of 16 is evaluated as 4, though 4 is also correct;

¢ The arcsine of 0.5 is evaluated to be 30°, though there are an
infinite number of angles whose sines are 0.5.

By contrast, whenever you use the or B commands to
isolate or solve for a variable, your machine assumes that you want the
general solution—unless you specifically tell it otherwise....

Compare: Use to find the general solution for x: sin x° = 0.5
Then tell your 48 to give you the principal solution.

Solution: generates the equation.
Duplicate: (ENTER]. Then make sure you're in DEG mode
and press IE MM to give the general solution....
Result: 'x=38%(-1)"nl1+180*nl"

Torequestjust the principal solution for [E[M, you need
to set system flag —1: (1]+/=JsPcC)(a] e S]F)([ENTER). Then ()

and solve the expression again: (JoJ&X) IEM....
Result: 'x=38"

Solving Equations of Expressions 211

User-Defined Functions

To solve problems with algebraic expressions, you can simply create an
algebraic object of the proper form and assign values (if any) to the
names in it. When you evaluate this object, it combines the values as
specified and you get a result. Fine and dandy.

But if the algebraic object contains lots of named objects, then assign-
ing values to the names (using the procedure) can be alengthy and
error-prone process. That’s where a UDF can come in handy.

A User-Defined Function (UDF) is a special kind of quasi-algebraic
that allows you to stream-line the use of complicated expressions and
create and name your own functions....

Create One: Define the following function: f{x) =x2-2x+ 1

Like This: When you define a UDF, you use exactly this kind of
f{x) function notation. The left side of the equal sign
must include only the name of the function, with the
names of the arguments in parentheses. The right
side of the equal sign is the defining expression.

So...press (]EQUATION) (aJa]) (B a]O) (X Ia)=)
to write the function.
Then press to define it and place its name in
your VARiable menu.

212 (4) FuncrioNs AND EXPRESSIONS

Now Then: Set your display to STD (&)MopES) IELID, and use

your new function, f, evaluating it at:

a. x=1 b. x=-2
c. x=2+3i d. x=+2
Solutions: a. (aR()IGHE Result: B
b. Result: 9
c. O3 Result: (-8,6)
d. L F | Result: . 17157287525

Notice that the UDF took its argument from the Stack here—just as
a built-in function would have. And if it had required more than one
argument—say, a function P(4, B)—it would have expected the argu-
ments to go onto the Stack in the same order in which they appear in
the parenthesesin the function definition: A[ENTER)BENTER). Thus, UDF’s
act just like built-in functions; they’re additions to your 48 workshop.

User-Defined Functions 213

Try Another: Define the following UDF: g(x, y) = 2x + xy
Then evaluate ¢ for:

a. x=-2 c. x=t y=t-1
b. y=-2x d x=z-3y, y=x-3z

Solutions: Define the function: (e)eJq)0)
(e]X]sPc]e] Y)= 2 o X][+H e X]X]«] Y JENTER[<S [DEF).

Now evaluate:

a. ([(JXQQENTER) (o)) Y)ENTER(VAR
N) (aLGEBRA) TN
Result: '-(Z2¥y"2)-4xy'

b. (TaXET=RETER(RXF-VAR
Result: '-(2#x"2)+2%s"

c. ([anev=ET=R1EVAREEE
@) (AceerA IFIEA ME] Result: 't"2+t'

d. (JeJalz[-BIXJa]YJENTER JaIX[=3]X]

OEVHEENEVR]
(GRY|EWEEEETY| ELPA L ELPR [COLCT]

Result: '-(3%z"2)-3*urytusz
+Oxyxz-Hry+2rz'
(Press (¥) to see it in the Equation Writer.)

214 (4) FuncTtions AND EXPRESSIONS

Symbolic Arguments in a UDF

So far, you've used your UDF’s (F and () with numeric arguments,

placing those arguments onto the Stack and invoking the name of the
function by itself.

Question:

Answer:

Notice:

How do you use UDF’s in their algebraic functional
form—with symbolic arguments? For example, is this

valid? '2%QC(R, B)+3xF (C)

Absolutely. It’s just as valid as when you use two built-

in functions: 'Z2*PERMC(A, B +3%TANCCY'

And when evaluated, both of these would use the values
currently stored in the VARiables A, B and C.

The VARiable names you use as arguments (within the
parentheses) when invoking a UDF have nothing to do
with the names youuse when DEFINing that UDF. When
defining [on the previous page, for example, you used
the names % and Y. But that was simply for the purposes
of the definition (after all, how can you define a function
without some sort of symbols for the variables?). But
when it comes time to use the UDF, the names of the
arguments you give it are unlimited—and their values
(if any) will be taken from VARiables with those names.

Getting anxious to test your understanding of functions and expres-

sions? All right—put it to practice with this quiz (answers follow)....

User-Defined Functions 215

216

Math Anxiety

Evaluate: tan’ (Zi)in radians, as a fraction of 7.

+2

Find all four solutions to 4/8 — 8i+/3.

In 1989, the worldwide consumption of petroleum was about
21.28 billion barrels. Total remaining oil resources available is
estimated to be 1590 billion barrels. The formula,
A
A= TO(e"T -1)

expresses an exponential growth rate where A is the amount of
oil consumed over the next T years, A is the annual amount of 0il
consumed currently, and k is the relative growth rate of annual
consumption. Compute the “life expectancy” for oil, assuming
that the rate of oil consumption grows annually by:

a. 1% b. 2% ¢. 3% (the predicted rate for this decade)

Around 1515, Italian mathematician Scipione del Ferro solved
the cubic equation, x* + px + g = 0, deriving this general formula:

_ 2 3 _ 2 3
N q_+!g+\j_f1_ <. p
2 4 27 2 4 27

Using the Equation Writer, key in this monster expression and

store it as 'QUBE'. Use whatever shortcuts you want.

(4) FuncrtionNs AND EXPRESSIONS

5. Expand the following expression to a polynomial of the fifth
degree, using [FLl and [{iXH] :

(1)

6. Determine the term containing a3 in the expansion of (a -2b°)l1 .

With your experience from the previous problem, make use of the
binomial theorem this time.

7. Create user-defined functions for the following triangle truths:

a. Law of Cosines: a=+b*+c*—2bccosA

. 4 bsinA
b. Law of Sines: B=sin ‘(%)

c. Heron’s Formula: A=./s(s—a)(s—b)(s—c),whereAis

the triangle’s area, and s = %(a +b+c)

8. Usethe functions you created above to determine the remaining
sides, angles, and areas of triangle AABC in each of these cases:

a. ZA =40° b=6.1 cm c=32cm
b. a=6 b=17 c=10

Math Anxiety 217

218

Cool and Calculating

In STD display mode and RAD angle mode, build the expression:

)X ENTER 2 HDEJATAN)..... Result: .392699881699
Now convert this to a fraction of :
Result: '1-8*y’

FIX the display to 2 decimal places. Remember that you can get
multiple solutions only when you use or and are in
general solution mode—i.e. flag -1 is clear. So press
And, because you want numerical results for
symbolic constants only, set flag -2 and clear flag —3:

(2]#/-JsPclaJ s]oJ FIsPC)(3]+/=]a]C]a)F)(ENTER).

Next, because you must use [[Ei[Ml, you must set up the expres-

sion as an equation, x*=8 — 8i+/3 : (qJEQUATION@)X) X2 >)& l=1e)

e elaIEB)ENTER). Now (o)X)ALGERRA) HEIH....
Result: '®=EXP((B.80, 6.28)*n1-4)#(1.93, -0.52)"

This is the general solution. To find each particular solution, you
must give the variablenl the values0, 1,2, and 3 successively. So
make 3 copies of the general solution (ENTER]ENTER]ENTER)), then:

(o] JeJa N[ISTO)EVAL) Result: '%=(1.93,-8.52)"
(©@ VARG LTI EVAD) Result: '¥=(8.52,1.93)"

@@SIETEVAD Result: 'K=(-1.93,8.52)"
@ESETEEvAD) Result: 'K=(-8.52,-1.93)"

(4) FuncrioNs AND EXPRESSIONS

3. First, purge your VAR menu of potentially interfering names:
IO) e ALsPCTISPCIQIKIENTERJPURGE).
Next, create the growth formula: (G)EQUATION)(a]A&G]=)(@]A]0)=)
ek E0G[eJalK X (DRI DENTER).
Now solve the equation for T: (o] T)&JALGEBRAEIR
You want just the principal solution this time, so store 8 into nl
and (or, you can set flag -1 and use instead):

(O)VARI T EVAL[)LAST MENU)

Result: 'T=LN(1+A*k-AB)-k'

Now make copies of this expression (ENTER[ENTER)), and explore
theimpact of various growth rates: (2] 1] - J2) 8 JEEX] 9] JoJA] 0]STO]
(1] 5] 9) oJeex] 9] ' Ja]A]STO) defines the common variables. Then

a. (I IGIKED Result: 'T=55.88"
b. («- o 2vaR I Result: 'T=45.78"
c. (3G Result; 'T=39.78"

So, depending on the consumption growth rate, the world’s oil

will be used up somewhere between the years 2030 and 2045.

4. Begin the expression: (§JEQUATION) (=2X7]3)(>)
OBEOGOEACEN0E0E R0 0n0!
Now save yourself some work: Copy the cube root subexpression
to the Stack (<<« << IETM, move back to the Equation
Writer (I3, enter the (4], and copy the subexpression from
the Stack back into the expression ((JRCL)). Now send the ex-
pression to the editor, (9)EDIT), and replace the fourth + sign with
a - sign: (ap) M) ENTER)ENTER) Store the expression as
QUBE:

Cool and Calculating 219

220

Create the expression: (" JQJO 1 H e X[» Y (5)[ENTER). Now
expand it as far as it will go—()ALGEBRA), then press [FHLl 17

times—to get the following not-so-intuitive expression:

"1#(1=(1*(1%]1)))+]* *#(1#1)))+]7Ke(1%(1%
(1*(1*(2%1%(1-¥)))) (2*1*(178)))I+1/¥*(
+1#(1*(12(1-B*(1-K) 12(1%(1-K*(1-K))))+
I))+(1=(1*(1-Ke(1%] (1-K=(12(1-Kx(1%1))
IVI+1x(]%(1/8*e(P*] = Y+l Re(12(1/R*(Px]*
(178))))I+]%(1*(1 R (1/¥))))+1-K2(1%(1~
(178*=(1-8)I))))I+(1%(He(1s(2(1-¥)))))+(1
1/K=(1%(1%1)))+1*(] sRECL7Re(12(1%1)))+
sRE(1*#(Z22]12(1-K)))) 1/K2(1-8*(1=(2%]=(]
+]*(]/n*e(]12(] 82(1l” ZBIINI+LARE(1 K= (]*
B1IN+(1=(1/8=(1 R (1-78=C1-K)))I+(1K*
(1%1)))+1*(1/8*(1-¥ (1-K=(1-Kx(1%1)))+1
(1-%x(2*1%(1-¥))))+ Re(]/78*(]7Re(2%]%(
1218 (1-R=(1-8*(1 1-8))))+178*(1-82(]1
78131110+l 78*(1*(] {H*(I/H*(lfH)JJ))))

Now, just [i[E]it: ' 1+R"=-5+3%X*~4+1B0%K"-3+10K"-2+5-K'

(Use the Equation Writer, (v), to see it more clearly.)

The rth term in the expansion of (a +b)" is (il)a"""‘b"l

So create a function TERM(n, -y &, b) to calculate this formula:
Press (G)EQUATIONa] e T EJRIMIE]OJaINISPCIG]RISPCIa)A)
EN@BEO@EO M) FLiE | (IH: @ NENO@EE00
A AP aNEHISRHI)(JAIB) Y G R DENTER)

Now DEFine this as a UDF: (§)DEF)...and enter the arguments,
n,r,a,and b:
©@3(3)[ENTER)...and execute the function: VAR)LIFAEL. ...

Result: '165*a*3*(2%#b*3)*8' With some rearrangements

(eight IFEEs and a [iMH]), this becomes' 42248*a*3*b*c4'

(4) FuncTioNs AND EXPRESSIONS

7. a QEANCECEDWEUEEFIAOEIRED
@OEOEBACEOSERASA0EMBKE
&)(C)(cos)(eJA)ENTER) () DEF).

b. [(qJEcuATION o]] SINILIWIS]OJ&)BISPCIa)AlSPCIAlo[r)a)
(=Ja)AsN o] [BISIN(J A]>]+ aJea JAIENTERIG JDEF).

c. Fors: (gEquaTion] o) sIa]O))AISPOG)BISPCIa]cla)»)
Q= o efa A HG BIHG)CI @)Y 2JENTER[G)(OEF). Then
&JEauATIoN a]] HEIRIOINJSIOJAIATSPCIa [BISPCa]C) (@)
OEEEROEOO8EOFAENEBAENEEE0C)
COEEEEEEEE SO RS

8. a. SetFIX1andDEG modes. PURGER,B andC. Find side a:
L CH @88 CH
Result: 4.2_cm Find angle C: (3]-)J2)([=)LAST MENU)
KEEH >)(2)0) Result: 29.4 Angle B:
800EE00E08 Result: 118.6
Now use Heron’s area formula:
ECNEENGCC R EEERVARALEETE Result: 6.3_cm™?

b. Heron’s Formula: (6JsPC|7JsPc[1)0)IlHAM Result: 28.7
Then find angle (a), using the Law of Cosines:
C3LK Result: '{(149-148=C0SCAY)!
Now equate this with its known length (6):
Then set flag —1 (principal solution) and isolate A:
(@ s e FIEnTeR) (@A) AalGEBRAEIM Result: 'A=36.2'
Knowing A, use the Law of Sines to get B:

Result: 43.6
Then C is: Result: 188.2

Cool and Calculating 221

PLOTTING AND ANALYZING

(5) SoLviNng,

Equations, Data and Graphics

For bigger jobs, you need bigger tools. Indeed, your 48 workshop has
such “power tools,” and it’s time to learn how to use them.

You’re going tosee how to coordinate three powerful tools (SOLVE, PLOT,
and STAT) and three special supporting “environments” (Equation
Writer, Matrix Writer, and Graphics) to make short work of challeng-
ing real-world problems that, but a few years ago, couldn’t be handled
even by desktop computers.*

To begin, look at this schematic, which summarizes the multiple
relationships between these tools and environments:

Equation Writer Matrix Writer
Environment Environment

[GJSOVE (G)PLOT
PICT
Graphics
Environment

*Even today, computer software packages that give you the functionality of the 48 will set you back
hundreds of dollars.

Equations, Data and Graphics 223

On that schematic, notice the three reserved VARiable names that you

use to communicate between the three tools.

« EQ

« 2DAT

» PICT

224

You store the current equation in the VARiable ECl. The
SOLVE tool will solve only this equation, and the PLOT
tool will plot only this equation. However, the word
“equation” has a very flexible range of meanings here.
As you’ll see in this chapter, the SOLVE and PLOT tools
will allow EQ to contain:

¢ any real number, unit object, algebraic expression
or equation;

* any program that evaluates to a single real num-
ber or unit object;

* a list of algebraic expressions and/or valid pro-
grams.

You store the current data array in the VARiable 2DAT.
The tools in the STAT toolbox operate only on this array,
and the PLOT tool plots statistical data only from this
array. These tools require that ZDAT contain a real-
valued array with at least one element.

The current graphics display is stored in the variable
called PICT. The PLOT tool calculates coordinates for
functionsitgraphs, butthe actual graph—the PICTure—
isstored inPICT. PICT can contain only a graphic object.
Whenever you view the Graphics display, you are view-
ing the graphic object currently stored in PICT.

(5) SoLviNg, PLOTTING, AND ANALYZING

Notice that each of these reserved variablesis a different kind of object:

» EQ contains a procedure object (algebraic expressions, equa-
tions, and programs).

o ZDAT contains an array object.

o PICT contains a graphics object.

Notice also that EQl and ZDAT are appropriate inputs for the PLOT tool,
while PICT is only a final output. That is, EQ and ZDAT are the pro-
cedures and data from which the 48 calculates and outputs results.
And one form of output is created chiefly for your eyes—the graphics
display—stored in PICT. That form, similar to a paper print-out, is
generally meaningless to the machine as data thereafter.

Of course, other forms of outputs can then become appropriate inputs.
Besides building a graphics display in PICT, SOLVE, PLOT and STAT
also generate numerical results on the Stack, which readily become
the arguments for other functions.

That being the case, this chapter concentrates on the variables E(l and
ZDAT and their use with SOLVE, PLOT and STAT. Though you’ll cer-
tainly learn how touse PICT and the Graphics environment to help you
view your plots, you won’t study it in as much detail.

To learn more specifically how to manipulate, modify, and dissect
graphic objects (grobs), read Chapter 19 of your Owner’s Manual or—
better yet—read HP 48SX Graphics (by Ray Depew), a book entirely
dedicated to the topic (see the back of this book for more information).

Equations, Data and Graphics 225

Defining E[}, the Current Equation

Before you can use the SOLVE and PLOT tools, you must define the
VARiable EQl. There are two ways to store an equation into it:

* Create an equation from scratch and store it into EQ;

¢ Choose an existing equation from the Equation Catalog and
store it in EQ.

From Scratch:

Like So:

Create the following expression, named POLY, as
the current equation: x*+3x*> -7x* +4x-10

Use the Equation Writer:(&]EQUATION(e]X)YX)(4)(»>)
BHEEXYIEEDXY Y HEXE0)
[ENTER)

Tomakeit the current equation: (5)SOVEIRIHEN ...
You'll see: HMame the equation,
press ENTER

And the 48 goes into alpha mode (notice the an-
nunciator), so type the name:

Now you should see POLY listed as the current
equation in the message area at the top of your
display. And you can press to confirm that
POLY is now a named variable, too.

226

(5) SoLving, PLOTTING, AND ANALYZING

Question: What exactly is stored in EQl now?

Find Out: Remember that EQ is just a VARiable with a reserved
name; you can do anything to it that you normally do to
a VARiable. So press: (VARJQJPREV) o ITEM. ...
Result: 'POLY' The name of the equation—not the
equation itself—is what you stored into EQ..

Hmm... Do you have to name every equation you want to store
into EQ?

Not At All: For example, to create Ssin(2x—%) and store it, un-

named, into EQ, you would do this:

Create: (GJEQUATION)(SJSINJ(2]e]X) (]I 4)(ENTER)
Store: (SovEEIT Simple.

The ELITA (STore EQuation) command is just a shortcut
for (" JaJE)2JQ)(STO).

When would you store a name—instead of the equation itself—intoEQ?

Keep in mind that if you store an unnamed equation, it will be lost

forever when you next store something else into EQ. So if you want to

preserve your equation for future use, name it first and store the name
into EQ. On the other hand, use for quick, temporary equation-

solving—when you don’t want to use memory to name an equation that

you’ll never use again anyway.

Defining EQ, the Current Equation 227

The Equation Catalog

Of course, you might not need to create an equation for EQl; maybe it
exists already in your VARiable menu. And the easiest way to load an
existing equation into EQ is to use the Equation Catalog.

Acatalog is just a subset of your VARiable menu, displayed so you can
select an equation with a pointer like that of the Interactive Stack.

Watch: PressHiIll... You’ll soon see a list of all of the algebraic
expressions and equations in your VARiable menu. And a
pointer (P) should be pointing to POLY, like this:

PPOLY: 'K d4+3%K"3-7*K.,

Use (v) to move through the catalog. Look at the various
names and objects listed. They fall into three categories:

¢ Algebraic objects

* Directories—which can lead to more equations

¢ Other types of objects (lists, complex numbers, pro-
grams, vectors, arrays)—anything with a name ending
with . EQ.

Thatis,the 48 includes all algebraic objects and directories
in the Equation Catalog, plus any object whose name ends
with . EQ (you’ll read more about this suffix soon).

228 (5) SoLving, PLOTTING, AND ANALYZING

Next: Move the pointer to POLY, and look at the menu. You can do
several things once you're pointing to the equation:

ANHA You can store the selection into EQl and jump imme-
diately to the PLOTR menu to plot it.

You can store the selection into EQl and jump imme-
diately to the SOLVR menu, to solve for a variable or
calculate the value of an expression.

HEXH You can add the selection to a list, thus linking it with
other objects.

il You can edit the selection on the Command Line (and
(ENTER)returns you to the Catalog when you finish).

EEIA You can put a copy of the selection on Level 1 of the
Stack. Try it—press Kk

EEY You can temporarily view the entire expression by
holding down the [JII%l menu key. Try it.

Do This: PressEi[MId. This is the “business end” of the SOLVE
tool. Notice how the current equation is listed in the
message area at the top of the display.

Question: How do you get back to the Equation Catalog now?

Answer: You could either press or use a shortcut,
(2)ALGEBRA), to go to the Equation Catalog.

Defining EQ, the Current Equation 229

The SOLVRMenu

Press to return to the SOLVR menu from the Equation Catalog.
This menu is obviously different from other menus; it has “hollow”

menu labels.

The different appearance is the 48’s way to remind you that you're

looking at a special customized menu. The SOLVR menu is customized

for the particular object currently stored in EQ. Each time you change
what’s stored in EQ, the 48 changes the SOLVR menu.

Right now, POLY is stored in EQ. So the SOLVR menu contains just two
selections, %]and @I The (%]selection represents &, which
is POLY’s only variable (if there were other variables, they would

appear in this menu, too).

Use It: Find the value of the POLY expression forx=0, 1, 2, and 3.

Like So: Set FIX 3 display format: (3J¢q]moDES) IIZEM (=) LAST MENU)

Press (o) 3 1EEE.
Press () 2 1EEH
Press (2) 3 1E3EE.
Press (3) 2 1EER.

Result: EXPR:
Result: EXPR:
Result: EXPR:
Result: EXPR:

-18.6060
-9.6060
16. 666
181.660

[EdE calculates the value of the expression, given the
current values stored in all the variables. Notice that to

store a value into a SOLVR variable name, you simply key

in the value and press the appropriate hollow variable key.
This is different than the VAR menu.

230

(8) SoLviNg, PLOTTING, AND ANALYZING

Question:

Find Out:

Answer:

Of course, you can use one named algebraic in another.
How does the SOLVR menu handle this?

Create another expression TPOLY: 'A*(POLY-B)'

Press: (JeJAXIGIO)VAR) [T (5)()B)ENTER) 69 SOLVE)
CIEERTPOLMENTER).

Now look at the SOLVR menu for TPOLY. Since it’s the
current equation—as you can tell from the message

area—simply press ENIR....

The SOLVR menu now includes the variables directly
invoked in TPOLY ((CA_Jand [E_J), and those variables
invoked indirectly in TPOLY, via POLY (CZ_).

Thus, in the SOLVR menu, you’ll always have access to any variables

you need to solve an equation or expression, even if those variables are

referred to only through other named algebraics.

The SOLVR Menu

Now it’s time to practice solving equations....

231

Solving Equations with SOLVE

SOLVE allows you to solve an equation for one unknown variable as
long as all other variables have known real or unit values (SOLVE does
not find symbolic or complex solutions).....

To Wit: Use SOLVR to find a root of the POLY expression.

Easy: Make POLY the current equation ((JALGEBRA[¥)) and go to
the SOLVR menu (ENR.

Now press (@)% _1... Result: ¥ 1.713

Pressing{q)before ahollow variable key tells SOLVE to solve
forthat variable (since® wasPOLY’s only variable, you didn’t
need to store any other knowns first).

Something should be bothering you about now: How can an expression,
like POLY, be “solved” when it’s not equated to anything?

Good point. The answer is that SOLVE equates the expression to zero
to solve for the variable you request (just like ISOL and QUAD).

Notice the message in the display—Z &l"0—indicating that the 48 has
indeed found a zero (aroot) of thePOLY expression. You can confirm this

now, simply by evaluating the expression itself—press [FdH....
Result: EXPR: B.68608

232 (5) SoLviNe, PLOTTING, AND ANALYZING

However, POLY is a polynomial of the fourth degree and thus has at
least one more real root. To find thisother root, you mustguide SOLVE
as it looks for solutions.

Do This: First watch SOLVE as it searches for the root you just
found: Press @m to begin the search, then quickly
press ()[_&_JENTER) and watch the message area.

Those numbers are the intermediate guesses that SOLVE
is using to home in on a solution. You control its search
pattern by telling it where to begin its guessing:

Like So: Store 18 into ® (1[0)*/5[&_)), so that the 48 will start
its searching at —10. Now solve for x (E]IE).
Result: B -4.746.

Ah—a newroot ...orisit? Look at the message area. What'saS1ian
Reversal —and what does it mean?

A sign reversal occurs when a change in the value of the unknown
variable causes the value of the expression to change signs (i.e. cross
the x-axis, like a root) without exactly equalling zero. This can mean
either that:

¢ you've found a discontinuity in your expression (an asymptote or
stair-step, or something); or,

¢ you really have found a root, but the round-off accuracy of the
calculator (and the SOLVE algorithm) couldn’t find the value of
the variable that made the value of the expression exactly zero.

Solving Equations with SOLVE 233

OK: To quickly determine iftheSian Reversal message means
that you’ve encountered a discontinuity or a root, simply press

EE... Result: EXPR: -4.006E-10

In other words, at the value of x where your 48 found a sign
reversal, the value of POLY is —0.0000000004—so close to zero
that, in all likelihood, =4. 746 is actually a root of POLY and
not a discontinuity.

So, you've found two real roots of POLY. Are there any more?

Check: Enter other guesses for x (try -50, -3, 0.5, 10, 100), solving
each time for x. As soon as you see Solving for X,
press ([ENTER)to watch the search....

Result: All your guesses except x=0.5 give you one of the two roots
you already know. But your guess of x = 0.5 locates an
Extremum at x =0.421.

So apparently you have a local maximum there—and the
other two roots are complex.

234 (8) SoLving, PLOTTING, AND ANALYZING

Solving Equations Involving Units

The SOLVE tool can solve for a variable and its required units, as long
as two conditions are true:

¢ The units for all variables are dimensionally consistent.

¢ You must give atleast one guess for the unknown variable—with
the desired unit attached. However, after you’ve included the
unit once in a guess, you can alter the guess simply by entering
the numerical part. This is a time-saving feature, but remember
that a variable will keep its value until you PURGE it. So if you
need to use a variable name first for a value with units, then later
for a value without units, you'll need to PURGE the first value,
so that it’s units aren’t implicitly kept for the second one.

Try some examples....

Solving Equations Involving Units 235

Example:

Solution:

Create an expression, named IGRS, for the Ideal Gas
Law: PV = nRT, where P is the gas pressure; V is its
volume;nis the number of moles of gas; R isthe ideal gas
constant; and 7' is the absolute temperature of the gas.

Given that 10.0 moles of an ideal gas fill an 8.2-liter jar
at 273 K and 27.33 atm, use IGAS to find R in mmHggal
~molK

(YeJv)a)PuRGEIGJEQUATION] P X)V (e INX2IR)
NEl [BOOB]ENE)] 0Lk

Next, store the known values and their units:

EIEERREEEEATMENTER L E
00 8= 8 6 (8 ENE) i
B0[=BOOENEEEE EE)] W
AR IRETERLI]

Now supply an opening guess forR—to establish its units:

OEEEMEMMAHEXEALEMILHGIK)
e=RCE]

Now solve forR: (@& _1....
Result: R 16.481_mmHg*gal ~(mol #K)

Press[@dE o investigate the Sian Rewversal....
Result: EXPR: -1.118E-7_mmHg*gal

That difference is negligible, so the answer is indeed a

true solution; R is about 16.481%’%3.

236

(5) SoLviNG, PLOTTING, AND ANALYZING

Now: What pressure (in mmHg) will result if you heat a closed 5-
gallon jar, containing 20 moles of chlorine gas, to 600°F?

Hmm: Just key in your knowns: (800} unTsNxT) LITE A IEE
&M (you must use an absolute temperature in the
formula)(=3)SovE)[T_] (a shortcut to the SOLVR menu);
BRE0OEEEE0E B[ENE]| Nm:

(2Jo)[CH_] (no need to include the unit here, because the
correct one, _mol, is already stored in [M_] from before).

Now keyin a guess for the pressure, to establish the desired
units: (IR JGMEMHEGIGENTER)E]

Then solve for the pressure: (G)[E_]....

Result: P: 38818.517_mmHg

One More: What pressure of chlorine gas will result if you release
it—under the conditions of the previous example—into
a sealed, evacuated room of dimensions 4m X 6m X 5m?

Simple: This time, the volume unit is the one to change:

EERTEREXEX) EonTs) I RN -)sove) 2.
Now solve for P: (o _B_]... Result:P: 6.121_mmHg

Solving Equations Involving Units 237

Solving Equations Using PLOT

Now that you have an idea about how SOLVE works, you'll appreciate

how PLOT can make solving equations even easier. For one thing, you

can find roots of equations from within PLOT itself....

Watch: Go to the Equation Catalog (remember that the shortcut is
(@)aLceBRA). Select POLY and press @M You'll see this:
Plot t¥§ FUNCTION
POLY: “4+3ERTI-TER
Indep:
L -6 . oHA 6. 08H
y: -3. 166 3. 260
[ERASE|DRAL| AUTDO [HENG]| YEMIG [IMDEP |
This display shows:
* the type of plot it’s ready to draw (FUMCT IO is the
usual plot type for equation-solving);
¢ the name of the current equation and as much of the
actual object as possible;
¢ the name of the independent variable—which will be
plotted along the horizontal axis (x-axis);
¢ the display ranges for the horizontal (x) and vertical
(y) axes of the plot (the ranges you see here are the
default ranges with a scale of 10 pixels per unit).
238 (5) SorviNg, PLOTTING, AND ANALYZING

Go Ahead: PlotPOLY using the default ranges: press ORAKE

Result: After a few moments, you’'ll see this
200 [2-E0H] CENT [C00RD[LAEEL

You can recognize the axes by the little hatchmarks, but
it’s a strange-looking plot—because you’re not seeing
the whole picture.

Zoom: To adjust your view, press Eﬂﬂﬂ to see your zooming options.
The vertical axis needs the adjustment, so press
(ENTER)to increase the vertical scale by a factor of 10.... After
afew seconds, the revised plot appears. It shows more, but you
still can’t see all of the relevant area.

Zoom out again, say, by a factor of 5: [HIZ] (5)ENTER)....

Now you can see it all. You’ve increased the scale of the y-axis
by afactor of 50; every vertical hatch mark represents 50 units.

And now that you can see the whole graph, take a moment to explore
some of the tools available to you....

Solving Equations Using PLOT 239

First:

Next:

Then:

Now:

Fifth:

Label your axes: press [Mil438. The numbers represent the
values of the very edges of the display.

Find your cursor. Press(a]a]a]a)»]»]»]»)and find the small

set of crosshairs just above and to the right of the origin of
the axes. This is your cursor.

Find the coordinates of your current cursor position: press
[@iLIA] You'll see a small ordered pairin the lowerleft-hand
corner of the plot.

Move the cursor around, using the arrow keys. Watch how
the coordinates change as you move. Try pressing (=)¥) or

), et

Cancel the coordinates display and returntothe GRAPHICS
menu by pressing any menu key.

)
A g [T

://///,/z// A

ey
L,// :

T B y 4”//
v s _— & ~
iz, /%//////,»%

Now you’re ready to solve for the roots of POLY, using its graph.

240

(5) SoLvine, PLOTTING, AND ANALYZING

Earlier, recall, you used a lot of trial-and-error guessing in SOLVE to

discover that POLY has only two real roots. Now, one effortless glance
at its graph tells you the same thing; it crosses the x-axis only twice.

So:

OK:

Find the negative root of POLY using the graph.

Use the arrow keys to move the cursor over to the vicinity of
the left-most intersection of the graph and the x-axis (i.e. near
the negative root). Then press IZNfBIEATEN. This essentially
calls upon the SOLVE root-finder, using the x-coordinate of your
cursor position as its “guess” or starting point.

Thus, using a PLOT graph allows you to visually guide the
SOLVER, thus eliminating your blind guessing.

Result: ROOT: -4.746 (lower-left corner of the display).
The cursor is now sitting at the root. And this has also been
copied to Level 1 of the Stack.

Then:

Easy:

Find the other root.

Press a menu key to get the menu back. Then move the cursor
over to the vicinity of the positive root and press [[ililll again.
Result: ROOT: 1.713 (no surprise)

Now return now to the Stack (ATTNJ(ATTN)) to see what you’ve
wrought.... Sure enough, the two roots have found their way
to the Stack.

Solving Equations with PLOT 241

Recall that you plotted POLY back on page 239 by using [I{iI%], the
main plotting command, which uses the currently established x- and
y-ranges listed in the PLOT display. That’s the most flexible approach.

But there’s another way—a “quick-and-dirty” shortcut, called [EITHITE
It uses only the x-range specified in the PLOT display and then auto-
matically scales the y-range so that the entire graph will fit into the
display.

Try It: Press [EITH....

Result:

200 [2-ED:] CENT [CDORDLAEEL] FIN |

Given the current x-range, is a mixed blessing: The Good News
is that the entire graph fits into the display with just one keystroke.
The Bad News is that the resulting graph is scaled so that it’s hard to
tell how many roots there are without further investigation.

242 (5) SoLviNe, PLOTTING, AND ANALYZING

Just as before, you can improve things by zooming the y-axis until it

looks approximately as it did before. But here’s a chance to try another,

more precise kind of zooming.

Blow It Up:

Here’s How:

Mark off a box on your graph and then zoom in on that
box only—filling your display with it.

Move the cursor anywhere to the left of the negative
root and press HEA. A cross will appear at the
cursor. Next, press(J»)to move the cursor (the cross
stays put) to the right of the right-hand root. Then
press(v)until the cursoris nearly sitting on the menu.

You have a box marked out for zooming. The upper-
left corner is determined by the cross; the lower-right
corner by the cursor’s current position. Press HEIH
to fill the display with the contents of the marked-off
box. Now you can better distinguish what's going on
in this crucial region of the graph.

Solving Equations with PLOT 243

Again:

Investigate the “flat” region: Move the cursorjust to theleft
of that area and press BEAl]. Then use (») until the cursor
is just to the right of the flat region and press (G EHEIH....

Result: Theplot'sy-rangeisauto-scaled tofit withinthe the x-range
youjust selected. Butstill the plotisratherflat. Repeatthe
zooming process until your plot looks something like this:

[2-E05[CENT [COORD[LREEL] FCN |

Challenge: Find the coordinates of those two local extrema.

Solution: Position the cursor on the maximum point and press

IEXNEEEA ... Result: EXTRM: €0.421.-9.301)
(These are simply coordinates in the plot, not realand
imaginary portions of a complex number.) Now

position the cursor over the minimum point and press
EIA.... Result: EXTRM: (0.70Y4.-9.361)

You can see how useful plotting a function can be: How many guesses

would you have needed to isolate these extrema using only SOLVE?

244

(5) SorvinG, PLOTTING, AND ANALYZING

Solving Two Expressions Simultaneously

Up to now, you’ve been using only expressions in SOLVE and PLOT. An

equation is treated by these tools as two expressions—the left side and

right side expressions—that are equal to each other.

Example:

Solution:

Create the following equation, name it EQUAT and make
it the current equation Ef): 4(logx) =5x2-3
Then use the SOLVE tool to solve for x.

Press to exit the Graphics environment.

Then (GJEQUATION(4)(P]Lo6)(@IX))]=)E) XY (2)>)
(5I3)ENTER) creates the equation. (§)SOVE)IGIATN(E) QL)
names the equation and stores it in EQ.

Now press BRG] to solve for x.
Result: Xt B.684 Sign Reversal

Press [to find out if this is a root or not.
Result: LEFT: -B.659
RIGHT: -8.659

Because EQ contains an equation (i.e. fwo expressions),
SOLVE attempts to find a value of the missing variable
(x here) that equates both. Obviously, it was successful
here—the Sign Reversal is indeed a root.

Solving Two Expressions Simultaneously 245

At this point, you could continue using the SOLVE tool to hunt for the
other root. But, since you just learned how much more efficient it is to
use PLOT for that kind of work, switch to the PLOTR display.

Do This: Press(2)PLOT)tojump directly to the PLOTR display. Then,
because the current ranges may not be appropriate for
EQUAT, reset the default ranges by pressing KESET

Now press (NXTINXT)IEITHIN, and see a graph like this:

-

It’s a little indistinct in the critical area where the two
curves meet, so use to enlarge that area....

Now you should be able to see distinctly that the curves
meet in two places, and that they cross the x-axis a total of
three times.

246 (5) SoLvine, PLOTTING, AND ANALYZING

So: Find the two points where the individual curves intersect.

Easy: Position the cursor over the right-most point of intersection
and press IECNIETAL ... Result: I-5ECT: (0.68Y.-0.659)

The first coordinate is the “solution” value of the variable. The
second coordinate is the value of each expression at that point
(compare with your SOLVE results).

Find the second solution similarly. Move the cursor over tothe
other intersection point and press [E3d1 ...
Result: I-3ECT: (0.199.-2.801)

Question: What will happen if you ask PLOT to find the roots
instead of the intersections of the two expressions?

Answer: Try it—press any menu key to get the menu back, then
[[{'iN ... Result: ROOT: 0.775

Notice that the cursor is sitting where the parabola
intersects the positive x-axis. Whenever two expres-
sions are plotted simultaneously, [illillignores the left-
hand expression and finds the nearest root of the right-
hand expression. Thus, if you move the cursor closer to
the negative root of the parabola here, will find it.
Butitwon’t ever find the root of the logarithmic function.

All the functions in this menu except [E]3%ll behave this
way—working only on the right-hand expression.

Solving Two Expressions Simultaneously 247

Solving Programs and User-Defined Functions

At the beginning of the chapter, you learned that the current equation
can be an algebraic object, a “proper” program, or a list combining
algebraic objects and “proper” programs. You’ve seen how SOLVE and
PLOT handle algebraic objects. Now it’s time to see how they handle
“proper” programs.

Question: What makes a program “proper” for SOLVE and PLOT?
Answer: To be acceptable, a program must do two things:

¢ Itmusttake nothing offthe Stack; it must use only
named objects.

¢ Itmustreturnexactly oneresulttothe Stack. That
is, it must act as a mathematical function f(x) =y,
where the f(x) part is the program and y is the
singular result (usually a real number or a unit
object) that it returns.

In short, SOLVE treats a program just like an expression. That is, it
lists all its variables in the SOLVR menu and attempts to find a value
for the requested variable such that the program returns a result of 8.

248 (5) SoLviNG, PLOTTING, AND ANALYZING

Question:

Answer:

Example:

Solution:

Why would you ever want to solve a program, anyway?

Some mathematical expressions don’t lend themselves
easily to a readable algebraic form. You might prefer to
build them instead in the form of a program.*

Create a program, PFUNC, that performs this function:

x*>+10 for x < -3
x*-10 for x> -3

f(x)={

&
IF '®¥<-3'
THEN 'R~Z+18'
ELSE 'X~2-1@'
END
»
Key in the program:
@)ELE)E @ IX@)= 1) o oo END] [ENTER)

Now name the program as a solvable program:
EEIXEFFIUNC).... Notice the . EQ suffix that the 48
appends to this name—so that PFUNC will be listed in the
Equation Catalog. Now press (ENTER).

*You've already seen some rudimentary, “straight-ahead” programs in chapter 3, and you'll get a

lot more practice in chapter 6. Sodon’t worry too much if these particular programming commands

are yet unfamiliar to you—just follow the general idea being illustrated. You’ll also see in chapter
6 that you could build an algebraic expression for this example, too—if you prefer that form after

all. It’s nice to have options.

Solving Programs and User-Defined Functions 249

Now:

OK:

Plot PFUNC and find any roots it may have.

Press NxTINXT)IBTELA. ... Two roots?
Put the cursor over the left-hand “root,” IZTEETH....
Result: ROOT: -3.000

At the other “root,” press [II'Ll.... Result: ROOT: 3.152

The only problem is that this plot deceives you. A “true” graph of the

function would show adiscontinuity at x=-3, instead of connected points.

You can tell the 48 to show this discontinuity by changing a mode.

Do It:

Then:

Exit the Graphics environment (ATTNJ(ATTN). Then, at the

MODES menu (&9]MODES)(NXT)), press to deselect the
CoNneCT-the-dots mode (it should become [HIIHD.

Now return to the PLOTR (=JpLoT), HTEILTTIRL. .. better!

Investigate the negative root by enlarging that region of the
graph with B.... It appears that =3.000 is not a root at
all—the actual plot doesn’t intersect the x-axis.

To check this, find the value of the function there: press m:l
to move the cursor to the alleged root, then
to evaluate the function at that point....

Result: F(¥): 19.028

No, the function value is a long way from zero at x = -3. The
sign change is not a rounding error at a root—it is indeed a
discontinuity.

250

(5) SoLviNG, PLOTTING, AND ANALYZING

Properly constructed programs solve and plot so well that it seems as
if user-defined functions (UDF’s) ought to be useful, too. As you know,
they’re not valid when invoked with Stack arguments; taking values
off of the Stack is a no-no for “solvability.”

But you can always invoke a UDF in its algebraic form—as part of any
ordinary solvable expression or equation.

Examples: 'COSLAWCD, c, AY!
or 'a=COSLAWCb, c, A)!
or '5*x*Z2=COSLAWCb, c, AY!

These are all just ordinary expressions and equations
that happen to use a UDF—just as if it were a built-in
function.

And these are all solvable, too—provided that they each
have only one undefined name (at most). Keep in mind
that those names refer to VARiables.

Solving Programs and User-Defined Functions 251

Multiple Equations with SOLVE and PLOT

Now you know how the SOLVE and PLOT tools manage one expression
or one equation (two expressions) at a time. But to some degree, they
can also handle more than one equation at a time.

¢ SOLVE can solve a series of linked equations, one at a time, to
save you a lot of time and button-pushing.

(Note: This is not the same as solving multiple equations si-
multaneously—such as a system of two equations in two un-
knowns; SOLVE cannot do that. For that you must use matri-
ces—a topic covered later in this chapter.)

e PLOT can display plots of multiple equations simultaneously,
provided that they all use the same independent variable. Similar
to SOLVE, PLOT’s analytical functions will work on the displayed
equations one equation at a time.

(Note: PLOT cannot find points of intersection between these
different equations—a limitation analogous to the simultaneous
solutions limitations on SOLVE).

So the main idea with multiple equations in SOLVE and PLOT is that
you “load” them all at once for comparison and convenience; for the
most part, you still analyze them one at a time.

252 (5) SoLving, PLOTTING, AND ANALYZING

To use multiple equations with SOLVE and PLOT, you name them and
link them together in a list....

Example: Link PFUNC.EQ and EQUAT together in a list and store
that listinEQ. Then, since both equationsuse 'K' asthe
independent variable, plot them on the same graph.

Solution: Of course, you could build a list from scratch and then
store it into EQl. But there’s an easier way—with the
Equation Catalog.

Press (ATTNJATTN[JALGEBRA) to view the Equation Cata-
log. With the pointer at PFUNC . EQ, press IEZN.... A
list will form in the message area: £ PFUHC.EQ

Next, select EQUAT and press IHEEM to add it to the list
(the message area will confirm the addition). Press
to store the list into EQ. Then press (Nx7) 31
IEI'LL N to plot the two equations at once.

Notice that the first equation in the list—PFUMNC. EQ—is drawn first.
That first position is the privileged spot: Only the first equation is
available for functional analysis (finding roots, slopes, points of inter-
section, etc.).

Multiple Equations with SOLVE and PLOT 253

Question: Suppose you don’t know which function needs further
analysis untilafter you plot them. Can you choose which
function is “active” (i.e. first in the list) without redoing
the entire list-making procedure?

Answer: No problem—press IETHNxT) CEER

This rotates your list of equations so that EQUAT is now
first and PFUNC.EQ is now second. Notice that the
currently “active” equation is listed at the bottom of the
graph so that you’re in no doubt.

And you also confirm that you've rotated the list is to

press (ATTN and then evaluate EQ: (o]E]o]QJENTER).
Result: { EQUAT PFUNC.EQ 3}

Sometimes you’ll want to save a specially constructed list of equations
forlater or repeated use. But keepin mind that merely forming the list
with [[3¥58 does not name it. You must do that yourself—just as when
you need to save any other object.

So: Name this list of equations TH0, so that you can use it later.

OK: Since the list is already sitting at Level 1 of the Stack, you
don’t need to recall it. Just press&JPLOT)IIIEM(TIW)O)ENTER).

254 (5) Sorving, PLOTTING, AND ANALYZING

It certainly makes sense to plot a list of linked equations when they all

share a common independent variable. But it makes more sense to

solve a list of linked equations when they share one or more variables

and are meaningfully related.

Example:

Solution:

There are two simple relationships which are often used
in connection with the Ideal Gas Law:

D= v where D is density; m is mass; V is volume.
m . .
n= 7 where 7 is the number of moles; m is mass;

Z is molar mass.

Make an equation for each of these, naming them DENS
and MOLE, respectively. Then combine them into a list
along with IGAS and enter the SOLVR.

Create DENS: (epla - alaM=EET)
LE 0N E)ENTER)

Create IOLE: (alaNEQEIGMEZ
L MOLEETER.

Createthelist: [[fflllshows the Equation Catalog;
) IEEXMputs MOLE and DENS into the list. Then use the
(Wkey tofind IGAS and press IHEXA. Finally, press ENRI3.

MOLE is the first equation in the list, so it becomes the
“active” equation in the SOLVR (as indicated in the mes-
sage area). But now press REI3®....The active equation
changes to DENS; and EB[I®] again activates IGAS, etc.

Multiple Equations with SOLVE and PLOT 255

Linking these equations in a list makes it very convenient to solve

problems of the following kind:

Problem:

Solution:

An ideal gas has a molar mass of 95 grams. What is its
density at 25°C and 800 mmHg, in g/m3?

Assume fora moment that you have 10.0 moles, and then
use IGAS to calculate the volume:
AREORE0E LIEASE|

], (R I @00 CE 100 eaMedE)
ENeR ¥] &% 1... Result: 8.233_m"3

Now change the active equation to MOLE: (nx7) ZEEH.
Then load the variable Z, indicating the mass units you

desire (grams), and calculate the mass of the gas:

PO EEEMOU ETER 2]

) eJale)ener) LM ()M]
Result: m¢ 956.606_g

Finally, switch to DENS and calculate the density (after
specifyingits units): EEHEHO D @Ec= eI
G)Ev=[] &2] Result: D= 4885.774_g/m*3
What could be simpler?

256

(8) SoLviNG, PLOTTING, AND ANALYZING

Problem: Whatisthe molar massofanideal gasif0.52 gofthe gas
occupies 610 mL at 385 mmHg and 318 K?

Solution: Press[ETFIE®Ato switch the active equation back to I GAS.
Then load the new values into the variables:

EEECE]
E R aMeaDETE L]
EEECI]

Solve for n: (@) H_] (result: n: B.81Z_mol)
Now switch to MOLE, enter the mass, and solve for Z:

xDEETAC G R M 1) Z]
Result: £ 43.928_g-mol

Multiple Equations with SOLVE and PLOT 257

Solving Systems of Equations

Although its SOLVE and PLOT tools are limited to analyzing just one
equation at a time, the 48 can indeed solve systems of equations—with
matrices. Sothenexttooltolearn aboutisthe Matrix Writer, a special
matrix entry and editing environment.

Challenge: In STD display mode, solve this system of equations,
using matrices created in the Matrix Writer:
4x-3y+2z=40

Sx+9y-T7z=47
9x+8y—-32z=97

Solution: First, convert the system to a matrix equation, AX = B:

4 -3 2 X 40

A={5 9 -7| X=|y]| B=|47

9 8 -3 z 97
Coefficients Variables Constants

Next, create matrices A and B with the Matrix Writer.

Press (©]MATRIX) and see this:

0-0

| EDIT | VEC] €110 | WD

258 (5) SoLviNG, PLOTTING, AND ANALYZING

To enter matrix A: (4)[ENTER[3]+/-JENTER]2)ENTER)(Y)
(5 JENTER] 9 JENTER| 7] +/-JENTER)
(o JENTER|8JENTER] 3] +/-JENTER)

Notice the little counter at the upper left that tells you

the dimensions of the current matrix. It nowreads3-3,
indicating that A is a 3x3 matrix.

Now name and store matrix A: [ENTER

Enter and name matrix B: (]MATRIX)(4)0)ENTER)(Y)
(4)7)ENTER] 9] 7 JENTER)[ENTER)
(IeB)ETo)

Finally, divide matrix B by matrix A to get matrix X:

] E | 6 (&) Result: [[18 1]
[2.00800B00684]
[3.00800800086 11

Thus x=10; y=2; z=3 is the solution (you can ignore the

rounding error*).

Thus, solving a system of linear equations is as simple as solving the
matrix equation, AX = B for X: X = B/A.

*The Owner’s Manual (pp. 361-362) explains that you can improve the accuracy of the divide (/)
function for matrices with the following short program (call it MDIV):

«>BA<«BA-/BA3PICKRSDA 7+ »»

To use MDIV instead of the regular divide in the last example, be sure that matrix B is on Level 2
and Ais on Level 1 (just like the regular divide), then press [RIJlll from your (VAR) menu. The result
will not show the rounding error; its calculation is a bit more precise. This fine-tuning may or may
not be important to you.

Solving Systems of Equations 259

Another:

Solution:

260

Solve the following system of linear equations:

4x-3y+2z-2r+9:=40
Sx+9y-Tz+3t=47
Ix+8y-3z-Tr+t=97
—4x+5y+z-2r+3t=68
x+y+z-3r-7t=23

Notice that the necessary matrices here are expansions
of those in the previous examples. So, save some work—
recall matrix A to the Matrix Writer: (a]A)ENTER)(Y)...
See? (¥)copies an array to the Matrix Writer—just as it
copies an algebraic to the Equation Writer.

Now you canexpand this 3x3 matrix by adding two rows
and two columns, so that it will look like this:

4 -3 2 -2 9
S 9 -1 0 3
9 8 3 -7 1
-4 5 1 2 3

1 11 3 -7

To add a column 4, move the cursor over toit: (»»]»). Now

(2J#/5) ENTER)....(notice that the remainder of the new

column fills with zeroes).

Now fill in the other values in that column: Element 2-
4 should be a zero—no need to edit it. So move the cursor

to element 3-4 (W]=>]»)) and

(8) SoLviNG, PLOTTING, AND ANALYZING

Next, fill in the values in the two additional rows:
(4]+/=[ENTER) 5 JENTER] 1 [ENTER] 2)*/=)(ENTER)
(A1JENTER] 1 JENTER) 1 JENTER) 3] +/=ENTER)

To add the fifth column, first move the cursor to element

1-5: Ja)=»)»). Then press to tell the cursor

to move down (i.e. proceed column-wise) whenever you

press (ENTER).

Now it’s much easier to enter the values in the column:

(9)ENTER] 3JENTER 1 ENTER| 3 JENTER| 7 +/=JENTER) (and [T EX

to return to left-to-right—“row-major”—entry mode).

Inspect your work and then [ENTER)it onto the Stack.

Next, modify matrix B:
(@B)ENTER) (W) (W) (6)(8) ENTER) (2] 3 JENTERIENTER)

Finally, solve for matrix X: (»)(=)

Result: [[50.8814298158 1
[65.3897122915 1
[111.993825281 1
[77.7262423693 1
[-3.98779424573 11

Thus, the solution set is (to two decimal places):

x=150.88,y=65.39,z=111.99, r =77.73, and ¢t = -3.99

Solving Systems of Equations 261

Analyzing Data: The STAT Tool

Equations are solved; data is analyzed. There’s a decent analogy be-
tween the SOLVE tool and the STAT tool:

¢ The SOLVE tool works with the current equation (stored in the
reserved name, EQ}) that you've created either in the Equation
Writer or on the Command Line.

* The STAT tool works with the current data array (stored in the
reserved name, Z20AT) that you've created either with the Matrix
Writer or on the Command Line.

And the PLOT tool can help you visualize both kinds of information. It
can draw five kinds of plots of EQl and three kinds of plots of ZDAT.

So the task now is to learn to use Z0AT to analyze some data.

Take a look at the World Survey table on the opposite page. It’s full of
interesting facts. Your exercises over the next few pages will be to
analyze the data to find out what, if anything, is significant and/or
related about these facts. That is, you will be analyzing what the data

might mean.

After you've studied the numbers a bit, turn the page and have at it....

262 (8) SoLviNe, PLOTTING, AND ANALYZING

The World Survey
Pop. % of Per-Cap.
Density GNP Energy
(per sq. | spenton | Literacy Use (kg Per Capita
Country mile) Educ. Rate coal equiv.) GNP

Australia 6 6.4% 99% 6700 $ 12,190
Bangladesh 2063 2.1% 29% 62 $ 150
Canada 7 7.7% 99% 9694 $ 15,910
Chile 44 4.5% 96% 921 $ 1,300
China 298 2.3% 76.5% 706 $ 280
Ethiopia 105 3.9% 35% 19 $ 110
India 658 3.6% 36% 272 $ 250
Italy 495 4.7% 93% 3211 $ 12,955
Japan 857 5.1% 99% 3625 $ 21,820
Mexico 114 2.1% 88% 1604 $ 17,253
Morocco 149 7.9% 28% 323 $ 510
Netherlands 1031 6.9% 95% 7200 $ 9,140
Nigeria 323 1.8% 30% 171 $ 520
Phillipines 560 1.7% 88% 246 $ 540
Portugal 293 4.4% 80% 1318 $ 3,393
South Korea 133 4.5% 95% 1625 $ 2,800
USSR 33 7.0% 99% 6389 $ 8,735
US 69 6.7% 96% 9489 $ 16,444
W. Germany 640 4.6% 99% 5672 $ 14,890
Yugoslavia 240 3.8% 90% 2440 $ 6,220
Zimbabwe 67 7.9% 77% not avail. $ 540

Analyzing Data

: The STAT Tool

263

Creating the Data Matrix

First you need to enter the data into a matrix....

Do It: Atthe Stack, press to enter the Matrix Writer with
anew matrix. Then select i, to enter the data by column.
Also, press to decrease the number of columns
displayed, allowing each column more room so that you can
check your data (you can always rearrange the display later,
once you've finished the entry process).

Now enter the first column’s data—Population Density:
(6 JENTER)(2) o) 6] 3]ENTER)(7JENTER) (4] 4JENTER)(2) 9] 8 JENTER)
(1XoXsJENTER) (6)5) eJENTER) (4] 8 Y S JENTER) (8 J S] 7JENTER)
(X 4)enTer) (T 4X S JENTER) (10 31 JENTER) (3] 2] 3 JENTER)
Gl o ENT=R) 29 BENTER) (3 B IENTER) B) 3)ENTER)

(6] 9)JENTER)(6) 4 0 JENTER) (2] 4) 0 JENTER)(6] 7JENTER)

Next, use the () key to go back to the first row and move to the
second column (% of GNP spent on Education). Enter this

second column of data similarly, but when you finish, simply
press to move to the top of the next column.*

Fill in the other columns likewise (skip the missing entry for
Zimbabwe: (»]>)a)). Then press(ENTER)to place thisdata matrix
onto the Stack, and name the new matrix WORLD and make it

the current data matrix: EEHEEWORLD)ENTER).

*You couldn’t do this from the first column because the Matrix Writer would have taken the
to mean “continue down the column.” But now it knows the column length.

264 (5) SoLvine, PLOTTING, AND ANALYZING

At the top of the display, you should now see these two lines:

WORLDC212=L &7 V.9 77
WORLD(222=

These tell you the name of the current matrix (WORLD), the number and

contents of the last row (row 21), and the blank line indicating where

the next data to be entered should go.

Try This:

Solution:

Without using the Matrix Writer, add the following data
for Venezuela to the matrix:

Population density: 54 people per square mile
Percentage of GNP spent on education: 6.8%

Literacy rate: 88.4%

Per-capita energy consumption: 3,380kg. coal equivalent
Per-capita GNP: $3,030

Press(s]4Jspc)(e] - J&)sPc)(8] 8] - J4)spc)(3) 3] 8] oJsPC)
8paeu =+ |

The [lEE3M command lets you add an entire row to the
bottom of your current data matrix. Similarly I
will delete the last row (but don’t do this now).

And you can press[Edi#to confirm that there are now
22 rows in your matrix (see the 82 -5 at the upper left?).

Creating the Data Matrix 265

Another:

Solution:

Then:

In the original data table (page 263), Zimbabwe was
missing a value for its per-capita energy consumption.
Further research has discovered that it’s about 329 kg.
coal equivalent. Edit the data matrix to insert this
missing information.

While looking at the Matrix Writer view of WORLD, use
the arrow keys to move the cursor to element21-% (row
21, column 4)—the location of the missing value. Notice
thatthe Matrix Writer has put a zero there; it can’t allow
blank spaces in a matrix.

Now key in the proper value:

PressENTER) i1l to display the Data Catalog, which
is very analogous to the Equation Catalog. It’s a list of
all matrices in the current directory, plus any other
accessible directory. You should see WORLD at the top of
this list.

Once you select a matrix from the Catalog, you'll usually want to

perform statistical tests on it or plot it. So your next task is to explore
the WORLD data with the 48’s built-in statistical tools.

266

(8) SoLviNG, PLOTTING, AND ANALYZING

The STAT Menu

The STAT Menu has five pages in all, divided logically:

e PageOne: Entering and editing data matrices.

¢ Page Two: Single-variable statistical calculations.

e Page Three: Plotting statistical data (two-variable).

* Page Four: Two-variable comparative statistical calculations.

¢ Page Five: Summary statistics—the building blocks for other
“customized” statistical tests.

Of course, normally when you press (]STAT), you go to Page One—and
youuse or(G)PREV)to switch to other pages—just as with any other
multi-page menu in the 48.

But from the Data Catalog (where you should be now), you have some
options:

o BT selects the pointed-to matrix as the current data matrix
and sends you directly to Page Two, so that you can do single-
variable statistics.

e RdNhAl selects the pointed-to matrix and sends you directly to
Page Three, so that you can plot the data.

o BB selects the pointed-to matrix as the current data matrix

and sends you directly to Page Four, to do two-variable regres-
sion and covariance analysis.

The STAT Menu 267

Single-Variable Statistics

With WORLD selected in your Data Catalog, press BEIA to take you to
the single-variable statistics (from some other menu, pressing (=)STAT)
will also take you directly to the single-variable statistics).

Challenge: Calculate the average and standard deviation of each
variable in WORLD (say, to two decimal places: FIX 2).

Solution: Press [B[EIE]. You'll get a vector (1 x 5) with the av-
erage for each column (variable) in WORLD. Press (v)
to display them in the Matrix Writer (use (») to show
the complete version of each average in turn):

Result: [374.50 4.84 78.00
2972.55 6317.27 1

Similarly, (ATTN) I3l will compute the standard de-
viation for each column....

Result: [477.34 2.87 26.67
3153.61 6699.18 1]

Most of the other single-variable statistics work similarly to the mean
and standard deviation.

268 (5) SoLvine, PLOTTING, AND ANALYZING

ELEH is an exception, however. [EITEN analyzes the distribution of a
single, specified column of data—by dividing it into separate “bins.”

Before pressing[HIREN, you must do four things:

¢ Identify the column you want to sort; [H[fElldoesn’t work with
all of the columns at once.

¢ Enterthe smallest possible value for the variable in question.

¢ Enter the size of each bin (they must be equally-sized).
¢ Enter the number of bins.

Try One:

Like This:

Set the display to STD. Then sort column 2 (percentage
of GNP spent on education) into 7 bins that are 1.5 units
(%) apart. The first bin begins at 0%.

Press (NxT)(2)IEfHIM to identify the second column as the
current “x-column”—the independent variable.

Then: (GIPREVIIENTER - D ENTER) (D) IELER
Result: [[B]1 [5104151
(51031108 1]

and: [B B8 1]

Level 2shows afrequency distribution for the variable—
the number of data points in each bin, least-to-greatest.
Level 1 shows the number of outliers—respectively, the
number of data below and beyond the range of the bins.

Now plot this frequency distribution: Store it into X DAT
(&)PreV]« ELIE () (NxTINxT) EIW), then [ITTEN....

(Press (ATTN) when you’re finished viewing the plot.)

Single-Variable Statistics 269

Two-Variable Statistics

Of course, the most analytical statistical tests are not the descriptive
statistics of one variable, but the kinds that compare two variables and
infer relationships between them.

The analyses built into your 48 fall into three categories:

¢ Plotting
¢ Regression
¢ Test Statistics

These analytical tools can be used to compare just two variables at a
time.* And you must designate the two variables you want to compare:

e Rcol designates the x-column—the column containing the
independent variable data in the analysis you're conducting.
If just one variable is involved (as with [E[ZEll in the previous
section), then ¥CO1 designates that column.

o Yol signifies the y-column—the column with the dependent
variable data.

*Actually, you can do multiple linear regression with matrices and the summation statistics in
Page Five of the STAT menu, but it takes some programming to make it convenient.

270 (5) SoLving, PLOTTING, AND ANALYZING

Watch: UseNxTINXTINXT) IEEIM to select lORLD as the current STAT
array, then to return to Page Three of STAT. In the
message area you’ll see which columns are currently those
of the independent and dependent variables.

Now make column 4 (per-capita energy consumption) the
independent variable, and make column 5 (per-capita GNP)
the dependent variable: (4)EETH () TN

The other item in the message lineisMod1 # LIN. Thisis the current
regression model that STAT will use tosearch for the best-fitting curve—
the mathematical function that approximates the data as closely as
possible. The 48 can use any of these four basic regression models:

LINear: y=b+mx

LOGarithmic: y=b+m(nx)

EXPonential: y=be™ or Iny=Inb+mx
PolleR: y=bx" or Iny=Inb+m(nx)

In each case, the STAT tool will find an intercept, b, and a slope, m, that
best fits the designated model to the data in the two selected columns.

Example: To find the LINear equation for the columns (to 2 deci-
mal places—FIX 2), press HNLL15....

Result: '1283.12+1.69+X'
So »=1283.12 and m=1.69

Two-Variable Statistics 271

Now: Change the regression model you’re using to EXP and re-
calculate the intercept and slope.

OK: Press IS I=EH to select the model, then I
Result: Intercert: 644.69
Slope: 4.37E-4

That’s another way to calculate the regression model: gives you
the result as an algebraic expression; by contrast, gives you the
result as two tagged objects that are immediately available for further
calculations. The regression form you use depends on what you want
to do with the result.

Now: Figure out which regression model will give you the “best”
fit for your data—and find that correlation coefficient.

Sure: Press[RMTUMIETEEN ... The 48 now chooses among its four
models the one with the highest correlation coefficient.... It
chooses PUR. Now press A &]X3to see how good that
fitis.... Result: .87

So 87% of the variation in the data can be accounted for by
correspondence to the calculated PR model. Not bad.

272 (8) SoLviNG, PLOTTING, AND ANALYZING

Next:

Easy:

Generate a scatter plot of the data and plot the model
regression curve on top of it.

Go to Page Three of the menu ((§)PREV)) and press EIGAIA.
Then zoom both axes up by a factorof 1.5: N EINETE -)5)
(ENTER).... and label the axes (press [GIIIW).

Then, to put the regression model on top of it, press IZR

Simple:

A few data points fall quite some distance from the regres-
sion curve. What does this tell you?

Remember that the vertical axis is the per-capita GNP; the
horizontal axis, the per-capita energy use. Soifa data point
is above the regression curve, that country is producing
more GNP for its energy use than “normal.” Conversely, a
data point below the curve represents a country whose
GNP isbelow what its energy use would lead you to believe.

So, which countries do these points represent? Which are unusually

efficient or inefficient in turning energy into GNP?

You can find out two ways. First, of course, you can position the cursor
over a particular dot of interest, then press [Milildi] to display those
coordinates, and check your printed data to see which country has

similar number. Or...

Two-Variable Statistics 273

You can use the regression model to calculated the “expected” values
of the variables....

Example: Japan’s per-capita energy use is 3625 kg of coal equiva-
lent. Based on the model, what per-capita GNP would
you expect Japan to have?

Solution: Press (ATIN[NXT)to go to the fourth page of the STAT
menu. Then enter (3]6]2]5) (an x-value in the current
model) and press [{A3®] to PREDict the Y-value.

Result: 6716.28
Japan’s actual per-capita GNP ($21,820) is over three
times higher than this expected value.

Try the same thing for the United States, W. Germany,
USSR, Netherlands, Italy, and Venezuela:

sults: Expected GNP Actual GNP
Japan 6, 716.28 21,820
US 16, 587.83 16,444
W. Germany 18, 223.54 14,890
USSR 11, 434.64 8,735
Netherlands 12, 794.83 9,140
Italy 9, 986.96 12,955
Venezuela 6, 262.86 3,030

Some countries appear to be much more energy-efficient
in producing their GNP than do others.

274 (5) SoLviNG, PLOTTING, AND ANALYZING

Another:

Find Out:

Explore your data for other relationships. Is there a
correlation between per-capita GNP and literacy rate?

Change the variables: (G)PReV) (5 JEITH) KX TH.
Select the model: (xT)[ERIEMIEEEE
Test the model: IHFAAGX?.... Result: 8.66

So while this is not as strong a correlation as that be-
tween energy use and GNP, it still accounts for two-
thirds of the variability in the data.

Now plot the data and the model: &PReEV) EIIANEEN

The graph suggests a fairly positive dependence: The
only points far from the curve are above it—countries with
high literacy rates for their GNP’s. No country shows an
unusually low literacy rate for its GNP.

One More:

The data suggests some inverse correlation between
population density and per-capita GNP: the less dense
the country, the higher the GNP. Test this theory.

Press (aTTN) (1) IETN (5) TR HMODL | EEST FHEEE
certain the model, then I to test the fit....

Well, the correlation is inverse (the coefficient is nega-
tive) all right, but (press (G)X3) the model can account
for only 8% of the variation—hardly convincing.

Two-Variable Statistics 275

Two-Sample Statistical Tests

The other kind of two-variable analysis involves the kind of statistical
hypothesis-testing used when a researcher compares similar data
from two differently treated groups.

For example, suppose you’re doing research in fish behavior. And in
one experiment, you use two types of fish attractors, one made from
vitrified clay pipes and the other from cement blocks and brush—
during 16 different time periods spanning four years at a given lake.

From these numbers (fish caught per fishing day), can you determine
whether one attractor is more effective than the other?

Period Clay Pipe Blocks and Brush
1 6.64 9.73
2 7.89 8.21
3 1.83 2.17
4 0.42 0.75
5 0.85 1.61
6 0.29 0.75
7 0.57 0.83
8 0.63 0.56
9 0.32 0.76

10 0.37 0.32
11 0.00 0.48
12 0.11 0.52
13 4.86 5.38
14 1.80 2.33
15 0.23 0.91
16 0.58 0.79

276 (5) SoLvine, PLOTTING, AND ANALYZING

First:

Create your data matrix using Matrix Writer. You should
have a 16-2 matrix when you're done....

Call it FISH: ETERQISTAD EEENESHEVER).

Next:

Calculate a ¢-statistic for the FISH data:

% - 3]
e O

X and y are the sample means

t= where:

n, and n are the sizes of each sample

s, and s, are the sample standard deviations

This suggests a UDF: ' TTSZ(K, Y, NK, NY, Sk, SY)=..":

&JEauATIoN (@] [T TIS[2) IO (XISPCI YISPCINIX)(SPCINT Y]SPC)
EXIEPIS Ve =lamMTH EEEE X ==Y
(B @S ONIXT) @ E X R HA 0N
Q0D ENX) I N V) ENTER) o IOEF).

Return to Page Two of the STAT menu (()STAT)), calculate the
means and put them onto the Stack: [f[FiIal5)20) Then enter

n, and n;: Find s, and s
Now, since you have the six arguments for TTS2 on the Stack

in proper order, just invoke your function: [TT52
Result: 8.57

Two-Sample Statistical Tests 277

Then: Tointerpret this result, you must now compare it to the whole

t-probability distribution. The 48 has four functions (found on
the second page of the AT menu) that compare a test
statistic with a related probability distribution:

e Student ¢ distribution (UTPT)

e Normal distribution (UTPN)

¢ Snedecor’s F distribution (UTPF)

¢ Chi-square (x?) distribution (UTPC)

Therefore, you can use UTPT to finish the FISH analysis:

Level 2: the total degrees of freedom =(n_+ n,—2)
=(16 +16-2)
=30

Level 1: the calculated test statistic, 8. 57.

So, press (3)0JENTER) MTH) IR D) ITHEA -
Result: B.79

This is the probability that there is no significant difference
between the two attractors. That’s too high (usually 0.10is the
maximum allowable) to conclude that there is a significant
difference.

Conclusion: Neither attractor is significantly more effective
than the other.

278

(5) SoLviNG, PLOTTING, AND ANALYZING

Transforming Variables in the Data Matrix

Sometimes you may need to mathematically transform your raw data

before performing a regression or statistical test.

Example:

Solution:

Whatifyou want to calculate the difference between each
pair of observations in your FISH data, then put these
results into a third column in the matrix and use a
single-variable version of the ¢-test on that column?

You could calculate and then enter each individual
difference into a third column. Or, you could do this:

Transpose the FISH matrix, row-for-column: (&)STAT)
OEIHE(o]o]TRINENTEREIIHEL. Then extract just the
last two rows: (G I ST

Next, do the transformation: (a]a)NxT) [ITEZHENTER)).

Now reassemble the 3 row-arrays into columns in an-
other matrix: (aYa)a) (NN EnTes) BT RN T
B TRNETE REEN(FSIH)ENTER).

Obviously, transforming columns in a matrix isn’t a feature built into

the 48. Whether it’s easier to transform data element-by-element or

via an array procedure like this last example depends on the size of

your data matrix and the complexity of the transformation.*

*And this is an excellent example of a good use for a small program—stay tuned.

Transforming Variables in the Data Matrix 279

In any case, it’s time to see what your efforts netted you...

So:

Do a single-variable ¢-test on the new third column (the paired
difference column) of FISH. The single-variable ¢-statistic is:

yJn,
S

y

t=

Press ([O)STAT), and be sure that FISH is still the current data

matrix. Then: EEHIIENxT)EEHE AN (1) 6)]x]X)
EHEEA> >N ERTARTN@=).... Result: 3.685

Now compare this statistic with the probability distribution:
()5 enTer) (MTH) I3 TEH ... Result: 4.86E-3

Hmm...according to this test—with the differences—there’s
only a 0.41% chance that the blocks-and-brush fish attractor
is not more effective than the clay pipe. That’s a very different
conclusion than that suggested by the previous test.*

*Mark Twain had a comment for such a situation—something about three kinds of falsehoods....

280

(8) SoLving, PLOTTING, AND ANALYZING

More Challenges

Atthispoint, surely the vast possibilities ofthe 48’s tools and workshop
are evident to you. And there’s no telling what you might want to do
with them. So here’s a group of challenge problems, grouped roughly
by topic, to help you get more practice in using the SOLVE, PLOT and
STAT tools (indeed, using most kinds of 48 tools, except for program-
ming—that’s the next chapter).

But these are more than just a set of review problems. Some illustrate
techniques that you haven’t yet seen. Some introduce entirely new
categories of solvable problems. Thisisboth your chapter quiz and an
additional set of lessons. Learn by doing—and enjoy discovering....

‘:k

u---..\u \\‘ 2 ‘
|llllll‘l‘

More Challenges 281

Algebra

1.

282

Find the intersection(s) of the following two curves:

9x> +4y* —18x-8y-23=0 and x*—y*-4x+2y=6

Two particles start at the same instant, the first along the path
x,(8)=%-31, y()=4t-5 with 120

and the second along the elliptical path
x,(t)=2sin%t, y,(t)=-3cosit withr>0.

At what points, if any, do the paths intersect?

At what points, if any, do the particles collide?

Solve the following linear system graphically:

6x+2y<36

2x+4y<32

2x—-y2-6
x20
y20

(5) SoLviNG, PLOTTING, AND ANALYZING

Differential Calculus

Find the first and second derivatives of f(x) = x* — —12— Then plot
X

the function and both derivatives on the same graph.
Differentiate: y=e*(coshx +sinhx)
Find the curvature of r(f)=ri+41s’j at the point P(-1,1)

The standard cylindrical beverage can has a volume of 12 oz, or
26 cubic inches. What dimensions yield the minimum surface
area? Find the minimum surface area.

A water trough with a vertical cross section in the shape of an
equilateral triangle is being filled at the rate of 4 cubic feet per
minute. Given that the trough is 12 feet long, how fast is the
water level rising when the water reaches a depth of 1.5 feet?

Find the roots and the extreme values of

(=)
x+2

More Challenges 283

Integral Calculus

10.

11.

12.

13.

14.

15.

16.

17.

284

Evaluate the following definite integrals:
! 2n ! 1+x2
a. jo(l +x)% dx b. joxlo dx

Ve xi
c. >x dx
0«/x+1
" xe*

Calculate] (x"‘_l)z dx

x+3

Calculate] 2 _3r42

Find a 5th-degree polynomial equivalent to 3e*.

Find the area between these parabolas: x=3)* and x =3 —2)?

Find the arc length of r(¢)=ri+1log(sect)j+3k from:=0tot=%

Find the surface area when the curve y>—2logy=4x fromy=1
toy =2 is revolved about the x-axis.

Graph the polar function, r=4 cos 86, and find the area it encloses.

(5) SoLving, PLOTTING, AND ANALYZING

18. Junior Beaver arrived home from Hydro Tech one spring to find
his father furious and ranting as he watched his dam overflow:

L #HNREHFNGII@ .. ducks! That’s the third year in a row
them ducks’ve landed on th’ pond so thick that the water level
swamped my dam!”

Now, Junior knew that something had happened the last few
years to flood the dam, but he had his doubts about this theory.

“Pop, how much does the water level need to rise to over-
flow?”

“I build a half a meter of just-in-case at the top. Idon’t have
enough material to do more n’ that.”

“Then I don’t think the ducks could possibly be at fault. Let
me run some calculations to see.”

Junior then set out with his trusty 48 to test his father’s theory:

¢ The surface of the pond—roughly rectangular—measured
70 meters by 13 meters.

¢ The pond was 3.5 meters deep (at its deepest) and roughly
a half-cylinder in profile—like one half of a tall tin can.

¢ The average volume of a duck’s bottom (d.b.) in water was
2.25 liters and its area on the surface averaged 450 cm?.*

Were the ducks responsible for swamping the dam?

*For these sensitive and personal measurements, Junior Beaver wishes to thank several duck
acquaintances who prefer to remain anonymous. They know who they are.

More Challenges 285

Summations, Series and Expansions

19. Evaluate the following expressions:

7

a Y DR

k=1

oo

1-2*
b. Z 3

20. Find the set of times—to the nearest hundredth of a second—
during a 12-hourrotation ofa clock in which the minute hand and
hour hand coincide.

286 (5) SoLviNG, PLOTTING, AND ANALYZING

Data Analysis

21.

22,

A car rental company has facilities at four airports: Los Angeles
International (LAX), Burbank, Ontario, and Orange County.
The following table shows the pattern of car returns.

Fraction returned at

Rented at LAX Burbank Ontario Orange C.
LAX .85 .07 .03 .05
Burbank 12 .70 .10 .08
Ontario .10 12 .69 .09
Orange County .05 .03 .14 78

Ifthe company rents each of its 400 cars exactly once per day, how
many should each airport have to maintain a steady supply?

Given the following data:

Mean Std. Dev. of
Investment Type Sample Size Annual Return Return (Risk)
Common Stocks 50 10.57 19.05
Corporate Bonds 35 4.38 5.52
US Government bonds 30 3.47 3.87
Municipal bonds 35 2.51 8.76

Do these data indicate significant differences in risk (i.e. in the
standard deviation of annual returns) among these four types of
investments? Use the data to predict the annual return of an
investment type whose standard deviation is 11.67.

More Challenges 287

23.

288

Assume that an economy is based on five industrial sectors:

Agriculture Building Electricity Fuels Water

Each dollar of output from each sector requires a certain amount
of input from each sector—including itself. The input values for
all sectors are as follows:

Output Sector
Input Sector A B E F W
A 422 .100 035 235 .100
B .089 .350 .082 .052 .180
E .036 .075 .100 224 .400
F .098 .025 380 415 115
w .147 115 300 107 .200

Projections of demand (needed output) were developed for two
different scenarios:

Demand Projection (in $billions)

Sector Scenario 1 Scenario 2
A 438 500
B 390 465
E 190 275
F 235 315
W 109 156

How much output value must each sector produce to satisfy the
demand projections of each scenario?

(5) SoLviNe, PLOTTING, AND ANALYZING

More Solutions

1. The simplest approach is to find the intersection point(s) visu-
ally in PLOT and then check them in SOLVE:

Create the two equations, CRY1 and CRY2. Then, at the Equation
Catalog, combine them into a list and move to the plotter

(=R Evi+ (3] ECi+ [PLOTF)Y

These curves are both conics, so change the plot type to CONIC
(NxTIREEIIEE)and be sure that flag —1 (Principal Solutions)
isclear (1]+/-JsPc]a]] CJFIENTER)).* And(s)sPc]a o FL 1 JX)ENTER).

Each CONIC plot must have its dependent variable defined. The
default is 'Y'—which you're using—so just [I33 the display
parameters, erase any previous plot (NXTINXT)EEE3), and [THTE1.

Apparently, there’sjust one point intersection. Use @31l to zoom
in for better viewing (do this several times if necessary): Move
the cursorjust above and to the left of the area of intersection and
press . Then move to the right and below it and ERFH.

Press [Mi[i[A] to see the coordinates....You should get something

close to(=1.000000,1.000000). PressATIN=)SowvE)(1)+/2) &1
G X1 to move to the SOLVR and calculate y for x =—1....

Result: Y: 1.8688868 So(-1,1)isindeed theintersection point.

*Only half of the conic will be plotted if the Principal Solutions flag is set; this flag allows only one
answer for each x, but a conic section requires two answers for each x.

More Solutions 289

290

First, create and name the expressions, 81, Y1, ®Z, and Y2. And
PURGE 'T', set RAD mode, and turn off CoNneCT mode.

Next, using a complex form (this is how the 48 does parametrics),
combine the equations into two parametric expressions, PAR1

and PARZ: 'K1+i*Y1' and 'KZ+i*YZ'. Then combine PAR1
and PARZ into a list ()ALGERRA) IHEEE () IEEXN), and NI

Now change the plot type to PARAMETRIC (NxT) AEELEED),
@33 the display ranges,and declare the independent variable

(‘T")and its range (0<¢<5): (GO TISPC 0)SPC5)ENTERIG JPREV)
[INDEP B

Plot the two paths: [EITHIIA.... You'll see an ellipse and a line. Use
your cursor and [i[[A] to obtain the coordinates for the intersec-
tion points.... Result: The paths intersect at (2,0) and (0,3).

Test those results: Recall®l and create two equations based on

the results: (&TTNETTN (VARINXT) (DIEFE) =)2) ENTer) CNET
G-I

Now solve each of these equations for 'T':

and (SWAPJEVAL)(* Jo [THENM.
So particle 1 reaches (2,0) at t=1.25 and (0,3) at t = 2.

Now recall K2 into SOLVR and see where particle 2 is located at
these critical times: I (<) (sowvE) 0088
I |E P F= (] N PF =

Particle 2 is not at (2,0) at t = 1.25, but it is at (0,3) at r = 2.

Conclusion: The particles collide at location (0,3) at t=2

(5) SoLviNe, PLOTTING, AND ANALYZING

3. Tograph a system of inequalities, create one expression with all

of them (IEGTH, MEEMN and HEM are in the PRG)EEAmenu):

'6xR+2*Y<36 AND
2xn+4xY£32 AND 2#K-Yx-6 AND X=B AND Y=B'

Name it as the current equation: (&]PLoT)IEIIEM(1N)EJQ)ENTER).

Now, this will be a TRUTH plot, so press: [RETZ3ANTIENIT.
Enter plotting ranges: (GJ0[e]XIsPc)o)sPc)7)ENTER IRTITd
EOYEPA ()P () ENTERIND EIEE

And display ranges: (GJPREV)1)*+/=JSPc] 1) o) FIAIH(1)+/=JsPc)1]5)
EETE. And plot it: TREILITTER....

4. First,createf{x)and make a copy of it on the Stack: (ATTN] ' Ja]X]>'¥
(2]=[1 =) o] X]¥[2)ENTER]ENTER). PURGE and enter the variable of
differentiation: (" JoJX)([ENTER)(ENTER)qJPURGE). Now differentiate

and clean up the result: () 3) & ALcEBRA) TN THH] ...
Result: 'Z#K¥"-3+2xK'

Duplicate this first derivative and repeat the differentiation:

ENTR) X ENTER)) E TN ...
Result: '2-6%K*-4'

Combine the three functions into a list, then designate that list
as the current equation: (a[a)a) EINELENTER[)PLOTI G ITETY]

(GJTEM is equivalent to ERfFEN). Then change the plot type to
FUNCTION: (nxT) EEE ERTH AFF1 fxTNxT). Now plot the

three functions in the same display, adjusting the display as
necessary: [T

More Solutions 291

5.

292

(ATTN), then PURGE ¥, and create the expression:

O@E®E] HiP [:05H [OR0
SIMH B8 Then enter the variable of differentiation

and differentiate: ("Jo]X) ENTER]>)3) (& ALGEBRA) (M THN] ...
Result: '2*(COSH(KI+SINHC(R) I=EKP(K)!

The curvature of a twice-differentiable curve r(¢) = x(¢)i+ y(¢)j is
given by:
k= OOy X0
(@] +y@r)

So, create a user-defined function, KURV:

'KURV(K, Y)=ABS(at (RI*at (at (Y))-at (Y)=at (3t (KID)~
(ot (RI~2+at (Y)*2)7(3-2)!

Keystrokes:
T BRI R T X R TR
B 2IENTERI)DEF)

Now prepare the Stack with the two function arguments:
Enter x(¢):
Enter y(o): ("JoJT]Y*(2]+]2)JENTER)

Now PURGE T, evaluate KURV, and clean up the results:
(vAR) AT EVAL (& ALGEBRA) (1] .

Since ¢t =-1 at point P(-1,}), store =1 into 'T' and evaluate:

()#Jo T)ENTER)STO)[@-NUM). Result: . 353553

(5) SoLviNG, PLOTTING, AND ANALYZING

7. Thesimplest procedureistouse a Lagrange multiplier to find the
constrained minimum. Thatis, you want to minimize the surface

area of a cylinder (S =27trh + 2ntr?) subject to the volume constraint
(r*h —26 = 0). So, create CANS: 27trh +2mr? — A(mr?h - 26)

PURGE the variablesR,H and » ((qUJe]RISPC]a]H])] L) [ENTER)
((JPURGE)), and find the partial derivatives with respect to each:

JCANS
AR, uREIHEESD.-

Result; '2*m*R-xx(w*R*2)'
CANS. I HERDEE AR .

Result: '-(Z2#RexnxHen)+42Rey+2*H*y'

acg’fsz @ ETHCE00E. ..
Result: '-(w*R*2*H-26)"

Now you equate each derivative with zero and solve the resulting
(nonlinear) system. First, isolate 'X' from the ok derivative:
Result: '»=2-R' Saveit:

Next, isolate'R' from the or derivative, and save it:

OGN COLETIO@E)] 50U |COLCT RS
Result (FIX 2): 'R=B.58*H' Saveit:

Now use the 0\ derivative to solve for 'H':
Evae)Sove) TR MMIAG T |Result: H: 3.21 (inches)
Then for . (VARMEZIMEVAD.... Result: 1.61 (inches)

Then [IXEN(>)=NUM) (to force the numerical evaluation of 1)
Result: 48.58 (square inches)

More Solutions 293

294

When the water is x feet deep, the area of a vertical cross section
of wateris £ x2. Since the troughis 12 feet long, the volume of the
water is then 4+/3x*. Thus, the volume at time ¢ is:

V()= 43[x(0)]

PURGE ¥ and T, then: ((JoVIQJO[eJa[T P EG]=)
(X[B IX][JQIXIa]O)afa T[> 2]ENTER).

Now differentiate : (' JoeJ&]T]ENTER[]3)....
Result: 'derV(t, 1)=6.93%derx(t, 1)*2*x(t))'

Now just define the known functions, V() = 4 and x(z) = 1.5, and
the unknown RATE you’re trying to find:

Now the expression for the Volume’s derivative:
Result: '4=6.93*(RATE*Z#1.5)"'

Then isolate RATE: (e o R(A TIEJENTER[G)ALGEBRA IEIM. ...
Result: 'RATE=HB.19'

Thus, the waterlevelisrising at0.19 feet per minute at the moment
the water reaches a depth of 1.5 feet.

Note that you could have defined your user-defined derivatives
derV and derx before differentiating Y(t), but you could not
define X(t) until afterwards, because the 48 would have known
how to differentiate the simple function 'x(t)=1.5"' and thus
would have ignored the defined alternative, derx.

(5) SoLvING, PLOTTING, AND ANALYZING

9. Turn off dot-CoNneCT mode (if it’s on): S]MODESINXT) I,

Then create the function: (G]EQUATIONJG IO A X[=]2)(™)(@IX)([+)
E)OI)ENTER).

Now set the display ranges and plot the function:
PO IR (2)o)+/=sPc)2) o) HAITH

Now explore this plot: By inspection of the function definition,
you know that the vertical asymptote is at x=-2. You can find a
horizontal asymptote at y = 1 (for x < —2) via (<) TN IR
and at y = 1 (for x> -2) via (=) A

To find the root, press [FIIMN.... Result: Root: 2.60
(I3 will find this too, because it’s an inflection point.)

10. Create the first expression in the EW: (ATTNJATTN[&JEQUATION)

PUOEOMNEOHXP Y 2IGIm)3 @IX)ENTER)

To evaluate the expression, you have two choices: evaluates
the integral symbolically and stepwise. By contrast,
evaluates the definite integral completely and numerically (in-
cluding the symbolic constant, 7, which won’t evaluate).

Try the latter: [O)NUM.... a. Result: 21.25

Do the other two similarly (you can use and from
the Equation Writer).... b. Result: 19.68*

C. Result: 1.76

*This assumes a FIX 2 display mode. The display setting limits the precision of the integration.
Calculating b. and c. in STD mode gives 19.94 and 1. 77, respectively.

More Solutions 295

11.

296

Find this indefinite integral by using integration by parts:
1
(x+1)°

Let u=xe and dv=

1
First, calculate v from dv by calculating J’mdx

But all integration on the 48—even symbolic integration—re-
quires limits. So use the variable of integration as your upper
limit and a “dummy” name as the lower limit, then drop the term
with the dummy name in the result:

and PURGE K, Y,U and ¥ Then
X3) (HEIOXHEIYS(2) B> 1>) (@) X[ENTERIEVALIPRG)
EEILEES (@) «[«EVAL.... Result: '-INV(K+1)'

Store this result in ¥ and store xe* in U:

CXoJV)ETOl NI XIX)) e @) X) ENTERIENTER) ([U] STO)
Calculate oU: (Ja)X)ENTER[)@). Result: 'EXP(RI+K*EXP(K)'
Simplify this with RULES: (v]<)(<<) G K3« A
IEZMENTER). Store this in dU (o)D) (ENTER)(STO).

Now calculate the integral: UV —I VdU dx

Find and simplify UV: (VAR) IITH I (<)) ALGEBRA) (T |
Find and simplify VdU: (VAR) I T (X(<)ALGERRA) MiNH |
Then create the integral: [((JEQUATION[]S o] Y)(»]a]X]»)(=>)RC
(recalls the simplified integrand from the Stack)(®)(a]X).

Now EVALIPRG) NN IENES @/« [«EVAD ...
Result: '-1/C1+K)*EXPCR)*H+EXP(X)' Thus,

x

—xe—zd.x = - X _ter+C
(x+1) x+1

Use (v) to view this in the EW, if you wish.

(5) Sorving, PLOTTING, AND ANALYZING

12.

13.

The 48 can’t symbolically integrate the integrand as given, but
in this case, you can modify it via partial fractions:

x+3 5 4
x*-3x+2 x-2 x-1

So, create the integral with this modified integrand:
(2T e XI5 [XTI 2] =T 4 = o X =L I> (e X)ENTER]

Now evaluate it: EVALPRG) INENEIIENEN («[«[«EVAD
Result: '—(4*LNCK-1))+5=LN(K-2)'

Use the TAYLR function, located in your menu. First,
create and enter the function: (3] Jo]X]ENTER[G)€ (X).

Now enter the polynomial variable: (" Ja]X)ENTER).
Then enter the degree of the polynomial: (5JENTER).

Go: () aceBRAJLLRIN ...
Then evaluate the coefficients: [EVAL....
Result: '3+3#K+1.0B=K*Z+0, SB*K"3+0. 13xK 4+0, B3=K"5'

Press (v) to see the result in a clearer form, if you wish.

More Solutions 297

14. Create athird function that’s the difference of the two parabolas:
808ANONEAEIERBONEAELED S G ISR -OLC T

Now plot this function ('Y"' is the independent variable here):
(PLoT}) EIETEI 3x) [G)PReV) Q)OI Y)SPC 2)#/-JsPC] 2)

The desired area is the area under the curve between its roots.
So press (<4< IEEXMIETH to find the negative root and mark it
(press (X)). Then go find the positive root ()Ll and press
BTN to calculate the enclosed area between the two roots.*
Result: ARER: Y4.00

15. The length of the curve is given by the formula:

Lr(s)]= J"r’(t)" dt

The i and k terms of the derivative can be found by inspection.

To calculate the j term: (*Jcos] o] TJENTER[/x]2)LOG
) 3Ja)AcEERA)MIME] ... Result: 'B.43/COS(T)*SINCT)!
That’s 0.43 tan(r). Sor'(z)=i+ (0.43tan¢) j

To calculate the integrand: (Gx3(1)Hx)
So |r’(¢)|=V1+0.19tan’ ¢

Now create the integral (using the Stack is quickest) and evalu-

ate: (0]ENTER[QJ) 4[] a)a]a) MM ENTER) (" o [TIENTERIIS
(3)~NUM.... Result: 8.81

*Note that the AREA integration function in PLOT is sensitive to the scale of your display. For
greater accuracy, use a smaller scale (“higher magnification”).

298 (5) SoLviNg, PLOTTING, AND ANALYZING

16. The surface area of a revolution of a curve about the x-axis is:

S= j2m(t)1/[x'(t)]2 + [y'(t)]zdt

when the curve is expressed parametrically. The given curve
converts to: x(f)=4(s* -2logt), y(r)=¢t withte[l1,2]

So PURGE T and calculate the integrand:
(SO DY 2= 2IXIpIoa o T 4]
(2)3) EEEI ENTER) T ()3 () (D BN X 2IX) mX).

Now create the integral and evaluate:

(1 JENTER] 2)ENTER A a)a) IEMM ENTER) (o] T ENTER[D)T [2)=NUM)
Result: 11.724

17. First, PURGER and 8. Then set curve-filling mode (i.e. clear flag
—31) and RADians mode. Now create the function as the current

EQ in PLOT: (JaXxIcos[e]XI>IF)ENTER) (=IPLoTiy) TR

Then change the plot type to POLAR (NxT) AEIEIEINTD), change

the independent variable to8 ([HNXxTNXDIEFD), and plot
the graph: IETHIN....

Now, the area enclosed by the curve is given by:

2n
J.%(4cos89)2 do
0

Create the integral and evaluate: (ATTN]0JENTER]2J&q)X

)PREY) IEEM G)X2 2 I DI FIENTER [T 2)-NUM) (wait)...
(&) ALGEBRA EXTd... Result: '8#*r'

More Solutions 299

18. First,Juniorderived the formula* relatingn ducks’bottoms (nV,,),
to the rise in the pond level:

D+1 h L
nv,, = 1000I Lr? cos"(l - —) - E(r —h)\J4h(2r — h) dh
r
D

x*+4D?
where r = =—————,
8D

L = length of the pond

x = the initial width of the pond

h = the depth of the pond

D = the initial depth of the pond (before ducks)

I = the increase in pond level due to the n ducks’ bottoms.

Next, he PURGEd the variable names: (U@ L)SPC)(e NJSPc)(e] V)
(sPc)e]RISPC o X]SPCl o H)(¢]D) (] (ENTER) 9]PURGE).

Then he created the formula in Equation Writer, named it DAM,
and made it the current equation:

B ENTER)
EJsove) EIHENIAMENTER).

*It's a fascinating derivation, but unless you really want to prove it to yourself, you can take his
word for it (he’s been studying at Hydro Tech, remember). The point here is to notice that your
unknown, I, is part of the limit of the integral—a new variation.

300 (5) SoLviNe, PLOTTING, AND ANALYZING

Then he created the subexpression and stored it into R:

(e OJoX)Y 2]+ 4)x[e] DIy 2]»] Ia]Of 8] X[@ DJENTER
S0

Junior entered SOLVR and loaded up his known variable values:

BRI (2205 60 0 COme

But before he could solve for [—the increase in pond level caused
bynducks—Junior needed an estimate forn, the number of ducks.
As a maximum, he divided the total surface area of the pond by
the average surface displacement of a d.b.:

AR EOXEEHCH T

Result: 26, 222.088 ducks—packed in like sardines.

Now, for the piece de resistance: E]III
Result: I B.82 (meters)

Just ashe had surmised: Evenifthe pond were packed solid with
ducks, the water level would rise only about 2 cm—not nearly
enough to swamp his dad’s extra 50 cm of dam.* (In fact—as he
calculated later—even if all 20,222 ducks were to dive for food at
the same moment, this still wouldn’t be enough to do it.)

*It turned out, however, that the ducks weren’t entirely blameless: After some further exploration,
Junior and his dad discovered that the real problem was that his father was building his dam each
year on a deeper and deeper layer of duck droppings accumulating on the bottom of the pond. The
droppings were not as firm a base as the actual pond bottom, so at the springthaw—with its sudden
water rise—the dam would settle and slip. But it was pure coincidence that the ensuing overflows
had happened around the same time as the annual arrival of the ducks.

More Solutions 301

19. a. Use the Equation Writer to key in the summation:
(GJEQUATIONIP]] K[> 1 [7]») (] ON+/-] 1]

)N IKHD IS ORI 2] KIH 1)
Evaluate: (EVAL).... Result: 8.16

b. Onthe48,you can often sum an infinite series by including
an upper integration limit great enough to determine if
convergence occurs (set flag —21 so that divergence over-
flow will stop the calculation: (2]1)]+/=[sPc)a]S]@)F)ENTER).
Create and evaluate the series: (G)EQUATION) (2] Z) (@)K) ()

) o o A =2k > B3]y e)K)
Result: -1.58 (after 15 iterations)

20. The formula for the time—expressed in decimal hours is:

oo

+ 5 1 where 1<n <12 is an integer

12*
k=0
Create this expression as the current equation in SOLVE:

(6ought
to be enough iterations for the required precision: .01 seconds is
about 3x10¢ hours, and 12 is smaller than this)
ORI K ENTER) G sove) EREEL.

Fix 6 decimal places ((9]MODES)(6)lIHEM). Then begin evaluating:
Eove (D JEEE.... Result: EXPR: 1.898989

Convert this to hours, minutes, seconds: (&)TIME[NXTINXT)
Result: 1.852727 That’s 1:05.27.27

Repeat for n=2...11 (n =12 is a repeat).... Results:
2.185455 3.162182 4.214989 5.271636 6.324364
7.3810891 B.433818 9.498545 10.543273 12.006060606

302 (5) SoLvING, PLOTTING, AND ANALYZING

21.

This requires a Markov Chain approach. The matrix described
in the problem is the transition matrix, CARS. So,in STD display
mode, use the Matrix Writer to create CARS as a 4 x 4 matrix.

Then enter an arbitrary (1 x 4) initial-state matrix, that repre-
sentsthe cardistribution on the first “morning” of your simulation:

L)L 2)5)0)sPcI3) 4JsPC) (7] 5JSPC) (4] 1) [ENTER] (you can use

any four numbers that sum to 400—but in an array, not a vector).

Now FIX the display to 0 decimal places, and then multiply the
initial-state matrix by CARS to find the distribution of cars at the

end of the first “day:” (VARJEEEI(X)....
Result: [[226. 52. 68. 54. 1]

Now repeat this sequence (IiEI(X), [EIF(X), etc.) until the re-
sulting distribution stops changing—the steady-state matrix—
for optimal distribution....Result: [[147. 76. 82. 95. 1]

So the company keeps 147 cars at LAX, 76 at Burbank, 82 at
Ontario, and 95 at Orange County, to best meet normal demand.*

*You might be thinking that this iterative method of solution (“start-with-any-combination-and-
wait-until-the-result-becomes-steady”) might work for the car company without any forethought
or math at all; they could simply act out the iteration process in the course of their business. That’s
possible, but for the first couple of weeks, they’d probably have some dissatisfied customers at one
or more airports—not so good for business. So, bring on the 48!

More Solutions 303

22.

304

To compare risk, you must compare the variances of the samples.
The variance of a sample is the square of its standard deviation.

The F-statistic is a ratio (larger to smaller) of two variances:

2

s
F=-= whens} >s]

s

2

Compare common stocks and municipal bonds (set FIX 3):

Input the degrees of freedom: (4] 9)(ENTER[3] 4)(ENTER), then

the F-statistic: (o) 05X 7 8)ExA= (?.729)
Compare this against the probability distribution:

MHETRAGDIEEA ... Result: 3.784E-6

That’s a very significant difference in risk. Further comparisons
will demonstrate that the differences in risk are highly signifi-
cant across all investment types on the list.

To make a predictive model, create a data matrix, RISK, with two
columns of variables—mean annual return and risk—and make
it the current data matrix: (®]MATRIX)

®)GXX- Yo s)ENTER) (S X - X5) 2) ENTER) (3] - X8] 7) ENTER) (8 - J7)&)
ETER) ENTER) (QJSTAD RN (RS (K ENTER).

Now find the best regression model and its coefficient of determi-
nation: @ HC0L (B
EIAS)(XD.... Result: Modl:LIN Intercept: B.569
Slope: 1.669
coefficient of determination: 8.793

The expected return for aninvestment with a standard deviation

of 11.67 would be: (1) [6]7)EATH Result: 6.653

(5) SoLvING, PLOTTING, AND ANALYZING

23.

The first matrix in the problem is the 5 x 5 technology matrix (T).
The second matrix is the demand matrix (D). You need to cal-
culate the output matrix (X) that satisfies both internal and
external demand:

Total Internal External
Output Demand Demand
X = TX + D

Thus, X = (I-T)"D.

So, to calculate X, first PURGE T and D (so that they'll appear
together in your VAR menu), then create and name matrices T
and [, using the Matrix Writer.

Next, create a 5 x 5 identity matrix, I : GIMTHISEHANITN. ...
And subtract T: VARIIIES....

Then invert the result matrix: (/x)...
and multiply by D: ITX)....

Result (FIX 0): [[2672. 3329. 1
[2886. 2518.
[2861. 2684.
[2676. 3466.
[2846. 2638.

_ e e

More Solutions 305

(6) BuL.piNG Your OwN TooLs:
PROGRAMMING

Your “Automation” Options

Now that you’ve seen some of the “smarter” tools HP has built into the
48, it’s time to learn how to build some for yourself.

A toolin your 48 is an automated process—a set of operations, recorded
somehow, so that you don’t need to re-do them every time you want a
similar result. Keep in mind that there are several ways to do such
“automation”—some of which you’ve used extensively already:

¢ Bynaming an object, you effectively record the keystrokes you
used to build or calculate its value in the first place. You can
reproduce or re-use that value whenever you invoke the name.

¢ Analgebraic expression orequation tells the machine to execute
a given set of algebraic operations—on a given set of VARiables—
whenever you EVALuate that algebraic object.

¢ A postfix program tells the machine to execute a given set of
commands—on a given set of VARiables, Stack arguments, and/
or system parameters—whenever you EVALuate that program.

¢ A list’s elements can be any objects and any commands. And
whenever you EVALuate a list, each of its elements is evaluated
sequentially, so this is another way to record and execute com-
mands on VARiables, Stack arguments and system parameters.

Your “Automation” Options 307

Compare the various methods of “automation” with this table:

Object | Allowed Source of Range of How You
Actions Values Results “Run” It
Named | EVALuate| any available | a single value: |invoke its
Object VARiables the value of the| name
object stored in
the name
Algebraic any any available | a single value: |EVALuate
Object | functions VARiables |the result object it
Postfix any any Stack argu- | any value(s), |EVALuate
Program | commands ments, available |objects and sys-| it or
VARiables, sys- | tem conditions |invoke its
tem parameters name
List any any Stack argu- | any value(s), |EVALuate
commands|ments, available |objects and sys- it

VARiables, sys-
tem parameters

tem conditions

Consider, therefore, how you might best use each type of “automation:”

308

(6) BuiLpING YoUR OWN TooLs: PROGRAMMING

¢ Torecord an object’s value, of course, just name it as a VARiable.

¢ To do math with VARiables and functions—generally, any
“crunching” intended to give you a single result—use algebraic
objects. They're generally easier than postfix programs to
build, read, use, troubleshoot and understand.

However, though an algebraicishandy, it’s not especially “smart.”
It can do only functions (calculations describable in the 48’s al-
gebraic syntax). And of course, not all functions are defined for
all object types: You can add twostringsnamedaandbwith 'atb’,
but you can’t subtract them with 'a-b'. You’ll get an error (and
an algebraic generally cannot test for or avoid an error). Also,
remember that, unlike most object types, you can’t EVALuate an
algebraic simply by invoking its name. That just puts it onto the
Stack; you must then EVALuate it explicitly.

¢ Whenever you need to get multiple results, manipulate objects or
the Stack, adjust system settings (flags, directory structures,
etc.)—i.e. do any non-mathematical but nevertheless “record-
able” kinds of operations—these are jobs for programs or lists.

Of the two, a program is the more tailor-made for ready execu-
tion, because it does EVALuate when you invoke its name (not so
with a list). On the other hand, once you’ve built a program, you
can’t modify it (edit it) under any sort of automation—only “by
hand.” But you can readily edit a list via “recorded” commands.

The point here is to choose the most straightforward method for the

job. When names and algebraics will suffice, use them. As you learn
about programming, remember to save it for when you really need it.

Your “Automation” Options 309

Local Names

To recall the basic idea of building and naming a program, keep your
place here, and look back for a moment at pages 132-135.... Of course,
not all programs are so simple asthose you first built. Sometimes you’ll
need loops and conditional tests, error traps, etc. And you’ll learn
about all of those things in this chapter. But first,...

Do This: Clear your 48’s Stack and recall the User-Defined Func-
tion named 9—the one you built on page 214.

Solution: Press (VARIGJPREVIJPREVIEIPREVI IPIM and see:*

€ > xy 'ZEgiury' »

A UDFisreally a postfix program;the DEFINE command
built it from your algebraic definition. A UDF must be
a program in order to take arguments from the Stack.

Question: What’s that *+ X Y before the algebraic?

Answer: That'’s to tell the UDF how to take your function’s argu-
ments off the Stack whenever you evaluate it. The ¥ and
Yy are local names—names (having nothing to do with
VARiable names) that the 48 associates temporarily
with Stack objects.

*For the sake of space, this Course will not necessarily show programs formatted identically to your
48'’s displayed version, but they are entirely equivalent. Line breaks—here and in the machine’s
display—carry no significance; they are merely formatting for visual clarity.

310 (6) BuiLpinG Your OwN TooLs: PROGRAMMING

Keep in mind that you can use a UDF just like any built-in function:
Either you put its arguments onto the Stack and invoke just the name:
B, or, you invoke the name and arguments in an
algebraic: 'q(4,35)"

When you invoke the function’s name, JlIEJl, the 48 EVALuates the
program, 9. The first set of instructions it encountersis * % Y4
Essentially, this says to the 48: “Take the objects from the bottom two
levels of the Stack (upper one first—it was on the Stack first), and
temporarily identify them with the names* given after the *.”

With the algebraic form,q(4; 5), the parentheses tell the 48: “Take the
arguments from within the () and put them onto the Stack—in order.”
At that point, then, the situation is the same as when you placed the
arguments onto the Stack: 9 executes, and the * ¥ Y instructions
proceed as usual.

So that’s what a User-Defined Function really is—a postfix program
that does just two things:

(i) assigns one or more Stack arguments to local names;

(ii) uses those local names in calculating a single result.

*There’s absolutely no requirement to use lower-case letters for local names—but it’s probably a
good habit to develop. It’s a convenient reminder that they are indeed local names (as opposed to
global VARiable names, for which you’ll likely use uppercase characters more often, since the VAR
menu displays only in uppercase).

Local Names 311

Question:

Answer:

Do you have to use DEFINE to build a UDF?

Not at all. For example, you could have built the 9
function yourself: ([GJ«[PI-JeJaIXIsPc]afa]Y]sPc])
X aXB AN (@aY)ENTER) (T ela)a)(STo)

Now test it: (4]ENTER]S)
or (JaJaJaJaJOJ4Ja 5 JENTER)EVAL) No difference.

Question:

Answer:

Does the “crunching” portion of a UDF have to be a
single algebraic object?

No. Infact,youdon’t need to use an algebraic atall. This
postfix form would work just as well:

€ + wy

€ 72w E Ry *® +
»

»

Key that in:
I« JalX]IsPc]afa] YIa]«[2)sPc]eJaIXIX)
JalX)sPI(eIalY) X ENTER) (e)Q)(STO).

Then try it:
or (JIENE EQ)O4) EIENTER) EVAD)

312

BuiLping Your OwN TooLs: PROGRAMMING

Question:

Answer:

Question:

Answer:

Why the “program within a program”—the extra set of
% * inside this last version?

To declare and assign local names, you use the #, fol-
lowed by the ordered listing of those names. Then,
somehow you must signal the end of that listing. The
two allowed signals are an algebraic object or the begin-
ning of a program. Thus, these programs are valid:*

« + w y 'SIN(45)+xry' "Bye" »

« 45+ wyc«cSINwy s+ » "Bye" »

« "Hi" » m « "Good-" * "bye" * (unused names
are “legal”)

But these are “illegal:”

« » wy "Hi" 'SIN(49)+xry' »
« »ab"Hi" « a I b-»2»

Why is an algebraic object or program segment the only
allowed signal for ending a local names declaration?

Because it also defines the only environment in which
those local names exist. The names are local (and thus
not in conflict with your global VARiables) because of the
strict boundary you draw around their “jurisdiction.”
And that boundary is the defining procedure—the al-
gebraicobject or postfix program—immediately after the
names declaration.

*They’re valid programs, but notice that they’re not usable as UDF’s: Each of them leaves more

than one result on the Stack—a definite no-no for a function.

Local Names

313

Make no mistake: Local names are indeed name objects. But each is
born, lives and dies with its defining procedure. To illustrate...

Example: Write a program to calculate (x +1)(x-1),
taking x from Stack Level 1.

Solution(s): (i) « DUP 1 + SWAP 1 - = »

Direct, but unclear that it uses an argument.

(ii) « '¥'STOKL +K1-=%=»

The argument is more obviousif you nameit.

Gi) «+R«K1+K]1-%2»>»
Looks a lot like (ii).

(Gv) & > X '(R+1D=(K-10' =

The clearest of all, visually.

Cases (ii) and (iii) dolook similar. Indeed, '®' STOand+ K aresimilar
in effect: both store the argument into a name, 8. But that name is
something entirely different in each case.

Incase(ii) '®' isaglobal name and will remain in the current VARiable
directory after being used. At the very least, this clutters up that
directory, but what if you’ve already used the name 'K' to store some
otherimportant value? Case (ii) would overwrite (destroy) that value.

By contrast, in cases (iii) and (iv), the local name, ¥, never exists in
any VARiable directory; storing the argument in it during its defining
procedure does not affect any global name, '®'. And the local ®
disappears at the completion of its defining procedure.

314 (6) BuiLpinG Your OwN TooLs: PROGRAMMING

So you can see that local names are just as handy as global VARiables

for “calling up” input values whenever you need them—so that you

needn’t try to keep track of them in the Stack meanwhile.

“Ah:

So invoking local names works just like invoking global
VARiable names?”

Recall that when you invoke a VARiable’s name, this triggers
an automatic EVALuation of the object contained in the name
(except if it’s an algebraic or a list). But when you invoke a
local name, there’s never an automatic EVALuation; the object
contained in the local name is simply put onto the Stack.

You can demonstrate this difference. Try this program that,
given two arguments (the old name and the new), renames an
existing VARiable in your current directory:

« » old new « old RCL
new STO old PURGE » =»

The fact that this program works at all (try it*) says a lot:
When it first invokes the local name, 01d, this simply puts the
object contained in0ld onto the Stack. That object is a global
(VARiable) name—the name you're changing. And clearly
this isn’t evaluated; if it were, the value in that name (what-
ever it might be) would probably produce an error when the 48
tried to execute RCL with that value as its argument.

*You won’t see many explicit keystrokes from now on. If you're still not sure how to key in and use
a program like this, you may want to review Chapter 3, pages 132-135.

Local Names 315

One more thing to keep in mind about local names: Since you can
“nest” one program segment inside another, you can therefore “nest”
the defining procedures of local names. So, to train your eye to see local
name environments, look at these examples:

« » b c 'T(c*2-b*2)' »

The simple case: Local names C and b exist only inside the defining
procedure. This could be a UDF—named LEG or something similar.

{ »bc "J(ce-b2)' }

Don’t forget that lists can do it, too. If you EVALuate this list, a local
environment with C and b will be established for the algebraic im-
mediately following—just as with the program version above.

€« + 5 ¢« 5 S0R 5 4 = »
+ a p '2Z2%(as9+p-308)"

»

This is a sequence of local name environments: Assigning a single
argument (the side of a square) to the local name, 5, the first defining
procedure then uses S to leave two results on the Stack (the area and
perimeter of the square). Though the math is easy enough, you can’t
use an algebraic to generate more than one result, so the first defining
procedure must be a program. Then, after it finishes (5 and its envi-
ronment are gone), the two results are assigned to another set of local
names, d andP, for the final calculation in an algebraic procedure form.

316 (6) BuiLping Your OwN TooLs: PROGRAMMING

€« » xyz «x SAR y SOR + [
+ r 'wErrgez! (gt 2+yt+zte)! o»
SWAP =

Thisis a nesting oflocal environments: The first procedure takes three
arguments and assigns them to ®¥,4 and Z. Then it does a calculation
on ¥ and Y and assigns that to another, inner procedure environment
(the first algebraic), to complete a cylindrical volume calculation.

The end of that algebraic is the end of the inner environment; at that
point, I disappears. But the outer environment still exists, so the
program can continue to use ¥, Y and Z until it encounters a * to end
that environment. And of course, even after that, the program itself
can continue.

Notice that the local names from the outer procedure (¥,4 and Z) exist
within the inner procedure, too—because they existed in the environ-
ment where the inner environment was being created.

« » b c "J(c*2)-T(b*"2+LEG(b, I*2)' »

Here, within an environment with local namesb andc, you invoke LEG
(from the previous page). So LEG EVALuates, thus creating an envi-
ronment for its local names, b and c.

Do those conflict with the b and € created above? No. Unlike nesting
(where all commands creating the inner environment are executed
within the outer environment), when you invoke the name of another
program, any local environment(s) that program creates will be out-
side the invoking environment, Therefore, LEG cannot “see” the local
names created above. It will interpret theb and c in LEG(b, c) as the
global VARiablesnames 'b' and 'c' and assignthose toitslocal names.

Local Names 317

Program Design

Obviously, you can do a lot more with a 48 program than just straight-
ahead arithmetic with a few arguments. It’s time to explore the 48’s

inventory of programming tools—loops, conditional tests, etc. But

first, some general comments....

No matter what kind of machine you're programming, you generally
work through certain basic considerations when designing the pro-

gram—before you even begin to write the code itself.

A general program design checklist might look something like this:

Define the outputs

Define the inputs

Set your strategy

Subdivide tasks:

Prepare

Get inputs
Process inputs
Give outputs
Clean up

318

Identify the results the machine is to calcu-
late—the acceptable ranges of values and their
order and format of presentation.

Identify the information the user will supply to
the machine—acceptable ranges of values and
the order and format of input.

Identify the critical approach and processes.

Prepare memory, system parameters;
Prompt for, check and store inputs;
Calculate, trap undesired errors;
Format, recall results;

Reset memory, system parameters, etc.

(¢) BuiLpinG Your OwN TooLs: PROGRAMMING

This Course isn’t a programming techniques manual; that could easily
fill another book. But this checklist can help when you’re program-
ming the 48, especially the step where you set your strategy. If you
clearly define that strategy first, you’ll have no problem matching it
properly with specific tools in the 48.

A!EQ.

¢ There’s no way around it: In postfix programs, you’ll have to use
some postfix notation. And it’s not intuitively easy to read:

12+ instead of 1+2

Soin every solution you see here, force yourselfto “walk” mentally
through the program steps: Envision the Stack (do it on paper if
it helps) and track the arguments as they come and go. If you
want to be a programmer, you must learn the language.

¢ What'’s the difference between a built-in command and a pro-
gram that you build and name? ...Think about it....

Not much, right? So if you don’t find, say, a certain handy Stack
command already built-into the 48—no problem—build it and
name it yourself! In this way, you can literally add o the tool box
of commands in your 48. And then, of course, you can use those
tools to create still others, and so on.

The 48 is well suited for such modular programming: no single
program structure need be very long or intricate. Instead, it can
invoke other small programs as commands, which, if you’ve de-
signed them consistently, will behave as such (take arguments,
return results, generate predictable errors). Your design strat-
egy simplifies immensely if you consistently mimic built-in tools.

Program Design 319

First, look at some “warmer-uppers” to see how that design checklist
applies to your modular 48 workshop....

Problem: Write two programs, LMAX and LSUM, that do for lists
what the commands RNRM and CNRM do for vectors.

Solution: Qutputs. Each program should return a real number.

Inputs. Each program will take one argument (Stack
Level 1)—a list of real or complex numbers (one type
only). Any type error should be reported

Strategy. Convertthelisttoarray;then RNRMor CNRM.

Subdivide tasks. No need to prepare anything. These
programs should use the current memory configura-
tion and flag settings, just like built-in commands.
No prompt for the input—postfix commands assume
the argument is on the Stack already. And no input
checks; CNRM or RNRM will catch object-type errors.
Each program consumes its argument and leaves its
result on the Stack—just like a built-in command.
No need to clean up—you didn’t mess up anything.

The code.
LMAX: « 0BJ> »ARRY RNRM =
LSUM: « 0BJ*> =+ARRY CNRM =

320 (6) BuiLpinG Your OwN TooLs: PROGRAMMING

All the formal design may seem like a lot of fuss over those rather

simple programs, but—like anything else—if you do it consistently, it

will become automatic.

More to the point, notice how many of the steps in the design checklist

are taken care of by using or mimicking the built-in commands. Now

LMAX and LSUM will behave as commands, too—especially if you've

stored them in the HOME directory (so that they’re accessible from any

other directory). Try some more....

Problem:

Solution:

Write a program to compute a unit vector in the same
direction as a given vector.

UNIT: « DUP RABS - =

This consumes the argument and leaves a result—for
any non-zero real number, unit, complex number, vector
or array (and depending on flag -3, an empty name or
algebraic could be acceptable, too). For other argument
types—or zero values—you’ll get an error. All of this is
consistent with the behavior and definitions of the built-
in ABS function.

Problem:

Solution:

Write a program to double an array and subtract 1 from
every element.

DS1: <« 2 = DUP 1 CON - =
Again, this consumes the argument and leaves a result.
And it works on several argument types.

Program Design

321

When you need multiple arguments—or need to do more “horsing
around” on the Stack—that’s when to consider using local names to

keep things clear and tidy....

Problem:

Solution:

Write a program that splits a given character string into
two substrings. Make the split before the given charac-
ter position.

SPLIT. « » s p
«s1lpl-5SBsps
SIZE SUB =»

»

Follow the progress of events on the Stack (work on your
postfix reading skills). Notice how the program pre-
pares two arguments for the built-in command, SUB.

As usual, the program consumes its own arguments.
Indeed, local names accomplish this very nicely: they
removethe arguments from the Stack right away, keeping
them available by name, then disappearing with them
when their procedure ends.*

Notice also that the two results (the two parts of the
original string) are left on the Stack so that the reverse
process (combining them)is aseasy aspossible (+)). This,
too, is a typical trait of the built-in commands (recall
how OBJ* works so well in this respect).

*But is SPLIT a User-Defined Function? No—it leaves more than one result.

322

(e) BuiLpine Your OwN TooLs: PROGRAMMING

You've been designing new commands that relied upon built-in com-
mands they invoke to set their input limits and generate errors. But
what if you want to create a command with more flexible tolerances
(“smarter”) than any built-in command it invokes?

Conditional Tests

The most basickind of program flexibility is a machine’s ability tomake
decisions. Thatis, it can change its course of action “on the fly"—basing
its decisions upon information it encounters during execution. The 48
makes a decision by asking a question that can be answered by “yes”
or “no.” The command that asks the question is a conditional test, and
it returns a 1 result for “yes” or a 8 result for “no.”

Do This: Press m and look through the resultingmenu....

Each item asks a question* answerable by “yes” or “no”
(1 orB). And most of these questions compare one value
with another, therefore demanding two arguments.**

For example, the > command asks: “Is the object in
Stack Level 2 greater than that in Level 1?7

*Actually the SF, CF, TYPE and NOT commands are not tests (yes-or-no questions) at all, but you
use them so often in conjunction with the other tests that they appear on this menu for convenience.

**There are a few single-argument tests, however—the flag tests (FS?, FC?, FS?C and FC?C)—
where the only argument needed is the number of the flag to be tested.

Conditional Tests 323

Of course, when you’re conducting such comparative conditional tests,

the two argument objects must be comparable. You can’t compare

apples with oranges; nor an array with a character string. In general,

the two objects being compared should be of the same type.

Examples:

324

Stack arguments Test
et 11 4
1: 19

Result: 1 “Yes—the object in Level 2 is less than the
object in Level 1.”

2s 11 *abe«abd< s

1: 19

Result: 1 The same test as above, but using local
names and a program procedure.

2: 11 > ab 'ab!

¢ 11 >

1: 19

Result: B “No—Level 2is not greater than Level 1.”
2: "AARDVARK" <

1: "Zzymuray"

Result: 1 For strings, “less than” means alphabeti-

cally first (note: "Z" comes before "a").

(6) BuiLping Your OwN TooLs: PROGRAMMING

2: (11, 8) ==
1: 11
Result: 1 == tests for equality of value (the single =

symbolisforbuilding algebraic equations).

2s (11,8) SAME

1: 11

Result: 8 SAME tests for exactly identical objects.
2t 'B*2! S

13 '43RC

Result: 'B*224*A*C' A test comparing expressions
acts as an operator, combining the two arguments into a
new expression (recall that you built a quadratic expres-
sionsimilarly: 'B*2-4*A*C"). To get the yes-or-no (1 or
B) answer to the inequality test, you must EVALuate it
with numerical values in each VARiable (A, B and C).

Result: 8 The logical operators can test combina-
tions of real values. Each value is taken
simply as non-zero (true) or zero (false).

2s B =+ ab 'a0OR b) AND b'
1: 64
Result: 1 You can build tests of your own like this.

Conditional Tests 325

Branching

So now you know how to tell your 48 to test values—ask questions....

Question:

Answer(s):

How do you tell it what to do with the answers? How
do you give the program one set of commands (“Plan
A”) for a “yes” answer and another set (“Plan B”)—or
maybe none at all—for “no™?

You use one of the four IF program structures, all
available in the R0 (BRanCH) menu:*

Answer IF Answer
PlanA THEN PlanA
IFT END

In each of the IF-THEN structures, the 48 evaluates
PlanA only if the Answer to the test is true (1). If
Answer is false (B), the structures do nothing.

Answer IF Answer
PlanA THEN PlanA
PlanB ELSE PlanB
IFTE END

In each of the IF-THEN-ELSE structures, the 48 will
evaluate Planf if the Answer is true (1). But if the
Answer is false (B), the 48 evaluates Pl1anB instead.

*The various menus in the toolbox offer a wealth of typing aids for programmable commands
(for STacK, DiSPLay, etc.), many of which you can use in this chapter. Be sure to use them—and
explore them, including their shifted menu items—as you build programs here.

326

(6) BuiLping Your OwN TooLs: PROGRAMMING

Example:

Solution:

Write a program that squares the Level-1 argument
only if its absolute value is between 1 and 5 (inclusive).

« + w « 'ABS(x)21 AND ABS(x)<3'

2! IFT » »

IFT (“IF Then”)is the postfix version of IF-THEN. Itlooks
on the Stack for its arguments:

2t 'ABS(x)21 AND ABS(x)<3'

1: 'whe!

The first argument is the test, which evaluates either to
1 orB. The second argument is your “Plan A”—the object
tobe evaluated only ifthe test evaluates to true (1). Note
thatin either case—like other commands—IF T consumes
its arguments.

Or, your “Plan A” (the second argument) could be a

program (or any other object) instead of an algebraic:

« » w « 'ABS(x)x] AND ABS(x)<5'
« w SO » IFT » »

Here’s the Stack as the IFT would find it in that case:

2t 'ABS(x)21 AND ABS(x)<5'
1: « w S0 »

Programs and algebraics are both valid object types for
procedural arguments such as these.*

*You could, of course, use a program rather than an algebraic for the conditional test, too:
« x ABS 1 > ¥ ABS 5 £ AND » But the algebraic form is much more readable.

Branching

327

Question:

Answer:

Question:

Answer:

How would the solution to the previous problem look if
you were to use the more readable IF... THEN...END
structure rather than the strictly postfix IFT?

Probably something like this:

« » w « JF 'ABS(x)21 AND ABS(x)<5'
THEN % SQ END » »

IF...THEN...END doesn’t expect Stack arguments; it’s
probably easier to read.

Is readability the only advantage of IF...THEN...END?

Part of its readability makes it convenient to key in, too:
Since it doesn’t look for Stack arguments, it doesn’t force
you to put your “Plan A” into the form of a procedure
object (program or algebraic). Instead, the 48 simply
takes all instructions between the THEN and the EMND to
be part of your “Plan A.” Thus, at the very least, it can
save you the keying in of the extra pair of ' ' or« *.

So IFT and IF...THEN...END are your two options for using the result
of a test to decide whether or not to execute a certain set of instructions.

Often, though, you want to use a single test to choose between two
different courses of action (“Plan A” and “Plan B”)....

328

(e) BuiLpine Your OwN TooLs: PROGRAMMING

Problem:

Solution:

Write a program that negates (changes the sign of) the
Level-1 argument if it’s a real-valued array* but drops
if from the Stack if it’s anything else.

« DUP TYPE » x t
« 't==3' '-x' B
IFTE » »

IFTE is just like IFT—except that you need an extra
argument for the “else” case:

3: 't==3"
2: I_xl
1: 8

The first argument onto the Stack is the conditional test
('t==3" asks “ist equal to 3?”). Next comes the “Plan
A” object (for a true answer), then the “Plan B” object (for
false). IFTE consumes all of its arguments.

Alternatively, IFTE can be used in algebraic form—as a
function:

« DUP TYPE » %= t 'IFTE(t==3,-%,8)' »

Just as with any other function, the argumentsin IFTE’s
argument list correspond to the arguments you would
normally prepare for it on the Stack. IFTE is unique
among the four IF-THEN structures in having this al-
lowable function form.

*To test the type of the given object, use the TYPE command: It will return a 3 for a real-valued
array (look up and read about TYPE in your HP manuals to see all the various values it can return).

Branching

329

IF...THEN...END is a more readable version of the formal, argument-
oriented IFT. No prizes for guessing what IF...THEN...ELSE...END is
good for....

Yep: IF...THEN...ELSE...END is a more readable form of the
more formal, argument-oriented IFTE.

Watch: Here’s how you might solve the previous problem by using
the IF...THEN...ELSE...END structure:

« DUP TYPE » % t « IF 't==3'
THEN '-x' ELSE 8 END »

»

Or (without local names):

« IF DUP TYPE 3 ==
THEN NEG

ELSE DROP @

END » »

330 (6) BuiLping Your Own TooLs: PROGRAMMING

So those are your four choices for branching one or two ways, de-

pending upon the outcome of one conditional test. But what if you want

to branch one of several different ways—using several tests?

Problem:

Solution:

Write a program to return a character string describing
the magnitude of a given real value.

Use a CASE statement:

« ABS KPON » m «
CASE
'm<8' THEN "Ones" END
'm==1' THEN "Tens" END
'm==2' THEN "Hundreds" END
'm==3' THEN "Thousands" END
'm==4' THEN "Tens of thousands" END
'm==5' THEN "Hundreds of thousands" END
'm==6' THEN "Millions" END
"Several gadzillion" 1688 .1 BEEP
END » »

See how this works? Each case has its own test; the
items following it (all those between each THEN and END)
are evaluated only if that test result is true. The final
items—without any test—are optional, in case you want
some action(s) taken if none of the test results are true.

Very handy, no? Between IF statements and CASE statements, you can

get your 48 to branch its execution just about any way you wish!

Branching

331

You’ve seen how to use conditional tests and branching to check object
types and ranges and proceed accordingly. But what if you don’t know
all the possible problems? Somehow, you need to try your commands
and deal with the errors as they arise....

Problem: Write a program to perform a simple division—consum-
ing the arguments and generating a result—but substi-
tute a character string if the attempted division causes
an error for any reason.

Solution: <« IFERR -~
THEN DROPZ "MNot a number"
END =»

IFERR (IF ERRor) is much like the IF-THEN command,
but rather than obtaining a conditional test result from
the commands between it and THEN, IFERR checks to
see if those commands generate an error. If so, IFERR
causes a skip to the THEN part (OROPZ "Not a Mumber"
here). Ifthere’s no error, the original commands (<) are
completed and those between THEN and EMD are skipped.

There’s also IFERR...THEN...ELSE...END. So now you can trap er-
rors—even if you can’t predict in advance what they might be.

That’s your basic repertoire of branching devices. Don’t worry—you’ll
getlots more practicein the quiz coming up. But first, consider another
important set of programming structures....

332 (6) BuiLping Your OwN TooLs: PROGRAMMING

Looping

One of the most valuable features of any computing device is its ability
to accurately and tirelessly repeat a series of commands....

Look: You can use one of these six loop structures on the 48:
Go Go
Stop Stop
START Commands START Commands
NEXKT Increment STEP

To repeat a set of Commands a known number of times, you
cancount from one value,Go, to another value, 5t oP—by ones
(START...NEXT) or by any Increment (START...STEP).

Go Go

Stop Stop

FOR Index Commands FOR Index Commands
NERXT Increment STEP

You can also name the loop counter (here it’s Index), so that
you can use its changing value in your repeated Commands.

WHILE 'NOT Done' 00 Commands
REPEART Commands UNTIL Done
END END

Or, for an unknown number of repetitions, just repeat until
agiven exitconditionissatisfied: WHILE...REPEAT...END
tests for the exit condition at the beginning of the command
loop; DO...UNTIL...END tests for it at the end of the loop.

Looping 333

Try some examples of each kind of loop....

Problem: Write a program to sum the elements of a given list.
Solution: « (BJ* 2 SWAP START + NEXKT =»

This uses the START...NEXT loop—where you simply
want to repeat a set of commands a known number of
times. Name this program SUML, and try it on this list:

{28943}

The first command, 0BJ*, puts the list’s elements and
their element count (4) onto the Stack:

6 27
5 27 5t 8
41 8 4: 9
3: 9 343
22 43 2: 2
12 4 12 4

Next, the program puts a & onto the Stack and SWAPs
positions with the 4. Your loop counters are now ready.
The START will read (and consume) them, thus counting
from 2 to 4* and performing the commands inside the
loop (in this case it’s just +), once for each count.

*Notice that the number of additions necessary to sum all the elements is one less than the number
of elements. This is why your loop count goes from 2 to 4, not 1 to 4. You could, of course, count
from 1 to 3 (or 45 to —43, or any other 3-count interval), but it’s simplest to use the element count
4) produced by 0BJ* as the “end” of the count.

334 (¢) BuiLping Your Own TooLs: PROGRAMMING

Question: How could you change the SUML program so that it would
correctly ignore any error arising from trying to add
with an “unaddable” type of object?

Answer: Put an IFERR...THEN...END structure inside the loop:

« DBJ> B8 1 ROT START IFERR
+ THEN SWAP DROP END NEKT =

In this version, you put an extra value (8) onto the Stack—
so that the program will start with a valid “running
total” even if the very first list element it encounters is
“unaddable.” So here’s the Stack as START finds it:*

7t 27
8
9
43
8
1
: 4
The commands inside the loop are now the IFERR
structure, which will allow the + if that doesn’t cause an

error, but will substitute a SHAP DROP to dispose of any
element causing an “unaddability” error.**

=W Ao

*Since you’ve inserted your own starting value @), the number of additions necessary to sum all
elements is now equal to the number of elements. So your count goes from 1 to 4 this time.

**Gtill, your “sum of all elements” may not turn out to be a real number: Recall what + does with
character strings, complex numbers, etc.: Those object types will not cause errors here.

Looping 335

Problem:

Solution:

Write a program to count (in the display) from any two
given real values, with any real increment.

«=+ijd
« i i j START DUP 1 DISP

1 WAIT d + d STEP » »

This solution uses the START...STEP loop—where you
specify the increment of your count as well asits starting
and ending values. Name the program COUNT and try
it with various starting, ending and increment values.*

The program begins by taking your three arguments
(your desired beginning, ending and increment values,
respectively) from the Stack and putting them into local
names. Then it puts the beginning value (i) back—as
the first running total to be displayed—then the begin-
ning and ending values (i and Jj), as consumable argu-
ments for START.

Then, inside the loop, you DISPlay the running total on
display line 1 and pause via the WAIT command for 1
second. Then you add the increment value, d, to the
running total, then give d also as the consumable ar-
gument for STEP (so that it knows how to increment its
own count), and that ends the loop.

*How does it handle negative values? Non-integer values? Non-real values?

336

(6) BuiLping Your Own TooLs: PROGRAMMING

So one solution for the COUNT program is to build and increment your
own counter on the Stack. You must do thatif youusea START...STEP
loop, because the count it conducts is hidden and inaccessible to you.

But is there another, easier way to display a count?

Sure:

Watch:

Use a FOR...STEP structure instead. In that kind of loop,
its own count is accessible to you—via the name you give it.

«+ijd
« i j FOR c ¢ 1 DISP 1 WRIT
d STEP » »

After assigning arguments to local names, you enter a FOR
loop, supplying begin and end count values (i and Jj). In
a FOR loop, you declare a local name (existing only inside
thatloop), to represent the current value of the loop’s count.
So, first you declare the count name (C); then you use it (C
again)—putting the count onto the Stack for display.

So there’s no need for any explicit addition to increment the
Stack count: When you end the loop (giving d as the ar-
gument for STEP—as before), on the next cycle, the loop
structure itself will have incremented its own count,C. So,
simply invoking that name, C, puts the current count value
onto the Stack; the displayed count is the loop count.*

*Notice that if COUNT were to offer an increment of 1 only, you’d use a FOR...NEXT structure and
dispense with d. Realize also that, within the loop, you can do any calculation you want with C;
it’s an entirely usable local name—with a local environment nested inside that of i, j and d.

Looping

337

So that’s how to design programs to cycle through a known number of
loops. But what if you don’t know that number?

Problem:

Solution:

Write a program that drops objects off the Stack until it
encounters a character string or empties the Stack.

« IF DEPTH THEN
WHILE DUP TYPE 2 #
REPEAT DROP END END »

First, notice the IF...THEN...END structure surround-
ing the WHILE...REPEAT...END structure: Only if the
Stack is not empty (i.e. if DEPTH gives a non-zero value)
will the program even enter that structure.

WHILE...REPEAT...END tests its condition first: “The
Level-1 object is not a character string (does not have a
TYPE value of 2).” The commands between the WHILE
and the REPEAT make this test, which must be true (1)
before the loop itself (the commands between REPEAT
and the first END) is evaluated for that cycle. When the
test returns a false (B) result, the loop cycling will end.

Notice, therefore, that ifthe WHILE test returns8 on very
first time, the program will end without the commands
in the loop having executed even once. This suits the
problem: With a character string already at Level 1,
indeed the program shouldn’t do anything.

338

(¢) BuiLbine Your Own TooLs: PROGRAMMING

Again: A WHILE...REPEAT...END loop tests its condition before en-
tering the loop itself. By contrast, consider this...

Problem: Writeaprogram that producestwoodd random integers
between 0 and 100.

Solution:* IRAND: « RAND 168 = IP »
0DD?: « 2 MOD »

« 80

DO DROPZ IRAND IRAND

UNTIL DUPZ ODD? SWRP ODDT AND
END »

Unlike WHILE...REPEAT...END, a DO...UNTIL...END
loopis appropriate here, since it always executes its loop
commands at least once (even if your first two values
come up odd, you do need to generate them, no?). Sothe
conditional test comes after the loop’s commands.

Practice your postfix reading as you follow the com-
mands. Notice how you put two start values (8 and 8) onto
the Stack before entering the loop. This is to allow for
the first commands inside the loop, which keep the Stack
clean by dropping two previous, unacceptable values.

*Notice how you assist the program with two smaller programs: IRAND generates a random in-
teger between 0 and 100; and ODD? tests an integer value for “odd-ness,” returning a truth value
(i.e. either B or not B)—just like a built-in test. Of course, you could instead include their contents
twice in the main program, but that’s not as good a use of the 48’s modular extendability .

Looping 339

Quiz

That’s a brief tour of the programming structures available to you.

Now put it all together with these practice problems.

340

Write two programs, one with local names and one without, to

calculate (A +B)(A-B) , given arguments A, B, C (in that order).
C

Unlike the two-argument comparative tests, the four built-in
flag tests (FS?, FC?, FS?C and FC?C) are not valid in functional
(algebraic) form. That is, you can’t build expressions such as
'FST(-2) AND FC?(-3) ' —though these mightindeed be handy
in your programs. So, write your own: write four UDF’s to allow
you effectively to use flag tests in algebraics. In general, how
might you make various system flags more convenient?

Write a new conditional test, called LIST?, that tests whether a
given object is a list. Then use LIST? to write another test, called
FLST?, that tests whether a given object is a non-empty list.

Write programs that take a given string and:

(i) reverse the order of the characters;

(ii) change all lowercase characters to uppercase;
(iii) change all uppercase characters to lowercase;
(iv) change both cases simultaneously.

(6) BuiLping Your OwN TooLs: PROGRAMMING

10.

11.

Quiz

What'’s the primary use of a list as a procedure object?

Write a program that deletes from a given string...

(i) all leading occurrences
(ii) all trailing occurrences

...of a given character (another string—the second argument).

Write a program that waits for you to press the (o) key.

Write a program that takes a given list and a given conditional
test procedure (in that order) and appliesthe test to each element
of the list, returning a “filtered” version of the list—containing
only the elements that satisfy the test.

Recall the alphabetical directory structure described in problem
36 on page 149. Write a program that returns the object stored
in a given name in one of those 26 alphabetical directories.

How would you build your own version of 0BJ+?

Remember page 279 (transforming data in ZDAT)? Now write
four programs that take a given real-valued array (but not a
vector) and extract/insert a specified row/column.

341

342

Quiz Answers

As is usually the case with programming, there are many ways

to solve a given problem. First, using local names:

«*abc<«ab
+ab-%c-7 »»

« >*abc«a
SO bSQ -c~s »»

Then, without local names:

« ROT ROT DUPZ +
ROT ROT - # SWAP - »

or ¥ *abc
'(a+b)*(a-b)/c' »

or ¥ *abc

'(a*2-b*2)sc' »

or « ROT SQ ROT S@ -
SWAP - »

Simply “repackage” each built-in command:

fst: « > f « f FS7 » »
fc™ « > f « f FC? » »
fs?c: « > f « f FSTC » »
fcrc: « > f « f FC?C » »

You can build little routines to test sets of system flags. For

example, flags —45 through —48 represent the number of decimal

places in the current display format; flags 49 and —50 represent
the format itself. So you could write routines, DGTS? and FMT?,
to test these parameters (recall how you extracted the binary

wordsize similarly from its system flags on page 104).

(6) BuiLpinG Your OwN TooLs: PROGRAMMING

3. LIST®: « TYPE 5 == »

FLST?: « IF DUP LIST?
THEN SIZE 8 >
ELSE DROP B
END

4. @ « » s « "1 5 SIZE
FOR i s i i SUB SWAP
+ NEXT » »

(ii) « » 5 « " | 5 SIZE
FOR i s i i SUB NUM
+ n '"IFTE(n297 AND
n€12Z, n-32,n)'
CHR + NEKT = »

Gi) <« » s « "' 1 s SIZE
FOR i s i i SUB NUM
> n 'IFTECn265 AND
n<98, n+32, n)' CHR + NEKT » »

vy <« * s « "' 1 5 SIZE
FOR i s i i SUB NUM
+ n 'IFTEC(n297 AND
n£122, n-32, IFTE(n265 AND
n£98, n+32,n))' CHR + NEXT » »

Follow the Stack closely. Also, notice the use of the FOR loop
counter, i. And notice the nested IFTE structure in (iv).

Quiz Answers 343

344

Lists are useful to evaluate chiefly as directory PATHs. For ex-
ample, what if your program needs to DOSTUFF, which is in a
directory, DIR1, that’s not in the current PATH? No problem:
simply save the current PATH (it’s represented as a list of di-
rectory names, remember) and then later, EVALuate it—to get
back to that PATH—when you've concluded your work in DIR1:

...PATH * whereiwas « HOME DIR1
DOSTUFF whereiwas EVAL =»

@ « » ch « WHILE DUP
NUM CHR ch == REPEAT
2 DVER SIZE SUB END »

»

(ii) « + ch « WHILE DUP
SIZE DUPZ DUP SUB
ch == REPERAT 1 SWAP
1 - SUB END
DROP » =»

A WHILE loop is appropriate for each of these, since you don’t
know right now whether you'll need to trim offany characters from
the given string (so the test comes before the action).

Notice that only one of the two arguments (the character to be
trimmed) is put into a local name; it’s too difficult otherwise to
place it onto the bottom of the Stack when you need it. As for the
original string, it’s simply “whittled down” (with SUB) by one
character each cycle through the loop; the result of the previous
cycle becomes the “given string” for the next cycle.

(6) BuiLping Your OwN TooLs: PROGRAMMING

7. Here’s one way: « D0 DO UNTIL KEY END
UNTIL 61 == END =

The KEY command returns a 8 (“false”) if no key is pressed or a
key location (row-column) code and a 1 if a key has been pressed.
Therefore, you’re looking for key code 61 (row 6, column 1). To do
S0, you use a nested pair of indefinite loops (DO...UNTILs). The
inner loop repeats until any key is pressed; the outer loop repeats
until the correct keycode (61) is detected. You might want to read
in your HP manuals more about the WAIT command, too.

8. LFLTR: « » list test « { }
1 list SIZE FOR i list
i GET DUP IF test EVAL
THEN + ELSE DROP ENMD
NEXT » »

This is just another FOR-loop problem; you know the number of
cycles through the loop from the SIZE of the given list. Notice
that you must EVALuate the test procedure explicitly (remember

that invoking a local name won’t do this for you).

Quiz Answers 345

9. <« > n « { HOME 3
n »5TR 1 2 SUB
0BJ» + n + RCL » »

The strategy here is to build a PATH list to the given name and
then RCL that path—rather than EVALuate it—thus staying in
the current directory (alternatively, you could use the “remem-
ber-and return” strategy shown in problem 5). Notice how you
extract the single-letter directory name by first converting the
given name to a string.

10. You could do this: obj*: <« DUP TYPE CARSE
B == THEN real+ END

1 == THEN cplx* END
¢ == THEN str> END
3 == THEN rarr> END
4 == THEN carr> END
5 == THEN list+ END
(etc.)
END =
Or this: obj*: « > ob « { real>»

cplx® str+ .. .(etc)... }

ob TYPE GET

EVAL END » =»

Of course, you also need to define each of the specific routines,
real+,cmplx?, etc. And then to change how a certain object type
“decomposes,” you’d simply edit that specific routine—not obj=+.

346 (e) BuiLpinG Your OwN TooLs: PROGRAMMING

11. GETRW: « » i « DUP SIZE 1 1
SUB 1 SWAP + B CON
i 1 PUT SWAP * » »

GETCL: « SWAP TRN SWAP GETRW
TRN »

Notice the assumed order of inputs: Array, row/column number.
Notice that GETCL uses GETRW; TRN (TRaNspose) makesit easy.
But GETRW doesn’t check for bad inputs (what happens if you
ask GETRW to extract, say, row 20 from a 3x12 array?). How might
you trap or correct such problems? Also, what if you want to allow
for vectors? You'd need to include a test to handle them, since
they require different arguments than arrays.

INSRW: <« 1 - =+ r i
« 0BJ+ 0BJ» DROP
POMENi-m=*
+LIST r 0BJ+ DROP
m 1 + ROLL OBJ+ DROP
{ 'ntl'" m 2} 2ARRY

> ® %

INSCL: « ROT TRMN ROT TRN
ROT INSRW TRN =

The inputs: Array, new row/column array, row/column number.
INSRW decomposes the existing array onto the Stack, moves the
rows after the “i th” row out of the way, inserts the new row and
recomposes the array, one row larger. Notice how it decreasesthe
specified row number by 1 to simplify the math. Again, notice
that neither vectors nor bad inputs are detected.

INSCL just uses INSRW—via TRN.

Quiz Answers 347

CusTtomizZING YOUR WORKSHOP

Labor-Saving Devices

A calculator as powerful as the 48 is certainly a labor-saving device.
But that very power offers you so many choices that the keystrokes
simply to make those choices soon become laborious, too—unless you
take advantage of certain built-in features.

For example, it’s great to be able to build and name a lot of new
commands. But then you may have several pagesin your VARiable menu
to “leaf through” whenever you want to use one of those commands—
which defeats the convenience of the menu for quick typing/execution.
What to do? Use custom menus to group together the commands you
typically use together, thus reducing your need for (NXT)s and (&§)PREV/s.

This is just one example of the many labor-saving devices the 48 offers
you. You set up certain assumptions about your particular needs and
work habits, so that the machine will do more of what you want with
fewer keystrokes.

So as you study (and in some cases, review) these features, consider
how you might best use them. Weigh the labor you save with a tool or
configuration against the labor you expend to build it and useit. That’s
the key question to ask yourself. This chapter on customizing is really
about optimizing (not maximizing or minimizing); the best solution for
one situation isn’t necessarily that same for another.

Labor-Saving Devices 349

Input Shortcuts

You've already seen most of the ways to ease and shorten your use of
the 48’s densely-packed keyboard, but here’s a good one-glance recap.

Alpha Modes

(@) Normal single-stroke alpha mode. Normally, pressing

yields N; pressing (aJ&q)N)yields n; and pressing yields
K. Thus, each key may have three alpha “meanings.” But the

alpha mode only lasts for the next keystroke.

Lower-case single-stroke alpha mode. When you need to
input many lower-case alpha characters, you can change what
the (&) key does by pressing (eJq)a). Thereafter, until you

press or , yields n and yieldsN. The
ENTER) or returns the alpha-shift keys to normal. The
alpha mode lasts just one keystroke.

Normal alpha-lock mode. This locks the keyboard into alpha
mode until a third press of (@) (or or (ATTN)) releases it.

(a]JaJea)o) Lower-case alpha-lock mode. This locks the keyboard
into lower-case alpha mode for the duration of the Command
Line.

Flag —60 affects the action of the four alpha modes. When it’s clear,
they operate as described above. But when it’s set, the single-
stroke alpha modes are disabled; single () enters alpha-lock
mode until a second press of (o) (or or (ATTN)) releases it.

350 (7) Cusromizing Your WORKSHOP

Input Shortcuts

The Interacti tack

(a) Allowsyoutoreview the contents of the Stack and manipulate

it directly Among the many handy Stack tools are these:

€ MOME }

4: I|d|l
» 2ayT!
2 CABY

: 43
[ECHO [WIEW | PICK [ROLL [ROLLD3LIST]

£ NOME 3
4= ngn
» '12%n/T!
2t {RAB)}

1: 45
[ECHO [WEW [PICK JROLL ROLLD[+LIST]

£ WOME }

4: ngn
> ‘2% T!
2 {RB}

I: 95
[EHO [WIEW [PICk [ROLL [ROLLI+LIST]

£ NOME }

4: ngn
> ‘2% /T
2s {RAB}2

1: 43
LECHD e [PICk T ROLL [ROLLI+LIST]

ROLL

ROLLD

*LIST

€ HOME }
4: '2*“/]"
> AB)
I: '2*11/T'
[ECHO [WIER [PIck | ROLL JROLLO[*LIST]
€ NOME }

4: "d"
2 {AB}
¢ 15
1: '2*11/']"
[ECHOJVIER [PIck [ROLL JROLLOJ*LIST]
€ HOME }

4: g
» 45
2t 12%/T"
1: {AB 3}
[EHO [WIEM [PIck [ROLL JROLLOJ*LIST]
€ NOME }

4:

3:

2» "d"
1: £ ‘Z*n‘/T' { H B }
[EHO [WEMTPICE JROLL JROLLOJ*LIST]

Remember, too, that copies a selected level of the Stack
right into your Command Line, to save you from retyping it.

With the 48, there are more than one way to do most things.

~ml'u A ! '

Mm

e

\

351

Command Line E Modes

A built-in menu item normally evaluates immediately, mak-
ing it impossible to use it as a typing aid. In fact, the only
keystrokes that won’t normally evaluate immediately are
numbers and characters. Thus, (4)SPC)(5) (H) resultsina 9.

PRG Youcanactivate this mode by starting a list (q){})) or program
(&)« ») or via When you see the PRG annunciator,
any menu key for any command, function, or VARiable will—
instead of evaluating—insert its name, surrounded by spaces,
at the cursor on the Command Line. Akeyboard command or
function (such as(+)) behaves similarly: its name goes into the
Command Line, surrounded by spaces. Thus, (=®]ENTRY)(4)(SPC)
(5) P resultsin® 5 + +onthe Command Line.

ALG Youactivate this mode by starting an algebraic object or name
(). Now any key or menu item that is a function or VARiable
(i.e. anything allowed in an algebraic object) will be inserted,
without spaces, at the cursor on the Command Line. Thus, (")
(4)#)(5) results in '4+3" on the Command Line.

ALG PRG You can turnon this mode by pressing (JENTRY]2JENTRY)

while in normal mode, or (') while in PRG mode, or (®JENTRY
while in ALG mode. Here, any command key or menu item
behaves as it would in PRG mode, while any function or vari-
able key or menu item behaves as it would in ALG mode.

You cannot type an operation, such as (ATTN), into the Command
Line (that’s the difference between commands and opera-
tions). To determine if a keystroke is an operation, command,
or function, see the Operation Index in your HP manual.

352 (7) CustomiziNng YOUR WORESHOP

Special E

(GIMATRIX

(JEQUATION

Input Shortcuts

M

The Matrix Writer, which you used in Chapter 5,
makes entering and editing two-dimensional arrays
extremely easy and intuitive. You are less likely to
make careless mistakes if you use the MW instead of
the Command Line to enter arrays.

The Equation Writer, which you learned about in
Chapter 4, allows you to enter any algebraic object—
however complex—in a visual format similar to that
on paper. The EW itself has a special entry mode:

Within the EW, you can disable the implicit parenthe-
ses by pressing (GJ{}). This allows you to enter poly-
nomials without having to press (») after each expo-
nent. You can then reactivate the normal, implicit
parentheses feature by pressing once again.

78T}
w’ﬁ‘ﬂ/ﬁ'

353

Th

logs

Each directory has its own VAR menu, where all of the objects you

create in that directory are listed. Whenever you need quick access

either to the object’s name or the object itself, it’s usually easiest to use
the VAR menu (via (VAR))—after putting the 48 into the proper entry
mode (see page 352) to accomplish what you intend.

If you forget what’s in a variable, press to get a brief list of
the six items shown on the current page of the current VAR menu. And

remember also that the 48 presents special subsets of the current VAR

menu—called catalogs:

354

(©)ALGEBRA

[(SJSTAT

(SITIME

Any of these three key sequences take you to the
Equation Catalog, a special environment that lists
all objectsinthe current VAR menu that are usable
with the SOLVE and PLOT tools (see page 228).
You use a pointer (like that in the Interactive
Stack) to select the object you wish to make active.

This leads to the Array Catalog, which lists all
array objects in the current VAR menu—any of
which might be candidates for the current statis-
tical array. As with the Equation Catalog, you
select the array you want with the list pointer.

This leads to the Alarm Catalog, which lists all of
the currently set alarms and allows you to selec-
tively view and/or edit any particular alarm.

(7) Cusromizine Your WORKSHOP

The LAST Commands

There are four operations grouped together (as the left- and right-
shifted options) on the (2) and (3)keys that can:

¢ Save you time ¢ Save you grief from errors

(JLAST CMD

The 48 saves the last four most recently entered Command Lines in a
special part of its memory—just in case you need to retrieve a long,
hairy Command Line, make one small change, and re-enter it.

Example: Create these algebraics:

(@) '-T((R+6)-(R™2-5))+n 2!
() 'T(R*3-8)'
(e) 'T((R+6I/ (K 2+5))-R 2!

Solution:
PHXY2)ENTER)
(&JLAST CMDJ&)LAST cMD)(»)DEL)

[LAST CMD) retrieves the most recent Command Line
first and works backward in time from there.

The LAST Commands 355

(] LAST STACK

Try This: Assuming the three algebraics from the previous ex-
ample are still on the Stack, press(+)to add two of them.
Oops...you didn’t really want to do that. Now what?
How can you recover from such an error?

Solution: Use to retrieve the Stack as it was before
the most recent command (that was (+) here).

(2] LAST ARG

Calculate: (4 x5)+4°-(4+5)

Solution: (4]ENTER|5JXIILAST ARG[YX[)LAST ARG[H ([H.
Result (FIX 3): 1, 835. 666 ([OJLAST ARG) returns

all of the arguments consumed by the last command.

1+
Another: Evaluate x2_+x7_ —x, for x=3. Then press []LAST ARG).

Solution: (GJEQUATION[ZE A+ e X[¥ XX 2)>)H7 = e)X)
(ENTER[3) " J o] X]STO) EVAL[JLAST ARG).... Results:
-2.5008 (Level3) 0.5068 (Level2) 3.888 (Levell)
The arguments of (=}—the last command—return to the
Stack (the radical evaluates to 8. 588).

356 (@) Cusromizine Your WORKSHOP

(] LAST MENU

Often, switching back to a previous menu involves only one or two
keystrokes, in which case is no shortcut. But to switch
easily to the back “pages” of a menu—or into the interior of a nested set

of menus, ([[LAST MENU) is a lifesaver.

To Wit: 2.351 A/sec + 4.56 w/min = _2?_m/yr

Solution: [LENG (@@ _h]
@S] TIHE @ 5
(@ X5Xe)(@ILAST MeNU) I (O LAST MenU) S HEILE(H)
()()casT Menu)xD) I () LAST veny) T

Result: Z2.486_m~yr

O

R,
NG ‘.*,"
@@z’
>N

The LAST Commands 357

Customizing Your Workspace

Keyboard shortcuts are handy, but they can’t do it all for you. Custom-
izing your workspace can also go a long way toward reducing your
keystrokes and headaches.

But before you leap into it, remember one caveat:

Customization should make you more organized, not less.

As obvious as this advice seems, it’s quite easy to get lost in the levels
of customizing options that 48 provides—so that you end up making
more work for yourself.

Briefly then, here are some specific ways you can customize your 48:

¢ Organize your workspace into directories.

¢ Create custom menus.

¢ Create custom keyboard layouts.

¢ Create custom flag setups (mode settings).

¢ Customize your SOLVR menu.

¢ Customize your PLOT and STAT tools for each directory.
¢ Create custom zools.

How much of this customizing you should do depends on your needs.
The remainder of this chapter is devoted to introducing you to these
customization approaches and how they best fit together into an
optimization approach.

358 (7) Cusromizing Your WORKSHOP

Directory Structure

You’ve dealt with directories briefly in this Course, but here’s a more
“full-blown” scenario to consider: Assume for a moment that you're an
engineering student with a wide range of basic problems and subjects
in your courses. Therefore, the most important organizational deci-
sion you make on your 48 is probably your directory structure.

One option is simply to use your HOME directory for everything. To see
where this gets you, take a look at your HIME VAR menu right now. If
you’ve done all the examples and problems in this book, that menu now
has nearly twenty pages. You'll wear out your key (and your pa-
tience) looking for any given VARiable if you insist on dumping every-
thing in your HOME directory. Not only that, you’ll be limited to keeping
only one variable named '¥' or 'K' at a time—despite the vast num-
bers of equations that use these common variable names.

Abetter optionis to subdivide your work into a structure of meaningful
groups and subgroups. After careful thought, you—the engineering
student—might come up with something like this:

Hﬂl’|“'lE
| a T | | |
CALC ELEC PHYS GEOM CHEM 5TAT
MUMRC 3YME STATICE DYMAM MPARA PARA

METWORK FOURIER MISC PLAME SOLID TRIG

Directory Structure 359

Do It: Create that directory structure and return to HOME directory.

Go:

(e e c A U))@)) Memory) HATA
(JeJ e EJU(E]c) oI 800808 CklIF |
(oo EoMeETA YolocHEM NI

(I SDAN ETIEAR
BT (o)« MPYAIRIA) () E)vEmoRy) [T
(e EARACETE

[IHoMEIVAR) R ()« () PYDAINIE) ()] Memory N
(e@)ERLID) @ TR T« MRDE) EE
(rovEVARIEIFEN) @) S AT S @ MemorY AT
(=N AM EIE

REEVE ELEC BO00EHUINRROGEIETG CEUIF]
(I) ERWRINER) () EIIE e« M) @ HIIA
[YroMEVAR) IRTNE (o)) (NIUIM(RICE) (@) o MEmMoRY) [N
(eEME) (@) EEIAHME).

Now you can tidy up your HOME directory’s VAR menu, by PURGing the
unwanted variables and moving those that you do want to keep.

Tidy Up: Write a program, MOVY, to move a variable to another

directory and PURGE it from the original directory.

LikeSo: MOWW. « » a b « PATH a DUP

RCL SWAP b EVAL STO
EVAL a PURGE » »

360

(7) Cusromizine Your WORKSHOP

MOV expects the name of the object on Level 2 and the PATH list of the
target subdirectory at Level 1 of the Stack.

For example, to move 'DAM' (remember Junior Beaver?) to the MUMRC
subdirectory of CALC, you’d press (")IIEIEM (in your VAR menu) (ENTER);
then QIOHOME) (o)A LYCISPCINIUIMIRICIENTER), and (VAR LI
Then, to see your results, press NxT) [MAIEA and see ITTEM on that
directory’s menu. Notice that MOVY does not check to see if a VARiable
of the same name is already stored in the target subdirectory. If so,
you’ll lose the contents of that VARiable when MOWY executes.*

And:

Use It:

While you're at it, create a program, COPY, in your HOME
directory, that copies a variable into another directory
without purging it from its current directory.

COPY: « » a b « PATH a DUP
RCL SWAP b EVAL STO
EVAL » »

Use MOV and COPY (and E)JPURGE) to shorten the VAR
menu of your HOME directory to 2-3 pages.

Most of those variables have been stored for this Easy
Course and aren’t going to be useful to you in the future, so
you can purge them (save any you think you may use).
When cleaning house, remember that allowsyou
to quickly view the variables on one menu page.

*Of course, you could modify MOVY so that it does check for a pre-existing VARiable by that name.

Directory Structure 361

Custom Menus

Now that your directories are in place, it’s time to make some custom
menus that will serve you conveniently in your engineering student
“career.”

Amenuisjustalist ofobjectsthat the 48 associates with the menu keys
and a menu display via the MENU command.

Watch: To go to the first page of the MODES menu, you could, of

course, press ((JMODES); or you could press
nxT) [T

The MENU command understands that a real number argument refers
to a built-in menu. Most built-in menus have corresponding numbers
(see pages 697-698 of your Owner’s Manual).*

Another: Use your Owner’s Manual (pp. 697-698) and the MENU
command to go to page 5 of the STAT menu.

Solution: (4)0o)]-)0)5) (®JLAsT MeNU) [RIFXT. The page number of
the menu is given by two digits after the decimal point
(if none are given, the 48 assumes . 81).

*There are a few other menus—Matrix Writer, Selection, Rules, Graphics—that are not accessible
from a program and thus aren’t given menu numbers.

362 (7) Cusromizine Your WORKSHOP

Notice that the CST (CuSTom) menu has the number 1. That is, the
list of objects currently stored in the variable named CST in the current

directory is assigned the menu number 1 by the 48.

This is your custom menu—custom because you can readily change the
list stored in that VARiable CST. And keep in mind that:

* You can have a different CST VARiable in every directory;
¢ You can create many lists in a directory—lists that can be menu

lists whenever you decide to store them into CST.

Try One:

OK:

Move tothe{ HOME CALC 3YME } directory and create
a custom menu containing the functions COLCT, EXPAN,

ISOL, +0, and two short programs, PRINC and GEN that
set and clear flag —1, respectively.

(XD ER)] CHLLC |51 HED

Then: &I+ EPCIJS) IF)ENTER
(JoJoJPIRITIN]C) ENTER)STO) () >

(1)+/=JsPc)e)c]a]FIENTER] ' Jo) o] GIEJNJENTER)(STO).
These will appear on the VAR menu in the #¥MB directory.

Next, create the menu list and store it into CST: (&}
&) aLceerA) ETNRIEEEINE T Bl () LAST MENU)
LN EARE ETER) () (@) o) SIS TENTERISTO)

Now test it—press [CST). Presto!

Custom Menus

363

Now go back to the HIME directory ((JHOME)) to see what custom menu
you get.... It’s probably blank (if you don’t have anything stored into
CST at the HOME level yet) orit’s some other menu. Butno matter what,
this is not the same menu you just created. That one is available only
when you’re in the $YME subdirectory.

Now, the thought may occur to you that this list could be useful as a
custom menu in several of your engineering directories. So, should you
copy the list to the CST VARiables in the other directories?

Probably not. There’s only one CST in each directory and you don’t want
to monopolize all of them with copies of the same menu. A better
approach is to store that particular menu list into some other name,
and make it available to all of the directories, so that when you need
it, you can store its name into the CST variable at that time.

Try It: Move to the #¥MB subdirectory again and retrieve the list
stored inCST. Name itCALG and store it as a variablein the
HOME directory—so that it’s accessible to all directories
(remember how directory paths work?).

Simple: (VARNxD INAETRRNEN -)Fove ol A DCIENTER)
(sT0). Now, from any directory, you need only to store the
name CALG into the local CST variable (either with (ST0) or
with the MENU command), and then press to activate
your custom menu.*

*Note, incidentally, that when you use if the nameCST is not defined in the current directory,
the 48 will use CST from the parent directory.

364 (7) Customizing Your WORKSHOP

Actually, you really ought to name all of your custom menu lists. This
allows you to switch easily between different custom menus.

Some—Ilike CALG—may be useful for many directories and therefore
you store them in the HOME directory so that they’re accessible by all.
But if you have other menu lists whose use is more specific to a given
directory, you would store those list names there. The point is—as
with any VARiable—you control the universality of access to a custom
menu list by where you store it.

Keep in mind, too, that even if the 48 can find your custom menu list
name to store into CST, this doesn’t guarantee that it will be able to find
the menu items named in that list.

Try This: AtHOME, press CSTEALI.... What happens? Instead of
executing PRINC (i.e. setting flag —1), you get the empty
name, 'PRINC'. The 48 can’t find any object associated
with that name.

Of course not—the VARiable, PRINC, is stored down the
hierarchyinthe{ HOME CALC 5YME } directory. That’s
not in the PATH of the HOME directory, so it’s currently
invisible to the 48. So use MOWYY to move PRINC and GEN
back to the HOME directory where they now belong.

No matter how you invoke it (by typing it or via a VAR menu or custom

menu), a VARiable name can be evaluated only if it’s in the current
PATH.

Custom Menus 365

Custom menus work much like the built-in menus—including(sT0)and
for (@) and (3}—unless you have other uses for the shift keys....

Example: Modify CALG so that instead of using three menu keys
for COLCT, EXPAN, and ISOL, you use just one. Make
COLCT the normal (unshifted) choice, EXPAN the left-
shifted (&§)) choice and ISOL the right-shifted () choice.

Solution: Create thislist: { { "C,E, I" { COLCT EXPAN
ISOL ¥ ¥ »0Qr GEN PRINC 32

Note the format for each item with shifted meanings:
{ "item name" { action G}action ([B)}action } }

This list-within-a-list appears wherever you wish it to
appear (first position in this case) in the custom menu.
Store this list in CALG (at HOME), and use [CST) to test it.

This is how to pack more functionality onto six menu keys. Of course,
your custom menus can have multiple pages, too—but after a couple
of pages, you'd be playing hide-and-seek again with all the choices.

366 (7) Customizing Your WORKSHOP

Do This: Turn CALG into a one-stop custom menu packed with
useful goodies gathered from various built-in menus:

Item name | [N | REH | K DIGIT

Normal coLCT I_m DEG | FS? FIX ROLL
Left-shifted EXPAN | 1_ft RAD SF ST1D ROLLD
Right-shifted | ISOL IFTE | GRAD CF RND PICK

Solution: Store this list as CALG in the HOME directory:

{ { "GEI" { COLCT EXPAN ISOL 3 3
{ "mIsC" ¢ 1_m 1_ft IFTE 3} 3

{ "DRG" { DEG RAD GRAD 3} 3

{ "FLG" € FST SF CF 3} 3

{ "DIGIT" { FIX STD RND 3} 1}

{ "STAK" { ROLL ROLLD PICK } > X

CALG is now a very useful custom menu list, so useful, in fact, you might
want it available any time—without overwriting the CST in the current
directory. That is, you might want CALG as a temporary custom menu:

Look: <« CALG TMENU *, stored asCMEN in your HOME directory, lets
you use CALG without putting it into CST. You invoke a
temporary menu with the TMENU command. Like any other
menu, it remains active until another menu replaces it. It’s
just a custom menu that doesn’t use any CST VARiable.

Custom Menus 367

Custom Keyboards

With custom menus, you redefine the menu keys—including their
shifted versions. But what about the rest of the keys on the keyboard?
HP haslaid out the keyboard on the 48 to make it maximally useful for
most people. But in case you're not “most people” or in case you have
a special program or application, HP has also made it possible to
complete “redo” the keyboard.

In fact, you’ve already seen examples of this: Whenever you enter a
special environment—such as the Equation Writer or Graphics—the
keyboard is reassigned. Only a few of the keys are functional and their
operations change to fit the special needs of the environment.

It’s done like this: Each and every physical key is identified by its row
and column numbers. The key is 24 because it’s the fourth key in
the second row. Similarly, is 51; (Y9is 45; (3) is 84; (@) is 55, ete.

Then, each physical key location has up to six standard definitions—
corresponding with its six shift positions (recall page 28). For example,
key location 73 ((5)) has the following six definitions:

1 Unshifted (5)): the number 3

2 Left-shifted (&)STAT)): page one of the STAT menu.
3 Right-shifted (O)STAT): page two of the STAT menu.
4 Alpha ((e]STAT)): the character "3"

5 Alpha left-shifted (@J&q)JSTAT): the character "£"

6 Alpha right-shifted (@])STAT)): the character "¥"

368 (7) Cusromizine Your WORKSHOP

Plus, you can assign to each key location up to six more definitions
(user-assigned definitions), which become active whenever the 48 is in
User mode. Thus a physical key location may have up to twelve
definitions assigned to it—six built-in (active in normal mode) and six
user-assigned (active in User Mode).

To make a key assignment, you assign an object to a key number. For
example, in the standard (built-in) keyboard definitions, the character
“£” is assigned to the key 73.5, where the 73 is the key location and the
.5 indicates which shift position. The codes for the shift positions
correspond to the list above—except that the unshifted position is
designated by either .1 or .0 (or no digit at all).

Try It: Change so that it executes *01 instead.

Easy: Enter the object:
Enter the desired location and shift mode: (3)3)-]2]
Assign the key: (JMoDES) IEELIL

Then, you access User mode much the same as you do alpha mode:
Press once and your keyboard is the user keyboard for just the
next keystroke. Press and you're in User mode until you
press a third time.

Try both now, and test your key assignment....

Custom Keyboards 369

You can change your custom keyboard, too: Just as the current custom
menu refers to a list named or stored in CST, so the current custom
keyboard refers to a list of key assignments stored in memory.

Look: Press to retrieve the current user keyboard list.

Result (STDmode): £ S « »0r » 33.2) TheS means
that the user keyboard is the same as the Standard key-
board except for the items following it in the list (i.e. with
nokey assignments at all, lEEwould yield simply{ S }).

That means that you can use named lists to store and save special
keyboard settings—ready to “install” them when you need them.

Example: Redefine these keys to produce audio tones at specified
intervals in the musical scale, given a starting pitch:*

Key Interval (half-steps) Key Interval (half-steps)

-1 e -12
+1 =0 +12

@@@@E

*A complete-octave musical scale is a geometric series of 12 audio frequencies,
called half-steps. The 13th frequency is the octave—double the frequency of
the first.

370 (7) Customizing Your WORKSHOP

Solution: First, a little program to compute and sound the correct
interval (for 1 second), given a starting frequency:

INTV. « 2 12 INV ~ SWAP *
¥ DUP 1 BEEP »

StorethisinHOME. Then, here’s the key assignment list:

{ S« B8 INTV » 51

-1 INTY » 35 « -12 INTV » 33.2
1 INTY » 25 « 12 INTV » 25.3
-2 INTV » 34 « 2 INTV » 36 2

R R R

Store this list as TONES inHOME, and then make it your
User keyboard: TONE[RES| S TOE: A

Now test it: Key in a starting frequency, (4]4)0)ENTER),
then press (GJUSRJ&JUSR) and horse around with the
and arrow keys.*

The point here is that you have saved these key assignments in the list
named TONES, so you can reinstate them any time you want.

*Notice how it helps to use the existing labels of the keys: If your assignments are at all similar
to keyboard functions, consider locating them there (as did the example on the previous page). If
that isn’t practicable, and if you use a lot of key assignments so that it isn’t convenient to try to
memorize what and where they are, you might consider plastic keyboard overlays (available from
HP and/or their dealers). Notice also that although reassigning the ENTER) key is certainly allow-
able, it’s not too wise. After all, it’s one of the most heavily used keys; if you need it—as
along with your key assignments, you'll find yourself constantly having to toggle in and out of USER
mode. Not so handy.

Custom Keyboards 371

You'll notice that the other keys still retain their standard definitions
while you're in USER mode. Can you disable them so that only your

reassigned keys work?

Sure:

But:

Just delete the standard key definitions, S: USR] " Jo)S)ENTER)
[JINA. Now press [IdNMto see the current user key

assignments.... The S is gone.

Notice also that *01f is still defined as the (§]~Q)key. How can
thatbe? When you assigned TONES via Eifi[@, didn’t that wipe
out the previous custom keyboard?

Custom menus use a VARiable (C5T) to store the current menu
list, so storing a new list into CST does indeed replace the
previous custom menu. However, custom key assignments
are stored in a reserved part of memory, and storing new key
assignments add to the previous key assignments; only the
specific keys designated in the new list get their assignments
replaced. You must specifically delete any old key assign-
ments that you don’t want.

372

(7) Customizing Your WORESHOP

Do It: Delete the 01 user key assignment.

OK: Press(3[3-2)[[EMA Confirm your work with INNH.*

Finally, what if you now need some of the standard keys—say, (ENTER),
(e, €sT), (VAR), and the menu keys? How do you restore their standard
definitions without restoring all of the standard keys?

Easy: Simply assign the name, 'SKEY', to each standard key you
want to restore. Here’s the list:

{ SKEY 51 SKEY 55 SKEY 23 SKEY 24 SKEY
11 SKEY 12 SKEY 13 SKEY 14 SKEY 15 SKEY 16 }

Store these additional user key assignments: EL{THE

You now have a user keyboard where only some keys have definitions.
Whenever you press a key that has no current definition, you’ll hear
the error beep to let you know that it’s “dead.”

*“0l1d”, deleted key assignments still take up memory unless you periodically repack the way they’re
stored. This sequence accomplishes the repacking: [THNE () [[INA If you use custom
keyboards often, you should repack your keyboard memory regularly.

Custom Keyboards 373

Custom Flag Settings

You know how to set and clear flags individually with [EEZlland I
Also, for some system flags (such as —3 or —31), you can use the special
menu items (such as EfYEE] or {I]) that toggle between set and clear.
And here’s a more in-depth reminder how—Ilike the user-key assign-
ments—you can store and recall a list of all the flag settings and save
that list as a VARiable for later use.

Do This: Press (=)MoDES)NxT) Nl You’'ll get a list of two binary
integer objects (recall page 105). The first integer repre-
sents the states of all system flags (from —1to—64); the second
one represents the states of the user flags (from 1 to 64).

Store this list as a variable, OLOF: ("Ja eJo]UD)FIo)EST0)

Now change some flag settings: (6]4)]+/-)IlEI3l(3)&3MODES)
IEERERD (v B0) T) IELE

Recall the new flag settings: (6)aMTH EEES EITE
(2)LAST MENU]=)(MoDES)(NxT) TN

Inbinary format, you can see (use to explore) the 64
bits corresponding to the states of the 64 system flags:*

64 [-63 |-62|-61|-60|-59 |-58|-57]-56|-55|-54 |-53]-52|-51|-50|-49 |48 |-47 | -46 | -a5|-44 | -43 |42 |-41 | 40 |-39 |-38 [-37 | -36 | -35 | -34 |-33
1|le|ejeje|6|0p|6)jB0|B)B|B|B|B|B|1|B|B|1|1|B|B|B|B|B|B|B|B|B|B|B|B
-32|-31 |-30 |-29|-28 |-27 |-26 |-25 | -24 |-23 |-22 |-21 | -20 | -19 |-18 | -17 |16 |-as |14 |13 a2 (-1 |09 | 8 |7 |6 |-s |4 |3 |-2]
e|1|/e|je|je |6 fejeje|je|je6|jB6jB|B|B|1|j0|B|B|BJ1|B|1]|1]|1|1f1f1]@]|1]|B]|B

*You might have flags set other than the ones shown here. You may wish to refer to Appendix E
(pp. 699-706) of your Owner’s Manual to confirm why each of flags is set.

374 (7) Customizing Your WORKSHOP

Notice that the user flag integer (the second value) isn’t 64 bits long.
The 48 doesn’t display leading zeroes in its binary integers, so the
binary format of the integer representing flag conditions will be only
as long as the number of highest set flag (i.e. the left-most 1).*

To demonstrate this, clear flag —64 and press[JdN& once again.... The
result is only 50 bits long; all flags numbered above —50 are clear 8).

Now: You could, of course, store this list for later retrieval too—but
don’t bother. Suppose, however, that you do want to restore
the original flag settings as saved in the list VARiable, OLDF.

Easy: OLUF (R SAYED| STOF §

So if you're using some program that requires a certain combination of
system flag states, this is how to quickly set all those states—and
preserve the previous flag states, too (so that you don’t mess things up
for the next task).

*You'll get all 64 bits only if flags —5 through —10 are set. That’s the 64-bit default setting for the
wordsize—recall page 103.

Custom Flag Settings 375

SOLVE

Customizing the Built-In Tools

To customize the SOLVR menu, you can:

¢ Specify the order in which the variables appear.

¢ Suppress certain variables from appearing at all.
¢ Add other non-variable objects.

You do all this with a SOLVR list.

Try It:

Solution:

Create a SOLVR menu for this formula:
—_ h 2 2 2
V= E[a(3R -a*)+3R*(b-R)0)

that includes—in order—the variables V, a, b, and 4, and
which adds a blank key, followed by [IIHEll. R and w are
fixed and won’t be needed in the calculations.

Create this list:

{ 'V=h-(32b)*(a*(3*R*2-a"2)+3*R*2*(b-R)*u)'
{Vabh{3XFIK 1}

Notice that the list has two objects: the equation itself
and a list of items desired on the SOLVR menu.

Now name the list: (§]sovEIIEN(UIN]GJU]L)(A)[ENTER).
And press to see the resulting menu.

376

(7) Cusromizing Your WORKsHOP

PLOT and STAT

You can’t customize the PLOTR or STAT menus like that of SOLVR. But
you can customize these tools with parameter lists that you can store
in the reserved variables PPAR (for PLOT) and ¥ PAR (for STAT). Each
of these reserved variables stores a list of the key parameters used by
their respective tools.

PPAR is a list of seven objects, in this order:

¢ A complex number representing the coordinates of the lower
left corner of the display range;

e A complex number representing the coordinates of the upper
right-hand corner of the display range;

* Thenameoftheindependent variable—oralist containingthat
name and two real numbers representing the horizontal
plotting range;

* Areal number or binary integer specifying (for most plot types)
the plotting interval along the x-axis (for histograms, this
value is the bin width; for bar graphs, the bar width);

* A complex number containing the coordinates of the intersec-
tion of the axes—or a list containing that complex number and
two character strings, the labels for both axes;

¢ The plot type—a name;

¢ Thename ofthe dependent variable—or a list containing that
name and two real numbers specifying the vertical plotting
range.

Customizing the Built-In Tools 377

Similarly, YPAR is a list containing these five objects:

® Areal number, designating which column of the current sta-
tistical array is the independent variable;

¢ Areal number, designating which column of the current sta-
tistical array is the dependent variable;

¢ Areal number, representing the intercept value, according to
the current regression model;

¢ Areal number, representing the slope value, according to the
current regression model,;

¢ The regression model name.

So, if you work frequently with certain graphs that require particular
parameters, you can create your own plotting parameter list(s), store
them under other names (such as PP1, or PP2), and simply store each
into PPAR whenever you need it.

You can use that strategy for PPAR and YPAR within short programs,
also—maybe called via custom menus—to save even more time and
keystrokes in setting up your plots and/or analyses. And keep in mind
that, as with CST, you can have different PPAR and ZPAR VARiables in
each directory. This allows you great latitude in customizing param-
eters for a number of specific uses.

378 (7) Cusromizine Your WORKSHOP

Optimization: A Case Study

All right, you’ve seen certain hypothetical examples of lists that allow
you to customize your calculator. Now, how will you use such ideas to
save yourself labor and trouble?

First, go back to your original directory structure. Ask yourself which
directories might benefit from custom menus or custom keyboards. If
you find some likely candidates, build and store the custom lists for
these goodies in the appropriate directories. And if there some custom
lists—like CALG—that should be available more generally, put them in
the HOME directory.

Next, refine the structure of your VAR menus by adding small touches.
For example, imagine that you’re creating a VAR menu for your di-
rectory,{ HIME PHYS DYNAM }. When you select [¥ITT] to enter that

directory, you’ll see its VAR menu.

What do you want in this menu? It’s worth a little thought....

Optimization: A Case Study 379

Suppose:

Well:

380

You want a custom menu, MEN1 | to use with your motion
calculations—plus you want CALG available, too. Then
you’d like to be able to push one key to set the flags and
user keyboard for the kind of work you do in this
directory—and another key to reset the flags and keys
as they were before, when you’ve finished. And suppose
you want these features always to appear on the first
page of your VAR menu. How are you goingto do all this?

Here’s one approach (you may think of others): First, in
your DYNAM directory, create and name the programs
that handle the various customizing details:

SET1: <« RCLF 'OLDF' STO RCLKEYS 'OLDK' STO
CFL1 STOF @ DELKEYS CKY1 STOKEYS
CPP1 'PPAR' STO C2P1 'EPAR' STO »

MEM1. « CMN1 MENU »
ALGM: « CALG TMENU =

QUIT: « B DELKEYS OLDK STOKEYS OLDF STOF
HOME 2 MENU »

Next, create and name your custom lists:

CMNL: { theitems you want in your custom menu
CFL1: £ #system flags value #user flags value
CKY1: { your custom key assignments }

CPP1: { your custom plotting parameters

CZP1: { your custom statistical parameters }

(7) Cusromizing Your WORKSHOP

Finally, use the ORDER function to specify thatSET1,MEN1,
ALGM, and QUIT all appear on the first page of the VAR
menu. Create a list of the names you want placed:

{ SET1 MENI ALGM QUIT 3

Then press JMEMORY)[[ATdd. Now anything not in-
cluded in this list will be placed after these items.

Now your keystrokes are fairly well streamlined: As an engineering
student, to get started with the dynamics problems in your physics
class, starting at HOIME, you would press IHIEE IETA, then to
configure your flags, keyboard and analysis parameters. At that point,
you're ready to start on the problems themselves. You have all of your
calculation variables available via and your optimized menus via

EEIH or €sT) or R

That’s doing a lot in very few keystrokes. And you can use this same
basicidea and structure in your other directories, too—even using the
same names of variables and custom lists, if the consistency helps.

Notice the naming scheme for your customized lists. If you found

yourselflater needing, say, two different plotting parameter setups in
the course of your analyses, you could name a second list CPP2, right?

Optimization: A Case Study 381

Putting It All Together

The 48 workshop isn’t difficult to learn how to use. But it takes a lot
of practice to learn to use it well. The real challenge is to choose
appropriately among its myriad options for tools and methods—to find
the approach that works best for you.

This Easy Course has steered you through a rather densely-packed
tour of the 48. To do so, it has pretended to “know” what’s best for you
in order to make certain points and cover certain features, albeit
briefly. But the truth is, only you can decide what parts of the 48 are
of interest to you; nobody uses it all. So be thinking about the possi-
bilities as you take this final quiz....

4]

B K)/
§ SIREIm —7
’;T«\W“{{\‘ \‘ml“‘ﬂlmm[ﬂffmmm"ﬂmm“(("l((ﬂ

382 (@) Cusromizine Your WORKSHOP

Custom Questions

When and why might you not be able to use the “LAST” keys?

What are thedifferences between these three storage commands?

STO STOKEYS STOF

What binary integer represents the default system flag states—
the flag states as they would be after a system reset? (Don’t do
this, just think about it.)

As an engineering student, suppose that you do a large number
of rigid-free-body analysis problems in your Statics class. You
input vectors corresponding to forces, positions and moments
acting on the body and then calculate the resultant sums of the
forces and moments. You also do a great deal of “what-iffing,” so
you need to be able to store, retrieve, and edit specific descrip-
tions for specific bodies. What strategy might you use to do all
this on your 48?

Custom Questions 383

384

Optimum Answers

(LAST STACK), (LAST ARG), (LAST CMD), (LAST MENU] all allow you to re-
cover information after you've moved on. But keeping these

hidden records costs memory, and if you prefer not to spend that
memory on some of these recovery features, you can specify that.

is one of the built-in menu numbers @), so it’s always
available; you can’t turn this feature off.

You can control (LAST ARG) via a toggle key in the MODES menu or
with a flag (-55): When flag —55 is set, the 48 does not save the
arguments of the most recently executed command—and so

LAST ARG) can’t retrieve it.

Also in the MODES menu are the toggle keys for enabling/dis-
abling (LAST STACK)and (LAST cMD). These two features canuse alot
of memory, so if you're in need of more memory, these might be
the first ones to forego, if it’s appropriate.

Of these three, only STO allows you to control where in user
memory (i.e. directory structure) you are storing an object:

STO stores an object into the given name in the current VAR
menu, overwriting the object (if any) previously stored there.

STOKEYS stores a list of user key assignments into an unnamed
place in the 48 memory. This overwrites the previous key
assignments only for the specific keys in the given argument list,
leaving all other key assignments intact.

(@) CustomiziNng YoUr WORESHOP

STOF stores a binary integer (or list of two binary integers) into
an unnamed place in the 48’s memory. Each integer affects all
of its 64 flags, overwriting all previous flag settings.

In the default settings, only flags —5 through —10 are set (to give
a binary wordsize of 64). This value is

1111116606b or # 3FBh or # 1B812d

First, you'd probably want to set up some custom configurations
in your $TATICS directory—similar to the approach you saw on
pages 379-381.

In your flags, for example, you might want to clear flag —19 (so
that you canbuild vectors rather than complex numbers with the

and keys)and set,say, ENG 2display mode, DEGrees
for angles and probably cylindrical vector mode.

As for your custom menu, before you can set that up, you need to
envision the calculations themselves. For example, how are you
going to build a complete description of each free body—with all
its forces and moments acting upon it—into a single object that
you can then name (FB1, FBZ, etc.) for storage and use later? A
list of some kind would do it, right?

Then what objects would be included in each body-description
list? Vectors, probably, but how will you distinguish force
vectors—with their corresponding position vectors—from mo-
ment vectors, which need no positional information? How about

Optimum Answers 385

386

three lists of vectors? The first two (forces and positions) would
have the same number of vectors in them and correspond one-for-
one; the third list would contain all the moment vectors.

Then you might want to build yourself some little editing tools—
to make it easier to input, alter, delete and view the vectors in
each of the lists. Such items would indeed be handy on your
custom menu. And, of course, you'll need the calculation routines
themselves—the summation of the forces and the summation of
the moments—also good candidates for your custom menu.

Well, you get theidea. The pointis, you can always find some way
to customize and streamline a calculation pattern like this. The
question that only you can answer is: How far should you go?
When does the time you spend customizing start to outweigh the
time it will ultimately save you? As you become more proficient
in your 48 workshop, these tool-design and customizing deci-
sions will come more smoothly; you’ll gain more convenience
from less time invested.

(7) Cusromizing Your WORKSHOP

R R
P o2 N
fﬁ;$%.‘;\¥“

(5P i
o,
5

?':;:"l g 7}
1K AELAAY
ROk
XTI PSPY
?,A’i?» 0y

FouNDATION COMPLETED

This is only the beginning—truly just a foundation of understanding—
upon which you should continue to build and use your 48 workshop.

As you certainly realize by now, there’s no way that any single book
could give you an in-depth look at everything about the 48. You
probably noticed on many occasions that this Course made just a
passing, one-time reference to a certain function, keystrokes or calcu-
lation method. It was by necessity, not by neglect. So if you marked
those spots or scratched your head over them, you might wish to use
your HP manuals to explore those “breezed-over” features now.

Note also that this Course did not cover:

¢ Alarms and the alarm catalog;

¢ Printing;

¢ Transferring data into and out of the 48;
¢ Using plug-in cards;

¢ Using the LIBRARY features;

¢ Making backup objects.

Those topics are best handled by your HP manuals. In fact, now that
you have a good “feel” for the machine overall, those manuals are
indeed the sources to turn to for further exploration on all topics.
They’re thoroughly indexed and organized; you’ll find their examples
and coverage quite helpful.

So how did you like this Course? Do you find yourself wishing for more
or less (or different) coverage of certain topics? Did you find any
mistakes? Please let us hear from you. Your comments are our only
way of knowing whether these books help or not.

Index
(A key 182-3, 192-3, 201, 205, 240, 260, 264, Algebraic notation 128, 130

277, 279, 298, 351, 370 Algebraic objects 24, 124-32, 135, 148-9, 194,
[Fkey 182-3, 190-8, 201, 205, 214, 220, 228, 224, 3186, 352
232, 243, 255, 260, 277, 280, 296-7, 370 evaluating 126, 198, 309
(@lkey 187-8, 190-4, 202, 205, 219, 221, 295-6, rearranging 200-7, 209
298, 3565, 370 single-line version 129
) key 94, 113, 183-5, 192-3, 199 205, using programs as 249
211, 221, 240, 243-4, 260, 264, 268, 277, Algebraic rearrangement 197
280, 293-9, 302, 353, 355, 370 ALGM program 380-1
@ key 20, 34, 52, 151, 182, 185, 189, 269, 280, (@ key 18,27-8, 32, 59, 368
206-7, 3565, 368, 373 Alpha leck 19, 33, 35, 350
@ key 291-4, 296, 298-9 Alpha mode 19, 32-3, 35, 130, 226, 350
B key 302 Alphabetical order 324, 341
[Dkey 182, 295-300 AND function 291, 325, 327, 339, 343
[Dkey 76, 353 Angle between two vectors 145, 154
(zD) key 90-1, 147, 158-7, 277, 385 Angle conversion 61
(30 key 90-1, 154, 385 Angle mode 69, 81, 88, 100, 385
% command 152, 177 Annunciators 169
%CH command 177 ALG 129, 352
%T command 177 alpha 33, 226
& character 208 angle mode 99, 168
+ character 310-3, 324, 329-31, 342-7, 360 PFRG 133, 352
£ character 81-2, 88 user flags 99
¢ command 324 vector display mede 99, 168
== command 325, 329-31, 343-5 Appending an object to a list 77
> command 323-324, 343 Appending strings 109
£ funetion 291, 327, 331, 343 Are length 284
= funetion 291, 325, 327, 343 ARCHIYE command 388
Z+ command 265, 279 Area 69-T1, 284, 298-9, 316
Z0AT variable 224-5, 262, 269, 341 RREA command 298
ZLINE command 271-2 ARG command 84
ZPAR variable 377-8, 380 Arguments
2-'s complement 107 of a command 78-9, 90, 104, 151
.EQ program suffix 228, 249 of a function 165-9, 174, 184, 187-8, 19¢,

193, 212, 225, 292
on the Stack 79,308, 311, 314, 321-2
recovering previous 356

ABS command 84, 91, 154-5, 178, 277, 292, symbolic 178, 215
321, 327,331 Arithmetic 48-51
Acceleration 199 *ARRY 80, 95-8, 151, 155, 162, 320, 347
key 154, 300 Arrays 23, 27, 29, 90-7, 156, 225, 320-1
Addition 51 creating 94-8
with lists 77, 135, 143, 149 decomposing 96, 146
with objects of different type 77, 335 elements of 92, 1565, 174
with strings 109, 135, 335 extracting by rows or columns 341, 347
with unit objects 70, 72 non-matrix operations 93
with vectors 155, 162 real vs complex 93-5, 146, 224, 329
operation 204,207 row-major order 94
Alarm Catalog 354, 388 rows and columns 92
Algebra 124, 128, 200-7, 282 arrow keys 20, 36, 94, 187, 240-1, 371
key 199, 207, 229, 232, 238, 289-99, (ASN) key 154, 221
354, 369 ASN command 369

Algebraic entry mode 129, 352 operation 203

operation 203

Asymptotes 295

[ATAN) key 218

ET key 16, 20,32, 39, 72, 122-3, 148, 1860,
194, 201, 241, 245, 280, 350

Audio frequencies 370

AUTO command 242, 246, 250, 253, 290-1

Auto-scaling 242, 244, 246

Automated processes 307-9, 323

Average 268

Axis of a plot 238-9

Backup objects 388
Bar width 377
BARPL command 269
Base identifier 103, 107
Bases 23, 102
Bearings 156
BEEP command 331, 371
BESTFIT command 272, 275, 304
BIN command 103,159, 374
Bin width 377
Binary arithmetic 23, 106-7, 147
Binary digits 23, 98, 374
Binary integers 101-7, 148, 159, 377, 383
and flags 375, 385
and fractions 106, 159
and negative numbers 108
display of 37
word size of 104, 158, 342
Binomials 217, 220
BINS command 269-70
B4R command 106-7
Bits 23, 98, 101-2, 104, 3745
Branching 326-32, 343

Calenlus 281-305
CALG menu list 3647, 379-50¢
CASE command structure 331, 346
CASE...THEN.. END.. END command 331, 346
KETA cperation 228-9, 255, 266, 271, 354
Catalog pointer 228, 253, 354
Catalogs 228, 266, 354
CEIL command 174
CF command 100, 157, 323, 367, 374
Character codes 111, 163
Character strings 24, 108-12, 117, 159, 163
alphabetizing 324
appending 109, 135, 322
comparing 324
decomposing 110, 159-60, 163

Character strings (cont.)
editing 322, 341, 344
extracting characters from 159
manipulating 340, 343-4
vs, numbers 109, 148, 331
Characters 34-7
alphabetic 11, 32
lower-case 35, 340
WEWLINE 37
non-alphabetic 35, 111, 368
upper-case 340
CHR eammand 111, 163, 343-4
C*R command 83, 151, 155
Circular references 122, 161
Clearing flags 100-1, 105
Clearing Level 1 of the stack 52, 58
Clearing the pointed-to Level 58
Clearing the Stack 52, 57
key 52, 128, 296
operation 250, 290, 295, 299
CNRM command 157, 320
Coefficients 185, 258, 297
correlation 272, 275
of determination 304
COLCT command 200-2, 205, 207, 214, 217,
219-20, 221-3, 296, 298, 299, 363, 366-7
aperation 203
Collecting like terms 200-1, 205, 207
COMB eommand 173, 220
Combinations 61, 65, 173
Command Line 16, 21, 31-0, 44, 49, 52-3, 55,
58-9, 65, 76, 78, 82, 94, 110, 119, 123, 125,
130, 134, 180-3, 1945, 262, 351
editing an object in 37-8, 185-6, 189
entry modes 352
multiple lines in 36
previous 355
Commands 31, 78, 117, 135, 165, 307, 319
arguments of 79
in a list 76
in programs 133
names of 116
Comparing values 177-8, 323-4, 340
Complex numbers 13, 22, 80-6, 135, 143, 147,
157, 170, 174, 178, 377
extracting components of 84, 167
with parametric plotting 290
CON command 97, 321, 347
Concatenation 110
Conditional tests 310, 323-5, 340-1, 343
COMIC cemmand 289
Connecting the points of a plot 250
COY 73
Convergence 302
COMVERT command 357

Converting
between decimals and fractions 172-3
between real and complex 83
between units 68, 70-3
lists to arrays 320
objects to strings 110, 148, 159
COORD operation 240, 273, 289-90
Ceordinates
complex numbers 80, 377
critical points 244
crosshair cursor 240
COPY program 361
Copying in the Stack 38, 56, 77
ORR command 272, 275, 304
Correlation 272, 275
COSH function 292
Cost-benefit analysis 144,152
COUNT program 3838, 337
Covariance analysis 267
CRAIR command 137, 1490, 360
Creating
arrays 94-8
complex numbers 82-4, 157
directories 137
expressions 180-4, 212, 280
lists 76-81
programs 249
strings 159
unit objects 69, 72
vectors B88-80, 155
Critical points 295
Cross product (CROSS) 91, 154
Cross-section 283
€5 key 363-7, 373, 381
CST variable 363-4, 367, 370, 372, 378
Cursor 35, 260, 266
box 181, 191
crosshairs 240-1, 2458, 247, 290
Cursor keys 36, 54, 240
Curvature 283, 292
Custom menus 349, 379, 380, 385, 386
Cylindrical mode 89, 91, 147, 157, 385
Cylindrical vector notation 86

Data
editing 265-7, 279-80, 341
entering 264-5, 267
frequency type 269
missing values 266
outliers 269
Data znalysis 262-3, 270, 287-8
Data array 224-5, 262-3, 264-7, 277-80, 287-
8, 304, 378

Data Catalog 266-8, 354
+DATE command 170-1
Dates 170-1
DATE command 170-1
DATE+ command 170-1
Day of the week 171
DEC command 103-6, 159
Decimal places 46, 64, 174-5, 342
Decimal representations 40-1, 172
Declaring local names 313
#[EF aperation 204
Default system flag states 383, 385
DEFINE command 212, 214-5, 220, 310, 312
(G5F) key 212, 214, 220-1, 277, 292-4
Defining procedures 313-7, 324
Definite integrals 284
DEG command 367, 385
mode 81, 100, 155, 168, 175, 221
Degrees of freedom 278
key 20, 34, 355
operation 218
Delimiters 35, 117, 136
apostrophes 24, 117, 119-20, 181, 328
hraces 25,75
brackets 23, 87, 93
colon 24,113
commas 82, 88, 184
double brackets 93
french quotes 25, 133, 328
pound sign (#) 23, 103
quotation marks 24, 108
spaces 65, 88, 95, 184
underscore 22, 68
DELKEYS command 372-3, 380
Denominators 182, 184, 187, 210
Density 150, 256-6
DEPM command 291
DEPTH command 338
Derivatives 283, 293-4, 298
Differential calculus 283
Differentiation
variable of 291-2
with user-defined derivatives 294
Digital math 108-7
Dimensions 86-7, 91
of an array 95, 259
Directories 15, 25, 136-41, 149, 228, 3568
C5T menus 364
current 15, 138-40, 266, 315, 344, 346, 361,
363, 367
HOME 15, 137-8, 140-1, 163, 321, 359-61,
364-6, 371
parent 140, 364
structure 139-40, 359-61, 365, 379, 381
variables and 315, 354, 365, 378

Directory path 344
Directory tree 140, 309
Discontinuity 233-4, 250
DISP command 336-7
Display 10, 16-7, 31, 36, 48

binary integers 23, 107

formats 46-7, 172, 175, 342

MatrixWriter 264

of vectors 87

parameters 289
Divergence 302
Division 51

with binary integers 107, 159

with unit objects 71-2
DO...UNTIL..END loop 333, 339,345
Dot product (OCT) 91, 154-5
ORAW 239, 242, 250, 289, 291, 295, 298-9
DROP command 330, 335, 343-5, 347
{pFoFlkey 52, 58, 125, 134, 151, 162
OROPZ command 332, 339
Dropping arguments 79
Dropping multiple stack levels 57
Dropping objects off the Stack 338-9
DRPH command 57
D51 program 321
OUP 321, 329-30, 336, 338, 343-7, 360-1, 371
DUPZ command 339, 342, 344
Duplicating Level 1 of the Stack 53, 321
Duplicating multiple stack levels 57
DUPN command 57, 63, 279

I cperstion 204

N operation 204

IR operation (IS) 38, 55, 65, 351

EDMkey 123, 125, 159, 175, 185, 192, 194,
219, 374

IE0IH operation 189, 194, 258

HIEE cperation 265

Editing objects 37-9, 54, 123, 135, 145-8, 159

Editing expressions 185-94

Editing keys 20, 123, 135

Editing subexpressions 189-214

EEXkey 44, 54, 150, 152, 176

Electricity 69

Element count. 79, 92, 260

Ellipse 290

Energy 69, 151

EMG command 147, 152, 157, 385

ENTER key 186, 20, 31, 49, 53, 77-8, 128-9,
134, 183, 189-90, 192, 194-6, 233-4, 260,
264, 350, 368, 370-1, 373

[BTR key 134, 160, 352, 356

Entry modes 350-4

Environments
EquationWriter 181, 191, 194, 223, 368
Graphics 223, 241, 368
local variable 313, 3168-7, 337
MatrixWriter 223
Selection 188-7, 189-90, 193-4, 202
0 equation 131, 160, 226-9, 245, 299
El variable 224-9, 230, 253, 262
E+ command 229, 253, 255, 289-90
Equation Catalog 226, 228-9, 238, 249, 253,
255, 289, 354
key 181-4, 186, 194, 199-200, 205,
245, 292, 297, 300, 302, 3563
Equation list 254, 256
Equations 178, 245
current 226, 299, 302
linked 252, 255-256
matrix 259
multiple 252-7
simultaneous 252, 258-61
solving numerically 245
solving symbolically 197, 268-11
EquationWriter 181-95, 216, 226, 262, 295,
302, 353
saving expressions in 196
serolling in 191
ERASE command 239, 250, 289, 291, 295, 298
Error beep 373
Error messages 72
Bad Argument Tuee 182, 167
custom 332
Invalid Dimension 162
Invalid Sunfax 160
Unable to Isolate 208
Error traps 310, 318, 332, 335, 347
Errors
recovery 358
testing for 309, 347
unit 71
with 0B.J* 110
EVAL command 345.346, 360-361
EvAkey 120, 131-2, 134, 160-1, 198, 205,
210, 218-9, 290, 293-7, 302, 307, 311-2
Evaluating
a list 308
aname 120-1, 130-1, 137-8, 160, 308
a program 133, 307-8
algebraies 126, 131, 149, 197-9, 307-8, 325
an object 119, 139
conditional tests 325
functions 165, 213
vs. recalling 122
operation 193, 194, 219, 221
Exiting environments 58, 191-2, 219, 221, 241
Exiting pregram loops 333

ERPAN command 201-2, 214, 217, 220, 291,
363, 366-7
Expanding expressions 201, 217, 220
Expanding mairices 260
Expected value 274, 304
EWPFIT command 272
Exponential expressions 60, 62, 182, 204,
216, 283-4, 292
Exponents 44-7, 160, 176
EXPR command 161
A operation 187, 188
BT operation 230, 232-8, 245, 290, 302
Expressions 24, 124, 149, 165, 178-84, 197
evaluating 197, 198-9, 232, 234
expanding 200-1
rearranging 197, 200-7, 209, 220
saving 195-6
simplifying 200-1
solving simultaneous 245-7
substituting 206-7
R operation 244, 295
Extracting components 84, 88, 159, 176
Extracting parts of a real number 176
Extracting rows from matrices 279
Extracting subexpressions 189-80

5 operation 250
F-statistic 304
Factorials 60, 63
FCT command 100, 323, 340, 342
FCTC command 323, 340, 342
FCN menu 241, 244, 247, 254, 273, 295, 298
Filtering a list 341
Finding hidden variables 199
Finding roots 238, 241, 245-7, 250, 283, 295
FIH command 46-7, 156, 171-2, 175, 210,
218, 221, 230, 295, 302-3, 305, 367, 374
Flags 23, 98-101, 102
alpha lock (-60) 350
Curve-Filling (-31) 299, 374
custom 358, 374-5
error-trapping 302
Last Argument {-55} 384
Num. Results (-3) 160, 169, 218, 321, 374
Principal Solution {-1) 211, 218-9, 221,
289, 363
setting and clearing 98, 101, 157, 374, 380
storing flag settings 101, 105, 158, 375
Symbolic Constants (-2) 160, 169, 218
system 98, 100, 105, 157-8, 169, 309
testing 100-1, 158, 323
time and date 171
user 98-100, 1905, 374

FLOOR command 174
FLSTY program 343
FOR..NERT loop 333, 337, 343, 345
FOR...STEP loop 333, 337
Force 69
Formatting output from programs 318
FP command 176
Fractions 172-3, 182, 187, 216, 218
adding 204, 207
Free-body analysis 38
Frequency data 269
Frequency distribution 269
FS? command 100, 158, 323, 340, 342, 367
FS?C command 323, 340, 342
FUNETION eommand 291
Functions 24, 165-79,188, 211-2, 248, 309, 313
analytic 252-4
entering 352
invoking 277
rational 283-4
user-defined 212-5, 217, 220, 251, 313

GEM program 363, 365-6

GET command 345-6

GETCL program 347

GETRM program 347

Global name 314

aperation {MW) 261, 264
operation (MW) 258, 261
GEAD annunciator 168

GRAD command 367

GRAD mode 81

[GRAPH) key 191

Graphics display 224

Graphics environment 223, 225, 245
Graphics objects (grobs) 196, 224-5
Guoesses to control SOLYR search 234-5

Heron's formula 217

HEX command 103, 106, 159

HMS+ command 171

HMS+command 156, 171

»HMS command 171, 302

HOME command 344, 346, 380

HOME directory 15, 138-41, 321, 359-61, 364-
7,371, 379

(Fomglkey 138, 140-1, 360-1, 364

Hyperbolic functions 283, 292

Ideal gas constant 236-7
Ideal Gas Law 236-7, 255-7
Identical vs. Equal 325
Identities 200, 204, 206-7
Identity matrix 9%, 305
ION eommand 97, 305
IF. . THEM.. ELSE. END 249, 326, 330, 343-5
IF... THEN.. END 326, 328.32, 338
IFERR...THEN...ELSE.. END command 332
IFERR...THEN.. END command 332, 335
IFT command 326-30
IFTE command 326, 329-30, 343, 367
IM command 84, 145, 176
Imaginary numbers 22
Immediate vs, delayed execution 129, 133
Inerementing a loop counter 333, 336
IMDEP command 291, 298, 299
Inflection point 295
input checking 320-1, 323, 329, 347
Input shortents 350-4
Input-output analysis 288, 305
INSCL program 347
Insert mode 37, 185
Inserting characters 34, 37
Inserting subexpressions 189, 191
INSRI program 347
Integer value {(binary integers) 102
Integers 40
Integral 182, 193
definite 284
indefinite 284, 288
integrand 182, 296-8
limits of integration 182, 296, 300, 302
variable of integration 182
Integral calculus 284-5, 299-301
Integrand 182, 193
Integration 295-7
Interactive Stack 54-8, 63, 65, 192, 201, 228,
298-9, 351
entering 54-5
exiting 58, 201
Intercept 271-2, 304, 378
Intersection of curve with x-axis 246-7, 250
Intersection of curves 246-7, 282, 289-90
INTY program 371
INV funetion 371
Inverse operations 49-50, 145
Inverting a matrix 305
IP 50, 166, 178
IRAND program 339
Irrational numbers 64
ISECT operation 247
IS0L command 208-11, 218-9, 221, 290, 293-
4, 363, 366-7
Iterations 302

[E33d operation 57
Key assignment list 371-2, 384
Key assignments 372-3, 380
Key code 345, 368
KEY command 345
Keyboard 10, 18-20
customn 358, 368-73, 379
overlays 371
standard 370, 372
user-assigned definitions 369
Keys 14, 18, 31
alphabetic 18-9
arrow 20, 36, 187
control 20
function 67
menu 17,19, 20
Newline 36
shift 10-1, 18-9, 27-8, 35, 73
toggle 18-9
Keystrokes 307, 352

operation 204

=N operation 204

LRBEL command 240, 273

Labels 116, 118
axes 240, 273, 377
temporary (tags) 24, 112, 115

Lagrange multiplier 293

(LAST ARG) key 356, 383-4

(LASTEMD) key 365, 383-4

(AT MENU) key 70, 72, 151-6, 159, 219, 221,

230, 357, 362-3, 375, $83-4

key 356, 3834

Law of Cosines 217, 221

Law of Sines 217, 221

Length 69-71, 73, 150, 221, 357

Length of a curve 298

cperation 57

Level number 57

LFLTR program 345

Libraries 388

(LIBRARY) key 388

Light 69

Linear systems 87

*LIST command 78-9, 151, 162, 291, 347

EINERR operation (IS) 351

LIST? program 343

Lists 25, 74-81, 155, 161, 340, 352, 385
adding and subtracting to 143, 149, 151
and strings 109-10
and the SOLVE tool 224, 291
as directory paths 344, 346, 361
creating from other object types 78

Lists (cont.)

custom flag settings 374, 380

custom keyboard 370-1, 380

custom menu 363, 365, 380

editing 309

element count of 79, 90, 334

empty 162

equation 253, 255, 291

evaluating 132, 307, 309, 316, 344

filtering 341, 345

manipulating 320

parameter 377-8, 380

SOLYR menu 376

summing the elements of 334

that define new identities 206

vs. programs 309, 316, 341

with arrays and vectors 96, 111
LMAX program 320, 321
Local names 310-7, 322, 324, 336-7, 340-7
Logarithmic expressions 60, 62
Logarithmic functions 85, 204, 247, 284
Logic 108
Loop counter 333, 337, 343
Looping 333-9, 343-4
Lower-case alpha lock 35, 130, 159, 350
Lower-case mode 35
LR command 272, 304
L5UM program 320-1

Magnitude of a number 40, 42-3, 47, 331
Magnitude of a vector 155, 176
MANT command 160, 176
Mantissa 40-1, 45, 160, 176
Marking one corner of a zoom-box 243
Marking one of the limits of integration 298
Markov chain 287, 303
Mass 69, 150, 151, 1586, 255, 257
TMATCH command 207
Matrices 13, 23, 87, 90, 92-7, 258
arithmetic 97, 147, 156-7, 259, 321
blank spaces in 266
extracting by rows or columns 341, 347
identity 97, 156, 306
initial-state 303
inserting rows or columns 341, 347
row-major order 94
steady-state 303
transition 303
transposing 279
Matrix equations 258, 260
(MATRIX) key 258, 264, 304, 353
MatrixWriter environment 21, 223, 258, 260,
262, 264-8, 268, 277, 303-5, 353

MAX function 177
Maxima 234, 244
MARR 42
MDIY program 269
MEAN command 268, 277, 280
Memory 318, 320, 384
(VEMGRT}key 360, 381
Memory operations 365-7
Memory repacking 373
MEN] program 380-1
Menu boxes 121, 131
MENU command 362, 364, 380
Menu items 25, 28, 230, 352, 365-6, 374
Menu keys 19-20, 28, 69, 240-241, 368
Menu Line 17, 31
Menu numbers 362-3, 384
Menu pages 19, 179, 349, 357, 359, 362
Menus 14, 17, 21, 27
BASE 103, 106-7, 159, 374
BRCH 326
[ST a63
CTRL 362
customized 230, 349, 358, 362-7, 372, 379-
80, 385-6
DSPL age
EDIT 57-38
FCH 241, 244, 247, 250, 254, 295, 298
HYP 51, 292
MTH 14, 50, 83
MATR 97, 155-7, 305
menu keys 17, 19-20, 28, 69
MODES 19, 37, 63, 89, 103, 169, 362, 384
0BJ 83, 116-1, 151, 155-6, 159, 297
PARTS 50, 65, 160, 166, 174, 277, 292
PLOTR 229, 250
previeus 357
PROB 51, 63, 65, 173, 278, 280, 304
RULES 202, 204, 296
selecting from a 17, 28
S0LYR 229-31, 245, 255
STAT 267, 362
STK 79, 326
temporary custom 367
TEST 158, 291, 323
INITS 69
VAR 15, 118-21, 123, 125-7, 134-5, 161, 179
VECTR 89-90, 154-5
within menus 17
XXM operation 203, 296
Message Area 226, 229, 233, 253, 271
Messages 17, 72, 89, 127
operation 203
MIN funetion 177
Minima 234, 244, 293
MIMR command 42

MOD function 177, 339
Mode indicators 17-8, 352
Modes 17, 23, 168

algebraic entry 129, 352

alpha 18, 350

angle 19, 63, 81-2, 84-5, 88, 100, 168

250

curve-filling 299

customized 358

display 46-7, 70, 169

Rl 46

insert 37, 185

key 37, 89

matrix entry 261

number base 102-3, 107, 148

program 76, 133-4, 352

replace 37, 185

47

47

User 369,372

vector 19, 81, 84-5, 88-9, 154, 162, 168

81

{MoDEs) key 362, 369, 371-2, 374
Modifying the meaning of the shift keys 366
Molar mass 255-7
Moles 150-151, 238-7, 255-7
Momentum 156
Moving a variable between directories 360
Moving around using menus 28
MOV program 360-1, 365
Multiple equations 252-7
Multiple results 309
Multiple solutions 210, 216, 218, 233
Multiplication 51

implied 128, 181-2

with algebraic ohjects 128

with binary integers 107

with matrices 156-7

with unit objects 70-2
Musical scale 370

nl variable 211, 218-9
Name objects 24, 116-23, 308, 314
Names 24, 116-23, 125, 128, 195, 309, 352
as algebraic symbols 124, 212
capitalization 121
directory 137, 149, 163
empty 120, 126, 130, 178, 198, 251
equation 227, 254
evaluating 119-21, 126, 132, 137-9, 149,
215, 315, 365
identical 138
invoking 116, 120, 163, 315, 317

Names (cons,)
local (vs. global) 310-7, 322, 324, 340-4
of programs 134-5
reserved variable 224
selfreferencing 161
special restrictions 117
temporary 310
wildeard 206, 207
within names 121, 132
MEG command 330
Negating a valus 329
Negative numbers 45, 106, 175
NEW operation 231, 236, 245, 249, 254-5,
264, 277, 279, 291, 300, 376
Norm of a vector 176
HOT command 323
MM command 111, 163, 343, 344
UM key 169, 292-3, 295, 298-0
Number bases 23, 102-3
Numbers
complex 13,22, 80-5, 157, 174
imaginary 22
largest and smallest 42
real 13, 22, 27-8, 32, 40-7, 70, 99
Numerals 109, 117
Numerators 182-4, 187
Numerical results 225
EHEF operation 254-7
(XD key 19-20, 50, 151, 349, 359

0BJ+ 73, 83, 90, 96, 110-1, 114, 148, 151, 159-
80, 162-3, 296-7, 320, 322, 334, 341, 346-7
Object 22-5, 48
delimiters 22
types 22-6, 66, 166, 335
Ohjects 13-4, 16, 22-6, 67, 165
appending to a list 77
backup 388
collections of 25, 74
decomposing 79, 151, 346
decomposing compound objects 79, 83
evaluating 119
governing rules for 74
naming 307
procedure 225, 307
purging 120
recalling to the Stack 122
saving 116
string representations of 109, 148
symboelic 178
tagged 113, 272
performing operatiens on 115
OCT command 103

00DT program 339 PLOTR menu 229, 238, 2486, 250, 253, 377

key 10 Plotting interval 377
[N key 10, 16, 32 Plotting parameters 380
Operations 165, 352 Plug-in cards 388
Operators 117, 125, 325 POLAR command 299
Optimizing the HP 48 348-86 (PoLARkey 82, 85, 88-9, 91, 156
OR command 325 Polar mode 81-2, 156
ORDER command 381 Polynomials 284
Order of coefficients 202 1st-order 210
Order of entry on the Stack 51, 118, 131, 2nd-order 210
166-8, 213, 311 entering in EquationWriter 353

Order of local names in a UDF 313 Taylor 297
Order of operations 128, 130 POS command 159
Ordered collections 74, 86, 133 Postfix notation 48-50, 52, 78, 132, 134-5,
Ordered pairs 22, 80, 240 160, 319
Organizing variables 359-61 Power 69

in 50LYR menu 376 PPAR variable 377-8, 380

in YAR menu 381 Precision of a number 40-1, 64
VER command 344 during integration 295, 298
Overwriting variables 361 during summations 302

using #1172
Predicted value 274, 287

PREDX command 304
Parabola 247, 284 PREDY command 274
Parameter lists 377-8, 380 Pressure 69, 236-7, 256-7
PARAMETRIC command 250 FEVkey 19-20, 50, 150-1, 227, 349
Parentheses 128-30, 182, 203, 311, 353 PEG annunciator 76, 133
Partial derivatives 293 PRINC program 363, 365-6
Partial fractions 297 Printing 388
Path 15, 139, 141, 163, 344, 346, 361, 364-65 Probability 65, 173
PATH command 344, 360, 361 Probability distribution 278
Percentages 61, 65, 144, 152, 117 Chi-square 278
Perimeter 316 Normal 278
PERM command 173 Snedecor's F 278, 304
Permutations 61, 65, 173 t-statistic 278, 280
PGOIR command 141 Problem-solving 165, 256, 281-8
n (Pi) 64, 148, 160, 169, 216, 293, 298-9 Procedural arguments 327
PICK command 367 Procedure environments 317
A operation 56, 192, 201, 351 Procedure object 225, 328, 341
PICT variable 224-5 Program mode 76, 133-4, 352
Pixels 196, 238 Program structures
Place value 158 branching 326-32, 343
(PLoT) key 246, 249, 254, 295, 298-9, 354 conditional tests 323-5, 340-1, 343
WA cperation 267, 27t defining procedure 324
PLOT 223-6, 238-48, 258, 262, 208-9, 358, 377 error trapping 332, 335, 347
multiple equations 252-7, 289 fooping 333-9, 343-4
multiple plots 252, 291 user interface 341
Plot types 262, 377 Programming 306-47
Bar plot 269 defining inputs and outputs 318
Conie 282, 289 design strategy 319, 320
Funection 238 managing flags 375
Parametric 282, 290, 299 modular 319-20, 339
Polar 282, 284, 299 Programs 13, 25, 101, 115, 132.5, 149, 162,
Seatter plot 273 306-47, 358

Truth 282, 291 and the SOLVE tool 224, 248-51

Programs (cont.)
decomposing 135
designing 318-23
editing 309
and the Stack 310, 314, 336
within programs 313
Prompting 318, 320
PURGE 141, 161, 221, 290-4, 299-300, 305,
360
(PURGE) key 120, 139, 160-1, 179, 219, 236,
201, 293, 296, 299-300, 361
Purging a directory 141
Purging objects from the YAR menu 120, 135,
139, 148, 179, 219, 235, 360-1
PUT command 155-6, 347
PHRFIT command 272

Gkey 172-3, 201, 369, 572

(1 172-3, 218, 299, 363, 366, 369, 372-3
QUAD command 210-1, 218

Quadratic equation 128-31, 210

QUIT program 380-1

kL& annunciator 168

T mode 81, 89, 154-5

RAD annunciator 100, 168

RAD command 367, 374

[RAD key 100, 154, 156, 168

IEIM mode 81, 100, 155, 168, 218, 290, 299

Radiation 69

RAM cards 388

RAND command 339

Random numbers 339

Ranges for plotting 246, 377

Rational numbers 40, 172

kd2 annunciator 168

FEl mode 81, 88, 155

RCL command 315, 348, 360-1

[ReD key 122, 191-2, 194, 219, 221, 296, 366

RCLF command 105, 374, 380

RCLKEYS command 370, 372-3, 375, 380

RCWS command 104

ROM command 155-6

RE command 84, 145, 176

Real numbers 13, 22, 27-8, 32, 40-7, 67, 70,
83,99, 114, 174, 224

Recalling an object
from a different directory 341
to the EquationWriter 196, 219, 221, 296
to the Stack 122-3

Rectangular mode 82, 89

Regression analysis 267, 270-1, 279
Best-fitting model 272, 275, 304
Exponential model 271-2
Linear model 271-2
Power model 271-2

Regression curve 273

Regression model 378

Related rates 283, 294

Repeating commands 333
a predetermined number of times 333-5
indefinitely 333, 338-9, 345
using a ingremental counter 333, 336-7

SN operation 192-4

Replace mode 37, 185

Replacing arguments 193

Replacing subexpressions 189, 192

3] operation 246, 250, 253, 289-91, 298

Restore previous flag settings 375

Results of a calculation 115, 165

Return key. See(=)key

REVIEEWkey 127,179, 361

Reviewing the list of equations 228

Reviewing variables 127, 179, 227, 361

R+8 command 106-7

R+{ command 83, 151, 155

Risk evaluation 287, 304

RMO function 64, 174-5, 367

RMRM cemmand 320

ROLL 56, 65, 193, 293, 298-9, 347, 367

operation 351

ROLLO command 56, 279, 367

operation 351

Rolling the contents of the Stack 56, 65

ROM cards 388

ROOT command 241, 247, 250, 295, 298

Root, of equation 232-3, 238-43, 247, 250, 205

ROT command 335, 342, 347

Rounding error 41, 61-4, 106, 233, 250, 259
with binary integers 106
with integration 295, 298
with summations 302

Rounding numbers 41, 174-5

Row-major order 94, 261

RPN notation. See alz0 Posifix notation

RULES menu 202, 204, 296

51 variable 210

SAME command 325
Saving equation lsts 254
Saving expressions 195-6
Saving keystrokes 349
Saving objects 116
Scalars 70, 91

Beale
of a display 298
of a plot 238-9, 242, 246, 273
SCATRPLOT command 273, 275
SCI command 47, 150
Scientific notation 40-1, 47, 148, 176
SDEY command 268, 280
Search-and-replace 207
Selection Environment 186-187, 1980, 193-5,
202
Series 154, 286, 302
SET1 program 380-1
Setting flags 100-1
Setting the machine for the Course 11, 105
F command 100, 157, 323, 367, 374
Shift keys 18-9, 27-8, 35, 72-3, 123, 218, 240,
244, 265, 350, 366, 368
SHOW command 199
SIGN command 176
Bign reversal 233-4, 236
Significant digits 47, 64, 1745
Simultaneous equations 252
ENkey 168-9
INH function 282
SIZE command 111, 159, 322, 343-5, 347
SKEY command 373
Slope 253, 271-2, 304, 378
Solids of revolution 284, 299
Solutions
iterative 303
multiple 210, 216, 218, 233
principal vs. general 211, 2189, 221
Solvability 251
key 226-7, 229, 231, 237, 289, 300,
302, 354
SOLVE tool
8, 258, 262, 302, 358, 376
multiple equations 252-7, 289
watching it search for a root 233
Solving equations
by plotting 238-44
numerically 232-4, 236, 245-7
simultaneous systems of 258-61
symbolically 124, 208-11, 219
using programs 248-51
with units 235-7
SOLYR menu 229-32, 237, 245, 248, 255,
289-90, 293, 301
customizing 358, 375
SOLVR messages
Extrenum 234
Sion Rewersal 233-34, 236, 245
Zero 232
Speed 69
Spherical mode 86, 89

223-6, 229, 232-5, 238, 241, 244-

SPLIT program 322
SO function 327, 342
Square root 129
Stack 14, 18, 23-4, 28, 31, 48-51, 52-9, 67,
76-8, 83, 89, 95, 105, 109, 113-4, 116, 118,
122, 129, 150, 194, 248, 251
and evaluating objects 127
and looping 335
and the EquationWriter 190
effect of errors on 135
Interactive 54-58, 79, 201, 298, 299
levels of 14, 31, 88, 39, 51, 57
manipulating the 309, 319
recovering previous 356
rolling the contents of 56
Stack pointer 54, 56-7
Standard deviation 268, 277, 287 304
START...HEXT loop 334.5
START...STEF 1oop 333, 336-7
(STAT) key 264, 267-8, 277, 279-80, 804, 354,
368
STAT menu 267, 362, 368, 377
STHT tool 223-5, 262-7, 270-8, 304, 358, 377
Statistics
comparative 267, 270, 276-8
paired differences 279
plotting 267, 270, 273, 275, 378
regression 270
single-variable 267-9, 280
summary 267, 270
test 270, 276-80
two-variable 267, 270-8
Status area 17-9, 32-3, 76, 81, 99, 129
STD command 47, 94, 151, 154, 157, 160, 166,
172, 213, 218, 258, 269, 303, 367
STEQ command 227, 290, 291, 302
operation 229, 280
STO0 command 360-1, 380, 383-4
{0 key 118, 122, 138, 154, 163, 195-6, 205,
210, 212, 218, 286, 301, 312, 364
STOE command 269, 279
STOF command 101, 105, 375, 380, 383, 385
STOKEYS command 371-2, 380, 383-4
Storage 14-5, 24-5, 116, 118, 123, 138
Storing flag settings 101
Storing values in variables 212, 219, 230,
236, 257, 292, 301, 364
+57R command 110-1, 159, 346
String objects 108-11
String representations of objoctu [01 [0
Strings See Charnclor ulrings
STWS command 1044, 150, 174
SUB eammnnd [h1), 124, M43, D44, 40, 147
T oporation 1902, 1L, 260, 991
Subdirectories 1, 140 1, 140, AN, H)

Subexpressions 182-3, 186-8, 301
editing 189-214
inserting 191, 219
nested 188
rearranging 200, 203
replacing 192
Subseripts 182
Subtraction 51, 70, 107
SUML program 334, 335
Summations 143, 145, 157, 186, 270, 286,
302
Superseripts 128
Surface area 283-5, 293
SWAP 334-5, 339, 342, 344, 347, 360-1, 371
(5waP) key 53, 151, 162, 192, 290
Symbolic arguments 178
Symbolic constants 148, 169
Symbolic functions 178-9
Symbolic rearrangements 200-7
Symbolic variables 178-9
Symbolic vs. numeric evaluation 148, 160,
169
System flags 98, 100, 105, 158, 169, 211, 309,
320, 340, 342, 350, 374-5, 380
System parameters 307-8, 318
System reset 383
System states 101, 105, 147, 158, 309, 374
defanlt 383, 385
Systems of equations 258-61, 282, 293
Systems of inequalities 231

t-statistic 277, 279-80
+TAG command 114, 160
Tags 24, 1135, 148
Taylor series 63, 284, 297
TAYLR function 287
Temperature 69, 151, 236-7, 256-7
Temporary custom menu 367
IS operation 203, 205, 296
Testing flags 100-1, 323, 342
operation 203
Time 69, 199, 357
arithmetic 171, 302
format 170-1, 302
(TWE) key 156, 170-1, 354
TMEMU command 367, 380
Toggle keys 18, 82, 89-90, 96, 374, 384
three-way 19, 369, 371
Transferring data to other machines 388
Transposing a matrix 279
aperation 204
Triangles 217, 221
Trig. functions 85, 154, 204, 211, 218, 282

Trigonometric identities 206-7, 217, 221
Trigonometry 61, 168-9, 183, 216
Triple scalar product 154
TRN command 279, 347
TRNC function 64, 167, 174-5
Truncation 61, 64
and binary integers 106, 159
of real numbers 166, 167, 174, 175
to current display setting 175
TRUTH command 291
TSTR command 171
TYPE command 323, 329-30, 338, 343, 346

IJBASE command 156, 256
UDF. See User-defined functions
Undefined values 126
Undeing a stack error 356
Unit chiects 22, 68-74, 77, 144-5, 174
adding and subtracting 70, 72
building 69, 72, 143, 184
multiplying 70
multiplying and dividing 71-2, 143
T program 321
Units 22, 68-73, 154, 178
compound 72, 184
consistent 68, 235
converting 68, 70, 71, 72, 73
in equations 221, 224, 235-7, 256
inconsistent 71
prefixes to 152
([ONTS) key 69, 73, 160-1, 1586, 256, 357
IPRIR command 140
[UP key 140
User flags 98-100, 105, 374, 380
User mode 369, 371
User-defined functions 212-5, 217, 220, 292,
310-2, 322, 340, 343
algebraic vs. program form 311-2, 324
and the SOLVE tool 248-51
and the STAT toal 277
symhbolic argaments with 215
User-keyboard definitions 369, 371, 380
key 369, 371-2
ITPC command 278
UTPF command 278, 304
UTPN command 278
UTPT command 278, 280
VAL command 156

Y2 command 89-90
#3 command 89-90

Value of an expression 230, 274
T eperation 267-8
RIS operation 267
VAR key 15, 154-5, 354, 368, 373, 381
YAR menu 118-27, 134-5, 138, 161, 179, 212,
228, 305, 307, 314, 349, 854, 359, 363,
384
directories and 137, 379
subdividing 136-7, 360
Variables 118, 124, 258, 308-9, 352
TPAR 377, 378, 380
CST 363-4, 367, 370, 372, 378
defining 184, 205, 219
dependent 270-1, 289, 377-8
formal 178-9
global 311, 313-5, 317
hidden 199, 231
in different directories 138-9
independent 238, 252, 269-71, 290, 295-9,
377-8
isolating 208-11, 219, 221, 245
locai 313
moving 360
nl 211,218-9
of differentiation 291-2
of integration 182
polynomial 297
PPAR 377-8, 380
Variables {cont.)
reserved 224.5, 262, 377-8
sl 210
SOLMR 230-2, 256-7, 289, 301
stored 198
symbolic 178-9, 198, 251
value of 127, 132, 215, 218
Variance of a sample 304
38 operation 258
Vector equations 283
Vectors 13,86-91, 93, 143, 151, 155-7, 170,
383, 385
angle between 145, 154
arithmetic with 91, 146, 155, 162
compared with arrays 93-4, 146
cross product 91, 154
display mode 88, 89, 154, 162, 188
dot preduct 91, 145, 154, 155, 170
extracting components of 87-8, 90, 174
finding length of 91
in complex plane &0
norm of 176
real and complex 87, 155-6, 162
rectangular vs polar form 88
redimensioning 145, 155-6
unit 145, 155, 321
within vactors 162

Velocity 156, 199

Y+ command 90

operation 55, 229

Viscosity 69

key 123, 185

Visiting an object 123, 135

Volume 69, 72-3, 145, 150-4, 236-7, 255,
257, 283, 285, 293-4, 300, 317

WAIT command 336-7, 345

Waiting for input 341

Where (|) function 184

WHILE.. REPEAT...END loop 333, 338-9, 344
operation 258

operation 258, 264

Wildcard names 206-7

Word size 104-107, 147, 158, 342, 375, 385

K-range (plotting) 242, 244, 291, 377
ACOL command 269-71, 275, 304
MPON command 160, 176, 331

BRNG command 291, 295

T operation 273

T mode 81, 154-5, 157

Y-range (plotting) 242, 244, 291, 377
YCOL command 270-1, 275, 304
YRHG command 281, 295

BT operation 243-4, 246, 250, 289
Zero of an expression 232

Zero values 321

Z00M menu 239, 273

Zooming in the PLOTR 239, 243, 273, 289

We have many other great books for learning about your computer and

your favorite software—don’t miss them!

HP-48SX Graphics

Here’s a “must-have” book if you
want to use the full potential of
that big 48 display. Author Ray
Depew, an HP engineer, shows
youhow tobuild graphics objects
(“grobs”) and then use them to
customize displays with dia-
grams, pictures and plots. You’ll
also get an in-depth review of
the 48’s built-in PLOT and
SOLVE tools and how to custom-
ize them, too.

An Easy Course in Using
the HP-28S

If you liked the Easy Course for
the 48, and you know someone
who could use the same kind of
help with an HP-28S, then here’s
anideal gift. Authors Chris Cof-
fin and John Loux guide the
reader through a tour of the ob-
jects and tools in the powerful
HP-28S, including a section on
problem solving with programs
and algebraic objects.

We have Easy Courses and related books on many other subjects, too.

See our order information (next pages) or contact us for a free catalog!

Grapevine Publications, Inc.

626 N.W. 4th Street

P.O. Box 2449

Corvallis OR, 97339-2449 U.S.A.

Item # Book Title Price
Curriculum Books - -
N/A | Problem-Solving Situations: A Teacher Resource Book, Vol. 1 ! $15
Personal Computer Books
N/A | An Easy Course in Using Lotus 1-2-3 $ 22

28 Lotus Be Brief 11
30 | An Easy Course in Using DOS 22
29 | A Little DOS Will Do You 11
N/A | An Easy Course in Using WordPerfect 22
N/A | Concise and WordPerfect 11
N/A | An Easy Course in Using dBASE 22
Hewlett-Packard Calculator Books
N/A | An Easy Course in Using the HP-19BII $22
22 | The HP-19B Pocket Guide: Just In Case 6
20 | An Easy Course in Using the HP-17B 22
23 | The HP-17B Pocket Guide: Just In Case 6
05 | An Easy Course in Using the HP-12C 22
12 | The HP-12C Pocket Guide: Just In Case 6
31 | An Easy Course in Using the HP-48SX 22
N/A | HP-48SX Graphics 20
18 | An Easy Course in Using the HP-28S 22
25 | HP-28S Software Power Tools: Electrical Circuits 18
27 | HP-28S Software Power Tools: Utilities 20
26 | An Easy Course in Using the HP-42S 22
24 | An Easy Course in Using the HP-22S 22
21 | An Easy Course in Using the HP-27S 22

(Prices are subject to change without notice)

Grapevine Publications, Inc.
626 N.W. 4th Street P.O. Box 2449
Corvallis OR, 97339-2449 U.S.A.
For Orders and Order Information Call:

1-800-338-4331

To Order Grapevine Publications books:

= Call to charge the books to VISA/MasterCard, or
Send this Order Form to: Grapevine Publications, P.0.Box 2449 Corvallis, OR 97339

Qty. |Item # Book Title Unit Cost| Total
Shipping Information: Subtotal
Post Office shipping and handling ADD $ 2.50 P
(allow 2-3 weeks for delivery)...... SO or S.hl.pplng
UPS shipping and handling ADD $ 3.75 See shipping Info.
(allow 7-10 days for delivery) or
International Mail: Surface Post ADD $ 4.50 TOTAL

(allow 6-8 weeks for delivery)

Air Parcel (Please contact us for the correct amount or add $10
per book to Canada and Mexico. Add $25 per book to all other
countries. We will refund any cash excess, or charge exact
shipping cost to credit cards. Allow 2-3 weeks for delivery)

Payment Information

Q Check enclosed (Please make your checkpayable to Grapevine Publications, Inc.)
(International Check or Money Order must be in U.S. funds and drawn on a U.S. bank)

O VISAorMasterCard # Exp.date

Your Signature

Name Phone ()

Shipping Address
(Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery)

City. State Zip Country.

Reader Comments

Here at Grapevine, we like to hear feedback about our publi-
cations. It helps us produce books tailored to our readers’
needs. Ifyou have any specific comments for our authors after
reading this book, we’d appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:
City, State:

Please send Grapevine Catalogues to:

Name
Address
City State Zip

Name
Address
City State Zip

An Easy Course in Using the HP-48SX

Here’s the fastest, easiest way to get up-to-speed on the incredible
HP-48SX! This fascinating and friendly Course gives you jargon-free,
hands-on, practical lessons on objects, tools, menus, the Stack,
writing, solving and plotting equations, using matrices and
statistics, programming, using directories—and much more.

Each lesson shows you working examples of the commands and
concepts you need to learn. There are plenty of review points that
summarize what you've learned—and a quiz at the end of each
chapter.

So don’t wait any longer to start tapping the potential of your HP-
48SX. Let this clear, concise Easy Course get you started on a long and
productive working relationship with HP's finest calculator. It’s
always a pleasant surprise when the right kind of instruction can
transform a “mysterious” and powerful machine into a friendly and
familiar tool—for you!

ISBN 0-931011-31-0

Grapevine Publications, Inc. |
626 N.W.4th St. P.O.Box2449 Corvallis, OR 97339 U.S.A. 0 "112841"00031" " 6

- J

	Cover
	Contents
	0. Start Here
	1. Your 48 Workshop
	Calculating with Tools and Objects
	The Big Picture: A Workshop
	The Display: Your Window into the Workshop
	The Keyboard: Access to Your Workshop
	The Tools in Your Workshop
	The Raw Materials in Your Workshop

	Quiz on the “Big Picture”
	Quiz Answers

	2. The Stack and Command Line: Your Workbench
	Typing and the Command Line
	Simple Materials: Real Numbers
	Postfix Notation
	Stack Manipulations
	Learning By Doing
	Workbench Quiz
	Workbench Solutions

	3. Objects: Your Raw Materials
	The Fundamental Idea
	Real Numbers
	Units
	Lists
	Complex Numbers
	Vectors
	Arrays
	Flags
	Binary Integers
	Character Strings
	Tags
	Names
	Algebraic Objects
	Postfix Programs
	Directories
	Objects: A Summary
	Test Your Objectivity
	Objective Answers

	4. Functions and Expressions
	Functions and Arguments
	Some Built-In Functions
	Symbolic Functions and Variables
	Creating Expressions
	Editing Expressions
	Saving Expressions

	Using Expressions
	Evaluating Expressions
	Rearranging Expressions
	Solving Equations of Expressions

	User-Defined Functions
	Math Anxiety
	Cool and Calculating

	5. Solving, Plotting and Analyzing
	Equations, Data and Graphics
	Defining EQ, the Current Equation
	The SOLVR Menu
	Solving Equations with SOLVE
	Solving Equations Involving Units

	Solving Equations Using PLOT
	Solving Two Expressions Simultaneously
	Solving Programs and User-Defined Functions

	Multiple Equations with SOLVE and PLOT
	Solving Systems of Equations
	Analyzing Data: The STAT Tool
	Creating the Data Matrix
	The STAT Menu
	Single-Variable Statistics
	Two-Variable Statistics
	Two-Sample Statistical Tests
	Transforming Variables in the Data Matrix

	More Challenges
	More Solutions

	6. Building Your Own Tools: Programming
	Your "Automation” Options
	Local Names
	Program Design
	Conditional Tests
	Branching
	Looping
	Quiz
	Quiz Answers

	7. Customizing Your Workshop
	Labor-Saving Devices
	Input Shortcuts
	The LAST Commands
	Customizing Your Workspace
	Directory Structure
	Custom Menus
	Custom Keyboards
	Custom Flag Settings
	Customizing the Built-In Tools
	Optimization: A Case Study

	Custom Questions
	Optimum Answers

	Foundation Completed

