
An Easy Course in

Using the HP-48SX

An Easy Course in

Using the HP-485X

by Dan Coffin, Chris Coffin

and John W. Loux

Illustrated by Robert L. Bloch

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

HP-48SX and 48 are terms used herein to refer to the HP 48SX, the

registered trade name for the handheld computingproduct ofHewlett-

Packard Company. We extend our thanks once again to Hewlett-

Packard for their top-quality products and documentation.

© 1990, Grapevine Publications, Inc., and Solve and Integrate Corp.

All rights reserved. No portion of this book or its contents may be

reproduced in any form, printed, electronic or mechanical, without

written permission from Grapevine Publications, Inc., and Solve and

Integrate Corporation.

Printed in the United States ofAmerica

ISBN 0-931011-31-0

First Printing — November, 1990

Notice ofDisclaimer: Neither Solve and Integrate Corporation nor Grapevine Publications, Inc.

makes any express or implied warranty with regard to the keystroke procedures and program

materials herein offered, nor to their merchantability nor fitness for any particular purpose. These

keystroke procedures and program materials are made available solely on an “as is” basis, and the

entire risk as to their quality and performance is with the user. Should the keystroke procedures

and program materials prove defective, the user (and not Solve and Integrate Corporation, nor

Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all necessary

correction and all incidental or consequential damages. Neither Solve and Integrate Corporation

nor Grapevine Publications, Inc. shall be liable for any incidental or consequential damages in

connection with, or arising out of, the furnishing, use, or performance of these keystroke

procedures or program materials.

CONTENTS

(o) StarT HERE 8

(1) Your 48 WORKSHOP 12

Calculating with Tools and Objectscevuueeeiiiiiiininniiain, 13

The Big Picture: A Workshopccoooevviiieeiininiiiiniiiiiiiiieneee. 14

The Display: Your Window into the Workshop............. 16

The Keyboard: Access to Your Workshopcccccceeeeenn. 18

The Tools in Your Workshopccccceeveeeieiiiiieiiiieeeeeeennennnne. 21

The Raw Materials in Your Workshopccccevvvvvveenneee. 22

Quiz on the “Big Picture”cccovviiiiiiiiiiiiiiiiiiiiiieieeeeneeeennas 27

QUIZ ANSWETSovveiieeieeeeeeiiiieeeeeeeeerrriteeeeeeeeernaeeeeesssranneaes 28

(2) THE StACK AND CoMMAND LINE:
 YOoUurR WORKBENCH 30

Typing and the Command Lineccccccevvvviiniiieeeinnnennnnee. 31

Simple Materials: Real Numbersccccooeeeeeeeiniininiinnnnn, 40

Postfix Notationcooooiiiiiiiiiiiiiiiiieeeeee48

Stack Manipulations............cccoeiiiiiiiiiiiiiieee52

Learning By Doingoouuiiiiiiiiiiiiiieeee,59

Workbench QUIzZ.........ooouueiiiiiiiiiiiiiieeiieee60

Workbench SolUtionscooeeveiiiiiiiiiiieeeeeeeeeeeeeeeeeeeneens 62

(3) OBJECTS: YOUR RAW MATERIALS......ccccssmssmmmssnnsnnns66

The Fundamental Ideac.cccooeeeeieeeiiiiiiiieee,67

Real NUmMDETrSouvuviiiiiieeccieeeeee67

UNIESee ean 68

Stetearee74

Complex NUMDETrScccocoiiiiiiiiiiiiiiieeeeee80

VECEOT'S .cvvviiiiieiiiiiiiiiitttee e e e e e e e e eeeeeseeesssssnnnnen 86

ATTAYS...tttrrre ennan 92

Flags.oee e e e e e e e seaaeaaes 98

Binary Integers...,102

Character Stringscooovvvvvviiiiiiiiieee108

TS ceiiiiieeeeeteeeete e e e e e anan s 112

INAINES ..tvvitiiiiiiiiiiee e se e e ee e e eeeeeeeaeeeeaeeeeaaeesesessssssnnnnnnnns 116

Algebraic ODbJectSovvvviiiiiiiiiiiiiiiieceeeeeeee, 124

Postfix Programs........ccccccoeeeeiiiiiiiiiiiieeeeeeee132

DiAreCtOrIes ..cceeeiieieeeeeeeee136

Objects: A SUMMATY....ccooeeeieeeeieieeieeeeiieeeeeeeeeeeeeeeeeeee142

Test Your Objectivityccccoviiiiiiiiiiiiiiieiee143

Objective ANSWETScccccuuvviriieieeeeeeeeeeeeeeeererreeee150

(4) FunctioNs AND EXPRESSIONS 164

Functions and Argumentsccccccvuveeeeiiiiiiiiieeeeeeeeennen. 165

Some Built-In Functions........cccccevvvviiiiiiiiiiiiiiicieeeeee,166

Symbolic Functions and Variablescccooeeeeeeeeeeneenennnnnn, 178

Creating EXpPressions..........ccccccoevvvvviiivveviiiviiieeeeeeeeeeeeeeeeeenn, 180

Editing EXpressionsccccccceeeeeeeeeeciccinnnienneeeeeeeveeeeeeeeee 185

Saving EXPreSSIONSccoooivvviiiiiiieeeeeeeeeieeeeeeeeeeeeeeeeaeenn 195

UsIing EXPresSionsccceeeieiiiiieieeerieeeereniiesnesseeeeseeereeeeens 197

Evaluating EXpressionsc.cccccoeeeeiiiiiiiiiiciiiiiniieeiceeennn, 198

Rearranging ExXpressions.........ccccccceviiimviiiiiiiiciiiineeeeneneens 200

Solving Equations of ExXpressions.........cccccceeeeeiieeeeineennnns 208

User-Defined Functions.......cccooeeviiiiiiiiiiiieiieeiieiieeenieenneenennn. 212

Math ANXIELYccvvviereiiriiieiiiiieerreeeeeeeeeeeeeeeeeeeaeereeeeeennnns 216

Cool and Calculatingccccoeevniiiiiiiiiiiiiiiiiiiieeeeeeeee,218

SOLVING, PLOTTING AND ANALYZINGcceeveurereenne222

Equations, Data and Graphicsccccovvvrvieeieiiiiiiicceeenennns 223

Defining EQ, the Current Equationccccvvvvivevennnnnee. 226

The SOLVR Menu.........ooeiiieieiiiieieieeiiereeeeeeecreenee e ee230

Solving Equations with SOLVE............ccccoviiniinnnnnne, 232

Solving Equations Involving Units.......cccccceevvveireennnnnes 235

Solving Equations Using PLOTccccovviiiiieiiiicceneee, 238

Solving Two Expressions Simultaneously...................... 245

Solving Programs and User-Defined Functions............ 248

Multiple Equations with SOLVE and PLOT 252

Solving Systems of Equations.............ccccceevevinnnrvnnninnennnnnn. 258

Analyzing Data: The STAT Toolcccoovvvvvveireeeeieeeeeeeeneee, 262

Creating the Data Matrix.........cccocovvvvvrvrrrevieeeiieeeeeeeeeee, 264

The STAT MeNUcccoouvriiiiiiciieieeeeeereee267

Single-Variable Statisticscccccccvveerivieeieieeieiieeieeeeeenn. 268

Two-Variable Statisticsccccoovvviiiiiiiiiiiiiiiiiice, 270

Two-Sample Statistical Tests.......ccccoeveeeiieiiiiiiriiiiiniinnnnn... 276

Transforming Variables in the Data Matrix................. 279

More Challengesoooeevvveivviiimiieiiiieceeeeeeeeeeeeee vavaaaens 281

MOTe SOIULIONS ..cuuieeeieeeieee et eeeeeeeee e eeaeeneeeneseeesnaens 289

Bumping YOourR OwN TooLs:

 PROGRAMMING 306

Your "Automation” Optionsccccceevevvriiieiiiiiiiieeeeeeeeeeeenes 307

Local NAmeS.........cuvveiiiiiiiiiiiiciiieereeeeee310

Program DesSigncceeiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee318

Conditional Testscccoeeeieeiiiiiiiieeieeeeeeee,323

Branching.............oeeiiiiiiiiiiieieeeeeeeeeeeeeees326

LOOPING...ee eee e e e e aaaeans 333

QUIZ ..ottteeeeeeera e e e rara e eeaaeeens 340

QUIZ ANSWETS ...ouvineeeeeeeeeiiiiiiieeeeeeeeeertireeeeeeeeeserraeeesrersnnnnns 342

CUSTOMIZING YOUR WORKSHOPccccoveurersensessenanees348

Labor-Saving Devicesccooevviriiiiiiieeiiiiniiiiee eeececeeeeene 349

Input Shortcuts......cccceveeeeeiieeieeeeeeceeeeee350

The LAST Commandscccceeeeeeieumrrerrreiieieeeeeeeeeeeeeeeeeeeeee. 355

Customizing Your WOrkSpaceccceevvvvvvevvenieeeeeeeeeeeenennnns 358

Directory Structurecccceeeveeeieiivireirieeeeeeeeeeeeeeeeee, 359

Custom MenuUS.........cceeeiieiiiiieeiiiiirrereeeee e e e e e ee362

Custom Keyboardsccceeeeeeeiiiiiiiiiiieeeeireieceeeeeeeirieeeees 368

Custom Flag Settings........cccccvvvvivvviieiiiiieeeeeeeeeeeeeeeeenne, 374

Customizing the Built-In Toolscccovvvvueeiiiriiiinennnns 376

Optimization: A Case Studyccccoeevvveeeeeeieeeiieereiennnnns 379

Custom QUESEIONSovvvuueiiiiiiiiiieeeeeeereeeeeeeeeeaans 383

Optimum ANSWETS.........cceeeiiiiiieiieeeeeeeeeeeeree e eeeeeeeeeeeeens 384

FounpATION COMPLETED 387

vd

3
\WQ\S» = . m

\/S \‘

LG

(0) STaART HERE

What Is This Machine?

Before you start usingthe HP-48SX (or “48” for short), here’s some idea

of what you can expect from it: The 48 is a calculator—a tool to give

you quick answers to quick questions. Most often this means keying

in a value or two, pressing a key, and reading the result in the display.

The 48 was indeed designed to work in just that way. Although it’s

tremendously sophisticated, mostofits operations are simply variations

on the basic theme: Ask-A-Question/Get-An-Answer. Ifyou keep this

in mind, you'll get along very well.

One more thought: The 48isatool, designed to be used in a certain way

for certain things. It’s a great general-purpose calculating tool, butit’s

not the best tool for everyjob. When it’s easier to use pencil and paper

—or a larger computer—do it! Always choose the right tool for thejob.

What Is This Book?

This book is not a reference manual (HP already did their usual great

jobonthat). It’s not an intensely in-depth treatment ofprogramming,

equation-solving, or any of the many things you can do “in-depth” on

the 48. There are simply not enough pages in one book to do all that.

This book is a tutorial introductory course on the 48—a step-by-step,

self-pacing course to orient you and get you “up-to-speed” on most

features of the machine—so that you can then use the HP manuals

more profitably as you continue to practice with your 48.

The (ON) Key

From the looks of the keyboard, there’s a lot to learn about this

machine; each key has several meanings. So although the (ON)key may

seem a trivial a place to start...

Do This: Turn on your 48 by pressing the key at the lowerleft.

Now turn it off, by pressing (©JOFF). Notice the different

function names printed on or around the key. The

functions are related to one another, but the one you get

depends on whether you press one of the shift keys first.

This is the case with most keys on the machine.

Adjusting the Display

Next, make sure that you can read the display comfortably.

Do This: With the machine turned on, press and hold down the

key, then press either the or (=) key until the display

adjusts to a comfortable viewing angle.

You cando thisat any time. And—like most ofits modes and settings—

the calculator will remember and use this viewing angle until you

change it.

10 0: STARTHERE

Setting the Machine for this Course

There’s one other thing to do before beginning with the actual Course.

You may not yet know whatthis is all about—but don’t worry: This is

the one time when it’s all right simply to press buttons without trying

tounderstand what you’re doing. This procedure isjust to be sure that

your machine has the settings this Course assumes....

Do This: Type: QOI#I2(#]0) ENTER. Again,
notice how you must press the orange (&) or the blue ()

to activate a keyboard function of that color.

Then (SITJOJFJENTER]1]8]+/-])(sPC]a]S]]F>]HOME]

) (the alphabetic characters are printed in

white at the lower right of the keys). Now your display

should look like this:*

That’s it—you’re finished with the preparations. Now, on with the

Course....

*Ifyour display looks different, just repeat this entire procedure.

11

(1) Your 48 WORKSHOP

Calculating with Tools and Objects

Once upon a time, workingwith a calculator meantjust usingnumbers

and doing math. You could calculate lengths and angles in geometry,

and distances, areas, rates, logarithms and roots—to 10-digit accuracy.

But that’s not enough anymore. Now engineers, scientists and techni-

cians from all sorts ofdisciplines expect a calculator to deal with com-

plex numbers, vectors, matrices, tables ofdata, etc. And nearly every-

body uses some kind of electronic note pad or text storage nowadays.

So, wouldn’t it be nice to have a calculator that worked with these more

sophisticated datatypesin the same way thatyourold calculatorworked

with numbers? (...yep—you guessed it....)

How the 48 Does It

One unifying idea now emerging in computers is that data are simply

“things”—objects on which you perform work. And functions or pro-

grams are the tools with which you do this work. In the expression

2 +3, for example, the numbers 2 and 3 are simply objects that you

combine to form a new object (5), using the + tool—just as you combine

two blocks of wood to form a new object, using a hammer.

And now thisidea ofa ool (+) can apply to more thanjust real numbers.

It works the same, whether you're adding real numbers, complex num-

bers or vectors. The results are different, because you start with differ-

ent “materials,” but the tool you use is the same—so the 48 lets you use

the same simple keystroke ((+)) in each case.

Calculating with Tools and Objects 13

The Big Picture: A Workshop

The 48 is a collection ofmaterials (objects) and the tools to use on them

(operations, etc.). So it's really a calculations workshop:

{
The Stack is the “workbench” in 4

your workshop—where you liter- 3

H

: L "A" [1 ¢ 3 1
: "Good mornally “stack up” objects to use or

combine. Most ofthis combining

happens at the bottom of the

Stack, so those bottom Levels are generally shown in the display.
Some keys simply help you con-

trol, move around and operate in

the workshop—storeand retrieve

objects, get tools, rearrange the

workbench, set modes, etc. :

o8
B
3

The rest of the keys are mostly

“hand tools.” That is, they are

functions, within your easy reach

at the workbench, that perform

simple operations on objects on

% 2
 E
k

g 'Q e

the Stack. The most commonly

used hand tools (along with their B
®

inverses) have their own keys,

but many others are gathered in

“toolboxes”™—collections of items

X you use via menus in the dis-

play—like the MaTH menu you

see in the display here. @) M

%
]G

&)

PC ()

/

14 (1) Your 48 WorksHOP

As you work in the workshop, you create your own storage compart-

ments for the objects you build (the objects shown below are just

examples—these are not stored in your machine). The storage com-

partments are directories.

You can create directories even within other directories. And each di-

rectory has a path from the HOME (uppermost) directory—the route

you must take toreach it. The path ofthe current directory (i.e. “where

you are” right now) shows at the top of the display within{ }.

{ HOME }

NNTTRTNRR

{ HOME DATR }

IFENEEEEEEE
{ HOME GEOM ?}

PEEL |HYPEL

{ HOME CHEM ¥

TAELE|FORHMREDD:]
{ HOME DATA FIT: }

FUFFADJL |ADJE [FINAL

The key shows you the menu of all the objects (“VARiables”) you

have stored in the current directory.

The Big Picture: A Workshop 15

The Display: Your Window into the Workshop

To see into your workshop, turn on your 48 and look at the display....

The Stack

Look atthe space between the horizontal line near the top ofthe display

and the row ofboxes at the very bottom (if you don’t see these things,

press (ATTNF—the key). This is the Stack—the actual “workbench”

where you place the materials you're using. It’s called a Stack because

that’s how objects “sit” on the workbench: The object nearest to you is

at the bottom of the Stack (Level 1); and the next nearest object is at

Level 2, etc. You may not see many more objects stacked up above that

(infact you'll never see more than the closest four objects), but therecan

be hundreds more up there. They reappear as youremove lower objects.

The Command Line

The Command Line is a temporary space created to let you gather your

materials before putting them onto the Stack—your work bench.

Do This: Type a number—say, 14 (press(1]4)).... See how the Stack

lines move up to make room for what you type? That 14 is

not on the Stack—it’s on the Command Line—until you

specificallyputit onto the Stack, by pressing(ENTER), orthrow

it away by pressing ((ON)). Throw it away now: (ATTN).

16 (1) Your 48 WoRrksHOP

The Menu Line

At the very bottom of the display is the Menu Line. A menu is simply

a convenient collection of related tools—a “toolbox”, if you will. For

although the crowded 48 keyboard already offers many tools “within

your immediate reach,” there are hundreds more stored in menus—

even in menus within menus.

So, in making a selection from a menu, you are selecting a tool or

opening another toolbox (menu). And it’s easy: To make a selection

from a menu, you just press the white key directly beneath it.

The Status Area

Now look at the display above the horizontal line. Here sits a set of

warning lights and messages above your work bench—signs that light

up to announce events or warn you of problems.

In areal workshop you might see “Power On”lights and “SawJammed”

signs. On the 48, you’ll see warning messages telling you, in effect:

“You just tried to use a tool on the empty benchtop!” or “You can’t use

that tool on that object.” And you’ll see “indicator lights” that tell you

when certain tools will operate differently because you’ve turned on an

optional mode.

So be sure to watch the Status Area! Mode indicators stay on as long

as the mode is active, but warning signs appear only temporarily; they

turn off the next time you press a key.*

*Therefore, to further attract your attention to these warnings, the 48 usually beeps at you, too.

The Display: Your Window into the Workshop 17

The Keyboard: Access to Your Workshop

The keyboard is how you make things happen in your workshop—

putting objects on the workbench, using tools, moving around, etc.

The Shift Keys

The colored keys, (&) (“left-shift”) and () (“right-shift”),* indeed shift

the meanings of keys to the colored functions printed above them.

Also, a mode indicator appears in the Status Area when a “shift” is in

effect). Notice that shift keys are toggle keys: Ifa “shift”is on, pressing

that shift key turns it off—and vice versa.

The Numeric Keys

Often the objects on your workbench are numbers, so the numeric keys

and (+), (=), (%), (=), (ENTER), (+/-), and are all grouped together for your

“calculating convenience.”

The Alphabetic Keys

The (a) key is really another shift key: Press it prior to another key to

obtain thatkey’salphabetic function (printed in white to the lowerright).

Again, notice how a mode indicator appears up in the Status Area.

*Astrophysicists: Please refrain from calling them “red-shift” and “blue-shift.” Thank you.

18 (1) Your 48 WorksHOP

Notice that you can lock this alpha mode on by pressing (@) a second

time; the third time turns it off, so (o) is a three-way toggle key.

Also, note that you can use () and() within alpha mode (try it). Each

key can have three primary meanings, and three alpha meanings.

The Menu Keys

The sixblank white keys directly under the display are the menu keys.

Menus appear in the display, and you make selections with these keys.

Try It: Press and see the MODES menu in the display.

This is the menu where you can set many ofthe machine’s

modes (options). As with most menus, there are more than

six selections here, though. To move to other “pages,” use

the(NxT)key (to see the NeXT page) or((]PREV)(the PREVious

page). Try these now.... The MODES menu has four pages.

Now, move to the menu page that looks like this:

[0TNTETEDRR

The little boxes in the [JIK] and selections tell you

whatmodes are currently in effect (DEGree angle mode and

rectangular vector mode). But press the menu key under

EIIM... The menu and the Status Area tell you the

machine is now in RADians angle mode. Try otheritems on

this menu page if you wish (but when you’re finished,

please leave the modes as you found them) and press (MTH).

The Keyboard: Access to Your Workshop 19

The Control Keys

Finally, focus for a moment on the keys that help you direct the

calculator’s “movements,” editing and attention.

The menu keys, and often act as control keys when they

lead to other menus. But there are other control keys, too: (ATTN), (ENTER),

(«), DEL), («),), (a), and (¥), to name a few. As you’ll see, these keys help

you “get to” and use many of the tools in the workshop.

20 (1) Your 48 WorgsHOP

The Tools in Your Workshop

Hand Tools

Usually with the 48, you create a simple object and select a simple, one-

step tool to use on it—like putting a board onto the workbench and

using a hammer to drive a nail into it. The drawers and toolboxes

(menus)in your48 workshop are full ofsuch simple, one-step tools. You

must simply learn when to use them—and how.

Power Tools

Sometimes simple tools aren’t enough. To build, use, or make major

changes to a sophisticated object (and be guided through the process)

you needpower tools—instruments and analyzers that perform more

complex manipulations. For example, to create a table ofnumbers (an

array)—4 rows of 5 columns, you could type the whole thing into the

Command Line; or, you could use the MATRIX editor power tool, which

presents you with a template that you can fill and edit more easily.

Other power tools let you build, solve or plot equations, manage time,

do statistics, etc. These are all smart tools; theyknowsomething about

the materials you’re using and thus can eliminate much ofthe simple-

minded work. So instead of a tool that “nails this piece to that,” you

have a tool that “makes a chair,” or “designs a beam to support a 1-ton

load.” In this way, power tools actually augment your knowledge, by

automaticallyperforming sophisticated operations whose details would

otherwise cost you time to learn or recall, and then execute one-by-one.

The Tools in Your Workshop 21

The Raw Materials in Your Workshop

With all the hundreds oftools in your 48 workshop, you havejust a few

basic types ofmaterials (objects) with which to build. Each type looks

different so that you can distinguish it from the others:

Real Numbers

On the 48, real numbers look and act like what you normally think of

asnumbers: 3 15 106068 -8.9 -56.2 3.14

Units

Units are real numbers with dimensions. That is, you can use real

numbers to represent physical quantities (i.e., feet, pounds, psi,liters,

etc.), by assigning them units—and these units will be used correctly

throughout any calculations you perform. Here are some numbers

with units: 1_ft 17.3_kPa 9.81_m-s™e.

Note the underscore (_) that connects the number to its units.

Complex Numbers

Acomplex numberis a vector—an ordered pair—in the complex plane.

The 48 represents a rectangular complex number as two real numbers

(real, imaginary), like this: (3;4). Or, that same number can also

appearinpolar form, with a magnitude and an angle: (3, £33.13). The

angle may be in degrees, radians or grads.

22 () Your 48 WorgsHOP

Arrays

An array is a group ofnumbers (either real or complex numbers), with

no set limit on the size of the group, as long as it’s arranged in a table

of rows and columns—which can then be used mathematically as a

matrix. The 48 represents arrays within brackets:

([l 121 ([12311 (L 11

[34 1] [2 1]

2X2 array l-row array 1-column array

(row-vector) (column-vector)

Flags

Flags are the simplest object type of all—bits—objects with only two

possible values: 1 or 0 (on or off, set or clear—whatever)—usually to

signal a mode or condition. Flags don’t appear individually on the

Stack, but you can set or test them individually or as groups.

Binary Integers

Binary integers arejust that—integers made up ofbinary digits—bits

(i.e. flags). You can do binary arithmetic on them and use them to

representgroups offlags. The 48 displaysbinaryintegers on the Stack,

not only in binary form (base 2) but also in number bases 8, 10 and 16.

For example, 1011, appears as# 1811b 307, appears as # 3870

43, appears as # 43d ATF,appearsas# A7Fh

The# indicates a binary integer; theb,0,d, orh suffix tells you the base

(binary, octal, decimal, hexadecimal).

The Raw Materials in Your Workshop 23

Character Strings

On the 48, you build character strings—sets of characters linked to-

gether to form objects—words or sentences of verbal information,

denoted by quotation marks: "Hil" "Phone home." "1+1=2"

Tags

Tags are temporary labels for objects on the workbench (the Stack)—

like masking tape. Atag labels an object with an identifier and a colon

toitsleft: Answer: 17 Altitude: 296060 RANGE: 1@

Names

Names are words that identify things. On the 48, you use names to

identify storage locations. The name is the label you tape onto the

storage location to identify what’sin it (you don’t name an object itself).

A 48 nameis a single word within apostrophes: 'HUBERT' 'Wrench’

Algebraic Objects

Algebraic objects look and behave like algebraic expressions and

equations. On the 48, you type them between apostrophes—just like

names, except that algebraic objects contain mathematical operations

and functions not allowed in names:

'A+B=L" 'SINCx) ! 'pi*RADIUS"Z'

24 (i) Your 48 WoREsHOP

Programs

A program is a custom-built tool—a series of instructions (objects and

tools) strung together, to be executed at a later time. You create a

program, then name it (i.e., store it in a named toolbox). And then you

have a new tool to use—just as you would use any other tool in the

workshop. 48 programs are enclosed in ¢ *like this:

« 1 2+ » « "Hi" BEEP CLERR =

Lists

Lists are collections ofobjects, the wire and glue ofyour workshop that

binds together objects of any types—even other lists—within braces:

{1233 { "Hi" ¢ (3,4) "Buye" 3

Directories

Directories are the storage areas you create for your objects. They

appear as menu items with small “index tabs” :

'0ATA JGEOH

I

CHEM

Il

FITS

|

There are other, more obscure object types on the 48, but those are the

basic raw materials you’ll be working with most often.

The Raw Materials in Your Workshop 25

Look Again at the Workshop

Holding your place here, look back again at the Big Picture ofyour 48

workshop (page 14)....

Gradually, now, the maze of names and keys on your machine should

be emerging into some kind ofcoherent picture ofwhat you’re working

with here:

* You have a very sophisticated calculator—one that lets you

operate on (build, edit, combine) not only numbers but many

other types of objects.

¢ When performing these operations, you generally place these

objects on your workbench—the Stack.

* You perform the operations themselves with commands that are

available on keys or via menus. Most of these commands do

simple things; they are “hand tools.” A certain few are smarter

and more complex—the “power tools.”

* You name and store your created objects in directories that you

create.

Conceptually, it’s pretty simple, no? Be sure to keep this “Big Picture”

in mind as you start to learn the details. Test yourself now....

26 (1) Your 48 WorksHOP

Quiz on the “Big Picture”

At the end of every chapter this Course gives you a quiz, to make sure

you're “digesting” what you read. These quizzes aren’t trivial—they’re

a big part of your learning process—so don’t breeze over them; think

and apply your knowledge! The solutions immediately follow the

questions, so studythem and re-read parts ofthe chapter, as necessary.

1. What sorts of problems do you expect to solve with the 48?

2. Why use a workshop analogy when describing the 48?

3. How many keys would the 48 need ifit didn’t have the (), (G)and

) keys?

4. What’s a menu? Why does the 48 use menus? What kinds of

items may appear on its menus?

5. What’s a real number (as represented on the 48)?

6. What’s an array (as represented on the 48)?

7. What’s a power tool (on the 48)? Name three of them.

Quiz on the “Big Picture” 27

28

Quiz Answers

You can expect to solve most kinds of number-crunching and

data-intensive problems. Some may be intricate and require

special programming, but for most you will key in some values,

press a function key, and get an answer. The 48 has a vast supply

offunctions—and the flexibility to allow you to create your own.

Theworkshop analogy is good because the 48 usestools (functions

and operations) on raw materials (data objects—things like real

numbers, arrays,lists, etc.). The Stack acts much like a work-

bench, too; it’s where most of the building and crunching hap-

pens.

It would need about six times as many as it has now. The (o), (&)

and () keys allow most keys to “mean” six different things.

The 48 uses menus to avoid the need for even more keys: Amenu

is a selection of items that appears in the display. To make a

selection from a menu, you press the blank white key directly

beneath that selection. Menu items may be tools for object

manipulation, control operations—for moving around in your

workshop—or keys that lead to other menus.

On the 48, real numbers are what you usually think of as real

numbers: 1 15 -1866 H.3 -50 3.1416

(1) Your 48 WorgsHOP

6. Onthe48, arrays are groups ofnumbers—either real or complex

number—arranged in rows and columns and represented within

brackets: [[1 2 1 ([123 1] [11
[3 4 1] [2 1]

2x2 array 1-row array 1-column array

(row-vector) (column-vector)

7. Apowertoolisasmart,specialized tool thathelps youbuild, view

or “crunch” sophisticated objects more conveniently. Where your

simpler “hand tools” are like saws and hammers, your power

tools are more like lathes and drill presses. They are ¢(5]EQUATION),

(2JMATRIX), (G]SOLVE), (§]PLOT), (]ALGEBRA), ()TIME), and (&]STAT).

T,
RDRN272 h0 (277>

\q”.’.’_:,..’/"llo
e =
!
Y

U

g

a »'&‘ &

Q)
»

 L
Quiz Answers 29

P

T’“W@Nfi

\ fl-

»»»»»»N

A\ \\ \\\‘_\

(2) THE STACK AND COMMAND LINE:

YOUR WORKBENCH

Typing and the Command Line

It’s time to start learning how to work at your workbench....

To Begin: Press the digit keys (0 through 9) in sequence and look

at the display. You should see something like this:*

OME }

£ H

3

¢
H1Z3406/89+4
PARTS]PROEHYP[MATEWECTE] BASE

A space opens up between the workbench itself (the

Stack) and the Menu Line. And what youjust typed has

been placed in this space, which is the Command Line.

The numberyou've typed is notyet onthe workbench;it’s

still an unfinished command. To finish it—and to offi-

cially place the object onto the workbench—you must

press (ENTER). Do that now....

See? The Command Line disappears and the object, as

the 48 hasinterpreted it,is placed on Level 1—that’s the

bottom, the nearest Level to you—on your workbench.

*Ifyour display isn’t exactly like this, don’t worry too much. At this point you're most concerned

with that number you just typed in.

Typing and the Command Line 31

So that’s how to type in a real number and put it onto the workbench.

Now, what about something that’s not a number?

Do This: Press (o)....

=
2 3z m o

N
I
R

s
=
=

a
m

s
s
|
=
x

123496769
PARTS]PROEHVPJHATR[VECTREASE

Notice the a that appears now in the StatusArea, telling

you thatthe nextkey you press will return its alphabetic

character; you are in alpha mode.

Continue: Press(aA]o)B]a)c). ABC4appearsontheCommandLine—

and notice that you had to press (o) before every letter.

Now press (that’s the key).

What happened?

TheABC that you had typed on the Command Line was not put onto the

workbench. It was thrown away.

That’s what (“ATTentioN”) does: it tells the calculator to drop

whatever it’s doing and give you its full attention.

32 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Now try typing something a little more complicated.

Press: (ooWIHJAITISPC)(YJOJU)(SPC)STEIE)SPCI(IS)SPCIWIHIAIT]
GETD(

123436789
.SEE_I5 WHAT YOU GET.+
PHRTS]PROE HYP |MATR|YECTE]EASE

See how you can save a lot of keystrokes by using “alpha-lock”

(pressing (@) twice in a row), so that the alpha annunciator stays on?

Notice also that the first part of what you typed is now pushed off the

left-hand side of the display. The .. on the left tells you that the

Command Line extends off that side of the display. To see what’s

missing, press (4) repeatedly (or press it and hold it) until the 48 beeps

to tell you “there ain’t no more.”

Notice that you couldn’t do thisifyou hadn’t switched back out ofalpha

mode with the final (o), above. In alpha mode, the (4 key is something

entirely different—the (P) key. So you can see that it’s important to

know what mode you’re working in—watch your Status Area!

Typing and the Command Line 33

Inserting and Deleting Characters

Next question: How do you correct mistakes and make amendments

to your typing on the Command Line?

Do This: Using(«€)and (»), move the cursor so that it’s on top ofthe S

in SEE. Then type (@]o)(CJA[N)SPC)(a).

The new characters are inserted; this is how you add to

what’s already in the Command Line.

And it’s just as easy to remove characters. For example, to

remove the CAN that you just inserted...

Do This: Press(«[«[«]«). Notice how () deletes the character before

the cursor.

You could have used the (delete) key, also—but it deletes the

character under the cursor (not to its left), so you would have had to

move the cursor. Press once now, to delete the S in SEE.

34 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Lower-Case Letters

Up to now, you've typed only upper-case letters, but...

Try This: Type: ATIN(e]dJHGIDEPIETNEGIHGEGRIEGIE
(-Jo). Nothing to it—you get lower-case by using (&)

before each letter! But that’s a lot of extra typing, so...

Notice: ATTN[e]) (H)(&)(ISPTIHIEJRIEN-Jo). Pressing(]
when you're already in alpha mode will lock the 48 into

lower-case mode. And it will stay in effect untilyou leave

the Command Line or press ()] again.

Special Characters

There are lots of non-alphabetic characters (things other than A-z)

available to you on the 48. Most are right-shifted () alphabet keys,

but the keys aren’t labeled with these characters (no room), so there’s

a table of them on the back of HP’s quick reference card.

Certain characters—called delimiters—have special significance to

the 48 (you don’t even need to go into alpha mode to use them), because

they denote certain object types. For example, when you press ('] (not

in alpha mode), yousee ' ' (and the 4 points between them)—because

you’ll usually want to enclose the object you’re typing with these apos-

trophes. The other delimiter characters that come in pairs are on the

shifted arithmetic keys (&)}, GIU3),)«»), @I,], and (@3

Typing and the Command Line 35

The (O)«~) (NEWLINE) Key

The Command Line is actually a space—not a line. It can be broken

up into more than one line by using (right-shifted (:)—the

NEWLINE key.

Try This: TypeATTN[o])MIO]R[E=THANEI=CINEPI-)
LONEEID&ID (that's ()DED)(@)

You now have five lines in the Command “Line.” The

first line has scrolled off the top of the display, but it’s

still there.

Notice also that when you have more than one line like this, (o) and (¥)

move the cursor from line to line up and down—just as (4} and (») move

you around to edit a single-line Command Line.

Not only that, (2]« and (2]») will move you to the first and last

characters of a line, and (=] and (©]v) will move you to the first and

last lines.

Spend a little time now and play with this....

Then, without leaving your current Command “Line” (that multi-line

thing), read on....

36 (2) THE Stack aND CoMMAND LINE: YOUR WORKBENCH

The EDIT Toolbox

Not all your Command Line editing tools are available on their own

keys. With so many tools, the 48 has most ofthem stored in toolboxes

(menus)—including a set of tools for editing the Command Line. You

can open that toolbox with the key.

Try It: Press to see this menu ofthe items in that toolbox:

£35HIP|SKIPH £DEL

EBEH[d and move the cursor in the indicated directions (similar

to(4)and (»)), but they move until they encountera space (or NEWLINE)

and then stop at the next character. Try and now and

watch how the cursor moves.

and work the same way as EEIdld and ETHIED, except that

instead of skipping over those characters, they delete them.

IEEK is a mode key (remember the[lkey on the MODES menu?)

The IIEEMkeychanges theform ofcursorin the Command Line: When

the [appears to the right of [{H, the calculator is in insert mode; the

cursor is #, and newly typed characters are inserted to its left.

But press now.... Notice that it becomes [[[LEM, and that the +

becomes a . The 48 is now in replace mode; a newly typed character

will replace the character under the cursor.

Now press to throw away the current Command Line.

Typing and the Command Line 37

Next: Press (5)ENTER)(4]3)ENTER). You should now see this:

{q_HUME }

3: 123456789
25 5

GTN [TINEDT

Then: Begin a new Command Line. Type: (a]o)(1](SPC)(A]M)(SPCISPC)

(YTEJAXRIS)SPO)0]LD)-J@). Next, use BETAE CEHA(«to move
the insert cursor here: AM 4YEARS, then press ESATA:

: 123436752
y 43

Ecwo ||||||

Now ECHO (i.e. copy) an object (the 5) from the Stack to the

Command Line: Press(a)once to move the pointer up a Level.

Then press once, then to return to the Command

Line.... See how ECHO works? Acopy ofthe 3 is now inserted

where the insert cursor was pointing (the replace cursor

would have replaced existing characters, starting with the

character underit).

38 (2) THE Stack aAND CoMmMaND LINE: YOUR WORKBENCH

A Command Line Summary

Review what you now know about the Command Line:

* You know how to type in a wide assortment ofthings—numbers

and alphabetic characters, including lowercase letters, special

symbols, and the NEWLINE character.

* Youknowhow to use(«),(»),(a),(v),(DEL), and («)to move around and

edit the Command Line.

¢ Youknowthatifyouneed evenmore tools—such as [

IFEE] and EERTA—you can also open the EDIT toolbox: (5]EDIT).

But, did you know?...When you're not already working on something

in the Command Line, lets you edit the object at Stack Level

1, by making a “working copy” of it for you on the Command Line!

Try It: Press to clear the current Command Line. Then press

()EDT).... The 43 has been copied into the Command Line,

ready to be modified. Press (2)(ENTER). As usual, takes

the object from the Command Line and put it onto the Stack.

But in this case, it replaces the original 43 with the new ver-

sion of that object in the Command Line: £43.

Now try another: (GJEDIT)(DEL(+)ATTN). The trashes only

the edited version (. 43) in the Command Line; it leaves the

original £43 intact at Level 1 of the Stack.

Typing and the Command Line 39

Simple Materials: Real Numbers

All right, it’s time to look at what happens once you've succeeded in

putting an object on the Stack—after you've finished typing on the

Command Line and pressed to put the object at Level 1.

Real numbers are the most intuitive objects to start with, since you’re

somewhat familiar with them already: As you know, real numbers

include the positive and negative integers (1,2,-3,-5, etc.), the positive

and negative rational numbers (4.56,-2.3, etc.), the positive and

negative irrational numbers (1/2,T, ¢, etc.), and zero (0).

Well, your 48 “sees” real numbers in much the same way that you do.

They’re easy to represent—just a set of digits—as in any calculator.

But what about extremely large or small numbers—so awkward to

deal withbecause their decimal representationsuselots ofplaceholding

zeroes (e.g. 00000001 and 1,000,000,000)?

That’s why there’s scientific notation.* Thus:

5,280 =5.28 x10° 0.00023=2.3x107* 1=1x10°

The mantissa shows the number’s precision. It is then multiplied by

a power of 10 (the “exponent”), to show the number’s magnitude.

Actually, the 48 uses a slightly compacted version of this notation—to

avoid the need for superscripts in its line-oriented display:

5,280 =5.78E3 0.00023 =2.3E-4 1=1EB

*Not that it’s any more “scientific” than other notations, but science is one discipline where you

commonly encounter very large or very small numbers. It could as easily have been called “national

debt notation,” for example.

40 (2) THE Stack AND CoMmaND LINE: YOoUR WORKBENCH

Real Number Limitations on the 48

As you would expect, the 48 uses this scientific notation to achieve a

huge range in real-number calculations. Butit’s still a finite machine

with a few reasonable limitations that you need to understand.

12-DigitAccuracy: Some real numbers simply have infinite decimal

representations. For example, 4 is really 0.333.... But of course,it’s

impossible to use all of those 3’s during arithmetic. Naturally, you

round it, shortening it to a value that is both convenient and accurate

enough for your purposes. Though the rounded numberisnot the same

as the original, the difference is usually negligible in practice.

So, when dealing with infinite or extremely long decimal representa-

tions, the 48 rounds them, keeping a 12-digit mantissa ofeach number.

The inaccuracy that results is rounding error, and—as you would

expect—multiplying two rounded numbers will multiply this error.

So, how great an error is this?

Suppose you're the pilot ofa plane flyingfrom LosAngeles to NewYork.

And it’s a lovely day, and once airborne, your navigator letsit slip that

he’s been using his 48 to do fuel calculations—so his computations of

miles per pound of fuel are accurate only to .000000000001 miles (uh-

oh).... How big an error is this over 3,000 miles?

About one two-hundredth ofa millimeter. If you’d flown clear to the

moon and back, the error would be about 0.8 mm. And in a round trip

to the sun, you’d be off by about a foot. Not a lot, really.

So the 48’s 12-digit accuracy is slightly more than barely adequate.

Simple Materials: Real Numbers 41

Magnitude: Another limitation of the 48 is the magnitude of a real

numbers (i.e., the value, not the number ofdigits) it can represent: You

simply cannot expect it to represent arbitrarily large or small num-

bers. Everyone has a limit; you do—and so does your machine.

The largest real-number value representable on the 48 is a number

called MAKR: 9.99999999999E499 (9.99999999999 x 10**)

And the smallest value, called MINR, is 1IE-499 (1x10™")

These numbers are fantastically large and small. It is difficult—ifnot

truly impossible—to contemplate these quantities.*

*It’s a tough job—but someone’s gotta do it:” Compare MAXR and MINR with someofthe largest

and smallest things in the known universe....

The effective radius of an electron is about 2.817938 x 10""° m(eters)—or about 2.978626 x 10~

light years (a light year is the distance that light travels through free space in one year’s time). So

the volume ofan electron (assuming it’s a sphere) is about 9.373093 x 10™ cubic meters, or about

1.106972 x 10" cubic lightyears. Now,the radius ofthe sphere ofthe known universe is about 10%°

light years—so its volumeis about 10* cubic light years. And so, if you were to pack the known

universe absolutely solidly with electrons (no wasted space), you'd need about 10'* electrons.

Now that’s alot—more than anybody can really envision. But/MAXR on the 48 is so much largerthan

this, that ifyou really had a collection of MAXR electrons, you’d have enough electrons to fill 10,000,

000,000

000,000
000,000

000,000

000,000

known universes.

On the small end ofthings, picture in your mind the colossal gob ofelectrons numbered above. Then

picture yourselfpicking out just ten of those electrons. That ten—in relation to the whole—is the

fraction you're talking about when you use the smallest 48 real value, MINR.

42 (2) THE StaCcK AND CoMMAND LINE: YOUR WORKBENCH

Suffice it to say that the magnitude limits of the 48 aren’t all that

restrictive.

Indeed, you may have heard of human cultures whose numbering

systems went something like:

“1...2...3...more-than-3...”

...and that was all the higher they described numerical magnitude.

Well, so it is in every society. In this modern-day, technical world, for

example, the numbering goes beyond 3, but at some point, it runs out

of names and meanings too:

“...millions ... billions... trillions ... quadrillions ...”

...and so on, up to about “nonillions”—about 10*. But what do you call

numbers on the order of 10'®, or 10*°?*

Truly, there is a limit to your practical needs to describe numbers.

Yours may simply be a little higher than another’s—but not by much.

*The authors recommend the term “several gadzillion.”

Simple Materials: Real Numbers 43

Changing Signs and Entering Exponents

All right—enough worrying about the limitations ofreal numbers. It’s

time to see how they work as objects you manipulate on your work-

bench—the Stack. Try putting some real numbers on the bench-top....

Do This: Press JCLR) (5)2)8Jo] (ENTER] (3) 8] 5)-J2)5)

ENTER)(6])-JoJ2]2]@JE)2]3)[ENTER). You should see:

OME }£H
4:

3¢ oeod
i 260, 22
1 b, HZCESS
PARTS|PROEHYPJMATR[VECTR]EASE

Notice that when you keyed inb6. B22EZ3, you used

to key in the exponent—but you could have used

(Enter EXponent) instead.

For keying in exponents like this, works much the

same as except for one case: Press now....

See whathappens? Ifthere’s no mantissa already on the

Command Line, gives you one: 1.

(Press now to clear the Command Line.)

44 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Now, how about negative numbers? Try these...

Examples: Press (1)ENTER)(+/-)(+/-)....The key simply changes

positive object values to negative—and vice versa.

Nowput —1.3,4.5x107*, 7.8 x10* and -9 x 107> onto the

workbench. Press: (1]-J3]#+/-JENTER]

(9)+/=)(EEX)(+/-)(5]4)(ENTER).
You’ll see this:

OME }{H

4: -1.3
3% 4. 9E-24
s -7odd
1: -9.E-34
PARTS]PROEHYP|MATR[VECTR|EASE

So there are two ways to get a negative number: You can

put the positive number on the workbench in the usual

way, then press (+/-). Or, you can change the sign of

either the mantissa or the exponent at any time while

you’re typing in that portion of the number.

Simple Materials: Real Numbers 45

Display Formats

You’ll notice that the real numbers on the Stack have varyingnumbers

of decimal places showing. What’s going on?

Try This: Press (]MoDES)(4) lIZEM. You should see:

OME }

§: {3500
3: 4. 5HAEHE-4
2 -7, B8, BAEe

-9. BHHE-54
ST0Fiit5c1ENG[5vHa[EEEPa

Youjust told the 48 to change theformat ofreal numbers

in the display. Their values haven’t changed—just the

way you see them.

(4)IISEM tells the 48 to show a FIX’ed number ofdigits—

four in this case—to the right of the decimal point.

Notice how the [has appeared on the IIHElll mode key

to tell you that FIX mode is currently in effect.

Now press (0)IIZEH].... See? Now there are zero digits

to the right of the decimal point. Again, the numbers

haven’t changed in value—only in appearance.

46 (2) THE Stack AND CoMMAND LINE: YOUR WOREKBENCH

Do This: Press ENN

OME ¥

-1 . SHABHAEHEEEER
4. 2HEHAEEEAAEEE24
-7 . GHHEHREHEEEE3

-9, HEhBBHEEEERE-4
TNGOTEROEED

0
B

E
E

E
E

S
N

8
E
X

Notice: In the previous examples some numbers were

displayed in scientific notation even though the requested

display mode was FIX. But that was only because it was

impossible to display them any other way—using the 12

available digits. Any number greater than 999,999,999,999

or smaller than .000000000001 must be displayed in scien-

tific notation, since its magnitude exceeds the ability ofthe

display to show it as an explicit, one-part number.

But now, with SCI mode, you are forcing the display to use

scientific notation for every number, regardless whether

that number could otherwise be correctly represented in

the display.

Finally—before going on—press lELI. This is STandarD

display format, where all significant digits are displayed

andwhere scientific notationis used onlywhenthe number’s

value is outside of the display’s magnitude limits.

Simple Materials: Real Numbers 47

Postfix Notation

“...Scientific notation, real-number representation limits, display

formatting...when am I going to start doing things—Ilike arithmetic—

with real numbers?”

Right now:

Remember that what you’re seeing in the display is quite literally a

Stack of objects. Everything you've created so far has been “stacked

up” on this “workbench.”

Remember, too, that you put the latest additions on the bottom here;

that’s “upside-down” fromyour notion ofa stack oflumberor pancakes.

But it is a stack, nevertheless—because it’s a last-in-first-out type of

arrangement: the last thingyou put onto the Stack is thefirst thingyou

take off.

With that in mind, here’s the one simple rule to know as you begin

working with the 48’s Stack:

Whenever you use some tool to work on an object—say, to change the

sign of a real number, for example—the tool assumes that the object is

alreadyonthe bench-top (i.e. on the Stack) whenyou start to use the tool.

This means that you must first put onto the Stack any number(s) that

you want to manipulate and then perform the operation. This way of

doingthingsis called “postfix” (frompost-affix: literally, “to add after”)

because the operation itself comes after the operands.

48 (2) THE Stack AND CoMMAND LINE: YOoUR WORKBENCH

Real Number Tools

Try this postfix pattern of operation with some real-number tools.

Do It: Press (7)ENTER. Now press (Vx).... What happens? The 7 is

replaced by . 142857142857, which is 1/ (rounded to 12 dig-

its). The tool inverts the number in Stack Level 1.

Press again. You get 7. 88008060681 That’s y};

Try another: Press(a]-J3)(&)....Youget£. 87364413533—the

square root of the 4. 3 that was at Level 1. But how did that

4. 3get to Level 12 You never pressed to send it there

from the Command Line—you just pressed (ix)!

Answer: When you're working in the Command Line, most

tools automatically put the contents of that Command Line

onto the Stack (i.e. “press (ENTER)” for you) before they start

working—just to save you a step.

Postfix Notation 49

Notice: Theinverse ofatool is often located on the same key as the

tools itself. For example, press now.... You will get

4.29999999999, which is (v4.3) to 12 digits.

But there are far more tools than keys, so—as usual—when you want

more tools, look in a toolbox....

Like So: Press to open the MaTH toolbox. From the menu that

appears, you can see that this toolbox has six “drawers” in

it. You can tell that they’re drawers and not tools because

they each have a “folder tab” on their top, left-hand corner.

Select the [dild#F] drawer....You now see six tools in this

PARTS menu, but remember that there may be more than

these six tools in this drawer—and you can see more by

pressing or []PREV).

So “rummage” around in this toolbox now, until you find the

B(Integer Portion) tool. Try it—press IEA....

The resultis4—the IntegerPortion ofthe 4. 29999999999

that was at Level 1 of the Stack.

Again, the point is, whether you use tools from the keyboard or from

some toolbox, they all make the samepostfix assumption: the object to

be “worked on” is already on the Stack.

50 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

Two-Number Tools

The tools you’ve seen so far have worked on one object on the Stack—

at Level 1—the closest object to you. But many tools are designed to

combine fwo objects to form another—as in “plain old arithmetic....”

Do Some: Addtworeal numbersonthe Stack: Press(1)[ENTER)(2)(+).

The result is no big surprise, right?

Try (3)[ENTER)(4)(X). Also no surprise.

Now, addition and multiplication are commutative op-

erations(thatis, 1+2=2+1 and 3x4 =4x3). Butthat’s

not true for subtraction and division—so which number

do you put onto the Stack first?

Just put the two numbers onto the bench-top in the

order that you would say them. Thus 8 —2 would be

ENTER)(2)(-); and 6 + 4 is]ENTER)(4]=). Try those....

Noticealsothat several ofthe keyboard toolsusexandyintheir names.

This is to help you remember where in the Stack the operand(s) should

be to correctly use these tools:

The number at Level 1 is x; the number at Level 2 is y.

So, (5)([ENTER)(3)(Y¥ calculates 5°; and (8]1)([ENTER)(4)[=>)%7) finds /81.

There are other one- and two-number math tools in the MTH PARTS,

MTH PROB, and MTH HYP toolboxes. Check them out if you want.

Postfix Notation 51

Stack Manipulations

So that’s the basic idea: You put objects on your 48’s postfix Stack

workbench and then use tools on them.

Of course, you've seen this only with real numbers so far—and there

are plenty of other objects and tools to learn. But first you ought to

know how to organize, arrange and rearrange your workbench—the

Stack. As you might expect, there are tools to help you do this....

The first and most basic of these is (CLeaR). As its name im-

plies, it clears the Stack, throwing away every object on it.

Do It Now: (]CLR]

Another commonly used command is (G]DROP). It throws away the

object on Level 1 object from the Stack and drops all remaining objects

down one Level.

Try This: Press (1)([ENTER)(2)(ENTER)(3)(ENTER)

(()DROP)(6]DROP)(€7]DROP).

Or This: (1)(ENTER)(2)(ENTER)(3) (ENTER)() («) ().

As long as the Command Line is not active, («)is DROP (but of course,

if you are typing in the Command Line, then («) is backspace).

52 (2) THE Stack AND CoMmMAND LINE: YOUR WORKBENCH

Now, what ifyou want to duplicate the object at Level 1? (You’ll want

to do this a lot, as you’ll soon see.)

Guess what? serves that purpose. Remember that when the

Command Line is active, places its contents on the Stack. But

when the Command Lineis not active, makes a copy ofthe level

1 object and pushes it onto the Stack.

Example: Press (6)(ENTER)(ENTER)(ENTER....

The first puts the b on the Stack at Level 1. The
second copies this b, pushing the original up a

Level; you now have two 6’s. The third again

copies the bottom b and pushes the fresh copy onto Level

1, again pushingthe existing objects up a Level; you now

have threeb’s. Press now to throwthem all away.

The last of the common bench-top organizers is (§]SWAP). It simply

swaps Stack Levels 1 and 2, which is useful when working with order-

sensitive tools such as subtraction and division. Similar to ((&5]DROP),

whentheCommand Lineis not active, you needn’tpress(6&q)to use(SWAP).

Try It: Press (1)(ENTER)(2)(ENTER)(3)(ENTER) (§]SWAP) (or just

that’s the (») key). See? The £ and 3 are swapped. Play

around with this, and then press to go on....

Stack Manipulations 53

The Interactive Stack

The workbench can become pretty crowded with projects and raw

materials in various stages ofcompletion. Organizing, throwingaway

or bringing down selected items can be a real chore. But—how’d you

guess?—there’s a tool to help you.

Watch: First, put some “stuff” on the bench-top to play with. Press:

(©)cLR)(1)([ENTER)(2)(ENTER)(3)[ENTER)(4)([ENTER)(5ENTER)(6)[ENTER)

(7)(ENTER)(8)(ENTER)(9) (ENTER)

Now, press (4) and see this:

{ HOME ¥

s r
3+ 5
s 9
1p 14
ISTITW)T

Thisis theInteractive Stack. Itis designed to give you a quick and easy

way to look at, edit and use an object at any Level in the Stack.

Remember the tool in the EDIT toolbox (page 38)? Well, the

Interactive Stack’s arrow keys work in the same way: (a) and (¥) move

the pointer up and down the Stack. And ()a) and (©)¥) jump all the

way to the extreme top and bottom of the Stack, respectively.

54 (2) THE Stack aND CoMMAND LINE: YOoUR WORKBENCH

Do This: Move to Level 1 now ifyou're not there (i.e., press (2]¥)).

should look familiar, too. It works like EDIT’s

except that it opens the Command Line (because

there isn’t one already) and echoes into it the object at

the pointer Level. Try it—press [HXi}...

Nothing seems to happen, except for the changed menu,

but the Command Line is open—with 18 in it. But be-

fore showing it to you, the machineis givingyou a chance

to move around the Stack and echo other Levels, too.

Press (a]a) (ENTER). Now the Command Line ap-

pears—and it contains the 18 and the 8 that you've

echoed from the Stack. And if you were to press

now, those numbers would go onto the Stack—just as

they would ifyou had typed this Command Line instead.

But press to discard them. And notice that you've

left the Interactive Stack; press (a) to reactivate it.

Notice also the next item in the Interactive Stack menu: ¥ It

worksjust like (G]EDIT) except that it edits the object beingpointed-to—

creating a working copy on the Command Line so that and

can either accept or reject the changes you made.

Again, the idea of the Interactive Stack is to let you move around the

Stack and work with any object as you normally do with the bottom-

most object.

Stack Manipulations 55

Continue across the Interactive Stack’s menu items:

IIEmakes a copy ofthe pointed-to object and pushes this copy onto

the Stack at Level 1, moving everything else up a Level.

Try It Now: Make copies of Levels 3 and 11. Press: (]v)(a]a)

HIA () IHMH (-] and see:

e

i
—

0
0
0
\
0

 ECHO {MIEIPICKROLL{ROLLD{LIST

Then Notice: [LHA'48 and [d'[4¥] “roll” the contents of the Stack

between Level 1 and the pointer’s Level. §d!1|/48 rolls

up; ({1441 rolls down.

Move the pointer to Level 4 (o]a)a)) and press

several times to see the effect. Each time, the four

numbers are “rolled up,” with the Level-4 number

coming down to replace the Level-1 number.

And [']%]1] rolls the other direction. So roll Levels 1

through 4 around until you’ve had enough, then put

them back in their original order: 9 18 8 1.

56 (2) THE Stack AND CoMmaND LINE: YoUr WORKBENCH

Now turn to the next page of the Interactive Stack menu (press (NXT))

to see more tools.... These tools use the Level number of the pointer

as a kind of counter—telling the machine how many Levels to dupli-

cate, drop or keep.

Examples: Move the pointer to Level 2 and press [{l[dz0 You see:

{ HOME }

43 7
3¢ 1

o i
['IEEI]EIE]--

You now have two copies of the contents of Levels 1 and

2. The duplicate set was pushed onto the bottom ofthe

Stack—bumping the originals up to Levels 3 and 4.

[T drops (discards) the pointed-to level and every-

thing below it. Press [Iddill now to drop levels 1 and 2.

Conversely, keeps the pointed-to Level and ev-

erything below it—but discards everything above it.

Press now....See? Only Levels 1 and 2 remain.

(M348 simply pushes the Level number of the pointer

ontothe Stack. Press|[H3448qnow, while pointingto Level

2, and watch as the 48 pushes a € onto the Stack.

Stack Manipulations 57

Finally, there’s one other Interactive Stack tool that’s not inthe toolbox

(the menu)—because it’s on the keyboard: ()

As you may remember from page 52, when there’s no Command Line,

(#) acts as a DROP (identical to (G)DROP)), dropping (discarding) the

Level-1 object.

Well, in the Interactive Stack, («) drops the pointed-to object....

Prove It: Press (@) to drop the 1 at Level 2. Press («)again to drop

the 8.

Press («) once more to drop the 2. Notice how the pointer

won’t ever go any higher than the highestfilled Level of

the Stack.

Notice also that dropping the last object on the Stack terminates

Interactive Stack—you’re back to the menu you were looking at before

that—probably somewhere in the MaTH menu.

You can see that the 48 is designed to be as convenient as possible:

Maybe you went into the Interactive Stack to do some vast (or half-

vast) Stack manipulations, object building, copying—who knows? But

the reason for it all might be that you need to use something in this

MaTH menu on the resulting object(s). So the 48 remembers which

menu you were in and treats the Interactive Stack excursion as just a

temporary “side-trip”—a “time-out” for preparations.

58 (2) THE StAck AND CoMMAND LINE: YOUR WORKBENCH

Learning By Doing

By now, you’re surely reeling with all the tools at your disposal—just

to “mess around” in the Stack. Look how much you’ve seen:

¢ You know how to type on the Command Line, and how to use the

(@) key (one (@) per character or to “lock” it on);

¢ You know how to use lowercase letters, NEWLINE and other

special characters;

* You know how to edit the Command Line with, (DEL), («) and the

EDIT toolbox, which (among other things) lets you choose be-

tween the insert (#) and the overwrite () cursors and ECHO

objects from the Stack into the Command Line

¢ You know various and sundry other things, too.

Ofcourse, there’s no wayyou're going to memorize all the various Stack

and Command Line manipulation tools just through brief introduc-

tions like these—so don’t panic if a lot of this has blurred together by

now.

Butnow isthetimetodrive it home to yourself: The best way to become

familiar with the tools and concepts presented in this chapter is to use

them. So there’s a quiz on the following pages—mainly real-number

math and Stack problems. You may not be able to work every problem

correctly the first time. If you get stuck, look at the answer! See how

it’s done. Then work the problem again until you understand the

solution. After you've done all these problems, think up some of your

own. Play with the Stack—get used to it. Masterit.

Learning By Doing 59

1. Find

Find

Find

2. Find

3. Find

4, Find

5. Find

6. Find

7. Find both answers:

60

Workbench Quiz

1+2+3+4

1+2+3x%x4 Then find (1+2+3)x4

1+2+3 Then find (1+2)+3

21n(7)
45

—12 ++/12% = 4(3)(-5)

2(3)

—16+43(.004)
1736[32-163]

2 3 4

1+ 5+.’5_+'_5_ _§._

20 31 41

16 ++/(—16)? — 4(20)(—48)

2(20)

(2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

10.

11.

12.

13.

14.

Find sin45°, cos134grad, and arcsin0.5, in radians.

For 6 =75°, show that: sin30 =2sin6cos’ 6 +(1—2sin®6)sin®

What are the differences in rounding error for sin & radians ifyou

round 7« to 4 decimal places? 11 places? Whatifyou truncate at

4 decimal places? 11 places?

With 26 refrigerator magnets, one ofeach letter in the alphabet,

how many different six-letter “words” can you make? What ifno

two “words” may use the same six magnets?

1get Y301 By what percentage must you decrease

Put the numbers 12, 34, 56, 78, and 98 onto the Stack. Now

reverse their order (without typing them in again).

Without typing any digits, form the least possible positive inte-

ger from the digits of the five numbers in the previous problem.

Workbench Quiz 61

1.

5.

Workbench Solutions*

ENER2HEHEH Answer: 18

OERRDBDEENEREXEH Answer: 13

ENERQHEHE@X Answer: 24

ENTER)2IENTER[3)() Answer: 1.66666666667

GENTERIHEE) Answer: 1

Remember: In the absence of parentheses, do multiplication

before addition. When construing a written arithmetic problem

to solve on the Stack, work from the highest operator priority to

the lowest—and from the innermost parentheses outward.

(2JenNTER)(3)(H)(/X) Answer: .¢

OENEXEEE Answer: 8.64848955138E-2

(&IIXIXEE2DE
2IENTER3]X)(5) Answer: .38847614285

(4)3)ENTER) (-Jo)o4IX)8]+/-)(+H 2)enTER) (1)6-[3) (=)
&e9(I73] Answer: 63. 1263787668

*Keep in mind that there are many ways to solve arithmetic problems on the Stack. The solutions

shown here are amongthe most straightforward and easiest tounderstand. Butthere are certainly

other solutions—some of which use fewer keystrokes—so use whatever methods make sense to

you. Unless otherwise noted, the answers assume STD display notation.

62 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

6. ARCEEHOEEMEEES

CEENTERIGYYE)5
CeVY@Answer: 1.6484375

As you can see, the PROB toolbox in your MTH menu has the

factorial function, to help you “crunch” this Taylor expansion by

brute force; later you'll see another function to make this easier.

(1e)+/)&)x3)(4)ENTER)o[+X)(S(X)(2IENTER(X))

AN[EERET™N) (B Answer: ¢

@ Answer: -1.2

Keep in mind your Interactive Stack.

(MoDES)NXTINXT)TS (if necessary) (4)5)SN
Answer: .787186781187

H3TA Answer: —.50896841415¢5

T5)&)AsN) Answer: .9323398779598

You’ve seen the MODES menu before. Here you use it to set the

angle mode—degrees, radians or grads.

moDES)NXxTINXTDIJENTER)3]X)(SIN)(7)5ENTERENTER)

GRIXEF-IX)RIX) (7I5]cos))X(X]+)
Answers: —-.r87186781187 and -. 787166781181

That’s close enough, allowing for rounding error (see prob. 10).

Workbench Solutions 63

10. mis 3.14159265358979323846.... But no machine representsit (or

any irrational value) exactly; any numerical computation must

approximate. As for all values, the 48 uses a 12-digit represen-

tation of w (11 decimal places), then rounds for best accuracy:

3.14159265358979323846... ----> 3.14159265359

To truncate would decrease the accuracy:

3.14159265358079323846... > 3.14159265358

The same argument is true at the fourth decimal place:

3.14159265358979323846... ----> 3.1416

3.1415P265358979323846... > 3.1415

The sine functionis sensitive* to such approximations of«: Since

sint = 0, any approximation greater than n gives a negative sine;

any “under-approximation” gives a positive sine:

MODESINXTINXT)TN(3)-1415()2653So)ENTER
ENTER|ENTER|ENTER Answer: -2.86761537357E-13

(@EEX+/-11=SIN Answer: 9.79323846264E-12

@)EEQR BTN
Answer: -7.34641826867E-6

AL Answer: 9.26533896687E-5

The RND and TRNC functions round or truncate to the number

of decimal places you specify (4 here). A negative specifier re-

quests that many significant digits (rather than decimal places).

*This isn’t true for all angles. For example,sin 1.5707963268 (sin “ %”) is 1.060660008B8—to 11

decimal places—but only because the rounding happens to works out, not because the 48 treats n

somehow specially in its numeric calculations. It never uses w itself and can never give answers

other than those produced by the digits it does use. Thisis true for any irrational number: Take

V2 onthe 48 and then square the 12-digit answer. You do not (and should not) get2. 88608806600

(do the arithmetic by hand, to prove this, if you wish: 1.41421356237 x1.41421356237). Any cal-

culator that gives you 2.00000000000 for that answer (or 0.00000000000 for sin 3.14159265359)is doing

“funny math”—and you should feel free to be outraged.

64 (2) THE Stack AND CoMMAND LINE: YOUR WORKBENCH

11.

12.

13.

14.

This is a probability problem—so go to the PROB tool box:

ATThe question is, how many permutations (the order

matters) can you make of 26 objects, taking 6 at a time?

BBENE)6] PERH Answer: 1657656608

Ifthe order doesn’t matter, then it’s combinations of 26, taking 6

at a time: (2J6)ENTER)(6)[IMIA Answer: Z36230

(Result: 1.61883398873)

E=0ERE (Result: .61863398875)
Now, the percentage calculations are kept in the PARTS toolbox,

so (MTH)[AHE~x7)I Answer: -61.8683398875

That’s a 61.80...% decrease (it’s a negative change).

Press (1]2JENTER)(3)4)JENTER)(56 JENTER)(7)8 JENTER)(9) 0 JENTER).

Of course, there are many solutions to the reversal problem.

here’s one with the Interactive Stack: (a)(a) 114¥(a) [ITHM(a)

ROLL (8] ROLL [ENED)

The key here is to use the Interactive Stack to ECHO items from

the Stack onto your Command Line: (a)[}(&)312EXT:A

@)@ IELTHENTER). That sends you to the Command Line,

where all you need to do is delete the space delimiters*: (&)Id0L

(@) CEET («)A(«)A(o) IEEE («) BNTen).

*Technically, the smallest positive integer possible is 8123456789, which, when (ENTER)ed, would

be 123436789, so you could argue that it’s “legal” to delete the 8 character here too. (“OK, fine.”)

Workbench Solutions 65

(3) OBJECTS: YOUR RAw MATERIALS

The Fundamental Idea

This chapteris anintroduction to the basic raw materials—“objects”—

in your 48 workshop. You may not use all ofthese objects, but read this

chapter completely, anyway—so that at least you’ll know what options

you have for solving problems. Many solutions on the 48 use more than

one type ofobject, so take the time now to understand the basics ofeach

type—even if you don’t see what good it is right away.

Besides, this will give you a better understanding of the 48’s way of

doing things—its Fundamental Idea: You can generalize the problem-

solving process. Once you know the keystrokes and strategies for

problem-solving with one type of object, you can use other objects

similarly—without learning entire new sets of commands and rules.

Real Numbers

You’ve already seen real numbersin action on the 48—to show you how

postfix arithmetic works on the Stack. The only point to reiterate here

is this:

Just as you combine real numbers on the Stack via real-number math

functions, soyou combine other objects via math functions, often using

the same function keys (e.g. (=) (=} etc.).

Sonow it’s time to look at how these other object types work. Ofcourse,

to use them, you must know how to build and recognize them,too....

The Fundamental Idea /| Real Numbers 67

Units

In a sense, real numbers aren’t so real. When you add 1 to 2, what does

that mean? 1 what? 2 whats? 3 whats?

In the real world, you generally talk about real numbers as indicating

quantities ofsomething. When you drive 100 miles one day and 75 the

next, you speak of distances; the basic unit of measure is the mile.

Whenyou fill your gasoline tank by adding 7.4 gallons to your 15 gallon

tank, you’re talking about volume, with a basic unit of a gallon.

The point is, you wouldn’t need to specify such units if everybody

measured things the same way;ifthat were the case, you could simply

use real numbers. But it’s not. You can add 1 foot to 1 yard and get 4

feet or 1.3333 yards. And just how many teaspoons of liquid are there

in a liter? And how many square feet in an acre? Sometimes, doing

the unit conversions and checking your units for consistency are the

most difficult parts of doing a calculation.

How does the 48 represent them?

The 48 allows you to associate units with real numbers—much as you

do now. When you associate values and units on paper, you write the

unit after the value: 14 ft 26.3 in 142 acre

The 48 does it very similarly, simply using an underscore (_) tolink the

real number with its unit:

14_ft ¢6.3_1in 142_acre

68 (3) OByECTS: YOUR RAW MATERIALS

How do you build a unit object?

The easiest way to create a unit object is to use the UNITS toolbox....

Do This:

Like So:

Press(JCLR), then open the UNITS toolbox to explore it.

Press(GJuNTS).... Notice that each ofthe resultingmenu

items is a drawer with an “tab”—telling you that each

leads to yet another menu—a sub-menu with more

selections (use to see all 16 submenus available):

LENGth,AREA, VOLume,TIME, SPEED,MASS, FORCE,

ENeRGy, POWeR, PRESSure,TEMPerature, ELECtricity

ANGle, LIGHT, RADiation and VISCosity.

On the first page of the menu, select the LENGth sub-

menu:. Lookingthrough this menu, you'll find 22

different units of length.

To build a unit object, simply key in the real number

value and press the corresponding unit key. For ex-

ample,to build the unit object 14_ft , press HEl

(dothisnow)....* By pressing the key, you created

a single unit, 1 _ft, and then multiplied this by the real

number, 14, to form the unit object, 14_ft.

That’s true in general: Pressing any unit key forms a

value of 1 ofthat unit, then multiplies that by the object

already at Level 1 of the Stack.

*The menu keys show all letters in upper case, but the unit name itself often uses lower case.

Units 69

it object?

The beauty of unit objects is that you use themjust as you would real

numbers—and the 48 will keep track of the units automatically.

Example: Calculate how many feet of 10-inch-wide lumber planks

you’ll need to build a 7-level (backless) shelfunit that is

2 meters tall, 1 yard wide and 10 inches deep.

Solution: You need seven 1-yard pieces and two 2-meter pieces,

each 10 inches wide. So press: ([2[CLR)()KT(7)X)(2)

N ©MEE Answer*: 34.12_ft

Things to notice:

e 1_ydx?=7_ud. AndZ2xZ_m=4_n.

Multiplying a unit object by a real number (scaler) gives you

another unit object with the same units.

e 7_ud+Z_m=8.48_m.

Adding (or subtracting) two compatible unit objects gives you an

object with units the same as that ofthe previous Level-1 object.

* To convert a unit object to other compatible units, simply press

(()before pressing the desired unit’s key. Anyofthe LENGthunits

are compatible with each other; any of the AREA units are com-

patible with one another, etc.

*Until further notice, all answers will assume a display mode of FIX 2 (so press]Mopes)(2) IIIEM,

then return to your UNITS LENGth menu with the handy shortcut key, (2JLASTMENU)).

70 (3) OBJyECcTS: YOUR RAW MATERIALS

Now:

Easy:

You've just calculated the length of 10-inch planking you’ll

need. How many square feet of lumber is this?

Simply multiply this length by 10 inches: ()

Result: 341.23_ft*in Notice that the units ofa product

(X) or (%)) is not forced into the units of either of the previous

values. Instead it forms a combination ofthose previous units.

This is different than with a sum (¥ or (5)).

So you now have a correct area—but in rather uninformative

“mixed” units—Ft#in. To convert it to something more

meaningful, simply move to theAREAmenu (&)unTs)ERTD),

and convert it to square feet: (IR

Answer: 28.44_ft"2

Notice that the 48 uses * to indicate raising to a power. That

is, F12 represents ft2.

Question: Whathappensifyouaskthe48toaddincompatible units?

Try It: Move back to the LENGth menu (press M)

and try to add 1_ft to the square feet from the above

answer (press(1)JI3(®)).... No go, right? The 48 says:

+ Errot:
Inconsistent Units

The 48 saves you from these common—but deadly—unit

errors.

Units 71

Press to clear that error message, and practice some more....

Problem:

Solution:

It’s roughly 700 km by road from Calgary to Saskatoon,

and you’vejust filled up in Calgary with 50 liters offuel.

You know that your car gets about 35 miles per U.S.

gallon in the kind ofdriving conditions you expect. Can

you make it all the way to Saskatoon without refueling?

Aswith mostproblems, there are several ways to do this.

One way is to convert your car’s mpg rating into kilome-

ters perliter: Atthe LENGth menu, press(NxT)(3)5)IEIIN

(the (®)key is other varia-

tion available on each unit key: just as the unshifted

key multiplies 1_gal by the Level-1 object, so

(ORI divides).

There’s your known mpg. Now build your desired units:

1 (M, then (O)LASTMENU)(o) IETEIN(X)....

Why zero km~1? Because then you can convert your

answertokm/1 simplybyadding this zero harmlessly to

your 39_mi~gal (recall what addition does with units)!

Do it: Result: 14.88_km-1

This is your car’s fuel usage rate in local units. Now, to

see your car’s probable range, just multiply your rate by

yourfuel supply: (&JuNTs)TNE0)M.
Result: 744.688_km

Yep—Dbarringunforeseen problems—you should makeit to Saskatoon.

72 (3) OByECTS: YOUR RAW MATERIALS

That’s one way to attack this kind of units conversion problem—using

the 48’s ability to convert between compatible units during addition.

But there’s a more direct way....

Recalculate:

Solution:

When you reached Saskatoon and refueled, your 50-

liter tank took 48.4 liters, and your trip-meter odom-

eter showed 712.8 km. Whatwas your actual mileage

(miles per gallon) for the trip?

First, find your fuel usage in km~1:

Q0880K+@S]VoL
NxD@)8-<) MM(=).... Result: 14.73_km~1

Now build your desired units:

Q=)GAL[RESIEWYHIS

Now here’s the point where you can do things differ-

ently: Press (the other shift key).... This

small menu has units commands on them—specific

things you can do with unit objects.

Thatfirst item is the one you’ll probably use the most:

CONVert simply converts the object in Stack Level 2

tothe units ofthe objectin Level 1 (the numberinLevel

1 doesn’t matter). Try it now—press [EEN...

Result: 34.64_mi~gal

So just remember that you can convert between units either through

addition/subtraction or with the CONVert command (you’ll explore the

other items on the menu later).

Units 73

Lists

Before yougo on to explore the other object types available to you in the

48, consider this: A unit object is an ordered collection of two simpler

“things”—a real number and a unit, in that order. The new object

arises from this specifically ordered collection of otherwise distinct

parts. This is a general pattern within the 48: More sophisticated

“things” are often created from collections of simpler “things.”

So what makes a collection an object? Simply gathering together an

ordered collection of “things” doesn’t mean anything by itself. 14_ft

is an ordered collection of two “things”—but it means nothing until

those numerals, underscore and letters are given rules governing their

significance and use: “The numerals stand for a real number and may

be mathematically treated as such; the underscore links the number

with an associated (multiplied) unit.”

The point is, only with such specific governing rules for manipulating

and interpreting a collection does it become a distinct form—an object.

Each object type is distinguished by a different set of these rules.

So what’s a list?

A list is simply the object type with the most general—least restric-

tive—rules for manipulating and interpreting its collection of ele-

ments: It’s just an ordered collection of objects of any type, listed

together in a sequence. That’s why it’s called simply a list: there’s no

more specific mathematical or physical interpretation ofit.

74 (3) OBJyECcTS: YOUR RaW MATERIALS

H repr [st?

The telltale characteristic ofa list is its enclosing set of{ }. Here are

examples of lists:

{123456 7 "Hi there" 14_feet 3

{ "o, dude!" (3,42 { 1 2 3 98.6_F 1}

{01217 G313

A list can contain any number ofany type of object* in any mixture—

including other lists—or even no objects at all.

ST e)T
\ \

yw@fit vk@: Lgfi@ taaks ,/’.‘.“ ;

*Some ofthe object types in these sample lists may be new to you yet. Don’t sweat their details—

just realize that they, too, may be elements of lists.

Lists 75

How do you build a list?

There are several ways to put a list onto your Stack workbench.

Naturally, you can type it in directly from the Command Line....

Do This: Press (2ICLR)QJT)(1)([SPC)(2JENTER)....
You've just built the list{ 1.88 2.88 32

Easy, right? And did you notice the PRG sign in the Status Area while

you were keying in the list? (Do the above exercise again,ifyou wish).

This mode activates when you start the list, so that keystrokes that

would normally execute immediately will instead just record their

names as items in yourlist.

So use the (G]{}) key to start a list. Then you can key in any objects—

even executable commands—as elements in that list.

76 (3) OBJECTS: YOUR RAW MATERIALS

Now, what about making lists from objects already on the Stack?

To start with, consider this: Whathappens whenyou add different (but

compatible) unit objects on the Stack? The result takes the units ofthe

previous Level-1 object, right? All right, then what do you think might

happen when you try to add different object ¢types together?

Find Out: Keyintheobjectsdand 14_feet (press

onTs)MTTH2)lEM), and then add them together

(#)....No can do, right? Nor does the order matter: Try

the above addition again, reversing the order ofthe two

objects: (toclearthe error message), then(1]4)izl

(5]4)....nope. But you knew this from page 71, right?

Ah, but what if at least one ofthe objects is a list? Press

ENGED)EETS.... Result: { 5.80 3

Now, try adding another object type to it. Press(2]+)....

How about that? Make a copy ([ENTER)), and then try

another object type: (1)4)M.

And what about adding another list? Press (4....

Notice how the order matters: Try (1]JENTER[SWAP]1]....

Moral ofthe story: You can add unlike object types ifat least one ofthem

is a list. If the non-list object is in Level 2, it will be appended to the

front of the list; if at Level 1, it goes onto the end of the list.

Lists 77

The other question: How do create a list out of existing Stack objects

where none of them are necessarily lists?

Try This: (OJCLR)(JENTER) 2JENTER) R)ENTER)PRG) ILENE (3)ENEL
Result: { 1.688 2.688 3.68 X

You can put any number of Stack objects into a list

simply by specifying that number and invoking EINEL.

Try another: (onTs)[NTTH2)HEMG)IENTER)
QORIPrRONTNE (OEMEN Result:
{ { 1.68 2.60 3.60 14_ft 5.88 { } }

Notice the order of list formation: First onto the Stack goes first into

the list.

Notice also the list “length specifier"—the number that goes onto the

Stack last, before you invoke EINERl. This isthe argument ofthe

command. With its postfix notation, the 48 assumes that all informa-

tion necessary for the execution of any command is already on the

Stack* when you invoke a command name; it won’t stop and prompt

you for anything more once you invoke the command.

You've already seen at least one argument in action: remember how

you set the display to FIX 2 decimal places (page 70)? First you entered

the 2—your argument—then you selected the command (IFEHD.

*or in the Command Line—remember that most executable commands come with a “built-in

ENTER?” that effectively put the current Command Line on the Stack before proceeding.

78 (3) OBJECTS: YOUR RAW MATERIALS

One other key point about arguments on the Stack: The 48 reads each

argument and then discards (DROP)s) it before proceeding with a com-

mand. It never includes the argument(s) as part of the Stack when

actually carrying out the command’s actions. Thisis why, for example,

yougot{ 1.80 2.08 3.808 }instead of{ 2.88 3.68 3.B8 }in

the first exercise on the opposite page: the bottommost 3. 88 was the

argument of and was therefore read and dropped before

was actually performed.*

So that’s how to build a list from objects on the Stack. Now, can you

take it apart again?

No Sweat: Press I:AES.... See what happens?

is the 48’s General Purpose Object Decomposer.

Thatis, it breaks down virtually any compound object

intoitslist ofcomponents, stackingup these components

in orderin the Stack. And for objects such as lists—that

don’t necessarily have a fixed number of components

also leaves the element count at Level 1—so that

you can re-compose with a single command (EINERM, in

this case—try it)!

*To practice more with arguments, you might want to play with some ofthe commands in the STK

toolbox. This Course covered some ofthe basics ofStack manipulations in Chapter 2, mainly with

the Interactive Stack. Butifyou stop and think about it for amoment, you'll realize that the pointer

youmoved around in the Interactive Stack isjust a visual way ofproviding the 48 with an argument

for those Stack commands that require it. When you’re not in the interactive Stack, you can still

use all those same Stack manipulation functions, but you must key in the necessary argument—

just as you did here with EINERl. In fact, you’ll notice that appears also on that STK menu,

because forming lists out of objects on the Stack is something you’ll do quite a bit.

Lists 79

Complex Numbers

Time to move on now, to learn about the next object type.

Mathematically, a complex numberis a vector in the complex plane, an

ordered pair of numbers representing the vector’s coordinates. The

coordinates are usually expressed in either rectangular form (a+bi) or

in polar form (Z£0).

How does the 48 represent a complex number?

On the 48, a complex number is also an ordered pair of(i.e. a list oftwo)

real numbers, which are vector coordinates expressed in either rect-

angular form (3. 88, 4. 88) or polar form (3. 86, £53. 13). The pairis

surroundedbyparentheses and separatedby s andpossibly£. Ofcourse,

you can use this pair to represent anything you want, but it is indeed

a mathematically complex number—to be added, multiplied, etc.

Try One: (OJcLR)EJ()(3[SPC4)[ENTER). Result: (3.886, 4.68)

Thisisthe complex number 3+4i. Nowpress

(ENTER)to make some copies, then(+).... Complex addition

is as easy as real addition. Press (X].... Also easy, no?

Now that result (leaving the last (3. 86, 4.88) at

Stack Level 1).

80 (3) OBJECTS: YOUR RAW MATERIALS

Question:

Answer:

When does the 48 display a complex number in rectan-

gular form, and when in polar form?

It depends on the current vector display mode. Go tothe

thirdpage ofthe MODESmenu(press (6&9]MODES|NXT|NXT))

and find these three items [EXFL, and¥(the

O means that XYZ mode is currently in effect): EEE]

displays complex numbers in rectangular mode; either

or displays them in polar mode.

Try changing the mode and watch the complex number

at Level 1 change its format (notice the annunciators in

the StatusArea, too). But keep in mind that the number

retainsits same (rectangular) complex value (3+4i); only

its display formatting is being altered—for your eyes.

This is true in general: Once you’ve keyed in a complex

number, the machine “remembers”it internally in rect-

angular form, but it presents the number to you accord-

ing to the current mode settings.

Question:

Answer:

How does the 48 know when to represent a complex

number’s vector angle in degrees, radians or grads?

It judges by the current angular mode. You can switch

this mode—and thus thepolar formats ofthe number—

by pressingMor IHTIA (try these now, but leave

things in [J39] and E{f] modes when you finish).

Complex Numbers 81

How do you build a complex number?

You have several ways to put a complex number onto the workbench—

and you’ve already seen the most rudimentary way to do it.

Again: Type it in directly from the Command Line: Press(&J(0)(1)

[SPC)2)ENTER). This gives (1.086, 2.88), a complex number

inrectangularform. (Youcoulduse either(>)*)Jor(SPC). Both

act as delimiters to separate the two parts of the number.)

Now change the mode to polar form (press (JPOLAR}—a

handy keyboard modes toggle). Of course, you won’t get

(1.80, <2.88), which is (1.00£2.00°). Rather, you get the

polar representation of 1+2i—about (2.24£63.43°). Re-

member, you don’t change the existing vector value by

changing its displayed format.

To actually key in a complex number value in polar form,

you mustprecede the second value with a£—because using

ay ora always means rectangularcomplexinputto the

48. Try it: (1))<)(2)[ENTER). Now the 48 will take the

second value to be an angle—in the current angle mode.

Thisisthevalue (1.00£2.00°)—or about 1.00+.03{,as you can

verify now by returning to rectangular mode (JPOLAR)).

So that’s the basic idea when keying in complex-numbers—either in

rectangular or polar format. But to build complex numbers from other

values already on the Stack, the 48 has some tools to help you....

82 (3) OBJECTS: YOUR RAW MATERIALS

Example: Put the numbers 3 and 18 on the Stack (5)ENTER)(1]0)

ENTER)). Now use these two real numbers to form the

rectangular complex number (3. 86, 18.88).

Like This: Press the key, and then from the resulting menu,

select the lfl!l toolbox. This is a menu of operations

you can perform on various object types. On the second

page (press (NXT)), you'll find (“Real to Complex”).

Try it now.... Asyou see, takes two real numbers

from the Stack, using the Level-2 number as the real

portion and Level 1 as the imaginary portion ofthe new

complex number.

And the (“Complex to Real”) goes the otherway—

taking apart the complex number and leaving two real

numbers on the Stack. Try it now:

The 48 is full oftools like these—designed to build or take apart a given

type of object. And remember that there’s one very “smart” operation

that can dismantle virtually any object into its components....

Watch: Press to rebuild the (5. 808, 18.88). Then [(G]PREV)

([NEA Same effect as IEIM, right? So here’s a reminder:

(|:AE is the general-purpose object decomposition tool.

But you can also extract the two parts of a complex number math-

ematically—with some specialized tools in the MaTH tool collection....

Complex Numbers 83

Challenge: Extract the two components of (3.88, 4. 88)—both in

rectangular and polar forms.

Solution: Keyinthe number (&G]())3]sPc]4)) and make four copies

of it (ENTER|ENTER]ENTERJENTER)). Then press the key

and select themtoolbox. Here are some commands

made to order “for all your extraction needs:”

I3 extracts the REal portion: 3.88 ((DROP) that);

Mextracts the IMaginary portion: 4.88 (DROP)it);

IEEN extracts the ABSolute value ofthe complex num-

ber, which is simply the magnitude of its polar repre-

sentation: 9.H88 (now that);

BTextracts the angle (in the current angle mode) of

the complex valuein its polar form: 53.13

Complex Number Math

Complex numbers have mathematical properties similar to those of

real numbers, so many ofthe 48’s real-number operations also work for

complex numbers. You’ve already seen complex arithmetic, but trigo-

nometric and logarithmic functions work, too. And remember that you

can use mixtures of complex and real numbers in complex math.

So practice some more now. As you do these, concentrate on your

number entry format—and the 48’s interpretation of it. Which vector

display mode and which angle display mode is it using?

84 (3) OBJECTS: YOUR RAW MATERIALS

Challenge:

Solution:

Another:

Solution:

Another:

Solution:

Another:

Solution:

Find 3% and é—;’- in rectangular format.
i

E)ENTERGOB)SPS(1)=).... Result: (B.606, -8.28)

Result: (1.58, 8.508)

The 48 converts the real number Z. B8 into the complex

number (2. 86, 8. B8) before doing the division. Then

just invert the first answer to get the second.

Find In(5£1.618), in polar format.

Change the angle and vector modes: ((&§]RAD)(POLAR).

Then: (GJOSIRIIGeI8)2N....
Result: (2.28, £8.79)

Find sin+/7 +10irad in rectangular format.

(back to rectangular mode), then (]())7]SPC]

(1)0). Now take the square root ((X)),then the sine ([SIN)).

Result: (8.11,-2.41)

FindM in rectangular format.
sin45°x(1+i~/3)

2]PIN2[+-]x]H]

&JRAD]4]5JSINJ1[ENTER]3[+/-XT+[X]+)....
Result: (1.11,6.68)

Complex Numbers 85

Vectors

Acomplex number is one special kind ofvector. Butin general, a vector

isanordered list ofnumbers—usually representing dimensions (direc-

tions) in some physical sense. The typical vectors you use most often

are therefore two-and three-dimensional (“2D” and “3D”) quantities:

2D

rectangular notation

xi+yj or (xy)

polar notation

(r,6)

(r, 6)

86

3D

rectangular notation

xi+yj+zk or (x,,2)
z

(x, »2)

/---y-------
x

cylindrical notation

(r,6,2)

spherical notation

(0,6,9)

(3) OBJECTS: YOUR RAW MATERIALS

Vectors are more generally defined mathematically as single-column

matrices*—often encountered, for example, in linear systems:

Q3 G X% b,

Ay Gy % | b,

Q33 Gy X5 b,

Az Gy X4 b,

In this capacity, ofcourse, vectors are not limited to everyday physical

interpretations; they may be n-dimensional (“»-D”). And their format

is then only rectangular notation: (a,b,c,d.e...)

How does the 48 represent vectors?

Though you can use vector objects to represent anythingyou want, the

48 can also treat them as mathematical vectors. Butsince {) are used

for complex numbers, vectors are bracketted within [1. Notice that

a vector’s elements may be real or complex—but not both:

2D

[12]

[3 <38]

n-D

[(1,2) ("'1,4)]

[(5,£37) (13.5,4-155.9) (B,<«B) 1

[2 34 19 -44 64 118 -25 37.5 9.89 1]

*The 48’s display represents vectors horizontally; nevertheless, the machine uses them math-

ematically as vertical (single-<column) matrices. Don’t let the visual difference throw you.

Vectors

3D

[1-2 3]

[6 <45 -19]

[93 «121 «23.5]

87

How do you build a vector?

As usual, the most straightforward way to build a vector is to type it

in directly from the Command Line. Try a few examples (these assume

that your vector display and angle modes are as you left them in the

last problem—rectangular and degrees, respectively):

Examples: Press()CLR), then (9)[1(1)JSPC)(2)SPC)(3)SPC)(4)ENTER)....
Here’s what youget: [1.88 2.608 3.680 4.680]

Press (G1]2)<)(2)[ENTER)....You get:

[1.6868 6.83 1

Ofcourse,to see this in the polar form you had intended,

just press (@JPoLAR).... [1.88 «Z.868]

Press (U112<) (-XoJ+/-JSPC]7) ENTER)....You get:
[11.68 «-1.98 Y.608]

To see this in rectangular form, just press (-[POLAR]....

[16.99 -B.36 7.60]

As you can see, the rules for separating components in vectors are the

same as for complex numbers: You separate rectangular components

with (ory); you precede angular components with £, And keep in

mind that the £ is meaningful only in the second and third components

of2D and 3D vectors. You won'’t be allowed to key it in anywhere else;

and any vector larger than 3D doesn’t change from rectangular format

when you change the vector display modes, anyway.

88 (3) OBJecTs: YOoUR Raw MATERIALS

Speaking of vector display modes,...

Do This: Press M1...Did you know that those mode keys

were available here—as well as in the MODES menu? As

you see, HP has put some often-used commands in several

places so you needn’t jump around as much to use them.

Something else to notice: At the moment, when you press

on the keyboard, it alternates (toggles) between

rectangular and cylindrical (Rd2) modes. But ifyou press

EE¥EY, then will toggle between rectangular and

spherical (R&&) modes...(try it—and then leave the mode

at rectangular and the toggle to cylindrical).

Now This: Press to move to the next page ofthe VECTR menu.

Now put two values on the Stack, (1]2]ENTER)(1][5JENTER),

and press to build a 2D vector from these values.

Easy, no? And the “loading” order ofthe vector’s compo-

nents is like those of complex numbers and lists: The

higher in the Stack, the farther forward in the object.

Try a 3D case: (2]9)ENTER)(4)5[ENTER)(1IEZEN. Voila.

And and are sensitive to the vector display

mode. To see this, press to change to polar/

cylindrical mode, then repeat the above keystrokes....

See the difference? The resulting vectors took the

corresponding values to be angular. This is how to key

in angular components without using the key.

Vectors 89

What goes up must come down: How do you tear apart vectors?

Easy: Justpress lEEM—tryit.... Thus, with either IEXEN orEEXER

and lEEMM, you can go back and forth between the vector itself

and its Stack of individual components.

Not only that: Notice the and keys on the key-

board (shifted versions of the key). Try them now.... See?

They’re keyboardversions ofEEXTH/ andIEXEN/IEEM,

respectively—vector building/decomposing toggle keys!

Question:

Answer:

The commands in the VECTR menu are all good and fine

for 2D and 3D vectors, but what about an n-D vector—

of any arbitrary size? How do you build that?

Use an argument, just as for a list of arbitrary size. Go

to the general object-building menu: En

Now key in your »n-D vector’s values:

(8JENTER) (1)6JENTER] (2]SJENTER). Now press (5)EXIAA-
Result: [1.68 4.00 9.88 16.88 25.88]

Your vector-size argument (9. 88 here)is just like the

list-length argument you use to build a list—except that

you use EGIAd, instead of EMERM, to do the building.*

*There’s no command called IEXTIAl; you use EXlddbecause an n-D vector is actually a one-column

array (matrix)—and the 48 treats it as such, mathematically. Infact, to break down an n-D vector

into its components once again, you use (the All-Purpose, Whole-wheat, Recyclable, Bio-

degradable, Universal Decomposer Tool), and it leaves the vector length argument as a list (the

argumentform used by arrays), rather than the real number argumentyou used to build the vector.

90 (3) OByECTS: YOUR RAW MATERIALS

Vector Math

Now that you knowhow to build them and tear them apart, there’s not

much more to say about vectors in the 48 except “use them!”

Find:

Press:

Find:

Press:

Find:

Press:

Then:

|3 +4i,7 +11i)|

(in rectangular mode—{JPOLAR), if necessary), then (][

QOGPQIOsPIENTERMTH GEAEIEEER.
Result: 13.96 Avectormaybe complex-valued, but

ABSfinds its magnitude (“length”)—always a real value.

10(-1,-2,-3) +(—4;§’—6)

(1Yo)ENTER)(1JENTER)(2JENTER] 3J>)3D)+/-)(X)(4JENTER]5JENTER)
(6)=[30)21 Result: [-8.688 -17.58 -Z7.868]

You can add vectors of the same dimensions; and you can

multiply any vector by any scalar (including —1, via (+/9).

(1,2)+(3,4) and (3,£45°,10)%(9,260°,2)

(1JENTER) (2Ja)2D3JENTER4Jq[2D)
WECTR| DOT Result: 11.66

The dot product oftwo same-dimension vectors is a scalar.

(2JPOLAR]3JENTER](4]5JENTER]1]0]=)3D) (9JENTER]6]0]

ENTER)=>J30) (HrEE
Result: [84.22 «151.86 6.99]
The cross product of two 3D vectors is another 3D vector.

And notice how easyitistokeyinthesecylindrical formats.

Vectors 91

Arrays

In the most general sense, arrays are simply tables of “things” (dots,

sticks, numbers—anything), arranged in rectangular formations of

rows and columns:

vV V
¢ o o 0 vV Vv a, 4,

¢ o o o VvV V a; ap

° e o o

1 1 1L 1 1

4 1 1 1 1 a,+b,i a,+b,i a;+b,i

4L 1L 1 1 1 oc oc oc Ay + byl ay, byl Gy byl

4 1 1L 1 1 ay +byi ay, +by,i ay, + byl

When you arrange numbers (either real or complex) in this way, you

can, of course, use them for anything you wish, but one of the most

common uses is as a matrix—an array with mathematical rules and

properties:

a; 4n G Gy X b,

Ay Gy Gy Gy X |b

A3 A3 Qy3 Gy Xy b,

Ay Qg Ay Gy X4 b,

Notice the numbering convention used in arrays: element, is the ele-

ment in the ith row, at the jth column. An n x m array is an array with

n rows and m columns.

92 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent arrays?

The 48 can represent real-valued and complex-valued arrays—and do

many matrix operations on them. But because it also does non-matrix

operations, the object type is called by its more general name—array.

The 48 uses double brackets to delimit the array itself—and single

brackets to delimit each row within the array:

[C111] [
1x2 real-valued array

[1231
[4561

[769 1]
3x3 real-valued array

[[(1,2) (-13.5,24.1) (4,-3.2) 1]
1x3 complex-valued array

[[-32.4 1]

[15.6 1 [-32.4 15.6 1.815 -19.623 1

[1.815 1] 4-element vector

[-19.623 1]

4x1 real-valued array

Notice that these last two examples are actually different object types

(the array, with its [[1] notation on the left; the vector, with its

simpler [] on the right). But mathematically, they are treated the

same bythe 48 in many ofits array/matrix operations. Thatis, a vector

is actually a I-column array, displayed on its side for ease of viewing.

Arrays 93

How do you build an array?

As usual, start with the basics—keying in the object at the Command

Line. You key in arrays by row—a sequence called row-major order.

Practice by keying in the examples on the previous page....

Clear your Stack and go to STD mode, then: ()1&)11)(1)sPC)

(2JENTER). There’s your 1x2 real-valued array.

Next: (GtJa3)(1)sPc]2]sPc]3]»)4)sPc]5)sPc]6]sPc]7]sPc]8]

(SPC]9JENTER). There’s your 3x3 real-valued array.

Notice how you use (») to skip over the closing bracket at the

end ofthe first row in the array. And that’s the only time you

need to key in the inner brackets—around the first row. After

that, aslong as you enter the elements in row-major order, the

48 can arrange the remaining elements correctly—because it

knows that all rows must have the same number ofelements.

Continue: Go to rectangular mode ((JPOLAR)), if necessary,

then (LGSO(1ISPC[2)]G]0

(BI-Is3/-IsPe)2]4-1JaIOY4)sPC)3]-2]+/-)ENTER).

There’s your 1x3 complex-valued array.

And: (QIUIGJU3]2)-J4»15]-J6)sPc]1)-o]1]5])SPC]
(1]9)-18]2]3]+/=JENTER). There’s your 4x1 real-valued array;

Or: (alti3]2)-JaJ+/-spc])5-JesPc[1)-Lo1ssPcl1]o]-]
ENTER). There’s your 4-element real-valued vector.

94 (3) OBJECTS: YOUR RAW MATERIALS

The Next Step: Build these same arrays from elements that you put

onto the Stack first....

OK: Press ([©]CLR) to clean the slate, then:

NNENER QODEPol2 EnTen) (Pre)NNERTTA.
There’s your 1x2 real-valued array.

As you’ll recall from your practice with building vectors, the

command takes the argument from Stack Level 1 and

uses this to build an array or vector ofthe proper dimensions.

To build a vector—whose dimensions are always nx1—youuse

a real number argument (since only n needs to be specified).

Buttobuild annxm array, you must specifybothnand minyour

argument—and you do this in a list.

Next: (1JsPc]2)spc)3JsPc]4]sPc]5)sPc]6]sPc)7)sPc)8]sPC]9)

(remember that you can line up several objects in the

Command Line—separated by delimiting spaces like this—

then them onto the Stack all at once). Now

(BIENTERJELIAA There’s your 3x3 real-valued array.

Then: (G]O) GJO)I3]Is+/-Jspc)(2]4]-1]
ENTERIG[O)a)SPe3)-)+/TENTERIGIT)(SPE)B[ENTERDA
There’s your 1x3 complex-valued array.

And:
[#/=JENTER). Then either (§](3)(4)sPC)(1)ENTER)ELIAE—to build

your 4x1 real-valued array; or (4)ELId—to build your 4-ele-

ment, real-valued vector. Try both. The type ofargument (real

or list) determines the type of object (vector or array).

Arrays 95

No prizes for guessing what [kl does to arrays....

Try It: Press and see that 4x1 array/vector decompose right

before your eyes....Notice, however, that the machine al-

ways puts the argument onto the Stack as alist—even ifit’s

decomposing a vector. But the fact that there’sjust a single

dimension in the list tells the machine that thisis meant to

build a vector rather than an array. Try now and

watch it reconstruct....

In this way you can toggle back and forth all day between

and [[ZNEX. This is precisely the purpose of all of

these object-building and decomposing functions: to let

you quickly take an object apart, edit some or all ofit, then

rebuild the result with a minimum of hassle.

Feel free to the 4x1 array off the Stack and observe

'[:FFlin action with some ofthe other arrays you still have

hanging around up there....

(3) OBJyECTS: YOUR RAW MATERIALS

Math with Arrays

The best thing about arrays is how easy it is to do matrix math....

To Wit:

Too Easy:

2 5 8 8
LetA =[1 3:‘andC =li8 8:|' If 2AB+C =0, find B.

Whatiftc =| > |2atifC =,|*

Solving for B gives B=(A')(—C/2). So first, press (|CLR]

MTHEEIA. Here’s where the matrix operations live.

These and the arithmetic keys will do the job:

To build C, press
or (the quick way tobuild a

matrix filled with a CONstant value). Next, to ne-

gateC(i.e. allitselements), thendivide itby2 (2]<)). Now,

the 48 knows that when you say Y+X, what you really

mean is X'Y. Sojust divide by A:

Result: [[8 8] This is B.

[-4 -4 1]

Now, usingC= [[-Z B] repeatthe calculation.*

[B -2 1]

You should getB=[[3 -5 1

[-1 2 1]

*And note that to build this value of C, you also have the JIIZlll command, which creates a mul-

tiplicative identity matrix (a square matrix with 1’s on the diagonal)—provided that you tell it the

size of the matrix. So you could build C as follows: (2)NIRF/2X)

Arrays 97

Flags

Aflagisone ofthe simplest objects ofall. It’sjust a single bit—a binary

digit—that hasjust two possible values: 1 or8. Using the 48’s jargon,

a flag is either set or clear. If you set a given flag, you turn that bit on

(giving it a value of 1); if you clear it, you turn the bit off (giving it a

value of B).

How does the 48 represent flags?

Flags are indeed objects in the 48, but they’re a little different than the

other objects you've seen so far. First ofall youdon’t build flags; they’re

already built. There are a set number ofthem—128—already identi-

fied by number and reserved in the machine (whereas, with other

object types, you can build as many as you want).

Secondly, some flags already have very specific meanings to the ma-

chine—not so with the real numbers, vectors, lists you might use in

your calculations. Those objects’ values have no preconceived signifi-

cance to the 48; the values may be meaningful to you, causing you to

change your behavior (e.g. answer a tough test question, redesign a

bridge, etc.)—but they don’t cause the 48 to change its behavior (e.g.

redefine the keyboard, change the display format, etc.). By contrast,

fully half ofthe flags (numbered -1 to —64 and called system flags) are

indeed dedicated to controlling parts of the 48 workshop itself—like

operating lights on the wall that flip on/off as indicators of certain

conditions (display modes, etc.). The other 64 flags (numbered 1 to 64

and called userflags) have no such prescribed meanings; they’re left up

to you to interpret—much like other object types.

98 (3) OBJECTS: YOUR RAW MATERIALS

The third big difference between flags and other objects is in their

representation: theyhave none. Thatis, the 48 doesn’t represent a flag

“on the Stack.” There’s simply no delimiter (suchas{ Yor[1)that

means “this is a flag.”

To “see” a flag, you must identify it by number and inquire as to its

current value. The machine will then respond by putting eitheral or

B onto the Stack. But this response is just the machine’s message to

you—just areal number object—not the flagitself. You can change this

response number howeveryou wantwithout affecting the flag; tearing

up a sports page doesn’t alter the outcome of the contests it reports.

Also, besides reporting the status of any flag you ask about, the 48

continually informs you of the states of certain flags—with annuncia-

torsin the Status Area. Several system flags are tied to the annuncia-

tors for angle mode and vector display mode. And, when set, user flags

1 through 5 display their numbers in the Status Area, too—just so you

have a few flags of your own that you can monitor easily.

Flags 99

How do you control flags?

Of course, you can do more than just test flags (ask if they're set or

clear); you can set or clear them yourself....

Watch: System flags —17 and —18 control the display’s angle mode.

When both these flags are clear, you're in degrees mode (as

you should be now—press ifnecessary). But ifonly

flag —17 is set, this sets RADians mode. Press () (not (&)

(NXT). Here are your flag control functions.

As with all commands on the 48, you key in any necessary

argument (in this case, that’s the number of the flag) and

then invoke the command. Thus,to use Set Flag (SF), you

would press BESM.... See? The RAD annunciator

appears in the Status Area.

Nowtest flag—17 (ask “isitset?”): NXT[17]+)IEER. ... The

answeris] (“yes”). Butask a different question: “Isthe flag

clear?”’ =N... And of course,this answeris 8

(“no”)—it’s not clear. Now return to degrees mode: (]PREV]

(17~I

You can set, clear and test any ofthe 128 flags. Try setting

and clearing some user flags (ifyou’re usingjust a few user

flags, it’s usually handiest to use the first five, because the

Status Area informs you when these are set): (1)Il (2)

EEEEG)EEGOBEEGEEM... Yougettheidea (now

clear those five flags—in any order you wish).

100 (3) OBJECTS: YOUR RAW MATERIALS

Flags aren’t particularly useful from the keyboard. You’ll use them

most often within programs—to inquire of the current system states

and to remember previous decisions and inputs—as you’ll see later.

Here are some questions to consider, though:

Question: You know you can test or change the value ofany single

flag. Canyoutest orchange the values ofagroup offlags?

Answer: Yes, you can test or adjust the values of all 128 flags or

the 64 system flags—all at once.

Question: If you ask for the states of all 128 flags, what kind of

response value could possibly represent this?

Answer: Since a flag is just a single bit, you’d need a value that

contained multiple bits—a binary integer. That’s the

object type you’re going to study next. The results of

your multiple flag test (via a command called RCLF—

“ReCallL Flags”) will be such a binary integer. And the

argument you give to simultaneously alter the values of

a group of flags (via a command called STOF—“STOre

Flags”) will also be a binary integer.

Now, ifyou stop and think aboutit, you’ll realize that RCLF and STOF

lets you preserve in a different object type—a binary integer—exact

“blueprints” of all the flag settings at any given time. So although you

can have only 128 flag states at once, there’s no limit to the number of

such “blueprints” you can save and later transplant as necessary.

Flags 101

Binary Integers

All right—now for binary integers. A binary integer is an ordered

collection of flags, or bits. And, like other object types, the binary

integer objecthasits own set ofrules for manipulating and interpreting

this collection.

First ofall, the reason it’s called an integer is that its list ofbits is most

commonly used to represent integer values. The integer may vary

length from 1 to 64 bits. For example, here’s an 8-bit binary integer:

00101100

The integer value these bits form is commonly expressed in any offour

convenient number bases:

00101100, (base 2 or binary format)

54, (base 8 or octal format)

44 (base 10 ordecimal format—whichyouknowand love)

2C, (base 16 or hexadecimal format)

102 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent binary integers?

The 48 can express binary integer values in any ofthose fourbases, but

its display doesn’t accommodate subscripts very well, so it represents

a binary integer on the Stack beginning with a pound sign, # (to signal

that it’s a binary integer) and ending with either b, 0, d or h—to in-

dicate which base it’s using to format the value:

181118b # 940 ¥ 44d # 2Ch

Do This: Build a binary integer with the above value (there’s only

one value represented there), and then view it in each of

those four formats.

Like So: Press MTH), then IIIHA, and notice the first four items on

that menu. The base currently in use will be the interpre-

tation the 48 puts on any value you key in with a # For

example, pressIl then (5)#)[5]4]ENTER).. ..

Nothingtoit, right? And nowyou canview this valuein any

of the other three base formats also: Press IHIZM...; press

KEH...; press IIAM.... Simple.

These four format keys are in the MODES menu, too—on

the last page of that menu.

Binary Integers 103

All right, now how do you change the number of bits in a binary

integer? As you read, you can have anywhere from 1 to 64 bits.

Simple: Change the current word size—the maximum number of

bits allowed in the integer. For instance, to change the

word size to 8, you would press (there’s the argument of

the command), then (there’s the command). And

you can check the current word size any time you want,

too—with (try it now).... The 48 answers your

question with the appropriate real number.

The largest value you can represent in 8 bits would be #

11111111b, whichis# 255d. So, what ifyou try to key in

a value larger than this, say, # £56d?

Press)72)56]ENTER)....Hmm...You get: # Bd

Why? Because# 256dis# 1880860886b, which takes nine

bits to represent. But you've told the 48—via the word

size—that you want to use only the first (rightmost) eight

bits (BBBBBBBA), which form the value # 8d.

Good news: That ninth bit is actually still there. Press(9)

and “thar she blows”—the complete number (go

back to an 8-bit word size and do this change while watch-

ing in binary format, too).

104 (3) OBJECTS: YOUR Raw MATERIALS

Want to see how the flags look when you use RCLF to put their ag-

gregate values onto the Stack as binary integers?

OK: Change the current word size to 64 (press E¥ED). And to

make the values easier to comprehend, use decimal formatting

(press I, if necessary). Now, execute the RCLF command:

(e]o)(R]CIL)F)ENTER).... You should* get this list:

{ # 316639348600496 # Bd X

The first number is the aggregate binary-integer value of all 64

system flags; the second is the aggregate binary-integer value of

your 64 user flags. These two values represent the entire

“blueprint” of the machine’s status and your own flag settings.

Now, holding your place here, look back at page 11. That

preparatory exercise you performed before starting the Course

was simply a setting of all flags to their clear states—so both the

two desired values were given as # B. You did this mass flag

adjustment with the STOF command—do it again now:

GJUI#]0fsPc]#]0 JENTER) (@]o)SITIOJFIENTER

Ifyougive STOF asingle binaryintegervalue (not alist), this will

adjust only the 64 system flags: (a]a]S]T]O]F]ENTER]

*Ifyou don’t get these values, don’t worry. It just means one of the your display settings or angle

modes or something like thatis set differently than assumed here. No problem—you’re going to

reset them here anyway.

Binary Integers 105

Math and logic with binary integers

The principal reason you have binary integers is so that you can do

digital math and logic operations—the stuff so near and dear to the

hearts ofcomputer scientists. Don’t worry—you’re not going to explore

all the bit manipulations and logical operations the BASE menu offers

(if you need them, then you already know what they’re good for, and

you don’t need an Easy Course to tell you).

But it’s good for everybody to see a little bit of integer arithmetic in

action—just so you understand some of the 48’s rules.

Example:

Solution:

What’s 125, + ABC,, expressed in 64-bit decimal?

Press (6]ELIXEIJenTer)LM()AlBICle)
NIEM.... Answer: # 2873d Asyou cansee, you

can combine a real number with a binary integer. The

result is a binary integer in the same base. To make this

possible, the machine transforms the real number into

abinary integer first—with the command (“Real-

to-Binary”, which you’ll find, with its counterpart,IEEI,

on another page ofthe BASE menu). Ofcourse, you can

also use “manually” on a real number, but the 48

is smart enough to do it for you here. Be aware that

rounds fractional portions of the real number,

and it takes negative numbers to be 0. And any value

requiring a binary representation larger than the cur-

rent word size is silently truncated.

106 (3) OBJECTS: YOUR RAW MATERIALS

Example:

Solution:

What'’s 125- ABC,, expressed in 64-bit decimal?

Press (1]2)sJENTER) (2)#)(¢[]AlBICIaIHE) .. .
Answer: # 184467/44873789548993d

Notice that you can key in the base identifier (h here)

directly—without switching to that display mode.

Why this huge answer? Why not# -2623d ?

Because instead of subtracting a binary integer, the 48

adds its 2’s-complement.*

Example:

Solutions:

What are 258x 3,,and 258+3,, computed in 8-bit

decimal?

10

(&)ELIYHE ()72]58]ENTER) 3]X) Answer: # 6d

([2(#)]2)58JENTER)(3]+) Answer: # Bd

The 48 actually truncates (to the current word size) any

value you use in arithmetic. Thus the above multiplica-

tion was actually 2, % 3,. And the division was actually

2,,+ 3,, (binary division remainders are dropped).

That’s different than if you did the division with reals

and then limited the word size in the result. And youcan

do just that with the (Real-to-Binary) command

in the BASE menu: (2]5)8)ENTER[3[=NXT) IEELAL.

*Complementing is the computer scientist’s method for carrying and borrowing and negation

during arithmetic with binary integers. Ifyou don’t already know how complementing works, you

probably don’t need to worry about it.

Binary Integers 107

Character Strings

Character strings are just that—strings of characters (letters, num-

bers, symbols—basically, anything you can type):

ABCDEF_XYZ 12345 #~$@&(%)?! 3.1416+pi=00ps

Within such strings, characters have no numeric or other quantitative

or special significance; they’re just characters. A string may have

many characters, one character, or even none at all.

How does the 48 represent character strings?

Often called simply strings, character strings on the 48 appear within

quotation marks, " ", as if to say that the enclosed characters are to

be taken literally, with no further interpretation:

"ABCDEF_~Y2" "12343"

"R(ROTIT "3.1416+pi=00ps"

The main purpose of strings is to let you store and manipulate verbal

information. For example, you can use strings to put together results

such as "The answer is no." and"The ARER is 2.5_ft", thus

making your calculations more meaningful and complete than just

unadorned numeric results. And then there’s textual information—

the kind of “stuff” that can be represented only by character strings:

names and addresses, etc.

108 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a string?

Begin as usual....

Type It: Try building the four strings on the opposite page.

Like So: (2]CcLR[P""[(e]oAIB]CIDIEJFIIXIY)ZIENTER), and[2]")
25JENTER); then [e]o[PI#[2IV)EG]4)(2ENTER)

(@)»)o]oJq)«DEL[ENTER); then
B4P=Io[o)PIS)[ENTER);

No big mysteries, right?* But remember: no matter what numerals

you see within strings (as with the "12343"), they’re not numbers.

Then: Guess how you can build strings from other Stack values?

Hmm: Press(+)....Two strings “add” (append) to one anotherjust like

two lists do (recall page 77). Press (DROP), then (6]7)+)....

When you “add” other object types** to a string, the machine

converts those objects to their string representations*** and

then appends these to the existing string. Try(]1[1)(SPC]2)

(ENTER[SWAPJ4).... The order matters—again,just as with lists.

*Though it was a bit of a refresher in Command Line typing. Do you remember how to find non-

letter characters and type in lowercase, etc.? If not, look back at pages 31-39.

**except lists—you can’t them to strings (you’ll add the string to the list instead).

***The string representations of some objects are slightly different than the objects themselves.

Character Strings 109

Ofcourse, you can also convert objects to strings “manually”—instead

of letting the machine do it—during a concatenation (appending).

Try It: Press TR Here, in the object building/decompos-

ing menu is where to find the string-manipulation com-

mands. Key in, say, a vector:)[2]sPC]2]7)SPC]JENTER).

Now convert this into a string, bypressingEXAI(it simply

wraps this object in quotes, thus transforming its type into

astring.... Now concatenate this to the string above it: (+).

As you might suspect from all this object conversion, a string is only

slightly less “general” an object type than a list. So it’'s almost as

important to know how to take strings apart as to build them....

Do This: RemembertheAll-Purpose Object Dissector? Try it now

(press [[NER). ...See what happens?

When a string contains representations ofother objects,

the machine will extract them, one by one (from left to

right), and put them onto the Stack—just as ifthey had

been (ENTERJ'ed from the Command Line without quota-

tion marks. But remember, too, that a stringcan contain

anything else too—besides syntactically correct object

representations. Therefore can often give you

errors as the machine tries to make an object out of

characters in the string that were never meant for such.

110 (3) OBJECTS: YOUR RAW MATERIALS

Then: Press to make a copy ofthe vector now at Level 1. Then

and (NXT)NXT), to move through the OBJ menu.

Here’s where you’ll find commands for editing and manipulating

strings (and some work on other objects, too).

Example: PressJHA. The numberyou get, 18, tells youhowmany

characters werein"[2 27 5 1". Now(e),®), and use

on the vector [2 27 3 1 instead. The result

is{ 3 32, right? There are three elements in the vector,

so its SIZE appears in this single-element list—just as

it would have ifyouhad used tobreak it down into

its components (recall page 90). Now press («).

Question:

Answer:

The 48 can display 256 different characters, but not all

are available on keys. How do you put them into strings?

Each character has an associated number—a character

code, so you convert between the character and its code.

IEITEN returns the character code ofthe first character of

a given string. Try now and see 91, which is the

code forthe [character. Thenuse to confirm this—

converting from the code back to the character.

Ofcourse, there’s certainly a lot more you can do with strings—just as

with all the other objects—but at least you get the idea here.

Character Strings 111

Tags

Just as real numbers are linked together to build complex numbers

and arrays—and just as bits form flags or binary integers—so too can

strings be the simpler building blocks of other, “hybrid” object types.

One simple one is a tag.

Atagis a pairing ofa string with another object (any type) on the Stack

so that the string forms a temporary label. Your workbench can get

pretty “Stacked” up with objects, and so it’s difficult to keep track of

them all and remember what meant what. Tags are a harmless,

temporary way to help you do this.

» RWY

‘§x\\)

112 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent tags?

You don’t build a tag by itself. As the name implies, you attach it to

some other object—so it’s more meaningful to ask “How does the 48

represent tagged objects?”

On the Stack, they might look, for example, like these:

Root: -1 Extrm: (8, -1)

Zero: B Unit: [B.27 8.53 8.88]

The tag itself is everything to the left of (and including) the colon. To

the right of the colon is the object being tagged

How do you build a tag?

First—as always—you can simply type it in.

Thus: ([P:3)(efe]Rlae]olo[To))+/-JENTER).

Notice that the displayed version of a tag has one colon—

to save space in the display. But you must enclose the tag

(both sides) with colons when you type it in, so use (»)to skip

over the second * before typing the object—just as you do

when starting a new row of elements in an array.

Tags 113

That’s how to build a tagwhen you key in an object, but most ofthe time

you’ll want to tag an object that’s already on the Stack.

Well, you can’t put atagbyitselfonthe Stack. Atagisjust a stringuntil

it is attached to another object. Fortunately the tag-attachment tool,

E3LTH, is right there on the first page of the PRG OBJ menu.

Try This:

And Also:

As Usual:

Press [(3]CLR), then put —1 onto the Stack: (1]+/=JENTER).

Suppose that’s the result of some calculation, and now,

afterwards, you want to label it with a tag. Just key in

the tag, as astring: (2""a]oJRJ&«]OJOJTJENTER). Then

use EXEIE. The result is the same as before.

You can use real numbers as tags. Suppose you're a land

surveyor who deals with coordinates all day long. Each

point in a survey might have an identifying number—a

tag—attached to the vector coordinate pair itself:

Press(1]5)0]-]23)JENTER[6)5)-J7]9)(q)2D)} ... There are

your coordinates. Now label it with some identifying

number: EAfTd. The 48 actually converts the real

number to a string and then uses this as the tag.

You can break up a tagged object into its object and its

tag string, by using the General Purpose Object De-

composer, MAEH Try it now....

Now («) to drop the string.

114 (3) OBJECTS: YOUR RAW MATERIALS

How do you use tags?

Tags are indeed temporary labels. Ifyou do any operation on a tagged

object, the 48 will remove and discard the tag. After all, the result of

the operation isn’t generally the same object as before.

Watch: Tryadding another vector to the tagged vector now sitting

at Level 1: (&JUi1]oJsPc]2]o]+].... Seewhathappens?

The vector addition works just fine, but the tag on the

previous object goes away.

Try another: multiply the Root: =1 by this result vector:

(X).... Again, the math works fine, but the tag doesn’t stick

to the result.

As you saw with that surveyor’s scenario, you can use real numbers as

tags to index multiple results of the same kind (e.g. the points in the

surveyor example). Or—more commonly—you use a string to give it

some kind of temporary label of characters.

Nomatterwhat, a tagis the most fragile ofobjects—as you can see from

above. Any meaningful operation of the object will “rip the tag off.” A

tag is for your benefit only; it doesn’t mean anything to the machine.

So the best use for tags is at the end ofprograms or other calculations,

when you can attach them and display finished results.

Tags 115

Names

By contrast to tags, a name in the 48 is a much more “solid” kind of

label. Names are very important, because they identifyplaces where

objects are stored. Names are like labelled boxes in your workshop.

When you want to “use an object,” you simply invoke (type) its name.

That goes for all the built-in objects, too. Every command (every key

and menu item) is an object of some type, and when you press its key,

this actually invokes (“types”) the object’s built-in name. For example,

when you press the (SIN) key, you are invoking the name, SIN, which is

the built-in (permanently labelled) box containing the sine program.

Well, buildingyourown names is simply the act ofcreatingnew storage

boxes with your own labels on them. Once you’ve done that, the names

exist; you can put them onto the Stack, move them around, etc.—just

like other objects—even when they’re empty. But, of course, they're

usually more useful whenyou do store objects in them. So here’s where

you start learninghow to do that—how to save the objects you build....

116 (3) OBJECTS: YOUR RaW MATERIALS

How does the 48 represent names?

A name is simply a character string with special restrictions on the

characters allowed. Examples:

'R’ 'EX1! '"Tuesday' '2DAT"' 'PPAR'

'"What chamacallit ' 'STNsw!

How do vou build a name?

Build the first couple of names you see above.

Easy: Press ('JoJ AJENTER); press ('Ja]E]e]X]1]ENTER); and so on—

you get the idea. The '' delimiters appear in pairs—just

like so many others you’ve seen by now.

As you can see, names are always enclosed in apostrophes (' ')rather
nnu

than quotes (")—to distinguish them from normal character strings.

Also, names have these special restrictions:

e You cannot use any delimiter inaname: #, ',", _¢ () [1,{3,

«%¥ £, ,, <space> and <newline> are all off limits.

e Numerals (8-9) and decimal points are OK, except as the first

character: Youcanuse 'Al' and 'Hi.',butnot '1A'or '.WP"'.

* No arithmetic symbols or operators! Names like 'A+B' are out.

¢ Youcan’tcreateanamethat’salreadyusedby abuilt-in command:

'SIN' is the built-in name for the sine function; 'SIN%' is not.

Names 117

How do you use a name?

To put something into a named box, you use (STOre).

Watch: Press (1JENTER)(" JoJA)(STO)....

You just stored the real number 1 into the name 'A'.

Notice the order ofthe objects: First you put the object to be stored onto

the workbench. Then you put the name (that labelled storage box).

Then the STO command puts the object into the box, takes the filled

box off the Stack and puts it into storage.

Question: “..into storage”—where’s that?

Answer: It’sin your own personal toolbox—the VAR menu. To get

to it, simply press (do this now)....

This is the menu of all the names that you've filled with

objects (i.e. STOred objects into). As you can see, IEIH

is now the left-most box because it’s the most recently

filled; anything else you've stored (ifanything)isbumped

farther to the right in the menu.

It’s called the VARiable menu because a variable is ex-

actly that—aname labellingand containingsome value,

which can be changed (i.e. it can vary).

118 (3) OBJyECTS: YOUR RAW MATERIALS

Once you’ve named an object, to use it you simply refer to it by name.

Look: Type (oJAJENTER).....
Result: You get the valuein 'A', which is the real number, 1.

This is the general rule: Whenever you type the name of an

object you are invoking that name. The machine will evaluate

the object for you—exactly as ifyou had typed the object itself

from the CommandLine (i.e. asifyouhad typed (1JENTER)here).

Press the llllll item on the VAR menu.... Same thing, right?

Again—as you read earlier—pressing a VARiable key isjust a

shortcut for typing that name.

But: Type (NQRENTER) (or)MEMETER). ..
Result: You don’t get the value in 'A' —only its name.

This is just what you saw when creating names (page 117):

The ' means that you simply want to put the name onto the

Stack. Maybe you're building a new name; maybe you want

to STOre a new value into an existing name—whatever.

It’s a very important point—worth “harping on” once more:

e Toputjustthenameontothe Stack, encloseitin ' marks.

* To invoke the name—i.e. to get the value it contains—

use it without ' marks.

Names 119

Question: What if you have a name on the Stack and then you

decide that you want to evaluate it?

No Sweat: To evaluate a name already on the Stack, simply press

[EVAD.... See? It EVALuates the name 'R'.

By the way, notice this: Evaluating a name always gets you a copy of

its object’s value. Thus, you can evaluate the name over and over

again—using and consuming the resulting values on the Stack—but

the original object stays safely in its labelled box.

Clean Up: Press (=)CcLR)(MM(a menu key is just a shortcut for

typing, right?). Now(&JPURGE).... IlEEMdisappears from

yourVAR menu; you PURGE’d it fromyourtoolbox (threw

it away)—both the name and the object it contained.

Now: What will happen if you try to invoke the name A? Hmm—

there’s no such name, right? Try it: Press (a]AJENTER....

You get the name: 'R’ How? And why?

Because whenever you invoke a name—any name—the 48

actually puts ' marks around it and puts the name onto the

Stack first. Then it performs an EVAL on it. If the name

contains any other object, then of course, you’ll get that

object’s value. But ifthe name contains no other object, it uses

itsown object value (after all, a name is an object, too—right?).

120 (3) OBJECTS: YOUR RAW MATERIALS

Practice some more: Store some objects and evaluate some names....

Example:

Solution:

Store the vector[1 2 3]inthe name 'Vector.l'

Press to remove distractions. Then press

ViG]esTO).
Nowlook in your VAR menu. The left-mostbox is [l{Is{il.

Did the 48 truncate (and capitalize) the name you keyed

in—just to fit it into the display’s menu box?

To find out, press J{3%{1].... Nope—the 48 knows and

remembers the entire actual name; it simply needs to

alterit forits menuboxes. So keep yournames short and

distinct! Each menu box holds only up to 5 characters—

and uppercase always. So any similar (yet completely

valid) names such as 'VYector.1l' and 'Vector.2' or

'"VECT' and 'Vect' will appear identical in the menu.

Question:

OK, But:

Can you store a name within a name? It seems reason-

able. After all, you can put one box containing an object

into another box, right? Try it—store 1 in 'B' and 'B'

in 'A": AN@)E)E0)I)o)A)STO)

What will you get now when you invoke (evaluate) the

name A? Press lIEEM.... Youget 1! Sothe EVALuation

process goes all the way: If the value of one name is yet

another name, the 48 then evaluates that name, and so

on—down to the last “box within a box within a box...”.

Names 121

So evaluation is really a chain of evaluations—as long as necessary:*

The 48 follows its nose through each name, evaluating its contents—

until finally it finds the value of the “innermost” object.

Problem: What if you're interested in a name’s actual contents

only—the object immediately “inside” the name? That

is, you don’t want the 48 to evaluate that object any

further—just put it on the Stack. How do you do this?

Solution: Use RCLtorecall the contentsof 'A’: .

You get 'B' —the actual contents of 'A'. Because you

recalled the contents of 'A' (rather than evaluating it),

the 48 did not go on to evaluate those contents. And note

that RCLis acopying process: the objectin 'A' (the name

'B')isstillin 'A’ (try again).

So and form a kind of matched set:

¢ ToSTOre anobjectinto a name, you put the object onto the Stack,

then the name, then press (ST0). The STOrage process consumes

both object and name—it’s not a copying process (the object is

taken as the original, and no duplicate is left on the Stack).

¢ ToReCall the object, you put the name onto the Stack. Then you

use and you get (a copy of) the object back on the Stack.

*Up to the memory ofthe machine, ofcourse. Andbeware ofcircular references: Ifyou were to store

'R’ into 'B' right now, then 'A' would contain 'B' and 'B' would contain 'A'. And M.C. Escher

would love such a conundrum—but your 48 wouldn’t. It would evaluate in a circle, and you’d need

to press to interrupt this infinite goose-chase. The 48 can actually catch self-referencing

names (i.e. storing 'A' into 'A') and give you a message, Error: Circular Reference.

122 (3) OByEcTs: YoUrR Raw MATERIALS

Infact, STO and RCL are so useful that the VAR menu offers a shortcut:

This: Press (2)CLR), then (4)M. Now pressDGR...

You just did this: (2]CR)(4)(MM7o)MG(-]Rc))

Using a VAR menu key by itself will evaluate the name.

Using (] first simply ¢ypes the name onto the Command Line.

Using (&) first STOres the Level-1 object into that name.

Using()first ReCalLs a copy ofthe actual object in the name.

Of course, once you recall the contents of a name to the Stack, you

might want to alter it. But how?

Easy: EDIT it! For example, to change the first value in Yector. 1

to 18: MEMI(recallits currentvalue), then

(EDIT that object), andflITd(store this newversion

back into the name 'Yector.1'). Remember: EDITing alters

only a copy ofthe contents of a name on the Stack. It does not

automatically STOre the EDITed version back into that name.

So: To recall, edit and restore a named object in one smooth

motion, use VISIT instead of EDIT. Change that vector com-

ponent back to 1: (RN (=visT»>[»)>[«)ENTER).... See?

VISIT lets you skip the initial RCL and the final STO.*

*And in case ofmistakes during “alterations,” remember that,just as aborts an EDIT, leaving

Level 1 unchanged,so it also aborts a VISIT and leaves the named object unchanged.

Names 123

Algebraic Objects

Algebra is the branch of mathematics that manipulates expressions

and equations involving variables—“unidentified numbers” that can

nevertheless be manipulated as symbols because their numerical

properties are known and predictable:

X +y'=r ax®> +bx+c=0

The beauty ofalgebra is that you can manipulate the symbols into the

most advantageous arrangement—before ever worrying about the

numerical values these symbols might represent.

’ 2
y= ,rz—xz x:__bi_ b —4aC

2a

Then you can “plug in” numerical values:

-10 + 2 _Y57 LT10£10°—4(3)3)
2(3)

Well,it’s no coincidence that your menu of named objects in the 48 is

called a VARiable menu: You can use names in the 48 literally as

algebraic symbols, to form algebraic expressions and equations (such

as those above) that you manipulate and solve symbolically. And just

like algebra on paper, you needn’t worry about the actual, numerical

values in those variables until you're ready to “plug them in!”

124 (3) OByECcTS: YOUR RAW MATERIALS

How does the 48 represent algebraic objects?

As you know, you can’t use math operators(e.g.+ — ¥ ~)ascharacters

innames. Ifyoudo, you’ll form an algebraic object instead. Names and

algebraic objects use the same delimiter (').

Examples:

Watch:

At your VAR menu, press JlIGEMENTER). That’s a name.

Press JIZENTER). That’s another name. But press

(" L] -ZENTER). That’s an algebraic object. You

built it by typing a mathematically meaningful combi-

nation of names and algebraic operations.

And of course, you can edit this object—just like any

other: (&)EDT)EIRIES («[=))C)[ENTER). Result: 'A+B-C'

So you can always type in an algebraic object at the

Command Line—using whatever combinations of VAR

and alphabetic keys that are most convenient. But often

it’s easier to let the Stack’s postfix operations actually

help you build an algebraic object:

the 'A+B-C', then press(¥).... See what happens?

Just as(+])lets you combine lists or strings, so it combines

names and algebraicobjectsinto larger algebraicobjects.

Try another: Key in the name 'C' (press("]C)[ENTER)),

then (-).... Voil4!

Algebraic Objects 125

How do you use algebraic objects?

“Ah—how sweet it is!...
»

Question:

Do This:

One More:

What’s going to happen now if you EVALuate this alge-

braic object, 'A+B-C' ? Press(EVALD.... Result: '5-C'.

Why? Because the machine evaluates everything in the

expression thatit can (the variable names 'A' and 'B'

have the values® and 1 stored in them); but it leaves any

undefined value as is—in symbolic form (the name 'C'

contains nothing—it’s not on your VAR menu).*

Evaluate the algebraic object 'A+B".

Press(DI EENENTER) (or (ONEINEV=)(O
[ENTER[+}—your choice), then [EVAL).... Result: 5

This result is not an algebraic object—it’s a real num-

ber—because all the parts of 'A+B' are numerically

evaluable; it has no undefined names (such as 'C').

Evaluate 'A*Vector.l': (" EIRXEIRI]ENTER)

(or JIINENTER)CHERTENTER)(X)), then [EVAL....
Result: [4 8 12 1] Isn’t this great?

*Notice that this exactly matches how the 48 EVALuates names: If a name has an object stored

in it, the 48 evaluates that object; if not, the name itself becomes the final object value.

126 (3) OBJECTS: YOUR RAW MATERIALS

Question:

Answer(s):

How do you know this last answer is correct? That is,

how can you verify the current values ofyour VARiables

'A' and 'Vector.1'?

An easy way is simply to evaluate 'A' and 'Vector.1',

by pressingIl and [3d{1]. You should get, respec-

tively: 4and[1 2 3 1.

Or, to review the values in all the names on the current

page of your VAR menu, press (]REVIEW):

ector.1: [123 1

AB_VECTO]|||
REVIEW is especially handy when you want to check a

lot ofvalues at once—but you don’t want to mess up the

Stack with name evaluations. Notice that the entire

review is just a large message that appears temporarily

over the normal Stack display (press to clear it).

Algebraic Objects 127

For practice with a more complicated example, try using an algebraic

object to build one of the general solutions to a quadratic equation:

_ —bxAb* -4ac

2a
X

Go: First,press to tidy up the workbench. Nowstartbuilding:

Press ("JaJ&)BJENTER[+/-). Result: '-b' So far, so good.

Again, you're doing a mathematical operation on an algebraic

object, and the object changes to reflect that operation.

Next, press(ENTER[+/=)(no sense keying 'b' in again from scratch;

this is quicker). Then ... Result: 'b*2'

Because the 48 can’t display superscripts in the Stack,it uses the

circumflex (*) to indicate “raising to a power.” *

Next, (4)(oJeAENTERIX"JoJ&qCJENTERIX). ... Result: '4*a*c'
Notice that the resultis not '4ac'. Such implied multiplication

(i.e. omitting the multiplication signs between single-character

variables—often used in written algebra) would confuse alge-

braic objects with names on the 48 Stack: 'xy', 'abc', etc.

Now (5), to form 'b*Z-4*a*c' Notice how the 48’s postfix

subtraction rule (“Level 2 minus Levell”) determines the order

ofthe subtraction operation formed inside the algebraic object.**

*You could have typed instead of but the result, 'SACb) ', isn’t quite as readable.

Either form is OK, though—they both evaluate the same way.

**Notice also that you don’t need any parentheses here: Under conventional algebraic notation

(which the 48 uses), exponentiation takes precedence over multiplication/division, which takes

precedence over addition/subtraction.

128 (3) OBJECTS: YOUR RAW MATERIALS

Next step: (X).... You get ' [(b"Z-4*a*c)'

Notice the parentheses. A one-line algebraic object can’t draw

the radical to include an entire expression under it. Instead, the

square rootis represented as a mathematical function (as inf(x)),

and the parentheses enclose the argument ofthe function: J()

Now press (4). Result: '-b+[(b*Z-4*a*c)’

No surprises, right?

Keep going: (@) JoJqA[ENTER[X).... Result: 'Z2#*a'

Nothing unusual here, either—but by now you may have noticed

somethingthat’s worth a little discussion: Normally, when doing

Stack arithmetic with something like real numbers, you could

just press (2)[ENTER)(3)(X). Here, you need a second (ENTER), to put

the 'a’' onto the Stack before multiplying. This is because when

you press ('), the 48 goes into algebraic entry mode (the ALG

annunciator appearsin the StatusArea), so that operations such

as(X)are not executed immediately. Instead, they’re simply typed

(*,+ etc.) ontothe Command Line. Therefore, you could also key

inthe expression '2*a' as("2[X[«)&3AJENTER), ratherthanbuild

it via Stack operations.

Finally, press (=).... Result: '(-b+[(b*Z-4*a*c))/(Z2#a3)’

Since algebraic objects are represented in a line on the Stack , the

extra parentheses are needed to show what’s being divided by

what. Indeed, withoutthemyou’dhave ' -b+{(b*?—4*a*c)-Z*a',

which, according to the notational conventions, would be evalu-

ated as

b(______Vb—“ac)a
2

Algebraic Objects 129

Some observations:

When building expressions involving your variable names, you began

each name with ', to tell the machine that you were merelyspelling out

the name as part ofthis object, not evaluating it. But ifyou know that

the names you’re using are empty (i.e. they’re not on your VAR list—

either you’ve PURGEd them or never used them before), then you can

get away without the ' —because evaluating an empty namejust gives

you that name anyway.

Of course, you could have typed in the entire object directly from the

Command Line: (JQJOFJJG()JBHESOBN

(4]X[]A)X]oJC))](HE&]O2]X)(«JAIENTER)

Admittedly, this saves some [ENTER]s—and you can use lower-case lock

((q)@) in alpha mode) to make it easier to type a, b, and c. But it also

means you have to know where all the parentheses go beforeyou start.

And so you must know and follow the algebraic syntax and precedence

conventions—instead of letting the 48 put it together for you “on the

fly,” as you simply specify the order ofoperations with the postfix Stack

operations. So you decide—use the method easiest for you.

130 = (3) OBJECTS: YOUR RAW MATERIALS

No matter how you’ve built it, now that you have such an impressive

algebraic object all built, what do you do with it?

This: Put values into the variables and evaluate the expression:

(VAR(TE)JQ)(STO)
=NEVAD

You’ve just stored your freshly-built algebraic object into the

name 'EQ'. Thenyoustoredlinto'a',-Zinto'b"',andl into

'c' (in reverse order—to appear in order in the menu*).

Then you put the expression back on the Stack by pressing

X, thus evaluating the name 'EQ'. Then you evaluated

the expression, and you got the real result.

“Hmm...but why doesn’t the EVALuation process ‘go

all the way,” and evaluate the algebraic object?”

It'sanexception tothe “EVALuate-all-the-way” rule: Ifaname

contains an algebraic object, the 48 evaluates only to that

object; you must press explicitly to evaluate the alge-

braic any more. So you did—and zap—the machine replaced

all names with their values and did the math. And as with all

evaluations, the result was left on the Stack: 1

Anyway, the beauty of such algebraic objects is this: Now you have

your algebraic expression named,you can easily reuse it. For example:

@&(DG(4INlEVAD. Result: 7. 22.

*Remember that they will appear in uppercase in the menu boxes—butyou know they’re the boxes

farther to the left because they’ve been more recently created than the boxes for 'A' and 'B'.

Algebraic Objects 131

Postfix Programs

When you say the word program, you probably think of some task or

series of tasks that you “record” in a computer now and then “play

back” later—at which time the machine automatically performs those

tasks. The power ofa program is that you can play the recording over

and overwithvery little effort on your part every time—often the touch

of a single key. It can become a new tool in your workshop.

Well, that’s a fair way to think about a program. But then that means

that algebraic objects are really programs of a sort. For look at how

much work the machine does automatically when you press the

key with an algebraic object: It evaluates all the names, then uses the

math to combine them as you’ve specified—and it will do this over and

over, for whatever values of variables you wish to give it.

You could make a similar argument for simply EVALuating a series of

“names within names,” too: That chain ofevaluations can go on a long

time—a very convenient series of tasks the machine does for you

automatically. And, as you’ll soon see, you can even get the 48 to

sequentially evaluate the objects contained in alist object ({ })—again,

simply by pressing that all-powerful key.

The point is, although there are several different types of objects that

can act as programs, they have other roles as well. In fact, there’s only

one object type that was defined strictly for the purpose of acting as

such a pre-recorded, ready-to-use series of commands. This is the

object type called a postfix program.

132 (3) OBJECTS: YOUR RAW MATERIALS

How does the 48 represent postfix programs?

Apostfix program (you can call it simply “program”for short), is indeed

an object; you can put it onto the Stack, store (name) it, recall it and

evaluate it. And, as with most other objects in your workshop,

programs are bracketed by a pair of distinctive delimiters—in this

case, guillemets: € *

Also true to the pattern of other objects is the program’s underlying

list-like structure: A program is an ordered collection of zero or more

elements (objects and commands). When you evaluate the program,it

sequentially evaluates its elements.

How do you build a postfix program?

Unlike most other objects, there is only one way to create a program,

and that’s to type it in from the Command Line.

Try One: Press (5]« »)(1JSPC[2)JENTER). Result: « 1 2 + *

Notice that program entry mode activates (i.e. the PRG

annunciator appearsin the StatusArea) whenyou press

»}—so that commands such as simply type their

names in the Command Line rather than executing

immediately.

Postfix Programs 133

So there you have it—a three-step program.

Question: What does it do?

Answer: See for yourself: It’s called apostfix program because it

handles objects and commands in the same manner as

your 48’s postfix Stack would handle them as you key

them in on the Command Line. So you can mimic this

program’s behavior at the Command Line: (1]sPc)2)(#).*

Now this “manual” result, then press once

(to DUPlicate the program so you don’t need to rebuild it

later), and [EVADuate it.... Sure enough: 3

Of course, you can name the program, too—to save for later....

Do It: (DROP)the EVAL result, and then ("JoJEJe)X)1)[STO).... Just like

any other freshly-named object, the program, now called EX1,

will appear on the left side of your growing VAR menu.

*You'll notice, however, that the program can delay the execution of +, whereas you can’t at the

normal Command Line. To mimic the program even more closely, you can activate program entry

mode without using the by pressing (O)ENTRY).

134 (3) OBJECTS: YOUR RAW MATERIALS

But this EX] program doesn’t do anything particularly valuable (you

already know what 1+2 is). So you ought to changeit.

OK:

How?

Suppose you want EX1 to add 1 to whatever object is at Stack

Level 1.

You can’t decompose a postfix program into its elements with

[ENEA. In fact, the only way to change it (other than PURGE

it and start over) is to edit it—easiest with VISIT: I3

[@2)VisT). Now delete the : [TIEX; and restore

the program: (ENTER. Now EX1 will simply put the number 1

onto the Stack and then perform a +.

Try It: [)ctR), then (1) IE3M gives a result of 2; again: 3

Wgives (33, 44).

Pra)NN2)ENEL gives{ 3 (33,44) 1 1}

WMgives "Hil".
o))IEFEM gives 'Hi+1'.

I3 gives an error (you can’t add a

scalar to a vector). This leaves the Stack as it was at the

time ofthe error (the 1 put there by the program remains).

Don’t worry—you’ll get lots more sophisticated practice with programs

(and most of the other objects later). The point here is this: Using a

program—such as [[F#M—from your VAR menu is really no different

from using any built-in command—such as (X3. Naming a program

creates a new tool in your workshop, and it works like any built-in tool.

Postfix Programs 135

Directories

A directory—any directory (a phone book, a map, a kiosk in the mall,

whatever)—is a reference tool to help you find what you need from

among a given selection. And there are different directories for

different selections. For example, it would be a hopeless mess to try to

list all the telephone numbers in the country in one huge phone book,

so the listings are broken down into different books. And each book is

often divided even further—by city or suburb—into subdirectories.

The point is, a directory’s very purpose is this dividing/subdividing

effect. It offers youonly a certain selection among“all possible items”—

in order to simplify and narrow the field of your search (assuming, of

course, that the selection uses some logical criterion—all the names in

the phone book from the same city, etc.).

In the 48, you use directories in just that way: Your VAR menu—your

toolbox for your own custom-built objects—is quite roomy, and you can

put anything you want into it. You can divide it up into drawers, each

with some more specific criterion for the named objects it contains.

And you can even subdivide those drawers into still smaller com-

partments, then subcompartments, etc.

How does the 48 represent directories?

Directories are objects—just as arrays, strings and lists are objects—

but because it’s seldom useful to put a directory on your Stack

workbench, there’s no 48 delimiter reserved to denote a directory

object. The best way to see one is to build one....

136 (3) OBJECTS: YOUR RAW MATERIALS

How do you build a directory?

To create a directory, just put a unique name into Level 1 of the Stack

and invoke the CRDIR command....

Watch: Press (2]CLR)(Jo)@R1o) MEMORY) IMHUIA (VAR)....

The new name, [[I[FW, is now in the VAR menu.

Notice the “file folder tab” on the top ofthe[menubox.

This is to help you distinguish directories from the other

named objects.

How do you use a directory?

So you now have a new, empty directory called DIR1.

Question: Can you look into it—and store objects into it now?

Answer: Sure—but you need to open it first. Just evaluate its

name—press EI3W Your VAR menu becomes empty,

because now it’s showing you only the contents of the

DIR1 directory. And the StatusArea shows a list, telling

you “where” you are: 4 HOME DIR1 ¥

Thatis, you started in yourHOME “toolbox,” then opened

the DIR1 “drawer” within that toolbox.

Directories 137

Now, to put somethinginto this drawer, you do exactly whatyou always

do—just STOre into a name.

Like So: For example, (1)(*)]A)(STO) puts the named object 'A' into

your opened DIR1 drawer. With this drawer open, when-

ever you evaluate,store or recall 'A', you’ll be referring to

this 'A".

Question:

Find Out:

Does this replace the 'A' in your HOME directory—the

one that contained the value of4 (recall pages 118-123)?

Returntothe HOME directory (i.e. close the DIR1 drawer),

by pressing (?JHOME).... The list in the Status Area now

shows { HOME %, and the VAR menu should look fa-

miliar. All right, now evaluate the name 'R’ (press

B). Youget4. Sothe 'R' in DIR1 is different than

the 'A'inthe HOME directory—like two John Smith’sin

two different phone books. You can use identical names

for different objects if they’re in different directories.

When evaluating a name, apparently, the 48 looks for

that name only in the current directory (HOME,in this

case). Testthat theory: Gobackto DIR1 (flfl])and

evaluate 'A'(press IIEEM).... Yep—you get 1—the

value of the 'A' stored in the DIR1 directory.

*Remember that there are two items that look likeIl—the one farther to the leftisfor 'a'; the

other is for 'A' (but if you forget which is which, pressing(Iwould tell you).

138 (3) OBJECTS: YOUR RAW MATERIALS

But: PURGE the name 'A' from the DIR1 directory:

()I (©)PURGE).

Now evaluate 'A': (a[AJENTER).... You get ¢ !

Howcanthisbe? Thename 'R' doesn’t exist in DIR1—youjust

PURGEA it. This is the value of the name 'A' in the HOME

directory—and yet you obtained it by evaluating 'A' from the

DIR1 directory!

This is because the 'A' in HOMEis in your current PATH.

As you’ve read, the directories you create in the HOME

directory are “drawers”—subdivisions ofthat HOME directory

“toolbox.” And directories you create from any such “drawer”

are further subdivisions (“compartments”) within that

drawer. So, starting from HOME, to get to any particular

directory, you sequentially open the correct drawer, the cor-

rect compartment within that drawer, etc. That is, you

traverse an access PATH through your directory structure.

That list in the StatusArea is your PATH list—the description

ofthe PATH you took from HOME to get to where you are now.

When you evaluate or recall a name, the 48 first looks in the

current directory (thedirectory attheend ofthe PATH list). But

if it can’t find the specified name there, the 48 will methodi-

cally search backward through that PATH list until it either

finds the name or exhausts all directories in that PATH list.

Directories 139

A little terminology clarification: Directories within other directories

are commonly called subdirectories. So DIR1 is a subdirectory ofHOME

and HOME is the parent directory of DIR1.

A directory may contain many objects—and many subdirectories.

Watch:

Like So:

Create a subdirectory, 'DIRZ', in the HOME directory.

(EEovEO(@)vevor) HATA(VAR). ... Now DIR2
is DIR1’s “sibling”—another drawer in the HOME toolbox.

Next, create another directory, ' DIR3' , inside DIR2: First,

open the empty DIR2 (press [FIFED. Then: ()a[0)1)R]3)

CRDIF [(7R)

You now have a directory (DIR3) within a directory (DIR2)

within a directory (HOME). So HOME is DIR3’s “grand-

parent,” if you will. Since a family tree is such an obvious

analogy for this directory structure, it is commonlyreferred

to as a directory tree.

Practice moving through the tree:

Store 2 into 'D' in DIR3: MEEN 2)([=)D)ET0).

Store 8 into 'C' in DIR2: (GJuP)(8)("JaJCc)(ST0). The UP

command moves you up to the current directory’s parent.

Store 16 into 'B' in DIR1: (&(ur)IEW(6)(=)B)ET0).

140 (3) OByECTS: YOUR RAW MATERIALS

Questions: From which directories can you now recall and evaluate

'A' 'B','C',and 'D'? Feel free to use your 48 to help.

Answers: 'A': HOME, DIR1, DIR2, DIR3

'B': DIRf1

'C': DIR2, DIR3

'D': DIR3

Remember: You can recall or evaluate any name in the

current directory’s PATH. Since all PATHs contain the

HOME directory, anything stored there is accessible

from any subdirectory—no matter how many genera-

tions removed. By contrast, objects stored in the “leaves”

of the tree (i.e. in directories with no children) are

accessible only from that “leaf” directory.

Now: Time to clean up: There are two ways to PURGE a directory....

As with any other name, you may use the PURGE command

onadirectory name—butonly ifthat directoryisempty (so you

can’t easily destroy alot ofvaluable information with PURGE).

Or, if you’re sure that you want to destroy a directory and

everything in it (objects, subdirectories, their contents—the

whole shootin’ match), use PGDIR (PurGe DIRectory). PGDIR

assumes that you know what you're doing. It removes a

directory and its contents—so use it with caution (go ahead

and do this now): [OFome)(TI)MEMORY)

(NxTINXT)AIR(VAR).

Directories 141

Objects: A Summary

No sense kidding yourself: You've covered a lot in this long chapter.

You've seen how to build and at least begin to use the basic object types

available in the 48:

Real numbers Units Lists

Complex numbers Vectors Arrays

Flags Binary integers

Strings Tags

Names Algebraic objects

Postfix programs Directories

Yes, there are few other object types that you haven’t seen yet—mainly

because they’re for special purposes—plotting, programming, backing

up your data, etc.

Right now, hold your place here and look back at pages 14-15—*“The

Big Picture”.... Surely the keyboard’s organizational structure ought

to seem more familiar now—and of course, the Stack is definitely

“home turf” by now, right? But even that example directory tree

structure on page 15 ought to be clearer, now that you know a little

about subdirectories, parent directories and PATHs, no?

But just in case, here are a few more exercises to help you put it all

together. These quiz problems will force you to use and combine what

you know—and you’ll even see a few new variations and features not

covered before now—so heads up!—and enjoy....

142 (3) OBJECTS: YOUR RaAW MATERIALS

Test Your Objectivity

Sum the first 10 positive integers. Now sum the first 1000

positive integers.

Silver (Ag) crystallizes in a face-centered cubic unit cell (4

atoms). The density ofAgis 10.5 g/cm?. The atomic mass ofsilver

i 107.868 g/mol. There are 6.022 x 102 atoms/mole. Find the mass,

volume and dimensions (in Angstroms) of a silver unit cell.

“Ea
In an elementary chemical reaction, e #" is the fraction of colli-

sions with enough energy to react. E, is the activation energy; R

is the ideal gas constant (8.314 J/K-mol); T is the absolute tem-

perature (in Kelvins). Find the fraction of successful collisions

for a reaction at 980° F with an activation energy of2.14x10*J/mol.

What are the differencesbetween £ 1 2 3 4 } and

[1 2 3 4 17 How would you convert between them?

You can add elements to a list using the (+) key, buthow might you

delete, say, the last element? The first element?

How would you change the value 1+2i into 2+i on the 48?

Test Your Objectivity 143

144

Fill in the table below to compare the costs and benefits ofthree

strategies for replacing part of the current U.S. daily use of

petroleum—now totalling about 15 million barrels:

Option Costs (Savings) Energy |% ofcur-

gain (bbl/d) rentuse

80 nuclear Total: $ %

reactors

80 coal plants Total: $ %

Simple H,O heat: %

efficiency Appliances: %

measures Lighting: %

Tire infl.: %

Total: $ %

Nuclear reactor (1000 MW): Capital invest. (3-5-yr constr./testing): $ 1200/kW

Fuel and maintenance (for 25-yearlife): 200/kW

Disposal/cleanup (100-1,000 years): 50000/kW

Coal-fired plant (1000 MW): Capital invest. (3-year constr./testing): $ 1000/kW

Fuel and maintenance (for 50-year life): 100/kW

Disposal/cleanup (10 years): 10000/kW

Efficiencies: 100 million U.S. households each use the energy equivalent average of 1253

gallons of oil per year—at a cost of about $1,200. 40% of this goes for space heating, 20%

for water heating, 15% for major appliances, 10% for lighting, the rest for other uses. 140

million U.S. cars average 10,000 miles per year each, at 19 mpg. 1 barrelof oil has 5900

MJ of chemical energy and produces 16.4 gallons of gasoline. A unit of electrical energy

requires 3 units of oil energy. Electric plants typically operate at 75% of rated capacity.

Low-flow heads on faucets and showers cost $40 per household. That plus using cold water

rinse in the washer would save 20% on water heating. Lowering the waterheater to 130°F.

and raising the freezer and refrigerator to 0° and 40° F. would save at least 5% on appliance

usage. Using compact fluorescent light bulbs (20 per household) would cost $150 more to

buy (for the same 5-yr. life) but save 75% in electricity. Inflating car tires to correct

pressures would save 3% in fuel consumption.

(3) OBJECTS: YOUR RAW MATERIALS

8. What’s sin’(2)? What are the units of the solution angle? What

does this solution mean?

9. Find the angle, ¢ , between —9i +4j-2k and (12, 1.4 rad, 0.5 rad).

10. Find the volume of the parallelpiped defined by:

a=3i+3j+5k b=T7i+j-2k c=i+8j-k

11. IfA=(1,23), B=(-3£25°-2),and C = (% ZA[2rad, —6 rad),

find the unit vector that pointsin the same direction as ofthesum

of the real and imaginary portions of 14.54 —0.2B + (1+i)C

12. Withinthevectorl 2 4 6 8 18], how could you change the

8 to 19? How could you change the & to (1, 1)?

13. Createthevector[1 £]. Now redimension it to a 5-element

vector. Then change the third element to 3. Then “dot” it with

[543211

Sources:

The 1990 Information Please Almanac, Houghton Mifflin Company, Boston, 1990.

50 Simple Things You Can Do To Save The Earth, The Earth Works Group, Earthworks Press,

Berkeley, 1989 (book available through: NRDC, 40 West 20th St., New York, NY 10011).

Ecoscience: Population, Resources, Environment, Erlich, Erlich and Holdren, W.H. Freeman

& Co., San Francisco, 1977.

Test Your Objectivity 145

14.

15.

16.

146

Convertthevector[1 2 3456 7 8 9 lintoa3x3array.

Then change element,, to 18. Then convert the resulting array

into an array with complex elements.

How might you extract individual rows from the result of prob-

lem 14? Would these be vectors?

Legendsstill speak ofthat dark and fateful night, over a century

ago,when aU.S. Mail Express locomotive became a runawayand

collided with a long-haul Canadian grain engine at a remote

prairie borderjunction. The crews may have bailed out in time,

but they were never found. Your theory: The collision startled

alargeherd ofbison nearby, whose ensuing stampede obliterated

the entire scene. You've surmised that the wreckageitselflanded

somewhere out in a bison mud wallow, sinking well out of sight

beneath the muck and chaos of the stampede. Vague stories of

some such incident—pieced together from railroad memorabilia

in both countries—have allowed you to estimate these speeds,

compass headings and weights for each engine (including its coal

tender) at the point of collision:

Engine Speed Heading Weight

Squash Blossom Special 88 mph 44°19' 150 tons

Home, Wheat, Home 110 km/hr 256°32' 300,000 kg

Problem: Which government should have excavation jurisdic-

tion over your proposed International Peace-Railroad Memorial

Mud Wallow?

(3) OBJECTS: YOUR RAW MATERIALS

17. Find the total hours worked by each person and by all together:

18.

19.

20.

21.

22,

23.

Andy Beth Carla David

Mon. 8 8 5 7

Tues. 8 8 6 7

Wed. 4 7 5 7

Thurs. 8 7 4 8

Fri. 8 8 5 7
Test matrix multiplication commutativity with these:

1 2 16 9
A= 3 4 and B = 4 1

Use to help you build complex numbers.

Set ENG display notation and polar/cylindrical vector mode—

using only one page of one menu and the digit keys.

Find the 48’s current binary wordsize without using RCWS.

What's the easiest way to preserve the system settings—such as

those discussed in problems 19-21—for quick restoration later?

Calculate 2,, X (FFF+2) in 16-bit integers.

Test Your Objectivity 147

24.

25.

26.

27.

28.

29.

30.

31.

148

Keyin# 1868d and duplicateit. Then convertone copy toastring.

Then set binary mode....Why are the two results different?

Change "You understand?to "You understand!"

Build the string "Vol.= 4.8 gal." without using the (4) key.

Then, starting with such a string, extract the numeric value.

Format a number in scientific notation—such as 6.822EZ23—

within a string, in this format: "6.822 #* 18*(23)"

What will [I:FE8 produce from this string?

Use PURGE torename 'A' as '%'. Then use this nameto tag the

_ —bt+b*-4ac

2a
solutionto x ,fora=1,b=-8,and c =15.

Set flag—3 and try to build the solution to prob. 28 “from scratch.”

Keyinthenames 'n','i' and 'e'and evaluate them. Now set

flag -2 and repeat this exercise.

How can you PURGE more than one name at a time?

(3) OBJyECTS: YOUR RAW MATERIALS

32.

33.

34.

35.

36.

Evaluate the expression 'Z¥x+y' for:

a. x=-2y c. x=t y=t-1

b. y=-2 d. x=z-3y, y=y-3z

Write the solutions to problem 4 as two complementary pro-

grams, named L*Y and Y#L. Test them with these lists:

{83 {1233
{18 d,8 3 {3

Use L*V and V2L to write another program, called LADD (“List

ADD?”), that adds the corresponding elements of two lists, pro-

ducing a list of the sums. Test LADD with these pairs oflists:

a {12343 {5678
b. { (1,1) (-3,4) > { -5.4 (4.3,-8.1) 3
c.c {9687 {113
d {[121[03413 {I[-31106911}

When would evaluating a directory’s name not send you to that

directory? How could you give a directory two different names?

Suppose you want to build yourself a little phone book: Write a

program that will open the correct one among 26 alphabetically

named (A through £) subdirectories—depending upon the first

letter of the string you key in.

Test Your Objectivity 149

150

Objective Answers

Just a reminder ofthe options you have for keying in objects and

doing arithmetic with them on the Stack. For example:

EERIHEHEBEBEDEHEBB,or

, etc. Answer: 35

Of course, no such method is good for adding a thousand num-

bers, but observe that 1+2+3... +998+999+1000

=(1+1000)+(2+999)+(3+998)...+(500+501)

= 1001x500.

So: Answer: 5868560

(&JmopES)2)BEIdM. Thenkey inthe atomic mass:

ErEIAnxT)(OIEIM. Next, key inAvogadro’s

number:(6]~ J0)2)2)EEX)2]3)ENTER(EI'M. Notice thattheitem

being counted (atoms) is implied—as with cycles in “cycles per

second” (Hz) or any other discrete item. Now divide the two

arguments: (=)(that'sgrams peratom), then multiply by4 (atoms per

cell): (4]X).... Result: 7. 16E-22_a (grams percell)

Volumeis mass divided by density. You have the mass already,

sokeyinthe density: (1o)-5nxT)ISo~IGIREEEL
And divide: (&) Result: 6.82E-Z3_cm"*3

And, since the unit cell is a cube, just take the cube root of the

volume to find the length ofan edge: (3])X¥). Nowjust convert

to A: AT PreV)M.... Result: 4.B9EB_A

(3) OBJECTS: YOUR RAW MATERIALS

3. (@onTs)xDEEE)4NI

RESI=N00000J

E)onTs)[REEEPrev)I()

OOERESITEN°FK(&
Result: 4.B6E-2 (4.00%)

4. Oneis a list; the other is a vector.

To convert between them, start with the list: MoDES)IELIIN

U1)sPc]2]sPc)3]sPc]4JENTER) (and OEJ)

Then [[ZNER EXIdA is the easiest conversion; leaves the

Stack all ready for EdildA.

To convert back: [[ZNEXITNEN («)EIMESince needs a

real numberfor a length argument, you use [IZNEX(@) to extract

thatreal numberfrom the list-type length argumentproducedby

decomposing the vector.

5. Use the list from problem 4: [IZNEX(1]-) deletes the first

element; DAk radk1l deletes the last element.

6. Startwith 1+2i: (§]O]1]SPc]2]ENTER)(and at the OBJ menu).

Then EEI3(»)XXM does the job.

Objective Answers 151

152

Do the power plants first: Calculate the barrels of 0il saved by

their typical daily generating level: MoDES)(1)IHSIEM(to reflect

the level of certainty of the data). Then

ETeR)IvTH)GHEAE)HEEeXX))
2@M(@)ENTERH elo)oeIM[e)IJENTER) (=) 0)X)
(notice the unit prefixes here). Result: £2.6E6 Theoil (barrels)

that eighty 1000-MWpowerplants would save daily. The costs?...

(1] 0]o)oJEEX]&JENTERIEEX]3]-]8]oJX[ENTER)(ratedkWfor 80 plants)

(1]2) o]oJENTER) (2]0]o]H) (5oSoSo)oJHX25=)3]85]+
Result: 458.E6 That’s $450 million spent per day for 25

years for the 80 nuclear plants

(«]1)o]oJo]ENTER)(1]0oJH) (1]ooSoJoJHIXso+)3)65]+
Result: 49.E6 That’s $49 million spent per day for 50

years for the 80 coal-fired plants

The efficiencies. First, the daily oil savings in water heating:

(125B)ENTER3]6)5)=2X2XIEEXeX[JunTsTNXT)
TNnxTNxT)(@)I Result: 338.E3_bbl

The $avings: (4]0)+/=JENTER]1]0]=])(the plumbing ought to last at

least 10 years) (1]2J0]oJENTER]-2X)(- J2) XI+)3]65[+
Result: 1Z2.E6 That’s $12 million saved per day.

Next, the daily oil savings in electrical appliance efficiency:

DEEEETRE)EEHHHEXEDEXEEX(EXNXDNXT)
T(T(G I Result: 1868.E3_bbl

The $avings: (1]2)JoJoJENTERI3]65=)~15X]-LosXIEEX][8)(X)
Result: Z.39E6 That’s $2.5 million saved per day.

Then there’s the daily oil savings in electrical lighting efficiency:

(12EIE)ENTERIB)65-X7XTEEX8IXINXTINXT)LT
(NXTINXT) (o TR Result: 1.8E6_bbl

(3) OBJECTS: YOUR RAW MATERIALS

The $avings: (1)5)0)+/=JENTER[5=12)o)oENTER-1)X]

8088
Result: 16.E6 That’s $16 million saved per day.

Finally, the daily oil savings from proper tire inflation:

(1]o)o)o)oJENTER[1)9]1]4LoJEEX]6JX]-Lo3]X]3]8[[+JENTER
(1)6)-[4]= Result: 378.E3

The $avings: («[1]-]2]5)X) (cheap for a gallon of gas by now)

Result: 7.6E6 $7.6 million saved per day.

So here’s the filled-in table (remember—these are daily figures):

Option $Costs (Savings) Energy |% of cur-

gain(bbl/d) rentuse

80 nuclear Total: $ 450 million 2.6 million 17%

reactors

80 coal plants| Total: $ 49 million 2.6 million 17%

Efficiency H,O heat: ($12 million) 0.33 million| 2.2%

measures Appls.: (2.5 million)| 0.18 million| 1.2%

Lighting: (16 million) 1.8 million| 12%

Tire infl.: (7.6 million)| 0.37 million| 2.5%

Total: ($39.1 million)| 2.7 million 18%
So, to add 17-18% to the nation’s daily oil supply—without any

change to yourlife-style—which would you rather do:

spend $50-450 million/day—and wait 3-5 years for results?

or save $40 million/day—with immediate results?

Objective Answers 153

10.

154

Press (2J&q)AsN. Answer: (1.57879632679, -1.316957896592)
(assumes XYZ and STD modes here). A complex trig argument

doesn’t carry the circular geometric interpretation (“units”) that

real arguments do. The general sine function is an infinite series

. 3 xS x7

sum: sinx=x——"—+=—"——"—+---
31 s M

The angle, ¢ , between any two vectors, A and B, is given by

4 AeB

#=cos (|A||B|]
Be sure that you enter each vector in its proper mode:

o)+/-JsPC)(4)sPC) +/-)ENTER][AJSTO);
()EESA[RAD)(12PO()9)EPY)
(JoJB)ST0). Nowcalculate: (VAR)N(]LAST
ILAsTIEEEN()(vARInxT)IIEEE

(©)tastBB(5)ACOS). ... Result: 1.64893275493 (rad)

The volume ofa parallelpiped is the absolute value ofits vectors’

triple scalar product, defined as any of these variations:

a°*(Mbxc) be(axc) ce(axb)

a°*(cxb) be(cxa) ce(bxa)

So: (]t (7Ispc) (1)sPC) (-J2)+/-JENTER) (&)L (11sPC] (8]sPC) (1) (+/)
ENTER)(L(3]SPC)(3)SPC)(5JENTER). Then evaluate the function:

CRO535) Result: 297.2

(3) OBJyECTS: YOUR RAW MATERIALS

11. First,build and name yourthree vectors: ((q]JMODESINXT]NXT), then

Tl
IT(3]+/-)sPc)2]ssPC)-2]+

IT(3)/2)6)+
Then: (VARINXT)I2X))NxTIa]0)3)SPO)
(1)I(X))()MeNU)IEREl—to see the real and imagi-

nary portions of the complex vector result.

Next, A(yes, / will split/build
complex-valued vectors, too).

Then adds the two real-valued vectors, and to find the corre-

sponding unit vector, you divide the vectorby its own magnitude:

vEREeEREEES.... Answer:

[.273121183844 .533411568534 .B80E54/88582 1

12. First,build the vector:

NEFREIT Now (MxTRxTINxT(4) GPC19)IThefirst
argument for PUT is the position of the target element in the

vector (or array or list). The second argument is its new value.

Ofcourse, you can’t put a complex value into a real-valued vector,

so (QJOJ1]sPc]0o]X] first, to convert the vector, then

does the job.

13. Press@QOI)SPORIENTER), thenETERMTH(REHATN
The ReDiMension command needs a list-type argument to tell it

the desired new dimension ofyourvector (for an array, you would

needtwo dimensionnumbers inthislist). Now(3)sPc)5[PRa)IIEE

changes the third element, and &)1

finds the Answer: 28

Objective Answers 155

14.

15.

16.

156

Build the vector: (o]tJ(1)sPc)(2)sPC)(3]sPc)(4)sPc)(sJsPC)(e)[sPC)(7)
SPC)(8JSPC)(Q)ENTER). Then (QJUIE)SPCZEnr)MTH)EELATEN
to redimension, and [YU1)sPc2)enTer1)PRGNG)PREY)

Ito change element. makes it complex.

Simply multiply by the appropriate row identity matrices. For

example, to extract the first row, multiply by [[1 8 8 1]

(GIt&1)sPc]o]sPc]o]sWAP]X)). And for the second row,

multiplyby [[B 1 B8 1], and so on. Notice that the order of

your multiplication is important. Notice, too, that each result is

an array (1x3), not a vector.

This is just a vector problem—with momentum (mass X velocity):

(you want polar mode, angles in degrees), then

(&Jmones]IEEEe

(=)onTs)TEREET-()TiveXaLIREES
(UVAL and HMS?* are new here; notice how they work.)

That’s the first train’s momentum. Now the other one:

EEOEEROEOEE000EROOEOREEHE

() onTs) METEET(2)5)6)-3]2) ()LAST MENU

Now, the big moment: Result: [7731298.5 «-67.8]

But compass bearings proceed clockwise from north (not coun-

terclockwise from “east,” as in math conventions). The momen-

tum heading ofthe wreckage (—67.8°) therefore indicates north of

due west (-90°)—so it looks like Canada should hire the backhoe.

(3) OBJyECTS: YOUR RAW MATERIALS

17.

18.

19.

20.

One possible strategy: Build a “five-day” vector for each person.

()vonEs)BELIH(vxTINxT)IETEN
&)(e)spc)(8)sPc)(41sPc)(8)sPC)(8JENTER]*
&I(eIsPC)(e)sPA)(71sPC)(7)sPC)*
E&IO)(E)EPA)(6)JsPC) ISPC)(4)SPC)(SJENTERI
EIO)([FIEPA)(TISPA)(7ISPC)(8)SPC)[oJDISTO)

Now and use [MiJA%] on each person’s vector

to sum his/her hours ((oJAJENTER) MIARN, (o]B)ENTERIHZIAR], etc.).

Then you can either sum these results (+]+[+)—or sum the

vectors (a]A]ENTER[a]B]+)...) and [FIAZ}—to total all hours: 135

Gta11Jspc2]]3]sPC)4JENTER]'J¢] AJSTO), and
D& D()e)spcs]»]4)sPc1JENTER]*o]BISTO)

Then IG() and ICEEECI(X).... So matrix
multiplication is not commutative.

To use to build complex numbers, just set system flag —19:

(1)8)+/-JsPc)(a]S]]FJENTER). Now(1JENTER)(2J&q)2D) ...Your result

is a complex number, right?

Use system flags: When flag —15 is clear (1]5]+/=)(>JMODES]NXT)

T3, and flag -16 is set (1)6]+/-)EA),this activates polar/

cylindrical mode. Similarly, the combination ofs)+/-)IElIll

and 0)+/~)3l activates ENG mode. Clear all four of these

flags before going on.

Objective Answers 157

21.

22.

158

The 48’s current binary wordsize is determined by the states of

system flags -5 through —10. These six flags form their own six-

bit binary integer whose value plus I becomes the machine’s

wordsize (the wordsize ranges from 1 to 64; a six-bit binary word

represents values from 0 to 63—hence the addition of 1).

To extract this number from the flag settings, test those six flags,

line up the bits and read the value: (PRG)IEENEG)[FREV), then

Key- (JoJ+J) (slt/) (8] (8]+/-) (sJ+/]
strokes RN |IEEN IGEEE N IGEEE I

Results: B B B 1 1 1

Thus, the wordsize here is 000111,+ 1, or 8

Alternatively, you could do it with math: Start with the adjust-

ment value, 1: Then test each flag and multiply

the result by that flag’s place value in the six-bit integer:

BOWAF::BARGOWA]Fi(O8G0
(8)+7-)IGEEM()X7+~IX)))+~IEE)X
G-)NE® Result: 8

The easiest way topreserve the 48’s system settings is to save the

binary integers that represent the values of all the flags:

Now all flag states are saved as the VARiableSYS1. And since you

can have all the VARiables you want, this means you can save

any number ofdifferent flag settings—both the 48’s system flags

and your own user flags!

(3) OBJyECTS: YOUR RAW MATERIALS

23. Press (MTHIEEEE(eBIYHEEHFFIFENTER)
Result: # FFEh

You don’t get # FFFh back again, because binary division trun-

cates any remainder: Since FFFis an odd number (4095,), di-

viding by 2 resulted in 2047,, (not 2047.5), and so multiplying by

2 then gave 4094, or FFE.
10°

24. Press IEM00)ENTERIENTER), then ILENN
([©)tAST MENUIELIZM.... The results differ because they’re differ-

ent objects. Only a binary integer object changes its displayed

appearance in response to a change in the binary integer format.

The string was created with the characters it encountered in the

format of the binary integer at the moment you pressed EEI

25. First, press (O]""(afoY)o]o]u)sPcUINIDIEIRISITIAINID]
()«)ENTER) (remember the many characters on the shifted keys

when in alpha mode—use your Quick Reference Guide to help

you). Then (&)E0T)EATEEINTEY(<) (o)IDELENTER)

26. (P""[efa]Vvia]eoJL)(-Ja=ISPCIENTER) (1 JENTER]o)]F]1[X]

(ENTER)(2)ENTERJENTER[H) (gets 4. B without the (a) key).

Then (#)([2]""spPc] (a)eJa]o) (GIALJENTER] To extract the
value, assume that you know only its surrounding characters in

the string, and use some handy string dissecting commands:

KNoDIEER(D®
O512EsUE[ENE)WENELED]POS
ETA Result: 4.8

Objective Answers 159

27‘

28.

29.

30.

160

DD(o)22EX2SENTERENTER)
(NxTINXT)(RELT)RO«

(]PIENTRY]JENTRY) Y. finishesit.
will produce an Invalid Sunt ax error, because it

tries to decompose a string into objects and put them onto the

Stack in postfix notation. So if you want a string that separates

the mantissa and exponent but still evaluates back to the

number, you would need to use "6.822 18 23 * #".

Press (VARINXT)I()IIEIM)PUrGE) (JoJ&)XISTO). Then (1)

S,7))+IE,and(51.

Then (1)HEEHVST1)eIEEEEvADW1()
BEENCrOENEEILRTE... Result: % 3

(BI#/=JsPc)S]e)FIENTER). Then(VARINXTIIIEEMENTER[+/5). This
isn’thow things wentwhenyoubuilt the otherquadratic solution

(pages 128-129). The difference: When flag -3, the Numerical

Results flag,is set, the 48 evaluates names during Stack opera-

tions. Your name 'b' contains =8, so on 'b' gives 8.

(result: 'w');
(result: 'i'); and (@)(EJEVALD (result: 'e').

Then and repeat these keystrokes....

Numerical values, right? Flag-2 is the Symbolic Constants flag.

Only when it’s set, will these constants’ names evaluated to their

respective numerical values (unless flag-3 is set, whichoverrides

a clear flag -2).

(3) OBJECcTS: YOUR RAW MATERIALS

31. To PURGE more than one name at a time from your VAR menu,

justform a list ofthe namesyouwant to PURGE: (VAR()IIEIH

RNS=T<)I3IIT={
PURGEs all VARiables except E[l.

32. Build the expression:

BEXX[PIR]eIsTO). Then
a. eaENERIXAEvaD

Result: 'Z2*¥(-2#y)+y’

b. (=)EEEEN=RXoJa)Y)s0)()I)PURGE)
3Eva) Result: 'Z¥w—-2%x'

c. (JIJQTENERENTER)(JJaX))ISO
3Eva) Result: 'Z2*t+(t-1)'

d. (JoJaZEeneRENTERE)IENTERIXS)

()B(3]swarX))IswarI
AEva) Result: 'Z¥(z-3¥y)+(y-3xz)'

Thisisjust substitution. But notice how the 48 doesn’t automati-

cally simplify an algebraic. Notice also the self-referencing name

(4) in case d: press repeatedly to see its effect....

 Objective Answers 161

33.

34.

162

L+V. « 0BJ+ +ARRY =»

V+L. « 0BJ+ 0OBJ+ DROP -LIST =
First, clean up: (&)IIEEIIMENTER)PURGE))CLR). Then:

<>IREIERFAENTER)U)=VIe)sT0); and

Notice that these simple programs are really nothing more than

a recording ofthe keystrokes you use manually. Now test them:

...JEEIM... .1ooks good;

sPc2)sPcGENTERETM...IEEIM. ...OK—butnotice that

the vector display mode will affect your results;

OK—but since a vector can’t contain real and complex numbers

at the same time (unlike a list), it makes everything complex;

...nope—an error. You haven’t allowed for the

possibility of an empty list (consider how might you do that).

LADD: « L=Y SWAP LV + V3L » So, press@G«IR

&)Ewar)I)ETMENTER)(@)«D(AD)D))(STO). Then:
a. ([GJO[1)sPc)2)sPC)3)SPCI4JENTER) (TIN5)SPCY6]SPCI7)SPC)

(ENTERINIIA.... Result: { 6 8 18 12 2

b. IO()L

Result: { (-4.4,1) (1.3,-4.1) }

c. [@JOIs)sPc]e]sPC8ENTER)SPCI(ENTER)TN..
Result: Error: Invalid Dimension

You can’t add vectors of different dimensions.

d.YIR
POIa)I6)SPC9ENTERIEIIA.. .. Result: Error: Bad

Arogument type Avector can’t have vector components.

(3) OBJECTS: YOUR RAW MATERIALS

35.

36.

Invoking a directory’s name will not move you to that directory

unless it’s in the current PATH (“between you and HOME”).

To give a directory named BILL a second name—say, DAVE—just

(STojre 'BILL' into 'DAVE' . That way, when you evaluate either

BILL or DAVE,you’ll be sent to BILL.

Here’s one way to do it—call this program PHONES:

« DUP NUM CHR 0OBJ> »

To key this in: LT
(JoJoPYHIOINIEISI@)(STO)

First, DUP makes another copy of the string—so that it’s still on

the Stack at the end ofthe program. ThenNUM gets the character

number of the first character of the string; CHR changes this

number back to a one-character string. Then 0BJ* decomposes

the string and evaluates its single component character, thus

opening the appropriate directory.

To test PHONES,just create a couple of test directories (named

with single letters of the alphabet—say, 8, R and 5). Then feed

PHONES some hypothetical “words” (say, "Quine", "Roberts"

and "Simons") to see if it will open up the correct directories.

Will it find the directories ifyou fail to capitalize the target word?

Objective Answers 163

(4) FuncTIONS AND EXPRESSIONS

Functions and Arguments

In Chapter 3, you learned about the various objects the 48 uses. That

is, you learned all about the machine’s “nouns”—its lists, units,

directories, arrays, flags, strings, etc. In this chapter, you’ll start to

focus on the “verbs” of the calculator. These are the tools in your

workshop—the commands that produce the problem-solving, “num-

ber-crunching” actions.

Your Owner’s Manual refers to three kinds of calculator actions.

¢ Any action that you can do on the 48 is an operation.

¢ Operations that you can record in programs are commands.

¢ Commands that you can use in algebraic objects are functions.

This chapteris all about this third group,functions—and the algebraic

expressions you can build with them. Why a whole chapter? Because

many problems whose solutions require programs on other machines

can be solved in the 48 with these algebraic objects.

To build and use algebraics well, you must first know what functions

you can put into them. Functions in the 48 are much like those in the

conventional mathematical definition: Afunction transforms one or

more argument objects into exactly one result object.

Afunction is made up ofa name and arguments. The name is the tool—

the active, calculating, “verb” part of the process. The arguments are

objects—the “nouns.” Whenyou evaluate the function, you get aresult.

Functions and Arguments 165

Some Built-In Functions

First, look at some of the 48’s built-in functions—and consider the

basic characteristics of this kind of tool....

Preparing Your Arguments

A function accepts only certain object types as arguments—and only

in a certain order. For example, the square root function has a name

(SERT) and one argument (the object in Stack Level 1)—simple. But

the subtraction function has a name (=) and two arguments (in Stack

Levels 1 and 2). And of course, you must use the two arguments in the

right order to get the right answer....

Scalpel:

Slice:

Useabuilt-in function to truncate the real number9.778629

to its integer part.

First, find the right function. Ifyou haven’t discovered this

already, you'll start to see it now: Finding the right

function—and knowingits requirements—is halfthebattle

in the 48. The function you need here is IP (Integer Por-

tion). Press TAENxT)NXT) to find it.

Next, prepare your argument(s). IP requires just one ar-

gument—at Stack Level 1: (9]-)7)7)8)6]2)]9)(ENTER).

Now evaluate the function: pressM.

Result: 9 (in STD display mode)

166 (4) FunctioNs AND EXPRESSIONS

Try Again: Using the same function, find the integer part of the

complex number, 6+4i.

Oops: Put (6, 4) into Level 1 (&G)O)s]sPc]4]ENnTER)) and.

Error, right? Bad Argument Type You must

know the limitations ofyour function: IP doesn’t accept

a complex number object as an argument.

Now consider a function with fwo arguments....

More Slicing: Use the TRNC function to TRuNCate 9.77863 at two

decimal places.

Hmm... TRNC needs two arguments—the number being

truncated (that’s 9.778629 here) and the number of

decimal places (2 in this case). So which argument

goes on Level 1 and which on Level 2?

The Quick Reference Guide supplied with your 48 can

help you remember such things. In the alphabetical

Command Reference section, look up TRNC....

It says that the value being truncated goes at Level 2

and the number of decimal places at Level 1. Thus:

LTTEEBTENXDLI Result: 3.77

Some Built-In Functions 167

Checking the Machine’s Assumptions

Whenever a function doesn’t behave the wayyou think it should, check

these three possible problems:

1. Did you key in all argument values correctly?

2. Did you place these arguments in proper order on the Stack?

3. Isyour calculator in the correct mode?

Your own keystroking accuracy is the only solution to problem 1;

The Quick Reference Guide is a simple way to avoid problem 2;

But for problem 3, you need to be thinking and alert....

Example: Find sin 3.49

Think: If you simply key in 3.49 and press (SIN), you’ll get an

answer—but it may be a wrong answer, if the 48 is in

DEGree mode instead of RADian mode (math conven-

tion: without an explicit °, the argument of a trig func-

tion is assumed to be in radians, not degrees).

So press (GJRAD), if necessary, to set RADians mode

(announced by the RAD in the Status Area). Now do it:

B)4a]e)SN).... Result: -=.341481277877

The 48 can’t read your mind; it doesn’t know what mode is correct for

the problem! It can only warn you ofsome ofits current assumptions—

with Status Area annunciators: Angles RAD GRAD

Vector displays R&2 R&d

168 (4) FuncTioNs AND EXPRESSIONS

But not every mode is announced in the display...

Example: Find sin Nx, for N=1.5.

Like So: (-5 ENTER "[NSTOJVAR)IENTERIG[TX)

What do you get? That depends on the current states of

system flags -2 and -3—modes that are not displayed in

the Status Area.

Withboth ofthese flags clear, the 48 will not evaluate the

functionbeyond its symbolic form: 'SIN(N#1w) ', Toforce

the 48 to produce a numerical value for the function, you

must use (]=NUM).

By contrast, with flag -3 (the Numerical Results flag)

set, you always get the numerical result automatically.

Or, with flag -3 clear but flag-2 (the Symbolic Constants

flag) set, the machine will automatically evaluate only

the symbolic constant (‘7')—but leave your variable

('"N') unevaluated.

Try the above function with each of these flag setting

combinations. Use the flag commands on the last page

of the menu (or use the menu to

change flag -3 between numerical and symbolic results:

(xImones)ERIRED.

Keep all thisinmind now—arguments andmodes—asyou explore some

more of the machine’s built-in functions....

Some Built-In Functions 169

Complex Numbers vs. Vectors

Complex numbers and two-dimensional vectors share a number of

properties as arguments for functions....

Try:

7

Find the innerproduct (“dot product”) of (45 5) and (-3, 8).

Q]O)4JsPc]5JENTER) (GO)3]+/-JSPC] 8]JENTER) loads the argu-

ments onto the Stack. Then (a]a]DJO]T)ENTER).... No go, right?

Often, you can solve a problem with either complex numbers

or 2D vectors, but they are different object types—and some

functions accept only one of those types. Dot product is

defined only for vectors in the 48, so change the complex

numbers to vectors: Press (1]9]+/=JENTER|a)C)a]F)(ENTER)(re-

call page 157, problem 19). Then (G]20]J&]2D)(»)&]20))20)

) and ENTER).... Result: 28

Dates and Times

Suppose: Your property taxes are due in 37 days. That dateis...?

Easy: Press B3l Now key in today’s date—format-

ted in M.DDYYYY date format used by the 48: If today

is September 17,1990, press7)1)EEXLilll. Now

add 37 days to today’s date: 3G

[BAA.... There’s your tax deadline date.

170 (4) FuncrioNs AND EXPRESSIONS

When: What day of the week was June 6, 1944?

How: Intime and date arithmetic functions, your arguments (the

times and dates) mustbe givenin the current time and date

formats (controlled by flags 41 and —42, respectively).

Thus, June 6, 1944 would be 6. 861944.

Key this in:
Now key in any time that day (you’re not interested in the

time, but you must give some time as an argument)—say,

noon: (1]2). And nowusethehandyTSTR function: KEA...

Result: "TUE B6-86-44 1Z2:00:066P"

Another: Find the average time per mile for this relay team:

Runner Miles Time Runner Miles Time

Paul 5.4 36:23 Mike 52 32:38

Christy 53 40:49 Shirley 5.5 42:09

Bob 5.9 45:23 Bill 6.0 37:26

Solution: Press(4J&MoDESIAEM<TIME&PREV)to prepare. Then

sum all the times—in H.MMSSs notation—with[IREES:

(-[3)82]3JENTER](-J4)04o) LilmERA(-4)5)2)3) Lilmbha
(-X3)2)3)e) CIEERA (-T42)o)o) LIRER (-\3)7)2)e) CIRERS

Now convert to hours and fractions: gkEEd. ... And total

thedistances and divide: (5]-J4JENTER)(S-J3[H(5-o]+

(5=2]H(E)-[s]H(6]H)(=). Finally, convert the resulting

average back to HMS form: EdiIukl....

Result: .H7H3 (that’s 7:03/mile).

Some Built-In Functions 171

Fractions

Your 48 can convert from decimal representation of rational numbers

to fractional representation of them (a ratio of integers). Set your

display mode to STD (&)MoDES)BIELIM) for these exercises....

Example: Whatfractionisapproximately equal to0.875968992248?

Answer: Press (-)8)7)5)o)e)8)9)9)2)2)48)&)~
Result: '113-129°

Try This: What fraction is approximately equal to 3.4592385747?

Simple: Press (3]-J4J5J9)2]3)8)5)74]7Ja)=Q

Result: '1869884-523263' (Now that’s a fraction.)

But: Press (2]sPc]a]e]F]|[X]JENTER) and repeat the problem.

Result: '38-11' The display setting affects the

precision with which the 48 searches for the fraction.

Press [EVALJGJEDIT) to compare the two conversions.

Also: Convert 5.83438635667 to its closest fraction.

Solution: Set STD mode to get the most accurate conversion.

Then: (sJ8)3]4)3]e)e)3)see[D&[=9). ..
Result: '2665831-456780'

“But maybe = is involved somehow.” To find out, press

80080800808

Result: '1377#t' (Aha!)

172 (4) FunctioNs AND EXPRESSIONS

One More:

Solution:

Use to convert 6.85972486853 to a fraction.

Press EXd
Result: '1888129-262428' With IEIfll,you get the
best of everything: First it searches for multiples of T,

but if it doesn’t find any, it does a conversion!

Probabilities

Anothervery useful group offunctions are in the PROBability menu....

Try Some:

Well...:

Another:

Hmm...

There are 100 senators in the U.S. Senate. How many

different 7-member committees are possible?

You want the number ofcombinations possible from 100

objects, taken 7 at a time. So: (1)0)0)sPc)@)MTHIAA

A Result: 1688756886808 possible committees.*

Howmany different ways can you shuffle a regular deck

of 52 playing cards? How many different 5-card poker

hands can you draw?

Permutations of 52 cards—taken all 52 at a time (for

shuffling), or just 5 at a time (for poker):

BAENEa]FEFH Result: 8.865817217689E6/

EX=2)sPo)(®)iR Result: 311875260

*Please do not pass this classified information on to your senator.

Some Built-In Functions 173

As you continue this little tour of your workshop’s built-in function

tools, keep in mind that you can include any ofthese in the algebraic

objects you build. You’ll soon get practice doing that—butfirst, a few

more tools to discover....

PARTS of Numbers

The 48 has a big bunch of functions that you’ll probably use only

occasionally—but when you need them, they’re great. Most of these

work with real numbers, some with complex numbers, too. They’re in

the MATH menu (press (MTH)), in the PARTS toolbox (press [iAE). In

one way or another, these functions all treat parts of numbers.

Back on page 167, you learned about . Itis one offour functions

that help you round a number....

@N' 1] — rounds a decimal down to the nearest lower integer.

— rounds a decimal up to the nearest higher integer.

I — roundsadecimal to a given number ofdecimal places

or significant digits. It works on the elements of

units, complex numbers, vectors and arrays, too.

— truncates a decimal to a given number of decimal

places or significant digits. It works on the elements

of units, complex numbers, vectors and arrays, too.

TandK, require a second argument—to tell them where to

do their rounding or truncating.

174 (4) FunctIoNs AND EXPRESSIONS

Try Some:

Solutions:

FIX the display to four decimal places, then:

a. Round 5.9983675 to 6 digits.

b. Evaluate 6sin48°, rounded to 3 significant digits.

c. Truncate4.98330929 tothe current display setting.

(MoDEs[4)HdE Msets the display. Then...

a. (5]-JeJoJe)3)e]7)s)(ENTER) (MTH) [HilAE] (G)PREV)(6)

T Result: Yourdisplaysays9. 9984, butpress

to confirm that the actual number is now:

5.998368 (then press to cancel the EDIT).

b. InDEGree mode, press(4]8)SN6X))+ILIN

Result: 4.4608. Using a negative number as an

argument tells theslfunction to round to that

many significant digits instead of decimal places.

c. [(al-JoJel3)3)oo)2)9)ENTER)(1) il ...
Result: 4.9833 (confirm with (G)EDT)). The 12

tells the 48 to use the current display setting.

Question:

Answer:

What'’s the difference between FIXing 3 decimal places

and RouNDing to 3 decimal places?

FIKing the display affects only the display; it’s a mode

setting that has no effect on actual object values. But

rounding anumber actually changes that object. Thisis

why the rounding functions are indeed functions.

Some Built-In Functions 175

Dissecting Numbers

You’ve already used two functions (Il and I3lthat selectively

eliminatepart ofan argument. But there are eight different functions

that do some sort of extraction (these examples assume STD mode):

extracts the Integer Portion of a real number or unit:

(5-Xe)e)o)Myields 9

extracts the Fractional Portion ofa real number or unit:

(51-Y6)8)2) MM yields . 689

extracts the MANTissa of a number—as if it were for-

matted in scientific notation:

(4X&)o)3)EEX[+/=J8) [RELM yields 4. 833

extracts the eXPONent of a number—as if it were for-

matted in scientific notation:

(4ee3)EEX+/)8) BNyields —B

extracts the ABSolute value, magnitude or norm of a

real number, unit, complex number, array or vector:

(31)a)*7-)Ayields 3. 4

extracts the SIGN or direction* of a real or complex

number, unit, or vector: (3]-)J4]+/=) HIEH: yields -1

extracts the REal portion of a complex number or unit:

SIOLE)sPes)+-)Myields 3

extracts the IMaginary component ofa complex number:

SIOLE)sPCs+~Myields -2

*HIE0 returns a unit vector in the “direction” of the complex number or vector

176 (4) FunctioNs AND EXPRESSIONS

Comparing Two Numbers

There are six simple comparison functions—each needing arguments

(reals or units) on the first two Stack levels. Then the arguments are

consumed and the result goes on Level 1:

IEITM— keeps the lesser of the two arguments:

(4aX-Xs)(sPclo)-T3] yields 4.5

WlEM — keeps the greater of the two arguments:

(a-5)Pc)o)|3) IRyields 9. 3

(W'l — treatsboth arguments (real only) as integers, divides

the first by the second and reports the remainder:

(8]7)sPc)7) IRyields 3

BEE — mnultiplies the two arguments and divides by 100:

yields 18.8

A%l — calculates the % CHange in value from the first argu-

ment to the second:

(4]0JsPc]5]s) yields 37. 3

A — (% of Total) calculates the percentage of the first

argument represented by the second argument:

(8)sJoJspc]1]7]0] yields 28

Some Built-In Functions 177

Symbolic Functions and Variables

All right—that gives you a fairly good feel for what tools you have at

your disposal when building functions of your own. Now it’s time to

start doing that.

As you know, the real power ofthe 48 is unleashed when you use it with

symbolic arguments. You can use symbolic arguments—i.e. your

variables—within algebraic objects.

There are three types of symbolic objects:

Variable: the basic building block ofalgebraic expressions and

equations—variables are the names into which you

store values.

Expression: an algebraic containing at least one function with its

arguments (and any of these arguments may be

variables).

Equation: anexpression equated (by a=) to another expression,

or to a real number, complex number or unit.

It’s time to examine each of these objects in greater detail...

Creating and Reviewing Variables

You already know how to build and name variables, but you’ll need to

do a few more now—to use later. Some names will contain objects;

others will remain formal variables—names without objects.

178 (4) FuncTIONS AND EXPRESSIONS

Go: Create the following variables:

X = (undefined) Y = (undefined)

A=4 B=-3 C=+2
D=1-2i E=4+6i L=B-A

VI =Ti+4j V2 =-2i-5j V3= 3i-2k

Press (©JCLR), then Ja]XJ&JPURGE] " Jo)YJJPURGE) to disso-

ciate values from the formal variables X and Y. Then:

@OOEN0080EEY
@EBEN0000UaES

Now go to your VARiable menu—press (VAR—and be sure

they’re all there (you’ll have to use to see all of them).

Question: How do you review the value stored in a variable?

Answer: You can press its menu key in the VAR menu. For ex-

ample, pressing[l will put the current value of V2,

whichis[-2 =5 1, onto the Stack.

Or, you can press to get a list ofthe items and

values on the current menu page. Then, of course, you

can use and again for the next page (and

you can use [(§]REVIEW) on any menu—not just VAR).

Symbolic Functions and Variables 179

Creating Expressions

You can create algebraic expressions in three different ways—with the

Stack, the Command Line, or the Equation Writer. Look at each

method in turn....

Creating Expressions with the Stack or Command Line

You’ve already become acquainted with these two methods. Here’s a

quick comparison....

Do It: Build the expression sin(2A+B) , using the Stack.

Like So: (2IEnTER)(DIENTERX)(IENTER[H)

Easy—right? Indeed, you built a much more involved algebraic (the

solution to a quadratic equation) back on pages 128-129.

Or: Buildthe same expression,sin(24+B), usingthe CommandLine.

OK: Press (JsN2XHEE®NNENTER)

Alsovery simple, no? Butthat’sbecauseit’s a simple expression. When

you encounter big, ugly expressions (lots of parentheses, radicals,

exponents, teeth, hair, etc.), it’s good to know your third option....

180 (4) FunctioNs AND EXPRESSIONS

Creating Expressions with the Equation Writer

The Equation Writeris a built-in graphics program that allows you to

see algebraic objects in the form you’re used to seeing in a textbook.

And it’s easy to use....

Do It:

Go:

Build the expression sin(2A+B) , using the Equation Writer.

Enter the Equation Writer (“EW”) environment by pressing

(JEQUATION), whereupon you’ll see the box cursor () waiting

for you to begin.

Start by pressing (SIN)....Notice right away that you don’t need

the (') key in the EW to indicate that you’re entering an

algebraic (the 48 knows that—why else would you be there?)!

Press (2)Jl. Notice that you don’t need to press in the

expression; The EW lets you get by with implied multiplica-

tion—knowing that when you say 24 you really mean 2xA.

Now finish the expression: (+)JlZI ...and place it onto the

Stack: (ENTER).... See? The finished expression goes onto the

Stack exactly as it would if you had created it with the Stack

or Command Line!

But, again, that’s a simple case—which doesn’t really show you the

power of the Equation Writer....

Creating Expressions 181

Problem:

Solution:

Using Equation Writer, key in this expression:

1 T 3
+— (4-e*)"dx

"o Inn ;[()

This is quite straightforward to do, but study each step

carefully. Keep in mind that if you key in something

wrongly, just press the backspace key («)) to undo it:

gets you into the EW. (aJ&]N]o] enters the

first variable, n, (the EW doesn’t use subscripts).

(+)(a) (a) begins the numerator of a fraction).

(1)(¥) (v) ends a numerator and begins a denominator).

N(eJaqIN)(») (») ends the current subexpression—

hereit’s the parenthetical argument ofthe LN function).

(»)again ends the fraction subexpression (notice howthe

cursortells you where you are). Now (2]f)(again, the

EW lets you imply the multiplication).

IB>enters the limits of integration, then

(()O)begins a parenthetical subexpression:

(eJa]X). Note that exponentiating the natural base, e,

is represented by the EW as EXP().

(»]») ends the exponential argument, then the paren-

thetical subexpression. Then (Y3]aJ&]N)(»)creates the

exponent, and (»)ends the integrand subexpression and

prepares for the variable ofintegration: (aJ&]X]....Done!

Notice that the completed expression is too large to fit

into the display—part of it has scrolled off to the left.

182 (3) FuncrioNs AND EXPRESSIONS

Question:

Answer:

What would you have to do to create this expression

using the Command Line?

Press to putyour expression onto the Stack and

exit the EW. The 48 converts the EW’s user-friendly

display to the Stack’s machine-friendly display:

'nB+1-LNCn)*J (R, B, C
4-EXP(%))*(3#n),)

This is what you’d have to key in via the Command

Line. Not as easy as with the EW,is it?

Another:

Solution:

V1 -cos® x

2

enters Equation Writer; (a)(x)begins the

numerator and radical; begins the radicand. Now,

to enter the square of the cosine function, either:

Cos)@IaXPT2®) or GJxIcosIIAXI>I>):

Use the EW to enter

 l1-cnsco [1-50(c0s(x))0

(»]¥) ends the radical and numerator subexpressions,

and finishes the expression and sends it to the

Stack. Its Stack form depends on your choice above, but

the expression will evaluate the same either way.

Creating Expressions 183

Problem:

Solution:

amp? + sec?
Nem

(q]EQUATION)(4]-]7]2) enters the numerical part.

Use the EW to create 4.72

Then ()_]a)begins the unit’s numerator;

enters the amperes; (aJ&]S)*)(2]») enters the seconds;

and (v)ends the numerator and begins the denominator.

Then completes the expression.

Lastly:

Do It:

Create the following expression in the Equation Writer:

4x?2+y? where x=3b-2 and y=a+1

This uses “where” notation—a concise way to define both

the main function and functions defining its arguments.

So press (q]EQUATION(4)(eJQIXIT2]IV)N(2)») to
build the mainfunction. Then(S)]ALGEBRAINXT)Menters

the “where” syntax—that vertical bar—and be-

gins defining the first variable (x). Notice that (») auto-

matically ends the variable name and inserts an =.

(3]eJe)B) completes the function defining x (and

notice that automatically inserts a comma to separate

the two variable definitions).

To finish: (aJ&]Y]»aJq]A)(H]1)([ENTER).

184 (4) Funcrions AND EXPRESSIONS

Editing Expressions

As you know well, it’s easy to make mistakes when entering complex

expressions. Well, what if you discover a mistake “many keystrokes

later”—when it’s too late to conveniently use («)?....

Editing with the Command Line

You’ve already seen this method for error correction; here’s a quick...

Example:

Solution:

Use the Command Line to change the main function in

the previous example to 5x2 + 2y2

Since the expression needing editing is still in Level 1 of

the Stack (if not, rebuild it now), press to start.

Now, replace 4 with 3 as the first coefficient of the func-

tion: Press IIREM so that you are replacing instead of

inserting, and then (»]5)

Returntoinsertmode (pressHIsEM) and press (>>>>]»)

until the blinking cursor is on the Y.... Now press

to insert the second coefficient, and put the edited

expression on the Stack: (ENTER).

This should seem pretty familiar. But how would you do this editing

with the EW?...

Editing Expressions 185

Editing with the Equation Writer

Actually, you can’t edit directly using the Equation Writer. But it does

include a number of features that makes editing expressions easier.

10

Try This: Create Z(\/l + tafl‘sz’g) in the EW
n=1

Then, after you've completed the expression (but before

you it onto the Stack), use the Command Line to

change the upper limit to 25.

Solution: To create the expression: (GJEQUATION|(]Z)(eJaN)>)(1)

0000E00NNEEGUBI0O0EEAEN
To edit the expression: ()E0T)INERGTAEEERE>)

You should see:

20 3 n

> BOE

Lo 1E [fn |N|PHON]LADD |

In this example, you brought the entire expression to the Command

Line even though you needed to change only a small part ofit. But the

EW allows you select a part of an expression (a subexpression) to be

edited on the Command Line and then returned to the overall expres-

sion. This selection process goes on in the Selection Environment.

186 (4) FunctioNs AND EXPRESSIONS

Watch: Assuming that you're still in Equation Writer looking at

the display ofthe previous summation expression, press(«).

Welcome to the Selection Environment.

Use the arrow keys to move the highlight around. You’ll

find that you can move “up” and “down” only when the

highlighted subexpression has an “up-down” direction—as

in the & term and the fraction here.

To use the Selection Environment well, you must understand what the

48 sees as a subexpression—what it will actually select:

A subexpression is one function plus its arguments. If one or more of

those arguments contains other functions, then the selection will

include those functions, also.

Question: In the Selection Environment, press the arrow keys

until the division bar ofthe fraction is highlighted. Now,

what subexpression is defined by this dividing bar?

Check: Press [I3dA to highlight the entire subexpression (the

fraction) determined by the dividing bar. Press

again and just the division bar is highlighted. is

adisplay option only; whether you see the entire fraction

highlighted orjust the division bar, it is the selection. So

the function selected was the division (+), along with its

two arguments—the numerator and denominator.

Editing Expressions 187

Question:

Find Out:

Question:

Find Out:

What subexpression is defined by the radical?

Move the highlight to the radical by pressing («) four

times. Then press [Idd. The radical subexpression is

the square-root function plusits argument, 1 + tan 3¢, even

though its argument has two additional nested
subexpressions.

Press (). What subexpression is defined by the 1?

Press [dA.... Nothinghappens—because the number

is an argument, not a function, and therefore defines no

subexpression.

When an argument is highlighted, only that argument

isselected;but when afunction is highlighted, the entire

subexpression that it defines is selected—and you can

actually see the entire subexpression via [Fddd

188

(4) FunctioNs AND EXPRESSIONS

Editing Subexpressions

Now that you know what subexpressions are—and how to select

them—Ilook what you can do with them. You can:

¢ Remove a subexpression from the main expression in the EW,

edit it in the Command Line, then put it back into the EW.

¢ Copy a subexpression to Stack Level 1.

¢ Take the subexpression sitting at Stack Level 1 and either insert

it or use it to replace another within your EW expression.

So, make sure that you’re still in the Selection Environment from the

previous exercises, and then...

Try This: Select the fraction subexpression and, using the Com-

mand Line, change the denominator to 8.

Like So: Use the arrow keys to highlight the division line. Then

pressHILM Nowjust the subexpression is being edited.

Press(«]8)to change the denominator, and then to

return the result back to the main expression.

Easy, right?

Editing Expressions 189

Another: Copy the argument of the radical onto the Stack.

Hmm... Theargument oftheradicalisdefined by the+ function. So

press (€€to highlight the + and then[l Then press

(ENTER)to see the copied subexpression. This will exit you

from the Selection Environment to the Stack, copying the

entire current expression to Level 1. Andthesubexpression

you copied, ' 1 +TAN(3*1w-8) ', should now be at Level 2.

That’s an important distinction: Use ([ENTER}—within either the EW or

the Selection Environment—to return the complete expression to the

Stack. But you use [[EIZl within the Selection Environment to copy

a selected subexpression to the Stack.

Question: How do you accomplish the reverse process—move ex-

pressions and subexpressions from the Stack to the EW

and/or Selection Environment?

Answer: To move the expression at Stack Level 1 into the EW

environment, press (¥) (do it now). Whenever you have

an algebraic object (or unit object) on Level 1, pressing

(v) displays it in friendly EW style. But(v)delivers only

complete expressions. You can’t use it to add to an

expression already in the EW.

190 (4) FuncrioNs AND EXPRESSIONS

25

Challenge: Modify the expression to: Z(\/l +tan¥),. —(L+tan %)
n=1

Solution: Press (4] to enter the Selection Environment, then (<]«

(€[« to highlight the + function. PressMto copy the

radicand subexpression to the Stack. Then the

Selection Environment. Now (=)(]()) to begin the new

term, and to recall the subexpression on Level 1

and insert it into the expression at the cursor’s location:

—_N

HN[%—'"] - 1+THH[-38'—"]D
ANRLETTIIETTE

Since the expression is too big to fit in the display, press

and use the arrowsto scroll around and view

the parts that are hidden. When you’re finished, press

(JGRAPH) again to continue your work.

Keep in mind the critical difference between(v)and whenmoving

expressions from the Stack to the EW:

. does it only from the EW environment. It recalls the

expression from Stack Level 1 and inserts it at the EWbox cursor.

* By contrast,(¥)does it only from the Stack, overwriting the entire

contents of the EW with the expression in Stack Level 1. Thus

(v) is a shortcut for (]EQUATION)(=RCL

Editing Expressions 191

But (2)RcL) doesn’t meet all your needs for expression modification.

Yes, it adds to the existing expression, but how would you replace a

subexpression with that in Stack Level 1?

Hmm: What if the proper trig function in this summation were

sine, not tangent? Replace the TAN’s with SIN’s.

Copy the tangent subexpression to the Stack: («[<) IHE.

Then exit Equation Writer, by pressing [ENTER. This puts

the main expression on Level 1 and the tangent

subexpression on Level 2.

So (») (SWAP) them and the subexpression: [IXEL]

(>)o]S1)(ENTER). Make an extra copy of this: (ENTER).

Now, reload the full expression into Equation Writer:

(a]a)a) IIH ENTER) copies the full expression (currently

sitting on Level 3) down to Level 1; then (¥)loads it into

Equation Writer.

Re-enter the Selection Environment and highlight the first

TAN subexpression: ([<{[<«[<[<[<€). Replace the TAN

subexpression with the SIN subexpressionyou left at Stack

Level 1: 348 Nowhop overtothe otherTHN subexpression

and replace it,too: N

192 (4) FuncrioNs AND EXPRESSIONS

Can you use [434d% to replace an argument as well as a function?

Try This: Change the fraction in the previous expression to 5m/8.

Solution: Assumingthat you're still in the Selection Environment

from the previous example, press [ENTER)(5) (ENTERJENTER)

WAAETTHETRV)YAJEENCIIIIIIa]9
IA3dW. This will change both occurrences of 3n/8 to 5n/

8. Press (ENTER).

Do This: In the Equation Writer, create this expression:

9

LdX

21+X

Then, using §434™ , change the upper limit to 5A.

Solution: Create the original expression: (&JEQUATION[]S2]»>]9]

Ja)(BIX)(>]»)X)ENTER).
Next, create its replacement: (']5]X]«]A)(ENTER

Now recall the original to the Equation Writer: (»)(v)

Enter the Selection Environment and highlight 9, the

upperbound: («J(«)(a)(a](this is not exactly intuitive: you

can’t move from the integral to its bounds, but you can

from the integrand).

Press Id3{M (ENTER)to complete your task.

Editing Expressions 193

A Visual Review

Justincase all these keystroke combinations and environment changes

have you reeling, here’s an all-in-one shot ofyour options for creating

and/or editing algebraic expressions:

6 JEQUATION

Stack or EquationWriter

Environment Environment

Command Line Selection

Environment Environment

194 (4) FuncrioNs AND EXPRESSIONS

Saving Expressions

So far, you’ve been moving expressions created in the Equation Writer

to the Stack by pressing (ENTER). Once there, of course, you know how

to give them a name and store them for a later date....

Do It: Assuming your expression is in either the Selection Envi-

ronment or the EW, press to send it to the Stack.

Now,storeitinthename 'MYINT': (eoMYTIN]T)ENTER)

(STO). Press to confirm that you indeed have the new

variable.

Nobigdeal, right? You’ve done this kind ofnamingofall sorts ofobjects

by now—including algebraic expressions like this.

But the point here is this: When you press in the Equation

Writer, you take an easy-to-read form of an expression and put it onto

the Stack in its easy-to-use (-but-sort-of-ugly) Command Line form.

And when you name ((STO)) the expression, you are indeed saving this

Command Line version.

Hmm... but wouldn’t it be nice to be able to save the big, friendly, easy-

to-read EW version, too?

(“yes, fans—that’s right....”)

Saving Expressions 195

Try This: Recall the expression you just saved into the Equation

Writerbypressing[REILM(¥). Nowpress(ST0). Thenpress

to see what you’ve done.

Result: On Stack Level 2, you have: Graphic 131 % 36.

This is a graphic object (orgrob). It’s a picture—like a

fax—oftheEWexpression. The picture has 131 columns

and 56 rows of pixels (dots). And you can name this

object: (]'JeJoPMYUNIT]a)sTO]

Pretty neat, eh?

Well ...that depends onwhatyouwant to do with the expression. Ifyou

need to do any calculations with it, evaluate it, manipulate it, edit it,

or some such thing, then the grob version is useless to you. It’s just a

“photograph” ofan expression; and after all, you can’t drive a nail with

a picture of a hammer, can you?*

But ifyou want to see the “pretty” version of a completed expression,

then use the grob version. Just remember the key distinction:

¢ The Command Line version acts like an algebraic expression.

Press from the Equation Writer.

¢ The grob version acts like a picture—any picture.

Press from the Equation Writer.

*The details about viewing, manipulating and editing grobs are not covered in this book, since

they’re almost exclusively used by programmers and other advanced users. Ifthe material in the

Owner’s Manualisn’t sufficient for you, Grapevine’s book, HP 48SX Graphics (by Ray Depew),

covers this and many other useful topics extensively.

196 (4) FunctIoNs AND EXPRESSIONS

Using Expressions

All right, already—so you know how to build and edit an algebraic

expression—so what? It’s time to look at the things you can do with

these expressions.

You can do these three types of things:

* You canevaluate an expression—“crunch” it into a number as far

as possible.

* You can rearrange an expression—transform it into an equiva-

lent expression. The 48 offers you commands that follow alge-

braic rules for expanding terms, combining like terms, using the

distributive, associative and commutative properties, etc.

¢ You can symbolically solve an equation—isolate a given variable

out of an otherwise unsimplified expression; or reduce one side

of the equation to a numerical value.

Look at each category, in turn....

Using Expressions 197

Evaluating Expressions

You already know how to evaluate an algebraic object: With the alge-

braic at Stack Level 1 (or in the Command Line), just press [EVAL,. But

you also need to better understand what happens when you do it....

Example: Create and then evaluate the expression 4A + 5B

Solution: Just use the Command Line for this simple expression:

("Ja)X[e]A]+[5[X[@]B)([ENTER) creates it; then [EVAL)....

Result: 1.8888 This uses the VARiables you stored.

Another: Create and then evaluate the expression 4L + 5M

Solution: X[eJUH5)X]a]MENTER[EVAL)
Resul '4x(B-A)+5=M'

One ofthe variables (M) contains no value. And the other

(L) contains another algebraic object—the expression

'B-A'. Therefore (as you learned on page 131), you

must evaluate the expression again to reduce A and B to

numerical values: [EVAL Result: '-28+5/1'

Remember: examines an algebraic expression and replaces each

name with the value that name contains. Ifthere’s no value, then

leaves the empty name in the expression; ifthe value is a number, the

number is substituted; ifthe value is simply another name, then that

name is also evaluated; if the value is an algebraic object, then that

object is substituted but not evaluated.

198 (4) FunctioNs AND EXPRESSIONS

There’s also another type of evaluation available to you—one that

gives you more control as to what is evaluated. The SHOW command

(available via (G)ALGEBRAJEIIR]) allows you to choose which objects to

evaluate—useful for finding “hidden” variables....

Example: Given that v=v,+at where vis velocity, v, is the initial

velocity, a is the constant acceleration and ¢ is time, and
1

given that x = x, + Et(v‘) +v), where x_is the initial posi-

tion and x is the position at time ¢, how is a related to x?

Solution: First, define V: ((Jo)V]oJHeAIX[T)ENTER

Next, create the equation: (& JEQUATION)]XJ&=]o]X]0]+

(=2oTXIGOeVIo]+eV)([ENTER).

Indicate which hidden variable you want to SHOW after

the substitution: JaJA)[ENTER)....

And perform the substitution: (5)ALGEBRA)EII[¥]

Result: 'K=rB+1-2*T*(VB+(VB+A*T))’

Do you see what SHOW did here? The A, which had been hidden inside

the V variable, is now explicitly a part of the equation for &.

Evaluating Expressions 199

Rearranging Expressions

The 48 contains a number of ways to symbolically rearrange an alge-

braic expression. Whenever you make rearrangements, the new

expression is always equivalent to the old one—just as proper algebra

demands. Of course, not all of the rearrangement tools are equally

useful to you, but the 48’s repertoire is quite extensive:

¢ You can collect like terms and combine whatever can be

combined in order to simplify an expression.

¢ You can expand an expression to make all powers and prod-

ucts explicit.

¢ You can select a subexpression and move it around, associate

it or distribute it different, or a number of other things

depending on the nature of the subexpression.

* You can define your own algebraic rule (or identity) to aug-

ment the built-in rules and apply that rule to an expression.

Try One: Create 2 + x + 4x2 - 3x + 9 — x + 2x? in Equation Writer:

Then collect like terms.

Solution: (GJEQUATION[2]H(e]X]+H[4)o[XIYX2))(=3eeIX)(+[]-]
XHRIX(JYH2)(ENTER). Then (GJALGEBRA)MIEH] ...
Result: '11+6%RK"2-3#K'

200 (4) FunctioNs AND EXPRESSIONS

Now: Using the Interactive Stack (remember? press (a)), go find

the equation '®=KB+1-Z2*T*(VB+(VB+A*T)) 'and copy it

to Level 1 (press[lwhile the pointer is pointing at the

equation). Thenexitthe Interactive Stack(press(ATTN)). Your

mission: Tidy up the equation with some rearrangements.

OK: First, notice that the two Y8’s can combine. Press

esult: '¥=0.5000%(A*T+Z2*VYA)=T+KA'

That’s still not very pretty (even in the Equation Writer—

press (V) to see). So (back at the Stack), press I3l to

EXPAnd the expression, by distributing terms wherever

possible. Often you’ll need to EXPAnd an expression like

this before [B can do much tidying.

Result: '¥=(0.SBBB*(H*T)+B oBBBx(Z2xYB)) *T+KB'

The 8. 58088 is distributed, but not the T. So[Tlagain...

Result: '¥=0.5000*(RA*T)*T+8, 5060(2:V8)*T+X8'

Now try combining like terms—press [i[H#]....

Result: '®=H.5000=A*T*2+T=8+X0"
Much better—and you can make it even prettier: (§]~Q)(v).

As a matter of fact, it might even look familiar.

r(xhl)

4602 o]

Rearranging Expressions 201

Rearrangement using[3& and works well for many expres-

sions, but they aren’t well-suited to make smaller, single-step, rear-

rangements. For those sorts of “microsurgeries,” you’ll need the set of

algebraic tools collected in the toolbox, available in the EW’s

Selection Environment.

Example: Asnice as the previous equation ended up, you’d prefer

tobe consistent in the order ofthe coefficients. Since it’s

aquadraticinT, the coefficients ofthe powers ofT should

come first. Somehow, you need to switch the order of T

and Y8 in the second term. But how?

Solution: Noamountofpressing[Iddill and [{i[Md]is goingtomake

this happen; you need to use the [{!1§3].

Assuming that you are looking at the Equation Writer

version of the quadratic already, press (4] to enter the

Selection Environment. Then press (¢J(«{«) to high-

light the multiplication dot between T and Y8. Just as

before, you are selecting a subexpression for editing.

Press [ATTMH NxT)IEEM. This “commutes” (switches)

the order of the arguments, so that Y8 comes before T.

Then returns you to the Stack.

That’s just one example of the sorts of massaging you can do to your

expressions—either in the EW or on the Stack. Here is a list of all the

available RULES, which fall into three categories (these are the Stack

versions of the results):

202 (4) FuncrioNs AND EXPRESSIONS

¢ Rulesthatapplytoanyselection (argument or subexpression):

I — & becomes A

IR — & becomes CMINCAD)

Eu — ! becomes A@l

sl — 1 becomes Al

Tl — I becomes A1

sy — i becomes A+1E1

Wi[Md] — collects like terms (in the selection only).

¢ Rules that apply to subexpressions.

Commutation

T3 — AcB becomes BEGA

Distribution

T — (A+BIEC becomes A*CEB*C

El — A3(B+0) becomes HA*BRA*C

Ol — A=BGAxC becomes A@(B+C)

EEE — A=CGB=C becomes (A+BIEC

¥l — =(A+B) becomes —AEB

B¢l — AGB becomes ®(-A-B)

¥l — A3 becomes MUMCINVCRI-B)

Association

Tl — AQ(Z*B+(C) becomes A+2*BEC

Tl — A+Z2:BC becomes A@(Z*B+C)

Moving Terms (arguments of +, —, ¥,/ or =)

— A+2=BaC becomes HAGC+Z*B

— RaC+Z+#B becomes C+AGZ*B

Building and Moving Parentheses

— A+2#BaC+D becomes HA@(Z¥B+C)+D

— R+2=B+(CEBD) becomes A+(Z*BEC+D)

— RA+(2+#BAC)+D becomes A+(Z*B+CTD)

Rearranging Expressions 203

¢ Rules that apply only to specialized subexpressions:

Trigonometric Functions

— BEMICK) becomes(in radian mode)

(EXP(R*i)-EXP(-(K*i)))H(Z*i)

I — MBE(X-Y) becomes

COSCKI=COSCYIRSINCRI *SINCY)

Exponential and Logarithmic Functions

— [MEA*B) becomes LOGC(AJEB

— LNCR)EB becomes [RICA*B)

— [[(IMECA*B) becomes ALOGCA)&B

HEEN — EXP(R)AB becomes |FWH(A*B)

Fractions with Different Denominators

K — A-DEB-C becomes C(A*C+D*B)E(D+C)

Question: How can you possibly remember all these RULES?

Answer: You’ll soon learn the ones you use most often. As for the

rest, don’t bother to memorize them at all. Also, your 48

helps you select among them: On its RULES menu,it

will offer only those rearrangement commands that

apply to the situation you've selected. And even then,it

won't let you do something mathematically “illegal” to

your expression. So relax and explore the RULES....

204 (4) FuncTioNs AND EXPRESSIONS

: h _GMm_ =mw’r; R<<r; and m——2—7—t—Example: Given that (R+7) 5 ; T

show that: GM =4r*r*T™

Solution: Begin by keying in the first equation: (&]EQUATION

AleJo]XIMXIaIMWEGID)(RH(@GR

A=[JaMXeRWY2)>e]R) ENTER)

Now, since R is insignificant relative to r, eliminate it by

storing 0 into it: (0]'Jo)R]STO)andEVAL. Next, multiply

by 'r*2' to clear the left-hand denominator:()(@)&&)[R)

2) X). Then collect like terms: (&5)ALGEBRA)

X&), divide by 'm'and collect:

Result: 'G#M=r*3*u"Z'

Now define the variable W and evaluate the equation:

(2Xa]]TENTER)(o2IW)(STO) [EVAL).
Result: 'G#M=r"3%(2#y-T)"2'

Distribute the final exponent over the terms in paren-

theses: (v][<]<) EXN)TETE Now re-

turn to the Stack and collect: (ENTER)[HiNN1

Result: ' G*N"‘}*r“E*T“-E*fl“Z !

Finally (optionally) rearrange the terms on the right-

hand side to exactly match the target: (v]<]<]<]<[3

EEEESEETS).. Result: 'G*li=4#n25r~3+TA-2"

Your use ofalgebraic rearrangements depends entirely on your needs.

Often,it’s quicker to do them by hand (or eye). But for a derivation or

proof, they’re awfully handy to check for careless errors.

Rearranging Expressions 205

With all the algebra already built into it, the 48 even goes one step

further: It allows you to define your own algebraic transformations.

Try One: Define the following identity: cos?0 + sin?0 =1

Like So: To define the identity, you create a list object that contains

up to three algebraic expressions, in this order:

1. The expression you wish to replace.

The new expression to be substituted.

3. Anoptional expression (such as '&x>8')that puts

a condition on when the replacement should occur.

So, begin the list with the first expression: (&J{}]"Jcos]a]

(QENTER[IX)P2)(H(SIN) JSJENTER)()1Y2]>)

Notice that you’re using a wildcard name—a name be-

ginning with the & character (& in this case)}—instead of6,

as your variable. This will allow your 48 to recognize the

identity no matter what variable name is being used.

Next, enter the second expression—the replacement: (1).

And since there are no special conditions needed with this

identity, you don’t need any third expression, so just press

to put the list onto the Stack.

Finally, give your list a name: ('JoJoJP]Y] T]H)(@JSTO).... and

press to confirm it.

Ready to test it? All right....

206 (4) FunctioNs AND EXPRESSIONS

Problem:

Solution:

Use the PYTH identity to help you prove this one:

1 1 1

sinA cos’A sin’A cos’A

Use the EW to create the left-hand expression:

(IEQUATION(T]=ISIN[AYX(2))BT(Cos)(@A)
D32

Now,start the transformation: Press(<<NG

to add the fractions over a common denominator. Re-

turn it to the Stack and collect:

Now, test your customized transformation: Put PYTH

into Level 1: (VARJIRAIN. Yourcurrentexpression should

now be in Level 2. Execute the MATch command—to

perform the search-and-replace: il

Result: (Level 1) 1 (means that a match was found)

(Level 2) '1*COSCR)I™-2*SINCA)I*-2'

(the transformed expression)

This is the target expression.... Q.E.D.

So that’s the idea: You build a list containing a target, a replacement

and (ifnecessary) a conditional expression—all using wildcard names

for any variables. Then you use this list as one ofthe arguments (along

with the expression to be transformed) with the MATch command.

Rearranging Expressions 207

Solving Equations of Expressions

Face it: The algebraic trickery of the previous section wouldn’t be

nearly so interesting if the 48 couldn’t solve an algebraic equation.

On paper, the primary reason you perform algebraic rearrangements

istoisolate a key variable on one side ofthe equal sign, with everything

else on the other—i.e. to get something suchas x=... or y-=...

But, ifyou had to imitate each minuscule step of algebra on the 48just

in order to solve for a particular variable, it would take you longer to

use your calculator than to do it on paper.

Well, there’s a shortcut: The ISOL command will automatically per-

form all the transformations necessary to isolate the variable.

Example: Enter 'A=B*C' and solve for C symbolically.

Easy: (o]A]a)=]e)B]X])Cc) puts the equation on the

Stack. Then,tosolve forC,(*Ja]C)and ALcEBRANETM.

Result: 'C=A-B'

is handy—for some cases. But it won’t isolate any variable that

appears more than once in an expression. If you ask it to, the 48 will

beep at you and display the message: Unable to Isolate.

208 (3) Funcrions AND EXPRESSIONS

That’s the bad news. The good news is that the ISOLate command can

work on an expression (i.e. an algebraic without an equal sign), too.

Watch:

Solution:

Isolate ¢ in the following expression: 2b— %

Wait a minute! You can’t isolate (“solve for”) anything if

you don’t have an equation. You must have a math-

ematical sentence with a = in it.

True. Sothe 48 simply assumesthat the expressionyou’ve

entered is equal to zero and then proceeds to ISOLate the

requested variable.

Enterthe expression: (" Jo)eJa)o]2]X[B]-JA[=T)ENTER).
Now enter the variable to isolate: (']oJ&]T)

And IE'[W... Result: 't=a-(2xb)'

Try Another: Solve for ¢ in the following expression: 2‘

Solution:

...Ooops! What happened?

As usual, the 48 set the expression equal to zero:

2'=0; Butisolating ¢ in this circumstance requires

an impossible operation. You do have to be aware

of these things when using HTE'M.

Solving Equations ofExpressions 209

In addition to ISOL, you can also use the QUAD command to “solve” for

a given variable in some algebraic expressions:

* You can solve for a polynomial variable of the second order (i.e.

the “” in a quadratic);

* You can solve for an unknown polynomial variable of the first

order (linear) which appears more than once in the expression or

equation.

¢ Youcanapproximate a solution for a polynomial variable ofthird

order or higher.

Try One:

Solution:

 Solve —(X-1)=4 for X, to 2 decimal places.
1+ X

Create the equation: OIS

e)X][=[1)»)=]4)([ENTER). Now solve for X:

Result: '®=(Z+s51%3.46)/Z

Notice the s1. A quadratic has two solutions, but a

function in the 48 can return only one at a time. So the

48 createsthe sl to allow for the “t” part ofthe quadratic

solution (or any solution pairs that vary only in sign).

So you can choose either result. First,letsl=1:

)@E)S[1)ESTO)EVAL.... Result: '®=2.73'

Now let 51=-1: (€[AF=JSISDEOEVAD...
Result: '®=-8.73'

210 (4) FuncrioNs AND EXPRESSIONS

This last example illustrates the difference between a principal so-

lution and a general solution. The 48’s built-in functions always

return the principal solution (given real or complex arguments):

¢ The square root of 16 is evaluated as 4, though 4 is also correct;

¢ The arcsine of 0.5 is evaluated to be 30°, though there are an

infinite number of angles whose sines are 0.5.

By contrast, whenever you use the orI commands to

isolate or solve for a variable, your machine assumes that you want the

general solution—unless you specifically tell it otherwise....

Compare: Use to find the general solution for x: sin x° = 0.5

Then tell your 48 to give you the principal solution.

Solution: generates the equation.

Duplicate: (ENTER). Then make sure you’re in DEG mode

and press IE:Mto give the general solution....

Result: 'x=38%(-1)*nl+1868*n]'

Torequestjust the principal solution for[EiIM, you need

to set system flag —1: (1]+/=JsPC)(e]aS)F)ENTER). Then (»)

and solve the expression again:

Result: 'x=38"

Solving Equations ofExpressions 211

User-Defined Functions

To solve problems with algebraic expressions, you can simply create an

algebraic object of the proper form and assign values (if any) to the

names in it. When you evaluate this object, it combines the values as

specified and you get a result. Fine and dandy.

But ifthe algebraic object contains lots ofnamed objects, then assign-

ingvalues to the names (using the procedure) canbe alengthy and

error-prone process. That’s where a UDF can come in handy.

A User-Defined Function (UDF) is a special kind of quasi-algebraic

that allows you to stream-line the use of complicated expressions and

create and name your own functions....

Create One: Define the following function: fix)=x*-2x+1

Like This: When you define a UDF, you use exactly this kind of

f(x) function notation. The left side of the equal sign

must include only the name ofthe function, with the

names of the arguments in parentheses. The right

side of the equal sign is the defining expression.

So...press
to write the function.

Then press to define it and place its name in

your VARiable menu.

212 (4) FuncrioNs AND EXPRESSIONS

Now Then: Set your display to STD (&]MopEes) IEH[), and use

your new function, f, evaluating it at:

a. x=1 b. x=-2

c. x=2+3i d. x=+2

Solutions: a. (AR Result: B

b. () Result: 9

c. EQOsPcEZ)MM Result: (-8,6)

d. F Result: . 17157287525

Notice that the UDF took its argument from the Stack here—just as

a built-in function would have. And if it had required more than one

argument—say, a function P(A, B)—it would have expected the argu-

ments to go onto the Stack in the same order in which they appear in

the parenthesesin the function definition: A[ENTER)B(ENTER). Thus, UDF’s

act just like built-in functions; they’re additions to your 48 workshop.

 7 7| e//////////’/‘/7/4///

7/

7/‘ Vs 7 7,

N7i
User-Defined Functions 213

Try Another: Define the following UDF: ¢(x, y) = 2x + xy

Then evaluate ¢ for:

a. =-2y C. x=t y=t-1

b. y=-2% d. x=z-3y, y=x-3z

Solutions: Define the function: [(§]EQUATION (a)QJqJO)

(e]X]sPc]a]Y>Ja=12 e X[+ el XX YJENTER

Now evaluate:

a. (J-J2X[oJaQY)ENTER) (o))Y)ENTERIVAR]

B()(ALceBRA)TN

Result: '-(Z2%¥y"Z)-94%y'

b. (JaXEN=RET=)(2)X+-)(VARHEIE
Result: '—(2#x"2)+2%y'

c. (eaDE=RETERG-)VAREE
)(acesrA)LN(S| Result: 't"Z+'

d. (JoJalz[-BIX[eJalYJENTER[JeJaX]=]3]X]

QDETERIVARI
&)(arcesRA)IRLRNT(N4

Result: '-(3#z"2)-3#ntyt+r*z
+Qxyxz-pry+fxz’

(Press (¥) to see it in the Equation Writer.)

214 (4) Funcrions AND EXPRESSIONS

Symbolic Arguments in a UDF

So far, you’ve used your UDF’s (F and [l) with numeric arguments,

placing those arguments onto the Stack and invoking the name ofthe

function by itself.

Question:

Answer:

Notice:

How do you use UDF’s in their algebraic functional

form—with symbolic arguments? For example, is this

valid? '2#((A, BY+3xF()

Absolutely. It’s just as valid as when you use two built-

in functions: 'Z*PERMCR, B)+3*TANCC)

And when evaluated, both ofthese would use the values

currently stored in the VARiables A, B and C.

The VARiable names you use as arguments (within the

parentheses) when invoking a UDF have nothing to do

withthe names youuse when DEFINingthatUDF. When

defining [l on the previous page, for example, you used

the names % and Y. But that was simply for the purposes

ofthe definition (after all, how can you define a function

without some sort of symbols for the variables?). But

when it comes time to use the UDF, the names of the

arguments you give it are unlimited—and their values

(if any) will be taken from VARiables with those names.

Getting anxious to test your understanding of functions and expres-

sions? All right—putit to practice with this quiz (answers follow)....

User-Defined Functions 215

216

Math Anxiety

Evaluate: tan’ i— in radians, as a fraction of .
2442

Find all four solutions to 4/8 — 8i+/3.

In 1989, the worldwide consumption of petroleum was about

21.28 billion barrels. Total remaining oil resources available is

estimated to be 1590 billion barrels. The formula,

A
A= —ko—(e"T -1)

expresses an exponential growth rate where A is the amount of

oil consumed over the next T'years, A is the annual amount ofoil

consumed currently, and & is the relative growth rate of annual

consumption. Compute the “life expectancy” for oil, assuming

that the rate of oil consumption grows annually by:

a. 1% b. 2% c. 3% (the predicted rate for this decade)

Around 1515, Italian mathematician Scipione del Ferro solved

the cubic equation, x’ + px + ¢ = 0, deriving this general formula:

_ 2 3 _ 2 3
coalmd, q_+£_+\/_£1,_ <.r

2 4 27 2 4 27

Using the Equation Writer, key in this monster expression and

store it as 'QUBE'. Use whatever shortcuts you want.

(4) FunctioNs AND EXPRESSIONS

5. Expand the following expression to a polynomial of the fifth

degree, using I3l and (K&} :

()
6. Determine the term containing a®in the expansion of (a - 25)” .

With your experience from the previous problem, make use ofthe

binomial theorem this time.

7. Create user-defined functions for the following triangle truths:

a. Law of Cosines: a=+b*+c*—-2bccosA

. 1 bsinA
b. Law of Sines: B =sin ‘(%)

c. Heron’s Formula: A=./s(s—a)(s—b)(s—c),whereAis

the triangle’s area, and s = %(a +b+c)

8. Usethe functions you created above to determine the remaining

sides, angles, and areas of triangle AABC in each of these cases:

a. ZA =40° b=6.1cm c=3.2cm

b. a=6 b=17 c=10

Math Anxiety 217

218

Cool and Calculating

In STD display mode and RAD angle mode, build the expression:

(2)X)ENTER[2]HHGJATAN)..... Result: .392699881699
Now convert this to a fraction of

Result: '1-8#n'

FIX the display to 2 decimal places. Remember that you can get

multiple solutions only when you use or and are in

general solution mode—i.e. flag -1 is clear. So press

ENTER). And, because you want numerical results for

symbolic constants only, set flag -2 and clear flag —3:

(2]+/-Ispc]a)s)eJFJsPc)(3)+/-]a]c]a)F)(ENTER).

Next, because you must use [[Ei[M, you must set up the expres-

sion asanequation, x*=8 — 8i+/3:

L8Ja1X]3)ENTER. Now
Result: '®=EXP((B.80, 6.28)*nl1-4)#(1.93,-0.52)"'

This is the general solution. To find each particular solution, you

mustgive the variablenl the values0, 1,2, and 3 successively. So

make 3 copies of the general solution (ENTERJENTERJENTER)), then:

(o]JoJaIN[1)STO)EVAL) Result: '®¥=(1.93,-8.52)'

(€@EVARIGEVAD Result: 'K=(8.52,1.93)"

@SEVAD Result: '®¥=(-1.93,8.52)'

@GSEVAD Result: 'K=(-8.52,-1.93)'

(4) FuncrioNs AND EXPRESSIONS

3. First, purge your VAR menu of potentially interfering names:

AISPCITISPCI)KIENTERIG[PURGE).
Next, create the growth formula: (G]JEQUATION)(e]A&=)(e]A]0)=)

OEROEOEGEOERN00E0ENE!
Now solve the equation for T:

You wantjust the principal solution this time, so store 8 into nl

and (or, you can set flag —1 and use instead):

Result: 'T=LN(1+A*k-AB)k'

Now make copies of this expression (ENTERJENTER)), and explore

theimpactofvarious growthrates:

defines the common variables. Then

a. (-o1JoJq]K]ST0) Result: 'T=55.88"

b. («[-Jo2JvaRI Result: 'T=45.78"

c. (W[o3I Result: 'T=39.20'

So, depending on the consumption growth rate, the world’s oil

will be used up somewhere between the years 2030 and 2045.

4. Begin the expression: ((G]EQUATION) (=2)X¥]3)(»)

2]LR
Now save yourselfsome work: Copy the cube root subexpression

to the Stack (<[<«[<[<]<«[<«[< IEHIA), move back to the Equation

Writer (L), enter the (+), and copy the subexpression from

the Stack back into the expression ((JRCL). Now send the ex-

pression to the editor, (§]EDIT), and replace the fourth + sign with

a = sign: (ap>)I(=)ENTER)(ENTER). Store the expression as

QUBE:

Cool and Calculating 219

Create the expression: ('JQJO1JH1=e)X[»]Y¥5)(ENTER. Now

expand it as far as it will go—)JALGEBRA), then pressI3l /7

times—to get the following not-so-intuitive expression:

"12(1%(1*(1*1)))+]* *#(1*1)))+]1K=(1*(1*
(1*#(1*(2%]1*(1-¥)))) (2*%1%(1-8)))I+1R*(
+]*#(1*(1*(1/Rx(1/K) 1#(1%(1-8=(1-8))))+
I+(1=(1%(1R=(1%] (1-K=(1*(1-K=(1%1))
D))+%(]*#(1 K*(P*]* J+17RI*(1 /K*(2%]*
(1-8))))+1%(]1*(1/R* (1-8))))+1-B*(1*(1~
(1-R8=C1-8)))))+(1%(nE(L-(xC178))00)+(]
1-R=(1%(1%1)))+1*(] RE(17R2(12(1%1)))+
Re(1#(2%1%=(1-8))0) 17K8%(1/K:(1*(2*%]1*(1

+]2(] -Be(1*(]-K=(1l” BRI+ARE(]~R*(1*
BII)+(1%(]17Kx(]K= (1-8=(17K)))I+(17K*
(1%1)0)+1%(178*(1-K (1 /K=(]-Ke(1%1)))+]
(1-Re(2x]*(17K))))+ rRE(]/7RE(] -K*(P%]%(
1#(1/Ke(1/K8=(1/K=(] 178310 +1/8=(1-¥=(]

#8111+(178=(1%(] {H*(I/X*(IXH)))J)))

Now,just [{i[fljit: ' 1+RX"=3+3%R*~4+1B*R"-3+1BxR"-2+5-K'

(Use the Equation Writer, (v), to see it more clearly.)

6. The rth term in the expansion of (a +b)" is (fl)a""*‘b"‘

So create a function TERMCn, 1y @ b) to calculate this formula:

Press

ErIaEREEEMHARSSR=T
SAYJAN=TJARHER)(JalB)JaDENTER).

Now DEFine this as a UDF: (§]DEF)...and enter the arguments,

n,r,a, and b:JaJq+/-)(X]2]]B)
¥(3)([ENTER)...and execute the function: (VAR)LIEHEL....

Result: ' 165*6“3*(2*[3“3)“8' With some rearrangements

(eight IFEs and a [HH]), this becomes' 42248*%a*3*b"74'

220 (4) FunctioNs AND EXPRESSIONS

7. a EEENEHISOIWEOQEFIQOEIRE)
@0EOEB%ACBORCEACEa0IDHA
)(©)(Cos)(JA)ENTER) (7JDEF).

b. (GJequaTioN afoSIN[UWIGIOIG)BISPCIG]AISPCIA]2>]G]
(=JaJAsN a]&)BSIN[a]A[»]+]o]JAJENTER]& JDEF).

c. Fors: (gJEQuATION[oJsIqIOJG)AISPOG)EBISPCIGIC
B2JENTER[G)(OEF). Then
HIEXRIOINIQOXa)ATSPCIGBISPCIGC)(@)
P&EIAI0EISIGI0IGIAISPA)B)sPClaICle
Q)SUESUESUELERITGEOREREOEA0)

8. a. SetFIX1andDEG modes. PURGER,B andC. Find side a:

CH[@388]cH
Result: 4.2_cm Find angle C: (3]-)2)(©]LAST

»)(4)0) Result: £9.4 Angle B:

(J8)oJENTER[4J0J-»)=) Result: 118.6

Now use Heron’s area formula:

ECEEERGCEEEEVAREETE Result: 6.3_cm™?

b. Heron’s Formula: (eJsPc]7JSPC1OIIEAN Result: 26.7

Thenfind angle (@), usingtheLawofCosines:

Y Result: '[(149-148*C0SC(A))'
Now equate this with its known length (6):

Then set flag —1 (principal solution) and isolate A:

Result: 'A=36.2"
Knowing A, use the Law of Sines to get B:

Result: 43.6
Then C is: Result: 1686.2

Cool and Calculating 221

1
.

r
o
_
=

i
o

(
)

-2
O
Q
Q
Q
r
i
\
\
.
‘
V
V
\
‘
w

¢
o

°
o

O
©0

9
n
o
o

N
.D

0
9
O

O
e
p

P
O

&
Y
=

E
=
4

n
/

PLOTTING AND ANALYZING(5) SoLving,

Equations, Data and Graphics

For bigger jobs, you need bigger tools. Indeed, your 48 workshop has

such “power tools,” and it’s time to learn how to use them.

You're goingto see howto coordinate three powerful tools (SOLVE, PLOT,

and STAT) and three special supporting “environments” (Equation

Writer, Matrix Writer, and Graphics) to make short work of challeng-

ing real-world problems that, but a few years ago, couldn’t be handled

even by desktop computers.*

To begin, look at this schematic, which summarizes the multiple

relationships between these tools and environments:

Equation Writer Matrix Writer

Environment Environment

PICT

Graphics

Environment

* Even today, computer software packages that give you the functionality ofthe 48 will setyouback

hundreds of dollars.

Equations, Data and Graphics 223

On that schematic, notice the three reserved VARiable names that you

use to communicate between the three tools.

224

o EQ

o 2DAT

o PICT

You store the current equation in the VARiable EQl. The

SOLVEtool will solve only this equation, and the PLOT

tool will plot only this equation. However, the word

“equation” has a very flexible range of meanings here.

As you’ll see in this chapter, the SOLVE and PLOT tools

will allow EQ! to contain:

* any real number, unit object, algebraic expression

or equation;

* anyprogram that evaluates to a single real num-

ber or unit object;

* a list of algebraic expressions and/or valid pro-

grams.

You store the current data array in the VARiable ZDAT.

The tools in the STAT toolbox operate only on this array,

and the PLOT tool plots statistical data only from this

array. These tools require that 2DAT contain a real-

valued array with at least one element.

The current graphics display is stored in the variable

called PICT. The PLOT tool calculates coordinates for

functionsit graphs, buttheactual graph—the PICTure—

isstoredinPICT. PICT can contain only a graphic object.

Whenever you view the Graphics display, you are view-

ing the graphic object currently stored in PICT.

(5) Sorving, PLOTTING, AND ANALYZING

Notice that each ofthese reserved variablesis a different kind ofobject:

o EQ contains a procedure object (algebraic expressions, equa-

tions, and programs).

e 2DAT contains an array object.

e PICT contains a graphics object.

Notice also that EQ and ZDAT are appropriate inputs for the PLOT tool,

while PICT is only a final output. That is, EQ and ZDAT are the pro-

cedures and data from which the 48 calculates and outputs results.

And one form of output is created chiefly for your eyes—the graphics

display—stored in PICT. That form, similar to a paper print-out, is

generally meaningless to the machine as data thereafter.

Ofcourse, other forms ofoutputs can then become appropriate inputs.

Besides building a graphics display in PICT, SOLVE, PLOT and STAT

also generate numerical results on the Stack, which readily become

the arguments for other functions.

That being the case, this chapter concentrates on the variablesEll and

2DAT and their use with SOLVE, PLOT and STAT. Though you’ll cer-

tainly learn howtousePICT and the Graphics environment to help you

view your plots, you won’t study it in as much detail.

To learn more specifically how to manipulate, modify, and dissect

graphic objects (grobs), read Chapter 19 ofyour Owner’s Manual or—

better yet—readHP48SXGraphics (by Ray Depew), a book entirely

dedicated to the topic (see the back ofthis book for more information).

Equations, Data and Graphics 225

Defining EJ, the Current Equation

Before you can use the SOLVE and PLOT tools, you must define the

VARiable EQl. There are two ways to store an equation into it:

* Create an equation from scratch and store it into EQ;

¢ Choose an existing equation from the Equation Catalog and

store it in EQ.

From Scratch:

Like So:

Create the following expression, named POLY, as

the current equation: x* +3x> —7x* +4x-10

Use the Equation Writer: JEQUATION)(a]X)YX)(4)(»)

(HEJXZHEXTI2H@XE0]
[ENTER).

Tomakeitthe currentequation: (5SOVEIRITZA....

You'll see: Hame the equat ion.,

press ENTER

And the 48 goes into alpha mode (notice the an-

nunciator), so type the name:

Now you should see POLY listed as the current

equation in the message area at the top of your

display. And you can press to confirm that

POLY is now a named variable, too.

226 (5) SoLvING, PLOTTING, AND ANALYZING

Question: What exactly is stored in EQ now?

Find Out: Remember that EQ is just a VARiable with a reserved

name; you can do anything to it that you normally do to

a VARiable. So press: (VAR)(&GPREV)M....

Result: 'POLY' The name of the equation—not the

equation itself—is what you stored into EQ.

Hmm Do you have to name every equation you want to store

into EQ?

Not At All: For example, to create 5sin(2x—%) and store it, un-

named, into EQ, you would do this:

Create: (GJEQUATION|(5]SIN)(2]o)X)(=Ja)m[=)4)ENTER]
Store: (GsovEELITN Simple.

The (STore EQuation) command isjust a shortcut

for ("]EJe)Q)(sTO).

Whenwould you store a name—instead ofthe equation itself—intoEQ?

Keep in mind that if you store an unnamed equation, it will be lost

forever when you next store something else into EQ. So ifyou want to

preserve your equation for future use, name it first and store the name

intoEQl. On the other hand, use for quick, temporary equation-

solving—whenyou don’t want to use memory to name an equation that

you’ll never use again anyway.

Defining EQ, the Current Equation 227

The Equation Catalog

Of course, you might not need to create an equation for EQl; maybe it

exists already in your VARiable menu. And the easiest way to load an

existing equation into EQ is to use the Equation Catalog.

Acatalog isjust a subset ofyour VARiable menu, displayed so you can

select an equation with a pointer like that of the Interactive Stack.

Watch: PresslEiIll.... You’ll soon see a list of all of the algebraic

expressions and equations in your VARiable menu. And a

pointer (#) should be pointing to POLY, like this:

PPOLY: 'R44+3%¥K"3-7%K.

Use (v) to move through the catalog. Look at the various

names and objects listed. They fall into three categories:

¢ Algebraic objects

¢ Directories—which can lead to more equations

* Other types of objects (lists, complex numbers, pro-

grams, vectors, arrays)—anythingwithaname ending

with . EQ.

Thatis,the48 includes all algebraic objects and directories

in the Equation Catalog,plus any object whose name ends

with . EQ (you’ll read more about this suffix soon).

228 (5) Sorving, PLOTTING, AND ANALYZING

Next: Move the pointer to POLY, and look at the menu. You can do

several things once you’re pointing to the equation:

AR You can store the selection into E}l and jump imme-

diately to the PLOTR menu to plotit.

You can store the selection into EQl and jump imme-

diately to the SOLVR menu,to solve for a variable or

calculate the value of an expression.

You can add the selection to a list, thus linking it with

other objects.

You can edit the selection on the Command Line (and

[ENTER)returns you to the Catalog when you finish).

You can put a copy of the selection on Level 1 of the

Stack. Try it—press [EELIA.

You can temporarily view the entire expression by

holding down the FH[I® menu key. Tryit.

Do This: PressE'[MA. This is the “business end” of the SOLVE

tool. Notice how the current equation is listed in the

message area at the top of the display.

Question: How do you get back to the Equation Catalog now?

Answer: You could either press or use a shortcut,

(©2JALGEBRA), to go to the Equation Catalog.

Defining EQ, the Current Equation 229

TheSOLVRMenu

Press to return to the SOLVR menu from the Equation Catalog.

This menu is obviously different from other menus; it has “hollow”

menu labels.

The different appearance is the 48’s way to remind you that you're

looking at a special customized menu. The SOLVR menu is customized

for the particular object currently stored in EQ. Each time you change

what’s stored in EQ, the 48 changes the SOLVR menu.

Right now, POLY is stored in EQl. So the SOLVR menu containsjust two

selections,%]and BdA. The(%]selection represents ®, which

is POLY’s only variable (if there were other variables, they would

appear in this menu, too).

Use It: Find the value of the POLY expression forx=0,1, 2, and 3.

Like So: Set FIX 3 display format: NLAST

Press (0)2_JEHEE. Result: EXPR:

Press 2_JEFHIAE. Result: EXPR:

Press @) 3_JEHdE Result: EXPR:

Press 3)2_JEHEE. Result: EXPR:

-18. 660
-9. 680
18. 660
161. 0666

[EdE calculates the value of the expression, given the

current values stored in all the variables. Notice that to

store a value into a SOLVR variable name, you simply key

in the value and press the appropriate hollow variable key.

This is different than the VAR menu.

230 (5) SoLving, PLOTTING, AND ANALYZING

Question:

Find Out:

Answer:

Of course, you can use one named algebraic in another.

How does the SOLVR menu handle this?

Create another expression TPOLY: 'A*(POLY-B)'

Press: (JoJAXIGIO)(VAR)N(=)(o)B)ENTER)SOLVE)
LEEEEMPIOUENTER).

Now look at the SOLVR menu for TPOLY. Since it’s the

current equation—as you can tell from the message

area—simply press ENEER....

The SOLVR menu now includes the variables directly

invoked inTPOLY ((CA_Jand [E_)), and those variables

invoked indirectly in TPOLY, via POLY (C&_).

Thus, in the SOLVR menu, you’ll always have access to any variables

you need to solve an equation or expression, even ifthose variables are

referred to only through other named algebraics.

The SOLVRMenu

Now it’s time to practice solving equations....

231

Solving Equations with SOLVE

SOLVE allows you to solve an equation for one unknown variable as

long as all other variables have known real or unit values (SOLVE does

not find symbolic or complex solutions).....

To Wit: Use SOLVR to find a root of the POLY expression.

Easy: Make POLY the current equation ((3JALGEBRA[Y)) and go to

the SOLVR menu (EHIRNH.

Now press()&1... Result: ¥: 1.713

Pressing{&)before ahollowvariable keytells SOLVE to solve

forthat variable (sinceX wasPOLY’s onlyvariable, you didn’t

need to store any other knowns first).

Something should be botheringyou about now: How can anexpression,

like POLY, be “solved” when it’s not equated to anything?

Good point. The answer is that SOLVE equates the expression to zero

to solve for the variable you request (ust like ISOL and QUAD).

Notice the message in the display—Z€0—indicatingthat the 48 has

indeed found azero (aroot) ofthe POLY expression. You can confirm this

now, simply by evaluating the expression itself—press [JdH....

Result: EXPR: @.666

232 (5) SoLvING, PLOTTING, AND ANALYZING

However, POLY is a polynomial of the fourth degree and thus has at

least one more real root. Tofind thisotherroot, you mustguide SOLVE

as it looks for solutions.

Do This: First watch SOLVE as it searches for the root you just

found: Press (0)[_%_]to begin the search, then quickly

press ()[_8_J[ENTER) and watch the message area.

Those numbers are the intermediate guesses thatSOLVE

is using to home in on a solution. You control its search

pattern by telling it where to begin its guessing:

Like So: Store—18 into X (1)o]*/=)_&_)), so that the 48 will start

its searching at —10. Now solve for x (&)[_&_)).

Result: ®: -4.746.

Ah—a new root ...orisit? Look at the message area. What’'saSign

Reversal —and what does it mean?

A sign reversal occurs when a change in the value of the unknown

variable causes the value of the expression to change signs (i.e. cross

the x-axis, like a root) without exactly equalling zero. This can mean

either that:

¢ you’ve found a discontinuity in your expression (an asymptote or

stair-step, or something); or,

¢ you really have found a root, but the round-off accuracy of the

calculator (and the SOLVE algorithm) couldn’t find the value of

the variable that made the value of the expression exactly zero.

Solving Equations with SOLVE 233

OK: To quicklydetermine iftheSian Reversal messagemeans

that you've encountered a discontinuity or a root, simply press

EE... Result: EXPR: -4.BBBE-18

In other words, at the value ofx where your 48 found a sign

reversal, the value ofPOLY is —0.0000000004—so close to zero

that, in all likelihood, —%. 746 is actually a root of POLY and

not a discontinuity.

So, you've found two real roots of POLY. Are there any more?

Check:

Result:

Enter other guesses for x (try -50, -3, 0.5, 10, 100), solving

each time for x. As soon as you see S0lving for &,

press [ENTER)to watch the search....

All your guesses except x =0.5 give you one ofthe two roots

you already know. But your guess of x = 0.5 locates an

Extremum at x = 0.421.

So apparently you have a local maximum there—and the

other two roots are complex.

234 (8) SoLvinG, PLOTTING, AND ANALYZING

Solving Equations Involving Units

The SOLVE tool can solve for a variable and its required units, as long

as two conditions are true:

¢ The units for all variables are dimensionally consistent.

* Youmust give at least one guess for the unknownvariable—with

the desired unit attached. However, after you've included the

unit once in a guess, you can alter the guess simply by entering

the numerical part. This is a time-saving feature, but remember

that a variable will keep its value until you PURGE it. So if you

need to use a variable name first for a value with units, then later

for a value without units, you’ll need to PURGE the first value,

so that it’s units aren’t implicitly kept for the second one.

 Try some examples....

Solving Equations Involving Units 235

Example:

Solution:

Create an expression, named IGAS, for the Ideal Gas

Law: PV = nRT, where P is the gas pressure; V is its

volume; nis the number ofmoles ofgas;R is the ideal gas

constant; and 7' is the absolute temperature of the gas.

Given that 10.0 moles of an ideal gas fill an 8.2-liter jar

at 273 K and 27.33 atm, use IGAS to find R in mmHggal
—molK

(YoVIa)PurGEIGJEQUATION)(e]P)X[o)V eJa NX]R)

©)sove)TEETR ()G)AlS) Enter)IR

Next, store the known values and their units:

EIERE)eE
RANL
(0el«aMaloJalDENTERL]
ETEEKEeERL1]

Nowsupplyan openingguess forR—to establish its units:

eLYaIMMAGHEXEALEMOUEEIK)
elB1

Now solve forR: (G_E_J...

Result: R: 16.481_mmHo*gal~(mol*K)

Press[@dHto investigate the Sign Rewversal...

Result: EXPR: -1.11BE-7_mmHo*gal

That difference is negligible, so the answer is indeed a

true solution; R is about 16.481%152

236 (8) SoLvinG, PLOTTING, AND ANALYZING

Now:

Hmm:

What pressure (in mmHg) will result ifyou heat a closed 5-

gallon jar, containing 20 moles of chlorine gas, to 600°F?

Just key in your knowns: unTsnxT)ISG

(A(you must use an absolute temperature in the

formula)(©)SoLVE)[CT_] (a shortcut to the SOLVR menu);

EEaDENTER],
m(no need to include the unit here, because the

correct one, _mol, is already stored in [_M_] from before).

Nowkeyin a guess for the pressure, to establish the desired

units: CE]
Then solve for the pressure: (G)[_E_]....

Result: P: 38816.517_mmHg

One More: What pressure of chlorine gas will result if you release

Simple:

it—under the conditions ofthe previous example—into

a sealed, evacuated room of dimensions 4m X 6m X 5m?

This time, the volume unit is the one to change:

GIENTER8)X5)X) unTs)IIREEN&)sove)21
Now solve for P:(@_P_J.... Result:P: 6.1Z1_mmHg

Solving Equations Involving Units 237

Solving Equations Using PLOT

Now that you have an idea about how SOLVE works, you’ll appreciate

how PLOT can make solving equations even easier. For one thing, you

can find roots of equations from within PLOT itself....

Watch: Go to the Equation Catalog (remember that the shortcut is

([©)ALGEBRA)). Select POLY and press @MilId. You’ll see this:

Plot tg e! FUNCTIOHN
POLY: +IEKI-FER
Indep: 'K’

3 -b. 084 6. 26H
ys -3. 184 3.206

ERASE[DRAK] AUTO[HENG[YENG]INDEP)

This display shows:

* the type ofplot it’s ready to draw (FUMCT IOH is the

usual plot type for equation-solving);

¢ the name ofthe current equation and as much ofthe

actual object as possible;

¢ the name ofthe independent variable—which will be

plotted along the horizontal axis (x-axis);

¢ the display ranges for the horizontal (x) and vertical

(y) axes of the plot (the ranges you see here are the

default ranges with a scale of 10 pixels per unit).

238 (5) SoLvinG, PLOTTING, AND ANALYZING

Go Ahead: PlotPOLY using the default ranges: pressATEIITTIEI.

Result: After a few moments, you'll see this

(200H[2-E0:[CENT[COORD[LAEEL]FCH |
You can recognize the axes by the little hatchmarks, but

it’s a strange-looking plot—because you're not seeing

the whole picture.

Zoom: To adjust yourview, pressEiTE to see your zooming options.

The vertical axis needs the adjustment, so press

(ENTER)to increase the vertical scale by a factor of 10.... After

afew seconds, the revised plot appears. It shows more, but you

still can’t see all of the relevant area.

Zoom out again, say, by a factor of5: Rzl (5)(ENTER)....

Now you can see it all. You’ve increased the scale ofthe y-axis

by a factor of50; every vertical hatchmarkrepresents 50 units.

And now that you can see the whole graph, take a moment to explore

some of the tools available to you....

Solving Equations Using PLOT 239

First:

Next:

Then:

Now:

Fifth:

Label your axes: press [Xijl§38. The numbers represent the

values of the very edges of the display.

Find your cursor. Press(a]a]a]a)»]»]»]»)and find thesmall

set of crosshairs just above and to the right of the origin of

the axes. This is your cursor.

Find the coordinates ofyour current cursor position: press

[A].You'll see asmall ordered pairin the lowerleft-hand

corner of the plot.

Move the cursor around, using the arrow keys. Watch how

the coordinates change as you move. Try pressing (©]¥)or

), etc.

Cancel the coordinates display and return to the GRAPHICS

menu by pressing any menu key.

Now you're ready to solve for the roots of POLY, using its graph.

240 (8) SoLviNG, PLOTTING, AND ANALYZING

Earlier, recall, you used a lot of trial-and-error guessing in SOLVE to

discover that POLY has only two real roots. Now, one effortless glance

at its graph tells you the same thing;it crosses the x-axis only twice.

So: Find the negative root of POLY using the graph.

Use the arrow keys to move the cursor over to the vicinity of

the left-most intersection ofthe graph and the x-axis (i.e. near

the negative root). Then press IZTMIATH. This essentially

calls uponthe SOLVE root-finder, usingthex-coordinate ofyour

cursor position as its “guess” or starting point.

Thus, using a PLOT graph allows you to visually guide the

SOLVER, thus eliminating your blind guessing.

Result: ROOT: -4.746 (lower-left corner of the display).

The cursor is now sitting at the root. And this has also been

copied to Level 1 of the Stack.

Then:

Easy:

Find the other root.

Press a menu key to get the menu back. Then move the cursor

over to the vicinity ofthe positive root and press fd!!ill again.

Result: ROOT: 1.713 (no surprise)

Now return now to the Stack ((ATTN)(ATTN)) to see what you’ve

wrought.... Sure enough, the two roots have found their way

to the Stack.

Solving Equations with PLOT 241

Recall that you plotted POLY back on page 239 by using [IFiI%l, the

main plotting command, which uses the currently established x- and

y-ranges listed in the PLOT display. That’s the most flexible approach.

But there’s another way—a “quick-and-dirty” shortcut, called [EITHITH.

It uses only the x-range specified in the PLOT display and then auto-

matically scales the y-range so that the entire graph will fit into the

display.

Try It: Press ETTHL....

 Result:

 200K-E0H]CENTJCOORDLAEEL] FIN_

Given the current x-range, is a mixed blessing: The Good News

is that the entire graph fits into the display with just one keystroke.

The Bad News is that the resulting graph is scaled so that it’s hard to

tell how many roots there are without further investigation.

242 (5) SoLvinG, PLOTTING, AND ANALYZING

Just as before, you can improve things by zooming the y-axis until it

looks approximately as it did before. Buthere’s a chance to try another,

more precise kind of zooming.

Blow It Up:

Here’s How:

Mark offabox on yourgraph and then zoom in on that

box only—filling your display with it.

Move the cursor anywhere to the left of the negative

root and press EEAM]. A cross will appear at the

cursor. Next, press(2[»)to move the cursor (the cross

stays put) to the right of the right-hand root. Then

press(v]until the cursoris nearly sittingon the menu.

You have a box marked out for zooming. The upper-

left corner is determined by the cross; the lower-right

corner by the cursor’s current position. Press B3H

to fill the display with the contents ofthe marked-off

box. Now you can better distinguish what's going on

in this crucial region of the graph.

Solving Equations with PLOT 243

Again:

Result:

Investigate the “flat” region: Move the cursorjustto theleft

ofthat area and press. Then use () until the cursor

is just to the rightofthe flat region and press Had1H. ...

The plot'sy-range is auto-scaled to fit withinthe thex-range

youjust selected. Butstillthe plotisratherflat. Repeatthe

zooming process until your plot looks something like this:

2-ED:]CENT[COORD[LAEEL] FCH

Challenge: Find the coordinates of those two local extrema.

Solution: Position the cursor on the maximum point and press

IEXEEEE... Result: EXTRM: (0.421.-9.301)
(These are simplycoordinates in the plot, not real and

imaginary portions of a complex number.) Now

position the cursor overthe minimum point and press

A... Result: EXTRM: (0.704.-9.361)

You can see how useful plotting a function can be: How many guesses

would you have needed to isolate these extrema using only SOLVE?

244 (5) SoLvinG, PLOTTING, AND ANALYZING

Solving Two Expressions Simultaneously

Up to now, you've been using only expressions in SOLVE and PLOT. An

equation is treated by these tools as two expressions—the left side and

right side expressions—that are equal to each other.

Example:

Solution:

Create the following equation, name it EQUAT and make

it the current equation (EQ): 4(log x) =5x2-3

Then use the SOLVE tool to solve for x.

Press to exit the Graphics environment.

Then (GJEQUATION/(4)(2]Log)(] X)M)&)=)E) (@IXYX(2)(>)
(=[3)ENTER) creates the equation. (§)SOVE)IIHYN(E)QL)

(A)(T)ENTER) names the equation and stores it in EQ.

Now pressBRG]to solve for x.

Result: ¥ B.684 Sign Rewversal

Press [#d to find out if this is a root or not.

Result: LEFT: -B.659

RIGHT: -B.659

Because E[contains an equation (i.e. two expressions),

SOLVE attempts to find a value of the missing variable

(x here) that equates both. Obviously, it was successful

here—the Sign Reversal is indeed a root.

Solving Two Expressions Simultaneously 245

At this point, you could continue using the SOLVE tool to hunt for the

other root. But, since you just learned how much more efficient it is to

use PLOTfor that kind of work, switch to the PLOTR display.

Do This: Press(JPLOT)tojump directly to the PLOTR display. Then,

because the current ranges may not be appropriate for

EQUAT, reset the default ranges by pressing {33,

Now press (NXTINXT)IEITHN, and see a graph like this:

N

)
It’s a little indistinct in the critical area where the two

curves meet, so use Fgddth] to enlarge that area....

Now you should be able to see distinctly that the curves

meet in two places, and that they cross the x-axis a total of

three times.

246 (5) Sorving, PLOTTING, AND ANALYZING

So: Find the two points where the individual curves intersect.

Easy: Position the cursor over the right-most point of intersection

and press IZCHIETRL.... Result: I-5ECT: (0.68Y.-0.659)

The first coordinate is the “solution” value ofthe variable. The

second coordinate is the value ofeach expression at that point

(compare with your SOLVE results).

Find the second solution similarly. Move the cursor over tothe

other intersection point and press [E381...

Result: I-5%ECT: (0.199.-2.801)

Question:

Answer:

What will happen if you ask PLOT to find the roots

instead of the intersections of the two expressions?

Try it—press any menu key to get the menu back, then

{'I'iN.... Result: ROOT: 0.775

Notice that the cursor is sitting where the parabola

intersects the positive x-axis. Whenever two expres-

sions are plotted simultaneously, [{illillignores the left-

hand expression and finds the nearest root of the right-

hand expression. Thus,ifyou move the cursor closer to

the negative root ofthe parabola here, will find it.

Butitwon’t ever find the root ofthe logarithmic function.

All the functions in this menu except [E13%l behave this

way—working only on the right-hand expression.

Solving Two Expressions Simultaneously 247

Solving Programs and User-Defined Functions

At the beginning ofthe chapter, you learned that the current equation

can be an algebraic object, a “proper” program, or a list combining

algebraic objects and “proper” programs. You've seen how SOLVE and

PLOT handle algebraic objects. Now it’s time to see how they handle

“proper” programs.

Question: What makes a program “proper” for SOLVE and PLOT?

Answer: To be acceptable, a program must do two things:

¢ Itmusttake nothing offthe Stack;it must use only

named objects.

¢ Itmustreturnexactly oneresulttothe Stack. That

is, it must act as a mathematical functionf{x) =y,

where the f(x) part is the program and y is the

singular result (usually a real number or a unit

object) that it returns.

In short, SOLVE treats a program just like an expression. That is, it

lists all its variables in the SOLVR menu and attempts to find a value

for the requested variable such that the program returns a result of8.

248 (8) SoLving, PLOTTING, AND ANALYZING

Question:

Answer:

Example:

Solution:

Why would you ever want to solve a program, anyway?

Some mathematical expressions don’t lend themselves

easily to a readable algebraic form. You might prefer to

build them instead in the form of a program.*

Create a program, PFUNC, that performs this function:

x*+10 for x <-3

)= {xz -10 for x 2 —3}

&

IF '8<{-3'
THEN 'K*2+18'
ELSE 'X~2-18'

END
»

Key in the program:

ATTNJATTN[G»)(o)o]F)(Je)X][e]a]2]
O0BHENE +1o]»]
(lx)ELE)E(@TeX)2]oooEND] [ENTER)

Now name the program as a solvable program: (&]PLOT)

IEIE®B(P]FIUIN]C).... Notice the .EQ suffix that the 48

appends tothis name—so thatPFUNC will be listed in the

Equation Catalog. Now press (ENTER).

*You've already seen some rudimentary, “straight-ahead” programs in chapter 3, and you’ll get a

lot more practice in chapter 6. So don’t worry too much ifthese particular programmingcommands

are yet unfamiliar to you—just follow the general idea beingillustrated. You'll also see in chapter

6 that you could build an algebraic expression for this example, too—ifyou prefer that form after

all. It’s nice to have options.

Solving Programs and User-Defined Functions 249

Now: Plot PFUNC and find any roots it may have.

Press (NXTINXT)IEITRLA.... Two roots?

Put the cursor over the left-hand “root,”I...

Result: ROOT: -3.000

At the other “root,” press {i[ll.... Result: ROOT: 3.1562

The only problem is that this plot deceives you. A “true” graph ofthe

function would showadiscontinuity atx=-3,instead ofconnected points.

You can tell the 48 to show this discontinuity by changing a mode.

Do It:

Then:

Exit the Graphics environment (ATTN)(ATTN)). Then, at the

MODES menu (§5)]MODES)(NXT)), press to deselect the

CoNneCT-the-dots mode(it should become [HiIH).

Now return to the PLOTR (o)PLon)), HIEEIITTIRL. .. better!

Investigate the negative root by enlarging that region of the

graph with ERI3.... It appears that =3.000 is not a root at

all—the actual plot doesn’t intersect the x-axis.

To check this, find the value ofthe function there: pressm

to move the cursor to the alleged root, then

to evaluate the function at that point....

Result: F(¥): 19.028

No, the function value is a long way from zero at x = -3. The

sign change is not a rounding error at a root—it is indeed a

discontinuity.

250 (5) SoLving, PLOTTING, AND ANALYZING

Properly constructed programs solve and plot so well that it seems as

ifuser-defined functions (UDF’s) ought to be useful, too. As you know,

they’re not valid when invoked with Stack arguments; taking values

off of the Stack is a no-no for “solvability.”

But you can always invoke a UDF in its algebraic form—as part ofany

ordinary solvable expression or equation.

Examples: 'COSLAWCD, c, A

or 'a=COSLAWCb, c,A)!

or 'S5*w*2=COSLAWCb, c, A)'

These are all just ordinary expressions and equations

that happen to use a UDF—just as if it were a built-in

function.

And these are all solvable, too—provided that they each

have only one undefined name (at most). Keep in mind

that those names refer to VARiables.

Solving Programs and User-Defined Functions 251

Multiple Equations with SOLVE and PLOT

Nowyou know how the SOLVE and PLOT tools manage one expression

or one equation (two expressions) at a time. But to some degree, they

can also handle more than one equation at a time.

e SOLVE can solve a series of linked equations, one at a time, to

save you a lot of time and button-pushing.

(Note: This is not the same as solving multiple equations si-

multaneously—such as a system of two equations in two un-

knowns; SOLVE cannot do that. For that you must use matri-

ces—a topic covered later in this chapter.)

e PLOT can display plots of multiple equations simultaneously,

provided thatthey all usethe sameindependentvariable. Similar

to SOLVE, PLOT’s analytical functions will work on the displayed

equations one equation at a time.

(Note: PLOT cannot find points of intersection between these

different equations—a limitation analogous to the simultaneous

solutions limitations on SOLVE).

So the main idea with multiple equations in SOLVE and PLOT is that

you “load” them all at once for comparison and convenience; for the

most part, you still analyze them one at a time.

252 (§) SoLvING, PLOTTING, AND ANALYZING

To use multiple equations with SOLVE and PLOT, you name them and

link them together in a list....

Example:

Solution:

Link PFUNC. EQ and EQUAT together in a list and store

thatlistinEQ. Then, since both equationsuse '®' asthe

independent variable, plot them on the same graph.

Of course, you could build a list from scratch and then

store it into EQ. But there’s an easier way—with the

Equation Catalog.

Press (ATTNJATTN[JALGEBRA) to view the Equation Cata-

log. With the pointer at PFUNC . EQ, press... A

list will form in the message area: £ PFUMHC.EQ >

Next, selectEQUAT and pressI3to add it to the list

(the message area will confirm the addition). Press

to store the list into EQ. Then press (NxT)AF31

IEITLI to plot the two equations at once.

Notice that the first equation in the list—PFUNC. EQ—is drawn first.

That first position is the privileged spot: Only the first equation is

available for functional analysis (finding roots, slopes, points of inter-

section, etc.).

Multiple Equations with SOLVE and PLOT 253

Question: Suppose you don’t know which function needs further

analysis untilafter you plot them. Canyou choose which

function is “active” (i.e. first in the list) without redoing

the entire list-making procedure?

Answer: No problem—press IETNxT)CEEA.

This rotates your list of equations so that EQUAT is now

first and PFUNC.EQ is now second. Notice that the

currently “active” equation is listed at the bottom ofthe

graph so that you’re in no doubt.

And you also confirm that you’ve rotated the list is to

press and then evaluate EQ: (o]E]a]QENTER).

Result: { EQUAT PFUNC.EQ 2

Sometimes you’ll want to save a specially constructed list ofequations

forlater or repeated use. But keepin mind that merely forming the list

with [[H¥E3 does not nameit. You must do that yourself—just as when

you need to save any other object.

So: Namethislist of equations TH0, so that you can useit later.

OK: Since the list is already sitting at Level 1 of the Stack, you

don’t need to recall it. Just press&PLOT)IEIIZM(T)W]O)([ENTER).

254 (5) SoLvING, PLOTTING, AND ANALYZING

It certainly makes sense toplot a list oflinked equations when they all

share a common independent variable. But it makes more sense to

solve a list of linked equations when they share one or more variables

and are meaningfully related.

Example:

Solution:

There are two simple relationships which are often used

in connection with the Ideal Gas Law:

m
D= where D is density; m is mass; V is volume.

where n is the number of moles; m is mass;

N
I
|
3

<
|

Z is molar mass.

Make an equation for each of these, naming them DENS

and MOLE, respectively. Then combine them into a list

along with IGAS and enter the SOLVR.

Create DENS: (e)pJa=[exJaM=)V)ENTER)
DENEETER.

Create MOLE: (e}aING=laM=)2
LEMO)OEETER).

Create thelist: ffilllshows theEquation Catalog;

)Mputs MOLE and DENS into the list. Then use the

(Wkeytofind IGAS and pressIEXXA. Finally, press ENTWTA.

MOLE is the first equation in the list, so it becomes the

“active” equation in the SOLVR (as indicated in the mes-

sage area). But now press [Lkid38.... The active equation

changes to DENS; and [[EI3¥] again activates IGAS, etec.

Multiple Equations with SOLVE and PLOT 255

Linking these equations in a list makes it very convenient to solve

problems of the following kind:

Problem:

Solution:

An ideal gas has a molar mass of 95 grams. Whatis its

density at 25°C and 800 mmHg, in g/m3?

Assume for a momentthat youhave 10.0 moles, and then

use IGAS to calculate the volume:

52@)e))C) LUERSE
1],G0@CE)0CE100EMEAE)
EveR) ¥] (o[¥ 1... Result: B.233_m"3

Now change the active equation to MOLE: (nx7)[EFIEE.

Then load the variable Z, indicating the mass units you

desire (grams), and calculate the mass of the gas:

)RREEEMOLENEZ]
eeJalc)EvsR)lM1G]M|
Result: m¢ 95H.08086_g

Finally, switch to DENS and calculate the density (after

specifying its units): EHIA)D))=aMYd

B[]@[] Result: D: 4885.774_g/m*3
What could be simpler?

256 (5) SoLviNG, PLOTTING, AND ANALYZING

Problem: Whatisthe molar massofanideal gasif0.52 gofthe gas

occupies 610 mL at 385 mmHg and 318 K?

Solution: Press[fB[I®to switch the active equation back to IGHS.

Then load the new values into the variables:

L]
DM]
EEL]

Solve for n: ()[CH_] (result: n* B.81Z2_mol)

Now switch to MOLE, enter the mass, and solve for Z:

DRR&=
Result: Z: 43.928_g-mol

Multiple Equations with SOLVE and PLOT 257

Solving Systems of Equations

Although its SOLVE and PLOTtools are limited to analyzing just one

equation at a time, the 48 can indeed solve systems ofequations—with

matrices. Sothenexttool tolearn aboutistheMatrix Writer, a special

matrix entry and editing environment.

Challenge: In STD display mode, solve this system of equations,

using matrices created in the Matrix Writer:

4x-3y+2z=40
Sx+9y-T7z=47
9x+8y-3z=97

Solution: First, convert the system to a matrix equation, AX = B:

4 -3 2 X 40
A=(5 9 -7| X=|y]| B=|47

9 8 -3 z 97

Coefficients Variables Constants

Next, create matrices A and B with the Matrix Writer.

Press (©]MATRIX) and see this:

0-0

b1 EWID JHID>

258 (5) SoLviNG, PLOTTING, AND ANALYZING

To enter matrix A: (4)([ENTER[3]*/-JENTER]2]ENTER)(Y)
(s]ENTER] 9 JENTER|7]+/-]ENTER)

(9JENTER| 8 JENTER] 3]+/-JENTER)

Notice the little counter at the upper left that tells you

the dimensions ofthe current matrix. It nowreads3-3,

indicating that A is a 3x3 matrix.

Now name and store matrix A: (ENTER

Enter and name matrix B: (JMATRIX)(4)0)(ENTER)(Y)

(4)7)ENTER[9) 7 ENTER)(ENTER)

(JeJB)T9)

Finally, divide matrix B by matrix A to get matrix X:

VARHIEEIIEN-5 Result: [[18 1

[2.80800606004 1

[3.08060060806 1]

Thus x=10; y=2; z=3is the solution (you can ignore the

rounding error*®).

Thus, solving a system of linear equations is as simple as solving the

matrix equation, AX = B for X: X = B/A.

*The Owner’s Manual (pp. 361-362) explains that you can improve the accuracy of the divide (/)

function for matrices with the following short program (call it MDIV):

«>BA«BA--BA3PICKRSDA » + »»

To use MDIV instead of the regular divide in the last example, be sure that matrix B is on Level 2

and Ais on Level 1 (just like the regular divide), then press [E[J[ll from your (VAR) menu. The result

will not show the rounding error; its calculation is a bit more precise. This fine-tuning may or may

not be important to you.

Solving Systems ofEquations 259

Another:

Solution:

260

Solve the following system of linear equations:

4x—-3y+2z-2r+9:t=40
Sx+9y—-Tz+3t=47
Ox+8y-3z-Tr+t=97
—4x+5y+z-2r+3t=68
x+y+z-3r-Tt=23

Notice that the necessary matrices here are expansions

ofthose in the previous examples. So, save some work—

recall matrix A to the Matrix Writer: (a]A)[ENTER)(Y)...

See? (¥)copies an array to the Matrix Writer—just as it

copies an algebraic to the Equation Writer.

Nowyou canexpand this 3x3 matrix by adding two rows

and two columns, so that it will look like this:

4 -3 2 29

5 9 -7 0 3

9 8 3 -7 1

-4 5 1 -2 3

1 1 1 -3 -7

Toadd acolumn 4, move the cursorovertoit: (»]»]»). Now

(ENTER)....(notice that the remainder of the new

column fills with zeroes).

Now fill in the other values in that column: Element £—

4 should be a zero—no need to edit it. So move the cursor

to element 3-4 (¥[>]»)) and

(5) SoLving, PLOTTING, AND ANALYZING

Next, fill in the values in the two additional rows:

(a)+/-JENTER)SJENTER]1JENTER]+/-)(ENTER)
(1)JENTER]1]ENTER]1JENTER

To add the fifth column, first move the cursor to element

1-5: (©[a)=»»). Then press to tell the cursor

to move down (i.e. proceed column-wise) whenever you

press [ENTER).

Now it’s much easier to enter the values in the column:

(9)ENTER)3JENTER|1)JENTER[3JENTER (and

to return to left-to-right—“row-major”—entry mode).

Inspect your work and then [ENTER)it onto the Stack.

Next, modify matrix B:

(IB)ENTER(W (WIV)(6(&)[ENTER]) (2] 3JENTERIENTER)

Finally, solve for matrix X: (»)(=)

Result: [[58.8814296158 1
[65.3897122915 1
[111.993825281 1
[77.7262423693]
[-3.98779424573 11

Thus, the solution set is (to two decimal places):

x=50.88,y=65.39,z=111.99, r =77.73, and t = -3.99

Solving Systems ofEquations 261

Analyzing Data: The STAT Tool

Equations are solved; data is analyzed. There’s a decent analogy be-

tween the SOLVE tool and the STAT tool:

¢ The SOLVE tool works with the current equation (stored in the

reserved name, E[) that you've created either in the Equation

Writer or on the Command Line.

e The STAT tool works with the current data array (stored in the

reserved name, ZDAT) that you’ve created either with the Matrix

Writer or on the Command Line.

And the PLOT tool can help you visualize both kinds ofinformation. It

can draw five kinds of plots of EQ and three kinds of plots of ZDAT.

So the task now is to learn to use ZDAT to analyze some data.

Take a look at the World Survey table on the opposite page. It’s full of

interesting facts. Your exercises over the next few pages will be to

analyze the data to find out what, if anything, is significant and/or

related about these facts. Thatis, you will be analyzing what the data

might mean.

After you've studied the numbers a bit, turn the page and have at it....

262 (5) SoLving, PLOTTING, AND ANALYZING

The World Survey

Pop. % of Per-Cap.
Density GNP Energy
(per sq. spent on Literacy Use (kg Per Capita

Country mile) Educ. Rate coal equiv.) GNP

Australia 6 6.4% 99% 6700 $ 12,190

Bangladesh 2063 2.1% 29% 62 $ 150

Canada 7 7.7% 99% 9694 $ 15,910

Chile 44 4.5% 96% 921 $ 1,300

China 298 2.3% 76.5% 706 $ 280

Ethiopia 105 3.9% 35% 19 $ 110

India 658 3.6% 36% 272 $ 250

Italy 495 4.7% 93% 3211 $ 12,955

Japan 857 5.1% 99% 3625 $ 21,820

Mexico 114 2.1% 88% 1604 $ 7,253

Morocco 149 7.9% 28% 323 $ 510

Netherlands 1031 6.9% 95% 7200 $ 9,140

Nigeria 323 1.8% 30% 171 $ 520

Phillipines 560 1.7% 88% 246 $ 540

Portugal 293 4.4% 80% 1318 $ 3,393

South Korea 133 4.5% 95% 1625 $ 2,800

USSR 33 7.0% 99% 6389 $ 8,735

UsS 69 6.7% 96% 9489 $ 16,444

W. Germany 640 4.6% 99% 5672 $ 14,890

Yugoslavia 240 3.8% 90% 2440 $ 6,220

Zimbabwe 67 7.9% 77% not avail. $ 540

Analyzing Data: The STAT Tool 263

Creating the Data Matrix

First you need to enter the data into a matrix....

Do It: Atthe Stack, press to enter the Matrix Writer with

anew matrix. Then select [EIEH, to enter the data by column.

Also, press to decrease the number of columns

displayed, allowing each column more room so that you can

check your data (you can always rearrange the display later,

once you've finished the entry process).

Now enter the first column’s data—Population Density:

(6JENTER)0]3)ENTER)(7JENTER)(4]4JENTER)JENTER)
sJENTER)(6] 5] 8 JENTER)(4) 9 5 JENTER)(8)7

oJENTER)JENTER)JENTER)JENTER)

Next, use the (») key to go back to the first row and move to the

second column (% of GNP spent on Education). Enter this

second column of data similarly, but when you finish, simply

press to move to the top of the next column.*

Fill in the other columns likewise (skip the missing entry for

Zimbabwe: (»]Ja)). Thenpress(ENTER)to place thisdata matrix

onto the Stack, and name the new matrix WORLD and makeit

the current data matrix: LEIEYB W)0o)R)L)D)[ENTER).

*You couldn’t do this from thefirst column because the Matrix Writer would have taken the

to mean “continue down the column.” But now it knows the column length.

264 (5) SoLving, PLOTTING, AND ANALYZING

At the top of the display, you should now see these two lines:

WORLDCZ212=L &7 7.9 V7.
WORLDC22)=

These tell you the name ofthe current matrix (WORLD), the number and

contents of the last row (row 21), and the blank line indicating where

the next data to be entered should go.

Try This:

Solution:

Without using the Matrix Writer, add the following data

for Venezuela to the matrix:

Population density: 54 people per square mile

Percentage ofGNP spent on education: 6.8%

Literacy rate: 88.4%

Per-capita energy consumption: 3,380kg. coal equivalent

Per-capita GNP: $3,030

Press(5)4Jspc](s)-J8Jspc)(8]8)-J4Jspc)(3)3]8]oJsPC]

8000=+

TheIcommand lets you add an entire row to the

bottom ofyour current data matrix. SimilarlyN

will delete the last row (but don’t do this now).

And you can press[Hilto confirm that there are now

22 rows in your matrix (see the 22 -5 at the upper left?).

Creating the Data Matrix 265

Another:

Solution:

Then:

In the original data table (page 263), Zimbabwe was

missing a value for its per-capita energy consumption.

Further research has discovered that it’s about 329 kg.

coal equivalent. Edit the data matrix to insert this

missing information.

While looking at the Matrix Writer view of WORLD, use

the arrow keys to move the cursor to element 21 -4 (row

21, column 4)—the location ofthe missing value. Notice

thatthe Matrix Writer has put a zero there; it can’t allow

blank spaces in a matrix.

Now key in the proper value:

PressENTER) lfiilto display the Data Catalog, which

is very analogous to the Equation Catalog. It’s a list of

all matrices in the current directory, plus any other

accessible directory. You should see WORLD at the top of

this list.

Once you select a matrix from the Catalog, you’ll usually want to

perform statistical tests on it or plot it. So your next task is to explore

the WORLD data with the 48’s built-in statistical tools.

266 (8) SoLviNG, PLOTTING, AND ANALYZING

The STAT Menu

The STAT Menu has five pages in all, divided logically:

e Page One: Entering and editing data matrices.

e Page Two: Single-variable statistical calculations.

e Page Three: Plotting statistical data (two-variable).

e Page Four: Two-variable comparative statistical calculations.

e Page Five: Summary statistics—the building blocks for other

“customized” statistical tests.

Ofcourse, normally when you press ((]STAT), you go to Page One—and

youuse or(§]PREV)to switch to other pages—just as with any other

multi-page menu in the 48.

But from the Data Catalog (where you should be now), you have some

options:

o BT selects the pointed-to matrix as the current data matrix

and sends you directly to Page Two, so that you can do single-

variable statistics.

e JdNilN selects the pointed-to matrix and sends you directly to

Page Three, so that you can plot the data.

o ERIIA selects the pointed-to matrix as the current data matrix

and sends you directly to Page Four, to do two-variable regres-

sion and covariance analysis.

The STATMenu 267

Single-Variable Statistics

With WORLD selected in your Data Catalog, pressIIdto take you to

the single-variable statistics (from some other menu, pressing(=JSTAT)

will also take you directly to the single-variable statistics).

Challenge: Calculate the average and standard deviation ofeach

variable in WORLD (say, to two decimal places: FIX 2).

Solution: Press B[] You’ll get a vector (1 x 5) with the av-

erage for each column (variable) in WORLD. Press(¥)

to display them in the Matrix Writer (use (») to show

the complete version of each average in turn):

Result: [374.58 4.84 /6.00
2972.95 6317.27 1

Similarly, (ATTNI3will compute the standard de-

viation for each column....

Result: [477.3%4 2.87 26.67
3153.61 6699.18 1

Most ofthe other single-variable statistics work similarly to the mean

and standard deviation.

268 (5) SoLviNg, PLOTTING, AND ANALYZING

ETEH is an exception, however. [HIZEl analyzes the distribution of a

single, specified column of data—Dby dividing it into separate “bins.”

Before pressing[AIiEl, you must do four things:

 Identify the column you want to sort;IA[iElldoesn’t work with

all of the columns at once.

* Enterthe smallest possible value for the variable in question.

¢ Enter the size of each bin (they must be equally-sized).

¢ Enter the number of bins.

Try One:

Like This:

Set the display to STD. Then sort column 2 (percentage

ofGNP spent on education) into 7 bins that are 1.5 units

(%) apart. The first bin begins at 0%.

Press (NxT)(2)[EI'M to identify the second column as the

current “x-column”—the independent variable.

Then: (PREVOENTER1))E) EIN3|
Result: [[B 1 [5104110051

[5]1C03110[8 1]

and: [B 8 1

Level 2shows afrequency distribution for the variable—

the number ofdata points in each bin, least-to-greatest.

Level 1 shows the number ofoutliers—respectively, the

number ofdata below and beyond the range ofthe bins.

Now plot this frequency distribution: Storeitinto YDAT

(&JPrev]«Bl(1)NxTINXT)WD, then EITTIN ...
(Press when you’re finished viewing the plot.)

Single-Variable Statistics 269

Two-Variable Statistics

Of course, the most analytical statistical tests are not the descriptive

statistics ofone variable, but the kinds that compare two variables and

infer relationships between them.

The analyses built into your 48 fall into three categories:

¢ Plotting

¢ Regression

e Test Statistics

These analytical tools can be used to compare just two variables at a

time.*And you must designate the two variables you want to compare:

o XCOl designates the x-column—the column containing the

independent variable data in the analysis you're conducting.

Ifjust one variable is involved (as with [H[iEll in the previous

section), then ACO1 designates that column.

» Yol signifies they-column—the column with the dependent

variable data.

*Actually, you can do multiple linear regression with matrices and the summation statistics in

Page Five of the STAT menu, but it takes some programming to make it convenient.

270 (5) SoLvinG, PLOTTING, AND ANALYZING

Watch: UseNXTINXTINXT)IEGEMto selectMORLD as the current STAT

array, then to return to Page Three of STAT. In the

message area you'll see which columns are currently those

of the independent and dependent variables.

Now make column 4 (per-capita energy consumption) the

independentvariable,and make column 5 (per-capita GNP)

the dependent variable: (4)M)EHN.

The other item in the message line isMod1 & LIN. Thisis the current

regression model that STAT will use tosearch for the best-fittingcurve—

the mathematical function that approximates the data as closely as

possible. The 48 can use any of these four basic regression models:

o LINear: y=b+mx

e LOGarithmic: y=b+m(Inx)

e EXPonential: y=be™ or Iny=Inb+mx

e PolleR: y=bx" or Iny=Inb+m(Inx)

In each case, the STAT tool will find an intercept, b, and a slope, m, that

best fits the designated model to the data in the two selected columns.

Example: To find the LINear equation for the columns (to 2 deci-

mal places—FIX 2), press K_I.15....

Result: '1283.12+1.69%x'
So b=1283.12 and m=1.69

Two-Variable Statistics 271

Now: Change the regression model you’re using to EXP and re-

calculate the intercept and slope.

OK: Press TNtoselect the model, thenAN...

Result: Intercept: 644.69

Slope: 4.37E-4

That’s another way to calculate the regression model: gives you

the result as an algebraic expression; by contrast, gives you the

result as two tagged objects that are immediately available for further

calculations. The regression form you use depends on what you want

to do with the result.

Now: Figure out which regression model will give you the “best”

fit for your data—and find that correlation coefficient.

Sure: Press[EITUMIEFAN.... The 48 now chooses among its four

models the one with the highest correlation coefficient.... It

chooses PHR. Now press INIAG]X3to see how good that

fitis.... Result: .87

So 87% of the variation in the data can be accounted for by

correspondence to the calculated PR model. Not bad.

272 (5) SoLvinG, PLOTTING, AND ANALYZING

Next:

Easy:

Generate a scatter plot of the data and plot the model

regression curve on top of it.

Go to Page Three of the menu ((§JPREV)) and press E[fil{d.

Thenzoomboth axesupbyafactorof1.5: ISINETING-

(ENTER).... and label the axes (press [Hil338).

Then, to put the regression model on top of it, pressT

Aha:

Simple:

A few data points fall quite some distance from the regres-

sion curve. What does this tell you?

Remember that the vertical axis is the per-capita GNP; the

horizontal axis, the per-capita energy use. Soifadata point

is above the regression curve, that country is producing

more GNP for its energy use than “normal.” Conversely, a

data point below the curve represents a country whose

GNPisbelow what its energy use would lead you to believe.

So, which countries do these points represent? Which are unusually

efficient or inefficient in turning energy into GNP?

You can find out two ways. First, ofcourse, you can position the cursor

over a particular dot of interest, then press [Milild1] to display those

coordinates, and check your printed data to see which country has

similar number. Or...

Two-Variable Statistics 273

You can use the regression model to calculated the “expected” values

of the variables....

Example: Japan’s per-capita energy use is 3625 kg of coal equiva-

lent. Based on the model, what per-capita GNP would

you expect Japan to have?

Solution: Press (ATTN[NXT)to go to the fourth page of the STAT

menu. Then enter (3]6]2]5) (an x-value in the current

model) and press [A3®0] to PREDict the Y-value.

Result: 6716.28

Japan’s actual per-capita GNP ($21,820) is over three

times higher than this expected value.

Try the same thing for the United States, W. Germany,

USSR, Netherlands, Italy, and Venezuela:

Results: Expected GNP Actual GNP

Japan 6, 710.28 21,820

US 16, 587.83 16,444
W. Germany 186, 223.5% 14,890

USSR 11, 434.64 8,735
Netherlands 12, 794.83 9,140

Italy 9, 986.96 12,955

Venezuela 6, 282.86 3,030

Some countries appear to be much more energy-efficient

in producing their GNP than do others.

274 (5) SoLvinG, PLOTTING, AND ANALYZING

Another:

Find Out:

Explore your data for other relationships. Is there a

correlation between per-capita GNP and literacy rate?

Change the variables: (G]PReV)(sJEIETH(3)XN

Select the model: RITINEEN

Test the model: IFHAEG]X?.... Result: 8.66

So while this is not as strong a correlation as that be-

tween energy use and GNP, it still accounts for two-

thirds of the variability in the data.

Now plot the data and the model: SCATR| FCM

The graph suggests a fairly positive dependence: The

onlypoints farfromthecurve areaboveit—countrieswith

high literacy rates for their GNP’s. No country shows an

unusually low literacy rate for its GNP.

One More:

OK:

The data suggests some inverse correlation between

population density and per-capita GNP: the less dense

the country, the higher the GNP. Test this theory.

Press (ATTN) (1) IETE0 (5)IS0T) LTT® to as-
certain the model, then [{i[AA to test the fit....

Well, the correlation is inverse (the coefficient is nega-

tive) all right, but (press (]X?) the model can account

for only 8% of the variation—hardly convincing.

Two-Variable Statistics 275

Two-Sample Statistical Tests

The other kind oftwo-variable analysis involves the kind ofstatistical

hypothesis-testing used when a researcher compares similar data

from two differently treated groups.

For example, suppose you're doing research in fish behavior. And in

one experiment, you use two types of fish attractors, one made from

vitrified clay pipes and the other from cement blocks and brush—

during 16 different time periods spanning four years at a given lake.

From these numbers (fish caught per fishing day), can you determine

whether one attractor is more effective than the other?

Period Clay Pipe Blocks and Brush

1 6.64 9.73

2 7.89 8.21

3 1.83 2.17

4 0.42 0.75

5 0.85 1.61

6 0.29 0.75

7 0.57 0.83

8 0.63 0.56

9 0.32 0.76

10 0.37 0.32

11 0.00 0.48

12 0.11 0.52

13 4.86 5.38

14 1.80 2.33

15 0.23 0.91

16 0.58 0.79

276 (5) SoLving, PLOTTING, AND ANALYZING

First: Create your data matrix using Matrix Writer. You should

have a 16-2 matrix when you'’re done....

Call it FISH: ETER)GISTADEEENESIH ENTER).

Next: Calculate a ¢-statistic for the FISH data:

where:

X and y are the sample means

n, and n, are the sizes of each sample

s, and s, are the sample standard deviations

This suggests a UDF: ' TTS2(K, Y, NKs NY, 5K, SY)=..":

(JEQuATIONTITIS2RIXISPCYISPCINIX)(SPCINY]SPC]
eHEEEEXY
(@ASIO[IN(@)XIHAIOTIN)

MEOOEEINIX)=TINIY)ENTER) (JDEF).

Return to Page Two ofthe STAT menu (]STAT)), calculate the

means and put them onto the Stack: [R[FiIs165)20) Then enter

nand n;: ENTER[ENTER). Find s_ and s: [E3&)20)

Now, since you have the six arguments for TTS2 on the Stack

in proper order, just invoke your function: TTS2

Result: 8.57

Two-Sample Statistical Tests 277

Then: Tointerpret this result, you must now compare it to the whole

t-probability distribution. The 48 has four functions (found on

the second page of the Amenu) that compare a test

statistic with a related probability distribution:

¢ Student ¢ distribution (UTPT)

¢ Normal distribution (UTPN)

¢ Snedecor’s F distribution (UTPF)

¢ Chi-square (x?) distribution (UTPC)

Therefore, you can use UTPT to finish the FISH analysis:

Level 2: the total degrees of freedom = (n, +n,-2)

=(16+16-2)

=30

 Level 1: the calculated test statistic, H. 97 .

So, press (3)o)enTer>)MTH)ANxDLG.
Result: B.29

This is the probability that there is no significant difference

between the two attractors. That’s too high (usually 0.101s the

maximum allowable) to conclude that there is a significant

difference.

Conclusion: Neither attractor is significantly more effective

than the other.

278 (8) SoLving, PLOTTING, AND ANALYZING

Transforming Variables in the Data Matrix

Sometimes you may need to mathematically transform your raw data

before performing a regression or statistical test.

Example:

Solution:

Whatifyouwantto calculate thedifference between each

pair of observations in your FISH data, then put these

results into a third column in the matrix and use a

single-variable version of the ¢-test on that column?

You could calculate and then enter each individual

difference into a third column. Or, you could do this:

Transpose the FISH matrix, row-for-column: &)STAT)

EEIHE(c)]TRINENTERELIE. Then extractjust the
last two rows:(GG

Next, do the transformation: (a]a)NxT)[IZZBENTER)(S).

Now reassemble the 3 row-arrays into columns in an-

other matrix: (a]a)a)NN EnTer)TIRX
(=) Blo]o)TRINIENTER) XM(FY1SYH)2JENTER).

Obviously, transforming columns in a matrix isn’t a feature built into

the 48. Whether it’s easier to transform data element-by-element or

via an array procedure like this last example depends on the size of

your data matrix and the complexity of the transformation.*

*And this is an excellent example of a good use for a small program—stay tuned.

Transforming Variables in the Data Matrix 279

In any case, it’s time to see what your efforts netted you...

So: Do a single-variable ¢-test on the new third column (the paired

difference column) of FISH. The single-variable ¢-statistic is:

Sy

Press [O)STAT), and be sure that FISH is still the current data

matrix. Then: [EFLIPINXT] (@)X
EHA>>N EETdATN(@=).... Result: 3.H5

Now compare this statistic with the probability distribution:

(1]5)ENTER]>) Az Tifdl.... Result: 4.686E-3

Hmm...according to this test—with the differences—there’s

only a 0.41% chance that the blocks-and-brush fish attractor

is not more effective than the clay pipe. That’s a very different

conclusion than that suggested by the previous test.*

*Mark Twain had a commentfor such a situation—something about three kinds offalsehoods....

280 (5) SoLvinG, PLOTTING, AND ANALYZING

More Challenges

At this point, surely the vast possibilities ofthe 48’s tools and workshop

are evident to you. And there’s no telling what you might want to do

with them. So here’s a group of challenge problems, grouped roughly

by topic, to help you get more practice in using the SOLVE, PLOT and

STAT tools (indeed, using most kinds of 48 tools, except for program-

ming—that’s the next chapter).

But these are more thanjust a set ofreview problems. Some illustrate

techniques that you haven’t yet seen. Some introduce entirely new

categories ofsolvable problems. Thisis both your chapter quiz and an

additional set of lessons. Learn by doing—and enjoy discovering....

D ","'- S ‘
. .“:_ L B\A‘o -~

(7 —_ |\| 1 <

J/fi-\ ‘\l\ \
. /w"..::'.‘“‘\\\X

i ll‘llll“‘

More Challenges 281

Algebra

1. Find the intersection(s) of the following two curves:

9x? +4y>* -18x-8y-23=0 and x*-y>’-4x+2y=6

2. Two particles start at the same instant, the first along the path

x,(£)=2¢ -4, y,(t)=4t-5 with >0

and the second along the elliptical path

x,(t)=2sin%s, y,(¢)=-3cosjt withs>0.

At what points, if any, do the paths intersect?

At what points, if any, do the particles collide?

3. Solve the following linear system graphically:

6x+2y<36

2x+4y<32

2x—y=2-6

x20

y=20

282 (5) SoLvinG, PLOTTING, AND ANALYZING

Differential Calculus

Find the first and second derivatives off(x)= x> - LZ Then plot
x

the function and both derivatives on the same graph.

Differentiate: y=e*(coshx +sinhx)

Find the curvature of r(¢f)=ri+4s’j at the point P(-1,1)

The standard cylindrical beverage can has a volume of 12 oz, or

26 cubic inches. What dimensions yield the minimum surface

area? Find the minimum surface area.

A water trough with a vertical cross section in the shape of an

equilateral triangle is being filled at the rate of 4 cubic feet per

minute. Given that the trough is 12 feet long, how fast is the

water level rising when the water reaches a depth of 1.5 feet?

Find the roots and the extreme values of

)x+2

More Challenges 283

Integral Calculus

10.

11.

12.

13.

14.

15.

16.

17.

284

Evaluate the following definite integrals:

! 2 ! 1+x2a. j0(1+x) dx b. joxlo dx

Ve VxA

C. -Si—dx
0«/x+1

xe*
——dxCalculate j (x +1)2

x+3
Calculatejm

Find a 5th-degree polynomial equivalent to 3e*.

Find the area between these parabolas: x=y* and x=3-2)?

Find the arc length of r(¢) = +log(sect)j+3k from:=0tot=%

Find the surface area when the curve y*—2logy=4x fromy=1

to y =2 is revolved about the x-axis.

Graph the polar function,r=4cos 86, and find the area it encloses.

(58) SoLviNG, PLOTTING, AND ANALYZING

18. Junior Beaver arrived home from Hydro Tech one spring to find

his father furious and ranting as he watched his dam overflow:

“.H#HGINGN@ ... ducks! That’s the third year in a row

them ducks’ve landed on th’pond so thick that the water level

swamped my dam!”

Now, Junior knew that something had happened the last few

years to flood the dam, but he had his doubts about this theory.

“Pop, how much does the water level need to rise to over-

flow?”

“I build a halfa meter ofjust-in-case at the top. I don’t have

enough material to do more n’ that.”

“Then I don’t think the ducks couldpossibly be at fault. Let

me run some calculations to see.”

Junior then set out with his trusty 48 to test his father’s theory:

¢ The surface of the pond—roughly rectangular—measured

70 meters by 13 meters.

* The pond was 3.5 meters deep (at its deepest) and roughly

a half-cylinder in profile—like one half of a tall tin can.

¢ The average volume of a duck’s bottom (d.b.) in water was

2.25 liters and its area on the surface averaged 450 cm?.*

Were the ducks responsible for swamping the dam?

*For these sensitive and personal measurements, Junior Beaver wishes to thank several duck

acquaintances who prefer to remain anonymous. They know who they are.

More Challenges 285

Summations, Series and Expansions

19. Evaluate the following expressions:

7

a YDT
k=1

oo

1-2*
b. Z 3*

20. Find the set of times—to the nearest hundredth of a second—

during a 12-hour rotation ofa clock inwhichthe minutehand and

hour hand coincide.

286 (5) Sorving, PLOTTING, AND ANALYZING

Data Analysis

21.

22,

Acar rental company has facilities at four airports: Los Angeles

International (LAX), Burbank, Ontario, and Orange County.

The following table shows the pattern of car returns.

Fraction returned at

Rented at LAX Burbank Ontario Orange C.

LAX .85 .07 .03 .05

Burbank 12 70 .10 .08

Ontario .10 A2 .69 .09

Orange County .05 .03 14 78

Ifthe company rents each ofits 400 cars exactly once per day, how

many should each airport have to maintain a steady supply?

Given the following data:

Mean Std. Dev. of

Investment Type Sample Size Annual Return Return (Risk)

Common Stocks 50 10.57 19.05

Corporate Bonds 35 4.38 5.52

US Government bonds 30 3.47 3.87

Municipal bonds 35 2.51 8.76

Do these data indicate significant differences in risk (i.e. in the

standard deviation ofannual returns) among these four types of

investments? Use the data to predict the annual return of an

investment type whose standard deviation is 11.67.

More Challenges 287

23. Assume that an economy is based on five industrial sectors:

Agriculture Building Electricity Fuels Water

Each dollar ofoutput from each sector requires a certain amount

of input from each sector—including itself. The input values for

all sectors are as follows:

Output Sector

Input Sector A B E F W

A 422 .100 035 235 .100

B .089 .350 .082 .052 .180

E .036 .075 .100 224 .400

F .098 025 380 415 115

W 147 115 300 107 .200

Projections of demand (needed output) were developed for two

different scenarios:

Demand Projection (in $billions)

Sector Scenario 1 Scenario 2

A 438 500

B 390 465

E 190 275

F 235 315

W 109 156

How much output value must each sector produce to satisfy the

demand projections of each scenario?

288 (5) SoLvinG, PLOTTING, AND ANALYZING

More Solutions

1. The simplest approach is to find the intersection point(s) visu-

ally in PLOT and then check them in SOLVE:

Create the two equations, CRY1 andCRVZ. Then, at the Equation

Catalog, combine them into a list and move to the plotter

(©)ALcesRA)IEEEE(V)IEENMR

These curves are both conics, so change the plot type to CONIC

(NTIRETEIFMET)and be sure that flag —1 (Principal Solutions)

is clear (1]+/-JsPc]a]o]c]FJENTER)).* And (6]sPc]]o]FIIX)JENTER).

Each CONIC plot must have its dependent variable defined. The

default is 'Y'—which you're using—so just I3l the display

parameters, erase anyprevious plot(NXTINXTHEES), and [T

Apparently, there’sjust one pointintersection. UseB3lto zoom

in for better viewing (do this several times if necessary): Move

the cursorjust above and to the left ofthe area ofintersection and

pressBB Then move to the right and below it and E3H.

Press [i[A] to see the coordinates....You should get something

close to{=1.000000,1,000000). PressATTN[=SovE)(1)+/-) 2]

&)] to move to the SOLVR and calculate y for x =—1....

Result: Y: 1.88B6B8 So(-1,1)isindeed theintersectionpoint.

*Only half ofthe conic will be plotted ifthe Principal Solutions flag is set; this flag allows only one

answer for each x, but a conic section requires two answers for each x.

More Solutions 289

290

First, create and name the expressions, 81, Y1, K2, and YZ. And

PURGE 'T', set RAD mode, and turn off CoONneCT mode.

Next, using a complex form (this is how the 48 does parametrics),

combine the equations into two parametric expressions, PAR1

and PARZ: 'K1+i*Y1' and 'KZ+i*YZ2'. Then combine PARI

and PARZ into a list (C)ALGERRAI(W)IEEEN), andNI

Now change the plot type to PARAMETRIC (NxT)RETEEEED),

[@Fthe display ranges,and declare the independent variable

('T")anditsrange (0<<5): (IOo)TISPC0JSPC5)ENTERIG
LI

Plot the two paths: [EITLIN.... You’ll see an ellipse and a line. Use

your cursor and [Mi[i[{ to obtain the coordinates for the intersec-

tion points.... Result: The paths intersect at (2,0) and (0,3).

Test those results: Recall ¥l and create two equations based on

the results: (ATTNATTN (VARINXT) (" JIERS =)2)ENTER)(DT
&l=Xo)

Now solve each of these equations for 'T':

and (SWAPJEVAU)(*eTHEIH.
So particle 1 reaches (2,0) at t=1.25 and (0,3) at ¢ = 2.

Now recall ®Z into SOLVR and see where particle 2 is located at

these critical times: (VAR) IEENl&)Gove)IRMR-)2)5)

IR1R
Particle 2 is not at (2,0) at t =1.25, but it is at (0,3) at ¢t = 2.

Conclusion: The particles collide at location (0,3) at ¢t =2

(5) SoLving, PLOTTING, AND ANALYZING

3. Tograph a system ofinequalities, create one expression with all

of them (IETTH,MMand HEM are in the PR6)Emenu):

'6xX+2%Y<£36 AND
2xR+4xY£32 AND 2#K-Y2-6 AND k=B AND Y2B'

Name it as the current equation: LISSH(1INJE]Q)(ENTER).

Now, this will be a TRUTH plot, so press: [REEIIATTIETGIE.

Enter plotting ranges: x]sPc)o)spc7]enTer)IR
EIOY)sPA)(0)(SPA)(1)0)EnTERINXT)[T

And display ranges: (G)PREV]1)+/=[sPc]1oJBIAIH(1)+/=IsPc)1]5)
EHATH And plot it: TTHILTTEN....

4. First,createf(x)and make a copy ofit on the Stack:

e]X]Y*[2)ENTER[ENTER). PURGE and enterthe variable of

differentiation: Jo]X)(ENTER)([ENTER)(§JPURGE). Now differentiate

and clean up the result: (5)3)ALGERRA)INH]. ..

Result: 'Z#R"-3+2%K'

Duplicate thisfirstderivative and repeat the differentiation:

Resul :2E*X"-‘}'

Combine the three functions into a list, then designate that list

as the current equation: (a]a)a)EINEENTER[)PLOTGITIY]

(GIIXTY is equivalent to EL[IEX). Then change the plot type to

FUNCTION: (nx7)ETEETHA331 (7x7T)NxT). Now plot the
three functions in the same display, adjusting the display as

necessary: RN

More Solutions 291

5.

292

(ATTN), then PURGE K,and create the expression:

eOMTHKTIEEEX))
STl o]X Then enter the variable of differentiation

and differentiate: ENTER[)]3)ALGEBRA)(TN. ...

Result: '2*(COSH(RI+SINH(RI I*EKP(R) !

The curvature ofa twice-differentiable curve r(¢) = x(¢)i+ y(¢)jis

given by:

4o - KOOy0(0)
((xOF +y©7)

So, create a user-defined function, KURY:

'KURV(K, YI=ABS(at (R)=ot (at (Y2)-ot (Y)*at (st (RI))~
(ot (Ra~2+at (Y)r2)*(3-2)!

Keystrokes: (GJEQUATION[e]o]KJUJRIVIGQIOIX]sPCLY]a[p]e]=]A)

()ARP

Y3]+)2JENTER]& [DEF]

Now prepare the Stack with the two function arguments:

Enter x():
Enter y(0): ("JolT]YX[2]+]2JENTER]

Now PURGET, evaluate KURV, and clean up the results:

(vAR)I3EVAL)ALGEBRA)(R
Since ¢t =-1 at point P(-1,}), store =1 into 'T' and evaluate:

(IFJTENTER) STO)(-NUM). Result: . 333333

(5) SoLving, PLOTTING, AND ANALYZING

7. Thesimplest procedureis touse a Lagrange multiplier to find the

constrained minimum. Thatis, youwant to minimize the surface

area ofa cylinder (S =2nrh + 27tr?) subject to the volume constraint

(nr*h —26 = 0). So, create CANS: 2nrh +27r® — A(nr?h - 26)

PURGEthe variablesR,H and » (&0e)RIsPcla]Ho=L)

(JPURGE)), and find the partial derivatives with respect to each:

0CANS
o VARIEEE(]H)3)....

Result: 'Z#m*R-x*(rxR*2)"

28 EIHCRDDE)AREE
Result: '-(2#R*x*Her)+4=Rer+2eHsr"

acgfsz VARETHEDS
Result: '-(w*R*2*H-26)"

Nowyou equate each derivative with zero and solve the resulting

(nonlinear) system. First, isolate '»' from the ok derivative:

(afa)a) K148 150L [COLCTHRS
Result: '»=2/R' Saveit:

Next, isolate'R' from the or derivative, and saveit:

OEZWCOLCTIOE]501{COLCTHS
Result (FIX 2): 'R=B.58*H' Saveit:

Now use the dA derivative to solve for 'H':

EvalasovEBITMEMMIAGT11...Result: H: 3.21 (inches)

Then for r: (VARIIZEMEVAL.... Result: 1.61 (inches)

Then [IEN(O)NUM) (to force the numerical evaluation of)

Result: 48.58 (square inches)

More Solutions 293

294

When the water is x feet deep, the area ofa vertical cross section

ofwateris ¥x?. Since the troughis 12 feetlong, the volume ofthe

wateris then 4+/3x%>. Thus, the volume at time ¢ is:

V() = 43[x(0)]”

PURGE ¥ and T, then: ("Jo]VIG[OleJaTA=)

(4]XX3]X[eJaXIQlO)]STI»)Y*[2]JENTER).

Now differentiate : ('|aJ&]T]ENTER])3)....

Result: 'derV(t, 1)=6.93*derx(t, 1)*2*x(t))’

Now just define the known functions, V'(t) = 4 and x(z) = 1.5, and

the unknown RATE you’re trying to find:

Now the expression for the Volume’s derivative:

Result: '4=6.93*(RATE*2#1.5)'

Then isolate RATE: (YoaR]A[TE|ENTER|G)ALGERRAEIM. ...

Result: 'RATE=H.19'

Thus, thewaterlevelisrisingat0.19 feet perminuteat themoment

the water reaches a depth of 1.5 feet.

Note that you could have defined your user-defined derivatives

derV and deryx before differentiating Y(t), but you could not

define ¥(t) until afterwards, because the 48 would have known

how to differentiate the simple function '®(t)=1.5"' and thus

would have ignored the defined alternative, derx.

(5) SoLving, PLOTTING, AND ANALYZING

9. Turn off dot-CoNneCT mode (if it’s on): MODESINXT)[H3I=.

Then create the function: (GJEQUATION[GJO)a]a)X][—]2)W)(@)X)[+)

E)I)ENTR)

Now set the display ranges and plot the function:

(EPLoDLTI (2)0)+/-JsPcl2)o) HAIH

Now explore this plot: By inspection of the function definition,

you know that the vertical asymptote is at x=-2. You can find a

horizontal asymptote at y = 1 (for x < —2) via ()<[IZHIEHA;

and at y = 1 (for x> -2) via (=)A

To find the root, press IIEN.... Result: Root: 2.66

(IEA will find this too, because it’s an inflection point.)

10. Create the first expression in the EW: (ATTNJATTNJ&]EQUATION]

00OHUXEY A[m))XENTER).

To evaluate the expression, you have two choices: evaluates

the integral symbolically and stepwise. By contrast,

evaluates the definite integral completely and numerically (in-

cluding the symbolic constant, I, which won’t evaluate).

Try the latter: (=NUM.... a. Result: 21.25

Do the other two similarly (you can use and from

the Equation Writer).... b. Result: 19.68*

C. Result: 1.76

*This assumes a FIX 2 display mode. The display setting limits the precision of the integration.

Calculating b. and c. in STD mode gives 19.5%4 and 1. 77, respectively.

More Solutions 295

11.

296

Find this indefinite integral by using integration by parts:

o]
(x+1)°

1

(x+1)°

But all integration on the 48—even symbolic integration—re-

Let u=xe and

 First, calculate v from dv by calculating J'

quires limits. So use the variable of integration as your upper

limit and a “dummy” name as the lower limit, then drop the term

with the dummy name in the result:

and PURGE X, Y,U and V. Then
)X()(ROXHR)YN (2)(1>(e]XJENTERIEVALIPRG]
NEENES (@) «[«EVAD.... Result: '-INV(H+1)'

Store this result in ¥ and store xe* in U:

(JeJuJsTo)
Calculate oU: (Je]X)ENTER]>)3). Result: 'EXP(K)I+X*EXP(K)'

Simplify this with RULES: (v)<)(<[<)GT=EKM«[AMEE
EEEM(ENTER). Store this in dU)e)U)(ENTER)(STO).

Now calculate the integral: UV —J' VdU dx

Find and simplify UV: (VAR)ITHIIEIALGEBRA)[N

Find and simplify VdU: (VAR)ISBTALGEBRA)i

Then create the integral:

(recalls the simplified integrand from the Stack)(»)(«]X).

Now EVALPRG)INENNIENEA€[«EVADS....
Result: '-1/(1+K)*ERP(RI*X+EXP(KR)' Thus,

X

——xe—zdx = _xe +e"+C

(x+1) x+1

Use (v) to view this in the EW,if you wish.

(5) SoLving, PLOTTING, AND ANALYZING

12.

13.

The 48 can’t symbolically integrate the integrand as given, but

in this case, you can modify it via partial fractions:

x+3 5 4

x2-3x+2 x-2 x-1

So, create the integral with this modified integrand:

IYoX5[eX2=4=X=T[X)ENTER)

Now evaluate it: (@] «]«]EVAL

Result: '=(4*#LNCK¥-1))+5#[N(¥-2)'

Use the TAYLR function, located in your menu. First,

create and enter the function: (3]Jo]XJENTER[GeX)(X).

Now enter the polynomial variable: (*]Ja]X)ENTER.

Then enter the degree of the polynomial: (5]ENTER).

Go: (G)ALcEBRAIINTNT-
Then evaluate the coefficients: (EVAL....

Result: '3+3*X+].58¥K"2+0, SB*K"3+0. 13K*4+0, B3*K"3'

Press (¥) to see the result in a clearer form, if you wish.

More Solutions 297

14. Create a third function that’s the difference ofthe two parabolas:

(RRENRCYN(DGAGEERA]

Now plot this function ('Y' is the independent variable here):

(EXPLon))IR(vx)=R [PREV)(IOoY)SPe)2]+/-JsPC]2)

The desired area is the area under the curve between its roots.

So press (</<IEEXEIETH to find the negative root and mark it

(press (X)). Then go find the positive root(=)Land press

BTN to calculate the enclosed area between the two roots.*

Result: AREA: Y.00

15. The length of the curve is given by the formula:

Lr(1)]= J||r’(t)|| dt

The i and k terms of the derivative can be found by inspection.

To calculate the j term: ('Jcos]@TJENTER]Yx]JLOG]
E)aJa)AcEeRAMIME] ... Result: 'B.43-COSCTI*SINCT)!
That’s 0.43 tan(s). Sor'(t)=i+ (0.43 tan) j

To calculate the integrand:

So |r’(¢)| = V1+0.19tan* ¢

Now create the integral (using the Stack is quickest) and evalu-

ate: (0JENTER[G)4]~a)a]a) KWW (ENTER) ("o)TIENTER] S

[©~NUM.... Result: 6.8l

*Note that the AREA integration function in PLOTis sensitive to the scale of your display. For

greater accuracy, use a smaller scale (“higher magnification”).

298 (5) SoLving, PLOTTING, AND ANALYZING

16.

17.

The surface area of a revolution of a curve about the x-axis is:

S= J‘Z’lty(t)wf[x'(t)]z +[y'(0)]dt

when the curve is expressed parametrically. The given curve

converts to: x(t)=4(s* -2logt), y(r)=t withre[l,2]

So PURGE T and calculate the integrand:

(ISOISTIY2]-J2]X2LoaeT[>>+4]

()3IENTERX)M(1)()eENTER)2IX)(%)

Now create the integral and evaluate:

(1)ENTER] 2)ENTER|A]a]o) I[N (ENTER) ("o[TJENTER]]S[2)~NUM

Result: 11.74

First, PURGER and 8. Then set curve-filling mode(i.e. clear flag

—31) and RADians mode. Now create the function as the current

EQ in PLOT: (Ya)Xcose]X)al>]F)ENTER(>IProTie)ITTITEE.

Then change the plot type to POLAR (3xT)AETEETR), change

theindependentvariable to8 (Jo)=F)NXxTINXTIRAF), and plot

the graph: IEITHIN....

Now, the area enclosed by the curve is given by:

2n

j%(4 cos80)’ do
0

Create the integral and evaluate: (ATTNJ0]ENTER]2]]X]

S)PrREV) IIEEM (&X22)=oDFIENTER[DJSINUM) (wait). .

G)AGEBRAINXT)IEXTIA.... Result: '8#*r'

More Solutions 299

18. First,Juniorderived the formula* relatingn ducks’bottoms (nV,,),

to the rise in the pond level:

D+1 h L

nVy, = IOOOJ Lr* COS_I(I - _) ——(r—h)\J4h(2r — h) dh
D r) 2

2 2

where r = it__f4_D,
8D

L = length of the pond

x = the initial width of the pond

h = the depth of the pond

D = the initial depth of the pond (before ducks)

I = the increase in pond level due to the » ducks’ bottoms.

Next, he PURGEdthe variable names:(U]]L)SPC)(@]N]SPC)(e]

sPc]@]R)sPc]e]X]sPc]a]H)()D)() 1)([ENTER) &JPURGE).

Then he created the formula in Equation Writer, named it DAM,

and made it the current equation:

>)>)®)(efH) ENTER)
&Jsove)KIEZNAIMENTER).

*It's a fascinating derivation, but unless you really want to prove it to yourself, you can take his

word for it (he’s been studying at Hydro Tech, remember). The point here is to notice that your

unknown, I, is part of the limit of the integral—a new variation.

300 (5) SoLving, PLOTTING, AND ANALYZING

Then he created the subexpression and stored it into R:

(JalO[IXIY2]+a)x]eln]Y>2]»[+JaO8JX]oDJENTER

510}

Junior entered SOLVR and loaded up his known variable values:

B(=2560@OO0

Butbefore he could solve for [—the increase in pond level caused

bynducks—Juniorneeded an estimate forn, the numberofducks.

As a maximum, he divided the total surface area of the pond by

the average surface displacement of a d.b.:

BRIEDH]

Result: 28, 222.088 ducks—packed in like sardines.

Now,for the piéce de resistance: ()[_1L_].

Result: I* B.82 (meters)

Just ashehad surmised: Even ifthe pond were packed solid with

ducks, the water level would rise only about 2 cm—not nearly

enough to swamp his dad’s extra 50 cm of dam.* (In fact—as he

calculated later—even if all 20,222 ducks were to dive for food at

the same moment, this still wouldn’t be enough to do it.)

*It turned out, however, that the ducks weren’t entirely blameless: After some further exploration,

Junior and his dad discovered that the real problem was that his father was building his dam each

year on a deeper and deeper layer ofduck droppings accumulating on the bottom of the pond. The

droppings were not as firm abase as the actual pond bottom, so at the springthaw—with its sudden

water rise—the dam would settle and slip. But it was pure coincidence that the ensuing overflows

had happened around the same time as the annual arrival of the ducks.

More Solutions 301

19. a. Use the Equation Writer to key in the summation:

(JEQUATIONI]Z)]K>L1[7J») eO+/=]1)

)JKHDIS0=22]oKIH1)
Evaluate: (EVAL.... Result: 8.18

b. Onthe48,you can often sum an infinite series by including

an upper integration limit great enough to determine if

convergence occurs (set flag —21 so that divergence over-

flow will stop the calculation: (2]1)+/=JSPc]a)S]a]F)ENTER)).

Create and evaluate the series: (GJEQUATION) (=]Z) (@]()

(o)Eo)oA=21K()(VBY]K]

Result: -1.54 (after 15 iterations)

20. The formula for the time—expressed in decimal hoursis:

oo

s Lk where 1<n<12 is an integer
12 12

k=0

Create this expression as the current equation in SOLVE:

(6ought
to be enough iterations for the required precision: .01 seconds is

about 3x10° hours, and 12 is smaller than this)

=R KENTER)Glsove)EiEEL.
Fix 6 decimal places (&]MOoDES)(6)IHEM). Thenbegin evaluating:

EsovEDRJEFEER.... Result: EXPR: 1.898989

Convert this to hours, minutes, seconds: (&)TIME[NXTNXT)

Result: 1.85Z727 That’s 1:05.27.27

Repeat for n=2...11 (n =12 is a repeat).... Results:

2.185455 3.16218Z2 4.214989 5.271636 6.324364

7.381891 8.433818 9.498545 10.543273 1Z.06060606

302 (5) SoLvinG, PLOTTING, AND ANALYZING

21. This requires a Markov Chain approach. The matrix described

in the problem is the transition matrix, CARS. So,in STD display

mode, use the Matrix Writer to create CARS as a 4 x 4 matrix.

Then enter an arbitrary (1 x 4) initial-state matrix, that repre-

sentsthecardistribution onthe first “morning” ofyoursimulation:

GJOIaS2)5)0)sPc)3)4)sPC)(7]5)sPC ENTER) (you can use
any four numbers that sum to 400—but in an array, not a vector).

Now FIX the display to 0 decimal places, and then multiply the

initial-state matrix by CARS to find the distribution ofcars at the

end of the first “day:” (VARG(X)....

Result: [[226. 52. 68. 54. 1]

Now repeat this sequence (I(X), [LT#(X), etc.) until the re-

sulting distribution stops changing—the steady-state matrix—

for optimal distribution....Result: [[147. 76. 82. 95. 1]

So the company keeps 147 cars at LAX, 76 at Burbank, 82 at

Ontario, and 95 at Orange County, to best meet normal demand.*

*You might be thinking that this iterative method of solution (“start-with-any-combination-and-

wait-until-the-result-becomes-steady”) might work for the car company without any forethought

or math at all; they could simply act out the iteration process in the course oftheir business. That’s

possible, but for the first couple ofweeks, they’d probably have some dissatisfied customers at one

or more airports—not so good for business. So, bring on the 48!

More Solutions 303

22,

304

To compare risk, you must compare the variances ofthe samples.

The variance ofa sample is the square ofits standard deviation.

The F-statistic is a ratio (larger to smaller) of two variances:

2

F="L whens>>s’2
S

Compare common stocks and municipal bonds (set FIX 3):

Input the degrees of freedom: (4]9)(ENTER[3]4)([ENTER), then

the F-statistic: o)5Ila78X#*.7E9)

Compare this against the probability distribution:

MHETANDIEEA.... Result: 3.784E-6

That’s a very significant difference in risk. Further comparisons

will demonstrate that the differences in risk are highly signifi-

cant across all investment types on the list.

To make a predictive model, create a data matrix, RISK, with two

columns ofvariables—mean annual return and risk—and make

it the current data matrix: (=MATRIX]

)X-Xo)s)EnTER)5NENTER)S8(ENTER)N
ENTER)ENTER)(SISTADIETHRE(RS[K)(ENTER).

Now find the best regression model and its coefficient ofdetermi-

nation: (0I(2)I()(RI
EAAS)3.... Result: Modl:LIN Intercept: B.569

Slope: 1.669

coefficient ofdetermination: B.795

The expected return for an investment with a standard deviation

of 11.67 would be: (1=[6][7)EATH Result: b.653

(5) SoLvinG, PLOTTING, AND ANALYZING

23. Thefirst matrixinthe problem isthe 5 x5 technology matrix (T).

The second matrix is the demand matrix (D). You need to cal-

culate the output matrix (X) that satisfies both internal and

external demand:

Total Internal External

Output Demand Demand

X = TX + D

Thus, X =-T)'D.

So, to calculate X, first PURGE T and D (so that they'll appear

together in your VAR menu), then create and name matrices T

and D, using the Matrix Writer.

Next, create a 5 x 5 identity matrix, [: GIMTHIZGLANITN...

And subtract T: VARIIIE(=)....

Then invert the result matrix: (I/x]...

and multiply by D: ITE(X)....

Result (FIX0): [[267/2. 3329. 1
[2686. 2518. 1
[2661. 2684. 1
[26/6. 3466. 1

][2846. 2638. 1]

More Solutions 305

(6] BuLpING YOUR OwN TooOLs:

PROGRAMMING

Your “Automation” Options

Now that you've seen some ofthe “smarter” tools HP has built into the

48, it’s time to learn how to build some for yourself.

Atoolin your 48 is anautomatedprocess—a set ofoperations, recorded

somehow, so that you don’t need to re-do them every time you want a

similar result. Keep in mind that there are several ways to do such

“automation”—some of which you’ve used extensively already:

¢ By naming an object, you effectively record the keystrokes you

used to build or calculate its value in the first place. You can

reproduce or re-use that value whenever you invoke the name.

¢ Analgebraicexpressionorequation tellsthe machine to execute

agiven set ofalgebraic operations—on a given set of VARiables—

whenever you EVALuate that algebraic object.

e A postfix program tells the machine to execute a given set of

commands—on a given set of VARiables, Stack arguments, and/

or system parameters—whenever you EVALuate that program.

¢ A list’s elements can be any objects and any commands. And

whenever you EVALuate a list, each of its elements is evaluated

sequentially, so this is another way to record and execute com-

mands on VARiables, Stack arguments and system parameters.

Your “Automation” Options 307

Compare the various methods of “automation” with this table:

Object Allowed Source of Range of How You

Actions Values Results “Run” It

Named EVALuate| any available a single value: |invoke its

Object VARiables the value of the| name

object stored in

the name

Algebraic any any available a single value: |EVALuate

Object functions VARiables |the result object it

Postfix any any Stack argu- any value(s), |EVALuate

Program commands|ments, available |objects and sys- it or

VARiables, sys- tem conditions |invoke its

tem parameters name

List any any Stack argu- any value(s), |[EVALuate

commands \ments, available |objects and sys- it VARiables, sys-

tem parameters tem conditions
Consider, therefore, how you might best use each type of“automation:”

308 () BuiLpING YOUR OWN TooLs: PROGRAMMING

e Torecord anobject’s value, ofcourse, just name it as a VARiable.

e To do math with VARiables and functions—generally, any

“crunching” intended to give you a single result—use algebraic

objects. They’re generally easier than postfix programs to

build, read, use, troubleshoot and understand.

However, though an algebraicishandy,it’s not especially “smart.”

It can do only functions (calculations describable in the 48’s al-

gebraic syntax). And of course, not all functions are defined for

all object types: Youcanaddtwostringsnamedaandbwith 'a+b’',

but you can’t subtract them with 'a-b'. You’ll get an error (and

an algebraic generally cannot test for or avoid an error). Also,

remember that, unlike most object types, you can’t EVALuate an

algebraic simply by invoking its name. Thatjust puts it onto the

Stack; you must then EVALuate it explicitly.

¢ Wheneveryou need to get multiple results, manipulate objects or

the Stack, adjust system settings (flags, directory structures,

etc.)—i.e. do any non-mathematical but nevertheless “record-

able” kinds ofoperations—these are jobs for programs or lists.

Of the two, a program is the more tailor-made for ready execu-

tion, because it does EVALuate when you invoke its name (not so

with a list). On the other hand, once you've built a program, you

can’t modify it (edit it) under any sort of automation—only “by

hand.” But you can readily edit a list via “recorded” commands.

The point here is to choose the most straightforward method for the

job. When names and algebraics will suffice, use them. As you learn

about programming, remember to save it for when you really need it.

Your “Automation” Options 309

Local Names

To recall the basic idea of building and naming a program, keep your

place here, and look back for a moment at pages 132-135.... Ofcourse,

not all programs are so simple as those you first built. Sometimes you’ll

need loops and conditional tests, error traps, etc. And you’ll learn

about all of those things in this chapter. But first,...

Do This: Clear your 48’s Stack and recall the User-Defined Func-

tion named 9—the one you built on page 214.

Solution: Press (VARIG]PREVIJPREVI<JPREVIIIEZIM and see:*

€ > wy "'PEutury' »

A UDF'isreally apostfixprogram;the DEFINE command

built it from your algebraic definition. A UDF must be

a program in order to take arguments from the Stack.

Question: What’sthat * ¥ Y before the algebraic?

Answer: That’s to tell the UDF how to take your function’s argu-

ments offthe Stack wheneveryou evaluate it. Theand

Y are local names—names (having nothing to do with

VARiable names) that the 48 associates temporarily

with Stack objects.

*For the sake ofspace, this Course will not necessarily show programsformatted identically to your

48’s displayed version, but they are entirely equivalent. Line breaks—here and in the machine’s

display—carry no significance; they are merely formatting for visual clarity.

310 BuiLpine Your OwWN TooLs: PROGRAMMING

Keep in mind that you can use a UDF just like any built-in function:

Either you put its arguments onto the Stack and invokejust the name:

B or, you invoke the name and arguments in an

algebraic: 'q(4,3)'

When you invoke the function’s name, I, the 48 EVALuates the

program, 9. The first set of instructions it encountersis *+ % Y

Essentially, this says to the 48: “Take the objects from the bottom two

levels of the Stack (upper one first—it was on the Stack first), and

temporarily identify them with the names* given after the +.”

With the algebraic form, 9(4; 3), theparentheses tell the 48: “Take the

arguments from within the () and put them onto the Stack—in order.”

At that point, then, the situation is the same as when you placed the

arguments onto the Stack: 9 executes, and the * ¥ Y instructions

proceed as usual.

So that’s what a User-Defined Function really is—a postfix program

that does just two things:

(i) assigns one or more Stack arguments to local names;

(ii) uses those local names in calculating a single result.

*There’s absolutely no requirement to use lower-case letters for local names—butit’s probably a

good habit to develop. It’s a convenient reminder that they are indeed local names (as opposed to

global VARiable names, for which you’ll likely use uppercase characters more often, since the VAR

menu displays only in uppercase).

Local Names 311

Question:

Answer:

Do you have to use DEFINE to build a UDF?

Not at all. For example, you could have built the 9

function yourself: [QJ«IPI=]eJa]X]IsPc]a)a)Y]sPC])

XelaXHQXXeVENTER)(ela]Q)(sTo)

Now test it: (4]ENTER|5)

or ('JaJaJaJa)O)4JaJ5JENTER)[EVAL) No difference.

Question:

Answer:

Does the “crunching” portion of a UDF have to be a

single algebraic object?

No. Infact,youdon’t need touse an algebraicatall. This

postfix form would work just as well:

-)xt_.’

E % ¥ Wy ¥ +

¥
¥

&
R

Key that in:

GlaJalXIsPc]efa]Y«2)sPc]afaXTIX]

(JaIX)EPA)(Ja]Y)X)HENTER)(TQ)(STO).

Then try it: (4JENTER]S)IIEI
or(DI(GO4Ja-[SIENTER) EVAL

312 BuiLping Your OwN TooLs: PROGRAMMING

Question:

Answer:

Question:

Answer:

Why the “program within a program”—the extra set of

% * inside this last version?

To declare and assign local names, you use the *, fol-

lowed by the ordered listing of those names. Then,

somehow you must signal the end of that listing. The

two allowed signals are an algebraic object or the begin-

ning of a program. Thus, these programs are valid:*

« + w y 'SIN(4D)+xsy' "Bye" »

« 45+ w yc €« c SINwy s + » "Bye" »
« "Hi" + m « "Good-" » “b';lE'" * (unused names

are “legal”)

But these are “illegal:”

« + » y "Hi" 'SIN(43)+x-y' »
« »ab"Hi" «alb-=»=»

Why is an algebraic object or program segment the only

allowed signal for ending a local names declaration?

Because it also defines the only environment in which

those local names exist. The names are local (and thus

not in conflict with your global VARiables) because ofthe

strict boundary you draw around their “jurisdiction.”

And that boundary is the defining procedure—the al-

gebraic object or postfix program—immediately after the

names declaration.

*They’re valid programs, but notice that they’re not usable as UDF’s: Each of them leaves more

than one result on the Stack—a definite no-no for a function.

Local Names 313

Make no mistake: Local names are indeed name objects. But each is

born, lives and dies with its defining procedure. To illustrate...

Example: Write a program to calculate (x+1)(x 1),

taking x from Stack Level 1.

Solution(s): (i) « DUP 1 + SWAP 1 - *= =»

Direct, butunclearthat it uses an argument.

Gy) <« 'W STOR1+nr1-+%=»
The argument is more obviousifyou nameit.

Gii) <« * R «¥1+KH]1-%2»2»

Looks a lot like (ii).

Gv) €« 2+ K "(RD=(R-1)" »
The clearest of all, visually.

Cases (ii) and (iii) dolook similar. Indeed, '®' STOand* ®aresimilar

in effect: both store the argument into a name, 8. But that name is

something entirely different in each case.

Incase (ii) '®' isaglobal name and will remainin the current VARiable

directory after being used. At the very least, this clutters up that

directory, but what ifyou’ve already used the name '¥' to store some

otherimportantvalue? Case (ii) would overwrite (destroy) that value.

By contrast, in cases (iii) and (iv), the local name, ¥, never exists in

any VARiable directory; storing the argument in it during its defining

procedure does not affect any global name, '®'. And the local ®

disappears at the completion of its defining procedure.

314 (6) BuiLpinG Your OwN TooLs: PROGRAMMING

So you can see that local names are just as handy as global VARiables

for “calling up” input values whenever you need them—so that you

needn’t try to keep track of them in the Stack meanwhile.

“Ah: So invoking local names works just like invoking global

VARiable names?”

Recall that when you invoke a VARiable’s name, this triggers

an automatic EVALuation ofthe object contained in the name

(except if it’s an algebraic or a list). But when you invoke a

local name, there’s never an automatic EVALuation; the object

contained in the local name is simply put onto the Stack.

You can demonstrate this difference. Try this program that,

given two arguments (the old name and the new), renames an

existing VARiable in your current directory:

« » old new « old RCL

new STO old PURGE » =»

The fact that this program works at all (try it*) says a lot:

When it first invokes the local name, 01d, this simply puts the

object contained in0ld onto the Stack. That object is aglobal

(VARiable) name—the name you're changing. And clearly

this isn’t evaluated; if it were, the value in that name (what-

everit might be) would probably produce an errorwhen the 48

tried to execute RCL with that value as its argument.

*You won’t see many explicit keystrokes from now on. Ifyou’re still not sure how to key in and use

a program like this, you may want to review Chapter 3, pages 132-135.

Local Names 315

One more thing to keep in mind about local names: Since you can

“nest” one program segment inside another, you can therefore “nest”

the definingprocedures oflocal names. So, to train your eye to see local

name environments, look at these examples:

« » b c "T(c*2-b*2)' »

The simple case: Local names C and b exist only inside the defining

procedure. This could be a UDF—named LEG or something similar.

{ »bc 'T(c"2-b*2)'

Don’t forget that lists can do it, too. If you EVALuate this list, a local

environment with C and b will be established for the algebraic im-

mediately following—just as with the program version above.

« 2 5 « 5 50R s 4 = »

+ a p '22x(a-9+p-38)!'
»

This is a sequence of local name environments: Assigning a single

argument (the side of a square) to the local name, 5, the first defining

procedure then uses S to leave two results on the Stack (the area and

perimeter of the square). Though the math is easy enough, you can’t

use an algebraic to generate more than one result, so the first defining

procedure must be a program. Then, after it finishes (S and its envi-

ronment are gone), the two results are assigned to another set of local

names, d andP, for the final calculation in an algebraic procedure form.

316 (6) BuiLpinG Your OwN TooLs: PROGRAMMING

« »xyz<«x SRy SOR + [

+ r 'wErt2Ez! ' [(wh2Hyt2ezie)! e
SWAP

Thisis a nesting oflocal environments: The first procedure takes three

arguments and assigns them to%,4 and Z. Then it does a calculation

on ¥ and Y and assigns that to another, inner procedure environment

(the first algebraic), to complete a cylindrical volume calculation.

The end of that algebraic is the end of the inner environment; at that

point, I disappears. But the outer environment still exists, so the

program can continue to use ¥,4 and Z until it encounters a * to end

that environment. And of course, even after that, the program itself

can continue.

Notice that the local names from the outer procedure (%,4 and Z) exist

within the inner procedure, too—because they existed in the environ-

ment where the inner environment was being created.

« » b c "T(c*2)-T(b"2+LEG(b, c2*2)"' »

Here, within an environment with local namesb and c, you invoke LEG

(from the previous page). So LEG EVALuates, thus creating an envi-

ronment for its local names, b and c.

Do those conflict with the b and c created above? No. Unlike nesting

(where all commands creating the inner environment are executed

within the outer environment), when you invoke the name of another

program, any local environment(s) that program creates will be out-

side the invoking environment, Therefore, LEG cannot “see” the local

names created above. It will interpret theb and c in LEGCh, c) asthe

global VARiablesnames 'b' and 'c' and assignthose toitslocal names.

Local Names 317

Program Design

Obviously, you can do a lot more with a 48 program thanjust straight-

ahead arithmetic with a few arguments. It’s time to explore the 48’s

inventory of programming tools—loops, conditional tests, etc. But

first, some general comments....

No matter what kind of machine you’re programming, you generally

work through certain basic considerations when designing the pro-

gram—before you even begin to write the code itself.

Ageneral program design checklist might look something like this:

Define the outputs

Define the inputs

Set your strategy

Subdivide tasks:

Prepare

Get inputs

Process inputs

Give outputs

Clean up

318

Identify the results the machine is to calcu-

late—the acceptablerangesofvalues and their

order and format of presentation.

Identify the information the user will supply to

the machine—acceptable ranges ofvalues and

the order and format of input.

Identify the critical approach and processes.

Prepare memory, system parameters;

Prompt for, check and store inputs;

Calculate, trap undesired errors;

Format, recall results;

Reset memory, system parameters, etc.

(¢) BuiLpinG Your OwN TooLs: PROGRAMMING

This Course isn’t a programmingtechniques manual; that could easily

fill another book. But this checklist can help when you’re program-

ming the 48, especially the step where you set your strategy. If you

clearly define that strategy first, you’ll have no problem matching it

properly with specific tools in the 48.

Also:

¢ There’s no way around it: In postfix programs, you’ll have to use

some postfix notation. And it’s not intuitively easy to read:

1 2 + instead of 1+¢

Soin every solutionyou see here, force yourselfto “walk” mentally

through the program steps: Envision the Stack (do it on paper if

it helps) and track the arguments as they come and go. If you

want to be a programmer, you must learn the language.

e What’s the difference between a built-in command and a pro-

gram that you build and name? ...Think aboutit....

Not much, right? So ifyou don’t find, say, a certain handy Stack

command already built-into the 48—no problem—build it and

name it yourself! In this way, you can literally add to the tool box

ofcommands in your 48. And then, of course, you can use those

tools to create still others, and so on.

The 48 is well suited for such modular programming: no single

program structure need be very long or intricate. Instead, it can

invoke other small programs as commands, which,if you've de-

signed them consistently, will behave as such (take arguments,

return results, generate predictable errors). Your design strat-

egy simplifiesimmensely ifyou consistently mimic built-in tools.

Program Design 319

First, look at some “warmer-uppers” to see how that design checklist

applies to your modular 48 workshop....

Problem: Write two programs, LMAX and LSUM, that do for lists

what the commands RNRM and CNRM do for vectors.

Solution: Qutputs. Each program should return a real number.

Inputs. Each program will take one argument (Stack

Level 1)—a list ofreal or complex numbers (one type

only). Any type error should be reported

Strategy. Convertthe list to array; then RNRMorCNRM.

Subdivide tasks. No need to prepare anything. These

programs should use the current memory configura-

tion and flag settings, just like built-in commands.

No prompt for the input—postfix commands assume

the argument is on the Stack already. And no input

checks; CNRM or RNRM will catch object-type errors.

Each program consumes its argument and leavesits

result on the Stack—just like a built-in command.

No need to clean up—you didn’t mess up anything.

The code.

LMAX: « 0BJ+» »ARRY RMNRM =

LSUM: « 0BJ+» =»ARRY CMRM =

320 BuiLpING YoUur OwN TooLs: PROGRAMMING

All the formal design may seem like a lot of fuss over those rather

simple programs, but—like anything else—ifyou do it consistently, it

will become automatic.

More to the point, notice how many ofthe steps in the design checklist

are taken care ofby using or mimicking the built-in commands. Now

LMAX and LSUM will behave as commands, too—especially if you’ve

stored them in the HOME directory (so that they’re accessible from any

other directory). Try some more....

Problem:

Solution:

Write a program to compute a unit vector in the same

direction as a given vector.

UNIT: « DUP ABS -~ »
This consumes the argument and leaves a result—for

any non-zero real number, unit, complex number, vector

or array (and depending on flag —3, an empty name or

algebraic could be acceptable, too). For other argument

types—or zero values—you’ll get an error. All ofthisis

consistent with the behavior and definitions ofthe built-

in ABSfunction.

Problem:

Solution:

Write a program to double an array and subtract 1 from

every element.

DS1: « 2 = 0DUP 1 CON - =»

Again, this consumes the argument and leaves a result.

And it works on several argument types.

Program Design 321

When you need multiple arguments—or need to do more “horsing

around” on the Stack—that’s when to consider using local names to

keep things clear and tidy....

Problem: Write a program that splits a given character stringinto

two substrings. Make the split before the given charac-

ter position.

Solution: SPLIT: <« » s p

«s]1lpl-5SBsps

SIZE SUB »
»

Follow the progress ofevents on the Stack (work on your

postfix reading skills). Notice how the program pre-

pares two arguments for the built-in command, SUB.

As usual, the program consumes its own arguments.

Indeed, local names accomplish this very nicely: they

removethe argumentsfromthe Stackrightaway, keeping

them available by name, then disappearing with them

when their procedure ends.*

Notice also that the two results (the two parts of the

original string) are left on the Stack so that the reverse

process (combiningthem)is aseasy aspossible (+)). This,

too, is a typical trait of the built-in commands (recall

how OBJ* works so well in this respect).

*But is SPLIT a User-Defined Function? No—it leaves more than one result.

322 (é) BuiLpine Your OwN TooLs: PROGRAMMING

You’ve been designing new commands that relied upon built-in com-

mands they invoke to set their input limits and generate errors. But

what if you want to create a command with more flexible tolerances

(“smarter”) than any built-in command it invokes?

Conditional Tests

The mostbasic kind ofprogram flexibility is a machine’s abilitytomake

decisions. Thatis,it can change its course ofaction “on the fly”—basing

its decisions upon information it encounters during execution. The 48

makes a decision by asking a question that can be answered by “yes”

or “no.” The command that asks the question is a conditionaltest, and

it returns a 1 result for “yes” or a 8 result for “no.”

Do This: Press andlookthroughthe resultingmenu....

Each item asks a question* answerable by “yes” or “no”

(1 orB). And most ofthese questions compare one value

with another, therefore demanding two arguments.**

For example, the > command asks: “Is the object in

Stack Level 2 greater than that in Level 1?”

*Actually the SF, CF, TYPE and NOT commands are not tests (yes-or-no questions) at all, but you

use them so often in conjunction with the other tests that they appear on this menu for convenience.

**There are a few single-argument tests, however—the flag tests (FS?, FC?, FS?C and FC?C)—

where the only argument needed is the number of the flag to be tested.

Conditional Tests 323

Ofcourse, when you’re conducting such comparative conditional tests,

the two argument objects must be comparable. You can’t compare

apples with oranges; nor an array with a character string. In general,

the two objects being compared should be of the same type.

Examples:

324

arguments Test

e: 11 <

1: 19

Result: 1 “Yes—the object in Level 2 is less than the

object in Level 1.”

: 11 +ab«abd(z=»

1: 19

Result: 1 The same test as above, but using local

names and a program procedure.

2s 11 + ab 'alb'

1: 19

Result: 1 Same again, usingan algebraic procedure.

2 11 >

1: 19

Result: B “No—Level 2 is not greater than Level 1.”

2t "AARDVARK" <
1: "zymurgy"

Result: 1 For strings, “less than” means alphabeti-

cally first (note: "Z" comes before "a").

BuiLpin Your OwN TooLs: PROGRAMMING

2t (11, 8) ==

1= 11

Result: 1 == tests for equality ofvalue (the single =

symbolis forbuildingalgebraic equations).

2t (11,8 SAME

1: 11

Result: @ SAME tests for exactly identical objects.

2= 1 th 1 é

1: '4xRsC!
Result: 'B*?24*#A*C' A test comparing expressions

acts as an operator, combining the two arguments into a

new expression (recall that you built a quadratic expres-

sion similarly: 'B*2-4*A*(C"'). To get the yes-or-no(l or

B) answer to the inequality test, you must EVALuate it

with numerical values in each VARiable (A, B and).

Result: 8 The logical operators can test combina-

tions of real values. Each value is taken

simply as non-zero (true) or zero (false).

2t B =+ ab '(aOR b) AND b’

1: 64

Result: 1 You can build tests of your own likethis.

Conditional Tests 325

Branching

So now you know how to tell your 48 to test values—ask questions....

Question:

Answer(s):

How do you tell it what to do with the answers? How

do you give the program one set ofcommands (“Plan

A”) for a “yes” answer and another set (“Plan B”)—or

maybe none at all—for “no”?

You use one of the four IF program structures, all

available in the I3 (BRanCH) menu:*

Answer IF Answer

PlanA THEN PlanA

IFT END

In each of the IF-THEN structures, the 48 evaluates

PlanA only if the Answer to the test is true (1). If

Answer is false (B), the structures do nothing.

Answer IF Answer

PlanA THEN PlanA

PlanB ELSE PlanB

IFTE END

In each of the IF-THEN-ELSE structures, the 48 will

evaluate Pl1anf if the Answer is true (1). Butif the

Answeris false (B), the 48 evaluates PlanB instead.

*The various menus in the toolbox offer a wealth oftyping aids for programmable commands

(for STacK, DiSPLay, etc.), many of which you can use in this chapter. Be sure to use them—and

explore them, including their shifted menu items—as you build programs here.

326 (¢) BuiLpinG Your OwN TooLs: PROGRAMMING

Example:

Solution:

Write a program that squares the Level-1 argument

only if its absolute value is between 1 and 5 (inclusive).

« » w « 'ABS(x)>1 AND ABS(w)<5'

w2 IFT » »
IFT (“IF Then”)is the postfix version ofIF-THEN. Itlooks

on the Stack for its arguments:

2t 'ABSCx):1 AND ABS(x)<5'
1 s 1 xhz 1

The first argumentis the test, which evaluates either to

1 orB. The second argumentis your“PlanA”—the object

tobe evaluated only ifthe test evaluates to true (1). Note

thatineithercase—like othercommands—IFTconsumes

its arguments.

Or, your “Plan A” (the second argument) could be a

program (or any other object) instead of an algebraic:

« » w « 'ABS(x)x] AND ABS(x)<3!

« % S0 » IFT » »

Here’s the Stack as the IFT would find it in that case:

2: 'ABS(x)x1 AND ABS(xJ)<£3'
1: « x SO »

Programs and algebraics are both valid object types for

procedural arguments such as these.*

*You could, of course, use a program rather than an algebraic for the conditionaltest, too:

« w ABS 1 > ¥ ABS 5 £ AND » But the algebraic form is much more readable.

Branching 327

Question:

Answer:

Question:

Answer:

How would the solution to the previous problem look if

you were to use the more readable IF...THEN...END

structure rather than the strictly postfix IFT?

Probably something like this:

« » w « JF 'ABS(x)21 AND ABS(xJ)<3'
THEN % SQ@ END » »

IF...THEN...END doesn’t expect Stack arguments; it’s

probably easier to read.

Is readability the only advantage of IF...THEN...END?

Part ofits readability makes it convenient to key in, too:

Since it doesn’t look for Stack arguments,it doesn’t force

you to put your “Plan A” into the form of a procedure

object (program or algebraic). Instead, the 48 simply

takes all instructions between the THEN and the EMD to

be part of your “Plan A.” Thus, at the very least, it can

save you the keying in of the extra pair of ' ' or« ».

So IFT and IF...THEN...END are your two options for using the result

ofa test to decide whether or not to execute a certain set ofinstructions.

Often, though, you want to use a single test to choose between two

different courses of action (“Plan A” and “Plan B”)....

328 (¢) BuiLpine Your OwN TooLs: PROGRAMMING

Problem:

Solution:

Write a program that negates (changes the sign of) the

Level-1 argumentif it’s a real-valued array* but drops

if from the Stack if it’s anything else.

« DUP TYPE » x t
« 't==3' '=' B
IFTE » »
IFTE is just like IFT—except that you need an extra

argument for the “else” case:

3: 'f==3'
2= I‘X'

1: 8
The first argument onto the Stack is the conditional test

('t==3" asks “ist equal to 37”). Next comes the “Plan

A” object (for a true answer), then the “Plan B” object (for

false). IFTE consumes all of its arguments.

Alternatively, IFTE can be used in algebraic form—as a

function:

« DUP TYPE » x t 'IFTE(t==3,-x,8)' »

Just as with any other function, the argumentsin IFTE’s

argument list correspond to the arguments you would

normally prepare for it on the Stack. IFTE is unique

among the four IF-THEN structures in having this al-

lowable function form.

*To test the type of the given object, use the TYPE command: It will return a 3 for a real-valued

array (look up and read aboutTYPE in your HPmanuals to see all the various values it can return).

Branching 329

IF...THEN...END is a more readable version of the formal, argument-

oriented IFT. No prizes for guessing what IF...THEN...ELSE...END is

good for....

Yep: IF...THEN...ELSE...END is a more readable form of the

more formal, argument-oriented IFTE.

Watch: Here’s how you might solve the previous problem by using

the IF...THEN...ELSE...END structure:

« OUP TYPE » »x t « IF 't==3'
THEN '-x' ELSE @ END =»
»

Or (without local names):

« IF DUP TYPE 3 ==
THEN NEG
ELSE DROP @
END » »

330 (6) BuiLpine Your OwN TooLs: PROGRAMMING

So those are your four choices for branching one or two ways, de-

pendinguponthe outcome ofone conditional test. Butwhat ifyouwant

to branch one of several different ways—using several tests?

Problem:

Solution:

Write a program to return a character string describing

the magnitude of a given real value.

Use a CASE statement:

« ABS XPON »+ m «

CASE

'm€B' THEM "Ones" END

'm==1"' THEN "Tens" END

'm==2' THEN "Hundreds" END

'm==3"' THEN "Thousands" END

'm==4' THEN "Tens of thousands" END

'm==3' THEN "Hundreds of thousands" END

'm==6' THEN "Millions" END

"Several gadzillion" 1888 .1 BEEP

END » =

See how this works? Each case has its own test; the

items following it (all those between eachTHEN and END)

are evaluated only if that test result is true. The final

items—without any test—are optional, in case you want

some action(s) taken if none of the test results are true.

Very handy, no? Between IF statements and CASE statements, you can

get your 48 to branch its execution just about any way you wish!

Branching 331

You’ve seen how to use conditional tests and branching to check object

types and ranges and proceed accordingly. But what ifyou don’t know

all the possible problems? Somehow, you need to try your commands

and deal with the errors as they arise....

Problem: Write a program to perform a simple division—consum-

ing the arguments and generating a result—but substi-

tute a character string ifthe attempted division causes

an error for any reason.

Solution: <« IFERR -

THEN DROPZ "Mot a number"

END =

IFERR (IF ERRor) is much like the IF-THEN command,

but rather than obtaining a conditional test result from

the commands between it and THEN, IFERR checks to

see if those commands generate an error. If so, IFERR

causes a skip to the THEN part (OROPZ "Not a Number"

here). Ifthere’s no error, the original commands () are

completed and thosebetweenTHEN andEND are skipped.

There’s also IFERR...THEN...ELSE...END. So now you can trap er-

rors—even if you can’t predict in advance what they might be.

That’s your basic repertoire ofbranching devices. Don’t worry—you’ll

get lots more practicein the quiz comingup. But first, consider another

important set of programming structures....

332 (¢) BurLpinG Your OwN TooLs: PROGRAMMING

Looping

One ofthe most valuable features ofany computing device is its ability

to accurately and tirelessly repeat a series of commands....

Look: You can use one of these six loop structures on the 48:

Go Go

Stop Stop

START Commands START Commands

NEKT Increment STEP

To repeat a set ofCommands a known number oftimes, you

cancountfromonevalue,Go, to anothervalue, 5toP—byones

(START...NEXT) or by any Increment (START...STEP).

Go Go

Stop Stop

FOR Index Commands FOR Index Commands

NERXT Increment STEP

You can also namethe loop counter (here it’s Index), so that

you can use its changingvalue in your repeated Commands.

WHILE 'NOT Done' 00 Commands

REPEAT Commands UNTIL Done

END END

Or, for an unknown number ofrepetitions, just repeat until

agivenexitcondition issatisfied: WHILE...REPEAT...END

tests for the exit condition at the beginning ofthe command

loop; DO...UNTIL...ENDtests for it at the end of the loop.

Looping 333

Try some examples of each kind of loop....

Problem: Write a program to sum the elements of a given list.

Solution: « 0BJ+ 2 SWAP START + NEXT =

This uses the START...NEXT loop—where you simply

want to repeat a set of commands a known number of

times. Name this program SUML, and try it on this list:

{ 278943 3

The first command, 0BJ®, puts the list’s elements and

their element count (%) onto the Stack:

b: 27
2 27 3¢ 8
4: 8 4: 9
3: 9 3: 43
2: 43 2: 2
1: 4 1: 4

Next, the program puts a & onto the Stack and SWAPs

positions with the 4. Your loop counters are now ready.

TheSTART will read (and consume) them, thus counting

from 2 to 4* and performing the commands inside the

loop (in this case it’s just +), once for each count.

*Notice that the number ofadditions necessary to sum all the elements is one less than the number

of elements. This is why your loop count goes from 2 to 4, not 1 to 4. You could, of course, count

from 1 to 3 (or 45 to —43, or any other 3-count interval), but it’s simplest to use the element count

(4) produced by 0BJ* as the “end” of the count.

334 (¢) BuiLping Your OwN TooLs: PROGRAMMING

Question: HowcouldyouchangetheSUMLprogram so thatitwould

correctly ignore any error arising from trying to add

with an “unaddable” type of object?

Answer: Put an IFERR...THEN...END structure inside the loop:

« OBJ» @ 1 ROT START IFERR
+ THEN SWAP DROP END NEXT =»

In this version, youput anextra value (8) onto the Stack—

so that the program will start with a valid “running

total” even if the very first list element it encounters is

“unaddable.” So here’s the Stack as START finds it:*

: 7
8
9

43
8
1

: 4
The commands inside the loop are now the IFERR

structure, which will allow the + ifthat doesn’t cause an

error, but will substitute a SWAP DROP to dispose of any

element causing an “unaddability” error.**

H
N
L
D
-
_
I
E
L
M
U
'
\
'
\
.
I

*Since you've inserted your own starting value @), the numberofadditions necessary to sum all

elements is now equal to the number of elements. So your count goes from 1 to 4 this time.

**Still, your “sum ofall elements” may not turn out to be a real number: Recall what + does with

character strings, complex numbers, etc.: Those object types will not cause errors here.

Looping 335

Problem:

Solution:

Write a program to count (in the display) from any two

given real values, with any real increment.

€« » i jd

« i i j START DUP 1 DISP
1 WAIT d + d STEP » »

This solution uses the START...STEP loop—where you

specify the increment ofyour count as well asits starting

and ending values. Name the program COUNT and try

it with various starting, ending and increment values.*

The program begins by taking your three arguments

(your desired beginning, ending and increment values,

respectively) from the Stack and putting them into local

names. Then it puts the beginning value (1) back—as

the first running total to be displayed—then the begin-

ning and ending values (1 and J), as consumable argu-

ments for START.

Then, inside the loop, you DISPlay the running total on

display line 1 and pause via the WAIT command for 1

second. Then you add the increment value, d, to the

running total, then give d also as the consumable ar-

gument for STEP (so that it knows how to increment its

own count), and that ends the loop.

*How does it handle negative values? Non-integer values? Non-real values?

336 (6) Buiping Your Own TooLs: PROGRAMMING

So one solution for the COUNT program is to build and increment your

own counter on the Stack. You must do thatifyouusea START...STEP

loop, because the count it conducts is hidden and inaccessible to you.

But is there another, easier way to display a count?

Sure:

Watch:

Use a FOR...STEP structure instead. In that kind of loop,

its own count is accessible to you—via the name you give it.

€« + i jd

« i j FOR c c 1 DISP 1 WARIT

d STEP » =

After assigning arguments to local names, you enter a FOR

loop, supplying begin and end count values (i and J). In

a FOR loop, you declare a local name (existing only inside

thatloop), to representthe current value ofthe loop’s count.

So, first you declare the count name (C); then you use it (C

again)—putting the count onto the Stack for display.

So there’s no need for any explicit addition to increment the

Stack count: When you end the loop (giving d as the ar-

gument for STEP—as before), on the next cycle, the loop

structure itselfwill have incremented its own count, C. So,

simply invoking that name, C, puts the current count value

onto the Stack; the displayed count is the loop count.*

*Notice that ifCOUNT were to offer an increment of 1 only, you’d use a FOR...NEXT structure and

dispense with d. Realize also that, within the loop, you can do any calculation you want with ¢;

it’s an entirely usable local name—with a local environment nested inside that of i, j and d.

Looping 337

So that’s how to design programs to cycle through a known number of

loops. But what if you don’t know that number?

Problem:

Solution:

Write a program that drops objects offthe Stack until it

encounters a character string or empties the Stack.

« IF DEPTH THEN
WHILE DUP TYPE 2 #

REPERT DROP END END »

First, notice the IF...THEN...END structure surround-

ing the WHILE...REPEAT...END structure: Only if the

Stack is not empty (i.e. ifDEPTH gives a non-zero value)

will the program even enter that structure.

WHILE...REPEAT...END tests its condition first: “The

Level-1 object is not a character string (does not have a

TYPE value of 2).” The commands between the WHILE

and the REPEAT make this test, which must be true (1)

before the loop itself (the commands between REPEAT

and thefirst END) is evaluated for that cycle. When the

test returns a false (B) result, the loop cycling will end.

Notice, therefore, that ifthe WHILE test returns8 onvery

first time, the program will end without the commands

in the loop having executed even once. This suits the

problem: With a character string already at Level 1,

indeed the program shouldn’* do anything.

338 (¢) BuiLpinG Your OwN TooLs: PROGRAMMING

Again: A WHILE...REPEAT...END loop tests its condition before en-

tering the loop itself. By contrast, consider this...

Problem: Writeaprogramthatproducestwoodd randomintegers

between 0 and 100.

Solution:* IRAND: « RAND 188 # IP »

0DD?: « 2 MOD =»

« B0
DO DROPZ IRAND IRAND
UNTIL DUPZ 0DDT SWAP 0DDY AND
END =»

Unlike WHILE...REPEAT...END, a DO...UNTIL...END

loop is appropriate here, since it always executes its loop

commands at least once (even if your first two values

come up odd, you do need to generate them, no?). So the

conditional test comes after the loop’s commands.

Practice your postfix reading as you follow the com-

mands. Notice howyouputtwo startvalues (8 and 8) onto

the Stack before entering the loop. This is to allow for

the first commands inside the loop, which keep the Stack

clean by dropping two previous, unacceptable values.

*Notice how you assist the program with two smaller programs: IRAND generates a random in-

teger between 0 and 100; and ODD? tests an integer value for “odd-ness,” returning a truth value

(i.e. either B or not B)—justlike a built-in test. Ofcourse, you could instead include their contents

twice in the main program, but that’s not as good a use of the 48’s modular extendability .

Looping 339

Quiz

That’s a brief tour of the programming structures available to you.

Now put it all together with these practice problems.

340

Write two programs, one with local names and one without, to

calculate (A+B)(A—B) , given arguments A, B, C (in that order).
C

Unlike the two-argument comparative tests, the four built-in

flag tests (FS?, FC?, FS?C and FC?C) are not valid in functional

(algebraic) form. That is, you can’t build expressions such as

'"FST(-2) AND FC?(-3) ' —thoughthese might indeedbe handy

in your programs. So, write your own: write four UDF’s to allow

you effectively to use flag tests in algebraics. In general, how

might you make various system flags more convenient?

Write a new conditional test, called LIST?, that tests whether a

given objectis a list. Then use LIST? to write anothertest, called

FLST?, that tests whether a given object is a non-empty list.

Write programs that take a given string and:

(1) reverse the order of the characters;

(ii) change all lowercase characters to uppercase;

(iii) change all uppercase characters to lowercase;

(iv) change both cases simultaneously.

BuiLpin Your OwN TooLs: PROGRAMMING

10.

11.

Quiz

What'’s the primary use of a list as a procedure object?

Write a program that deletes from a given string...

(i) all leading occurrences

(ii) all trailing occurrences

...of a given character (another string—the second argument).

Write a program that waits for you to press the (o) key.

Write a program that takes a given list and a given conditional

test procedure (in that order) and applies the test to each element

of the list, returning a “filtered” version of the list—containing

only the elements that satisfy the test.

Recall the alphabetical directory structure described in problem

36 on page 149. Write a program that returns the object stored

in a given name in one of those 26 alphabetical directories.

How would you build your own version of 0BJ*?

Remember page 279 (transforming data in 2DAT)? Now write

four programs that take a given real-valued array (but not a

vector) and extract/insert a specified row/column.

341

342

Quiz Answers

As is usually the case with programming, there are many ways

to solve a given problem. First, using local names:

« »abc<«ab or « *abc
+ab-%c-z»>» '(a+b)*(a-b)-c' =»

« *abcc«a or € *abc

SO b S -c -7 » » "'(a*e-b*2)c! @

Then, without local names:

« ROT ROT DUPZ + or « ROT SB ROT SQ -
ROT ROT - # SWAP - » SWAP ~ =»

Simply “repackage” each built-in command:

fs?. &« > f « £ FS? » »
fc? &« > f « £ FC? » »
fs?c: « > f « f FSC » »
fcPc: « > f « £ FCIC » »

You can build little routines to test sets of system flags. For

example, flags —45 through —48 represent the number ofdecimal

places in the current display format; flags 49 and —50 represent

the formatitself. So you could write routines, DGTS? and FMT?,

to test these parameters (recall how you extracted the binary

wordsize similarly from its system flags on page 104).

(6) BuiLpinG Your OwN TooLs: PROGRAMMING

3. LIST?: <« TYPE 5 == »

FLST?: « IF DUP LIST?

THEN SIZE 8 >
ELSE DROP 6
END

4. (1) « »+ 5 « " 1 5 SI7E

FOR i s i i SUB SWAP

+ NERT » »

(ii) « » 5 « " | s SIZE
FOR i s i i SUB NUM
> n '"IFTECn297 AND
n£12Z, n-32, n)'

CHR + NEKT » »

Gii) <« * s « "' 1 s SIZE

FOR i s i i SUB NUM
+ n 'IFTE(n265 AND
n£98, n+32,n)' CHR + NEKT » »

Gv) <« =*» s« "" 1 s SIZE
FOR i s i i SUB NUM
+ n 'IFTE(n2S7 AND
n£122, n-32, IFTECn265 AND
n<98, n+32, n))' CHR + NEXT » »

Follow the Stack closely. Also, notice the use of the FOR loop

counter, i. And notice the nested IFTE structure in (iv).

Quiz Answers 343

344

Lists are useful to evaluate chiefly as directory PATHs. For ex-

ample, what if your program needs to DOSTUFF, which is in a

directory, DIR1, that’s not in the current PATH? No problem:

simply save the current PATH (it’s represented as a list of di-

rectory names, remember) and then later, EVALuate it—to get

back to that PATH—when you’ve concluded your work in DIR1:

...PATH » whereiwas <« HOME DIR1

DOSTUFF whereiwas EVAL »

@ « » ch « WHILE DUP
NUM CHR ch == REPEAT

2 OVER SIZE SUB END »
»

Gi) « *» ch « WHILE DUP

SIZE DUPZ2 DUP SUB
ch == REPEAT 1 SWAP
1 - SUB END
DROP » =

A WHILE loop is appropriate for each of these, since you don’t

knowrightnowwhetheryou’ll need to trim offany characters from

the given string (so the test comes before the action).

Notice that only one of the two arguments (the character to be

trimmed) is put into a local name;it’s too difficult otherwise to

place it onto the bottom ofthe Stack when you need it. As for the

original string, it’s simply “whittled down” (with SUB) by one

character each cycle through the loop; the result of the previous

cycle becomes the “given string” for the next cycle.

(6) BuiLping Your Own TooLs: PROGRAMMING

7. Here’s one way: « D0 DO UNTIL KEY END

UNTIL 61 == END =

The KEY command returns a B (“false”) if no key is pressed or a

key location (row-column) code and a 1 ifa key has been pressed.

Therefore, you’re looking for key code 61 (row 6, column 1). To do

so, you use a nested pair ofindefinite loops (DO...UNTIL’s). The

innerloop repeats until any key is pressed; the outer loop repeats

until the correct keycode (61) is detected. You might want to read

in your HP manuals more about the WAIT command, too.

8. LFLTR: « =» list test « { }
1 list SIZE FOR i list
i GET DUP IF test EVAL

THEN + ELSE DROP END
NERT » »

This is just another FOR-loop problem; you know the number of

cycles through the loop from the SIZE of the given list. Notice

that you must EVALuate the test procedure explicitly (remember

that invoking a local name won’t do this for you).

 Quiz Answers 345

9. <« » n « { HOME }
n *STR 1 2 SUB
0BJ+ + n + RCL » »

The strategy here is to build a PATH list to the given name and

then RCL that path—rather than EVALuate it—thus staying in

the current directory (alternatively, you could use the “remem-

ber-and return” strategy shown in problem 5). Notice how you

extract the single-letter directory name by first converting the

given name to a string.

10. You could do this: obj*: <« DUP TYPE CARSE

8 == THEN real+ END

1 == THEN cplx+ END

¢ == THEN str+ END

3 == THEN rarr+ END

4 == THEN carr+ END

S == THEN list+ ENMD

(ete.)

END =

Orthis: obj*: « » ob « { real>

cplx® str* .. .(etc)... }

ob TYPE GET

EVAL END » »

Of course, you also need to define each of the specific routines,

real®,cmplx?, etc. Andthen to change how a certain object type

“decomposes,” you'd simply edit that specific routine—not obj=+.

346 (6) BuiLpine Your OwN TooLs: PROGRAMMING

11. GETRW: « » i « DUP SIZE 1 1

SUB 1 SWAP + B CON

i 1 PUT SWAP % » »

GETCL: « SWAP TRN SWAP GETRW
TRN =»

Notice the assumed order ofinputs: Array, row/column number.

Notice thatGETCLuses GETRW;TRN (TRaNspose) makesit easy.

But GETRW doesn’t check for bad inputs (what happens if you

askGETRWto extract, say, row 20froma 3x12array?). Howmight

you trap or correct such problems? Also, what ifyou wantto allow

for vectors? You’d need to include a test to handle them, since

they require different arguments than arrays.

INSRW: « 1 - =+ r i

« 0BJ» 0BJ+ DROP

nonmE«Eni-m#

+LIST r 0BJ+ DROP

m 1 + ROLL 0BJ+ DROP

{ 'ntl' m } »ARRY
» % %

ROT TRN ROT TRN
ROT INSRW TRN =

&INSCL.:

The inputs: Array, new row/column array, row/column number.

INSRW decomposes the existing array onto the Stack, moves the

rows after the “i1th” row out of the way, inserts the new row and

recomposes the array, onerow larger. Notice howit decreasesthe

specified row number by 1 to simplify the math. Again, notice

that neither vectors nor bad inputs are detected.

INSCL just uses INSRW—via TRN.

Quiz Answers 347

CusToMIZING YOUR WORKSHOP

Labor-Saving Devices

A calculator as powerful as the 48 is certainly a labor-saving device.

But that very power offers you so many choices that the keystrokes

simply to make those choices soon become laborious, too—unless you

take advantage of certain built-in features.

For example, it’s great to be able to build and name a lot of new

commands. Butthenyoumayhaveseveral pagesinyourVARiable menu

to “leaf through” whenever you want to use one of those commands—

which defeats the convenience ofthe menu for quick typing/execution.

What to do? Use custom menus to group together the commands you

typically use together, thus reducingyour need for(NXT)s and]PREV]s.

This is just one example ofthe many labor-saving devices the 48 offers

you. You set up certain assumptions about your particular needs and

work habits, so that the machine will do more of what you want with

fewer keystrokes.

So as you study (and in some cases, review) these features, consider

how you might best use them. Weigh the labor you save with a tool or

configuration against the labor you expend to build it and useit. That’s

the key question to ask yourself. This chapter on customizing is really

about optimizing (not maximizing or minimizing); the best solution for

one situation isn’t necessarily that same for another.

Labor-Saving Devices 349

Input Shortcuts

You’ve already seen most of the ways to ease and shorten your use of

the 48’s densely-packed keyboard, but here’s a good one-glance recap.

Alpha Modes

(@) Normal single-stroke alpha mode. Normally, pressing

yields N; pressing (@J&q]N)yields n; and pressing yields

K. Thus, each key may have three alpha “meanings.” But the

alpha mode only lasts for the next keystroke.

Lower-case single-stroke alpha mode. When you need to

input manylower-case alpha characters, you can change what

the (&) key does by pressing (eJ&Ja). Thereafter, until you

press or , yields n and yields N. The

or returns the alpha-shift keys to normal. The

alpha mode lasts just one keystroke.

Normal alpha-lock mode. This locks the keyboard into alpha

mode until a third press of (@) (or or (ATTN)) releasesit.

(a]a]Jq]a) Lower-case alpha-lock mode. This locks the keyboard

into lower-case alpha mode for the duration of the Command

Line.

Flag —60 affects the action ofthe four alpha modes. When it’s clear,

they operate as described above. But when it’s set, the single-

stroke alpha modes are disabled; single (@) enters alpha-lock

mode until a second press of(@) (or or (ATTN)) releasesit.

350 (7) Cusromizing Your WORESHOP

The Interactive Stack

(a) Allowsyoutoreview the contents ofthe Stack and manipulate

it directly Among the many handy Stack tools are these:

€ WOME } £ MOME }

4: g 4z ST
» 1DyT P {AB2
o1 (A B} I |2
Iz 45 I e
BGNR FECHDVIERPILE| ROL(ROLLE$LIST

€ NOME } € NOME }

3P 12T 3 {AB2: Yy | e,
BYINGSN FECHDIEVEPILFROLCROLLE$LIT]

£ WOME } € HOME }

§ o [7
: (he g B L
BRSGSN XRTNe

€ NOME } £ HOME }

3 e 3
D {AB 3y =" S 'd
I: 45 2 (2wl (AB DL
RSNe ELHDMERFICHROLL(FOLLO[LIST]

Remember, too, that copies a selected level ofthe Stack

right into your Command Line, to save you from retyping it.

With the 48, there are more than one way to do most things.

w,mmoy

W/
Input Shortcuts

Command Line Entry Modes

A built-in menu item normally evaluates immediately, mak-

ing it impossible to use it as a typing aid. In fact, the only

keystrokes that won’t normally evaluate immediately are

numbers and characters. Thus, (4)SPC)(5) results in a 9.

PRG Youcanactivate this mode by starting a list (&q]{3)) orprogram

(&)«»)) or via [(]ENTRY). When you see the PRG annunciator,

any menu key for any command, function, or VARiable will—

instead ofevaluating—insert its name, surroundedby spaces,

at the cursor on the Command Line. Akeyboard command or

function (such as(+)) behaves similarly: its name goes into the

Command Line, surrounded by spaces. Thus, (JENTRY)(4)(SPC)

(5)#Hresultsin® 3 + +onthe Command Line.

ALG Youactivate this mode by starting an algebraic object or name

(). Now any key or menu item that is afunction or VARiable

(i.e. anything allowed in an algebraic object) will be inserted,

without spaces, at the cursor on the Command Line. Thus, (')

(4)®)(5) results in '4+3' on the Command Line.

ALG PRG Youcan turnon this mode by pressing (JENTRY]>JENTRY]

while in normal mode, or (') while in PRG mode, or (®JENTRY

while in ALG mode. Here, any command key or menu item

behaves as it would in PRG mode, while any function or vari-

able key or menu item behaves as it would in ALG mode.

You cannot type an operation, such as (ATTN), into the Command

Line (that’s the difference between commands and opera-

tions). To determine ifa keystroke is an operation, command,

or function, see the Operation Index in your HP manual.

352 (@) Custromizing Your WORKSHOP

Special E

[]MATRIX

(S]EQUATION

M

The Matrix Writer, which you used in Chapter 5,

makes entering and editing two-dimensional arrays

extremely easy and intuitive. You are less likely to

make careless mistakes ifyou use the MWinstead of

the Command Line to enter arrays.

The Equation Writer, which you learned about in

Chapter 4, allows you to enter any algebraic object—

however complex—in a visual format similar to that

on paper. The EW itself has a special entry mode:

Within the EW, you can disable the implicit parenthe-

ses by pressing (G]{}). This allows you to enter poly-

nomials without having to press (») after each expo-

nent. You can then reactivate the normal, implicit

parentheses feature by pressing (G]{}) once again.

Input Shortcuts 353

Th logs

Each directory has its own VAR menu, where all of the objects you

create in that directory are listed. Whenever you need quick access

either to the object’s name or the object itself, it’s usually easiest to use

the VAR menu (via (VAR))—after putting the 48 into the proper entry

mode (see page 352) to accomplish what you intend.

Ifyou forget what’s in a variable, press to get a brief list of

the six items shown on the currentpage ofthe current VAR menu. And

remember also that the 48 presents special subsets ofthe current VAR

menu—called catalogs:

354

([™>] ALGEBRA

@&CAT

(JTIME

Any of these three key sequences take you to the

Equation Catalog, a special environmentthat lists

allobjectsinthe currentVAR menuthat are usable

with the SOLVE and PLOT tools (see page 228).

You use a pointer (like that in the Interactive

Stack) to select the object you wish to make active.

This leads to the Array Catalog, which lists all

array objects in the current VAR menu—any of

which might be candidates for the current statis-

tical array. As with the Equation Catalog, you

select the array you want with the list pointer.

This leads to the Alarm Catalog, which lists all of

the currently set alarms and allows you to selec-

tively view and/or edit any particular alarm.

(7) Cusromizing Your WoRKSHOP

The LAST Commands

There are four operations grouped together (as the left- and right-

shifted options) on the (2) and (3)keys that can:

¢ Save you time ¢ Save you grief from errors

(S]LAST CMD

The 48 saves the lastfour most recently entered Command Lines in a

special part of its memory—just in case you need to retrieve a long,

hairy Command Line, make one small change, and re-enterit.

Example: Create these algebraics:

(@) '-T((R+HI~(R*2-0))+r"2'
(b) 'J(¥*3-86)'
() 'J((R+6)-(R"2+3))-K"2'

Solution: IXIGQIOGIO[IX[HEPHEOXI2=ED)
PHXYI2)ENTER)
(&)LAST cMDJ&]LAST cMD)(»]DEL]

(]LAST CMD) retrieves the most recent Command Line

first and works backward in time from there.

The LASTCommands 355

6 JLAST STACK

Try This: Assuming the three algebraics from the previous ex-

ample are still on the Stack, press(+)to add two ofthem.

Oops...you didn’t really want to do that. Now what?

How can you recover from such an error?

Solution: Use to retrieve the Stack as it was before

the most recent command (that was here).

[P LASTARG

Calculate: @ x5 +4°-(4+5)

Solution: (4JENTER[5[X[JLAST ARG]YX[>JLAST ARG]+)(=]H].

Result (FIX 3): 1, 835. 866 [©)LAST returns

all of the arguments consumed by the last command.

 1+Another: Evaluate 1’ e +x7 —x, forx=3. Then press (]LASTARG).

Solution: EQUATION[X A 1]+ o X[¥ o XX 2>>)X)

3]EVALIDILASTARG).... Results:
-2.2068 (Leveld) 8.580 (Level2) 3. 0608 (Levell)

The arguments of (-}—the last command—returnto the

Stack (the radical evaluates to 8. 588).

356 (7) Cusromizing Your WORKSHOP

(] LAST MENU

Often, switching back to a previous menu involves only one or two

keystrokes, in which case is no shortcut. But to switch

easily to the back “pages” ofa menu—orinto the interior ofa nested set

of menus, (]LAST MENU]) is a lifesaver.

To Wit: 2.351 A/sec + 4.56 p/min = _??_m/yr

Solution: ATEHPrev)IEE
@S]TIHE5
(@)X(2XtAsTIIEELASTHRIEE()
(D(>)casTMenu)(nxT)GLAsTKT

Result: Z.486_m~yr

? oK
* Vrte e R 5 <X 1%

‘47 & 7 ’ \\‘\)/ ><\ < N

The LASTCommands 357

Customizing Your Workspace

Keyboard shortcuts are handy, but they can’t do it all for you. Custom-

izing your workspace can also go a long way toward reducing your

keystrokes and headaches.

But before you leap into it, remember one caveat.:

Customization should make you more organized, not less.

As obvious as this advice seems,it’s quite easy to get lost in the levels

of customizing options that 48 provides—so that you end up making

more work for yourself.

Briefly then, here are some specific ways you can customize your 48:

¢ Organize your workspace into directories.

¢ Create custom menus.

¢ Create custom keyboard layouts.

¢ (Create custom flag setups (mode settings).

¢ (Customize your SOLVR menu.

¢ (Customize your PLOT and STAT tools for each directory.

¢ Create custom tools.

How much of this customizing you should do depends on your needs.

The remainder of this chapter is devoted to introducing you to these

customization approaches and how they best fit together into an

optimization approach.

358 (7) Cusromizine Your WORKSHOP

Directory Structure

You’ve dealt with directories briefly in this Course, but here’s a more

“full-blown” scenario to consider: Assume for a moment that you're an

engineering student with a wide range ofbasic problems and subjects

in your courses. Therefore, the most important organizational deci-

sion you make on your 48 is probably your directory structure.

One option is simply to use yourHOME directory for everything. To see

where this gets you, take a look at your HIME VAR menu right now. If

you’ve done all the examples and problems in this book, that menu now

has nearly twenty pages. You’ll wear out your key (and your pa-

tience) looking for any given VARiable ifyou insist on dumping every-

thinginyourHOME directory. Not only that, you’ll be limited to keeping

only one variable named 'V' or '®' at a time—despite the vast num-

bers of equations that use these common variable names.

ADbetter optionis to subdivide yourworkinto a structure ofmeaningful

groups and subgroups. After careful thought, you—the engineering

student—might come up with something like this:

HOME
J

| l I I [|

CALC ELEC PHYS GEOM CHEM STAT

NUMRC S$YME STATICS DYMNAM MPARA PARA

METHWORK FOURIER MISC PLAME SOLID TRIG

Directory Structure 359

Do It: Create that directory structure and return to HOIME directory.

Go: (o))cJAlL)(c)@) &]mEMoRY) AT

("JoJ o]EJL)(E]c]oz 800E0080)] CkIIFk

(oGEoMoETIE (olcHEMEIIA

()SITAT)EEVAR
THT(@000RO6OOVERG]CF.UIE
(e«AR@EEE
[)roME(VAR)ETRI(o))YLAINE@)lvMevory)HEIH
(Yol00(o)EEIECTRI

TN)())STeMemorYAT
(e«VNAMHIIA
(IHoVEVARIENTAICeNEDWIOIRIKI(GIMeMoRVHETIA
(elERURITER)(@ EIIE(MsIc)(@HATE
([2YroMEIRETHAo)N(UIM(RIC)(@)MEMoRY)NI
(M@ESVME)()EFE([>IHoME)

Nowyou can tidy up yourHOME directory’s VAR menu, by PURGingthe

unwanted variables and moving those that you do want to keep.

Tidy Up: Write a program, MOVY, to move a variable to another

directory and PURGE it from the original directory.

Like So: MOVWW: « » a b « PATH a DUP
RCL SWAP b EVAL STO
EVAL a PURGE » =

360 (7) Customizing Your WORKSHOP

MOVY expects the name ofthe object on Level 2 and the PATH list ofthe

target subdirectory at Level 1 of the Stack.

For example, to move ' DAM' (remember Junior Beaver?) to the MUMRC

subdirectory ofCALC, you’d press (")lIIEH (in your VAR menu) ENTER);

then(G[OJIHOME)a]LICISPCINUIM[RICIENTER), and (VARIEI
Then, to see your results, press and see[[TiIE on that

directory’s menu. Notice that MOYY does not check to see ifa VARiable

of the same name is already stored in the target subdirectory. If so,

you’ll lose the contents of that VARiable when MOV executes.*

Use It:

While you're at it, create a program, COPY, in your HOME

directory, that copies a variable into another directory

without purging it from its current directory.

COPY: « » a b « PATH a OUP
RCL SWAP b EVAL STO
EVAL » »

Use MOVY and COPY (and &)PURGE)) to shorten the VAR

menu of your HOME directory to 2-3 pages.

Most of those variables have been stored for this Easy

Course and aren’t going to be useful to you in the future, so

you can purge them (save any you think you may use).

When cleaninghouse, rememberthat]REVIEW)allowsyou

to quickly view the variables on one menu page.

*Ofcourse, you could modify MOVY so that it does check for a pre-existing VARiable by that name.

Directory Structure 361

Custom Menus

Now that your directories are in place, it’s time to make some custom

menus that will serve you conveniently in your engineering student

“career.”

Amenuisjustalist ofobjects that the 48 associates withthe menukeys

and a menu display via the MENU command.

Watch: To go to the first page of the MODES menu, you could, of

course, press [(Q]MODES); or you could press

()R

The MENU command understands that a real numberargument refers

to a built-in menu. Most built-in menus have corresponding numbers

(see pages 697-698 of your Owner’s Manual).*

Another: Use your Owner’s Manual (pp. 697-698) and the MENU

command to go to page 5 of the STAT menu.

Solution: (4]o]-]o]5) [EHTN The page number of

the menu is given by two digits after the decimal point

(if none are given, the 48 assumes. 81).

*There are a few othermenus—MatrixWriter, Selection, Rules, Graphics—that are not accessible

from a program and thus aren’t given menu numbers.

362 (7) Cusromizine Your WORESHOP

Notice that the CST (CuSTom) menu has the number 1. That is, the

list ofobjects currently stored in the variable named CST in the current

directory is assigned the menu number 1 by the 48.

This is yourcustom menu—custombecause you can readily change the

list stored in that VARiable CST. And keep in mind that:

* You can have a different CST VARiable in every directory;
¢ You can create many lists in a directory—lists that can be menu

lists whenever you decide to store them into CST.

Try One:

OK:

Move tothe{ HOME CALC 5YME ¥ directory and create

a custom menu containing the functions COLCT, EXPAN,

ISOL,0, and two short programs, PRINC and GEN that

set and clear flag —1, respectively.

(vaRxT)TREFTRT).

Then: (G«»1]+/-)(sPcfa]s]a]F)([ENTER

("JaJa]P)R1]N]C) ENTER)(STO) ()« »

(1)3/-JsPc)e] cYe)FYENTER]*oo]GIEJNJENTER)(STO}
These will appearonthe VAR menuinthe$YME directory.

Next, create the menu list and store it into CST: G0}

AceEeRA)TSIR NET vXlLAST
LREALTEENTER)() (@) @)SSTIENTER]STO).

Now test it—press [CST). Presto!

Custom Menus 363

Now go back to the HOME directory (]HOME)) to see what custom menu

you get.... It’s probably blank (if you don’t have anything stored into

CST at theHOME level yet) orit’s some other menu. Butno matter what,

this is not the same menu youjust created. That one is available only

when you're in the $YMB subdirectory.

Now, the thought may occur to you that this list could be useful as a

custom menuin several ofyour engineering directories. So, should you

copy the list to the CST VARiables in the other directories?

Probably not. There’s only one CST in each directory and you don’twant

to monopolize all of them with copies of the same menu. A better

approach is to store that particular menu list into some other name,

and make it available to all of the directories, so that when you need

it, you can store its name into the CST variable at that time.

Try It: Move to the $¥YME subdirectory again and retrieve the list

stored inCST. Name itCALG and store it as a variable in the

HOME directory—so that it’s accessible to all directories

(remember how directory paths work?).

Simple: (VAR(NxDTREIENEFRIEERolCIAID@)ENTER)
(ST0). Now, from any directory, you need only to store the

name CALG into the local CST variable (either with or

with the MENU command), and then press to activate

your custom menu.*

*Note, incidentally, that when you use(CsT), ifthe name CST is not defined in the current directory,

the 48 will use CST from the parent directory.

364 (7) Cusromizine Your WORESHOP

Actually, you really ought to name all ofyour custom menu lists. This

allows you to switch easily between different custom menus.

Some—Ilike CALG—may be useful for many directories and therefore

you store them in the HOME directory so that they’re accessible by all.

But if you have other menu lists whose use is more specific to a given

directory, you would store those list names there. The point is—as

with any VARiable—you control the universality of access to a custom

menu list by where you storeit.

Keep in mind, too, that even if the 48 can find your custom menu list

name to storeintoCST, this doesn’t guarantee that it will be able to find

the menu items named in that list.

Try This: AtHOME, pressCST[HALM.... Whathappens? Instead of

executing PRINC (i.e. setting flag —1), you get the empty

name, 'PRINC'. The 48 can’t find any object associated

with that name.

Ofcourse not—the VARiable, PRINC,is stored down the

hierarchyinthe{ HOME CALC 5YMB } directory. That’s

not in the PATH of the HOME directory, so it’s currently

invisible to the 48. So use MOYY to move PRINC and GEN

back to the HOME directory where they now belong.

No matter how you invoke it (by typing it or via a VARmenu or custom

menu), a VARiable name can be evaluated only if it’s in the current

PATH.

Custom Menus 365

Custommenus work much like the built-in menus—including(sTo)and

for () and (®}—unless you have other uses for the shift keys....

Example: Modify CALG so that instead ofusing three menu keys

for COLCT, EXPAN, and ISOL, you use just one. Make

COLCT the normal (unshifted) choice, EXPAN the left-

shifted()choice and ISOLthe right-shifted()choice.

Solution: Create thislist: { { "C,E, I" { COLCT EXPAN

ISOL } ¥ +Gr GEN PRINC 3

Note the format for each item with shifted meanings:

{ "“item name" { action ([G}action [)}action} 2}

This list-within-a-list appears wherever you wish it to

appear(first position in this case) in the custom menu.

Store this list in CALG (at HOME), and use to testit.

This is how to pack more functionality onto six menu keys. Ofcourse,

your custom menus can have multiple pages, too—but after a couple

of pages, you'd be playing hide-and-seek again with all the choices.

 e

366 (@) Cusromizing Your WORKSHOP

Do This: Turn CALG into a one-stop custom menu packed with

useful goodies gathered from various built-in menus:

Item name [HN EIEA | AN

Normal COLCT 1_m DEG FS? FIX ROLL

Left-shifted EXPAN 1_ft RAD SF STD ROLLD

Right-shifted ISOL IFTE GRAD CF RND PICK

Solution: Store this list as CALG in the HOME directory:

{ { "GEI" { COLCT EXPAN ISOL X 2
{ "MISC" { 1_m 1_ft IFTE 3 }
{ "DRG" { DEG RAD GRAD 3
{ "PLG" { FST SF CF 3 2
{ "DIGIT" { FIx STD RND 3 }
{ "STAK" { ROLL ROLLD PICK 3 } 2

CALG is nowaveryuseful custom menulist, so useful, in fact, you might
want it available anytime—without overwritingtheCST in the current

directory. That is, you might want CALG as a temporary custom menu:

Look: « CALG TMENU *stored asCMEM in your HOIME directory, lets

you use CALG without putting it into CST. You invoke a

temporary menu with the TMENU command. Like any other

menu, it remains active until another menu replaces it. It’s

just a custom menu that doesn’t use any CST VARiable.

Custom Menus 367

Custom Keyboards

With custom menus, you redefine the menu keys—including their

shifted versions. But what about the rest ofthe keys on the keyboard?

HP haslaid out the keyboard on the 48 to make it maximally useful for

most people. But in case you're not “most people” or in case you have

a special program or application, HP has also made it possible to

complete “redo” the keyboard.

In fact, you’ve already seen examples of this: Whenever you enter a

special environment—such as the Equation Writer or Graphics—the

keyboard is reassigned. Only a few ofthe keys are functional and their

operations change to fit the special needs of the environment.

It’s done like this: Each and every physical key is identified by its row

and column numbers. The key is 24 because it’s the fourth key in

the second row. Similarly, is 51; (¥is 45; (3) is 84; (@) is 55, etc.

Then, each physical key location has up to six standard definitions—

correspondingwith its six shift positions (recall page 28). For example,

key location 73 ((5)) has the following six definitions:

1 Unshifted ((5)): the number 5

2 Left-shifted ((&]STAT)): page one of the STAT menu.

3 Right-shifted (()STAT)): page two of the STAT menu.

4 Alpha ((e]STAT)): the character "3"

5 Alpha left-shifted (@¢q)STAT): the character "£"

6 Alpha right-shifted (@])STAT)): the character "%"

368 (7) Customizine YoUur WORESHOP

Plus, you can assign to each key location up to six more definitions

(user-assigned definitions), which become active whenever the 48 is in

User mode. Thus a physical key location may have up to twelve

definitions assigned to it—six built-in (active in normal mode) and six

user-assigned (active in User Mode).

To make a key assignment, you assign an object to a key number. For

example, in the standard (built-in) keyboard definitions, the character

“£” is assigned to the key 73.5, where the 73 is the key location and the

.5 indicates which shift position. The codes for the shift positions

correspond to the list above—except that the unshifted position is

designated by either .1 or .0 (or no digit at all).

Try It: Change so that it executes *Q instead.

Easy: Enter the object:
Enter the desired location and shift mode: (3]3)-]2)ENTER)

Assign the key: (MoDes)IREL

Then, you access User mode much the same as you do alpha mode:

Press once and your keyboard is the user keyboard forjust the

next keystroke. Press(G]USR[&JUsSR)and you’re in User mode until you

press a third time.

Try both now, and test your key assignment....

Custom Keyboards 369

You can change your custom keyboard, too: Just as the current custom

menu refers to a list named or stored in CST, so the current custom

keyboard refers to a list of key assignments stored in memory.

Look: Press to retrieve the current user keyboard list.

Result (STDmode): { S « 2Qr ®» 33.2 }. TheS means

that the user keyboard is the same as the Standard key-

board except for the items following it in the list (i.e. with

no key assignments at all, [fiN@would yield simply{ 5 J).

That means that you can use named lists to store and save special

keyboard settings—ready to “install” them when you need them.

Example: Redefine these keys to produce audio tones at specified

intervals in the musical scale, given a starting pitch:*

Key Interval (half-steps) Key Interval (half-steps)

ENTER 0

™ -1 @ -12
(a) +1 2)a) +12

(@ -2

) +2

*A complete-octave musical scale is a geometric series of 12 audio frequencies,

called half-steps. The 13th frequency is the octave—double the frequency of

the first.

370 (7) Cusromizine Your WORKSHOP

Solution: First, a little program to compute and sound the correct

interval (for 1 second), given a starting frequency:

INTY: « 2 12 INV * SWAP #
* DUP 1 BEEP =»

Store thisinHOME. Then, here’s the keyassignment list:

{ S« @8 INTV » 0l

« -1 INTV » 35 « -12 INTV » 35.2
« 1 INTV » 25 « 12 INTV » 23.3
« =2 INTV » 34 « 2 INTV » 36 }

Store this list as TONES inHOME, and then make it your

User keyboard: TONE[(R510k§

Now test it: Key in a starting frequency, (4]4)0)([ENTER),

then press (GJUSR]J&JUSR) and horse around with the

ENTER) and arrow keys.*

The point here is that you have saved these key assignments in the list

named TONES, so you can reinstate them any time you want.

*Notice how it helps to use the existing labels of the keys: Ifyour assignments are at all similar

to keyboard functions, consider locating them there (as did the example on the previous page). If

that isn’t practicable, and ifyou use a lot of key assignments so thatit isn’t convenient to try to

memorize what and where they are, you might consider plastic keyboard overlays (available from

HP and/or their dealers). Notice also that although reassigning the key is certainly allow-

able,it’s not too wise. After all, it’s one of the most heavily used keys; ifyou need it—as

alongwith yourkey assignments, you'll find yourselfconstantly having to toggle in and out ofUSER

mode. Not so handy.

Custom Keyboards 371

You’ll notice that the other keysstill retain their standard definitions

while you’re in U%ER mode. Can you disable them so that only your

reassigned keys work?

Sure:

But:

No:

Justdelete the standard key definitions, 5: USR]oS)ENTER)

3N Nowpress [IdNMto see the current user key

assignments.... The S is gone.

Notice also that *Q1 is still defined as the key. How can

thatbe?WhenyouassignedTONES viaERI[A, didn’tthatwipe

out the previous custom keyboard?

Custom menus use a VARiable (C5T) to store the current menu

list, so storing a new list into CST does indeed replace the

previous custom menu. However, custom key assignments

are stored in a reserved part of memory, and storing new key

assignments add to the previous key assignments; only the

specific keys designated in the new list get their assignments

replaced. You must specifically delete any old key assign-

ments that you don’t want.

372 (@) Cusromizing Your WORKSHOP

Do It: Delete the *Q1f user key assignment.

OK: Press (332)[IdXA. Confirm your work withI{NH.*

Finally, what ifyou now need some of the standard keys—say, (ENTER),

(), €ST), (VAR), and the menu keys? How do you restore their standard

definitions without restoring all of the standard keys?

Easy: Simply assign the name, 'SKEY', to each standard keyyou

want to restore. Here’s the list:

{ SKEY 51 SKEY 55 SKEY 23 SKEY 24 SKEY
11 SKEY 12 SKEY 13 SKEY 14 SKEY 15 SKEY 16 2

Store these additional user key assignments: ELIA

You now have a user keyboard where only some keys have definitions.

Whenever you press a key that has no current definition, you’ll hear

the error beep to let you know that it’s “dead.”

*“0ld”, deletedkey assignments still take up memory unlessyou periodicallyrepack the way they’re

stored. This sequence accomplishes the repacking: [THNE(o) [T3NH If you use custom

keyboards often, you should repack your keyboard memory regularly.

Custom Keyboards 373

Custom Flag Settings

You know how to set and clear flags individually with lIElflland IH3N.

Also, for some system flags (such as —3 or —31), you can use the special

menu items (such as EfIEL orM)that toggle between set and clear.

And here’s a more in-depth reminder how—Ilike the user-key assign-

ments—you can store and recall a list of all the flag settings and save

that list as a VARiable for later use.

Do This: Press (=)(MODES)NXT) [Nl You’ll get a list of two binary

integer objects (recall page 105). The first integer repre-

sentsthe states ofall system flags (from—1to—64); the second

one represents the states of the user flags (from 1 to 64).

Store thislist as a variable, OLDF: (sTO).

Now change some flag settings: (6]4)+/=)I3(3)&]MODES)

IEENERD(DEREDDTDEEE
Recall the new flag settings: (6]amTh)EiEHIEIITH

MENU](MoDES)(NxT)TN

In binary format, you can see (use to explore) the 64

bits corresponding to the states of the 64 system flags:*

64 |-63|-62]|-61]-60|-59|-58|-57]-56|-55|-54 |-53]|-52|-51|-50|-49|-48 |-47 -46 |-a5|-a4 |-43|-42|-41]|-40]-39 |-38 |-37 -36 |-35 -34 -33

||1880893888068881801lGBBBGBBBBBBBI

|-32 31|-30|-29]|-28|-27|-26|-25]|-24|-3|-2|-21|-20]|-19 |-18|-17|-16|-15|-14 |13)12 |-11|-10| 9| 8|7 |6 |s]4]|3]|2]|

g|1|/eje|je|jejB6|6jB|B|B|BD|B|B|B|j1)B|B|B|B]J1|B]|1|1]1]|1]1]1]B]|1|@B]@

*You might have flags set other than the ones shown here. You may wish to refer to Appendix E

(pp. 699-706) ofyour Owner’s Manual to confirm why each of flags is set.

374 (7) Customizing YoUuR WORESHOP

Notice that the user flag integer (the second value) isn’t 64 bits long.

The 48 doesn’t display leading zeroes in its binary integers, so the

binary format of the integer representing flag conditions will be only

as long as the number of highest set flag (i.e. the left-most 1).*

To demonstrate this, clear flag —64 and press[JiN& once again.... The

result is only 50 bits long; all flags numbered above —50 are clear (8).

Now: You could, ofcourse, store this list for later retrieval too—but

don’t bother. Suppose, however, that you do want to restore

the original flag settings as saved in the list VARiable, OLOF.

Easy: NN (o)LAsTBT

So ifyou're using some program that requires a certain combination of

system flag states, this is how to quickly set all those states—and

preserve the previous flag states, too (so that you don’t mess things up

for the next task).

*You’ll get all 64 bits only if flags —5 through —10 are set. That’s the 64-bit default setting for the

wordsize—recall page 103.

Custom Flag Settings 375

SOLVE

Customizing the Built-In Tools

To customize the SOLVR menu, you can:

¢ Specify the order in which the variables appear.

¢ Suppress certain variables from appearing at all.

¢ Add other non-variable objects.

You do all this with a SOLVR list.

Try It:

Solution:

Create a SOLVR menu for this formula:

_ h 2 2 2V= -S;-b—[a(3R -a*)+3R*(b-R)o]

that includes—in order—the variables V, q, b, and 4, and

which adds a blank key, followed by IZEl. R and » are

fixed and won’t be needed in the calculations.

Create this list:

{ 'V=hs(3%b)*(a*(3*R"2-a"2)+3*R"2*(b-RI*un) '
{Vabh{2XFIR 1} 3

Notice that the list has two objects: the equation itself

and a list of items desired on the SOLVR menu.

Now name thelist: ()SoLVERLISZR(UIN]GJU]L)(A)(ENTER).

And press to see the resulting menu.

376 (@) Cusromizing Your WORESHOP

and

You can’t customize the PLOTR orSTAT menus like that ofSOLVR. But

you can customize these tools with parameter lists that you can store

in the reserved variables PPAR (for PLOT) and >PAR (for STAT). Each

ofthese reserved variables stores a list ofthe key parameters used by

their respective tools.

PPAR is a list of seven objects, in this order:

¢ A complex number representing the coordinates of the lower

left corner of the display range;

* A complex number representing the coordinates of the upper

right-hand corner of the display range;

* Thenameoftheindependentvariable—oralist containingthat

name and two real numbers representing the horizontal

plotting range;

¢ Areal number or binary integer specifying(for mostplot types)

the plotting interval along the x-axis (for histograms, this

value is the bin width; for bar graphs, the bar width);

¢ Acomplex number containing the coordinates ofthe intersec-

tion ofthe axes—or a list containingthat complexnumberand

two character strings, the labels for both axes;

¢ The plot type—a name;

¢ Thename ofthe dependent variable—or a list containing that

name and two real numbers specifying the vertical plotting

range.

Customizing the Built-In Tools 377

Similarly, >PAR is a list containing these five objects:

* A real number, designating which column of the current sta-

tistical array is the independent variable;

¢ Areal number, designating which column of the current sta-

tistical array is the dependent variable;

¢ Areal number, representing the intercept value, according to

the current regression model,;

¢ Areal number, representing the slope value, according to the

current regression model;

¢ The regression model name.

So,ifyou work frequently with certain graphs that require particular

parameters, you can create your own plotting parameter list(s), store

them under other names (such as PP1, or PP2), and simply store each

into PPAR whenever you need it.

You can use that strategy for PPAR and >PAR within short programs,

also—maybe called via custom menus—to save even more time and

keystrokes in setting up your plots and/or analyses. And keep in mind

that, as with CST, you can have different PPAR and ZPAR VARiables in

each directory. This allows you great latitude in customizing param-

eters for a number of specific uses.

378 (7) Cusromizine Your WORKSHOP

Optimization: A Case Study

All right, you've seen certain hypothetical examples oflists that allow

you to customize your calculator. Now, how willyou use such ideas to

save yourself labor and trouble?

First, go back to your original directory structure. Ask yourselfwhich

directories might benefit from custom menus or custom keyboards. If

you find some likely candidates, build and store the custom lists for

these goodies in the appropriate directories. And ifthere some custom

lists—like CALG—that should be available more generally, put them in

the HOME directory.

Next, refine the structure ofyour VAR menus by adding small touches.

For example, imagine that you’re creating a VAR menu for your di-

rectory,{ HOME PHYS DYNAM }. When you select [JIiT to enter that

directory, you’ll see its VAR menu.

What do you want in this menu? It’s worth a little thought....

Optimization: A Case Study 379

Suppose:

Well:

380

You want a custom menu, MEN1, to use with your motion

calculations—plus you want CALG available, too. Then

you’d like to be able to push one key to set the flags and

user keyboard for the kind of work you do in this

directory—and another key to reset the flags and keys

as they were before, when you’ve finished. And suppose

you want these features always to appear on the first

page ofyour VAR menu. How are you goingto do all this?

Here’s one approach (you may think ofothers): First, in

your DYNAM directory, create and name the programs

that handle the various customizing details:

SET1: « RCLF 'OLDF' STO RCLKEYS 'OLDK' STO
CFL1 STOF @ DELKEYS CkYl STOKEYS
CPP1 'PPAR' STO CEP1 'ZPAR' STO =

MENL: « CMN1 MENU =

ALGM: <« CALG TMENU =

QUIT: « @ DELKEYS OLDK STOKEYS OLDF STOF
HOME 2 MENU =

Next, create and name your custom lists:

CMN1: { the items you want in your custom menu 1}

CFL1: <€ #system flags value Huser flags value 2}

CKY1: { your custom key assignments

CPP1. { your custom plotting parameters

CZP1: { your custom statistical parameters

(7) Cusromizing Your WORKSHOP

Finally, usetheORDER functionto specify thatSET1,MEN1,

ALGM, and QUIT all appear on the first page of the VAR

menu. Create a list of the names you want placed:

{ SET1 MENI ALGM QUIT 2

Then press [[ATd3. Now anything not in-

cluded in this list will be placed after these items.

Now your keystrokes are fairly well streamlined: As an engineering

student, to get started with the dynamics problems in your physics

class,starting at HIME, you would press[TIENTY, then EHFEM to

configure your flags, keyboard and analysis parameters. At that point,

you’re ready to start on the problems themselves. You have all ofyour

calculation variables available via and your optimized menus via

[EEH or [sT) or GINEE]

That’s doing a lot in very few keystrokes. And you can use this same

basic idea and structure in your other directories, too—even using the

same names of variables and custom lists, if the consistency helps.

Notice the naming scheme for your customized lists. If you found

yourselflater needing, say, two different plotting parameter setups in

the course ofyour analyses, you could name a second list CPPZ, right?

Optimization: A Case Study 381

Putting It All Together

The 48 workshop isn’t difficult to learn how to use. But it takes a lot

of practice to learn to use it well. The real challenge is to choose

appropriately amongits myriad options for tools and methods—to find

the approach that works best for you.

This Easy Course has steered you through a rather densely-packed

tour ofthe 48. To do so, it has pretended to “know” what’s best for you

in order to make certain points and cover certain features, albeit

briefly. But the truth is, only you can decide what parts of the 48 are

of interest to you; nobody uses it all. So be thinking about the possi-

bilities as you take this final quiz....

382 (7) Cusromizing YoUur WORKSHOP

Custom Questions

When and why might you not be able to use the “LAST” keys?

Whatare the differences between these three storage commands?

STO STOKEYS STOF

What binary integer represents the default system flag states—

the flag states as they would be after a system reset? (Don’t do

this, just think about it.)

As an engineering student, suppose that you do a large number

of rigid-free-body analysis problems in your Statics class. You

input vectors corresponding to forces, positions and moments

acting on the body and then calculate the resultant sums ofthe

forces and moments. You also do a great deal of “what-iffing,” so

you need to be able to store, retrieve, and edit specific descrip-

tions for specific bodies. What strategy might you use to do all

this on your 48?

Custom Questions 383

384

Optimum Answers

(LAST STACK], (LAST ARG), (LAST CMD), (LAST MENU] all allow you to re-

cover information after you've moved on. But keeping these

hidden records costs memory, and ifyou prefer not to spend that

memory on some ofthese recovery features, you can specify that.

is one ofthe built-in menu numbers @), so it’s always

available; you can’t turn this feature off.

You can control(LASTvia a toggle key in the MODES menu or

with a flag (-55): When flag —55 is set, the 48 does not save the

arguments of the most recently executed command—and so

LAST ARG] can’t retrieve it.

Also in the MODES menu are the toggle keys for enabling/dis-

ablingSTACK)andcMD). These two features can use a lot

of memory, so if you’re in need of more memory, these might be

the first ones to forego,if it’s appropriate.

Of these three, only STO allows you to control where in user

memory (i.e. directory structure) you are storing an object:

STO stores an object into the given name in the current VAR

menu, overwriting the object (if any) previously stored there.

STOKEYS stores a list ofuser key assignments into an unnamed

place in the 48 memory. This overwrites the previous key

assignments only for the specific keys in the given argumentlist,

leaving all other key assignments intact.

(@) Cusromizing Your WORKSHOP

STOFstores a binary integer (or list oftwo binary integers) into

an unnamed place in the 48’s memory. Each integer affects all

of its 64 flags, overwriting all previous flag settings.

In the default settings, only flags —5 through —10 are set (to give

a binary wordsize of 64). This value is

1111116666b or # 3FBh or # 1Bl2d

First, you'd probably want to set up some custom configurations

in your STATIC? directory—similar to the approach you saw on

pages 379-381.

In your flags, for example, you might want to clear flag —19 (so

thatyou canbuild vectors rather than complex numbers with the

and keys)and set,say, ENG 2display mode, DEGrees

for angles and probably cylindrical vector mode.

As for your custom menu, before you can set that up, you need to

envision the calculations themselves. For example, how are you

going to build a complete description ofeach free body—with all

its forces and moments acting upon it—into a single object that

you can then name (FB1, FBZ, etc.) for storage and use later? A

list of some kind would do it, right?

Then what objects would be included in each body-description

list? Vectors, probably, but how will you distinguish force

vectors—with their corresponding position vectors—from mo-

ment vectors, which need no positional information? How about

Optimum Answers 385

386

three lists of vectors? The first two (forces and positions) would

have the same numberofvectors in them and correspond one-for-

one; the third list would contain all the moment vectors.

Then you might want to build yourselfsome little editing tools—

to make it easier to input, alter, delete and view the vectors in

each of the lists. Such items would indeed be handy on your

custom menu. And, ofcourse, you’ll need the calculation routines

themselves—the summation ofthe forces and the summation of

the moments—also good candidates for your custom menu.

Well, you get theidea. The pointis, you can always find some way

to customize and streamline a calculation pattern like this. The

question that only you can answer is: How far should you go?

When does the time you spend customizing start to outweigh the

time it will ultimately save you? As you become more proficient

in your 48 workshop, these tool-design and customizing deci-

sions will come more smoothly; you’ll gain more convenience

from less time invested.

(7) Cusromizing Your WORKSHOP

5X
7] ,’AN

FouUNDATION COMPLETED

This is only the beginning—trulyjust a foundation ofunderstanding—

upon which you should continue to build and use your 48 workshop.

As you certainly realize by now, there’s no way that any single book

could give you an in-depth look at everything about the 48. You

probably noticed on many occasions that this Course made just a

passing, one-time reference to a certain function, keystrokes or calcu-

lation method. It was by necessity, not by neglect. So if you marked

those spots or scratched your head over them, you might wish to use

your HP manuals to explore those “breezed-over” features now.

Note also that this Course did not cover:

¢ Alarms and the alarm catalog;

¢ Printing;

¢ Transferring data into and out of the 48§;

¢ Using plug-in cards;

¢ Using the LIBRARYfeatures;

¢ Making backup objects.

Those topics are best handled by your HP manuals. In fact, now that

you have a good “feel” for the machine overall, those manuals are

indeed the sources to turn to for further exploration on all topics.

They’re thoroughly indexed and organized; you’ll find their examples

and coverage quite helpful.

So how did you like this Course? Do you find yourselfwishing for more

or less (or different) coverage of certain topics? Did you find any

mistakes? Please let us hear from you. Your comments are our only

way of knowing whether these books help or not.

Index
(@ key 182-3, 192-3, 201, 205, 240, 260, 264,

277, 279, 298, 351, 370
(Mkey 182-3, 190-6, 201, 205, 214, 220, 228,

232, 243, 255, 260, 277, 280, 296-7, 370
(@key 187-8, 190-4, 202, 205, 219, 221, 295-6,

298, 355, 370
() key 94, 118, 183-5, 192-3, 199 205,

211, 221, 240, 243-4, 260, 264, 268, 277,
280, 293-9, 302, 353, 355, 370

(@ key 20,34, 52, 151, 182, 185, 189, 269, 280,
296-7, 365, 368, 373

(@ key 291-4, 296, 298-9
B key 302
[Dkey 182, 295-300

key 76, 353
key 90-1, 147, 156-7, 277, 385

(D) key 90-1, 154, 385
% command 152, 177
%CH command 177
%T command 177
% character 206
+ character 310-3, 324, 320-31, 342-7, 360
£ character 81-2, 88
< command 324
== command 325, 329-31, 343-5

? command 3823-324, 343
£ function 291, 327, 331, 343
> function 291, 325, 327, 343
S+ command 265, 279
ZDAT variable 224-5, 262, 269, 341
ZLINE command 271-2
ZPAR variable 377-8, 380
2-'s complement 107
.EQ program suffix 228, 249

ABS command 84, 91, 154-5, 176, 277, 292,
321, 327, 331

Acceleration 199
[ACo9 key 154, 300
Addition 51

with lists 77, 135, 143, 148
with objects of different type 77, 335
with strings 109, 135, 335
with unit objects 70, 72
with vectors 155, 162

operation 204, 207
Alarm Catalog 354, 388

Algebra 124, 128, 200-7, 282
(ALGEBRA) key 199, 207, 229, 232, 238, 289-99,

354, 369
Algebraic entry mode 129, 352

Algebraic notation 128, 130

Algebraic objects 24, 124-32, 135, 148-9, 194,
224, 316, 352

evaluating 126, 198, 309
rearranging 200-7, 209
single-line version 129
using programs as 249

Algebraic rearrangement 197
ALGH program 380-1
(@ key 18,27-8, 32, 59, 368
Alphaleck 19, 33, 35, 350
Alpha mode 19, 32-3, 85, 130, 226, 350
Alphabetical order 324, 341
AND function 291, 325, 327, 339, 343
Angle between two vectors 145, 154
Angle conversion 61
Angle mode 69, 81, 88, 100, 385
Annunciators 169
HLG 129, 352
alpha 33, 226
angle mode 99, 168

PRG 133, 352
user flags 99
vector display mede 99, 168

Appending an object to a lst 77
Appending strings 109
Arc length 284
ARCHIYE command 388
Area 69-71,284, 298-9, 316
RREA command 298
ARG command 84
Arguments

of a command 78-9, 90, 104, 151

of a function 165-9, 174, 184, 187-8, 190,
193, 212, 225, 292

on the Stack 78, 308, 311, 314, 321-2
recovering previous 356
symbolic 178, 215

Arithmetic 48-51
+ARRY 90, 95-6, 151, 155, 162, 320, 347
Arrays 23, 27, 29, 90-7, 156, 225, 320-1

creating 94-8
decomposing 96, 146
elements of 92, 155, 174

extracting by rows or columns 341, 347
non-matrix operations 93

real vs complex 93-5, 146, 224, 329
row-major order 94
rows and columns 92

arrow keys 20, 36, 94, 187, 240-1, 371
key 154, 221

ASN command 369
operation 203

operation 203
Asymptotes 295

key 218

key 16, 20,32, 39, 72, 122-3, 148, 160,
194, 201, 241, 245, 280, 350

Audio frequencies 370
AUTO command 242,246, 250, 253, 290-1
Auto-scaling 242, 244, 246
Automated processes 307-9, 323
Average 268
Axis of a plot 238-9

Backup objects 388
Bar width 377
BARPL command 269
Base identifier 103, 107
Bases 23, 102
Bearings 156
BEEP command 331, 371
BESTFIT command 272, 275, 304
BIN command 103,159, 374
Bin width 377
Binary arithmetic 23, 106-7, 147
Binary digits 23, 98, 374
Binary integers 101-7, 148, 159, 377, 383
and flags 375, 385
and fractions 106, 159
and negative numbers 106
display of 37
word size of 104, 158, 342

Binomials 217, 220
BINS command 269-70
B*R command 106-7
Bits 23, 98, 101-2, 104, 374-5
Branching 326-32, 343

Calculus 281-305
CALG menu list 364-7, 379-80
CASE command structure 331, 346
CASE...THEN._END.. END command 331, 346

operation 228-9, 255, 266, 271, 354
Catalog pointer 228, 253, 354
Catalogs 228, 266, 354

CEIL command 174
CF command 100, 157, 323, 367, 374
Character codes 111, 163
Character strings 24, 108-12, 117, 159, 163

alphabetizing 324

appending 109, 135, 322

comparing 324
decomposing 110, 159-60, 163

Characterstrings (cont.)
editing 322, 341, 344
extracting characters from 159
manipulating 340, 343-4
vs. numbers 109, 148, 331

Characters 34-7
alphabetic 11,32

lower-case 35, 340
MENLINE 37
non-alphabetic 35, 111, 368
upper-case 340

CHR command 111, 168, 343-4
R command 83, 151, 155
Circular references 122, 161
Clearing flags 100-1, 105
Clearing Level 1 of the stack 52, 58
Clearing the pointed-to Level 58
Clearing the Stack 52, 57

key 52, 128, 296
il operation 250, 290, 295, 299

CHRM command 157, 320
Coefficients 185, 258, 297

correlation 272, 275

of determination 304
COLCT command 200-2, 205, 207, 214, 217,

219-20, 291-3, 296, 298, 299, 363, 366-7
operation 203

Collecting like terms 200-1, 205, 207
COMB command 173, 220
Combinations 61, 65, 173

Command Line 16, 21, 31-9, 44,49, 52-3, 55,
58-9, 65, 76, 78, 82, 94, 110, 119, 123, 125,
130, 184, 180-3, 194-5, 262, 351

editing an object in 37-8, 185-6, 189
entry modes 352
multiple lines in 36

previous 355

Commands 31, 78, 117, 135, 165, 307, 319
arguments of 79
inalist 76
in programs 133
names of 116

Comparing values 177-8, 323-4, 340
Complex numbers 13, 22, 80-6, 135, 143, 147,

157, 170, 174, 178, 377
extracting components of 84, 167
with parametric plotting 290

CON command 97, 321, 347
Concatenation 110

Conditional tests 310, 323-5, 340-1, 343
COMIC command 289
Connecting the points of a plot 250
CONY 73
Convergence 302
CONVERT command357

Converting
between decimals and fractions 172-3
between real and complex 83
between units 68, 70-3

lists to arrays 320
objectsto strings 110, 148, 159

COORD operation 240, 273, 289-90
Coordinates
complex numbers 80, 377
critical points 244
crosshair cursor 240

COPY program 361
Copying in the Stack 38, 56, 77
ORR command 272, 275, 304

Correlation 272, 275
COSH funetion 292
Cost-benefit analysis 144, 152
COUNT program 336, 337
Covariance analysis 267
CRDIR command 137, 140, 360
Creating

arrays 94-8
complex numbers 82-4, 157

directories 137
expressions 180-4, 212, 290
lists 76-81
programs 249

strings 159
unit objects 69, 72

vectors 88-90, 155
Critical points 295
Cross product (CROSS) 91, 154
Cross-section 283
€5 key 363-7, 373, 381
CST variable 363-4, 367, 370, 372, 378
Cursor 35, 260, 266

box 181,191
crosshairs 240-1, 243, 247, 290

Cursor keys 36, 54, 240
Curvature 283, 292

Custom menus 349, 379, 380, 385, 386
Cylindrical mode 89, 91, 147, 157, 385

Cylindrical vector notation 86

Data
editing 265-7, 279-80, 341
entering 264-5, 267
frequency type 269
missing values 266
outliers 269

Data analysis 262-3, 270, 287-8
Data array 224-5, 262-3, 264-7, 277-80, 287-

8,304, 378

Data Catalog 266-8, 354
+DATE command 170-1
Dates 170-1
DATE command 170-1
DATE+ command 170-1
Day of the week 171
DEC command 103-6, 159
Decimal places 46, 64, 174-5, 342
Decimal representations 40-1, 172

Declaring local names 313
S[EF operation 204
Default system flag states 383, 385
DEFINE command 212, 214-5, 220, 310, 312
[CEF) key 212, 214, 220-1, 277, 2924
Defining procedures 313-7, 324
Definite integrals 284
DEG command 367, 385

mede 81, 100, 155, 168, 175, 221
Degreesoffreedom 278

key 20, 34, 355
operation 219

Delimiters 35, 117, 136
apostrophes 24, 117, 119-20, 181, 328
braces 25,75

brackets 23, 87,93
colon 24,113

commas 82, 88, 184
double brackets 93
french quotes 25, 133, 328
pound sign (#) 23, 103
quotation marks 24, 108

spaces 65, 88, 95, 184
underscore 22, 68

DELKEYS command 872-3, 380
Denominators 182, 184, 187, 210

Density 150, 255-6
DEPN command 291
DBEPTH command 338
Derivatives 283, 293-4, 298

Differential calculus 283
Differentiation

variable of 291-2
with user-defined derivatives 294

Digital math 106-7
Dimensions 86-7, 91

of an array 95, 259

Directories 15, 25, 136-41, 149, 228, 358

C5T menus 364
current 15, 138-40, 266, 315, 344,346, 361,

363, 367
HOME15, 137-8, 140-1, 163, 321, 359-61,

364-6, 371
parent 140, 364

structure 139-40, 359-61, 365, 379, 381

variables and 315, 354, 365, 378

Directory path 344
Directory tree 140, 309
Discontinuity 233-4, 250
DISP command 336-7
Display 10, 16-7, 31, 36, 48
binary integers 23, 107

formats 46-7, 172, 175, 342
MatrixWriter 264
of vectors 87
parameters 289

Divergence 302
Division 51

with binary integers 107, 159
with unit objects 71-2

D0..UNTIL.. END loop 333, 339, 345
Dot product (00T) 91, 154-5
DRAN 239, 242, 250, 289, 291, 295, 298-9
[ROP command 330, 335, 343-5, 347
ERoPlkey 52, 58, 125, 134, 151, 162
OROPZ command 332, 339
Dropping arguments 79

Dropping multiple stack levels 57
Dropping objects off the Stack 338-9
DRPN command 57
D51 program 321
DUP 321, 329-30,336,338, 343-7, 360-1, 371
DUP2 command 839, 342, 344
Duplicating Level 1 of the Stack 53, 321
Duplicating multiple stack levels 57
DUPN command 57, 63, 279

HER operation 204
Noperation 204
EET operation (IS) 38, 55,65, 351

key 1283, 125, 159, 175, 185, 192, 194,
219, 374
Ioperation 189, 194, 258
BEIFH operation 265
Editing objects 37-9, 54, 123, 135, 145-8, 159
Editing expressions 185-94
Editing keys 20, 123, 135
Editing subexpressions 189-214

X key 44, 54, 150, 152, 176
Electricity 69

Element count 79, 92, 260
Ellipse 290
Energy 69, 151
ENG command 147, 152, 157, 385

A key 16, 20, 31, 49, 53, 77-8, 128-9,
134, 183, 189-90, 192, 194-6, 233-4, 260,
264, 350, 368, 370-1, 373
¥ key 134, 160, 352, 355

Entry modes 350-4

Environments

EquationWriter 181, 191, 194, 223, 368
Graphics 223, 241, 368
local variable 313, 316-7, 337
MatrixWriter 223
Selection 186-7, 189-90, 193-4, 202

() equation 131, 160, 226-9, 245, 299
EQ variable 224-9, 230, 253, 262
EQ+ command 229, 253, 255, 289-90
Equation Catalog 226, 228-9, 238, 249, 253,

255, 289, 354
(EQUATION) key 181-4, 186, 194, 199-200, 205,

245, 292, 297, 300, 302, 353
Equation list 254, 256
Equations 178, 245
current 226, 299, 302
linked 252, 255-256
matrix 258
multiple 252-7
simultaneous 252, 258-61
solving numerically 245
solving symbolically 197, 208-11

EquationWriter 181-95, 216, 226, 262, 295,
302, 353

saving expressions in 196

scrolling in 191
ERASE command 239, 250, 289,291, 295, 298
Error beep 373

Error messages 72
Bad Arsument Type 162, 167
custom 332

Invalid Dimension 162
Invalid Suntax 160
Unable to Isolate 208

Error traps 310, 318, 332, 335, 347
Errors

recovery 356
testing for 308, 347

unit 71
with 0B+ 110

EVAL command 345-346, 360-361
(EvADkey 120, 131-2, 134, 160-1, 198, 205,

210, 218-9, 290, 293-7, 302, 307, 311-2
Evaluating

alist 308
aname 120-1, 130-1, 137-8, 160, 308
a program 133, 307-8
algebraics 126, 131, 149, 197-9, 307-8, 325
an object 119, 139
conditional tests 325
functions 165, 213
vs. recalling 122

operation 191, 194, 219, 221
Exiting environments 58, 191-2, 219, 221, 241
Exiting program loops 333

EXPAN command 201-2, 214, 217, 220, 291,
363, 366-7

Expanding expressions 201,217, 220
Expanding matrices 260
Expected value 274, 304
EWPFIT command 272
Exponential expressions 60, 62, 182, 204,

216, 283-4, 292
Exponents 44-7, 160, 176

EXPR command 161
B3 operation 187, 188
Boperation 230, 232-6, 245, 290, 302
Expressions 24, 124, 149, 165, 178-84, 197

evaluating 197, 198-9, 232, 234
expanding 200-1
rearranging 197, 200-7, 209, 220

saving 195-6
simplifying 200-1
solving simultaneous 245-7
substituting 206-7
[operation 244, 295

Extracting components 84, 88, 159, 176
Extracting parts of a real number 176
Extracting rows from matrices 279

Extracting subexpressions 189-90

IEE5N operation 250
F-statistic 304
Factorials 60, 63

FC? command 100, 323,340, 342
FC?C command 323, 340, 342
FCN menu 241, 244, 247, 254, 273, 295, 298
Filtering a list 341
Finding hidden variables 199
Finding roots 238, 241, 245-7, 250, 283, 295
FIX command 46-7, 156, 171-2, 175, 210,

218, 221,230, 295, 302-3, 305, 367, 374
Flags 23, 98-101, 102
alpha lock (-60) 350
Curve-Filling (-31) 299, 374
custom 358, 374-5
error-trapping 302
Last Argument (-55) 384
Num, Results (-3) 160, 169, 218, 321, 374
Principal Solution (-1) 211, 218-9, 221,

289, 363
setting and clearing 98, 101, 157, 374, 380
storing flag settings 101, 105, 158, 375

Symbolic Constants (-2) 160, 169, 218
system 98, 100, 105, 157-8, 169, 309
testing 100-1, 158, 323
time and date 171
user 98-100, 105, 374

FLOOR command 174
FLST? program 343
FOR..NEKT loop 333, 337, 343, 345
FOR...STEP loop 333, 337
Force 69
Formatting output from programs 318
FP command 176
Fractions 172-3, 182, 187, 216, 218
adding 204, 207

Free-body analysis 38
Frequency data 269
Frequency distribution 269
FS? command 100, 158, 323, 340, 342, 367
FS?C command 323, 340, 342
FUNCTION command 291
Functions 24, 165-79,188, 211-2, 248, 309, 313

analytic 252-4
entering 352

invoking 277
rational 283-4
user-defined 212-5, 217, 220, 251, 313

GEN program 363, 365-6
GET command 345-6
GETCL program 347
GETRM program 347
Global name 314

operation (MW) 261, 264
operation (MW) 258, 261

GRAD annunciator 168
GRAD command 367
GRAD mode 81
(GmAPH) key 191
Graphics display 224
Graphics environment 223, 225, 245
Graphics objects (grobs) 196, 224-5
Guesses to control SULVR search 234-5

Heron's formula 217
HER command 103, 106, 159
HMS+ command 171
HMS*command 156, 171
SHMS command 171, 302
HOME command 344, 346, 380
HOME directory 15, 138-41, 321, 359-61, 364-

7,871,379
ey 138, 140-1, 360-1, 364

Hyperbolic functions 283, 292

Ideal gas constant 236-7
Ideal Gas Law 236-7, 255-7
Identical vs. Equal 325

Identities 200, 204, 206-7
Identity matrix 97, 305

IDN command 97, 305
IF. .THEM..ELSE.. END 249, 326, 330, 343-5
IF...THEN..END 326, 328-32, 338
IFERR...THEN.. ELSE.. END command 332
IFERR...THEN...END command 332,335
IFT command 326-30
IFTE command 3826, 329-30, 343, 367
IM command 84, 145, 176
Imaginary numbers 22

Immediate vs. delayed execution 129, 133
Incrementing a loop counter 333, 336

INDEP command 291, 298, 299
Inflection point 295

Input checking 320-1, 323, 329, 347
Input shorteuts 350-4
Input-output analysis 288, 305
INSCL program 347
Insert mode 37, 185

Inserting characters 34, 37
Inserting subexpressions 189, 191
INSRM program 347
Integer value (binary integers) 102
Integers 40
Integral 182, 193

definite 284
indefinite 284, 296
integrand 182, 296-8
limits of integration 182, 296, 300, 302
variable of integration 182

Integralcalculus 284-5, 299-301
Integrand 182, 193
Integration 295-7
Interactive Stack 54-8, 63, 65, 192, 201, 228,

298-9, 351
entering 54-5
exiting 58, 201

Intercept 271-2, 304, 378

Intersection of curve with x-axis 246-7, 250
Intersection of curves 246-7, 282, 289-90
INTY program 371
INV function 3871
Inverse operations 49-50, 145

Inverting a matrix 305
IP 50, 166, 178
IRAND program 339
Irrational numbers 64
ISECT operation 247
ISOL command 208-11, 218-9, 221, 290, 293-

4, 363, 366-7
Iterations 302

[E33d operation 57
Key assignment list 371-2, 384

Key assignments 372-3, 380
Key code 345, 368
KEY command 345
Keyboard 10, 18-20
custom 358, 368-73, 379
overlays 371

standard 370, 372
user-assigned definitions 369

Keys 14, 18,31
alphabetic 18-9
arrow 20, 36, 187

control 20
function 67
menu 17, 19, 20
Newline 36
shift 10-1, 18-9, 27-8, 35, 73
toggle 18-9

Keystrokes 307, 352

operation 204

operation 204

LABEL command 240, 273
Labels 116, 118

axes 240, 273, 377

temporary (tags) 24, 112, 115
Lagrange multiplier 293
(LASTARG) key 356, 383-4
(LASTeMD) key 355, 383-4
(CasTMENU) key 70, 72, 151-6, 159, 219, 221,

230, 357, 362-3, 375, 383-4
STACK key 356, 383-4
Law of Cosines 217, 221
Law of Sines 217, 221

Length 69-71, 73, 150, 221, 357
Length of a curve 298

operation 57
Level number 57
LFLTR program 345
Libraries 388
(UBRARY) key 388
Light 69
Linear systems 87
LIST command 78-9, 151, 162, 291, 347
EXNER operation (IS) 351
LIST? program 343
Lists 25, 74-81, 155, 161, 840,352, 385
adding and subtracting to 143, 149, 151
and strings 109-10

and the SOLVE tood 224, 291
as directory paths 344, 346, 361

creating from other object types 78

Lists (cont.)
custom flag settings 374, 380
custom keyboard 370-1, 380
custom menu 363, 365, 380
editing 309
element count of 79, 90, 334

empty 162
equation 253, 255, 291
evaluating 132, 307, 309, 316, 344
filtering 341, 345

manipulating 320
parameter 377-8, 380

SOLYR menu 376
summing the elements of 334
that define new identities 206
vs. programs 309, 316, 341
with arrays and vectors 96, 111

LMAX program 320, 321
Local names 310-7, 322, 324, 336-7, 340-7
Logarithmic expressions 60, 62
Logarithmic functions 85, 204, 247, 284
Logic 108
Loop counter 333, 337, 343

Looping 333-9, 343-4

Lower-case alpha lock 35, 130, 159, 350
Lower-case mode 35
LR command 272, 304
L5UM program 320-1

Magnitude of a number 40, 42-3, 47, 331
Magnitude of a vector 155, 176
MANT command 160, 176
Mantissa 40-1, 45, 160, 176
Marking one cornerof a zoom-box 243
Marking one of the limits of integration 298
Markov chain 287, 303
Mass 69, 150, 151, 158, 255, 257
TMATCH command 207
Matrices 13, 23, 87, 90, 92-7, 258

arithmetic 97, 147, 156-7, 269, 321
blank spaces in 266
extracting by rows or columns 341, 347
identity 97, 156, 305
initial-state 303
inserting rows or columns 341, 347

row-major order 94
steady-state 303
transition 303
transposing 279

Matrix equations 258, 260

(WATAIX) key 258, 264, 304, 353
MatrixWriter environment 21, 223, 258, 260,

262, 264-6, 268, 277, 3035, 353

MAX function 177
Maxima 234, 244
MAXR 42
MDIY program 259
MEAN command 268, 277, 280
Memory 318, 320, 384
(VEMORT}key 360, 381
Memory operations 355-7

Memory repacking 373
MEN1 program 380-1
Menu boxes 121, 131

MENU command 362, 364, 380
Menu items 25, 28, 230, 352, 365-6, 374
Menu keys 19-20, 28, 69, 240-241, 368
Menu Line 17, 31

Menu numbers 362-3, 384

Menu pages 19, 179, 349, 357, 359, 362
Menus 14, 17, 21, 27
BASE 103, 106-7, 159, 374
BRCH 326
CST 363
CTRL 362
customized 230, 349, 358, 362-7, 372, 379-

80, 385-6
DSPL 326
EDIT 37-38
FCH 241, 244, 247, 250, 254, 295, 298
HYP 51, 292
MTH 14, 50, 83
MATR 97, 155-7, 305
menu keys 17, 19-20, 28, 69

MADES 19, 37, 63, 89, 103, 169, 362, 384
0BJ 88, 110-1, 151, 155-6, 159, 297
PARTS 50, 65, 160, 166, 174, 277, 292
PLOTR 229, 250
previous 357
PROB 51, 63, 65, 173, 278, 280, 304
RULES 202, 204, 296
selecting from a 17, 28
SOLYR 229-81, 245, 255
STAT 267, 362
STK 79, 326
temporary custom 367

TEST 158, 291, 323
UNITS 69
VAR 15, 118-21, 123, 125-7, 134-5, 161, 179
VECTR 89-90, 154-5
within menus 17
XM operation 203, 296
Message Area 226, 229, 233, 253, 271
Messages 17, 72, 99, 127
IEEM cperation 203
MIN function 177
Minima 234, 244, 293
MINR command 42

MOD function 177, 339
Mode indicators 17-8, 352
Modes 17, 23, 168

algebraic entry 129, 352
alpha 19, 350

le 19, 63, 81-2, 84-5, 88, 100, 168

curve-filling 299
customized 358
display 46-7, 70, 169

IGEN 46
insert 37,185

key 37,89
matrix entry 261
number base 102-3, 107, 148
program 76, 133-4, 352
replace 37, 185

NN 47
47

User 369, 372

vector 19, 81, 84-5, 88-9, 154, 162, 168
81

(MobEs) key 362, 369, 371-2, 374
Modifying the meaning ofthe shift keys 366
Molar mass 255-7
Moles 150-151, 236-7, 255-7
Momentum 156
Moving a variable between directories 360
Moving around using menus 28
MOVprogram 360-1, 365
Multiple equations 252-7
Multiple results 309
Multiple solutions 210, 216, 218, 233
Multiplication 51

implied 128, 181-2
with algebraic objects 128
with binary integers 107
with matrices 156-7
with unit objects 70-2

Musical scale 370

nl variable 211, 218-9
Name objects 24, 116-23, 308, 314

Names 24, 116-23, 125, 128, 195, 309, 352
as algebraic symbols 124, 212
capitalization 121
directory 137, 149, 163
empty 120, 126, 130, 178, 198, 251
equation 227, 254

evaluating 119-21, 126, 132, 137-9, 149,
215, 315, 365

identical 138
invoking 116,120, 163, 315, 317

Names {cont.)
local (vs. global) 310-7, 322, 324, 340-4
of programs 134-5
reserved variable 224
self-referencing 161
specialrestrictions 117

temporary 310

wildeard 206, 207
within names 121, 132

NEG command 330
Negating a value 329
Negative numbers 45, 106, 175

NEW operation 231, 236, 245, 249, 254.5,
264, 2717, 279, 291, 300, 376

Norm of a vector 176
NOT command 323
HUM command 111, 163, 343, 344
FRUM key 169, 292-3, 295, 298-9
Number bases 23, 102-3

Numbers
complex 13, 22, 80-5, 157, 174
imaginary 22
largest and smallest 42
real 13, 22, 27-8, 82, 40-7, 70,99

Numerals 109, 117
Numerators 182-4, 187
Numerical results 225

operation 254-7

key 19-20, 50, 151, 349, 359

0BJ> 79, 83,90, 96, 110-1, 114, 148, 151, 159-
60, 162-3, 296-7, 320, 322, 334, 341, 346-7

Object 22-6, 48
delimiters 22
types 22-6, 66, 166, 335

Objects 13-4, 16, 22-6, 67, 165
appending to a list 77
backup 388
collections of 25, 74
decomposing 79, 151, 346
decomposing compound objects 79, 83
evaluating 119
governing rules for 74
naming 307
procedure 225, 307

purging 120
recalling to the Stack 122
saving 116
string representations of 109, 148
symbolic 178
tagged 113,272
performing operations on 115

OCT command 103

0DD? program 339
[OFF) key 10
©Wkey 10, 16, 32
Operations 165, 352
Operators 117, 125, 325

Optimizing the HP 48 348-86
OR command 325
ORDER command 381
Orderof coefficients 202
Order of entry on the Stack 51, 118, 131,

166-8, 213, 311
Orderoflocal names in a UDF 313
Order of operations 128, 130
Ordered collections 74, 86, 133
Ordered pairs 22, 80, 240
Organizing variables 359-61

in SOLYR menu 376
in YAR menu 381

OVER command 344
Overwriting variables 361

Parabola 247, 284

Parameter lists 377-8, 380
PARAMETRIC command 290
Parentheses 128-30, 182, 203, 311, 353
Partial derivatives 293
Partial fractions 297
Path 15, 139, 141, 163, 344, 346, 361, 364-65
PATH command 3844, 360, 361
Percentages 61, 65, 144, 152, 177
Perimeter 316
PERM command 173
Permutations 61, 65, 173
PGDIR command 141
n (Pi) 64, 148, 160, 169, 216, 293, 298-9
PICK command 367
A operation 56, 192, 201, 351
PICT variable 224-5
Pixels 196, 238

Place value 158
key 246, 249, 254, 295, 2989, 354
operation 267, 271

PLOT 223-6, 238-48,258, 262, 298-9, 358, 377
multiple equations 252-7, 289
multiple plots 252, 291

Plot types 262, 377
Bar plot 269
Conie 282, 289

Function 238
Parametric 282, 290, 299
Polar 282, 284, 299
Scatter plot 273
Truth 282, 291

PLOTR menu 229, 238, 246, 250, 253, 377
Plotting interval 377
Plotting parameters 380
Plug-in cards 388
POLAR command 299
(FoLaR)key 82, 85, 88-9, 91, 156
Polar mode 81-2, 156

Polynomials 284
1st-order 210
2nd-order 210
entering in EquationWriter 353
Taylor 297

POS command 159
Postfix notation 48-50, 52, 78, 132, 134-5,

160, 319
Power 69
PPAR variable 377-8, 380
Precision of a number 40-1, 64
during integration 295, 298
during summations 302
using #0 172

Predicted value 274, 287

PREDX command 304
PREDY command 274
Pressure 69, 236-7, 256-7
FREVkey 19-20, 50, 150-1, 227, 349
PEG annunciator 76, 133

PRINC program 363, 365-6
Printing 388
Probability 65, 173
Probability distribution 278

Chi-square 278
Normal 278
Snedecor's F 278, 304
t-statistic 278, 280

Problem-solving 165, 256, 281-8

Procedural arguments 327
Procedure environments 317
Procedure object 225, 328, 341

Program mode 76, 133-4, 352
Program structures

branching 326-32, 343
conditional tests 323-5, 340-1, 343

defining procedure 324
error trapping 332, 335, 347
looping 333-9, 343-4
user interface 341

Programming 306-47
defining inputs and outputs

design strategy 319, 320
managing flags 375
modular 319-20, 339

Programs 13, 25, 101, 115, 132-5, 149, 162,
306-47, 358

and the SOLVE tool

318

224, 248-51

Programs (cont.)
decomposing 135
designing 318-23
editing 309
and the Stack 310, 314, 336
within programs 313

Prompting 318, 320
PURGE 141, 161, 221, 290-4, 299-300, 305,

360
(PURGE) key 120, 139, 160-1, 179, 219, 236,

291, 293, 296, 299-300, 361
Purging a directory 141

Purging objects from the VAR menu 120, 185,
139, 148, 179, 219, 235, 360-1

PUT command 155-6, 347
PHRFIT command 272

key 172-3,201,369, 372
2 172-3, 218, 299, 363, 366, 369, 372-3
QUAD command 210-1, 218
Quadratic equation 128-31, 210

QUIT program 380-1

kL& annunciator 168
IFF mode 81, 89, 154-5
RAD annunciator 100, 168
RAD command 367, 374
(RAD key 100, 154, 156, 168
Tmode 81, 100, 155, 168, 218, 290, 299
Radiation 69
RAM cards 388
RAND command 339
Random numbers 339
Rangesfor plotting 246, 377
Rational numbers 40, 172

k42 annunciator 168
Ilmode 81, 89, 155
RCL command 315, 346, 360-1
(BeD key 122, 191-2, 194, 219, 221, 296, 366
RCLF command 105, 374, 380
RCLKEYS command 370, 372-3, 375, 380
RCHS command 104
ROM command 155-6
RE command 84, 145, 176
Real numbers 13, 22, 27-8, 32, 40-7, 67, 70,

83, 99, 114, 174, 224

Recalling an object
from a different directory 341
to the EquationWriter 196, 219, 221, 296
to the Stack 122-3

Rectangular mode 82, 8%

Regression analysis 267, 270-1, 279
Best-fitting model 272, 275, 304
Exponential model 271-2
Linear model 271-2
Power modet 271-2

Regression curve 273
Regression model 378

Related rates 283, 294
Repeating commands 333
a predetermined numberof times 333-5
indefinitely 333, 338-9, 345
using a incremental counter 333, 336-7

3Noperation 192-4
Replace mode 37, 185
Replacing arguments 193
Replacing subexpressions 189, 192

3operation 246, 250, 253, 289-91, 298
Restore previous flag settings 375
Results of a calculation 115, 165
Return key. See(=)key
REVIEWkey 127,179, 361
Reviewingthe list of equations 228

Reviewing variables 127, 179, 227, 361
R*8 command 106-7
R+C command 83, 151, 155
Risk evaluation 287, 304

RMD fanction 64, 174-5, 367
RNRM command 820
ROLL 56, 65, 193, 293, 298-9, 347,367

operation 351
ROLLD command 56, 279, 367

operation 351
Rolling the contents of the Stack 56, 65

ROM cards 388
ROOT command 241, 247, 250, 295, 298
Root of equation 232-3, 238-43, 247, 250, 295
ROT command 335, 342, 347
Rounding error 41, 61-4, 106, 233, 250, 259

with binary integers 106
with integration 295, 298
with summations 302

Rounding numbers 41, 174-5

Row-major order 94, 261
RPN notation. See also Posifix notation
RULES menu 202, 204, 296

51 variable 210
SAME command 325
Saving equation lsts 254
Saving expressions 195-6
Saving keystrokes 349
Saving objects 116
Scalars 70, 91

Scale
ofa display 298
of a plot 238-9, 242, 246, 273

SCATRPLOT command 278, 275
SCI command 47, 150
Scientific notation 40-1, 47, 148, 176
SDEV command 268, 280
Search-and-replace 207
Selection Environment 186-187, 190, 193-5,

202
Series 154, 286, 302

SET1 program 380-1
Setting flags 100-1
Setting the machine for the Course 11, 105
F command 100, 157, 323, 367, 374

Shift keys 18-9, 27-8, 35, 72-3, 123, 218, 240,
244, 265, 350, 366, 368

SHOW command 199
SIGN command 176
Sign reversal 233-4, 236
Significant digits 47, 64, 174-5
Simultaneous equations 252
SNkey 1689
SINH function 292
SIZE command 111, 159, 322, 343-5, 347
SKEY command 373
Slope 253, 271-2, 304, 378
Salids of revolution 284, 299
Solutions

iterative 303
multiple 210, 216, 218, 233
principal vs. general 211, 218-9, 221

Solvability 251
key 226-7, 229, 231, 237, 289, 300,

302, 354
SOLVE tool

8, 258, 262, 302, 358, 376
multiple equations 252-7, 289

watching it search for a root 233
Solving equations

byplotting 238-44
numerically 232-4, 236, 245-7
simultaneous systems of 258-61
symbolically 124, 208-11, 219
using programs 248-51

with units 235-7
SOLYR menu 229-32, 237, 245, 248, 255,

289-90, 293, 301
customizing 358, 376

SOLYR messages
Extrenum 234
Sign Reversal 233-34, 236, 245
Zero 232

Speed 69
Spherical mode 86, 89

223-6, 229, 232-5, 238, 241, 244-

SPLIT program 322
S0 function 327, 342
Square root 129

Stack 14, 16, 23-4, 28, 31, 48-51, 52-9, 67,
76-8, 83, 89, 95, 105, 109, 113-4, 116, 118,
192, 129,150, 194, 248, 251

and evaluating objects 127
and looping 335
and the EquationWriter 190
effect of errors on 135
Interactive 54-58, 79, 201, 298, 299

levels of 14, 31, 38, 39, 51, 57
manipulating the 309, 319
recovering previous 356
rolling the contents of 56

Stack pointer 54, 56-7

Standard deviation 268, 277, 287, 304
START...HEKT loop 334-5
START...STEP loop 333, 336-7
(ETAD key 264, 267-8, 277, 279-80, 304, 354,

368
STAT menu 267, 362, 368, 377
STAT tool 223-5, 262-7, 270-8, 304, 358, 377
Statistics

comparative 267, 270, 276-8

paired differences 279

plotting 267, 270, 273, 275, 378
regression 270

single-variable 267-9, 280

summary 267, 270

test 270, 276-80
two-variable 267, 270-8

Status area 17-9, 32-3, 76, 81, 99, 129
STD command 47, 94, 151, 154, 157, 160,166,

172, 213, 218, 258, 269, 303, 367
STEQ command 227, 290, 291, 302

operation 229, 280
ST0 command 360-1, 380, 383-4
10 key 118, 122, 138, 154, 163, 1956, 205,

210, 212, 218, 296, 301, 312, 364
5T0Z command 269, 279
STOF command 101, 105, 375, 380, 383, 385
STOKEYS command 371-2, 380, 383-4
Storage 14-5, 24-5, 116, 118, 123, 138
Storing flag settings 101
Storing valuesin variables 212, 219, 230,

236, 257, 292, 301, 364
+5TR command 110-1, 159, 346
String objects 108-11
String representations ofobjoctu 1081 10
Strings See Chaructor ulrings
STWS command 104.4, 159, 474
SUB commnnd 10, 24, 43, 144, 340, 4t
BTN oporntion 1903, 104, 440, 241
Subdiroctarien 1, AT, 141, 0080, 301

Subexpressions 182-3, 186-8, 301
editing 189-214
inserting 191, 219

nested 188
rearranging 200, 203
replacing 192

Subscripts 182
Subtraction 51, 70, 107
SUML program 334, 335
Summations 143, 145, 157, 186, 270, 286,

302
Superscripts 128

Surface area 283-5, 293

SWAP 334-5, 339,342, 344, 347, 360-1, 371
key 53, 151, 162, 192, 290

Symbolic arguments 178
Symbolic constants 148, 169
Symbolic functions 178-9
Symbolic rearrangements 200-7
Symbolic variables 178-9
Symbolic vs. numeric evaluation 148, 160,

169
System flags 98, 100, 105, 158, 169, 211, 309,

320, 340, 342, 350, 374-5, 380
System parameters 307-8, 318
System reset 383
System states 101, 105, 147, 158, 309, 374

default 383, 385
Systemsof equations 258-61, 282, 293
Systems of inequalities 291

t-statistic 277, 279-80
+TAG command 114, 160
Tags 24, 113-5, 148
Taylor series 63, 284, 297
TAYLR function 287
Temperature 69, 151, 236-7, 256-7
Temporary custom menu 367
Ioperation 203, 205, 296
Testing flags 100-1, 323, 342
IEM operation 203
Time 69, 199, 357

arithmetic 171, 302
format 170-1, 302

[ME) key 156, 170-1, 354
THENU command 367, 380
Toggle keys 18, 82, 89-90, 96, 374, 384
three-way 19, 369, 371

Transferring data to other machines 388
Transposing a matrix 279
ECEA operation 204
Triangles 217, 221
Trig, functions 85, 154, 204, 211, 218, 282

Trigonometric identities 206-7, 217, 221
Trigonometry 61, 168-9, 183, 216
Triple scalar product 154
TRN command 279, 347
TRNC function 64, 167, 174-5
Truncation 61, 64
and binary integers 106, 159
of real numbers 1686, 167, 174, 175
to current display setting 175

TRUTH command 291
T5TR command 171
TYPE command 323, 329-30, 338, 343, 346

UBASE command 156, 256
UDF. See User-defined functions
Undefined values 126
Undoing a stack error 356
Unit objects 22, 68-74, 77, 144-5, 174
adding and subtracting 70, 72
building 69, 72, 143, 184
multiplying 70
multiplying and dividing 71-2, 143
T program 321

Units 22, 68-73, 154, 178
compound 72, 184
consistent 68, 235
converting 68, 70, 71, 72, 73
in equations 221, 224, 235-7, 256
inconsistent 71
prefixes to 152

(ONTS) key 69, 73, 150-1, 156, 256, 357
UPDIR command 140
[GP key 140
User flags 98-100, 105, 374, 380

User mode 369, 371
User-defined functions 212-5, 217, 220, 292

310-2, 322, 340, 343
algebraic vs. program form 311-2, 324
and the SOLVE too! 248-51
and the STAT tool 277
symbolic arguments with 215

User-keyboard definitions 369, 371, 380
D5 key 369, 371-2
UTPC command 278
UTFF command 278, 304
UTPN command 278
UTPT command 278, 280
WAL command 156

V2 command 89-90
33 command 89-90

Value of an expression 230, 274

RIET operation 267-8
Roperation 267

(VAR key 15, 154-5, 354, 368, 373, 381
VAR menu 118-27, 134-5, 138,161, 179, 212,

228, 305, 307, 314, 349, 354, 359, 363,
384

directories and 137, 379
subdividing 136-7, 360

Variables 118, 124, 258, 308-9, 352
XIPAR 377, 378, 380
CST 363-4, 367, 370, 372, 378
defining 184, 205, 219
dependent 270-1, 289, 377-8

formal 178-9
giobal 311, 313-5, 317
hidden 199, 231
in different directories 138-9
independent 238, 252, 269-71, 290, 298-9,

3177-8
isolating 208-11,219, 221, 245
local 313
moving 360

nl 211,218-9
ofdifferentiation 291-2
of integration 182
polynomial 297
PPAR 377-8, 380

Variables (cont.)
reserved 224-5, 262, 377-8
sl 210
SOLYR 230-2, 256-7, 289, 301
stored 198
symbolic 178-9, 198, 251
value of 127, 132, 215, 218

Variance of a sample 304
Aoperation 258

Vector equations 283
Vectors 13, 86-91, 93, 143, 151, 155-7, 170,

383, 385
angle between 145, 154

arithmetic with 91, 146, 155, 162
compared with arrays 93-4, 146
cross product 91, 154
display mode 88, 89, 154, 162, 168
dot product 91, 145, 154, 155, 170
extracting components of 87-8, 90, 174

finding length of 91
in complex plane 80

norm of 176
real and complex 87, 155-6, 162

rectangular vs polar form 88
redimensioning 145, 155-6

unit 145, 155, 321
within vectors 162

Velocity 156, 199
Y3 command 90
TN operation 55, 229
Viscosity 69

key 123, 135
Visiting an object 123, 135
Volume 69, 72-3, 145, 150-4, 236-7, 255,

257, 283, 285, 293-4, 300, 317

WAIT command 336-7, 345
Waiting for input 341
Where (|) function 184
WHILE.. REPEAT...END loop 333, 338-9, 344
3 operation 258

operation 258, 264
Wildcard names 206-7
Word size 104-107, 147, 158, 342, 375, 385

X-range (plotting) 242, 244, 291, 377
HCOL command 26971, 275, 304
KPON command 160, 176, 331
HRNG command 291, 295
IETE operation 273
MEFN mode 81, 154-5, 157

Y-range (plotting) 242, 244, 291, 377
YCOL command 270-1, 275, 304
YRHG command 291, 295

BT operation 243-4, 246, 250, 289
Zero of an expression 232
Zero values 321
Z00M menu 239, 273
Zooming in the PLOTR 239, 243, 273, 289

We have many other great books for learning about your computerand

your favorite software—don’t miss them!

HP-48SX Graphics

Here’s a “must-have” book ifyou

want to use the full potential of

that big 48 display. Author Ray

Depew, an HP engineer, shows

youhowtobuild graphics objects

(“grobs”) and then use them to

customize displays with dia-

grams, pictures and plots. You’ll

also get an in-depth review of

the 48’s built-in PLOT and

SOLVE tools and how to custom-

ize them, too.

An Easy Course in Using

h P-2

If you liked the Easy Course for

the 48, and you know someone

who could use the same kind of

help with anHP-28S, thenhere’s

anideal gift. Authors Chris Cof-

fin and John Loux guide the

reader through a tour of the ob-

jects and tools in the powerful

HP-28S, including a section on

problem solving with programs

and algebraic objects.

We have Easy Courses and related books on many other subjects, too.

See our order information (next pages) or contact us for a free catalog!

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis OR, 97339-2449 U.S.A.

Item # Book Title Price

_ CurriculumBooks
N/A | Problem-Solvmg Situations: A Teacher ResourceBookVol1l $15

. PersonalComputer Books : e

N/A An Easy Course in Usmg Lotus 1-2-3 $ 22

28 Lotus Be Brief 11

30 An Easy Course in Using DOS 22

29 A Little DOS Will Do You 11

N/A An Easy Course in Using WordPerfect 22

N/A Concise and WordPerfect 11

N/A An Easy Course in Using dBASE 22

_ Hewlett-PackardCalculator Books ...

N/A An Easy Course in Using the HP-19BII $22

22 The HP-19B Pocket Guide: Just In Case 6

20 An Easy Course in Using the HP-17B 22

23 The HP-17B Pocket Guide: Just In Case 6

05 An Easy Course in Using the HP-12C 22

12 The HP-12C Pocket Guide: Just In Case 6

31 An Easy Course in Using the HP-48SX 22

N/A HP-48SX Graphics 20

18 An Easy Course in Using the HP-28S 22

25 HP-28S Software Power Tools: Electrical Circuits 18

27 HP-28S Software Power Tools: Utilities 20

26 An Easy Course in Using the HP-42S 22

24 An Easy Course in Using the HP-22S 22

21 An Easy Course in Using the HP-27S 22

(Prices are subject to change without notice)

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis OR, 97339-2449 U.S.A.

For Orders and Order Information Call:

1-800-338-4331

To Order Grapevine Publications books:

= Call to charge the books to VISA/MasterCard, or

Sendthis OrderForm to: Grapevine Publications, P.0.Box 2449 Corvallis, OR 97339

Qty. |Item # Book Title Unit Cost| Total

Shipping Information: Subtotal
Post Office shipping and handlingcc.cccceeeveeennne. ADD $2.50 . e

(allow 2-3 weeks for delivery)........ccccevererenrravennnn. or Shlpplng

UPS shipping and handlingccccceceeeeveneevereenenvennnnsADD $3.75 See shipping Info.
(allow 7-10 daysfor delivery).............

International Mail: Surface PostcceeersesereesessesesADD $ 450 TOTAL

(allow 6-8 weeks for delivery)

AirParcel (Please contact us for the correct amount or add $10

per book to Canada and Mexico. Add $25 per book to all other

countries. We will refund any cash excess, or charge exact

shipping cost to credit cards. Allow 2-3 weeks for delivery)

Payment Information

O Check enclosed (Please make your checkpayable to Grapevine Publications, Inc.)
(International Check or Money Order must be in U.S. funds and drawn on a U.S. bank)

) VISAorMasterCard # Exp.date

Your Signature

Name Phone ()

Shipping Address

(Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery)

City State Zip Country.

Reader Comments

Here at Grapevine, we like to hear feedback about our publi-

cations. It helps us produce books tailored to our readers’

needs. Ifyou have any specific comments for our authors after

reading this book, we’d appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State:

Please send Grapevine Catalogues to:

Name

Address

City State Zip

Name

Address

City State Zip

An Easy Course in Using the HP-48SX

Here’s the fastest, easiest way to get up-to-speed on the incredible

HP-48SX! This fascinating and friendly Course gives youjargon-free,

hands-on, practical lessons on objects, tools, menus, the Stack,

writing, solving and plotting equations, using matrices and

statistics, programming, using directories—and much more.

Each lesson shows you working examples of the commands and

concepts you need to learn. There are plenty of review points that

summarize what you’ve learned—and a quiz at the end of each

chapter.

So don’t wait any longer to start tapping the potential of your HP-

48SX. Let this clear, concise Easy Course get you started on along and

productive working relationship with HP's finest calculator. It’s

always a pleasant surprise when the right kind of instruction can

transform a “mysterious” and powerful machine into a friendly and

familiar tool—for you!

ISBN 0-931011-31-0

Grapevine Publications, Inc. I
626 N.W.4th St. P.O.Box2449 Corvallis, OR 97339 U.S.A. 0 "'"12841700031" "6

_
 J

	Cover
	Contents
	0. Start Here
	1. Your 48 Workshop
	Calculating with Tools and Objects
	The Big Picture: A Workshop
	The Display: Your Window into the Workshop
	The Keyboard: Access to Your Workshop
	The Tools in Your Workshop
	The Raw Materials in Your Workshop

	Quiz on the “Big Picture”
	Quiz Answers

	2. The Stack and Command Line: Your Workbench
	Typing and the Command Line
	Simple Materials: Real Numbers
	Postfix Notation
	Stack Manipulations
	Learning By Doing
	Workbench Quiz
	Workbench Solutions

	3. Objects: Your Raw Materials
	The Fundamental Idea
	Real Numbers
	Units
	Lists
	Complex Numbers
	Vectors
	Arrays
	Flags
	Binary Integers
	Character Strings
	Tags
	Names
	Algebraic Objects
	Postfix Programs
	Directories
	Objects: A Summary
	Test Your Objectivity
	Objective Answers

	4. Functions and Expressions
	Functions and Arguments
	Some Built-In Functions
	Symbolic Functions and Variables
	Creating Expressions
	Editing Expressions
	Saving Expressions

	Using Expressions
	Evaluating Expressions
	Rearranging Expressions
	Solving Equations of Expressions

	User-Defined Functions
	Math Anxiety
	Cool and Calculating

	5. Solving, Plotting and Analyzing
	Equations, Data and Graphics
	Defining EQ, the Current Equation
	The SOLVR Menu
	Solving Equations with SOLVE
	Solving Equations Involving Units

	Solving Equations Using PLOT
	Solving Two Expressions Simultaneously
	Solving Programs and User-Defined Functions

	Multiple Equations with SOLVE and PLOT
	Solving Systems of Equations
	Analyzing Data: The STAT Tool
	Creating the Data Matrix
	The STAT Menu
	Single-Variable Statistics
	Two-Variable Statistics
	Two-Sample Statistical Tests
	Transforming Variables in the Data Matrix

	More Challenges
	More Solutions

	6. Building Your Own Tools: Programming
	Your "Automation” Options
	Local Names
	Program Design
	Conditional Tests
	Branching
	Looping
	Quiz
	Quiz Answers

	7. Customizing Your Workshop
	Labor-Saving Devices
	Input Shortcuts
	The LAST Commands
	Customizing Your Workspace
	Directory Structure
	Custom Menus
	Custom Keyboards
	Custom Flag Settings
	Customizing the Built-In Tools
	Optimization: A Case Study

	Custom Questions
	Optimum Answers

	Foundation Completed

